1 //===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Bitcode writer implementation. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Bitcode/ReaderWriter.h" 15 #include "ValueEnumerator.h" 16 #include "llvm/ADT/Triple.h" 17 #include "llvm/Bitcode/BitstreamWriter.h" 18 #include "llvm/Bitcode/LLVMBitCodes.h" 19 #include "llvm/IR/Constants.h" 20 #include "llvm/IR/DebugInfoMetadata.h" 21 #include "llvm/IR/DerivedTypes.h" 22 #include "llvm/IR/InlineAsm.h" 23 #include "llvm/IR/Instructions.h" 24 #include "llvm/IR/Module.h" 25 #include "llvm/IR/Operator.h" 26 #include "llvm/IR/UseListOrder.h" 27 #include "llvm/IR/ValueSymbolTable.h" 28 #include "llvm/Support/CommandLine.h" 29 #include "llvm/Support/ErrorHandling.h" 30 #include "llvm/Support/MathExtras.h" 31 #include "llvm/Support/Program.h" 32 #include "llvm/Support/raw_ostream.h" 33 #include <cctype> 34 #include <map> 35 using namespace llvm; 36 37 /// These are manifest constants used by the bitcode writer. They do not need to 38 /// be kept in sync with the reader, but need to be consistent within this file. 39 enum { 40 // VALUE_SYMTAB_BLOCK abbrev id's. 41 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 42 VST_ENTRY_7_ABBREV, 43 VST_ENTRY_6_ABBREV, 44 VST_BBENTRY_6_ABBREV, 45 46 // CONSTANTS_BLOCK abbrev id's. 47 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 48 CONSTANTS_INTEGER_ABBREV, 49 CONSTANTS_CE_CAST_Abbrev, 50 CONSTANTS_NULL_Abbrev, 51 52 // FUNCTION_BLOCK abbrev id's. 53 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 54 FUNCTION_INST_BINOP_ABBREV, 55 FUNCTION_INST_BINOP_FLAGS_ABBREV, 56 FUNCTION_INST_CAST_ABBREV, 57 FUNCTION_INST_RET_VOID_ABBREV, 58 FUNCTION_INST_RET_VAL_ABBREV, 59 FUNCTION_INST_UNREACHABLE_ABBREV 60 }; 61 62 static unsigned GetEncodedCastOpcode(unsigned Opcode) { 63 switch (Opcode) { 64 default: llvm_unreachable("Unknown cast instruction!"); 65 case Instruction::Trunc : return bitc::CAST_TRUNC; 66 case Instruction::ZExt : return bitc::CAST_ZEXT; 67 case Instruction::SExt : return bitc::CAST_SEXT; 68 case Instruction::FPToUI : return bitc::CAST_FPTOUI; 69 case Instruction::FPToSI : return bitc::CAST_FPTOSI; 70 case Instruction::UIToFP : return bitc::CAST_UITOFP; 71 case Instruction::SIToFP : return bitc::CAST_SITOFP; 72 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; 73 case Instruction::FPExt : return bitc::CAST_FPEXT; 74 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; 75 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; 76 case Instruction::BitCast : return bitc::CAST_BITCAST; 77 case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST; 78 } 79 } 80 81 static unsigned GetEncodedBinaryOpcode(unsigned Opcode) { 82 switch (Opcode) { 83 default: llvm_unreachable("Unknown binary instruction!"); 84 case Instruction::Add: 85 case Instruction::FAdd: return bitc::BINOP_ADD; 86 case Instruction::Sub: 87 case Instruction::FSub: return bitc::BINOP_SUB; 88 case Instruction::Mul: 89 case Instruction::FMul: return bitc::BINOP_MUL; 90 case Instruction::UDiv: return bitc::BINOP_UDIV; 91 case Instruction::FDiv: 92 case Instruction::SDiv: return bitc::BINOP_SDIV; 93 case Instruction::URem: return bitc::BINOP_UREM; 94 case Instruction::FRem: 95 case Instruction::SRem: return bitc::BINOP_SREM; 96 case Instruction::Shl: return bitc::BINOP_SHL; 97 case Instruction::LShr: return bitc::BINOP_LSHR; 98 case Instruction::AShr: return bitc::BINOP_ASHR; 99 case Instruction::And: return bitc::BINOP_AND; 100 case Instruction::Or: return bitc::BINOP_OR; 101 case Instruction::Xor: return bitc::BINOP_XOR; 102 } 103 } 104 105 static unsigned GetEncodedRMWOperation(AtomicRMWInst::BinOp Op) { 106 switch (Op) { 107 default: llvm_unreachable("Unknown RMW operation!"); 108 case AtomicRMWInst::Xchg: return bitc::RMW_XCHG; 109 case AtomicRMWInst::Add: return bitc::RMW_ADD; 110 case AtomicRMWInst::Sub: return bitc::RMW_SUB; 111 case AtomicRMWInst::And: return bitc::RMW_AND; 112 case AtomicRMWInst::Nand: return bitc::RMW_NAND; 113 case AtomicRMWInst::Or: return bitc::RMW_OR; 114 case AtomicRMWInst::Xor: return bitc::RMW_XOR; 115 case AtomicRMWInst::Max: return bitc::RMW_MAX; 116 case AtomicRMWInst::Min: return bitc::RMW_MIN; 117 case AtomicRMWInst::UMax: return bitc::RMW_UMAX; 118 case AtomicRMWInst::UMin: return bitc::RMW_UMIN; 119 } 120 } 121 122 static unsigned GetEncodedOrdering(AtomicOrdering Ordering) { 123 switch (Ordering) { 124 case NotAtomic: return bitc::ORDERING_NOTATOMIC; 125 case Unordered: return bitc::ORDERING_UNORDERED; 126 case Monotonic: return bitc::ORDERING_MONOTONIC; 127 case Acquire: return bitc::ORDERING_ACQUIRE; 128 case Release: return bitc::ORDERING_RELEASE; 129 case AcquireRelease: return bitc::ORDERING_ACQREL; 130 case SequentiallyConsistent: return bitc::ORDERING_SEQCST; 131 } 132 llvm_unreachable("Invalid ordering"); 133 } 134 135 static unsigned GetEncodedSynchScope(SynchronizationScope SynchScope) { 136 switch (SynchScope) { 137 case SingleThread: return bitc::SYNCHSCOPE_SINGLETHREAD; 138 case CrossThread: return bitc::SYNCHSCOPE_CROSSTHREAD; 139 } 140 llvm_unreachable("Invalid synch scope"); 141 } 142 143 static void WriteStringRecord(unsigned Code, StringRef Str, 144 unsigned AbbrevToUse, BitstreamWriter &Stream) { 145 SmallVector<unsigned, 64> Vals; 146 147 // Code: [strchar x N] 148 for (unsigned i = 0, e = Str.size(); i != e; ++i) { 149 if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i])) 150 AbbrevToUse = 0; 151 Vals.push_back(Str[i]); 152 } 153 154 // Emit the finished record. 155 Stream.EmitRecord(Code, Vals, AbbrevToUse); 156 } 157 158 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) { 159 switch (Kind) { 160 case Attribute::Alignment: 161 return bitc::ATTR_KIND_ALIGNMENT; 162 case Attribute::AlwaysInline: 163 return bitc::ATTR_KIND_ALWAYS_INLINE; 164 case Attribute::Builtin: 165 return bitc::ATTR_KIND_BUILTIN; 166 case Attribute::ByVal: 167 return bitc::ATTR_KIND_BY_VAL; 168 case Attribute::InAlloca: 169 return bitc::ATTR_KIND_IN_ALLOCA; 170 case Attribute::Cold: 171 return bitc::ATTR_KIND_COLD; 172 case Attribute::InlineHint: 173 return bitc::ATTR_KIND_INLINE_HINT; 174 case Attribute::InReg: 175 return bitc::ATTR_KIND_IN_REG; 176 case Attribute::JumpTable: 177 return bitc::ATTR_KIND_JUMP_TABLE; 178 case Attribute::MinSize: 179 return bitc::ATTR_KIND_MIN_SIZE; 180 case Attribute::Naked: 181 return bitc::ATTR_KIND_NAKED; 182 case Attribute::Nest: 183 return bitc::ATTR_KIND_NEST; 184 case Attribute::NoAlias: 185 return bitc::ATTR_KIND_NO_ALIAS; 186 case Attribute::NoBuiltin: 187 return bitc::ATTR_KIND_NO_BUILTIN; 188 case Attribute::NoCapture: 189 return bitc::ATTR_KIND_NO_CAPTURE; 190 case Attribute::NoDuplicate: 191 return bitc::ATTR_KIND_NO_DUPLICATE; 192 case Attribute::NoImplicitFloat: 193 return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT; 194 case Attribute::NoInline: 195 return bitc::ATTR_KIND_NO_INLINE; 196 case Attribute::NonLazyBind: 197 return bitc::ATTR_KIND_NON_LAZY_BIND; 198 case Attribute::NonNull: 199 return bitc::ATTR_KIND_NON_NULL; 200 case Attribute::Dereferenceable: 201 return bitc::ATTR_KIND_DEREFERENCEABLE; 202 case Attribute::NoRedZone: 203 return bitc::ATTR_KIND_NO_RED_ZONE; 204 case Attribute::NoReturn: 205 return bitc::ATTR_KIND_NO_RETURN; 206 case Attribute::NoUnwind: 207 return bitc::ATTR_KIND_NO_UNWIND; 208 case Attribute::OptimizeForSize: 209 return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE; 210 case Attribute::OptimizeNone: 211 return bitc::ATTR_KIND_OPTIMIZE_NONE; 212 case Attribute::ReadNone: 213 return bitc::ATTR_KIND_READ_NONE; 214 case Attribute::ReadOnly: 215 return bitc::ATTR_KIND_READ_ONLY; 216 case Attribute::Returned: 217 return bitc::ATTR_KIND_RETURNED; 218 case Attribute::ReturnsTwice: 219 return bitc::ATTR_KIND_RETURNS_TWICE; 220 case Attribute::SExt: 221 return bitc::ATTR_KIND_S_EXT; 222 case Attribute::StackAlignment: 223 return bitc::ATTR_KIND_STACK_ALIGNMENT; 224 case Attribute::StackProtect: 225 return bitc::ATTR_KIND_STACK_PROTECT; 226 case Attribute::StackProtectReq: 227 return bitc::ATTR_KIND_STACK_PROTECT_REQ; 228 case Attribute::StackProtectStrong: 229 return bitc::ATTR_KIND_STACK_PROTECT_STRONG; 230 case Attribute::StructRet: 231 return bitc::ATTR_KIND_STRUCT_RET; 232 case Attribute::SanitizeAddress: 233 return bitc::ATTR_KIND_SANITIZE_ADDRESS; 234 case Attribute::SanitizeThread: 235 return bitc::ATTR_KIND_SANITIZE_THREAD; 236 case Attribute::SanitizeMemory: 237 return bitc::ATTR_KIND_SANITIZE_MEMORY; 238 case Attribute::UWTable: 239 return bitc::ATTR_KIND_UW_TABLE; 240 case Attribute::ZExt: 241 return bitc::ATTR_KIND_Z_EXT; 242 case Attribute::EndAttrKinds: 243 llvm_unreachable("Can not encode end-attribute kinds marker."); 244 case Attribute::None: 245 llvm_unreachable("Can not encode none-attribute."); 246 } 247 248 llvm_unreachable("Trying to encode unknown attribute"); 249 } 250 251 static void WriteAttributeGroupTable(const ValueEnumerator &VE, 252 BitstreamWriter &Stream) { 253 const std::vector<AttributeSet> &AttrGrps = VE.getAttributeGroups(); 254 if (AttrGrps.empty()) return; 255 256 Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3); 257 258 SmallVector<uint64_t, 64> Record; 259 for (unsigned i = 0, e = AttrGrps.size(); i != e; ++i) { 260 AttributeSet AS = AttrGrps[i]; 261 for (unsigned i = 0, e = AS.getNumSlots(); i != e; ++i) { 262 AttributeSet A = AS.getSlotAttributes(i); 263 264 Record.push_back(VE.getAttributeGroupID(A)); 265 Record.push_back(AS.getSlotIndex(i)); 266 267 for (AttributeSet::iterator I = AS.begin(0), E = AS.end(0); 268 I != E; ++I) { 269 Attribute Attr = *I; 270 if (Attr.isEnumAttribute()) { 271 Record.push_back(0); 272 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 273 } else if (Attr.isIntAttribute()) { 274 Record.push_back(1); 275 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 276 Record.push_back(Attr.getValueAsInt()); 277 } else { 278 StringRef Kind = Attr.getKindAsString(); 279 StringRef Val = Attr.getValueAsString(); 280 281 Record.push_back(Val.empty() ? 3 : 4); 282 Record.append(Kind.begin(), Kind.end()); 283 Record.push_back(0); 284 if (!Val.empty()) { 285 Record.append(Val.begin(), Val.end()); 286 Record.push_back(0); 287 } 288 } 289 } 290 291 Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record); 292 Record.clear(); 293 } 294 } 295 296 Stream.ExitBlock(); 297 } 298 299 static void WriteAttributeTable(const ValueEnumerator &VE, 300 BitstreamWriter &Stream) { 301 const std::vector<AttributeSet> &Attrs = VE.getAttributes(); 302 if (Attrs.empty()) return; 303 304 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 305 306 SmallVector<uint64_t, 64> Record; 307 for (unsigned i = 0, e = Attrs.size(); i != e; ++i) { 308 const AttributeSet &A = Attrs[i]; 309 for (unsigned i = 0, e = A.getNumSlots(); i != e; ++i) 310 Record.push_back(VE.getAttributeGroupID(A.getSlotAttributes(i))); 311 312 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 313 Record.clear(); 314 } 315 316 Stream.ExitBlock(); 317 } 318 319 /// WriteTypeTable - Write out the type table for a module. 320 static void WriteTypeTable(const ValueEnumerator &VE, BitstreamWriter &Stream) { 321 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 322 323 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */); 324 SmallVector<uint64_t, 64> TypeVals; 325 326 uint64_t NumBits = Log2_32_Ceil(VE.getTypes().size()+1); 327 328 // Abbrev for TYPE_CODE_POINTER. 329 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 330 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER)); 331 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 332 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 333 unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv); 334 335 // Abbrev for TYPE_CODE_FUNCTION. 336 Abbv = new BitCodeAbbrev(); 337 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 338 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 339 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 340 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 341 342 unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv); 343 344 // Abbrev for TYPE_CODE_STRUCT_ANON. 345 Abbv = new BitCodeAbbrev(); 346 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON)); 347 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 348 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 349 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 350 351 unsigned StructAnonAbbrev = Stream.EmitAbbrev(Abbv); 352 353 // Abbrev for TYPE_CODE_STRUCT_NAME. 354 Abbv = new BitCodeAbbrev(); 355 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME)); 356 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 357 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 358 unsigned StructNameAbbrev = Stream.EmitAbbrev(Abbv); 359 360 // Abbrev for TYPE_CODE_STRUCT_NAMED. 361 Abbv = new BitCodeAbbrev(); 362 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED)); 363 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 364 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 365 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 366 367 unsigned StructNamedAbbrev = Stream.EmitAbbrev(Abbv); 368 369 // Abbrev for TYPE_CODE_ARRAY. 370 Abbv = new BitCodeAbbrev(); 371 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 372 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 373 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 374 375 unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv); 376 377 // Emit an entry count so the reader can reserve space. 378 TypeVals.push_back(TypeList.size()); 379 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 380 TypeVals.clear(); 381 382 // Loop over all of the types, emitting each in turn. 383 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) { 384 Type *T = TypeList[i]; 385 int AbbrevToUse = 0; 386 unsigned Code = 0; 387 388 switch (T->getTypeID()) { 389 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; 390 case Type::HalfTyID: Code = bitc::TYPE_CODE_HALF; break; 391 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; 392 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; 393 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break; 394 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break; 395 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; 396 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; 397 case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break; 398 case Type::X86_MMXTyID: Code = bitc::TYPE_CODE_X86_MMX; break; 399 case Type::IntegerTyID: 400 // INTEGER: [width] 401 Code = bitc::TYPE_CODE_INTEGER; 402 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 403 break; 404 case Type::PointerTyID: { 405 PointerType *PTy = cast<PointerType>(T); 406 // POINTER: [pointee type, address space] 407 Code = bitc::TYPE_CODE_POINTER; 408 TypeVals.push_back(VE.getTypeID(PTy->getElementType())); 409 unsigned AddressSpace = PTy->getAddressSpace(); 410 TypeVals.push_back(AddressSpace); 411 if (AddressSpace == 0) AbbrevToUse = PtrAbbrev; 412 break; 413 } 414 case Type::FunctionTyID: { 415 FunctionType *FT = cast<FunctionType>(T); 416 // FUNCTION: [isvararg, retty, paramty x N] 417 Code = bitc::TYPE_CODE_FUNCTION; 418 TypeVals.push_back(FT->isVarArg()); 419 TypeVals.push_back(VE.getTypeID(FT->getReturnType())); 420 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) 421 TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); 422 AbbrevToUse = FunctionAbbrev; 423 break; 424 } 425 case Type::StructTyID: { 426 StructType *ST = cast<StructType>(T); 427 // STRUCT: [ispacked, eltty x N] 428 TypeVals.push_back(ST->isPacked()); 429 // Output all of the element types. 430 for (StructType::element_iterator I = ST->element_begin(), 431 E = ST->element_end(); I != E; ++I) 432 TypeVals.push_back(VE.getTypeID(*I)); 433 434 if (ST->isLiteral()) { 435 Code = bitc::TYPE_CODE_STRUCT_ANON; 436 AbbrevToUse = StructAnonAbbrev; 437 } else { 438 if (ST->isOpaque()) { 439 Code = bitc::TYPE_CODE_OPAQUE; 440 } else { 441 Code = bitc::TYPE_CODE_STRUCT_NAMED; 442 AbbrevToUse = StructNamedAbbrev; 443 } 444 445 // Emit the name if it is present. 446 if (!ST->getName().empty()) 447 WriteStringRecord(bitc::TYPE_CODE_STRUCT_NAME, ST->getName(), 448 StructNameAbbrev, Stream); 449 } 450 break; 451 } 452 case Type::ArrayTyID: { 453 ArrayType *AT = cast<ArrayType>(T); 454 // ARRAY: [numelts, eltty] 455 Code = bitc::TYPE_CODE_ARRAY; 456 TypeVals.push_back(AT->getNumElements()); 457 TypeVals.push_back(VE.getTypeID(AT->getElementType())); 458 AbbrevToUse = ArrayAbbrev; 459 break; 460 } 461 case Type::VectorTyID: { 462 VectorType *VT = cast<VectorType>(T); 463 // VECTOR [numelts, eltty] 464 Code = bitc::TYPE_CODE_VECTOR; 465 TypeVals.push_back(VT->getNumElements()); 466 TypeVals.push_back(VE.getTypeID(VT->getElementType())); 467 break; 468 } 469 } 470 471 // Emit the finished record. 472 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 473 TypeVals.clear(); 474 } 475 476 Stream.ExitBlock(); 477 } 478 479 static unsigned getEncodedLinkage(const GlobalValue &GV) { 480 switch (GV.getLinkage()) { 481 case GlobalValue::ExternalLinkage: 482 return 0; 483 case GlobalValue::WeakAnyLinkage: 484 return 16; 485 case GlobalValue::AppendingLinkage: 486 return 2; 487 case GlobalValue::InternalLinkage: 488 return 3; 489 case GlobalValue::LinkOnceAnyLinkage: 490 return 18; 491 case GlobalValue::ExternalWeakLinkage: 492 return 7; 493 case GlobalValue::CommonLinkage: 494 return 8; 495 case GlobalValue::PrivateLinkage: 496 return 9; 497 case GlobalValue::WeakODRLinkage: 498 return 17; 499 case GlobalValue::LinkOnceODRLinkage: 500 return 19; 501 case GlobalValue::AvailableExternallyLinkage: 502 return 12; 503 } 504 llvm_unreachable("Invalid linkage"); 505 } 506 507 static unsigned getEncodedVisibility(const GlobalValue &GV) { 508 switch (GV.getVisibility()) { 509 case GlobalValue::DefaultVisibility: return 0; 510 case GlobalValue::HiddenVisibility: return 1; 511 case GlobalValue::ProtectedVisibility: return 2; 512 } 513 llvm_unreachable("Invalid visibility"); 514 } 515 516 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) { 517 switch (GV.getDLLStorageClass()) { 518 case GlobalValue::DefaultStorageClass: return 0; 519 case GlobalValue::DLLImportStorageClass: return 1; 520 case GlobalValue::DLLExportStorageClass: return 2; 521 } 522 llvm_unreachable("Invalid DLL storage class"); 523 } 524 525 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) { 526 switch (GV.getThreadLocalMode()) { 527 case GlobalVariable::NotThreadLocal: return 0; 528 case GlobalVariable::GeneralDynamicTLSModel: return 1; 529 case GlobalVariable::LocalDynamicTLSModel: return 2; 530 case GlobalVariable::InitialExecTLSModel: return 3; 531 case GlobalVariable::LocalExecTLSModel: return 4; 532 } 533 llvm_unreachable("Invalid TLS model"); 534 } 535 536 static unsigned getEncodedComdatSelectionKind(const Comdat &C) { 537 switch (C.getSelectionKind()) { 538 case Comdat::Any: 539 return bitc::COMDAT_SELECTION_KIND_ANY; 540 case Comdat::ExactMatch: 541 return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH; 542 case Comdat::Largest: 543 return bitc::COMDAT_SELECTION_KIND_LARGEST; 544 case Comdat::NoDuplicates: 545 return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES; 546 case Comdat::SameSize: 547 return bitc::COMDAT_SELECTION_KIND_SAME_SIZE; 548 } 549 llvm_unreachable("Invalid selection kind"); 550 } 551 552 static void writeComdats(const ValueEnumerator &VE, BitstreamWriter &Stream) { 553 SmallVector<uint16_t, 64> Vals; 554 for (const Comdat *C : VE.getComdats()) { 555 // COMDAT: [selection_kind, name] 556 Vals.push_back(getEncodedComdatSelectionKind(*C)); 557 size_t Size = C->getName().size(); 558 assert(isUInt<16>(Size)); 559 Vals.push_back(Size); 560 for (char Chr : C->getName()) 561 Vals.push_back((unsigned char)Chr); 562 Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0); 563 Vals.clear(); 564 } 565 } 566 567 // Emit top-level description of module, including target triple, inline asm, 568 // descriptors for global variables, and function prototype info. 569 static void WriteModuleInfo(const Module *M, const ValueEnumerator &VE, 570 BitstreamWriter &Stream) { 571 // Emit various pieces of data attached to a module. 572 if (!M->getTargetTriple().empty()) 573 WriteStringRecord(bitc::MODULE_CODE_TRIPLE, M->getTargetTriple(), 574 0/*TODO*/, Stream); 575 const std::string &DL = M->getDataLayoutStr(); 576 if (!DL.empty()) 577 WriteStringRecord(bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/, Stream); 578 if (!M->getModuleInlineAsm().empty()) 579 WriteStringRecord(bitc::MODULE_CODE_ASM, M->getModuleInlineAsm(), 580 0/*TODO*/, Stream); 581 582 // Emit information about sections and GC, computing how many there are. Also 583 // compute the maximum alignment value. 584 std::map<std::string, unsigned> SectionMap; 585 std::map<std::string, unsigned> GCMap; 586 unsigned MaxAlignment = 0; 587 unsigned MaxGlobalType = 0; 588 for (const GlobalValue &GV : M->globals()) { 589 MaxAlignment = std::max(MaxAlignment, GV.getAlignment()); 590 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getType())); 591 if (GV.hasSection()) { 592 // Give section names unique ID's. 593 unsigned &Entry = SectionMap[GV.getSection()]; 594 if (!Entry) { 595 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV.getSection(), 596 0/*TODO*/, Stream); 597 Entry = SectionMap.size(); 598 } 599 } 600 } 601 for (const Function &F : *M) { 602 MaxAlignment = std::max(MaxAlignment, F.getAlignment()); 603 if (F.hasSection()) { 604 // Give section names unique ID's. 605 unsigned &Entry = SectionMap[F.getSection()]; 606 if (!Entry) { 607 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, F.getSection(), 608 0/*TODO*/, Stream); 609 Entry = SectionMap.size(); 610 } 611 } 612 if (F.hasGC()) { 613 // Same for GC names. 614 unsigned &Entry = GCMap[F.getGC()]; 615 if (!Entry) { 616 WriteStringRecord(bitc::MODULE_CODE_GCNAME, F.getGC(), 617 0/*TODO*/, Stream); 618 Entry = GCMap.size(); 619 } 620 } 621 } 622 623 // Emit abbrev for globals, now that we know # sections and max alignment. 624 unsigned SimpleGVarAbbrev = 0; 625 if (!M->global_empty()) { 626 // Add an abbrev for common globals with no visibility or thread localness. 627 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 628 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 629 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 630 Log2_32_Ceil(MaxGlobalType+1))); 631 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // Constant. 632 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 633 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage. 634 if (MaxAlignment == 0) // Alignment. 635 Abbv->Add(BitCodeAbbrevOp(0)); 636 else { 637 unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1; 638 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 639 Log2_32_Ceil(MaxEncAlignment+1))); 640 } 641 if (SectionMap.empty()) // Section. 642 Abbv->Add(BitCodeAbbrevOp(0)); 643 else 644 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 645 Log2_32_Ceil(SectionMap.size()+1))); 646 // Don't bother emitting vis + thread local. 647 SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv); 648 } 649 650 // Emit the global variable information. 651 SmallVector<unsigned, 64> Vals; 652 for (const GlobalVariable &GV : M->globals()) { 653 unsigned AbbrevToUse = 0; 654 655 // GLOBALVAR: [type, isconst, initid, 656 // linkage, alignment, section, visibility, threadlocal, 657 // unnamed_addr, externally_initialized, dllstorageclass, 658 // comdat] 659 Vals.push_back(VE.getTypeID(GV.getType())); 660 Vals.push_back(GV.isConstant()); 661 Vals.push_back(GV.isDeclaration() ? 0 : 662 (VE.getValueID(GV.getInitializer()) + 1)); 663 Vals.push_back(getEncodedLinkage(GV)); 664 Vals.push_back(Log2_32(GV.getAlignment())+1); 665 Vals.push_back(GV.hasSection() ? SectionMap[GV.getSection()] : 0); 666 if (GV.isThreadLocal() || 667 GV.getVisibility() != GlobalValue::DefaultVisibility || 668 GV.hasUnnamedAddr() || GV.isExternallyInitialized() || 669 GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass || 670 GV.hasComdat()) { 671 Vals.push_back(getEncodedVisibility(GV)); 672 Vals.push_back(getEncodedThreadLocalMode(GV)); 673 Vals.push_back(GV.hasUnnamedAddr()); 674 Vals.push_back(GV.isExternallyInitialized()); 675 Vals.push_back(getEncodedDLLStorageClass(GV)); 676 Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0); 677 } else { 678 AbbrevToUse = SimpleGVarAbbrev; 679 } 680 681 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 682 Vals.clear(); 683 } 684 685 // Emit the function proto information. 686 for (const Function &F : *M) { 687 // FUNCTION: [type, callingconv, isproto, linkage, paramattrs, alignment, 688 // section, visibility, gc, unnamed_addr, prologuedata, 689 // dllstorageclass, comdat, prefixdata] 690 Vals.push_back(VE.getTypeID(F.getType())); 691 Vals.push_back(F.getCallingConv()); 692 Vals.push_back(F.isDeclaration()); 693 Vals.push_back(getEncodedLinkage(F)); 694 Vals.push_back(VE.getAttributeID(F.getAttributes())); 695 Vals.push_back(Log2_32(F.getAlignment())+1); 696 Vals.push_back(F.hasSection() ? SectionMap[F.getSection()] : 0); 697 Vals.push_back(getEncodedVisibility(F)); 698 Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0); 699 Vals.push_back(F.hasUnnamedAddr()); 700 Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1) 701 : 0); 702 Vals.push_back(getEncodedDLLStorageClass(F)); 703 Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0); 704 Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1) 705 : 0); 706 707 unsigned AbbrevToUse = 0; 708 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 709 Vals.clear(); 710 } 711 712 // Emit the alias information. 713 for (const GlobalAlias &A : M->aliases()) { 714 // ALIAS: [alias type, aliasee val#, linkage, visibility] 715 Vals.push_back(VE.getTypeID(A.getType())); 716 Vals.push_back(VE.getValueID(A.getAliasee())); 717 Vals.push_back(getEncodedLinkage(A)); 718 Vals.push_back(getEncodedVisibility(A)); 719 Vals.push_back(getEncodedDLLStorageClass(A)); 720 Vals.push_back(getEncodedThreadLocalMode(A)); 721 Vals.push_back(A.hasUnnamedAddr()); 722 unsigned AbbrevToUse = 0; 723 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); 724 Vals.clear(); 725 } 726 } 727 728 static uint64_t GetOptimizationFlags(const Value *V) { 729 uint64_t Flags = 0; 730 731 if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) { 732 if (OBO->hasNoSignedWrap()) 733 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP; 734 if (OBO->hasNoUnsignedWrap()) 735 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP; 736 } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) { 737 if (PEO->isExact()) 738 Flags |= 1 << bitc::PEO_EXACT; 739 } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) { 740 if (FPMO->hasUnsafeAlgebra()) 741 Flags |= FastMathFlags::UnsafeAlgebra; 742 if (FPMO->hasNoNaNs()) 743 Flags |= FastMathFlags::NoNaNs; 744 if (FPMO->hasNoInfs()) 745 Flags |= FastMathFlags::NoInfs; 746 if (FPMO->hasNoSignedZeros()) 747 Flags |= FastMathFlags::NoSignedZeros; 748 if (FPMO->hasAllowReciprocal()) 749 Flags |= FastMathFlags::AllowReciprocal; 750 } 751 752 return Flags; 753 } 754 755 static void WriteValueAsMetadata(const ValueAsMetadata *MD, 756 const ValueEnumerator &VE, 757 BitstreamWriter &Stream, 758 SmallVectorImpl<uint64_t> &Record) { 759 // Mimic an MDNode with a value as one operand. 760 Value *V = MD->getValue(); 761 Record.push_back(VE.getTypeID(V->getType())); 762 Record.push_back(VE.getValueID(V)); 763 Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0); 764 Record.clear(); 765 } 766 767 static void WriteMDTuple(const MDTuple *N, const ValueEnumerator &VE, 768 BitstreamWriter &Stream, 769 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev) { 770 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 771 Metadata *MD = N->getOperand(i); 772 assert(!(MD && isa<LocalAsMetadata>(MD)) && 773 "Unexpected function-local metadata"); 774 Record.push_back(VE.getMetadataOrNullID(MD)); 775 } 776 Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE 777 : bitc::METADATA_NODE, 778 Record, Abbrev); 779 Record.clear(); 780 } 781 782 static void WriteMDLocation(const MDLocation *N, const ValueEnumerator &VE, 783 BitstreamWriter &Stream, 784 SmallVectorImpl<uint64_t> &Record, 785 unsigned Abbrev) { 786 Record.push_back(N->isDistinct()); 787 Record.push_back(N->getLine()); 788 Record.push_back(N->getColumn()); 789 Record.push_back(VE.getMetadataID(N->getScope())); 790 Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt())); 791 792 Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev); 793 Record.clear(); 794 } 795 796 static void WriteGenericDebugNode(const GenericDebugNode *N, 797 const ValueEnumerator &VE, 798 BitstreamWriter &Stream, 799 SmallVectorImpl<uint64_t> &Record, 800 unsigned Abbrev) { 801 Record.push_back(N->isDistinct()); 802 Record.push_back(N->getTag()); 803 Record.push_back(0); // Per-tag version field; unused for now. 804 805 for (auto &I : N->operands()) 806 Record.push_back(VE.getMetadataOrNullID(I)); 807 808 Stream.EmitRecord(bitc::METADATA_GENERIC_DEBUG, Record, Abbrev); 809 Record.clear(); 810 } 811 812 static uint64_t rotateSign(int64_t I) { 813 uint64_t U = I; 814 return I < 0 ? ~(U << 1) : U << 1; 815 } 816 817 static void WriteMDSubrange(const MDSubrange *N, const ValueEnumerator &, 818 BitstreamWriter &Stream, 819 SmallVectorImpl<uint64_t> &Record, 820 unsigned Abbrev) { 821 Record.push_back(N->isDistinct()); 822 Record.push_back(N->getCount()); 823 Record.push_back(rotateSign(N->getLo())); 824 825 Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev); 826 Record.clear(); 827 } 828 829 static void WriteMDEnumerator(const MDEnumerator *N, const ValueEnumerator &VE, 830 BitstreamWriter &Stream, 831 SmallVectorImpl<uint64_t> &Record, 832 unsigned Abbrev) { 833 Record.push_back(N->isDistinct()); 834 Record.push_back(rotateSign(N->getValue())); 835 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 836 837 Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev); 838 Record.clear(); 839 } 840 841 static void WriteMDBasicType(const MDBasicType *N, const ValueEnumerator &VE, 842 BitstreamWriter &Stream, 843 SmallVectorImpl<uint64_t> &Record, 844 unsigned Abbrev) { 845 Record.push_back(N->isDistinct()); 846 Record.push_back(N->getTag()); 847 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 848 Record.push_back(N->getSizeInBits()); 849 Record.push_back(N->getAlignInBits()); 850 Record.push_back(N->getEncoding()); 851 852 Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev); 853 Record.clear(); 854 } 855 856 static void WriteMDDerivedType(const MDDerivedType *N, 857 const ValueEnumerator &VE, 858 BitstreamWriter &Stream, 859 SmallVectorImpl<uint64_t> &Record, 860 unsigned Abbrev) { 861 Record.push_back(N->isDistinct()); 862 Record.push_back(N->getTag()); 863 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 864 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 865 Record.push_back(N->getLine()); 866 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 867 Record.push_back(VE.getMetadataID(N->getBaseType())); 868 Record.push_back(N->getSizeInBits()); 869 Record.push_back(N->getAlignInBits()); 870 Record.push_back(N->getOffsetInBits()); 871 Record.push_back(N->getFlags()); 872 Record.push_back(VE.getMetadataOrNullID(N->getExtraData())); 873 874 Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev); 875 Record.clear(); 876 } 877 878 static void WriteMDCompositeType(const MDCompositeType *N, 879 const ValueEnumerator &VE, 880 BitstreamWriter &Stream, 881 SmallVectorImpl<uint64_t> &Record, 882 unsigned Abbrev) { 883 Record.push_back(N->isDistinct()); 884 Record.push_back(N->getTag()); 885 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 886 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 887 Record.push_back(N->getLine()); 888 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 889 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 890 Record.push_back(N->getSizeInBits()); 891 Record.push_back(N->getAlignInBits()); 892 Record.push_back(N->getOffsetInBits()); 893 Record.push_back(N->getFlags()); 894 Record.push_back(VE.getMetadataOrNullID(N->getElements())); 895 Record.push_back(N->getRuntimeLang()); 896 Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder())); 897 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams())); 898 Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier())); 899 900 Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev); 901 Record.clear(); 902 } 903 904 static void WriteMDSubroutineType(const MDSubroutineType *N, 905 const ValueEnumerator &VE, 906 BitstreamWriter &Stream, 907 SmallVectorImpl<uint64_t> &Record, 908 unsigned Abbrev) { 909 Record.push_back(N->isDistinct()); 910 Record.push_back(N->getFlags()); 911 Record.push_back(VE.getMetadataOrNullID(N->getTypeArray())); 912 913 Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev); 914 Record.clear(); 915 } 916 917 static void WriteMDFile(const MDFile *N, const ValueEnumerator &VE, 918 BitstreamWriter &Stream, 919 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev) { 920 Record.push_back(N->isDistinct()); 921 Record.push_back(VE.getMetadataOrNullID(N->getRawFilename())); 922 Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory())); 923 924 Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev); 925 Record.clear(); 926 } 927 928 static void WriteMDCompileUnit(const MDCompileUnit *N, 929 const ValueEnumerator &VE, 930 BitstreamWriter &Stream, 931 SmallVectorImpl<uint64_t> &Record, 932 unsigned Abbrev) { 933 Record.push_back(N->isDistinct()); 934 Record.push_back(N->getSourceLanguage()); 935 Record.push_back(VE.getMetadataID(N->getFile())); 936 Record.push_back(VE.getMetadataOrNullID(N->getRawProducer())); 937 Record.push_back(N->isOptimized()); 938 Record.push_back(VE.getMetadataOrNullID(N->getRawFlags())); 939 Record.push_back(N->getRuntimeVersion()); 940 Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename())); 941 Record.push_back(N->getEmissionKind()); 942 Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes())); 943 Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes())); 944 Record.push_back(VE.getMetadataOrNullID(N->getSubprograms())); 945 Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables())); 946 Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities())); 947 948 Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev); 949 Record.clear(); 950 } 951 952 static void WriteMDSubprogram(const MDSubprogram *N, 953 const ValueEnumerator &VE, 954 BitstreamWriter &Stream, 955 SmallVectorImpl<uint64_t> &Record, 956 unsigned Abbrev) { 957 Record.push_back(N->isDistinct()); 958 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 959 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 960 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 961 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 962 Record.push_back(N->getLine()); 963 Record.push_back(VE.getMetadataOrNullID(N->getType())); 964 Record.push_back(N->isLocalToUnit()); 965 Record.push_back(N->isDefinition()); 966 Record.push_back(N->getScopeLine()); 967 Record.push_back(VE.getMetadataOrNullID(N->getContainingType())); 968 Record.push_back(N->getVirtuality()); 969 Record.push_back(N->getVirtualIndex()); 970 Record.push_back(N->getFlags()); 971 Record.push_back(N->isOptimized()); 972 Record.push_back(VE.getMetadataOrNullID(N->getFunction())); 973 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams())); 974 Record.push_back(VE.getMetadataOrNullID(N->getDeclaration())); 975 Record.push_back(VE.getMetadataOrNullID(N->getVariables())); 976 977 Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev); 978 Record.clear(); 979 } 980 981 static void WriteMDLexicalBlock(const MDLexicalBlock *N, 982 const ValueEnumerator &VE, 983 BitstreamWriter &Stream, 984 SmallVectorImpl<uint64_t> &Record, 985 unsigned Abbrev) { 986 Record.push_back(N->isDistinct()); 987 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 988 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 989 Record.push_back(N->getLine()); 990 Record.push_back(N->getColumn()); 991 992 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev); 993 Record.clear(); 994 } 995 996 static void WriteMDLexicalBlockFile(const MDLexicalBlockFile *N, 997 const ValueEnumerator &VE, 998 BitstreamWriter &Stream, 999 SmallVectorImpl<uint64_t> &Record, 1000 unsigned Abbrev) { 1001 Record.push_back(N->isDistinct()); 1002 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1003 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1004 Record.push_back(N->getDiscriminator()); 1005 1006 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev); 1007 Record.clear(); 1008 } 1009 1010 static void WriteMDNamespace(const MDNamespace *N, const ValueEnumerator &VE, 1011 BitstreamWriter &Stream, 1012 SmallVectorImpl<uint64_t> &Record, 1013 unsigned Abbrev) { 1014 Record.push_back(N->isDistinct()); 1015 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1016 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1017 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1018 Record.push_back(N->getLine()); 1019 1020 Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev); 1021 Record.clear(); 1022 } 1023 1024 static void WriteMDTemplateTypeParameter(const MDTemplateTypeParameter *N, 1025 const ValueEnumerator &VE, 1026 BitstreamWriter &Stream, 1027 SmallVectorImpl<uint64_t> &Record, 1028 unsigned Abbrev) { 1029 Record.push_back(N->isDistinct()); 1030 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1031 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1032 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1033 1034 Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev); 1035 Record.clear(); 1036 } 1037 1038 static void WriteMDTemplateValueParameter(const MDTemplateValueParameter *N, 1039 const ValueEnumerator &VE, 1040 BitstreamWriter &Stream, 1041 SmallVectorImpl<uint64_t> &Record, 1042 unsigned Abbrev) { 1043 Record.push_back(N->isDistinct()); 1044 Record.push_back(N->getTag()); 1045 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1046 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1047 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1048 Record.push_back(VE.getMetadataOrNullID(N->getValue())); 1049 1050 Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev); 1051 Record.clear(); 1052 } 1053 1054 static void WriteMDGlobalVariable(const MDGlobalVariable *N, 1055 const ValueEnumerator &VE, 1056 BitstreamWriter &Stream, 1057 SmallVectorImpl<uint64_t> &Record, 1058 unsigned Abbrev) { 1059 Record.push_back(N->isDistinct()); 1060 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1061 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1062 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1063 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1064 Record.push_back(N->getLine()); 1065 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1066 Record.push_back(N->isLocalToUnit()); 1067 Record.push_back(N->isDefinition()); 1068 Record.push_back(VE.getMetadataOrNullID(N->getVariable())); 1069 Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration())); 1070 1071 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev); 1072 Record.clear(); 1073 } 1074 1075 static void WriteMDLocalVariable(const MDLocalVariable *N, 1076 const ValueEnumerator &VE, 1077 BitstreamWriter &Stream, 1078 SmallVectorImpl<uint64_t> &Record, 1079 unsigned Abbrev) { 1080 Record.push_back(N->isDistinct()); 1081 Record.push_back(N->getTag()); 1082 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1083 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1084 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1085 Record.push_back(N->getLine()); 1086 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1087 Record.push_back(N->getArg()); 1088 Record.push_back(N->getFlags()); 1089 Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt())); 1090 1091 Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev); 1092 Record.clear(); 1093 } 1094 1095 static void WriteMDExpression(const MDExpression *N, const ValueEnumerator &, 1096 BitstreamWriter &Stream, 1097 SmallVectorImpl<uint64_t> &Record, 1098 unsigned Abbrev) { 1099 Record.reserve(N->getElements().size() + 1); 1100 1101 Record.push_back(N->isDistinct()); 1102 for (uint64_t I : N->getElements()) 1103 Record.push_back(I); 1104 1105 Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev); 1106 Record.clear(); 1107 } 1108 1109 static void WriteMDObjCProperty(const MDObjCProperty *N, 1110 const ValueEnumerator &VE, 1111 BitstreamWriter &Stream, 1112 SmallVectorImpl<uint64_t> &Record, 1113 unsigned Abbrev) { 1114 Record.push_back(N->isDistinct()); 1115 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1116 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1117 Record.push_back(N->getLine()); 1118 Record.push_back(VE.getMetadataOrNullID(N->getRawSetterName())); 1119 Record.push_back(VE.getMetadataOrNullID(N->getRawGetterName())); 1120 Record.push_back(N->getAttributes()); 1121 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1122 1123 Stream.EmitRecord(bitc::METADATA_OBJC_PROPERTY, Record, Abbrev); 1124 Record.clear(); 1125 } 1126 1127 static void WriteMDImportedEntity(const MDImportedEntity *N, 1128 const ValueEnumerator &VE, 1129 BitstreamWriter &Stream, 1130 SmallVectorImpl<uint64_t> &Record, 1131 unsigned Abbrev) { 1132 Record.push_back(N->isDistinct()); 1133 Record.push_back(N->getTag()); 1134 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1135 Record.push_back(VE.getMetadataOrNullID(N->getEntity())); 1136 Record.push_back(N->getLine()); 1137 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1138 1139 Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev); 1140 Record.clear(); 1141 } 1142 1143 static void WriteModuleMetadata(const Module *M, 1144 const ValueEnumerator &VE, 1145 BitstreamWriter &Stream) { 1146 const auto &MDs = VE.getMDs(); 1147 if (MDs.empty() && M->named_metadata_empty()) 1148 return; 1149 1150 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 1151 1152 unsigned MDSAbbrev = 0; 1153 if (VE.hasMDString()) { 1154 // Abbrev for METADATA_STRING. 1155 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1156 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRING)); 1157 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1158 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1159 MDSAbbrev = Stream.EmitAbbrev(Abbv); 1160 } 1161 1162 // Initialize MDNode abbreviations. 1163 #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0; 1164 #include "llvm/IR/Metadata.def" 1165 1166 if (VE.hasMDLocation()) { 1167 // Abbrev for METADATA_LOCATION. 1168 // 1169 // Assume the column is usually under 128, and always output the inlined-at 1170 // location (it's never more expensive than building an array size 1). 1171 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1172 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION)); 1173 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1174 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1175 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1176 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1177 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1178 MDLocationAbbrev = Stream.EmitAbbrev(Abbv); 1179 } 1180 1181 if (VE.hasGenericDebugNode()) { 1182 // Abbrev for METADATA_GENERIC_DEBUG. 1183 // 1184 // Assume the column is usually under 128, and always output the inlined-at 1185 // location (it's never more expensive than building an array size 1). 1186 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1187 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG)); 1188 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1189 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1190 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1191 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1192 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1193 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1194 GenericDebugNodeAbbrev = Stream.EmitAbbrev(Abbv); 1195 } 1196 1197 unsigned NameAbbrev = 0; 1198 if (!M->named_metadata_empty()) { 1199 // Abbrev for METADATA_NAME. 1200 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1201 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME)); 1202 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1203 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1204 NameAbbrev = Stream.EmitAbbrev(Abbv); 1205 } 1206 1207 SmallVector<uint64_t, 64> Record; 1208 for (const Metadata *MD : MDs) { 1209 if (const MDNode *N = dyn_cast<MDNode>(MD)) { 1210 switch (N->getMetadataID()) { 1211 default: 1212 llvm_unreachable("Invalid MDNode subclass"); 1213 #define HANDLE_MDNODE_LEAF(CLASS) \ 1214 case Metadata::CLASS##Kind: \ 1215 Write##CLASS(cast<CLASS>(N), VE, Stream, Record, CLASS##Abbrev); \ 1216 continue; 1217 #include "llvm/IR/Metadata.def" 1218 } 1219 } 1220 if (const auto *MDC = dyn_cast<ConstantAsMetadata>(MD)) { 1221 WriteValueAsMetadata(MDC, VE, Stream, Record); 1222 continue; 1223 } 1224 const MDString *MDS = cast<MDString>(MD); 1225 // Code: [strchar x N] 1226 Record.append(MDS->bytes_begin(), MDS->bytes_end()); 1227 1228 // Emit the finished record. 1229 Stream.EmitRecord(bitc::METADATA_STRING, Record, MDSAbbrev); 1230 Record.clear(); 1231 } 1232 1233 // Write named metadata. 1234 for (const NamedMDNode &NMD : M->named_metadata()) { 1235 // Write name. 1236 StringRef Str = NMD.getName(); 1237 Record.append(Str.bytes_begin(), Str.bytes_end()); 1238 Stream.EmitRecord(bitc::METADATA_NAME, Record, NameAbbrev); 1239 Record.clear(); 1240 1241 // Write named metadata operands. 1242 for (const MDNode *N : NMD.operands()) 1243 Record.push_back(VE.getMetadataID(N)); 1244 Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0); 1245 Record.clear(); 1246 } 1247 1248 Stream.ExitBlock(); 1249 } 1250 1251 static void WriteFunctionLocalMetadata(const Function &F, 1252 const ValueEnumerator &VE, 1253 BitstreamWriter &Stream) { 1254 bool StartedMetadataBlock = false; 1255 SmallVector<uint64_t, 64> Record; 1256 const SmallVectorImpl<const LocalAsMetadata *> &MDs = 1257 VE.getFunctionLocalMDs(); 1258 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 1259 assert(MDs[i] && "Expected valid function-local metadata"); 1260 if (!StartedMetadataBlock) { 1261 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 1262 StartedMetadataBlock = true; 1263 } 1264 WriteValueAsMetadata(MDs[i], VE, Stream, Record); 1265 } 1266 1267 if (StartedMetadataBlock) 1268 Stream.ExitBlock(); 1269 } 1270 1271 static void WriteMetadataAttachment(const Function &F, 1272 const ValueEnumerator &VE, 1273 BitstreamWriter &Stream) { 1274 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3); 1275 1276 SmallVector<uint64_t, 64> Record; 1277 1278 // Write metadata attachments 1279 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]] 1280 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 1281 1282 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 1283 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 1284 I != E; ++I) { 1285 MDs.clear(); 1286 I->getAllMetadataOtherThanDebugLoc(MDs); 1287 1288 // If no metadata, ignore instruction. 1289 if (MDs.empty()) continue; 1290 1291 Record.push_back(VE.getInstructionID(I)); 1292 1293 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 1294 Record.push_back(MDs[i].first); 1295 Record.push_back(VE.getMetadataID(MDs[i].second)); 1296 } 1297 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 1298 Record.clear(); 1299 } 1300 1301 Stream.ExitBlock(); 1302 } 1303 1304 static void WriteModuleMetadataStore(const Module *M, BitstreamWriter &Stream) { 1305 SmallVector<uint64_t, 64> Record; 1306 1307 // Write metadata kinds 1308 // METADATA_KIND - [n x [id, name]] 1309 SmallVector<StringRef, 8> Names; 1310 M->getMDKindNames(Names); 1311 1312 if (Names.empty()) return; 1313 1314 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 1315 1316 for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) { 1317 Record.push_back(MDKindID); 1318 StringRef KName = Names[MDKindID]; 1319 Record.append(KName.begin(), KName.end()); 1320 1321 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0); 1322 Record.clear(); 1323 } 1324 1325 Stream.ExitBlock(); 1326 } 1327 1328 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) { 1329 if ((int64_t)V >= 0) 1330 Vals.push_back(V << 1); 1331 else 1332 Vals.push_back((-V << 1) | 1); 1333 } 1334 1335 static void WriteConstants(unsigned FirstVal, unsigned LastVal, 1336 const ValueEnumerator &VE, 1337 BitstreamWriter &Stream, bool isGlobal) { 1338 if (FirstVal == LastVal) return; 1339 1340 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 1341 1342 unsigned AggregateAbbrev = 0; 1343 unsigned String8Abbrev = 0; 1344 unsigned CString7Abbrev = 0; 1345 unsigned CString6Abbrev = 0; 1346 // If this is a constant pool for the module, emit module-specific abbrevs. 1347 if (isGlobal) { 1348 // Abbrev for CST_CODE_AGGREGATE. 1349 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1350 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 1351 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1352 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); 1353 AggregateAbbrev = Stream.EmitAbbrev(Abbv); 1354 1355 // Abbrev for CST_CODE_STRING. 1356 Abbv = new BitCodeAbbrev(); 1357 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 1358 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1359 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1360 String8Abbrev = Stream.EmitAbbrev(Abbv); 1361 // Abbrev for CST_CODE_CSTRING. 1362 Abbv = new BitCodeAbbrev(); 1363 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 1364 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1365 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 1366 CString7Abbrev = Stream.EmitAbbrev(Abbv); 1367 // Abbrev for CST_CODE_CSTRING. 1368 Abbv = new BitCodeAbbrev(); 1369 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 1370 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1371 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 1372 CString6Abbrev = Stream.EmitAbbrev(Abbv); 1373 } 1374 1375 SmallVector<uint64_t, 64> Record; 1376 1377 const ValueEnumerator::ValueList &Vals = VE.getValues(); 1378 Type *LastTy = nullptr; 1379 for (unsigned i = FirstVal; i != LastVal; ++i) { 1380 const Value *V = Vals[i].first; 1381 // If we need to switch types, do so now. 1382 if (V->getType() != LastTy) { 1383 LastTy = V->getType(); 1384 Record.push_back(VE.getTypeID(LastTy)); 1385 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 1386 CONSTANTS_SETTYPE_ABBREV); 1387 Record.clear(); 1388 } 1389 1390 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 1391 Record.push_back(unsigned(IA->hasSideEffects()) | 1392 unsigned(IA->isAlignStack()) << 1 | 1393 unsigned(IA->getDialect()&1) << 2); 1394 1395 // Add the asm string. 1396 const std::string &AsmStr = IA->getAsmString(); 1397 Record.push_back(AsmStr.size()); 1398 for (unsigned i = 0, e = AsmStr.size(); i != e; ++i) 1399 Record.push_back(AsmStr[i]); 1400 1401 // Add the constraint string. 1402 const std::string &ConstraintStr = IA->getConstraintString(); 1403 Record.push_back(ConstraintStr.size()); 1404 for (unsigned i = 0, e = ConstraintStr.size(); i != e; ++i) 1405 Record.push_back(ConstraintStr[i]); 1406 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 1407 Record.clear(); 1408 continue; 1409 } 1410 const Constant *C = cast<Constant>(V); 1411 unsigned Code = -1U; 1412 unsigned AbbrevToUse = 0; 1413 if (C->isNullValue()) { 1414 Code = bitc::CST_CODE_NULL; 1415 } else if (isa<UndefValue>(C)) { 1416 Code = bitc::CST_CODE_UNDEF; 1417 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 1418 if (IV->getBitWidth() <= 64) { 1419 uint64_t V = IV->getSExtValue(); 1420 emitSignedInt64(Record, V); 1421 Code = bitc::CST_CODE_INTEGER; 1422 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 1423 } else { // Wide integers, > 64 bits in size. 1424 // We have an arbitrary precision integer value to write whose 1425 // bit width is > 64. However, in canonical unsigned integer 1426 // format it is likely that the high bits are going to be zero. 1427 // So, we only write the number of active words. 1428 unsigned NWords = IV->getValue().getActiveWords(); 1429 const uint64_t *RawWords = IV->getValue().getRawData(); 1430 for (unsigned i = 0; i != NWords; ++i) { 1431 emitSignedInt64(Record, RawWords[i]); 1432 } 1433 Code = bitc::CST_CODE_WIDE_INTEGER; 1434 } 1435 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 1436 Code = bitc::CST_CODE_FLOAT; 1437 Type *Ty = CFP->getType(); 1438 if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) { 1439 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); 1440 } else if (Ty->isX86_FP80Ty()) { 1441 // api needed to prevent premature destruction 1442 // bits are not in the same order as a normal i80 APInt, compensate. 1443 APInt api = CFP->getValueAPF().bitcastToAPInt(); 1444 const uint64_t *p = api.getRawData(); 1445 Record.push_back((p[1] << 48) | (p[0] >> 16)); 1446 Record.push_back(p[0] & 0xffffLL); 1447 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) { 1448 APInt api = CFP->getValueAPF().bitcastToAPInt(); 1449 const uint64_t *p = api.getRawData(); 1450 Record.push_back(p[0]); 1451 Record.push_back(p[1]); 1452 } else { 1453 assert (0 && "Unknown FP type!"); 1454 } 1455 } else if (isa<ConstantDataSequential>(C) && 1456 cast<ConstantDataSequential>(C)->isString()) { 1457 const ConstantDataSequential *Str = cast<ConstantDataSequential>(C); 1458 // Emit constant strings specially. 1459 unsigned NumElts = Str->getNumElements(); 1460 // If this is a null-terminated string, use the denser CSTRING encoding. 1461 if (Str->isCString()) { 1462 Code = bitc::CST_CODE_CSTRING; 1463 --NumElts; // Don't encode the null, which isn't allowed by char6. 1464 } else { 1465 Code = bitc::CST_CODE_STRING; 1466 AbbrevToUse = String8Abbrev; 1467 } 1468 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 1469 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 1470 for (unsigned i = 0; i != NumElts; ++i) { 1471 unsigned char V = Str->getElementAsInteger(i); 1472 Record.push_back(V); 1473 isCStr7 &= (V & 128) == 0; 1474 if (isCStrChar6) 1475 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 1476 } 1477 1478 if (isCStrChar6) 1479 AbbrevToUse = CString6Abbrev; 1480 else if (isCStr7) 1481 AbbrevToUse = CString7Abbrev; 1482 } else if (const ConstantDataSequential *CDS = 1483 dyn_cast<ConstantDataSequential>(C)) { 1484 Code = bitc::CST_CODE_DATA; 1485 Type *EltTy = CDS->getType()->getElementType(); 1486 if (isa<IntegerType>(EltTy)) { 1487 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 1488 Record.push_back(CDS->getElementAsInteger(i)); 1489 } else if (EltTy->isFloatTy()) { 1490 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1491 union { float F; uint32_t I; }; 1492 F = CDS->getElementAsFloat(i); 1493 Record.push_back(I); 1494 } 1495 } else { 1496 assert(EltTy->isDoubleTy() && "Unknown ConstantData element type"); 1497 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1498 union { double F; uint64_t I; }; 1499 F = CDS->getElementAsDouble(i); 1500 Record.push_back(I); 1501 } 1502 } 1503 } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(C) || 1504 isa<ConstantVector>(C)) { 1505 Code = bitc::CST_CODE_AGGREGATE; 1506 for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i) 1507 Record.push_back(VE.getValueID(C->getOperand(i))); 1508 AbbrevToUse = AggregateAbbrev; 1509 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1510 switch (CE->getOpcode()) { 1511 default: 1512 if (Instruction::isCast(CE->getOpcode())) { 1513 Code = bitc::CST_CODE_CE_CAST; 1514 Record.push_back(GetEncodedCastOpcode(CE->getOpcode())); 1515 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 1516 Record.push_back(VE.getValueID(C->getOperand(0))); 1517 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 1518 } else { 1519 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 1520 Code = bitc::CST_CODE_CE_BINOP; 1521 Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode())); 1522 Record.push_back(VE.getValueID(C->getOperand(0))); 1523 Record.push_back(VE.getValueID(C->getOperand(1))); 1524 uint64_t Flags = GetOptimizationFlags(CE); 1525 if (Flags != 0) 1526 Record.push_back(Flags); 1527 } 1528 break; 1529 case Instruction::GetElementPtr: 1530 Code = bitc::CST_CODE_CE_GEP; 1531 if (cast<GEPOperator>(C)->isInBounds()) 1532 Code = bitc::CST_CODE_CE_INBOUNDS_GEP; 1533 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 1534 Record.push_back(VE.getTypeID(C->getOperand(i)->getType())); 1535 Record.push_back(VE.getValueID(C->getOperand(i))); 1536 } 1537 break; 1538 case Instruction::Select: 1539 Code = bitc::CST_CODE_CE_SELECT; 1540 Record.push_back(VE.getValueID(C->getOperand(0))); 1541 Record.push_back(VE.getValueID(C->getOperand(1))); 1542 Record.push_back(VE.getValueID(C->getOperand(2))); 1543 break; 1544 case Instruction::ExtractElement: 1545 Code = bitc::CST_CODE_CE_EXTRACTELT; 1546 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 1547 Record.push_back(VE.getValueID(C->getOperand(0))); 1548 Record.push_back(VE.getTypeID(C->getOperand(1)->getType())); 1549 Record.push_back(VE.getValueID(C->getOperand(1))); 1550 break; 1551 case Instruction::InsertElement: 1552 Code = bitc::CST_CODE_CE_INSERTELT; 1553 Record.push_back(VE.getValueID(C->getOperand(0))); 1554 Record.push_back(VE.getValueID(C->getOperand(1))); 1555 Record.push_back(VE.getTypeID(C->getOperand(2)->getType())); 1556 Record.push_back(VE.getValueID(C->getOperand(2))); 1557 break; 1558 case Instruction::ShuffleVector: 1559 // If the return type and argument types are the same, this is a 1560 // standard shufflevector instruction. If the types are different, 1561 // then the shuffle is widening or truncating the input vectors, and 1562 // the argument type must also be encoded. 1563 if (C->getType() == C->getOperand(0)->getType()) { 1564 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 1565 } else { 1566 Code = bitc::CST_CODE_CE_SHUFVEC_EX; 1567 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 1568 } 1569 Record.push_back(VE.getValueID(C->getOperand(0))); 1570 Record.push_back(VE.getValueID(C->getOperand(1))); 1571 Record.push_back(VE.getValueID(C->getOperand(2))); 1572 break; 1573 case Instruction::ICmp: 1574 case Instruction::FCmp: 1575 Code = bitc::CST_CODE_CE_CMP; 1576 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 1577 Record.push_back(VE.getValueID(C->getOperand(0))); 1578 Record.push_back(VE.getValueID(C->getOperand(1))); 1579 Record.push_back(CE->getPredicate()); 1580 break; 1581 } 1582 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) { 1583 Code = bitc::CST_CODE_BLOCKADDRESS; 1584 Record.push_back(VE.getTypeID(BA->getFunction()->getType())); 1585 Record.push_back(VE.getValueID(BA->getFunction())); 1586 Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock())); 1587 } else { 1588 #ifndef NDEBUG 1589 C->dump(); 1590 #endif 1591 llvm_unreachable("Unknown constant!"); 1592 } 1593 Stream.EmitRecord(Code, Record, AbbrevToUse); 1594 Record.clear(); 1595 } 1596 1597 Stream.ExitBlock(); 1598 } 1599 1600 static void WriteModuleConstants(const ValueEnumerator &VE, 1601 BitstreamWriter &Stream) { 1602 const ValueEnumerator::ValueList &Vals = VE.getValues(); 1603 1604 // Find the first constant to emit, which is the first non-globalvalue value. 1605 // We know globalvalues have been emitted by WriteModuleInfo. 1606 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 1607 if (!isa<GlobalValue>(Vals[i].first)) { 1608 WriteConstants(i, Vals.size(), VE, Stream, true); 1609 return; 1610 } 1611 } 1612 } 1613 1614 /// PushValueAndType - The file has to encode both the value and type id for 1615 /// many values, because we need to know what type to create for forward 1616 /// references. However, most operands are not forward references, so this type 1617 /// field is not needed. 1618 /// 1619 /// This function adds V's value ID to Vals. If the value ID is higher than the 1620 /// instruction ID, then it is a forward reference, and it also includes the 1621 /// type ID. The value ID that is written is encoded relative to the InstID. 1622 static bool PushValueAndType(const Value *V, unsigned InstID, 1623 SmallVectorImpl<unsigned> &Vals, 1624 ValueEnumerator &VE) { 1625 unsigned ValID = VE.getValueID(V); 1626 // Make encoding relative to the InstID. 1627 Vals.push_back(InstID - ValID); 1628 if (ValID >= InstID) { 1629 Vals.push_back(VE.getTypeID(V->getType())); 1630 return true; 1631 } 1632 return false; 1633 } 1634 1635 /// pushValue - Like PushValueAndType, but where the type of the value is 1636 /// omitted (perhaps it was already encoded in an earlier operand). 1637 static void pushValue(const Value *V, unsigned InstID, 1638 SmallVectorImpl<unsigned> &Vals, 1639 ValueEnumerator &VE) { 1640 unsigned ValID = VE.getValueID(V); 1641 Vals.push_back(InstID - ValID); 1642 } 1643 1644 static void pushValueSigned(const Value *V, unsigned InstID, 1645 SmallVectorImpl<uint64_t> &Vals, 1646 ValueEnumerator &VE) { 1647 unsigned ValID = VE.getValueID(V); 1648 int64_t diff = ((int32_t)InstID - (int32_t)ValID); 1649 emitSignedInt64(Vals, diff); 1650 } 1651 1652 /// WriteInstruction - Emit an instruction to the specified stream. 1653 static void WriteInstruction(const Instruction &I, unsigned InstID, 1654 ValueEnumerator &VE, BitstreamWriter &Stream, 1655 SmallVectorImpl<unsigned> &Vals) { 1656 unsigned Code = 0; 1657 unsigned AbbrevToUse = 0; 1658 VE.setInstructionID(&I); 1659 switch (I.getOpcode()) { 1660 default: 1661 if (Instruction::isCast(I.getOpcode())) { 1662 Code = bitc::FUNC_CODE_INST_CAST; 1663 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 1664 AbbrevToUse = FUNCTION_INST_CAST_ABBREV; 1665 Vals.push_back(VE.getTypeID(I.getType())); 1666 Vals.push_back(GetEncodedCastOpcode(I.getOpcode())); 1667 } else { 1668 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 1669 Code = bitc::FUNC_CODE_INST_BINOP; 1670 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 1671 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; 1672 pushValue(I.getOperand(1), InstID, Vals, VE); 1673 Vals.push_back(GetEncodedBinaryOpcode(I.getOpcode())); 1674 uint64_t Flags = GetOptimizationFlags(&I); 1675 if (Flags != 0) { 1676 if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV) 1677 AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV; 1678 Vals.push_back(Flags); 1679 } 1680 } 1681 break; 1682 1683 case Instruction::GetElementPtr: 1684 Code = bitc::FUNC_CODE_INST_GEP; 1685 if (cast<GEPOperator>(&I)->isInBounds()) 1686 Code = bitc::FUNC_CODE_INST_INBOUNDS_GEP; 1687 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 1688 PushValueAndType(I.getOperand(i), InstID, Vals, VE); 1689 break; 1690 case Instruction::ExtractValue: { 1691 Code = bitc::FUNC_CODE_INST_EXTRACTVAL; 1692 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1693 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); 1694 for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i) 1695 Vals.push_back(*i); 1696 break; 1697 } 1698 case Instruction::InsertValue: { 1699 Code = bitc::FUNC_CODE_INST_INSERTVAL; 1700 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1701 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 1702 const InsertValueInst *IVI = cast<InsertValueInst>(&I); 1703 for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i) 1704 Vals.push_back(*i); 1705 break; 1706 } 1707 case Instruction::Select: 1708 Code = bitc::FUNC_CODE_INST_VSELECT; 1709 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 1710 pushValue(I.getOperand(2), InstID, Vals, VE); 1711 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1712 break; 1713 case Instruction::ExtractElement: 1714 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 1715 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1716 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 1717 break; 1718 case Instruction::InsertElement: 1719 Code = bitc::FUNC_CODE_INST_INSERTELT; 1720 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1721 pushValue(I.getOperand(1), InstID, Vals, VE); 1722 PushValueAndType(I.getOperand(2), InstID, Vals, VE); 1723 break; 1724 case Instruction::ShuffleVector: 1725 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 1726 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1727 pushValue(I.getOperand(1), InstID, Vals, VE); 1728 pushValue(I.getOperand(2), InstID, Vals, VE); 1729 break; 1730 case Instruction::ICmp: 1731 case Instruction::FCmp: 1732 // compare returning Int1Ty or vector of Int1Ty 1733 Code = bitc::FUNC_CODE_INST_CMP2; 1734 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1735 pushValue(I.getOperand(1), InstID, Vals, VE); 1736 Vals.push_back(cast<CmpInst>(I).getPredicate()); 1737 break; 1738 1739 case Instruction::Ret: 1740 { 1741 Code = bitc::FUNC_CODE_INST_RET; 1742 unsigned NumOperands = I.getNumOperands(); 1743 if (NumOperands == 0) 1744 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; 1745 else if (NumOperands == 1) { 1746 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 1747 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; 1748 } else { 1749 for (unsigned i = 0, e = NumOperands; i != e; ++i) 1750 PushValueAndType(I.getOperand(i), InstID, Vals, VE); 1751 } 1752 } 1753 break; 1754 case Instruction::Br: 1755 { 1756 Code = bitc::FUNC_CODE_INST_BR; 1757 const BranchInst &II = cast<BranchInst>(I); 1758 Vals.push_back(VE.getValueID(II.getSuccessor(0))); 1759 if (II.isConditional()) { 1760 Vals.push_back(VE.getValueID(II.getSuccessor(1))); 1761 pushValue(II.getCondition(), InstID, Vals, VE); 1762 } 1763 } 1764 break; 1765 case Instruction::Switch: 1766 { 1767 Code = bitc::FUNC_CODE_INST_SWITCH; 1768 const SwitchInst &SI = cast<SwitchInst>(I); 1769 Vals.push_back(VE.getTypeID(SI.getCondition()->getType())); 1770 pushValue(SI.getCondition(), InstID, Vals, VE); 1771 Vals.push_back(VE.getValueID(SI.getDefaultDest())); 1772 for (SwitchInst::ConstCaseIt i = SI.case_begin(), e = SI.case_end(); 1773 i != e; ++i) { 1774 Vals.push_back(VE.getValueID(i.getCaseValue())); 1775 Vals.push_back(VE.getValueID(i.getCaseSuccessor())); 1776 } 1777 } 1778 break; 1779 case Instruction::IndirectBr: 1780 Code = bitc::FUNC_CODE_INST_INDIRECTBR; 1781 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 1782 // Encode the address operand as relative, but not the basic blocks. 1783 pushValue(I.getOperand(0), InstID, Vals, VE); 1784 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) 1785 Vals.push_back(VE.getValueID(I.getOperand(i))); 1786 break; 1787 1788 case Instruction::Invoke: { 1789 const InvokeInst *II = cast<InvokeInst>(&I); 1790 const Value *Callee(II->getCalledValue()); 1791 PointerType *PTy = cast<PointerType>(Callee->getType()); 1792 FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); 1793 Code = bitc::FUNC_CODE_INST_INVOKE; 1794 1795 Vals.push_back(VE.getAttributeID(II->getAttributes())); 1796 Vals.push_back(II->getCallingConv()); 1797 Vals.push_back(VE.getValueID(II->getNormalDest())); 1798 Vals.push_back(VE.getValueID(II->getUnwindDest())); 1799 PushValueAndType(Callee, InstID, Vals, VE); 1800 1801 // Emit value #'s for the fixed parameters. 1802 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 1803 pushValue(I.getOperand(i), InstID, Vals, VE); // fixed param. 1804 1805 // Emit type/value pairs for varargs params. 1806 if (FTy->isVarArg()) { 1807 for (unsigned i = FTy->getNumParams(), e = I.getNumOperands()-3; 1808 i != e; ++i) 1809 PushValueAndType(I.getOperand(i), InstID, Vals, VE); // vararg 1810 } 1811 break; 1812 } 1813 case Instruction::Resume: 1814 Code = bitc::FUNC_CODE_INST_RESUME; 1815 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1816 break; 1817 case Instruction::Unreachable: 1818 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 1819 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; 1820 break; 1821 1822 case Instruction::PHI: { 1823 const PHINode &PN = cast<PHINode>(I); 1824 Code = bitc::FUNC_CODE_INST_PHI; 1825 // With the newer instruction encoding, forward references could give 1826 // negative valued IDs. This is most common for PHIs, so we use 1827 // signed VBRs. 1828 SmallVector<uint64_t, 128> Vals64; 1829 Vals64.push_back(VE.getTypeID(PN.getType())); 1830 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 1831 pushValueSigned(PN.getIncomingValue(i), InstID, Vals64, VE); 1832 Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i))); 1833 } 1834 // Emit a Vals64 vector and exit. 1835 Stream.EmitRecord(Code, Vals64, AbbrevToUse); 1836 Vals64.clear(); 1837 return; 1838 } 1839 1840 case Instruction::LandingPad: { 1841 const LandingPadInst &LP = cast<LandingPadInst>(I); 1842 Code = bitc::FUNC_CODE_INST_LANDINGPAD; 1843 Vals.push_back(VE.getTypeID(LP.getType())); 1844 PushValueAndType(LP.getPersonalityFn(), InstID, Vals, VE); 1845 Vals.push_back(LP.isCleanup()); 1846 Vals.push_back(LP.getNumClauses()); 1847 for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) { 1848 if (LP.isCatch(I)) 1849 Vals.push_back(LandingPadInst::Catch); 1850 else 1851 Vals.push_back(LandingPadInst::Filter); 1852 PushValueAndType(LP.getClause(I), InstID, Vals, VE); 1853 } 1854 break; 1855 } 1856 1857 case Instruction::Alloca: { 1858 Code = bitc::FUNC_CODE_INST_ALLOCA; 1859 Vals.push_back(VE.getTypeID(I.getType())); 1860 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 1861 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 1862 const AllocaInst &AI = cast<AllocaInst>(I); 1863 unsigned AlignRecord = Log2_32(AI.getAlignment()) + 1; 1864 assert(Log2_32(Value::MaximumAlignment) + 1 < 1 << 5 && 1865 "not enough bits for maximum alignment"); 1866 assert(AlignRecord < 1 << 5 && "alignment greater than 1 << 64"); 1867 AlignRecord |= AI.isUsedWithInAlloca() << 5; 1868 Vals.push_back(AlignRecord); 1869 break; 1870 } 1871 1872 case Instruction::Load: 1873 if (cast<LoadInst>(I).isAtomic()) { 1874 Code = bitc::FUNC_CODE_INST_LOADATOMIC; 1875 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1876 } else { 1877 Code = bitc::FUNC_CODE_INST_LOAD; 1878 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) // ptr 1879 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; 1880 } 1881 Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1); 1882 Vals.push_back(cast<LoadInst>(I).isVolatile()); 1883 if (cast<LoadInst>(I).isAtomic()) { 1884 Vals.push_back(GetEncodedOrdering(cast<LoadInst>(I).getOrdering())); 1885 Vals.push_back(GetEncodedSynchScope(cast<LoadInst>(I).getSynchScope())); 1886 } 1887 break; 1888 case Instruction::Store: 1889 if (cast<StoreInst>(I).isAtomic()) 1890 Code = bitc::FUNC_CODE_INST_STOREATOMIC; 1891 else 1892 Code = bitc::FUNC_CODE_INST_STORE; 1893 PushValueAndType(I.getOperand(1), InstID, Vals, VE); // ptrty + ptr 1894 pushValue(I.getOperand(0), InstID, Vals, VE); // val. 1895 Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1); 1896 Vals.push_back(cast<StoreInst>(I).isVolatile()); 1897 if (cast<StoreInst>(I).isAtomic()) { 1898 Vals.push_back(GetEncodedOrdering(cast<StoreInst>(I).getOrdering())); 1899 Vals.push_back(GetEncodedSynchScope(cast<StoreInst>(I).getSynchScope())); 1900 } 1901 break; 1902 case Instruction::AtomicCmpXchg: 1903 Code = bitc::FUNC_CODE_INST_CMPXCHG; 1904 PushValueAndType(I.getOperand(0), InstID, Vals, VE); // ptrty + ptr 1905 pushValue(I.getOperand(1), InstID, Vals, VE); // cmp. 1906 pushValue(I.getOperand(2), InstID, Vals, VE); // newval. 1907 Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile()); 1908 Vals.push_back(GetEncodedOrdering( 1909 cast<AtomicCmpXchgInst>(I).getSuccessOrdering())); 1910 Vals.push_back(GetEncodedSynchScope( 1911 cast<AtomicCmpXchgInst>(I).getSynchScope())); 1912 Vals.push_back(GetEncodedOrdering( 1913 cast<AtomicCmpXchgInst>(I).getFailureOrdering())); 1914 Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak()); 1915 break; 1916 case Instruction::AtomicRMW: 1917 Code = bitc::FUNC_CODE_INST_ATOMICRMW; 1918 PushValueAndType(I.getOperand(0), InstID, Vals, VE); // ptrty + ptr 1919 pushValue(I.getOperand(1), InstID, Vals, VE); // val. 1920 Vals.push_back(GetEncodedRMWOperation( 1921 cast<AtomicRMWInst>(I).getOperation())); 1922 Vals.push_back(cast<AtomicRMWInst>(I).isVolatile()); 1923 Vals.push_back(GetEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering())); 1924 Vals.push_back(GetEncodedSynchScope( 1925 cast<AtomicRMWInst>(I).getSynchScope())); 1926 break; 1927 case Instruction::Fence: 1928 Code = bitc::FUNC_CODE_INST_FENCE; 1929 Vals.push_back(GetEncodedOrdering(cast<FenceInst>(I).getOrdering())); 1930 Vals.push_back(GetEncodedSynchScope(cast<FenceInst>(I).getSynchScope())); 1931 break; 1932 case Instruction::Call: { 1933 const CallInst &CI = cast<CallInst>(I); 1934 PointerType *PTy = cast<PointerType>(CI.getCalledValue()->getType()); 1935 FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); 1936 1937 Code = bitc::FUNC_CODE_INST_CALL; 1938 1939 Vals.push_back(VE.getAttributeID(CI.getAttributes())); 1940 Vals.push_back((CI.getCallingConv() << 1) | unsigned(CI.isTailCall()) | 1941 unsigned(CI.isMustTailCall()) << 14); 1942 PushValueAndType(CI.getCalledValue(), InstID, Vals, VE); // Callee 1943 1944 // Emit value #'s for the fixed parameters. 1945 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { 1946 // Check for labels (can happen with asm labels). 1947 if (FTy->getParamType(i)->isLabelTy()) 1948 Vals.push_back(VE.getValueID(CI.getArgOperand(i))); 1949 else 1950 pushValue(CI.getArgOperand(i), InstID, Vals, VE); // fixed param. 1951 } 1952 1953 // Emit type/value pairs for varargs params. 1954 if (FTy->isVarArg()) { 1955 for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands(); 1956 i != e; ++i) 1957 PushValueAndType(CI.getArgOperand(i), InstID, Vals, VE); // varargs 1958 } 1959 break; 1960 } 1961 case Instruction::VAArg: 1962 Code = bitc::FUNC_CODE_INST_VAARG; 1963 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty 1964 pushValue(I.getOperand(0), InstID, Vals, VE); // valist. 1965 Vals.push_back(VE.getTypeID(I.getType())); // restype. 1966 break; 1967 } 1968 1969 Stream.EmitRecord(Code, Vals, AbbrevToUse); 1970 Vals.clear(); 1971 } 1972 1973 // Emit names for globals/functions etc. 1974 static void WriteValueSymbolTable(const ValueSymbolTable &VST, 1975 const ValueEnumerator &VE, 1976 BitstreamWriter &Stream) { 1977 if (VST.empty()) return; 1978 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 1979 1980 // FIXME: Set up the abbrev, we know how many values there are! 1981 // FIXME: We know if the type names can use 7-bit ascii. 1982 SmallVector<unsigned, 64> NameVals; 1983 1984 for (ValueSymbolTable::const_iterator SI = VST.begin(), SE = VST.end(); 1985 SI != SE; ++SI) { 1986 1987 const ValueName &Name = *SI; 1988 1989 // Figure out the encoding to use for the name. 1990 bool is7Bit = true; 1991 bool isChar6 = true; 1992 for (const char *C = Name.getKeyData(), *E = C+Name.getKeyLength(); 1993 C != E; ++C) { 1994 if (isChar6) 1995 isChar6 = BitCodeAbbrevOp::isChar6(*C); 1996 if ((unsigned char)*C & 128) { 1997 is7Bit = false; 1998 break; // don't bother scanning the rest. 1999 } 2000 } 2001 2002 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 2003 2004 // VST_ENTRY: [valueid, namechar x N] 2005 // VST_BBENTRY: [bbid, namechar x N] 2006 unsigned Code; 2007 if (isa<BasicBlock>(SI->getValue())) { 2008 Code = bitc::VST_CODE_BBENTRY; 2009 if (isChar6) 2010 AbbrevToUse = VST_BBENTRY_6_ABBREV; 2011 } else { 2012 Code = bitc::VST_CODE_ENTRY; 2013 if (isChar6) 2014 AbbrevToUse = VST_ENTRY_6_ABBREV; 2015 else if (is7Bit) 2016 AbbrevToUse = VST_ENTRY_7_ABBREV; 2017 } 2018 2019 NameVals.push_back(VE.getValueID(SI->getValue())); 2020 for (const char *P = Name.getKeyData(), 2021 *E = Name.getKeyData()+Name.getKeyLength(); P != E; ++P) 2022 NameVals.push_back((unsigned char)*P); 2023 2024 // Emit the finished record. 2025 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 2026 NameVals.clear(); 2027 } 2028 Stream.ExitBlock(); 2029 } 2030 2031 static void WriteUseList(ValueEnumerator &VE, UseListOrder &&Order, 2032 BitstreamWriter &Stream) { 2033 assert(Order.Shuffle.size() >= 2 && "Shuffle too small"); 2034 unsigned Code; 2035 if (isa<BasicBlock>(Order.V)) 2036 Code = bitc::USELIST_CODE_BB; 2037 else 2038 Code = bitc::USELIST_CODE_DEFAULT; 2039 2040 SmallVector<uint64_t, 64> Record; 2041 for (unsigned I : Order.Shuffle) 2042 Record.push_back(I); 2043 Record.push_back(VE.getValueID(Order.V)); 2044 Stream.EmitRecord(Code, Record); 2045 } 2046 2047 static void WriteUseListBlock(const Function *F, ValueEnumerator &VE, 2048 BitstreamWriter &Stream) { 2049 auto hasMore = [&]() { 2050 return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F; 2051 }; 2052 if (!hasMore()) 2053 // Nothing to do. 2054 return; 2055 2056 Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3); 2057 while (hasMore()) { 2058 WriteUseList(VE, std::move(VE.UseListOrders.back()), Stream); 2059 VE.UseListOrders.pop_back(); 2060 } 2061 Stream.ExitBlock(); 2062 } 2063 2064 /// WriteFunction - Emit a function body to the module stream. 2065 static void WriteFunction(const Function &F, ValueEnumerator &VE, 2066 BitstreamWriter &Stream) { 2067 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 2068 VE.incorporateFunction(F); 2069 2070 SmallVector<unsigned, 64> Vals; 2071 2072 // Emit the number of basic blocks, so the reader can create them ahead of 2073 // time. 2074 Vals.push_back(VE.getBasicBlocks().size()); 2075 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 2076 Vals.clear(); 2077 2078 // If there are function-local constants, emit them now. 2079 unsigned CstStart, CstEnd; 2080 VE.getFunctionConstantRange(CstStart, CstEnd); 2081 WriteConstants(CstStart, CstEnd, VE, Stream, false); 2082 2083 // If there is function-local metadata, emit it now. 2084 WriteFunctionLocalMetadata(F, VE, Stream); 2085 2086 // Keep a running idea of what the instruction ID is. 2087 unsigned InstID = CstEnd; 2088 2089 bool NeedsMetadataAttachment = false; 2090 2091 DebugLoc LastDL; 2092 2093 // Finally, emit all the instructions, in order. 2094 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 2095 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 2096 I != E; ++I) { 2097 WriteInstruction(*I, InstID, VE, Stream, Vals); 2098 2099 if (!I->getType()->isVoidTy()) 2100 ++InstID; 2101 2102 // If the instruction has metadata, write a metadata attachment later. 2103 NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc(); 2104 2105 // If the instruction has a debug location, emit it. 2106 DebugLoc DL = I->getDebugLoc(); 2107 if (DL.isUnknown()) { 2108 // nothing todo. 2109 } else if (DL == LastDL) { 2110 // Just repeat the same debug loc as last time. 2111 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals); 2112 } else { 2113 MDNode *Scope, *IA; 2114 DL.getScopeAndInlinedAt(Scope, IA, I->getContext()); 2115 assert(Scope && "Expected valid scope"); 2116 2117 Vals.push_back(DL.getLine()); 2118 Vals.push_back(DL.getCol()); 2119 Vals.push_back(VE.getMetadataOrNullID(Scope)); 2120 Vals.push_back(VE.getMetadataOrNullID(IA)); 2121 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals); 2122 Vals.clear(); 2123 2124 LastDL = DL; 2125 } 2126 } 2127 2128 // Emit names for all the instructions etc. 2129 WriteValueSymbolTable(F.getValueSymbolTable(), VE, Stream); 2130 2131 if (NeedsMetadataAttachment) 2132 WriteMetadataAttachment(F, VE, Stream); 2133 if (shouldPreserveBitcodeUseListOrder()) 2134 WriteUseListBlock(&F, VE, Stream); 2135 VE.purgeFunction(); 2136 Stream.ExitBlock(); 2137 } 2138 2139 // Emit blockinfo, which defines the standard abbreviations etc. 2140 static void WriteBlockInfo(const ValueEnumerator &VE, BitstreamWriter &Stream) { 2141 // We only want to emit block info records for blocks that have multiple 2142 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. 2143 // Other blocks can define their abbrevs inline. 2144 Stream.EnterBlockInfoBlock(2); 2145 2146 { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings. 2147 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2148 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 2149 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2150 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2151 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2152 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 2153 Abbv) != VST_ENTRY_8_ABBREV) 2154 llvm_unreachable("Unexpected abbrev ordering!"); 2155 } 2156 2157 { // 7-bit fixed width VST_ENTRY strings. 2158 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2159 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 2160 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2161 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2162 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 2163 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 2164 Abbv) != VST_ENTRY_7_ABBREV) 2165 llvm_unreachable("Unexpected abbrev ordering!"); 2166 } 2167 { // 6-bit char6 VST_ENTRY strings. 2168 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2169 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 2170 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2171 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2172 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2173 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 2174 Abbv) != VST_ENTRY_6_ABBREV) 2175 llvm_unreachable("Unexpected abbrev ordering!"); 2176 } 2177 { // 6-bit char6 VST_BBENTRY strings. 2178 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2179 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 2180 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2181 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2182 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2183 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 2184 Abbv) != VST_BBENTRY_6_ABBREV) 2185 llvm_unreachable("Unexpected abbrev ordering!"); 2186 } 2187 2188 2189 2190 { // SETTYPE abbrev for CONSTANTS_BLOCK. 2191 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2192 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 2193 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 2194 Log2_32_Ceil(VE.getTypes().size()+1))); 2195 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 2196 Abbv) != CONSTANTS_SETTYPE_ABBREV) 2197 llvm_unreachable("Unexpected abbrev ordering!"); 2198 } 2199 2200 { // INTEGER abbrev for CONSTANTS_BLOCK. 2201 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2202 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 2203 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 2204 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 2205 Abbv) != CONSTANTS_INTEGER_ABBREV) 2206 llvm_unreachable("Unexpected abbrev ordering!"); 2207 } 2208 2209 { // CE_CAST abbrev for CONSTANTS_BLOCK. 2210 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2211 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 2212 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 2213 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 2214 Log2_32_Ceil(VE.getTypes().size()+1))); 2215 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 2216 2217 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 2218 Abbv) != CONSTANTS_CE_CAST_Abbrev) 2219 llvm_unreachable("Unexpected abbrev ordering!"); 2220 } 2221 { // NULL abbrev for CONSTANTS_BLOCK. 2222 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2223 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 2224 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 2225 Abbv) != CONSTANTS_NULL_Abbrev) 2226 llvm_unreachable("Unexpected abbrev ordering!"); 2227 } 2228 2229 // FIXME: This should only use space for first class types! 2230 2231 { // INST_LOAD abbrev for FUNCTION_BLOCK. 2232 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2233 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 2234 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 2235 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 2236 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 2237 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 2238 Abbv) != FUNCTION_INST_LOAD_ABBREV) 2239 llvm_unreachable("Unexpected abbrev ordering!"); 2240 } 2241 { // INST_BINOP abbrev for FUNCTION_BLOCK. 2242 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2243 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 2244 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 2245 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 2246 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 2247 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 2248 Abbv) != FUNCTION_INST_BINOP_ABBREV) 2249 llvm_unreachable("Unexpected abbrev ordering!"); 2250 } 2251 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK. 2252 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2253 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 2254 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 2255 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 2256 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 2257 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags 2258 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 2259 Abbv) != FUNCTION_INST_BINOP_FLAGS_ABBREV) 2260 llvm_unreachable("Unexpected abbrev ordering!"); 2261 } 2262 { // INST_CAST abbrev for FUNCTION_BLOCK. 2263 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2264 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 2265 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 2266 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 2267 Log2_32_Ceil(VE.getTypes().size()+1))); 2268 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 2269 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 2270 Abbv) != FUNCTION_INST_CAST_ABBREV) 2271 llvm_unreachable("Unexpected abbrev ordering!"); 2272 } 2273 2274 { // INST_RET abbrev for FUNCTION_BLOCK. 2275 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2276 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 2277 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 2278 Abbv) != FUNCTION_INST_RET_VOID_ABBREV) 2279 llvm_unreachable("Unexpected abbrev ordering!"); 2280 } 2281 { // INST_RET abbrev for FUNCTION_BLOCK. 2282 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2283 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 2284 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 2285 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 2286 Abbv) != FUNCTION_INST_RET_VAL_ABBREV) 2287 llvm_unreachable("Unexpected abbrev ordering!"); 2288 } 2289 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 2290 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 2291 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 2292 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 2293 Abbv) != FUNCTION_INST_UNREACHABLE_ABBREV) 2294 llvm_unreachable("Unexpected abbrev ordering!"); 2295 } 2296 2297 Stream.ExitBlock(); 2298 } 2299 2300 /// WriteModule - Emit the specified module to the bitstream. 2301 static void WriteModule(const Module *M, BitstreamWriter &Stream) { 2302 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 2303 2304 SmallVector<unsigned, 1> Vals; 2305 unsigned CurVersion = 1; 2306 Vals.push_back(CurVersion); 2307 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals); 2308 2309 // Analyze the module, enumerating globals, functions, etc. 2310 ValueEnumerator VE(*M); 2311 2312 // Emit blockinfo, which defines the standard abbreviations etc. 2313 WriteBlockInfo(VE, Stream); 2314 2315 // Emit information about attribute groups. 2316 WriteAttributeGroupTable(VE, Stream); 2317 2318 // Emit information about parameter attributes. 2319 WriteAttributeTable(VE, Stream); 2320 2321 // Emit information describing all of the types in the module. 2322 WriteTypeTable(VE, Stream); 2323 2324 writeComdats(VE, Stream); 2325 2326 // Emit top-level description of module, including target triple, inline asm, 2327 // descriptors for global variables, and function prototype info. 2328 WriteModuleInfo(M, VE, Stream); 2329 2330 // Emit constants. 2331 WriteModuleConstants(VE, Stream); 2332 2333 // Emit metadata. 2334 WriteModuleMetadata(M, VE, Stream); 2335 2336 // Emit metadata. 2337 WriteModuleMetadataStore(M, Stream); 2338 2339 // Emit names for globals/functions etc. 2340 WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream); 2341 2342 // Emit module-level use-lists. 2343 if (shouldPreserveBitcodeUseListOrder()) 2344 WriteUseListBlock(nullptr, VE, Stream); 2345 2346 // Emit function bodies. 2347 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) 2348 if (!F->isDeclaration()) 2349 WriteFunction(*F, VE, Stream); 2350 2351 Stream.ExitBlock(); 2352 } 2353 2354 /// EmitDarwinBCHeader - If generating a bc file on darwin, we have to emit a 2355 /// header and trailer to make it compatible with the system archiver. To do 2356 /// this we emit the following header, and then emit a trailer that pads the 2357 /// file out to be a multiple of 16 bytes. 2358 /// 2359 /// struct bc_header { 2360 /// uint32_t Magic; // 0x0B17C0DE 2361 /// uint32_t Version; // Version, currently always 0. 2362 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file. 2363 /// uint32_t BitcodeSize; // Size of traditional bitcode file. 2364 /// uint32_t CPUType; // CPU specifier. 2365 /// ... potentially more later ... 2366 /// }; 2367 enum { 2368 DarwinBCSizeFieldOffset = 3*4, // Offset to bitcode_size. 2369 DarwinBCHeaderSize = 5*4 2370 }; 2371 2372 static void WriteInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer, 2373 uint32_t &Position) { 2374 Buffer[Position + 0] = (unsigned char) (Value >> 0); 2375 Buffer[Position + 1] = (unsigned char) (Value >> 8); 2376 Buffer[Position + 2] = (unsigned char) (Value >> 16); 2377 Buffer[Position + 3] = (unsigned char) (Value >> 24); 2378 Position += 4; 2379 } 2380 2381 static void EmitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer, 2382 const Triple &TT) { 2383 unsigned CPUType = ~0U; 2384 2385 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*, 2386 // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic 2387 // number from /usr/include/mach/machine.h. It is ok to reproduce the 2388 // specific constants here because they are implicitly part of the Darwin ABI. 2389 enum { 2390 DARWIN_CPU_ARCH_ABI64 = 0x01000000, 2391 DARWIN_CPU_TYPE_X86 = 7, 2392 DARWIN_CPU_TYPE_ARM = 12, 2393 DARWIN_CPU_TYPE_POWERPC = 18 2394 }; 2395 2396 Triple::ArchType Arch = TT.getArch(); 2397 if (Arch == Triple::x86_64) 2398 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64; 2399 else if (Arch == Triple::x86) 2400 CPUType = DARWIN_CPU_TYPE_X86; 2401 else if (Arch == Triple::ppc) 2402 CPUType = DARWIN_CPU_TYPE_POWERPC; 2403 else if (Arch == Triple::ppc64) 2404 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64; 2405 else if (Arch == Triple::arm || Arch == Triple::thumb) 2406 CPUType = DARWIN_CPU_TYPE_ARM; 2407 2408 // Traditional Bitcode starts after header. 2409 assert(Buffer.size() >= DarwinBCHeaderSize && 2410 "Expected header size to be reserved"); 2411 unsigned BCOffset = DarwinBCHeaderSize; 2412 unsigned BCSize = Buffer.size()-DarwinBCHeaderSize; 2413 2414 // Write the magic and version. 2415 unsigned Position = 0; 2416 WriteInt32ToBuffer(0x0B17C0DE , Buffer, Position); 2417 WriteInt32ToBuffer(0 , Buffer, Position); // Version. 2418 WriteInt32ToBuffer(BCOffset , Buffer, Position); 2419 WriteInt32ToBuffer(BCSize , Buffer, Position); 2420 WriteInt32ToBuffer(CPUType , Buffer, Position); 2421 2422 // If the file is not a multiple of 16 bytes, insert dummy padding. 2423 while (Buffer.size() & 15) 2424 Buffer.push_back(0); 2425 } 2426 2427 /// WriteBitcodeToFile - Write the specified module to the specified output 2428 /// stream. 2429 void llvm::WriteBitcodeToFile(const Module *M, raw_ostream &Out) { 2430 SmallVector<char, 0> Buffer; 2431 Buffer.reserve(256*1024); 2432 2433 // If this is darwin or another generic macho target, reserve space for the 2434 // header. 2435 Triple TT(M->getTargetTriple()); 2436 if (TT.isOSDarwin()) 2437 Buffer.insert(Buffer.begin(), DarwinBCHeaderSize, 0); 2438 2439 // Emit the module into the buffer. 2440 { 2441 BitstreamWriter Stream(Buffer); 2442 2443 // Emit the file header. 2444 Stream.Emit((unsigned)'B', 8); 2445 Stream.Emit((unsigned)'C', 8); 2446 Stream.Emit(0x0, 4); 2447 Stream.Emit(0xC, 4); 2448 Stream.Emit(0xE, 4); 2449 Stream.Emit(0xD, 4); 2450 2451 // Emit the module. 2452 WriteModule(M, Stream); 2453 } 2454 2455 if (TT.isOSDarwin()) 2456 EmitDarwinBCHeaderAndTrailer(Buffer, TT); 2457 2458 // Write the generated bitstream to "Out". 2459 Out.write((char*)&Buffer.front(), Buffer.size()); 2460 } 2461