1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "llvm/ADT/APFloat.h" 11 #include "llvm/ADT/APInt.h" 12 #include "llvm/ADT/ArrayRef.h" 13 #include "llvm/ADT/DenseMap.h" 14 #include "llvm/ADT/None.h" 15 #include "llvm/ADT/STLExtras.h" 16 #include "llvm/ADT/SmallString.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/ADT/StringRef.h" 19 #include "llvm/ADT/Triple.h" 20 #include "llvm/ADT/Twine.h" 21 #include "llvm/Bitcode/BitstreamReader.h" 22 #include "llvm/Bitcode/LLVMBitCodes.h" 23 #include "llvm/Bitcode/ReaderWriter.h" 24 #include "llvm/IR/Argument.h" 25 #include "llvm/IR/Attributes.h" 26 #include "llvm/IR/AutoUpgrade.h" 27 #include "llvm/IR/BasicBlock.h" 28 #include "llvm/IR/CallingConv.h" 29 #include "llvm/IR/CallSite.h" 30 #include "llvm/IR/Comdat.h" 31 #include "llvm/IR/Constant.h" 32 #include "llvm/IR/Constants.h" 33 #include "llvm/IR/DebugInfo.h" 34 #include "llvm/IR/DebugInfoMetadata.h" 35 #include "llvm/IR/DebugLoc.h" 36 #include "llvm/IR/DerivedTypes.h" 37 #include "llvm/IR/DiagnosticInfo.h" 38 #include "llvm/IR/DiagnosticPrinter.h" 39 #include "llvm/IR/Function.h" 40 #include "llvm/IR/GlobalAlias.h" 41 #include "llvm/IR/GlobalIFunc.h" 42 #include "llvm/IR/GlobalIndirectSymbol.h" 43 #include "llvm/IR/GlobalObject.h" 44 #include "llvm/IR/GlobalValue.h" 45 #include "llvm/IR/GlobalVariable.h" 46 #include "llvm/IR/GVMaterializer.h" 47 #include "llvm/IR/InlineAsm.h" 48 #include "llvm/IR/InstrTypes.h" 49 #include "llvm/IR/Instruction.h" 50 #include "llvm/IR/Instructions.h" 51 #include "llvm/IR/Intrinsics.h" 52 #include "llvm/IR/LLVMContext.h" 53 #include "llvm/IR/Module.h" 54 #include "llvm/IR/ModuleSummaryIndex.h" 55 #include "llvm/IR/OperandTraits.h" 56 #include "llvm/IR/Operator.h" 57 #include "llvm/IR/TrackingMDRef.h" 58 #include "llvm/IR/Type.h" 59 #include "llvm/IR/ValueHandle.h" 60 #include "llvm/Support/AtomicOrdering.h" 61 #include "llvm/Support/Casting.h" 62 #include "llvm/Support/CommandLine.h" 63 #include "llvm/Support/Compiler.h" 64 #include "llvm/Support/Debug.h" 65 #include "llvm/Support/ErrorHandling.h" 66 #include "llvm/Support/ErrorOr.h" 67 #include "llvm/Support/ManagedStatic.h" 68 #include "llvm/Support/MemoryBuffer.h" 69 #include "llvm/Support/raw_ostream.h" 70 #include <algorithm> 71 #include <cassert> 72 #include <cstddef> 73 #include <cstdint> 74 #include <deque> 75 #include <limits> 76 #include <map> 77 #include <memory> 78 #include <string> 79 #include <system_error> 80 #include <tuple> 81 #include <utility> 82 #include <vector> 83 84 using namespace llvm; 85 86 static cl::opt<bool> PrintSummaryGUIDs( 87 "print-summary-global-ids", cl::init(false), cl::Hidden, 88 cl::desc( 89 "Print the global id for each value when reading the module summary")); 90 91 namespace { 92 93 enum { 94 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 95 }; 96 97 class BitcodeReaderValueList { 98 std::vector<WeakVH> ValuePtrs; 99 100 /// As we resolve forward-referenced constants, we add information about them 101 /// to this vector. This allows us to resolve them in bulk instead of 102 /// resolving each reference at a time. See the code in 103 /// ResolveConstantForwardRefs for more information about this. 104 /// 105 /// The key of this vector is the placeholder constant, the value is the slot 106 /// number that holds the resolved value. 107 typedef std::vector<std::pair<Constant*, unsigned> > ResolveConstantsTy; 108 ResolveConstantsTy ResolveConstants; 109 LLVMContext &Context; 110 111 public: 112 BitcodeReaderValueList(LLVMContext &C) : Context(C) {} 113 ~BitcodeReaderValueList() { 114 assert(ResolveConstants.empty() && "Constants not resolved?"); 115 } 116 117 // vector compatibility methods 118 unsigned size() const { return ValuePtrs.size(); } 119 void resize(unsigned N) { ValuePtrs.resize(N); } 120 void push_back(Value *V) { ValuePtrs.emplace_back(V); } 121 122 void clear() { 123 assert(ResolveConstants.empty() && "Constants not resolved?"); 124 ValuePtrs.clear(); 125 } 126 127 Value *operator[](unsigned i) const { 128 assert(i < ValuePtrs.size()); 129 return ValuePtrs[i]; 130 } 131 132 Value *back() const { return ValuePtrs.back(); } 133 void pop_back() { ValuePtrs.pop_back(); } 134 bool empty() const { return ValuePtrs.empty(); } 135 136 void shrinkTo(unsigned N) { 137 assert(N <= size() && "Invalid shrinkTo request!"); 138 ValuePtrs.resize(N); 139 } 140 141 Constant *getConstantFwdRef(unsigned Idx, Type *Ty); 142 Value *getValueFwdRef(unsigned Idx, Type *Ty); 143 144 void assignValue(Value *V, unsigned Idx); 145 146 /// Once all constants are read, this method bulk resolves any forward 147 /// references. 148 void resolveConstantForwardRefs(); 149 }; 150 151 class BitcodeReaderMetadataList { 152 unsigned NumFwdRefs; 153 bool AnyFwdRefs; 154 unsigned MinFwdRef; 155 unsigned MaxFwdRef; 156 157 /// Array of metadata references. 158 /// 159 /// Don't use std::vector here. Some versions of libc++ copy (instead of 160 /// move) on resize, and TrackingMDRef is very expensive to copy. 161 SmallVector<TrackingMDRef, 1> MetadataPtrs; 162 163 /// Structures for resolving old type refs. 164 struct { 165 SmallDenseMap<MDString *, TempMDTuple, 1> Unknown; 166 SmallDenseMap<MDString *, DICompositeType *, 1> Final; 167 SmallDenseMap<MDString *, DICompositeType *, 1> FwdDecls; 168 SmallVector<std::pair<TrackingMDRef, TempMDTuple>, 1> Arrays; 169 } OldTypeRefs; 170 171 LLVMContext &Context; 172 173 public: 174 BitcodeReaderMetadataList(LLVMContext &C) 175 : NumFwdRefs(0), AnyFwdRefs(false), Context(C) {} 176 177 // vector compatibility methods 178 unsigned size() const { return MetadataPtrs.size(); } 179 void resize(unsigned N) { MetadataPtrs.resize(N); } 180 void push_back(Metadata *MD) { MetadataPtrs.emplace_back(MD); } 181 void clear() { MetadataPtrs.clear(); } 182 Metadata *back() const { return MetadataPtrs.back(); } 183 void pop_back() { MetadataPtrs.pop_back(); } 184 bool empty() const { return MetadataPtrs.empty(); } 185 186 Metadata *operator[](unsigned i) const { 187 assert(i < MetadataPtrs.size()); 188 return MetadataPtrs[i]; 189 } 190 191 Metadata *lookup(unsigned I) const { 192 if (I < MetadataPtrs.size()) 193 return MetadataPtrs[I]; 194 return nullptr; 195 } 196 197 void shrinkTo(unsigned N) { 198 assert(N <= size() && "Invalid shrinkTo request!"); 199 assert(!AnyFwdRefs && "Unexpected forward refs"); 200 MetadataPtrs.resize(N); 201 } 202 203 /// Return the given metadata, creating a replaceable forward reference if 204 /// necessary. 205 Metadata *getMetadataFwdRef(unsigned Idx); 206 207 /// Return the the given metadata only if it is fully resolved. 208 /// 209 /// Gives the same result as \a lookup(), unless \a MDNode::isResolved() 210 /// would give \c false. 211 Metadata *getMetadataIfResolved(unsigned Idx); 212 213 MDNode *getMDNodeFwdRefOrNull(unsigned Idx); 214 void assignValue(Metadata *MD, unsigned Idx); 215 void tryToResolveCycles(); 216 bool hasFwdRefs() const { return AnyFwdRefs; } 217 218 /// Upgrade a type that had an MDString reference. 219 void addTypeRef(MDString &UUID, DICompositeType &CT); 220 221 /// Upgrade a type that had an MDString reference. 222 Metadata *upgradeTypeRef(Metadata *MaybeUUID); 223 224 /// Upgrade a type ref array that may have MDString references. 225 Metadata *upgradeTypeRefArray(Metadata *MaybeTuple); 226 227 private: 228 Metadata *resolveTypeRefArray(Metadata *MaybeTuple); 229 }; 230 231 class BitcodeReaderBase { 232 protected: 233 BitcodeReaderBase(MemoryBuffer *Buffer) : Buffer(Buffer) {} 234 235 std::unique_ptr<MemoryBuffer> Buffer; 236 std::unique_ptr<BitstreamReader> StreamFile; 237 BitstreamCursor Stream; 238 239 std::error_code initStream(); 240 241 virtual std::error_code error(const Twine &Message) = 0; 242 virtual ~BitcodeReaderBase() = default; 243 }; 244 245 std::error_code BitcodeReaderBase::initStream() { 246 const unsigned char *BufPtr = (const unsigned char*)Buffer->getBufferStart(); 247 const unsigned char *BufEnd = BufPtr+Buffer->getBufferSize(); 248 249 if (Buffer->getBufferSize() & 3) 250 return error("Invalid bitcode signature"); 251 252 // If we have a wrapper header, parse it and ignore the non-bc file contents. 253 // The magic number is 0x0B17C0DE stored in little endian. 254 if (isBitcodeWrapper(BufPtr, BufEnd)) 255 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 256 return error("Invalid bitcode wrapper header"); 257 258 StreamFile.reset(new BitstreamReader(ArrayRef<uint8_t>(BufPtr, BufEnd))); 259 Stream.init(&*StreamFile); 260 261 return std::error_code(); 262 } 263 264 class BitcodeReader : public BitcodeReaderBase, public GVMaterializer { 265 LLVMContext &Context; 266 Module *TheModule = nullptr; 267 // Next offset to start scanning for lazy parsing of function bodies. 268 uint64_t NextUnreadBit = 0; 269 // Last function offset found in the VST. 270 uint64_t LastFunctionBlockBit = 0; 271 bool SeenValueSymbolTable = false; 272 uint64_t VSTOffset = 0; 273 // Contains an arbitrary and optional string identifying the bitcode producer 274 std::string ProducerIdentification; 275 276 std::vector<Type*> TypeList; 277 BitcodeReaderValueList ValueList; 278 BitcodeReaderMetadataList MetadataList; 279 std::vector<Comdat *> ComdatList; 280 SmallVector<Instruction *, 64> InstructionList; 281 282 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInits; 283 std::vector<std::pair<GlobalIndirectSymbol*, unsigned> > IndirectSymbolInits; 284 std::vector<std::pair<Function*, unsigned> > FunctionPrefixes; 285 std::vector<std::pair<Function*, unsigned> > FunctionPrologues; 286 std::vector<std::pair<Function*, unsigned> > FunctionPersonalityFns; 287 288 bool HasSeenOldLoopTags = false; 289 290 /// The set of attributes by index. Index zero in the file is for null, and 291 /// is thus not represented here. As such all indices are off by one. 292 std::vector<AttributeSet> MAttributes; 293 294 /// The set of attribute groups. 295 std::map<unsigned, AttributeSet> MAttributeGroups; 296 297 /// While parsing a function body, this is a list of the basic blocks for the 298 /// function. 299 std::vector<BasicBlock*> FunctionBBs; 300 301 // When reading the module header, this list is populated with functions that 302 // have bodies later in the file. 303 std::vector<Function*> FunctionsWithBodies; 304 305 // When intrinsic functions are encountered which require upgrading they are 306 // stored here with their replacement function. 307 typedef DenseMap<Function*, Function*> UpdatedIntrinsicMap; 308 UpdatedIntrinsicMap UpgradedIntrinsics; 309 // Intrinsics which were remangled because of types rename 310 UpdatedIntrinsicMap RemangledIntrinsics; 311 312 // Map the bitcode's custom MDKind ID to the Module's MDKind ID. 313 DenseMap<unsigned, unsigned> MDKindMap; 314 315 // Several operations happen after the module header has been read, but 316 // before function bodies are processed. This keeps track of whether 317 // we've done this yet. 318 bool SeenFirstFunctionBody = false; 319 320 /// When function bodies are initially scanned, this map contains info about 321 /// where to find deferred function body in the stream. 322 DenseMap<Function*, uint64_t> DeferredFunctionInfo; 323 324 /// When Metadata block is initially scanned when parsing the module, we may 325 /// choose to defer parsing of the metadata. This vector contains info about 326 /// which Metadata blocks are deferred. 327 std::vector<uint64_t> DeferredMetadataInfo; 328 329 /// These are basic blocks forward-referenced by block addresses. They are 330 /// inserted lazily into functions when they're loaded. The basic block ID is 331 /// its index into the vector. 332 DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs; 333 std::deque<Function *> BasicBlockFwdRefQueue; 334 335 /// Indicates that we are using a new encoding for instruction operands where 336 /// most operands in the current FUNCTION_BLOCK are encoded relative to the 337 /// instruction number, for a more compact encoding. Some instruction 338 /// operands are not relative to the instruction ID: basic block numbers, and 339 /// types. Once the old style function blocks have been phased out, we would 340 /// not need this flag. 341 bool UseRelativeIDs = false; 342 343 /// True if all functions will be materialized, negating the need to process 344 /// (e.g.) blockaddress forward references. 345 bool WillMaterializeAllForwardRefs = false; 346 347 /// True if any Metadata block has been materialized. 348 bool IsMetadataMaterialized = false; 349 350 bool StripDebugInfo = false; 351 352 /// Functions that need to be matched with subprograms when upgrading old 353 /// metadata. 354 SmallDenseMap<Function *, DISubprogram *, 16> FunctionsWithSPs; 355 356 std::vector<std::string> BundleTags; 357 358 public: 359 std::error_code error(BitcodeError E, const Twine &Message); 360 std::error_code error(const Twine &Message) override; 361 362 BitcodeReader(MemoryBuffer *Buffer, LLVMContext &Context); 363 ~BitcodeReader() override { freeState(); } 364 365 std::error_code materializeForwardReferencedFunctions(); 366 367 void freeState(); 368 369 void releaseBuffer(); 370 371 std::error_code materialize(GlobalValue *GV) override; 372 std::error_code materializeModule() override; 373 std::vector<StructType *> getIdentifiedStructTypes() const override; 374 375 /// \brief Main interface to parsing a bitcode buffer. 376 /// \returns true if an error occurred. 377 std::error_code parseBitcodeInto(Module *M, 378 bool ShouldLazyLoadMetadata = false); 379 380 /// \brief Cheap mechanism to just extract module triple 381 /// \returns true if an error occurred. 382 ErrorOr<std::string> parseTriple(); 383 384 /// Cheap mechanism to just extract the identification block out of bitcode. 385 ErrorOr<std::string> parseIdentificationBlock(); 386 387 /// Peak at the module content and return true if any ObjC category or class 388 /// is found. 389 ErrorOr<bool> hasObjCCategory(); 390 391 static uint64_t decodeSignRotatedValue(uint64_t V); 392 393 /// Materialize any deferred Metadata block. 394 std::error_code materializeMetadata() override; 395 396 void setStripDebugInfo() override; 397 398 private: 399 /// Parse the "IDENTIFICATION_BLOCK_ID" block, populate the 400 // ProducerIdentification data member, and do some basic enforcement on the 401 // "epoch" encoded in the bitcode. 402 std::error_code parseBitcodeVersion(); 403 404 std::vector<StructType *> IdentifiedStructTypes; 405 StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name); 406 StructType *createIdentifiedStructType(LLVMContext &Context); 407 408 Type *getTypeByID(unsigned ID); 409 410 Value *getFnValueByID(unsigned ID, Type *Ty) { 411 if (Ty && Ty->isMetadataTy()) 412 return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID)); 413 return ValueList.getValueFwdRef(ID, Ty); 414 } 415 416 Metadata *getFnMetadataByID(unsigned ID) { 417 return MetadataList.getMetadataFwdRef(ID); 418 } 419 420 BasicBlock *getBasicBlock(unsigned ID) const { 421 if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID 422 return FunctionBBs[ID]; 423 } 424 425 AttributeSet getAttributes(unsigned i) const { 426 if (i-1 < MAttributes.size()) 427 return MAttributes[i-1]; 428 return AttributeSet(); 429 } 430 431 /// Read a value/type pair out of the specified record from slot 'Slot'. 432 /// Increment Slot past the number of slots used in the record. Return true on 433 /// failure. 434 bool getValueTypePair(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 435 unsigned InstNum, Value *&ResVal) { 436 if (Slot == Record.size()) return true; 437 unsigned ValNo = (unsigned)Record[Slot++]; 438 // Adjust the ValNo, if it was encoded relative to the InstNum. 439 if (UseRelativeIDs) 440 ValNo = InstNum - ValNo; 441 if (ValNo < InstNum) { 442 // If this is not a forward reference, just return the value we already 443 // have. 444 ResVal = getFnValueByID(ValNo, nullptr); 445 return ResVal == nullptr; 446 } 447 if (Slot == Record.size()) 448 return true; 449 450 unsigned TypeNo = (unsigned)Record[Slot++]; 451 ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo)); 452 return ResVal == nullptr; 453 } 454 455 /// Read a value out of the specified record from slot 'Slot'. Increment Slot 456 /// past the number of slots used by the value in the record. Return true if 457 /// there is an error. 458 bool popValue(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 459 unsigned InstNum, Type *Ty, Value *&ResVal) { 460 if (getValue(Record, Slot, InstNum, Ty, ResVal)) 461 return true; 462 // All values currently take a single record slot. 463 ++Slot; 464 return false; 465 } 466 467 /// Like popValue, but does not increment the Slot number. 468 bool getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 469 unsigned InstNum, Type *Ty, Value *&ResVal) { 470 ResVal = getValue(Record, Slot, InstNum, Ty); 471 return ResVal == nullptr; 472 } 473 474 /// Version of getValue that returns ResVal directly, or 0 if there is an 475 /// error. 476 Value *getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 477 unsigned InstNum, Type *Ty) { 478 if (Slot == Record.size()) return nullptr; 479 unsigned ValNo = (unsigned)Record[Slot]; 480 // Adjust the ValNo, if it was encoded relative to the InstNum. 481 if (UseRelativeIDs) 482 ValNo = InstNum - ValNo; 483 return getFnValueByID(ValNo, Ty); 484 } 485 486 /// Like getValue, but decodes signed VBRs. 487 Value *getValueSigned(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 488 unsigned InstNum, Type *Ty) { 489 if (Slot == Record.size()) return nullptr; 490 unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]); 491 // Adjust the ValNo, if it was encoded relative to the InstNum. 492 if (UseRelativeIDs) 493 ValNo = InstNum - ValNo; 494 return getFnValueByID(ValNo, Ty); 495 } 496 497 /// Converts alignment exponent (i.e. power of two (or zero)) to the 498 /// corresponding alignment to use. If alignment is too large, returns 499 /// a corresponding error code. 500 std::error_code parseAlignmentValue(uint64_t Exponent, unsigned &Alignment); 501 std::error_code parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind); 502 std::error_code parseModule(uint64_t ResumeBit, 503 bool ShouldLazyLoadMetadata = false); 504 std::error_code parseAttributeBlock(); 505 std::error_code parseAttributeGroupBlock(); 506 std::error_code parseTypeTable(); 507 std::error_code parseTypeTableBody(); 508 std::error_code parseOperandBundleTags(); 509 510 ErrorOr<Value *> recordValue(SmallVectorImpl<uint64_t> &Record, 511 unsigned NameIndex, Triple &TT); 512 std::error_code parseValueSymbolTable(uint64_t Offset = 0); 513 std::error_code parseConstants(); 514 std::error_code rememberAndSkipFunctionBodies(); 515 std::error_code rememberAndSkipFunctionBody(); 516 /// Save the positions of the Metadata blocks and skip parsing the blocks. 517 std::error_code rememberAndSkipMetadata(); 518 std::error_code parseFunctionBody(Function *F); 519 std::error_code globalCleanup(); 520 std::error_code resolveGlobalAndIndirectSymbolInits(); 521 std::error_code parseMetadata(bool ModuleLevel = false); 522 std::error_code parseMetadataStrings(ArrayRef<uint64_t> Record, 523 StringRef Blob, 524 unsigned &NextMetadataNo); 525 std::error_code parseMetadataKinds(); 526 std::error_code parseMetadataKindRecord(SmallVectorImpl<uint64_t> &Record); 527 std::error_code 528 parseGlobalObjectAttachment(GlobalObject &GO, 529 ArrayRef<uint64_t> Record); 530 std::error_code parseMetadataAttachment(Function &F); 531 ErrorOr<std::string> parseModuleTriple(); 532 ErrorOr<bool> hasObjCCategoryInModule(); 533 std::error_code parseUseLists(); 534 std::error_code findFunctionInStream( 535 Function *F, 536 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator); 537 }; 538 539 /// Class to manage reading and parsing function summary index bitcode 540 /// files/sections. 541 class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase { 542 DiagnosticHandlerFunction DiagnosticHandler; 543 544 /// Eventually points to the module index built during parsing. 545 ModuleSummaryIndex *TheIndex = nullptr; 546 547 /// Used to indicate whether caller only wants to check for the presence 548 /// of the global value summary bitcode section. All blocks are skipped, 549 /// but the SeenGlobalValSummary boolean is set. 550 bool CheckGlobalValSummaryPresenceOnly = false; 551 552 /// Indicates whether we have encountered a global value summary section 553 /// yet during parsing, used when checking if file contains global value 554 /// summary section. 555 bool SeenGlobalValSummary = false; 556 557 /// Indicates whether we have already parsed the VST, used for error checking. 558 bool SeenValueSymbolTable = false; 559 560 /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record. 561 /// Used to enable on-demand parsing of the VST. 562 uint64_t VSTOffset = 0; 563 564 // Map to save ValueId to GUID association that was recorded in the 565 // ValueSymbolTable. It is used after the VST is parsed to convert 566 // call graph edges read from the function summary from referencing 567 // callees by their ValueId to using the GUID instead, which is how 568 // they are recorded in the summary index being built. 569 // We save a second GUID which is the same as the first one, but ignoring the 570 // linkage, i.e. for value other than local linkage they are identical. 571 DenseMap<unsigned, std::pair<GlobalValue::GUID, GlobalValue::GUID>> 572 ValueIdToCallGraphGUIDMap; 573 574 /// Map populated during module path string table parsing, from the 575 /// module ID to a string reference owned by the index's module 576 /// path string table, used to correlate with combined index 577 /// summary records. 578 DenseMap<uint64_t, StringRef> ModuleIdMap; 579 580 /// Original source file name recorded in a bitcode record. 581 std::string SourceFileName; 582 583 public: 584 std::error_code error(const Twine &Message); 585 586 ModuleSummaryIndexBitcodeReader( 587 MemoryBuffer *Buffer, DiagnosticHandlerFunction DiagnosticHandler, 588 bool CheckGlobalValSummaryPresenceOnly = false); 589 ~ModuleSummaryIndexBitcodeReader() { freeState(); } 590 591 void freeState(); 592 593 void releaseBuffer(); 594 595 /// Check if the parser has encountered a summary section. 596 bool foundGlobalValSummary() { return SeenGlobalValSummary; } 597 598 /// \brief Main interface to parsing a bitcode buffer. 599 /// \returns true if an error occurred. 600 std::error_code parseSummaryIndexInto(ModuleSummaryIndex *I); 601 602 private: 603 std::error_code parseModule(); 604 std::error_code parseValueSymbolTable( 605 uint64_t Offset, 606 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap); 607 std::error_code parseEntireSummary(); 608 std::error_code parseModuleStringTable(); 609 std::pair<GlobalValue::GUID, GlobalValue::GUID> 610 611 getGUIDFromValueId(unsigned ValueId); 612 std::pair<GlobalValue::GUID, CalleeInfo::HotnessType> 613 readCallGraphEdge(const SmallVector<uint64_t, 64> &Record, unsigned int &I, 614 bool IsOldProfileFormat, bool HasProfile); 615 }; 616 617 } // end anonymous namespace 618 619 BitcodeDiagnosticInfo::BitcodeDiagnosticInfo(std::error_code EC, 620 DiagnosticSeverity Severity, 621 const Twine &Msg) 622 : DiagnosticInfo(DK_Bitcode, Severity), Msg(Msg), EC(EC) {} 623 624 void BitcodeDiagnosticInfo::print(DiagnosticPrinter &DP) const { DP << Msg; } 625 626 static std::error_code error(const DiagnosticHandlerFunction &DiagnosticHandler, 627 std::error_code EC, const Twine &Message) { 628 BitcodeDiagnosticInfo DI(EC, DS_Error, Message); 629 DiagnosticHandler(DI); 630 return EC; 631 } 632 633 static std::error_code error(LLVMContext &Context, std::error_code EC, 634 const Twine &Message) { 635 return error([&](const DiagnosticInfo &DI) { Context.diagnose(DI); }, EC, 636 Message); 637 } 638 639 static std::error_code error(LLVMContext &Context, const Twine &Message) { 640 return error(Context, make_error_code(BitcodeError::CorruptedBitcode), 641 Message); 642 } 643 644 std::error_code BitcodeReader::error(BitcodeError E, const Twine &Message) { 645 if (!ProducerIdentification.empty()) { 646 return ::error(Context, make_error_code(E), 647 Message + " (Producer: '" + ProducerIdentification + 648 "' Reader: 'LLVM " + LLVM_VERSION_STRING "')"); 649 } 650 return ::error(Context, make_error_code(E), Message); 651 } 652 653 std::error_code BitcodeReader::error(const Twine &Message) { 654 if (!ProducerIdentification.empty()) { 655 return ::error(Context, make_error_code(BitcodeError::CorruptedBitcode), 656 Message + " (Producer: '" + ProducerIdentification + 657 "' Reader: 'LLVM " + LLVM_VERSION_STRING "')"); 658 } 659 return ::error(Context, make_error_code(BitcodeError::CorruptedBitcode), 660 Message); 661 } 662 663 BitcodeReader::BitcodeReader(MemoryBuffer *Buffer, LLVMContext &Context) 664 : BitcodeReaderBase(Buffer), Context(Context), ValueList(Context), 665 MetadataList(Context) {} 666 667 std::error_code BitcodeReader::materializeForwardReferencedFunctions() { 668 if (WillMaterializeAllForwardRefs) 669 return std::error_code(); 670 671 // Prevent recursion. 672 WillMaterializeAllForwardRefs = true; 673 674 while (!BasicBlockFwdRefQueue.empty()) { 675 Function *F = BasicBlockFwdRefQueue.front(); 676 BasicBlockFwdRefQueue.pop_front(); 677 assert(F && "Expected valid function"); 678 if (!BasicBlockFwdRefs.count(F)) 679 // Already materialized. 680 continue; 681 682 // Check for a function that isn't materializable to prevent an infinite 683 // loop. When parsing a blockaddress stored in a global variable, there 684 // isn't a trivial way to check if a function will have a body without a 685 // linear search through FunctionsWithBodies, so just check it here. 686 if (!F->isMaterializable()) 687 return error("Never resolved function from blockaddress"); 688 689 // Try to materialize F. 690 if (std::error_code EC = materialize(F)) 691 return EC; 692 } 693 assert(BasicBlockFwdRefs.empty() && "Function missing from queue"); 694 695 // Reset state. 696 WillMaterializeAllForwardRefs = false; 697 return std::error_code(); 698 } 699 700 void BitcodeReader::freeState() { 701 Buffer = nullptr; 702 std::vector<Type*>().swap(TypeList); 703 ValueList.clear(); 704 MetadataList.clear(); 705 std::vector<Comdat *>().swap(ComdatList); 706 707 std::vector<AttributeSet>().swap(MAttributes); 708 std::vector<BasicBlock*>().swap(FunctionBBs); 709 std::vector<Function*>().swap(FunctionsWithBodies); 710 DeferredFunctionInfo.clear(); 711 DeferredMetadataInfo.clear(); 712 MDKindMap.clear(); 713 714 assert(BasicBlockFwdRefs.empty() && "Unresolved blockaddress fwd references"); 715 BasicBlockFwdRefQueue.clear(); 716 } 717 718 //===----------------------------------------------------------------------===// 719 // Helper functions to implement forward reference resolution, etc. 720 //===----------------------------------------------------------------------===// 721 722 /// Convert a string from a record into an std::string, return true on failure. 723 template <typename StrTy> 724 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx, 725 StrTy &Result) { 726 if (Idx > Record.size()) 727 return true; 728 729 for (unsigned i = Idx, e = Record.size(); i != e; ++i) 730 Result += (char)Record[i]; 731 return false; 732 } 733 734 static bool hasImplicitComdat(size_t Val) { 735 switch (Val) { 736 default: 737 return false; 738 case 1: // Old WeakAnyLinkage 739 case 4: // Old LinkOnceAnyLinkage 740 case 10: // Old WeakODRLinkage 741 case 11: // Old LinkOnceODRLinkage 742 return true; 743 } 744 } 745 746 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) { 747 switch (Val) { 748 default: // Map unknown/new linkages to external 749 case 0: 750 return GlobalValue::ExternalLinkage; 751 case 2: 752 return GlobalValue::AppendingLinkage; 753 case 3: 754 return GlobalValue::InternalLinkage; 755 case 5: 756 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage 757 case 6: 758 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage 759 case 7: 760 return GlobalValue::ExternalWeakLinkage; 761 case 8: 762 return GlobalValue::CommonLinkage; 763 case 9: 764 return GlobalValue::PrivateLinkage; 765 case 12: 766 return GlobalValue::AvailableExternallyLinkage; 767 case 13: 768 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage 769 case 14: 770 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage 771 case 15: 772 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage 773 case 1: // Old value with implicit comdat. 774 case 16: 775 return GlobalValue::WeakAnyLinkage; 776 case 10: // Old value with implicit comdat. 777 case 17: 778 return GlobalValue::WeakODRLinkage; 779 case 4: // Old value with implicit comdat. 780 case 18: 781 return GlobalValue::LinkOnceAnyLinkage; 782 case 11: // Old value with implicit comdat. 783 case 19: 784 return GlobalValue::LinkOnceODRLinkage; 785 } 786 } 787 788 /// Decode the flags for GlobalValue in the summary. 789 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags, 790 uint64_t Version) { 791 // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage 792 // like getDecodedLinkage() above. Any future change to the linkage enum and 793 // to getDecodedLinkage() will need to be taken into account here as above. 794 auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits 795 RawFlags = RawFlags >> 4; 796 bool NoRename = RawFlags & 0x1; 797 bool IsNotViableToInline = RawFlags & 0x2; 798 return GlobalValueSummary::GVFlags(Linkage, NoRename, IsNotViableToInline); 799 } 800 801 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) { 802 switch (Val) { 803 default: // Map unknown visibilities to default. 804 case 0: return GlobalValue::DefaultVisibility; 805 case 1: return GlobalValue::HiddenVisibility; 806 case 2: return GlobalValue::ProtectedVisibility; 807 } 808 } 809 810 static GlobalValue::DLLStorageClassTypes 811 getDecodedDLLStorageClass(unsigned Val) { 812 switch (Val) { 813 default: // Map unknown values to default. 814 case 0: return GlobalValue::DefaultStorageClass; 815 case 1: return GlobalValue::DLLImportStorageClass; 816 case 2: return GlobalValue::DLLExportStorageClass; 817 } 818 } 819 820 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) { 821 switch (Val) { 822 case 0: return GlobalVariable::NotThreadLocal; 823 default: // Map unknown non-zero value to general dynamic. 824 case 1: return GlobalVariable::GeneralDynamicTLSModel; 825 case 2: return GlobalVariable::LocalDynamicTLSModel; 826 case 3: return GlobalVariable::InitialExecTLSModel; 827 case 4: return GlobalVariable::LocalExecTLSModel; 828 } 829 } 830 831 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) { 832 switch (Val) { 833 default: // Map unknown to UnnamedAddr::None. 834 case 0: return GlobalVariable::UnnamedAddr::None; 835 case 1: return GlobalVariable::UnnamedAddr::Global; 836 case 2: return GlobalVariable::UnnamedAddr::Local; 837 } 838 } 839 840 static int getDecodedCastOpcode(unsigned Val) { 841 switch (Val) { 842 default: return -1; 843 case bitc::CAST_TRUNC : return Instruction::Trunc; 844 case bitc::CAST_ZEXT : return Instruction::ZExt; 845 case bitc::CAST_SEXT : return Instruction::SExt; 846 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 847 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 848 case bitc::CAST_UITOFP : return Instruction::UIToFP; 849 case bitc::CAST_SITOFP : return Instruction::SIToFP; 850 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 851 case bitc::CAST_FPEXT : return Instruction::FPExt; 852 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 853 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 854 case bitc::CAST_BITCAST : return Instruction::BitCast; 855 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast; 856 } 857 } 858 859 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) { 860 bool IsFP = Ty->isFPOrFPVectorTy(); 861 // BinOps are only valid for int/fp or vector of int/fp types 862 if (!IsFP && !Ty->isIntOrIntVectorTy()) 863 return -1; 864 865 switch (Val) { 866 default: 867 return -1; 868 case bitc::BINOP_ADD: 869 return IsFP ? Instruction::FAdd : Instruction::Add; 870 case bitc::BINOP_SUB: 871 return IsFP ? Instruction::FSub : Instruction::Sub; 872 case bitc::BINOP_MUL: 873 return IsFP ? Instruction::FMul : Instruction::Mul; 874 case bitc::BINOP_UDIV: 875 return IsFP ? -1 : Instruction::UDiv; 876 case bitc::BINOP_SDIV: 877 return IsFP ? Instruction::FDiv : Instruction::SDiv; 878 case bitc::BINOP_UREM: 879 return IsFP ? -1 : Instruction::URem; 880 case bitc::BINOP_SREM: 881 return IsFP ? Instruction::FRem : Instruction::SRem; 882 case bitc::BINOP_SHL: 883 return IsFP ? -1 : Instruction::Shl; 884 case bitc::BINOP_LSHR: 885 return IsFP ? -1 : Instruction::LShr; 886 case bitc::BINOP_ASHR: 887 return IsFP ? -1 : Instruction::AShr; 888 case bitc::BINOP_AND: 889 return IsFP ? -1 : Instruction::And; 890 case bitc::BINOP_OR: 891 return IsFP ? -1 : Instruction::Or; 892 case bitc::BINOP_XOR: 893 return IsFP ? -1 : Instruction::Xor; 894 } 895 } 896 897 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) { 898 switch (Val) { 899 default: return AtomicRMWInst::BAD_BINOP; 900 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 901 case bitc::RMW_ADD: return AtomicRMWInst::Add; 902 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 903 case bitc::RMW_AND: return AtomicRMWInst::And; 904 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 905 case bitc::RMW_OR: return AtomicRMWInst::Or; 906 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 907 case bitc::RMW_MAX: return AtomicRMWInst::Max; 908 case bitc::RMW_MIN: return AtomicRMWInst::Min; 909 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 910 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 911 } 912 } 913 914 static AtomicOrdering getDecodedOrdering(unsigned Val) { 915 switch (Val) { 916 case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic; 917 case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered; 918 case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic; 919 case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire; 920 case bitc::ORDERING_RELEASE: return AtomicOrdering::Release; 921 case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease; 922 default: // Map unknown orderings to sequentially-consistent. 923 case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent; 924 } 925 } 926 927 static SynchronizationScope getDecodedSynchScope(unsigned Val) { 928 switch (Val) { 929 case bitc::SYNCHSCOPE_SINGLETHREAD: return SingleThread; 930 default: // Map unknown scopes to cross-thread. 931 case bitc::SYNCHSCOPE_CROSSTHREAD: return CrossThread; 932 } 933 } 934 935 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) { 936 switch (Val) { 937 default: // Map unknown selection kinds to any. 938 case bitc::COMDAT_SELECTION_KIND_ANY: 939 return Comdat::Any; 940 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH: 941 return Comdat::ExactMatch; 942 case bitc::COMDAT_SELECTION_KIND_LARGEST: 943 return Comdat::Largest; 944 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES: 945 return Comdat::NoDuplicates; 946 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE: 947 return Comdat::SameSize; 948 } 949 } 950 951 static FastMathFlags getDecodedFastMathFlags(unsigned Val) { 952 FastMathFlags FMF; 953 if (0 != (Val & FastMathFlags::UnsafeAlgebra)) 954 FMF.setUnsafeAlgebra(); 955 if (0 != (Val & FastMathFlags::NoNaNs)) 956 FMF.setNoNaNs(); 957 if (0 != (Val & FastMathFlags::NoInfs)) 958 FMF.setNoInfs(); 959 if (0 != (Val & FastMathFlags::NoSignedZeros)) 960 FMF.setNoSignedZeros(); 961 if (0 != (Val & FastMathFlags::AllowReciprocal)) 962 FMF.setAllowReciprocal(); 963 return FMF; 964 } 965 966 static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) { 967 switch (Val) { 968 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break; 969 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break; 970 } 971 } 972 973 namespace llvm { 974 namespace { 975 976 /// \brief A class for maintaining the slot number definition 977 /// as a placeholder for the actual definition for forward constants defs. 978 class ConstantPlaceHolder : public ConstantExpr { 979 void operator=(const ConstantPlaceHolder &) = delete; 980 981 public: 982 // allocate space for exactly one operand 983 void *operator new(size_t s) { return User::operator new(s, 1); } 984 explicit ConstantPlaceHolder(Type *Ty, LLVMContext &Context) 985 : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) { 986 Op<0>() = UndefValue::get(Type::getInt32Ty(Context)); 987 } 988 989 /// \brief Methods to support type inquiry through isa, cast, and dyn_cast. 990 static bool classof(const Value *V) { 991 return isa<ConstantExpr>(V) && 992 cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1; 993 } 994 995 /// Provide fast operand accessors 996 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); 997 }; 998 999 } // end anonymous namespace 1000 1001 // FIXME: can we inherit this from ConstantExpr? 1002 template <> 1003 struct OperandTraits<ConstantPlaceHolder> : 1004 public FixedNumOperandTraits<ConstantPlaceHolder, 1> { 1005 }; 1006 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantPlaceHolder, Value) 1007 1008 } // end namespace llvm 1009 1010 void BitcodeReaderValueList::assignValue(Value *V, unsigned Idx) { 1011 if (Idx == size()) { 1012 push_back(V); 1013 return; 1014 } 1015 1016 if (Idx >= size()) 1017 resize(Idx+1); 1018 1019 WeakVH &OldV = ValuePtrs[Idx]; 1020 if (!OldV) { 1021 OldV = V; 1022 return; 1023 } 1024 1025 // Handle constants and non-constants (e.g. instrs) differently for 1026 // efficiency. 1027 if (Constant *PHC = dyn_cast<Constant>(&*OldV)) { 1028 ResolveConstants.push_back(std::make_pair(PHC, Idx)); 1029 OldV = V; 1030 } else { 1031 // If there was a forward reference to this value, replace it. 1032 Value *PrevVal = OldV; 1033 OldV->replaceAllUsesWith(V); 1034 delete PrevVal; 1035 } 1036 } 1037 1038 Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx, 1039 Type *Ty) { 1040 if (Idx >= size()) 1041 resize(Idx + 1); 1042 1043 if (Value *V = ValuePtrs[Idx]) { 1044 if (Ty != V->getType()) 1045 report_fatal_error("Type mismatch in constant table!"); 1046 return cast<Constant>(V); 1047 } 1048 1049 // Create and return a placeholder, which will later be RAUW'd. 1050 Constant *C = new ConstantPlaceHolder(Ty, Context); 1051 ValuePtrs[Idx] = C; 1052 return C; 1053 } 1054 1055 Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, Type *Ty) { 1056 // Bail out for a clearly invalid value. This would make us call resize(0) 1057 if (Idx == std::numeric_limits<unsigned>::max()) 1058 return nullptr; 1059 1060 if (Idx >= size()) 1061 resize(Idx + 1); 1062 1063 if (Value *V = ValuePtrs[Idx]) { 1064 // If the types don't match, it's invalid. 1065 if (Ty && Ty != V->getType()) 1066 return nullptr; 1067 return V; 1068 } 1069 1070 // No type specified, must be invalid reference. 1071 if (!Ty) return nullptr; 1072 1073 // Create and return a placeholder, which will later be RAUW'd. 1074 Value *V = new Argument(Ty); 1075 ValuePtrs[Idx] = V; 1076 return V; 1077 } 1078 1079 /// Once all constants are read, this method bulk resolves any forward 1080 /// references. The idea behind this is that we sometimes get constants (such 1081 /// as large arrays) which reference *many* forward ref constants. Replacing 1082 /// each of these causes a lot of thrashing when building/reuniquing the 1083 /// constant. Instead of doing this, we look at all the uses and rewrite all 1084 /// the place holders at once for any constant that uses a placeholder. 1085 void BitcodeReaderValueList::resolveConstantForwardRefs() { 1086 // Sort the values by-pointer so that they are efficient to look up with a 1087 // binary search. 1088 std::sort(ResolveConstants.begin(), ResolveConstants.end()); 1089 1090 SmallVector<Constant*, 64> NewOps; 1091 1092 while (!ResolveConstants.empty()) { 1093 Value *RealVal = operator[](ResolveConstants.back().second); 1094 Constant *Placeholder = ResolveConstants.back().first; 1095 ResolveConstants.pop_back(); 1096 1097 // Loop over all users of the placeholder, updating them to reference the 1098 // new value. If they reference more than one placeholder, update them all 1099 // at once. 1100 while (!Placeholder->use_empty()) { 1101 auto UI = Placeholder->user_begin(); 1102 User *U = *UI; 1103 1104 // If the using object isn't uniqued, just update the operands. This 1105 // handles instructions and initializers for global variables. 1106 if (!isa<Constant>(U) || isa<GlobalValue>(U)) { 1107 UI.getUse().set(RealVal); 1108 continue; 1109 } 1110 1111 // Otherwise, we have a constant that uses the placeholder. Replace that 1112 // constant with a new constant that has *all* placeholder uses updated. 1113 Constant *UserC = cast<Constant>(U); 1114 for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end(); 1115 I != E; ++I) { 1116 Value *NewOp; 1117 if (!isa<ConstantPlaceHolder>(*I)) { 1118 // Not a placeholder reference. 1119 NewOp = *I; 1120 } else if (*I == Placeholder) { 1121 // Common case is that it just references this one placeholder. 1122 NewOp = RealVal; 1123 } else { 1124 // Otherwise, look up the placeholder in ResolveConstants. 1125 ResolveConstantsTy::iterator It = 1126 std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(), 1127 std::pair<Constant*, unsigned>(cast<Constant>(*I), 1128 0)); 1129 assert(It != ResolveConstants.end() && It->first == *I); 1130 NewOp = operator[](It->second); 1131 } 1132 1133 NewOps.push_back(cast<Constant>(NewOp)); 1134 } 1135 1136 // Make the new constant. 1137 Constant *NewC; 1138 if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) { 1139 NewC = ConstantArray::get(UserCA->getType(), NewOps); 1140 } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) { 1141 NewC = ConstantStruct::get(UserCS->getType(), NewOps); 1142 } else if (isa<ConstantVector>(UserC)) { 1143 NewC = ConstantVector::get(NewOps); 1144 } else { 1145 assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr."); 1146 NewC = cast<ConstantExpr>(UserC)->getWithOperands(NewOps); 1147 } 1148 1149 UserC->replaceAllUsesWith(NewC); 1150 UserC->destroyConstant(); 1151 NewOps.clear(); 1152 } 1153 1154 // Update all ValueHandles, they should be the only users at this point. 1155 Placeholder->replaceAllUsesWith(RealVal); 1156 delete Placeholder; 1157 } 1158 } 1159 1160 void BitcodeReaderMetadataList::assignValue(Metadata *MD, unsigned Idx) { 1161 if (Idx == size()) { 1162 push_back(MD); 1163 return; 1164 } 1165 1166 if (Idx >= size()) 1167 resize(Idx+1); 1168 1169 TrackingMDRef &OldMD = MetadataPtrs[Idx]; 1170 if (!OldMD) { 1171 OldMD.reset(MD); 1172 return; 1173 } 1174 1175 // If there was a forward reference to this value, replace it. 1176 TempMDTuple PrevMD(cast<MDTuple>(OldMD.get())); 1177 PrevMD->replaceAllUsesWith(MD); 1178 --NumFwdRefs; 1179 } 1180 1181 Metadata *BitcodeReaderMetadataList::getMetadataFwdRef(unsigned Idx) { 1182 if (Idx >= size()) 1183 resize(Idx + 1); 1184 1185 if (Metadata *MD = MetadataPtrs[Idx]) 1186 return MD; 1187 1188 // Track forward refs to be resolved later. 1189 if (AnyFwdRefs) { 1190 MinFwdRef = std::min(MinFwdRef, Idx); 1191 MaxFwdRef = std::max(MaxFwdRef, Idx); 1192 } else { 1193 AnyFwdRefs = true; 1194 MinFwdRef = MaxFwdRef = Idx; 1195 } 1196 ++NumFwdRefs; 1197 1198 // Create and return a placeholder, which will later be RAUW'd. 1199 Metadata *MD = MDNode::getTemporary(Context, None).release(); 1200 MetadataPtrs[Idx].reset(MD); 1201 return MD; 1202 } 1203 1204 Metadata *BitcodeReaderMetadataList::getMetadataIfResolved(unsigned Idx) { 1205 Metadata *MD = lookup(Idx); 1206 if (auto *N = dyn_cast_or_null<MDNode>(MD)) 1207 if (!N->isResolved()) 1208 return nullptr; 1209 return MD; 1210 } 1211 1212 MDNode *BitcodeReaderMetadataList::getMDNodeFwdRefOrNull(unsigned Idx) { 1213 return dyn_cast_or_null<MDNode>(getMetadataFwdRef(Idx)); 1214 } 1215 1216 void BitcodeReaderMetadataList::tryToResolveCycles() { 1217 if (NumFwdRefs) 1218 // Still forward references... can't resolve cycles. 1219 return; 1220 1221 bool DidReplaceTypeRefs = false; 1222 1223 // Give up on finding a full definition for any forward decls that remain. 1224 for (const auto &Ref : OldTypeRefs.FwdDecls) 1225 OldTypeRefs.Final.insert(Ref); 1226 OldTypeRefs.FwdDecls.clear(); 1227 1228 // Upgrade from old type ref arrays. In strange cases, this could add to 1229 // OldTypeRefs.Unknown. 1230 for (const auto &Array : OldTypeRefs.Arrays) { 1231 DidReplaceTypeRefs = true; 1232 Array.second->replaceAllUsesWith(resolveTypeRefArray(Array.first.get())); 1233 } 1234 OldTypeRefs.Arrays.clear(); 1235 1236 // Replace old string-based type refs with the resolved node, if possible. 1237 // If we haven't seen the node, leave it to the verifier to complain about 1238 // the invalid string reference. 1239 for (const auto &Ref : OldTypeRefs.Unknown) { 1240 DidReplaceTypeRefs = true; 1241 if (DICompositeType *CT = OldTypeRefs.Final.lookup(Ref.first)) 1242 Ref.second->replaceAllUsesWith(CT); 1243 else 1244 Ref.second->replaceAllUsesWith(Ref.first); 1245 } 1246 OldTypeRefs.Unknown.clear(); 1247 1248 // Make sure all the upgraded types are resolved. 1249 if (DidReplaceTypeRefs) { 1250 AnyFwdRefs = true; 1251 MinFwdRef = 0; 1252 MaxFwdRef = MetadataPtrs.size() - 1; 1253 } 1254 1255 if (!AnyFwdRefs) 1256 // Nothing to do. 1257 return; 1258 1259 // Resolve any cycles. 1260 for (unsigned I = MinFwdRef, E = MaxFwdRef + 1; I != E; ++I) { 1261 auto &MD = MetadataPtrs[I]; 1262 auto *N = dyn_cast_or_null<MDNode>(MD); 1263 if (!N) 1264 continue; 1265 1266 assert(!N->isTemporary() && "Unexpected forward reference"); 1267 N->resolveCycles(); 1268 } 1269 1270 // Make sure we return early again until there's another forward ref. 1271 AnyFwdRefs = false; 1272 } 1273 1274 void BitcodeReaderMetadataList::addTypeRef(MDString &UUID, 1275 DICompositeType &CT) { 1276 assert(CT.getRawIdentifier() == &UUID && "Mismatched UUID"); 1277 if (CT.isForwardDecl()) 1278 OldTypeRefs.FwdDecls.insert(std::make_pair(&UUID, &CT)); 1279 else 1280 OldTypeRefs.Final.insert(std::make_pair(&UUID, &CT)); 1281 } 1282 1283 Metadata *BitcodeReaderMetadataList::upgradeTypeRef(Metadata *MaybeUUID) { 1284 auto *UUID = dyn_cast_or_null<MDString>(MaybeUUID); 1285 if (LLVM_LIKELY(!UUID)) 1286 return MaybeUUID; 1287 1288 if (auto *CT = OldTypeRefs.Final.lookup(UUID)) 1289 return CT; 1290 1291 auto &Ref = OldTypeRefs.Unknown[UUID]; 1292 if (!Ref) 1293 Ref = MDNode::getTemporary(Context, None); 1294 return Ref.get(); 1295 } 1296 1297 Metadata *BitcodeReaderMetadataList::upgradeTypeRefArray(Metadata *MaybeTuple) { 1298 auto *Tuple = dyn_cast_or_null<MDTuple>(MaybeTuple); 1299 if (!Tuple || Tuple->isDistinct()) 1300 return MaybeTuple; 1301 1302 // Look through the array immediately if possible. 1303 if (!Tuple->isTemporary()) 1304 return resolveTypeRefArray(Tuple); 1305 1306 // Create and return a placeholder to use for now. Eventually 1307 // resolveTypeRefArrays() will be resolve this forward reference. 1308 OldTypeRefs.Arrays.emplace_back( 1309 std::piecewise_construct, std::forward_as_tuple(Tuple), 1310 std::forward_as_tuple(MDTuple::getTemporary(Context, None))); 1311 return OldTypeRefs.Arrays.back().second.get(); 1312 } 1313 1314 Metadata *BitcodeReaderMetadataList::resolveTypeRefArray(Metadata *MaybeTuple) { 1315 auto *Tuple = dyn_cast_or_null<MDTuple>(MaybeTuple); 1316 if (!Tuple || Tuple->isDistinct()) 1317 return MaybeTuple; 1318 1319 // Look through the DITypeRefArray, upgrading each DITypeRef. 1320 SmallVector<Metadata *, 32> Ops; 1321 Ops.reserve(Tuple->getNumOperands()); 1322 for (Metadata *MD : Tuple->operands()) 1323 Ops.push_back(upgradeTypeRef(MD)); 1324 1325 return MDTuple::get(Context, Ops); 1326 } 1327 1328 Type *BitcodeReader::getTypeByID(unsigned ID) { 1329 // The type table size is always specified correctly. 1330 if (ID >= TypeList.size()) 1331 return nullptr; 1332 1333 if (Type *Ty = TypeList[ID]) 1334 return Ty; 1335 1336 // If we have a forward reference, the only possible case is when it is to a 1337 // named struct. Just create a placeholder for now. 1338 return TypeList[ID] = createIdentifiedStructType(Context); 1339 } 1340 1341 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context, 1342 StringRef Name) { 1343 auto *Ret = StructType::create(Context, Name); 1344 IdentifiedStructTypes.push_back(Ret); 1345 return Ret; 1346 } 1347 1348 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) { 1349 auto *Ret = StructType::create(Context); 1350 IdentifiedStructTypes.push_back(Ret); 1351 return Ret; 1352 } 1353 1354 //===----------------------------------------------------------------------===// 1355 // Functions for parsing blocks from the bitcode file 1356 //===----------------------------------------------------------------------===// 1357 1358 /// \brief This fills an AttrBuilder object with the LLVM attributes that have 1359 /// been decoded from the given integer. This function must stay in sync with 1360 /// 'encodeLLVMAttributesForBitcode'. 1361 static void decodeLLVMAttributesForBitcode(AttrBuilder &B, 1362 uint64_t EncodedAttrs) { 1363 // FIXME: Remove in 4.0. 1364 1365 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift 1366 // the bits above 31 down by 11 bits. 1367 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; 1368 assert((!Alignment || isPowerOf2_32(Alignment)) && 1369 "Alignment must be a power of two."); 1370 1371 if (Alignment) 1372 B.addAlignmentAttr(Alignment); 1373 B.addRawValue(((EncodedAttrs & (0xfffffULL << 32)) >> 11) | 1374 (EncodedAttrs & 0xffff)); 1375 } 1376 1377 std::error_code BitcodeReader::parseAttributeBlock() { 1378 if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 1379 return error("Invalid record"); 1380 1381 if (!MAttributes.empty()) 1382 return error("Invalid multiple blocks"); 1383 1384 SmallVector<uint64_t, 64> Record; 1385 1386 SmallVector<AttributeSet, 8> Attrs; 1387 1388 // Read all the records. 1389 while (true) { 1390 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1391 1392 switch (Entry.Kind) { 1393 case BitstreamEntry::SubBlock: // Handled for us already. 1394 case BitstreamEntry::Error: 1395 return error("Malformed block"); 1396 case BitstreamEntry::EndBlock: 1397 return std::error_code(); 1398 case BitstreamEntry::Record: 1399 // The interesting case. 1400 break; 1401 } 1402 1403 // Read a record. 1404 Record.clear(); 1405 switch (Stream.readRecord(Entry.ID, Record)) { 1406 default: // Default behavior: ignore. 1407 break; 1408 case bitc::PARAMATTR_CODE_ENTRY_OLD: { // ENTRY: [paramidx0, attr0, ...] 1409 // FIXME: Remove in 4.0. 1410 if (Record.size() & 1) 1411 return error("Invalid record"); 1412 1413 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1414 AttrBuilder B; 1415 decodeLLVMAttributesForBitcode(B, Record[i+1]); 1416 Attrs.push_back(AttributeSet::get(Context, Record[i], B)); 1417 } 1418 1419 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 1420 Attrs.clear(); 1421 break; 1422 } 1423 case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [attrgrp0, attrgrp1, ...] 1424 for (unsigned i = 0, e = Record.size(); i != e; ++i) 1425 Attrs.push_back(MAttributeGroups[Record[i]]); 1426 1427 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 1428 Attrs.clear(); 1429 break; 1430 } 1431 } 1432 } 1433 } 1434 1435 // Returns Attribute::None on unrecognized codes. 1436 static Attribute::AttrKind getAttrFromCode(uint64_t Code) { 1437 switch (Code) { 1438 default: 1439 return Attribute::None; 1440 case bitc::ATTR_KIND_ALIGNMENT: 1441 return Attribute::Alignment; 1442 case bitc::ATTR_KIND_ALWAYS_INLINE: 1443 return Attribute::AlwaysInline; 1444 case bitc::ATTR_KIND_ARGMEMONLY: 1445 return Attribute::ArgMemOnly; 1446 case bitc::ATTR_KIND_BUILTIN: 1447 return Attribute::Builtin; 1448 case bitc::ATTR_KIND_BY_VAL: 1449 return Attribute::ByVal; 1450 case bitc::ATTR_KIND_IN_ALLOCA: 1451 return Attribute::InAlloca; 1452 case bitc::ATTR_KIND_COLD: 1453 return Attribute::Cold; 1454 case bitc::ATTR_KIND_CONVERGENT: 1455 return Attribute::Convergent; 1456 case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY: 1457 return Attribute::InaccessibleMemOnly; 1458 case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY: 1459 return Attribute::InaccessibleMemOrArgMemOnly; 1460 case bitc::ATTR_KIND_INLINE_HINT: 1461 return Attribute::InlineHint; 1462 case bitc::ATTR_KIND_IN_REG: 1463 return Attribute::InReg; 1464 case bitc::ATTR_KIND_JUMP_TABLE: 1465 return Attribute::JumpTable; 1466 case bitc::ATTR_KIND_MIN_SIZE: 1467 return Attribute::MinSize; 1468 case bitc::ATTR_KIND_NAKED: 1469 return Attribute::Naked; 1470 case bitc::ATTR_KIND_NEST: 1471 return Attribute::Nest; 1472 case bitc::ATTR_KIND_NO_ALIAS: 1473 return Attribute::NoAlias; 1474 case bitc::ATTR_KIND_NO_BUILTIN: 1475 return Attribute::NoBuiltin; 1476 case bitc::ATTR_KIND_NO_CAPTURE: 1477 return Attribute::NoCapture; 1478 case bitc::ATTR_KIND_NO_DUPLICATE: 1479 return Attribute::NoDuplicate; 1480 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: 1481 return Attribute::NoImplicitFloat; 1482 case bitc::ATTR_KIND_NO_INLINE: 1483 return Attribute::NoInline; 1484 case bitc::ATTR_KIND_NO_RECURSE: 1485 return Attribute::NoRecurse; 1486 case bitc::ATTR_KIND_NON_LAZY_BIND: 1487 return Attribute::NonLazyBind; 1488 case bitc::ATTR_KIND_NON_NULL: 1489 return Attribute::NonNull; 1490 case bitc::ATTR_KIND_DEREFERENCEABLE: 1491 return Attribute::Dereferenceable; 1492 case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL: 1493 return Attribute::DereferenceableOrNull; 1494 case bitc::ATTR_KIND_ALLOC_SIZE: 1495 return Attribute::AllocSize; 1496 case bitc::ATTR_KIND_NO_RED_ZONE: 1497 return Attribute::NoRedZone; 1498 case bitc::ATTR_KIND_NO_RETURN: 1499 return Attribute::NoReturn; 1500 case bitc::ATTR_KIND_NO_UNWIND: 1501 return Attribute::NoUnwind; 1502 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: 1503 return Attribute::OptimizeForSize; 1504 case bitc::ATTR_KIND_OPTIMIZE_NONE: 1505 return Attribute::OptimizeNone; 1506 case bitc::ATTR_KIND_READ_NONE: 1507 return Attribute::ReadNone; 1508 case bitc::ATTR_KIND_READ_ONLY: 1509 return Attribute::ReadOnly; 1510 case bitc::ATTR_KIND_RETURNED: 1511 return Attribute::Returned; 1512 case bitc::ATTR_KIND_RETURNS_TWICE: 1513 return Attribute::ReturnsTwice; 1514 case bitc::ATTR_KIND_S_EXT: 1515 return Attribute::SExt; 1516 case bitc::ATTR_KIND_STACK_ALIGNMENT: 1517 return Attribute::StackAlignment; 1518 case bitc::ATTR_KIND_STACK_PROTECT: 1519 return Attribute::StackProtect; 1520 case bitc::ATTR_KIND_STACK_PROTECT_REQ: 1521 return Attribute::StackProtectReq; 1522 case bitc::ATTR_KIND_STACK_PROTECT_STRONG: 1523 return Attribute::StackProtectStrong; 1524 case bitc::ATTR_KIND_SAFESTACK: 1525 return Attribute::SafeStack; 1526 case bitc::ATTR_KIND_STRUCT_RET: 1527 return Attribute::StructRet; 1528 case bitc::ATTR_KIND_SANITIZE_ADDRESS: 1529 return Attribute::SanitizeAddress; 1530 case bitc::ATTR_KIND_SANITIZE_THREAD: 1531 return Attribute::SanitizeThread; 1532 case bitc::ATTR_KIND_SANITIZE_MEMORY: 1533 return Attribute::SanitizeMemory; 1534 case bitc::ATTR_KIND_SWIFT_ERROR: 1535 return Attribute::SwiftError; 1536 case bitc::ATTR_KIND_SWIFT_SELF: 1537 return Attribute::SwiftSelf; 1538 case bitc::ATTR_KIND_UW_TABLE: 1539 return Attribute::UWTable; 1540 case bitc::ATTR_KIND_WRITEONLY: 1541 return Attribute::WriteOnly; 1542 case bitc::ATTR_KIND_Z_EXT: 1543 return Attribute::ZExt; 1544 } 1545 } 1546 1547 std::error_code BitcodeReader::parseAlignmentValue(uint64_t Exponent, 1548 unsigned &Alignment) { 1549 // Note: Alignment in bitcode files is incremented by 1, so that zero 1550 // can be used for default alignment. 1551 if (Exponent > Value::MaxAlignmentExponent + 1) 1552 return error("Invalid alignment value"); 1553 Alignment = (1 << static_cast<unsigned>(Exponent)) >> 1; 1554 return std::error_code(); 1555 } 1556 1557 std::error_code BitcodeReader::parseAttrKind(uint64_t Code, 1558 Attribute::AttrKind *Kind) { 1559 *Kind = getAttrFromCode(Code); 1560 if (*Kind == Attribute::None) 1561 return error(BitcodeError::CorruptedBitcode, 1562 "Unknown attribute kind (" + Twine(Code) + ")"); 1563 return std::error_code(); 1564 } 1565 1566 std::error_code BitcodeReader::parseAttributeGroupBlock() { 1567 if (Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) 1568 return error("Invalid record"); 1569 1570 if (!MAttributeGroups.empty()) 1571 return error("Invalid multiple blocks"); 1572 1573 SmallVector<uint64_t, 64> Record; 1574 1575 // Read all the records. 1576 while (true) { 1577 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1578 1579 switch (Entry.Kind) { 1580 case BitstreamEntry::SubBlock: // Handled for us already. 1581 case BitstreamEntry::Error: 1582 return error("Malformed block"); 1583 case BitstreamEntry::EndBlock: 1584 return std::error_code(); 1585 case BitstreamEntry::Record: 1586 // The interesting case. 1587 break; 1588 } 1589 1590 // Read a record. 1591 Record.clear(); 1592 switch (Stream.readRecord(Entry.ID, Record)) { 1593 default: // Default behavior: ignore. 1594 break; 1595 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] 1596 if (Record.size() < 3) 1597 return error("Invalid record"); 1598 1599 uint64_t GrpID = Record[0]; 1600 uint64_t Idx = Record[1]; // Index of the object this attribute refers to. 1601 1602 AttrBuilder B; 1603 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1604 if (Record[i] == 0) { // Enum attribute 1605 Attribute::AttrKind Kind; 1606 if (std::error_code EC = parseAttrKind(Record[++i], &Kind)) 1607 return EC; 1608 1609 B.addAttribute(Kind); 1610 } else if (Record[i] == 1) { // Integer attribute 1611 Attribute::AttrKind Kind; 1612 if (std::error_code EC = parseAttrKind(Record[++i], &Kind)) 1613 return EC; 1614 if (Kind == Attribute::Alignment) 1615 B.addAlignmentAttr(Record[++i]); 1616 else if (Kind == Attribute::StackAlignment) 1617 B.addStackAlignmentAttr(Record[++i]); 1618 else if (Kind == Attribute::Dereferenceable) 1619 B.addDereferenceableAttr(Record[++i]); 1620 else if (Kind == Attribute::DereferenceableOrNull) 1621 B.addDereferenceableOrNullAttr(Record[++i]); 1622 else if (Kind == Attribute::AllocSize) 1623 B.addAllocSizeAttrFromRawRepr(Record[++i]); 1624 } else { // String attribute 1625 assert((Record[i] == 3 || Record[i] == 4) && 1626 "Invalid attribute group entry"); 1627 bool HasValue = (Record[i++] == 4); 1628 SmallString<64> KindStr; 1629 SmallString<64> ValStr; 1630 1631 while (Record[i] != 0 && i != e) 1632 KindStr += Record[i++]; 1633 assert(Record[i] == 0 && "Kind string not null terminated"); 1634 1635 if (HasValue) { 1636 // Has a value associated with it. 1637 ++i; // Skip the '0' that terminates the "kind" string. 1638 while (Record[i] != 0 && i != e) 1639 ValStr += Record[i++]; 1640 assert(Record[i] == 0 && "Value string not null terminated"); 1641 } 1642 1643 B.addAttribute(KindStr.str(), ValStr.str()); 1644 } 1645 } 1646 1647 MAttributeGroups[GrpID] = AttributeSet::get(Context, Idx, B); 1648 break; 1649 } 1650 } 1651 } 1652 } 1653 1654 std::error_code BitcodeReader::parseTypeTable() { 1655 if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 1656 return error("Invalid record"); 1657 1658 return parseTypeTableBody(); 1659 } 1660 1661 std::error_code BitcodeReader::parseTypeTableBody() { 1662 if (!TypeList.empty()) 1663 return error("Invalid multiple blocks"); 1664 1665 SmallVector<uint64_t, 64> Record; 1666 unsigned NumRecords = 0; 1667 1668 SmallString<64> TypeName; 1669 1670 // Read all the records for this type table. 1671 while (true) { 1672 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1673 1674 switch (Entry.Kind) { 1675 case BitstreamEntry::SubBlock: // Handled for us already. 1676 case BitstreamEntry::Error: 1677 return error("Malformed block"); 1678 case BitstreamEntry::EndBlock: 1679 if (NumRecords != TypeList.size()) 1680 return error("Malformed block"); 1681 return std::error_code(); 1682 case BitstreamEntry::Record: 1683 // The interesting case. 1684 break; 1685 } 1686 1687 // Read a record. 1688 Record.clear(); 1689 Type *ResultTy = nullptr; 1690 switch (Stream.readRecord(Entry.ID, Record)) { 1691 default: 1692 return error("Invalid value"); 1693 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 1694 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 1695 // type list. This allows us to reserve space. 1696 if (Record.size() < 1) 1697 return error("Invalid record"); 1698 TypeList.resize(Record[0]); 1699 continue; 1700 case bitc::TYPE_CODE_VOID: // VOID 1701 ResultTy = Type::getVoidTy(Context); 1702 break; 1703 case bitc::TYPE_CODE_HALF: // HALF 1704 ResultTy = Type::getHalfTy(Context); 1705 break; 1706 case bitc::TYPE_CODE_FLOAT: // FLOAT 1707 ResultTy = Type::getFloatTy(Context); 1708 break; 1709 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 1710 ResultTy = Type::getDoubleTy(Context); 1711 break; 1712 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 1713 ResultTy = Type::getX86_FP80Ty(Context); 1714 break; 1715 case bitc::TYPE_CODE_FP128: // FP128 1716 ResultTy = Type::getFP128Ty(Context); 1717 break; 1718 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 1719 ResultTy = Type::getPPC_FP128Ty(Context); 1720 break; 1721 case bitc::TYPE_CODE_LABEL: // LABEL 1722 ResultTy = Type::getLabelTy(Context); 1723 break; 1724 case bitc::TYPE_CODE_METADATA: // METADATA 1725 ResultTy = Type::getMetadataTy(Context); 1726 break; 1727 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 1728 ResultTy = Type::getX86_MMXTy(Context); 1729 break; 1730 case bitc::TYPE_CODE_TOKEN: // TOKEN 1731 ResultTy = Type::getTokenTy(Context); 1732 break; 1733 case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width] 1734 if (Record.size() < 1) 1735 return error("Invalid record"); 1736 1737 uint64_t NumBits = Record[0]; 1738 if (NumBits < IntegerType::MIN_INT_BITS || 1739 NumBits > IntegerType::MAX_INT_BITS) 1740 return error("Bitwidth for integer type out of range"); 1741 ResultTy = IntegerType::get(Context, NumBits); 1742 break; 1743 } 1744 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 1745 // [pointee type, address space] 1746 if (Record.size() < 1) 1747 return error("Invalid record"); 1748 unsigned AddressSpace = 0; 1749 if (Record.size() == 2) 1750 AddressSpace = Record[1]; 1751 ResultTy = getTypeByID(Record[0]); 1752 if (!ResultTy || 1753 !PointerType::isValidElementType(ResultTy)) 1754 return error("Invalid type"); 1755 ResultTy = PointerType::get(ResultTy, AddressSpace); 1756 break; 1757 } 1758 case bitc::TYPE_CODE_FUNCTION_OLD: { 1759 // FIXME: attrid is dead, remove it in LLVM 4.0 1760 // FUNCTION: [vararg, attrid, retty, paramty x N] 1761 if (Record.size() < 3) 1762 return error("Invalid record"); 1763 SmallVector<Type*, 8> ArgTys; 1764 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 1765 if (Type *T = getTypeByID(Record[i])) 1766 ArgTys.push_back(T); 1767 else 1768 break; 1769 } 1770 1771 ResultTy = getTypeByID(Record[2]); 1772 if (!ResultTy || ArgTys.size() < Record.size()-3) 1773 return error("Invalid type"); 1774 1775 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1776 break; 1777 } 1778 case bitc::TYPE_CODE_FUNCTION: { 1779 // FUNCTION: [vararg, retty, paramty x N] 1780 if (Record.size() < 2) 1781 return error("Invalid record"); 1782 SmallVector<Type*, 8> ArgTys; 1783 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1784 if (Type *T = getTypeByID(Record[i])) { 1785 if (!FunctionType::isValidArgumentType(T)) 1786 return error("Invalid function argument type"); 1787 ArgTys.push_back(T); 1788 } 1789 else 1790 break; 1791 } 1792 1793 ResultTy = getTypeByID(Record[1]); 1794 if (!ResultTy || ArgTys.size() < Record.size()-2) 1795 return error("Invalid type"); 1796 1797 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1798 break; 1799 } 1800 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 1801 if (Record.size() < 1) 1802 return error("Invalid record"); 1803 SmallVector<Type*, 8> EltTys; 1804 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1805 if (Type *T = getTypeByID(Record[i])) 1806 EltTys.push_back(T); 1807 else 1808 break; 1809 } 1810 if (EltTys.size() != Record.size()-1) 1811 return error("Invalid type"); 1812 ResultTy = StructType::get(Context, EltTys, Record[0]); 1813 break; 1814 } 1815 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 1816 if (convertToString(Record, 0, TypeName)) 1817 return error("Invalid record"); 1818 continue; 1819 1820 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 1821 if (Record.size() < 1) 1822 return error("Invalid record"); 1823 1824 if (NumRecords >= TypeList.size()) 1825 return error("Invalid TYPE table"); 1826 1827 // Check to see if this was forward referenced, if so fill in the temp. 1828 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1829 if (Res) { 1830 Res->setName(TypeName); 1831 TypeList[NumRecords] = nullptr; 1832 } else // Otherwise, create a new struct. 1833 Res = createIdentifiedStructType(Context, TypeName); 1834 TypeName.clear(); 1835 1836 SmallVector<Type*, 8> EltTys; 1837 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1838 if (Type *T = getTypeByID(Record[i])) 1839 EltTys.push_back(T); 1840 else 1841 break; 1842 } 1843 if (EltTys.size() != Record.size()-1) 1844 return error("Invalid record"); 1845 Res->setBody(EltTys, Record[0]); 1846 ResultTy = Res; 1847 break; 1848 } 1849 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 1850 if (Record.size() != 1) 1851 return error("Invalid record"); 1852 1853 if (NumRecords >= TypeList.size()) 1854 return error("Invalid TYPE table"); 1855 1856 // Check to see if this was forward referenced, if so fill in the temp. 1857 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1858 if (Res) { 1859 Res->setName(TypeName); 1860 TypeList[NumRecords] = nullptr; 1861 } else // Otherwise, create a new struct with no body. 1862 Res = createIdentifiedStructType(Context, TypeName); 1863 TypeName.clear(); 1864 ResultTy = Res; 1865 break; 1866 } 1867 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 1868 if (Record.size() < 2) 1869 return error("Invalid record"); 1870 ResultTy = getTypeByID(Record[1]); 1871 if (!ResultTy || !ArrayType::isValidElementType(ResultTy)) 1872 return error("Invalid type"); 1873 ResultTy = ArrayType::get(ResultTy, Record[0]); 1874 break; 1875 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] 1876 if (Record.size() < 2) 1877 return error("Invalid record"); 1878 if (Record[0] == 0) 1879 return error("Invalid vector length"); 1880 ResultTy = getTypeByID(Record[1]); 1881 if (!ResultTy || !StructType::isValidElementType(ResultTy)) 1882 return error("Invalid type"); 1883 ResultTy = VectorType::get(ResultTy, Record[0]); 1884 break; 1885 } 1886 1887 if (NumRecords >= TypeList.size()) 1888 return error("Invalid TYPE table"); 1889 if (TypeList[NumRecords]) 1890 return error( 1891 "Invalid TYPE table: Only named structs can be forward referenced"); 1892 assert(ResultTy && "Didn't read a type?"); 1893 TypeList[NumRecords++] = ResultTy; 1894 } 1895 } 1896 1897 std::error_code BitcodeReader::parseOperandBundleTags() { 1898 if (Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID)) 1899 return error("Invalid record"); 1900 1901 if (!BundleTags.empty()) 1902 return error("Invalid multiple blocks"); 1903 1904 SmallVector<uint64_t, 64> Record; 1905 1906 while (true) { 1907 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1908 1909 switch (Entry.Kind) { 1910 case BitstreamEntry::SubBlock: // Handled for us already. 1911 case BitstreamEntry::Error: 1912 return error("Malformed block"); 1913 case BitstreamEntry::EndBlock: 1914 return std::error_code(); 1915 case BitstreamEntry::Record: 1916 // The interesting case. 1917 break; 1918 } 1919 1920 // Tags are implicitly mapped to integers by their order. 1921 1922 if (Stream.readRecord(Entry.ID, Record) != bitc::OPERAND_BUNDLE_TAG) 1923 return error("Invalid record"); 1924 1925 // OPERAND_BUNDLE_TAG: [strchr x N] 1926 BundleTags.emplace_back(); 1927 if (convertToString(Record, 0, BundleTags.back())) 1928 return error("Invalid record"); 1929 Record.clear(); 1930 } 1931 } 1932 1933 /// Associate a value with its name from the given index in the provided record. 1934 ErrorOr<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record, 1935 unsigned NameIndex, Triple &TT) { 1936 SmallString<128> ValueName; 1937 if (convertToString(Record, NameIndex, ValueName)) 1938 return error("Invalid record"); 1939 unsigned ValueID = Record[0]; 1940 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 1941 return error("Invalid record"); 1942 Value *V = ValueList[ValueID]; 1943 1944 StringRef NameStr(ValueName.data(), ValueName.size()); 1945 if (NameStr.find_first_of(0) != StringRef::npos) 1946 return error("Invalid value name"); 1947 V->setName(NameStr); 1948 auto *GO = dyn_cast<GlobalObject>(V); 1949 if (GO) { 1950 if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) { 1951 if (TT.isOSBinFormatMachO()) 1952 GO->setComdat(nullptr); 1953 else 1954 GO->setComdat(TheModule->getOrInsertComdat(V->getName())); 1955 } 1956 } 1957 return V; 1958 } 1959 1960 /// Helper to note and return the current location, and jump to the given 1961 /// offset. 1962 static uint64_t jumpToValueSymbolTable(uint64_t Offset, 1963 BitstreamCursor &Stream) { 1964 // Save the current parsing location so we can jump back at the end 1965 // of the VST read. 1966 uint64_t CurrentBit = Stream.GetCurrentBitNo(); 1967 Stream.JumpToBit(Offset * 32); 1968 #ifndef NDEBUG 1969 // Do some checking if we are in debug mode. 1970 BitstreamEntry Entry = Stream.advance(); 1971 assert(Entry.Kind == BitstreamEntry::SubBlock); 1972 assert(Entry.ID == bitc::VALUE_SYMTAB_BLOCK_ID); 1973 #else 1974 // In NDEBUG mode ignore the output so we don't get an unused variable 1975 // warning. 1976 Stream.advance(); 1977 #endif 1978 return CurrentBit; 1979 } 1980 1981 /// Parse the value symbol table at either the current parsing location or 1982 /// at the given bit offset if provided. 1983 std::error_code BitcodeReader::parseValueSymbolTable(uint64_t Offset) { 1984 uint64_t CurrentBit; 1985 // Pass in the Offset to distinguish between calling for the module-level 1986 // VST (where we want to jump to the VST offset) and the function-level 1987 // VST (where we don't). 1988 if (Offset > 0) 1989 CurrentBit = jumpToValueSymbolTable(Offset, Stream); 1990 1991 // Compute the delta between the bitcode indices in the VST (the word offset 1992 // to the word-aligned ENTER_SUBBLOCK for the function block, and that 1993 // expected by the lazy reader. The reader's EnterSubBlock expects to have 1994 // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID 1995 // (size BlockIDWidth). Note that we access the stream's AbbrevID width here 1996 // just before entering the VST subblock because: 1) the EnterSubBlock 1997 // changes the AbbrevID width; 2) the VST block is nested within the same 1998 // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same 1999 // AbbrevID width before calling EnterSubBlock; and 3) when we want to 2000 // jump to the FUNCTION_BLOCK using this offset later, we don't want 2001 // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK. 2002 unsigned FuncBitcodeOffsetDelta = 2003 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 2004 2005 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 2006 return error("Invalid record"); 2007 2008 SmallVector<uint64_t, 64> Record; 2009 2010 Triple TT(TheModule->getTargetTriple()); 2011 2012 // Read all the records for this value table. 2013 SmallString<128> ValueName; 2014 2015 while (true) { 2016 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2017 2018 switch (Entry.Kind) { 2019 case BitstreamEntry::SubBlock: // Handled for us already. 2020 case BitstreamEntry::Error: 2021 return error("Malformed block"); 2022 case BitstreamEntry::EndBlock: 2023 if (Offset > 0) 2024 Stream.JumpToBit(CurrentBit); 2025 return std::error_code(); 2026 case BitstreamEntry::Record: 2027 // The interesting case. 2028 break; 2029 } 2030 2031 // Read a record. 2032 Record.clear(); 2033 switch (Stream.readRecord(Entry.ID, Record)) { 2034 default: // Default behavior: unknown type. 2035 break; 2036 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 2037 ErrorOr<Value *> ValOrErr = recordValue(Record, 1, TT); 2038 if (std::error_code EC = ValOrErr.getError()) 2039 return EC; 2040 ValOrErr.get(); 2041 break; 2042 } 2043 case bitc::VST_CODE_FNENTRY: { 2044 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 2045 ErrorOr<Value *> ValOrErr = recordValue(Record, 2, TT); 2046 if (std::error_code EC = ValOrErr.getError()) 2047 return EC; 2048 Value *V = ValOrErr.get(); 2049 2050 auto *GO = dyn_cast<GlobalObject>(V); 2051 if (!GO) { 2052 // If this is an alias, need to get the actual Function object 2053 // it aliases, in order to set up the DeferredFunctionInfo entry below. 2054 auto *GA = dyn_cast<GlobalAlias>(V); 2055 if (GA) 2056 GO = GA->getBaseObject(); 2057 assert(GO); 2058 } 2059 2060 uint64_t FuncWordOffset = Record[1]; 2061 Function *F = dyn_cast<Function>(GO); 2062 assert(F); 2063 uint64_t FuncBitOffset = FuncWordOffset * 32; 2064 DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta; 2065 // Set the LastFunctionBlockBit to point to the last function block. 2066 // Later when parsing is resumed after function materialization, 2067 // we can simply skip that last function block. 2068 if (FuncBitOffset > LastFunctionBlockBit) 2069 LastFunctionBlockBit = FuncBitOffset; 2070 break; 2071 } 2072 case bitc::VST_CODE_BBENTRY: { 2073 if (convertToString(Record, 1, ValueName)) 2074 return error("Invalid record"); 2075 BasicBlock *BB = getBasicBlock(Record[0]); 2076 if (!BB) 2077 return error("Invalid record"); 2078 2079 BB->setName(StringRef(ValueName.data(), ValueName.size())); 2080 ValueName.clear(); 2081 break; 2082 } 2083 } 2084 } 2085 } 2086 2087 /// Parse a single METADATA_KIND record, inserting result in MDKindMap. 2088 std::error_code 2089 BitcodeReader::parseMetadataKindRecord(SmallVectorImpl<uint64_t> &Record) { 2090 if (Record.size() < 2) 2091 return error("Invalid record"); 2092 2093 unsigned Kind = Record[0]; 2094 SmallString<8> Name(Record.begin() + 1, Record.end()); 2095 2096 unsigned NewKind = TheModule->getMDKindID(Name.str()); 2097 if (!MDKindMap.insert(std::make_pair(Kind, NewKind)).second) 2098 return error("Conflicting METADATA_KIND records"); 2099 return std::error_code(); 2100 } 2101 2102 static int64_t unrotateSign(uint64_t U) { return U & 1 ? ~(U >> 1) : U >> 1; } 2103 2104 std::error_code BitcodeReader::parseMetadataStrings(ArrayRef<uint64_t> Record, 2105 StringRef Blob, 2106 unsigned &NextMetadataNo) { 2107 // All the MDStrings in the block are emitted together in a single 2108 // record. The strings are concatenated and stored in a blob along with 2109 // their sizes. 2110 if (Record.size() != 2) 2111 return error("Invalid record: metadata strings layout"); 2112 2113 unsigned NumStrings = Record[0]; 2114 unsigned StringsOffset = Record[1]; 2115 if (!NumStrings) 2116 return error("Invalid record: metadata strings with no strings"); 2117 if (StringsOffset > Blob.size()) 2118 return error("Invalid record: metadata strings corrupt offset"); 2119 2120 StringRef Lengths = Blob.slice(0, StringsOffset); 2121 SimpleBitstreamCursor R(*StreamFile); 2122 R.jumpToPointer(Lengths.begin()); 2123 2124 StringRef Strings = Blob.drop_front(StringsOffset); 2125 do { 2126 if (R.AtEndOfStream()) 2127 return error("Invalid record: metadata strings bad length"); 2128 2129 unsigned Size = R.ReadVBR(6); 2130 if (Strings.size() < Size) 2131 return error("Invalid record: metadata strings truncated chars"); 2132 2133 MetadataList.assignValue(MDString::get(Context, Strings.slice(0, Size)), 2134 NextMetadataNo++); 2135 Strings = Strings.drop_front(Size); 2136 } while (--NumStrings); 2137 2138 return std::error_code(); 2139 } 2140 2141 namespace { 2142 2143 class PlaceholderQueue { 2144 // Placeholders would thrash around when moved, so store in a std::deque 2145 // instead of some sort of vector. 2146 std::deque<DistinctMDOperandPlaceholder> PHs; 2147 2148 public: 2149 DistinctMDOperandPlaceholder &getPlaceholderOp(unsigned ID); 2150 void flush(BitcodeReaderMetadataList &MetadataList); 2151 }; 2152 2153 } // end anonymous namespace 2154 2155 DistinctMDOperandPlaceholder &PlaceholderQueue::getPlaceholderOp(unsigned ID) { 2156 PHs.emplace_back(ID); 2157 return PHs.back(); 2158 } 2159 2160 void PlaceholderQueue::flush(BitcodeReaderMetadataList &MetadataList) { 2161 while (!PHs.empty()) { 2162 PHs.front().replaceUseWith( 2163 MetadataList.getMetadataFwdRef(PHs.front().getID())); 2164 PHs.pop_front(); 2165 } 2166 } 2167 2168 /// Parse a METADATA_BLOCK. If ModuleLevel is true then we are parsing 2169 /// module level metadata. 2170 std::error_code BitcodeReader::parseMetadata(bool ModuleLevel) { 2171 assert((ModuleLevel || DeferredMetadataInfo.empty()) && 2172 "Must read all module-level metadata before function-level"); 2173 2174 IsMetadataMaterialized = true; 2175 unsigned NextMetadataNo = MetadataList.size(); 2176 2177 if (!ModuleLevel && MetadataList.hasFwdRefs()) 2178 return error("Invalid metadata: fwd refs into function blocks"); 2179 2180 if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID)) 2181 return error("Invalid record"); 2182 2183 std::vector<std::pair<DICompileUnit *, Metadata *>> CUSubprograms; 2184 SmallVector<uint64_t, 64> Record; 2185 2186 PlaceholderQueue Placeholders; 2187 bool IsDistinct; 2188 auto getMD = [&](unsigned ID) -> Metadata * { 2189 if (!IsDistinct) 2190 return MetadataList.getMetadataFwdRef(ID); 2191 if (auto *MD = MetadataList.getMetadataIfResolved(ID)) 2192 return MD; 2193 return &Placeholders.getPlaceholderOp(ID); 2194 }; 2195 auto getMDOrNull = [&](unsigned ID) -> Metadata * { 2196 if (ID) 2197 return getMD(ID - 1); 2198 return nullptr; 2199 }; 2200 auto getMDOrNullWithoutPlaceholders = [&](unsigned ID) -> Metadata * { 2201 if (ID) 2202 return MetadataList.getMetadataFwdRef(ID - 1); 2203 return nullptr; 2204 }; 2205 auto getMDString = [&](unsigned ID) -> MDString *{ 2206 // This requires that the ID is not really a forward reference. In 2207 // particular, the MDString must already have been resolved. 2208 return cast_or_null<MDString>(getMDOrNull(ID)); 2209 }; 2210 2211 // Support for old type refs. 2212 auto getDITypeRefOrNull = [&](unsigned ID) { 2213 return MetadataList.upgradeTypeRef(getMDOrNull(ID)); 2214 }; 2215 2216 #define GET_OR_DISTINCT(CLASS, ARGS) \ 2217 (IsDistinct ? CLASS::getDistinct ARGS : CLASS::get ARGS) 2218 2219 // Read all the records. 2220 while (true) { 2221 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2222 2223 switch (Entry.Kind) { 2224 case BitstreamEntry::SubBlock: // Handled for us already. 2225 case BitstreamEntry::Error: 2226 return error("Malformed block"); 2227 case BitstreamEntry::EndBlock: 2228 // Upgrade old-style CU <-> SP pointers to point from SP to CU. 2229 for (auto CU_SP : CUSubprograms) 2230 if (auto *SPs = dyn_cast_or_null<MDTuple>(CU_SP.second)) 2231 for (auto &Op : SPs->operands()) 2232 if (auto *SP = dyn_cast_or_null<MDNode>(Op)) 2233 SP->replaceOperandWith(7, CU_SP.first); 2234 2235 MetadataList.tryToResolveCycles(); 2236 Placeholders.flush(MetadataList); 2237 return std::error_code(); 2238 case BitstreamEntry::Record: 2239 // The interesting case. 2240 break; 2241 } 2242 2243 // Read a record. 2244 Record.clear(); 2245 StringRef Blob; 2246 unsigned Code = Stream.readRecord(Entry.ID, Record, &Blob); 2247 IsDistinct = false; 2248 switch (Code) { 2249 default: // Default behavior: ignore. 2250 break; 2251 case bitc::METADATA_NAME: { 2252 // Read name of the named metadata. 2253 SmallString<8> Name(Record.begin(), Record.end()); 2254 Record.clear(); 2255 Code = Stream.ReadCode(); 2256 2257 unsigned NextBitCode = Stream.readRecord(Code, Record); 2258 if (NextBitCode != bitc::METADATA_NAMED_NODE) 2259 return error("METADATA_NAME not followed by METADATA_NAMED_NODE"); 2260 2261 // Read named metadata elements. 2262 unsigned Size = Record.size(); 2263 NamedMDNode *NMD = TheModule->getOrInsertNamedMetadata(Name); 2264 for (unsigned i = 0; i != Size; ++i) { 2265 MDNode *MD = MetadataList.getMDNodeFwdRefOrNull(Record[i]); 2266 if (!MD) 2267 return error("Invalid record"); 2268 NMD->addOperand(MD); 2269 } 2270 break; 2271 } 2272 case bitc::METADATA_OLD_FN_NODE: { 2273 // FIXME: Remove in 4.0. 2274 // This is a LocalAsMetadata record, the only type of function-local 2275 // metadata. 2276 if (Record.size() % 2 == 1) 2277 return error("Invalid record"); 2278 2279 // If this isn't a LocalAsMetadata record, we're dropping it. This used 2280 // to be legal, but there's no upgrade path. 2281 auto dropRecord = [&] { 2282 MetadataList.assignValue(MDNode::get(Context, None), NextMetadataNo++); 2283 }; 2284 if (Record.size() != 2) { 2285 dropRecord(); 2286 break; 2287 } 2288 2289 Type *Ty = getTypeByID(Record[0]); 2290 if (Ty->isMetadataTy() || Ty->isVoidTy()) { 2291 dropRecord(); 2292 break; 2293 } 2294 2295 MetadataList.assignValue( 2296 LocalAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)), 2297 NextMetadataNo++); 2298 break; 2299 } 2300 case bitc::METADATA_OLD_NODE: { 2301 // FIXME: Remove in 4.0. 2302 if (Record.size() % 2 == 1) 2303 return error("Invalid record"); 2304 2305 unsigned Size = Record.size(); 2306 SmallVector<Metadata *, 8> Elts; 2307 for (unsigned i = 0; i != Size; i += 2) { 2308 Type *Ty = getTypeByID(Record[i]); 2309 if (!Ty) 2310 return error("Invalid record"); 2311 if (Ty->isMetadataTy()) 2312 Elts.push_back(getMD(Record[i + 1])); 2313 else if (!Ty->isVoidTy()) { 2314 auto *MD = 2315 ValueAsMetadata::get(ValueList.getValueFwdRef(Record[i + 1], Ty)); 2316 assert(isa<ConstantAsMetadata>(MD) && 2317 "Expected non-function-local metadata"); 2318 Elts.push_back(MD); 2319 } else 2320 Elts.push_back(nullptr); 2321 } 2322 MetadataList.assignValue(MDNode::get(Context, Elts), NextMetadataNo++); 2323 break; 2324 } 2325 case bitc::METADATA_VALUE: { 2326 if (Record.size() != 2) 2327 return error("Invalid record"); 2328 2329 Type *Ty = getTypeByID(Record[0]); 2330 if (Ty->isMetadataTy() || Ty->isVoidTy()) 2331 return error("Invalid record"); 2332 2333 MetadataList.assignValue( 2334 ValueAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)), 2335 NextMetadataNo++); 2336 break; 2337 } 2338 case bitc::METADATA_DISTINCT_NODE: 2339 IsDistinct = true; 2340 LLVM_FALLTHROUGH; 2341 case bitc::METADATA_NODE: { 2342 SmallVector<Metadata *, 8> Elts; 2343 Elts.reserve(Record.size()); 2344 for (unsigned ID : Record) 2345 Elts.push_back(getMDOrNull(ID)); 2346 MetadataList.assignValue(IsDistinct ? MDNode::getDistinct(Context, Elts) 2347 : MDNode::get(Context, Elts), 2348 NextMetadataNo++); 2349 break; 2350 } 2351 case bitc::METADATA_LOCATION: { 2352 if (Record.size() != 5) 2353 return error("Invalid record"); 2354 2355 IsDistinct = Record[0]; 2356 unsigned Line = Record[1]; 2357 unsigned Column = Record[2]; 2358 Metadata *Scope = getMD(Record[3]); 2359 Metadata *InlinedAt = getMDOrNull(Record[4]); 2360 MetadataList.assignValue( 2361 GET_OR_DISTINCT(DILocation, 2362 (Context, Line, Column, Scope, InlinedAt)), 2363 NextMetadataNo++); 2364 break; 2365 } 2366 case bitc::METADATA_GENERIC_DEBUG: { 2367 if (Record.size() < 4) 2368 return error("Invalid record"); 2369 2370 IsDistinct = Record[0]; 2371 unsigned Tag = Record[1]; 2372 unsigned Version = Record[2]; 2373 2374 if (Tag >= 1u << 16 || Version != 0) 2375 return error("Invalid record"); 2376 2377 auto *Header = getMDString(Record[3]); 2378 SmallVector<Metadata *, 8> DwarfOps; 2379 for (unsigned I = 4, E = Record.size(); I != E; ++I) 2380 DwarfOps.push_back(getMDOrNull(Record[I])); 2381 MetadataList.assignValue( 2382 GET_OR_DISTINCT(GenericDINode, (Context, Tag, Header, DwarfOps)), 2383 NextMetadataNo++); 2384 break; 2385 } 2386 case bitc::METADATA_SUBRANGE: { 2387 if (Record.size() != 3) 2388 return error("Invalid record"); 2389 2390 IsDistinct = Record[0]; 2391 MetadataList.assignValue( 2392 GET_OR_DISTINCT(DISubrange, 2393 (Context, Record[1], unrotateSign(Record[2]))), 2394 NextMetadataNo++); 2395 break; 2396 } 2397 case bitc::METADATA_ENUMERATOR: { 2398 if (Record.size() != 3) 2399 return error("Invalid record"); 2400 2401 IsDistinct = Record[0]; 2402 MetadataList.assignValue( 2403 GET_OR_DISTINCT(DIEnumerator, (Context, unrotateSign(Record[1]), 2404 getMDString(Record[2]))), 2405 NextMetadataNo++); 2406 break; 2407 } 2408 case bitc::METADATA_BASIC_TYPE: { 2409 if (Record.size() != 6) 2410 return error("Invalid record"); 2411 2412 IsDistinct = Record[0]; 2413 MetadataList.assignValue( 2414 GET_OR_DISTINCT(DIBasicType, 2415 (Context, Record[1], getMDString(Record[2]), 2416 Record[3], Record[4], Record[5])), 2417 NextMetadataNo++); 2418 break; 2419 } 2420 case bitc::METADATA_DERIVED_TYPE: { 2421 if (Record.size() != 12) 2422 return error("Invalid record"); 2423 2424 IsDistinct = Record[0]; 2425 DINode::DIFlags Flags = static_cast<DINode::DIFlags>(Record[10]); 2426 MetadataList.assignValue( 2427 GET_OR_DISTINCT(DIDerivedType, 2428 (Context, Record[1], getMDString(Record[2]), 2429 getMDOrNull(Record[3]), Record[4], 2430 getDITypeRefOrNull(Record[5]), 2431 getDITypeRefOrNull(Record[6]), Record[7], Record[8], 2432 Record[9], Flags, getDITypeRefOrNull(Record[11]))), 2433 NextMetadataNo++); 2434 break; 2435 } 2436 case bitc::METADATA_COMPOSITE_TYPE: { 2437 if (Record.size() != 16) 2438 return error("Invalid record"); 2439 2440 // If we have a UUID and this is not a forward declaration, lookup the 2441 // mapping. 2442 IsDistinct = Record[0] & 0x1; 2443 bool IsNotUsedInTypeRef = Record[0] >= 2; 2444 unsigned Tag = Record[1]; 2445 MDString *Name = getMDString(Record[2]); 2446 Metadata *File = getMDOrNull(Record[3]); 2447 unsigned Line = Record[4]; 2448 Metadata *Scope = getDITypeRefOrNull(Record[5]); 2449 Metadata *BaseType = getDITypeRefOrNull(Record[6]); 2450 uint64_t SizeInBits = Record[7]; 2451 if (Record[8] > (uint64_t)std::numeric_limits<uint32_t>::max()) 2452 return error("Alignment value is too large"); 2453 uint32_t AlignInBits = Record[8]; 2454 uint64_t OffsetInBits = Record[9]; 2455 DINode::DIFlags Flags = static_cast<DINode::DIFlags>(Record[10]); 2456 Metadata *Elements = getMDOrNull(Record[11]); 2457 unsigned RuntimeLang = Record[12]; 2458 Metadata *VTableHolder = getDITypeRefOrNull(Record[13]); 2459 Metadata *TemplateParams = getMDOrNull(Record[14]); 2460 auto *Identifier = getMDString(Record[15]); 2461 DICompositeType *CT = nullptr; 2462 if (Identifier) 2463 CT = DICompositeType::buildODRType( 2464 Context, *Identifier, Tag, Name, File, Line, Scope, BaseType, 2465 SizeInBits, AlignInBits, OffsetInBits, Flags, Elements, RuntimeLang, 2466 VTableHolder, TemplateParams); 2467 2468 // Create a node if we didn't get a lazy ODR type. 2469 if (!CT) 2470 CT = GET_OR_DISTINCT(DICompositeType, 2471 (Context, Tag, Name, File, Line, Scope, BaseType, 2472 SizeInBits, AlignInBits, OffsetInBits, Flags, 2473 Elements, RuntimeLang, VTableHolder, 2474 TemplateParams, Identifier)); 2475 if (!IsNotUsedInTypeRef && Identifier) 2476 MetadataList.addTypeRef(*Identifier, *cast<DICompositeType>(CT)); 2477 2478 MetadataList.assignValue(CT, NextMetadataNo++); 2479 break; 2480 } 2481 case bitc::METADATA_SUBROUTINE_TYPE: { 2482 if (Record.size() < 3 || Record.size() > 4) 2483 return error("Invalid record"); 2484 bool IsOldTypeRefArray = Record[0] < 2; 2485 unsigned CC = (Record.size() > 3) ? Record[3] : 0; 2486 2487 IsDistinct = Record[0] & 0x1; 2488 DINode::DIFlags Flags = static_cast<DINode::DIFlags>(Record[1]); 2489 Metadata *Types = getMDOrNull(Record[2]); 2490 if (LLVM_UNLIKELY(IsOldTypeRefArray)) 2491 Types = MetadataList.upgradeTypeRefArray(Types); 2492 2493 MetadataList.assignValue( 2494 GET_OR_DISTINCT(DISubroutineType, (Context, Flags, CC, Types)), 2495 NextMetadataNo++); 2496 break; 2497 } 2498 2499 case bitc::METADATA_MODULE: { 2500 if (Record.size() != 6) 2501 return error("Invalid record"); 2502 2503 IsDistinct = Record[0]; 2504 MetadataList.assignValue( 2505 GET_OR_DISTINCT(DIModule, 2506 (Context, getMDOrNull(Record[1]), 2507 getMDString(Record[2]), getMDString(Record[3]), 2508 getMDString(Record[4]), getMDString(Record[5]))), 2509 NextMetadataNo++); 2510 break; 2511 } 2512 2513 case bitc::METADATA_FILE: { 2514 if (Record.size() != 3) 2515 return error("Invalid record"); 2516 2517 IsDistinct = Record[0]; 2518 MetadataList.assignValue( 2519 GET_OR_DISTINCT(DIFile, (Context, getMDString(Record[1]), 2520 getMDString(Record[2]))), 2521 NextMetadataNo++); 2522 break; 2523 } 2524 case bitc::METADATA_COMPILE_UNIT: { 2525 if (Record.size() < 14 || Record.size() > 17) 2526 return error("Invalid record"); 2527 2528 // Ignore Record[0], which indicates whether this compile unit is 2529 // distinct. It's always distinct. 2530 IsDistinct = true; 2531 auto *CU = DICompileUnit::getDistinct( 2532 Context, Record[1], getMDOrNull(Record[2]), getMDString(Record[3]), 2533 Record[4], getMDString(Record[5]), Record[6], getMDString(Record[7]), 2534 Record[8], getMDOrNull(Record[9]), getMDOrNull(Record[10]), 2535 getMDOrNull(Record[12]), getMDOrNull(Record[13]), 2536 Record.size() <= 15 ? nullptr : getMDOrNull(Record[15]), 2537 Record.size() <= 14 ? 0 : Record[14], 2538 Record.size() <= 16 ? true : Record[16]); 2539 2540 MetadataList.assignValue(CU, NextMetadataNo++); 2541 2542 // Move the Upgrade the list of subprograms. 2543 if (Metadata *SPs = getMDOrNullWithoutPlaceholders(Record[11])) 2544 CUSubprograms.push_back({CU, SPs}); 2545 break; 2546 } 2547 case bitc::METADATA_SUBPROGRAM: { 2548 if (Record.size() < 18 || Record.size() > 20) 2549 return error("Invalid record"); 2550 2551 IsDistinct = 2552 (Record[0] & 1) || Record[8]; // All definitions should be distinct. 2553 // Version 1 has a Function as Record[15]. 2554 // Version 2 has removed Record[15]. 2555 // Version 3 has the Unit as Record[15]. 2556 // Version 4 added thisAdjustment. 2557 bool HasUnit = Record[0] >= 2; 2558 if (HasUnit && Record.size() < 19) 2559 return error("Invalid record"); 2560 Metadata *CUorFn = getMDOrNull(Record[15]); 2561 unsigned Offset = Record.size() >= 19 ? 1 : 0; 2562 bool HasFn = Offset && !HasUnit; 2563 bool HasThisAdj = Record.size() >= 20; 2564 DISubprogram *SP = GET_OR_DISTINCT( 2565 DISubprogram, (Context, 2566 getDITypeRefOrNull(Record[1]), // scope 2567 getMDString(Record[2]), // name 2568 getMDString(Record[3]), // linkageName 2569 getMDOrNull(Record[4]), // file 2570 Record[5], // line 2571 getMDOrNull(Record[6]), // type 2572 Record[7], // isLocal 2573 Record[8], // isDefinition 2574 Record[9], // scopeLine 2575 getDITypeRefOrNull(Record[10]), // containingType 2576 Record[11], // virtuality 2577 Record[12], // virtualIndex 2578 HasThisAdj ? Record[19] : 0, // thisAdjustment 2579 static_cast<DINode::DIFlags>(Record[13] // flags 2580 ), 2581 Record[14], // isOptimized 2582 HasUnit ? CUorFn : nullptr, // unit 2583 getMDOrNull(Record[15 + Offset]), // templateParams 2584 getMDOrNull(Record[16 + Offset]), // declaration 2585 getMDOrNull(Record[17 + Offset]) // variables 2586 )); 2587 MetadataList.assignValue(SP, NextMetadataNo++); 2588 2589 // Upgrade sp->function mapping to function->sp mapping. 2590 if (HasFn) { 2591 if (auto *CMD = dyn_cast_or_null<ConstantAsMetadata>(CUorFn)) 2592 if (auto *F = dyn_cast<Function>(CMD->getValue())) { 2593 if (F->isMaterializable()) 2594 // Defer until materialized; unmaterialized functions may not have 2595 // metadata. 2596 FunctionsWithSPs[F] = SP; 2597 else if (!F->empty()) 2598 F->setSubprogram(SP); 2599 } 2600 } 2601 break; 2602 } 2603 case bitc::METADATA_LEXICAL_BLOCK: { 2604 if (Record.size() != 5) 2605 return error("Invalid record"); 2606 2607 IsDistinct = Record[0]; 2608 MetadataList.assignValue( 2609 GET_OR_DISTINCT(DILexicalBlock, 2610 (Context, getMDOrNull(Record[1]), 2611 getMDOrNull(Record[2]), Record[3], Record[4])), 2612 NextMetadataNo++); 2613 break; 2614 } 2615 case bitc::METADATA_LEXICAL_BLOCK_FILE: { 2616 if (Record.size() != 4) 2617 return error("Invalid record"); 2618 2619 IsDistinct = Record[0]; 2620 MetadataList.assignValue( 2621 GET_OR_DISTINCT(DILexicalBlockFile, 2622 (Context, getMDOrNull(Record[1]), 2623 getMDOrNull(Record[2]), Record[3])), 2624 NextMetadataNo++); 2625 break; 2626 } 2627 case bitc::METADATA_NAMESPACE: { 2628 if (Record.size() != 5) 2629 return error("Invalid record"); 2630 2631 IsDistinct = Record[0]; 2632 MetadataList.assignValue( 2633 GET_OR_DISTINCT(DINamespace, (Context, getMDOrNull(Record[1]), 2634 getMDOrNull(Record[2]), 2635 getMDString(Record[3]), Record[4])), 2636 NextMetadataNo++); 2637 break; 2638 } 2639 case bitc::METADATA_MACRO: { 2640 if (Record.size() != 5) 2641 return error("Invalid record"); 2642 2643 IsDistinct = Record[0]; 2644 MetadataList.assignValue( 2645 GET_OR_DISTINCT(DIMacro, 2646 (Context, Record[1], Record[2], 2647 getMDString(Record[3]), getMDString(Record[4]))), 2648 NextMetadataNo++); 2649 break; 2650 } 2651 case bitc::METADATA_MACRO_FILE: { 2652 if (Record.size() != 5) 2653 return error("Invalid record"); 2654 2655 IsDistinct = Record[0]; 2656 MetadataList.assignValue( 2657 GET_OR_DISTINCT(DIMacroFile, 2658 (Context, Record[1], Record[2], 2659 getMDOrNull(Record[3]), getMDOrNull(Record[4]))), 2660 NextMetadataNo++); 2661 break; 2662 } 2663 case bitc::METADATA_TEMPLATE_TYPE: { 2664 if (Record.size() != 3) 2665 return error("Invalid record"); 2666 2667 IsDistinct = Record[0]; 2668 MetadataList.assignValue(GET_OR_DISTINCT(DITemplateTypeParameter, 2669 (Context, getMDString(Record[1]), 2670 getDITypeRefOrNull(Record[2]))), 2671 NextMetadataNo++); 2672 break; 2673 } 2674 case bitc::METADATA_TEMPLATE_VALUE: { 2675 if (Record.size() != 5) 2676 return error("Invalid record"); 2677 2678 IsDistinct = Record[0]; 2679 MetadataList.assignValue( 2680 GET_OR_DISTINCT(DITemplateValueParameter, 2681 (Context, Record[1], getMDString(Record[2]), 2682 getDITypeRefOrNull(Record[3]), 2683 getMDOrNull(Record[4]))), 2684 NextMetadataNo++); 2685 break; 2686 } 2687 case bitc::METADATA_GLOBAL_VAR: { 2688 if (Record.size() < 11 || Record.size() > 12) 2689 return error("Invalid record"); 2690 2691 IsDistinct = Record[0]; 2692 2693 // Upgrade old metadata, which stored a global variable reference or a 2694 // ConstantInt here. 2695 Metadata *Expr = getMDOrNull(Record[9]); 2696 uint32_t AlignInBits = 0; 2697 if (Record.size() > 11) { 2698 if (Record[11] > (uint64_t)std::numeric_limits<uint32_t>::max()) 2699 return error("Alignment value is too large"); 2700 AlignInBits = Record[11]; 2701 } 2702 GlobalVariable *Attach = nullptr; 2703 if (auto *CMD = dyn_cast_or_null<ConstantAsMetadata>(Expr)) { 2704 if (auto *GV = dyn_cast<GlobalVariable>(CMD->getValue())) { 2705 Attach = GV; 2706 Expr = nullptr; 2707 } else if (auto *CI = dyn_cast<ConstantInt>(CMD->getValue())) { 2708 Expr = DIExpression::get(Context, 2709 {dwarf::DW_OP_constu, CI->getZExtValue(), 2710 dwarf::DW_OP_stack_value}); 2711 } else { 2712 Expr = nullptr; 2713 } 2714 } 2715 2716 DIGlobalVariable *DGV = GET_OR_DISTINCT( 2717 DIGlobalVariable, 2718 (Context, getMDOrNull(Record[1]), getMDString(Record[2]), 2719 getMDString(Record[3]), getMDOrNull(Record[4]), Record[5], 2720 getDITypeRefOrNull(Record[6]), Record[7], Record[8], Expr, 2721 getMDOrNull(Record[10]), AlignInBits)); 2722 MetadataList.assignValue(DGV, NextMetadataNo++); 2723 2724 if (Attach) 2725 Attach->addDebugInfo(DGV); 2726 2727 break; 2728 } 2729 case bitc::METADATA_LOCAL_VAR: { 2730 // 10th field is for the obseleted 'inlinedAt:' field. 2731 if (Record.size() < 8 || Record.size() > 10) 2732 return error("Invalid record"); 2733 2734 IsDistinct = Record[0] & 1; 2735 bool HasAlignment = Record[0] & 2; 2736 // 2nd field used to be an artificial tag, either DW_TAG_auto_variable or 2737 // DW_TAG_arg_variable, if we have alignment flag encoded it means, that 2738 // this is newer version of record which doesn't have artifical tag. 2739 bool HasTag = !HasAlignment && Record.size() > 8; 2740 DINode::DIFlags Flags = static_cast<DINode::DIFlags>(Record[7 + HasTag]); 2741 uint32_t AlignInBits = 0; 2742 if (HasAlignment) { 2743 if (Record[8 + HasTag] > 2744 (uint64_t)std::numeric_limits<uint32_t>::max()) 2745 return error("Alignment value is too large"); 2746 AlignInBits = Record[8 + HasTag]; 2747 } 2748 MetadataList.assignValue( 2749 GET_OR_DISTINCT(DILocalVariable, 2750 (Context, getMDOrNull(Record[1 + HasTag]), 2751 getMDString(Record[2 + HasTag]), 2752 getMDOrNull(Record[3 + HasTag]), Record[4 + HasTag], 2753 getDITypeRefOrNull(Record[5 + HasTag]), 2754 Record[6 + HasTag], Flags, AlignInBits)), 2755 NextMetadataNo++); 2756 break; 2757 } 2758 case bitc::METADATA_EXPRESSION: { 2759 if (Record.size() < 1) 2760 return error("Invalid record"); 2761 2762 IsDistinct = Record[0]; 2763 MetadataList.assignValue( 2764 GET_OR_DISTINCT(DIExpression, 2765 (Context, makeArrayRef(Record).slice(1))), 2766 NextMetadataNo++); 2767 break; 2768 } 2769 case bitc::METADATA_OBJC_PROPERTY: { 2770 if (Record.size() != 8) 2771 return error("Invalid record"); 2772 2773 IsDistinct = Record[0]; 2774 MetadataList.assignValue( 2775 GET_OR_DISTINCT(DIObjCProperty, 2776 (Context, getMDString(Record[1]), 2777 getMDOrNull(Record[2]), Record[3], 2778 getMDString(Record[4]), getMDString(Record[5]), 2779 Record[6], getDITypeRefOrNull(Record[7]))), 2780 NextMetadataNo++); 2781 break; 2782 } 2783 case bitc::METADATA_IMPORTED_ENTITY: { 2784 if (Record.size() != 6) 2785 return error("Invalid record"); 2786 2787 IsDistinct = Record[0]; 2788 MetadataList.assignValue( 2789 GET_OR_DISTINCT(DIImportedEntity, 2790 (Context, Record[1], getMDOrNull(Record[2]), 2791 getDITypeRefOrNull(Record[3]), Record[4], 2792 getMDString(Record[5]))), 2793 NextMetadataNo++); 2794 break; 2795 } 2796 case bitc::METADATA_STRING_OLD: { 2797 std::string String(Record.begin(), Record.end()); 2798 2799 // Test for upgrading !llvm.loop. 2800 HasSeenOldLoopTags |= mayBeOldLoopAttachmentTag(String); 2801 2802 Metadata *MD = MDString::get(Context, String); 2803 MetadataList.assignValue(MD, NextMetadataNo++); 2804 break; 2805 } 2806 case bitc::METADATA_STRINGS: 2807 if (std::error_code EC = 2808 parseMetadataStrings(Record, Blob, NextMetadataNo)) 2809 return EC; 2810 break; 2811 case bitc::METADATA_GLOBAL_DECL_ATTACHMENT: { 2812 if (Record.size() % 2 == 0) 2813 return error("Invalid record"); 2814 unsigned ValueID = Record[0]; 2815 if (ValueID >= ValueList.size()) 2816 return error("Invalid record"); 2817 if (auto *GO = dyn_cast<GlobalObject>(ValueList[ValueID])) 2818 parseGlobalObjectAttachment(*GO, ArrayRef<uint64_t>(Record).slice(1)); 2819 break; 2820 } 2821 case bitc::METADATA_KIND: { 2822 // Support older bitcode files that had METADATA_KIND records in a 2823 // block with METADATA_BLOCK_ID. 2824 if (std::error_code EC = parseMetadataKindRecord(Record)) 2825 return EC; 2826 break; 2827 } 2828 } 2829 } 2830 2831 #undef GET_OR_DISTINCT 2832 } 2833 2834 /// Parse the metadata kinds out of the METADATA_KIND_BLOCK. 2835 std::error_code BitcodeReader::parseMetadataKinds() { 2836 if (Stream.EnterSubBlock(bitc::METADATA_KIND_BLOCK_ID)) 2837 return error("Invalid record"); 2838 2839 SmallVector<uint64_t, 64> Record; 2840 2841 // Read all the records. 2842 while (true) { 2843 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2844 2845 switch (Entry.Kind) { 2846 case BitstreamEntry::SubBlock: // Handled for us already. 2847 case BitstreamEntry::Error: 2848 return error("Malformed block"); 2849 case BitstreamEntry::EndBlock: 2850 return std::error_code(); 2851 case BitstreamEntry::Record: 2852 // The interesting case. 2853 break; 2854 } 2855 2856 // Read a record. 2857 Record.clear(); 2858 unsigned Code = Stream.readRecord(Entry.ID, Record); 2859 switch (Code) { 2860 default: // Default behavior: ignore. 2861 break; 2862 case bitc::METADATA_KIND: { 2863 if (std::error_code EC = parseMetadataKindRecord(Record)) 2864 return EC; 2865 break; 2866 } 2867 } 2868 } 2869 } 2870 2871 /// Decode a signed value stored with the sign bit in the LSB for dense VBR 2872 /// encoding. 2873 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { 2874 if ((V & 1) == 0) 2875 return V >> 1; 2876 if (V != 1) 2877 return -(V >> 1); 2878 // There is no such thing as -0 with integers. "-0" really means MININT. 2879 return 1ULL << 63; 2880 } 2881 2882 /// Resolve all of the initializers for global values and aliases that we can. 2883 std::error_code BitcodeReader::resolveGlobalAndIndirectSymbolInits() { 2884 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist; 2885 std::vector<std::pair<GlobalIndirectSymbol*, unsigned> > 2886 IndirectSymbolInitWorklist; 2887 std::vector<std::pair<Function*, unsigned> > FunctionPrefixWorklist; 2888 std::vector<std::pair<Function*, unsigned> > FunctionPrologueWorklist; 2889 std::vector<std::pair<Function*, unsigned> > FunctionPersonalityFnWorklist; 2890 2891 GlobalInitWorklist.swap(GlobalInits); 2892 IndirectSymbolInitWorklist.swap(IndirectSymbolInits); 2893 FunctionPrefixWorklist.swap(FunctionPrefixes); 2894 FunctionPrologueWorklist.swap(FunctionPrologues); 2895 FunctionPersonalityFnWorklist.swap(FunctionPersonalityFns); 2896 2897 while (!GlobalInitWorklist.empty()) { 2898 unsigned ValID = GlobalInitWorklist.back().second; 2899 if (ValID >= ValueList.size()) { 2900 // Not ready to resolve this yet, it requires something later in the file. 2901 GlobalInits.push_back(GlobalInitWorklist.back()); 2902 } else { 2903 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2904 GlobalInitWorklist.back().first->setInitializer(C); 2905 else 2906 return error("Expected a constant"); 2907 } 2908 GlobalInitWorklist.pop_back(); 2909 } 2910 2911 while (!IndirectSymbolInitWorklist.empty()) { 2912 unsigned ValID = IndirectSymbolInitWorklist.back().second; 2913 if (ValID >= ValueList.size()) { 2914 IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back()); 2915 } else { 2916 Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]); 2917 if (!C) 2918 return error("Expected a constant"); 2919 GlobalIndirectSymbol *GIS = IndirectSymbolInitWorklist.back().first; 2920 if (isa<GlobalAlias>(GIS) && C->getType() != GIS->getType()) 2921 return error("Alias and aliasee types don't match"); 2922 GIS->setIndirectSymbol(C); 2923 } 2924 IndirectSymbolInitWorklist.pop_back(); 2925 } 2926 2927 while (!FunctionPrefixWorklist.empty()) { 2928 unsigned ValID = FunctionPrefixWorklist.back().second; 2929 if (ValID >= ValueList.size()) { 2930 FunctionPrefixes.push_back(FunctionPrefixWorklist.back()); 2931 } else { 2932 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2933 FunctionPrefixWorklist.back().first->setPrefixData(C); 2934 else 2935 return error("Expected a constant"); 2936 } 2937 FunctionPrefixWorklist.pop_back(); 2938 } 2939 2940 while (!FunctionPrologueWorklist.empty()) { 2941 unsigned ValID = FunctionPrologueWorklist.back().second; 2942 if (ValID >= ValueList.size()) { 2943 FunctionPrologues.push_back(FunctionPrologueWorklist.back()); 2944 } else { 2945 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2946 FunctionPrologueWorklist.back().first->setPrologueData(C); 2947 else 2948 return error("Expected a constant"); 2949 } 2950 FunctionPrologueWorklist.pop_back(); 2951 } 2952 2953 while (!FunctionPersonalityFnWorklist.empty()) { 2954 unsigned ValID = FunctionPersonalityFnWorklist.back().second; 2955 if (ValID >= ValueList.size()) { 2956 FunctionPersonalityFns.push_back(FunctionPersonalityFnWorklist.back()); 2957 } else { 2958 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2959 FunctionPersonalityFnWorklist.back().first->setPersonalityFn(C); 2960 else 2961 return error("Expected a constant"); 2962 } 2963 FunctionPersonalityFnWorklist.pop_back(); 2964 } 2965 2966 return std::error_code(); 2967 } 2968 2969 static APInt readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { 2970 SmallVector<uint64_t, 8> Words(Vals.size()); 2971 transform(Vals, Words.begin(), 2972 BitcodeReader::decodeSignRotatedValue); 2973 2974 return APInt(TypeBits, Words); 2975 } 2976 2977 std::error_code BitcodeReader::parseConstants() { 2978 if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 2979 return error("Invalid record"); 2980 2981 SmallVector<uint64_t, 64> Record; 2982 2983 // Read all the records for this value table. 2984 Type *CurTy = Type::getInt32Ty(Context); 2985 unsigned NextCstNo = ValueList.size(); 2986 2987 while (true) { 2988 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2989 2990 switch (Entry.Kind) { 2991 case BitstreamEntry::SubBlock: // Handled for us already. 2992 case BitstreamEntry::Error: 2993 return error("Malformed block"); 2994 case BitstreamEntry::EndBlock: 2995 if (NextCstNo != ValueList.size()) 2996 return error("Invalid constant reference"); 2997 2998 // Once all the constants have been read, go through and resolve forward 2999 // references. 3000 ValueList.resolveConstantForwardRefs(); 3001 return std::error_code(); 3002 case BitstreamEntry::Record: 3003 // The interesting case. 3004 break; 3005 } 3006 3007 // Read a record. 3008 Record.clear(); 3009 Type *VoidType = Type::getVoidTy(Context); 3010 Value *V = nullptr; 3011 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 3012 switch (BitCode) { 3013 default: // Default behavior: unknown constant 3014 case bitc::CST_CODE_UNDEF: // UNDEF 3015 V = UndefValue::get(CurTy); 3016 break; 3017 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 3018 if (Record.empty()) 3019 return error("Invalid record"); 3020 if (Record[0] >= TypeList.size() || !TypeList[Record[0]]) 3021 return error("Invalid record"); 3022 if (TypeList[Record[0]] == VoidType) 3023 return error("Invalid constant type"); 3024 CurTy = TypeList[Record[0]]; 3025 continue; // Skip the ValueList manipulation. 3026 case bitc::CST_CODE_NULL: // NULL 3027 V = Constant::getNullValue(CurTy); 3028 break; 3029 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 3030 if (!CurTy->isIntegerTy() || Record.empty()) 3031 return error("Invalid record"); 3032 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); 3033 break; 3034 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 3035 if (!CurTy->isIntegerTy() || Record.empty()) 3036 return error("Invalid record"); 3037 3038 APInt VInt = 3039 readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth()); 3040 V = ConstantInt::get(Context, VInt); 3041 3042 break; 3043 } 3044 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 3045 if (Record.empty()) 3046 return error("Invalid record"); 3047 if (CurTy->isHalfTy()) 3048 V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf, 3049 APInt(16, (uint16_t)Record[0]))); 3050 else if (CurTy->isFloatTy()) 3051 V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle, 3052 APInt(32, (uint32_t)Record[0]))); 3053 else if (CurTy->isDoubleTy()) 3054 V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble, 3055 APInt(64, Record[0]))); 3056 else if (CurTy->isX86_FP80Ty()) { 3057 // Bits are not stored the same way as a normal i80 APInt, compensate. 3058 uint64_t Rearrange[2]; 3059 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 3060 Rearrange[1] = Record[0] >> 48; 3061 V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended, 3062 APInt(80, Rearrange))); 3063 } else if (CurTy->isFP128Ty()) 3064 V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad, 3065 APInt(128, Record))); 3066 else if (CurTy->isPPC_FP128Ty()) 3067 V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble, 3068 APInt(128, Record))); 3069 else 3070 V = UndefValue::get(CurTy); 3071 break; 3072 } 3073 3074 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 3075 if (Record.empty()) 3076 return error("Invalid record"); 3077 3078 unsigned Size = Record.size(); 3079 SmallVector<Constant*, 16> Elts; 3080 3081 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 3082 for (unsigned i = 0; i != Size; ++i) 3083 Elts.push_back(ValueList.getConstantFwdRef(Record[i], 3084 STy->getElementType(i))); 3085 V = ConstantStruct::get(STy, Elts); 3086 } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) { 3087 Type *EltTy = ATy->getElementType(); 3088 for (unsigned i = 0; i != Size; ++i) 3089 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 3090 V = ConstantArray::get(ATy, Elts); 3091 } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) { 3092 Type *EltTy = VTy->getElementType(); 3093 for (unsigned i = 0; i != Size; ++i) 3094 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 3095 V = ConstantVector::get(Elts); 3096 } else { 3097 V = UndefValue::get(CurTy); 3098 } 3099 break; 3100 } 3101 case bitc::CST_CODE_STRING: // STRING: [values] 3102 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 3103 if (Record.empty()) 3104 return error("Invalid record"); 3105 3106 SmallString<16> Elts(Record.begin(), Record.end()); 3107 V = ConstantDataArray::getString(Context, Elts, 3108 BitCode == bitc::CST_CODE_CSTRING); 3109 break; 3110 } 3111 case bitc::CST_CODE_DATA: {// DATA: [n x value] 3112 if (Record.empty()) 3113 return error("Invalid record"); 3114 3115 Type *EltTy = cast<SequentialType>(CurTy)->getElementType(); 3116 if (EltTy->isIntegerTy(8)) { 3117 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); 3118 if (isa<VectorType>(CurTy)) 3119 V = ConstantDataVector::get(Context, Elts); 3120 else 3121 V = ConstantDataArray::get(Context, Elts); 3122 } else if (EltTy->isIntegerTy(16)) { 3123 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 3124 if (isa<VectorType>(CurTy)) 3125 V = ConstantDataVector::get(Context, Elts); 3126 else 3127 V = ConstantDataArray::get(Context, Elts); 3128 } else if (EltTy->isIntegerTy(32)) { 3129 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 3130 if (isa<VectorType>(CurTy)) 3131 V = ConstantDataVector::get(Context, Elts); 3132 else 3133 V = ConstantDataArray::get(Context, Elts); 3134 } else if (EltTy->isIntegerTy(64)) { 3135 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 3136 if (isa<VectorType>(CurTy)) 3137 V = ConstantDataVector::get(Context, Elts); 3138 else 3139 V = ConstantDataArray::get(Context, Elts); 3140 } else if (EltTy->isHalfTy()) { 3141 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 3142 if (isa<VectorType>(CurTy)) 3143 V = ConstantDataVector::getFP(Context, Elts); 3144 else 3145 V = ConstantDataArray::getFP(Context, Elts); 3146 } else if (EltTy->isFloatTy()) { 3147 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 3148 if (isa<VectorType>(CurTy)) 3149 V = ConstantDataVector::getFP(Context, Elts); 3150 else 3151 V = ConstantDataArray::getFP(Context, Elts); 3152 } else if (EltTy->isDoubleTy()) { 3153 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 3154 if (isa<VectorType>(CurTy)) 3155 V = ConstantDataVector::getFP(Context, Elts); 3156 else 3157 V = ConstantDataArray::getFP(Context, Elts); 3158 } else { 3159 return error("Invalid type for value"); 3160 } 3161 break; 3162 } 3163 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 3164 if (Record.size() < 3) 3165 return error("Invalid record"); 3166 int Opc = getDecodedBinaryOpcode(Record[0], CurTy); 3167 if (Opc < 0) { 3168 V = UndefValue::get(CurTy); // Unknown binop. 3169 } else { 3170 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 3171 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy); 3172 unsigned Flags = 0; 3173 if (Record.size() >= 4) { 3174 if (Opc == Instruction::Add || 3175 Opc == Instruction::Sub || 3176 Opc == Instruction::Mul || 3177 Opc == Instruction::Shl) { 3178 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 3179 Flags |= OverflowingBinaryOperator::NoSignedWrap; 3180 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 3181 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 3182 } else if (Opc == Instruction::SDiv || 3183 Opc == Instruction::UDiv || 3184 Opc == Instruction::LShr || 3185 Opc == Instruction::AShr) { 3186 if (Record[3] & (1 << bitc::PEO_EXACT)) 3187 Flags |= SDivOperator::IsExact; 3188 } 3189 } 3190 V = ConstantExpr::get(Opc, LHS, RHS, Flags); 3191 } 3192 break; 3193 } 3194 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 3195 if (Record.size() < 3) 3196 return error("Invalid record"); 3197 int Opc = getDecodedCastOpcode(Record[0]); 3198 if (Opc < 0) { 3199 V = UndefValue::get(CurTy); // Unknown cast. 3200 } else { 3201 Type *OpTy = getTypeByID(Record[1]); 3202 if (!OpTy) 3203 return error("Invalid record"); 3204 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy); 3205 V = UpgradeBitCastExpr(Opc, Op, CurTy); 3206 if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy); 3207 } 3208 break; 3209 } 3210 case bitc::CST_CODE_CE_INBOUNDS_GEP: 3211 case bitc::CST_CODE_CE_GEP: { // CE_GEP: [n x operands] 3212 unsigned OpNum = 0; 3213 Type *PointeeType = nullptr; 3214 if (Record.size() % 2) 3215 PointeeType = getTypeByID(Record[OpNum++]); 3216 SmallVector<Constant*, 16> Elts; 3217 while (OpNum != Record.size()) { 3218 Type *ElTy = getTypeByID(Record[OpNum++]); 3219 if (!ElTy) 3220 return error("Invalid record"); 3221 Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy)); 3222 } 3223 3224 if (PointeeType && 3225 PointeeType != 3226 cast<SequentialType>(Elts[0]->getType()->getScalarType()) 3227 ->getElementType()) 3228 return error("Explicit gep operator type does not match pointee type " 3229 "of pointer operand"); 3230 3231 if (Elts.size() < 1) 3232 return error("Invalid gep with no operands"); 3233 3234 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 3235 V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices, 3236 BitCode == 3237 bitc::CST_CODE_CE_INBOUNDS_GEP); 3238 break; 3239 } 3240 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] 3241 if (Record.size() < 3) 3242 return error("Invalid record"); 3243 3244 Type *SelectorTy = Type::getInt1Ty(Context); 3245 3246 // The selector might be an i1 or an <n x i1> 3247 // Get the type from the ValueList before getting a forward ref. 3248 if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) 3249 if (Value *V = ValueList[Record[0]]) 3250 if (SelectorTy != V->getType()) 3251 SelectorTy = VectorType::get(SelectorTy, VTy->getNumElements()); 3252 3253 V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0], 3254 SelectorTy), 3255 ValueList.getConstantFwdRef(Record[1],CurTy), 3256 ValueList.getConstantFwdRef(Record[2],CurTy)); 3257 break; 3258 } 3259 case bitc::CST_CODE_CE_EXTRACTELT 3260 : { // CE_EXTRACTELT: [opty, opval, opty, opval] 3261 if (Record.size() < 3) 3262 return error("Invalid record"); 3263 VectorType *OpTy = 3264 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 3265 if (!OpTy) 3266 return error("Invalid record"); 3267 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 3268 Constant *Op1 = nullptr; 3269 if (Record.size() == 4) { 3270 Type *IdxTy = getTypeByID(Record[2]); 3271 if (!IdxTy) 3272 return error("Invalid record"); 3273 Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy); 3274 } else // TODO: Remove with llvm 4.0 3275 Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 3276 if (!Op1) 3277 return error("Invalid record"); 3278 V = ConstantExpr::getExtractElement(Op0, Op1); 3279 break; 3280 } 3281 case bitc::CST_CODE_CE_INSERTELT 3282 : { // CE_INSERTELT: [opval, opval, opty, opval] 3283 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 3284 if (Record.size() < 3 || !OpTy) 3285 return error("Invalid record"); 3286 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 3287 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], 3288 OpTy->getElementType()); 3289 Constant *Op2 = nullptr; 3290 if (Record.size() == 4) { 3291 Type *IdxTy = getTypeByID(Record[2]); 3292 if (!IdxTy) 3293 return error("Invalid record"); 3294 Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy); 3295 } else // TODO: Remove with llvm 4.0 3296 Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 3297 if (!Op2) 3298 return error("Invalid record"); 3299 V = ConstantExpr::getInsertElement(Op0, Op1, Op2); 3300 break; 3301 } 3302 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 3303 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 3304 if (Record.size() < 3 || !OpTy) 3305 return error("Invalid record"); 3306 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 3307 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy); 3308 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 3309 OpTy->getNumElements()); 3310 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy); 3311 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 3312 break; 3313 } 3314 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 3315 VectorType *RTy = dyn_cast<VectorType>(CurTy); 3316 VectorType *OpTy = 3317 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 3318 if (Record.size() < 4 || !RTy || !OpTy) 3319 return error("Invalid record"); 3320 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 3321 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 3322 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 3323 RTy->getNumElements()); 3324 Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy); 3325 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 3326 break; 3327 } 3328 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 3329 if (Record.size() < 4) 3330 return error("Invalid record"); 3331 Type *OpTy = getTypeByID(Record[0]); 3332 if (!OpTy) 3333 return error("Invalid record"); 3334 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 3335 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 3336 3337 if (OpTy->isFPOrFPVectorTy()) 3338 V = ConstantExpr::getFCmp(Record[3], Op0, Op1); 3339 else 3340 V = ConstantExpr::getICmp(Record[3], Op0, Op1); 3341 break; 3342 } 3343 // This maintains backward compatibility, pre-asm dialect keywords. 3344 // FIXME: Remove with the 4.0 release. 3345 case bitc::CST_CODE_INLINEASM_OLD: { 3346 if (Record.size() < 2) 3347 return error("Invalid record"); 3348 std::string AsmStr, ConstrStr; 3349 bool HasSideEffects = Record[0] & 1; 3350 bool IsAlignStack = Record[0] >> 1; 3351 unsigned AsmStrSize = Record[1]; 3352 if (2+AsmStrSize >= Record.size()) 3353 return error("Invalid record"); 3354 unsigned ConstStrSize = Record[2+AsmStrSize]; 3355 if (3+AsmStrSize+ConstStrSize > Record.size()) 3356 return error("Invalid record"); 3357 3358 for (unsigned i = 0; i != AsmStrSize; ++i) 3359 AsmStr += (char)Record[2+i]; 3360 for (unsigned i = 0; i != ConstStrSize; ++i) 3361 ConstrStr += (char)Record[3+AsmStrSize+i]; 3362 PointerType *PTy = cast<PointerType>(CurTy); 3363 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 3364 AsmStr, ConstrStr, HasSideEffects, IsAlignStack); 3365 break; 3366 } 3367 // This version adds support for the asm dialect keywords (e.g., 3368 // inteldialect). 3369 case bitc::CST_CODE_INLINEASM: { 3370 if (Record.size() < 2) 3371 return error("Invalid record"); 3372 std::string AsmStr, ConstrStr; 3373 bool HasSideEffects = Record[0] & 1; 3374 bool IsAlignStack = (Record[0] >> 1) & 1; 3375 unsigned AsmDialect = Record[0] >> 2; 3376 unsigned AsmStrSize = Record[1]; 3377 if (2+AsmStrSize >= Record.size()) 3378 return error("Invalid record"); 3379 unsigned ConstStrSize = Record[2+AsmStrSize]; 3380 if (3+AsmStrSize+ConstStrSize > Record.size()) 3381 return error("Invalid record"); 3382 3383 for (unsigned i = 0; i != AsmStrSize; ++i) 3384 AsmStr += (char)Record[2+i]; 3385 for (unsigned i = 0; i != ConstStrSize; ++i) 3386 ConstrStr += (char)Record[3+AsmStrSize+i]; 3387 PointerType *PTy = cast<PointerType>(CurTy); 3388 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 3389 AsmStr, ConstrStr, HasSideEffects, IsAlignStack, 3390 InlineAsm::AsmDialect(AsmDialect)); 3391 break; 3392 } 3393 case bitc::CST_CODE_BLOCKADDRESS:{ 3394 if (Record.size() < 3) 3395 return error("Invalid record"); 3396 Type *FnTy = getTypeByID(Record[0]); 3397 if (!FnTy) 3398 return error("Invalid record"); 3399 Function *Fn = 3400 dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy)); 3401 if (!Fn) 3402 return error("Invalid record"); 3403 3404 // If the function is already parsed we can insert the block address right 3405 // away. 3406 BasicBlock *BB; 3407 unsigned BBID = Record[2]; 3408 if (!BBID) 3409 // Invalid reference to entry block. 3410 return error("Invalid ID"); 3411 if (!Fn->empty()) { 3412 Function::iterator BBI = Fn->begin(), BBE = Fn->end(); 3413 for (size_t I = 0, E = BBID; I != E; ++I) { 3414 if (BBI == BBE) 3415 return error("Invalid ID"); 3416 ++BBI; 3417 } 3418 BB = &*BBI; 3419 } else { 3420 // Otherwise insert a placeholder and remember it so it can be inserted 3421 // when the function is parsed. 3422 auto &FwdBBs = BasicBlockFwdRefs[Fn]; 3423 if (FwdBBs.empty()) 3424 BasicBlockFwdRefQueue.push_back(Fn); 3425 if (FwdBBs.size() < BBID + 1) 3426 FwdBBs.resize(BBID + 1); 3427 if (!FwdBBs[BBID]) 3428 FwdBBs[BBID] = BasicBlock::Create(Context); 3429 BB = FwdBBs[BBID]; 3430 } 3431 V = BlockAddress::get(Fn, BB); 3432 break; 3433 } 3434 } 3435 3436 ValueList.assignValue(V, NextCstNo); 3437 ++NextCstNo; 3438 } 3439 } 3440 3441 std::error_code BitcodeReader::parseUseLists() { 3442 if (Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 3443 return error("Invalid record"); 3444 3445 // Read all the records. 3446 SmallVector<uint64_t, 64> Record; 3447 3448 while (true) { 3449 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 3450 3451 switch (Entry.Kind) { 3452 case BitstreamEntry::SubBlock: // Handled for us already. 3453 case BitstreamEntry::Error: 3454 return error("Malformed block"); 3455 case BitstreamEntry::EndBlock: 3456 return std::error_code(); 3457 case BitstreamEntry::Record: 3458 // The interesting case. 3459 break; 3460 } 3461 3462 // Read a use list record. 3463 Record.clear(); 3464 bool IsBB = false; 3465 switch (Stream.readRecord(Entry.ID, Record)) { 3466 default: // Default behavior: unknown type. 3467 break; 3468 case bitc::USELIST_CODE_BB: 3469 IsBB = true; 3470 LLVM_FALLTHROUGH; 3471 case bitc::USELIST_CODE_DEFAULT: { 3472 unsigned RecordLength = Record.size(); 3473 if (RecordLength < 3) 3474 // Records should have at least an ID and two indexes. 3475 return error("Invalid record"); 3476 unsigned ID = Record.back(); 3477 Record.pop_back(); 3478 3479 Value *V; 3480 if (IsBB) { 3481 assert(ID < FunctionBBs.size() && "Basic block not found"); 3482 V = FunctionBBs[ID]; 3483 } else 3484 V = ValueList[ID]; 3485 unsigned NumUses = 0; 3486 SmallDenseMap<const Use *, unsigned, 16> Order; 3487 for (const Use &U : V->materialized_uses()) { 3488 if (++NumUses > Record.size()) 3489 break; 3490 Order[&U] = Record[NumUses - 1]; 3491 } 3492 if (Order.size() != Record.size() || NumUses > Record.size()) 3493 // Mismatches can happen if the functions are being materialized lazily 3494 // (out-of-order), or a value has been upgraded. 3495 break; 3496 3497 V->sortUseList([&](const Use &L, const Use &R) { 3498 return Order.lookup(&L) < Order.lookup(&R); 3499 }); 3500 break; 3501 } 3502 } 3503 } 3504 } 3505 3506 /// When we see the block for metadata, remember where it is and then skip it. 3507 /// This lets us lazily deserialize the metadata. 3508 std::error_code BitcodeReader::rememberAndSkipMetadata() { 3509 // Save the current stream state. 3510 uint64_t CurBit = Stream.GetCurrentBitNo(); 3511 DeferredMetadataInfo.push_back(CurBit); 3512 3513 // Skip over the block for now. 3514 if (Stream.SkipBlock()) 3515 return error("Invalid record"); 3516 return std::error_code(); 3517 } 3518 3519 std::error_code BitcodeReader::materializeMetadata() { 3520 for (uint64_t BitPos : DeferredMetadataInfo) { 3521 // Move the bit stream to the saved position. 3522 Stream.JumpToBit(BitPos); 3523 if (std::error_code EC = parseMetadata(true)) 3524 return EC; 3525 } 3526 DeferredMetadataInfo.clear(); 3527 return std::error_code(); 3528 } 3529 3530 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; } 3531 3532 /// When we see the block for a function body, remember where it is and then 3533 /// skip it. This lets us lazily deserialize the functions. 3534 std::error_code BitcodeReader::rememberAndSkipFunctionBody() { 3535 // Get the function we are talking about. 3536 if (FunctionsWithBodies.empty()) 3537 return error("Insufficient function protos"); 3538 3539 Function *Fn = FunctionsWithBodies.back(); 3540 FunctionsWithBodies.pop_back(); 3541 3542 // Save the current stream state. 3543 uint64_t CurBit = Stream.GetCurrentBitNo(); 3544 assert( 3545 (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) && 3546 "Mismatch between VST and scanned function offsets"); 3547 DeferredFunctionInfo[Fn] = CurBit; 3548 3549 // Skip over the function block for now. 3550 if (Stream.SkipBlock()) 3551 return error("Invalid record"); 3552 return std::error_code(); 3553 } 3554 3555 std::error_code BitcodeReader::globalCleanup() { 3556 // Patch the initializers for globals and aliases up. 3557 resolveGlobalAndIndirectSymbolInits(); 3558 if (!GlobalInits.empty() || !IndirectSymbolInits.empty()) 3559 return error("Malformed global initializer set"); 3560 3561 // Look for intrinsic functions which need to be upgraded at some point 3562 for (Function &F : *TheModule) { 3563 Function *NewFn; 3564 if (UpgradeIntrinsicFunction(&F, NewFn)) 3565 UpgradedIntrinsics[&F] = NewFn; 3566 else if (auto Remangled = Intrinsic::remangleIntrinsicFunction(&F)) 3567 // Some types could be renamed during loading if several modules are 3568 // loaded in the same LLVMContext (LTO scenario). In this case we should 3569 // remangle intrinsics names as well. 3570 RemangledIntrinsics[&F] = Remangled.getValue(); 3571 } 3572 3573 // Look for global variables which need to be renamed. 3574 for (GlobalVariable &GV : TheModule->globals()) 3575 UpgradeGlobalVariable(&GV); 3576 3577 // Force deallocation of memory for these vectors to favor the client that 3578 // want lazy deserialization. 3579 std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits); 3580 std::vector<std::pair<GlobalIndirectSymbol*, unsigned> >().swap( 3581 IndirectSymbolInits); 3582 return std::error_code(); 3583 } 3584 3585 /// Support for lazy parsing of function bodies. This is required if we 3586 /// either have an old bitcode file without a VST forward declaration record, 3587 /// or if we have an anonymous function being materialized, since anonymous 3588 /// functions do not have a name and are therefore not in the VST. 3589 std::error_code BitcodeReader::rememberAndSkipFunctionBodies() { 3590 Stream.JumpToBit(NextUnreadBit); 3591 3592 if (Stream.AtEndOfStream()) 3593 return error("Could not find function in stream"); 3594 3595 if (!SeenFirstFunctionBody) 3596 return error("Trying to materialize functions before seeing function blocks"); 3597 3598 // An old bitcode file with the symbol table at the end would have 3599 // finished the parse greedily. 3600 assert(SeenValueSymbolTable); 3601 3602 SmallVector<uint64_t, 64> Record; 3603 3604 while (true) { 3605 BitstreamEntry Entry = Stream.advance(); 3606 switch (Entry.Kind) { 3607 default: 3608 return error("Expect SubBlock"); 3609 case BitstreamEntry::SubBlock: 3610 switch (Entry.ID) { 3611 default: 3612 return error("Expect function block"); 3613 case bitc::FUNCTION_BLOCK_ID: 3614 if (std::error_code EC = rememberAndSkipFunctionBody()) 3615 return EC; 3616 NextUnreadBit = Stream.GetCurrentBitNo(); 3617 return std::error_code(); 3618 } 3619 } 3620 } 3621 } 3622 3623 std::error_code BitcodeReader::parseBitcodeVersion() { 3624 if (Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID)) 3625 return error("Invalid record"); 3626 3627 // Read all the records. 3628 SmallVector<uint64_t, 64> Record; 3629 3630 while (true) { 3631 BitstreamEntry Entry = Stream.advance(); 3632 3633 switch (Entry.Kind) { 3634 default: 3635 case BitstreamEntry::Error: 3636 return error("Malformed block"); 3637 case BitstreamEntry::EndBlock: 3638 return std::error_code(); 3639 case BitstreamEntry::Record: 3640 // The interesting case. 3641 break; 3642 } 3643 3644 // Read a record. 3645 Record.clear(); 3646 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 3647 switch (BitCode) { 3648 default: // Default behavior: reject 3649 return error("Invalid value"); 3650 case bitc::IDENTIFICATION_CODE_STRING: { // IDENTIFICATION: [strchr x 3651 // N] 3652 convertToString(Record, 0, ProducerIdentification); 3653 break; 3654 } 3655 case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#] 3656 unsigned epoch = (unsigned)Record[0]; 3657 if (epoch != bitc::BITCODE_CURRENT_EPOCH) { 3658 return error( 3659 Twine("Incompatible epoch: Bitcode '") + Twine(epoch) + 3660 "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'"); 3661 } 3662 } 3663 } 3664 } 3665 } 3666 3667 std::error_code BitcodeReader::parseModule(uint64_t ResumeBit, 3668 bool ShouldLazyLoadMetadata) { 3669 if (ResumeBit) 3670 Stream.JumpToBit(ResumeBit); 3671 else if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 3672 return error("Invalid record"); 3673 3674 SmallVector<uint64_t, 64> Record; 3675 std::vector<std::string> SectionTable; 3676 std::vector<std::string> GCTable; 3677 3678 // Read all the records for this module. 3679 while (true) { 3680 BitstreamEntry Entry = Stream.advance(); 3681 3682 switch (Entry.Kind) { 3683 case BitstreamEntry::Error: 3684 return error("Malformed block"); 3685 case BitstreamEntry::EndBlock: 3686 return globalCleanup(); 3687 3688 case BitstreamEntry::SubBlock: 3689 switch (Entry.ID) { 3690 default: // Skip unknown content. 3691 if (Stream.SkipBlock()) 3692 return error("Invalid record"); 3693 break; 3694 case bitc::BLOCKINFO_BLOCK_ID: 3695 if (Stream.ReadBlockInfoBlock()) 3696 return error("Malformed block"); 3697 break; 3698 case bitc::PARAMATTR_BLOCK_ID: 3699 if (std::error_code EC = parseAttributeBlock()) 3700 return EC; 3701 break; 3702 case bitc::PARAMATTR_GROUP_BLOCK_ID: 3703 if (std::error_code EC = parseAttributeGroupBlock()) 3704 return EC; 3705 break; 3706 case bitc::TYPE_BLOCK_ID_NEW: 3707 if (std::error_code EC = parseTypeTable()) 3708 return EC; 3709 break; 3710 case bitc::VALUE_SYMTAB_BLOCK_ID: 3711 if (!SeenValueSymbolTable) { 3712 // Either this is an old form VST without function index and an 3713 // associated VST forward declaration record (which would have caused 3714 // the VST to be jumped to and parsed before it was encountered 3715 // normally in the stream), or there were no function blocks to 3716 // trigger an earlier parsing of the VST. 3717 assert(VSTOffset == 0 || FunctionsWithBodies.empty()); 3718 if (std::error_code EC = parseValueSymbolTable()) 3719 return EC; 3720 SeenValueSymbolTable = true; 3721 } else { 3722 // We must have had a VST forward declaration record, which caused 3723 // the parser to jump to and parse the VST earlier. 3724 assert(VSTOffset > 0); 3725 if (Stream.SkipBlock()) 3726 return error("Invalid record"); 3727 } 3728 break; 3729 case bitc::CONSTANTS_BLOCK_ID: 3730 if (std::error_code EC = parseConstants()) 3731 return EC; 3732 if (std::error_code EC = resolveGlobalAndIndirectSymbolInits()) 3733 return EC; 3734 break; 3735 case bitc::METADATA_BLOCK_ID: 3736 if (ShouldLazyLoadMetadata && !IsMetadataMaterialized) { 3737 if (std::error_code EC = rememberAndSkipMetadata()) 3738 return EC; 3739 break; 3740 } 3741 assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata"); 3742 if (std::error_code EC = parseMetadata(true)) 3743 return EC; 3744 break; 3745 case bitc::METADATA_KIND_BLOCK_ID: 3746 if (std::error_code EC = parseMetadataKinds()) 3747 return EC; 3748 break; 3749 case bitc::FUNCTION_BLOCK_ID: 3750 // If this is the first function body we've seen, reverse the 3751 // FunctionsWithBodies list. 3752 if (!SeenFirstFunctionBody) { 3753 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 3754 if (std::error_code EC = globalCleanup()) 3755 return EC; 3756 SeenFirstFunctionBody = true; 3757 } 3758 3759 if (VSTOffset > 0) { 3760 // If we have a VST forward declaration record, make sure we 3761 // parse the VST now if we haven't already. It is needed to 3762 // set up the DeferredFunctionInfo vector for lazy reading. 3763 if (!SeenValueSymbolTable) { 3764 if (std::error_code EC = 3765 BitcodeReader::parseValueSymbolTable(VSTOffset)) 3766 return EC; 3767 SeenValueSymbolTable = true; 3768 // Fall through so that we record the NextUnreadBit below. 3769 // This is necessary in case we have an anonymous function that 3770 // is later materialized. Since it will not have a VST entry we 3771 // need to fall back to the lazy parse to find its offset. 3772 } else { 3773 // If we have a VST forward declaration record, but have already 3774 // parsed the VST (just above, when the first function body was 3775 // encountered here), then we are resuming the parse after 3776 // materializing functions. The ResumeBit points to the 3777 // start of the last function block recorded in the 3778 // DeferredFunctionInfo map. Skip it. 3779 if (Stream.SkipBlock()) 3780 return error("Invalid record"); 3781 continue; 3782 } 3783 } 3784 3785 // Support older bitcode files that did not have the function 3786 // index in the VST, nor a VST forward declaration record, as 3787 // well as anonymous functions that do not have VST entries. 3788 // Build the DeferredFunctionInfo vector on the fly. 3789 if (std::error_code EC = rememberAndSkipFunctionBody()) 3790 return EC; 3791 3792 // Suspend parsing when we reach the function bodies. Subsequent 3793 // materialization calls will resume it when necessary. If the bitcode 3794 // file is old, the symbol table will be at the end instead and will not 3795 // have been seen yet. In this case, just finish the parse now. 3796 if (SeenValueSymbolTable) { 3797 NextUnreadBit = Stream.GetCurrentBitNo(); 3798 // After the VST has been parsed, we need to make sure intrinsic name 3799 // are auto-upgraded. 3800 return globalCleanup(); 3801 } 3802 break; 3803 case bitc::USELIST_BLOCK_ID: 3804 if (std::error_code EC = parseUseLists()) 3805 return EC; 3806 break; 3807 case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID: 3808 if (std::error_code EC = parseOperandBundleTags()) 3809 return EC; 3810 break; 3811 } 3812 continue; 3813 3814 case BitstreamEntry::Record: 3815 // The interesting case. 3816 break; 3817 } 3818 3819 // Read a record. 3820 auto BitCode = Stream.readRecord(Entry.ID, Record); 3821 switch (BitCode) { 3822 default: break; // Default behavior, ignore unknown content. 3823 case bitc::MODULE_CODE_VERSION: { // VERSION: [version#] 3824 if (Record.size() < 1) 3825 return error("Invalid record"); 3826 // Only version #0 and #1 are supported so far. 3827 unsigned module_version = Record[0]; 3828 switch (module_version) { 3829 default: 3830 return error("Invalid value"); 3831 case 0: 3832 UseRelativeIDs = false; 3833 break; 3834 case 1: 3835 UseRelativeIDs = true; 3836 break; 3837 } 3838 break; 3839 } 3840 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 3841 std::string S; 3842 if (convertToString(Record, 0, S)) 3843 return error("Invalid record"); 3844 TheModule->setTargetTriple(S); 3845 break; 3846 } 3847 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 3848 std::string S; 3849 if (convertToString(Record, 0, S)) 3850 return error("Invalid record"); 3851 TheModule->setDataLayout(S); 3852 break; 3853 } 3854 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 3855 std::string S; 3856 if (convertToString(Record, 0, S)) 3857 return error("Invalid record"); 3858 TheModule->setModuleInlineAsm(S); 3859 break; 3860 } 3861 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 3862 // FIXME: Remove in 4.0. 3863 std::string S; 3864 if (convertToString(Record, 0, S)) 3865 return error("Invalid record"); 3866 // Ignore value. 3867 break; 3868 } 3869 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 3870 std::string S; 3871 if (convertToString(Record, 0, S)) 3872 return error("Invalid record"); 3873 SectionTable.push_back(S); 3874 break; 3875 } 3876 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 3877 std::string S; 3878 if (convertToString(Record, 0, S)) 3879 return error("Invalid record"); 3880 GCTable.push_back(S); 3881 break; 3882 } 3883 case bitc::MODULE_CODE_COMDAT: { // COMDAT: [selection_kind, name] 3884 if (Record.size() < 2) 3885 return error("Invalid record"); 3886 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]); 3887 unsigned ComdatNameSize = Record[1]; 3888 std::string ComdatName; 3889 ComdatName.reserve(ComdatNameSize); 3890 for (unsigned i = 0; i != ComdatNameSize; ++i) 3891 ComdatName += (char)Record[2 + i]; 3892 Comdat *C = TheModule->getOrInsertComdat(ComdatName); 3893 C->setSelectionKind(SK); 3894 ComdatList.push_back(C); 3895 break; 3896 } 3897 // GLOBALVAR: [pointer type, isconst, initid, 3898 // linkage, alignment, section, visibility, threadlocal, 3899 // unnamed_addr, externally_initialized, dllstorageclass, 3900 // comdat] 3901 case bitc::MODULE_CODE_GLOBALVAR: { 3902 if (Record.size() < 6) 3903 return error("Invalid record"); 3904 Type *Ty = getTypeByID(Record[0]); 3905 if (!Ty) 3906 return error("Invalid record"); 3907 bool isConstant = Record[1] & 1; 3908 bool explicitType = Record[1] & 2; 3909 unsigned AddressSpace; 3910 if (explicitType) { 3911 AddressSpace = Record[1] >> 2; 3912 } else { 3913 if (!Ty->isPointerTy()) 3914 return error("Invalid type for value"); 3915 AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 3916 Ty = cast<PointerType>(Ty)->getElementType(); 3917 } 3918 3919 uint64_t RawLinkage = Record[3]; 3920 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 3921 unsigned Alignment; 3922 if (std::error_code EC = parseAlignmentValue(Record[4], Alignment)) 3923 return EC; 3924 std::string Section; 3925 if (Record[5]) { 3926 if (Record[5]-1 >= SectionTable.size()) 3927 return error("Invalid ID"); 3928 Section = SectionTable[Record[5]-1]; 3929 } 3930 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 3931 // Local linkage must have default visibility. 3932 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage)) 3933 // FIXME: Change to an error if non-default in 4.0. 3934 Visibility = getDecodedVisibility(Record[6]); 3935 3936 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; 3937 if (Record.size() > 7) 3938 TLM = getDecodedThreadLocalMode(Record[7]); 3939 3940 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 3941 if (Record.size() > 8) 3942 UnnamedAddr = getDecodedUnnamedAddrType(Record[8]); 3943 3944 bool ExternallyInitialized = false; 3945 if (Record.size() > 9) 3946 ExternallyInitialized = Record[9]; 3947 3948 GlobalVariable *NewGV = 3949 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, "", nullptr, 3950 TLM, AddressSpace, ExternallyInitialized); 3951 NewGV->setAlignment(Alignment); 3952 if (!Section.empty()) 3953 NewGV->setSection(Section); 3954 NewGV->setVisibility(Visibility); 3955 NewGV->setUnnamedAddr(UnnamedAddr); 3956 3957 if (Record.size() > 10) 3958 NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10])); 3959 else 3960 upgradeDLLImportExportLinkage(NewGV, RawLinkage); 3961 3962 ValueList.push_back(NewGV); 3963 3964 // Remember which value to use for the global initializer. 3965 if (unsigned InitID = Record[2]) 3966 GlobalInits.push_back(std::make_pair(NewGV, InitID-1)); 3967 3968 if (Record.size() > 11) { 3969 if (unsigned ComdatID = Record[11]) { 3970 if (ComdatID > ComdatList.size()) 3971 return error("Invalid global variable comdat ID"); 3972 NewGV->setComdat(ComdatList[ComdatID - 1]); 3973 } 3974 } else if (hasImplicitComdat(RawLinkage)) { 3975 NewGV->setComdat(reinterpret_cast<Comdat *>(1)); 3976 } 3977 3978 break; 3979 } 3980 // FUNCTION: [type, callingconv, isproto, linkage, paramattr, 3981 // alignment, section, visibility, gc, unnamed_addr, 3982 // prologuedata, dllstorageclass, comdat, prefixdata] 3983 case bitc::MODULE_CODE_FUNCTION: { 3984 if (Record.size() < 8) 3985 return error("Invalid record"); 3986 Type *Ty = getTypeByID(Record[0]); 3987 if (!Ty) 3988 return error("Invalid record"); 3989 if (auto *PTy = dyn_cast<PointerType>(Ty)) 3990 Ty = PTy->getElementType(); 3991 auto *FTy = dyn_cast<FunctionType>(Ty); 3992 if (!FTy) 3993 return error("Invalid type for value"); 3994 auto CC = static_cast<CallingConv::ID>(Record[1]); 3995 if (CC & ~CallingConv::MaxID) 3996 return error("Invalid calling convention ID"); 3997 3998 Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage, 3999 "", TheModule); 4000 4001 Func->setCallingConv(CC); 4002 bool isProto = Record[2]; 4003 uint64_t RawLinkage = Record[3]; 4004 Func->setLinkage(getDecodedLinkage(RawLinkage)); 4005 Func->setAttributes(getAttributes(Record[4])); 4006 4007 unsigned Alignment; 4008 if (std::error_code EC = parseAlignmentValue(Record[5], Alignment)) 4009 return EC; 4010 Func->setAlignment(Alignment); 4011 if (Record[6]) { 4012 if (Record[6]-1 >= SectionTable.size()) 4013 return error("Invalid ID"); 4014 Func->setSection(SectionTable[Record[6]-1]); 4015 } 4016 // Local linkage must have default visibility. 4017 if (!Func->hasLocalLinkage()) 4018 // FIXME: Change to an error if non-default in 4.0. 4019 Func->setVisibility(getDecodedVisibility(Record[7])); 4020 if (Record.size() > 8 && Record[8]) { 4021 if (Record[8]-1 >= GCTable.size()) 4022 return error("Invalid ID"); 4023 Func->setGC(GCTable[Record[8] - 1]); 4024 } 4025 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 4026 if (Record.size() > 9) 4027 UnnamedAddr = getDecodedUnnamedAddrType(Record[9]); 4028 Func->setUnnamedAddr(UnnamedAddr); 4029 if (Record.size() > 10 && Record[10] != 0) 4030 FunctionPrologues.push_back(std::make_pair(Func, Record[10]-1)); 4031 4032 if (Record.size() > 11) 4033 Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11])); 4034 else 4035 upgradeDLLImportExportLinkage(Func, RawLinkage); 4036 4037 if (Record.size() > 12) { 4038 if (unsigned ComdatID = Record[12]) { 4039 if (ComdatID > ComdatList.size()) 4040 return error("Invalid function comdat ID"); 4041 Func->setComdat(ComdatList[ComdatID - 1]); 4042 } 4043 } else if (hasImplicitComdat(RawLinkage)) { 4044 Func->setComdat(reinterpret_cast<Comdat *>(1)); 4045 } 4046 4047 if (Record.size() > 13 && Record[13] != 0) 4048 FunctionPrefixes.push_back(std::make_pair(Func, Record[13]-1)); 4049 4050 if (Record.size() > 14 && Record[14] != 0) 4051 FunctionPersonalityFns.push_back(std::make_pair(Func, Record[14] - 1)); 4052 4053 ValueList.push_back(Func); 4054 4055 // If this is a function with a body, remember the prototype we are 4056 // creating now, so that we can match up the body with them later. 4057 if (!isProto) { 4058 Func->setIsMaterializable(true); 4059 FunctionsWithBodies.push_back(Func); 4060 DeferredFunctionInfo[Func] = 0; 4061 } 4062 break; 4063 } 4064 // ALIAS: [alias type, addrspace, aliasee val#, linkage] 4065 // ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, dllstorageclass] 4066 // IFUNC: [alias type, addrspace, aliasee val#, linkage, visibility, dllstorageclass] 4067 case bitc::MODULE_CODE_IFUNC: 4068 case bitc::MODULE_CODE_ALIAS: 4069 case bitc::MODULE_CODE_ALIAS_OLD: { 4070 bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD; 4071 if (Record.size() < (3 + (unsigned)NewRecord)) 4072 return error("Invalid record"); 4073 unsigned OpNum = 0; 4074 Type *Ty = getTypeByID(Record[OpNum++]); 4075 if (!Ty) 4076 return error("Invalid record"); 4077 4078 unsigned AddrSpace; 4079 if (!NewRecord) { 4080 auto *PTy = dyn_cast<PointerType>(Ty); 4081 if (!PTy) 4082 return error("Invalid type for value"); 4083 Ty = PTy->getElementType(); 4084 AddrSpace = PTy->getAddressSpace(); 4085 } else { 4086 AddrSpace = Record[OpNum++]; 4087 } 4088 4089 auto Val = Record[OpNum++]; 4090 auto Linkage = Record[OpNum++]; 4091 GlobalIndirectSymbol *NewGA; 4092 if (BitCode == bitc::MODULE_CODE_ALIAS || 4093 BitCode == bitc::MODULE_CODE_ALIAS_OLD) 4094 NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), 4095 "", TheModule); 4096 else 4097 NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), 4098 "", nullptr, TheModule); 4099 // Old bitcode files didn't have visibility field. 4100 // Local linkage must have default visibility. 4101 if (OpNum != Record.size()) { 4102 auto VisInd = OpNum++; 4103 if (!NewGA->hasLocalLinkage()) 4104 // FIXME: Change to an error if non-default in 4.0. 4105 NewGA->setVisibility(getDecodedVisibility(Record[VisInd])); 4106 } 4107 if (OpNum != Record.size()) 4108 NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++])); 4109 else 4110 upgradeDLLImportExportLinkage(NewGA, Linkage); 4111 if (OpNum != Record.size()) 4112 NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++])); 4113 if (OpNum != Record.size()) 4114 NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++])); 4115 ValueList.push_back(NewGA); 4116 IndirectSymbolInits.push_back(std::make_pair(NewGA, Val)); 4117 break; 4118 } 4119 /// MODULE_CODE_PURGEVALS: [numvals] 4120 case bitc::MODULE_CODE_PURGEVALS: 4121 // Trim down the value list to the specified size. 4122 if (Record.size() < 1 || Record[0] > ValueList.size()) 4123 return error("Invalid record"); 4124 ValueList.shrinkTo(Record[0]); 4125 break; 4126 /// MODULE_CODE_VSTOFFSET: [offset] 4127 case bitc::MODULE_CODE_VSTOFFSET: 4128 if (Record.size() < 1) 4129 return error("Invalid record"); 4130 VSTOffset = Record[0]; 4131 break; 4132 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 4133 case bitc::MODULE_CODE_SOURCE_FILENAME: 4134 SmallString<128> ValueName; 4135 if (convertToString(Record, 0, ValueName)) 4136 return error("Invalid record"); 4137 TheModule->setSourceFileName(ValueName); 4138 break; 4139 } 4140 Record.clear(); 4141 } 4142 } 4143 4144 /// Helper to read the header common to all bitcode files. 4145 static bool hasValidBitcodeHeader(BitstreamCursor &Stream) { 4146 // Sniff for the signature. 4147 if (!Stream.canSkipToPos(4) || 4148 Stream.Read(8) != 'B' || 4149 Stream.Read(8) != 'C' || 4150 Stream.Read(4) != 0x0 || 4151 Stream.Read(4) != 0xC || 4152 Stream.Read(4) != 0xE || 4153 Stream.Read(4) != 0xD) 4154 return false; 4155 return true; 4156 } 4157 4158 std::error_code BitcodeReader::parseBitcodeInto(Module *M, 4159 bool ShouldLazyLoadMetadata) { 4160 TheModule = M; 4161 4162 if (std::error_code EC = initStream()) 4163 return EC; 4164 4165 // Sniff for the signature. 4166 if (!hasValidBitcodeHeader(Stream)) 4167 return error("Invalid bitcode signature"); 4168 4169 // We expect a number of well-defined blocks, though we don't necessarily 4170 // need to understand them all. 4171 while (true) { 4172 if (Stream.AtEndOfStream()) { 4173 // We didn't really read a proper Module. 4174 return error("Malformed IR file"); 4175 } 4176 4177 BitstreamEntry Entry = 4178 Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs); 4179 4180 if (Entry.Kind != BitstreamEntry::SubBlock) 4181 return error("Malformed block"); 4182 4183 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) { 4184 parseBitcodeVersion(); 4185 continue; 4186 } 4187 4188 if (Entry.ID == bitc::MODULE_BLOCK_ID) 4189 return parseModule(0, ShouldLazyLoadMetadata); 4190 4191 if (Stream.SkipBlock()) 4192 return error("Invalid record"); 4193 } 4194 } 4195 4196 ErrorOr<std::string> BitcodeReader::parseModuleTriple() { 4197 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 4198 return error("Invalid record"); 4199 4200 SmallVector<uint64_t, 64> Record; 4201 4202 std::string Triple; 4203 4204 // Read all the records for this module. 4205 while (true) { 4206 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 4207 4208 switch (Entry.Kind) { 4209 case BitstreamEntry::SubBlock: // Handled for us already. 4210 case BitstreamEntry::Error: 4211 return error("Malformed block"); 4212 case BitstreamEntry::EndBlock: 4213 return Triple; 4214 case BitstreamEntry::Record: 4215 // The interesting case. 4216 break; 4217 } 4218 4219 // Read a record. 4220 switch (Stream.readRecord(Entry.ID, Record)) { 4221 default: break; // Default behavior, ignore unknown content. 4222 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 4223 std::string S; 4224 if (convertToString(Record, 0, S)) 4225 return error("Invalid record"); 4226 Triple = S; 4227 break; 4228 } 4229 } 4230 Record.clear(); 4231 } 4232 llvm_unreachable("Exit infinite loop"); 4233 } 4234 4235 ErrorOr<std::string> BitcodeReader::parseTriple() { 4236 if (std::error_code EC = initStream()) 4237 return EC; 4238 4239 // Sniff for the signature. 4240 if (!hasValidBitcodeHeader(Stream)) 4241 return error("Invalid bitcode signature"); 4242 4243 // We expect a number of well-defined blocks, though we don't necessarily 4244 // need to understand them all. 4245 while (true) { 4246 BitstreamEntry Entry = Stream.advance(); 4247 4248 switch (Entry.Kind) { 4249 case BitstreamEntry::Error: 4250 return error("Malformed block"); 4251 case BitstreamEntry::EndBlock: 4252 return std::error_code(); 4253 4254 case BitstreamEntry::SubBlock: 4255 if (Entry.ID == bitc::MODULE_BLOCK_ID) 4256 return parseModuleTriple(); 4257 4258 // Ignore other sub-blocks. 4259 if (Stream.SkipBlock()) 4260 return error("Malformed block"); 4261 continue; 4262 4263 case BitstreamEntry::Record: 4264 Stream.skipRecord(Entry.ID); 4265 continue; 4266 } 4267 } 4268 } 4269 4270 ErrorOr<std::string> BitcodeReader::parseIdentificationBlock() { 4271 if (std::error_code EC = initStream()) 4272 return EC; 4273 4274 // Sniff for the signature. 4275 if (!hasValidBitcodeHeader(Stream)) 4276 return error("Invalid bitcode signature"); 4277 4278 // We expect a number of well-defined blocks, though we don't necessarily 4279 // need to understand them all. 4280 while (true) { 4281 BitstreamEntry Entry = Stream.advance(); 4282 switch (Entry.Kind) { 4283 case BitstreamEntry::Error: 4284 return error("Malformed block"); 4285 case BitstreamEntry::EndBlock: 4286 return std::error_code(); 4287 4288 case BitstreamEntry::SubBlock: 4289 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) { 4290 if (std::error_code EC = parseBitcodeVersion()) 4291 return EC; 4292 return ProducerIdentification; 4293 } 4294 // Ignore other sub-blocks. 4295 if (Stream.SkipBlock()) 4296 return error("Malformed block"); 4297 continue; 4298 case BitstreamEntry::Record: 4299 Stream.skipRecord(Entry.ID); 4300 continue; 4301 } 4302 } 4303 } 4304 4305 std::error_code BitcodeReader::parseGlobalObjectAttachment( 4306 GlobalObject &GO, ArrayRef<uint64_t> Record) { 4307 assert(Record.size() % 2 == 0); 4308 for (unsigned I = 0, E = Record.size(); I != E; I += 2) { 4309 auto K = MDKindMap.find(Record[I]); 4310 if (K == MDKindMap.end()) 4311 return error("Invalid ID"); 4312 MDNode *MD = MetadataList.getMDNodeFwdRefOrNull(Record[I + 1]); 4313 if (!MD) 4314 return error("Invalid metadata attachment"); 4315 GO.addMetadata(K->second, *MD); 4316 } 4317 return std::error_code(); 4318 } 4319 4320 ErrorOr<bool> BitcodeReader::hasObjCCategory() { 4321 if (std::error_code EC = initStream()) 4322 return EC; 4323 4324 // Sniff for the signature. 4325 if (!hasValidBitcodeHeader(Stream)) 4326 return error("Invalid bitcode signature"); 4327 4328 // We expect a number of well-defined blocks, though we don't necessarily 4329 // need to understand them all. 4330 while (true) { 4331 BitstreamEntry Entry = Stream.advance(); 4332 4333 switch (Entry.Kind) { 4334 case BitstreamEntry::Error: 4335 return error("Malformed block"); 4336 case BitstreamEntry::EndBlock: 4337 return std::error_code(); 4338 4339 case BitstreamEntry::SubBlock: 4340 if (Entry.ID == bitc::MODULE_BLOCK_ID) 4341 return hasObjCCategoryInModule(); 4342 4343 // Ignore other sub-blocks. 4344 if (Stream.SkipBlock()) 4345 return error("Malformed block"); 4346 continue; 4347 4348 case BitstreamEntry::Record: 4349 Stream.skipRecord(Entry.ID); 4350 continue; 4351 } 4352 } 4353 } 4354 4355 ErrorOr<bool> BitcodeReader::hasObjCCategoryInModule() { 4356 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 4357 return error("Invalid record"); 4358 4359 SmallVector<uint64_t, 64> Record; 4360 // Read all the records for this module. 4361 4362 while (true) { 4363 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 4364 4365 switch (Entry.Kind) { 4366 case BitstreamEntry::SubBlock: // Handled for us already. 4367 case BitstreamEntry::Error: 4368 return error("Malformed block"); 4369 case BitstreamEntry::EndBlock: 4370 return false; 4371 case BitstreamEntry::Record: 4372 // The interesting case. 4373 break; 4374 } 4375 4376 // Read a record. 4377 switch (Stream.readRecord(Entry.ID, Record)) { 4378 default: 4379 break; // Default behavior, ignore unknown content. 4380 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 4381 std::string S; 4382 if (convertToString(Record, 0, S)) 4383 return error("Invalid record"); 4384 // Check for the i386 and other (x86_64, ARM) conventions 4385 if (S.find("__DATA, __objc_catlist") != std::string::npos || 4386 S.find("__OBJC,__category") != std::string::npos) 4387 return true; 4388 break; 4389 } 4390 } 4391 Record.clear(); 4392 } 4393 llvm_unreachable("Exit infinite loop"); 4394 } 4395 4396 /// Parse metadata attachments. 4397 std::error_code BitcodeReader::parseMetadataAttachment(Function &F) { 4398 if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID)) 4399 return error("Invalid record"); 4400 4401 SmallVector<uint64_t, 64> Record; 4402 4403 while (true) { 4404 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 4405 4406 switch (Entry.Kind) { 4407 case BitstreamEntry::SubBlock: // Handled for us already. 4408 case BitstreamEntry::Error: 4409 return error("Malformed block"); 4410 case BitstreamEntry::EndBlock: 4411 return std::error_code(); 4412 case BitstreamEntry::Record: 4413 // The interesting case. 4414 break; 4415 } 4416 4417 // Read a metadata attachment record. 4418 Record.clear(); 4419 switch (Stream.readRecord(Entry.ID, Record)) { 4420 default: // Default behavior: ignore. 4421 break; 4422 case bitc::METADATA_ATTACHMENT: { 4423 unsigned RecordLength = Record.size(); 4424 if (Record.empty()) 4425 return error("Invalid record"); 4426 if (RecordLength % 2 == 0) { 4427 // A function attachment. 4428 if (std::error_code EC = parseGlobalObjectAttachment(F, Record)) 4429 return EC; 4430 continue; 4431 } 4432 4433 // An instruction attachment. 4434 Instruction *Inst = InstructionList[Record[0]]; 4435 for (unsigned i = 1; i != RecordLength; i = i+2) { 4436 unsigned Kind = Record[i]; 4437 DenseMap<unsigned, unsigned>::iterator I = 4438 MDKindMap.find(Kind); 4439 if (I == MDKindMap.end()) 4440 return error("Invalid ID"); 4441 Metadata *Node = MetadataList.getMetadataFwdRef(Record[i + 1]); 4442 if (isa<LocalAsMetadata>(Node)) 4443 // Drop the attachment. This used to be legal, but there's no 4444 // upgrade path. 4445 break; 4446 MDNode *MD = dyn_cast_or_null<MDNode>(Node); 4447 if (!MD) 4448 return error("Invalid metadata attachment"); 4449 4450 if (HasSeenOldLoopTags && I->second == LLVMContext::MD_loop) 4451 MD = upgradeInstructionLoopAttachment(*MD); 4452 4453 if (I->second == LLVMContext::MD_tbaa) { 4454 assert(!MD->isTemporary() && "should load MDs before attachments"); 4455 MD = UpgradeTBAANode(*MD); 4456 } 4457 Inst->setMetadata(I->second, MD); 4458 } 4459 break; 4460 } 4461 } 4462 } 4463 } 4464 4465 static std::error_code typeCheckLoadStoreInst(Type *ValType, Type *PtrType) { 4466 LLVMContext &Context = PtrType->getContext(); 4467 if (!isa<PointerType>(PtrType)) 4468 return error(Context, "Load/Store operand is not a pointer type"); 4469 Type *ElemType = cast<PointerType>(PtrType)->getElementType(); 4470 4471 if (ValType && ValType != ElemType) 4472 return error(Context, "Explicit load/store type does not match pointee " 4473 "type of pointer operand"); 4474 if (!PointerType::isLoadableOrStorableType(ElemType)) 4475 return error(Context, "Cannot load/store from pointer"); 4476 return std::error_code(); 4477 } 4478 4479 /// Lazily parse the specified function body block. 4480 std::error_code BitcodeReader::parseFunctionBody(Function *F) { 4481 if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 4482 return error("Invalid record"); 4483 4484 // Unexpected unresolved metadata when parsing function. 4485 if (MetadataList.hasFwdRefs()) 4486 return error("Invalid function metadata: incoming forward references"); 4487 4488 InstructionList.clear(); 4489 unsigned ModuleValueListSize = ValueList.size(); 4490 unsigned ModuleMetadataListSize = MetadataList.size(); 4491 4492 // Add all the function arguments to the value table. 4493 for (Argument &I : F->args()) 4494 ValueList.push_back(&I); 4495 4496 unsigned NextValueNo = ValueList.size(); 4497 BasicBlock *CurBB = nullptr; 4498 unsigned CurBBNo = 0; 4499 4500 DebugLoc LastLoc; 4501 auto getLastInstruction = [&]() -> Instruction * { 4502 if (CurBB && !CurBB->empty()) 4503 return &CurBB->back(); 4504 else if (CurBBNo && FunctionBBs[CurBBNo - 1] && 4505 !FunctionBBs[CurBBNo - 1]->empty()) 4506 return &FunctionBBs[CurBBNo - 1]->back(); 4507 return nullptr; 4508 }; 4509 4510 std::vector<OperandBundleDef> OperandBundles; 4511 4512 // Read all the records. 4513 SmallVector<uint64_t, 64> Record; 4514 4515 while (true) { 4516 BitstreamEntry Entry = Stream.advance(); 4517 4518 switch (Entry.Kind) { 4519 case BitstreamEntry::Error: 4520 return error("Malformed block"); 4521 case BitstreamEntry::EndBlock: 4522 goto OutOfRecordLoop; 4523 4524 case BitstreamEntry::SubBlock: 4525 switch (Entry.ID) { 4526 default: // Skip unknown content. 4527 if (Stream.SkipBlock()) 4528 return error("Invalid record"); 4529 break; 4530 case bitc::CONSTANTS_BLOCK_ID: 4531 if (std::error_code EC = parseConstants()) 4532 return EC; 4533 NextValueNo = ValueList.size(); 4534 break; 4535 case bitc::VALUE_SYMTAB_BLOCK_ID: 4536 if (std::error_code EC = parseValueSymbolTable()) 4537 return EC; 4538 break; 4539 case bitc::METADATA_ATTACHMENT_ID: 4540 if (std::error_code EC = parseMetadataAttachment(*F)) 4541 return EC; 4542 break; 4543 case bitc::METADATA_BLOCK_ID: 4544 if (std::error_code EC = parseMetadata()) 4545 return EC; 4546 break; 4547 case bitc::USELIST_BLOCK_ID: 4548 if (std::error_code EC = parseUseLists()) 4549 return EC; 4550 break; 4551 } 4552 continue; 4553 4554 case BitstreamEntry::Record: 4555 // The interesting case. 4556 break; 4557 } 4558 4559 // Read a record. 4560 Record.clear(); 4561 Instruction *I = nullptr; 4562 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 4563 switch (BitCode) { 4564 default: // Default behavior: reject 4565 return error("Invalid value"); 4566 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks] 4567 if (Record.size() < 1 || Record[0] == 0) 4568 return error("Invalid record"); 4569 // Create all the basic blocks for the function. 4570 FunctionBBs.resize(Record[0]); 4571 4572 // See if anything took the address of blocks in this function. 4573 auto BBFRI = BasicBlockFwdRefs.find(F); 4574 if (BBFRI == BasicBlockFwdRefs.end()) { 4575 for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i) 4576 FunctionBBs[i] = BasicBlock::Create(Context, "", F); 4577 } else { 4578 auto &BBRefs = BBFRI->second; 4579 // Check for invalid basic block references. 4580 if (BBRefs.size() > FunctionBBs.size()) 4581 return error("Invalid ID"); 4582 assert(!BBRefs.empty() && "Unexpected empty array"); 4583 assert(!BBRefs.front() && "Invalid reference to entry block"); 4584 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E; 4585 ++I) 4586 if (I < RE && BBRefs[I]) { 4587 BBRefs[I]->insertInto(F); 4588 FunctionBBs[I] = BBRefs[I]; 4589 } else { 4590 FunctionBBs[I] = BasicBlock::Create(Context, "", F); 4591 } 4592 4593 // Erase from the table. 4594 BasicBlockFwdRefs.erase(BBFRI); 4595 } 4596 4597 CurBB = FunctionBBs[0]; 4598 continue; 4599 } 4600 4601 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 4602 // This record indicates that the last instruction is at the same 4603 // location as the previous instruction with a location. 4604 I = getLastInstruction(); 4605 4606 if (!I) 4607 return error("Invalid record"); 4608 I->setDebugLoc(LastLoc); 4609 I = nullptr; 4610 continue; 4611 4612 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 4613 I = getLastInstruction(); 4614 if (!I || Record.size() < 4) 4615 return error("Invalid record"); 4616 4617 unsigned Line = Record[0], Col = Record[1]; 4618 unsigned ScopeID = Record[2], IAID = Record[3]; 4619 4620 MDNode *Scope = nullptr, *IA = nullptr; 4621 if (ScopeID) { 4622 Scope = MetadataList.getMDNodeFwdRefOrNull(ScopeID - 1); 4623 if (!Scope) 4624 return error("Invalid record"); 4625 } 4626 if (IAID) { 4627 IA = MetadataList.getMDNodeFwdRefOrNull(IAID - 1); 4628 if (!IA) 4629 return error("Invalid record"); 4630 } 4631 LastLoc = DebugLoc::get(Line, Col, Scope, IA); 4632 I->setDebugLoc(LastLoc); 4633 I = nullptr; 4634 continue; 4635 } 4636 4637 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 4638 unsigned OpNum = 0; 4639 Value *LHS, *RHS; 4640 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 4641 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 4642 OpNum+1 > Record.size()) 4643 return error("Invalid record"); 4644 4645 int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 4646 if (Opc == -1) 4647 return error("Invalid record"); 4648 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 4649 InstructionList.push_back(I); 4650 if (OpNum < Record.size()) { 4651 if (Opc == Instruction::Add || 4652 Opc == Instruction::Sub || 4653 Opc == Instruction::Mul || 4654 Opc == Instruction::Shl) { 4655 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 4656 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 4657 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 4658 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 4659 } else if (Opc == Instruction::SDiv || 4660 Opc == Instruction::UDiv || 4661 Opc == Instruction::LShr || 4662 Opc == Instruction::AShr) { 4663 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 4664 cast<BinaryOperator>(I)->setIsExact(true); 4665 } else if (isa<FPMathOperator>(I)) { 4666 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 4667 if (FMF.any()) 4668 I->setFastMathFlags(FMF); 4669 } 4670 4671 } 4672 break; 4673 } 4674 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 4675 unsigned OpNum = 0; 4676 Value *Op; 4677 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4678 OpNum+2 != Record.size()) 4679 return error("Invalid record"); 4680 4681 Type *ResTy = getTypeByID(Record[OpNum]); 4682 int Opc = getDecodedCastOpcode(Record[OpNum + 1]); 4683 if (Opc == -1 || !ResTy) 4684 return error("Invalid record"); 4685 Instruction *Temp = nullptr; 4686 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) { 4687 if (Temp) { 4688 InstructionList.push_back(Temp); 4689 CurBB->getInstList().push_back(Temp); 4690 } 4691 } else { 4692 auto CastOp = (Instruction::CastOps)Opc; 4693 if (!CastInst::castIsValid(CastOp, Op, ResTy)) 4694 return error("Invalid cast"); 4695 I = CastInst::Create(CastOp, Op, ResTy); 4696 } 4697 InstructionList.push_back(I); 4698 break; 4699 } 4700 case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD: 4701 case bitc::FUNC_CODE_INST_GEP_OLD: 4702 case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands] 4703 unsigned OpNum = 0; 4704 4705 Type *Ty; 4706 bool InBounds; 4707 4708 if (BitCode == bitc::FUNC_CODE_INST_GEP) { 4709 InBounds = Record[OpNum++]; 4710 Ty = getTypeByID(Record[OpNum++]); 4711 } else { 4712 InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD; 4713 Ty = nullptr; 4714 } 4715 4716 Value *BasePtr; 4717 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr)) 4718 return error("Invalid record"); 4719 4720 if (!Ty) 4721 Ty = cast<SequentialType>(BasePtr->getType()->getScalarType()) 4722 ->getElementType(); 4723 else if (Ty != 4724 cast<SequentialType>(BasePtr->getType()->getScalarType()) 4725 ->getElementType()) 4726 return error( 4727 "Explicit gep type does not match pointee type of pointer operand"); 4728 4729 SmallVector<Value*, 16> GEPIdx; 4730 while (OpNum != Record.size()) { 4731 Value *Op; 4732 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4733 return error("Invalid record"); 4734 GEPIdx.push_back(Op); 4735 } 4736 4737 I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx); 4738 4739 InstructionList.push_back(I); 4740 if (InBounds) 4741 cast<GetElementPtrInst>(I)->setIsInBounds(true); 4742 break; 4743 } 4744 4745 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 4746 // EXTRACTVAL: [opty, opval, n x indices] 4747 unsigned OpNum = 0; 4748 Value *Agg; 4749 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 4750 return error("Invalid record"); 4751 4752 unsigned RecSize = Record.size(); 4753 if (OpNum == RecSize) 4754 return error("EXTRACTVAL: Invalid instruction with 0 indices"); 4755 4756 SmallVector<unsigned, 4> EXTRACTVALIdx; 4757 Type *CurTy = Agg->getType(); 4758 for (; OpNum != RecSize; ++OpNum) { 4759 bool IsArray = CurTy->isArrayTy(); 4760 bool IsStruct = CurTy->isStructTy(); 4761 uint64_t Index = Record[OpNum]; 4762 4763 if (!IsStruct && !IsArray) 4764 return error("EXTRACTVAL: Invalid type"); 4765 if ((unsigned)Index != Index) 4766 return error("Invalid value"); 4767 if (IsStruct && Index >= CurTy->subtypes().size()) 4768 return error("EXTRACTVAL: Invalid struct index"); 4769 if (IsArray && Index >= CurTy->getArrayNumElements()) 4770 return error("EXTRACTVAL: Invalid array index"); 4771 EXTRACTVALIdx.push_back((unsigned)Index); 4772 4773 if (IsStruct) 4774 CurTy = CurTy->subtypes()[Index]; 4775 else 4776 CurTy = CurTy->subtypes()[0]; 4777 } 4778 4779 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 4780 InstructionList.push_back(I); 4781 break; 4782 } 4783 4784 case bitc::FUNC_CODE_INST_INSERTVAL: { 4785 // INSERTVAL: [opty, opval, opty, opval, n x indices] 4786 unsigned OpNum = 0; 4787 Value *Agg; 4788 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 4789 return error("Invalid record"); 4790 Value *Val; 4791 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 4792 return error("Invalid record"); 4793 4794 unsigned RecSize = Record.size(); 4795 if (OpNum == RecSize) 4796 return error("INSERTVAL: Invalid instruction with 0 indices"); 4797 4798 SmallVector<unsigned, 4> INSERTVALIdx; 4799 Type *CurTy = Agg->getType(); 4800 for (; OpNum != RecSize; ++OpNum) { 4801 bool IsArray = CurTy->isArrayTy(); 4802 bool IsStruct = CurTy->isStructTy(); 4803 uint64_t Index = Record[OpNum]; 4804 4805 if (!IsStruct && !IsArray) 4806 return error("INSERTVAL: Invalid type"); 4807 if ((unsigned)Index != Index) 4808 return error("Invalid value"); 4809 if (IsStruct && Index >= CurTy->subtypes().size()) 4810 return error("INSERTVAL: Invalid struct index"); 4811 if (IsArray && Index >= CurTy->getArrayNumElements()) 4812 return error("INSERTVAL: Invalid array index"); 4813 4814 INSERTVALIdx.push_back((unsigned)Index); 4815 if (IsStruct) 4816 CurTy = CurTy->subtypes()[Index]; 4817 else 4818 CurTy = CurTy->subtypes()[0]; 4819 } 4820 4821 if (CurTy != Val->getType()) 4822 return error("Inserted value type doesn't match aggregate type"); 4823 4824 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 4825 InstructionList.push_back(I); 4826 break; 4827 } 4828 4829 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 4830 // obsolete form of select 4831 // handles select i1 ... in old bitcode 4832 unsigned OpNum = 0; 4833 Value *TrueVal, *FalseVal, *Cond; 4834 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 4835 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 4836 popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond)) 4837 return error("Invalid record"); 4838 4839 I = SelectInst::Create(Cond, TrueVal, FalseVal); 4840 InstructionList.push_back(I); 4841 break; 4842 } 4843 4844 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 4845 // new form of select 4846 // handles select i1 or select [N x i1] 4847 unsigned OpNum = 0; 4848 Value *TrueVal, *FalseVal, *Cond; 4849 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 4850 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 4851 getValueTypePair(Record, OpNum, NextValueNo, Cond)) 4852 return error("Invalid record"); 4853 4854 // select condition can be either i1 or [N x i1] 4855 if (VectorType* vector_type = 4856 dyn_cast<VectorType>(Cond->getType())) { 4857 // expect <n x i1> 4858 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 4859 return error("Invalid type for value"); 4860 } else { 4861 // expect i1 4862 if (Cond->getType() != Type::getInt1Ty(Context)) 4863 return error("Invalid type for value"); 4864 } 4865 4866 I = SelectInst::Create(Cond, TrueVal, FalseVal); 4867 InstructionList.push_back(I); 4868 break; 4869 } 4870 4871 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 4872 unsigned OpNum = 0; 4873 Value *Vec, *Idx; 4874 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 4875 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 4876 return error("Invalid record"); 4877 if (!Vec->getType()->isVectorTy()) 4878 return error("Invalid type for value"); 4879 I = ExtractElementInst::Create(Vec, Idx); 4880 InstructionList.push_back(I); 4881 break; 4882 } 4883 4884 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 4885 unsigned OpNum = 0; 4886 Value *Vec, *Elt, *Idx; 4887 if (getValueTypePair(Record, OpNum, NextValueNo, Vec)) 4888 return error("Invalid record"); 4889 if (!Vec->getType()->isVectorTy()) 4890 return error("Invalid type for value"); 4891 if (popValue(Record, OpNum, NextValueNo, 4892 cast<VectorType>(Vec->getType())->getElementType(), Elt) || 4893 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 4894 return error("Invalid record"); 4895 I = InsertElementInst::Create(Vec, Elt, Idx); 4896 InstructionList.push_back(I); 4897 break; 4898 } 4899 4900 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 4901 unsigned OpNum = 0; 4902 Value *Vec1, *Vec2, *Mask; 4903 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) || 4904 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2)) 4905 return error("Invalid record"); 4906 4907 if (getValueTypePair(Record, OpNum, NextValueNo, Mask)) 4908 return error("Invalid record"); 4909 if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy()) 4910 return error("Invalid type for value"); 4911 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 4912 InstructionList.push_back(I); 4913 break; 4914 } 4915 4916 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 4917 // Old form of ICmp/FCmp returning bool 4918 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 4919 // both legal on vectors but had different behaviour. 4920 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 4921 // FCmp/ICmp returning bool or vector of bool 4922 4923 unsigned OpNum = 0; 4924 Value *LHS, *RHS; 4925 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 4926 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS)) 4927 return error("Invalid record"); 4928 4929 unsigned PredVal = Record[OpNum]; 4930 bool IsFP = LHS->getType()->isFPOrFPVectorTy(); 4931 FastMathFlags FMF; 4932 if (IsFP && Record.size() > OpNum+1) 4933 FMF = getDecodedFastMathFlags(Record[++OpNum]); 4934 4935 if (OpNum+1 != Record.size()) 4936 return error("Invalid record"); 4937 4938 if (LHS->getType()->isFPOrFPVectorTy()) 4939 I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS); 4940 else 4941 I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS); 4942 4943 if (FMF.any()) 4944 I->setFastMathFlags(FMF); 4945 InstructionList.push_back(I); 4946 break; 4947 } 4948 4949 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 4950 { 4951 unsigned Size = Record.size(); 4952 if (Size == 0) { 4953 I = ReturnInst::Create(Context); 4954 InstructionList.push_back(I); 4955 break; 4956 } 4957 4958 unsigned OpNum = 0; 4959 Value *Op = nullptr; 4960 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4961 return error("Invalid record"); 4962 if (OpNum != Record.size()) 4963 return error("Invalid record"); 4964 4965 I = ReturnInst::Create(Context, Op); 4966 InstructionList.push_back(I); 4967 break; 4968 } 4969 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 4970 if (Record.size() != 1 && Record.size() != 3) 4971 return error("Invalid record"); 4972 BasicBlock *TrueDest = getBasicBlock(Record[0]); 4973 if (!TrueDest) 4974 return error("Invalid record"); 4975 4976 if (Record.size() == 1) { 4977 I = BranchInst::Create(TrueDest); 4978 InstructionList.push_back(I); 4979 } 4980 else { 4981 BasicBlock *FalseDest = getBasicBlock(Record[1]); 4982 Value *Cond = getValue(Record, 2, NextValueNo, 4983 Type::getInt1Ty(Context)); 4984 if (!FalseDest || !Cond) 4985 return error("Invalid record"); 4986 I = BranchInst::Create(TrueDest, FalseDest, Cond); 4987 InstructionList.push_back(I); 4988 } 4989 break; 4990 } 4991 case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#] 4992 if (Record.size() != 1 && Record.size() != 2) 4993 return error("Invalid record"); 4994 unsigned Idx = 0; 4995 Value *CleanupPad = 4996 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4997 if (!CleanupPad) 4998 return error("Invalid record"); 4999 BasicBlock *UnwindDest = nullptr; 5000 if (Record.size() == 2) { 5001 UnwindDest = getBasicBlock(Record[Idx++]); 5002 if (!UnwindDest) 5003 return error("Invalid record"); 5004 } 5005 5006 I = CleanupReturnInst::Create(CleanupPad, UnwindDest); 5007 InstructionList.push_back(I); 5008 break; 5009 } 5010 case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#] 5011 if (Record.size() != 2) 5012 return error("Invalid record"); 5013 unsigned Idx = 0; 5014 Value *CatchPad = 5015 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 5016 if (!CatchPad) 5017 return error("Invalid record"); 5018 BasicBlock *BB = getBasicBlock(Record[Idx++]); 5019 if (!BB) 5020 return error("Invalid record"); 5021 5022 I = CatchReturnInst::Create(CatchPad, BB); 5023 InstructionList.push_back(I); 5024 break; 5025 } 5026 case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?] 5027 // We must have, at minimum, the outer scope and the number of arguments. 5028 if (Record.size() < 2) 5029 return error("Invalid record"); 5030 5031 unsigned Idx = 0; 5032 5033 Value *ParentPad = 5034 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 5035 5036 unsigned NumHandlers = Record[Idx++]; 5037 5038 SmallVector<BasicBlock *, 2> Handlers; 5039 for (unsigned Op = 0; Op != NumHandlers; ++Op) { 5040 BasicBlock *BB = getBasicBlock(Record[Idx++]); 5041 if (!BB) 5042 return error("Invalid record"); 5043 Handlers.push_back(BB); 5044 } 5045 5046 BasicBlock *UnwindDest = nullptr; 5047 if (Idx + 1 == Record.size()) { 5048 UnwindDest = getBasicBlock(Record[Idx++]); 5049 if (!UnwindDest) 5050 return error("Invalid record"); 5051 } 5052 5053 if (Record.size() != Idx) 5054 return error("Invalid record"); 5055 5056 auto *CatchSwitch = 5057 CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers); 5058 for (BasicBlock *Handler : Handlers) 5059 CatchSwitch->addHandler(Handler); 5060 I = CatchSwitch; 5061 InstructionList.push_back(I); 5062 break; 5063 } 5064 case bitc::FUNC_CODE_INST_CATCHPAD: 5065 case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*] 5066 // We must have, at minimum, the outer scope and the number of arguments. 5067 if (Record.size() < 2) 5068 return error("Invalid record"); 5069 5070 unsigned Idx = 0; 5071 5072 Value *ParentPad = 5073 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 5074 5075 unsigned NumArgOperands = Record[Idx++]; 5076 5077 SmallVector<Value *, 2> Args; 5078 for (unsigned Op = 0; Op != NumArgOperands; ++Op) { 5079 Value *Val; 5080 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 5081 return error("Invalid record"); 5082 Args.push_back(Val); 5083 } 5084 5085 if (Record.size() != Idx) 5086 return error("Invalid record"); 5087 5088 if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD) 5089 I = CleanupPadInst::Create(ParentPad, Args); 5090 else 5091 I = CatchPadInst::Create(ParentPad, Args); 5092 InstructionList.push_back(I); 5093 break; 5094 } 5095 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 5096 // Check magic 5097 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { 5098 // "New" SwitchInst format with case ranges. The changes to write this 5099 // format were reverted but we still recognize bitcode that uses it. 5100 // Hopefully someday we will have support for case ranges and can use 5101 // this format again. 5102 5103 Type *OpTy = getTypeByID(Record[1]); 5104 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); 5105 5106 Value *Cond = getValue(Record, 2, NextValueNo, OpTy); 5107 BasicBlock *Default = getBasicBlock(Record[3]); 5108 if (!OpTy || !Cond || !Default) 5109 return error("Invalid record"); 5110 5111 unsigned NumCases = Record[4]; 5112 5113 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 5114 InstructionList.push_back(SI); 5115 5116 unsigned CurIdx = 5; 5117 for (unsigned i = 0; i != NumCases; ++i) { 5118 SmallVector<ConstantInt*, 1> CaseVals; 5119 unsigned NumItems = Record[CurIdx++]; 5120 for (unsigned ci = 0; ci != NumItems; ++ci) { 5121 bool isSingleNumber = Record[CurIdx++]; 5122 5123 APInt Low; 5124 unsigned ActiveWords = 1; 5125 if (ValueBitWidth > 64) 5126 ActiveWords = Record[CurIdx++]; 5127 Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 5128 ValueBitWidth); 5129 CurIdx += ActiveWords; 5130 5131 if (!isSingleNumber) { 5132 ActiveWords = 1; 5133 if (ValueBitWidth > 64) 5134 ActiveWords = Record[CurIdx++]; 5135 APInt High = readWideAPInt( 5136 makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth); 5137 CurIdx += ActiveWords; 5138 5139 // FIXME: It is not clear whether values in the range should be 5140 // compared as signed or unsigned values. The partially 5141 // implemented changes that used this format in the past used 5142 // unsigned comparisons. 5143 for ( ; Low.ule(High); ++Low) 5144 CaseVals.push_back(ConstantInt::get(Context, Low)); 5145 } else 5146 CaseVals.push_back(ConstantInt::get(Context, Low)); 5147 } 5148 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); 5149 for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(), 5150 cve = CaseVals.end(); cvi != cve; ++cvi) 5151 SI->addCase(*cvi, DestBB); 5152 } 5153 I = SI; 5154 break; 5155 } 5156 5157 // Old SwitchInst format without case ranges. 5158 5159 if (Record.size() < 3 || (Record.size() & 1) == 0) 5160 return error("Invalid record"); 5161 Type *OpTy = getTypeByID(Record[0]); 5162 Value *Cond = getValue(Record, 1, NextValueNo, OpTy); 5163 BasicBlock *Default = getBasicBlock(Record[2]); 5164 if (!OpTy || !Cond || !Default) 5165 return error("Invalid record"); 5166 unsigned NumCases = (Record.size()-3)/2; 5167 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 5168 InstructionList.push_back(SI); 5169 for (unsigned i = 0, e = NumCases; i != e; ++i) { 5170 ConstantInt *CaseVal = 5171 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy)); 5172 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 5173 if (!CaseVal || !DestBB) { 5174 delete SI; 5175 return error("Invalid record"); 5176 } 5177 SI->addCase(CaseVal, DestBB); 5178 } 5179 I = SI; 5180 break; 5181 } 5182 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 5183 if (Record.size() < 2) 5184 return error("Invalid record"); 5185 Type *OpTy = getTypeByID(Record[0]); 5186 Value *Address = getValue(Record, 1, NextValueNo, OpTy); 5187 if (!OpTy || !Address) 5188 return error("Invalid record"); 5189 unsigned NumDests = Record.size()-2; 5190 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 5191 InstructionList.push_back(IBI); 5192 for (unsigned i = 0, e = NumDests; i != e; ++i) { 5193 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 5194 IBI->addDestination(DestBB); 5195 } else { 5196 delete IBI; 5197 return error("Invalid record"); 5198 } 5199 } 5200 I = IBI; 5201 break; 5202 } 5203 5204 case bitc::FUNC_CODE_INST_INVOKE: { 5205 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 5206 if (Record.size() < 4) 5207 return error("Invalid record"); 5208 unsigned OpNum = 0; 5209 AttributeSet PAL = getAttributes(Record[OpNum++]); 5210 unsigned CCInfo = Record[OpNum++]; 5211 BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]); 5212 BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]); 5213 5214 FunctionType *FTy = nullptr; 5215 if (CCInfo >> 13 & 1 && 5216 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])))) 5217 return error("Explicit invoke type is not a function type"); 5218 5219 Value *Callee; 5220 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 5221 return error("Invalid record"); 5222 5223 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 5224 if (!CalleeTy) 5225 return error("Callee is not a pointer"); 5226 if (!FTy) { 5227 FTy = dyn_cast<FunctionType>(CalleeTy->getElementType()); 5228 if (!FTy) 5229 return error("Callee is not of pointer to function type"); 5230 } else if (CalleeTy->getElementType() != FTy) 5231 return error("Explicit invoke type does not match pointee type of " 5232 "callee operand"); 5233 if (Record.size() < FTy->getNumParams() + OpNum) 5234 return error("Insufficient operands to call"); 5235 5236 SmallVector<Value*, 16> Ops; 5237 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 5238 Ops.push_back(getValue(Record, OpNum, NextValueNo, 5239 FTy->getParamType(i))); 5240 if (!Ops.back()) 5241 return error("Invalid record"); 5242 } 5243 5244 if (!FTy->isVarArg()) { 5245 if (Record.size() != OpNum) 5246 return error("Invalid record"); 5247 } else { 5248 // Read type/value pairs for varargs params. 5249 while (OpNum != Record.size()) { 5250 Value *Op; 5251 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 5252 return error("Invalid record"); 5253 Ops.push_back(Op); 5254 } 5255 } 5256 5257 I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops, OperandBundles); 5258 OperandBundles.clear(); 5259 InstructionList.push_back(I); 5260 cast<InvokeInst>(I)->setCallingConv( 5261 static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo)); 5262 cast<InvokeInst>(I)->setAttributes(PAL); 5263 break; 5264 } 5265 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 5266 unsigned Idx = 0; 5267 Value *Val = nullptr; 5268 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 5269 return error("Invalid record"); 5270 I = ResumeInst::Create(Val); 5271 InstructionList.push_back(I); 5272 break; 5273 } 5274 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 5275 I = new UnreachableInst(Context); 5276 InstructionList.push_back(I); 5277 break; 5278 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 5279 if (Record.size() < 1 || ((Record.size()-1)&1)) 5280 return error("Invalid record"); 5281 Type *Ty = getTypeByID(Record[0]); 5282 if (!Ty) 5283 return error("Invalid record"); 5284 5285 PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2); 5286 InstructionList.push_back(PN); 5287 5288 for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) { 5289 Value *V; 5290 // With the new function encoding, it is possible that operands have 5291 // negative IDs (for forward references). Use a signed VBR 5292 // representation to keep the encoding small. 5293 if (UseRelativeIDs) 5294 V = getValueSigned(Record, 1+i, NextValueNo, Ty); 5295 else 5296 V = getValue(Record, 1+i, NextValueNo, Ty); 5297 BasicBlock *BB = getBasicBlock(Record[2+i]); 5298 if (!V || !BB) 5299 return error("Invalid record"); 5300 PN->addIncoming(V, BB); 5301 } 5302 I = PN; 5303 break; 5304 } 5305 5306 case bitc::FUNC_CODE_INST_LANDINGPAD: 5307 case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: { 5308 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 5309 unsigned Idx = 0; 5310 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) { 5311 if (Record.size() < 3) 5312 return error("Invalid record"); 5313 } else { 5314 assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD); 5315 if (Record.size() < 4) 5316 return error("Invalid record"); 5317 } 5318 Type *Ty = getTypeByID(Record[Idx++]); 5319 if (!Ty) 5320 return error("Invalid record"); 5321 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) { 5322 Value *PersFn = nullptr; 5323 if (getValueTypePair(Record, Idx, NextValueNo, PersFn)) 5324 return error("Invalid record"); 5325 5326 if (!F->hasPersonalityFn()) 5327 F->setPersonalityFn(cast<Constant>(PersFn)); 5328 else if (F->getPersonalityFn() != cast<Constant>(PersFn)) 5329 return error("Personality function mismatch"); 5330 } 5331 5332 bool IsCleanup = !!Record[Idx++]; 5333 unsigned NumClauses = Record[Idx++]; 5334 LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses); 5335 LP->setCleanup(IsCleanup); 5336 for (unsigned J = 0; J != NumClauses; ++J) { 5337 LandingPadInst::ClauseType CT = 5338 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 5339 Value *Val; 5340 5341 if (getValueTypePair(Record, Idx, NextValueNo, Val)) { 5342 delete LP; 5343 return error("Invalid record"); 5344 } 5345 5346 assert((CT != LandingPadInst::Catch || 5347 !isa<ArrayType>(Val->getType())) && 5348 "Catch clause has a invalid type!"); 5349 assert((CT != LandingPadInst::Filter || 5350 isa<ArrayType>(Val->getType())) && 5351 "Filter clause has invalid type!"); 5352 LP->addClause(cast<Constant>(Val)); 5353 } 5354 5355 I = LP; 5356 InstructionList.push_back(I); 5357 break; 5358 } 5359 5360 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 5361 if (Record.size() != 4) 5362 return error("Invalid record"); 5363 uint64_t AlignRecord = Record[3]; 5364 const uint64_t InAllocaMask = uint64_t(1) << 5; 5365 const uint64_t ExplicitTypeMask = uint64_t(1) << 6; 5366 const uint64_t SwiftErrorMask = uint64_t(1) << 7; 5367 const uint64_t FlagMask = InAllocaMask | ExplicitTypeMask | 5368 SwiftErrorMask; 5369 bool InAlloca = AlignRecord & InAllocaMask; 5370 bool SwiftError = AlignRecord & SwiftErrorMask; 5371 Type *Ty = getTypeByID(Record[0]); 5372 if ((AlignRecord & ExplicitTypeMask) == 0) { 5373 auto *PTy = dyn_cast_or_null<PointerType>(Ty); 5374 if (!PTy) 5375 return error("Old-style alloca with a non-pointer type"); 5376 Ty = PTy->getElementType(); 5377 } 5378 Type *OpTy = getTypeByID(Record[1]); 5379 Value *Size = getFnValueByID(Record[2], OpTy); 5380 unsigned Align; 5381 if (std::error_code EC = 5382 parseAlignmentValue(AlignRecord & ~FlagMask, Align)) { 5383 return EC; 5384 } 5385 if (!Ty || !Size) 5386 return error("Invalid record"); 5387 AllocaInst *AI = new AllocaInst(Ty, Size, Align); 5388 AI->setUsedWithInAlloca(InAlloca); 5389 AI->setSwiftError(SwiftError); 5390 I = AI; 5391 InstructionList.push_back(I); 5392 break; 5393 } 5394 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 5395 unsigned OpNum = 0; 5396 Value *Op; 5397 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 5398 (OpNum + 2 != Record.size() && OpNum + 3 != Record.size())) 5399 return error("Invalid record"); 5400 5401 Type *Ty = nullptr; 5402 if (OpNum + 3 == Record.size()) 5403 Ty = getTypeByID(Record[OpNum++]); 5404 if (std::error_code EC = typeCheckLoadStoreInst(Ty, Op->getType())) 5405 return EC; 5406 if (!Ty) 5407 Ty = cast<PointerType>(Op->getType())->getElementType(); 5408 5409 unsigned Align; 5410 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 5411 return EC; 5412 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], Align); 5413 5414 InstructionList.push_back(I); 5415 break; 5416 } 5417 case bitc::FUNC_CODE_INST_LOADATOMIC: { 5418 // LOADATOMIC: [opty, op, align, vol, ordering, synchscope] 5419 unsigned OpNum = 0; 5420 Value *Op; 5421 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 5422 (OpNum + 4 != Record.size() && OpNum + 5 != Record.size())) 5423 return error("Invalid record"); 5424 5425 Type *Ty = nullptr; 5426 if (OpNum + 5 == Record.size()) 5427 Ty = getTypeByID(Record[OpNum++]); 5428 if (std::error_code EC = typeCheckLoadStoreInst(Ty, Op->getType())) 5429 return EC; 5430 if (!Ty) 5431 Ty = cast<PointerType>(Op->getType())->getElementType(); 5432 5433 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 5434 if (Ordering == AtomicOrdering::NotAtomic || 5435 Ordering == AtomicOrdering::Release || 5436 Ordering == AtomicOrdering::AcquireRelease) 5437 return error("Invalid record"); 5438 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 5439 return error("Invalid record"); 5440 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]); 5441 5442 unsigned Align; 5443 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 5444 return EC; 5445 I = new LoadInst(Op, "", Record[OpNum+1], Align, Ordering, SynchScope); 5446 5447 InstructionList.push_back(I); 5448 break; 5449 } 5450 case bitc::FUNC_CODE_INST_STORE: 5451 case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol] 5452 unsigned OpNum = 0; 5453 Value *Val, *Ptr; 5454 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 5455 (BitCode == bitc::FUNC_CODE_INST_STORE 5456 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 5457 : popValue(Record, OpNum, NextValueNo, 5458 cast<PointerType>(Ptr->getType())->getElementType(), 5459 Val)) || 5460 OpNum + 2 != Record.size()) 5461 return error("Invalid record"); 5462 5463 if (std::error_code EC = 5464 typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 5465 return EC; 5466 unsigned Align; 5467 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 5468 return EC; 5469 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align); 5470 InstructionList.push_back(I); 5471 break; 5472 } 5473 case bitc::FUNC_CODE_INST_STOREATOMIC: 5474 case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: { 5475 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, synchscope] 5476 unsigned OpNum = 0; 5477 Value *Val, *Ptr; 5478 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 5479 !isa<PointerType>(Ptr->getType()) || 5480 (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC 5481 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 5482 : popValue(Record, OpNum, NextValueNo, 5483 cast<PointerType>(Ptr->getType())->getElementType(), 5484 Val)) || 5485 OpNum + 4 != Record.size()) 5486 return error("Invalid record"); 5487 5488 if (std::error_code EC = 5489 typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 5490 return EC; 5491 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 5492 if (Ordering == AtomicOrdering::NotAtomic || 5493 Ordering == AtomicOrdering::Acquire || 5494 Ordering == AtomicOrdering::AcquireRelease) 5495 return error("Invalid record"); 5496 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]); 5497 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 5498 return error("Invalid record"); 5499 5500 unsigned Align; 5501 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 5502 return EC; 5503 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align, Ordering, SynchScope); 5504 InstructionList.push_back(I); 5505 break; 5506 } 5507 case bitc::FUNC_CODE_INST_CMPXCHG_OLD: 5508 case bitc::FUNC_CODE_INST_CMPXCHG: { 5509 // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, synchscope, 5510 // failureordering?, isweak?] 5511 unsigned OpNum = 0; 5512 Value *Ptr, *Cmp, *New; 5513 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 5514 (BitCode == bitc::FUNC_CODE_INST_CMPXCHG 5515 ? getValueTypePair(Record, OpNum, NextValueNo, Cmp) 5516 : popValue(Record, OpNum, NextValueNo, 5517 cast<PointerType>(Ptr->getType())->getElementType(), 5518 Cmp)) || 5519 popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) || 5520 Record.size() < OpNum + 3 || Record.size() > OpNum + 5) 5521 return error("Invalid record"); 5522 AtomicOrdering SuccessOrdering = getDecodedOrdering(Record[OpNum + 1]); 5523 if (SuccessOrdering == AtomicOrdering::NotAtomic || 5524 SuccessOrdering == AtomicOrdering::Unordered) 5525 return error("Invalid record"); 5526 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 2]); 5527 5528 if (std::error_code EC = 5529 typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType())) 5530 return EC; 5531 AtomicOrdering FailureOrdering; 5532 if (Record.size() < 7) 5533 FailureOrdering = 5534 AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering); 5535 else 5536 FailureOrdering = getDecodedOrdering(Record[OpNum + 3]); 5537 5538 I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering, 5539 SynchScope); 5540 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 5541 5542 if (Record.size() < 8) { 5543 // Before weak cmpxchgs existed, the instruction simply returned the 5544 // value loaded from memory, so bitcode files from that era will be 5545 // expecting the first component of a modern cmpxchg. 5546 CurBB->getInstList().push_back(I); 5547 I = ExtractValueInst::Create(I, 0); 5548 } else { 5549 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]); 5550 } 5551 5552 InstructionList.push_back(I); 5553 break; 5554 } 5555 case bitc::FUNC_CODE_INST_ATOMICRMW: { 5556 // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, synchscope] 5557 unsigned OpNum = 0; 5558 Value *Ptr, *Val; 5559 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 5560 !isa<PointerType>(Ptr->getType()) || 5561 popValue(Record, OpNum, NextValueNo, 5562 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 5563 OpNum+4 != Record.size()) 5564 return error("Invalid record"); 5565 AtomicRMWInst::BinOp Operation = getDecodedRMWOperation(Record[OpNum]); 5566 if (Operation < AtomicRMWInst::FIRST_BINOP || 5567 Operation > AtomicRMWInst::LAST_BINOP) 5568 return error("Invalid record"); 5569 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 5570 if (Ordering == AtomicOrdering::NotAtomic || 5571 Ordering == AtomicOrdering::Unordered) 5572 return error("Invalid record"); 5573 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]); 5574 I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SynchScope); 5575 cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]); 5576 InstructionList.push_back(I); 5577 break; 5578 } 5579 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, synchscope] 5580 if (2 != Record.size()) 5581 return error("Invalid record"); 5582 AtomicOrdering Ordering = getDecodedOrdering(Record[0]); 5583 if (Ordering == AtomicOrdering::NotAtomic || 5584 Ordering == AtomicOrdering::Unordered || 5585 Ordering == AtomicOrdering::Monotonic) 5586 return error("Invalid record"); 5587 SynchronizationScope SynchScope = getDecodedSynchScope(Record[1]); 5588 I = new FenceInst(Context, Ordering, SynchScope); 5589 InstructionList.push_back(I); 5590 break; 5591 } 5592 case bitc::FUNC_CODE_INST_CALL: { 5593 // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...] 5594 if (Record.size() < 3) 5595 return error("Invalid record"); 5596 5597 unsigned OpNum = 0; 5598 AttributeSet PAL = getAttributes(Record[OpNum++]); 5599 unsigned CCInfo = Record[OpNum++]; 5600 5601 FastMathFlags FMF; 5602 if ((CCInfo >> bitc::CALL_FMF) & 1) { 5603 FMF = getDecodedFastMathFlags(Record[OpNum++]); 5604 if (!FMF.any()) 5605 return error("Fast math flags indicator set for call with no FMF"); 5606 } 5607 5608 FunctionType *FTy = nullptr; 5609 if (CCInfo >> bitc::CALL_EXPLICIT_TYPE & 1 && 5610 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])))) 5611 return error("Explicit call type is not a function type"); 5612 5613 Value *Callee; 5614 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 5615 return error("Invalid record"); 5616 5617 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 5618 if (!OpTy) 5619 return error("Callee is not a pointer type"); 5620 if (!FTy) { 5621 FTy = dyn_cast<FunctionType>(OpTy->getElementType()); 5622 if (!FTy) 5623 return error("Callee is not of pointer to function type"); 5624 } else if (OpTy->getElementType() != FTy) 5625 return error("Explicit call type does not match pointee type of " 5626 "callee operand"); 5627 if (Record.size() < FTy->getNumParams() + OpNum) 5628 return error("Insufficient operands to call"); 5629 5630 SmallVector<Value*, 16> Args; 5631 // Read the fixed params. 5632 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 5633 if (FTy->getParamType(i)->isLabelTy()) 5634 Args.push_back(getBasicBlock(Record[OpNum])); 5635 else 5636 Args.push_back(getValue(Record, OpNum, NextValueNo, 5637 FTy->getParamType(i))); 5638 if (!Args.back()) 5639 return error("Invalid record"); 5640 } 5641 5642 // Read type/value pairs for varargs params. 5643 if (!FTy->isVarArg()) { 5644 if (OpNum != Record.size()) 5645 return error("Invalid record"); 5646 } else { 5647 while (OpNum != Record.size()) { 5648 Value *Op; 5649 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 5650 return error("Invalid record"); 5651 Args.push_back(Op); 5652 } 5653 } 5654 5655 I = CallInst::Create(FTy, Callee, Args, OperandBundles); 5656 OperandBundles.clear(); 5657 InstructionList.push_back(I); 5658 cast<CallInst>(I)->setCallingConv( 5659 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 5660 CallInst::TailCallKind TCK = CallInst::TCK_None; 5661 if (CCInfo & 1 << bitc::CALL_TAIL) 5662 TCK = CallInst::TCK_Tail; 5663 if (CCInfo & (1 << bitc::CALL_MUSTTAIL)) 5664 TCK = CallInst::TCK_MustTail; 5665 if (CCInfo & (1 << bitc::CALL_NOTAIL)) 5666 TCK = CallInst::TCK_NoTail; 5667 cast<CallInst>(I)->setTailCallKind(TCK); 5668 cast<CallInst>(I)->setAttributes(PAL); 5669 if (FMF.any()) { 5670 if (!isa<FPMathOperator>(I)) 5671 return error("Fast-math-flags specified for call without " 5672 "floating-point scalar or vector return type"); 5673 I->setFastMathFlags(FMF); 5674 } 5675 break; 5676 } 5677 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 5678 if (Record.size() < 3) 5679 return error("Invalid record"); 5680 Type *OpTy = getTypeByID(Record[0]); 5681 Value *Op = getValue(Record, 1, NextValueNo, OpTy); 5682 Type *ResTy = getTypeByID(Record[2]); 5683 if (!OpTy || !Op || !ResTy) 5684 return error("Invalid record"); 5685 I = new VAArgInst(Op, ResTy); 5686 InstructionList.push_back(I); 5687 break; 5688 } 5689 5690 case bitc::FUNC_CODE_OPERAND_BUNDLE: { 5691 // A call or an invoke can be optionally prefixed with some variable 5692 // number of operand bundle blocks. These blocks are read into 5693 // OperandBundles and consumed at the next call or invoke instruction. 5694 5695 if (Record.size() < 1 || Record[0] >= BundleTags.size()) 5696 return error("Invalid record"); 5697 5698 std::vector<Value *> Inputs; 5699 5700 unsigned OpNum = 1; 5701 while (OpNum != Record.size()) { 5702 Value *Op; 5703 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 5704 return error("Invalid record"); 5705 Inputs.push_back(Op); 5706 } 5707 5708 OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs)); 5709 continue; 5710 } 5711 } 5712 5713 // Add instruction to end of current BB. If there is no current BB, reject 5714 // this file. 5715 if (!CurBB) { 5716 delete I; 5717 return error("Invalid instruction with no BB"); 5718 } 5719 if (!OperandBundles.empty()) { 5720 delete I; 5721 return error("Operand bundles found with no consumer"); 5722 } 5723 CurBB->getInstList().push_back(I); 5724 5725 // If this was a terminator instruction, move to the next block. 5726 if (isa<TerminatorInst>(I)) { 5727 ++CurBBNo; 5728 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr; 5729 } 5730 5731 // Non-void values get registered in the value table for future use. 5732 if (I && !I->getType()->isVoidTy()) 5733 ValueList.assignValue(I, NextValueNo++); 5734 } 5735 5736 OutOfRecordLoop: 5737 5738 if (!OperandBundles.empty()) 5739 return error("Operand bundles found with no consumer"); 5740 5741 // Check the function list for unresolved values. 5742 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 5743 if (!A->getParent()) { 5744 // We found at least one unresolved value. Nuke them all to avoid leaks. 5745 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 5746 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) { 5747 A->replaceAllUsesWith(UndefValue::get(A->getType())); 5748 delete A; 5749 } 5750 } 5751 return error("Never resolved value found in function"); 5752 } 5753 } 5754 5755 // Unexpected unresolved metadata about to be dropped. 5756 if (MetadataList.hasFwdRefs()) 5757 return error("Invalid function metadata: outgoing forward refs"); 5758 5759 // Trim the value list down to the size it was before we parsed this function. 5760 ValueList.shrinkTo(ModuleValueListSize); 5761 MetadataList.shrinkTo(ModuleMetadataListSize); 5762 std::vector<BasicBlock*>().swap(FunctionBBs); 5763 return std::error_code(); 5764 } 5765 5766 /// Find the function body in the bitcode stream 5767 std::error_code BitcodeReader::findFunctionInStream( 5768 Function *F, 5769 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) { 5770 while (DeferredFunctionInfoIterator->second == 0) { 5771 // This is the fallback handling for the old format bitcode that 5772 // didn't contain the function index in the VST, or when we have 5773 // an anonymous function which would not have a VST entry. 5774 // Assert that we have one of those two cases. 5775 assert(VSTOffset == 0 || !F->hasName()); 5776 // Parse the next body in the stream and set its position in the 5777 // DeferredFunctionInfo map. 5778 if (std::error_code EC = rememberAndSkipFunctionBodies()) 5779 return EC; 5780 } 5781 return std::error_code(); 5782 } 5783 5784 //===----------------------------------------------------------------------===// 5785 // GVMaterializer implementation 5786 //===----------------------------------------------------------------------===// 5787 5788 void BitcodeReader::releaseBuffer() { Buffer.release(); } 5789 5790 std::error_code BitcodeReader::materialize(GlobalValue *GV) { 5791 Function *F = dyn_cast<Function>(GV); 5792 // If it's not a function or is already material, ignore the request. 5793 if (!F || !F->isMaterializable()) 5794 return std::error_code(); 5795 5796 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 5797 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 5798 // If its position is recorded as 0, its body is somewhere in the stream 5799 // but we haven't seen it yet. 5800 if (DFII->second == 0) 5801 if (std::error_code EC = findFunctionInStream(F, DFII)) 5802 return EC; 5803 5804 // Materialize metadata before parsing any function bodies. 5805 if (std::error_code EC = materializeMetadata()) 5806 return EC; 5807 5808 // Move the bit stream to the saved position of the deferred function body. 5809 Stream.JumpToBit(DFII->second); 5810 5811 if (std::error_code EC = parseFunctionBody(F)) 5812 return EC; 5813 F->setIsMaterializable(false); 5814 5815 if (StripDebugInfo) 5816 stripDebugInfo(*F); 5817 5818 // Upgrade any old intrinsic calls in the function. 5819 for (auto &I : UpgradedIntrinsics) { 5820 for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end(); 5821 UI != UE;) { 5822 User *U = *UI; 5823 ++UI; 5824 if (CallInst *CI = dyn_cast<CallInst>(U)) 5825 UpgradeIntrinsicCall(CI, I.second); 5826 } 5827 } 5828 5829 // Update calls to the remangled intrinsics 5830 for (auto &I : RemangledIntrinsics) 5831 for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end(); 5832 UI != UE;) 5833 // Don't expect any other users than call sites 5834 CallSite(*UI++).setCalledFunction(I.second); 5835 5836 // Finish fn->subprogram upgrade for materialized functions. 5837 if (DISubprogram *SP = FunctionsWithSPs.lookup(F)) 5838 F->setSubprogram(SP); 5839 5840 // Bring in any functions that this function forward-referenced via 5841 // blockaddresses. 5842 return materializeForwardReferencedFunctions(); 5843 } 5844 5845 std::error_code BitcodeReader::materializeModule() { 5846 if (std::error_code EC = materializeMetadata()) 5847 return EC; 5848 5849 // Promise to materialize all forward references. 5850 WillMaterializeAllForwardRefs = true; 5851 5852 // Iterate over the module, deserializing any functions that are still on 5853 // disk. 5854 for (Function &F : *TheModule) { 5855 if (std::error_code EC = materialize(&F)) 5856 return EC; 5857 } 5858 // At this point, if there are any function bodies, parse the rest of 5859 // the bits in the module past the last function block we have recorded 5860 // through either lazy scanning or the VST. 5861 if (LastFunctionBlockBit || NextUnreadBit) 5862 parseModule(LastFunctionBlockBit > NextUnreadBit ? LastFunctionBlockBit 5863 : NextUnreadBit); 5864 5865 // Check that all block address forward references got resolved (as we 5866 // promised above). 5867 if (!BasicBlockFwdRefs.empty()) 5868 return error("Never resolved function from blockaddress"); 5869 5870 // Upgrade any intrinsic calls that slipped through (should not happen!) and 5871 // delete the old functions to clean up. We can't do this unless the entire 5872 // module is materialized because there could always be another function body 5873 // with calls to the old function. 5874 for (auto &I : UpgradedIntrinsics) { 5875 for (auto *U : I.first->users()) { 5876 if (CallInst *CI = dyn_cast<CallInst>(U)) 5877 UpgradeIntrinsicCall(CI, I.second); 5878 } 5879 if (!I.first->use_empty()) 5880 I.first->replaceAllUsesWith(I.second); 5881 I.first->eraseFromParent(); 5882 } 5883 UpgradedIntrinsics.clear(); 5884 // Do the same for remangled intrinsics 5885 for (auto &I : RemangledIntrinsics) { 5886 I.first->replaceAllUsesWith(I.second); 5887 I.first->eraseFromParent(); 5888 } 5889 RemangledIntrinsics.clear(); 5890 5891 UpgradeDebugInfo(*TheModule); 5892 5893 UpgradeModuleFlags(*TheModule); 5894 return std::error_code(); 5895 } 5896 5897 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const { 5898 return IdentifiedStructTypes; 5899 } 5900 5901 std::error_code ModuleSummaryIndexBitcodeReader::error(const Twine &Message) { 5902 return ::error(DiagnosticHandler, 5903 make_error_code(BitcodeError::CorruptedBitcode), Message); 5904 } 5905 5906 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader( 5907 MemoryBuffer *Buffer, DiagnosticHandlerFunction DiagnosticHandler, 5908 bool CheckGlobalValSummaryPresenceOnly) 5909 : BitcodeReaderBase(Buffer), 5910 DiagnosticHandler(std::move(DiagnosticHandler)), 5911 CheckGlobalValSummaryPresenceOnly(CheckGlobalValSummaryPresenceOnly) {} 5912 5913 void ModuleSummaryIndexBitcodeReader::freeState() { Buffer = nullptr; } 5914 5915 void ModuleSummaryIndexBitcodeReader::releaseBuffer() { Buffer.release(); } 5916 5917 std::pair<GlobalValue::GUID, GlobalValue::GUID> 5918 ModuleSummaryIndexBitcodeReader::getGUIDFromValueId(unsigned ValueId) { 5919 auto VGI = ValueIdToCallGraphGUIDMap.find(ValueId); 5920 assert(VGI != ValueIdToCallGraphGUIDMap.end()); 5921 return VGI->second; 5922 } 5923 5924 // Specialized value symbol table parser used when reading module index 5925 // blocks where we don't actually create global values. The parsed information 5926 // is saved in the bitcode reader for use when later parsing summaries. 5927 std::error_code ModuleSummaryIndexBitcodeReader::parseValueSymbolTable( 5928 uint64_t Offset, 5929 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) { 5930 assert(Offset > 0 && "Expected non-zero VST offset"); 5931 uint64_t CurrentBit = jumpToValueSymbolTable(Offset, Stream); 5932 5933 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 5934 return error("Invalid record"); 5935 5936 SmallVector<uint64_t, 64> Record; 5937 5938 // Read all the records for this value table. 5939 SmallString<128> ValueName; 5940 5941 while (true) { 5942 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5943 5944 switch (Entry.Kind) { 5945 case BitstreamEntry::SubBlock: // Handled for us already. 5946 case BitstreamEntry::Error: 5947 return error("Malformed block"); 5948 case BitstreamEntry::EndBlock: 5949 // Done parsing VST, jump back to wherever we came from. 5950 Stream.JumpToBit(CurrentBit); 5951 return std::error_code(); 5952 case BitstreamEntry::Record: 5953 // The interesting case. 5954 break; 5955 } 5956 5957 // Read a record. 5958 Record.clear(); 5959 switch (Stream.readRecord(Entry.ID, Record)) { 5960 default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records). 5961 break; 5962 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 5963 if (convertToString(Record, 1, ValueName)) 5964 return error("Invalid record"); 5965 unsigned ValueID = Record[0]; 5966 assert(!SourceFileName.empty()); 5967 auto VLI = ValueIdToLinkageMap.find(ValueID); 5968 assert(VLI != ValueIdToLinkageMap.end() && 5969 "No linkage found for VST entry?"); 5970 auto Linkage = VLI->second; 5971 std::string GlobalId = 5972 GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName); 5973 auto ValueGUID = GlobalValue::getGUID(GlobalId); 5974 auto OriginalNameID = ValueGUID; 5975 if (GlobalValue::isLocalLinkage(Linkage)) 5976 OriginalNameID = GlobalValue::getGUID(ValueName); 5977 if (PrintSummaryGUIDs) 5978 dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is " 5979 << ValueName << "\n"; 5980 ValueIdToCallGraphGUIDMap[ValueID] = 5981 std::make_pair(ValueGUID, OriginalNameID); 5982 ValueName.clear(); 5983 break; 5984 } 5985 case bitc::VST_CODE_FNENTRY: { 5986 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 5987 if (convertToString(Record, 2, ValueName)) 5988 return error("Invalid record"); 5989 unsigned ValueID = Record[0]; 5990 assert(!SourceFileName.empty()); 5991 auto VLI = ValueIdToLinkageMap.find(ValueID); 5992 assert(VLI != ValueIdToLinkageMap.end() && 5993 "No linkage found for VST entry?"); 5994 auto Linkage = VLI->second; 5995 std::string FunctionGlobalId = GlobalValue::getGlobalIdentifier( 5996 ValueName, VLI->second, SourceFileName); 5997 auto FunctionGUID = GlobalValue::getGUID(FunctionGlobalId); 5998 auto OriginalNameID = FunctionGUID; 5999 if (GlobalValue::isLocalLinkage(Linkage)) 6000 OriginalNameID = GlobalValue::getGUID(ValueName); 6001 if (PrintSummaryGUIDs) 6002 dbgs() << "GUID " << FunctionGUID << "(" << OriginalNameID << ") is " 6003 << ValueName << "\n"; 6004 ValueIdToCallGraphGUIDMap[ValueID] = 6005 std::make_pair(FunctionGUID, OriginalNameID); 6006 6007 ValueName.clear(); 6008 break; 6009 } 6010 case bitc::VST_CODE_COMBINED_ENTRY: { 6011 // VST_CODE_COMBINED_ENTRY: [valueid, refguid] 6012 unsigned ValueID = Record[0]; 6013 GlobalValue::GUID RefGUID = Record[1]; 6014 // The "original name", which is the second value of the pair will be 6015 // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index. 6016 ValueIdToCallGraphGUIDMap[ValueID] = std::make_pair(RefGUID, RefGUID); 6017 break; 6018 } 6019 } 6020 } 6021 } 6022 6023 // Parse just the blocks needed for building the index out of the module. 6024 // At the end of this routine the module Index is populated with a map 6025 // from global value id to GlobalValueSummary objects. 6026 std::error_code ModuleSummaryIndexBitcodeReader::parseModule() { 6027 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 6028 return error("Invalid record"); 6029 6030 SmallVector<uint64_t, 64> Record; 6031 DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap; 6032 unsigned ValueId = 0; 6033 6034 // Read the index for this module. 6035 while (true) { 6036 BitstreamEntry Entry = Stream.advance(); 6037 6038 switch (Entry.Kind) { 6039 case BitstreamEntry::Error: 6040 return error("Malformed block"); 6041 case BitstreamEntry::EndBlock: 6042 return std::error_code(); 6043 6044 case BitstreamEntry::SubBlock: 6045 if (CheckGlobalValSummaryPresenceOnly) { 6046 if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) { 6047 SeenGlobalValSummary = true; 6048 // No need to parse the rest since we found the summary. 6049 return std::error_code(); 6050 } 6051 if (Stream.SkipBlock()) 6052 return error("Invalid record"); 6053 continue; 6054 } 6055 switch (Entry.ID) { 6056 default: // Skip unknown content. 6057 if (Stream.SkipBlock()) 6058 return error("Invalid record"); 6059 break; 6060 case bitc::BLOCKINFO_BLOCK_ID: 6061 // Need to parse these to get abbrev ids (e.g. for VST) 6062 if (Stream.ReadBlockInfoBlock()) 6063 return error("Malformed block"); 6064 break; 6065 case bitc::VALUE_SYMTAB_BLOCK_ID: 6066 // Should have been parsed earlier via VSTOffset, unless there 6067 // is no summary section. 6068 assert(((SeenValueSymbolTable && VSTOffset > 0) || 6069 !SeenGlobalValSummary) && 6070 "Expected early VST parse via VSTOffset record"); 6071 if (Stream.SkipBlock()) 6072 return error("Invalid record"); 6073 break; 6074 case bitc::GLOBALVAL_SUMMARY_BLOCK_ID: 6075 assert(!SeenValueSymbolTable && 6076 "Already read VST when parsing summary block?"); 6077 // We might not have a VST if there were no values in the 6078 // summary. An empty summary block generated when we are 6079 // performing ThinLTO compiles so we don't later invoke 6080 // the regular LTO process on them. 6081 if (VSTOffset > 0) { 6082 if (std::error_code EC = 6083 parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap)) 6084 return EC; 6085 SeenValueSymbolTable = true; 6086 } 6087 SeenGlobalValSummary = true; 6088 if (std::error_code EC = parseEntireSummary()) 6089 return EC; 6090 break; 6091 case bitc::MODULE_STRTAB_BLOCK_ID: 6092 if (std::error_code EC = parseModuleStringTable()) 6093 return EC; 6094 break; 6095 } 6096 continue; 6097 6098 case BitstreamEntry::Record: { 6099 Record.clear(); 6100 auto BitCode = Stream.readRecord(Entry.ID, Record); 6101 switch (BitCode) { 6102 default: 6103 break; // Default behavior, ignore unknown content. 6104 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 6105 case bitc::MODULE_CODE_SOURCE_FILENAME: { 6106 SmallString<128> ValueName; 6107 if (convertToString(Record, 0, ValueName)) 6108 return error("Invalid record"); 6109 SourceFileName = ValueName.c_str(); 6110 break; 6111 } 6112 /// MODULE_CODE_HASH: [5*i32] 6113 case bitc::MODULE_CODE_HASH: { 6114 if (Record.size() != 5) 6115 return error("Invalid hash length " + Twine(Record.size()).str()); 6116 if (!TheIndex) 6117 break; 6118 if (TheIndex->modulePaths().empty()) 6119 // We always seed the index with the module. 6120 TheIndex->addModulePath(Buffer->getBufferIdentifier(), 0); 6121 if (TheIndex->modulePaths().size() != 1) 6122 return error("Don't expect multiple modules defined?"); 6123 auto &Hash = TheIndex->modulePaths().begin()->second.second; 6124 int Pos = 0; 6125 for (auto &Val : Record) { 6126 assert(!(Val >> 32) && "Unexpected high bits set"); 6127 Hash[Pos++] = Val; 6128 } 6129 break; 6130 } 6131 /// MODULE_CODE_VSTOFFSET: [offset] 6132 case bitc::MODULE_CODE_VSTOFFSET: 6133 if (Record.size() < 1) 6134 return error("Invalid record"); 6135 VSTOffset = Record[0]; 6136 break; 6137 // GLOBALVAR: [pointer type, isconst, initid, 6138 // linkage, alignment, section, visibility, threadlocal, 6139 // unnamed_addr, externally_initialized, dllstorageclass, 6140 // comdat] 6141 case bitc::MODULE_CODE_GLOBALVAR: { 6142 if (Record.size() < 6) 6143 return error("Invalid record"); 6144 uint64_t RawLinkage = Record[3]; 6145 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 6146 ValueIdToLinkageMap[ValueId++] = Linkage; 6147 break; 6148 } 6149 // FUNCTION: [type, callingconv, isproto, linkage, paramattr, 6150 // alignment, section, visibility, gc, unnamed_addr, 6151 // prologuedata, dllstorageclass, comdat, prefixdata] 6152 case bitc::MODULE_CODE_FUNCTION: { 6153 if (Record.size() < 8) 6154 return error("Invalid record"); 6155 uint64_t RawLinkage = Record[3]; 6156 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 6157 ValueIdToLinkageMap[ValueId++] = Linkage; 6158 break; 6159 } 6160 // ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, 6161 // dllstorageclass] 6162 case bitc::MODULE_CODE_ALIAS: { 6163 if (Record.size() < 6) 6164 return error("Invalid record"); 6165 uint64_t RawLinkage = Record[3]; 6166 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 6167 ValueIdToLinkageMap[ValueId++] = Linkage; 6168 break; 6169 } 6170 } 6171 } 6172 continue; 6173 } 6174 } 6175 } 6176 6177 // Eagerly parse the entire summary block. This populates the GlobalValueSummary 6178 // objects in the index. 6179 std::error_code ModuleSummaryIndexBitcodeReader::parseEntireSummary() { 6180 if (Stream.EnterSubBlock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID)) 6181 return error("Invalid record"); 6182 SmallVector<uint64_t, 64> Record; 6183 6184 // Parse version 6185 { 6186 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 6187 if (Entry.Kind != BitstreamEntry::Record) 6188 return error("Invalid Summary Block: record for version expected"); 6189 if (Stream.readRecord(Entry.ID, Record) != bitc::FS_VERSION) 6190 return error("Invalid Summary Block: version expected"); 6191 } 6192 const uint64_t Version = Record[0]; 6193 const bool IsOldProfileFormat = Version == 1; 6194 if (!IsOldProfileFormat && Version != 2) 6195 return error("Invalid summary version " + Twine(Version) + 6196 ", 1 or 2 expected"); 6197 Record.clear(); 6198 6199 // Keep around the last seen summary to be used when we see an optional 6200 // "OriginalName" attachement. 6201 GlobalValueSummary *LastSeenSummary = nullptr; 6202 bool Combined = false; 6203 6204 while (true) { 6205 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 6206 6207 switch (Entry.Kind) { 6208 case BitstreamEntry::SubBlock: // Handled for us already. 6209 case BitstreamEntry::Error: 6210 return error("Malformed block"); 6211 case BitstreamEntry::EndBlock: 6212 // For a per-module index, remove any entries that still have empty 6213 // summaries. The VST parsing creates entries eagerly for all symbols, 6214 // but not all have associated summaries (e.g. it doesn't know how to 6215 // distinguish between VST_CODE_ENTRY for function declarations vs global 6216 // variables with initializers that end up with a summary). Remove those 6217 // entries now so that we don't need to rely on the combined index merger 6218 // to clean them up (especially since that may not run for the first 6219 // module's index if we merge into that). 6220 if (!Combined) 6221 TheIndex->removeEmptySummaryEntries(); 6222 return std::error_code(); 6223 case BitstreamEntry::Record: 6224 // The interesting case. 6225 break; 6226 } 6227 6228 // Read a record. The record format depends on whether this 6229 // is a per-module index or a combined index file. In the per-module 6230 // case the records contain the associated value's ID for correlation 6231 // with VST entries. In the combined index the correlation is done 6232 // via the bitcode offset of the summary records (which were saved 6233 // in the combined index VST entries). The records also contain 6234 // information used for ThinLTO renaming and importing. 6235 Record.clear(); 6236 auto BitCode = Stream.readRecord(Entry.ID, Record); 6237 switch (BitCode) { 6238 default: // Default behavior: ignore. 6239 break; 6240 // FS_PERMODULE: [valueid, flags, instcount, numrefs, numrefs x valueid, 6241 // n x (valueid)] 6242 // FS_PERMODULE_PROFILE: [valueid, flags, instcount, numrefs, 6243 // numrefs x valueid, 6244 // n x (valueid, hotness)] 6245 case bitc::FS_PERMODULE: 6246 case bitc::FS_PERMODULE_PROFILE: { 6247 unsigned ValueID = Record[0]; 6248 uint64_t RawFlags = Record[1]; 6249 unsigned InstCount = Record[2]; 6250 unsigned NumRefs = Record[3]; 6251 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6252 std::unique_ptr<FunctionSummary> FS = 6253 llvm::make_unique<FunctionSummary>(Flags, InstCount); 6254 // The module path string ref set in the summary must be owned by the 6255 // index's module string table. Since we don't have a module path 6256 // string table section in the per-module index, we create a single 6257 // module path string table entry with an empty (0) ID to take 6258 // ownership. 6259 FS->setModulePath( 6260 TheIndex->addModulePath(Buffer->getBufferIdentifier(), 0)->first()); 6261 static int RefListStartIndex = 4; 6262 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 6263 assert(Record.size() >= RefListStartIndex + NumRefs && 6264 "Record size inconsistent with number of references"); 6265 for (unsigned I = 4, E = CallGraphEdgeStartIndex; I != E; ++I) { 6266 unsigned RefValueId = Record[I]; 6267 GlobalValue::GUID RefGUID = getGUIDFromValueId(RefValueId).first; 6268 FS->addRefEdge(RefGUID); 6269 } 6270 bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE); 6271 for (unsigned I = CallGraphEdgeStartIndex, E = Record.size(); I != E; 6272 ++I) { 6273 CalleeInfo::HotnessType Hotness; 6274 GlobalValue::GUID CalleeGUID; 6275 std::tie(CalleeGUID, Hotness) = 6276 readCallGraphEdge(Record, I, IsOldProfileFormat, HasProfile); 6277 FS->addCallGraphEdge(CalleeGUID, CalleeInfo(Hotness)); 6278 } 6279 auto GUID = getGUIDFromValueId(ValueID); 6280 FS->setOriginalName(GUID.second); 6281 TheIndex->addGlobalValueSummary(GUID.first, std::move(FS)); 6282 break; 6283 } 6284 // FS_ALIAS: [valueid, flags, valueid] 6285 // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as 6286 // they expect all aliasee summaries to be available. 6287 case bitc::FS_ALIAS: { 6288 unsigned ValueID = Record[0]; 6289 uint64_t RawFlags = Record[1]; 6290 unsigned AliaseeID = Record[2]; 6291 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6292 std::unique_ptr<AliasSummary> AS = llvm::make_unique<AliasSummary>(Flags); 6293 // The module path string ref set in the summary must be owned by the 6294 // index's module string table. Since we don't have a module path 6295 // string table section in the per-module index, we create a single 6296 // module path string table entry with an empty (0) ID to take 6297 // ownership. 6298 AS->setModulePath( 6299 TheIndex->addModulePath(Buffer->getBufferIdentifier(), 0)->first()); 6300 6301 GlobalValue::GUID AliaseeGUID = getGUIDFromValueId(AliaseeID).first; 6302 auto *AliaseeSummary = TheIndex->getGlobalValueSummary(AliaseeGUID); 6303 if (!AliaseeSummary) 6304 return error("Alias expects aliasee summary to be parsed"); 6305 AS->setAliasee(AliaseeSummary); 6306 6307 auto GUID = getGUIDFromValueId(ValueID); 6308 AS->setOriginalName(GUID.second); 6309 TheIndex->addGlobalValueSummary(GUID.first, std::move(AS)); 6310 break; 6311 } 6312 // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, n x valueid] 6313 case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: { 6314 unsigned ValueID = Record[0]; 6315 uint64_t RawFlags = Record[1]; 6316 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6317 std::unique_ptr<GlobalVarSummary> FS = 6318 llvm::make_unique<GlobalVarSummary>(Flags); 6319 FS->setModulePath( 6320 TheIndex->addModulePath(Buffer->getBufferIdentifier(), 0)->first()); 6321 for (unsigned I = 2, E = Record.size(); I != E; ++I) { 6322 unsigned RefValueId = Record[I]; 6323 GlobalValue::GUID RefGUID = getGUIDFromValueId(RefValueId).first; 6324 FS->addRefEdge(RefGUID); 6325 } 6326 auto GUID = getGUIDFromValueId(ValueID); 6327 FS->setOriginalName(GUID.second); 6328 TheIndex->addGlobalValueSummary(GUID.first, std::move(FS)); 6329 break; 6330 } 6331 // FS_COMBINED: [valueid, modid, flags, instcount, numrefs, 6332 // numrefs x valueid, n x (valueid)] 6333 // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, numrefs, 6334 // numrefs x valueid, n x (valueid, hotness)] 6335 case bitc::FS_COMBINED: 6336 case bitc::FS_COMBINED_PROFILE: { 6337 unsigned ValueID = Record[0]; 6338 uint64_t ModuleId = Record[1]; 6339 uint64_t RawFlags = Record[2]; 6340 unsigned InstCount = Record[3]; 6341 unsigned NumRefs = Record[4]; 6342 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6343 std::unique_ptr<FunctionSummary> FS = 6344 llvm::make_unique<FunctionSummary>(Flags, InstCount); 6345 LastSeenSummary = FS.get(); 6346 FS->setModulePath(ModuleIdMap[ModuleId]); 6347 static int RefListStartIndex = 5; 6348 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 6349 assert(Record.size() >= RefListStartIndex + NumRefs && 6350 "Record size inconsistent with number of references"); 6351 for (unsigned I = RefListStartIndex, E = CallGraphEdgeStartIndex; I != E; 6352 ++I) { 6353 unsigned RefValueId = Record[I]; 6354 GlobalValue::GUID RefGUID = getGUIDFromValueId(RefValueId).first; 6355 FS->addRefEdge(RefGUID); 6356 } 6357 bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE); 6358 for (unsigned I = CallGraphEdgeStartIndex, E = Record.size(); I != E; 6359 ++I) { 6360 CalleeInfo::HotnessType Hotness; 6361 GlobalValue::GUID CalleeGUID; 6362 std::tie(CalleeGUID, Hotness) = 6363 readCallGraphEdge(Record, I, IsOldProfileFormat, HasProfile); 6364 FS->addCallGraphEdge(CalleeGUID, CalleeInfo(Hotness)); 6365 } 6366 GlobalValue::GUID GUID = getGUIDFromValueId(ValueID).first; 6367 TheIndex->addGlobalValueSummary(GUID, std::move(FS)); 6368 Combined = true; 6369 break; 6370 } 6371 // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid] 6372 // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as 6373 // they expect all aliasee summaries to be available. 6374 case bitc::FS_COMBINED_ALIAS: { 6375 unsigned ValueID = Record[0]; 6376 uint64_t ModuleId = Record[1]; 6377 uint64_t RawFlags = Record[2]; 6378 unsigned AliaseeValueId = Record[3]; 6379 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6380 std::unique_ptr<AliasSummary> AS = llvm::make_unique<AliasSummary>(Flags); 6381 LastSeenSummary = AS.get(); 6382 AS->setModulePath(ModuleIdMap[ModuleId]); 6383 6384 auto AliaseeGUID = getGUIDFromValueId(AliaseeValueId).first; 6385 auto AliaseeInModule = 6386 TheIndex->findSummaryInModule(AliaseeGUID, AS->modulePath()); 6387 if (!AliaseeInModule) 6388 return error("Alias expects aliasee summary to be parsed"); 6389 AS->setAliasee(AliaseeInModule); 6390 6391 GlobalValue::GUID GUID = getGUIDFromValueId(ValueID).first; 6392 TheIndex->addGlobalValueSummary(GUID, std::move(AS)); 6393 Combined = true; 6394 break; 6395 } 6396 // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid] 6397 case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: { 6398 unsigned ValueID = Record[0]; 6399 uint64_t ModuleId = Record[1]; 6400 uint64_t RawFlags = Record[2]; 6401 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6402 std::unique_ptr<GlobalVarSummary> FS = 6403 llvm::make_unique<GlobalVarSummary>(Flags); 6404 LastSeenSummary = FS.get(); 6405 FS->setModulePath(ModuleIdMap[ModuleId]); 6406 for (unsigned I = 3, E = Record.size(); I != E; ++I) { 6407 unsigned RefValueId = Record[I]; 6408 GlobalValue::GUID RefGUID = getGUIDFromValueId(RefValueId).first; 6409 FS->addRefEdge(RefGUID); 6410 } 6411 GlobalValue::GUID GUID = getGUIDFromValueId(ValueID).first; 6412 TheIndex->addGlobalValueSummary(GUID, std::move(FS)); 6413 Combined = true; 6414 break; 6415 } 6416 // FS_COMBINED_ORIGINAL_NAME: [original_name] 6417 case bitc::FS_COMBINED_ORIGINAL_NAME: { 6418 uint64_t OriginalName = Record[0]; 6419 if (!LastSeenSummary) 6420 return error("Name attachment that does not follow a combined record"); 6421 LastSeenSummary->setOriginalName(OriginalName); 6422 // Reset the LastSeenSummary 6423 LastSeenSummary = nullptr; 6424 } 6425 } 6426 } 6427 llvm_unreachable("Exit infinite loop"); 6428 } 6429 6430 std::pair<GlobalValue::GUID, CalleeInfo::HotnessType> 6431 ModuleSummaryIndexBitcodeReader::readCallGraphEdge( 6432 const SmallVector<uint64_t, 64> &Record, unsigned int &I, 6433 const bool IsOldProfileFormat, const bool HasProfile) { 6434 6435 auto Hotness = CalleeInfo::HotnessType::Unknown; 6436 unsigned CalleeValueId = Record[I]; 6437 GlobalValue::GUID CalleeGUID = getGUIDFromValueId(CalleeValueId).first; 6438 if (IsOldProfileFormat) { 6439 I += 1; // Skip old callsitecount field 6440 if (HasProfile) 6441 I += 1; // Skip old profilecount field 6442 } else if (HasProfile) 6443 Hotness = static_cast<CalleeInfo::HotnessType>(Record[++I]); 6444 return {CalleeGUID, Hotness}; 6445 } 6446 6447 // Parse the module string table block into the Index. 6448 // This populates the ModulePathStringTable map in the index. 6449 std::error_code ModuleSummaryIndexBitcodeReader::parseModuleStringTable() { 6450 if (Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID)) 6451 return error("Invalid record"); 6452 6453 SmallVector<uint64_t, 64> Record; 6454 6455 SmallString<128> ModulePath; 6456 ModulePathStringTableTy::iterator LastSeenModulePath; 6457 6458 while (true) { 6459 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 6460 6461 switch (Entry.Kind) { 6462 case BitstreamEntry::SubBlock: // Handled for us already. 6463 case BitstreamEntry::Error: 6464 return error("Malformed block"); 6465 case BitstreamEntry::EndBlock: 6466 return std::error_code(); 6467 case BitstreamEntry::Record: 6468 // The interesting case. 6469 break; 6470 } 6471 6472 Record.clear(); 6473 switch (Stream.readRecord(Entry.ID, Record)) { 6474 default: // Default behavior: ignore. 6475 break; 6476 case bitc::MST_CODE_ENTRY: { 6477 // MST_ENTRY: [modid, namechar x N] 6478 uint64_t ModuleId = Record[0]; 6479 6480 if (convertToString(Record, 1, ModulePath)) 6481 return error("Invalid record"); 6482 6483 LastSeenModulePath = TheIndex->addModulePath(ModulePath, ModuleId); 6484 ModuleIdMap[ModuleId] = LastSeenModulePath->first(); 6485 6486 ModulePath.clear(); 6487 break; 6488 } 6489 /// MST_CODE_HASH: [5*i32] 6490 case bitc::MST_CODE_HASH: { 6491 if (Record.size() != 5) 6492 return error("Invalid hash length " + Twine(Record.size()).str()); 6493 if (LastSeenModulePath == TheIndex->modulePaths().end()) 6494 return error("Invalid hash that does not follow a module path"); 6495 int Pos = 0; 6496 for (auto &Val : Record) { 6497 assert(!(Val >> 32) && "Unexpected high bits set"); 6498 LastSeenModulePath->second.second[Pos++] = Val; 6499 } 6500 // Reset LastSeenModulePath to avoid overriding the hash unexpectedly. 6501 LastSeenModulePath = TheIndex->modulePaths().end(); 6502 break; 6503 } 6504 } 6505 } 6506 llvm_unreachable("Exit infinite loop"); 6507 } 6508 6509 // Parse the function info index from the bitcode streamer into the given index. 6510 std::error_code 6511 ModuleSummaryIndexBitcodeReader::parseSummaryIndexInto(ModuleSummaryIndex *I) { 6512 TheIndex = I; 6513 6514 if (std::error_code EC = initStream()) 6515 return EC; 6516 6517 // Sniff for the signature. 6518 if (!hasValidBitcodeHeader(Stream)) 6519 return error("Invalid bitcode signature"); 6520 6521 // We expect a number of well-defined blocks, though we don't necessarily 6522 // need to understand them all. 6523 while (true) { 6524 if (Stream.AtEndOfStream()) { 6525 // We didn't really read a proper Module block. 6526 return error("Malformed block"); 6527 } 6528 6529 BitstreamEntry Entry = 6530 Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs); 6531 6532 if (Entry.Kind != BitstreamEntry::SubBlock) 6533 return error("Malformed block"); 6534 6535 // If we see a MODULE_BLOCK, parse it to find the blocks needed for 6536 // building the function summary index. 6537 if (Entry.ID == bitc::MODULE_BLOCK_ID) 6538 return parseModule(); 6539 6540 if (Stream.SkipBlock()) 6541 return error("Invalid record"); 6542 } 6543 } 6544 6545 namespace { 6546 6547 // FIXME: This class is only here to support the transition to llvm::Error. It 6548 // will be removed once this transition is complete. Clients should prefer to 6549 // deal with the Error value directly, rather than converting to error_code. 6550 class BitcodeErrorCategoryType : public std::error_category { 6551 const char *name() const noexcept override { 6552 return "llvm.bitcode"; 6553 } 6554 std::string message(int IE) const override { 6555 BitcodeError E = static_cast<BitcodeError>(IE); 6556 switch (E) { 6557 case BitcodeError::InvalidBitcodeSignature: 6558 return "Invalid bitcode signature"; 6559 case BitcodeError::CorruptedBitcode: 6560 return "Corrupted bitcode"; 6561 } 6562 llvm_unreachable("Unknown error type!"); 6563 } 6564 }; 6565 6566 } // end anonymous namespace 6567 6568 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory; 6569 6570 const std::error_category &llvm::BitcodeErrorCategory() { 6571 return *ErrorCategory; 6572 } 6573 6574 //===----------------------------------------------------------------------===// 6575 // External interface 6576 //===----------------------------------------------------------------------===// 6577 6578 static ErrorOr<std::unique_ptr<Module>> 6579 getBitcodeModuleImpl(StringRef Name, BitcodeReader *R, LLVMContext &Context, 6580 bool MaterializeAll, bool ShouldLazyLoadMetadata) { 6581 std::unique_ptr<Module> M = llvm::make_unique<Module>(Name, Context); 6582 M->setMaterializer(R); 6583 6584 auto cleanupOnError = [&](std::error_code EC) { 6585 R->releaseBuffer(); // Never take ownership on error. 6586 return EC; 6587 }; 6588 6589 // Delay parsing Metadata if ShouldLazyLoadMetadata is true. 6590 if (std::error_code EC = R->parseBitcodeInto(M.get(), ShouldLazyLoadMetadata)) 6591 return cleanupOnError(EC); 6592 6593 if (MaterializeAll) { 6594 // Read in the entire module, and destroy the BitcodeReader. 6595 if (std::error_code EC = M->materializeAll()) 6596 return cleanupOnError(EC); 6597 } else { 6598 // Resolve forward references from blockaddresses. 6599 if (std::error_code EC = R->materializeForwardReferencedFunctions()) 6600 return cleanupOnError(EC); 6601 } 6602 return std::move(M); 6603 } 6604 6605 /// \brief Get a lazy one-at-time loading module from bitcode. 6606 /// 6607 /// This isn't always used in a lazy context. In particular, it's also used by 6608 /// \a parseBitcodeFile(). If this is truly lazy, then we need to eagerly pull 6609 /// in forward-referenced functions from block address references. 6610 /// 6611 /// \param[in] MaterializeAll Set to \c true if we should materialize 6612 /// everything. 6613 static ErrorOr<std::unique_ptr<Module>> 6614 getLazyBitcodeModuleImpl(std::unique_ptr<MemoryBuffer> &&Buffer, 6615 LLVMContext &Context, bool MaterializeAll, 6616 bool ShouldLazyLoadMetadata = false) { 6617 BitcodeReader *R = new BitcodeReader(Buffer.get(), Context); 6618 6619 ErrorOr<std::unique_ptr<Module>> Ret = 6620 getBitcodeModuleImpl(Buffer->getBufferIdentifier(), R, Context, 6621 MaterializeAll, ShouldLazyLoadMetadata); 6622 if (!Ret) 6623 return Ret; 6624 6625 Buffer.release(); // The BitcodeReader owns it now. 6626 return Ret; 6627 } 6628 6629 ErrorOr<std::unique_ptr<Module>> 6630 llvm::getLazyBitcodeModule(std::unique_ptr<MemoryBuffer> &&Buffer, 6631 LLVMContext &Context, bool ShouldLazyLoadMetadata) { 6632 return getLazyBitcodeModuleImpl(std::move(Buffer), Context, false, 6633 ShouldLazyLoadMetadata); 6634 } 6635 6636 ErrorOr<std::unique_ptr<Module>> llvm::parseBitcodeFile(MemoryBufferRef Buffer, 6637 LLVMContext &Context) { 6638 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 6639 return getLazyBitcodeModuleImpl(std::move(Buf), Context, true); 6640 // TODO: Restore the use-lists to the in-memory state when the bitcode was 6641 // written. We must defer until the Module has been fully materialized. 6642 } 6643 6644 std::string llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer, 6645 LLVMContext &Context) { 6646 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 6647 auto R = llvm::make_unique<BitcodeReader>(Buf.release(), Context); 6648 ErrorOr<std::string> Triple = R->parseTriple(); 6649 if (Triple.getError()) 6650 return ""; 6651 return Triple.get(); 6652 } 6653 6654 bool llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer, 6655 LLVMContext &Context) { 6656 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 6657 auto R = llvm::make_unique<BitcodeReader>(Buf.release(), Context); 6658 ErrorOr<bool> hasObjCCategory = R->hasObjCCategory(); 6659 if (hasObjCCategory.getError()) 6660 return false; 6661 return hasObjCCategory.get(); 6662 } 6663 6664 std::string llvm::getBitcodeProducerString(MemoryBufferRef Buffer, 6665 LLVMContext &Context) { 6666 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 6667 BitcodeReader R(Buf.release(), Context); 6668 ErrorOr<std::string> ProducerString = R.parseIdentificationBlock(); 6669 if (ProducerString.getError()) 6670 return ""; 6671 return ProducerString.get(); 6672 } 6673 6674 // Parse the specified bitcode buffer, returning the function info index. 6675 ErrorOr<std::unique_ptr<ModuleSummaryIndex>> llvm::getModuleSummaryIndex( 6676 MemoryBufferRef Buffer, 6677 const DiagnosticHandlerFunction &DiagnosticHandler) { 6678 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 6679 ModuleSummaryIndexBitcodeReader R(Buf.get(), DiagnosticHandler); 6680 6681 auto Index = llvm::make_unique<ModuleSummaryIndex>(); 6682 6683 auto cleanupOnError = [&](std::error_code EC) { 6684 R.releaseBuffer(); // Never take ownership on error. 6685 return EC; 6686 }; 6687 6688 if (std::error_code EC = R.parseSummaryIndexInto(Index.get())) 6689 return cleanupOnError(EC); 6690 6691 Buf.release(); // The ModuleSummaryIndexBitcodeReader owns it now. 6692 return std::move(Index); 6693 } 6694 6695 // Check if the given bitcode buffer contains a global value summary block. 6696 bool llvm::hasGlobalValueSummary( 6697 MemoryBufferRef Buffer, 6698 const DiagnosticHandlerFunction &DiagnosticHandler) { 6699 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 6700 ModuleSummaryIndexBitcodeReader R(Buf.get(), DiagnosticHandler, true); 6701 6702 auto cleanupOnError = [&](std::error_code EC) { 6703 R.releaseBuffer(); // Never take ownership on error. 6704 return false; 6705 }; 6706 6707 if (std::error_code EC = R.parseSummaryIndexInto(nullptr)) 6708 return cleanupOnError(EC); 6709 6710 Buf.release(); // The ModuleSummaryIndexBitcodeReader owns it now. 6711 return R.foundGlobalValSummary(); 6712 } 6713