1 //===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Bitcode writer implementation. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Bitcode/ReaderWriter.h" 15 #include "ValueEnumerator.h" 16 #include "llvm/ADT/Triple.h" 17 #include "llvm/Bitcode/BitstreamWriter.h" 18 #include "llvm/Bitcode/LLVMBitCodes.h" 19 #include "llvm/IR/Constants.h" 20 #include "llvm/IR/DerivedTypes.h" 21 #include "llvm/IR/InlineAsm.h" 22 #include "llvm/IR/Instructions.h" 23 #include "llvm/IR/Module.h" 24 #include "llvm/IR/Operator.h" 25 #include "llvm/IR/UseListOrder.h" 26 #include "llvm/IR/ValueSymbolTable.h" 27 #include "llvm/Support/CommandLine.h" 28 #include "llvm/Support/ErrorHandling.h" 29 #include "llvm/Support/MathExtras.h" 30 #include "llvm/Support/Program.h" 31 #include "llvm/Support/raw_ostream.h" 32 #include <cctype> 33 #include <map> 34 using namespace llvm; 35 36 /// These are manifest constants used by the bitcode writer. They do not need to 37 /// be kept in sync with the reader, but need to be consistent within this file. 38 enum { 39 // VALUE_SYMTAB_BLOCK abbrev id's. 40 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 41 VST_ENTRY_7_ABBREV, 42 VST_ENTRY_6_ABBREV, 43 VST_BBENTRY_6_ABBREV, 44 45 // CONSTANTS_BLOCK abbrev id's. 46 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 47 CONSTANTS_INTEGER_ABBREV, 48 CONSTANTS_CE_CAST_Abbrev, 49 CONSTANTS_NULL_Abbrev, 50 51 // FUNCTION_BLOCK abbrev id's. 52 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 53 FUNCTION_INST_BINOP_ABBREV, 54 FUNCTION_INST_BINOP_FLAGS_ABBREV, 55 FUNCTION_INST_CAST_ABBREV, 56 FUNCTION_INST_RET_VOID_ABBREV, 57 FUNCTION_INST_RET_VAL_ABBREV, 58 FUNCTION_INST_UNREACHABLE_ABBREV 59 }; 60 61 static unsigned GetEncodedCastOpcode(unsigned Opcode) { 62 switch (Opcode) { 63 default: llvm_unreachable("Unknown cast instruction!"); 64 case Instruction::Trunc : return bitc::CAST_TRUNC; 65 case Instruction::ZExt : return bitc::CAST_ZEXT; 66 case Instruction::SExt : return bitc::CAST_SEXT; 67 case Instruction::FPToUI : return bitc::CAST_FPTOUI; 68 case Instruction::FPToSI : return bitc::CAST_FPTOSI; 69 case Instruction::UIToFP : return bitc::CAST_UITOFP; 70 case Instruction::SIToFP : return bitc::CAST_SITOFP; 71 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; 72 case Instruction::FPExt : return bitc::CAST_FPEXT; 73 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; 74 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; 75 case Instruction::BitCast : return bitc::CAST_BITCAST; 76 case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST; 77 } 78 } 79 80 static unsigned GetEncodedBinaryOpcode(unsigned Opcode) { 81 switch (Opcode) { 82 default: llvm_unreachable("Unknown binary instruction!"); 83 case Instruction::Add: 84 case Instruction::FAdd: return bitc::BINOP_ADD; 85 case Instruction::Sub: 86 case Instruction::FSub: return bitc::BINOP_SUB; 87 case Instruction::Mul: 88 case Instruction::FMul: return bitc::BINOP_MUL; 89 case Instruction::UDiv: return bitc::BINOP_UDIV; 90 case Instruction::FDiv: 91 case Instruction::SDiv: return bitc::BINOP_SDIV; 92 case Instruction::URem: return bitc::BINOP_UREM; 93 case Instruction::FRem: 94 case Instruction::SRem: return bitc::BINOP_SREM; 95 case Instruction::Shl: return bitc::BINOP_SHL; 96 case Instruction::LShr: return bitc::BINOP_LSHR; 97 case Instruction::AShr: return bitc::BINOP_ASHR; 98 case Instruction::And: return bitc::BINOP_AND; 99 case Instruction::Or: return bitc::BINOP_OR; 100 case Instruction::Xor: return bitc::BINOP_XOR; 101 } 102 } 103 104 static unsigned GetEncodedRMWOperation(AtomicRMWInst::BinOp Op) { 105 switch (Op) { 106 default: llvm_unreachable("Unknown RMW operation!"); 107 case AtomicRMWInst::Xchg: return bitc::RMW_XCHG; 108 case AtomicRMWInst::Add: return bitc::RMW_ADD; 109 case AtomicRMWInst::Sub: return bitc::RMW_SUB; 110 case AtomicRMWInst::And: return bitc::RMW_AND; 111 case AtomicRMWInst::Nand: return bitc::RMW_NAND; 112 case AtomicRMWInst::Or: return bitc::RMW_OR; 113 case AtomicRMWInst::Xor: return bitc::RMW_XOR; 114 case AtomicRMWInst::Max: return bitc::RMW_MAX; 115 case AtomicRMWInst::Min: return bitc::RMW_MIN; 116 case AtomicRMWInst::UMax: return bitc::RMW_UMAX; 117 case AtomicRMWInst::UMin: return bitc::RMW_UMIN; 118 } 119 } 120 121 static unsigned GetEncodedOrdering(AtomicOrdering Ordering) { 122 switch (Ordering) { 123 case NotAtomic: return bitc::ORDERING_NOTATOMIC; 124 case Unordered: return bitc::ORDERING_UNORDERED; 125 case Monotonic: return bitc::ORDERING_MONOTONIC; 126 case Acquire: return bitc::ORDERING_ACQUIRE; 127 case Release: return bitc::ORDERING_RELEASE; 128 case AcquireRelease: return bitc::ORDERING_ACQREL; 129 case SequentiallyConsistent: return bitc::ORDERING_SEQCST; 130 } 131 llvm_unreachable("Invalid ordering"); 132 } 133 134 static unsigned GetEncodedSynchScope(SynchronizationScope SynchScope) { 135 switch (SynchScope) { 136 case SingleThread: return bitc::SYNCHSCOPE_SINGLETHREAD; 137 case CrossThread: return bitc::SYNCHSCOPE_CROSSTHREAD; 138 } 139 llvm_unreachable("Invalid synch scope"); 140 } 141 142 static void WriteStringRecord(unsigned Code, StringRef Str, 143 unsigned AbbrevToUse, BitstreamWriter &Stream) { 144 SmallVector<unsigned, 64> Vals; 145 146 // Code: [strchar x N] 147 for (unsigned i = 0, e = Str.size(); i != e; ++i) { 148 if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i])) 149 AbbrevToUse = 0; 150 Vals.push_back(Str[i]); 151 } 152 153 // Emit the finished record. 154 Stream.EmitRecord(Code, Vals, AbbrevToUse); 155 } 156 157 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) { 158 switch (Kind) { 159 case Attribute::Alignment: 160 return bitc::ATTR_KIND_ALIGNMENT; 161 case Attribute::AlwaysInline: 162 return bitc::ATTR_KIND_ALWAYS_INLINE; 163 case Attribute::Builtin: 164 return bitc::ATTR_KIND_BUILTIN; 165 case Attribute::ByVal: 166 return bitc::ATTR_KIND_BY_VAL; 167 case Attribute::InAlloca: 168 return bitc::ATTR_KIND_IN_ALLOCA; 169 case Attribute::Cold: 170 return bitc::ATTR_KIND_COLD; 171 case Attribute::InlineHint: 172 return bitc::ATTR_KIND_INLINE_HINT; 173 case Attribute::InReg: 174 return bitc::ATTR_KIND_IN_REG; 175 case Attribute::JumpTable: 176 return bitc::ATTR_KIND_JUMP_TABLE; 177 case Attribute::MinSize: 178 return bitc::ATTR_KIND_MIN_SIZE; 179 case Attribute::Naked: 180 return bitc::ATTR_KIND_NAKED; 181 case Attribute::Nest: 182 return bitc::ATTR_KIND_NEST; 183 case Attribute::NoAlias: 184 return bitc::ATTR_KIND_NO_ALIAS; 185 case Attribute::NoBuiltin: 186 return bitc::ATTR_KIND_NO_BUILTIN; 187 case Attribute::NoCapture: 188 return bitc::ATTR_KIND_NO_CAPTURE; 189 case Attribute::NoDuplicate: 190 return bitc::ATTR_KIND_NO_DUPLICATE; 191 case Attribute::NoImplicitFloat: 192 return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT; 193 case Attribute::NoInline: 194 return bitc::ATTR_KIND_NO_INLINE; 195 case Attribute::NonLazyBind: 196 return bitc::ATTR_KIND_NON_LAZY_BIND; 197 case Attribute::NonNull: 198 return bitc::ATTR_KIND_NON_NULL; 199 case Attribute::Dereferenceable: 200 return bitc::ATTR_KIND_DEREFERENCEABLE; 201 case Attribute::NoRedZone: 202 return bitc::ATTR_KIND_NO_RED_ZONE; 203 case Attribute::NoReturn: 204 return bitc::ATTR_KIND_NO_RETURN; 205 case Attribute::NoUnwind: 206 return bitc::ATTR_KIND_NO_UNWIND; 207 case Attribute::OptimizeForSize: 208 return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE; 209 case Attribute::OptimizeNone: 210 return bitc::ATTR_KIND_OPTIMIZE_NONE; 211 case Attribute::ReadNone: 212 return bitc::ATTR_KIND_READ_NONE; 213 case Attribute::ReadOnly: 214 return bitc::ATTR_KIND_READ_ONLY; 215 case Attribute::Returned: 216 return bitc::ATTR_KIND_RETURNED; 217 case Attribute::ReturnsTwice: 218 return bitc::ATTR_KIND_RETURNS_TWICE; 219 case Attribute::SExt: 220 return bitc::ATTR_KIND_S_EXT; 221 case Attribute::StackAlignment: 222 return bitc::ATTR_KIND_STACK_ALIGNMENT; 223 case Attribute::StackProtect: 224 return bitc::ATTR_KIND_STACK_PROTECT; 225 case Attribute::StackProtectReq: 226 return bitc::ATTR_KIND_STACK_PROTECT_REQ; 227 case Attribute::StackProtectStrong: 228 return bitc::ATTR_KIND_STACK_PROTECT_STRONG; 229 case Attribute::StructRet: 230 return bitc::ATTR_KIND_STRUCT_RET; 231 case Attribute::SanitizeAddress: 232 return bitc::ATTR_KIND_SANITIZE_ADDRESS; 233 case Attribute::SanitizeThread: 234 return bitc::ATTR_KIND_SANITIZE_THREAD; 235 case Attribute::SanitizeMemory: 236 return bitc::ATTR_KIND_SANITIZE_MEMORY; 237 case Attribute::UWTable: 238 return bitc::ATTR_KIND_UW_TABLE; 239 case Attribute::ZExt: 240 return bitc::ATTR_KIND_Z_EXT; 241 case Attribute::EndAttrKinds: 242 llvm_unreachable("Can not encode end-attribute kinds marker."); 243 case Attribute::None: 244 llvm_unreachable("Can not encode none-attribute."); 245 } 246 247 llvm_unreachable("Trying to encode unknown attribute"); 248 } 249 250 static void WriteAttributeGroupTable(const ValueEnumerator &VE, 251 BitstreamWriter &Stream) { 252 const std::vector<AttributeSet> &AttrGrps = VE.getAttributeGroups(); 253 if (AttrGrps.empty()) return; 254 255 Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3); 256 257 SmallVector<uint64_t, 64> Record; 258 for (unsigned i = 0, e = AttrGrps.size(); i != e; ++i) { 259 AttributeSet AS = AttrGrps[i]; 260 for (unsigned i = 0, e = AS.getNumSlots(); i != e; ++i) { 261 AttributeSet A = AS.getSlotAttributes(i); 262 263 Record.push_back(VE.getAttributeGroupID(A)); 264 Record.push_back(AS.getSlotIndex(i)); 265 266 for (AttributeSet::iterator I = AS.begin(0), E = AS.end(0); 267 I != E; ++I) { 268 Attribute Attr = *I; 269 if (Attr.isEnumAttribute()) { 270 Record.push_back(0); 271 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 272 } else if (Attr.isIntAttribute()) { 273 Record.push_back(1); 274 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 275 Record.push_back(Attr.getValueAsInt()); 276 } else { 277 StringRef Kind = Attr.getKindAsString(); 278 StringRef Val = Attr.getValueAsString(); 279 280 Record.push_back(Val.empty() ? 3 : 4); 281 Record.append(Kind.begin(), Kind.end()); 282 Record.push_back(0); 283 if (!Val.empty()) { 284 Record.append(Val.begin(), Val.end()); 285 Record.push_back(0); 286 } 287 } 288 } 289 290 Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record); 291 Record.clear(); 292 } 293 } 294 295 Stream.ExitBlock(); 296 } 297 298 static void WriteAttributeTable(const ValueEnumerator &VE, 299 BitstreamWriter &Stream) { 300 const std::vector<AttributeSet> &Attrs = VE.getAttributes(); 301 if (Attrs.empty()) return; 302 303 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 304 305 SmallVector<uint64_t, 64> Record; 306 for (unsigned i = 0, e = Attrs.size(); i != e; ++i) { 307 const AttributeSet &A = Attrs[i]; 308 for (unsigned i = 0, e = A.getNumSlots(); i != e; ++i) 309 Record.push_back(VE.getAttributeGroupID(A.getSlotAttributes(i))); 310 311 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 312 Record.clear(); 313 } 314 315 Stream.ExitBlock(); 316 } 317 318 /// WriteTypeTable - Write out the type table for a module. 319 static void WriteTypeTable(const ValueEnumerator &VE, BitstreamWriter &Stream) { 320 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 321 322 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */); 323 SmallVector<uint64_t, 64> TypeVals; 324 325 uint64_t NumBits = Log2_32_Ceil(VE.getTypes().size()+1); 326 327 // Abbrev for TYPE_CODE_POINTER. 328 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 329 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER)); 330 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 331 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 332 unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv); 333 334 // Abbrev for TYPE_CODE_FUNCTION. 335 Abbv = new BitCodeAbbrev(); 336 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 337 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 338 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 339 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 340 341 unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv); 342 343 // Abbrev for TYPE_CODE_STRUCT_ANON. 344 Abbv = new BitCodeAbbrev(); 345 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON)); 346 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 347 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 348 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 349 350 unsigned StructAnonAbbrev = Stream.EmitAbbrev(Abbv); 351 352 // Abbrev for TYPE_CODE_STRUCT_NAME. 353 Abbv = new BitCodeAbbrev(); 354 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME)); 355 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 356 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 357 unsigned StructNameAbbrev = Stream.EmitAbbrev(Abbv); 358 359 // Abbrev for TYPE_CODE_STRUCT_NAMED. 360 Abbv = new BitCodeAbbrev(); 361 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED)); 362 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 363 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 364 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 365 366 unsigned StructNamedAbbrev = Stream.EmitAbbrev(Abbv); 367 368 // Abbrev for TYPE_CODE_ARRAY. 369 Abbv = new BitCodeAbbrev(); 370 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 371 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 372 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 373 374 unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv); 375 376 // Emit an entry count so the reader can reserve space. 377 TypeVals.push_back(TypeList.size()); 378 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 379 TypeVals.clear(); 380 381 // Loop over all of the types, emitting each in turn. 382 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) { 383 Type *T = TypeList[i]; 384 int AbbrevToUse = 0; 385 unsigned Code = 0; 386 387 switch (T->getTypeID()) { 388 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; 389 case Type::HalfTyID: Code = bitc::TYPE_CODE_HALF; break; 390 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; 391 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; 392 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break; 393 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break; 394 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; 395 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; 396 case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break; 397 case Type::X86_MMXTyID: Code = bitc::TYPE_CODE_X86_MMX; break; 398 case Type::IntegerTyID: 399 // INTEGER: [width] 400 Code = bitc::TYPE_CODE_INTEGER; 401 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 402 break; 403 case Type::PointerTyID: { 404 PointerType *PTy = cast<PointerType>(T); 405 // POINTER: [pointee type, address space] 406 Code = bitc::TYPE_CODE_POINTER; 407 TypeVals.push_back(VE.getTypeID(PTy->getElementType())); 408 unsigned AddressSpace = PTy->getAddressSpace(); 409 TypeVals.push_back(AddressSpace); 410 if (AddressSpace == 0) AbbrevToUse = PtrAbbrev; 411 break; 412 } 413 case Type::FunctionTyID: { 414 FunctionType *FT = cast<FunctionType>(T); 415 // FUNCTION: [isvararg, retty, paramty x N] 416 Code = bitc::TYPE_CODE_FUNCTION; 417 TypeVals.push_back(FT->isVarArg()); 418 TypeVals.push_back(VE.getTypeID(FT->getReturnType())); 419 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) 420 TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); 421 AbbrevToUse = FunctionAbbrev; 422 break; 423 } 424 case Type::StructTyID: { 425 StructType *ST = cast<StructType>(T); 426 // STRUCT: [ispacked, eltty x N] 427 TypeVals.push_back(ST->isPacked()); 428 // Output all of the element types. 429 for (StructType::element_iterator I = ST->element_begin(), 430 E = ST->element_end(); I != E; ++I) 431 TypeVals.push_back(VE.getTypeID(*I)); 432 433 if (ST->isLiteral()) { 434 Code = bitc::TYPE_CODE_STRUCT_ANON; 435 AbbrevToUse = StructAnonAbbrev; 436 } else { 437 if (ST->isOpaque()) { 438 Code = bitc::TYPE_CODE_OPAQUE; 439 } else { 440 Code = bitc::TYPE_CODE_STRUCT_NAMED; 441 AbbrevToUse = StructNamedAbbrev; 442 } 443 444 // Emit the name if it is present. 445 if (!ST->getName().empty()) 446 WriteStringRecord(bitc::TYPE_CODE_STRUCT_NAME, ST->getName(), 447 StructNameAbbrev, Stream); 448 } 449 break; 450 } 451 case Type::ArrayTyID: { 452 ArrayType *AT = cast<ArrayType>(T); 453 // ARRAY: [numelts, eltty] 454 Code = bitc::TYPE_CODE_ARRAY; 455 TypeVals.push_back(AT->getNumElements()); 456 TypeVals.push_back(VE.getTypeID(AT->getElementType())); 457 AbbrevToUse = ArrayAbbrev; 458 break; 459 } 460 case Type::VectorTyID: { 461 VectorType *VT = cast<VectorType>(T); 462 // VECTOR [numelts, eltty] 463 Code = bitc::TYPE_CODE_VECTOR; 464 TypeVals.push_back(VT->getNumElements()); 465 TypeVals.push_back(VE.getTypeID(VT->getElementType())); 466 break; 467 } 468 } 469 470 // Emit the finished record. 471 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 472 TypeVals.clear(); 473 } 474 475 Stream.ExitBlock(); 476 } 477 478 static unsigned getEncodedLinkage(const GlobalValue &GV) { 479 switch (GV.getLinkage()) { 480 case GlobalValue::ExternalLinkage: 481 return 0; 482 case GlobalValue::WeakAnyLinkage: 483 return 1; 484 case GlobalValue::AppendingLinkage: 485 return 2; 486 case GlobalValue::InternalLinkage: 487 return 3; 488 case GlobalValue::LinkOnceAnyLinkage: 489 return 4; 490 case GlobalValue::ExternalWeakLinkage: 491 return 7; 492 case GlobalValue::CommonLinkage: 493 return 8; 494 case GlobalValue::PrivateLinkage: 495 return 9; 496 case GlobalValue::WeakODRLinkage: 497 return 10; 498 case GlobalValue::LinkOnceODRLinkage: 499 return 11; 500 case GlobalValue::AvailableExternallyLinkage: 501 return 12; 502 } 503 llvm_unreachable("Invalid linkage"); 504 } 505 506 static unsigned getEncodedVisibility(const GlobalValue &GV) { 507 switch (GV.getVisibility()) { 508 case GlobalValue::DefaultVisibility: return 0; 509 case GlobalValue::HiddenVisibility: return 1; 510 case GlobalValue::ProtectedVisibility: return 2; 511 } 512 llvm_unreachable("Invalid visibility"); 513 } 514 515 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) { 516 switch (GV.getDLLStorageClass()) { 517 case GlobalValue::DefaultStorageClass: return 0; 518 case GlobalValue::DLLImportStorageClass: return 1; 519 case GlobalValue::DLLExportStorageClass: return 2; 520 } 521 llvm_unreachable("Invalid DLL storage class"); 522 } 523 524 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) { 525 switch (GV.getThreadLocalMode()) { 526 case GlobalVariable::NotThreadLocal: return 0; 527 case GlobalVariable::GeneralDynamicTLSModel: return 1; 528 case GlobalVariable::LocalDynamicTLSModel: return 2; 529 case GlobalVariable::InitialExecTLSModel: return 3; 530 case GlobalVariable::LocalExecTLSModel: return 4; 531 } 532 llvm_unreachable("Invalid TLS model"); 533 } 534 535 static unsigned getEncodedComdatSelectionKind(const Comdat &C) { 536 switch (C.getSelectionKind()) { 537 case Comdat::Any: 538 return bitc::COMDAT_SELECTION_KIND_ANY; 539 case Comdat::ExactMatch: 540 return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH; 541 case Comdat::Largest: 542 return bitc::COMDAT_SELECTION_KIND_LARGEST; 543 case Comdat::NoDuplicates: 544 return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES; 545 case Comdat::SameSize: 546 return bitc::COMDAT_SELECTION_KIND_SAME_SIZE; 547 } 548 llvm_unreachable("Invalid selection kind"); 549 } 550 551 static void writeComdats(const ValueEnumerator &VE, BitstreamWriter &Stream) { 552 SmallVector<uint8_t, 64> Vals; 553 for (const Comdat *C : VE.getComdats()) { 554 // COMDAT: [selection_kind, name] 555 Vals.push_back(getEncodedComdatSelectionKind(*C)); 556 Vals.push_back(C->getName().size()); 557 for (char Chr : C->getName()) 558 Vals.push_back((unsigned char)Chr); 559 Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0); 560 Vals.clear(); 561 } 562 } 563 564 // Emit top-level description of module, including target triple, inline asm, 565 // descriptors for global variables, and function prototype info. 566 static void WriteModuleInfo(const Module *M, const ValueEnumerator &VE, 567 BitstreamWriter &Stream) { 568 // Emit various pieces of data attached to a module. 569 if (!M->getTargetTriple().empty()) 570 WriteStringRecord(bitc::MODULE_CODE_TRIPLE, M->getTargetTriple(), 571 0/*TODO*/, Stream); 572 const std::string &DL = M->getDataLayoutStr(); 573 if (!DL.empty()) 574 WriteStringRecord(bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/, Stream); 575 if (!M->getModuleInlineAsm().empty()) 576 WriteStringRecord(bitc::MODULE_CODE_ASM, M->getModuleInlineAsm(), 577 0/*TODO*/, Stream); 578 579 // Emit information about sections and GC, computing how many there are. Also 580 // compute the maximum alignment value. 581 std::map<std::string, unsigned> SectionMap; 582 std::map<std::string, unsigned> GCMap; 583 unsigned MaxAlignment = 0; 584 unsigned MaxGlobalType = 0; 585 for (const GlobalValue &GV : M->globals()) { 586 MaxAlignment = std::max(MaxAlignment, GV.getAlignment()); 587 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getType())); 588 if (GV.hasSection()) { 589 // Give section names unique ID's. 590 unsigned &Entry = SectionMap[GV.getSection()]; 591 if (!Entry) { 592 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV.getSection(), 593 0/*TODO*/, Stream); 594 Entry = SectionMap.size(); 595 } 596 } 597 } 598 for (const Function &F : *M) { 599 MaxAlignment = std::max(MaxAlignment, F.getAlignment()); 600 if (F.hasSection()) { 601 // Give section names unique ID's. 602 unsigned &Entry = SectionMap[F.getSection()]; 603 if (!Entry) { 604 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, F.getSection(), 605 0/*TODO*/, Stream); 606 Entry = SectionMap.size(); 607 } 608 } 609 if (F.hasGC()) { 610 // Same for GC names. 611 unsigned &Entry = GCMap[F.getGC()]; 612 if (!Entry) { 613 WriteStringRecord(bitc::MODULE_CODE_GCNAME, F.getGC(), 614 0/*TODO*/, Stream); 615 Entry = GCMap.size(); 616 } 617 } 618 } 619 620 // Emit abbrev for globals, now that we know # sections and max alignment. 621 unsigned SimpleGVarAbbrev = 0; 622 if (!M->global_empty()) { 623 // Add an abbrev for common globals with no visibility or thread localness. 624 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 625 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 626 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 627 Log2_32_Ceil(MaxGlobalType+1))); 628 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // Constant. 629 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 630 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // Linkage. 631 if (MaxAlignment == 0) // Alignment. 632 Abbv->Add(BitCodeAbbrevOp(0)); 633 else { 634 unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1; 635 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 636 Log2_32_Ceil(MaxEncAlignment+1))); 637 } 638 if (SectionMap.empty()) // Section. 639 Abbv->Add(BitCodeAbbrevOp(0)); 640 else 641 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 642 Log2_32_Ceil(SectionMap.size()+1))); 643 // Don't bother emitting vis + thread local. 644 SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv); 645 } 646 647 // Emit the global variable information. 648 SmallVector<unsigned, 64> Vals; 649 for (const GlobalVariable &GV : M->globals()) { 650 unsigned AbbrevToUse = 0; 651 652 // GLOBALVAR: [type, isconst, initid, 653 // linkage, alignment, section, visibility, threadlocal, 654 // unnamed_addr, externally_initialized, dllstorageclass] 655 Vals.push_back(VE.getTypeID(GV.getType())); 656 Vals.push_back(GV.isConstant()); 657 Vals.push_back(GV.isDeclaration() ? 0 : 658 (VE.getValueID(GV.getInitializer()) + 1)); 659 Vals.push_back(getEncodedLinkage(GV)); 660 Vals.push_back(Log2_32(GV.getAlignment())+1); 661 Vals.push_back(GV.hasSection() ? SectionMap[GV.getSection()] : 0); 662 if (GV.isThreadLocal() || 663 GV.getVisibility() != GlobalValue::DefaultVisibility || 664 GV.hasUnnamedAddr() || GV.isExternallyInitialized() || 665 GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass || 666 GV.hasComdat()) { 667 Vals.push_back(getEncodedVisibility(GV)); 668 Vals.push_back(getEncodedThreadLocalMode(GV)); 669 Vals.push_back(GV.hasUnnamedAddr()); 670 Vals.push_back(GV.isExternallyInitialized()); 671 Vals.push_back(getEncodedDLLStorageClass(GV)); 672 Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0); 673 } else { 674 AbbrevToUse = SimpleGVarAbbrev; 675 } 676 677 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 678 Vals.clear(); 679 } 680 681 // Emit the function proto information. 682 for (const Function &F : *M) { 683 // FUNCTION: [type, callingconv, isproto, linkage, paramattrs, alignment, 684 // section, visibility, gc, unnamed_addr, prologuedata, 685 // dllstorageclass, comdat, prefixdata] 686 Vals.push_back(VE.getTypeID(F.getType())); 687 Vals.push_back(F.getCallingConv()); 688 Vals.push_back(F.isDeclaration()); 689 Vals.push_back(getEncodedLinkage(F)); 690 Vals.push_back(VE.getAttributeID(F.getAttributes())); 691 Vals.push_back(Log2_32(F.getAlignment())+1); 692 Vals.push_back(F.hasSection() ? SectionMap[F.getSection()] : 0); 693 Vals.push_back(getEncodedVisibility(F)); 694 Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0); 695 Vals.push_back(F.hasUnnamedAddr()); 696 Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1) 697 : 0); 698 Vals.push_back(getEncodedDLLStorageClass(F)); 699 Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0); 700 Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1) 701 : 0); 702 703 unsigned AbbrevToUse = 0; 704 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 705 Vals.clear(); 706 } 707 708 // Emit the alias information. 709 for (const GlobalAlias &A : M->aliases()) { 710 // ALIAS: [alias type, aliasee val#, linkage, visibility] 711 Vals.push_back(VE.getTypeID(A.getType())); 712 Vals.push_back(VE.getValueID(A.getAliasee())); 713 Vals.push_back(getEncodedLinkage(A)); 714 Vals.push_back(getEncodedVisibility(A)); 715 Vals.push_back(getEncodedDLLStorageClass(A)); 716 Vals.push_back(getEncodedThreadLocalMode(A)); 717 Vals.push_back(A.hasUnnamedAddr()); 718 unsigned AbbrevToUse = 0; 719 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); 720 Vals.clear(); 721 } 722 } 723 724 static uint64_t GetOptimizationFlags(const Value *V) { 725 uint64_t Flags = 0; 726 727 if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) { 728 if (OBO->hasNoSignedWrap()) 729 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP; 730 if (OBO->hasNoUnsignedWrap()) 731 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP; 732 } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) { 733 if (PEO->isExact()) 734 Flags |= 1 << bitc::PEO_EXACT; 735 } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) { 736 if (FPMO->hasUnsafeAlgebra()) 737 Flags |= FastMathFlags::UnsafeAlgebra; 738 if (FPMO->hasNoNaNs()) 739 Flags |= FastMathFlags::NoNaNs; 740 if (FPMO->hasNoInfs()) 741 Flags |= FastMathFlags::NoInfs; 742 if (FPMO->hasNoSignedZeros()) 743 Flags |= FastMathFlags::NoSignedZeros; 744 if (FPMO->hasAllowReciprocal()) 745 Flags |= FastMathFlags::AllowReciprocal; 746 } 747 748 return Flags; 749 } 750 751 static void WriteValueAsMetadata(const ValueAsMetadata *MD, 752 const ValueEnumerator &VE, 753 BitstreamWriter &Stream, 754 SmallVectorImpl<uint64_t> &Record) { 755 // Mimic an MDNode with a value as one operand. 756 Value *V = MD->getValue(); 757 Record.push_back(VE.getTypeID(V->getType())); 758 Record.push_back(VE.getValueID(V)); 759 Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0); 760 Record.clear(); 761 } 762 763 static void WriteMDNode(const MDNode *N, 764 const ValueEnumerator &VE, 765 BitstreamWriter &Stream, 766 SmallVectorImpl<uint64_t> &Record) { 767 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 768 Metadata *MD = N->getOperand(i); 769 if (!MD) { 770 Record.push_back(0); 771 continue; 772 } 773 assert(!isa<LocalAsMetadata>(MD) && "Unexpected function-local metadata"); 774 Record.push_back(VE.getMetadataID(MD) + 1); 775 } 776 Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE 777 : bitc::METADATA_NODE, 778 Record); 779 Record.clear(); 780 } 781 782 static void WriteModuleMetadata(const Module *M, 783 const ValueEnumerator &VE, 784 BitstreamWriter &Stream) { 785 const auto &MDs = VE.getMDs(); 786 bool StartedMetadataBlock = false; 787 unsigned MDSAbbrev = 0; 788 SmallVector<uint64_t, 64> Record; 789 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 790 if (const MDNode *N = dyn_cast<MDNode>(MDs[i])) { 791 if (!StartedMetadataBlock) { 792 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 793 StartedMetadataBlock = true; 794 } 795 WriteMDNode(N, VE, Stream, Record); 796 } else if (const auto *MDC = dyn_cast<ConstantAsMetadata>(MDs[i])) { 797 if (!StartedMetadataBlock) { 798 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 799 StartedMetadataBlock = true; 800 } 801 WriteValueAsMetadata(MDC, VE, Stream, Record); 802 } else if (const MDString *MDS = dyn_cast<MDString>(MDs[i])) { 803 if (!StartedMetadataBlock) { 804 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 805 806 // Abbrev for METADATA_STRING. 807 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 808 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRING)); 809 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 810 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 811 MDSAbbrev = Stream.EmitAbbrev(Abbv); 812 StartedMetadataBlock = true; 813 } 814 815 // Code: [strchar x N] 816 Record.append(MDS->bytes_begin(), MDS->bytes_end()); 817 818 // Emit the finished record. 819 Stream.EmitRecord(bitc::METADATA_STRING, Record, MDSAbbrev); 820 Record.clear(); 821 } 822 } 823 824 // Write named metadata. 825 for (Module::const_named_metadata_iterator I = M->named_metadata_begin(), 826 E = M->named_metadata_end(); I != E; ++I) { 827 const NamedMDNode *NMD = I; 828 if (!StartedMetadataBlock) { 829 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 830 StartedMetadataBlock = true; 831 } 832 833 // Write name. 834 StringRef Str = NMD->getName(); 835 for (unsigned i = 0, e = Str.size(); i != e; ++i) 836 Record.push_back(Str[i]); 837 Stream.EmitRecord(bitc::METADATA_NAME, Record, 0/*TODO*/); 838 Record.clear(); 839 840 // Write named metadata operands. 841 for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) 842 Record.push_back(VE.getMetadataID(NMD->getOperand(i))); 843 Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0); 844 Record.clear(); 845 } 846 847 if (StartedMetadataBlock) 848 Stream.ExitBlock(); 849 } 850 851 static void WriteFunctionLocalMetadata(const Function &F, 852 const ValueEnumerator &VE, 853 BitstreamWriter &Stream) { 854 bool StartedMetadataBlock = false; 855 SmallVector<uint64_t, 64> Record; 856 const SmallVectorImpl<const LocalAsMetadata *> &MDs = 857 VE.getFunctionLocalMDs(); 858 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 859 assert(MDs[i] && "Expected valid function-local metadata"); 860 if (!StartedMetadataBlock) { 861 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 862 StartedMetadataBlock = true; 863 } 864 WriteValueAsMetadata(MDs[i], VE, Stream, Record); 865 } 866 867 if (StartedMetadataBlock) 868 Stream.ExitBlock(); 869 } 870 871 static void WriteMetadataAttachment(const Function &F, 872 const ValueEnumerator &VE, 873 BitstreamWriter &Stream) { 874 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3); 875 876 SmallVector<uint64_t, 64> Record; 877 878 // Write metadata attachments 879 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]] 880 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 881 882 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 883 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 884 I != E; ++I) { 885 MDs.clear(); 886 I->getAllMetadataOtherThanDebugLoc(MDs); 887 888 // If no metadata, ignore instruction. 889 if (MDs.empty()) continue; 890 891 Record.push_back(VE.getInstructionID(I)); 892 893 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 894 Record.push_back(MDs[i].first); 895 Record.push_back(VE.getMetadataID(MDs[i].second)); 896 } 897 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 898 Record.clear(); 899 } 900 901 Stream.ExitBlock(); 902 } 903 904 static void WriteModuleMetadataStore(const Module *M, BitstreamWriter &Stream) { 905 SmallVector<uint64_t, 64> Record; 906 907 // Write metadata kinds 908 // METADATA_KIND - [n x [id, name]] 909 SmallVector<StringRef, 8> Names; 910 M->getMDKindNames(Names); 911 912 if (Names.empty()) return; 913 914 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 915 916 for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) { 917 Record.push_back(MDKindID); 918 StringRef KName = Names[MDKindID]; 919 Record.append(KName.begin(), KName.end()); 920 921 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0); 922 Record.clear(); 923 } 924 925 Stream.ExitBlock(); 926 } 927 928 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) { 929 if ((int64_t)V >= 0) 930 Vals.push_back(V << 1); 931 else 932 Vals.push_back((-V << 1) | 1); 933 } 934 935 static void WriteConstants(unsigned FirstVal, unsigned LastVal, 936 const ValueEnumerator &VE, 937 BitstreamWriter &Stream, bool isGlobal) { 938 if (FirstVal == LastVal) return; 939 940 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 941 942 unsigned AggregateAbbrev = 0; 943 unsigned String8Abbrev = 0; 944 unsigned CString7Abbrev = 0; 945 unsigned CString6Abbrev = 0; 946 // If this is a constant pool for the module, emit module-specific abbrevs. 947 if (isGlobal) { 948 // Abbrev for CST_CODE_AGGREGATE. 949 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 950 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 951 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 952 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); 953 AggregateAbbrev = Stream.EmitAbbrev(Abbv); 954 955 // Abbrev for CST_CODE_STRING. 956 Abbv = new BitCodeAbbrev(); 957 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 958 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 959 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 960 String8Abbrev = Stream.EmitAbbrev(Abbv); 961 // Abbrev for CST_CODE_CSTRING. 962 Abbv = new BitCodeAbbrev(); 963 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 964 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 965 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 966 CString7Abbrev = Stream.EmitAbbrev(Abbv); 967 // Abbrev for CST_CODE_CSTRING. 968 Abbv = new BitCodeAbbrev(); 969 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 970 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 971 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 972 CString6Abbrev = Stream.EmitAbbrev(Abbv); 973 } 974 975 SmallVector<uint64_t, 64> Record; 976 977 const ValueEnumerator::ValueList &Vals = VE.getValues(); 978 Type *LastTy = nullptr; 979 for (unsigned i = FirstVal; i != LastVal; ++i) { 980 const Value *V = Vals[i].first; 981 // If we need to switch types, do so now. 982 if (V->getType() != LastTy) { 983 LastTy = V->getType(); 984 Record.push_back(VE.getTypeID(LastTy)); 985 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 986 CONSTANTS_SETTYPE_ABBREV); 987 Record.clear(); 988 } 989 990 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 991 Record.push_back(unsigned(IA->hasSideEffects()) | 992 unsigned(IA->isAlignStack()) << 1 | 993 unsigned(IA->getDialect()&1) << 2); 994 995 // Add the asm string. 996 const std::string &AsmStr = IA->getAsmString(); 997 Record.push_back(AsmStr.size()); 998 for (unsigned i = 0, e = AsmStr.size(); i != e; ++i) 999 Record.push_back(AsmStr[i]); 1000 1001 // Add the constraint string. 1002 const std::string &ConstraintStr = IA->getConstraintString(); 1003 Record.push_back(ConstraintStr.size()); 1004 for (unsigned i = 0, e = ConstraintStr.size(); i != e; ++i) 1005 Record.push_back(ConstraintStr[i]); 1006 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 1007 Record.clear(); 1008 continue; 1009 } 1010 const Constant *C = cast<Constant>(V); 1011 unsigned Code = -1U; 1012 unsigned AbbrevToUse = 0; 1013 if (C->isNullValue()) { 1014 Code = bitc::CST_CODE_NULL; 1015 } else if (isa<UndefValue>(C)) { 1016 Code = bitc::CST_CODE_UNDEF; 1017 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 1018 if (IV->getBitWidth() <= 64) { 1019 uint64_t V = IV->getSExtValue(); 1020 emitSignedInt64(Record, V); 1021 Code = bitc::CST_CODE_INTEGER; 1022 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 1023 } else { // Wide integers, > 64 bits in size. 1024 // We have an arbitrary precision integer value to write whose 1025 // bit width is > 64. However, in canonical unsigned integer 1026 // format it is likely that the high bits are going to be zero. 1027 // So, we only write the number of active words. 1028 unsigned NWords = IV->getValue().getActiveWords(); 1029 const uint64_t *RawWords = IV->getValue().getRawData(); 1030 for (unsigned i = 0; i != NWords; ++i) { 1031 emitSignedInt64(Record, RawWords[i]); 1032 } 1033 Code = bitc::CST_CODE_WIDE_INTEGER; 1034 } 1035 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 1036 Code = bitc::CST_CODE_FLOAT; 1037 Type *Ty = CFP->getType(); 1038 if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) { 1039 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); 1040 } else if (Ty->isX86_FP80Ty()) { 1041 // api needed to prevent premature destruction 1042 // bits are not in the same order as a normal i80 APInt, compensate. 1043 APInt api = CFP->getValueAPF().bitcastToAPInt(); 1044 const uint64_t *p = api.getRawData(); 1045 Record.push_back((p[1] << 48) | (p[0] >> 16)); 1046 Record.push_back(p[0] & 0xffffLL); 1047 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) { 1048 APInt api = CFP->getValueAPF().bitcastToAPInt(); 1049 const uint64_t *p = api.getRawData(); 1050 Record.push_back(p[0]); 1051 Record.push_back(p[1]); 1052 } else { 1053 assert (0 && "Unknown FP type!"); 1054 } 1055 } else if (isa<ConstantDataSequential>(C) && 1056 cast<ConstantDataSequential>(C)->isString()) { 1057 const ConstantDataSequential *Str = cast<ConstantDataSequential>(C); 1058 // Emit constant strings specially. 1059 unsigned NumElts = Str->getNumElements(); 1060 // If this is a null-terminated string, use the denser CSTRING encoding. 1061 if (Str->isCString()) { 1062 Code = bitc::CST_CODE_CSTRING; 1063 --NumElts; // Don't encode the null, which isn't allowed by char6. 1064 } else { 1065 Code = bitc::CST_CODE_STRING; 1066 AbbrevToUse = String8Abbrev; 1067 } 1068 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 1069 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 1070 for (unsigned i = 0; i != NumElts; ++i) { 1071 unsigned char V = Str->getElementAsInteger(i); 1072 Record.push_back(V); 1073 isCStr7 &= (V & 128) == 0; 1074 if (isCStrChar6) 1075 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 1076 } 1077 1078 if (isCStrChar6) 1079 AbbrevToUse = CString6Abbrev; 1080 else if (isCStr7) 1081 AbbrevToUse = CString7Abbrev; 1082 } else if (const ConstantDataSequential *CDS = 1083 dyn_cast<ConstantDataSequential>(C)) { 1084 Code = bitc::CST_CODE_DATA; 1085 Type *EltTy = CDS->getType()->getElementType(); 1086 if (isa<IntegerType>(EltTy)) { 1087 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 1088 Record.push_back(CDS->getElementAsInteger(i)); 1089 } else if (EltTy->isFloatTy()) { 1090 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1091 union { float F; uint32_t I; }; 1092 F = CDS->getElementAsFloat(i); 1093 Record.push_back(I); 1094 } 1095 } else { 1096 assert(EltTy->isDoubleTy() && "Unknown ConstantData element type"); 1097 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1098 union { double F; uint64_t I; }; 1099 F = CDS->getElementAsDouble(i); 1100 Record.push_back(I); 1101 } 1102 } 1103 } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(C) || 1104 isa<ConstantVector>(C)) { 1105 Code = bitc::CST_CODE_AGGREGATE; 1106 for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i) 1107 Record.push_back(VE.getValueID(C->getOperand(i))); 1108 AbbrevToUse = AggregateAbbrev; 1109 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1110 switch (CE->getOpcode()) { 1111 default: 1112 if (Instruction::isCast(CE->getOpcode())) { 1113 Code = bitc::CST_CODE_CE_CAST; 1114 Record.push_back(GetEncodedCastOpcode(CE->getOpcode())); 1115 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 1116 Record.push_back(VE.getValueID(C->getOperand(0))); 1117 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 1118 } else { 1119 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 1120 Code = bitc::CST_CODE_CE_BINOP; 1121 Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode())); 1122 Record.push_back(VE.getValueID(C->getOperand(0))); 1123 Record.push_back(VE.getValueID(C->getOperand(1))); 1124 uint64_t Flags = GetOptimizationFlags(CE); 1125 if (Flags != 0) 1126 Record.push_back(Flags); 1127 } 1128 break; 1129 case Instruction::GetElementPtr: 1130 Code = bitc::CST_CODE_CE_GEP; 1131 if (cast<GEPOperator>(C)->isInBounds()) 1132 Code = bitc::CST_CODE_CE_INBOUNDS_GEP; 1133 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 1134 Record.push_back(VE.getTypeID(C->getOperand(i)->getType())); 1135 Record.push_back(VE.getValueID(C->getOperand(i))); 1136 } 1137 break; 1138 case Instruction::Select: 1139 Code = bitc::CST_CODE_CE_SELECT; 1140 Record.push_back(VE.getValueID(C->getOperand(0))); 1141 Record.push_back(VE.getValueID(C->getOperand(1))); 1142 Record.push_back(VE.getValueID(C->getOperand(2))); 1143 break; 1144 case Instruction::ExtractElement: 1145 Code = bitc::CST_CODE_CE_EXTRACTELT; 1146 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 1147 Record.push_back(VE.getValueID(C->getOperand(0))); 1148 Record.push_back(VE.getTypeID(C->getOperand(1)->getType())); 1149 Record.push_back(VE.getValueID(C->getOperand(1))); 1150 break; 1151 case Instruction::InsertElement: 1152 Code = bitc::CST_CODE_CE_INSERTELT; 1153 Record.push_back(VE.getValueID(C->getOperand(0))); 1154 Record.push_back(VE.getValueID(C->getOperand(1))); 1155 Record.push_back(VE.getTypeID(C->getOperand(2)->getType())); 1156 Record.push_back(VE.getValueID(C->getOperand(2))); 1157 break; 1158 case Instruction::ShuffleVector: 1159 // If the return type and argument types are the same, this is a 1160 // standard shufflevector instruction. If the types are different, 1161 // then the shuffle is widening or truncating the input vectors, and 1162 // the argument type must also be encoded. 1163 if (C->getType() == C->getOperand(0)->getType()) { 1164 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 1165 } else { 1166 Code = bitc::CST_CODE_CE_SHUFVEC_EX; 1167 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 1168 } 1169 Record.push_back(VE.getValueID(C->getOperand(0))); 1170 Record.push_back(VE.getValueID(C->getOperand(1))); 1171 Record.push_back(VE.getValueID(C->getOperand(2))); 1172 break; 1173 case Instruction::ICmp: 1174 case Instruction::FCmp: 1175 Code = bitc::CST_CODE_CE_CMP; 1176 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 1177 Record.push_back(VE.getValueID(C->getOperand(0))); 1178 Record.push_back(VE.getValueID(C->getOperand(1))); 1179 Record.push_back(CE->getPredicate()); 1180 break; 1181 } 1182 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) { 1183 Code = bitc::CST_CODE_BLOCKADDRESS; 1184 Record.push_back(VE.getTypeID(BA->getFunction()->getType())); 1185 Record.push_back(VE.getValueID(BA->getFunction())); 1186 Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock())); 1187 } else { 1188 #ifndef NDEBUG 1189 C->dump(); 1190 #endif 1191 llvm_unreachable("Unknown constant!"); 1192 } 1193 Stream.EmitRecord(Code, Record, AbbrevToUse); 1194 Record.clear(); 1195 } 1196 1197 Stream.ExitBlock(); 1198 } 1199 1200 static void WriteModuleConstants(const ValueEnumerator &VE, 1201 BitstreamWriter &Stream) { 1202 const ValueEnumerator::ValueList &Vals = VE.getValues(); 1203 1204 // Find the first constant to emit, which is the first non-globalvalue value. 1205 // We know globalvalues have been emitted by WriteModuleInfo. 1206 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 1207 if (!isa<GlobalValue>(Vals[i].first)) { 1208 WriteConstants(i, Vals.size(), VE, Stream, true); 1209 return; 1210 } 1211 } 1212 } 1213 1214 /// PushValueAndType - The file has to encode both the value and type id for 1215 /// many values, because we need to know what type to create for forward 1216 /// references. However, most operands are not forward references, so this type 1217 /// field is not needed. 1218 /// 1219 /// This function adds V's value ID to Vals. If the value ID is higher than the 1220 /// instruction ID, then it is a forward reference, and it also includes the 1221 /// type ID. The value ID that is written is encoded relative to the InstID. 1222 static bool PushValueAndType(const Value *V, unsigned InstID, 1223 SmallVectorImpl<unsigned> &Vals, 1224 ValueEnumerator &VE) { 1225 unsigned ValID = VE.getValueID(V); 1226 // Make encoding relative to the InstID. 1227 Vals.push_back(InstID - ValID); 1228 if (ValID >= InstID) { 1229 Vals.push_back(VE.getTypeID(V->getType())); 1230 return true; 1231 } 1232 return false; 1233 } 1234 1235 /// pushValue - Like PushValueAndType, but where the type of the value is 1236 /// omitted (perhaps it was already encoded in an earlier operand). 1237 static void pushValue(const Value *V, unsigned InstID, 1238 SmallVectorImpl<unsigned> &Vals, 1239 ValueEnumerator &VE) { 1240 unsigned ValID = VE.getValueID(V); 1241 Vals.push_back(InstID - ValID); 1242 } 1243 1244 static void pushValueSigned(const Value *V, unsigned InstID, 1245 SmallVectorImpl<uint64_t> &Vals, 1246 ValueEnumerator &VE) { 1247 unsigned ValID = VE.getValueID(V); 1248 int64_t diff = ((int32_t)InstID - (int32_t)ValID); 1249 emitSignedInt64(Vals, diff); 1250 } 1251 1252 /// WriteInstruction - Emit an instruction to the specified stream. 1253 static void WriteInstruction(const Instruction &I, unsigned InstID, 1254 ValueEnumerator &VE, BitstreamWriter &Stream, 1255 SmallVectorImpl<unsigned> &Vals) { 1256 unsigned Code = 0; 1257 unsigned AbbrevToUse = 0; 1258 VE.setInstructionID(&I); 1259 switch (I.getOpcode()) { 1260 default: 1261 if (Instruction::isCast(I.getOpcode())) { 1262 Code = bitc::FUNC_CODE_INST_CAST; 1263 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 1264 AbbrevToUse = FUNCTION_INST_CAST_ABBREV; 1265 Vals.push_back(VE.getTypeID(I.getType())); 1266 Vals.push_back(GetEncodedCastOpcode(I.getOpcode())); 1267 } else { 1268 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 1269 Code = bitc::FUNC_CODE_INST_BINOP; 1270 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 1271 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; 1272 pushValue(I.getOperand(1), InstID, Vals, VE); 1273 Vals.push_back(GetEncodedBinaryOpcode(I.getOpcode())); 1274 uint64_t Flags = GetOptimizationFlags(&I); 1275 if (Flags != 0) { 1276 if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV) 1277 AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV; 1278 Vals.push_back(Flags); 1279 } 1280 } 1281 break; 1282 1283 case Instruction::GetElementPtr: 1284 Code = bitc::FUNC_CODE_INST_GEP; 1285 if (cast<GEPOperator>(&I)->isInBounds()) 1286 Code = bitc::FUNC_CODE_INST_INBOUNDS_GEP; 1287 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 1288 PushValueAndType(I.getOperand(i), InstID, Vals, VE); 1289 break; 1290 case Instruction::ExtractValue: { 1291 Code = bitc::FUNC_CODE_INST_EXTRACTVAL; 1292 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1293 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); 1294 for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i) 1295 Vals.push_back(*i); 1296 break; 1297 } 1298 case Instruction::InsertValue: { 1299 Code = bitc::FUNC_CODE_INST_INSERTVAL; 1300 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1301 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 1302 const InsertValueInst *IVI = cast<InsertValueInst>(&I); 1303 for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i) 1304 Vals.push_back(*i); 1305 break; 1306 } 1307 case Instruction::Select: 1308 Code = bitc::FUNC_CODE_INST_VSELECT; 1309 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 1310 pushValue(I.getOperand(2), InstID, Vals, VE); 1311 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1312 break; 1313 case Instruction::ExtractElement: 1314 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 1315 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1316 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 1317 break; 1318 case Instruction::InsertElement: 1319 Code = bitc::FUNC_CODE_INST_INSERTELT; 1320 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1321 pushValue(I.getOperand(1), InstID, Vals, VE); 1322 PushValueAndType(I.getOperand(2), InstID, Vals, VE); 1323 break; 1324 case Instruction::ShuffleVector: 1325 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 1326 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1327 pushValue(I.getOperand(1), InstID, Vals, VE); 1328 pushValue(I.getOperand(2), InstID, Vals, VE); 1329 break; 1330 case Instruction::ICmp: 1331 case Instruction::FCmp: 1332 // compare returning Int1Ty or vector of Int1Ty 1333 Code = bitc::FUNC_CODE_INST_CMP2; 1334 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1335 pushValue(I.getOperand(1), InstID, Vals, VE); 1336 Vals.push_back(cast<CmpInst>(I).getPredicate()); 1337 break; 1338 1339 case Instruction::Ret: 1340 { 1341 Code = bitc::FUNC_CODE_INST_RET; 1342 unsigned NumOperands = I.getNumOperands(); 1343 if (NumOperands == 0) 1344 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; 1345 else if (NumOperands == 1) { 1346 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 1347 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; 1348 } else { 1349 for (unsigned i = 0, e = NumOperands; i != e; ++i) 1350 PushValueAndType(I.getOperand(i), InstID, Vals, VE); 1351 } 1352 } 1353 break; 1354 case Instruction::Br: 1355 { 1356 Code = bitc::FUNC_CODE_INST_BR; 1357 const BranchInst &II = cast<BranchInst>(I); 1358 Vals.push_back(VE.getValueID(II.getSuccessor(0))); 1359 if (II.isConditional()) { 1360 Vals.push_back(VE.getValueID(II.getSuccessor(1))); 1361 pushValue(II.getCondition(), InstID, Vals, VE); 1362 } 1363 } 1364 break; 1365 case Instruction::Switch: 1366 { 1367 Code = bitc::FUNC_CODE_INST_SWITCH; 1368 const SwitchInst &SI = cast<SwitchInst>(I); 1369 Vals.push_back(VE.getTypeID(SI.getCondition()->getType())); 1370 pushValue(SI.getCondition(), InstID, Vals, VE); 1371 Vals.push_back(VE.getValueID(SI.getDefaultDest())); 1372 for (SwitchInst::ConstCaseIt i = SI.case_begin(), e = SI.case_end(); 1373 i != e; ++i) { 1374 Vals.push_back(VE.getValueID(i.getCaseValue())); 1375 Vals.push_back(VE.getValueID(i.getCaseSuccessor())); 1376 } 1377 } 1378 break; 1379 case Instruction::IndirectBr: 1380 Code = bitc::FUNC_CODE_INST_INDIRECTBR; 1381 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 1382 // Encode the address operand as relative, but not the basic blocks. 1383 pushValue(I.getOperand(0), InstID, Vals, VE); 1384 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) 1385 Vals.push_back(VE.getValueID(I.getOperand(i))); 1386 break; 1387 1388 case Instruction::Invoke: { 1389 const InvokeInst *II = cast<InvokeInst>(&I); 1390 const Value *Callee(II->getCalledValue()); 1391 PointerType *PTy = cast<PointerType>(Callee->getType()); 1392 FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); 1393 Code = bitc::FUNC_CODE_INST_INVOKE; 1394 1395 Vals.push_back(VE.getAttributeID(II->getAttributes())); 1396 Vals.push_back(II->getCallingConv()); 1397 Vals.push_back(VE.getValueID(II->getNormalDest())); 1398 Vals.push_back(VE.getValueID(II->getUnwindDest())); 1399 PushValueAndType(Callee, InstID, Vals, VE); 1400 1401 // Emit value #'s for the fixed parameters. 1402 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 1403 pushValue(I.getOperand(i), InstID, Vals, VE); // fixed param. 1404 1405 // Emit type/value pairs for varargs params. 1406 if (FTy->isVarArg()) { 1407 for (unsigned i = FTy->getNumParams(), e = I.getNumOperands()-3; 1408 i != e; ++i) 1409 PushValueAndType(I.getOperand(i), InstID, Vals, VE); // vararg 1410 } 1411 break; 1412 } 1413 case Instruction::Resume: 1414 Code = bitc::FUNC_CODE_INST_RESUME; 1415 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1416 break; 1417 case Instruction::Unreachable: 1418 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 1419 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; 1420 break; 1421 1422 case Instruction::PHI: { 1423 const PHINode &PN = cast<PHINode>(I); 1424 Code = bitc::FUNC_CODE_INST_PHI; 1425 // With the newer instruction encoding, forward references could give 1426 // negative valued IDs. This is most common for PHIs, so we use 1427 // signed VBRs. 1428 SmallVector<uint64_t, 128> Vals64; 1429 Vals64.push_back(VE.getTypeID(PN.getType())); 1430 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 1431 pushValueSigned(PN.getIncomingValue(i), InstID, Vals64, VE); 1432 Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i))); 1433 } 1434 // Emit a Vals64 vector and exit. 1435 Stream.EmitRecord(Code, Vals64, AbbrevToUse); 1436 Vals64.clear(); 1437 return; 1438 } 1439 1440 case Instruction::LandingPad: { 1441 const LandingPadInst &LP = cast<LandingPadInst>(I); 1442 Code = bitc::FUNC_CODE_INST_LANDINGPAD; 1443 Vals.push_back(VE.getTypeID(LP.getType())); 1444 PushValueAndType(LP.getPersonalityFn(), InstID, Vals, VE); 1445 Vals.push_back(LP.isCleanup()); 1446 Vals.push_back(LP.getNumClauses()); 1447 for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) { 1448 if (LP.isCatch(I)) 1449 Vals.push_back(LandingPadInst::Catch); 1450 else 1451 Vals.push_back(LandingPadInst::Filter); 1452 PushValueAndType(LP.getClause(I), InstID, Vals, VE); 1453 } 1454 break; 1455 } 1456 1457 case Instruction::Alloca: { 1458 Code = bitc::FUNC_CODE_INST_ALLOCA; 1459 Vals.push_back(VE.getTypeID(I.getType())); 1460 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 1461 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 1462 const AllocaInst &AI = cast<AllocaInst>(I); 1463 unsigned AlignRecord = Log2_32(AI.getAlignment()) + 1; 1464 assert(Log2_32(Value::MaximumAlignment) + 1 < 1 << 5 && 1465 "not enough bits for maximum alignment"); 1466 assert(AlignRecord < 1 << 5 && "alignment greater than 1 << 64"); 1467 AlignRecord |= AI.isUsedWithInAlloca() << 5; 1468 Vals.push_back(AlignRecord); 1469 break; 1470 } 1471 1472 case Instruction::Load: 1473 if (cast<LoadInst>(I).isAtomic()) { 1474 Code = bitc::FUNC_CODE_INST_LOADATOMIC; 1475 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1476 } else { 1477 Code = bitc::FUNC_CODE_INST_LOAD; 1478 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) // ptr 1479 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; 1480 } 1481 Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1); 1482 Vals.push_back(cast<LoadInst>(I).isVolatile()); 1483 if (cast<LoadInst>(I).isAtomic()) { 1484 Vals.push_back(GetEncodedOrdering(cast<LoadInst>(I).getOrdering())); 1485 Vals.push_back(GetEncodedSynchScope(cast<LoadInst>(I).getSynchScope())); 1486 } 1487 break; 1488 case Instruction::Store: 1489 if (cast<StoreInst>(I).isAtomic()) 1490 Code = bitc::FUNC_CODE_INST_STOREATOMIC; 1491 else 1492 Code = bitc::FUNC_CODE_INST_STORE; 1493 PushValueAndType(I.getOperand(1), InstID, Vals, VE); // ptrty + ptr 1494 pushValue(I.getOperand(0), InstID, Vals, VE); // val. 1495 Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1); 1496 Vals.push_back(cast<StoreInst>(I).isVolatile()); 1497 if (cast<StoreInst>(I).isAtomic()) { 1498 Vals.push_back(GetEncodedOrdering(cast<StoreInst>(I).getOrdering())); 1499 Vals.push_back(GetEncodedSynchScope(cast<StoreInst>(I).getSynchScope())); 1500 } 1501 break; 1502 case Instruction::AtomicCmpXchg: 1503 Code = bitc::FUNC_CODE_INST_CMPXCHG; 1504 PushValueAndType(I.getOperand(0), InstID, Vals, VE); // ptrty + ptr 1505 pushValue(I.getOperand(1), InstID, Vals, VE); // cmp. 1506 pushValue(I.getOperand(2), InstID, Vals, VE); // newval. 1507 Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile()); 1508 Vals.push_back(GetEncodedOrdering( 1509 cast<AtomicCmpXchgInst>(I).getSuccessOrdering())); 1510 Vals.push_back(GetEncodedSynchScope( 1511 cast<AtomicCmpXchgInst>(I).getSynchScope())); 1512 Vals.push_back(GetEncodedOrdering( 1513 cast<AtomicCmpXchgInst>(I).getFailureOrdering())); 1514 Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak()); 1515 break; 1516 case Instruction::AtomicRMW: 1517 Code = bitc::FUNC_CODE_INST_ATOMICRMW; 1518 PushValueAndType(I.getOperand(0), InstID, Vals, VE); // ptrty + ptr 1519 pushValue(I.getOperand(1), InstID, Vals, VE); // val. 1520 Vals.push_back(GetEncodedRMWOperation( 1521 cast<AtomicRMWInst>(I).getOperation())); 1522 Vals.push_back(cast<AtomicRMWInst>(I).isVolatile()); 1523 Vals.push_back(GetEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering())); 1524 Vals.push_back(GetEncodedSynchScope( 1525 cast<AtomicRMWInst>(I).getSynchScope())); 1526 break; 1527 case Instruction::Fence: 1528 Code = bitc::FUNC_CODE_INST_FENCE; 1529 Vals.push_back(GetEncodedOrdering(cast<FenceInst>(I).getOrdering())); 1530 Vals.push_back(GetEncodedSynchScope(cast<FenceInst>(I).getSynchScope())); 1531 break; 1532 case Instruction::Call: { 1533 const CallInst &CI = cast<CallInst>(I); 1534 PointerType *PTy = cast<PointerType>(CI.getCalledValue()->getType()); 1535 FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); 1536 1537 Code = bitc::FUNC_CODE_INST_CALL; 1538 1539 Vals.push_back(VE.getAttributeID(CI.getAttributes())); 1540 Vals.push_back((CI.getCallingConv() << 1) | unsigned(CI.isTailCall()) | 1541 unsigned(CI.isMustTailCall()) << 14); 1542 PushValueAndType(CI.getCalledValue(), InstID, Vals, VE); // Callee 1543 1544 // Emit value #'s for the fixed parameters. 1545 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { 1546 // Check for labels (can happen with asm labels). 1547 if (FTy->getParamType(i)->isLabelTy()) 1548 Vals.push_back(VE.getValueID(CI.getArgOperand(i))); 1549 else 1550 pushValue(CI.getArgOperand(i), InstID, Vals, VE); // fixed param. 1551 } 1552 1553 // Emit type/value pairs for varargs params. 1554 if (FTy->isVarArg()) { 1555 for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands(); 1556 i != e; ++i) 1557 PushValueAndType(CI.getArgOperand(i), InstID, Vals, VE); // varargs 1558 } 1559 break; 1560 } 1561 case Instruction::VAArg: 1562 Code = bitc::FUNC_CODE_INST_VAARG; 1563 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty 1564 pushValue(I.getOperand(0), InstID, Vals, VE); // valist. 1565 Vals.push_back(VE.getTypeID(I.getType())); // restype. 1566 break; 1567 } 1568 1569 Stream.EmitRecord(Code, Vals, AbbrevToUse); 1570 Vals.clear(); 1571 } 1572 1573 // Emit names for globals/functions etc. 1574 static void WriteValueSymbolTable(const ValueSymbolTable &VST, 1575 const ValueEnumerator &VE, 1576 BitstreamWriter &Stream) { 1577 if (VST.empty()) return; 1578 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 1579 1580 // FIXME: Set up the abbrev, we know how many values there are! 1581 // FIXME: We know if the type names can use 7-bit ascii. 1582 SmallVector<unsigned, 64> NameVals; 1583 1584 for (ValueSymbolTable::const_iterator SI = VST.begin(), SE = VST.end(); 1585 SI != SE; ++SI) { 1586 1587 const ValueName &Name = *SI; 1588 1589 // Figure out the encoding to use for the name. 1590 bool is7Bit = true; 1591 bool isChar6 = true; 1592 for (const char *C = Name.getKeyData(), *E = C+Name.getKeyLength(); 1593 C != E; ++C) { 1594 if (isChar6) 1595 isChar6 = BitCodeAbbrevOp::isChar6(*C); 1596 if ((unsigned char)*C & 128) { 1597 is7Bit = false; 1598 break; // don't bother scanning the rest. 1599 } 1600 } 1601 1602 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 1603 1604 // VST_ENTRY: [valueid, namechar x N] 1605 // VST_BBENTRY: [bbid, namechar x N] 1606 unsigned Code; 1607 if (isa<BasicBlock>(SI->getValue())) { 1608 Code = bitc::VST_CODE_BBENTRY; 1609 if (isChar6) 1610 AbbrevToUse = VST_BBENTRY_6_ABBREV; 1611 } else { 1612 Code = bitc::VST_CODE_ENTRY; 1613 if (isChar6) 1614 AbbrevToUse = VST_ENTRY_6_ABBREV; 1615 else if (is7Bit) 1616 AbbrevToUse = VST_ENTRY_7_ABBREV; 1617 } 1618 1619 NameVals.push_back(VE.getValueID(SI->getValue())); 1620 for (const char *P = Name.getKeyData(), 1621 *E = Name.getKeyData()+Name.getKeyLength(); P != E; ++P) 1622 NameVals.push_back((unsigned char)*P); 1623 1624 // Emit the finished record. 1625 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 1626 NameVals.clear(); 1627 } 1628 Stream.ExitBlock(); 1629 } 1630 1631 static void WriteUseList(ValueEnumerator &VE, UseListOrder &&Order, 1632 BitstreamWriter &Stream) { 1633 assert(Order.Shuffle.size() >= 2 && "Shuffle too small"); 1634 unsigned Code; 1635 if (isa<BasicBlock>(Order.V)) 1636 Code = bitc::USELIST_CODE_BB; 1637 else 1638 Code = bitc::USELIST_CODE_DEFAULT; 1639 1640 SmallVector<uint64_t, 64> Record; 1641 for (unsigned I : Order.Shuffle) 1642 Record.push_back(I); 1643 Record.push_back(VE.getValueID(Order.V)); 1644 Stream.EmitRecord(Code, Record); 1645 } 1646 1647 static void WriteUseListBlock(const Function *F, ValueEnumerator &VE, 1648 BitstreamWriter &Stream) { 1649 auto hasMore = [&]() { 1650 return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F; 1651 }; 1652 if (!hasMore()) 1653 // Nothing to do. 1654 return; 1655 1656 Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3); 1657 while (hasMore()) { 1658 WriteUseList(VE, std::move(VE.UseListOrders.back()), Stream); 1659 VE.UseListOrders.pop_back(); 1660 } 1661 Stream.ExitBlock(); 1662 } 1663 1664 /// WriteFunction - Emit a function body to the module stream. 1665 static void WriteFunction(const Function &F, ValueEnumerator &VE, 1666 BitstreamWriter &Stream) { 1667 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 1668 VE.incorporateFunction(F); 1669 1670 SmallVector<unsigned, 64> Vals; 1671 1672 // Emit the number of basic blocks, so the reader can create them ahead of 1673 // time. 1674 Vals.push_back(VE.getBasicBlocks().size()); 1675 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 1676 Vals.clear(); 1677 1678 // If there are function-local constants, emit them now. 1679 unsigned CstStart, CstEnd; 1680 VE.getFunctionConstantRange(CstStart, CstEnd); 1681 WriteConstants(CstStart, CstEnd, VE, Stream, false); 1682 1683 // If there is function-local metadata, emit it now. 1684 WriteFunctionLocalMetadata(F, VE, Stream); 1685 1686 // Keep a running idea of what the instruction ID is. 1687 unsigned InstID = CstEnd; 1688 1689 bool NeedsMetadataAttachment = false; 1690 1691 DebugLoc LastDL; 1692 1693 // Finally, emit all the instructions, in order. 1694 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 1695 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 1696 I != E; ++I) { 1697 WriteInstruction(*I, InstID, VE, Stream, Vals); 1698 1699 if (!I->getType()->isVoidTy()) 1700 ++InstID; 1701 1702 // If the instruction has metadata, write a metadata attachment later. 1703 NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc(); 1704 1705 // If the instruction has a debug location, emit it. 1706 DebugLoc DL = I->getDebugLoc(); 1707 if (DL.isUnknown()) { 1708 // nothing todo. 1709 } else if (DL == LastDL) { 1710 // Just repeat the same debug loc as last time. 1711 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals); 1712 } else { 1713 MDNode *Scope, *IA; 1714 DL.getScopeAndInlinedAt(Scope, IA, I->getContext()); 1715 assert(Scope && "Expected valid scope"); 1716 1717 Vals.push_back(DL.getLine()); 1718 Vals.push_back(DL.getCol()); 1719 Vals.push_back(Scope ? VE.getMetadataID(Scope) + 1 : 0); 1720 Vals.push_back(IA ? VE.getMetadataID(IA) + 1 : 0); 1721 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_OLD, Vals); 1722 Vals.clear(); 1723 1724 LastDL = DL; 1725 } 1726 } 1727 1728 // Emit names for all the instructions etc. 1729 WriteValueSymbolTable(F.getValueSymbolTable(), VE, Stream); 1730 1731 if (NeedsMetadataAttachment) 1732 WriteMetadataAttachment(F, VE, Stream); 1733 if (shouldPreserveBitcodeUseListOrder()) 1734 WriteUseListBlock(&F, VE, Stream); 1735 VE.purgeFunction(); 1736 Stream.ExitBlock(); 1737 } 1738 1739 // Emit blockinfo, which defines the standard abbreviations etc. 1740 static void WriteBlockInfo(const ValueEnumerator &VE, BitstreamWriter &Stream) { 1741 // We only want to emit block info records for blocks that have multiple 1742 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. 1743 // Other blocks can define their abbrevs inline. 1744 Stream.EnterBlockInfoBlock(2); 1745 1746 { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings. 1747 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1748 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 1749 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1750 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1751 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1752 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1753 Abbv) != VST_ENTRY_8_ABBREV) 1754 llvm_unreachable("Unexpected abbrev ordering!"); 1755 } 1756 1757 { // 7-bit fixed width VST_ENTRY strings. 1758 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1759 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 1760 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1761 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1762 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 1763 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1764 Abbv) != VST_ENTRY_7_ABBREV) 1765 llvm_unreachable("Unexpected abbrev ordering!"); 1766 } 1767 { // 6-bit char6 VST_ENTRY strings. 1768 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1769 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 1770 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1771 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1772 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 1773 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1774 Abbv) != VST_ENTRY_6_ABBREV) 1775 llvm_unreachable("Unexpected abbrev ordering!"); 1776 } 1777 { // 6-bit char6 VST_BBENTRY strings. 1778 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1779 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 1780 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1781 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1782 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 1783 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1784 Abbv) != VST_BBENTRY_6_ABBREV) 1785 llvm_unreachable("Unexpected abbrev ordering!"); 1786 } 1787 1788 1789 1790 { // SETTYPE abbrev for CONSTANTS_BLOCK. 1791 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1792 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 1793 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1794 Log2_32_Ceil(VE.getTypes().size()+1))); 1795 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1796 Abbv) != CONSTANTS_SETTYPE_ABBREV) 1797 llvm_unreachable("Unexpected abbrev ordering!"); 1798 } 1799 1800 { // INTEGER abbrev for CONSTANTS_BLOCK. 1801 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1802 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 1803 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1804 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1805 Abbv) != CONSTANTS_INTEGER_ABBREV) 1806 llvm_unreachable("Unexpected abbrev ordering!"); 1807 } 1808 1809 { // CE_CAST abbrev for CONSTANTS_BLOCK. 1810 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1811 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 1812 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 1813 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 1814 Log2_32_Ceil(VE.getTypes().size()+1))); 1815 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 1816 1817 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1818 Abbv) != CONSTANTS_CE_CAST_Abbrev) 1819 llvm_unreachable("Unexpected abbrev ordering!"); 1820 } 1821 { // NULL abbrev for CONSTANTS_BLOCK. 1822 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1823 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 1824 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1825 Abbv) != CONSTANTS_NULL_Abbrev) 1826 llvm_unreachable("Unexpected abbrev ordering!"); 1827 } 1828 1829 // FIXME: This should only use space for first class types! 1830 1831 { // INST_LOAD abbrev for FUNCTION_BLOCK. 1832 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1833 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 1834 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 1835 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 1836 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 1837 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1838 Abbv) != FUNCTION_INST_LOAD_ABBREV) 1839 llvm_unreachable("Unexpected abbrev ordering!"); 1840 } 1841 { // INST_BINOP abbrev for FUNCTION_BLOCK. 1842 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1843 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 1844 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 1845 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 1846 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 1847 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1848 Abbv) != FUNCTION_INST_BINOP_ABBREV) 1849 llvm_unreachable("Unexpected abbrev ordering!"); 1850 } 1851 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK. 1852 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1853 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 1854 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 1855 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 1856 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 1857 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags 1858 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1859 Abbv) != FUNCTION_INST_BINOP_FLAGS_ABBREV) 1860 llvm_unreachable("Unexpected abbrev ordering!"); 1861 } 1862 { // INST_CAST abbrev for FUNCTION_BLOCK. 1863 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1864 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 1865 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 1866 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 1867 Log2_32_Ceil(VE.getTypes().size()+1))); 1868 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 1869 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1870 Abbv) != FUNCTION_INST_CAST_ABBREV) 1871 llvm_unreachable("Unexpected abbrev ordering!"); 1872 } 1873 1874 { // INST_RET abbrev for FUNCTION_BLOCK. 1875 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1876 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 1877 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1878 Abbv) != FUNCTION_INST_RET_VOID_ABBREV) 1879 llvm_unreachable("Unexpected abbrev ordering!"); 1880 } 1881 { // INST_RET abbrev for FUNCTION_BLOCK. 1882 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1883 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 1884 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 1885 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1886 Abbv) != FUNCTION_INST_RET_VAL_ABBREV) 1887 llvm_unreachable("Unexpected abbrev ordering!"); 1888 } 1889 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 1890 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1891 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 1892 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1893 Abbv) != FUNCTION_INST_UNREACHABLE_ABBREV) 1894 llvm_unreachable("Unexpected abbrev ordering!"); 1895 } 1896 1897 Stream.ExitBlock(); 1898 } 1899 1900 /// WriteModule - Emit the specified module to the bitstream. 1901 static void WriteModule(const Module *M, BitstreamWriter &Stream) { 1902 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 1903 1904 SmallVector<unsigned, 1> Vals; 1905 unsigned CurVersion = 1; 1906 Vals.push_back(CurVersion); 1907 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals); 1908 1909 // Analyze the module, enumerating globals, functions, etc. 1910 ValueEnumerator VE(*M); 1911 1912 // Emit blockinfo, which defines the standard abbreviations etc. 1913 WriteBlockInfo(VE, Stream); 1914 1915 // Emit information about attribute groups. 1916 WriteAttributeGroupTable(VE, Stream); 1917 1918 // Emit information about parameter attributes. 1919 WriteAttributeTable(VE, Stream); 1920 1921 // Emit information describing all of the types in the module. 1922 WriteTypeTable(VE, Stream); 1923 1924 writeComdats(VE, Stream); 1925 1926 // Emit top-level description of module, including target triple, inline asm, 1927 // descriptors for global variables, and function prototype info. 1928 WriteModuleInfo(M, VE, Stream); 1929 1930 // Emit constants. 1931 WriteModuleConstants(VE, Stream); 1932 1933 // Emit metadata. 1934 WriteModuleMetadata(M, VE, Stream); 1935 1936 // Emit metadata. 1937 WriteModuleMetadataStore(M, Stream); 1938 1939 // Emit names for globals/functions etc. 1940 WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream); 1941 1942 // Emit module-level use-lists. 1943 if (shouldPreserveBitcodeUseListOrder()) 1944 WriteUseListBlock(nullptr, VE, Stream); 1945 1946 // Emit function bodies. 1947 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) 1948 if (!F->isDeclaration()) 1949 WriteFunction(*F, VE, Stream); 1950 1951 Stream.ExitBlock(); 1952 } 1953 1954 /// EmitDarwinBCHeader - If generating a bc file on darwin, we have to emit a 1955 /// header and trailer to make it compatible with the system archiver. To do 1956 /// this we emit the following header, and then emit a trailer that pads the 1957 /// file out to be a multiple of 16 bytes. 1958 /// 1959 /// struct bc_header { 1960 /// uint32_t Magic; // 0x0B17C0DE 1961 /// uint32_t Version; // Version, currently always 0. 1962 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file. 1963 /// uint32_t BitcodeSize; // Size of traditional bitcode file. 1964 /// uint32_t CPUType; // CPU specifier. 1965 /// ... potentially more later ... 1966 /// }; 1967 enum { 1968 DarwinBCSizeFieldOffset = 3*4, // Offset to bitcode_size. 1969 DarwinBCHeaderSize = 5*4 1970 }; 1971 1972 static void WriteInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer, 1973 uint32_t &Position) { 1974 Buffer[Position + 0] = (unsigned char) (Value >> 0); 1975 Buffer[Position + 1] = (unsigned char) (Value >> 8); 1976 Buffer[Position + 2] = (unsigned char) (Value >> 16); 1977 Buffer[Position + 3] = (unsigned char) (Value >> 24); 1978 Position += 4; 1979 } 1980 1981 static void EmitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer, 1982 const Triple &TT) { 1983 unsigned CPUType = ~0U; 1984 1985 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*, 1986 // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic 1987 // number from /usr/include/mach/machine.h. It is ok to reproduce the 1988 // specific constants here because they are implicitly part of the Darwin ABI. 1989 enum { 1990 DARWIN_CPU_ARCH_ABI64 = 0x01000000, 1991 DARWIN_CPU_TYPE_X86 = 7, 1992 DARWIN_CPU_TYPE_ARM = 12, 1993 DARWIN_CPU_TYPE_POWERPC = 18 1994 }; 1995 1996 Triple::ArchType Arch = TT.getArch(); 1997 if (Arch == Triple::x86_64) 1998 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64; 1999 else if (Arch == Triple::x86) 2000 CPUType = DARWIN_CPU_TYPE_X86; 2001 else if (Arch == Triple::ppc) 2002 CPUType = DARWIN_CPU_TYPE_POWERPC; 2003 else if (Arch == Triple::ppc64) 2004 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64; 2005 else if (Arch == Triple::arm || Arch == Triple::thumb) 2006 CPUType = DARWIN_CPU_TYPE_ARM; 2007 2008 // Traditional Bitcode starts after header. 2009 assert(Buffer.size() >= DarwinBCHeaderSize && 2010 "Expected header size to be reserved"); 2011 unsigned BCOffset = DarwinBCHeaderSize; 2012 unsigned BCSize = Buffer.size()-DarwinBCHeaderSize; 2013 2014 // Write the magic and version. 2015 unsigned Position = 0; 2016 WriteInt32ToBuffer(0x0B17C0DE , Buffer, Position); 2017 WriteInt32ToBuffer(0 , Buffer, Position); // Version. 2018 WriteInt32ToBuffer(BCOffset , Buffer, Position); 2019 WriteInt32ToBuffer(BCSize , Buffer, Position); 2020 WriteInt32ToBuffer(CPUType , Buffer, Position); 2021 2022 // If the file is not a multiple of 16 bytes, insert dummy padding. 2023 while (Buffer.size() & 15) 2024 Buffer.push_back(0); 2025 } 2026 2027 /// WriteBitcodeToFile - Write the specified module to the specified output 2028 /// stream. 2029 void llvm::WriteBitcodeToFile(const Module *M, raw_ostream &Out) { 2030 SmallVector<char, 0> Buffer; 2031 Buffer.reserve(256*1024); 2032 2033 // If this is darwin or another generic macho target, reserve space for the 2034 // header. 2035 Triple TT(M->getTargetTriple()); 2036 if (TT.isOSDarwin()) 2037 Buffer.insert(Buffer.begin(), DarwinBCHeaderSize, 0); 2038 2039 // Emit the module into the buffer. 2040 { 2041 BitstreamWriter Stream(Buffer); 2042 2043 // Emit the file header. 2044 Stream.Emit((unsigned)'B', 8); 2045 Stream.Emit((unsigned)'C', 8); 2046 Stream.Emit(0x0, 4); 2047 Stream.Emit(0xC, 4); 2048 Stream.Emit(0xE, 4); 2049 Stream.Emit(0xD, 4); 2050 2051 // Emit the module. 2052 WriteModule(M, Stream); 2053 } 2054 2055 if (TT.isOSDarwin()) 2056 EmitDarwinBCHeaderAndTrailer(Buffer, TT); 2057 2058 // Write the generated bitstream to "Out". 2059 Out.write((char*)&Buffer.front(), Buffer.size()); 2060 } 2061