1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #include "llvm/Bitcode/ReaderWriter.h"
11 #include "BitcodeReader.h"
12 #include "llvm/ADT/SmallString.h"
13 #include "llvm/ADT/SmallVector.h"
14 #include "llvm/ADT/Triple.h"
15 #include "llvm/Bitcode/LLVMBitCodes.h"
16 #include "llvm/IR/AutoUpgrade.h"
17 #include "llvm/IR/Constants.h"
18 #include "llvm/IR/DerivedTypes.h"
19 #include "llvm/IR/DiagnosticPrinter.h"
20 #include "llvm/IR/InlineAsm.h"
21 #include "llvm/IR/IntrinsicInst.h"
22 #include "llvm/IR/LLVMContext.h"
23 #include "llvm/IR/Module.h"
24 #include "llvm/IR/OperandTraits.h"
25 #include "llvm/IR/Operator.h"
26 #include "llvm/Support/DataStream.h"
27 #include "llvm/Support/ManagedStatic.h"
28 #include "llvm/Support/MathExtras.h"
29 #include "llvm/Support/MemoryBuffer.h"
30 #include "llvm/Support/raw_ostream.h"
31 
32 using namespace llvm;
33 
34 enum {
35   SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex
36 };
37 
38 BitcodeDiagnosticInfo::BitcodeDiagnosticInfo(std::error_code EC,
39                                              DiagnosticSeverity Severity,
40                                              const Twine &Msg)
41     : DiagnosticInfo(DK_Bitcode, Severity), Msg(Msg), EC(EC) {}
42 
43 void BitcodeDiagnosticInfo::print(DiagnosticPrinter &DP) const { DP << Msg; }
44 
45 static std::error_code Error(DiagnosticHandlerFunction DiagnosticHandler,
46                              std::error_code EC, const Twine &Message) {
47   BitcodeDiagnosticInfo DI(EC, DS_Error, Message);
48   DiagnosticHandler(DI);
49   return EC;
50 }
51 
52 static std::error_code Error(DiagnosticHandlerFunction DiagnosticHandler,
53                              std::error_code EC) {
54   return Error(DiagnosticHandler, EC, EC.message());
55 }
56 
57 std::error_code BitcodeReader::Error(BitcodeError E, const Twine &Message) {
58   return ::Error(DiagnosticHandler, make_error_code(E), Message);
59 }
60 
61 std::error_code BitcodeReader::Error(const Twine &Message) {
62   return ::Error(DiagnosticHandler,
63                  make_error_code(BitcodeError::CorruptedBitcode), Message);
64 }
65 
66 std::error_code BitcodeReader::Error(BitcodeError E) {
67   return ::Error(DiagnosticHandler, make_error_code(E));
68 }
69 
70 static DiagnosticHandlerFunction getDiagHandler(DiagnosticHandlerFunction F,
71                                                 LLVMContext &C) {
72   if (F)
73     return F;
74   return [&C](const DiagnosticInfo &DI) { C.diagnose(DI); };
75 }
76 
77 BitcodeReader::BitcodeReader(MemoryBuffer *buffer, LLVMContext &C,
78                              DiagnosticHandlerFunction DiagnosticHandler)
79     : Context(C), DiagnosticHandler(getDiagHandler(DiagnosticHandler, C)),
80       TheModule(nullptr), Buffer(buffer), LazyStreamer(nullptr),
81       NextUnreadBit(0), SeenValueSymbolTable(false), ValueList(C),
82       MDValueList(C), SeenFirstFunctionBody(false), UseRelativeIDs(false),
83       WillMaterializeAllForwardRefs(false) {}
84 
85 BitcodeReader::BitcodeReader(DataStreamer *streamer, LLVMContext &C,
86                              DiagnosticHandlerFunction DiagnosticHandler)
87     : Context(C), DiagnosticHandler(getDiagHandler(DiagnosticHandler, C)),
88       TheModule(nullptr), Buffer(nullptr), LazyStreamer(streamer),
89       NextUnreadBit(0), SeenValueSymbolTable(false), ValueList(C),
90       MDValueList(C), SeenFirstFunctionBody(false), UseRelativeIDs(false),
91       WillMaterializeAllForwardRefs(false) {}
92 
93 std::error_code BitcodeReader::materializeForwardReferencedFunctions() {
94   if (WillMaterializeAllForwardRefs)
95     return std::error_code();
96 
97   // Prevent recursion.
98   WillMaterializeAllForwardRefs = true;
99 
100   while (!BasicBlockFwdRefQueue.empty()) {
101     Function *F = BasicBlockFwdRefQueue.front();
102     BasicBlockFwdRefQueue.pop_front();
103     assert(F && "Expected valid function");
104     if (!BasicBlockFwdRefs.count(F))
105       // Already materialized.
106       continue;
107 
108     // Check for a function that isn't materializable to prevent an infinite
109     // loop.  When parsing a blockaddress stored in a global variable, there
110     // isn't a trivial way to check if a function will have a body without a
111     // linear search through FunctionsWithBodies, so just check it here.
112     if (!F->isMaterializable())
113       return Error("Never resolved function from blockaddress");
114 
115     // Try to materialize F.
116     if (std::error_code EC = materialize(F))
117       return EC;
118   }
119   assert(BasicBlockFwdRefs.empty() && "Function missing from queue");
120 
121   // Reset state.
122   WillMaterializeAllForwardRefs = false;
123   return std::error_code();
124 }
125 
126 void BitcodeReader::FreeState() {
127   Buffer = nullptr;
128   std::vector<Type*>().swap(TypeList);
129   ValueList.clear();
130   MDValueList.clear();
131   std::vector<Comdat *>().swap(ComdatList);
132 
133   std::vector<AttributeSet>().swap(MAttributes);
134   std::vector<BasicBlock*>().swap(FunctionBBs);
135   std::vector<Function*>().swap(FunctionsWithBodies);
136   DeferredFunctionInfo.clear();
137   MDKindMap.clear();
138 
139   assert(BasicBlockFwdRefs.empty() && "Unresolved blockaddress fwd references");
140   BasicBlockFwdRefQueue.clear();
141 }
142 
143 //===----------------------------------------------------------------------===//
144 //  Helper functions to implement forward reference resolution, etc.
145 //===----------------------------------------------------------------------===//
146 
147 /// ConvertToString - Convert a string from a record into an std::string, return
148 /// true on failure.
149 template<typename StrTy>
150 static bool ConvertToString(ArrayRef<uint64_t> Record, unsigned Idx,
151                             StrTy &Result) {
152   if (Idx > Record.size())
153     return true;
154 
155   for (unsigned i = Idx, e = Record.size(); i != e; ++i)
156     Result += (char)Record[i];
157   return false;
158 }
159 
160 static bool hasImplicitComdat(size_t Val) {
161   switch (Val) {
162   default:
163     return false;
164   case 1:  // Old WeakAnyLinkage
165   case 4:  // Old LinkOnceAnyLinkage
166   case 10: // Old WeakODRLinkage
167   case 11: // Old LinkOnceODRLinkage
168     return true;
169   }
170 }
171 
172 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) {
173   switch (Val) {
174   default: // Map unknown/new linkages to external
175   case 0:
176     return GlobalValue::ExternalLinkage;
177   case 2:
178     return GlobalValue::AppendingLinkage;
179   case 3:
180     return GlobalValue::InternalLinkage;
181   case 5:
182     return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage
183   case 6:
184     return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage
185   case 7:
186     return GlobalValue::ExternalWeakLinkage;
187   case 8:
188     return GlobalValue::CommonLinkage;
189   case 9:
190     return GlobalValue::PrivateLinkage;
191   case 12:
192     return GlobalValue::AvailableExternallyLinkage;
193   case 13:
194     return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage
195   case 14:
196     return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage
197   case 15:
198     return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage
199   case 1: // Old value with implicit comdat.
200   case 16:
201     return GlobalValue::WeakAnyLinkage;
202   case 10: // Old value with implicit comdat.
203   case 17:
204     return GlobalValue::WeakODRLinkage;
205   case 4: // Old value with implicit comdat.
206   case 18:
207     return GlobalValue::LinkOnceAnyLinkage;
208   case 11: // Old value with implicit comdat.
209   case 19:
210     return GlobalValue::LinkOnceODRLinkage;
211   }
212 }
213 
214 static GlobalValue::VisibilityTypes GetDecodedVisibility(unsigned Val) {
215   switch (Val) {
216   default: // Map unknown visibilities to default.
217   case 0: return GlobalValue::DefaultVisibility;
218   case 1: return GlobalValue::HiddenVisibility;
219   case 2: return GlobalValue::ProtectedVisibility;
220   }
221 }
222 
223 static GlobalValue::DLLStorageClassTypes
224 GetDecodedDLLStorageClass(unsigned Val) {
225   switch (Val) {
226   default: // Map unknown values to default.
227   case 0: return GlobalValue::DefaultStorageClass;
228   case 1: return GlobalValue::DLLImportStorageClass;
229   case 2: return GlobalValue::DLLExportStorageClass;
230   }
231 }
232 
233 static GlobalVariable::ThreadLocalMode GetDecodedThreadLocalMode(unsigned Val) {
234   switch (Val) {
235     case 0: return GlobalVariable::NotThreadLocal;
236     default: // Map unknown non-zero value to general dynamic.
237     case 1: return GlobalVariable::GeneralDynamicTLSModel;
238     case 2: return GlobalVariable::LocalDynamicTLSModel;
239     case 3: return GlobalVariable::InitialExecTLSModel;
240     case 4: return GlobalVariable::LocalExecTLSModel;
241   }
242 }
243 
244 static int GetDecodedCastOpcode(unsigned Val) {
245   switch (Val) {
246   default: return -1;
247   case bitc::CAST_TRUNC   : return Instruction::Trunc;
248   case bitc::CAST_ZEXT    : return Instruction::ZExt;
249   case bitc::CAST_SEXT    : return Instruction::SExt;
250   case bitc::CAST_FPTOUI  : return Instruction::FPToUI;
251   case bitc::CAST_FPTOSI  : return Instruction::FPToSI;
252   case bitc::CAST_UITOFP  : return Instruction::UIToFP;
253   case bitc::CAST_SITOFP  : return Instruction::SIToFP;
254   case bitc::CAST_FPTRUNC : return Instruction::FPTrunc;
255   case bitc::CAST_FPEXT   : return Instruction::FPExt;
256   case bitc::CAST_PTRTOINT: return Instruction::PtrToInt;
257   case bitc::CAST_INTTOPTR: return Instruction::IntToPtr;
258   case bitc::CAST_BITCAST : return Instruction::BitCast;
259   case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast;
260   }
261 }
262 static int GetDecodedBinaryOpcode(unsigned Val, Type *Ty) {
263   switch (Val) {
264   default: return -1;
265   case bitc::BINOP_ADD:
266     return Ty->isFPOrFPVectorTy() ? Instruction::FAdd : Instruction::Add;
267   case bitc::BINOP_SUB:
268     return Ty->isFPOrFPVectorTy() ? Instruction::FSub : Instruction::Sub;
269   case bitc::BINOP_MUL:
270     return Ty->isFPOrFPVectorTy() ? Instruction::FMul : Instruction::Mul;
271   case bitc::BINOP_UDIV: return Instruction::UDiv;
272   case bitc::BINOP_SDIV:
273     return Ty->isFPOrFPVectorTy() ? Instruction::FDiv : Instruction::SDiv;
274   case bitc::BINOP_UREM: return Instruction::URem;
275   case bitc::BINOP_SREM:
276     return Ty->isFPOrFPVectorTy() ? Instruction::FRem : Instruction::SRem;
277   case bitc::BINOP_SHL:  return Instruction::Shl;
278   case bitc::BINOP_LSHR: return Instruction::LShr;
279   case bitc::BINOP_ASHR: return Instruction::AShr;
280   case bitc::BINOP_AND:  return Instruction::And;
281   case bitc::BINOP_OR:   return Instruction::Or;
282   case bitc::BINOP_XOR:  return Instruction::Xor;
283   }
284 }
285 
286 static AtomicRMWInst::BinOp GetDecodedRMWOperation(unsigned Val) {
287   switch (Val) {
288   default: return AtomicRMWInst::BAD_BINOP;
289   case bitc::RMW_XCHG: return AtomicRMWInst::Xchg;
290   case bitc::RMW_ADD: return AtomicRMWInst::Add;
291   case bitc::RMW_SUB: return AtomicRMWInst::Sub;
292   case bitc::RMW_AND: return AtomicRMWInst::And;
293   case bitc::RMW_NAND: return AtomicRMWInst::Nand;
294   case bitc::RMW_OR: return AtomicRMWInst::Or;
295   case bitc::RMW_XOR: return AtomicRMWInst::Xor;
296   case bitc::RMW_MAX: return AtomicRMWInst::Max;
297   case bitc::RMW_MIN: return AtomicRMWInst::Min;
298   case bitc::RMW_UMAX: return AtomicRMWInst::UMax;
299   case bitc::RMW_UMIN: return AtomicRMWInst::UMin;
300   }
301 }
302 
303 static AtomicOrdering GetDecodedOrdering(unsigned Val) {
304   switch (Val) {
305   case bitc::ORDERING_NOTATOMIC: return NotAtomic;
306   case bitc::ORDERING_UNORDERED: return Unordered;
307   case bitc::ORDERING_MONOTONIC: return Monotonic;
308   case bitc::ORDERING_ACQUIRE: return Acquire;
309   case bitc::ORDERING_RELEASE: return Release;
310   case bitc::ORDERING_ACQREL: return AcquireRelease;
311   default: // Map unknown orderings to sequentially-consistent.
312   case bitc::ORDERING_SEQCST: return SequentiallyConsistent;
313   }
314 }
315 
316 static SynchronizationScope GetDecodedSynchScope(unsigned Val) {
317   switch (Val) {
318   case bitc::SYNCHSCOPE_SINGLETHREAD: return SingleThread;
319   default: // Map unknown scopes to cross-thread.
320   case bitc::SYNCHSCOPE_CROSSTHREAD: return CrossThread;
321   }
322 }
323 
324 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) {
325   switch (Val) {
326   default: // Map unknown selection kinds to any.
327   case bitc::COMDAT_SELECTION_KIND_ANY:
328     return Comdat::Any;
329   case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH:
330     return Comdat::ExactMatch;
331   case bitc::COMDAT_SELECTION_KIND_LARGEST:
332     return Comdat::Largest;
333   case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES:
334     return Comdat::NoDuplicates;
335   case bitc::COMDAT_SELECTION_KIND_SAME_SIZE:
336     return Comdat::SameSize;
337   }
338 }
339 
340 static void UpgradeDLLImportExportLinkage(llvm::GlobalValue *GV, unsigned Val) {
341   switch (Val) {
342   case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break;
343   case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break;
344   }
345 }
346 
347 namespace llvm {
348 namespace {
349   /// @brief A class for maintaining the slot number definition
350   /// as a placeholder for the actual definition for forward constants defs.
351   class ConstantPlaceHolder : public ConstantExpr {
352     void operator=(const ConstantPlaceHolder &) LLVM_DELETED_FUNCTION;
353   public:
354     // allocate space for exactly one operand
355     void *operator new(size_t s) {
356       return User::operator new(s, 1);
357     }
358     explicit ConstantPlaceHolder(Type *Ty, LLVMContext& Context)
359       : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) {
360       Op<0>() = UndefValue::get(Type::getInt32Ty(Context));
361     }
362 
363     /// @brief Methods to support type inquiry through isa, cast, and dyn_cast.
364     static bool classof(const Value *V) {
365       return isa<ConstantExpr>(V) &&
366              cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1;
367     }
368 
369 
370     /// Provide fast operand accessors
371     DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
372   };
373 }
374 
375 // FIXME: can we inherit this from ConstantExpr?
376 template <>
377 struct OperandTraits<ConstantPlaceHolder> :
378   public FixedNumOperandTraits<ConstantPlaceHolder, 1> {
379 };
380 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantPlaceHolder, Value)
381 }
382 
383 
384 void BitcodeReaderValueList::AssignValue(Value *V, unsigned Idx) {
385   if (Idx == size()) {
386     push_back(V);
387     return;
388   }
389 
390   if (Idx >= size())
391     resize(Idx+1);
392 
393   WeakVH &OldV = ValuePtrs[Idx];
394   if (!OldV) {
395     OldV = V;
396     return;
397   }
398 
399   // Handle constants and non-constants (e.g. instrs) differently for
400   // efficiency.
401   if (Constant *PHC = dyn_cast<Constant>(&*OldV)) {
402     ResolveConstants.push_back(std::make_pair(PHC, Idx));
403     OldV = V;
404   } else {
405     // If there was a forward reference to this value, replace it.
406     Value *PrevVal = OldV;
407     OldV->replaceAllUsesWith(V);
408     delete PrevVal;
409   }
410 }
411 
412 
413 Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx,
414                                                     Type *Ty) {
415   if (Idx >= size())
416     resize(Idx + 1);
417 
418   if (Value *V = ValuePtrs[Idx]) {
419     assert(Ty == V->getType() && "Type mismatch in constant table!");
420     return cast<Constant>(V);
421   }
422 
423   // Create and return a placeholder, which will later be RAUW'd.
424   Constant *C = new ConstantPlaceHolder(Ty, Context);
425   ValuePtrs[Idx] = C;
426   return C;
427 }
428 
429 Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, Type *Ty) {
430   if (Idx >= size())
431     resize(Idx + 1);
432 
433   if (Value *V = ValuePtrs[Idx]) {
434     assert((!Ty || Ty == V->getType()) && "Type mismatch in value table!");
435     return V;
436   }
437 
438   // No type specified, must be invalid reference.
439   if (!Ty) return nullptr;
440 
441   // Create and return a placeholder, which will later be RAUW'd.
442   Value *V = new Argument(Ty);
443   ValuePtrs[Idx] = V;
444   return V;
445 }
446 
447 /// ResolveConstantForwardRefs - Once all constants are read, this method bulk
448 /// resolves any forward references.  The idea behind this is that we sometimes
449 /// get constants (such as large arrays) which reference *many* forward ref
450 /// constants.  Replacing each of these causes a lot of thrashing when
451 /// building/reuniquing the constant.  Instead of doing this, we look at all the
452 /// uses and rewrite all the place holders at once for any constant that uses
453 /// a placeholder.
454 void BitcodeReaderValueList::ResolveConstantForwardRefs() {
455   // Sort the values by-pointer so that they are efficient to look up with a
456   // binary search.
457   std::sort(ResolveConstants.begin(), ResolveConstants.end());
458 
459   SmallVector<Constant*, 64> NewOps;
460 
461   while (!ResolveConstants.empty()) {
462     Value *RealVal = operator[](ResolveConstants.back().second);
463     Constant *Placeholder = ResolveConstants.back().first;
464     ResolveConstants.pop_back();
465 
466     // Loop over all users of the placeholder, updating them to reference the
467     // new value.  If they reference more than one placeholder, update them all
468     // at once.
469     while (!Placeholder->use_empty()) {
470       auto UI = Placeholder->user_begin();
471       User *U = *UI;
472 
473       // If the using object isn't uniqued, just update the operands.  This
474       // handles instructions and initializers for global variables.
475       if (!isa<Constant>(U) || isa<GlobalValue>(U)) {
476         UI.getUse().set(RealVal);
477         continue;
478       }
479 
480       // Otherwise, we have a constant that uses the placeholder.  Replace that
481       // constant with a new constant that has *all* placeholder uses updated.
482       Constant *UserC = cast<Constant>(U);
483       for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end();
484            I != E; ++I) {
485         Value *NewOp;
486         if (!isa<ConstantPlaceHolder>(*I)) {
487           // Not a placeholder reference.
488           NewOp = *I;
489         } else if (*I == Placeholder) {
490           // Common case is that it just references this one placeholder.
491           NewOp = RealVal;
492         } else {
493           // Otherwise, look up the placeholder in ResolveConstants.
494           ResolveConstantsTy::iterator It =
495             std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(),
496                              std::pair<Constant*, unsigned>(cast<Constant>(*I),
497                                                             0));
498           assert(It != ResolveConstants.end() && It->first == *I);
499           NewOp = operator[](It->second);
500         }
501 
502         NewOps.push_back(cast<Constant>(NewOp));
503       }
504 
505       // Make the new constant.
506       Constant *NewC;
507       if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) {
508         NewC = ConstantArray::get(UserCA->getType(), NewOps);
509       } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) {
510         NewC = ConstantStruct::get(UserCS->getType(), NewOps);
511       } else if (isa<ConstantVector>(UserC)) {
512         NewC = ConstantVector::get(NewOps);
513       } else {
514         assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr.");
515         NewC = cast<ConstantExpr>(UserC)->getWithOperands(NewOps);
516       }
517 
518       UserC->replaceAllUsesWith(NewC);
519       UserC->destroyConstant();
520       NewOps.clear();
521     }
522 
523     // Update all ValueHandles, they should be the only users at this point.
524     Placeholder->replaceAllUsesWith(RealVal);
525     delete Placeholder;
526   }
527 }
528 
529 void BitcodeReaderMDValueList::AssignValue(Metadata *MD, unsigned Idx) {
530   if (Idx == size()) {
531     push_back(MD);
532     return;
533   }
534 
535   if (Idx >= size())
536     resize(Idx+1);
537 
538   TrackingMDRef &OldMD = MDValuePtrs[Idx];
539   if (!OldMD) {
540     OldMD.reset(MD);
541     return;
542   }
543 
544   // If there was a forward reference to this value, replace it.
545   TempMDTuple PrevMD(cast<MDTuple>(OldMD.get()));
546   PrevMD->replaceAllUsesWith(MD);
547   --NumFwdRefs;
548 }
549 
550 Metadata *BitcodeReaderMDValueList::getValueFwdRef(unsigned Idx) {
551   if (Idx >= size())
552     resize(Idx + 1);
553 
554   if (Metadata *MD = MDValuePtrs[Idx])
555     return MD;
556 
557   // Create and return a placeholder, which will later be RAUW'd.
558   AnyFwdRefs = true;
559   ++NumFwdRefs;
560   Metadata *MD = MDNode::getTemporary(Context, None).release();
561   MDValuePtrs[Idx].reset(MD);
562   return MD;
563 }
564 
565 void BitcodeReaderMDValueList::tryToResolveCycles() {
566   if (!AnyFwdRefs)
567     // Nothing to do.
568     return;
569 
570   if (NumFwdRefs)
571     // Still forward references... can't resolve cycles.
572     return;
573 
574   // Resolve any cycles.
575   for (auto &MD : MDValuePtrs) {
576     auto *N = dyn_cast_or_null<MDNode>(MD);
577     if (!N)
578       continue;
579 
580     assert(!N->isTemporary() && "Unexpected forward reference");
581     N->resolveCycles();
582   }
583 }
584 
585 Type *BitcodeReader::getTypeByID(unsigned ID) {
586   // The type table size is always specified correctly.
587   if (ID >= TypeList.size())
588     return nullptr;
589 
590   if (Type *Ty = TypeList[ID])
591     return Ty;
592 
593   // If we have a forward reference, the only possible case is when it is to a
594   // named struct.  Just create a placeholder for now.
595   return TypeList[ID] = createIdentifiedStructType(Context);
596 }
597 
598 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context,
599                                                       StringRef Name) {
600   auto *Ret = StructType::create(Context, Name);
601   IdentifiedStructTypes.push_back(Ret);
602   return Ret;
603 }
604 
605 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) {
606   auto *Ret = StructType::create(Context);
607   IdentifiedStructTypes.push_back(Ret);
608   return Ret;
609 }
610 
611 
612 //===----------------------------------------------------------------------===//
613 //  Functions for parsing blocks from the bitcode file
614 //===----------------------------------------------------------------------===//
615 
616 
617 /// \brief This fills an AttrBuilder object with the LLVM attributes that have
618 /// been decoded from the given integer. This function must stay in sync with
619 /// 'encodeLLVMAttributesForBitcode'.
620 static void decodeLLVMAttributesForBitcode(AttrBuilder &B,
621                                            uint64_t EncodedAttrs) {
622   // FIXME: Remove in 4.0.
623 
624   // The alignment is stored as a 16-bit raw value from bits 31--16.  We shift
625   // the bits above 31 down by 11 bits.
626   unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16;
627   assert((!Alignment || isPowerOf2_32(Alignment)) &&
628          "Alignment must be a power of two.");
629 
630   if (Alignment)
631     B.addAlignmentAttr(Alignment);
632   B.addRawValue(((EncodedAttrs & (0xfffffULL << 32)) >> 11) |
633                 (EncodedAttrs & 0xffff));
634 }
635 
636 std::error_code BitcodeReader::ParseAttributeBlock() {
637   if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID))
638     return Error("Invalid record");
639 
640   if (!MAttributes.empty())
641     return Error("Invalid multiple blocks");
642 
643   SmallVector<uint64_t, 64> Record;
644 
645   SmallVector<AttributeSet, 8> Attrs;
646 
647   // Read all the records.
648   while (1) {
649     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
650 
651     switch (Entry.Kind) {
652     case BitstreamEntry::SubBlock: // Handled for us already.
653     case BitstreamEntry::Error:
654       return Error("Malformed block");
655     case BitstreamEntry::EndBlock:
656       return std::error_code();
657     case BitstreamEntry::Record:
658       // The interesting case.
659       break;
660     }
661 
662     // Read a record.
663     Record.clear();
664     switch (Stream.readRecord(Entry.ID, Record)) {
665     default:  // Default behavior: ignore.
666       break;
667     case bitc::PARAMATTR_CODE_ENTRY_OLD: { // ENTRY: [paramidx0, attr0, ...]
668       // FIXME: Remove in 4.0.
669       if (Record.size() & 1)
670         return Error("Invalid record");
671 
672       for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
673         AttrBuilder B;
674         decodeLLVMAttributesForBitcode(B, Record[i+1]);
675         Attrs.push_back(AttributeSet::get(Context, Record[i], B));
676       }
677 
678       MAttributes.push_back(AttributeSet::get(Context, Attrs));
679       Attrs.clear();
680       break;
681     }
682     case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [attrgrp0, attrgrp1, ...]
683       for (unsigned i = 0, e = Record.size(); i != e; ++i)
684         Attrs.push_back(MAttributeGroups[Record[i]]);
685 
686       MAttributes.push_back(AttributeSet::get(Context, Attrs));
687       Attrs.clear();
688       break;
689     }
690     }
691   }
692 }
693 
694 // Returns Attribute::None on unrecognized codes.
695 static Attribute::AttrKind GetAttrFromCode(uint64_t Code) {
696   switch (Code) {
697   default:
698     return Attribute::None;
699   case bitc::ATTR_KIND_ALIGNMENT:
700     return Attribute::Alignment;
701   case bitc::ATTR_KIND_ALWAYS_INLINE:
702     return Attribute::AlwaysInline;
703   case bitc::ATTR_KIND_BUILTIN:
704     return Attribute::Builtin;
705   case bitc::ATTR_KIND_BY_VAL:
706     return Attribute::ByVal;
707   case bitc::ATTR_KIND_IN_ALLOCA:
708     return Attribute::InAlloca;
709   case bitc::ATTR_KIND_COLD:
710     return Attribute::Cold;
711   case bitc::ATTR_KIND_INLINE_HINT:
712     return Attribute::InlineHint;
713   case bitc::ATTR_KIND_IN_REG:
714     return Attribute::InReg;
715   case bitc::ATTR_KIND_JUMP_TABLE:
716     return Attribute::JumpTable;
717   case bitc::ATTR_KIND_MIN_SIZE:
718     return Attribute::MinSize;
719   case bitc::ATTR_KIND_NAKED:
720     return Attribute::Naked;
721   case bitc::ATTR_KIND_NEST:
722     return Attribute::Nest;
723   case bitc::ATTR_KIND_NO_ALIAS:
724     return Attribute::NoAlias;
725   case bitc::ATTR_KIND_NO_BUILTIN:
726     return Attribute::NoBuiltin;
727   case bitc::ATTR_KIND_NO_CAPTURE:
728     return Attribute::NoCapture;
729   case bitc::ATTR_KIND_NO_DUPLICATE:
730     return Attribute::NoDuplicate;
731   case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT:
732     return Attribute::NoImplicitFloat;
733   case bitc::ATTR_KIND_NO_INLINE:
734     return Attribute::NoInline;
735   case bitc::ATTR_KIND_NON_LAZY_BIND:
736     return Attribute::NonLazyBind;
737   case bitc::ATTR_KIND_NON_NULL:
738     return Attribute::NonNull;
739   case bitc::ATTR_KIND_DEREFERENCEABLE:
740     return Attribute::Dereferenceable;
741   case bitc::ATTR_KIND_NO_RED_ZONE:
742     return Attribute::NoRedZone;
743   case bitc::ATTR_KIND_NO_RETURN:
744     return Attribute::NoReturn;
745   case bitc::ATTR_KIND_NO_UNWIND:
746     return Attribute::NoUnwind;
747   case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE:
748     return Attribute::OptimizeForSize;
749   case bitc::ATTR_KIND_OPTIMIZE_NONE:
750     return Attribute::OptimizeNone;
751   case bitc::ATTR_KIND_READ_NONE:
752     return Attribute::ReadNone;
753   case bitc::ATTR_KIND_READ_ONLY:
754     return Attribute::ReadOnly;
755   case bitc::ATTR_KIND_RETURNED:
756     return Attribute::Returned;
757   case bitc::ATTR_KIND_RETURNS_TWICE:
758     return Attribute::ReturnsTwice;
759   case bitc::ATTR_KIND_S_EXT:
760     return Attribute::SExt;
761   case bitc::ATTR_KIND_STACK_ALIGNMENT:
762     return Attribute::StackAlignment;
763   case bitc::ATTR_KIND_STACK_PROTECT:
764     return Attribute::StackProtect;
765   case bitc::ATTR_KIND_STACK_PROTECT_REQ:
766     return Attribute::StackProtectReq;
767   case bitc::ATTR_KIND_STACK_PROTECT_STRONG:
768     return Attribute::StackProtectStrong;
769   case bitc::ATTR_KIND_STRUCT_RET:
770     return Attribute::StructRet;
771   case bitc::ATTR_KIND_SANITIZE_ADDRESS:
772     return Attribute::SanitizeAddress;
773   case bitc::ATTR_KIND_SANITIZE_THREAD:
774     return Attribute::SanitizeThread;
775   case bitc::ATTR_KIND_SANITIZE_MEMORY:
776     return Attribute::SanitizeMemory;
777   case bitc::ATTR_KIND_UW_TABLE:
778     return Attribute::UWTable;
779   case bitc::ATTR_KIND_Z_EXT:
780     return Attribute::ZExt;
781   }
782 }
783 
784 std::error_code BitcodeReader::ParseAttrKind(uint64_t Code,
785                                              Attribute::AttrKind *Kind) {
786   *Kind = GetAttrFromCode(Code);
787   if (*Kind == Attribute::None)
788     return Error(BitcodeError::CorruptedBitcode,
789                  "Unknown attribute kind (" + Twine(Code) + ")");
790   return std::error_code();
791 }
792 
793 std::error_code BitcodeReader::ParseAttributeGroupBlock() {
794   if (Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID))
795     return Error("Invalid record");
796 
797   if (!MAttributeGroups.empty())
798     return Error("Invalid multiple blocks");
799 
800   SmallVector<uint64_t, 64> Record;
801 
802   // Read all the records.
803   while (1) {
804     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
805 
806     switch (Entry.Kind) {
807     case BitstreamEntry::SubBlock: // Handled for us already.
808     case BitstreamEntry::Error:
809       return Error("Malformed block");
810     case BitstreamEntry::EndBlock:
811       return std::error_code();
812     case BitstreamEntry::Record:
813       // The interesting case.
814       break;
815     }
816 
817     // Read a record.
818     Record.clear();
819     switch (Stream.readRecord(Entry.ID, Record)) {
820     default:  // Default behavior: ignore.
821       break;
822     case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...]
823       if (Record.size() < 3)
824         return Error("Invalid record");
825 
826       uint64_t GrpID = Record[0];
827       uint64_t Idx = Record[1]; // Index of the object this attribute refers to.
828 
829       AttrBuilder B;
830       for (unsigned i = 2, e = Record.size(); i != e; ++i) {
831         if (Record[i] == 0) {        // Enum attribute
832           Attribute::AttrKind Kind;
833           if (std::error_code EC = ParseAttrKind(Record[++i], &Kind))
834             return EC;
835 
836           B.addAttribute(Kind);
837         } else if (Record[i] == 1) { // Integer attribute
838           Attribute::AttrKind Kind;
839           if (std::error_code EC = ParseAttrKind(Record[++i], &Kind))
840             return EC;
841           if (Kind == Attribute::Alignment)
842             B.addAlignmentAttr(Record[++i]);
843           else if (Kind == Attribute::StackAlignment)
844             B.addStackAlignmentAttr(Record[++i]);
845           else if (Kind == Attribute::Dereferenceable)
846             B.addDereferenceableAttr(Record[++i]);
847         } else {                     // String attribute
848           assert((Record[i] == 3 || Record[i] == 4) &&
849                  "Invalid attribute group entry");
850           bool HasValue = (Record[i++] == 4);
851           SmallString<64> KindStr;
852           SmallString<64> ValStr;
853 
854           while (Record[i] != 0 && i != e)
855             KindStr += Record[i++];
856           assert(Record[i] == 0 && "Kind string not null terminated");
857 
858           if (HasValue) {
859             // Has a value associated with it.
860             ++i; // Skip the '0' that terminates the "kind" string.
861             while (Record[i] != 0 && i != e)
862               ValStr += Record[i++];
863             assert(Record[i] == 0 && "Value string not null terminated");
864           }
865 
866           B.addAttribute(KindStr.str(), ValStr.str());
867         }
868       }
869 
870       MAttributeGroups[GrpID] = AttributeSet::get(Context, Idx, B);
871       break;
872     }
873     }
874   }
875 }
876 
877 std::error_code BitcodeReader::ParseTypeTable() {
878   if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW))
879     return Error("Invalid record");
880 
881   return ParseTypeTableBody();
882 }
883 
884 std::error_code BitcodeReader::ParseTypeTableBody() {
885   if (!TypeList.empty())
886     return Error("Invalid multiple blocks");
887 
888   SmallVector<uint64_t, 64> Record;
889   unsigned NumRecords = 0;
890 
891   SmallString<64> TypeName;
892 
893   // Read all the records for this type table.
894   while (1) {
895     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
896 
897     switch (Entry.Kind) {
898     case BitstreamEntry::SubBlock: // Handled for us already.
899     case BitstreamEntry::Error:
900       return Error("Malformed block");
901     case BitstreamEntry::EndBlock:
902       if (NumRecords != TypeList.size())
903         return Error("Malformed block");
904       return std::error_code();
905     case BitstreamEntry::Record:
906       // The interesting case.
907       break;
908     }
909 
910     // Read a record.
911     Record.clear();
912     Type *ResultTy = nullptr;
913     switch (Stream.readRecord(Entry.ID, Record)) {
914     default:
915       return Error("Invalid value");
916     case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
917       // TYPE_CODE_NUMENTRY contains a count of the number of types in the
918       // type list.  This allows us to reserve space.
919       if (Record.size() < 1)
920         return Error("Invalid record");
921       TypeList.resize(Record[0]);
922       continue;
923     case bitc::TYPE_CODE_VOID:      // VOID
924       ResultTy = Type::getVoidTy(Context);
925       break;
926     case bitc::TYPE_CODE_HALF:     // HALF
927       ResultTy = Type::getHalfTy(Context);
928       break;
929     case bitc::TYPE_CODE_FLOAT:     // FLOAT
930       ResultTy = Type::getFloatTy(Context);
931       break;
932     case bitc::TYPE_CODE_DOUBLE:    // DOUBLE
933       ResultTy = Type::getDoubleTy(Context);
934       break;
935     case bitc::TYPE_CODE_X86_FP80:  // X86_FP80
936       ResultTy = Type::getX86_FP80Ty(Context);
937       break;
938     case bitc::TYPE_CODE_FP128:     // FP128
939       ResultTy = Type::getFP128Ty(Context);
940       break;
941     case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
942       ResultTy = Type::getPPC_FP128Ty(Context);
943       break;
944     case bitc::TYPE_CODE_LABEL:     // LABEL
945       ResultTy = Type::getLabelTy(Context);
946       break;
947     case bitc::TYPE_CODE_METADATA:  // METADATA
948       ResultTy = Type::getMetadataTy(Context);
949       break;
950     case bitc::TYPE_CODE_X86_MMX:   // X86_MMX
951       ResultTy = Type::getX86_MMXTy(Context);
952       break;
953     case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width]
954       if (Record.size() < 1)
955         return Error("Invalid record");
956 
957       uint64_t NumBits = Record[0];
958       if (NumBits < IntegerType::MIN_INT_BITS ||
959           NumBits > IntegerType::MAX_INT_BITS)
960         return Error("Bitwidth for integer type out of range");
961       ResultTy = IntegerType::get(Context, NumBits);
962       break;
963     }
964     case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
965                                     //          [pointee type, address space]
966       if (Record.size() < 1)
967         return Error("Invalid record");
968       unsigned AddressSpace = 0;
969       if (Record.size() == 2)
970         AddressSpace = Record[1];
971       ResultTy = getTypeByID(Record[0]);
972       if (!ResultTy)
973         return Error("Invalid type");
974       ResultTy = PointerType::get(ResultTy, AddressSpace);
975       break;
976     }
977     case bitc::TYPE_CODE_FUNCTION_OLD: {
978       // FIXME: attrid is dead, remove it in LLVM 4.0
979       // FUNCTION: [vararg, attrid, retty, paramty x N]
980       if (Record.size() < 3)
981         return Error("Invalid record");
982       SmallVector<Type*, 8> ArgTys;
983       for (unsigned i = 3, e = Record.size(); i != e; ++i) {
984         if (Type *T = getTypeByID(Record[i]))
985           ArgTys.push_back(T);
986         else
987           break;
988       }
989 
990       ResultTy = getTypeByID(Record[2]);
991       if (!ResultTy || ArgTys.size() < Record.size()-3)
992         return Error("Invalid type");
993 
994       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
995       break;
996     }
997     case bitc::TYPE_CODE_FUNCTION: {
998       // FUNCTION: [vararg, retty, paramty x N]
999       if (Record.size() < 2)
1000         return Error("Invalid record");
1001       SmallVector<Type*, 8> ArgTys;
1002       for (unsigned i = 2, e = Record.size(); i != e; ++i) {
1003         if (Type *T = getTypeByID(Record[i]))
1004           ArgTys.push_back(T);
1005         else
1006           break;
1007       }
1008 
1009       ResultTy = getTypeByID(Record[1]);
1010       if (!ResultTy || ArgTys.size() < Record.size()-2)
1011         return Error("Invalid type");
1012 
1013       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
1014       break;
1015     }
1016     case bitc::TYPE_CODE_STRUCT_ANON: {  // STRUCT: [ispacked, eltty x N]
1017       if (Record.size() < 1)
1018         return Error("Invalid record");
1019       SmallVector<Type*, 8> EltTys;
1020       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
1021         if (Type *T = getTypeByID(Record[i]))
1022           EltTys.push_back(T);
1023         else
1024           break;
1025       }
1026       if (EltTys.size() != Record.size()-1)
1027         return Error("Invalid type");
1028       ResultTy = StructType::get(Context, EltTys, Record[0]);
1029       break;
1030     }
1031     case bitc::TYPE_CODE_STRUCT_NAME:   // STRUCT_NAME: [strchr x N]
1032       if (ConvertToString(Record, 0, TypeName))
1033         return Error("Invalid record");
1034       continue;
1035 
1036     case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N]
1037       if (Record.size() < 1)
1038         return Error("Invalid record");
1039 
1040       if (NumRecords >= TypeList.size())
1041         return Error("Invalid TYPE table");
1042 
1043       // Check to see if this was forward referenced, if so fill in the temp.
1044       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
1045       if (Res) {
1046         Res->setName(TypeName);
1047         TypeList[NumRecords] = nullptr;
1048       } else  // Otherwise, create a new struct.
1049         Res = createIdentifiedStructType(Context, TypeName);
1050       TypeName.clear();
1051 
1052       SmallVector<Type*, 8> EltTys;
1053       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
1054         if (Type *T = getTypeByID(Record[i]))
1055           EltTys.push_back(T);
1056         else
1057           break;
1058       }
1059       if (EltTys.size() != Record.size()-1)
1060         return Error("Invalid record");
1061       Res->setBody(EltTys, Record[0]);
1062       ResultTy = Res;
1063       break;
1064     }
1065     case bitc::TYPE_CODE_OPAQUE: {       // OPAQUE: []
1066       if (Record.size() != 1)
1067         return Error("Invalid record");
1068 
1069       if (NumRecords >= TypeList.size())
1070         return Error("Invalid TYPE table");
1071 
1072       // Check to see if this was forward referenced, if so fill in the temp.
1073       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
1074       if (Res) {
1075         Res->setName(TypeName);
1076         TypeList[NumRecords] = nullptr;
1077       } else  // Otherwise, create a new struct with no body.
1078         Res = createIdentifiedStructType(Context, TypeName);
1079       TypeName.clear();
1080       ResultTy = Res;
1081       break;
1082     }
1083     case bitc::TYPE_CODE_ARRAY:     // ARRAY: [numelts, eltty]
1084       if (Record.size() < 2)
1085         return Error("Invalid record");
1086       if ((ResultTy = getTypeByID(Record[1])))
1087         ResultTy = ArrayType::get(ResultTy, Record[0]);
1088       else
1089         return Error("Invalid type");
1090       break;
1091     case bitc::TYPE_CODE_VECTOR:    // VECTOR: [numelts, eltty]
1092       if (Record.size() < 2)
1093         return Error("Invalid record");
1094       if ((ResultTy = getTypeByID(Record[1])))
1095         ResultTy = VectorType::get(ResultTy, Record[0]);
1096       else
1097         return Error("Invalid type");
1098       break;
1099     }
1100 
1101     if (NumRecords >= TypeList.size())
1102       return Error("Invalid TYPE table");
1103     if (TypeList[NumRecords])
1104       return Error(
1105           "Invalid TYPE table: Only named structs can be forward referenced");
1106     assert(ResultTy && "Didn't read a type?");
1107     TypeList[NumRecords++] = ResultTy;
1108   }
1109 }
1110 
1111 std::error_code BitcodeReader::ParseValueSymbolTable() {
1112   if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
1113     return Error("Invalid record");
1114 
1115   SmallVector<uint64_t, 64> Record;
1116 
1117   Triple TT(TheModule->getTargetTriple());
1118 
1119   // Read all the records for this value table.
1120   SmallString<128> ValueName;
1121   while (1) {
1122     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1123 
1124     switch (Entry.Kind) {
1125     case BitstreamEntry::SubBlock: // Handled for us already.
1126     case BitstreamEntry::Error:
1127       return Error("Malformed block");
1128     case BitstreamEntry::EndBlock:
1129       return std::error_code();
1130     case BitstreamEntry::Record:
1131       // The interesting case.
1132       break;
1133     }
1134 
1135     // Read a record.
1136     Record.clear();
1137     switch (Stream.readRecord(Entry.ID, Record)) {
1138     default:  // Default behavior: unknown type.
1139       break;
1140     case bitc::VST_CODE_ENTRY: {  // VST_ENTRY: [valueid, namechar x N]
1141       if (ConvertToString(Record, 1, ValueName))
1142         return Error("Invalid record");
1143       unsigned ValueID = Record[0];
1144       if (ValueID >= ValueList.size() || !ValueList[ValueID])
1145         return Error("Invalid record");
1146       Value *V = ValueList[ValueID];
1147 
1148       V->setName(StringRef(ValueName.data(), ValueName.size()));
1149       if (auto *GO = dyn_cast<GlobalObject>(V)) {
1150         if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) {
1151           if (TT.isOSBinFormatMachO())
1152             GO->setComdat(nullptr);
1153           else
1154             GO->setComdat(TheModule->getOrInsertComdat(V->getName()));
1155         }
1156       }
1157       ValueName.clear();
1158       break;
1159     }
1160     case bitc::VST_CODE_BBENTRY: {
1161       if (ConvertToString(Record, 1, ValueName))
1162         return Error("Invalid record");
1163       BasicBlock *BB = getBasicBlock(Record[0]);
1164       if (!BB)
1165         return Error("Invalid record");
1166 
1167       BB->setName(StringRef(ValueName.data(), ValueName.size()));
1168       ValueName.clear();
1169       break;
1170     }
1171     }
1172   }
1173 }
1174 
1175 std::error_code BitcodeReader::ParseMetadata() {
1176   unsigned NextMDValueNo = MDValueList.size();
1177 
1178   if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID))
1179     return Error("Invalid record");
1180 
1181   SmallVector<uint64_t, 64> Record;
1182 
1183   // Read all the records.
1184   while (1) {
1185     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1186 
1187     switch (Entry.Kind) {
1188     case BitstreamEntry::SubBlock: // Handled for us already.
1189     case BitstreamEntry::Error:
1190       return Error("Malformed block");
1191     case BitstreamEntry::EndBlock:
1192       MDValueList.tryToResolveCycles();
1193       return std::error_code();
1194     case BitstreamEntry::Record:
1195       // The interesting case.
1196       break;
1197     }
1198 
1199     // Read a record.
1200     Record.clear();
1201     unsigned Code = Stream.readRecord(Entry.ID, Record);
1202     bool IsDistinct = false;
1203     switch (Code) {
1204     default:  // Default behavior: ignore.
1205       break;
1206     case bitc::METADATA_NAME: {
1207       // Read name of the named metadata.
1208       SmallString<8> Name(Record.begin(), Record.end());
1209       Record.clear();
1210       Code = Stream.ReadCode();
1211 
1212       // METADATA_NAME is always followed by METADATA_NAMED_NODE.
1213       unsigned NextBitCode = Stream.readRecord(Code, Record);
1214       assert(NextBitCode == bitc::METADATA_NAMED_NODE); (void)NextBitCode;
1215 
1216       // Read named metadata elements.
1217       unsigned Size = Record.size();
1218       NamedMDNode *NMD = TheModule->getOrInsertNamedMetadata(Name);
1219       for (unsigned i = 0; i != Size; ++i) {
1220         MDNode *MD = dyn_cast_or_null<MDNode>(MDValueList.getValueFwdRef(Record[i]));
1221         if (!MD)
1222           return Error("Invalid record");
1223         NMD->addOperand(MD);
1224       }
1225       break;
1226     }
1227     case bitc::METADATA_OLD_FN_NODE: {
1228       // FIXME: Remove in 4.0.
1229       // This is a LocalAsMetadata record, the only type of function-local
1230       // metadata.
1231       if (Record.size() % 2 == 1)
1232         return Error("Invalid record");
1233 
1234       // If this isn't a LocalAsMetadata record, we're dropping it.  This used
1235       // to be legal, but there's no upgrade path.
1236       auto dropRecord = [&] {
1237         MDValueList.AssignValue(MDNode::get(Context, None), NextMDValueNo++);
1238       };
1239       if (Record.size() != 2) {
1240         dropRecord();
1241         break;
1242       }
1243 
1244       Type *Ty = getTypeByID(Record[0]);
1245       if (Ty->isMetadataTy() || Ty->isVoidTy()) {
1246         dropRecord();
1247         break;
1248       }
1249 
1250       MDValueList.AssignValue(
1251           LocalAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)),
1252           NextMDValueNo++);
1253       break;
1254     }
1255     case bitc::METADATA_OLD_NODE: {
1256       // FIXME: Remove in 4.0.
1257       if (Record.size() % 2 == 1)
1258         return Error("Invalid record");
1259 
1260       unsigned Size = Record.size();
1261       SmallVector<Metadata *, 8> Elts;
1262       for (unsigned i = 0; i != Size; i += 2) {
1263         Type *Ty = getTypeByID(Record[i]);
1264         if (!Ty)
1265           return Error("Invalid record");
1266         if (Ty->isMetadataTy())
1267           Elts.push_back(MDValueList.getValueFwdRef(Record[i+1]));
1268         else if (!Ty->isVoidTy()) {
1269           auto *MD =
1270               ValueAsMetadata::get(ValueList.getValueFwdRef(Record[i + 1], Ty));
1271           assert(isa<ConstantAsMetadata>(MD) &&
1272                  "Expected non-function-local metadata");
1273           Elts.push_back(MD);
1274         } else
1275           Elts.push_back(nullptr);
1276       }
1277       MDValueList.AssignValue(MDNode::get(Context, Elts), NextMDValueNo++);
1278       break;
1279     }
1280     case bitc::METADATA_VALUE: {
1281       if (Record.size() != 2)
1282         return Error("Invalid record");
1283 
1284       Type *Ty = getTypeByID(Record[0]);
1285       if (Ty->isMetadataTy() || Ty->isVoidTy())
1286         return Error("Invalid record");
1287 
1288       MDValueList.AssignValue(
1289           ValueAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)),
1290           NextMDValueNo++);
1291       break;
1292     }
1293     case bitc::METADATA_DISTINCT_NODE:
1294       IsDistinct = true;
1295       // fallthrough...
1296     case bitc::METADATA_NODE: {
1297       SmallVector<Metadata *, 8> Elts;
1298       Elts.reserve(Record.size());
1299       for (unsigned ID : Record)
1300         Elts.push_back(ID ? MDValueList.getValueFwdRef(ID - 1) : nullptr);
1301       MDValueList.AssignValue(IsDistinct ? MDNode::getDistinct(Context, Elts)
1302                                          : MDNode::get(Context, Elts),
1303                               NextMDValueNo++);
1304       break;
1305     }
1306     case bitc::METADATA_LOCATION: {
1307       if (Record.size() != 5)
1308         return Error("Invalid record");
1309 
1310       auto get = Record[0] ? MDLocation::getDistinct : MDLocation::get;
1311       unsigned Line = Record[1];
1312       unsigned Column = Record[2];
1313       MDNode *Scope = cast<MDNode>(MDValueList.getValueFwdRef(Record[3]));
1314       Metadata *InlinedAt =
1315           Record[4] ? MDValueList.getValueFwdRef(Record[4] - 1) : nullptr;
1316       MDValueList.AssignValue(get(Context, Line, Column, Scope, InlinedAt),
1317                               NextMDValueNo++);
1318       break;
1319     }
1320     case bitc::METADATA_STRING: {
1321       std::string String(Record.begin(), Record.end());
1322       llvm::UpgradeMDStringConstant(String);
1323       Metadata *MD = MDString::get(Context, String);
1324       MDValueList.AssignValue(MD, NextMDValueNo++);
1325       break;
1326     }
1327     case bitc::METADATA_KIND: {
1328       if (Record.size() < 2)
1329         return Error("Invalid record");
1330 
1331       unsigned Kind = Record[0];
1332       SmallString<8> Name(Record.begin()+1, Record.end());
1333 
1334       unsigned NewKind = TheModule->getMDKindID(Name.str());
1335       if (!MDKindMap.insert(std::make_pair(Kind, NewKind)).second)
1336         return Error("Conflicting METADATA_KIND records");
1337       break;
1338     }
1339     }
1340   }
1341 }
1342 
1343 /// decodeSignRotatedValue - Decode a signed value stored with the sign bit in
1344 /// the LSB for dense VBR encoding.
1345 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) {
1346   if ((V & 1) == 0)
1347     return V >> 1;
1348   if (V != 1)
1349     return -(V >> 1);
1350   // There is no such thing as -0 with integers.  "-0" really means MININT.
1351   return 1ULL << 63;
1352 }
1353 
1354 /// ResolveGlobalAndAliasInits - Resolve all of the initializers for global
1355 /// values and aliases that we can.
1356 std::error_code BitcodeReader::ResolveGlobalAndAliasInits() {
1357   std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist;
1358   std::vector<std::pair<GlobalAlias*, unsigned> > AliasInitWorklist;
1359   std::vector<std::pair<Function*, unsigned> > FunctionPrefixWorklist;
1360   std::vector<std::pair<Function*, unsigned> > FunctionPrologueWorklist;
1361 
1362   GlobalInitWorklist.swap(GlobalInits);
1363   AliasInitWorklist.swap(AliasInits);
1364   FunctionPrefixWorklist.swap(FunctionPrefixes);
1365   FunctionPrologueWorklist.swap(FunctionPrologues);
1366 
1367   while (!GlobalInitWorklist.empty()) {
1368     unsigned ValID = GlobalInitWorklist.back().second;
1369     if (ValID >= ValueList.size()) {
1370       // Not ready to resolve this yet, it requires something later in the file.
1371       GlobalInits.push_back(GlobalInitWorklist.back());
1372     } else {
1373       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
1374         GlobalInitWorklist.back().first->setInitializer(C);
1375       else
1376         return Error("Expected a constant");
1377     }
1378     GlobalInitWorklist.pop_back();
1379   }
1380 
1381   while (!AliasInitWorklist.empty()) {
1382     unsigned ValID = AliasInitWorklist.back().second;
1383     if (ValID >= ValueList.size()) {
1384       AliasInits.push_back(AliasInitWorklist.back());
1385     } else {
1386       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
1387         AliasInitWorklist.back().first->setAliasee(C);
1388       else
1389         return Error("Expected a constant");
1390     }
1391     AliasInitWorklist.pop_back();
1392   }
1393 
1394   while (!FunctionPrefixWorklist.empty()) {
1395     unsigned ValID = FunctionPrefixWorklist.back().second;
1396     if (ValID >= ValueList.size()) {
1397       FunctionPrefixes.push_back(FunctionPrefixWorklist.back());
1398     } else {
1399       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
1400         FunctionPrefixWorklist.back().first->setPrefixData(C);
1401       else
1402         return Error("Expected a constant");
1403     }
1404     FunctionPrefixWorklist.pop_back();
1405   }
1406 
1407   while (!FunctionPrologueWorklist.empty()) {
1408     unsigned ValID = FunctionPrologueWorklist.back().second;
1409     if (ValID >= ValueList.size()) {
1410       FunctionPrologues.push_back(FunctionPrologueWorklist.back());
1411     } else {
1412       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
1413         FunctionPrologueWorklist.back().first->setPrologueData(C);
1414       else
1415         return Error("Expected a constant");
1416     }
1417     FunctionPrologueWorklist.pop_back();
1418   }
1419 
1420   return std::error_code();
1421 }
1422 
1423 static APInt ReadWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) {
1424   SmallVector<uint64_t, 8> Words(Vals.size());
1425   std::transform(Vals.begin(), Vals.end(), Words.begin(),
1426                  BitcodeReader::decodeSignRotatedValue);
1427 
1428   return APInt(TypeBits, Words);
1429 }
1430 
1431 std::error_code BitcodeReader::ParseConstants() {
1432   if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID))
1433     return Error("Invalid record");
1434 
1435   SmallVector<uint64_t, 64> Record;
1436 
1437   // Read all the records for this value table.
1438   Type *CurTy = Type::getInt32Ty(Context);
1439   unsigned NextCstNo = ValueList.size();
1440   while (1) {
1441     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1442 
1443     switch (Entry.Kind) {
1444     case BitstreamEntry::SubBlock: // Handled for us already.
1445     case BitstreamEntry::Error:
1446       return Error("Malformed block");
1447     case BitstreamEntry::EndBlock:
1448       if (NextCstNo != ValueList.size())
1449         return Error("Invalid ronstant reference");
1450 
1451       // Once all the constants have been read, go through and resolve forward
1452       // references.
1453       ValueList.ResolveConstantForwardRefs();
1454       return std::error_code();
1455     case BitstreamEntry::Record:
1456       // The interesting case.
1457       break;
1458     }
1459 
1460     // Read a record.
1461     Record.clear();
1462     Value *V = nullptr;
1463     unsigned BitCode = Stream.readRecord(Entry.ID, Record);
1464     switch (BitCode) {
1465     default:  // Default behavior: unknown constant
1466     case bitc::CST_CODE_UNDEF:     // UNDEF
1467       V = UndefValue::get(CurTy);
1468       break;
1469     case bitc::CST_CODE_SETTYPE:   // SETTYPE: [typeid]
1470       if (Record.empty())
1471         return Error("Invalid record");
1472       if (Record[0] >= TypeList.size() || !TypeList[Record[0]])
1473         return Error("Invalid record");
1474       CurTy = TypeList[Record[0]];
1475       continue;  // Skip the ValueList manipulation.
1476     case bitc::CST_CODE_NULL:      // NULL
1477       V = Constant::getNullValue(CurTy);
1478       break;
1479     case bitc::CST_CODE_INTEGER:   // INTEGER: [intval]
1480       if (!CurTy->isIntegerTy() || Record.empty())
1481         return Error("Invalid record");
1482       V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0]));
1483       break;
1484     case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
1485       if (!CurTy->isIntegerTy() || Record.empty())
1486         return Error("Invalid record");
1487 
1488       APInt VInt = ReadWideAPInt(Record,
1489                                  cast<IntegerType>(CurTy)->getBitWidth());
1490       V = ConstantInt::get(Context, VInt);
1491 
1492       break;
1493     }
1494     case bitc::CST_CODE_FLOAT: {    // FLOAT: [fpval]
1495       if (Record.empty())
1496         return Error("Invalid record");
1497       if (CurTy->isHalfTy())
1498         V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf,
1499                                              APInt(16, (uint16_t)Record[0])));
1500       else if (CurTy->isFloatTy())
1501         V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle,
1502                                              APInt(32, (uint32_t)Record[0])));
1503       else if (CurTy->isDoubleTy())
1504         V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble,
1505                                              APInt(64, Record[0])));
1506       else if (CurTy->isX86_FP80Ty()) {
1507         // Bits are not stored the same way as a normal i80 APInt, compensate.
1508         uint64_t Rearrange[2];
1509         Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16);
1510         Rearrange[1] = Record[0] >> 48;
1511         V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended,
1512                                              APInt(80, Rearrange)));
1513       } else if (CurTy->isFP128Ty())
1514         V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad,
1515                                              APInt(128, Record)));
1516       else if (CurTy->isPPC_FP128Ty())
1517         V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble,
1518                                              APInt(128, Record)));
1519       else
1520         V = UndefValue::get(CurTy);
1521       break;
1522     }
1523 
1524     case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
1525       if (Record.empty())
1526         return Error("Invalid record");
1527 
1528       unsigned Size = Record.size();
1529       SmallVector<Constant*, 16> Elts;
1530 
1531       if (StructType *STy = dyn_cast<StructType>(CurTy)) {
1532         for (unsigned i = 0; i != Size; ++i)
1533           Elts.push_back(ValueList.getConstantFwdRef(Record[i],
1534                                                      STy->getElementType(i)));
1535         V = ConstantStruct::get(STy, Elts);
1536       } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) {
1537         Type *EltTy = ATy->getElementType();
1538         for (unsigned i = 0; i != Size; ++i)
1539           Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
1540         V = ConstantArray::get(ATy, Elts);
1541       } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) {
1542         Type *EltTy = VTy->getElementType();
1543         for (unsigned i = 0; i != Size; ++i)
1544           Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
1545         V = ConstantVector::get(Elts);
1546       } else {
1547         V = UndefValue::get(CurTy);
1548       }
1549       break;
1550     }
1551     case bitc::CST_CODE_STRING:    // STRING: [values]
1552     case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
1553       if (Record.empty())
1554         return Error("Invalid record");
1555 
1556       SmallString<16> Elts(Record.begin(), Record.end());
1557       V = ConstantDataArray::getString(Context, Elts,
1558                                        BitCode == bitc::CST_CODE_CSTRING);
1559       break;
1560     }
1561     case bitc::CST_CODE_DATA: {// DATA: [n x value]
1562       if (Record.empty())
1563         return Error("Invalid record");
1564 
1565       Type *EltTy = cast<SequentialType>(CurTy)->getElementType();
1566       unsigned Size = Record.size();
1567 
1568       if (EltTy->isIntegerTy(8)) {
1569         SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end());
1570         if (isa<VectorType>(CurTy))
1571           V = ConstantDataVector::get(Context, Elts);
1572         else
1573           V = ConstantDataArray::get(Context, Elts);
1574       } else if (EltTy->isIntegerTy(16)) {
1575         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
1576         if (isa<VectorType>(CurTy))
1577           V = ConstantDataVector::get(Context, Elts);
1578         else
1579           V = ConstantDataArray::get(Context, Elts);
1580       } else if (EltTy->isIntegerTy(32)) {
1581         SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
1582         if (isa<VectorType>(CurTy))
1583           V = ConstantDataVector::get(Context, Elts);
1584         else
1585           V = ConstantDataArray::get(Context, Elts);
1586       } else if (EltTy->isIntegerTy(64)) {
1587         SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
1588         if (isa<VectorType>(CurTy))
1589           V = ConstantDataVector::get(Context, Elts);
1590         else
1591           V = ConstantDataArray::get(Context, Elts);
1592       } else if (EltTy->isFloatTy()) {
1593         SmallVector<float, 16> Elts(Size);
1594         std::transform(Record.begin(), Record.end(), Elts.begin(), BitsToFloat);
1595         if (isa<VectorType>(CurTy))
1596           V = ConstantDataVector::get(Context, Elts);
1597         else
1598           V = ConstantDataArray::get(Context, Elts);
1599       } else if (EltTy->isDoubleTy()) {
1600         SmallVector<double, 16> Elts(Size);
1601         std::transform(Record.begin(), Record.end(), Elts.begin(),
1602                        BitsToDouble);
1603         if (isa<VectorType>(CurTy))
1604           V = ConstantDataVector::get(Context, Elts);
1605         else
1606           V = ConstantDataArray::get(Context, Elts);
1607       } else {
1608         return Error("Invalid type for value");
1609       }
1610       break;
1611     }
1612 
1613     case bitc::CST_CODE_CE_BINOP: {  // CE_BINOP: [opcode, opval, opval]
1614       if (Record.size() < 3)
1615         return Error("Invalid record");
1616       int Opc = GetDecodedBinaryOpcode(Record[0], CurTy);
1617       if (Opc < 0) {
1618         V = UndefValue::get(CurTy);  // Unknown binop.
1619       } else {
1620         Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
1621         Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy);
1622         unsigned Flags = 0;
1623         if (Record.size() >= 4) {
1624           if (Opc == Instruction::Add ||
1625               Opc == Instruction::Sub ||
1626               Opc == Instruction::Mul ||
1627               Opc == Instruction::Shl) {
1628             if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP))
1629               Flags |= OverflowingBinaryOperator::NoSignedWrap;
1630             if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
1631               Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
1632           } else if (Opc == Instruction::SDiv ||
1633                      Opc == Instruction::UDiv ||
1634                      Opc == Instruction::LShr ||
1635                      Opc == Instruction::AShr) {
1636             if (Record[3] & (1 << bitc::PEO_EXACT))
1637               Flags |= SDivOperator::IsExact;
1638           }
1639         }
1640         V = ConstantExpr::get(Opc, LHS, RHS, Flags);
1641       }
1642       break;
1643     }
1644     case bitc::CST_CODE_CE_CAST: {  // CE_CAST: [opcode, opty, opval]
1645       if (Record.size() < 3)
1646         return Error("Invalid record");
1647       int Opc = GetDecodedCastOpcode(Record[0]);
1648       if (Opc < 0) {
1649         V = UndefValue::get(CurTy);  // Unknown cast.
1650       } else {
1651         Type *OpTy = getTypeByID(Record[1]);
1652         if (!OpTy)
1653           return Error("Invalid record");
1654         Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy);
1655         V = UpgradeBitCastExpr(Opc, Op, CurTy);
1656         if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy);
1657       }
1658       break;
1659     }
1660     case bitc::CST_CODE_CE_INBOUNDS_GEP:
1661     case bitc::CST_CODE_CE_GEP: {  // CE_GEP:        [n x operands]
1662       if (Record.size() & 1)
1663         return Error("Invalid record");
1664       SmallVector<Constant*, 16> Elts;
1665       for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
1666         Type *ElTy = getTypeByID(Record[i]);
1667         if (!ElTy)
1668           return Error("Invalid record");
1669         Elts.push_back(ValueList.getConstantFwdRef(Record[i+1], ElTy));
1670       }
1671       ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
1672       V = ConstantExpr::getGetElementPtr(Elts[0], Indices,
1673                                          BitCode ==
1674                                            bitc::CST_CODE_CE_INBOUNDS_GEP);
1675       break;
1676     }
1677     case bitc::CST_CODE_CE_SELECT: {  // CE_SELECT: [opval#, opval#, opval#]
1678       if (Record.size() < 3)
1679         return Error("Invalid record");
1680 
1681       Type *SelectorTy = Type::getInt1Ty(Context);
1682 
1683       // If CurTy is a vector of length n, then Record[0] must be a <n x i1>
1684       // vector. Otherwise, it must be a single bit.
1685       if (VectorType *VTy = dyn_cast<VectorType>(CurTy))
1686         SelectorTy = VectorType::get(Type::getInt1Ty(Context),
1687                                      VTy->getNumElements());
1688 
1689       V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0],
1690                                                               SelectorTy),
1691                                   ValueList.getConstantFwdRef(Record[1],CurTy),
1692                                   ValueList.getConstantFwdRef(Record[2],CurTy));
1693       break;
1694     }
1695     case bitc::CST_CODE_CE_EXTRACTELT
1696         : { // CE_EXTRACTELT: [opty, opval, opty, opval]
1697       if (Record.size() < 3)
1698         return Error("Invalid record");
1699       VectorType *OpTy =
1700         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
1701       if (!OpTy)
1702         return Error("Invalid record");
1703       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
1704       Constant *Op1 = nullptr;
1705       if (Record.size() == 4) {
1706         Type *IdxTy = getTypeByID(Record[2]);
1707         if (!IdxTy)
1708           return Error("Invalid record");
1709         Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy);
1710       } else // TODO: Remove with llvm 4.0
1711         Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
1712       if (!Op1)
1713         return Error("Invalid record");
1714       V = ConstantExpr::getExtractElement(Op0, Op1);
1715       break;
1716     }
1717     case bitc::CST_CODE_CE_INSERTELT
1718         : { // CE_INSERTELT: [opval, opval, opty, opval]
1719       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
1720       if (Record.size() < 3 || !OpTy)
1721         return Error("Invalid record");
1722       Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
1723       Constant *Op1 = ValueList.getConstantFwdRef(Record[1],
1724                                                   OpTy->getElementType());
1725       Constant *Op2 = nullptr;
1726       if (Record.size() == 4) {
1727         Type *IdxTy = getTypeByID(Record[2]);
1728         if (!IdxTy)
1729           return Error("Invalid record");
1730         Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy);
1731       } else // TODO: Remove with llvm 4.0
1732         Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
1733       if (!Op2)
1734         return Error("Invalid record");
1735       V = ConstantExpr::getInsertElement(Op0, Op1, Op2);
1736       break;
1737     }
1738     case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
1739       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
1740       if (Record.size() < 3 || !OpTy)
1741         return Error("Invalid record");
1742       Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
1743       Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy);
1744       Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
1745                                                  OpTy->getNumElements());
1746       Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy);
1747       V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
1748       break;
1749     }
1750     case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval]
1751       VectorType *RTy = dyn_cast<VectorType>(CurTy);
1752       VectorType *OpTy =
1753         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
1754       if (Record.size() < 4 || !RTy || !OpTy)
1755         return Error("Invalid record");
1756       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
1757       Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
1758       Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
1759                                                  RTy->getNumElements());
1760       Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy);
1761       V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
1762       break;
1763     }
1764     case bitc::CST_CODE_CE_CMP: {     // CE_CMP: [opty, opval, opval, pred]
1765       if (Record.size() < 4)
1766         return Error("Invalid record");
1767       Type *OpTy = getTypeByID(Record[0]);
1768       if (!OpTy)
1769         return Error("Invalid record");
1770       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
1771       Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
1772 
1773       if (OpTy->isFPOrFPVectorTy())
1774         V = ConstantExpr::getFCmp(Record[3], Op0, Op1);
1775       else
1776         V = ConstantExpr::getICmp(Record[3], Op0, Op1);
1777       break;
1778     }
1779     // This maintains backward compatibility, pre-asm dialect keywords.
1780     // FIXME: Remove with the 4.0 release.
1781     case bitc::CST_CODE_INLINEASM_OLD: {
1782       if (Record.size() < 2)
1783         return Error("Invalid record");
1784       std::string AsmStr, ConstrStr;
1785       bool HasSideEffects = Record[0] & 1;
1786       bool IsAlignStack = Record[0] >> 1;
1787       unsigned AsmStrSize = Record[1];
1788       if (2+AsmStrSize >= Record.size())
1789         return Error("Invalid record");
1790       unsigned ConstStrSize = Record[2+AsmStrSize];
1791       if (3+AsmStrSize+ConstStrSize > Record.size())
1792         return Error("Invalid record");
1793 
1794       for (unsigned i = 0; i != AsmStrSize; ++i)
1795         AsmStr += (char)Record[2+i];
1796       for (unsigned i = 0; i != ConstStrSize; ++i)
1797         ConstrStr += (char)Record[3+AsmStrSize+i];
1798       PointerType *PTy = cast<PointerType>(CurTy);
1799       V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()),
1800                          AsmStr, ConstrStr, HasSideEffects, IsAlignStack);
1801       break;
1802     }
1803     // This version adds support for the asm dialect keywords (e.g.,
1804     // inteldialect).
1805     case bitc::CST_CODE_INLINEASM: {
1806       if (Record.size() < 2)
1807         return Error("Invalid record");
1808       std::string AsmStr, ConstrStr;
1809       bool HasSideEffects = Record[0] & 1;
1810       bool IsAlignStack = (Record[0] >> 1) & 1;
1811       unsigned AsmDialect = Record[0] >> 2;
1812       unsigned AsmStrSize = Record[1];
1813       if (2+AsmStrSize >= Record.size())
1814         return Error("Invalid record");
1815       unsigned ConstStrSize = Record[2+AsmStrSize];
1816       if (3+AsmStrSize+ConstStrSize > Record.size())
1817         return Error("Invalid record");
1818 
1819       for (unsigned i = 0; i != AsmStrSize; ++i)
1820         AsmStr += (char)Record[2+i];
1821       for (unsigned i = 0; i != ConstStrSize; ++i)
1822         ConstrStr += (char)Record[3+AsmStrSize+i];
1823       PointerType *PTy = cast<PointerType>(CurTy);
1824       V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()),
1825                          AsmStr, ConstrStr, HasSideEffects, IsAlignStack,
1826                          InlineAsm::AsmDialect(AsmDialect));
1827       break;
1828     }
1829     case bitc::CST_CODE_BLOCKADDRESS:{
1830       if (Record.size() < 3)
1831         return Error("Invalid record");
1832       Type *FnTy = getTypeByID(Record[0]);
1833       if (!FnTy)
1834         return Error("Invalid record");
1835       Function *Fn =
1836         dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy));
1837       if (!Fn)
1838         return Error("Invalid record");
1839 
1840       // Don't let Fn get dematerialized.
1841       BlockAddressesTaken.insert(Fn);
1842 
1843       // If the function is already parsed we can insert the block address right
1844       // away.
1845       BasicBlock *BB;
1846       unsigned BBID = Record[2];
1847       if (!BBID)
1848         // Invalid reference to entry block.
1849         return Error("Invalid ID");
1850       if (!Fn->empty()) {
1851         Function::iterator BBI = Fn->begin(), BBE = Fn->end();
1852         for (size_t I = 0, E = BBID; I != E; ++I) {
1853           if (BBI == BBE)
1854             return Error("Invalid ID");
1855           ++BBI;
1856         }
1857         BB = BBI;
1858       } else {
1859         // Otherwise insert a placeholder and remember it so it can be inserted
1860         // when the function is parsed.
1861         auto &FwdBBs = BasicBlockFwdRefs[Fn];
1862         if (FwdBBs.empty())
1863           BasicBlockFwdRefQueue.push_back(Fn);
1864         if (FwdBBs.size() < BBID + 1)
1865           FwdBBs.resize(BBID + 1);
1866         if (!FwdBBs[BBID])
1867           FwdBBs[BBID] = BasicBlock::Create(Context);
1868         BB = FwdBBs[BBID];
1869       }
1870       V = BlockAddress::get(Fn, BB);
1871       break;
1872     }
1873     }
1874 
1875     ValueList.AssignValue(V, NextCstNo);
1876     ++NextCstNo;
1877   }
1878 }
1879 
1880 std::error_code BitcodeReader::ParseUseLists() {
1881   if (Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID))
1882     return Error("Invalid record");
1883 
1884   // Read all the records.
1885   SmallVector<uint64_t, 64> Record;
1886   while (1) {
1887     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1888 
1889     switch (Entry.Kind) {
1890     case BitstreamEntry::SubBlock: // Handled for us already.
1891     case BitstreamEntry::Error:
1892       return Error("Malformed block");
1893     case BitstreamEntry::EndBlock:
1894       return std::error_code();
1895     case BitstreamEntry::Record:
1896       // The interesting case.
1897       break;
1898     }
1899 
1900     // Read a use list record.
1901     Record.clear();
1902     bool IsBB = false;
1903     switch (Stream.readRecord(Entry.ID, Record)) {
1904     default:  // Default behavior: unknown type.
1905       break;
1906     case bitc::USELIST_CODE_BB:
1907       IsBB = true;
1908       // fallthrough
1909     case bitc::USELIST_CODE_DEFAULT: {
1910       unsigned RecordLength = Record.size();
1911       if (RecordLength < 3)
1912         // Records should have at least an ID and two indexes.
1913         return Error("Invalid record");
1914       unsigned ID = Record.back();
1915       Record.pop_back();
1916 
1917       Value *V;
1918       if (IsBB) {
1919         assert(ID < FunctionBBs.size() && "Basic block not found");
1920         V = FunctionBBs[ID];
1921       } else
1922         V = ValueList[ID];
1923       unsigned NumUses = 0;
1924       SmallDenseMap<const Use *, unsigned, 16> Order;
1925       for (const Use &U : V->uses()) {
1926         if (++NumUses > Record.size())
1927           break;
1928         Order[&U] = Record[NumUses - 1];
1929       }
1930       if (Order.size() != Record.size() || NumUses > Record.size())
1931         // Mismatches can happen if the functions are being materialized lazily
1932         // (out-of-order), or a value has been upgraded.
1933         break;
1934 
1935       V->sortUseList([&](const Use &L, const Use &R) {
1936         return Order.lookup(&L) < Order.lookup(&R);
1937       });
1938       break;
1939     }
1940     }
1941   }
1942 }
1943 
1944 /// RememberAndSkipFunctionBody - When we see the block for a function body,
1945 /// remember where it is and then skip it.  This lets us lazily deserialize the
1946 /// functions.
1947 std::error_code BitcodeReader::RememberAndSkipFunctionBody() {
1948   // Get the function we are talking about.
1949   if (FunctionsWithBodies.empty())
1950     return Error("Insufficient function protos");
1951 
1952   Function *Fn = FunctionsWithBodies.back();
1953   FunctionsWithBodies.pop_back();
1954 
1955   // Save the current stream state.
1956   uint64_t CurBit = Stream.GetCurrentBitNo();
1957   DeferredFunctionInfo[Fn] = CurBit;
1958 
1959   // Skip over the function block for now.
1960   if (Stream.SkipBlock())
1961     return Error("Invalid record");
1962   return std::error_code();
1963 }
1964 
1965 std::error_code BitcodeReader::GlobalCleanup() {
1966   // Patch the initializers for globals and aliases up.
1967   ResolveGlobalAndAliasInits();
1968   if (!GlobalInits.empty() || !AliasInits.empty())
1969     return Error("Malformed global initializer set");
1970 
1971   // Look for intrinsic functions which need to be upgraded at some point
1972   for (Module::iterator FI = TheModule->begin(), FE = TheModule->end();
1973        FI != FE; ++FI) {
1974     Function *NewFn;
1975     if (UpgradeIntrinsicFunction(FI, NewFn))
1976       UpgradedIntrinsics.push_back(std::make_pair(FI, NewFn));
1977   }
1978 
1979   // Look for global variables which need to be renamed.
1980   for (Module::global_iterator
1981          GI = TheModule->global_begin(), GE = TheModule->global_end();
1982        GI != GE;) {
1983     GlobalVariable *GV = GI++;
1984     UpgradeGlobalVariable(GV);
1985   }
1986 
1987   // Force deallocation of memory for these vectors to favor the client that
1988   // want lazy deserialization.
1989   std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits);
1990   std::vector<std::pair<GlobalAlias*, unsigned> >().swap(AliasInits);
1991   return std::error_code();
1992 }
1993 
1994 std::error_code BitcodeReader::ParseModule(bool Resume) {
1995   if (Resume)
1996     Stream.JumpToBit(NextUnreadBit);
1997   else if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
1998     return Error("Invalid record");
1999 
2000   SmallVector<uint64_t, 64> Record;
2001   std::vector<std::string> SectionTable;
2002   std::vector<std::string> GCTable;
2003 
2004   // Read all the records for this module.
2005   while (1) {
2006     BitstreamEntry Entry = Stream.advance();
2007 
2008     switch (Entry.Kind) {
2009     case BitstreamEntry::Error:
2010       return Error("Malformed block");
2011     case BitstreamEntry::EndBlock:
2012       return GlobalCleanup();
2013 
2014     case BitstreamEntry::SubBlock:
2015       switch (Entry.ID) {
2016       default:  // Skip unknown content.
2017         if (Stream.SkipBlock())
2018           return Error("Invalid record");
2019         break;
2020       case bitc::BLOCKINFO_BLOCK_ID:
2021         if (Stream.ReadBlockInfoBlock())
2022           return Error("Malformed block");
2023         break;
2024       case bitc::PARAMATTR_BLOCK_ID:
2025         if (std::error_code EC = ParseAttributeBlock())
2026           return EC;
2027         break;
2028       case bitc::PARAMATTR_GROUP_BLOCK_ID:
2029         if (std::error_code EC = ParseAttributeGroupBlock())
2030           return EC;
2031         break;
2032       case bitc::TYPE_BLOCK_ID_NEW:
2033         if (std::error_code EC = ParseTypeTable())
2034           return EC;
2035         break;
2036       case bitc::VALUE_SYMTAB_BLOCK_ID:
2037         if (std::error_code EC = ParseValueSymbolTable())
2038           return EC;
2039         SeenValueSymbolTable = true;
2040         break;
2041       case bitc::CONSTANTS_BLOCK_ID:
2042         if (std::error_code EC = ParseConstants())
2043           return EC;
2044         if (std::error_code EC = ResolveGlobalAndAliasInits())
2045           return EC;
2046         break;
2047       case bitc::METADATA_BLOCK_ID:
2048         if (std::error_code EC = ParseMetadata())
2049           return EC;
2050         break;
2051       case bitc::FUNCTION_BLOCK_ID:
2052         // If this is the first function body we've seen, reverse the
2053         // FunctionsWithBodies list.
2054         if (!SeenFirstFunctionBody) {
2055           std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end());
2056           if (std::error_code EC = GlobalCleanup())
2057             return EC;
2058           SeenFirstFunctionBody = true;
2059         }
2060 
2061         if (std::error_code EC = RememberAndSkipFunctionBody())
2062           return EC;
2063         // For streaming bitcode, suspend parsing when we reach the function
2064         // bodies. Subsequent materialization calls will resume it when
2065         // necessary. For streaming, the function bodies must be at the end of
2066         // the bitcode. If the bitcode file is old, the symbol table will be
2067         // at the end instead and will not have been seen yet. In this case,
2068         // just finish the parse now.
2069         if (LazyStreamer && SeenValueSymbolTable) {
2070           NextUnreadBit = Stream.GetCurrentBitNo();
2071           return std::error_code();
2072         }
2073         break;
2074       case bitc::USELIST_BLOCK_ID:
2075         if (std::error_code EC = ParseUseLists())
2076           return EC;
2077         break;
2078       }
2079       continue;
2080 
2081     case BitstreamEntry::Record:
2082       // The interesting case.
2083       break;
2084     }
2085 
2086 
2087     // Read a record.
2088     switch (Stream.readRecord(Entry.ID, Record)) {
2089     default: break;  // Default behavior, ignore unknown content.
2090     case bitc::MODULE_CODE_VERSION: {  // VERSION: [version#]
2091       if (Record.size() < 1)
2092         return Error("Invalid record");
2093       // Only version #0 and #1 are supported so far.
2094       unsigned module_version = Record[0];
2095       switch (module_version) {
2096         default:
2097           return Error("Invalid value");
2098         case 0:
2099           UseRelativeIDs = false;
2100           break;
2101         case 1:
2102           UseRelativeIDs = true;
2103           break;
2104       }
2105       break;
2106     }
2107     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
2108       std::string S;
2109       if (ConvertToString(Record, 0, S))
2110         return Error("Invalid record");
2111       TheModule->setTargetTriple(S);
2112       break;
2113     }
2114     case bitc::MODULE_CODE_DATALAYOUT: {  // DATALAYOUT: [strchr x N]
2115       std::string S;
2116       if (ConvertToString(Record, 0, S))
2117         return Error("Invalid record");
2118       TheModule->setDataLayout(S);
2119       break;
2120     }
2121     case bitc::MODULE_CODE_ASM: {  // ASM: [strchr x N]
2122       std::string S;
2123       if (ConvertToString(Record, 0, S))
2124         return Error("Invalid record");
2125       TheModule->setModuleInlineAsm(S);
2126       break;
2127     }
2128     case bitc::MODULE_CODE_DEPLIB: {  // DEPLIB: [strchr x N]
2129       // FIXME: Remove in 4.0.
2130       std::string S;
2131       if (ConvertToString(Record, 0, S))
2132         return Error("Invalid record");
2133       // Ignore value.
2134       break;
2135     }
2136     case bitc::MODULE_CODE_SECTIONNAME: {  // SECTIONNAME: [strchr x N]
2137       std::string S;
2138       if (ConvertToString(Record, 0, S))
2139         return Error("Invalid record");
2140       SectionTable.push_back(S);
2141       break;
2142     }
2143     case bitc::MODULE_CODE_GCNAME: {  // SECTIONNAME: [strchr x N]
2144       std::string S;
2145       if (ConvertToString(Record, 0, S))
2146         return Error("Invalid record");
2147       GCTable.push_back(S);
2148       break;
2149     }
2150     case bitc::MODULE_CODE_COMDAT: { // COMDAT: [selection_kind, name]
2151       if (Record.size() < 2)
2152         return Error("Invalid record");
2153       Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]);
2154       unsigned ComdatNameSize = Record[1];
2155       std::string ComdatName;
2156       ComdatName.reserve(ComdatNameSize);
2157       for (unsigned i = 0; i != ComdatNameSize; ++i)
2158         ComdatName += (char)Record[2 + i];
2159       Comdat *C = TheModule->getOrInsertComdat(ComdatName);
2160       C->setSelectionKind(SK);
2161       ComdatList.push_back(C);
2162       break;
2163     }
2164     // GLOBALVAR: [pointer type, isconst, initid,
2165     //             linkage, alignment, section, visibility, threadlocal,
2166     //             unnamed_addr, dllstorageclass]
2167     case bitc::MODULE_CODE_GLOBALVAR: {
2168       if (Record.size() < 6)
2169         return Error("Invalid record");
2170       Type *Ty = getTypeByID(Record[0]);
2171       if (!Ty)
2172         return Error("Invalid record");
2173       if (!Ty->isPointerTy())
2174         return Error("Invalid type for value");
2175       unsigned AddressSpace = cast<PointerType>(Ty)->getAddressSpace();
2176       Ty = cast<PointerType>(Ty)->getElementType();
2177 
2178       bool isConstant = Record[1];
2179       uint64_t RawLinkage = Record[3];
2180       GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
2181       unsigned Alignment = (1 << Record[4]) >> 1;
2182       std::string Section;
2183       if (Record[5]) {
2184         if (Record[5]-1 >= SectionTable.size())
2185           return Error("Invalid ID");
2186         Section = SectionTable[Record[5]-1];
2187       }
2188       GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility;
2189       // Local linkage must have default visibility.
2190       if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage))
2191         // FIXME: Change to an error if non-default in 4.0.
2192         Visibility = GetDecodedVisibility(Record[6]);
2193 
2194       GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal;
2195       if (Record.size() > 7)
2196         TLM = GetDecodedThreadLocalMode(Record[7]);
2197 
2198       bool UnnamedAddr = false;
2199       if (Record.size() > 8)
2200         UnnamedAddr = Record[8];
2201 
2202       bool ExternallyInitialized = false;
2203       if (Record.size() > 9)
2204         ExternallyInitialized = Record[9];
2205 
2206       GlobalVariable *NewGV =
2207         new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, "", nullptr,
2208                            TLM, AddressSpace, ExternallyInitialized);
2209       NewGV->setAlignment(Alignment);
2210       if (!Section.empty())
2211         NewGV->setSection(Section);
2212       NewGV->setVisibility(Visibility);
2213       NewGV->setUnnamedAddr(UnnamedAddr);
2214 
2215       if (Record.size() > 10)
2216         NewGV->setDLLStorageClass(GetDecodedDLLStorageClass(Record[10]));
2217       else
2218         UpgradeDLLImportExportLinkage(NewGV, RawLinkage);
2219 
2220       ValueList.push_back(NewGV);
2221 
2222       // Remember which value to use for the global initializer.
2223       if (unsigned InitID = Record[2])
2224         GlobalInits.push_back(std::make_pair(NewGV, InitID-1));
2225 
2226       if (Record.size() > 11) {
2227         if (unsigned ComdatID = Record[11]) {
2228           assert(ComdatID <= ComdatList.size());
2229           NewGV->setComdat(ComdatList[ComdatID - 1]);
2230         }
2231       } else if (hasImplicitComdat(RawLinkage)) {
2232         NewGV->setComdat(reinterpret_cast<Comdat *>(1));
2233       }
2234       break;
2235     }
2236     // FUNCTION:  [type, callingconv, isproto, linkage, paramattr,
2237     //             alignment, section, visibility, gc, unnamed_addr,
2238     //             prologuedata, dllstorageclass, comdat, prefixdata]
2239     case bitc::MODULE_CODE_FUNCTION: {
2240       if (Record.size() < 8)
2241         return Error("Invalid record");
2242       Type *Ty = getTypeByID(Record[0]);
2243       if (!Ty)
2244         return Error("Invalid record");
2245       if (!Ty->isPointerTy())
2246         return Error("Invalid type for value");
2247       FunctionType *FTy =
2248         dyn_cast<FunctionType>(cast<PointerType>(Ty)->getElementType());
2249       if (!FTy)
2250         return Error("Invalid type for value");
2251 
2252       Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage,
2253                                         "", TheModule);
2254 
2255       Func->setCallingConv(static_cast<CallingConv::ID>(Record[1]));
2256       bool isProto = Record[2];
2257       uint64_t RawLinkage = Record[3];
2258       Func->setLinkage(getDecodedLinkage(RawLinkage));
2259       Func->setAttributes(getAttributes(Record[4]));
2260 
2261       Func->setAlignment((1 << Record[5]) >> 1);
2262       if (Record[6]) {
2263         if (Record[6]-1 >= SectionTable.size())
2264           return Error("Invalid ID");
2265         Func->setSection(SectionTable[Record[6]-1]);
2266       }
2267       // Local linkage must have default visibility.
2268       if (!Func->hasLocalLinkage())
2269         // FIXME: Change to an error if non-default in 4.0.
2270         Func->setVisibility(GetDecodedVisibility(Record[7]));
2271       if (Record.size() > 8 && Record[8]) {
2272         if (Record[8]-1 > GCTable.size())
2273           return Error("Invalid ID");
2274         Func->setGC(GCTable[Record[8]-1].c_str());
2275       }
2276       bool UnnamedAddr = false;
2277       if (Record.size() > 9)
2278         UnnamedAddr = Record[9];
2279       Func->setUnnamedAddr(UnnamedAddr);
2280       if (Record.size() > 10 && Record[10] != 0)
2281         FunctionPrologues.push_back(std::make_pair(Func, Record[10]-1));
2282 
2283       if (Record.size() > 11)
2284         Func->setDLLStorageClass(GetDecodedDLLStorageClass(Record[11]));
2285       else
2286         UpgradeDLLImportExportLinkage(Func, RawLinkage);
2287 
2288       if (Record.size() > 12) {
2289         if (unsigned ComdatID = Record[12]) {
2290           assert(ComdatID <= ComdatList.size());
2291           Func->setComdat(ComdatList[ComdatID - 1]);
2292         }
2293       } else if (hasImplicitComdat(RawLinkage)) {
2294         Func->setComdat(reinterpret_cast<Comdat *>(1));
2295       }
2296 
2297       if (Record.size() > 13 && Record[13] != 0)
2298         FunctionPrefixes.push_back(std::make_pair(Func, Record[13]-1));
2299 
2300       ValueList.push_back(Func);
2301 
2302       // If this is a function with a body, remember the prototype we are
2303       // creating now, so that we can match up the body with them later.
2304       if (!isProto) {
2305         Func->setIsMaterializable(true);
2306         FunctionsWithBodies.push_back(Func);
2307         if (LazyStreamer)
2308           DeferredFunctionInfo[Func] = 0;
2309       }
2310       break;
2311     }
2312     // ALIAS: [alias type, aliasee val#, linkage]
2313     // ALIAS: [alias type, aliasee val#, linkage, visibility, dllstorageclass]
2314     case bitc::MODULE_CODE_ALIAS: {
2315       if (Record.size() < 3)
2316         return Error("Invalid record");
2317       Type *Ty = getTypeByID(Record[0]);
2318       if (!Ty)
2319         return Error("Invalid record");
2320       auto *PTy = dyn_cast<PointerType>(Ty);
2321       if (!PTy)
2322         return Error("Invalid type for value");
2323 
2324       auto *NewGA =
2325           GlobalAlias::create(PTy->getElementType(), PTy->getAddressSpace(),
2326                               getDecodedLinkage(Record[2]), "", TheModule);
2327       // Old bitcode files didn't have visibility field.
2328       // Local linkage must have default visibility.
2329       if (Record.size() > 3 && !NewGA->hasLocalLinkage())
2330         // FIXME: Change to an error if non-default in 4.0.
2331         NewGA->setVisibility(GetDecodedVisibility(Record[3]));
2332       if (Record.size() > 4)
2333         NewGA->setDLLStorageClass(GetDecodedDLLStorageClass(Record[4]));
2334       else
2335         UpgradeDLLImportExportLinkage(NewGA, Record[2]);
2336       if (Record.size() > 5)
2337         NewGA->setThreadLocalMode(GetDecodedThreadLocalMode(Record[5]));
2338       if (Record.size() > 6)
2339         NewGA->setUnnamedAddr(Record[6]);
2340       ValueList.push_back(NewGA);
2341       AliasInits.push_back(std::make_pair(NewGA, Record[1]));
2342       break;
2343     }
2344     /// MODULE_CODE_PURGEVALS: [numvals]
2345     case bitc::MODULE_CODE_PURGEVALS:
2346       // Trim down the value list to the specified size.
2347       if (Record.size() < 1 || Record[0] > ValueList.size())
2348         return Error("Invalid record");
2349       ValueList.shrinkTo(Record[0]);
2350       break;
2351     }
2352     Record.clear();
2353   }
2354 }
2355 
2356 std::error_code BitcodeReader::ParseBitcodeInto(Module *M) {
2357   TheModule = nullptr;
2358 
2359   if (std::error_code EC = InitStream())
2360     return EC;
2361 
2362   // Sniff for the signature.
2363   if (Stream.Read(8) != 'B' ||
2364       Stream.Read(8) != 'C' ||
2365       Stream.Read(4) != 0x0 ||
2366       Stream.Read(4) != 0xC ||
2367       Stream.Read(4) != 0xE ||
2368       Stream.Read(4) != 0xD)
2369     return Error("Invalid bitcode signature");
2370 
2371   // We expect a number of well-defined blocks, though we don't necessarily
2372   // need to understand them all.
2373   while (1) {
2374     if (Stream.AtEndOfStream())
2375       return std::error_code();
2376 
2377     BitstreamEntry Entry =
2378       Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs);
2379 
2380     switch (Entry.Kind) {
2381     case BitstreamEntry::Error:
2382       return Error("Malformed block");
2383     case BitstreamEntry::EndBlock:
2384       return std::error_code();
2385 
2386     case BitstreamEntry::SubBlock:
2387       switch (Entry.ID) {
2388       case bitc::BLOCKINFO_BLOCK_ID:
2389         if (Stream.ReadBlockInfoBlock())
2390           return Error("Malformed block");
2391         break;
2392       case bitc::MODULE_BLOCK_ID:
2393         // Reject multiple MODULE_BLOCK's in a single bitstream.
2394         if (TheModule)
2395           return Error("Invalid multiple blocks");
2396         TheModule = M;
2397         if (std::error_code EC = ParseModule(false))
2398           return EC;
2399         if (LazyStreamer)
2400           return std::error_code();
2401         break;
2402       default:
2403         if (Stream.SkipBlock())
2404           return Error("Invalid record");
2405         break;
2406       }
2407       continue;
2408     case BitstreamEntry::Record:
2409       // There should be no records in the top-level of blocks.
2410 
2411       // The ranlib in Xcode 4 will align archive members by appending newlines
2412       // to the end of them. If this file size is a multiple of 4 but not 8, we
2413       // have to read and ignore these final 4 bytes :-(
2414       if (Stream.getAbbrevIDWidth() == 2 && Entry.ID == 2 &&
2415           Stream.Read(6) == 2 && Stream.Read(24) == 0xa0a0a &&
2416           Stream.AtEndOfStream())
2417         return std::error_code();
2418 
2419       return Error("Invalid record");
2420     }
2421   }
2422 }
2423 
2424 ErrorOr<std::string> BitcodeReader::parseModuleTriple() {
2425   if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
2426     return Error("Invalid record");
2427 
2428   SmallVector<uint64_t, 64> Record;
2429 
2430   std::string Triple;
2431   // Read all the records for this module.
2432   while (1) {
2433     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
2434 
2435     switch (Entry.Kind) {
2436     case BitstreamEntry::SubBlock: // Handled for us already.
2437     case BitstreamEntry::Error:
2438       return Error("Malformed block");
2439     case BitstreamEntry::EndBlock:
2440       return Triple;
2441     case BitstreamEntry::Record:
2442       // The interesting case.
2443       break;
2444     }
2445 
2446     // Read a record.
2447     switch (Stream.readRecord(Entry.ID, Record)) {
2448     default: break;  // Default behavior, ignore unknown content.
2449     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
2450       std::string S;
2451       if (ConvertToString(Record, 0, S))
2452         return Error("Invalid record");
2453       Triple = S;
2454       break;
2455     }
2456     }
2457     Record.clear();
2458   }
2459   llvm_unreachable("Exit infinite loop");
2460 }
2461 
2462 ErrorOr<std::string> BitcodeReader::parseTriple() {
2463   if (std::error_code EC = InitStream())
2464     return EC;
2465 
2466   // Sniff for the signature.
2467   if (Stream.Read(8) != 'B' ||
2468       Stream.Read(8) != 'C' ||
2469       Stream.Read(4) != 0x0 ||
2470       Stream.Read(4) != 0xC ||
2471       Stream.Read(4) != 0xE ||
2472       Stream.Read(4) != 0xD)
2473     return Error("Invalid bitcode signature");
2474 
2475   // We expect a number of well-defined blocks, though we don't necessarily
2476   // need to understand them all.
2477   while (1) {
2478     BitstreamEntry Entry = Stream.advance();
2479 
2480     switch (Entry.Kind) {
2481     case BitstreamEntry::Error:
2482       return Error("Malformed block");
2483     case BitstreamEntry::EndBlock:
2484       return std::error_code();
2485 
2486     case BitstreamEntry::SubBlock:
2487       if (Entry.ID == bitc::MODULE_BLOCK_ID)
2488         return parseModuleTriple();
2489 
2490       // Ignore other sub-blocks.
2491       if (Stream.SkipBlock())
2492         return Error("Malformed block");
2493       continue;
2494 
2495     case BitstreamEntry::Record:
2496       Stream.skipRecord(Entry.ID);
2497       continue;
2498     }
2499   }
2500 }
2501 
2502 /// ParseMetadataAttachment - Parse metadata attachments.
2503 std::error_code BitcodeReader::ParseMetadataAttachment() {
2504   if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID))
2505     return Error("Invalid record");
2506 
2507   SmallVector<uint64_t, 64> Record;
2508   while (1) {
2509     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
2510 
2511     switch (Entry.Kind) {
2512     case BitstreamEntry::SubBlock: // Handled for us already.
2513     case BitstreamEntry::Error:
2514       return Error("Malformed block");
2515     case BitstreamEntry::EndBlock:
2516       return std::error_code();
2517     case BitstreamEntry::Record:
2518       // The interesting case.
2519       break;
2520     }
2521 
2522     // Read a metadata attachment record.
2523     Record.clear();
2524     switch (Stream.readRecord(Entry.ID, Record)) {
2525     default:  // Default behavior: ignore.
2526       break;
2527     case bitc::METADATA_ATTACHMENT: {
2528       unsigned RecordLength = Record.size();
2529       if (Record.empty() || (RecordLength - 1) % 2 == 1)
2530         return Error("Invalid record");
2531       Instruction *Inst = InstructionList[Record[0]];
2532       for (unsigned i = 1; i != RecordLength; i = i+2) {
2533         unsigned Kind = Record[i];
2534         DenseMap<unsigned, unsigned>::iterator I =
2535           MDKindMap.find(Kind);
2536         if (I == MDKindMap.end())
2537           return Error("Invalid ID");
2538         Metadata *Node = MDValueList.getValueFwdRef(Record[i + 1]);
2539         if (isa<LocalAsMetadata>(Node))
2540           // Drop the attachment.  This used to be legal, but there's no
2541           // upgrade path.
2542           break;
2543         Inst->setMetadata(I->second, cast<MDNode>(Node));
2544         if (I->second == LLVMContext::MD_tbaa)
2545           InstsWithTBAATag.push_back(Inst);
2546       }
2547       break;
2548     }
2549     }
2550   }
2551 }
2552 
2553 /// ParseFunctionBody - Lazily parse the specified function body block.
2554 std::error_code BitcodeReader::ParseFunctionBody(Function *F) {
2555   if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID))
2556     return Error("Invalid record");
2557 
2558   InstructionList.clear();
2559   unsigned ModuleValueListSize = ValueList.size();
2560   unsigned ModuleMDValueListSize = MDValueList.size();
2561 
2562   // Add all the function arguments to the value table.
2563   for(Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I)
2564     ValueList.push_back(I);
2565 
2566   unsigned NextValueNo = ValueList.size();
2567   BasicBlock *CurBB = nullptr;
2568   unsigned CurBBNo = 0;
2569 
2570   DebugLoc LastLoc;
2571   auto getLastInstruction = [&]() -> Instruction * {
2572     if (CurBB && !CurBB->empty())
2573       return &CurBB->back();
2574     else if (CurBBNo && FunctionBBs[CurBBNo - 1] &&
2575              !FunctionBBs[CurBBNo - 1]->empty())
2576       return &FunctionBBs[CurBBNo - 1]->back();
2577     return nullptr;
2578   };
2579 
2580   // Read all the records.
2581   SmallVector<uint64_t, 64> Record;
2582   while (1) {
2583     BitstreamEntry Entry = Stream.advance();
2584 
2585     switch (Entry.Kind) {
2586     case BitstreamEntry::Error:
2587       return Error("Malformed block");
2588     case BitstreamEntry::EndBlock:
2589       goto OutOfRecordLoop;
2590 
2591     case BitstreamEntry::SubBlock:
2592       switch (Entry.ID) {
2593       default:  // Skip unknown content.
2594         if (Stream.SkipBlock())
2595           return Error("Invalid record");
2596         break;
2597       case bitc::CONSTANTS_BLOCK_ID:
2598         if (std::error_code EC = ParseConstants())
2599           return EC;
2600         NextValueNo = ValueList.size();
2601         break;
2602       case bitc::VALUE_SYMTAB_BLOCK_ID:
2603         if (std::error_code EC = ParseValueSymbolTable())
2604           return EC;
2605         break;
2606       case bitc::METADATA_ATTACHMENT_ID:
2607         if (std::error_code EC = ParseMetadataAttachment())
2608           return EC;
2609         break;
2610       case bitc::METADATA_BLOCK_ID:
2611         if (std::error_code EC = ParseMetadata())
2612           return EC;
2613         break;
2614       case bitc::USELIST_BLOCK_ID:
2615         if (std::error_code EC = ParseUseLists())
2616           return EC;
2617         break;
2618       }
2619       continue;
2620 
2621     case BitstreamEntry::Record:
2622       // The interesting case.
2623       break;
2624     }
2625 
2626     // Read a record.
2627     Record.clear();
2628     Instruction *I = nullptr;
2629     unsigned BitCode = Stream.readRecord(Entry.ID, Record);
2630     switch (BitCode) {
2631     default: // Default behavior: reject
2632       return Error("Invalid value");
2633     case bitc::FUNC_CODE_DECLAREBLOCKS: {   // DECLAREBLOCKS: [nblocks]
2634       if (Record.size() < 1 || Record[0] == 0)
2635         return Error("Invalid record");
2636       // Create all the basic blocks for the function.
2637       FunctionBBs.resize(Record[0]);
2638 
2639       // See if anything took the address of blocks in this function.
2640       auto BBFRI = BasicBlockFwdRefs.find(F);
2641       if (BBFRI == BasicBlockFwdRefs.end()) {
2642         for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i)
2643           FunctionBBs[i] = BasicBlock::Create(Context, "", F);
2644       } else {
2645         auto &BBRefs = BBFRI->second;
2646         // Check for invalid basic block references.
2647         if (BBRefs.size() > FunctionBBs.size())
2648           return Error("Invalid ID");
2649         assert(!BBRefs.empty() && "Unexpected empty array");
2650         assert(!BBRefs.front() && "Invalid reference to entry block");
2651         for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E;
2652              ++I)
2653           if (I < RE && BBRefs[I]) {
2654             BBRefs[I]->insertInto(F);
2655             FunctionBBs[I] = BBRefs[I];
2656           } else {
2657             FunctionBBs[I] = BasicBlock::Create(Context, "", F);
2658           }
2659 
2660         // Erase from the table.
2661         BasicBlockFwdRefs.erase(BBFRI);
2662       }
2663 
2664       CurBB = FunctionBBs[0];
2665       continue;
2666     }
2667 
2668     case bitc::FUNC_CODE_DEBUG_LOC_AGAIN:  // DEBUG_LOC_AGAIN
2669       // This record indicates that the last instruction is at the same
2670       // location as the previous instruction with a location.
2671       I = getLastInstruction();
2672 
2673       if (!I)
2674         return Error("Invalid record");
2675       I->setDebugLoc(LastLoc);
2676       I = nullptr;
2677       continue;
2678 
2679     case bitc::FUNC_CODE_DEBUG_LOC: {      // DEBUG_LOC: [line, col, scope, ia]
2680       I = getLastInstruction();
2681       if (!I || Record.size() < 4)
2682         return Error("Invalid record");
2683 
2684       unsigned Line = Record[0], Col = Record[1];
2685       unsigned ScopeID = Record[2], IAID = Record[3];
2686 
2687       MDNode *Scope = nullptr, *IA = nullptr;
2688       if (ScopeID) Scope = cast<MDNode>(MDValueList.getValueFwdRef(ScopeID-1));
2689       if (IAID)    IA = cast<MDNode>(MDValueList.getValueFwdRef(IAID-1));
2690       LastLoc = DebugLoc::get(Line, Col, Scope, IA);
2691       I->setDebugLoc(LastLoc);
2692       I = nullptr;
2693       continue;
2694     }
2695 
2696     case bitc::FUNC_CODE_INST_BINOP: {    // BINOP: [opval, ty, opval, opcode]
2697       unsigned OpNum = 0;
2698       Value *LHS, *RHS;
2699       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
2700           popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) ||
2701           OpNum+1 > Record.size())
2702         return Error("Invalid record");
2703 
2704       int Opc = GetDecodedBinaryOpcode(Record[OpNum++], LHS->getType());
2705       if (Opc == -1)
2706         return Error("Invalid record");
2707       I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
2708       InstructionList.push_back(I);
2709       if (OpNum < Record.size()) {
2710         if (Opc == Instruction::Add ||
2711             Opc == Instruction::Sub ||
2712             Opc == Instruction::Mul ||
2713             Opc == Instruction::Shl) {
2714           if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP))
2715             cast<BinaryOperator>(I)->setHasNoSignedWrap(true);
2716           if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
2717             cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true);
2718         } else if (Opc == Instruction::SDiv ||
2719                    Opc == Instruction::UDiv ||
2720                    Opc == Instruction::LShr ||
2721                    Opc == Instruction::AShr) {
2722           if (Record[OpNum] & (1 << bitc::PEO_EXACT))
2723             cast<BinaryOperator>(I)->setIsExact(true);
2724         } else if (isa<FPMathOperator>(I)) {
2725           FastMathFlags FMF;
2726           if (0 != (Record[OpNum] & FastMathFlags::UnsafeAlgebra))
2727             FMF.setUnsafeAlgebra();
2728           if (0 != (Record[OpNum] & FastMathFlags::NoNaNs))
2729             FMF.setNoNaNs();
2730           if (0 != (Record[OpNum] & FastMathFlags::NoInfs))
2731             FMF.setNoInfs();
2732           if (0 != (Record[OpNum] & FastMathFlags::NoSignedZeros))
2733             FMF.setNoSignedZeros();
2734           if (0 != (Record[OpNum] & FastMathFlags::AllowReciprocal))
2735             FMF.setAllowReciprocal();
2736           if (FMF.any())
2737             I->setFastMathFlags(FMF);
2738         }
2739 
2740       }
2741       break;
2742     }
2743     case bitc::FUNC_CODE_INST_CAST: {    // CAST: [opval, opty, destty, castopc]
2744       unsigned OpNum = 0;
2745       Value *Op;
2746       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
2747           OpNum+2 != Record.size())
2748         return Error("Invalid record");
2749 
2750       Type *ResTy = getTypeByID(Record[OpNum]);
2751       int Opc = GetDecodedCastOpcode(Record[OpNum+1]);
2752       if (Opc == -1 || !ResTy)
2753         return Error("Invalid record");
2754       Instruction *Temp = nullptr;
2755       if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) {
2756         if (Temp) {
2757           InstructionList.push_back(Temp);
2758           CurBB->getInstList().push_back(Temp);
2759         }
2760       } else {
2761         I = CastInst::Create((Instruction::CastOps)Opc, Op, ResTy);
2762       }
2763       InstructionList.push_back(I);
2764       break;
2765     }
2766     case bitc::FUNC_CODE_INST_INBOUNDS_GEP:
2767     case bitc::FUNC_CODE_INST_GEP: { // GEP: [n x operands]
2768       unsigned OpNum = 0;
2769       Value *BasePtr;
2770       if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr))
2771         return Error("Invalid record");
2772 
2773       SmallVector<Value*, 16> GEPIdx;
2774       while (OpNum != Record.size()) {
2775         Value *Op;
2776         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
2777           return Error("Invalid record");
2778         GEPIdx.push_back(Op);
2779       }
2780 
2781       I = GetElementPtrInst::Create(BasePtr, GEPIdx);
2782       InstructionList.push_back(I);
2783       if (BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP)
2784         cast<GetElementPtrInst>(I)->setIsInBounds(true);
2785       break;
2786     }
2787 
2788     case bitc::FUNC_CODE_INST_EXTRACTVAL: {
2789                                        // EXTRACTVAL: [opty, opval, n x indices]
2790       unsigned OpNum = 0;
2791       Value *Agg;
2792       if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
2793         return Error("Invalid record");
2794 
2795       SmallVector<unsigned, 4> EXTRACTVALIdx;
2796       for (unsigned RecSize = Record.size();
2797            OpNum != RecSize; ++OpNum) {
2798         uint64_t Index = Record[OpNum];
2799         if ((unsigned)Index != Index)
2800           return Error("Invalid value");
2801         EXTRACTVALIdx.push_back((unsigned)Index);
2802       }
2803 
2804       I = ExtractValueInst::Create(Agg, EXTRACTVALIdx);
2805       InstructionList.push_back(I);
2806       break;
2807     }
2808 
2809     case bitc::FUNC_CODE_INST_INSERTVAL: {
2810                            // INSERTVAL: [opty, opval, opty, opval, n x indices]
2811       unsigned OpNum = 0;
2812       Value *Agg;
2813       if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
2814         return Error("Invalid record");
2815       Value *Val;
2816       if (getValueTypePair(Record, OpNum, NextValueNo, Val))
2817         return Error("Invalid record");
2818 
2819       SmallVector<unsigned, 4> INSERTVALIdx;
2820       for (unsigned RecSize = Record.size();
2821            OpNum != RecSize; ++OpNum) {
2822         uint64_t Index = Record[OpNum];
2823         if ((unsigned)Index != Index)
2824           return Error("Invalid value");
2825         INSERTVALIdx.push_back((unsigned)Index);
2826       }
2827 
2828       I = InsertValueInst::Create(Agg, Val, INSERTVALIdx);
2829       InstructionList.push_back(I);
2830       break;
2831     }
2832 
2833     case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval]
2834       // obsolete form of select
2835       // handles select i1 ... in old bitcode
2836       unsigned OpNum = 0;
2837       Value *TrueVal, *FalseVal, *Cond;
2838       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
2839           popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) ||
2840           popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond))
2841         return Error("Invalid record");
2842 
2843       I = SelectInst::Create(Cond, TrueVal, FalseVal);
2844       InstructionList.push_back(I);
2845       break;
2846     }
2847 
2848     case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred]
2849       // new form of select
2850       // handles select i1 or select [N x i1]
2851       unsigned OpNum = 0;
2852       Value *TrueVal, *FalseVal, *Cond;
2853       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
2854           popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) ||
2855           getValueTypePair(Record, OpNum, NextValueNo, Cond))
2856         return Error("Invalid record");
2857 
2858       // select condition can be either i1 or [N x i1]
2859       if (VectorType* vector_type =
2860           dyn_cast<VectorType>(Cond->getType())) {
2861         // expect <n x i1>
2862         if (vector_type->getElementType() != Type::getInt1Ty(Context))
2863           return Error("Invalid type for value");
2864       } else {
2865         // expect i1
2866         if (Cond->getType() != Type::getInt1Ty(Context))
2867           return Error("Invalid type for value");
2868       }
2869 
2870       I = SelectInst::Create(Cond, TrueVal, FalseVal);
2871       InstructionList.push_back(I);
2872       break;
2873     }
2874 
2875     case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval]
2876       unsigned OpNum = 0;
2877       Value *Vec, *Idx;
2878       if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
2879           getValueTypePair(Record, OpNum, NextValueNo, Idx))
2880         return Error("Invalid record");
2881       I = ExtractElementInst::Create(Vec, Idx);
2882       InstructionList.push_back(I);
2883       break;
2884     }
2885 
2886     case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval]
2887       unsigned OpNum = 0;
2888       Value *Vec, *Elt, *Idx;
2889       if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
2890           popValue(Record, OpNum, NextValueNo,
2891                    cast<VectorType>(Vec->getType())->getElementType(), Elt) ||
2892           getValueTypePair(Record, OpNum, NextValueNo, Idx))
2893         return Error("Invalid record");
2894       I = InsertElementInst::Create(Vec, Elt, Idx);
2895       InstructionList.push_back(I);
2896       break;
2897     }
2898 
2899     case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval]
2900       unsigned OpNum = 0;
2901       Value *Vec1, *Vec2, *Mask;
2902       if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) ||
2903           popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2))
2904         return Error("Invalid record");
2905 
2906       if (getValueTypePair(Record, OpNum, NextValueNo, Mask))
2907         return Error("Invalid record");
2908       I = new ShuffleVectorInst(Vec1, Vec2, Mask);
2909       InstructionList.push_back(I);
2910       break;
2911     }
2912 
2913     case bitc::FUNC_CODE_INST_CMP:   // CMP: [opty, opval, opval, pred]
2914       // Old form of ICmp/FCmp returning bool
2915       // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were
2916       // both legal on vectors but had different behaviour.
2917     case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred]
2918       // FCmp/ICmp returning bool or vector of bool
2919 
2920       unsigned OpNum = 0;
2921       Value *LHS, *RHS;
2922       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
2923           popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) ||
2924           OpNum+1 != Record.size())
2925         return Error("Invalid record");
2926 
2927       if (LHS->getType()->isFPOrFPVectorTy())
2928         I = new FCmpInst((FCmpInst::Predicate)Record[OpNum], LHS, RHS);
2929       else
2930         I = new ICmpInst((ICmpInst::Predicate)Record[OpNum], LHS, RHS);
2931       InstructionList.push_back(I);
2932       break;
2933     }
2934 
2935     case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>]
2936       {
2937         unsigned Size = Record.size();
2938         if (Size == 0) {
2939           I = ReturnInst::Create(Context);
2940           InstructionList.push_back(I);
2941           break;
2942         }
2943 
2944         unsigned OpNum = 0;
2945         Value *Op = nullptr;
2946         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
2947           return Error("Invalid record");
2948         if (OpNum != Record.size())
2949           return Error("Invalid record");
2950 
2951         I = ReturnInst::Create(Context, Op);
2952         InstructionList.push_back(I);
2953         break;
2954       }
2955     case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#]
2956       if (Record.size() != 1 && Record.size() != 3)
2957         return Error("Invalid record");
2958       BasicBlock *TrueDest = getBasicBlock(Record[0]);
2959       if (!TrueDest)
2960         return Error("Invalid record");
2961 
2962       if (Record.size() == 1) {
2963         I = BranchInst::Create(TrueDest);
2964         InstructionList.push_back(I);
2965       }
2966       else {
2967         BasicBlock *FalseDest = getBasicBlock(Record[1]);
2968         Value *Cond = getValue(Record, 2, NextValueNo,
2969                                Type::getInt1Ty(Context));
2970         if (!FalseDest || !Cond)
2971           return Error("Invalid record");
2972         I = BranchInst::Create(TrueDest, FalseDest, Cond);
2973         InstructionList.push_back(I);
2974       }
2975       break;
2976     }
2977     case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...]
2978       // Check magic
2979       if ((Record[0] >> 16) == SWITCH_INST_MAGIC) {
2980         // "New" SwitchInst format with case ranges. The changes to write this
2981         // format were reverted but we still recognize bitcode that uses it.
2982         // Hopefully someday we will have support for case ranges and can use
2983         // this format again.
2984 
2985         Type *OpTy = getTypeByID(Record[1]);
2986         unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth();
2987 
2988         Value *Cond = getValue(Record, 2, NextValueNo, OpTy);
2989         BasicBlock *Default = getBasicBlock(Record[3]);
2990         if (!OpTy || !Cond || !Default)
2991           return Error("Invalid record");
2992 
2993         unsigned NumCases = Record[4];
2994 
2995         SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
2996         InstructionList.push_back(SI);
2997 
2998         unsigned CurIdx = 5;
2999         for (unsigned i = 0; i != NumCases; ++i) {
3000           SmallVector<ConstantInt*, 1> CaseVals;
3001           unsigned NumItems = Record[CurIdx++];
3002           for (unsigned ci = 0; ci != NumItems; ++ci) {
3003             bool isSingleNumber = Record[CurIdx++];
3004 
3005             APInt Low;
3006             unsigned ActiveWords = 1;
3007             if (ValueBitWidth > 64)
3008               ActiveWords = Record[CurIdx++];
3009             Low = ReadWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords),
3010                                 ValueBitWidth);
3011             CurIdx += ActiveWords;
3012 
3013             if (!isSingleNumber) {
3014               ActiveWords = 1;
3015               if (ValueBitWidth > 64)
3016                 ActiveWords = Record[CurIdx++];
3017               APInt High =
3018                   ReadWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords),
3019                                 ValueBitWidth);
3020               CurIdx += ActiveWords;
3021 
3022               // FIXME: It is not clear whether values in the range should be
3023               // compared as signed or unsigned values. The partially
3024               // implemented changes that used this format in the past used
3025               // unsigned comparisons.
3026               for ( ; Low.ule(High); ++Low)
3027                 CaseVals.push_back(ConstantInt::get(Context, Low));
3028             } else
3029               CaseVals.push_back(ConstantInt::get(Context, Low));
3030           }
3031           BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]);
3032           for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(),
3033                  cve = CaseVals.end(); cvi != cve; ++cvi)
3034             SI->addCase(*cvi, DestBB);
3035         }
3036         I = SI;
3037         break;
3038       }
3039 
3040       // Old SwitchInst format without case ranges.
3041 
3042       if (Record.size() < 3 || (Record.size() & 1) == 0)
3043         return Error("Invalid record");
3044       Type *OpTy = getTypeByID(Record[0]);
3045       Value *Cond = getValue(Record, 1, NextValueNo, OpTy);
3046       BasicBlock *Default = getBasicBlock(Record[2]);
3047       if (!OpTy || !Cond || !Default)
3048         return Error("Invalid record");
3049       unsigned NumCases = (Record.size()-3)/2;
3050       SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
3051       InstructionList.push_back(SI);
3052       for (unsigned i = 0, e = NumCases; i != e; ++i) {
3053         ConstantInt *CaseVal =
3054           dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy));
3055         BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]);
3056         if (!CaseVal || !DestBB) {
3057           delete SI;
3058           return Error("Invalid record");
3059         }
3060         SI->addCase(CaseVal, DestBB);
3061       }
3062       I = SI;
3063       break;
3064     }
3065     case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...]
3066       if (Record.size() < 2)
3067         return Error("Invalid record");
3068       Type *OpTy = getTypeByID(Record[0]);
3069       Value *Address = getValue(Record, 1, NextValueNo, OpTy);
3070       if (!OpTy || !Address)
3071         return Error("Invalid record");
3072       unsigned NumDests = Record.size()-2;
3073       IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests);
3074       InstructionList.push_back(IBI);
3075       for (unsigned i = 0, e = NumDests; i != e; ++i) {
3076         if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) {
3077           IBI->addDestination(DestBB);
3078         } else {
3079           delete IBI;
3080           return Error("Invalid record");
3081         }
3082       }
3083       I = IBI;
3084       break;
3085     }
3086 
3087     case bitc::FUNC_CODE_INST_INVOKE: {
3088       // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...]
3089       if (Record.size() < 4)
3090         return Error("Invalid record");
3091       AttributeSet PAL = getAttributes(Record[0]);
3092       unsigned CCInfo = Record[1];
3093       BasicBlock *NormalBB = getBasicBlock(Record[2]);
3094       BasicBlock *UnwindBB = getBasicBlock(Record[3]);
3095 
3096       unsigned OpNum = 4;
3097       Value *Callee;
3098       if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
3099         return Error("Invalid record");
3100 
3101       PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType());
3102       FunctionType *FTy = !CalleeTy ? nullptr :
3103         dyn_cast<FunctionType>(CalleeTy->getElementType());
3104 
3105       // Check that the right number of fixed parameters are here.
3106       if (!FTy || !NormalBB || !UnwindBB ||
3107           Record.size() < OpNum+FTy->getNumParams())
3108         return Error("Invalid record");
3109 
3110       SmallVector<Value*, 16> Ops;
3111       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
3112         Ops.push_back(getValue(Record, OpNum, NextValueNo,
3113                                FTy->getParamType(i)));
3114         if (!Ops.back())
3115           return Error("Invalid record");
3116       }
3117 
3118       if (!FTy->isVarArg()) {
3119         if (Record.size() != OpNum)
3120           return Error("Invalid record");
3121       } else {
3122         // Read type/value pairs for varargs params.
3123         while (OpNum != Record.size()) {
3124           Value *Op;
3125           if (getValueTypePair(Record, OpNum, NextValueNo, Op))
3126             return Error("Invalid record");
3127           Ops.push_back(Op);
3128         }
3129       }
3130 
3131       I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops);
3132       InstructionList.push_back(I);
3133       cast<InvokeInst>(I)->setCallingConv(
3134         static_cast<CallingConv::ID>(CCInfo));
3135       cast<InvokeInst>(I)->setAttributes(PAL);
3136       break;
3137     }
3138     case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval]
3139       unsigned Idx = 0;
3140       Value *Val = nullptr;
3141       if (getValueTypePair(Record, Idx, NextValueNo, Val))
3142         return Error("Invalid record");
3143       I = ResumeInst::Create(Val);
3144       InstructionList.push_back(I);
3145       break;
3146     }
3147     case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE
3148       I = new UnreachableInst(Context);
3149       InstructionList.push_back(I);
3150       break;
3151     case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...]
3152       if (Record.size() < 1 || ((Record.size()-1)&1))
3153         return Error("Invalid record");
3154       Type *Ty = getTypeByID(Record[0]);
3155       if (!Ty)
3156         return Error("Invalid record");
3157 
3158       PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2);
3159       InstructionList.push_back(PN);
3160 
3161       for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) {
3162         Value *V;
3163         // With the new function encoding, it is possible that operands have
3164         // negative IDs (for forward references).  Use a signed VBR
3165         // representation to keep the encoding small.
3166         if (UseRelativeIDs)
3167           V = getValueSigned(Record, 1+i, NextValueNo, Ty);
3168         else
3169           V = getValue(Record, 1+i, NextValueNo, Ty);
3170         BasicBlock *BB = getBasicBlock(Record[2+i]);
3171         if (!V || !BB)
3172           return Error("Invalid record");
3173         PN->addIncoming(V, BB);
3174       }
3175       I = PN;
3176       break;
3177     }
3178 
3179     case bitc::FUNC_CODE_INST_LANDINGPAD: {
3180       // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?]
3181       unsigned Idx = 0;
3182       if (Record.size() < 4)
3183         return Error("Invalid record");
3184       Type *Ty = getTypeByID(Record[Idx++]);
3185       if (!Ty)
3186         return Error("Invalid record");
3187       Value *PersFn = nullptr;
3188       if (getValueTypePair(Record, Idx, NextValueNo, PersFn))
3189         return Error("Invalid record");
3190 
3191       bool IsCleanup = !!Record[Idx++];
3192       unsigned NumClauses = Record[Idx++];
3193       LandingPadInst *LP = LandingPadInst::Create(Ty, PersFn, NumClauses);
3194       LP->setCleanup(IsCleanup);
3195       for (unsigned J = 0; J != NumClauses; ++J) {
3196         LandingPadInst::ClauseType CT =
3197           LandingPadInst::ClauseType(Record[Idx++]); (void)CT;
3198         Value *Val;
3199 
3200         if (getValueTypePair(Record, Idx, NextValueNo, Val)) {
3201           delete LP;
3202           return Error("Invalid record");
3203         }
3204 
3205         assert((CT != LandingPadInst::Catch ||
3206                 !isa<ArrayType>(Val->getType())) &&
3207                "Catch clause has a invalid type!");
3208         assert((CT != LandingPadInst::Filter ||
3209                 isa<ArrayType>(Val->getType())) &&
3210                "Filter clause has invalid type!");
3211         LP->addClause(cast<Constant>(Val));
3212       }
3213 
3214       I = LP;
3215       InstructionList.push_back(I);
3216       break;
3217     }
3218 
3219     case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align]
3220       if (Record.size() != 4)
3221         return Error("Invalid record");
3222       PointerType *Ty =
3223         dyn_cast_or_null<PointerType>(getTypeByID(Record[0]));
3224       Type *OpTy = getTypeByID(Record[1]);
3225       Value *Size = getFnValueByID(Record[2], OpTy);
3226       unsigned AlignRecord = Record[3];
3227       bool InAlloca = AlignRecord & (1 << 5);
3228       unsigned Align = AlignRecord & ((1 << 5) - 1);
3229       if (!Ty || !Size)
3230         return Error("Invalid record");
3231       AllocaInst *AI = new AllocaInst(Ty->getElementType(), Size, (1 << Align) >> 1);
3232       AI->setUsedWithInAlloca(InAlloca);
3233       I = AI;
3234       InstructionList.push_back(I);
3235       break;
3236     }
3237     case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol]
3238       unsigned OpNum = 0;
3239       Value *Op;
3240       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
3241           OpNum+2 != Record.size())
3242         return Error("Invalid record");
3243 
3244       I = new LoadInst(Op, "", Record[OpNum+1], (1 << Record[OpNum]) >> 1);
3245       InstructionList.push_back(I);
3246       break;
3247     }
3248     case bitc::FUNC_CODE_INST_LOADATOMIC: {
3249        // LOADATOMIC: [opty, op, align, vol, ordering, synchscope]
3250       unsigned OpNum = 0;
3251       Value *Op;
3252       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
3253           OpNum+4 != Record.size())
3254         return Error("Invalid record");
3255 
3256       AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]);
3257       if (Ordering == NotAtomic || Ordering == Release ||
3258           Ordering == AcquireRelease)
3259         return Error("Invalid record");
3260       if (Ordering != NotAtomic && Record[OpNum] == 0)
3261         return Error("Invalid record");
3262       SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]);
3263 
3264       I = new LoadInst(Op, "", Record[OpNum+1], (1 << Record[OpNum]) >> 1,
3265                        Ordering, SynchScope);
3266       InstructionList.push_back(I);
3267       break;
3268     }
3269     case bitc::FUNC_CODE_INST_STORE: { // STORE2:[ptrty, ptr, val, align, vol]
3270       unsigned OpNum = 0;
3271       Value *Val, *Ptr;
3272       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
3273           popValue(Record, OpNum, NextValueNo,
3274                     cast<PointerType>(Ptr->getType())->getElementType(), Val) ||
3275           OpNum+2 != Record.size())
3276         return Error("Invalid record");
3277 
3278       I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1);
3279       InstructionList.push_back(I);
3280       break;
3281     }
3282     case bitc::FUNC_CODE_INST_STOREATOMIC: {
3283       // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, synchscope]
3284       unsigned OpNum = 0;
3285       Value *Val, *Ptr;
3286       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
3287           popValue(Record, OpNum, NextValueNo,
3288                     cast<PointerType>(Ptr->getType())->getElementType(), Val) ||
3289           OpNum+4 != Record.size())
3290         return Error("Invalid record");
3291 
3292       AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]);
3293       if (Ordering == NotAtomic || Ordering == Acquire ||
3294           Ordering == AcquireRelease)
3295         return Error("Invalid record");
3296       SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]);
3297       if (Ordering != NotAtomic && Record[OpNum] == 0)
3298         return Error("Invalid record");
3299 
3300       I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1,
3301                         Ordering, SynchScope);
3302       InstructionList.push_back(I);
3303       break;
3304     }
3305     case bitc::FUNC_CODE_INST_CMPXCHG: {
3306       // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, synchscope,
3307       //          failureordering?, isweak?]
3308       unsigned OpNum = 0;
3309       Value *Ptr, *Cmp, *New;
3310       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
3311           popValue(Record, OpNum, NextValueNo,
3312                     cast<PointerType>(Ptr->getType())->getElementType(), Cmp) ||
3313           popValue(Record, OpNum, NextValueNo,
3314                     cast<PointerType>(Ptr->getType())->getElementType(), New) ||
3315           (Record.size() < OpNum + 3 || Record.size() > OpNum + 5))
3316         return Error("Invalid record");
3317       AtomicOrdering SuccessOrdering = GetDecodedOrdering(Record[OpNum+1]);
3318       if (SuccessOrdering == NotAtomic || SuccessOrdering == Unordered)
3319         return Error("Invalid record");
3320       SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+2]);
3321 
3322       AtomicOrdering FailureOrdering;
3323       if (Record.size() < 7)
3324         FailureOrdering =
3325             AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering);
3326       else
3327         FailureOrdering = GetDecodedOrdering(Record[OpNum+3]);
3328 
3329       I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering,
3330                                 SynchScope);
3331       cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]);
3332 
3333       if (Record.size() < 8) {
3334         // Before weak cmpxchgs existed, the instruction simply returned the
3335         // value loaded from memory, so bitcode files from that era will be
3336         // expecting the first component of a modern cmpxchg.
3337         CurBB->getInstList().push_back(I);
3338         I = ExtractValueInst::Create(I, 0);
3339       } else {
3340         cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]);
3341       }
3342 
3343       InstructionList.push_back(I);
3344       break;
3345     }
3346     case bitc::FUNC_CODE_INST_ATOMICRMW: {
3347       // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, synchscope]
3348       unsigned OpNum = 0;
3349       Value *Ptr, *Val;
3350       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
3351           popValue(Record, OpNum, NextValueNo,
3352                     cast<PointerType>(Ptr->getType())->getElementType(), Val) ||
3353           OpNum+4 != Record.size())
3354         return Error("Invalid record");
3355       AtomicRMWInst::BinOp Operation = GetDecodedRMWOperation(Record[OpNum]);
3356       if (Operation < AtomicRMWInst::FIRST_BINOP ||
3357           Operation > AtomicRMWInst::LAST_BINOP)
3358         return Error("Invalid record");
3359       AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]);
3360       if (Ordering == NotAtomic || Ordering == Unordered)
3361         return Error("Invalid record");
3362       SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]);
3363       I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SynchScope);
3364       cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]);
3365       InstructionList.push_back(I);
3366       break;
3367     }
3368     case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, synchscope]
3369       if (2 != Record.size())
3370         return Error("Invalid record");
3371       AtomicOrdering Ordering = GetDecodedOrdering(Record[0]);
3372       if (Ordering == NotAtomic || Ordering == Unordered ||
3373           Ordering == Monotonic)
3374         return Error("Invalid record");
3375       SynchronizationScope SynchScope = GetDecodedSynchScope(Record[1]);
3376       I = new FenceInst(Context, Ordering, SynchScope);
3377       InstructionList.push_back(I);
3378       break;
3379     }
3380     case bitc::FUNC_CODE_INST_CALL: {
3381       // CALL: [paramattrs, cc, fnty, fnid, arg0, arg1...]
3382       if (Record.size() < 3)
3383         return Error("Invalid record");
3384 
3385       AttributeSet PAL = getAttributes(Record[0]);
3386       unsigned CCInfo = Record[1];
3387 
3388       unsigned OpNum = 2;
3389       Value *Callee;
3390       if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
3391         return Error("Invalid record");
3392 
3393       PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
3394       FunctionType *FTy = nullptr;
3395       if (OpTy) FTy = dyn_cast<FunctionType>(OpTy->getElementType());
3396       if (!FTy || Record.size() < FTy->getNumParams()+OpNum)
3397         return Error("Invalid record");
3398 
3399       SmallVector<Value*, 16> Args;
3400       // Read the fixed params.
3401       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
3402         if (FTy->getParamType(i)->isLabelTy())
3403           Args.push_back(getBasicBlock(Record[OpNum]));
3404         else
3405           Args.push_back(getValue(Record, OpNum, NextValueNo,
3406                                   FTy->getParamType(i)));
3407         if (!Args.back())
3408           return Error("Invalid record");
3409       }
3410 
3411       // Read type/value pairs for varargs params.
3412       if (!FTy->isVarArg()) {
3413         if (OpNum != Record.size())
3414           return Error("Invalid record");
3415       } else {
3416         while (OpNum != Record.size()) {
3417           Value *Op;
3418           if (getValueTypePair(Record, OpNum, NextValueNo, Op))
3419             return Error("Invalid record");
3420           Args.push_back(Op);
3421         }
3422       }
3423 
3424       I = CallInst::Create(Callee, Args);
3425       InstructionList.push_back(I);
3426       cast<CallInst>(I)->setCallingConv(
3427           static_cast<CallingConv::ID>((~(1U << 14) & CCInfo) >> 1));
3428       CallInst::TailCallKind TCK = CallInst::TCK_None;
3429       if (CCInfo & 1)
3430         TCK = CallInst::TCK_Tail;
3431       if (CCInfo & (1 << 14))
3432         TCK = CallInst::TCK_MustTail;
3433       cast<CallInst>(I)->setTailCallKind(TCK);
3434       cast<CallInst>(I)->setAttributes(PAL);
3435       break;
3436     }
3437     case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty]
3438       if (Record.size() < 3)
3439         return Error("Invalid record");
3440       Type *OpTy = getTypeByID(Record[0]);
3441       Value *Op = getValue(Record, 1, NextValueNo, OpTy);
3442       Type *ResTy = getTypeByID(Record[2]);
3443       if (!OpTy || !Op || !ResTy)
3444         return Error("Invalid record");
3445       I = new VAArgInst(Op, ResTy);
3446       InstructionList.push_back(I);
3447       break;
3448     }
3449     }
3450 
3451     // Add instruction to end of current BB.  If there is no current BB, reject
3452     // this file.
3453     if (!CurBB) {
3454       delete I;
3455       return Error("Invalid instruction with no BB");
3456     }
3457     CurBB->getInstList().push_back(I);
3458 
3459     // If this was a terminator instruction, move to the next block.
3460     if (isa<TerminatorInst>(I)) {
3461       ++CurBBNo;
3462       CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr;
3463     }
3464 
3465     // Non-void values get registered in the value table for future use.
3466     if (I && !I->getType()->isVoidTy())
3467       ValueList.AssignValue(I, NextValueNo++);
3468   }
3469 
3470 OutOfRecordLoop:
3471 
3472   // Check the function list for unresolved values.
3473   if (Argument *A = dyn_cast<Argument>(ValueList.back())) {
3474     if (!A->getParent()) {
3475       // We found at least one unresolved value.  Nuke them all to avoid leaks.
3476       for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){
3477         if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) {
3478           A->replaceAllUsesWith(UndefValue::get(A->getType()));
3479           delete A;
3480         }
3481       }
3482       return Error("Never resolved value found in function");
3483     }
3484   }
3485 
3486   // FIXME: Check for unresolved forward-declared metadata references
3487   // and clean up leaks.
3488 
3489   // Trim the value list down to the size it was before we parsed this function.
3490   ValueList.shrinkTo(ModuleValueListSize);
3491   MDValueList.shrinkTo(ModuleMDValueListSize);
3492   std::vector<BasicBlock*>().swap(FunctionBBs);
3493   return std::error_code();
3494 }
3495 
3496 /// Find the function body in the bitcode stream
3497 std::error_code BitcodeReader::FindFunctionInStream(
3498     Function *F,
3499     DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) {
3500   while (DeferredFunctionInfoIterator->second == 0) {
3501     if (Stream.AtEndOfStream())
3502       return Error("Could not find function in stream");
3503     // ParseModule will parse the next body in the stream and set its
3504     // position in the DeferredFunctionInfo map.
3505     if (std::error_code EC = ParseModule(true))
3506       return EC;
3507   }
3508   return std::error_code();
3509 }
3510 
3511 //===----------------------------------------------------------------------===//
3512 // GVMaterializer implementation
3513 //===----------------------------------------------------------------------===//
3514 
3515 void BitcodeReader::releaseBuffer() { Buffer.release(); }
3516 
3517 std::error_code BitcodeReader::materialize(GlobalValue *GV) {
3518   Function *F = dyn_cast<Function>(GV);
3519   // If it's not a function or is already material, ignore the request.
3520   if (!F || !F->isMaterializable())
3521     return std::error_code();
3522 
3523   DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F);
3524   assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!");
3525   // If its position is recorded as 0, its body is somewhere in the stream
3526   // but we haven't seen it yet.
3527   if (DFII->second == 0 && LazyStreamer)
3528     if (std::error_code EC = FindFunctionInStream(F, DFII))
3529       return EC;
3530 
3531   // Move the bit stream to the saved position of the deferred function body.
3532   Stream.JumpToBit(DFII->second);
3533 
3534   if (std::error_code EC = ParseFunctionBody(F))
3535     return EC;
3536   F->setIsMaterializable(false);
3537 
3538   // Upgrade any old intrinsic calls in the function.
3539   for (UpgradedIntrinsicMap::iterator I = UpgradedIntrinsics.begin(),
3540        E = UpgradedIntrinsics.end(); I != E; ++I) {
3541     if (I->first != I->second) {
3542       for (auto UI = I->first->user_begin(), UE = I->first->user_end();
3543            UI != UE;) {
3544         if (CallInst* CI = dyn_cast<CallInst>(*UI++))
3545           UpgradeIntrinsicCall(CI, I->second);
3546       }
3547     }
3548   }
3549 
3550   // Bring in any functions that this function forward-referenced via
3551   // blockaddresses.
3552   return materializeForwardReferencedFunctions();
3553 }
3554 
3555 bool BitcodeReader::isDematerializable(const GlobalValue *GV) const {
3556   const Function *F = dyn_cast<Function>(GV);
3557   if (!F || F->isDeclaration())
3558     return false;
3559 
3560   // Dematerializing F would leave dangling references that wouldn't be
3561   // reconnected on re-materialization.
3562   if (BlockAddressesTaken.count(F))
3563     return false;
3564 
3565   return DeferredFunctionInfo.count(const_cast<Function*>(F));
3566 }
3567 
3568 void BitcodeReader::Dematerialize(GlobalValue *GV) {
3569   Function *F = dyn_cast<Function>(GV);
3570   // If this function isn't dematerializable, this is a noop.
3571   if (!F || !isDematerializable(F))
3572     return;
3573 
3574   assert(DeferredFunctionInfo.count(F) && "No info to read function later?");
3575 
3576   // Just forget the function body, we can remat it later.
3577   F->dropAllReferences();
3578   F->setIsMaterializable(true);
3579 }
3580 
3581 std::error_code BitcodeReader::MaterializeModule(Module *M) {
3582   assert(M == TheModule &&
3583          "Can only Materialize the Module this BitcodeReader is attached to.");
3584 
3585   // Promise to materialize all forward references.
3586   WillMaterializeAllForwardRefs = true;
3587 
3588   // Iterate over the module, deserializing any functions that are still on
3589   // disk.
3590   for (Module::iterator F = TheModule->begin(), E = TheModule->end();
3591        F != E; ++F) {
3592     if (std::error_code EC = materialize(F))
3593       return EC;
3594   }
3595   // At this point, if there are any function bodies, the current bit is
3596   // pointing to the END_BLOCK record after them. Now make sure the rest
3597   // of the bits in the module have been read.
3598   if (NextUnreadBit)
3599     ParseModule(true);
3600 
3601   // Check that all block address forward references got resolved (as we
3602   // promised above).
3603   if (!BasicBlockFwdRefs.empty())
3604     return Error("Never resolved function from blockaddress");
3605 
3606   // Upgrade any intrinsic calls that slipped through (should not happen!) and
3607   // delete the old functions to clean up. We can't do this unless the entire
3608   // module is materialized because there could always be another function body
3609   // with calls to the old function.
3610   for (std::vector<std::pair<Function*, Function*> >::iterator I =
3611        UpgradedIntrinsics.begin(), E = UpgradedIntrinsics.end(); I != E; ++I) {
3612     if (I->first != I->second) {
3613       for (auto UI = I->first->user_begin(), UE = I->first->user_end();
3614            UI != UE;) {
3615         if (CallInst* CI = dyn_cast<CallInst>(*UI++))
3616           UpgradeIntrinsicCall(CI, I->second);
3617       }
3618       if (!I->first->use_empty())
3619         I->first->replaceAllUsesWith(I->second);
3620       I->first->eraseFromParent();
3621     }
3622   }
3623   std::vector<std::pair<Function*, Function*> >().swap(UpgradedIntrinsics);
3624 
3625   for (unsigned I = 0, E = InstsWithTBAATag.size(); I < E; I++)
3626     UpgradeInstWithTBAATag(InstsWithTBAATag[I]);
3627 
3628   UpgradeDebugInfo(*M);
3629   return std::error_code();
3630 }
3631 
3632 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const {
3633   return IdentifiedStructTypes;
3634 }
3635 
3636 std::error_code BitcodeReader::InitStream() {
3637   if (LazyStreamer)
3638     return InitLazyStream();
3639   return InitStreamFromBuffer();
3640 }
3641 
3642 std::error_code BitcodeReader::InitStreamFromBuffer() {
3643   const unsigned char *BufPtr = (const unsigned char*)Buffer->getBufferStart();
3644   const unsigned char *BufEnd = BufPtr+Buffer->getBufferSize();
3645 
3646   if (Buffer->getBufferSize() & 3)
3647     return Error("Invalid bitcode signature");
3648 
3649   // If we have a wrapper header, parse it and ignore the non-bc file contents.
3650   // The magic number is 0x0B17C0DE stored in little endian.
3651   if (isBitcodeWrapper(BufPtr, BufEnd))
3652     if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true))
3653       return Error("Invalid bitcode wrapper header");
3654 
3655   StreamFile.reset(new BitstreamReader(BufPtr, BufEnd));
3656   Stream.init(&*StreamFile);
3657 
3658   return std::error_code();
3659 }
3660 
3661 std::error_code BitcodeReader::InitLazyStream() {
3662   // Check and strip off the bitcode wrapper; BitstreamReader expects never to
3663   // see it.
3664   auto OwnedBytes = llvm::make_unique<StreamingMemoryObject>(LazyStreamer);
3665   StreamingMemoryObject &Bytes = *OwnedBytes;
3666   StreamFile = llvm::make_unique<BitstreamReader>(std::move(OwnedBytes));
3667   Stream.init(&*StreamFile);
3668 
3669   unsigned char buf[16];
3670   if (Bytes.readBytes(buf, 16, 0) != 16)
3671     return Error("Invalid bitcode signature");
3672 
3673   if (!isBitcode(buf, buf + 16))
3674     return Error("Invalid bitcode signature");
3675 
3676   if (isBitcodeWrapper(buf, buf + 4)) {
3677     const unsigned char *bitcodeStart = buf;
3678     const unsigned char *bitcodeEnd = buf + 16;
3679     SkipBitcodeWrapperHeader(bitcodeStart, bitcodeEnd, false);
3680     Bytes.dropLeadingBytes(bitcodeStart - buf);
3681     Bytes.setKnownObjectSize(bitcodeEnd - bitcodeStart);
3682   }
3683   return std::error_code();
3684 }
3685 
3686 namespace {
3687 class BitcodeErrorCategoryType : public std::error_category {
3688   const char *name() const LLVM_NOEXCEPT override {
3689     return "llvm.bitcode";
3690   }
3691   std::string message(int IE) const override {
3692     BitcodeError E = static_cast<BitcodeError>(IE);
3693     switch (E) {
3694     case BitcodeError::InvalidBitcodeSignature:
3695       return "Invalid bitcode signature";
3696     case BitcodeError::CorruptedBitcode:
3697       return "Corrupted bitcode";
3698     }
3699     llvm_unreachable("Unknown error type!");
3700   }
3701 };
3702 }
3703 
3704 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory;
3705 
3706 const std::error_category &llvm::BitcodeErrorCategory() {
3707   return *ErrorCategory;
3708 }
3709 
3710 //===----------------------------------------------------------------------===//
3711 // External interface
3712 //===----------------------------------------------------------------------===//
3713 
3714 /// \brief Get a lazy one-at-time loading module from bitcode.
3715 ///
3716 /// This isn't always used in a lazy context.  In particular, it's also used by
3717 /// \a parseBitcodeFile().  If this is truly lazy, then we need to eagerly pull
3718 /// in forward-referenced functions from block address references.
3719 ///
3720 /// \param[in] WillMaterializeAll Set to \c true if the caller promises to
3721 /// materialize everything -- in particular, if this isn't truly lazy.
3722 static ErrorOr<Module *>
3723 getLazyBitcodeModuleImpl(std::unique_ptr<MemoryBuffer> &&Buffer,
3724                          LLVMContext &Context, bool WillMaterializeAll,
3725                          DiagnosticHandlerFunction DiagnosticHandler) {
3726   Module *M = new Module(Buffer->getBufferIdentifier(), Context);
3727   BitcodeReader *R =
3728       new BitcodeReader(Buffer.get(), Context, DiagnosticHandler);
3729   M->setMaterializer(R);
3730 
3731   auto cleanupOnError = [&](std::error_code EC) {
3732     R->releaseBuffer(); // Never take ownership on error.
3733     delete M;  // Also deletes R.
3734     return EC;
3735   };
3736 
3737   if (std::error_code EC = R->ParseBitcodeInto(M))
3738     return cleanupOnError(EC);
3739 
3740   if (!WillMaterializeAll)
3741     // Resolve forward references from blockaddresses.
3742     if (std::error_code EC = R->materializeForwardReferencedFunctions())
3743       return cleanupOnError(EC);
3744 
3745   Buffer.release(); // The BitcodeReader owns it now.
3746   return M;
3747 }
3748 
3749 ErrorOr<Module *>
3750 llvm::getLazyBitcodeModule(std::unique_ptr<MemoryBuffer> &&Buffer,
3751                            LLVMContext &Context,
3752                            DiagnosticHandlerFunction DiagnosticHandler) {
3753   return getLazyBitcodeModuleImpl(std::move(Buffer), Context, false,
3754                                   DiagnosticHandler);
3755 }
3756 
3757 ErrorOr<std::unique_ptr<Module>>
3758 llvm::getStreamedBitcodeModule(StringRef Name, DataStreamer *Streamer,
3759                                LLVMContext &Context,
3760                                DiagnosticHandlerFunction DiagnosticHandler) {
3761   std::unique_ptr<Module> M = make_unique<Module>(Name, Context);
3762   BitcodeReader *R = new BitcodeReader(Streamer, Context, DiagnosticHandler);
3763   M->setMaterializer(R);
3764   if (std::error_code EC = R->ParseBitcodeInto(M.get()))
3765     return EC;
3766   return std::move(M);
3767 }
3768 
3769 ErrorOr<Module *>
3770 llvm::parseBitcodeFile(MemoryBufferRef Buffer, LLVMContext &Context,
3771                        DiagnosticHandlerFunction DiagnosticHandler) {
3772   std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false);
3773   ErrorOr<Module *> ModuleOrErr = getLazyBitcodeModuleImpl(
3774       std::move(Buf), Context, true, DiagnosticHandler);
3775   if (!ModuleOrErr)
3776     return ModuleOrErr;
3777   Module *M = ModuleOrErr.get();
3778   // Read in the entire module, and destroy the BitcodeReader.
3779   if (std::error_code EC = M->materializeAllPermanently()) {
3780     delete M;
3781     return EC;
3782   }
3783 
3784   // TODO: Restore the use-lists to the in-memory state when the bitcode was
3785   // written.  We must defer until the Module has been fully materialized.
3786 
3787   return M;
3788 }
3789 
3790 std::string
3791 llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer, LLVMContext &Context,
3792                              DiagnosticHandlerFunction DiagnosticHandler) {
3793   std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false);
3794   auto R = llvm::make_unique<BitcodeReader>(Buf.release(), Context,
3795                                             DiagnosticHandler);
3796   ErrorOr<std::string> Triple = R->parseTriple();
3797   if (Triple.getError())
3798     return "";
3799   return Triple.get();
3800 }
3801