1 //===- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Bitcode writer implementation.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/Bitcode/BitcodeWriter.h"
14 #include "ValueEnumerator.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/DenseMap.h"
19 #include "llvm/ADT/None.h"
20 #include "llvm/ADT/Optional.h"
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/ADT/SmallString.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/StringMap.h"
25 #include "llvm/ADT/StringRef.h"
26 #include "llvm/ADT/Triple.h"
27 #include "llvm/Bitcode/BitcodeCommon.h"
28 #include "llvm/Bitcode/BitcodeReader.h"
29 #include "llvm/Bitcode/LLVMBitCodes.h"
30 #include "llvm/Bitstream/BitCodes.h"
31 #include "llvm/Bitstream/BitstreamWriter.h"
32 #include "llvm/Config/llvm-config.h"
33 #include "llvm/IR/Attributes.h"
34 #include "llvm/IR/BasicBlock.h"
35 #include "llvm/IR/Comdat.h"
36 #include "llvm/IR/Constant.h"
37 #include "llvm/IR/Constants.h"
38 #include "llvm/IR/DebugInfoMetadata.h"
39 #include "llvm/IR/DebugLoc.h"
40 #include "llvm/IR/DerivedTypes.h"
41 #include "llvm/IR/Function.h"
42 #include "llvm/IR/GlobalAlias.h"
43 #include "llvm/IR/GlobalIFunc.h"
44 #include "llvm/IR/GlobalObject.h"
45 #include "llvm/IR/GlobalValue.h"
46 #include "llvm/IR/GlobalVariable.h"
47 #include "llvm/IR/InlineAsm.h"
48 #include "llvm/IR/InstrTypes.h"
49 #include "llvm/IR/Instruction.h"
50 #include "llvm/IR/Instructions.h"
51 #include "llvm/IR/LLVMContext.h"
52 #include "llvm/IR/Metadata.h"
53 #include "llvm/IR/Module.h"
54 #include "llvm/IR/ModuleSummaryIndex.h"
55 #include "llvm/IR/Operator.h"
56 #include "llvm/IR/Type.h"
57 #include "llvm/IR/UseListOrder.h"
58 #include "llvm/IR/Value.h"
59 #include "llvm/IR/ValueSymbolTable.h"
60 #include "llvm/MC/StringTableBuilder.h"
61 #include "llvm/Object/IRSymtab.h"
62 #include "llvm/Support/AtomicOrdering.h"
63 #include "llvm/Support/Casting.h"
64 #include "llvm/Support/CommandLine.h"
65 #include "llvm/Support/Endian.h"
66 #include "llvm/Support/Error.h"
67 #include "llvm/Support/ErrorHandling.h"
68 #include "llvm/Support/MathExtras.h"
69 #include "llvm/Support/SHA1.h"
70 #include "llvm/Support/TargetRegistry.h"
71 #include "llvm/Support/raw_ostream.h"
72 #include <algorithm>
73 #include <cassert>
74 #include <cstddef>
75 #include <cstdint>
76 #include <iterator>
77 #include <map>
78 #include <memory>
79 #include <string>
80 #include <utility>
81 #include <vector>
82 
83 using namespace llvm;
84 
85 static cl::opt<unsigned>
86     IndexThreshold("bitcode-mdindex-threshold", cl::Hidden, cl::init(25),
87                    cl::desc("Number of metadatas above which we emit an index "
88                             "to enable lazy-loading"));
89 static cl::opt<uint32_t> FlushThreshold(
90     "bitcode-flush-threshold", cl::Hidden, cl::init(512),
91     cl::desc("The threshold (unit M) for flushing LLVM bitcode."));
92 
93 static cl::opt<bool> WriteRelBFToSummary(
94     "write-relbf-to-summary", cl::Hidden, cl::init(false),
95     cl::desc("Write relative block frequency to function summary "));
96 
97 extern FunctionSummary::ForceSummaryHotnessType ForceSummaryEdgesCold;
98 
99 namespace {
100 
101 /// These are manifest constants used by the bitcode writer. They do not need to
102 /// be kept in sync with the reader, but need to be consistent within this file.
103 enum {
104   // VALUE_SYMTAB_BLOCK abbrev id's.
105   VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
106   VST_ENTRY_7_ABBREV,
107   VST_ENTRY_6_ABBREV,
108   VST_BBENTRY_6_ABBREV,
109 
110   // CONSTANTS_BLOCK abbrev id's.
111   CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
112   CONSTANTS_INTEGER_ABBREV,
113   CONSTANTS_CE_CAST_Abbrev,
114   CONSTANTS_NULL_Abbrev,
115 
116   // FUNCTION_BLOCK abbrev id's.
117   FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
118   FUNCTION_INST_UNOP_ABBREV,
119   FUNCTION_INST_UNOP_FLAGS_ABBREV,
120   FUNCTION_INST_BINOP_ABBREV,
121   FUNCTION_INST_BINOP_FLAGS_ABBREV,
122   FUNCTION_INST_CAST_ABBREV,
123   FUNCTION_INST_RET_VOID_ABBREV,
124   FUNCTION_INST_RET_VAL_ABBREV,
125   FUNCTION_INST_UNREACHABLE_ABBREV,
126   FUNCTION_INST_GEP_ABBREV,
127 };
128 
129 /// Abstract class to manage the bitcode writing, subclassed for each bitcode
130 /// file type.
131 class BitcodeWriterBase {
132 protected:
133   /// The stream created and owned by the client.
134   BitstreamWriter &Stream;
135 
136   StringTableBuilder &StrtabBuilder;
137 
138 public:
139   /// Constructs a BitcodeWriterBase object that writes to the provided
140   /// \p Stream.
141   BitcodeWriterBase(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder)
142       : Stream(Stream), StrtabBuilder(StrtabBuilder) {}
143 
144 protected:
145   void writeModuleVersion();
146 };
147 
148 void BitcodeWriterBase::writeModuleVersion() {
149   // VERSION: [version#]
150   Stream.EmitRecord(bitc::MODULE_CODE_VERSION, ArrayRef<uint64_t>{2});
151 }
152 
153 /// Base class to manage the module bitcode writing, currently subclassed for
154 /// ModuleBitcodeWriter and ThinLinkBitcodeWriter.
155 class ModuleBitcodeWriterBase : public BitcodeWriterBase {
156 protected:
157   /// The Module to write to bitcode.
158   const Module &M;
159 
160   /// Enumerates ids for all values in the module.
161   ValueEnumerator VE;
162 
163   /// Optional per-module index to write for ThinLTO.
164   const ModuleSummaryIndex *Index;
165 
166   /// Map that holds the correspondence between GUIDs in the summary index,
167   /// that came from indirect call profiles, and a value id generated by this
168   /// class to use in the VST and summary block records.
169   std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap;
170 
171   /// Tracks the last value id recorded in the GUIDToValueMap.
172   unsigned GlobalValueId;
173 
174   /// Saves the offset of the VSTOffset record that must eventually be
175   /// backpatched with the offset of the actual VST.
176   uint64_t VSTOffsetPlaceholder = 0;
177 
178 public:
179   /// Constructs a ModuleBitcodeWriterBase object for the given Module,
180   /// writing to the provided \p Buffer.
181   ModuleBitcodeWriterBase(const Module &M, StringTableBuilder &StrtabBuilder,
182                           BitstreamWriter &Stream,
183                           bool ShouldPreserveUseListOrder,
184                           const ModuleSummaryIndex *Index)
185       : BitcodeWriterBase(Stream, StrtabBuilder), M(M),
186         VE(M, ShouldPreserveUseListOrder), Index(Index) {
187     // Assign ValueIds to any callee values in the index that came from
188     // indirect call profiles and were recorded as a GUID not a Value*
189     // (which would have been assigned an ID by the ValueEnumerator).
190     // The starting ValueId is just after the number of values in the
191     // ValueEnumerator, so that they can be emitted in the VST.
192     GlobalValueId = VE.getValues().size();
193     if (!Index)
194       return;
195     for (const auto &GUIDSummaryLists : *Index)
196       // Examine all summaries for this GUID.
197       for (auto &Summary : GUIDSummaryLists.second.SummaryList)
198         if (auto FS = dyn_cast<FunctionSummary>(Summary.get()))
199           // For each call in the function summary, see if the call
200           // is to a GUID (which means it is for an indirect call,
201           // otherwise we would have a Value for it). If so, synthesize
202           // a value id.
203           for (auto &CallEdge : FS->calls())
204             if (!CallEdge.first.haveGVs() || !CallEdge.first.getValue())
205               assignValueId(CallEdge.first.getGUID());
206   }
207 
208 protected:
209   void writePerModuleGlobalValueSummary();
210 
211 private:
212   void writePerModuleFunctionSummaryRecord(SmallVector<uint64_t, 64> &NameVals,
213                                            GlobalValueSummary *Summary,
214                                            unsigned ValueID,
215                                            unsigned FSCallsAbbrev,
216                                            unsigned FSCallsProfileAbbrev,
217                                            const Function &F);
218   void writeModuleLevelReferences(const GlobalVariable &V,
219                                   SmallVector<uint64_t, 64> &NameVals,
220                                   unsigned FSModRefsAbbrev,
221                                   unsigned FSModVTableRefsAbbrev);
222 
223   void assignValueId(GlobalValue::GUID ValGUID) {
224     GUIDToValueIdMap[ValGUID] = ++GlobalValueId;
225   }
226 
227   unsigned getValueId(GlobalValue::GUID ValGUID) {
228     const auto &VMI = GUIDToValueIdMap.find(ValGUID);
229     // Expect that any GUID value had a value Id assigned by an
230     // earlier call to assignValueId.
231     assert(VMI != GUIDToValueIdMap.end() &&
232            "GUID does not have assigned value Id");
233     return VMI->second;
234   }
235 
236   // Helper to get the valueId for the type of value recorded in VI.
237   unsigned getValueId(ValueInfo VI) {
238     if (!VI.haveGVs() || !VI.getValue())
239       return getValueId(VI.getGUID());
240     return VE.getValueID(VI.getValue());
241   }
242 
243   std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; }
244 };
245 
246 /// Class to manage the bitcode writing for a module.
247 class ModuleBitcodeWriter : public ModuleBitcodeWriterBase {
248   /// Pointer to the buffer allocated by caller for bitcode writing.
249   const SmallVectorImpl<char> &Buffer;
250 
251   /// True if a module hash record should be written.
252   bool GenerateHash;
253 
254   /// If non-null, when GenerateHash is true, the resulting hash is written
255   /// into ModHash.
256   ModuleHash *ModHash;
257 
258   SHA1 Hasher;
259 
260   /// The start bit of the identification block.
261   uint64_t BitcodeStartBit;
262 
263 public:
264   /// Constructs a ModuleBitcodeWriter object for the given Module,
265   /// writing to the provided \p Buffer.
266   ModuleBitcodeWriter(const Module &M, SmallVectorImpl<char> &Buffer,
267                       StringTableBuilder &StrtabBuilder,
268                       BitstreamWriter &Stream, bool ShouldPreserveUseListOrder,
269                       const ModuleSummaryIndex *Index, bool GenerateHash,
270                       ModuleHash *ModHash = nullptr)
271       : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream,
272                                 ShouldPreserveUseListOrder, Index),
273         Buffer(Buffer), GenerateHash(GenerateHash), ModHash(ModHash),
274         BitcodeStartBit(Stream.GetCurrentBitNo()) {}
275 
276   /// Emit the current module to the bitstream.
277   void write();
278 
279 private:
280   uint64_t bitcodeStartBit() { return BitcodeStartBit; }
281 
282   size_t addToStrtab(StringRef Str);
283 
284   void writeAttributeGroupTable();
285   void writeAttributeTable();
286   void writeTypeTable();
287   void writeComdats();
288   void writeValueSymbolTableForwardDecl();
289   void writeModuleInfo();
290   void writeValueAsMetadata(const ValueAsMetadata *MD,
291                             SmallVectorImpl<uint64_t> &Record);
292   void writeMDTuple(const MDTuple *N, SmallVectorImpl<uint64_t> &Record,
293                     unsigned Abbrev);
294   unsigned createDILocationAbbrev();
295   void writeDILocation(const DILocation *N, SmallVectorImpl<uint64_t> &Record,
296                        unsigned &Abbrev);
297   unsigned createGenericDINodeAbbrev();
298   void writeGenericDINode(const GenericDINode *N,
299                           SmallVectorImpl<uint64_t> &Record, unsigned &Abbrev);
300   void writeDISubrange(const DISubrange *N, SmallVectorImpl<uint64_t> &Record,
301                        unsigned Abbrev);
302   void writeDIGenericSubrange(const DIGenericSubrange *N,
303                               SmallVectorImpl<uint64_t> &Record,
304                               unsigned Abbrev);
305   void writeDIEnumerator(const DIEnumerator *N,
306                          SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
307   void writeDIBasicType(const DIBasicType *N, SmallVectorImpl<uint64_t> &Record,
308                         unsigned Abbrev);
309   void writeDIStringType(const DIStringType *N,
310                          SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
311   void writeDIDerivedType(const DIDerivedType *N,
312                           SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
313   void writeDICompositeType(const DICompositeType *N,
314                             SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
315   void writeDISubroutineType(const DISubroutineType *N,
316                              SmallVectorImpl<uint64_t> &Record,
317                              unsigned Abbrev);
318   void writeDIFile(const DIFile *N, SmallVectorImpl<uint64_t> &Record,
319                    unsigned Abbrev);
320   void writeDICompileUnit(const DICompileUnit *N,
321                           SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
322   void writeDISubprogram(const DISubprogram *N,
323                          SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
324   void writeDILexicalBlock(const DILexicalBlock *N,
325                            SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
326   void writeDILexicalBlockFile(const DILexicalBlockFile *N,
327                                SmallVectorImpl<uint64_t> &Record,
328                                unsigned Abbrev);
329   void writeDICommonBlock(const DICommonBlock *N,
330                           SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
331   void writeDINamespace(const DINamespace *N, SmallVectorImpl<uint64_t> &Record,
332                         unsigned Abbrev);
333   void writeDIMacro(const DIMacro *N, SmallVectorImpl<uint64_t> &Record,
334                     unsigned Abbrev);
335   void writeDIMacroFile(const DIMacroFile *N, SmallVectorImpl<uint64_t> &Record,
336                         unsigned Abbrev);
337   void writeDIArgList(const DIArgList *N, SmallVectorImpl<uint64_t> &Record,
338                       unsigned Abbrev);
339   void writeDIModule(const DIModule *N, SmallVectorImpl<uint64_t> &Record,
340                      unsigned Abbrev);
341   void writeDITemplateTypeParameter(const DITemplateTypeParameter *N,
342                                     SmallVectorImpl<uint64_t> &Record,
343                                     unsigned Abbrev);
344   void writeDITemplateValueParameter(const DITemplateValueParameter *N,
345                                      SmallVectorImpl<uint64_t> &Record,
346                                      unsigned Abbrev);
347   void writeDIGlobalVariable(const DIGlobalVariable *N,
348                              SmallVectorImpl<uint64_t> &Record,
349                              unsigned Abbrev);
350   void writeDILocalVariable(const DILocalVariable *N,
351                             SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
352   void writeDILabel(const DILabel *N,
353                     SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
354   void writeDIExpression(const DIExpression *N,
355                          SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
356   void writeDIGlobalVariableExpression(const DIGlobalVariableExpression *N,
357                                        SmallVectorImpl<uint64_t> &Record,
358                                        unsigned Abbrev);
359   void writeDIObjCProperty(const DIObjCProperty *N,
360                            SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
361   void writeDIImportedEntity(const DIImportedEntity *N,
362                              SmallVectorImpl<uint64_t> &Record,
363                              unsigned Abbrev);
364   unsigned createNamedMetadataAbbrev();
365   void writeNamedMetadata(SmallVectorImpl<uint64_t> &Record);
366   unsigned createMetadataStringsAbbrev();
367   void writeMetadataStrings(ArrayRef<const Metadata *> Strings,
368                             SmallVectorImpl<uint64_t> &Record);
369   void writeMetadataRecords(ArrayRef<const Metadata *> MDs,
370                             SmallVectorImpl<uint64_t> &Record,
371                             std::vector<unsigned> *MDAbbrevs = nullptr,
372                             std::vector<uint64_t> *IndexPos = nullptr);
373   void writeModuleMetadata();
374   void writeFunctionMetadata(const Function &F);
375   void writeFunctionMetadataAttachment(const Function &F);
376   void pushGlobalMetadataAttachment(SmallVectorImpl<uint64_t> &Record,
377                                     const GlobalObject &GO);
378   void writeModuleMetadataKinds();
379   void writeOperandBundleTags();
380   void writeSyncScopeNames();
381   void writeConstants(unsigned FirstVal, unsigned LastVal, bool isGlobal);
382   void writeModuleConstants();
383   bool pushValueAndType(const Value *V, unsigned InstID,
384                         SmallVectorImpl<unsigned> &Vals);
385   void writeOperandBundles(const CallBase &CB, unsigned InstID);
386   void pushValue(const Value *V, unsigned InstID,
387                  SmallVectorImpl<unsigned> &Vals);
388   void pushValueSigned(const Value *V, unsigned InstID,
389                        SmallVectorImpl<uint64_t> &Vals);
390   void writeInstruction(const Instruction &I, unsigned InstID,
391                         SmallVectorImpl<unsigned> &Vals);
392   void writeFunctionLevelValueSymbolTable(const ValueSymbolTable &VST);
393   void writeGlobalValueSymbolTable(
394       DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex);
395   void writeUseList(UseListOrder &&Order);
396   void writeUseListBlock(const Function *F);
397   void
398   writeFunction(const Function &F,
399                 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex);
400   void writeBlockInfo();
401   void writeModuleHash(size_t BlockStartPos);
402 
403   unsigned getEncodedSyncScopeID(SyncScope::ID SSID) {
404     return unsigned(SSID);
405   }
406 
407   unsigned getEncodedAlign(MaybeAlign Alignment) { return encode(Alignment); }
408 };
409 
410 /// Class to manage the bitcode writing for a combined index.
411 class IndexBitcodeWriter : public BitcodeWriterBase {
412   /// The combined index to write to bitcode.
413   const ModuleSummaryIndex &Index;
414 
415   /// When writing a subset of the index for distributed backends, client
416   /// provides a map of modules to the corresponding GUIDs/summaries to write.
417   const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex;
418 
419   /// Map that holds the correspondence between the GUID used in the combined
420   /// index and a value id generated by this class to use in references.
421   std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap;
422 
423   /// Tracks the last value id recorded in the GUIDToValueMap.
424   unsigned GlobalValueId = 0;
425 
426 public:
427   /// Constructs a IndexBitcodeWriter object for the given combined index,
428   /// writing to the provided \p Buffer. When writing a subset of the index
429   /// for a distributed backend, provide a \p ModuleToSummariesForIndex map.
430   IndexBitcodeWriter(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder,
431                      const ModuleSummaryIndex &Index,
432                      const std::map<std::string, GVSummaryMapTy>
433                          *ModuleToSummariesForIndex = nullptr)
434       : BitcodeWriterBase(Stream, StrtabBuilder), Index(Index),
435         ModuleToSummariesForIndex(ModuleToSummariesForIndex) {
436     // Assign unique value ids to all summaries to be written, for use
437     // in writing out the call graph edges. Save the mapping from GUID
438     // to the new global value id to use when writing those edges, which
439     // are currently saved in the index in terms of GUID.
440     forEachSummary([&](GVInfo I, bool) {
441       GUIDToValueIdMap[I.first] = ++GlobalValueId;
442     });
443   }
444 
445   /// The below iterator returns the GUID and associated summary.
446   using GVInfo = std::pair<GlobalValue::GUID, GlobalValueSummary *>;
447 
448   /// Calls the callback for each value GUID and summary to be written to
449   /// bitcode. This hides the details of whether they are being pulled from the
450   /// entire index or just those in a provided ModuleToSummariesForIndex map.
451   template<typename Functor>
452   void forEachSummary(Functor Callback) {
453     if (ModuleToSummariesForIndex) {
454       for (auto &M : *ModuleToSummariesForIndex)
455         for (auto &Summary : M.second) {
456           Callback(Summary, false);
457           // Ensure aliasee is handled, e.g. for assigning a valueId,
458           // even if we are not importing the aliasee directly (the
459           // imported alias will contain a copy of aliasee).
460           if (auto *AS = dyn_cast<AliasSummary>(Summary.getSecond()))
461             Callback({AS->getAliaseeGUID(), &AS->getAliasee()}, true);
462         }
463     } else {
464       for (auto &Summaries : Index)
465         for (auto &Summary : Summaries.second.SummaryList)
466           Callback({Summaries.first, Summary.get()}, false);
467     }
468   }
469 
470   /// Calls the callback for each entry in the modulePaths StringMap that
471   /// should be written to the module path string table. This hides the details
472   /// of whether they are being pulled from the entire index or just those in a
473   /// provided ModuleToSummariesForIndex map.
474   template <typename Functor> void forEachModule(Functor Callback) {
475     if (ModuleToSummariesForIndex) {
476       for (const auto &M : *ModuleToSummariesForIndex) {
477         const auto &MPI = Index.modulePaths().find(M.first);
478         if (MPI == Index.modulePaths().end()) {
479           // This should only happen if the bitcode file was empty, in which
480           // case we shouldn't be importing (the ModuleToSummariesForIndex
481           // would only include the module we are writing and index for).
482           assert(ModuleToSummariesForIndex->size() == 1);
483           continue;
484         }
485         Callback(*MPI);
486       }
487     } else {
488       for (const auto &MPSE : Index.modulePaths())
489         Callback(MPSE);
490     }
491   }
492 
493   /// Main entry point for writing a combined index to bitcode.
494   void write();
495 
496 private:
497   void writeModStrings();
498   void writeCombinedGlobalValueSummary();
499 
500   Optional<unsigned> getValueId(GlobalValue::GUID ValGUID) {
501     auto VMI = GUIDToValueIdMap.find(ValGUID);
502     if (VMI == GUIDToValueIdMap.end())
503       return None;
504     return VMI->second;
505   }
506 
507   std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; }
508 };
509 
510 } // end anonymous namespace
511 
512 static unsigned getEncodedCastOpcode(unsigned Opcode) {
513   switch (Opcode) {
514   default: llvm_unreachable("Unknown cast instruction!");
515   case Instruction::Trunc   : return bitc::CAST_TRUNC;
516   case Instruction::ZExt    : return bitc::CAST_ZEXT;
517   case Instruction::SExt    : return bitc::CAST_SEXT;
518   case Instruction::FPToUI  : return bitc::CAST_FPTOUI;
519   case Instruction::FPToSI  : return bitc::CAST_FPTOSI;
520   case Instruction::UIToFP  : return bitc::CAST_UITOFP;
521   case Instruction::SIToFP  : return bitc::CAST_SITOFP;
522   case Instruction::FPTrunc : return bitc::CAST_FPTRUNC;
523   case Instruction::FPExt   : return bitc::CAST_FPEXT;
524   case Instruction::PtrToInt: return bitc::CAST_PTRTOINT;
525   case Instruction::IntToPtr: return bitc::CAST_INTTOPTR;
526   case Instruction::BitCast : return bitc::CAST_BITCAST;
527   case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST;
528   }
529 }
530 
531 static unsigned getEncodedUnaryOpcode(unsigned Opcode) {
532   switch (Opcode) {
533   default: llvm_unreachable("Unknown binary instruction!");
534   case Instruction::FNeg: return bitc::UNOP_FNEG;
535   }
536 }
537 
538 static unsigned getEncodedBinaryOpcode(unsigned Opcode) {
539   switch (Opcode) {
540   default: llvm_unreachable("Unknown binary instruction!");
541   case Instruction::Add:
542   case Instruction::FAdd: return bitc::BINOP_ADD;
543   case Instruction::Sub:
544   case Instruction::FSub: return bitc::BINOP_SUB;
545   case Instruction::Mul:
546   case Instruction::FMul: return bitc::BINOP_MUL;
547   case Instruction::UDiv: return bitc::BINOP_UDIV;
548   case Instruction::FDiv:
549   case Instruction::SDiv: return bitc::BINOP_SDIV;
550   case Instruction::URem: return bitc::BINOP_UREM;
551   case Instruction::FRem:
552   case Instruction::SRem: return bitc::BINOP_SREM;
553   case Instruction::Shl:  return bitc::BINOP_SHL;
554   case Instruction::LShr: return bitc::BINOP_LSHR;
555   case Instruction::AShr: return bitc::BINOP_ASHR;
556   case Instruction::And:  return bitc::BINOP_AND;
557   case Instruction::Or:   return bitc::BINOP_OR;
558   case Instruction::Xor:  return bitc::BINOP_XOR;
559   }
560 }
561 
562 static unsigned getEncodedRMWOperation(AtomicRMWInst::BinOp Op) {
563   switch (Op) {
564   default: llvm_unreachable("Unknown RMW operation!");
565   case AtomicRMWInst::Xchg: return bitc::RMW_XCHG;
566   case AtomicRMWInst::Add: return bitc::RMW_ADD;
567   case AtomicRMWInst::Sub: return bitc::RMW_SUB;
568   case AtomicRMWInst::And: return bitc::RMW_AND;
569   case AtomicRMWInst::Nand: return bitc::RMW_NAND;
570   case AtomicRMWInst::Or: return bitc::RMW_OR;
571   case AtomicRMWInst::Xor: return bitc::RMW_XOR;
572   case AtomicRMWInst::Max: return bitc::RMW_MAX;
573   case AtomicRMWInst::Min: return bitc::RMW_MIN;
574   case AtomicRMWInst::UMax: return bitc::RMW_UMAX;
575   case AtomicRMWInst::UMin: return bitc::RMW_UMIN;
576   case AtomicRMWInst::FAdd: return bitc::RMW_FADD;
577   case AtomicRMWInst::FSub: return bitc::RMW_FSUB;
578   }
579 }
580 
581 static unsigned getEncodedOrdering(AtomicOrdering Ordering) {
582   switch (Ordering) {
583   case AtomicOrdering::NotAtomic: return bitc::ORDERING_NOTATOMIC;
584   case AtomicOrdering::Unordered: return bitc::ORDERING_UNORDERED;
585   case AtomicOrdering::Monotonic: return bitc::ORDERING_MONOTONIC;
586   case AtomicOrdering::Acquire: return bitc::ORDERING_ACQUIRE;
587   case AtomicOrdering::Release: return bitc::ORDERING_RELEASE;
588   case AtomicOrdering::AcquireRelease: return bitc::ORDERING_ACQREL;
589   case AtomicOrdering::SequentiallyConsistent: return bitc::ORDERING_SEQCST;
590   }
591   llvm_unreachable("Invalid ordering");
592 }
593 
594 static void writeStringRecord(BitstreamWriter &Stream, unsigned Code,
595                               StringRef Str, unsigned AbbrevToUse) {
596   SmallVector<unsigned, 64> Vals;
597 
598   // Code: [strchar x N]
599   for (unsigned i = 0, e = Str.size(); i != e; ++i) {
600     if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i]))
601       AbbrevToUse = 0;
602     Vals.push_back(Str[i]);
603   }
604 
605   // Emit the finished record.
606   Stream.EmitRecord(Code, Vals, AbbrevToUse);
607 }
608 
609 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) {
610   switch (Kind) {
611   case Attribute::Alignment:
612     return bitc::ATTR_KIND_ALIGNMENT;
613   case Attribute::AllocSize:
614     return bitc::ATTR_KIND_ALLOC_SIZE;
615   case Attribute::AlwaysInline:
616     return bitc::ATTR_KIND_ALWAYS_INLINE;
617   case Attribute::ArgMemOnly:
618     return bitc::ATTR_KIND_ARGMEMONLY;
619   case Attribute::Builtin:
620     return bitc::ATTR_KIND_BUILTIN;
621   case Attribute::ByVal:
622     return bitc::ATTR_KIND_BY_VAL;
623   case Attribute::Convergent:
624     return bitc::ATTR_KIND_CONVERGENT;
625   case Attribute::InAlloca:
626     return bitc::ATTR_KIND_IN_ALLOCA;
627   case Attribute::Cold:
628     return bitc::ATTR_KIND_COLD;
629   case Attribute::DisableSanitizerInstrumentation:
630     return bitc::ATTR_KIND_DISABLE_SANITIZER_INSTRUMENTATION;
631   case Attribute::Hot:
632     return bitc::ATTR_KIND_HOT;
633   case Attribute::ElementType:
634     return bitc::ATTR_KIND_ELEMENTTYPE;
635   case Attribute::InaccessibleMemOnly:
636     return bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY;
637   case Attribute::InaccessibleMemOrArgMemOnly:
638     return bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY;
639   case Attribute::InlineHint:
640     return bitc::ATTR_KIND_INLINE_HINT;
641   case Attribute::InReg:
642     return bitc::ATTR_KIND_IN_REG;
643   case Attribute::JumpTable:
644     return bitc::ATTR_KIND_JUMP_TABLE;
645   case Attribute::MinSize:
646     return bitc::ATTR_KIND_MIN_SIZE;
647   case Attribute::Naked:
648     return bitc::ATTR_KIND_NAKED;
649   case Attribute::Nest:
650     return bitc::ATTR_KIND_NEST;
651   case Attribute::NoAlias:
652     return bitc::ATTR_KIND_NO_ALIAS;
653   case Attribute::NoBuiltin:
654     return bitc::ATTR_KIND_NO_BUILTIN;
655   case Attribute::NoCallback:
656     return bitc::ATTR_KIND_NO_CALLBACK;
657   case Attribute::NoCapture:
658     return bitc::ATTR_KIND_NO_CAPTURE;
659   case Attribute::NoDuplicate:
660     return bitc::ATTR_KIND_NO_DUPLICATE;
661   case Attribute::NoFree:
662     return bitc::ATTR_KIND_NOFREE;
663   case Attribute::NoImplicitFloat:
664     return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT;
665   case Attribute::NoInline:
666     return bitc::ATTR_KIND_NO_INLINE;
667   case Attribute::NoRecurse:
668     return bitc::ATTR_KIND_NO_RECURSE;
669   case Attribute::NoMerge:
670     return bitc::ATTR_KIND_NO_MERGE;
671   case Attribute::NonLazyBind:
672     return bitc::ATTR_KIND_NON_LAZY_BIND;
673   case Attribute::NonNull:
674     return bitc::ATTR_KIND_NON_NULL;
675   case Attribute::Dereferenceable:
676     return bitc::ATTR_KIND_DEREFERENCEABLE;
677   case Attribute::DereferenceableOrNull:
678     return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL;
679   case Attribute::NoRedZone:
680     return bitc::ATTR_KIND_NO_RED_ZONE;
681   case Attribute::NoReturn:
682     return bitc::ATTR_KIND_NO_RETURN;
683   case Attribute::NoSync:
684     return bitc::ATTR_KIND_NOSYNC;
685   case Attribute::NoCfCheck:
686     return bitc::ATTR_KIND_NOCF_CHECK;
687   case Attribute::NoProfile:
688     return bitc::ATTR_KIND_NO_PROFILE;
689   case Attribute::NoUnwind:
690     return bitc::ATTR_KIND_NO_UNWIND;
691   case Attribute::NoSanitizeCoverage:
692     return bitc::ATTR_KIND_NO_SANITIZE_COVERAGE;
693   case Attribute::NullPointerIsValid:
694     return bitc::ATTR_KIND_NULL_POINTER_IS_VALID;
695   case Attribute::OptForFuzzing:
696     return bitc::ATTR_KIND_OPT_FOR_FUZZING;
697   case Attribute::OptimizeForSize:
698     return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE;
699   case Attribute::OptimizeNone:
700     return bitc::ATTR_KIND_OPTIMIZE_NONE;
701   case Attribute::ReadNone:
702     return bitc::ATTR_KIND_READ_NONE;
703   case Attribute::ReadOnly:
704     return bitc::ATTR_KIND_READ_ONLY;
705   case Attribute::Returned:
706     return bitc::ATTR_KIND_RETURNED;
707   case Attribute::ReturnsTwice:
708     return bitc::ATTR_KIND_RETURNS_TWICE;
709   case Attribute::SExt:
710     return bitc::ATTR_KIND_S_EXT;
711   case Attribute::Speculatable:
712     return bitc::ATTR_KIND_SPECULATABLE;
713   case Attribute::StackAlignment:
714     return bitc::ATTR_KIND_STACK_ALIGNMENT;
715   case Attribute::StackProtect:
716     return bitc::ATTR_KIND_STACK_PROTECT;
717   case Attribute::StackProtectReq:
718     return bitc::ATTR_KIND_STACK_PROTECT_REQ;
719   case Attribute::StackProtectStrong:
720     return bitc::ATTR_KIND_STACK_PROTECT_STRONG;
721   case Attribute::SafeStack:
722     return bitc::ATTR_KIND_SAFESTACK;
723   case Attribute::ShadowCallStack:
724     return bitc::ATTR_KIND_SHADOWCALLSTACK;
725   case Attribute::StrictFP:
726     return bitc::ATTR_KIND_STRICT_FP;
727   case Attribute::StructRet:
728     return bitc::ATTR_KIND_STRUCT_RET;
729   case Attribute::SanitizeAddress:
730     return bitc::ATTR_KIND_SANITIZE_ADDRESS;
731   case Attribute::SanitizeHWAddress:
732     return bitc::ATTR_KIND_SANITIZE_HWADDRESS;
733   case Attribute::SanitizeThread:
734     return bitc::ATTR_KIND_SANITIZE_THREAD;
735   case Attribute::SanitizeMemory:
736     return bitc::ATTR_KIND_SANITIZE_MEMORY;
737   case Attribute::SpeculativeLoadHardening:
738     return bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING;
739   case Attribute::SwiftError:
740     return bitc::ATTR_KIND_SWIFT_ERROR;
741   case Attribute::SwiftSelf:
742     return bitc::ATTR_KIND_SWIFT_SELF;
743   case Attribute::SwiftAsync:
744     return bitc::ATTR_KIND_SWIFT_ASYNC;
745   case Attribute::UWTable:
746     return bitc::ATTR_KIND_UW_TABLE;
747   case Attribute::VScaleRange:
748     return bitc::ATTR_KIND_VSCALE_RANGE;
749   case Attribute::WillReturn:
750     return bitc::ATTR_KIND_WILLRETURN;
751   case Attribute::WriteOnly:
752     return bitc::ATTR_KIND_WRITEONLY;
753   case Attribute::ZExt:
754     return bitc::ATTR_KIND_Z_EXT;
755   case Attribute::ImmArg:
756     return bitc::ATTR_KIND_IMMARG;
757   case Attribute::SanitizeMemTag:
758     return bitc::ATTR_KIND_SANITIZE_MEMTAG;
759   case Attribute::Preallocated:
760     return bitc::ATTR_KIND_PREALLOCATED;
761   case Attribute::NoUndef:
762     return bitc::ATTR_KIND_NOUNDEF;
763   case Attribute::ByRef:
764     return bitc::ATTR_KIND_BYREF;
765   case Attribute::MustProgress:
766     return bitc::ATTR_KIND_MUSTPROGRESS;
767   case Attribute::EndAttrKinds:
768     llvm_unreachable("Can not encode end-attribute kinds marker.");
769   case Attribute::None:
770     llvm_unreachable("Can not encode none-attribute.");
771   case Attribute::EmptyKey:
772   case Attribute::TombstoneKey:
773     llvm_unreachable("Trying to encode EmptyKey/TombstoneKey");
774   }
775 
776   llvm_unreachable("Trying to encode unknown attribute");
777 }
778 
779 void ModuleBitcodeWriter::writeAttributeGroupTable() {
780   const std::vector<ValueEnumerator::IndexAndAttrSet> &AttrGrps =
781       VE.getAttributeGroups();
782   if (AttrGrps.empty()) return;
783 
784   Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3);
785 
786   SmallVector<uint64_t, 64> Record;
787   for (ValueEnumerator::IndexAndAttrSet Pair : AttrGrps) {
788     unsigned AttrListIndex = Pair.first;
789     AttributeSet AS = Pair.second;
790     Record.push_back(VE.getAttributeGroupID(Pair));
791     Record.push_back(AttrListIndex);
792 
793     for (Attribute Attr : AS) {
794       if (Attr.isEnumAttribute()) {
795         Record.push_back(0);
796         Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum()));
797       } else if (Attr.isIntAttribute()) {
798         Record.push_back(1);
799         Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum()));
800         Record.push_back(Attr.getValueAsInt());
801       } else if (Attr.isStringAttribute()) {
802         StringRef Kind = Attr.getKindAsString();
803         StringRef Val = Attr.getValueAsString();
804 
805         Record.push_back(Val.empty() ? 3 : 4);
806         Record.append(Kind.begin(), Kind.end());
807         Record.push_back(0);
808         if (!Val.empty()) {
809           Record.append(Val.begin(), Val.end());
810           Record.push_back(0);
811         }
812       } else {
813         assert(Attr.isTypeAttribute());
814         Type *Ty = Attr.getValueAsType();
815         Record.push_back(Ty ? 6 : 5);
816         Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum()));
817         if (Ty)
818           Record.push_back(VE.getTypeID(Attr.getValueAsType()));
819       }
820     }
821 
822     Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record);
823     Record.clear();
824   }
825 
826   Stream.ExitBlock();
827 }
828 
829 void ModuleBitcodeWriter::writeAttributeTable() {
830   const std::vector<AttributeList> &Attrs = VE.getAttributeLists();
831   if (Attrs.empty()) return;
832 
833   Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3);
834 
835   SmallVector<uint64_t, 64> Record;
836   for (unsigned i = 0, e = Attrs.size(); i != e; ++i) {
837     AttributeList AL = Attrs[i];
838     for (unsigned i = AL.index_begin(), e = AL.index_end(); i != e; ++i) {
839       AttributeSet AS = AL.getAttributes(i);
840       if (AS.hasAttributes())
841         Record.push_back(VE.getAttributeGroupID({i, AS}));
842     }
843 
844     Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record);
845     Record.clear();
846   }
847 
848   Stream.ExitBlock();
849 }
850 
851 /// WriteTypeTable - Write out the type table for a module.
852 void ModuleBitcodeWriter::writeTypeTable() {
853   const ValueEnumerator::TypeList &TypeList = VE.getTypes();
854 
855   Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */);
856   SmallVector<uint64_t, 64> TypeVals;
857 
858   uint64_t NumBits = VE.computeBitsRequiredForTypeIndicies();
859 
860   // Abbrev for TYPE_CODE_POINTER.
861   auto Abbv = std::make_shared<BitCodeAbbrev>();
862   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER));
863   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
864   Abbv->Add(BitCodeAbbrevOp(0));  // Addrspace = 0
865   unsigned PtrAbbrev = Stream.EmitAbbrev(std::move(Abbv));
866 
867   // Abbrev for TYPE_CODE_OPAQUE_POINTER.
868   Abbv = std::make_shared<BitCodeAbbrev>();
869   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_OPAQUE_POINTER));
870   Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0
871   unsigned OpaquePtrAbbrev = Stream.EmitAbbrev(std::move(Abbv));
872 
873   // Abbrev for TYPE_CODE_FUNCTION.
874   Abbv = std::make_shared<BitCodeAbbrev>();
875   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION));
876   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // isvararg
877   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
878   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
879   unsigned FunctionAbbrev = Stream.EmitAbbrev(std::move(Abbv));
880 
881   // Abbrev for TYPE_CODE_STRUCT_ANON.
882   Abbv = std::make_shared<BitCodeAbbrev>();
883   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON));
884   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // ispacked
885   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
886   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
887   unsigned StructAnonAbbrev = Stream.EmitAbbrev(std::move(Abbv));
888 
889   // Abbrev for TYPE_CODE_STRUCT_NAME.
890   Abbv = std::make_shared<BitCodeAbbrev>();
891   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME));
892   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
893   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
894   unsigned StructNameAbbrev = Stream.EmitAbbrev(std::move(Abbv));
895 
896   // Abbrev for TYPE_CODE_STRUCT_NAMED.
897   Abbv = std::make_shared<BitCodeAbbrev>();
898   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED));
899   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // ispacked
900   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
901   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
902   unsigned StructNamedAbbrev = Stream.EmitAbbrev(std::move(Abbv));
903 
904   // Abbrev for TYPE_CODE_ARRAY.
905   Abbv = std::make_shared<BitCodeAbbrev>();
906   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY));
907   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // size
908   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
909   unsigned ArrayAbbrev = Stream.EmitAbbrev(std::move(Abbv));
910 
911   // Emit an entry count so the reader can reserve space.
912   TypeVals.push_back(TypeList.size());
913   Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals);
914   TypeVals.clear();
915 
916   // Loop over all of the types, emitting each in turn.
917   for (unsigned i = 0, e = TypeList.size(); i != e; ++i) {
918     Type *T = TypeList[i];
919     int AbbrevToUse = 0;
920     unsigned Code = 0;
921 
922     switch (T->getTypeID()) {
923     case Type::VoidTyID:      Code = bitc::TYPE_CODE_VOID;      break;
924     case Type::HalfTyID:      Code = bitc::TYPE_CODE_HALF;      break;
925     case Type::BFloatTyID:    Code = bitc::TYPE_CODE_BFLOAT;    break;
926     case Type::FloatTyID:     Code = bitc::TYPE_CODE_FLOAT;     break;
927     case Type::DoubleTyID:    Code = bitc::TYPE_CODE_DOUBLE;    break;
928     case Type::X86_FP80TyID:  Code = bitc::TYPE_CODE_X86_FP80;  break;
929     case Type::FP128TyID:     Code = bitc::TYPE_CODE_FP128;     break;
930     case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break;
931     case Type::LabelTyID:     Code = bitc::TYPE_CODE_LABEL;     break;
932     case Type::MetadataTyID:  Code = bitc::TYPE_CODE_METADATA;  break;
933     case Type::X86_MMXTyID:   Code = bitc::TYPE_CODE_X86_MMX;   break;
934     case Type::X86_AMXTyID:   Code = bitc::TYPE_CODE_X86_AMX;   break;
935     case Type::TokenTyID:     Code = bitc::TYPE_CODE_TOKEN;     break;
936     case Type::IntegerTyID:
937       // INTEGER: [width]
938       Code = bitc::TYPE_CODE_INTEGER;
939       TypeVals.push_back(cast<IntegerType>(T)->getBitWidth());
940       break;
941     case Type::PointerTyID: {
942       PointerType *PTy = cast<PointerType>(T);
943       unsigned AddressSpace = PTy->getAddressSpace();
944       if (PTy->isOpaque()) {
945         // OPAQUE_POINTER: [address space]
946         Code = bitc::TYPE_CODE_OPAQUE_POINTER;
947         TypeVals.push_back(AddressSpace);
948         if (AddressSpace == 0)
949           AbbrevToUse = OpaquePtrAbbrev;
950       } else {
951         // POINTER: [pointee type, address space]
952         Code = bitc::TYPE_CODE_POINTER;
953         TypeVals.push_back(VE.getTypeID(PTy->getElementType()));
954         TypeVals.push_back(AddressSpace);
955         if (AddressSpace == 0)
956           AbbrevToUse = PtrAbbrev;
957       }
958       break;
959     }
960     case Type::FunctionTyID: {
961       FunctionType *FT = cast<FunctionType>(T);
962       // FUNCTION: [isvararg, retty, paramty x N]
963       Code = bitc::TYPE_CODE_FUNCTION;
964       TypeVals.push_back(FT->isVarArg());
965       TypeVals.push_back(VE.getTypeID(FT->getReturnType()));
966       for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i)
967         TypeVals.push_back(VE.getTypeID(FT->getParamType(i)));
968       AbbrevToUse = FunctionAbbrev;
969       break;
970     }
971     case Type::StructTyID: {
972       StructType *ST = cast<StructType>(T);
973       // STRUCT: [ispacked, eltty x N]
974       TypeVals.push_back(ST->isPacked());
975       // Output all of the element types.
976       for (StructType::element_iterator I = ST->element_begin(),
977            E = ST->element_end(); I != E; ++I)
978         TypeVals.push_back(VE.getTypeID(*I));
979 
980       if (ST->isLiteral()) {
981         Code = bitc::TYPE_CODE_STRUCT_ANON;
982         AbbrevToUse = StructAnonAbbrev;
983       } else {
984         if (ST->isOpaque()) {
985           Code = bitc::TYPE_CODE_OPAQUE;
986         } else {
987           Code = bitc::TYPE_CODE_STRUCT_NAMED;
988           AbbrevToUse = StructNamedAbbrev;
989         }
990 
991         // Emit the name if it is present.
992         if (!ST->getName().empty())
993           writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, ST->getName(),
994                             StructNameAbbrev);
995       }
996       break;
997     }
998     case Type::ArrayTyID: {
999       ArrayType *AT = cast<ArrayType>(T);
1000       // ARRAY: [numelts, eltty]
1001       Code = bitc::TYPE_CODE_ARRAY;
1002       TypeVals.push_back(AT->getNumElements());
1003       TypeVals.push_back(VE.getTypeID(AT->getElementType()));
1004       AbbrevToUse = ArrayAbbrev;
1005       break;
1006     }
1007     case Type::FixedVectorTyID:
1008     case Type::ScalableVectorTyID: {
1009       VectorType *VT = cast<VectorType>(T);
1010       // VECTOR [numelts, eltty] or
1011       //        [numelts, eltty, scalable]
1012       Code = bitc::TYPE_CODE_VECTOR;
1013       TypeVals.push_back(VT->getElementCount().getKnownMinValue());
1014       TypeVals.push_back(VE.getTypeID(VT->getElementType()));
1015       if (isa<ScalableVectorType>(VT))
1016         TypeVals.push_back(true);
1017       break;
1018     }
1019     }
1020 
1021     // Emit the finished record.
1022     Stream.EmitRecord(Code, TypeVals, AbbrevToUse);
1023     TypeVals.clear();
1024   }
1025 
1026   Stream.ExitBlock();
1027 }
1028 
1029 static unsigned getEncodedLinkage(const GlobalValue::LinkageTypes Linkage) {
1030   switch (Linkage) {
1031   case GlobalValue::ExternalLinkage:
1032     return 0;
1033   case GlobalValue::WeakAnyLinkage:
1034     return 16;
1035   case GlobalValue::AppendingLinkage:
1036     return 2;
1037   case GlobalValue::InternalLinkage:
1038     return 3;
1039   case GlobalValue::LinkOnceAnyLinkage:
1040     return 18;
1041   case GlobalValue::ExternalWeakLinkage:
1042     return 7;
1043   case GlobalValue::CommonLinkage:
1044     return 8;
1045   case GlobalValue::PrivateLinkage:
1046     return 9;
1047   case GlobalValue::WeakODRLinkage:
1048     return 17;
1049   case GlobalValue::LinkOnceODRLinkage:
1050     return 19;
1051   case GlobalValue::AvailableExternallyLinkage:
1052     return 12;
1053   }
1054   llvm_unreachable("Invalid linkage");
1055 }
1056 
1057 static unsigned getEncodedLinkage(const GlobalValue &GV) {
1058   return getEncodedLinkage(GV.getLinkage());
1059 }
1060 
1061 static uint64_t getEncodedFFlags(FunctionSummary::FFlags Flags) {
1062   uint64_t RawFlags = 0;
1063   RawFlags |= Flags.ReadNone;
1064   RawFlags |= (Flags.ReadOnly << 1);
1065   RawFlags |= (Flags.NoRecurse << 2);
1066   RawFlags |= (Flags.ReturnDoesNotAlias << 3);
1067   RawFlags |= (Flags.NoInline << 4);
1068   RawFlags |= (Flags.AlwaysInline << 5);
1069   return RawFlags;
1070 }
1071 
1072 // Decode the flags for GlobalValue in the summary. See getDecodedGVSummaryFlags
1073 // in BitcodeReader.cpp.
1074 static uint64_t getEncodedGVSummaryFlags(GlobalValueSummary::GVFlags Flags) {
1075   uint64_t RawFlags = 0;
1076 
1077   RawFlags |= Flags.NotEligibleToImport; // bool
1078   RawFlags |= (Flags.Live << 1);
1079   RawFlags |= (Flags.DSOLocal << 2);
1080   RawFlags |= (Flags.CanAutoHide << 3);
1081 
1082   // Linkage don't need to be remapped at that time for the summary. Any future
1083   // change to the getEncodedLinkage() function will need to be taken into
1084   // account here as well.
1085   RawFlags = (RawFlags << 4) | Flags.Linkage; // 4 bits
1086 
1087   RawFlags |= (Flags.Visibility << 8); // 2 bits
1088 
1089   return RawFlags;
1090 }
1091 
1092 static uint64_t getEncodedGVarFlags(GlobalVarSummary::GVarFlags Flags) {
1093   uint64_t RawFlags = Flags.MaybeReadOnly | (Flags.MaybeWriteOnly << 1) |
1094                       (Flags.Constant << 2) | Flags.VCallVisibility << 3;
1095   return RawFlags;
1096 }
1097 
1098 static unsigned getEncodedVisibility(const GlobalValue &GV) {
1099   switch (GV.getVisibility()) {
1100   case GlobalValue::DefaultVisibility:   return 0;
1101   case GlobalValue::HiddenVisibility:    return 1;
1102   case GlobalValue::ProtectedVisibility: return 2;
1103   }
1104   llvm_unreachable("Invalid visibility");
1105 }
1106 
1107 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) {
1108   switch (GV.getDLLStorageClass()) {
1109   case GlobalValue::DefaultStorageClass:   return 0;
1110   case GlobalValue::DLLImportStorageClass: return 1;
1111   case GlobalValue::DLLExportStorageClass: return 2;
1112   }
1113   llvm_unreachable("Invalid DLL storage class");
1114 }
1115 
1116 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) {
1117   switch (GV.getThreadLocalMode()) {
1118     case GlobalVariable::NotThreadLocal:         return 0;
1119     case GlobalVariable::GeneralDynamicTLSModel: return 1;
1120     case GlobalVariable::LocalDynamicTLSModel:   return 2;
1121     case GlobalVariable::InitialExecTLSModel:    return 3;
1122     case GlobalVariable::LocalExecTLSModel:      return 4;
1123   }
1124   llvm_unreachable("Invalid TLS model");
1125 }
1126 
1127 static unsigned getEncodedComdatSelectionKind(const Comdat &C) {
1128   switch (C.getSelectionKind()) {
1129   case Comdat::Any:
1130     return bitc::COMDAT_SELECTION_KIND_ANY;
1131   case Comdat::ExactMatch:
1132     return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH;
1133   case Comdat::Largest:
1134     return bitc::COMDAT_SELECTION_KIND_LARGEST;
1135   case Comdat::NoDeduplicate:
1136     return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES;
1137   case Comdat::SameSize:
1138     return bitc::COMDAT_SELECTION_KIND_SAME_SIZE;
1139   }
1140   llvm_unreachable("Invalid selection kind");
1141 }
1142 
1143 static unsigned getEncodedUnnamedAddr(const GlobalValue &GV) {
1144   switch (GV.getUnnamedAddr()) {
1145   case GlobalValue::UnnamedAddr::None:   return 0;
1146   case GlobalValue::UnnamedAddr::Local:  return 2;
1147   case GlobalValue::UnnamedAddr::Global: return 1;
1148   }
1149   llvm_unreachable("Invalid unnamed_addr");
1150 }
1151 
1152 size_t ModuleBitcodeWriter::addToStrtab(StringRef Str) {
1153   if (GenerateHash)
1154     Hasher.update(Str);
1155   return StrtabBuilder.add(Str);
1156 }
1157 
1158 void ModuleBitcodeWriter::writeComdats() {
1159   SmallVector<unsigned, 64> Vals;
1160   for (const Comdat *C : VE.getComdats()) {
1161     // COMDAT: [strtab offset, strtab size, selection_kind]
1162     Vals.push_back(addToStrtab(C->getName()));
1163     Vals.push_back(C->getName().size());
1164     Vals.push_back(getEncodedComdatSelectionKind(*C));
1165     Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0);
1166     Vals.clear();
1167   }
1168 }
1169 
1170 /// Write a record that will eventually hold the word offset of the
1171 /// module-level VST. For now the offset is 0, which will be backpatched
1172 /// after the real VST is written. Saves the bit offset to backpatch.
1173 void ModuleBitcodeWriter::writeValueSymbolTableForwardDecl() {
1174   // Write a placeholder value in for the offset of the real VST,
1175   // which is written after the function blocks so that it can include
1176   // the offset of each function. The placeholder offset will be
1177   // updated when the real VST is written.
1178   auto Abbv = std::make_shared<BitCodeAbbrev>();
1179   Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_VSTOFFSET));
1180   // Blocks are 32-bit aligned, so we can use a 32-bit word offset to
1181   // hold the real VST offset. Must use fixed instead of VBR as we don't
1182   // know how many VBR chunks to reserve ahead of time.
1183   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
1184   unsigned VSTOffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv));
1185 
1186   // Emit the placeholder
1187   uint64_t Vals[] = {bitc::MODULE_CODE_VSTOFFSET, 0};
1188   Stream.EmitRecordWithAbbrev(VSTOffsetAbbrev, Vals);
1189 
1190   // Compute and save the bit offset to the placeholder, which will be
1191   // patched when the real VST is written. We can simply subtract the 32-bit
1192   // fixed size from the current bit number to get the location to backpatch.
1193   VSTOffsetPlaceholder = Stream.GetCurrentBitNo() - 32;
1194 }
1195 
1196 enum StringEncoding { SE_Char6, SE_Fixed7, SE_Fixed8 };
1197 
1198 /// Determine the encoding to use for the given string name and length.
1199 static StringEncoding getStringEncoding(StringRef Str) {
1200   bool isChar6 = true;
1201   for (char C : Str) {
1202     if (isChar6)
1203       isChar6 = BitCodeAbbrevOp::isChar6(C);
1204     if ((unsigned char)C & 128)
1205       // don't bother scanning the rest.
1206       return SE_Fixed8;
1207   }
1208   if (isChar6)
1209     return SE_Char6;
1210   return SE_Fixed7;
1211 }
1212 
1213 /// Emit top-level description of module, including target triple, inline asm,
1214 /// descriptors for global variables, and function prototype info.
1215 /// Returns the bit offset to backpatch with the location of the real VST.
1216 void ModuleBitcodeWriter::writeModuleInfo() {
1217   // Emit various pieces of data attached to a module.
1218   if (!M.getTargetTriple().empty())
1219     writeStringRecord(Stream, bitc::MODULE_CODE_TRIPLE, M.getTargetTriple(),
1220                       0 /*TODO*/);
1221   const std::string &DL = M.getDataLayoutStr();
1222   if (!DL.empty())
1223     writeStringRecord(Stream, bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/);
1224   if (!M.getModuleInlineAsm().empty())
1225     writeStringRecord(Stream, bitc::MODULE_CODE_ASM, M.getModuleInlineAsm(),
1226                       0 /*TODO*/);
1227 
1228   // Emit information about sections and GC, computing how many there are. Also
1229   // compute the maximum alignment value.
1230   std::map<std::string, unsigned> SectionMap;
1231   std::map<std::string, unsigned> GCMap;
1232   MaybeAlign MaxAlignment;
1233   unsigned MaxGlobalType = 0;
1234   const auto UpdateMaxAlignment = [&MaxAlignment](const MaybeAlign A) {
1235     if (A)
1236       MaxAlignment = !MaxAlignment ? *A : std::max(*MaxAlignment, *A);
1237   };
1238   for (const GlobalVariable &GV : M.globals()) {
1239     UpdateMaxAlignment(GV.getAlign());
1240     MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getValueType()));
1241     if (GV.hasSection()) {
1242       // Give section names unique ID's.
1243       unsigned &Entry = SectionMap[std::string(GV.getSection())];
1244       if (!Entry) {
1245         writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, GV.getSection(),
1246                           0 /*TODO*/);
1247         Entry = SectionMap.size();
1248       }
1249     }
1250   }
1251   for (const Function &F : M) {
1252     UpdateMaxAlignment(F.getAlign());
1253     if (F.hasSection()) {
1254       // Give section names unique ID's.
1255       unsigned &Entry = SectionMap[std::string(F.getSection())];
1256       if (!Entry) {
1257         writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, F.getSection(),
1258                           0 /*TODO*/);
1259         Entry = SectionMap.size();
1260       }
1261     }
1262     if (F.hasGC()) {
1263       // Same for GC names.
1264       unsigned &Entry = GCMap[F.getGC()];
1265       if (!Entry) {
1266         writeStringRecord(Stream, bitc::MODULE_CODE_GCNAME, F.getGC(),
1267                           0 /*TODO*/);
1268         Entry = GCMap.size();
1269       }
1270     }
1271   }
1272 
1273   // Emit abbrev for globals, now that we know # sections and max alignment.
1274   unsigned SimpleGVarAbbrev = 0;
1275   if (!M.global_empty()) {
1276     // Add an abbrev for common globals with no visibility or thread localness.
1277     auto Abbv = std::make_shared<BitCodeAbbrev>();
1278     Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR));
1279     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1280     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1281     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1282                               Log2_32_Ceil(MaxGlobalType+1)));
1283     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // AddrSpace << 2
1284                                                            //| explicitType << 1
1285                                                            //| constant
1286     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // Initializer.
1287     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage.
1288     if (!MaxAlignment)                                     // Alignment.
1289       Abbv->Add(BitCodeAbbrevOp(0));
1290     else {
1291       unsigned MaxEncAlignment = getEncodedAlign(MaxAlignment);
1292       Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1293                                Log2_32_Ceil(MaxEncAlignment+1)));
1294     }
1295     if (SectionMap.empty())                                    // Section.
1296       Abbv->Add(BitCodeAbbrevOp(0));
1297     else
1298       Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
1299                                Log2_32_Ceil(SectionMap.size()+1)));
1300     // Don't bother emitting vis + thread local.
1301     SimpleGVarAbbrev = Stream.EmitAbbrev(std::move(Abbv));
1302   }
1303 
1304   SmallVector<unsigned, 64> Vals;
1305   // Emit the module's source file name.
1306   {
1307     StringEncoding Bits = getStringEncoding(M.getSourceFileName());
1308     BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8);
1309     if (Bits == SE_Char6)
1310       AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6);
1311     else if (Bits == SE_Fixed7)
1312       AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7);
1313 
1314     // MODULE_CODE_SOURCE_FILENAME: [namechar x N]
1315     auto Abbv = std::make_shared<BitCodeAbbrev>();
1316     Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME));
1317     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1318     Abbv->Add(AbbrevOpToUse);
1319     unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv));
1320 
1321     for (const auto P : M.getSourceFileName())
1322       Vals.push_back((unsigned char)P);
1323 
1324     // Emit the finished record.
1325     Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev);
1326     Vals.clear();
1327   }
1328 
1329   // Emit the global variable information.
1330   for (const GlobalVariable &GV : M.globals()) {
1331     unsigned AbbrevToUse = 0;
1332 
1333     // GLOBALVAR: [strtab offset, strtab size, type, isconst, initid,
1334     //             linkage, alignment, section, visibility, threadlocal,
1335     //             unnamed_addr, externally_initialized, dllstorageclass,
1336     //             comdat, attributes, DSO_Local]
1337     Vals.push_back(addToStrtab(GV.getName()));
1338     Vals.push_back(GV.getName().size());
1339     Vals.push_back(VE.getTypeID(GV.getValueType()));
1340     Vals.push_back(GV.getType()->getAddressSpace() << 2 | 2 | GV.isConstant());
1341     Vals.push_back(GV.isDeclaration() ? 0 :
1342                    (VE.getValueID(GV.getInitializer()) + 1));
1343     Vals.push_back(getEncodedLinkage(GV));
1344     Vals.push_back(getEncodedAlign(GV.getAlign()));
1345     Vals.push_back(GV.hasSection() ? SectionMap[std::string(GV.getSection())]
1346                                    : 0);
1347     if (GV.isThreadLocal() ||
1348         GV.getVisibility() != GlobalValue::DefaultVisibility ||
1349         GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None ||
1350         GV.isExternallyInitialized() ||
1351         GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass ||
1352         GV.hasComdat() ||
1353         GV.hasAttributes() ||
1354         GV.isDSOLocal() ||
1355         GV.hasPartition()) {
1356       Vals.push_back(getEncodedVisibility(GV));
1357       Vals.push_back(getEncodedThreadLocalMode(GV));
1358       Vals.push_back(getEncodedUnnamedAddr(GV));
1359       Vals.push_back(GV.isExternallyInitialized());
1360       Vals.push_back(getEncodedDLLStorageClass(GV));
1361       Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0);
1362 
1363       auto AL = GV.getAttributesAsList(AttributeList::FunctionIndex);
1364       Vals.push_back(VE.getAttributeListID(AL));
1365 
1366       Vals.push_back(GV.isDSOLocal());
1367       Vals.push_back(addToStrtab(GV.getPartition()));
1368       Vals.push_back(GV.getPartition().size());
1369     } else {
1370       AbbrevToUse = SimpleGVarAbbrev;
1371     }
1372 
1373     Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse);
1374     Vals.clear();
1375   }
1376 
1377   // Emit the function proto information.
1378   for (const Function &F : M) {
1379     // FUNCTION:  [strtab offset, strtab size, type, callingconv, isproto,
1380     //             linkage, paramattrs, alignment, section, visibility, gc,
1381     //             unnamed_addr, prologuedata, dllstorageclass, comdat,
1382     //             prefixdata, personalityfn, DSO_Local, addrspace]
1383     Vals.push_back(addToStrtab(F.getName()));
1384     Vals.push_back(F.getName().size());
1385     Vals.push_back(VE.getTypeID(F.getFunctionType()));
1386     Vals.push_back(F.getCallingConv());
1387     Vals.push_back(F.isDeclaration());
1388     Vals.push_back(getEncodedLinkage(F));
1389     Vals.push_back(VE.getAttributeListID(F.getAttributes()));
1390     Vals.push_back(getEncodedAlign(F.getAlign()));
1391     Vals.push_back(F.hasSection() ? SectionMap[std::string(F.getSection())]
1392                                   : 0);
1393     Vals.push_back(getEncodedVisibility(F));
1394     Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0);
1395     Vals.push_back(getEncodedUnnamedAddr(F));
1396     Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1)
1397                                        : 0);
1398     Vals.push_back(getEncodedDLLStorageClass(F));
1399     Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0);
1400     Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1)
1401                                      : 0);
1402     Vals.push_back(
1403         F.hasPersonalityFn() ? (VE.getValueID(F.getPersonalityFn()) + 1) : 0);
1404 
1405     Vals.push_back(F.isDSOLocal());
1406     Vals.push_back(F.getAddressSpace());
1407     Vals.push_back(addToStrtab(F.getPartition()));
1408     Vals.push_back(F.getPartition().size());
1409 
1410     unsigned AbbrevToUse = 0;
1411     Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse);
1412     Vals.clear();
1413   }
1414 
1415   // Emit the alias information.
1416   for (const GlobalAlias &A : M.aliases()) {
1417     // ALIAS: [strtab offset, strtab size, alias type, aliasee val#, linkage,
1418     //         visibility, dllstorageclass, threadlocal, unnamed_addr,
1419     //         DSO_Local]
1420     Vals.push_back(addToStrtab(A.getName()));
1421     Vals.push_back(A.getName().size());
1422     Vals.push_back(VE.getTypeID(A.getValueType()));
1423     Vals.push_back(A.getType()->getAddressSpace());
1424     Vals.push_back(VE.getValueID(A.getAliasee()));
1425     Vals.push_back(getEncodedLinkage(A));
1426     Vals.push_back(getEncodedVisibility(A));
1427     Vals.push_back(getEncodedDLLStorageClass(A));
1428     Vals.push_back(getEncodedThreadLocalMode(A));
1429     Vals.push_back(getEncodedUnnamedAddr(A));
1430     Vals.push_back(A.isDSOLocal());
1431     Vals.push_back(addToStrtab(A.getPartition()));
1432     Vals.push_back(A.getPartition().size());
1433 
1434     unsigned AbbrevToUse = 0;
1435     Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse);
1436     Vals.clear();
1437   }
1438 
1439   // Emit the ifunc information.
1440   for (const GlobalIFunc &I : M.ifuncs()) {
1441     // IFUNC: [strtab offset, strtab size, ifunc type, address space, resolver
1442     //         val#, linkage, visibility, DSO_Local]
1443     Vals.push_back(addToStrtab(I.getName()));
1444     Vals.push_back(I.getName().size());
1445     Vals.push_back(VE.getTypeID(I.getValueType()));
1446     Vals.push_back(I.getType()->getAddressSpace());
1447     Vals.push_back(VE.getValueID(I.getResolver()));
1448     Vals.push_back(getEncodedLinkage(I));
1449     Vals.push_back(getEncodedVisibility(I));
1450     Vals.push_back(I.isDSOLocal());
1451     Vals.push_back(addToStrtab(I.getPartition()));
1452     Vals.push_back(I.getPartition().size());
1453     Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals);
1454     Vals.clear();
1455   }
1456 
1457   writeValueSymbolTableForwardDecl();
1458 }
1459 
1460 static uint64_t getOptimizationFlags(const Value *V) {
1461   uint64_t Flags = 0;
1462 
1463   if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) {
1464     if (OBO->hasNoSignedWrap())
1465       Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP;
1466     if (OBO->hasNoUnsignedWrap())
1467       Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP;
1468   } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) {
1469     if (PEO->isExact())
1470       Flags |= 1 << bitc::PEO_EXACT;
1471   } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) {
1472     if (FPMO->hasAllowReassoc())
1473       Flags |= bitc::AllowReassoc;
1474     if (FPMO->hasNoNaNs())
1475       Flags |= bitc::NoNaNs;
1476     if (FPMO->hasNoInfs())
1477       Flags |= bitc::NoInfs;
1478     if (FPMO->hasNoSignedZeros())
1479       Flags |= bitc::NoSignedZeros;
1480     if (FPMO->hasAllowReciprocal())
1481       Flags |= bitc::AllowReciprocal;
1482     if (FPMO->hasAllowContract())
1483       Flags |= bitc::AllowContract;
1484     if (FPMO->hasApproxFunc())
1485       Flags |= bitc::ApproxFunc;
1486   }
1487 
1488   return Flags;
1489 }
1490 
1491 void ModuleBitcodeWriter::writeValueAsMetadata(
1492     const ValueAsMetadata *MD, SmallVectorImpl<uint64_t> &Record) {
1493   // Mimic an MDNode with a value as one operand.
1494   Value *V = MD->getValue();
1495   Record.push_back(VE.getTypeID(V->getType()));
1496   Record.push_back(VE.getValueID(V));
1497   Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0);
1498   Record.clear();
1499 }
1500 
1501 void ModuleBitcodeWriter::writeMDTuple(const MDTuple *N,
1502                                        SmallVectorImpl<uint64_t> &Record,
1503                                        unsigned Abbrev) {
1504   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
1505     Metadata *MD = N->getOperand(i);
1506     assert(!(MD && isa<LocalAsMetadata>(MD)) &&
1507            "Unexpected function-local metadata");
1508     Record.push_back(VE.getMetadataOrNullID(MD));
1509   }
1510   Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE
1511                                     : bitc::METADATA_NODE,
1512                     Record, Abbrev);
1513   Record.clear();
1514 }
1515 
1516 unsigned ModuleBitcodeWriter::createDILocationAbbrev() {
1517   // Assume the column is usually under 128, and always output the inlined-at
1518   // location (it's never more expensive than building an array size 1).
1519   auto Abbv = std::make_shared<BitCodeAbbrev>();
1520   Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION));
1521   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1522   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1523   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
1524   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1525   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1526   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1527   return Stream.EmitAbbrev(std::move(Abbv));
1528 }
1529 
1530 void ModuleBitcodeWriter::writeDILocation(const DILocation *N,
1531                                           SmallVectorImpl<uint64_t> &Record,
1532                                           unsigned &Abbrev) {
1533   if (!Abbrev)
1534     Abbrev = createDILocationAbbrev();
1535 
1536   Record.push_back(N->isDistinct());
1537   Record.push_back(N->getLine());
1538   Record.push_back(N->getColumn());
1539   Record.push_back(VE.getMetadataID(N->getScope()));
1540   Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt()));
1541   Record.push_back(N->isImplicitCode());
1542 
1543   Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev);
1544   Record.clear();
1545 }
1546 
1547 unsigned ModuleBitcodeWriter::createGenericDINodeAbbrev() {
1548   // Assume the column is usually under 128, and always output the inlined-at
1549   // location (it's never more expensive than building an array size 1).
1550   auto Abbv = std::make_shared<BitCodeAbbrev>();
1551   Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG));
1552   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1553   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1554   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
1555   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1556   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
1557   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
1558   return Stream.EmitAbbrev(std::move(Abbv));
1559 }
1560 
1561 void ModuleBitcodeWriter::writeGenericDINode(const GenericDINode *N,
1562                                              SmallVectorImpl<uint64_t> &Record,
1563                                              unsigned &Abbrev) {
1564   if (!Abbrev)
1565     Abbrev = createGenericDINodeAbbrev();
1566 
1567   Record.push_back(N->isDistinct());
1568   Record.push_back(N->getTag());
1569   Record.push_back(0); // Per-tag version field; unused for now.
1570 
1571   for (auto &I : N->operands())
1572     Record.push_back(VE.getMetadataOrNullID(I));
1573 
1574   Stream.EmitRecord(bitc::METADATA_GENERIC_DEBUG, Record, Abbrev);
1575   Record.clear();
1576 }
1577 
1578 void ModuleBitcodeWriter::writeDISubrange(const DISubrange *N,
1579                                           SmallVectorImpl<uint64_t> &Record,
1580                                           unsigned Abbrev) {
1581   const uint64_t Version = 2 << 1;
1582   Record.push_back((uint64_t)N->isDistinct() | Version);
1583   Record.push_back(VE.getMetadataOrNullID(N->getRawCountNode()));
1584   Record.push_back(VE.getMetadataOrNullID(N->getRawLowerBound()));
1585   Record.push_back(VE.getMetadataOrNullID(N->getRawUpperBound()));
1586   Record.push_back(VE.getMetadataOrNullID(N->getRawStride()));
1587 
1588   Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev);
1589   Record.clear();
1590 }
1591 
1592 void ModuleBitcodeWriter::writeDIGenericSubrange(
1593     const DIGenericSubrange *N, SmallVectorImpl<uint64_t> &Record,
1594     unsigned Abbrev) {
1595   Record.push_back((uint64_t)N->isDistinct());
1596   Record.push_back(VE.getMetadataOrNullID(N->getRawCountNode()));
1597   Record.push_back(VE.getMetadataOrNullID(N->getRawLowerBound()));
1598   Record.push_back(VE.getMetadataOrNullID(N->getRawUpperBound()));
1599   Record.push_back(VE.getMetadataOrNullID(N->getRawStride()));
1600 
1601   Stream.EmitRecord(bitc::METADATA_GENERIC_SUBRANGE, Record, Abbrev);
1602   Record.clear();
1603 }
1604 
1605 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) {
1606   if ((int64_t)V >= 0)
1607     Vals.push_back(V << 1);
1608   else
1609     Vals.push_back((-V << 1) | 1);
1610 }
1611 
1612 static void emitWideAPInt(SmallVectorImpl<uint64_t> &Vals, const APInt &A) {
1613   // We have an arbitrary precision integer value to write whose
1614   // bit width is > 64. However, in canonical unsigned integer
1615   // format it is likely that the high bits are going to be zero.
1616   // So, we only write the number of active words.
1617   unsigned NumWords = A.getActiveWords();
1618   const uint64_t *RawData = A.getRawData();
1619   for (unsigned i = 0; i < NumWords; i++)
1620     emitSignedInt64(Vals, RawData[i]);
1621 }
1622 
1623 void ModuleBitcodeWriter::writeDIEnumerator(const DIEnumerator *N,
1624                                             SmallVectorImpl<uint64_t> &Record,
1625                                             unsigned Abbrev) {
1626   const uint64_t IsBigInt = 1 << 2;
1627   Record.push_back(IsBigInt | (N->isUnsigned() << 1) | N->isDistinct());
1628   Record.push_back(N->getValue().getBitWidth());
1629   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1630   emitWideAPInt(Record, N->getValue());
1631 
1632   Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev);
1633   Record.clear();
1634 }
1635 
1636 void ModuleBitcodeWriter::writeDIBasicType(const DIBasicType *N,
1637                                            SmallVectorImpl<uint64_t> &Record,
1638                                            unsigned Abbrev) {
1639   Record.push_back(N->isDistinct());
1640   Record.push_back(N->getTag());
1641   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1642   Record.push_back(N->getSizeInBits());
1643   Record.push_back(N->getAlignInBits());
1644   Record.push_back(N->getEncoding());
1645   Record.push_back(N->getFlags());
1646 
1647   Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev);
1648   Record.clear();
1649 }
1650 
1651 void ModuleBitcodeWriter::writeDIStringType(const DIStringType *N,
1652                                             SmallVectorImpl<uint64_t> &Record,
1653                                             unsigned Abbrev) {
1654   Record.push_back(N->isDistinct());
1655   Record.push_back(N->getTag());
1656   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1657   Record.push_back(VE.getMetadataOrNullID(N->getStringLength()));
1658   Record.push_back(VE.getMetadataOrNullID(N->getStringLengthExp()));
1659   Record.push_back(N->getSizeInBits());
1660   Record.push_back(N->getAlignInBits());
1661   Record.push_back(N->getEncoding());
1662 
1663   Stream.EmitRecord(bitc::METADATA_STRING_TYPE, Record, Abbrev);
1664   Record.clear();
1665 }
1666 
1667 void ModuleBitcodeWriter::writeDIDerivedType(const DIDerivedType *N,
1668                                              SmallVectorImpl<uint64_t> &Record,
1669                                              unsigned Abbrev) {
1670   Record.push_back(N->isDistinct());
1671   Record.push_back(N->getTag());
1672   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1673   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1674   Record.push_back(N->getLine());
1675   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1676   Record.push_back(VE.getMetadataOrNullID(N->getBaseType()));
1677   Record.push_back(N->getSizeInBits());
1678   Record.push_back(N->getAlignInBits());
1679   Record.push_back(N->getOffsetInBits());
1680   Record.push_back(N->getFlags());
1681   Record.push_back(VE.getMetadataOrNullID(N->getExtraData()));
1682 
1683   // DWARF address space is encoded as N->getDWARFAddressSpace() + 1. 0 means
1684   // that there is no DWARF address space associated with DIDerivedType.
1685   if (const auto &DWARFAddressSpace = N->getDWARFAddressSpace())
1686     Record.push_back(*DWARFAddressSpace + 1);
1687   else
1688     Record.push_back(0);
1689 
1690   Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev);
1691   Record.clear();
1692 }
1693 
1694 void ModuleBitcodeWriter::writeDICompositeType(
1695     const DICompositeType *N, SmallVectorImpl<uint64_t> &Record,
1696     unsigned Abbrev) {
1697   const unsigned IsNotUsedInOldTypeRef = 0x2;
1698   Record.push_back(IsNotUsedInOldTypeRef | (unsigned)N->isDistinct());
1699   Record.push_back(N->getTag());
1700   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1701   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1702   Record.push_back(N->getLine());
1703   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1704   Record.push_back(VE.getMetadataOrNullID(N->getBaseType()));
1705   Record.push_back(N->getSizeInBits());
1706   Record.push_back(N->getAlignInBits());
1707   Record.push_back(N->getOffsetInBits());
1708   Record.push_back(N->getFlags());
1709   Record.push_back(VE.getMetadataOrNullID(N->getElements().get()));
1710   Record.push_back(N->getRuntimeLang());
1711   Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder()));
1712   Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get()));
1713   Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier()));
1714   Record.push_back(VE.getMetadataOrNullID(N->getDiscriminator()));
1715   Record.push_back(VE.getMetadataOrNullID(N->getRawDataLocation()));
1716   Record.push_back(VE.getMetadataOrNullID(N->getRawAssociated()));
1717   Record.push_back(VE.getMetadataOrNullID(N->getRawAllocated()));
1718   Record.push_back(VE.getMetadataOrNullID(N->getRawRank()));
1719   Record.push_back(VE.getMetadataOrNullID(N->getAnnotations().get()));
1720 
1721   Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev);
1722   Record.clear();
1723 }
1724 
1725 void ModuleBitcodeWriter::writeDISubroutineType(
1726     const DISubroutineType *N, SmallVectorImpl<uint64_t> &Record,
1727     unsigned Abbrev) {
1728   const unsigned HasNoOldTypeRefs = 0x2;
1729   Record.push_back(HasNoOldTypeRefs | (unsigned)N->isDistinct());
1730   Record.push_back(N->getFlags());
1731   Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get()));
1732   Record.push_back(N->getCC());
1733 
1734   Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev);
1735   Record.clear();
1736 }
1737 
1738 void ModuleBitcodeWriter::writeDIFile(const DIFile *N,
1739                                       SmallVectorImpl<uint64_t> &Record,
1740                                       unsigned Abbrev) {
1741   Record.push_back(N->isDistinct());
1742   Record.push_back(VE.getMetadataOrNullID(N->getRawFilename()));
1743   Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory()));
1744   if (N->getRawChecksum()) {
1745     Record.push_back(N->getRawChecksum()->Kind);
1746     Record.push_back(VE.getMetadataOrNullID(N->getRawChecksum()->Value));
1747   } else {
1748     // Maintain backwards compatibility with the old internal representation of
1749     // CSK_None in ChecksumKind by writing nulls here when Checksum is None.
1750     Record.push_back(0);
1751     Record.push_back(VE.getMetadataOrNullID(nullptr));
1752   }
1753   auto Source = N->getRawSource();
1754   if (Source)
1755     Record.push_back(VE.getMetadataOrNullID(*Source));
1756 
1757   Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev);
1758   Record.clear();
1759 }
1760 
1761 void ModuleBitcodeWriter::writeDICompileUnit(const DICompileUnit *N,
1762                                              SmallVectorImpl<uint64_t> &Record,
1763                                              unsigned Abbrev) {
1764   assert(N->isDistinct() && "Expected distinct compile units");
1765   Record.push_back(/* IsDistinct */ true);
1766   Record.push_back(N->getSourceLanguage());
1767   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1768   Record.push_back(VE.getMetadataOrNullID(N->getRawProducer()));
1769   Record.push_back(N->isOptimized());
1770   Record.push_back(VE.getMetadataOrNullID(N->getRawFlags()));
1771   Record.push_back(N->getRuntimeVersion());
1772   Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename()));
1773   Record.push_back(N->getEmissionKind());
1774   Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get()));
1775   Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get()));
1776   Record.push_back(/* subprograms */ 0);
1777   Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get()));
1778   Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get()));
1779   Record.push_back(N->getDWOId());
1780   Record.push_back(VE.getMetadataOrNullID(N->getMacros().get()));
1781   Record.push_back(N->getSplitDebugInlining());
1782   Record.push_back(N->getDebugInfoForProfiling());
1783   Record.push_back((unsigned)N->getNameTableKind());
1784   Record.push_back(N->getRangesBaseAddress());
1785   Record.push_back(VE.getMetadataOrNullID(N->getRawSysRoot()));
1786   Record.push_back(VE.getMetadataOrNullID(N->getRawSDK()));
1787 
1788   Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev);
1789   Record.clear();
1790 }
1791 
1792 void ModuleBitcodeWriter::writeDISubprogram(const DISubprogram *N,
1793                                             SmallVectorImpl<uint64_t> &Record,
1794                                             unsigned Abbrev) {
1795   const uint64_t HasUnitFlag = 1 << 1;
1796   const uint64_t HasSPFlagsFlag = 1 << 2;
1797   Record.push_back(uint64_t(N->isDistinct()) | HasUnitFlag | HasSPFlagsFlag);
1798   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1799   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1800   Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName()));
1801   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1802   Record.push_back(N->getLine());
1803   Record.push_back(VE.getMetadataOrNullID(N->getType()));
1804   Record.push_back(N->getScopeLine());
1805   Record.push_back(VE.getMetadataOrNullID(N->getContainingType()));
1806   Record.push_back(N->getSPFlags());
1807   Record.push_back(N->getVirtualIndex());
1808   Record.push_back(N->getFlags());
1809   Record.push_back(VE.getMetadataOrNullID(N->getRawUnit()));
1810   Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get()));
1811   Record.push_back(VE.getMetadataOrNullID(N->getDeclaration()));
1812   Record.push_back(VE.getMetadataOrNullID(N->getRetainedNodes().get()));
1813   Record.push_back(N->getThisAdjustment());
1814   Record.push_back(VE.getMetadataOrNullID(N->getThrownTypes().get()));
1815 
1816   Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev);
1817   Record.clear();
1818 }
1819 
1820 void ModuleBitcodeWriter::writeDILexicalBlock(const DILexicalBlock *N,
1821                                               SmallVectorImpl<uint64_t> &Record,
1822                                               unsigned Abbrev) {
1823   Record.push_back(N->isDistinct());
1824   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1825   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1826   Record.push_back(N->getLine());
1827   Record.push_back(N->getColumn());
1828 
1829   Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev);
1830   Record.clear();
1831 }
1832 
1833 void ModuleBitcodeWriter::writeDILexicalBlockFile(
1834     const DILexicalBlockFile *N, SmallVectorImpl<uint64_t> &Record,
1835     unsigned Abbrev) {
1836   Record.push_back(N->isDistinct());
1837   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1838   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1839   Record.push_back(N->getDiscriminator());
1840 
1841   Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev);
1842   Record.clear();
1843 }
1844 
1845 void ModuleBitcodeWriter::writeDICommonBlock(const DICommonBlock *N,
1846                                              SmallVectorImpl<uint64_t> &Record,
1847                                              unsigned Abbrev) {
1848   Record.push_back(N->isDistinct());
1849   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1850   Record.push_back(VE.getMetadataOrNullID(N->getDecl()));
1851   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1852   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1853   Record.push_back(N->getLineNo());
1854 
1855   Stream.EmitRecord(bitc::METADATA_COMMON_BLOCK, Record, Abbrev);
1856   Record.clear();
1857 }
1858 
1859 void ModuleBitcodeWriter::writeDINamespace(const DINamespace *N,
1860                                            SmallVectorImpl<uint64_t> &Record,
1861                                            unsigned Abbrev) {
1862   Record.push_back(N->isDistinct() | N->getExportSymbols() << 1);
1863   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1864   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1865 
1866   Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev);
1867   Record.clear();
1868 }
1869 
1870 void ModuleBitcodeWriter::writeDIMacro(const DIMacro *N,
1871                                        SmallVectorImpl<uint64_t> &Record,
1872                                        unsigned Abbrev) {
1873   Record.push_back(N->isDistinct());
1874   Record.push_back(N->getMacinfoType());
1875   Record.push_back(N->getLine());
1876   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1877   Record.push_back(VE.getMetadataOrNullID(N->getRawValue()));
1878 
1879   Stream.EmitRecord(bitc::METADATA_MACRO, Record, Abbrev);
1880   Record.clear();
1881 }
1882 
1883 void ModuleBitcodeWriter::writeDIMacroFile(const DIMacroFile *N,
1884                                            SmallVectorImpl<uint64_t> &Record,
1885                                            unsigned Abbrev) {
1886   Record.push_back(N->isDistinct());
1887   Record.push_back(N->getMacinfoType());
1888   Record.push_back(N->getLine());
1889   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1890   Record.push_back(VE.getMetadataOrNullID(N->getElements().get()));
1891 
1892   Stream.EmitRecord(bitc::METADATA_MACRO_FILE, Record, Abbrev);
1893   Record.clear();
1894 }
1895 
1896 void ModuleBitcodeWriter::writeDIArgList(const DIArgList *N,
1897                                          SmallVectorImpl<uint64_t> &Record,
1898                                          unsigned Abbrev) {
1899   Record.reserve(N->getArgs().size());
1900   for (ValueAsMetadata *MD : N->getArgs())
1901     Record.push_back(VE.getMetadataID(MD));
1902 
1903   Stream.EmitRecord(bitc::METADATA_ARG_LIST, Record, Abbrev);
1904   Record.clear();
1905 }
1906 
1907 void ModuleBitcodeWriter::writeDIModule(const DIModule *N,
1908                                         SmallVectorImpl<uint64_t> &Record,
1909                                         unsigned Abbrev) {
1910   Record.push_back(N->isDistinct());
1911   for (auto &I : N->operands())
1912     Record.push_back(VE.getMetadataOrNullID(I));
1913   Record.push_back(N->getLineNo());
1914   Record.push_back(N->getIsDecl());
1915 
1916   Stream.EmitRecord(bitc::METADATA_MODULE, Record, Abbrev);
1917   Record.clear();
1918 }
1919 
1920 void ModuleBitcodeWriter::writeDITemplateTypeParameter(
1921     const DITemplateTypeParameter *N, SmallVectorImpl<uint64_t> &Record,
1922     unsigned Abbrev) {
1923   Record.push_back(N->isDistinct());
1924   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1925   Record.push_back(VE.getMetadataOrNullID(N->getType()));
1926   Record.push_back(N->isDefault());
1927 
1928   Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev);
1929   Record.clear();
1930 }
1931 
1932 void ModuleBitcodeWriter::writeDITemplateValueParameter(
1933     const DITemplateValueParameter *N, SmallVectorImpl<uint64_t> &Record,
1934     unsigned Abbrev) {
1935   Record.push_back(N->isDistinct());
1936   Record.push_back(N->getTag());
1937   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1938   Record.push_back(VE.getMetadataOrNullID(N->getType()));
1939   Record.push_back(N->isDefault());
1940   Record.push_back(VE.getMetadataOrNullID(N->getValue()));
1941 
1942   Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev);
1943   Record.clear();
1944 }
1945 
1946 void ModuleBitcodeWriter::writeDIGlobalVariable(
1947     const DIGlobalVariable *N, SmallVectorImpl<uint64_t> &Record,
1948     unsigned Abbrev) {
1949   const uint64_t Version = 2 << 1;
1950   Record.push_back((uint64_t)N->isDistinct() | Version);
1951   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1952   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1953   Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName()));
1954   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1955   Record.push_back(N->getLine());
1956   Record.push_back(VE.getMetadataOrNullID(N->getType()));
1957   Record.push_back(N->isLocalToUnit());
1958   Record.push_back(N->isDefinition());
1959   Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration()));
1960   Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams()));
1961   Record.push_back(N->getAlignInBits());
1962 
1963   Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev);
1964   Record.clear();
1965 }
1966 
1967 void ModuleBitcodeWriter::writeDILocalVariable(
1968     const DILocalVariable *N, SmallVectorImpl<uint64_t> &Record,
1969     unsigned Abbrev) {
1970   // In order to support all possible bitcode formats in BitcodeReader we need
1971   // to distinguish the following cases:
1972   // 1) Record has no artificial tag (Record[1]),
1973   //   has no obsolete inlinedAt field (Record[9]).
1974   //   In this case Record size will be 8, HasAlignment flag is false.
1975   // 2) Record has artificial tag (Record[1]),
1976   //   has no obsolete inlignedAt field (Record[9]).
1977   //   In this case Record size will be 9, HasAlignment flag is false.
1978   // 3) Record has both artificial tag (Record[1]) and
1979   //   obsolete inlignedAt field (Record[9]).
1980   //   In this case Record size will be 10, HasAlignment flag is false.
1981   // 4) Record has neither artificial tag, nor inlignedAt field, but
1982   //   HasAlignment flag is true and Record[8] contains alignment value.
1983   const uint64_t HasAlignmentFlag = 1 << 1;
1984   Record.push_back((uint64_t)N->isDistinct() | HasAlignmentFlag);
1985   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
1986   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
1987   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
1988   Record.push_back(N->getLine());
1989   Record.push_back(VE.getMetadataOrNullID(N->getType()));
1990   Record.push_back(N->getArg());
1991   Record.push_back(N->getFlags());
1992   Record.push_back(N->getAlignInBits());
1993 
1994   Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev);
1995   Record.clear();
1996 }
1997 
1998 void ModuleBitcodeWriter::writeDILabel(
1999     const DILabel *N, SmallVectorImpl<uint64_t> &Record,
2000     unsigned Abbrev) {
2001   Record.push_back((uint64_t)N->isDistinct());
2002   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
2003   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
2004   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
2005   Record.push_back(N->getLine());
2006 
2007   Stream.EmitRecord(bitc::METADATA_LABEL, Record, Abbrev);
2008   Record.clear();
2009 }
2010 
2011 void ModuleBitcodeWriter::writeDIExpression(const DIExpression *N,
2012                                             SmallVectorImpl<uint64_t> &Record,
2013                                             unsigned Abbrev) {
2014   Record.reserve(N->getElements().size() + 1);
2015   const uint64_t Version = 3 << 1;
2016   Record.push_back((uint64_t)N->isDistinct() | Version);
2017   Record.append(N->elements_begin(), N->elements_end());
2018 
2019   Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev);
2020   Record.clear();
2021 }
2022 
2023 void ModuleBitcodeWriter::writeDIGlobalVariableExpression(
2024     const DIGlobalVariableExpression *N, SmallVectorImpl<uint64_t> &Record,
2025     unsigned Abbrev) {
2026   Record.push_back(N->isDistinct());
2027   Record.push_back(VE.getMetadataOrNullID(N->getVariable()));
2028   Record.push_back(VE.getMetadataOrNullID(N->getExpression()));
2029 
2030   Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR_EXPR, Record, Abbrev);
2031   Record.clear();
2032 }
2033 
2034 void ModuleBitcodeWriter::writeDIObjCProperty(const DIObjCProperty *N,
2035                                               SmallVectorImpl<uint64_t> &Record,
2036                                               unsigned Abbrev) {
2037   Record.push_back(N->isDistinct());
2038   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
2039   Record.push_back(VE.getMetadataOrNullID(N->getFile()));
2040   Record.push_back(N->getLine());
2041   Record.push_back(VE.getMetadataOrNullID(N->getRawSetterName()));
2042   Record.push_back(VE.getMetadataOrNullID(N->getRawGetterName()));
2043   Record.push_back(N->getAttributes());
2044   Record.push_back(VE.getMetadataOrNullID(N->getType()));
2045 
2046   Stream.EmitRecord(bitc::METADATA_OBJC_PROPERTY, Record, Abbrev);
2047   Record.clear();
2048 }
2049 
2050 void ModuleBitcodeWriter::writeDIImportedEntity(
2051     const DIImportedEntity *N, SmallVectorImpl<uint64_t> &Record,
2052     unsigned Abbrev) {
2053   Record.push_back(N->isDistinct());
2054   Record.push_back(N->getTag());
2055   Record.push_back(VE.getMetadataOrNullID(N->getScope()));
2056   Record.push_back(VE.getMetadataOrNullID(N->getEntity()));
2057   Record.push_back(N->getLine());
2058   Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
2059   Record.push_back(VE.getMetadataOrNullID(N->getRawFile()));
2060 
2061   Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev);
2062   Record.clear();
2063 }
2064 
2065 unsigned ModuleBitcodeWriter::createNamedMetadataAbbrev() {
2066   auto Abbv = std::make_shared<BitCodeAbbrev>();
2067   Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME));
2068   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2069   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
2070   return Stream.EmitAbbrev(std::move(Abbv));
2071 }
2072 
2073 void ModuleBitcodeWriter::writeNamedMetadata(
2074     SmallVectorImpl<uint64_t> &Record) {
2075   if (M.named_metadata_empty())
2076     return;
2077 
2078   unsigned Abbrev = createNamedMetadataAbbrev();
2079   for (const NamedMDNode &NMD : M.named_metadata()) {
2080     // Write name.
2081     StringRef Str = NMD.getName();
2082     Record.append(Str.bytes_begin(), Str.bytes_end());
2083     Stream.EmitRecord(bitc::METADATA_NAME, Record, Abbrev);
2084     Record.clear();
2085 
2086     // Write named metadata operands.
2087     for (const MDNode *N : NMD.operands())
2088       Record.push_back(VE.getMetadataID(N));
2089     Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0);
2090     Record.clear();
2091   }
2092 }
2093 
2094 unsigned ModuleBitcodeWriter::createMetadataStringsAbbrev() {
2095   auto Abbv = std::make_shared<BitCodeAbbrev>();
2096   Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRINGS));
2097   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // # of strings
2098   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // offset to chars
2099   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob));
2100   return Stream.EmitAbbrev(std::move(Abbv));
2101 }
2102 
2103 /// Write out a record for MDString.
2104 ///
2105 /// All the metadata strings in a metadata block are emitted in a single
2106 /// record.  The sizes and strings themselves are shoved into a blob.
2107 void ModuleBitcodeWriter::writeMetadataStrings(
2108     ArrayRef<const Metadata *> Strings, SmallVectorImpl<uint64_t> &Record) {
2109   if (Strings.empty())
2110     return;
2111 
2112   // Start the record with the number of strings.
2113   Record.push_back(bitc::METADATA_STRINGS);
2114   Record.push_back(Strings.size());
2115 
2116   // Emit the sizes of the strings in the blob.
2117   SmallString<256> Blob;
2118   {
2119     BitstreamWriter W(Blob);
2120     for (const Metadata *MD : Strings)
2121       W.EmitVBR(cast<MDString>(MD)->getLength(), 6);
2122     W.FlushToWord();
2123   }
2124 
2125   // Add the offset to the strings to the record.
2126   Record.push_back(Blob.size());
2127 
2128   // Add the strings to the blob.
2129   for (const Metadata *MD : Strings)
2130     Blob.append(cast<MDString>(MD)->getString());
2131 
2132   // Emit the final record.
2133   Stream.EmitRecordWithBlob(createMetadataStringsAbbrev(), Record, Blob);
2134   Record.clear();
2135 }
2136 
2137 // Generates an enum to use as an index in the Abbrev array of Metadata record.
2138 enum MetadataAbbrev : unsigned {
2139 #define HANDLE_MDNODE_LEAF(CLASS) CLASS##AbbrevID,
2140 #include "llvm/IR/Metadata.def"
2141   LastPlusOne
2142 };
2143 
2144 void ModuleBitcodeWriter::writeMetadataRecords(
2145     ArrayRef<const Metadata *> MDs, SmallVectorImpl<uint64_t> &Record,
2146     std::vector<unsigned> *MDAbbrevs, std::vector<uint64_t> *IndexPos) {
2147   if (MDs.empty())
2148     return;
2149 
2150   // Initialize MDNode abbreviations.
2151 #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0;
2152 #include "llvm/IR/Metadata.def"
2153 
2154   for (const Metadata *MD : MDs) {
2155     if (IndexPos)
2156       IndexPos->push_back(Stream.GetCurrentBitNo());
2157     if (const MDNode *N = dyn_cast<MDNode>(MD)) {
2158       assert(N->isResolved() && "Expected forward references to be resolved");
2159 
2160       switch (N->getMetadataID()) {
2161       default:
2162         llvm_unreachable("Invalid MDNode subclass");
2163 #define HANDLE_MDNODE_LEAF(CLASS)                                              \
2164   case Metadata::CLASS##Kind:                                                  \
2165     if (MDAbbrevs)                                                             \
2166       write##CLASS(cast<CLASS>(N), Record,                                     \
2167                    (*MDAbbrevs)[MetadataAbbrev::CLASS##AbbrevID]);             \
2168     else                                                                       \
2169       write##CLASS(cast<CLASS>(N), Record, CLASS##Abbrev);                     \
2170     continue;
2171 #include "llvm/IR/Metadata.def"
2172       }
2173     }
2174     writeValueAsMetadata(cast<ValueAsMetadata>(MD), Record);
2175   }
2176 }
2177 
2178 void ModuleBitcodeWriter::writeModuleMetadata() {
2179   if (!VE.hasMDs() && M.named_metadata_empty())
2180     return;
2181 
2182   Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 4);
2183   SmallVector<uint64_t, 64> Record;
2184 
2185   // Emit all abbrevs upfront, so that the reader can jump in the middle of the
2186   // block and load any metadata.
2187   std::vector<unsigned> MDAbbrevs;
2188 
2189   MDAbbrevs.resize(MetadataAbbrev::LastPlusOne);
2190   MDAbbrevs[MetadataAbbrev::DILocationAbbrevID] = createDILocationAbbrev();
2191   MDAbbrevs[MetadataAbbrev::GenericDINodeAbbrevID] =
2192       createGenericDINodeAbbrev();
2193 
2194   auto Abbv = std::make_shared<BitCodeAbbrev>();
2195   Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX_OFFSET));
2196   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
2197   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
2198   unsigned OffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv));
2199 
2200   Abbv = std::make_shared<BitCodeAbbrev>();
2201   Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX));
2202   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2203   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
2204   unsigned IndexAbbrev = Stream.EmitAbbrev(std::move(Abbv));
2205 
2206   // Emit MDStrings together upfront.
2207   writeMetadataStrings(VE.getMDStrings(), Record);
2208 
2209   // We only emit an index for the metadata record if we have more than a given
2210   // (naive) threshold of metadatas, otherwise it is not worth it.
2211   if (VE.getNonMDStrings().size() > IndexThreshold) {
2212     // Write a placeholder value in for the offset of the metadata index,
2213     // which is written after the records, so that it can include
2214     // the offset of each entry. The placeholder offset will be
2215     // updated after all records are emitted.
2216     uint64_t Vals[] = {0, 0};
2217     Stream.EmitRecord(bitc::METADATA_INDEX_OFFSET, Vals, OffsetAbbrev);
2218   }
2219 
2220   // Compute and save the bit offset to the current position, which will be
2221   // patched when we emit the index later. We can simply subtract the 64-bit
2222   // fixed size from the current bit number to get the location to backpatch.
2223   uint64_t IndexOffsetRecordBitPos = Stream.GetCurrentBitNo();
2224 
2225   // This index will contain the bitpos for each individual record.
2226   std::vector<uint64_t> IndexPos;
2227   IndexPos.reserve(VE.getNonMDStrings().size());
2228 
2229   // Write all the records
2230   writeMetadataRecords(VE.getNonMDStrings(), Record, &MDAbbrevs, &IndexPos);
2231 
2232   if (VE.getNonMDStrings().size() > IndexThreshold) {
2233     // Now that we have emitted all the records we will emit the index. But
2234     // first
2235     // backpatch the forward reference so that the reader can skip the records
2236     // efficiently.
2237     Stream.BackpatchWord64(IndexOffsetRecordBitPos - 64,
2238                            Stream.GetCurrentBitNo() - IndexOffsetRecordBitPos);
2239 
2240     // Delta encode the index.
2241     uint64_t PreviousValue = IndexOffsetRecordBitPos;
2242     for (auto &Elt : IndexPos) {
2243       auto EltDelta = Elt - PreviousValue;
2244       PreviousValue = Elt;
2245       Elt = EltDelta;
2246     }
2247     // Emit the index record.
2248     Stream.EmitRecord(bitc::METADATA_INDEX, IndexPos, IndexAbbrev);
2249     IndexPos.clear();
2250   }
2251 
2252   // Write the named metadata now.
2253   writeNamedMetadata(Record);
2254 
2255   auto AddDeclAttachedMetadata = [&](const GlobalObject &GO) {
2256     SmallVector<uint64_t, 4> Record;
2257     Record.push_back(VE.getValueID(&GO));
2258     pushGlobalMetadataAttachment(Record, GO);
2259     Stream.EmitRecord(bitc::METADATA_GLOBAL_DECL_ATTACHMENT, Record);
2260   };
2261   for (const Function &F : M)
2262     if (F.isDeclaration() && F.hasMetadata())
2263       AddDeclAttachedMetadata(F);
2264   // FIXME: Only store metadata for declarations here, and move data for global
2265   // variable definitions to a separate block (PR28134).
2266   for (const GlobalVariable &GV : M.globals())
2267     if (GV.hasMetadata())
2268       AddDeclAttachedMetadata(GV);
2269 
2270   Stream.ExitBlock();
2271 }
2272 
2273 void ModuleBitcodeWriter::writeFunctionMetadata(const Function &F) {
2274   if (!VE.hasMDs())
2275     return;
2276 
2277   Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
2278   SmallVector<uint64_t, 64> Record;
2279   writeMetadataStrings(VE.getMDStrings(), Record);
2280   writeMetadataRecords(VE.getNonMDStrings(), Record);
2281   Stream.ExitBlock();
2282 }
2283 
2284 void ModuleBitcodeWriter::pushGlobalMetadataAttachment(
2285     SmallVectorImpl<uint64_t> &Record, const GlobalObject &GO) {
2286   // [n x [id, mdnode]]
2287   SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
2288   GO.getAllMetadata(MDs);
2289   for (const auto &I : MDs) {
2290     Record.push_back(I.first);
2291     Record.push_back(VE.getMetadataID(I.second));
2292   }
2293 }
2294 
2295 void ModuleBitcodeWriter::writeFunctionMetadataAttachment(const Function &F) {
2296   Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3);
2297 
2298   SmallVector<uint64_t, 64> Record;
2299 
2300   if (F.hasMetadata()) {
2301     pushGlobalMetadataAttachment(Record, F);
2302     Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0);
2303     Record.clear();
2304   }
2305 
2306   // Write metadata attachments
2307   // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]]
2308   SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
2309   for (const BasicBlock &BB : F)
2310     for (const Instruction &I : BB) {
2311       MDs.clear();
2312       I.getAllMetadataOtherThanDebugLoc(MDs);
2313 
2314       // If no metadata, ignore instruction.
2315       if (MDs.empty()) continue;
2316 
2317       Record.push_back(VE.getInstructionID(&I));
2318 
2319       for (unsigned i = 0, e = MDs.size(); i != e; ++i) {
2320         Record.push_back(MDs[i].first);
2321         Record.push_back(VE.getMetadataID(MDs[i].second));
2322       }
2323       Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0);
2324       Record.clear();
2325     }
2326 
2327   Stream.ExitBlock();
2328 }
2329 
2330 void ModuleBitcodeWriter::writeModuleMetadataKinds() {
2331   SmallVector<uint64_t, 64> Record;
2332 
2333   // Write metadata kinds
2334   // METADATA_KIND - [n x [id, name]]
2335   SmallVector<StringRef, 8> Names;
2336   M.getMDKindNames(Names);
2337 
2338   if (Names.empty()) return;
2339 
2340   Stream.EnterSubblock(bitc::METADATA_KIND_BLOCK_ID, 3);
2341 
2342   for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) {
2343     Record.push_back(MDKindID);
2344     StringRef KName = Names[MDKindID];
2345     Record.append(KName.begin(), KName.end());
2346 
2347     Stream.EmitRecord(bitc::METADATA_KIND, Record, 0);
2348     Record.clear();
2349   }
2350 
2351   Stream.ExitBlock();
2352 }
2353 
2354 void ModuleBitcodeWriter::writeOperandBundleTags() {
2355   // Write metadata kinds
2356   //
2357   // OPERAND_BUNDLE_TAGS_BLOCK_ID : N x OPERAND_BUNDLE_TAG
2358   //
2359   // OPERAND_BUNDLE_TAG - [strchr x N]
2360 
2361   SmallVector<StringRef, 8> Tags;
2362   M.getOperandBundleTags(Tags);
2363 
2364   if (Tags.empty())
2365     return;
2366 
2367   Stream.EnterSubblock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID, 3);
2368 
2369   SmallVector<uint64_t, 64> Record;
2370 
2371   for (auto Tag : Tags) {
2372     Record.append(Tag.begin(), Tag.end());
2373 
2374     Stream.EmitRecord(bitc::OPERAND_BUNDLE_TAG, Record, 0);
2375     Record.clear();
2376   }
2377 
2378   Stream.ExitBlock();
2379 }
2380 
2381 void ModuleBitcodeWriter::writeSyncScopeNames() {
2382   SmallVector<StringRef, 8> SSNs;
2383   M.getContext().getSyncScopeNames(SSNs);
2384   if (SSNs.empty())
2385     return;
2386 
2387   Stream.EnterSubblock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID, 2);
2388 
2389   SmallVector<uint64_t, 64> Record;
2390   for (auto SSN : SSNs) {
2391     Record.append(SSN.begin(), SSN.end());
2392     Stream.EmitRecord(bitc::SYNC_SCOPE_NAME, Record, 0);
2393     Record.clear();
2394   }
2395 
2396   Stream.ExitBlock();
2397 }
2398 
2399 void ModuleBitcodeWriter::writeConstants(unsigned FirstVal, unsigned LastVal,
2400                                          bool isGlobal) {
2401   if (FirstVal == LastVal) return;
2402 
2403   Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4);
2404 
2405   unsigned AggregateAbbrev = 0;
2406   unsigned String8Abbrev = 0;
2407   unsigned CString7Abbrev = 0;
2408   unsigned CString6Abbrev = 0;
2409   // If this is a constant pool for the module, emit module-specific abbrevs.
2410   if (isGlobal) {
2411     // Abbrev for CST_CODE_AGGREGATE.
2412     auto Abbv = std::make_shared<BitCodeAbbrev>();
2413     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE));
2414     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2415     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1)));
2416     AggregateAbbrev = Stream.EmitAbbrev(std::move(Abbv));
2417 
2418     // Abbrev for CST_CODE_STRING.
2419     Abbv = std::make_shared<BitCodeAbbrev>();
2420     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING));
2421     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2422     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
2423     String8Abbrev = Stream.EmitAbbrev(std::move(Abbv));
2424     // Abbrev for CST_CODE_CSTRING.
2425     Abbv = std::make_shared<BitCodeAbbrev>();
2426     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
2427     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2428     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
2429     CString7Abbrev = Stream.EmitAbbrev(std::move(Abbv));
2430     // Abbrev for CST_CODE_CSTRING.
2431     Abbv = std::make_shared<BitCodeAbbrev>();
2432     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
2433     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
2434     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
2435     CString6Abbrev = Stream.EmitAbbrev(std::move(Abbv));
2436   }
2437 
2438   SmallVector<uint64_t, 64> Record;
2439 
2440   const ValueEnumerator::ValueList &Vals = VE.getValues();
2441   Type *LastTy = nullptr;
2442   for (unsigned i = FirstVal; i != LastVal; ++i) {
2443     const Value *V = Vals[i].first;
2444     // If we need to switch types, do so now.
2445     if (V->getType() != LastTy) {
2446       LastTy = V->getType();
2447       Record.push_back(VE.getTypeID(LastTy));
2448       Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record,
2449                         CONSTANTS_SETTYPE_ABBREV);
2450       Record.clear();
2451     }
2452 
2453     if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
2454       Record.push_back(
2455           unsigned(IA->hasSideEffects()) | unsigned(IA->isAlignStack()) << 1 |
2456           unsigned(IA->getDialect() & 1) << 2 | unsigned(IA->canThrow()) << 3);
2457 
2458       // Add the asm string.
2459       const std::string &AsmStr = IA->getAsmString();
2460       Record.push_back(AsmStr.size());
2461       Record.append(AsmStr.begin(), AsmStr.end());
2462 
2463       // Add the constraint string.
2464       const std::string &ConstraintStr = IA->getConstraintString();
2465       Record.push_back(ConstraintStr.size());
2466       Record.append(ConstraintStr.begin(), ConstraintStr.end());
2467       Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record);
2468       Record.clear();
2469       continue;
2470     }
2471     const Constant *C = cast<Constant>(V);
2472     unsigned Code = -1U;
2473     unsigned AbbrevToUse = 0;
2474     if (C->isNullValue()) {
2475       Code = bitc::CST_CODE_NULL;
2476     } else if (isa<PoisonValue>(C)) {
2477       Code = bitc::CST_CODE_POISON;
2478     } else if (isa<UndefValue>(C)) {
2479       Code = bitc::CST_CODE_UNDEF;
2480     } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) {
2481       if (IV->getBitWidth() <= 64) {
2482         uint64_t V = IV->getSExtValue();
2483         emitSignedInt64(Record, V);
2484         Code = bitc::CST_CODE_INTEGER;
2485         AbbrevToUse = CONSTANTS_INTEGER_ABBREV;
2486       } else {                             // Wide integers, > 64 bits in size.
2487         emitWideAPInt(Record, IV->getValue());
2488         Code = bitc::CST_CODE_WIDE_INTEGER;
2489       }
2490     } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
2491       Code = bitc::CST_CODE_FLOAT;
2492       Type *Ty = CFP->getType();
2493       if (Ty->isHalfTy() || Ty->isBFloatTy() || Ty->isFloatTy() ||
2494           Ty->isDoubleTy()) {
2495         Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
2496       } else if (Ty->isX86_FP80Ty()) {
2497         // api needed to prevent premature destruction
2498         // bits are not in the same order as a normal i80 APInt, compensate.
2499         APInt api = CFP->getValueAPF().bitcastToAPInt();
2500         const uint64_t *p = api.getRawData();
2501         Record.push_back((p[1] << 48) | (p[0] >> 16));
2502         Record.push_back(p[0] & 0xffffLL);
2503       } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) {
2504         APInt api = CFP->getValueAPF().bitcastToAPInt();
2505         const uint64_t *p = api.getRawData();
2506         Record.push_back(p[0]);
2507         Record.push_back(p[1]);
2508       } else {
2509         assert(0 && "Unknown FP type!");
2510       }
2511     } else if (isa<ConstantDataSequential>(C) &&
2512                cast<ConstantDataSequential>(C)->isString()) {
2513       const ConstantDataSequential *Str = cast<ConstantDataSequential>(C);
2514       // Emit constant strings specially.
2515       unsigned NumElts = Str->getNumElements();
2516       // If this is a null-terminated string, use the denser CSTRING encoding.
2517       if (Str->isCString()) {
2518         Code = bitc::CST_CODE_CSTRING;
2519         --NumElts;  // Don't encode the null, which isn't allowed by char6.
2520       } else {
2521         Code = bitc::CST_CODE_STRING;
2522         AbbrevToUse = String8Abbrev;
2523       }
2524       bool isCStr7 = Code == bitc::CST_CODE_CSTRING;
2525       bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING;
2526       for (unsigned i = 0; i != NumElts; ++i) {
2527         unsigned char V = Str->getElementAsInteger(i);
2528         Record.push_back(V);
2529         isCStr7 &= (V & 128) == 0;
2530         if (isCStrChar6)
2531           isCStrChar6 = BitCodeAbbrevOp::isChar6(V);
2532       }
2533 
2534       if (isCStrChar6)
2535         AbbrevToUse = CString6Abbrev;
2536       else if (isCStr7)
2537         AbbrevToUse = CString7Abbrev;
2538     } else if (const ConstantDataSequential *CDS =
2539                   dyn_cast<ConstantDataSequential>(C)) {
2540       Code = bitc::CST_CODE_DATA;
2541       Type *EltTy = CDS->getElementType();
2542       if (isa<IntegerType>(EltTy)) {
2543         for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i)
2544           Record.push_back(CDS->getElementAsInteger(i));
2545       } else {
2546         for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i)
2547           Record.push_back(
2548               CDS->getElementAsAPFloat(i).bitcastToAPInt().getLimitedValue());
2549       }
2550     } else if (isa<ConstantAggregate>(C)) {
2551       Code = bitc::CST_CODE_AGGREGATE;
2552       for (const Value *Op : C->operands())
2553         Record.push_back(VE.getValueID(Op));
2554       AbbrevToUse = AggregateAbbrev;
2555     } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
2556       switch (CE->getOpcode()) {
2557       default:
2558         if (Instruction::isCast(CE->getOpcode())) {
2559           Code = bitc::CST_CODE_CE_CAST;
2560           Record.push_back(getEncodedCastOpcode(CE->getOpcode()));
2561           Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
2562           Record.push_back(VE.getValueID(C->getOperand(0)));
2563           AbbrevToUse = CONSTANTS_CE_CAST_Abbrev;
2564         } else {
2565           assert(CE->getNumOperands() == 2 && "Unknown constant expr!");
2566           Code = bitc::CST_CODE_CE_BINOP;
2567           Record.push_back(getEncodedBinaryOpcode(CE->getOpcode()));
2568           Record.push_back(VE.getValueID(C->getOperand(0)));
2569           Record.push_back(VE.getValueID(C->getOperand(1)));
2570           uint64_t Flags = getOptimizationFlags(CE);
2571           if (Flags != 0)
2572             Record.push_back(Flags);
2573         }
2574         break;
2575       case Instruction::FNeg: {
2576         assert(CE->getNumOperands() == 1 && "Unknown constant expr!");
2577         Code = bitc::CST_CODE_CE_UNOP;
2578         Record.push_back(getEncodedUnaryOpcode(CE->getOpcode()));
2579         Record.push_back(VE.getValueID(C->getOperand(0)));
2580         uint64_t Flags = getOptimizationFlags(CE);
2581         if (Flags != 0)
2582           Record.push_back(Flags);
2583         break;
2584       }
2585       case Instruction::GetElementPtr: {
2586         Code = bitc::CST_CODE_CE_GEP;
2587         const auto *GO = cast<GEPOperator>(C);
2588         Record.push_back(VE.getTypeID(GO->getSourceElementType()));
2589         if (Optional<unsigned> Idx = GO->getInRangeIndex()) {
2590           Code = bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX;
2591           Record.push_back((*Idx << 1) | GO->isInBounds());
2592         } else if (GO->isInBounds())
2593           Code = bitc::CST_CODE_CE_INBOUNDS_GEP;
2594         for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) {
2595           Record.push_back(VE.getTypeID(C->getOperand(i)->getType()));
2596           Record.push_back(VE.getValueID(C->getOperand(i)));
2597         }
2598         break;
2599       }
2600       case Instruction::Select:
2601         Code = bitc::CST_CODE_CE_SELECT;
2602         Record.push_back(VE.getValueID(C->getOperand(0)));
2603         Record.push_back(VE.getValueID(C->getOperand(1)));
2604         Record.push_back(VE.getValueID(C->getOperand(2)));
2605         break;
2606       case Instruction::ExtractElement:
2607         Code = bitc::CST_CODE_CE_EXTRACTELT;
2608         Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
2609         Record.push_back(VE.getValueID(C->getOperand(0)));
2610         Record.push_back(VE.getTypeID(C->getOperand(1)->getType()));
2611         Record.push_back(VE.getValueID(C->getOperand(1)));
2612         break;
2613       case Instruction::InsertElement:
2614         Code = bitc::CST_CODE_CE_INSERTELT;
2615         Record.push_back(VE.getValueID(C->getOperand(0)));
2616         Record.push_back(VE.getValueID(C->getOperand(1)));
2617         Record.push_back(VE.getTypeID(C->getOperand(2)->getType()));
2618         Record.push_back(VE.getValueID(C->getOperand(2)));
2619         break;
2620       case Instruction::ShuffleVector:
2621         // If the return type and argument types are the same, this is a
2622         // standard shufflevector instruction.  If the types are different,
2623         // then the shuffle is widening or truncating the input vectors, and
2624         // the argument type must also be encoded.
2625         if (C->getType() == C->getOperand(0)->getType()) {
2626           Code = bitc::CST_CODE_CE_SHUFFLEVEC;
2627         } else {
2628           Code = bitc::CST_CODE_CE_SHUFVEC_EX;
2629           Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
2630         }
2631         Record.push_back(VE.getValueID(C->getOperand(0)));
2632         Record.push_back(VE.getValueID(C->getOperand(1)));
2633         Record.push_back(VE.getValueID(CE->getShuffleMaskForBitcode()));
2634         break;
2635       case Instruction::ICmp:
2636       case Instruction::FCmp:
2637         Code = bitc::CST_CODE_CE_CMP;
2638         Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
2639         Record.push_back(VE.getValueID(C->getOperand(0)));
2640         Record.push_back(VE.getValueID(C->getOperand(1)));
2641         Record.push_back(CE->getPredicate());
2642         break;
2643       }
2644     } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) {
2645       Code = bitc::CST_CODE_BLOCKADDRESS;
2646       Record.push_back(VE.getTypeID(BA->getFunction()->getType()));
2647       Record.push_back(VE.getValueID(BA->getFunction()));
2648       Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock()));
2649     } else if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(C)) {
2650       Code = bitc::CST_CODE_DSO_LOCAL_EQUIVALENT;
2651       Record.push_back(VE.getTypeID(Equiv->getGlobalValue()->getType()));
2652       Record.push_back(VE.getValueID(Equiv->getGlobalValue()));
2653     } else {
2654 #ifndef NDEBUG
2655       C->dump();
2656 #endif
2657       llvm_unreachable("Unknown constant!");
2658     }
2659     Stream.EmitRecord(Code, Record, AbbrevToUse);
2660     Record.clear();
2661   }
2662 
2663   Stream.ExitBlock();
2664 }
2665 
2666 void ModuleBitcodeWriter::writeModuleConstants() {
2667   const ValueEnumerator::ValueList &Vals = VE.getValues();
2668 
2669   // Find the first constant to emit, which is the first non-globalvalue value.
2670   // We know globalvalues have been emitted by WriteModuleInfo.
2671   for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
2672     if (!isa<GlobalValue>(Vals[i].first)) {
2673       writeConstants(i, Vals.size(), true);
2674       return;
2675     }
2676   }
2677 }
2678 
2679 /// pushValueAndType - The file has to encode both the value and type id for
2680 /// many values, because we need to know what type to create for forward
2681 /// references.  However, most operands are not forward references, so this type
2682 /// field is not needed.
2683 ///
2684 /// This function adds V's value ID to Vals.  If the value ID is higher than the
2685 /// instruction ID, then it is a forward reference, and it also includes the
2686 /// type ID.  The value ID that is written is encoded relative to the InstID.
2687 bool ModuleBitcodeWriter::pushValueAndType(const Value *V, unsigned InstID,
2688                                            SmallVectorImpl<unsigned> &Vals) {
2689   unsigned ValID = VE.getValueID(V);
2690   // Make encoding relative to the InstID.
2691   Vals.push_back(InstID - ValID);
2692   if (ValID >= InstID) {
2693     Vals.push_back(VE.getTypeID(V->getType()));
2694     return true;
2695   }
2696   return false;
2697 }
2698 
2699 void ModuleBitcodeWriter::writeOperandBundles(const CallBase &CS,
2700                                               unsigned InstID) {
2701   SmallVector<unsigned, 64> Record;
2702   LLVMContext &C = CS.getContext();
2703 
2704   for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i) {
2705     const auto &Bundle = CS.getOperandBundleAt(i);
2706     Record.push_back(C.getOperandBundleTagID(Bundle.getTagName()));
2707 
2708     for (auto &Input : Bundle.Inputs)
2709       pushValueAndType(Input, InstID, Record);
2710 
2711     Stream.EmitRecord(bitc::FUNC_CODE_OPERAND_BUNDLE, Record);
2712     Record.clear();
2713   }
2714 }
2715 
2716 /// pushValue - Like pushValueAndType, but where the type of the value is
2717 /// omitted (perhaps it was already encoded in an earlier operand).
2718 void ModuleBitcodeWriter::pushValue(const Value *V, unsigned InstID,
2719                                     SmallVectorImpl<unsigned> &Vals) {
2720   unsigned ValID = VE.getValueID(V);
2721   Vals.push_back(InstID - ValID);
2722 }
2723 
2724 void ModuleBitcodeWriter::pushValueSigned(const Value *V, unsigned InstID,
2725                                           SmallVectorImpl<uint64_t> &Vals) {
2726   unsigned ValID = VE.getValueID(V);
2727   int64_t diff = ((int32_t)InstID - (int32_t)ValID);
2728   emitSignedInt64(Vals, diff);
2729 }
2730 
2731 /// WriteInstruction - Emit an instruction to the specified stream.
2732 void ModuleBitcodeWriter::writeInstruction(const Instruction &I,
2733                                            unsigned InstID,
2734                                            SmallVectorImpl<unsigned> &Vals) {
2735   unsigned Code = 0;
2736   unsigned AbbrevToUse = 0;
2737   VE.setInstructionID(&I);
2738   switch (I.getOpcode()) {
2739   default:
2740     if (Instruction::isCast(I.getOpcode())) {
2741       Code = bitc::FUNC_CODE_INST_CAST;
2742       if (!pushValueAndType(I.getOperand(0), InstID, Vals))
2743         AbbrevToUse = FUNCTION_INST_CAST_ABBREV;
2744       Vals.push_back(VE.getTypeID(I.getType()));
2745       Vals.push_back(getEncodedCastOpcode(I.getOpcode()));
2746     } else {
2747       assert(isa<BinaryOperator>(I) && "Unknown instruction!");
2748       Code = bitc::FUNC_CODE_INST_BINOP;
2749       if (!pushValueAndType(I.getOperand(0), InstID, Vals))
2750         AbbrevToUse = FUNCTION_INST_BINOP_ABBREV;
2751       pushValue(I.getOperand(1), InstID, Vals);
2752       Vals.push_back(getEncodedBinaryOpcode(I.getOpcode()));
2753       uint64_t Flags = getOptimizationFlags(&I);
2754       if (Flags != 0) {
2755         if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV)
2756           AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV;
2757         Vals.push_back(Flags);
2758       }
2759     }
2760     break;
2761   case Instruction::FNeg: {
2762     Code = bitc::FUNC_CODE_INST_UNOP;
2763     if (!pushValueAndType(I.getOperand(0), InstID, Vals))
2764       AbbrevToUse = FUNCTION_INST_UNOP_ABBREV;
2765     Vals.push_back(getEncodedUnaryOpcode(I.getOpcode()));
2766     uint64_t Flags = getOptimizationFlags(&I);
2767     if (Flags != 0) {
2768       if (AbbrevToUse == FUNCTION_INST_UNOP_ABBREV)
2769         AbbrevToUse = FUNCTION_INST_UNOP_FLAGS_ABBREV;
2770       Vals.push_back(Flags);
2771     }
2772     break;
2773   }
2774   case Instruction::GetElementPtr: {
2775     Code = bitc::FUNC_CODE_INST_GEP;
2776     AbbrevToUse = FUNCTION_INST_GEP_ABBREV;
2777     auto &GEPInst = cast<GetElementPtrInst>(I);
2778     Vals.push_back(GEPInst.isInBounds());
2779     Vals.push_back(VE.getTypeID(GEPInst.getSourceElementType()));
2780     for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
2781       pushValueAndType(I.getOperand(i), InstID, Vals);
2782     break;
2783   }
2784   case Instruction::ExtractValue: {
2785     Code = bitc::FUNC_CODE_INST_EXTRACTVAL;
2786     pushValueAndType(I.getOperand(0), InstID, Vals);
2787     const ExtractValueInst *EVI = cast<ExtractValueInst>(&I);
2788     Vals.append(EVI->idx_begin(), EVI->idx_end());
2789     break;
2790   }
2791   case Instruction::InsertValue: {
2792     Code = bitc::FUNC_CODE_INST_INSERTVAL;
2793     pushValueAndType(I.getOperand(0), InstID, Vals);
2794     pushValueAndType(I.getOperand(1), InstID, Vals);
2795     const InsertValueInst *IVI = cast<InsertValueInst>(&I);
2796     Vals.append(IVI->idx_begin(), IVI->idx_end());
2797     break;
2798   }
2799   case Instruction::Select: {
2800     Code = bitc::FUNC_CODE_INST_VSELECT;
2801     pushValueAndType(I.getOperand(1), InstID, Vals);
2802     pushValue(I.getOperand(2), InstID, Vals);
2803     pushValueAndType(I.getOperand(0), InstID, Vals);
2804     uint64_t Flags = getOptimizationFlags(&I);
2805     if (Flags != 0)
2806       Vals.push_back(Flags);
2807     break;
2808   }
2809   case Instruction::ExtractElement:
2810     Code = bitc::FUNC_CODE_INST_EXTRACTELT;
2811     pushValueAndType(I.getOperand(0), InstID, Vals);
2812     pushValueAndType(I.getOperand(1), InstID, Vals);
2813     break;
2814   case Instruction::InsertElement:
2815     Code = bitc::FUNC_CODE_INST_INSERTELT;
2816     pushValueAndType(I.getOperand(0), InstID, Vals);
2817     pushValue(I.getOperand(1), InstID, Vals);
2818     pushValueAndType(I.getOperand(2), InstID, Vals);
2819     break;
2820   case Instruction::ShuffleVector:
2821     Code = bitc::FUNC_CODE_INST_SHUFFLEVEC;
2822     pushValueAndType(I.getOperand(0), InstID, Vals);
2823     pushValue(I.getOperand(1), InstID, Vals);
2824     pushValue(cast<ShuffleVectorInst>(I).getShuffleMaskForBitcode(), InstID,
2825               Vals);
2826     break;
2827   case Instruction::ICmp:
2828   case Instruction::FCmp: {
2829     // compare returning Int1Ty or vector of Int1Ty
2830     Code = bitc::FUNC_CODE_INST_CMP2;
2831     pushValueAndType(I.getOperand(0), InstID, Vals);
2832     pushValue(I.getOperand(1), InstID, Vals);
2833     Vals.push_back(cast<CmpInst>(I).getPredicate());
2834     uint64_t Flags = getOptimizationFlags(&I);
2835     if (Flags != 0)
2836       Vals.push_back(Flags);
2837     break;
2838   }
2839 
2840   case Instruction::Ret:
2841     {
2842       Code = bitc::FUNC_CODE_INST_RET;
2843       unsigned NumOperands = I.getNumOperands();
2844       if (NumOperands == 0)
2845         AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV;
2846       else if (NumOperands == 1) {
2847         if (!pushValueAndType(I.getOperand(0), InstID, Vals))
2848           AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV;
2849       } else {
2850         for (unsigned i = 0, e = NumOperands; i != e; ++i)
2851           pushValueAndType(I.getOperand(i), InstID, Vals);
2852       }
2853     }
2854     break;
2855   case Instruction::Br:
2856     {
2857       Code = bitc::FUNC_CODE_INST_BR;
2858       const BranchInst &II = cast<BranchInst>(I);
2859       Vals.push_back(VE.getValueID(II.getSuccessor(0)));
2860       if (II.isConditional()) {
2861         Vals.push_back(VE.getValueID(II.getSuccessor(1)));
2862         pushValue(II.getCondition(), InstID, Vals);
2863       }
2864     }
2865     break;
2866   case Instruction::Switch:
2867     {
2868       Code = bitc::FUNC_CODE_INST_SWITCH;
2869       const SwitchInst &SI = cast<SwitchInst>(I);
2870       Vals.push_back(VE.getTypeID(SI.getCondition()->getType()));
2871       pushValue(SI.getCondition(), InstID, Vals);
2872       Vals.push_back(VE.getValueID(SI.getDefaultDest()));
2873       for (auto Case : SI.cases()) {
2874         Vals.push_back(VE.getValueID(Case.getCaseValue()));
2875         Vals.push_back(VE.getValueID(Case.getCaseSuccessor()));
2876       }
2877     }
2878     break;
2879   case Instruction::IndirectBr:
2880     Code = bitc::FUNC_CODE_INST_INDIRECTBR;
2881     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
2882     // Encode the address operand as relative, but not the basic blocks.
2883     pushValue(I.getOperand(0), InstID, Vals);
2884     for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i)
2885       Vals.push_back(VE.getValueID(I.getOperand(i)));
2886     break;
2887 
2888   case Instruction::Invoke: {
2889     const InvokeInst *II = cast<InvokeInst>(&I);
2890     const Value *Callee = II->getCalledOperand();
2891     FunctionType *FTy = II->getFunctionType();
2892 
2893     if (II->hasOperandBundles())
2894       writeOperandBundles(*II, InstID);
2895 
2896     Code = bitc::FUNC_CODE_INST_INVOKE;
2897 
2898     Vals.push_back(VE.getAttributeListID(II->getAttributes()));
2899     Vals.push_back(II->getCallingConv() | 1 << 13);
2900     Vals.push_back(VE.getValueID(II->getNormalDest()));
2901     Vals.push_back(VE.getValueID(II->getUnwindDest()));
2902     Vals.push_back(VE.getTypeID(FTy));
2903     pushValueAndType(Callee, InstID, Vals);
2904 
2905     // Emit value #'s for the fixed parameters.
2906     for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
2907       pushValue(I.getOperand(i), InstID, Vals); // fixed param.
2908 
2909     // Emit type/value pairs for varargs params.
2910     if (FTy->isVarArg()) {
2911       for (unsigned i = FTy->getNumParams(), e = II->getNumArgOperands();
2912            i != e; ++i)
2913         pushValueAndType(I.getOperand(i), InstID, Vals); // vararg
2914     }
2915     break;
2916   }
2917   case Instruction::Resume:
2918     Code = bitc::FUNC_CODE_INST_RESUME;
2919     pushValueAndType(I.getOperand(0), InstID, Vals);
2920     break;
2921   case Instruction::CleanupRet: {
2922     Code = bitc::FUNC_CODE_INST_CLEANUPRET;
2923     const auto &CRI = cast<CleanupReturnInst>(I);
2924     pushValue(CRI.getCleanupPad(), InstID, Vals);
2925     if (CRI.hasUnwindDest())
2926       Vals.push_back(VE.getValueID(CRI.getUnwindDest()));
2927     break;
2928   }
2929   case Instruction::CatchRet: {
2930     Code = bitc::FUNC_CODE_INST_CATCHRET;
2931     const auto &CRI = cast<CatchReturnInst>(I);
2932     pushValue(CRI.getCatchPad(), InstID, Vals);
2933     Vals.push_back(VE.getValueID(CRI.getSuccessor()));
2934     break;
2935   }
2936   case Instruction::CleanupPad:
2937   case Instruction::CatchPad: {
2938     const auto &FuncletPad = cast<FuncletPadInst>(I);
2939     Code = isa<CatchPadInst>(FuncletPad) ? bitc::FUNC_CODE_INST_CATCHPAD
2940                                          : bitc::FUNC_CODE_INST_CLEANUPPAD;
2941     pushValue(FuncletPad.getParentPad(), InstID, Vals);
2942 
2943     unsigned NumArgOperands = FuncletPad.getNumArgOperands();
2944     Vals.push_back(NumArgOperands);
2945     for (unsigned Op = 0; Op != NumArgOperands; ++Op)
2946       pushValueAndType(FuncletPad.getArgOperand(Op), InstID, Vals);
2947     break;
2948   }
2949   case Instruction::CatchSwitch: {
2950     Code = bitc::FUNC_CODE_INST_CATCHSWITCH;
2951     const auto &CatchSwitch = cast<CatchSwitchInst>(I);
2952 
2953     pushValue(CatchSwitch.getParentPad(), InstID, Vals);
2954 
2955     unsigned NumHandlers = CatchSwitch.getNumHandlers();
2956     Vals.push_back(NumHandlers);
2957     for (const BasicBlock *CatchPadBB : CatchSwitch.handlers())
2958       Vals.push_back(VE.getValueID(CatchPadBB));
2959 
2960     if (CatchSwitch.hasUnwindDest())
2961       Vals.push_back(VE.getValueID(CatchSwitch.getUnwindDest()));
2962     break;
2963   }
2964   case Instruction::CallBr: {
2965     const CallBrInst *CBI = cast<CallBrInst>(&I);
2966     const Value *Callee = CBI->getCalledOperand();
2967     FunctionType *FTy = CBI->getFunctionType();
2968 
2969     if (CBI->hasOperandBundles())
2970       writeOperandBundles(*CBI, InstID);
2971 
2972     Code = bitc::FUNC_CODE_INST_CALLBR;
2973 
2974     Vals.push_back(VE.getAttributeListID(CBI->getAttributes()));
2975 
2976     Vals.push_back(CBI->getCallingConv() << bitc::CALL_CCONV |
2977                    1 << bitc::CALL_EXPLICIT_TYPE);
2978 
2979     Vals.push_back(VE.getValueID(CBI->getDefaultDest()));
2980     Vals.push_back(CBI->getNumIndirectDests());
2981     for (unsigned i = 0, e = CBI->getNumIndirectDests(); i != e; ++i)
2982       Vals.push_back(VE.getValueID(CBI->getIndirectDest(i)));
2983 
2984     Vals.push_back(VE.getTypeID(FTy));
2985     pushValueAndType(Callee, InstID, Vals);
2986 
2987     // Emit value #'s for the fixed parameters.
2988     for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
2989       pushValue(I.getOperand(i), InstID, Vals); // fixed param.
2990 
2991     // Emit type/value pairs for varargs params.
2992     if (FTy->isVarArg()) {
2993       for (unsigned i = FTy->getNumParams(), e = CBI->getNumArgOperands();
2994            i != e; ++i)
2995         pushValueAndType(I.getOperand(i), InstID, Vals); // vararg
2996     }
2997     break;
2998   }
2999   case Instruction::Unreachable:
3000     Code = bitc::FUNC_CODE_INST_UNREACHABLE;
3001     AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV;
3002     break;
3003 
3004   case Instruction::PHI: {
3005     const PHINode &PN = cast<PHINode>(I);
3006     Code = bitc::FUNC_CODE_INST_PHI;
3007     // With the newer instruction encoding, forward references could give
3008     // negative valued IDs.  This is most common for PHIs, so we use
3009     // signed VBRs.
3010     SmallVector<uint64_t, 128> Vals64;
3011     Vals64.push_back(VE.getTypeID(PN.getType()));
3012     for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
3013       pushValueSigned(PN.getIncomingValue(i), InstID, Vals64);
3014       Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i)));
3015     }
3016 
3017     uint64_t Flags = getOptimizationFlags(&I);
3018     if (Flags != 0)
3019       Vals64.push_back(Flags);
3020 
3021     // Emit a Vals64 vector and exit.
3022     Stream.EmitRecord(Code, Vals64, AbbrevToUse);
3023     Vals64.clear();
3024     return;
3025   }
3026 
3027   case Instruction::LandingPad: {
3028     const LandingPadInst &LP = cast<LandingPadInst>(I);
3029     Code = bitc::FUNC_CODE_INST_LANDINGPAD;
3030     Vals.push_back(VE.getTypeID(LP.getType()));
3031     Vals.push_back(LP.isCleanup());
3032     Vals.push_back(LP.getNumClauses());
3033     for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) {
3034       if (LP.isCatch(I))
3035         Vals.push_back(LandingPadInst::Catch);
3036       else
3037         Vals.push_back(LandingPadInst::Filter);
3038       pushValueAndType(LP.getClause(I), InstID, Vals);
3039     }
3040     break;
3041   }
3042 
3043   case Instruction::Alloca: {
3044     Code = bitc::FUNC_CODE_INST_ALLOCA;
3045     const AllocaInst &AI = cast<AllocaInst>(I);
3046     Vals.push_back(VE.getTypeID(AI.getAllocatedType()));
3047     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
3048     Vals.push_back(VE.getValueID(I.getOperand(0))); // size.
3049     using APV = AllocaPackedValues;
3050     unsigned Record = 0;
3051     Bitfield::set<APV::Align>(Record, getEncodedAlign(AI.getAlign()));
3052     Bitfield::set<APV::UsedWithInAlloca>(Record, AI.isUsedWithInAlloca());
3053     Bitfield::set<APV::ExplicitType>(Record, true);
3054     Bitfield::set<APV::SwiftError>(Record, AI.isSwiftError());
3055     Vals.push_back(Record);
3056     break;
3057   }
3058 
3059   case Instruction::Load:
3060     if (cast<LoadInst>(I).isAtomic()) {
3061       Code = bitc::FUNC_CODE_INST_LOADATOMIC;
3062       pushValueAndType(I.getOperand(0), InstID, Vals);
3063     } else {
3064       Code = bitc::FUNC_CODE_INST_LOAD;
3065       if (!pushValueAndType(I.getOperand(0), InstID, Vals)) // ptr
3066         AbbrevToUse = FUNCTION_INST_LOAD_ABBREV;
3067     }
3068     Vals.push_back(VE.getTypeID(I.getType()));
3069     Vals.push_back(getEncodedAlign(cast<LoadInst>(I).getAlign()));
3070     Vals.push_back(cast<LoadInst>(I).isVolatile());
3071     if (cast<LoadInst>(I).isAtomic()) {
3072       Vals.push_back(getEncodedOrdering(cast<LoadInst>(I).getOrdering()));
3073       Vals.push_back(getEncodedSyncScopeID(cast<LoadInst>(I).getSyncScopeID()));
3074     }
3075     break;
3076   case Instruction::Store:
3077     if (cast<StoreInst>(I).isAtomic())
3078       Code = bitc::FUNC_CODE_INST_STOREATOMIC;
3079     else
3080       Code = bitc::FUNC_CODE_INST_STORE;
3081     pushValueAndType(I.getOperand(1), InstID, Vals); // ptrty + ptr
3082     pushValueAndType(I.getOperand(0), InstID, Vals); // valty + val
3083     Vals.push_back(getEncodedAlign(cast<StoreInst>(I).getAlign()));
3084     Vals.push_back(cast<StoreInst>(I).isVolatile());
3085     if (cast<StoreInst>(I).isAtomic()) {
3086       Vals.push_back(getEncodedOrdering(cast<StoreInst>(I).getOrdering()));
3087       Vals.push_back(
3088           getEncodedSyncScopeID(cast<StoreInst>(I).getSyncScopeID()));
3089     }
3090     break;
3091   case Instruction::AtomicCmpXchg:
3092     Code = bitc::FUNC_CODE_INST_CMPXCHG;
3093     pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr
3094     pushValueAndType(I.getOperand(1), InstID, Vals); // cmp.
3095     pushValue(I.getOperand(2), InstID, Vals);        // newval.
3096     Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile());
3097     Vals.push_back(
3098         getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getSuccessOrdering()));
3099     Vals.push_back(
3100         getEncodedSyncScopeID(cast<AtomicCmpXchgInst>(I).getSyncScopeID()));
3101     Vals.push_back(
3102         getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getFailureOrdering()));
3103     Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak());
3104     Vals.push_back(getEncodedAlign(cast<AtomicCmpXchgInst>(I).getAlign()));
3105     break;
3106   case Instruction::AtomicRMW:
3107     Code = bitc::FUNC_CODE_INST_ATOMICRMW;
3108     pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr
3109     pushValueAndType(I.getOperand(1), InstID, Vals); // valty + val
3110     Vals.push_back(
3111         getEncodedRMWOperation(cast<AtomicRMWInst>(I).getOperation()));
3112     Vals.push_back(cast<AtomicRMWInst>(I).isVolatile());
3113     Vals.push_back(getEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering()));
3114     Vals.push_back(
3115         getEncodedSyncScopeID(cast<AtomicRMWInst>(I).getSyncScopeID()));
3116     Vals.push_back(getEncodedAlign(cast<AtomicRMWInst>(I).getAlign()));
3117     break;
3118   case Instruction::Fence:
3119     Code = bitc::FUNC_CODE_INST_FENCE;
3120     Vals.push_back(getEncodedOrdering(cast<FenceInst>(I).getOrdering()));
3121     Vals.push_back(getEncodedSyncScopeID(cast<FenceInst>(I).getSyncScopeID()));
3122     break;
3123   case Instruction::Call: {
3124     const CallInst &CI = cast<CallInst>(I);
3125     FunctionType *FTy = CI.getFunctionType();
3126 
3127     if (CI.hasOperandBundles())
3128       writeOperandBundles(CI, InstID);
3129 
3130     Code = bitc::FUNC_CODE_INST_CALL;
3131 
3132     Vals.push_back(VE.getAttributeListID(CI.getAttributes()));
3133 
3134     unsigned Flags = getOptimizationFlags(&I);
3135     Vals.push_back(CI.getCallingConv() << bitc::CALL_CCONV |
3136                    unsigned(CI.isTailCall()) << bitc::CALL_TAIL |
3137                    unsigned(CI.isMustTailCall()) << bitc::CALL_MUSTTAIL |
3138                    1 << bitc::CALL_EXPLICIT_TYPE |
3139                    unsigned(CI.isNoTailCall()) << bitc::CALL_NOTAIL |
3140                    unsigned(Flags != 0) << bitc::CALL_FMF);
3141     if (Flags != 0)
3142       Vals.push_back(Flags);
3143 
3144     Vals.push_back(VE.getTypeID(FTy));
3145     pushValueAndType(CI.getCalledOperand(), InstID, Vals); // Callee
3146 
3147     // Emit value #'s for the fixed parameters.
3148     for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) {
3149       // Check for labels (can happen with asm labels).
3150       if (FTy->getParamType(i)->isLabelTy())
3151         Vals.push_back(VE.getValueID(CI.getArgOperand(i)));
3152       else
3153         pushValue(CI.getArgOperand(i), InstID, Vals); // fixed param.
3154     }
3155 
3156     // Emit type/value pairs for varargs params.
3157     if (FTy->isVarArg()) {
3158       for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands();
3159            i != e; ++i)
3160         pushValueAndType(CI.getArgOperand(i), InstID, Vals); // varargs
3161     }
3162     break;
3163   }
3164   case Instruction::VAArg:
3165     Code = bitc::FUNC_CODE_INST_VAARG;
3166     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));   // valistty
3167     pushValue(I.getOperand(0), InstID, Vals);                   // valist.
3168     Vals.push_back(VE.getTypeID(I.getType())); // restype.
3169     break;
3170   case Instruction::Freeze:
3171     Code = bitc::FUNC_CODE_INST_FREEZE;
3172     pushValueAndType(I.getOperand(0), InstID, Vals);
3173     break;
3174   }
3175 
3176   Stream.EmitRecord(Code, Vals, AbbrevToUse);
3177   Vals.clear();
3178 }
3179 
3180 /// Write a GlobalValue VST to the module. The purpose of this data structure is
3181 /// to allow clients to efficiently find the function body.
3182 void ModuleBitcodeWriter::writeGlobalValueSymbolTable(
3183   DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) {
3184   // Get the offset of the VST we are writing, and backpatch it into
3185   // the VST forward declaration record.
3186   uint64_t VSTOffset = Stream.GetCurrentBitNo();
3187   // The BitcodeStartBit was the stream offset of the identification block.
3188   VSTOffset -= bitcodeStartBit();
3189   assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned");
3190   // Note that we add 1 here because the offset is relative to one word
3191   // before the start of the identification block, which was historically
3192   // always the start of the regular bitcode header.
3193   Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32 + 1);
3194 
3195   Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
3196 
3197   auto Abbv = std::make_shared<BitCodeAbbrev>();
3198   Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY));
3199   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id
3200   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset
3201   unsigned FnEntryAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3202 
3203   for (const Function &F : M) {
3204     uint64_t Record[2];
3205 
3206     if (F.isDeclaration())
3207       continue;
3208 
3209     Record[0] = VE.getValueID(&F);
3210 
3211     // Save the word offset of the function (from the start of the
3212     // actual bitcode written to the stream).
3213     uint64_t BitcodeIndex = FunctionToBitcodeIndex[&F] - bitcodeStartBit();
3214     assert((BitcodeIndex & 31) == 0 && "function block not 32-bit aligned");
3215     // Note that we add 1 here because the offset is relative to one word
3216     // before the start of the identification block, which was historically
3217     // always the start of the regular bitcode header.
3218     Record[1] = BitcodeIndex / 32 + 1;
3219 
3220     Stream.EmitRecord(bitc::VST_CODE_FNENTRY, Record, FnEntryAbbrev);
3221   }
3222 
3223   Stream.ExitBlock();
3224 }
3225 
3226 /// Emit names for arguments, instructions and basic blocks in a function.
3227 void ModuleBitcodeWriter::writeFunctionLevelValueSymbolTable(
3228     const ValueSymbolTable &VST) {
3229   if (VST.empty())
3230     return;
3231 
3232   Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
3233 
3234   // FIXME: Set up the abbrev, we know how many values there are!
3235   // FIXME: We know if the type names can use 7-bit ascii.
3236   SmallVector<uint64_t, 64> NameVals;
3237 
3238   for (const ValueName &Name : VST) {
3239     // Figure out the encoding to use for the name.
3240     StringEncoding Bits = getStringEncoding(Name.getKey());
3241 
3242     unsigned AbbrevToUse = VST_ENTRY_8_ABBREV;
3243     NameVals.push_back(VE.getValueID(Name.getValue()));
3244 
3245     // VST_CODE_ENTRY:   [valueid, namechar x N]
3246     // VST_CODE_BBENTRY: [bbid, namechar x N]
3247     unsigned Code;
3248     if (isa<BasicBlock>(Name.getValue())) {
3249       Code = bitc::VST_CODE_BBENTRY;
3250       if (Bits == SE_Char6)
3251         AbbrevToUse = VST_BBENTRY_6_ABBREV;
3252     } else {
3253       Code = bitc::VST_CODE_ENTRY;
3254       if (Bits == SE_Char6)
3255         AbbrevToUse = VST_ENTRY_6_ABBREV;
3256       else if (Bits == SE_Fixed7)
3257         AbbrevToUse = VST_ENTRY_7_ABBREV;
3258     }
3259 
3260     for (const auto P : Name.getKey())
3261       NameVals.push_back((unsigned char)P);
3262 
3263     // Emit the finished record.
3264     Stream.EmitRecord(Code, NameVals, AbbrevToUse);
3265     NameVals.clear();
3266   }
3267 
3268   Stream.ExitBlock();
3269 }
3270 
3271 void ModuleBitcodeWriter::writeUseList(UseListOrder &&Order) {
3272   assert(Order.Shuffle.size() >= 2 && "Shuffle too small");
3273   unsigned Code;
3274   if (isa<BasicBlock>(Order.V))
3275     Code = bitc::USELIST_CODE_BB;
3276   else
3277     Code = bitc::USELIST_CODE_DEFAULT;
3278 
3279   SmallVector<uint64_t, 64> Record(Order.Shuffle.begin(), Order.Shuffle.end());
3280   Record.push_back(VE.getValueID(Order.V));
3281   Stream.EmitRecord(Code, Record);
3282 }
3283 
3284 void ModuleBitcodeWriter::writeUseListBlock(const Function *F) {
3285   assert(VE.shouldPreserveUseListOrder() &&
3286          "Expected to be preserving use-list order");
3287 
3288   auto hasMore = [&]() {
3289     return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F;
3290   };
3291   if (!hasMore())
3292     // Nothing to do.
3293     return;
3294 
3295   Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3);
3296   while (hasMore()) {
3297     writeUseList(std::move(VE.UseListOrders.back()));
3298     VE.UseListOrders.pop_back();
3299   }
3300   Stream.ExitBlock();
3301 }
3302 
3303 /// Emit a function body to the module stream.
3304 void ModuleBitcodeWriter::writeFunction(
3305     const Function &F,
3306     DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) {
3307   // Save the bitcode index of the start of this function block for recording
3308   // in the VST.
3309   FunctionToBitcodeIndex[&F] = Stream.GetCurrentBitNo();
3310 
3311   Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4);
3312   VE.incorporateFunction(F);
3313 
3314   SmallVector<unsigned, 64> Vals;
3315 
3316   // Emit the number of basic blocks, so the reader can create them ahead of
3317   // time.
3318   Vals.push_back(VE.getBasicBlocks().size());
3319   Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals);
3320   Vals.clear();
3321 
3322   // If there are function-local constants, emit them now.
3323   unsigned CstStart, CstEnd;
3324   VE.getFunctionConstantRange(CstStart, CstEnd);
3325   writeConstants(CstStart, CstEnd, false);
3326 
3327   // If there is function-local metadata, emit it now.
3328   writeFunctionMetadata(F);
3329 
3330   // Keep a running idea of what the instruction ID is.
3331   unsigned InstID = CstEnd;
3332 
3333   bool NeedsMetadataAttachment = F.hasMetadata();
3334 
3335   DILocation *LastDL = nullptr;
3336   // Finally, emit all the instructions, in order.
3337   for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
3338     for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
3339          I != E; ++I) {
3340       writeInstruction(*I, InstID, Vals);
3341 
3342       if (!I->getType()->isVoidTy())
3343         ++InstID;
3344 
3345       // If the instruction has metadata, write a metadata attachment later.
3346       NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc();
3347 
3348       // If the instruction has a debug location, emit it.
3349       DILocation *DL = I->getDebugLoc();
3350       if (!DL)
3351         continue;
3352 
3353       if (DL == LastDL) {
3354         // Just repeat the same debug loc as last time.
3355         Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals);
3356         continue;
3357       }
3358 
3359       Vals.push_back(DL->getLine());
3360       Vals.push_back(DL->getColumn());
3361       Vals.push_back(VE.getMetadataOrNullID(DL->getScope()));
3362       Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt()));
3363       Vals.push_back(DL->isImplicitCode());
3364       Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals);
3365       Vals.clear();
3366 
3367       LastDL = DL;
3368     }
3369 
3370   // Emit names for all the instructions etc.
3371   if (auto *Symtab = F.getValueSymbolTable())
3372     writeFunctionLevelValueSymbolTable(*Symtab);
3373 
3374   if (NeedsMetadataAttachment)
3375     writeFunctionMetadataAttachment(F);
3376   if (VE.shouldPreserveUseListOrder())
3377     writeUseListBlock(&F);
3378   VE.purgeFunction();
3379   Stream.ExitBlock();
3380 }
3381 
3382 // Emit blockinfo, which defines the standard abbreviations etc.
3383 void ModuleBitcodeWriter::writeBlockInfo() {
3384   // We only want to emit block info records for blocks that have multiple
3385   // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK.
3386   // Other blocks can define their abbrevs inline.
3387   Stream.EnterBlockInfoBlock();
3388 
3389   { // 8-bit fixed-width VST_CODE_ENTRY/VST_CODE_BBENTRY strings.
3390     auto Abbv = std::make_shared<BitCodeAbbrev>();
3391     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3));
3392     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3393     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3394     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
3395     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) !=
3396         VST_ENTRY_8_ABBREV)
3397       llvm_unreachable("Unexpected abbrev ordering!");
3398   }
3399 
3400   { // 7-bit fixed width VST_CODE_ENTRY strings.
3401     auto Abbv = std::make_shared<BitCodeAbbrev>();
3402     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
3403     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3404     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3405     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
3406     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) !=
3407         VST_ENTRY_7_ABBREV)
3408       llvm_unreachable("Unexpected abbrev ordering!");
3409   }
3410   { // 6-bit char6 VST_CODE_ENTRY strings.
3411     auto Abbv = std::make_shared<BitCodeAbbrev>();
3412     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
3413     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3414     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3415     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
3416     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) !=
3417         VST_ENTRY_6_ABBREV)
3418       llvm_unreachable("Unexpected abbrev ordering!");
3419   }
3420   { // 6-bit char6 VST_CODE_BBENTRY strings.
3421     auto Abbv = std::make_shared<BitCodeAbbrev>();
3422     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY));
3423     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3424     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3425     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
3426     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) !=
3427         VST_BBENTRY_6_ABBREV)
3428       llvm_unreachable("Unexpected abbrev ordering!");
3429   }
3430 
3431   { // SETTYPE abbrev for CONSTANTS_BLOCK.
3432     auto Abbv = std::make_shared<BitCodeAbbrev>();
3433     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE));
3434     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
3435                               VE.computeBitsRequiredForTypeIndicies()));
3436     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) !=
3437         CONSTANTS_SETTYPE_ABBREV)
3438       llvm_unreachable("Unexpected abbrev ordering!");
3439   }
3440 
3441   { // INTEGER abbrev for CONSTANTS_BLOCK.
3442     auto Abbv = std::make_shared<BitCodeAbbrev>();
3443     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER));
3444     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3445     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) !=
3446         CONSTANTS_INTEGER_ABBREV)
3447       llvm_unreachable("Unexpected abbrev ordering!");
3448   }
3449 
3450   { // CE_CAST abbrev for CONSTANTS_BLOCK.
3451     auto Abbv = std::make_shared<BitCodeAbbrev>();
3452     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST));
3453     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // cast opc
3454     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // typeid
3455                               VE.computeBitsRequiredForTypeIndicies()));
3456     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));    // value id
3457 
3458     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) !=
3459         CONSTANTS_CE_CAST_Abbrev)
3460       llvm_unreachable("Unexpected abbrev ordering!");
3461   }
3462   { // NULL abbrev for CONSTANTS_BLOCK.
3463     auto Abbv = std::make_shared<BitCodeAbbrev>();
3464     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL));
3465     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) !=
3466         CONSTANTS_NULL_Abbrev)
3467       llvm_unreachable("Unexpected abbrev ordering!");
3468   }
3469 
3470   // FIXME: This should only use space for first class types!
3471 
3472   { // INST_LOAD abbrev for FUNCTION_BLOCK.
3473     auto Abbv = std::make_shared<BitCodeAbbrev>();
3474     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD));
3475     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr
3476     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,    // dest ty
3477                               VE.computeBitsRequiredForTypeIndicies()));
3478     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align
3479     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile
3480     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3481         FUNCTION_INST_LOAD_ABBREV)
3482       llvm_unreachable("Unexpected abbrev ordering!");
3483   }
3484   { // INST_UNOP abbrev for FUNCTION_BLOCK.
3485     auto Abbv = std::make_shared<BitCodeAbbrev>();
3486     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP));
3487     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
3488     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
3489     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3490         FUNCTION_INST_UNOP_ABBREV)
3491       llvm_unreachable("Unexpected abbrev ordering!");
3492   }
3493   { // INST_UNOP_FLAGS abbrev for FUNCTION_BLOCK.
3494     auto Abbv = std::make_shared<BitCodeAbbrev>();
3495     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP));
3496     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
3497     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
3498     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags
3499     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3500         FUNCTION_INST_UNOP_FLAGS_ABBREV)
3501       llvm_unreachable("Unexpected abbrev ordering!");
3502   }
3503   { // INST_BINOP abbrev for FUNCTION_BLOCK.
3504     auto Abbv = std::make_shared<BitCodeAbbrev>();
3505     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
3506     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
3507     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
3508     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
3509     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3510         FUNCTION_INST_BINOP_ABBREV)
3511       llvm_unreachable("Unexpected abbrev ordering!");
3512   }
3513   { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK.
3514     auto Abbv = std::make_shared<BitCodeAbbrev>();
3515     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
3516     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
3517     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
3518     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
3519     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags
3520     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3521         FUNCTION_INST_BINOP_FLAGS_ABBREV)
3522       llvm_unreachable("Unexpected abbrev ordering!");
3523   }
3524   { // INST_CAST abbrev for FUNCTION_BLOCK.
3525     auto Abbv = std::make_shared<BitCodeAbbrev>();
3526     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST));
3527     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));    // OpVal
3528     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // dest ty
3529                               VE.computeBitsRequiredForTypeIndicies()));
3530     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // opc
3531     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3532         FUNCTION_INST_CAST_ABBREV)
3533       llvm_unreachable("Unexpected abbrev ordering!");
3534   }
3535 
3536   { // INST_RET abbrev for FUNCTION_BLOCK.
3537     auto Abbv = std::make_shared<BitCodeAbbrev>();
3538     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
3539     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3540         FUNCTION_INST_RET_VOID_ABBREV)
3541       llvm_unreachable("Unexpected abbrev ordering!");
3542   }
3543   { // INST_RET abbrev for FUNCTION_BLOCK.
3544     auto Abbv = std::make_shared<BitCodeAbbrev>();
3545     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
3546     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID
3547     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3548         FUNCTION_INST_RET_VAL_ABBREV)
3549       llvm_unreachable("Unexpected abbrev ordering!");
3550   }
3551   { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK.
3552     auto Abbv = std::make_shared<BitCodeAbbrev>();
3553     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE));
3554     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3555         FUNCTION_INST_UNREACHABLE_ABBREV)
3556       llvm_unreachable("Unexpected abbrev ordering!");
3557   }
3558   {
3559     auto Abbv = std::make_shared<BitCodeAbbrev>();
3560     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP));
3561     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
3562     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty
3563                               Log2_32_Ceil(VE.getTypes().size() + 1)));
3564     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3565     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
3566     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) !=
3567         FUNCTION_INST_GEP_ABBREV)
3568       llvm_unreachable("Unexpected abbrev ordering!");
3569   }
3570 
3571   Stream.ExitBlock();
3572 }
3573 
3574 /// Write the module path strings, currently only used when generating
3575 /// a combined index file.
3576 void IndexBitcodeWriter::writeModStrings() {
3577   Stream.EnterSubblock(bitc::MODULE_STRTAB_BLOCK_ID, 3);
3578 
3579   // TODO: See which abbrev sizes we actually need to emit
3580 
3581   // 8-bit fixed-width MST_ENTRY strings.
3582   auto Abbv = std::make_shared<BitCodeAbbrev>();
3583   Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY));
3584   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3585   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3586   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
3587   unsigned Abbrev8Bit = Stream.EmitAbbrev(std::move(Abbv));
3588 
3589   // 7-bit fixed width MST_ENTRY strings.
3590   Abbv = std::make_shared<BitCodeAbbrev>();
3591   Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY));
3592   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3593   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3594   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
3595   unsigned Abbrev7Bit = Stream.EmitAbbrev(std::move(Abbv));
3596 
3597   // 6-bit char6 MST_ENTRY strings.
3598   Abbv = std::make_shared<BitCodeAbbrev>();
3599   Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY));
3600   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3601   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3602   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
3603   unsigned Abbrev6Bit = Stream.EmitAbbrev(std::move(Abbv));
3604 
3605   // Module Hash, 160 bits SHA1. Optionally, emitted after each MST_CODE_ENTRY.
3606   Abbv = std::make_shared<BitCodeAbbrev>();
3607   Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_HASH));
3608   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
3609   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
3610   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
3611   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
3612   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32));
3613   unsigned AbbrevHash = Stream.EmitAbbrev(std::move(Abbv));
3614 
3615   SmallVector<unsigned, 64> Vals;
3616   forEachModule(
3617       [&](const StringMapEntry<std::pair<uint64_t, ModuleHash>> &MPSE) {
3618         StringRef Key = MPSE.getKey();
3619         const auto &Value = MPSE.getValue();
3620         StringEncoding Bits = getStringEncoding(Key);
3621         unsigned AbbrevToUse = Abbrev8Bit;
3622         if (Bits == SE_Char6)
3623           AbbrevToUse = Abbrev6Bit;
3624         else if (Bits == SE_Fixed7)
3625           AbbrevToUse = Abbrev7Bit;
3626 
3627         Vals.push_back(Value.first);
3628         Vals.append(Key.begin(), Key.end());
3629 
3630         // Emit the finished record.
3631         Stream.EmitRecord(bitc::MST_CODE_ENTRY, Vals, AbbrevToUse);
3632 
3633         // Emit an optional hash for the module now
3634         const auto &Hash = Value.second;
3635         if (llvm::any_of(Hash, [](uint32_t H) { return H; })) {
3636           Vals.assign(Hash.begin(), Hash.end());
3637           // Emit the hash record.
3638           Stream.EmitRecord(bitc::MST_CODE_HASH, Vals, AbbrevHash);
3639         }
3640 
3641         Vals.clear();
3642       });
3643   Stream.ExitBlock();
3644 }
3645 
3646 /// Write the function type metadata related records that need to appear before
3647 /// a function summary entry (whether per-module or combined).
3648 template <typename Fn>
3649 static void writeFunctionTypeMetadataRecords(BitstreamWriter &Stream,
3650                                              FunctionSummary *FS,
3651                                              Fn GetValueID) {
3652   if (!FS->type_tests().empty())
3653     Stream.EmitRecord(bitc::FS_TYPE_TESTS, FS->type_tests());
3654 
3655   SmallVector<uint64_t, 64> Record;
3656 
3657   auto WriteVFuncIdVec = [&](uint64_t Ty,
3658                              ArrayRef<FunctionSummary::VFuncId> VFs) {
3659     if (VFs.empty())
3660       return;
3661     Record.clear();
3662     for (auto &VF : VFs) {
3663       Record.push_back(VF.GUID);
3664       Record.push_back(VF.Offset);
3665     }
3666     Stream.EmitRecord(Ty, Record);
3667   };
3668 
3669   WriteVFuncIdVec(bitc::FS_TYPE_TEST_ASSUME_VCALLS,
3670                   FS->type_test_assume_vcalls());
3671   WriteVFuncIdVec(bitc::FS_TYPE_CHECKED_LOAD_VCALLS,
3672                   FS->type_checked_load_vcalls());
3673 
3674   auto WriteConstVCallVec = [&](uint64_t Ty,
3675                                 ArrayRef<FunctionSummary::ConstVCall> VCs) {
3676     for (auto &VC : VCs) {
3677       Record.clear();
3678       Record.push_back(VC.VFunc.GUID);
3679       Record.push_back(VC.VFunc.Offset);
3680       llvm::append_range(Record, VC.Args);
3681       Stream.EmitRecord(Ty, Record);
3682     }
3683   };
3684 
3685   WriteConstVCallVec(bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL,
3686                      FS->type_test_assume_const_vcalls());
3687   WriteConstVCallVec(bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL,
3688                      FS->type_checked_load_const_vcalls());
3689 
3690   auto WriteRange = [&](ConstantRange Range) {
3691     Range = Range.sextOrTrunc(FunctionSummary::ParamAccess::RangeWidth);
3692     assert(Range.getLower().getNumWords() == 1);
3693     assert(Range.getUpper().getNumWords() == 1);
3694     emitSignedInt64(Record, *Range.getLower().getRawData());
3695     emitSignedInt64(Record, *Range.getUpper().getRawData());
3696   };
3697 
3698   if (!FS->paramAccesses().empty()) {
3699     Record.clear();
3700     for (auto &Arg : FS->paramAccesses()) {
3701       size_t UndoSize = Record.size();
3702       Record.push_back(Arg.ParamNo);
3703       WriteRange(Arg.Use);
3704       Record.push_back(Arg.Calls.size());
3705       for (auto &Call : Arg.Calls) {
3706         Record.push_back(Call.ParamNo);
3707         Optional<unsigned> ValueID = GetValueID(Call.Callee);
3708         if (!ValueID) {
3709           // If ValueID is unknown we can't drop just this call, we must drop
3710           // entire parameter.
3711           Record.resize(UndoSize);
3712           break;
3713         }
3714         Record.push_back(*ValueID);
3715         WriteRange(Call.Offsets);
3716       }
3717     }
3718     if (!Record.empty())
3719       Stream.EmitRecord(bitc::FS_PARAM_ACCESS, Record);
3720   }
3721 }
3722 
3723 /// Collect type IDs from type tests used by function.
3724 static void
3725 getReferencedTypeIds(FunctionSummary *FS,
3726                      std::set<GlobalValue::GUID> &ReferencedTypeIds) {
3727   if (!FS->type_tests().empty())
3728     for (auto &TT : FS->type_tests())
3729       ReferencedTypeIds.insert(TT);
3730 
3731   auto GetReferencedTypesFromVFuncIdVec =
3732       [&](ArrayRef<FunctionSummary::VFuncId> VFs) {
3733         for (auto &VF : VFs)
3734           ReferencedTypeIds.insert(VF.GUID);
3735       };
3736 
3737   GetReferencedTypesFromVFuncIdVec(FS->type_test_assume_vcalls());
3738   GetReferencedTypesFromVFuncIdVec(FS->type_checked_load_vcalls());
3739 
3740   auto GetReferencedTypesFromConstVCallVec =
3741       [&](ArrayRef<FunctionSummary::ConstVCall> VCs) {
3742         for (auto &VC : VCs)
3743           ReferencedTypeIds.insert(VC.VFunc.GUID);
3744       };
3745 
3746   GetReferencedTypesFromConstVCallVec(FS->type_test_assume_const_vcalls());
3747   GetReferencedTypesFromConstVCallVec(FS->type_checked_load_const_vcalls());
3748 }
3749 
3750 static void writeWholeProgramDevirtResolutionByArg(
3751     SmallVector<uint64_t, 64> &NameVals, const std::vector<uint64_t> &args,
3752     const WholeProgramDevirtResolution::ByArg &ByArg) {
3753   NameVals.push_back(args.size());
3754   llvm::append_range(NameVals, args);
3755 
3756   NameVals.push_back(ByArg.TheKind);
3757   NameVals.push_back(ByArg.Info);
3758   NameVals.push_back(ByArg.Byte);
3759   NameVals.push_back(ByArg.Bit);
3760 }
3761 
3762 static void writeWholeProgramDevirtResolution(
3763     SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder,
3764     uint64_t Id, const WholeProgramDevirtResolution &Wpd) {
3765   NameVals.push_back(Id);
3766 
3767   NameVals.push_back(Wpd.TheKind);
3768   NameVals.push_back(StrtabBuilder.add(Wpd.SingleImplName));
3769   NameVals.push_back(Wpd.SingleImplName.size());
3770 
3771   NameVals.push_back(Wpd.ResByArg.size());
3772   for (auto &A : Wpd.ResByArg)
3773     writeWholeProgramDevirtResolutionByArg(NameVals, A.first, A.second);
3774 }
3775 
3776 static void writeTypeIdSummaryRecord(SmallVector<uint64_t, 64> &NameVals,
3777                                      StringTableBuilder &StrtabBuilder,
3778                                      const std::string &Id,
3779                                      const TypeIdSummary &Summary) {
3780   NameVals.push_back(StrtabBuilder.add(Id));
3781   NameVals.push_back(Id.size());
3782 
3783   NameVals.push_back(Summary.TTRes.TheKind);
3784   NameVals.push_back(Summary.TTRes.SizeM1BitWidth);
3785   NameVals.push_back(Summary.TTRes.AlignLog2);
3786   NameVals.push_back(Summary.TTRes.SizeM1);
3787   NameVals.push_back(Summary.TTRes.BitMask);
3788   NameVals.push_back(Summary.TTRes.InlineBits);
3789 
3790   for (auto &W : Summary.WPDRes)
3791     writeWholeProgramDevirtResolution(NameVals, StrtabBuilder, W.first,
3792                                       W.second);
3793 }
3794 
3795 static void writeTypeIdCompatibleVtableSummaryRecord(
3796     SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder,
3797     const std::string &Id, const TypeIdCompatibleVtableInfo &Summary,
3798     ValueEnumerator &VE) {
3799   NameVals.push_back(StrtabBuilder.add(Id));
3800   NameVals.push_back(Id.size());
3801 
3802   for (auto &P : Summary) {
3803     NameVals.push_back(P.AddressPointOffset);
3804     NameVals.push_back(VE.getValueID(P.VTableVI.getValue()));
3805   }
3806 }
3807 
3808 // Helper to emit a single function summary record.
3809 void ModuleBitcodeWriterBase::writePerModuleFunctionSummaryRecord(
3810     SmallVector<uint64_t, 64> &NameVals, GlobalValueSummary *Summary,
3811     unsigned ValueID, unsigned FSCallsAbbrev, unsigned FSCallsProfileAbbrev,
3812     const Function &F) {
3813   NameVals.push_back(ValueID);
3814 
3815   FunctionSummary *FS = cast<FunctionSummary>(Summary);
3816 
3817   writeFunctionTypeMetadataRecords(
3818       Stream, FS, [&](const ValueInfo &VI) -> Optional<unsigned> {
3819         return {VE.getValueID(VI.getValue())};
3820       });
3821 
3822   auto SpecialRefCnts = FS->specialRefCounts();
3823   NameVals.push_back(getEncodedGVSummaryFlags(FS->flags()));
3824   NameVals.push_back(FS->instCount());
3825   NameVals.push_back(getEncodedFFlags(FS->fflags()));
3826   NameVals.push_back(FS->refs().size());
3827   NameVals.push_back(SpecialRefCnts.first);  // rorefcnt
3828   NameVals.push_back(SpecialRefCnts.second); // worefcnt
3829 
3830   for (auto &RI : FS->refs())
3831     NameVals.push_back(VE.getValueID(RI.getValue()));
3832 
3833   bool HasProfileData =
3834       F.hasProfileData() || ForceSummaryEdgesCold != FunctionSummary::FSHT_None;
3835   for (auto &ECI : FS->calls()) {
3836     NameVals.push_back(getValueId(ECI.first));
3837     if (HasProfileData)
3838       NameVals.push_back(static_cast<uint8_t>(ECI.second.Hotness));
3839     else if (WriteRelBFToSummary)
3840       NameVals.push_back(ECI.second.RelBlockFreq);
3841   }
3842 
3843   unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev);
3844   unsigned Code =
3845       (HasProfileData ? bitc::FS_PERMODULE_PROFILE
3846                       : (WriteRelBFToSummary ? bitc::FS_PERMODULE_RELBF
3847                                              : bitc::FS_PERMODULE));
3848 
3849   // Emit the finished record.
3850   Stream.EmitRecord(Code, NameVals, FSAbbrev);
3851   NameVals.clear();
3852 }
3853 
3854 // Collect the global value references in the given variable's initializer,
3855 // and emit them in a summary record.
3856 void ModuleBitcodeWriterBase::writeModuleLevelReferences(
3857     const GlobalVariable &V, SmallVector<uint64_t, 64> &NameVals,
3858     unsigned FSModRefsAbbrev, unsigned FSModVTableRefsAbbrev) {
3859   auto VI = Index->getValueInfo(V.getGUID());
3860   if (!VI || VI.getSummaryList().empty()) {
3861     // Only declarations should not have a summary (a declaration might however
3862     // have a summary if the def was in module level asm).
3863     assert(V.isDeclaration());
3864     return;
3865   }
3866   auto *Summary = VI.getSummaryList()[0].get();
3867   NameVals.push_back(VE.getValueID(&V));
3868   GlobalVarSummary *VS = cast<GlobalVarSummary>(Summary);
3869   NameVals.push_back(getEncodedGVSummaryFlags(VS->flags()));
3870   NameVals.push_back(getEncodedGVarFlags(VS->varflags()));
3871 
3872   auto VTableFuncs = VS->vTableFuncs();
3873   if (!VTableFuncs.empty())
3874     NameVals.push_back(VS->refs().size());
3875 
3876   unsigned SizeBeforeRefs = NameVals.size();
3877   for (auto &RI : VS->refs())
3878     NameVals.push_back(VE.getValueID(RI.getValue()));
3879   // Sort the refs for determinism output, the vector returned by FS->refs() has
3880   // been initialized from a DenseSet.
3881   llvm::sort(drop_begin(NameVals, SizeBeforeRefs));
3882 
3883   if (VTableFuncs.empty())
3884     Stream.EmitRecord(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS, NameVals,
3885                       FSModRefsAbbrev);
3886   else {
3887     // VTableFuncs pairs should already be sorted by offset.
3888     for (auto &P : VTableFuncs) {
3889       NameVals.push_back(VE.getValueID(P.FuncVI.getValue()));
3890       NameVals.push_back(P.VTableOffset);
3891     }
3892 
3893     Stream.EmitRecord(bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS, NameVals,
3894                       FSModVTableRefsAbbrev);
3895   }
3896   NameVals.clear();
3897 }
3898 
3899 /// Emit the per-module summary section alongside the rest of
3900 /// the module's bitcode.
3901 void ModuleBitcodeWriterBase::writePerModuleGlobalValueSummary() {
3902   // By default we compile with ThinLTO if the module has a summary, but the
3903   // client can request full LTO with a module flag.
3904   bool IsThinLTO = true;
3905   if (auto *MD =
3906           mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("ThinLTO")))
3907     IsThinLTO = MD->getZExtValue();
3908   Stream.EnterSubblock(IsThinLTO ? bitc::GLOBALVAL_SUMMARY_BLOCK_ID
3909                                  : bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID,
3910                        4);
3911 
3912   Stream.EmitRecord(
3913       bitc::FS_VERSION,
3914       ArrayRef<uint64_t>{ModuleSummaryIndex::BitcodeSummaryVersion});
3915 
3916   // Write the index flags.
3917   uint64_t Flags = 0;
3918   // Bits 1-3 are set only in the combined index, skip them.
3919   if (Index->enableSplitLTOUnit())
3920     Flags |= 0x8;
3921   Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Flags});
3922 
3923   if (Index->begin() == Index->end()) {
3924     Stream.ExitBlock();
3925     return;
3926   }
3927 
3928   for (const auto &GVI : valueIds()) {
3929     Stream.EmitRecord(bitc::FS_VALUE_GUID,
3930                       ArrayRef<uint64_t>{GVI.second, GVI.first});
3931   }
3932 
3933   // Abbrev for FS_PERMODULE_PROFILE.
3934   auto Abbv = std::make_shared<BitCodeAbbrev>();
3935   Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_PROFILE));
3936   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
3937   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags
3938   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // instcount
3939   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // fflags
3940   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // numrefs
3941   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // rorefcnt
3942   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // worefcnt
3943   // numrefs x valueid, n x (valueid, hotness)
3944   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3945   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3946   unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3947 
3948   // Abbrev for FS_PERMODULE or FS_PERMODULE_RELBF.
3949   Abbv = std::make_shared<BitCodeAbbrev>();
3950   if (WriteRelBFToSummary)
3951     Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_RELBF));
3952   else
3953     Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE));
3954   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
3955   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags
3956   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // instcount
3957   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // fflags
3958   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // numrefs
3959   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // rorefcnt
3960   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // worefcnt
3961   // numrefs x valueid, n x (valueid [, rel_block_freq])
3962   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3963   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3964   unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3965 
3966   // Abbrev for FS_PERMODULE_GLOBALVAR_INIT_REFS.
3967   Abbv = std::make_shared<BitCodeAbbrev>();
3968   Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS));
3969   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
3970   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags
3971   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));  // valueids
3972   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3973   unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3974 
3975   // Abbrev for FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS.
3976   Abbv = std::make_shared<BitCodeAbbrev>();
3977   Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS));
3978   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid
3979   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags
3980   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs
3981   // numrefs x valueid, n x (valueid , offset)
3982   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
3983   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
3984   unsigned FSModVTableRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3985 
3986   // Abbrev for FS_ALIAS.
3987   Abbv = std::make_shared<BitCodeAbbrev>();
3988   Abbv->Add(BitCodeAbbrevOp(bitc::FS_ALIAS));
3989   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
3990   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags
3991   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
3992   unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv));
3993 
3994   // Abbrev for FS_TYPE_ID_METADATA
3995   Abbv = std::make_shared<BitCodeAbbrev>();
3996   Abbv->Add(BitCodeAbbrevOp(bitc::FS_TYPE_ID_METADATA));
3997   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // typeid strtab index
3998   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // typeid length
3999   // n x (valueid , offset)
4000   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
4001   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
4002   unsigned TypeIdCompatibleVtableAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4003 
4004   SmallVector<uint64_t, 64> NameVals;
4005   // Iterate over the list of functions instead of the Index to
4006   // ensure the ordering is stable.
4007   for (const Function &F : M) {
4008     // Summary emission does not support anonymous functions, they have to
4009     // renamed using the anonymous function renaming pass.
4010     if (!F.hasName())
4011       report_fatal_error("Unexpected anonymous function when writing summary");
4012 
4013     ValueInfo VI = Index->getValueInfo(F.getGUID());
4014     if (!VI || VI.getSummaryList().empty()) {
4015       // Only declarations should not have a summary (a declaration might
4016       // however have a summary if the def was in module level asm).
4017       assert(F.isDeclaration());
4018       continue;
4019     }
4020     auto *Summary = VI.getSummaryList()[0].get();
4021     writePerModuleFunctionSummaryRecord(NameVals, Summary, VE.getValueID(&F),
4022                                         FSCallsAbbrev, FSCallsProfileAbbrev, F);
4023   }
4024 
4025   // Capture references from GlobalVariable initializers, which are outside
4026   // of a function scope.
4027   for (const GlobalVariable &G : M.globals())
4028     writeModuleLevelReferences(G, NameVals, FSModRefsAbbrev,
4029                                FSModVTableRefsAbbrev);
4030 
4031   for (const GlobalAlias &A : M.aliases()) {
4032     auto *Aliasee = A.getBaseObject();
4033     if (!Aliasee->hasName())
4034       // Nameless function don't have an entry in the summary, skip it.
4035       continue;
4036     auto AliasId = VE.getValueID(&A);
4037     auto AliaseeId = VE.getValueID(Aliasee);
4038     NameVals.push_back(AliasId);
4039     auto *Summary = Index->getGlobalValueSummary(A);
4040     AliasSummary *AS = cast<AliasSummary>(Summary);
4041     NameVals.push_back(getEncodedGVSummaryFlags(AS->flags()));
4042     NameVals.push_back(AliaseeId);
4043     Stream.EmitRecord(bitc::FS_ALIAS, NameVals, FSAliasAbbrev);
4044     NameVals.clear();
4045   }
4046 
4047   for (auto &S : Index->typeIdCompatibleVtableMap()) {
4048     writeTypeIdCompatibleVtableSummaryRecord(NameVals, StrtabBuilder, S.first,
4049                                              S.second, VE);
4050     Stream.EmitRecord(bitc::FS_TYPE_ID_METADATA, NameVals,
4051                       TypeIdCompatibleVtableAbbrev);
4052     NameVals.clear();
4053   }
4054 
4055   Stream.EmitRecord(bitc::FS_BLOCK_COUNT,
4056                     ArrayRef<uint64_t>{Index->getBlockCount()});
4057 
4058   Stream.ExitBlock();
4059 }
4060 
4061 /// Emit the combined summary section into the combined index file.
4062 void IndexBitcodeWriter::writeCombinedGlobalValueSummary() {
4063   Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 3);
4064   Stream.EmitRecord(
4065       bitc::FS_VERSION,
4066       ArrayRef<uint64_t>{ModuleSummaryIndex::BitcodeSummaryVersion});
4067 
4068   // Write the index flags.
4069   Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Index.getFlags()});
4070 
4071   for (const auto &GVI : valueIds()) {
4072     Stream.EmitRecord(bitc::FS_VALUE_GUID,
4073                       ArrayRef<uint64_t>{GVI.second, GVI.first});
4074   }
4075 
4076   // Abbrev for FS_COMBINED.
4077   auto Abbv = std::make_shared<BitCodeAbbrev>();
4078   Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED));
4079   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
4080   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // modid
4081   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags
4082   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // instcount
4083   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // fflags
4084   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // entrycount
4085   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // numrefs
4086   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // rorefcnt
4087   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // worefcnt
4088   // numrefs x valueid, n x (valueid)
4089   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
4090   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
4091   unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4092 
4093   // Abbrev for FS_COMBINED_PROFILE.
4094   Abbv = std::make_shared<BitCodeAbbrev>();
4095   Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_PROFILE));
4096   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
4097   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // modid
4098   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags
4099   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // instcount
4100   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // fflags
4101   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // entrycount
4102   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // numrefs
4103   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // rorefcnt
4104   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4));   // worefcnt
4105   // numrefs x valueid, n x (valueid, hotness)
4106   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
4107   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
4108   unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4109 
4110   // Abbrev for FS_COMBINED_GLOBALVAR_INIT_REFS.
4111   Abbv = std::make_shared<BitCodeAbbrev>();
4112   Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS));
4113   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
4114   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // modid
4115   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags
4116   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));    // valueids
4117   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
4118   unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4119 
4120   // Abbrev for FS_COMBINED_ALIAS.
4121   Abbv = std::make_shared<BitCodeAbbrev>();
4122   Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_ALIAS));
4123   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
4124   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // modid
4125   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));   // flags
4126   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // valueid
4127   unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4128 
4129   // The aliases are emitted as a post-pass, and will point to the value
4130   // id of the aliasee. Save them in a vector for post-processing.
4131   SmallVector<AliasSummary *, 64> Aliases;
4132 
4133   // Save the value id for each summary for alias emission.
4134   DenseMap<const GlobalValueSummary *, unsigned> SummaryToValueIdMap;
4135 
4136   SmallVector<uint64_t, 64> NameVals;
4137 
4138   // Set that will be populated during call to writeFunctionTypeMetadataRecords
4139   // with the type ids referenced by this index file.
4140   std::set<GlobalValue::GUID> ReferencedTypeIds;
4141 
4142   // For local linkage, we also emit the original name separately
4143   // immediately after the record.
4144   auto MaybeEmitOriginalName = [&](GlobalValueSummary &S) {
4145     if (!GlobalValue::isLocalLinkage(S.linkage()))
4146       return;
4147     NameVals.push_back(S.getOriginalName());
4148     Stream.EmitRecord(bitc::FS_COMBINED_ORIGINAL_NAME, NameVals);
4149     NameVals.clear();
4150   };
4151 
4152   std::set<GlobalValue::GUID> DefOrUseGUIDs;
4153   forEachSummary([&](GVInfo I, bool IsAliasee) {
4154     GlobalValueSummary *S = I.second;
4155     assert(S);
4156     DefOrUseGUIDs.insert(I.first);
4157     for (const ValueInfo &VI : S->refs())
4158       DefOrUseGUIDs.insert(VI.getGUID());
4159 
4160     auto ValueId = getValueId(I.first);
4161     assert(ValueId);
4162     SummaryToValueIdMap[S] = *ValueId;
4163 
4164     // If this is invoked for an aliasee, we want to record the above
4165     // mapping, but then not emit a summary entry (if the aliasee is
4166     // to be imported, we will invoke this separately with IsAliasee=false).
4167     if (IsAliasee)
4168       return;
4169 
4170     if (auto *AS = dyn_cast<AliasSummary>(S)) {
4171       // Will process aliases as a post-pass because the reader wants all
4172       // global to be loaded first.
4173       Aliases.push_back(AS);
4174       return;
4175     }
4176 
4177     if (auto *VS = dyn_cast<GlobalVarSummary>(S)) {
4178       NameVals.push_back(*ValueId);
4179       NameVals.push_back(Index.getModuleId(VS->modulePath()));
4180       NameVals.push_back(getEncodedGVSummaryFlags(VS->flags()));
4181       NameVals.push_back(getEncodedGVarFlags(VS->varflags()));
4182       for (auto &RI : VS->refs()) {
4183         auto RefValueId = getValueId(RI.getGUID());
4184         if (!RefValueId)
4185           continue;
4186         NameVals.push_back(*RefValueId);
4187       }
4188 
4189       // Emit the finished record.
4190       Stream.EmitRecord(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS, NameVals,
4191                         FSModRefsAbbrev);
4192       NameVals.clear();
4193       MaybeEmitOriginalName(*S);
4194       return;
4195     }
4196 
4197     auto GetValueId = [&](const ValueInfo &VI) -> Optional<unsigned> {
4198       GlobalValue::GUID GUID = VI.getGUID();
4199       Optional<unsigned> CallValueId = getValueId(GUID);
4200       if (CallValueId)
4201         return CallValueId;
4202       // For SamplePGO, the indirect call targets for local functions will
4203       // have its original name annotated in profile. We try to find the
4204       // corresponding PGOFuncName as the GUID.
4205       GUID = Index.getGUIDFromOriginalID(GUID);
4206       if (!GUID)
4207         return None;
4208       CallValueId = getValueId(GUID);
4209       if (!CallValueId)
4210         return None;
4211       // The mapping from OriginalId to GUID may return a GUID
4212       // that corresponds to a static variable. Filter it out here.
4213       // This can happen when
4214       // 1) There is a call to a library function which does not have
4215       // a CallValidId;
4216       // 2) There is a static variable with the  OriginalGUID identical
4217       // to the GUID of the library function in 1);
4218       // When this happens, the logic for SamplePGO kicks in and
4219       // the static variable in 2) will be found, which needs to be
4220       // filtered out.
4221       auto *GVSum = Index.getGlobalValueSummary(GUID, false);
4222       if (GVSum && GVSum->getSummaryKind() == GlobalValueSummary::GlobalVarKind)
4223         return None;
4224       return CallValueId;
4225     };
4226 
4227     auto *FS = cast<FunctionSummary>(S);
4228     writeFunctionTypeMetadataRecords(Stream, FS, GetValueId);
4229     getReferencedTypeIds(FS, ReferencedTypeIds);
4230 
4231     NameVals.push_back(*ValueId);
4232     NameVals.push_back(Index.getModuleId(FS->modulePath()));
4233     NameVals.push_back(getEncodedGVSummaryFlags(FS->flags()));
4234     NameVals.push_back(FS->instCount());
4235     NameVals.push_back(getEncodedFFlags(FS->fflags()));
4236     NameVals.push_back(FS->entryCount());
4237 
4238     // Fill in below
4239     NameVals.push_back(0); // numrefs
4240     NameVals.push_back(0); // rorefcnt
4241     NameVals.push_back(0); // worefcnt
4242 
4243     unsigned Count = 0, RORefCnt = 0, WORefCnt = 0;
4244     for (auto &RI : FS->refs()) {
4245       auto RefValueId = getValueId(RI.getGUID());
4246       if (!RefValueId)
4247         continue;
4248       NameVals.push_back(*RefValueId);
4249       if (RI.isReadOnly())
4250         RORefCnt++;
4251       else if (RI.isWriteOnly())
4252         WORefCnt++;
4253       Count++;
4254     }
4255     NameVals[6] = Count;
4256     NameVals[7] = RORefCnt;
4257     NameVals[8] = WORefCnt;
4258 
4259     bool HasProfileData = false;
4260     for (auto &EI : FS->calls()) {
4261       HasProfileData |=
4262           EI.second.getHotness() != CalleeInfo::HotnessType::Unknown;
4263       if (HasProfileData)
4264         break;
4265     }
4266 
4267     for (auto &EI : FS->calls()) {
4268       // If this GUID doesn't have a value id, it doesn't have a function
4269       // summary and we don't need to record any calls to it.
4270       Optional<unsigned> CallValueId = GetValueId(EI.first);
4271       if (!CallValueId)
4272         continue;
4273       NameVals.push_back(*CallValueId);
4274       if (HasProfileData)
4275         NameVals.push_back(static_cast<uint8_t>(EI.second.Hotness));
4276     }
4277 
4278     unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev);
4279     unsigned Code =
4280         (HasProfileData ? bitc::FS_COMBINED_PROFILE : bitc::FS_COMBINED);
4281 
4282     // Emit the finished record.
4283     Stream.EmitRecord(Code, NameVals, FSAbbrev);
4284     NameVals.clear();
4285     MaybeEmitOriginalName(*S);
4286   });
4287 
4288   for (auto *AS : Aliases) {
4289     auto AliasValueId = SummaryToValueIdMap[AS];
4290     assert(AliasValueId);
4291     NameVals.push_back(AliasValueId);
4292     NameVals.push_back(Index.getModuleId(AS->modulePath()));
4293     NameVals.push_back(getEncodedGVSummaryFlags(AS->flags()));
4294     auto AliaseeValueId = SummaryToValueIdMap[&AS->getAliasee()];
4295     assert(AliaseeValueId);
4296     NameVals.push_back(AliaseeValueId);
4297 
4298     // Emit the finished record.
4299     Stream.EmitRecord(bitc::FS_COMBINED_ALIAS, NameVals, FSAliasAbbrev);
4300     NameVals.clear();
4301     MaybeEmitOriginalName(*AS);
4302 
4303     if (auto *FS = dyn_cast<FunctionSummary>(&AS->getAliasee()))
4304       getReferencedTypeIds(FS, ReferencedTypeIds);
4305   }
4306 
4307   if (!Index.cfiFunctionDefs().empty()) {
4308     for (auto &S : Index.cfiFunctionDefs()) {
4309       if (DefOrUseGUIDs.count(
4310               GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(S)))) {
4311         NameVals.push_back(StrtabBuilder.add(S));
4312         NameVals.push_back(S.size());
4313       }
4314     }
4315     if (!NameVals.empty()) {
4316       Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DEFS, NameVals);
4317       NameVals.clear();
4318     }
4319   }
4320 
4321   if (!Index.cfiFunctionDecls().empty()) {
4322     for (auto &S : Index.cfiFunctionDecls()) {
4323       if (DefOrUseGUIDs.count(
4324               GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(S)))) {
4325         NameVals.push_back(StrtabBuilder.add(S));
4326         NameVals.push_back(S.size());
4327       }
4328     }
4329     if (!NameVals.empty()) {
4330       Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DECLS, NameVals);
4331       NameVals.clear();
4332     }
4333   }
4334 
4335   // Walk the GUIDs that were referenced, and write the
4336   // corresponding type id records.
4337   for (auto &T : ReferencedTypeIds) {
4338     auto TidIter = Index.typeIds().equal_range(T);
4339     for (auto It = TidIter.first; It != TidIter.second; ++It) {
4340       writeTypeIdSummaryRecord(NameVals, StrtabBuilder, It->second.first,
4341                                It->second.second);
4342       Stream.EmitRecord(bitc::FS_TYPE_ID, NameVals);
4343       NameVals.clear();
4344     }
4345   }
4346 
4347   Stream.EmitRecord(bitc::FS_BLOCK_COUNT,
4348                     ArrayRef<uint64_t>{Index.getBlockCount()});
4349 
4350   Stream.ExitBlock();
4351 }
4352 
4353 /// Create the "IDENTIFICATION_BLOCK_ID" containing a single string with the
4354 /// current llvm version, and a record for the epoch number.
4355 static void writeIdentificationBlock(BitstreamWriter &Stream) {
4356   Stream.EnterSubblock(bitc::IDENTIFICATION_BLOCK_ID, 5);
4357 
4358   // Write the "user readable" string identifying the bitcode producer
4359   auto Abbv = std::make_shared<BitCodeAbbrev>();
4360   Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_STRING));
4361   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
4362   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
4363   auto StringAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4364   writeStringRecord(Stream, bitc::IDENTIFICATION_CODE_STRING,
4365                     "LLVM" LLVM_VERSION_STRING, StringAbbrev);
4366 
4367   // Write the epoch version
4368   Abbv = std::make_shared<BitCodeAbbrev>();
4369   Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_EPOCH));
4370   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
4371   auto EpochAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4372   constexpr std::array<unsigned, 1> Vals = {{bitc::BITCODE_CURRENT_EPOCH}};
4373   Stream.EmitRecord(bitc::IDENTIFICATION_CODE_EPOCH, Vals, EpochAbbrev);
4374   Stream.ExitBlock();
4375 }
4376 
4377 void ModuleBitcodeWriter::writeModuleHash(size_t BlockStartPos) {
4378   // Emit the module's hash.
4379   // MODULE_CODE_HASH: [5*i32]
4380   if (GenerateHash) {
4381     uint32_t Vals[5];
4382     Hasher.update(ArrayRef<uint8_t>((const uint8_t *)&(Buffer)[BlockStartPos],
4383                                     Buffer.size() - BlockStartPos));
4384     StringRef Hash = Hasher.result();
4385     for (int Pos = 0; Pos < 20; Pos += 4) {
4386       Vals[Pos / 4] = support::endian::read32be(Hash.data() + Pos);
4387     }
4388 
4389     // Emit the finished record.
4390     Stream.EmitRecord(bitc::MODULE_CODE_HASH, Vals);
4391 
4392     if (ModHash)
4393       // Save the written hash value.
4394       llvm::copy(Vals, std::begin(*ModHash));
4395   }
4396 }
4397 
4398 void ModuleBitcodeWriter::write() {
4399   writeIdentificationBlock(Stream);
4400 
4401   Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
4402   size_t BlockStartPos = Buffer.size();
4403 
4404   writeModuleVersion();
4405 
4406   // Emit blockinfo, which defines the standard abbreviations etc.
4407   writeBlockInfo();
4408 
4409   // Emit information describing all of the types in the module.
4410   writeTypeTable();
4411 
4412   // Emit information about attribute groups.
4413   writeAttributeGroupTable();
4414 
4415   // Emit information about parameter attributes.
4416   writeAttributeTable();
4417 
4418   writeComdats();
4419 
4420   // Emit top-level description of module, including target triple, inline asm,
4421   // descriptors for global variables, and function prototype info.
4422   writeModuleInfo();
4423 
4424   // Emit constants.
4425   writeModuleConstants();
4426 
4427   // Emit metadata kind names.
4428   writeModuleMetadataKinds();
4429 
4430   // Emit metadata.
4431   writeModuleMetadata();
4432 
4433   // Emit module-level use-lists.
4434   if (VE.shouldPreserveUseListOrder())
4435     writeUseListBlock(nullptr);
4436 
4437   writeOperandBundleTags();
4438   writeSyncScopeNames();
4439 
4440   // Emit function bodies.
4441   DenseMap<const Function *, uint64_t> FunctionToBitcodeIndex;
4442   for (Module::const_iterator F = M.begin(), E = M.end(); F != E; ++F)
4443     if (!F->isDeclaration())
4444       writeFunction(*F, FunctionToBitcodeIndex);
4445 
4446   // Need to write after the above call to WriteFunction which populates
4447   // the summary information in the index.
4448   if (Index)
4449     writePerModuleGlobalValueSummary();
4450 
4451   writeGlobalValueSymbolTable(FunctionToBitcodeIndex);
4452 
4453   writeModuleHash(BlockStartPos);
4454 
4455   Stream.ExitBlock();
4456 }
4457 
4458 static void writeInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer,
4459                                uint32_t &Position) {
4460   support::endian::write32le(&Buffer[Position], Value);
4461   Position += 4;
4462 }
4463 
4464 /// If generating a bc file on darwin, we have to emit a
4465 /// header and trailer to make it compatible with the system archiver.  To do
4466 /// this we emit the following header, and then emit a trailer that pads the
4467 /// file out to be a multiple of 16 bytes.
4468 ///
4469 /// struct bc_header {
4470 ///   uint32_t Magic;         // 0x0B17C0DE
4471 ///   uint32_t Version;       // Version, currently always 0.
4472 ///   uint32_t BitcodeOffset; // Offset to traditional bitcode file.
4473 ///   uint32_t BitcodeSize;   // Size of traditional bitcode file.
4474 ///   uint32_t CPUType;       // CPU specifier.
4475 ///   ... potentially more later ...
4476 /// };
4477 static void emitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer,
4478                                          const Triple &TT) {
4479   unsigned CPUType = ~0U;
4480 
4481   // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*,
4482   // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic
4483   // number from /usr/include/mach/machine.h.  It is ok to reproduce the
4484   // specific constants here because they are implicitly part of the Darwin ABI.
4485   enum {
4486     DARWIN_CPU_ARCH_ABI64      = 0x01000000,
4487     DARWIN_CPU_TYPE_X86        = 7,
4488     DARWIN_CPU_TYPE_ARM        = 12,
4489     DARWIN_CPU_TYPE_POWERPC    = 18
4490   };
4491 
4492   Triple::ArchType Arch = TT.getArch();
4493   if (Arch == Triple::x86_64)
4494     CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64;
4495   else if (Arch == Triple::x86)
4496     CPUType = DARWIN_CPU_TYPE_X86;
4497   else if (Arch == Triple::ppc)
4498     CPUType = DARWIN_CPU_TYPE_POWERPC;
4499   else if (Arch == Triple::ppc64)
4500     CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64;
4501   else if (Arch == Triple::arm || Arch == Triple::thumb)
4502     CPUType = DARWIN_CPU_TYPE_ARM;
4503 
4504   // Traditional Bitcode starts after header.
4505   assert(Buffer.size() >= BWH_HeaderSize &&
4506          "Expected header size to be reserved");
4507   unsigned BCOffset = BWH_HeaderSize;
4508   unsigned BCSize = Buffer.size() - BWH_HeaderSize;
4509 
4510   // Write the magic and version.
4511   unsigned Position = 0;
4512   writeInt32ToBuffer(0x0B17C0DE, Buffer, Position);
4513   writeInt32ToBuffer(0, Buffer, Position); // Version.
4514   writeInt32ToBuffer(BCOffset, Buffer, Position);
4515   writeInt32ToBuffer(BCSize, Buffer, Position);
4516   writeInt32ToBuffer(CPUType, Buffer, Position);
4517 
4518   // If the file is not a multiple of 16 bytes, insert dummy padding.
4519   while (Buffer.size() & 15)
4520     Buffer.push_back(0);
4521 }
4522 
4523 /// Helper to write the header common to all bitcode files.
4524 static void writeBitcodeHeader(BitstreamWriter &Stream) {
4525   // Emit the file header.
4526   Stream.Emit((unsigned)'B', 8);
4527   Stream.Emit((unsigned)'C', 8);
4528   Stream.Emit(0x0, 4);
4529   Stream.Emit(0xC, 4);
4530   Stream.Emit(0xE, 4);
4531   Stream.Emit(0xD, 4);
4532 }
4533 
4534 BitcodeWriter::BitcodeWriter(SmallVectorImpl<char> &Buffer, raw_fd_stream *FS)
4535     : Buffer(Buffer), Stream(new BitstreamWriter(Buffer, FS, FlushThreshold)) {
4536   writeBitcodeHeader(*Stream);
4537 }
4538 
4539 BitcodeWriter::~BitcodeWriter() { assert(WroteStrtab); }
4540 
4541 void BitcodeWriter::writeBlob(unsigned Block, unsigned Record, StringRef Blob) {
4542   Stream->EnterSubblock(Block, 3);
4543 
4544   auto Abbv = std::make_shared<BitCodeAbbrev>();
4545   Abbv->Add(BitCodeAbbrevOp(Record));
4546   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob));
4547   auto AbbrevNo = Stream->EmitAbbrev(std::move(Abbv));
4548 
4549   Stream->EmitRecordWithBlob(AbbrevNo, ArrayRef<uint64_t>{Record}, Blob);
4550 
4551   Stream->ExitBlock();
4552 }
4553 
4554 void BitcodeWriter::writeSymtab() {
4555   assert(!WroteStrtab && !WroteSymtab);
4556 
4557   // If any module has module-level inline asm, we will require a registered asm
4558   // parser for the target so that we can create an accurate symbol table for
4559   // the module.
4560   for (Module *M : Mods) {
4561     if (M->getModuleInlineAsm().empty())
4562       continue;
4563 
4564     std::string Err;
4565     const Triple TT(M->getTargetTriple());
4566     const Target *T = TargetRegistry::lookupTarget(TT.str(), Err);
4567     if (!T || !T->hasMCAsmParser())
4568       return;
4569   }
4570 
4571   WroteSymtab = true;
4572   SmallVector<char, 0> Symtab;
4573   // The irsymtab::build function may be unable to create a symbol table if the
4574   // module is malformed (e.g. it contains an invalid alias). Writing a symbol
4575   // table is not required for correctness, but we still want to be able to
4576   // write malformed modules to bitcode files, so swallow the error.
4577   if (Error E = irsymtab::build(Mods, Symtab, StrtabBuilder, Alloc)) {
4578     consumeError(std::move(E));
4579     return;
4580   }
4581 
4582   writeBlob(bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB,
4583             {Symtab.data(), Symtab.size()});
4584 }
4585 
4586 void BitcodeWriter::writeStrtab() {
4587   assert(!WroteStrtab);
4588 
4589   std::vector<char> Strtab;
4590   StrtabBuilder.finalizeInOrder();
4591   Strtab.resize(StrtabBuilder.getSize());
4592   StrtabBuilder.write((uint8_t *)Strtab.data());
4593 
4594   writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB,
4595             {Strtab.data(), Strtab.size()});
4596 
4597   WroteStrtab = true;
4598 }
4599 
4600 void BitcodeWriter::copyStrtab(StringRef Strtab) {
4601   writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, Strtab);
4602   WroteStrtab = true;
4603 }
4604 
4605 void BitcodeWriter::writeModule(const Module &M,
4606                                 bool ShouldPreserveUseListOrder,
4607                                 const ModuleSummaryIndex *Index,
4608                                 bool GenerateHash, ModuleHash *ModHash) {
4609   assert(!WroteStrtab);
4610 
4611   // The Mods vector is used by irsymtab::build, which requires non-const
4612   // Modules in case it needs to materialize metadata. But the bitcode writer
4613   // requires that the module is materialized, so we can cast to non-const here,
4614   // after checking that it is in fact materialized.
4615   assert(M.isMaterialized());
4616   Mods.push_back(const_cast<Module *>(&M));
4617 
4618   ModuleBitcodeWriter ModuleWriter(M, Buffer, StrtabBuilder, *Stream,
4619                                    ShouldPreserveUseListOrder, Index,
4620                                    GenerateHash, ModHash);
4621   ModuleWriter.write();
4622 }
4623 
4624 void BitcodeWriter::writeIndex(
4625     const ModuleSummaryIndex *Index,
4626     const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) {
4627   IndexBitcodeWriter IndexWriter(*Stream, StrtabBuilder, *Index,
4628                                  ModuleToSummariesForIndex);
4629   IndexWriter.write();
4630 }
4631 
4632 /// Write the specified module to the specified output stream.
4633 void llvm::WriteBitcodeToFile(const Module &M, raw_ostream &Out,
4634                               bool ShouldPreserveUseListOrder,
4635                               const ModuleSummaryIndex *Index,
4636                               bool GenerateHash, ModuleHash *ModHash) {
4637   SmallVector<char, 0> Buffer;
4638   Buffer.reserve(256*1024);
4639 
4640   // If this is darwin or another generic macho target, reserve space for the
4641   // header.
4642   Triple TT(M.getTargetTriple());
4643   if (TT.isOSDarwin() || TT.isOSBinFormatMachO())
4644     Buffer.insert(Buffer.begin(), BWH_HeaderSize, 0);
4645 
4646   BitcodeWriter Writer(Buffer, dyn_cast<raw_fd_stream>(&Out));
4647   Writer.writeModule(M, ShouldPreserveUseListOrder, Index, GenerateHash,
4648                      ModHash);
4649   Writer.writeSymtab();
4650   Writer.writeStrtab();
4651 
4652   if (TT.isOSDarwin() || TT.isOSBinFormatMachO())
4653     emitDarwinBCHeaderAndTrailer(Buffer, TT);
4654 
4655   // Write the generated bitstream to "Out".
4656   if (!Buffer.empty())
4657     Out.write((char *)&Buffer.front(), Buffer.size());
4658 }
4659 
4660 void IndexBitcodeWriter::write() {
4661   Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
4662 
4663   writeModuleVersion();
4664 
4665   // Write the module paths in the combined index.
4666   writeModStrings();
4667 
4668   // Write the summary combined index records.
4669   writeCombinedGlobalValueSummary();
4670 
4671   Stream.ExitBlock();
4672 }
4673 
4674 // Write the specified module summary index to the given raw output stream,
4675 // where it will be written in a new bitcode block. This is used when
4676 // writing the combined index file for ThinLTO. When writing a subset of the
4677 // index for a distributed backend, provide a \p ModuleToSummariesForIndex map.
4678 void llvm::WriteIndexToFile(
4679     const ModuleSummaryIndex &Index, raw_ostream &Out,
4680     const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) {
4681   SmallVector<char, 0> Buffer;
4682   Buffer.reserve(256 * 1024);
4683 
4684   BitcodeWriter Writer(Buffer);
4685   Writer.writeIndex(&Index, ModuleToSummariesForIndex);
4686   Writer.writeStrtab();
4687 
4688   Out.write((char *)&Buffer.front(), Buffer.size());
4689 }
4690 
4691 namespace {
4692 
4693 /// Class to manage the bitcode writing for a thin link bitcode file.
4694 class ThinLinkBitcodeWriter : public ModuleBitcodeWriterBase {
4695   /// ModHash is for use in ThinLTO incremental build, generated while writing
4696   /// the module bitcode file.
4697   const ModuleHash *ModHash;
4698 
4699 public:
4700   ThinLinkBitcodeWriter(const Module &M, StringTableBuilder &StrtabBuilder,
4701                         BitstreamWriter &Stream,
4702                         const ModuleSummaryIndex &Index,
4703                         const ModuleHash &ModHash)
4704       : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream,
4705                                 /*ShouldPreserveUseListOrder=*/false, &Index),
4706         ModHash(&ModHash) {}
4707 
4708   void write();
4709 
4710 private:
4711   void writeSimplifiedModuleInfo();
4712 };
4713 
4714 } // end anonymous namespace
4715 
4716 // This function writes a simpilified module info for thin link bitcode file.
4717 // It only contains the source file name along with the name(the offset and
4718 // size in strtab) and linkage for global values. For the global value info
4719 // entry, in order to keep linkage at offset 5, there are three zeros used
4720 // as padding.
4721 void ThinLinkBitcodeWriter::writeSimplifiedModuleInfo() {
4722   SmallVector<unsigned, 64> Vals;
4723   // Emit the module's source file name.
4724   {
4725     StringEncoding Bits = getStringEncoding(M.getSourceFileName());
4726     BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8);
4727     if (Bits == SE_Char6)
4728       AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6);
4729     else if (Bits == SE_Fixed7)
4730       AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7);
4731 
4732     // MODULE_CODE_SOURCE_FILENAME: [namechar x N]
4733     auto Abbv = std::make_shared<BitCodeAbbrev>();
4734     Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME));
4735     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
4736     Abbv->Add(AbbrevOpToUse);
4737     unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv));
4738 
4739     for (const auto P : M.getSourceFileName())
4740       Vals.push_back((unsigned char)P);
4741 
4742     Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev);
4743     Vals.clear();
4744   }
4745 
4746   // Emit the global variable information.
4747   for (const GlobalVariable &GV : M.globals()) {
4748     // GLOBALVAR: [strtab offset, strtab size, 0, 0, 0, linkage]
4749     Vals.push_back(StrtabBuilder.add(GV.getName()));
4750     Vals.push_back(GV.getName().size());
4751     Vals.push_back(0);
4752     Vals.push_back(0);
4753     Vals.push_back(0);
4754     Vals.push_back(getEncodedLinkage(GV));
4755 
4756     Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals);
4757     Vals.clear();
4758   }
4759 
4760   // Emit the function proto information.
4761   for (const Function &F : M) {
4762     // FUNCTION:  [strtab offset, strtab size, 0, 0, 0, linkage]
4763     Vals.push_back(StrtabBuilder.add(F.getName()));
4764     Vals.push_back(F.getName().size());
4765     Vals.push_back(0);
4766     Vals.push_back(0);
4767     Vals.push_back(0);
4768     Vals.push_back(getEncodedLinkage(F));
4769 
4770     Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals);
4771     Vals.clear();
4772   }
4773 
4774   // Emit the alias information.
4775   for (const GlobalAlias &A : M.aliases()) {
4776     // ALIAS: [strtab offset, strtab size, 0, 0, 0, linkage]
4777     Vals.push_back(StrtabBuilder.add(A.getName()));
4778     Vals.push_back(A.getName().size());
4779     Vals.push_back(0);
4780     Vals.push_back(0);
4781     Vals.push_back(0);
4782     Vals.push_back(getEncodedLinkage(A));
4783 
4784     Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals);
4785     Vals.clear();
4786   }
4787 
4788   // Emit the ifunc information.
4789   for (const GlobalIFunc &I : M.ifuncs()) {
4790     // IFUNC: [strtab offset, strtab size, 0, 0, 0, linkage]
4791     Vals.push_back(StrtabBuilder.add(I.getName()));
4792     Vals.push_back(I.getName().size());
4793     Vals.push_back(0);
4794     Vals.push_back(0);
4795     Vals.push_back(0);
4796     Vals.push_back(getEncodedLinkage(I));
4797 
4798     Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals);
4799     Vals.clear();
4800   }
4801 }
4802 
4803 void ThinLinkBitcodeWriter::write() {
4804   Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
4805 
4806   writeModuleVersion();
4807 
4808   writeSimplifiedModuleInfo();
4809 
4810   writePerModuleGlobalValueSummary();
4811 
4812   // Write module hash.
4813   Stream.EmitRecord(bitc::MODULE_CODE_HASH, ArrayRef<uint32_t>(*ModHash));
4814 
4815   Stream.ExitBlock();
4816 }
4817 
4818 void BitcodeWriter::writeThinLinkBitcode(const Module &M,
4819                                          const ModuleSummaryIndex &Index,
4820                                          const ModuleHash &ModHash) {
4821   assert(!WroteStrtab);
4822 
4823   // The Mods vector is used by irsymtab::build, which requires non-const
4824   // Modules in case it needs to materialize metadata. But the bitcode writer
4825   // requires that the module is materialized, so we can cast to non-const here,
4826   // after checking that it is in fact materialized.
4827   assert(M.isMaterialized());
4828   Mods.push_back(const_cast<Module *>(&M));
4829 
4830   ThinLinkBitcodeWriter ThinLinkWriter(M, StrtabBuilder, *Stream, Index,
4831                                        ModHash);
4832   ThinLinkWriter.write();
4833 }
4834 
4835 // Write the specified thin link bitcode file to the given raw output stream,
4836 // where it will be written in a new bitcode block. This is used when
4837 // writing the per-module index file for ThinLTO.
4838 void llvm::WriteThinLinkBitcodeToFile(const Module &M, raw_ostream &Out,
4839                                       const ModuleSummaryIndex &Index,
4840                                       const ModuleHash &ModHash) {
4841   SmallVector<char, 0> Buffer;
4842   Buffer.reserve(256 * 1024);
4843 
4844   BitcodeWriter Writer(Buffer);
4845   Writer.writeThinLinkBitcode(M, Index, ModHash);
4846   Writer.writeSymtab();
4847   Writer.writeStrtab();
4848 
4849   Out.write((char *)&Buffer.front(), Buffer.size());
4850 }
4851 
4852 static const char *getSectionNameForBitcode(const Triple &T) {
4853   switch (T.getObjectFormat()) {
4854   case Triple::MachO:
4855     return "__LLVM,__bitcode";
4856   case Triple::COFF:
4857   case Triple::ELF:
4858   case Triple::Wasm:
4859   case Triple::UnknownObjectFormat:
4860     return ".llvmbc";
4861   case Triple::GOFF:
4862     llvm_unreachable("GOFF is not yet implemented");
4863     break;
4864   case Triple::XCOFF:
4865     llvm_unreachable("XCOFF is not yet implemented");
4866     break;
4867   }
4868   llvm_unreachable("Unimplemented ObjectFormatType");
4869 }
4870 
4871 static const char *getSectionNameForCommandline(const Triple &T) {
4872   switch (T.getObjectFormat()) {
4873   case Triple::MachO:
4874     return "__LLVM,__cmdline";
4875   case Triple::COFF:
4876   case Triple::ELF:
4877   case Triple::Wasm:
4878   case Triple::UnknownObjectFormat:
4879     return ".llvmcmd";
4880   case Triple::GOFF:
4881     llvm_unreachable("GOFF is not yet implemented");
4882     break;
4883   case Triple::XCOFF:
4884     llvm_unreachable("XCOFF is not yet implemented");
4885     break;
4886   }
4887   llvm_unreachable("Unimplemented ObjectFormatType");
4888 }
4889 
4890 void llvm::EmbedBitcodeInModule(llvm::Module &M, llvm::MemoryBufferRef Buf,
4891                                 bool EmbedBitcode, bool EmbedCmdline,
4892                                 const std::vector<uint8_t> &CmdArgs) {
4893   // Save llvm.compiler.used and remove it.
4894   SmallVector<Constant *, 2> UsedArray;
4895   SmallVector<GlobalValue *, 4> UsedGlobals;
4896   Type *UsedElementType = Type::getInt8Ty(M.getContext())->getPointerTo(0);
4897   GlobalVariable *Used = collectUsedGlobalVariables(M, UsedGlobals, true);
4898   for (auto *GV : UsedGlobals) {
4899     if (GV->getName() != "llvm.embedded.module" &&
4900         GV->getName() != "llvm.cmdline")
4901       UsedArray.push_back(
4902           ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType));
4903   }
4904   if (Used)
4905     Used->eraseFromParent();
4906 
4907   // Embed the bitcode for the llvm module.
4908   std::string Data;
4909   ArrayRef<uint8_t> ModuleData;
4910   Triple T(M.getTargetTriple());
4911 
4912   if (EmbedBitcode) {
4913     if (Buf.getBufferSize() == 0 ||
4914         !isBitcode((const unsigned char *)Buf.getBufferStart(),
4915                    (const unsigned char *)Buf.getBufferEnd())) {
4916       // If the input is LLVM Assembly, bitcode is produced by serializing
4917       // the module. Use-lists order need to be preserved in this case.
4918       llvm::raw_string_ostream OS(Data);
4919       llvm::WriteBitcodeToFile(M, OS, /* ShouldPreserveUseListOrder */ true);
4920       ModuleData =
4921           ArrayRef<uint8_t>((const uint8_t *)OS.str().data(), OS.str().size());
4922     } else
4923       // If the input is LLVM bitcode, write the input byte stream directly.
4924       ModuleData = ArrayRef<uint8_t>((const uint8_t *)Buf.getBufferStart(),
4925                                      Buf.getBufferSize());
4926   }
4927   llvm::Constant *ModuleConstant =
4928       llvm::ConstantDataArray::get(M.getContext(), ModuleData);
4929   llvm::GlobalVariable *GV = new llvm::GlobalVariable(
4930       M, ModuleConstant->getType(), true, llvm::GlobalValue::PrivateLinkage,
4931       ModuleConstant);
4932   GV->setSection(getSectionNameForBitcode(T));
4933   // Set alignment to 1 to prevent padding between two contributions from input
4934   // sections after linking.
4935   GV->setAlignment(Align(1));
4936   UsedArray.push_back(
4937       ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType));
4938   if (llvm::GlobalVariable *Old =
4939           M.getGlobalVariable("llvm.embedded.module", true)) {
4940     assert(Old->hasOneUse() &&
4941            "llvm.embedded.module can only be used once in llvm.compiler.used");
4942     GV->takeName(Old);
4943     Old->eraseFromParent();
4944   } else {
4945     GV->setName("llvm.embedded.module");
4946   }
4947 
4948   // Skip if only bitcode needs to be embedded.
4949   if (EmbedCmdline) {
4950     // Embed command-line options.
4951     ArrayRef<uint8_t> CmdData(const_cast<uint8_t *>(CmdArgs.data()),
4952                               CmdArgs.size());
4953     llvm::Constant *CmdConstant =
4954         llvm::ConstantDataArray::get(M.getContext(), CmdData);
4955     GV = new llvm::GlobalVariable(M, CmdConstant->getType(), true,
4956                                   llvm::GlobalValue::PrivateLinkage,
4957                                   CmdConstant);
4958     GV->setSection(getSectionNameForCommandline(T));
4959     GV->setAlignment(Align(1));
4960     UsedArray.push_back(
4961         ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType));
4962     if (llvm::GlobalVariable *Old = M.getGlobalVariable("llvm.cmdline", true)) {
4963       assert(Old->hasOneUse() &&
4964              "llvm.cmdline can only be used once in llvm.compiler.used");
4965       GV->takeName(Old);
4966       Old->eraseFromParent();
4967     } else {
4968       GV->setName("llvm.cmdline");
4969     }
4970   }
4971 
4972   if (UsedArray.empty())
4973     return;
4974 
4975   // Recreate llvm.compiler.used.
4976   ArrayType *ATy = ArrayType::get(UsedElementType, UsedArray.size());
4977   auto *NewUsed = new GlobalVariable(
4978       M, ATy, false, llvm::GlobalValue::AppendingLinkage,
4979       llvm::ConstantArray::get(ATy, UsedArray), "llvm.compiler.used");
4980   NewUsed->setSection("llvm.metadata");
4981 }
4982