1 //===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Bitcode writer implementation. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Bitcode/ReaderWriter.h" 15 #include "ValueEnumerator.h" 16 #include "llvm/ADT/Triple.h" 17 #include "llvm/Bitcode/BitstreamWriter.h" 18 #include "llvm/Bitcode/LLVMBitCodes.h" 19 #include "llvm/IR/Constants.h" 20 #include "llvm/IR/DerivedTypes.h" 21 #include "llvm/IR/InlineAsm.h" 22 #include "llvm/IR/Instructions.h" 23 #include "llvm/IR/Module.h" 24 #include "llvm/IR/Operator.h" 25 #include "llvm/IR/UseListOrder.h" 26 #include "llvm/IR/ValueSymbolTable.h" 27 #include "llvm/Support/CommandLine.h" 28 #include "llvm/Support/ErrorHandling.h" 29 #include "llvm/Support/MathExtras.h" 30 #include "llvm/Support/Program.h" 31 #include "llvm/Support/raw_ostream.h" 32 #include <cctype> 33 #include <map> 34 using namespace llvm; 35 36 /// These are manifest constants used by the bitcode writer. They do not need to 37 /// be kept in sync with the reader, but need to be consistent within this file. 38 enum { 39 // VALUE_SYMTAB_BLOCK abbrev id's. 40 VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 41 VST_ENTRY_7_ABBREV, 42 VST_ENTRY_6_ABBREV, 43 VST_BBENTRY_6_ABBREV, 44 45 // CONSTANTS_BLOCK abbrev id's. 46 CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 47 CONSTANTS_INTEGER_ABBREV, 48 CONSTANTS_CE_CAST_Abbrev, 49 CONSTANTS_NULL_Abbrev, 50 51 // FUNCTION_BLOCK abbrev id's. 52 FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, 53 FUNCTION_INST_BINOP_ABBREV, 54 FUNCTION_INST_BINOP_FLAGS_ABBREV, 55 FUNCTION_INST_CAST_ABBREV, 56 FUNCTION_INST_RET_VOID_ABBREV, 57 FUNCTION_INST_RET_VAL_ABBREV, 58 FUNCTION_INST_UNREACHABLE_ABBREV 59 }; 60 61 static unsigned GetEncodedCastOpcode(unsigned Opcode) { 62 switch (Opcode) { 63 default: llvm_unreachable("Unknown cast instruction!"); 64 case Instruction::Trunc : return bitc::CAST_TRUNC; 65 case Instruction::ZExt : return bitc::CAST_ZEXT; 66 case Instruction::SExt : return bitc::CAST_SEXT; 67 case Instruction::FPToUI : return bitc::CAST_FPTOUI; 68 case Instruction::FPToSI : return bitc::CAST_FPTOSI; 69 case Instruction::UIToFP : return bitc::CAST_UITOFP; 70 case Instruction::SIToFP : return bitc::CAST_SITOFP; 71 case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; 72 case Instruction::FPExt : return bitc::CAST_FPEXT; 73 case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; 74 case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; 75 case Instruction::BitCast : return bitc::CAST_BITCAST; 76 case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST; 77 } 78 } 79 80 static unsigned GetEncodedBinaryOpcode(unsigned Opcode) { 81 switch (Opcode) { 82 default: llvm_unreachable("Unknown binary instruction!"); 83 case Instruction::Add: 84 case Instruction::FAdd: return bitc::BINOP_ADD; 85 case Instruction::Sub: 86 case Instruction::FSub: return bitc::BINOP_SUB; 87 case Instruction::Mul: 88 case Instruction::FMul: return bitc::BINOP_MUL; 89 case Instruction::UDiv: return bitc::BINOP_UDIV; 90 case Instruction::FDiv: 91 case Instruction::SDiv: return bitc::BINOP_SDIV; 92 case Instruction::URem: return bitc::BINOP_UREM; 93 case Instruction::FRem: 94 case Instruction::SRem: return bitc::BINOP_SREM; 95 case Instruction::Shl: return bitc::BINOP_SHL; 96 case Instruction::LShr: return bitc::BINOP_LSHR; 97 case Instruction::AShr: return bitc::BINOP_ASHR; 98 case Instruction::And: return bitc::BINOP_AND; 99 case Instruction::Or: return bitc::BINOP_OR; 100 case Instruction::Xor: return bitc::BINOP_XOR; 101 } 102 } 103 104 static unsigned GetEncodedRMWOperation(AtomicRMWInst::BinOp Op) { 105 switch (Op) { 106 default: llvm_unreachable("Unknown RMW operation!"); 107 case AtomicRMWInst::Xchg: return bitc::RMW_XCHG; 108 case AtomicRMWInst::Add: return bitc::RMW_ADD; 109 case AtomicRMWInst::Sub: return bitc::RMW_SUB; 110 case AtomicRMWInst::And: return bitc::RMW_AND; 111 case AtomicRMWInst::Nand: return bitc::RMW_NAND; 112 case AtomicRMWInst::Or: return bitc::RMW_OR; 113 case AtomicRMWInst::Xor: return bitc::RMW_XOR; 114 case AtomicRMWInst::Max: return bitc::RMW_MAX; 115 case AtomicRMWInst::Min: return bitc::RMW_MIN; 116 case AtomicRMWInst::UMax: return bitc::RMW_UMAX; 117 case AtomicRMWInst::UMin: return bitc::RMW_UMIN; 118 } 119 } 120 121 static unsigned GetEncodedOrdering(AtomicOrdering Ordering) { 122 switch (Ordering) { 123 case NotAtomic: return bitc::ORDERING_NOTATOMIC; 124 case Unordered: return bitc::ORDERING_UNORDERED; 125 case Monotonic: return bitc::ORDERING_MONOTONIC; 126 case Acquire: return bitc::ORDERING_ACQUIRE; 127 case Release: return bitc::ORDERING_RELEASE; 128 case AcquireRelease: return bitc::ORDERING_ACQREL; 129 case SequentiallyConsistent: return bitc::ORDERING_SEQCST; 130 } 131 llvm_unreachable("Invalid ordering"); 132 } 133 134 static unsigned GetEncodedSynchScope(SynchronizationScope SynchScope) { 135 switch (SynchScope) { 136 case SingleThread: return bitc::SYNCHSCOPE_SINGLETHREAD; 137 case CrossThread: return bitc::SYNCHSCOPE_CROSSTHREAD; 138 } 139 llvm_unreachable("Invalid synch scope"); 140 } 141 142 static void WriteStringRecord(unsigned Code, StringRef Str, 143 unsigned AbbrevToUse, BitstreamWriter &Stream) { 144 SmallVector<unsigned, 64> Vals; 145 146 // Code: [strchar x N] 147 for (unsigned i = 0, e = Str.size(); i != e; ++i) { 148 if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i])) 149 AbbrevToUse = 0; 150 Vals.push_back(Str[i]); 151 } 152 153 // Emit the finished record. 154 Stream.EmitRecord(Code, Vals, AbbrevToUse); 155 } 156 157 static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) { 158 switch (Kind) { 159 case Attribute::Alignment: 160 return bitc::ATTR_KIND_ALIGNMENT; 161 case Attribute::AlwaysInline: 162 return bitc::ATTR_KIND_ALWAYS_INLINE; 163 case Attribute::Builtin: 164 return bitc::ATTR_KIND_BUILTIN; 165 case Attribute::ByVal: 166 return bitc::ATTR_KIND_BY_VAL; 167 case Attribute::InAlloca: 168 return bitc::ATTR_KIND_IN_ALLOCA; 169 case Attribute::Cold: 170 return bitc::ATTR_KIND_COLD; 171 case Attribute::InlineHint: 172 return bitc::ATTR_KIND_INLINE_HINT; 173 case Attribute::InReg: 174 return bitc::ATTR_KIND_IN_REG; 175 case Attribute::JumpTable: 176 return bitc::ATTR_KIND_JUMP_TABLE; 177 case Attribute::MinSize: 178 return bitc::ATTR_KIND_MIN_SIZE; 179 case Attribute::Naked: 180 return bitc::ATTR_KIND_NAKED; 181 case Attribute::Nest: 182 return bitc::ATTR_KIND_NEST; 183 case Attribute::NoAlias: 184 return bitc::ATTR_KIND_NO_ALIAS; 185 case Attribute::NoBuiltin: 186 return bitc::ATTR_KIND_NO_BUILTIN; 187 case Attribute::NoCapture: 188 return bitc::ATTR_KIND_NO_CAPTURE; 189 case Attribute::NoDuplicate: 190 return bitc::ATTR_KIND_NO_DUPLICATE; 191 case Attribute::NoImplicitFloat: 192 return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT; 193 case Attribute::NoInline: 194 return bitc::ATTR_KIND_NO_INLINE; 195 case Attribute::NonLazyBind: 196 return bitc::ATTR_KIND_NON_LAZY_BIND; 197 case Attribute::NonNull: 198 return bitc::ATTR_KIND_NON_NULL; 199 case Attribute::Dereferenceable: 200 return bitc::ATTR_KIND_DEREFERENCEABLE; 201 case Attribute::NoRedZone: 202 return bitc::ATTR_KIND_NO_RED_ZONE; 203 case Attribute::NoReturn: 204 return bitc::ATTR_KIND_NO_RETURN; 205 case Attribute::NoUnwind: 206 return bitc::ATTR_KIND_NO_UNWIND; 207 case Attribute::OptimizeForSize: 208 return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE; 209 case Attribute::OptimizeNone: 210 return bitc::ATTR_KIND_OPTIMIZE_NONE; 211 case Attribute::ReadNone: 212 return bitc::ATTR_KIND_READ_NONE; 213 case Attribute::ReadOnly: 214 return bitc::ATTR_KIND_READ_ONLY; 215 case Attribute::Returned: 216 return bitc::ATTR_KIND_RETURNED; 217 case Attribute::ReturnsTwice: 218 return bitc::ATTR_KIND_RETURNS_TWICE; 219 case Attribute::SExt: 220 return bitc::ATTR_KIND_S_EXT; 221 case Attribute::StackAlignment: 222 return bitc::ATTR_KIND_STACK_ALIGNMENT; 223 case Attribute::StackProtect: 224 return bitc::ATTR_KIND_STACK_PROTECT; 225 case Attribute::StackProtectReq: 226 return bitc::ATTR_KIND_STACK_PROTECT_REQ; 227 case Attribute::StackProtectStrong: 228 return bitc::ATTR_KIND_STACK_PROTECT_STRONG; 229 case Attribute::StructRet: 230 return bitc::ATTR_KIND_STRUCT_RET; 231 case Attribute::SanitizeAddress: 232 return bitc::ATTR_KIND_SANITIZE_ADDRESS; 233 case Attribute::SanitizeThread: 234 return bitc::ATTR_KIND_SANITIZE_THREAD; 235 case Attribute::SanitizeMemory: 236 return bitc::ATTR_KIND_SANITIZE_MEMORY; 237 case Attribute::UWTable: 238 return bitc::ATTR_KIND_UW_TABLE; 239 case Attribute::ZExt: 240 return bitc::ATTR_KIND_Z_EXT; 241 case Attribute::EndAttrKinds: 242 llvm_unreachable("Can not encode end-attribute kinds marker."); 243 case Attribute::None: 244 llvm_unreachable("Can not encode none-attribute."); 245 } 246 247 llvm_unreachable("Trying to encode unknown attribute"); 248 } 249 250 static void WriteAttributeGroupTable(const ValueEnumerator &VE, 251 BitstreamWriter &Stream) { 252 const std::vector<AttributeSet> &AttrGrps = VE.getAttributeGroups(); 253 if (AttrGrps.empty()) return; 254 255 Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3); 256 257 SmallVector<uint64_t, 64> Record; 258 for (unsigned i = 0, e = AttrGrps.size(); i != e; ++i) { 259 AttributeSet AS = AttrGrps[i]; 260 for (unsigned i = 0, e = AS.getNumSlots(); i != e; ++i) { 261 AttributeSet A = AS.getSlotAttributes(i); 262 263 Record.push_back(VE.getAttributeGroupID(A)); 264 Record.push_back(AS.getSlotIndex(i)); 265 266 for (AttributeSet::iterator I = AS.begin(0), E = AS.end(0); 267 I != E; ++I) { 268 Attribute Attr = *I; 269 if (Attr.isEnumAttribute()) { 270 Record.push_back(0); 271 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 272 } else if (Attr.isIntAttribute()) { 273 Record.push_back(1); 274 Record.push_back(getAttrKindEncoding(Attr.getKindAsEnum())); 275 Record.push_back(Attr.getValueAsInt()); 276 } else { 277 StringRef Kind = Attr.getKindAsString(); 278 StringRef Val = Attr.getValueAsString(); 279 280 Record.push_back(Val.empty() ? 3 : 4); 281 Record.append(Kind.begin(), Kind.end()); 282 Record.push_back(0); 283 if (!Val.empty()) { 284 Record.append(Val.begin(), Val.end()); 285 Record.push_back(0); 286 } 287 } 288 } 289 290 Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record); 291 Record.clear(); 292 } 293 } 294 295 Stream.ExitBlock(); 296 } 297 298 static void WriteAttributeTable(const ValueEnumerator &VE, 299 BitstreamWriter &Stream) { 300 const std::vector<AttributeSet> &Attrs = VE.getAttributes(); 301 if (Attrs.empty()) return; 302 303 Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3); 304 305 SmallVector<uint64_t, 64> Record; 306 for (unsigned i = 0, e = Attrs.size(); i != e; ++i) { 307 const AttributeSet &A = Attrs[i]; 308 for (unsigned i = 0, e = A.getNumSlots(); i != e; ++i) 309 Record.push_back(VE.getAttributeGroupID(A.getSlotAttributes(i))); 310 311 Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record); 312 Record.clear(); 313 } 314 315 Stream.ExitBlock(); 316 } 317 318 /// WriteTypeTable - Write out the type table for a module. 319 static void WriteTypeTable(const ValueEnumerator &VE, BitstreamWriter &Stream) { 320 const ValueEnumerator::TypeList &TypeList = VE.getTypes(); 321 322 Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */); 323 SmallVector<uint64_t, 64> TypeVals; 324 325 uint64_t NumBits = Log2_32_Ceil(VE.getTypes().size()+1); 326 327 // Abbrev for TYPE_CODE_POINTER. 328 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 329 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER)); 330 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 331 Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0 332 unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv); 333 334 // Abbrev for TYPE_CODE_FUNCTION. 335 Abbv = new BitCodeAbbrev(); 336 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); 337 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg 338 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 339 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 340 341 unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv); 342 343 // Abbrev for TYPE_CODE_STRUCT_ANON. 344 Abbv = new BitCodeAbbrev(); 345 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON)); 346 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 347 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 348 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 349 350 unsigned StructAnonAbbrev = Stream.EmitAbbrev(Abbv); 351 352 // Abbrev for TYPE_CODE_STRUCT_NAME. 353 Abbv = new BitCodeAbbrev(); 354 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME)); 355 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 356 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 357 unsigned StructNameAbbrev = Stream.EmitAbbrev(Abbv); 358 359 // Abbrev for TYPE_CODE_STRUCT_NAMED. 360 Abbv = new BitCodeAbbrev(); 361 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED)); 362 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked 363 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 364 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 365 366 unsigned StructNamedAbbrev = Stream.EmitAbbrev(Abbv); 367 368 // Abbrev for TYPE_CODE_ARRAY. 369 Abbv = new BitCodeAbbrev(); 370 Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); 371 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size 372 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); 373 374 unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv); 375 376 // Emit an entry count so the reader can reserve space. 377 TypeVals.push_back(TypeList.size()); 378 Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals); 379 TypeVals.clear(); 380 381 // Loop over all of the types, emitting each in turn. 382 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) { 383 Type *T = TypeList[i]; 384 int AbbrevToUse = 0; 385 unsigned Code = 0; 386 387 switch (T->getTypeID()) { 388 case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; 389 case Type::HalfTyID: Code = bitc::TYPE_CODE_HALF; break; 390 case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; 391 case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; 392 case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break; 393 case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break; 394 case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; 395 case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; 396 case Type::MetadataTyID: Code = bitc::TYPE_CODE_METADATA; break; 397 case Type::X86_MMXTyID: Code = bitc::TYPE_CODE_X86_MMX; break; 398 case Type::IntegerTyID: 399 // INTEGER: [width] 400 Code = bitc::TYPE_CODE_INTEGER; 401 TypeVals.push_back(cast<IntegerType>(T)->getBitWidth()); 402 break; 403 case Type::PointerTyID: { 404 PointerType *PTy = cast<PointerType>(T); 405 // POINTER: [pointee type, address space] 406 Code = bitc::TYPE_CODE_POINTER; 407 TypeVals.push_back(VE.getTypeID(PTy->getElementType())); 408 unsigned AddressSpace = PTy->getAddressSpace(); 409 TypeVals.push_back(AddressSpace); 410 if (AddressSpace == 0) AbbrevToUse = PtrAbbrev; 411 break; 412 } 413 case Type::FunctionTyID: { 414 FunctionType *FT = cast<FunctionType>(T); 415 // FUNCTION: [isvararg, retty, paramty x N] 416 Code = bitc::TYPE_CODE_FUNCTION; 417 TypeVals.push_back(FT->isVarArg()); 418 TypeVals.push_back(VE.getTypeID(FT->getReturnType())); 419 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) 420 TypeVals.push_back(VE.getTypeID(FT->getParamType(i))); 421 AbbrevToUse = FunctionAbbrev; 422 break; 423 } 424 case Type::StructTyID: { 425 StructType *ST = cast<StructType>(T); 426 // STRUCT: [ispacked, eltty x N] 427 TypeVals.push_back(ST->isPacked()); 428 // Output all of the element types. 429 for (StructType::element_iterator I = ST->element_begin(), 430 E = ST->element_end(); I != E; ++I) 431 TypeVals.push_back(VE.getTypeID(*I)); 432 433 if (ST->isLiteral()) { 434 Code = bitc::TYPE_CODE_STRUCT_ANON; 435 AbbrevToUse = StructAnonAbbrev; 436 } else { 437 if (ST->isOpaque()) { 438 Code = bitc::TYPE_CODE_OPAQUE; 439 } else { 440 Code = bitc::TYPE_CODE_STRUCT_NAMED; 441 AbbrevToUse = StructNamedAbbrev; 442 } 443 444 // Emit the name if it is present. 445 if (!ST->getName().empty()) 446 WriteStringRecord(bitc::TYPE_CODE_STRUCT_NAME, ST->getName(), 447 StructNameAbbrev, Stream); 448 } 449 break; 450 } 451 case Type::ArrayTyID: { 452 ArrayType *AT = cast<ArrayType>(T); 453 // ARRAY: [numelts, eltty] 454 Code = bitc::TYPE_CODE_ARRAY; 455 TypeVals.push_back(AT->getNumElements()); 456 TypeVals.push_back(VE.getTypeID(AT->getElementType())); 457 AbbrevToUse = ArrayAbbrev; 458 break; 459 } 460 case Type::VectorTyID: { 461 VectorType *VT = cast<VectorType>(T); 462 // VECTOR [numelts, eltty] 463 Code = bitc::TYPE_CODE_VECTOR; 464 TypeVals.push_back(VT->getNumElements()); 465 TypeVals.push_back(VE.getTypeID(VT->getElementType())); 466 break; 467 } 468 } 469 470 // Emit the finished record. 471 Stream.EmitRecord(Code, TypeVals, AbbrevToUse); 472 TypeVals.clear(); 473 } 474 475 Stream.ExitBlock(); 476 } 477 478 static unsigned getEncodedLinkage(const GlobalValue &GV) { 479 switch (GV.getLinkage()) { 480 case GlobalValue::ExternalLinkage: return 0; 481 case GlobalValue::WeakAnyLinkage: return 1; 482 case GlobalValue::AppendingLinkage: return 2; 483 case GlobalValue::InternalLinkage: return 3; 484 case GlobalValue::LinkOnceAnyLinkage: return 4; 485 case GlobalValue::ExternalWeakLinkage: return 7; 486 case GlobalValue::CommonLinkage: return 8; 487 case GlobalValue::PrivateLinkage: return 9; 488 case GlobalValue::WeakODRLinkage: return 10; 489 case GlobalValue::LinkOnceODRLinkage: return 11; 490 case GlobalValue::AvailableExternallyLinkage: return 12; 491 } 492 llvm_unreachable("Invalid linkage"); 493 } 494 495 static unsigned getEncodedVisibility(const GlobalValue &GV) { 496 switch (GV.getVisibility()) { 497 case GlobalValue::DefaultVisibility: return 0; 498 case GlobalValue::HiddenVisibility: return 1; 499 case GlobalValue::ProtectedVisibility: return 2; 500 } 501 llvm_unreachable("Invalid visibility"); 502 } 503 504 static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) { 505 switch (GV.getDLLStorageClass()) { 506 case GlobalValue::DefaultStorageClass: return 0; 507 case GlobalValue::DLLImportStorageClass: return 1; 508 case GlobalValue::DLLExportStorageClass: return 2; 509 } 510 llvm_unreachable("Invalid DLL storage class"); 511 } 512 513 static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) { 514 switch (GV.getThreadLocalMode()) { 515 case GlobalVariable::NotThreadLocal: return 0; 516 case GlobalVariable::GeneralDynamicTLSModel: return 1; 517 case GlobalVariable::LocalDynamicTLSModel: return 2; 518 case GlobalVariable::InitialExecTLSModel: return 3; 519 case GlobalVariable::LocalExecTLSModel: return 4; 520 } 521 llvm_unreachable("Invalid TLS model"); 522 } 523 524 static unsigned getEncodedComdatSelectionKind(const Comdat &C) { 525 switch (C.getSelectionKind()) { 526 case Comdat::Any: 527 return bitc::COMDAT_SELECTION_KIND_ANY; 528 case Comdat::ExactMatch: 529 return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH; 530 case Comdat::Largest: 531 return bitc::COMDAT_SELECTION_KIND_LARGEST; 532 case Comdat::NoDuplicates: 533 return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES; 534 case Comdat::SameSize: 535 return bitc::COMDAT_SELECTION_KIND_SAME_SIZE; 536 } 537 llvm_unreachable("Invalid selection kind"); 538 } 539 540 static void writeComdats(const ValueEnumerator &VE, BitstreamWriter &Stream) { 541 SmallVector<uint8_t, 64> Vals; 542 for (const Comdat *C : VE.getComdats()) { 543 // COMDAT: [selection_kind, name] 544 Vals.push_back(getEncodedComdatSelectionKind(*C)); 545 Vals.push_back(C->getName().size()); 546 for (char Chr : C->getName()) 547 Vals.push_back((unsigned char)Chr); 548 Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0); 549 Vals.clear(); 550 } 551 } 552 553 // Emit top-level description of module, including target triple, inline asm, 554 // descriptors for global variables, and function prototype info. 555 static void WriteModuleInfo(const Module *M, const ValueEnumerator &VE, 556 BitstreamWriter &Stream) { 557 // Emit various pieces of data attached to a module. 558 if (!M->getTargetTriple().empty()) 559 WriteStringRecord(bitc::MODULE_CODE_TRIPLE, M->getTargetTriple(), 560 0/*TODO*/, Stream); 561 const std::string &DL = M->getDataLayoutStr(); 562 if (!DL.empty()) 563 WriteStringRecord(bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/, Stream); 564 if (!M->getModuleInlineAsm().empty()) 565 WriteStringRecord(bitc::MODULE_CODE_ASM, M->getModuleInlineAsm(), 566 0/*TODO*/, Stream); 567 568 // Emit information about sections and GC, computing how many there are. Also 569 // compute the maximum alignment value. 570 std::map<std::string, unsigned> SectionMap; 571 std::map<std::string, unsigned> GCMap; 572 unsigned MaxAlignment = 0; 573 unsigned MaxGlobalType = 0; 574 for (const GlobalValue &GV : M->globals()) { 575 MaxAlignment = std::max(MaxAlignment, GV.getAlignment()); 576 MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV.getType())); 577 if (GV.hasSection()) { 578 // Give section names unique ID's. 579 unsigned &Entry = SectionMap[GV.getSection()]; 580 if (!Entry) { 581 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV.getSection(), 582 0/*TODO*/, Stream); 583 Entry = SectionMap.size(); 584 } 585 } 586 } 587 for (const Function &F : *M) { 588 MaxAlignment = std::max(MaxAlignment, F.getAlignment()); 589 if (F.hasSection()) { 590 // Give section names unique ID's. 591 unsigned &Entry = SectionMap[F.getSection()]; 592 if (!Entry) { 593 WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, F.getSection(), 594 0/*TODO*/, Stream); 595 Entry = SectionMap.size(); 596 } 597 } 598 if (F.hasGC()) { 599 // Same for GC names. 600 unsigned &Entry = GCMap[F.getGC()]; 601 if (!Entry) { 602 WriteStringRecord(bitc::MODULE_CODE_GCNAME, F.getGC(), 603 0/*TODO*/, Stream); 604 Entry = GCMap.size(); 605 } 606 } 607 } 608 609 // Emit abbrev for globals, now that we know # sections and max alignment. 610 unsigned SimpleGVarAbbrev = 0; 611 if (!M->global_empty()) { 612 // Add an abbrev for common globals with no visibility or thread localness. 613 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 614 Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); 615 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 616 Log2_32_Ceil(MaxGlobalType+1))); 617 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // Constant. 618 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. 619 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // Linkage. 620 if (MaxAlignment == 0) // Alignment. 621 Abbv->Add(BitCodeAbbrevOp(0)); 622 else { 623 unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1; 624 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 625 Log2_32_Ceil(MaxEncAlignment+1))); 626 } 627 if (SectionMap.empty()) // Section. 628 Abbv->Add(BitCodeAbbrevOp(0)); 629 else 630 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 631 Log2_32_Ceil(SectionMap.size()+1))); 632 // Don't bother emitting vis + thread local. 633 SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv); 634 } 635 636 // Emit the global variable information. 637 SmallVector<unsigned, 64> Vals; 638 for (const GlobalVariable &GV : M->globals()) { 639 unsigned AbbrevToUse = 0; 640 641 // GLOBALVAR: [type, isconst, initid, 642 // linkage, alignment, section, visibility, threadlocal, 643 // unnamed_addr, externally_initialized, dllstorageclass] 644 Vals.push_back(VE.getTypeID(GV.getType())); 645 Vals.push_back(GV.isConstant()); 646 Vals.push_back(GV.isDeclaration() ? 0 : 647 (VE.getValueID(GV.getInitializer()) + 1)); 648 Vals.push_back(getEncodedLinkage(GV)); 649 Vals.push_back(Log2_32(GV.getAlignment())+1); 650 Vals.push_back(GV.hasSection() ? SectionMap[GV.getSection()] : 0); 651 if (GV.isThreadLocal() || 652 GV.getVisibility() != GlobalValue::DefaultVisibility || 653 GV.hasUnnamedAddr() || GV.isExternallyInitialized() || 654 GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass || 655 GV.hasComdat()) { 656 Vals.push_back(getEncodedVisibility(GV)); 657 Vals.push_back(getEncodedThreadLocalMode(GV)); 658 Vals.push_back(GV.hasUnnamedAddr()); 659 Vals.push_back(GV.isExternallyInitialized()); 660 Vals.push_back(getEncodedDLLStorageClass(GV)); 661 Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0); 662 } else { 663 AbbrevToUse = SimpleGVarAbbrev; 664 } 665 666 Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse); 667 Vals.clear(); 668 } 669 670 // Emit the function proto information. 671 for (const Function &F : *M) { 672 // FUNCTION: [type, callingconv, isproto, linkage, paramattrs, alignment, 673 // section, visibility, gc, unnamed_addr, prologuedata, 674 // dllstorageclass, comdat, prefixdata] 675 Vals.push_back(VE.getTypeID(F.getType())); 676 Vals.push_back(F.getCallingConv()); 677 Vals.push_back(F.isDeclaration()); 678 Vals.push_back(getEncodedLinkage(F)); 679 Vals.push_back(VE.getAttributeID(F.getAttributes())); 680 Vals.push_back(Log2_32(F.getAlignment())+1); 681 Vals.push_back(F.hasSection() ? SectionMap[F.getSection()] : 0); 682 Vals.push_back(getEncodedVisibility(F)); 683 Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0); 684 Vals.push_back(F.hasUnnamedAddr()); 685 Vals.push_back(F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1) 686 : 0); 687 Vals.push_back(getEncodedDLLStorageClass(F)); 688 Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0); 689 Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1) 690 : 0); 691 692 unsigned AbbrevToUse = 0; 693 Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse); 694 Vals.clear(); 695 } 696 697 // Emit the alias information. 698 for (const GlobalAlias &A : M->aliases()) { 699 // ALIAS: [alias type, aliasee val#, linkage, visibility] 700 Vals.push_back(VE.getTypeID(A.getType())); 701 Vals.push_back(VE.getValueID(A.getAliasee())); 702 Vals.push_back(getEncodedLinkage(A)); 703 Vals.push_back(getEncodedVisibility(A)); 704 Vals.push_back(getEncodedDLLStorageClass(A)); 705 Vals.push_back(getEncodedThreadLocalMode(A)); 706 Vals.push_back(A.hasUnnamedAddr()); 707 unsigned AbbrevToUse = 0; 708 Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse); 709 Vals.clear(); 710 } 711 } 712 713 static uint64_t GetOptimizationFlags(const Value *V) { 714 uint64_t Flags = 0; 715 716 if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) { 717 if (OBO->hasNoSignedWrap()) 718 Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP; 719 if (OBO->hasNoUnsignedWrap()) 720 Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP; 721 } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) { 722 if (PEO->isExact()) 723 Flags |= 1 << bitc::PEO_EXACT; 724 } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) { 725 if (FPMO->hasUnsafeAlgebra()) 726 Flags |= FastMathFlags::UnsafeAlgebra; 727 if (FPMO->hasNoNaNs()) 728 Flags |= FastMathFlags::NoNaNs; 729 if (FPMO->hasNoInfs()) 730 Flags |= FastMathFlags::NoInfs; 731 if (FPMO->hasNoSignedZeros()) 732 Flags |= FastMathFlags::NoSignedZeros; 733 if (FPMO->hasAllowReciprocal()) 734 Flags |= FastMathFlags::AllowReciprocal; 735 } 736 737 return Flags; 738 } 739 740 static void WriteValueAsMetadataImpl(const ValueAsMetadata *MD, 741 const ValueEnumerator &VE, 742 BitstreamWriter &Stream, 743 SmallVectorImpl<uint64_t> &Record, 744 unsigned Code) { 745 // Mimic an MDNode with a value as one operand. 746 Value *V = MD->getValue(); 747 Record.push_back(VE.getTypeID(V->getType())); 748 Record.push_back(VE.getValueID(V)); 749 Stream.EmitRecord(Code, Record, 0); 750 Record.clear(); 751 } 752 753 static void WriteLocalAsMetadata(const LocalAsMetadata *MD, 754 const ValueEnumerator &VE, 755 BitstreamWriter &Stream, 756 SmallVectorImpl<uint64_t> &Record) { 757 WriteValueAsMetadataImpl(MD, VE, Stream, Record, bitc::METADATA_OLD_FN_NODE); 758 } 759 760 static void WriteConstantAsMetadata(const ConstantAsMetadata *MD, 761 const ValueEnumerator &VE, 762 BitstreamWriter &Stream, 763 SmallVectorImpl<uint64_t> &Record) { 764 WriteValueAsMetadataImpl(MD, VE, Stream, Record, bitc::METADATA_OLD_NODE); 765 } 766 767 static void WriteMDNode(const MDNode *N, 768 const ValueEnumerator &VE, 769 BitstreamWriter &Stream, 770 SmallVectorImpl<uint64_t> &Record) { 771 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 772 Metadata *MD = N->getOperand(i); 773 if (!MD) { 774 Record.push_back(VE.getTypeID(Type::getVoidTy(N->getContext()))); 775 Record.push_back(0); 776 continue; 777 } 778 if (auto *V = dyn_cast<ConstantAsMetadata>(MD)) { 779 Record.push_back(VE.getTypeID(V->getValue()->getType())); 780 Record.push_back(VE.getValueID(V->getValue())); 781 continue; 782 } 783 assert(!isa<LocalAsMetadata>(MD) && "Unexpected function-local metadata"); 784 Record.push_back(VE.getTypeID(Type::getMetadataTy(N->getContext()))); 785 Record.push_back(VE.getMetadataID(MD)); 786 } 787 Stream.EmitRecord(bitc::METADATA_OLD_NODE, Record, 0); 788 Record.clear(); 789 } 790 791 static void WriteModuleMetadata(const Module *M, 792 const ValueEnumerator &VE, 793 BitstreamWriter &Stream) { 794 const auto &MDs = VE.getMDs(); 795 bool StartedMetadataBlock = false; 796 unsigned MDSAbbrev = 0; 797 SmallVector<uint64_t, 64> Record; 798 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 799 if (const MDNode *N = dyn_cast<MDNode>(MDs[i])) { 800 if (!StartedMetadataBlock) { 801 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 802 StartedMetadataBlock = true; 803 } 804 WriteMDNode(N, VE, Stream, Record); 805 } else if (const auto *MDC = dyn_cast<ConstantAsMetadata>(MDs[i])) { 806 if (!StartedMetadataBlock) { 807 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 808 StartedMetadataBlock = true; 809 } 810 WriteConstantAsMetadata(MDC, VE, Stream, Record); 811 } else if (const MDString *MDS = dyn_cast<MDString>(MDs[i])) { 812 if (!StartedMetadataBlock) { 813 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 814 815 // Abbrev for METADATA_STRING. 816 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 817 Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRING)); 818 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 819 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 820 MDSAbbrev = Stream.EmitAbbrev(Abbv); 821 StartedMetadataBlock = true; 822 } 823 824 // Code: [strchar x N] 825 Record.append(MDS->begin(), MDS->end()); 826 827 // Emit the finished record. 828 Stream.EmitRecord(bitc::METADATA_STRING, Record, MDSAbbrev); 829 Record.clear(); 830 } 831 } 832 833 // Write named metadata. 834 for (Module::const_named_metadata_iterator I = M->named_metadata_begin(), 835 E = M->named_metadata_end(); I != E; ++I) { 836 const NamedMDNode *NMD = I; 837 if (!StartedMetadataBlock) { 838 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 839 StartedMetadataBlock = true; 840 } 841 842 // Write name. 843 StringRef Str = NMD->getName(); 844 for (unsigned i = 0, e = Str.size(); i != e; ++i) 845 Record.push_back(Str[i]); 846 Stream.EmitRecord(bitc::METADATA_NAME, Record, 0/*TODO*/); 847 Record.clear(); 848 849 // Write named metadata operands. 850 for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) 851 Record.push_back(VE.getMetadataID(NMD->getOperand(i))); 852 Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0); 853 Record.clear(); 854 } 855 856 if (StartedMetadataBlock) 857 Stream.ExitBlock(); 858 } 859 860 static void WriteFunctionLocalMetadata(const Function &F, 861 const ValueEnumerator &VE, 862 BitstreamWriter &Stream) { 863 bool StartedMetadataBlock = false; 864 SmallVector<uint64_t, 64> Record; 865 const SmallVectorImpl<const LocalAsMetadata *> &MDs = 866 VE.getFunctionLocalMDs(); 867 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 868 assert(MDs[i] && "Expected valid function-local metadata"); 869 if (!StartedMetadataBlock) { 870 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 871 StartedMetadataBlock = true; 872 } 873 WriteLocalAsMetadata(MDs[i], VE, Stream, Record); 874 } 875 876 if (StartedMetadataBlock) 877 Stream.ExitBlock(); 878 } 879 880 static void WriteMetadataAttachment(const Function &F, 881 const ValueEnumerator &VE, 882 BitstreamWriter &Stream) { 883 Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3); 884 885 SmallVector<uint64_t, 64> Record; 886 887 // Write metadata attachments 888 // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]] 889 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 890 891 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 892 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 893 I != E; ++I) { 894 MDs.clear(); 895 I->getAllMetadataOtherThanDebugLoc(MDs); 896 897 // If no metadata, ignore instruction. 898 if (MDs.empty()) continue; 899 900 Record.push_back(VE.getInstructionID(I)); 901 902 for (unsigned i = 0, e = MDs.size(); i != e; ++i) { 903 Record.push_back(MDs[i].first); 904 Record.push_back(VE.getMetadataID(MDs[i].second)); 905 } 906 Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0); 907 Record.clear(); 908 } 909 910 Stream.ExitBlock(); 911 } 912 913 static void WriteModuleMetadataStore(const Module *M, BitstreamWriter &Stream) { 914 SmallVector<uint64_t, 64> Record; 915 916 // Write metadata kinds 917 // METADATA_KIND - [n x [id, name]] 918 SmallVector<StringRef, 8> Names; 919 M->getMDKindNames(Names); 920 921 if (Names.empty()) return; 922 923 Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3); 924 925 for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) { 926 Record.push_back(MDKindID); 927 StringRef KName = Names[MDKindID]; 928 Record.append(KName.begin(), KName.end()); 929 930 Stream.EmitRecord(bitc::METADATA_KIND, Record, 0); 931 Record.clear(); 932 } 933 934 Stream.ExitBlock(); 935 } 936 937 static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) { 938 if ((int64_t)V >= 0) 939 Vals.push_back(V << 1); 940 else 941 Vals.push_back((-V << 1) | 1); 942 } 943 944 static void WriteConstants(unsigned FirstVal, unsigned LastVal, 945 const ValueEnumerator &VE, 946 BitstreamWriter &Stream, bool isGlobal) { 947 if (FirstVal == LastVal) return; 948 949 Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4); 950 951 unsigned AggregateAbbrev = 0; 952 unsigned String8Abbrev = 0; 953 unsigned CString7Abbrev = 0; 954 unsigned CString6Abbrev = 0; 955 // If this is a constant pool for the module, emit module-specific abbrevs. 956 if (isGlobal) { 957 // Abbrev for CST_CODE_AGGREGATE. 958 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 959 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); 960 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 961 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1))); 962 AggregateAbbrev = Stream.EmitAbbrev(Abbv); 963 964 // Abbrev for CST_CODE_STRING. 965 Abbv = new BitCodeAbbrev(); 966 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING)); 967 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 968 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 969 String8Abbrev = Stream.EmitAbbrev(Abbv); 970 // Abbrev for CST_CODE_CSTRING. 971 Abbv = new BitCodeAbbrev(); 972 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 973 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 974 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 975 CString7Abbrev = Stream.EmitAbbrev(Abbv); 976 // Abbrev for CST_CODE_CSTRING. 977 Abbv = new BitCodeAbbrev(); 978 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); 979 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 980 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 981 CString6Abbrev = Stream.EmitAbbrev(Abbv); 982 } 983 984 SmallVector<uint64_t, 64> Record; 985 986 const ValueEnumerator::ValueList &Vals = VE.getValues(); 987 Type *LastTy = nullptr; 988 for (unsigned i = FirstVal; i != LastVal; ++i) { 989 const Value *V = Vals[i].first; 990 // If we need to switch types, do so now. 991 if (V->getType() != LastTy) { 992 LastTy = V->getType(); 993 Record.push_back(VE.getTypeID(LastTy)); 994 Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record, 995 CONSTANTS_SETTYPE_ABBREV); 996 Record.clear(); 997 } 998 999 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 1000 Record.push_back(unsigned(IA->hasSideEffects()) | 1001 unsigned(IA->isAlignStack()) << 1 | 1002 unsigned(IA->getDialect()&1) << 2); 1003 1004 // Add the asm string. 1005 const std::string &AsmStr = IA->getAsmString(); 1006 Record.push_back(AsmStr.size()); 1007 for (unsigned i = 0, e = AsmStr.size(); i != e; ++i) 1008 Record.push_back(AsmStr[i]); 1009 1010 // Add the constraint string. 1011 const std::string &ConstraintStr = IA->getConstraintString(); 1012 Record.push_back(ConstraintStr.size()); 1013 for (unsigned i = 0, e = ConstraintStr.size(); i != e; ++i) 1014 Record.push_back(ConstraintStr[i]); 1015 Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record); 1016 Record.clear(); 1017 continue; 1018 } 1019 const Constant *C = cast<Constant>(V); 1020 unsigned Code = -1U; 1021 unsigned AbbrevToUse = 0; 1022 if (C->isNullValue()) { 1023 Code = bitc::CST_CODE_NULL; 1024 } else if (isa<UndefValue>(C)) { 1025 Code = bitc::CST_CODE_UNDEF; 1026 } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) { 1027 if (IV->getBitWidth() <= 64) { 1028 uint64_t V = IV->getSExtValue(); 1029 emitSignedInt64(Record, V); 1030 Code = bitc::CST_CODE_INTEGER; 1031 AbbrevToUse = CONSTANTS_INTEGER_ABBREV; 1032 } else { // Wide integers, > 64 bits in size. 1033 // We have an arbitrary precision integer value to write whose 1034 // bit width is > 64. However, in canonical unsigned integer 1035 // format it is likely that the high bits are going to be zero. 1036 // So, we only write the number of active words. 1037 unsigned NWords = IV->getValue().getActiveWords(); 1038 const uint64_t *RawWords = IV->getValue().getRawData(); 1039 for (unsigned i = 0; i != NWords; ++i) { 1040 emitSignedInt64(Record, RawWords[i]); 1041 } 1042 Code = bitc::CST_CODE_WIDE_INTEGER; 1043 } 1044 } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 1045 Code = bitc::CST_CODE_FLOAT; 1046 Type *Ty = CFP->getType(); 1047 if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) { 1048 Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue()); 1049 } else if (Ty->isX86_FP80Ty()) { 1050 // api needed to prevent premature destruction 1051 // bits are not in the same order as a normal i80 APInt, compensate. 1052 APInt api = CFP->getValueAPF().bitcastToAPInt(); 1053 const uint64_t *p = api.getRawData(); 1054 Record.push_back((p[1] << 48) | (p[0] >> 16)); 1055 Record.push_back(p[0] & 0xffffLL); 1056 } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) { 1057 APInt api = CFP->getValueAPF().bitcastToAPInt(); 1058 const uint64_t *p = api.getRawData(); 1059 Record.push_back(p[0]); 1060 Record.push_back(p[1]); 1061 } else { 1062 assert (0 && "Unknown FP type!"); 1063 } 1064 } else if (isa<ConstantDataSequential>(C) && 1065 cast<ConstantDataSequential>(C)->isString()) { 1066 const ConstantDataSequential *Str = cast<ConstantDataSequential>(C); 1067 // Emit constant strings specially. 1068 unsigned NumElts = Str->getNumElements(); 1069 // If this is a null-terminated string, use the denser CSTRING encoding. 1070 if (Str->isCString()) { 1071 Code = bitc::CST_CODE_CSTRING; 1072 --NumElts; // Don't encode the null, which isn't allowed by char6. 1073 } else { 1074 Code = bitc::CST_CODE_STRING; 1075 AbbrevToUse = String8Abbrev; 1076 } 1077 bool isCStr7 = Code == bitc::CST_CODE_CSTRING; 1078 bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; 1079 for (unsigned i = 0; i != NumElts; ++i) { 1080 unsigned char V = Str->getElementAsInteger(i); 1081 Record.push_back(V); 1082 isCStr7 &= (V & 128) == 0; 1083 if (isCStrChar6) 1084 isCStrChar6 = BitCodeAbbrevOp::isChar6(V); 1085 } 1086 1087 if (isCStrChar6) 1088 AbbrevToUse = CString6Abbrev; 1089 else if (isCStr7) 1090 AbbrevToUse = CString7Abbrev; 1091 } else if (const ConstantDataSequential *CDS = 1092 dyn_cast<ConstantDataSequential>(C)) { 1093 Code = bitc::CST_CODE_DATA; 1094 Type *EltTy = CDS->getType()->getElementType(); 1095 if (isa<IntegerType>(EltTy)) { 1096 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) 1097 Record.push_back(CDS->getElementAsInteger(i)); 1098 } else if (EltTy->isFloatTy()) { 1099 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1100 union { float F; uint32_t I; }; 1101 F = CDS->getElementAsFloat(i); 1102 Record.push_back(I); 1103 } 1104 } else { 1105 assert(EltTy->isDoubleTy() && "Unknown ConstantData element type"); 1106 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1107 union { double F; uint64_t I; }; 1108 F = CDS->getElementAsDouble(i); 1109 Record.push_back(I); 1110 } 1111 } 1112 } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(C) || 1113 isa<ConstantVector>(C)) { 1114 Code = bitc::CST_CODE_AGGREGATE; 1115 for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i) 1116 Record.push_back(VE.getValueID(C->getOperand(i))); 1117 AbbrevToUse = AggregateAbbrev; 1118 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1119 switch (CE->getOpcode()) { 1120 default: 1121 if (Instruction::isCast(CE->getOpcode())) { 1122 Code = bitc::CST_CODE_CE_CAST; 1123 Record.push_back(GetEncodedCastOpcode(CE->getOpcode())); 1124 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 1125 Record.push_back(VE.getValueID(C->getOperand(0))); 1126 AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; 1127 } else { 1128 assert(CE->getNumOperands() == 2 && "Unknown constant expr!"); 1129 Code = bitc::CST_CODE_CE_BINOP; 1130 Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode())); 1131 Record.push_back(VE.getValueID(C->getOperand(0))); 1132 Record.push_back(VE.getValueID(C->getOperand(1))); 1133 uint64_t Flags = GetOptimizationFlags(CE); 1134 if (Flags != 0) 1135 Record.push_back(Flags); 1136 } 1137 break; 1138 case Instruction::GetElementPtr: 1139 Code = bitc::CST_CODE_CE_GEP; 1140 if (cast<GEPOperator>(C)->isInBounds()) 1141 Code = bitc::CST_CODE_CE_INBOUNDS_GEP; 1142 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 1143 Record.push_back(VE.getTypeID(C->getOperand(i)->getType())); 1144 Record.push_back(VE.getValueID(C->getOperand(i))); 1145 } 1146 break; 1147 case Instruction::Select: 1148 Code = bitc::CST_CODE_CE_SELECT; 1149 Record.push_back(VE.getValueID(C->getOperand(0))); 1150 Record.push_back(VE.getValueID(C->getOperand(1))); 1151 Record.push_back(VE.getValueID(C->getOperand(2))); 1152 break; 1153 case Instruction::ExtractElement: 1154 Code = bitc::CST_CODE_CE_EXTRACTELT; 1155 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 1156 Record.push_back(VE.getValueID(C->getOperand(0))); 1157 Record.push_back(VE.getTypeID(C->getOperand(1)->getType())); 1158 Record.push_back(VE.getValueID(C->getOperand(1))); 1159 break; 1160 case Instruction::InsertElement: 1161 Code = bitc::CST_CODE_CE_INSERTELT; 1162 Record.push_back(VE.getValueID(C->getOperand(0))); 1163 Record.push_back(VE.getValueID(C->getOperand(1))); 1164 Record.push_back(VE.getTypeID(C->getOperand(2)->getType())); 1165 Record.push_back(VE.getValueID(C->getOperand(2))); 1166 break; 1167 case Instruction::ShuffleVector: 1168 // If the return type and argument types are the same, this is a 1169 // standard shufflevector instruction. If the types are different, 1170 // then the shuffle is widening or truncating the input vectors, and 1171 // the argument type must also be encoded. 1172 if (C->getType() == C->getOperand(0)->getType()) { 1173 Code = bitc::CST_CODE_CE_SHUFFLEVEC; 1174 } else { 1175 Code = bitc::CST_CODE_CE_SHUFVEC_EX; 1176 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 1177 } 1178 Record.push_back(VE.getValueID(C->getOperand(0))); 1179 Record.push_back(VE.getValueID(C->getOperand(1))); 1180 Record.push_back(VE.getValueID(C->getOperand(2))); 1181 break; 1182 case Instruction::ICmp: 1183 case Instruction::FCmp: 1184 Code = bitc::CST_CODE_CE_CMP; 1185 Record.push_back(VE.getTypeID(C->getOperand(0)->getType())); 1186 Record.push_back(VE.getValueID(C->getOperand(0))); 1187 Record.push_back(VE.getValueID(C->getOperand(1))); 1188 Record.push_back(CE->getPredicate()); 1189 break; 1190 } 1191 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) { 1192 Code = bitc::CST_CODE_BLOCKADDRESS; 1193 Record.push_back(VE.getTypeID(BA->getFunction()->getType())); 1194 Record.push_back(VE.getValueID(BA->getFunction())); 1195 Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock())); 1196 } else { 1197 #ifndef NDEBUG 1198 C->dump(); 1199 #endif 1200 llvm_unreachable("Unknown constant!"); 1201 } 1202 Stream.EmitRecord(Code, Record, AbbrevToUse); 1203 Record.clear(); 1204 } 1205 1206 Stream.ExitBlock(); 1207 } 1208 1209 static void WriteModuleConstants(const ValueEnumerator &VE, 1210 BitstreamWriter &Stream) { 1211 const ValueEnumerator::ValueList &Vals = VE.getValues(); 1212 1213 // Find the first constant to emit, which is the first non-globalvalue value. 1214 // We know globalvalues have been emitted by WriteModuleInfo. 1215 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 1216 if (!isa<GlobalValue>(Vals[i].first)) { 1217 WriteConstants(i, Vals.size(), VE, Stream, true); 1218 return; 1219 } 1220 } 1221 } 1222 1223 /// PushValueAndType - The file has to encode both the value and type id for 1224 /// many values, because we need to know what type to create for forward 1225 /// references. However, most operands are not forward references, so this type 1226 /// field is not needed. 1227 /// 1228 /// This function adds V's value ID to Vals. If the value ID is higher than the 1229 /// instruction ID, then it is a forward reference, and it also includes the 1230 /// type ID. The value ID that is written is encoded relative to the InstID. 1231 static bool PushValueAndType(const Value *V, unsigned InstID, 1232 SmallVectorImpl<unsigned> &Vals, 1233 ValueEnumerator &VE) { 1234 unsigned ValID = VE.getValueID(V); 1235 // Make encoding relative to the InstID. 1236 Vals.push_back(InstID - ValID); 1237 if (ValID >= InstID) { 1238 Vals.push_back(VE.getTypeID(V->getType())); 1239 return true; 1240 } 1241 return false; 1242 } 1243 1244 /// pushValue - Like PushValueAndType, but where the type of the value is 1245 /// omitted (perhaps it was already encoded in an earlier operand). 1246 static void pushValue(const Value *V, unsigned InstID, 1247 SmallVectorImpl<unsigned> &Vals, 1248 ValueEnumerator &VE) { 1249 unsigned ValID = VE.getValueID(V); 1250 Vals.push_back(InstID - ValID); 1251 } 1252 1253 static void pushValueSigned(const Value *V, unsigned InstID, 1254 SmallVectorImpl<uint64_t> &Vals, 1255 ValueEnumerator &VE) { 1256 unsigned ValID = VE.getValueID(V); 1257 int64_t diff = ((int32_t)InstID - (int32_t)ValID); 1258 emitSignedInt64(Vals, diff); 1259 } 1260 1261 /// WriteInstruction - Emit an instruction to the specified stream. 1262 static void WriteInstruction(const Instruction &I, unsigned InstID, 1263 ValueEnumerator &VE, BitstreamWriter &Stream, 1264 SmallVectorImpl<unsigned> &Vals) { 1265 unsigned Code = 0; 1266 unsigned AbbrevToUse = 0; 1267 VE.setInstructionID(&I); 1268 switch (I.getOpcode()) { 1269 default: 1270 if (Instruction::isCast(I.getOpcode())) { 1271 Code = bitc::FUNC_CODE_INST_CAST; 1272 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 1273 AbbrevToUse = FUNCTION_INST_CAST_ABBREV; 1274 Vals.push_back(VE.getTypeID(I.getType())); 1275 Vals.push_back(GetEncodedCastOpcode(I.getOpcode())); 1276 } else { 1277 assert(isa<BinaryOperator>(I) && "Unknown instruction!"); 1278 Code = bitc::FUNC_CODE_INST_BINOP; 1279 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 1280 AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; 1281 pushValue(I.getOperand(1), InstID, Vals, VE); 1282 Vals.push_back(GetEncodedBinaryOpcode(I.getOpcode())); 1283 uint64_t Flags = GetOptimizationFlags(&I); 1284 if (Flags != 0) { 1285 if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV) 1286 AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV; 1287 Vals.push_back(Flags); 1288 } 1289 } 1290 break; 1291 1292 case Instruction::GetElementPtr: 1293 Code = bitc::FUNC_CODE_INST_GEP; 1294 if (cast<GEPOperator>(&I)->isInBounds()) 1295 Code = bitc::FUNC_CODE_INST_INBOUNDS_GEP; 1296 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) 1297 PushValueAndType(I.getOperand(i), InstID, Vals, VE); 1298 break; 1299 case Instruction::ExtractValue: { 1300 Code = bitc::FUNC_CODE_INST_EXTRACTVAL; 1301 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1302 const ExtractValueInst *EVI = cast<ExtractValueInst>(&I); 1303 for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i) 1304 Vals.push_back(*i); 1305 break; 1306 } 1307 case Instruction::InsertValue: { 1308 Code = bitc::FUNC_CODE_INST_INSERTVAL; 1309 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1310 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 1311 const InsertValueInst *IVI = cast<InsertValueInst>(&I); 1312 for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i) 1313 Vals.push_back(*i); 1314 break; 1315 } 1316 case Instruction::Select: 1317 Code = bitc::FUNC_CODE_INST_VSELECT; 1318 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 1319 pushValue(I.getOperand(2), InstID, Vals, VE); 1320 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1321 break; 1322 case Instruction::ExtractElement: 1323 Code = bitc::FUNC_CODE_INST_EXTRACTELT; 1324 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1325 PushValueAndType(I.getOperand(1), InstID, Vals, VE); 1326 break; 1327 case Instruction::InsertElement: 1328 Code = bitc::FUNC_CODE_INST_INSERTELT; 1329 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1330 pushValue(I.getOperand(1), InstID, Vals, VE); 1331 PushValueAndType(I.getOperand(2), InstID, Vals, VE); 1332 break; 1333 case Instruction::ShuffleVector: 1334 Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; 1335 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1336 pushValue(I.getOperand(1), InstID, Vals, VE); 1337 pushValue(I.getOperand(2), InstID, Vals, VE); 1338 break; 1339 case Instruction::ICmp: 1340 case Instruction::FCmp: 1341 // compare returning Int1Ty or vector of Int1Ty 1342 Code = bitc::FUNC_CODE_INST_CMP2; 1343 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1344 pushValue(I.getOperand(1), InstID, Vals, VE); 1345 Vals.push_back(cast<CmpInst>(I).getPredicate()); 1346 break; 1347 1348 case Instruction::Ret: 1349 { 1350 Code = bitc::FUNC_CODE_INST_RET; 1351 unsigned NumOperands = I.getNumOperands(); 1352 if (NumOperands == 0) 1353 AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; 1354 else if (NumOperands == 1) { 1355 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) 1356 AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; 1357 } else { 1358 for (unsigned i = 0, e = NumOperands; i != e; ++i) 1359 PushValueAndType(I.getOperand(i), InstID, Vals, VE); 1360 } 1361 } 1362 break; 1363 case Instruction::Br: 1364 { 1365 Code = bitc::FUNC_CODE_INST_BR; 1366 const BranchInst &II = cast<BranchInst>(I); 1367 Vals.push_back(VE.getValueID(II.getSuccessor(0))); 1368 if (II.isConditional()) { 1369 Vals.push_back(VE.getValueID(II.getSuccessor(1))); 1370 pushValue(II.getCondition(), InstID, Vals, VE); 1371 } 1372 } 1373 break; 1374 case Instruction::Switch: 1375 { 1376 Code = bitc::FUNC_CODE_INST_SWITCH; 1377 const SwitchInst &SI = cast<SwitchInst>(I); 1378 Vals.push_back(VE.getTypeID(SI.getCondition()->getType())); 1379 pushValue(SI.getCondition(), InstID, Vals, VE); 1380 Vals.push_back(VE.getValueID(SI.getDefaultDest())); 1381 for (SwitchInst::ConstCaseIt i = SI.case_begin(), e = SI.case_end(); 1382 i != e; ++i) { 1383 Vals.push_back(VE.getValueID(i.getCaseValue())); 1384 Vals.push_back(VE.getValueID(i.getCaseSuccessor())); 1385 } 1386 } 1387 break; 1388 case Instruction::IndirectBr: 1389 Code = bitc::FUNC_CODE_INST_INDIRECTBR; 1390 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 1391 // Encode the address operand as relative, but not the basic blocks. 1392 pushValue(I.getOperand(0), InstID, Vals, VE); 1393 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) 1394 Vals.push_back(VE.getValueID(I.getOperand(i))); 1395 break; 1396 1397 case Instruction::Invoke: { 1398 const InvokeInst *II = cast<InvokeInst>(&I); 1399 const Value *Callee(II->getCalledValue()); 1400 PointerType *PTy = cast<PointerType>(Callee->getType()); 1401 FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); 1402 Code = bitc::FUNC_CODE_INST_INVOKE; 1403 1404 Vals.push_back(VE.getAttributeID(II->getAttributes())); 1405 Vals.push_back(II->getCallingConv()); 1406 Vals.push_back(VE.getValueID(II->getNormalDest())); 1407 Vals.push_back(VE.getValueID(II->getUnwindDest())); 1408 PushValueAndType(Callee, InstID, Vals, VE); 1409 1410 // Emit value #'s for the fixed parameters. 1411 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) 1412 pushValue(I.getOperand(i), InstID, Vals, VE); // fixed param. 1413 1414 // Emit type/value pairs for varargs params. 1415 if (FTy->isVarArg()) { 1416 for (unsigned i = FTy->getNumParams(), e = I.getNumOperands()-3; 1417 i != e; ++i) 1418 PushValueAndType(I.getOperand(i), InstID, Vals, VE); // vararg 1419 } 1420 break; 1421 } 1422 case Instruction::Resume: 1423 Code = bitc::FUNC_CODE_INST_RESUME; 1424 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1425 break; 1426 case Instruction::Unreachable: 1427 Code = bitc::FUNC_CODE_INST_UNREACHABLE; 1428 AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; 1429 break; 1430 1431 case Instruction::PHI: { 1432 const PHINode &PN = cast<PHINode>(I); 1433 Code = bitc::FUNC_CODE_INST_PHI; 1434 // With the newer instruction encoding, forward references could give 1435 // negative valued IDs. This is most common for PHIs, so we use 1436 // signed VBRs. 1437 SmallVector<uint64_t, 128> Vals64; 1438 Vals64.push_back(VE.getTypeID(PN.getType())); 1439 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { 1440 pushValueSigned(PN.getIncomingValue(i), InstID, Vals64, VE); 1441 Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i))); 1442 } 1443 // Emit a Vals64 vector and exit. 1444 Stream.EmitRecord(Code, Vals64, AbbrevToUse); 1445 Vals64.clear(); 1446 return; 1447 } 1448 1449 case Instruction::LandingPad: { 1450 const LandingPadInst &LP = cast<LandingPadInst>(I); 1451 Code = bitc::FUNC_CODE_INST_LANDINGPAD; 1452 Vals.push_back(VE.getTypeID(LP.getType())); 1453 PushValueAndType(LP.getPersonalityFn(), InstID, Vals, VE); 1454 Vals.push_back(LP.isCleanup()); 1455 Vals.push_back(LP.getNumClauses()); 1456 for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) { 1457 if (LP.isCatch(I)) 1458 Vals.push_back(LandingPadInst::Catch); 1459 else 1460 Vals.push_back(LandingPadInst::Filter); 1461 PushValueAndType(LP.getClause(I), InstID, Vals, VE); 1462 } 1463 break; 1464 } 1465 1466 case Instruction::Alloca: { 1467 Code = bitc::FUNC_CODE_INST_ALLOCA; 1468 Vals.push_back(VE.getTypeID(I.getType())); 1469 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); 1470 Vals.push_back(VE.getValueID(I.getOperand(0))); // size. 1471 const AllocaInst &AI = cast<AllocaInst>(I); 1472 unsigned AlignRecord = Log2_32(AI.getAlignment()) + 1; 1473 assert(Log2_32(Value::MaximumAlignment) + 1 < 1 << 5 && 1474 "not enough bits for maximum alignment"); 1475 assert(AlignRecord < 1 << 5 && "alignment greater than 1 << 64"); 1476 AlignRecord |= AI.isUsedWithInAlloca() << 5; 1477 Vals.push_back(AlignRecord); 1478 break; 1479 } 1480 1481 case Instruction::Load: 1482 if (cast<LoadInst>(I).isAtomic()) { 1483 Code = bitc::FUNC_CODE_INST_LOADATOMIC; 1484 PushValueAndType(I.getOperand(0), InstID, Vals, VE); 1485 } else { 1486 Code = bitc::FUNC_CODE_INST_LOAD; 1487 if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE)) // ptr 1488 AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; 1489 } 1490 Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1); 1491 Vals.push_back(cast<LoadInst>(I).isVolatile()); 1492 if (cast<LoadInst>(I).isAtomic()) { 1493 Vals.push_back(GetEncodedOrdering(cast<LoadInst>(I).getOrdering())); 1494 Vals.push_back(GetEncodedSynchScope(cast<LoadInst>(I).getSynchScope())); 1495 } 1496 break; 1497 case Instruction::Store: 1498 if (cast<StoreInst>(I).isAtomic()) 1499 Code = bitc::FUNC_CODE_INST_STOREATOMIC; 1500 else 1501 Code = bitc::FUNC_CODE_INST_STORE; 1502 PushValueAndType(I.getOperand(1), InstID, Vals, VE); // ptrty + ptr 1503 pushValue(I.getOperand(0), InstID, Vals, VE); // val. 1504 Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1); 1505 Vals.push_back(cast<StoreInst>(I).isVolatile()); 1506 if (cast<StoreInst>(I).isAtomic()) { 1507 Vals.push_back(GetEncodedOrdering(cast<StoreInst>(I).getOrdering())); 1508 Vals.push_back(GetEncodedSynchScope(cast<StoreInst>(I).getSynchScope())); 1509 } 1510 break; 1511 case Instruction::AtomicCmpXchg: 1512 Code = bitc::FUNC_CODE_INST_CMPXCHG; 1513 PushValueAndType(I.getOperand(0), InstID, Vals, VE); // ptrty + ptr 1514 pushValue(I.getOperand(1), InstID, Vals, VE); // cmp. 1515 pushValue(I.getOperand(2), InstID, Vals, VE); // newval. 1516 Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile()); 1517 Vals.push_back(GetEncodedOrdering( 1518 cast<AtomicCmpXchgInst>(I).getSuccessOrdering())); 1519 Vals.push_back(GetEncodedSynchScope( 1520 cast<AtomicCmpXchgInst>(I).getSynchScope())); 1521 Vals.push_back(GetEncodedOrdering( 1522 cast<AtomicCmpXchgInst>(I).getFailureOrdering())); 1523 Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak()); 1524 break; 1525 case Instruction::AtomicRMW: 1526 Code = bitc::FUNC_CODE_INST_ATOMICRMW; 1527 PushValueAndType(I.getOperand(0), InstID, Vals, VE); // ptrty + ptr 1528 pushValue(I.getOperand(1), InstID, Vals, VE); // val. 1529 Vals.push_back(GetEncodedRMWOperation( 1530 cast<AtomicRMWInst>(I).getOperation())); 1531 Vals.push_back(cast<AtomicRMWInst>(I).isVolatile()); 1532 Vals.push_back(GetEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering())); 1533 Vals.push_back(GetEncodedSynchScope( 1534 cast<AtomicRMWInst>(I).getSynchScope())); 1535 break; 1536 case Instruction::Fence: 1537 Code = bitc::FUNC_CODE_INST_FENCE; 1538 Vals.push_back(GetEncodedOrdering(cast<FenceInst>(I).getOrdering())); 1539 Vals.push_back(GetEncodedSynchScope(cast<FenceInst>(I).getSynchScope())); 1540 break; 1541 case Instruction::Call: { 1542 const CallInst &CI = cast<CallInst>(I); 1543 PointerType *PTy = cast<PointerType>(CI.getCalledValue()->getType()); 1544 FunctionType *FTy = cast<FunctionType>(PTy->getElementType()); 1545 1546 Code = bitc::FUNC_CODE_INST_CALL; 1547 1548 Vals.push_back(VE.getAttributeID(CI.getAttributes())); 1549 Vals.push_back((CI.getCallingConv() << 1) | unsigned(CI.isTailCall()) | 1550 unsigned(CI.isMustTailCall()) << 14); 1551 PushValueAndType(CI.getCalledValue(), InstID, Vals, VE); // Callee 1552 1553 // Emit value #'s for the fixed parameters. 1554 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) { 1555 // Check for labels (can happen with asm labels). 1556 if (FTy->getParamType(i)->isLabelTy()) 1557 Vals.push_back(VE.getValueID(CI.getArgOperand(i))); 1558 else 1559 pushValue(CI.getArgOperand(i), InstID, Vals, VE); // fixed param. 1560 } 1561 1562 // Emit type/value pairs for varargs params. 1563 if (FTy->isVarArg()) { 1564 for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands(); 1565 i != e; ++i) 1566 PushValueAndType(CI.getArgOperand(i), InstID, Vals, VE); // varargs 1567 } 1568 break; 1569 } 1570 case Instruction::VAArg: 1571 Code = bitc::FUNC_CODE_INST_VAARG; 1572 Vals.push_back(VE.getTypeID(I.getOperand(0)->getType())); // valistty 1573 pushValue(I.getOperand(0), InstID, Vals, VE); // valist. 1574 Vals.push_back(VE.getTypeID(I.getType())); // restype. 1575 break; 1576 } 1577 1578 Stream.EmitRecord(Code, Vals, AbbrevToUse); 1579 Vals.clear(); 1580 } 1581 1582 // Emit names for globals/functions etc. 1583 static void WriteValueSymbolTable(const ValueSymbolTable &VST, 1584 const ValueEnumerator &VE, 1585 BitstreamWriter &Stream) { 1586 if (VST.empty()) return; 1587 Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4); 1588 1589 // FIXME: Set up the abbrev, we know how many values there are! 1590 // FIXME: We know if the type names can use 7-bit ascii. 1591 SmallVector<unsigned, 64> NameVals; 1592 1593 for (ValueSymbolTable::const_iterator SI = VST.begin(), SE = VST.end(); 1594 SI != SE; ++SI) { 1595 1596 const ValueName &Name = *SI; 1597 1598 // Figure out the encoding to use for the name. 1599 bool is7Bit = true; 1600 bool isChar6 = true; 1601 for (const char *C = Name.getKeyData(), *E = C+Name.getKeyLength(); 1602 C != E; ++C) { 1603 if (isChar6) 1604 isChar6 = BitCodeAbbrevOp::isChar6(*C); 1605 if ((unsigned char)*C & 128) { 1606 is7Bit = false; 1607 break; // don't bother scanning the rest. 1608 } 1609 } 1610 1611 unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; 1612 1613 // VST_ENTRY: [valueid, namechar x N] 1614 // VST_BBENTRY: [bbid, namechar x N] 1615 unsigned Code; 1616 if (isa<BasicBlock>(SI->getValue())) { 1617 Code = bitc::VST_CODE_BBENTRY; 1618 if (isChar6) 1619 AbbrevToUse = VST_BBENTRY_6_ABBREV; 1620 } else { 1621 Code = bitc::VST_CODE_ENTRY; 1622 if (isChar6) 1623 AbbrevToUse = VST_ENTRY_6_ABBREV; 1624 else if (is7Bit) 1625 AbbrevToUse = VST_ENTRY_7_ABBREV; 1626 } 1627 1628 NameVals.push_back(VE.getValueID(SI->getValue())); 1629 for (const char *P = Name.getKeyData(), 1630 *E = Name.getKeyData()+Name.getKeyLength(); P != E; ++P) 1631 NameVals.push_back((unsigned char)*P); 1632 1633 // Emit the finished record. 1634 Stream.EmitRecord(Code, NameVals, AbbrevToUse); 1635 NameVals.clear(); 1636 } 1637 Stream.ExitBlock(); 1638 } 1639 1640 static void WriteUseList(ValueEnumerator &VE, UseListOrder &&Order, 1641 BitstreamWriter &Stream) { 1642 assert(Order.Shuffle.size() >= 2 && "Shuffle too small"); 1643 unsigned Code; 1644 if (isa<BasicBlock>(Order.V)) 1645 Code = bitc::USELIST_CODE_BB; 1646 else 1647 Code = bitc::USELIST_CODE_DEFAULT; 1648 1649 SmallVector<uint64_t, 64> Record; 1650 for (unsigned I : Order.Shuffle) 1651 Record.push_back(I); 1652 Record.push_back(VE.getValueID(Order.V)); 1653 Stream.EmitRecord(Code, Record); 1654 } 1655 1656 static void WriteUseListBlock(const Function *F, ValueEnumerator &VE, 1657 BitstreamWriter &Stream) { 1658 auto hasMore = [&]() { 1659 return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F; 1660 }; 1661 if (!hasMore()) 1662 // Nothing to do. 1663 return; 1664 1665 Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3); 1666 while (hasMore()) { 1667 WriteUseList(VE, std::move(VE.UseListOrders.back()), Stream); 1668 VE.UseListOrders.pop_back(); 1669 } 1670 Stream.ExitBlock(); 1671 } 1672 1673 /// WriteFunction - Emit a function body to the module stream. 1674 static void WriteFunction(const Function &F, ValueEnumerator &VE, 1675 BitstreamWriter &Stream) { 1676 Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4); 1677 VE.incorporateFunction(F); 1678 1679 SmallVector<unsigned, 64> Vals; 1680 1681 // Emit the number of basic blocks, so the reader can create them ahead of 1682 // time. 1683 Vals.push_back(VE.getBasicBlocks().size()); 1684 Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals); 1685 Vals.clear(); 1686 1687 // If there are function-local constants, emit them now. 1688 unsigned CstStart, CstEnd; 1689 VE.getFunctionConstantRange(CstStart, CstEnd); 1690 WriteConstants(CstStart, CstEnd, VE, Stream, false); 1691 1692 // If there is function-local metadata, emit it now. 1693 WriteFunctionLocalMetadata(F, VE, Stream); 1694 1695 // Keep a running idea of what the instruction ID is. 1696 unsigned InstID = CstEnd; 1697 1698 bool NeedsMetadataAttachment = false; 1699 1700 DebugLoc LastDL; 1701 1702 // Finally, emit all the instructions, in order. 1703 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 1704 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); 1705 I != E; ++I) { 1706 WriteInstruction(*I, InstID, VE, Stream, Vals); 1707 1708 if (!I->getType()->isVoidTy()) 1709 ++InstID; 1710 1711 // If the instruction has metadata, write a metadata attachment later. 1712 NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc(); 1713 1714 // If the instruction has a debug location, emit it. 1715 DebugLoc DL = I->getDebugLoc(); 1716 if (DL.isUnknown()) { 1717 // nothing todo. 1718 } else if (DL == LastDL) { 1719 // Just repeat the same debug loc as last time. 1720 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals); 1721 } else { 1722 MDNode *Scope, *IA; 1723 DL.getScopeAndInlinedAt(Scope, IA, I->getContext()); 1724 assert(Scope && "Expected valid scope"); 1725 1726 Vals.push_back(DL.getLine()); 1727 Vals.push_back(DL.getCol()); 1728 Vals.push_back(Scope ? VE.getMetadataID(Scope) + 1 : 0); 1729 Vals.push_back(IA ? VE.getMetadataID(IA) + 1 : 0); 1730 Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals); 1731 Vals.clear(); 1732 1733 LastDL = DL; 1734 } 1735 } 1736 1737 // Emit names for all the instructions etc. 1738 WriteValueSymbolTable(F.getValueSymbolTable(), VE, Stream); 1739 1740 if (NeedsMetadataAttachment) 1741 WriteMetadataAttachment(F, VE, Stream); 1742 if (shouldPreserveBitcodeUseListOrder()) 1743 WriteUseListBlock(&F, VE, Stream); 1744 VE.purgeFunction(); 1745 Stream.ExitBlock(); 1746 } 1747 1748 // Emit blockinfo, which defines the standard abbreviations etc. 1749 static void WriteBlockInfo(const ValueEnumerator &VE, BitstreamWriter &Stream) { 1750 // We only want to emit block info records for blocks that have multiple 1751 // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. 1752 // Other blocks can define their abbrevs inline. 1753 Stream.EnterBlockInfoBlock(2); 1754 1755 { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings. 1756 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1757 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); 1758 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1759 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1760 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); 1761 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1762 Abbv) != VST_ENTRY_8_ABBREV) 1763 llvm_unreachable("Unexpected abbrev ordering!"); 1764 } 1765 1766 { // 7-bit fixed width VST_ENTRY strings. 1767 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1768 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 1769 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1770 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1771 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); 1772 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1773 Abbv) != VST_ENTRY_7_ABBREV) 1774 llvm_unreachable("Unexpected abbrev ordering!"); 1775 } 1776 { // 6-bit char6 VST_ENTRY strings. 1777 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1778 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); 1779 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1780 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1781 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 1782 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1783 Abbv) != VST_ENTRY_6_ABBREV) 1784 llvm_unreachable("Unexpected abbrev ordering!"); 1785 } 1786 { // 6-bit char6 VST_BBENTRY strings. 1787 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1788 Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); 1789 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1790 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); 1791 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); 1792 if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID, 1793 Abbv) != VST_BBENTRY_6_ABBREV) 1794 llvm_unreachable("Unexpected abbrev ordering!"); 1795 } 1796 1797 1798 1799 { // SETTYPE abbrev for CONSTANTS_BLOCK. 1800 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1801 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); 1802 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1803 Log2_32_Ceil(VE.getTypes().size()+1))); 1804 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1805 Abbv) != CONSTANTS_SETTYPE_ABBREV) 1806 llvm_unreachable("Unexpected abbrev ordering!"); 1807 } 1808 1809 { // INTEGER abbrev for CONSTANTS_BLOCK. 1810 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1811 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); 1812 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); 1813 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1814 Abbv) != CONSTANTS_INTEGER_ABBREV) 1815 llvm_unreachable("Unexpected abbrev ordering!"); 1816 } 1817 1818 { // CE_CAST abbrev for CONSTANTS_BLOCK. 1819 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1820 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); 1821 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc 1822 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid 1823 Log2_32_Ceil(VE.getTypes().size()+1))); 1824 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id 1825 1826 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1827 Abbv) != CONSTANTS_CE_CAST_Abbrev) 1828 llvm_unreachable("Unexpected abbrev ordering!"); 1829 } 1830 { // NULL abbrev for CONSTANTS_BLOCK. 1831 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1832 Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL)); 1833 if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, 1834 Abbv) != CONSTANTS_NULL_Abbrev) 1835 llvm_unreachable("Unexpected abbrev ordering!"); 1836 } 1837 1838 // FIXME: This should only use space for first class types! 1839 1840 { // INST_LOAD abbrev for FUNCTION_BLOCK. 1841 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1842 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); 1843 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr 1844 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align 1845 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile 1846 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1847 Abbv) != FUNCTION_INST_LOAD_ABBREV) 1848 llvm_unreachable("Unexpected abbrev ordering!"); 1849 } 1850 { // INST_BINOP abbrev for FUNCTION_BLOCK. 1851 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1852 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 1853 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 1854 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 1855 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 1856 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1857 Abbv) != FUNCTION_INST_BINOP_ABBREV) 1858 llvm_unreachable("Unexpected abbrev ordering!"); 1859 } 1860 { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK. 1861 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1862 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); 1863 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS 1864 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS 1865 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 1866 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags 1867 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1868 Abbv) != FUNCTION_INST_BINOP_FLAGS_ABBREV) 1869 llvm_unreachable("Unexpected abbrev ordering!"); 1870 } 1871 { // INST_CAST abbrev for FUNCTION_BLOCK. 1872 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1873 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); 1874 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal 1875 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty 1876 Log2_32_Ceil(VE.getTypes().size()+1))); 1877 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc 1878 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1879 Abbv) != FUNCTION_INST_CAST_ABBREV) 1880 llvm_unreachable("Unexpected abbrev ordering!"); 1881 } 1882 1883 { // INST_RET abbrev for FUNCTION_BLOCK. 1884 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1885 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 1886 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1887 Abbv) != FUNCTION_INST_RET_VOID_ABBREV) 1888 llvm_unreachable("Unexpected abbrev ordering!"); 1889 } 1890 { // INST_RET abbrev for FUNCTION_BLOCK. 1891 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1892 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); 1893 Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID 1894 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1895 Abbv) != FUNCTION_INST_RET_VAL_ABBREV) 1896 llvm_unreachable("Unexpected abbrev ordering!"); 1897 } 1898 { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. 1899 BitCodeAbbrev *Abbv = new BitCodeAbbrev(); 1900 Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); 1901 if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, 1902 Abbv) != FUNCTION_INST_UNREACHABLE_ABBREV) 1903 llvm_unreachable("Unexpected abbrev ordering!"); 1904 } 1905 1906 Stream.ExitBlock(); 1907 } 1908 1909 /// WriteModule - Emit the specified module to the bitstream. 1910 static void WriteModule(const Module *M, BitstreamWriter &Stream) { 1911 Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3); 1912 1913 SmallVector<unsigned, 1> Vals; 1914 unsigned CurVersion = 1; 1915 Vals.push_back(CurVersion); 1916 Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals); 1917 1918 // Analyze the module, enumerating globals, functions, etc. 1919 ValueEnumerator VE(*M); 1920 1921 // Emit blockinfo, which defines the standard abbreviations etc. 1922 WriteBlockInfo(VE, Stream); 1923 1924 // Emit information about attribute groups. 1925 WriteAttributeGroupTable(VE, Stream); 1926 1927 // Emit information about parameter attributes. 1928 WriteAttributeTable(VE, Stream); 1929 1930 // Emit information describing all of the types in the module. 1931 WriteTypeTable(VE, Stream); 1932 1933 writeComdats(VE, Stream); 1934 1935 // Emit top-level description of module, including target triple, inline asm, 1936 // descriptors for global variables, and function prototype info. 1937 WriteModuleInfo(M, VE, Stream); 1938 1939 // Emit constants. 1940 WriteModuleConstants(VE, Stream); 1941 1942 // Emit metadata. 1943 WriteModuleMetadata(M, VE, Stream); 1944 1945 // Emit metadata. 1946 WriteModuleMetadataStore(M, Stream); 1947 1948 // Emit names for globals/functions etc. 1949 WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream); 1950 1951 // Emit module-level use-lists. 1952 if (shouldPreserveBitcodeUseListOrder()) 1953 WriteUseListBlock(nullptr, VE, Stream); 1954 1955 // Emit function bodies. 1956 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) 1957 if (!F->isDeclaration()) 1958 WriteFunction(*F, VE, Stream); 1959 1960 Stream.ExitBlock(); 1961 } 1962 1963 /// EmitDarwinBCHeader - If generating a bc file on darwin, we have to emit a 1964 /// header and trailer to make it compatible with the system archiver. To do 1965 /// this we emit the following header, and then emit a trailer that pads the 1966 /// file out to be a multiple of 16 bytes. 1967 /// 1968 /// struct bc_header { 1969 /// uint32_t Magic; // 0x0B17C0DE 1970 /// uint32_t Version; // Version, currently always 0. 1971 /// uint32_t BitcodeOffset; // Offset to traditional bitcode file. 1972 /// uint32_t BitcodeSize; // Size of traditional bitcode file. 1973 /// uint32_t CPUType; // CPU specifier. 1974 /// ... potentially more later ... 1975 /// }; 1976 enum { 1977 DarwinBCSizeFieldOffset = 3*4, // Offset to bitcode_size. 1978 DarwinBCHeaderSize = 5*4 1979 }; 1980 1981 static void WriteInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer, 1982 uint32_t &Position) { 1983 Buffer[Position + 0] = (unsigned char) (Value >> 0); 1984 Buffer[Position + 1] = (unsigned char) (Value >> 8); 1985 Buffer[Position + 2] = (unsigned char) (Value >> 16); 1986 Buffer[Position + 3] = (unsigned char) (Value >> 24); 1987 Position += 4; 1988 } 1989 1990 static void EmitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer, 1991 const Triple &TT) { 1992 unsigned CPUType = ~0U; 1993 1994 // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*, 1995 // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic 1996 // number from /usr/include/mach/machine.h. It is ok to reproduce the 1997 // specific constants here because they are implicitly part of the Darwin ABI. 1998 enum { 1999 DARWIN_CPU_ARCH_ABI64 = 0x01000000, 2000 DARWIN_CPU_TYPE_X86 = 7, 2001 DARWIN_CPU_TYPE_ARM = 12, 2002 DARWIN_CPU_TYPE_POWERPC = 18 2003 }; 2004 2005 Triple::ArchType Arch = TT.getArch(); 2006 if (Arch == Triple::x86_64) 2007 CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64; 2008 else if (Arch == Triple::x86) 2009 CPUType = DARWIN_CPU_TYPE_X86; 2010 else if (Arch == Triple::ppc) 2011 CPUType = DARWIN_CPU_TYPE_POWERPC; 2012 else if (Arch == Triple::ppc64) 2013 CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64; 2014 else if (Arch == Triple::arm || Arch == Triple::thumb) 2015 CPUType = DARWIN_CPU_TYPE_ARM; 2016 2017 // Traditional Bitcode starts after header. 2018 assert(Buffer.size() >= DarwinBCHeaderSize && 2019 "Expected header size to be reserved"); 2020 unsigned BCOffset = DarwinBCHeaderSize; 2021 unsigned BCSize = Buffer.size()-DarwinBCHeaderSize; 2022 2023 // Write the magic and version. 2024 unsigned Position = 0; 2025 WriteInt32ToBuffer(0x0B17C0DE , Buffer, Position); 2026 WriteInt32ToBuffer(0 , Buffer, Position); // Version. 2027 WriteInt32ToBuffer(BCOffset , Buffer, Position); 2028 WriteInt32ToBuffer(BCSize , Buffer, Position); 2029 WriteInt32ToBuffer(CPUType , Buffer, Position); 2030 2031 // If the file is not a multiple of 16 bytes, insert dummy padding. 2032 while (Buffer.size() & 15) 2033 Buffer.push_back(0); 2034 } 2035 2036 /// WriteBitcodeToFile - Write the specified module to the specified output 2037 /// stream. 2038 void llvm::WriteBitcodeToFile(const Module *M, raw_ostream &Out) { 2039 SmallVector<char, 0> Buffer; 2040 Buffer.reserve(256*1024); 2041 2042 // If this is darwin or another generic macho target, reserve space for the 2043 // header. 2044 Triple TT(M->getTargetTriple()); 2045 if (TT.isOSDarwin()) 2046 Buffer.insert(Buffer.begin(), DarwinBCHeaderSize, 0); 2047 2048 // Emit the module into the buffer. 2049 { 2050 BitstreamWriter Stream(Buffer); 2051 2052 // Emit the file header. 2053 Stream.Emit((unsigned)'B', 8); 2054 Stream.Emit((unsigned)'C', 8); 2055 Stream.Emit(0x0, 4); 2056 Stream.Emit(0xC, 4); 2057 Stream.Emit(0xE, 4); 2058 Stream.Emit(0xD, 4); 2059 2060 // Emit the module. 2061 WriteModule(M, Stream); 2062 } 2063 2064 if (TT.isOSDarwin()) 2065 EmitDarwinBCHeaderAndTrailer(Buffer, TT); 2066 2067 // Write the generated bitstream to "Out". 2068 Out.write((char*)&Buffer.front(), Buffer.size()); 2069 } 2070