1 //===- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Bitcode writer implementation. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Bitcode/BitcodeWriter.h" 14 #include "ValueEnumerator.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/None.h" 20 #include "llvm/ADT/Optional.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/SmallString.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/StringMap.h" 25 #include "llvm/ADT/StringRef.h" 26 #include "llvm/ADT/Triple.h" 27 #include "llvm/Bitcode/BitcodeCommon.h" 28 #include "llvm/Bitcode/BitcodeReader.h" 29 #include "llvm/Bitcode/LLVMBitCodes.h" 30 #include "llvm/Bitstream/BitCodes.h" 31 #include "llvm/Bitstream/BitstreamWriter.h" 32 #include "llvm/Config/llvm-config.h" 33 #include "llvm/IR/Attributes.h" 34 #include "llvm/IR/BasicBlock.h" 35 #include "llvm/IR/Comdat.h" 36 #include "llvm/IR/Constant.h" 37 #include "llvm/IR/Constants.h" 38 #include "llvm/IR/DebugInfoMetadata.h" 39 #include "llvm/IR/DebugLoc.h" 40 #include "llvm/IR/DerivedTypes.h" 41 #include "llvm/IR/Function.h" 42 #include "llvm/IR/GlobalAlias.h" 43 #include "llvm/IR/GlobalIFunc.h" 44 #include "llvm/IR/GlobalObject.h" 45 #include "llvm/IR/GlobalValue.h" 46 #include "llvm/IR/GlobalVariable.h" 47 #include "llvm/IR/InlineAsm.h" 48 #include "llvm/IR/InstrTypes.h" 49 #include "llvm/IR/Instruction.h" 50 #include "llvm/IR/Instructions.h" 51 #include "llvm/IR/LLVMContext.h" 52 #include "llvm/IR/Metadata.h" 53 #include "llvm/IR/Module.h" 54 #include "llvm/IR/ModuleSummaryIndex.h" 55 #include "llvm/IR/Operator.h" 56 #include "llvm/IR/Type.h" 57 #include "llvm/IR/UseListOrder.h" 58 #include "llvm/IR/Value.h" 59 #include "llvm/IR/ValueSymbolTable.h" 60 #include "llvm/MC/StringTableBuilder.h" 61 #include "llvm/Object/IRSymtab.h" 62 #include "llvm/Support/AtomicOrdering.h" 63 #include "llvm/Support/Casting.h" 64 #include "llvm/Support/CommandLine.h" 65 #include "llvm/Support/Endian.h" 66 #include "llvm/Support/Error.h" 67 #include "llvm/Support/ErrorHandling.h" 68 #include "llvm/Support/MathExtras.h" 69 #include "llvm/Support/SHA1.h" 70 #include "llvm/Support/TargetRegistry.h" 71 #include "llvm/Support/raw_ostream.h" 72 #include <algorithm> 73 #include <cassert> 74 #include <cstddef> 75 #include <cstdint> 76 #include <iterator> 77 #include <map> 78 #include <memory> 79 #include <string> 80 #include <utility> 81 #include <vector> 82 83 using namespace llvm; 84 85 static cl::opt<unsigned> 86 IndexThreshold("bitcode-mdindex-threshold", cl::Hidden, cl::init(25), 87 cl::desc("Number of metadatas above which we emit an index " 88 "to enable lazy-loading")); 89 static cl::opt<uint32_t> FlushThreshold( 90 "bitcode-flush-threshold", cl::Hidden, cl::init(512), 91 cl::desc("The threshold (unit M) for flushing LLVM bitcode.")); 92 93 static cl::opt<bool> WriteRelBFToSummary( 94 "write-relbf-to-summary", cl::Hidden, cl::init(false), 95 cl::desc("Write relative block frequency to function summary ")); 96 97 extern FunctionSummary::ForceSummaryHotnessType ForceSummaryEdgesCold; 98 99 namespace { 100 101 /// These are manifest constants used by the bitcode writer. They do not need to 102 /// be kept in sync with the reader, but need to be consistent within this file. 103 enum { 104 // VALUE_SYMTAB_BLOCK abbrev id's. 105 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 106 VST_ENTRY_7_ABBREV, 107 VST_ENTRY_6_ABBREV, 108 VST_BBENTRY_6_ABBREV, 109 110 // CONSTANTS_BLOCK abbrev id's. 111 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 112 CONSTANTS_INTEGER_ABBREV, 113 CONSTANTS_CE_CAST_Abbrev, 114 CONSTANTS_NULL_Abbrev, 115 116 // FUNCTION_BLOCK abbrev id's. 117 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 118 FUNCTION_INST_UNOP_ABBREV, 119 FUNCTION_INST_UNOP_FLAGS_ABBREV, 120 FUNCTION_INST_BINOP_ABBREV, 121 FUNCTION_INST_BINOP_FLAGS_ABBREV, 122 FUNCTION_INST_CAST_ABBREV, 123 FUNCTION_INST_RET_VOID_ABBREV, 124 FUNCTION_INST_RET_VAL_ABBREV, 125 FUNCTION_INST_UNREACHABLE_ABBREV, 126 FUNCTION_INST_GEP_ABBREV, 127 }; 128 129 /// Abstract class to manage the bitcode writing, subclassed for each bitcode 130 /// file type. 131 class BitcodeWriterBase { 132 protected: 133 /// The stream created and owned by the client. 134 BitstreamWriter &Stream; 135 136 StringTableBuilder &StrtabBuilder; 137 138 public: 139 /// Constructs a BitcodeWriterBase object that writes to the provided 140 /// \p Stream. 141 BitcodeWriterBase(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder) 142 : Stream(Stream), StrtabBuilder(StrtabBuilder) {} 143 144 protected: 145 void writeBitcodeHeader(); 146 void writeModuleVersion(); 147 }; 148 149 void BitcodeWriterBase::writeModuleVersion() { 150 // VERSION: [version#] 151 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, ArrayRef<uint64_t>{2}); 152 } 153 154 /// Base class to manage the module bitcode writing, currently subclassed for 155 /// ModuleBitcodeWriter and ThinLinkBitcodeWriter. 156 class ModuleBitcodeWriterBase : public BitcodeWriterBase { 157 protected: 158 /// The Module to write to bitcode. 159 const Module &M; 160 161 /// Enumerates ids for all values in the module. 162 ValueEnumerator VE; 163 164 /// Optional per-module index to write for ThinLTO. 165 const ModuleSummaryIndex *Index; 166 167 /// Map that holds the correspondence between GUIDs in the summary index, 168 /// that came from indirect call profiles, and a value id generated by this 169 /// class to use in the VST and summary block records. 170 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 171 172 /// Tracks the last value id recorded in the GUIDToValueMap. 173 unsigned GlobalValueId; 174 175 /// Saves the offset of the VSTOffset record that must eventually be 176 /// backpatched with the offset of the actual VST. 177 uint64_t VSTOffsetPlaceholder = 0; 178 179 public: 180 /// Constructs a ModuleBitcodeWriterBase object for the given Module, 181 /// writing to the provided \p Buffer. 182 ModuleBitcodeWriterBase(const Module &M, StringTableBuilder &StrtabBuilder, 183 BitstreamWriter &Stream, 184 bool ShouldPreserveUseListOrder, 185 const ModuleSummaryIndex *Index) 186 : BitcodeWriterBase(Stream, StrtabBuilder), M(M), 187 VE(M, ShouldPreserveUseListOrder), Index(Index) { 188 // Assign ValueIds to any callee values in the index that came from 189 // indirect call profiles and were recorded as a GUID not a Value* 190 // (which would have been assigned an ID by the ValueEnumerator). 191 // The starting ValueId is just after the number of values in the 192 // ValueEnumerator, so that they can be emitted in the VST. 193 GlobalValueId = VE.getValues().size(); 194 if (!Index) 195 return; 196 for (const auto &GUIDSummaryLists : *Index) 197 // Examine all summaries for this GUID. 198 for (auto &Summary : GUIDSummaryLists.second.SummaryList) 199 if (auto FS = dyn_cast<FunctionSummary>(Summary.get())) 200 // For each call in the function summary, see if the call 201 // is to a GUID (which means it is for an indirect call, 202 // otherwise we would have a Value for it). If so, synthesize 203 // a value id. 204 for (auto &CallEdge : FS->calls()) 205 if (!CallEdge.first.haveGVs() || !CallEdge.first.getValue()) 206 assignValueId(CallEdge.first.getGUID()); 207 } 208 209 protected: 210 void writePerModuleGlobalValueSummary(); 211 212 private: 213 void writePerModuleFunctionSummaryRecord(SmallVector<uint64_t, 64> &NameVals, 214 GlobalValueSummary *Summary, 215 unsigned ValueID, 216 unsigned FSCallsAbbrev, 217 unsigned FSCallsProfileAbbrev, 218 const Function &F); 219 void writeModuleLevelReferences(const GlobalVariable &V, 220 SmallVector<uint64_t, 64> &NameVals, 221 unsigned FSModRefsAbbrev, 222 unsigned FSModVTableRefsAbbrev); 223 224 void assignValueId(GlobalValue::GUID ValGUID) { 225 GUIDToValueIdMap[ValGUID] = ++GlobalValueId; 226 } 227 228 unsigned getValueId(GlobalValue::GUID ValGUID) { 229 const auto &VMI = GUIDToValueIdMap.find(ValGUID); 230 // Expect that any GUID value had a value Id assigned by an 231 // earlier call to assignValueId. 232 assert(VMI != GUIDToValueIdMap.end() && 233 "GUID does not have assigned value Id"); 234 return VMI->second; 235 } 236 237 // Helper to get the valueId for the type of value recorded in VI. 238 unsigned getValueId(ValueInfo VI) { 239 if (!VI.haveGVs() || !VI.getValue()) 240 return getValueId(VI.getGUID()); 241 return VE.getValueID(VI.getValue()); 242 } 243 244 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 245 }; 246 247 /// Class to manage the bitcode writing for a module. 248 class ModuleBitcodeWriter : public ModuleBitcodeWriterBase { 249 /// Pointer to the buffer allocated by caller for bitcode writing. 250 const SmallVectorImpl<char> &Buffer; 251 252 /// True if a module hash record should be written. 253 bool GenerateHash; 254 255 /// If non-null, when GenerateHash is true, the resulting hash is written 256 /// into ModHash. 257 ModuleHash *ModHash; 258 259 SHA1 Hasher; 260 261 /// The start bit of the identification block. 262 uint64_t BitcodeStartBit; 263 264 public: 265 /// Constructs a ModuleBitcodeWriter object for the given Module, 266 /// writing to the provided \p Buffer. 267 ModuleBitcodeWriter(const Module &M, SmallVectorImpl<char> &Buffer, 268 StringTableBuilder &StrtabBuilder, 269 BitstreamWriter &Stream, bool ShouldPreserveUseListOrder, 270 const ModuleSummaryIndex *Index, bool GenerateHash, 271 ModuleHash *ModHash = nullptr) 272 : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream, 273 ShouldPreserveUseListOrder, Index), 274 Buffer(Buffer), GenerateHash(GenerateHash), ModHash(ModHash), 275 BitcodeStartBit(Stream.GetCurrentBitNo()) {} 276 277 /// Emit the current module to the bitstream. 278 void write(); 279 280 private: 281 uint64_t bitcodeStartBit() { return BitcodeStartBit; } 282 283 size_t addToStrtab(StringRef Str); 284 285 void writeAttributeGroupTable(); 286 void writeAttributeTable(); 287 void writeTypeTable(); 288 void writeComdats(); 289 void writeValueSymbolTableForwardDecl(); 290 void writeModuleInfo(); 291 void writeValueAsMetadata(const ValueAsMetadata *MD, 292 SmallVectorImpl<uint64_t> &Record); 293 void writeMDTuple(const MDTuple *N, SmallVectorImpl<uint64_t> &Record, 294 unsigned Abbrev); 295 unsigned createDILocationAbbrev(); 296 void writeDILocation(const DILocation *N, SmallVectorImpl<uint64_t> &Record, 297 unsigned &Abbrev); 298 unsigned createGenericDINodeAbbrev(); 299 void writeGenericDINode(const GenericDINode *N, 300 SmallVectorImpl<uint64_t> &Record, unsigned &Abbrev); 301 void writeDISubrange(const DISubrange *N, SmallVectorImpl<uint64_t> &Record, 302 unsigned Abbrev); 303 void writeDIGenericSubrange(const DIGenericSubrange *N, 304 SmallVectorImpl<uint64_t> &Record, 305 unsigned Abbrev); 306 void writeDIEnumerator(const DIEnumerator *N, 307 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 308 void writeDIBasicType(const DIBasicType *N, SmallVectorImpl<uint64_t> &Record, 309 unsigned Abbrev); 310 void writeDIStringType(const DIStringType *N, 311 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 312 void writeDIDerivedType(const DIDerivedType *N, 313 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 314 void writeDICompositeType(const DICompositeType *N, 315 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 316 void writeDISubroutineType(const DISubroutineType *N, 317 SmallVectorImpl<uint64_t> &Record, 318 unsigned Abbrev); 319 void writeDIFile(const DIFile *N, SmallVectorImpl<uint64_t> &Record, 320 unsigned Abbrev); 321 void writeDICompileUnit(const DICompileUnit *N, 322 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 323 void writeDISubprogram(const DISubprogram *N, 324 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 325 void writeDILexicalBlock(const DILexicalBlock *N, 326 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 327 void writeDILexicalBlockFile(const DILexicalBlockFile *N, 328 SmallVectorImpl<uint64_t> &Record, 329 unsigned Abbrev); 330 void writeDICommonBlock(const DICommonBlock *N, 331 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 332 void writeDINamespace(const DINamespace *N, SmallVectorImpl<uint64_t> &Record, 333 unsigned Abbrev); 334 void writeDIMacro(const DIMacro *N, SmallVectorImpl<uint64_t> &Record, 335 unsigned Abbrev); 336 void writeDIMacroFile(const DIMacroFile *N, SmallVectorImpl<uint64_t> &Record, 337 unsigned Abbrev); 338 void writeDIArgList(const DIArgList *N, SmallVectorImpl<uint64_t> &Record, 339 unsigned Abbrev); 340 void writeDIModule(const DIModule *N, SmallVectorImpl<uint64_t> &Record, 341 unsigned Abbrev); 342 void writeDITemplateTypeParameter(const DITemplateTypeParameter *N, 343 SmallVectorImpl<uint64_t> &Record, 344 unsigned Abbrev); 345 void writeDITemplateValueParameter(const DITemplateValueParameter *N, 346 SmallVectorImpl<uint64_t> &Record, 347 unsigned Abbrev); 348 void writeDIGlobalVariable(const DIGlobalVariable *N, 349 SmallVectorImpl<uint64_t> &Record, 350 unsigned Abbrev); 351 void writeDILocalVariable(const DILocalVariable *N, 352 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 353 void writeDILabel(const DILabel *N, 354 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 355 void writeDIExpression(const DIExpression *N, 356 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 357 void writeDIGlobalVariableExpression(const DIGlobalVariableExpression *N, 358 SmallVectorImpl<uint64_t> &Record, 359 unsigned Abbrev); 360 void writeDIObjCProperty(const DIObjCProperty *N, 361 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 362 void writeDIImportedEntity(const DIImportedEntity *N, 363 SmallVectorImpl<uint64_t> &Record, 364 unsigned Abbrev); 365 unsigned createNamedMetadataAbbrev(); 366 void writeNamedMetadata(SmallVectorImpl<uint64_t> &Record); 367 unsigned createMetadataStringsAbbrev(); 368 void writeMetadataStrings(ArrayRef<const Metadata *> Strings, 369 SmallVectorImpl<uint64_t> &Record); 370 void writeMetadataRecords(ArrayRef<const Metadata *> MDs, 371 SmallVectorImpl<uint64_t> &Record, 372 std::vector<unsigned> *MDAbbrevs = nullptr, 373 std::vector<uint64_t> *IndexPos = nullptr); 374 void writeModuleMetadata(); 375 void writeFunctionMetadata(const Function &F); 376 void writeFunctionMetadataAttachment(const Function &F); 377 void writeGlobalVariableMetadataAttachment(const GlobalVariable &GV); 378 void pushGlobalMetadataAttachment(SmallVectorImpl<uint64_t> &Record, 379 const GlobalObject &GO); 380 void writeModuleMetadataKinds(); 381 void writeOperandBundleTags(); 382 void writeSyncScopeNames(); 383 void writeConstants(unsigned FirstVal, unsigned LastVal, bool isGlobal); 384 void writeModuleConstants(); 385 bool pushValueAndType(const Value *V, unsigned InstID, 386 SmallVectorImpl<unsigned> &Vals); 387 void writeOperandBundles(const CallBase &CB, unsigned InstID); 388 void pushValue(const Value *V, unsigned InstID, 389 SmallVectorImpl<unsigned> &Vals); 390 void pushValueSigned(const Value *V, unsigned InstID, 391 SmallVectorImpl<uint64_t> &Vals); 392 void writeInstruction(const Instruction &I, unsigned InstID, 393 SmallVectorImpl<unsigned> &Vals); 394 void writeFunctionLevelValueSymbolTable(const ValueSymbolTable &VST); 395 void writeGlobalValueSymbolTable( 396 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 397 void writeUseList(UseListOrder &&Order); 398 void writeUseListBlock(const Function *F); 399 void 400 writeFunction(const Function &F, 401 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 402 void writeBlockInfo(); 403 void writeModuleHash(size_t BlockStartPos); 404 405 unsigned getEncodedSyncScopeID(SyncScope::ID SSID) { 406 return unsigned(SSID); 407 } 408 409 unsigned getEncodedAlign(MaybeAlign Alignment) { return encode(Alignment); } 410 }; 411 412 /// Class to manage the bitcode writing for a combined index. 413 class IndexBitcodeWriter : public BitcodeWriterBase { 414 /// The combined index to write to bitcode. 415 const ModuleSummaryIndex &Index; 416 417 /// When writing a subset of the index for distributed backends, client 418 /// provides a map of modules to the corresponding GUIDs/summaries to write. 419 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex; 420 421 /// Map that holds the correspondence between the GUID used in the combined 422 /// index and a value id generated by this class to use in references. 423 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 424 425 /// Tracks the last value id recorded in the GUIDToValueMap. 426 unsigned GlobalValueId = 0; 427 428 public: 429 /// Constructs a IndexBitcodeWriter object for the given combined index, 430 /// writing to the provided \p Buffer. When writing a subset of the index 431 /// for a distributed backend, provide a \p ModuleToSummariesForIndex map. 432 IndexBitcodeWriter(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder, 433 const ModuleSummaryIndex &Index, 434 const std::map<std::string, GVSummaryMapTy> 435 *ModuleToSummariesForIndex = nullptr) 436 : BitcodeWriterBase(Stream, StrtabBuilder), Index(Index), 437 ModuleToSummariesForIndex(ModuleToSummariesForIndex) { 438 // Assign unique value ids to all summaries to be written, for use 439 // in writing out the call graph edges. Save the mapping from GUID 440 // to the new global value id to use when writing those edges, which 441 // are currently saved in the index in terms of GUID. 442 forEachSummary([&](GVInfo I, bool) { 443 GUIDToValueIdMap[I.first] = ++GlobalValueId; 444 }); 445 } 446 447 /// The below iterator returns the GUID and associated summary. 448 using GVInfo = std::pair<GlobalValue::GUID, GlobalValueSummary *>; 449 450 /// Calls the callback for each value GUID and summary to be written to 451 /// bitcode. This hides the details of whether they are being pulled from the 452 /// entire index or just those in a provided ModuleToSummariesForIndex map. 453 template<typename Functor> 454 void forEachSummary(Functor Callback) { 455 if (ModuleToSummariesForIndex) { 456 for (auto &M : *ModuleToSummariesForIndex) 457 for (auto &Summary : M.second) { 458 Callback(Summary, false); 459 // Ensure aliasee is handled, e.g. for assigning a valueId, 460 // even if we are not importing the aliasee directly (the 461 // imported alias will contain a copy of aliasee). 462 if (auto *AS = dyn_cast<AliasSummary>(Summary.getSecond())) 463 Callback({AS->getAliaseeGUID(), &AS->getAliasee()}, true); 464 } 465 } else { 466 for (auto &Summaries : Index) 467 for (auto &Summary : Summaries.second.SummaryList) 468 Callback({Summaries.first, Summary.get()}, false); 469 } 470 } 471 472 /// Calls the callback for each entry in the modulePaths StringMap that 473 /// should be written to the module path string table. This hides the details 474 /// of whether they are being pulled from the entire index or just those in a 475 /// provided ModuleToSummariesForIndex map. 476 template <typename Functor> void forEachModule(Functor Callback) { 477 if (ModuleToSummariesForIndex) { 478 for (const auto &M : *ModuleToSummariesForIndex) { 479 const auto &MPI = Index.modulePaths().find(M.first); 480 if (MPI == Index.modulePaths().end()) { 481 // This should only happen if the bitcode file was empty, in which 482 // case we shouldn't be importing (the ModuleToSummariesForIndex 483 // would only include the module we are writing and index for). 484 assert(ModuleToSummariesForIndex->size() == 1); 485 continue; 486 } 487 Callback(*MPI); 488 } 489 } else { 490 for (const auto &MPSE : Index.modulePaths()) 491 Callback(MPSE); 492 } 493 } 494 495 /// Main entry point for writing a combined index to bitcode. 496 void write(); 497 498 private: 499 void writeModStrings(); 500 void writeCombinedGlobalValueSummary(); 501 502 Optional<unsigned> getValueId(GlobalValue::GUID ValGUID) { 503 auto VMI = GUIDToValueIdMap.find(ValGUID); 504 if (VMI == GUIDToValueIdMap.end()) 505 return None; 506 return VMI->second; 507 } 508 509 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 510 }; 511 512 } // end anonymous namespace 513 514 static unsigned getEncodedCastOpcode(unsigned Opcode) { 515 switch (Opcode) { 516 default: llvm_unreachable("Unknown cast instruction!"); 517 case Instruction::Trunc : return bitc::CAST_TRUNC; 518 case Instruction::ZExt : return bitc::CAST_ZEXT; 519 case Instruction::SExt : return bitc::CAST_SEXT; 520 case Instruction::FPToUI : return bitc::CAST_FPTOUI; 521 case Instruction::FPToSI : return bitc::CAST_FPTOSI; 522 case Instruction::UIToFP : return bitc::CAST_UITOFP; 523 case Instruction::SIToFP : return bitc::CAST_SITOFP; 524 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; 525 case Instruction::FPExt : return bitc::CAST_FPEXT; 526 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; 527 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; 528 case Instruction::BitCast : return bitc::CAST_BITCAST; 529 case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST; 530 } 531 } 532 533 static unsigned getEncodedUnaryOpcode(unsigned Opcode) { 534 switch (Opcode) { 535 default: llvm_unreachable("Unknown binary instruction!"); 536 case Instruction::FNeg: return bitc::UNOP_FNEG; 537 } 538 } 539 540 static unsigned getEncodedBinaryOpcode(unsigned Opcode) { 541 switch (Opcode) { 542 default: llvm_unreachable("Unknown binary instruction!"); 543 case Instruction::Add: 544 case Instruction::FAdd: return bitc::BINOP_ADD; 545 case Instruction::Sub: 546 case Instruction::FSub: return bitc::BINOP_SUB; 547 case Instruction::Mul: 548 case Instruction::FMul: return bitc::BINOP_MUL; 549 case Instruction::UDiv: return bitc::BINOP_UDIV; 550 case Instruction::FDiv: 551 case Instruction::SDiv: return bitc::BINOP_SDIV; 552 case Instruction::URem: return bitc::BINOP_UREM; 553 case Instruction::FRem: 554 case Instruction::SRem: return bitc::BINOP_SREM; 555 case Instruction::Shl: return bitc::BINOP_SHL; 556 case Instruction::LShr: return bitc::BINOP_LSHR; 557 case Instruction::AShr: return bitc::BINOP_ASHR; 558 case Instruction::And: return bitc::BINOP_AND; 559 case Instruction::Or: return bitc::BINOP_OR; 560 case Instruction::Xor: return bitc::BINOP_XOR; 561 } 562 } 563 564 static unsigned getEncodedRMWOperation(AtomicRMWInst::BinOp Op) { 565 switch (Op) { 566 default: llvm_unreachable("Unknown RMW operation!"); 567 case AtomicRMWInst::Xchg: return bitc::RMW_XCHG; 568 case AtomicRMWInst::Add: return bitc::RMW_ADD; 569 case AtomicRMWInst::Sub: return bitc::RMW_SUB; 570 case AtomicRMWInst::And: return bitc::RMW_AND; 571 case AtomicRMWInst::Nand: return bitc::RMW_NAND; 572 case AtomicRMWInst::Or: return bitc::RMW_OR; 573 case AtomicRMWInst::Xor: return bitc::RMW_XOR; 574 case AtomicRMWInst::Max: return bitc::RMW_MAX; 575 case AtomicRMWInst::Min: return bitc::RMW_MIN; 576 case AtomicRMWInst::UMax: return bitc::RMW_UMAX; 577 case AtomicRMWInst::UMin: return bitc::RMW_UMIN; 578 case AtomicRMWInst::FAdd: return bitc::RMW_FADD; 579 case AtomicRMWInst::FSub: return bitc::RMW_FSUB; 580 } 581 } 582 583 static unsigned getEncodedOrdering(AtomicOrdering Ordering) { 584 switch (Ordering) { 585 case AtomicOrdering::NotAtomic: return bitc::ORDERING_NOTATOMIC; 586 case AtomicOrdering::Unordered: return bitc::ORDERING_UNORDERED; 587 case AtomicOrdering::Monotonic: return bitc::ORDERING_MONOTONIC; 588 case AtomicOrdering::Acquire: return bitc::ORDERING_ACQUIRE; 589 case AtomicOrdering::Release: return bitc::ORDERING_RELEASE; 590 case AtomicOrdering::AcquireRelease: return bitc::ORDERING_ACQREL; 591 case AtomicOrdering::SequentiallyConsistent: return bitc::ORDERING_SEQCST; 592 } 593 llvm_unreachable("Invalid ordering"); 594 } 595 596 static void writeStringRecord(BitstreamWriter &Stream, unsigned Code, 597 StringRef Str, unsigned AbbrevToUse) { 598 SmallVector<unsigned, 64> Vals; 599 600 // Code: [strchar x N] 601 for (unsigned i = 0, e = Str.size(); i != e; ++i) { 602 if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i])) 603 AbbrevToUse = 0; 604 Vals.push_back(Str[i]); 605 } 606 607 // Emit the finished record. 608 Stream.EmitRecord(Code, Vals, AbbrevToUse); 609 } 610 611 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) { 612 switch (Kind) { 613 case Attribute::Alignment: 614 return bitc::ATTR_KIND_ALIGNMENT; 615 case Attribute::AllocSize: 616 return bitc::ATTR_KIND_ALLOC_SIZE; 617 case Attribute::AlwaysInline: 618 return bitc::ATTR_KIND_ALWAYS_INLINE; 619 case Attribute::ArgMemOnly: 620 return bitc::ATTR_KIND_ARGMEMONLY; 621 case Attribute::Builtin: 622 return bitc::ATTR_KIND_BUILTIN; 623 case Attribute::ByVal: 624 return bitc::ATTR_KIND_BY_VAL; 625 case Attribute::Convergent: 626 return bitc::ATTR_KIND_CONVERGENT; 627 case Attribute::InAlloca: 628 return bitc::ATTR_KIND_IN_ALLOCA; 629 case Attribute::Cold: 630 return bitc::ATTR_KIND_COLD; 631 case Attribute::Hot: 632 return bitc::ATTR_KIND_HOT; 633 case Attribute::InaccessibleMemOnly: 634 return bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY; 635 case Attribute::InaccessibleMemOrArgMemOnly: 636 return bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY; 637 case Attribute::InlineHint: 638 return bitc::ATTR_KIND_INLINE_HINT; 639 case Attribute::InReg: 640 return bitc::ATTR_KIND_IN_REG; 641 case Attribute::JumpTable: 642 return bitc::ATTR_KIND_JUMP_TABLE; 643 case Attribute::MinSize: 644 return bitc::ATTR_KIND_MIN_SIZE; 645 case Attribute::Naked: 646 return bitc::ATTR_KIND_NAKED; 647 case Attribute::Nest: 648 return bitc::ATTR_KIND_NEST; 649 case Attribute::NoAlias: 650 return bitc::ATTR_KIND_NO_ALIAS; 651 case Attribute::NoBuiltin: 652 return bitc::ATTR_KIND_NO_BUILTIN; 653 case Attribute::NoCallback: 654 return bitc::ATTR_KIND_NO_CALLBACK; 655 case Attribute::NoCapture: 656 return bitc::ATTR_KIND_NO_CAPTURE; 657 case Attribute::NoDuplicate: 658 return bitc::ATTR_KIND_NO_DUPLICATE; 659 case Attribute::NoFree: 660 return bitc::ATTR_KIND_NOFREE; 661 case Attribute::NoImplicitFloat: 662 return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT; 663 case Attribute::NoInline: 664 return bitc::ATTR_KIND_NO_INLINE; 665 case Attribute::NoRecurse: 666 return bitc::ATTR_KIND_NO_RECURSE; 667 case Attribute::NoMerge: 668 return bitc::ATTR_KIND_NO_MERGE; 669 case Attribute::NonLazyBind: 670 return bitc::ATTR_KIND_NON_LAZY_BIND; 671 case Attribute::NonNull: 672 return bitc::ATTR_KIND_NON_NULL; 673 case Attribute::Dereferenceable: 674 return bitc::ATTR_KIND_DEREFERENCEABLE; 675 case Attribute::DereferenceableOrNull: 676 return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL; 677 case Attribute::NoRedZone: 678 return bitc::ATTR_KIND_NO_RED_ZONE; 679 case Attribute::NoReturn: 680 return bitc::ATTR_KIND_NO_RETURN; 681 case Attribute::NoSync: 682 return bitc::ATTR_KIND_NOSYNC; 683 case Attribute::NoCfCheck: 684 return bitc::ATTR_KIND_NOCF_CHECK; 685 case Attribute::NoProfile: 686 return bitc::ATTR_KIND_NO_PROFILE; 687 case Attribute::NoUnwind: 688 return bitc::ATTR_KIND_NO_UNWIND; 689 case Attribute::NullPointerIsValid: 690 return bitc::ATTR_KIND_NULL_POINTER_IS_VALID; 691 case Attribute::OptForFuzzing: 692 return bitc::ATTR_KIND_OPT_FOR_FUZZING; 693 case Attribute::OptimizeForSize: 694 return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE; 695 case Attribute::OptimizeNone: 696 return bitc::ATTR_KIND_OPTIMIZE_NONE; 697 case Attribute::ReadNone: 698 return bitc::ATTR_KIND_READ_NONE; 699 case Attribute::ReadOnly: 700 return bitc::ATTR_KIND_READ_ONLY; 701 case Attribute::Returned: 702 return bitc::ATTR_KIND_RETURNED; 703 case Attribute::ReturnsTwice: 704 return bitc::ATTR_KIND_RETURNS_TWICE; 705 case Attribute::SExt: 706 return bitc::ATTR_KIND_S_EXT; 707 case Attribute::Speculatable: 708 return bitc::ATTR_KIND_SPECULATABLE; 709 case Attribute::StackAlignment: 710 return bitc::ATTR_KIND_STACK_ALIGNMENT; 711 case Attribute::StackProtect: 712 return bitc::ATTR_KIND_STACK_PROTECT; 713 case Attribute::StackProtectReq: 714 return bitc::ATTR_KIND_STACK_PROTECT_REQ; 715 case Attribute::StackProtectStrong: 716 return bitc::ATTR_KIND_STACK_PROTECT_STRONG; 717 case Attribute::SafeStack: 718 return bitc::ATTR_KIND_SAFESTACK; 719 case Attribute::ShadowCallStack: 720 return bitc::ATTR_KIND_SHADOWCALLSTACK; 721 case Attribute::StrictFP: 722 return bitc::ATTR_KIND_STRICT_FP; 723 case Attribute::StructRet: 724 return bitc::ATTR_KIND_STRUCT_RET; 725 case Attribute::SanitizeAddress: 726 return bitc::ATTR_KIND_SANITIZE_ADDRESS; 727 case Attribute::SanitizeHWAddress: 728 return bitc::ATTR_KIND_SANITIZE_HWADDRESS; 729 case Attribute::SanitizeThread: 730 return bitc::ATTR_KIND_SANITIZE_THREAD; 731 case Attribute::SanitizeMemory: 732 return bitc::ATTR_KIND_SANITIZE_MEMORY; 733 case Attribute::SpeculativeLoadHardening: 734 return bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING; 735 case Attribute::SwiftError: 736 return bitc::ATTR_KIND_SWIFT_ERROR; 737 case Attribute::SwiftSelf: 738 return bitc::ATTR_KIND_SWIFT_SELF; 739 case Attribute::UWTable: 740 return bitc::ATTR_KIND_UW_TABLE; 741 case Attribute::VScaleRange: 742 return bitc::ATTR_KIND_VSCALE_RANGE; 743 case Attribute::WillReturn: 744 return bitc::ATTR_KIND_WILLRETURN; 745 case Attribute::WriteOnly: 746 return bitc::ATTR_KIND_WRITEONLY; 747 case Attribute::ZExt: 748 return bitc::ATTR_KIND_Z_EXT; 749 case Attribute::ImmArg: 750 return bitc::ATTR_KIND_IMMARG; 751 case Attribute::SanitizeMemTag: 752 return bitc::ATTR_KIND_SANITIZE_MEMTAG; 753 case Attribute::Preallocated: 754 return bitc::ATTR_KIND_PREALLOCATED; 755 case Attribute::NoUndef: 756 return bitc::ATTR_KIND_NOUNDEF; 757 case Attribute::ByRef: 758 return bitc::ATTR_KIND_BYREF; 759 case Attribute::MustProgress: 760 return bitc::ATTR_KIND_MUSTPROGRESS; 761 case Attribute::EndAttrKinds: 762 llvm_unreachable("Can not encode end-attribute kinds marker."); 763 case Attribute::None: 764 llvm_unreachable("Can not encode none-attribute."); 765 case Attribute::EmptyKey: 766 case Attribute::TombstoneKey: 767 llvm_unreachable("Trying to encode EmptyKey/TombstoneKey"); 768 } 769 770 llvm_unreachable("Trying to encode unknown attribute"); 771 } 772 773 void ModuleBitcodeWriter::writeAttributeGroupTable() { 774 const std::vector<ValueEnumerator::IndexAndAttrSet> &AttrGrps = 775 VE.getAttributeGroups(); 776 if (AttrGrps.empty()) return; 777 778 Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3); 779 780 SmallVector<uint64_t, 64> Record; 781 for (ValueEnumerator::IndexAndAttrSet Pair : AttrGrps) { 782 unsigned AttrListIndex = Pair.first; 783 AttributeSet AS = Pair.second; 784 Record.push_back(VE.getAttributeGroupID(Pair)); 785 Record.push_back(AttrListIndex); 786 787 for (Attribute Attr : AS) { 788 if (Attr.isEnumAttribute()) { 789 Record.push_back(0); 790 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 791 } else if (Attr.isIntAttribute()) { 792 Record.push_back(1); 793 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 794 Record.push_back(Attr.getValueAsInt()); 795 } else if (Attr.isStringAttribute()) { 796 StringRef Kind = Attr.getKindAsString(); 797 StringRef Val = Attr.getValueAsString(); 798 799 Record.push_back(Val.empty() ? 3 : 4); 800 Record.append(Kind.begin(), Kind.end()); 801 Record.push_back(0); 802 if (!Val.empty()) { 803 Record.append(Val.begin(), Val.end()); 804 Record.push_back(0); 805 } 806 } else { 807 assert(Attr.isTypeAttribute()); 808 Type *Ty = Attr.getValueAsType(); 809 Record.push_back(Ty ? 6 : 5); 810 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 811 if (Ty) 812 Record.push_back(VE.getTypeID(Attr.getValueAsType())); 813 } 814 } 815 816 Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record); 817 Record.clear(); 818 } 819 820 Stream.ExitBlock(); 821 } 822 823 void ModuleBitcodeWriter::writeAttributeTable() { 824 const std::vector<AttributeList> &Attrs = VE.getAttributeLists(); 825 if (Attrs.empty()) return; 826 827 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 828 829 SmallVector<uint64_t, 64> Record; 830 for (unsigned i = 0, e = Attrs.size(); i != e; ++i) { 831 AttributeList AL = Attrs[i]; 832 for (unsigned i = AL.index_begin(), e = AL.index_end(); i != e; ++i) { 833 AttributeSet AS = AL.getAttributes(i); 834 if (AS.hasAttributes()) 835 Record.push_back(VE.getAttributeGroupID({i, AS})); 836 } 837 838 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 839 Record.clear(); 840 } 841 842 Stream.ExitBlock(); 843 } 844 845 /// WriteTypeTable - Write out the type table for a module. 846 void ModuleBitcodeWriter::writeTypeTable() { 847 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 848 849 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */); 850 SmallVector<uint64_t, 64> TypeVals; 851 852 uint64_t NumBits = VE.computeBitsRequiredForTypeIndicies(); 853 854 // Abbrev for TYPE_CODE_POINTER. 855 auto Abbv = std::make_shared<BitCodeAbbrev>(); 856 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER)); 857 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 858 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 859 unsigned PtrAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 860 861 // Abbrev for TYPE_CODE_OPAQUE_POINTER. 862 Abbv = std::make_shared<BitCodeAbbrev>(); 863 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_OPAQUE_POINTER)); 864 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 865 unsigned OpaquePtrAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 866 867 // Abbrev for TYPE_CODE_FUNCTION. 868 Abbv = std::make_shared<BitCodeAbbrev>(); 869 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 870 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 871 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 872 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 873 unsigned FunctionAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 874 875 // Abbrev for TYPE_CODE_STRUCT_ANON. 876 Abbv = std::make_shared<BitCodeAbbrev>(); 877 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON)); 878 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 879 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 880 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 881 unsigned StructAnonAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 882 883 // Abbrev for TYPE_CODE_STRUCT_NAME. 884 Abbv = std::make_shared<BitCodeAbbrev>(); 885 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME)); 886 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 887 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 888 unsigned StructNameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 889 890 // Abbrev for TYPE_CODE_STRUCT_NAMED. 891 Abbv = std::make_shared<BitCodeAbbrev>(); 892 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED)); 893 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 894 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 895 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 896 unsigned StructNamedAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 897 898 // Abbrev for TYPE_CODE_ARRAY. 899 Abbv = std::make_shared<BitCodeAbbrev>(); 900 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 901 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 902 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 903 unsigned ArrayAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 904 905 // Emit an entry count so the reader can reserve space. 906 TypeVals.push_back(TypeList.size()); 907 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 908 TypeVals.clear(); 909 910 // Loop over all of the types, emitting each in turn. 911 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) { 912 Type *T = TypeList[i]; 913 int AbbrevToUse = 0; 914 unsigned Code = 0; 915 916 switch (T->getTypeID()) { 917 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; 918 case Type::HalfTyID: Code = bitc::TYPE_CODE_HALF; break; 919 case Type::BFloatTyID: Code = bitc::TYPE_CODE_BFLOAT; break; 920 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; 921 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; 922 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break; 923 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break; 924 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; 925 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; 926 case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break; 927 case Type::X86_MMXTyID: Code = bitc::TYPE_CODE_X86_MMX; break; 928 case Type::X86_AMXTyID: Code = bitc::TYPE_CODE_X86_AMX; break; 929 case Type::TokenTyID: Code = bitc::TYPE_CODE_TOKEN; break; 930 case Type::IntegerTyID: 931 // INTEGER: [width] 932 Code = bitc::TYPE_CODE_INTEGER; 933 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 934 break; 935 case Type::PointerTyID: { 936 PointerType *PTy = cast<PointerType>(T); 937 unsigned AddressSpace = PTy->getAddressSpace(); 938 if (PTy->isOpaque()) { 939 // OPAQUE_POINTER: [address space] 940 Code = bitc::TYPE_CODE_OPAQUE_POINTER; 941 TypeVals.push_back(AddressSpace); 942 if (AddressSpace == 0) 943 AbbrevToUse = OpaquePtrAbbrev; 944 } else { 945 // POINTER: [pointee type, address space] 946 Code = bitc::TYPE_CODE_POINTER; 947 TypeVals.push_back(VE.getTypeID(PTy->getElementType())); 948 TypeVals.push_back(AddressSpace); 949 if (AddressSpace == 0) 950 AbbrevToUse = PtrAbbrev; 951 } 952 break; 953 } 954 case Type::FunctionTyID: { 955 FunctionType *FT = cast<FunctionType>(T); 956 // FUNCTION: [isvararg, retty, paramty x N] 957 Code = bitc::TYPE_CODE_FUNCTION; 958 TypeVals.push_back(FT->isVarArg()); 959 TypeVals.push_back(VE.getTypeID(FT->getReturnType())); 960 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) 961 TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); 962 AbbrevToUse = FunctionAbbrev; 963 break; 964 } 965 case Type::StructTyID: { 966 StructType *ST = cast<StructType>(T); 967 // STRUCT: [ispacked, eltty x N] 968 TypeVals.push_back(ST->isPacked()); 969 // Output all of the element types. 970 for (StructType::element_iterator I = ST->element_begin(), 971 E = ST->element_end(); I != E; ++I) 972 TypeVals.push_back(VE.getTypeID(*I)); 973 974 if (ST->isLiteral()) { 975 Code = bitc::TYPE_CODE_STRUCT_ANON; 976 AbbrevToUse = StructAnonAbbrev; 977 } else { 978 if (ST->isOpaque()) { 979 Code = bitc::TYPE_CODE_OPAQUE; 980 } else { 981 Code = bitc::TYPE_CODE_STRUCT_NAMED; 982 AbbrevToUse = StructNamedAbbrev; 983 } 984 985 // Emit the name if it is present. 986 if (!ST->getName().empty()) 987 writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, ST->getName(), 988 StructNameAbbrev); 989 } 990 break; 991 } 992 case Type::ArrayTyID: { 993 ArrayType *AT = cast<ArrayType>(T); 994 // ARRAY: [numelts, eltty] 995 Code = bitc::TYPE_CODE_ARRAY; 996 TypeVals.push_back(AT->getNumElements()); 997 TypeVals.push_back(VE.getTypeID(AT->getElementType())); 998 AbbrevToUse = ArrayAbbrev; 999 break; 1000 } 1001 case Type::FixedVectorTyID: 1002 case Type::ScalableVectorTyID: { 1003 VectorType *VT = cast<VectorType>(T); 1004 // VECTOR [numelts, eltty] or 1005 // [numelts, eltty, scalable] 1006 Code = bitc::TYPE_CODE_VECTOR; 1007 TypeVals.push_back(VT->getElementCount().getKnownMinValue()); 1008 TypeVals.push_back(VE.getTypeID(VT->getElementType())); 1009 if (isa<ScalableVectorType>(VT)) 1010 TypeVals.push_back(true); 1011 break; 1012 } 1013 } 1014 1015 // Emit the finished record. 1016 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 1017 TypeVals.clear(); 1018 } 1019 1020 Stream.ExitBlock(); 1021 } 1022 1023 static unsigned getEncodedLinkage(const GlobalValue::LinkageTypes Linkage) { 1024 switch (Linkage) { 1025 case GlobalValue::ExternalLinkage: 1026 return 0; 1027 case GlobalValue::WeakAnyLinkage: 1028 return 16; 1029 case GlobalValue::AppendingLinkage: 1030 return 2; 1031 case GlobalValue::InternalLinkage: 1032 return 3; 1033 case GlobalValue::LinkOnceAnyLinkage: 1034 return 18; 1035 case GlobalValue::ExternalWeakLinkage: 1036 return 7; 1037 case GlobalValue::CommonLinkage: 1038 return 8; 1039 case GlobalValue::PrivateLinkage: 1040 return 9; 1041 case GlobalValue::WeakODRLinkage: 1042 return 17; 1043 case GlobalValue::LinkOnceODRLinkage: 1044 return 19; 1045 case GlobalValue::AvailableExternallyLinkage: 1046 return 12; 1047 } 1048 llvm_unreachable("Invalid linkage"); 1049 } 1050 1051 static unsigned getEncodedLinkage(const GlobalValue &GV) { 1052 return getEncodedLinkage(GV.getLinkage()); 1053 } 1054 1055 static uint64_t getEncodedFFlags(FunctionSummary::FFlags Flags) { 1056 uint64_t RawFlags = 0; 1057 RawFlags |= Flags.ReadNone; 1058 RawFlags |= (Flags.ReadOnly << 1); 1059 RawFlags |= (Flags.NoRecurse << 2); 1060 RawFlags |= (Flags.ReturnDoesNotAlias << 3); 1061 RawFlags |= (Flags.NoInline << 4); 1062 RawFlags |= (Flags.AlwaysInline << 5); 1063 return RawFlags; 1064 } 1065 1066 // Decode the flags for GlobalValue in the summary. See getDecodedGVSummaryFlags 1067 // in BitcodeReader.cpp. 1068 static uint64_t getEncodedGVSummaryFlags(GlobalValueSummary::GVFlags Flags) { 1069 uint64_t RawFlags = 0; 1070 1071 RawFlags |= Flags.NotEligibleToImport; // bool 1072 RawFlags |= (Flags.Live << 1); 1073 RawFlags |= (Flags.DSOLocal << 2); 1074 RawFlags |= (Flags.CanAutoHide << 3); 1075 1076 // Linkage don't need to be remapped at that time for the summary. Any future 1077 // change to the getEncodedLinkage() function will need to be taken into 1078 // account here as well. 1079 RawFlags = (RawFlags << 4) | Flags.Linkage; // 4 bits 1080 1081 RawFlags |= (Flags.Visibility << 8); // 2 bits 1082 1083 return RawFlags; 1084 } 1085 1086 static uint64_t getEncodedGVarFlags(GlobalVarSummary::GVarFlags Flags) { 1087 uint64_t RawFlags = Flags.MaybeReadOnly | (Flags.MaybeWriteOnly << 1) | 1088 (Flags.Constant << 2) | Flags.VCallVisibility << 3; 1089 return RawFlags; 1090 } 1091 1092 static unsigned getEncodedVisibility(const GlobalValue &GV) { 1093 switch (GV.getVisibility()) { 1094 case GlobalValue::DefaultVisibility: return 0; 1095 case GlobalValue::HiddenVisibility: return 1; 1096 case GlobalValue::ProtectedVisibility: return 2; 1097 } 1098 llvm_unreachable("Invalid visibility"); 1099 } 1100 1101 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) { 1102 switch (GV.getDLLStorageClass()) { 1103 case GlobalValue::DefaultStorageClass: return 0; 1104 case GlobalValue::DLLImportStorageClass: return 1; 1105 case GlobalValue::DLLExportStorageClass: return 2; 1106 } 1107 llvm_unreachable("Invalid DLL storage class"); 1108 } 1109 1110 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) { 1111 switch (GV.getThreadLocalMode()) { 1112 case GlobalVariable::NotThreadLocal: return 0; 1113 case GlobalVariable::GeneralDynamicTLSModel: return 1; 1114 case GlobalVariable::LocalDynamicTLSModel: return 2; 1115 case GlobalVariable::InitialExecTLSModel: return 3; 1116 case GlobalVariable::LocalExecTLSModel: return 4; 1117 } 1118 llvm_unreachable("Invalid TLS model"); 1119 } 1120 1121 static unsigned getEncodedComdatSelectionKind(const Comdat &C) { 1122 switch (C.getSelectionKind()) { 1123 case Comdat::Any: 1124 return bitc::COMDAT_SELECTION_KIND_ANY; 1125 case Comdat::ExactMatch: 1126 return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH; 1127 case Comdat::Largest: 1128 return bitc::COMDAT_SELECTION_KIND_LARGEST; 1129 case Comdat::NoDuplicates: 1130 return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES; 1131 case Comdat::SameSize: 1132 return bitc::COMDAT_SELECTION_KIND_SAME_SIZE; 1133 } 1134 llvm_unreachable("Invalid selection kind"); 1135 } 1136 1137 static unsigned getEncodedUnnamedAddr(const GlobalValue &GV) { 1138 switch (GV.getUnnamedAddr()) { 1139 case GlobalValue::UnnamedAddr::None: return 0; 1140 case GlobalValue::UnnamedAddr::Local: return 2; 1141 case GlobalValue::UnnamedAddr::Global: return 1; 1142 } 1143 llvm_unreachable("Invalid unnamed_addr"); 1144 } 1145 1146 size_t ModuleBitcodeWriter::addToStrtab(StringRef Str) { 1147 if (GenerateHash) 1148 Hasher.update(Str); 1149 return StrtabBuilder.add(Str); 1150 } 1151 1152 void ModuleBitcodeWriter::writeComdats() { 1153 SmallVector<unsigned, 64> Vals; 1154 for (const Comdat *C : VE.getComdats()) { 1155 // COMDAT: [strtab offset, strtab size, selection_kind] 1156 Vals.push_back(addToStrtab(C->getName())); 1157 Vals.push_back(C->getName().size()); 1158 Vals.push_back(getEncodedComdatSelectionKind(*C)); 1159 Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0); 1160 Vals.clear(); 1161 } 1162 } 1163 1164 /// Write a record that will eventually hold the word offset of the 1165 /// module-level VST. For now the offset is 0, which will be backpatched 1166 /// after the real VST is written. Saves the bit offset to backpatch. 1167 void ModuleBitcodeWriter::writeValueSymbolTableForwardDecl() { 1168 // Write a placeholder value in for the offset of the real VST, 1169 // which is written after the function blocks so that it can include 1170 // the offset of each function. The placeholder offset will be 1171 // updated when the real VST is written. 1172 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1173 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_VSTOFFSET)); 1174 // Blocks are 32-bit aligned, so we can use a 32-bit word offset to 1175 // hold the real VST offset. Must use fixed instead of VBR as we don't 1176 // know how many VBR chunks to reserve ahead of time. 1177 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 1178 unsigned VSTOffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1179 1180 // Emit the placeholder 1181 uint64_t Vals[] = {bitc::MODULE_CODE_VSTOFFSET, 0}; 1182 Stream.EmitRecordWithAbbrev(VSTOffsetAbbrev, Vals); 1183 1184 // Compute and save the bit offset to the placeholder, which will be 1185 // patched when the real VST is written. We can simply subtract the 32-bit 1186 // fixed size from the current bit number to get the location to backpatch. 1187 VSTOffsetPlaceholder = Stream.GetCurrentBitNo() - 32; 1188 } 1189 1190 enum StringEncoding { SE_Char6, SE_Fixed7, SE_Fixed8 }; 1191 1192 /// Determine the encoding to use for the given string name and length. 1193 static StringEncoding getStringEncoding(StringRef Str) { 1194 bool isChar6 = true; 1195 for (char C : Str) { 1196 if (isChar6) 1197 isChar6 = BitCodeAbbrevOp::isChar6(C); 1198 if ((unsigned char)C & 128) 1199 // don't bother scanning the rest. 1200 return SE_Fixed8; 1201 } 1202 if (isChar6) 1203 return SE_Char6; 1204 return SE_Fixed7; 1205 } 1206 1207 /// Emit top-level description of module, including target triple, inline asm, 1208 /// descriptors for global variables, and function prototype info. 1209 /// Returns the bit offset to backpatch with the location of the real VST. 1210 void ModuleBitcodeWriter::writeModuleInfo() { 1211 // Emit various pieces of data attached to a module. 1212 if (!M.getTargetTriple().empty()) 1213 writeStringRecord(Stream, bitc::MODULE_CODE_TRIPLE, M.getTargetTriple(), 1214 0 /*TODO*/); 1215 const std::string &DL = M.getDataLayoutStr(); 1216 if (!DL.empty()) 1217 writeStringRecord(Stream, bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/); 1218 if (!M.getModuleInlineAsm().empty()) 1219 writeStringRecord(Stream, bitc::MODULE_CODE_ASM, M.getModuleInlineAsm(), 1220 0 /*TODO*/); 1221 1222 // Emit information about sections and GC, computing how many there are. Also 1223 // compute the maximum alignment value. 1224 std::map<std::string, unsigned> SectionMap; 1225 std::map<std::string, unsigned> GCMap; 1226 MaybeAlign MaxAlignment; 1227 unsigned MaxGlobalType = 0; 1228 const auto UpdateMaxAlignment = [&MaxAlignment](const MaybeAlign A) { 1229 if (A) 1230 MaxAlignment = !MaxAlignment ? *A : std::max(*MaxAlignment, *A); 1231 }; 1232 for (const GlobalVariable &GV : M.globals()) { 1233 UpdateMaxAlignment(GV.getAlign()); 1234 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getValueType())); 1235 if (GV.hasSection()) { 1236 // Give section names unique ID's. 1237 unsigned &Entry = SectionMap[std::string(GV.getSection())]; 1238 if (!Entry) { 1239 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, GV.getSection(), 1240 0 /*TODO*/); 1241 Entry = SectionMap.size(); 1242 } 1243 } 1244 } 1245 for (const Function &F : M) { 1246 UpdateMaxAlignment(F.getAlign()); 1247 if (F.hasSection()) { 1248 // Give section names unique ID's. 1249 unsigned &Entry = SectionMap[std::string(F.getSection())]; 1250 if (!Entry) { 1251 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, F.getSection(), 1252 0 /*TODO*/); 1253 Entry = SectionMap.size(); 1254 } 1255 } 1256 if (F.hasGC()) { 1257 // Same for GC names. 1258 unsigned &Entry = GCMap[F.getGC()]; 1259 if (!Entry) { 1260 writeStringRecord(Stream, bitc::MODULE_CODE_GCNAME, F.getGC(), 1261 0 /*TODO*/); 1262 Entry = GCMap.size(); 1263 } 1264 } 1265 } 1266 1267 // Emit abbrev for globals, now that we know # sections and max alignment. 1268 unsigned SimpleGVarAbbrev = 0; 1269 if (!M.global_empty()) { 1270 // Add an abbrev for common globals with no visibility or thread localness. 1271 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1272 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 1273 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1274 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1275 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1276 Log2_32_Ceil(MaxGlobalType+1))); 1277 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // AddrSpace << 2 1278 //| explicitType << 1 1279 //| constant 1280 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 1281 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage. 1282 if (!MaxAlignment) // Alignment. 1283 Abbv->Add(BitCodeAbbrevOp(0)); 1284 else { 1285 unsigned MaxEncAlignment = getEncodedAlign(MaxAlignment); 1286 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1287 Log2_32_Ceil(MaxEncAlignment+1))); 1288 } 1289 if (SectionMap.empty()) // Section. 1290 Abbv->Add(BitCodeAbbrevOp(0)); 1291 else 1292 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1293 Log2_32_Ceil(SectionMap.size()+1))); 1294 // Don't bother emitting vis + thread local. 1295 SimpleGVarAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1296 } 1297 1298 SmallVector<unsigned, 64> Vals; 1299 // Emit the module's source file name. 1300 { 1301 StringEncoding Bits = getStringEncoding(M.getSourceFileName()); 1302 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); 1303 if (Bits == SE_Char6) 1304 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); 1305 else if (Bits == SE_Fixed7) 1306 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); 1307 1308 // MODULE_CODE_SOURCE_FILENAME: [namechar x N] 1309 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1310 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); 1311 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1312 Abbv->Add(AbbrevOpToUse); 1313 unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1314 1315 for (const auto P : M.getSourceFileName()) 1316 Vals.push_back((unsigned char)P); 1317 1318 // Emit the finished record. 1319 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); 1320 Vals.clear(); 1321 } 1322 1323 // Emit the global variable information. 1324 for (const GlobalVariable &GV : M.globals()) { 1325 unsigned AbbrevToUse = 0; 1326 1327 // GLOBALVAR: [strtab offset, strtab size, type, isconst, initid, 1328 // linkage, alignment, section, visibility, threadlocal, 1329 // unnamed_addr, externally_initialized, dllstorageclass, 1330 // comdat, attributes, DSO_Local] 1331 Vals.push_back(addToStrtab(GV.getName())); 1332 Vals.push_back(GV.getName().size()); 1333 Vals.push_back(VE.getTypeID(GV.getValueType())); 1334 Vals.push_back(GV.getType()->getAddressSpace() << 2 | 2 | GV.isConstant()); 1335 Vals.push_back(GV.isDeclaration() ? 0 : 1336 (VE.getValueID(GV.getInitializer()) + 1)); 1337 Vals.push_back(getEncodedLinkage(GV)); 1338 Vals.push_back(getEncodedAlign(GV.getAlign())); 1339 Vals.push_back(GV.hasSection() ? SectionMap[std::string(GV.getSection())] 1340 : 0); 1341 if (GV.isThreadLocal() || 1342 GV.getVisibility() != GlobalValue::DefaultVisibility || 1343 GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None || 1344 GV.isExternallyInitialized() || 1345 GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass || 1346 GV.hasComdat() || 1347 GV.hasAttributes() || 1348 GV.isDSOLocal() || 1349 GV.hasPartition()) { 1350 Vals.push_back(getEncodedVisibility(GV)); 1351 Vals.push_back(getEncodedThreadLocalMode(GV)); 1352 Vals.push_back(getEncodedUnnamedAddr(GV)); 1353 Vals.push_back(GV.isExternallyInitialized()); 1354 Vals.push_back(getEncodedDLLStorageClass(GV)); 1355 Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0); 1356 1357 auto AL = GV.getAttributesAsList(AttributeList::FunctionIndex); 1358 Vals.push_back(VE.getAttributeListID(AL)); 1359 1360 Vals.push_back(GV.isDSOLocal()); 1361 Vals.push_back(addToStrtab(GV.getPartition())); 1362 Vals.push_back(GV.getPartition().size()); 1363 } else { 1364 AbbrevToUse = SimpleGVarAbbrev; 1365 } 1366 1367 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 1368 Vals.clear(); 1369 } 1370 1371 // Emit the function proto information. 1372 for (const Function &F : M) { 1373 // FUNCTION: [strtab offset, strtab size, type, callingconv, isproto, 1374 // linkage, paramattrs, alignment, section, visibility, gc, 1375 // unnamed_addr, prologuedata, dllstorageclass, comdat, 1376 // prefixdata, personalityfn, DSO_Local, addrspace] 1377 Vals.push_back(addToStrtab(F.getName())); 1378 Vals.push_back(F.getName().size()); 1379 Vals.push_back(VE.getTypeID(F.getFunctionType())); 1380 Vals.push_back(F.getCallingConv()); 1381 Vals.push_back(F.isDeclaration()); 1382 Vals.push_back(getEncodedLinkage(F)); 1383 Vals.push_back(VE.getAttributeListID(F.getAttributes())); 1384 Vals.push_back(getEncodedAlign(F.getAlign())); 1385 Vals.push_back(F.hasSection() ? SectionMap[std::string(F.getSection())] 1386 : 0); 1387 Vals.push_back(getEncodedVisibility(F)); 1388 Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0); 1389 Vals.push_back(getEncodedUnnamedAddr(F)); 1390 Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1) 1391 : 0); 1392 Vals.push_back(getEncodedDLLStorageClass(F)); 1393 Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0); 1394 Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1) 1395 : 0); 1396 Vals.push_back( 1397 F.hasPersonalityFn() ? (VE.getValueID(F.getPersonalityFn()) + 1) : 0); 1398 1399 Vals.push_back(F.isDSOLocal()); 1400 Vals.push_back(F.getAddressSpace()); 1401 Vals.push_back(addToStrtab(F.getPartition())); 1402 Vals.push_back(F.getPartition().size()); 1403 1404 unsigned AbbrevToUse = 0; 1405 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 1406 Vals.clear(); 1407 } 1408 1409 // Emit the alias information. 1410 for (const GlobalAlias &A : M.aliases()) { 1411 // ALIAS: [strtab offset, strtab size, alias type, aliasee val#, linkage, 1412 // visibility, dllstorageclass, threadlocal, unnamed_addr, 1413 // DSO_Local] 1414 Vals.push_back(addToStrtab(A.getName())); 1415 Vals.push_back(A.getName().size()); 1416 Vals.push_back(VE.getTypeID(A.getValueType())); 1417 Vals.push_back(A.getType()->getAddressSpace()); 1418 Vals.push_back(VE.getValueID(A.getAliasee())); 1419 Vals.push_back(getEncodedLinkage(A)); 1420 Vals.push_back(getEncodedVisibility(A)); 1421 Vals.push_back(getEncodedDLLStorageClass(A)); 1422 Vals.push_back(getEncodedThreadLocalMode(A)); 1423 Vals.push_back(getEncodedUnnamedAddr(A)); 1424 Vals.push_back(A.isDSOLocal()); 1425 Vals.push_back(addToStrtab(A.getPartition())); 1426 Vals.push_back(A.getPartition().size()); 1427 1428 unsigned AbbrevToUse = 0; 1429 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); 1430 Vals.clear(); 1431 } 1432 1433 // Emit the ifunc information. 1434 for (const GlobalIFunc &I : M.ifuncs()) { 1435 // IFUNC: [strtab offset, strtab size, ifunc type, address space, resolver 1436 // val#, linkage, visibility, DSO_Local] 1437 Vals.push_back(addToStrtab(I.getName())); 1438 Vals.push_back(I.getName().size()); 1439 Vals.push_back(VE.getTypeID(I.getValueType())); 1440 Vals.push_back(I.getType()->getAddressSpace()); 1441 Vals.push_back(VE.getValueID(I.getResolver())); 1442 Vals.push_back(getEncodedLinkage(I)); 1443 Vals.push_back(getEncodedVisibility(I)); 1444 Vals.push_back(I.isDSOLocal()); 1445 Vals.push_back(addToStrtab(I.getPartition())); 1446 Vals.push_back(I.getPartition().size()); 1447 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals); 1448 Vals.clear(); 1449 } 1450 1451 writeValueSymbolTableForwardDecl(); 1452 } 1453 1454 static uint64_t getOptimizationFlags(const Value *V) { 1455 uint64_t Flags = 0; 1456 1457 if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) { 1458 if (OBO->hasNoSignedWrap()) 1459 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP; 1460 if (OBO->hasNoUnsignedWrap()) 1461 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP; 1462 } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) { 1463 if (PEO->isExact()) 1464 Flags |= 1 << bitc::PEO_EXACT; 1465 } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) { 1466 if (FPMO->hasAllowReassoc()) 1467 Flags |= bitc::AllowReassoc; 1468 if (FPMO->hasNoNaNs()) 1469 Flags |= bitc::NoNaNs; 1470 if (FPMO->hasNoInfs()) 1471 Flags |= bitc::NoInfs; 1472 if (FPMO->hasNoSignedZeros()) 1473 Flags |= bitc::NoSignedZeros; 1474 if (FPMO->hasAllowReciprocal()) 1475 Flags |= bitc::AllowReciprocal; 1476 if (FPMO->hasAllowContract()) 1477 Flags |= bitc::AllowContract; 1478 if (FPMO->hasApproxFunc()) 1479 Flags |= bitc::ApproxFunc; 1480 } 1481 1482 return Flags; 1483 } 1484 1485 void ModuleBitcodeWriter::writeValueAsMetadata( 1486 const ValueAsMetadata *MD, SmallVectorImpl<uint64_t> &Record) { 1487 // Mimic an MDNode with a value as one operand. 1488 Value *V = MD->getValue(); 1489 Record.push_back(VE.getTypeID(V->getType())); 1490 Record.push_back(VE.getValueID(V)); 1491 Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0); 1492 Record.clear(); 1493 } 1494 1495 void ModuleBitcodeWriter::writeMDTuple(const MDTuple *N, 1496 SmallVectorImpl<uint64_t> &Record, 1497 unsigned Abbrev) { 1498 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 1499 Metadata *MD = N->getOperand(i); 1500 assert(!(MD && isa<LocalAsMetadata>(MD)) && 1501 "Unexpected function-local metadata"); 1502 Record.push_back(VE.getMetadataOrNullID(MD)); 1503 } 1504 Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE 1505 : bitc::METADATA_NODE, 1506 Record, Abbrev); 1507 Record.clear(); 1508 } 1509 1510 unsigned ModuleBitcodeWriter::createDILocationAbbrev() { 1511 // Assume the column is usually under 128, and always output the inlined-at 1512 // location (it's never more expensive than building an array size 1). 1513 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1514 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION)); 1515 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1516 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1517 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1518 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1519 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1520 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1521 return Stream.EmitAbbrev(std::move(Abbv)); 1522 } 1523 1524 void ModuleBitcodeWriter::writeDILocation(const DILocation *N, 1525 SmallVectorImpl<uint64_t> &Record, 1526 unsigned &Abbrev) { 1527 if (!Abbrev) 1528 Abbrev = createDILocationAbbrev(); 1529 1530 Record.push_back(N->isDistinct()); 1531 Record.push_back(N->getLine()); 1532 Record.push_back(N->getColumn()); 1533 Record.push_back(VE.getMetadataID(N->getScope())); 1534 Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt())); 1535 Record.push_back(N->isImplicitCode()); 1536 1537 Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev); 1538 Record.clear(); 1539 } 1540 1541 unsigned ModuleBitcodeWriter::createGenericDINodeAbbrev() { 1542 // Assume the column is usually under 128, and always output the inlined-at 1543 // location (it's never more expensive than building an array size 1). 1544 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1545 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG)); 1546 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1547 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1548 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1549 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1550 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1551 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1552 return Stream.EmitAbbrev(std::move(Abbv)); 1553 } 1554 1555 void ModuleBitcodeWriter::writeGenericDINode(const GenericDINode *N, 1556 SmallVectorImpl<uint64_t> &Record, 1557 unsigned &Abbrev) { 1558 if (!Abbrev) 1559 Abbrev = createGenericDINodeAbbrev(); 1560 1561 Record.push_back(N->isDistinct()); 1562 Record.push_back(N->getTag()); 1563 Record.push_back(0); // Per-tag version field; unused for now. 1564 1565 for (auto &I : N->operands()) 1566 Record.push_back(VE.getMetadataOrNullID(I)); 1567 1568 Stream.EmitRecord(bitc::METADATA_GENERIC_DEBUG, Record, Abbrev); 1569 Record.clear(); 1570 } 1571 1572 void ModuleBitcodeWriter::writeDISubrange(const DISubrange *N, 1573 SmallVectorImpl<uint64_t> &Record, 1574 unsigned Abbrev) { 1575 const uint64_t Version = 2 << 1; 1576 Record.push_back((uint64_t)N->isDistinct() | Version); 1577 Record.push_back(VE.getMetadataOrNullID(N->getRawCountNode())); 1578 Record.push_back(VE.getMetadataOrNullID(N->getRawLowerBound())); 1579 Record.push_back(VE.getMetadataOrNullID(N->getRawUpperBound())); 1580 Record.push_back(VE.getMetadataOrNullID(N->getRawStride())); 1581 1582 Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev); 1583 Record.clear(); 1584 } 1585 1586 void ModuleBitcodeWriter::writeDIGenericSubrange( 1587 const DIGenericSubrange *N, SmallVectorImpl<uint64_t> &Record, 1588 unsigned Abbrev) { 1589 Record.push_back((uint64_t)N->isDistinct()); 1590 Record.push_back(VE.getMetadataOrNullID(N->getRawCountNode())); 1591 Record.push_back(VE.getMetadataOrNullID(N->getRawLowerBound())); 1592 Record.push_back(VE.getMetadataOrNullID(N->getRawUpperBound())); 1593 Record.push_back(VE.getMetadataOrNullID(N->getRawStride())); 1594 1595 Stream.EmitRecord(bitc::METADATA_GENERIC_SUBRANGE, Record, Abbrev); 1596 Record.clear(); 1597 } 1598 1599 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) { 1600 if ((int64_t)V >= 0) 1601 Vals.push_back(V << 1); 1602 else 1603 Vals.push_back((-V << 1) | 1); 1604 } 1605 1606 static void emitWideAPInt(SmallVectorImpl<uint64_t> &Vals, const APInt &A) { 1607 // We have an arbitrary precision integer value to write whose 1608 // bit width is > 64. However, in canonical unsigned integer 1609 // format it is likely that the high bits are going to be zero. 1610 // So, we only write the number of active words. 1611 unsigned NumWords = A.getActiveWords(); 1612 const uint64_t *RawData = A.getRawData(); 1613 for (unsigned i = 0; i < NumWords; i++) 1614 emitSignedInt64(Vals, RawData[i]); 1615 } 1616 1617 void ModuleBitcodeWriter::writeDIEnumerator(const DIEnumerator *N, 1618 SmallVectorImpl<uint64_t> &Record, 1619 unsigned Abbrev) { 1620 const uint64_t IsBigInt = 1 << 2; 1621 Record.push_back(IsBigInt | (N->isUnsigned() << 1) | N->isDistinct()); 1622 Record.push_back(N->getValue().getBitWidth()); 1623 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1624 emitWideAPInt(Record, N->getValue()); 1625 1626 Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev); 1627 Record.clear(); 1628 } 1629 1630 void ModuleBitcodeWriter::writeDIBasicType(const DIBasicType *N, 1631 SmallVectorImpl<uint64_t> &Record, 1632 unsigned Abbrev) { 1633 Record.push_back(N->isDistinct()); 1634 Record.push_back(N->getTag()); 1635 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1636 Record.push_back(N->getSizeInBits()); 1637 Record.push_back(N->getAlignInBits()); 1638 Record.push_back(N->getEncoding()); 1639 Record.push_back(N->getFlags()); 1640 1641 Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev); 1642 Record.clear(); 1643 } 1644 1645 void ModuleBitcodeWriter::writeDIStringType(const DIStringType *N, 1646 SmallVectorImpl<uint64_t> &Record, 1647 unsigned Abbrev) { 1648 Record.push_back(N->isDistinct()); 1649 Record.push_back(N->getTag()); 1650 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1651 Record.push_back(VE.getMetadataOrNullID(N->getStringLength())); 1652 Record.push_back(VE.getMetadataOrNullID(N->getStringLengthExp())); 1653 Record.push_back(N->getSizeInBits()); 1654 Record.push_back(N->getAlignInBits()); 1655 Record.push_back(N->getEncoding()); 1656 1657 Stream.EmitRecord(bitc::METADATA_STRING_TYPE, Record, Abbrev); 1658 Record.clear(); 1659 } 1660 1661 void ModuleBitcodeWriter::writeDIDerivedType(const DIDerivedType *N, 1662 SmallVectorImpl<uint64_t> &Record, 1663 unsigned Abbrev) { 1664 Record.push_back(N->isDistinct()); 1665 Record.push_back(N->getTag()); 1666 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1667 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1668 Record.push_back(N->getLine()); 1669 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1670 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1671 Record.push_back(N->getSizeInBits()); 1672 Record.push_back(N->getAlignInBits()); 1673 Record.push_back(N->getOffsetInBits()); 1674 Record.push_back(N->getFlags()); 1675 Record.push_back(VE.getMetadataOrNullID(N->getExtraData())); 1676 1677 // DWARF address space is encoded as N->getDWARFAddressSpace() + 1. 0 means 1678 // that there is no DWARF address space associated with DIDerivedType. 1679 if (const auto &DWARFAddressSpace = N->getDWARFAddressSpace()) 1680 Record.push_back(*DWARFAddressSpace + 1); 1681 else 1682 Record.push_back(0); 1683 1684 Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev); 1685 Record.clear(); 1686 } 1687 1688 void ModuleBitcodeWriter::writeDICompositeType( 1689 const DICompositeType *N, SmallVectorImpl<uint64_t> &Record, 1690 unsigned Abbrev) { 1691 const unsigned IsNotUsedInOldTypeRef = 0x2; 1692 Record.push_back(IsNotUsedInOldTypeRef | (unsigned)N->isDistinct()); 1693 Record.push_back(N->getTag()); 1694 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1695 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1696 Record.push_back(N->getLine()); 1697 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1698 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1699 Record.push_back(N->getSizeInBits()); 1700 Record.push_back(N->getAlignInBits()); 1701 Record.push_back(N->getOffsetInBits()); 1702 Record.push_back(N->getFlags()); 1703 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1704 Record.push_back(N->getRuntimeLang()); 1705 Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder())); 1706 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1707 Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier())); 1708 Record.push_back(VE.getMetadataOrNullID(N->getDiscriminator())); 1709 Record.push_back(VE.getMetadataOrNullID(N->getRawDataLocation())); 1710 Record.push_back(VE.getMetadataOrNullID(N->getRawAssociated())); 1711 Record.push_back(VE.getMetadataOrNullID(N->getRawAllocated())); 1712 Record.push_back(VE.getMetadataOrNullID(N->getRawRank())); 1713 1714 Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev); 1715 Record.clear(); 1716 } 1717 1718 void ModuleBitcodeWriter::writeDISubroutineType( 1719 const DISubroutineType *N, SmallVectorImpl<uint64_t> &Record, 1720 unsigned Abbrev) { 1721 const unsigned HasNoOldTypeRefs = 0x2; 1722 Record.push_back(HasNoOldTypeRefs | (unsigned)N->isDistinct()); 1723 Record.push_back(N->getFlags()); 1724 Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get())); 1725 Record.push_back(N->getCC()); 1726 1727 Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev); 1728 Record.clear(); 1729 } 1730 1731 void ModuleBitcodeWriter::writeDIFile(const DIFile *N, 1732 SmallVectorImpl<uint64_t> &Record, 1733 unsigned Abbrev) { 1734 Record.push_back(N->isDistinct()); 1735 Record.push_back(VE.getMetadataOrNullID(N->getRawFilename())); 1736 Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory())); 1737 if (N->getRawChecksum()) { 1738 Record.push_back(N->getRawChecksum()->Kind); 1739 Record.push_back(VE.getMetadataOrNullID(N->getRawChecksum()->Value)); 1740 } else { 1741 // Maintain backwards compatibility with the old internal representation of 1742 // CSK_None in ChecksumKind by writing nulls here when Checksum is None. 1743 Record.push_back(0); 1744 Record.push_back(VE.getMetadataOrNullID(nullptr)); 1745 } 1746 auto Source = N->getRawSource(); 1747 if (Source) 1748 Record.push_back(VE.getMetadataOrNullID(*Source)); 1749 1750 Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev); 1751 Record.clear(); 1752 } 1753 1754 void ModuleBitcodeWriter::writeDICompileUnit(const DICompileUnit *N, 1755 SmallVectorImpl<uint64_t> &Record, 1756 unsigned Abbrev) { 1757 assert(N->isDistinct() && "Expected distinct compile units"); 1758 Record.push_back(/* IsDistinct */ true); 1759 Record.push_back(N->getSourceLanguage()); 1760 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1761 Record.push_back(VE.getMetadataOrNullID(N->getRawProducer())); 1762 Record.push_back(N->isOptimized()); 1763 Record.push_back(VE.getMetadataOrNullID(N->getRawFlags())); 1764 Record.push_back(N->getRuntimeVersion()); 1765 Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename())); 1766 Record.push_back(N->getEmissionKind()); 1767 Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get())); 1768 Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get())); 1769 Record.push_back(/* subprograms */ 0); 1770 Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get())); 1771 Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get())); 1772 Record.push_back(N->getDWOId()); 1773 Record.push_back(VE.getMetadataOrNullID(N->getMacros().get())); 1774 Record.push_back(N->getSplitDebugInlining()); 1775 Record.push_back(N->getDebugInfoForProfiling()); 1776 Record.push_back((unsigned)N->getNameTableKind()); 1777 Record.push_back(N->getRangesBaseAddress()); 1778 Record.push_back(VE.getMetadataOrNullID(N->getRawSysRoot())); 1779 Record.push_back(VE.getMetadataOrNullID(N->getRawSDK())); 1780 1781 Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev); 1782 Record.clear(); 1783 } 1784 1785 void ModuleBitcodeWriter::writeDISubprogram(const DISubprogram *N, 1786 SmallVectorImpl<uint64_t> &Record, 1787 unsigned Abbrev) { 1788 const uint64_t HasUnitFlag = 1 << 1; 1789 const uint64_t HasSPFlagsFlag = 1 << 2; 1790 Record.push_back(uint64_t(N->isDistinct()) | HasUnitFlag | HasSPFlagsFlag); 1791 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1792 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1793 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1794 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1795 Record.push_back(N->getLine()); 1796 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1797 Record.push_back(N->getScopeLine()); 1798 Record.push_back(VE.getMetadataOrNullID(N->getContainingType())); 1799 Record.push_back(N->getSPFlags()); 1800 Record.push_back(N->getVirtualIndex()); 1801 Record.push_back(N->getFlags()); 1802 Record.push_back(VE.getMetadataOrNullID(N->getRawUnit())); 1803 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1804 Record.push_back(VE.getMetadataOrNullID(N->getDeclaration())); 1805 Record.push_back(VE.getMetadataOrNullID(N->getRetainedNodes().get())); 1806 Record.push_back(N->getThisAdjustment()); 1807 Record.push_back(VE.getMetadataOrNullID(N->getThrownTypes().get())); 1808 1809 Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev); 1810 Record.clear(); 1811 } 1812 1813 void ModuleBitcodeWriter::writeDILexicalBlock(const DILexicalBlock *N, 1814 SmallVectorImpl<uint64_t> &Record, 1815 unsigned Abbrev) { 1816 Record.push_back(N->isDistinct()); 1817 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1818 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1819 Record.push_back(N->getLine()); 1820 Record.push_back(N->getColumn()); 1821 1822 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev); 1823 Record.clear(); 1824 } 1825 1826 void ModuleBitcodeWriter::writeDILexicalBlockFile( 1827 const DILexicalBlockFile *N, SmallVectorImpl<uint64_t> &Record, 1828 unsigned Abbrev) { 1829 Record.push_back(N->isDistinct()); 1830 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1831 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1832 Record.push_back(N->getDiscriminator()); 1833 1834 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev); 1835 Record.clear(); 1836 } 1837 1838 void ModuleBitcodeWriter::writeDICommonBlock(const DICommonBlock *N, 1839 SmallVectorImpl<uint64_t> &Record, 1840 unsigned Abbrev) { 1841 Record.push_back(N->isDistinct()); 1842 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1843 Record.push_back(VE.getMetadataOrNullID(N->getDecl())); 1844 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1845 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1846 Record.push_back(N->getLineNo()); 1847 1848 Stream.EmitRecord(bitc::METADATA_COMMON_BLOCK, Record, Abbrev); 1849 Record.clear(); 1850 } 1851 1852 void ModuleBitcodeWriter::writeDINamespace(const DINamespace *N, 1853 SmallVectorImpl<uint64_t> &Record, 1854 unsigned Abbrev) { 1855 Record.push_back(N->isDistinct() | N->getExportSymbols() << 1); 1856 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1857 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1858 1859 Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev); 1860 Record.clear(); 1861 } 1862 1863 void ModuleBitcodeWriter::writeDIMacro(const DIMacro *N, 1864 SmallVectorImpl<uint64_t> &Record, 1865 unsigned Abbrev) { 1866 Record.push_back(N->isDistinct()); 1867 Record.push_back(N->getMacinfoType()); 1868 Record.push_back(N->getLine()); 1869 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1870 Record.push_back(VE.getMetadataOrNullID(N->getRawValue())); 1871 1872 Stream.EmitRecord(bitc::METADATA_MACRO, Record, Abbrev); 1873 Record.clear(); 1874 } 1875 1876 void ModuleBitcodeWriter::writeDIMacroFile(const DIMacroFile *N, 1877 SmallVectorImpl<uint64_t> &Record, 1878 unsigned Abbrev) { 1879 Record.push_back(N->isDistinct()); 1880 Record.push_back(N->getMacinfoType()); 1881 Record.push_back(N->getLine()); 1882 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1883 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1884 1885 Stream.EmitRecord(bitc::METADATA_MACRO_FILE, Record, Abbrev); 1886 Record.clear(); 1887 } 1888 1889 void ModuleBitcodeWriter::writeDIArgList(const DIArgList *N, 1890 SmallVectorImpl<uint64_t> &Record, 1891 unsigned Abbrev) { 1892 Record.reserve(N->getArgs().size()); 1893 for (ValueAsMetadata *MD : N->getArgs()) 1894 Record.push_back(VE.getMetadataID(MD)); 1895 1896 Stream.EmitRecord(bitc::METADATA_ARG_LIST, Record, Abbrev); 1897 Record.clear(); 1898 } 1899 1900 void ModuleBitcodeWriter::writeDIModule(const DIModule *N, 1901 SmallVectorImpl<uint64_t> &Record, 1902 unsigned Abbrev) { 1903 Record.push_back(N->isDistinct()); 1904 for (auto &I : N->operands()) 1905 Record.push_back(VE.getMetadataOrNullID(I)); 1906 Record.push_back(N->getLineNo()); 1907 Record.push_back(N->getIsDecl()); 1908 1909 Stream.EmitRecord(bitc::METADATA_MODULE, Record, Abbrev); 1910 Record.clear(); 1911 } 1912 1913 void ModuleBitcodeWriter::writeDITemplateTypeParameter( 1914 const DITemplateTypeParameter *N, SmallVectorImpl<uint64_t> &Record, 1915 unsigned Abbrev) { 1916 Record.push_back(N->isDistinct()); 1917 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1918 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1919 Record.push_back(N->isDefault()); 1920 1921 Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev); 1922 Record.clear(); 1923 } 1924 1925 void ModuleBitcodeWriter::writeDITemplateValueParameter( 1926 const DITemplateValueParameter *N, SmallVectorImpl<uint64_t> &Record, 1927 unsigned Abbrev) { 1928 Record.push_back(N->isDistinct()); 1929 Record.push_back(N->getTag()); 1930 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1931 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1932 Record.push_back(N->isDefault()); 1933 Record.push_back(VE.getMetadataOrNullID(N->getValue())); 1934 1935 Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev); 1936 Record.clear(); 1937 } 1938 1939 void ModuleBitcodeWriter::writeDIGlobalVariable( 1940 const DIGlobalVariable *N, SmallVectorImpl<uint64_t> &Record, 1941 unsigned Abbrev) { 1942 const uint64_t Version = 2 << 1; 1943 Record.push_back((uint64_t)N->isDistinct() | Version); 1944 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1945 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1946 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1947 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1948 Record.push_back(N->getLine()); 1949 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1950 Record.push_back(N->isLocalToUnit()); 1951 Record.push_back(N->isDefinition()); 1952 Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration())); 1953 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams())); 1954 Record.push_back(N->getAlignInBits()); 1955 1956 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev); 1957 Record.clear(); 1958 } 1959 1960 void ModuleBitcodeWriter::writeDILocalVariable( 1961 const DILocalVariable *N, SmallVectorImpl<uint64_t> &Record, 1962 unsigned Abbrev) { 1963 // In order to support all possible bitcode formats in BitcodeReader we need 1964 // to distinguish the following cases: 1965 // 1) Record has no artificial tag (Record[1]), 1966 // has no obsolete inlinedAt field (Record[9]). 1967 // In this case Record size will be 8, HasAlignment flag is false. 1968 // 2) Record has artificial tag (Record[1]), 1969 // has no obsolete inlignedAt field (Record[9]). 1970 // In this case Record size will be 9, HasAlignment flag is false. 1971 // 3) Record has both artificial tag (Record[1]) and 1972 // obsolete inlignedAt field (Record[9]). 1973 // In this case Record size will be 10, HasAlignment flag is false. 1974 // 4) Record has neither artificial tag, nor inlignedAt field, but 1975 // HasAlignment flag is true and Record[8] contains alignment value. 1976 const uint64_t HasAlignmentFlag = 1 << 1; 1977 Record.push_back((uint64_t)N->isDistinct() | HasAlignmentFlag); 1978 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1979 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1980 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1981 Record.push_back(N->getLine()); 1982 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1983 Record.push_back(N->getArg()); 1984 Record.push_back(N->getFlags()); 1985 Record.push_back(N->getAlignInBits()); 1986 1987 Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev); 1988 Record.clear(); 1989 } 1990 1991 void ModuleBitcodeWriter::writeDILabel( 1992 const DILabel *N, SmallVectorImpl<uint64_t> &Record, 1993 unsigned Abbrev) { 1994 Record.push_back((uint64_t)N->isDistinct()); 1995 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1996 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1997 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1998 Record.push_back(N->getLine()); 1999 2000 Stream.EmitRecord(bitc::METADATA_LABEL, Record, Abbrev); 2001 Record.clear(); 2002 } 2003 2004 void ModuleBitcodeWriter::writeDIExpression(const DIExpression *N, 2005 SmallVectorImpl<uint64_t> &Record, 2006 unsigned Abbrev) { 2007 Record.reserve(N->getElements().size() + 1); 2008 const uint64_t Version = 3 << 1; 2009 Record.push_back((uint64_t)N->isDistinct() | Version); 2010 Record.append(N->elements_begin(), N->elements_end()); 2011 2012 Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev); 2013 Record.clear(); 2014 } 2015 2016 void ModuleBitcodeWriter::writeDIGlobalVariableExpression( 2017 const DIGlobalVariableExpression *N, SmallVectorImpl<uint64_t> &Record, 2018 unsigned Abbrev) { 2019 Record.push_back(N->isDistinct()); 2020 Record.push_back(VE.getMetadataOrNullID(N->getVariable())); 2021 Record.push_back(VE.getMetadataOrNullID(N->getExpression())); 2022 2023 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR_EXPR, Record, Abbrev); 2024 Record.clear(); 2025 } 2026 2027 void ModuleBitcodeWriter::writeDIObjCProperty(const DIObjCProperty *N, 2028 SmallVectorImpl<uint64_t> &Record, 2029 unsigned Abbrev) { 2030 Record.push_back(N->isDistinct()); 2031 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2032 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 2033 Record.push_back(N->getLine()); 2034 Record.push_back(VE.getMetadataOrNullID(N->getRawSetterName())); 2035 Record.push_back(VE.getMetadataOrNullID(N->getRawGetterName())); 2036 Record.push_back(N->getAttributes()); 2037 Record.push_back(VE.getMetadataOrNullID(N->getType())); 2038 2039 Stream.EmitRecord(bitc::METADATA_OBJC_PROPERTY, Record, Abbrev); 2040 Record.clear(); 2041 } 2042 2043 void ModuleBitcodeWriter::writeDIImportedEntity( 2044 const DIImportedEntity *N, SmallVectorImpl<uint64_t> &Record, 2045 unsigned Abbrev) { 2046 Record.push_back(N->isDistinct()); 2047 Record.push_back(N->getTag()); 2048 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 2049 Record.push_back(VE.getMetadataOrNullID(N->getEntity())); 2050 Record.push_back(N->getLine()); 2051 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 2052 Record.push_back(VE.getMetadataOrNullID(N->getRawFile())); 2053 2054 Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev); 2055 Record.clear(); 2056 } 2057 2058 unsigned ModuleBitcodeWriter::createNamedMetadataAbbrev() { 2059 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2060 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME)); 2061 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2062 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2063 return Stream.EmitAbbrev(std::move(Abbv)); 2064 } 2065 2066 void ModuleBitcodeWriter::writeNamedMetadata( 2067 SmallVectorImpl<uint64_t> &Record) { 2068 if (M.named_metadata_empty()) 2069 return; 2070 2071 unsigned Abbrev = createNamedMetadataAbbrev(); 2072 for (const NamedMDNode &NMD : M.named_metadata()) { 2073 // Write name. 2074 StringRef Str = NMD.getName(); 2075 Record.append(Str.bytes_begin(), Str.bytes_end()); 2076 Stream.EmitRecord(bitc::METADATA_NAME, Record, Abbrev); 2077 Record.clear(); 2078 2079 // Write named metadata operands. 2080 for (const MDNode *N : NMD.operands()) 2081 Record.push_back(VE.getMetadataID(N)); 2082 Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0); 2083 Record.clear(); 2084 } 2085 } 2086 2087 unsigned ModuleBitcodeWriter::createMetadataStringsAbbrev() { 2088 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2089 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRINGS)); 2090 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // # of strings 2091 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // offset to chars 2092 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 2093 return Stream.EmitAbbrev(std::move(Abbv)); 2094 } 2095 2096 /// Write out a record for MDString. 2097 /// 2098 /// All the metadata strings in a metadata block are emitted in a single 2099 /// record. The sizes and strings themselves are shoved into a blob. 2100 void ModuleBitcodeWriter::writeMetadataStrings( 2101 ArrayRef<const Metadata *> Strings, SmallVectorImpl<uint64_t> &Record) { 2102 if (Strings.empty()) 2103 return; 2104 2105 // Start the record with the number of strings. 2106 Record.push_back(bitc::METADATA_STRINGS); 2107 Record.push_back(Strings.size()); 2108 2109 // Emit the sizes of the strings in the blob. 2110 SmallString<256> Blob; 2111 { 2112 BitstreamWriter W(Blob); 2113 for (const Metadata *MD : Strings) 2114 W.EmitVBR(cast<MDString>(MD)->getLength(), 6); 2115 W.FlushToWord(); 2116 } 2117 2118 // Add the offset to the strings to the record. 2119 Record.push_back(Blob.size()); 2120 2121 // Add the strings to the blob. 2122 for (const Metadata *MD : Strings) 2123 Blob.append(cast<MDString>(MD)->getString()); 2124 2125 // Emit the final record. 2126 Stream.EmitRecordWithBlob(createMetadataStringsAbbrev(), Record, Blob); 2127 Record.clear(); 2128 } 2129 2130 // Generates an enum to use as an index in the Abbrev array of Metadata record. 2131 enum MetadataAbbrev : unsigned { 2132 #define HANDLE_MDNODE_LEAF(CLASS) CLASS##AbbrevID, 2133 #include "llvm/IR/Metadata.def" 2134 LastPlusOne 2135 }; 2136 2137 void ModuleBitcodeWriter::writeMetadataRecords( 2138 ArrayRef<const Metadata *> MDs, SmallVectorImpl<uint64_t> &Record, 2139 std::vector<unsigned> *MDAbbrevs, std::vector<uint64_t> *IndexPos) { 2140 if (MDs.empty()) 2141 return; 2142 2143 // Initialize MDNode abbreviations. 2144 #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0; 2145 #include "llvm/IR/Metadata.def" 2146 2147 for (const Metadata *MD : MDs) { 2148 if (IndexPos) 2149 IndexPos->push_back(Stream.GetCurrentBitNo()); 2150 if (const MDNode *N = dyn_cast<MDNode>(MD)) { 2151 assert(N->isResolved() && "Expected forward references to be resolved"); 2152 2153 switch (N->getMetadataID()) { 2154 default: 2155 llvm_unreachable("Invalid MDNode subclass"); 2156 #define HANDLE_MDNODE_LEAF(CLASS) \ 2157 case Metadata::CLASS##Kind: \ 2158 if (MDAbbrevs) \ 2159 write##CLASS(cast<CLASS>(N), Record, \ 2160 (*MDAbbrevs)[MetadataAbbrev::CLASS##AbbrevID]); \ 2161 else \ 2162 write##CLASS(cast<CLASS>(N), Record, CLASS##Abbrev); \ 2163 continue; 2164 #include "llvm/IR/Metadata.def" 2165 } 2166 } 2167 writeValueAsMetadata(cast<ValueAsMetadata>(MD), Record); 2168 } 2169 } 2170 2171 void ModuleBitcodeWriter::writeModuleMetadata() { 2172 if (!VE.hasMDs() && M.named_metadata_empty()) 2173 return; 2174 2175 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 4); 2176 SmallVector<uint64_t, 64> Record; 2177 2178 // Emit all abbrevs upfront, so that the reader can jump in the middle of the 2179 // block and load any metadata. 2180 std::vector<unsigned> MDAbbrevs; 2181 2182 MDAbbrevs.resize(MetadataAbbrev::LastPlusOne); 2183 MDAbbrevs[MetadataAbbrev::DILocationAbbrevID] = createDILocationAbbrev(); 2184 MDAbbrevs[MetadataAbbrev::GenericDINodeAbbrevID] = 2185 createGenericDINodeAbbrev(); 2186 2187 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2188 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX_OFFSET)); 2189 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 2190 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 2191 unsigned OffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2192 2193 Abbv = std::make_shared<BitCodeAbbrev>(); 2194 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX)); 2195 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2196 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 2197 unsigned IndexAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2198 2199 // Emit MDStrings together upfront. 2200 writeMetadataStrings(VE.getMDStrings(), Record); 2201 2202 // We only emit an index for the metadata record if we have more than a given 2203 // (naive) threshold of metadatas, otherwise it is not worth it. 2204 if (VE.getNonMDStrings().size() > IndexThreshold) { 2205 // Write a placeholder value in for the offset of the metadata index, 2206 // which is written after the records, so that it can include 2207 // the offset of each entry. The placeholder offset will be 2208 // updated after all records are emitted. 2209 uint64_t Vals[] = {0, 0}; 2210 Stream.EmitRecord(bitc::METADATA_INDEX_OFFSET, Vals, OffsetAbbrev); 2211 } 2212 2213 // Compute and save the bit offset to the current position, which will be 2214 // patched when we emit the index later. We can simply subtract the 64-bit 2215 // fixed size from the current bit number to get the location to backpatch. 2216 uint64_t IndexOffsetRecordBitPos = Stream.GetCurrentBitNo(); 2217 2218 // This index will contain the bitpos for each individual record. 2219 std::vector<uint64_t> IndexPos; 2220 IndexPos.reserve(VE.getNonMDStrings().size()); 2221 2222 // Write all the records 2223 writeMetadataRecords(VE.getNonMDStrings(), Record, &MDAbbrevs, &IndexPos); 2224 2225 if (VE.getNonMDStrings().size() > IndexThreshold) { 2226 // Now that we have emitted all the records we will emit the index. But 2227 // first 2228 // backpatch the forward reference so that the reader can skip the records 2229 // efficiently. 2230 Stream.BackpatchWord64(IndexOffsetRecordBitPos - 64, 2231 Stream.GetCurrentBitNo() - IndexOffsetRecordBitPos); 2232 2233 // Delta encode the index. 2234 uint64_t PreviousValue = IndexOffsetRecordBitPos; 2235 for (auto &Elt : IndexPos) { 2236 auto EltDelta = Elt - PreviousValue; 2237 PreviousValue = Elt; 2238 Elt = EltDelta; 2239 } 2240 // Emit the index record. 2241 Stream.EmitRecord(bitc::METADATA_INDEX, IndexPos, IndexAbbrev); 2242 IndexPos.clear(); 2243 } 2244 2245 // Write the named metadata now. 2246 writeNamedMetadata(Record); 2247 2248 auto AddDeclAttachedMetadata = [&](const GlobalObject &GO) { 2249 SmallVector<uint64_t, 4> Record; 2250 Record.push_back(VE.getValueID(&GO)); 2251 pushGlobalMetadataAttachment(Record, GO); 2252 Stream.EmitRecord(bitc::METADATA_GLOBAL_DECL_ATTACHMENT, Record); 2253 }; 2254 for (const Function &F : M) 2255 if (F.isDeclaration() && F.hasMetadata()) 2256 AddDeclAttachedMetadata(F); 2257 // FIXME: Only store metadata for declarations here, and move data for global 2258 // variable definitions to a separate block (PR28134). 2259 for (const GlobalVariable &GV : M.globals()) 2260 if (GV.hasMetadata()) 2261 AddDeclAttachedMetadata(GV); 2262 2263 Stream.ExitBlock(); 2264 } 2265 2266 void ModuleBitcodeWriter::writeFunctionMetadata(const Function &F) { 2267 if (!VE.hasMDs()) 2268 return; 2269 2270 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 2271 SmallVector<uint64_t, 64> Record; 2272 writeMetadataStrings(VE.getMDStrings(), Record); 2273 writeMetadataRecords(VE.getNonMDStrings(), Record); 2274 Stream.ExitBlock(); 2275 } 2276 2277 void ModuleBitcodeWriter::pushGlobalMetadataAttachment( 2278 SmallVectorImpl<uint64_t> &Record, const GlobalObject &GO) { 2279 // [n x [id, mdnode]] 2280 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2281 GO.getAllMetadata(MDs); 2282 for (const auto &I : MDs) { 2283 Record.push_back(I.first); 2284 Record.push_back(VE.getMetadataID(I.second)); 2285 } 2286 } 2287 2288 void ModuleBitcodeWriter::writeFunctionMetadataAttachment(const Function &F) { 2289 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3); 2290 2291 SmallVector<uint64_t, 64> Record; 2292 2293 if (F.hasMetadata()) { 2294 pushGlobalMetadataAttachment(Record, F); 2295 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 2296 Record.clear(); 2297 } 2298 2299 // Write metadata attachments 2300 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]] 2301 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2302 for (const BasicBlock &BB : F) 2303 for (const Instruction &I : BB) { 2304 MDs.clear(); 2305 I.getAllMetadataOtherThanDebugLoc(MDs); 2306 2307 // If no metadata, ignore instruction. 2308 if (MDs.empty()) continue; 2309 2310 Record.push_back(VE.getInstructionID(&I)); 2311 2312 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 2313 Record.push_back(MDs[i].first); 2314 Record.push_back(VE.getMetadataID(MDs[i].second)); 2315 } 2316 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 2317 Record.clear(); 2318 } 2319 2320 Stream.ExitBlock(); 2321 } 2322 2323 void ModuleBitcodeWriter::writeModuleMetadataKinds() { 2324 SmallVector<uint64_t, 64> Record; 2325 2326 // Write metadata kinds 2327 // METADATA_KIND - [n x [id, name]] 2328 SmallVector<StringRef, 8> Names; 2329 M.getMDKindNames(Names); 2330 2331 if (Names.empty()) return; 2332 2333 Stream.EnterSubblock(bitc::METADATA_KIND_BLOCK_ID, 3); 2334 2335 for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) { 2336 Record.push_back(MDKindID); 2337 StringRef KName = Names[MDKindID]; 2338 Record.append(KName.begin(), KName.end()); 2339 2340 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0); 2341 Record.clear(); 2342 } 2343 2344 Stream.ExitBlock(); 2345 } 2346 2347 void ModuleBitcodeWriter::writeOperandBundleTags() { 2348 // Write metadata kinds 2349 // 2350 // OPERAND_BUNDLE_TAGS_BLOCK_ID : N x OPERAND_BUNDLE_TAG 2351 // 2352 // OPERAND_BUNDLE_TAG - [strchr x N] 2353 2354 SmallVector<StringRef, 8> Tags; 2355 M.getOperandBundleTags(Tags); 2356 2357 if (Tags.empty()) 2358 return; 2359 2360 Stream.EnterSubblock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID, 3); 2361 2362 SmallVector<uint64_t, 64> Record; 2363 2364 for (auto Tag : Tags) { 2365 Record.append(Tag.begin(), Tag.end()); 2366 2367 Stream.EmitRecord(bitc::OPERAND_BUNDLE_TAG, Record, 0); 2368 Record.clear(); 2369 } 2370 2371 Stream.ExitBlock(); 2372 } 2373 2374 void ModuleBitcodeWriter::writeSyncScopeNames() { 2375 SmallVector<StringRef, 8> SSNs; 2376 M.getContext().getSyncScopeNames(SSNs); 2377 if (SSNs.empty()) 2378 return; 2379 2380 Stream.EnterSubblock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID, 2); 2381 2382 SmallVector<uint64_t, 64> Record; 2383 for (auto SSN : SSNs) { 2384 Record.append(SSN.begin(), SSN.end()); 2385 Stream.EmitRecord(bitc::SYNC_SCOPE_NAME, Record, 0); 2386 Record.clear(); 2387 } 2388 2389 Stream.ExitBlock(); 2390 } 2391 2392 void ModuleBitcodeWriter::writeConstants(unsigned FirstVal, unsigned LastVal, 2393 bool isGlobal) { 2394 if (FirstVal == LastVal) return; 2395 2396 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 2397 2398 unsigned AggregateAbbrev = 0; 2399 unsigned String8Abbrev = 0; 2400 unsigned CString7Abbrev = 0; 2401 unsigned CString6Abbrev = 0; 2402 // If this is a constant pool for the module, emit module-specific abbrevs. 2403 if (isGlobal) { 2404 // Abbrev for CST_CODE_AGGREGATE. 2405 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2406 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 2407 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2408 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); 2409 AggregateAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2410 2411 // Abbrev for CST_CODE_STRING. 2412 Abbv = std::make_shared<BitCodeAbbrev>(); 2413 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 2414 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2415 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2416 String8Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2417 // Abbrev for CST_CODE_CSTRING. 2418 Abbv = std::make_shared<BitCodeAbbrev>(); 2419 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2420 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2421 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 2422 CString7Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2423 // Abbrev for CST_CODE_CSTRING. 2424 Abbv = std::make_shared<BitCodeAbbrev>(); 2425 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2426 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2427 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2428 CString6Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2429 } 2430 2431 SmallVector<uint64_t, 64> Record; 2432 2433 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2434 Type *LastTy = nullptr; 2435 for (unsigned i = FirstVal; i != LastVal; ++i) { 2436 const Value *V = Vals[i].first; 2437 // If we need to switch types, do so now. 2438 if (V->getType() != LastTy) { 2439 LastTy = V->getType(); 2440 Record.push_back(VE.getTypeID(LastTy)); 2441 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 2442 CONSTANTS_SETTYPE_ABBREV); 2443 Record.clear(); 2444 } 2445 2446 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 2447 Record.push_back( 2448 unsigned(IA->hasSideEffects()) | unsigned(IA->isAlignStack()) << 1 | 2449 unsigned(IA->getDialect() & 1) << 2 | unsigned(IA->canThrow()) << 3); 2450 2451 // Add the asm string. 2452 const std::string &AsmStr = IA->getAsmString(); 2453 Record.push_back(AsmStr.size()); 2454 Record.append(AsmStr.begin(), AsmStr.end()); 2455 2456 // Add the constraint string. 2457 const std::string &ConstraintStr = IA->getConstraintString(); 2458 Record.push_back(ConstraintStr.size()); 2459 Record.append(ConstraintStr.begin(), ConstraintStr.end()); 2460 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 2461 Record.clear(); 2462 continue; 2463 } 2464 const Constant *C = cast<Constant>(V); 2465 unsigned Code = -1U; 2466 unsigned AbbrevToUse = 0; 2467 if (C->isNullValue()) { 2468 Code = bitc::CST_CODE_NULL; 2469 } else if (isa<PoisonValue>(C)) { 2470 Code = bitc::CST_CODE_POISON; 2471 } else if (isa<UndefValue>(C)) { 2472 Code = bitc::CST_CODE_UNDEF; 2473 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 2474 if (IV->getBitWidth() <= 64) { 2475 uint64_t V = IV->getSExtValue(); 2476 emitSignedInt64(Record, V); 2477 Code = bitc::CST_CODE_INTEGER; 2478 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 2479 } else { // Wide integers, > 64 bits in size. 2480 emitWideAPInt(Record, IV->getValue()); 2481 Code = bitc::CST_CODE_WIDE_INTEGER; 2482 } 2483 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 2484 Code = bitc::CST_CODE_FLOAT; 2485 Type *Ty = CFP->getType(); 2486 if (Ty->isHalfTy() || Ty->isBFloatTy() || Ty->isFloatTy() || 2487 Ty->isDoubleTy()) { 2488 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); 2489 } else if (Ty->isX86_FP80Ty()) { 2490 // api needed to prevent premature destruction 2491 // bits are not in the same order as a normal i80 APInt, compensate. 2492 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2493 const uint64_t *p = api.getRawData(); 2494 Record.push_back((p[1] << 48) | (p[0] >> 16)); 2495 Record.push_back(p[0] & 0xffffLL); 2496 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) { 2497 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2498 const uint64_t *p = api.getRawData(); 2499 Record.push_back(p[0]); 2500 Record.push_back(p[1]); 2501 } else { 2502 assert(0 && "Unknown FP type!"); 2503 } 2504 } else if (isa<ConstantDataSequential>(C) && 2505 cast<ConstantDataSequential>(C)->isString()) { 2506 const ConstantDataSequential *Str = cast<ConstantDataSequential>(C); 2507 // Emit constant strings specially. 2508 unsigned NumElts = Str->getNumElements(); 2509 // If this is a null-terminated string, use the denser CSTRING encoding. 2510 if (Str->isCString()) { 2511 Code = bitc::CST_CODE_CSTRING; 2512 --NumElts; // Don't encode the null, which isn't allowed by char6. 2513 } else { 2514 Code = bitc::CST_CODE_STRING; 2515 AbbrevToUse = String8Abbrev; 2516 } 2517 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 2518 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 2519 for (unsigned i = 0; i != NumElts; ++i) { 2520 unsigned char V = Str->getElementAsInteger(i); 2521 Record.push_back(V); 2522 isCStr7 &= (V & 128) == 0; 2523 if (isCStrChar6) 2524 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 2525 } 2526 2527 if (isCStrChar6) 2528 AbbrevToUse = CString6Abbrev; 2529 else if (isCStr7) 2530 AbbrevToUse = CString7Abbrev; 2531 } else if (const ConstantDataSequential *CDS = 2532 dyn_cast<ConstantDataSequential>(C)) { 2533 Code = bitc::CST_CODE_DATA; 2534 Type *EltTy = CDS->getElementType(); 2535 if (isa<IntegerType>(EltTy)) { 2536 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2537 Record.push_back(CDS->getElementAsInteger(i)); 2538 } else { 2539 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2540 Record.push_back( 2541 CDS->getElementAsAPFloat(i).bitcastToAPInt().getLimitedValue()); 2542 } 2543 } else if (isa<ConstantAggregate>(C)) { 2544 Code = bitc::CST_CODE_AGGREGATE; 2545 for (const Value *Op : C->operands()) 2546 Record.push_back(VE.getValueID(Op)); 2547 AbbrevToUse = AggregateAbbrev; 2548 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 2549 switch (CE->getOpcode()) { 2550 default: 2551 if (Instruction::isCast(CE->getOpcode())) { 2552 Code = bitc::CST_CODE_CE_CAST; 2553 Record.push_back(getEncodedCastOpcode(CE->getOpcode())); 2554 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2555 Record.push_back(VE.getValueID(C->getOperand(0))); 2556 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 2557 } else { 2558 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 2559 Code = bitc::CST_CODE_CE_BINOP; 2560 Record.push_back(getEncodedBinaryOpcode(CE->getOpcode())); 2561 Record.push_back(VE.getValueID(C->getOperand(0))); 2562 Record.push_back(VE.getValueID(C->getOperand(1))); 2563 uint64_t Flags = getOptimizationFlags(CE); 2564 if (Flags != 0) 2565 Record.push_back(Flags); 2566 } 2567 break; 2568 case Instruction::FNeg: { 2569 assert(CE->getNumOperands() == 1 && "Unknown constant expr!"); 2570 Code = bitc::CST_CODE_CE_UNOP; 2571 Record.push_back(getEncodedUnaryOpcode(CE->getOpcode())); 2572 Record.push_back(VE.getValueID(C->getOperand(0))); 2573 uint64_t Flags = getOptimizationFlags(CE); 2574 if (Flags != 0) 2575 Record.push_back(Flags); 2576 break; 2577 } 2578 case Instruction::GetElementPtr: { 2579 Code = bitc::CST_CODE_CE_GEP; 2580 const auto *GO = cast<GEPOperator>(C); 2581 Record.push_back(VE.getTypeID(GO->getSourceElementType())); 2582 if (Optional<unsigned> Idx = GO->getInRangeIndex()) { 2583 Code = bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX; 2584 Record.push_back((*Idx << 1) | GO->isInBounds()); 2585 } else if (GO->isInBounds()) 2586 Code = bitc::CST_CODE_CE_INBOUNDS_GEP; 2587 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 2588 Record.push_back(VE.getTypeID(C->getOperand(i)->getType())); 2589 Record.push_back(VE.getValueID(C->getOperand(i))); 2590 } 2591 break; 2592 } 2593 case Instruction::Select: 2594 Code = bitc::CST_CODE_CE_SELECT; 2595 Record.push_back(VE.getValueID(C->getOperand(0))); 2596 Record.push_back(VE.getValueID(C->getOperand(1))); 2597 Record.push_back(VE.getValueID(C->getOperand(2))); 2598 break; 2599 case Instruction::ExtractElement: 2600 Code = bitc::CST_CODE_CE_EXTRACTELT; 2601 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2602 Record.push_back(VE.getValueID(C->getOperand(0))); 2603 Record.push_back(VE.getTypeID(C->getOperand(1)->getType())); 2604 Record.push_back(VE.getValueID(C->getOperand(1))); 2605 break; 2606 case Instruction::InsertElement: 2607 Code = bitc::CST_CODE_CE_INSERTELT; 2608 Record.push_back(VE.getValueID(C->getOperand(0))); 2609 Record.push_back(VE.getValueID(C->getOperand(1))); 2610 Record.push_back(VE.getTypeID(C->getOperand(2)->getType())); 2611 Record.push_back(VE.getValueID(C->getOperand(2))); 2612 break; 2613 case Instruction::ShuffleVector: 2614 // If the return type and argument types are the same, this is a 2615 // standard shufflevector instruction. If the types are different, 2616 // then the shuffle is widening or truncating the input vectors, and 2617 // the argument type must also be encoded. 2618 if (C->getType() == C->getOperand(0)->getType()) { 2619 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 2620 } else { 2621 Code = bitc::CST_CODE_CE_SHUFVEC_EX; 2622 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2623 } 2624 Record.push_back(VE.getValueID(C->getOperand(0))); 2625 Record.push_back(VE.getValueID(C->getOperand(1))); 2626 Record.push_back(VE.getValueID(CE->getShuffleMaskForBitcode())); 2627 break; 2628 case Instruction::ICmp: 2629 case Instruction::FCmp: 2630 Code = bitc::CST_CODE_CE_CMP; 2631 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2632 Record.push_back(VE.getValueID(C->getOperand(0))); 2633 Record.push_back(VE.getValueID(C->getOperand(1))); 2634 Record.push_back(CE->getPredicate()); 2635 break; 2636 } 2637 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) { 2638 Code = bitc::CST_CODE_BLOCKADDRESS; 2639 Record.push_back(VE.getTypeID(BA->getFunction()->getType())); 2640 Record.push_back(VE.getValueID(BA->getFunction())); 2641 Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock())); 2642 } else if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(C)) { 2643 Code = bitc::CST_CODE_DSO_LOCAL_EQUIVALENT; 2644 Record.push_back(VE.getTypeID(Equiv->getGlobalValue()->getType())); 2645 Record.push_back(VE.getValueID(Equiv->getGlobalValue())); 2646 } else { 2647 #ifndef NDEBUG 2648 C->dump(); 2649 #endif 2650 llvm_unreachable("Unknown constant!"); 2651 } 2652 Stream.EmitRecord(Code, Record, AbbrevToUse); 2653 Record.clear(); 2654 } 2655 2656 Stream.ExitBlock(); 2657 } 2658 2659 void ModuleBitcodeWriter::writeModuleConstants() { 2660 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2661 2662 // Find the first constant to emit, which is the first non-globalvalue value. 2663 // We know globalvalues have been emitted by WriteModuleInfo. 2664 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 2665 if (!isa<GlobalValue>(Vals[i].first)) { 2666 writeConstants(i, Vals.size(), true); 2667 return; 2668 } 2669 } 2670 } 2671 2672 /// pushValueAndType - The file has to encode both the value and type id for 2673 /// many values, because we need to know what type to create for forward 2674 /// references. However, most operands are not forward references, so this type 2675 /// field is not needed. 2676 /// 2677 /// This function adds V's value ID to Vals. If the value ID is higher than the 2678 /// instruction ID, then it is a forward reference, and it also includes the 2679 /// type ID. The value ID that is written is encoded relative to the InstID. 2680 bool ModuleBitcodeWriter::pushValueAndType(const Value *V, unsigned InstID, 2681 SmallVectorImpl<unsigned> &Vals) { 2682 unsigned ValID = VE.getValueID(V); 2683 // Make encoding relative to the InstID. 2684 Vals.push_back(InstID - ValID); 2685 if (ValID >= InstID) { 2686 Vals.push_back(VE.getTypeID(V->getType())); 2687 return true; 2688 } 2689 return false; 2690 } 2691 2692 void ModuleBitcodeWriter::writeOperandBundles(const CallBase &CS, 2693 unsigned InstID) { 2694 SmallVector<unsigned, 64> Record; 2695 LLVMContext &C = CS.getContext(); 2696 2697 for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i) { 2698 const auto &Bundle = CS.getOperandBundleAt(i); 2699 Record.push_back(C.getOperandBundleTagID(Bundle.getTagName())); 2700 2701 for (auto &Input : Bundle.Inputs) 2702 pushValueAndType(Input, InstID, Record); 2703 2704 Stream.EmitRecord(bitc::FUNC_CODE_OPERAND_BUNDLE, Record); 2705 Record.clear(); 2706 } 2707 } 2708 2709 /// pushValue - Like pushValueAndType, but where the type of the value is 2710 /// omitted (perhaps it was already encoded in an earlier operand). 2711 void ModuleBitcodeWriter::pushValue(const Value *V, unsigned InstID, 2712 SmallVectorImpl<unsigned> &Vals) { 2713 unsigned ValID = VE.getValueID(V); 2714 Vals.push_back(InstID - ValID); 2715 } 2716 2717 void ModuleBitcodeWriter::pushValueSigned(const Value *V, unsigned InstID, 2718 SmallVectorImpl<uint64_t> &Vals) { 2719 unsigned ValID = VE.getValueID(V); 2720 int64_t diff = ((int32_t)InstID - (int32_t)ValID); 2721 emitSignedInt64(Vals, diff); 2722 } 2723 2724 /// WriteInstruction - Emit an instruction to the specified stream. 2725 void ModuleBitcodeWriter::writeInstruction(const Instruction &I, 2726 unsigned InstID, 2727 SmallVectorImpl<unsigned> &Vals) { 2728 unsigned Code = 0; 2729 unsigned AbbrevToUse = 0; 2730 VE.setInstructionID(&I); 2731 switch (I.getOpcode()) { 2732 default: 2733 if (Instruction::isCast(I.getOpcode())) { 2734 Code = bitc::FUNC_CODE_INST_CAST; 2735 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2736 AbbrevToUse = FUNCTION_INST_CAST_ABBREV; 2737 Vals.push_back(VE.getTypeID(I.getType())); 2738 Vals.push_back(getEncodedCastOpcode(I.getOpcode())); 2739 } else { 2740 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 2741 Code = bitc::FUNC_CODE_INST_BINOP; 2742 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2743 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; 2744 pushValue(I.getOperand(1), InstID, Vals); 2745 Vals.push_back(getEncodedBinaryOpcode(I.getOpcode())); 2746 uint64_t Flags = getOptimizationFlags(&I); 2747 if (Flags != 0) { 2748 if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV) 2749 AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV; 2750 Vals.push_back(Flags); 2751 } 2752 } 2753 break; 2754 case Instruction::FNeg: { 2755 Code = bitc::FUNC_CODE_INST_UNOP; 2756 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2757 AbbrevToUse = FUNCTION_INST_UNOP_ABBREV; 2758 Vals.push_back(getEncodedUnaryOpcode(I.getOpcode())); 2759 uint64_t Flags = getOptimizationFlags(&I); 2760 if (Flags != 0) { 2761 if (AbbrevToUse == FUNCTION_INST_UNOP_ABBREV) 2762 AbbrevToUse = FUNCTION_INST_UNOP_FLAGS_ABBREV; 2763 Vals.push_back(Flags); 2764 } 2765 break; 2766 } 2767 case Instruction::GetElementPtr: { 2768 Code = bitc::FUNC_CODE_INST_GEP; 2769 AbbrevToUse = FUNCTION_INST_GEP_ABBREV; 2770 auto &GEPInst = cast<GetElementPtrInst>(I); 2771 Vals.push_back(GEPInst.isInBounds()); 2772 Vals.push_back(VE.getTypeID(GEPInst.getSourceElementType())); 2773 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 2774 pushValueAndType(I.getOperand(i), InstID, Vals); 2775 break; 2776 } 2777 case Instruction::ExtractValue: { 2778 Code = bitc::FUNC_CODE_INST_EXTRACTVAL; 2779 pushValueAndType(I.getOperand(0), InstID, Vals); 2780 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); 2781 Vals.append(EVI->idx_begin(), EVI->idx_end()); 2782 break; 2783 } 2784 case Instruction::InsertValue: { 2785 Code = bitc::FUNC_CODE_INST_INSERTVAL; 2786 pushValueAndType(I.getOperand(0), InstID, Vals); 2787 pushValueAndType(I.getOperand(1), InstID, Vals); 2788 const InsertValueInst *IVI = cast<InsertValueInst>(&I); 2789 Vals.append(IVI->idx_begin(), IVI->idx_end()); 2790 break; 2791 } 2792 case Instruction::Select: { 2793 Code = bitc::FUNC_CODE_INST_VSELECT; 2794 pushValueAndType(I.getOperand(1), InstID, Vals); 2795 pushValue(I.getOperand(2), InstID, Vals); 2796 pushValueAndType(I.getOperand(0), InstID, Vals); 2797 uint64_t Flags = getOptimizationFlags(&I); 2798 if (Flags != 0) 2799 Vals.push_back(Flags); 2800 break; 2801 } 2802 case Instruction::ExtractElement: 2803 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 2804 pushValueAndType(I.getOperand(0), InstID, Vals); 2805 pushValueAndType(I.getOperand(1), InstID, Vals); 2806 break; 2807 case Instruction::InsertElement: 2808 Code = bitc::FUNC_CODE_INST_INSERTELT; 2809 pushValueAndType(I.getOperand(0), InstID, Vals); 2810 pushValue(I.getOperand(1), InstID, Vals); 2811 pushValueAndType(I.getOperand(2), InstID, Vals); 2812 break; 2813 case Instruction::ShuffleVector: 2814 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 2815 pushValueAndType(I.getOperand(0), InstID, Vals); 2816 pushValue(I.getOperand(1), InstID, Vals); 2817 pushValue(cast<ShuffleVectorInst>(I).getShuffleMaskForBitcode(), InstID, 2818 Vals); 2819 break; 2820 case Instruction::ICmp: 2821 case Instruction::FCmp: { 2822 // compare returning Int1Ty or vector of Int1Ty 2823 Code = bitc::FUNC_CODE_INST_CMP2; 2824 pushValueAndType(I.getOperand(0), InstID, Vals); 2825 pushValue(I.getOperand(1), InstID, Vals); 2826 Vals.push_back(cast<CmpInst>(I).getPredicate()); 2827 uint64_t Flags = getOptimizationFlags(&I); 2828 if (Flags != 0) 2829 Vals.push_back(Flags); 2830 break; 2831 } 2832 2833 case Instruction::Ret: 2834 { 2835 Code = bitc::FUNC_CODE_INST_RET; 2836 unsigned NumOperands = I.getNumOperands(); 2837 if (NumOperands == 0) 2838 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; 2839 else if (NumOperands == 1) { 2840 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2841 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; 2842 } else { 2843 for (unsigned i = 0, e = NumOperands; i != e; ++i) 2844 pushValueAndType(I.getOperand(i), InstID, Vals); 2845 } 2846 } 2847 break; 2848 case Instruction::Br: 2849 { 2850 Code = bitc::FUNC_CODE_INST_BR; 2851 const BranchInst &II = cast<BranchInst>(I); 2852 Vals.push_back(VE.getValueID(II.getSuccessor(0))); 2853 if (II.isConditional()) { 2854 Vals.push_back(VE.getValueID(II.getSuccessor(1))); 2855 pushValue(II.getCondition(), InstID, Vals); 2856 } 2857 } 2858 break; 2859 case Instruction::Switch: 2860 { 2861 Code = bitc::FUNC_CODE_INST_SWITCH; 2862 const SwitchInst &SI = cast<SwitchInst>(I); 2863 Vals.push_back(VE.getTypeID(SI.getCondition()->getType())); 2864 pushValue(SI.getCondition(), InstID, Vals); 2865 Vals.push_back(VE.getValueID(SI.getDefaultDest())); 2866 for (auto Case : SI.cases()) { 2867 Vals.push_back(VE.getValueID(Case.getCaseValue())); 2868 Vals.push_back(VE.getValueID(Case.getCaseSuccessor())); 2869 } 2870 } 2871 break; 2872 case Instruction::IndirectBr: 2873 Code = bitc::FUNC_CODE_INST_INDIRECTBR; 2874 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 2875 // Encode the address operand as relative, but not the basic blocks. 2876 pushValue(I.getOperand(0), InstID, Vals); 2877 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) 2878 Vals.push_back(VE.getValueID(I.getOperand(i))); 2879 break; 2880 2881 case Instruction::Invoke: { 2882 const InvokeInst *II = cast<InvokeInst>(&I); 2883 const Value *Callee = II->getCalledOperand(); 2884 FunctionType *FTy = II->getFunctionType(); 2885 2886 if (II->hasOperandBundles()) 2887 writeOperandBundles(*II, InstID); 2888 2889 Code = bitc::FUNC_CODE_INST_INVOKE; 2890 2891 Vals.push_back(VE.getAttributeListID(II->getAttributes())); 2892 Vals.push_back(II->getCallingConv() | 1 << 13); 2893 Vals.push_back(VE.getValueID(II->getNormalDest())); 2894 Vals.push_back(VE.getValueID(II->getUnwindDest())); 2895 Vals.push_back(VE.getTypeID(FTy)); 2896 pushValueAndType(Callee, InstID, Vals); 2897 2898 // Emit value #'s for the fixed parameters. 2899 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 2900 pushValue(I.getOperand(i), InstID, Vals); // fixed param. 2901 2902 // Emit type/value pairs for varargs params. 2903 if (FTy->isVarArg()) { 2904 for (unsigned i = FTy->getNumParams(), e = II->getNumArgOperands(); 2905 i != e; ++i) 2906 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg 2907 } 2908 break; 2909 } 2910 case Instruction::Resume: 2911 Code = bitc::FUNC_CODE_INST_RESUME; 2912 pushValueAndType(I.getOperand(0), InstID, Vals); 2913 break; 2914 case Instruction::CleanupRet: { 2915 Code = bitc::FUNC_CODE_INST_CLEANUPRET; 2916 const auto &CRI = cast<CleanupReturnInst>(I); 2917 pushValue(CRI.getCleanupPad(), InstID, Vals); 2918 if (CRI.hasUnwindDest()) 2919 Vals.push_back(VE.getValueID(CRI.getUnwindDest())); 2920 break; 2921 } 2922 case Instruction::CatchRet: { 2923 Code = bitc::FUNC_CODE_INST_CATCHRET; 2924 const auto &CRI = cast<CatchReturnInst>(I); 2925 pushValue(CRI.getCatchPad(), InstID, Vals); 2926 Vals.push_back(VE.getValueID(CRI.getSuccessor())); 2927 break; 2928 } 2929 case Instruction::CleanupPad: 2930 case Instruction::CatchPad: { 2931 const auto &FuncletPad = cast<FuncletPadInst>(I); 2932 Code = isa<CatchPadInst>(FuncletPad) ? bitc::FUNC_CODE_INST_CATCHPAD 2933 : bitc::FUNC_CODE_INST_CLEANUPPAD; 2934 pushValue(FuncletPad.getParentPad(), InstID, Vals); 2935 2936 unsigned NumArgOperands = FuncletPad.getNumArgOperands(); 2937 Vals.push_back(NumArgOperands); 2938 for (unsigned Op = 0; Op != NumArgOperands; ++Op) 2939 pushValueAndType(FuncletPad.getArgOperand(Op), InstID, Vals); 2940 break; 2941 } 2942 case Instruction::CatchSwitch: { 2943 Code = bitc::FUNC_CODE_INST_CATCHSWITCH; 2944 const auto &CatchSwitch = cast<CatchSwitchInst>(I); 2945 2946 pushValue(CatchSwitch.getParentPad(), InstID, Vals); 2947 2948 unsigned NumHandlers = CatchSwitch.getNumHandlers(); 2949 Vals.push_back(NumHandlers); 2950 for (const BasicBlock *CatchPadBB : CatchSwitch.handlers()) 2951 Vals.push_back(VE.getValueID(CatchPadBB)); 2952 2953 if (CatchSwitch.hasUnwindDest()) 2954 Vals.push_back(VE.getValueID(CatchSwitch.getUnwindDest())); 2955 break; 2956 } 2957 case Instruction::CallBr: { 2958 const CallBrInst *CBI = cast<CallBrInst>(&I); 2959 const Value *Callee = CBI->getCalledOperand(); 2960 FunctionType *FTy = CBI->getFunctionType(); 2961 2962 if (CBI->hasOperandBundles()) 2963 writeOperandBundles(*CBI, InstID); 2964 2965 Code = bitc::FUNC_CODE_INST_CALLBR; 2966 2967 Vals.push_back(VE.getAttributeListID(CBI->getAttributes())); 2968 2969 Vals.push_back(CBI->getCallingConv() << bitc::CALL_CCONV | 2970 1 << bitc::CALL_EXPLICIT_TYPE); 2971 2972 Vals.push_back(VE.getValueID(CBI->getDefaultDest())); 2973 Vals.push_back(CBI->getNumIndirectDests()); 2974 for (unsigned i = 0, e = CBI->getNumIndirectDests(); i != e; ++i) 2975 Vals.push_back(VE.getValueID(CBI->getIndirectDest(i))); 2976 2977 Vals.push_back(VE.getTypeID(FTy)); 2978 pushValueAndType(Callee, InstID, Vals); 2979 2980 // Emit value #'s for the fixed parameters. 2981 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 2982 pushValue(I.getOperand(i), InstID, Vals); // fixed param. 2983 2984 // Emit type/value pairs for varargs params. 2985 if (FTy->isVarArg()) { 2986 for (unsigned i = FTy->getNumParams(), e = CBI->getNumArgOperands(); 2987 i != e; ++i) 2988 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg 2989 } 2990 break; 2991 } 2992 case Instruction::Unreachable: 2993 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 2994 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; 2995 break; 2996 2997 case Instruction::PHI: { 2998 const PHINode &PN = cast<PHINode>(I); 2999 Code = bitc::FUNC_CODE_INST_PHI; 3000 // With the newer instruction encoding, forward references could give 3001 // negative valued IDs. This is most common for PHIs, so we use 3002 // signed VBRs. 3003 SmallVector<uint64_t, 128> Vals64; 3004 Vals64.push_back(VE.getTypeID(PN.getType())); 3005 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 3006 pushValueSigned(PN.getIncomingValue(i), InstID, Vals64); 3007 Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i))); 3008 } 3009 3010 uint64_t Flags = getOptimizationFlags(&I); 3011 if (Flags != 0) 3012 Vals64.push_back(Flags); 3013 3014 // Emit a Vals64 vector and exit. 3015 Stream.EmitRecord(Code, Vals64, AbbrevToUse); 3016 Vals64.clear(); 3017 return; 3018 } 3019 3020 case Instruction::LandingPad: { 3021 const LandingPadInst &LP = cast<LandingPadInst>(I); 3022 Code = bitc::FUNC_CODE_INST_LANDINGPAD; 3023 Vals.push_back(VE.getTypeID(LP.getType())); 3024 Vals.push_back(LP.isCleanup()); 3025 Vals.push_back(LP.getNumClauses()); 3026 for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) { 3027 if (LP.isCatch(I)) 3028 Vals.push_back(LandingPadInst::Catch); 3029 else 3030 Vals.push_back(LandingPadInst::Filter); 3031 pushValueAndType(LP.getClause(I), InstID, Vals); 3032 } 3033 break; 3034 } 3035 3036 case Instruction::Alloca: { 3037 Code = bitc::FUNC_CODE_INST_ALLOCA; 3038 const AllocaInst &AI = cast<AllocaInst>(I); 3039 Vals.push_back(VE.getTypeID(AI.getAllocatedType())); 3040 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 3041 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 3042 using APV = AllocaPackedValues; 3043 unsigned Record = 0; 3044 Bitfield::set<APV::Align>(Record, getEncodedAlign(AI.getAlign())); 3045 Bitfield::set<APV::UsedWithInAlloca>(Record, AI.isUsedWithInAlloca()); 3046 Bitfield::set<APV::ExplicitType>(Record, true); 3047 Bitfield::set<APV::SwiftError>(Record, AI.isSwiftError()); 3048 Vals.push_back(Record); 3049 break; 3050 } 3051 3052 case Instruction::Load: 3053 if (cast<LoadInst>(I).isAtomic()) { 3054 Code = bitc::FUNC_CODE_INST_LOADATOMIC; 3055 pushValueAndType(I.getOperand(0), InstID, Vals); 3056 } else { 3057 Code = bitc::FUNC_CODE_INST_LOAD; 3058 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) // ptr 3059 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; 3060 } 3061 Vals.push_back(VE.getTypeID(I.getType())); 3062 Vals.push_back(getEncodedAlign(cast<LoadInst>(I).getAlign())); 3063 Vals.push_back(cast<LoadInst>(I).isVolatile()); 3064 if (cast<LoadInst>(I).isAtomic()) { 3065 Vals.push_back(getEncodedOrdering(cast<LoadInst>(I).getOrdering())); 3066 Vals.push_back(getEncodedSyncScopeID(cast<LoadInst>(I).getSyncScopeID())); 3067 } 3068 break; 3069 case Instruction::Store: 3070 if (cast<StoreInst>(I).isAtomic()) 3071 Code = bitc::FUNC_CODE_INST_STOREATOMIC; 3072 else 3073 Code = bitc::FUNC_CODE_INST_STORE; 3074 pushValueAndType(I.getOperand(1), InstID, Vals); // ptrty + ptr 3075 pushValueAndType(I.getOperand(0), InstID, Vals); // valty + val 3076 Vals.push_back(getEncodedAlign(cast<StoreInst>(I).getAlign())); 3077 Vals.push_back(cast<StoreInst>(I).isVolatile()); 3078 if (cast<StoreInst>(I).isAtomic()) { 3079 Vals.push_back(getEncodedOrdering(cast<StoreInst>(I).getOrdering())); 3080 Vals.push_back( 3081 getEncodedSyncScopeID(cast<StoreInst>(I).getSyncScopeID())); 3082 } 3083 break; 3084 case Instruction::AtomicCmpXchg: 3085 Code = bitc::FUNC_CODE_INST_CMPXCHG; 3086 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 3087 pushValueAndType(I.getOperand(1), InstID, Vals); // cmp. 3088 pushValue(I.getOperand(2), InstID, Vals); // newval. 3089 Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile()); 3090 Vals.push_back( 3091 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getSuccessOrdering())); 3092 Vals.push_back( 3093 getEncodedSyncScopeID(cast<AtomicCmpXchgInst>(I).getSyncScopeID())); 3094 Vals.push_back( 3095 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getFailureOrdering())); 3096 Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak()); 3097 Vals.push_back(getEncodedAlign(cast<AtomicCmpXchgInst>(I).getAlign())); 3098 break; 3099 case Instruction::AtomicRMW: 3100 Code = bitc::FUNC_CODE_INST_ATOMICRMW; 3101 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 3102 pushValue(I.getOperand(1), InstID, Vals); // val. 3103 Vals.push_back( 3104 getEncodedRMWOperation(cast<AtomicRMWInst>(I).getOperation())); 3105 Vals.push_back(cast<AtomicRMWInst>(I).isVolatile()); 3106 Vals.push_back(getEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering())); 3107 Vals.push_back( 3108 getEncodedSyncScopeID(cast<AtomicRMWInst>(I).getSyncScopeID())); 3109 Vals.push_back(getEncodedAlign(cast<AtomicRMWInst>(I).getAlign())); 3110 break; 3111 case Instruction::Fence: 3112 Code = bitc::FUNC_CODE_INST_FENCE; 3113 Vals.push_back(getEncodedOrdering(cast<FenceInst>(I).getOrdering())); 3114 Vals.push_back(getEncodedSyncScopeID(cast<FenceInst>(I).getSyncScopeID())); 3115 break; 3116 case Instruction::Call: { 3117 const CallInst &CI = cast<CallInst>(I); 3118 FunctionType *FTy = CI.getFunctionType(); 3119 3120 if (CI.hasOperandBundles()) 3121 writeOperandBundles(CI, InstID); 3122 3123 Code = bitc::FUNC_CODE_INST_CALL; 3124 3125 Vals.push_back(VE.getAttributeListID(CI.getAttributes())); 3126 3127 unsigned Flags = getOptimizationFlags(&I); 3128 Vals.push_back(CI.getCallingConv() << bitc::CALL_CCONV | 3129 unsigned(CI.isTailCall()) << bitc::CALL_TAIL | 3130 unsigned(CI.isMustTailCall()) << bitc::CALL_MUSTTAIL | 3131 1 << bitc::CALL_EXPLICIT_TYPE | 3132 unsigned(CI.isNoTailCall()) << bitc::CALL_NOTAIL | 3133 unsigned(Flags != 0) << bitc::CALL_FMF); 3134 if (Flags != 0) 3135 Vals.push_back(Flags); 3136 3137 Vals.push_back(VE.getTypeID(FTy)); 3138 pushValueAndType(CI.getCalledOperand(), InstID, Vals); // Callee 3139 3140 // Emit value #'s for the fixed parameters. 3141 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { 3142 // Check for labels (can happen with asm labels). 3143 if (FTy->getParamType(i)->isLabelTy()) 3144 Vals.push_back(VE.getValueID(CI.getArgOperand(i))); 3145 else 3146 pushValue(CI.getArgOperand(i), InstID, Vals); // fixed param. 3147 } 3148 3149 // Emit type/value pairs for varargs params. 3150 if (FTy->isVarArg()) { 3151 for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands(); 3152 i != e; ++i) 3153 pushValueAndType(CI.getArgOperand(i), InstID, Vals); // varargs 3154 } 3155 break; 3156 } 3157 case Instruction::VAArg: 3158 Code = bitc::FUNC_CODE_INST_VAARG; 3159 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty 3160 pushValue(I.getOperand(0), InstID, Vals); // valist. 3161 Vals.push_back(VE.getTypeID(I.getType())); // restype. 3162 break; 3163 case Instruction::Freeze: 3164 Code = bitc::FUNC_CODE_INST_FREEZE; 3165 pushValueAndType(I.getOperand(0), InstID, Vals); 3166 break; 3167 } 3168 3169 Stream.EmitRecord(Code, Vals, AbbrevToUse); 3170 Vals.clear(); 3171 } 3172 3173 /// Write a GlobalValue VST to the module. The purpose of this data structure is 3174 /// to allow clients to efficiently find the function body. 3175 void ModuleBitcodeWriter::writeGlobalValueSymbolTable( 3176 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 3177 // Get the offset of the VST we are writing, and backpatch it into 3178 // the VST forward declaration record. 3179 uint64_t VSTOffset = Stream.GetCurrentBitNo(); 3180 // The BitcodeStartBit was the stream offset of the identification block. 3181 VSTOffset -= bitcodeStartBit(); 3182 assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned"); 3183 // Note that we add 1 here because the offset is relative to one word 3184 // before the start of the identification block, which was historically 3185 // always the start of the regular bitcode header. 3186 Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32 + 1); 3187 3188 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 3189 3190 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3191 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY)); 3192 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 3193 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset 3194 unsigned FnEntryAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3195 3196 for (const Function &F : M) { 3197 uint64_t Record[2]; 3198 3199 if (F.isDeclaration()) 3200 continue; 3201 3202 Record[0] = VE.getValueID(&F); 3203 3204 // Save the word offset of the function (from the start of the 3205 // actual bitcode written to the stream). 3206 uint64_t BitcodeIndex = FunctionToBitcodeIndex[&F] - bitcodeStartBit(); 3207 assert((BitcodeIndex & 31) == 0 && "function block not 32-bit aligned"); 3208 // Note that we add 1 here because the offset is relative to one word 3209 // before the start of the identification block, which was historically 3210 // always the start of the regular bitcode header. 3211 Record[1] = BitcodeIndex / 32 + 1; 3212 3213 Stream.EmitRecord(bitc::VST_CODE_FNENTRY, Record, FnEntryAbbrev); 3214 } 3215 3216 Stream.ExitBlock(); 3217 } 3218 3219 /// Emit names for arguments, instructions and basic blocks in a function. 3220 void ModuleBitcodeWriter::writeFunctionLevelValueSymbolTable( 3221 const ValueSymbolTable &VST) { 3222 if (VST.empty()) 3223 return; 3224 3225 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 3226 3227 // FIXME: Set up the abbrev, we know how many values there are! 3228 // FIXME: We know if the type names can use 7-bit ascii. 3229 SmallVector<uint64_t, 64> NameVals; 3230 3231 for (const ValueName &Name : VST) { 3232 // Figure out the encoding to use for the name. 3233 StringEncoding Bits = getStringEncoding(Name.getKey()); 3234 3235 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 3236 NameVals.push_back(VE.getValueID(Name.getValue())); 3237 3238 // VST_CODE_ENTRY: [valueid, namechar x N] 3239 // VST_CODE_BBENTRY: [bbid, namechar x N] 3240 unsigned Code; 3241 if (isa<BasicBlock>(Name.getValue())) { 3242 Code = bitc::VST_CODE_BBENTRY; 3243 if (Bits == SE_Char6) 3244 AbbrevToUse = VST_BBENTRY_6_ABBREV; 3245 } else { 3246 Code = bitc::VST_CODE_ENTRY; 3247 if (Bits == SE_Char6) 3248 AbbrevToUse = VST_ENTRY_6_ABBREV; 3249 else if (Bits == SE_Fixed7) 3250 AbbrevToUse = VST_ENTRY_7_ABBREV; 3251 } 3252 3253 for (const auto P : Name.getKey()) 3254 NameVals.push_back((unsigned char)P); 3255 3256 // Emit the finished record. 3257 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 3258 NameVals.clear(); 3259 } 3260 3261 Stream.ExitBlock(); 3262 } 3263 3264 void ModuleBitcodeWriter::writeUseList(UseListOrder &&Order) { 3265 assert(Order.Shuffle.size() >= 2 && "Shuffle too small"); 3266 unsigned Code; 3267 if (isa<BasicBlock>(Order.V)) 3268 Code = bitc::USELIST_CODE_BB; 3269 else 3270 Code = bitc::USELIST_CODE_DEFAULT; 3271 3272 SmallVector<uint64_t, 64> Record(Order.Shuffle.begin(), Order.Shuffle.end()); 3273 Record.push_back(VE.getValueID(Order.V)); 3274 Stream.EmitRecord(Code, Record); 3275 } 3276 3277 void ModuleBitcodeWriter::writeUseListBlock(const Function *F) { 3278 assert(VE.shouldPreserveUseListOrder() && 3279 "Expected to be preserving use-list order"); 3280 3281 auto hasMore = [&]() { 3282 return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F; 3283 }; 3284 if (!hasMore()) 3285 // Nothing to do. 3286 return; 3287 3288 Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3); 3289 while (hasMore()) { 3290 writeUseList(std::move(VE.UseListOrders.back())); 3291 VE.UseListOrders.pop_back(); 3292 } 3293 Stream.ExitBlock(); 3294 } 3295 3296 /// Emit a function body to the module stream. 3297 void ModuleBitcodeWriter::writeFunction( 3298 const Function &F, 3299 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 3300 // Save the bitcode index of the start of this function block for recording 3301 // in the VST. 3302 FunctionToBitcodeIndex[&F] = Stream.GetCurrentBitNo(); 3303 3304 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 3305 VE.incorporateFunction(F); 3306 3307 SmallVector<unsigned, 64> Vals; 3308 3309 // Emit the number of basic blocks, so the reader can create them ahead of 3310 // time. 3311 Vals.push_back(VE.getBasicBlocks().size()); 3312 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 3313 Vals.clear(); 3314 3315 // If there are function-local constants, emit them now. 3316 unsigned CstStart, CstEnd; 3317 VE.getFunctionConstantRange(CstStart, CstEnd); 3318 writeConstants(CstStart, CstEnd, false); 3319 3320 // If there is function-local metadata, emit it now. 3321 writeFunctionMetadata(F); 3322 3323 // Keep a running idea of what the instruction ID is. 3324 unsigned InstID = CstEnd; 3325 3326 bool NeedsMetadataAttachment = F.hasMetadata(); 3327 3328 DILocation *LastDL = nullptr; 3329 // Finally, emit all the instructions, in order. 3330 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 3331 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 3332 I != E; ++I) { 3333 writeInstruction(*I, InstID, Vals); 3334 3335 if (!I->getType()->isVoidTy()) 3336 ++InstID; 3337 3338 // If the instruction has metadata, write a metadata attachment later. 3339 NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc(); 3340 3341 // If the instruction has a debug location, emit it. 3342 DILocation *DL = I->getDebugLoc(); 3343 if (!DL) 3344 continue; 3345 3346 if (DL == LastDL) { 3347 // Just repeat the same debug loc as last time. 3348 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals); 3349 continue; 3350 } 3351 3352 Vals.push_back(DL->getLine()); 3353 Vals.push_back(DL->getColumn()); 3354 Vals.push_back(VE.getMetadataOrNullID(DL->getScope())); 3355 Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt())); 3356 Vals.push_back(DL->isImplicitCode()); 3357 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals); 3358 Vals.clear(); 3359 3360 LastDL = DL; 3361 } 3362 3363 // Emit names for all the instructions etc. 3364 if (auto *Symtab = F.getValueSymbolTable()) 3365 writeFunctionLevelValueSymbolTable(*Symtab); 3366 3367 if (NeedsMetadataAttachment) 3368 writeFunctionMetadataAttachment(F); 3369 if (VE.shouldPreserveUseListOrder()) 3370 writeUseListBlock(&F); 3371 VE.purgeFunction(); 3372 Stream.ExitBlock(); 3373 } 3374 3375 // Emit blockinfo, which defines the standard abbreviations etc. 3376 void ModuleBitcodeWriter::writeBlockInfo() { 3377 // We only want to emit block info records for blocks that have multiple 3378 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. 3379 // Other blocks can define their abbrevs inline. 3380 Stream.EnterBlockInfoBlock(); 3381 3382 { // 8-bit fixed-width VST_CODE_ENTRY/VST_CODE_BBENTRY strings. 3383 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3384 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 3385 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3386 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3387 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 3388 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3389 VST_ENTRY_8_ABBREV) 3390 llvm_unreachable("Unexpected abbrev ordering!"); 3391 } 3392 3393 { // 7-bit fixed width VST_CODE_ENTRY strings. 3394 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3395 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 3396 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3397 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3398 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 3399 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3400 VST_ENTRY_7_ABBREV) 3401 llvm_unreachable("Unexpected abbrev ordering!"); 3402 } 3403 { // 6-bit char6 VST_CODE_ENTRY strings. 3404 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3405 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 3406 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3407 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3408 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3409 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3410 VST_ENTRY_6_ABBREV) 3411 llvm_unreachable("Unexpected abbrev ordering!"); 3412 } 3413 { // 6-bit char6 VST_CODE_BBENTRY strings. 3414 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3415 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 3416 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3417 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3418 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3419 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3420 VST_BBENTRY_6_ABBREV) 3421 llvm_unreachable("Unexpected abbrev ordering!"); 3422 } 3423 3424 { // SETTYPE abbrev for CONSTANTS_BLOCK. 3425 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3426 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 3427 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3428 VE.computeBitsRequiredForTypeIndicies())); 3429 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3430 CONSTANTS_SETTYPE_ABBREV) 3431 llvm_unreachable("Unexpected abbrev ordering!"); 3432 } 3433 3434 { // INTEGER abbrev for CONSTANTS_BLOCK. 3435 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3436 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 3437 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3438 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3439 CONSTANTS_INTEGER_ABBREV) 3440 llvm_unreachable("Unexpected abbrev ordering!"); 3441 } 3442 3443 { // CE_CAST abbrev for CONSTANTS_BLOCK. 3444 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3445 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 3446 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 3447 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 3448 VE.computeBitsRequiredForTypeIndicies())); 3449 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 3450 3451 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3452 CONSTANTS_CE_CAST_Abbrev) 3453 llvm_unreachable("Unexpected abbrev ordering!"); 3454 } 3455 { // NULL abbrev for CONSTANTS_BLOCK. 3456 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3457 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 3458 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3459 CONSTANTS_NULL_Abbrev) 3460 llvm_unreachable("Unexpected abbrev ordering!"); 3461 } 3462 3463 // FIXME: This should only use space for first class types! 3464 3465 { // INST_LOAD abbrev for FUNCTION_BLOCK. 3466 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3467 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 3468 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 3469 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3470 VE.computeBitsRequiredForTypeIndicies())); 3471 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 3472 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 3473 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3474 FUNCTION_INST_LOAD_ABBREV) 3475 llvm_unreachable("Unexpected abbrev ordering!"); 3476 } 3477 { // INST_UNOP abbrev for FUNCTION_BLOCK. 3478 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3479 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP)); 3480 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3481 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3482 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3483 FUNCTION_INST_UNOP_ABBREV) 3484 llvm_unreachable("Unexpected abbrev ordering!"); 3485 } 3486 { // INST_UNOP_FLAGS abbrev for FUNCTION_BLOCK. 3487 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3488 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP)); 3489 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3490 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3491 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags 3492 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3493 FUNCTION_INST_UNOP_FLAGS_ABBREV) 3494 llvm_unreachable("Unexpected abbrev ordering!"); 3495 } 3496 { // INST_BINOP abbrev for FUNCTION_BLOCK. 3497 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3498 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3499 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3500 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3501 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3502 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3503 FUNCTION_INST_BINOP_ABBREV) 3504 llvm_unreachable("Unexpected abbrev ordering!"); 3505 } 3506 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK. 3507 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3508 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3509 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3510 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3511 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3512 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags 3513 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3514 FUNCTION_INST_BINOP_FLAGS_ABBREV) 3515 llvm_unreachable("Unexpected abbrev ordering!"); 3516 } 3517 { // INST_CAST abbrev for FUNCTION_BLOCK. 3518 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3519 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 3520 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 3521 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3522 VE.computeBitsRequiredForTypeIndicies())); 3523 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3524 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3525 FUNCTION_INST_CAST_ABBREV) 3526 llvm_unreachable("Unexpected abbrev ordering!"); 3527 } 3528 3529 { // INST_RET abbrev for FUNCTION_BLOCK. 3530 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3531 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3532 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3533 FUNCTION_INST_RET_VOID_ABBREV) 3534 llvm_unreachable("Unexpected abbrev ordering!"); 3535 } 3536 { // INST_RET abbrev for FUNCTION_BLOCK. 3537 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3538 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3539 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 3540 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3541 FUNCTION_INST_RET_VAL_ABBREV) 3542 llvm_unreachable("Unexpected abbrev ordering!"); 3543 } 3544 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 3545 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3546 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 3547 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3548 FUNCTION_INST_UNREACHABLE_ABBREV) 3549 llvm_unreachable("Unexpected abbrev ordering!"); 3550 } 3551 { 3552 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3553 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP)); 3554 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 3555 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3556 Log2_32_Ceil(VE.getTypes().size() + 1))); 3557 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3558 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 3559 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3560 FUNCTION_INST_GEP_ABBREV) 3561 llvm_unreachable("Unexpected abbrev ordering!"); 3562 } 3563 3564 Stream.ExitBlock(); 3565 } 3566 3567 /// Write the module path strings, currently only used when generating 3568 /// a combined index file. 3569 void IndexBitcodeWriter::writeModStrings() { 3570 Stream.EnterSubblock(bitc::MODULE_STRTAB_BLOCK_ID, 3); 3571 3572 // TODO: See which abbrev sizes we actually need to emit 3573 3574 // 8-bit fixed-width MST_ENTRY strings. 3575 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3576 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3577 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3578 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3579 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 3580 unsigned Abbrev8Bit = Stream.EmitAbbrev(std::move(Abbv)); 3581 3582 // 7-bit fixed width MST_ENTRY strings. 3583 Abbv = std::make_shared<BitCodeAbbrev>(); 3584 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3585 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3586 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3587 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 3588 unsigned Abbrev7Bit = Stream.EmitAbbrev(std::move(Abbv)); 3589 3590 // 6-bit char6 MST_ENTRY strings. 3591 Abbv = std::make_shared<BitCodeAbbrev>(); 3592 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3593 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3594 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3595 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3596 unsigned Abbrev6Bit = Stream.EmitAbbrev(std::move(Abbv)); 3597 3598 // Module Hash, 160 bits SHA1. Optionally, emitted after each MST_CODE_ENTRY. 3599 Abbv = std::make_shared<BitCodeAbbrev>(); 3600 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_HASH)); 3601 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3602 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3603 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3604 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3605 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3606 unsigned AbbrevHash = Stream.EmitAbbrev(std::move(Abbv)); 3607 3608 SmallVector<unsigned, 64> Vals; 3609 forEachModule( 3610 [&](const StringMapEntry<std::pair<uint64_t, ModuleHash>> &MPSE) { 3611 StringRef Key = MPSE.getKey(); 3612 const auto &Value = MPSE.getValue(); 3613 StringEncoding Bits = getStringEncoding(Key); 3614 unsigned AbbrevToUse = Abbrev8Bit; 3615 if (Bits == SE_Char6) 3616 AbbrevToUse = Abbrev6Bit; 3617 else if (Bits == SE_Fixed7) 3618 AbbrevToUse = Abbrev7Bit; 3619 3620 Vals.push_back(Value.first); 3621 Vals.append(Key.begin(), Key.end()); 3622 3623 // Emit the finished record. 3624 Stream.EmitRecord(bitc::MST_CODE_ENTRY, Vals, AbbrevToUse); 3625 3626 // Emit an optional hash for the module now 3627 const auto &Hash = Value.second; 3628 if (llvm::any_of(Hash, [](uint32_t H) { return H; })) { 3629 Vals.assign(Hash.begin(), Hash.end()); 3630 // Emit the hash record. 3631 Stream.EmitRecord(bitc::MST_CODE_HASH, Vals, AbbrevHash); 3632 } 3633 3634 Vals.clear(); 3635 }); 3636 Stream.ExitBlock(); 3637 } 3638 3639 /// Write the function type metadata related records that need to appear before 3640 /// a function summary entry (whether per-module or combined). 3641 template <typename Fn> 3642 static void writeFunctionTypeMetadataRecords(BitstreamWriter &Stream, 3643 FunctionSummary *FS, 3644 Fn GetValueID) { 3645 if (!FS->type_tests().empty()) 3646 Stream.EmitRecord(bitc::FS_TYPE_TESTS, FS->type_tests()); 3647 3648 SmallVector<uint64_t, 64> Record; 3649 3650 auto WriteVFuncIdVec = [&](uint64_t Ty, 3651 ArrayRef<FunctionSummary::VFuncId> VFs) { 3652 if (VFs.empty()) 3653 return; 3654 Record.clear(); 3655 for (auto &VF : VFs) { 3656 Record.push_back(VF.GUID); 3657 Record.push_back(VF.Offset); 3658 } 3659 Stream.EmitRecord(Ty, Record); 3660 }; 3661 3662 WriteVFuncIdVec(bitc::FS_TYPE_TEST_ASSUME_VCALLS, 3663 FS->type_test_assume_vcalls()); 3664 WriteVFuncIdVec(bitc::FS_TYPE_CHECKED_LOAD_VCALLS, 3665 FS->type_checked_load_vcalls()); 3666 3667 auto WriteConstVCallVec = [&](uint64_t Ty, 3668 ArrayRef<FunctionSummary::ConstVCall> VCs) { 3669 for (auto &VC : VCs) { 3670 Record.clear(); 3671 Record.push_back(VC.VFunc.GUID); 3672 Record.push_back(VC.VFunc.Offset); 3673 llvm::append_range(Record, VC.Args); 3674 Stream.EmitRecord(Ty, Record); 3675 } 3676 }; 3677 3678 WriteConstVCallVec(bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL, 3679 FS->type_test_assume_const_vcalls()); 3680 WriteConstVCallVec(bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL, 3681 FS->type_checked_load_const_vcalls()); 3682 3683 auto WriteRange = [&](ConstantRange Range) { 3684 Range = Range.sextOrTrunc(FunctionSummary::ParamAccess::RangeWidth); 3685 assert(Range.getLower().getNumWords() == 1); 3686 assert(Range.getUpper().getNumWords() == 1); 3687 emitSignedInt64(Record, *Range.getLower().getRawData()); 3688 emitSignedInt64(Record, *Range.getUpper().getRawData()); 3689 }; 3690 3691 if (!FS->paramAccesses().empty()) { 3692 Record.clear(); 3693 for (auto &Arg : FS->paramAccesses()) { 3694 size_t UndoSize = Record.size(); 3695 Record.push_back(Arg.ParamNo); 3696 WriteRange(Arg.Use); 3697 Record.push_back(Arg.Calls.size()); 3698 for (auto &Call : Arg.Calls) { 3699 Record.push_back(Call.ParamNo); 3700 Optional<unsigned> ValueID = GetValueID(Call.Callee); 3701 if (!ValueID) { 3702 // If ValueID is unknown we can't drop just this call, we must drop 3703 // entire parameter. 3704 Record.resize(UndoSize); 3705 break; 3706 } 3707 Record.push_back(*ValueID); 3708 WriteRange(Call.Offsets); 3709 } 3710 } 3711 if (!Record.empty()) 3712 Stream.EmitRecord(bitc::FS_PARAM_ACCESS, Record); 3713 } 3714 } 3715 3716 /// Collect type IDs from type tests used by function. 3717 static void 3718 getReferencedTypeIds(FunctionSummary *FS, 3719 std::set<GlobalValue::GUID> &ReferencedTypeIds) { 3720 if (!FS->type_tests().empty()) 3721 for (auto &TT : FS->type_tests()) 3722 ReferencedTypeIds.insert(TT); 3723 3724 auto GetReferencedTypesFromVFuncIdVec = 3725 [&](ArrayRef<FunctionSummary::VFuncId> VFs) { 3726 for (auto &VF : VFs) 3727 ReferencedTypeIds.insert(VF.GUID); 3728 }; 3729 3730 GetReferencedTypesFromVFuncIdVec(FS->type_test_assume_vcalls()); 3731 GetReferencedTypesFromVFuncIdVec(FS->type_checked_load_vcalls()); 3732 3733 auto GetReferencedTypesFromConstVCallVec = 3734 [&](ArrayRef<FunctionSummary::ConstVCall> VCs) { 3735 for (auto &VC : VCs) 3736 ReferencedTypeIds.insert(VC.VFunc.GUID); 3737 }; 3738 3739 GetReferencedTypesFromConstVCallVec(FS->type_test_assume_const_vcalls()); 3740 GetReferencedTypesFromConstVCallVec(FS->type_checked_load_const_vcalls()); 3741 } 3742 3743 static void writeWholeProgramDevirtResolutionByArg( 3744 SmallVector<uint64_t, 64> &NameVals, const std::vector<uint64_t> &args, 3745 const WholeProgramDevirtResolution::ByArg &ByArg) { 3746 NameVals.push_back(args.size()); 3747 llvm::append_range(NameVals, args); 3748 3749 NameVals.push_back(ByArg.TheKind); 3750 NameVals.push_back(ByArg.Info); 3751 NameVals.push_back(ByArg.Byte); 3752 NameVals.push_back(ByArg.Bit); 3753 } 3754 3755 static void writeWholeProgramDevirtResolution( 3756 SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder, 3757 uint64_t Id, const WholeProgramDevirtResolution &Wpd) { 3758 NameVals.push_back(Id); 3759 3760 NameVals.push_back(Wpd.TheKind); 3761 NameVals.push_back(StrtabBuilder.add(Wpd.SingleImplName)); 3762 NameVals.push_back(Wpd.SingleImplName.size()); 3763 3764 NameVals.push_back(Wpd.ResByArg.size()); 3765 for (auto &A : Wpd.ResByArg) 3766 writeWholeProgramDevirtResolutionByArg(NameVals, A.first, A.second); 3767 } 3768 3769 static void writeTypeIdSummaryRecord(SmallVector<uint64_t, 64> &NameVals, 3770 StringTableBuilder &StrtabBuilder, 3771 const std::string &Id, 3772 const TypeIdSummary &Summary) { 3773 NameVals.push_back(StrtabBuilder.add(Id)); 3774 NameVals.push_back(Id.size()); 3775 3776 NameVals.push_back(Summary.TTRes.TheKind); 3777 NameVals.push_back(Summary.TTRes.SizeM1BitWidth); 3778 NameVals.push_back(Summary.TTRes.AlignLog2); 3779 NameVals.push_back(Summary.TTRes.SizeM1); 3780 NameVals.push_back(Summary.TTRes.BitMask); 3781 NameVals.push_back(Summary.TTRes.InlineBits); 3782 3783 for (auto &W : Summary.WPDRes) 3784 writeWholeProgramDevirtResolution(NameVals, StrtabBuilder, W.first, 3785 W.second); 3786 } 3787 3788 static void writeTypeIdCompatibleVtableSummaryRecord( 3789 SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder, 3790 const std::string &Id, const TypeIdCompatibleVtableInfo &Summary, 3791 ValueEnumerator &VE) { 3792 NameVals.push_back(StrtabBuilder.add(Id)); 3793 NameVals.push_back(Id.size()); 3794 3795 for (auto &P : Summary) { 3796 NameVals.push_back(P.AddressPointOffset); 3797 NameVals.push_back(VE.getValueID(P.VTableVI.getValue())); 3798 } 3799 } 3800 3801 // Helper to emit a single function summary record. 3802 void ModuleBitcodeWriterBase::writePerModuleFunctionSummaryRecord( 3803 SmallVector<uint64_t, 64> &NameVals, GlobalValueSummary *Summary, 3804 unsigned ValueID, unsigned FSCallsAbbrev, unsigned FSCallsProfileAbbrev, 3805 const Function &F) { 3806 NameVals.push_back(ValueID); 3807 3808 FunctionSummary *FS = cast<FunctionSummary>(Summary); 3809 3810 writeFunctionTypeMetadataRecords( 3811 Stream, FS, [&](const ValueInfo &VI) -> Optional<unsigned> { 3812 return {VE.getValueID(VI.getValue())}; 3813 }); 3814 3815 auto SpecialRefCnts = FS->specialRefCounts(); 3816 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 3817 NameVals.push_back(FS->instCount()); 3818 NameVals.push_back(getEncodedFFlags(FS->fflags())); 3819 NameVals.push_back(FS->refs().size()); 3820 NameVals.push_back(SpecialRefCnts.first); // rorefcnt 3821 NameVals.push_back(SpecialRefCnts.second); // worefcnt 3822 3823 for (auto &RI : FS->refs()) 3824 NameVals.push_back(VE.getValueID(RI.getValue())); 3825 3826 bool HasProfileData = 3827 F.hasProfileData() || ForceSummaryEdgesCold != FunctionSummary::FSHT_None; 3828 for (auto &ECI : FS->calls()) { 3829 NameVals.push_back(getValueId(ECI.first)); 3830 if (HasProfileData) 3831 NameVals.push_back(static_cast<uint8_t>(ECI.second.Hotness)); 3832 else if (WriteRelBFToSummary) 3833 NameVals.push_back(ECI.second.RelBlockFreq); 3834 } 3835 3836 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); 3837 unsigned Code = 3838 (HasProfileData ? bitc::FS_PERMODULE_PROFILE 3839 : (WriteRelBFToSummary ? bitc::FS_PERMODULE_RELBF 3840 : bitc::FS_PERMODULE)); 3841 3842 // Emit the finished record. 3843 Stream.EmitRecord(Code, NameVals, FSAbbrev); 3844 NameVals.clear(); 3845 } 3846 3847 // Collect the global value references in the given variable's initializer, 3848 // and emit them in a summary record. 3849 void ModuleBitcodeWriterBase::writeModuleLevelReferences( 3850 const GlobalVariable &V, SmallVector<uint64_t, 64> &NameVals, 3851 unsigned FSModRefsAbbrev, unsigned FSModVTableRefsAbbrev) { 3852 auto VI = Index->getValueInfo(V.getGUID()); 3853 if (!VI || VI.getSummaryList().empty()) { 3854 // Only declarations should not have a summary (a declaration might however 3855 // have a summary if the def was in module level asm). 3856 assert(V.isDeclaration()); 3857 return; 3858 } 3859 auto *Summary = VI.getSummaryList()[0].get(); 3860 NameVals.push_back(VE.getValueID(&V)); 3861 GlobalVarSummary *VS = cast<GlobalVarSummary>(Summary); 3862 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 3863 NameVals.push_back(getEncodedGVarFlags(VS->varflags())); 3864 3865 auto VTableFuncs = VS->vTableFuncs(); 3866 if (!VTableFuncs.empty()) 3867 NameVals.push_back(VS->refs().size()); 3868 3869 unsigned SizeBeforeRefs = NameVals.size(); 3870 for (auto &RI : VS->refs()) 3871 NameVals.push_back(VE.getValueID(RI.getValue())); 3872 // Sort the refs for determinism output, the vector returned by FS->refs() has 3873 // been initialized from a DenseSet. 3874 llvm::sort(drop_begin(NameVals, SizeBeforeRefs)); 3875 3876 if (VTableFuncs.empty()) 3877 Stream.EmitRecord(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS, NameVals, 3878 FSModRefsAbbrev); 3879 else { 3880 // VTableFuncs pairs should already be sorted by offset. 3881 for (auto &P : VTableFuncs) { 3882 NameVals.push_back(VE.getValueID(P.FuncVI.getValue())); 3883 NameVals.push_back(P.VTableOffset); 3884 } 3885 3886 Stream.EmitRecord(bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS, NameVals, 3887 FSModVTableRefsAbbrev); 3888 } 3889 NameVals.clear(); 3890 } 3891 3892 /// Emit the per-module summary section alongside the rest of 3893 /// the module's bitcode. 3894 void ModuleBitcodeWriterBase::writePerModuleGlobalValueSummary() { 3895 // By default we compile with ThinLTO if the module has a summary, but the 3896 // client can request full LTO with a module flag. 3897 bool IsThinLTO = true; 3898 if (auto *MD = 3899 mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("ThinLTO"))) 3900 IsThinLTO = MD->getZExtValue(); 3901 Stream.EnterSubblock(IsThinLTO ? bitc::GLOBALVAL_SUMMARY_BLOCK_ID 3902 : bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID, 3903 4); 3904 3905 Stream.EmitRecord( 3906 bitc::FS_VERSION, 3907 ArrayRef<uint64_t>{ModuleSummaryIndex::BitcodeSummaryVersion}); 3908 3909 // Write the index flags. 3910 uint64_t Flags = 0; 3911 // Bits 1-3 are set only in the combined index, skip them. 3912 if (Index->enableSplitLTOUnit()) 3913 Flags |= 0x8; 3914 Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Flags}); 3915 3916 if (Index->begin() == Index->end()) { 3917 Stream.ExitBlock(); 3918 return; 3919 } 3920 3921 for (const auto &GVI : valueIds()) { 3922 Stream.EmitRecord(bitc::FS_VALUE_GUID, 3923 ArrayRef<uint64_t>{GVI.second, GVI.first}); 3924 } 3925 3926 // Abbrev for FS_PERMODULE_PROFILE. 3927 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3928 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_PROFILE)); 3929 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3930 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3931 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3932 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 3933 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3934 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 3935 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 3936 // numrefs x valueid, n x (valueid, hotness) 3937 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3938 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3939 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3940 3941 // Abbrev for FS_PERMODULE or FS_PERMODULE_RELBF. 3942 Abbv = std::make_shared<BitCodeAbbrev>(); 3943 if (WriteRelBFToSummary) 3944 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_RELBF)); 3945 else 3946 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE)); 3947 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3948 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3949 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3950 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 3951 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3952 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 3953 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 3954 // numrefs x valueid, n x (valueid [, rel_block_freq]) 3955 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3956 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3957 unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3958 3959 // Abbrev for FS_PERMODULE_GLOBALVAR_INIT_REFS. 3960 Abbv = std::make_shared<BitCodeAbbrev>(); 3961 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS)); 3962 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3963 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3964 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 3965 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3966 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3967 3968 // Abbrev for FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS. 3969 Abbv = std::make_shared<BitCodeAbbrev>(); 3970 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS)); 3971 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3972 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3973 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3974 // numrefs x valueid, n x (valueid , offset) 3975 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3976 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3977 unsigned FSModVTableRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3978 3979 // Abbrev for FS_ALIAS. 3980 Abbv = std::make_shared<BitCodeAbbrev>(); 3981 Abbv->Add(BitCodeAbbrevOp(bitc::FS_ALIAS)); 3982 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3983 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3984 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3985 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3986 3987 // Abbrev for FS_TYPE_ID_METADATA 3988 Abbv = std::make_shared<BitCodeAbbrev>(); 3989 Abbv->Add(BitCodeAbbrevOp(bitc::FS_TYPE_ID_METADATA)); 3990 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // typeid strtab index 3991 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // typeid length 3992 // n x (valueid , offset) 3993 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3994 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3995 unsigned TypeIdCompatibleVtableAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3996 3997 SmallVector<uint64_t, 64> NameVals; 3998 // Iterate over the list of functions instead of the Index to 3999 // ensure the ordering is stable. 4000 for (const Function &F : M) { 4001 // Summary emission does not support anonymous functions, they have to 4002 // renamed using the anonymous function renaming pass. 4003 if (!F.hasName()) 4004 report_fatal_error("Unexpected anonymous function when writing summary"); 4005 4006 ValueInfo VI = Index->getValueInfo(F.getGUID()); 4007 if (!VI || VI.getSummaryList().empty()) { 4008 // Only declarations should not have a summary (a declaration might 4009 // however have a summary if the def was in module level asm). 4010 assert(F.isDeclaration()); 4011 continue; 4012 } 4013 auto *Summary = VI.getSummaryList()[0].get(); 4014 writePerModuleFunctionSummaryRecord(NameVals, Summary, VE.getValueID(&F), 4015 FSCallsAbbrev, FSCallsProfileAbbrev, F); 4016 } 4017 4018 // Capture references from GlobalVariable initializers, which are outside 4019 // of a function scope. 4020 for (const GlobalVariable &G : M.globals()) 4021 writeModuleLevelReferences(G, NameVals, FSModRefsAbbrev, 4022 FSModVTableRefsAbbrev); 4023 4024 for (const GlobalAlias &A : M.aliases()) { 4025 auto *Aliasee = A.getBaseObject(); 4026 if (!Aliasee->hasName()) 4027 // Nameless function don't have an entry in the summary, skip it. 4028 continue; 4029 auto AliasId = VE.getValueID(&A); 4030 auto AliaseeId = VE.getValueID(Aliasee); 4031 NameVals.push_back(AliasId); 4032 auto *Summary = Index->getGlobalValueSummary(A); 4033 AliasSummary *AS = cast<AliasSummary>(Summary); 4034 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); 4035 NameVals.push_back(AliaseeId); 4036 Stream.EmitRecord(bitc::FS_ALIAS, NameVals, FSAliasAbbrev); 4037 NameVals.clear(); 4038 } 4039 4040 for (auto &S : Index->typeIdCompatibleVtableMap()) { 4041 writeTypeIdCompatibleVtableSummaryRecord(NameVals, StrtabBuilder, S.first, 4042 S.second, VE); 4043 Stream.EmitRecord(bitc::FS_TYPE_ID_METADATA, NameVals, 4044 TypeIdCompatibleVtableAbbrev); 4045 NameVals.clear(); 4046 } 4047 4048 Stream.EmitRecord(bitc::FS_BLOCK_COUNT, 4049 ArrayRef<uint64_t>{Index->getBlockCount()}); 4050 4051 Stream.ExitBlock(); 4052 } 4053 4054 /// Emit the combined summary section into the combined index file. 4055 void IndexBitcodeWriter::writeCombinedGlobalValueSummary() { 4056 Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 3); 4057 Stream.EmitRecord( 4058 bitc::FS_VERSION, 4059 ArrayRef<uint64_t>{ModuleSummaryIndex::BitcodeSummaryVersion}); 4060 4061 // Write the index flags. 4062 Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Index.getFlags()}); 4063 4064 for (const auto &GVI : valueIds()) { 4065 Stream.EmitRecord(bitc::FS_VALUE_GUID, 4066 ArrayRef<uint64_t>{GVI.second, GVI.first}); 4067 } 4068 4069 // Abbrev for FS_COMBINED. 4070 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4071 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED)); 4072 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4073 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 4074 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4075 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 4076 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 4077 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // entrycount 4078 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 4079 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 4080 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 4081 // numrefs x valueid, n x (valueid) 4082 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4083 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4084 unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4085 4086 // Abbrev for FS_COMBINED_PROFILE. 4087 Abbv = std::make_shared<BitCodeAbbrev>(); 4088 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_PROFILE)); 4089 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4090 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 4091 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4092 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 4093 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 4094 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // entrycount 4095 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 4096 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 4097 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 4098 // numrefs x valueid, n x (valueid, hotness) 4099 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4100 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4101 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4102 4103 // Abbrev for FS_COMBINED_GLOBALVAR_INIT_REFS. 4104 Abbv = std::make_shared<BitCodeAbbrev>(); 4105 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS)); 4106 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4107 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 4108 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4109 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 4110 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 4111 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4112 4113 // Abbrev for FS_COMBINED_ALIAS. 4114 Abbv = std::make_shared<BitCodeAbbrev>(); 4115 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_ALIAS)); 4116 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4117 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 4118 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 4119 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 4120 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4121 4122 // The aliases are emitted as a post-pass, and will point to the value 4123 // id of the aliasee. Save them in a vector for post-processing. 4124 SmallVector<AliasSummary *, 64> Aliases; 4125 4126 // Save the value id for each summary for alias emission. 4127 DenseMap<const GlobalValueSummary *, unsigned> SummaryToValueIdMap; 4128 4129 SmallVector<uint64_t, 64> NameVals; 4130 4131 // Set that will be populated during call to writeFunctionTypeMetadataRecords 4132 // with the type ids referenced by this index file. 4133 std::set<GlobalValue::GUID> ReferencedTypeIds; 4134 4135 // For local linkage, we also emit the original name separately 4136 // immediately after the record. 4137 auto MaybeEmitOriginalName = [&](GlobalValueSummary &S) { 4138 if (!GlobalValue::isLocalLinkage(S.linkage())) 4139 return; 4140 NameVals.push_back(S.getOriginalName()); 4141 Stream.EmitRecord(bitc::FS_COMBINED_ORIGINAL_NAME, NameVals); 4142 NameVals.clear(); 4143 }; 4144 4145 std::set<GlobalValue::GUID> DefOrUseGUIDs; 4146 forEachSummary([&](GVInfo I, bool IsAliasee) { 4147 GlobalValueSummary *S = I.second; 4148 assert(S); 4149 DefOrUseGUIDs.insert(I.first); 4150 for (const ValueInfo &VI : S->refs()) 4151 DefOrUseGUIDs.insert(VI.getGUID()); 4152 4153 auto ValueId = getValueId(I.first); 4154 assert(ValueId); 4155 SummaryToValueIdMap[S] = *ValueId; 4156 4157 // If this is invoked for an aliasee, we want to record the above 4158 // mapping, but then not emit a summary entry (if the aliasee is 4159 // to be imported, we will invoke this separately with IsAliasee=false). 4160 if (IsAliasee) 4161 return; 4162 4163 if (auto *AS = dyn_cast<AliasSummary>(S)) { 4164 // Will process aliases as a post-pass because the reader wants all 4165 // global to be loaded first. 4166 Aliases.push_back(AS); 4167 return; 4168 } 4169 4170 if (auto *VS = dyn_cast<GlobalVarSummary>(S)) { 4171 NameVals.push_back(*ValueId); 4172 NameVals.push_back(Index.getModuleId(VS->modulePath())); 4173 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 4174 NameVals.push_back(getEncodedGVarFlags(VS->varflags())); 4175 for (auto &RI : VS->refs()) { 4176 auto RefValueId = getValueId(RI.getGUID()); 4177 if (!RefValueId) 4178 continue; 4179 NameVals.push_back(*RefValueId); 4180 } 4181 4182 // Emit the finished record. 4183 Stream.EmitRecord(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS, NameVals, 4184 FSModRefsAbbrev); 4185 NameVals.clear(); 4186 MaybeEmitOriginalName(*S); 4187 return; 4188 } 4189 4190 auto GetValueId = [&](const ValueInfo &VI) -> Optional<unsigned> { 4191 GlobalValue::GUID GUID = VI.getGUID(); 4192 Optional<unsigned> CallValueId = getValueId(GUID); 4193 if (CallValueId) 4194 return CallValueId; 4195 // For SamplePGO, the indirect call targets for local functions will 4196 // have its original name annotated in profile. We try to find the 4197 // corresponding PGOFuncName as the GUID. 4198 GUID = Index.getGUIDFromOriginalID(GUID); 4199 if (!GUID) 4200 return None; 4201 CallValueId = getValueId(GUID); 4202 if (!CallValueId) 4203 return None; 4204 // The mapping from OriginalId to GUID may return a GUID 4205 // that corresponds to a static variable. Filter it out here. 4206 // This can happen when 4207 // 1) There is a call to a library function which does not have 4208 // a CallValidId; 4209 // 2) There is a static variable with the OriginalGUID identical 4210 // to the GUID of the library function in 1); 4211 // When this happens, the logic for SamplePGO kicks in and 4212 // the static variable in 2) will be found, which needs to be 4213 // filtered out. 4214 auto *GVSum = Index.getGlobalValueSummary(GUID, false); 4215 if (GVSum && GVSum->getSummaryKind() == GlobalValueSummary::GlobalVarKind) 4216 return None; 4217 return CallValueId; 4218 }; 4219 4220 auto *FS = cast<FunctionSummary>(S); 4221 writeFunctionTypeMetadataRecords(Stream, FS, GetValueId); 4222 getReferencedTypeIds(FS, ReferencedTypeIds); 4223 4224 NameVals.push_back(*ValueId); 4225 NameVals.push_back(Index.getModuleId(FS->modulePath())); 4226 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 4227 NameVals.push_back(FS->instCount()); 4228 NameVals.push_back(getEncodedFFlags(FS->fflags())); 4229 NameVals.push_back(FS->entryCount()); 4230 4231 // Fill in below 4232 NameVals.push_back(0); // numrefs 4233 NameVals.push_back(0); // rorefcnt 4234 NameVals.push_back(0); // worefcnt 4235 4236 unsigned Count = 0, RORefCnt = 0, WORefCnt = 0; 4237 for (auto &RI : FS->refs()) { 4238 auto RefValueId = getValueId(RI.getGUID()); 4239 if (!RefValueId) 4240 continue; 4241 NameVals.push_back(*RefValueId); 4242 if (RI.isReadOnly()) 4243 RORefCnt++; 4244 else if (RI.isWriteOnly()) 4245 WORefCnt++; 4246 Count++; 4247 } 4248 NameVals[6] = Count; 4249 NameVals[7] = RORefCnt; 4250 NameVals[8] = WORefCnt; 4251 4252 bool HasProfileData = false; 4253 for (auto &EI : FS->calls()) { 4254 HasProfileData |= 4255 EI.second.getHotness() != CalleeInfo::HotnessType::Unknown; 4256 if (HasProfileData) 4257 break; 4258 } 4259 4260 for (auto &EI : FS->calls()) { 4261 // If this GUID doesn't have a value id, it doesn't have a function 4262 // summary and we don't need to record any calls to it. 4263 Optional<unsigned> CallValueId = GetValueId(EI.first); 4264 if (!CallValueId) 4265 continue; 4266 NameVals.push_back(*CallValueId); 4267 if (HasProfileData) 4268 NameVals.push_back(static_cast<uint8_t>(EI.second.Hotness)); 4269 } 4270 4271 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); 4272 unsigned Code = 4273 (HasProfileData ? bitc::FS_COMBINED_PROFILE : bitc::FS_COMBINED); 4274 4275 // Emit the finished record. 4276 Stream.EmitRecord(Code, NameVals, FSAbbrev); 4277 NameVals.clear(); 4278 MaybeEmitOriginalName(*S); 4279 }); 4280 4281 for (auto *AS : Aliases) { 4282 auto AliasValueId = SummaryToValueIdMap[AS]; 4283 assert(AliasValueId); 4284 NameVals.push_back(AliasValueId); 4285 NameVals.push_back(Index.getModuleId(AS->modulePath())); 4286 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); 4287 auto AliaseeValueId = SummaryToValueIdMap[&AS->getAliasee()]; 4288 assert(AliaseeValueId); 4289 NameVals.push_back(AliaseeValueId); 4290 4291 // Emit the finished record. 4292 Stream.EmitRecord(bitc::FS_COMBINED_ALIAS, NameVals, FSAliasAbbrev); 4293 NameVals.clear(); 4294 MaybeEmitOriginalName(*AS); 4295 4296 if (auto *FS = dyn_cast<FunctionSummary>(&AS->getAliasee())) 4297 getReferencedTypeIds(FS, ReferencedTypeIds); 4298 } 4299 4300 if (!Index.cfiFunctionDefs().empty()) { 4301 for (auto &S : Index.cfiFunctionDefs()) { 4302 if (DefOrUseGUIDs.count( 4303 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(S)))) { 4304 NameVals.push_back(StrtabBuilder.add(S)); 4305 NameVals.push_back(S.size()); 4306 } 4307 } 4308 if (!NameVals.empty()) { 4309 Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DEFS, NameVals); 4310 NameVals.clear(); 4311 } 4312 } 4313 4314 if (!Index.cfiFunctionDecls().empty()) { 4315 for (auto &S : Index.cfiFunctionDecls()) { 4316 if (DefOrUseGUIDs.count( 4317 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(S)))) { 4318 NameVals.push_back(StrtabBuilder.add(S)); 4319 NameVals.push_back(S.size()); 4320 } 4321 } 4322 if (!NameVals.empty()) { 4323 Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DECLS, NameVals); 4324 NameVals.clear(); 4325 } 4326 } 4327 4328 // Walk the GUIDs that were referenced, and write the 4329 // corresponding type id records. 4330 for (auto &T : ReferencedTypeIds) { 4331 auto TidIter = Index.typeIds().equal_range(T); 4332 for (auto It = TidIter.first; It != TidIter.second; ++It) { 4333 writeTypeIdSummaryRecord(NameVals, StrtabBuilder, It->second.first, 4334 It->second.second); 4335 Stream.EmitRecord(bitc::FS_TYPE_ID, NameVals); 4336 NameVals.clear(); 4337 } 4338 } 4339 4340 Stream.EmitRecord(bitc::FS_BLOCK_COUNT, 4341 ArrayRef<uint64_t>{Index.getBlockCount()}); 4342 4343 Stream.ExitBlock(); 4344 } 4345 4346 /// Create the "IDENTIFICATION_BLOCK_ID" containing a single string with the 4347 /// current llvm version, and a record for the epoch number. 4348 static void writeIdentificationBlock(BitstreamWriter &Stream) { 4349 Stream.EnterSubblock(bitc::IDENTIFICATION_BLOCK_ID, 5); 4350 4351 // Write the "user readable" string identifying the bitcode producer 4352 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4353 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_STRING)); 4354 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4355 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 4356 auto StringAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4357 writeStringRecord(Stream, bitc::IDENTIFICATION_CODE_STRING, 4358 "LLVM" LLVM_VERSION_STRING, StringAbbrev); 4359 4360 // Write the epoch version 4361 Abbv = std::make_shared<BitCodeAbbrev>(); 4362 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_EPOCH)); 4363 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 4364 auto EpochAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4365 constexpr std::array<unsigned, 1> Vals = {{bitc::BITCODE_CURRENT_EPOCH}}; 4366 Stream.EmitRecord(bitc::IDENTIFICATION_CODE_EPOCH, Vals, EpochAbbrev); 4367 Stream.ExitBlock(); 4368 } 4369 4370 void ModuleBitcodeWriter::writeModuleHash(size_t BlockStartPos) { 4371 // Emit the module's hash. 4372 // MODULE_CODE_HASH: [5*i32] 4373 if (GenerateHash) { 4374 uint32_t Vals[5]; 4375 Hasher.update(ArrayRef<uint8_t>((const uint8_t *)&(Buffer)[BlockStartPos], 4376 Buffer.size() - BlockStartPos)); 4377 StringRef Hash = Hasher.result(); 4378 for (int Pos = 0; Pos < 20; Pos += 4) { 4379 Vals[Pos / 4] = support::endian::read32be(Hash.data() + Pos); 4380 } 4381 4382 // Emit the finished record. 4383 Stream.EmitRecord(bitc::MODULE_CODE_HASH, Vals); 4384 4385 if (ModHash) 4386 // Save the written hash value. 4387 llvm::copy(Vals, std::begin(*ModHash)); 4388 } 4389 } 4390 4391 void ModuleBitcodeWriter::write() { 4392 writeIdentificationBlock(Stream); 4393 4394 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 4395 size_t BlockStartPos = Buffer.size(); 4396 4397 writeModuleVersion(); 4398 4399 // Emit blockinfo, which defines the standard abbreviations etc. 4400 writeBlockInfo(); 4401 4402 // Emit information describing all of the types in the module. 4403 writeTypeTable(); 4404 4405 // Emit information about attribute groups. 4406 writeAttributeGroupTable(); 4407 4408 // Emit information about parameter attributes. 4409 writeAttributeTable(); 4410 4411 writeComdats(); 4412 4413 // Emit top-level description of module, including target triple, inline asm, 4414 // descriptors for global variables, and function prototype info. 4415 writeModuleInfo(); 4416 4417 // Emit constants. 4418 writeModuleConstants(); 4419 4420 // Emit metadata kind names. 4421 writeModuleMetadataKinds(); 4422 4423 // Emit metadata. 4424 writeModuleMetadata(); 4425 4426 // Emit module-level use-lists. 4427 if (VE.shouldPreserveUseListOrder()) 4428 writeUseListBlock(nullptr); 4429 4430 writeOperandBundleTags(); 4431 writeSyncScopeNames(); 4432 4433 // Emit function bodies. 4434 DenseMap<const Function *, uint64_t> FunctionToBitcodeIndex; 4435 for (Module::const_iterator F = M.begin(), E = M.end(); F != E; ++F) 4436 if (!F->isDeclaration()) 4437 writeFunction(*F, FunctionToBitcodeIndex); 4438 4439 // Need to write after the above call to WriteFunction which populates 4440 // the summary information in the index. 4441 if (Index) 4442 writePerModuleGlobalValueSummary(); 4443 4444 writeGlobalValueSymbolTable(FunctionToBitcodeIndex); 4445 4446 writeModuleHash(BlockStartPos); 4447 4448 Stream.ExitBlock(); 4449 } 4450 4451 static void writeInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer, 4452 uint32_t &Position) { 4453 support::endian::write32le(&Buffer[Position], Value); 4454 Position += 4; 4455 } 4456 4457 /// If generating a bc file on darwin, we have to emit a 4458 /// header and trailer to make it compatible with the system archiver. To do 4459 /// this we emit the following header, and then emit a trailer that pads the 4460 /// file out to be a multiple of 16 bytes. 4461 /// 4462 /// struct bc_header { 4463 /// uint32_t Magic; // 0x0B17C0DE 4464 /// uint32_t Version; // Version, currently always 0. 4465 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file. 4466 /// uint32_t BitcodeSize; // Size of traditional bitcode file. 4467 /// uint32_t CPUType; // CPU specifier. 4468 /// ... potentially more later ... 4469 /// }; 4470 static void emitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer, 4471 const Triple &TT) { 4472 unsigned CPUType = ~0U; 4473 4474 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*, 4475 // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic 4476 // number from /usr/include/mach/machine.h. It is ok to reproduce the 4477 // specific constants here because they are implicitly part of the Darwin ABI. 4478 enum { 4479 DARWIN_CPU_ARCH_ABI64 = 0x01000000, 4480 DARWIN_CPU_TYPE_X86 = 7, 4481 DARWIN_CPU_TYPE_ARM = 12, 4482 DARWIN_CPU_TYPE_POWERPC = 18 4483 }; 4484 4485 Triple::ArchType Arch = TT.getArch(); 4486 if (Arch == Triple::x86_64) 4487 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64; 4488 else if (Arch == Triple::x86) 4489 CPUType = DARWIN_CPU_TYPE_X86; 4490 else if (Arch == Triple::ppc) 4491 CPUType = DARWIN_CPU_TYPE_POWERPC; 4492 else if (Arch == Triple::ppc64) 4493 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64; 4494 else if (Arch == Triple::arm || Arch == Triple::thumb) 4495 CPUType = DARWIN_CPU_TYPE_ARM; 4496 4497 // Traditional Bitcode starts after header. 4498 assert(Buffer.size() >= BWH_HeaderSize && 4499 "Expected header size to be reserved"); 4500 unsigned BCOffset = BWH_HeaderSize; 4501 unsigned BCSize = Buffer.size() - BWH_HeaderSize; 4502 4503 // Write the magic and version. 4504 unsigned Position = 0; 4505 writeInt32ToBuffer(0x0B17C0DE, Buffer, Position); 4506 writeInt32ToBuffer(0, Buffer, Position); // Version. 4507 writeInt32ToBuffer(BCOffset, Buffer, Position); 4508 writeInt32ToBuffer(BCSize, Buffer, Position); 4509 writeInt32ToBuffer(CPUType, Buffer, Position); 4510 4511 // If the file is not a multiple of 16 bytes, insert dummy padding. 4512 while (Buffer.size() & 15) 4513 Buffer.push_back(0); 4514 } 4515 4516 /// Helper to write the header common to all bitcode files. 4517 static void writeBitcodeHeader(BitstreamWriter &Stream) { 4518 // Emit the file header. 4519 Stream.Emit((unsigned)'B', 8); 4520 Stream.Emit((unsigned)'C', 8); 4521 Stream.Emit(0x0, 4); 4522 Stream.Emit(0xC, 4); 4523 Stream.Emit(0xE, 4); 4524 Stream.Emit(0xD, 4); 4525 } 4526 4527 BitcodeWriter::BitcodeWriter(SmallVectorImpl<char> &Buffer, raw_fd_stream *FS) 4528 : Buffer(Buffer), Stream(new BitstreamWriter(Buffer, FS, FlushThreshold)) { 4529 writeBitcodeHeader(*Stream); 4530 } 4531 4532 BitcodeWriter::~BitcodeWriter() { assert(WroteStrtab); } 4533 4534 void BitcodeWriter::writeBlob(unsigned Block, unsigned Record, StringRef Blob) { 4535 Stream->EnterSubblock(Block, 3); 4536 4537 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4538 Abbv->Add(BitCodeAbbrevOp(Record)); 4539 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 4540 auto AbbrevNo = Stream->EmitAbbrev(std::move(Abbv)); 4541 4542 Stream->EmitRecordWithBlob(AbbrevNo, ArrayRef<uint64_t>{Record}, Blob); 4543 4544 Stream->ExitBlock(); 4545 } 4546 4547 void BitcodeWriter::writeSymtab() { 4548 assert(!WroteStrtab && !WroteSymtab); 4549 4550 // If any module has module-level inline asm, we will require a registered asm 4551 // parser for the target so that we can create an accurate symbol table for 4552 // the module. 4553 for (Module *M : Mods) { 4554 if (M->getModuleInlineAsm().empty()) 4555 continue; 4556 4557 std::string Err; 4558 const Triple TT(M->getTargetTriple()); 4559 const Target *T = TargetRegistry::lookupTarget(TT.str(), Err); 4560 if (!T || !T->hasMCAsmParser()) 4561 return; 4562 } 4563 4564 WroteSymtab = true; 4565 SmallVector<char, 0> Symtab; 4566 // The irsymtab::build function may be unable to create a symbol table if the 4567 // module is malformed (e.g. it contains an invalid alias). Writing a symbol 4568 // table is not required for correctness, but we still want to be able to 4569 // write malformed modules to bitcode files, so swallow the error. 4570 if (Error E = irsymtab::build(Mods, Symtab, StrtabBuilder, Alloc)) { 4571 consumeError(std::move(E)); 4572 return; 4573 } 4574 4575 writeBlob(bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB, 4576 {Symtab.data(), Symtab.size()}); 4577 } 4578 4579 void BitcodeWriter::writeStrtab() { 4580 assert(!WroteStrtab); 4581 4582 std::vector<char> Strtab; 4583 StrtabBuilder.finalizeInOrder(); 4584 Strtab.resize(StrtabBuilder.getSize()); 4585 StrtabBuilder.write((uint8_t *)Strtab.data()); 4586 4587 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, 4588 {Strtab.data(), Strtab.size()}); 4589 4590 WroteStrtab = true; 4591 } 4592 4593 void BitcodeWriter::copyStrtab(StringRef Strtab) { 4594 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, Strtab); 4595 WroteStrtab = true; 4596 } 4597 4598 void BitcodeWriter::writeModule(const Module &M, 4599 bool ShouldPreserveUseListOrder, 4600 const ModuleSummaryIndex *Index, 4601 bool GenerateHash, ModuleHash *ModHash) { 4602 assert(!WroteStrtab); 4603 4604 // The Mods vector is used by irsymtab::build, which requires non-const 4605 // Modules in case it needs to materialize metadata. But the bitcode writer 4606 // requires that the module is materialized, so we can cast to non-const here, 4607 // after checking that it is in fact materialized. 4608 assert(M.isMaterialized()); 4609 Mods.push_back(const_cast<Module *>(&M)); 4610 4611 ModuleBitcodeWriter ModuleWriter(M, Buffer, StrtabBuilder, *Stream, 4612 ShouldPreserveUseListOrder, Index, 4613 GenerateHash, ModHash); 4614 ModuleWriter.write(); 4615 } 4616 4617 void BitcodeWriter::writeIndex( 4618 const ModuleSummaryIndex *Index, 4619 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) { 4620 IndexBitcodeWriter IndexWriter(*Stream, StrtabBuilder, *Index, 4621 ModuleToSummariesForIndex); 4622 IndexWriter.write(); 4623 } 4624 4625 /// Write the specified module to the specified output stream. 4626 void llvm::WriteBitcodeToFile(const Module &M, raw_ostream &Out, 4627 bool ShouldPreserveUseListOrder, 4628 const ModuleSummaryIndex *Index, 4629 bool GenerateHash, ModuleHash *ModHash) { 4630 SmallVector<char, 0> Buffer; 4631 Buffer.reserve(256*1024); 4632 4633 // If this is darwin or another generic macho target, reserve space for the 4634 // header. 4635 Triple TT(M.getTargetTriple()); 4636 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 4637 Buffer.insert(Buffer.begin(), BWH_HeaderSize, 0); 4638 4639 BitcodeWriter Writer(Buffer, dyn_cast<raw_fd_stream>(&Out)); 4640 Writer.writeModule(M, ShouldPreserveUseListOrder, Index, GenerateHash, 4641 ModHash); 4642 Writer.writeSymtab(); 4643 Writer.writeStrtab(); 4644 4645 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 4646 emitDarwinBCHeaderAndTrailer(Buffer, TT); 4647 4648 // Write the generated bitstream to "Out". 4649 if (!Buffer.empty()) 4650 Out.write((char *)&Buffer.front(), Buffer.size()); 4651 } 4652 4653 void IndexBitcodeWriter::write() { 4654 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 4655 4656 writeModuleVersion(); 4657 4658 // Write the module paths in the combined index. 4659 writeModStrings(); 4660 4661 // Write the summary combined index records. 4662 writeCombinedGlobalValueSummary(); 4663 4664 Stream.ExitBlock(); 4665 } 4666 4667 // Write the specified module summary index to the given raw output stream, 4668 // where it will be written in a new bitcode block. This is used when 4669 // writing the combined index file for ThinLTO. When writing a subset of the 4670 // index for a distributed backend, provide a \p ModuleToSummariesForIndex map. 4671 void llvm::WriteIndexToFile( 4672 const ModuleSummaryIndex &Index, raw_ostream &Out, 4673 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) { 4674 SmallVector<char, 0> Buffer; 4675 Buffer.reserve(256 * 1024); 4676 4677 BitcodeWriter Writer(Buffer); 4678 Writer.writeIndex(&Index, ModuleToSummariesForIndex); 4679 Writer.writeStrtab(); 4680 4681 Out.write((char *)&Buffer.front(), Buffer.size()); 4682 } 4683 4684 namespace { 4685 4686 /// Class to manage the bitcode writing for a thin link bitcode file. 4687 class ThinLinkBitcodeWriter : public ModuleBitcodeWriterBase { 4688 /// ModHash is for use in ThinLTO incremental build, generated while writing 4689 /// the module bitcode file. 4690 const ModuleHash *ModHash; 4691 4692 public: 4693 ThinLinkBitcodeWriter(const Module &M, StringTableBuilder &StrtabBuilder, 4694 BitstreamWriter &Stream, 4695 const ModuleSummaryIndex &Index, 4696 const ModuleHash &ModHash) 4697 : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream, 4698 /*ShouldPreserveUseListOrder=*/false, &Index), 4699 ModHash(&ModHash) {} 4700 4701 void write(); 4702 4703 private: 4704 void writeSimplifiedModuleInfo(); 4705 }; 4706 4707 } // end anonymous namespace 4708 4709 // This function writes a simpilified module info for thin link bitcode file. 4710 // It only contains the source file name along with the name(the offset and 4711 // size in strtab) and linkage for global values. For the global value info 4712 // entry, in order to keep linkage at offset 5, there are three zeros used 4713 // as padding. 4714 void ThinLinkBitcodeWriter::writeSimplifiedModuleInfo() { 4715 SmallVector<unsigned, 64> Vals; 4716 // Emit the module's source file name. 4717 { 4718 StringEncoding Bits = getStringEncoding(M.getSourceFileName()); 4719 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); 4720 if (Bits == SE_Char6) 4721 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); 4722 else if (Bits == SE_Fixed7) 4723 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); 4724 4725 // MODULE_CODE_SOURCE_FILENAME: [namechar x N] 4726 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4727 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); 4728 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4729 Abbv->Add(AbbrevOpToUse); 4730 unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4731 4732 for (const auto P : M.getSourceFileName()) 4733 Vals.push_back((unsigned char)P); 4734 4735 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); 4736 Vals.clear(); 4737 } 4738 4739 // Emit the global variable information. 4740 for (const GlobalVariable &GV : M.globals()) { 4741 // GLOBALVAR: [strtab offset, strtab size, 0, 0, 0, linkage] 4742 Vals.push_back(StrtabBuilder.add(GV.getName())); 4743 Vals.push_back(GV.getName().size()); 4744 Vals.push_back(0); 4745 Vals.push_back(0); 4746 Vals.push_back(0); 4747 Vals.push_back(getEncodedLinkage(GV)); 4748 4749 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals); 4750 Vals.clear(); 4751 } 4752 4753 // Emit the function proto information. 4754 for (const Function &F : M) { 4755 // FUNCTION: [strtab offset, strtab size, 0, 0, 0, linkage] 4756 Vals.push_back(StrtabBuilder.add(F.getName())); 4757 Vals.push_back(F.getName().size()); 4758 Vals.push_back(0); 4759 Vals.push_back(0); 4760 Vals.push_back(0); 4761 Vals.push_back(getEncodedLinkage(F)); 4762 4763 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals); 4764 Vals.clear(); 4765 } 4766 4767 // Emit the alias information. 4768 for (const GlobalAlias &A : M.aliases()) { 4769 // ALIAS: [strtab offset, strtab size, 0, 0, 0, linkage] 4770 Vals.push_back(StrtabBuilder.add(A.getName())); 4771 Vals.push_back(A.getName().size()); 4772 Vals.push_back(0); 4773 Vals.push_back(0); 4774 Vals.push_back(0); 4775 Vals.push_back(getEncodedLinkage(A)); 4776 4777 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals); 4778 Vals.clear(); 4779 } 4780 4781 // Emit the ifunc information. 4782 for (const GlobalIFunc &I : M.ifuncs()) { 4783 // IFUNC: [strtab offset, strtab size, 0, 0, 0, linkage] 4784 Vals.push_back(StrtabBuilder.add(I.getName())); 4785 Vals.push_back(I.getName().size()); 4786 Vals.push_back(0); 4787 Vals.push_back(0); 4788 Vals.push_back(0); 4789 Vals.push_back(getEncodedLinkage(I)); 4790 4791 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals); 4792 Vals.clear(); 4793 } 4794 } 4795 4796 void ThinLinkBitcodeWriter::write() { 4797 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 4798 4799 writeModuleVersion(); 4800 4801 writeSimplifiedModuleInfo(); 4802 4803 writePerModuleGlobalValueSummary(); 4804 4805 // Write module hash. 4806 Stream.EmitRecord(bitc::MODULE_CODE_HASH, ArrayRef<uint32_t>(*ModHash)); 4807 4808 Stream.ExitBlock(); 4809 } 4810 4811 void BitcodeWriter::writeThinLinkBitcode(const Module &M, 4812 const ModuleSummaryIndex &Index, 4813 const ModuleHash &ModHash) { 4814 assert(!WroteStrtab); 4815 4816 // The Mods vector is used by irsymtab::build, which requires non-const 4817 // Modules in case it needs to materialize metadata. But the bitcode writer 4818 // requires that the module is materialized, so we can cast to non-const here, 4819 // after checking that it is in fact materialized. 4820 assert(M.isMaterialized()); 4821 Mods.push_back(const_cast<Module *>(&M)); 4822 4823 ThinLinkBitcodeWriter ThinLinkWriter(M, StrtabBuilder, *Stream, Index, 4824 ModHash); 4825 ThinLinkWriter.write(); 4826 } 4827 4828 // Write the specified thin link bitcode file to the given raw output stream, 4829 // where it will be written in a new bitcode block. This is used when 4830 // writing the per-module index file for ThinLTO. 4831 void llvm::WriteThinLinkBitcodeToFile(const Module &M, raw_ostream &Out, 4832 const ModuleSummaryIndex &Index, 4833 const ModuleHash &ModHash) { 4834 SmallVector<char, 0> Buffer; 4835 Buffer.reserve(256 * 1024); 4836 4837 BitcodeWriter Writer(Buffer); 4838 Writer.writeThinLinkBitcode(M, Index, ModHash); 4839 Writer.writeSymtab(); 4840 Writer.writeStrtab(); 4841 4842 Out.write((char *)&Buffer.front(), Buffer.size()); 4843 } 4844 4845 static const char *getSectionNameForBitcode(const Triple &T) { 4846 switch (T.getObjectFormat()) { 4847 case Triple::MachO: 4848 return "__LLVM,__bitcode"; 4849 case Triple::COFF: 4850 case Triple::ELF: 4851 case Triple::Wasm: 4852 case Triple::UnknownObjectFormat: 4853 return ".llvmbc"; 4854 case Triple::GOFF: 4855 llvm_unreachable("GOFF is not yet implemented"); 4856 break; 4857 case Triple::XCOFF: 4858 llvm_unreachable("XCOFF is not yet implemented"); 4859 break; 4860 } 4861 llvm_unreachable("Unimplemented ObjectFormatType"); 4862 } 4863 4864 static const char *getSectionNameForCommandline(const Triple &T) { 4865 switch (T.getObjectFormat()) { 4866 case Triple::MachO: 4867 return "__LLVM,__cmdline"; 4868 case Triple::COFF: 4869 case Triple::ELF: 4870 case Triple::Wasm: 4871 case Triple::UnknownObjectFormat: 4872 return ".llvmcmd"; 4873 case Triple::GOFF: 4874 llvm_unreachable("GOFF is not yet implemented"); 4875 break; 4876 case Triple::XCOFF: 4877 llvm_unreachable("XCOFF is not yet implemented"); 4878 break; 4879 } 4880 llvm_unreachable("Unimplemented ObjectFormatType"); 4881 } 4882 4883 void llvm::EmbedBitcodeInModule(llvm::Module &M, llvm::MemoryBufferRef Buf, 4884 bool EmbedBitcode, bool EmbedCmdline, 4885 const std::vector<uint8_t> &CmdArgs) { 4886 // Save llvm.compiler.used and remove it. 4887 SmallVector<Constant *, 2> UsedArray; 4888 SmallVector<GlobalValue *, 4> UsedGlobals; 4889 Type *UsedElementType = Type::getInt8Ty(M.getContext())->getPointerTo(0); 4890 GlobalVariable *Used = collectUsedGlobalVariables(M, UsedGlobals, true); 4891 for (auto *GV : UsedGlobals) { 4892 if (GV->getName() != "llvm.embedded.module" && 4893 GV->getName() != "llvm.cmdline") 4894 UsedArray.push_back( 4895 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 4896 } 4897 if (Used) 4898 Used->eraseFromParent(); 4899 4900 // Embed the bitcode for the llvm module. 4901 std::string Data; 4902 ArrayRef<uint8_t> ModuleData; 4903 Triple T(M.getTargetTriple()); 4904 4905 if (EmbedBitcode) { 4906 if (Buf.getBufferSize() == 0 || 4907 !isBitcode((const unsigned char *)Buf.getBufferStart(), 4908 (const unsigned char *)Buf.getBufferEnd())) { 4909 // If the input is LLVM Assembly, bitcode is produced by serializing 4910 // the module. Use-lists order need to be preserved in this case. 4911 llvm::raw_string_ostream OS(Data); 4912 llvm::WriteBitcodeToFile(M, OS, /* ShouldPreserveUseListOrder */ true); 4913 ModuleData = 4914 ArrayRef<uint8_t>((const uint8_t *)OS.str().data(), OS.str().size()); 4915 } else 4916 // If the input is LLVM bitcode, write the input byte stream directly. 4917 ModuleData = ArrayRef<uint8_t>((const uint8_t *)Buf.getBufferStart(), 4918 Buf.getBufferSize()); 4919 } 4920 llvm::Constant *ModuleConstant = 4921 llvm::ConstantDataArray::get(M.getContext(), ModuleData); 4922 llvm::GlobalVariable *GV = new llvm::GlobalVariable( 4923 M, ModuleConstant->getType(), true, llvm::GlobalValue::PrivateLinkage, 4924 ModuleConstant); 4925 GV->setSection(getSectionNameForBitcode(T)); 4926 // Set alignment to 1 to prevent padding between two contributions from input 4927 // sections after linking. 4928 GV->setAlignment(Align(1)); 4929 UsedArray.push_back( 4930 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 4931 if (llvm::GlobalVariable *Old = 4932 M.getGlobalVariable("llvm.embedded.module", true)) { 4933 assert(Old->hasOneUse() && 4934 "llvm.embedded.module can only be used once in llvm.compiler.used"); 4935 GV->takeName(Old); 4936 Old->eraseFromParent(); 4937 } else { 4938 GV->setName("llvm.embedded.module"); 4939 } 4940 4941 // Skip if only bitcode needs to be embedded. 4942 if (EmbedCmdline) { 4943 // Embed command-line options. 4944 ArrayRef<uint8_t> CmdData(const_cast<uint8_t *>(CmdArgs.data()), 4945 CmdArgs.size()); 4946 llvm::Constant *CmdConstant = 4947 llvm::ConstantDataArray::get(M.getContext(), CmdData); 4948 GV = new llvm::GlobalVariable(M, CmdConstant->getType(), true, 4949 llvm::GlobalValue::PrivateLinkage, 4950 CmdConstant); 4951 GV->setSection(getSectionNameForCommandline(T)); 4952 GV->setAlignment(Align(1)); 4953 UsedArray.push_back( 4954 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 4955 if (llvm::GlobalVariable *Old = M.getGlobalVariable("llvm.cmdline", true)) { 4956 assert(Old->hasOneUse() && 4957 "llvm.cmdline can only be used once in llvm.compiler.used"); 4958 GV->takeName(Old); 4959 Old->eraseFromParent(); 4960 } else { 4961 GV->setName("llvm.cmdline"); 4962 } 4963 } 4964 4965 if (UsedArray.empty()) 4966 return; 4967 4968 // Recreate llvm.compiler.used. 4969 ArrayType *ATy = ArrayType::get(UsedElementType, UsedArray.size()); 4970 auto *NewUsed = new GlobalVariable( 4971 M, ATy, false, llvm::GlobalValue::AppendingLinkage, 4972 llvm::ConstantArray::get(ATy, UsedArray), "llvm.compiler.used"); 4973 NewUsed->setSection("llvm.metadata"); 4974 } 4975