1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #include "llvm/Bitcode/BitcodeReader.h"
11 #include "MetadataLoader.h"
12 #include "ValueList.h"
13 #include "llvm/ADT/APFloat.h"
14 #include "llvm/ADT/APInt.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/Optional.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallString.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/StringRef.h"
22 #include "llvm/ADT/Triple.h"
23 #include "llvm/ADT/Twine.h"
24 #include "llvm/Bitcode/BitstreamReader.h"
25 #include "llvm/Bitcode/LLVMBitCodes.h"
26 #include "llvm/IR/Argument.h"
27 #include "llvm/IR/Attributes.h"
28 #include "llvm/IR/AutoUpgrade.h"
29 #include "llvm/IR/BasicBlock.h"
30 #include "llvm/IR/CallSite.h"
31 #include "llvm/IR/CallingConv.h"
32 #include "llvm/IR/Comdat.h"
33 #include "llvm/IR/Constant.h"
34 #include "llvm/IR/Constants.h"
35 #include "llvm/IR/DataLayout.h"
36 #include "llvm/IR/DebugInfo.h"
37 #include "llvm/IR/DebugInfoMetadata.h"
38 #include "llvm/IR/DebugLoc.h"
39 #include "llvm/IR/DerivedTypes.h"
40 #include "llvm/IR/Function.h"
41 #include "llvm/IR/GVMaterializer.h"
42 #include "llvm/IR/GlobalAlias.h"
43 #include "llvm/IR/GlobalIFunc.h"
44 #include "llvm/IR/GlobalIndirectSymbol.h"
45 #include "llvm/IR/GlobalObject.h"
46 #include "llvm/IR/GlobalValue.h"
47 #include "llvm/IR/GlobalVariable.h"
48 #include "llvm/IR/InlineAsm.h"
49 #include "llvm/IR/InstIterator.h"
50 #include "llvm/IR/InstrTypes.h"
51 #include "llvm/IR/Instruction.h"
52 #include "llvm/IR/Instructions.h"
53 #include "llvm/IR/Intrinsics.h"
54 #include "llvm/IR/LLVMContext.h"
55 #include "llvm/IR/Metadata.h"
56 #include "llvm/IR/Module.h"
57 #include "llvm/IR/ModuleSummaryIndex.h"
58 #include "llvm/IR/Operator.h"
59 #include "llvm/IR/Type.h"
60 #include "llvm/IR/Value.h"
61 #include "llvm/IR/Verifier.h"
62 #include "llvm/Support/AtomicOrdering.h"
63 #include "llvm/Support/Casting.h"
64 #include "llvm/Support/CommandLine.h"
65 #include "llvm/Support/Compiler.h"
66 #include "llvm/Support/Debug.h"
67 #include "llvm/Support/Error.h"
68 #include "llvm/Support/ErrorHandling.h"
69 #include "llvm/Support/ErrorOr.h"
70 #include "llvm/Support/ManagedStatic.h"
71 #include "llvm/Support/MathExtras.h"
72 #include "llvm/Support/MemoryBuffer.h"
73 #include "llvm/Support/raw_ostream.h"
74 #include <algorithm>
75 #include <cassert>
76 #include <cstddef>
77 #include <cstdint>
78 #include <deque>
79 #include <map>
80 #include <memory>
81 #include <set>
82 #include <string>
83 #include <system_error>
84 #include <tuple>
85 #include <utility>
86 #include <vector>
87 
88 using namespace llvm;
89 
90 static cl::opt<bool> PrintSummaryGUIDs(
91     "print-summary-global-ids", cl::init(false), cl::Hidden,
92     cl::desc(
93         "Print the global id for each value when reading the module summary"));
94 
95 namespace {
96 
97 enum {
98   SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex
99 };
100 
101 } // end anonymous namespace
102 
103 static Error error(const Twine &Message) {
104   return make_error<StringError>(
105       Message, make_error_code(BitcodeError::CorruptedBitcode));
106 }
107 
108 /// Helper to read the header common to all bitcode files.
109 static bool hasValidBitcodeHeader(BitstreamCursor &Stream) {
110   // Sniff for the signature.
111   if (!Stream.canSkipToPos(4) ||
112       Stream.Read(8) != 'B' ||
113       Stream.Read(8) != 'C' ||
114       Stream.Read(4) != 0x0 ||
115       Stream.Read(4) != 0xC ||
116       Stream.Read(4) != 0xE ||
117       Stream.Read(4) != 0xD)
118     return false;
119   return true;
120 }
121 
122 static Expected<BitstreamCursor> initStream(MemoryBufferRef Buffer) {
123   const unsigned char *BufPtr = (const unsigned char *)Buffer.getBufferStart();
124   const unsigned char *BufEnd = BufPtr + Buffer.getBufferSize();
125 
126   if (Buffer.getBufferSize() & 3)
127     return error("Invalid bitcode signature");
128 
129   // If we have a wrapper header, parse it and ignore the non-bc file contents.
130   // The magic number is 0x0B17C0DE stored in little endian.
131   if (isBitcodeWrapper(BufPtr, BufEnd))
132     if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true))
133       return error("Invalid bitcode wrapper header");
134 
135   BitstreamCursor Stream(ArrayRef<uint8_t>(BufPtr, BufEnd));
136   if (!hasValidBitcodeHeader(Stream))
137     return error("Invalid bitcode signature");
138 
139   return std::move(Stream);
140 }
141 
142 /// Convert a string from a record into an std::string, return true on failure.
143 template <typename StrTy>
144 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx,
145                             StrTy &Result) {
146   if (Idx > Record.size())
147     return true;
148 
149   for (unsigned i = Idx, e = Record.size(); i != e; ++i)
150     Result += (char)Record[i];
151   return false;
152 }
153 
154 // Strip all the TBAA attachment for the module.
155 static void stripTBAA(Module *M) {
156   for (auto &F : *M) {
157     if (F.isMaterializable())
158       continue;
159     for (auto &I : instructions(F))
160       I.setMetadata(LLVMContext::MD_tbaa, nullptr);
161   }
162 }
163 
164 /// Read the "IDENTIFICATION_BLOCK_ID" block, do some basic enforcement on the
165 /// "epoch" encoded in the bitcode, and return the producer name if any.
166 static Expected<std::string> readIdentificationBlock(BitstreamCursor &Stream) {
167   if (Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID))
168     return error("Invalid record");
169 
170   // Read all the records.
171   SmallVector<uint64_t, 64> Record;
172 
173   std::string ProducerIdentification;
174 
175   while (true) {
176     BitstreamEntry Entry = Stream.advance();
177 
178     switch (Entry.Kind) {
179     default:
180     case BitstreamEntry::Error:
181       return error("Malformed block");
182     case BitstreamEntry::EndBlock:
183       return ProducerIdentification;
184     case BitstreamEntry::Record:
185       // The interesting case.
186       break;
187     }
188 
189     // Read a record.
190     Record.clear();
191     unsigned BitCode = Stream.readRecord(Entry.ID, Record);
192     switch (BitCode) {
193     default: // Default behavior: reject
194       return error("Invalid value");
195     case bitc::IDENTIFICATION_CODE_STRING: // IDENTIFICATION: [strchr x N]
196       convertToString(Record, 0, ProducerIdentification);
197       break;
198     case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#]
199       unsigned epoch = (unsigned)Record[0];
200       if (epoch != bitc::BITCODE_CURRENT_EPOCH) {
201         return error(
202           Twine("Incompatible epoch: Bitcode '") + Twine(epoch) +
203           "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'");
204       }
205     }
206     }
207   }
208 }
209 
210 static Expected<std::string> readIdentificationCode(BitstreamCursor &Stream) {
211   // We expect a number of well-defined blocks, though we don't necessarily
212   // need to understand them all.
213   while (true) {
214     if (Stream.AtEndOfStream())
215       return "";
216 
217     BitstreamEntry Entry = Stream.advance();
218     switch (Entry.Kind) {
219     case BitstreamEntry::EndBlock:
220     case BitstreamEntry::Error:
221       return error("Malformed block");
222 
223     case BitstreamEntry::SubBlock:
224       if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID)
225         return readIdentificationBlock(Stream);
226 
227       // Ignore other sub-blocks.
228       if (Stream.SkipBlock())
229         return error("Malformed block");
230       continue;
231     case BitstreamEntry::Record:
232       Stream.skipRecord(Entry.ID);
233       continue;
234     }
235   }
236 }
237 
238 static Expected<bool> hasObjCCategoryInModule(BitstreamCursor &Stream) {
239   if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
240     return error("Invalid record");
241 
242   SmallVector<uint64_t, 64> Record;
243   // Read all the records for this module.
244 
245   while (true) {
246     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
247 
248     switch (Entry.Kind) {
249     case BitstreamEntry::SubBlock: // Handled for us already.
250     case BitstreamEntry::Error:
251       return error("Malformed block");
252     case BitstreamEntry::EndBlock:
253       return false;
254     case BitstreamEntry::Record:
255       // The interesting case.
256       break;
257     }
258 
259     // Read a record.
260     switch (Stream.readRecord(Entry.ID, Record)) {
261     default:
262       break; // Default behavior, ignore unknown content.
263     case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N]
264       std::string S;
265       if (convertToString(Record, 0, S))
266         return error("Invalid record");
267       // Check for the i386 and other (x86_64, ARM) conventions
268       if (S.find("__DATA,__objc_catlist") != std::string::npos ||
269           S.find("__OBJC,__category") != std::string::npos)
270         return true;
271       break;
272     }
273     }
274     Record.clear();
275   }
276   llvm_unreachable("Exit infinite loop");
277 }
278 
279 static Expected<bool> hasObjCCategory(BitstreamCursor &Stream) {
280   // We expect a number of well-defined blocks, though we don't necessarily
281   // need to understand them all.
282   while (true) {
283     BitstreamEntry Entry = Stream.advance();
284 
285     switch (Entry.Kind) {
286     case BitstreamEntry::Error:
287       return error("Malformed block");
288     case BitstreamEntry::EndBlock:
289       return false;
290 
291     case BitstreamEntry::SubBlock:
292       if (Entry.ID == bitc::MODULE_BLOCK_ID)
293         return hasObjCCategoryInModule(Stream);
294 
295       // Ignore other sub-blocks.
296       if (Stream.SkipBlock())
297         return error("Malformed block");
298       continue;
299 
300     case BitstreamEntry::Record:
301       Stream.skipRecord(Entry.ID);
302       continue;
303     }
304   }
305 }
306 
307 static Expected<std::string> readModuleTriple(BitstreamCursor &Stream) {
308   if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
309     return error("Invalid record");
310 
311   SmallVector<uint64_t, 64> Record;
312 
313   std::string Triple;
314 
315   // Read all the records for this module.
316   while (true) {
317     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
318 
319     switch (Entry.Kind) {
320     case BitstreamEntry::SubBlock: // Handled for us already.
321     case BitstreamEntry::Error:
322       return error("Malformed block");
323     case BitstreamEntry::EndBlock:
324       return Triple;
325     case BitstreamEntry::Record:
326       // The interesting case.
327       break;
328     }
329 
330     // Read a record.
331     switch (Stream.readRecord(Entry.ID, Record)) {
332     default: break;  // Default behavior, ignore unknown content.
333     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
334       std::string S;
335       if (convertToString(Record, 0, S))
336         return error("Invalid record");
337       Triple = S;
338       break;
339     }
340     }
341     Record.clear();
342   }
343   llvm_unreachable("Exit infinite loop");
344 }
345 
346 static Expected<std::string> readTriple(BitstreamCursor &Stream) {
347   // We expect a number of well-defined blocks, though we don't necessarily
348   // need to understand them all.
349   while (true) {
350     BitstreamEntry Entry = Stream.advance();
351 
352     switch (Entry.Kind) {
353     case BitstreamEntry::Error:
354       return error("Malformed block");
355     case BitstreamEntry::EndBlock:
356       return "";
357 
358     case BitstreamEntry::SubBlock:
359       if (Entry.ID == bitc::MODULE_BLOCK_ID)
360         return readModuleTriple(Stream);
361 
362       // Ignore other sub-blocks.
363       if (Stream.SkipBlock())
364         return error("Malformed block");
365       continue;
366 
367     case BitstreamEntry::Record:
368       Stream.skipRecord(Entry.ID);
369       continue;
370     }
371   }
372 }
373 
374 namespace {
375 
376 class BitcodeReaderBase {
377 protected:
378   BitcodeReaderBase(BitstreamCursor Stream, StringRef Strtab)
379       : Stream(std::move(Stream)), Strtab(Strtab) {
380     this->Stream.setBlockInfo(&BlockInfo);
381   }
382 
383   BitstreamBlockInfo BlockInfo;
384   BitstreamCursor Stream;
385   StringRef Strtab;
386 
387   /// In version 2 of the bitcode we store names of global values and comdats in
388   /// a string table rather than in the VST.
389   bool UseStrtab = false;
390 
391   Expected<unsigned> parseVersionRecord(ArrayRef<uint64_t> Record);
392 
393   /// If this module uses a string table, pop the reference to the string table
394   /// and return the referenced string and the rest of the record. Otherwise
395   /// just return the record itself.
396   std::pair<StringRef, ArrayRef<uint64_t>>
397   readNameFromStrtab(ArrayRef<uint64_t> Record);
398 
399   bool readBlockInfo();
400 
401   // Contains an arbitrary and optional string identifying the bitcode producer
402   std::string ProducerIdentification;
403 
404   Error error(const Twine &Message);
405 };
406 
407 } // end anonymous namespace
408 
409 Error BitcodeReaderBase::error(const Twine &Message) {
410   std::string FullMsg = Message.str();
411   if (!ProducerIdentification.empty())
412     FullMsg += " (Producer: '" + ProducerIdentification + "' Reader: 'LLVM " +
413                LLVM_VERSION_STRING "')";
414   return ::error(FullMsg);
415 }
416 
417 Expected<unsigned>
418 BitcodeReaderBase::parseVersionRecord(ArrayRef<uint64_t> Record) {
419   if (Record.empty())
420     return error("Invalid record");
421   unsigned ModuleVersion = Record[0];
422   if (ModuleVersion > 2)
423     return error("Invalid value");
424   UseStrtab = ModuleVersion >= 2;
425   return ModuleVersion;
426 }
427 
428 std::pair<StringRef, ArrayRef<uint64_t>>
429 BitcodeReaderBase::readNameFromStrtab(ArrayRef<uint64_t> Record) {
430   if (!UseStrtab)
431     return {"", Record};
432   // Invalid reference. Let the caller complain about the record being empty.
433   if (Record[0] + Record[1] > Strtab.size())
434     return {"", {}};
435   return {StringRef(Strtab.data() + Record[0], Record[1]), Record.slice(2)};
436 }
437 
438 namespace {
439 
440 class BitcodeReader : public BitcodeReaderBase, public GVMaterializer {
441   LLVMContext &Context;
442   Module *TheModule = nullptr;
443   // Next offset to start scanning for lazy parsing of function bodies.
444   uint64_t NextUnreadBit = 0;
445   // Last function offset found in the VST.
446   uint64_t LastFunctionBlockBit = 0;
447   bool SeenValueSymbolTable = false;
448   uint64_t VSTOffset = 0;
449 
450   std::vector<std::string> SectionTable;
451   std::vector<std::string> GCTable;
452 
453   std::vector<Type*> TypeList;
454   BitcodeReaderValueList ValueList;
455   Optional<MetadataLoader> MDLoader;
456   std::vector<Comdat *> ComdatList;
457   SmallVector<Instruction *, 64> InstructionList;
458 
459   std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInits;
460   std::vector<std::pair<GlobalIndirectSymbol *, unsigned>> IndirectSymbolInits;
461   std::vector<std::pair<Function *, unsigned>> FunctionPrefixes;
462   std::vector<std::pair<Function *, unsigned>> FunctionPrologues;
463   std::vector<std::pair<Function *, unsigned>> FunctionPersonalityFns;
464 
465   /// The set of attributes by index.  Index zero in the file is for null, and
466   /// is thus not represented here.  As such all indices are off by one.
467   std::vector<AttributeList> MAttributes;
468 
469   /// The set of attribute groups.
470   std::map<unsigned, AttributeList> MAttributeGroups;
471 
472   /// While parsing a function body, this is a list of the basic blocks for the
473   /// function.
474   std::vector<BasicBlock*> FunctionBBs;
475 
476   // When reading the module header, this list is populated with functions that
477   // have bodies later in the file.
478   std::vector<Function*> FunctionsWithBodies;
479 
480   // When intrinsic functions are encountered which require upgrading they are
481   // stored here with their replacement function.
482   using UpdatedIntrinsicMap = DenseMap<Function *, Function *>;
483   UpdatedIntrinsicMap UpgradedIntrinsics;
484   // Intrinsics which were remangled because of types rename
485   UpdatedIntrinsicMap RemangledIntrinsics;
486 
487   // Several operations happen after the module header has been read, but
488   // before function bodies are processed. This keeps track of whether
489   // we've done this yet.
490   bool SeenFirstFunctionBody = false;
491 
492   /// When function bodies are initially scanned, this map contains info about
493   /// where to find deferred function body in the stream.
494   DenseMap<Function*, uint64_t> DeferredFunctionInfo;
495 
496   /// When Metadata block is initially scanned when parsing the module, we may
497   /// choose to defer parsing of the metadata. This vector contains info about
498   /// which Metadata blocks are deferred.
499   std::vector<uint64_t> DeferredMetadataInfo;
500 
501   /// These are basic blocks forward-referenced by block addresses.  They are
502   /// inserted lazily into functions when they're loaded.  The basic block ID is
503   /// its index into the vector.
504   DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs;
505   std::deque<Function *> BasicBlockFwdRefQueue;
506 
507   /// Indicates that we are using a new encoding for instruction operands where
508   /// most operands in the current FUNCTION_BLOCK are encoded relative to the
509   /// instruction number, for a more compact encoding.  Some instruction
510   /// operands are not relative to the instruction ID: basic block numbers, and
511   /// types. Once the old style function blocks have been phased out, we would
512   /// not need this flag.
513   bool UseRelativeIDs = false;
514 
515   /// True if all functions will be materialized, negating the need to process
516   /// (e.g.) blockaddress forward references.
517   bool WillMaterializeAllForwardRefs = false;
518 
519   bool StripDebugInfo = false;
520   TBAAVerifier TBAAVerifyHelper;
521 
522   std::vector<std::string> BundleTags;
523   SmallVector<SyncScope::ID, 8> SSIDs;
524 
525 public:
526   BitcodeReader(BitstreamCursor Stream, StringRef Strtab,
527                 StringRef ProducerIdentification, LLVMContext &Context);
528 
529   Error materializeForwardReferencedFunctions();
530 
531   Error materialize(GlobalValue *GV) override;
532   Error materializeModule() override;
533   std::vector<StructType *> getIdentifiedStructTypes() const override;
534 
535   /// \brief Main interface to parsing a bitcode buffer.
536   /// \returns true if an error occurred.
537   Error parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata = false,
538                          bool IsImporting = false);
539 
540   static uint64_t decodeSignRotatedValue(uint64_t V);
541 
542   /// Materialize any deferred Metadata block.
543   Error materializeMetadata() override;
544 
545   void setStripDebugInfo() override;
546 
547 private:
548   std::vector<StructType *> IdentifiedStructTypes;
549   StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name);
550   StructType *createIdentifiedStructType(LLVMContext &Context);
551 
552   Type *getTypeByID(unsigned ID);
553 
554   Value *getFnValueByID(unsigned ID, Type *Ty) {
555     if (Ty && Ty->isMetadataTy())
556       return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID));
557     return ValueList.getValueFwdRef(ID, Ty);
558   }
559 
560   Metadata *getFnMetadataByID(unsigned ID) {
561     return MDLoader->getMetadataFwdRefOrLoad(ID);
562   }
563 
564   BasicBlock *getBasicBlock(unsigned ID) const {
565     if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID
566     return FunctionBBs[ID];
567   }
568 
569   AttributeList getAttributes(unsigned i) const {
570     if (i-1 < MAttributes.size())
571       return MAttributes[i-1];
572     return AttributeList();
573   }
574 
575   /// Read a value/type pair out of the specified record from slot 'Slot'.
576   /// Increment Slot past the number of slots used in the record. Return true on
577   /// failure.
578   bool getValueTypePair(SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
579                         unsigned InstNum, Value *&ResVal) {
580     if (Slot == Record.size()) return true;
581     unsigned ValNo = (unsigned)Record[Slot++];
582     // Adjust the ValNo, if it was encoded relative to the InstNum.
583     if (UseRelativeIDs)
584       ValNo = InstNum - ValNo;
585     if (ValNo < InstNum) {
586       // If this is not a forward reference, just return the value we already
587       // have.
588       ResVal = getFnValueByID(ValNo, nullptr);
589       return ResVal == nullptr;
590     }
591     if (Slot == Record.size())
592       return true;
593 
594     unsigned TypeNo = (unsigned)Record[Slot++];
595     ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo));
596     return ResVal == nullptr;
597   }
598 
599   /// Read a value out of the specified record from slot 'Slot'. Increment Slot
600   /// past the number of slots used by the value in the record. Return true if
601   /// there is an error.
602   bool popValue(SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
603                 unsigned InstNum, Type *Ty, Value *&ResVal) {
604     if (getValue(Record, Slot, InstNum, Ty, ResVal))
605       return true;
606     // All values currently take a single record slot.
607     ++Slot;
608     return false;
609   }
610 
611   /// Like popValue, but does not increment the Slot number.
612   bool getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot,
613                 unsigned InstNum, Type *Ty, Value *&ResVal) {
614     ResVal = getValue(Record, Slot, InstNum, Ty);
615     return ResVal == nullptr;
616   }
617 
618   /// Version of getValue that returns ResVal directly, or 0 if there is an
619   /// error.
620   Value *getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot,
621                   unsigned InstNum, Type *Ty) {
622     if (Slot == Record.size()) return nullptr;
623     unsigned ValNo = (unsigned)Record[Slot];
624     // Adjust the ValNo, if it was encoded relative to the InstNum.
625     if (UseRelativeIDs)
626       ValNo = InstNum - ValNo;
627     return getFnValueByID(ValNo, Ty);
628   }
629 
630   /// Like getValue, but decodes signed VBRs.
631   Value *getValueSigned(SmallVectorImpl<uint64_t> &Record, unsigned Slot,
632                         unsigned InstNum, Type *Ty) {
633     if (Slot == Record.size()) return nullptr;
634     unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]);
635     // Adjust the ValNo, if it was encoded relative to the InstNum.
636     if (UseRelativeIDs)
637       ValNo = InstNum - ValNo;
638     return getFnValueByID(ValNo, Ty);
639   }
640 
641   /// Converts alignment exponent (i.e. power of two (or zero)) to the
642   /// corresponding alignment to use. If alignment is too large, returns
643   /// a corresponding error code.
644   Error parseAlignmentValue(uint64_t Exponent, unsigned &Alignment);
645   Error parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind);
646   Error parseModule(uint64_t ResumeBit, bool ShouldLazyLoadMetadata = false);
647 
648   Error parseComdatRecord(ArrayRef<uint64_t> Record);
649   Error parseGlobalVarRecord(ArrayRef<uint64_t> Record);
650   Error parseFunctionRecord(ArrayRef<uint64_t> Record);
651   Error parseGlobalIndirectSymbolRecord(unsigned BitCode,
652                                         ArrayRef<uint64_t> Record);
653 
654   Error parseAttributeBlock();
655   Error parseAttributeGroupBlock();
656   Error parseTypeTable();
657   Error parseTypeTableBody();
658   Error parseOperandBundleTags();
659   Error parseSyncScopeNames();
660 
661   Expected<Value *> recordValue(SmallVectorImpl<uint64_t> &Record,
662                                 unsigned NameIndex, Triple &TT);
663   void setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, Function *F,
664                                ArrayRef<uint64_t> Record);
665   Error parseValueSymbolTable(uint64_t Offset = 0);
666   Error parseGlobalValueSymbolTable();
667   Error parseConstants();
668   Error rememberAndSkipFunctionBodies();
669   Error rememberAndSkipFunctionBody();
670   /// Save the positions of the Metadata blocks and skip parsing the blocks.
671   Error rememberAndSkipMetadata();
672   Error typeCheckLoadStoreInst(Type *ValType, Type *PtrType);
673   Error parseFunctionBody(Function *F);
674   Error globalCleanup();
675   Error resolveGlobalAndIndirectSymbolInits();
676   Error parseUseLists();
677   Error findFunctionInStream(
678       Function *F,
679       DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator);
680 
681   SyncScope::ID getDecodedSyncScopeID(unsigned Val);
682 };
683 
684 /// Class to manage reading and parsing function summary index bitcode
685 /// files/sections.
686 class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase {
687   /// The module index built during parsing.
688   ModuleSummaryIndex &TheIndex;
689 
690   /// Indicates whether we have encountered a global value summary section
691   /// yet during parsing.
692   bool SeenGlobalValSummary = false;
693 
694   /// Indicates whether we have already parsed the VST, used for error checking.
695   bool SeenValueSymbolTable = false;
696 
697   /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record.
698   /// Used to enable on-demand parsing of the VST.
699   uint64_t VSTOffset = 0;
700 
701   // Map to save ValueId to ValueInfo association that was recorded in the
702   // ValueSymbolTable. It is used after the VST is parsed to convert
703   // call graph edges read from the function summary from referencing
704   // callees by their ValueId to using the ValueInfo instead, which is how
705   // they are recorded in the summary index being built.
706   // We save a GUID which refers to the same global as the ValueInfo, but
707   // ignoring the linkage, i.e. for values other than local linkage they are
708   // identical.
709   DenseMap<unsigned, std::pair<ValueInfo, GlobalValue::GUID>>
710       ValueIdToValueInfoMap;
711 
712   /// Map populated during module path string table parsing, from the
713   /// module ID to a string reference owned by the index's module
714   /// path string table, used to correlate with combined index
715   /// summary records.
716   DenseMap<uint64_t, StringRef> ModuleIdMap;
717 
718   /// Original source file name recorded in a bitcode record.
719   std::string SourceFileName;
720 
721   /// The string identifier given to this module by the client, normally the
722   /// path to the bitcode file.
723   StringRef ModulePath;
724 
725   /// For per-module summary indexes, the unique numerical identifier given to
726   /// this module by the client.
727   unsigned ModuleId;
728 
729 public:
730   ModuleSummaryIndexBitcodeReader(BitstreamCursor Stream, StringRef Strtab,
731                                   ModuleSummaryIndex &TheIndex,
732                                   StringRef ModulePath, unsigned ModuleId);
733 
734   Error parseModule();
735 
736 private:
737   void setValueGUID(uint64_t ValueID, StringRef ValueName,
738                     GlobalValue::LinkageTypes Linkage,
739                     StringRef SourceFileName);
740   Error parseValueSymbolTable(
741       uint64_t Offset,
742       DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap);
743   std::vector<ValueInfo> makeRefList(ArrayRef<uint64_t> Record);
744   std::vector<FunctionSummary::EdgeTy> makeCallList(ArrayRef<uint64_t> Record,
745                                                     bool IsOldProfileFormat,
746                                                     bool HasProfile,
747                                                     bool HasRelBF);
748   Error parseEntireSummary(unsigned ID);
749   Error parseModuleStringTable();
750 
751   std::pair<ValueInfo, GlobalValue::GUID>
752   getValueInfoFromValueId(unsigned ValueId);
753 
754   ModuleSummaryIndex::ModuleInfo *addThisModule();
755 };
756 
757 } // end anonymous namespace
758 
759 std::error_code llvm::errorToErrorCodeAndEmitErrors(LLVMContext &Ctx,
760                                                     Error Err) {
761   if (Err) {
762     std::error_code EC;
763     handleAllErrors(std::move(Err), [&](ErrorInfoBase &EIB) {
764       EC = EIB.convertToErrorCode();
765       Ctx.emitError(EIB.message());
766     });
767     return EC;
768   }
769   return std::error_code();
770 }
771 
772 BitcodeReader::BitcodeReader(BitstreamCursor Stream, StringRef Strtab,
773                              StringRef ProducerIdentification,
774                              LLVMContext &Context)
775     : BitcodeReaderBase(std::move(Stream), Strtab), Context(Context),
776       ValueList(Context) {
777   this->ProducerIdentification = ProducerIdentification;
778 }
779 
780 Error BitcodeReader::materializeForwardReferencedFunctions() {
781   if (WillMaterializeAllForwardRefs)
782     return Error::success();
783 
784   // Prevent recursion.
785   WillMaterializeAllForwardRefs = true;
786 
787   while (!BasicBlockFwdRefQueue.empty()) {
788     Function *F = BasicBlockFwdRefQueue.front();
789     BasicBlockFwdRefQueue.pop_front();
790     assert(F && "Expected valid function");
791     if (!BasicBlockFwdRefs.count(F))
792       // Already materialized.
793       continue;
794 
795     // Check for a function that isn't materializable to prevent an infinite
796     // loop.  When parsing a blockaddress stored in a global variable, there
797     // isn't a trivial way to check if a function will have a body without a
798     // linear search through FunctionsWithBodies, so just check it here.
799     if (!F->isMaterializable())
800       return error("Never resolved function from blockaddress");
801 
802     // Try to materialize F.
803     if (Error Err = materialize(F))
804       return Err;
805   }
806   assert(BasicBlockFwdRefs.empty() && "Function missing from queue");
807 
808   // Reset state.
809   WillMaterializeAllForwardRefs = false;
810   return Error::success();
811 }
812 
813 //===----------------------------------------------------------------------===//
814 //  Helper functions to implement forward reference resolution, etc.
815 //===----------------------------------------------------------------------===//
816 
817 static bool hasImplicitComdat(size_t Val) {
818   switch (Val) {
819   default:
820     return false;
821   case 1:  // Old WeakAnyLinkage
822   case 4:  // Old LinkOnceAnyLinkage
823   case 10: // Old WeakODRLinkage
824   case 11: // Old LinkOnceODRLinkage
825     return true;
826   }
827 }
828 
829 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) {
830   switch (Val) {
831   default: // Map unknown/new linkages to external
832   case 0:
833     return GlobalValue::ExternalLinkage;
834   case 2:
835     return GlobalValue::AppendingLinkage;
836   case 3:
837     return GlobalValue::InternalLinkage;
838   case 5:
839     return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage
840   case 6:
841     return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage
842   case 7:
843     return GlobalValue::ExternalWeakLinkage;
844   case 8:
845     return GlobalValue::CommonLinkage;
846   case 9:
847     return GlobalValue::PrivateLinkage;
848   case 12:
849     return GlobalValue::AvailableExternallyLinkage;
850   case 13:
851     return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage
852   case 14:
853     return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage
854   case 15:
855     return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage
856   case 1: // Old value with implicit comdat.
857   case 16:
858     return GlobalValue::WeakAnyLinkage;
859   case 10: // Old value with implicit comdat.
860   case 17:
861     return GlobalValue::WeakODRLinkage;
862   case 4: // Old value with implicit comdat.
863   case 18:
864     return GlobalValue::LinkOnceAnyLinkage;
865   case 11: // Old value with implicit comdat.
866   case 19:
867     return GlobalValue::LinkOnceODRLinkage;
868   }
869 }
870 
871 static FunctionSummary::FFlags getDecodedFFlags(uint64_t RawFlags) {
872   FunctionSummary::FFlags Flags;
873   Flags.ReadNone = RawFlags & 0x1;
874   Flags.ReadOnly = (RawFlags >> 1) & 0x1;
875   Flags.NoRecurse = (RawFlags >> 2) & 0x1;
876   Flags.ReturnDoesNotAlias = (RawFlags >> 3) & 0x1;
877   return Flags;
878 }
879 
880 /// Decode the flags for GlobalValue in the summary.
881 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags,
882                                                             uint64_t Version) {
883   // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage
884   // like getDecodedLinkage() above. Any future change to the linkage enum and
885   // to getDecodedLinkage() will need to be taken into account here as above.
886   auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits
887   RawFlags = RawFlags >> 4;
888   bool NotEligibleToImport = (RawFlags & 0x1) || Version < 3;
889   // The Live flag wasn't introduced until version 3. For dead stripping
890   // to work correctly on earlier versions, we must conservatively treat all
891   // values as live.
892   bool Live = (RawFlags & 0x2) || Version < 3;
893   bool Local = (RawFlags & 0x4);
894 
895   return GlobalValueSummary::GVFlags(Linkage, NotEligibleToImport, Live, Local);
896 }
897 
898 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) {
899   switch (Val) {
900   default: // Map unknown visibilities to default.
901   case 0: return GlobalValue::DefaultVisibility;
902   case 1: return GlobalValue::HiddenVisibility;
903   case 2: return GlobalValue::ProtectedVisibility;
904   }
905 }
906 
907 static GlobalValue::DLLStorageClassTypes
908 getDecodedDLLStorageClass(unsigned Val) {
909   switch (Val) {
910   default: // Map unknown values to default.
911   case 0: return GlobalValue::DefaultStorageClass;
912   case 1: return GlobalValue::DLLImportStorageClass;
913   case 2: return GlobalValue::DLLExportStorageClass;
914   }
915 }
916 
917 static bool getDecodedDSOLocal(unsigned Val) {
918   switch(Val) {
919   default: // Map unknown values to preemptable.
920   case 0:  return false;
921   case 1:  return true;
922   }
923 }
924 
925 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) {
926   switch (Val) {
927     case 0: return GlobalVariable::NotThreadLocal;
928     default: // Map unknown non-zero value to general dynamic.
929     case 1: return GlobalVariable::GeneralDynamicTLSModel;
930     case 2: return GlobalVariable::LocalDynamicTLSModel;
931     case 3: return GlobalVariable::InitialExecTLSModel;
932     case 4: return GlobalVariable::LocalExecTLSModel;
933   }
934 }
935 
936 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) {
937   switch (Val) {
938     default: // Map unknown to UnnamedAddr::None.
939     case 0: return GlobalVariable::UnnamedAddr::None;
940     case 1: return GlobalVariable::UnnamedAddr::Global;
941     case 2: return GlobalVariable::UnnamedAddr::Local;
942   }
943 }
944 
945 static int getDecodedCastOpcode(unsigned Val) {
946   switch (Val) {
947   default: return -1;
948   case bitc::CAST_TRUNC   : return Instruction::Trunc;
949   case bitc::CAST_ZEXT    : return Instruction::ZExt;
950   case bitc::CAST_SEXT    : return Instruction::SExt;
951   case bitc::CAST_FPTOUI  : return Instruction::FPToUI;
952   case bitc::CAST_FPTOSI  : return Instruction::FPToSI;
953   case bitc::CAST_UITOFP  : return Instruction::UIToFP;
954   case bitc::CAST_SITOFP  : return Instruction::SIToFP;
955   case bitc::CAST_FPTRUNC : return Instruction::FPTrunc;
956   case bitc::CAST_FPEXT   : return Instruction::FPExt;
957   case bitc::CAST_PTRTOINT: return Instruction::PtrToInt;
958   case bitc::CAST_INTTOPTR: return Instruction::IntToPtr;
959   case bitc::CAST_BITCAST : return Instruction::BitCast;
960   case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast;
961   }
962 }
963 
964 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) {
965   bool IsFP = Ty->isFPOrFPVectorTy();
966   // BinOps are only valid for int/fp or vector of int/fp types
967   if (!IsFP && !Ty->isIntOrIntVectorTy())
968     return -1;
969 
970   switch (Val) {
971   default:
972     return -1;
973   case bitc::BINOP_ADD:
974     return IsFP ? Instruction::FAdd : Instruction::Add;
975   case bitc::BINOP_SUB:
976     return IsFP ? Instruction::FSub : Instruction::Sub;
977   case bitc::BINOP_MUL:
978     return IsFP ? Instruction::FMul : Instruction::Mul;
979   case bitc::BINOP_UDIV:
980     return IsFP ? -1 : Instruction::UDiv;
981   case bitc::BINOP_SDIV:
982     return IsFP ? Instruction::FDiv : Instruction::SDiv;
983   case bitc::BINOP_UREM:
984     return IsFP ? -1 : Instruction::URem;
985   case bitc::BINOP_SREM:
986     return IsFP ? Instruction::FRem : Instruction::SRem;
987   case bitc::BINOP_SHL:
988     return IsFP ? -1 : Instruction::Shl;
989   case bitc::BINOP_LSHR:
990     return IsFP ? -1 : Instruction::LShr;
991   case bitc::BINOP_ASHR:
992     return IsFP ? -1 : Instruction::AShr;
993   case bitc::BINOP_AND:
994     return IsFP ? -1 : Instruction::And;
995   case bitc::BINOP_OR:
996     return IsFP ? -1 : Instruction::Or;
997   case bitc::BINOP_XOR:
998     return IsFP ? -1 : Instruction::Xor;
999   }
1000 }
1001 
1002 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) {
1003   switch (Val) {
1004   default: return AtomicRMWInst::BAD_BINOP;
1005   case bitc::RMW_XCHG: return AtomicRMWInst::Xchg;
1006   case bitc::RMW_ADD: return AtomicRMWInst::Add;
1007   case bitc::RMW_SUB: return AtomicRMWInst::Sub;
1008   case bitc::RMW_AND: return AtomicRMWInst::And;
1009   case bitc::RMW_NAND: return AtomicRMWInst::Nand;
1010   case bitc::RMW_OR: return AtomicRMWInst::Or;
1011   case bitc::RMW_XOR: return AtomicRMWInst::Xor;
1012   case bitc::RMW_MAX: return AtomicRMWInst::Max;
1013   case bitc::RMW_MIN: return AtomicRMWInst::Min;
1014   case bitc::RMW_UMAX: return AtomicRMWInst::UMax;
1015   case bitc::RMW_UMIN: return AtomicRMWInst::UMin;
1016   }
1017 }
1018 
1019 static AtomicOrdering getDecodedOrdering(unsigned Val) {
1020   switch (Val) {
1021   case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic;
1022   case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered;
1023   case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic;
1024   case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire;
1025   case bitc::ORDERING_RELEASE: return AtomicOrdering::Release;
1026   case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease;
1027   default: // Map unknown orderings to sequentially-consistent.
1028   case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent;
1029   }
1030 }
1031 
1032 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) {
1033   switch (Val) {
1034   default: // Map unknown selection kinds to any.
1035   case bitc::COMDAT_SELECTION_KIND_ANY:
1036     return Comdat::Any;
1037   case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH:
1038     return Comdat::ExactMatch;
1039   case bitc::COMDAT_SELECTION_KIND_LARGEST:
1040     return Comdat::Largest;
1041   case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES:
1042     return Comdat::NoDuplicates;
1043   case bitc::COMDAT_SELECTION_KIND_SAME_SIZE:
1044     return Comdat::SameSize;
1045   }
1046 }
1047 
1048 static FastMathFlags getDecodedFastMathFlags(unsigned Val) {
1049   FastMathFlags FMF;
1050   if (0 != (Val & bitc::UnsafeAlgebra))
1051     FMF.setFast();
1052   if (0 != (Val & bitc::AllowReassoc))
1053     FMF.setAllowReassoc();
1054   if (0 != (Val & bitc::NoNaNs))
1055     FMF.setNoNaNs();
1056   if (0 != (Val & bitc::NoInfs))
1057     FMF.setNoInfs();
1058   if (0 != (Val & bitc::NoSignedZeros))
1059     FMF.setNoSignedZeros();
1060   if (0 != (Val & bitc::AllowReciprocal))
1061     FMF.setAllowReciprocal();
1062   if (0 != (Val & bitc::AllowContract))
1063     FMF.setAllowContract(true);
1064   if (0 != (Val & bitc::ApproxFunc))
1065     FMF.setApproxFunc();
1066   return FMF;
1067 }
1068 
1069 static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) {
1070   switch (Val) {
1071   case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break;
1072   case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break;
1073   }
1074 }
1075 
1076 Type *BitcodeReader::getTypeByID(unsigned ID) {
1077   // The type table size is always specified correctly.
1078   if (ID >= TypeList.size())
1079     return nullptr;
1080 
1081   if (Type *Ty = TypeList[ID])
1082     return Ty;
1083 
1084   // If we have a forward reference, the only possible case is when it is to a
1085   // named struct.  Just create a placeholder for now.
1086   return TypeList[ID] = createIdentifiedStructType(Context);
1087 }
1088 
1089 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context,
1090                                                       StringRef Name) {
1091   auto *Ret = StructType::create(Context, Name);
1092   IdentifiedStructTypes.push_back(Ret);
1093   return Ret;
1094 }
1095 
1096 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) {
1097   auto *Ret = StructType::create(Context);
1098   IdentifiedStructTypes.push_back(Ret);
1099   return Ret;
1100 }
1101 
1102 //===----------------------------------------------------------------------===//
1103 //  Functions for parsing blocks from the bitcode file
1104 //===----------------------------------------------------------------------===//
1105 
1106 static uint64_t getRawAttributeMask(Attribute::AttrKind Val) {
1107   switch (Val) {
1108   case Attribute::EndAttrKinds:
1109     llvm_unreachable("Synthetic enumerators which should never get here");
1110 
1111   case Attribute::None:            return 0;
1112   case Attribute::ZExt:            return 1 << 0;
1113   case Attribute::SExt:            return 1 << 1;
1114   case Attribute::NoReturn:        return 1 << 2;
1115   case Attribute::InReg:           return 1 << 3;
1116   case Attribute::StructRet:       return 1 << 4;
1117   case Attribute::NoUnwind:        return 1 << 5;
1118   case Attribute::NoAlias:         return 1 << 6;
1119   case Attribute::ByVal:           return 1 << 7;
1120   case Attribute::Nest:            return 1 << 8;
1121   case Attribute::ReadNone:        return 1 << 9;
1122   case Attribute::ReadOnly:        return 1 << 10;
1123   case Attribute::NoInline:        return 1 << 11;
1124   case Attribute::AlwaysInline:    return 1 << 12;
1125   case Attribute::OptimizeForSize: return 1 << 13;
1126   case Attribute::StackProtect:    return 1 << 14;
1127   case Attribute::StackProtectReq: return 1 << 15;
1128   case Attribute::Alignment:       return 31 << 16;
1129   case Attribute::NoCapture:       return 1 << 21;
1130   case Attribute::NoRedZone:       return 1 << 22;
1131   case Attribute::NoImplicitFloat: return 1 << 23;
1132   case Attribute::Naked:           return 1 << 24;
1133   case Attribute::InlineHint:      return 1 << 25;
1134   case Attribute::StackAlignment:  return 7 << 26;
1135   case Attribute::ReturnsTwice:    return 1 << 29;
1136   case Attribute::UWTable:         return 1 << 30;
1137   case Attribute::NonLazyBind:     return 1U << 31;
1138   case Attribute::SanitizeAddress: return 1ULL << 32;
1139   case Attribute::MinSize:         return 1ULL << 33;
1140   case Attribute::NoDuplicate:     return 1ULL << 34;
1141   case Attribute::StackProtectStrong: return 1ULL << 35;
1142   case Attribute::SanitizeThread:  return 1ULL << 36;
1143   case Attribute::SanitizeMemory:  return 1ULL << 37;
1144   case Attribute::NoBuiltin:       return 1ULL << 38;
1145   case Attribute::Returned:        return 1ULL << 39;
1146   case Attribute::Cold:            return 1ULL << 40;
1147   case Attribute::Builtin:         return 1ULL << 41;
1148   case Attribute::OptimizeNone:    return 1ULL << 42;
1149   case Attribute::InAlloca:        return 1ULL << 43;
1150   case Attribute::NonNull:         return 1ULL << 44;
1151   case Attribute::JumpTable:       return 1ULL << 45;
1152   case Attribute::Convergent:      return 1ULL << 46;
1153   case Attribute::SafeStack:       return 1ULL << 47;
1154   case Attribute::NoRecurse:       return 1ULL << 48;
1155   case Attribute::InaccessibleMemOnly:         return 1ULL << 49;
1156   case Attribute::InaccessibleMemOrArgMemOnly: return 1ULL << 50;
1157   case Attribute::SwiftSelf:       return 1ULL << 51;
1158   case Attribute::SwiftError:      return 1ULL << 52;
1159   case Attribute::WriteOnly:       return 1ULL << 53;
1160   case Attribute::Speculatable:    return 1ULL << 54;
1161   case Attribute::StrictFP:        return 1ULL << 55;
1162   case Attribute::SanitizeHWAddress: return 1ULL << 56;
1163   case Attribute::NoCfCheck:       return 1ULL << 57;
1164   case Attribute::Dereferenceable:
1165     llvm_unreachable("dereferenceable attribute not supported in raw format");
1166     break;
1167   case Attribute::DereferenceableOrNull:
1168     llvm_unreachable("dereferenceable_or_null attribute not supported in raw "
1169                      "format");
1170     break;
1171   case Attribute::ArgMemOnly:
1172     llvm_unreachable("argmemonly attribute not supported in raw format");
1173     break;
1174   case Attribute::AllocSize:
1175     llvm_unreachable("allocsize not supported in raw format");
1176     break;
1177   }
1178   llvm_unreachable("Unsupported attribute type");
1179 }
1180 
1181 static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) {
1182   if (!Val) return;
1183 
1184   for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds;
1185        I = Attribute::AttrKind(I + 1)) {
1186     if (I == Attribute::Dereferenceable ||
1187         I == Attribute::DereferenceableOrNull ||
1188         I == Attribute::ArgMemOnly ||
1189         I == Attribute::AllocSize)
1190       continue;
1191     if (uint64_t A = (Val & getRawAttributeMask(I))) {
1192       if (I == Attribute::Alignment)
1193         B.addAlignmentAttr(1ULL << ((A >> 16) - 1));
1194       else if (I == Attribute::StackAlignment)
1195         B.addStackAlignmentAttr(1ULL << ((A >> 26)-1));
1196       else
1197         B.addAttribute(I);
1198     }
1199   }
1200 }
1201 
1202 /// \brief This fills an AttrBuilder object with the LLVM attributes that have
1203 /// been decoded from the given integer. This function must stay in sync with
1204 /// 'encodeLLVMAttributesForBitcode'.
1205 static void decodeLLVMAttributesForBitcode(AttrBuilder &B,
1206                                            uint64_t EncodedAttrs) {
1207   // FIXME: Remove in 4.0.
1208 
1209   // The alignment is stored as a 16-bit raw value from bits 31--16.  We shift
1210   // the bits above 31 down by 11 bits.
1211   unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16;
1212   assert((!Alignment || isPowerOf2_32(Alignment)) &&
1213          "Alignment must be a power of two.");
1214 
1215   if (Alignment)
1216     B.addAlignmentAttr(Alignment);
1217   addRawAttributeValue(B, ((EncodedAttrs & (0xfffffULL << 32)) >> 11) |
1218                           (EncodedAttrs & 0xffff));
1219 }
1220 
1221 Error BitcodeReader::parseAttributeBlock() {
1222   if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID))
1223     return error("Invalid record");
1224 
1225   if (!MAttributes.empty())
1226     return error("Invalid multiple blocks");
1227 
1228   SmallVector<uint64_t, 64> Record;
1229 
1230   SmallVector<AttributeList, 8> Attrs;
1231 
1232   // Read all the records.
1233   while (true) {
1234     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1235 
1236     switch (Entry.Kind) {
1237     case BitstreamEntry::SubBlock: // Handled for us already.
1238     case BitstreamEntry::Error:
1239       return error("Malformed block");
1240     case BitstreamEntry::EndBlock:
1241       return Error::success();
1242     case BitstreamEntry::Record:
1243       // The interesting case.
1244       break;
1245     }
1246 
1247     // Read a record.
1248     Record.clear();
1249     switch (Stream.readRecord(Entry.ID, Record)) {
1250     default:  // Default behavior: ignore.
1251       break;
1252     case bitc::PARAMATTR_CODE_ENTRY_OLD: // ENTRY: [paramidx0, attr0, ...]
1253       // FIXME: Remove in 4.0.
1254       if (Record.size() & 1)
1255         return error("Invalid record");
1256 
1257       for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
1258         AttrBuilder B;
1259         decodeLLVMAttributesForBitcode(B, Record[i+1]);
1260         Attrs.push_back(AttributeList::get(Context, Record[i], B));
1261       }
1262 
1263       MAttributes.push_back(AttributeList::get(Context, Attrs));
1264       Attrs.clear();
1265       break;
1266     case bitc::PARAMATTR_CODE_ENTRY: // ENTRY: [attrgrp0, attrgrp1, ...]
1267       for (unsigned i = 0, e = Record.size(); i != e; ++i)
1268         Attrs.push_back(MAttributeGroups[Record[i]]);
1269 
1270       MAttributes.push_back(AttributeList::get(Context, Attrs));
1271       Attrs.clear();
1272       break;
1273     }
1274   }
1275 }
1276 
1277 // Returns Attribute::None on unrecognized codes.
1278 static Attribute::AttrKind getAttrFromCode(uint64_t Code) {
1279   switch (Code) {
1280   default:
1281     return Attribute::None;
1282   case bitc::ATTR_KIND_ALIGNMENT:
1283     return Attribute::Alignment;
1284   case bitc::ATTR_KIND_ALWAYS_INLINE:
1285     return Attribute::AlwaysInline;
1286   case bitc::ATTR_KIND_ARGMEMONLY:
1287     return Attribute::ArgMemOnly;
1288   case bitc::ATTR_KIND_BUILTIN:
1289     return Attribute::Builtin;
1290   case bitc::ATTR_KIND_BY_VAL:
1291     return Attribute::ByVal;
1292   case bitc::ATTR_KIND_IN_ALLOCA:
1293     return Attribute::InAlloca;
1294   case bitc::ATTR_KIND_COLD:
1295     return Attribute::Cold;
1296   case bitc::ATTR_KIND_CONVERGENT:
1297     return Attribute::Convergent;
1298   case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY:
1299     return Attribute::InaccessibleMemOnly;
1300   case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY:
1301     return Attribute::InaccessibleMemOrArgMemOnly;
1302   case bitc::ATTR_KIND_INLINE_HINT:
1303     return Attribute::InlineHint;
1304   case bitc::ATTR_KIND_IN_REG:
1305     return Attribute::InReg;
1306   case bitc::ATTR_KIND_JUMP_TABLE:
1307     return Attribute::JumpTable;
1308   case bitc::ATTR_KIND_MIN_SIZE:
1309     return Attribute::MinSize;
1310   case bitc::ATTR_KIND_NAKED:
1311     return Attribute::Naked;
1312   case bitc::ATTR_KIND_NEST:
1313     return Attribute::Nest;
1314   case bitc::ATTR_KIND_NO_ALIAS:
1315     return Attribute::NoAlias;
1316   case bitc::ATTR_KIND_NO_BUILTIN:
1317     return Attribute::NoBuiltin;
1318   case bitc::ATTR_KIND_NO_CAPTURE:
1319     return Attribute::NoCapture;
1320   case bitc::ATTR_KIND_NO_DUPLICATE:
1321     return Attribute::NoDuplicate;
1322   case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT:
1323     return Attribute::NoImplicitFloat;
1324   case bitc::ATTR_KIND_NO_INLINE:
1325     return Attribute::NoInline;
1326   case bitc::ATTR_KIND_NO_RECURSE:
1327     return Attribute::NoRecurse;
1328   case bitc::ATTR_KIND_NON_LAZY_BIND:
1329     return Attribute::NonLazyBind;
1330   case bitc::ATTR_KIND_NON_NULL:
1331     return Attribute::NonNull;
1332   case bitc::ATTR_KIND_DEREFERENCEABLE:
1333     return Attribute::Dereferenceable;
1334   case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL:
1335     return Attribute::DereferenceableOrNull;
1336   case bitc::ATTR_KIND_ALLOC_SIZE:
1337     return Attribute::AllocSize;
1338   case bitc::ATTR_KIND_NO_RED_ZONE:
1339     return Attribute::NoRedZone;
1340   case bitc::ATTR_KIND_NO_RETURN:
1341     return Attribute::NoReturn;
1342   case bitc::ATTR_KIND_NOCF_CHECK:
1343     return Attribute::NoCfCheck;
1344   case bitc::ATTR_KIND_NO_UNWIND:
1345     return Attribute::NoUnwind;
1346   case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE:
1347     return Attribute::OptimizeForSize;
1348   case bitc::ATTR_KIND_OPTIMIZE_NONE:
1349     return Attribute::OptimizeNone;
1350   case bitc::ATTR_KIND_READ_NONE:
1351     return Attribute::ReadNone;
1352   case bitc::ATTR_KIND_READ_ONLY:
1353     return Attribute::ReadOnly;
1354   case bitc::ATTR_KIND_RETURNED:
1355     return Attribute::Returned;
1356   case bitc::ATTR_KIND_RETURNS_TWICE:
1357     return Attribute::ReturnsTwice;
1358   case bitc::ATTR_KIND_S_EXT:
1359     return Attribute::SExt;
1360   case bitc::ATTR_KIND_SPECULATABLE:
1361     return Attribute::Speculatable;
1362   case bitc::ATTR_KIND_STACK_ALIGNMENT:
1363     return Attribute::StackAlignment;
1364   case bitc::ATTR_KIND_STACK_PROTECT:
1365     return Attribute::StackProtect;
1366   case bitc::ATTR_KIND_STACK_PROTECT_REQ:
1367     return Attribute::StackProtectReq;
1368   case bitc::ATTR_KIND_STACK_PROTECT_STRONG:
1369     return Attribute::StackProtectStrong;
1370   case bitc::ATTR_KIND_SAFESTACK:
1371     return Attribute::SafeStack;
1372   case bitc::ATTR_KIND_STRICT_FP:
1373     return Attribute::StrictFP;
1374   case bitc::ATTR_KIND_STRUCT_RET:
1375     return Attribute::StructRet;
1376   case bitc::ATTR_KIND_SANITIZE_ADDRESS:
1377     return Attribute::SanitizeAddress;
1378   case bitc::ATTR_KIND_SANITIZE_HWADDRESS:
1379     return Attribute::SanitizeHWAddress;
1380   case bitc::ATTR_KIND_SANITIZE_THREAD:
1381     return Attribute::SanitizeThread;
1382   case bitc::ATTR_KIND_SANITIZE_MEMORY:
1383     return Attribute::SanitizeMemory;
1384   case bitc::ATTR_KIND_SWIFT_ERROR:
1385     return Attribute::SwiftError;
1386   case bitc::ATTR_KIND_SWIFT_SELF:
1387     return Attribute::SwiftSelf;
1388   case bitc::ATTR_KIND_UW_TABLE:
1389     return Attribute::UWTable;
1390   case bitc::ATTR_KIND_WRITEONLY:
1391     return Attribute::WriteOnly;
1392   case bitc::ATTR_KIND_Z_EXT:
1393     return Attribute::ZExt;
1394   }
1395 }
1396 
1397 Error BitcodeReader::parseAlignmentValue(uint64_t Exponent,
1398                                          unsigned &Alignment) {
1399   // Note: Alignment in bitcode files is incremented by 1, so that zero
1400   // can be used for default alignment.
1401   if (Exponent > Value::MaxAlignmentExponent + 1)
1402     return error("Invalid alignment value");
1403   Alignment = (1 << static_cast<unsigned>(Exponent)) >> 1;
1404   return Error::success();
1405 }
1406 
1407 Error BitcodeReader::parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind) {
1408   *Kind = getAttrFromCode(Code);
1409   if (*Kind == Attribute::None)
1410     return error("Unknown attribute kind (" + Twine(Code) + ")");
1411   return Error::success();
1412 }
1413 
1414 Error BitcodeReader::parseAttributeGroupBlock() {
1415   if (Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID))
1416     return error("Invalid record");
1417 
1418   if (!MAttributeGroups.empty())
1419     return error("Invalid multiple blocks");
1420 
1421   SmallVector<uint64_t, 64> Record;
1422 
1423   // Read all the records.
1424   while (true) {
1425     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1426 
1427     switch (Entry.Kind) {
1428     case BitstreamEntry::SubBlock: // Handled for us already.
1429     case BitstreamEntry::Error:
1430       return error("Malformed block");
1431     case BitstreamEntry::EndBlock:
1432       return Error::success();
1433     case BitstreamEntry::Record:
1434       // The interesting case.
1435       break;
1436     }
1437 
1438     // Read a record.
1439     Record.clear();
1440     switch (Stream.readRecord(Entry.ID, Record)) {
1441     default:  // Default behavior: ignore.
1442       break;
1443     case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...]
1444       if (Record.size() < 3)
1445         return error("Invalid record");
1446 
1447       uint64_t GrpID = Record[0];
1448       uint64_t Idx = Record[1]; // Index of the object this attribute refers to.
1449 
1450       AttrBuilder B;
1451       for (unsigned i = 2, e = Record.size(); i != e; ++i) {
1452         if (Record[i] == 0) {        // Enum attribute
1453           Attribute::AttrKind Kind;
1454           if (Error Err = parseAttrKind(Record[++i], &Kind))
1455             return Err;
1456 
1457           B.addAttribute(Kind);
1458         } else if (Record[i] == 1) { // Integer attribute
1459           Attribute::AttrKind Kind;
1460           if (Error Err = parseAttrKind(Record[++i], &Kind))
1461             return Err;
1462           if (Kind == Attribute::Alignment)
1463             B.addAlignmentAttr(Record[++i]);
1464           else if (Kind == Attribute::StackAlignment)
1465             B.addStackAlignmentAttr(Record[++i]);
1466           else if (Kind == Attribute::Dereferenceable)
1467             B.addDereferenceableAttr(Record[++i]);
1468           else if (Kind == Attribute::DereferenceableOrNull)
1469             B.addDereferenceableOrNullAttr(Record[++i]);
1470           else if (Kind == Attribute::AllocSize)
1471             B.addAllocSizeAttrFromRawRepr(Record[++i]);
1472         } else {                     // String attribute
1473           assert((Record[i] == 3 || Record[i] == 4) &&
1474                  "Invalid attribute group entry");
1475           bool HasValue = (Record[i++] == 4);
1476           SmallString<64> KindStr;
1477           SmallString<64> ValStr;
1478 
1479           while (Record[i] != 0 && i != e)
1480             KindStr += Record[i++];
1481           assert(Record[i] == 0 && "Kind string not null terminated");
1482 
1483           if (HasValue) {
1484             // Has a value associated with it.
1485             ++i; // Skip the '0' that terminates the "kind" string.
1486             while (Record[i] != 0 && i != e)
1487               ValStr += Record[i++];
1488             assert(Record[i] == 0 && "Value string not null terminated");
1489           }
1490 
1491           B.addAttribute(KindStr.str(), ValStr.str());
1492         }
1493       }
1494 
1495       MAttributeGroups[GrpID] = AttributeList::get(Context, Idx, B);
1496       break;
1497     }
1498     }
1499   }
1500 }
1501 
1502 Error BitcodeReader::parseTypeTable() {
1503   if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW))
1504     return error("Invalid record");
1505 
1506   return parseTypeTableBody();
1507 }
1508 
1509 Error BitcodeReader::parseTypeTableBody() {
1510   if (!TypeList.empty())
1511     return error("Invalid multiple blocks");
1512 
1513   SmallVector<uint64_t, 64> Record;
1514   unsigned NumRecords = 0;
1515 
1516   SmallString<64> TypeName;
1517 
1518   // Read all the records for this type table.
1519   while (true) {
1520     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1521 
1522     switch (Entry.Kind) {
1523     case BitstreamEntry::SubBlock: // Handled for us already.
1524     case BitstreamEntry::Error:
1525       return error("Malformed block");
1526     case BitstreamEntry::EndBlock:
1527       if (NumRecords != TypeList.size())
1528         return error("Malformed block");
1529       return Error::success();
1530     case BitstreamEntry::Record:
1531       // The interesting case.
1532       break;
1533     }
1534 
1535     // Read a record.
1536     Record.clear();
1537     Type *ResultTy = nullptr;
1538     switch (Stream.readRecord(Entry.ID, Record)) {
1539     default:
1540       return error("Invalid value");
1541     case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
1542       // TYPE_CODE_NUMENTRY contains a count of the number of types in the
1543       // type list.  This allows us to reserve space.
1544       if (Record.size() < 1)
1545         return error("Invalid record");
1546       TypeList.resize(Record[0]);
1547       continue;
1548     case bitc::TYPE_CODE_VOID:      // VOID
1549       ResultTy = Type::getVoidTy(Context);
1550       break;
1551     case bitc::TYPE_CODE_HALF:     // HALF
1552       ResultTy = Type::getHalfTy(Context);
1553       break;
1554     case bitc::TYPE_CODE_FLOAT:     // FLOAT
1555       ResultTy = Type::getFloatTy(Context);
1556       break;
1557     case bitc::TYPE_CODE_DOUBLE:    // DOUBLE
1558       ResultTy = Type::getDoubleTy(Context);
1559       break;
1560     case bitc::TYPE_CODE_X86_FP80:  // X86_FP80
1561       ResultTy = Type::getX86_FP80Ty(Context);
1562       break;
1563     case bitc::TYPE_CODE_FP128:     // FP128
1564       ResultTy = Type::getFP128Ty(Context);
1565       break;
1566     case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
1567       ResultTy = Type::getPPC_FP128Ty(Context);
1568       break;
1569     case bitc::TYPE_CODE_LABEL:     // LABEL
1570       ResultTy = Type::getLabelTy(Context);
1571       break;
1572     case bitc::TYPE_CODE_METADATA:  // METADATA
1573       ResultTy = Type::getMetadataTy(Context);
1574       break;
1575     case bitc::TYPE_CODE_X86_MMX:   // X86_MMX
1576       ResultTy = Type::getX86_MMXTy(Context);
1577       break;
1578     case bitc::TYPE_CODE_TOKEN:     // TOKEN
1579       ResultTy = Type::getTokenTy(Context);
1580       break;
1581     case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width]
1582       if (Record.size() < 1)
1583         return error("Invalid record");
1584 
1585       uint64_t NumBits = Record[0];
1586       if (NumBits < IntegerType::MIN_INT_BITS ||
1587           NumBits > IntegerType::MAX_INT_BITS)
1588         return error("Bitwidth for integer type out of range");
1589       ResultTy = IntegerType::get(Context, NumBits);
1590       break;
1591     }
1592     case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
1593                                     //          [pointee type, address space]
1594       if (Record.size() < 1)
1595         return error("Invalid record");
1596       unsigned AddressSpace = 0;
1597       if (Record.size() == 2)
1598         AddressSpace = Record[1];
1599       ResultTy = getTypeByID(Record[0]);
1600       if (!ResultTy ||
1601           !PointerType::isValidElementType(ResultTy))
1602         return error("Invalid type");
1603       ResultTy = PointerType::get(ResultTy, AddressSpace);
1604       break;
1605     }
1606     case bitc::TYPE_CODE_FUNCTION_OLD: {
1607       // FIXME: attrid is dead, remove it in LLVM 4.0
1608       // FUNCTION: [vararg, attrid, retty, paramty x N]
1609       if (Record.size() < 3)
1610         return error("Invalid record");
1611       SmallVector<Type*, 8> ArgTys;
1612       for (unsigned i = 3, e = Record.size(); i != e; ++i) {
1613         if (Type *T = getTypeByID(Record[i]))
1614           ArgTys.push_back(T);
1615         else
1616           break;
1617       }
1618 
1619       ResultTy = getTypeByID(Record[2]);
1620       if (!ResultTy || ArgTys.size() < Record.size()-3)
1621         return error("Invalid type");
1622 
1623       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
1624       break;
1625     }
1626     case bitc::TYPE_CODE_FUNCTION: {
1627       // FUNCTION: [vararg, retty, paramty x N]
1628       if (Record.size() < 2)
1629         return error("Invalid record");
1630       SmallVector<Type*, 8> ArgTys;
1631       for (unsigned i = 2, e = Record.size(); i != e; ++i) {
1632         if (Type *T = getTypeByID(Record[i])) {
1633           if (!FunctionType::isValidArgumentType(T))
1634             return error("Invalid function argument type");
1635           ArgTys.push_back(T);
1636         }
1637         else
1638           break;
1639       }
1640 
1641       ResultTy = getTypeByID(Record[1]);
1642       if (!ResultTy || ArgTys.size() < Record.size()-2)
1643         return error("Invalid type");
1644 
1645       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
1646       break;
1647     }
1648     case bitc::TYPE_CODE_STRUCT_ANON: {  // STRUCT: [ispacked, eltty x N]
1649       if (Record.size() < 1)
1650         return error("Invalid record");
1651       SmallVector<Type*, 8> EltTys;
1652       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
1653         if (Type *T = getTypeByID(Record[i]))
1654           EltTys.push_back(T);
1655         else
1656           break;
1657       }
1658       if (EltTys.size() != Record.size()-1)
1659         return error("Invalid type");
1660       ResultTy = StructType::get(Context, EltTys, Record[0]);
1661       break;
1662     }
1663     case bitc::TYPE_CODE_STRUCT_NAME:   // STRUCT_NAME: [strchr x N]
1664       if (convertToString(Record, 0, TypeName))
1665         return error("Invalid record");
1666       continue;
1667 
1668     case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N]
1669       if (Record.size() < 1)
1670         return error("Invalid record");
1671 
1672       if (NumRecords >= TypeList.size())
1673         return error("Invalid TYPE table");
1674 
1675       // Check to see if this was forward referenced, if so fill in the temp.
1676       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
1677       if (Res) {
1678         Res->setName(TypeName);
1679         TypeList[NumRecords] = nullptr;
1680       } else  // Otherwise, create a new struct.
1681         Res = createIdentifiedStructType(Context, TypeName);
1682       TypeName.clear();
1683 
1684       SmallVector<Type*, 8> EltTys;
1685       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
1686         if (Type *T = getTypeByID(Record[i]))
1687           EltTys.push_back(T);
1688         else
1689           break;
1690       }
1691       if (EltTys.size() != Record.size()-1)
1692         return error("Invalid record");
1693       Res->setBody(EltTys, Record[0]);
1694       ResultTy = Res;
1695       break;
1696     }
1697     case bitc::TYPE_CODE_OPAQUE: {       // OPAQUE: []
1698       if (Record.size() != 1)
1699         return error("Invalid record");
1700 
1701       if (NumRecords >= TypeList.size())
1702         return error("Invalid TYPE table");
1703 
1704       // Check to see if this was forward referenced, if so fill in the temp.
1705       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
1706       if (Res) {
1707         Res->setName(TypeName);
1708         TypeList[NumRecords] = nullptr;
1709       } else  // Otherwise, create a new struct with no body.
1710         Res = createIdentifiedStructType(Context, TypeName);
1711       TypeName.clear();
1712       ResultTy = Res;
1713       break;
1714     }
1715     case bitc::TYPE_CODE_ARRAY:     // ARRAY: [numelts, eltty]
1716       if (Record.size() < 2)
1717         return error("Invalid record");
1718       ResultTy = getTypeByID(Record[1]);
1719       if (!ResultTy || !ArrayType::isValidElementType(ResultTy))
1720         return error("Invalid type");
1721       ResultTy = ArrayType::get(ResultTy, Record[0]);
1722       break;
1723     case bitc::TYPE_CODE_VECTOR:    // VECTOR: [numelts, eltty]
1724       if (Record.size() < 2)
1725         return error("Invalid record");
1726       if (Record[0] == 0)
1727         return error("Invalid vector length");
1728       ResultTy = getTypeByID(Record[1]);
1729       if (!ResultTy || !StructType::isValidElementType(ResultTy))
1730         return error("Invalid type");
1731       ResultTy = VectorType::get(ResultTy, Record[0]);
1732       break;
1733     }
1734 
1735     if (NumRecords >= TypeList.size())
1736       return error("Invalid TYPE table");
1737     if (TypeList[NumRecords])
1738       return error(
1739           "Invalid TYPE table: Only named structs can be forward referenced");
1740     assert(ResultTy && "Didn't read a type?");
1741     TypeList[NumRecords++] = ResultTy;
1742   }
1743 }
1744 
1745 Error BitcodeReader::parseOperandBundleTags() {
1746   if (Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID))
1747     return error("Invalid record");
1748 
1749   if (!BundleTags.empty())
1750     return error("Invalid multiple blocks");
1751 
1752   SmallVector<uint64_t, 64> Record;
1753 
1754   while (true) {
1755     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1756 
1757     switch (Entry.Kind) {
1758     case BitstreamEntry::SubBlock: // Handled for us already.
1759     case BitstreamEntry::Error:
1760       return error("Malformed block");
1761     case BitstreamEntry::EndBlock:
1762       return Error::success();
1763     case BitstreamEntry::Record:
1764       // The interesting case.
1765       break;
1766     }
1767 
1768     // Tags are implicitly mapped to integers by their order.
1769 
1770     if (Stream.readRecord(Entry.ID, Record) != bitc::OPERAND_BUNDLE_TAG)
1771       return error("Invalid record");
1772 
1773     // OPERAND_BUNDLE_TAG: [strchr x N]
1774     BundleTags.emplace_back();
1775     if (convertToString(Record, 0, BundleTags.back()))
1776       return error("Invalid record");
1777     Record.clear();
1778   }
1779 }
1780 
1781 Error BitcodeReader::parseSyncScopeNames() {
1782   if (Stream.EnterSubBlock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID))
1783     return error("Invalid record");
1784 
1785   if (!SSIDs.empty())
1786     return error("Invalid multiple synchronization scope names blocks");
1787 
1788   SmallVector<uint64_t, 64> Record;
1789   while (true) {
1790     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1791     switch (Entry.Kind) {
1792     case BitstreamEntry::SubBlock: // Handled for us already.
1793     case BitstreamEntry::Error:
1794       return error("Malformed block");
1795     case BitstreamEntry::EndBlock:
1796       if (SSIDs.empty())
1797         return error("Invalid empty synchronization scope names block");
1798       return Error::success();
1799     case BitstreamEntry::Record:
1800       // The interesting case.
1801       break;
1802     }
1803 
1804     // Synchronization scope names are implicitly mapped to synchronization
1805     // scope IDs by their order.
1806 
1807     if (Stream.readRecord(Entry.ID, Record) != bitc::SYNC_SCOPE_NAME)
1808       return error("Invalid record");
1809 
1810     SmallString<16> SSN;
1811     if (convertToString(Record, 0, SSN))
1812       return error("Invalid record");
1813 
1814     SSIDs.push_back(Context.getOrInsertSyncScopeID(SSN));
1815     Record.clear();
1816   }
1817 }
1818 
1819 /// Associate a value with its name from the given index in the provided record.
1820 Expected<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record,
1821                                              unsigned NameIndex, Triple &TT) {
1822   SmallString<128> ValueName;
1823   if (convertToString(Record, NameIndex, ValueName))
1824     return error("Invalid record");
1825   unsigned ValueID = Record[0];
1826   if (ValueID >= ValueList.size() || !ValueList[ValueID])
1827     return error("Invalid record");
1828   Value *V = ValueList[ValueID];
1829 
1830   StringRef NameStr(ValueName.data(), ValueName.size());
1831   if (NameStr.find_first_of(0) != StringRef::npos)
1832     return error("Invalid value name");
1833   V->setName(NameStr);
1834   auto *GO = dyn_cast<GlobalObject>(V);
1835   if (GO) {
1836     if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) {
1837       if (TT.supportsCOMDAT())
1838         GO->setComdat(TheModule->getOrInsertComdat(V->getName()));
1839       else
1840         GO->setComdat(nullptr);
1841     }
1842   }
1843   return V;
1844 }
1845 
1846 /// Helper to note and return the current location, and jump to the given
1847 /// offset.
1848 static uint64_t jumpToValueSymbolTable(uint64_t Offset,
1849                                        BitstreamCursor &Stream) {
1850   // Save the current parsing location so we can jump back at the end
1851   // of the VST read.
1852   uint64_t CurrentBit = Stream.GetCurrentBitNo();
1853   Stream.JumpToBit(Offset * 32);
1854 #ifndef NDEBUG
1855   // Do some checking if we are in debug mode.
1856   BitstreamEntry Entry = Stream.advance();
1857   assert(Entry.Kind == BitstreamEntry::SubBlock);
1858   assert(Entry.ID == bitc::VALUE_SYMTAB_BLOCK_ID);
1859 #else
1860   // In NDEBUG mode ignore the output so we don't get an unused variable
1861   // warning.
1862   Stream.advance();
1863 #endif
1864   return CurrentBit;
1865 }
1866 
1867 void BitcodeReader::setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta,
1868                                             Function *F,
1869                                             ArrayRef<uint64_t> Record) {
1870   // Note that we subtract 1 here because the offset is relative to one word
1871   // before the start of the identification or module block, which was
1872   // historically always the start of the regular bitcode header.
1873   uint64_t FuncWordOffset = Record[1] - 1;
1874   uint64_t FuncBitOffset = FuncWordOffset * 32;
1875   DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta;
1876   // Set the LastFunctionBlockBit to point to the last function block.
1877   // Later when parsing is resumed after function materialization,
1878   // we can simply skip that last function block.
1879   if (FuncBitOffset > LastFunctionBlockBit)
1880     LastFunctionBlockBit = FuncBitOffset;
1881 }
1882 
1883 /// Read a new-style GlobalValue symbol table.
1884 Error BitcodeReader::parseGlobalValueSymbolTable() {
1885   unsigned FuncBitcodeOffsetDelta =
1886       Stream.getAbbrevIDWidth() + bitc::BlockIDWidth;
1887 
1888   if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
1889     return error("Invalid record");
1890 
1891   SmallVector<uint64_t, 64> Record;
1892   while (true) {
1893     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1894 
1895     switch (Entry.Kind) {
1896     case BitstreamEntry::SubBlock:
1897     case BitstreamEntry::Error:
1898       return error("Malformed block");
1899     case BitstreamEntry::EndBlock:
1900       return Error::success();
1901     case BitstreamEntry::Record:
1902       break;
1903     }
1904 
1905     Record.clear();
1906     switch (Stream.readRecord(Entry.ID, Record)) {
1907     case bitc::VST_CODE_FNENTRY: // [valueid, offset]
1908       setDeferredFunctionInfo(FuncBitcodeOffsetDelta,
1909                               cast<Function>(ValueList[Record[0]]), Record);
1910       break;
1911     }
1912   }
1913 }
1914 
1915 /// Parse the value symbol table at either the current parsing location or
1916 /// at the given bit offset if provided.
1917 Error BitcodeReader::parseValueSymbolTable(uint64_t Offset) {
1918   uint64_t CurrentBit;
1919   // Pass in the Offset to distinguish between calling for the module-level
1920   // VST (where we want to jump to the VST offset) and the function-level
1921   // VST (where we don't).
1922   if (Offset > 0) {
1923     CurrentBit = jumpToValueSymbolTable(Offset, Stream);
1924     // If this module uses a string table, read this as a module-level VST.
1925     if (UseStrtab) {
1926       if (Error Err = parseGlobalValueSymbolTable())
1927         return Err;
1928       Stream.JumpToBit(CurrentBit);
1929       return Error::success();
1930     }
1931     // Otherwise, the VST will be in a similar format to a function-level VST,
1932     // and will contain symbol names.
1933   }
1934 
1935   // Compute the delta between the bitcode indices in the VST (the word offset
1936   // to the word-aligned ENTER_SUBBLOCK for the function block, and that
1937   // expected by the lazy reader. The reader's EnterSubBlock expects to have
1938   // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID
1939   // (size BlockIDWidth). Note that we access the stream's AbbrevID width here
1940   // just before entering the VST subblock because: 1) the EnterSubBlock
1941   // changes the AbbrevID width; 2) the VST block is nested within the same
1942   // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same
1943   // AbbrevID width before calling EnterSubBlock; and 3) when we want to
1944   // jump to the FUNCTION_BLOCK using this offset later, we don't want
1945   // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK.
1946   unsigned FuncBitcodeOffsetDelta =
1947       Stream.getAbbrevIDWidth() + bitc::BlockIDWidth;
1948 
1949   if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
1950     return error("Invalid record");
1951 
1952   SmallVector<uint64_t, 64> Record;
1953 
1954   Triple TT(TheModule->getTargetTriple());
1955 
1956   // Read all the records for this value table.
1957   SmallString<128> ValueName;
1958 
1959   while (true) {
1960     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1961 
1962     switch (Entry.Kind) {
1963     case BitstreamEntry::SubBlock: // Handled for us already.
1964     case BitstreamEntry::Error:
1965       return error("Malformed block");
1966     case BitstreamEntry::EndBlock:
1967       if (Offset > 0)
1968         Stream.JumpToBit(CurrentBit);
1969       return Error::success();
1970     case BitstreamEntry::Record:
1971       // The interesting case.
1972       break;
1973     }
1974 
1975     // Read a record.
1976     Record.clear();
1977     switch (Stream.readRecord(Entry.ID, Record)) {
1978     default:  // Default behavior: unknown type.
1979       break;
1980     case bitc::VST_CODE_ENTRY: {  // VST_CODE_ENTRY: [valueid, namechar x N]
1981       Expected<Value *> ValOrErr = recordValue(Record, 1, TT);
1982       if (Error Err = ValOrErr.takeError())
1983         return Err;
1984       ValOrErr.get();
1985       break;
1986     }
1987     case bitc::VST_CODE_FNENTRY: {
1988       // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
1989       Expected<Value *> ValOrErr = recordValue(Record, 2, TT);
1990       if (Error Err = ValOrErr.takeError())
1991         return Err;
1992       Value *V = ValOrErr.get();
1993 
1994       // Ignore function offsets emitted for aliases of functions in older
1995       // versions of LLVM.
1996       if (auto *F = dyn_cast<Function>(V))
1997         setDeferredFunctionInfo(FuncBitcodeOffsetDelta, F, Record);
1998       break;
1999     }
2000     case bitc::VST_CODE_BBENTRY: {
2001       if (convertToString(Record, 1, ValueName))
2002         return error("Invalid record");
2003       BasicBlock *BB = getBasicBlock(Record[0]);
2004       if (!BB)
2005         return error("Invalid record");
2006 
2007       BB->setName(StringRef(ValueName.data(), ValueName.size()));
2008       ValueName.clear();
2009       break;
2010     }
2011     }
2012   }
2013 }
2014 
2015 /// Decode a signed value stored with the sign bit in the LSB for dense VBR
2016 /// encoding.
2017 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) {
2018   if ((V & 1) == 0)
2019     return V >> 1;
2020   if (V != 1)
2021     return -(V >> 1);
2022   // There is no such thing as -0 with integers.  "-0" really means MININT.
2023   return 1ULL << 63;
2024 }
2025 
2026 /// Resolve all of the initializers for global values and aliases that we can.
2027 Error BitcodeReader::resolveGlobalAndIndirectSymbolInits() {
2028   std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInitWorklist;
2029   std::vector<std::pair<GlobalIndirectSymbol *, unsigned>>
2030       IndirectSymbolInitWorklist;
2031   std::vector<std::pair<Function *, unsigned>> FunctionPrefixWorklist;
2032   std::vector<std::pair<Function *, unsigned>> FunctionPrologueWorklist;
2033   std::vector<std::pair<Function *, unsigned>> FunctionPersonalityFnWorklist;
2034 
2035   GlobalInitWorklist.swap(GlobalInits);
2036   IndirectSymbolInitWorklist.swap(IndirectSymbolInits);
2037   FunctionPrefixWorklist.swap(FunctionPrefixes);
2038   FunctionPrologueWorklist.swap(FunctionPrologues);
2039   FunctionPersonalityFnWorklist.swap(FunctionPersonalityFns);
2040 
2041   while (!GlobalInitWorklist.empty()) {
2042     unsigned ValID = GlobalInitWorklist.back().second;
2043     if (ValID >= ValueList.size()) {
2044       // Not ready to resolve this yet, it requires something later in the file.
2045       GlobalInits.push_back(GlobalInitWorklist.back());
2046     } else {
2047       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2048         GlobalInitWorklist.back().first->setInitializer(C);
2049       else
2050         return error("Expected a constant");
2051     }
2052     GlobalInitWorklist.pop_back();
2053   }
2054 
2055   while (!IndirectSymbolInitWorklist.empty()) {
2056     unsigned ValID = IndirectSymbolInitWorklist.back().second;
2057     if (ValID >= ValueList.size()) {
2058       IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back());
2059     } else {
2060       Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]);
2061       if (!C)
2062         return error("Expected a constant");
2063       GlobalIndirectSymbol *GIS = IndirectSymbolInitWorklist.back().first;
2064       if (isa<GlobalAlias>(GIS) && C->getType() != GIS->getType())
2065         return error("Alias and aliasee types don't match");
2066       GIS->setIndirectSymbol(C);
2067     }
2068     IndirectSymbolInitWorklist.pop_back();
2069   }
2070 
2071   while (!FunctionPrefixWorklist.empty()) {
2072     unsigned ValID = FunctionPrefixWorklist.back().second;
2073     if (ValID >= ValueList.size()) {
2074       FunctionPrefixes.push_back(FunctionPrefixWorklist.back());
2075     } else {
2076       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2077         FunctionPrefixWorklist.back().first->setPrefixData(C);
2078       else
2079         return error("Expected a constant");
2080     }
2081     FunctionPrefixWorklist.pop_back();
2082   }
2083 
2084   while (!FunctionPrologueWorklist.empty()) {
2085     unsigned ValID = FunctionPrologueWorklist.back().second;
2086     if (ValID >= ValueList.size()) {
2087       FunctionPrologues.push_back(FunctionPrologueWorklist.back());
2088     } else {
2089       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2090         FunctionPrologueWorklist.back().first->setPrologueData(C);
2091       else
2092         return error("Expected a constant");
2093     }
2094     FunctionPrologueWorklist.pop_back();
2095   }
2096 
2097   while (!FunctionPersonalityFnWorklist.empty()) {
2098     unsigned ValID = FunctionPersonalityFnWorklist.back().second;
2099     if (ValID >= ValueList.size()) {
2100       FunctionPersonalityFns.push_back(FunctionPersonalityFnWorklist.back());
2101     } else {
2102       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2103         FunctionPersonalityFnWorklist.back().first->setPersonalityFn(C);
2104       else
2105         return error("Expected a constant");
2106     }
2107     FunctionPersonalityFnWorklist.pop_back();
2108   }
2109 
2110   return Error::success();
2111 }
2112 
2113 static APInt readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) {
2114   SmallVector<uint64_t, 8> Words(Vals.size());
2115   transform(Vals, Words.begin(),
2116                  BitcodeReader::decodeSignRotatedValue);
2117 
2118   return APInt(TypeBits, Words);
2119 }
2120 
2121 Error BitcodeReader::parseConstants() {
2122   if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID))
2123     return error("Invalid record");
2124 
2125   SmallVector<uint64_t, 64> Record;
2126 
2127   // Read all the records for this value table.
2128   Type *CurTy = Type::getInt32Ty(Context);
2129   unsigned NextCstNo = ValueList.size();
2130 
2131   while (true) {
2132     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
2133 
2134     switch (Entry.Kind) {
2135     case BitstreamEntry::SubBlock: // Handled for us already.
2136     case BitstreamEntry::Error:
2137       return error("Malformed block");
2138     case BitstreamEntry::EndBlock:
2139       if (NextCstNo != ValueList.size())
2140         return error("Invalid constant reference");
2141 
2142       // Once all the constants have been read, go through and resolve forward
2143       // references.
2144       ValueList.resolveConstantForwardRefs();
2145       return Error::success();
2146     case BitstreamEntry::Record:
2147       // The interesting case.
2148       break;
2149     }
2150 
2151     // Read a record.
2152     Record.clear();
2153     Type *VoidType = Type::getVoidTy(Context);
2154     Value *V = nullptr;
2155     unsigned BitCode = Stream.readRecord(Entry.ID, Record);
2156     switch (BitCode) {
2157     default:  // Default behavior: unknown constant
2158     case bitc::CST_CODE_UNDEF:     // UNDEF
2159       V = UndefValue::get(CurTy);
2160       break;
2161     case bitc::CST_CODE_SETTYPE:   // SETTYPE: [typeid]
2162       if (Record.empty())
2163         return error("Invalid record");
2164       if (Record[0] >= TypeList.size() || !TypeList[Record[0]])
2165         return error("Invalid record");
2166       if (TypeList[Record[0]] == VoidType)
2167         return error("Invalid constant type");
2168       CurTy = TypeList[Record[0]];
2169       continue;  // Skip the ValueList manipulation.
2170     case bitc::CST_CODE_NULL:      // NULL
2171       V = Constant::getNullValue(CurTy);
2172       break;
2173     case bitc::CST_CODE_INTEGER:   // INTEGER: [intval]
2174       if (!CurTy->isIntegerTy() || Record.empty())
2175         return error("Invalid record");
2176       V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0]));
2177       break;
2178     case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
2179       if (!CurTy->isIntegerTy() || Record.empty())
2180         return error("Invalid record");
2181 
2182       APInt VInt =
2183           readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth());
2184       V = ConstantInt::get(Context, VInt);
2185 
2186       break;
2187     }
2188     case bitc::CST_CODE_FLOAT: {    // FLOAT: [fpval]
2189       if (Record.empty())
2190         return error("Invalid record");
2191       if (CurTy->isHalfTy())
2192         V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf(),
2193                                              APInt(16, (uint16_t)Record[0])));
2194       else if (CurTy->isFloatTy())
2195         V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle(),
2196                                              APInt(32, (uint32_t)Record[0])));
2197       else if (CurTy->isDoubleTy())
2198         V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble(),
2199                                              APInt(64, Record[0])));
2200       else if (CurTy->isX86_FP80Ty()) {
2201         // Bits are not stored the same way as a normal i80 APInt, compensate.
2202         uint64_t Rearrange[2];
2203         Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16);
2204         Rearrange[1] = Record[0] >> 48;
2205         V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended(),
2206                                              APInt(80, Rearrange)));
2207       } else if (CurTy->isFP128Ty())
2208         V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad(),
2209                                              APInt(128, Record)));
2210       else if (CurTy->isPPC_FP128Ty())
2211         V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble(),
2212                                              APInt(128, Record)));
2213       else
2214         V = UndefValue::get(CurTy);
2215       break;
2216     }
2217 
2218     case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
2219       if (Record.empty())
2220         return error("Invalid record");
2221 
2222       unsigned Size = Record.size();
2223       SmallVector<Constant*, 16> Elts;
2224 
2225       if (StructType *STy = dyn_cast<StructType>(CurTy)) {
2226         for (unsigned i = 0; i != Size; ++i)
2227           Elts.push_back(ValueList.getConstantFwdRef(Record[i],
2228                                                      STy->getElementType(i)));
2229         V = ConstantStruct::get(STy, Elts);
2230       } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) {
2231         Type *EltTy = ATy->getElementType();
2232         for (unsigned i = 0; i != Size; ++i)
2233           Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
2234         V = ConstantArray::get(ATy, Elts);
2235       } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) {
2236         Type *EltTy = VTy->getElementType();
2237         for (unsigned i = 0; i != Size; ++i)
2238           Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
2239         V = ConstantVector::get(Elts);
2240       } else {
2241         V = UndefValue::get(CurTy);
2242       }
2243       break;
2244     }
2245     case bitc::CST_CODE_STRING:    // STRING: [values]
2246     case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
2247       if (Record.empty())
2248         return error("Invalid record");
2249 
2250       SmallString<16> Elts(Record.begin(), Record.end());
2251       V = ConstantDataArray::getString(Context, Elts,
2252                                        BitCode == bitc::CST_CODE_CSTRING);
2253       break;
2254     }
2255     case bitc::CST_CODE_DATA: {// DATA: [n x value]
2256       if (Record.empty())
2257         return error("Invalid record");
2258 
2259       Type *EltTy = cast<SequentialType>(CurTy)->getElementType();
2260       if (EltTy->isIntegerTy(8)) {
2261         SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end());
2262         if (isa<VectorType>(CurTy))
2263           V = ConstantDataVector::get(Context, Elts);
2264         else
2265           V = ConstantDataArray::get(Context, Elts);
2266       } else if (EltTy->isIntegerTy(16)) {
2267         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
2268         if (isa<VectorType>(CurTy))
2269           V = ConstantDataVector::get(Context, Elts);
2270         else
2271           V = ConstantDataArray::get(Context, Elts);
2272       } else if (EltTy->isIntegerTy(32)) {
2273         SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
2274         if (isa<VectorType>(CurTy))
2275           V = ConstantDataVector::get(Context, Elts);
2276         else
2277           V = ConstantDataArray::get(Context, Elts);
2278       } else if (EltTy->isIntegerTy(64)) {
2279         SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
2280         if (isa<VectorType>(CurTy))
2281           V = ConstantDataVector::get(Context, Elts);
2282         else
2283           V = ConstantDataArray::get(Context, Elts);
2284       } else if (EltTy->isHalfTy()) {
2285         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
2286         if (isa<VectorType>(CurTy))
2287           V = ConstantDataVector::getFP(Context, Elts);
2288         else
2289           V = ConstantDataArray::getFP(Context, Elts);
2290       } else if (EltTy->isFloatTy()) {
2291         SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
2292         if (isa<VectorType>(CurTy))
2293           V = ConstantDataVector::getFP(Context, Elts);
2294         else
2295           V = ConstantDataArray::getFP(Context, Elts);
2296       } else if (EltTy->isDoubleTy()) {
2297         SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
2298         if (isa<VectorType>(CurTy))
2299           V = ConstantDataVector::getFP(Context, Elts);
2300         else
2301           V = ConstantDataArray::getFP(Context, Elts);
2302       } else {
2303         return error("Invalid type for value");
2304       }
2305       break;
2306     }
2307     case bitc::CST_CODE_CE_BINOP: {  // CE_BINOP: [opcode, opval, opval]
2308       if (Record.size() < 3)
2309         return error("Invalid record");
2310       int Opc = getDecodedBinaryOpcode(Record[0], CurTy);
2311       if (Opc < 0) {
2312         V = UndefValue::get(CurTy);  // Unknown binop.
2313       } else {
2314         Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
2315         Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy);
2316         unsigned Flags = 0;
2317         if (Record.size() >= 4) {
2318           if (Opc == Instruction::Add ||
2319               Opc == Instruction::Sub ||
2320               Opc == Instruction::Mul ||
2321               Opc == Instruction::Shl) {
2322             if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP))
2323               Flags |= OverflowingBinaryOperator::NoSignedWrap;
2324             if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
2325               Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
2326           } else if (Opc == Instruction::SDiv ||
2327                      Opc == Instruction::UDiv ||
2328                      Opc == Instruction::LShr ||
2329                      Opc == Instruction::AShr) {
2330             if (Record[3] & (1 << bitc::PEO_EXACT))
2331               Flags |= SDivOperator::IsExact;
2332           }
2333         }
2334         V = ConstantExpr::get(Opc, LHS, RHS, Flags);
2335       }
2336       break;
2337     }
2338     case bitc::CST_CODE_CE_CAST: {  // CE_CAST: [opcode, opty, opval]
2339       if (Record.size() < 3)
2340         return error("Invalid record");
2341       int Opc = getDecodedCastOpcode(Record[0]);
2342       if (Opc < 0) {
2343         V = UndefValue::get(CurTy);  // Unknown cast.
2344       } else {
2345         Type *OpTy = getTypeByID(Record[1]);
2346         if (!OpTy)
2347           return error("Invalid record");
2348         Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy);
2349         V = UpgradeBitCastExpr(Opc, Op, CurTy);
2350         if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy);
2351       }
2352       break;
2353     }
2354     case bitc::CST_CODE_CE_INBOUNDS_GEP: // [ty, n x operands]
2355     case bitc::CST_CODE_CE_GEP: // [ty, n x operands]
2356     case bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX: { // [ty, flags, n x
2357                                                      // operands]
2358       unsigned OpNum = 0;
2359       Type *PointeeType = nullptr;
2360       if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX ||
2361           Record.size() % 2)
2362         PointeeType = getTypeByID(Record[OpNum++]);
2363 
2364       bool InBounds = false;
2365       Optional<unsigned> InRangeIndex;
2366       if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX) {
2367         uint64_t Op = Record[OpNum++];
2368         InBounds = Op & 1;
2369         InRangeIndex = Op >> 1;
2370       } else if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP)
2371         InBounds = true;
2372 
2373       SmallVector<Constant*, 16> Elts;
2374       while (OpNum != Record.size()) {
2375         Type *ElTy = getTypeByID(Record[OpNum++]);
2376         if (!ElTy)
2377           return error("Invalid record");
2378         Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy));
2379       }
2380 
2381       if (PointeeType &&
2382           PointeeType !=
2383               cast<PointerType>(Elts[0]->getType()->getScalarType())
2384                   ->getElementType())
2385         return error("Explicit gep operator type does not match pointee type "
2386                      "of pointer operand");
2387 
2388       if (Elts.size() < 1)
2389         return error("Invalid gep with no operands");
2390 
2391       ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
2392       V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices,
2393                                          InBounds, InRangeIndex);
2394       break;
2395     }
2396     case bitc::CST_CODE_CE_SELECT: {  // CE_SELECT: [opval#, opval#, opval#]
2397       if (Record.size() < 3)
2398         return error("Invalid record");
2399 
2400       Type *SelectorTy = Type::getInt1Ty(Context);
2401 
2402       // The selector might be an i1 or an <n x i1>
2403       // Get the type from the ValueList before getting a forward ref.
2404       if (VectorType *VTy = dyn_cast<VectorType>(CurTy))
2405         if (Value *V = ValueList[Record[0]])
2406           if (SelectorTy != V->getType())
2407             SelectorTy = VectorType::get(SelectorTy, VTy->getNumElements());
2408 
2409       V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0],
2410                                                               SelectorTy),
2411                                   ValueList.getConstantFwdRef(Record[1],CurTy),
2412                                   ValueList.getConstantFwdRef(Record[2],CurTy));
2413       break;
2414     }
2415     case bitc::CST_CODE_CE_EXTRACTELT
2416         : { // CE_EXTRACTELT: [opty, opval, opty, opval]
2417       if (Record.size() < 3)
2418         return error("Invalid record");
2419       VectorType *OpTy =
2420         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
2421       if (!OpTy)
2422         return error("Invalid record");
2423       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
2424       Constant *Op1 = nullptr;
2425       if (Record.size() == 4) {
2426         Type *IdxTy = getTypeByID(Record[2]);
2427         if (!IdxTy)
2428           return error("Invalid record");
2429         Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy);
2430       } else // TODO: Remove with llvm 4.0
2431         Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
2432       if (!Op1)
2433         return error("Invalid record");
2434       V = ConstantExpr::getExtractElement(Op0, Op1);
2435       break;
2436     }
2437     case bitc::CST_CODE_CE_INSERTELT
2438         : { // CE_INSERTELT: [opval, opval, opty, opval]
2439       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
2440       if (Record.size() < 3 || !OpTy)
2441         return error("Invalid record");
2442       Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
2443       Constant *Op1 = ValueList.getConstantFwdRef(Record[1],
2444                                                   OpTy->getElementType());
2445       Constant *Op2 = nullptr;
2446       if (Record.size() == 4) {
2447         Type *IdxTy = getTypeByID(Record[2]);
2448         if (!IdxTy)
2449           return error("Invalid record");
2450         Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy);
2451       } else // TODO: Remove with llvm 4.0
2452         Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
2453       if (!Op2)
2454         return error("Invalid record");
2455       V = ConstantExpr::getInsertElement(Op0, Op1, Op2);
2456       break;
2457     }
2458     case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
2459       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
2460       if (Record.size() < 3 || !OpTy)
2461         return error("Invalid record");
2462       Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
2463       Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy);
2464       Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
2465                                                  OpTy->getNumElements());
2466       Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy);
2467       V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
2468       break;
2469     }
2470     case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval]
2471       VectorType *RTy = dyn_cast<VectorType>(CurTy);
2472       VectorType *OpTy =
2473         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
2474       if (Record.size() < 4 || !RTy || !OpTy)
2475         return error("Invalid record");
2476       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
2477       Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
2478       Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
2479                                                  RTy->getNumElements());
2480       Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy);
2481       V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
2482       break;
2483     }
2484     case bitc::CST_CODE_CE_CMP: {     // CE_CMP: [opty, opval, opval, pred]
2485       if (Record.size() < 4)
2486         return error("Invalid record");
2487       Type *OpTy = getTypeByID(Record[0]);
2488       if (!OpTy)
2489         return error("Invalid record");
2490       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
2491       Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
2492 
2493       if (OpTy->isFPOrFPVectorTy())
2494         V = ConstantExpr::getFCmp(Record[3], Op0, Op1);
2495       else
2496         V = ConstantExpr::getICmp(Record[3], Op0, Op1);
2497       break;
2498     }
2499     // This maintains backward compatibility, pre-asm dialect keywords.
2500     // FIXME: Remove with the 4.0 release.
2501     case bitc::CST_CODE_INLINEASM_OLD: {
2502       if (Record.size() < 2)
2503         return error("Invalid record");
2504       std::string AsmStr, ConstrStr;
2505       bool HasSideEffects = Record[0] & 1;
2506       bool IsAlignStack = Record[0] >> 1;
2507       unsigned AsmStrSize = Record[1];
2508       if (2+AsmStrSize >= Record.size())
2509         return error("Invalid record");
2510       unsigned ConstStrSize = Record[2+AsmStrSize];
2511       if (3+AsmStrSize+ConstStrSize > Record.size())
2512         return error("Invalid record");
2513 
2514       for (unsigned i = 0; i != AsmStrSize; ++i)
2515         AsmStr += (char)Record[2+i];
2516       for (unsigned i = 0; i != ConstStrSize; ++i)
2517         ConstrStr += (char)Record[3+AsmStrSize+i];
2518       PointerType *PTy = cast<PointerType>(CurTy);
2519       V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()),
2520                          AsmStr, ConstrStr, HasSideEffects, IsAlignStack);
2521       break;
2522     }
2523     // This version adds support for the asm dialect keywords (e.g.,
2524     // inteldialect).
2525     case bitc::CST_CODE_INLINEASM: {
2526       if (Record.size() < 2)
2527         return error("Invalid record");
2528       std::string AsmStr, ConstrStr;
2529       bool HasSideEffects = Record[0] & 1;
2530       bool IsAlignStack = (Record[0] >> 1) & 1;
2531       unsigned AsmDialect = Record[0] >> 2;
2532       unsigned AsmStrSize = Record[1];
2533       if (2+AsmStrSize >= Record.size())
2534         return error("Invalid record");
2535       unsigned ConstStrSize = Record[2+AsmStrSize];
2536       if (3+AsmStrSize+ConstStrSize > Record.size())
2537         return error("Invalid record");
2538 
2539       for (unsigned i = 0; i != AsmStrSize; ++i)
2540         AsmStr += (char)Record[2+i];
2541       for (unsigned i = 0; i != ConstStrSize; ++i)
2542         ConstrStr += (char)Record[3+AsmStrSize+i];
2543       PointerType *PTy = cast<PointerType>(CurTy);
2544       V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()),
2545                          AsmStr, ConstrStr, HasSideEffects, IsAlignStack,
2546                          InlineAsm::AsmDialect(AsmDialect));
2547       break;
2548     }
2549     case bitc::CST_CODE_BLOCKADDRESS:{
2550       if (Record.size() < 3)
2551         return error("Invalid record");
2552       Type *FnTy = getTypeByID(Record[0]);
2553       if (!FnTy)
2554         return error("Invalid record");
2555       Function *Fn =
2556         dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy));
2557       if (!Fn)
2558         return error("Invalid record");
2559 
2560       // If the function is already parsed we can insert the block address right
2561       // away.
2562       BasicBlock *BB;
2563       unsigned BBID = Record[2];
2564       if (!BBID)
2565         // Invalid reference to entry block.
2566         return error("Invalid ID");
2567       if (!Fn->empty()) {
2568         Function::iterator BBI = Fn->begin(), BBE = Fn->end();
2569         for (size_t I = 0, E = BBID; I != E; ++I) {
2570           if (BBI == BBE)
2571             return error("Invalid ID");
2572           ++BBI;
2573         }
2574         BB = &*BBI;
2575       } else {
2576         // Otherwise insert a placeholder and remember it so it can be inserted
2577         // when the function is parsed.
2578         auto &FwdBBs = BasicBlockFwdRefs[Fn];
2579         if (FwdBBs.empty())
2580           BasicBlockFwdRefQueue.push_back(Fn);
2581         if (FwdBBs.size() < BBID + 1)
2582           FwdBBs.resize(BBID + 1);
2583         if (!FwdBBs[BBID])
2584           FwdBBs[BBID] = BasicBlock::Create(Context);
2585         BB = FwdBBs[BBID];
2586       }
2587       V = BlockAddress::get(Fn, BB);
2588       break;
2589     }
2590     }
2591 
2592     ValueList.assignValue(V, NextCstNo);
2593     ++NextCstNo;
2594   }
2595 }
2596 
2597 Error BitcodeReader::parseUseLists() {
2598   if (Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID))
2599     return error("Invalid record");
2600 
2601   // Read all the records.
2602   SmallVector<uint64_t, 64> Record;
2603 
2604   while (true) {
2605     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
2606 
2607     switch (Entry.Kind) {
2608     case BitstreamEntry::SubBlock: // Handled for us already.
2609     case BitstreamEntry::Error:
2610       return error("Malformed block");
2611     case BitstreamEntry::EndBlock:
2612       return Error::success();
2613     case BitstreamEntry::Record:
2614       // The interesting case.
2615       break;
2616     }
2617 
2618     // Read a use list record.
2619     Record.clear();
2620     bool IsBB = false;
2621     switch (Stream.readRecord(Entry.ID, Record)) {
2622     default:  // Default behavior: unknown type.
2623       break;
2624     case bitc::USELIST_CODE_BB:
2625       IsBB = true;
2626       LLVM_FALLTHROUGH;
2627     case bitc::USELIST_CODE_DEFAULT: {
2628       unsigned RecordLength = Record.size();
2629       if (RecordLength < 3)
2630         // Records should have at least an ID and two indexes.
2631         return error("Invalid record");
2632       unsigned ID = Record.back();
2633       Record.pop_back();
2634 
2635       Value *V;
2636       if (IsBB) {
2637         assert(ID < FunctionBBs.size() && "Basic block not found");
2638         V = FunctionBBs[ID];
2639       } else
2640         V = ValueList[ID];
2641       unsigned NumUses = 0;
2642       SmallDenseMap<const Use *, unsigned, 16> Order;
2643       for (const Use &U : V->materialized_uses()) {
2644         if (++NumUses > Record.size())
2645           break;
2646         Order[&U] = Record[NumUses - 1];
2647       }
2648       if (Order.size() != Record.size() || NumUses > Record.size())
2649         // Mismatches can happen if the functions are being materialized lazily
2650         // (out-of-order), or a value has been upgraded.
2651         break;
2652 
2653       V->sortUseList([&](const Use &L, const Use &R) {
2654         return Order.lookup(&L) < Order.lookup(&R);
2655       });
2656       break;
2657     }
2658     }
2659   }
2660 }
2661 
2662 /// When we see the block for metadata, remember where it is and then skip it.
2663 /// This lets us lazily deserialize the metadata.
2664 Error BitcodeReader::rememberAndSkipMetadata() {
2665   // Save the current stream state.
2666   uint64_t CurBit = Stream.GetCurrentBitNo();
2667   DeferredMetadataInfo.push_back(CurBit);
2668 
2669   // Skip over the block for now.
2670   if (Stream.SkipBlock())
2671     return error("Invalid record");
2672   return Error::success();
2673 }
2674 
2675 Error BitcodeReader::materializeMetadata() {
2676   for (uint64_t BitPos : DeferredMetadataInfo) {
2677     // Move the bit stream to the saved position.
2678     Stream.JumpToBit(BitPos);
2679     if (Error Err = MDLoader->parseModuleMetadata())
2680       return Err;
2681   }
2682 
2683   // Upgrade "Linker Options" module flag to "llvm.linker.options" module-level
2684   // metadata.
2685   if (Metadata *Val = TheModule->getModuleFlag("Linker Options")) {
2686     NamedMDNode *LinkerOpts =
2687         TheModule->getOrInsertNamedMetadata("llvm.linker.options");
2688     for (const MDOperand &MDOptions : cast<MDNode>(Val)->operands())
2689       LinkerOpts->addOperand(cast<MDNode>(MDOptions));
2690   }
2691 
2692   DeferredMetadataInfo.clear();
2693   return Error::success();
2694 }
2695 
2696 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; }
2697 
2698 /// When we see the block for a function body, remember where it is and then
2699 /// skip it.  This lets us lazily deserialize the functions.
2700 Error BitcodeReader::rememberAndSkipFunctionBody() {
2701   // Get the function we are talking about.
2702   if (FunctionsWithBodies.empty())
2703     return error("Insufficient function protos");
2704 
2705   Function *Fn = FunctionsWithBodies.back();
2706   FunctionsWithBodies.pop_back();
2707 
2708   // Save the current stream state.
2709   uint64_t CurBit = Stream.GetCurrentBitNo();
2710   assert(
2711       (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) &&
2712       "Mismatch between VST and scanned function offsets");
2713   DeferredFunctionInfo[Fn] = CurBit;
2714 
2715   // Skip over the function block for now.
2716   if (Stream.SkipBlock())
2717     return error("Invalid record");
2718   return Error::success();
2719 }
2720 
2721 Error BitcodeReader::globalCleanup() {
2722   // Patch the initializers for globals and aliases up.
2723   if (Error Err = resolveGlobalAndIndirectSymbolInits())
2724     return Err;
2725   if (!GlobalInits.empty() || !IndirectSymbolInits.empty())
2726     return error("Malformed global initializer set");
2727 
2728   // Look for intrinsic functions which need to be upgraded at some point
2729   for (Function &F : *TheModule) {
2730     MDLoader->upgradeDebugIntrinsics(F);
2731     Function *NewFn;
2732     if (UpgradeIntrinsicFunction(&F, NewFn))
2733       UpgradedIntrinsics[&F] = NewFn;
2734     else if (auto Remangled = Intrinsic::remangleIntrinsicFunction(&F))
2735       // Some types could be renamed during loading if several modules are
2736       // loaded in the same LLVMContext (LTO scenario). In this case we should
2737       // remangle intrinsics names as well.
2738       RemangledIntrinsics[&F] = Remangled.getValue();
2739   }
2740 
2741   // Look for global variables which need to be renamed.
2742   for (GlobalVariable &GV : TheModule->globals())
2743     UpgradeGlobalVariable(&GV);
2744 
2745   // Force deallocation of memory for these vectors to favor the client that
2746   // want lazy deserialization.
2747   std::vector<std::pair<GlobalVariable *, unsigned>>().swap(GlobalInits);
2748   std::vector<std::pair<GlobalIndirectSymbol *, unsigned>>().swap(
2749       IndirectSymbolInits);
2750   return Error::success();
2751 }
2752 
2753 /// Support for lazy parsing of function bodies. This is required if we
2754 /// either have an old bitcode file without a VST forward declaration record,
2755 /// or if we have an anonymous function being materialized, since anonymous
2756 /// functions do not have a name and are therefore not in the VST.
2757 Error BitcodeReader::rememberAndSkipFunctionBodies() {
2758   Stream.JumpToBit(NextUnreadBit);
2759 
2760   if (Stream.AtEndOfStream())
2761     return error("Could not find function in stream");
2762 
2763   if (!SeenFirstFunctionBody)
2764     return error("Trying to materialize functions before seeing function blocks");
2765 
2766   // An old bitcode file with the symbol table at the end would have
2767   // finished the parse greedily.
2768   assert(SeenValueSymbolTable);
2769 
2770   SmallVector<uint64_t, 64> Record;
2771 
2772   while (true) {
2773     BitstreamEntry Entry = Stream.advance();
2774     switch (Entry.Kind) {
2775     default:
2776       return error("Expect SubBlock");
2777     case BitstreamEntry::SubBlock:
2778       switch (Entry.ID) {
2779       default:
2780         return error("Expect function block");
2781       case bitc::FUNCTION_BLOCK_ID:
2782         if (Error Err = rememberAndSkipFunctionBody())
2783           return Err;
2784         NextUnreadBit = Stream.GetCurrentBitNo();
2785         return Error::success();
2786       }
2787     }
2788   }
2789 }
2790 
2791 bool BitcodeReaderBase::readBlockInfo() {
2792   Optional<BitstreamBlockInfo> NewBlockInfo = Stream.ReadBlockInfoBlock();
2793   if (!NewBlockInfo)
2794     return true;
2795   BlockInfo = std::move(*NewBlockInfo);
2796   return false;
2797 }
2798 
2799 Error BitcodeReader::parseComdatRecord(ArrayRef<uint64_t> Record) {
2800   // v1: [selection_kind, name]
2801   // v2: [strtab_offset, strtab_size, selection_kind]
2802   StringRef Name;
2803   std::tie(Name, Record) = readNameFromStrtab(Record);
2804 
2805   if (Record.empty())
2806     return error("Invalid record");
2807   Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]);
2808   std::string OldFormatName;
2809   if (!UseStrtab) {
2810     if (Record.size() < 2)
2811       return error("Invalid record");
2812     unsigned ComdatNameSize = Record[1];
2813     OldFormatName.reserve(ComdatNameSize);
2814     for (unsigned i = 0; i != ComdatNameSize; ++i)
2815       OldFormatName += (char)Record[2 + i];
2816     Name = OldFormatName;
2817   }
2818   Comdat *C = TheModule->getOrInsertComdat(Name);
2819   C->setSelectionKind(SK);
2820   ComdatList.push_back(C);
2821   return Error::success();
2822 }
2823 
2824 Error BitcodeReader::parseGlobalVarRecord(ArrayRef<uint64_t> Record) {
2825   // v1: [pointer type, isconst, initid, linkage, alignment, section,
2826   // visibility, threadlocal, unnamed_addr, externally_initialized,
2827   // dllstorageclass, comdat, attributes, preemption specifier] (name in VST)
2828   // v2: [strtab_offset, strtab_size, v1]
2829   StringRef Name;
2830   std::tie(Name, Record) = readNameFromStrtab(Record);
2831 
2832   if (Record.size() < 6)
2833     return error("Invalid record");
2834   Type *Ty = getTypeByID(Record[0]);
2835   if (!Ty)
2836     return error("Invalid record");
2837   bool isConstant = Record[1] & 1;
2838   bool explicitType = Record[1] & 2;
2839   unsigned AddressSpace;
2840   if (explicitType) {
2841     AddressSpace = Record[1] >> 2;
2842   } else {
2843     if (!Ty->isPointerTy())
2844       return error("Invalid type for value");
2845     AddressSpace = cast<PointerType>(Ty)->getAddressSpace();
2846     Ty = cast<PointerType>(Ty)->getElementType();
2847   }
2848 
2849   uint64_t RawLinkage = Record[3];
2850   GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
2851   unsigned Alignment;
2852   if (Error Err = parseAlignmentValue(Record[4], Alignment))
2853     return Err;
2854   std::string Section;
2855   if (Record[5]) {
2856     if (Record[5] - 1 >= SectionTable.size())
2857       return error("Invalid ID");
2858     Section = SectionTable[Record[5] - 1];
2859   }
2860   GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility;
2861   // Local linkage must have default visibility.
2862   if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage))
2863     // FIXME: Change to an error if non-default in 4.0.
2864     Visibility = getDecodedVisibility(Record[6]);
2865 
2866   GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal;
2867   if (Record.size() > 7)
2868     TLM = getDecodedThreadLocalMode(Record[7]);
2869 
2870   GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
2871   if (Record.size() > 8)
2872     UnnamedAddr = getDecodedUnnamedAddrType(Record[8]);
2873 
2874   bool ExternallyInitialized = false;
2875   if (Record.size() > 9)
2876     ExternallyInitialized = Record[9];
2877 
2878   GlobalVariable *NewGV =
2879       new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, Name,
2880                          nullptr, TLM, AddressSpace, ExternallyInitialized);
2881   NewGV->setAlignment(Alignment);
2882   if (!Section.empty())
2883     NewGV->setSection(Section);
2884   NewGV->setVisibility(Visibility);
2885   NewGV->setUnnamedAddr(UnnamedAddr);
2886 
2887   if (Record.size() > 10)
2888     NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10]));
2889   else
2890     upgradeDLLImportExportLinkage(NewGV, RawLinkage);
2891 
2892   ValueList.push_back(NewGV);
2893 
2894   // Remember which value to use for the global initializer.
2895   if (unsigned InitID = Record[2])
2896     GlobalInits.push_back(std::make_pair(NewGV, InitID - 1));
2897 
2898   if (Record.size() > 11) {
2899     if (unsigned ComdatID = Record[11]) {
2900       if (ComdatID > ComdatList.size())
2901         return error("Invalid global variable comdat ID");
2902       NewGV->setComdat(ComdatList[ComdatID - 1]);
2903     }
2904   } else if (hasImplicitComdat(RawLinkage)) {
2905     NewGV->setComdat(reinterpret_cast<Comdat *>(1));
2906   }
2907 
2908   if (Record.size() > 12) {
2909     auto AS = getAttributes(Record[12]).getFnAttributes();
2910     NewGV->setAttributes(AS);
2911   }
2912 
2913   if (Record.size() > 13) {
2914     NewGV->setDSOLocal(getDecodedDSOLocal(Record[13]));
2915   }
2916 
2917   return Error::success();
2918 }
2919 
2920 Error BitcodeReader::parseFunctionRecord(ArrayRef<uint64_t> Record) {
2921   // v1: [type, callingconv, isproto, linkage, paramattr, alignment, section,
2922   // visibility, gc, unnamed_addr, prologuedata, dllstorageclass, comdat,
2923   // prefixdata,  personalityfn, preemption specifier] (name in VST)
2924   // v2: [strtab_offset, strtab_size, v1]
2925   StringRef Name;
2926   std::tie(Name, Record) = readNameFromStrtab(Record);
2927 
2928   if (Record.size() < 8)
2929     return error("Invalid record");
2930   Type *Ty = getTypeByID(Record[0]);
2931   if (!Ty)
2932     return error("Invalid record");
2933   if (auto *PTy = dyn_cast<PointerType>(Ty))
2934     Ty = PTy->getElementType();
2935   auto *FTy = dyn_cast<FunctionType>(Ty);
2936   if (!FTy)
2937     return error("Invalid type for value");
2938   auto CC = static_cast<CallingConv::ID>(Record[1]);
2939   if (CC & ~CallingConv::MaxID)
2940     return error("Invalid calling convention ID");
2941 
2942   Function *Func =
2943       Function::Create(FTy, GlobalValue::ExternalLinkage, Name, TheModule);
2944 
2945   Func->setCallingConv(CC);
2946   bool isProto = Record[2];
2947   uint64_t RawLinkage = Record[3];
2948   Func->setLinkage(getDecodedLinkage(RawLinkage));
2949   Func->setAttributes(getAttributes(Record[4]));
2950 
2951   unsigned Alignment;
2952   if (Error Err = parseAlignmentValue(Record[5], Alignment))
2953     return Err;
2954   Func->setAlignment(Alignment);
2955   if (Record[6]) {
2956     if (Record[6] - 1 >= SectionTable.size())
2957       return error("Invalid ID");
2958     Func->setSection(SectionTable[Record[6] - 1]);
2959   }
2960   // Local linkage must have default visibility.
2961   if (!Func->hasLocalLinkage())
2962     // FIXME: Change to an error if non-default in 4.0.
2963     Func->setVisibility(getDecodedVisibility(Record[7]));
2964   if (Record.size() > 8 && Record[8]) {
2965     if (Record[8] - 1 >= GCTable.size())
2966       return error("Invalid ID");
2967     Func->setGC(GCTable[Record[8] - 1]);
2968   }
2969   GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
2970   if (Record.size() > 9)
2971     UnnamedAddr = getDecodedUnnamedAddrType(Record[9]);
2972   Func->setUnnamedAddr(UnnamedAddr);
2973   if (Record.size() > 10 && Record[10] != 0)
2974     FunctionPrologues.push_back(std::make_pair(Func, Record[10] - 1));
2975 
2976   if (Record.size() > 11)
2977     Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11]));
2978   else
2979     upgradeDLLImportExportLinkage(Func, RawLinkage);
2980 
2981   if (Record.size() > 12) {
2982     if (unsigned ComdatID = Record[12]) {
2983       if (ComdatID > ComdatList.size())
2984         return error("Invalid function comdat ID");
2985       Func->setComdat(ComdatList[ComdatID - 1]);
2986     }
2987   } else if (hasImplicitComdat(RawLinkage)) {
2988     Func->setComdat(reinterpret_cast<Comdat *>(1));
2989   }
2990 
2991   if (Record.size() > 13 && Record[13] != 0)
2992     FunctionPrefixes.push_back(std::make_pair(Func, Record[13] - 1));
2993 
2994   if (Record.size() > 14 && Record[14] != 0)
2995     FunctionPersonalityFns.push_back(std::make_pair(Func, Record[14] - 1));
2996 
2997   if (Record.size() > 15) {
2998     Func->setDSOLocal(getDecodedDSOLocal(Record[15]));
2999   }
3000 
3001   ValueList.push_back(Func);
3002 
3003   // If this is a function with a body, remember the prototype we are
3004   // creating now, so that we can match up the body with them later.
3005   if (!isProto) {
3006     Func->setIsMaterializable(true);
3007     FunctionsWithBodies.push_back(Func);
3008     DeferredFunctionInfo[Func] = 0;
3009   }
3010   return Error::success();
3011 }
3012 
3013 Error BitcodeReader::parseGlobalIndirectSymbolRecord(
3014     unsigned BitCode, ArrayRef<uint64_t> Record) {
3015   // v1 ALIAS_OLD: [alias type, aliasee val#, linkage] (name in VST)
3016   // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility,
3017   // dllstorageclass, threadlocal, unnamed_addr,
3018   // preemption specifier] (name in VST)
3019   // v1 IFUNC: [alias type, addrspace, aliasee val#, linkage,
3020   // visibility, dllstorageclass, threadlocal, unnamed_addr,
3021   // preemption specifier] (name in VST)
3022   // v2: [strtab_offset, strtab_size, v1]
3023   StringRef Name;
3024   std::tie(Name, Record) = readNameFromStrtab(Record);
3025 
3026   bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD;
3027   if (Record.size() < (3 + (unsigned)NewRecord))
3028     return error("Invalid record");
3029   unsigned OpNum = 0;
3030   Type *Ty = getTypeByID(Record[OpNum++]);
3031   if (!Ty)
3032     return error("Invalid record");
3033 
3034   unsigned AddrSpace;
3035   if (!NewRecord) {
3036     auto *PTy = dyn_cast<PointerType>(Ty);
3037     if (!PTy)
3038       return error("Invalid type for value");
3039     Ty = PTy->getElementType();
3040     AddrSpace = PTy->getAddressSpace();
3041   } else {
3042     AddrSpace = Record[OpNum++];
3043   }
3044 
3045   auto Val = Record[OpNum++];
3046   auto Linkage = Record[OpNum++];
3047   GlobalIndirectSymbol *NewGA;
3048   if (BitCode == bitc::MODULE_CODE_ALIAS ||
3049       BitCode == bitc::MODULE_CODE_ALIAS_OLD)
3050     NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name,
3051                                 TheModule);
3052   else
3053     NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name,
3054                                 nullptr, TheModule);
3055   // Old bitcode files didn't have visibility field.
3056   // Local linkage must have default visibility.
3057   if (OpNum != Record.size()) {
3058     auto VisInd = OpNum++;
3059     if (!NewGA->hasLocalLinkage())
3060       // FIXME: Change to an error if non-default in 4.0.
3061       NewGA->setVisibility(getDecodedVisibility(Record[VisInd]));
3062   }
3063   if (BitCode == bitc::MODULE_CODE_ALIAS ||
3064       BitCode == bitc::MODULE_CODE_ALIAS_OLD) {
3065     if (OpNum != Record.size())
3066       NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++]));
3067     else
3068       upgradeDLLImportExportLinkage(NewGA, Linkage);
3069     if (OpNum != Record.size())
3070       NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++]));
3071     if (OpNum != Record.size())
3072       NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++]));
3073   }
3074   if (OpNum != Record.size())
3075     NewGA->setDSOLocal(getDecodedDSOLocal(Record[OpNum++]));
3076   ValueList.push_back(NewGA);
3077   IndirectSymbolInits.push_back(std::make_pair(NewGA, Val));
3078   return Error::success();
3079 }
3080 
3081 Error BitcodeReader::parseModule(uint64_t ResumeBit,
3082                                  bool ShouldLazyLoadMetadata) {
3083   if (ResumeBit)
3084     Stream.JumpToBit(ResumeBit);
3085   else if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
3086     return error("Invalid record");
3087 
3088   SmallVector<uint64_t, 64> Record;
3089 
3090   // Read all the records for this module.
3091   while (true) {
3092     BitstreamEntry Entry = Stream.advance();
3093 
3094     switch (Entry.Kind) {
3095     case BitstreamEntry::Error:
3096       return error("Malformed block");
3097     case BitstreamEntry::EndBlock:
3098       return globalCleanup();
3099 
3100     case BitstreamEntry::SubBlock:
3101       switch (Entry.ID) {
3102       default:  // Skip unknown content.
3103         if (Stream.SkipBlock())
3104           return error("Invalid record");
3105         break;
3106       case bitc::BLOCKINFO_BLOCK_ID:
3107         if (readBlockInfo())
3108           return error("Malformed block");
3109         break;
3110       case bitc::PARAMATTR_BLOCK_ID:
3111         if (Error Err = parseAttributeBlock())
3112           return Err;
3113         break;
3114       case bitc::PARAMATTR_GROUP_BLOCK_ID:
3115         if (Error Err = parseAttributeGroupBlock())
3116           return Err;
3117         break;
3118       case bitc::TYPE_BLOCK_ID_NEW:
3119         if (Error Err = parseTypeTable())
3120           return Err;
3121         break;
3122       case bitc::VALUE_SYMTAB_BLOCK_ID:
3123         if (!SeenValueSymbolTable) {
3124           // Either this is an old form VST without function index and an
3125           // associated VST forward declaration record (which would have caused
3126           // the VST to be jumped to and parsed before it was encountered
3127           // normally in the stream), or there were no function blocks to
3128           // trigger an earlier parsing of the VST.
3129           assert(VSTOffset == 0 || FunctionsWithBodies.empty());
3130           if (Error Err = parseValueSymbolTable())
3131             return Err;
3132           SeenValueSymbolTable = true;
3133         } else {
3134           // We must have had a VST forward declaration record, which caused
3135           // the parser to jump to and parse the VST earlier.
3136           assert(VSTOffset > 0);
3137           if (Stream.SkipBlock())
3138             return error("Invalid record");
3139         }
3140         break;
3141       case bitc::CONSTANTS_BLOCK_ID:
3142         if (Error Err = parseConstants())
3143           return Err;
3144         if (Error Err = resolveGlobalAndIndirectSymbolInits())
3145           return Err;
3146         break;
3147       case bitc::METADATA_BLOCK_ID:
3148         if (ShouldLazyLoadMetadata) {
3149           if (Error Err = rememberAndSkipMetadata())
3150             return Err;
3151           break;
3152         }
3153         assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata");
3154         if (Error Err = MDLoader->parseModuleMetadata())
3155           return Err;
3156         break;
3157       case bitc::METADATA_KIND_BLOCK_ID:
3158         if (Error Err = MDLoader->parseMetadataKinds())
3159           return Err;
3160         break;
3161       case bitc::FUNCTION_BLOCK_ID:
3162         // If this is the first function body we've seen, reverse the
3163         // FunctionsWithBodies list.
3164         if (!SeenFirstFunctionBody) {
3165           std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end());
3166           if (Error Err = globalCleanup())
3167             return Err;
3168           SeenFirstFunctionBody = true;
3169         }
3170 
3171         if (VSTOffset > 0) {
3172           // If we have a VST forward declaration record, make sure we
3173           // parse the VST now if we haven't already. It is needed to
3174           // set up the DeferredFunctionInfo vector for lazy reading.
3175           if (!SeenValueSymbolTable) {
3176             if (Error Err = BitcodeReader::parseValueSymbolTable(VSTOffset))
3177               return Err;
3178             SeenValueSymbolTable = true;
3179             // Fall through so that we record the NextUnreadBit below.
3180             // This is necessary in case we have an anonymous function that
3181             // is later materialized. Since it will not have a VST entry we
3182             // need to fall back to the lazy parse to find its offset.
3183           } else {
3184             // If we have a VST forward declaration record, but have already
3185             // parsed the VST (just above, when the first function body was
3186             // encountered here), then we are resuming the parse after
3187             // materializing functions. The ResumeBit points to the
3188             // start of the last function block recorded in the
3189             // DeferredFunctionInfo map. Skip it.
3190             if (Stream.SkipBlock())
3191               return error("Invalid record");
3192             continue;
3193           }
3194         }
3195 
3196         // Support older bitcode files that did not have the function
3197         // index in the VST, nor a VST forward declaration record, as
3198         // well as anonymous functions that do not have VST entries.
3199         // Build the DeferredFunctionInfo vector on the fly.
3200         if (Error Err = rememberAndSkipFunctionBody())
3201           return Err;
3202 
3203         // Suspend parsing when we reach the function bodies. Subsequent
3204         // materialization calls will resume it when necessary. If the bitcode
3205         // file is old, the symbol table will be at the end instead and will not
3206         // have been seen yet. In this case, just finish the parse now.
3207         if (SeenValueSymbolTable) {
3208           NextUnreadBit = Stream.GetCurrentBitNo();
3209           // After the VST has been parsed, we need to make sure intrinsic name
3210           // are auto-upgraded.
3211           return globalCleanup();
3212         }
3213         break;
3214       case bitc::USELIST_BLOCK_ID:
3215         if (Error Err = parseUseLists())
3216           return Err;
3217         break;
3218       case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID:
3219         if (Error Err = parseOperandBundleTags())
3220           return Err;
3221         break;
3222       case bitc::SYNC_SCOPE_NAMES_BLOCK_ID:
3223         if (Error Err = parseSyncScopeNames())
3224           return Err;
3225         break;
3226       }
3227       continue;
3228 
3229     case BitstreamEntry::Record:
3230       // The interesting case.
3231       break;
3232     }
3233 
3234     // Read a record.
3235     auto BitCode = Stream.readRecord(Entry.ID, Record);
3236     switch (BitCode) {
3237     default: break;  // Default behavior, ignore unknown content.
3238     case bitc::MODULE_CODE_VERSION: {
3239       Expected<unsigned> VersionOrErr = parseVersionRecord(Record);
3240       if (!VersionOrErr)
3241         return VersionOrErr.takeError();
3242       UseRelativeIDs = *VersionOrErr >= 1;
3243       break;
3244     }
3245     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
3246       std::string S;
3247       if (convertToString(Record, 0, S))
3248         return error("Invalid record");
3249       TheModule->setTargetTriple(S);
3250       break;
3251     }
3252     case bitc::MODULE_CODE_DATALAYOUT: {  // DATALAYOUT: [strchr x N]
3253       std::string S;
3254       if (convertToString(Record, 0, S))
3255         return error("Invalid record");
3256       TheModule->setDataLayout(S);
3257       break;
3258     }
3259     case bitc::MODULE_CODE_ASM: {  // ASM: [strchr x N]
3260       std::string S;
3261       if (convertToString(Record, 0, S))
3262         return error("Invalid record");
3263       TheModule->setModuleInlineAsm(S);
3264       break;
3265     }
3266     case bitc::MODULE_CODE_DEPLIB: {  // DEPLIB: [strchr x N]
3267       // FIXME: Remove in 4.0.
3268       std::string S;
3269       if (convertToString(Record, 0, S))
3270         return error("Invalid record");
3271       // Ignore value.
3272       break;
3273     }
3274     case bitc::MODULE_CODE_SECTIONNAME: {  // SECTIONNAME: [strchr x N]
3275       std::string S;
3276       if (convertToString(Record, 0, S))
3277         return error("Invalid record");
3278       SectionTable.push_back(S);
3279       break;
3280     }
3281     case bitc::MODULE_CODE_GCNAME: {  // SECTIONNAME: [strchr x N]
3282       std::string S;
3283       if (convertToString(Record, 0, S))
3284         return error("Invalid record");
3285       GCTable.push_back(S);
3286       break;
3287     }
3288     case bitc::MODULE_CODE_COMDAT:
3289       if (Error Err = parseComdatRecord(Record))
3290         return Err;
3291       break;
3292     case bitc::MODULE_CODE_GLOBALVAR:
3293       if (Error Err = parseGlobalVarRecord(Record))
3294         return Err;
3295       break;
3296     case bitc::MODULE_CODE_FUNCTION:
3297       if (Error Err = parseFunctionRecord(Record))
3298         return Err;
3299       break;
3300     case bitc::MODULE_CODE_IFUNC:
3301     case bitc::MODULE_CODE_ALIAS:
3302     case bitc::MODULE_CODE_ALIAS_OLD:
3303       if (Error Err = parseGlobalIndirectSymbolRecord(BitCode, Record))
3304         return Err;
3305       break;
3306     /// MODULE_CODE_VSTOFFSET: [offset]
3307     case bitc::MODULE_CODE_VSTOFFSET:
3308       if (Record.size() < 1)
3309         return error("Invalid record");
3310       // Note that we subtract 1 here because the offset is relative to one word
3311       // before the start of the identification or module block, which was
3312       // historically always the start of the regular bitcode header.
3313       VSTOffset = Record[0] - 1;
3314       break;
3315     /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
3316     case bitc::MODULE_CODE_SOURCE_FILENAME:
3317       SmallString<128> ValueName;
3318       if (convertToString(Record, 0, ValueName))
3319         return error("Invalid record");
3320       TheModule->setSourceFileName(ValueName);
3321       break;
3322     }
3323     Record.clear();
3324   }
3325 }
3326 
3327 Error BitcodeReader::parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata,
3328                                       bool IsImporting) {
3329   TheModule = M;
3330   MDLoader = MetadataLoader(Stream, *M, ValueList, IsImporting,
3331                             [&](unsigned ID) { return getTypeByID(ID); });
3332   return parseModule(0, ShouldLazyLoadMetadata);
3333 }
3334 
3335 Error BitcodeReader::typeCheckLoadStoreInst(Type *ValType, Type *PtrType) {
3336   if (!isa<PointerType>(PtrType))
3337     return error("Load/Store operand is not a pointer type");
3338   Type *ElemType = cast<PointerType>(PtrType)->getElementType();
3339 
3340   if (ValType && ValType != ElemType)
3341     return error("Explicit load/store type does not match pointee "
3342                  "type of pointer operand");
3343   if (!PointerType::isLoadableOrStorableType(ElemType))
3344     return error("Cannot load/store from pointer");
3345   return Error::success();
3346 }
3347 
3348 /// Lazily parse the specified function body block.
3349 Error BitcodeReader::parseFunctionBody(Function *F) {
3350   if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID))
3351     return error("Invalid record");
3352 
3353   // Unexpected unresolved metadata when parsing function.
3354   if (MDLoader->hasFwdRefs())
3355     return error("Invalid function metadata: incoming forward references");
3356 
3357   InstructionList.clear();
3358   unsigned ModuleValueListSize = ValueList.size();
3359   unsigned ModuleMDLoaderSize = MDLoader->size();
3360 
3361   // Add all the function arguments to the value table.
3362   for (Argument &I : F->args())
3363     ValueList.push_back(&I);
3364 
3365   unsigned NextValueNo = ValueList.size();
3366   BasicBlock *CurBB = nullptr;
3367   unsigned CurBBNo = 0;
3368 
3369   DebugLoc LastLoc;
3370   auto getLastInstruction = [&]() -> Instruction * {
3371     if (CurBB && !CurBB->empty())
3372       return &CurBB->back();
3373     else if (CurBBNo && FunctionBBs[CurBBNo - 1] &&
3374              !FunctionBBs[CurBBNo - 1]->empty())
3375       return &FunctionBBs[CurBBNo - 1]->back();
3376     return nullptr;
3377   };
3378 
3379   std::vector<OperandBundleDef> OperandBundles;
3380 
3381   // Read all the records.
3382   SmallVector<uint64_t, 64> Record;
3383 
3384   while (true) {
3385     BitstreamEntry Entry = Stream.advance();
3386 
3387     switch (Entry.Kind) {
3388     case BitstreamEntry::Error:
3389       return error("Malformed block");
3390     case BitstreamEntry::EndBlock:
3391       goto OutOfRecordLoop;
3392 
3393     case BitstreamEntry::SubBlock:
3394       switch (Entry.ID) {
3395       default:  // Skip unknown content.
3396         if (Stream.SkipBlock())
3397           return error("Invalid record");
3398         break;
3399       case bitc::CONSTANTS_BLOCK_ID:
3400         if (Error Err = parseConstants())
3401           return Err;
3402         NextValueNo = ValueList.size();
3403         break;
3404       case bitc::VALUE_SYMTAB_BLOCK_ID:
3405         if (Error Err = parseValueSymbolTable())
3406           return Err;
3407         break;
3408       case bitc::METADATA_ATTACHMENT_ID:
3409         if (Error Err = MDLoader->parseMetadataAttachment(*F, InstructionList))
3410           return Err;
3411         break;
3412       case bitc::METADATA_BLOCK_ID:
3413         assert(DeferredMetadataInfo.empty() &&
3414                "Must read all module-level metadata before function-level");
3415         if (Error Err = MDLoader->parseFunctionMetadata())
3416           return Err;
3417         break;
3418       case bitc::USELIST_BLOCK_ID:
3419         if (Error Err = parseUseLists())
3420           return Err;
3421         break;
3422       }
3423       continue;
3424 
3425     case BitstreamEntry::Record:
3426       // The interesting case.
3427       break;
3428     }
3429 
3430     // Read a record.
3431     Record.clear();
3432     Instruction *I = nullptr;
3433     unsigned BitCode = Stream.readRecord(Entry.ID, Record);
3434     switch (BitCode) {
3435     default: // Default behavior: reject
3436       return error("Invalid value");
3437     case bitc::FUNC_CODE_DECLAREBLOCKS: {   // DECLAREBLOCKS: [nblocks]
3438       if (Record.size() < 1 || Record[0] == 0)
3439         return error("Invalid record");
3440       // Create all the basic blocks for the function.
3441       FunctionBBs.resize(Record[0]);
3442 
3443       // See if anything took the address of blocks in this function.
3444       auto BBFRI = BasicBlockFwdRefs.find(F);
3445       if (BBFRI == BasicBlockFwdRefs.end()) {
3446         for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i)
3447           FunctionBBs[i] = BasicBlock::Create(Context, "", F);
3448       } else {
3449         auto &BBRefs = BBFRI->second;
3450         // Check for invalid basic block references.
3451         if (BBRefs.size() > FunctionBBs.size())
3452           return error("Invalid ID");
3453         assert(!BBRefs.empty() && "Unexpected empty array");
3454         assert(!BBRefs.front() && "Invalid reference to entry block");
3455         for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E;
3456              ++I)
3457           if (I < RE && BBRefs[I]) {
3458             BBRefs[I]->insertInto(F);
3459             FunctionBBs[I] = BBRefs[I];
3460           } else {
3461             FunctionBBs[I] = BasicBlock::Create(Context, "", F);
3462           }
3463 
3464         // Erase from the table.
3465         BasicBlockFwdRefs.erase(BBFRI);
3466       }
3467 
3468       CurBB = FunctionBBs[0];
3469       continue;
3470     }
3471 
3472     case bitc::FUNC_CODE_DEBUG_LOC_AGAIN:  // DEBUG_LOC_AGAIN
3473       // This record indicates that the last instruction is at the same
3474       // location as the previous instruction with a location.
3475       I = getLastInstruction();
3476 
3477       if (!I)
3478         return error("Invalid record");
3479       I->setDebugLoc(LastLoc);
3480       I = nullptr;
3481       continue;
3482 
3483     case bitc::FUNC_CODE_DEBUG_LOC: {      // DEBUG_LOC: [line, col, scope, ia]
3484       I = getLastInstruction();
3485       if (!I || Record.size() < 4)
3486         return error("Invalid record");
3487 
3488       unsigned Line = Record[0], Col = Record[1];
3489       unsigned ScopeID = Record[2], IAID = Record[3];
3490 
3491       MDNode *Scope = nullptr, *IA = nullptr;
3492       if (ScopeID) {
3493         Scope = MDLoader->getMDNodeFwdRefOrNull(ScopeID - 1);
3494         if (!Scope)
3495           return error("Invalid record");
3496       }
3497       if (IAID) {
3498         IA = MDLoader->getMDNodeFwdRefOrNull(IAID - 1);
3499         if (!IA)
3500           return error("Invalid record");
3501       }
3502       LastLoc = DebugLoc::get(Line, Col, Scope, IA);
3503       I->setDebugLoc(LastLoc);
3504       I = nullptr;
3505       continue;
3506     }
3507 
3508     case bitc::FUNC_CODE_INST_BINOP: {    // BINOP: [opval, ty, opval, opcode]
3509       unsigned OpNum = 0;
3510       Value *LHS, *RHS;
3511       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
3512           popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) ||
3513           OpNum+1 > Record.size())
3514         return error("Invalid record");
3515 
3516       int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType());
3517       if (Opc == -1)
3518         return error("Invalid record");
3519       I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
3520       InstructionList.push_back(I);
3521       if (OpNum < Record.size()) {
3522         if (Opc == Instruction::Add ||
3523             Opc == Instruction::Sub ||
3524             Opc == Instruction::Mul ||
3525             Opc == Instruction::Shl) {
3526           if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP))
3527             cast<BinaryOperator>(I)->setHasNoSignedWrap(true);
3528           if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
3529             cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true);
3530         } else if (Opc == Instruction::SDiv ||
3531                    Opc == Instruction::UDiv ||
3532                    Opc == Instruction::LShr ||
3533                    Opc == Instruction::AShr) {
3534           if (Record[OpNum] & (1 << bitc::PEO_EXACT))
3535             cast<BinaryOperator>(I)->setIsExact(true);
3536         } else if (isa<FPMathOperator>(I)) {
3537           FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
3538           if (FMF.any())
3539             I->setFastMathFlags(FMF);
3540         }
3541 
3542       }
3543       break;
3544     }
3545     case bitc::FUNC_CODE_INST_CAST: {    // CAST: [opval, opty, destty, castopc]
3546       unsigned OpNum = 0;
3547       Value *Op;
3548       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
3549           OpNum+2 != Record.size())
3550         return error("Invalid record");
3551 
3552       Type *ResTy = getTypeByID(Record[OpNum]);
3553       int Opc = getDecodedCastOpcode(Record[OpNum + 1]);
3554       if (Opc == -1 || !ResTy)
3555         return error("Invalid record");
3556       Instruction *Temp = nullptr;
3557       if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) {
3558         if (Temp) {
3559           InstructionList.push_back(Temp);
3560           CurBB->getInstList().push_back(Temp);
3561         }
3562       } else {
3563         auto CastOp = (Instruction::CastOps)Opc;
3564         if (!CastInst::castIsValid(CastOp, Op, ResTy))
3565           return error("Invalid cast");
3566         I = CastInst::Create(CastOp, Op, ResTy);
3567       }
3568       InstructionList.push_back(I);
3569       break;
3570     }
3571     case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD:
3572     case bitc::FUNC_CODE_INST_GEP_OLD:
3573     case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands]
3574       unsigned OpNum = 0;
3575 
3576       Type *Ty;
3577       bool InBounds;
3578 
3579       if (BitCode == bitc::FUNC_CODE_INST_GEP) {
3580         InBounds = Record[OpNum++];
3581         Ty = getTypeByID(Record[OpNum++]);
3582       } else {
3583         InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD;
3584         Ty = nullptr;
3585       }
3586 
3587       Value *BasePtr;
3588       if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr))
3589         return error("Invalid record");
3590 
3591       if (!Ty)
3592         Ty = cast<PointerType>(BasePtr->getType()->getScalarType())
3593                  ->getElementType();
3594       else if (Ty !=
3595                cast<PointerType>(BasePtr->getType()->getScalarType())
3596                    ->getElementType())
3597         return error(
3598             "Explicit gep type does not match pointee type of pointer operand");
3599 
3600       SmallVector<Value*, 16> GEPIdx;
3601       while (OpNum != Record.size()) {
3602         Value *Op;
3603         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
3604           return error("Invalid record");
3605         GEPIdx.push_back(Op);
3606       }
3607 
3608       I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx);
3609 
3610       InstructionList.push_back(I);
3611       if (InBounds)
3612         cast<GetElementPtrInst>(I)->setIsInBounds(true);
3613       break;
3614     }
3615 
3616     case bitc::FUNC_CODE_INST_EXTRACTVAL: {
3617                                        // EXTRACTVAL: [opty, opval, n x indices]
3618       unsigned OpNum = 0;
3619       Value *Agg;
3620       if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
3621         return error("Invalid record");
3622 
3623       unsigned RecSize = Record.size();
3624       if (OpNum == RecSize)
3625         return error("EXTRACTVAL: Invalid instruction with 0 indices");
3626 
3627       SmallVector<unsigned, 4> EXTRACTVALIdx;
3628       Type *CurTy = Agg->getType();
3629       for (; OpNum != RecSize; ++OpNum) {
3630         bool IsArray = CurTy->isArrayTy();
3631         bool IsStruct = CurTy->isStructTy();
3632         uint64_t Index = Record[OpNum];
3633 
3634         if (!IsStruct && !IsArray)
3635           return error("EXTRACTVAL: Invalid type");
3636         if ((unsigned)Index != Index)
3637           return error("Invalid value");
3638         if (IsStruct && Index >= CurTy->subtypes().size())
3639           return error("EXTRACTVAL: Invalid struct index");
3640         if (IsArray && Index >= CurTy->getArrayNumElements())
3641           return error("EXTRACTVAL: Invalid array index");
3642         EXTRACTVALIdx.push_back((unsigned)Index);
3643 
3644         if (IsStruct)
3645           CurTy = CurTy->subtypes()[Index];
3646         else
3647           CurTy = CurTy->subtypes()[0];
3648       }
3649 
3650       I = ExtractValueInst::Create(Agg, EXTRACTVALIdx);
3651       InstructionList.push_back(I);
3652       break;
3653     }
3654 
3655     case bitc::FUNC_CODE_INST_INSERTVAL: {
3656                            // INSERTVAL: [opty, opval, opty, opval, n x indices]
3657       unsigned OpNum = 0;
3658       Value *Agg;
3659       if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
3660         return error("Invalid record");
3661       Value *Val;
3662       if (getValueTypePair(Record, OpNum, NextValueNo, Val))
3663         return error("Invalid record");
3664 
3665       unsigned RecSize = Record.size();
3666       if (OpNum == RecSize)
3667         return error("INSERTVAL: Invalid instruction with 0 indices");
3668 
3669       SmallVector<unsigned, 4> INSERTVALIdx;
3670       Type *CurTy = Agg->getType();
3671       for (; OpNum != RecSize; ++OpNum) {
3672         bool IsArray = CurTy->isArrayTy();
3673         bool IsStruct = CurTy->isStructTy();
3674         uint64_t Index = Record[OpNum];
3675 
3676         if (!IsStruct && !IsArray)
3677           return error("INSERTVAL: Invalid type");
3678         if ((unsigned)Index != Index)
3679           return error("Invalid value");
3680         if (IsStruct && Index >= CurTy->subtypes().size())
3681           return error("INSERTVAL: Invalid struct index");
3682         if (IsArray && Index >= CurTy->getArrayNumElements())
3683           return error("INSERTVAL: Invalid array index");
3684 
3685         INSERTVALIdx.push_back((unsigned)Index);
3686         if (IsStruct)
3687           CurTy = CurTy->subtypes()[Index];
3688         else
3689           CurTy = CurTy->subtypes()[0];
3690       }
3691 
3692       if (CurTy != Val->getType())
3693         return error("Inserted value type doesn't match aggregate type");
3694 
3695       I = InsertValueInst::Create(Agg, Val, INSERTVALIdx);
3696       InstructionList.push_back(I);
3697       break;
3698     }
3699 
3700     case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval]
3701       // obsolete form of select
3702       // handles select i1 ... in old bitcode
3703       unsigned OpNum = 0;
3704       Value *TrueVal, *FalseVal, *Cond;
3705       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
3706           popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) ||
3707           popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond))
3708         return error("Invalid record");
3709 
3710       I = SelectInst::Create(Cond, TrueVal, FalseVal);
3711       InstructionList.push_back(I);
3712       break;
3713     }
3714 
3715     case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred]
3716       // new form of select
3717       // handles select i1 or select [N x i1]
3718       unsigned OpNum = 0;
3719       Value *TrueVal, *FalseVal, *Cond;
3720       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
3721           popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) ||
3722           getValueTypePair(Record, OpNum, NextValueNo, Cond))
3723         return error("Invalid record");
3724 
3725       // select condition can be either i1 or [N x i1]
3726       if (VectorType* vector_type =
3727           dyn_cast<VectorType>(Cond->getType())) {
3728         // expect <n x i1>
3729         if (vector_type->getElementType() != Type::getInt1Ty(Context))
3730           return error("Invalid type for value");
3731       } else {
3732         // expect i1
3733         if (Cond->getType() != Type::getInt1Ty(Context))
3734           return error("Invalid type for value");
3735       }
3736 
3737       I = SelectInst::Create(Cond, TrueVal, FalseVal);
3738       InstructionList.push_back(I);
3739       break;
3740     }
3741 
3742     case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval]
3743       unsigned OpNum = 0;
3744       Value *Vec, *Idx;
3745       if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
3746           getValueTypePair(Record, OpNum, NextValueNo, Idx))
3747         return error("Invalid record");
3748       if (!Vec->getType()->isVectorTy())
3749         return error("Invalid type for value");
3750       I = ExtractElementInst::Create(Vec, Idx);
3751       InstructionList.push_back(I);
3752       break;
3753     }
3754 
3755     case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval]
3756       unsigned OpNum = 0;
3757       Value *Vec, *Elt, *Idx;
3758       if (getValueTypePair(Record, OpNum, NextValueNo, Vec))
3759         return error("Invalid record");
3760       if (!Vec->getType()->isVectorTy())
3761         return error("Invalid type for value");
3762       if (popValue(Record, OpNum, NextValueNo,
3763                    cast<VectorType>(Vec->getType())->getElementType(), Elt) ||
3764           getValueTypePair(Record, OpNum, NextValueNo, Idx))
3765         return error("Invalid record");
3766       I = InsertElementInst::Create(Vec, Elt, Idx);
3767       InstructionList.push_back(I);
3768       break;
3769     }
3770 
3771     case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval]
3772       unsigned OpNum = 0;
3773       Value *Vec1, *Vec2, *Mask;
3774       if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) ||
3775           popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2))
3776         return error("Invalid record");
3777 
3778       if (getValueTypePair(Record, OpNum, NextValueNo, Mask))
3779         return error("Invalid record");
3780       if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy())
3781         return error("Invalid type for value");
3782       I = new ShuffleVectorInst(Vec1, Vec2, Mask);
3783       InstructionList.push_back(I);
3784       break;
3785     }
3786 
3787     case bitc::FUNC_CODE_INST_CMP:   // CMP: [opty, opval, opval, pred]
3788       // Old form of ICmp/FCmp returning bool
3789       // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were
3790       // both legal on vectors but had different behaviour.
3791     case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred]
3792       // FCmp/ICmp returning bool or vector of bool
3793 
3794       unsigned OpNum = 0;
3795       Value *LHS, *RHS;
3796       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
3797           popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS))
3798         return error("Invalid record");
3799 
3800       unsigned PredVal = Record[OpNum];
3801       bool IsFP = LHS->getType()->isFPOrFPVectorTy();
3802       FastMathFlags FMF;
3803       if (IsFP && Record.size() > OpNum+1)
3804         FMF = getDecodedFastMathFlags(Record[++OpNum]);
3805 
3806       if (OpNum+1 != Record.size())
3807         return error("Invalid record");
3808 
3809       if (LHS->getType()->isFPOrFPVectorTy())
3810         I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS);
3811       else
3812         I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS);
3813 
3814       if (FMF.any())
3815         I->setFastMathFlags(FMF);
3816       InstructionList.push_back(I);
3817       break;
3818     }
3819 
3820     case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>]
3821       {
3822         unsigned Size = Record.size();
3823         if (Size == 0) {
3824           I = ReturnInst::Create(Context);
3825           InstructionList.push_back(I);
3826           break;
3827         }
3828 
3829         unsigned OpNum = 0;
3830         Value *Op = nullptr;
3831         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
3832           return error("Invalid record");
3833         if (OpNum != Record.size())
3834           return error("Invalid record");
3835 
3836         I = ReturnInst::Create(Context, Op);
3837         InstructionList.push_back(I);
3838         break;
3839       }
3840     case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#]
3841       if (Record.size() != 1 && Record.size() != 3)
3842         return error("Invalid record");
3843       BasicBlock *TrueDest = getBasicBlock(Record[0]);
3844       if (!TrueDest)
3845         return error("Invalid record");
3846 
3847       if (Record.size() == 1) {
3848         I = BranchInst::Create(TrueDest);
3849         InstructionList.push_back(I);
3850       }
3851       else {
3852         BasicBlock *FalseDest = getBasicBlock(Record[1]);
3853         Value *Cond = getValue(Record, 2, NextValueNo,
3854                                Type::getInt1Ty(Context));
3855         if (!FalseDest || !Cond)
3856           return error("Invalid record");
3857         I = BranchInst::Create(TrueDest, FalseDest, Cond);
3858         InstructionList.push_back(I);
3859       }
3860       break;
3861     }
3862     case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#]
3863       if (Record.size() != 1 && Record.size() != 2)
3864         return error("Invalid record");
3865       unsigned Idx = 0;
3866       Value *CleanupPad =
3867           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
3868       if (!CleanupPad)
3869         return error("Invalid record");
3870       BasicBlock *UnwindDest = nullptr;
3871       if (Record.size() == 2) {
3872         UnwindDest = getBasicBlock(Record[Idx++]);
3873         if (!UnwindDest)
3874           return error("Invalid record");
3875       }
3876 
3877       I = CleanupReturnInst::Create(CleanupPad, UnwindDest);
3878       InstructionList.push_back(I);
3879       break;
3880     }
3881     case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#]
3882       if (Record.size() != 2)
3883         return error("Invalid record");
3884       unsigned Idx = 0;
3885       Value *CatchPad =
3886           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
3887       if (!CatchPad)
3888         return error("Invalid record");
3889       BasicBlock *BB = getBasicBlock(Record[Idx++]);
3890       if (!BB)
3891         return error("Invalid record");
3892 
3893       I = CatchReturnInst::Create(CatchPad, BB);
3894       InstructionList.push_back(I);
3895       break;
3896     }
3897     case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?]
3898       // We must have, at minimum, the outer scope and the number of arguments.
3899       if (Record.size() < 2)
3900         return error("Invalid record");
3901 
3902       unsigned Idx = 0;
3903 
3904       Value *ParentPad =
3905           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
3906 
3907       unsigned NumHandlers = Record[Idx++];
3908 
3909       SmallVector<BasicBlock *, 2> Handlers;
3910       for (unsigned Op = 0; Op != NumHandlers; ++Op) {
3911         BasicBlock *BB = getBasicBlock(Record[Idx++]);
3912         if (!BB)
3913           return error("Invalid record");
3914         Handlers.push_back(BB);
3915       }
3916 
3917       BasicBlock *UnwindDest = nullptr;
3918       if (Idx + 1 == Record.size()) {
3919         UnwindDest = getBasicBlock(Record[Idx++]);
3920         if (!UnwindDest)
3921           return error("Invalid record");
3922       }
3923 
3924       if (Record.size() != Idx)
3925         return error("Invalid record");
3926 
3927       auto *CatchSwitch =
3928           CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers);
3929       for (BasicBlock *Handler : Handlers)
3930         CatchSwitch->addHandler(Handler);
3931       I = CatchSwitch;
3932       InstructionList.push_back(I);
3933       break;
3934     }
3935     case bitc::FUNC_CODE_INST_CATCHPAD:
3936     case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*]
3937       // We must have, at minimum, the outer scope and the number of arguments.
3938       if (Record.size() < 2)
3939         return error("Invalid record");
3940 
3941       unsigned Idx = 0;
3942 
3943       Value *ParentPad =
3944           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
3945 
3946       unsigned NumArgOperands = Record[Idx++];
3947 
3948       SmallVector<Value *, 2> Args;
3949       for (unsigned Op = 0; Op != NumArgOperands; ++Op) {
3950         Value *Val;
3951         if (getValueTypePair(Record, Idx, NextValueNo, Val))
3952           return error("Invalid record");
3953         Args.push_back(Val);
3954       }
3955 
3956       if (Record.size() != Idx)
3957         return error("Invalid record");
3958 
3959       if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD)
3960         I = CleanupPadInst::Create(ParentPad, Args);
3961       else
3962         I = CatchPadInst::Create(ParentPad, Args);
3963       InstructionList.push_back(I);
3964       break;
3965     }
3966     case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...]
3967       // Check magic
3968       if ((Record[0] >> 16) == SWITCH_INST_MAGIC) {
3969         // "New" SwitchInst format with case ranges. The changes to write this
3970         // format were reverted but we still recognize bitcode that uses it.
3971         // Hopefully someday we will have support for case ranges and can use
3972         // this format again.
3973 
3974         Type *OpTy = getTypeByID(Record[1]);
3975         unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth();
3976 
3977         Value *Cond = getValue(Record, 2, NextValueNo, OpTy);
3978         BasicBlock *Default = getBasicBlock(Record[3]);
3979         if (!OpTy || !Cond || !Default)
3980           return error("Invalid record");
3981 
3982         unsigned NumCases = Record[4];
3983 
3984         SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
3985         InstructionList.push_back(SI);
3986 
3987         unsigned CurIdx = 5;
3988         for (unsigned i = 0; i != NumCases; ++i) {
3989           SmallVector<ConstantInt*, 1> CaseVals;
3990           unsigned NumItems = Record[CurIdx++];
3991           for (unsigned ci = 0; ci != NumItems; ++ci) {
3992             bool isSingleNumber = Record[CurIdx++];
3993 
3994             APInt Low;
3995             unsigned ActiveWords = 1;
3996             if (ValueBitWidth > 64)
3997               ActiveWords = Record[CurIdx++];
3998             Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords),
3999                                 ValueBitWidth);
4000             CurIdx += ActiveWords;
4001 
4002             if (!isSingleNumber) {
4003               ActiveWords = 1;
4004               if (ValueBitWidth > 64)
4005                 ActiveWords = Record[CurIdx++];
4006               APInt High = readWideAPInt(
4007                   makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth);
4008               CurIdx += ActiveWords;
4009 
4010               // FIXME: It is not clear whether values in the range should be
4011               // compared as signed or unsigned values. The partially
4012               // implemented changes that used this format in the past used
4013               // unsigned comparisons.
4014               for ( ; Low.ule(High); ++Low)
4015                 CaseVals.push_back(ConstantInt::get(Context, Low));
4016             } else
4017               CaseVals.push_back(ConstantInt::get(Context, Low));
4018           }
4019           BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]);
4020           for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(),
4021                  cve = CaseVals.end(); cvi != cve; ++cvi)
4022             SI->addCase(*cvi, DestBB);
4023         }
4024         I = SI;
4025         break;
4026       }
4027 
4028       // Old SwitchInst format without case ranges.
4029 
4030       if (Record.size() < 3 || (Record.size() & 1) == 0)
4031         return error("Invalid record");
4032       Type *OpTy = getTypeByID(Record[0]);
4033       Value *Cond = getValue(Record, 1, NextValueNo, OpTy);
4034       BasicBlock *Default = getBasicBlock(Record[2]);
4035       if (!OpTy || !Cond || !Default)
4036         return error("Invalid record");
4037       unsigned NumCases = (Record.size()-3)/2;
4038       SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
4039       InstructionList.push_back(SI);
4040       for (unsigned i = 0, e = NumCases; i != e; ++i) {
4041         ConstantInt *CaseVal =
4042           dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy));
4043         BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]);
4044         if (!CaseVal || !DestBB) {
4045           delete SI;
4046           return error("Invalid record");
4047         }
4048         SI->addCase(CaseVal, DestBB);
4049       }
4050       I = SI;
4051       break;
4052     }
4053     case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...]
4054       if (Record.size() < 2)
4055         return error("Invalid record");
4056       Type *OpTy = getTypeByID(Record[0]);
4057       Value *Address = getValue(Record, 1, NextValueNo, OpTy);
4058       if (!OpTy || !Address)
4059         return error("Invalid record");
4060       unsigned NumDests = Record.size()-2;
4061       IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests);
4062       InstructionList.push_back(IBI);
4063       for (unsigned i = 0, e = NumDests; i != e; ++i) {
4064         if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) {
4065           IBI->addDestination(DestBB);
4066         } else {
4067           delete IBI;
4068           return error("Invalid record");
4069         }
4070       }
4071       I = IBI;
4072       break;
4073     }
4074 
4075     case bitc::FUNC_CODE_INST_INVOKE: {
4076       // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...]
4077       if (Record.size() < 4)
4078         return error("Invalid record");
4079       unsigned OpNum = 0;
4080       AttributeList PAL = getAttributes(Record[OpNum++]);
4081       unsigned CCInfo = Record[OpNum++];
4082       BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]);
4083       BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]);
4084 
4085       FunctionType *FTy = nullptr;
4086       if (CCInfo >> 13 & 1 &&
4087           !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++]))))
4088         return error("Explicit invoke type is not a function type");
4089 
4090       Value *Callee;
4091       if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
4092         return error("Invalid record");
4093 
4094       PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType());
4095       if (!CalleeTy)
4096         return error("Callee is not a pointer");
4097       if (!FTy) {
4098         FTy = dyn_cast<FunctionType>(CalleeTy->getElementType());
4099         if (!FTy)
4100           return error("Callee is not of pointer to function type");
4101       } else if (CalleeTy->getElementType() != FTy)
4102         return error("Explicit invoke type does not match pointee type of "
4103                      "callee operand");
4104       if (Record.size() < FTy->getNumParams() + OpNum)
4105         return error("Insufficient operands to call");
4106 
4107       SmallVector<Value*, 16> Ops;
4108       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
4109         Ops.push_back(getValue(Record, OpNum, NextValueNo,
4110                                FTy->getParamType(i)));
4111         if (!Ops.back())
4112           return error("Invalid record");
4113       }
4114 
4115       if (!FTy->isVarArg()) {
4116         if (Record.size() != OpNum)
4117           return error("Invalid record");
4118       } else {
4119         // Read type/value pairs for varargs params.
4120         while (OpNum != Record.size()) {
4121           Value *Op;
4122           if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4123             return error("Invalid record");
4124           Ops.push_back(Op);
4125         }
4126       }
4127 
4128       I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops, OperandBundles);
4129       OperandBundles.clear();
4130       InstructionList.push_back(I);
4131       cast<InvokeInst>(I)->setCallingConv(
4132           static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo));
4133       cast<InvokeInst>(I)->setAttributes(PAL);
4134       break;
4135     }
4136     case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval]
4137       unsigned Idx = 0;
4138       Value *Val = nullptr;
4139       if (getValueTypePair(Record, Idx, NextValueNo, Val))
4140         return error("Invalid record");
4141       I = ResumeInst::Create(Val);
4142       InstructionList.push_back(I);
4143       break;
4144     }
4145     case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE
4146       I = new UnreachableInst(Context);
4147       InstructionList.push_back(I);
4148       break;
4149     case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...]
4150       if (Record.size() < 1 || ((Record.size()-1)&1))
4151         return error("Invalid record");
4152       Type *Ty = getTypeByID(Record[0]);
4153       if (!Ty)
4154         return error("Invalid record");
4155 
4156       PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2);
4157       InstructionList.push_back(PN);
4158 
4159       for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) {
4160         Value *V;
4161         // With the new function encoding, it is possible that operands have
4162         // negative IDs (for forward references).  Use a signed VBR
4163         // representation to keep the encoding small.
4164         if (UseRelativeIDs)
4165           V = getValueSigned(Record, 1+i, NextValueNo, Ty);
4166         else
4167           V = getValue(Record, 1+i, NextValueNo, Ty);
4168         BasicBlock *BB = getBasicBlock(Record[2+i]);
4169         if (!V || !BB)
4170           return error("Invalid record");
4171         PN->addIncoming(V, BB);
4172       }
4173       I = PN;
4174       break;
4175     }
4176 
4177     case bitc::FUNC_CODE_INST_LANDINGPAD:
4178     case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: {
4179       // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?]
4180       unsigned Idx = 0;
4181       if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) {
4182         if (Record.size() < 3)
4183           return error("Invalid record");
4184       } else {
4185         assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD);
4186         if (Record.size() < 4)
4187           return error("Invalid record");
4188       }
4189       Type *Ty = getTypeByID(Record[Idx++]);
4190       if (!Ty)
4191         return error("Invalid record");
4192       if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) {
4193         Value *PersFn = nullptr;
4194         if (getValueTypePair(Record, Idx, NextValueNo, PersFn))
4195           return error("Invalid record");
4196 
4197         if (!F->hasPersonalityFn())
4198           F->setPersonalityFn(cast<Constant>(PersFn));
4199         else if (F->getPersonalityFn() != cast<Constant>(PersFn))
4200           return error("Personality function mismatch");
4201       }
4202 
4203       bool IsCleanup = !!Record[Idx++];
4204       unsigned NumClauses = Record[Idx++];
4205       LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses);
4206       LP->setCleanup(IsCleanup);
4207       for (unsigned J = 0; J != NumClauses; ++J) {
4208         LandingPadInst::ClauseType CT =
4209           LandingPadInst::ClauseType(Record[Idx++]); (void)CT;
4210         Value *Val;
4211 
4212         if (getValueTypePair(Record, Idx, NextValueNo, Val)) {
4213           delete LP;
4214           return error("Invalid record");
4215         }
4216 
4217         assert((CT != LandingPadInst::Catch ||
4218                 !isa<ArrayType>(Val->getType())) &&
4219                "Catch clause has a invalid type!");
4220         assert((CT != LandingPadInst::Filter ||
4221                 isa<ArrayType>(Val->getType())) &&
4222                "Filter clause has invalid type!");
4223         LP->addClause(cast<Constant>(Val));
4224       }
4225 
4226       I = LP;
4227       InstructionList.push_back(I);
4228       break;
4229     }
4230 
4231     case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align]
4232       if (Record.size() != 4)
4233         return error("Invalid record");
4234       uint64_t AlignRecord = Record[3];
4235       const uint64_t InAllocaMask = uint64_t(1) << 5;
4236       const uint64_t ExplicitTypeMask = uint64_t(1) << 6;
4237       const uint64_t SwiftErrorMask = uint64_t(1) << 7;
4238       const uint64_t FlagMask = InAllocaMask | ExplicitTypeMask |
4239                                 SwiftErrorMask;
4240       bool InAlloca = AlignRecord & InAllocaMask;
4241       bool SwiftError = AlignRecord & SwiftErrorMask;
4242       Type *Ty = getTypeByID(Record[0]);
4243       if ((AlignRecord & ExplicitTypeMask) == 0) {
4244         auto *PTy = dyn_cast_or_null<PointerType>(Ty);
4245         if (!PTy)
4246           return error("Old-style alloca with a non-pointer type");
4247         Ty = PTy->getElementType();
4248       }
4249       Type *OpTy = getTypeByID(Record[1]);
4250       Value *Size = getFnValueByID(Record[2], OpTy);
4251       unsigned Align;
4252       if (Error Err = parseAlignmentValue(AlignRecord & ~FlagMask, Align)) {
4253         return Err;
4254       }
4255       if (!Ty || !Size)
4256         return error("Invalid record");
4257 
4258       // FIXME: Make this an optional field.
4259       const DataLayout &DL = TheModule->getDataLayout();
4260       unsigned AS = DL.getAllocaAddrSpace();
4261 
4262       AllocaInst *AI = new AllocaInst(Ty, AS, Size, Align);
4263       AI->setUsedWithInAlloca(InAlloca);
4264       AI->setSwiftError(SwiftError);
4265       I = AI;
4266       InstructionList.push_back(I);
4267       break;
4268     }
4269     case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol]
4270       unsigned OpNum = 0;
4271       Value *Op;
4272       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
4273           (OpNum + 2 != Record.size() && OpNum + 3 != Record.size()))
4274         return error("Invalid record");
4275 
4276       Type *Ty = nullptr;
4277       if (OpNum + 3 == Record.size())
4278         Ty = getTypeByID(Record[OpNum++]);
4279       if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType()))
4280         return Err;
4281       if (!Ty)
4282         Ty = cast<PointerType>(Op->getType())->getElementType();
4283 
4284       unsigned Align;
4285       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
4286         return Err;
4287       I = new LoadInst(Ty, Op, "", Record[OpNum + 1], Align);
4288 
4289       InstructionList.push_back(I);
4290       break;
4291     }
4292     case bitc::FUNC_CODE_INST_LOADATOMIC: {
4293        // LOADATOMIC: [opty, op, align, vol, ordering, ssid]
4294       unsigned OpNum = 0;
4295       Value *Op;
4296       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
4297           (OpNum + 4 != Record.size() && OpNum + 5 != Record.size()))
4298         return error("Invalid record");
4299 
4300       Type *Ty = nullptr;
4301       if (OpNum + 5 == Record.size())
4302         Ty = getTypeByID(Record[OpNum++]);
4303       if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType()))
4304         return Err;
4305       if (!Ty)
4306         Ty = cast<PointerType>(Op->getType())->getElementType();
4307 
4308       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
4309       if (Ordering == AtomicOrdering::NotAtomic ||
4310           Ordering == AtomicOrdering::Release ||
4311           Ordering == AtomicOrdering::AcquireRelease)
4312         return error("Invalid record");
4313       if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
4314         return error("Invalid record");
4315       SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
4316 
4317       unsigned Align;
4318       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
4319         return Err;
4320       I = new LoadInst(Op, "", Record[OpNum+1], Align, Ordering, SSID);
4321 
4322       InstructionList.push_back(I);
4323       break;
4324     }
4325     case bitc::FUNC_CODE_INST_STORE:
4326     case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol]
4327       unsigned OpNum = 0;
4328       Value *Val, *Ptr;
4329       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
4330           (BitCode == bitc::FUNC_CODE_INST_STORE
4331                ? getValueTypePair(Record, OpNum, NextValueNo, Val)
4332                : popValue(Record, OpNum, NextValueNo,
4333                           cast<PointerType>(Ptr->getType())->getElementType(),
4334                           Val)) ||
4335           OpNum + 2 != Record.size())
4336         return error("Invalid record");
4337 
4338       if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
4339         return Err;
4340       unsigned Align;
4341       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
4342         return Err;
4343       I = new StoreInst(Val, Ptr, Record[OpNum+1], Align);
4344       InstructionList.push_back(I);
4345       break;
4346     }
4347     case bitc::FUNC_CODE_INST_STOREATOMIC:
4348     case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: {
4349       // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, ssid]
4350       unsigned OpNum = 0;
4351       Value *Val, *Ptr;
4352       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
4353           !isa<PointerType>(Ptr->getType()) ||
4354           (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC
4355                ? getValueTypePair(Record, OpNum, NextValueNo, Val)
4356                : popValue(Record, OpNum, NextValueNo,
4357                           cast<PointerType>(Ptr->getType())->getElementType(),
4358                           Val)) ||
4359           OpNum + 4 != Record.size())
4360         return error("Invalid record");
4361 
4362       if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
4363         return Err;
4364       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
4365       if (Ordering == AtomicOrdering::NotAtomic ||
4366           Ordering == AtomicOrdering::Acquire ||
4367           Ordering == AtomicOrdering::AcquireRelease)
4368         return error("Invalid record");
4369       SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
4370       if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
4371         return error("Invalid record");
4372 
4373       unsigned Align;
4374       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
4375         return Err;
4376       I = new StoreInst(Val, Ptr, Record[OpNum+1], Align, Ordering, SSID);
4377       InstructionList.push_back(I);
4378       break;
4379     }
4380     case bitc::FUNC_CODE_INST_CMPXCHG_OLD:
4381     case bitc::FUNC_CODE_INST_CMPXCHG: {
4382       // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, ssid,
4383       //          failureordering?, isweak?]
4384       unsigned OpNum = 0;
4385       Value *Ptr, *Cmp, *New;
4386       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
4387           (BitCode == bitc::FUNC_CODE_INST_CMPXCHG
4388                ? getValueTypePair(Record, OpNum, NextValueNo, Cmp)
4389                : popValue(Record, OpNum, NextValueNo,
4390                           cast<PointerType>(Ptr->getType())->getElementType(),
4391                           Cmp)) ||
4392           popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) ||
4393           Record.size() < OpNum + 3 || Record.size() > OpNum + 5)
4394         return error("Invalid record");
4395       AtomicOrdering SuccessOrdering = getDecodedOrdering(Record[OpNum + 1]);
4396       if (SuccessOrdering == AtomicOrdering::NotAtomic ||
4397           SuccessOrdering == AtomicOrdering::Unordered)
4398         return error("Invalid record");
4399       SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]);
4400 
4401       if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType()))
4402         return Err;
4403       AtomicOrdering FailureOrdering;
4404       if (Record.size() < 7)
4405         FailureOrdering =
4406             AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering);
4407       else
4408         FailureOrdering = getDecodedOrdering(Record[OpNum + 3]);
4409 
4410       I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering,
4411                                 SSID);
4412       cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]);
4413 
4414       if (Record.size() < 8) {
4415         // Before weak cmpxchgs existed, the instruction simply returned the
4416         // value loaded from memory, so bitcode files from that era will be
4417         // expecting the first component of a modern cmpxchg.
4418         CurBB->getInstList().push_back(I);
4419         I = ExtractValueInst::Create(I, 0);
4420       } else {
4421         cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]);
4422       }
4423 
4424       InstructionList.push_back(I);
4425       break;
4426     }
4427     case bitc::FUNC_CODE_INST_ATOMICRMW: {
4428       // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, ssid]
4429       unsigned OpNum = 0;
4430       Value *Ptr, *Val;
4431       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
4432           !isa<PointerType>(Ptr->getType()) ||
4433           popValue(Record, OpNum, NextValueNo,
4434                     cast<PointerType>(Ptr->getType())->getElementType(), Val) ||
4435           OpNum+4 != Record.size())
4436         return error("Invalid record");
4437       AtomicRMWInst::BinOp Operation = getDecodedRMWOperation(Record[OpNum]);
4438       if (Operation < AtomicRMWInst::FIRST_BINOP ||
4439           Operation > AtomicRMWInst::LAST_BINOP)
4440         return error("Invalid record");
4441       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
4442       if (Ordering == AtomicOrdering::NotAtomic ||
4443           Ordering == AtomicOrdering::Unordered)
4444         return error("Invalid record");
4445       SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
4446       I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SSID);
4447       cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]);
4448       InstructionList.push_back(I);
4449       break;
4450     }
4451     case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, ssid]
4452       if (2 != Record.size())
4453         return error("Invalid record");
4454       AtomicOrdering Ordering = getDecodedOrdering(Record[0]);
4455       if (Ordering == AtomicOrdering::NotAtomic ||
4456           Ordering == AtomicOrdering::Unordered ||
4457           Ordering == AtomicOrdering::Monotonic)
4458         return error("Invalid record");
4459       SyncScope::ID SSID = getDecodedSyncScopeID(Record[1]);
4460       I = new FenceInst(Context, Ordering, SSID);
4461       InstructionList.push_back(I);
4462       break;
4463     }
4464     case bitc::FUNC_CODE_INST_CALL: {
4465       // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...]
4466       if (Record.size() < 3)
4467         return error("Invalid record");
4468 
4469       unsigned OpNum = 0;
4470       AttributeList PAL = getAttributes(Record[OpNum++]);
4471       unsigned CCInfo = Record[OpNum++];
4472 
4473       FastMathFlags FMF;
4474       if ((CCInfo >> bitc::CALL_FMF) & 1) {
4475         FMF = getDecodedFastMathFlags(Record[OpNum++]);
4476         if (!FMF.any())
4477           return error("Fast math flags indicator set for call with no FMF");
4478       }
4479 
4480       FunctionType *FTy = nullptr;
4481       if (CCInfo >> bitc::CALL_EXPLICIT_TYPE & 1 &&
4482           !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++]))))
4483         return error("Explicit call type is not a function type");
4484 
4485       Value *Callee;
4486       if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
4487         return error("Invalid record");
4488 
4489       PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
4490       if (!OpTy)
4491         return error("Callee is not a pointer type");
4492       if (!FTy) {
4493         FTy = dyn_cast<FunctionType>(OpTy->getElementType());
4494         if (!FTy)
4495           return error("Callee is not of pointer to function type");
4496       } else if (OpTy->getElementType() != FTy)
4497         return error("Explicit call type does not match pointee type of "
4498                      "callee operand");
4499       if (Record.size() < FTy->getNumParams() + OpNum)
4500         return error("Insufficient operands to call");
4501 
4502       SmallVector<Value*, 16> Args;
4503       // Read the fixed params.
4504       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
4505         if (FTy->getParamType(i)->isLabelTy())
4506           Args.push_back(getBasicBlock(Record[OpNum]));
4507         else
4508           Args.push_back(getValue(Record, OpNum, NextValueNo,
4509                                   FTy->getParamType(i)));
4510         if (!Args.back())
4511           return error("Invalid record");
4512       }
4513 
4514       // Read type/value pairs for varargs params.
4515       if (!FTy->isVarArg()) {
4516         if (OpNum != Record.size())
4517           return error("Invalid record");
4518       } else {
4519         while (OpNum != Record.size()) {
4520           Value *Op;
4521           if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4522             return error("Invalid record");
4523           Args.push_back(Op);
4524         }
4525       }
4526 
4527       I = CallInst::Create(FTy, Callee, Args, OperandBundles);
4528       OperandBundles.clear();
4529       InstructionList.push_back(I);
4530       cast<CallInst>(I)->setCallingConv(
4531           static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV));
4532       CallInst::TailCallKind TCK = CallInst::TCK_None;
4533       if (CCInfo & 1 << bitc::CALL_TAIL)
4534         TCK = CallInst::TCK_Tail;
4535       if (CCInfo & (1 << bitc::CALL_MUSTTAIL))
4536         TCK = CallInst::TCK_MustTail;
4537       if (CCInfo & (1 << bitc::CALL_NOTAIL))
4538         TCK = CallInst::TCK_NoTail;
4539       cast<CallInst>(I)->setTailCallKind(TCK);
4540       cast<CallInst>(I)->setAttributes(PAL);
4541       if (FMF.any()) {
4542         if (!isa<FPMathOperator>(I))
4543           return error("Fast-math-flags specified for call without "
4544                        "floating-point scalar or vector return type");
4545         I->setFastMathFlags(FMF);
4546       }
4547       break;
4548     }
4549     case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty]
4550       if (Record.size() < 3)
4551         return error("Invalid record");
4552       Type *OpTy = getTypeByID(Record[0]);
4553       Value *Op = getValue(Record, 1, NextValueNo, OpTy);
4554       Type *ResTy = getTypeByID(Record[2]);
4555       if (!OpTy || !Op || !ResTy)
4556         return error("Invalid record");
4557       I = new VAArgInst(Op, ResTy);
4558       InstructionList.push_back(I);
4559       break;
4560     }
4561 
4562     case bitc::FUNC_CODE_OPERAND_BUNDLE: {
4563       // A call or an invoke can be optionally prefixed with some variable
4564       // number of operand bundle blocks.  These blocks are read into
4565       // OperandBundles and consumed at the next call or invoke instruction.
4566 
4567       if (Record.size() < 1 || Record[0] >= BundleTags.size())
4568         return error("Invalid record");
4569 
4570       std::vector<Value *> Inputs;
4571 
4572       unsigned OpNum = 1;
4573       while (OpNum != Record.size()) {
4574         Value *Op;
4575         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4576           return error("Invalid record");
4577         Inputs.push_back(Op);
4578       }
4579 
4580       OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs));
4581       continue;
4582     }
4583     }
4584 
4585     // Add instruction to end of current BB.  If there is no current BB, reject
4586     // this file.
4587     if (!CurBB) {
4588       I->deleteValue();
4589       return error("Invalid instruction with no BB");
4590     }
4591     if (!OperandBundles.empty()) {
4592       I->deleteValue();
4593       return error("Operand bundles found with no consumer");
4594     }
4595     CurBB->getInstList().push_back(I);
4596 
4597     // If this was a terminator instruction, move to the next block.
4598     if (isa<TerminatorInst>(I)) {
4599       ++CurBBNo;
4600       CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr;
4601     }
4602 
4603     // Non-void values get registered in the value table for future use.
4604     if (I && !I->getType()->isVoidTy())
4605       ValueList.assignValue(I, NextValueNo++);
4606   }
4607 
4608 OutOfRecordLoop:
4609 
4610   if (!OperandBundles.empty())
4611     return error("Operand bundles found with no consumer");
4612 
4613   // Check the function list for unresolved values.
4614   if (Argument *A = dyn_cast<Argument>(ValueList.back())) {
4615     if (!A->getParent()) {
4616       // We found at least one unresolved value.  Nuke them all to avoid leaks.
4617       for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){
4618         if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) {
4619           A->replaceAllUsesWith(UndefValue::get(A->getType()));
4620           delete A;
4621         }
4622       }
4623       return error("Never resolved value found in function");
4624     }
4625   }
4626 
4627   // Unexpected unresolved metadata about to be dropped.
4628   if (MDLoader->hasFwdRefs())
4629     return error("Invalid function metadata: outgoing forward refs");
4630 
4631   // Trim the value list down to the size it was before we parsed this function.
4632   ValueList.shrinkTo(ModuleValueListSize);
4633   MDLoader->shrinkTo(ModuleMDLoaderSize);
4634   std::vector<BasicBlock*>().swap(FunctionBBs);
4635   return Error::success();
4636 }
4637 
4638 /// Find the function body in the bitcode stream
4639 Error BitcodeReader::findFunctionInStream(
4640     Function *F,
4641     DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) {
4642   while (DeferredFunctionInfoIterator->second == 0) {
4643     // This is the fallback handling for the old format bitcode that
4644     // didn't contain the function index in the VST, or when we have
4645     // an anonymous function which would not have a VST entry.
4646     // Assert that we have one of those two cases.
4647     assert(VSTOffset == 0 || !F->hasName());
4648     // Parse the next body in the stream and set its position in the
4649     // DeferredFunctionInfo map.
4650     if (Error Err = rememberAndSkipFunctionBodies())
4651       return Err;
4652   }
4653   return Error::success();
4654 }
4655 
4656 SyncScope::ID BitcodeReader::getDecodedSyncScopeID(unsigned Val) {
4657   if (Val == SyncScope::SingleThread || Val == SyncScope::System)
4658     return SyncScope::ID(Val);
4659   if (Val >= SSIDs.size())
4660     return SyncScope::System; // Map unknown synchronization scopes to system.
4661   return SSIDs[Val];
4662 }
4663 
4664 //===----------------------------------------------------------------------===//
4665 // GVMaterializer implementation
4666 //===----------------------------------------------------------------------===//
4667 
4668 Error BitcodeReader::materialize(GlobalValue *GV) {
4669   Function *F = dyn_cast<Function>(GV);
4670   // If it's not a function or is already material, ignore the request.
4671   if (!F || !F->isMaterializable())
4672     return Error::success();
4673 
4674   DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F);
4675   assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!");
4676   // If its position is recorded as 0, its body is somewhere in the stream
4677   // but we haven't seen it yet.
4678   if (DFII->second == 0)
4679     if (Error Err = findFunctionInStream(F, DFII))
4680       return Err;
4681 
4682   // Materialize metadata before parsing any function bodies.
4683   if (Error Err = materializeMetadata())
4684     return Err;
4685 
4686   // Move the bit stream to the saved position of the deferred function body.
4687   Stream.JumpToBit(DFII->second);
4688 
4689   if (Error Err = parseFunctionBody(F))
4690     return Err;
4691   F->setIsMaterializable(false);
4692 
4693   if (StripDebugInfo)
4694     stripDebugInfo(*F);
4695 
4696   // Upgrade any old intrinsic calls in the function.
4697   for (auto &I : UpgradedIntrinsics) {
4698     for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end();
4699          UI != UE;) {
4700       User *U = *UI;
4701       ++UI;
4702       if (CallInst *CI = dyn_cast<CallInst>(U))
4703         UpgradeIntrinsicCall(CI, I.second);
4704     }
4705   }
4706 
4707   // Update calls to the remangled intrinsics
4708   for (auto &I : RemangledIntrinsics)
4709     for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end();
4710          UI != UE;)
4711       // Don't expect any other users than call sites
4712       CallSite(*UI++).setCalledFunction(I.second);
4713 
4714   // Finish fn->subprogram upgrade for materialized functions.
4715   if (DISubprogram *SP = MDLoader->lookupSubprogramForFunction(F))
4716     F->setSubprogram(SP);
4717 
4718   // Check if the TBAA Metadata are valid, otherwise we will need to strip them.
4719   if (!MDLoader->isStrippingTBAA()) {
4720     for (auto &I : instructions(F)) {
4721       MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa);
4722       if (!TBAA || TBAAVerifyHelper.visitTBAAMetadata(I, TBAA))
4723         continue;
4724       MDLoader->setStripTBAA(true);
4725       stripTBAA(F->getParent());
4726     }
4727   }
4728 
4729   // Bring in any functions that this function forward-referenced via
4730   // blockaddresses.
4731   return materializeForwardReferencedFunctions();
4732 }
4733 
4734 Error BitcodeReader::materializeModule() {
4735   if (Error Err = materializeMetadata())
4736     return Err;
4737 
4738   // Promise to materialize all forward references.
4739   WillMaterializeAllForwardRefs = true;
4740 
4741   // Iterate over the module, deserializing any functions that are still on
4742   // disk.
4743   for (Function &F : *TheModule) {
4744     if (Error Err = materialize(&F))
4745       return Err;
4746   }
4747   // At this point, if there are any function bodies, parse the rest of
4748   // the bits in the module past the last function block we have recorded
4749   // through either lazy scanning or the VST.
4750   if (LastFunctionBlockBit || NextUnreadBit)
4751     if (Error Err = parseModule(LastFunctionBlockBit > NextUnreadBit
4752                                     ? LastFunctionBlockBit
4753                                     : NextUnreadBit))
4754       return Err;
4755 
4756   // Check that all block address forward references got resolved (as we
4757   // promised above).
4758   if (!BasicBlockFwdRefs.empty())
4759     return error("Never resolved function from blockaddress");
4760 
4761   // Upgrade any intrinsic calls that slipped through (should not happen!) and
4762   // delete the old functions to clean up. We can't do this unless the entire
4763   // module is materialized because there could always be another function body
4764   // with calls to the old function.
4765   for (auto &I : UpgradedIntrinsics) {
4766     for (auto *U : I.first->users()) {
4767       if (CallInst *CI = dyn_cast<CallInst>(U))
4768         UpgradeIntrinsicCall(CI, I.second);
4769     }
4770     if (!I.first->use_empty())
4771       I.first->replaceAllUsesWith(I.second);
4772     I.first->eraseFromParent();
4773   }
4774   UpgradedIntrinsics.clear();
4775   // Do the same for remangled intrinsics
4776   for (auto &I : RemangledIntrinsics) {
4777     I.first->replaceAllUsesWith(I.second);
4778     I.first->eraseFromParent();
4779   }
4780   RemangledIntrinsics.clear();
4781 
4782   UpgradeDebugInfo(*TheModule);
4783 
4784   UpgradeModuleFlags(*TheModule);
4785   return Error::success();
4786 }
4787 
4788 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const {
4789   return IdentifiedStructTypes;
4790 }
4791 
4792 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader(
4793     BitstreamCursor Cursor, StringRef Strtab, ModuleSummaryIndex &TheIndex,
4794     StringRef ModulePath, unsigned ModuleId)
4795     : BitcodeReaderBase(std::move(Cursor), Strtab), TheIndex(TheIndex),
4796       ModulePath(ModulePath), ModuleId(ModuleId) {}
4797 
4798 ModuleSummaryIndex::ModuleInfo *
4799 ModuleSummaryIndexBitcodeReader::addThisModule() {
4800   return TheIndex.addModule(ModulePath, ModuleId);
4801 }
4802 
4803 std::pair<ValueInfo, GlobalValue::GUID>
4804 ModuleSummaryIndexBitcodeReader::getValueInfoFromValueId(unsigned ValueId) {
4805   auto VGI = ValueIdToValueInfoMap[ValueId];
4806   assert(VGI.first);
4807   return VGI;
4808 }
4809 
4810 void ModuleSummaryIndexBitcodeReader::setValueGUID(
4811     uint64_t ValueID, StringRef ValueName, GlobalValue::LinkageTypes Linkage,
4812     StringRef SourceFileName) {
4813   std::string GlobalId =
4814       GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName);
4815   auto ValueGUID = GlobalValue::getGUID(GlobalId);
4816   auto OriginalNameID = ValueGUID;
4817   if (GlobalValue::isLocalLinkage(Linkage))
4818     OriginalNameID = GlobalValue::getGUID(ValueName);
4819   if (PrintSummaryGUIDs)
4820     dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is "
4821            << ValueName << "\n";
4822 
4823   // UseStrtab is false for legacy summary formats and value names are
4824   // created on stack. We can't use them outside of parseValueSymbolTable.
4825   ValueIdToValueInfoMap[ValueID] = std::make_pair(
4826       TheIndex.getOrInsertValueInfo(ValueGUID, UseStrtab ? ValueName : ""),
4827       OriginalNameID);
4828 }
4829 
4830 // Specialized value symbol table parser used when reading module index
4831 // blocks where we don't actually create global values. The parsed information
4832 // is saved in the bitcode reader for use when later parsing summaries.
4833 Error ModuleSummaryIndexBitcodeReader::parseValueSymbolTable(
4834     uint64_t Offset,
4835     DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) {
4836   // With a strtab the VST is not required to parse the summary.
4837   if (UseStrtab)
4838     return Error::success();
4839 
4840   assert(Offset > 0 && "Expected non-zero VST offset");
4841   uint64_t CurrentBit = jumpToValueSymbolTable(Offset, Stream);
4842 
4843   if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
4844     return error("Invalid record");
4845 
4846   SmallVector<uint64_t, 64> Record;
4847 
4848   // Read all the records for this value table.
4849   SmallString<128> ValueName;
4850 
4851   while (true) {
4852     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
4853 
4854     switch (Entry.Kind) {
4855     case BitstreamEntry::SubBlock: // Handled for us already.
4856     case BitstreamEntry::Error:
4857       return error("Malformed block");
4858     case BitstreamEntry::EndBlock:
4859       // Done parsing VST, jump back to wherever we came from.
4860       Stream.JumpToBit(CurrentBit);
4861       return Error::success();
4862     case BitstreamEntry::Record:
4863       // The interesting case.
4864       break;
4865     }
4866 
4867     // Read a record.
4868     Record.clear();
4869     switch (Stream.readRecord(Entry.ID, Record)) {
4870     default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records).
4871       break;
4872     case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N]
4873       if (convertToString(Record, 1, ValueName))
4874         return error("Invalid record");
4875       unsigned ValueID = Record[0];
4876       assert(!SourceFileName.empty());
4877       auto VLI = ValueIdToLinkageMap.find(ValueID);
4878       assert(VLI != ValueIdToLinkageMap.end() &&
4879              "No linkage found for VST entry?");
4880       auto Linkage = VLI->second;
4881       setValueGUID(ValueID, ValueName, Linkage, SourceFileName);
4882       ValueName.clear();
4883       break;
4884     }
4885     case bitc::VST_CODE_FNENTRY: {
4886       // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
4887       if (convertToString(Record, 2, ValueName))
4888         return error("Invalid record");
4889       unsigned ValueID = Record[0];
4890       assert(!SourceFileName.empty());
4891       auto VLI = ValueIdToLinkageMap.find(ValueID);
4892       assert(VLI != ValueIdToLinkageMap.end() &&
4893              "No linkage found for VST entry?");
4894       auto Linkage = VLI->second;
4895       setValueGUID(ValueID, ValueName, Linkage, SourceFileName);
4896       ValueName.clear();
4897       break;
4898     }
4899     case bitc::VST_CODE_COMBINED_ENTRY: {
4900       // VST_CODE_COMBINED_ENTRY: [valueid, refguid]
4901       unsigned ValueID = Record[0];
4902       GlobalValue::GUID RefGUID = Record[1];
4903       // The "original name", which is the second value of the pair will be
4904       // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index.
4905       ValueIdToValueInfoMap[ValueID] =
4906           std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID);
4907       break;
4908     }
4909     }
4910   }
4911 }
4912 
4913 // Parse just the blocks needed for building the index out of the module.
4914 // At the end of this routine the module Index is populated with a map
4915 // from global value id to GlobalValueSummary objects.
4916 Error ModuleSummaryIndexBitcodeReader::parseModule() {
4917   if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
4918     return error("Invalid record");
4919 
4920   SmallVector<uint64_t, 64> Record;
4921   DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap;
4922   unsigned ValueId = 0;
4923 
4924   // Read the index for this module.
4925   while (true) {
4926     BitstreamEntry Entry = Stream.advance();
4927 
4928     switch (Entry.Kind) {
4929     case BitstreamEntry::Error:
4930       return error("Malformed block");
4931     case BitstreamEntry::EndBlock:
4932       return Error::success();
4933 
4934     case BitstreamEntry::SubBlock:
4935       switch (Entry.ID) {
4936       default: // Skip unknown content.
4937         if (Stream.SkipBlock())
4938           return error("Invalid record");
4939         break;
4940       case bitc::BLOCKINFO_BLOCK_ID:
4941         // Need to parse these to get abbrev ids (e.g. for VST)
4942         if (readBlockInfo())
4943           return error("Malformed block");
4944         break;
4945       case bitc::VALUE_SYMTAB_BLOCK_ID:
4946         // Should have been parsed earlier via VSTOffset, unless there
4947         // is no summary section.
4948         assert(((SeenValueSymbolTable && VSTOffset > 0) ||
4949                 !SeenGlobalValSummary) &&
4950                "Expected early VST parse via VSTOffset record");
4951         if (Stream.SkipBlock())
4952           return error("Invalid record");
4953         break;
4954       case bitc::GLOBALVAL_SUMMARY_BLOCK_ID:
4955       case bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID:
4956         assert(!SeenValueSymbolTable &&
4957                "Already read VST when parsing summary block?");
4958         // We might not have a VST if there were no values in the
4959         // summary. An empty summary block generated when we are
4960         // performing ThinLTO compiles so we don't later invoke
4961         // the regular LTO process on them.
4962         if (VSTOffset > 0) {
4963           if (Error Err = parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap))
4964             return Err;
4965           SeenValueSymbolTable = true;
4966         }
4967         SeenGlobalValSummary = true;
4968         if (Error Err = parseEntireSummary(Entry.ID))
4969           return Err;
4970         break;
4971       case bitc::MODULE_STRTAB_BLOCK_ID:
4972         if (Error Err = parseModuleStringTable())
4973           return Err;
4974         break;
4975       }
4976       continue;
4977 
4978     case BitstreamEntry::Record: {
4979         Record.clear();
4980         auto BitCode = Stream.readRecord(Entry.ID, Record);
4981         switch (BitCode) {
4982         default:
4983           break; // Default behavior, ignore unknown content.
4984         case bitc::MODULE_CODE_VERSION: {
4985           if (Error Err = parseVersionRecord(Record).takeError())
4986             return Err;
4987           break;
4988         }
4989         /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
4990         case bitc::MODULE_CODE_SOURCE_FILENAME: {
4991           SmallString<128> ValueName;
4992           if (convertToString(Record, 0, ValueName))
4993             return error("Invalid record");
4994           SourceFileName = ValueName.c_str();
4995           break;
4996         }
4997         /// MODULE_CODE_HASH: [5*i32]
4998         case bitc::MODULE_CODE_HASH: {
4999           if (Record.size() != 5)
5000             return error("Invalid hash length " + Twine(Record.size()).str());
5001           auto &Hash = addThisModule()->second.second;
5002           int Pos = 0;
5003           for (auto &Val : Record) {
5004             assert(!(Val >> 32) && "Unexpected high bits set");
5005             Hash[Pos++] = Val;
5006           }
5007           break;
5008         }
5009         /// MODULE_CODE_VSTOFFSET: [offset]
5010         case bitc::MODULE_CODE_VSTOFFSET:
5011           if (Record.size() < 1)
5012             return error("Invalid record");
5013           // Note that we subtract 1 here because the offset is relative to one
5014           // word before the start of the identification or module block, which
5015           // was historically always the start of the regular bitcode header.
5016           VSTOffset = Record[0] - 1;
5017           break;
5018         // v1 GLOBALVAR: [pointer type, isconst,     initid,       linkage, ...]
5019         // v1 FUNCTION:  [type,         callingconv, isproto,      linkage, ...]
5020         // v1 ALIAS:     [alias type,   addrspace,   aliasee val#, linkage, ...]
5021         // v2: [strtab offset, strtab size, v1]
5022         case bitc::MODULE_CODE_GLOBALVAR:
5023         case bitc::MODULE_CODE_FUNCTION:
5024         case bitc::MODULE_CODE_ALIAS: {
5025           StringRef Name;
5026           ArrayRef<uint64_t> GVRecord;
5027           std::tie(Name, GVRecord) = readNameFromStrtab(Record);
5028           if (GVRecord.size() <= 3)
5029             return error("Invalid record");
5030           uint64_t RawLinkage = GVRecord[3];
5031           GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
5032           if (!UseStrtab) {
5033             ValueIdToLinkageMap[ValueId++] = Linkage;
5034             break;
5035           }
5036 
5037           setValueGUID(ValueId++, Name, Linkage, SourceFileName);
5038           break;
5039         }
5040         }
5041       }
5042       continue;
5043     }
5044   }
5045 }
5046 
5047 std::vector<ValueInfo>
5048 ModuleSummaryIndexBitcodeReader::makeRefList(ArrayRef<uint64_t> Record) {
5049   std::vector<ValueInfo> Ret;
5050   Ret.reserve(Record.size());
5051   for (uint64_t RefValueId : Record)
5052     Ret.push_back(getValueInfoFromValueId(RefValueId).first);
5053   return Ret;
5054 }
5055 
5056 std::vector<FunctionSummary::EdgeTy>
5057 ModuleSummaryIndexBitcodeReader::makeCallList(ArrayRef<uint64_t> Record,
5058                                               bool IsOldProfileFormat,
5059                                               bool HasProfile, bool HasRelBF) {
5060   std::vector<FunctionSummary::EdgeTy> Ret;
5061   Ret.reserve(Record.size());
5062   for (unsigned I = 0, E = Record.size(); I != E; ++I) {
5063     CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown;
5064     uint64_t RelBF = 0;
5065     ValueInfo Callee = getValueInfoFromValueId(Record[I]).first;
5066     if (IsOldProfileFormat) {
5067       I += 1; // Skip old callsitecount field
5068       if (HasProfile)
5069         I += 1; // Skip old profilecount field
5070     } else if (HasProfile)
5071       Hotness = static_cast<CalleeInfo::HotnessType>(Record[++I]);
5072     else if (HasRelBF)
5073       RelBF = Record[++I];
5074     Ret.push_back(FunctionSummary::EdgeTy{Callee, CalleeInfo(Hotness, RelBF)});
5075   }
5076   return Ret;
5077 }
5078 
5079 static void
5080 parseWholeProgramDevirtResolutionByArg(ArrayRef<uint64_t> Record, size_t &Slot,
5081                                        WholeProgramDevirtResolution &Wpd) {
5082   uint64_t ArgNum = Record[Slot++];
5083   WholeProgramDevirtResolution::ByArg &B =
5084       Wpd.ResByArg[{Record.begin() + Slot, Record.begin() + Slot + ArgNum}];
5085   Slot += ArgNum;
5086 
5087   B.TheKind =
5088       static_cast<WholeProgramDevirtResolution::ByArg::Kind>(Record[Slot++]);
5089   B.Info = Record[Slot++];
5090   B.Byte = Record[Slot++];
5091   B.Bit = Record[Slot++];
5092 }
5093 
5094 static void parseWholeProgramDevirtResolution(ArrayRef<uint64_t> Record,
5095                                               StringRef Strtab, size_t &Slot,
5096                                               TypeIdSummary &TypeId) {
5097   uint64_t Id = Record[Slot++];
5098   WholeProgramDevirtResolution &Wpd = TypeId.WPDRes[Id];
5099 
5100   Wpd.TheKind = static_cast<WholeProgramDevirtResolution::Kind>(Record[Slot++]);
5101   Wpd.SingleImplName = {Strtab.data() + Record[Slot],
5102                         static_cast<size_t>(Record[Slot + 1])};
5103   Slot += 2;
5104 
5105   uint64_t ResByArgNum = Record[Slot++];
5106   for (uint64_t I = 0; I != ResByArgNum; ++I)
5107     parseWholeProgramDevirtResolutionByArg(Record, Slot, Wpd);
5108 }
5109 
5110 static void parseTypeIdSummaryRecord(ArrayRef<uint64_t> Record,
5111                                      StringRef Strtab,
5112                                      ModuleSummaryIndex &TheIndex) {
5113   size_t Slot = 0;
5114   TypeIdSummary &TypeId = TheIndex.getOrInsertTypeIdSummary(
5115       {Strtab.data() + Record[Slot], static_cast<size_t>(Record[Slot + 1])});
5116   Slot += 2;
5117 
5118   TypeId.TTRes.TheKind = static_cast<TypeTestResolution::Kind>(Record[Slot++]);
5119   TypeId.TTRes.SizeM1BitWidth = Record[Slot++];
5120   TypeId.TTRes.AlignLog2 = Record[Slot++];
5121   TypeId.TTRes.SizeM1 = Record[Slot++];
5122   TypeId.TTRes.BitMask = Record[Slot++];
5123   TypeId.TTRes.InlineBits = Record[Slot++];
5124 
5125   while (Slot < Record.size())
5126     parseWholeProgramDevirtResolution(Record, Strtab, Slot, TypeId);
5127 }
5128 
5129 // Eagerly parse the entire summary block. This populates the GlobalValueSummary
5130 // objects in the index.
5131 Error ModuleSummaryIndexBitcodeReader::parseEntireSummary(unsigned ID) {
5132   if (Stream.EnterSubBlock(ID))
5133     return error("Invalid record");
5134   SmallVector<uint64_t, 64> Record;
5135 
5136   // Parse version
5137   {
5138     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
5139     if (Entry.Kind != BitstreamEntry::Record)
5140       return error("Invalid Summary Block: record for version expected");
5141     if (Stream.readRecord(Entry.ID, Record) != bitc::FS_VERSION)
5142       return error("Invalid Summary Block: version expected");
5143   }
5144   const uint64_t Version = Record[0];
5145   const bool IsOldProfileFormat = Version == 1;
5146   if (Version < 1 || Version > 4)
5147     return error("Invalid summary version " + Twine(Version) +
5148                  ", 1, 2, 3 or 4 expected");
5149   Record.clear();
5150 
5151   // Keep around the last seen summary to be used when we see an optional
5152   // "OriginalName" attachement.
5153   GlobalValueSummary *LastSeenSummary = nullptr;
5154   GlobalValue::GUID LastSeenGUID = 0;
5155 
5156   // We can expect to see any number of type ID information records before
5157   // each function summary records; these variables store the information
5158   // collected so far so that it can be used to create the summary object.
5159   std::vector<GlobalValue::GUID> PendingTypeTests;
5160   std::vector<FunctionSummary::VFuncId> PendingTypeTestAssumeVCalls,
5161       PendingTypeCheckedLoadVCalls;
5162   std::vector<FunctionSummary::ConstVCall> PendingTypeTestAssumeConstVCalls,
5163       PendingTypeCheckedLoadConstVCalls;
5164 
5165   while (true) {
5166     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
5167 
5168     switch (Entry.Kind) {
5169     case BitstreamEntry::SubBlock: // Handled for us already.
5170     case BitstreamEntry::Error:
5171       return error("Malformed block");
5172     case BitstreamEntry::EndBlock:
5173       return Error::success();
5174     case BitstreamEntry::Record:
5175       // The interesting case.
5176       break;
5177     }
5178 
5179     // Read a record. The record format depends on whether this
5180     // is a per-module index or a combined index file. In the per-module
5181     // case the records contain the associated value's ID for correlation
5182     // with VST entries. In the combined index the correlation is done
5183     // via the bitcode offset of the summary records (which were saved
5184     // in the combined index VST entries). The records also contain
5185     // information used for ThinLTO renaming and importing.
5186     Record.clear();
5187     auto BitCode = Stream.readRecord(Entry.ID, Record);
5188     switch (BitCode) {
5189     default: // Default behavior: ignore.
5190       break;
5191     case bitc::FS_FLAGS: {  // [flags]
5192       uint64_t Flags = Record[0];
5193       // Scan flags (set only on the combined index).
5194       assert(Flags <= 0x3 && "Unexpected bits in flag");
5195 
5196       // 1 bit: WithGlobalValueDeadStripping flag.
5197       if (Flags & 0x1)
5198         TheIndex.setWithGlobalValueDeadStripping();
5199       // 1 bit: SkipModuleByDistributedBackend flag.
5200       if (Flags & 0x2)
5201         TheIndex.setSkipModuleByDistributedBackend();
5202       break;
5203     }
5204     case bitc::FS_VALUE_GUID: { // [valueid, refguid]
5205       uint64_t ValueID = Record[0];
5206       GlobalValue::GUID RefGUID = Record[1];
5207       ValueIdToValueInfoMap[ValueID] =
5208           std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID);
5209       break;
5210     }
5211     // FS_PERMODULE: [valueid, flags, instcount, fflags, numrefs,
5212     //                numrefs x valueid, n x (valueid)]
5213     // FS_PERMODULE_PROFILE: [valueid, flags, instcount, fflags, numrefs,
5214     //                        numrefs x valueid,
5215     //                        n x (valueid, hotness)]
5216     // FS_PERMODULE_RELBF: [valueid, flags, instcount, fflags, numrefs,
5217     //                      numrefs x valueid,
5218     //                      n x (valueid, relblockfreq)]
5219     case bitc::FS_PERMODULE:
5220     case bitc::FS_PERMODULE_RELBF:
5221     case bitc::FS_PERMODULE_PROFILE: {
5222       unsigned ValueID = Record[0];
5223       uint64_t RawFlags = Record[1];
5224       unsigned InstCount = Record[2];
5225       uint64_t RawFunFlags = 0;
5226       unsigned NumRefs = Record[3];
5227       int RefListStartIndex = 4;
5228       if (Version >= 4) {
5229         RawFunFlags = Record[3];
5230         NumRefs = Record[4];
5231         RefListStartIndex = 5;
5232       }
5233 
5234       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
5235       // The module path string ref set in the summary must be owned by the
5236       // index's module string table. Since we don't have a module path
5237       // string table section in the per-module index, we create a single
5238       // module path string table entry with an empty (0) ID to take
5239       // ownership.
5240       int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
5241       assert(Record.size() >= RefListStartIndex + NumRefs &&
5242              "Record size inconsistent with number of references");
5243       std::vector<ValueInfo> Refs = makeRefList(
5244           ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
5245       bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE);
5246       bool HasRelBF = (BitCode == bitc::FS_PERMODULE_RELBF);
5247       std::vector<FunctionSummary::EdgeTy> Calls = makeCallList(
5248           ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex),
5249           IsOldProfileFormat, HasProfile, HasRelBF);
5250       auto FS = llvm::make_unique<FunctionSummary>(
5251           Flags, InstCount, getDecodedFFlags(RawFunFlags), std::move(Refs),
5252           std::move(Calls), std::move(PendingTypeTests),
5253           std::move(PendingTypeTestAssumeVCalls),
5254           std::move(PendingTypeCheckedLoadVCalls),
5255           std::move(PendingTypeTestAssumeConstVCalls),
5256           std::move(PendingTypeCheckedLoadConstVCalls));
5257       PendingTypeTests.clear();
5258       PendingTypeTestAssumeVCalls.clear();
5259       PendingTypeCheckedLoadVCalls.clear();
5260       PendingTypeTestAssumeConstVCalls.clear();
5261       PendingTypeCheckedLoadConstVCalls.clear();
5262       auto VIAndOriginalGUID = getValueInfoFromValueId(ValueID);
5263       FS->setModulePath(addThisModule()->first());
5264       FS->setOriginalName(VIAndOriginalGUID.second);
5265       TheIndex.addGlobalValueSummary(VIAndOriginalGUID.first, std::move(FS));
5266       break;
5267     }
5268     // FS_ALIAS: [valueid, flags, valueid]
5269     // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as
5270     // they expect all aliasee summaries to be available.
5271     case bitc::FS_ALIAS: {
5272       unsigned ValueID = Record[0];
5273       uint64_t RawFlags = Record[1];
5274       unsigned AliaseeID = Record[2];
5275       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
5276       auto AS = llvm::make_unique<AliasSummary>(Flags);
5277       // The module path string ref set in the summary must be owned by the
5278       // index's module string table. Since we don't have a module path
5279       // string table section in the per-module index, we create a single
5280       // module path string table entry with an empty (0) ID to take
5281       // ownership.
5282       AS->setModulePath(addThisModule()->first());
5283 
5284       GlobalValue::GUID AliaseeGUID =
5285           getValueInfoFromValueId(AliaseeID).first.getGUID();
5286       auto AliaseeInModule =
5287           TheIndex.findSummaryInModule(AliaseeGUID, ModulePath);
5288       if (!AliaseeInModule)
5289         return error("Alias expects aliasee summary to be parsed");
5290       AS->setAliasee(AliaseeInModule);
5291       AS->setAliaseeGUID(AliaseeGUID);
5292 
5293       auto GUID = getValueInfoFromValueId(ValueID);
5294       AS->setOriginalName(GUID.second);
5295       TheIndex.addGlobalValueSummary(GUID.first, std::move(AS));
5296       break;
5297     }
5298     // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, n x valueid]
5299     case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: {
5300       unsigned ValueID = Record[0];
5301       uint64_t RawFlags = Record[1];
5302       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
5303       std::vector<ValueInfo> Refs =
5304           makeRefList(ArrayRef<uint64_t>(Record).slice(2));
5305       auto FS = llvm::make_unique<GlobalVarSummary>(Flags, std::move(Refs));
5306       FS->setModulePath(addThisModule()->first());
5307       auto GUID = getValueInfoFromValueId(ValueID);
5308       FS->setOriginalName(GUID.second);
5309       TheIndex.addGlobalValueSummary(GUID.first, std::move(FS));
5310       break;
5311     }
5312     // FS_COMBINED: [valueid, modid, flags, instcount, fflags, numrefs,
5313     //               numrefs x valueid, n x (valueid)]
5314     // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, fflags, numrefs,
5315     //                       numrefs x valueid, n x (valueid, hotness)]
5316     case bitc::FS_COMBINED:
5317     case bitc::FS_COMBINED_PROFILE: {
5318       unsigned ValueID = Record[0];
5319       uint64_t ModuleId = Record[1];
5320       uint64_t RawFlags = Record[2];
5321       unsigned InstCount = Record[3];
5322       uint64_t RawFunFlags = 0;
5323       unsigned NumRefs = Record[4];
5324       int RefListStartIndex = 5;
5325 
5326       if (Version >= 4) {
5327         RawFunFlags = Record[4];
5328         NumRefs = Record[5];
5329         RefListStartIndex = 6;
5330       }
5331 
5332       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
5333       int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
5334       assert(Record.size() >= RefListStartIndex + NumRefs &&
5335              "Record size inconsistent with number of references");
5336       std::vector<ValueInfo> Refs = makeRefList(
5337           ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
5338       bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE);
5339       std::vector<FunctionSummary::EdgeTy> Edges = makeCallList(
5340           ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex),
5341           IsOldProfileFormat, HasProfile, false);
5342       ValueInfo VI = getValueInfoFromValueId(ValueID).first;
5343       auto FS = llvm::make_unique<FunctionSummary>(
5344           Flags, InstCount, getDecodedFFlags(RawFunFlags), std::move(Refs),
5345           std::move(Edges), std::move(PendingTypeTests),
5346           std::move(PendingTypeTestAssumeVCalls),
5347           std::move(PendingTypeCheckedLoadVCalls),
5348           std::move(PendingTypeTestAssumeConstVCalls),
5349           std::move(PendingTypeCheckedLoadConstVCalls));
5350       PendingTypeTests.clear();
5351       PendingTypeTestAssumeVCalls.clear();
5352       PendingTypeCheckedLoadVCalls.clear();
5353       PendingTypeTestAssumeConstVCalls.clear();
5354       PendingTypeCheckedLoadConstVCalls.clear();
5355       LastSeenSummary = FS.get();
5356       LastSeenGUID = VI.getGUID();
5357       FS->setModulePath(ModuleIdMap[ModuleId]);
5358       TheIndex.addGlobalValueSummary(VI, std::move(FS));
5359       break;
5360     }
5361     // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid]
5362     // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as
5363     // they expect all aliasee summaries to be available.
5364     case bitc::FS_COMBINED_ALIAS: {
5365       unsigned ValueID = Record[0];
5366       uint64_t ModuleId = Record[1];
5367       uint64_t RawFlags = Record[2];
5368       unsigned AliaseeValueId = Record[3];
5369       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
5370       auto AS = llvm::make_unique<AliasSummary>(Flags);
5371       LastSeenSummary = AS.get();
5372       AS->setModulePath(ModuleIdMap[ModuleId]);
5373 
5374       auto AliaseeGUID =
5375           getValueInfoFromValueId(AliaseeValueId).first.getGUID();
5376       auto AliaseeInModule =
5377           TheIndex.findSummaryInModule(AliaseeGUID, AS->modulePath());
5378       AS->setAliasee(AliaseeInModule);
5379       AS->setAliaseeGUID(AliaseeGUID);
5380 
5381       ValueInfo VI = getValueInfoFromValueId(ValueID).first;
5382       LastSeenGUID = VI.getGUID();
5383       TheIndex.addGlobalValueSummary(VI, std::move(AS));
5384       break;
5385     }
5386     // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid]
5387     case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: {
5388       unsigned ValueID = Record[0];
5389       uint64_t ModuleId = Record[1];
5390       uint64_t RawFlags = Record[2];
5391       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
5392       std::vector<ValueInfo> Refs =
5393           makeRefList(ArrayRef<uint64_t>(Record).slice(3));
5394       auto FS = llvm::make_unique<GlobalVarSummary>(Flags, std::move(Refs));
5395       LastSeenSummary = FS.get();
5396       FS->setModulePath(ModuleIdMap[ModuleId]);
5397       ValueInfo VI = getValueInfoFromValueId(ValueID).first;
5398       LastSeenGUID = VI.getGUID();
5399       TheIndex.addGlobalValueSummary(VI, std::move(FS));
5400       break;
5401     }
5402     // FS_COMBINED_ORIGINAL_NAME: [original_name]
5403     case bitc::FS_COMBINED_ORIGINAL_NAME: {
5404       uint64_t OriginalName = Record[0];
5405       if (!LastSeenSummary)
5406         return error("Name attachment that does not follow a combined record");
5407       LastSeenSummary->setOriginalName(OriginalName);
5408       TheIndex.addOriginalName(LastSeenGUID, OriginalName);
5409       // Reset the LastSeenSummary
5410       LastSeenSummary = nullptr;
5411       LastSeenGUID = 0;
5412       break;
5413     }
5414     case bitc::FS_TYPE_TESTS:
5415       assert(PendingTypeTests.empty());
5416       PendingTypeTests.insert(PendingTypeTests.end(), Record.begin(),
5417                               Record.end());
5418       break;
5419 
5420     case bitc::FS_TYPE_TEST_ASSUME_VCALLS:
5421       assert(PendingTypeTestAssumeVCalls.empty());
5422       for (unsigned I = 0; I != Record.size(); I += 2)
5423         PendingTypeTestAssumeVCalls.push_back({Record[I], Record[I+1]});
5424       break;
5425 
5426     case bitc::FS_TYPE_CHECKED_LOAD_VCALLS:
5427       assert(PendingTypeCheckedLoadVCalls.empty());
5428       for (unsigned I = 0; I != Record.size(); I += 2)
5429         PendingTypeCheckedLoadVCalls.push_back({Record[I], Record[I+1]});
5430       break;
5431 
5432     case bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL:
5433       PendingTypeTestAssumeConstVCalls.push_back(
5434           {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}});
5435       break;
5436 
5437     case bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL:
5438       PendingTypeCheckedLoadConstVCalls.push_back(
5439           {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}});
5440       break;
5441 
5442     case bitc::FS_CFI_FUNCTION_DEFS: {
5443       std::set<std::string> &CfiFunctionDefs = TheIndex.cfiFunctionDefs();
5444       for (unsigned I = 0; I != Record.size(); I += 2)
5445         CfiFunctionDefs.insert(
5446             {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])});
5447       break;
5448     }
5449 
5450     case bitc::FS_CFI_FUNCTION_DECLS: {
5451       std::set<std::string> &CfiFunctionDecls = TheIndex.cfiFunctionDecls();
5452       for (unsigned I = 0; I != Record.size(); I += 2)
5453         CfiFunctionDecls.insert(
5454             {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])});
5455       break;
5456     }
5457 
5458     case bitc::FS_TYPE_ID:
5459       parseTypeIdSummaryRecord(Record, Strtab, TheIndex);
5460       break;
5461     }
5462   }
5463   llvm_unreachable("Exit infinite loop");
5464 }
5465 
5466 // Parse the  module string table block into the Index.
5467 // This populates the ModulePathStringTable map in the index.
5468 Error ModuleSummaryIndexBitcodeReader::parseModuleStringTable() {
5469   if (Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID))
5470     return error("Invalid record");
5471 
5472   SmallVector<uint64_t, 64> Record;
5473 
5474   SmallString<128> ModulePath;
5475   ModuleSummaryIndex::ModuleInfo *LastSeenModule = nullptr;
5476 
5477   while (true) {
5478     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
5479 
5480     switch (Entry.Kind) {
5481     case BitstreamEntry::SubBlock: // Handled for us already.
5482     case BitstreamEntry::Error:
5483       return error("Malformed block");
5484     case BitstreamEntry::EndBlock:
5485       return Error::success();
5486     case BitstreamEntry::Record:
5487       // The interesting case.
5488       break;
5489     }
5490 
5491     Record.clear();
5492     switch (Stream.readRecord(Entry.ID, Record)) {
5493     default: // Default behavior: ignore.
5494       break;
5495     case bitc::MST_CODE_ENTRY: {
5496       // MST_ENTRY: [modid, namechar x N]
5497       uint64_t ModuleId = Record[0];
5498 
5499       if (convertToString(Record, 1, ModulePath))
5500         return error("Invalid record");
5501 
5502       LastSeenModule = TheIndex.addModule(ModulePath, ModuleId);
5503       ModuleIdMap[ModuleId] = LastSeenModule->first();
5504 
5505       ModulePath.clear();
5506       break;
5507     }
5508     /// MST_CODE_HASH: [5*i32]
5509     case bitc::MST_CODE_HASH: {
5510       if (Record.size() != 5)
5511         return error("Invalid hash length " + Twine(Record.size()).str());
5512       if (!LastSeenModule)
5513         return error("Invalid hash that does not follow a module path");
5514       int Pos = 0;
5515       for (auto &Val : Record) {
5516         assert(!(Val >> 32) && "Unexpected high bits set");
5517         LastSeenModule->second.second[Pos++] = Val;
5518       }
5519       // Reset LastSeenModule to avoid overriding the hash unexpectedly.
5520       LastSeenModule = nullptr;
5521       break;
5522     }
5523     }
5524   }
5525   llvm_unreachable("Exit infinite loop");
5526 }
5527 
5528 namespace {
5529 
5530 // FIXME: This class is only here to support the transition to llvm::Error. It
5531 // will be removed once this transition is complete. Clients should prefer to
5532 // deal with the Error value directly, rather than converting to error_code.
5533 class BitcodeErrorCategoryType : public std::error_category {
5534   const char *name() const noexcept override {
5535     return "llvm.bitcode";
5536   }
5537 
5538   std::string message(int IE) const override {
5539     BitcodeError E = static_cast<BitcodeError>(IE);
5540     switch (E) {
5541     case BitcodeError::CorruptedBitcode:
5542       return "Corrupted bitcode";
5543     }
5544     llvm_unreachable("Unknown error type!");
5545   }
5546 };
5547 
5548 } // end anonymous namespace
5549 
5550 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory;
5551 
5552 const std::error_category &llvm::BitcodeErrorCategory() {
5553   return *ErrorCategory;
5554 }
5555 
5556 static Expected<StringRef> readBlobInRecord(BitstreamCursor &Stream,
5557                                             unsigned Block, unsigned RecordID) {
5558   if (Stream.EnterSubBlock(Block))
5559     return error("Invalid record");
5560 
5561   StringRef Strtab;
5562   while (true) {
5563     BitstreamEntry Entry = Stream.advance();
5564     switch (Entry.Kind) {
5565     case BitstreamEntry::EndBlock:
5566       return Strtab;
5567 
5568     case BitstreamEntry::Error:
5569       return error("Malformed block");
5570 
5571     case BitstreamEntry::SubBlock:
5572       if (Stream.SkipBlock())
5573         return error("Malformed block");
5574       break;
5575 
5576     case BitstreamEntry::Record:
5577       StringRef Blob;
5578       SmallVector<uint64_t, 1> Record;
5579       if (Stream.readRecord(Entry.ID, Record, &Blob) == RecordID)
5580         Strtab = Blob;
5581       break;
5582     }
5583   }
5584 }
5585 
5586 //===----------------------------------------------------------------------===//
5587 // External interface
5588 //===----------------------------------------------------------------------===//
5589 
5590 Expected<std::vector<BitcodeModule>>
5591 llvm::getBitcodeModuleList(MemoryBufferRef Buffer) {
5592   auto FOrErr = getBitcodeFileContents(Buffer);
5593   if (!FOrErr)
5594     return FOrErr.takeError();
5595   return std::move(FOrErr->Mods);
5596 }
5597 
5598 Expected<BitcodeFileContents>
5599 llvm::getBitcodeFileContents(MemoryBufferRef Buffer) {
5600   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
5601   if (!StreamOrErr)
5602     return StreamOrErr.takeError();
5603   BitstreamCursor &Stream = *StreamOrErr;
5604 
5605   BitcodeFileContents F;
5606   while (true) {
5607     uint64_t BCBegin = Stream.getCurrentByteNo();
5608 
5609     // We may be consuming bitcode from a client that leaves garbage at the end
5610     // of the bitcode stream (e.g. Apple's ar tool). If we are close enough to
5611     // the end that there cannot possibly be another module, stop looking.
5612     if (BCBegin + 8 >= Stream.getBitcodeBytes().size())
5613       return F;
5614 
5615     BitstreamEntry Entry = Stream.advance();
5616     switch (Entry.Kind) {
5617     case BitstreamEntry::EndBlock:
5618     case BitstreamEntry::Error:
5619       return error("Malformed block");
5620 
5621     case BitstreamEntry::SubBlock: {
5622       uint64_t IdentificationBit = -1ull;
5623       if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) {
5624         IdentificationBit = Stream.GetCurrentBitNo() - BCBegin * 8;
5625         if (Stream.SkipBlock())
5626           return error("Malformed block");
5627 
5628         Entry = Stream.advance();
5629         if (Entry.Kind != BitstreamEntry::SubBlock ||
5630             Entry.ID != bitc::MODULE_BLOCK_ID)
5631           return error("Malformed block");
5632       }
5633 
5634       if (Entry.ID == bitc::MODULE_BLOCK_ID) {
5635         uint64_t ModuleBit = Stream.GetCurrentBitNo() - BCBegin * 8;
5636         if (Stream.SkipBlock())
5637           return error("Malformed block");
5638 
5639         F.Mods.push_back({Stream.getBitcodeBytes().slice(
5640                               BCBegin, Stream.getCurrentByteNo() - BCBegin),
5641                           Buffer.getBufferIdentifier(), IdentificationBit,
5642                           ModuleBit});
5643         continue;
5644       }
5645 
5646       if (Entry.ID == bitc::STRTAB_BLOCK_ID) {
5647         Expected<StringRef> Strtab =
5648             readBlobInRecord(Stream, bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB);
5649         if (!Strtab)
5650           return Strtab.takeError();
5651         // This string table is used by every preceding bitcode module that does
5652         // not have its own string table. A bitcode file may have multiple
5653         // string tables if it was created by binary concatenation, for example
5654         // with "llvm-cat -b".
5655         for (auto I = F.Mods.rbegin(), E = F.Mods.rend(); I != E; ++I) {
5656           if (!I->Strtab.empty())
5657             break;
5658           I->Strtab = *Strtab;
5659         }
5660         // Similarly, the string table is used by every preceding symbol table;
5661         // normally there will be just one unless the bitcode file was created
5662         // by binary concatenation.
5663         if (!F.Symtab.empty() && F.StrtabForSymtab.empty())
5664           F.StrtabForSymtab = *Strtab;
5665         continue;
5666       }
5667 
5668       if (Entry.ID == bitc::SYMTAB_BLOCK_ID) {
5669         Expected<StringRef> SymtabOrErr =
5670             readBlobInRecord(Stream, bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB);
5671         if (!SymtabOrErr)
5672           return SymtabOrErr.takeError();
5673 
5674         // We can expect the bitcode file to have multiple symbol tables if it
5675         // was created by binary concatenation. In that case we silently
5676         // ignore any subsequent symbol tables, which is fine because this is a
5677         // low level function. The client is expected to notice that the number
5678         // of modules in the symbol table does not match the number of modules
5679         // in the input file and regenerate the symbol table.
5680         if (F.Symtab.empty())
5681           F.Symtab = *SymtabOrErr;
5682         continue;
5683       }
5684 
5685       if (Stream.SkipBlock())
5686         return error("Malformed block");
5687       continue;
5688     }
5689     case BitstreamEntry::Record:
5690       Stream.skipRecord(Entry.ID);
5691       continue;
5692     }
5693   }
5694 }
5695 
5696 /// \brief Get a lazy one-at-time loading module from bitcode.
5697 ///
5698 /// This isn't always used in a lazy context.  In particular, it's also used by
5699 /// \a parseModule().  If this is truly lazy, then we need to eagerly pull
5700 /// in forward-referenced functions from block address references.
5701 ///
5702 /// \param[in] MaterializeAll Set to \c true if we should materialize
5703 /// everything.
5704 Expected<std::unique_ptr<Module>>
5705 BitcodeModule::getModuleImpl(LLVMContext &Context, bool MaterializeAll,
5706                              bool ShouldLazyLoadMetadata, bool IsImporting) {
5707   BitstreamCursor Stream(Buffer);
5708 
5709   std::string ProducerIdentification;
5710   if (IdentificationBit != -1ull) {
5711     Stream.JumpToBit(IdentificationBit);
5712     Expected<std::string> ProducerIdentificationOrErr =
5713         readIdentificationBlock(Stream);
5714     if (!ProducerIdentificationOrErr)
5715       return ProducerIdentificationOrErr.takeError();
5716 
5717     ProducerIdentification = *ProducerIdentificationOrErr;
5718   }
5719 
5720   Stream.JumpToBit(ModuleBit);
5721   auto *R = new BitcodeReader(std::move(Stream), Strtab, ProducerIdentification,
5722                               Context);
5723 
5724   std::unique_ptr<Module> M =
5725       llvm::make_unique<Module>(ModuleIdentifier, Context);
5726   M->setMaterializer(R);
5727 
5728   // Delay parsing Metadata if ShouldLazyLoadMetadata is true.
5729   if (Error Err =
5730           R->parseBitcodeInto(M.get(), ShouldLazyLoadMetadata, IsImporting))
5731     return std::move(Err);
5732 
5733   if (MaterializeAll) {
5734     // Read in the entire module, and destroy the BitcodeReader.
5735     if (Error Err = M->materializeAll())
5736       return std::move(Err);
5737   } else {
5738     // Resolve forward references from blockaddresses.
5739     if (Error Err = R->materializeForwardReferencedFunctions())
5740       return std::move(Err);
5741   }
5742   return std::move(M);
5743 }
5744 
5745 Expected<std::unique_ptr<Module>>
5746 BitcodeModule::getLazyModule(LLVMContext &Context, bool ShouldLazyLoadMetadata,
5747                              bool IsImporting) {
5748   return getModuleImpl(Context, false, ShouldLazyLoadMetadata, IsImporting);
5749 }
5750 
5751 // Parse the specified bitcode buffer and merge the index into CombinedIndex.
5752 // We don't use ModuleIdentifier here because the client may need to control the
5753 // module path used in the combined summary (e.g. when reading summaries for
5754 // regular LTO modules).
5755 Error BitcodeModule::readSummary(ModuleSummaryIndex &CombinedIndex,
5756                                  StringRef ModulePath, uint64_t ModuleId) {
5757   BitstreamCursor Stream(Buffer);
5758   Stream.JumpToBit(ModuleBit);
5759 
5760   ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, CombinedIndex,
5761                                     ModulePath, ModuleId);
5762   return R.parseModule();
5763 }
5764 
5765 // Parse the specified bitcode buffer, returning the function info index.
5766 Expected<std::unique_ptr<ModuleSummaryIndex>> BitcodeModule::getSummary() {
5767   BitstreamCursor Stream(Buffer);
5768   Stream.JumpToBit(ModuleBit);
5769 
5770   auto Index =
5771       llvm::make_unique<ModuleSummaryIndex>(/*IsPerformingAnalysis=*/false);
5772   ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, *Index,
5773                                     ModuleIdentifier, 0);
5774 
5775   if (Error Err = R.parseModule())
5776     return std::move(Err);
5777 
5778   return std::move(Index);
5779 }
5780 
5781 // Check if the given bitcode buffer contains a global value summary block.
5782 Expected<BitcodeLTOInfo> BitcodeModule::getLTOInfo() {
5783   BitstreamCursor Stream(Buffer);
5784   Stream.JumpToBit(ModuleBit);
5785 
5786   if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
5787     return error("Invalid record");
5788 
5789   while (true) {
5790     BitstreamEntry Entry = Stream.advance();
5791 
5792     switch (Entry.Kind) {
5793     case BitstreamEntry::Error:
5794       return error("Malformed block");
5795     case BitstreamEntry::EndBlock:
5796       return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/false};
5797 
5798     case BitstreamEntry::SubBlock:
5799       if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID)
5800         return BitcodeLTOInfo{/*IsThinLTO=*/true, /*HasSummary=*/true};
5801 
5802       if (Entry.ID == bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID)
5803         return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/true};
5804 
5805       // Ignore other sub-blocks.
5806       if (Stream.SkipBlock())
5807         return error("Malformed block");
5808       continue;
5809 
5810     case BitstreamEntry::Record:
5811       Stream.skipRecord(Entry.ID);
5812       continue;
5813     }
5814   }
5815 }
5816 
5817 static Expected<BitcodeModule> getSingleModule(MemoryBufferRef Buffer) {
5818   Expected<std::vector<BitcodeModule>> MsOrErr = getBitcodeModuleList(Buffer);
5819   if (!MsOrErr)
5820     return MsOrErr.takeError();
5821 
5822   if (MsOrErr->size() != 1)
5823     return error("Expected a single module");
5824 
5825   return (*MsOrErr)[0];
5826 }
5827 
5828 Expected<std::unique_ptr<Module>>
5829 llvm::getLazyBitcodeModule(MemoryBufferRef Buffer, LLVMContext &Context,
5830                            bool ShouldLazyLoadMetadata, bool IsImporting) {
5831   Expected<BitcodeModule> BM = getSingleModule(Buffer);
5832   if (!BM)
5833     return BM.takeError();
5834 
5835   return BM->getLazyModule(Context, ShouldLazyLoadMetadata, IsImporting);
5836 }
5837 
5838 Expected<std::unique_ptr<Module>> llvm::getOwningLazyBitcodeModule(
5839     std::unique_ptr<MemoryBuffer> &&Buffer, LLVMContext &Context,
5840     bool ShouldLazyLoadMetadata, bool IsImporting) {
5841   auto MOrErr = getLazyBitcodeModule(*Buffer, Context, ShouldLazyLoadMetadata,
5842                                      IsImporting);
5843   if (MOrErr)
5844     (*MOrErr)->setOwnedMemoryBuffer(std::move(Buffer));
5845   return MOrErr;
5846 }
5847 
5848 Expected<std::unique_ptr<Module>>
5849 BitcodeModule::parseModule(LLVMContext &Context) {
5850   return getModuleImpl(Context, true, false, false);
5851   // TODO: Restore the use-lists to the in-memory state when the bitcode was
5852   // written.  We must defer until the Module has been fully materialized.
5853 }
5854 
5855 Expected<std::unique_ptr<Module>> llvm::parseBitcodeFile(MemoryBufferRef Buffer,
5856                                                          LLVMContext &Context) {
5857   Expected<BitcodeModule> BM = getSingleModule(Buffer);
5858   if (!BM)
5859     return BM.takeError();
5860 
5861   return BM->parseModule(Context);
5862 }
5863 
5864 Expected<std::string> llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer) {
5865   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
5866   if (!StreamOrErr)
5867     return StreamOrErr.takeError();
5868 
5869   return readTriple(*StreamOrErr);
5870 }
5871 
5872 Expected<bool> llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer) {
5873   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
5874   if (!StreamOrErr)
5875     return StreamOrErr.takeError();
5876 
5877   return hasObjCCategory(*StreamOrErr);
5878 }
5879 
5880 Expected<std::string> llvm::getBitcodeProducerString(MemoryBufferRef Buffer) {
5881   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
5882   if (!StreamOrErr)
5883     return StreamOrErr.takeError();
5884 
5885   return readIdentificationCode(*StreamOrErr);
5886 }
5887 
5888 Error llvm::readModuleSummaryIndex(MemoryBufferRef Buffer,
5889                                    ModuleSummaryIndex &CombinedIndex,
5890                                    uint64_t ModuleId) {
5891   Expected<BitcodeModule> BM = getSingleModule(Buffer);
5892   if (!BM)
5893     return BM.takeError();
5894 
5895   return BM->readSummary(CombinedIndex, BM->getModuleIdentifier(), ModuleId);
5896 }
5897 
5898 Expected<std::unique_ptr<ModuleSummaryIndex>>
5899 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer) {
5900   Expected<BitcodeModule> BM = getSingleModule(Buffer);
5901   if (!BM)
5902     return BM.takeError();
5903 
5904   return BM->getSummary();
5905 }
5906 
5907 Expected<BitcodeLTOInfo> llvm::getBitcodeLTOInfo(MemoryBufferRef Buffer) {
5908   Expected<BitcodeModule> BM = getSingleModule(Buffer);
5909   if (!BM)
5910     return BM.takeError();
5911 
5912   return BM->getLTOInfo();
5913 }
5914 
5915 Expected<std::unique_ptr<ModuleSummaryIndex>>
5916 llvm::getModuleSummaryIndexForFile(StringRef Path,
5917                                    bool IgnoreEmptyThinLTOIndexFile) {
5918   ErrorOr<std::unique_ptr<MemoryBuffer>> FileOrErr =
5919       MemoryBuffer::getFileOrSTDIN(Path);
5920   if (!FileOrErr)
5921     return errorCodeToError(FileOrErr.getError());
5922   if (IgnoreEmptyThinLTOIndexFile && !(*FileOrErr)->getBufferSize())
5923     return nullptr;
5924   return getModuleSummaryIndex(**FileOrErr);
5925 }
5926