1 //===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Bitcode writer implementation. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Bitcode/ReaderWriter.h" 15 #include "ValueEnumerator.h" 16 #include "llvm/ADT/Triple.h" 17 #include "llvm/Bitcode/BitstreamWriter.h" 18 #include "llvm/Bitcode/LLVMBitCodes.h" 19 #include "llvm/IR/Constants.h" 20 #include "llvm/IR/DerivedTypes.h" 21 #include "llvm/IR/InlineAsm.h" 22 #include "llvm/IR/Instructions.h" 23 #include "llvm/IR/Module.h" 24 #include "llvm/IR/Operator.h" 25 #include "llvm/IR/UseListOrder.h" 26 #include "llvm/IR/ValueSymbolTable.h" 27 #include "llvm/Support/CommandLine.h" 28 #include "llvm/Support/ErrorHandling.h" 29 #include "llvm/Support/MathExtras.h" 30 #include "llvm/Support/Program.h" 31 #include "llvm/Support/raw_ostream.h" 32 #include <cctype> 33 #include <map> 34 using namespace llvm; 35 36 /// These are manifest constants used by the bitcode writer. They do not need to 37 /// be kept in sync with the reader, but need to be consistent within this file. 38 enum { 39 // VALUE_SYMTAB_BLOCK abbrev id's. 40 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 41 VST_ENTRY_7_ABBREV, 42 VST_ENTRY_6_ABBREV, 43 VST_BBENTRY_6_ABBREV, 44 45 // CONSTANTS_BLOCK abbrev id's. 46 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 47 CONSTANTS_INTEGER_ABBREV, 48 CONSTANTS_CE_CAST_Abbrev, 49 CONSTANTS_NULL_Abbrev, 50 51 // FUNCTION_BLOCK abbrev id's. 52 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 53 FUNCTION_INST_BINOP_ABBREV, 54 FUNCTION_INST_BINOP_FLAGS_ABBREV, 55 FUNCTION_INST_CAST_ABBREV, 56 FUNCTION_INST_RET_VOID_ABBREV, 57 FUNCTION_INST_RET_VAL_ABBREV, 58 FUNCTION_INST_UNREACHABLE_ABBREV 59 }; 60 61 static unsigned GetEncodedCastOpcode(unsigned Opcode) { 62 switch (Opcode) { 63 default: llvm_unreachable("Unknown cast instruction!"); 64 case Instruction::Trunc : return bitc::CAST_TRUNC; 65 case Instruction::ZExt : return bitc::CAST_ZEXT; 66 case Instruction::SExt : return bitc::CAST_SEXT; 67 case Instruction::FPToUI : return bitc::CAST_FPTOUI; 68 case Instruction::FPToSI : return bitc::CAST_FPTOSI; 69 case Instruction::UIToFP : return bitc::CAST_UITOFP; 70 case Instruction::SIToFP : return bitc::CAST_SITOFP; 71 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; 72 case Instruction::FPExt : return bitc::CAST_FPEXT; 73 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; 74 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; 75 case Instruction::BitCast : return bitc::CAST_BITCAST; 76 case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST; 77 } 78 } 79 80 static unsigned GetEncodedBinaryOpcode(unsigned Opcode) { 81 switch (Opcode) { 82 default: llvm_unreachable("Unknown binary instruction!"); 83 case Instruction::Add: 84 case Instruction::FAdd: return bitc::BINOP_ADD; 85 case Instruction::Sub: 86 case Instruction::FSub: return bitc::BINOP_SUB; 87 case Instruction::Mul: 88 case Instruction::FMul: return bitc::BINOP_MUL; 89 case Instruction::UDiv: return bitc::BINOP_UDIV; 90 case Instruction::FDiv: 91 case Instruction::SDiv: return bitc::BINOP_SDIV; 92 case Instruction::URem: return bitc::BINOP_UREM; 93 case Instruction::FRem: 94 case Instruction::SRem: return bitc::BINOP_SREM; 95 case Instruction::Shl: return bitc::BINOP_SHL; 96 case Instruction::LShr: return bitc::BINOP_LSHR; 97 case Instruction::AShr: return bitc::BINOP_ASHR; 98 case Instruction::And: return bitc::BINOP_AND; 99 case Instruction::Or: return bitc::BINOP_OR; 100 case Instruction::Xor: return bitc::BINOP_XOR; 101 } 102 } 103 104 static unsigned GetEncodedRMWOperation(AtomicRMWInst::BinOp Op) { 105 switch (Op) { 106 default: llvm_unreachable("Unknown RMW operation!"); 107 case AtomicRMWInst::Xchg: return bitc::RMW_XCHG; 108 case AtomicRMWInst::Add: return bitc::RMW_ADD; 109 case AtomicRMWInst::Sub: return bitc::RMW_SUB; 110 case AtomicRMWInst::And: return bitc::RMW_AND; 111 case AtomicRMWInst::Nand: return bitc::RMW_NAND; 112 case AtomicRMWInst::Or: return bitc::RMW_OR; 113 case AtomicRMWInst::Xor: return bitc::RMW_XOR; 114 case AtomicRMWInst::Max: return bitc::RMW_MAX; 115 case AtomicRMWInst::Min: return bitc::RMW_MIN; 116 case AtomicRMWInst::UMax: return bitc::RMW_UMAX; 117 case AtomicRMWInst::UMin: return bitc::RMW_UMIN; 118 } 119 } 120 121 static unsigned GetEncodedOrdering(AtomicOrdering Ordering) { 122 switch (Ordering) { 123 case NotAtomic: return bitc::ORDERING_NOTATOMIC; 124 case Unordered: return bitc::ORDERING_UNORDERED; 125 case Monotonic: return bitc::ORDERING_MONOTONIC; 126 case Acquire: return bitc::ORDERING_ACQUIRE; 127 case Release: return bitc::ORDERING_RELEASE; 128 case AcquireRelease: return bitc::ORDERING_ACQREL; 129 case SequentiallyConsistent: return bitc::ORDERING_SEQCST; 130 } 131 llvm_unreachable("Invalid ordering"); 132 } 133 134 static unsigned GetEncodedSynchScope(SynchronizationScope SynchScope) { 135 switch (SynchScope) { 136 case SingleThread: return bitc::SYNCHSCOPE_SINGLETHREAD; 137 case CrossThread: return bitc::SYNCHSCOPE_CROSSTHREAD; 138 } 139 llvm_unreachable("Invalid synch scope"); 140 } 141 142 static void WriteStringRecord(unsigned Code, StringRef Str, 143 unsigned AbbrevToUse, BitstreamWriter &Stream) { 144 SmallVector<unsigned, 64> Vals; 145 146 // Code: [strchar x N] 147 for (unsigned i = 0, e = Str.size(); i != e; ++i) { 148 if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i])) 149 AbbrevToUse = 0; 150 Vals.push_back(Str[i]); 151 } 152 153 // Emit the finished record. 154 Stream.EmitRecord(Code, Vals, AbbrevToUse); 155 } 156 157 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) { 158 switch (Kind) { 159 case Attribute::Alignment: 160 return bitc::ATTR_KIND_ALIGNMENT; 161 case Attribute::AlwaysInline: 162 return bitc::ATTR_KIND_ALWAYS_INLINE; 163 case Attribute::Builtin: 164 return bitc::ATTR_KIND_BUILTIN; 165 case Attribute::ByVal: 166 return bitc::ATTR_KIND_BY_VAL; 167 case Attribute::InAlloca: 168 return bitc::ATTR_KIND_IN_ALLOCA; 169 case Attribute::Cold: 170 return bitc::ATTR_KIND_COLD; 171 case Attribute::InlineHint: 172 return bitc::ATTR_KIND_INLINE_HINT; 173 case Attribute::InReg: 174 return bitc::ATTR_KIND_IN_REG; 175 case Attribute::JumpTable: 176 return bitc::ATTR_KIND_JUMP_TABLE; 177 case Attribute::MinSize: 178 return bitc::ATTR_KIND_MIN_SIZE; 179 case Attribute::Naked: 180 return bitc::ATTR_KIND_NAKED; 181 case Attribute::Nest: 182 return bitc::ATTR_KIND_NEST; 183 case Attribute::NoAlias: 184 return bitc::ATTR_KIND_NO_ALIAS; 185 case Attribute::NoBuiltin: 186 return bitc::ATTR_KIND_NO_BUILTIN; 187 case Attribute::NoCapture: 188 return bitc::ATTR_KIND_NO_CAPTURE; 189 case Attribute::NoDuplicate: 190 return bitc::ATTR_KIND_NO_DUPLICATE; 191 case Attribute::NoImplicitFloat: 192 return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT; 193 case Attribute::NoInline: 194 return bitc::ATTR_KIND_NO_INLINE; 195 case Attribute::NonLazyBind: 196 return bitc::ATTR_KIND_NON_LAZY_BIND; 197 case Attribute::NonNull: 198 return bitc::ATTR_KIND_NON_NULL; 199 case Attribute::Dereferenceable: 200 return bitc::ATTR_KIND_DEREFERENCEABLE; 201 case Attribute::NoRedZone: 202 return bitc::ATTR_KIND_NO_RED_ZONE; 203 case Attribute::NoReturn: 204 return bitc::ATTR_KIND_NO_RETURN; 205 case Attribute::NoUnwind: 206 return bitc::ATTR_KIND_NO_UNWIND; 207 case Attribute::OptimizeForSize: 208 return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE; 209 case Attribute::OptimizeNone: 210 return bitc::ATTR_KIND_OPTIMIZE_NONE; 211 case Attribute::ReadNone: 212 return bitc::ATTR_KIND_READ_NONE; 213 case Attribute::ReadOnly: 214 return bitc::ATTR_KIND_READ_ONLY; 215 case Attribute::Returned: 216 return bitc::ATTR_KIND_RETURNED; 217 case Attribute::ReturnsTwice: 218 return bitc::ATTR_KIND_RETURNS_TWICE; 219 case Attribute::SExt: 220 return bitc::ATTR_KIND_S_EXT; 221 case Attribute::StackAlignment: 222 return bitc::ATTR_KIND_STACK_ALIGNMENT; 223 case Attribute::StackProtect: 224 return bitc::ATTR_KIND_STACK_PROTECT; 225 case Attribute::StackProtectReq: 226 return bitc::ATTR_KIND_STACK_PROTECT_REQ; 227 case Attribute::StackProtectStrong: 228 return bitc::ATTR_KIND_STACK_PROTECT_STRONG; 229 case Attribute::StructRet: 230 return bitc::ATTR_KIND_STRUCT_RET; 231 case Attribute::SanitizeAddress: 232 return bitc::ATTR_KIND_SANITIZE_ADDRESS; 233 case Attribute::SanitizeThread: 234 return bitc::ATTR_KIND_SANITIZE_THREAD; 235 case Attribute::SanitizeMemory: 236 return bitc::ATTR_KIND_SANITIZE_MEMORY; 237 case Attribute::UWTable: 238 return bitc::ATTR_KIND_UW_TABLE; 239 case Attribute::ZExt: 240 return bitc::ATTR_KIND_Z_EXT; 241 case Attribute::EndAttrKinds: 242 llvm_unreachable("Can not encode end-attribute kinds marker."); 243 case Attribute::None: 244 llvm_unreachable("Can not encode none-attribute."); 245 } 246 247 llvm_unreachable("Trying to encode unknown attribute"); 248 } 249 250 static void WriteAttributeGroupTable(const ValueEnumerator &VE, 251 BitstreamWriter &Stream) { 252 const std::vector<AttributeSet> &AttrGrps = VE.getAttributeGroups(); 253 if (AttrGrps.empty()) return; 254 255 Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3); 256 257 SmallVector<uint64_t, 64> Record; 258 for (unsigned i = 0, e = AttrGrps.size(); i != e; ++i) { 259 AttributeSet AS = AttrGrps[i]; 260 for (unsigned i = 0, e = AS.getNumSlots(); i != e; ++i) { 261 AttributeSet A = AS.getSlotAttributes(i); 262 263 Record.push_back(VE.getAttributeGroupID(A)); 264 Record.push_back(AS.getSlotIndex(i)); 265 266 for (AttributeSet::iterator I = AS.begin(0), E = AS.end(0); 267 I != E; ++I) { 268 Attribute Attr = *I; 269 if (Attr.isEnumAttribute()) { 270 Record.push_back(0); 271 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 272 } else if (Attr.isIntAttribute()) { 273 Record.push_back(1); 274 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 275 Record.push_back(Attr.getValueAsInt()); 276 } else { 277 StringRef Kind = Attr.getKindAsString(); 278 StringRef Val = Attr.getValueAsString(); 279 280 Record.push_back(Val.empty() ? 3 : 4); 281 Record.append(Kind.begin(), Kind.end()); 282 Record.push_back(0); 283 if (!Val.empty()) { 284 Record.append(Val.begin(), Val.end()); 285 Record.push_back(0); 286 } 287 } 288 } 289 290 Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record); 291 Record.clear(); 292 } 293 } 294 295 Stream.ExitBlock(); 296 } 297 298 static void WriteAttributeTable(const ValueEnumerator &VE, 299 BitstreamWriter &Stream) { 300 const std::vector<AttributeSet> &Attrs = VE.getAttributes(); 301 if (Attrs.empty()) return; 302 303 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 304 305 SmallVector<uint64_t, 64> Record; 306 for (unsigned i = 0, e = Attrs.size(); i != e; ++i) { 307 const AttributeSet &A = Attrs[i]; 308 for (unsigned i = 0, e = A.getNumSlots(); i != e; ++i) 309 Record.push_back(VE.getAttributeGroupID(A.getSlotAttributes(i))); 310 311 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 312 Record.clear(); 313 } 314 315 Stream.ExitBlock(); 316 } 317 318 /// WriteTypeTable - Write out the type table for a module. 319 static void WriteTypeTable(const ValueEnumerator &VE, BitstreamWriter &Stream) { 320 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 321 322 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */); 323 SmallVector<uint64_t, 64> TypeVals; 324 325 uint64_t NumBits = Log2_32_Ceil(VE.getTypes().size()+1); 326 327 // Abbrev for TYPE_CODE_POINTER. 328 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 329 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER)); 330 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 331 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 332 unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv); 333 334 // Abbrev for TYPE_CODE_FUNCTION. 335 Abbv = new BitCodeAbbrev(); 336 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 337 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 338 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 339 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 340 341 unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv); 342 343 // Abbrev for TYPE_CODE_STRUCT_ANON. 344 Abbv = new BitCodeAbbrev(); 345 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON)); 346 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 347 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 348 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 349 350 unsigned StructAnonAbbrev = Stream.EmitAbbrev(Abbv); 351 352 // Abbrev for TYPE_CODE_STRUCT_NAME. 353 Abbv = new BitCodeAbbrev(); 354 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME)); 355 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 356 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 357 unsigned StructNameAbbrev = Stream.EmitAbbrev(Abbv); 358 359 // Abbrev for TYPE_CODE_STRUCT_NAMED. 360 Abbv = new BitCodeAbbrev(); 361 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED)); 362 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 363 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 364 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 365 366 unsigned StructNamedAbbrev = Stream.EmitAbbrev(Abbv); 367 368 // Abbrev for TYPE_CODE_ARRAY. 369 Abbv = new BitCodeAbbrev(); 370 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 371 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 372 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 373 374 unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv); 375 376 // Emit an entry count so the reader can reserve space. 377 TypeVals.push_back(TypeList.size()); 378 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 379 TypeVals.clear(); 380 381 // Loop over all of the types, emitting each in turn. 382 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) { 383 Type *T = TypeList[i]; 384 int AbbrevToUse = 0; 385 unsigned Code = 0; 386 387 switch (T->getTypeID()) { 388 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; 389 case Type::HalfTyID: Code = bitc::TYPE_CODE_HALF; break; 390 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; 391 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; 392 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break; 393 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break; 394 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; 395 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; 396 case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break; 397 case Type::X86_MMXTyID: Code = bitc::TYPE_CODE_X86_MMX; break; 398 case Type::IntegerTyID: 399 // INTEGER: [width] 400 Code = bitc::TYPE_CODE_INTEGER; 401 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 402 break; 403 case Type::PointerTyID: { 404 PointerType *PTy = cast<PointerType>(T); 405 // POINTER: [pointee type, address space] 406 Code = bitc::TYPE_CODE_POINTER; 407 TypeVals.push_back(VE.getTypeID(PTy->getElementType())); 408 unsigned AddressSpace = PTy->getAddressSpace(); 409 TypeVals.push_back(AddressSpace); 410 if (AddressSpace == 0) AbbrevToUse = PtrAbbrev; 411 break; 412 } 413 case Type::FunctionTyID: { 414 FunctionType *FT = cast<FunctionType>(T); 415 // FUNCTION: [isvararg, retty, paramty x N] 416 Code = bitc::TYPE_CODE_FUNCTION; 417 TypeVals.push_back(FT->isVarArg()); 418 TypeVals.push_back(VE.getTypeID(FT->getReturnType())); 419 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) 420 TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); 421 AbbrevToUse = FunctionAbbrev; 422 break; 423 } 424 case Type::StructTyID: { 425 StructType *ST = cast<StructType>(T); 426 // STRUCT: [ispacked, eltty x N] 427 TypeVals.push_back(ST->isPacked()); 428 // Output all of the element types. 429 for (StructType::element_iterator I = ST->element_begin(), 430 E = ST->element_end(); I != E; ++I) 431 TypeVals.push_back(VE.getTypeID(*I)); 432 433 if (ST->isLiteral()) { 434 Code = bitc::TYPE_CODE_STRUCT_ANON; 435 AbbrevToUse = StructAnonAbbrev; 436 } else { 437 if (ST->isOpaque()) { 438 Code = bitc::TYPE_CODE_OPAQUE; 439 } else { 440 Code = bitc::TYPE_CODE_STRUCT_NAMED; 441 AbbrevToUse = StructNamedAbbrev; 442 } 443 444 // Emit the name if it is present. 445 if (!ST->getName().empty()) 446 WriteStringRecord(bitc::TYPE_CODE_STRUCT_NAME, ST->getName(), 447 StructNameAbbrev, Stream); 448 } 449 break; 450 } 451 case Type::ArrayTyID: { 452 ArrayType *AT = cast<ArrayType>(T); 453 // ARRAY: [numelts, eltty] 454 Code = bitc::TYPE_CODE_ARRAY; 455 TypeVals.push_back(AT->getNumElements()); 456 TypeVals.push_back(VE.getTypeID(AT->getElementType())); 457 AbbrevToUse = ArrayAbbrev; 458 break; 459 } 460 case Type::VectorTyID: { 461 VectorType *VT = cast<VectorType>(T); 462 // VECTOR [numelts, eltty] 463 Code = bitc::TYPE_CODE_VECTOR; 464 TypeVals.push_back(VT->getNumElements()); 465 TypeVals.push_back(VE.getTypeID(VT->getElementType())); 466 break; 467 } 468 } 469 470 // Emit the finished record. 471 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 472 TypeVals.clear(); 473 } 474 475 Stream.ExitBlock(); 476 } 477 478 static unsigned getEncodedLinkage(const GlobalValue &GV) { 479 switch (GV.getLinkage()) { 480 case GlobalValue::ExternalLinkage: return 0; 481 case GlobalValue::WeakAnyLinkage: return 1; 482 case GlobalValue::AppendingLinkage: return 2; 483 case GlobalValue::InternalLinkage: return 3; 484 case GlobalValue::LinkOnceAnyLinkage: return 4; 485 case GlobalValue::ExternalWeakLinkage: return 7; 486 case GlobalValue::CommonLinkage: return 8; 487 case GlobalValue::PrivateLinkage: return 9; 488 case GlobalValue::WeakODRLinkage: return 10; 489 case GlobalValue::LinkOnceODRLinkage: return 11; 490 case GlobalValue::AvailableExternallyLinkage: return 12; 491 } 492 llvm_unreachable("Invalid linkage"); 493 } 494 495 static unsigned getEncodedVisibility(const GlobalValue &GV) { 496 switch (GV.getVisibility()) { 497 case GlobalValue::DefaultVisibility: return 0; 498 case GlobalValue::HiddenVisibility: return 1; 499 case GlobalValue::ProtectedVisibility: return 2; 500 } 501 llvm_unreachable("Invalid visibility"); 502 } 503 504 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) { 505 switch (GV.getDLLStorageClass()) { 506 case GlobalValue::DefaultStorageClass: return 0; 507 case GlobalValue::DLLImportStorageClass: return 1; 508 case GlobalValue::DLLExportStorageClass: return 2; 509 } 510 llvm_unreachable("Invalid DLL storage class"); 511 } 512 513 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) { 514 switch (GV.getThreadLocalMode()) { 515 case GlobalVariable::NotThreadLocal: return 0; 516 case GlobalVariable::GeneralDynamicTLSModel: return 1; 517 case GlobalVariable::LocalDynamicTLSModel: return 2; 518 case GlobalVariable::InitialExecTLSModel: return 3; 519 case GlobalVariable::LocalExecTLSModel: return 4; 520 } 521 llvm_unreachable("Invalid TLS model"); 522 } 523 524 static unsigned getEncodedComdatSelectionKind(const Comdat &C) { 525 switch (C.getSelectionKind()) { 526 case Comdat::Any: 527 return bitc::COMDAT_SELECTION_KIND_ANY; 528 case Comdat::ExactMatch: 529 return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH; 530 case Comdat::Largest: 531 return bitc::COMDAT_SELECTION_KIND_LARGEST; 532 case Comdat::NoDuplicates: 533 return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES; 534 case Comdat::SameSize: 535 return bitc::COMDAT_SELECTION_KIND_SAME_SIZE; 536 } 537 llvm_unreachable("Invalid selection kind"); 538 } 539 540 static void writeComdats(const ValueEnumerator &VE, BitstreamWriter &Stream) { 541 SmallVector<uint8_t, 64> Vals; 542 for (const Comdat *C : VE.getComdats()) { 543 // COMDAT: [selection_kind, name] 544 Vals.push_back(getEncodedComdatSelectionKind(*C)); 545 Vals.push_back(C->getName().size()); 546 for (char Chr : C->getName()) 547 Vals.push_back((unsigned char)Chr); 548 Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0); 549 Vals.clear(); 550 } 551 } 552 553 // Emit top-level description of module, including target triple, inline asm, 554 // descriptors for global variables, and function prototype info. 555 static void WriteModuleInfo(const Module *M, const ValueEnumerator &VE, 556 BitstreamWriter &Stream) { 557 // Emit various pieces of data attached to a module. 558 if (!M->getTargetTriple().empty()) 559 WriteStringRecord(bitc::MODULE_CODE_TRIPLE, M->getTargetTriple(), 560 0/*TODO*/, Stream); 561 const std::string &DL = M->getDataLayoutStr(); 562 if (!DL.empty()) 563 WriteStringRecord(bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/, Stream); 564 if (!M->getModuleInlineAsm().empty()) 565 WriteStringRecord(bitc::MODULE_CODE_ASM, M->getModuleInlineAsm(), 566 0/*TODO*/, Stream); 567 568 // Emit information about sections and GC, computing how many there are. Also 569 // compute the maximum alignment value. 570 std::map<std::string, unsigned> SectionMap; 571 std::map<std::string, unsigned> GCMap; 572 unsigned MaxAlignment = 0; 573 unsigned MaxGlobalType = 0; 574 for (const GlobalValue &GV : M->globals()) { 575 MaxAlignment = std::max(MaxAlignment, GV.getAlignment()); 576 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getType())); 577 if (GV.hasSection()) { 578 // Give section names unique ID's. 579 unsigned &Entry = SectionMap[GV.getSection()]; 580 if (!Entry) { 581 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV.getSection(), 582 0/*TODO*/, Stream); 583 Entry = SectionMap.size(); 584 } 585 } 586 } 587 for (const Function &F : *M) { 588 MaxAlignment = std::max(MaxAlignment, F.getAlignment()); 589 if (F.hasSection()) { 590 // Give section names unique ID's. 591 unsigned &Entry = SectionMap[F.getSection()]; 592 if (!Entry) { 593 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, F.getSection(), 594 0/*TODO*/, Stream); 595 Entry = SectionMap.size(); 596 } 597 } 598 if (F.hasGC()) { 599 // Same for GC names. 600 unsigned &Entry = GCMap[F.getGC()]; 601 if (!Entry) { 602 WriteStringRecord(bitc::MODULE_CODE_GCNAME, F.getGC(), 603 0/*TODO*/, Stream); 604 Entry = GCMap.size(); 605 } 606 } 607 } 608 609 // Emit abbrev for globals, now that we know # sections and max alignment. 610 unsigned SimpleGVarAbbrev = 0; 611 if (!M->global_empty()) { 612 // Add an abbrev for common globals with no visibility or thread localness. 613 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 614 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 615 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 616 Log2_32_Ceil(MaxGlobalType+1))); 617 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // Constant. 618 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 619 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // Linkage. 620 if (MaxAlignment == 0) // Alignment. 621 Abbv->Add(BitCodeAbbrevOp(0)); 622 else { 623 unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1; 624 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 625 Log2_32_Ceil(MaxEncAlignment+1))); 626 } 627 if (SectionMap.empty()) // Section. 628 Abbv->Add(BitCodeAbbrevOp(0)); 629 else 630 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 631 Log2_32_Ceil(SectionMap.size()+1))); 632 // Don't bother emitting vis + thread local. 633 SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv); 634 } 635 636 // Emit the global variable information. 637 SmallVector<unsigned, 64> Vals; 638 for (const GlobalVariable &GV : M->globals()) { 639 unsigned AbbrevToUse = 0; 640 641 // GLOBALVAR: [type, isconst, initid, 642 // linkage, alignment, section, visibility, threadlocal, 643 // unnamed_addr, externally_initialized, dllstorageclass] 644 Vals.push_back(VE.getTypeID(GV.getType())); 645 Vals.push_back(GV.isConstant()); 646 Vals.push_back(GV.isDeclaration() ? 0 : 647 (VE.getValueID(GV.getInitializer()) + 1)); 648 Vals.push_back(getEncodedLinkage(GV)); 649 Vals.push_back(Log2_32(GV.getAlignment())+1); 650 Vals.push_back(GV.hasSection() ? SectionMap[GV.getSection()] : 0); 651 if (GV.isThreadLocal() || 652 GV.getVisibility() != GlobalValue::DefaultVisibility || 653 GV.hasUnnamedAddr() || GV.isExternallyInitialized() || 654 GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass || 655 GV.hasComdat()) { 656 Vals.push_back(getEncodedVisibility(GV)); 657 Vals.push_back(getEncodedThreadLocalMode(GV)); 658 Vals.push_back(GV.hasUnnamedAddr()); 659 Vals.push_back(GV.isExternallyInitialized()); 660 Vals.push_back(getEncodedDLLStorageClass(GV)); 661 Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0); 662 } else { 663 AbbrevToUse = SimpleGVarAbbrev; 664 } 665 666 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 667 Vals.clear(); 668 } 669 670 // Emit the function proto information. 671 for (const Function &F : *M) { 672 // FUNCTION: [type, callingconv, isproto, linkage, paramattrs, alignment, 673 // section, visibility, gc, unnamed_addr, prefix] 674 Vals.push_back(VE.getTypeID(F.getType())); 675 Vals.push_back(F.getCallingConv()); 676 Vals.push_back(F.isDeclaration()); 677 Vals.push_back(getEncodedLinkage(F)); 678 Vals.push_back(VE.getAttributeID(F.getAttributes())); 679 Vals.push_back(Log2_32(F.getAlignment())+1); 680 Vals.push_back(F.hasSection() ? SectionMap[F.getSection()] : 0); 681 Vals.push_back(getEncodedVisibility(F)); 682 Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0); 683 Vals.push_back(F.hasUnnamedAddr()); 684 Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1) 685 : 0); 686 Vals.push_back(getEncodedDLLStorageClass(F)); 687 Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0); 688 689 unsigned AbbrevToUse = 0; 690 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 691 Vals.clear(); 692 } 693 694 // Emit the alias information. 695 for (const GlobalAlias &A : M->aliases()) { 696 // ALIAS: [alias type, aliasee val#, linkage, visibility] 697 Vals.push_back(VE.getTypeID(A.getType())); 698 Vals.push_back(VE.getValueID(A.getAliasee())); 699 Vals.push_back(getEncodedLinkage(A)); 700 Vals.push_back(getEncodedVisibility(A)); 701 Vals.push_back(getEncodedDLLStorageClass(A)); 702 Vals.push_back(getEncodedThreadLocalMode(A)); 703 Vals.push_back(A.hasUnnamedAddr()); 704 unsigned AbbrevToUse = 0; 705 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); 706 Vals.clear(); 707 } 708 } 709 710 static uint64_t GetOptimizationFlags(const Value *V) { 711 uint64_t Flags = 0; 712 713 if (const OverflowingBinaryOperator *OBO = 714 dyn_cast<OverflowingBinaryOperator>(V)) { 715 if (OBO->hasNoSignedWrap()) 716 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP; 717 if (OBO->hasNoUnsignedWrap()) 718 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP; 719 } else if (const PossiblyExactOperator *PEO = 720 dyn_cast<PossiblyExactOperator>(V)) { 721 if (PEO->isExact()) 722 Flags |= 1 << bitc::PEO_EXACT; 723 } else if (const FPMathOperator *FPMO = 724 dyn_cast<const FPMathOperator>(V)) { 725 if (FPMO->hasUnsafeAlgebra()) 726 Flags |= FastMathFlags::UnsafeAlgebra; 727 if (FPMO->hasNoNaNs()) 728 Flags |= FastMathFlags::NoNaNs; 729 if (FPMO->hasNoInfs()) 730 Flags |= FastMathFlags::NoInfs; 731 if (FPMO->hasNoSignedZeros()) 732 Flags |= FastMathFlags::NoSignedZeros; 733 if (FPMO->hasAllowReciprocal()) 734 Flags |= FastMathFlags::AllowReciprocal; 735 } 736 737 return Flags; 738 } 739 740 static void WriteMDNode(const MDNode *N, 741 const ValueEnumerator &VE, 742 BitstreamWriter &Stream, 743 SmallVectorImpl<uint64_t> &Record) { 744 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 745 if (N->getOperand(i)) { 746 Record.push_back(VE.getTypeID(N->getOperand(i)->getType())); 747 Record.push_back(VE.getValueID(N->getOperand(i))); 748 } else { 749 Record.push_back(VE.getTypeID(Type::getVoidTy(N->getContext()))); 750 Record.push_back(0); 751 } 752 } 753 unsigned MDCode = N->isFunctionLocal() ? bitc::METADATA_FN_NODE : 754 bitc::METADATA_NODE; 755 Stream.EmitRecord(MDCode, Record, 0); 756 Record.clear(); 757 } 758 759 static void WriteModuleMetadata(const Module *M, 760 const ValueEnumerator &VE, 761 BitstreamWriter &Stream) { 762 const ValueEnumerator::ValueList &Vals = VE.getMDValues(); 763 bool StartedMetadataBlock = false; 764 unsigned MDSAbbrev = 0; 765 SmallVector<uint64_t, 64> Record; 766 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 767 768 if (const MDNode *N = dyn_cast<MDNode>(Vals[i].first)) { 769 if (!N->isFunctionLocal() || !N->getFunction()) { 770 if (!StartedMetadataBlock) { 771 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 772 StartedMetadataBlock = true; 773 } 774 WriteMDNode(N, VE, Stream, Record); 775 } 776 } else if (const MDString *MDS = dyn_cast<MDString>(Vals[i].first)) { 777 if (!StartedMetadataBlock) { 778 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 779 780 // Abbrev for METADATA_STRING. 781 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 782 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRING)); 783 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 784 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 785 MDSAbbrev = Stream.EmitAbbrev(Abbv); 786 StartedMetadataBlock = true; 787 } 788 789 // Code: [strchar x N] 790 Record.append(MDS->begin(), MDS->end()); 791 792 // Emit the finished record. 793 Stream.EmitRecord(bitc::METADATA_STRING, Record, MDSAbbrev); 794 Record.clear(); 795 } 796 } 797 798 // Write named metadata. 799 for (Module::const_named_metadata_iterator I = M->named_metadata_begin(), 800 E = M->named_metadata_end(); I != E; ++I) { 801 const NamedMDNode *NMD = I; 802 if (!StartedMetadataBlock) { 803 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 804 StartedMetadataBlock = true; 805 } 806 807 // Write name. 808 StringRef Str = NMD->getName(); 809 for (unsigned i = 0, e = Str.size(); i != e; ++i) 810 Record.push_back(Str[i]); 811 Stream.EmitRecord(bitc::METADATA_NAME, Record, 0/*TODO*/); 812 Record.clear(); 813 814 // Write named metadata operands. 815 for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) 816 Record.push_back(VE.getValueID(NMD->getOperand(i))); 817 Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0); 818 Record.clear(); 819 } 820 821 if (StartedMetadataBlock) 822 Stream.ExitBlock(); 823 } 824 825 static void WriteFunctionLocalMetadata(const Function &F, 826 const ValueEnumerator &VE, 827 BitstreamWriter &Stream) { 828 bool StartedMetadataBlock = false; 829 SmallVector<uint64_t, 64> Record; 830 const SmallVectorImpl<const MDNode *> &Vals = VE.getFunctionLocalMDValues(); 831 for (unsigned i = 0, e = Vals.size(); i != e; ++i) 832 if (const MDNode *N = Vals[i]) 833 if (N->isFunctionLocal() && N->getFunction() == &F) { 834 if (!StartedMetadataBlock) { 835 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 836 StartedMetadataBlock = true; 837 } 838 WriteMDNode(N, VE, Stream, Record); 839 } 840 841 if (StartedMetadataBlock) 842 Stream.ExitBlock(); 843 } 844 845 static void WriteMetadataAttachment(const Function &F, 846 const ValueEnumerator &VE, 847 BitstreamWriter &Stream) { 848 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3); 849 850 SmallVector<uint64_t, 64> Record; 851 852 // Write metadata attachments 853 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]] 854 SmallVector<std::pair<unsigned, MDNode*>, 4> MDs; 855 856 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 857 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 858 I != E; ++I) { 859 MDs.clear(); 860 I->getAllMetadataOtherThanDebugLoc(MDs); 861 862 // If no metadata, ignore instruction. 863 if (MDs.empty()) continue; 864 865 Record.push_back(VE.getInstructionID(I)); 866 867 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 868 Record.push_back(MDs[i].first); 869 Record.push_back(VE.getValueID(MDs[i].second)); 870 } 871 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 872 Record.clear(); 873 } 874 875 Stream.ExitBlock(); 876 } 877 878 static void WriteModuleMetadataStore(const Module *M, BitstreamWriter &Stream) { 879 SmallVector<uint64_t, 64> Record; 880 881 // Write metadata kinds 882 // METADATA_KIND - [n x [id, name]] 883 SmallVector<StringRef, 8> Names; 884 M->getMDKindNames(Names); 885 886 if (Names.empty()) return; 887 888 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 889 890 for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) { 891 Record.push_back(MDKindID); 892 StringRef KName = Names[MDKindID]; 893 Record.append(KName.begin(), KName.end()); 894 895 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0); 896 Record.clear(); 897 } 898 899 Stream.ExitBlock(); 900 } 901 902 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) { 903 if ((int64_t)V >= 0) 904 Vals.push_back(V << 1); 905 else 906 Vals.push_back((-V << 1) | 1); 907 } 908 909 static void WriteConstants(unsigned FirstVal, unsigned LastVal, 910 const ValueEnumerator &VE, 911 BitstreamWriter &Stream, bool isGlobal) { 912 if (FirstVal == LastVal) return; 913 914 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 915 916 unsigned AggregateAbbrev = 0; 917 unsigned String8Abbrev = 0; 918 unsigned CString7Abbrev = 0; 919 unsigned CString6Abbrev = 0; 920 // If this is a constant pool for the module, emit module-specific abbrevs. 921 if (isGlobal) { 922 // Abbrev for CST_CODE_AGGREGATE. 923 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 924 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 925 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 926 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); 927 AggregateAbbrev = Stream.EmitAbbrev(Abbv); 928 929 // Abbrev for CST_CODE_STRING. 930 Abbv = new BitCodeAbbrev(); 931 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 932 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 933 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 934 String8Abbrev = Stream.EmitAbbrev(Abbv); 935 // Abbrev for CST_CODE_CSTRING. 936 Abbv = new BitCodeAbbrev(); 937 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 938 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 939 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 940 CString7Abbrev = Stream.EmitAbbrev(Abbv); 941 // Abbrev for CST_CODE_CSTRING. 942 Abbv = new BitCodeAbbrev(); 943 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 944 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 945 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 946 CString6Abbrev = Stream.EmitAbbrev(Abbv); 947 } 948 949 SmallVector<uint64_t, 64> Record; 950 951 const ValueEnumerator::ValueList &Vals = VE.getValues(); 952 Type *LastTy = nullptr; 953 for (unsigned i = FirstVal; i != LastVal; ++i) { 954 const Value *V = Vals[i].first; 955 // If we need to switch types, do so now. 956 if (V->getType() != LastTy) { 957 LastTy = V->getType(); 958 Record.push_back(VE.getTypeID(LastTy)); 959 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 960 CONSTANTS_SETTYPE_ABBREV); 961 Record.clear(); 962 } 963 964 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 965 Record.push_back(unsigned(IA->hasSideEffects()) | 966 unsigned(IA->isAlignStack()) << 1 | 967 unsigned(IA->getDialect()&1) << 2); 968 969 // Add the asm string. 970 const std::string &AsmStr = IA->getAsmString(); 971 Record.push_back(AsmStr.size()); 972 for (unsigned i = 0, e = AsmStr.size(); i != e; ++i) 973 Record.push_back(AsmStr[i]); 974 975 // Add the constraint string. 976 const std::string &ConstraintStr = IA->getConstraintString(); 977 Record.push_back(ConstraintStr.size()); 978 for (unsigned i = 0, e = ConstraintStr.size(); i != e; ++i) 979 Record.push_back(ConstraintStr[i]); 980 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 981 Record.clear(); 982 continue; 983 } 984 const Constant *C = cast<Constant>(V); 985 unsigned Code = -1U; 986 unsigned AbbrevToUse = 0; 987 if (C->isNullValue()) { 988 Code = bitc::CST_CODE_NULL; 989 } else if (isa<UndefValue>(C)) { 990 Code = bitc::CST_CODE_UNDEF; 991 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 992 if (IV->getBitWidth() <= 64) { 993 uint64_t V = IV->getSExtValue(); 994 emitSignedInt64(Record, V); 995 Code = bitc::CST_CODE_INTEGER; 996 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 997 } else { // Wide integers, > 64 bits in size. 998 // We have an arbitrary precision integer value to write whose 999 // bit width is > 64. However, in canonical unsigned integer 1000 // format it is likely that the high bits are going to be zero. 1001 // So, we only write the number of active words. 1002 unsigned NWords = IV->getValue().getActiveWords(); 1003 const uint64_t *RawWords = IV->getValue().getRawData(); 1004 for (unsigned i = 0; i != NWords; ++i) { 1005 emitSignedInt64(Record, RawWords[i]); 1006 } 1007 Code = bitc::CST_CODE_WIDE_INTEGER; 1008 } 1009 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 1010 Code = bitc::CST_CODE_FLOAT; 1011 Type *Ty = CFP->getType(); 1012 if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) { 1013 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); 1014 } else if (Ty->isX86_FP80Ty()) { 1015 // api needed to prevent premature destruction 1016 // bits are not in the same order as a normal i80 APInt, compensate. 1017 APInt api = CFP->getValueAPF().bitcastToAPInt(); 1018 const uint64_t *p = api.getRawData(); 1019 Record.push_back((p[1] << 48) | (p[0] >> 16)); 1020 Record.push_back(p[0] & 0xffffLL); 1021 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) { 1022 APInt api = CFP->getValueAPF().bitcastToAPInt(); 1023 const uint64_t *p = api.getRawData(); 1024 Record.push_back(p[0]); 1025 Record.push_back(p[1]); 1026 } else { 1027 assert (0 && "Unknown FP type!"); 1028 } 1029 } else if (isa<ConstantDataSequential>(C) && 1030 cast<ConstantDataSequential>(C)->isString()) { 1031 const ConstantDataSequential *Str = cast<ConstantDataSequential>(C); 1032 // Emit constant strings specially. 1033 unsigned NumElts = Str->getNumElements(); 1034 // If this is a null-terminated string, use the denser CSTRING encoding. 1035 if (Str->isCString()) { 1036 Code = bitc::CST_CODE_CSTRING; 1037 --NumElts; // Don't encode the null, which isn't allowed by char6. 1038 } else { 1039 Code = bitc::CST_CODE_STRING; 1040 AbbrevToUse = String8Abbrev; 1041 } 1042 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 1043 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 1044 for (unsigned i = 0; i != NumElts; ++i) { 1045 unsigned char V = Str->getElementAsInteger(i); 1046 Record.push_back(V); 1047 isCStr7 &= (V & 128) == 0; 1048 if (isCStrChar6) 1049 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 1050 } 1051 1052 if (isCStrChar6) 1053 AbbrevToUse = CString6Abbrev; 1054 else if (isCStr7) 1055 AbbrevToUse = CString7Abbrev; 1056 } else if (const ConstantDataSequential *CDS = 1057 dyn_cast<ConstantDataSequential>(C)) { 1058 Code = bitc::CST_CODE_DATA; 1059 Type *EltTy = CDS->getType()->getElementType(); 1060 if (isa<IntegerType>(EltTy)) { 1061 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 1062 Record.push_back(CDS->getElementAsInteger(i)); 1063 } else if (EltTy->isFloatTy()) { 1064 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1065 union { float F; uint32_t I; }; 1066 F = CDS->getElementAsFloat(i); 1067 Record.push_back(I); 1068 } 1069 } else { 1070 assert(EltTy->isDoubleTy() && "Unknown ConstantData element type"); 1071 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1072 union { double F; uint64_t I; }; 1073 F = CDS->getElementAsDouble(i); 1074 Record.push_back(I); 1075 } 1076 } 1077 } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(C) || 1078 isa<ConstantVector>(C)) { 1079 Code = bitc::CST_CODE_AGGREGATE; 1080 for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i) 1081 Record.push_back(VE.getValueID(C->getOperand(i))); 1082 AbbrevToUse = AggregateAbbrev; 1083 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1084 switch (CE->getOpcode()) { 1085 default: 1086 if (Instruction::isCast(CE->getOpcode())) { 1087 Code = bitc::CST_CODE_CE_CAST; 1088 Record.push_back(GetEncodedCastOpcode(CE->getOpcode())); 1089 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 1090 Record.push_back(VE.getValueID(C->getOperand(0))); 1091 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 1092 } else { 1093 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 1094 Code = bitc::CST_CODE_CE_BINOP; 1095 Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode())); 1096 Record.push_back(VE.getValueID(C->getOperand(0))); 1097 Record.push_back(VE.getValueID(C->getOperand(1))); 1098 uint64_t Flags = GetOptimizationFlags(CE); 1099 if (Flags != 0) 1100 Record.push_back(Flags); 1101 } 1102 break; 1103 case Instruction::GetElementPtr: 1104 Code = bitc::CST_CODE_CE_GEP; 1105 if (cast<GEPOperator>(C)->isInBounds()) 1106 Code = bitc::CST_CODE_CE_INBOUNDS_GEP; 1107 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 1108 Record.push_back(VE.getTypeID(C->getOperand(i)->getType())); 1109 Record.push_back(VE.getValueID(C->getOperand(i))); 1110 } 1111 break; 1112 case Instruction::Select: 1113 Code = bitc::CST_CODE_CE_SELECT; 1114 Record.push_back(VE.getValueID(C->getOperand(0))); 1115 Record.push_back(VE.getValueID(C->getOperand(1))); 1116 Record.push_back(VE.getValueID(C->getOperand(2))); 1117 break; 1118 case Instruction::ExtractElement: 1119 Code = bitc::CST_CODE_CE_EXTRACTELT; 1120 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 1121 Record.push_back(VE.getValueID(C->getOperand(0))); 1122 Record.push_back(VE.getTypeID(C->getOperand(1)->getType())); 1123 Record.push_back(VE.getValueID(C->getOperand(1))); 1124 break; 1125 case Instruction::InsertElement: 1126 Code = bitc::CST_CODE_CE_INSERTELT; 1127 Record.push_back(VE.getValueID(C->getOperand(0))); 1128 Record.push_back(VE.getValueID(C->getOperand(1))); 1129 Record.push_back(VE.getTypeID(C->getOperand(2)->getType())); 1130 Record.push_back(VE.getValueID(C->getOperand(2))); 1131 break; 1132 case Instruction::ShuffleVector: 1133 // If the return type and argument types are the same, this is a 1134 // standard shufflevector instruction. If the types are different, 1135 // then the shuffle is widening or truncating the input vectors, and 1136 // the argument type must also be encoded. 1137 if (C->getType() == C->getOperand(0)->getType()) { 1138 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 1139 } else { 1140 Code = bitc::CST_CODE_CE_SHUFVEC_EX; 1141 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 1142 } 1143 Record.push_back(VE.getValueID(C->getOperand(0))); 1144 Record.push_back(VE.getValueID(C->getOperand(1))); 1145 Record.push_back(VE.getValueID(C->getOperand(2))); 1146 break; 1147 case Instruction::ICmp: 1148 case Instruction::FCmp: 1149 Code = bitc::CST_CODE_CE_CMP; 1150 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 1151 Record.push_back(VE.getValueID(C->getOperand(0))); 1152 Record.push_back(VE.getValueID(C->getOperand(1))); 1153 Record.push_back(CE->getPredicate()); 1154 break; 1155 } 1156 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) { 1157 Code = bitc::CST_CODE_BLOCKADDRESS; 1158 Record.push_back(VE.getTypeID(BA->getFunction()->getType())); 1159 Record.push_back(VE.getValueID(BA->getFunction())); 1160 Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock())); 1161 } else { 1162 #ifndef NDEBUG 1163 C->dump(); 1164 #endif 1165 llvm_unreachable("Unknown constant!"); 1166 } 1167 Stream.EmitRecord(Code, Record, AbbrevToUse); 1168 Record.clear(); 1169 } 1170 1171 Stream.ExitBlock(); 1172 } 1173 1174 static void WriteModuleConstants(const ValueEnumerator &VE, 1175 BitstreamWriter &Stream) { 1176 const ValueEnumerator::ValueList &Vals = VE.getValues(); 1177 1178 // Find the first constant to emit, which is the first non-globalvalue value. 1179 // We know globalvalues have been emitted by WriteModuleInfo. 1180 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 1181 if (!isa<GlobalValue>(Vals[i].first)) { 1182 WriteConstants(i, Vals.size(), VE, Stream, true); 1183 return; 1184 } 1185 } 1186 } 1187 1188 /// PushValueAndType - The file has to encode both the value and type id for 1189 /// many values, because we need to know what type to create for forward 1190 /// references. However, most operands are not forward references, so this type 1191 /// field is not needed. 1192 /// 1193 /// This function adds V's value ID to Vals. If the value ID is higher than the 1194 /// instruction ID, then it is a forward reference, and it also includes the 1195 /// type ID. The value ID that is written is encoded relative to the InstID. 1196 static bool PushValueAndType(const Value *V, unsigned InstID, 1197 SmallVectorImpl<unsigned> &Vals, 1198 ValueEnumerator &VE) { 1199 unsigned ValID = VE.getValueID(V); 1200 // Make encoding relative to the InstID. 1201 Vals.push_back(InstID - ValID); 1202 if (ValID >= InstID) { 1203 Vals.push_back(VE.getTypeID(V->getType())); 1204 return true; 1205 } 1206 return false; 1207 } 1208 1209 /// pushValue - Like PushValueAndType, but where the type of the value is 1210 /// omitted (perhaps it was already encoded in an earlier operand). 1211 static void pushValue(const Value *V, unsigned InstID, 1212 SmallVectorImpl<unsigned> &Vals, 1213 ValueEnumerator &VE) { 1214 unsigned ValID = VE.getValueID(V); 1215 Vals.push_back(InstID - ValID); 1216 } 1217 1218 static void pushValueSigned(const Value *V, unsigned InstID, 1219 SmallVectorImpl<uint64_t> &Vals, 1220 ValueEnumerator &VE) { 1221 unsigned ValID = VE.getValueID(V); 1222 int64_t diff = ((int32_t)InstID - (int32_t)ValID); 1223 emitSignedInt64(Vals, diff); 1224 } 1225 1226 /// WriteInstruction - Emit an instruction to the specified stream. 1227 static void WriteInstruction(const Instruction &I, unsigned InstID, 1228 ValueEnumerator &VE, BitstreamWriter &Stream, 1229 SmallVectorImpl<unsigned> &Vals) { 1230 unsigned Code = 0; 1231 unsigned AbbrevToUse = 0; 1232 VE.setInstructionID(&I); 1233 switch (I.getOpcode()) { 1234 default: 1235 if (Instruction::isCast(I.getOpcode())) { 1236 Code = bitc::FUNC_CODE_INST_CAST; 1237 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 1238 AbbrevToUse = FUNCTION_INST_CAST_ABBREV; 1239 Vals.push_back(VE.getTypeID(I.getType())); 1240 Vals.push_back(GetEncodedCastOpcode(I.getOpcode())); 1241 } else { 1242 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 1243 Code = bitc::FUNC_CODE_INST_BINOP; 1244 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 1245 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; 1246 pushValue(I.getOperand(1), InstID, Vals, VE); 1247 Vals.push_back(GetEncodedBinaryOpcode(I.getOpcode())); 1248 uint64_t Flags = GetOptimizationFlags(&I); 1249 if (Flags != 0) { 1250 if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV) 1251 AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV; 1252 Vals.push_back(Flags); 1253 } 1254 } 1255 break; 1256 1257 case Instruction::GetElementPtr: 1258 Code = bitc::FUNC_CODE_INST_GEP; 1259 if (cast<GEPOperator>(&I)->isInBounds()) 1260 Code = bitc::FUNC_CODE_INST_INBOUNDS_GEP; 1261 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 1262 PushValueAndType(I.getOperand(i), InstID, Vals, VE); 1263 break; 1264 case Instruction::ExtractValue: { 1265 Code = bitc::FUNC_CODE_INST_EXTRACTVAL; 1266 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1267 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); 1268 for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i) 1269 Vals.push_back(*i); 1270 break; 1271 } 1272 case Instruction::InsertValue: { 1273 Code = bitc::FUNC_CODE_INST_INSERTVAL; 1274 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1275 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 1276 const InsertValueInst *IVI = cast<InsertValueInst>(&I); 1277 for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i) 1278 Vals.push_back(*i); 1279 break; 1280 } 1281 case Instruction::Select: 1282 Code = bitc::FUNC_CODE_INST_VSELECT; 1283 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 1284 pushValue(I.getOperand(2), InstID, Vals, VE); 1285 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1286 break; 1287 case Instruction::ExtractElement: 1288 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 1289 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1290 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 1291 break; 1292 case Instruction::InsertElement: 1293 Code = bitc::FUNC_CODE_INST_INSERTELT; 1294 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1295 pushValue(I.getOperand(1), InstID, Vals, VE); 1296 PushValueAndType(I.getOperand(2), InstID, Vals, VE); 1297 break; 1298 case Instruction::ShuffleVector: 1299 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 1300 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1301 pushValue(I.getOperand(1), InstID, Vals, VE); 1302 pushValue(I.getOperand(2), InstID, Vals, VE); 1303 break; 1304 case Instruction::ICmp: 1305 case Instruction::FCmp: 1306 // compare returning Int1Ty or vector of Int1Ty 1307 Code = bitc::FUNC_CODE_INST_CMP2; 1308 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1309 pushValue(I.getOperand(1), InstID, Vals, VE); 1310 Vals.push_back(cast<CmpInst>(I).getPredicate()); 1311 break; 1312 1313 case Instruction::Ret: 1314 { 1315 Code = bitc::FUNC_CODE_INST_RET; 1316 unsigned NumOperands = I.getNumOperands(); 1317 if (NumOperands == 0) 1318 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; 1319 else if (NumOperands == 1) { 1320 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 1321 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; 1322 } else { 1323 for (unsigned i = 0, e = NumOperands; i != e; ++i) 1324 PushValueAndType(I.getOperand(i), InstID, Vals, VE); 1325 } 1326 } 1327 break; 1328 case Instruction::Br: 1329 { 1330 Code = bitc::FUNC_CODE_INST_BR; 1331 const BranchInst &II = cast<BranchInst>(I); 1332 Vals.push_back(VE.getValueID(II.getSuccessor(0))); 1333 if (II.isConditional()) { 1334 Vals.push_back(VE.getValueID(II.getSuccessor(1))); 1335 pushValue(II.getCondition(), InstID, Vals, VE); 1336 } 1337 } 1338 break; 1339 case Instruction::Switch: 1340 { 1341 Code = bitc::FUNC_CODE_INST_SWITCH; 1342 const SwitchInst &SI = cast<SwitchInst>(I); 1343 Vals.push_back(VE.getTypeID(SI.getCondition()->getType())); 1344 pushValue(SI.getCondition(), InstID, Vals, VE); 1345 Vals.push_back(VE.getValueID(SI.getDefaultDest())); 1346 for (SwitchInst::ConstCaseIt i = SI.case_begin(), e = SI.case_end(); 1347 i != e; ++i) { 1348 Vals.push_back(VE.getValueID(i.getCaseValue())); 1349 Vals.push_back(VE.getValueID(i.getCaseSuccessor())); 1350 } 1351 } 1352 break; 1353 case Instruction::IndirectBr: 1354 Code = bitc::FUNC_CODE_INST_INDIRECTBR; 1355 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 1356 // Encode the address operand as relative, but not the basic blocks. 1357 pushValue(I.getOperand(0), InstID, Vals, VE); 1358 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) 1359 Vals.push_back(VE.getValueID(I.getOperand(i))); 1360 break; 1361 1362 case Instruction::Invoke: { 1363 const InvokeInst *II = cast<InvokeInst>(&I); 1364 const Value *Callee(II->getCalledValue()); 1365 PointerType *PTy = cast<PointerType>(Callee->getType()); 1366 FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); 1367 Code = bitc::FUNC_CODE_INST_INVOKE; 1368 1369 Vals.push_back(VE.getAttributeID(II->getAttributes())); 1370 Vals.push_back(II->getCallingConv()); 1371 Vals.push_back(VE.getValueID(II->getNormalDest())); 1372 Vals.push_back(VE.getValueID(II->getUnwindDest())); 1373 PushValueAndType(Callee, InstID, Vals, VE); 1374 1375 // Emit value #'s for the fixed parameters. 1376 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 1377 pushValue(I.getOperand(i), InstID, Vals, VE); // fixed param. 1378 1379 // Emit type/value pairs for varargs params. 1380 if (FTy->isVarArg()) { 1381 for (unsigned i = FTy->getNumParams(), e = I.getNumOperands()-3; 1382 i != e; ++i) 1383 PushValueAndType(I.getOperand(i), InstID, Vals, VE); // vararg 1384 } 1385 break; 1386 } 1387 case Instruction::Resume: 1388 Code = bitc::FUNC_CODE_INST_RESUME; 1389 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1390 break; 1391 case Instruction::Unreachable: 1392 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 1393 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; 1394 break; 1395 1396 case Instruction::PHI: { 1397 const PHINode &PN = cast<PHINode>(I); 1398 Code = bitc::FUNC_CODE_INST_PHI; 1399 // With the newer instruction encoding, forward references could give 1400 // negative valued IDs. This is most common for PHIs, so we use 1401 // signed VBRs. 1402 SmallVector<uint64_t, 128> Vals64; 1403 Vals64.push_back(VE.getTypeID(PN.getType())); 1404 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 1405 pushValueSigned(PN.getIncomingValue(i), InstID, Vals64, VE); 1406 Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i))); 1407 } 1408 // Emit a Vals64 vector and exit. 1409 Stream.EmitRecord(Code, Vals64, AbbrevToUse); 1410 Vals64.clear(); 1411 return; 1412 } 1413 1414 case Instruction::LandingPad: { 1415 const LandingPadInst &LP = cast<LandingPadInst>(I); 1416 Code = bitc::FUNC_CODE_INST_LANDINGPAD; 1417 Vals.push_back(VE.getTypeID(LP.getType())); 1418 PushValueAndType(LP.getPersonalityFn(), InstID, Vals, VE); 1419 Vals.push_back(LP.isCleanup()); 1420 Vals.push_back(LP.getNumClauses()); 1421 for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) { 1422 if (LP.isCatch(I)) 1423 Vals.push_back(LandingPadInst::Catch); 1424 else 1425 Vals.push_back(LandingPadInst::Filter); 1426 PushValueAndType(LP.getClause(I), InstID, Vals, VE); 1427 } 1428 break; 1429 } 1430 1431 case Instruction::Alloca: { 1432 Code = bitc::FUNC_CODE_INST_ALLOCA; 1433 Vals.push_back(VE.getTypeID(I.getType())); 1434 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 1435 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 1436 const AllocaInst &AI = cast<AllocaInst>(I); 1437 unsigned AlignRecord = Log2_32(AI.getAlignment()) + 1; 1438 assert(Log2_32(Value::MaximumAlignment) + 1 < 1 << 5 && 1439 "not enough bits for maximum alignment"); 1440 assert(AlignRecord < 1 << 5 && "alignment greater than 1 << 64"); 1441 AlignRecord |= AI.isUsedWithInAlloca() << 5; 1442 Vals.push_back(AlignRecord); 1443 break; 1444 } 1445 1446 case Instruction::Load: 1447 if (cast<LoadInst>(I).isAtomic()) { 1448 Code = bitc::FUNC_CODE_INST_LOADATOMIC; 1449 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1450 } else { 1451 Code = bitc::FUNC_CODE_INST_LOAD; 1452 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) // ptr 1453 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; 1454 } 1455 Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1); 1456 Vals.push_back(cast<LoadInst>(I).isVolatile()); 1457 if (cast<LoadInst>(I).isAtomic()) { 1458 Vals.push_back(GetEncodedOrdering(cast<LoadInst>(I).getOrdering())); 1459 Vals.push_back(GetEncodedSynchScope(cast<LoadInst>(I).getSynchScope())); 1460 } 1461 break; 1462 case Instruction::Store: 1463 if (cast<StoreInst>(I).isAtomic()) 1464 Code = bitc::FUNC_CODE_INST_STOREATOMIC; 1465 else 1466 Code = bitc::FUNC_CODE_INST_STORE; 1467 PushValueAndType(I.getOperand(1), InstID, Vals, VE); // ptrty + ptr 1468 pushValue(I.getOperand(0), InstID, Vals, VE); // val. 1469 Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1); 1470 Vals.push_back(cast<StoreInst>(I).isVolatile()); 1471 if (cast<StoreInst>(I).isAtomic()) { 1472 Vals.push_back(GetEncodedOrdering(cast<StoreInst>(I).getOrdering())); 1473 Vals.push_back(GetEncodedSynchScope(cast<StoreInst>(I).getSynchScope())); 1474 } 1475 break; 1476 case Instruction::AtomicCmpXchg: 1477 Code = bitc::FUNC_CODE_INST_CMPXCHG; 1478 PushValueAndType(I.getOperand(0), InstID, Vals, VE); // ptrty + ptr 1479 pushValue(I.getOperand(1), InstID, Vals, VE); // cmp. 1480 pushValue(I.getOperand(2), InstID, Vals, VE); // newval. 1481 Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile()); 1482 Vals.push_back(GetEncodedOrdering( 1483 cast<AtomicCmpXchgInst>(I).getSuccessOrdering())); 1484 Vals.push_back(GetEncodedSynchScope( 1485 cast<AtomicCmpXchgInst>(I).getSynchScope())); 1486 Vals.push_back(GetEncodedOrdering( 1487 cast<AtomicCmpXchgInst>(I).getFailureOrdering())); 1488 Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak()); 1489 break; 1490 case Instruction::AtomicRMW: 1491 Code = bitc::FUNC_CODE_INST_ATOMICRMW; 1492 PushValueAndType(I.getOperand(0), InstID, Vals, VE); // ptrty + ptr 1493 pushValue(I.getOperand(1), InstID, Vals, VE); // val. 1494 Vals.push_back(GetEncodedRMWOperation( 1495 cast<AtomicRMWInst>(I).getOperation())); 1496 Vals.push_back(cast<AtomicRMWInst>(I).isVolatile()); 1497 Vals.push_back(GetEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering())); 1498 Vals.push_back(GetEncodedSynchScope( 1499 cast<AtomicRMWInst>(I).getSynchScope())); 1500 break; 1501 case Instruction::Fence: 1502 Code = bitc::FUNC_CODE_INST_FENCE; 1503 Vals.push_back(GetEncodedOrdering(cast<FenceInst>(I).getOrdering())); 1504 Vals.push_back(GetEncodedSynchScope(cast<FenceInst>(I).getSynchScope())); 1505 break; 1506 case Instruction::Call: { 1507 const CallInst &CI = cast<CallInst>(I); 1508 PointerType *PTy = cast<PointerType>(CI.getCalledValue()->getType()); 1509 FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); 1510 1511 Code = bitc::FUNC_CODE_INST_CALL; 1512 1513 Vals.push_back(VE.getAttributeID(CI.getAttributes())); 1514 Vals.push_back((CI.getCallingConv() << 1) | unsigned(CI.isTailCall()) | 1515 unsigned(CI.isMustTailCall()) << 14); 1516 PushValueAndType(CI.getCalledValue(), InstID, Vals, VE); // Callee 1517 1518 // Emit value #'s for the fixed parameters. 1519 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { 1520 // Check for labels (can happen with asm labels). 1521 if (FTy->getParamType(i)->isLabelTy()) 1522 Vals.push_back(VE.getValueID(CI.getArgOperand(i))); 1523 else 1524 pushValue(CI.getArgOperand(i), InstID, Vals, VE); // fixed param. 1525 } 1526 1527 // Emit type/value pairs for varargs params. 1528 if (FTy->isVarArg()) { 1529 for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands(); 1530 i != e; ++i) 1531 PushValueAndType(CI.getArgOperand(i), InstID, Vals, VE); // varargs 1532 } 1533 break; 1534 } 1535 case Instruction::VAArg: 1536 Code = bitc::FUNC_CODE_INST_VAARG; 1537 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty 1538 pushValue(I.getOperand(0), InstID, Vals, VE); // valist. 1539 Vals.push_back(VE.getTypeID(I.getType())); // restype. 1540 break; 1541 } 1542 1543 Stream.EmitRecord(Code, Vals, AbbrevToUse); 1544 Vals.clear(); 1545 } 1546 1547 // Emit names for globals/functions etc. 1548 static void WriteValueSymbolTable(const ValueSymbolTable &VST, 1549 const ValueEnumerator &VE, 1550 BitstreamWriter &Stream) { 1551 if (VST.empty()) return; 1552 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 1553 1554 // FIXME: Set up the abbrev, we know how many values there are! 1555 // FIXME: We know if the type names can use 7-bit ascii. 1556 SmallVector<unsigned, 64> NameVals; 1557 1558 for (ValueSymbolTable::const_iterator SI = VST.begin(), SE = VST.end(); 1559 SI != SE; ++SI) { 1560 1561 const ValueName &Name = *SI; 1562 1563 // Figure out the encoding to use for the name. 1564 bool is7Bit = true; 1565 bool isChar6 = true; 1566 for (const char *C = Name.getKeyData(), *E = C+Name.getKeyLength(); 1567 C != E; ++C) { 1568 if (isChar6) 1569 isChar6 = BitCodeAbbrevOp::isChar6(*C); 1570 if ((unsigned char)*C & 128) { 1571 is7Bit = false; 1572 break; // don't bother scanning the rest. 1573 } 1574 } 1575 1576 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 1577 1578 // VST_ENTRY: [valueid, namechar x N] 1579 // VST_BBENTRY: [bbid, namechar x N] 1580 unsigned Code; 1581 if (isa<BasicBlock>(SI->getValue())) { 1582 Code = bitc::VST_CODE_BBENTRY; 1583 if (isChar6) 1584 AbbrevToUse = VST_BBENTRY_6_ABBREV; 1585 } else { 1586 Code = bitc::VST_CODE_ENTRY; 1587 if (isChar6) 1588 AbbrevToUse = VST_ENTRY_6_ABBREV; 1589 else if (is7Bit) 1590 AbbrevToUse = VST_ENTRY_7_ABBREV; 1591 } 1592 1593 NameVals.push_back(VE.getValueID(SI->getValue())); 1594 for (const char *P = Name.getKeyData(), 1595 *E = Name.getKeyData()+Name.getKeyLength(); P != E; ++P) 1596 NameVals.push_back((unsigned char)*P); 1597 1598 // Emit the finished record. 1599 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 1600 NameVals.clear(); 1601 } 1602 Stream.ExitBlock(); 1603 } 1604 1605 static void WriteUseList(ValueEnumerator &VE, UseListOrder &&Order, 1606 BitstreamWriter &Stream) { 1607 assert(Order.Shuffle.size() >= 2 && "Shuffle too small"); 1608 unsigned Code; 1609 if (isa<BasicBlock>(Order.V)) 1610 Code = bitc::USELIST_CODE_BB; 1611 else 1612 Code = bitc::USELIST_CODE_DEFAULT; 1613 1614 SmallVector<uint64_t, 64> Record; 1615 for (unsigned I : Order.Shuffle) 1616 Record.push_back(I); 1617 Record.push_back(VE.getValueID(Order.V)); 1618 Stream.EmitRecord(Code, Record); 1619 } 1620 1621 static void WriteUseListBlock(const Function *F, ValueEnumerator &VE, 1622 BitstreamWriter &Stream) { 1623 auto hasMore = [&]() { 1624 return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F; 1625 }; 1626 if (!hasMore()) 1627 // Nothing to do. 1628 return; 1629 1630 Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3); 1631 while (hasMore()) { 1632 WriteUseList(VE, std::move(VE.UseListOrders.back()), Stream); 1633 VE.UseListOrders.pop_back(); 1634 } 1635 Stream.ExitBlock(); 1636 } 1637 1638 /// WriteFunction - Emit a function body to the module stream. 1639 static void WriteFunction(const Function &F, ValueEnumerator &VE, 1640 BitstreamWriter &Stream) { 1641 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 1642 VE.incorporateFunction(F); 1643 1644 SmallVector<unsigned, 64> Vals; 1645 1646 // Emit the number of basic blocks, so the reader can create them ahead of 1647 // time. 1648 Vals.push_back(VE.getBasicBlocks().size()); 1649 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 1650 Vals.clear(); 1651 1652 // If there are function-local constants, emit them now. 1653 unsigned CstStart, CstEnd; 1654 VE.getFunctionConstantRange(CstStart, CstEnd); 1655 WriteConstants(CstStart, CstEnd, VE, Stream, false); 1656 1657 // If there is function-local metadata, emit it now. 1658 WriteFunctionLocalMetadata(F, VE, Stream); 1659 1660 // Keep a running idea of what the instruction ID is. 1661 unsigned InstID = CstEnd; 1662 1663 bool NeedsMetadataAttachment = false; 1664 1665 DebugLoc LastDL; 1666 1667 // Finally, emit all the instructions, in order. 1668 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 1669 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 1670 I != E; ++I) { 1671 WriteInstruction(*I, InstID, VE, Stream, Vals); 1672 1673 if (!I->getType()->isVoidTy()) 1674 ++InstID; 1675 1676 // If the instruction has metadata, write a metadata attachment later. 1677 NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc(); 1678 1679 // If the instruction has a debug location, emit it. 1680 DebugLoc DL = I->getDebugLoc(); 1681 if (DL.isUnknown()) { 1682 // nothing todo. 1683 } else if (DL == LastDL) { 1684 // Just repeat the same debug loc as last time. 1685 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals); 1686 } else { 1687 MDNode *Scope, *IA; 1688 DL.getScopeAndInlinedAt(Scope, IA, I->getContext()); 1689 1690 Vals.push_back(DL.getLine()); 1691 Vals.push_back(DL.getCol()); 1692 Vals.push_back(Scope ? VE.getValueID(Scope)+1 : 0); 1693 Vals.push_back(IA ? VE.getValueID(IA)+1 : 0); 1694 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals); 1695 Vals.clear(); 1696 1697 LastDL = DL; 1698 } 1699 } 1700 1701 // Emit names for all the instructions etc. 1702 WriteValueSymbolTable(F.getValueSymbolTable(), VE, Stream); 1703 1704 if (NeedsMetadataAttachment) 1705 WriteMetadataAttachment(F, VE, Stream); 1706 if (shouldPreserveBitcodeUseListOrder()) 1707 WriteUseListBlock(&F, VE, Stream); 1708 VE.purgeFunction(); 1709 Stream.ExitBlock(); 1710 } 1711 1712 // Emit blockinfo, which defines the standard abbreviations etc. 1713 static void WriteBlockInfo(const ValueEnumerator &VE, BitstreamWriter &Stream) { 1714 // We only want to emit block info records for blocks that have multiple 1715 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. 1716 // Other blocks can define their abbrevs inline. 1717 Stream.EnterBlockInfoBlock(2); 1718 1719 { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings. 1720 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1721 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 1722 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1723 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1724 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1725 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1726 Abbv) != VST_ENTRY_8_ABBREV) 1727 llvm_unreachable("Unexpected abbrev ordering!"); 1728 } 1729 1730 { // 7-bit fixed width VST_ENTRY strings. 1731 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1732 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 1733 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1734 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1735 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 1736 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1737 Abbv) != VST_ENTRY_7_ABBREV) 1738 llvm_unreachable("Unexpected abbrev ordering!"); 1739 } 1740 { // 6-bit char6 VST_ENTRY strings. 1741 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1742 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 1743 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1744 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1745 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 1746 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1747 Abbv) != VST_ENTRY_6_ABBREV) 1748 llvm_unreachable("Unexpected abbrev ordering!"); 1749 } 1750 { // 6-bit char6 VST_BBENTRY strings. 1751 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1752 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 1753 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1754 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1755 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 1756 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1757 Abbv) != VST_BBENTRY_6_ABBREV) 1758 llvm_unreachable("Unexpected abbrev ordering!"); 1759 } 1760 1761 1762 1763 { // SETTYPE abbrev for CONSTANTS_BLOCK. 1764 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1765 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 1766 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1767 Log2_32_Ceil(VE.getTypes().size()+1))); 1768 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1769 Abbv) != CONSTANTS_SETTYPE_ABBREV) 1770 llvm_unreachable("Unexpected abbrev ordering!"); 1771 } 1772 1773 { // INTEGER abbrev for CONSTANTS_BLOCK. 1774 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1775 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 1776 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1777 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1778 Abbv) != CONSTANTS_INTEGER_ABBREV) 1779 llvm_unreachable("Unexpected abbrev ordering!"); 1780 } 1781 1782 { // CE_CAST abbrev for CONSTANTS_BLOCK. 1783 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1784 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 1785 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 1786 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 1787 Log2_32_Ceil(VE.getTypes().size()+1))); 1788 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 1789 1790 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1791 Abbv) != CONSTANTS_CE_CAST_Abbrev) 1792 llvm_unreachable("Unexpected abbrev ordering!"); 1793 } 1794 { // NULL abbrev for CONSTANTS_BLOCK. 1795 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1796 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 1797 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1798 Abbv) != CONSTANTS_NULL_Abbrev) 1799 llvm_unreachable("Unexpected abbrev ordering!"); 1800 } 1801 1802 // FIXME: This should only use space for first class types! 1803 1804 { // INST_LOAD abbrev for FUNCTION_BLOCK. 1805 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1806 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 1807 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 1808 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 1809 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 1810 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1811 Abbv) != FUNCTION_INST_LOAD_ABBREV) 1812 llvm_unreachable("Unexpected abbrev ordering!"); 1813 } 1814 { // INST_BINOP abbrev for FUNCTION_BLOCK. 1815 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1816 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 1817 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 1818 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 1819 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 1820 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1821 Abbv) != FUNCTION_INST_BINOP_ABBREV) 1822 llvm_unreachable("Unexpected abbrev ordering!"); 1823 } 1824 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK. 1825 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1826 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 1827 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 1828 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 1829 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 1830 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags 1831 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1832 Abbv) != FUNCTION_INST_BINOP_FLAGS_ABBREV) 1833 llvm_unreachable("Unexpected abbrev ordering!"); 1834 } 1835 { // INST_CAST abbrev for FUNCTION_BLOCK. 1836 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1837 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 1838 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 1839 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 1840 Log2_32_Ceil(VE.getTypes().size()+1))); 1841 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 1842 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1843 Abbv) != FUNCTION_INST_CAST_ABBREV) 1844 llvm_unreachable("Unexpected abbrev ordering!"); 1845 } 1846 1847 { // INST_RET abbrev for FUNCTION_BLOCK. 1848 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1849 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 1850 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1851 Abbv) != FUNCTION_INST_RET_VOID_ABBREV) 1852 llvm_unreachable("Unexpected abbrev ordering!"); 1853 } 1854 { // INST_RET abbrev for FUNCTION_BLOCK. 1855 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1856 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 1857 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 1858 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1859 Abbv) != FUNCTION_INST_RET_VAL_ABBREV) 1860 llvm_unreachable("Unexpected abbrev ordering!"); 1861 } 1862 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 1863 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1864 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 1865 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1866 Abbv) != FUNCTION_INST_UNREACHABLE_ABBREV) 1867 llvm_unreachable("Unexpected abbrev ordering!"); 1868 } 1869 1870 Stream.ExitBlock(); 1871 } 1872 1873 /// WriteModule - Emit the specified module to the bitstream. 1874 static void WriteModule(const Module *M, BitstreamWriter &Stream) { 1875 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 1876 1877 SmallVector<unsigned, 1> Vals; 1878 unsigned CurVersion = 1; 1879 Vals.push_back(CurVersion); 1880 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals); 1881 1882 // Analyze the module, enumerating globals, functions, etc. 1883 ValueEnumerator VE(M); 1884 1885 // Emit blockinfo, which defines the standard abbreviations etc. 1886 WriteBlockInfo(VE, Stream); 1887 1888 // Emit information about attribute groups. 1889 WriteAttributeGroupTable(VE, Stream); 1890 1891 // Emit information about parameter attributes. 1892 WriteAttributeTable(VE, Stream); 1893 1894 // Emit information describing all of the types in the module. 1895 WriteTypeTable(VE, Stream); 1896 1897 writeComdats(VE, Stream); 1898 1899 // Emit top-level description of module, including target triple, inline asm, 1900 // descriptors for global variables, and function prototype info. 1901 WriteModuleInfo(M, VE, Stream); 1902 1903 // Emit constants. 1904 WriteModuleConstants(VE, Stream); 1905 1906 // Emit metadata. 1907 WriteModuleMetadata(M, VE, Stream); 1908 1909 // Emit metadata. 1910 WriteModuleMetadataStore(M, Stream); 1911 1912 // Emit names for globals/functions etc. 1913 WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream); 1914 1915 // Emit module-level use-lists. 1916 if (shouldPreserveBitcodeUseListOrder()) 1917 WriteUseListBlock(nullptr, VE, Stream); 1918 1919 // Emit function bodies. 1920 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) 1921 if (!F->isDeclaration()) 1922 WriteFunction(*F, VE, Stream); 1923 1924 Stream.ExitBlock(); 1925 } 1926 1927 /// EmitDarwinBCHeader - If generating a bc file on darwin, we have to emit a 1928 /// header and trailer to make it compatible with the system archiver. To do 1929 /// this we emit the following header, and then emit a trailer that pads the 1930 /// file out to be a multiple of 16 bytes. 1931 /// 1932 /// struct bc_header { 1933 /// uint32_t Magic; // 0x0B17C0DE 1934 /// uint32_t Version; // Version, currently always 0. 1935 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file. 1936 /// uint32_t BitcodeSize; // Size of traditional bitcode file. 1937 /// uint32_t CPUType; // CPU specifier. 1938 /// ... potentially more later ... 1939 /// }; 1940 enum { 1941 DarwinBCSizeFieldOffset = 3*4, // Offset to bitcode_size. 1942 DarwinBCHeaderSize = 5*4 1943 }; 1944 1945 static void WriteInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer, 1946 uint32_t &Position) { 1947 Buffer[Position + 0] = (unsigned char) (Value >> 0); 1948 Buffer[Position + 1] = (unsigned char) (Value >> 8); 1949 Buffer[Position + 2] = (unsigned char) (Value >> 16); 1950 Buffer[Position + 3] = (unsigned char) (Value >> 24); 1951 Position += 4; 1952 } 1953 1954 static void EmitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer, 1955 const Triple &TT) { 1956 unsigned CPUType = ~0U; 1957 1958 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*, 1959 // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic 1960 // number from /usr/include/mach/machine.h. It is ok to reproduce the 1961 // specific constants here because they are implicitly part of the Darwin ABI. 1962 enum { 1963 DARWIN_CPU_ARCH_ABI64 = 0x01000000, 1964 DARWIN_CPU_TYPE_X86 = 7, 1965 DARWIN_CPU_TYPE_ARM = 12, 1966 DARWIN_CPU_TYPE_POWERPC = 18 1967 }; 1968 1969 Triple::ArchType Arch = TT.getArch(); 1970 if (Arch == Triple::x86_64) 1971 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64; 1972 else if (Arch == Triple::x86) 1973 CPUType = DARWIN_CPU_TYPE_X86; 1974 else if (Arch == Triple::ppc) 1975 CPUType = DARWIN_CPU_TYPE_POWERPC; 1976 else if (Arch == Triple::ppc64) 1977 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64; 1978 else if (Arch == Triple::arm || Arch == Triple::thumb) 1979 CPUType = DARWIN_CPU_TYPE_ARM; 1980 1981 // Traditional Bitcode starts after header. 1982 assert(Buffer.size() >= DarwinBCHeaderSize && 1983 "Expected header size to be reserved"); 1984 unsigned BCOffset = DarwinBCHeaderSize; 1985 unsigned BCSize = Buffer.size()-DarwinBCHeaderSize; 1986 1987 // Write the magic and version. 1988 unsigned Position = 0; 1989 WriteInt32ToBuffer(0x0B17C0DE , Buffer, Position); 1990 WriteInt32ToBuffer(0 , Buffer, Position); // Version. 1991 WriteInt32ToBuffer(BCOffset , Buffer, Position); 1992 WriteInt32ToBuffer(BCSize , Buffer, Position); 1993 WriteInt32ToBuffer(CPUType , Buffer, Position); 1994 1995 // If the file is not a multiple of 16 bytes, insert dummy padding. 1996 while (Buffer.size() & 15) 1997 Buffer.push_back(0); 1998 } 1999 2000 /// WriteBitcodeToFile - Write the specified module to the specified output 2001 /// stream. 2002 void llvm::WriteBitcodeToFile(const Module *M, raw_ostream &Out) { 2003 SmallVector<char, 0> Buffer; 2004 Buffer.reserve(256*1024); 2005 2006 // If this is darwin or another generic macho target, reserve space for the 2007 // header. 2008 Triple TT(M->getTargetTriple()); 2009 if (TT.isOSDarwin()) 2010 Buffer.insert(Buffer.begin(), DarwinBCHeaderSize, 0); 2011 2012 // Emit the module into the buffer. 2013 { 2014 BitstreamWriter Stream(Buffer); 2015 2016 // Emit the file header. 2017 Stream.Emit((unsigned)'B', 8); 2018 Stream.Emit((unsigned)'C', 8); 2019 Stream.Emit(0x0, 4); 2020 Stream.Emit(0xC, 4); 2021 Stream.Emit(0xE, 4); 2022 Stream.Emit(0xD, 4); 2023 2024 // Emit the module. 2025 WriteModule(M, Stream); 2026 } 2027 2028 if (TT.isOSDarwin()) 2029 EmitDarwinBCHeaderAndTrailer(Buffer, TT); 2030 2031 // Write the generated bitstream to "Out". 2032 Out.write((char*)&Buffer.front(), Buffer.size()); 2033 } 2034