1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/Bitcode/BitcodeReader.h"
10 #include "MetadataLoader.h"
11 #include "ValueList.h"
12 #include "llvm/ADT/APFloat.h"
13 #include "llvm/ADT/APInt.h"
14 #include "llvm/ADT/ArrayRef.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/Optional.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallString.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/StringRef.h"
21 #include "llvm/ADT/Triple.h"
22 #include "llvm/ADT/Twine.h"
23 #include "llvm/Bitcode/BitcodeCommon.h"
24 #include "llvm/Bitcode/LLVMBitCodes.h"
25 #include "llvm/Bitstream/BitstreamReader.h"
26 #include "llvm/Config/llvm-config.h"
27 #include "llvm/IR/Argument.h"
28 #include "llvm/IR/Attributes.h"
29 #include "llvm/IR/AutoUpgrade.h"
30 #include "llvm/IR/BasicBlock.h"
31 #include "llvm/IR/CallingConv.h"
32 #include "llvm/IR/Comdat.h"
33 #include "llvm/IR/Constant.h"
34 #include "llvm/IR/Constants.h"
35 #include "llvm/IR/DataLayout.h"
36 #include "llvm/IR/DebugInfo.h"
37 #include "llvm/IR/DebugInfoMetadata.h"
38 #include "llvm/IR/DebugLoc.h"
39 #include "llvm/IR/DerivedTypes.h"
40 #include "llvm/IR/Function.h"
41 #include "llvm/IR/GVMaterializer.h"
42 #include "llvm/IR/GlobalAlias.h"
43 #include "llvm/IR/GlobalIFunc.h"
44 #include "llvm/IR/GlobalObject.h"
45 #include "llvm/IR/GlobalValue.h"
46 #include "llvm/IR/GlobalVariable.h"
47 #include "llvm/IR/InlineAsm.h"
48 #include "llvm/IR/InstIterator.h"
49 #include "llvm/IR/InstrTypes.h"
50 #include "llvm/IR/Instruction.h"
51 #include "llvm/IR/Instructions.h"
52 #include "llvm/IR/Intrinsics.h"
53 #include "llvm/IR/LLVMContext.h"
54 #include "llvm/IR/Metadata.h"
55 #include "llvm/IR/Module.h"
56 #include "llvm/IR/ModuleSummaryIndex.h"
57 #include "llvm/IR/Operator.h"
58 #include "llvm/IR/Type.h"
59 #include "llvm/IR/Value.h"
60 #include "llvm/IR/Verifier.h"
61 #include "llvm/Support/AtomicOrdering.h"
62 #include "llvm/Support/Casting.h"
63 #include "llvm/Support/CommandLine.h"
64 #include "llvm/Support/Compiler.h"
65 #include "llvm/Support/Debug.h"
66 #include "llvm/Support/Error.h"
67 #include "llvm/Support/ErrorHandling.h"
68 #include "llvm/Support/ErrorOr.h"
69 #include "llvm/Support/ManagedStatic.h"
70 #include "llvm/Support/MathExtras.h"
71 #include "llvm/Support/MemoryBuffer.h"
72 #include "llvm/Support/raw_ostream.h"
73 #include <algorithm>
74 #include <cassert>
75 #include <cstddef>
76 #include <cstdint>
77 #include <deque>
78 #include <map>
79 #include <memory>
80 #include <set>
81 #include <string>
82 #include <system_error>
83 #include <tuple>
84 #include <utility>
85 #include <vector>
86 
87 using namespace llvm;
88 
89 static cl::opt<bool> PrintSummaryGUIDs(
90     "print-summary-global-ids", cl::init(false), cl::Hidden,
91     cl::desc(
92         "Print the global id for each value when reading the module summary"));
93 
94 namespace {
95 
96 enum {
97   SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex
98 };
99 
100 } // end anonymous namespace
101 
102 static Error error(const Twine &Message) {
103   return make_error<StringError>(
104       Message, make_error_code(BitcodeError::CorruptedBitcode));
105 }
106 
107 static Error hasInvalidBitcodeHeader(BitstreamCursor &Stream) {
108   if (!Stream.canSkipToPos(4))
109     return createStringError(std::errc::illegal_byte_sequence,
110                              "file too small to contain bitcode header");
111   for (unsigned C : {'B', 'C'})
112     if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(8)) {
113       if (Res.get() != C)
114         return createStringError(std::errc::illegal_byte_sequence,
115                                  "file doesn't start with bitcode header");
116     } else
117       return Res.takeError();
118   for (unsigned C : {0x0, 0xC, 0xE, 0xD})
119     if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(4)) {
120       if (Res.get() != C)
121         return createStringError(std::errc::illegal_byte_sequence,
122                                  "file doesn't start with bitcode header");
123     } else
124       return Res.takeError();
125   return Error::success();
126 }
127 
128 static Expected<BitstreamCursor> initStream(MemoryBufferRef Buffer) {
129   const unsigned char *BufPtr = (const unsigned char *)Buffer.getBufferStart();
130   const unsigned char *BufEnd = BufPtr + Buffer.getBufferSize();
131 
132   if (Buffer.getBufferSize() & 3)
133     return error("Invalid bitcode signature");
134 
135   // If we have a wrapper header, parse it and ignore the non-bc file contents.
136   // The magic number is 0x0B17C0DE stored in little endian.
137   if (isBitcodeWrapper(BufPtr, BufEnd))
138     if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true))
139       return error("Invalid bitcode wrapper header");
140 
141   BitstreamCursor Stream(ArrayRef<uint8_t>(BufPtr, BufEnd));
142   if (Error Err = hasInvalidBitcodeHeader(Stream))
143     return std::move(Err);
144 
145   return std::move(Stream);
146 }
147 
148 /// Convert a string from a record into an std::string, return true on failure.
149 template <typename StrTy>
150 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx,
151                             StrTy &Result) {
152   if (Idx > Record.size())
153     return true;
154 
155   Result.append(Record.begin() + Idx, Record.end());
156   return false;
157 }
158 
159 // Strip all the TBAA attachment for the module.
160 static void stripTBAA(Module *M) {
161   for (auto &F : *M) {
162     if (F.isMaterializable())
163       continue;
164     for (auto &I : instructions(F))
165       I.setMetadata(LLVMContext::MD_tbaa, nullptr);
166   }
167 }
168 
169 /// Read the "IDENTIFICATION_BLOCK_ID" block, do some basic enforcement on the
170 /// "epoch" encoded in the bitcode, and return the producer name if any.
171 static Expected<std::string> readIdentificationBlock(BitstreamCursor &Stream) {
172   if (Error Err = Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID))
173     return std::move(Err);
174 
175   // Read all the records.
176   SmallVector<uint64_t, 64> Record;
177 
178   std::string ProducerIdentification;
179 
180   while (true) {
181     BitstreamEntry Entry;
182     if (Error E = Stream.advance().moveInto(Entry))
183       return std::move(E);
184 
185     switch (Entry.Kind) {
186     default:
187     case BitstreamEntry::Error:
188       return error("Malformed block");
189     case BitstreamEntry::EndBlock:
190       return ProducerIdentification;
191     case BitstreamEntry::Record:
192       // The interesting case.
193       break;
194     }
195 
196     // Read a record.
197     Record.clear();
198     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
199     if (!MaybeBitCode)
200       return MaybeBitCode.takeError();
201     switch (MaybeBitCode.get()) {
202     default: // Default behavior: reject
203       return error("Invalid value");
204     case bitc::IDENTIFICATION_CODE_STRING: // IDENTIFICATION: [strchr x N]
205       convertToString(Record, 0, ProducerIdentification);
206       break;
207     case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#]
208       unsigned epoch = (unsigned)Record[0];
209       if (epoch != bitc::BITCODE_CURRENT_EPOCH) {
210         return error(
211           Twine("Incompatible epoch: Bitcode '") + Twine(epoch) +
212           "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'");
213       }
214     }
215     }
216   }
217 }
218 
219 static Expected<std::string> readIdentificationCode(BitstreamCursor &Stream) {
220   // We expect a number of well-defined blocks, though we don't necessarily
221   // need to understand them all.
222   while (true) {
223     if (Stream.AtEndOfStream())
224       return "";
225 
226     BitstreamEntry Entry;
227     if (Error E = Stream.advance().moveInto(Entry))
228       return std::move(E);
229 
230     switch (Entry.Kind) {
231     case BitstreamEntry::EndBlock:
232     case BitstreamEntry::Error:
233       return error("Malformed block");
234 
235     case BitstreamEntry::SubBlock:
236       if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID)
237         return readIdentificationBlock(Stream);
238 
239       // Ignore other sub-blocks.
240       if (Error Err = Stream.SkipBlock())
241         return std::move(Err);
242       continue;
243     case BitstreamEntry::Record:
244       if (Error E = Stream.skipRecord(Entry.ID).takeError())
245         return std::move(E);
246       continue;
247     }
248   }
249 }
250 
251 static Expected<bool> hasObjCCategoryInModule(BitstreamCursor &Stream) {
252   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
253     return std::move(Err);
254 
255   SmallVector<uint64_t, 64> Record;
256   // Read all the records for this module.
257 
258   while (true) {
259     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
260     if (!MaybeEntry)
261       return MaybeEntry.takeError();
262     BitstreamEntry Entry = MaybeEntry.get();
263 
264     switch (Entry.Kind) {
265     case BitstreamEntry::SubBlock: // Handled for us already.
266     case BitstreamEntry::Error:
267       return error("Malformed block");
268     case BitstreamEntry::EndBlock:
269       return false;
270     case BitstreamEntry::Record:
271       // The interesting case.
272       break;
273     }
274 
275     // Read a record.
276     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
277     if (!MaybeRecord)
278       return MaybeRecord.takeError();
279     switch (MaybeRecord.get()) {
280     default:
281       break; // Default behavior, ignore unknown content.
282     case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N]
283       std::string S;
284       if (convertToString(Record, 0, S))
285         return error("Invalid record");
286       // Check for the i386 and other (x86_64, ARM) conventions
287       if (S.find("__DATA,__objc_catlist") != std::string::npos ||
288           S.find("__OBJC,__category") != std::string::npos)
289         return true;
290       break;
291     }
292     }
293     Record.clear();
294   }
295   llvm_unreachable("Exit infinite loop");
296 }
297 
298 static Expected<bool> hasObjCCategory(BitstreamCursor &Stream) {
299   // We expect a number of well-defined blocks, though we don't necessarily
300   // need to understand them all.
301   while (true) {
302     BitstreamEntry Entry;
303     if (Error E = Stream.advance().moveInto(Entry))
304       return std::move(E);
305 
306     switch (Entry.Kind) {
307     case BitstreamEntry::Error:
308       return error("Malformed block");
309     case BitstreamEntry::EndBlock:
310       return false;
311 
312     case BitstreamEntry::SubBlock:
313       if (Entry.ID == bitc::MODULE_BLOCK_ID)
314         return hasObjCCategoryInModule(Stream);
315 
316       // Ignore other sub-blocks.
317       if (Error Err = Stream.SkipBlock())
318         return std::move(Err);
319       continue;
320 
321     case BitstreamEntry::Record:
322       if (Error E = Stream.skipRecord(Entry.ID).takeError())
323         return std::move(E);
324       continue;
325     }
326   }
327 }
328 
329 static Expected<std::string> readModuleTriple(BitstreamCursor &Stream) {
330   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
331     return std::move(Err);
332 
333   SmallVector<uint64_t, 64> Record;
334 
335   std::string Triple;
336 
337   // Read all the records for this module.
338   while (true) {
339     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
340     if (!MaybeEntry)
341       return MaybeEntry.takeError();
342     BitstreamEntry Entry = MaybeEntry.get();
343 
344     switch (Entry.Kind) {
345     case BitstreamEntry::SubBlock: // Handled for us already.
346     case BitstreamEntry::Error:
347       return error("Malformed block");
348     case BitstreamEntry::EndBlock:
349       return Triple;
350     case BitstreamEntry::Record:
351       // The interesting case.
352       break;
353     }
354 
355     // Read a record.
356     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
357     if (!MaybeRecord)
358       return MaybeRecord.takeError();
359     switch (MaybeRecord.get()) {
360     default: break;  // Default behavior, ignore unknown content.
361     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
362       std::string S;
363       if (convertToString(Record, 0, S))
364         return error("Invalid record");
365       Triple = S;
366       break;
367     }
368     }
369     Record.clear();
370   }
371   llvm_unreachable("Exit infinite loop");
372 }
373 
374 static Expected<std::string> readTriple(BitstreamCursor &Stream) {
375   // We expect a number of well-defined blocks, though we don't necessarily
376   // need to understand them all.
377   while (true) {
378     Expected<BitstreamEntry> MaybeEntry = Stream.advance();
379     if (!MaybeEntry)
380       return MaybeEntry.takeError();
381     BitstreamEntry Entry = MaybeEntry.get();
382 
383     switch (Entry.Kind) {
384     case BitstreamEntry::Error:
385       return error("Malformed block");
386     case BitstreamEntry::EndBlock:
387       return "";
388 
389     case BitstreamEntry::SubBlock:
390       if (Entry.ID == bitc::MODULE_BLOCK_ID)
391         return readModuleTriple(Stream);
392 
393       // Ignore other sub-blocks.
394       if (Error Err = Stream.SkipBlock())
395         return std::move(Err);
396       continue;
397 
398     case BitstreamEntry::Record:
399       if (llvm::Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID))
400         continue;
401       else
402         return Skipped.takeError();
403     }
404   }
405 }
406 
407 namespace {
408 
409 class BitcodeReaderBase {
410 protected:
411   BitcodeReaderBase(BitstreamCursor Stream, StringRef Strtab)
412       : Stream(std::move(Stream)), Strtab(Strtab) {
413     this->Stream.setBlockInfo(&BlockInfo);
414   }
415 
416   BitstreamBlockInfo BlockInfo;
417   BitstreamCursor Stream;
418   StringRef Strtab;
419 
420   /// In version 2 of the bitcode we store names of global values and comdats in
421   /// a string table rather than in the VST.
422   bool UseStrtab = false;
423 
424   Expected<unsigned> parseVersionRecord(ArrayRef<uint64_t> Record);
425 
426   /// If this module uses a string table, pop the reference to the string table
427   /// and return the referenced string and the rest of the record. Otherwise
428   /// just return the record itself.
429   std::pair<StringRef, ArrayRef<uint64_t>>
430   readNameFromStrtab(ArrayRef<uint64_t> Record);
431 
432   Error readBlockInfo();
433 
434   // Contains an arbitrary and optional string identifying the bitcode producer
435   std::string ProducerIdentification;
436 
437   Error error(const Twine &Message);
438 };
439 
440 } // end anonymous namespace
441 
442 Error BitcodeReaderBase::error(const Twine &Message) {
443   std::string FullMsg = Message.str();
444   if (!ProducerIdentification.empty())
445     FullMsg += " (Producer: '" + ProducerIdentification + "' Reader: 'LLVM " +
446                LLVM_VERSION_STRING "')";
447   return ::error(FullMsg);
448 }
449 
450 Expected<unsigned>
451 BitcodeReaderBase::parseVersionRecord(ArrayRef<uint64_t> Record) {
452   if (Record.empty())
453     return error("Invalid record");
454   unsigned ModuleVersion = Record[0];
455   if (ModuleVersion > 2)
456     return error("Invalid value");
457   UseStrtab = ModuleVersion >= 2;
458   return ModuleVersion;
459 }
460 
461 std::pair<StringRef, ArrayRef<uint64_t>>
462 BitcodeReaderBase::readNameFromStrtab(ArrayRef<uint64_t> Record) {
463   if (!UseStrtab)
464     return {"", Record};
465   // Invalid reference. Let the caller complain about the record being empty.
466   if (Record[0] + Record[1] > Strtab.size())
467     return {"", {}};
468   return {StringRef(Strtab.data() + Record[0], Record[1]), Record.slice(2)};
469 }
470 
471 namespace {
472 
473 class BitcodeReader : public BitcodeReaderBase, public GVMaterializer {
474   LLVMContext &Context;
475   Module *TheModule = nullptr;
476   // Next offset to start scanning for lazy parsing of function bodies.
477   uint64_t NextUnreadBit = 0;
478   // Last function offset found in the VST.
479   uint64_t LastFunctionBlockBit = 0;
480   bool SeenValueSymbolTable = false;
481   uint64_t VSTOffset = 0;
482 
483   std::vector<std::string> SectionTable;
484   std::vector<std::string> GCTable;
485 
486   std::vector<Type*> TypeList;
487   DenseMap<Function *, FunctionType *> FunctionTypes;
488   BitcodeReaderValueList ValueList;
489   Optional<MetadataLoader> MDLoader;
490   std::vector<Comdat *> ComdatList;
491   DenseSet<GlobalObject *> ImplicitComdatObjects;
492   SmallVector<Instruction *, 64> InstructionList;
493 
494   std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInits;
495   std::vector<std::pair<GlobalValue *, unsigned>> IndirectSymbolInits;
496 
497   struct FunctionOperandInfo {
498     Function *F;
499     unsigned PersonalityFn;
500     unsigned Prefix;
501     unsigned Prologue;
502   };
503   std::vector<FunctionOperandInfo> FunctionOperands;
504 
505   /// The set of attributes by index.  Index zero in the file is for null, and
506   /// is thus not represented here.  As such all indices are off by one.
507   std::vector<AttributeList> MAttributes;
508 
509   /// The set of attribute groups.
510   std::map<unsigned, AttributeList> MAttributeGroups;
511 
512   /// While parsing a function body, this is a list of the basic blocks for the
513   /// function.
514   std::vector<BasicBlock*> FunctionBBs;
515 
516   // When reading the module header, this list is populated with functions that
517   // have bodies later in the file.
518   std::vector<Function*> FunctionsWithBodies;
519 
520   // When intrinsic functions are encountered which require upgrading they are
521   // stored here with their replacement function.
522   using UpdatedIntrinsicMap = DenseMap<Function *, Function *>;
523   UpdatedIntrinsicMap UpgradedIntrinsics;
524   // Intrinsics which were remangled because of types rename
525   UpdatedIntrinsicMap RemangledIntrinsics;
526 
527   // Several operations happen after the module header has been read, but
528   // before function bodies are processed. This keeps track of whether
529   // we've done this yet.
530   bool SeenFirstFunctionBody = false;
531 
532   /// When function bodies are initially scanned, this map contains info about
533   /// where to find deferred function body in the stream.
534   DenseMap<Function*, uint64_t> DeferredFunctionInfo;
535 
536   /// When Metadata block is initially scanned when parsing the module, we may
537   /// choose to defer parsing of the metadata. This vector contains info about
538   /// which Metadata blocks are deferred.
539   std::vector<uint64_t> DeferredMetadataInfo;
540 
541   /// These are basic blocks forward-referenced by block addresses.  They are
542   /// inserted lazily into functions when they're loaded.  The basic block ID is
543   /// its index into the vector.
544   DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs;
545   std::deque<Function *> BasicBlockFwdRefQueue;
546 
547   /// Indicates that we are using a new encoding for instruction operands where
548   /// most operands in the current FUNCTION_BLOCK are encoded relative to the
549   /// instruction number, for a more compact encoding.  Some instruction
550   /// operands are not relative to the instruction ID: basic block numbers, and
551   /// types. Once the old style function blocks have been phased out, we would
552   /// not need this flag.
553   bool UseRelativeIDs = false;
554 
555   /// True if all functions will be materialized, negating the need to process
556   /// (e.g.) blockaddress forward references.
557   bool WillMaterializeAllForwardRefs = false;
558 
559   bool StripDebugInfo = false;
560   TBAAVerifier TBAAVerifyHelper;
561 
562   std::vector<std::string> BundleTags;
563   SmallVector<SyncScope::ID, 8> SSIDs;
564 
565 public:
566   BitcodeReader(BitstreamCursor Stream, StringRef Strtab,
567                 StringRef ProducerIdentification, LLVMContext &Context);
568 
569   Error materializeForwardReferencedFunctions();
570 
571   Error materialize(GlobalValue *GV) override;
572   Error materializeModule() override;
573   std::vector<StructType *> getIdentifiedStructTypes() const override;
574 
575   /// Main interface to parsing a bitcode buffer.
576   /// \returns true if an error occurred.
577   Error parseBitcodeInto(
578       Module *M, bool ShouldLazyLoadMetadata = false, bool IsImporting = false,
579       DataLayoutCallbackTy DataLayoutCallback = [](StringRef) { return None; });
580 
581   static uint64_t decodeSignRotatedValue(uint64_t V);
582 
583   /// Materialize any deferred Metadata block.
584   Error materializeMetadata() override;
585 
586   void setStripDebugInfo() override;
587 
588 private:
589   std::vector<StructType *> IdentifiedStructTypes;
590   StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name);
591   StructType *createIdentifiedStructType(LLVMContext &Context);
592 
593   Type *getTypeByID(unsigned ID);
594 
595   Value *getFnValueByID(unsigned ID, Type *Ty) {
596     if (Ty && Ty->isMetadataTy())
597       return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID));
598     return ValueList.getValueFwdRef(ID, Ty);
599   }
600 
601   Metadata *getFnMetadataByID(unsigned ID) {
602     return MDLoader->getMetadataFwdRefOrLoad(ID);
603   }
604 
605   BasicBlock *getBasicBlock(unsigned ID) const {
606     if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID
607     return FunctionBBs[ID];
608   }
609 
610   AttributeList getAttributes(unsigned i) const {
611     if (i-1 < MAttributes.size())
612       return MAttributes[i-1];
613     return AttributeList();
614   }
615 
616   /// Read a value/type pair out of the specified record from slot 'Slot'.
617   /// Increment Slot past the number of slots used in the record. Return true on
618   /// failure.
619   bool getValueTypePair(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
620                         unsigned InstNum, Value *&ResVal) {
621     if (Slot == Record.size()) return true;
622     unsigned ValNo = (unsigned)Record[Slot++];
623     // Adjust the ValNo, if it was encoded relative to the InstNum.
624     if (UseRelativeIDs)
625       ValNo = InstNum - ValNo;
626     if (ValNo < InstNum) {
627       // If this is not a forward reference, just return the value we already
628       // have.
629       ResVal = getFnValueByID(ValNo, nullptr);
630       return ResVal == nullptr;
631     }
632     if (Slot == Record.size())
633       return true;
634 
635     unsigned TypeNo = (unsigned)Record[Slot++];
636     ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo));
637     return ResVal == nullptr;
638   }
639 
640   /// Read a value out of the specified record from slot 'Slot'. Increment Slot
641   /// past the number of slots used by the value in the record. Return true if
642   /// there is an error.
643   bool popValue(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
644                 unsigned InstNum, Type *Ty, Value *&ResVal) {
645     if (getValue(Record, Slot, InstNum, Ty, ResVal))
646       return true;
647     // All values currently take a single record slot.
648     ++Slot;
649     return false;
650   }
651 
652   /// Like popValue, but does not increment the Slot number.
653   bool getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot,
654                 unsigned InstNum, Type *Ty, Value *&ResVal) {
655     ResVal = getValue(Record, Slot, InstNum, Ty);
656     return ResVal == nullptr;
657   }
658 
659   /// Version of getValue that returns ResVal directly, or 0 if there is an
660   /// error.
661   Value *getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot,
662                   unsigned InstNum, Type *Ty) {
663     if (Slot == Record.size()) return nullptr;
664     unsigned ValNo = (unsigned)Record[Slot];
665     // Adjust the ValNo, if it was encoded relative to the InstNum.
666     if (UseRelativeIDs)
667       ValNo = InstNum - ValNo;
668     return getFnValueByID(ValNo, Ty);
669   }
670 
671   /// Like getValue, but decodes signed VBRs.
672   Value *getValueSigned(const SmallVectorImpl<uint64_t> &Record, unsigned Slot,
673                         unsigned InstNum, Type *Ty) {
674     if (Slot == Record.size()) return nullptr;
675     unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]);
676     // Adjust the ValNo, if it was encoded relative to the InstNum.
677     if (UseRelativeIDs)
678       ValNo = InstNum - ValNo;
679     return getFnValueByID(ValNo, Ty);
680   }
681 
682   /// Upgrades old-style typeless byval/sret/inalloca attributes by adding the
683   /// corresponding argument's pointee type. Also upgrades intrinsics that now
684   /// require an elementtype attribute.
685   void propagateAttributeTypes(CallBase *CB, ArrayRef<Type *> ArgsTys);
686 
687   /// Converts alignment exponent (i.e. power of two (or zero)) to the
688   /// corresponding alignment to use. If alignment is too large, returns
689   /// a corresponding error code.
690   Error parseAlignmentValue(uint64_t Exponent, MaybeAlign &Alignment);
691   Error parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind);
692   Error parseModule(
693       uint64_t ResumeBit, bool ShouldLazyLoadMetadata = false,
694       DataLayoutCallbackTy DataLayoutCallback = [](StringRef) { return None; });
695 
696   Error parseComdatRecord(ArrayRef<uint64_t> Record);
697   Error parseGlobalVarRecord(ArrayRef<uint64_t> Record);
698   Error parseFunctionRecord(ArrayRef<uint64_t> Record);
699   Error parseGlobalIndirectSymbolRecord(unsigned BitCode,
700                                         ArrayRef<uint64_t> Record);
701 
702   Error parseAttributeBlock();
703   Error parseAttributeGroupBlock();
704   Error parseTypeTable();
705   Error parseTypeTableBody();
706   Error parseOperandBundleTags();
707   Error parseSyncScopeNames();
708 
709   Expected<Value *> recordValue(SmallVectorImpl<uint64_t> &Record,
710                                 unsigned NameIndex, Triple &TT);
711   void setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, Function *F,
712                                ArrayRef<uint64_t> Record);
713   Error parseValueSymbolTable(uint64_t Offset = 0);
714   Error parseGlobalValueSymbolTable();
715   Error parseConstants();
716   Error rememberAndSkipFunctionBodies();
717   Error rememberAndSkipFunctionBody();
718   /// Save the positions of the Metadata blocks and skip parsing the blocks.
719   Error rememberAndSkipMetadata();
720   Error typeCheckLoadStoreInst(Type *ValType, Type *PtrType);
721   Error parseFunctionBody(Function *F);
722   Error globalCleanup();
723   Error resolveGlobalAndIndirectSymbolInits();
724   Error parseUseLists();
725   Error findFunctionInStream(
726       Function *F,
727       DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator);
728 
729   SyncScope::ID getDecodedSyncScopeID(unsigned Val);
730 };
731 
732 /// Class to manage reading and parsing function summary index bitcode
733 /// files/sections.
734 class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase {
735   /// The module index built during parsing.
736   ModuleSummaryIndex &TheIndex;
737 
738   /// Indicates whether we have encountered a global value summary section
739   /// yet during parsing.
740   bool SeenGlobalValSummary = false;
741 
742   /// Indicates whether we have already parsed the VST, used for error checking.
743   bool SeenValueSymbolTable = false;
744 
745   /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record.
746   /// Used to enable on-demand parsing of the VST.
747   uint64_t VSTOffset = 0;
748 
749   // Map to save ValueId to ValueInfo association that was recorded in the
750   // ValueSymbolTable. It is used after the VST is parsed to convert
751   // call graph edges read from the function summary from referencing
752   // callees by their ValueId to using the ValueInfo instead, which is how
753   // they are recorded in the summary index being built.
754   // We save a GUID which refers to the same global as the ValueInfo, but
755   // ignoring the linkage, i.e. for values other than local linkage they are
756   // identical.
757   DenseMap<unsigned, std::pair<ValueInfo, GlobalValue::GUID>>
758       ValueIdToValueInfoMap;
759 
760   /// Map populated during module path string table parsing, from the
761   /// module ID to a string reference owned by the index's module
762   /// path string table, used to correlate with combined index
763   /// summary records.
764   DenseMap<uint64_t, StringRef> ModuleIdMap;
765 
766   /// Original source file name recorded in a bitcode record.
767   std::string SourceFileName;
768 
769   /// The string identifier given to this module by the client, normally the
770   /// path to the bitcode file.
771   StringRef ModulePath;
772 
773   /// For per-module summary indexes, the unique numerical identifier given to
774   /// this module by the client.
775   unsigned ModuleId;
776 
777 public:
778   ModuleSummaryIndexBitcodeReader(BitstreamCursor Stream, StringRef Strtab,
779                                   ModuleSummaryIndex &TheIndex,
780                                   StringRef ModulePath, unsigned ModuleId);
781 
782   Error parseModule();
783 
784 private:
785   void setValueGUID(uint64_t ValueID, StringRef ValueName,
786                     GlobalValue::LinkageTypes Linkage,
787                     StringRef SourceFileName);
788   Error parseValueSymbolTable(
789       uint64_t Offset,
790       DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap);
791   std::vector<ValueInfo> makeRefList(ArrayRef<uint64_t> Record);
792   std::vector<FunctionSummary::EdgeTy> makeCallList(ArrayRef<uint64_t> Record,
793                                                     bool IsOldProfileFormat,
794                                                     bool HasProfile,
795                                                     bool HasRelBF);
796   Error parseEntireSummary(unsigned ID);
797   Error parseModuleStringTable();
798   void parseTypeIdCompatibleVtableSummaryRecord(ArrayRef<uint64_t> Record);
799   void parseTypeIdCompatibleVtableInfo(ArrayRef<uint64_t> Record, size_t &Slot,
800                                        TypeIdCompatibleVtableInfo &TypeId);
801   std::vector<FunctionSummary::ParamAccess>
802   parseParamAccesses(ArrayRef<uint64_t> Record);
803 
804   std::pair<ValueInfo, GlobalValue::GUID>
805   getValueInfoFromValueId(unsigned ValueId);
806 
807   void addThisModule();
808   ModuleSummaryIndex::ModuleInfo *getThisModule();
809 };
810 
811 } // end anonymous namespace
812 
813 std::error_code llvm::errorToErrorCodeAndEmitErrors(LLVMContext &Ctx,
814                                                     Error Err) {
815   if (Err) {
816     std::error_code EC;
817     handleAllErrors(std::move(Err), [&](ErrorInfoBase &EIB) {
818       EC = EIB.convertToErrorCode();
819       Ctx.emitError(EIB.message());
820     });
821     return EC;
822   }
823   return std::error_code();
824 }
825 
826 BitcodeReader::BitcodeReader(BitstreamCursor Stream, StringRef Strtab,
827                              StringRef ProducerIdentification,
828                              LLVMContext &Context)
829     : BitcodeReaderBase(std::move(Stream), Strtab), Context(Context),
830       ValueList(Context, Stream.SizeInBytes()) {
831   this->ProducerIdentification = std::string(ProducerIdentification);
832 }
833 
834 Error BitcodeReader::materializeForwardReferencedFunctions() {
835   if (WillMaterializeAllForwardRefs)
836     return Error::success();
837 
838   // Prevent recursion.
839   WillMaterializeAllForwardRefs = true;
840 
841   while (!BasicBlockFwdRefQueue.empty()) {
842     Function *F = BasicBlockFwdRefQueue.front();
843     BasicBlockFwdRefQueue.pop_front();
844     assert(F && "Expected valid function");
845     if (!BasicBlockFwdRefs.count(F))
846       // Already materialized.
847       continue;
848 
849     // Check for a function that isn't materializable to prevent an infinite
850     // loop.  When parsing a blockaddress stored in a global variable, there
851     // isn't a trivial way to check if a function will have a body without a
852     // linear search through FunctionsWithBodies, so just check it here.
853     if (!F->isMaterializable())
854       return error("Never resolved function from blockaddress");
855 
856     // Try to materialize F.
857     if (Error Err = materialize(F))
858       return Err;
859   }
860   assert(BasicBlockFwdRefs.empty() && "Function missing from queue");
861 
862   // Reset state.
863   WillMaterializeAllForwardRefs = false;
864   return Error::success();
865 }
866 
867 //===----------------------------------------------------------------------===//
868 //  Helper functions to implement forward reference resolution, etc.
869 //===----------------------------------------------------------------------===//
870 
871 static bool hasImplicitComdat(size_t Val) {
872   switch (Val) {
873   default:
874     return false;
875   case 1:  // Old WeakAnyLinkage
876   case 4:  // Old LinkOnceAnyLinkage
877   case 10: // Old WeakODRLinkage
878   case 11: // Old LinkOnceODRLinkage
879     return true;
880   }
881 }
882 
883 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) {
884   switch (Val) {
885   default: // Map unknown/new linkages to external
886   case 0:
887     return GlobalValue::ExternalLinkage;
888   case 2:
889     return GlobalValue::AppendingLinkage;
890   case 3:
891     return GlobalValue::InternalLinkage;
892   case 5:
893     return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage
894   case 6:
895     return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage
896   case 7:
897     return GlobalValue::ExternalWeakLinkage;
898   case 8:
899     return GlobalValue::CommonLinkage;
900   case 9:
901     return GlobalValue::PrivateLinkage;
902   case 12:
903     return GlobalValue::AvailableExternallyLinkage;
904   case 13:
905     return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage
906   case 14:
907     return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage
908   case 15:
909     return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage
910   case 1: // Old value with implicit comdat.
911   case 16:
912     return GlobalValue::WeakAnyLinkage;
913   case 10: // Old value with implicit comdat.
914   case 17:
915     return GlobalValue::WeakODRLinkage;
916   case 4: // Old value with implicit comdat.
917   case 18:
918     return GlobalValue::LinkOnceAnyLinkage;
919   case 11: // Old value with implicit comdat.
920   case 19:
921     return GlobalValue::LinkOnceODRLinkage;
922   }
923 }
924 
925 static FunctionSummary::FFlags getDecodedFFlags(uint64_t RawFlags) {
926   FunctionSummary::FFlags Flags;
927   Flags.ReadNone = RawFlags & 0x1;
928   Flags.ReadOnly = (RawFlags >> 1) & 0x1;
929   Flags.NoRecurse = (RawFlags >> 2) & 0x1;
930   Flags.ReturnDoesNotAlias = (RawFlags >> 3) & 0x1;
931   Flags.NoInline = (RawFlags >> 4) & 0x1;
932   Flags.AlwaysInline = (RawFlags >> 5) & 0x1;
933   Flags.NoUnwind = (RawFlags >> 6) & 0x1;
934   Flags.MayThrow = (RawFlags >> 7) & 0x1;
935   Flags.HasUnknownCall = (RawFlags >> 8) & 0x1;
936   Flags.MustBeUnreachable = (RawFlags >> 9) & 0x1;
937   return Flags;
938 }
939 
940 // Decode the flags for GlobalValue in the summary. The bits for each attribute:
941 //
942 // linkage: [0,4), notEligibleToImport: 4, live: 5, local: 6, canAutoHide: 7,
943 // visibility: [8, 10).
944 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags,
945                                                             uint64_t Version) {
946   // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage
947   // like getDecodedLinkage() above. Any future change to the linkage enum and
948   // to getDecodedLinkage() will need to be taken into account here as above.
949   auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits
950   auto Visibility = GlobalValue::VisibilityTypes((RawFlags >> 8) & 3); // 2 bits
951   RawFlags = RawFlags >> 4;
952   bool NotEligibleToImport = (RawFlags & 0x1) || Version < 3;
953   // The Live flag wasn't introduced until version 3. For dead stripping
954   // to work correctly on earlier versions, we must conservatively treat all
955   // values as live.
956   bool Live = (RawFlags & 0x2) || Version < 3;
957   bool Local = (RawFlags & 0x4);
958   bool AutoHide = (RawFlags & 0x8);
959 
960   return GlobalValueSummary::GVFlags(Linkage, Visibility, NotEligibleToImport,
961                                      Live, Local, AutoHide);
962 }
963 
964 // Decode the flags for GlobalVariable in the summary
965 static GlobalVarSummary::GVarFlags getDecodedGVarFlags(uint64_t RawFlags) {
966   return GlobalVarSummary::GVarFlags(
967       (RawFlags & 0x1) ? true : false, (RawFlags & 0x2) ? true : false,
968       (RawFlags & 0x4) ? true : false,
969       (GlobalObject::VCallVisibility)(RawFlags >> 3));
970 }
971 
972 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) {
973   switch (Val) {
974   default: // Map unknown visibilities to default.
975   case 0: return GlobalValue::DefaultVisibility;
976   case 1: return GlobalValue::HiddenVisibility;
977   case 2: return GlobalValue::ProtectedVisibility;
978   }
979 }
980 
981 static GlobalValue::DLLStorageClassTypes
982 getDecodedDLLStorageClass(unsigned Val) {
983   switch (Val) {
984   default: // Map unknown values to default.
985   case 0: return GlobalValue::DefaultStorageClass;
986   case 1: return GlobalValue::DLLImportStorageClass;
987   case 2: return GlobalValue::DLLExportStorageClass;
988   }
989 }
990 
991 static bool getDecodedDSOLocal(unsigned Val) {
992   switch(Val) {
993   default: // Map unknown values to preemptable.
994   case 0:  return false;
995   case 1:  return true;
996   }
997 }
998 
999 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) {
1000   switch (Val) {
1001     case 0: return GlobalVariable::NotThreadLocal;
1002     default: // Map unknown non-zero value to general dynamic.
1003     case 1: return GlobalVariable::GeneralDynamicTLSModel;
1004     case 2: return GlobalVariable::LocalDynamicTLSModel;
1005     case 3: return GlobalVariable::InitialExecTLSModel;
1006     case 4: return GlobalVariable::LocalExecTLSModel;
1007   }
1008 }
1009 
1010 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) {
1011   switch (Val) {
1012     default: // Map unknown to UnnamedAddr::None.
1013     case 0: return GlobalVariable::UnnamedAddr::None;
1014     case 1: return GlobalVariable::UnnamedAddr::Global;
1015     case 2: return GlobalVariable::UnnamedAddr::Local;
1016   }
1017 }
1018 
1019 static int getDecodedCastOpcode(unsigned Val) {
1020   switch (Val) {
1021   default: return -1;
1022   case bitc::CAST_TRUNC   : return Instruction::Trunc;
1023   case bitc::CAST_ZEXT    : return Instruction::ZExt;
1024   case bitc::CAST_SEXT    : return Instruction::SExt;
1025   case bitc::CAST_FPTOUI  : return Instruction::FPToUI;
1026   case bitc::CAST_FPTOSI  : return Instruction::FPToSI;
1027   case bitc::CAST_UITOFP  : return Instruction::UIToFP;
1028   case bitc::CAST_SITOFP  : return Instruction::SIToFP;
1029   case bitc::CAST_FPTRUNC : return Instruction::FPTrunc;
1030   case bitc::CAST_FPEXT   : return Instruction::FPExt;
1031   case bitc::CAST_PTRTOINT: return Instruction::PtrToInt;
1032   case bitc::CAST_INTTOPTR: return Instruction::IntToPtr;
1033   case bitc::CAST_BITCAST : return Instruction::BitCast;
1034   case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast;
1035   }
1036 }
1037 
1038 static int getDecodedUnaryOpcode(unsigned Val, Type *Ty) {
1039   bool IsFP = Ty->isFPOrFPVectorTy();
1040   // UnOps are only valid for int/fp or vector of int/fp types
1041   if (!IsFP && !Ty->isIntOrIntVectorTy())
1042     return -1;
1043 
1044   switch (Val) {
1045   default:
1046     return -1;
1047   case bitc::UNOP_FNEG:
1048     return IsFP ? Instruction::FNeg : -1;
1049   }
1050 }
1051 
1052 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) {
1053   bool IsFP = Ty->isFPOrFPVectorTy();
1054   // BinOps are only valid for int/fp or vector of int/fp types
1055   if (!IsFP && !Ty->isIntOrIntVectorTy())
1056     return -1;
1057 
1058   switch (Val) {
1059   default:
1060     return -1;
1061   case bitc::BINOP_ADD:
1062     return IsFP ? Instruction::FAdd : Instruction::Add;
1063   case bitc::BINOP_SUB:
1064     return IsFP ? Instruction::FSub : Instruction::Sub;
1065   case bitc::BINOP_MUL:
1066     return IsFP ? Instruction::FMul : Instruction::Mul;
1067   case bitc::BINOP_UDIV:
1068     return IsFP ? -1 : Instruction::UDiv;
1069   case bitc::BINOP_SDIV:
1070     return IsFP ? Instruction::FDiv : Instruction::SDiv;
1071   case bitc::BINOP_UREM:
1072     return IsFP ? -1 : Instruction::URem;
1073   case bitc::BINOP_SREM:
1074     return IsFP ? Instruction::FRem : Instruction::SRem;
1075   case bitc::BINOP_SHL:
1076     return IsFP ? -1 : Instruction::Shl;
1077   case bitc::BINOP_LSHR:
1078     return IsFP ? -1 : Instruction::LShr;
1079   case bitc::BINOP_ASHR:
1080     return IsFP ? -1 : Instruction::AShr;
1081   case bitc::BINOP_AND:
1082     return IsFP ? -1 : Instruction::And;
1083   case bitc::BINOP_OR:
1084     return IsFP ? -1 : Instruction::Or;
1085   case bitc::BINOP_XOR:
1086     return IsFP ? -1 : Instruction::Xor;
1087   }
1088 }
1089 
1090 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) {
1091   switch (Val) {
1092   default: return AtomicRMWInst::BAD_BINOP;
1093   case bitc::RMW_XCHG: return AtomicRMWInst::Xchg;
1094   case bitc::RMW_ADD: return AtomicRMWInst::Add;
1095   case bitc::RMW_SUB: return AtomicRMWInst::Sub;
1096   case bitc::RMW_AND: return AtomicRMWInst::And;
1097   case bitc::RMW_NAND: return AtomicRMWInst::Nand;
1098   case bitc::RMW_OR: return AtomicRMWInst::Or;
1099   case bitc::RMW_XOR: return AtomicRMWInst::Xor;
1100   case bitc::RMW_MAX: return AtomicRMWInst::Max;
1101   case bitc::RMW_MIN: return AtomicRMWInst::Min;
1102   case bitc::RMW_UMAX: return AtomicRMWInst::UMax;
1103   case bitc::RMW_UMIN: return AtomicRMWInst::UMin;
1104   case bitc::RMW_FADD: return AtomicRMWInst::FAdd;
1105   case bitc::RMW_FSUB: return AtomicRMWInst::FSub;
1106   }
1107 }
1108 
1109 static AtomicOrdering getDecodedOrdering(unsigned Val) {
1110   switch (Val) {
1111   case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic;
1112   case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered;
1113   case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic;
1114   case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire;
1115   case bitc::ORDERING_RELEASE: return AtomicOrdering::Release;
1116   case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease;
1117   default: // Map unknown orderings to sequentially-consistent.
1118   case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent;
1119   }
1120 }
1121 
1122 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) {
1123   switch (Val) {
1124   default: // Map unknown selection kinds to any.
1125   case bitc::COMDAT_SELECTION_KIND_ANY:
1126     return Comdat::Any;
1127   case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH:
1128     return Comdat::ExactMatch;
1129   case bitc::COMDAT_SELECTION_KIND_LARGEST:
1130     return Comdat::Largest;
1131   case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES:
1132     return Comdat::NoDeduplicate;
1133   case bitc::COMDAT_SELECTION_KIND_SAME_SIZE:
1134     return Comdat::SameSize;
1135   }
1136 }
1137 
1138 static FastMathFlags getDecodedFastMathFlags(unsigned Val) {
1139   FastMathFlags FMF;
1140   if (0 != (Val & bitc::UnsafeAlgebra))
1141     FMF.setFast();
1142   if (0 != (Val & bitc::AllowReassoc))
1143     FMF.setAllowReassoc();
1144   if (0 != (Val & bitc::NoNaNs))
1145     FMF.setNoNaNs();
1146   if (0 != (Val & bitc::NoInfs))
1147     FMF.setNoInfs();
1148   if (0 != (Val & bitc::NoSignedZeros))
1149     FMF.setNoSignedZeros();
1150   if (0 != (Val & bitc::AllowReciprocal))
1151     FMF.setAllowReciprocal();
1152   if (0 != (Val & bitc::AllowContract))
1153     FMF.setAllowContract(true);
1154   if (0 != (Val & bitc::ApproxFunc))
1155     FMF.setApproxFunc();
1156   return FMF;
1157 }
1158 
1159 static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) {
1160   switch (Val) {
1161   case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break;
1162   case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break;
1163   }
1164 }
1165 
1166 Type *BitcodeReader::getTypeByID(unsigned ID) {
1167   // The type table size is always specified correctly.
1168   if (ID >= TypeList.size())
1169     return nullptr;
1170 
1171   if (Type *Ty = TypeList[ID])
1172     return Ty;
1173 
1174   // If we have a forward reference, the only possible case is when it is to a
1175   // named struct.  Just create a placeholder for now.
1176   return TypeList[ID] = createIdentifiedStructType(Context);
1177 }
1178 
1179 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context,
1180                                                       StringRef Name) {
1181   auto *Ret = StructType::create(Context, Name);
1182   IdentifiedStructTypes.push_back(Ret);
1183   return Ret;
1184 }
1185 
1186 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) {
1187   auto *Ret = StructType::create(Context);
1188   IdentifiedStructTypes.push_back(Ret);
1189   return Ret;
1190 }
1191 
1192 //===----------------------------------------------------------------------===//
1193 //  Functions for parsing blocks from the bitcode file
1194 //===----------------------------------------------------------------------===//
1195 
1196 static uint64_t getRawAttributeMask(Attribute::AttrKind Val) {
1197   switch (Val) {
1198   case Attribute::EndAttrKinds:
1199   case Attribute::EmptyKey:
1200   case Attribute::TombstoneKey:
1201     llvm_unreachable("Synthetic enumerators which should never get here");
1202 
1203   case Attribute::None:            return 0;
1204   case Attribute::ZExt:            return 1 << 0;
1205   case Attribute::SExt:            return 1 << 1;
1206   case Attribute::NoReturn:        return 1 << 2;
1207   case Attribute::InReg:           return 1 << 3;
1208   case Attribute::StructRet:       return 1 << 4;
1209   case Attribute::NoUnwind:        return 1 << 5;
1210   case Attribute::NoAlias:         return 1 << 6;
1211   case Attribute::ByVal:           return 1 << 7;
1212   case Attribute::Nest:            return 1 << 8;
1213   case Attribute::ReadNone:        return 1 << 9;
1214   case Attribute::ReadOnly:        return 1 << 10;
1215   case Attribute::NoInline:        return 1 << 11;
1216   case Attribute::AlwaysInline:    return 1 << 12;
1217   case Attribute::OptimizeForSize: return 1 << 13;
1218   case Attribute::StackProtect:    return 1 << 14;
1219   case Attribute::StackProtectReq: return 1 << 15;
1220   case Attribute::Alignment:       return 31 << 16;
1221   case Attribute::NoCapture:       return 1 << 21;
1222   case Attribute::NoRedZone:       return 1 << 22;
1223   case Attribute::NoImplicitFloat: return 1 << 23;
1224   case Attribute::Naked:           return 1 << 24;
1225   case Attribute::InlineHint:      return 1 << 25;
1226   case Attribute::StackAlignment:  return 7 << 26;
1227   case Attribute::ReturnsTwice:    return 1 << 29;
1228   case Attribute::UWTable:         return 1 << 30;
1229   case Attribute::NonLazyBind:     return 1U << 31;
1230   case Attribute::SanitizeAddress: return 1ULL << 32;
1231   case Attribute::MinSize:         return 1ULL << 33;
1232   case Attribute::NoDuplicate:     return 1ULL << 34;
1233   case Attribute::StackProtectStrong: return 1ULL << 35;
1234   case Attribute::SanitizeThread:  return 1ULL << 36;
1235   case Attribute::SanitizeMemory:  return 1ULL << 37;
1236   case Attribute::NoBuiltin:       return 1ULL << 38;
1237   case Attribute::Returned:        return 1ULL << 39;
1238   case Attribute::Cold:            return 1ULL << 40;
1239   case Attribute::Builtin:         return 1ULL << 41;
1240   case Attribute::OptimizeNone:    return 1ULL << 42;
1241   case Attribute::InAlloca:        return 1ULL << 43;
1242   case Attribute::NonNull:         return 1ULL << 44;
1243   case Attribute::JumpTable:       return 1ULL << 45;
1244   case Attribute::Convergent:      return 1ULL << 46;
1245   case Attribute::SafeStack:       return 1ULL << 47;
1246   case Attribute::NoRecurse:       return 1ULL << 48;
1247   case Attribute::InaccessibleMemOnly:         return 1ULL << 49;
1248   case Attribute::InaccessibleMemOrArgMemOnly: return 1ULL << 50;
1249   case Attribute::SwiftSelf:       return 1ULL << 51;
1250   case Attribute::SwiftError:      return 1ULL << 52;
1251   case Attribute::WriteOnly:       return 1ULL << 53;
1252   case Attribute::Speculatable:    return 1ULL << 54;
1253   case Attribute::StrictFP:        return 1ULL << 55;
1254   case Attribute::SanitizeHWAddress: return 1ULL << 56;
1255   case Attribute::NoCfCheck:       return 1ULL << 57;
1256   case Attribute::OptForFuzzing:   return 1ULL << 58;
1257   case Attribute::ShadowCallStack: return 1ULL << 59;
1258   case Attribute::SpeculativeLoadHardening:
1259     return 1ULL << 60;
1260   case Attribute::ImmArg:
1261     return 1ULL << 61;
1262   case Attribute::WillReturn:
1263     return 1ULL << 62;
1264   case Attribute::NoFree:
1265     return 1ULL << 63;
1266   default:
1267     // Other attributes are not supported in the raw format,
1268     // as we ran out of space.
1269     return 0;
1270   }
1271   llvm_unreachable("Unsupported attribute type");
1272 }
1273 
1274 static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) {
1275   if (!Val) return;
1276 
1277   for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds;
1278        I = Attribute::AttrKind(I + 1)) {
1279     if (uint64_t A = (Val & getRawAttributeMask(I))) {
1280       if (I == Attribute::Alignment)
1281         B.addAlignmentAttr(1ULL << ((A >> 16) - 1));
1282       else if (I == Attribute::StackAlignment)
1283         B.addStackAlignmentAttr(1ULL << ((A >> 26)-1));
1284       else if (Attribute::isTypeAttrKind(I))
1285         B.addTypeAttr(I, nullptr); // Type will be auto-upgraded.
1286       else
1287         B.addAttribute(I);
1288     }
1289   }
1290 }
1291 
1292 /// This fills an AttrBuilder object with the LLVM attributes that have
1293 /// been decoded from the given integer. This function must stay in sync with
1294 /// 'encodeLLVMAttributesForBitcode'.
1295 static void decodeLLVMAttributesForBitcode(AttrBuilder &B,
1296                                            uint64_t EncodedAttrs) {
1297   // The alignment is stored as a 16-bit raw value from bits 31--16.  We shift
1298   // the bits above 31 down by 11 bits.
1299   unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16;
1300   assert((!Alignment || isPowerOf2_32(Alignment)) &&
1301          "Alignment must be a power of two.");
1302 
1303   if (Alignment)
1304     B.addAlignmentAttr(Alignment);
1305   addRawAttributeValue(B, ((EncodedAttrs & (0xfffffULL << 32)) >> 11) |
1306                           (EncodedAttrs & 0xffff));
1307 }
1308 
1309 Error BitcodeReader::parseAttributeBlock() {
1310   if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID))
1311     return Err;
1312 
1313   if (!MAttributes.empty())
1314     return error("Invalid multiple blocks");
1315 
1316   SmallVector<uint64_t, 64> Record;
1317 
1318   SmallVector<AttributeList, 8> Attrs;
1319 
1320   // Read all the records.
1321   while (true) {
1322     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1323     if (!MaybeEntry)
1324       return MaybeEntry.takeError();
1325     BitstreamEntry Entry = MaybeEntry.get();
1326 
1327     switch (Entry.Kind) {
1328     case BitstreamEntry::SubBlock: // Handled for us already.
1329     case BitstreamEntry::Error:
1330       return error("Malformed block");
1331     case BitstreamEntry::EndBlock:
1332       return Error::success();
1333     case BitstreamEntry::Record:
1334       // The interesting case.
1335       break;
1336     }
1337 
1338     // Read a record.
1339     Record.clear();
1340     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
1341     if (!MaybeRecord)
1342       return MaybeRecord.takeError();
1343     switch (MaybeRecord.get()) {
1344     default:  // Default behavior: ignore.
1345       break;
1346     case bitc::PARAMATTR_CODE_ENTRY_OLD: // ENTRY: [paramidx0, attr0, ...]
1347       // Deprecated, but still needed to read old bitcode files.
1348       if (Record.size() & 1)
1349         return error("Invalid record");
1350 
1351       for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
1352         AttrBuilder B(Context);
1353         decodeLLVMAttributesForBitcode(B, Record[i+1]);
1354         Attrs.push_back(AttributeList::get(Context, Record[i], B));
1355       }
1356 
1357       MAttributes.push_back(AttributeList::get(Context, Attrs));
1358       Attrs.clear();
1359       break;
1360     case bitc::PARAMATTR_CODE_ENTRY: // ENTRY: [attrgrp0, attrgrp1, ...]
1361       for (unsigned i = 0, e = Record.size(); i != e; ++i)
1362         Attrs.push_back(MAttributeGroups[Record[i]]);
1363 
1364       MAttributes.push_back(AttributeList::get(Context, Attrs));
1365       Attrs.clear();
1366       break;
1367     }
1368   }
1369 }
1370 
1371 // Returns Attribute::None on unrecognized codes.
1372 static Attribute::AttrKind getAttrFromCode(uint64_t Code) {
1373   switch (Code) {
1374   default:
1375     return Attribute::None;
1376   case bitc::ATTR_KIND_ALIGNMENT:
1377     return Attribute::Alignment;
1378   case bitc::ATTR_KIND_ALWAYS_INLINE:
1379     return Attribute::AlwaysInline;
1380   case bitc::ATTR_KIND_ARGMEMONLY:
1381     return Attribute::ArgMemOnly;
1382   case bitc::ATTR_KIND_BUILTIN:
1383     return Attribute::Builtin;
1384   case bitc::ATTR_KIND_BY_VAL:
1385     return Attribute::ByVal;
1386   case bitc::ATTR_KIND_IN_ALLOCA:
1387     return Attribute::InAlloca;
1388   case bitc::ATTR_KIND_COLD:
1389     return Attribute::Cold;
1390   case bitc::ATTR_KIND_CONVERGENT:
1391     return Attribute::Convergent;
1392   case bitc::ATTR_KIND_DISABLE_SANITIZER_INSTRUMENTATION:
1393     return Attribute::DisableSanitizerInstrumentation;
1394   case bitc::ATTR_KIND_ELEMENTTYPE:
1395     return Attribute::ElementType;
1396   case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY:
1397     return Attribute::InaccessibleMemOnly;
1398   case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY:
1399     return Attribute::InaccessibleMemOrArgMemOnly;
1400   case bitc::ATTR_KIND_INLINE_HINT:
1401     return Attribute::InlineHint;
1402   case bitc::ATTR_KIND_IN_REG:
1403     return Attribute::InReg;
1404   case bitc::ATTR_KIND_JUMP_TABLE:
1405     return Attribute::JumpTable;
1406   case bitc::ATTR_KIND_MIN_SIZE:
1407     return Attribute::MinSize;
1408   case bitc::ATTR_KIND_NAKED:
1409     return Attribute::Naked;
1410   case bitc::ATTR_KIND_NEST:
1411     return Attribute::Nest;
1412   case bitc::ATTR_KIND_NO_ALIAS:
1413     return Attribute::NoAlias;
1414   case bitc::ATTR_KIND_NO_BUILTIN:
1415     return Attribute::NoBuiltin;
1416   case bitc::ATTR_KIND_NO_CALLBACK:
1417     return Attribute::NoCallback;
1418   case bitc::ATTR_KIND_NO_CAPTURE:
1419     return Attribute::NoCapture;
1420   case bitc::ATTR_KIND_NO_DUPLICATE:
1421     return Attribute::NoDuplicate;
1422   case bitc::ATTR_KIND_NOFREE:
1423     return Attribute::NoFree;
1424   case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT:
1425     return Attribute::NoImplicitFloat;
1426   case bitc::ATTR_KIND_NO_INLINE:
1427     return Attribute::NoInline;
1428   case bitc::ATTR_KIND_NO_RECURSE:
1429     return Attribute::NoRecurse;
1430   case bitc::ATTR_KIND_NO_MERGE:
1431     return Attribute::NoMerge;
1432   case bitc::ATTR_KIND_NON_LAZY_BIND:
1433     return Attribute::NonLazyBind;
1434   case bitc::ATTR_KIND_NON_NULL:
1435     return Attribute::NonNull;
1436   case bitc::ATTR_KIND_DEREFERENCEABLE:
1437     return Attribute::Dereferenceable;
1438   case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL:
1439     return Attribute::DereferenceableOrNull;
1440   case bitc::ATTR_KIND_ALLOC_SIZE:
1441     return Attribute::AllocSize;
1442   case bitc::ATTR_KIND_NO_RED_ZONE:
1443     return Attribute::NoRedZone;
1444   case bitc::ATTR_KIND_NO_RETURN:
1445     return Attribute::NoReturn;
1446   case bitc::ATTR_KIND_NOSYNC:
1447     return Attribute::NoSync;
1448   case bitc::ATTR_KIND_NOCF_CHECK:
1449     return Attribute::NoCfCheck;
1450   case bitc::ATTR_KIND_NO_PROFILE:
1451     return Attribute::NoProfile;
1452   case bitc::ATTR_KIND_NO_UNWIND:
1453     return Attribute::NoUnwind;
1454   case bitc::ATTR_KIND_NO_SANITIZE_COVERAGE:
1455     return Attribute::NoSanitizeCoverage;
1456   case bitc::ATTR_KIND_NULL_POINTER_IS_VALID:
1457     return Attribute::NullPointerIsValid;
1458   case bitc::ATTR_KIND_OPT_FOR_FUZZING:
1459     return Attribute::OptForFuzzing;
1460   case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE:
1461     return Attribute::OptimizeForSize;
1462   case bitc::ATTR_KIND_OPTIMIZE_NONE:
1463     return Attribute::OptimizeNone;
1464   case bitc::ATTR_KIND_READ_NONE:
1465     return Attribute::ReadNone;
1466   case bitc::ATTR_KIND_READ_ONLY:
1467     return Attribute::ReadOnly;
1468   case bitc::ATTR_KIND_RETURNED:
1469     return Attribute::Returned;
1470   case bitc::ATTR_KIND_RETURNS_TWICE:
1471     return Attribute::ReturnsTwice;
1472   case bitc::ATTR_KIND_S_EXT:
1473     return Attribute::SExt;
1474   case bitc::ATTR_KIND_SPECULATABLE:
1475     return Attribute::Speculatable;
1476   case bitc::ATTR_KIND_STACK_ALIGNMENT:
1477     return Attribute::StackAlignment;
1478   case bitc::ATTR_KIND_STACK_PROTECT:
1479     return Attribute::StackProtect;
1480   case bitc::ATTR_KIND_STACK_PROTECT_REQ:
1481     return Attribute::StackProtectReq;
1482   case bitc::ATTR_KIND_STACK_PROTECT_STRONG:
1483     return Attribute::StackProtectStrong;
1484   case bitc::ATTR_KIND_SAFESTACK:
1485     return Attribute::SafeStack;
1486   case bitc::ATTR_KIND_SHADOWCALLSTACK:
1487     return Attribute::ShadowCallStack;
1488   case bitc::ATTR_KIND_STRICT_FP:
1489     return Attribute::StrictFP;
1490   case bitc::ATTR_KIND_STRUCT_RET:
1491     return Attribute::StructRet;
1492   case bitc::ATTR_KIND_SANITIZE_ADDRESS:
1493     return Attribute::SanitizeAddress;
1494   case bitc::ATTR_KIND_SANITIZE_HWADDRESS:
1495     return Attribute::SanitizeHWAddress;
1496   case bitc::ATTR_KIND_SANITIZE_THREAD:
1497     return Attribute::SanitizeThread;
1498   case bitc::ATTR_KIND_SANITIZE_MEMORY:
1499     return Attribute::SanitizeMemory;
1500   case bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING:
1501     return Attribute::SpeculativeLoadHardening;
1502   case bitc::ATTR_KIND_SWIFT_ERROR:
1503     return Attribute::SwiftError;
1504   case bitc::ATTR_KIND_SWIFT_SELF:
1505     return Attribute::SwiftSelf;
1506   case bitc::ATTR_KIND_SWIFT_ASYNC:
1507     return Attribute::SwiftAsync;
1508   case bitc::ATTR_KIND_UW_TABLE:
1509     return Attribute::UWTable;
1510   case bitc::ATTR_KIND_VSCALE_RANGE:
1511     return Attribute::VScaleRange;
1512   case bitc::ATTR_KIND_WILLRETURN:
1513     return Attribute::WillReturn;
1514   case bitc::ATTR_KIND_WRITEONLY:
1515     return Attribute::WriteOnly;
1516   case bitc::ATTR_KIND_Z_EXT:
1517     return Attribute::ZExt;
1518   case bitc::ATTR_KIND_IMMARG:
1519     return Attribute::ImmArg;
1520   case bitc::ATTR_KIND_SANITIZE_MEMTAG:
1521     return Attribute::SanitizeMemTag;
1522   case bitc::ATTR_KIND_PREALLOCATED:
1523     return Attribute::Preallocated;
1524   case bitc::ATTR_KIND_NOUNDEF:
1525     return Attribute::NoUndef;
1526   case bitc::ATTR_KIND_BYREF:
1527     return Attribute::ByRef;
1528   case bitc::ATTR_KIND_MUSTPROGRESS:
1529     return Attribute::MustProgress;
1530   case bitc::ATTR_KIND_HOT:
1531     return Attribute::Hot;
1532   }
1533 }
1534 
1535 Error BitcodeReader::parseAlignmentValue(uint64_t Exponent,
1536                                          MaybeAlign &Alignment) {
1537   // Note: Alignment in bitcode files is incremented by 1, so that zero
1538   // can be used for default alignment.
1539   if (Exponent > Value::MaxAlignmentExponent + 1)
1540     return error("Invalid alignment value");
1541   Alignment = decodeMaybeAlign(Exponent);
1542   return Error::success();
1543 }
1544 
1545 Error BitcodeReader::parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind) {
1546   *Kind = getAttrFromCode(Code);
1547   if (*Kind == Attribute::None)
1548     return error("Unknown attribute kind (" + Twine(Code) + ")");
1549   return Error::success();
1550 }
1551 
1552 Error BitcodeReader::parseAttributeGroupBlock() {
1553   if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID))
1554     return Err;
1555 
1556   if (!MAttributeGroups.empty())
1557     return error("Invalid multiple blocks");
1558 
1559   SmallVector<uint64_t, 64> Record;
1560 
1561   // Read all the records.
1562   while (true) {
1563     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1564     if (!MaybeEntry)
1565       return MaybeEntry.takeError();
1566     BitstreamEntry Entry = MaybeEntry.get();
1567 
1568     switch (Entry.Kind) {
1569     case BitstreamEntry::SubBlock: // Handled for us already.
1570     case BitstreamEntry::Error:
1571       return error("Malformed block");
1572     case BitstreamEntry::EndBlock:
1573       return Error::success();
1574     case BitstreamEntry::Record:
1575       // The interesting case.
1576       break;
1577     }
1578 
1579     // Read a record.
1580     Record.clear();
1581     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
1582     if (!MaybeRecord)
1583       return MaybeRecord.takeError();
1584     switch (MaybeRecord.get()) {
1585     default:  // Default behavior: ignore.
1586       break;
1587     case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...]
1588       if (Record.size() < 3)
1589         return error("Invalid record");
1590 
1591       uint64_t GrpID = Record[0];
1592       uint64_t Idx = Record[1]; // Index of the object this attribute refers to.
1593 
1594       AttrBuilder B(Context);
1595       for (unsigned i = 2, e = Record.size(); i != e; ++i) {
1596         if (Record[i] == 0) {        // Enum attribute
1597           Attribute::AttrKind Kind;
1598           if (Error Err = parseAttrKind(Record[++i], &Kind))
1599             return Err;
1600 
1601           // Upgrade old-style byval attribute to one with a type, even if it's
1602           // nullptr. We will have to insert the real type when we associate
1603           // this AttributeList with a function.
1604           if (Kind == Attribute::ByVal)
1605             B.addByValAttr(nullptr);
1606           else if (Kind == Attribute::StructRet)
1607             B.addStructRetAttr(nullptr);
1608           else if (Kind == Attribute::InAlloca)
1609             B.addInAllocaAttr(nullptr);
1610           else if (Attribute::isEnumAttrKind(Kind))
1611             B.addAttribute(Kind);
1612           else
1613             return error("Not an enum attribute");
1614         } else if (Record[i] == 1) { // Integer attribute
1615           Attribute::AttrKind Kind;
1616           if (Error Err = parseAttrKind(Record[++i], &Kind))
1617             return Err;
1618           if (!Attribute::isIntAttrKind(Kind))
1619             return error("Not an int attribute");
1620           if (Kind == Attribute::Alignment)
1621             B.addAlignmentAttr(Record[++i]);
1622           else if (Kind == Attribute::StackAlignment)
1623             B.addStackAlignmentAttr(Record[++i]);
1624           else if (Kind == Attribute::Dereferenceable)
1625             B.addDereferenceableAttr(Record[++i]);
1626           else if (Kind == Attribute::DereferenceableOrNull)
1627             B.addDereferenceableOrNullAttr(Record[++i]);
1628           else if (Kind == Attribute::AllocSize)
1629             B.addAllocSizeAttrFromRawRepr(Record[++i]);
1630           else if (Kind == Attribute::VScaleRange)
1631             B.addVScaleRangeAttrFromRawRepr(Record[++i]);
1632         } else if (Record[i] == 3 || Record[i] == 4) { // String attribute
1633           bool HasValue = (Record[i++] == 4);
1634           SmallString<64> KindStr;
1635           SmallString<64> ValStr;
1636 
1637           while (Record[i] != 0 && i != e)
1638             KindStr += Record[i++];
1639           assert(Record[i] == 0 && "Kind string not null terminated");
1640 
1641           if (HasValue) {
1642             // Has a value associated with it.
1643             ++i; // Skip the '0' that terminates the "kind" string.
1644             while (Record[i] != 0 && i != e)
1645               ValStr += Record[i++];
1646             assert(Record[i] == 0 && "Value string not null terminated");
1647           }
1648 
1649           B.addAttribute(KindStr.str(), ValStr.str());
1650         } else if (Record[i] == 5 || Record[i] == 6) {
1651           bool HasType = Record[i] == 6;
1652           Attribute::AttrKind Kind;
1653           if (Error Err = parseAttrKind(Record[++i], &Kind))
1654             return Err;
1655           if (!Attribute::isTypeAttrKind(Kind))
1656             return error("Not a type attribute");
1657 
1658           B.addTypeAttr(Kind, HasType ? getTypeByID(Record[++i]) : nullptr);
1659         } else {
1660           return error("Invalid attribute group entry");
1661         }
1662       }
1663 
1664       UpgradeAttributes(B);
1665       MAttributeGroups[GrpID] = AttributeList::get(Context, Idx, B);
1666       break;
1667     }
1668     }
1669   }
1670 }
1671 
1672 Error BitcodeReader::parseTypeTable() {
1673   if (Error Err = Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW))
1674     return Err;
1675 
1676   return parseTypeTableBody();
1677 }
1678 
1679 Error BitcodeReader::parseTypeTableBody() {
1680   if (!TypeList.empty())
1681     return error("Invalid multiple blocks");
1682 
1683   SmallVector<uint64_t, 64> Record;
1684   unsigned NumRecords = 0;
1685 
1686   SmallString<64> TypeName;
1687 
1688   // Read all the records for this type table.
1689   while (true) {
1690     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1691     if (!MaybeEntry)
1692       return MaybeEntry.takeError();
1693     BitstreamEntry Entry = MaybeEntry.get();
1694 
1695     switch (Entry.Kind) {
1696     case BitstreamEntry::SubBlock: // Handled for us already.
1697     case BitstreamEntry::Error:
1698       return error("Malformed block");
1699     case BitstreamEntry::EndBlock:
1700       if (NumRecords != TypeList.size())
1701         return error("Malformed block");
1702       return Error::success();
1703     case BitstreamEntry::Record:
1704       // The interesting case.
1705       break;
1706     }
1707 
1708     // Read a record.
1709     Record.clear();
1710     Type *ResultTy = nullptr;
1711     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
1712     if (!MaybeRecord)
1713       return MaybeRecord.takeError();
1714     switch (MaybeRecord.get()) {
1715     default:
1716       return error("Invalid value");
1717     case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
1718       // TYPE_CODE_NUMENTRY contains a count of the number of types in the
1719       // type list.  This allows us to reserve space.
1720       if (Record.empty())
1721         return error("Invalid record");
1722       TypeList.resize(Record[0]);
1723       continue;
1724     case bitc::TYPE_CODE_VOID:      // VOID
1725       ResultTy = Type::getVoidTy(Context);
1726       break;
1727     case bitc::TYPE_CODE_HALF:     // HALF
1728       ResultTy = Type::getHalfTy(Context);
1729       break;
1730     case bitc::TYPE_CODE_BFLOAT:    // BFLOAT
1731       ResultTy = Type::getBFloatTy(Context);
1732       break;
1733     case bitc::TYPE_CODE_FLOAT:     // FLOAT
1734       ResultTy = Type::getFloatTy(Context);
1735       break;
1736     case bitc::TYPE_CODE_DOUBLE:    // DOUBLE
1737       ResultTy = Type::getDoubleTy(Context);
1738       break;
1739     case bitc::TYPE_CODE_X86_FP80:  // X86_FP80
1740       ResultTy = Type::getX86_FP80Ty(Context);
1741       break;
1742     case bitc::TYPE_CODE_FP128:     // FP128
1743       ResultTy = Type::getFP128Ty(Context);
1744       break;
1745     case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
1746       ResultTy = Type::getPPC_FP128Ty(Context);
1747       break;
1748     case bitc::TYPE_CODE_LABEL:     // LABEL
1749       ResultTy = Type::getLabelTy(Context);
1750       break;
1751     case bitc::TYPE_CODE_METADATA:  // METADATA
1752       ResultTy = Type::getMetadataTy(Context);
1753       break;
1754     case bitc::TYPE_CODE_X86_MMX:   // X86_MMX
1755       ResultTy = Type::getX86_MMXTy(Context);
1756       break;
1757     case bitc::TYPE_CODE_X86_AMX:   // X86_AMX
1758       ResultTy = Type::getX86_AMXTy(Context);
1759       break;
1760     case bitc::TYPE_CODE_TOKEN:     // TOKEN
1761       ResultTy = Type::getTokenTy(Context);
1762       break;
1763     case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width]
1764       if (Record.empty())
1765         return error("Invalid record");
1766 
1767       uint64_t NumBits = Record[0];
1768       if (NumBits < IntegerType::MIN_INT_BITS ||
1769           NumBits > IntegerType::MAX_INT_BITS)
1770         return error("Bitwidth for integer type out of range");
1771       ResultTy = IntegerType::get(Context, NumBits);
1772       break;
1773     }
1774     case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
1775                                     //          [pointee type, address space]
1776       if (Record.empty())
1777         return error("Invalid record");
1778       unsigned AddressSpace = 0;
1779       if (Record.size() == 2)
1780         AddressSpace = Record[1];
1781       ResultTy = getTypeByID(Record[0]);
1782       if (!ResultTy ||
1783           !PointerType::isValidElementType(ResultTy))
1784         return error("Invalid type");
1785       ResultTy = PointerType::get(ResultTy, AddressSpace);
1786       break;
1787     }
1788     case bitc::TYPE_CODE_OPAQUE_POINTER: { // OPAQUE_POINTER: [addrspace]
1789       if (Record.size() != 1)
1790         return error("Invalid record");
1791       if (Context.supportsTypedPointers())
1792         return error(
1793             "Opaque pointers are only supported in -opaque-pointers mode");
1794       unsigned AddressSpace = Record[0];
1795       ResultTy = PointerType::get(Context, AddressSpace);
1796       break;
1797     }
1798     case bitc::TYPE_CODE_FUNCTION_OLD: {
1799       // Deprecated, but still needed to read old bitcode files.
1800       // FUNCTION: [vararg, attrid, retty, paramty x N]
1801       if (Record.size() < 3)
1802         return error("Invalid record");
1803       SmallVector<Type*, 8> ArgTys;
1804       for (unsigned i = 3, e = Record.size(); i != e; ++i) {
1805         if (Type *T = getTypeByID(Record[i]))
1806           ArgTys.push_back(T);
1807         else
1808           break;
1809       }
1810 
1811       ResultTy = getTypeByID(Record[2]);
1812       if (!ResultTy || ArgTys.size() < Record.size()-3)
1813         return error("Invalid type");
1814 
1815       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
1816       break;
1817     }
1818     case bitc::TYPE_CODE_FUNCTION: {
1819       // FUNCTION: [vararg, retty, paramty x N]
1820       if (Record.size() < 2)
1821         return error("Invalid record");
1822       SmallVector<Type*, 8> ArgTys;
1823       for (unsigned i = 2, e = Record.size(); i != e; ++i) {
1824         if (Type *T = getTypeByID(Record[i])) {
1825           if (!FunctionType::isValidArgumentType(T))
1826             return error("Invalid function argument type");
1827           ArgTys.push_back(T);
1828         }
1829         else
1830           break;
1831       }
1832 
1833       ResultTy = getTypeByID(Record[1]);
1834       if (!ResultTy || ArgTys.size() < Record.size()-2)
1835         return error("Invalid type");
1836 
1837       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
1838       break;
1839     }
1840     case bitc::TYPE_CODE_STRUCT_ANON: {  // STRUCT: [ispacked, eltty x N]
1841       if (Record.empty())
1842         return error("Invalid record");
1843       SmallVector<Type*, 8> EltTys;
1844       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
1845         if (Type *T = getTypeByID(Record[i]))
1846           EltTys.push_back(T);
1847         else
1848           break;
1849       }
1850       if (EltTys.size() != Record.size()-1)
1851         return error("Invalid type");
1852       ResultTy = StructType::get(Context, EltTys, Record[0]);
1853       break;
1854     }
1855     case bitc::TYPE_CODE_STRUCT_NAME:   // STRUCT_NAME: [strchr x N]
1856       if (convertToString(Record, 0, TypeName))
1857         return error("Invalid record");
1858       continue;
1859 
1860     case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N]
1861       if (Record.empty())
1862         return error("Invalid record");
1863 
1864       if (NumRecords >= TypeList.size())
1865         return error("Invalid TYPE table");
1866 
1867       // Check to see if this was forward referenced, if so fill in the temp.
1868       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
1869       if (Res) {
1870         Res->setName(TypeName);
1871         TypeList[NumRecords] = nullptr;
1872       } else  // Otherwise, create a new struct.
1873         Res = createIdentifiedStructType(Context, TypeName);
1874       TypeName.clear();
1875 
1876       SmallVector<Type*, 8> EltTys;
1877       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
1878         if (Type *T = getTypeByID(Record[i]))
1879           EltTys.push_back(T);
1880         else
1881           break;
1882       }
1883       if (EltTys.size() != Record.size()-1)
1884         return error("Invalid record");
1885       Res->setBody(EltTys, Record[0]);
1886       ResultTy = Res;
1887       break;
1888     }
1889     case bitc::TYPE_CODE_OPAQUE: {       // OPAQUE: []
1890       if (Record.size() != 1)
1891         return error("Invalid record");
1892 
1893       if (NumRecords >= TypeList.size())
1894         return error("Invalid TYPE table");
1895 
1896       // Check to see if this was forward referenced, if so fill in the temp.
1897       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
1898       if (Res) {
1899         Res->setName(TypeName);
1900         TypeList[NumRecords] = nullptr;
1901       } else  // Otherwise, create a new struct with no body.
1902         Res = createIdentifiedStructType(Context, TypeName);
1903       TypeName.clear();
1904       ResultTy = Res;
1905       break;
1906     }
1907     case bitc::TYPE_CODE_ARRAY:     // ARRAY: [numelts, eltty]
1908       if (Record.size() < 2)
1909         return error("Invalid record");
1910       ResultTy = getTypeByID(Record[1]);
1911       if (!ResultTy || !ArrayType::isValidElementType(ResultTy))
1912         return error("Invalid type");
1913       ResultTy = ArrayType::get(ResultTy, Record[0]);
1914       break;
1915     case bitc::TYPE_CODE_VECTOR:    // VECTOR: [numelts, eltty] or
1916                                     //         [numelts, eltty, scalable]
1917       if (Record.size() < 2)
1918         return error("Invalid record");
1919       if (Record[0] == 0)
1920         return error("Invalid vector length");
1921       ResultTy = getTypeByID(Record[1]);
1922       if (!ResultTy || !VectorType::isValidElementType(ResultTy))
1923         return error("Invalid type");
1924       bool Scalable = Record.size() > 2 ? Record[2] : false;
1925       ResultTy = VectorType::get(ResultTy, Record[0], Scalable);
1926       break;
1927     }
1928 
1929     if (NumRecords >= TypeList.size())
1930       return error("Invalid TYPE table");
1931     if (TypeList[NumRecords])
1932       return error(
1933           "Invalid TYPE table: Only named structs can be forward referenced");
1934     assert(ResultTy && "Didn't read a type?");
1935     TypeList[NumRecords++] = ResultTy;
1936   }
1937 }
1938 
1939 Error BitcodeReader::parseOperandBundleTags() {
1940   if (Error Err = Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID))
1941     return Err;
1942 
1943   if (!BundleTags.empty())
1944     return error("Invalid multiple blocks");
1945 
1946   SmallVector<uint64_t, 64> Record;
1947 
1948   while (true) {
1949     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1950     if (!MaybeEntry)
1951       return MaybeEntry.takeError();
1952     BitstreamEntry Entry = MaybeEntry.get();
1953 
1954     switch (Entry.Kind) {
1955     case BitstreamEntry::SubBlock: // Handled for us already.
1956     case BitstreamEntry::Error:
1957       return error("Malformed block");
1958     case BitstreamEntry::EndBlock:
1959       return Error::success();
1960     case BitstreamEntry::Record:
1961       // The interesting case.
1962       break;
1963     }
1964 
1965     // Tags are implicitly mapped to integers by their order.
1966 
1967     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
1968     if (!MaybeRecord)
1969       return MaybeRecord.takeError();
1970     if (MaybeRecord.get() != bitc::OPERAND_BUNDLE_TAG)
1971       return error("Invalid record");
1972 
1973     // OPERAND_BUNDLE_TAG: [strchr x N]
1974     BundleTags.emplace_back();
1975     if (convertToString(Record, 0, BundleTags.back()))
1976       return error("Invalid record");
1977     Record.clear();
1978   }
1979 }
1980 
1981 Error BitcodeReader::parseSyncScopeNames() {
1982   if (Error Err = Stream.EnterSubBlock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID))
1983     return Err;
1984 
1985   if (!SSIDs.empty())
1986     return error("Invalid multiple synchronization scope names blocks");
1987 
1988   SmallVector<uint64_t, 64> Record;
1989   while (true) {
1990     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1991     if (!MaybeEntry)
1992       return MaybeEntry.takeError();
1993     BitstreamEntry Entry = MaybeEntry.get();
1994 
1995     switch (Entry.Kind) {
1996     case BitstreamEntry::SubBlock: // Handled for us already.
1997     case BitstreamEntry::Error:
1998       return error("Malformed block");
1999     case BitstreamEntry::EndBlock:
2000       if (SSIDs.empty())
2001         return error("Invalid empty synchronization scope names block");
2002       return Error::success();
2003     case BitstreamEntry::Record:
2004       // The interesting case.
2005       break;
2006     }
2007 
2008     // Synchronization scope names are implicitly mapped to synchronization
2009     // scope IDs by their order.
2010 
2011     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2012     if (!MaybeRecord)
2013       return MaybeRecord.takeError();
2014     if (MaybeRecord.get() != bitc::SYNC_SCOPE_NAME)
2015       return error("Invalid record");
2016 
2017     SmallString<16> SSN;
2018     if (convertToString(Record, 0, SSN))
2019       return error("Invalid record");
2020 
2021     SSIDs.push_back(Context.getOrInsertSyncScopeID(SSN));
2022     Record.clear();
2023   }
2024 }
2025 
2026 /// Associate a value with its name from the given index in the provided record.
2027 Expected<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record,
2028                                              unsigned NameIndex, Triple &TT) {
2029   SmallString<128> ValueName;
2030   if (convertToString(Record, NameIndex, ValueName))
2031     return error("Invalid record");
2032   unsigned ValueID = Record[0];
2033   if (ValueID >= ValueList.size() || !ValueList[ValueID])
2034     return error("Invalid record");
2035   Value *V = ValueList[ValueID];
2036 
2037   StringRef NameStr(ValueName.data(), ValueName.size());
2038   if (NameStr.find_first_of(0) != StringRef::npos)
2039     return error("Invalid value name");
2040   V->setName(NameStr);
2041   auto *GO = dyn_cast<GlobalObject>(V);
2042   if (GO && ImplicitComdatObjects.contains(GO) && TT.supportsCOMDAT())
2043     GO->setComdat(TheModule->getOrInsertComdat(V->getName()));
2044   return V;
2045 }
2046 
2047 /// Helper to note and return the current location, and jump to the given
2048 /// offset.
2049 static Expected<uint64_t> jumpToValueSymbolTable(uint64_t Offset,
2050                                                  BitstreamCursor &Stream) {
2051   // Save the current parsing location so we can jump back at the end
2052   // of the VST read.
2053   uint64_t CurrentBit = Stream.GetCurrentBitNo();
2054   if (Error JumpFailed = Stream.JumpToBit(Offset * 32))
2055     return std::move(JumpFailed);
2056   Expected<BitstreamEntry> MaybeEntry = Stream.advance();
2057   if (!MaybeEntry)
2058     return MaybeEntry.takeError();
2059   assert(MaybeEntry.get().Kind == BitstreamEntry::SubBlock);
2060   assert(MaybeEntry.get().ID == bitc::VALUE_SYMTAB_BLOCK_ID);
2061   return CurrentBit;
2062 }
2063 
2064 void BitcodeReader::setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta,
2065                                             Function *F,
2066                                             ArrayRef<uint64_t> Record) {
2067   // Note that we subtract 1 here because the offset is relative to one word
2068   // before the start of the identification or module block, which was
2069   // historically always the start of the regular bitcode header.
2070   uint64_t FuncWordOffset = Record[1] - 1;
2071   uint64_t FuncBitOffset = FuncWordOffset * 32;
2072   DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta;
2073   // Set the LastFunctionBlockBit to point to the last function block.
2074   // Later when parsing is resumed after function materialization,
2075   // we can simply skip that last function block.
2076   if (FuncBitOffset > LastFunctionBlockBit)
2077     LastFunctionBlockBit = FuncBitOffset;
2078 }
2079 
2080 /// Read a new-style GlobalValue symbol table.
2081 Error BitcodeReader::parseGlobalValueSymbolTable() {
2082   unsigned FuncBitcodeOffsetDelta =
2083       Stream.getAbbrevIDWidth() + bitc::BlockIDWidth;
2084 
2085   if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
2086     return Err;
2087 
2088   SmallVector<uint64_t, 64> Record;
2089   while (true) {
2090     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2091     if (!MaybeEntry)
2092       return MaybeEntry.takeError();
2093     BitstreamEntry Entry = MaybeEntry.get();
2094 
2095     switch (Entry.Kind) {
2096     case BitstreamEntry::SubBlock:
2097     case BitstreamEntry::Error:
2098       return error("Malformed block");
2099     case BitstreamEntry::EndBlock:
2100       return Error::success();
2101     case BitstreamEntry::Record:
2102       break;
2103     }
2104 
2105     Record.clear();
2106     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2107     if (!MaybeRecord)
2108       return MaybeRecord.takeError();
2109     switch (MaybeRecord.get()) {
2110     case bitc::VST_CODE_FNENTRY: { // [valueid, offset]
2111       unsigned ValueID = Record[0];
2112       if (ValueID >= ValueList.size() || !ValueList[ValueID])
2113         return error("Invalid value reference in symbol table");
2114       setDeferredFunctionInfo(FuncBitcodeOffsetDelta,
2115                               cast<Function>(ValueList[ValueID]), Record);
2116       break;
2117     }
2118     }
2119   }
2120 }
2121 
2122 /// Parse the value symbol table at either the current parsing location or
2123 /// at the given bit offset if provided.
2124 Error BitcodeReader::parseValueSymbolTable(uint64_t Offset) {
2125   uint64_t CurrentBit;
2126   // Pass in the Offset to distinguish between calling for the module-level
2127   // VST (where we want to jump to the VST offset) and the function-level
2128   // VST (where we don't).
2129   if (Offset > 0) {
2130     Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream);
2131     if (!MaybeCurrentBit)
2132       return MaybeCurrentBit.takeError();
2133     CurrentBit = MaybeCurrentBit.get();
2134     // If this module uses a string table, read this as a module-level VST.
2135     if (UseStrtab) {
2136       if (Error Err = parseGlobalValueSymbolTable())
2137         return Err;
2138       if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
2139         return JumpFailed;
2140       return Error::success();
2141     }
2142     // Otherwise, the VST will be in a similar format to a function-level VST,
2143     // and will contain symbol names.
2144   }
2145 
2146   // Compute the delta between the bitcode indices in the VST (the word offset
2147   // to the word-aligned ENTER_SUBBLOCK for the function block, and that
2148   // expected by the lazy reader. The reader's EnterSubBlock expects to have
2149   // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID
2150   // (size BlockIDWidth). Note that we access the stream's AbbrevID width here
2151   // just before entering the VST subblock because: 1) the EnterSubBlock
2152   // changes the AbbrevID width; 2) the VST block is nested within the same
2153   // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same
2154   // AbbrevID width before calling EnterSubBlock; and 3) when we want to
2155   // jump to the FUNCTION_BLOCK using this offset later, we don't want
2156   // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK.
2157   unsigned FuncBitcodeOffsetDelta =
2158       Stream.getAbbrevIDWidth() + bitc::BlockIDWidth;
2159 
2160   if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
2161     return Err;
2162 
2163   SmallVector<uint64_t, 64> Record;
2164 
2165   Triple TT(TheModule->getTargetTriple());
2166 
2167   // Read all the records for this value table.
2168   SmallString<128> ValueName;
2169 
2170   while (true) {
2171     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2172     if (!MaybeEntry)
2173       return MaybeEntry.takeError();
2174     BitstreamEntry Entry = MaybeEntry.get();
2175 
2176     switch (Entry.Kind) {
2177     case BitstreamEntry::SubBlock: // Handled for us already.
2178     case BitstreamEntry::Error:
2179       return error("Malformed block");
2180     case BitstreamEntry::EndBlock:
2181       if (Offset > 0)
2182         if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
2183           return JumpFailed;
2184       return Error::success();
2185     case BitstreamEntry::Record:
2186       // The interesting case.
2187       break;
2188     }
2189 
2190     // Read a record.
2191     Record.clear();
2192     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2193     if (!MaybeRecord)
2194       return MaybeRecord.takeError();
2195     switch (MaybeRecord.get()) {
2196     default:  // Default behavior: unknown type.
2197       break;
2198     case bitc::VST_CODE_ENTRY: {  // VST_CODE_ENTRY: [valueid, namechar x N]
2199       Expected<Value *> ValOrErr = recordValue(Record, 1, TT);
2200       if (Error Err = ValOrErr.takeError())
2201         return Err;
2202       ValOrErr.get();
2203       break;
2204     }
2205     case bitc::VST_CODE_FNENTRY: {
2206       // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
2207       Expected<Value *> ValOrErr = recordValue(Record, 2, TT);
2208       if (Error Err = ValOrErr.takeError())
2209         return Err;
2210       Value *V = ValOrErr.get();
2211 
2212       // Ignore function offsets emitted for aliases of functions in older
2213       // versions of LLVM.
2214       if (auto *F = dyn_cast<Function>(V))
2215         setDeferredFunctionInfo(FuncBitcodeOffsetDelta, F, Record);
2216       break;
2217     }
2218     case bitc::VST_CODE_BBENTRY: {
2219       if (convertToString(Record, 1, ValueName))
2220         return error("Invalid record");
2221       BasicBlock *BB = getBasicBlock(Record[0]);
2222       if (!BB)
2223         return error("Invalid record");
2224 
2225       BB->setName(StringRef(ValueName.data(), ValueName.size()));
2226       ValueName.clear();
2227       break;
2228     }
2229     }
2230   }
2231 }
2232 
2233 /// Decode a signed value stored with the sign bit in the LSB for dense VBR
2234 /// encoding.
2235 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) {
2236   if ((V & 1) == 0)
2237     return V >> 1;
2238   if (V != 1)
2239     return -(V >> 1);
2240   // There is no such thing as -0 with integers.  "-0" really means MININT.
2241   return 1ULL << 63;
2242 }
2243 
2244 /// Resolve all of the initializers for global values and aliases that we can.
2245 Error BitcodeReader::resolveGlobalAndIndirectSymbolInits() {
2246   std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInitWorklist;
2247   std::vector<std::pair<GlobalValue *, unsigned>> IndirectSymbolInitWorklist;
2248   std::vector<FunctionOperandInfo> FunctionOperandWorklist;
2249 
2250   GlobalInitWorklist.swap(GlobalInits);
2251   IndirectSymbolInitWorklist.swap(IndirectSymbolInits);
2252   FunctionOperandWorklist.swap(FunctionOperands);
2253 
2254   while (!GlobalInitWorklist.empty()) {
2255     unsigned ValID = GlobalInitWorklist.back().second;
2256     if (ValID >= ValueList.size()) {
2257       // Not ready to resolve this yet, it requires something later in the file.
2258       GlobalInits.push_back(GlobalInitWorklist.back());
2259     } else {
2260       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2261         GlobalInitWorklist.back().first->setInitializer(C);
2262       else
2263         return error("Expected a constant");
2264     }
2265     GlobalInitWorklist.pop_back();
2266   }
2267 
2268   while (!IndirectSymbolInitWorklist.empty()) {
2269     unsigned ValID = IndirectSymbolInitWorklist.back().second;
2270     if (ValID >= ValueList.size()) {
2271       IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back());
2272     } else {
2273       Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]);
2274       if (!C)
2275         return error("Expected a constant");
2276       GlobalValue *GV = IndirectSymbolInitWorklist.back().first;
2277       if (auto *GA = dyn_cast<GlobalAlias>(GV)) {
2278         if (C->getType() != GV->getType())
2279           return error("Alias and aliasee types don't match");
2280         GA->setAliasee(C);
2281       } else if (auto *GI = dyn_cast<GlobalIFunc>(GV)) {
2282         Type *ResolverFTy =
2283             GlobalIFunc::getResolverFunctionType(GI->getValueType());
2284         // Transparently fix up the type for compatiblity with older bitcode
2285         GI->setResolver(
2286             ConstantExpr::getBitCast(C, ResolverFTy->getPointerTo()));
2287       } else {
2288         return error("Expected an alias or an ifunc");
2289       }
2290     }
2291     IndirectSymbolInitWorklist.pop_back();
2292   }
2293 
2294   while (!FunctionOperandWorklist.empty()) {
2295     FunctionOperandInfo &Info = FunctionOperandWorklist.back();
2296     if (Info.PersonalityFn) {
2297       unsigned ValID = Info.PersonalityFn - 1;
2298       if (ValID < ValueList.size()) {
2299         if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2300           Info.F->setPersonalityFn(C);
2301         else
2302           return error("Expected a constant");
2303         Info.PersonalityFn = 0;
2304       }
2305     }
2306     if (Info.Prefix) {
2307       unsigned ValID = Info.Prefix - 1;
2308       if (ValID < ValueList.size()) {
2309         if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2310           Info.F->setPrefixData(C);
2311         else
2312           return error("Expected a constant");
2313         Info.Prefix = 0;
2314       }
2315     }
2316     if (Info.Prologue) {
2317       unsigned ValID = Info.Prologue - 1;
2318       if (ValID < ValueList.size()) {
2319         if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2320           Info.F->setPrologueData(C);
2321         else
2322           return error("Expected a constant");
2323         Info.Prologue = 0;
2324       }
2325     }
2326     if (Info.PersonalityFn || Info.Prefix || Info.Prologue)
2327       FunctionOperands.push_back(Info);
2328     FunctionOperandWorklist.pop_back();
2329   }
2330 
2331   return Error::success();
2332 }
2333 
2334 APInt llvm::readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) {
2335   SmallVector<uint64_t, 8> Words(Vals.size());
2336   transform(Vals, Words.begin(),
2337                  BitcodeReader::decodeSignRotatedValue);
2338 
2339   return APInt(TypeBits, Words);
2340 }
2341 
2342 Error BitcodeReader::parseConstants() {
2343   if (Error Err = Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID))
2344     return Err;
2345 
2346   SmallVector<uint64_t, 64> Record;
2347 
2348   // Read all the records for this value table.
2349   Type *CurTy = Type::getInt32Ty(Context);
2350   unsigned NextCstNo = ValueList.size();
2351 
2352   struct DelayedShufTy {
2353     VectorType *OpTy;
2354     VectorType *RTy;
2355     uint64_t Op0Idx;
2356     uint64_t Op1Idx;
2357     uint64_t Op2Idx;
2358     unsigned CstNo;
2359   };
2360   std::vector<DelayedShufTy> DelayedShuffles;
2361   struct DelayedSelTy {
2362     Type *OpTy;
2363     uint64_t Op0Idx;
2364     uint64_t Op1Idx;
2365     uint64_t Op2Idx;
2366     unsigned CstNo;
2367   };
2368   std::vector<DelayedSelTy> DelayedSelectors;
2369 
2370   while (true) {
2371     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2372     if (!MaybeEntry)
2373       return MaybeEntry.takeError();
2374     BitstreamEntry Entry = MaybeEntry.get();
2375 
2376     switch (Entry.Kind) {
2377     case BitstreamEntry::SubBlock: // Handled for us already.
2378     case BitstreamEntry::Error:
2379       return error("Malformed block");
2380     case BitstreamEntry::EndBlock:
2381       // Once all the constants have been read, go through and resolve forward
2382       // references.
2383       //
2384       // We have to treat shuffles specially because they don't have three
2385       // operands anymore.  We need to convert the shuffle mask into an array,
2386       // and we can't convert a forward reference.
2387       for (auto &DelayedShuffle : DelayedShuffles) {
2388         VectorType *OpTy = DelayedShuffle.OpTy;
2389         VectorType *RTy = DelayedShuffle.RTy;
2390         uint64_t Op0Idx = DelayedShuffle.Op0Idx;
2391         uint64_t Op1Idx = DelayedShuffle.Op1Idx;
2392         uint64_t Op2Idx = DelayedShuffle.Op2Idx;
2393         uint64_t CstNo = DelayedShuffle.CstNo;
2394         Constant *Op0 = ValueList.getConstantFwdRef(Op0Idx, OpTy);
2395         Constant *Op1 = ValueList.getConstantFwdRef(Op1Idx, OpTy);
2396         Type *ShufTy =
2397             VectorType::get(Type::getInt32Ty(Context), RTy->getElementCount());
2398         Constant *Op2 = ValueList.getConstantFwdRef(Op2Idx, ShufTy);
2399         if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2))
2400           return error("Invalid shufflevector operands");
2401         SmallVector<int, 16> Mask;
2402         ShuffleVectorInst::getShuffleMask(Op2, Mask);
2403         Value *V = ConstantExpr::getShuffleVector(Op0, Op1, Mask);
2404         ValueList.assignValue(V, CstNo);
2405       }
2406       for (auto &DelayedSelector : DelayedSelectors) {
2407         Type *OpTy = DelayedSelector.OpTy;
2408         Type *SelectorTy = Type::getInt1Ty(Context);
2409         uint64_t Op0Idx = DelayedSelector.Op0Idx;
2410         uint64_t Op1Idx = DelayedSelector.Op1Idx;
2411         uint64_t Op2Idx = DelayedSelector.Op2Idx;
2412         uint64_t CstNo = DelayedSelector.CstNo;
2413         Constant *Op1 = ValueList.getConstantFwdRef(Op1Idx, OpTy);
2414         Constant *Op2 = ValueList.getConstantFwdRef(Op2Idx, OpTy);
2415         // The selector might be an i1 or an <n x i1>
2416         // Get the type from the ValueList before getting a forward ref.
2417         if (VectorType *VTy = dyn_cast<VectorType>(OpTy)) {
2418           Value *V = ValueList[Op0Idx];
2419           assert(V);
2420           if (SelectorTy != V->getType())
2421             SelectorTy = VectorType::get(SelectorTy, VTy->getElementCount());
2422         }
2423         Constant *Op0 = ValueList.getConstantFwdRef(Op0Idx, SelectorTy);
2424         Value *V = ConstantExpr::getSelect(Op0, Op1, Op2);
2425         ValueList.assignValue(V, CstNo);
2426       }
2427 
2428       if (NextCstNo != ValueList.size())
2429         return error("Invalid constant reference");
2430 
2431       ValueList.resolveConstantForwardRefs();
2432       return Error::success();
2433     case BitstreamEntry::Record:
2434       // The interesting case.
2435       break;
2436     }
2437 
2438     // Read a record.
2439     Record.clear();
2440     Type *VoidType = Type::getVoidTy(Context);
2441     Value *V = nullptr;
2442     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
2443     if (!MaybeBitCode)
2444       return MaybeBitCode.takeError();
2445     switch (unsigned BitCode = MaybeBitCode.get()) {
2446     default:  // Default behavior: unknown constant
2447     case bitc::CST_CODE_UNDEF:     // UNDEF
2448       V = UndefValue::get(CurTy);
2449       break;
2450     case bitc::CST_CODE_POISON:    // POISON
2451       V = PoisonValue::get(CurTy);
2452       break;
2453     case bitc::CST_CODE_SETTYPE:   // SETTYPE: [typeid]
2454       if (Record.empty())
2455         return error("Invalid record");
2456       if (Record[0] >= TypeList.size() || !TypeList[Record[0]])
2457         return error("Invalid record");
2458       if (TypeList[Record[0]] == VoidType)
2459         return error("Invalid constant type");
2460       CurTy = TypeList[Record[0]];
2461       continue;  // Skip the ValueList manipulation.
2462     case bitc::CST_CODE_NULL:      // NULL
2463       if (CurTy->isVoidTy() || CurTy->isFunctionTy() || CurTy->isLabelTy())
2464         return error("Invalid type for a constant null value");
2465       V = Constant::getNullValue(CurTy);
2466       break;
2467     case bitc::CST_CODE_INTEGER:   // INTEGER: [intval]
2468       if (!CurTy->isIntegerTy() || Record.empty())
2469         return error("Invalid record");
2470       V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0]));
2471       break;
2472     case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
2473       if (!CurTy->isIntegerTy() || Record.empty())
2474         return error("Invalid record");
2475 
2476       APInt VInt =
2477           readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth());
2478       V = ConstantInt::get(Context, VInt);
2479 
2480       break;
2481     }
2482     case bitc::CST_CODE_FLOAT: {    // FLOAT: [fpval]
2483       if (Record.empty())
2484         return error("Invalid record");
2485       if (CurTy->isHalfTy())
2486         V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf(),
2487                                              APInt(16, (uint16_t)Record[0])));
2488       else if (CurTy->isBFloatTy())
2489         V = ConstantFP::get(Context, APFloat(APFloat::BFloat(),
2490                                              APInt(16, (uint32_t)Record[0])));
2491       else if (CurTy->isFloatTy())
2492         V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle(),
2493                                              APInt(32, (uint32_t)Record[0])));
2494       else if (CurTy->isDoubleTy())
2495         V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble(),
2496                                              APInt(64, Record[0])));
2497       else if (CurTy->isX86_FP80Ty()) {
2498         // Bits are not stored the same way as a normal i80 APInt, compensate.
2499         uint64_t Rearrange[2];
2500         Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16);
2501         Rearrange[1] = Record[0] >> 48;
2502         V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended(),
2503                                              APInt(80, Rearrange)));
2504       } else if (CurTy->isFP128Ty())
2505         V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad(),
2506                                              APInt(128, Record)));
2507       else if (CurTy->isPPC_FP128Ty())
2508         V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble(),
2509                                              APInt(128, Record)));
2510       else
2511         V = UndefValue::get(CurTy);
2512       break;
2513     }
2514 
2515     case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
2516       if (Record.empty())
2517         return error("Invalid record");
2518 
2519       unsigned Size = Record.size();
2520       SmallVector<Constant*, 16> Elts;
2521 
2522       if (StructType *STy = dyn_cast<StructType>(CurTy)) {
2523         for (unsigned i = 0; i != Size; ++i)
2524           Elts.push_back(ValueList.getConstantFwdRef(Record[i],
2525                                                      STy->getElementType(i)));
2526         V = ConstantStruct::get(STy, Elts);
2527       } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) {
2528         Type *EltTy = ATy->getElementType();
2529         for (unsigned i = 0; i != Size; ++i)
2530           Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
2531         V = ConstantArray::get(ATy, Elts);
2532       } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) {
2533         Type *EltTy = VTy->getElementType();
2534         for (unsigned i = 0; i != Size; ++i)
2535           Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
2536         V = ConstantVector::get(Elts);
2537       } else {
2538         V = UndefValue::get(CurTy);
2539       }
2540       break;
2541     }
2542     case bitc::CST_CODE_STRING:    // STRING: [values]
2543     case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
2544       if (Record.empty())
2545         return error("Invalid record");
2546 
2547       SmallString<16> Elts(Record.begin(), Record.end());
2548       V = ConstantDataArray::getString(Context, Elts,
2549                                        BitCode == bitc::CST_CODE_CSTRING);
2550       break;
2551     }
2552     case bitc::CST_CODE_DATA: {// DATA: [n x value]
2553       if (Record.empty())
2554         return error("Invalid record");
2555 
2556       Type *EltTy;
2557       if (auto *Array = dyn_cast<ArrayType>(CurTy))
2558         EltTy = Array->getElementType();
2559       else
2560         EltTy = cast<VectorType>(CurTy)->getElementType();
2561       if (EltTy->isIntegerTy(8)) {
2562         SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end());
2563         if (isa<VectorType>(CurTy))
2564           V = ConstantDataVector::get(Context, Elts);
2565         else
2566           V = ConstantDataArray::get(Context, Elts);
2567       } else if (EltTy->isIntegerTy(16)) {
2568         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
2569         if (isa<VectorType>(CurTy))
2570           V = ConstantDataVector::get(Context, Elts);
2571         else
2572           V = ConstantDataArray::get(Context, Elts);
2573       } else if (EltTy->isIntegerTy(32)) {
2574         SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
2575         if (isa<VectorType>(CurTy))
2576           V = ConstantDataVector::get(Context, Elts);
2577         else
2578           V = ConstantDataArray::get(Context, Elts);
2579       } else if (EltTy->isIntegerTy(64)) {
2580         SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
2581         if (isa<VectorType>(CurTy))
2582           V = ConstantDataVector::get(Context, Elts);
2583         else
2584           V = ConstantDataArray::get(Context, Elts);
2585       } else if (EltTy->isHalfTy()) {
2586         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
2587         if (isa<VectorType>(CurTy))
2588           V = ConstantDataVector::getFP(EltTy, Elts);
2589         else
2590           V = ConstantDataArray::getFP(EltTy, Elts);
2591       } else if (EltTy->isBFloatTy()) {
2592         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
2593         if (isa<VectorType>(CurTy))
2594           V = ConstantDataVector::getFP(EltTy, Elts);
2595         else
2596           V = ConstantDataArray::getFP(EltTy, Elts);
2597       } else if (EltTy->isFloatTy()) {
2598         SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
2599         if (isa<VectorType>(CurTy))
2600           V = ConstantDataVector::getFP(EltTy, Elts);
2601         else
2602           V = ConstantDataArray::getFP(EltTy, Elts);
2603       } else if (EltTy->isDoubleTy()) {
2604         SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
2605         if (isa<VectorType>(CurTy))
2606           V = ConstantDataVector::getFP(EltTy, Elts);
2607         else
2608           V = ConstantDataArray::getFP(EltTy, Elts);
2609       } else {
2610         return error("Invalid type for value");
2611       }
2612       break;
2613     }
2614     case bitc::CST_CODE_CE_UNOP: {  // CE_UNOP: [opcode, opval]
2615       if (Record.size() < 2)
2616         return error("Invalid record");
2617       int Opc = getDecodedUnaryOpcode(Record[0], CurTy);
2618       if (Opc < 0) {
2619         V = UndefValue::get(CurTy);  // Unknown unop.
2620       } else {
2621         Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
2622         unsigned Flags = 0;
2623         V = ConstantExpr::get(Opc, LHS, Flags);
2624       }
2625       break;
2626     }
2627     case bitc::CST_CODE_CE_BINOP: {  // CE_BINOP: [opcode, opval, opval]
2628       if (Record.size() < 3)
2629         return error("Invalid record");
2630       int Opc = getDecodedBinaryOpcode(Record[0], CurTy);
2631       if (Opc < 0) {
2632         V = UndefValue::get(CurTy);  // Unknown binop.
2633       } else {
2634         Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
2635         Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy);
2636         unsigned Flags = 0;
2637         if (Record.size() >= 4) {
2638           if (Opc == Instruction::Add ||
2639               Opc == Instruction::Sub ||
2640               Opc == Instruction::Mul ||
2641               Opc == Instruction::Shl) {
2642             if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP))
2643               Flags |= OverflowingBinaryOperator::NoSignedWrap;
2644             if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
2645               Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
2646           } else if (Opc == Instruction::SDiv ||
2647                      Opc == Instruction::UDiv ||
2648                      Opc == Instruction::LShr ||
2649                      Opc == Instruction::AShr) {
2650             if (Record[3] & (1 << bitc::PEO_EXACT))
2651               Flags |= SDivOperator::IsExact;
2652           }
2653         }
2654         V = ConstantExpr::get(Opc, LHS, RHS, Flags);
2655       }
2656       break;
2657     }
2658     case bitc::CST_CODE_CE_CAST: {  // CE_CAST: [opcode, opty, opval]
2659       if (Record.size() < 3)
2660         return error("Invalid record");
2661       int Opc = getDecodedCastOpcode(Record[0]);
2662       if (Opc < 0) {
2663         V = UndefValue::get(CurTy);  // Unknown cast.
2664       } else {
2665         Type *OpTy = getTypeByID(Record[1]);
2666         if (!OpTy)
2667           return error("Invalid record");
2668         Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy);
2669         V = UpgradeBitCastExpr(Opc, Op, CurTy);
2670         if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy);
2671       }
2672       break;
2673     }
2674     case bitc::CST_CODE_CE_INBOUNDS_GEP: // [ty, n x operands]
2675     case bitc::CST_CODE_CE_GEP: // [ty, n x operands]
2676     case bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX: { // [ty, flags, n x
2677                                                      // operands]
2678       unsigned OpNum = 0;
2679       Type *PointeeType = nullptr;
2680       if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX ||
2681           Record.size() % 2)
2682         PointeeType = getTypeByID(Record[OpNum++]);
2683 
2684       bool InBounds = false;
2685       Optional<unsigned> InRangeIndex;
2686       if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX) {
2687         uint64_t Op = Record[OpNum++];
2688         InBounds = Op & 1;
2689         InRangeIndex = Op >> 1;
2690       } else if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP)
2691         InBounds = true;
2692 
2693       SmallVector<Constant*, 16> Elts;
2694       Type *Elt0FullTy = nullptr;
2695       while (OpNum != Record.size()) {
2696         if (!Elt0FullTy)
2697           Elt0FullTy = getTypeByID(Record[OpNum]);
2698         Type *ElTy = getTypeByID(Record[OpNum++]);
2699         if (!ElTy)
2700           return error("Invalid record");
2701         Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy));
2702       }
2703 
2704       if (Elts.size() < 1)
2705         return error("Invalid gep with no operands");
2706 
2707       PointerType *OrigPtrTy = cast<PointerType>(Elt0FullTy->getScalarType());
2708       if (!PointeeType)
2709         PointeeType = OrigPtrTy->getPointerElementType();
2710       else if (!OrigPtrTy->isOpaqueOrPointeeTypeMatches(PointeeType))
2711         return error("Explicit gep operator type does not match pointee type "
2712                      "of pointer operand");
2713 
2714       ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
2715       V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices,
2716                                          InBounds, InRangeIndex);
2717       break;
2718     }
2719     case bitc::CST_CODE_CE_SELECT: {  // CE_SELECT: [opval#, opval#, opval#]
2720       if (Record.size() < 3)
2721         return error("Invalid record");
2722 
2723       DelayedSelectors.push_back(
2724           {CurTy, Record[0], Record[1], Record[2], NextCstNo});
2725       (void)ValueList.getConstantFwdRef(NextCstNo, CurTy);
2726       ++NextCstNo;
2727       continue;
2728     }
2729     case bitc::CST_CODE_CE_EXTRACTELT
2730         : { // CE_EXTRACTELT: [opty, opval, opty, opval]
2731       if (Record.size() < 3)
2732         return error("Invalid record");
2733       VectorType *OpTy =
2734         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
2735       if (!OpTy)
2736         return error("Invalid record");
2737       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
2738       Constant *Op1 = nullptr;
2739       if (Record.size() == 4) {
2740         Type *IdxTy = getTypeByID(Record[2]);
2741         if (!IdxTy)
2742           return error("Invalid record");
2743         Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy);
2744       } else {
2745         // Deprecated, but still needed to read old bitcode files.
2746         Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
2747       }
2748       if (!Op1)
2749         return error("Invalid record");
2750       V = ConstantExpr::getExtractElement(Op0, Op1);
2751       break;
2752     }
2753     case bitc::CST_CODE_CE_INSERTELT
2754         : { // CE_INSERTELT: [opval, opval, opty, opval]
2755       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
2756       if (Record.size() < 3 || !OpTy)
2757         return error("Invalid record");
2758       Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
2759       Constant *Op1 = ValueList.getConstantFwdRef(Record[1],
2760                                                   OpTy->getElementType());
2761       Constant *Op2 = nullptr;
2762       if (Record.size() == 4) {
2763         Type *IdxTy = getTypeByID(Record[2]);
2764         if (!IdxTy)
2765           return error("Invalid record");
2766         Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy);
2767       } else {
2768         // Deprecated, but still needed to read old bitcode files.
2769         Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
2770       }
2771       if (!Op2)
2772         return error("Invalid record");
2773       V = ConstantExpr::getInsertElement(Op0, Op1, Op2);
2774       break;
2775     }
2776     case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
2777       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
2778       if (Record.size() < 3 || !OpTy)
2779         return error("Invalid record");
2780       DelayedShuffles.push_back(
2781           {OpTy, OpTy, Record[0], Record[1], Record[2], NextCstNo});
2782       ++NextCstNo;
2783       continue;
2784     }
2785     case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval]
2786       VectorType *RTy = dyn_cast<VectorType>(CurTy);
2787       VectorType *OpTy =
2788         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
2789       if (Record.size() < 4 || !RTy || !OpTy)
2790         return error("Invalid record");
2791       DelayedShuffles.push_back(
2792           {OpTy, RTy, Record[1], Record[2], Record[3], NextCstNo});
2793       ++NextCstNo;
2794       continue;
2795     }
2796     case bitc::CST_CODE_CE_CMP: {     // CE_CMP: [opty, opval, opval, pred]
2797       if (Record.size() < 4)
2798         return error("Invalid record");
2799       Type *OpTy = getTypeByID(Record[0]);
2800       if (!OpTy)
2801         return error("Invalid record");
2802       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
2803       Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
2804 
2805       if (OpTy->isFPOrFPVectorTy())
2806         V = ConstantExpr::getFCmp(Record[3], Op0, Op1);
2807       else
2808         V = ConstantExpr::getICmp(Record[3], Op0, Op1);
2809       break;
2810     }
2811     // This maintains backward compatibility, pre-asm dialect keywords.
2812     // Deprecated, but still needed to read old bitcode files.
2813     case bitc::CST_CODE_INLINEASM_OLD: {
2814       if (Record.size() < 2)
2815         return error("Invalid record");
2816       std::string AsmStr, ConstrStr;
2817       bool HasSideEffects = Record[0] & 1;
2818       bool IsAlignStack = Record[0] >> 1;
2819       unsigned AsmStrSize = Record[1];
2820       if (2+AsmStrSize >= Record.size())
2821         return error("Invalid record");
2822       unsigned ConstStrSize = Record[2+AsmStrSize];
2823       if (3+AsmStrSize+ConstStrSize > Record.size())
2824         return error("Invalid record");
2825 
2826       for (unsigned i = 0; i != AsmStrSize; ++i)
2827         AsmStr += (char)Record[2+i];
2828       for (unsigned i = 0; i != ConstStrSize; ++i)
2829         ConstrStr += (char)Record[3+AsmStrSize+i];
2830       UpgradeInlineAsmString(&AsmStr);
2831       // FIXME: support upgrading in opaque pointers mode.
2832       V = InlineAsm::get(cast<FunctionType>(CurTy->getPointerElementType()),
2833                          AsmStr, ConstrStr, HasSideEffects, IsAlignStack);
2834       break;
2835     }
2836     // This version adds support for the asm dialect keywords (e.g.,
2837     // inteldialect).
2838     case bitc::CST_CODE_INLINEASM_OLD2: {
2839       if (Record.size() < 2)
2840         return error("Invalid record");
2841       std::string AsmStr, ConstrStr;
2842       bool HasSideEffects = Record[0] & 1;
2843       bool IsAlignStack = (Record[0] >> 1) & 1;
2844       unsigned AsmDialect = Record[0] >> 2;
2845       unsigned AsmStrSize = Record[1];
2846       if (2+AsmStrSize >= Record.size())
2847         return error("Invalid record");
2848       unsigned ConstStrSize = Record[2+AsmStrSize];
2849       if (3+AsmStrSize+ConstStrSize > Record.size())
2850         return error("Invalid record");
2851 
2852       for (unsigned i = 0; i != AsmStrSize; ++i)
2853         AsmStr += (char)Record[2+i];
2854       for (unsigned i = 0; i != ConstStrSize; ++i)
2855         ConstrStr += (char)Record[3+AsmStrSize+i];
2856       UpgradeInlineAsmString(&AsmStr);
2857       // FIXME: support upgrading in opaque pointers mode.
2858       V = InlineAsm::get(cast<FunctionType>(CurTy->getPointerElementType()),
2859                          AsmStr, ConstrStr, HasSideEffects, IsAlignStack,
2860                          InlineAsm::AsmDialect(AsmDialect));
2861       break;
2862     }
2863     // This version adds support for the unwind keyword.
2864     case bitc::CST_CODE_INLINEASM_OLD3: {
2865       if (Record.size() < 2)
2866         return error("Invalid record");
2867       unsigned OpNum = 0;
2868       std::string AsmStr, ConstrStr;
2869       bool HasSideEffects = Record[OpNum] & 1;
2870       bool IsAlignStack = (Record[OpNum] >> 1) & 1;
2871       unsigned AsmDialect = (Record[OpNum] >> 2) & 1;
2872       bool CanThrow = (Record[OpNum] >> 3) & 1;
2873       ++OpNum;
2874       unsigned AsmStrSize = Record[OpNum];
2875       ++OpNum;
2876       if (OpNum + AsmStrSize >= Record.size())
2877         return error("Invalid record");
2878       unsigned ConstStrSize = Record[OpNum + AsmStrSize];
2879       if (OpNum + 1 + AsmStrSize + ConstStrSize > Record.size())
2880         return error("Invalid record");
2881 
2882       for (unsigned i = 0; i != AsmStrSize; ++i)
2883         AsmStr += (char)Record[OpNum + i];
2884       ++OpNum;
2885       for (unsigned i = 0; i != ConstStrSize; ++i)
2886         ConstrStr += (char)Record[OpNum + AsmStrSize + i];
2887       UpgradeInlineAsmString(&AsmStr);
2888       // FIXME: support upgrading in opaque pointers mode.
2889       V = InlineAsm::get(cast<FunctionType>(CurTy->getPointerElementType()),
2890                          AsmStr, ConstrStr, HasSideEffects, IsAlignStack,
2891                          InlineAsm::AsmDialect(AsmDialect), CanThrow);
2892       break;
2893     }
2894     // This version adds explicit function type.
2895     case bitc::CST_CODE_INLINEASM: {
2896       if (Record.size() < 3)
2897         return error("Invalid record");
2898       unsigned OpNum = 0;
2899       auto *FnTy = dyn_cast_or_null<FunctionType>(getTypeByID(Record[OpNum]));
2900       ++OpNum;
2901       if (!FnTy)
2902         return error("Invalid record");
2903       std::string AsmStr, ConstrStr;
2904       bool HasSideEffects = Record[OpNum] & 1;
2905       bool IsAlignStack = (Record[OpNum] >> 1) & 1;
2906       unsigned AsmDialect = (Record[OpNum] >> 2) & 1;
2907       bool CanThrow = (Record[OpNum] >> 3) & 1;
2908       ++OpNum;
2909       unsigned AsmStrSize = Record[OpNum];
2910       ++OpNum;
2911       if (OpNum + AsmStrSize >= Record.size())
2912         return error("Invalid record");
2913       unsigned ConstStrSize = Record[OpNum + AsmStrSize];
2914       if (OpNum + 1 + AsmStrSize + ConstStrSize > Record.size())
2915         return error("Invalid record");
2916 
2917       for (unsigned i = 0; i != AsmStrSize; ++i)
2918         AsmStr += (char)Record[OpNum + i];
2919       ++OpNum;
2920       for (unsigned i = 0; i != ConstStrSize; ++i)
2921         ConstrStr += (char)Record[OpNum + AsmStrSize + i];
2922       UpgradeInlineAsmString(&AsmStr);
2923       V = InlineAsm::get(FnTy, AsmStr, ConstrStr, HasSideEffects, IsAlignStack,
2924                          InlineAsm::AsmDialect(AsmDialect), CanThrow);
2925       break;
2926     }
2927     case bitc::CST_CODE_BLOCKADDRESS:{
2928       if (Record.size() < 3)
2929         return error("Invalid record");
2930       Type *FnTy = getTypeByID(Record[0]);
2931       if (!FnTy)
2932         return error("Invalid record");
2933       Function *Fn =
2934         dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy));
2935       if (!Fn)
2936         return error("Invalid record");
2937 
2938       // If the function is already parsed we can insert the block address right
2939       // away.
2940       BasicBlock *BB;
2941       unsigned BBID = Record[2];
2942       if (!BBID)
2943         // Invalid reference to entry block.
2944         return error("Invalid ID");
2945       if (!Fn->empty()) {
2946         Function::iterator BBI = Fn->begin(), BBE = Fn->end();
2947         for (size_t I = 0, E = BBID; I != E; ++I) {
2948           if (BBI == BBE)
2949             return error("Invalid ID");
2950           ++BBI;
2951         }
2952         BB = &*BBI;
2953       } else {
2954         // Otherwise insert a placeholder and remember it so it can be inserted
2955         // when the function is parsed.
2956         auto &FwdBBs = BasicBlockFwdRefs[Fn];
2957         if (FwdBBs.empty())
2958           BasicBlockFwdRefQueue.push_back(Fn);
2959         if (FwdBBs.size() < BBID + 1)
2960           FwdBBs.resize(BBID + 1);
2961         if (!FwdBBs[BBID])
2962           FwdBBs[BBID] = BasicBlock::Create(Context);
2963         BB = FwdBBs[BBID];
2964       }
2965       V = BlockAddress::get(Fn, BB);
2966       break;
2967     }
2968     case bitc::CST_CODE_DSO_LOCAL_EQUIVALENT: {
2969       if (Record.size() < 2)
2970         return error("Invalid record");
2971       Type *GVTy = getTypeByID(Record[0]);
2972       if (!GVTy)
2973         return error("Invalid record");
2974       GlobalValue *GV = dyn_cast_or_null<GlobalValue>(
2975           ValueList.getConstantFwdRef(Record[1], GVTy));
2976       if (!GV)
2977         return error("Invalid record");
2978 
2979       V = DSOLocalEquivalent::get(GV);
2980       break;
2981     }
2982     case bitc::CST_CODE_NO_CFI_VALUE: {
2983       if (Record.size() < 2)
2984         return error("Invalid record");
2985       Type *GVTy = getTypeByID(Record[0]);
2986       if (!GVTy)
2987         return error("Invalid record");
2988       GlobalValue *GV = dyn_cast_or_null<GlobalValue>(
2989           ValueList.getConstantFwdRef(Record[1], GVTy));
2990       if (!GV)
2991         return error("Invalid record");
2992       V = NoCFIValue::get(GV);
2993       break;
2994     }
2995     }
2996 
2997     ValueList.assignValue(V, NextCstNo);
2998     ++NextCstNo;
2999   }
3000 }
3001 
3002 Error BitcodeReader::parseUseLists() {
3003   if (Error Err = Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID))
3004     return Err;
3005 
3006   // Read all the records.
3007   SmallVector<uint64_t, 64> Record;
3008 
3009   while (true) {
3010     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
3011     if (!MaybeEntry)
3012       return MaybeEntry.takeError();
3013     BitstreamEntry Entry = MaybeEntry.get();
3014 
3015     switch (Entry.Kind) {
3016     case BitstreamEntry::SubBlock: // Handled for us already.
3017     case BitstreamEntry::Error:
3018       return error("Malformed block");
3019     case BitstreamEntry::EndBlock:
3020       return Error::success();
3021     case BitstreamEntry::Record:
3022       // The interesting case.
3023       break;
3024     }
3025 
3026     // Read a use list record.
3027     Record.clear();
3028     bool IsBB = false;
3029     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
3030     if (!MaybeRecord)
3031       return MaybeRecord.takeError();
3032     switch (MaybeRecord.get()) {
3033     default:  // Default behavior: unknown type.
3034       break;
3035     case bitc::USELIST_CODE_BB:
3036       IsBB = true;
3037       LLVM_FALLTHROUGH;
3038     case bitc::USELIST_CODE_DEFAULT: {
3039       unsigned RecordLength = Record.size();
3040       if (RecordLength < 3)
3041         // Records should have at least an ID and two indexes.
3042         return error("Invalid record");
3043       unsigned ID = Record.pop_back_val();
3044 
3045       Value *V;
3046       if (IsBB) {
3047         assert(ID < FunctionBBs.size() && "Basic block not found");
3048         V = FunctionBBs[ID];
3049       } else
3050         V = ValueList[ID];
3051       unsigned NumUses = 0;
3052       SmallDenseMap<const Use *, unsigned, 16> Order;
3053       for (const Use &U : V->materialized_uses()) {
3054         if (++NumUses > Record.size())
3055           break;
3056         Order[&U] = Record[NumUses - 1];
3057       }
3058       if (Order.size() != Record.size() || NumUses > Record.size())
3059         // Mismatches can happen if the functions are being materialized lazily
3060         // (out-of-order), or a value has been upgraded.
3061         break;
3062 
3063       V->sortUseList([&](const Use &L, const Use &R) {
3064         return Order.lookup(&L) < Order.lookup(&R);
3065       });
3066       break;
3067     }
3068     }
3069   }
3070 }
3071 
3072 /// When we see the block for metadata, remember where it is and then skip it.
3073 /// This lets us lazily deserialize the metadata.
3074 Error BitcodeReader::rememberAndSkipMetadata() {
3075   // Save the current stream state.
3076   uint64_t CurBit = Stream.GetCurrentBitNo();
3077   DeferredMetadataInfo.push_back(CurBit);
3078 
3079   // Skip over the block for now.
3080   if (Error Err = Stream.SkipBlock())
3081     return Err;
3082   return Error::success();
3083 }
3084 
3085 Error BitcodeReader::materializeMetadata() {
3086   for (uint64_t BitPos : DeferredMetadataInfo) {
3087     // Move the bit stream to the saved position.
3088     if (Error JumpFailed = Stream.JumpToBit(BitPos))
3089       return JumpFailed;
3090     if (Error Err = MDLoader->parseModuleMetadata())
3091       return Err;
3092   }
3093 
3094   // Upgrade "Linker Options" module flag to "llvm.linker.options" module-level
3095   // metadata. Only upgrade if the new option doesn't exist to avoid upgrade
3096   // multiple times.
3097   if (!TheModule->getNamedMetadata("llvm.linker.options")) {
3098     if (Metadata *Val = TheModule->getModuleFlag("Linker Options")) {
3099       NamedMDNode *LinkerOpts =
3100           TheModule->getOrInsertNamedMetadata("llvm.linker.options");
3101       for (const MDOperand &MDOptions : cast<MDNode>(Val)->operands())
3102         LinkerOpts->addOperand(cast<MDNode>(MDOptions));
3103     }
3104   }
3105 
3106   DeferredMetadataInfo.clear();
3107   return Error::success();
3108 }
3109 
3110 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; }
3111 
3112 /// When we see the block for a function body, remember where it is and then
3113 /// skip it.  This lets us lazily deserialize the functions.
3114 Error BitcodeReader::rememberAndSkipFunctionBody() {
3115   // Get the function we are talking about.
3116   if (FunctionsWithBodies.empty())
3117     return error("Insufficient function protos");
3118 
3119   Function *Fn = FunctionsWithBodies.back();
3120   FunctionsWithBodies.pop_back();
3121 
3122   // Save the current stream state.
3123   uint64_t CurBit = Stream.GetCurrentBitNo();
3124   assert(
3125       (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) &&
3126       "Mismatch between VST and scanned function offsets");
3127   DeferredFunctionInfo[Fn] = CurBit;
3128 
3129   // Skip over the function block for now.
3130   if (Error Err = Stream.SkipBlock())
3131     return Err;
3132   return Error::success();
3133 }
3134 
3135 Error BitcodeReader::globalCleanup() {
3136   // Patch the initializers for globals and aliases up.
3137   if (Error Err = resolveGlobalAndIndirectSymbolInits())
3138     return Err;
3139   if (!GlobalInits.empty() || !IndirectSymbolInits.empty())
3140     return error("Malformed global initializer set");
3141 
3142   // Look for intrinsic functions which need to be upgraded at some point
3143   // and functions that need to have their function attributes upgraded.
3144   for (Function &F : *TheModule) {
3145     MDLoader->upgradeDebugIntrinsics(F);
3146     Function *NewFn;
3147     if (UpgradeIntrinsicFunction(&F, NewFn))
3148       UpgradedIntrinsics[&F] = NewFn;
3149     else if (auto Remangled = Intrinsic::remangleIntrinsicFunction(&F))
3150       // Some types could be renamed during loading if several modules are
3151       // loaded in the same LLVMContext (LTO scenario). In this case we should
3152       // remangle intrinsics names as well.
3153       RemangledIntrinsics[&F] = Remangled.getValue();
3154     // Look for functions that rely on old function attribute behavior.
3155     UpgradeFunctionAttributes(F);
3156   }
3157 
3158   // Look for global variables which need to be renamed.
3159   std::vector<std::pair<GlobalVariable *, GlobalVariable *>> UpgradedVariables;
3160   for (GlobalVariable &GV : TheModule->globals())
3161     if (GlobalVariable *Upgraded = UpgradeGlobalVariable(&GV))
3162       UpgradedVariables.emplace_back(&GV, Upgraded);
3163   for (auto &Pair : UpgradedVariables) {
3164     Pair.first->eraseFromParent();
3165     TheModule->getGlobalList().push_back(Pair.second);
3166   }
3167 
3168   // Force deallocation of memory for these vectors to favor the client that
3169   // want lazy deserialization.
3170   std::vector<std::pair<GlobalVariable *, unsigned>>().swap(GlobalInits);
3171   std::vector<std::pair<GlobalValue *, unsigned>>().swap(IndirectSymbolInits);
3172   return Error::success();
3173 }
3174 
3175 /// Support for lazy parsing of function bodies. This is required if we
3176 /// either have an old bitcode file without a VST forward declaration record,
3177 /// or if we have an anonymous function being materialized, since anonymous
3178 /// functions do not have a name and are therefore not in the VST.
3179 Error BitcodeReader::rememberAndSkipFunctionBodies() {
3180   if (Error JumpFailed = Stream.JumpToBit(NextUnreadBit))
3181     return JumpFailed;
3182 
3183   if (Stream.AtEndOfStream())
3184     return error("Could not find function in stream");
3185 
3186   if (!SeenFirstFunctionBody)
3187     return error("Trying to materialize functions before seeing function blocks");
3188 
3189   // An old bitcode file with the symbol table at the end would have
3190   // finished the parse greedily.
3191   assert(SeenValueSymbolTable);
3192 
3193   SmallVector<uint64_t, 64> Record;
3194 
3195   while (true) {
3196     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
3197     if (!MaybeEntry)
3198       return MaybeEntry.takeError();
3199     llvm::BitstreamEntry Entry = MaybeEntry.get();
3200 
3201     switch (Entry.Kind) {
3202     default:
3203       return error("Expect SubBlock");
3204     case BitstreamEntry::SubBlock:
3205       switch (Entry.ID) {
3206       default:
3207         return error("Expect function block");
3208       case bitc::FUNCTION_BLOCK_ID:
3209         if (Error Err = rememberAndSkipFunctionBody())
3210           return Err;
3211         NextUnreadBit = Stream.GetCurrentBitNo();
3212         return Error::success();
3213       }
3214     }
3215   }
3216 }
3217 
3218 Error BitcodeReaderBase::readBlockInfo() {
3219   Expected<Optional<BitstreamBlockInfo>> MaybeNewBlockInfo =
3220       Stream.ReadBlockInfoBlock();
3221   if (!MaybeNewBlockInfo)
3222     return MaybeNewBlockInfo.takeError();
3223   Optional<BitstreamBlockInfo> NewBlockInfo =
3224       std::move(MaybeNewBlockInfo.get());
3225   if (!NewBlockInfo)
3226     return error("Malformed block");
3227   BlockInfo = std::move(*NewBlockInfo);
3228   return Error::success();
3229 }
3230 
3231 Error BitcodeReader::parseComdatRecord(ArrayRef<uint64_t> Record) {
3232   // v1: [selection_kind, name]
3233   // v2: [strtab_offset, strtab_size, selection_kind]
3234   StringRef Name;
3235   std::tie(Name, Record) = readNameFromStrtab(Record);
3236 
3237   if (Record.empty())
3238     return error("Invalid record");
3239   Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]);
3240   std::string OldFormatName;
3241   if (!UseStrtab) {
3242     if (Record.size() < 2)
3243       return error("Invalid record");
3244     unsigned ComdatNameSize = Record[1];
3245     OldFormatName.reserve(ComdatNameSize);
3246     for (unsigned i = 0; i != ComdatNameSize; ++i)
3247       OldFormatName += (char)Record[2 + i];
3248     Name = OldFormatName;
3249   }
3250   Comdat *C = TheModule->getOrInsertComdat(Name);
3251   C->setSelectionKind(SK);
3252   ComdatList.push_back(C);
3253   return Error::success();
3254 }
3255 
3256 static void inferDSOLocal(GlobalValue *GV) {
3257   // infer dso_local from linkage and visibility if it is not encoded.
3258   if (GV->hasLocalLinkage() ||
3259       (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage()))
3260     GV->setDSOLocal(true);
3261 }
3262 
3263 Error BitcodeReader::parseGlobalVarRecord(ArrayRef<uint64_t> Record) {
3264   // v1: [pointer type, isconst, initid, linkage, alignment, section,
3265   // visibility, threadlocal, unnamed_addr, externally_initialized,
3266   // dllstorageclass, comdat, attributes, preemption specifier,
3267   // partition strtab offset, partition strtab size] (name in VST)
3268   // v2: [strtab_offset, strtab_size, v1]
3269   StringRef Name;
3270   std::tie(Name, Record) = readNameFromStrtab(Record);
3271 
3272   if (Record.size() < 6)
3273     return error("Invalid record");
3274   Type *Ty = getTypeByID(Record[0]);
3275   if (!Ty)
3276     return error("Invalid record");
3277   bool isConstant = Record[1] & 1;
3278   bool explicitType = Record[1] & 2;
3279   unsigned AddressSpace;
3280   if (explicitType) {
3281     AddressSpace = Record[1] >> 2;
3282   } else {
3283     if (!Ty->isPointerTy())
3284       return error("Invalid type for value");
3285     AddressSpace = cast<PointerType>(Ty)->getAddressSpace();
3286     Ty = Ty->getPointerElementType();
3287   }
3288 
3289   uint64_t RawLinkage = Record[3];
3290   GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
3291   MaybeAlign Alignment;
3292   if (Error Err = parseAlignmentValue(Record[4], Alignment))
3293     return Err;
3294   std::string Section;
3295   if (Record[5]) {
3296     if (Record[5] - 1 >= SectionTable.size())
3297       return error("Invalid ID");
3298     Section = SectionTable[Record[5] - 1];
3299   }
3300   GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility;
3301   // Local linkage must have default visibility.
3302   // auto-upgrade `hidden` and `protected` for old bitcode.
3303   if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage))
3304     Visibility = getDecodedVisibility(Record[6]);
3305 
3306   GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal;
3307   if (Record.size() > 7)
3308     TLM = getDecodedThreadLocalMode(Record[7]);
3309 
3310   GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
3311   if (Record.size() > 8)
3312     UnnamedAddr = getDecodedUnnamedAddrType(Record[8]);
3313 
3314   bool ExternallyInitialized = false;
3315   if (Record.size() > 9)
3316     ExternallyInitialized = Record[9];
3317 
3318   GlobalVariable *NewGV =
3319       new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, Name,
3320                          nullptr, TLM, AddressSpace, ExternallyInitialized);
3321   NewGV->setAlignment(Alignment);
3322   if (!Section.empty())
3323     NewGV->setSection(Section);
3324   NewGV->setVisibility(Visibility);
3325   NewGV->setUnnamedAddr(UnnamedAddr);
3326 
3327   if (Record.size() > 10)
3328     NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10]));
3329   else
3330     upgradeDLLImportExportLinkage(NewGV, RawLinkage);
3331 
3332   ValueList.push_back(NewGV);
3333 
3334   // Remember which value to use for the global initializer.
3335   if (unsigned InitID = Record[2])
3336     GlobalInits.push_back(std::make_pair(NewGV, InitID - 1));
3337 
3338   if (Record.size() > 11) {
3339     if (unsigned ComdatID = Record[11]) {
3340       if (ComdatID > ComdatList.size())
3341         return error("Invalid global variable comdat ID");
3342       NewGV->setComdat(ComdatList[ComdatID - 1]);
3343     }
3344   } else if (hasImplicitComdat(RawLinkage)) {
3345     ImplicitComdatObjects.insert(NewGV);
3346   }
3347 
3348   if (Record.size() > 12) {
3349     auto AS = getAttributes(Record[12]).getFnAttrs();
3350     NewGV->setAttributes(AS);
3351   }
3352 
3353   if (Record.size() > 13) {
3354     NewGV->setDSOLocal(getDecodedDSOLocal(Record[13]));
3355   }
3356   inferDSOLocal(NewGV);
3357 
3358   // Check whether we have enough values to read a partition name.
3359   if (Record.size() > 15)
3360     NewGV->setPartition(StringRef(Strtab.data() + Record[14], Record[15]));
3361 
3362   return Error::success();
3363 }
3364 
3365 Error BitcodeReader::parseFunctionRecord(ArrayRef<uint64_t> Record) {
3366   // v1: [type, callingconv, isproto, linkage, paramattr, alignment, section,
3367   // visibility, gc, unnamed_addr, prologuedata, dllstorageclass, comdat,
3368   // prefixdata,  personalityfn, preemption specifier, addrspace] (name in VST)
3369   // v2: [strtab_offset, strtab_size, v1]
3370   StringRef Name;
3371   std::tie(Name, Record) = readNameFromStrtab(Record);
3372 
3373   if (Record.size() < 8)
3374     return error("Invalid record");
3375   Type *FTy = getTypeByID(Record[0]);
3376   if (!FTy)
3377     return error("Invalid record");
3378   if (auto *PTy = dyn_cast<PointerType>(FTy))
3379     FTy = PTy->getPointerElementType();
3380 
3381   if (!isa<FunctionType>(FTy))
3382     return error("Invalid type for value");
3383   auto CC = static_cast<CallingConv::ID>(Record[1]);
3384   if (CC & ~CallingConv::MaxID)
3385     return error("Invalid calling convention ID");
3386 
3387   unsigned AddrSpace = TheModule->getDataLayout().getProgramAddressSpace();
3388   if (Record.size() > 16)
3389     AddrSpace = Record[16];
3390 
3391   Function *Func =
3392       Function::Create(cast<FunctionType>(FTy), GlobalValue::ExternalLinkage,
3393                        AddrSpace, Name, TheModule);
3394 
3395   assert(Func->getFunctionType() == FTy &&
3396          "Incorrect fully specified type provided for function");
3397   FunctionTypes[Func] = cast<FunctionType>(FTy);
3398 
3399   Func->setCallingConv(CC);
3400   bool isProto = Record[2];
3401   uint64_t RawLinkage = Record[3];
3402   Func->setLinkage(getDecodedLinkage(RawLinkage));
3403   Func->setAttributes(getAttributes(Record[4]));
3404 
3405   // Upgrade any old-style byval or sret without a type by propagating the
3406   // argument's pointee type. There should be no opaque pointers where the byval
3407   // type is implicit.
3408   for (unsigned i = 0; i != Func->arg_size(); ++i) {
3409     for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet,
3410                                      Attribute::InAlloca}) {
3411       if (!Func->hasParamAttribute(i, Kind))
3412         continue;
3413 
3414       if (Func->getParamAttribute(i, Kind).getValueAsType())
3415         continue;
3416 
3417       Func->removeParamAttr(i, Kind);
3418 
3419       Type *PTy = cast<FunctionType>(FTy)->getParamType(i);
3420       Type *PtrEltTy = PTy->getPointerElementType();
3421       Attribute NewAttr;
3422       switch (Kind) {
3423       case Attribute::ByVal:
3424         NewAttr = Attribute::getWithByValType(Context, PtrEltTy);
3425         break;
3426       case Attribute::StructRet:
3427         NewAttr = Attribute::getWithStructRetType(Context, PtrEltTy);
3428         break;
3429       case Attribute::InAlloca:
3430         NewAttr = Attribute::getWithInAllocaType(Context, PtrEltTy);
3431         break;
3432       default:
3433         llvm_unreachable("not an upgraded type attribute");
3434       }
3435 
3436       Func->addParamAttr(i, NewAttr);
3437     }
3438   }
3439 
3440   MaybeAlign Alignment;
3441   if (Error Err = parseAlignmentValue(Record[5], Alignment))
3442     return Err;
3443   Func->setAlignment(Alignment);
3444   if (Record[6]) {
3445     if (Record[6] - 1 >= SectionTable.size())
3446       return error("Invalid ID");
3447     Func->setSection(SectionTable[Record[6] - 1]);
3448   }
3449   // Local linkage must have default visibility.
3450   // auto-upgrade `hidden` and `protected` for old bitcode.
3451   if (!Func->hasLocalLinkage())
3452     Func->setVisibility(getDecodedVisibility(Record[7]));
3453   if (Record.size() > 8 && Record[8]) {
3454     if (Record[8] - 1 >= GCTable.size())
3455       return error("Invalid ID");
3456     Func->setGC(GCTable[Record[8] - 1]);
3457   }
3458   GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
3459   if (Record.size() > 9)
3460     UnnamedAddr = getDecodedUnnamedAddrType(Record[9]);
3461   Func->setUnnamedAddr(UnnamedAddr);
3462 
3463   FunctionOperandInfo OperandInfo = {Func, 0, 0, 0};
3464   if (Record.size() > 10)
3465     OperandInfo.Prologue = Record[10];
3466 
3467   if (Record.size() > 11)
3468     Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11]));
3469   else
3470     upgradeDLLImportExportLinkage(Func, RawLinkage);
3471 
3472   if (Record.size() > 12) {
3473     if (unsigned ComdatID = Record[12]) {
3474       if (ComdatID > ComdatList.size())
3475         return error("Invalid function comdat ID");
3476       Func->setComdat(ComdatList[ComdatID - 1]);
3477     }
3478   } else if (hasImplicitComdat(RawLinkage)) {
3479     ImplicitComdatObjects.insert(Func);
3480   }
3481 
3482   if (Record.size() > 13)
3483     OperandInfo.Prefix = Record[13];
3484 
3485   if (Record.size() > 14)
3486     OperandInfo.PersonalityFn = Record[14];
3487 
3488   if (Record.size() > 15) {
3489     Func->setDSOLocal(getDecodedDSOLocal(Record[15]));
3490   }
3491   inferDSOLocal(Func);
3492 
3493   // Record[16] is the address space number.
3494 
3495   // Check whether we have enough values to read a partition name. Also make
3496   // sure Strtab has enough values.
3497   if (Record.size() > 18 && Strtab.data() &&
3498       Record[17] + Record[18] <= Strtab.size()) {
3499     Func->setPartition(StringRef(Strtab.data() + Record[17], Record[18]));
3500   }
3501 
3502   ValueList.push_back(Func);
3503 
3504   if (OperandInfo.PersonalityFn || OperandInfo.Prefix || OperandInfo.Prologue)
3505     FunctionOperands.push_back(OperandInfo);
3506 
3507   // If this is a function with a body, remember the prototype we are
3508   // creating now, so that we can match up the body with them later.
3509   if (!isProto) {
3510     Func->setIsMaterializable(true);
3511     FunctionsWithBodies.push_back(Func);
3512     DeferredFunctionInfo[Func] = 0;
3513   }
3514   return Error::success();
3515 }
3516 
3517 Error BitcodeReader::parseGlobalIndirectSymbolRecord(
3518     unsigned BitCode, ArrayRef<uint64_t> Record) {
3519   // v1 ALIAS_OLD: [alias type, aliasee val#, linkage] (name in VST)
3520   // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility,
3521   // dllstorageclass, threadlocal, unnamed_addr,
3522   // preemption specifier] (name in VST)
3523   // v1 IFUNC: [alias type, addrspace, aliasee val#, linkage,
3524   // visibility, dllstorageclass, threadlocal, unnamed_addr,
3525   // preemption specifier] (name in VST)
3526   // v2: [strtab_offset, strtab_size, v1]
3527   StringRef Name;
3528   std::tie(Name, Record) = readNameFromStrtab(Record);
3529 
3530   bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD;
3531   if (Record.size() < (3 + (unsigned)NewRecord))
3532     return error("Invalid record");
3533   unsigned OpNum = 0;
3534   Type *Ty = getTypeByID(Record[OpNum++]);
3535   if (!Ty)
3536     return error("Invalid record");
3537 
3538   unsigned AddrSpace;
3539   if (!NewRecord) {
3540     auto *PTy = dyn_cast<PointerType>(Ty);
3541     if (!PTy)
3542       return error("Invalid type for value");
3543     Ty = PTy->getPointerElementType();
3544     AddrSpace = PTy->getAddressSpace();
3545   } else {
3546     AddrSpace = Record[OpNum++];
3547   }
3548 
3549   auto Val = Record[OpNum++];
3550   auto Linkage = Record[OpNum++];
3551   GlobalValue *NewGA;
3552   if (BitCode == bitc::MODULE_CODE_ALIAS ||
3553       BitCode == bitc::MODULE_CODE_ALIAS_OLD)
3554     NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name,
3555                                 TheModule);
3556   else
3557     NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name,
3558                                 nullptr, TheModule);
3559 
3560   // Local linkage must have default visibility.
3561   // auto-upgrade `hidden` and `protected` for old bitcode.
3562   if (OpNum != Record.size()) {
3563     auto VisInd = OpNum++;
3564     if (!NewGA->hasLocalLinkage())
3565       NewGA->setVisibility(getDecodedVisibility(Record[VisInd]));
3566   }
3567   if (BitCode == bitc::MODULE_CODE_ALIAS ||
3568       BitCode == bitc::MODULE_CODE_ALIAS_OLD) {
3569     if (OpNum != Record.size())
3570       NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++]));
3571     else
3572       upgradeDLLImportExportLinkage(NewGA, Linkage);
3573     if (OpNum != Record.size())
3574       NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++]));
3575     if (OpNum != Record.size())
3576       NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++]));
3577   }
3578   if (OpNum != Record.size())
3579     NewGA->setDSOLocal(getDecodedDSOLocal(Record[OpNum++]));
3580   inferDSOLocal(NewGA);
3581 
3582   // Check whether we have enough values to read a partition name.
3583   if (OpNum + 1 < Record.size()) {
3584     NewGA->setPartition(
3585         StringRef(Strtab.data() + Record[OpNum], Record[OpNum + 1]));
3586     OpNum += 2;
3587   }
3588 
3589   ValueList.push_back(NewGA);
3590   IndirectSymbolInits.push_back(std::make_pair(NewGA, Val));
3591   return Error::success();
3592 }
3593 
3594 Error BitcodeReader::parseModule(uint64_t ResumeBit,
3595                                  bool ShouldLazyLoadMetadata,
3596                                  DataLayoutCallbackTy DataLayoutCallback) {
3597   if (ResumeBit) {
3598     if (Error JumpFailed = Stream.JumpToBit(ResumeBit))
3599       return JumpFailed;
3600   } else if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
3601     return Err;
3602 
3603   SmallVector<uint64_t, 64> Record;
3604 
3605   // Parts of bitcode parsing depend on the datalayout.  Make sure we
3606   // finalize the datalayout before we run any of that code.
3607   bool ResolvedDataLayout = false;
3608   auto ResolveDataLayout = [&] {
3609     if (ResolvedDataLayout)
3610       return;
3611 
3612     // datalayout and triple can't be parsed after this point.
3613     ResolvedDataLayout = true;
3614 
3615     // Upgrade data layout string.
3616     std::string DL = llvm::UpgradeDataLayoutString(
3617         TheModule->getDataLayoutStr(), TheModule->getTargetTriple());
3618     TheModule->setDataLayout(DL);
3619 
3620     if (auto LayoutOverride =
3621             DataLayoutCallback(TheModule->getTargetTriple()))
3622       TheModule->setDataLayout(*LayoutOverride);
3623   };
3624 
3625   // Read all the records for this module.
3626   while (true) {
3627     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
3628     if (!MaybeEntry)
3629       return MaybeEntry.takeError();
3630     llvm::BitstreamEntry Entry = MaybeEntry.get();
3631 
3632     switch (Entry.Kind) {
3633     case BitstreamEntry::Error:
3634       return error("Malformed block");
3635     case BitstreamEntry::EndBlock:
3636       ResolveDataLayout();
3637       return globalCleanup();
3638 
3639     case BitstreamEntry::SubBlock:
3640       switch (Entry.ID) {
3641       default:  // Skip unknown content.
3642         if (Error Err = Stream.SkipBlock())
3643           return Err;
3644         break;
3645       case bitc::BLOCKINFO_BLOCK_ID:
3646         if (Error Err = readBlockInfo())
3647           return Err;
3648         break;
3649       case bitc::PARAMATTR_BLOCK_ID:
3650         if (Error Err = parseAttributeBlock())
3651           return Err;
3652         break;
3653       case bitc::PARAMATTR_GROUP_BLOCK_ID:
3654         if (Error Err = parseAttributeGroupBlock())
3655           return Err;
3656         break;
3657       case bitc::TYPE_BLOCK_ID_NEW:
3658         if (Error Err = parseTypeTable())
3659           return Err;
3660         break;
3661       case bitc::VALUE_SYMTAB_BLOCK_ID:
3662         if (!SeenValueSymbolTable) {
3663           // Either this is an old form VST without function index and an
3664           // associated VST forward declaration record (which would have caused
3665           // the VST to be jumped to and parsed before it was encountered
3666           // normally in the stream), or there were no function blocks to
3667           // trigger an earlier parsing of the VST.
3668           assert(VSTOffset == 0 || FunctionsWithBodies.empty());
3669           if (Error Err = parseValueSymbolTable())
3670             return Err;
3671           SeenValueSymbolTable = true;
3672         } else {
3673           // We must have had a VST forward declaration record, which caused
3674           // the parser to jump to and parse the VST earlier.
3675           assert(VSTOffset > 0);
3676           if (Error Err = Stream.SkipBlock())
3677             return Err;
3678         }
3679         break;
3680       case bitc::CONSTANTS_BLOCK_ID:
3681         if (Error Err = parseConstants())
3682           return Err;
3683         if (Error Err = resolveGlobalAndIndirectSymbolInits())
3684           return Err;
3685         break;
3686       case bitc::METADATA_BLOCK_ID:
3687         if (ShouldLazyLoadMetadata) {
3688           if (Error Err = rememberAndSkipMetadata())
3689             return Err;
3690           break;
3691         }
3692         assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata");
3693         if (Error Err = MDLoader->parseModuleMetadata())
3694           return Err;
3695         break;
3696       case bitc::METADATA_KIND_BLOCK_ID:
3697         if (Error Err = MDLoader->parseMetadataKinds())
3698           return Err;
3699         break;
3700       case bitc::FUNCTION_BLOCK_ID:
3701         ResolveDataLayout();
3702 
3703         // If this is the first function body we've seen, reverse the
3704         // FunctionsWithBodies list.
3705         if (!SeenFirstFunctionBody) {
3706           std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end());
3707           if (Error Err = globalCleanup())
3708             return Err;
3709           SeenFirstFunctionBody = true;
3710         }
3711 
3712         if (VSTOffset > 0) {
3713           // If we have a VST forward declaration record, make sure we
3714           // parse the VST now if we haven't already. It is needed to
3715           // set up the DeferredFunctionInfo vector for lazy reading.
3716           if (!SeenValueSymbolTable) {
3717             if (Error Err = BitcodeReader::parseValueSymbolTable(VSTOffset))
3718               return Err;
3719             SeenValueSymbolTable = true;
3720             // Fall through so that we record the NextUnreadBit below.
3721             // This is necessary in case we have an anonymous function that
3722             // is later materialized. Since it will not have a VST entry we
3723             // need to fall back to the lazy parse to find its offset.
3724           } else {
3725             // If we have a VST forward declaration record, but have already
3726             // parsed the VST (just above, when the first function body was
3727             // encountered here), then we are resuming the parse after
3728             // materializing functions. The ResumeBit points to the
3729             // start of the last function block recorded in the
3730             // DeferredFunctionInfo map. Skip it.
3731             if (Error Err = Stream.SkipBlock())
3732               return Err;
3733             continue;
3734           }
3735         }
3736 
3737         // Support older bitcode files that did not have the function
3738         // index in the VST, nor a VST forward declaration record, as
3739         // well as anonymous functions that do not have VST entries.
3740         // Build the DeferredFunctionInfo vector on the fly.
3741         if (Error Err = rememberAndSkipFunctionBody())
3742           return Err;
3743 
3744         // Suspend parsing when we reach the function bodies. Subsequent
3745         // materialization calls will resume it when necessary. If the bitcode
3746         // file is old, the symbol table will be at the end instead and will not
3747         // have been seen yet. In this case, just finish the parse now.
3748         if (SeenValueSymbolTable) {
3749           NextUnreadBit = Stream.GetCurrentBitNo();
3750           // After the VST has been parsed, we need to make sure intrinsic name
3751           // are auto-upgraded.
3752           return globalCleanup();
3753         }
3754         break;
3755       case bitc::USELIST_BLOCK_ID:
3756         if (Error Err = parseUseLists())
3757           return Err;
3758         break;
3759       case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID:
3760         if (Error Err = parseOperandBundleTags())
3761           return Err;
3762         break;
3763       case bitc::SYNC_SCOPE_NAMES_BLOCK_ID:
3764         if (Error Err = parseSyncScopeNames())
3765           return Err;
3766         break;
3767       }
3768       continue;
3769 
3770     case BitstreamEntry::Record:
3771       // The interesting case.
3772       break;
3773     }
3774 
3775     // Read a record.
3776     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
3777     if (!MaybeBitCode)
3778       return MaybeBitCode.takeError();
3779     switch (unsigned BitCode = MaybeBitCode.get()) {
3780     default: break;  // Default behavior, ignore unknown content.
3781     case bitc::MODULE_CODE_VERSION: {
3782       Expected<unsigned> VersionOrErr = parseVersionRecord(Record);
3783       if (!VersionOrErr)
3784         return VersionOrErr.takeError();
3785       UseRelativeIDs = *VersionOrErr >= 1;
3786       break;
3787     }
3788     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
3789       if (ResolvedDataLayout)
3790         return error("target triple too late in module");
3791       std::string S;
3792       if (convertToString(Record, 0, S))
3793         return error("Invalid record");
3794       TheModule->setTargetTriple(S);
3795       break;
3796     }
3797     case bitc::MODULE_CODE_DATALAYOUT: {  // DATALAYOUT: [strchr x N]
3798       if (ResolvedDataLayout)
3799         return error("datalayout too late in module");
3800       std::string S;
3801       if (convertToString(Record, 0, S))
3802         return error("Invalid record");
3803       Expected<DataLayout> MaybeDL = DataLayout::parse(S);
3804       if (!MaybeDL)
3805         return MaybeDL.takeError();
3806       TheModule->setDataLayout(MaybeDL.get());
3807       break;
3808     }
3809     case bitc::MODULE_CODE_ASM: {  // ASM: [strchr x N]
3810       std::string S;
3811       if (convertToString(Record, 0, S))
3812         return error("Invalid record");
3813       TheModule->setModuleInlineAsm(S);
3814       break;
3815     }
3816     case bitc::MODULE_CODE_DEPLIB: {  // DEPLIB: [strchr x N]
3817       // Deprecated, but still needed to read old bitcode files.
3818       std::string S;
3819       if (convertToString(Record, 0, S))
3820         return error("Invalid record");
3821       // Ignore value.
3822       break;
3823     }
3824     case bitc::MODULE_CODE_SECTIONNAME: {  // SECTIONNAME: [strchr x N]
3825       std::string S;
3826       if (convertToString(Record, 0, S))
3827         return error("Invalid record");
3828       SectionTable.push_back(S);
3829       break;
3830     }
3831     case bitc::MODULE_CODE_GCNAME: {  // SECTIONNAME: [strchr x N]
3832       std::string S;
3833       if (convertToString(Record, 0, S))
3834         return error("Invalid record");
3835       GCTable.push_back(S);
3836       break;
3837     }
3838     case bitc::MODULE_CODE_COMDAT:
3839       if (Error Err = parseComdatRecord(Record))
3840         return Err;
3841       break;
3842     // FIXME: BitcodeReader should handle {GLOBALVAR, FUNCTION, ALIAS, IFUNC}
3843     // written by ThinLinkBitcodeWriter. See
3844     // `ThinLinkBitcodeWriter::writeSimplifiedModuleInfo` for the format of each
3845     // record
3846     // (https://github.com/llvm/llvm-project/blob/b6a93967d9c11e79802b5e75cec1584d6c8aa472/llvm/lib/Bitcode/Writer/BitcodeWriter.cpp#L4714)
3847     case bitc::MODULE_CODE_GLOBALVAR:
3848       if (Error Err = parseGlobalVarRecord(Record))
3849         return Err;
3850       break;
3851     case bitc::MODULE_CODE_FUNCTION:
3852       ResolveDataLayout();
3853       if (Error Err = parseFunctionRecord(Record))
3854         return Err;
3855       break;
3856     case bitc::MODULE_CODE_IFUNC:
3857     case bitc::MODULE_CODE_ALIAS:
3858     case bitc::MODULE_CODE_ALIAS_OLD:
3859       if (Error Err = parseGlobalIndirectSymbolRecord(BitCode, Record))
3860         return Err;
3861       break;
3862     /// MODULE_CODE_VSTOFFSET: [offset]
3863     case bitc::MODULE_CODE_VSTOFFSET:
3864       if (Record.empty())
3865         return error("Invalid record");
3866       // Note that we subtract 1 here because the offset is relative to one word
3867       // before the start of the identification or module block, which was
3868       // historically always the start of the regular bitcode header.
3869       VSTOffset = Record[0] - 1;
3870       break;
3871     /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
3872     case bitc::MODULE_CODE_SOURCE_FILENAME:
3873       SmallString<128> ValueName;
3874       if (convertToString(Record, 0, ValueName))
3875         return error("Invalid record");
3876       TheModule->setSourceFileName(ValueName);
3877       break;
3878     }
3879     Record.clear();
3880   }
3881 }
3882 
3883 Error BitcodeReader::parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata,
3884                                       bool IsImporting,
3885                                       DataLayoutCallbackTy DataLayoutCallback) {
3886   TheModule = M;
3887   MDLoader = MetadataLoader(Stream, *M, ValueList, IsImporting,
3888                             [&](unsigned ID) { return getTypeByID(ID); });
3889   return parseModule(0, ShouldLazyLoadMetadata, DataLayoutCallback);
3890 }
3891 
3892 Error BitcodeReader::typeCheckLoadStoreInst(Type *ValType, Type *PtrType) {
3893   if (!isa<PointerType>(PtrType))
3894     return error("Load/Store operand is not a pointer type");
3895 
3896   if (!cast<PointerType>(PtrType)->isOpaqueOrPointeeTypeMatches(ValType))
3897     return error("Explicit load/store type does not match pointee "
3898                  "type of pointer operand");
3899   if (!PointerType::isLoadableOrStorableType(ValType))
3900     return error("Cannot load/store from pointer");
3901   return Error::success();
3902 }
3903 
3904 void BitcodeReader::propagateAttributeTypes(CallBase *CB,
3905                                             ArrayRef<Type *> ArgsTys) {
3906   for (unsigned i = 0; i != CB->arg_size(); ++i) {
3907     for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet,
3908                                      Attribute::InAlloca}) {
3909       if (!CB->paramHasAttr(i, Kind) ||
3910           CB->getParamAttr(i, Kind).getValueAsType())
3911         continue;
3912 
3913       CB->removeParamAttr(i, Kind);
3914 
3915       Type *PtrEltTy = ArgsTys[i]->getPointerElementType();
3916       Attribute NewAttr;
3917       switch (Kind) {
3918       case Attribute::ByVal:
3919         NewAttr = Attribute::getWithByValType(Context, PtrEltTy);
3920         break;
3921       case Attribute::StructRet:
3922         NewAttr = Attribute::getWithStructRetType(Context, PtrEltTy);
3923         break;
3924       case Attribute::InAlloca:
3925         NewAttr = Attribute::getWithInAllocaType(Context, PtrEltTy);
3926         break;
3927       default:
3928         llvm_unreachable("not an upgraded type attribute");
3929       }
3930 
3931       CB->addParamAttr(i, NewAttr);
3932     }
3933   }
3934 
3935   if (CB->isInlineAsm()) {
3936     const InlineAsm *IA = cast<InlineAsm>(CB->getCalledOperand());
3937     unsigned ArgNo = 0;
3938     for (const InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) {
3939       if (!CI.hasArg())
3940         continue;
3941 
3942       if (CI.isIndirect && !CB->getAttributes().getParamElementType(ArgNo)) {
3943         Type *ElemTy = ArgsTys[ArgNo]->getPointerElementType();
3944         CB->addParamAttr(
3945             ArgNo, Attribute::get(Context, Attribute::ElementType, ElemTy));
3946       }
3947 
3948       ArgNo++;
3949     }
3950   }
3951 
3952   switch (CB->getIntrinsicID()) {
3953   case Intrinsic::preserve_array_access_index:
3954   case Intrinsic::preserve_struct_access_index:
3955     if (!CB->getAttributes().getParamElementType(0)) {
3956       Type *ElTy = ArgsTys[0]->getPointerElementType();
3957       Attribute NewAttr = Attribute::get(Context, Attribute::ElementType, ElTy);
3958       CB->addParamAttr(0, NewAttr);
3959     }
3960     break;
3961   default:
3962     break;
3963   }
3964 }
3965 
3966 /// Lazily parse the specified function body block.
3967 Error BitcodeReader::parseFunctionBody(Function *F) {
3968   if (Error Err = Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID))
3969     return Err;
3970 
3971   // Unexpected unresolved metadata when parsing function.
3972   if (MDLoader->hasFwdRefs())
3973     return error("Invalid function metadata: incoming forward references");
3974 
3975   InstructionList.clear();
3976   unsigned ModuleValueListSize = ValueList.size();
3977   unsigned ModuleMDLoaderSize = MDLoader->size();
3978 
3979   // Add all the function arguments to the value table.
3980 #ifndef NDEBUG
3981   unsigned ArgNo = 0;
3982   FunctionType *FTy = FunctionTypes[F];
3983 #endif
3984   for (Argument &I : F->args()) {
3985     assert(I.getType() == FTy->getParamType(ArgNo++) &&
3986            "Incorrect fully specified type for Function Argument");
3987     ValueList.push_back(&I);
3988   }
3989   unsigned NextValueNo = ValueList.size();
3990   BasicBlock *CurBB = nullptr;
3991   unsigned CurBBNo = 0;
3992 
3993   DebugLoc LastLoc;
3994   auto getLastInstruction = [&]() -> Instruction * {
3995     if (CurBB && !CurBB->empty())
3996       return &CurBB->back();
3997     else if (CurBBNo && FunctionBBs[CurBBNo - 1] &&
3998              !FunctionBBs[CurBBNo - 1]->empty())
3999       return &FunctionBBs[CurBBNo - 1]->back();
4000     return nullptr;
4001   };
4002 
4003   std::vector<OperandBundleDef> OperandBundles;
4004 
4005   // Read all the records.
4006   SmallVector<uint64_t, 64> Record;
4007 
4008   while (true) {
4009     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
4010     if (!MaybeEntry)
4011       return MaybeEntry.takeError();
4012     llvm::BitstreamEntry Entry = MaybeEntry.get();
4013 
4014     switch (Entry.Kind) {
4015     case BitstreamEntry::Error:
4016       return error("Malformed block");
4017     case BitstreamEntry::EndBlock:
4018       goto OutOfRecordLoop;
4019 
4020     case BitstreamEntry::SubBlock:
4021       switch (Entry.ID) {
4022       default:  // Skip unknown content.
4023         if (Error Err = Stream.SkipBlock())
4024           return Err;
4025         break;
4026       case bitc::CONSTANTS_BLOCK_ID:
4027         if (Error Err = parseConstants())
4028           return Err;
4029         NextValueNo = ValueList.size();
4030         break;
4031       case bitc::VALUE_SYMTAB_BLOCK_ID:
4032         if (Error Err = parseValueSymbolTable())
4033           return Err;
4034         break;
4035       case bitc::METADATA_ATTACHMENT_ID:
4036         if (Error Err = MDLoader->parseMetadataAttachment(*F, InstructionList))
4037           return Err;
4038         break;
4039       case bitc::METADATA_BLOCK_ID:
4040         assert(DeferredMetadataInfo.empty() &&
4041                "Must read all module-level metadata before function-level");
4042         if (Error Err = MDLoader->parseFunctionMetadata())
4043           return Err;
4044         break;
4045       case bitc::USELIST_BLOCK_ID:
4046         if (Error Err = parseUseLists())
4047           return Err;
4048         break;
4049       }
4050       continue;
4051 
4052     case BitstreamEntry::Record:
4053       // The interesting case.
4054       break;
4055     }
4056 
4057     // Read a record.
4058     Record.clear();
4059     Instruction *I = nullptr;
4060     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
4061     if (!MaybeBitCode)
4062       return MaybeBitCode.takeError();
4063     switch (unsigned BitCode = MaybeBitCode.get()) {
4064     default: // Default behavior: reject
4065       return error("Invalid value");
4066     case bitc::FUNC_CODE_DECLAREBLOCKS: {   // DECLAREBLOCKS: [nblocks]
4067       if (Record.empty() || Record[0] == 0)
4068         return error("Invalid record");
4069       // Create all the basic blocks for the function.
4070       FunctionBBs.resize(Record[0]);
4071 
4072       // See if anything took the address of blocks in this function.
4073       auto BBFRI = BasicBlockFwdRefs.find(F);
4074       if (BBFRI == BasicBlockFwdRefs.end()) {
4075         for (BasicBlock *&BB : FunctionBBs)
4076           BB = BasicBlock::Create(Context, "", F);
4077       } else {
4078         auto &BBRefs = BBFRI->second;
4079         // Check for invalid basic block references.
4080         if (BBRefs.size() > FunctionBBs.size())
4081           return error("Invalid ID");
4082         assert(!BBRefs.empty() && "Unexpected empty array");
4083         assert(!BBRefs.front() && "Invalid reference to entry block");
4084         for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E;
4085              ++I)
4086           if (I < RE && BBRefs[I]) {
4087             BBRefs[I]->insertInto(F);
4088             FunctionBBs[I] = BBRefs[I];
4089           } else {
4090             FunctionBBs[I] = BasicBlock::Create(Context, "", F);
4091           }
4092 
4093         // Erase from the table.
4094         BasicBlockFwdRefs.erase(BBFRI);
4095       }
4096 
4097       CurBB = FunctionBBs[0];
4098       continue;
4099     }
4100 
4101     case bitc::FUNC_CODE_DEBUG_LOC_AGAIN:  // DEBUG_LOC_AGAIN
4102       // This record indicates that the last instruction is at the same
4103       // location as the previous instruction with a location.
4104       I = getLastInstruction();
4105 
4106       if (!I)
4107         return error("Invalid record");
4108       I->setDebugLoc(LastLoc);
4109       I = nullptr;
4110       continue;
4111 
4112     case bitc::FUNC_CODE_DEBUG_LOC: {      // DEBUG_LOC: [line, col, scope, ia]
4113       I = getLastInstruction();
4114       if (!I || Record.size() < 4)
4115         return error("Invalid record");
4116 
4117       unsigned Line = Record[0], Col = Record[1];
4118       unsigned ScopeID = Record[2], IAID = Record[3];
4119       bool isImplicitCode = Record.size() == 5 && Record[4];
4120 
4121       MDNode *Scope = nullptr, *IA = nullptr;
4122       if (ScopeID) {
4123         Scope = dyn_cast_or_null<MDNode>(
4124             MDLoader->getMetadataFwdRefOrLoad(ScopeID - 1));
4125         if (!Scope)
4126           return error("Invalid record");
4127       }
4128       if (IAID) {
4129         IA = dyn_cast_or_null<MDNode>(
4130             MDLoader->getMetadataFwdRefOrLoad(IAID - 1));
4131         if (!IA)
4132           return error("Invalid record");
4133       }
4134       LastLoc = DILocation::get(Scope->getContext(), Line, Col, Scope, IA,
4135                                 isImplicitCode);
4136       I->setDebugLoc(LastLoc);
4137       I = nullptr;
4138       continue;
4139     }
4140     case bitc::FUNC_CODE_INST_UNOP: {    // UNOP: [opval, ty, opcode]
4141       unsigned OpNum = 0;
4142       Value *LHS;
4143       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
4144           OpNum+1 > Record.size())
4145         return error("Invalid record");
4146 
4147       int Opc = getDecodedUnaryOpcode(Record[OpNum++], LHS->getType());
4148       if (Opc == -1)
4149         return error("Invalid record");
4150       I = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS);
4151       InstructionList.push_back(I);
4152       if (OpNum < Record.size()) {
4153         if (isa<FPMathOperator>(I)) {
4154           FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
4155           if (FMF.any())
4156             I->setFastMathFlags(FMF);
4157         }
4158       }
4159       break;
4160     }
4161     case bitc::FUNC_CODE_INST_BINOP: {    // BINOP: [opval, ty, opval, opcode]
4162       unsigned OpNum = 0;
4163       Value *LHS, *RHS;
4164       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
4165           popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) ||
4166           OpNum+1 > Record.size())
4167         return error("Invalid record");
4168 
4169       int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType());
4170       if (Opc == -1)
4171         return error("Invalid record");
4172       I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
4173       InstructionList.push_back(I);
4174       if (OpNum < Record.size()) {
4175         if (Opc == Instruction::Add ||
4176             Opc == Instruction::Sub ||
4177             Opc == Instruction::Mul ||
4178             Opc == Instruction::Shl) {
4179           if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP))
4180             cast<BinaryOperator>(I)->setHasNoSignedWrap(true);
4181           if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
4182             cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true);
4183         } else if (Opc == Instruction::SDiv ||
4184                    Opc == Instruction::UDiv ||
4185                    Opc == Instruction::LShr ||
4186                    Opc == Instruction::AShr) {
4187           if (Record[OpNum] & (1 << bitc::PEO_EXACT))
4188             cast<BinaryOperator>(I)->setIsExact(true);
4189         } else if (isa<FPMathOperator>(I)) {
4190           FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
4191           if (FMF.any())
4192             I->setFastMathFlags(FMF);
4193         }
4194 
4195       }
4196       break;
4197     }
4198     case bitc::FUNC_CODE_INST_CAST: {    // CAST: [opval, opty, destty, castopc]
4199       unsigned OpNum = 0;
4200       Value *Op;
4201       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
4202           OpNum+2 != Record.size())
4203         return error("Invalid record");
4204 
4205       Type *ResTy = getTypeByID(Record[OpNum]);
4206       int Opc = getDecodedCastOpcode(Record[OpNum + 1]);
4207       if (Opc == -1 || !ResTy)
4208         return error("Invalid record");
4209       Instruction *Temp = nullptr;
4210       if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) {
4211         if (Temp) {
4212           InstructionList.push_back(Temp);
4213           assert(CurBB && "No current BB?");
4214           CurBB->getInstList().push_back(Temp);
4215         }
4216       } else {
4217         auto CastOp = (Instruction::CastOps)Opc;
4218         if (!CastInst::castIsValid(CastOp, Op, ResTy))
4219           return error("Invalid cast");
4220         I = CastInst::Create(CastOp, Op, ResTy);
4221       }
4222       InstructionList.push_back(I);
4223       break;
4224     }
4225     case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD:
4226     case bitc::FUNC_CODE_INST_GEP_OLD:
4227     case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands]
4228       unsigned OpNum = 0;
4229 
4230       Type *Ty;
4231       bool InBounds;
4232 
4233       if (BitCode == bitc::FUNC_CODE_INST_GEP) {
4234         InBounds = Record[OpNum++];
4235         Ty = getTypeByID(Record[OpNum++]);
4236       } else {
4237         InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD;
4238         Ty = nullptr;
4239       }
4240 
4241       Value *BasePtr;
4242       if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr))
4243         return error("Invalid record");
4244 
4245       if (!Ty) {
4246         Ty = BasePtr->getType()->getScalarType()->getPointerElementType();
4247       } else if (!cast<PointerType>(BasePtr->getType()->getScalarType())
4248                       ->isOpaqueOrPointeeTypeMatches(Ty)) {
4249         return error(
4250             "Explicit gep type does not match pointee type of pointer operand");
4251       }
4252 
4253       SmallVector<Value*, 16> GEPIdx;
4254       while (OpNum != Record.size()) {
4255         Value *Op;
4256         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4257           return error("Invalid record");
4258         GEPIdx.push_back(Op);
4259       }
4260 
4261       I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx);
4262 
4263       InstructionList.push_back(I);
4264       if (InBounds)
4265         cast<GetElementPtrInst>(I)->setIsInBounds(true);
4266       break;
4267     }
4268 
4269     case bitc::FUNC_CODE_INST_EXTRACTVAL: {
4270                                        // EXTRACTVAL: [opty, opval, n x indices]
4271       unsigned OpNum = 0;
4272       Value *Agg;
4273       if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
4274         return error("Invalid record");
4275       Type *Ty = Agg->getType();
4276 
4277       unsigned RecSize = Record.size();
4278       if (OpNum == RecSize)
4279         return error("EXTRACTVAL: Invalid instruction with 0 indices");
4280 
4281       SmallVector<unsigned, 4> EXTRACTVALIdx;
4282       for (; OpNum != RecSize; ++OpNum) {
4283         bool IsArray = Ty->isArrayTy();
4284         bool IsStruct = Ty->isStructTy();
4285         uint64_t Index = Record[OpNum];
4286 
4287         if (!IsStruct && !IsArray)
4288           return error("EXTRACTVAL: Invalid type");
4289         if ((unsigned)Index != Index)
4290           return error("Invalid value");
4291         if (IsStruct && Index >= Ty->getStructNumElements())
4292           return error("EXTRACTVAL: Invalid struct index");
4293         if (IsArray && Index >= Ty->getArrayNumElements())
4294           return error("EXTRACTVAL: Invalid array index");
4295         EXTRACTVALIdx.push_back((unsigned)Index);
4296 
4297         if (IsStruct)
4298           Ty = Ty->getStructElementType(Index);
4299         else
4300           Ty = Ty->getArrayElementType();
4301       }
4302 
4303       I = ExtractValueInst::Create(Agg, EXTRACTVALIdx);
4304       InstructionList.push_back(I);
4305       break;
4306     }
4307 
4308     case bitc::FUNC_CODE_INST_INSERTVAL: {
4309                            // INSERTVAL: [opty, opval, opty, opval, n x indices]
4310       unsigned OpNum = 0;
4311       Value *Agg;
4312       if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
4313         return error("Invalid record");
4314       Value *Val;
4315       if (getValueTypePair(Record, OpNum, NextValueNo, Val))
4316         return error("Invalid record");
4317 
4318       unsigned RecSize = Record.size();
4319       if (OpNum == RecSize)
4320         return error("INSERTVAL: Invalid instruction with 0 indices");
4321 
4322       SmallVector<unsigned, 4> INSERTVALIdx;
4323       Type *CurTy = Agg->getType();
4324       for (; OpNum != RecSize; ++OpNum) {
4325         bool IsArray = CurTy->isArrayTy();
4326         bool IsStruct = CurTy->isStructTy();
4327         uint64_t Index = Record[OpNum];
4328 
4329         if (!IsStruct && !IsArray)
4330           return error("INSERTVAL: Invalid type");
4331         if ((unsigned)Index != Index)
4332           return error("Invalid value");
4333         if (IsStruct && Index >= CurTy->getStructNumElements())
4334           return error("INSERTVAL: Invalid struct index");
4335         if (IsArray && Index >= CurTy->getArrayNumElements())
4336           return error("INSERTVAL: Invalid array index");
4337 
4338         INSERTVALIdx.push_back((unsigned)Index);
4339         if (IsStruct)
4340           CurTy = CurTy->getStructElementType(Index);
4341         else
4342           CurTy = CurTy->getArrayElementType();
4343       }
4344 
4345       if (CurTy != Val->getType())
4346         return error("Inserted value type doesn't match aggregate type");
4347 
4348       I = InsertValueInst::Create(Agg, Val, INSERTVALIdx);
4349       InstructionList.push_back(I);
4350       break;
4351     }
4352 
4353     case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval]
4354       // obsolete form of select
4355       // handles select i1 ... in old bitcode
4356       unsigned OpNum = 0;
4357       Value *TrueVal, *FalseVal, *Cond;
4358       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
4359           popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) ||
4360           popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond))
4361         return error("Invalid record");
4362 
4363       I = SelectInst::Create(Cond, TrueVal, FalseVal);
4364       InstructionList.push_back(I);
4365       break;
4366     }
4367 
4368     case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred]
4369       // new form of select
4370       // handles select i1 or select [N x i1]
4371       unsigned OpNum = 0;
4372       Value *TrueVal, *FalseVal, *Cond;
4373       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
4374           popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) ||
4375           getValueTypePair(Record, OpNum, NextValueNo, Cond))
4376         return error("Invalid record");
4377 
4378       // select condition can be either i1 or [N x i1]
4379       if (VectorType* vector_type =
4380           dyn_cast<VectorType>(Cond->getType())) {
4381         // expect <n x i1>
4382         if (vector_type->getElementType() != Type::getInt1Ty(Context))
4383           return error("Invalid type for value");
4384       } else {
4385         // expect i1
4386         if (Cond->getType() != Type::getInt1Ty(Context))
4387           return error("Invalid type for value");
4388       }
4389 
4390       I = SelectInst::Create(Cond, TrueVal, FalseVal);
4391       InstructionList.push_back(I);
4392       if (OpNum < Record.size() && isa<FPMathOperator>(I)) {
4393         FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
4394         if (FMF.any())
4395           I->setFastMathFlags(FMF);
4396       }
4397       break;
4398     }
4399 
4400     case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval]
4401       unsigned OpNum = 0;
4402       Value *Vec, *Idx;
4403       if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
4404           getValueTypePair(Record, OpNum, NextValueNo, Idx))
4405         return error("Invalid record");
4406       if (!Vec->getType()->isVectorTy())
4407         return error("Invalid type for value");
4408       I = ExtractElementInst::Create(Vec, Idx);
4409       InstructionList.push_back(I);
4410       break;
4411     }
4412 
4413     case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval]
4414       unsigned OpNum = 0;
4415       Value *Vec, *Elt, *Idx;
4416       if (getValueTypePair(Record, OpNum, NextValueNo, Vec))
4417         return error("Invalid record");
4418       if (!Vec->getType()->isVectorTy())
4419         return error("Invalid type for value");
4420       if (popValue(Record, OpNum, NextValueNo,
4421                    cast<VectorType>(Vec->getType())->getElementType(), Elt) ||
4422           getValueTypePair(Record, OpNum, NextValueNo, Idx))
4423         return error("Invalid record");
4424       I = InsertElementInst::Create(Vec, Elt, Idx);
4425       InstructionList.push_back(I);
4426       break;
4427     }
4428 
4429     case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval]
4430       unsigned OpNum = 0;
4431       Value *Vec1, *Vec2, *Mask;
4432       if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) ||
4433           popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2))
4434         return error("Invalid record");
4435 
4436       if (getValueTypePair(Record, OpNum, NextValueNo, Mask))
4437         return error("Invalid record");
4438       if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy())
4439         return error("Invalid type for value");
4440 
4441       I = new ShuffleVectorInst(Vec1, Vec2, Mask);
4442       InstructionList.push_back(I);
4443       break;
4444     }
4445 
4446     case bitc::FUNC_CODE_INST_CMP:   // CMP: [opty, opval, opval, pred]
4447       // Old form of ICmp/FCmp returning bool
4448       // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were
4449       // both legal on vectors but had different behaviour.
4450     case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred]
4451       // FCmp/ICmp returning bool or vector of bool
4452 
4453       unsigned OpNum = 0;
4454       Value *LHS, *RHS;
4455       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
4456           popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS))
4457         return error("Invalid record");
4458 
4459       if (OpNum >= Record.size())
4460         return error(
4461             "Invalid record: operand number exceeded available operands");
4462 
4463       unsigned PredVal = Record[OpNum];
4464       bool IsFP = LHS->getType()->isFPOrFPVectorTy();
4465       FastMathFlags FMF;
4466       if (IsFP && Record.size() > OpNum+1)
4467         FMF = getDecodedFastMathFlags(Record[++OpNum]);
4468 
4469       if (OpNum+1 != Record.size())
4470         return error("Invalid record");
4471 
4472       if (LHS->getType()->isFPOrFPVectorTy())
4473         I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS);
4474       else
4475         I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS);
4476 
4477       if (FMF.any())
4478         I->setFastMathFlags(FMF);
4479       InstructionList.push_back(I);
4480       break;
4481     }
4482 
4483     case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>]
4484       {
4485         unsigned Size = Record.size();
4486         if (Size == 0) {
4487           I = ReturnInst::Create(Context);
4488           InstructionList.push_back(I);
4489           break;
4490         }
4491 
4492         unsigned OpNum = 0;
4493         Value *Op = nullptr;
4494         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4495           return error("Invalid record");
4496         if (OpNum != Record.size())
4497           return error("Invalid record");
4498 
4499         I = ReturnInst::Create(Context, Op);
4500         InstructionList.push_back(I);
4501         break;
4502       }
4503     case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#]
4504       if (Record.size() != 1 && Record.size() != 3)
4505         return error("Invalid record");
4506       BasicBlock *TrueDest = getBasicBlock(Record[0]);
4507       if (!TrueDest)
4508         return error("Invalid record");
4509 
4510       if (Record.size() == 1) {
4511         I = BranchInst::Create(TrueDest);
4512         InstructionList.push_back(I);
4513       }
4514       else {
4515         BasicBlock *FalseDest = getBasicBlock(Record[1]);
4516         Value *Cond = getValue(Record, 2, NextValueNo,
4517                                Type::getInt1Ty(Context));
4518         if (!FalseDest || !Cond)
4519           return error("Invalid record");
4520         I = BranchInst::Create(TrueDest, FalseDest, Cond);
4521         InstructionList.push_back(I);
4522       }
4523       break;
4524     }
4525     case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#]
4526       if (Record.size() != 1 && Record.size() != 2)
4527         return error("Invalid record");
4528       unsigned Idx = 0;
4529       Value *CleanupPad =
4530           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4531       if (!CleanupPad)
4532         return error("Invalid record");
4533       BasicBlock *UnwindDest = nullptr;
4534       if (Record.size() == 2) {
4535         UnwindDest = getBasicBlock(Record[Idx++]);
4536         if (!UnwindDest)
4537           return error("Invalid record");
4538       }
4539 
4540       I = CleanupReturnInst::Create(CleanupPad, UnwindDest);
4541       InstructionList.push_back(I);
4542       break;
4543     }
4544     case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#]
4545       if (Record.size() != 2)
4546         return error("Invalid record");
4547       unsigned Idx = 0;
4548       Value *CatchPad =
4549           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4550       if (!CatchPad)
4551         return error("Invalid record");
4552       BasicBlock *BB = getBasicBlock(Record[Idx++]);
4553       if (!BB)
4554         return error("Invalid record");
4555 
4556       I = CatchReturnInst::Create(CatchPad, BB);
4557       InstructionList.push_back(I);
4558       break;
4559     }
4560     case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?]
4561       // We must have, at minimum, the outer scope and the number of arguments.
4562       if (Record.size() < 2)
4563         return error("Invalid record");
4564 
4565       unsigned Idx = 0;
4566 
4567       Value *ParentPad =
4568           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4569 
4570       unsigned NumHandlers = Record[Idx++];
4571 
4572       SmallVector<BasicBlock *, 2> Handlers;
4573       for (unsigned Op = 0; Op != NumHandlers; ++Op) {
4574         BasicBlock *BB = getBasicBlock(Record[Idx++]);
4575         if (!BB)
4576           return error("Invalid record");
4577         Handlers.push_back(BB);
4578       }
4579 
4580       BasicBlock *UnwindDest = nullptr;
4581       if (Idx + 1 == Record.size()) {
4582         UnwindDest = getBasicBlock(Record[Idx++]);
4583         if (!UnwindDest)
4584           return error("Invalid record");
4585       }
4586 
4587       if (Record.size() != Idx)
4588         return error("Invalid record");
4589 
4590       auto *CatchSwitch =
4591           CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers);
4592       for (BasicBlock *Handler : Handlers)
4593         CatchSwitch->addHandler(Handler);
4594       I = CatchSwitch;
4595       InstructionList.push_back(I);
4596       break;
4597     }
4598     case bitc::FUNC_CODE_INST_CATCHPAD:
4599     case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*]
4600       // We must have, at minimum, the outer scope and the number of arguments.
4601       if (Record.size() < 2)
4602         return error("Invalid record");
4603 
4604       unsigned Idx = 0;
4605 
4606       Value *ParentPad =
4607           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4608 
4609       unsigned NumArgOperands = Record[Idx++];
4610 
4611       SmallVector<Value *, 2> Args;
4612       for (unsigned Op = 0; Op != NumArgOperands; ++Op) {
4613         Value *Val;
4614         if (getValueTypePair(Record, Idx, NextValueNo, Val))
4615           return error("Invalid record");
4616         Args.push_back(Val);
4617       }
4618 
4619       if (Record.size() != Idx)
4620         return error("Invalid record");
4621 
4622       if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD)
4623         I = CleanupPadInst::Create(ParentPad, Args);
4624       else
4625         I = CatchPadInst::Create(ParentPad, Args);
4626       InstructionList.push_back(I);
4627       break;
4628     }
4629     case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...]
4630       // Check magic
4631       if ((Record[0] >> 16) == SWITCH_INST_MAGIC) {
4632         // "New" SwitchInst format with case ranges. The changes to write this
4633         // format were reverted but we still recognize bitcode that uses it.
4634         // Hopefully someday we will have support for case ranges and can use
4635         // this format again.
4636 
4637         Type *OpTy = getTypeByID(Record[1]);
4638         unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth();
4639 
4640         Value *Cond = getValue(Record, 2, NextValueNo, OpTy);
4641         BasicBlock *Default = getBasicBlock(Record[3]);
4642         if (!OpTy || !Cond || !Default)
4643           return error("Invalid record");
4644 
4645         unsigned NumCases = Record[4];
4646 
4647         SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
4648         InstructionList.push_back(SI);
4649 
4650         unsigned CurIdx = 5;
4651         for (unsigned i = 0; i != NumCases; ++i) {
4652           SmallVector<ConstantInt*, 1> CaseVals;
4653           unsigned NumItems = Record[CurIdx++];
4654           for (unsigned ci = 0; ci != NumItems; ++ci) {
4655             bool isSingleNumber = Record[CurIdx++];
4656 
4657             APInt Low;
4658             unsigned ActiveWords = 1;
4659             if (ValueBitWidth > 64)
4660               ActiveWords = Record[CurIdx++];
4661             Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords),
4662                                 ValueBitWidth);
4663             CurIdx += ActiveWords;
4664 
4665             if (!isSingleNumber) {
4666               ActiveWords = 1;
4667               if (ValueBitWidth > 64)
4668                 ActiveWords = Record[CurIdx++];
4669               APInt High = readWideAPInt(
4670                   makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth);
4671               CurIdx += ActiveWords;
4672 
4673               // FIXME: It is not clear whether values in the range should be
4674               // compared as signed or unsigned values. The partially
4675               // implemented changes that used this format in the past used
4676               // unsigned comparisons.
4677               for ( ; Low.ule(High); ++Low)
4678                 CaseVals.push_back(ConstantInt::get(Context, Low));
4679             } else
4680               CaseVals.push_back(ConstantInt::get(Context, Low));
4681           }
4682           BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]);
4683           for (ConstantInt *Cst : CaseVals)
4684             SI->addCase(Cst, DestBB);
4685         }
4686         I = SI;
4687         break;
4688       }
4689 
4690       // Old SwitchInst format without case ranges.
4691 
4692       if (Record.size() < 3 || (Record.size() & 1) == 0)
4693         return error("Invalid record");
4694       Type *OpTy = getTypeByID(Record[0]);
4695       Value *Cond = getValue(Record, 1, NextValueNo, OpTy);
4696       BasicBlock *Default = getBasicBlock(Record[2]);
4697       if (!OpTy || !Cond || !Default)
4698         return error("Invalid record");
4699       unsigned NumCases = (Record.size()-3)/2;
4700       SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
4701       InstructionList.push_back(SI);
4702       for (unsigned i = 0, e = NumCases; i != e; ++i) {
4703         ConstantInt *CaseVal =
4704           dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy));
4705         BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]);
4706         if (!CaseVal || !DestBB) {
4707           delete SI;
4708           return error("Invalid record");
4709         }
4710         SI->addCase(CaseVal, DestBB);
4711       }
4712       I = SI;
4713       break;
4714     }
4715     case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...]
4716       if (Record.size() < 2)
4717         return error("Invalid record");
4718       Type *OpTy = getTypeByID(Record[0]);
4719       Value *Address = getValue(Record, 1, NextValueNo, OpTy);
4720       if (!OpTy || !Address)
4721         return error("Invalid record");
4722       unsigned NumDests = Record.size()-2;
4723       IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests);
4724       InstructionList.push_back(IBI);
4725       for (unsigned i = 0, e = NumDests; i != e; ++i) {
4726         if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) {
4727           IBI->addDestination(DestBB);
4728         } else {
4729           delete IBI;
4730           return error("Invalid record");
4731         }
4732       }
4733       I = IBI;
4734       break;
4735     }
4736 
4737     case bitc::FUNC_CODE_INST_INVOKE: {
4738       // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...]
4739       if (Record.size() < 4)
4740         return error("Invalid record");
4741       unsigned OpNum = 0;
4742       AttributeList PAL = getAttributes(Record[OpNum++]);
4743       unsigned CCInfo = Record[OpNum++];
4744       BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]);
4745       BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]);
4746 
4747       FunctionType *FTy = nullptr;
4748       if ((CCInfo >> 13) & 1) {
4749         FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++]));
4750         if (!FTy)
4751           return error("Explicit invoke type is not a function type");
4752       }
4753 
4754       Value *Callee;
4755       if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
4756         return error("Invalid record");
4757 
4758       PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType());
4759       if (!CalleeTy)
4760         return error("Callee is not a pointer");
4761       if (!FTy) {
4762         FTy =
4763             dyn_cast<FunctionType>(Callee->getType()->getPointerElementType());
4764         if (!FTy)
4765           return error("Callee is not of pointer to function type");
4766       } else if (!CalleeTy->isOpaqueOrPointeeTypeMatches(FTy))
4767         return error("Explicit invoke type does not match pointee type of "
4768                      "callee operand");
4769       if (Record.size() < FTy->getNumParams() + OpNum)
4770         return error("Insufficient operands to call");
4771 
4772       SmallVector<Value*, 16> Ops;
4773       SmallVector<Type *, 16> ArgsTys;
4774       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
4775         Ops.push_back(getValue(Record, OpNum, NextValueNo,
4776                                FTy->getParamType(i)));
4777         ArgsTys.push_back(FTy->getParamType(i));
4778         if (!Ops.back())
4779           return error("Invalid record");
4780       }
4781 
4782       if (!FTy->isVarArg()) {
4783         if (Record.size() != OpNum)
4784           return error("Invalid record");
4785       } else {
4786         // Read type/value pairs for varargs params.
4787         while (OpNum != Record.size()) {
4788           Value *Op;
4789           if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4790             return error("Invalid record");
4791           Ops.push_back(Op);
4792           ArgsTys.push_back(Op->getType());
4793         }
4794       }
4795 
4796       I = InvokeInst::Create(FTy, Callee, NormalBB, UnwindBB, Ops,
4797                              OperandBundles);
4798       OperandBundles.clear();
4799       InstructionList.push_back(I);
4800       cast<InvokeInst>(I)->setCallingConv(
4801           static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo));
4802       cast<InvokeInst>(I)->setAttributes(PAL);
4803       propagateAttributeTypes(cast<CallBase>(I), ArgsTys);
4804 
4805       break;
4806     }
4807     case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval]
4808       unsigned Idx = 0;
4809       Value *Val = nullptr;
4810       if (getValueTypePair(Record, Idx, NextValueNo, Val))
4811         return error("Invalid record");
4812       I = ResumeInst::Create(Val);
4813       InstructionList.push_back(I);
4814       break;
4815     }
4816     case bitc::FUNC_CODE_INST_CALLBR: {
4817       // CALLBR: [attr, cc, norm, transfs, fty, fnid, args]
4818       unsigned OpNum = 0;
4819       AttributeList PAL = getAttributes(Record[OpNum++]);
4820       unsigned CCInfo = Record[OpNum++];
4821 
4822       BasicBlock *DefaultDest = getBasicBlock(Record[OpNum++]);
4823       unsigned NumIndirectDests = Record[OpNum++];
4824       SmallVector<BasicBlock *, 16> IndirectDests;
4825       for (unsigned i = 0, e = NumIndirectDests; i != e; ++i)
4826         IndirectDests.push_back(getBasicBlock(Record[OpNum++]));
4827 
4828       FunctionType *FTy = nullptr;
4829       if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) {
4830         FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++]));
4831         if (!FTy)
4832           return error("Explicit call type is not a function type");
4833       }
4834 
4835       Value *Callee;
4836       if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
4837         return error("Invalid record");
4838 
4839       PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
4840       if (!OpTy)
4841         return error("Callee is not a pointer type");
4842       if (!FTy) {
4843         FTy =
4844             dyn_cast<FunctionType>(Callee->getType()->getPointerElementType());
4845         if (!FTy)
4846           return error("Callee is not of pointer to function type");
4847       } else if (!OpTy->isOpaqueOrPointeeTypeMatches(FTy))
4848         return error("Explicit call type does not match pointee type of "
4849                      "callee operand");
4850       if (Record.size() < FTy->getNumParams() + OpNum)
4851         return error("Insufficient operands to call");
4852 
4853       SmallVector<Value*, 16> Args;
4854       SmallVector<Type *, 16> ArgsTys;
4855       // Read the fixed params.
4856       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
4857         Value *Arg;
4858         if (FTy->getParamType(i)->isLabelTy())
4859           Arg = getBasicBlock(Record[OpNum]);
4860         else
4861           Arg = getValue(Record, OpNum, NextValueNo, FTy->getParamType(i));
4862         if (!Arg)
4863           return error("Invalid record");
4864         Args.push_back(Arg);
4865         ArgsTys.push_back(Arg->getType());
4866       }
4867 
4868       // Read type/value pairs for varargs params.
4869       if (!FTy->isVarArg()) {
4870         if (OpNum != Record.size())
4871           return error("Invalid record");
4872       } else {
4873         while (OpNum != Record.size()) {
4874           Value *Op;
4875           if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4876             return error("Invalid record");
4877           Args.push_back(Op);
4878           ArgsTys.push_back(Op->getType());
4879         }
4880       }
4881 
4882       I = CallBrInst::Create(FTy, Callee, DefaultDest, IndirectDests, Args,
4883                              OperandBundles);
4884       OperandBundles.clear();
4885       InstructionList.push_back(I);
4886       cast<CallBrInst>(I)->setCallingConv(
4887           static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV));
4888       cast<CallBrInst>(I)->setAttributes(PAL);
4889       propagateAttributeTypes(cast<CallBase>(I), ArgsTys);
4890       break;
4891     }
4892     case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE
4893       I = new UnreachableInst(Context);
4894       InstructionList.push_back(I);
4895       break;
4896     case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...]
4897       if (Record.empty())
4898         return error("Invalid record");
4899       // The first record specifies the type.
4900       Type *Ty = getTypeByID(Record[0]);
4901       if (!Ty)
4902         return error("Invalid record");
4903 
4904       // Phi arguments are pairs of records of [value, basic block].
4905       // There is an optional final record for fast-math-flags if this phi has a
4906       // floating-point type.
4907       size_t NumArgs = (Record.size() - 1) / 2;
4908       PHINode *PN = PHINode::Create(Ty, NumArgs);
4909       if ((Record.size() - 1) % 2 == 1 && !isa<FPMathOperator>(PN))
4910         return error("Invalid record");
4911       InstructionList.push_back(PN);
4912 
4913       for (unsigned i = 0; i != NumArgs; i++) {
4914         Value *V;
4915         // With the new function encoding, it is possible that operands have
4916         // negative IDs (for forward references).  Use a signed VBR
4917         // representation to keep the encoding small.
4918         if (UseRelativeIDs)
4919           V = getValueSigned(Record, i * 2 + 1, NextValueNo, Ty);
4920         else
4921           V = getValue(Record, i * 2 + 1, NextValueNo, Ty);
4922         BasicBlock *BB = getBasicBlock(Record[i * 2 + 2]);
4923         if (!V || !BB)
4924           return error("Invalid record");
4925         PN->addIncoming(V, BB);
4926       }
4927       I = PN;
4928 
4929       // If there are an even number of records, the final record must be FMF.
4930       if (Record.size() % 2 == 0) {
4931         assert(isa<FPMathOperator>(I) && "Unexpected phi type");
4932         FastMathFlags FMF = getDecodedFastMathFlags(Record[Record.size() - 1]);
4933         if (FMF.any())
4934           I->setFastMathFlags(FMF);
4935       }
4936 
4937       break;
4938     }
4939 
4940     case bitc::FUNC_CODE_INST_LANDINGPAD:
4941     case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: {
4942       // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?]
4943       unsigned Idx = 0;
4944       if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) {
4945         if (Record.size() < 3)
4946           return error("Invalid record");
4947       } else {
4948         assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD);
4949         if (Record.size() < 4)
4950           return error("Invalid record");
4951       }
4952       Type *Ty = getTypeByID(Record[Idx++]);
4953       if (!Ty)
4954         return error("Invalid record");
4955       if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) {
4956         Value *PersFn = nullptr;
4957         if (getValueTypePair(Record, Idx, NextValueNo, PersFn))
4958           return error("Invalid record");
4959 
4960         if (!F->hasPersonalityFn())
4961           F->setPersonalityFn(cast<Constant>(PersFn));
4962         else if (F->getPersonalityFn() != cast<Constant>(PersFn))
4963           return error("Personality function mismatch");
4964       }
4965 
4966       bool IsCleanup = !!Record[Idx++];
4967       unsigned NumClauses = Record[Idx++];
4968       LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses);
4969       LP->setCleanup(IsCleanup);
4970       for (unsigned J = 0; J != NumClauses; ++J) {
4971         LandingPadInst::ClauseType CT =
4972           LandingPadInst::ClauseType(Record[Idx++]); (void)CT;
4973         Value *Val;
4974 
4975         if (getValueTypePair(Record, Idx, NextValueNo, Val)) {
4976           delete LP;
4977           return error("Invalid record");
4978         }
4979 
4980         assert((CT != LandingPadInst::Catch ||
4981                 !isa<ArrayType>(Val->getType())) &&
4982                "Catch clause has a invalid type!");
4983         assert((CT != LandingPadInst::Filter ||
4984                 isa<ArrayType>(Val->getType())) &&
4985                "Filter clause has invalid type!");
4986         LP->addClause(cast<Constant>(Val));
4987       }
4988 
4989       I = LP;
4990       InstructionList.push_back(I);
4991       break;
4992     }
4993 
4994     case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align]
4995       if (Record.size() != 4)
4996         return error("Invalid record");
4997       using APV = AllocaPackedValues;
4998       const uint64_t Rec = Record[3];
4999       const bool InAlloca = Bitfield::get<APV::UsedWithInAlloca>(Rec);
5000       const bool SwiftError = Bitfield::get<APV::SwiftError>(Rec);
5001       Type *Ty = getTypeByID(Record[0]);
5002       if (!Bitfield::get<APV::ExplicitType>(Rec)) {
5003         auto *PTy = dyn_cast_or_null<PointerType>(Ty);
5004         if (!PTy)
5005           return error("Old-style alloca with a non-pointer type");
5006         Ty = PTy->getPointerElementType();
5007       }
5008       Type *OpTy = getTypeByID(Record[1]);
5009       Value *Size = getFnValueByID(Record[2], OpTy);
5010       MaybeAlign Align;
5011       uint64_t AlignExp =
5012           Bitfield::get<APV::AlignLower>(Rec) |
5013           (Bitfield::get<APV::AlignUpper>(Rec) << APV::AlignLower::Bits);
5014       if (Error Err = parseAlignmentValue(AlignExp, Align)) {
5015         return Err;
5016       }
5017       if (!Ty || !Size)
5018         return error("Invalid record");
5019 
5020       // FIXME: Make this an optional field.
5021       const DataLayout &DL = TheModule->getDataLayout();
5022       unsigned AS = DL.getAllocaAddrSpace();
5023 
5024       SmallPtrSet<Type *, 4> Visited;
5025       if (!Align && !Ty->isSized(&Visited))
5026         return error("alloca of unsized type");
5027       if (!Align)
5028         Align = DL.getPrefTypeAlign(Ty);
5029 
5030       AllocaInst *AI = new AllocaInst(Ty, AS, Size, *Align);
5031       AI->setUsedWithInAlloca(InAlloca);
5032       AI->setSwiftError(SwiftError);
5033       I = AI;
5034       InstructionList.push_back(I);
5035       break;
5036     }
5037     case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol]
5038       unsigned OpNum = 0;
5039       Value *Op;
5040       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
5041           (OpNum + 2 != Record.size() && OpNum + 3 != Record.size()))
5042         return error("Invalid record");
5043 
5044       if (!isa<PointerType>(Op->getType()))
5045         return error("Load operand is not a pointer type");
5046 
5047       Type *Ty = nullptr;
5048       if (OpNum + 3 == Record.size()) {
5049         Ty = getTypeByID(Record[OpNum++]);
5050       } else {
5051         Ty = Op->getType()->getPointerElementType();
5052       }
5053 
5054       if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType()))
5055         return Err;
5056 
5057       MaybeAlign Align;
5058       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
5059         return Err;
5060       SmallPtrSet<Type *, 4> Visited;
5061       if (!Align && !Ty->isSized(&Visited))
5062         return error("load of unsized type");
5063       if (!Align)
5064         Align = TheModule->getDataLayout().getABITypeAlign(Ty);
5065       I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align);
5066       InstructionList.push_back(I);
5067       break;
5068     }
5069     case bitc::FUNC_CODE_INST_LOADATOMIC: {
5070        // LOADATOMIC: [opty, op, align, vol, ordering, ssid]
5071       unsigned OpNum = 0;
5072       Value *Op;
5073       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
5074           (OpNum + 4 != Record.size() && OpNum + 5 != Record.size()))
5075         return error("Invalid record");
5076 
5077       if (!isa<PointerType>(Op->getType()))
5078         return error("Load operand is not a pointer type");
5079 
5080       Type *Ty = nullptr;
5081       if (OpNum + 5 == Record.size()) {
5082         Ty = getTypeByID(Record[OpNum++]);
5083       } else {
5084         Ty = Op->getType()->getPointerElementType();
5085       }
5086 
5087       if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType()))
5088         return Err;
5089 
5090       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
5091       if (Ordering == AtomicOrdering::NotAtomic ||
5092           Ordering == AtomicOrdering::Release ||
5093           Ordering == AtomicOrdering::AcquireRelease)
5094         return error("Invalid record");
5095       if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
5096         return error("Invalid record");
5097       SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
5098 
5099       MaybeAlign Align;
5100       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
5101         return Err;
5102       if (!Align)
5103         return error("Alignment missing from atomic load");
5104       I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align, Ordering, SSID);
5105       InstructionList.push_back(I);
5106       break;
5107     }
5108     case bitc::FUNC_CODE_INST_STORE:
5109     case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol]
5110       unsigned OpNum = 0;
5111       Value *Val, *Ptr;
5112       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
5113           (BitCode == bitc::FUNC_CODE_INST_STORE
5114                ? getValueTypePair(Record, OpNum, NextValueNo, Val)
5115                : popValue(Record, OpNum, NextValueNo,
5116                           Ptr->getType()->getPointerElementType(), Val)) ||
5117           OpNum + 2 != Record.size())
5118         return error("Invalid record");
5119 
5120       if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
5121         return Err;
5122       MaybeAlign Align;
5123       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
5124         return Err;
5125       SmallPtrSet<Type *, 4> Visited;
5126       if (!Align && !Val->getType()->isSized(&Visited))
5127         return error("store of unsized type");
5128       if (!Align)
5129         Align = TheModule->getDataLayout().getABITypeAlign(Val->getType());
5130       I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align);
5131       InstructionList.push_back(I);
5132       break;
5133     }
5134     case bitc::FUNC_CODE_INST_STOREATOMIC:
5135     case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: {
5136       // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, ssid]
5137       unsigned OpNum = 0;
5138       Value *Val, *Ptr;
5139       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
5140           !isa<PointerType>(Ptr->getType()) ||
5141           (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC
5142                ? getValueTypePair(Record, OpNum, NextValueNo, Val)
5143                : popValue(Record, OpNum, NextValueNo,
5144                           Ptr->getType()->getPointerElementType(), Val)) ||
5145           OpNum + 4 != Record.size())
5146         return error("Invalid record");
5147 
5148       if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
5149         return Err;
5150       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
5151       if (Ordering == AtomicOrdering::NotAtomic ||
5152           Ordering == AtomicOrdering::Acquire ||
5153           Ordering == AtomicOrdering::AcquireRelease)
5154         return error("Invalid record");
5155       SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
5156       if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
5157         return error("Invalid record");
5158 
5159       MaybeAlign Align;
5160       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
5161         return Err;
5162       if (!Align)
5163         return error("Alignment missing from atomic store");
5164       I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align, Ordering, SSID);
5165       InstructionList.push_back(I);
5166       break;
5167     }
5168     case bitc::FUNC_CODE_INST_CMPXCHG_OLD: {
5169       // CMPXCHG_OLD: [ptrty, ptr, cmp, val, vol, ordering, synchscope,
5170       // failure_ordering?, weak?]
5171       const size_t NumRecords = Record.size();
5172       unsigned OpNum = 0;
5173       Value *Ptr = nullptr;
5174       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr))
5175         return error("Invalid record");
5176 
5177       if (!isa<PointerType>(Ptr->getType()))
5178         return error("Cmpxchg operand is not a pointer type");
5179 
5180       Value *Cmp = nullptr;
5181       if (popValue(Record, OpNum, NextValueNo,
5182                    cast<PointerType>(Ptr->getType())->getPointerElementType(),
5183                    Cmp))
5184         return error("Invalid record");
5185 
5186       Value *New = nullptr;
5187       if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) ||
5188           NumRecords < OpNum + 3 || NumRecords > OpNum + 5)
5189         return error("Invalid record");
5190 
5191       const AtomicOrdering SuccessOrdering =
5192           getDecodedOrdering(Record[OpNum + 1]);
5193       if (SuccessOrdering == AtomicOrdering::NotAtomic ||
5194           SuccessOrdering == AtomicOrdering::Unordered)
5195         return error("Invalid record");
5196 
5197       const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]);
5198 
5199       if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType()))
5200         return Err;
5201 
5202       const AtomicOrdering FailureOrdering =
5203           NumRecords < 7
5204               ? AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering)
5205               : getDecodedOrdering(Record[OpNum + 3]);
5206 
5207       if (FailureOrdering == AtomicOrdering::NotAtomic ||
5208           FailureOrdering == AtomicOrdering::Unordered)
5209         return error("Invalid record");
5210 
5211       const Align Alignment(
5212           TheModule->getDataLayout().getTypeStoreSize(Cmp->getType()));
5213 
5214       I = new AtomicCmpXchgInst(Ptr, Cmp, New, Alignment, SuccessOrdering,
5215                                 FailureOrdering, SSID);
5216       cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]);
5217 
5218       if (NumRecords < 8) {
5219         // Before weak cmpxchgs existed, the instruction simply returned the
5220         // value loaded from memory, so bitcode files from that era will be
5221         // expecting the first component of a modern cmpxchg.
5222         CurBB->getInstList().push_back(I);
5223         I = ExtractValueInst::Create(I, 0);
5224       } else {
5225         cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum + 4]);
5226       }
5227 
5228       InstructionList.push_back(I);
5229       break;
5230     }
5231     case bitc::FUNC_CODE_INST_CMPXCHG: {
5232       // CMPXCHG: [ptrty, ptr, cmp, val, vol, success_ordering, synchscope,
5233       // failure_ordering, weak, align?]
5234       const size_t NumRecords = Record.size();
5235       unsigned OpNum = 0;
5236       Value *Ptr = nullptr;
5237       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr))
5238         return error("Invalid record");
5239 
5240       if (!isa<PointerType>(Ptr->getType()))
5241         return error("Cmpxchg operand is not a pointer type");
5242 
5243       Value *Cmp = nullptr;
5244       if (getValueTypePair(Record, OpNum, NextValueNo, Cmp))
5245         return error("Invalid record");
5246 
5247       Value *Val = nullptr;
5248       if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), Val))
5249         return error("Invalid record");
5250 
5251       if (NumRecords < OpNum + 3 || NumRecords > OpNum + 6)
5252         return error("Invalid record");
5253 
5254       const bool IsVol = Record[OpNum];
5255 
5256       const AtomicOrdering SuccessOrdering =
5257           getDecodedOrdering(Record[OpNum + 1]);
5258       if (!AtomicCmpXchgInst::isValidSuccessOrdering(SuccessOrdering))
5259         return error("Invalid cmpxchg success ordering");
5260 
5261       const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]);
5262 
5263       if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType()))
5264         return Err;
5265 
5266       const AtomicOrdering FailureOrdering =
5267           getDecodedOrdering(Record[OpNum + 3]);
5268       if (!AtomicCmpXchgInst::isValidFailureOrdering(FailureOrdering))
5269         return error("Invalid cmpxchg failure ordering");
5270 
5271       const bool IsWeak = Record[OpNum + 4];
5272 
5273       MaybeAlign Alignment;
5274 
5275       if (NumRecords == (OpNum + 6)) {
5276         if (Error Err = parseAlignmentValue(Record[OpNum + 5], Alignment))
5277           return Err;
5278       }
5279       if (!Alignment)
5280         Alignment =
5281             Align(TheModule->getDataLayout().getTypeStoreSize(Cmp->getType()));
5282 
5283       I = new AtomicCmpXchgInst(Ptr, Cmp, Val, *Alignment, SuccessOrdering,
5284                                 FailureOrdering, SSID);
5285       cast<AtomicCmpXchgInst>(I)->setVolatile(IsVol);
5286       cast<AtomicCmpXchgInst>(I)->setWeak(IsWeak);
5287 
5288       InstructionList.push_back(I);
5289       break;
5290     }
5291     case bitc::FUNC_CODE_INST_ATOMICRMW_OLD:
5292     case bitc::FUNC_CODE_INST_ATOMICRMW: {
5293       // ATOMICRMW_OLD: [ptrty, ptr, val, op, vol, ordering, ssid, align?]
5294       // ATOMICRMW: [ptrty, ptr, valty, val, op, vol, ordering, ssid, align?]
5295       const size_t NumRecords = Record.size();
5296       unsigned OpNum = 0;
5297 
5298       Value *Ptr = nullptr;
5299       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr))
5300         return error("Invalid record");
5301 
5302       if (!isa<PointerType>(Ptr->getType()))
5303         return error("Invalid record");
5304 
5305       Value *Val = nullptr;
5306       if (BitCode == bitc::FUNC_CODE_INST_ATOMICRMW_OLD) {
5307         if (popValue(Record, OpNum, NextValueNo,
5308                      cast<PointerType>(Ptr->getType())->getPointerElementType(),
5309                      Val))
5310           return error("Invalid record");
5311       } else {
5312         if (getValueTypePair(Record, OpNum, NextValueNo, Val))
5313           return error("Invalid record");
5314       }
5315 
5316       if (!(NumRecords == (OpNum + 4) || NumRecords == (OpNum + 5)))
5317         return error("Invalid record");
5318 
5319       const AtomicRMWInst::BinOp Operation =
5320           getDecodedRMWOperation(Record[OpNum]);
5321       if (Operation < AtomicRMWInst::FIRST_BINOP ||
5322           Operation > AtomicRMWInst::LAST_BINOP)
5323         return error("Invalid record");
5324 
5325       const bool IsVol = Record[OpNum + 1];
5326 
5327       const AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
5328       if (Ordering == AtomicOrdering::NotAtomic ||
5329           Ordering == AtomicOrdering::Unordered)
5330         return error("Invalid record");
5331 
5332       const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
5333 
5334       MaybeAlign Alignment;
5335 
5336       if (NumRecords == (OpNum + 5)) {
5337         if (Error Err = parseAlignmentValue(Record[OpNum + 4], Alignment))
5338           return Err;
5339       }
5340 
5341       if (!Alignment)
5342         Alignment =
5343             Align(TheModule->getDataLayout().getTypeStoreSize(Val->getType()));
5344 
5345       I = new AtomicRMWInst(Operation, Ptr, Val, *Alignment, Ordering, SSID);
5346       cast<AtomicRMWInst>(I)->setVolatile(IsVol);
5347 
5348       InstructionList.push_back(I);
5349       break;
5350     }
5351     case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, ssid]
5352       if (2 != Record.size())
5353         return error("Invalid record");
5354       AtomicOrdering Ordering = getDecodedOrdering(Record[0]);
5355       if (Ordering == AtomicOrdering::NotAtomic ||
5356           Ordering == AtomicOrdering::Unordered ||
5357           Ordering == AtomicOrdering::Monotonic)
5358         return error("Invalid record");
5359       SyncScope::ID SSID = getDecodedSyncScopeID(Record[1]);
5360       I = new FenceInst(Context, Ordering, SSID);
5361       InstructionList.push_back(I);
5362       break;
5363     }
5364     case bitc::FUNC_CODE_INST_CALL: {
5365       // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...]
5366       if (Record.size() < 3)
5367         return error("Invalid record");
5368 
5369       unsigned OpNum = 0;
5370       AttributeList PAL = getAttributes(Record[OpNum++]);
5371       unsigned CCInfo = Record[OpNum++];
5372 
5373       FastMathFlags FMF;
5374       if ((CCInfo >> bitc::CALL_FMF) & 1) {
5375         FMF = getDecodedFastMathFlags(Record[OpNum++]);
5376         if (!FMF.any())
5377           return error("Fast math flags indicator set for call with no FMF");
5378       }
5379 
5380       FunctionType *FTy = nullptr;
5381       if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) {
5382         FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++]));
5383         if (!FTy)
5384           return error("Explicit call type is not a function type");
5385       }
5386 
5387       Value *Callee;
5388       if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
5389         return error("Invalid record");
5390 
5391       PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
5392       if (!OpTy)
5393         return error("Callee is not a pointer type");
5394       if (!FTy) {
5395         FTy =
5396             dyn_cast<FunctionType>(Callee->getType()->getPointerElementType());
5397         if (!FTy)
5398           return error("Callee is not of pointer to function type");
5399       } else if (!OpTy->isOpaqueOrPointeeTypeMatches(FTy))
5400         return error("Explicit call type does not match pointee type of "
5401                      "callee operand");
5402       if (Record.size() < FTy->getNumParams() + OpNum)
5403         return error("Insufficient operands to call");
5404 
5405       SmallVector<Value*, 16> Args;
5406       SmallVector<Type *, 16> ArgsTys;
5407       // Read the fixed params.
5408       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
5409         if (FTy->getParamType(i)->isLabelTy())
5410           Args.push_back(getBasicBlock(Record[OpNum]));
5411         else
5412           Args.push_back(getValue(Record, OpNum, NextValueNo,
5413                                   FTy->getParamType(i)));
5414         ArgsTys.push_back(FTy->getParamType(i));
5415         if (!Args.back())
5416           return error("Invalid record");
5417       }
5418 
5419       // Read type/value pairs for varargs params.
5420       if (!FTy->isVarArg()) {
5421         if (OpNum != Record.size())
5422           return error("Invalid record");
5423       } else {
5424         while (OpNum != Record.size()) {
5425           Value *Op;
5426           if (getValueTypePair(Record, OpNum, NextValueNo, Op))
5427             return error("Invalid record");
5428           Args.push_back(Op);
5429           ArgsTys.push_back(Op->getType());
5430         }
5431       }
5432 
5433       I = CallInst::Create(FTy, Callee, Args, OperandBundles);
5434       OperandBundles.clear();
5435       InstructionList.push_back(I);
5436       cast<CallInst>(I)->setCallingConv(
5437           static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV));
5438       CallInst::TailCallKind TCK = CallInst::TCK_None;
5439       if (CCInfo & 1 << bitc::CALL_TAIL)
5440         TCK = CallInst::TCK_Tail;
5441       if (CCInfo & (1 << bitc::CALL_MUSTTAIL))
5442         TCK = CallInst::TCK_MustTail;
5443       if (CCInfo & (1 << bitc::CALL_NOTAIL))
5444         TCK = CallInst::TCK_NoTail;
5445       cast<CallInst>(I)->setTailCallKind(TCK);
5446       cast<CallInst>(I)->setAttributes(PAL);
5447       propagateAttributeTypes(cast<CallBase>(I), ArgsTys);
5448       if (FMF.any()) {
5449         if (!isa<FPMathOperator>(I))
5450           return error("Fast-math-flags specified for call without "
5451                        "floating-point scalar or vector return type");
5452         I->setFastMathFlags(FMF);
5453       }
5454       break;
5455     }
5456     case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty]
5457       if (Record.size() < 3)
5458         return error("Invalid record");
5459       Type *OpTy = getTypeByID(Record[0]);
5460       Value *Op = getValue(Record, 1, NextValueNo, OpTy);
5461       Type *ResTy = getTypeByID(Record[2]);
5462       if (!OpTy || !Op || !ResTy)
5463         return error("Invalid record");
5464       I = new VAArgInst(Op, ResTy);
5465       InstructionList.push_back(I);
5466       break;
5467     }
5468 
5469     case bitc::FUNC_CODE_OPERAND_BUNDLE: {
5470       // A call or an invoke can be optionally prefixed with some variable
5471       // number of operand bundle blocks.  These blocks are read into
5472       // OperandBundles and consumed at the next call or invoke instruction.
5473 
5474       if (Record.empty() || Record[0] >= BundleTags.size())
5475         return error("Invalid record");
5476 
5477       std::vector<Value *> Inputs;
5478 
5479       unsigned OpNum = 1;
5480       while (OpNum != Record.size()) {
5481         Value *Op;
5482         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
5483           return error("Invalid record");
5484         Inputs.push_back(Op);
5485       }
5486 
5487       OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs));
5488       continue;
5489     }
5490 
5491     case bitc::FUNC_CODE_INST_FREEZE: { // FREEZE: [opty,opval]
5492       unsigned OpNum = 0;
5493       Value *Op = nullptr;
5494       if (getValueTypePair(Record, OpNum, NextValueNo, Op))
5495         return error("Invalid record");
5496       if (OpNum != Record.size())
5497         return error("Invalid record");
5498 
5499       I = new FreezeInst(Op);
5500       InstructionList.push_back(I);
5501       break;
5502     }
5503     }
5504 
5505     // Add instruction to end of current BB.  If there is no current BB, reject
5506     // this file.
5507     if (!CurBB) {
5508       I->deleteValue();
5509       return error("Invalid instruction with no BB");
5510     }
5511     if (!OperandBundles.empty()) {
5512       I->deleteValue();
5513       return error("Operand bundles found with no consumer");
5514     }
5515     CurBB->getInstList().push_back(I);
5516 
5517     // If this was a terminator instruction, move to the next block.
5518     if (I->isTerminator()) {
5519       ++CurBBNo;
5520       CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr;
5521     }
5522 
5523     // Non-void values get registered in the value table for future use.
5524     if (!I->getType()->isVoidTy())
5525       ValueList.assignValue(I, NextValueNo++);
5526   }
5527 
5528 OutOfRecordLoop:
5529 
5530   if (!OperandBundles.empty())
5531     return error("Operand bundles found with no consumer");
5532 
5533   // Check the function list for unresolved values.
5534   if (Argument *A = dyn_cast<Argument>(ValueList.back())) {
5535     if (!A->getParent()) {
5536       // We found at least one unresolved value.  Nuke them all to avoid leaks.
5537       for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){
5538         if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) {
5539           A->replaceAllUsesWith(UndefValue::get(A->getType()));
5540           delete A;
5541         }
5542       }
5543       return error("Never resolved value found in function");
5544     }
5545   }
5546 
5547   // Unexpected unresolved metadata about to be dropped.
5548   if (MDLoader->hasFwdRefs())
5549     return error("Invalid function metadata: outgoing forward refs");
5550 
5551   // Trim the value list down to the size it was before we parsed this function.
5552   ValueList.shrinkTo(ModuleValueListSize);
5553   MDLoader->shrinkTo(ModuleMDLoaderSize);
5554   std::vector<BasicBlock*>().swap(FunctionBBs);
5555   return Error::success();
5556 }
5557 
5558 /// Find the function body in the bitcode stream
5559 Error BitcodeReader::findFunctionInStream(
5560     Function *F,
5561     DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) {
5562   while (DeferredFunctionInfoIterator->second == 0) {
5563     // This is the fallback handling for the old format bitcode that
5564     // didn't contain the function index in the VST, or when we have
5565     // an anonymous function which would not have a VST entry.
5566     // Assert that we have one of those two cases.
5567     assert(VSTOffset == 0 || !F->hasName());
5568     // Parse the next body in the stream and set its position in the
5569     // DeferredFunctionInfo map.
5570     if (Error Err = rememberAndSkipFunctionBodies())
5571       return Err;
5572   }
5573   return Error::success();
5574 }
5575 
5576 SyncScope::ID BitcodeReader::getDecodedSyncScopeID(unsigned Val) {
5577   if (Val == SyncScope::SingleThread || Val == SyncScope::System)
5578     return SyncScope::ID(Val);
5579   if (Val >= SSIDs.size())
5580     return SyncScope::System; // Map unknown synchronization scopes to system.
5581   return SSIDs[Val];
5582 }
5583 
5584 //===----------------------------------------------------------------------===//
5585 // GVMaterializer implementation
5586 //===----------------------------------------------------------------------===//
5587 
5588 Error BitcodeReader::materialize(GlobalValue *GV) {
5589   Function *F = dyn_cast<Function>(GV);
5590   // If it's not a function or is already material, ignore the request.
5591   if (!F || !F->isMaterializable())
5592     return Error::success();
5593 
5594   DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F);
5595   assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!");
5596   // If its position is recorded as 0, its body is somewhere in the stream
5597   // but we haven't seen it yet.
5598   if (DFII->second == 0)
5599     if (Error Err = findFunctionInStream(F, DFII))
5600       return Err;
5601 
5602   // Materialize metadata before parsing any function bodies.
5603   if (Error Err = materializeMetadata())
5604     return Err;
5605 
5606   // Move the bit stream to the saved position of the deferred function body.
5607   if (Error JumpFailed = Stream.JumpToBit(DFII->second))
5608     return JumpFailed;
5609   if (Error Err = parseFunctionBody(F))
5610     return Err;
5611   F->setIsMaterializable(false);
5612 
5613   if (StripDebugInfo)
5614     stripDebugInfo(*F);
5615 
5616   // Upgrade any old intrinsic calls in the function.
5617   for (auto &I : UpgradedIntrinsics) {
5618     for (User *U : llvm::make_early_inc_range(I.first->materialized_users()))
5619       if (CallInst *CI = dyn_cast<CallInst>(U))
5620         UpgradeIntrinsicCall(CI, I.second);
5621   }
5622 
5623   // Update calls to the remangled intrinsics
5624   for (auto &I : RemangledIntrinsics)
5625     for (User *U : llvm::make_early_inc_range(I.first->materialized_users()))
5626       // Don't expect any other users than call sites
5627       cast<CallBase>(U)->setCalledFunction(I.second);
5628 
5629   // Finish fn->subprogram upgrade for materialized functions.
5630   if (DISubprogram *SP = MDLoader->lookupSubprogramForFunction(F))
5631     F->setSubprogram(SP);
5632 
5633   // Check if the TBAA Metadata are valid, otherwise we will need to strip them.
5634   if (!MDLoader->isStrippingTBAA()) {
5635     for (auto &I : instructions(F)) {
5636       MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa);
5637       if (!TBAA || TBAAVerifyHelper.visitTBAAMetadata(I, TBAA))
5638         continue;
5639       MDLoader->setStripTBAA(true);
5640       stripTBAA(F->getParent());
5641     }
5642   }
5643 
5644   for (auto &I : instructions(F)) {
5645     // "Upgrade" older incorrect branch weights by dropping them.
5646     if (auto *MD = I.getMetadata(LLVMContext::MD_prof)) {
5647       if (MD->getOperand(0) != nullptr && isa<MDString>(MD->getOperand(0))) {
5648         MDString *MDS = cast<MDString>(MD->getOperand(0));
5649         StringRef ProfName = MDS->getString();
5650         // Check consistency of !prof branch_weights metadata.
5651         if (!ProfName.equals("branch_weights"))
5652           continue;
5653         unsigned ExpectedNumOperands = 0;
5654         if (BranchInst *BI = dyn_cast<BranchInst>(&I))
5655           ExpectedNumOperands = BI->getNumSuccessors();
5656         else if (SwitchInst *SI = dyn_cast<SwitchInst>(&I))
5657           ExpectedNumOperands = SI->getNumSuccessors();
5658         else if (isa<CallInst>(&I))
5659           ExpectedNumOperands = 1;
5660         else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(&I))
5661           ExpectedNumOperands = IBI->getNumDestinations();
5662         else if (isa<SelectInst>(&I))
5663           ExpectedNumOperands = 2;
5664         else
5665           continue; // ignore and continue.
5666 
5667         // If branch weight doesn't match, just strip branch weight.
5668         if (MD->getNumOperands() != 1 + ExpectedNumOperands)
5669           I.setMetadata(LLVMContext::MD_prof, nullptr);
5670       }
5671     }
5672 
5673     // Remove incompatible attributes on function calls.
5674     if (auto *CI = dyn_cast<CallBase>(&I)) {
5675       CI->removeRetAttrs(AttributeFuncs::typeIncompatible(
5676           CI->getFunctionType()->getReturnType()));
5677 
5678       for (unsigned ArgNo = 0; ArgNo < CI->arg_size(); ++ArgNo)
5679         CI->removeParamAttrs(ArgNo, AttributeFuncs::typeIncompatible(
5680                                         CI->getArgOperand(ArgNo)->getType()));
5681     }
5682   }
5683 
5684   // Look for functions that rely on old function attribute behavior.
5685   UpgradeFunctionAttributes(*F);
5686 
5687   // Bring in any functions that this function forward-referenced via
5688   // blockaddresses.
5689   return materializeForwardReferencedFunctions();
5690 }
5691 
5692 Error BitcodeReader::materializeModule() {
5693   if (Error Err = materializeMetadata())
5694     return Err;
5695 
5696   // Promise to materialize all forward references.
5697   WillMaterializeAllForwardRefs = true;
5698 
5699   // Iterate over the module, deserializing any functions that are still on
5700   // disk.
5701   for (Function &F : *TheModule) {
5702     if (Error Err = materialize(&F))
5703       return Err;
5704   }
5705   // At this point, if there are any function bodies, parse the rest of
5706   // the bits in the module past the last function block we have recorded
5707   // through either lazy scanning or the VST.
5708   if (LastFunctionBlockBit || NextUnreadBit)
5709     if (Error Err = parseModule(LastFunctionBlockBit > NextUnreadBit
5710                                     ? LastFunctionBlockBit
5711                                     : NextUnreadBit))
5712       return Err;
5713 
5714   // Check that all block address forward references got resolved (as we
5715   // promised above).
5716   if (!BasicBlockFwdRefs.empty())
5717     return error("Never resolved function from blockaddress");
5718 
5719   // Upgrade any intrinsic calls that slipped through (should not happen!) and
5720   // delete the old functions to clean up. We can't do this unless the entire
5721   // module is materialized because there could always be another function body
5722   // with calls to the old function.
5723   for (auto &I : UpgradedIntrinsics) {
5724     for (auto *U : I.first->users()) {
5725       if (CallInst *CI = dyn_cast<CallInst>(U))
5726         UpgradeIntrinsicCall(CI, I.second);
5727     }
5728     if (!I.first->use_empty())
5729       I.first->replaceAllUsesWith(I.second);
5730     I.first->eraseFromParent();
5731   }
5732   UpgradedIntrinsics.clear();
5733   // Do the same for remangled intrinsics
5734   for (auto &I : RemangledIntrinsics) {
5735     I.first->replaceAllUsesWith(I.second);
5736     I.first->eraseFromParent();
5737   }
5738   RemangledIntrinsics.clear();
5739 
5740   UpgradeDebugInfo(*TheModule);
5741 
5742   UpgradeModuleFlags(*TheModule);
5743 
5744   UpgradeARCRuntime(*TheModule);
5745 
5746   return Error::success();
5747 }
5748 
5749 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const {
5750   return IdentifiedStructTypes;
5751 }
5752 
5753 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader(
5754     BitstreamCursor Cursor, StringRef Strtab, ModuleSummaryIndex &TheIndex,
5755     StringRef ModulePath, unsigned ModuleId)
5756     : BitcodeReaderBase(std::move(Cursor), Strtab), TheIndex(TheIndex),
5757       ModulePath(ModulePath), ModuleId(ModuleId) {}
5758 
5759 void ModuleSummaryIndexBitcodeReader::addThisModule() {
5760   TheIndex.addModule(ModulePath, ModuleId);
5761 }
5762 
5763 ModuleSummaryIndex::ModuleInfo *
5764 ModuleSummaryIndexBitcodeReader::getThisModule() {
5765   return TheIndex.getModule(ModulePath);
5766 }
5767 
5768 std::pair<ValueInfo, GlobalValue::GUID>
5769 ModuleSummaryIndexBitcodeReader::getValueInfoFromValueId(unsigned ValueId) {
5770   auto VGI = ValueIdToValueInfoMap[ValueId];
5771   assert(VGI.first);
5772   return VGI;
5773 }
5774 
5775 void ModuleSummaryIndexBitcodeReader::setValueGUID(
5776     uint64_t ValueID, StringRef ValueName, GlobalValue::LinkageTypes Linkage,
5777     StringRef SourceFileName) {
5778   std::string GlobalId =
5779       GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName);
5780   auto ValueGUID = GlobalValue::getGUID(GlobalId);
5781   auto OriginalNameID = ValueGUID;
5782   if (GlobalValue::isLocalLinkage(Linkage))
5783     OriginalNameID = GlobalValue::getGUID(ValueName);
5784   if (PrintSummaryGUIDs)
5785     dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is "
5786            << ValueName << "\n";
5787 
5788   // UseStrtab is false for legacy summary formats and value names are
5789   // created on stack. In that case we save the name in a string saver in
5790   // the index so that the value name can be recorded.
5791   ValueIdToValueInfoMap[ValueID] = std::make_pair(
5792       TheIndex.getOrInsertValueInfo(
5793           ValueGUID,
5794           UseStrtab ? ValueName : TheIndex.saveString(ValueName)),
5795       OriginalNameID);
5796 }
5797 
5798 // Specialized value symbol table parser used when reading module index
5799 // blocks where we don't actually create global values. The parsed information
5800 // is saved in the bitcode reader for use when later parsing summaries.
5801 Error ModuleSummaryIndexBitcodeReader::parseValueSymbolTable(
5802     uint64_t Offset,
5803     DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) {
5804   // With a strtab the VST is not required to parse the summary.
5805   if (UseStrtab)
5806     return Error::success();
5807 
5808   assert(Offset > 0 && "Expected non-zero VST offset");
5809   Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream);
5810   if (!MaybeCurrentBit)
5811     return MaybeCurrentBit.takeError();
5812   uint64_t CurrentBit = MaybeCurrentBit.get();
5813 
5814   if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
5815     return Err;
5816 
5817   SmallVector<uint64_t, 64> Record;
5818 
5819   // Read all the records for this value table.
5820   SmallString<128> ValueName;
5821 
5822   while (true) {
5823     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
5824     if (!MaybeEntry)
5825       return MaybeEntry.takeError();
5826     BitstreamEntry Entry = MaybeEntry.get();
5827 
5828     switch (Entry.Kind) {
5829     case BitstreamEntry::SubBlock: // Handled for us already.
5830     case BitstreamEntry::Error:
5831       return error("Malformed block");
5832     case BitstreamEntry::EndBlock:
5833       // Done parsing VST, jump back to wherever we came from.
5834       if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
5835         return JumpFailed;
5836       return Error::success();
5837     case BitstreamEntry::Record:
5838       // The interesting case.
5839       break;
5840     }
5841 
5842     // Read a record.
5843     Record.clear();
5844     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
5845     if (!MaybeRecord)
5846       return MaybeRecord.takeError();
5847     switch (MaybeRecord.get()) {
5848     default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records).
5849       break;
5850     case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N]
5851       if (convertToString(Record, 1, ValueName))
5852         return error("Invalid record");
5853       unsigned ValueID = Record[0];
5854       assert(!SourceFileName.empty());
5855       auto VLI = ValueIdToLinkageMap.find(ValueID);
5856       assert(VLI != ValueIdToLinkageMap.end() &&
5857              "No linkage found for VST entry?");
5858       auto Linkage = VLI->second;
5859       setValueGUID(ValueID, ValueName, Linkage, SourceFileName);
5860       ValueName.clear();
5861       break;
5862     }
5863     case bitc::VST_CODE_FNENTRY: {
5864       // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
5865       if (convertToString(Record, 2, ValueName))
5866         return error("Invalid record");
5867       unsigned ValueID = Record[0];
5868       assert(!SourceFileName.empty());
5869       auto VLI = ValueIdToLinkageMap.find(ValueID);
5870       assert(VLI != ValueIdToLinkageMap.end() &&
5871              "No linkage found for VST entry?");
5872       auto Linkage = VLI->second;
5873       setValueGUID(ValueID, ValueName, Linkage, SourceFileName);
5874       ValueName.clear();
5875       break;
5876     }
5877     case bitc::VST_CODE_COMBINED_ENTRY: {
5878       // VST_CODE_COMBINED_ENTRY: [valueid, refguid]
5879       unsigned ValueID = Record[0];
5880       GlobalValue::GUID RefGUID = Record[1];
5881       // The "original name", which is the second value of the pair will be
5882       // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index.
5883       ValueIdToValueInfoMap[ValueID] =
5884           std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID);
5885       break;
5886     }
5887     }
5888   }
5889 }
5890 
5891 // Parse just the blocks needed for building the index out of the module.
5892 // At the end of this routine the module Index is populated with a map
5893 // from global value id to GlobalValueSummary objects.
5894 Error ModuleSummaryIndexBitcodeReader::parseModule() {
5895   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
5896     return Err;
5897 
5898   SmallVector<uint64_t, 64> Record;
5899   DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap;
5900   unsigned ValueId = 0;
5901 
5902   // Read the index for this module.
5903   while (true) {
5904     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
5905     if (!MaybeEntry)
5906       return MaybeEntry.takeError();
5907     llvm::BitstreamEntry Entry = MaybeEntry.get();
5908 
5909     switch (Entry.Kind) {
5910     case BitstreamEntry::Error:
5911       return error("Malformed block");
5912     case BitstreamEntry::EndBlock:
5913       return Error::success();
5914 
5915     case BitstreamEntry::SubBlock:
5916       switch (Entry.ID) {
5917       default: // Skip unknown content.
5918         if (Error Err = Stream.SkipBlock())
5919           return Err;
5920         break;
5921       case bitc::BLOCKINFO_BLOCK_ID:
5922         // Need to parse these to get abbrev ids (e.g. for VST)
5923         if (Error Err = readBlockInfo())
5924           return Err;
5925         break;
5926       case bitc::VALUE_SYMTAB_BLOCK_ID:
5927         // Should have been parsed earlier via VSTOffset, unless there
5928         // is no summary section.
5929         assert(((SeenValueSymbolTable && VSTOffset > 0) ||
5930                 !SeenGlobalValSummary) &&
5931                "Expected early VST parse via VSTOffset record");
5932         if (Error Err = Stream.SkipBlock())
5933           return Err;
5934         break;
5935       case bitc::GLOBALVAL_SUMMARY_BLOCK_ID:
5936       case bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID:
5937         // Add the module if it is a per-module index (has a source file name).
5938         if (!SourceFileName.empty())
5939           addThisModule();
5940         assert(!SeenValueSymbolTable &&
5941                "Already read VST when parsing summary block?");
5942         // We might not have a VST if there were no values in the
5943         // summary. An empty summary block generated when we are
5944         // performing ThinLTO compiles so we don't later invoke
5945         // the regular LTO process on them.
5946         if (VSTOffset > 0) {
5947           if (Error Err = parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap))
5948             return Err;
5949           SeenValueSymbolTable = true;
5950         }
5951         SeenGlobalValSummary = true;
5952         if (Error Err = parseEntireSummary(Entry.ID))
5953           return Err;
5954         break;
5955       case bitc::MODULE_STRTAB_BLOCK_ID:
5956         if (Error Err = parseModuleStringTable())
5957           return Err;
5958         break;
5959       }
5960       continue;
5961 
5962     case BitstreamEntry::Record: {
5963         Record.clear();
5964         Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
5965         if (!MaybeBitCode)
5966           return MaybeBitCode.takeError();
5967         switch (MaybeBitCode.get()) {
5968         default:
5969           break; // Default behavior, ignore unknown content.
5970         case bitc::MODULE_CODE_VERSION: {
5971           if (Error Err = parseVersionRecord(Record).takeError())
5972             return Err;
5973           break;
5974         }
5975         /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
5976         case bitc::MODULE_CODE_SOURCE_FILENAME: {
5977           SmallString<128> ValueName;
5978           if (convertToString(Record, 0, ValueName))
5979             return error("Invalid record");
5980           SourceFileName = ValueName.c_str();
5981           break;
5982         }
5983         /// MODULE_CODE_HASH: [5*i32]
5984         case bitc::MODULE_CODE_HASH: {
5985           if (Record.size() != 5)
5986             return error("Invalid hash length " + Twine(Record.size()).str());
5987           auto &Hash = getThisModule()->second.second;
5988           int Pos = 0;
5989           for (auto &Val : Record) {
5990             assert(!(Val >> 32) && "Unexpected high bits set");
5991             Hash[Pos++] = Val;
5992           }
5993           break;
5994         }
5995         /// MODULE_CODE_VSTOFFSET: [offset]
5996         case bitc::MODULE_CODE_VSTOFFSET:
5997           if (Record.empty())
5998             return error("Invalid record");
5999           // Note that we subtract 1 here because the offset is relative to one
6000           // word before the start of the identification or module block, which
6001           // was historically always the start of the regular bitcode header.
6002           VSTOffset = Record[0] - 1;
6003           break;
6004         // v1 GLOBALVAR: [pointer type, isconst,     initid,       linkage, ...]
6005         // v1 FUNCTION:  [type,         callingconv, isproto,      linkage, ...]
6006         // v1 ALIAS:     [alias type,   addrspace,   aliasee val#, linkage, ...]
6007         // v2: [strtab offset, strtab size, v1]
6008         case bitc::MODULE_CODE_GLOBALVAR:
6009         case bitc::MODULE_CODE_FUNCTION:
6010         case bitc::MODULE_CODE_ALIAS: {
6011           StringRef Name;
6012           ArrayRef<uint64_t> GVRecord;
6013           std::tie(Name, GVRecord) = readNameFromStrtab(Record);
6014           if (GVRecord.size() <= 3)
6015             return error("Invalid record");
6016           uint64_t RawLinkage = GVRecord[3];
6017           GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
6018           if (!UseStrtab) {
6019             ValueIdToLinkageMap[ValueId++] = Linkage;
6020             break;
6021           }
6022 
6023           setValueGUID(ValueId++, Name, Linkage, SourceFileName);
6024           break;
6025         }
6026         }
6027       }
6028       continue;
6029     }
6030   }
6031 }
6032 
6033 std::vector<ValueInfo>
6034 ModuleSummaryIndexBitcodeReader::makeRefList(ArrayRef<uint64_t> Record) {
6035   std::vector<ValueInfo> Ret;
6036   Ret.reserve(Record.size());
6037   for (uint64_t RefValueId : Record)
6038     Ret.push_back(getValueInfoFromValueId(RefValueId).first);
6039   return Ret;
6040 }
6041 
6042 std::vector<FunctionSummary::EdgeTy>
6043 ModuleSummaryIndexBitcodeReader::makeCallList(ArrayRef<uint64_t> Record,
6044                                               bool IsOldProfileFormat,
6045                                               bool HasProfile, bool HasRelBF) {
6046   std::vector<FunctionSummary::EdgeTy> Ret;
6047   Ret.reserve(Record.size());
6048   for (unsigned I = 0, E = Record.size(); I != E; ++I) {
6049     CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown;
6050     uint64_t RelBF = 0;
6051     ValueInfo Callee = getValueInfoFromValueId(Record[I]).first;
6052     if (IsOldProfileFormat) {
6053       I += 1; // Skip old callsitecount field
6054       if (HasProfile)
6055         I += 1; // Skip old profilecount field
6056     } else if (HasProfile)
6057       Hotness = static_cast<CalleeInfo::HotnessType>(Record[++I]);
6058     else if (HasRelBF)
6059       RelBF = Record[++I];
6060     Ret.push_back(FunctionSummary::EdgeTy{Callee, CalleeInfo(Hotness, RelBF)});
6061   }
6062   return Ret;
6063 }
6064 
6065 static void
6066 parseWholeProgramDevirtResolutionByArg(ArrayRef<uint64_t> Record, size_t &Slot,
6067                                        WholeProgramDevirtResolution &Wpd) {
6068   uint64_t ArgNum = Record[Slot++];
6069   WholeProgramDevirtResolution::ByArg &B =
6070       Wpd.ResByArg[{Record.begin() + Slot, Record.begin() + Slot + ArgNum}];
6071   Slot += ArgNum;
6072 
6073   B.TheKind =
6074       static_cast<WholeProgramDevirtResolution::ByArg::Kind>(Record[Slot++]);
6075   B.Info = Record[Slot++];
6076   B.Byte = Record[Slot++];
6077   B.Bit = Record[Slot++];
6078 }
6079 
6080 static void parseWholeProgramDevirtResolution(ArrayRef<uint64_t> Record,
6081                                               StringRef Strtab, size_t &Slot,
6082                                               TypeIdSummary &TypeId) {
6083   uint64_t Id = Record[Slot++];
6084   WholeProgramDevirtResolution &Wpd = TypeId.WPDRes[Id];
6085 
6086   Wpd.TheKind = static_cast<WholeProgramDevirtResolution::Kind>(Record[Slot++]);
6087   Wpd.SingleImplName = {Strtab.data() + Record[Slot],
6088                         static_cast<size_t>(Record[Slot + 1])};
6089   Slot += 2;
6090 
6091   uint64_t ResByArgNum = Record[Slot++];
6092   for (uint64_t I = 0; I != ResByArgNum; ++I)
6093     parseWholeProgramDevirtResolutionByArg(Record, Slot, Wpd);
6094 }
6095 
6096 static void parseTypeIdSummaryRecord(ArrayRef<uint64_t> Record,
6097                                      StringRef Strtab,
6098                                      ModuleSummaryIndex &TheIndex) {
6099   size_t Slot = 0;
6100   TypeIdSummary &TypeId = TheIndex.getOrInsertTypeIdSummary(
6101       {Strtab.data() + Record[Slot], static_cast<size_t>(Record[Slot + 1])});
6102   Slot += 2;
6103 
6104   TypeId.TTRes.TheKind = static_cast<TypeTestResolution::Kind>(Record[Slot++]);
6105   TypeId.TTRes.SizeM1BitWidth = Record[Slot++];
6106   TypeId.TTRes.AlignLog2 = Record[Slot++];
6107   TypeId.TTRes.SizeM1 = Record[Slot++];
6108   TypeId.TTRes.BitMask = Record[Slot++];
6109   TypeId.TTRes.InlineBits = Record[Slot++];
6110 
6111   while (Slot < Record.size())
6112     parseWholeProgramDevirtResolution(Record, Strtab, Slot, TypeId);
6113 }
6114 
6115 std::vector<FunctionSummary::ParamAccess>
6116 ModuleSummaryIndexBitcodeReader::parseParamAccesses(ArrayRef<uint64_t> Record) {
6117   auto ReadRange = [&]() {
6118     APInt Lower(FunctionSummary::ParamAccess::RangeWidth,
6119                 BitcodeReader::decodeSignRotatedValue(Record.front()));
6120     Record = Record.drop_front();
6121     APInt Upper(FunctionSummary::ParamAccess::RangeWidth,
6122                 BitcodeReader::decodeSignRotatedValue(Record.front()));
6123     Record = Record.drop_front();
6124     ConstantRange Range{Lower, Upper};
6125     assert(!Range.isFullSet());
6126     assert(!Range.isUpperSignWrapped());
6127     return Range;
6128   };
6129 
6130   std::vector<FunctionSummary::ParamAccess> PendingParamAccesses;
6131   while (!Record.empty()) {
6132     PendingParamAccesses.emplace_back();
6133     FunctionSummary::ParamAccess &ParamAccess = PendingParamAccesses.back();
6134     ParamAccess.ParamNo = Record.front();
6135     Record = Record.drop_front();
6136     ParamAccess.Use = ReadRange();
6137     ParamAccess.Calls.resize(Record.front());
6138     Record = Record.drop_front();
6139     for (auto &Call : ParamAccess.Calls) {
6140       Call.ParamNo = Record.front();
6141       Record = Record.drop_front();
6142       Call.Callee = getValueInfoFromValueId(Record.front()).first;
6143       Record = Record.drop_front();
6144       Call.Offsets = ReadRange();
6145     }
6146   }
6147   return PendingParamAccesses;
6148 }
6149 
6150 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableInfo(
6151     ArrayRef<uint64_t> Record, size_t &Slot,
6152     TypeIdCompatibleVtableInfo &TypeId) {
6153   uint64_t Offset = Record[Slot++];
6154   ValueInfo Callee = getValueInfoFromValueId(Record[Slot++]).first;
6155   TypeId.push_back({Offset, Callee});
6156 }
6157 
6158 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableSummaryRecord(
6159     ArrayRef<uint64_t> Record) {
6160   size_t Slot = 0;
6161   TypeIdCompatibleVtableInfo &TypeId =
6162       TheIndex.getOrInsertTypeIdCompatibleVtableSummary(
6163           {Strtab.data() + Record[Slot],
6164            static_cast<size_t>(Record[Slot + 1])});
6165   Slot += 2;
6166 
6167   while (Slot < Record.size())
6168     parseTypeIdCompatibleVtableInfo(Record, Slot, TypeId);
6169 }
6170 
6171 static void setSpecialRefs(std::vector<ValueInfo> &Refs, unsigned ROCnt,
6172                            unsigned WOCnt) {
6173   // Readonly and writeonly refs are in the end of the refs list.
6174   assert(ROCnt + WOCnt <= Refs.size());
6175   unsigned FirstWORef = Refs.size() - WOCnt;
6176   unsigned RefNo = FirstWORef - ROCnt;
6177   for (; RefNo < FirstWORef; ++RefNo)
6178     Refs[RefNo].setReadOnly();
6179   for (; RefNo < Refs.size(); ++RefNo)
6180     Refs[RefNo].setWriteOnly();
6181 }
6182 
6183 // Eagerly parse the entire summary block. This populates the GlobalValueSummary
6184 // objects in the index.
6185 Error ModuleSummaryIndexBitcodeReader::parseEntireSummary(unsigned ID) {
6186   if (Error Err = Stream.EnterSubBlock(ID))
6187     return Err;
6188   SmallVector<uint64_t, 64> Record;
6189 
6190   // Parse version
6191   {
6192     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
6193     if (!MaybeEntry)
6194       return MaybeEntry.takeError();
6195     BitstreamEntry Entry = MaybeEntry.get();
6196 
6197     if (Entry.Kind != BitstreamEntry::Record)
6198       return error("Invalid Summary Block: record for version expected");
6199     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
6200     if (!MaybeRecord)
6201       return MaybeRecord.takeError();
6202     if (MaybeRecord.get() != bitc::FS_VERSION)
6203       return error("Invalid Summary Block: version expected");
6204   }
6205   const uint64_t Version = Record[0];
6206   const bool IsOldProfileFormat = Version == 1;
6207   if (Version < 1 || Version > ModuleSummaryIndex::BitcodeSummaryVersion)
6208     return error("Invalid summary version " + Twine(Version) +
6209                  ". Version should be in the range [1-" +
6210                  Twine(ModuleSummaryIndex::BitcodeSummaryVersion) +
6211                  "].");
6212   Record.clear();
6213 
6214   // Keep around the last seen summary to be used when we see an optional
6215   // "OriginalName" attachement.
6216   GlobalValueSummary *LastSeenSummary = nullptr;
6217   GlobalValue::GUID LastSeenGUID = 0;
6218 
6219   // We can expect to see any number of type ID information records before
6220   // each function summary records; these variables store the information
6221   // collected so far so that it can be used to create the summary object.
6222   std::vector<GlobalValue::GUID> PendingTypeTests;
6223   std::vector<FunctionSummary::VFuncId> PendingTypeTestAssumeVCalls,
6224       PendingTypeCheckedLoadVCalls;
6225   std::vector<FunctionSummary::ConstVCall> PendingTypeTestAssumeConstVCalls,
6226       PendingTypeCheckedLoadConstVCalls;
6227   std::vector<FunctionSummary::ParamAccess> PendingParamAccesses;
6228 
6229   while (true) {
6230     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
6231     if (!MaybeEntry)
6232       return MaybeEntry.takeError();
6233     BitstreamEntry Entry = MaybeEntry.get();
6234 
6235     switch (Entry.Kind) {
6236     case BitstreamEntry::SubBlock: // Handled for us already.
6237     case BitstreamEntry::Error:
6238       return error("Malformed block");
6239     case BitstreamEntry::EndBlock:
6240       return Error::success();
6241     case BitstreamEntry::Record:
6242       // The interesting case.
6243       break;
6244     }
6245 
6246     // Read a record. The record format depends on whether this
6247     // is a per-module index or a combined index file. In the per-module
6248     // case the records contain the associated value's ID for correlation
6249     // with VST entries. In the combined index the correlation is done
6250     // via the bitcode offset of the summary records (which were saved
6251     // in the combined index VST entries). The records also contain
6252     // information used for ThinLTO renaming and importing.
6253     Record.clear();
6254     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
6255     if (!MaybeBitCode)
6256       return MaybeBitCode.takeError();
6257     switch (unsigned BitCode = MaybeBitCode.get()) {
6258     default: // Default behavior: ignore.
6259       break;
6260     case bitc::FS_FLAGS: {  // [flags]
6261       TheIndex.setFlags(Record[0]);
6262       break;
6263     }
6264     case bitc::FS_VALUE_GUID: { // [valueid, refguid]
6265       uint64_t ValueID = Record[0];
6266       GlobalValue::GUID RefGUID = Record[1];
6267       ValueIdToValueInfoMap[ValueID] =
6268           std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID);
6269       break;
6270     }
6271     // FS_PERMODULE: [valueid, flags, instcount, fflags, numrefs,
6272     //                numrefs x valueid, n x (valueid)]
6273     // FS_PERMODULE_PROFILE: [valueid, flags, instcount, fflags, numrefs,
6274     //                        numrefs x valueid,
6275     //                        n x (valueid, hotness)]
6276     // FS_PERMODULE_RELBF: [valueid, flags, instcount, fflags, numrefs,
6277     //                      numrefs x valueid,
6278     //                      n x (valueid, relblockfreq)]
6279     case bitc::FS_PERMODULE:
6280     case bitc::FS_PERMODULE_RELBF:
6281     case bitc::FS_PERMODULE_PROFILE: {
6282       unsigned ValueID = Record[0];
6283       uint64_t RawFlags = Record[1];
6284       unsigned InstCount = Record[2];
6285       uint64_t RawFunFlags = 0;
6286       unsigned NumRefs = Record[3];
6287       unsigned NumRORefs = 0, NumWORefs = 0;
6288       int RefListStartIndex = 4;
6289       if (Version >= 4) {
6290         RawFunFlags = Record[3];
6291         NumRefs = Record[4];
6292         RefListStartIndex = 5;
6293         if (Version >= 5) {
6294           NumRORefs = Record[5];
6295           RefListStartIndex = 6;
6296           if (Version >= 7) {
6297             NumWORefs = Record[6];
6298             RefListStartIndex = 7;
6299           }
6300         }
6301       }
6302 
6303       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6304       // The module path string ref set in the summary must be owned by the
6305       // index's module string table. Since we don't have a module path
6306       // string table section in the per-module index, we create a single
6307       // module path string table entry with an empty (0) ID to take
6308       // ownership.
6309       int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
6310       assert(Record.size() >= RefListStartIndex + NumRefs &&
6311              "Record size inconsistent with number of references");
6312       std::vector<ValueInfo> Refs = makeRefList(
6313           ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
6314       bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE);
6315       bool HasRelBF = (BitCode == bitc::FS_PERMODULE_RELBF);
6316       std::vector<FunctionSummary::EdgeTy> Calls = makeCallList(
6317           ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex),
6318           IsOldProfileFormat, HasProfile, HasRelBF);
6319       setSpecialRefs(Refs, NumRORefs, NumWORefs);
6320       auto FS = std::make_unique<FunctionSummary>(
6321           Flags, InstCount, getDecodedFFlags(RawFunFlags), /*EntryCount=*/0,
6322           std::move(Refs), std::move(Calls), std::move(PendingTypeTests),
6323           std::move(PendingTypeTestAssumeVCalls),
6324           std::move(PendingTypeCheckedLoadVCalls),
6325           std::move(PendingTypeTestAssumeConstVCalls),
6326           std::move(PendingTypeCheckedLoadConstVCalls),
6327           std::move(PendingParamAccesses));
6328       auto VIAndOriginalGUID = getValueInfoFromValueId(ValueID);
6329       FS->setModulePath(getThisModule()->first());
6330       FS->setOriginalName(VIAndOriginalGUID.second);
6331       TheIndex.addGlobalValueSummary(VIAndOriginalGUID.first, std::move(FS));
6332       break;
6333     }
6334     // FS_ALIAS: [valueid, flags, valueid]
6335     // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as
6336     // they expect all aliasee summaries to be available.
6337     case bitc::FS_ALIAS: {
6338       unsigned ValueID = Record[0];
6339       uint64_t RawFlags = Record[1];
6340       unsigned AliaseeID = Record[2];
6341       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6342       auto AS = std::make_unique<AliasSummary>(Flags);
6343       // The module path string ref set in the summary must be owned by the
6344       // index's module string table. Since we don't have a module path
6345       // string table section in the per-module index, we create a single
6346       // module path string table entry with an empty (0) ID to take
6347       // ownership.
6348       AS->setModulePath(getThisModule()->first());
6349 
6350       auto AliaseeVI = getValueInfoFromValueId(AliaseeID).first;
6351       auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, ModulePath);
6352       if (!AliaseeInModule)
6353         return error("Alias expects aliasee summary to be parsed");
6354       AS->setAliasee(AliaseeVI, AliaseeInModule);
6355 
6356       auto GUID = getValueInfoFromValueId(ValueID);
6357       AS->setOriginalName(GUID.second);
6358       TheIndex.addGlobalValueSummary(GUID.first, std::move(AS));
6359       break;
6360     }
6361     // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, n x valueid]
6362     case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: {
6363       unsigned ValueID = Record[0];
6364       uint64_t RawFlags = Record[1];
6365       unsigned RefArrayStart = 2;
6366       GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false,
6367                                       /* WriteOnly */ false,
6368                                       /* Constant */ false,
6369                                       GlobalObject::VCallVisibilityPublic);
6370       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6371       if (Version >= 5) {
6372         GVF = getDecodedGVarFlags(Record[2]);
6373         RefArrayStart = 3;
6374       }
6375       std::vector<ValueInfo> Refs =
6376           makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart));
6377       auto FS =
6378           std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
6379       FS->setModulePath(getThisModule()->first());
6380       auto GUID = getValueInfoFromValueId(ValueID);
6381       FS->setOriginalName(GUID.second);
6382       TheIndex.addGlobalValueSummary(GUID.first, std::move(FS));
6383       break;
6384     }
6385     // FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags,
6386     //                        numrefs, numrefs x valueid,
6387     //                        n x (valueid, offset)]
6388     case bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: {
6389       unsigned ValueID = Record[0];
6390       uint64_t RawFlags = Record[1];
6391       GlobalVarSummary::GVarFlags GVF = getDecodedGVarFlags(Record[2]);
6392       unsigned NumRefs = Record[3];
6393       unsigned RefListStartIndex = 4;
6394       unsigned VTableListStartIndex = RefListStartIndex + NumRefs;
6395       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6396       std::vector<ValueInfo> Refs = makeRefList(
6397           ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
6398       VTableFuncList VTableFuncs;
6399       for (unsigned I = VTableListStartIndex, E = Record.size(); I != E; ++I) {
6400         ValueInfo Callee = getValueInfoFromValueId(Record[I]).first;
6401         uint64_t Offset = Record[++I];
6402         VTableFuncs.push_back({Callee, Offset});
6403       }
6404       auto VS =
6405           std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
6406       VS->setModulePath(getThisModule()->first());
6407       VS->setVTableFuncs(VTableFuncs);
6408       auto GUID = getValueInfoFromValueId(ValueID);
6409       VS->setOriginalName(GUID.second);
6410       TheIndex.addGlobalValueSummary(GUID.first, std::move(VS));
6411       break;
6412     }
6413     // FS_COMBINED: [valueid, modid, flags, instcount, fflags, numrefs,
6414     //               numrefs x valueid, n x (valueid)]
6415     // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, fflags, numrefs,
6416     //                       numrefs x valueid, n x (valueid, hotness)]
6417     case bitc::FS_COMBINED:
6418     case bitc::FS_COMBINED_PROFILE: {
6419       unsigned ValueID = Record[0];
6420       uint64_t ModuleId = Record[1];
6421       uint64_t RawFlags = Record[2];
6422       unsigned InstCount = Record[3];
6423       uint64_t RawFunFlags = 0;
6424       uint64_t EntryCount = 0;
6425       unsigned NumRefs = Record[4];
6426       unsigned NumRORefs = 0, NumWORefs = 0;
6427       int RefListStartIndex = 5;
6428 
6429       if (Version >= 4) {
6430         RawFunFlags = Record[4];
6431         RefListStartIndex = 6;
6432         size_t NumRefsIndex = 5;
6433         if (Version >= 5) {
6434           unsigned NumRORefsOffset = 1;
6435           RefListStartIndex = 7;
6436           if (Version >= 6) {
6437             NumRefsIndex = 6;
6438             EntryCount = Record[5];
6439             RefListStartIndex = 8;
6440             if (Version >= 7) {
6441               RefListStartIndex = 9;
6442               NumWORefs = Record[8];
6443               NumRORefsOffset = 2;
6444             }
6445           }
6446           NumRORefs = Record[RefListStartIndex - NumRORefsOffset];
6447         }
6448         NumRefs = Record[NumRefsIndex];
6449       }
6450 
6451       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6452       int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
6453       assert(Record.size() >= RefListStartIndex + NumRefs &&
6454              "Record size inconsistent with number of references");
6455       std::vector<ValueInfo> Refs = makeRefList(
6456           ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
6457       bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE);
6458       std::vector<FunctionSummary::EdgeTy> Edges = makeCallList(
6459           ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex),
6460           IsOldProfileFormat, HasProfile, false);
6461       ValueInfo VI = getValueInfoFromValueId(ValueID).first;
6462       setSpecialRefs(Refs, NumRORefs, NumWORefs);
6463       auto FS = std::make_unique<FunctionSummary>(
6464           Flags, InstCount, getDecodedFFlags(RawFunFlags), EntryCount,
6465           std::move(Refs), std::move(Edges), std::move(PendingTypeTests),
6466           std::move(PendingTypeTestAssumeVCalls),
6467           std::move(PendingTypeCheckedLoadVCalls),
6468           std::move(PendingTypeTestAssumeConstVCalls),
6469           std::move(PendingTypeCheckedLoadConstVCalls),
6470           std::move(PendingParamAccesses));
6471       LastSeenSummary = FS.get();
6472       LastSeenGUID = VI.getGUID();
6473       FS->setModulePath(ModuleIdMap[ModuleId]);
6474       TheIndex.addGlobalValueSummary(VI, std::move(FS));
6475       break;
6476     }
6477     // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid]
6478     // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as
6479     // they expect all aliasee summaries to be available.
6480     case bitc::FS_COMBINED_ALIAS: {
6481       unsigned ValueID = Record[0];
6482       uint64_t ModuleId = Record[1];
6483       uint64_t RawFlags = Record[2];
6484       unsigned AliaseeValueId = Record[3];
6485       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6486       auto AS = std::make_unique<AliasSummary>(Flags);
6487       LastSeenSummary = AS.get();
6488       AS->setModulePath(ModuleIdMap[ModuleId]);
6489 
6490       auto AliaseeVI = getValueInfoFromValueId(AliaseeValueId).first;
6491       auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, AS->modulePath());
6492       AS->setAliasee(AliaseeVI, AliaseeInModule);
6493 
6494       ValueInfo VI = getValueInfoFromValueId(ValueID).first;
6495       LastSeenGUID = VI.getGUID();
6496       TheIndex.addGlobalValueSummary(VI, std::move(AS));
6497       break;
6498     }
6499     // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid]
6500     case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: {
6501       unsigned ValueID = Record[0];
6502       uint64_t ModuleId = Record[1];
6503       uint64_t RawFlags = Record[2];
6504       unsigned RefArrayStart = 3;
6505       GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false,
6506                                       /* WriteOnly */ false,
6507                                       /* Constant */ false,
6508                                       GlobalObject::VCallVisibilityPublic);
6509       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6510       if (Version >= 5) {
6511         GVF = getDecodedGVarFlags(Record[3]);
6512         RefArrayStart = 4;
6513       }
6514       std::vector<ValueInfo> Refs =
6515           makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart));
6516       auto FS =
6517           std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
6518       LastSeenSummary = FS.get();
6519       FS->setModulePath(ModuleIdMap[ModuleId]);
6520       ValueInfo VI = getValueInfoFromValueId(ValueID).first;
6521       LastSeenGUID = VI.getGUID();
6522       TheIndex.addGlobalValueSummary(VI, std::move(FS));
6523       break;
6524     }
6525     // FS_COMBINED_ORIGINAL_NAME: [original_name]
6526     case bitc::FS_COMBINED_ORIGINAL_NAME: {
6527       uint64_t OriginalName = Record[0];
6528       if (!LastSeenSummary)
6529         return error("Name attachment that does not follow a combined record");
6530       LastSeenSummary->setOriginalName(OriginalName);
6531       TheIndex.addOriginalName(LastSeenGUID, OriginalName);
6532       // Reset the LastSeenSummary
6533       LastSeenSummary = nullptr;
6534       LastSeenGUID = 0;
6535       break;
6536     }
6537     case bitc::FS_TYPE_TESTS:
6538       assert(PendingTypeTests.empty());
6539       llvm::append_range(PendingTypeTests, Record);
6540       break;
6541 
6542     case bitc::FS_TYPE_TEST_ASSUME_VCALLS:
6543       assert(PendingTypeTestAssumeVCalls.empty());
6544       for (unsigned I = 0; I != Record.size(); I += 2)
6545         PendingTypeTestAssumeVCalls.push_back({Record[I], Record[I+1]});
6546       break;
6547 
6548     case bitc::FS_TYPE_CHECKED_LOAD_VCALLS:
6549       assert(PendingTypeCheckedLoadVCalls.empty());
6550       for (unsigned I = 0; I != Record.size(); I += 2)
6551         PendingTypeCheckedLoadVCalls.push_back({Record[I], Record[I+1]});
6552       break;
6553 
6554     case bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL:
6555       PendingTypeTestAssumeConstVCalls.push_back(
6556           {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}});
6557       break;
6558 
6559     case bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL:
6560       PendingTypeCheckedLoadConstVCalls.push_back(
6561           {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}});
6562       break;
6563 
6564     case bitc::FS_CFI_FUNCTION_DEFS: {
6565       std::set<std::string> &CfiFunctionDefs = TheIndex.cfiFunctionDefs();
6566       for (unsigned I = 0; I != Record.size(); I += 2)
6567         CfiFunctionDefs.insert(
6568             {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])});
6569       break;
6570     }
6571 
6572     case bitc::FS_CFI_FUNCTION_DECLS: {
6573       std::set<std::string> &CfiFunctionDecls = TheIndex.cfiFunctionDecls();
6574       for (unsigned I = 0; I != Record.size(); I += 2)
6575         CfiFunctionDecls.insert(
6576             {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])});
6577       break;
6578     }
6579 
6580     case bitc::FS_TYPE_ID:
6581       parseTypeIdSummaryRecord(Record, Strtab, TheIndex);
6582       break;
6583 
6584     case bitc::FS_TYPE_ID_METADATA:
6585       parseTypeIdCompatibleVtableSummaryRecord(Record);
6586       break;
6587 
6588     case bitc::FS_BLOCK_COUNT:
6589       TheIndex.addBlockCount(Record[0]);
6590       break;
6591 
6592     case bitc::FS_PARAM_ACCESS: {
6593       PendingParamAccesses = parseParamAccesses(Record);
6594       break;
6595     }
6596     }
6597   }
6598   llvm_unreachable("Exit infinite loop");
6599 }
6600 
6601 // Parse the  module string table block into the Index.
6602 // This populates the ModulePathStringTable map in the index.
6603 Error ModuleSummaryIndexBitcodeReader::parseModuleStringTable() {
6604   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID))
6605     return Err;
6606 
6607   SmallVector<uint64_t, 64> Record;
6608 
6609   SmallString<128> ModulePath;
6610   ModuleSummaryIndex::ModuleInfo *LastSeenModule = nullptr;
6611 
6612   while (true) {
6613     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
6614     if (!MaybeEntry)
6615       return MaybeEntry.takeError();
6616     BitstreamEntry Entry = MaybeEntry.get();
6617 
6618     switch (Entry.Kind) {
6619     case BitstreamEntry::SubBlock: // Handled for us already.
6620     case BitstreamEntry::Error:
6621       return error("Malformed block");
6622     case BitstreamEntry::EndBlock:
6623       return Error::success();
6624     case BitstreamEntry::Record:
6625       // The interesting case.
6626       break;
6627     }
6628 
6629     Record.clear();
6630     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
6631     if (!MaybeRecord)
6632       return MaybeRecord.takeError();
6633     switch (MaybeRecord.get()) {
6634     default: // Default behavior: ignore.
6635       break;
6636     case bitc::MST_CODE_ENTRY: {
6637       // MST_ENTRY: [modid, namechar x N]
6638       uint64_t ModuleId = Record[0];
6639 
6640       if (convertToString(Record, 1, ModulePath))
6641         return error("Invalid record");
6642 
6643       LastSeenModule = TheIndex.addModule(ModulePath, ModuleId);
6644       ModuleIdMap[ModuleId] = LastSeenModule->first();
6645 
6646       ModulePath.clear();
6647       break;
6648     }
6649     /// MST_CODE_HASH: [5*i32]
6650     case bitc::MST_CODE_HASH: {
6651       if (Record.size() != 5)
6652         return error("Invalid hash length " + Twine(Record.size()).str());
6653       if (!LastSeenModule)
6654         return error("Invalid hash that does not follow a module path");
6655       int Pos = 0;
6656       for (auto &Val : Record) {
6657         assert(!(Val >> 32) && "Unexpected high bits set");
6658         LastSeenModule->second.second[Pos++] = Val;
6659       }
6660       // Reset LastSeenModule to avoid overriding the hash unexpectedly.
6661       LastSeenModule = nullptr;
6662       break;
6663     }
6664     }
6665   }
6666   llvm_unreachable("Exit infinite loop");
6667 }
6668 
6669 namespace {
6670 
6671 // FIXME: This class is only here to support the transition to llvm::Error. It
6672 // will be removed once this transition is complete. Clients should prefer to
6673 // deal with the Error value directly, rather than converting to error_code.
6674 class BitcodeErrorCategoryType : public std::error_category {
6675   const char *name() const noexcept override {
6676     return "llvm.bitcode";
6677   }
6678 
6679   std::string message(int IE) const override {
6680     BitcodeError E = static_cast<BitcodeError>(IE);
6681     switch (E) {
6682     case BitcodeError::CorruptedBitcode:
6683       return "Corrupted bitcode";
6684     }
6685     llvm_unreachable("Unknown error type!");
6686   }
6687 };
6688 
6689 } // end anonymous namespace
6690 
6691 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory;
6692 
6693 const std::error_category &llvm::BitcodeErrorCategory() {
6694   return *ErrorCategory;
6695 }
6696 
6697 static Expected<StringRef> readBlobInRecord(BitstreamCursor &Stream,
6698                                             unsigned Block, unsigned RecordID) {
6699   if (Error Err = Stream.EnterSubBlock(Block))
6700     return std::move(Err);
6701 
6702   StringRef Strtab;
6703   while (true) {
6704     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
6705     if (!MaybeEntry)
6706       return MaybeEntry.takeError();
6707     llvm::BitstreamEntry Entry = MaybeEntry.get();
6708 
6709     switch (Entry.Kind) {
6710     case BitstreamEntry::EndBlock:
6711       return Strtab;
6712 
6713     case BitstreamEntry::Error:
6714       return error("Malformed block");
6715 
6716     case BitstreamEntry::SubBlock:
6717       if (Error Err = Stream.SkipBlock())
6718         return std::move(Err);
6719       break;
6720 
6721     case BitstreamEntry::Record:
6722       StringRef Blob;
6723       SmallVector<uint64_t, 1> Record;
6724       Expected<unsigned> MaybeRecord =
6725           Stream.readRecord(Entry.ID, Record, &Blob);
6726       if (!MaybeRecord)
6727         return MaybeRecord.takeError();
6728       if (MaybeRecord.get() == RecordID)
6729         Strtab = Blob;
6730       break;
6731     }
6732   }
6733 }
6734 
6735 //===----------------------------------------------------------------------===//
6736 // External interface
6737 //===----------------------------------------------------------------------===//
6738 
6739 Expected<std::vector<BitcodeModule>>
6740 llvm::getBitcodeModuleList(MemoryBufferRef Buffer) {
6741   auto FOrErr = getBitcodeFileContents(Buffer);
6742   if (!FOrErr)
6743     return FOrErr.takeError();
6744   return std::move(FOrErr->Mods);
6745 }
6746 
6747 Expected<BitcodeFileContents>
6748 llvm::getBitcodeFileContents(MemoryBufferRef Buffer) {
6749   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
6750   if (!StreamOrErr)
6751     return StreamOrErr.takeError();
6752   BitstreamCursor &Stream = *StreamOrErr;
6753 
6754   BitcodeFileContents F;
6755   while (true) {
6756     uint64_t BCBegin = Stream.getCurrentByteNo();
6757 
6758     // We may be consuming bitcode from a client that leaves garbage at the end
6759     // of the bitcode stream (e.g. Apple's ar tool). If we are close enough to
6760     // the end that there cannot possibly be another module, stop looking.
6761     if (BCBegin + 8 >= Stream.getBitcodeBytes().size())
6762       return F;
6763 
6764     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
6765     if (!MaybeEntry)
6766       return MaybeEntry.takeError();
6767     llvm::BitstreamEntry Entry = MaybeEntry.get();
6768 
6769     switch (Entry.Kind) {
6770     case BitstreamEntry::EndBlock:
6771     case BitstreamEntry::Error:
6772       return error("Malformed block");
6773 
6774     case BitstreamEntry::SubBlock: {
6775       uint64_t IdentificationBit = -1ull;
6776       if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) {
6777         IdentificationBit = Stream.GetCurrentBitNo() - BCBegin * 8;
6778         if (Error Err = Stream.SkipBlock())
6779           return std::move(Err);
6780 
6781         {
6782           Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
6783           if (!MaybeEntry)
6784             return MaybeEntry.takeError();
6785           Entry = MaybeEntry.get();
6786         }
6787 
6788         if (Entry.Kind != BitstreamEntry::SubBlock ||
6789             Entry.ID != bitc::MODULE_BLOCK_ID)
6790           return error("Malformed block");
6791       }
6792 
6793       if (Entry.ID == bitc::MODULE_BLOCK_ID) {
6794         uint64_t ModuleBit = Stream.GetCurrentBitNo() - BCBegin * 8;
6795         if (Error Err = Stream.SkipBlock())
6796           return std::move(Err);
6797 
6798         F.Mods.push_back({Stream.getBitcodeBytes().slice(
6799                               BCBegin, Stream.getCurrentByteNo() - BCBegin),
6800                           Buffer.getBufferIdentifier(), IdentificationBit,
6801                           ModuleBit});
6802         continue;
6803       }
6804 
6805       if (Entry.ID == bitc::STRTAB_BLOCK_ID) {
6806         Expected<StringRef> Strtab =
6807             readBlobInRecord(Stream, bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB);
6808         if (!Strtab)
6809           return Strtab.takeError();
6810         // This string table is used by every preceding bitcode module that does
6811         // not have its own string table. A bitcode file may have multiple
6812         // string tables if it was created by binary concatenation, for example
6813         // with "llvm-cat -b".
6814         for (BitcodeModule &I : llvm::reverse(F.Mods)) {
6815           if (!I.Strtab.empty())
6816             break;
6817           I.Strtab = *Strtab;
6818         }
6819         // Similarly, the string table is used by every preceding symbol table;
6820         // normally there will be just one unless the bitcode file was created
6821         // by binary concatenation.
6822         if (!F.Symtab.empty() && F.StrtabForSymtab.empty())
6823           F.StrtabForSymtab = *Strtab;
6824         continue;
6825       }
6826 
6827       if (Entry.ID == bitc::SYMTAB_BLOCK_ID) {
6828         Expected<StringRef> SymtabOrErr =
6829             readBlobInRecord(Stream, bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB);
6830         if (!SymtabOrErr)
6831           return SymtabOrErr.takeError();
6832 
6833         // We can expect the bitcode file to have multiple symbol tables if it
6834         // was created by binary concatenation. In that case we silently
6835         // ignore any subsequent symbol tables, which is fine because this is a
6836         // low level function. The client is expected to notice that the number
6837         // of modules in the symbol table does not match the number of modules
6838         // in the input file and regenerate the symbol table.
6839         if (F.Symtab.empty())
6840           F.Symtab = *SymtabOrErr;
6841         continue;
6842       }
6843 
6844       if (Error Err = Stream.SkipBlock())
6845         return std::move(Err);
6846       continue;
6847     }
6848     case BitstreamEntry::Record:
6849       if (Error E = Stream.skipRecord(Entry.ID).takeError())
6850         return std::move(E);
6851       continue;
6852     }
6853   }
6854 }
6855 
6856 /// Get a lazy one-at-time loading module from bitcode.
6857 ///
6858 /// This isn't always used in a lazy context.  In particular, it's also used by
6859 /// \a parseModule().  If this is truly lazy, then we need to eagerly pull
6860 /// in forward-referenced functions from block address references.
6861 ///
6862 /// \param[in] MaterializeAll Set to \c true if we should materialize
6863 /// everything.
6864 Expected<std::unique_ptr<Module>>
6865 BitcodeModule::getModuleImpl(LLVMContext &Context, bool MaterializeAll,
6866                              bool ShouldLazyLoadMetadata, bool IsImporting,
6867                              DataLayoutCallbackTy DataLayoutCallback) {
6868   BitstreamCursor Stream(Buffer);
6869 
6870   std::string ProducerIdentification;
6871   if (IdentificationBit != -1ull) {
6872     if (Error JumpFailed = Stream.JumpToBit(IdentificationBit))
6873       return std::move(JumpFailed);
6874     if (Error E =
6875             readIdentificationBlock(Stream).moveInto(ProducerIdentification))
6876       return std::move(E);
6877   }
6878 
6879   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
6880     return std::move(JumpFailed);
6881   auto *R = new BitcodeReader(std::move(Stream), Strtab, ProducerIdentification,
6882                               Context);
6883 
6884   std::unique_ptr<Module> M =
6885       std::make_unique<Module>(ModuleIdentifier, Context);
6886   M->setMaterializer(R);
6887 
6888   // Delay parsing Metadata if ShouldLazyLoadMetadata is true.
6889   if (Error Err = R->parseBitcodeInto(M.get(), ShouldLazyLoadMetadata,
6890                                       IsImporting, DataLayoutCallback))
6891     return std::move(Err);
6892 
6893   if (MaterializeAll) {
6894     // Read in the entire module, and destroy the BitcodeReader.
6895     if (Error Err = M->materializeAll())
6896       return std::move(Err);
6897   } else {
6898     // Resolve forward references from blockaddresses.
6899     if (Error Err = R->materializeForwardReferencedFunctions())
6900       return std::move(Err);
6901   }
6902   return std::move(M);
6903 }
6904 
6905 Expected<std::unique_ptr<Module>>
6906 BitcodeModule::getLazyModule(LLVMContext &Context, bool ShouldLazyLoadMetadata,
6907                              bool IsImporting) {
6908   return getModuleImpl(Context, false, ShouldLazyLoadMetadata, IsImporting,
6909                        [](StringRef) { return None; });
6910 }
6911 
6912 // Parse the specified bitcode buffer and merge the index into CombinedIndex.
6913 // We don't use ModuleIdentifier here because the client may need to control the
6914 // module path used in the combined summary (e.g. when reading summaries for
6915 // regular LTO modules).
6916 Error BitcodeModule::readSummary(ModuleSummaryIndex &CombinedIndex,
6917                                  StringRef ModulePath, uint64_t ModuleId) {
6918   BitstreamCursor Stream(Buffer);
6919   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
6920     return JumpFailed;
6921 
6922   ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, CombinedIndex,
6923                                     ModulePath, ModuleId);
6924   return R.parseModule();
6925 }
6926 
6927 // Parse the specified bitcode buffer, returning the function info index.
6928 Expected<std::unique_ptr<ModuleSummaryIndex>> BitcodeModule::getSummary() {
6929   BitstreamCursor Stream(Buffer);
6930   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
6931     return std::move(JumpFailed);
6932 
6933   auto Index = std::make_unique<ModuleSummaryIndex>(/*HaveGVs=*/false);
6934   ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, *Index,
6935                                     ModuleIdentifier, 0);
6936 
6937   if (Error Err = R.parseModule())
6938     return std::move(Err);
6939 
6940   return std::move(Index);
6941 }
6942 
6943 static Expected<bool> getEnableSplitLTOUnitFlag(BitstreamCursor &Stream,
6944                                                 unsigned ID) {
6945   if (Error Err = Stream.EnterSubBlock(ID))
6946     return std::move(Err);
6947   SmallVector<uint64_t, 64> Record;
6948 
6949   while (true) {
6950     BitstreamEntry Entry;
6951     if (Error E = Stream.advanceSkippingSubblocks().moveInto(Entry))
6952       return std::move(E);
6953 
6954     switch (Entry.Kind) {
6955     case BitstreamEntry::SubBlock: // Handled for us already.
6956     case BitstreamEntry::Error:
6957       return error("Malformed block");
6958     case BitstreamEntry::EndBlock:
6959       // If no flags record found, conservatively return true to mimic
6960       // behavior before this flag was added.
6961       return true;
6962     case BitstreamEntry::Record:
6963       // The interesting case.
6964       break;
6965     }
6966 
6967     // Look for the FS_FLAGS record.
6968     Record.clear();
6969     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
6970     if (!MaybeBitCode)
6971       return MaybeBitCode.takeError();
6972     switch (MaybeBitCode.get()) {
6973     default: // Default behavior: ignore.
6974       break;
6975     case bitc::FS_FLAGS: { // [flags]
6976       uint64_t Flags = Record[0];
6977       // Scan flags.
6978       assert(Flags <= 0x7f && "Unexpected bits in flag");
6979 
6980       return Flags & 0x8;
6981     }
6982     }
6983   }
6984   llvm_unreachable("Exit infinite loop");
6985 }
6986 
6987 // Check if the given bitcode buffer contains a global value summary block.
6988 Expected<BitcodeLTOInfo> BitcodeModule::getLTOInfo() {
6989   BitstreamCursor Stream(Buffer);
6990   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
6991     return std::move(JumpFailed);
6992 
6993   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
6994     return std::move(Err);
6995 
6996   while (true) {
6997     llvm::BitstreamEntry Entry;
6998     if (Error E = Stream.advance().moveInto(Entry))
6999       return std::move(E);
7000 
7001     switch (Entry.Kind) {
7002     case BitstreamEntry::Error:
7003       return error("Malformed block");
7004     case BitstreamEntry::EndBlock:
7005       return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/false,
7006                             /*EnableSplitLTOUnit=*/false};
7007 
7008     case BitstreamEntry::SubBlock:
7009       if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) {
7010         Expected<bool> EnableSplitLTOUnit =
7011             getEnableSplitLTOUnitFlag(Stream, Entry.ID);
7012         if (!EnableSplitLTOUnit)
7013           return EnableSplitLTOUnit.takeError();
7014         return BitcodeLTOInfo{/*IsThinLTO=*/true, /*HasSummary=*/true,
7015                               *EnableSplitLTOUnit};
7016       }
7017 
7018       if (Entry.ID == bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID) {
7019         Expected<bool> EnableSplitLTOUnit =
7020             getEnableSplitLTOUnitFlag(Stream, Entry.ID);
7021         if (!EnableSplitLTOUnit)
7022           return EnableSplitLTOUnit.takeError();
7023         return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/true,
7024                               *EnableSplitLTOUnit};
7025       }
7026 
7027       // Ignore other sub-blocks.
7028       if (Error Err = Stream.SkipBlock())
7029         return std::move(Err);
7030       continue;
7031 
7032     case BitstreamEntry::Record:
7033       if (Expected<unsigned> StreamFailed = Stream.skipRecord(Entry.ID))
7034         continue;
7035       else
7036         return StreamFailed.takeError();
7037     }
7038   }
7039 }
7040 
7041 static Expected<BitcodeModule> getSingleModule(MemoryBufferRef Buffer) {
7042   Expected<std::vector<BitcodeModule>> MsOrErr = getBitcodeModuleList(Buffer);
7043   if (!MsOrErr)
7044     return MsOrErr.takeError();
7045 
7046   if (MsOrErr->size() != 1)
7047     return error("Expected a single module");
7048 
7049   return (*MsOrErr)[0];
7050 }
7051 
7052 Expected<std::unique_ptr<Module>>
7053 llvm::getLazyBitcodeModule(MemoryBufferRef Buffer, LLVMContext &Context,
7054                            bool ShouldLazyLoadMetadata, bool IsImporting) {
7055   Expected<BitcodeModule> BM = getSingleModule(Buffer);
7056   if (!BM)
7057     return BM.takeError();
7058 
7059   return BM->getLazyModule(Context, ShouldLazyLoadMetadata, IsImporting);
7060 }
7061 
7062 Expected<std::unique_ptr<Module>> llvm::getOwningLazyBitcodeModule(
7063     std::unique_ptr<MemoryBuffer> &&Buffer, LLVMContext &Context,
7064     bool ShouldLazyLoadMetadata, bool IsImporting) {
7065   auto MOrErr = getLazyBitcodeModule(*Buffer, Context, ShouldLazyLoadMetadata,
7066                                      IsImporting);
7067   if (MOrErr)
7068     (*MOrErr)->setOwnedMemoryBuffer(std::move(Buffer));
7069   return MOrErr;
7070 }
7071 
7072 Expected<std::unique_ptr<Module>>
7073 BitcodeModule::parseModule(LLVMContext &Context,
7074                            DataLayoutCallbackTy DataLayoutCallback) {
7075   return getModuleImpl(Context, true, false, false, DataLayoutCallback);
7076   // TODO: Restore the use-lists to the in-memory state when the bitcode was
7077   // written.  We must defer until the Module has been fully materialized.
7078 }
7079 
7080 Expected<std::unique_ptr<Module>>
7081 llvm::parseBitcodeFile(MemoryBufferRef Buffer, LLVMContext &Context,
7082                        DataLayoutCallbackTy DataLayoutCallback) {
7083   Expected<BitcodeModule> BM = getSingleModule(Buffer);
7084   if (!BM)
7085     return BM.takeError();
7086 
7087   return BM->parseModule(Context, DataLayoutCallback);
7088 }
7089 
7090 Expected<std::string> llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer) {
7091   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
7092   if (!StreamOrErr)
7093     return StreamOrErr.takeError();
7094 
7095   return readTriple(*StreamOrErr);
7096 }
7097 
7098 Expected<bool> llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer) {
7099   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
7100   if (!StreamOrErr)
7101     return StreamOrErr.takeError();
7102 
7103   return hasObjCCategory(*StreamOrErr);
7104 }
7105 
7106 Expected<std::string> llvm::getBitcodeProducerString(MemoryBufferRef Buffer) {
7107   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
7108   if (!StreamOrErr)
7109     return StreamOrErr.takeError();
7110 
7111   return readIdentificationCode(*StreamOrErr);
7112 }
7113 
7114 Error llvm::readModuleSummaryIndex(MemoryBufferRef Buffer,
7115                                    ModuleSummaryIndex &CombinedIndex,
7116                                    uint64_t ModuleId) {
7117   Expected<BitcodeModule> BM = getSingleModule(Buffer);
7118   if (!BM)
7119     return BM.takeError();
7120 
7121   return BM->readSummary(CombinedIndex, BM->getModuleIdentifier(), ModuleId);
7122 }
7123 
7124 Expected<std::unique_ptr<ModuleSummaryIndex>>
7125 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer) {
7126   Expected<BitcodeModule> BM = getSingleModule(Buffer);
7127   if (!BM)
7128     return BM.takeError();
7129 
7130   return BM->getSummary();
7131 }
7132 
7133 Expected<BitcodeLTOInfo> llvm::getBitcodeLTOInfo(MemoryBufferRef Buffer) {
7134   Expected<BitcodeModule> BM = getSingleModule(Buffer);
7135   if (!BM)
7136     return BM.takeError();
7137 
7138   return BM->getLTOInfo();
7139 }
7140 
7141 Expected<std::unique_ptr<ModuleSummaryIndex>>
7142 llvm::getModuleSummaryIndexForFile(StringRef Path,
7143                                    bool IgnoreEmptyThinLTOIndexFile) {
7144   ErrorOr<std::unique_ptr<MemoryBuffer>> FileOrErr =
7145       MemoryBuffer::getFileOrSTDIN(Path);
7146   if (!FileOrErr)
7147     return errorCodeToError(FileOrErr.getError());
7148   if (IgnoreEmptyThinLTOIndexFile && !(*FileOrErr)->getBufferSize())
7149     return nullptr;
7150   return getModuleSummaryIndex(**FileOrErr);
7151 }
7152