1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #include "llvm/ADT/STLExtras.h"
11 #include "llvm/ADT/SmallString.h"
12 #include "llvm/ADT/SmallVector.h"
13 #include "llvm/ADT/Triple.h"
14 #include "llvm/Bitcode/BitstreamReader.h"
15 #include "llvm/Bitcode/LLVMBitCodes.h"
16 #include "llvm/Bitcode/ReaderWriter.h"
17 #include "llvm/IR/AutoUpgrade.h"
18 #include "llvm/IR/Constants.h"
19 #include "llvm/IR/DebugInfo.h"
20 #include "llvm/IR/DebugInfoMetadata.h"
21 #include "llvm/IR/DerivedTypes.h"
22 #include "llvm/IR/DiagnosticPrinter.h"
23 #include "llvm/IR/GVMaterializer.h"
24 #include "llvm/IR/InlineAsm.h"
25 #include "llvm/IR/IntrinsicInst.h"
26 #include "llvm/IR/LLVMContext.h"
27 #include "llvm/IR/Module.h"
28 #include "llvm/IR/ModuleSummaryIndex.h"
29 #include "llvm/IR/OperandTraits.h"
30 #include "llvm/IR/Operator.h"
31 #include "llvm/IR/ValueHandle.h"
32 #include "llvm/Support/DataStream.h"
33 #include "llvm/Support/ManagedStatic.h"
34 #include "llvm/Support/MathExtras.h"
35 #include "llvm/Support/MemoryBuffer.h"
36 #include "llvm/Support/raw_ostream.h"
37 #include <deque>
38 
39 using namespace llvm;
40 
41 namespace {
42 enum {
43   SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex
44 };
45 
46 class BitcodeReaderValueList {
47   std::vector<WeakVH> ValuePtrs;
48 
49   /// As we resolve forward-referenced constants, we add information about them
50   /// to this vector.  This allows us to resolve them in bulk instead of
51   /// resolving each reference at a time.  See the code in
52   /// ResolveConstantForwardRefs for more information about this.
53   ///
54   /// The key of this vector is the placeholder constant, the value is the slot
55   /// number that holds the resolved value.
56   typedef std::vector<std::pair<Constant*, unsigned> > ResolveConstantsTy;
57   ResolveConstantsTy ResolveConstants;
58   LLVMContext &Context;
59 public:
60   BitcodeReaderValueList(LLVMContext &C) : Context(C) {}
61   ~BitcodeReaderValueList() {
62     assert(ResolveConstants.empty() && "Constants not resolved?");
63   }
64 
65   // vector compatibility methods
66   unsigned size() const { return ValuePtrs.size(); }
67   void resize(unsigned N) { ValuePtrs.resize(N); }
68   void push_back(Value *V) { ValuePtrs.emplace_back(V); }
69 
70   void clear() {
71     assert(ResolveConstants.empty() && "Constants not resolved?");
72     ValuePtrs.clear();
73   }
74 
75   Value *operator[](unsigned i) const {
76     assert(i < ValuePtrs.size());
77     return ValuePtrs[i];
78   }
79 
80   Value *back() const { return ValuePtrs.back(); }
81     void pop_back() { ValuePtrs.pop_back(); }
82   bool empty() const { return ValuePtrs.empty(); }
83   void shrinkTo(unsigned N) {
84     assert(N <= size() && "Invalid shrinkTo request!");
85     ValuePtrs.resize(N);
86   }
87 
88   Constant *getConstantFwdRef(unsigned Idx, Type *Ty);
89   Value *getValueFwdRef(unsigned Idx, Type *Ty);
90 
91   void assignValue(Value *V, unsigned Idx);
92 
93   /// Once all constants are read, this method bulk resolves any forward
94   /// references.
95   void resolveConstantForwardRefs();
96 };
97 
98 class BitcodeReaderMetadataList {
99   unsigned NumFwdRefs;
100   bool AnyFwdRefs;
101   unsigned MinFwdRef;
102   unsigned MaxFwdRef;
103   std::vector<TrackingMDRef> MetadataPtrs;
104 
105   LLVMContext &Context;
106 public:
107   BitcodeReaderMetadataList(LLVMContext &C)
108       : NumFwdRefs(0), AnyFwdRefs(false), Context(C) {}
109 
110   // vector compatibility methods
111   unsigned size() const { return MetadataPtrs.size(); }
112   void resize(unsigned N) { MetadataPtrs.resize(N); }
113   void push_back(Metadata *MD) { MetadataPtrs.emplace_back(MD); }
114   void clear() { MetadataPtrs.clear(); }
115   Metadata *back() const { return MetadataPtrs.back(); }
116   void pop_back() { MetadataPtrs.pop_back(); }
117   bool empty() const { return MetadataPtrs.empty(); }
118 
119   Metadata *operator[](unsigned i) const {
120     assert(i < MetadataPtrs.size());
121     return MetadataPtrs[i];
122   }
123 
124   void shrinkTo(unsigned N) {
125     assert(N <= size() && "Invalid shrinkTo request!");
126     MetadataPtrs.resize(N);
127   }
128 
129   Metadata *getMetadataFwdRef(unsigned Idx);
130   MDNode *getMDNodeFwdRefOrNull(unsigned Idx);
131   void assignValue(Metadata *MD, unsigned Idx);
132   void tryToResolveCycles();
133 };
134 
135 class BitcodeReader : public GVMaterializer {
136   LLVMContext &Context;
137   Module *TheModule = nullptr;
138   std::unique_ptr<MemoryBuffer> Buffer;
139   std::unique_ptr<BitstreamReader> StreamFile;
140   BitstreamCursor Stream;
141   // Next offset to start scanning for lazy parsing of function bodies.
142   uint64_t NextUnreadBit = 0;
143   // Last function offset found in the VST.
144   uint64_t LastFunctionBlockBit = 0;
145   bool SeenValueSymbolTable = false;
146   uint64_t VSTOffset = 0;
147   // Contains an arbitrary and optional string identifying the bitcode producer
148   std::string ProducerIdentification;
149 
150   std::vector<Type*> TypeList;
151   BitcodeReaderValueList ValueList;
152   BitcodeReaderMetadataList MetadataList;
153   std::vector<Comdat *> ComdatList;
154   SmallVector<Instruction *, 64> InstructionList;
155 
156   std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInits;
157   std::vector<std::pair<GlobalAlias*, unsigned> > AliasInits;
158   std::vector<std::pair<Function*, unsigned> > FunctionPrefixes;
159   std::vector<std::pair<Function*, unsigned> > FunctionPrologues;
160   std::vector<std::pair<Function*, unsigned> > FunctionPersonalityFns;
161 
162   SmallVector<Instruction*, 64> InstsWithTBAATag;
163 
164   bool HasSeenOldLoopTags = false;
165 
166   /// The set of attributes by index.  Index zero in the file is for null, and
167   /// is thus not represented here.  As such all indices are off by one.
168   std::vector<AttributeSet> MAttributes;
169 
170   /// The set of attribute groups.
171   std::map<unsigned, AttributeSet> MAttributeGroups;
172 
173   /// While parsing a function body, this is a list of the basic blocks for the
174   /// function.
175   std::vector<BasicBlock*> FunctionBBs;
176 
177   // When reading the module header, this list is populated with functions that
178   // have bodies later in the file.
179   std::vector<Function*> FunctionsWithBodies;
180 
181   // When intrinsic functions are encountered which require upgrading they are
182   // stored here with their replacement function.
183   typedef DenseMap<Function*, Function*> UpgradedIntrinsicMap;
184   UpgradedIntrinsicMap UpgradedIntrinsics;
185 
186   // Map the bitcode's custom MDKind ID to the Module's MDKind ID.
187   DenseMap<unsigned, unsigned> MDKindMap;
188 
189   // Several operations happen after the module header has been read, but
190   // before function bodies are processed. This keeps track of whether
191   // we've done this yet.
192   bool SeenFirstFunctionBody = false;
193 
194   /// When function bodies are initially scanned, this map contains info about
195   /// where to find deferred function body in the stream.
196   DenseMap<Function*, uint64_t> DeferredFunctionInfo;
197 
198   /// When Metadata block is initially scanned when parsing the module, we may
199   /// choose to defer parsing of the metadata. This vector contains info about
200   /// which Metadata blocks are deferred.
201   std::vector<uint64_t> DeferredMetadataInfo;
202 
203   /// These are basic blocks forward-referenced by block addresses.  They are
204   /// inserted lazily into functions when they're loaded.  The basic block ID is
205   /// its index into the vector.
206   DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs;
207   std::deque<Function *> BasicBlockFwdRefQueue;
208 
209   /// Indicates that we are using a new encoding for instruction operands where
210   /// most operands in the current FUNCTION_BLOCK are encoded relative to the
211   /// instruction number, for a more compact encoding.  Some instruction
212   /// operands are not relative to the instruction ID: basic block numbers, and
213   /// types. Once the old style function blocks have been phased out, we would
214   /// not need this flag.
215   bool UseRelativeIDs = false;
216 
217   /// True if all functions will be materialized, negating the need to process
218   /// (e.g.) blockaddress forward references.
219   bool WillMaterializeAllForwardRefs = false;
220 
221   /// True if any Metadata block has been materialized.
222   bool IsMetadataMaterialized = false;
223 
224   bool StripDebugInfo = false;
225 
226   /// Functions that need to be matched with subprograms when upgrading old
227   /// metadata.
228   SmallDenseMap<Function *, DISubprogram *, 16> FunctionsWithSPs;
229 
230   std::vector<std::string> BundleTags;
231 
232 public:
233   std::error_code error(BitcodeError E, const Twine &Message);
234   std::error_code error(BitcodeError E);
235   std::error_code error(const Twine &Message);
236 
237   BitcodeReader(MemoryBuffer *Buffer, LLVMContext &Context);
238   BitcodeReader(LLVMContext &Context);
239   ~BitcodeReader() override { freeState(); }
240 
241   std::error_code materializeForwardReferencedFunctions();
242 
243   void freeState();
244 
245   void releaseBuffer();
246 
247   std::error_code materialize(GlobalValue *GV) override;
248   std::error_code materializeModule() override;
249   std::vector<StructType *> getIdentifiedStructTypes() const override;
250 
251   /// \brief Main interface to parsing a bitcode buffer.
252   /// \returns true if an error occurred.
253   std::error_code parseBitcodeInto(std::unique_ptr<DataStreamer> Streamer,
254                                    Module *M,
255                                    bool ShouldLazyLoadMetadata = false);
256 
257   /// \brief Cheap mechanism to just extract module triple
258   /// \returns true if an error occurred.
259   ErrorOr<std::string> parseTriple();
260 
261   /// Cheap mechanism to just extract the identification block out of bitcode.
262   ErrorOr<std::string> parseIdentificationBlock();
263 
264   static uint64_t decodeSignRotatedValue(uint64_t V);
265 
266   /// Materialize any deferred Metadata block.
267   std::error_code materializeMetadata() override;
268 
269   void setStripDebugInfo() override;
270 
271   /// Save the mapping between the metadata values and the corresponding
272   /// value id that were recorded in the MetadataList during parsing. If
273   /// OnlyTempMD is true, then only record those entries that are still
274   /// temporary metadata. This interface is used when metadata linking is
275   /// performed as a postpass, such as during function importing.
276   void saveMetadataList(DenseMap<const Metadata *, unsigned> &MetadataToIDs,
277                         bool OnlyTempMD) override;
278 
279 private:
280   /// Parse the "IDENTIFICATION_BLOCK_ID" block, populate the
281   // ProducerIdentification data member, and do some basic enforcement on the
282   // "epoch" encoded in the bitcode.
283   std::error_code parseBitcodeVersion();
284 
285   std::vector<StructType *> IdentifiedStructTypes;
286   StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name);
287   StructType *createIdentifiedStructType(LLVMContext &Context);
288 
289   Type *getTypeByID(unsigned ID);
290   Value *getFnValueByID(unsigned ID, Type *Ty) {
291     if (Ty && Ty->isMetadataTy())
292       return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID));
293     return ValueList.getValueFwdRef(ID, Ty);
294   }
295   Metadata *getFnMetadataByID(unsigned ID) {
296     return MetadataList.getMetadataFwdRef(ID);
297   }
298   BasicBlock *getBasicBlock(unsigned ID) const {
299     if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID
300     return FunctionBBs[ID];
301   }
302   AttributeSet getAttributes(unsigned i) const {
303     if (i-1 < MAttributes.size())
304       return MAttributes[i-1];
305     return AttributeSet();
306   }
307 
308   /// Read a value/type pair out of the specified record from slot 'Slot'.
309   /// Increment Slot past the number of slots used in the record. Return true on
310   /// failure.
311   bool getValueTypePair(SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
312                         unsigned InstNum, Value *&ResVal) {
313     if (Slot == Record.size()) return true;
314     unsigned ValNo = (unsigned)Record[Slot++];
315     // Adjust the ValNo, if it was encoded relative to the InstNum.
316     if (UseRelativeIDs)
317       ValNo = InstNum - ValNo;
318     if (ValNo < InstNum) {
319       // If this is not a forward reference, just return the value we already
320       // have.
321       ResVal = getFnValueByID(ValNo, nullptr);
322       return ResVal == nullptr;
323     }
324     if (Slot == Record.size())
325       return true;
326 
327     unsigned TypeNo = (unsigned)Record[Slot++];
328     ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo));
329     return ResVal == nullptr;
330   }
331 
332   /// Read a value out of the specified record from slot 'Slot'. Increment Slot
333   /// past the number of slots used by the value in the record. Return true if
334   /// there is an error.
335   bool popValue(SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
336                 unsigned InstNum, Type *Ty, Value *&ResVal) {
337     if (getValue(Record, Slot, InstNum, Ty, ResVal))
338       return true;
339     // All values currently take a single record slot.
340     ++Slot;
341     return false;
342   }
343 
344   /// Like popValue, but does not increment the Slot number.
345   bool getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot,
346                 unsigned InstNum, Type *Ty, Value *&ResVal) {
347     ResVal = getValue(Record, Slot, InstNum, Ty);
348     return ResVal == nullptr;
349   }
350 
351   /// Version of getValue that returns ResVal directly, or 0 if there is an
352   /// error.
353   Value *getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot,
354                   unsigned InstNum, Type *Ty) {
355     if (Slot == Record.size()) return nullptr;
356     unsigned ValNo = (unsigned)Record[Slot];
357     // Adjust the ValNo, if it was encoded relative to the InstNum.
358     if (UseRelativeIDs)
359       ValNo = InstNum - ValNo;
360     return getFnValueByID(ValNo, Ty);
361   }
362 
363   /// Like getValue, but decodes signed VBRs.
364   Value *getValueSigned(SmallVectorImpl<uint64_t> &Record, unsigned Slot,
365                         unsigned InstNum, Type *Ty) {
366     if (Slot == Record.size()) return nullptr;
367     unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]);
368     // Adjust the ValNo, if it was encoded relative to the InstNum.
369     if (UseRelativeIDs)
370       ValNo = InstNum - ValNo;
371     return getFnValueByID(ValNo, Ty);
372   }
373 
374   /// Converts alignment exponent (i.e. power of two (or zero)) to the
375   /// corresponding alignment to use. If alignment is too large, returns
376   /// a corresponding error code.
377   std::error_code parseAlignmentValue(uint64_t Exponent, unsigned &Alignment);
378   std::error_code parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind);
379   std::error_code parseModule(uint64_t ResumeBit,
380                               bool ShouldLazyLoadMetadata = false);
381   std::error_code parseAttributeBlock();
382   std::error_code parseAttributeGroupBlock();
383   std::error_code parseTypeTable();
384   std::error_code parseTypeTableBody();
385   std::error_code parseOperandBundleTags();
386 
387   ErrorOr<Value *> recordValue(SmallVectorImpl<uint64_t> &Record,
388                                unsigned NameIndex, Triple &TT);
389   std::error_code parseValueSymbolTable(uint64_t Offset = 0);
390   std::error_code parseConstants();
391   std::error_code rememberAndSkipFunctionBodies();
392   std::error_code rememberAndSkipFunctionBody();
393   /// Save the positions of the Metadata blocks and skip parsing the blocks.
394   std::error_code rememberAndSkipMetadata();
395   std::error_code parseFunctionBody(Function *F);
396   std::error_code globalCleanup();
397   std::error_code resolveGlobalAndAliasInits();
398   std::error_code parseMetadata(bool ModuleLevel = false);
399   std::error_code parseMetadataKinds();
400   std::error_code parseMetadataKindRecord(SmallVectorImpl<uint64_t> &Record);
401   std::error_code parseMetadataAttachment(Function &F);
402   ErrorOr<std::string> parseModuleTriple();
403   std::error_code parseUseLists();
404   std::error_code initStream(std::unique_ptr<DataStreamer> Streamer);
405   std::error_code initStreamFromBuffer();
406   std::error_code initLazyStream(std::unique_ptr<DataStreamer> Streamer);
407   std::error_code findFunctionInStream(
408       Function *F,
409       DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator);
410 };
411 
412 /// Class to manage reading and parsing function summary index bitcode
413 /// files/sections.
414 class ModuleSummaryIndexBitcodeReader {
415   DiagnosticHandlerFunction DiagnosticHandler;
416 
417   /// Eventually points to the module index built during parsing.
418   ModuleSummaryIndex *TheIndex = nullptr;
419 
420   std::unique_ptr<MemoryBuffer> Buffer;
421   std::unique_ptr<BitstreamReader> StreamFile;
422   BitstreamCursor Stream;
423 
424   /// \brief Used to indicate whether we are doing lazy parsing of summary data.
425   ///
426   /// If false, the summary section is fully parsed into the index during
427   /// the initial parse. Otherwise, if true, the caller is expected to
428   /// invoke \a readGlobalValueSummary for each summary needed, and the summary
429   /// section is thus parsed lazily.
430   bool IsLazy = false;
431 
432   /// Used to indicate whether caller only wants to check for the presence
433   /// of the global value summary bitcode section. All blocks are skipped,
434   /// but the SeenGlobalValSummary boolean is set.
435   bool CheckGlobalValSummaryPresenceOnly = false;
436 
437   /// Indicates whether we have encountered a global value summary section
438   /// yet during parsing, used when checking if file contains global value
439   /// summary section.
440   bool SeenGlobalValSummary = false;
441 
442   /// Indicates whether we have already parsed the VST, used for error checking.
443   bool SeenValueSymbolTable = false;
444 
445   /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record.
446   /// Used to enable on-demand parsing of the VST.
447   uint64_t VSTOffset = 0;
448 
449   // Map to save ValueId to GUID association that was recorded in the
450   // ValueSymbolTable. It is used after the VST is parsed to convert
451   // call graph edges read from the function summary from referencing
452   // callees by their ValueId to using the GUID instead, which is how
453   // they are recorded in the summary index being built.
454   DenseMap<unsigned, uint64_t> ValueIdToCallGraphGUIDMap;
455 
456   /// Map to save the association between summary offset in the VST to the
457   /// GlobalValueInfo object created when parsing it. Used to access the
458   /// info object when parsing the summary section.
459   DenseMap<uint64_t, GlobalValueInfo *> SummaryOffsetToInfoMap;
460 
461   /// Map populated during module path string table parsing, from the
462   /// module ID to a string reference owned by the index's module
463   /// path string table, used to correlate with combined index
464   /// summary records.
465   DenseMap<uint64_t, StringRef> ModuleIdMap;
466 
467   /// Original source file name recorded in a bitcode record.
468   std::string SourceFileName;
469 
470 public:
471   std::error_code error(BitcodeError E, const Twine &Message);
472   std::error_code error(BitcodeError E);
473   std::error_code error(const Twine &Message);
474 
475   ModuleSummaryIndexBitcodeReader(
476       MemoryBuffer *Buffer, DiagnosticHandlerFunction DiagnosticHandler,
477       bool IsLazy = false, bool CheckGlobalValSummaryPresenceOnly = false);
478   ModuleSummaryIndexBitcodeReader(
479       DiagnosticHandlerFunction DiagnosticHandler, bool IsLazy = false,
480       bool CheckGlobalValSummaryPresenceOnly = false);
481   ~ModuleSummaryIndexBitcodeReader() { freeState(); }
482 
483   void freeState();
484 
485   void releaseBuffer();
486 
487   /// Check if the parser has encountered a summary section.
488   bool foundGlobalValSummary() { return SeenGlobalValSummary; }
489 
490   /// \brief Main interface to parsing a bitcode buffer.
491   /// \returns true if an error occurred.
492   std::error_code parseSummaryIndexInto(std::unique_ptr<DataStreamer> Streamer,
493                                         ModuleSummaryIndex *I);
494 
495   /// \brief Interface for parsing a summary lazily.
496   std::error_code
497   parseGlobalValueSummary(std::unique_ptr<DataStreamer> Streamer,
498                           ModuleSummaryIndex *I, size_t SummaryOffset);
499 
500 private:
501   std::error_code parseModule();
502   std::error_code parseValueSymbolTable(
503       uint64_t Offset,
504       DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap);
505   std::error_code parseEntireSummary();
506   std::error_code parseModuleStringTable();
507   std::error_code initStream(std::unique_ptr<DataStreamer> Streamer);
508   std::error_code initStreamFromBuffer();
509   std::error_code initLazyStream(std::unique_ptr<DataStreamer> Streamer);
510   uint64_t getGUIDFromValueId(unsigned ValueId);
511   GlobalValueInfo *getInfoFromSummaryOffset(uint64_t Offset);
512 };
513 } // end anonymous namespace
514 
515 BitcodeDiagnosticInfo::BitcodeDiagnosticInfo(std::error_code EC,
516                                              DiagnosticSeverity Severity,
517                                              const Twine &Msg)
518     : DiagnosticInfo(DK_Bitcode, Severity), Msg(Msg), EC(EC) {}
519 
520 void BitcodeDiagnosticInfo::print(DiagnosticPrinter &DP) const { DP << Msg; }
521 
522 static std::error_code error(DiagnosticHandlerFunction DiagnosticHandler,
523                              std::error_code EC, const Twine &Message) {
524   BitcodeDiagnosticInfo DI(EC, DS_Error, Message);
525   DiagnosticHandler(DI);
526   return EC;
527 }
528 
529 static std::error_code error(DiagnosticHandlerFunction DiagnosticHandler,
530                              std::error_code EC) {
531   return error(DiagnosticHandler, EC, EC.message());
532 }
533 
534 static std::error_code error(LLVMContext &Context, std::error_code EC,
535                              const Twine &Message) {
536   return error([&](const DiagnosticInfo &DI) { Context.diagnose(DI); }, EC,
537                Message);
538 }
539 
540 static std::error_code error(LLVMContext &Context, std::error_code EC) {
541   return error(Context, EC, EC.message());
542 }
543 
544 static std::error_code error(LLVMContext &Context, const Twine &Message) {
545   return error(Context, make_error_code(BitcodeError::CorruptedBitcode),
546                Message);
547 }
548 
549 std::error_code BitcodeReader::error(BitcodeError E, const Twine &Message) {
550   if (!ProducerIdentification.empty()) {
551     return ::error(Context, make_error_code(E),
552                    Message + " (Producer: '" + ProducerIdentification +
553                        "' Reader: 'LLVM " + LLVM_VERSION_STRING "')");
554   }
555   return ::error(Context, make_error_code(E), Message);
556 }
557 
558 std::error_code BitcodeReader::error(const Twine &Message) {
559   if (!ProducerIdentification.empty()) {
560     return ::error(Context, make_error_code(BitcodeError::CorruptedBitcode),
561                    Message + " (Producer: '" + ProducerIdentification +
562                        "' Reader: 'LLVM " + LLVM_VERSION_STRING "')");
563   }
564   return ::error(Context, make_error_code(BitcodeError::CorruptedBitcode),
565                  Message);
566 }
567 
568 std::error_code BitcodeReader::error(BitcodeError E) {
569   return ::error(Context, make_error_code(E));
570 }
571 
572 BitcodeReader::BitcodeReader(MemoryBuffer *Buffer, LLVMContext &Context)
573     : Context(Context), Buffer(Buffer), ValueList(Context),
574       MetadataList(Context) {}
575 
576 BitcodeReader::BitcodeReader(LLVMContext &Context)
577     : Context(Context), Buffer(nullptr), ValueList(Context),
578       MetadataList(Context) {}
579 
580 std::error_code BitcodeReader::materializeForwardReferencedFunctions() {
581   if (WillMaterializeAllForwardRefs)
582     return std::error_code();
583 
584   // Prevent recursion.
585   WillMaterializeAllForwardRefs = true;
586 
587   while (!BasicBlockFwdRefQueue.empty()) {
588     Function *F = BasicBlockFwdRefQueue.front();
589     BasicBlockFwdRefQueue.pop_front();
590     assert(F && "Expected valid function");
591     if (!BasicBlockFwdRefs.count(F))
592       // Already materialized.
593       continue;
594 
595     // Check for a function that isn't materializable to prevent an infinite
596     // loop.  When parsing a blockaddress stored in a global variable, there
597     // isn't a trivial way to check if a function will have a body without a
598     // linear search through FunctionsWithBodies, so just check it here.
599     if (!F->isMaterializable())
600       return error("Never resolved function from blockaddress");
601 
602     // Try to materialize F.
603     if (std::error_code EC = materialize(F))
604       return EC;
605   }
606   assert(BasicBlockFwdRefs.empty() && "Function missing from queue");
607 
608   // Reset state.
609   WillMaterializeAllForwardRefs = false;
610   return std::error_code();
611 }
612 
613 void BitcodeReader::freeState() {
614   Buffer = nullptr;
615   std::vector<Type*>().swap(TypeList);
616   ValueList.clear();
617   MetadataList.clear();
618   std::vector<Comdat *>().swap(ComdatList);
619 
620   std::vector<AttributeSet>().swap(MAttributes);
621   std::vector<BasicBlock*>().swap(FunctionBBs);
622   std::vector<Function*>().swap(FunctionsWithBodies);
623   DeferredFunctionInfo.clear();
624   DeferredMetadataInfo.clear();
625   MDKindMap.clear();
626 
627   assert(BasicBlockFwdRefs.empty() && "Unresolved blockaddress fwd references");
628   BasicBlockFwdRefQueue.clear();
629 }
630 
631 //===----------------------------------------------------------------------===//
632 //  Helper functions to implement forward reference resolution, etc.
633 //===----------------------------------------------------------------------===//
634 
635 /// Convert a string from a record into an std::string, return true on failure.
636 template <typename StrTy>
637 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx,
638                             StrTy &Result) {
639   if (Idx > Record.size())
640     return true;
641 
642   for (unsigned i = Idx, e = Record.size(); i != e; ++i)
643     Result += (char)Record[i];
644   return false;
645 }
646 
647 static bool hasImplicitComdat(size_t Val) {
648   switch (Val) {
649   default:
650     return false;
651   case 1:  // Old WeakAnyLinkage
652   case 4:  // Old LinkOnceAnyLinkage
653   case 10: // Old WeakODRLinkage
654   case 11: // Old LinkOnceODRLinkage
655     return true;
656   }
657 }
658 
659 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) {
660   switch (Val) {
661   default: // Map unknown/new linkages to external
662   case 0:
663     return GlobalValue::ExternalLinkage;
664   case 2:
665     return GlobalValue::AppendingLinkage;
666   case 3:
667     return GlobalValue::InternalLinkage;
668   case 5:
669     return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage
670   case 6:
671     return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage
672   case 7:
673     return GlobalValue::ExternalWeakLinkage;
674   case 8:
675     return GlobalValue::CommonLinkage;
676   case 9:
677     return GlobalValue::PrivateLinkage;
678   case 12:
679     return GlobalValue::AvailableExternallyLinkage;
680   case 13:
681     return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage
682   case 14:
683     return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage
684   case 15:
685     return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage
686   case 1: // Old value with implicit comdat.
687   case 16:
688     return GlobalValue::WeakAnyLinkage;
689   case 10: // Old value with implicit comdat.
690   case 17:
691     return GlobalValue::WeakODRLinkage;
692   case 4: // Old value with implicit comdat.
693   case 18:
694     return GlobalValue::LinkOnceAnyLinkage;
695   case 11: // Old value with implicit comdat.
696   case 19:
697     return GlobalValue::LinkOnceODRLinkage;
698   }
699 }
700 
701 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) {
702   switch (Val) {
703   default: // Map unknown visibilities to default.
704   case 0: return GlobalValue::DefaultVisibility;
705   case 1: return GlobalValue::HiddenVisibility;
706   case 2: return GlobalValue::ProtectedVisibility;
707   }
708 }
709 
710 static GlobalValue::DLLStorageClassTypes
711 getDecodedDLLStorageClass(unsigned Val) {
712   switch (Val) {
713   default: // Map unknown values to default.
714   case 0: return GlobalValue::DefaultStorageClass;
715   case 1: return GlobalValue::DLLImportStorageClass;
716   case 2: return GlobalValue::DLLExportStorageClass;
717   }
718 }
719 
720 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) {
721   switch (Val) {
722     case 0: return GlobalVariable::NotThreadLocal;
723     default: // Map unknown non-zero value to general dynamic.
724     case 1: return GlobalVariable::GeneralDynamicTLSModel;
725     case 2: return GlobalVariable::LocalDynamicTLSModel;
726     case 3: return GlobalVariable::InitialExecTLSModel;
727     case 4: return GlobalVariable::LocalExecTLSModel;
728   }
729 }
730 
731 static int getDecodedCastOpcode(unsigned Val) {
732   switch (Val) {
733   default: return -1;
734   case bitc::CAST_TRUNC   : return Instruction::Trunc;
735   case bitc::CAST_ZEXT    : return Instruction::ZExt;
736   case bitc::CAST_SEXT    : return Instruction::SExt;
737   case bitc::CAST_FPTOUI  : return Instruction::FPToUI;
738   case bitc::CAST_FPTOSI  : return Instruction::FPToSI;
739   case bitc::CAST_UITOFP  : return Instruction::UIToFP;
740   case bitc::CAST_SITOFP  : return Instruction::SIToFP;
741   case bitc::CAST_FPTRUNC : return Instruction::FPTrunc;
742   case bitc::CAST_FPEXT   : return Instruction::FPExt;
743   case bitc::CAST_PTRTOINT: return Instruction::PtrToInt;
744   case bitc::CAST_INTTOPTR: return Instruction::IntToPtr;
745   case bitc::CAST_BITCAST : return Instruction::BitCast;
746   case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast;
747   }
748 }
749 
750 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) {
751   bool IsFP = Ty->isFPOrFPVectorTy();
752   // BinOps are only valid for int/fp or vector of int/fp types
753   if (!IsFP && !Ty->isIntOrIntVectorTy())
754     return -1;
755 
756   switch (Val) {
757   default:
758     return -1;
759   case bitc::BINOP_ADD:
760     return IsFP ? Instruction::FAdd : Instruction::Add;
761   case bitc::BINOP_SUB:
762     return IsFP ? Instruction::FSub : Instruction::Sub;
763   case bitc::BINOP_MUL:
764     return IsFP ? Instruction::FMul : Instruction::Mul;
765   case bitc::BINOP_UDIV:
766     return IsFP ? -1 : Instruction::UDiv;
767   case bitc::BINOP_SDIV:
768     return IsFP ? Instruction::FDiv : Instruction::SDiv;
769   case bitc::BINOP_UREM:
770     return IsFP ? -1 : Instruction::URem;
771   case bitc::BINOP_SREM:
772     return IsFP ? Instruction::FRem : Instruction::SRem;
773   case bitc::BINOP_SHL:
774     return IsFP ? -1 : Instruction::Shl;
775   case bitc::BINOP_LSHR:
776     return IsFP ? -1 : Instruction::LShr;
777   case bitc::BINOP_ASHR:
778     return IsFP ? -1 : Instruction::AShr;
779   case bitc::BINOP_AND:
780     return IsFP ? -1 : Instruction::And;
781   case bitc::BINOP_OR:
782     return IsFP ? -1 : Instruction::Or;
783   case bitc::BINOP_XOR:
784     return IsFP ? -1 : Instruction::Xor;
785   }
786 }
787 
788 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) {
789   switch (Val) {
790   default: return AtomicRMWInst::BAD_BINOP;
791   case bitc::RMW_XCHG: return AtomicRMWInst::Xchg;
792   case bitc::RMW_ADD: return AtomicRMWInst::Add;
793   case bitc::RMW_SUB: return AtomicRMWInst::Sub;
794   case bitc::RMW_AND: return AtomicRMWInst::And;
795   case bitc::RMW_NAND: return AtomicRMWInst::Nand;
796   case bitc::RMW_OR: return AtomicRMWInst::Or;
797   case bitc::RMW_XOR: return AtomicRMWInst::Xor;
798   case bitc::RMW_MAX: return AtomicRMWInst::Max;
799   case bitc::RMW_MIN: return AtomicRMWInst::Min;
800   case bitc::RMW_UMAX: return AtomicRMWInst::UMax;
801   case bitc::RMW_UMIN: return AtomicRMWInst::UMin;
802   }
803 }
804 
805 static AtomicOrdering getDecodedOrdering(unsigned Val) {
806   switch (Val) {
807   case bitc::ORDERING_NOTATOMIC: return NotAtomic;
808   case bitc::ORDERING_UNORDERED: return Unordered;
809   case bitc::ORDERING_MONOTONIC: return Monotonic;
810   case bitc::ORDERING_ACQUIRE: return Acquire;
811   case bitc::ORDERING_RELEASE: return Release;
812   case bitc::ORDERING_ACQREL: return AcquireRelease;
813   default: // Map unknown orderings to sequentially-consistent.
814   case bitc::ORDERING_SEQCST: return SequentiallyConsistent;
815   }
816 }
817 
818 static SynchronizationScope getDecodedSynchScope(unsigned Val) {
819   switch (Val) {
820   case bitc::SYNCHSCOPE_SINGLETHREAD: return SingleThread;
821   default: // Map unknown scopes to cross-thread.
822   case bitc::SYNCHSCOPE_CROSSTHREAD: return CrossThread;
823   }
824 }
825 
826 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) {
827   switch (Val) {
828   default: // Map unknown selection kinds to any.
829   case bitc::COMDAT_SELECTION_KIND_ANY:
830     return Comdat::Any;
831   case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH:
832     return Comdat::ExactMatch;
833   case bitc::COMDAT_SELECTION_KIND_LARGEST:
834     return Comdat::Largest;
835   case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES:
836     return Comdat::NoDuplicates;
837   case bitc::COMDAT_SELECTION_KIND_SAME_SIZE:
838     return Comdat::SameSize;
839   }
840 }
841 
842 static FastMathFlags getDecodedFastMathFlags(unsigned Val) {
843   FastMathFlags FMF;
844   if (0 != (Val & FastMathFlags::UnsafeAlgebra))
845     FMF.setUnsafeAlgebra();
846   if (0 != (Val & FastMathFlags::NoNaNs))
847     FMF.setNoNaNs();
848   if (0 != (Val & FastMathFlags::NoInfs))
849     FMF.setNoInfs();
850   if (0 != (Val & FastMathFlags::NoSignedZeros))
851     FMF.setNoSignedZeros();
852   if (0 != (Val & FastMathFlags::AllowReciprocal))
853     FMF.setAllowReciprocal();
854   return FMF;
855 }
856 
857 static void upgradeDLLImportExportLinkage(llvm::GlobalValue *GV, unsigned Val) {
858   switch (Val) {
859   case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break;
860   case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break;
861   }
862 }
863 
864 namespace llvm {
865 namespace {
866 /// \brief A class for maintaining the slot number definition
867 /// as a placeholder for the actual definition for forward constants defs.
868 class ConstantPlaceHolder : public ConstantExpr {
869   void operator=(const ConstantPlaceHolder &) = delete;
870 
871 public:
872   // allocate space for exactly one operand
873   void *operator new(size_t s) { return User::operator new(s, 1); }
874   explicit ConstantPlaceHolder(Type *Ty, LLVMContext &Context)
875       : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) {
876     Op<0>() = UndefValue::get(Type::getInt32Ty(Context));
877   }
878 
879   /// \brief Methods to support type inquiry through isa, cast, and dyn_cast.
880   static bool classof(const Value *V) {
881     return isa<ConstantExpr>(V) &&
882            cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1;
883   }
884 
885   /// Provide fast operand accessors
886   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
887 };
888 } // end anonymous namespace
889 
890 // FIXME: can we inherit this from ConstantExpr?
891 template <>
892 struct OperandTraits<ConstantPlaceHolder> :
893   public FixedNumOperandTraits<ConstantPlaceHolder, 1> {
894 };
895 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantPlaceHolder, Value)
896 } // end namespace llvm
897 
898 void BitcodeReaderValueList::assignValue(Value *V, unsigned Idx) {
899   if (Idx == size()) {
900     push_back(V);
901     return;
902   }
903 
904   if (Idx >= size())
905     resize(Idx+1);
906 
907   WeakVH &OldV = ValuePtrs[Idx];
908   if (!OldV) {
909     OldV = V;
910     return;
911   }
912 
913   // Handle constants and non-constants (e.g. instrs) differently for
914   // efficiency.
915   if (Constant *PHC = dyn_cast<Constant>(&*OldV)) {
916     ResolveConstants.push_back(std::make_pair(PHC, Idx));
917     OldV = V;
918   } else {
919     // If there was a forward reference to this value, replace it.
920     Value *PrevVal = OldV;
921     OldV->replaceAllUsesWith(V);
922     delete PrevVal;
923   }
924 }
925 
926 Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx,
927                                                     Type *Ty) {
928   if (Idx >= size())
929     resize(Idx + 1);
930 
931   if (Value *V = ValuePtrs[Idx]) {
932     if (Ty != V->getType())
933       report_fatal_error("Type mismatch in constant table!");
934     return cast<Constant>(V);
935   }
936 
937   // Create and return a placeholder, which will later be RAUW'd.
938   Constant *C = new ConstantPlaceHolder(Ty, Context);
939   ValuePtrs[Idx] = C;
940   return C;
941 }
942 
943 Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, Type *Ty) {
944   // Bail out for a clearly invalid value. This would make us call resize(0)
945   if (Idx == UINT_MAX)
946     return nullptr;
947 
948   if (Idx >= size())
949     resize(Idx + 1);
950 
951   if (Value *V = ValuePtrs[Idx]) {
952     // If the types don't match, it's invalid.
953     if (Ty && Ty != V->getType())
954       return nullptr;
955     return V;
956   }
957 
958   // No type specified, must be invalid reference.
959   if (!Ty) return nullptr;
960 
961   // Create and return a placeholder, which will later be RAUW'd.
962   Value *V = new Argument(Ty);
963   ValuePtrs[Idx] = V;
964   return V;
965 }
966 
967 /// Once all constants are read, this method bulk resolves any forward
968 /// references.  The idea behind this is that we sometimes get constants (such
969 /// as large arrays) which reference *many* forward ref constants.  Replacing
970 /// each of these causes a lot of thrashing when building/reuniquing the
971 /// constant.  Instead of doing this, we look at all the uses and rewrite all
972 /// the place holders at once for any constant that uses a placeholder.
973 void BitcodeReaderValueList::resolveConstantForwardRefs() {
974   // Sort the values by-pointer so that they are efficient to look up with a
975   // binary search.
976   std::sort(ResolveConstants.begin(), ResolveConstants.end());
977 
978   SmallVector<Constant*, 64> NewOps;
979 
980   while (!ResolveConstants.empty()) {
981     Value *RealVal = operator[](ResolveConstants.back().second);
982     Constant *Placeholder = ResolveConstants.back().first;
983     ResolveConstants.pop_back();
984 
985     // Loop over all users of the placeholder, updating them to reference the
986     // new value.  If they reference more than one placeholder, update them all
987     // at once.
988     while (!Placeholder->use_empty()) {
989       auto UI = Placeholder->user_begin();
990       User *U = *UI;
991 
992       // If the using object isn't uniqued, just update the operands.  This
993       // handles instructions and initializers for global variables.
994       if (!isa<Constant>(U) || isa<GlobalValue>(U)) {
995         UI.getUse().set(RealVal);
996         continue;
997       }
998 
999       // Otherwise, we have a constant that uses the placeholder.  Replace that
1000       // constant with a new constant that has *all* placeholder uses updated.
1001       Constant *UserC = cast<Constant>(U);
1002       for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end();
1003            I != E; ++I) {
1004         Value *NewOp;
1005         if (!isa<ConstantPlaceHolder>(*I)) {
1006           // Not a placeholder reference.
1007           NewOp = *I;
1008         } else if (*I == Placeholder) {
1009           // Common case is that it just references this one placeholder.
1010           NewOp = RealVal;
1011         } else {
1012           // Otherwise, look up the placeholder in ResolveConstants.
1013           ResolveConstantsTy::iterator It =
1014             std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(),
1015                              std::pair<Constant*, unsigned>(cast<Constant>(*I),
1016                                                             0));
1017           assert(It != ResolveConstants.end() && It->first == *I);
1018           NewOp = operator[](It->second);
1019         }
1020 
1021         NewOps.push_back(cast<Constant>(NewOp));
1022       }
1023 
1024       // Make the new constant.
1025       Constant *NewC;
1026       if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) {
1027         NewC = ConstantArray::get(UserCA->getType(), NewOps);
1028       } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) {
1029         NewC = ConstantStruct::get(UserCS->getType(), NewOps);
1030       } else if (isa<ConstantVector>(UserC)) {
1031         NewC = ConstantVector::get(NewOps);
1032       } else {
1033         assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr.");
1034         NewC = cast<ConstantExpr>(UserC)->getWithOperands(NewOps);
1035       }
1036 
1037       UserC->replaceAllUsesWith(NewC);
1038       UserC->destroyConstant();
1039       NewOps.clear();
1040     }
1041 
1042     // Update all ValueHandles, they should be the only users at this point.
1043     Placeholder->replaceAllUsesWith(RealVal);
1044     delete Placeholder;
1045   }
1046 }
1047 
1048 void BitcodeReaderMetadataList::assignValue(Metadata *MD, unsigned Idx) {
1049   if (Idx == size()) {
1050     push_back(MD);
1051     return;
1052   }
1053 
1054   if (Idx >= size())
1055     resize(Idx+1);
1056 
1057   TrackingMDRef &OldMD = MetadataPtrs[Idx];
1058   if (!OldMD) {
1059     OldMD.reset(MD);
1060     return;
1061   }
1062 
1063   // If there was a forward reference to this value, replace it.
1064   TempMDTuple PrevMD(cast<MDTuple>(OldMD.get()));
1065   PrevMD->replaceAllUsesWith(MD);
1066   --NumFwdRefs;
1067 }
1068 
1069 Metadata *BitcodeReaderMetadataList::getMetadataFwdRef(unsigned Idx) {
1070   if (Idx >= size())
1071     resize(Idx + 1);
1072 
1073   if (Metadata *MD = MetadataPtrs[Idx])
1074     return MD;
1075 
1076   // Track forward refs to be resolved later.
1077   if (AnyFwdRefs) {
1078     MinFwdRef = std::min(MinFwdRef, Idx);
1079     MaxFwdRef = std::max(MaxFwdRef, Idx);
1080   } else {
1081     AnyFwdRefs = true;
1082     MinFwdRef = MaxFwdRef = Idx;
1083   }
1084   ++NumFwdRefs;
1085 
1086   // Create and return a placeholder, which will later be RAUW'd.
1087   Metadata *MD = MDNode::getTemporary(Context, None).release();
1088   MetadataPtrs[Idx].reset(MD);
1089   return MD;
1090 }
1091 
1092 MDNode *BitcodeReaderMetadataList::getMDNodeFwdRefOrNull(unsigned Idx) {
1093   return dyn_cast_or_null<MDNode>(getMetadataFwdRef(Idx));
1094 }
1095 
1096 void BitcodeReaderMetadataList::tryToResolveCycles() {
1097   if (!AnyFwdRefs)
1098     // Nothing to do.
1099     return;
1100 
1101   if (NumFwdRefs)
1102     // Still forward references... can't resolve cycles.
1103     return;
1104 
1105   // Resolve any cycles.
1106   for (unsigned I = MinFwdRef, E = MaxFwdRef + 1; I != E; ++I) {
1107     auto &MD = MetadataPtrs[I];
1108     auto *N = dyn_cast_or_null<MDNode>(MD);
1109     if (!N)
1110       continue;
1111 
1112     assert(!N->isTemporary() && "Unexpected forward reference");
1113     N->resolveCycles();
1114   }
1115 
1116   // Make sure we return early again until there's another forward ref.
1117   AnyFwdRefs = false;
1118 }
1119 
1120 Type *BitcodeReader::getTypeByID(unsigned ID) {
1121   // The type table size is always specified correctly.
1122   if (ID >= TypeList.size())
1123     return nullptr;
1124 
1125   if (Type *Ty = TypeList[ID])
1126     return Ty;
1127 
1128   // If we have a forward reference, the only possible case is when it is to a
1129   // named struct.  Just create a placeholder for now.
1130   return TypeList[ID] = createIdentifiedStructType(Context);
1131 }
1132 
1133 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context,
1134                                                       StringRef Name) {
1135   auto *Ret = StructType::create(Context, Name);
1136   IdentifiedStructTypes.push_back(Ret);
1137   return Ret;
1138 }
1139 
1140 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) {
1141   auto *Ret = StructType::create(Context);
1142   IdentifiedStructTypes.push_back(Ret);
1143   return Ret;
1144 }
1145 
1146 //===----------------------------------------------------------------------===//
1147 //  Functions for parsing blocks from the bitcode file
1148 //===----------------------------------------------------------------------===//
1149 
1150 
1151 /// \brief This fills an AttrBuilder object with the LLVM attributes that have
1152 /// been decoded from the given integer. This function must stay in sync with
1153 /// 'encodeLLVMAttributesForBitcode'.
1154 static void decodeLLVMAttributesForBitcode(AttrBuilder &B,
1155                                            uint64_t EncodedAttrs) {
1156   // FIXME: Remove in 4.0.
1157 
1158   // The alignment is stored as a 16-bit raw value from bits 31--16.  We shift
1159   // the bits above 31 down by 11 bits.
1160   unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16;
1161   assert((!Alignment || isPowerOf2_32(Alignment)) &&
1162          "Alignment must be a power of two.");
1163 
1164   if (Alignment)
1165     B.addAlignmentAttr(Alignment);
1166   B.addRawValue(((EncodedAttrs & (0xfffffULL << 32)) >> 11) |
1167                 (EncodedAttrs & 0xffff));
1168 }
1169 
1170 std::error_code BitcodeReader::parseAttributeBlock() {
1171   if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID))
1172     return error("Invalid record");
1173 
1174   if (!MAttributes.empty())
1175     return error("Invalid multiple blocks");
1176 
1177   SmallVector<uint64_t, 64> Record;
1178 
1179   SmallVector<AttributeSet, 8> Attrs;
1180 
1181   // Read all the records.
1182   while (1) {
1183     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1184 
1185     switch (Entry.Kind) {
1186     case BitstreamEntry::SubBlock: // Handled for us already.
1187     case BitstreamEntry::Error:
1188       return error("Malformed block");
1189     case BitstreamEntry::EndBlock:
1190       return std::error_code();
1191     case BitstreamEntry::Record:
1192       // The interesting case.
1193       break;
1194     }
1195 
1196     // Read a record.
1197     Record.clear();
1198     switch (Stream.readRecord(Entry.ID, Record)) {
1199     default:  // Default behavior: ignore.
1200       break;
1201     case bitc::PARAMATTR_CODE_ENTRY_OLD: { // ENTRY: [paramidx0, attr0, ...]
1202       // FIXME: Remove in 4.0.
1203       if (Record.size() & 1)
1204         return error("Invalid record");
1205 
1206       for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
1207         AttrBuilder B;
1208         decodeLLVMAttributesForBitcode(B, Record[i+1]);
1209         Attrs.push_back(AttributeSet::get(Context, Record[i], B));
1210       }
1211 
1212       MAttributes.push_back(AttributeSet::get(Context, Attrs));
1213       Attrs.clear();
1214       break;
1215     }
1216     case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [attrgrp0, attrgrp1, ...]
1217       for (unsigned i = 0, e = Record.size(); i != e; ++i)
1218         Attrs.push_back(MAttributeGroups[Record[i]]);
1219 
1220       MAttributes.push_back(AttributeSet::get(Context, Attrs));
1221       Attrs.clear();
1222       break;
1223     }
1224     }
1225   }
1226 }
1227 
1228 // Returns Attribute::None on unrecognized codes.
1229 static Attribute::AttrKind getAttrFromCode(uint64_t Code) {
1230   switch (Code) {
1231   default:
1232     return Attribute::None;
1233   case bitc::ATTR_KIND_ALIGNMENT:
1234     return Attribute::Alignment;
1235   case bitc::ATTR_KIND_ALWAYS_INLINE:
1236     return Attribute::AlwaysInline;
1237   case bitc::ATTR_KIND_ARGMEMONLY:
1238     return Attribute::ArgMemOnly;
1239   case bitc::ATTR_KIND_BUILTIN:
1240     return Attribute::Builtin;
1241   case bitc::ATTR_KIND_BY_VAL:
1242     return Attribute::ByVal;
1243   case bitc::ATTR_KIND_IN_ALLOCA:
1244     return Attribute::InAlloca;
1245   case bitc::ATTR_KIND_COLD:
1246     return Attribute::Cold;
1247   case bitc::ATTR_KIND_CONVERGENT:
1248     return Attribute::Convergent;
1249   case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY:
1250     return Attribute::InaccessibleMemOnly;
1251   case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY:
1252     return Attribute::InaccessibleMemOrArgMemOnly;
1253   case bitc::ATTR_KIND_INLINE_HINT:
1254     return Attribute::InlineHint;
1255   case bitc::ATTR_KIND_IN_REG:
1256     return Attribute::InReg;
1257   case bitc::ATTR_KIND_JUMP_TABLE:
1258     return Attribute::JumpTable;
1259   case bitc::ATTR_KIND_MIN_SIZE:
1260     return Attribute::MinSize;
1261   case bitc::ATTR_KIND_NAKED:
1262     return Attribute::Naked;
1263   case bitc::ATTR_KIND_NEST:
1264     return Attribute::Nest;
1265   case bitc::ATTR_KIND_NO_ALIAS:
1266     return Attribute::NoAlias;
1267   case bitc::ATTR_KIND_NO_BUILTIN:
1268     return Attribute::NoBuiltin;
1269   case bitc::ATTR_KIND_NO_CAPTURE:
1270     return Attribute::NoCapture;
1271   case bitc::ATTR_KIND_NO_DUPLICATE:
1272     return Attribute::NoDuplicate;
1273   case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT:
1274     return Attribute::NoImplicitFloat;
1275   case bitc::ATTR_KIND_NO_INLINE:
1276     return Attribute::NoInline;
1277   case bitc::ATTR_KIND_NO_RECURSE:
1278     return Attribute::NoRecurse;
1279   case bitc::ATTR_KIND_NON_LAZY_BIND:
1280     return Attribute::NonLazyBind;
1281   case bitc::ATTR_KIND_NON_NULL:
1282     return Attribute::NonNull;
1283   case bitc::ATTR_KIND_DEREFERENCEABLE:
1284     return Attribute::Dereferenceable;
1285   case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL:
1286     return Attribute::DereferenceableOrNull;
1287   case bitc::ATTR_KIND_NO_RED_ZONE:
1288     return Attribute::NoRedZone;
1289   case bitc::ATTR_KIND_NO_RETURN:
1290     return Attribute::NoReturn;
1291   case bitc::ATTR_KIND_NO_UNWIND:
1292     return Attribute::NoUnwind;
1293   case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE:
1294     return Attribute::OptimizeForSize;
1295   case bitc::ATTR_KIND_OPTIMIZE_NONE:
1296     return Attribute::OptimizeNone;
1297   case bitc::ATTR_KIND_READ_NONE:
1298     return Attribute::ReadNone;
1299   case bitc::ATTR_KIND_READ_ONLY:
1300     return Attribute::ReadOnly;
1301   case bitc::ATTR_KIND_RETURNED:
1302     return Attribute::Returned;
1303   case bitc::ATTR_KIND_RETURNS_TWICE:
1304     return Attribute::ReturnsTwice;
1305   case bitc::ATTR_KIND_S_EXT:
1306     return Attribute::SExt;
1307   case bitc::ATTR_KIND_STACK_ALIGNMENT:
1308     return Attribute::StackAlignment;
1309   case bitc::ATTR_KIND_STACK_PROTECT:
1310     return Attribute::StackProtect;
1311   case bitc::ATTR_KIND_STACK_PROTECT_REQ:
1312     return Attribute::StackProtectReq;
1313   case bitc::ATTR_KIND_STACK_PROTECT_STRONG:
1314     return Attribute::StackProtectStrong;
1315   case bitc::ATTR_KIND_SAFESTACK:
1316     return Attribute::SafeStack;
1317   case bitc::ATTR_KIND_STRUCT_RET:
1318     return Attribute::StructRet;
1319   case bitc::ATTR_KIND_SANITIZE_ADDRESS:
1320     return Attribute::SanitizeAddress;
1321   case bitc::ATTR_KIND_SANITIZE_THREAD:
1322     return Attribute::SanitizeThread;
1323   case bitc::ATTR_KIND_SANITIZE_MEMORY:
1324     return Attribute::SanitizeMemory;
1325   case bitc::ATTR_KIND_UW_TABLE:
1326     return Attribute::UWTable;
1327   case bitc::ATTR_KIND_Z_EXT:
1328     return Attribute::ZExt;
1329   }
1330 }
1331 
1332 std::error_code BitcodeReader::parseAlignmentValue(uint64_t Exponent,
1333                                                    unsigned &Alignment) {
1334   // Note: Alignment in bitcode files is incremented by 1, so that zero
1335   // can be used for default alignment.
1336   if (Exponent > Value::MaxAlignmentExponent + 1)
1337     return error("Invalid alignment value");
1338   Alignment = (1 << static_cast<unsigned>(Exponent)) >> 1;
1339   return std::error_code();
1340 }
1341 
1342 std::error_code BitcodeReader::parseAttrKind(uint64_t Code,
1343                                              Attribute::AttrKind *Kind) {
1344   *Kind = getAttrFromCode(Code);
1345   if (*Kind == Attribute::None)
1346     return error(BitcodeError::CorruptedBitcode,
1347                  "Unknown attribute kind (" + Twine(Code) + ")");
1348   return std::error_code();
1349 }
1350 
1351 std::error_code BitcodeReader::parseAttributeGroupBlock() {
1352   if (Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID))
1353     return error("Invalid record");
1354 
1355   if (!MAttributeGroups.empty())
1356     return error("Invalid multiple blocks");
1357 
1358   SmallVector<uint64_t, 64> Record;
1359 
1360   // Read all the records.
1361   while (1) {
1362     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1363 
1364     switch (Entry.Kind) {
1365     case BitstreamEntry::SubBlock: // Handled for us already.
1366     case BitstreamEntry::Error:
1367       return error("Malformed block");
1368     case BitstreamEntry::EndBlock:
1369       return std::error_code();
1370     case BitstreamEntry::Record:
1371       // The interesting case.
1372       break;
1373     }
1374 
1375     // Read a record.
1376     Record.clear();
1377     switch (Stream.readRecord(Entry.ID, Record)) {
1378     default:  // Default behavior: ignore.
1379       break;
1380     case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...]
1381       if (Record.size() < 3)
1382         return error("Invalid record");
1383 
1384       uint64_t GrpID = Record[0];
1385       uint64_t Idx = Record[1]; // Index of the object this attribute refers to.
1386 
1387       AttrBuilder B;
1388       for (unsigned i = 2, e = Record.size(); i != e; ++i) {
1389         if (Record[i] == 0) {        // Enum attribute
1390           Attribute::AttrKind Kind;
1391           if (std::error_code EC = parseAttrKind(Record[++i], &Kind))
1392             return EC;
1393 
1394           B.addAttribute(Kind);
1395         } else if (Record[i] == 1) { // Integer attribute
1396           Attribute::AttrKind Kind;
1397           if (std::error_code EC = parseAttrKind(Record[++i], &Kind))
1398             return EC;
1399           if (Kind == Attribute::Alignment)
1400             B.addAlignmentAttr(Record[++i]);
1401           else if (Kind == Attribute::StackAlignment)
1402             B.addStackAlignmentAttr(Record[++i]);
1403           else if (Kind == Attribute::Dereferenceable)
1404             B.addDereferenceableAttr(Record[++i]);
1405           else if (Kind == Attribute::DereferenceableOrNull)
1406             B.addDereferenceableOrNullAttr(Record[++i]);
1407         } else {                     // String attribute
1408           assert((Record[i] == 3 || Record[i] == 4) &&
1409                  "Invalid attribute group entry");
1410           bool HasValue = (Record[i++] == 4);
1411           SmallString<64> KindStr;
1412           SmallString<64> ValStr;
1413 
1414           while (Record[i] != 0 && i != e)
1415             KindStr += Record[i++];
1416           assert(Record[i] == 0 && "Kind string not null terminated");
1417 
1418           if (HasValue) {
1419             // Has a value associated with it.
1420             ++i; // Skip the '0' that terminates the "kind" string.
1421             while (Record[i] != 0 && i != e)
1422               ValStr += Record[i++];
1423             assert(Record[i] == 0 && "Value string not null terminated");
1424           }
1425 
1426           B.addAttribute(KindStr.str(), ValStr.str());
1427         }
1428       }
1429 
1430       MAttributeGroups[GrpID] = AttributeSet::get(Context, Idx, B);
1431       break;
1432     }
1433     }
1434   }
1435 }
1436 
1437 std::error_code BitcodeReader::parseTypeTable() {
1438   if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW))
1439     return error("Invalid record");
1440 
1441   return parseTypeTableBody();
1442 }
1443 
1444 std::error_code BitcodeReader::parseTypeTableBody() {
1445   if (!TypeList.empty())
1446     return error("Invalid multiple blocks");
1447 
1448   SmallVector<uint64_t, 64> Record;
1449   unsigned NumRecords = 0;
1450 
1451   SmallString<64> TypeName;
1452 
1453   // Read all the records for this type table.
1454   while (1) {
1455     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1456 
1457     switch (Entry.Kind) {
1458     case BitstreamEntry::SubBlock: // Handled for us already.
1459     case BitstreamEntry::Error:
1460       return error("Malformed block");
1461     case BitstreamEntry::EndBlock:
1462       if (NumRecords != TypeList.size())
1463         return error("Malformed block");
1464       return std::error_code();
1465     case BitstreamEntry::Record:
1466       // The interesting case.
1467       break;
1468     }
1469 
1470     // Read a record.
1471     Record.clear();
1472     Type *ResultTy = nullptr;
1473     switch (Stream.readRecord(Entry.ID, Record)) {
1474     default:
1475       return error("Invalid value");
1476     case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
1477       // TYPE_CODE_NUMENTRY contains a count of the number of types in the
1478       // type list.  This allows us to reserve space.
1479       if (Record.size() < 1)
1480         return error("Invalid record");
1481       TypeList.resize(Record[0]);
1482       continue;
1483     case bitc::TYPE_CODE_VOID:      // VOID
1484       ResultTy = Type::getVoidTy(Context);
1485       break;
1486     case bitc::TYPE_CODE_HALF:     // HALF
1487       ResultTy = Type::getHalfTy(Context);
1488       break;
1489     case bitc::TYPE_CODE_FLOAT:     // FLOAT
1490       ResultTy = Type::getFloatTy(Context);
1491       break;
1492     case bitc::TYPE_CODE_DOUBLE:    // DOUBLE
1493       ResultTy = Type::getDoubleTy(Context);
1494       break;
1495     case bitc::TYPE_CODE_X86_FP80:  // X86_FP80
1496       ResultTy = Type::getX86_FP80Ty(Context);
1497       break;
1498     case bitc::TYPE_CODE_FP128:     // FP128
1499       ResultTy = Type::getFP128Ty(Context);
1500       break;
1501     case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
1502       ResultTy = Type::getPPC_FP128Ty(Context);
1503       break;
1504     case bitc::TYPE_CODE_LABEL:     // LABEL
1505       ResultTy = Type::getLabelTy(Context);
1506       break;
1507     case bitc::TYPE_CODE_METADATA:  // METADATA
1508       ResultTy = Type::getMetadataTy(Context);
1509       break;
1510     case bitc::TYPE_CODE_X86_MMX:   // X86_MMX
1511       ResultTy = Type::getX86_MMXTy(Context);
1512       break;
1513     case bitc::TYPE_CODE_TOKEN:     // TOKEN
1514       ResultTy = Type::getTokenTy(Context);
1515       break;
1516     case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width]
1517       if (Record.size() < 1)
1518         return error("Invalid record");
1519 
1520       uint64_t NumBits = Record[0];
1521       if (NumBits < IntegerType::MIN_INT_BITS ||
1522           NumBits > IntegerType::MAX_INT_BITS)
1523         return error("Bitwidth for integer type out of range");
1524       ResultTy = IntegerType::get(Context, NumBits);
1525       break;
1526     }
1527     case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
1528                                     //          [pointee type, address space]
1529       if (Record.size() < 1)
1530         return error("Invalid record");
1531       unsigned AddressSpace = 0;
1532       if (Record.size() == 2)
1533         AddressSpace = Record[1];
1534       ResultTy = getTypeByID(Record[0]);
1535       if (!ResultTy ||
1536           !PointerType::isValidElementType(ResultTy))
1537         return error("Invalid type");
1538       ResultTy = PointerType::get(ResultTy, AddressSpace);
1539       break;
1540     }
1541     case bitc::TYPE_CODE_FUNCTION_OLD: {
1542       // FIXME: attrid is dead, remove it in LLVM 4.0
1543       // FUNCTION: [vararg, attrid, retty, paramty x N]
1544       if (Record.size() < 3)
1545         return error("Invalid record");
1546       SmallVector<Type*, 8> ArgTys;
1547       for (unsigned i = 3, e = Record.size(); i != e; ++i) {
1548         if (Type *T = getTypeByID(Record[i]))
1549           ArgTys.push_back(T);
1550         else
1551           break;
1552       }
1553 
1554       ResultTy = getTypeByID(Record[2]);
1555       if (!ResultTy || ArgTys.size() < Record.size()-3)
1556         return error("Invalid type");
1557 
1558       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
1559       break;
1560     }
1561     case bitc::TYPE_CODE_FUNCTION: {
1562       // FUNCTION: [vararg, retty, paramty x N]
1563       if (Record.size() < 2)
1564         return error("Invalid record");
1565       SmallVector<Type*, 8> ArgTys;
1566       for (unsigned i = 2, e = Record.size(); i != e; ++i) {
1567         if (Type *T = getTypeByID(Record[i])) {
1568           if (!FunctionType::isValidArgumentType(T))
1569             return error("Invalid function argument type");
1570           ArgTys.push_back(T);
1571         }
1572         else
1573           break;
1574       }
1575 
1576       ResultTy = getTypeByID(Record[1]);
1577       if (!ResultTy || ArgTys.size() < Record.size()-2)
1578         return error("Invalid type");
1579 
1580       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
1581       break;
1582     }
1583     case bitc::TYPE_CODE_STRUCT_ANON: {  // STRUCT: [ispacked, eltty x N]
1584       if (Record.size() < 1)
1585         return error("Invalid record");
1586       SmallVector<Type*, 8> EltTys;
1587       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
1588         if (Type *T = getTypeByID(Record[i]))
1589           EltTys.push_back(T);
1590         else
1591           break;
1592       }
1593       if (EltTys.size() != Record.size()-1)
1594         return error("Invalid type");
1595       ResultTy = StructType::get(Context, EltTys, Record[0]);
1596       break;
1597     }
1598     case bitc::TYPE_CODE_STRUCT_NAME:   // STRUCT_NAME: [strchr x N]
1599       if (convertToString(Record, 0, TypeName))
1600         return error("Invalid record");
1601       continue;
1602 
1603     case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N]
1604       if (Record.size() < 1)
1605         return error("Invalid record");
1606 
1607       if (NumRecords >= TypeList.size())
1608         return error("Invalid TYPE table");
1609 
1610       // Check to see if this was forward referenced, if so fill in the temp.
1611       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
1612       if (Res) {
1613         Res->setName(TypeName);
1614         TypeList[NumRecords] = nullptr;
1615       } else  // Otherwise, create a new struct.
1616         Res = createIdentifiedStructType(Context, TypeName);
1617       TypeName.clear();
1618 
1619       SmallVector<Type*, 8> EltTys;
1620       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
1621         if (Type *T = getTypeByID(Record[i]))
1622           EltTys.push_back(T);
1623         else
1624           break;
1625       }
1626       if (EltTys.size() != Record.size()-1)
1627         return error("Invalid record");
1628       Res->setBody(EltTys, Record[0]);
1629       ResultTy = Res;
1630       break;
1631     }
1632     case bitc::TYPE_CODE_OPAQUE: {       // OPAQUE: []
1633       if (Record.size() != 1)
1634         return error("Invalid record");
1635 
1636       if (NumRecords >= TypeList.size())
1637         return error("Invalid TYPE table");
1638 
1639       // Check to see if this was forward referenced, if so fill in the temp.
1640       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
1641       if (Res) {
1642         Res->setName(TypeName);
1643         TypeList[NumRecords] = nullptr;
1644       } else  // Otherwise, create a new struct with no body.
1645         Res = createIdentifiedStructType(Context, TypeName);
1646       TypeName.clear();
1647       ResultTy = Res;
1648       break;
1649     }
1650     case bitc::TYPE_CODE_ARRAY:     // ARRAY: [numelts, eltty]
1651       if (Record.size() < 2)
1652         return error("Invalid record");
1653       ResultTy = getTypeByID(Record[1]);
1654       if (!ResultTy || !ArrayType::isValidElementType(ResultTy))
1655         return error("Invalid type");
1656       ResultTy = ArrayType::get(ResultTy, Record[0]);
1657       break;
1658     case bitc::TYPE_CODE_VECTOR:    // VECTOR: [numelts, eltty]
1659       if (Record.size() < 2)
1660         return error("Invalid record");
1661       if (Record[0] == 0)
1662         return error("Invalid vector length");
1663       ResultTy = getTypeByID(Record[1]);
1664       if (!ResultTy || !StructType::isValidElementType(ResultTy))
1665         return error("Invalid type");
1666       ResultTy = VectorType::get(ResultTy, Record[0]);
1667       break;
1668     }
1669 
1670     if (NumRecords >= TypeList.size())
1671       return error("Invalid TYPE table");
1672     if (TypeList[NumRecords])
1673       return error(
1674           "Invalid TYPE table: Only named structs can be forward referenced");
1675     assert(ResultTy && "Didn't read a type?");
1676     TypeList[NumRecords++] = ResultTy;
1677   }
1678 }
1679 
1680 std::error_code BitcodeReader::parseOperandBundleTags() {
1681   if (Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID))
1682     return error("Invalid record");
1683 
1684   if (!BundleTags.empty())
1685     return error("Invalid multiple blocks");
1686 
1687   SmallVector<uint64_t, 64> Record;
1688 
1689   while (1) {
1690     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1691 
1692     switch (Entry.Kind) {
1693     case BitstreamEntry::SubBlock: // Handled for us already.
1694     case BitstreamEntry::Error:
1695       return error("Malformed block");
1696     case BitstreamEntry::EndBlock:
1697       return std::error_code();
1698     case BitstreamEntry::Record:
1699       // The interesting case.
1700       break;
1701     }
1702 
1703     // Tags are implicitly mapped to integers by their order.
1704 
1705     if (Stream.readRecord(Entry.ID, Record) != bitc::OPERAND_BUNDLE_TAG)
1706       return error("Invalid record");
1707 
1708     // OPERAND_BUNDLE_TAG: [strchr x N]
1709     BundleTags.emplace_back();
1710     if (convertToString(Record, 0, BundleTags.back()))
1711       return error("Invalid record");
1712     Record.clear();
1713   }
1714 }
1715 
1716 /// Associate a value with its name from the given index in the provided record.
1717 ErrorOr<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record,
1718                                             unsigned NameIndex, Triple &TT) {
1719   SmallString<128> ValueName;
1720   if (convertToString(Record, NameIndex, ValueName))
1721     return error("Invalid record");
1722   unsigned ValueID = Record[0];
1723   if (ValueID >= ValueList.size() || !ValueList[ValueID])
1724     return error("Invalid record");
1725   Value *V = ValueList[ValueID];
1726 
1727   StringRef NameStr(ValueName.data(), ValueName.size());
1728   if (NameStr.find_first_of(0) != StringRef::npos)
1729     return error("Invalid value name");
1730   V->setName(NameStr);
1731   auto *GO = dyn_cast<GlobalObject>(V);
1732   if (GO) {
1733     if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) {
1734       if (TT.isOSBinFormatMachO())
1735         GO->setComdat(nullptr);
1736       else
1737         GO->setComdat(TheModule->getOrInsertComdat(V->getName()));
1738     }
1739   }
1740   return V;
1741 }
1742 
1743 /// Helper to note and return the current location, and jump to the given
1744 /// offset.
1745 static uint64_t jumpToValueSymbolTable(uint64_t Offset,
1746                                        BitstreamCursor &Stream) {
1747   // Save the current parsing location so we can jump back at the end
1748   // of the VST read.
1749   uint64_t CurrentBit = Stream.GetCurrentBitNo();
1750   Stream.JumpToBit(Offset * 32);
1751 #ifndef NDEBUG
1752   // Do some checking if we are in debug mode.
1753   BitstreamEntry Entry = Stream.advance();
1754   assert(Entry.Kind == BitstreamEntry::SubBlock);
1755   assert(Entry.ID == bitc::VALUE_SYMTAB_BLOCK_ID);
1756 #else
1757   // In NDEBUG mode ignore the output so we don't get an unused variable
1758   // warning.
1759   Stream.advance();
1760 #endif
1761   return CurrentBit;
1762 }
1763 
1764 /// Parse the value symbol table at either the current parsing location or
1765 /// at the given bit offset if provided.
1766 std::error_code BitcodeReader::parseValueSymbolTable(uint64_t Offset) {
1767   uint64_t CurrentBit;
1768   // Pass in the Offset to distinguish between calling for the module-level
1769   // VST (where we want to jump to the VST offset) and the function-level
1770   // VST (where we don't).
1771   if (Offset > 0)
1772     CurrentBit = jumpToValueSymbolTable(Offset, Stream);
1773 
1774   // Compute the delta between the bitcode indices in the VST (the word offset
1775   // to the word-aligned ENTER_SUBBLOCK for the function block, and that
1776   // expected by the lazy reader. The reader's EnterSubBlock expects to have
1777   // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID
1778   // (size BlockIDWidth). Note that we access the stream's AbbrevID width here
1779   // just before entering the VST subblock because: 1) the EnterSubBlock
1780   // changes the AbbrevID width; 2) the VST block is nested within the same
1781   // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same
1782   // AbbrevID width before calling EnterSubBlock; and 3) when we want to
1783   // jump to the FUNCTION_BLOCK using this offset later, we don't want
1784   // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK.
1785   unsigned FuncBitcodeOffsetDelta =
1786       Stream.getAbbrevIDWidth() + bitc::BlockIDWidth;
1787 
1788   if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
1789     return error("Invalid record");
1790 
1791   SmallVector<uint64_t, 64> Record;
1792 
1793   Triple TT(TheModule->getTargetTriple());
1794 
1795   // Read all the records for this value table.
1796   SmallString<128> ValueName;
1797   while (1) {
1798     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1799 
1800     switch (Entry.Kind) {
1801     case BitstreamEntry::SubBlock: // Handled for us already.
1802     case BitstreamEntry::Error:
1803       return error("Malformed block");
1804     case BitstreamEntry::EndBlock:
1805       if (Offset > 0)
1806         Stream.JumpToBit(CurrentBit);
1807       return std::error_code();
1808     case BitstreamEntry::Record:
1809       // The interesting case.
1810       break;
1811     }
1812 
1813     // Read a record.
1814     Record.clear();
1815     switch (Stream.readRecord(Entry.ID, Record)) {
1816     default:  // Default behavior: unknown type.
1817       break;
1818     case bitc::VST_CODE_ENTRY: {  // VST_CODE_ENTRY: [valueid, namechar x N]
1819       ErrorOr<Value *> ValOrErr = recordValue(Record, 1, TT);
1820       if (std::error_code EC = ValOrErr.getError())
1821         return EC;
1822       ValOrErr.get();
1823       break;
1824     }
1825     case bitc::VST_CODE_FNENTRY: {
1826       // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
1827       ErrorOr<Value *> ValOrErr = recordValue(Record, 2, TT);
1828       if (std::error_code EC = ValOrErr.getError())
1829         return EC;
1830       Value *V = ValOrErr.get();
1831 
1832       auto *GO = dyn_cast<GlobalObject>(V);
1833       if (!GO) {
1834         // If this is an alias, need to get the actual Function object
1835         // it aliases, in order to set up the DeferredFunctionInfo entry below.
1836         auto *GA = dyn_cast<GlobalAlias>(V);
1837         if (GA)
1838           GO = GA->getBaseObject();
1839         assert(GO);
1840       }
1841 
1842       uint64_t FuncWordOffset = Record[1];
1843       Function *F = dyn_cast<Function>(GO);
1844       assert(F);
1845       uint64_t FuncBitOffset = FuncWordOffset * 32;
1846       DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta;
1847       // Set the LastFunctionBlockBit to point to the last function block.
1848       // Later when parsing is resumed after function materialization,
1849       // we can simply skip that last function block.
1850       if (FuncBitOffset > LastFunctionBlockBit)
1851         LastFunctionBlockBit = FuncBitOffset;
1852       break;
1853     }
1854     case bitc::VST_CODE_BBENTRY: {
1855       if (convertToString(Record, 1, ValueName))
1856         return error("Invalid record");
1857       BasicBlock *BB = getBasicBlock(Record[0]);
1858       if (!BB)
1859         return error("Invalid record");
1860 
1861       BB->setName(StringRef(ValueName.data(), ValueName.size()));
1862       ValueName.clear();
1863       break;
1864     }
1865     }
1866   }
1867 }
1868 
1869 /// Parse a single METADATA_KIND record, inserting result in MDKindMap.
1870 std::error_code
1871 BitcodeReader::parseMetadataKindRecord(SmallVectorImpl<uint64_t> &Record) {
1872   if (Record.size() < 2)
1873     return error("Invalid record");
1874 
1875   unsigned Kind = Record[0];
1876   SmallString<8> Name(Record.begin() + 1, Record.end());
1877 
1878   unsigned NewKind = TheModule->getMDKindID(Name.str());
1879   if (!MDKindMap.insert(std::make_pair(Kind, NewKind)).second)
1880     return error("Conflicting METADATA_KIND records");
1881   return std::error_code();
1882 }
1883 
1884 static int64_t unrotateSign(uint64_t U) { return U & 1 ? ~(U >> 1) : U >> 1; }
1885 
1886 /// Parse a METADATA_BLOCK. If ModuleLevel is true then we are parsing
1887 /// module level metadata.
1888 std::error_code BitcodeReader::parseMetadata(bool ModuleLevel) {
1889   IsMetadataMaterialized = true;
1890   unsigned NextMetadataNo = MetadataList.size();
1891 
1892   if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID))
1893     return error("Invalid record");
1894 
1895   SmallVector<uint64_t, 64> Record;
1896 
1897   auto getMD = [&](unsigned ID) -> Metadata * {
1898     return MetadataList.getMetadataFwdRef(ID);
1899   };
1900   auto getMDOrNull = [&](unsigned ID) -> Metadata *{
1901     if (ID)
1902       return getMD(ID - 1);
1903     return nullptr;
1904   };
1905   auto getMDString = [&](unsigned ID) -> MDString *{
1906     // This requires that the ID is not really a forward reference.  In
1907     // particular, the MDString must already have been resolved.
1908     return cast_or_null<MDString>(getMDOrNull(ID));
1909   };
1910 
1911 #define GET_OR_DISTINCT(CLASS, DISTINCT, ARGS)                                 \
1912   (DISTINCT ? CLASS::getDistinct ARGS : CLASS::get ARGS)
1913 
1914   // Read all the records.
1915   while (1) {
1916     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1917 
1918     switch (Entry.Kind) {
1919     case BitstreamEntry::SubBlock: // Handled for us already.
1920     case BitstreamEntry::Error:
1921       return error("Malformed block");
1922     case BitstreamEntry::EndBlock:
1923       MetadataList.tryToResolveCycles();
1924       return std::error_code();
1925     case BitstreamEntry::Record:
1926       // The interesting case.
1927       break;
1928     }
1929 
1930     // Read a record.
1931     Record.clear();
1932     unsigned Code = Stream.readRecord(Entry.ID, Record);
1933     bool IsDistinct = false;
1934     switch (Code) {
1935     default:  // Default behavior: ignore.
1936       break;
1937     case bitc::METADATA_NAME: {
1938       // Read name of the named metadata.
1939       SmallString<8> Name(Record.begin(), Record.end());
1940       Record.clear();
1941       Code = Stream.ReadCode();
1942 
1943       unsigned NextBitCode = Stream.readRecord(Code, Record);
1944       if (NextBitCode != bitc::METADATA_NAMED_NODE)
1945         return error("METADATA_NAME not followed by METADATA_NAMED_NODE");
1946 
1947       // Read named metadata elements.
1948       unsigned Size = Record.size();
1949       NamedMDNode *NMD = TheModule->getOrInsertNamedMetadata(Name);
1950       for (unsigned i = 0; i != Size; ++i) {
1951         MDNode *MD = MetadataList.getMDNodeFwdRefOrNull(Record[i]);
1952         if (!MD)
1953           return error("Invalid record");
1954         NMD->addOperand(MD);
1955       }
1956       break;
1957     }
1958     case bitc::METADATA_OLD_FN_NODE: {
1959       // FIXME: Remove in 4.0.
1960       // This is a LocalAsMetadata record, the only type of function-local
1961       // metadata.
1962       if (Record.size() % 2 == 1)
1963         return error("Invalid record");
1964 
1965       // If this isn't a LocalAsMetadata record, we're dropping it.  This used
1966       // to be legal, but there's no upgrade path.
1967       auto dropRecord = [&] {
1968         MetadataList.assignValue(MDNode::get(Context, None), NextMetadataNo++);
1969       };
1970       if (Record.size() != 2) {
1971         dropRecord();
1972         break;
1973       }
1974 
1975       Type *Ty = getTypeByID(Record[0]);
1976       if (Ty->isMetadataTy() || Ty->isVoidTy()) {
1977         dropRecord();
1978         break;
1979       }
1980 
1981       MetadataList.assignValue(
1982           LocalAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)),
1983           NextMetadataNo++);
1984       break;
1985     }
1986     case bitc::METADATA_OLD_NODE: {
1987       // FIXME: Remove in 4.0.
1988       if (Record.size() % 2 == 1)
1989         return error("Invalid record");
1990 
1991       unsigned Size = Record.size();
1992       SmallVector<Metadata *, 8> Elts;
1993       for (unsigned i = 0; i != Size; i += 2) {
1994         Type *Ty = getTypeByID(Record[i]);
1995         if (!Ty)
1996           return error("Invalid record");
1997         if (Ty->isMetadataTy())
1998           Elts.push_back(MetadataList.getMetadataFwdRef(Record[i + 1]));
1999         else if (!Ty->isVoidTy()) {
2000           auto *MD =
2001               ValueAsMetadata::get(ValueList.getValueFwdRef(Record[i + 1], Ty));
2002           assert(isa<ConstantAsMetadata>(MD) &&
2003                  "Expected non-function-local metadata");
2004           Elts.push_back(MD);
2005         } else
2006           Elts.push_back(nullptr);
2007       }
2008       MetadataList.assignValue(MDNode::get(Context, Elts), NextMetadataNo++);
2009       break;
2010     }
2011     case bitc::METADATA_VALUE: {
2012       if (Record.size() != 2)
2013         return error("Invalid record");
2014 
2015       Type *Ty = getTypeByID(Record[0]);
2016       if (Ty->isMetadataTy() || Ty->isVoidTy())
2017         return error("Invalid record");
2018 
2019       MetadataList.assignValue(
2020           ValueAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)),
2021           NextMetadataNo++);
2022       break;
2023     }
2024     case bitc::METADATA_DISTINCT_NODE:
2025       IsDistinct = true;
2026       // fallthrough...
2027     case bitc::METADATA_NODE: {
2028       SmallVector<Metadata *, 8> Elts;
2029       Elts.reserve(Record.size());
2030       for (unsigned ID : Record)
2031         Elts.push_back(ID ? MetadataList.getMetadataFwdRef(ID - 1) : nullptr);
2032       MetadataList.assignValue(IsDistinct ? MDNode::getDistinct(Context, Elts)
2033                                           : MDNode::get(Context, Elts),
2034                                NextMetadataNo++);
2035       break;
2036     }
2037     case bitc::METADATA_LOCATION: {
2038       if (Record.size() != 5)
2039         return error("Invalid record");
2040 
2041       unsigned Line = Record[1];
2042       unsigned Column = Record[2];
2043       MDNode *Scope = MetadataList.getMDNodeFwdRefOrNull(Record[3]);
2044       if (!Scope)
2045         return error("Invalid record");
2046       Metadata *InlinedAt =
2047           Record[4] ? MetadataList.getMetadataFwdRef(Record[4] - 1) : nullptr;
2048       MetadataList.assignValue(
2049           GET_OR_DISTINCT(DILocation, Record[0],
2050                           (Context, Line, Column, Scope, InlinedAt)),
2051           NextMetadataNo++);
2052       break;
2053     }
2054     case bitc::METADATA_GENERIC_DEBUG: {
2055       if (Record.size() < 4)
2056         return error("Invalid record");
2057 
2058       unsigned Tag = Record[1];
2059       unsigned Version = Record[2];
2060 
2061       if (Tag >= 1u << 16 || Version != 0)
2062         return error("Invalid record");
2063 
2064       auto *Header = getMDString(Record[3]);
2065       SmallVector<Metadata *, 8> DwarfOps;
2066       for (unsigned I = 4, E = Record.size(); I != E; ++I)
2067         DwarfOps.push_back(Record[I]
2068                                ? MetadataList.getMetadataFwdRef(Record[I] - 1)
2069                                : nullptr);
2070       MetadataList.assignValue(
2071           GET_OR_DISTINCT(GenericDINode, Record[0],
2072                           (Context, Tag, Header, DwarfOps)),
2073           NextMetadataNo++);
2074       break;
2075     }
2076     case bitc::METADATA_SUBRANGE: {
2077       if (Record.size() != 3)
2078         return error("Invalid record");
2079 
2080       MetadataList.assignValue(
2081           GET_OR_DISTINCT(DISubrange, Record[0],
2082                           (Context, Record[1], unrotateSign(Record[2]))),
2083           NextMetadataNo++);
2084       break;
2085     }
2086     case bitc::METADATA_ENUMERATOR: {
2087       if (Record.size() != 3)
2088         return error("Invalid record");
2089 
2090       MetadataList.assignValue(
2091           GET_OR_DISTINCT(
2092               DIEnumerator, Record[0],
2093               (Context, unrotateSign(Record[1]), getMDString(Record[2]))),
2094           NextMetadataNo++);
2095       break;
2096     }
2097     case bitc::METADATA_BASIC_TYPE: {
2098       if (Record.size() != 6)
2099         return error("Invalid record");
2100 
2101       MetadataList.assignValue(
2102           GET_OR_DISTINCT(DIBasicType, Record[0],
2103                           (Context, Record[1], getMDString(Record[2]),
2104                            Record[3], Record[4], Record[5])),
2105           NextMetadataNo++);
2106       break;
2107     }
2108     case bitc::METADATA_DERIVED_TYPE: {
2109       if (Record.size() != 12)
2110         return error("Invalid record");
2111 
2112       MetadataList.assignValue(
2113           GET_OR_DISTINCT(DIDerivedType, Record[0],
2114                           (Context, Record[1], getMDString(Record[2]),
2115                            getMDOrNull(Record[3]), Record[4],
2116                            getMDOrNull(Record[5]), getMDOrNull(Record[6]),
2117                            Record[7], Record[8], Record[9], Record[10],
2118                            getMDOrNull(Record[11]))),
2119           NextMetadataNo++);
2120       break;
2121     }
2122     case bitc::METADATA_COMPOSITE_TYPE: {
2123       if (Record.size() != 16)
2124         return error("Invalid record");
2125 
2126       MetadataList.assignValue(
2127           GET_OR_DISTINCT(DICompositeType, Record[0],
2128                           (Context, Record[1], getMDString(Record[2]),
2129                            getMDOrNull(Record[3]), Record[4],
2130                            getMDOrNull(Record[5]), getMDOrNull(Record[6]),
2131                            Record[7], Record[8], Record[9], Record[10],
2132                            getMDOrNull(Record[11]), Record[12],
2133                            getMDOrNull(Record[13]), getMDOrNull(Record[14]),
2134                            getMDString(Record[15]))),
2135           NextMetadataNo++);
2136       break;
2137     }
2138     case bitc::METADATA_SUBROUTINE_TYPE: {
2139       if (Record.size() != 3)
2140         return error("Invalid record");
2141 
2142       MetadataList.assignValue(
2143           GET_OR_DISTINCT(DISubroutineType, Record[0],
2144                           (Context, Record[1], getMDOrNull(Record[2]))),
2145           NextMetadataNo++);
2146       break;
2147     }
2148 
2149     case bitc::METADATA_MODULE: {
2150       if (Record.size() != 6)
2151         return error("Invalid record");
2152 
2153       MetadataList.assignValue(
2154           GET_OR_DISTINCT(DIModule, Record[0],
2155                           (Context, getMDOrNull(Record[1]),
2156                            getMDString(Record[2]), getMDString(Record[3]),
2157                            getMDString(Record[4]), getMDString(Record[5]))),
2158           NextMetadataNo++);
2159       break;
2160     }
2161 
2162     case bitc::METADATA_FILE: {
2163       if (Record.size() != 3)
2164         return error("Invalid record");
2165 
2166       MetadataList.assignValue(
2167           GET_OR_DISTINCT(DIFile, Record[0], (Context, getMDString(Record[1]),
2168                                               getMDString(Record[2]))),
2169           NextMetadataNo++);
2170       break;
2171     }
2172     case bitc::METADATA_COMPILE_UNIT: {
2173       if (Record.size() < 14 || Record.size() > 16)
2174         return error("Invalid record");
2175 
2176       // Ignore Record[0], which indicates whether this compile unit is
2177       // distinct.  It's always distinct.
2178       MetadataList.assignValue(
2179           DICompileUnit::getDistinct(
2180               Context, Record[1], getMDOrNull(Record[2]),
2181               getMDString(Record[3]), Record[4], getMDString(Record[5]),
2182               Record[6], getMDString(Record[7]), Record[8],
2183               getMDOrNull(Record[9]), getMDOrNull(Record[10]),
2184               getMDOrNull(Record[11]), getMDOrNull(Record[12]),
2185               getMDOrNull(Record[13]),
2186               Record.size() <= 15 ? nullptr : getMDOrNull(Record[15]),
2187               Record.size() <= 14 ? 0 : Record[14]),
2188           NextMetadataNo++);
2189       break;
2190     }
2191     case bitc::METADATA_SUBPROGRAM: {
2192       if (Record.size() != 18 && Record.size() != 19)
2193         return error("Invalid record");
2194 
2195       bool HasFn = Record.size() == 19;
2196       DISubprogram *SP = GET_OR_DISTINCT(
2197           DISubprogram,
2198           Record[0] || Record[8], // All definitions should be distinct.
2199           (Context, getMDOrNull(Record[1]), getMDString(Record[2]),
2200            getMDString(Record[3]), getMDOrNull(Record[4]), Record[5],
2201            getMDOrNull(Record[6]), Record[7], Record[8], Record[9],
2202            getMDOrNull(Record[10]), Record[11], Record[12], Record[13],
2203            Record[14], getMDOrNull(Record[15 + HasFn]),
2204            getMDOrNull(Record[16 + HasFn]), getMDOrNull(Record[17 + HasFn])));
2205       MetadataList.assignValue(SP, NextMetadataNo++);
2206 
2207       // Upgrade sp->function mapping to function->sp mapping.
2208       if (HasFn && Record[15]) {
2209         if (auto *CMD = dyn_cast<ConstantAsMetadata>(getMDOrNull(Record[15])))
2210           if (auto *F = dyn_cast<Function>(CMD->getValue())) {
2211             if (F->isMaterializable())
2212               // Defer until materialized; unmaterialized functions may not have
2213               // metadata.
2214               FunctionsWithSPs[F] = SP;
2215             else if (!F->empty())
2216               F->setSubprogram(SP);
2217           }
2218       }
2219       break;
2220     }
2221     case bitc::METADATA_LEXICAL_BLOCK: {
2222       if (Record.size() != 5)
2223         return error("Invalid record");
2224 
2225       MetadataList.assignValue(
2226           GET_OR_DISTINCT(DILexicalBlock, Record[0],
2227                           (Context, getMDOrNull(Record[1]),
2228                            getMDOrNull(Record[2]), Record[3], Record[4])),
2229           NextMetadataNo++);
2230       break;
2231     }
2232     case bitc::METADATA_LEXICAL_BLOCK_FILE: {
2233       if (Record.size() != 4)
2234         return error("Invalid record");
2235 
2236       MetadataList.assignValue(
2237           GET_OR_DISTINCT(DILexicalBlockFile, Record[0],
2238                           (Context, getMDOrNull(Record[1]),
2239                            getMDOrNull(Record[2]), Record[3])),
2240           NextMetadataNo++);
2241       break;
2242     }
2243     case bitc::METADATA_NAMESPACE: {
2244       if (Record.size() != 5)
2245         return error("Invalid record");
2246 
2247       MetadataList.assignValue(
2248           GET_OR_DISTINCT(DINamespace, Record[0],
2249                           (Context, getMDOrNull(Record[1]),
2250                            getMDOrNull(Record[2]), getMDString(Record[3]),
2251                            Record[4])),
2252           NextMetadataNo++);
2253       break;
2254     }
2255     case bitc::METADATA_MACRO: {
2256       if (Record.size() != 5)
2257         return error("Invalid record");
2258 
2259       MetadataList.assignValue(
2260           GET_OR_DISTINCT(DIMacro, Record[0],
2261                           (Context, Record[1], Record[2],
2262                            getMDString(Record[3]), getMDString(Record[4]))),
2263           NextMetadataNo++);
2264       break;
2265     }
2266     case bitc::METADATA_MACRO_FILE: {
2267       if (Record.size() != 5)
2268         return error("Invalid record");
2269 
2270       MetadataList.assignValue(
2271           GET_OR_DISTINCT(DIMacroFile, Record[0],
2272                           (Context, Record[1], Record[2],
2273                            getMDOrNull(Record[3]), getMDOrNull(Record[4]))),
2274           NextMetadataNo++);
2275       break;
2276     }
2277     case bitc::METADATA_TEMPLATE_TYPE: {
2278       if (Record.size() != 3)
2279         return error("Invalid record");
2280 
2281       MetadataList.assignValue(GET_OR_DISTINCT(DITemplateTypeParameter,
2282                                                Record[0],
2283                                                (Context, getMDString(Record[1]),
2284                                                 getMDOrNull(Record[2]))),
2285                                NextMetadataNo++);
2286       break;
2287     }
2288     case bitc::METADATA_TEMPLATE_VALUE: {
2289       if (Record.size() != 5)
2290         return error("Invalid record");
2291 
2292       MetadataList.assignValue(
2293           GET_OR_DISTINCT(DITemplateValueParameter, Record[0],
2294                           (Context, Record[1], getMDString(Record[2]),
2295                            getMDOrNull(Record[3]), getMDOrNull(Record[4]))),
2296           NextMetadataNo++);
2297       break;
2298     }
2299     case bitc::METADATA_GLOBAL_VAR: {
2300       if (Record.size() != 11)
2301         return error("Invalid record");
2302 
2303       MetadataList.assignValue(
2304           GET_OR_DISTINCT(DIGlobalVariable, Record[0],
2305                           (Context, getMDOrNull(Record[1]),
2306                            getMDString(Record[2]), getMDString(Record[3]),
2307                            getMDOrNull(Record[4]), Record[5],
2308                            getMDOrNull(Record[6]), Record[7], Record[8],
2309                            getMDOrNull(Record[9]), getMDOrNull(Record[10]))),
2310           NextMetadataNo++);
2311       break;
2312     }
2313     case bitc::METADATA_LOCAL_VAR: {
2314       // 10th field is for the obseleted 'inlinedAt:' field.
2315       if (Record.size() < 8 || Record.size() > 10)
2316         return error("Invalid record");
2317 
2318       // 2nd field used to be an artificial tag, either DW_TAG_auto_variable or
2319       // DW_TAG_arg_variable.
2320       bool HasTag = Record.size() > 8;
2321       MetadataList.assignValue(
2322           GET_OR_DISTINCT(DILocalVariable, Record[0],
2323                           (Context, getMDOrNull(Record[1 + HasTag]),
2324                            getMDString(Record[2 + HasTag]),
2325                            getMDOrNull(Record[3 + HasTag]), Record[4 + HasTag],
2326                            getMDOrNull(Record[5 + HasTag]), Record[6 + HasTag],
2327                            Record[7 + HasTag])),
2328           NextMetadataNo++);
2329       break;
2330     }
2331     case bitc::METADATA_EXPRESSION: {
2332       if (Record.size() < 1)
2333         return error("Invalid record");
2334 
2335       MetadataList.assignValue(
2336           GET_OR_DISTINCT(DIExpression, Record[0],
2337                           (Context, makeArrayRef(Record).slice(1))),
2338           NextMetadataNo++);
2339       break;
2340     }
2341     case bitc::METADATA_OBJC_PROPERTY: {
2342       if (Record.size() != 8)
2343         return error("Invalid record");
2344 
2345       MetadataList.assignValue(
2346           GET_OR_DISTINCT(DIObjCProperty, Record[0],
2347                           (Context, getMDString(Record[1]),
2348                            getMDOrNull(Record[2]), Record[3],
2349                            getMDString(Record[4]), getMDString(Record[5]),
2350                            Record[6], getMDOrNull(Record[7]))),
2351           NextMetadataNo++);
2352       break;
2353     }
2354     case bitc::METADATA_IMPORTED_ENTITY: {
2355       if (Record.size() != 6)
2356         return error("Invalid record");
2357 
2358       MetadataList.assignValue(
2359           GET_OR_DISTINCT(DIImportedEntity, Record[0],
2360                           (Context, Record[1], getMDOrNull(Record[2]),
2361                            getMDOrNull(Record[3]), Record[4],
2362                            getMDString(Record[5]))),
2363           NextMetadataNo++);
2364       break;
2365     }
2366     case bitc::METADATA_STRING_OLD: {
2367       std::string String(Record.begin(), Record.end());
2368 
2369       // Test for upgrading !llvm.loop.
2370       HasSeenOldLoopTags |= mayBeOldLoopAttachmentTag(String);
2371 
2372       Metadata *MD = MDString::get(Context, String);
2373       MetadataList.assignValue(MD, NextMetadataNo++);
2374       break;
2375     }
2376     case bitc::METADATA_BULK_STRING_SIZES: {
2377       // This is a pair of records for an MDString block: SIZES, which is a
2378       // list of string lengths; and DATA, which is a blob with all the strings
2379       // concatenated together.
2380       //
2381       // Note: since this record type was introduced after the upgrade for
2382       // !llvm.loop, we don't need to change HasSeenOldLoopTags.
2383       if (Record.empty())
2384         return error("Invalid record: missing bulk metadata string sizes");
2385 
2386       StringRef Blob;
2387       SmallVector<uint64_t, 1> BlobRecord;
2388       Code = Stream.ReadCode();
2389       unsigned BlobCode = Stream.readRecord(Code, BlobRecord, &Blob);
2390       if (BlobCode != bitc::METADATA_BULK_STRING_DATA)
2391         return error("Invalid record: missing bulk metadata string data");
2392       if (!BlobRecord.empty())
2393         return error("Invalid record: unexpected bulk metadata arguments");
2394 
2395       for (uint64_t Size : Record) {
2396         if (Blob.size() < Size)
2397           return error("Invalid record: not enough bulk metadata string bytes");
2398 
2399         // Extract the current string.
2400         MetadataList.assignValue(MDString::get(Context, Blob.slice(0, Size)),
2401                                  NextMetadataNo++);
2402         Blob = Blob.drop_front(Size);
2403       }
2404       if (!Blob.empty())
2405         return error("Invalid record: too many bulk metadata string bytes");
2406       break;
2407     }
2408     case bitc::METADATA_KIND: {
2409       // Support older bitcode files that had METADATA_KIND records in a
2410       // block with METADATA_BLOCK_ID.
2411       if (std::error_code EC = parseMetadataKindRecord(Record))
2412         return EC;
2413       break;
2414     }
2415     }
2416   }
2417 #undef GET_OR_DISTINCT
2418 }
2419 
2420 /// Parse the metadata kinds out of the METADATA_KIND_BLOCK.
2421 std::error_code BitcodeReader::parseMetadataKinds() {
2422   if (Stream.EnterSubBlock(bitc::METADATA_KIND_BLOCK_ID))
2423     return error("Invalid record");
2424 
2425   SmallVector<uint64_t, 64> Record;
2426 
2427   // Read all the records.
2428   while (1) {
2429     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
2430 
2431     switch (Entry.Kind) {
2432     case BitstreamEntry::SubBlock: // Handled for us already.
2433     case BitstreamEntry::Error:
2434       return error("Malformed block");
2435     case BitstreamEntry::EndBlock:
2436       return std::error_code();
2437     case BitstreamEntry::Record:
2438       // The interesting case.
2439       break;
2440     }
2441 
2442     // Read a record.
2443     Record.clear();
2444     unsigned Code = Stream.readRecord(Entry.ID, Record);
2445     switch (Code) {
2446     default: // Default behavior: ignore.
2447       break;
2448     case bitc::METADATA_KIND: {
2449       if (std::error_code EC = parseMetadataKindRecord(Record))
2450         return EC;
2451       break;
2452     }
2453     }
2454   }
2455 }
2456 
2457 /// Decode a signed value stored with the sign bit in the LSB for dense VBR
2458 /// encoding.
2459 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) {
2460   if ((V & 1) == 0)
2461     return V >> 1;
2462   if (V != 1)
2463     return -(V >> 1);
2464   // There is no such thing as -0 with integers.  "-0" really means MININT.
2465   return 1ULL << 63;
2466 }
2467 
2468 /// Resolve all of the initializers for global values and aliases that we can.
2469 std::error_code BitcodeReader::resolveGlobalAndAliasInits() {
2470   std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist;
2471   std::vector<std::pair<GlobalAlias*, unsigned> > AliasInitWorklist;
2472   std::vector<std::pair<Function*, unsigned> > FunctionPrefixWorklist;
2473   std::vector<std::pair<Function*, unsigned> > FunctionPrologueWorklist;
2474   std::vector<std::pair<Function*, unsigned> > FunctionPersonalityFnWorklist;
2475 
2476   GlobalInitWorklist.swap(GlobalInits);
2477   AliasInitWorklist.swap(AliasInits);
2478   FunctionPrefixWorklist.swap(FunctionPrefixes);
2479   FunctionPrologueWorklist.swap(FunctionPrologues);
2480   FunctionPersonalityFnWorklist.swap(FunctionPersonalityFns);
2481 
2482   while (!GlobalInitWorklist.empty()) {
2483     unsigned ValID = GlobalInitWorklist.back().second;
2484     if (ValID >= ValueList.size()) {
2485       // Not ready to resolve this yet, it requires something later in the file.
2486       GlobalInits.push_back(GlobalInitWorklist.back());
2487     } else {
2488       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2489         GlobalInitWorklist.back().first->setInitializer(C);
2490       else
2491         return error("Expected a constant");
2492     }
2493     GlobalInitWorklist.pop_back();
2494   }
2495 
2496   while (!AliasInitWorklist.empty()) {
2497     unsigned ValID = AliasInitWorklist.back().second;
2498     if (ValID >= ValueList.size()) {
2499       AliasInits.push_back(AliasInitWorklist.back());
2500     } else {
2501       Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]);
2502       if (!C)
2503         return error("Expected a constant");
2504       GlobalAlias *Alias = AliasInitWorklist.back().first;
2505       if (C->getType() != Alias->getType())
2506         return error("Alias and aliasee types don't match");
2507       Alias->setAliasee(C);
2508     }
2509     AliasInitWorklist.pop_back();
2510   }
2511 
2512   while (!FunctionPrefixWorklist.empty()) {
2513     unsigned ValID = FunctionPrefixWorklist.back().second;
2514     if (ValID >= ValueList.size()) {
2515       FunctionPrefixes.push_back(FunctionPrefixWorklist.back());
2516     } else {
2517       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2518         FunctionPrefixWorklist.back().first->setPrefixData(C);
2519       else
2520         return error("Expected a constant");
2521     }
2522     FunctionPrefixWorklist.pop_back();
2523   }
2524 
2525   while (!FunctionPrologueWorklist.empty()) {
2526     unsigned ValID = FunctionPrologueWorklist.back().second;
2527     if (ValID >= ValueList.size()) {
2528       FunctionPrologues.push_back(FunctionPrologueWorklist.back());
2529     } else {
2530       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2531         FunctionPrologueWorklist.back().first->setPrologueData(C);
2532       else
2533         return error("Expected a constant");
2534     }
2535     FunctionPrologueWorklist.pop_back();
2536   }
2537 
2538   while (!FunctionPersonalityFnWorklist.empty()) {
2539     unsigned ValID = FunctionPersonalityFnWorklist.back().second;
2540     if (ValID >= ValueList.size()) {
2541       FunctionPersonalityFns.push_back(FunctionPersonalityFnWorklist.back());
2542     } else {
2543       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2544         FunctionPersonalityFnWorklist.back().first->setPersonalityFn(C);
2545       else
2546         return error("Expected a constant");
2547     }
2548     FunctionPersonalityFnWorklist.pop_back();
2549   }
2550 
2551   return std::error_code();
2552 }
2553 
2554 static APInt readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) {
2555   SmallVector<uint64_t, 8> Words(Vals.size());
2556   std::transform(Vals.begin(), Vals.end(), Words.begin(),
2557                  BitcodeReader::decodeSignRotatedValue);
2558 
2559   return APInt(TypeBits, Words);
2560 }
2561 
2562 std::error_code BitcodeReader::parseConstants() {
2563   if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID))
2564     return error("Invalid record");
2565 
2566   SmallVector<uint64_t, 64> Record;
2567 
2568   // Read all the records for this value table.
2569   Type *CurTy = Type::getInt32Ty(Context);
2570   unsigned NextCstNo = ValueList.size();
2571   while (1) {
2572     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
2573 
2574     switch (Entry.Kind) {
2575     case BitstreamEntry::SubBlock: // Handled for us already.
2576     case BitstreamEntry::Error:
2577       return error("Malformed block");
2578     case BitstreamEntry::EndBlock:
2579       if (NextCstNo != ValueList.size())
2580         return error("Invalid constant reference");
2581 
2582       // Once all the constants have been read, go through and resolve forward
2583       // references.
2584       ValueList.resolveConstantForwardRefs();
2585       return std::error_code();
2586     case BitstreamEntry::Record:
2587       // The interesting case.
2588       break;
2589     }
2590 
2591     // Read a record.
2592     Record.clear();
2593     Value *V = nullptr;
2594     unsigned BitCode = Stream.readRecord(Entry.ID, Record);
2595     switch (BitCode) {
2596     default:  // Default behavior: unknown constant
2597     case bitc::CST_CODE_UNDEF:     // UNDEF
2598       V = UndefValue::get(CurTy);
2599       break;
2600     case bitc::CST_CODE_SETTYPE:   // SETTYPE: [typeid]
2601       if (Record.empty())
2602         return error("Invalid record");
2603       if (Record[0] >= TypeList.size() || !TypeList[Record[0]])
2604         return error("Invalid record");
2605       CurTy = TypeList[Record[0]];
2606       continue;  // Skip the ValueList manipulation.
2607     case bitc::CST_CODE_NULL:      // NULL
2608       V = Constant::getNullValue(CurTy);
2609       break;
2610     case bitc::CST_CODE_INTEGER:   // INTEGER: [intval]
2611       if (!CurTy->isIntegerTy() || Record.empty())
2612         return error("Invalid record");
2613       V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0]));
2614       break;
2615     case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
2616       if (!CurTy->isIntegerTy() || Record.empty())
2617         return error("Invalid record");
2618 
2619       APInt VInt =
2620           readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth());
2621       V = ConstantInt::get(Context, VInt);
2622 
2623       break;
2624     }
2625     case bitc::CST_CODE_FLOAT: {    // FLOAT: [fpval]
2626       if (Record.empty())
2627         return error("Invalid record");
2628       if (CurTy->isHalfTy())
2629         V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf,
2630                                              APInt(16, (uint16_t)Record[0])));
2631       else if (CurTy->isFloatTy())
2632         V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle,
2633                                              APInt(32, (uint32_t)Record[0])));
2634       else if (CurTy->isDoubleTy())
2635         V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble,
2636                                              APInt(64, Record[0])));
2637       else if (CurTy->isX86_FP80Ty()) {
2638         // Bits are not stored the same way as a normal i80 APInt, compensate.
2639         uint64_t Rearrange[2];
2640         Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16);
2641         Rearrange[1] = Record[0] >> 48;
2642         V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended,
2643                                              APInt(80, Rearrange)));
2644       } else if (CurTy->isFP128Ty())
2645         V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad,
2646                                              APInt(128, Record)));
2647       else if (CurTy->isPPC_FP128Ty())
2648         V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble,
2649                                              APInt(128, Record)));
2650       else
2651         V = UndefValue::get(CurTy);
2652       break;
2653     }
2654 
2655     case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
2656       if (Record.empty())
2657         return error("Invalid record");
2658 
2659       unsigned Size = Record.size();
2660       SmallVector<Constant*, 16> Elts;
2661 
2662       if (StructType *STy = dyn_cast<StructType>(CurTy)) {
2663         for (unsigned i = 0; i != Size; ++i)
2664           Elts.push_back(ValueList.getConstantFwdRef(Record[i],
2665                                                      STy->getElementType(i)));
2666         V = ConstantStruct::get(STy, Elts);
2667       } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) {
2668         Type *EltTy = ATy->getElementType();
2669         for (unsigned i = 0; i != Size; ++i)
2670           Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
2671         V = ConstantArray::get(ATy, Elts);
2672       } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) {
2673         Type *EltTy = VTy->getElementType();
2674         for (unsigned i = 0; i != Size; ++i)
2675           Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
2676         V = ConstantVector::get(Elts);
2677       } else {
2678         V = UndefValue::get(CurTy);
2679       }
2680       break;
2681     }
2682     case bitc::CST_CODE_STRING:    // STRING: [values]
2683     case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
2684       if (Record.empty())
2685         return error("Invalid record");
2686 
2687       SmallString<16> Elts(Record.begin(), Record.end());
2688       V = ConstantDataArray::getString(Context, Elts,
2689                                        BitCode == bitc::CST_CODE_CSTRING);
2690       break;
2691     }
2692     case bitc::CST_CODE_DATA: {// DATA: [n x value]
2693       if (Record.empty())
2694         return error("Invalid record");
2695 
2696       Type *EltTy = cast<SequentialType>(CurTy)->getElementType();
2697       if (EltTy->isIntegerTy(8)) {
2698         SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end());
2699         if (isa<VectorType>(CurTy))
2700           V = ConstantDataVector::get(Context, Elts);
2701         else
2702           V = ConstantDataArray::get(Context, Elts);
2703       } else if (EltTy->isIntegerTy(16)) {
2704         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
2705         if (isa<VectorType>(CurTy))
2706           V = ConstantDataVector::get(Context, Elts);
2707         else
2708           V = ConstantDataArray::get(Context, Elts);
2709       } else if (EltTy->isIntegerTy(32)) {
2710         SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
2711         if (isa<VectorType>(CurTy))
2712           V = ConstantDataVector::get(Context, Elts);
2713         else
2714           V = ConstantDataArray::get(Context, Elts);
2715       } else if (EltTy->isIntegerTy(64)) {
2716         SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
2717         if (isa<VectorType>(CurTy))
2718           V = ConstantDataVector::get(Context, Elts);
2719         else
2720           V = ConstantDataArray::get(Context, Elts);
2721       } else if (EltTy->isHalfTy()) {
2722         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
2723         if (isa<VectorType>(CurTy))
2724           V = ConstantDataVector::getFP(Context, Elts);
2725         else
2726           V = ConstantDataArray::getFP(Context, Elts);
2727       } else if (EltTy->isFloatTy()) {
2728         SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
2729         if (isa<VectorType>(CurTy))
2730           V = ConstantDataVector::getFP(Context, Elts);
2731         else
2732           V = ConstantDataArray::getFP(Context, Elts);
2733       } else if (EltTy->isDoubleTy()) {
2734         SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
2735         if (isa<VectorType>(CurTy))
2736           V = ConstantDataVector::getFP(Context, Elts);
2737         else
2738           V = ConstantDataArray::getFP(Context, Elts);
2739       } else {
2740         return error("Invalid type for value");
2741       }
2742       break;
2743     }
2744     case bitc::CST_CODE_CE_BINOP: {  // CE_BINOP: [opcode, opval, opval]
2745       if (Record.size() < 3)
2746         return error("Invalid record");
2747       int Opc = getDecodedBinaryOpcode(Record[0], CurTy);
2748       if (Opc < 0) {
2749         V = UndefValue::get(CurTy);  // Unknown binop.
2750       } else {
2751         Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
2752         Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy);
2753         unsigned Flags = 0;
2754         if (Record.size() >= 4) {
2755           if (Opc == Instruction::Add ||
2756               Opc == Instruction::Sub ||
2757               Opc == Instruction::Mul ||
2758               Opc == Instruction::Shl) {
2759             if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP))
2760               Flags |= OverflowingBinaryOperator::NoSignedWrap;
2761             if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
2762               Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
2763           } else if (Opc == Instruction::SDiv ||
2764                      Opc == Instruction::UDiv ||
2765                      Opc == Instruction::LShr ||
2766                      Opc == Instruction::AShr) {
2767             if (Record[3] & (1 << bitc::PEO_EXACT))
2768               Flags |= SDivOperator::IsExact;
2769           }
2770         }
2771         V = ConstantExpr::get(Opc, LHS, RHS, Flags);
2772       }
2773       break;
2774     }
2775     case bitc::CST_CODE_CE_CAST: {  // CE_CAST: [opcode, opty, opval]
2776       if (Record.size() < 3)
2777         return error("Invalid record");
2778       int Opc = getDecodedCastOpcode(Record[0]);
2779       if (Opc < 0) {
2780         V = UndefValue::get(CurTy);  // Unknown cast.
2781       } else {
2782         Type *OpTy = getTypeByID(Record[1]);
2783         if (!OpTy)
2784           return error("Invalid record");
2785         Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy);
2786         V = UpgradeBitCastExpr(Opc, Op, CurTy);
2787         if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy);
2788       }
2789       break;
2790     }
2791     case bitc::CST_CODE_CE_INBOUNDS_GEP:
2792     case bitc::CST_CODE_CE_GEP: {  // CE_GEP:        [n x operands]
2793       unsigned OpNum = 0;
2794       Type *PointeeType = nullptr;
2795       if (Record.size() % 2)
2796         PointeeType = getTypeByID(Record[OpNum++]);
2797       SmallVector<Constant*, 16> Elts;
2798       while (OpNum != Record.size()) {
2799         Type *ElTy = getTypeByID(Record[OpNum++]);
2800         if (!ElTy)
2801           return error("Invalid record");
2802         Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy));
2803       }
2804 
2805       if (PointeeType &&
2806           PointeeType !=
2807               cast<SequentialType>(Elts[0]->getType()->getScalarType())
2808                   ->getElementType())
2809         return error("Explicit gep operator type does not match pointee type "
2810                      "of pointer operand");
2811 
2812       ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
2813       V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices,
2814                                          BitCode ==
2815                                              bitc::CST_CODE_CE_INBOUNDS_GEP);
2816       break;
2817     }
2818     case bitc::CST_CODE_CE_SELECT: {  // CE_SELECT: [opval#, opval#, opval#]
2819       if (Record.size() < 3)
2820         return error("Invalid record");
2821 
2822       Type *SelectorTy = Type::getInt1Ty(Context);
2823 
2824       // The selector might be an i1 or an <n x i1>
2825       // Get the type from the ValueList before getting a forward ref.
2826       if (VectorType *VTy = dyn_cast<VectorType>(CurTy))
2827         if (Value *V = ValueList[Record[0]])
2828           if (SelectorTy != V->getType())
2829             SelectorTy = VectorType::get(SelectorTy, VTy->getNumElements());
2830 
2831       V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0],
2832                                                               SelectorTy),
2833                                   ValueList.getConstantFwdRef(Record[1],CurTy),
2834                                   ValueList.getConstantFwdRef(Record[2],CurTy));
2835       break;
2836     }
2837     case bitc::CST_CODE_CE_EXTRACTELT
2838         : { // CE_EXTRACTELT: [opty, opval, opty, opval]
2839       if (Record.size() < 3)
2840         return error("Invalid record");
2841       VectorType *OpTy =
2842         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
2843       if (!OpTy)
2844         return error("Invalid record");
2845       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
2846       Constant *Op1 = nullptr;
2847       if (Record.size() == 4) {
2848         Type *IdxTy = getTypeByID(Record[2]);
2849         if (!IdxTy)
2850           return error("Invalid record");
2851         Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy);
2852       } else // TODO: Remove with llvm 4.0
2853         Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
2854       if (!Op1)
2855         return error("Invalid record");
2856       V = ConstantExpr::getExtractElement(Op0, Op1);
2857       break;
2858     }
2859     case bitc::CST_CODE_CE_INSERTELT
2860         : { // CE_INSERTELT: [opval, opval, opty, opval]
2861       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
2862       if (Record.size() < 3 || !OpTy)
2863         return error("Invalid record");
2864       Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
2865       Constant *Op1 = ValueList.getConstantFwdRef(Record[1],
2866                                                   OpTy->getElementType());
2867       Constant *Op2 = nullptr;
2868       if (Record.size() == 4) {
2869         Type *IdxTy = getTypeByID(Record[2]);
2870         if (!IdxTy)
2871           return error("Invalid record");
2872         Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy);
2873       } else // TODO: Remove with llvm 4.0
2874         Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
2875       if (!Op2)
2876         return error("Invalid record");
2877       V = ConstantExpr::getInsertElement(Op0, Op1, Op2);
2878       break;
2879     }
2880     case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
2881       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
2882       if (Record.size() < 3 || !OpTy)
2883         return error("Invalid record");
2884       Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
2885       Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy);
2886       Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
2887                                                  OpTy->getNumElements());
2888       Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy);
2889       V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
2890       break;
2891     }
2892     case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval]
2893       VectorType *RTy = dyn_cast<VectorType>(CurTy);
2894       VectorType *OpTy =
2895         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
2896       if (Record.size() < 4 || !RTy || !OpTy)
2897         return error("Invalid record");
2898       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
2899       Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
2900       Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
2901                                                  RTy->getNumElements());
2902       Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy);
2903       V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
2904       break;
2905     }
2906     case bitc::CST_CODE_CE_CMP: {     // CE_CMP: [opty, opval, opval, pred]
2907       if (Record.size() < 4)
2908         return error("Invalid record");
2909       Type *OpTy = getTypeByID(Record[0]);
2910       if (!OpTy)
2911         return error("Invalid record");
2912       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
2913       Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
2914 
2915       if (OpTy->isFPOrFPVectorTy())
2916         V = ConstantExpr::getFCmp(Record[3], Op0, Op1);
2917       else
2918         V = ConstantExpr::getICmp(Record[3], Op0, Op1);
2919       break;
2920     }
2921     // This maintains backward compatibility, pre-asm dialect keywords.
2922     // FIXME: Remove with the 4.0 release.
2923     case bitc::CST_CODE_INLINEASM_OLD: {
2924       if (Record.size() < 2)
2925         return error("Invalid record");
2926       std::string AsmStr, ConstrStr;
2927       bool HasSideEffects = Record[0] & 1;
2928       bool IsAlignStack = Record[0] >> 1;
2929       unsigned AsmStrSize = Record[1];
2930       if (2+AsmStrSize >= Record.size())
2931         return error("Invalid record");
2932       unsigned ConstStrSize = Record[2+AsmStrSize];
2933       if (3+AsmStrSize+ConstStrSize > Record.size())
2934         return error("Invalid record");
2935 
2936       for (unsigned i = 0; i != AsmStrSize; ++i)
2937         AsmStr += (char)Record[2+i];
2938       for (unsigned i = 0; i != ConstStrSize; ++i)
2939         ConstrStr += (char)Record[3+AsmStrSize+i];
2940       PointerType *PTy = cast<PointerType>(CurTy);
2941       V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()),
2942                          AsmStr, ConstrStr, HasSideEffects, IsAlignStack);
2943       break;
2944     }
2945     // This version adds support for the asm dialect keywords (e.g.,
2946     // inteldialect).
2947     case bitc::CST_CODE_INLINEASM: {
2948       if (Record.size() < 2)
2949         return error("Invalid record");
2950       std::string AsmStr, ConstrStr;
2951       bool HasSideEffects = Record[0] & 1;
2952       bool IsAlignStack = (Record[0] >> 1) & 1;
2953       unsigned AsmDialect = Record[0] >> 2;
2954       unsigned AsmStrSize = Record[1];
2955       if (2+AsmStrSize >= Record.size())
2956         return error("Invalid record");
2957       unsigned ConstStrSize = Record[2+AsmStrSize];
2958       if (3+AsmStrSize+ConstStrSize > Record.size())
2959         return error("Invalid record");
2960 
2961       for (unsigned i = 0; i != AsmStrSize; ++i)
2962         AsmStr += (char)Record[2+i];
2963       for (unsigned i = 0; i != ConstStrSize; ++i)
2964         ConstrStr += (char)Record[3+AsmStrSize+i];
2965       PointerType *PTy = cast<PointerType>(CurTy);
2966       V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()),
2967                          AsmStr, ConstrStr, HasSideEffects, IsAlignStack,
2968                          InlineAsm::AsmDialect(AsmDialect));
2969       break;
2970     }
2971     case bitc::CST_CODE_BLOCKADDRESS:{
2972       if (Record.size() < 3)
2973         return error("Invalid record");
2974       Type *FnTy = getTypeByID(Record[0]);
2975       if (!FnTy)
2976         return error("Invalid record");
2977       Function *Fn =
2978         dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy));
2979       if (!Fn)
2980         return error("Invalid record");
2981 
2982       // If the function is already parsed we can insert the block address right
2983       // away.
2984       BasicBlock *BB;
2985       unsigned BBID = Record[2];
2986       if (!BBID)
2987         // Invalid reference to entry block.
2988         return error("Invalid ID");
2989       if (!Fn->empty()) {
2990         Function::iterator BBI = Fn->begin(), BBE = Fn->end();
2991         for (size_t I = 0, E = BBID; I != E; ++I) {
2992           if (BBI == BBE)
2993             return error("Invalid ID");
2994           ++BBI;
2995         }
2996         BB = &*BBI;
2997       } else {
2998         // Otherwise insert a placeholder and remember it so it can be inserted
2999         // when the function is parsed.
3000         auto &FwdBBs = BasicBlockFwdRefs[Fn];
3001         if (FwdBBs.empty())
3002           BasicBlockFwdRefQueue.push_back(Fn);
3003         if (FwdBBs.size() < BBID + 1)
3004           FwdBBs.resize(BBID + 1);
3005         if (!FwdBBs[BBID])
3006           FwdBBs[BBID] = BasicBlock::Create(Context);
3007         BB = FwdBBs[BBID];
3008       }
3009       V = BlockAddress::get(Fn, BB);
3010       break;
3011     }
3012     }
3013 
3014     ValueList.assignValue(V, NextCstNo);
3015     ++NextCstNo;
3016   }
3017 }
3018 
3019 std::error_code BitcodeReader::parseUseLists() {
3020   if (Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID))
3021     return error("Invalid record");
3022 
3023   // Read all the records.
3024   SmallVector<uint64_t, 64> Record;
3025   while (1) {
3026     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
3027 
3028     switch (Entry.Kind) {
3029     case BitstreamEntry::SubBlock: // Handled for us already.
3030     case BitstreamEntry::Error:
3031       return error("Malformed block");
3032     case BitstreamEntry::EndBlock:
3033       return std::error_code();
3034     case BitstreamEntry::Record:
3035       // The interesting case.
3036       break;
3037     }
3038 
3039     // Read a use list record.
3040     Record.clear();
3041     bool IsBB = false;
3042     switch (Stream.readRecord(Entry.ID, Record)) {
3043     default:  // Default behavior: unknown type.
3044       break;
3045     case bitc::USELIST_CODE_BB:
3046       IsBB = true;
3047       // fallthrough
3048     case bitc::USELIST_CODE_DEFAULT: {
3049       unsigned RecordLength = Record.size();
3050       if (RecordLength < 3)
3051         // Records should have at least an ID and two indexes.
3052         return error("Invalid record");
3053       unsigned ID = Record.back();
3054       Record.pop_back();
3055 
3056       Value *V;
3057       if (IsBB) {
3058         assert(ID < FunctionBBs.size() && "Basic block not found");
3059         V = FunctionBBs[ID];
3060       } else
3061         V = ValueList[ID];
3062       unsigned NumUses = 0;
3063       SmallDenseMap<const Use *, unsigned, 16> Order;
3064       for (const Use &U : V->materialized_uses()) {
3065         if (++NumUses > Record.size())
3066           break;
3067         Order[&U] = Record[NumUses - 1];
3068       }
3069       if (Order.size() != Record.size() || NumUses > Record.size())
3070         // Mismatches can happen if the functions are being materialized lazily
3071         // (out-of-order), or a value has been upgraded.
3072         break;
3073 
3074       V->sortUseList([&](const Use &L, const Use &R) {
3075         return Order.lookup(&L) < Order.lookup(&R);
3076       });
3077       break;
3078     }
3079     }
3080   }
3081 }
3082 
3083 /// When we see the block for metadata, remember where it is and then skip it.
3084 /// This lets us lazily deserialize the metadata.
3085 std::error_code BitcodeReader::rememberAndSkipMetadata() {
3086   // Save the current stream state.
3087   uint64_t CurBit = Stream.GetCurrentBitNo();
3088   DeferredMetadataInfo.push_back(CurBit);
3089 
3090   // Skip over the block for now.
3091   if (Stream.SkipBlock())
3092     return error("Invalid record");
3093   return std::error_code();
3094 }
3095 
3096 std::error_code BitcodeReader::materializeMetadata() {
3097   for (uint64_t BitPos : DeferredMetadataInfo) {
3098     // Move the bit stream to the saved position.
3099     Stream.JumpToBit(BitPos);
3100     if (std::error_code EC = parseMetadata(true))
3101       return EC;
3102   }
3103   DeferredMetadataInfo.clear();
3104   return std::error_code();
3105 }
3106 
3107 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; }
3108 
3109 void BitcodeReader::saveMetadataList(
3110     DenseMap<const Metadata *, unsigned> &MetadataToIDs, bool OnlyTempMD) {
3111   for (unsigned ID = 0; ID < MetadataList.size(); ++ID) {
3112     Metadata *MD = MetadataList[ID];
3113     auto *N = dyn_cast_or_null<MDNode>(MD);
3114     assert((!N || (N->isResolved() || N->isTemporary())) &&
3115            "Found non-resolved non-temp MDNode while saving metadata");
3116     // Save all values if !OnlyTempMD, otherwise just the temporary metadata.
3117     // Note that in the !OnlyTempMD case we need to save all Metadata, not
3118     // just MDNode, as we may have references to other types of module-level
3119     // metadata (e.g. ValueAsMetadata) from instructions.
3120     if (!OnlyTempMD || (N && N->isTemporary())) {
3121       // Will call this after materializing each function, in order to
3122       // handle remapping of the function's instructions/metadata.
3123       auto IterBool = MetadataToIDs.insert(std::make_pair(MD, ID));
3124       // See if we already have an entry in that case.
3125       if (OnlyTempMD && !IterBool.second) {
3126         assert(IterBool.first->second == ID &&
3127                "Inconsistent metadata value id");
3128         continue;
3129       }
3130       if (N && N->isTemporary())
3131         // Ensure that we assert if someone tries to RAUW this temporary
3132         // metadata while it is the key of a map. The flag will be set back
3133         // to true when the saved metadata list is destroyed.
3134         N->setCanReplace(false);
3135     }
3136   }
3137 }
3138 
3139 /// When we see the block for a function body, remember where it is and then
3140 /// skip it.  This lets us lazily deserialize the functions.
3141 std::error_code BitcodeReader::rememberAndSkipFunctionBody() {
3142   // Get the function we are talking about.
3143   if (FunctionsWithBodies.empty())
3144     return error("Insufficient function protos");
3145 
3146   Function *Fn = FunctionsWithBodies.back();
3147   FunctionsWithBodies.pop_back();
3148 
3149   // Save the current stream state.
3150   uint64_t CurBit = Stream.GetCurrentBitNo();
3151   assert(
3152       (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) &&
3153       "Mismatch between VST and scanned function offsets");
3154   DeferredFunctionInfo[Fn] = CurBit;
3155 
3156   // Skip over the function block for now.
3157   if (Stream.SkipBlock())
3158     return error("Invalid record");
3159   return std::error_code();
3160 }
3161 
3162 std::error_code BitcodeReader::globalCleanup() {
3163   // Patch the initializers for globals and aliases up.
3164   resolveGlobalAndAliasInits();
3165   if (!GlobalInits.empty() || !AliasInits.empty())
3166     return error("Malformed global initializer set");
3167 
3168   // Look for intrinsic functions which need to be upgraded at some point
3169   for (Function &F : *TheModule) {
3170     Function *NewFn;
3171     if (UpgradeIntrinsicFunction(&F, NewFn))
3172       UpgradedIntrinsics[&F] = NewFn;
3173   }
3174 
3175   // Look for global variables which need to be renamed.
3176   for (GlobalVariable &GV : TheModule->globals())
3177     UpgradeGlobalVariable(&GV);
3178 
3179   // Force deallocation of memory for these vectors to favor the client that
3180   // want lazy deserialization.
3181   std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits);
3182   std::vector<std::pair<GlobalAlias*, unsigned> >().swap(AliasInits);
3183   return std::error_code();
3184 }
3185 
3186 /// Support for lazy parsing of function bodies. This is required if we
3187 /// either have an old bitcode file without a VST forward declaration record,
3188 /// or if we have an anonymous function being materialized, since anonymous
3189 /// functions do not have a name and are therefore not in the VST.
3190 std::error_code BitcodeReader::rememberAndSkipFunctionBodies() {
3191   Stream.JumpToBit(NextUnreadBit);
3192 
3193   if (Stream.AtEndOfStream())
3194     return error("Could not find function in stream");
3195 
3196   if (!SeenFirstFunctionBody)
3197     return error("Trying to materialize functions before seeing function blocks");
3198 
3199   // An old bitcode file with the symbol table at the end would have
3200   // finished the parse greedily.
3201   assert(SeenValueSymbolTable);
3202 
3203   SmallVector<uint64_t, 64> Record;
3204 
3205   while (1) {
3206     BitstreamEntry Entry = Stream.advance();
3207     switch (Entry.Kind) {
3208     default:
3209       return error("Expect SubBlock");
3210     case BitstreamEntry::SubBlock:
3211       switch (Entry.ID) {
3212       default:
3213         return error("Expect function block");
3214       case bitc::FUNCTION_BLOCK_ID:
3215         if (std::error_code EC = rememberAndSkipFunctionBody())
3216           return EC;
3217         NextUnreadBit = Stream.GetCurrentBitNo();
3218         return std::error_code();
3219       }
3220     }
3221   }
3222 }
3223 
3224 std::error_code BitcodeReader::parseBitcodeVersion() {
3225   if (Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID))
3226     return error("Invalid record");
3227 
3228   // Read all the records.
3229   SmallVector<uint64_t, 64> Record;
3230   while (1) {
3231     BitstreamEntry Entry = Stream.advance();
3232 
3233     switch (Entry.Kind) {
3234     default:
3235     case BitstreamEntry::Error:
3236       return error("Malformed block");
3237     case BitstreamEntry::EndBlock:
3238       return std::error_code();
3239     case BitstreamEntry::Record:
3240       // The interesting case.
3241       break;
3242     }
3243 
3244     // Read a record.
3245     Record.clear();
3246     unsigned BitCode = Stream.readRecord(Entry.ID, Record);
3247     switch (BitCode) {
3248     default: // Default behavior: reject
3249       return error("Invalid value");
3250     case bitc::IDENTIFICATION_CODE_STRING: { // IDENTIFICATION:      [strchr x
3251                                              // N]
3252       convertToString(Record, 0, ProducerIdentification);
3253       break;
3254     }
3255     case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH:      [epoch#]
3256       unsigned epoch = (unsigned)Record[0];
3257       if (epoch != bitc::BITCODE_CURRENT_EPOCH) {
3258         return error(
3259           Twine("Incompatible epoch: Bitcode '") + Twine(epoch) +
3260           "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'");
3261       }
3262     }
3263     }
3264   }
3265 }
3266 
3267 std::error_code BitcodeReader::parseModule(uint64_t ResumeBit,
3268                                            bool ShouldLazyLoadMetadata) {
3269   if (ResumeBit)
3270     Stream.JumpToBit(ResumeBit);
3271   else if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
3272     return error("Invalid record");
3273 
3274   SmallVector<uint64_t, 64> Record;
3275   std::vector<std::string> SectionTable;
3276   std::vector<std::string> GCTable;
3277 
3278   // Read all the records for this module.
3279   while (1) {
3280     BitstreamEntry Entry = Stream.advance();
3281 
3282     switch (Entry.Kind) {
3283     case BitstreamEntry::Error:
3284       return error("Malformed block");
3285     case BitstreamEntry::EndBlock:
3286       return globalCleanup();
3287 
3288     case BitstreamEntry::SubBlock:
3289       switch (Entry.ID) {
3290       default:  // Skip unknown content.
3291         if (Stream.SkipBlock())
3292           return error("Invalid record");
3293         break;
3294       case bitc::BLOCKINFO_BLOCK_ID:
3295         if (Stream.ReadBlockInfoBlock())
3296           return error("Malformed block");
3297         break;
3298       case bitc::PARAMATTR_BLOCK_ID:
3299         if (std::error_code EC = parseAttributeBlock())
3300           return EC;
3301         break;
3302       case bitc::PARAMATTR_GROUP_BLOCK_ID:
3303         if (std::error_code EC = parseAttributeGroupBlock())
3304           return EC;
3305         break;
3306       case bitc::TYPE_BLOCK_ID_NEW:
3307         if (std::error_code EC = parseTypeTable())
3308           return EC;
3309         break;
3310       case bitc::VALUE_SYMTAB_BLOCK_ID:
3311         if (!SeenValueSymbolTable) {
3312           // Either this is an old form VST without function index and an
3313           // associated VST forward declaration record (which would have caused
3314           // the VST to be jumped to and parsed before it was encountered
3315           // normally in the stream), or there were no function blocks to
3316           // trigger an earlier parsing of the VST.
3317           assert(VSTOffset == 0 || FunctionsWithBodies.empty());
3318           if (std::error_code EC = parseValueSymbolTable())
3319             return EC;
3320           SeenValueSymbolTable = true;
3321         } else {
3322           // We must have had a VST forward declaration record, which caused
3323           // the parser to jump to and parse the VST earlier.
3324           assert(VSTOffset > 0);
3325           if (Stream.SkipBlock())
3326             return error("Invalid record");
3327         }
3328         break;
3329       case bitc::CONSTANTS_BLOCK_ID:
3330         if (std::error_code EC = parseConstants())
3331           return EC;
3332         if (std::error_code EC = resolveGlobalAndAliasInits())
3333           return EC;
3334         break;
3335       case bitc::METADATA_BLOCK_ID:
3336         if (ShouldLazyLoadMetadata && !IsMetadataMaterialized) {
3337           if (std::error_code EC = rememberAndSkipMetadata())
3338             return EC;
3339           break;
3340         }
3341         assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata");
3342         if (std::error_code EC = parseMetadata(true))
3343           return EC;
3344         break;
3345       case bitc::METADATA_KIND_BLOCK_ID:
3346         if (std::error_code EC = parseMetadataKinds())
3347           return EC;
3348         break;
3349       case bitc::FUNCTION_BLOCK_ID:
3350         // If this is the first function body we've seen, reverse the
3351         // FunctionsWithBodies list.
3352         if (!SeenFirstFunctionBody) {
3353           std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end());
3354           if (std::error_code EC = globalCleanup())
3355             return EC;
3356           SeenFirstFunctionBody = true;
3357         }
3358 
3359         if (VSTOffset > 0) {
3360           // If we have a VST forward declaration record, make sure we
3361           // parse the VST now if we haven't already. It is needed to
3362           // set up the DeferredFunctionInfo vector for lazy reading.
3363           if (!SeenValueSymbolTable) {
3364             if (std::error_code EC =
3365                     BitcodeReader::parseValueSymbolTable(VSTOffset))
3366               return EC;
3367             SeenValueSymbolTable = true;
3368             // Fall through so that we record the NextUnreadBit below.
3369             // This is necessary in case we have an anonymous function that
3370             // is later materialized. Since it will not have a VST entry we
3371             // need to fall back to the lazy parse to find its offset.
3372           } else {
3373             // If we have a VST forward declaration record, but have already
3374             // parsed the VST (just above, when the first function body was
3375             // encountered here), then we are resuming the parse after
3376             // materializing functions. The ResumeBit points to the
3377             // start of the last function block recorded in the
3378             // DeferredFunctionInfo map. Skip it.
3379             if (Stream.SkipBlock())
3380               return error("Invalid record");
3381             continue;
3382           }
3383         }
3384 
3385         // Support older bitcode files that did not have the function
3386         // index in the VST, nor a VST forward declaration record, as
3387         // well as anonymous functions that do not have VST entries.
3388         // Build the DeferredFunctionInfo vector on the fly.
3389         if (std::error_code EC = rememberAndSkipFunctionBody())
3390           return EC;
3391 
3392         // Suspend parsing when we reach the function bodies. Subsequent
3393         // materialization calls will resume it when necessary. If the bitcode
3394         // file is old, the symbol table will be at the end instead and will not
3395         // have been seen yet. In this case, just finish the parse now.
3396         if (SeenValueSymbolTable) {
3397           NextUnreadBit = Stream.GetCurrentBitNo();
3398           return std::error_code();
3399         }
3400         break;
3401       case bitc::USELIST_BLOCK_ID:
3402         if (std::error_code EC = parseUseLists())
3403           return EC;
3404         break;
3405       case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID:
3406         if (std::error_code EC = parseOperandBundleTags())
3407           return EC;
3408         break;
3409       }
3410       continue;
3411 
3412     case BitstreamEntry::Record:
3413       // The interesting case.
3414       break;
3415     }
3416 
3417     // Read a record.
3418     auto BitCode = Stream.readRecord(Entry.ID, Record);
3419     switch (BitCode) {
3420     default: break;  // Default behavior, ignore unknown content.
3421     case bitc::MODULE_CODE_VERSION: {  // VERSION: [version#]
3422       if (Record.size() < 1)
3423         return error("Invalid record");
3424       // Only version #0 and #1 are supported so far.
3425       unsigned module_version = Record[0];
3426       switch (module_version) {
3427         default:
3428           return error("Invalid value");
3429         case 0:
3430           UseRelativeIDs = false;
3431           break;
3432         case 1:
3433           UseRelativeIDs = true;
3434           break;
3435       }
3436       break;
3437     }
3438     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
3439       std::string S;
3440       if (convertToString(Record, 0, S))
3441         return error("Invalid record");
3442       TheModule->setTargetTriple(S);
3443       break;
3444     }
3445     case bitc::MODULE_CODE_DATALAYOUT: {  // DATALAYOUT: [strchr x N]
3446       std::string S;
3447       if (convertToString(Record, 0, S))
3448         return error("Invalid record");
3449       TheModule->setDataLayout(S);
3450       break;
3451     }
3452     case bitc::MODULE_CODE_ASM: {  // ASM: [strchr x N]
3453       std::string S;
3454       if (convertToString(Record, 0, S))
3455         return error("Invalid record");
3456       TheModule->setModuleInlineAsm(S);
3457       break;
3458     }
3459     case bitc::MODULE_CODE_DEPLIB: {  // DEPLIB: [strchr x N]
3460       // FIXME: Remove in 4.0.
3461       std::string S;
3462       if (convertToString(Record, 0, S))
3463         return error("Invalid record");
3464       // Ignore value.
3465       break;
3466     }
3467     case bitc::MODULE_CODE_SECTIONNAME: {  // SECTIONNAME: [strchr x N]
3468       std::string S;
3469       if (convertToString(Record, 0, S))
3470         return error("Invalid record");
3471       SectionTable.push_back(S);
3472       break;
3473     }
3474     case bitc::MODULE_CODE_GCNAME: {  // SECTIONNAME: [strchr x N]
3475       std::string S;
3476       if (convertToString(Record, 0, S))
3477         return error("Invalid record");
3478       GCTable.push_back(S);
3479       break;
3480     }
3481     case bitc::MODULE_CODE_COMDAT: { // COMDAT: [selection_kind, name]
3482       if (Record.size() < 2)
3483         return error("Invalid record");
3484       Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]);
3485       unsigned ComdatNameSize = Record[1];
3486       std::string ComdatName;
3487       ComdatName.reserve(ComdatNameSize);
3488       for (unsigned i = 0; i != ComdatNameSize; ++i)
3489         ComdatName += (char)Record[2 + i];
3490       Comdat *C = TheModule->getOrInsertComdat(ComdatName);
3491       C->setSelectionKind(SK);
3492       ComdatList.push_back(C);
3493       break;
3494     }
3495     // GLOBALVAR: [pointer type, isconst, initid,
3496     //             linkage, alignment, section, visibility, threadlocal,
3497     //             unnamed_addr, externally_initialized, dllstorageclass,
3498     //             comdat]
3499     case bitc::MODULE_CODE_GLOBALVAR: {
3500       if (Record.size() < 6)
3501         return error("Invalid record");
3502       Type *Ty = getTypeByID(Record[0]);
3503       if (!Ty)
3504         return error("Invalid record");
3505       bool isConstant = Record[1] & 1;
3506       bool explicitType = Record[1] & 2;
3507       unsigned AddressSpace;
3508       if (explicitType) {
3509         AddressSpace = Record[1] >> 2;
3510       } else {
3511         if (!Ty->isPointerTy())
3512           return error("Invalid type for value");
3513         AddressSpace = cast<PointerType>(Ty)->getAddressSpace();
3514         Ty = cast<PointerType>(Ty)->getElementType();
3515       }
3516 
3517       uint64_t RawLinkage = Record[3];
3518       GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
3519       unsigned Alignment;
3520       if (std::error_code EC = parseAlignmentValue(Record[4], Alignment))
3521         return EC;
3522       std::string Section;
3523       if (Record[5]) {
3524         if (Record[5]-1 >= SectionTable.size())
3525           return error("Invalid ID");
3526         Section = SectionTable[Record[5]-1];
3527       }
3528       GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility;
3529       // Local linkage must have default visibility.
3530       if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage))
3531         // FIXME: Change to an error if non-default in 4.0.
3532         Visibility = getDecodedVisibility(Record[6]);
3533 
3534       GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal;
3535       if (Record.size() > 7)
3536         TLM = getDecodedThreadLocalMode(Record[7]);
3537 
3538       bool UnnamedAddr = false;
3539       if (Record.size() > 8)
3540         UnnamedAddr = Record[8];
3541 
3542       bool ExternallyInitialized = false;
3543       if (Record.size() > 9)
3544         ExternallyInitialized = Record[9];
3545 
3546       GlobalVariable *NewGV =
3547         new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, "", nullptr,
3548                            TLM, AddressSpace, ExternallyInitialized);
3549       NewGV->setAlignment(Alignment);
3550       if (!Section.empty())
3551         NewGV->setSection(Section);
3552       NewGV->setVisibility(Visibility);
3553       NewGV->setUnnamedAddr(UnnamedAddr);
3554 
3555       if (Record.size() > 10)
3556         NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10]));
3557       else
3558         upgradeDLLImportExportLinkage(NewGV, RawLinkage);
3559 
3560       ValueList.push_back(NewGV);
3561 
3562       // Remember which value to use for the global initializer.
3563       if (unsigned InitID = Record[2])
3564         GlobalInits.push_back(std::make_pair(NewGV, InitID-1));
3565 
3566       if (Record.size() > 11) {
3567         if (unsigned ComdatID = Record[11]) {
3568           if (ComdatID > ComdatList.size())
3569             return error("Invalid global variable comdat ID");
3570           NewGV->setComdat(ComdatList[ComdatID - 1]);
3571         }
3572       } else if (hasImplicitComdat(RawLinkage)) {
3573         NewGV->setComdat(reinterpret_cast<Comdat *>(1));
3574       }
3575       break;
3576     }
3577     // FUNCTION:  [type, callingconv, isproto, linkage, paramattr,
3578     //             alignment, section, visibility, gc, unnamed_addr,
3579     //             prologuedata, dllstorageclass, comdat, prefixdata]
3580     case bitc::MODULE_CODE_FUNCTION: {
3581       if (Record.size() < 8)
3582         return error("Invalid record");
3583       Type *Ty = getTypeByID(Record[0]);
3584       if (!Ty)
3585         return error("Invalid record");
3586       if (auto *PTy = dyn_cast<PointerType>(Ty))
3587         Ty = PTy->getElementType();
3588       auto *FTy = dyn_cast<FunctionType>(Ty);
3589       if (!FTy)
3590         return error("Invalid type for value");
3591       auto CC = static_cast<CallingConv::ID>(Record[1]);
3592       if (CC & ~CallingConv::MaxID)
3593         return error("Invalid calling convention ID");
3594 
3595       Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage,
3596                                         "", TheModule);
3597 
3598       Func->setCallingConv(CC);
3599       bool isProto = Record[2];
3600       uint64_t RawLinkage = Record[3];
3601       Func->setLinkage(getDecodedLinkage(RawLinkage));
3602       Func->setAttributes(getAttributes(Record[4]));
3603 
3604       unsigned Alignment;
3605       if (std::error_code EC = parseAlignmentValue(Record[5], Alignment))
3606         return EC;
3607       Func->setAlignment(Alignment);
3608       if (Record[6]) {
3609         if (Record[6]-1 >= SectionTable.size())
3610           return error("Invalid ID");
3611         Func->setSection(SectionTable[Record[6]-1]);
3612       }
3613       // Local linkage must have default visibility.
3614       if (!Func->hasLocalLinkage())
3615         // FIXME: Change to an error if non-default in 4.0.
3616         Func->setVisibility(getDecodedVisibility(Record[7]));
3617       if (Record.size() > 8 && Record[8]) {
3618         if (Record[8]-1 >= GCTable.size())
3619           return error("Invalid ID");
3620         Func->setGC(GCTable[Record[8]-1].c_str());
3621       }
3622       bool UnnamedAddr = false;
3623       if (Record.size() > 9)
3624         UnnamedAddr = Record[9];
3625       Func->setUnnamedAddr(UnnamedAddr);
3626       if (Record.size() > 10 && Record[10] != 0)
3627         FunctionPrologues.push_back(std::make_pair(Func, Record[10]-1));
3628 
3629       if (Record.size() > 11)
3630         Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11]));
3631       else
3632         upgradeDLLImportExportLinkage(Func, RawLinkage);
3633 
3634       if (Record.size() > 12) {
3635         if (unsigned ComdatID = Record[12]) {
3636           if (ComdatID > ComdatList.size())
3637             return error("Invalid function comdat ID");
3638           Func->setComdat(ComdatList[ComdatID - 1]);
3639         }
3640       } else if (hasImplicitComdat(RawLinkage)) {
3641         Func->setComdat(reinterpret_cast<Comdat *>(1));
3642       }
3643 
3644       if (Record.size() > 13 && Record[13] != 0)
3645         FunctionPrefixes.push_back(std::make_pair(Func, Record[13]-1));
3646 
3647       if (Record.size() > 14 && Record[14] != 0)
3648         FunctionPersonalityFns.push_back(std::make_pair(Func, Record[14] - 1));
3649 
3650       ValueList.push_back(Func);
3651 
3652       // If this is a function with a body, remember the prototype we are
3653       // creating now, so that we can match up the body with them later.
3654       if (!isProto) {
3655         Func->setIsMaterializable(true);
3656         FunctionsWithBodies.push_back(Func);
3657         DeferredFunctionInfo[Func] = 0;
3658       }
3659       break;
3660     }
3661     // ALIAS: [alias type, addrspace, aliasee val#, linkage]
3662     // ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, dllstorageclass]
3663     case bitc::MODULE_CODE_ALIAS:
3664     case bitc::MODULE_CODE_ALIAS_OLD: {
3665       bool NewRecord = BitCode == bitc::MODULE_CODE_ALIAS;
3666       if (Record.size() < (3 + (unsigned)NewRecord))
3667         return error("Invalid record");
3668       unsigned OpNum = 0;
3669       Type *Ty = getTypeByID(Record[OpNum++]);
3670       if (!Ty)
3671         return error("Invalid record");
3672 
3673       unsigned AddrSpace;
3674       if (!NewRecord) {
3675         auto *PTy = dyn_cast<PointerType>(Ty);
3676         if (!PTy)
3677           return error("Invalid type for value");
3678         Ty = PTy->getElementType();
3679         AddrSpace = PTy->getAddressSpace();
3680       } else {
3681         AddrSpace = Record[OpNum++];
3682       }
3683 
3684       auto Val = Record[OpNum++];
3685       auto Linkage = Record[OpNum++];
3686       auto *NewGA = GlobalAlias::create(
3687           Ty, AddrSpace, getDecodedLinkage(Linkage), "", TheModule);
3688       // Old bitcode files didn't have visibility field.
3689       // Local linkage must have default visibility.
3690       if (OpNum != Record.size()) {
3691         auto VisInd = OpNum++;
3692         if (!NewGA->hasLocalLinkage())
3693           // FIXME: Change to an error if non-default in 4.0.
3694           NewGA->setVisibility(getDecodedVisibility(Record[VisInd]));
3695       }
3696       if (OpNum != Record.size())
3697         NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++]));
3698       else
3699         upgradeDLLImportExportLinkage(NewGA, Linkage);
3700       if (OpNum != Record.size())
3701         NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++]));
3702       if (OpNum != Record.size())
3703         NewGA->setUnnamedAddr(Record[OpNum++]);
3704       ValueList.push_back(NewGA);
3705       AliasInits.push_back(std::make_pair(NewGA, Val));
3706       break;
3707     }
3708     /// MODULE_CODE_PURGEVALS: [numvals]
3709     case bitc::MODULE_CODE_PURGEVALS:
3710       // Trim down the value list to the specified size.
3711       if (Record.size() < 1 || Record[0] > ValueList.size())
3712         return error("Invalid record");
3713       ValueList.shrinkTo(Record[0]);
3714       break;
3715     /// MODULE_CODE_VSTOFFSET: [offset]
3716     case bitc::MODULE_CODE_VSTOFFSET:
3717       if (Record.size() < 1)
3718         return error("Invalid record");
3719       VSTOffset = Record[0];
3720       break;
3721     /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
3722     case bitc::MODULE_CODE_SOURCE_FILENAME:
3723       SmallString<128> ValueName;
3724       if (convertToString(Record, 0, ValueName))
3725         return error("Invalid record");
3726       TheModule->setSourceFileName(ValueName);
3727       break;
3728     }
3729     Record.clear();
3730   }
3731 }
3732 
3733 /// Helper to read the header common to all bitcode files.
3734 static bool hasValidBitcodeHeader(BitstreamCursor &Stream) {
3735   // Sniff for the signature.
3736   if (Stream.Read(8) != 'B' ||
3737       Stream.Read(8) != 'C' ||
3738       Stream.Read(4) != 0x0 ||
3739       Stream.Read(4) != 0xC ||
3740       Stream.Read(4) != 0xE ||
3741       Stream.Read(4) != 0xD)
3742     return false;
3743   return true;
3744 }
3745 
3746 std::error_code
3747 BitcodeReader::parseBitcodeInto(std::unique_ptr<DataStreamer> Streamer,
3748                                 Module *M, bool ShouldLazyLoadMetadata) {
3749   TheModule = M;
3750 
3751   if (std::error_code EC = initStream(std::move(Streamer)))
3752     return EC;
3753 
3754   // Sniff for the signature.
3755   if (!hasValidBitcodeHeader(Stream))
3756     return error("Invalid bitcode signature");
3757 
3758   // We expect a number of well-defined blocks, though we don't necessarily
3759   // need to understand them all.
3760   while (1) {
3761     if (Stream.AtEndOfStream()) {
3762       // We didn't really read a proper Module.
3763       return error("Malformed IR file");
3764     }
3765 
3766     BitstreamEntry Entry =
3767       Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs);
3768 
3769     if (Entry.Kind != BitstreamEntry::SubBlock)
3770       return error("Malformed block");
3771 
3772     if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) {
3773       parseBitcodeVersion();
3774       continue;
3775     }
3776 
3777     if (Entry.ID == bitc::MODULE_BLOCK_ID)
3778       return parseModule(0, ShouldLazyLoadMetadata);
3779 
3780     if (Stream.SkipBlock())
3781       return error("Invalid record");
3782   }
3783 }
3784 
3785 ErrorOr<std::string> BitcodeReader::parseModuleTriple() {
3786   if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
3787     return error("Invalid record");
3788 
3789   SmallVector<uint64_t, 64> Record;
3790 
3791   std::string Triple;
3792   // Read all the records for this module.
3793   while (1) {
3794     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
3795 
3796     switch (Entry.Kind) {
3797     case BitstreamEntry::SubBlock: // Handled for us already.
3798     case BitstreamEntry::Error:
3799       return error("Malformed block");
3800     case BitstreamEntry::EndBlock:
3801       return Triple;
3802     case BitstreamEntry::Record:
3803       // The interesting case.
3804       break;
3805     }
3806 
3807     // Read a record.
3808     switch (Stream.readRecord(Entry.ID, Record)) {
3809     default: break;  // Default behavior, ignore unknown content.
3810     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
3811       std::string S;
3812       if (convertToString(Record, 0, S))
3813         return error("Invalid record");
3814       Triple = S;
3815       break;
3816     }
3817     }
3818     Record.clear();
3819   }
3820   llvm_unreachable("Exit infinite loop");
3821 }
3822 
3823 ErrorOr<std::string> BitcodeReader::parseTriple() {
3824   if (std::error_code EC = initStream(nullptr))
3825     return EC;
3826 
3827   // Sniff for the signature.
3828   if (!hasValidBitcodeHeader(Stream))
3829     return error("Invalid bitcode signature");
3830 
3831   // We expect a number of well-defined blocks, though we don't necessarily
3832   // need to understand them all.
3833   while (1) {
3834     BitstreamEntry Entry = Stream.advance();
3835 
3836     switch (Entry.Kind) {
3837     case BitstreamEntry::Error:
3838       return error("Malformed block");
3839     case BitstreamEntry::EndBlock:
3840       return std::error_code();
3841 
3842     case BitstreamEntry::SubBlock:
3843       if (Entry.ID == bitc::MODULE_BLOCK_ID)
3844         return parseModuleTriple();
3845 
3846       // Ignore other sub-blocks.
3847       if (Stream.SkipBlock())
3848         return error("Malformed block");
3849       continue;
3850 
3851     case BitstreamEntry::Record:
3852       Stream.skipRecord(Entry.ID);
3853       continue;
3854     }
3855   }
3856 }
3857 
3858 ErrorOr<std::string> BitcodeReader::parseIdentificationBlock() {
3859   if (std::error_code EC = initStream(nullptr))
3860     return EC;
3861 
3862   // Sniff for the signature.
3863   if (!hasValidBitcodeHeader(Stream))
3864     return error("Invalid bitcode signature");
3865 
3866   // We expect a number of well-defined blocks, though we don't necessarily
3867   // need to understand them all.
3868   while (1) {
3869     BitstreamEntry Entry = Stream.advance();
3870     switch (Entry.Kind) {
3871     case BitstreamEntry::Error:
3872       return error("Malformed block");
3873     case BitstreamEntry::EndBlock:
3874       return std::error_code();
3875 
3876     case BitstreamEntry::SubBlock:
3877       if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) {
3878         if (std::error_code EC = parseBitcodeVersion())
3879           return EC;
3880         return ProducerIdentification;
3881       }
3882       // Ignore other sub-blocks.
3883       if (Stream.SkipBlock())
3884         return error("Malformed block");
3885       continue;
3886     case BitstreamEntry::Record:
3887       Stream.skipRecord(Entry.ID);
3888       continue;
3889     }
3890   }
3891 }
3892 
3893 /// Parse metadata attachments.
3894 std::error_code BitcodeReader::parseMetadataAttachment(Function &F) {
3895   if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID))
3896     return error("Invalid record");
3897 
3898   SmallVector<uint64_t, 64> Record;
3899   while (1) {
3900     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
3901 
3902     switch (Entry.Kind) {
3903     case BitstreamEntry::SubBlock: // Handled for us already.
3904     case BitstreamEntry::Error:
3905       return error("Malformed block");
3906     case BitstreamEntry::EndBlock:
3907       return std::error_code();
3908     case BitstreamEntry::Record:
3909       // The interesting case.
3910       break;
3911     }
3912 
3913     // Read a metadata attachment record.
3914     Record.clear();
3915     switch (Stream.readRecord(Entry.ID, Record)) {
3916     default:  // Default behavior: ignore.
3917       break;
3918     case bitc::METADATA_ATTACHMENT: {
3919       unsigned RecordLength = Record.size();
3920       if (Record.empty())
3921         return error("Invalid record");
3922       if (RecordLength % 2 == 0) {
3923         // A function attachment.
3924         for (unsigned I = 0; I != RecordLength; I += 2) {
3925           auto K = MDKindMap.find(Record[I]);
3926           if (K == MDKindMap.end())
3927             return error("Invalid ID");
3928           MDNode *MD = MetadataList.getMDNodeFwdRefOrNull(Record[I + 1]);
3929           if (!MD)
3930             return error("Invalid metadata attachment");
3931           F.setMetadata(K->second, MD);
3932         }
3933         continue;
3934       }
3935 
3936       // An instruction attachment.
3937       Instruction *Inst = InstructionList[Record[0]];
3938       for (unsigned i = 1; i != RecordLength; i = i+2) {
3939         unsigned Kind = Record[i];
3940         DenseMap<unsigned, unsigned>::iterator I =
3941           MDKindMap.find(Kind);
3942         if (I == MDKindMap.end())
3943           return error("Invalid ID");
3944         Metadata *Node = MetadataList.getMetadataFwdRef(Record[i + 1]);
3945         if (isa<LocalAsMetadata>(Node))
3946           // Drop the attachment.  This used to be legal, but there's no
3947           // upgrade path.
3948           break;
3949         MDNode *MD = dyn_cast_or_null<MDNode>(Node);
3950         if (!MD)
3951           return error("Invalid metadata attachment");
3952 
3953         if (HasSeenOldLoopTags && I->second == LLVMContext::MD_loop)
3954           MD = upgradeInstructionLoopAttachment(*MD);
3955 
3956         Inst->setMetadata(I->second, MD);
3957         if (I->second == LLVMContext::MD_tbaa) {
3958           InstsWithTBAATag.push_back(Inst);
3959           continue;
3960         }
3961       }
3962       break;
3963     }
3964     }
3965   }
3966 }
3967 
3968 static std::error_code typeCheckLoadStoreInst(Type *ValType, Type *PtrType) {
3969   LLVMContext &Context = PtrType->getContext();
3970   if (!isa<PointerType>(PtrType))
3971     return error(Context, "Load/Store operand is not a pointer type");
3972   Type *ElemType = cast<PointerType>(PtrType)->getElementType();
3973 
3974   if (ValType && ValType != ElemType)
3975     return error(Context, "Explicit load/store type does not match pointee "
3976                           "type of pointer operand");
3977   if (!PointerType::isLoadableOrStorableType(ElemType))
3978     return error(Context, "Cannot load/store from pointer");
3979   return std::error_code();
3980 }
3981 
3982 /// Lazily parse the specified function body block.
3983 std::error_code BitcodeReader::parseFunctionBody(Function *F) {
3984   if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID))
3985     return error("Invalid record");
3986 
3987   InstructionList.clear();
3988   unsigned ModuleValueListSize = ValueList.size();
3989   unsigned ModuleMetadataListSize = MetadataList.size();
3990 
3991   // Add all the function arguments to the value table.
3992   for (Argument &I : F->args())
3993     ValueList.push_back(&I);
3994 
3995   unsigned NextValueNo = ValueList.size();
3996   BasicBlock *CurBB = nullptr;
3997   unsigned CurBBNo = 0;
3998 
3999   DebugLoc LastLoc;
4000   auto getLastInstruction = [&]() -> Instruction * {
4001     if (CurBB && !CurBB->empty())
4002       return &CurBB->back();
4003     else if (CurBBNo && FunctionBBs[CurBBNo - 1] &&
4004              !FunctionBBs[CurBBNo - 1]->empty())
4005       return &FunctionBBs[CurBBNo - 1]->back();
4006     return nullptr;
4007   };
4008 
4009   std::vector<OperandBundleDef> OperandBundles;
4010 
4011   // Read all the records.
4012   SmallVector<uint64_t, 64> Record;
4013   while (1) {
4014     BitstreamEntry Entry = Stream.advance();
4015 
4016     switch (Entry.Kind) {
4017     case BitstreamEntry::Error:
4018       return error("Malformed block");
4019     case BitstreamEntry::EndBlock:
4020       goto OutOfRecordLoop;
4021 
4022     case BitstreamEntry::SubBlock:
4023       switch (Entry.ID) {
4024       default:  // Skip unknown content.
4025         if (Stream.SkipBlock())
4026           return error("Invalid record");
4027         break;
4028       case bitc::CONSTANTS_BLOCK_ID:
4029         if (std::error_code EC = parseConstants())
4030           return EC;
4031         NextValueNo = ValueList.size();
4032         break;
4033       case bitc::VALUE_SYMTAB_BLOCK_ID:
4034         if (std::error_code EC = parseValueSymbolTable())
4035           return EC;
4036         break;
4037       case bitc::METADATA_ATTACHMENT_ID:
4038         if (std::error_code EC = parseMetadataAttachment(*F))
4039           return EC;
4040         break;
4041       case bitc::METADATA_BLOCK_ID:
4042         if (std::error_code EC = parseMetadata())
4043           return EC;
4044         break;
4045       case bitc::USELIST_BLOCK_ID:
4046         if (std::error_code EC = parseUseLists())
4047           return EC;
4048         break;
4049       }
4050       continue;
4051 
4052     case BitstreamEntry::Record:
4053       // The interesting case.
4054       break;
4055     }
4056 
4057     // Read a record.
4058     Record.clear();
4059     Instruction *I = nullptr;
4060     unsigned BitCode = Stream.readRecord(Entry.ID, Record);
4061     switch (BitCode) {
4062     default: // Default behavior: reject
4063       return error("Invalid value");
4064     case bitc::FUNC_CODE_DECLAREBLOCKS: {   // DECLAREBLOCKS: [nblocks]
4065       if (Record.size() < 1 || Record[0] == 0)
4066         return error("Invalid record");
4067       // Create all the basic blocks for the function.
4068       FunctionBBs.resize(Record[0]);
4069 
4070       // See if anything took the address of blocks in this function.
4071       auto BBFRI = BasicBlockFwdRefs.find(F);
4072       if (BBFRI == BasicBlockFwdRefs.end()) {
4073         for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i)
4074           FunctionBBs[i] = BasicBlock::Create(Context, "", F);
4075       } else {
4076         auto &BBRefs = BBFRI->second;
4077         // Check for invalid basic block references.
4078         if (BBRefs.size() > FunctionBBs.size())
4079           return error("Invalid ID");
4080         assert(!BBRefs.empty() && "Unexpected empty array");
4081         assert(!BBRefs.front() && "Invalid reference to entry block");
4082         for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E;
4083              ++I)
4084           if (I < RE && BBRefs[I]) {
4085             BBRefs[I]->insertInto(F);
4086             FunctionBBs[I] = BBRefs[I];
4087           } else {
4088             FunctionBBs[I] = BasicBlock::Create(Context, "", F);
4089           }
4090 
4091         // Erase from the table.
4092         BasicBlockFwdRefs.erase(BBFRI);
4093       }
4094 
4095       CurBB = FunctionBBs[0];
4096       continue;
4097     }
4098 
4099     case bitc::FUNC_CODE_DEBUG_LOC_AGAIN:  // DEBUG_LOC_AGAIN
4100       // This record indicates that the last instruction is at the same
4101       // location as the previous instruction with a location.
4102       I = getLastInstruction();
4103 
4104       if (!I)
4105         return error("Invalid record");
4106       I->setDebugLoc(LastLoc);
4107       I = nullptr;
4108       continue;
4109 
4110     case bitc::FUNC_CODE_DEBUG_LOC: {      // DEBUG_LOC: [line, col, scope, ia]
4111       I = getLastInstruction();
4112       if (!I || Record.size() < 4)
4113         return error("Invalid record");
4114 
4115       unsigned Line = Record[0], Col = Record[1];
4116       unsigned ScopeID = Record[2], IAID = Record[3];
4117 
4118       MDNode *Scope = nullptr, *IA = nullptr;
4119       if (ScopeID) {
4120         Scope = MetadataList.getMDNodeFwdRefOrNull(ScopeID - 1);
4121         if (!Scope)
4122           return error("Invalid record");
4123       }
4124       if (IAID) {
4125         IA = MetadataList.getMDNodeFwdRefOrNull(IAID - 1);
4126         if (!IA)
4127           return error("Invalid record");
4128       }
4129       LastLoc = DebugLoc::get(Line, Col, Scope, IA);
4130       I->setDebugLoc(LastLoc);
4131       I = nullptr;
4132       continue;
4133     }
4134 
4135     case bitc::FUNC_CODE_INST_BINOP: {    // BINOP: [opval, ty, opval, opcode]
4136       unsigned OpNum = 0;
4137       Value *LHS, *RHS;
4138       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
4139           popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) ||
4140           OpNum+1 > Record.size())
4141         return error("Invalid record");
4142 
4143       int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType());
4144       if (Opc == -1)
4145         return error("Invalid record");
4146       I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
4147       InstructionList.push_back(I);
4148       if (OpNum < Record.size()) {
4149         if (Opc == Instruction::Add ||
4150             Opc == Instruction::Sub ||
4151             Opc == Instruction::Mul ||
4152             Opc == Instruction::Shl) {
4153           if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP))
4154             cast<BinaryOperator>(I)->setHasNoSignedWrap(true);
4155           if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
4156             cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true);
4157         } else if (Opc == Instruction::SDiv ||
4158                    Opc == Instruction::UDiv ||
4159                    Opc == Instruction::LShr ||
4160                    Opc == Instruction::AShr) {
4161           if (Record[OpNum] & (1 << bitc::PEO_EXACT))
4162             cast<BinaryOperator>(I)->setIsExact(true);
4163         } else if (isa<FPMathOperator>(I)) {
4164           FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
4165           if (FMF.any())
4166             I->setFastMathFlags(FMF);
4167         }
4168 
4169       }
4170       break;
4171     }
4172     case bitc::FUNC_CODE_INST_CAST: {    // CAST: [opval, opty, destty, castopc]
4173       unsigned OpNum = 0;
4174       Value *Op;
4175       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
4176           OpNum+2 != Record.size())
4177         return error("Invalid record");
4178 
4179       Type *ResTy = getTypeByID(Record[OpNum]);
4180       int Opc = getDecodedCastOpcode(Record[OpNum + 1]);
4181       if (Opc == -1 || !ResTy)
4182         return error("Invalid record");
4183       Instruction *Temp = nullptr;
4184       if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) {
4185         if (Temp) {
4186           InstructionList.push_back(Temp);
4187           CurBB->getInstList().push_back(Temp);
4188         }
4189       } else {
4190         auto CastOp = (Instruction::CastOps)Opc;
4191         if (!CastInst::castIsValid(CastOp, Op, ResTy))
4192           return error("Invalid cast");
4193         I = CastInst::Create(CastOp, Op, ResTy);
4194       }
4195       InstructionList.push_back(I);
4196       break;
4197     }
4198     case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD:
4199     case bitc::FUNC_CODE_INST_GEP_OLD:
4200     case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands]
4201       unsigned OpNum = 0;
4202 
4203       Type *Ty;
4204       bool InBounds;
4205 
4206       if (BitCode == bitc::FUNC_CODE_INST_GEP) {
4207         InBounds = Record[OpNum++];
4208         Ty = getTypeByID(Record[OpNum++]);
4209       } else {
4210         InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD;
4211         Ty = nullptr;
4212       }
4213 
4214       Value *BasePtr;
4215       if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr))
4216         return error("Invalid record");
4217 
4218       if (!Ty)
4219         Ty = cast<SequentialType>(BasePtr->getType()->getScalarType())
4220                  ->getElementType();
4221       else if (Ty !=
4222                cast<SequentialType>(BasePtr->getType()->getScalarType())
4223                    ->getElementType())
4224         return error(
4225             "Explicit gep type does not match pointee type of pointer operand");
4226 
4227       SmallVector<Value*, 16> GEPIdx;
4228       while (OpNum != Record.size()) {
4229         Value *Op;
4230         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4231           return error("Invalid record");
4232         GEPIdx.push_back(Op);
4233       }
4234 
4235       I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx);
4236 
4237       InstructionList.push_back(I);
4238       if (InBounds)
4239         cast<GetElementPtrInst>(I)->setIsInBounds(true);
4240       break;
4241     }
4242 
4243     case bitc::FUNC_CODE_INST_EXTRACTVAL: {
4244                                        // EXTRACTVAL: [opty, opval, n x indices]
4245       unsigned OpNum = 0;
4246       Value *Agg;
4247       if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
4248         return error("Invalid record");
4249 
4250       unsigned RecSize = Record.size();
4251       if (OpNum == RecSize)
4252         return error("EXTRACTVAL: Invalid instruction with 0 indices");
4253 
4254       SmallVector<unsigned, 4> EXTRACTVALIdx;
4255       Type *CurTy = Agg->getType();
4256       for (; OpNum != RecSize; ++OpNum) {
4257         bool IsArray = CurTy->isArrayTy();
4258         bool IsStruct = CurTy->isStructTy();
4259         uint64_t Index = Record[OpNum];
4260 
4261         if (!IsStruct && !IsArray)
4262           return error("EXTRACTVAL: Invalid type");
4263         if ((unsigned)Index != Index)
4264           return error("Invalid value");
4265         if (IsStruct && Index >= CurTy->subtypes().size())
4266           return error("EXTRACTVAL: Invalid struct index");
4267         if (IsArray && Index >= CurTy->getArrayNumElements())
4268           return error("EXTRACTVAL: Invalid array index");
4269         EXTRACTVALIdx.push_back((unsigned)Index);
4270 
4271         if (IsStruct)
4272           CurTy = CurTy->subtypes()[Index];
4273         else
4274           CurTy = CurTy->subtypes()[0];
4275       }
4276 
4277       I = ExtractValueInst::Create(Agg, EXTRACTVALIdx);
4278       InstructionList.push_back(I);
4279       break;
4280     }
4281 
4282     case bitc::FUNC_CODE_INST_INSERTVAL: {
4283                            // INSERTVAL: [opty, opval, opty, opval, n x indices]
4284       unsigned OpNum = 0;
4285       Value *Agg;
4286       if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
4287         return error("Invalid record");
4288       Value *Val;
4289       if (getValueTypePair(Record, OpNum, NextValueNo, Val))
4290         return error("Invalid record");
4291 
4292       unsigned RecSize = Record.size();
4293       if (OpNum == RecSize)
4294         return error("INSERTVAL: Invalid instruction with 0 indices");
4295 
4296       SmallVector<unsigned, 4> INSERTVALIdx;
4297       Type *CurTy = Agg->getType();
4298       for (; OpNum != RecSize; ++OpNum) {
4299         bool IsArray = CurTy->isArrayTy();
4300         bool IsStruct = CurTy->isStructTy();
4301         uint64_t Index = Record[OpNum];
4302 
4303         if (!IsStruct && !IsArray)
4304           return error("INSERTVAL: Invalid type");
4305         if ((unsigned)Index != Index)
4306           return error("Invalid value");
4307         if (IsStruct && Index >= CurTy->subtypes().size())
4308           return error("INSERTVAL: Invalid struct index");
4309         if (IsArray && Index >= CurTy->getArrayNumElements())
4310           return error("INSERTVAL: Invalid array index");
4311 
4312         INSERTVALIdx.push_back((unsigned)Index);
4313         if (IsStruct)
4314           CurTy = CurTy->subtypes()[Index];
4315         else
4316           CurTy = CurTy->subtypes()[0];
4317       }
4318 
4319       if (CurTy != Val->getType())
4320         return error("Inserted value type doesn't match aggregate type");
4321 
4322       I = InsertValueInst::Create(Agg, Val, INSERTVALIdx);
4323       InstructionList.push_back(I);
4324       break;
4325     }
4326 
4327     case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval]
4328       // obsolete form of select
4329       // handles select i1 ... in old bitcode
4330       unsigned OpNum = 0;
4331       Value *TrueVal, *FalseVal, *Cond;
4332       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
4333           popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) ||
4334           popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond))
4335         return error("Invalid record");
4336 
4337       I = SelectInst::Create(Cond, TrueVal, FalseVal);
4338       InstructionList.push_back(I);
4339       break;
4340     }
4341 
4342     case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred]
4343       // new form of select
4344       // handles select i1 or select [N x i1]
4345       unsigned OpNum = 0;
4346       Value *TrueVal, *FalseVal, *Cond;
4347       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
4348           popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) ||
4349           getValueTypePair(Record, OpNum, NextValueNo, Cond))
4350         return error("Invalid record");
4351 
4352       // select condition can be either i1 or [N x i1]
4353       if (VectorType* vector_type =
4354           dyn_cast<VectorType>(Cond->getType())) {
4355         // expect <n x i1>
4356         if (vector_type->getElementType() != Type::getInt1Ty(Context))
4357           return error("Invalid type for value");
4358       } else {
4359         // expect i1
4360         if (Cond->getType() != Type::getInt1Ty(Context))
4361           return error("Invalid type for value");
4362       }
4363 
4364       I = SelectInst::Create(Cond, TrueVal, FalseVal);
4365       InstructionList.push_back(I);
4366       break;
4367     }
4368 
4369     case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval]
4370       unsigned OpNum = 0;
4371       Value *Vec, *Idx;
4372       if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
4373           getValueTypePair(Record, OpNum, NextValueNo, Idx))
4374         return error("Invalid record");
4375       if (!Vec->getType()->isVectorTy())
4376         return error("Invalid type for value");
4377       I = ExtractElementInst::Create(Vec, Idx);
4378       InstructionList.push_back(I);
4379       break;
4380     }
4381 
4382     case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval]
4383       unsigned OpNum = 0;
4384       Value *Vec, *Elt, *Idx;
4385       if (getValueTypePair(Record, OpNum, NextValueNo, Vec))
4386         return error("Invalid record");
4387       if (!Vec->getType()->isVectorTy())
4388         return error("Invalid type for value");
4389       if (popValue(Record, OpNum, NextValueNo,
4390                    cast<VectorType>(Vec->getType())->getElementType(), Elt) ||
4391           getValueTypePair(Record, OpNum, NextValueNo, Idx))
4392         return error("Invalid record");
4393       I = InsertElementInst::Create(Vec, Elt, Idx);
4394       InstructionList.push_back(I);
4395       break;
4396     }
4397 
4398     case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval]
4399       unsigned OpNum = 0;
4400       Value *Vec1, *Vec2, *Mask;
4401       if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) ||
4402           popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2))
4403         return error("Invalid record");
4404 
4405       if (getValueTypePair(Record, OpNum, NextValueNo, Mask))
4406         return error("Invalid record");
4407       if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy())
4408         return error("Invalid type for value");
4409       I = new ShuffleVectorInst(Vec1, Vec2, Mask);
4410       InstructionList.push_back(I);
4411       break;
4412     }
4413 
4414     case bitc::FUNC_CODE_INST_CMP:   // CMP: [opty, opval, opval, pred]
4415       // Old form of ICmp/FCmp returning bool
4416       // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were
4417       // both legal on vectors but had different behaviour.
4418     case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred]
4419       // FCmp/ICmp returning bool or vector of bool
4420 
4421       unsigned OpNum = 0;
4422       Value *LHS, *RHS;
4423       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
4424           popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS))
4425         return error("Invalid record");
4426 
4427       unsigned PredVal = Record[OpNum];
4428       bool IsFP = LHS->getType()->isFPOrFPVectorTy();
4429       FastMathFlags FMF;
4430       if (IsFP && Record.size() > OpNum+1)
4431         FMF = getDecodedFastMathFlags(Record[++OpNum]);
4432 
4433       if (OpNum+1 != Record.size())
4434         return error("Invalid record");
4435 
4436       if (LHS->getType()->isFPOrFPVectorTy())
4437         I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS);
4438       else
4439         I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS);
4440 
4441       if (FMF.any())
4442         I->setFastMathFlags(FMF);
4443       InstructionList.push_back(I);
4444       break;
4445     }
4446 
4447     case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>]
4448       {
4449         unsigned Size = Record.size();
4450         if (Size == 0) {
4451           I = ReturnInst::Create(Context);
4452           InstructionList.push_back(I);
4453           break;
4454         }
4455 
4456         unsigned OpNum = 0;
4457         Value *Op = nullptr;
4458         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4459           return error("Invalid record");
4460         if (OpNum != Record.size())
4461           return error("Invalid record");
4462 
4463         I = ReturnInst::Create(Context, Op);
4464         InstructionList.push_back(I);
4465         break;
4466       }
4467     case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#]
4468       if (Record.size() != 1 && Record.size() != 3)
4469         return error("Invalid record");
4470       BasicBlock *TrueDest = getBasicBlock(Record[0]);
4471       if (!TrueDest)
4472         return error("Invalid record");
4473 
4474       if (Record.size() == 1) {
4475         I = BranchInst::Create(TrueDest);
4476         InstructionList.push_back(I);
4477       }
4478       else {
4479         BasicBlock *FalseDest = getBasicBlock(Record[1]);
4480         Value *Cond = getValue(Record, 2, NextValueNo,
4481                                Type::getInt1Ty(Context));
4482         if (!FalseDest || !Cond)
4483           return error("Invalid record");
4484         I = BranchInst::Create(TrueDest, FalseDest, Cond);
4485         InstructionList.push_back(I);
4486       }
4487       break;
4488     }
4489     case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#]
4490       if (Record.size() != 1 && Record.size() != 2)
4491         return error("Invalid record");
4492       unsigned Idx = 0;
4493       Value *CleanupPad =
4494           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4495       if (!CleanupPad)
4496         return error("Invalid record");
4497       BasicBlock *UnwindDest = nullptr;
4498       if (Record.size() == 2) {
4499         UnwindDest = getBasicBlock(Record[Idx++]);
4500         if (!UnwindDest)
4501           return error("Invalid record");
4502       }
4503 
4504       I = CleanupReturnInst::Create(CleanupPad, UnwindDest);
4505       InstructionList.push_back(I);
4506       break;
4507     }
4508     case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#]
4509       if (Record.size() != 2)
4510         return error("Invalid record");
4511       unsigned Idx = 0;
4512       Value *CatchPad =
4513           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4514       if (!CatchPad)
4515         return error("Invalid record");
4516       BasicBlock *BB = getBasicBlock(Record[Idx++]);
4517       if (!BB)
4518         return error("Invalid record");
4519 
4520       I = CatchReturnInst::Create(CatchPad, BB);
4521       InstructionList.push_back(I);
4522       break;
4523     }
4524     case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?]
4525       // We must have, at minimum, the outer scope and the number of arguments.
4526       if (Record.size() < 2)
4527         return error("Invalid record");
4528 
4529       unsigned Idx = 0;
4530 
4531       Value *ParentPad =
4532           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4533 
4534       unsigned NumHandlers = Record[Idx++];
4535 
4536       SmallVector<BasicBlock *, 2> Handlers;
4537       for (unsigned Op = 0; Op != NumHandlers; ++Op) {
4538         BasicBlock *BB = getBasicBlock(Record[Idx++]);
4539         if (!BB)
4540           return error("Invalid record");
4541         Handlers.push_back(BB);
4542       }
4543 
4544       BasicBlock *UnwindDest = nullptr;
4545       if (Idx + 1 == Record.size()) {
4546         UnwindDest = getBasicBlock(Record[Idx++]);
4547         if (!UnwindDest)
4548           return error("Invalid record");
4549       }
4550 
4551       if (Record.size() != Idx)
4552         return error("Invalid record");
4553 
4554       auto *CatchSwitch =
4555           CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers);
4556       for (BasicBlock *Handler : Handlers)
4557         CatchSwitch->addHandler(Handler);
4558       I = CatchSwitch;
4559       InstructionList.push_back(I);
4560       break;
4561     }
4562     case bitc::FUNC_CODE_INST_CATCHPAD:
4563     case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*]
4564       // We must have, at minimum, the outer scope and the number of arguments.
4565       if (Record.size() < 2)
4566         return error("Invalid record");
4567 
4568       unsigned Idx = 0;
4569 
4570       Value *ParentPad =
4571           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4572 
4573       unsigned NumArgOperands = Record[Idx++];
4574 
4575       SmallVector<Value *, 2> Args;
4576       for (unsigned Op = 0; Op != NumArgOperands; ++Op) {
4577         Value *Val;
4578         if (getValueTypePair(Record, Idx, NextValueNo, Val))
4579           return error("Invalid record");
4580         Args.push_back(Val);
4581       }
4582 
4583       if (Record.size() != Idx)
4584         return error("Invalid record");
4585 
4586       if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD)
4587         I = CleanupPadInst::Create(ParentPad, Args);
4588       else
4589         I = CatchPadInst::Create(ParentPad, Args);
4590       InstructionList.push_back(I);
4591       break;
4592     }
4593     case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...]
4594       // Check magic
4595       if ((Record[0] >> 16) == SWITCH_INST_MAGIC) {
4596         // "New" SwitchInst format with case ranges. The changes to write this
4597         // format were reverted but we still recognize bitcode that uses it.
4598         // Hopefully someday we will have support for case ranges and can use
4599         // this format again.
4600 
4601         Type *OpTy = getTypeByID(Record[1]);
4602         unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth();
4603 
4604         Value *Cond = getValue(Record, 2, NextValueNo, OpTy);
4605         BasicBlock *Default = getBasicBlock(Record[3]);
4606         if (!OpTy || !Cond || !Default)
4607           return error("Invalid record");
4608 
4609         unsigned NumCases = Record[4];
4610 
4611         SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
4612         InstructionList.push_back(SI);
4613 
4614         unsigned CurIdx = 5;
4615         for (unsigned i = 0; i != NumCases; ++i) {
4616           SmallVector<ConstantInt*, 1> CaseVals;
4617           unsigned NumItems = Record[CurIdx++];
4618           for (unsigned ci = 0; ci != NumItems; ++ci) {
4619             bool isSingleNumber = Record[CurIdx++];
4620 
4621             APInt Low;
4622             unsigned ActiveWords = 1;
4623             if (ValueBitWidth > 64)
4624               ActiveWords = Record[CurIdx++];
4625             Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords),
4626                                 ValueBitWidth);
4627             CurIdx += ActiveWords;
4628 
4629             if (!isSingleNumber) {
4630               ActiveWords = 1;
4631               if (ValueBitWidth > 64)
4632                 ActiveWords = Record[CurIdx++];
4633               APInt High = readWideAPInt(
4634                   makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth);
4635               CurIdx += ActiveWords;
4636 
4637               // FIXME: It is not clear whether values in the range should be
4638               // compared as signed or unsigned values. The partially
4639               // implemented changes that used this format in the past used
4640               // unsigned comparisons.
4641               for ( ; Low.ule(High); ++Low)
4642                 CaseVals.push_back(ConstantInt::get(Context, Low));
4643             } else
4644               CaseVals.push_back(ConstantInt::get(Context, Low));
4645           }
4646           BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]);
4647           for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(),
4648                  cve = CaseVals.end(); cvi != cve; ++cvi)
4649             SI->addCase(*cvi, DestBB);
4650         }
4651         I = SI;
4652         break;
4653       }
4654 
4655       // Old SwitchInst format without case ranges.
4656 
4657       if (Record.size() < 3 || (Record.size() & 1) == 0)
4658         return error("Invalid record");
4659       Type *OpTy = getTypeByID(Record[0]);
4660       Value *Cond = getValue(Record, 1, NextValueNo, OpTy);
4661       BasicBlock *Default = getBasicBlock(Record[2]);
4662       if (!OpTy || !Cond || !Default)
4663         return error("Invalid record");
4664       unsigned NumCases = (Record.size()-3)/2;
4665       SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
4666       InstructionList.push_back(SI);
4667       for (unsigned i = 0, e = NumCases; i != e; ++i) {
4668         ConstantInt *CaseVal =
4669           dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy));
4670         BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]);
4671         if (!CaseVal || !DestBB) {
4672           delete SI;
4673           return error("Invalid record");
4674         }
4675         SI->addCase(CaseVal, DestBB);
4676       }
4677       I = SI;
4678       break;
4679     }
4680     case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...]
4681       if (Record.size() < 2)
4682         return error("Invalid record");
4683       Type *OpTy = getTypeByID(Record[0]);
4684       Value *Address = getValue(Record, 1, NextValueNo, OpTy);
4685       if (!OpTy || !Address)
4686         return error("Invalid record");
4687       unsigned NumDests = Record.size()-2;
4688       IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests);
4689       InstructionList.push_back(IBI);
4690       for (unsigned i = 0, e = NumDests; i != e; ++i) {
4691         if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) {
4692           IBI->addDestination(DestBB);
4693         } else {
4694           delete IBI;
4695           return error("Invalid record");
4696         }
4697       }
4698       I = IBI;
4699       break;
4700     }
4701 
4702     case bitc::FUNC_CODE_INST_INVOKE: {
4703       // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...]
4704       if (Record.size() < 4)
4705         return error("Invalid record");
4706       unsigned OpNum = 0;
4707       AttributeSet PAL = getAttributes(Record[OpNum++]);
4708       unsigned CCInfo = Record[OpNum++];
4709       BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]);
4710       BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]);
4711 
4712       FunctionType *FTy = nullptr;
4713       if (CCInfo >> 13 & 1 &&
4714           !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++]))))
4715         return error("Explicit invoke type is not a function type");
4716 
4717       Value *Callee;
4718       if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
4719         return error("Invalid record");
4720 
4721       PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType());
4722       if (!CalleeTy)
4723         return error("Callee is not a pointer");
4724       if (!FTy) {
4725         FTy = dyn_cast<FunctionType>(CalleeTy->getElementType());
4726         if (!FTy)
4727           return error("Callee is not of pointer to function type");
4728       } else if (CalleeTy->getElementType() != FTy)
4729         return error("Explicit invoke type does not match pointee type of "
4730                      "callee operand");
4731       if (Record.size() < FTy->getNumParams() + OpNum)
4732         return error("Insufficient operands to call");
4733 
4734       SmallVector<Value*, 16> Ops;
4735       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
4736         Ops.push_back(getValue(Record, OpNum, NextValueNo,
4737                                FTy->getParamType(i)));
4738         if (!Ops.back())
4739           return error("Invalid record");
4740       }
4741 
4742       if (!FTy->isVarArg()) {
4743         if (Record.size() != OpNum)
4744           return error("Invalid record");
4745       } else {
4746         // Read type/value pairs for varargs params.
4747         while (OpNum != Record.size()) {
4748           Value *Op;
4749           if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4750             return error("Invalid record");
4751           Ops.push_back(Op);
4752         }
4753       }
4754 
4755       I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops, OperandBundles);
4756       OperandBundles.clear();
4757       InstructionList.push_back(I);
4758       cast<InvokeInst>(I)->setCallingConv(
4759           static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo));
4760       cast<InvokeInst>(I)->setAttributes(PAL);
4761       break;
4762     }
4763     case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval]
4764       unsigned Idx = 0;
4765       Value *Val = nullptr;
4766       if (getValueTypePair(Record, Idx, NextValueNo, Val))
4767         return error("Invalid record");
4768       I = ResumeInst::Create(Val);
4769       InstructionList.push_back(I);
4770       break;
4771     }
4772     case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE
4773       I = new UnreachableInst(Context);
4774       InstructionList.push_back(I);
4775       break;
4776     case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...]
4777       if (Record.size() < 1 || ((Record.size()-1)&1))
4778         return error("Invalid record");
4779       Type *Ty = getTypeByID(Record[0]);
4780       if (!Ty)
4781         return error("Invalid record");
4782 
4783       PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2);
4784       InstructionList.push_back(PN);
4785 
4786       for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) {
4787         Value *V;
4788         // With the new function encoding, it is possible that operands have
4789         // negative IDs (for forward references).  Use a signed VBR
4790         // representation to keep the encoding small.
4791         if (UseRelativeIDs)
4792           V = getValueSigned(Record, 1+i, NextValueNo, Ty);
4793         else
4794           V = getValue(Record, 1+i, NextValueNo, Ty);
4795         BasicBlock *BB = getBasicBlock(Record[2+i]);
4796         if (!V || !BB)
4797           return error("Invalid record");
4798         PN->addIncoming(V, BB);
4799       }
4800       I = PN;
4801       break;
4802     }
4803 
4804     case bitc::FUNC_CODE_INST_LANDINGPAD:
4805     case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: {
4806       // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?]
4807       unsigned Idx = 0;
4808       if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) {
4809         if (Record.size() < 3)
4810           return error("Invalid record");
4811       } else {
4812         assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD);
4813         if (Record.size() < 4)
4814           return error("Invalid record");
4815       }
4816       Type *Ty = getTypeByID(Record[Idx++]);
4817       if (!Ty)
4818         return error("Invalid record");
4819       if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) {
4820         Value *PersFn = nullptr;
4821         if (getValueTypePair(Record, Idx, NextValueNo, PersFn))
4822           return error("Invalid record");
4823 
4824         if (!F->hasPersonalityFn())
4825           F->setPersonalityFn(cast<Constant>(PersFn));
4826         else if (F->getPersonalityFn() != cast<Constant>(PersFn))
4827           return error("Personality function mismatch");
4828       }
4829 
4830       bool IsCleanup = !!Record[Idx++];
4831       unsigned NumClauses = Record[Idx++];
4832       LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses);
4833       LP->setCleanup(IsCleanup);
4834       for (unsigned J = 0; J != NumClauses; ++J) {
4835         LandingPadInst::ClauseType CT =
4836           LandingPadInst::ClauseType(Record[Idx++]); (void)CT;
4837         Value *Val;
4838 
4839         if (getValueTypePair(Record, Idx, NextValueNo, Val)) {
4840           delete LP;
4841           return error("Invalid record");
4842         }
4843 
4844         assert((CT != LandingPadInst::Catch ||
4845                 !isa<ArrayType>(Val->getType())) &&
4846                "Catch clause has a invalid type!");
4847         assert((CT != LandingPadInst::Filter ||
4848                 isa<ArrayType>(Val->getType())) &&
4849                "Filter clause has invalid type!");
4850         LP->addClause(cast<Constant>(Val));
4851       }
4852 
4853       I = LP;
4854       InstructionList.push_back(I);
4855       break;
4856     }
4857 
4858     case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align]
4859       if (Record.size() != 4)
4860         return error("Invalid record");
4861       uint64_t AlignRecord = Record[3];
4862       const uint64_t InAllocaMask = uint64_t(1) << 5;
4863       const uint64_t ExplicitTypeMask = uint64_t(1) << 6;
4864       // Reserve bit 7 for SwiftError flag.
4865       // const uint64_t SwiftErrorMask = uint64_t(1) << 7;
4866       const uint64_t FlagMask = InAllocaMask | ExplicitTypeMask;
4867       bool InAlloca = AlignRecord & InAllocaMask;
4868       Type *Ty = getTypeByID(Record[0]);
4869       if ((AlignRecord & ExplicitTypeMask) == 0) {
4870         auto *PTy = dyn_cast_or_null<PointerType>(Ty);
4871         if (!PTy)
4872           return error("Old-style alloca with a non-pointer type");
4873         Ty = PTy->getElementType();
4874       }
4875       Type *OpTy = getTypeByID(Record[1]);
4876       Value *Size = getFnValueByID(Record[2], OpTy);
4877       unsigned Align;
4878       if (std::error_code EC =
4879               parseAlignmentValue(AlignRecord & ~FlagMask, Align)) {
4880         return EC;
4881       }
4882       if (!Ty || !Size)
4883         return error("Invalid record");
4884       AllocaInst *AI = new AllocaInst(Ty, Size, Align);
4885       AI->setUsedWithInAlloca(InAlloca);
4886       I = AI;
4887       InstructionList.push_back(I);
4888       break;
4889     }
4890     case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol]
4891       unsigned OpNum = 0;
4892       Value *Op;
4893       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
4894           (OpNum + 2 != Record.size() && OpNum + 3 != Record.size()))
4895         return error("Invalid record");
4896 
4897       Type *Ty = nullptr;
4898       if (OpNum + 3 == Record.size())
4899         Ty = getTypeByID(Record[OpNum++]);
4900       if (std::error_code EC = typeCheckLoadStoreInst(Ty, Op->getType()))
4901         return EC;
4902       if (!Ty)
4903         Ty = cast<PointerType>(Op->getType())->getElementType();
4904 
4905       unsigned Align;
4906       if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align))
4907         return EC;
4908       I = new LoadInst(Ty, Op, "", Record[OpNum + 1], Align);
4909 
4910       InstructionList.push_back(I);
4911       break;
4912     }
4913     case bitc::FUNC_CODE_INST_LOADATOMIC: {
4914        // LOADATOMIC: [opty, op, align, vol, ordering, synchscope]
4915       unsigned OpNum = 0;
4916       Value *Op;
4917       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
4918           (OpNum + 4 != Record.size() && OpNum + 5 != Record.size()))
4919         return error("Invalid record");
4920 
4921       Type *Ty = nullptr;
4922       if (OpNum + 5 == Record.size())
4923         Ty = getTypeByID(Record[OpNum++]);
4924       if (std::error_code EC = typeCheckLoadStoreInst(Ty, Op->getType()))
4925         return EC;
4926       if (!Ty)
4927         Ty = cast<PointerType>(Op->getType())->getElementType();
4928 
4929       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
4930       if (Ordering == NotAtomic || Ordering == Release ||
4931           Ordering == AcquireRelease)
4932         return error("Invalid record");
4933       if (Ordering != NotAtomic && Record[OpNum] == 0)
4934         return error("Invalid record");
4935       SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]);
4936 
4937       unsigned Align;
4938       if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align))
4939         return EC;
4940       I = new LoadInst(Op, "", Record[OpNum+1], Align, Ordering, SynchScope);
4941 
4942       InstructionList.push_back(I);
4943       break;
4944     }
4945     case bitc::FUNC_CODE_INST_STORE:
4946     case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol]
4947       unsigned OpNum = 0;
4948       Value *Val, *Ptr;
4949       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
4950           (BitCode == bitc::FUNC_CODE_INST_STORE
4951                ? getValueTypePair(Record, OpNum, NextValueNo, Val)
4952                : popValue(Record, OpNum, NextValueNo,
4953                           cast<PointerType>(Ptr->getType())->getElementType(),
4954                           Val)) ||
4955           OpNum + 2 != Record.size())
4956         return error("Invalid record");
4957 
4958       if (std::error_code EC =
4959               typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
4960         return EC;
4961       unsigned Align;
4962       if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align))
4963         return EC;
4964       I = new StoreInst(Val, Ptr, Record[OpNum+1], Align);
4965       InstructionList.push_back(I);
4966       break;
4967     }
4968     case bitc::FUNC_CODE_INST_STOREATOMIC:
4969     case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: {
4970       // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, synchscope]
4971       unsigned OpNum = 0;
4972       Value *Val, *Ptr;
4973       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
4974           (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC
4975                ? getValueTypePair(Record, OpNum, NextValueNo, Val)
4976                : popValue(Record, OpNum, NextValueNo,
4977                           cast<PointerType>(Ptr->getType())->getElementType(),
4978                           Val)) ||
4979           OpNum + 4 != Record.size())
4980         return error("Invalid record");
4981 
4982       if (std::error_code EC =
4983               typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
4984         return EC;
4985       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
4986       if (Ordering == NotAtomic || Ordering == Acquire ||
4987           Ordering == AcquireRelease)
4988         return error("Invalid record");
4989       SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]);
4990       if (Ordering != NotAtomic && Record[OpNum] == 0)
4991         return error("Invalid record");
4992 
4993       unsigned Align;
4994       if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align))
4995         return EC;
4996       I = new StoreInst(Val, Ptr, Record[OpNum+1], Align, Ordering, SynchScope);
4997       InstructionList.push_back(I);
4998       break;
4999     }
5000     case bitc::FUNC_CODE_INST_CMPXCHG_OLD:
5001     case bitc::FUNC_CODE_INST_CMPXCHG: {
5002       // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, synchscope,
5003       //          failureordering?, isweak?]
5004       unsigned OpNum = 0;
5005       Value *Ptr, *Cmp, *New;
5006       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
5007           (BitCode == bitc::FUNC_CODE_INST_CMPXCHG
5008                ? getValueTypePair(Record, OpNum, NextValueNo, Cmp)
5009                : popValue(Record, OpNum, NextValueNo,
5010                           cast<PointerType>(Ptr->getType())->getElementType(),
5011                           Cmp)) ||
5012           popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) ||
5013           Record.size() < OpNum + 3 || Record.size() > OpNum + 5)
5014         return error("Invalid record");
5015       AtomicOrdering SuccessOrdering = getDecodedOrdering(Record[OpNum + 1]);
5016       if (SuccessOrdering == NotAtomic || SuccessOrdering == Unordered)
5017         return error("Invalid record");
5018       SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 2]);
5019 
5020       if (std::error_code EC =
5021               typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType()))
5022         return EC;
5023       AtomicOrdering FailureOrdering;
5024       if (Record.size() < 7)
5025         FailureOrdering =
5026             AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering);
5027       else
5028         FailureOrdering = getDecodedOrdering(Record[OpNum + 3]);
5029 
5030       I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering,
5031                                 SynchScope);
5032       cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]);
5033 
5034       if (Record.size() < 8) {
5035         // Before weak cmpxchgs existed, the instruction simply returned the
5036         // value loaded from memory, so bitcode files from that era will be
5037         // expecting the first component of a modern cmpxchg.
5038         CurBB->getInstList().push_back(I);
5039         I = ExtractValueInst::Create(I, 0);
5040       } else {
5041         cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]);
5042       }
5043 
5044       InstructionList.push_back(I);
5045       break;
5046     }
5047     case bitc::FUNC_CODE_INST_ATOMICRMW: {
5048       // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, synchscope]
5049       unsigned OpNum = 0;
5050       Value *Ptr, *Val;
5051       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
5052           popValue(Record, OpNum, NextValueNo,
5053                     cast<PointerType>(Ptr->getType())->getElementType(), Val) ||
5054           OpNum+4 != Record.size())
5055         return error("Invalid record");
5056       AtomicRMWInst::BinOp Operation = getDecodedRMWOperation(Record[OpNum]);
5057       if (Operation < AtomicRMWInst::FIRST_BINOP ||
5058           Operation > AtomicRMWInst::LAST_BINOP)
5059         return error("Invalid record");
5060       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
5061       if (Ordering == NotAtomic || Ordering == Unordered)
5062         return error("Invalid record");
5063       SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]);
5064       I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SynchScope);
5065       cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]);
5066       InstructionList.push_back(I);
5067       break;
5068     }
5069     case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, synchscope]
5070       if (2 != Record.size())
5071         return error("Invalid record");
5072       AtomicOrdering Ordering = getDecodedOrdering(Record[0]);
5073       if (Ordering == NotAtomic || Ordering == Unordered ||
5074           Ordering == Monotonic)
5075         return error("Invalid record");
5076       SynchronizationScope SynchScope = getDecodedSynchScope(Record[1]);
5077       I = new FenceInst(Context, Ordering, SynchScope);
5078       InstructionList.push_back(I);
5079       break;
5080     }
5081     case bitc::FUNC_CODE_INST_CALL: {
5082       // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...]
5083       if (Record.size() < 3)
5084         return error("Invalid record");
5085 
5086       unsigned OpNum = 0;
5087       AttributeSet PAL = getAttributes(Record[OpNum++]);
5088       unsigned CCInfo = Record[OpNum++];
5089 
5090       FastMathFlags FMF;
5091       if ((CCInfo >> bitc::CALL_FMF) & 1) {
5092         FMF = getDecodedFastMathFlags(Record[OpNum++]);
5093         if (!FMF.any())
5094           return error("Fast math flags indicator set for call with no FMF");
5095       }
5096 
5097       FunctionType *FTy = nullptr;
5098       if (CCInfo >> bitc::CALL_EXPLICIT_TYPE & 1 &&
5099           !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++]))))
5100         return error("Explicit call type is not a function type");
5101 
5102       Value *Callee;
5103       if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
5104         return error("Invalid record");
5105 
5106       PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
5107       if (!OpTy)
5108         return error("Callee is not a pointer type");
5109       if (!FTy) {
5110         FTy = dyn_cast<FunctionType>(OpTy->getElementType());
5111         if (!FTy)
5112           return error("Callee is not of pointer to function type");
5113       } else if (OpTy->getElementType() != FTy)
5114         return error("Explicit call type does not match pointee type of "
5115                      "callee operand");
5116       if (Record.size() < FTy->getNumParams() + OpNum)
5117         return error("Insufficient operands to call");
5118 
5119       SmallVector<Value*, 16> Args;
5120       // Read the fixed params.
5121       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
5122         if (FTy->getParamType(i)->isLabelTy())
5123           Args.push_back(getBasicBlock(Record[OpNum]));
5124         else
5125           Args.push_back(getValue(Record, OpNum, NextValueNo,
5126                                   FTy->getParamType(i)));
5127         if (!Args.back())
5128           return error("Invalid record");
5129       }
5130 
5131       // Read type/value pairs for varargs params.
5132       if (!FTy->isVarArg()) {
5133         if (OpNum != Record.size())
5134           return error("Invalid record");
5135       } else {
5136         while (OpNum != Record.size()) {
5137           Value *Op;
5138           if (getValueTypePair(Record, OpNum, NextValueNo, Op))
5139             return error("Invalid record");
5140           Args.push_back(Op);
5141         }
5142       }
5143 
5144       I = CallInst::Create(FTy, Callee, Args, OperandBundles);
5145       OperandBundles.clear();
5146       InstructionList.push_back(I);
5147       cast<CallInst>(I)->setCallingConv(
5148           static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV));
5149       CallInst::TailCallKind TCK = CallInst::TCK_None;
5150       if (CCInfo & 1 << bitc::CALL_TAIL)
5151         TCK = CallInst::TCK_Tail;
5152       if (CCInfo & (1 << bitc::CALL_MUSTTAIL))
5153         TCK = CallInst::TCK_MustTail;
5154       if (CCInfo & (1 << bitc::CALL_NOTAIL))
5155         TCK = CallInst::TCK_NoTail;
5156       cast<CallInst>(I)->setTailCallKind(TCK);
5157       cast<CallInst>(I)->setAttributes(PAL);
5158       if (FMF.any()) {
5159         if (!isa<FPMathOperator>(I))
5160           return error("Fast-math-flags specified for call without "
5161                        "floating-point scalar or vector return type");
5162         I->setFastMathFlags(FMF);
5163       }
5164       break;
5165     }
5166     case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty]
5167       if (Record.size() < 3)
5168         return error("Invalid record");
5169       Type *OpTy = getTypeByID(Record[0]);
5170       Value *Op = getValue(Record, 1, NextValueNo, OpTy);
5171       Type *ResTy = getTypeByID(Record[2]);
5172       if (!OpTy || !Op || !ResTy)
5173         return error("Invalid record");
5174       I = new VAArgInst(Op, ResTy);
5175       InstructionList.push_back(I);
5176       break;
5177     }
5178 
5179     case bitc::FUNC_CODE_OPERAND_BUNDLE: {
5180       // A call or an invoke can be optionally prefixed with some variable
5181       // number of operand bundle blocks.  These blocks are read into
5182       // OperandBundles and consumed at the next call or invoke instruction.
5183 
5184       if (Record.size() < 1 || Record[0] >= BundleTags.size())
5185         return error("Invalid record");
5186 
5187       std::vector<Value *> Inputs;
5188 
5189       unsigned OpNum = 1;
5190       while (OpNum != Record.size()) {
5191         Value *Op;
5192         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
5193           return error("Invalid record");
5194         Inputs.push_back(Op);
5195       }
5196 
5197       OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs));
5198       continue;
5199     }
5200     }
5201 
5202     // Add instruction to end of current BB.  If there is no current BB, reject
5203     // this file.
5204     if (!CurBB) {
5205       delete I;
5206       return error("Invalid instruction with no BB");
5207     }
5208     if (!OperandBundles.empty()) {
5209       delete I;
5210       return error("Operand bundles found with no consumer");
5211     }
5212     CurBB->getInstList().push_back(I);
5213 
5214     // If this was a terminator instruction, move to the next block.
5215     if (isa<TerminatorInst>(I)) {
5216       ++CurBBNo;
5217       CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr;
5218     }
5219 
5220     // Non-void values get registered in the value table for future use.
5221     if (I && !I->getType()->isVoidTy())
5222       ValueList.assignValue(I, NextValueNo++);
5223   }
5224 
5225 OutOfRecordLoop:
5226 
5227   if (!OperandBundles.empty())
5228     return error("Operand bundles found with no consumer");
5229 
5230   // Check the function list for unresolved values.
5231   if (Argument *A = dyn_cast<Argument>(ValueList.back())) {
5232     if (!A->getParent()) {
5233       // We found at least one unresolved value.  Nuke them all to avoid leaks.
5234       for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){
5235         if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) {
5236           A->replaceAllUsesWith(UndefValue::get(A->getType()));
5237           delete A;
5238         }
5239       }
5240       return error("Never resolved value found in function");
5241     }
5242   }
5243 
5244   // FIXME: Check for unresolved forward-declared metadata references
5245   // and clean up leaks.
5246 
5247   // Trim the value list down to the size it was before we parsed this function.
5248   ValueList.shrinkTo(ModuleValueListSize);
5249   MetadataList.shrinkTo(ModuleMetadataListSize);
5250   std::vector<BasicBlock*>().swap(FunctionBBs);
5251   return std::error_code();
5252 }
5253 
5254 /// Find the function body in the bitcode stream
5255 std::error_code BitcodeReader::findFunctionInStream(
5256     Function *F,
5257     DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) {
5258   while (DeferredFunctionInfoIterator->second == 0) {
5259     // This is the fallback handling for the old format bitcode that
5260     // didn't contain the function index in the VST, or when we have
5261     // an anonymous function which would not have a VST entry.
5262     // Assert that we have one of those two cases.
5263     assert(VSTOffset == 0 || !F->hasName());
5264     // Parse the next body in the stream and set its position in the
5265     // DeferredFunctionInfo map.
5266     if (std::error_code EC = rememberAndSkipFunctionBodies())
5267       return EC;
5268   }
5269   return std::error_code();
5270 }
5271 
5272 //===----------------------------------------------------------------------===//
5273 // GVMaterializer implementation
5274 //===----------------------------------------------------------------------===//
5275 
5276 void BitcodeReader::releaseBuffer() { Buffer.release(); }
5277 
5278 std::error_code BitcodeReader::materialize(GlobalValue *GV) {
5279   if (std::error_code EC = materializeMetadata())
5280     return EC;
5281 
5282   Function *F = dyn_cast<Function>(GV);
5283   // If it's not a function or is already material, ignore the request.
5284   if (!F || !F->isMaterializable())
5285     return std::error_code();
5286 
5287   DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F);
5288   assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!");
5289   // If its position is recorded as 0, its body is somewhere in the stream
5290   // but we haven't seen it yet.
5291   if (DFII->second == 0)
5292     if (std::error_code EC = findFunctionInStream(F, DFII))
5293       return EC;
5294 
5295   // Move the bit stream to the saved position of the deferred function body.
5296   Stream.JumpToBit(DFII->second);
5297 
5298   if (std::error_code EC = parseFunctionBody(F))
5299     return EC;
5300   F->setIsMaterializable(false);
5301 
5302   if (StripDebugInfo)
5303     stripDebugInfo(*F);
5304 
5305   // Upgrade any old intrinsic calls in the function.
5306   for (auto &I : UpgradedIntrinsics) {
5307     for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end();
5308          UI != UE;) {
5309       User *U = *UI;
5310       ++UI;
5311       if (CallInst *CI = dyn_cast<CallInst>(U))
5312         UpgradeIntrinsicCall(CI, I.second);
5313     }
5314   }
5315 
5316   // Finish fn->subprogram upgrade for materialized functions.
5317   if (DISubprogram *SP = FunctionsWithSPs.lookup(F))
5318     F->setSubprogram(SP);
5319 
5320   // Bring in any functions that this function forward-referenced via
5321   // blockaddresses.
5322   return materializeForwardReferencedFunctions();
5323 }
5324 
5325 std::error_code BitcodeReader::materializeModule() {
5326   if (std::error_code EC = materializeMetadata())
5327     return EC;
5328 
5329   // Promise to materialize all forward references.
5330   WillMaterializeAllForwardRefs = true;
5331 
5332   // Iterate over the module, deserializing any functions that are still on
5333   // disk.
5334   for (Function &F : *TheModule) {
5335     if (std::error_code EC = materialize(&F))
5336       return EC;
5337   }
5338   // At this point, if there are any function bodies, parse the rest of
5339   // the bits in the module past the last function block we have recorded
5340   // through either lazy scanning or the VST.
5341   if (LastFunctionBlockBit || NextUnreadBit)
5342     parseModule(LastFunctionBlockBit > NextUnreadBit ? LastFunctionBlockBit
5343                                                      : NextUnreadBit);
5344 
5345   // Check that all block address forward references got resolved (as we
5346   // promised above).
5347   if (!BasicBlockFwdRefs.empty())
5348     return error("Never resolved function from blockaddress");
5349 
5350   // Upgrading intrinsic calls before TBAA can cause TBAA metadata to be lost,
5351   // to prevent this instructions with TBAA tags should be upgraded first.
5352   for (unsigned I = 0, E = InstsWithTBAATag.size(); I < E; I++)
5353     UpgradeInstWithTBAATag(InstsWithTBAATag[I]);
5354 
5355   // Upgrade any intrinsic calls that slipped through (should not happen!) and
5356   // delete the old functions to clean up. We can't do this unless the entire
5357   // module is materialized because there could always be another function body
5358   // with calls to the old function.
5359   for (auto &I : UpgradedIntrinsics) {
5360     for (auto *U : I.first->users()) {
5361       if (CallInst *CI = dyn_cast<CallInst>(U))
5362         UpgradeIntrinsicCall(CI, I.second);
5363     }
5364     if (!I.first->use_empty())
5365       I.first->replaceAllUsesWith(I.second);
5366     I.first->eraseFromParent();
5367   }
5368   UpgradedIntrinsics.clear();
5369 
5370   UpgradeDebugInfo(*TheModule);
5371   return std::error_code();
5372 }
5373 
5374 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const {
5375   return IdentifiedStructTypes;
5376 }
5377 
5378 std::error_code
5379 BitcodeReader::initStream(std::unique_ptr<DataStreamer> Streamer) {
5380   if (Streamer)
5381     return initLazyStream(std::move(Streamer));
5382   return initStreamFromBuffer();
5383 }
5384 
5385 std::error_code BitcodeReader::initStreamFromBuffer() {
5386   const unsigned char *BufPtr = (const unsigned char*)Buffer->getBufferStart();
5387   const unsigned char *BufEnd = BufPtr+Buffer->getBufferSize();
5388 
5389   if (Buffer->getBufferSize() & 3)
5390     return error("Invalid bitcode signature");
5391 
5392   // If we have a wrapper header, parse it and ignore the non-bc file contents.
5393   // The magic number is 0x0B17C0DE stored in little endian.
5394   if (isBitcodeWrapper(BufPtr, BufEnd))
5395     if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true))
5396       return error("Invalid bitcode wrapper header");
5397 
5398   StreamFile.reset(new BitstreamReader(BufPtr, BufEnd));
5399   Stream.init(&*StreamFile);
5400 
5401   return std::error_code();
5402 }
5403 
5404 std::error_code
5405 BitcodeReader::initLazyStream(std::unique_ptr<DataStreamer> Streamer) {
5406   // Check and strip off the bitcode wrapper; BitstreamReader expects never to
5407   // see it.
5408   auto OwnedBytes =
5409       llvm::make_unique<StreamingMemoryObject>(std::move(Streamer));
5410   StreamingMemoryObject &Bytes = *OwnedBytes;
5411   StreamFile = llvm::make_unique<BitstreamReader>(std::move(OwnedBytes));
5412   Stream.init(&*StreamFile);
5413 
5414   unsigned char buf[16];
5415   if (Bytes.readBytes(buf, 16, 0) != 16)
5416     return error("Invalid bitcode signature");
5417 
5418   if (!isBitcode(buf, buf + 16))
5419     return error("Invalid bitcode signature");
5420 
5421   if (isBitcodeWrapper(buf, buf + 4)) {
5422     const unsigned char *bitcodeStart = buf;
5423     const unsigned char *bitcodeEnd = buf + 16;
5424     SkipBitcodeWrapperHeader(bitcodeStart, bitcodeEnd, false);
5425     Bytes.dropLeadingBytes(bitcodeStart - buf);
5426     Bytes.setKnownObjectSize(bitcodeEnd - bitcodeStart);
5427   }
5428   return std::error_code();
5429 }
5430 
5431 std::error_code ModuleSummaryIndexBitcodeReader::error(BitcodeError E,
5432                                                        const Twine &Message) {
5433   return ::error(DiagnosticHandler, make_error_code(E), Message);
5434 }
5435 
5436 std::error_code ModuleSummaryIndexBitcodeReader::error(const Twine &Message) {
5437   return ::error(DiagnosticHandler,
5438                  make_error_code(BitcodeError::CorruptedBitcode), Message);
5439 }
5440 
5441 std::error_code ModuleSummaryIndexBitcodeReader::error(BitcodeError E) {
5442   return ::error(DiagnosticHandler, make_error_code(E));
5443 }
5444 
5445 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader(
5446     MemoryBuffer *Buffer, DiagnosticHandlerFunction DiagnosticHandler,
5447     bool IsLazy, bool CheckGlobalValSummaryPresenceOnly)
5448     : DiagnosticHandler(DiagnosticHandler), Buffer(Buffer), IsLazy(IsLazy),
5449       CheckGlobalValSummaryPresenceOnly(CheckGlobalValSummaryPresenceOnly) {}
5450 
5451 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader(
5452     DiagnosticHandlerFunction DiagnosticHandler, bool IsLazy,
5453     bool CheckGlobalValSummaryPresenceOnly)
5454     : DiagnosticHandler(DiagnosticHandler), Buffer(nullptr), IsLazy(IsLazy),
5455       CheckGlobalValSummaryPresenceOnly(CheckGlobalValSummaryPresenceOnly) {}
5456 
5457 void ModuleSummaryIndexBitcodeReader::freeState() { Buffer = nullptr; }
5458 
5459 void ModuleSummaryIndexBitcodeReader::releaseBuffer() { Buffer.release(); }
5460 
5461 uint64_t ModuleSummaryIndexBitcodeReader::getGUIDFromValueId(unsigned ValueId) {
5462   auto VGI = ValueIdToCallGraphGUIDMap.find(ValueId);
5463   assert(VGI != ValueIdToCallGraphGUIDMap.end());
5464   return VGI->second;
5465 }
5466 
5467 GlobalValueInfo *
5468 ModuleSummaryIndexBitcodeReader::getInfoFromSummaryOffset(uint64_t Offset) {
5469   auto I = SummaryOffsetToInfoMap.find(Offset);
5470   assert(I != SummaryOffsetToInfoMap.end());
5471   return I->second;
5472 }
5473 
5474 // Specialized value symbol table parser used when reading module index
5475 // blocks where we don't actually create global values.
5476 // At the end of this routine the module index is populated with a map
5477 // from global value name to GlobalValueInfo. The global value info contains
5478 // the function block's bitcode offset (if applicable), or the offset into the
5479 // summary section for the combined index.
5480 std::error_code ModuleSummaryIndexBitcodeReader::parseValueSymbolTable(
5481     uint64_t Offset,
5482     DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) {
5483   assert(Offset > 0 && "Expected non-zero VST offset");
5484   uint64_t CurrentBit = jumpToValueSymbolTable(Offset, Stream);
5485 
5486   if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
5487     return error("Invalid record");
5488 
5489   SmallVector<uint64_t, 64> Record;
5490 
5491   // Read all the records for this value table.
5492   SmallString<128> ValueName;
5493   while (1) {
5494     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
5495 
5496     switch (Entry.Kind) {
5497     case BitstreamEntry::SubBlock: // Handled for us already.
5498     case BitstreamEntry::Error:
5499       return error("Malformed block");
5500     case BitstreamEntry::EndBlock:
5501       // Done parsing VST, jump back to wherever we came from.
5502       Stream.JumpToBit(CurrentBit);
5503       return std::error_code();
5504     case BitstreamEntry::Record:
5505       // The interesting case.
5506       break;
5507     }
5508 
5509     // Read a record.
5510     Record.clear();
5511     switch (Stream.readRecord(Entry.ID, Record)) {
5512     default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records).
5513       break;
5514     case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N]
5515       if (convertToString(Record, 1, ValueName))
5516         return error("Invalid record");
5517       unsigned ValueID = Record[0];
5518       std::unique_ptr<GlobalValueInfo> GlobalValInfo =
5519           llvm::make_unique<GlobalValueInfo>();
5520       assert(!SourceFileName.empty());
5521       auto VLI = ValueIdToLinkageMap.find(ValueID);
5522       assert(VLI != ValueIdToLinkageMap.end() &&
5523              "No linkage found for VST entry?");
5524       std::string GlobalId = GlobalValue::getGlobalIdentifier(
5525           ValueName, VLI->second, SourceFileName);
5526       TheIndex->addGlobalValueInfo(GlobalId, std::move(GlobalValInfo));
5527       ValueIdToCallGraphGUIDMap[ValueID] = GlobalValue::getGUID(GlobalId);
5528       ValueName.clear();
5529       break;
5530     }
5531     case bitc::VST_CODE_FNENTRY: {
5532       // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
5533       if (convertToString(Record, 2, ValueName))
5534         return error("Invalid record");
5535       unsigned ValueID = Record[0];
5536       uint64_t FuncOffset = Record[1];
5537       assert(!IsLazy && "Lazy summary read only supported for combined index");
5538       std::unique_ptr<GlobalValueInfo> FuncInfo =
5539           llvm::make_unique<GlobalValueInfo>(FuncOffset);
5540       assert(!SourceFileName.empty());
5541       auto VLI = ValueIdToLinkageMap.find(ValueID);
5542       assert(VLI != ValueIdToLinkageMap.end() &&
5543              "No linkage found for VST entry?");
5544       std::string FunctionGlobalId = GlobalValue::getGlobalIdentifier(
5545           ValueName, VLI->second, SourceFileName);
5546       TheIndex->addGlobalValueInfo(FunctionGlobalId, std::move(FuncInfo));
5547       ValueIdToCallGraphGUIDMap[ValueID] =
5548           GlobalValue::getGUID(FunctionGlobalId);
5549 
5550       ValueName.clear();
5551       break;
5552     }
5553     case bitc::VST_CODE_COMBINED_GVDEFENTRY: {
5554       // VST_CODE_COMBINED_GVDEFENTRY: [valueid, offset, guid]
5555       unsigned ValueID = Record[0];
5556       uint64_t GlobalValSummaryOffset = Record[1];
5557       uint64_t GlobalValGUID = Record[2];
5558       std::unique_ptr<GlobalValueInfo> GlobalValInfo =
5559           llvm::make_unique<GlobalValueInfo>(GlobalValSummaryOffset);
5560       SummaryOffsetToInfoMap[GlobalValSummaryOffset] = GlobalValInfo.get();
5561       TheIndex->addGlobalValueInfo(GlobalValGUID, std::move(GlobalValInfo));
5562       ValueIdToCallGraphGUIDMap[ValueID] = GlobalValGUID;
5563       break;
5564     }
5565     case bitc::VST_CODE_COMBINED_ENTRY: {
5566       // VST_CODE_COMBINED_ENTRY: [valueid, refguid]
5567       unsigned ValueID = Record[0];
5568       uint64_t RefGUID = Record[1];
5569       ValueIdToCallGraphGUIDMap[ValueID] = RefGUID;
5570       break;
5571     }
5572     }
5573   }
5574 }
5575 
5576 // Parse just the blocks needed for building the index out of the module.
5577 // At the end of this routine the module Index is populated with a map
5578 // from global value name to GlobalValueInfo. The global value info contains
5579 // either the parsed summary information (when parsing summaries
5580 // eagerly), or just to the summary record's offset
5581 // if parsing lazily (IsLazy).
5582 std::error_code ModuleSummaryIndexBitcodeReader::parseModule() {
5583   if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
5584     return error("Invalid record");
5585 
5586   SmallVector<uint64_t, 64> Record;
5587   DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap;
5588   unsigned ValueId = 0;
5589 
5590   // Read the index for this module.
5591   while (1) {
5592     BitstreamEntry Entry = Stream.advance();
5593 
5594     switch (Entry.Kind) {
5595     case BitstreamEntry::Error:
5596       return error("Malformed block");
5597     case BitstreamEntry::EndBlock:
5598       return std::error_code();
5599 
5600     case BitstreamEntry::SubBlock:
5601       if (CheckGlobalValSummaryPresenceOnly) {
5602         if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) {
5603           SeenGlobalValSummary = true;
5604           // No need to parse the rest since we found the summary.
5605           return std::error_code();
5606         }
5607         if (Stream.SkipBlock())
5608           return error("Invalid record");
5609         continue;
5610       }
5611       switch (Entry.ID) {
5612       default: // Skip unknown content.
5613         if (Stream.SkipBlock())
5614           return error("Invalid record");
5615         break;
5616       case bitc::BLOCKINFO_BLOCK_ID:
5617         // Need to parse these to get abbrev ids (e.g. for VST)
5618         if (Stream.ReadBlockInfoBlock())
5619           return error("Malformed block");
5620         break;
5621       case bitc::VALUE_SYMTAB_BLOCK_ID:
5622         // Should have been parsed earlier via VSTOffset, unless there
5623         // is no summary section.
5624         assert(((SeenValueSymbolTable && VSTOffset > 0) ||
5625                 !SeenGlobalValSummary) &&
5626                "Expected early VST parse via VSTOffset record");
5627         if (Stream.SkipBlock())
5628           return error("Invalid record");
5629         break;
5630       case bitc::GLOBALVAL_SUMMARY_BLOCK_ID:
5631         assert(VSTOffset > 0 && "Expected non-zero VST offset");
5632         assert(!SeenValueSymbolTable &&
5633                "Already read VST when parsing summary block?");
5634         if (std::error_code EC =
5635                 parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap))
5636           return EC;
5637         SeenValueSymbolTable = true;
5638         SeenGlobalValSummary = true;
5639         if (IsLazy) {
5640           // Lazy parsing of summary info, skip it.
5641           if (Stream.SkipBlock())
5642             return error("Invalid record");
5643         } else if (std::error_code EC = parseEntireSummary())
5644           return EC;
5645         break;
5646       case bitc::MODULE_STRTAB_BLOCK_ID:
5647         if (std::error_code EC = parseModuleStringTable())
5648           return EC;
5649         break;
5650       }
5651       continue;
5652 
5653     case BitstreamEntry::Record:
5654       // Once we find the last record of interest, skip the rest.
5655       if (VSTOffset > 0)
5656         Stream.skipRecord(Entry.ID);
5657       else {
5658         Record.clear();
5659         auto BitCode = Stream.readRecord(Entry.ID, Record);
5660         switch (BitCode) {
5661         default:
5662           break; // Default behavior, ignore unknown content.
5663         /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
5664         case bitc::MODULE_CODE_SOURCE_FILENAME: {
5665           SmallString<128> ValueName;
5666           if (convertToString(Record, 0, ValueName))
5667             return error("Invalid record");
5668           SourceFileName = ValueName.c_str();
5669           break;
5670         }
5671         /// MODULE_CODE_VSTOFFSET: [offset]
5672         case bitc::MODULE_CODE_VSTOFFSET:
5673           if (Record.size() < 1)
5674             return error("Invalid record");
5675           VSTOffset = Record[0];
5676           break;
5677         // GLOBALVAR: [pointer type, isconst, initid,
5678         //             linkage, alignment, section, visibility, threadlocal,
5679         //             unnamed_addr, externally_initialized, dllstorageclass,
5680         //             comdat]
5681         case bitc::MODULE_CODE_GLOBALVAR: {
5682           if (Record.size() < 6)
5683             return error("Invalid record");
5684           uint64_t RawLinkage = Record[3];
5685           GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
5686           ValueIdToLinkageMap[ValueId++] = Linkage;
5687           break;
5688         }
5689         // FUNCTION:  [type, callingconv, isproto, linkage, paramattr,
5690         //             alignment, section, visibility, gc, unnamed_addr,
5691         //             prologuedata, dllstorageclass, comdat, prefixdata]
5692         case bitc::MODULE_CODE_FUNCTION: {
5693           if (Record.size() < 8)
5694             return error("Invalid record");
5695           uint64_t RawLinkage = Record[3];
5696           GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
5697           ValueIdToLinkageMap[ValueId++] = Linkage;
5698           break;
5699         }
5700         // ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility,
5701         // dllstorageclass]
5702         case bitc::MODULE_CODE_ALIAS: {
5703           if (Record.size() < 6)
5704             return error("Invalid record");
5705           uint64_t RawLinkage = Record[3];
5706           GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
5707           ValueIdToLinkageMap[ValueId++] = Linkage;
5708           break;
5709         }
5710         }
5711       }
5712       continue;
5713     }
5714   }
5715 }
5716 
5717 // Eagerly parse the entire summary block. This populates the GlobalValueSummary
5718 // objects in the index.
5719 std::error_code ModuleSummaryIndexBitcodeReader::parseEntireSummary() {
5720   if (Stream.EnterSubBlock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID))
5721     return error("Invalid record");
5722 
5723   SmallVector<uint64_t, 64> Record;
5724 
5725   bool Combined = false;
5726   while (1) {
5727     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
5728 
5729     switch (Entry.Kind) {
5730     case BitstreamEntry::SubBlock: // Handled for us already.
5731     case BitstreamEntry::Error:
5732       return error("Malformed block");
5733     case BitstreamEntry::EndBlock:
5734       // For a per-module index, remove any entries that still have empty
5735       // summaries. The VST parsing creates entries eagerly for all symbols,
5736       // but not all have associated summaries (e.g. it doesn't know how to
5737       // distinguish between VST_CODE_ENTRY for function declarations vs global
5738       // variables with initializers that end up with a summary). Remove those
5739       // entries now so that we don't need to rely on the combined index merger
5740       // to clean them up (especially since that may not run for the first
5741       // module's index if we merge into that).
5742       if (!Combined)
5743         TheIndex->removeEmptySummaryEntries();
5744       return std::error_code();
5745     case BitstreamEntry::Record:
5746       // The interesting case.
5747       break;
5748     }
5749 
5750     // Read a record. The record format depends on whether this
5751     // is a per-module index or a combined index file. In the per-module
5752     // case the records contain the associated value's ID for correlation
5753     // with VST entries. In the combined index the correlation is done
5754     // via the bitcode offset of the summary records (which were saved
5755     // in the combined index VST entries). The records also contain
5756     // information used for ThinLTO renaming and importing.
5757     Record.clear();
5758     uint64_t CurRecordBit = Stream.GetCurrentBitNo();
5759     auto BitCode = Stream.readRecord(Entry.ID, Record);
5760     switch (BitCode) {
5761     default: // Default behavior: ignore.
5762       break;
5763     // FS_PERMODULE: [valueid, linkage, instcount, numrefs, numrefs x valueid,
5764     //                n x (valueid, callsitecount)]
5765     // FS_PERMODULE_PROFILE: [valueid, linkage, instcount, numrefs,
5766     //                        numrefs x valueid,
5767     //                        n x (valueid, callsitecount, profilecount)]
5768     case bitc::FS_PERMODULE:
5769     case bitc::FS_PERMODULE_PROFILE: {
5770       unsigned ValueID = Record[0];
5771       uint64_t RawLinkage = Record[1];
5772       unsigned InstCount = Record[2];
5773       unsigned NumRefs = Record[3];
5774       std::unique_ptr<FunctionSummary> FS = llvm::make_unique<FunctionSummary>(
5775           getDecodedLinkage(RawLinkage), InstCount);
5776       // The module path string ref set in the summary must be owned by the
5777       // index's module string table. Since we don't have a module path
5778       // string table section in the per-module index, we create a single
5779       // module path string table entry with an empty (0) ID to take
5780       // ownership.
5781       FS->setModulePath(
5782           TheIndex->addModulePath(Buffer->getBufferIdentifier(), 0));
5783       static int RefListStartIndex = 4;
5784       int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
5785       assert(Record.size() >= RefListStartIndex + NumRefs &&
5786              "Record size inconsistent with number of references");
5787       for (unsigned I = 4, E = CallGraphEdgeStartIndex; I != E; ++I) {
5788         unsigned RefValueId = Record[I];
5789         uint64_t RefGUID = getGUIDFromValueId(RefValueId);
5790         FS->addRefEdge(RefGUID);
5791       }
5792       bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE);
5793       for (unsigned I = CallGraphEdgeStartIndex, E = Record.size(); I != E;
5794            ++I) {
5795         unsigned CalleeValueId = Record[I];
5796         unsigned CallsiteCount = Record[++I];
5797         uint64_t ProfileCount = HasProfile ? Record[++I] : 0;
5798         uint64_t CalleeGUID = getGUIDFromValueId(CalleeValueId);
5799         FS->addCallGraphEdge(CalleeGUID,
5800                              CalleeInfo(CallsiteCount, ProfileCount));
5801       }
5802       uint64_t GUID = getGUIDFromValueId(ValueID);
5803       auto InfoList = TheIndex->findGlobalValueInfoList(GUID);
5804       assert(InfoList != TheIndex->end() &&
5805              "Expected VST parse to create GlobalValueInfo entry");
5806       assert(InfoList->second.size() == 1 &&
5807              "Expected a single GlobalValueInfo per GUID in module");
5808       auto &Info = InfoList->second[0];
5809       assert(!Info->summary() && "Expected a single summary per VST entry");
5810       Info->setSummary(std::move(FS));
5811       break;
5812     }
5813     // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, linkage, n x valueid]
5814     case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: {
5815       unsigned ValueID = Record[0];
5816       uint64_t RawLinkage = Record[1];
5817       std::unique_ptr<GlobalVarSummary> FS =
5818           llvm::make_unique<GlobalVarSummary>(getDecodedLinkage(RawLinkage));
5819       FS->setModulePath(
5820           TheIndex->addModulePath(Buffer->getBufferIdentifier(), 0));
5821       for (unsigned I = 2, E = Record.size(); I != E; ++I) {
5822         unsigned RefValueId = Record[I];
5823         uint64_t RefGUID = getGUIDFromValueId(RefValueId);
5824         FS->addRefEdge(RefGUID);
5825       }
5826       uint64_t GUID = getGUIDFromValueId(ValueID);
5827       auto InfoList = TheIndex->findGlobalValueInfoList(GUID);
5828       assert(InfoList != TheIndex->end() &&
5829              "Expected VST parse to create GlobalValueInfo entry");
5830       assert(InfoList->second.size() == 1 &&
5831              "Expected a single GlobalValueInfo per GUID in module");
5832       auto &Info = InfoList->second[0];
5833       assert(!Info->summary() && "Expected a single summary per VST entry");
5834       Info->setSummary(std::move(FS));
5835       break;
5836     }
5837     // FS_COMBINED: [modid, linkage, instcount, numrefs, numrefs x valueid,
5838     //               n x (valueid, callsitecount)]
5839     // FS_COMBINED_PROFILE: [modid, linkage, instcount, numrefs,
5840     //                       numrefs x valueid,
5841     //                       n x (valueid, callsitecount, profilecount)]
5842     case bitc::FS_COMBINED:
5843     case bitc::FS_COMBINED_PROFILE: {
5844       uint64_t ModuleId = Record[0];
5845       uint64_t RawLinkage = Record[1];
5846       unsigned InstCount = Record[2];
5847       unsigned NumRefs = Record[3];
5848       std::unique_ptr<FunctionSummary> FS = llvm::make_unique<FunctionSummary>(
5849           getDecodedLinkage(RawLinkage), InstCount);
5850       FS->setModulePath(ModuleIdMap[ModuleId]);
5851       static int RefListStartIndex = 4;
5852       int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
5853       assert(Record.size() >= RefListStartIndex + NumRefs &&
5854              "Record size inconsistent with number of references");
5855       for (unsigned I = 4, E = CallGraphEdgeStartIndex; I != E; ++I) {
5856         unsigned RefValueId = Record[I];
5857         uint64_t RefGUID = getGUIDFromValueId(RefValueId);
5858         FS->addRefEdge(RefGUID);
5859       }
5860       bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE);
5861       for (unsigned I = CallGraphEdgeStartIndex, E = Record.size(); I != E;
5862            ++I) {
5863         unsigned CalleeValueId = Record[I];
5864         unsigned CallsiteCount = Record[++I];
5865         uint64_t ProfileCount = HasProfile ? Record[++I] : 0;
5866         uint64_t CalleeGUID = getGUIDFromValueId(CalleeValueId);
5867         FS->addCallGraphEdge(CalleeGUID,
5868                              CalleeInfo(CallsiteCount, ProfileCount));
5869       }
5870       auto *Info = getInfoFromSummaryOffset(CurRecordBit);
5871       assert(!Info->summary() && "Expected a single summary per VST entry");
5872       Info->setSummary(std::move(FS));
5873       Combined = true;
5874       break;
5875     }
5876     // FS_COMBINED_GLOBALVAR_INIT_REFS: [modid, linkage, n x valueid]
5877     case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: {
5878       uint64_t ModuleId = Record[0];
5879       uint64_t RawLinkage = Record[1];
5880       std::unique_ptr<GlobalVarSummary> FS =
5881           llvm::make_unique<GlobalVarSummary>(getDecodedLinkage(RawLinkage));
5882       FS->setModulePath(ModuleIdMap[ModuleId]);
5883       for (unsigned I = 2, E = Record.size(); I != E; ++I) {
5884         unsigned RefValueId = Record[I];
5885         uint64_t RefGUID = getGUIDFromValueId(RefValueId);
5886         FS->addRefEdge(RefGUID);
5887       }
5888       auto *Info = getInfoFromSummaryOffset(CurRecordBit);
5889       assert(!Info->summary() && "Expected a single summary per VST entry");
5890       Info->setSummary(std::move(FS));
5891       Combined = true;
5892       break;
5893     }
5894     }
5895   }
5896   llvm_unreachable("Exit infinite loop");
5897 }
5898 
5899 // Parse the  module string table block into the Index.
5900 // This populates the ModulePathStringTable map in the index.
5901 std::error_code ModuleSummaryIndexBitcodeReader::parseModuleStringTable() {
5902   if (Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID))
5903     return error("Invalid record");
5904 
5905   SmallVector<uint64_t, 64> Record;
5906 
5907   SmallString<128> ModulePath;
5908   while (1) {
5909     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
5910 
5911     switch (Entry.Kind) {
5912     case BitstreamEntry::SubBlock: // Handled for us already.
5913     case BitstreamEntry::Error:
5914       return error("Malformed block");
5915     case BitstreamEntry::EndBlock:
5916       return std::error_code();
5917     case BitstreamEntry::Record:
5918       // The interesting case.
5919       break;
5920     }
5921 
5922     Record.clear();
5923     switch (Stream.readRecord(Entry.ID, Record)) {
5924     default: // Default behavior: ignore.
5925       break;
5926     case bitc::MST_CODE_ENTRY: {
5927       // MST_ENTRY: [modid, namechar x N]
5928       if (convertToString(Record, 1, ModulePath))
5929         return error("Invalid record");
5930       uint64_t ModuleId = Record[0];
5931       StringRef ModulePathInMap = TheIndex->addModulePath(ModulePath, ModuleId);
5932       ModuleIdMap[ModuleId] = ModulePathInMap;
5933       ModulePath.clear();
5934       break;
5935     }
5936     }
5937   }
5938   llvm_unreachable("Exit infinite loop");
5939 }
5940 
5941 // Parse the function info index from the bitcode streamer into the given index.
5942 std::error_code ModuleSummaryIndexBitcodeReader::parseSummaryIndexInto(
5943     std::unique_ptr<DataStreamer> Streamer, ModuleSummaryIndex *I) {
5944   TheIndex = I;
5945 
5946   if (std::error_code EC = initStream(std::move(Streamer)))
5947     return EC;
5948 
5949   // Sniff for the signature.
5950   if (!hasValidBitcodeHeader(Stream))
5951     return error("Invalid bitcode signature");
5952 
5953   // We expect a number of well-defined blocks, though we don't necessarily
5954   // need to understand them all.
5955   while (1) {
5956     if (Stream.AtEndOfStream()) {
5957       // We didn't really read a proper Module block.
5958       return error("Malformed block");
5959     }
5960 
5961     BitstreamEntry Entry =
5962         Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs);
5963 
5964     if (Entry.Kind != BitstreamEntry::SubBlock)
5965       return error("Malformed block");
5966 
5967     // If we see a MODULE_BLOCK, parse it to find the blocks needed for
5968     // building the function summary index.
5969     if (Entry.ID == bitc::MODULE_BLOCK_ID)
5970       return parseModule();
5971 
5972     if (Stream.SkipBlock())
5973       return error("Invalid record");
5974   }
5975 }
5976 
5977 // Parse the summary information at the given offset in the buffer into
5978 // the index. Used to support lazy parsing of summaries from the
5979 // combined index during importing.
5980 // TODO: This function is not yet complete as it won't have a consumer
5981 // until ThinLTO function importing is added.
5982 std::error_code ModuleSummaryIndexBitcodeReader::parseGlobalValueSummary(
5983     std::unique_ptr<DataStreamer> Streamer, ModuleSummaryIndex *I,
5984     size_t SummaryOffset) {
5985   TheIndex = I;
5986 
5987   if (std::error_code EC = initStream(std::move(Streamer)))
5988     return EC;
5989 
5990   // Sniff for the signature.
5991   if (!hasValidBitcodeHeader(Stream))
5992     return error("Invalid bitcode signature");
5993 
5994   Stream.JumpToBit(SummaryOffset);
5995 
5996   BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
5997 
5998   switch (Entry.Kind) {
5999   default:
6000     return error("Malformed block");
6001   case BitstreamEntry::Record:
6002     // The expected case.
6003     break;
6004   }
6005 
6006   // TODO: Read a record. This interface will be completed when ThinLTO
6007   // importing is added so that it can be tested.
6008   SmallVector<uint64_t, 64> Record;
6009   switch (Stream.readRecord(Entry.ID, Record)) {
6010   case bitc::FS_COMBINED:
6011   case bitc::FS_COMBINED_PROFILE:
6012   case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS:
6013   default:
6014     return error("Invalid record");
6015   }
6016 
6017   return std::error_code();
6018 }
6019 
6020 std::error_code ModuleSummaryIndexBitcodeReader::initStream(
6021     std::unique_ptr<DataStreamer> Streamer) {
6022   if (Streamer)
6023     return initLazyStream(std::move(Streamer));
6024   return initStreamFromBuffer();
6025 }
6026 
6027 std::error_code ModuleSummaryIndexBitcodeReader::initStreamFromBuffer() {
6028   const unsigned char *BufPtr = (const unsigned char *)Buffer->getBufferStart();
6029   const unsigned char *BufEnd = BufPtr + Buffer->getBufferSize();
6030 
6031   if (Buffer->getBufferSize() & 3)
6032     return error("Invalid bitcode signature");
6033 
6034   // If we have a wrapper header, parse it and ignore the non-bc file contents.
6035   // The magic number is 0x0B17C0DE stored in little endian.
6036   if (isBitcodeWrapper(BufPtr, BufEnd))
6037     if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true))
6038       return error("Invalid bitcode wrapper header");
6039 
6040   StreamFile.reset(new BitstreamReader(BufPtr, BufEnd));
6041   Stream.init(&*StreamFile);
6042 
6043   return std::error_code();
6044 }
6045 
6046 std::error_code ModuleSummaryIndexBitcodeReader::initLazyStream(
6047     std::unique_ptr<DataStreamer> Streamer) {
6048   // Check and strip off the bitcode wrapper; BitstreamReader expects never to
6049   // see it.
6050   auto OwnedBytes =
6051       llvm::make_unique<StreamingMemoryObject>(std::move(Streamer));
6052   StreamingMemoryObject &Bytes = *OwnedBytes;
6053   StreamFile = llvm::make_unique<BitstreamReader>(std::move(OwnedBytes));
6054   Stream.init(&*StreamFile);
6055 
6056   unsigned char buf[16];
6057   if (Bytes.readBytes(buf, 16, 0) != 16)
6058     return error("Invalid bitcode signature");
6059 
6060   if (!isBitcode(buf, buf + 16))
6061     return error("Invalid bitcode signature");
6062 
6063   if (isBitcodeWrapper(buf, buf + 4)) {
6064     const unsigned char *bitcodeStart = buf;
6065     const unsigned char *bitcodeEnd = buf + 16;
6066     SkipBitcodeWrapperHeader(bitcodeStart, bitcodeEnd, false);
6067     Bytes.dropLeadingBytes(bitcodeStart - buf);
6068     Bytes.setKnownObjectSize(bitcodeEnd - bitcodeStart);
6069   }
6070   return std::error_code();
6071 }
6072 
6073 namespace {
6074 class BitcodeErrorCategoryType : public std::error_category {
6075   const char *name() const LLVM_NOEXCEPT override {
6076     return "llvm.bitcode";
6077   }
6078   std::string message(int IE) const override {
6079     BitcodeError E = static_cast<BitcodeError>(IE);
6080     switch (E) {
6081     case BitcodeError::InvalidBitcodeSignature:
6082       return "Invalid bitcode signature";
6083     case BitcodeError::CorruptedBitcode:
6084       return "Corrupted bitcode";
6085     }
6086     llvm_unreachable("Unknown error type!");
6087   }
6088 };
6089 } // end anonymous namespace
6090 
6091 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory;
6092 
6093 const std::error_category &llvm::BitcodeErrorCategory() {
6094   return *ErrorCategory;
6095 }
6096 
6097 //===----------------------------------------------------------------------===//
6098 // External interface
6099 //===----------------------------------------------------------------------===//
6100 
6101 static ErrorOr<std::unique_ptr<Module>>
6102 getBitcodeModuleImpl(std::unique_ptr<DataStreamer> Streamer, StringRef Name,
6103                      BitcodeReader *R, LLVMContext &Context,
6104                      bool MaterializeAll, bool ShouldLazyLoadMetadata) {
6105   std::unique_ptr<Module> M = make_unique<Module>(Name, Context);
6106   M->setMaterializer(R);
6107 
6108   auto cleanupOnError = [&](std::error_code EC) {
6109     R->releaseBuffer(); // Never take ownership on error.
6110     return EC;
6111   };
6112 
6113   // Delay parsing Metadata if ShouldLazyLoadMetadata is true.
6114   if (std::error_code EC = R->parseBitcodeInto(std::move(Streamer), M.get(),
6115                                                ShouldLazyLoadMetadata))
6116     return cleanupOnError(EC);
6117 
6118   if (MaterializeAll) {
6119     // Read in the entire module, and destroy the BitcodeReader.
6120     if (std::error_code EC = M->materializeAll())
6121       return cleanupOnError(EC);
6122   } else {
6123     // Resolve forward references from blockaddresses.
6124     if (std::error_code EC = R->materializeForwardReferencedFunctions())
6125       return cleanupOnError(EC);
6126   }
6127   return std::move(M);
6128 }
6129 
6130 /// \brief Get a lazy one-at-time loading module from bitcode.
6131 ///
6132 /// This isn't always used in a lazy context.  In particular, it's also used by
6133 /// \a parseBitcodeFile().  If this is truly lazy, then we need to eagerly pull
6134 /// in forward-referenced functions from block address references.
6135 ///
6136 /// \param[in] MaterializeAll Set to \c true if we should materialize
6137 /// everything.
6138 static ErrorOr<std::unique_ptr<Module>>
6139 getLazyBitcodeModuleImpl(std::unique_ptr<MemoryBuffer> &&Buffer,
6140                          LLVMContext &Context, bool MaterializeAll,
6141                          bool ShouldLazyLoadMetadata = false) {
6142   BitcodeReader *R = new BitcodeReader(Buffer.get(), Context);
6143 
6144   ErrorOr<std::unique_ptr<Module>> Ret =
6145       getBitcodeModuleImpl(nullptr, Buffer->getBufferIdentifier(), R, Context,
6146                            MaterializeAll, ShouldLazyLoadMetadata);
6147   if (!Ret)
6148     return Ret;
6149 
6150   Buffer.release(); // The BitcodeReader owns it now.
6151   return Ret;
6152 }
6153 
6154 ErrorOr<std::unique_ptr<Module>>
6155 llvm::getLazyBitcodeModule(std::unique_ptr<MemoryBuffer> &&Buffer,
6156                            LLVMContext &Context, bool ShouldLazyLoadMetadata) {
6157   return getLazyBitcodeModuleImpl(std::move(Buffer), Context, false,
6158                                   ShouldLazyLoadMetadata);
6159 }
6160 
6161 ErrorOr<std::unique_ptr<Module>>
6162 llvm::getStreamedBitcodeModule(StringRef Name,
6163                                std::unique_ptr<DataStreamer> Streamer,
6164                                LLVMContext &Context) {
6165   std::unique_ptr<Module> M = make_unique<Module>(Name, Context);
6166   BitcodeReader *R = new BitcodeReader(Context);
6167 
6168   return getBitcodeModuleImpl(std::move(Streamer), Name, R, Context, false,
6169                               false);
6170 }
6171 
6172 ErrorOr<std::unique_ptr<Module>> llvm::parseBitcodeFile(MemoryBufferRef Buffer,
6173                                                         LLVMContext &Context) {
6174   std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false);
6175   return getLazyBitcodeModuleImpl(std::move(Buf), Context, true);
6176   // TODO: Restore the use-lists to the in-memory state when the bitcode was
6177   // written.  We must defer until the Module has been fully materialized.
6178 }
6179 
6180 std::string llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer,
6181                                          LLVMContext &Context) {
6182   std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false);
6183   auto R = llvm::make_unique<BitcodeReader>(Buf.release(), Context);
6184   ErrorOr<std::string> Triple = R->parseTriple();
6185   if (Triple.getError())
6186     return "";
6187   return Triple.get();
6188 }
6189 
6190 std::string llvm::getBitcodeProducerString(MemoryBufferRef Buffer,
6191                                            LLVMContext &Context) {
6192   std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false);
6193   BitcodeReader R(Buf.release(), Context);
6194   ErrorOr<std::string> ProducerString = R.parseIdentificationBlock();
6195   if (ProducerString.getError())
6196     return "";
6197   return ProducerString.get();
6198 }
6199 
6200 // Parse the specified bitcode buffer, returning the function info index.
6201 // If IsLazy is false, parse the entire function summary into
6202 // the index. Otherwise skip the function summary section, and only create
6203 // an index object with a map from function name to function summary offset.
6204 // The index is used to perform lazy function summary reading later.
6205 ErrorOr<std::unique_ptr<ModuleSummaryIndex>>
6206 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer,
6207                             DiagnosticHandlerFunction DiagnosticHandler,
6208                             bool IsLazy) {
6209   std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false);
6210   ModuleSummaryIndexBitcodeReader R(Buf.get(), DiagnosticHandler, IsLazy);
6211 
6212   auto Index = llvm::make_unique<ModuleSummaryIndex>();
6213 
6214   auto cleanupOnError = [&](std::error_code EC) {
6215     R.releaseBuffer(); // Never take ownership on error.
6216     return EC;
6217   };
6218 
6219   if (std::error_code EC = R.parseSummaryIndexInto(nullptr, Index.get()))
6220     return cleanupOnError(EC);
6221 
6222   Buf.release(); // The ModuleSummaryIndexBitcodeReader owns it now.
6223   return std::move(Index);
6224 }
6225 
6226 // Check if the given bitcode buffer contains a global value summary block.
6227 bool llvm::hasGlobalValueSummary(MemoryBufferRef Buffer,
6228                                  DiagnosticHandlerFunction DiagnosticHandler) {
6229   std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false);
6230   ModuleSummaryIndexBitcodeReader R(Buf.get(), DiagnosticHandler, false, true);
6231 
6232   auto cleanupOnError = [&](std::error_code EC) {
6233     R.releaseBuffer(); // Never take ownership on error.
6234     return false;
6235   };
6236 
6237   if (std::error_code EC = R.parseSummaryIndexInto(nullptr, nullptr))
6238     return cleanupOnError(EC);
6239 
6240   Buf.release(); // The ModuleSummaryIndexBitcodeReader owns it now.
6241   return R.foundGlobalValSummary();
6242 }
6243 
6244 // This method supports lazy reading of summary data from the combined
6245 // index during ThinLTO function importing. When reading the combined index
6246 // file, getModuleSummaryIndex is first invoked with IsLazy=true.
6247 // Then this method is called for each value considered for importing,
6248 // to parse the summary information for the given value name into
6249 // the index.
6250 std::error_code llvm::readGlobalValueSummary(
6251     MemoryBufferRef Buffer, DiagnosticHandlerFunction DiagnosticHandler,
6252     StringRef ValueName, std::unique_ptr<ModuleSummaryIndex> Index) {
6253   std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false);
6254   ModuleSummaryIndexBitcodeReader R(Buf.get(), DiagnosticHandler);
6255 
6256   auto cleanupOnError = [&](std::error_code EC) {
6257     R.releaseBuffer(); // Never take ownership on error.
6258     return EC;
6259   };
6260 
6261   // Lookup the given value name in the GlobalValueMap, which may
6262   // contain a list of global value infos in the case of a COMDAT. Walk through
6263   // and parse each summary info at the summary offset
6264   // recorded when parsing the value symbol table.
6265   for (const auto &FI : Index->getGlobalValueInfoList(ValueName)) {
6266     size_t SummaryOffset = FI->bitcodeIndex();
6267     if (std::error_code EC =
6268             R.parseGlobalValueSummary(nullptr, Index.get(), SummaryOffset))
6269       return cleanupOnError(EC);
6270   }
6271 
6272   Buf.release(); // The ModuleSummaryIndexBitcodeReader owns it now.
6273   return std::error_code();
6274 }
6275