1 //===- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Bitcode writer implementation. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Bitcode/BitcodeWriter.h" 14 #include "ValueEnumerator.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/DenseMap.h" 19 #include "llvm/ADT/None.h" 20 #include "llvm/ADT/Optional.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/SmallString.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/StringMap.h" 25 #include "llvm/ADT/StringRef.h" 26 #include "llvm/ADT/Triple.h" 27 #include "llvm/Bitcode/BitcodeReader.h" 28 #include "llvm/Bitcode/LLVMBitCodes.h" 29 #include "llvm/Bitstream/BitCodes.h" 30 #include "llvm/Bitstream/BitstreamWriter.h" 31 #include "llvm/Config/llvm-config.h" 32 #include "llvm/IR/Attributes.h" 33 #include "llvm/IR/BasicBlock.h" 34 #include "llvm/IR/CallSite.h" 35 #include "llvm/IR/Comdat.h" 36 #include "llvm/IR/Constant.h" 37 #include "llvm/IR/Constants.h" 38 #include "llvm/IR/DebugInfoMetadata.h" 39 #include "llvm/IR/DebugLoc.h" 40 #include "llvm/IR/DerivedTypes.h" 41 #include "llvm/IR/Function.h" 42 #include "llvm/IR/GlobalAlias.h" 43 #include "llvm/IR/GlobalIFunc.h" 44 #include "llvm/IR/GlobalObject.h" 45 #include "llvm/IR/GlobalValue.h" 46 #include "llvm/IR/GlobalVariable.h" 47 #include "llvm/IR/InlineAsm.h" 48 #include "llvm/IR/InstrTypes.h" 49 #include "llvm/IR/Instruction.h" 50 #include "llvm/IR/Instructions.h" 51 #include "llvm/IR/LLVMContext.h" 52 #include "llvm/IR/Metadata.h" 53 #include "llvm/IR/Module.h" 54 #include "llvm/IR/ModuleSummaryIndex.h" 55 #include "llvm/IR/Operator.h" 56 #include "llvm/IR/Type.h" 57 #include "llvm/IR/UseListOrder.h" 58 #include "llvm/IR/Value.h" 59 #include "llvm/IR/ValueSymbolTable.h" 60 #include "llvm/MC/StringTableBuilder.h" 61 #include "llvm/Object/IRSymtab.h" 62 #include "llvm/Support/AtomicOrdering.h" 63 #include "llvm/Support/Casting.h" 64 #include "llvm/Support/CommandLine.h" 65 #include "llvm/Support/Endian.h" 66 #include "llvm/Support/Error.h" 67 #include "llvm/Support/ErrorHandling.h" 68 #include "llvm/Support/MathExtras.h" 69 #include "llvm/Support/SHA1.h" 70 #include "llvm/Support/TargetRegistry.h" 71 #include "llvm/Support/raw_ostream.h" 72 #include <algorithm> 73 #include <cassert> 74 #include <cstddef> 75 #include <cstdint> 76 #include <iterator> 77 #include <map> 78 #include <memory> 79 #include <string> 80 #include <utility> 81 #include <vector> 82 83 using namespace llvm; 84 85 static cl::opt<unsigned> 86 IndexThreshold("bitcode-mdindex-threshold", cl::Hidden, cl::init(25), 87 cl::desc("Number of metadatas above which we emit an index " 88 "to enable lazy-loading")); 89 90 static cl::opt<bool> WriteRelBFToSummary( 91 "write-relbf-to-summary", cl::Hidden, cl::init(false), 92 cl::desc("Write relative block frequency to function summary ")); 93 94 extern FunctionSummary::ForceSummaryHotnessType ForceSummaryEdgesCold; 95 96 namespace { 97 98 /// These are manifest constants used by the bitcode writer. They do not need to 99 /// be kept in sync with the reader, but need to be consistent within this file. 100 enum { 101 // VALUE_SYMTAB_BLOCK abbrev id's. 102 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 103 VST_ENTRY_7_ABBREV, 104 VST_ENTRY_6_ABBREV, 105 VST_BBENTRY_6_ABBREV, 106 107 // CONSTANTS_BLOCK abbrev id's. 108 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 109 CONSTANTS_INTEGER_ABBREV, 110 CONSTANTS_CE_CAST_Abbrev, 111 CONSTANTS_NULL_Abbrev, 112 113 // FUNCTION_BLOCK abbrev id's. 114 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 115 FUNCTION_INST_UNOP_ABBREV, 116 FUNCTION_INST_UNOP_FLAGS_ABBREV, 117 FUNCTION_INST_BINOP_ABBREV, 118 FUNCTION_INST_BINOP_FLAGS_ABBREV, 119 FUNCTION_INST_CAST_ABBREV, 120 FUNCTION_INST_RET_VOID_ABBREV, 121 FUNCTION_INST_RET_VAL_ABBREV, 122 FUNCTION_INST_UNREACHABLE_ABBREV, 123 FUNCTION_INST_GEP_ABBREV, 124 }; 125 126 /// Abstract class to manage the bitcode writing, subclassed for each bitcode 127 /// file type. 128 class BitcodeWriterBase { 129 protected: 130 /// The stream created and owned by the client. 131 BitstreamWriter &Stream; 132 133 StringTableBuilder &StrtabBuilder; 134 135 public: 136 /// Constructs a BitcodeWriterBase object that writes to the provided 137 /// \p Stream. 138 BitcodeWriterBase(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder) 139 : Stream(Stream), StrtabBuilder(StrtabBuilder) {} 140 141 protected: 142 void writeBitcodeHeader(); 143 void writeModuleVersion(); 144 }; 145 146 void BitcodeWriterBase::writeModuleVersion() { 147 // VERSION: [version#] 148 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, ArrayRef<uint64_t>{2}); 149 } 150 151 /// Base class to manage the module bitcode writing, currently subclassed for 152 /// ModuleBitcodeWriter and ThinLinkBitcodeWriter. 153 class ModuleBitcodeWriterBase : public BitcodeWriterBase { 154 protected: 155 /// The Module to write to bitcode. 156 const Module &M; 157 158 /// Enumerates ids for all values in the module. 159 ValueEnumerator VE; 160 161 /// Optional per-module index to write for ThinLTO. 162 const ModuleSummaryIndex *Index; 163 164 /// Map that holds the correspondence between GUIDs in the summary index, 165 /// that came from indirect call profiles, and a value id generated by this 166 /// class to use in the VST and summary block records. 167 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 168 169 /// Tracks the last value id recorded in the GUIDToValueMap. 170 unsigned GlobalValueId; 171 172 /// Saves the offset of the VSTOffset record that must eventually be 173 /// backpatched with the offset of the actual VST. 174 uint64_t VSTOffsetPlaceholder = 0; 175 176 public: 177 /// Constructs a ModuleBitcodeWriterBase object for the given Module, 178 /// writing to the provided \p Buffer. 179 ModuleBitcodeWriterBase(const Module &M, StringTableBuilder &StrtabBuilder, 180 BitstreamWriter &Stream, 181 bool ShouldPreserveUseListOrder, 182 const ModuleSummaryIndex *Index) 183 : BitcodeWriterBase(Stream, StrtabBuilder), M(M), 184 VE(M, ShouldPreserveUseListOrder), Index(Index) { 185 // Assign ValueIds to any callee values in the index that came from 186 // indirect call profiles and were recorded as a GUID not a Value* 187 // (which would have been assigned an ID by the ValueEnumerator). 188 // The starting ValueId is just after the number of values in the 189 // ValueEnumerator, so that they can be emitted in the VST. 190 GlobalValueId = VE.getValues().size(); 191 if (!Index) 192 return; 193 for (const auto &GUIDSummaryLists : *Index) 194 // Examine all summaries for this GUID. 195 for (auto &Summary : GUIDSummaryLists.second.SummaryList) 196 if (auto FS = dyn_cast<FunctionSummary>(Summary.get())) 197 // For each call in the function summary, see if the call 198 // is to a GUID (which means it is for an indirect call, 199 // otherwise we would have a Value for it). If so, synthesize 200 // a value id. 201 for (auto &CallEdge : FS->calls()) 202 if (!CallEdge.first.haveGVs() || !CallEdge.first.getValue()) 203 assignValueId(CallEdge.first.getGUID()); 204 } 205 206 protected: 207 void writePerModuleGlobalValueSummary(); 208 209 private: 210 void writePerModuleFunctionSummaryRecord(SmallVector<uint64_t, 64> &NameVals, 211 GlobalValueSummary *Summary, 212 unsigned ValueID, 213 unsigned FSCallsAbbrev, 214 unsigned FSCallsProfileAbbrev, 215 const Function &F); 216 void writeModuleLevelReferences(const GlobalVariable &V, 217 SmallVector<uint64_t, 64> &NameVals, 218 unsigned FSModRefsAbbrev, 219 unsigned FSModVTableRefsAbbrev); 220 221 void assignValueId(GlobalValue::GUID ValGUID) { 222 GUIDToValueIdMap[ValGUID] = ++GlobalValueId; 223 } 224 225 unsigned getValueId(GlobalValue::GUID ValGUID) { 226 const auto &VMI = GUIDToValueIdMap.find(ValGUID); 227 // Expect that any GUID value had a value Id assigned by an 228 // earlier call to assignValueId. 229 assert(VMI != GUIDToValueIdMap.end() && 230 "GUID does not have assigned value Id"); 231 return VMI->second; 232 } 233 234 // Helper to get the valueId for the type of value recorded in VI. 235 unsigned getValueId(ValueInfo VI) { 236 if (!VI.haveGVs() || !VI.getValue()) 237 return getValueId(VI.getGUID()); 238 return VE.getValueID(VI.getValue()); 239 } 240 241 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 242 }; 243 244 /// Class to manage the bitcode writing for a module. 245 class ModuleBitcodeWriter : public ModuleBitcodeWriterBase { 246 /// Pointer to the buffer allocated by caller for bitcode writing. 247 const SmallVectorImpl<char> &Buffer; 248 249 /// True if a module hash record should be written. 250 bool GenerateHash; 251 252 /// If non-null, when GenerateHash is true, the resulting hash is written 253 /// into ModHash. 254 ModuleHash *ModHash; 255 256 SHA1 Hasher; 257 258 /// The start bit of the identification block. 259 uint64_t BitcodeStartBit; 260 261 public: 262 /// Constructs a ModuleBitcodeWriter object for the given Module, 263 /// writing to the provided \p Buffer. 264 ModuleBitcodeWriter(const Module &M, SmallVectorImpl<char> &Buffer, 265 StringTableBuilder &StrtabBuilder, 266 BitstreamWriter &Stream, bool ShouldPreserveUseListOrder, 267 const ModuleSummaryIndex *Index, bool GenerateHash, 268 ModuleHash *ModHash = nullptr) 269 : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream, 270 ShouldPreserveUseListOrder, Index), 271 Buffer(Buffer), GenerateHash(GenerateHash), ModHash(ModHash), 272 BitcodeStartBit(Stream.GetCurrentBitNo()) {} 273 274 /// Emit the current module to the bitstream. 275 void write(); 276 277 private: 278 uint64_t bitcodeStartBit() { return BitcodeStartBit; } 279 280 size_t addToStrtab(StringRef Str); 281 282 void writeAttributeGroupTable(); 283 void writeAttributeTable(); 284 void writeTypeTable(); 285 void writeComdats(); 286 void writeValueSymbolTableForwardDecl(); 287 void writeModuleInfo(); 288 void writeValueAsMetadata(const ValueAsMetadata *MD, 289 SmallVectorImpl<uint64_t> &Record); 290 void writeMDTuple(const MDTuple *N, SmallVectorImpl<uint64_t> &Record, 291 unsigned Abbrev); 292 unsigned createDILocationAbbrev(); 293 void writeDILocation(const DILocation *N, SmallVectorImpl<uint64_t> &Record, 294 unsigned &Abbrev); 295 unsigned createGenericDINodeAbbrev(); 296 void writeGenericDINode(const GenericDINode *N, 297 SmallVectorImpl<uint64_t> &Record, unsigned &Abbrev); 298 void writeDISubrange(const DISubrange *N, SmallVectorImpl<uint64_t> &Record, 299 unsigned Abbrev); 300 void writeDIEnumerator(const DIEnumerator *N, 301 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 302 void writeDIBasicType(const DIBasicType *N, SmallVectorImpl<uint64_t> &Record, 303 unsigned Abbrev); 304 void writeDIDerivedType(const DIDerivedType *N, 305 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 306 void writeDICompositeType(const DICompositeType *N, 307 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 308 void writeDISubroutineType(const DISubroutineType *N, 309 SmallVectorImpl<uint64_t> &Record, 310 unsigned Abbrev); 311 void writeDIFile(const DIFile *N, SmallVectorImpl<uint64_t> &Record, 312 unsigned Abbrev); 313 void writeDICompileUnit(const DICompileUnit *N, 314 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 315 void writeDISubprogram(const DISubprogram *N, 316 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 317 void writeDILexicalBlock(const DILexicalBlock *N, 318 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 319 void writeDILexicalBlockFile(const DILexicalBlockFile *N, 320 SmallVectorImpl<uint64_t> &Record, 321 unsigned Abbrev); 322 void writeDICommonBlock(const DICommonBlock *N, 323 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 324 void writeDINamespace(const DINamespace *N, SmallVectorImpl<uint64_t> &Record, 325 unsigned Abbrev); 326 void writeDIMacro(const DIMacro *N, SmallVectorImpl<uint64_t> &Record, 327 unsigned Abbrev); 328 void writeDIMacroFile(const DIMacroFile *N, SmallVectorImpl<uint64_t> &Record, 329 unsigned Abbrev); 330 void writeDIModule(const DIModule *N, SmallVectorImpl<uint64_t> &Record, 331 unsigned Abbrev); 332 void writeDITemplateTypeParameter(const DITemplateTypeParameter *N, 333 SmallVectorImpl<uint64_t> &Record, 334 unsigned Abbrev); 335 void writeDITemplateValueParameter(const DITemplateValueParameter *N, 336 SmallVectorImpl<uint64_t> &Record, 337 unsigned Abbrev); 338 void writeDIGlobalVariable(const DIGlobalVariable *N, 339 SmallVectorImpl<uint64_t> &Record, 340 unsigned Abbrev); 341 void writeDILocalVariable(const DILocalVariable *N, 342 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 343 void writeDILabel(const DILabel *N, 344 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 345 void writeDIExpression(const DIExpression *N, 346 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 347 void writeDIGlobalVariableExpression(const DIGlobalVariableExpression *N, 348 SmallVectorImpl<uint64_t> &Record, 349 unsigned Abbrev); 350 void writeDIObjCProperty(const DIObjCProperty *N, 351 SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); 352 void writeDIImportedEntity(const DIImportedEntity *N, 353 SmallVectorImpl<uint64_t> &Record, 354 unsigned Abbrev); 355 unsigned createNamedMetadataAbbrev(); 356 void writeNamedMetadata(SmallVectorImpl<uint64_t> &Record); 357 unsigned createMetadataStringsAbbrev(); 358 void writeMetadataStrings(ArrayRef<const Metadata *> Strings, 359 SmallVectorImpl<uint64_t> &Record); 360 void writeMetadataRecords(ArrayRef<const Metadata *> MDs, 361 SmallVectorImpl<uint64_t> &Record, 362 std::vector<unsigned> *MDAbbrevs = nullptr, 363 std::vector<uint64_t> *IndexPos = nullptr); 364 void writeModuleMetadata(); 365 void writeFunctionMetadata(const Function &F); 366 void writeFunctionMetadataAttachment(const Function &F); 367 void writeGlobalVariableMetadataAttachment(const GlobalVariable &GV); 368 void pushGlobalMetadataAttachment(SmallVectorImpl<uint64_t> &Record, 369 const GlobalObject &GO); 370 void writeModuleMetadataKinds(); 371 void writeOperandBundleTags(); 372 void writeSyncScopeNames(); 373 void writeConstants(unsigned FirstVal, unsigned LastVal, bool isGlobal); 374 void writeModuleConstants(); 375 bool pushValueAndType(const Value *V, unsigned InstID, 376 SmallVectorImpl<unsigned> &Vals); 377 void writeOperandBundles(ImmutableCallSite CS, unsigned InstID); 378 void pushValue(const Value *V, unsigned InstID, 379 SmallVectorImpl<unsigned> &Vals); 380 void pushValueSigned(const Value *V, unsigned InstID, 381 SmallVectorImpl<uint64_t> &Vals); 382 void writeInstruction(const Instruction &I, unsigned InstID, 383 SmallVectorImpl<unsigned> &Vals); 384 void writeFunctionLevelValueSymbolTable(const ValueSymbolTable &VST); 385 void writeGlobalValueSymbolTable( 386 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 387 void writeUseList(UseListOrder &&Order); 388 void writeUseListBlock(const Function *F); 389 void 390 writeFunction(const Function &F, 391 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); 392 void writeBlockInfo(); 393 void writeModuleHash(size_t BlockStartPos); 394 395 unsigned getEncodedSyncScopeID(SyncScope::ID SSID) { 396 return unsigned(SSID); 397 } 398 }; 399 400 /// Class to manage the bitcode writing for a combined index. 401 class IndexBitcodeWriter : public BitcodeWriterBase { 402 /// The combined index to write to bitcode. 403 const ModuleSummaryIndex &Index; 404 405 /// When writing a subset of the index for distributed backends, client 406 /// provides a map of modules to the corresponding GUIDs/summaries to write. 407 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex; 408 409 /// Map that holds the correspondence between the GUID used in the combined 410 /// index and a value id generated by this class to use in references. 411 std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; 412 413 /// Tracks the last value id recorded in the GUIDToValueMap. 414 unsigned GlobalValueId = 0; 415 416 public: 417 /// Constructs a IndexBitcodeWriter object for the given combined index, 418 /// writing to the provided \p Buffer. When writing a subset of the index 419 /// for a distributed backend, provide a \p ModuleToSummariesForIndex map. 420 IndexBitcodeWriter(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder, 421 const ModuleSummaryIndex &Index, 422 const std::map<std::string, GVSummaryMapTy> 423 *ModuleToSummariesForIndex = nullptr) 424 : BitcodeWriterBase(Stream, StrtabBuilder), Index(Index), 425 ModuleToSummariesForIndex(ModuleToSummariesForIndex) { 426 // Assign unique value ids to all summaries to be written, for use 427 // in writing out the call graph edges. Save the mapping from GUID 428 // to the new global value id to use when writing those edges, which 429 // are currently saved in the index in terms of GUID. 430 forEachSummary([&](GVInfo I, bool) { 431 GUIDToValueIdMap[I.first] = ++GlobalValueId; 432 }); 433 } 434 435 /// The below iterator returns the GUID and associated summary. 436 using GVInfo = std::pair<GlobalValue::GUID, GlobalValueSummary *>; 437 438 /// Calls the callback for each value GUID and summary to be written to 439 /// bitcode. This hides the details of whether they are being pulled from the 440 /// entire index or just those in a provided ModuleToSummariesForIndex map. 441 template<typename Functor> 442 void forEachSummary(Functor Callback) { 443 if (ModuleToSummariesForIndex) { 444 for (auto &M : *ModuleToSummariesForIndex) 445 for (auto &Summary : M.second) { 446 Callback(Summary, false); 447 // Ensure aliasee is handled, e.g. for assigning a valueId, 448 // even if we are not importing the aliasee directly (the 449 // imported alias will contain a copy of aliasee). 450 if (auto *AS = dyn_cast<AliasSummary>(Summary.getSecond())) 451 Callback({AS->getAliaseeGUID(), &AS->getAliasee()}, true); 452 } 453 } else { 454 for (auto &Summaries : Index) 455 for (auto &Summary : Summaries.second.SummaryList) 456 Callback({Summaries.first, Summary.get()}, false); 457 } 458 } 459 460 /// Calls the callback for each entry in the modulePaths StringMap that 461 /// should be written to the module path string table. This hides the details 462 /// of whether they are being pulled from the entire index or just those in a 463 /// provided ModuleToSummariesForIndex map. 464 template <typename Functor> void forEachModule(Functor Callback) { 465 if (ModuleToSummariesForIndex) { 466 for (const auto &M : *ModuleToSummariesForIndex) { 467 const auto &MPI = Index.modulePaths().find(M.first); 468 if (MPI == Index.modulePaths().end()) { 469 // This should only happen if the bitcode file was empty, in which 470 // case we shouldn't be importing (the ModuleToSummariesForIndex 471 // would only include the module we are writing and index for). 472 assert(ModuleToSummariesForIndex->size() == 1); 473 continue; 474 } 475 Callback(*MPI); 476 } 477 } else { 478 for (const auto &MPSE : Index.modulePaths()) 479 Callback(MPSE); 480 } 481 } 482 483 /// Main entry point for writing a combined index to bitcode. 484 void write(); 485 486 private: 487 void writeModStrings(); 488 void writeCombinedGlobalValueSummary(); 489 490 Optional<unsigned> getValueId(GlobalValue::GUID ValGUID) { 491 auto VMI = GUIDToValueIdMap.find(ValGUID); 492 if (VMI == GUIDToValueIdMap.end()) 493 return None; 494 return VMI->second; 495 } 496 497 std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } 498 }; 499 500 } // end anonymous namespace 501 502 static unsigned getEncodedCastOpcode(unsigned Opcode) { 503 switch (Opcode) { 504 default: llvm_unreachable("Unknown cast instruction!"); 505 case Instruction::Trunc : return bitc::CAST_TRUNC; 506 case Instruction::ZExt : return bitc::CAST_ZEXT; 507 case Instruction::SExt : return bitc::CAST_SEXT; 508 case Instruction::FPToUI : return bitc::CAST_FPTOUI; 509 case Instruction::FPToSI : return bitc::CAST_FPTOSI; 510 case Instruction::UIToFP : return bitc::CAST_UITOFP; 511 case Instruction::SIToFP : return bitc::CAST_SITOFP; 512 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; 513 case Instruction::FPExt : return bitc::CAST_FPEXT; 514 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; 515 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; 516 case Instruction::BitCast : return bitc::CAST_BITCAST; 517 case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST; 518 } 519 } 520 521 static unsigned getEncodedUnaryOpcode(unsigned Opcode) { 522 switch (Opcode) { 523 default: llvm_unreachable("Unknown binary instruction!"); 524 case Instruction::FNeg: return bitc::UNOP_FNEG; 525 } 526 } 527 528 static unsigned getEncodedBinaryOpcode(unsigned Opcode) { 529 switch (Opcode) { 530 default: llvm_unreachable("Unknown binary instruction!"); 531 case Instruction::Add: 532 case Instruction::FAdd: return bitc::BINOP_ADD; 533 case Instruction::Sub: 534 case Instruction::FSub: return bitc::BINOP_SUB; 535 case Instruction::Mul: 536 case Instruction::FMul: return bitc::BINOP_MUL; 537 case Instruction::UDiv: return bitc::BINOP_UDIV; 538 case Instruction::FDiv: 539 case Instruction::SDiv: return bitc::BINOP_SDIV; 540 case Instruction::URem: return bitc::BINOP_UREM; 541 case Instruction::FRem: 542 case Instruction::SRem: return bitc::BINOP_SREM; 543 case Instruction::Shl: return bitc::BINOP_SHL; 544 case Instruction::LShr: return bitc::BINOP_LSHR; 545 case Instruction::AShr: return bitc::BINOP_ASHR; 546 case Instruction::And: return bitc::BINOP_AND; 547 case Instruction::Or: return bitc::BINOP_OR; 548 case Instruction::Xor: return bitc::BINOP_XOR; 549 } 550 } 551 552 static unsigned getEncodedRMWOperation(AtomicRMWInst::BinOp Op) { 553 switch (Op) { 554 default: llvm_unreachable("Unknown RMW operation!"); 555 case AtomicRMWInst::Xchg: return bitc::RMW_XCHG; 556 case AtomicRMWInst::Add: return bitc::RMW_ADD; 557 case AtomicRMWInst::Sub: return bitc::RMW_SUB; 558 case AtomicRMWInst::And: return bitc::RMW_AND; 559 case AtomicRMWInst::Nand: return bitc::RMW_NAND; 560 case AtomicRMWInst::Or: return bitc::RMW_OR; 561 case AtomicRMWInst::Xor: return bitc::RMW_XOR; 562 case AtomicRMWInst::Max: return bitc::RMW_MAX; 563 case AtomicRMWInst::Min: return bitc::RMW_MIN; 564 case AtomicRMWInst::UMax: return bitc::RMW_UMAX; 565 case AtomicRMWInst::UMin: return bitc::RMW_UMIN; 566 case AtomicRMWInst::FAdd: return bitc::RMW_FADD; 567 case AtomicRMWInst::FSub: return bitc::RMW_FSUB; 568 } 569 } 570 571 static unsigned getEncodedOrdering(AtomicOrdering Ordering) { 572 switch (Ordering) { 573 case AtomicOrdering::NotAtomic: return bitc::ORDERING_NOTATOMIC; 574 case AtomicOrdering::Unordered: return bitc::ORDERING_UNORDERED; 575 case AtomicOrdering::Monotonic: return bitc::ORDERING_MONOTONIC; 576 case AtomicOrdering::Acquire: return bitc::ORDERING_ACQUIRE; 577 case AtomicOrdering::Release: return bitc::ORDERING_RELEASE; 578 case AtomicOrdering::AcquireRelease: return bitc::ORDERING_ACQREL; 579 case AtomicOrdering::SequentiallyConsistent: return bitc::ORDERING_SEQCST; 580 } 581 llvm_unreachable("Invalid ordering"); 582 } 583 584 static void writeStringRecord(BitstreamWriter &Stream, unsigned Code, 585 StringRef Str, unsigned AbbrevToUse) { 586 SmallVector<unsigned, 64> Vals; 587 588 // Code: [strchar x N] 589 for (unsigned i = 0, e = Str.size(); i != e; ++i) { 590 if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i])) 591 AbbrevToUse = 0; 592 Vals.push_back(Str[i]); 593 } 594 595 // Emit the finished record. 596 Stream.EmitRecord(Code, Vals, AbbrevToUse); 597 } 598 599 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) { 600 switch (Kind) { 601 case Attribute::Alignment: 602 return bitc::ATTR_KIND_ALIGNMENT; 603 case Attribute::AllocSize: 604 return bitc::ATTR_KIND_ALLOC_SIZE; 605 case Attribute::AlwaysInline: 606 return bitc::ATTR_KIND_ALWAYS_INLINE; 607 case Attribute::ArgMemOnly: 608 return bitc::ATTR_KIND_ARGMEMONLY; 609 case Attribute::Builtin: 610 return bitc::ATTR_KIND_BUILTIN; 611 case Attribute::ByVal: 612 return bitc::ATTR_KIND_BY_VAL; 613 case Attribute::Convergent: 614 return bitc::ATTR_KIND_CONVERGENT; 615 case Attribute::InAlloca: 616 return bitc::ATTR_KIND_IN_ALLOCA; 617 case Attribute::Cold: 618 return bitc::ATTR_KIND_COLD; 619 case Attribute::InaccessibleMemOnly: 620 return bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY; 621 case Attribute::InaccessibleMemOrArgMemOnly: 622 return bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY; 623 case Attribute::InlineHint: 624 return bitc::ATTR_KIND_INLINE_HINT; 625 case Attribute::InReg: 626 return bitc::ATTR_KIND_IN_REG; 627 case Attribute::JumpTable: 628 return bitc::ATTR_KIND_JUMP_TABLE; 629 case Attribute::MinSize: 630 return bitc::ATTR_KIND_MIN_SIZE; 631 case Attribute::Naked: 632 return bitc::ATTR_KIND_NAKED; 633 case Attribute::Nest: 634 return bitc::ATTR_KIND_NEST; 635 case Attribute::NoAlias: 636 return bitc::ATTR_KIND_NO_ALIAS; 637 case Attribute::NoBuiltin: 638 return bitc::ATTR_KIND_NO_BUILTIN; 639 case Attribute::NoCapture: 640 return bitc::ATTR_KIND_NO_CAPTURE; 641 case Attribute::NoDuplicate: 642 return bitc::ATTR_KIND_NO_DUPLICATE; 643 case Attribute::NoFree: 644 return bitc::ATTR_KIND_NOFREE; 645 case Attribute::NoImplicitFloat: 646 return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT; 647 case Attribute::NoInline: 648 return bitc::ATTR_KIND_NO_INLINE; 649 case Attribute::NoRecurse: 650 return bitc::ATTR_KIND_NO_RECURSE; 651 case Attribute::NonLazyBind: 652 return bitc::ATTR_KIND_NON_LAZY_BIND; 653 case Attribute::NonNull: 654 return bitc::ATTR_KIND_NON_NULL; 655 case Attribute::Dereferenceable: 656 return bitc::ATTR_KIND_DEREFERENCEABLE; 657 case Attribute::DereferenceableOrNull: 658 return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL; 659 case Attribute::NoRedZone: 660 return bitc::ATTR_KIND_NO_RED_ZONE; 661 case Attribute::NoReturn: 662 return bitc::ATTR_KIND_NO_RETURN; 663 case Attribute::NoSync: 664 return bitc::ATTR_KIND_NOSYNC; 665 case Attribute::NoCfCheck: 666 return bitc::ATTR_KIND_NOCF_CHECK; 667 case Attribute::NoUnwind: 668 return bitc::ATTR_KIND_NO_UNWIND; 669 case Attribute::OptForFuzzing: 670 return bitc::ATTR_KIND_OPT_FOR_FUZZING; 671 case Attribute::OptimizeForSize: 672 return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE; 673 case Attribute::OptimizeNone: 674 return bitc::ATTR_KIND_OPTIMIZE_NONE; 675 case Attribute::ReadNone: 676 return bitc::ATTR_KIND_READ_NONE; 677 case Attribute::ReadOnly: 678 return bitc::ATTR_KIND_READ_ONLY; 679 case Attribute::Returned: 680 return bitc::ATTR_KIND_RETURNED; 681 case Attribute::ReturnsTwice: 682 return bitc::ATTR_KIND_RETURNS_TWICE; 683 case Attribute::SExt: 684 return bitc::ATTR_KIND_S_EXT; 685 case Attribute::Speculatable: 686 return bitc::ATTR_KIND_SPECULATABLE; 687 case Attribute::StackAlignment: 688 return bitc::ATTR_KIND_STACK_ALIGNMENT; 689 case Attribute::StackProtect: 690 return bitc::ATTR_KIND_STACK_PROTECT; 691 case Attribute::StackProtectReq: 692 return bitc::ATTR_KIND_STACK_PROTECT_REQ; 693 case Attribute::StackProtectStrong: 694 return bitc::ATTR_KIND_STACK_PROTECT_STRONG; 695 case Attribute::SafeStack: 696 return bitc::ATTR_KIND_SAFESTACK; 697 case Attribute::ShadowCallStack: 698 return bitc::ATTR_KIND_SHADOWCALLSTACK; 699 case Attribute::StrictFP: 700 return bitc::ATTR_KIND_STRICT_FP; 701 case Attribute::StructRet: 702 return bitc::ATTR_KIND_STRUCT_RET; 703 case Attribute::SanitizeAddress: 704 return bitc::ATTR_KIND_SANITIZE_ADDRESS; 705 case Attribute::SanitizeHWAddress: 706 return bitc::ATTR_KIND_SANITIZE_HWADDRESS; 707 case Attribute::SanitizeThread: 708 return bitc::ATTR_KIND_SANITIZE_THREAD; 709 case Attribute::SanitizeMemory: 710 return bitc::ATTR_KIND_SANITIZE_MEMORY; 711 case Attribute::SpeculativeLoadHardening: 712 return bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING; 713 case Attribute::SwiftError: 714 return bitc::ATTR_KIND_SWIFT_ERROR; 715 case Attribute::SwiftSelf: 716 return bitc::ATTR_KIND_SWIFT_SELF; 717 case Attribute::UWTable: 718 return bitc::ATTR_KIND_UW_TABLE; 719 case Attribute::WillReturn: 720 return bitc::ATTR_KIND_WILLRETURN; 721 case Attribute::WriteOnly: 722 return bitc::ATTR_KIND_WRITEONLY; 723 case Attribute::ZExt: 724 return bitc::ATTR_KIND_Z_EXT; 725 case Attribute::ImmArg: 726 return bitc::ATTR_KIND_IMMARG; 727 case Attribute::SanitizeMemTag: 728 return bitc::ATTR_KIND_SANITIZE_MEMTAG; 729 case Attribute::EndAttrKinds: 730 llvm_unreachable("Can not encode end-attribute kinds marker."); 731 case Attribute::None: 732 llvm_unreachable("Can not encode none-attribute."); 733 case Attribute::EmptyKey: 734 case Attribute::TombstoneKey: 735 llvm_unreachable("Trying to encode EmptyKey/TombstoneKey"); 736 } 737 738 llvm_unreachable("Trying to encode unknown attribute"); 739 } 740 741 void ModuleBitcodeWriter::writeAttributeGroupTable() { 742 const std::vector<ValueEnumerator::IndexAndAttrSet> &AttrGrps = 743 VE.getAttributeGroups(); 744 if (AttrGrps.empty()) return; 745 746 Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3); 747 748 SmallVector<uint64_t, 64> Record; 749 for (ValueEnumerator::IndexAndAttrSet Pair : AttrGrps) { 750 unsigned AttrListIndex = Pair.first; 751 AttributeSet AS = Pair.second; 752 Record.push_back(VE.getAttributeGroupID(Pair)); 753 Record.push_back(AttrListIndex); 754 755 for (Attribute Attr : AS) { 756 if (Attr.isEnumAttribute()) { 757 Record.push_back(0); 758 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 759 } else if (Attr.isIntAttribute()) { 760 Record.push_back(1); 761 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 762 Record.push_back(Attr.getValueAsInt()); 763 } else if (Attr.isStringAttribute()) { 764 StringRef Kind = Attr.getKindAsString(); 765 StringRef Val = Attr.getValueAsString(); 766 767 Record.push_back(Val.empty() ? 3 : 4); 768 Record.append(Kind.begin(), Kind.end()); 769 Record.push_back(0); 770 if (!Val.empty()) { 771 Record.append(Val.begin(), Val.end()); 772 Record.push_back(0); 773 } 774 } else { 775 assert(Attr.isTypeAttribute()); 776 Type *Ty = Attr.getValueAsType(); 777 Record.push_back(Ty ? 6 : 5); 778 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 779 if (Ty) 780 Record.push_back(VE.getTypeID(Attr.getValueAsType())); 781 } 782 } 783 784 Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record); 785 Record.clear(); 786 } 787 788 Stream.ExitBlock(); 789 } 790 791 void ModuleBitcodeWriter::writeAttributeTable() { 792 const std::vector<AttributeList> &Attrs = VE.getAttributeLists(); 793 if (Attrs.empty()) return; 794 795 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 796 797 SmallVector<uint64_t, 64> Record; 798 for (unsigned i = 0, e = Attrs.size(); i != e; ++i) { 799 AttributeList AL = Attrs[i]; 800 for (unsigned i = AL.index_begin(), e = AL.index_end(); i != e; ++i) { 801 AttributeSet AS = AL.getAttributes(i); 802 if (AS.hasAttributes()) 803 Record.push_back(VE.getAttributeGroupID({i, AS})); 804 } 805 806 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 807 Record.clear(); 808 } 809 810 Stream.ExitBlock(); 811 } 812 813 /// WriteTypeTable - Write out the type table for a module. 814 void ModuleBitcodeWriter::writeTypeTable() { 815 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 816 817 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */); 818 SmallVector<uint64_t, 64> TypeVals; 819 820 uint64_t NumBits = VE.computeBitsRequiredForTypeIndicies(); 821 822 // Abbrev for TYPE_CODE_POINTER. 823 auto Abbv = std::make_shared<BitCodeAbbrev>(); 824 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER)); 825 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 826 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 827 unsigned PtrAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 828 829 // Abbrev for TYPE_CODE_FUNCTION. 830 Abbv = std::make_shared<BitCodeAbbrev>(); 831 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 832 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 833 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 834 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 835 unsigned FunctionAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 836 837 // Abbrev for TYPE_CODE_STRUCT_ANON. 838 Abbv = std::make_shared<BitCodeAbbrev>(); 839 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON)); 840 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 841 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 842 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 843 unsigned StructAnonAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 844 845 // Abbrev for TYPE_CODE_STRUCT_NAME. 846 Abbv = std::make_shared<BitCodeAbbrev>(); 847 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME)); 848 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 849 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 850 unsigned StructNameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 851 852 // Abbrev for TYPE_CODE_STRUCT_NAMED. 853 Abbv = std::make_shared<BitCodeAbbrev>(); 854 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED)); 855 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 856 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 857 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 858 unsigned StructNamedAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 859 860 // Abbrev for TYPE_CODE_ARRAY. 861 Abbv = std::make_shared<BitCodeAbbrev>(); 862 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 863 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 864 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 865 unsigned ArrayAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 866 867 // Emit an entry count so the reader can reserve space. 868 TypeVals.push_back(TypeList.size()); 869 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 870 TypeVals.clear(); 871 872 // Loop over all of the types, emitting each in turn. 873 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) { 874 Type *T = TypeList[i]; 875 int AbbrevToUse = 0; 876 unsigned Code = 0; 877 878 switch (T->getTypeID()) { 879 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; 880 case Type::HalfTyID: Code = bitc::TYPE_CODE_HALF; break; 881 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; 882 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; 883 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break; 884 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break; 885 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; 886 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; 887 case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break; 888 case Type::X86_MMXTyID: Code = bitc::TYPE_CODE_X86_MMX; break; 889 case Type::TokenTyID: Code = bitc::TYPE_CODE_TOKEN; break; 890 case Type::IntegerTyID: 891 // INTEGER: [width] 892 Code = bitc::TYPE_CODE_INTEGER; 893 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 894 break; 895 case Type::PointerTyID: { 896 PointerType *PTy = cast<PointerType>(T); 897 // POINTER: [pointee type, address space] 898 Code = bitc::TYPE_CODE_POINTER; 899 TypeVals.push_back(VE.getTypeID(PTy->getElementType())); 900 unsigned AddressSpace = PTy->getAddressSpace(); 901 TypeVals.push_back(AddressSpace); 902 if (AddressSpace == 0) AbbrevToUse = PtrAbbrev; 903 break; 904 } 905 case Type::FunctionTyID: { 906 FunctionType *FT = cast<FunctionType>(T); 907 // FUNCTION: [isvararg, retty, paramty x N] 908 Code = bitc::TYPE_CODE_FUNCTION; 909 TypeVals.push_back(FT->isVarArg()); 910 TypeVals.push_back(VE.getTypeID(FT->getReturnType())); 911 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) 912 TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); 913 AbbrevToUse = FunctionAbbrev; 914 break; 915 } 916 case Type::StructTyID: { 917 StructType *ST = cast<StructType>(T); 918 // STRUCT: [ispacked, eltty x N] 919 TypeVals.push_back(ST->isPacked()); 920 // Output all of the element types. 921 for (StructType::element_iterator I = ST->element_begin(), 922 E = ST->element_end(); I != E; ++I) 923 TypeVals.push_back(VE.getTypeID(*I)); 924 925 if (ST->isLiteral()) { 926 Code = bitc::TYPE_CODE_STRUCT_ANON; 927 AbbrevToUse = StructAnonAbbrev; 928 } else { 929 if (ST->isOpaque()) { 930 Code = bitc::TYPE_CODE_OPAQUE; 931 } else { 932 Code = bitc::TYPE_CODE_STRUCT_NAMED; 933 AbbrevToUse = StructNamedAbbrev; 934 } 935 936 // Emit the name if it is present. 937 if (!ST->getName().empty()) 938 writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, ST->getName(), 939 StructNameAbbrev); 940 } 941 break; 942 } 943 case Type::ArrayTyID: { 944 ArrayType *AT = cast<ArrayType>(T); 945 // ARRAY: [numelts, eltty] 946 Code = bitc::TYPE_CODE_ARRAY; 947 TypeVals.push_back(AT->getNumElements()); 948 TypeVals.push_back(VE.getTypeID(AT->getElementType())); 949 AbbrevToUse = ArrayAbbrev; 950 break; 951 } 952 case Type::VectorTyID: { 953 VectorType *VT = cast<VectorType>(T); 954 // VECTOR [numelts, eltty] or 955 // [numelts, eltty, scalable] 956 Code = bitc::TYPE_CODE_VECTOR; 957 TypeVals.push_back(VT->getNumElements()); 958 TypeVals.push_back(VE.getTypeID(VT->getElementType())); 959 if (VT->isScalable()) 960 TypeVals.push_back(VT->isScalable()); 961 break; 962 } 963 } 964 965 // Emit the finished record. 966 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 967 TypeVals.clear(); 968 } 969 970 Stream.ExitBlock(); 971 } 972 973 static unsigned getEncodedLinkage(const GlobalValue::LinkageTypes Linkage) { 974 switch (Linkage) { 975 case GlobalValue::ExternalLinkage: 976 return 0; 977 case GlobalValue::WeakAnyLinkage: 978 return 16; 979 case GlobalValue::AppendingLinkage: 980 return 2; 981 case GlobalValue::InternalLinkage: 982 return 3; 983 case GlobalValue::LinkOnceAnyLinkage: 984 return 18; 985 case GlobalValue::ExternalWeakLinkage: 986 return 7; 987 case GlobalValue::CommonLinkage: 988 return 8; 989 case GlobalValue::PrivateLinkage: 990 return 9; 991 case GlobalValue::WeakODRLinkage: 992 return 17; 993 case GlobalValue::LinkOnceODRLinkage: 994 return 19; 995 case GlobalValue::AvailableExternallyLinkage: 996 return 12; 997 } 998 llvm_unreachable("Invalid linkage"); 999 } 1000 1001 static unsigned getEncodedLinkage(const GlobalValue &GV) { 1002 return getEncodedLinkage(GV.getLinkage()); 1003 } 1004 1005 static uint64_t getEncodedFFlags(FunctionSummary::FFlags Flags) { 1006 uint64_t RawFlags = 0; 1007 RawFlags |= Flags.ReadNone; 1008 RawFlags |= (Flags.ReadOnly << 1); 1009 RawFlags |= (Flags.NoRecurse << 2); 1010 RawFlags |= (Flags.ReturnDoesNotAlias << 3); 1011 RawFlags |= (Flags.NoInline << 4); 1012 RawFlags |= (Flags.AlwaysInline << 5); 1013 return RawFlags; 1014 } 1015 1016 // Decode the flags for GlobalValue in the summary 1017 static uint64_t getEncodedGVSummaryFlags(GlobalValueSummary::GVFlags Flags) { 1018 uint64_t RawFlags = 0; 1019 1020 RawFlags |= Flags.NotEligibleToImport; // bool 1021 RawFlags |= (Flags.Live << 1); 1022 RawFlags |= (Flags.DSOLocal << 2); 1023 RawFlags |= (Flags.CanAutoHide << 3); 1024 1025 // Linkage don't need to be remapped at that time for the summary. Any future 1026 // change to the getEncodedLinkage() function will need to be taken into 1027 // account here as well. 1028 RawFlags = (RawFlags << 4) | Flags.Linkage; // 4 bits 1029 1030 return RawFlags; 1031 } 1032 1033 static uint64_t getEncodedGVarFlags(GlobalVarSummary::GVarFlags Flags) { 1034 uint64_t RawFlags = Flags.MaybeReadOnly | (Flags.MaybeWriteOnly << 1) | 1035 (Flags.Constant << 2) | Flags.VCallVisibility << 3; 1036 return RawFlags; 1037 } 1038 1039 static unsigned getEncodedVisibility(const GlobalValue &GV) { 1040 switch (GV.getVisibility()) { 1041 case GlobalValue::DefaultVisibility: return 0; 1042 case GlobalValue::HiddenVisibility: return 1; 1043 case GlobalValue::ProtectedVisibility: return 2; 1044 } 1045 llvm_unreachable("Invalid visibility"); 1046 } 1047 1048 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) { 1049 switch (GV.getDLLStorageClass()) { 1050 case GlobalValue::DefaultStorageClass: return 0; 1051 case GlobalValue::DLLImportStorageClass: return 1; 1052 case GlobalValue::DLLExportStorageClass: return 2; 1053 } 1054 llvm_unreachable("Invalid DLL storage class"); 1055 } 1056 1057 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) { 1058 switch (GV.getThreadLocalMode()) { 1059 case GlobalVariable::NotThreadLocal: return 0; 1060 case GlobalVariable::GeneralDynamicTLSModel: return 1; 1061 case GlobalVariable::LocalDynamicTLSModel: return 2; 1062 case GlobalVariable::InitialExecTLSModel: return 3; 1063 case GlobalVariable::LocalExecTLSModel: return 4; 1064 } 1065 llvm_unreachable("Invalid TLS model"); 1066 } 1067 1068 static unsigned getEncodedComdatSelectionKind(const Comdat &C) { 1069 switch (C.getSelectionKind()) { 1070 case Comdat::Any: 1071 return bitc::COMDAT_SELECTION_KIND_ANY; 1072 case Comdat::ExactMatch: 1073 return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH; 1074 case Comdat::Largest: 1075 return bitc::COMDAT_SELECTION_KIND_LARGEST; 1076 case Comdat::NoDuplicates: 1077 return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES; 1078 case Comdat::SameSize: 1079 return bitc::COMDAT_SELECTION_KIND_SAME_SIZE; 1080 } 1081 llvm_unreachable("Invalid selection kind"); 1082 } 1083 1084 static unsigned getEncodedUnnamedAddr(const GlobalValue &GV) { 1085 switch (GV.getUnnamedAddr()) { 1086 case GlobalValue::UnnamedAddr::None: return 0; 1087 case GlobalValue::UnnamedAddr::Local: return 2; 1088 case GlobalValue::UnnamedAddr::Global: return 1; 1089 } 1090 llvm_unreachable("Invalid unnamed_addr"); 1091 } 1092 1093 size_t ModuleBitcodeWriter::addToStrtab(StringRef Str) { 1094 if (GenerateHash) 1095 Hasher.update(Str); 1096 return StrtabBuilder.add(Str); 1097 } 1098 1099 void ModuleBitcodeWriter::writeComdats() { 1100 SmallVector<unsigned, 64> Vals; 1101 for (const Comdat *C : VE.getComdats()) { 1102 // COMDAT: [strtab offset, strtab size, selection_kind] 1103 Vals.push_back(addToStrtab(C->getName())); 1104 Vals.push_back(C->getName().size()); 1105 Vals.push_back(getEncodedComdatSelectionKind(*C)); 1106 Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0); 1107 Vals.clear(); 1108 } 1109 } 1110 1111 /// Write a record that will eventually hold the word offset of the 1112 /// module-level VST. For now the offset is 0, which will be backpatched 1113 /// after the real VST is written. Saves the bit offset to backpatch. 1114 void ModuleBitcodeWriter::writeValueSymbolTableForwardDecl() { 1115 // Write a placeholder value in for the offset of the real VST, 1116 // which is written after the function blocks so that it can include 1117 // the offset of each function. The placeholder offset will be 1118 // updated when the real VST is written. 1119 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1120 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_VSTOFFSET)); 1121 // Blocks are 32-bit aligned, so we can use a 32-bit word offset to 1122 // hold the real VST offset. Must use fixed instead of VBR as we don't 1123 // know how many VBR chunks to reserve ahead of time. 1124 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 1125 unsigned VSTOffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1126 1127 // Emit the placeholder 1128 uint64_t Vals[] = {bitc::MODULE_CODE_VSTOFFSET, 0}; 1129 Stream.EmitRecordWithAbbrev(VSTOffsetAbbrev, Vals); 1130 1131 // Compute and save the bit offset to the placeholder, which will be 1132 // patched when the real VST is written. We can simply subtract the 32-bit 1133 // fixed size from the current bit number to get the location to backpatch. 1134 VSTOffsetPlaceholder = Stream.GetCurrentBitNo() - 32; 1135 } 1136 1137 enum StringEncoding { SE_Char6, SE_Fixed7, SE_Fixed8 }; 1138 1139 /// Determine the encoding to use for the given string name and length. 1140 static StringEncoding getStringEncoding(StringRef Str) { 1141 bool isChar6 = true; 1142 for (char C : Str) { 1143 if (isChar6) 1144 isChar6 = BitCodeAbbrevOp::isChar6(C); 1145 if ((unsigned char)C & 128) 1146 // don't bother scanning the rest. 1147 return SE_Fixed8; 1148 } 1149 if (isChar6) 1150 return SE_Char6; 1151 return SE_Fixed7; 1152 } 1153 1154 /// Emit top-level description of module, including target triple, inline asm, 1155 /// descriptors for global variables, and function prototype info. 1156 /// Returns the bit offset to backpatch with the location of the real VST. 1157 void ModuleBitcodeWriter::writeModuleInfo() { 1158 // Emit various pieces of data attached to a module. 1159 if (!M.getTargetTriple().empty()) 1160 writeStringRecord(Stream, bitc::MODULE_CODE_TRIPLE, M.getTargetTriple(), 1161 0 /*TODO*/); 1162 const std::string &DL = M.getDataLayoutStr(); 1163 if (!DL.empty()) 1164 writeStringRecord(Stream, bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/); 1165 if (!M.getModuleInlineAsm().empty()) 1166 writeStringRecord(Stream, bitc::MODULE_CODE_ASM, M.getModuleInlineAsm(), 1167 0 /*TODO*/); 1168 1169 // Emit information about sections and GC, computing how many there are. Also 1170 // compute the maximum alignment value. 1171 std::map<std::string, unsigned> SectionMap; 1172 std::map<std::string, unsigned> GCMap; 1173 unsigned MaxAlignment = 0; 1174 unsigned MaxGlobalType = 0; 1175 for (const GlobalValue &GV : M.globals()) { 1176 MaxAlignment = std::max(MaxAlignment, GV.getAlignment()); 1177 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getValueType())); 1178 if (GV.hasSection()) { 1179 // Give section names unique ID's. 1180 unsigned &Entry = SectionMap[std::string(GV.getSection())]; 1181 if (!Entry) { 1182 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, GV.getSection(), 1183 0 /*TODO*/); 1184 Entry = SectionMap.size(); 1185 } 1186 } 1187 } 1188 for (const Function &F : M) { 1189 MaxAlignment = std::max(MaxAlignment, F.getAlignment()); 1190 if (F.hasSection()) { 1191 // Give section names unique ID's. 1192 unsigned &Entry = SectionMap[std::string(F.getSection())]; 1193 if (!Entry) { 1194 writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, F.getSection(), 1195 0 /*TODO*/); 1196 Entry = SectionMap.size(); 1197 } 1198 } 1199 if (F.hasGC()) { 1200 // Same for GC names. 1201 unsigned &Entry = GCMap[F.getGC()]; 1202 if (!Entry) { 1203 writeStringRecord(Stream, bitc::MODULE_CODE_GCNAME, F.getGC(), 1204 0 /*TODO*/); 1205 Entry = GCMap.size(); 1206 } 1207 } 1208 } 1209 1210 // Emit abbrev for globals, now that we know # sections and max alignment. 1211 unsigned SimpleGVarAbbrev = 0; 1212 if (!M.global_empty()) { 1213 // Add an abbrev for common globals with no visibility or thread localness. 1214 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1215 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 1216 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1217 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1218 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1219 Log2_32_Ceil(MaxGlobalType+1))); 1220 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // AddrSpace << 2 1221 //| explicitType << 1 1222 //| constant 1223 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 1224 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage. 1225 if (MaxAlignment == 0) // Alignment. 1226 Abbv->Add(BitCodeAbbrevOp(0)); 1227 else { 1228 unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1; 1229 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1230 Log2_32_Ceil(MaxEncAlignment+1))); 1231 } 1232 if (SectionMap.empty()) // Section. 1233 Abbv->Add(BitCodeAbbrevOp(0)); 1234 else 1235 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1236 Log2_32_Ceil(SectionMap.size()+1))); 1237 // Don't bother emitting vis + thread local. 1238 SimpleGVarAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1239 } 1240 1241 SmallVector<unsigned, 64> Vals; 1242 // Emit the module's source file name. 1243 { 1244 StringEncoding Bits = getStringEncoding(M.getSourceFileName()); 1245 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); 1246 if (Bits == SE_Char6) 1247 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); 1248 else if (Bits == SE_Fixed7) 1249 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); 1250 1251 // MODULE_CODE_SOURCE_FILENAME: [namechar x N] 1252 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1253 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); 1254 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1255 Abbv->Add(AbbrevOpToUse); 1256 unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 1257 1258 for (const auto P : M.getSourceFileName()) 1259 Vals.push_back((unsigned char)P); 1260 1261 // Emit the finished record. 1262 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); 1263 Vals.clear(); 1264 } 1265 1266 // Emit the global variable information. 1267 for (const GlobalVariable &GV : M.globals()) { 1268 unsigned AbbrevToUse = 0; 1269 1270 // GLOBALVAR: [strtab offset, strtab size, type, isconst, initid, 1271 // linkage, alignment, section, visibility, threadlocal, 1272 // unnamed_addr, externally_initialized, dllstorageclass, 1273 // comdat, attributes, DSO_Local] 1274 Vals.push_back(addToStrtab(GV.getName())); 1275 Vals.push_back(GV.getName().size()); 1276 Vals.push_back(VE.getTypeID(GV.getValueType())); 1277 Vals.push_back(GV.getType()->getAddressSpace() << 2 | 2 | GV.isConstant()); 1278 Vals.push_back(GV.isDeclaration() ? 0 : 1279 (VE.getValueID(GV.getInitializer()) + 1)); 1280 Vals.push_back(getEncodedLinkage(GV)); 1281 Vals.push_back(Log2_32(GV.getAlignment())+1); 1282 Vals.push_back(GV.hasSection() ? SectionMap[std::string(GV.getSection())] 1283 : 0); 1284 if (GV.isThreadLocal() || 1285 GV.getVisibility() != GlobalValue::DefaultVisibility || 1286 GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None || 1287 GV.isExternallyInitialized() || 1288 GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass || 1289 GV.hasComdat() || 1290 GV.hasAttributes() || 1291 GV.isDSOLocal() || 1292 GV.hasPartition()) { 1293 Vals.push_back(getEncodedVisibility(GV)); 1294 Vals.push_back(getEncodedThreadLocalMode(GV)); 1295 Vals.push_back(getEncodedUnnamedAddr(GV)); 1296 Vals.push_back(GV.isExternallyInitialized()); 1297 Vals.push_back(getEncodedDLLStorageClass(GV)); 1298 Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0); 1299 1300 auto AL = GV.getAttributesAsList(AttributeList::FunctionIndex); 1301 Vals.push_back(VE.getAttributeListID(AL)); 1302 1303 Vals.push_back(GV.isDSOLocal()); 1304 Vals.push_back(addToStrtab(GV.getPartition())); 1305 Vals.push_back(GV.getPartition().size()); 1306 } else { 1307 AbbrevToUse = SimpleGVarAbbrev; 1308 } 1309 1310 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 1311 Vals.clear(); 1312 } 1313 1314 // Emit the function proto information. 1315 for (const Function &F : M) { 1316 // FUNCTION: [strtab offset, strtab size, type, callingconv, isproto, 1317 // linkage, paramattrs, alignment, section, visibility, gc, 1318 // unnamed_addr, prologuedata, dllstorageclass, comdat, 1319 // prefixdata, personalityfn, DSO_Local, addrspace] 1320 Vals.push_back(addToStrtab(F.getName())); 1321 Vals.push_back(F.getName().size()); 1322 Vals.push_back(VE.getTypeID(F.getFunctionType())); 1323 Vals.push_back(F.getCallingConv()); 1324 Vals.push_back(F.isDeclaration()); 1325 Vals.push_back(getEncodedLinkage(F)); 1326 Vals.push_back(VE.getAttributeListID(F.getAttributes())); 1327 Vals.push_back(Log2_32(F.getAlignment())+1); 1328 Vals.push_back(F.hasSection() ? SectionMap[std::string(F.getSection())] 1329 : 0); 1330 Vals.push_back(getEncodedVisibility(F)); 1331 Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0); 1332 Vals.push_back(getEncodedUnnamedAddr(F)); 1333 Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1) 1334 : 0); 1335 Vals.push_back(getEncodedDLLStorageClass(F)); 1336 Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0); 1337 Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1) 1338 : 0); 1339 Vals.push_back( 1340 F.hasPersonalityFn() ? (VE.getValueID(F.getPersonalityFn()) + 1) : 0); 1341 1342 Vals.push_back(F.isDSOLocal()); 1343 Vals.push_back(F.getAddressSpace()); 1344 Vals.push_back(addToStrtab(F.getPartition())); 1345 Vals.push_back(F.getPartition().size()); 1346 1347 unsigned AbbrevToUse = 0; 1348 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 1349 Vals.clear(); 1350 } 1351 1352 // Emit the alias information. 1353 for (const GlobalAlias &A : M.aliases()) { 1354 // ALIAS: [strtab offset, strtab size, alias type, aliasee val#, linkage, 1355 // visibility, dllstorageclass, threadlocal, unnamed_addr, 1356 // DSO_Local] 1357 Vals.push_back(addToStrtab(A.getName())); 1358 Vals.push_back(A.getName().size()); 1359 Vals.push_back(VE.getTypeID(A.getValueType())); 1360 Vals.push_back(A.getType()->getAddressSpace()); 1361 Vals.push_back(VE.getValueID(A.getAliasee())); 1362 Vals.push_back(getEncodedLinkage(A)); 1363 Vals.push_back(getEncodedVisibility(A)); 1364 Vals.push_back(getEncodedDLLStorageClass(A)); 1365 Vals.push_back(getEncodedThreadLocalMode(A)); 1366 Vals.push_back(getEncodedUnnamedAddr(A)); 1367 Vals.push_back(A.isDSOLocal()); 1368 Vals.push_back(addToStrtab(A.getPartition())); 1369 Vals.push_back(A.getPartition().size()); 1370 1371 unsigned AbbrevToUse = 0; 1372 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); 1373 Vals.clear(); 1374 } 1375 1376 // Emit the ifunc information. 1377 for (const GlobalIFunc &I : M.ifuncs()) { 1378 // IFUNC: [strtab offset, strtab size, ifunc type, address space, resolver 1379 // val#, linkage, visibility, DSO_Local] 1380 Vals.push_back(addToStrtab(I.getName())); 1381 Vals.push_back(I.getName().size()); 1382 Vals.push_back(VE.getTypeID(I.getValueType())); 1383 Vals.push_back(I.getType()->getAddressSpace()); 1384 Vals.push_back(VE.getValueID(I.getResolver())); 1385 Vals.push_back(getEncodedLinkage(I)); 1386 Vals.push_back(getEncodedVisibility(I)); 1387 Vals.push_back(I.isDSOLocal()); 1388 Vals.push_back(addToStrtab(I.getPartition())); 1389 Vals.push_back(I.getPartition().size()); 1390 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals); 1391 Vals.clear(); 1392 } 1393 1394 writeValueSymbolTableForwardDecl(); 1395 } 1396 1397 static uint64_t getOptimizationFlags(const Value *V) { 1398 uint64_t Flags = 0; 1399 1400 if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) { 1401 if (OBO->hasNoSignedWrap()) 1402 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP; 1403 if (OBO->hasNoUnsignedWrap()) 1404 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP; 1405 } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) { 1406 if (PEO->isExact()) 1407 Flags |= 1 << bitc::PEO_EXACT; 1408 } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) { 1409 if (FPMO->hasAllowReassoc()) 1410 Flags |= bitc::AllowReassoc; 1411 if (FPMO->hasNoNaNs()) 1412 Flags |= bitc::NoNaNs; 1413 if (FPMO->hasNoInfs()) 1414 Flags |= bitc::NoInfs; 1415 if (FPMO->hasNoSignedZeros()) 1416 Flags |= bitc::NoSignedZeros; 1417 if (FPMO->hasAllowReciprocal()) 1418 Flags |= bitc::AllowReciprocal; 1419 if (FPMO->hasAllowContract()) 1420 Flags |= bitc::AllowContract; 1421 if (FPMO->hasApproxFunc()) 1422 Flags |= bitc::ApproxFunc; 1423 } 1424 1425 return Flags; 1426 } 1427 1428 void ModuleBitcodeWriter::writeValueAsMetadata( 1429 const ValueAsMetadata *MD, SmallVectorImpl<uint64_t> &Record) { 1430 // Mimic an MDNode with a value as one operand. 1431 Value *V = MD->getValue(); 1432 Record.push_back(VE.getTypeID(V->getType())); 1433 Record.push_back(VE.getValueID(V)); 1434 Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0); 1435 Record.clear(); 1436 } 1437 1438 void ModuleBitcodeWriter::writeMDTuple(const MDTuple *N, 1439 SmallVectorImpl<uint64_t> &Record, 1440 unsigned Abbrev) { 1441 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 1442 Metadata *MD = N->getOperand(i); 1443 assert(!(MD && isa<LocalAsMetadata>(MD)) && 1444 "Unexpected function-local metadata"); 1445 Record.push_back(VE.getMetadataOrNullID(MD)); 1446 } 1447 Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE 1448 : bitc::METADATA_NODE, 1449 Record, Abbrev); 1450 Record.clear(); 1451 } 1452 1453 unsigned ModuleBitcodeWriter::createDILocationAbbrev() { 1454 // Assume the column is usually under 128, and always output the inlined-at 1455 // location (it's never more expensive than building an array size 1). 1456 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1457 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION)); 1458 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1459 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1460 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1461 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1462 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1463 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1464 return Stream.EmitAbbrev(std::move(Abbv)); 1465 } 1466 1467 void ModuleBitcodeWriter::writeDILocation(const DILocation *N, 1468 SmallVectorImpl<uint64_t> &Record, 1469 unsigned &Abbrev) { 1470 if (!Abbrev) 1471 Abbrev = createDILocationAbbrev(); 1472 1473 Record.push_back(N->isDistinct()); 1474 Record.push_back(N->getLine()); 1475 Record.push_back(N->getColumn()); 1476 Record.push_back(VE.getMetadataID(N->getScope())); 1477 Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt())); 1478 Record.push_back(N->isImplicitCode()); 1479 1480 Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev); 1481 Record.clear(); 1482 } 1483 1484 unsigned ModuleBitcodeWriter::createGenericDINodeAbbrev() { 1485 // Assume the column is usually under 128, and always output the inlined-at 1486 // location (it's never more expensive than building an array size 1). 1487 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1488 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG)); 1489 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1490 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1491 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 1492 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1493 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1494 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 1495 return Stream.EmitAbbrev(std::move(Abbv)); 1496 } 1497 1498 void ModuleBitcodeWriter::writeGenericDINode(const GenericDINode *N, 1499 SmallVectorImpl<uint64_t> &Record, 1500 unsigned &Abbrev) { 1501 if (!Abbrev) 1502 Abbrev = createGenericDINodeAbbrev(); 1503 1504 Record.push_back(N->isDistinct()); 1505 Record.push_back(N->getTag()); 1506 Record.push_back(0); // Per-tag version field; unused for now. 1507 1508 for (auto &I : N->operands()) 1509 Record.push_back(VE.getMetadataOrNullID(I)); 1510 1511 Stream.EmitRecord(bitc::METADATA_GENERIC_DEBUG, Record, Abbrev); 1512 Record.clear(); 1513 } 1514 1515 static uint64_t rotateSign(int64_t I) { 1516 uint64_t U = I; 1517 return I < 0 ? ~(U << 1) : U << 1; 1518 } 1519 1520 void ModuleBitcodeWriter::writeDISubrange(const DISubrange *N, 1521 SmallVectorImpl<uint64_t> &Record, 1522 unsigned Abbrev) { 1523 const uint64_t Version = 1 << 1; 1524 Record.push_back((uint64_t)N->isDistinct() | Version); 1525 Record.push_back(VE.getMetadataOrNullID(N->getRawCountNode())); 1526 Record.push_back(rotateSign(N->getLowerBound())); 1527 1528 Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev); 1529 Record.clear(); 1530 } 1531 1532 void ModuleBitcodeWriter::writeDIEnumerator(const DIEnumerator *N, 1533 SmallVectorImpl<uint64_t> &Record, 1534 unsigned Abbrev) { 1535 Record.push_back((N->isUnsigned() << 1) | N->isDistinct()); 1536 Record.push_back(rotateSign(N->getValue())); 1537 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1538 1539 Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev); 1540 Record.clear(); 1541 } 1542 1543 void ModuleBitcodeWriter::writeDIBasicType(const DIBasicType *N, 1544 SmallVectorImpl<uint64_t> &Record, 1545 unsigned Abbrev) { 1546 Record.push_back(N->isDistinct()); 1547 Record.push_back(N->getTag()); 1548 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1549 Record.push_back(N->getSizeInBits()); 1550 Record.push_back(N->getAlignInBits()); 1551 Record.push_back(N->getEncoding()); 1552 Record.push_back(N->getFlags()); 1553 1554 Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev); 1555 Record.clear(); 1556 } 1557 1558 void ModuleBitcodeWriter::writeDIDerivedType(const DIDerivedType *N, 1559 SmallVectorImpl<uint64_t> &Record, 1560 unsigned Abbrev) { 1561 Record.push_back(N->isDistinct()); 1562 Record.push_back(N->getTag()); 1563 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1564 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1565 Record.push_back(N->getLine()); 1566 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1567 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1568 Record.push_back(N->getSizeInBits()); 1569 Record.push_back(N->getAlignInBits()); 1570 Record.push_back(N->getOffsetInBits()); 1571 Record.push_back(N->getFlags()); 1572 Record.push_back(VE.getMetadataOrNullID(N->getExtraData())); 1573 1574 // DWARF address space is encoded as N->getDWARFAddressSpace() + 1. 0 means 1575 // that there is no DWARF address space associated with DIDerivedType. 1576 if (const auto &DWARFAddressSpace = N->getDWARFAddressSpace()) 1577 Record.push_back(*DWARFAddressSpace + 1); 1578 else 1579 Record.push_back(0); 1580 1581 Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev); 1582 Record.clear(); 1583 } 1584 1585 void ModuleBitcodeWriter::writeDICompositeType( 1586 const DICompositeType *N, SmallVectorImpl<uint64_t> &Record, 1587 unsigned Abbrev) { 1588 const unsigned IsNotUsedInOldTypeRef = 0x2; 1589 Record.push_back(IsNotUsedInOldTypeRef | (unsigned)N->isDistinct()); 1590 Record.push_back(N->getTag()); 1591 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1592 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1593 Record.push_back(N->getLine()); 1594 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1595 Record.push_back(VE.getMetadataOrNullID(N->getBaseType())); 1596 Record.push_back(N->getSizeInBits()); 1597 Record.push_back(N->getAlignInBits()); 1598 Record.push_back(N->getOffsetInBits()); 1599 Record.push_back(N->getFlags()); 1600 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1601 Record.push_back(N->getRuntimeLang()); 1602 Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder())); 1603 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1604 Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier())); 1605 Record.push_back(VE.getMetadataOrNullID(N->getDiscriminator())); 1606 1607 Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev); 1608 Record.clear(); 1609 } 1610 1611 void ModuleBitcodeWriter::writeDISubroutineType( 1612 const DISubroutineType *N, SmallVectorImpl<uint64_t> &Record, 1613 unsigned Abbrev) { 1614 const unsigned HasNoOldTypeRefs = 0x2; 1615 Record.push_back(HasNoOldTypeRefs | (unsigned)N->isDistinct()); 1616 Record.push_back(N->getFlags()); 1617 Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get())); 1618 Record.push_back(N->getCC()); 1619 1620 Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev); 1621 Record.clear(); 1622 } 1623 1624 void ModuleBitcodeWriter::writeDIFile(const DIFile *N, 1625 SmallVectorImpl<uint64_t> &Record, 1626 unsigned Abbrev) { 1627 Record.push_back(N->isDistinct()); 1628 Record.push_back(VE.getMetadataOrNullID(N->getRawFilename())); 1629 Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory())); 1630 if (N->getRawChecksum()) { 1631 Record.push_back(N->getRawChecksum()->Kind); 1632 Record.push_back(VE.getMetadataOrNullID(N->getRawChecksum()->Value)); 1633 } else { 1634 // Maintain backwards compatibility with the old internal representation of 1635 // CSK_None in ChecksumKind by writing nulls here when Checksum is None. 1636 Record.push_back(0); 1637 Record.push_back(VE.getMetadataOrNullID(nullptr)); 1638 } 1639 auto Source = N->getRawSource(); 1640 if (Source) 1641 Record.push_back(VE.getMetadataOrNullID(*Source)); 1642 1643 Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev); 1644 Record.clear(); 1645 } 1646 1647 void ModuleBitcodeWriter::writeDICompileUnit(const DICompileUnit *N, 1648 SmallVectorImpl<uint64_t> &Record, 1649 unsigned Abbrev) { 1650 assert(N->isDistinct() && "Expected distinct compile units"); 1651 Record.push_back(/* IsDistinct */ true); 1652 Record.push_back(N->getSourceLanguage()); 1653 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1654 Record.push_back(VE.getMetadataOrNullID(N->getRawProducer())); 1655 Record.push_back(N->isOptimized()); 1656 Record.push_back(VE.getMetadataOrNullID(N->getRawFlags())); 1657 Record.push_back(N->getRuntimeVersion()); 1658 Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename())); 1659 Record.push_back(N->getEmissionKind()); 1660 Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get())); 1661 Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get())); 1662 Record.push_back(/* subprograms */ 0); 1663 Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get())); 1664 Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get())); 1665 Record.push_back(N->getDWOId()); 1666 Record.push_back(VE.getMetadataOrNullID(N->getMacros().get())); 1667 Record.push_back(N->getSplitDebugInlining()); 1668 Record.push_back(N->getDebugInfoForProfiling()); 1669 Record.push_back((unsigned)N->getNameTableKind()); 1670 Record.push_back(N->getRangesBaseAddress()); 1671 Record.push_back(VE.getMetadataOrNullID(N->getRawSysRoot())); 1672 Record.push_back(VE.getMetadataOrNullID(N->getRawSDK())); 1673 1674 Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev); 1675 Record.clear(); 1676 } 1677 1678 void ModuleBitcodeWriter::writeDISubprogram(const DISubprogram *N, 1679 SmallVectorImpl<uint64_t> &Record, 1680 unsigned Abbrev) { 1681 const uint64_t HasUnitFlag = 1 << 1; 1682 const uint64_t HasSPFlagsFlag = 1 << 2; 1683 Record.push_back(uint64_t(N->isDistinct()) | HasUnitFlag | HasSPFlagsFlag); 1684 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1685 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1686 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1687 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1688 Record.push_back(N->getLine()); 1689 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1690 Record.push_back(N->getScopeLine()); 1691 Record.push_back(VE.getMetadataOrNullID(N->getContainingType())); 1692 Record.push_back(N->getSPFlags()); 1693 Record.push_back(N->getVirtualIndex()); 1694 Record.push_back(N->getFlags()); 1695 Record.push_back(VE.getMetadataOrNullID(N->getRawUnit())); 1696 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get())); 1697 Record.push_back(VE.getMetadataOrNullID(N->getDeclaration())); 1698 Record.push_back(VE.getMetadataOrNullID(N->getRetainedNodes().get())); 1699 Record.push_back(N->getThisAdjustment()); 1700 Record.push_back(VE.getMetadataOrNullID(N->getThrownTypes().get())); 1701 1702 Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev); 1703 Record.clear(); 1704 } 1705 1706 void ModuleBitcodeWriter::writeDILexicalBlock(const DILexicalBlock *N, 1707 SmallVectorImpl<uint64_t> &Record, 1708 unsigned Abbrev) { 1709 Record.push_back(N->isDistinct()); 1710 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1711 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1712 Record.push_back(N->getLine()); 1713 Record.push_back(N->getColumn()); 1714 1715 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev); 1716 Record.clear(); 1717 } 1718 1719 void ModuleBitcodeWriter::writeDILexicalBlockFile( 1720 const DILexicalBlockFile *N, SmallVectorImpl<uint64_t> &Record, 1721 unsigned Abbrev) { 1722 Record.push_back(N->isDistinct()); 1723 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1724 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1725 Record.push_back(N->getDiscriminator()); 1726 1727 Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev); 1728 Record.clear(); 1729 } 1730 1731 void ModuleBitcodeWriter::writeDICommonBlock(const DICommonBlock *N, 1732 SmallVectorImpl<uint64_t> &Record, 1733 unsigned Abbrev) { 1734 Record.push_back(N->isDistinct()); 1735 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1736 Record.push_back(VE.getMetadataOrNullID(N->getDecl())); 1737 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1738 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1739 Record.push_back(N->getLineNo()); 1740 1741 Stream.EmitRecord(bitc::METADATA_COMMON_BLOCK, Record, Abbrev); 1742 Record.clear(); 1743 } 1744 1745 void ModuleBitcodeWriter::writeDINamespace(const DINamespace *N, 1746 SmallVectorImpl<uint64_t> &Record, 1747 unsigned Abbrev) { 1748 Record.push_back(N->isDistinct() | N->getExportSymbols() << 1); 1749 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1750 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1751 1752 Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev); 1753 Record.clear(); 1754 } 1755 1756 void ModuleBitcodeWriter::writeDIMacro(const DIMacro *N, 1757 SmallVectorImpl<uint64_t> &Record, 1758 unsigned Abbrev) { 1759 Record.push_back(N->isDistinct()); 1760 Record.push_back(N->getMacinfoType()); 1761 Record.push_back(N->getLine()); 1762 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1763 Record.push_back(VE.getMetadataOrNullID(N->getRawValue())); 1764 1765 Stream.EmitRecord(bitc::METADATA_MACRO, Record, Abbrev); 1766 Record.clear(); 1767 } 1768 1769 void ModuleBitcodeWriter::writeDIMacroFile(const DIMacroFile *N, 1770 SmallVectorImpl<uint64_t> &Record, 1771 unsigned Abbrev) { 1772 Record.push_back(N->isDistinct()); 1773 Record.push_back(N->getMacinfoType()); 1774 Record.push_back(N->getLine()); 1775 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1776 Record.push_back(VE.getMetadataOrNullID(N->getElements().get())); 1777 1778 Stream.EmitRecord(bitc::METADATA_MACRO_FILE, Record, Abbrev); 1779 Record.clear(); 1780 } 1781 1782 void ModuleBitcodeWriter::writeDIModule(const DIModule *N, 1783 SmallVectorImpl<uint64_t> &Record, 1784 unsigned Abbrev) { 1785 Record.push_back(N->isDistinct()); 1786 for (auto &I : N->operands()) 1787 Record.push_back(VE.getMetadataOrNullID(I)); 1788 1789 Stream.EmitRecord(bitc::METADATA_MODULE, Record, Abbrev); 1790 Record.clear(); 1791 } 1792 1793 void ModuleBitcodeWriter::writeDITemplateTypeParameter( 1794 const DITemplateTypeParameter *N, SmallVectorImpl<uint64_t> &Record, 1795 unsigned Abbrev) { 1796 Record.push_back(N->isDistinct()); 1797 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1798 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1799 Record.push_back(N->isDefault()); 1800 1801 Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev); 1802 Record.clear(); 1803 } 1804 1805 void ModuleBitcodeWriter::writeDITemplateValueParameter( 1806 const DITemplateValueParameter *N, SmallVectorImpl<uint64_t> &Record, 1807 unsigned Abbrev) { 1808 Record.push_back(N->isDistinct()); 1809 Record.push_back(N->getTag()); 1810 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1811 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1812 Record.push_back(N->isDefault()); 1813 Record.push_back(VE.getMetadataOrNullID(N->getValue())); 1814 1815 Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev); 1816 Record.clear(); 1817 } 1818 1819 void ModuleBitcodeWriter::writeDIGlobalVariable( 1820 const DIGlobalVariable *N, SmallVectorImpl<uint64_t> &Record, 1821 unsigned Abbrev) { 1822 const uint64_t Version = 2 << 1; 1823 Record.push_back((uint64_t)N->isDistinct() | Version); 1824 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1825 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1826 Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName())); 1827 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1828 Record.push_back(N->getLine()); 1829 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1830 Record.push_back(N->isLocalToUnit()); 1831 Record.push_back(N->isDefinition()); 1832 Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration())); 1833 Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams())); 1834 Record.push_back(N->getAlignInBits()); 1835 1836 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev); 1837 Record.clear(); 1838 } 1839 1840 void ModuleBitcodeWriter::writeDILocalVariable( 1841 const DILocalVariable *N, SmallVectorImpl<uint64_t> &Record, 1842 unsigned Abbrev) { 1843 // In order to support all possible bitcode formats in BitcodeReader we need 1844 // to distinguish the following cases: 1845 // 1) Record has no artificial tag (Record[1]), 1846 // has no obsolete inlinedAt field (Record[9]). 1847 // In this case Record size will be 8, HasAlignment flag is false. 1848 // 2) Record has artificial tag (Record[1]), 1849 // has no obsolete inlignedAt field (Record[9]). 1850 // In this case Record size will be 9, HasAlignment flag is false. 1851 // 3) Record has both artificial tag (Record[1]) and 1852 // obsolete inlignedAt field (Record[9]). 1853 // In this case Record size will be 10, HasAlignment flag is false. 1854 // 4) Record has neither artificial tag, nor inlignedAt field, but 1855 // HasAlignment flag is true and Record[8] contains alignment value. 1856 const uint64_t HasAlignmentFlag = 1 << 1; 1857 Record.push_back((uint64_t)N->isDistinct() | HasAlignmentFlag); 1858 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1859 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1860 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1861 Record.push_back(N->getLine()); 1862 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1863 Record.push_back(N->getArg()); 1864 Record.push_back(N->getFlags()); 1865 Record.push_back(N->getAlignInBits()); 1866 1867 Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev); 1868 Record.clear(); 1869 } 1870 1871 void ModuleBitcodeWriter::writeDILabel( 1872 const DILabel *N, SmallVectorImpl<uint64_t> &Record, 1873 unsigned Abbrev) { 1874 Record.push_back((uint64_t)N->isDistinct()); 1875 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1876 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1877 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1878 Record.push_back(N->getLine()); 1879 1880 Stream.EmitRecord(bitc::METADATA_LABEL, Record, Abbrev); 1881 Record.clear(); 1882 } 1883 1884 void ModuleBitcodeWriter::writeDIExpression(const DIExpression *N, 1885 SmallVectorImpl<uint64_t> &Record, 1886 unsigned Abbrev) { 1887 Record.reserve(N->getElements().size() + 1); 1888 const uint64_t Version = 3 << 1; 1889 Record.push_back((uint64_t)N->isDistinct() | Version); 1890 Record.append(N->elements_begin(), N->elements_end()); 1891 1892 Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev); 1893 Record.clear(); 1894 } 1895 1896 void ModuleBitcodeWriter::writeDIGlobalVariableExpression( 1897 const DIGlobalVariableExpression *N, SmallVectorImpl<uint64_t> &Record, 1898 unsigned Abbrev) { 1899 Record.push_back(N->isDistinct()); 1900 Record.push_back(VE.getMetadataOrNullID(N->getVariable())); 1901 Record.push_back(VE.getMetadataOrNullID(N->getExpression())); 1902 1903 Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR_EXPR, Record, Abbrev); 1904 Record.clear(); 1905 } 1906 1907 void ModuleBitcodeWriter::writeDIObjCProperty(const DIObjCProperty *N, 1908 SmallVectorImpl<uint64_t> &Record, 1909 unsigned Abbrev) { 1910 Record.push_back(N->isDistinct()); 1911 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1912 Record.push_back(VE.getMetadataOrNullID(N->getFile())); 1913 Record.push_back(N->getLine()); 1914 Record.push_back(VE.getMetadataOrNullID(N->getRawSetterName())); 1915 Record.push_back(VE.getMetadataOrNullID(N->getRawGetterName())); 1916 Record.push_back(N->getAttributes()); 1917 Record.push_back(VE.getMetadataOrNullID(N->getType())); 1918 1919 Stream.EmitRecord(bitc::METADATA_OBJC_PROPERTY, Record, Abbrev); 1920 Record.clear(); 1921 } 1922 1923 void ModuleBitcodeWriter::writeDIImportedEntity( 1924 const DIImportedEntity *N, SmallVectorImpl<uint64_t> &Record, 1925 unsigned Abbrev) { 1926 Record.push_back(N->isDistinct()); 1927 Record.push_back(N->getTag()); 1928 Record.push_back(VE.getMetadataOrNullID(N->getScope())); 1929 Record.push_back(VE.getMetadataOrNullID(N->getEntity())); 1930 Record.push_back(N->getLine()); 1931 Record.push_back(VE.getMetadataOrNullID(N->getRawName())); 1932 Record.push_back(VE.getMetadataOrNullID(N->getRawFile())); 1933 1934 Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev); 1935 Record.clear(); 1936 } 1937 1938 unsigned ModuleBitcodeWriter::createNamedMetadataAbbrev() { 1939 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1940 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME)); 1941 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1942 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1943 return Stream.EmitAbbrev(std::move(Abbv)); 1944 } 1945 1946 void ModuleBitcodeWriter::writeNamedMetadata( 1947 SmallVectorImpl<uint64_t> &Record) { 1948 if (M.named_metadata_empty()) 1949 return; 1950 1951 unsigned Abbrev = createNamedMetadataAbbrev(); 1952 for (const NamedMDNode &NMD : M.named_metadata()) { 1953 // Write name. 1954 StringRef Str = NMD.getName(); 1955 Record.append(Str.bytes_begin(), Str.bytes_end()); 1956 Stream.EmitRecord(bitc::METADATA_NAME, Record, Abbrev); 1957 Record.clear(); 1958 1959 // Write named metadata operands. 1960 for (const MDNode *N : NMD.operands()) 1961 Record.push_back(VE.getMetadataID(N)); 1962 Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0); 1963 Record.clear(); 1964 } 1965 } 1966 1967 unsigned ModuleBitcodeWriter::createMetadataStringsAbbrev() { 1968 auto Abbv = std::make_shared<BitCodeAbbrev>(); 1969 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRINGS)); 1970 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // # of strings 1971 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // offset to chars 1972 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 1973 return Stream.EmitAbbrev(std::move(Abbv)); 1974 } 1975 1976 /// Write out a record for MDString. 1977 /// 1978 /// All the metadata strings in a metadata block are emitted in a single 1979 /// record. The sizes and strings themselves are shoved into a blob. 1980 void ModuleBitcodeWriter::writeMetadataStrings( 1981 ArrayRef<const Metadata *> Strings, SmallVectorImpl<uint64_t> &Record) { 1982 if (Strings.empty()) 1983 return; 1984 1985 // Start the record with the number of strings. 1986 Record.push_back(bitc::METADATA_STRINGS); 1987 Record.push_back(Strings.size()); 1988 1989 // Emit the sizes of the strings in the blob. 1990 SmallString<256> Blob; 1991 { 1992 BitstreamWriter W(Blob); 1993 for (const Metadata *MD : Strings) 1994 W.EmitVBR(cast<MDString>(MD)->getLength(), 6); 1995 W.FlushToWord(); 1996 } 1997 1998 // Add the offset to the strings to the record. 1999 Record.push_back(Blob.size()); 2000 2001 // Add the strings to the blob. 2002 for (const Metadata *MD : Strings) 2003 Blob.append(cast<MDString>(MD)->getString()); 2004 2005 // Emit the final record. 2006 Stream.EmitRecordWithBlob(createMetadataStringsAbbrev(), Record, Blob); 2007 Record.clear(); 2008 } 2009 2010 // Generates an enum to use as an index in the Abbrev array of Metadata record. 2011 enum MetadataAbbrev : unsigned { 2012 #define HANDLE_MDNODE_LEAF(CLASS) CLASS##AbbrevID, 2013 #include "llvm/IR/Metadata.def" 2014 LastPlusOne 2015 }; 2016 2017 void ModuleBitcodeWriter::writeMetadataRecords( 2018 ArrayRef<const Metadata *> MDs, SmallVectorImpl<uint64_t> &Record, 2019 std::vector<unsigned> *MDAbbrevs, std::vector<uint64_t> *IndexPos) { 2020 if (MDs.empty()) 2021 return; 2022 2023 // Initialize MDNode abbreviations. 2024 #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0; 2025 #include "llvm/IR/Metadata.def" 2026 2027 for (const Metadata *MD : MDs) { 2028 if (IndexPos) 2029 IndexPos->push_back(Stream.GetCurrentBitNo()); 2030 if (const MDNode *N = dyn_cast<MDNode>(MD)) { 2031 assert(N->isResolved() && "Expected forward references to be resolved"); 2032 2033 switch (N->getMetadataID()) { 2034 default: 2035 llvm_unreachable("Invalid MDNode subclass"); 2036 #define HANDLE_MDNODE_LEAF(CLASS) \ 2037 case Metadata::CLASS##Kind: \ 2038 if (MDAbbrevs) \ 2039 write##CLASS(cast<CLASS>(N), Record, \ 2040 (*MDAbbrevs)[MetadataAbbrev::CLASS##AbbrevID]); \ 2041 else \ 2042 write##CLASS(cast<CLASS>(N), Record, CLASS##Abbrev); \ 2043 continue; 2044 #include "llvm/IR/Metadata.def" 2045 } 2046 } 2047 writeValueAsMetadata(cast<ValueAsMetadata>(MD), Record); 2048 } 2049 } 2050 2051 void ModuleBitcodeWriter::writeModuleMetadata() { 2052 if (!VE.hasMDs() && M.named_metadata_empty()) 2053 return; 2054 2055 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 4); 2056 SmallVector<uint64_t, 64> Record; 2057 2058 // Emit all abbrevs upfront, so that the reader can jump in the middle of the 2059 // block and load any metadata. 2060 std::vector<unsigned> MDAbbrevs; 2061 2062 MDAbbrevs.resize(MetadataAbbrev::LastPlusOne); 2063 MDAbbrevs[MetadataAbbrev::DILocationAbbrevID] = createDILocationAbbrev(); 2064 MDAbbrevs[MetadataAbbrev::GenericDINodeAbbrevID] = 2065 createGenericDINodeAbbrev(); 2066 2067 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2068 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX_OFFSET)); 2069 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 2070 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 2071 unsigned OffsetAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2072 2073 Abbv = std::make_shared<BitCodeAbbrev>(); 2074 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_INDEX)); 2075 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2076 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 2077 unsigned IndexAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2078 2079 // Emit MDStrings together upfront. 2080 writeMetadataStrings(VE.getMDStrings(), Record); 2081 2082 // We only emit an index for the metadata record if we have more than a given 2083 // (naive) threshold of metadatas, otherwise it is not worth it. 2084 if (VE.getNonMDStrings().size() > IndexThreshold) { 2085 // Write a placeholder value in for the offset of the metadata index, 2086 // which is written after the records, so that it can include 2087 // the offset of each entry. The placeholder offset will be 2088 // updated after all records are emitted. 2089 uint64_t Vals[] = {0, 0}; 2090 Stream.EmitRecord(bitc::METADATA_INDEX_OFFSET, Vals, OffsetAbbrev); 2091 } 2092 2093 // Compute and save the bit offset to the current position, which will be 2094 // patched when we emit the index later. We can simply subtract the 64-bit 2095 // fixed size from the current bit number to get the location to backpatch. 2096 uint64_t IndexOffsetRecordBitPos = Stream.GetCurrentBitNo(); 2097 2098 // This index will contain the bitpos for each individual record. 2099 std::vector<uint64_t> IndexPos; 2100 IndexPos.reserve(VE.getNonMDStrings().size()); 2101 2102 // Write all the records 2103 writeMetadataRecords(VE.getNonMDStrings(), Record, &MDAbbrevs, &IndexPos); 2104 2105 if (VE.getNonMDStrings().size() > IndexThreshold) { 2106 // Now that we have emitted all the records we will emit the index. But 2107 // first 2108 // backpatch the forward reference so that the reader can skip the records 2109 // efficiently. 2110 Stream.BackpatchWord64(IndexOffsetRecordBitPos - 64, 2111 Stream.GetCurrentBitNo() - IndexOffsetRecordBitPos); 2112 2113 // Delta encode the index. 2114 uint64_t PreviousValue = IndexOffsetRecordBitPos; 2115 for (auto &Elt : IndexPos) { 2116 auto EltDelta = Elt - PreviousValue; 2117 PreviousValue = Elt; 2118 Elt = EltDelta; 2119 } 2120 // Emit the index record. 2121 Stream.EmitRecord(bitc::METADATA_INDEX, IndexPos, IndexAbbrev); 2122 IndexPos.clear(); 2123 } 2124 2125 // Write the named metadata now. 2126 writeNamedMetadata(Record); 2127 2128 auto AddDeclAttachedMetadata = [&](const GlobalObject &GO) { 2129 SmallVector<uint64_t, 4> Record; 2130 Record.push_back(VE.getValueID(&GO)); 2131 pushGlobalMetadataAttachment(Record, GO); 2132 Stream.EmitRecord(bitc::METADATA_GLOBAL_DECL_ATTACHMENT, Record); 2133 }; 2134 for (const Function &F : M) 2135 if (F.isDeclaration() && F.hasMetadata()) 2136 AddDeclAttachedMetadata(F); 2137 // FIXME: Only store metadata for declarations here, and move data for global 2138 // variable definitions to a separate block (PR28134). 2139 for (const GlobalVariable &GV : M.globals()) 2140 if (GV.hasMetadata()) 2141 AddDeclAttachedMetadata(GV); 2142 2143 Stream.ExitBlock(); 2144 } 2145 2146 void ModuleBitcodeWriter::writeFunctionMetadata(const Function &F) { 2147 if (!VE.hasMDs()) 2148 return; 2149 2150 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 2151 SmallVector<uint64_t, 64> Record; 2152 writeMetadataStrings(VE.getMDStrings(), Record); 2153 writeMetadataRecords(VE.getNonMDStrings(), Record); 2154 Stream.ExitBlock(); 2155 } 2156 2157 void ModuleBitcodeWriter::pushGlobalMetadataAttachment( 2158 SmallVectorImpl<uint64_t> &Record, const GlobalObject &GO) { 2159 // [n x [id, mdnode]] 2160 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2161 GO.getAllMetadata(MDs); 2162 for (const auto &I : MDs) { 2163 Record.push_back(I.first); 2164 Record.push_back(VE.getMetadataID(I.second)); 2165 } 2166 } 2167 2168 void ModuleBitcodeWriter::writeFunctionMetadataAttachment(const Function &F) { 2169 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3); 2170 2171 SmallVector<uint64_t, 64> Record; 2172 2173 if (F.hasMetadata()) { 2174 pushGlobalMetadataAttachment(Record, F); 2175 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 2176 Record.clear(); 2177 } 2178 2179 // Write metadata attachments 2180 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]] 2181 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 2182 for (const BasicBlock &BB : F) 2183 for (const Instruction &I : BB) { 2184 MDs.clear(); 2185 I.getAllMetadataOtherThanDebugLoc(MDs); 2186 2187 // If no metadata, ignore instruction. 2188 if (MDs.empty()) continue; 2189 2190 Record.push_back(VE.getInstructionID(&I)); 2191 2192 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 2193 Record.push_back(MDs[i].first); 2194 Record.push_back(VE.getMetadataID(MDs[i].second)); 2195 } 2196 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 2197 Record.clear(); 2198 } 2199 2200 Stream.ExitBlock(); 2201 } 2202 2203 void ModuleBitcodeWriter::writeModuleMetadataKinds() { 2204 SmallVector<uint64_t, 64> Record; 2205 2206 // Write metadata kinds 2207 // METADATA_KIND - [n x [id, name]] 2208 SmallVector<StringRef, 8> Names; 2209 M.getMDKindNames(Names); 2210 2211 if (Names.empty()) return; 2212 2213 Stream.EnterSubblock(bitc::METADATA_KIND_BLOCK_ID, 3); 2214 2215 for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) { 2216 Record.push_back(MDKindID); 2217 StringRef KName = Names[MDKindID]; 2218 Record.append(KName.begin(), KName.end()); 2219 2220 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0); 2221 Record.clear(); 2222 } 2223 2224 Stream.ExitBlock(); 2225 } 2226 2227 void ModuleBitcodeWriter::writeOperandBundleTags() { 2228 // Write metadata kinds 2229 // 2230 // OPERAND_BUNDLE_TAGS_BLOCK_ID : N x OPERAND_BUNDLE_TAG 2231 // 2232 // OPERAND_BUNDLE_TAG - [strchr x N] 2233 2234 SmallVector<StringRef, 8> Tags; 2235 M.getOperandBundleTags(Tags); 2236 2237 if (Tags.empty()) 2238 return; 2239 2240 Stream.EnterSubblock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID, 3); 2241 2242 SmallVector<uint64_t, 64> Record; 2243 2244 for (auto Tag : Tags) { 2245 Record.append(Tag.begin(), Tag.end()); 2246 2247 Stream.EmitRecord(bitc::OPERAND_BUNDLE_TAG, Record, 0); 2248 Record.clear(); 2249 } 2250 2251 Stream.ExitBlock(); 2252 } 2253 2254 void ModuleBitcodeWriter::writeSyncScopeNames() { 2255 SmallVector<StringRef, 8> SSNs; 2256 M.getContext().getSyncScopeNames(SSNs); 2257 if (SSNs.empty()) 2258 return; 2259 2260 Stream.EnterSubblock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID, 2); 2261 2262 SmallVector<uint64_t, 64> Record; 2263 for (auto SSN : SSNs) { 2264 Record.append(SSN.begin(), SSN.end()); 2265 Stream.EmitRecord(bitc::SYNC_SCOPE_NAME, Record, 0); 2266 Record.clear(); 2267 } 2268 2269 Stream.ExitBlock(); 2270 } 2271 2272 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) { 2273 if ((int64_t)V >= 0) 2274 Vals.push_back(V << 1); 2275 else 2276 Vals.push_back((-V << 1) | 1); 2277 } 2278 2279 void ModuleBitcodeWriter::writeConstants(unsigned FirstVal, unsigned LastVal, 2280 bool isGlobal) { 2281 if (FirstVal == LastVal) return; 2282 2283 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 2284 2285 unsigned AggregateAbbrev = 0; 2286 unsigned String8Abbrev = 0; 2287 unsigned CString7Abbrev = 0; 2288 unsigned CString6Abbrev = 0; 2289 // If this is a constant pool for the module, emit module-specific abbrevs. 2290 if (isGlobal) { 2291 // Abbrev for CST_CODE_AGGREGATE. 2292 auto Abbv = std::make_shared<BitCodeAbbrev>(); 2293 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 2294 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2295 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); 2296 AggregateAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 2297 2298 // Abbrev for CST_CODE_STRING. 2299 Abbv = std::make_shared<BitCodeAbbrev>(); 2300 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 2301 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2302 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 2303 String8Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2304 // Abbrev for CST_CODE_CSTRING. 2305 Abbv = std::make_shared<BitCodeAbbrev>(); 2306 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2307 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2308 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 2309 CString7Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2310 // Abbrev for CST_CODE_CSTRING. 2311 Abbv = std::make_shared<BitCodeAbbrev>(); 2312 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 2313 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 2314 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 2315 CString6Abbrev = Stream.EmitAbbrev(std::move(Abbv)); 2316 } 2317 2318 SmallVector<uint64_t, 64> Record; 2319 2320 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2321 Type *LastTy = nullptr; 2322 for (unsigned i = FirstVal; i != LastVal; ++i) { 2323 const Value *V = Vals[i].first; 2324 // If we need to switch types, do so now. 2325 if (V->getType() != LastTy) { 2326 LastTy = V->getType(); 2327 Record.push_back(VE.getTypeID(LastTy)); 2328 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 2329 CONSTANTS_SETTYPE_ABBREV); 2330 Record.clear(); 2331 } 2332 2333 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 2334 Record.push_back(unsigned(IA->hasSideEffects()) | 2335 unsigned(IA->isAlignStack()) << 1 | 2336 unsigned(IA->getDialect()&1) << 2); 2337 2338 // Add the asm string. 2339 const std::string &AsmStr = IA->getAsmString(); 2340 Record.push_back(AsmStr.size()); 2341 Record.append(AsmStr.begin(), AsmStr.end()); 2342 2343 // Add the constraint string. 2344 const std::string &ConstraintStr = IA->getConstraintString(); 2345 Record.push_back(ConstraintStr.size()); 2346 Record.append(ConstraintStr.begin(), ConstraintStr.end()); 2347 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 2348 Record.clear(); 2349 continue; 2350 } 2351 const Constant *C = cast<Constant>(V); 2352 unsigned Code = -1U; 2353 unsigned AbbrevToUse = 0; 2354 if (C->isNullValue()) { 2355 Code = bitc::CST_CODE_NULL; 2356 } else if (isa<UndefValue>(C)) { 2357 Code = bitc::CST_CODE_UNDEF; 2358 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 2359 if (IV->getBitWidth() <= 64) { 2360 uint64_t V = IV->getSExtValue(); 2361 emitSignedInt64(Record, V); 2362 Code = bitc::CST_CODE_INTEGER; 2363 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 2364 } else { // Wide integers, > 64 bits in size. 2365 // We have an arbitrary precision integer value to write whose 2366 // bit width is > 64. However, in canonical unsigned integer 2367 // format it is likely that the high bits are going to be zero. 2368 // So, we only write the number of active words. 2369 unsigned NWords = IV->getValue().getActiveWords(); 2370 const uint64_t *RawWords = IV->getValue().getRawData(); 2371 for (unsigned i = 0; i != NWords; ++i) { 2372 emitSignedInt64(Record, RawWords[i]); 2373 } 2374 Code = bitc::CST_CODE_WIDE_INTEGER; 2375 } 2376 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 2377 Code = bitc::CST_CODE_FLOAT; 2378 Type *Ty = CFP->getType(); 2379 if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) { 2380 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); 2381 } else if (Ty->isX86_FP80Ty()) { 2382 // api needed to prevent premature destruction 2383 // bits are not in the same order as a normal i80 APInt, compensate. 2384 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2385 const uint64_t *p = api.getRawData(); 2386 Record.push_back((p[1] << 48) | (p[0] >> 16)); 2387 Record.push_back(p[0] & 0xffffLL); 2388 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) { 2389 APInt api = CFP->getValueAPF().bitcastToAPInt(); 2390 const uint64_t *p = api.getRawData(); 2391 Record.push_back(p[0]); 2392 Record.push_back(p[1]); 2393 } else { 2394 assert(0 && "Unknown FP type!"); 2395 } 2396 } else if (isa<ConstantDataSequential>(C) && 2397 cast<ConstantDataSequential>(C)->isString()) { 2398 const ConstantDataSequential *Str = cast<ConstantDataSequential>(C); 2399 // Emit constant strings specially. 2400 unsigned NumElts = Str->getNumElements(); 2401 // If this is a null-terminated string, use the denser CSTRING encoding. 2402 if (Str->isCString()) { 2403 Code = bitc::CST_CODE_CSTRING; 2404 --NumElts; // Don't encode the null, which isn't allowed by char6. 2405 } else { 2406 Code = bitc::CST_CODE_STRING; 2407 AbbrevToUse = String8Abbrev; 2408 } 2409 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 2410 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 2411 for (unsigned i = 0; i != NumElts; ++i) { 2412 unsigned char V = Str->getElementAsInteger(i); 2413 Record.push_back(V); 2414 isCStr7 &= (V & 128) == 0; 2415 if (isCStrChar6) 2416 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 2417 } 2418 2419 if (isCStrChar6) 2420 AbbrevToUse = CString6Abbrev; 2421 else if (isCStr7) 2422 AbbrevToUse = CString7Abbrev; 2423 } else if (const ConstantDataSequential *CDS = 2424 dyn_cast<ConstantDataSequential>(C)) { 2425 Code = bitc::CST_CODE_DATA; 2426 Type *EltTy = CDS->getType()->getElementType(); 2427 if (isa<IntegerType>(EltTy)) { 2428 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2429 Record.push_back(CDS->getElementAsInteger(i)); 2430 } else { 2431 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 2432 Record.push_back( 2433 CDS->getElementAsAPFloat(i).bitcastToAPInt().getLimitedValue()); 2434 } 2435 } else if (isa<ConstantAggregate>(C)) { 2436 Code = bitc::CST_CODE_AGGREGATE; 2437 for (const Value *Op : C->operands()) 2438 Record.push_back(VE.getValueID(Op)); 2439 AbbrevToUse = AggregateAbbrev; 2440 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 2441 switch (CE->getOpcode()) { 2442 default: 2443 if (Instruction::isCast(CE->getOpcode())) { 2444 Code = bitc::CST_CODE_CE_CAST; 2445 Record.push_back(getEncodedCastOpcode(CE->getOpcode())); 2446 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2447 Record.push_back(VE.getValueID(C->getOperand(0))); 2448 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 2449 } else { 2450 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 2451 Code = bitc::CST_CODE_CE_BINOP; 2452 Record.push_back(getEncodedBinaryOpcode(CE->getOpcode())); 2453 Record.push_back(VE.getValueID(C->getOperand(0))); 2454 Record.push_back(VE.getValueID(C->getOperand(1))); 2455 uint64_t Flags = getOptimizationFlags(CE); 2456 if (Flags != 0) 2457 Record.push_back(Flags); 2458 } 2459 break; 2460 case Instruction::FNeg: { 2461 assert(CE->getNumOperands() == 1 && "Unknown constant expr!"); 2462 Code = bitc::CST_CODE_CE_UNOP; 2463 Record.push_back(getEncodedUnaryOpcode(CE->getOpcode())); 2464 Record.push_back(VE.getValueID(C->getOperand(0))); 2465 uint64_t Flags = getOptimizationFlags(CE); 2466 if (Flags != 0) 2467 Record.push_back(Flags); 2468 break; 2469 } 2470 case Instruction::GetElementPtr: { 2471 Code = bitc::CST_CODE_CE_GEP; 2472 const auto *GO = cast<GEPOperator>(C); 2473 Record.push_back(VE.getTypeID(GO->getSourceElementType())); 2474 if (Optional<unsigned> Idx = GO->getInRangeIndex()) { 2475 Code = bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX; 2476 Record.push_back((*Idx << 1) | GO->isInBounds()); 2477 } else if (GO->isInBounds()) 2478 Code = bitc::CST_CODE_CE_INBOUNDS_GEP; 2479 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 2480 Record.push_back(VE.getTypeID(C->getOperand(i)->getType())); 2481 Record.push_back(VE.getValueID(C->getOperand(i))); 2482 } 2483 break; 2484 } 2485 case Instruction::Select: 2486 Code = bitc::CST_CODE_CE_SELECT; 2487 Record.push_back(VE.getValueID(C->getOperand(0))); 2488 Record.push_back(VE.getValueID(C->getOperand(1))); 2489 Record.push_back(VE.getValueID(C->getOperand(2))); 2490 break; 2491 case Instruction::ExtractElement: 2492 Code = bitc::CST_CODE_CE_EXTRACTELT; 2493 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2494 Record.push_back(VE.getValueID(C->getOperand(0))); 2495 Record.push_back(VE.getTypeID(C->getOperand(1)->getType())); 2496 Record.push_back(VE.getValueID(C->getOperand(1))); 2497 break; 2498 case Instruction::InsertElement: 2499 Code = bitc::CST_CODE_CE_INSERTELT; 2500 Record.push_back(VE.getValueID(C->getOperand(0))); 2501 Record.push_back(VE.getValueID(C->getOperand(1))); 2502 Record.push_back(VE.getTypeID(C->getOperand(2)->getType())); 2503 Record.push_back(VE.getValueID(C->getOperand(2))); 2504 break; 2505 case Instruction::ShuffleVector: 2506 // If the return type and argument types are the same, this is a 2507 // standard shufflevector instruction. If the types are different, 2508 // then the shuffle is widening or truncating the input vectors, and 2509 // the argument type must also be encoded. 2510 if (C->getType() == C->getOperand(0)->getType()) { 2511 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 2512 } else { 2513 Code = bitc::CST_CODE_CE_SHUFVEC_EX; 2514 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2515 } 2516 Record.push_back(VE.getValueID(C->getOperand(0))); 2517 Record.push_back(VE.getValueID(C->getOperand(1))); 2518 Record.push_back(VE.getValueID(C->getOperand(2))); 2519 break; 2520 case Instruction::ICmp: 2521 case Instruction::FCmp: 2522 Code = bitc::CST_CODE_CE_CMP; 2523 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 2524 Record.push_back(VE.getValueID(C->getOperand(0))); 2525 Record.push_back(VE.getValueID(C->getOperand(1))); 2526 Record.push_back(CE->getPredicate()); 2527 break; 2528 } 2529 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) { 2530 Code = bitc::CST_CODE_BLOCKADDRESS; 2531 Record.push_back(VE.getTypeID(BA->getFunction()->getType())); 2532 Record.push_back(VE.getValueID(BA->getFunction())); 2533 Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock())); 2534 } else { 2535 #ifndef NDEBUG 2536 C->dump(); 2537 #endif 2538 llvm_unreachable("Unknown constant!"); 2539 } 2540 Stream.EmitRecord(Code, Record, AbbrevToUse); 2541 Record.clear(); 2542 } 2543 2544 Stream.ExitBlock(); 2545 } 2546 2547 void ModuleBitcodeWriter::writeModuleConstants() { 2548 const ValueEnumerator::ValueList &Vals = VE.getValues(); 2549 2550 // Find the first constant to emit, which is the first non-globalvalue value. 2551 // We know globalvalues have been emitted by WriteModuleInfo. 2552 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 2553 if (!isa<GlobalValue>(Vals[i].first)) { 2554 writeConstants(i, Vals.size(), true); 2555 return; 2556 } 2557 } 2558 } 2559 2560 /// pushValueAndType - The file has to encode both the value and type id for 2561 /// many values, because we need to know what type to create for forward 2562 /// references. However, most operands are not forward references, so this type 2563 /// field is not needed. 2564 /// 2565 /// This function adds V's value ID to Vals. If the value ID is higher than the 2566 /// instruction ID, then it is a forward reference, and it also includes the 2567 /// type ID. The value ID that is written is encoded relative to the InstID. 2568 bool ModuleBitcodeWriter::pushValueAndType(const Value *V, unsigned InstID, 2569 SmallVectorImpl<unsigned> &Vals) { 2570 unsigned ValID = VE.getValueID(V); 2571 // Make encoding relative to the InstID. 2572 Vals.push_back(InstID - ValID); 2573 if (ValID >= InstID) { 2574 Vals.push_back(VE.getTypeID(V->getType())); 2575 return true; 2576 } 2577 return false; 2578 } 2579 2580 void ModuleBitcodeWriter::writeOperandBundles(ImmutableCallSite CS, 2581 unsigned InstID) { 2582 SmallVector<unsigned, 64> Record; 2583 LLVMContext &C = CS.getInstruction()->getContext(); 2584 2585 for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i) { 2586 const auto &Bundle = CS.getOperandBundleAt(i); 2587 Record.push_back(C.getOperandBundleTagID(Bundle.getTagName())); 2588 2589 for (auto &Input : Bundle.Inputs) 2590 pushValueAndType(Input, InstID, Record); 2591 2592 Stream.EmitRecord(bitc::FUNC_CODE_OPERAND_BUNDLE, Record); 2593 Record.clear(); 2594 } 2595 } 2596 2597 /// pushValue - Like pushValueAndType, but where the type of the value is 2598 /// omitted (perhaps it was already encoded in an earlier operand). 2599 void ModuleBitcodeWriter::pushValue(const Value *V, unsigned InstID, 2600 SmallVectorImpl<unsigned> &Vals) { 2601 unsigned ValID = VE.getValueID(V); 2602 Vals.push_back(InstID - ValID); 2603 } 2604 2605 void ModuleBitcodeWriter::pushValueSigned(const Value *V, unsigned InstID, 2606 SmallVectorImpl<uint64_t> &Vals) { 2607 unsigned ValID = VE.getValueID(V); 2608 int64_t diff = ((int32_t)InstID - (int32_t)ValID); 2609 emitSignedInt64(Vals, diff); 2610 } 2611 2612 /// WriteInstruction - Emit an instruction to the specified stream. 2613 void ModuleBitcodeWriter::writeInstruction(const Instruction &I, 2614 unsigned InstID, 2615 SmallVectorImpl<unsigned> &Vals) { 2616 unsigned Code = 0; 2617 unsigned AbbrevToUse = 0; 2618 VE.setInstructionID(&I); 2619 switch (I.getOpcode()) { 2620 default: 2621 if (Instruction::isCast(I.getOpcode())) { 2622 Code = bitc::FUNC_CODE_INST_CAST; 2623 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2624 AbbrevToUse = FUNCTION_INST_CAST_ABBREV; 2625 Vals.push_back(VE.getTypeID(I.getType())); 2626 Vals.push_back(getEncodedCastOpcode(I.getOpcode())); 2627 } else { 2628 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 2629 Code = bitc::FUNC_CODE_INST_BINOP; 2630 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2631 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; 2632 pushValue(I.getOperand(1), InstID, Vals); 2633 Vals.push_back(getEncodedBinaryOpcode(I.getOpcode())); 2634 uint64_t Flags = getOptimizationFlags(&I); 2635 if (Flags != 0) { 2636 if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV) 2637 AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV; 2638 Vals.push_back(Flags); 2639 } 2640 } 2641 break; 2642 case Instruction::FNeg: { 2643 Code = bitc::FUNC_CODE_INST_UNOP; 2644 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2645 AbbrevToUse = FUNCTION_INST_UNOP_ABBREV; 2646 Vals.push_back(getEncodedUnaryOpcode(I.getOpcode())); 2647 uint64_t Flags = getOptimizationFlags(&I); 2648 if (Flags != 0) { 2649 if (AbbrevToUse == FUNCTION_INST_UNOP_ABBREV) 2650 AbbrevToUse = FUNCTION_INST_UNOP_FLAGS_ABBREV; 2651 Vals.push_back(Flags); 2652 } 2653 break; 2654 } 2655 case Instruction::GetElementPtr: { 2656 Code = bitc::FUNC_CODE_INST_GEP; 2657 AbbrevToUse = FUNCTION_INST_GEP_ABBREV; 2658 auto &GEPInst = cast<GetElementPtrInst>(I); 2659 Vals.push_back(GEPInst.isInBounds()); 2660 Vals.push_back(VE.getTypeID(GEPInst.getSourceElementType())); 2661 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 2662 pushValueAndType(I.getOperand(i), InstID, Vals); 2663 break; 2664 } 2665 case Instruction::ExtractValue: { 2666 Code = bitc::FUNC_CODE_INST_EXTRACTVAL; 2667 pushValueAndType(I.getOperand(0), InstID, Vals); 2668 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); 2669 Vals.append(EVI->idx_begin(), EVI->idx_end()); 2670 break; 2671 } 2672 case Instruction::InsertValue: { 2673 Code = bitc::FUNC_CODE_INST_INSERTVAL; 2674 pushValueAndType(I.getOperand(0), InstID, Vals); 2675 pushValueAndType(I.getOperand(1), InstID, Vals); 2676 const InsertValueInst *IVI = cast<InsertValueInst>(&I); 2677 Vals.append(IVI->idx_begin(), IVI->idx_end()); 2678 break; 2679 } 2680 case Instruction::Select: { 2681 Code = bitc::FUNC_CODE_INST_VSELECT; 2682 pushValueAndType(I.getOperand(1), InstID, Vals); 2683 pushValue(I.getOperand(2), InstID, Vals); 2684 pushValueAndType(I.getOperand(0), InstID, Vals); 2685 uint64_t Flags = getOptimizationFlags(&I); 2686 if (Flags != 0) 2687 Vals.push_back(Flags); 2688 break; 2689 } 2690 case Instruction::ExtractElement: 2691 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 2692 pushValueAndType(I.getOperand(0), InstID, Vals); 2693 pushValueAndType(I.getOperand(1), InstID, Vals); 2694 break; 2695 case Instruction::InsertElement: 2696 Code = bitc::FUNC_CODE_INST_INSERTELT; 2697 pushValueAndType(I.getOperand(0), InstID, Vals); 2698 pushValue(I.getOperand(1), InstID, Vals); 2699 pushValueAndType(I.getOperand(2), InstID, Vals); 2700 break; 2701 case Instruction::ShuffleVector: 2702 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 2703 pushValueAndType(I.getOperand(0), InstID, Vals); 2704 pushValue(I.getOperand(1), InstID, Vals); 2705 pushValue(I.getOperand(2), InstID, Vals); 2706 break; 2707 case Instruction::ICmp: 2708 case Instruction::FCmp: { 2709 // compare returning Int1Ty or vector of Int1Ty 2710 Code = bitc::FUNC_CODE_INST_CMP2; 2711 pushValueAndType(I.getOperand(0), InstID, Vals); 2712 pushValue(I.getOperand(1), InstID, Vals); 2713 Vals.push_back(cast<CmpInst>(I).getPredicate()); 2714 uint64_t Flags = getOptimizationFlags(&I); 2715 if (Flags != 0) 2716 Vals.push_back(Flags); 2717 break; 2718 } 2719 2720 case Instruction::Ret: 2721 { 2722 Code = bitc::FUNC_CODE_INST_RET; 2723 unsigned NumOperands = I.getNumOperands(); 2724 if (NumOperands == 0) 2725 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; 2726 else if (NumOperands == 1) { 2727 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) 2728 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; 2729 } else { 2730 for (unsigned i = 0, e = NumOperands; i != e; ++i) 2731 pushValueAndType(I.getOperand(i), InstID, Vals); 2732 } 2733 } 2734 break; 2735 case Instruction::Br: 2736 { 2737 Code = bitc::FUNC_CODE_INST_BR; 2738 const BranchInst &II = cast<BranchInst>(I); 2739 Vals.push_back(VE.getValueID(II.getSuccessor(0))); 2740 if (II.isConditional()) { 2741 Vals.push_back(VE.getValueID(II.getSuccessor(1))); 2742 pushValue(II.getCondition(), InstID, Vals); 2743 } 2744 } 2745 break; 2746 case Instruction::Switch: 2747 { 2748 Code = bitc::FUNC_CODE_INST_SWITCH; 2749 const SwitchInst &SI = cast<SwitchInst>(I); 2750 Vals.push_back(VE.getTypeID(SI.getCondition()->getType())); 2751 pushValue(SI.getCondition(), InstID, Vals); 2752 Vals.push_back(VE.getValueID(SI.getDefaultDest())); 2753 for (auto Case : SI.cases()) { 2754 Vals.push_back(VE.getValueID(Case.getCaseValue())); 2755 Vals.push_back(VE.getValueID(Case.getCaseSuccessor())); 2756 } 2757 } 2758 break; 2759 case Instruction::IndirectBr: 2760 Code = bitc::FUNC_CODE_INST_INDIRECTBR; 2761 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 2762 // Encode the address operand as relative, but not the basic blocks. 2763 pushValue(I.getOperand(0), InstID, Vals); 2764 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) 2765 Vals.push_back(VE.getValueID(I.getOperand(i))); 2766 break; 2767 2768 case Instruction::Invoke: { 2769 const InvokeInst *II = cast<InvokeInst>(&I); 2770 const Value *Callee = II->getCalledValue(); 2771 FunctionType *FTy = II->getFunctionType(); 2772 2773 if (II->hasOperandBundles()) 2774 writeOperandBundles(II, InstID); 2775 2776 Code = bitc::FUNC_CODE_INST_INVOKE; 2777 2778 Vals.push_back(VE.getAttributeListID(II->getAttributes())); 2779 Vals.push_back(II->getCallingConv() | 1 << 13); 2780 Vals.push_back(VE.getValueID(II->getNormalDest())); 2781 Vals.push_back(VE.getValueID(II->getUnwindDest())); 2782 Vals.push_back(VE.getTypeID(FTy)); 2783 pushValueAndType(Callee, InstID, Vals); 2784 2785 // Emit value #'s for the fixed parameters. 2786 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 2787 pushValue(I.getOperand(i), InstID, Vals); // fixed param. 2788 2789 // Emit type/value pairs for varargs params. 2790 if (FTy->isVarArg()) { 2791 for (unsigned i = FTy->getNumParams(), e = II->getNumArgOperands(); 2792 i != e; ++i) 2793 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg 2794 } 2795 break; 2796 } 2797 case Instruction::Resume: 2798 Code = bitc::FUNC_CODE_INST_RESUME; 2799 pushValueAndType(I.getOperand(0), InstID, Vals); 2800 break; 2801 case Instruction::CleanupRet: { 2802 Code = bitc::FUNC_CODE_INST_CLEANUPRET; 2803 const auto &CRI = cast<CleanupReturnInst>(I); 2804 pushValue(CRI.getCleanupPad(), InstID, Vals); 2805 if (CRI.hasUnwindDest()) 2806 Vals.push_back(VE.getValueID(CRI.getUnwindDest())); 2807 break; 2808 } 2809 case Instruction::CatchRet: { 2810 Code = bitc::FUNC_CODE_INST_CATCHRET; 2811 const auto &CRI = cast<CatchReturnInst>(I); 2812 pushValue(CRI.getCatchPad(), InstID, Vals); 2813 Vals.push_back(VE.getValueID(CRI.getSuccessor())); 2814 break; 2815 } 2816 case Instruction::CleanupPad: 2817 case Instruction::CatchPad: { 2818 const auto &FuncletPad = cast<FuncletPadInst>(I); 2819 Code = isa<CatchPadInst>(FuncletPad) ? bitc::FUNC_CODE_INST_CATCHPAD 2820 : bitc::FUNC_CODE_INST_CLEANUPPAD; 2821 pushValue(FuncletPad.getParentPad(), InstID, Vals); 2822 2823 unsigned NumArgOperands = FuncletPad.getNumArgOperands(); 2824 Vals.push_back(NumArgOperands); 2825 for (unsigned Op = 0; Op != NumArgOperands; ++Op) 2826 pushValueAndType(FuncletPad.getArgOperand(Op), InstID, Vals); 2827 break; 2828 } 2829 case Instruction::CatchSwitch: { 2830 Code = bitc::FUNC_CODE_INST_CATCHSWITCH; 2831 const auto &CatchSwitch = cast<CatchSwitchInst>(I); 2832 2833 pushValue(CatchSwitch.getParentPad(), InstID, Vals); 2834 2835 unsigned NumHandlers = CatchSwitch.getNumHandlers(); 2836 Vals.push_back(NumHandlers); 2837 for (const BasicBlock *CatchPadBB : CatchSwitch.handlers()) 2838 Vals.push_back(VE.getValueID(CatchPadBB)); 2839 2840 if (CatchSwitch.hasUnwindDest()) 2841 Vals.push_back(VE.getValueID(CatchSwitch.getUnwindDest())); 2842 break; 2843 } 2844 case Instruction::CallBr: { 2845 const CallBrInst *CBI = cast<CallBrInst>(&I); 2846 const Value *Callee = CBI->getCalledValue(); 2847 FunctionType *FTy = CBI->getFunctionType(); 2848 2849 if (CBI->hasOperandBundles()) 2850 writeOperandBundles(CBI, InstID); 2851 2852 Code = bitc::FUNC_CODE_INST_CALLBR; 2853 2854 Vals.push_back(VE.getAttributeListID(CBI->getAttributes())); 2855 2856 Vals.push_back(CBI->getCallingConv() << bitc::CALL_CCONV | 2857 1 << bitc::CALL_EXPLICIT_TYPE); 2858 2859 Vals.push_back(VE.getValueID(CBI->getDefaultDest())); 2860 Vals.push_back(CBI->getNumIndirectDests()); 2861 for (unsigned i = 0, e = CBI->getNumIndirectDests(); i != e; ++i) 2862 Vals.push_back(VE.getValueID(CBI->getIndirectDest(i))); 2863 2864 Vals.push_back(VE.getTypeID(FTy)); 2865 pushValueAndType(Callee, InstID, Vals); 2866 2867 // Emit value #'s for the fixed parameters. 2868 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 2869 pushValue(I.getOperand(i), InstID, Vals); // fixed param. 2870 2871 // Emit type/value pairs for varargs params. 2872 if (FTy->isVarArg()) { 2873 for (unsigned i = FTy->getNumParams(), e = CBI->getNumArgOperands(); 2874 i != e; ++i) 2875 pushValueAndType(I.getOperand(i), InstID, Vals); // vararg 2876 } 2877 break; 2878 } 2879 case Instruction::Unreachable: 2880 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 2881 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; 2882 break; 2883 2884 case Instruction::PHI: { 2885 const PHINode &PN = cast<PHINode>(I); 2886 Code = bitc::FUNC_CODE_INST_PHI; 2887 // With the newer instruction encoding, forward references could give 2888 // negative valued IDs. This is most common for PHIs, so we use 2889 // signed VBRs. 2890 SmallVector<uint64_t, 128> Vals64; 2891 Vals64.push_back(VE.getTypeID(PN.getType())); 2892 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 2893 pushValueSigned(PN.getIncomingValue(i), InstID, Vals64); 2894 Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i))); 2895 } 2896 2897 uint64_t Flags = getOptimizationFlags(&I); 2898 if (Flags != 0) 2899 Vals64.push_back(Flags); 2900 2901 // Emit a Vals64 vector and exit. 2902 Stream.EmitRecord(Code, Vals64, AbbrevToUse); 2903 Vals64.clear(); 2904 return; 2905 } 2906 2907 case Instruction::LandingPad: { 2908 const LandingPadInst &LP = cast<LandingPadInst>(I); 2909 Code = bitc::FUNC_CODE_INST_LANDINGPAD; 2910 Vals.push_back(VE.getTypeID(LP.getType())); 2911 Vals.push_back(LP.isCleanup()); 2912 Vals.push_back(LP.getNumClauses()); 2913 for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) { 2914 if (LP.isCatch(I)) 2915 Vals.push_back(LandingPadInst::Catch); 2916 else 2917 Vals.push_back(LandingPadInst::Filter); 2918 pushValueAndType(LP.getClause(I), InstID, Vals); 2919 } 2920 break; 2921 } 2922 2923 case Instruction::Alloca: { 2924 Code = bitc::FUNC_CODE_INST_ALLOCA; 2925 const AllocaInst &AI = cast<AllocaInst>(I); 2926 Vals.push_back(VE.getTypeID(AI.getAllocatedType())); 2927 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 2928 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 2929 unsigned AlignRecord = Log2_32(AI.getAlignment()) + 1; 2930 assert(Log2_32(Value::MaximumAlignment) + 1 < 1 << 5 && 2931 "not enough bits for maximum alignment"); 2932 assert(AlignRecord < 1 << 5 && "alignment greater than 1 << 64"); 2933 AlignRecord |= AI.isUsedWithInAlloca() << 5; 2934 AlignRecord |= 1 << 6; 2935 AlignRecord |= AI.isSwiftError() << 7; 2936 Vals.push_back(AlignRecord); 2937 break; 2938 } 2939 2940 case Instruction::Load: 2941 if (cast<LoadInst>(I).isAtomic()) { 2942 Code = bitc::FUNC_CODE_INST_LOADATOMIC; 2943 pushValueAndType(I.getOperand(0), InstID, Vals); 2944 } else { 2945 Code = bitc::FUNC_CODE_INST_LOAD; 2946 if (!pushValueAndType(I.getOperand(0), InstID, Vals)) // ptr 2947 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; 2948 } 2949 Vals.push_back(VE.getTypeID(I.getType())); 2950 Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1); 2951 Vals.push_back(cast<LoadInst>(I).isVolatile()); 2952 if (cast<LoadInst>(I).isAtomic()) { 2953 Vals.push_back(getEncodedOrdering(cast<LoadInst>(I).getOrdering())); 2954 Vals.push_back(getEncodedSyncScopeID(cast<LoadInst>(I).getSyncScopeID())); 2955 } 2956 break; 2957 case Instruction::Store: 2958 if (cast<StoreInst>(I).isAtomic()) 2959 Code = bitc::FUNC_CODE_INST_STOREATOMIC; 2960 else 2961 Code = bitc::FUNC_CODE_INST_STORE; 2962 pushValueAndType(I.getOperand(1), InstID, Vals); // ptrty + ptr 2963 pushValueAndType(I.getOperand(0), InstID, Vals); // valty + val 2964 Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1); 2965 Vals.push_back(cast<StoreInst>(I).isVolatile()); 2966 if (cast<StoreInst>(I).isAtomic()) { 2967 Vals.push_back(getEncodedOrdering(cast<StoreInst>(I).getOrdering())); 2968 Vals.push_back( 2969 getEncodedSyncScopeID(cast<StoreInst>(I).getSyncScopeID())); 2970 } 2971 break; 2972 case Instruction::AtomicCmpXchg: 2973 Code = bitc::FUNC_CODE_INST_CMPXCHG; 2974 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 2975 pushValueAndType(I.getOperand(1), InstID, Vals); // cmp. 2976 pushValue(I.getOperand(2), InstID, Vals); // newval. 2977 Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile()); 2978 Vals.push_back( 2979 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getSuccessOrdering())); 2980 Vals.push_back( 2981 getEncodedSyncScopeID(cast<AtomicCmpXchgInst>(I).getSyncScopeID())); 2982 Vals.push_back( 2983 getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getFailureOrdering())); 2984 Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak()); 2985 break; 2986 case Instruction::AtomicRMW: 2987 Code = bitc::FUNC_CODE_INST_ATOMICRMW; 2988 pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr 2989 pushValue(I.getOperand(1), InstID, Vals); // val. 2990 Vals.push_back( 2991 getEncodedRMWOperation(cast<AtomicRMWInst>(I).getOperation())); 2992 Vals.push_back(cast<AtomicRMWInst>(I).isVolatile()); 2993 Vals.push_back(getEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering())); 2994 Vals.push_back( 2995 getEncodedSyncScopeID(cast<AtomicRMWInst>(I).getSyncScopeID())); 2996 break; 2997 case Instruction::Fence: 2998 Code = bitc::FUNC_CODE_INST_FENCE; 2999 Vals.push_back(getEncodedOrdering(cast<FenceInst>(I).getOrdering())); 3000 Vals.push_back(getEncodedSyncScopeID(cast<FenceInst>(I).getSyncScopeID())); 3001 break; 3002 case Instruction::Call: { 3003 const CallInst &CI = cast<CallInst>(I); 3004 FunctionType *FTy = CI.getFunctionType(); 3005 3006 if (CI.hasOperandBundles()) 3007 writeOperandBundles(&CI, InstID); 3008 3009 Code = bitc::FUNC_CODE_INST_CALL; 3010 3011 Vals.push_back(VE.getAttributeListID(CI.getAttributes())); 3012 3013 unsigned Flags = getOptimizationFlags(&I); 3014 Vals.push_back(CI.getCallingConv() << bitc::CALL_CCONV | 3015 unsigned(CI.isTailCall()) << bitc::CALL_TAIL | 3016 unsigned(CI.isMustTailCall()) << bitc::CALL_MUSTTAIL | 3017 1 << bitc::CALL_EXPLICIT_TYPE | 3018 unsigned(CI.isNoTailCall()) << bitc::CALL_NOTAIL | 3019 unsigned(Flags != 0) << bitc::CALL_FMF); 3020 if (Flags != 0) 3021 Vals.push_back(Flags); 3022 3023 Vals.push_back(VE.getTypeID(FTy)); 3024 pushValueAndType(CI.getCalledValue(), InstID, Vals); // Callee 3025 3026 // Emit value #'s for the fixed parameters. 3027 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { 3028 // Check for labels (can happen with asm labels). 3029 if (FTy->getParamType(i)->isLabelTy()) 3030 Vals.push_back(VE.getValueID(CI.getArgOperand(i))); 3031 else 3032 pushValue(CI.getArgOperand(i), InstID, Vals); // fixed param. 3033 } 3034 3035 // Emit type/value pairs for varargs params. 3036 if (FTy->isVarArg()) { 3037 for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands(); 3038 i != e; ++i) 3039 pushValueAndType(CI.getArgOperand(i), InstID, Vals); // varargs 3040 } 3041 break; 3042 } 3043 case Instruction::VAArg: 3044 Code = bitc::FUNC_CODE_INST_VAARG; 3045 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty 3046 pushValue(I.getOperand(0), InstID, Vals); // valist. 3047 Vals.push_back(VE.getTypeID(I.getType())); // restype. 3048 break; 3049 case Instruction::Freeze: 3050 Code = bitc::FUNC_CODE_INST_FREEZE; 3051 pushValueAndType(I.getOperand(0), InstID, Vals); 3052 break; 3053 } 3054 3055 Stream.EmitRecord(Code, Vals, AbbrevToUse); 3056 Vals.clear(); 3057 } 3058 3059 /// Write a GlobalValue VST to the module. The purpose of this data structure is 3060 /// to allow clients to efficiently find the function body. 3061 void ModuleBitcodeWriter::writeGlobalValueSymbolTable( 3062 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 3063 // Get the offset of the VST we are writing, and backpatch it into 3064 // the VST forward declaration record. 3065 uint64_t VSTOffset = Stream.GetCurrentBitNo(); 3066 // The BitcodeStartBit was the stream offset of the identification block. 3067 VSTOffset -= bitcodeStartBit(); 3068 assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned"); 3069 // Note that we add 1 here because the offset is relative to one word 3070 // before the start of the identification block, which was historically 3071 // always the start of the regular bitcode header. 3072 Stream.BackpatchWord(VSTOffsetPlaceholder, VSTOffset / 32 + 1); 3073 3074 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 3075 3076 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3077 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY)); 3078 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 3079 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset 3080 unsigned FnEntryAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3081 3082 for (const Function &F : M) { 3083 uint64_t Record[2]; 3084 3085 if (F.isDeclaration()) 3086 continue; 3087 3088 Record[0] = VE.getValueID(&F); 3089 3090 // Save the word offset of the function (from the start of the 3091 // actual bitcode written to the stream). 3092 uint64_t BitcodeIndex = FunctionToBitcodeIndex[&F] - bitcodeStartBit(); 3093 assert((BitcodeIndex & 31) == 0 && "function block not 32-bit aligned"); 3094 // Note that we add 1 here because the offset is relative to one word 3095 // before the start of the identification block, which was historically 3096 // always the start of the regular bitcode header. 3097 Record[1] = BitcodeIndex / 32 + 1; 3098 3099 Stream.EmitRecord(bitc::VST_CODE_FNENTRY, Record, FnEntryAbbrev); 3100 } 3101 3102 Stream.ExitBlock(); 3103 } 3104 3105 /// Emit names for arguments, instructions and basic blocks in a function. 3106 void ModuleBitcodeWriter::writeFunctionLevelValueSymbolTable( 3107 const ValueSymbolTable &VST) { 3108 if (VST.empty()) 3109 return; 3110 3111 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 3112 3113 // FIXME: Set up the abbrev, we know how many values there are! 3114 // FIXME: We know if the type names can use 7-bit ascii. 3115 SmallVector<uint64_t, 64> NameVals; 3116 3117 for (const ValueName &Name : VST) { 3118 // Figure out the encoding to use for the name. 3119 StringEncoding Bits = getStringEncoding(Name.getKey()); 3120 3121 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 3122 NameVals.push_back(VE.getValueID(Name.getValue())); 3123 3124 // VST_CODE_ENTRY: [valueid, namechar x N] 3125 // VST_CODE_BBENTRY: [bbid, namechar x N] 3126 unsigned Code; 3127 if (isa<BasicBlock>(Name.getValue())) { 3128 Code = bitc::VST_CODE_BBENTRY; 3129 if (Bits == SE_Char6) 3130 AbbrevToUse = VST_BBENTRY_6_ABBREV; 3131 } else { 3132 Code = bitc::VST_CODE_ENTRY; 3133 if (Bits == SE_Char6) 3134 AbbrevToUse = VST_ENTRY_6_ABBREV; 3135 else if (Bits == SE_Fixed7) 3136 AbbrevToUse = VST_ENTRY_7_ABBREV; 3137 } 3138 3139 for (const auto P : Name.getKey()) 3140 NameVals.push_back((unsigned char)P); 3141 3142 // Emit the finished record. 3143 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 3144 NameVals.clear(); 3145 } 3146 3147 Stream.ExitBlock(); 3148 } 3149 3150 void ModuleBitcodeWriter::writeUseList(UseListOrder &&Order) { 3151 assert(Order.Shuffle.size() >= 2 && "Shuffle too small"); 3152 unsigned Code; 3153 if (isa<BasicBlock>(Order.V)) 3154 Code = bitc::USELIST_CODE_BB; 3155 else 3156 Code = bitc::USELIST_CODE_DEFAULT; 3157 3158 SmallVector<uint64_t, 64> Record(Order.Shuffle.begin(), Order.Shuffle.end()); 3159 Record.push_back(VE.getValueID(Order.V)); 3160 Stream.EmitRecord(Code, Record); 3161 } 3162 3163 void ModuleBitcodeWriter::writeUseListBlock(const Function *F) { 3164 assert(VE.shouldPreserveUseListOrder() && 3165 "Expected to be preserving use-list order"); 3166 3167 auto hasMore = [&]() { 3168 return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F; 3169 }; 3170 if (!hasMore()) 3171 // Nothing to do. 3172 return; 3173 3174 Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3); 3175 while (hasMore()) { 3176 writeUseList(std::move(VE.UseListOrders.back())); 3177 VE.UseListOrders.pop_back(); 3178 } 3179 Stream.ExitBlock(); 3180 } 3181 3182 /// Emit a function body to the module stream. 3183 void ModuleBitcodeWriter::writeFunction( 3184 const Function &F, 3185 DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { 3186 // Save the bitcode index of the start of this function block for recording 3187 // in the VST. 3188 FunctionToBitcodeIndex[&F] = Stream.GetCurrentBitNo(); 3189 3190 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 3191 VE.incorporateFunction(F); 3192 3193 SmallVector<unsigned, 64> Vals; 3194 3195 // Emit the number of basic blocks, so the reader can create them ahead of 3196 // time. 3197 Vals.push_back(VE.getBasicBlocks().size()); 3198 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 3199 Vals.clear(); 3200 3201 // If there are function-local constants, emit them now. 3202 unsigned CstStart, CstEnd; 3203 VE.getFunctionConstantRange(CstStart, CstEnd); 3204 writeConstants(CstStart, CstEnd, false); 3205 3206 // If there is function-local metadata, emit it now. 3207 writeFunctionMetadata(F); 3208 3209 // Keep a running idea of what the instruction ID is. 3210 unsigned InstID = CstEnd; 3211 3212 bool NeedsMetadataAttachment = F.hasMetadata(); 3213 3214 DILocation *LastDL = nullptr; 3215 // Finally, emit all the instructions, in order. 3216 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 3217 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 3218 I != E; ++I) { 3219 writeInstruction(*I, InstID, Vals); 3220 3221 if (!I->getType()->isVoidTy()) 3222 ++InstID; 3223 3224 // If the instruction has metadata, write a metadata attachment later. 3225 NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc(); 3226 3227 // If the instruction has a debug location, emit it. 3228 DILocation *DL = I->getDebugLoc(); 3229 if (!DL) 3230 continue; 3231 3232 if (DL == LastDL) { 3233 // Just repeat the same debug loc as last time. 3234 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals); 3235 continue; 3236 } 3237 3238 Vals.push_back(DL->getLine()); 3239 Vals.push_back(DL->getColumn()); 3240 Vals.push_back(VE.getMetadataOrNullID(DL->getScope())); 3241 Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt())); 3242 Vals.push_back(DL->isImplicitCode()); 3243 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals); 3244 Vals.clear(); 3245 3246 LastDL = DL; 3247 } 3248 3249 // Emit names for all the instructions etc. 3250 if (auto *Symtab = F.getValueSymbolTable()) 3251 writeFunctionLevelValueSymbolTable(*Symtab); 3252 3253 if (NeedsMetadataAttachment) 3254 writeFunctionMetadataAttachment(F); 3255 if (VE.shouldPreserveUseListOrder()) 3256 writeUseListBlock(&F); 3257 VE.purgeFunction(); 3258 Stream.ExitBlock(); 3259 } 3260 3261 // Emit blockinfo, which defines the standard abbreviations etc. 3262 void ModuleBitcodeWriter::writeBlockInfo() { 3263 // We only want to emit block info records for blocks that have multiple 3264 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. 3265 // Other blocks can define their abbrevs inline. 3266 Stream.EnterBlockInfoBlock(); 3267 3268 { // 8-bit fixed-width VST_CODE_ENTRY/VST_CODE_BBENTRY strings. 3269 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3270 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 3271 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3272 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3273 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 3274 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3275 VST_ENTRY_8_ABBREV) 3276 llvm_unreachable("Unexpected abbrev ordering!"); 3277 } 3278 3279 { // 7-bit fixed width VST_CODE_ENTRY strings. 3280 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3281 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 3282 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3283 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3284 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 3285 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3286 VST_ENTRY_7_ABBREV) 3287 llvm_unreachable("Unexpected abbrev ordering!"); 3288 } 3289 { // 6-bit char6 VST_CODE_ENTRY strings. 3290 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3291 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 3292 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3293 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3294 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3295 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3296 VST_ENTRY_6_ABBREV) 3297 llvm_unreachable("Unexpected abbrev ordering!"); 3298 } 3299 { // 6-bit char6 VST_CODE_BBENTRY strings. 3300 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3301 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 3302 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3303 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3304 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3305 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != 3306 VST_BBENTRY_6_ABBREV) 3307 llvm_unreachable("Unexpected abbrev ordering!"); 3308 } 3309 3310 { // SETTYPE abbrev for CONSTANTS_BLOCK. 3311 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3312 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 3313 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3314 VE.computeBitsRequiredForTypeIndicies())); 3315 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3316 CONSTANTS_SETTYPE_ABBREV) 3317 llvm_unreachable("Unexpected abbrev ordering!"); 3318 } 3319 3320 { // INTEGER abbrev for CONSTANTS_BLOCK. 3321 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3322 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 3323 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3324 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3325 CONSTANTS_INTEGER_ABBREV) 3326 llvm_unreachable("Unexpected abbrev ordering!"); 3327 } 3328 3329 { // CE_CAST abbrev for CONSTANTS_BLOCK. 3330 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3331 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 3332 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 3333 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 3334 VE.computeBitsRequiredForTypeIndicies())); 3335 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 3336 3337 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3338 CONSTANTS_CE_CAST_Abbrev) 3339 llvm_unreachable("Unexpected abbrev ordering!"); 3340 } 3341 { // NULL abbrev for CONSTANTS_BLOCK. 3342 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3343 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 3344 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, Abbv) != 3345 CONSTANTS_NULL_Abbrev) 3346 llvm_unreachable("Unexpected abbrev ordering!"); 3347 } 3348 3349 // FIXME: This should only use space for first class types! 3350 3351 { // INST_LOAD abbrev for FUNCTION_BLOCK. 3352 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3353 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 3354 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 3355 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3356 VE.computeBitsRequiredForTypeIndicies())); 3357 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 3358 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 3359 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3360 FUNCTION_INST_LOAD_ABBREV) 3361 llvm_unreachable("Unexpected abbrev ordering!"); 3362 } 3363 { // INST_UNOP abbrev for FUNCTION_BLOCK. 3364 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3365 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP)); 3366 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3367 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3368 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3369 FUNCTION_INST_UNOP_ABBREV) 3370 llvm_unreachable("Unexpected abbrev ordering!"); 3371 } 3372 { // INST_UNOP_FLAGS abbrev for FUNCTION_BLOCK. 3373 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3374 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP)); 3375 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3376 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3377 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags 3378 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3379 FUNCTION_INST_UNOP_FLAGS_ABBREV) 3380 llvm_unreachable("Unexpected abbrev ordering!"); 3381 } 3382 { // INST_BINOP abbrev for FUNCTION_BLOCK. 3383 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3384 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3385 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3386 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3387 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3388 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3389 FUNCTION_INST_BINOP_ABBREV) 3390 llvm_unreachable("Unexpected abbrev ordering!"); 3391 } 3392 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK. 3393 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3394 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 3395 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 3396 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 3397 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3398 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags 3399 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3400 FUNCTION_INST_BINOP_FLAGS_ABBREV) 3401 llvm_unreachable("Unexpected abbrev ordering!"); 3402 } 3403 { // INST_CAST abbrev for FUNCTION_BLOCK. 3404 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3405 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 3406 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 3407 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3408 VE.computeBitsRequiredForTypeIndicies())); 3409 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 3410 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3411 FUNCTION_INST_CAST_ABBREV) 3412 llvm_unreachable("Unexpected abbrev ordering!"); 3413 } 3414 3415 { // INST_RET abbrev for FUNCTION_BLOCK. 3416 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3417 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3418 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3419 FUNCTION_INST_RET_VOID_ABBREV) 3420 llvm_unreachable("Unexpected abbrev ordering!"); 3421 } 3422 { // INST_RET abbrev for FUNCTION_BLOCK. 3423 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3424 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 3425 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 3426 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3427 FUNCTION_INST_RET_VAL_ABBREV) 3428 llvm_unreachable("Unexpected abbrev ordering!"); 3429 } 3430 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 3431 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3432 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 3433 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3434 FUNCTION_INST_UNREACHABLE_ABBREV) 3435 llvm_unreachable("Unexpected abbrev ordering!"); 3436 } 3437 { 3438 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3439 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP)); 3440 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); 3441 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 3442 Log2_32_Ceil(VE.getTypes().size() + 1))); 3443 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3444 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 3445 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, Abbv) != 3446 FUNCTION_INST_GEP_ABBREV) 3447 llvm_unreachable("Unexpected abbrev ordering!"); 3448 } 3449 3450 Stream.ExitBlock(); 3451 } 3452 3453 /// Write the module path strings, currently only used when generating 3454 /// a combined index file. 3455 void IndexBitcodeWriter::writeModStrings() { 3456 Stream.EnterSubblock(bitc::MODULE_STRTAB_BLOCK_ID, 3); 3457 3458 // TODO: See which abbrev sizes we actually need to emit 3459 3460 // 8-bit fixed-width MST_ENTRY strings. 3461 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3462 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3463 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3464 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3465 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 3466 unsigned Abbrev8Bit = Stream.EmitAbbrev(std::move(Abbv)); 3467 3468 // 7-bit fixed width MST_ENTRY strings. 3469 Abbv = std::make_shared<BitCodeAbbrev>(); 3470 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3471 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3472 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3473 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 3474 unsigned Abbrev7Bit = Stream.EmitAbbrev(std::move(Abbv)); 3475 3476 // 6-bit char6 MST_ENTRY strings. 3477 Abbv = std::make_shared<BitCodeAbbrev>(); 3478 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); 3479 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3480 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3481 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 3482 unsigned Abbrev6Bit = Stream.EmitAbbrev(std::move(Abbv)); 3483 3484 // Module Hash, 160 bits SHA1. Optionally, emitted after each MST_CODE_ENTRY. 3485 Abbv = std::make_shared<BitCodeAbbrev>(); 3486 Abbv->Add(BitCodeAbbrevOp(bitc::MST_CODE_HASH)); 3487 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3488 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3489 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3490 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3491 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); 3492 unsigned AbbrevHash = Stream.EmitAbbrev(std::move(Abbv)); 3493 3494 SmallVector<unsigned, 64> Vals; 3495 forEachModule( 3496 [&](const StringMapEntry<std::pair<uint64_t, ModuleHash>> &MPSE) { 3497 StringRef Key = MPSE.getKey(); 3498 const auto &Value = MPSE.getValue(); 3499 StringEncoding Bits = getStringEncoding(Key); 3500 unsigned AbbrevToUse = Abbrev8Bit; 3501 if (Bits == SE_Char6) 3502 AbbrevToUse = Abbrev6Bit; 3503 else if (Bits == SE_Fixed7) 3504 AbbrevToUse = Abbrev7Bit; 3505 3506 Vals.push_back(Value.first); 3507 Vals.append(Key.begin(), Key.end()); 3508 3509 // Emit the finished record. 3510 Stream.EmitRecord(bitc::MST_CODE_ENTRY, Vals, AbbrevToUse); 3511 3512 // Emit an optional hash for the module now 3513 const auto &Hash = Value.second; 3514 if (llvm::any_of(Hash, [](uint32_t H) { return H; })) { 3515 Vals.assign(Hash.begin(), Hash.end()); 3516 // Emit the hash record. 3517 Stream.EmitRecord(bitc::MST_CODE_HASH, Vals, AbbrevHash); 3518 } 3519 3520 Vals.clear(); 3521 }); 3522 Stream.ExitBlock(); 3523 } 3524 3525 /// Write the function type metadata related records that need to appear before 3526 /// a function summary entry (whether per-module or combined). 3527 static void writeFunctionTypeMetadataRecords(BitstreamWriter &Stream, 3528 FunctionSummary *FS) { 3529 if (!FS->type_tests().empty()) 3530 Stream.EmitRecord(bitc::FS_TYPE_TESTS, FS->type_tests()); 3531 3532 SmallVector<uint64_t, 64> Record; 3533 3534 auto WriteVFuncIdVec = [&](uint64_t Ty, 3535 ArrayRef<FunctionSummary::VFuncId> VFs) { 3536 if (VFs.empty()) 3537 return; 3538 Record.clear(); 3539 for (auto &VF : VFs) { 3540 Record.push_back(VF.GUID); 3541 Record.push_back(VF.Offset); 3542 } 3543 Stream.EmitRecord(Ty, Record); 3544 }; 3545 3546 WriteVFuncIdVec(bitc::FS_TYPE_TEST_ASSUME_VCALLS, 3547 FS->type_test_assume_vcalls()); 3548 WriteVFuncIdVec(bitc::FS_TYPE_CHECKED_LOAD_VCALLS, 3549 FS->type_checked_load_vcalls()); 3550 3551 auto WriteConstVCallVec = [&](uint64_t Ty, 3552 ArrayRef<FunctionSummary::ConstVCall> VCs) { 3553 for (auto &VC : VCs) { 3554 Record.clear(); 3555 Record.push_back(VC.VFunc.GUID); 3556 Record.push_back(VC.VFunc.Offset); 3557 Record.insert(Record.end(), VC.Args.begin(), VC.Args.end()); 3558 Stream.EmitRecord(Ty, Record); 3559 } 3560 }; 3561 3562 WriteConstVCallVec(bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL, 3563 FS->type_test_assume_const_vcalls()); 3564 WriteConstVCallVec(bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL, 3565 FS->type_checked_load_const_vcalls()); 3566 } 3567 3568 /// Collect type IDs from type tests used by function. 3569 static void 3570 getReferencedTypeIds(FunctionSummary *FS, 3571 std::set<GlobalValue::GUID> &ReferencedTypeIds) { 3572 if (!FS->type_tests().empty()) 3573 for (auto &TT : FS->type_tests()) 3574 ReferencedTypeIds.insert(TT); 3575 3576 auto GetReferencedTypesFromVFuncIdVec = 3577 [&](ArrayRef<FunctionSummary::VFuncId> VFs) { 3578 for (auto &VF : VFs) 3579 ReferencedTypeIds.insert(VF.GUID); 3580 }; 3581 3582 GetReferencedTypesFromVFuncIdVec(FS->type_test_assume_vcalls()); 3583 GetReferencedTypesFromVFuncIdVec(FS->type_checked_load_vcalls()); 3584 3585 auto GetReferencedTypesFromConstVCallVec = 3586 [&](ArrayRef<FunctionSummary::ConstVCall> VCs) { 3587 for (auto &VC : VCs) 3588 ReferencedTypeIds.insert(VC.VFunc.GUID); 3589 }; 3590 3591 GetReferencedTypesFromConstVCallVec(FS->type_test_assume_const_vcalls()); 3592 GetReferencedTypesFromConstVCallVec(FS->type_checked_load_const_vcalls()); 3593 } 3594 3595 static void writeWholeProgramDevirtResolutionByArg( 3596 SmallVector<uint64_t, 64> &NameVals, const std::vector<uint64_t> &args, 3597 const WholeProgramDevirtResolution::ByArg &ByArg) { 3598 NameVals.push_back(args.size()); 3599 NameVals.insert(NameVals.end(), args.begin(), args.end()); 3600 3601 NameVals.push_back(ByArg.TheKind); 3602 NameVals.push_back(ByArg.Info); 3603 NameVals.push_back(ByArg.Byte); 3604 NameVals.push_back(ByArg.Bit); 3605 } 3606 3607 static void writeWholeProgramDevirtResolution( 3608 SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder, 3609 uint64_t Id, const WholeProgramDevirtResolution &Wpd) { 3610 NameVals.push_back(Id); 3611 3612 NameVals.push_back(Wpd.TheKind); 3613 NameVals.push_back(StrtabBuilder.add(Wpd.SingleImplName)); 3614 NameVals.push_back(Wpd.SingleImplName.size()); 3615 3616 NameVals.push_back(Wpd.ResByArg.size()); 3617 for (auto &A : Wpd.ResByArg) 3618 writeWholeProgramDevirtResolutionByArg(NameVals, A.first, A.second); 3619 } 3620 3621 static void writeTypeIdSummaryRecord(SmallVector<uint64_t, 64> &NameVals, 3622 StringTableBuilder &StrtabBuilder, 3623 const std::string &Id, 3624 const TypeIdSummary &Summary) { 3625 NameVals.push_back(StrtabBuilder.add(Id)); 3626 NameVals.push_back(Id.size()); 3627 3628 NameVals.push_back(Summary.TTRes.TheKind); 3629 NameVals.push_back(Summary.TTRes.SizeM1BitWidth); 3630 NameVals.push_back(Summary.TTRes.AlignLog2); 3631 NameVals.push_back(Summary.TTRes.SizeM1); 3632 NameVals.push_back(Summary.TTRes.BitMask); 3633 NameVals.push_back(Summary.TTRes.InlineBits); 3634 3635 for (auto &W : Summary.WPDRes) 3636 writeWholeProgramDevirtResolution(NameVals, StrtabBuilder, W.first, 3637 W.second); 3638 } 3639 3640 static void writeTypeIdCompatibleVtableSummaryRecord( 3641 SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder, 3642 const std::string &Id, const TypeIdCompatibleVtableInfo &Summary, 3643 ValueEnumerator &VE) { 3644 NameVals.push_back(StrtabBuilder.add(Id)); 3645 NameVals.push_back(Id.size()); 3646 3647 for (auto &P : Summary) { 3648 NameVals.push_back(P.AddressPointOffset); 3649 NameVals.push_back(VE.getValueID(P.VTableVI.getValue())); 3650 } 3651 } 3652 3653 // Helper to emit a single function summary record. 3654 void ModuleBitcodeWriterBase::writePerModuleFunctionSummaryRecord( 3655 SmallVector<uint64_t, 64> &NameVals, GlobalValueSummary *Summary, 3656 unsigned ValueID, unsigned FSCallsAbbrev, unsigned FSCallsProfileAbbrev, 3657 const Function &F) { 3658 NameVals.push_back(ValueID); 3659 3660 FunctionSummary *FS = cast<FunctionSummary>(Summary); 3661 writeFunctionTypeMetadataRecords(Stream, FS); 3662 3663 auto SpecialRefCnts = FS->specialRefCounts(); 3664 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 3665 NameVals.push_back(FS->instCount()); 3666 NameVals.push_back(getEncodedFFlags(FS->fflags())); 3667 NameVals.push_back(FS->refs().size()); 3668 NameVals.push_back(SpecialRefCnts.first); // rorefcnt 3669 NameVals.push_back(SpecialRefCnts.second); // worefcnt 3670 3671 for (auto &RI : FS->refs()) 3672 NameVals.push_back(VE.getValueID(RI.getValue())); 3673 3674 bool HasProfileData = 3675 F.hasProfileData() || ForceSummaryEdgesCold != FunctionSummary::FSHT_None; 3676 for (auto &ECI : FS->calls()) { 3677 NameVals.push_back(getValueId(ECI.first)); 3678 if (HasProfileData) 3679 NameVals.push_back(static_cast<uint8_t>(ECI.second.Hotness)); 3680 else if (WriteRelBFToSummary) 3681 NameVals.push_back(ECI.second.RelBlockFreq); 3682 } 3683 3684 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); 3685 unsigned Code = 3686 (HasProfileData ? bitc::FS_PERMODULE_PROFILE 3687 : (WriteRelBFToSummary ? bitc::FS_PERMODULE_RELBF 3688 : bitc::FS_PERMODULE)); 3689 3690 // Emit the finished record. 3691 Stream.EmitRecord(Code, NameVals, FSAbbrev); 3692 NameVals.clear(); 3693 } 3694 3695 // Collect the global value references in the given variable's initializer, 3696 // and emit them in a summary record. 3697 void ModuleBitcodeWriterBase::writeModuleLevelReferences( 3698 const GlobalVariable &V, SmallVector<uint64_t, 64> &NameVals, 3699 unsigned FSModRefsAbbrev, unsigned FSModVTableRefsAbbrev) { 3700 auto VI = Index->getValueInfo(V.getGUID()); 3701 if (!VI || VI.getSummaryList().empty()) { 3702 // Only declarations should not have a summary (a declaration might however 3703 // have a summary if the def was in module level asm). 3704 assert(V.isDeclaration()); 3705 return; 3706 } 3707 auto *Summary = VI.getSummaryList()[0].get(); 3708 NameVals.push_back(VE.getValueID(&V)); 3709 GlobalVarSummary *VS = cast<GlobalVarSummary>(Summary); 3710 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 3711 NameVals.push_back(getEncodedGVarFlags(VS->varflags())); 3712 3713 auto VTableFuncs = VS->vTableFuncs(); 3714 if (!VTableFuncs.empty()) 3715 NameVals.push_back(VS->refs().size()); 3716 3717 unsigned SizeBeforeRefs = NameVals.size(); 3718 for (auto &RI : VS->refs()) 3719 NameVals.push_back(VE.getValueID(RI.getValue())); 3720 // Sort the refs for determinism output, the vector returned by FS->refs() has 3721 // been initialized from a DenseSet. 3722 llvm::sort(NameVals.begin() + SizeBeforeRefs, NameVals.end()); 3723 3724 if (VTableFuncs.empty()) 3725 Stream.EmitRecord(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS, NameVals, 3726 FSModRefsAbbrev); 3727 else { 3728 // VTableFuncs pairs should already be sorted by offset. 3729 for (auto &P : VTableFuncs) { 3730 NameVals.push_back(VE.getValueID(P.FuncVI.getValue())); 3731 NameVals.push_back(P.VTableOffset); 3732 } 3733 3734 Stream.EmitRecord(bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS, NameVals, 3735 FSModVTableRefsAbbrev); 3736 } 3737 NameVals.clear(); 3738 } 3739 3740 /// Emit the per-module summary section alongside the rest of 3741 /// the module's bitcode. 3742 void ModuleBitcodeWriterBase::writePerModuleGlobalValueSummary() { 3743 // By default we compile with ThinLTO if the module has a summary, but the 3744 // client can request full LTO with a module flag. 3745 bool IsThinLTO = true; 3746 if (auto *MD = 3747 mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("ThinLTO"))) 3748 IsThinLTO = MD->getZExtValue(); 3749 Stream.EnterSubblock(IsThinLTO ? bitc::GLOBALVAL_SUMMARY_BLOCK_ID 3750 : bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID, 3751 4); 3752 3753 Stream.EmitRecord( 3754 bitc::FS_VERSION, 3755 ArrayRef<uint64_t>{ModuleSummaryIndex::BitcodeSummaryVersion}); 3756 3757 // Write the index flags. 3758 uint64_t Flags = 0; 3759 // Bits 1-3 are set only in the combined index, skip them. 3760 if (Index->enableSplitLTOUnit()) 3761 Flags |= 0x8; 3762 Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Flags}); 3763 3764 if (Index->begin() == Index->end()) { 3765 Stream.ExitBlock(); 3766 return; 3767 } 3768 3769 for (const auto &GVI : valueIds()) { 3770 Stream.EmitRecord(bitc::FS_VALUE_GUID, 3771 ArrayRef<uint64_t>{GVI.second, GVI.first}); 3772 } 3773 3774 // Abbrev for FS_PERMODULE_PROFILE. 3775 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3776 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_PROFILE)); 3777 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3778 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3779 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3780 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 3781 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3782 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 3783 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 3784 // numrefs x valueid, n x (valueid, hotness) 3785 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3786 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3787 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3788 3789 // Abbrev for FS_PERMODULE or FS_PERMODULE_RELBF. 3790 Abbv = std::make_shared<BitCodeAbbrev>(); 3791 if (WriteRelBFToSummary) 3792 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_RELBF)); 3793 else 3794 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE)); 3795 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3796 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3797 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3798 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 3799 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3800 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 3801 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 3802 // numrefs x valueid, n x (valueid [, rel_block_freq]) 3803 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3804 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3805 unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3806 3807 // Abbrev for FS_PERMODULE_GLOBALVAR_INIT_REFS. 3808 Abbv = std::make_shared<BitCodeAbbrev>(); 3809 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS)); 3810 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3811 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3812 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 3813 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3814 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3815 3816 // Abbrev for FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS. 3817 Abbv = std::make_shared<BitCodeAbbrev>(); 3818 Abbv->Add(BitCodeAbbrevOp(bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS)); 3819 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3820 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3821 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3822 // numrefs x valueid, n x (valueid , offset) 3823 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3824 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3825 unsigned FSModVTableRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3826 3827 // Abbrev for FS_ALIAS. 3828 Abbv = std::make_shared<BitCodeAbbrev>(); 3829 Abbv->Add(BitCodeAbbrevOp(bitc::FS_ALIAS)); 3830 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3831 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3832 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3833 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3834 3835 // Abbrev for FS_TYPE_ID_METADATA 3836 Abbv = std::make_shared<BitCodeAbbrev>(); 3837 Abbv->Add(BitCodeAbbrevOp(bitc::FS_TYPE_ID_METADATA)); 3838 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // typeid strtab index 3839 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // typeid length 3840 // n x (valueid , offset) 3841 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3842 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3843 unsigned TypeIdCompatibleVtableAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3844 3845 SmallVector<uint64_t, 64> NameVals; 3846 // Iterate over the list of functions instead of the Index to 3847 // ensure the ordering is stable. 3848 for (const Function &F : M) { 3849 // Summary emission does not support anonymous functions, they have to 3850 // renamed using the anonymous function renaming pass. 3851 if (!F.hasName()) 3852 report_fatal_error("Unexpected anonymous function when writing summary"); 3853 3854 ValueInfo VI = Index->getValueInfo(F.getGUID()); 3855 if (!VI || VI.getSummaryList().empty()) { 3856 // Only declarations should not have a summary (a declaration might 3857 // however have a summary if the def was in module level asm). 3858 assert(F.isDeclaration()); 3859 continue; 3860 } 3861 auto *Summary = VI.getSummaryList()[0].get(); 3862 writePerModuleFunctionSummaryRecord(NameVals, Summary, VE.getValueID(&F), 3863 FSCallsAbbrev, FSCallsProfileAbbrev, F); 3864 } 3865 3866 // Capture references from GlobalVariable initializers, which are outside 3867 // of a function scope. 3868 for (const GlobalVariable &G : M.globals()) 3869 writeModuleLevelReferences(G, NameVals, FSModRefsAbbrev, 3870 FSModVTableRefsAbbrev); 3871 3872 for (const GlobalAlias &A : M.aliases()) { 3873 auto *Aliasee = A.getBaseObject(); 3874 if (!Aliasee->hasName()) 3875 // Nameless function don't have an entry in the summary, skip it. 3876 continue; 3877 auto AliasId = VE.getValueID(&A); 3878 auto AliaseeId = VE.getValueID(Aliasee); 3879 NameVals.push_back(AliasId); 3880 auto *Summary = Index->getGlobalValueSummary(A); 3881 AliasSummary *AS = cast<AliasSummary>(Summary); 3882 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); 3883 NameVals.push_back(AliaseeId); 3884 Stream.EmitRecord(bitc::FS_ALIAS, NameVals, FSAliasAbbrev); 3885 NameVals.clear(); 3886 } 3887 3888 for (auto &S : Index->typeIdCompatibleVtableMap()) { 3889 writeTypeIdCompatibleVtableSummaryRecord(NameVals, StrtabBuilder, S.first, 3890 S.second, VE); 3891 Stream.EmitRecord(bitc::FS_TYPE_ID_METADATA, NameVals, 3892 TypeIdCompatibleVtableAbbrev); 3893 NameVals.clear(); 3894 } 3895 3896 Stream.ExitBlock(); 3897 } 3898 3899 /// Emit the combined summary section into the combined index file. 3900 void IndexBitcodeWriter::writeCombinedGlobalValueSummary() { 3901 Stream.EnterSubblock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID, 3); 3902 Stream.EmitRecord( 3903 bitc::FS_VERSION, 3904 ArrayRef<uint64_t>{ModuleSummaryIndex::BitcodeSummaryVersion}); 3905 3906 // Write the index flags. 3907 Stream.EmitRecord(bitc::FS_FLAGS, ArrayRef<uint64_t>{Index.getFlags()}); 3908 3909 for (const auto &GVI : valueIds()) { 3910 Stream.EmitRecord(bitc::FS_VALUE_GUID, 3911 ArrayRef<uint64_t>{GVI.second, GVI.first}); 3912 } 3913 3914 // Abbrev for FS_COMBINED. 3915 auto Abbv = std::make_shared<BitCodeAbbrev>(); 3916 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED)); 3917 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3918 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3919 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3920 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3921 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 3922 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // entrycount 3923 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3924 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 3925 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 3926 // numrefs x valueid, n x (valueid) 3927 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3928 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3929 unsigned FSCallsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3930 3931 // Abbrev for FS_COMBINED_PROFILE. 3932 Abbv = std::make_shared<BitCodeAbbrev>(); 3933 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_PROFILE)); 3934 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3935 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3936 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3937 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount 3938 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags 3939 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // entrycount 3940 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs 3941 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt 3942 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt 3943 // numrefs x valueid, n x (valueid, hotness) 3944 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 3945 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3946 unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3947 3948 // Abbrev for FS_COMBINED_GLOBALVAR_INIT_REFS. 3949 Abbv = std::make_shared<BitCodeAbbrev>(); 3950 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS)); 3951 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3952 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3953 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3954 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids 3955 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 3956 unsigned FSModRefsAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3957 3958 // Abbrev for FS_COMBINED_ALIAS. 3959 Abbv = std::make_shared<BitCodeAbbrev>(); 3960 Abbv->Add(BitCodeAbbrevOp(bitc::FS_COMBINED_ALIAS)); 3961 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3962 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid 3963 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags 3964 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid 3965 unsigned FSAliasAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 3966 3967 // The aliases are emitted as a post-pass, and will point to the value 3968 // id of the aliasee. Save them in a vector for post-processing. 3969 SmallVector<AliasSummary *, 64> Aliases; 3970 3971 // Save the value id for each summary for alias emission. 3972 DenseMap<const GlobalValueSummary *, unsigned> SummaryToValueIdMap; 3973 3974 SmallVector<uint64_t, 64> NameVals; 3975 3976 // Set that will be populated during call to writeFunctionTypeMetadataRecords 3977 // with the type ids referenced by this index file. 3978 std::set<GlobalValue::GUID> ReferencedTypeIds; 3979 3980 // For local linkage, we also emit the original name separately 3981 // immediately after the record. 3982 auto MaybeEmitOriginalName = [&](GlobalValueSummary &S) { 3983 if (!GlobalValue::isLocalLinkage(S.linkage())) 3984 return; 3985 NameVals.push_back(S.getOriginalName()); 3986 Stream.EmitRecord(bitc::FS_COMBINED_ORIGINAL_NAME, NameVals); 3987 NameVals.clear(); 3988 }; 3989 3990 std::set<GlobalValue::GUID> DefOrUseGUIDs; 3991 forEachSummary([&](GVInfo I, bool IsAliasee) { 3992 GlobalValueSummary *S = I.second; 3993 assert(S); 3994 DefOrUseGUIDs.insert(I.first); 3995 for (const ValueInfo &VI : S->refs()) 3996 DefOrUseGUIDs.insert(VI.getGUID()); 3997 3998 auto ValueId = getValueId(I.first); 3999 assert(ValueId); 4000 SummaryToValueIdMap[S] = *ValueId; 4001 4002 // If this is invoked for an aliasee, we want to record the above 4003 // mapping, but then not emit a summary entry (if the aliasee is 4004 // to be imported, we will invoke this separately with IsAliasee=false). 4005 if (IsAliasee) 4006 return; 4007 4008 if (auto *AS = dyn_cast<AliasSummary>(S)) { 4009 // Will process aliases as a post-pass because the reader wants all 4010 // global to be loaded first. 4011 Aliases.push_back(AS); 4012 return; 4013 } 4014 4015 if (auto *VS = dyn_cast<GlobalVarSummary>(S)) { 4016 NameVals.push_back(*ValueId); 4017 NameVals.push_back(Index.getModuleId(VS->modulePath())); 4018 NameVals.push_back(getEncodedGVSummaryFlags(VS->flags())); 4019 NameVals.push_back(getEncodedGVarFlags(VS->varflags())); 4020 for (auto &RI : VS->refs()) { 4021 auto RefValueId = getValueId(RI.getGUID()); 4022 if (!RefValueId) 4023 continue; 4024 NameVals.push_back(*RefValueId); 4025 } 4026 4027 // Emit the finished record. 4028 Stream.EmitRecord(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS, NameVals, 4029 FSModRefsAbbrev); 4030 NameVals.clear(); 4031 MaybeEmitOriginalName(*S); 4032 return; 4033 } 4034 4035 auto *FS = cast<FunctionSummary>(S); 4036 writeFunctionTypeMetadataRecords(Stream, FS); 4037 getReferencedTypeIds(FS, ReferencedTypeIds); 4038 4039 NameVals.push_back(*ValueId); 4040 NameVals.push_back(Index.getModuleId(FS->modulePath())); 4041 NameVals.push_back(getEncodedGVSummaryFlags(FS->flags())); 4042 NameVals.push_back(FS->instCount()); 4043 NameVals.push_back(getEncodedFFlags(FS->fflags())); 4044 NameVals.push_back(FS->entryCount()); 4045 4046 // Fill in below 4047 NameVals.push_back(0); // numrefs 4048 NameVals.push_back(0); // rorefcnt 4049 NameVals.push_back(0); // worefcnt 4050 4051 unsigned Count = 0, RORefCnt = 0, WORefCnt = 0; 4052 for (auto &RI : FS->refs()) { 4053 auto RefValueId = getValueId(RI.getGUID()); 4054 if (!RefValueId) 4055 continue; 4056 NameVals.push_back(*RefValueId); 4057 if (RI.isReadOnly()) 4058 RORefCnt++; 4059 else if (RI.isWriteOnly()) 4060 WORefCnt++; 4061 Count++; 4062 } 4063 NameVals[6] = Count; 4064 NameVals[7] = RORefCnt; 4065 NameVals[8] = WORefCnt; 4066 4067 bool HasProfileData = false; 4068 for (auto &EI : FS->calls()) { 4069 HasProfileData |= 4070 EI.second.getHotness() != CalleeInfo::HotnessType::Unknown; 4071 if (HasProfileData) 4072 break; 4073 } 4074 4075 for (auto &EI : FS->calls()) { 4076 // If this GUID doesn't have a value id, it doesn't have a function 4077 // summary and we don't need to record any calls to it. 4078 GlobalValue::GUID GUID = EI.first.getGUID(); 4079 auto CallValueId = getValueId(GUID); 4080 if (!CallValueId) { 4081 // For SamplePGO, the indirect call targets for local functions will 4082 // have its original name annotated in profile. We try to find the 4083 // corresponding PGOFuncName as the GUID. 4084 GUID = Index.getGUIDFromOriginalID(GUID); 4085 if (GUID == 0) 4086 continue; 4087 CallValueId = getValueId(GUID); 4088 if (!CallValueId) 4089 continue; 4090 // The mapping from OriginalId to GUID may return a GUID 4091 // that corresponds to a static variable. Filter it out here. 4092 // This can happen when 4093 // 1) There is a call to a library function which does not have 4094 // a CallValidId; 4095 // 2) There is a static variable with the OriginalGUID identical 4096 // to the GUID of the library function in 1); 4097 // When this happens, the logic for SamplePGO kicks in and 4098 // the static variable in 2) will be found, which needs to be 4099 // filtered out. 4100 auto *GVSum = Index.getGlobalValueSummary(GUID, false); 4101 if (GVSum && 4102 GVSum->getSummaryKind() == GlobalValueSummary::GlobalVarKind) 4103 continue; 4104 } 4105 NameVals.push_back(*CallValueId); 4106 if (HasProfileData) 4107 NameVals.push_back(static_cast<uint8_t>(EI.second.Hotness)); 4108 } 4109 4110 unsigned FSAbbrev = (HasProfileData ? FSCallsProfileAbbrev : FSCallsAbbrev); 4111 unsigned Code = 4112 (HasProfileData ? bitc::FS_COMBINED_PROFILE : bitc::FS_COMBINED); 4113 4114 // Emit the finished record. 4115 Stream.EmitRecord(Code, NameVals, FSAbbrev); 4116 NameVals.clear(); 4117 MaybeEmitOriginalName(*S); 4118 }); 4119 4120 for (auto *AS : Aliases) { 4121 auto AliasValueId = SummaryToValueIdMap[AS]; 4122 assert(AliasValueId); 4123 NameVals.push_back(AliasValueId); 4124 NameVals.push_back(Index.getModuleId(AS->modulePath())); 4125 NameVals.push_back(getEncodedGVSummaryFlags(AS->flags())); 4126 auto AliaseeValueId = SummaryToValueIdMap[&AS->getAliasee()]; 4127 assert(AliaseeValueId); 4128 NameVals.push_back(AliaseeValueId); 4129 4130 // Emit the finished record. 4131 Stream.EmitRecord(bitc::FS_COMBINED_ALIAS, NameVals, FSAliasAbbrev); 4132 NameVals.clear(); 4133 MaybeEmitOriginalName(*AS); 4134 4135 if (auto *FS = dyn_cast<FunctionSummary>(&AS->getAliasee())) 4136 getReferencedTypeIds(FS, ReferencedTypeIds); 4137 } 4138 4139 if (!Index.cfiFunctionDefs().empty()) { 4140 for (auto &S : Index.cfiFunctionDefs()) { 4141 if (DefOrUseGUIDs.count( 4142 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(S)))) { 4143 NameVals.push_back(StrtabBuilder.add(S)); 4144 NameVals.push_back(S.size()); 4145 } 4146 } 4147 if (!NameVals.empty()) { 4148 Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DEFS, NameVals); 4149 NameVals.clear(); 4150 } 4151 } 4152 4153 if (!Index.cfiFunctionDecls().empty()) { 4154 for (auto &S : Index.cfiFunctionDecls()) { 4155 if (DefOrUseGUIDs.count( 4156 GlobalValue::getGUID(GlobalValue::dropLLVMManglingEscape(S)))) { 4157 NameVals.push_back(StrtabBuilder.add(S)); 4158 NameVals.push_back(S.size()); 4159 } 4160 } 4161 if (!NameVals.empty()) { 4162 Stream.EmitRecord(bitc::FS_CFI_FUNCTION_DECLS, NameVals); 4163 NameVals.clear(); 4164 } 4165 } 4166 4167 // Walk the GUIDs that were referenced, and write the 4168 // corresponding type id records. 4169 for (auto &T : ReferencedTypeIds) { 4170 auto TidIter = Index.typeIds().equal_range(T); 4171 for (auto It = TidIter.first; It != TidIter.second; ++It) { 4172 writeTypeIdSummaryRecord(NameVals, StrtabBuilder, It->second.first, 4173 It->second.second); 4174 Stream.EmitRecord(bitc::FS_TYPE_ID, NameVals); 4175 NameVals.clear(); 4176 } 4177 } 4178 4179 Stream.ExitBlock(); 4180 } 4181 4182 /// Create the "IDENTIFICATION_BLOCK_ID" containing a single string with the 4183 /// current llvm version, and a record for the epoch number. 4184 static void writeIdentificationBlock(BitstreamWriter &Stream) { 4185 Stream.EnterSubblock(bitc::IDENTIFICATION_BLOCK_ID, 5); 4186 4187 // Write the "user readable" string identifying the bitcode producer 4188 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4189 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_STRING)); 4190 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4191 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 4192 auto StringAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4193 writeStringRecord(Stream, bitc::IDENTIFICATION_CODE_STRING, 4194 "LLVM" LLVM_VERSION_STRING, StringAbbrev); 4195 4196 // Write the epoch version 4197 Abbv = std::make_shared<BitCodeAbbrev>(); 4198 Abbv->Add(BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_EPOCH)); 4199 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); 4200 auto EpochAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4201 constexpr std::array<unsigned, 1> Vals = {{bitc::BITCODE_CURRENT_EPOCH}}; 4202 Stream.EmitRecord(bitc::IDENTIFICATION_CODE_EPOCH, Vals, EpochAbbrev); 4203 Stream.ExitBlock(); 4204 } 4205 4206 void ModuleBitcodeWriter::writeModuleHash(size_t BlockStartPos) { 4207 // Emit the module's hash. 4208 // MODULE_CODE_HASH: [5*i32] 4209 if (GenerateHash) { 4210 uint32_t Vals[5]; 4211 Hasher.update(ArrayRef<uint8_t>((const uint8_t *)&(Buffer)[BlockStartPos], 4212 Buffer.size() - BlockStartPos)); 4213 StringRef Hash = Hasher.result(); 4214 for (int Pos = 0; Pos < 20; Pos += 4) { 4215 Vals[Pos / 4] = support::endian::read32be(Hash.data() + Pos); 4216 } 4217 4218 // Emit the finished record. 4219 Stream.EmitRecord(bitc::MODULE_CODE_HASH, Vals); 4220 4221 if (ModHash) 4222 // Save the written hash value. 4223 llvm::copy(Vals, std::begin(*ModHash)); 4224 } 4225 } 4226 4227 void ModuleBitcodeWriter::write() { 4228 writeIdentificationBlock(Stream); 4229 4230 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 4231 size_t BlockStartPos = Buffer.size(); 4232 4233 writeModuleVersion(); 4234 4235 // Emit blockinfo, which defines the standard abbreviations etc. 4236 writeBlockInfo(); 4237 4238 // Emit information describing all of the types in the module. 4239 writeTypeTable(); 4240 4241 // Emit information about attribute groups. 4242 writeAttributeGroupTable(); 4243 4244 // Emit information about parameter attributes. 4245 writeAttributeTable(); 4246 4247 writeComdats(); 4248 4249 // Emit top-level description of module, including target triple, inline asm, 4250 // descriptors for global variables, and function prototype info. 4251 writeModuleInfo(); 4252 4253 // Emit constants. 4254 writeModuleConstants(); 4255 4256 // Emit metadata kind names. 4257 writeModuleMetadataKinds(); 4258 4259 // Emit metadata. 4260 writeModuleMetadata(); 4261 4262 // Emit module-level use-lists. 4263 if (VE.shouldPreserveUseListOrder()) 4264 writeUseListBlock(nullptr); 4265 4266 writeOperandBundleTags(); 4267 writeSyncScopeNames(); 4268 4269 // Emit function bodies. 4270 DenseMap<const Function *, uint64_t> FunctionToBitcodeIndex; 4271 for (Module::const_iterator F = M.begin(), E = M.end(); F != E; ++F) 4272 if (!F->isDeclaration()) 4273 writeFunction(*F, FunctionToBitcodeIndex); 4274 4275 // Need to write after the above call to WriteFunction which populates 4276 // the summary information in the index. 4277 if (Index) 4278 writePerModuleGlobalValueSummary(); 4279 4280 writeGlobalValueSymbolTable(FunctionToBitcodeIndex); 4281 4282 writeModuleHash(BlockStartPos); 4283 4284 Stream.ExitBlock(); 4285 } 4286 4287 static void writeInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer, 4288 uint32_t &Position) { 4289 support::endian::write32le(&Buffer[Position], Value); 4290 Position += 4; 4291 } 4292 4293 /// If generating a bc file on darwin, we have to emit a 4294 /// header and trailer to make it compatible with the system archiver. To do 4295 /// this we emit the following header, and then emit a trailer that pads the 4296 /// file out to be a multiple of 16 bytes. 4297 /// 4298 /// struct bc_header { 4299 /// uint32_t Magic; // 0x0B17C0DE 4300 /// uint32_t Version; // Version, currently always 0. 4301 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file. 4302 /// uint32_t BitcodeSize; // Size of traditional bitcode file. 4303 /// uint32_t CPUType; // CPU specifier. 4304 /// ... potentially more later ... 4305 /// }; 4306 static void emitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer, 4307 const Triple &TT) { 4308 unsigned CPUType = ~0U; 4309 4310 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*, 4311 // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic 4312 // number from /usr/include/mach/machine.h. It is ok to reproduce the 4313 // specific constants here because they are implicitly part of the Darwin ABI. 4314 enum { 4315 DARWIN_CPU_ARCH_ABI64 = 0x01000000, 4316 DARWIN_CPU_TYPE_X86 = 7, 4317 DARWIN_CPU_TYPE_ARM = 12, 4318 DARWIN_CPU_TYPE_POWERPC = 18 4319 }; 4320 4321 Triple::ArchType Arch = TT.getArch(); 4322 if (Arch == Triple::x86_64) 4323 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64; 4324 else if (Arch == Triple::x86) 4325 CPUType = DARWIN_CPU_TYPE_X86; 4326 else if (Arch == Triple::ppc) 4327 CPUType = DARWIN_CPU_TYPE_POWERPC; 4328 else if (Arch == Triple::ppc64) 4329 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64; 4330 else if (Arch == Triple::arm || Arch == Triple::thumb) 4331 CPUType = DARWIN_CPU_TYPE_ARM; 4332 4333 // Traditional Bitcode starts after header. 4334 assert(Buffer.size() >= BWH_HeaderSize && 4335 "Expected header size to be reserved"); 4336 unsigned BCOffset = BWH_HeaderSize; 4337 unsigned BCSize = Buffer.size() - BWH_HeaderSize; 4338 4339 // Write the magic and version. 4340 unsigned Position = 0; 4341 writeInt32ToBuffer(0x0B17C0DE, Buffer, Position); 4342 writeInt32ToBuffer(0, Buffer, Position); // Version. 4343 writeInt32ToBuffer(BCOffset, Buffer, Position); 4344 writeInt32ToBuffer(BCSize, Buffer, Position); 4345 writeInt32ToBuffer(CPUType, Buffer, Position); 4346 4347 // If the file is not a multiple of 16 bytes, insert dummy padding. 4348 while (Buffer.size() & 15) 4349 Buffer.push_back(0); 4350 } 4351 4352 /// Helper to write the header common to all bitcode files. 4353 static void writeBitcodeHeader(BitstreamWriter &Stream) { 4354 // Emit the file header. 4355 Stream.Emit((unsigned)'B', 8); 4356 Stream.Emit((unsigned)'C', 8); 4357 Stream.Emit(0x0, 4); 4358 Stream.Emit(0xC, 4); 4359 Stream.Emit(0xE, 4); 4360 Stream.Emit(0xD, 4); 4361 } 4362 4363 BitcodeWriter::BitcodeWriter(SmallVectorImpl<char> &Buffer) 4364 : Buffer(Buffer), Stream(new BitstreamWriter(Buffer)) { 4365 writeBitcodeHeader(*Stream); 4366 } 4367 4368 BitcodeWriter::~BitcodeWriter() { assert(WroteStrtab); } 4369 4370 void BitcodeWriter::writeBlob(unsigned Block, unsigned Record, StringRef Blob) { 4371 Stream->EnterSubblock(Block, 3); 4372 4373 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4374 Abbv->Add(BitCodeAbbrevOp(Record)); 4375 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); 4376 auto AbbrevNo = Stream->EmitAbbrev(std::move(Abbv)); 4377 4378 Stream->EmitRecordWithBlob(AbbrevNo, ArrayRef<uint64_t>{Record}, Blob); 4379 4380 Stream->ExitBlock(); 4381 } 4382 4383 void BitcodeWriter::writeSymtab() { 4384 assert(!WroteStrtab && !WroteSymtab); 4385 4386 // If any module has module-level inline asm, we will require a registered asm 4387 // parser for the target so that we can create an accurate symbol table for 4388 // the module. 4389 for (Module *M : Mods) { 4390 if (M->getModuleInlineAsm().empty()) 4391 continue; 4392 4393 std::string Err; 4394 const Triple TT(M->getTargetTriple()); 4395 const Target *T = TargetRegistry::lookupTarget(TT.str(), Err); 4396 if (!T || !T->hasMCAsmParser()) 4397 return; 4398 } 4399 4400 WroteSymtab = true; 4401 SmallVector<char, 0> Symtab; 4402 // The irsymtab::build function may be unable to create a symbol table if the 4403 // module is malformed (e.g. it contains an invalid alias). Writing a symbol 4404 // table is not required for correctness, but we still want to be able to 4405 // write malformed modules to bitcode files, so swallow the error. 4406 if (Error E = irsymtab::build(Mods, Symtab, StrtabBuilder, Alloc)) { 4407 consumeError(std::move(E)); 4408 return; 4409 } 4410 4411 writeBlob(bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB, 4412 {Symtab.data(), Symtab.size()}); 4413 } 4414 4415 void BitcodeWriter::writeStrtab() { 4416 assert(!WroteStrtab); 4417 4418 std::vector<char> Strtab; 4419 StrtabBuilder.finalizeInOrder(); 4420 Strtab.resize(StrtabBuilder.getSize()); 4421 StrtabBuilder.write((uint8_t *)Strtab.data()); 4422 4423 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, 4424 {Strtab.data(), Strtab.size()}); 4425 4426 WroteStrtab = true; 4427 } 4428 4429 void BitcodeWriter::copyStrtab(StringRef Strtab) { 4430 writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, Strtab); 4431 WroteStrtab = true; 4432 } 4433 4434 void BitcodeWriter::writeModule(const Module &M, 4435 bool ShouldPreserveUseListOrder, 4436 const ModuleSummaryIndex *Index, 4437 bool GenerateHash, ModuleHash *ModHash) { 4438 assert(!WroteStrtab); 4439 4440 // The Mods vector is used by irsymtab::build, which requires non-const 4441 // Modules in case it needs to materialize metadata. But the bitcode writer 4442 // requires that the module is materialized, so we can cast to non-const here, 4443 // after checking that it is in fact materialized. 4444 assert(M.isMaterialized()); 4445 Mods.push_back(const_cast<Module *>(&M)); 4446 4447 ModuleBitcodeWriter ModuleWriter(M, Buffer, StrtabBuilder, *Stream, 4448 ShouldPreserveUseListOrder, Index, 4449 GenerateHash, ModHash); 4450 ModuleWriter.write(); 4451 } 4452 4453 void BitcodeWriter::writeIndex( 4454 const ModuleSummaryIndex *Index, 4455 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) { 4456 IndexBitcodeWriter IndexWriter(*Stream, StrtabBuilder, *Index, 4457 ModuleToSummariesForIndex); 4458 IndexWriter.write(); 4459 } 4460 4461 /// Write the specified module to the specified output stream. 4462 void llvm::WriteBitcodeToFile(const Module &M, raw_ostream &Out, 4463 bool ShouldPreserveUseListOrder, 4464 const ModuleSummaryIndex *Index, 4465 bool GenerateHash, ModuleHash *ModHash) { 4466 SmallVector<char, 0> Buffer; 4467 Buffer.reserve(256*1024); 4468 4469 // If this is darwin or another generic macho target, reserve space for the 4470 // header. 4471 Triple TT(M.getTargetTriple()); 4472 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 4473 Buffer.insert(Buffer.begin(), BWH_HeaderSize, 0); 4474 4475 BitcodeWriter Writer(Buffer); 4476 Writer.writeModule(M, ShouldPreserveUseListOrder, Index, GenerateHash, 4477 ModHash); 4478 Writer.writeSymtab(); 4479 Writer.writeStrtab(); 4480 4481 if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) 4482 emitDarwinBCHeaderAndTrailer(Buffer, TT); 4483 4484 // Write the generated bitstream to "Out". 4485 Out.write((char*)&Buffer.front(), Buffer.size()); 4486 } 4487 4488 void IndexBitcodeWriter::write() { 4489 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 4490 4491 writeModuleVersion(); 4492 4493 // Write the module paths in the combined index. 4494 writeModStrings(); 4495 4496 // Write the summary combined index records. 4497 writeCombinedGlobalValueSummary(); 4498 4499 Stream.ExitBlock(); 4500 } 4501 4502 // Write the specified module summary index to the given raw output stream, 4503 // where it will be written in a new bitcode block. This is used when 4504 // writing the combined index file for ThinLTO. When writing a subset of the 4505 // index for a distributed backend, provide a \p ModuleToSummariesForIndex map. 4506 void llvm::WriteIndexToFile( 4507 const ModuleSummaryIndex &Index, raw_ostream &Out, 4508 const std::map<std::string, GVSummaryMapTy> *ModuleToSummariesForIndex) { 4509 SmallVector<char, 0> Buffer; 4510 Buffer.reserve(256 * 1024); 4511 4512 BitcodeWriter Writer(Buffer); 4513 Writer.writeIndex(&Index, ModuleToSummariesForIndex); 4514 Writer.writeStrtab(); 4515 4516 Out.write((char *)&Buffer.front(), Buffer.size()); 4517 } 4518 4519 namespace { 4520 4521 /// Class to manage the bitcode writing for a thin link bitcode file. 4522 class ThinLinkBitcodeWriter : public ModuleBitcodeWriterBase { 4523 /// ModHash is for use in ThinLTO incremental build, generated while writing 4524 /// the module bitcode file. 4525 const ModuleHash *ModHash; 4526 4527 public: 4528 ThinLinkBitcodeWriter(const Module &M, StringTableBuilder &StrtabBuilder, 4529 BitstreamWriter &Stream, 4530 const ModuleSummaryIndex &Index, 4531 const ModuleHash &ModHash) 4532 : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream, 4533 /*ShouldPreserveUseListOrder=*/false, &Index), 4534 ModHash(&ModHash) {} 4535 4536 void write(); 4537 4538 private: 4539 void writeSimplifiedModuleInfo(); 4540 }; 4541 4542 } // end anonymous namespace 4543 4544 // This function writes a simpilified module info for thin link bitcode file. 4545 // It only contains the source file name along with the name(the offset and 4546 // size in strtab) and linkage for global values. For the global value info 4547 // entry, in order to keep linkage at offset 5, there are three zeros used 4548 // as padding. 4549 void ThinLinkBitcodeWriter::writeSimplifiedModuleInfo() { 4550 SmallVector<unsigned, 64> Vals; 4551 // Emit the module's source file name. 4552 { 4553 StringEncoding Bits = getStringEncoding(M.getSourceFileName()); 4554 BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); 4555 if (Bits == SE_Char6) 4556 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); 4557 else if (Bits == SE_Fixed7) 4558 AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); 4559 4560 // MODULE_CODE_SOURCE_FILENAME: [namechar x N] 4561 auto Abbv = std::make_shared<BitCodeAbbrev>(); 4562 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); 4563 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 4564 Abbv->Add(AbbrevOpToUse); 4565 unsigned FilenameAbbrev = Stream.EmitAbbrev(std::move(Abbv)); 4566 4567 for (const auto P : M.getSourceFileName()) 4568 Vals.push_back((unsigned char)P); 4569 4570 Stream.EmitRecord(bitc::MODULE_CODE_SOURCE_FILENAME, Vals, FilenameAbbrev); 4571 Vals.clear(); 4572 } 4573 4574 // Emit the global variable information. 4575 for (const GlobalVariable &GV : M.globals()) { 4576 // GLOBALVAR: [strtab offset, strtab size, 0, 0, 0, linkage] 4577 Vals.push_back(StrtabBuilder.add(GV.getName())); 4578 Vals.push_back(GV.getName().size()); 4579 Vals.push_back(0); 4580 Vals.push_back(0); 4581 Vals.push_back(0); 4582 Vals.push_back(getEncodedLinkage(GV)); 4583 4584 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals); 4585 Vals.clear(); 4586 } 4587 4588 // Emit the function proto information. 4589 for (const Function &F : M) { 4590 // FUNCTION: [strtab offset, strtab size, 0, 0, 0, linkage] 4591 Vals.push_back(StrtabBuilder.add(F.getName())); 4592 Vals.push_back(F.getName().size()); 4593 Vals.push_back(0); 4594 Vals.push_back(0); 4595 Vals.push_back(0); 4596 Vals.push_back(getEncodedLinkage(F)); 4597 4598 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals); 4599 Vals.clear(); 4600 } 4601 4602 // Emit the alias information. 4603 for (const GlobalAlias &A : M.aliases()) { 4604 // ALIAS: [strtab offset, strtab size, 0, 0, 0, linkage] 4605 Vals.push_back(StrtabBuilder.add(A.getName())); 4606 Vals.push_back(A.getName().size()); 4607 Vals.push_back(0); 4608 Vals.push_back(0); 4609 Vals.push_back(0); 4610 Vals.push_back(getEncodedLinkage(A)); 4611 4612 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals); 4613 Vals.clear(); 4614 } 4615 4616 // Emit the ifunc information. 4617 for (const GlobalIFunc &I : M.ifuncs()) { 4618 // IFUNC: [strtab offset, strtab size, 0, 0, 0, linkage] 4619 Vals.push_back(StrtabBuilder.add(I.getName())); 4620 Vals.push_back(I.getName().size()); 4621 Vals.push_back(0); 4622 Vals.push_back(0); 4623 Vals.push_back(0); 4624 Vals.push_back(getEncodedLinkage(I)); 4625 4626 Stream.EmitRecord(bitc::MODULE_CODE_IFUNC, Vals); 4627 Vals.clear(); 4628 } 4629 } 4630 4631 void ThinLinkBitcodeWriter::write() { 4632 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 4633 4634 writeModuleVersion(); 4635 4636 writeSimplifiedModuleInfo(); 4637 4638 writePerModuleGlobalValueSummary(); 4639 4640 // Write module hash. 4641 Stream.EmitRecord(bitc::MODULE_CODE_HASH, ArrayRef<uint32_t>(*ModHash)); 4642 4643 Stream.ExitBlock(); 4644 } 4645 4646 void BitcodeWriter::writeThinLinkBitcode(const Module &M, 4647 const ModuleSummaryIndex &Index, 4648 const ModuleHash &ModHash) { 4649 assert(!WroteStrtab); 4650 4651 // The Mods vector is used by irsymtab::build, which requires non-const 4652 // Modules in case it needs to materialize metadata. But the bitcode writer 4653 // requires that the module is materialized, so we can cast to non-const here, 4654 // after checking that it is in fact materialized. 4655 assert(M.isMaterialized()); 4656 Mods.push_back(const_cast<Module *>(&M)); 4657 4658 ThinLinkBitcodeWriter ThinLinkWriter(M, StrtabBuilder, *Stream, Index, 4659 ModHash); 4660 ThinLinkWriter.write(); 4661 } 4662 4663 // Write the specified thin link bitcode file to the given raw output stream, 4664 // where it will be written in a new bitcode block. This is used when 4665 // writing the per-module index file for ThinLTO. 4666 void llvm::WriteThinLinkBitcodeToFile(const Module &M, raw_ostream &Out, 4667 const ModuleSummaryIndex &Index, 4668 const ModuleHash &ModHash) { 4669 SmallVector<char, 0> Buffer; 4670 Buffer.reserve(256 * 1024); 4671 4672 BitcodeWriter Writer(Buffer); 4673 Writer.writeThinLinkBitcode(M, Index, ModHash); 4674 Writer.writeSymtab(); 4675 Writer.writeStrtab(); 4676 4677 Out.write((char *)&Buffer.front(), Buffer.size()); 4678 } 4679 4680 static const char *getSectionNameForBitcode(const Triple &T) { 4681 switch (T.getObjectFormat()) { 4682 case Triple::MachO: 4683 return "__LLVM,__bitcode"; 4684 case Triple::COFF: 4685 case Triple::ELF: 4686 case Triple::Wasm: 4687 case Triple::UnknownObjectFormat: 4688 return ".llvmbc"; 4689 case Triple::XCOFF: 4690 llvm_unreachable("XCOFF is not yet implemented"); 4691 break; 4692 } 4693 llvm_unreachable("Unimplemented ObjectFormatType"); 4694 } 4695 4696 static const char *getSectionNameForCommandline(const Triple &T) { 4697 switch (T.getObjectFormat()) { 4698 case Triple::MachO: 4699 return "__LLVM,__cmdline"; 4700 case Triple::COFF: 4701 case Triple::ELF: 4702 case Triple::Wasm: 4703 case Triple::UnknownObjectFormat: 4704 return ".llvmcmd"; 4705 case Triple::XCOFF: 4706 llvm_unreachable("XCOFF is not yet implemented"); 4707 break; 4708 } 4709 llvm_unreachable("Unimplemented ObjectFormatType"); 4710 } 4711 4712 void llvm::EmbedBitcodeInModule(llvm::Module &M, llvm::MemoryBufferRef Buf, 4713 bool EmbedBitcode, bool EmbedMarker, 4714 const std::vector<uint8_t> *CmdArgs) { 4715 // Save llvm.compiler.used and remove it. 4716 SmallVector<Constant *, 2> UsedArray; 4717 SmallPtrSet<GlobalValue *, 4> UsedGlobals; 4718 Type *UsedElementType = Type::getInt8Ty(M.getContext())->getPointerTo(0); 4719 GlobalVariable *Used = collectUsedGlobalVariables(M, UsedGlobals, true); 4720 for (auto *GV : UsedGlobals) { 4721 if (GV->getName() != "llvm.embedded.module" && 4722 GV->getName() != "llvm.cmdline") 4723 UsedArray.push_back( 4724 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 4725 } 4726 if (Used) 4727 Used->eraseFromParent(); 4728 4729 // Embed the bitcode for the llvm module. 4730 std::string Data; 4731 ArrayRef<uint8_t> ModuleData; 4732 Triple T(M.getTargetTriple()); 4733 // Create a constant that contains the bitcode. 4734 // In case of embedding a marker, ignore the input Buf and use the empty 4735 // ArrayRef. It is also legal to create a bitcode marker even Buf is empty. 4736 if (EmbedBitcode) { 4737 if (!isBitcode((const unsigned char *)Buf.getBufferStart(), 4738 (const unsigned char *)Buf.getBufferEnd())) { 4739 // If the input is LLVM Assembly, bitcode is produced by serializing 4740 // the module. Use-lists order need to be preserved in this case. 4741 llvm::raw_string_ostream OS(Data); 4742 llvm::WriteBitcodeToFile(M, OS, /* ShouldPreserveUseListOrder */ true); 4743 ModuleData = 4744 ArrayRef<uint8_t>((const uint8_t *)OS.str().data(), OS.str().size()); 4745 } else 4746 // If the input is LLVM bitcode, write the input byte stream directly. 4747 ModuleData = ArrayRef<uint8_t>((const uint8_t *)Buf.getBufferStart(), 4748 Buf.getBufferSize()); 4749 } 4750 llvm::Constant *ModuleConstant = 4751 llvm::ConstantDataArray::get(M.getContext(), ModuleData); 4752 llvm::GlobalVariable *GV = new llvm::GlobalVariable( 4753 M, ModuleConstant->getType(), true, llvm::GlobalValue::PrivateLinkage, 4754 ModuleConstant); 4755 GV->setSection(getSectionNameForBitcode(T)); 4756 UsedArray.push_back( 4757 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 4758 if (llvm::GlobalVariable *Old = 4759 M.getGlobalVariable("llvm.embedded.module", true)) { 4760 assert(Old->hasOneUse() && 4761 "llvm.embedded.module can only be used once in llvm.compiler.used"); 4762 GV->takeName(Old); 4763 Old->eraseFromParent(); 4764 } else { 4765 GV->setName("llvm.embedded.module"); 4766 } 4767 4768 // Skip if only bitcode needs to be embedded. 4769 if (EmbedMarker) { 4770 // Embed command-line options. 4771 ArrayRef<uint8_t> CmdData(const_cast<uint8_t *>(CmdArgs->data()), 4772 CmdArgs->size()); 4773 llvm::Constant *CmdConstant = 4774 llvm::ConstantDataArray::get(M.getContext(), CmdData); 4775 GV = new llvm::GlobalVariable(M, CmdConstant->getType(), true, 4776 llvm::GlobalValue::PrivateLinkage, 4777 CmdConstant); 4778 GV->setSection(getSectionNameForCommandline(T)); 4779 UsedArray.push_back( 4780 ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType)); 4781 if (llvm::GlobalVariable *Old = M.getGlobalVariable("llvm.cmdline", true)) { 4782 assert(Old->hasOneUse() && 4783 "llvm.cmdline can only be used once in llvm.compiler.used"); 4784 GV->takeName(Old); 4785 Old->eraseFromParent(); 4786 } else { 4787 GV->setName("llvm.cmdline"); 4788 } 4789 } 4790 4791 if (UsedArray.empty()) 4792 return; 4793 4794 // Recreate llvm.compiler.used. 4795 ArrayType *ATy = ArrayType::get(UsedElementType, UsedArray.size()); 4796 auto *NewUsed = new GlobalVariable( 4797 M, ATy, false, llvm::GlobalValue::AppendingLinkage, 4798 llvm::ConstantArray::get(ATy, UsedArray), "llvm.compiler.used"); 4799 NewUsed->setSection("llvm.metadata"); 4800 } 4801