1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #include "llvm/ADT/STLExtras.h"
11 #include "llvm/ADT/SmallString.h"
12 #include "llvm/ADT/SmallVector.h"
13 #include "llvm/ADT/Triple.h"
14 #include "llvm/Bitcode/BitstreamReader.h"
15 #include "llvm/Bitcode/LLVMBitCodes.h"
16 #include "llvm/Bitcode/ReaderWriter.h"
17 #include "llvm/IR/AutoUpgrade.h"
18 #include "llvm/IR/Constants.h"
19 #include "llvm/IR/DebugInfo.h"
20 #include "llvm/IR/DebugInfoMetadata.h"
21 #include "llvm/IR/DerivedTypes.h"
22 #include "llvm/IR/DiagnosticPrinter.h"
23 #include "llvm/IR/GVMaterializer.h"
24 #include "llvm/IR/InlineAsm.h"
25 #include "llvm/IR/IntrinsicInst.h"
26 #include "llvm/IR/LLVMContext.h"
27 #include "llvm/IR/Module.h"
28 #include "llvm/IR/ModuleSummaryIndex.h"
29 #include "llvm/IR/OperandTraits.h"
30 #include "llvm/IR/Operator.h"
31 #include "llvm/IR/ValueHandle.h"
32 #include "llvm/Support/CommandLine.h"
33 #include "llvm/Support/DataStream.h"
34 #include "llvm/Support/Debug.h"
35 #include "llvm/Support/ManagedStatic.h"
36 #include "llvm/Support/MathExtras.h"
37 #include "llvm/Support/MemoryBuffer.h"
38 #include "llvm/Support/raw_ostream.h"
39 #include <deque>
40 
41 using namespace llvm;
42 
43 static cl::opt<bool> PrintSummaryGUIDs(
44     "print-summary-global-ids", cl::init(false), cl::Hidden,
45     cl::desc(
46         "Print the global id for each value when reading the module summary"));
47 
48 namespace {
49 enum {
50   SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex
51 };
52 
53 class BitcodeReaderValueList {
54   std::vector<WeakVH> ValuePtrs;
55 
56   /// As we resolve forward-referenced constants, we add information about them
57   /// to this vector.  This allows us to resolve them in bulk instead of
58   /// resolving each reference at a time.  See the code in
59   /// ResolveConstantForwardRefs for more information about this.
60   ///
61   /// The key of this vector is the placeholder constant, the value is the slot
62   /// number that holds the resolved value.
63   typedef std::vector<std::pair<Constant*, unsigned> > ResolveConstantsTy;
64   ResolveConstantsTy ResolveConstants;
65   LLVMContext &Context;
66 public:
67   BitcodeReaderValueList(LLVMContext &C) : Context(C) {}
68   ~BitcodeReaderValueList() {
69     assert(ResolveConstants.empty() && "Constants not resolved?");
70   }
71 
72   // vector compatibility methods
73   unsigned size() const { return ValuePtrs.size(); }
74   void resize(unsigned N) { ValuePtrs.resize(N); }
75   void push_back(Value *V) { ValuePtrs.emplace_back(V); }
76 
77   void clear() {
78     assert(ResolveConstants.empty() && "Constants not resolved?");
79     ValuePtrs.clear();
80   }
81 
82   Value *operator[](unsigned i) const {
83     assert(i < ValuePtrs.size());
84     return ValuePtrs[i];
85   }
86 
87   Value *back() const { return ValuePtrs.back(); }
88   void pop_back() { ValuePtrs.pop_back(); }
89   bool empty() const { return ValuePtrs.empty(); }
90   void shrinkTo(unsigned N) {
91     assert(N <= size() && "Invalid shrinkTo request!");
92     ValuePtrs.resize(N);
93   }
94 
95   Constant *getConstantFwdRef(unsigned Idx, Type *Ty);
96   Value *getValueFwdRef(unsigned Idx, Type *Ty);
97 
98   void assignValue(Value *V, unsigned Idx);
99 
100   /// Once all constants are read, this method bulk resolves any forward
101   /// references.
102   void resolveConstantForwardRefs();
103 };
104 
105 class BitcodeReaderMetadataList {
106   unsigned NumFwdRefs;
107   bool AnyFwdRefs;
108   unsigned MinFwdRef;
109   unsigned MaxFwdRef;
110   std::vector<TrackingMDRef> MetadataPtrs;
111 
112   LLVMContext &Context;
113 public:
114   BitcodeReaderMetadataList(LLVMContext &C)
115       : NumFwdRefs(0), AnyFwdRefs(false), Context(C) {}
116 
117   // vector compatibility methods
118   unsigned size() const { return MetadataPtrs.size(); }
119   void resize(unsigned N) { MetadataPtrs.resize(N); }
120   void push_back(Metadata *MD) { MetadataPtrs.emplace_back(MD); }
121   void clear() { MetadataPtrs.clear(); }
122   Metadata *back() const { return MetadataPtrs.back(); }
123   void pop_back() { MetadataPtrs.pop_back(); }
124   bool empty() const { return MetadataPtrs.empty(); }
125 
126   Metadata *operator[](unsigned i) const {
127     assert(i < MetadataPtrs.size());
128     return MetadataPtrs[i];
129   }
130 
131   void shrinkTo(unsigned N) {
132     assert(N <= size() && "Invalid shrinkTo request!");
133     assert(!AnyFwdRefs && "Unexpected forward refs");
134     MetadataPtrs.resize(N);
135   }
136 
137   Metadata *getMetadataFwdRef(unsigned Idx);
138   MDNode *getMDNodeFwdRefOrNull(unsigned Idx);
139   void assignValue(Metadata *MD, unsigned Idx);
140   void tryToResolveCycles();
141   bool hasFwdRefs() const { return AnyFwdRefs; }
142 };
143 
144 class BitcodeReader : public GVMaterializer {
145   LLVMContext &Context;
146   Module *TheModule = nullptr;
147   std::unique_ptr<MemoryBuffer> Buffer;
148   std::unique_ptr<BitstreamReader> StreamFile;
149   BitstreamCursor Stream;
150   // Next offset to start scanning for lazy parsing of function bodies.
151   uint64_t NextUnreadBit = 0;
152   // Last function offset found in the VST.
153   uint64_t LastFunctionBlockBit = 0;
154   bool SeenValueSymbolTable = false;
155   uint64_t VSTOffset = 0;
156   // Contains an arbitrary and optional string identifying the bitcode producer
157   std::string ProducerIdentification;
158 
159   std::vector<Type*> TypeList;
160   BitcodeReaderValueList ValueList;
161   BitcodeReaderMetadataList MetadataList;
162   std::vector<Comdat *> ComdatList;
163   SmallVector<Instruction *, 64> InstructionList;
164 
165   std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInits;
166   std::vector<std::pair<GlobalAlias*, unsigned> > AliasInits;
167   std::vector<std::pair<Function*, unsigned> > FunctionPrefixes;
168   std::vector<std::pair<Function*, unsigned> > FunctionPrologues;
169   std::vector<std::pair<Function*, unsigned> > FunctionPersonalityFns;
170 
171   SmallVector<Instruction*, 64> InstsWithTBAATag;
172 
173   bool HasSeenOldLoopTags = false;
174 
175   /// The set of attributes by index.  Index zero in the file is for null, and
176   /// is thus not represented here.  As such all indices are off by one.
177   std::vector<AttributeSet> MAttributes;
178 
179   /// The set of attribute groups.
180   std::map<unsigned, AttributeSet> MAttributeGroups;
181 
182   /// While parsing a function body, this is a list of the basic blocks for the
183   /// function.
184   std::vector<BasicBlock*> FunctionBBs;
185 
186   // When reading the module header, this list is populated with functions that
187   // have bodies later in the file.
188   std::vector<Function*> FunctionsWithBodies;
189 
190   // When intrinsic functions are encountered which require upgrading they are
191   // stored here with their replacement function.
192   typedef DenseMap<Function*, Function*> UpgradedIntrinsicMap;
193   UpgradedIntrinsicMap UpgradedIntrinsics;
194 
195   // Map the bitcode's custom MDKind ID to the Module's MDKind ID.
196   DenseMap<unsigned, unsigned> MDKindMap;
197 
198   // Several operations happen after the module header has been read, but
199   // before function bodies are processed. This keeps track of whether
200   // we've done this yet.
201   bool SeenFirstFunctionBody = false;
202 
203   /// When function bodies are initially scanned, this map contains info about
204   /// where to find deferred function body in the stream.
205   DenseMap<Function*, uint64_t> DeferredFunctionInfo;
206 
207   /// When Metadata block is initially scanned when parsing the module, we may
208   /// choose to defer parsing of the metadata. This vector contains info about
209   /// which Metadata blocks are deferred.
210   std::vector<uint64_t> DeferredMetadataInfo;
211 
212   /// These are basic blocks forward-referenced by block addresses.  They are
213   /// inserted lazily into functions when they're loaded.  The basic block ID is
214   /// its index into the vector.
215   DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs;
216   std::deque<Function *> BasicBlockFwdRefQueue;
217 
218   /// Indicates that we are using a new encoding for instruction operands where
219   /// most operands in the current FUNCTION_BLOCK are encoded relative to the
220   /// instruction number, for a more compact encoding.  Some instruction
221   /// operands are not relative to the instruction ID: basic block numbers, and
222   /// types. Once the old style function blocks have been phased out, we would
223   /// not need this flag.
224   bool UseRelativeIDs = false;
225 
226   /// True if all functions will be materialized, negating the need to process
227   /// (e.g.) blockaddress forward references.
228   bool WillMaterializeAllForwardRefs = false;
229 
230   /// True if any Metadata block has been materialized.
231   bool IsMetadataMaterialized = false;
232 
233   bool StripDebugInfo = false;
234 
235   /// Functions that need to be matched with subprograms when upgrading old
236   /// metadata.
237   SmallDenseMap<Function *, DISubprogram *, 16> FunctionsWithSPs;
238 
239   std::vector<std::string> BundleTags;
240 
241 public:
242   std::error_code error(BitcodeError E, const Twine &Message);
243   std::error_code error(BitcodeError E);
244   std::error_code error(const Twine &Message);
245 
246   BitcodeReader(MemoryBuffer *Buffer, LLVMContext &Context);
247   BitcodeReader(LLVMContext &Context);
248   ~BitcodeReader() override { freeState(); }
249 
250   std::error_code materializeForwardReferencedFunctions();
251 
252   void freeState();
253 
254   void releaseBuffer();
255 
256   std::error_code materialize(GlobalValue *GV) override;
257   std::error_code materializeModule() override;
258   std::vector<StructType *> getIdentifiedStructTypes() const override;
259 
260   /// \brief Main interface to parsing a bitcode buffer.
261   /// \returns true if an error occurred.
262   std::error_code parseBitcodeInto(std::unique_ptr<DataStreamer> Streamer,
263                                    Module *M,
264                                    bool ShouldLazyLoadMetadata = false);
265 
266   /// \brief Cheap mechanism to just extract module triple
267   /// \returns true if an error occurred.
268   ErrorOr<std::string> parseTriple();
269 
270   /// Cheap mechanism to just extract the identification block out of bitcode.
271   ErrorOr<std::string> parseIdentificationBlock();
272 
273   static uint64_t decodeSignRotatedValue(uint64_t V);
274 
275   /// Materialize any deferred Metadata block.
276   std::error_code materializeMetadata() override;
277 
278   void setStripDebugInfo() override;
279 
280 private:
281   /// Parse the "IDENTIFICATION_BLOCK_ID" block, populate the
282   // ProducerIdentification data member, and do some basic enforcement on the
283   // "epoch" encoded in the bitcode.
284   std::error_code parseBitcodeVersion();
285 
286   std::vector<StructType *> IdentifiedStructTypes;
287   StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name);
288   StructType *createIdentifiedStructType(LLVMContext &Context);
289 
290   Type *getTypeByID(unsigned ID);
291   Value *getFnValueByID(unsigned ID, Type *Ty) {
292     if (Ty && Ty->isMetadataTy())
293       return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID));
294     return ValueList.getValueFwdRef(ID, Ty);
295   }
296   Metadata *getFnMetadataByID(unsigned ID) {
297     return MetadataList.getMetadataFwdRef(ID);
298   }
299   BasicBlock *getBasicBlock(unsigned ID) const {
300     if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID
301     return FunctionBBs[ID];
302   }
303   AttributeSet getAttributes(unsigned i) const {
304     if (i-1 < MAttributes.size())
305       return MAttributes[i-1];
306     return AttributeSet();
307   }
308 
309   /// Read a value/type pair out of the specified record from slot 'Slot'.
310   /// Increment Slot past the number of slots used in the record. Return true on
311   /// failure.
312   bool getValueTypePair(SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
313                         unsigned InstNum, Value *&ResVal) {
314     if (Slot == Record.size()) return true;
315     unsigned ValNo = (unsigned)Record[Slot++];
316     // Adjust the ValNo, if it was encoded relative to the InstNum.
317     if (UseRelativeIDs)
318       ValNo = InstNum - ValNo;
319     if (ValNo < InstNum) {
320       // If this is not a forward reference, just return the value we already
321       // have.
322       ResVal = getFnValueByID(ValNo, nullptr);
323       return ResVal == nullptr;
324     }
325     if (Slot == Record.size())
326       return true;
327 
328     unsigned TypeNo = (unsigned)Record[Slot++];
329     ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo));
330     return ResVal == nullptr;
331   }
332 
333   /// Read a value out of the specified record from slot 'Slot'. Increment Slot
334   /// past the number of slots used by the value in the record. Return true if
335   /// there is an error.
336   bool popValue(SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
337                 unsigned InstNum, Type *Ty, Value *&ResVal) {
338     if (getValue(Record, Slot, InstNum, Ty, ResVal))
339       return true;
340     // All values currently take a single record slot.
341     ++Slot;
342     return false;
343   }
344 
345   /// Like popValue, but does not increment the Slot number.
346   bool getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot,
347                 unsigned InstNum, Type *Ty, Value *&ResVal) {
348     ResVal = getValue(Record, Slot, InstNum, Ty);
349     return ResVal == nullptr;
350   }
351 
352   /// Version of getValue that returns ResVal directly, or 0 if there is an
353   /// error.
354   Value *getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot,
355                   unsigned InstNum, Type *Ty) {
356     if (Slot == Record.size()) return nullptr;
357     unsigned ValNo = (unsigned)Record[Slot];
358     // Adjust the ValNo, if it was encoded relative to the InstNum.
359     if (UseRelativeIDs)
360       ValNo = InstNum - ValNo;
361     return getFnValueByID(ValNo, Ty);
362   }
363 
364   /// Like getValue, but decodes signed VBRs.
365   Value *getValueSigned(SmallVectorImpl<uint64_t> &Record, unsigned Slot,
366                         unsigned InstNum, Type *Ty) {
367     if (Slot == Record.size()) return nullptr;
368     unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]);
369     // Adjust the ValNo, if it was encoded relative to the InstNum.
370     if (UseRelativeIDs)
371       ValNo = InstNum - ValNo;
372     return getFnValueByID(ValNo, Ty);
373   }
374 
375   /// Converts alignment exponent (i.e. power of two (or zero)) to the
376   /// corresponding alignment to use. If alignment is too large, returns
377   /// a corresponding error code.
378   std::error_code parseAlignmentValue(uint64_t Exponent, unsigned &Alignment);
379   std::error_code parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind);
380   std::error_code parseModule(uint64_t ResumeBit,
381                               bool ShouldLazyLoadMetadata = false);
382   std::error_code parseAttributeBlock();
383   std::error_code parseAttributeGroupBlock();
384   std::error_code parseTypeTable();
385   std::error_code parseTypeTableBody();
386   std::error_code parseOperandBundleTags();
387 
388   ErrorOr<Value *> recordValue(SmallVectorImpl<uint64_t> &Record,
389                                unsigned NameIndex, Triple &TT);
390   std::error_code parseValueSymbolTable(uint64_t Offset = 0);
391   std::error_code parseConstants();
392   std::error_code rememberAndSkipFunctionBodies();
393   std::error_code rememberAndSkipFunctionBody();
394   /// Save the positions of the Metadata blocks and skip parsing the blocks.
395   std::error_code rememberAndSkipMetadata();
396   std::error_code parseFunctionBody(Function *F);
397   std::error_code globalCleanup();
398   std::error_code resolveGlobalAndAliasInits();
399   std::error_code parseMetadata(bool ModuleLevel = false);
400   std::error_code parseMetadataStrings(ArrayRef<uint64_t> Record,
401                                        StringRef Blob,
402                                        unsigned &NextMetadataNo);
403   std::error_code parseMetadataKinds();
404   std::error_code parseMetadataKindRecord(SmallVectorImpl<uint64_t> &Record);
405   std::error_code parseMetadataAttachment(Function &F);
406   ErrorOr<std::string> parseModuleTriple();
407   std::error_code parseUseLists();
408   std::error_code initStream(std::unique_ptr<DataStreamer> Streamer);
409   std::error_code initStreamFromBuffer();
410   std::error_code initLazyStream(std::unique_ptr<DataStreamer> Streamer);
411   std::error_code findFunctionInStream(
412       Function *F,
413       DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator);
414 };
415 
416 /// Class to manage reading and parsing function summary index bitcode
417 /// files/sections.
418 class ModuleSummaryIndexBitcodeReader {
419   DiagnosticHandlerFunction DiagnosticHandler;
420 
421   /// Eventually points to the module index built during parsing.
422   ModuleSummaryIndex *TheIndex = nullptr;
423 
424   std::unique_ptr<MemoryBuffer> Buffer;
425   std::unique_ptr<BitstreamReader> StreamFile;
426   BitstreamCursor Stream;
427 
428   /// \brief Used to indicate whether we are doing lazy parsing of summary data.
429   ///
430   /// If false, the summary section is fully parsed into the index during
431   /// the initial parse. Otherwise, if true, the caller is expected to
432   /// invoke \a readGlobalValueSummary for each summary needed, and the summary
433   /// section is thus parsed lazily.
434   bool IsLazy = false;
435 
436   /// Used to indicate whether caller only wants to check for the presence
437   /// of the global value summary bitcode section. All blocks are skipped,
438   /// but the SeenGlobalValSummary boolean is set.
439   bool CheckGlobalValSummaryPresenceOnly = false;
440 
441   /// Indicates whether we have encountered a global value summary section
442   /// yet during parsing, used when checking if file contains global value
443   /// summary section.
444   bool SeenGlobalValSummary = false;
445 
446   /// Indicates whether we have already parsed the VST, used for error checking.
447   bool SeenValueSymbolTable = false;
448 
449   /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record.
450   /// Used to enable on-demand parsing of the VST.
451   uint64_t VSTOffset = 0;
452 
453   // Map to save ValueId to GUID association that was recorded in the
454   // ValueSymbolTable. It is used after the VST is parsed to convert
455   // call graph edges read from the function summary from referencing
456   // callees by their ValueId to using the GUID instead, which is how
457   // they are recorded in the summary index being built.
458   DenseMap<unsigned, GlobalValue::GUID> ValueIdToCallGraphGUIDMap;
459 
460   /// Map to save the association between summary offset in the VST to the
461   /// GlobalValueInfo object created when parsing it. Used to access the
462   /// info object when parsing the summary section.
463   DenseMap<uint64_t, GlobalValueInfo *> SummaryOffsetToInfoMap;
464 
465   /// Map populated during module path string table parsing, from the
466   /// module ID to a string reference owned by the index's module
467   /// path string table, used to correlate with combined index
468   /// summary records.
469   DenseMap<uint64_t, StringRef> ModuleIdMap;
470 
471   /// Original source file name recorded in a bitcode record.
472   std::string SourceFileName;
473 
474 public:
475   std::error_code error(BitcodeError E, const Twine &Message);
476   std::error_code error(BitcodeError E);
477   std::error_code error(const Twine &Message);
478 
479   ModuleSummaryIndexBitcodeReader(
480       MemoryBuffer *Buffer, DiagnosticHandlerFunction DiagnosticHandler,
481       bool IsLazy = false, bool CheckGlobalValSummaryPresenceOnly = false);
482   ModuleSummaryIndexBitcodeReader(
483       DiagnosticHandlerFunction DiagnosticHandler, bool IsLazy = false,
484       bool CheckGlobalValSummaryPresenceOnly = false);
485   ~ModuleSummaryIndexBitcodeReader() { freeState(); }
486 
487   void freeState();
488 
489   void releaseBuffer();
490 
491   /// Check if the parser has encountered a summary section.
492   bool foundGlobalValSummary() { return SeenGlobalValSummary; }
493 
494   /// \brief Main interface to parsing a bitcode buffer.
495   /// \returns true if an error occurred.
496   std::error_code parseSummaryIndexInto(std::unique_ptr<DataStreamer> Streamer,
497                                         ModuleSummaryIndex *I);
498 
499   /// \brief Interface for parsing a summary lazily.
500   std::error_code
501   parseGlobalValueSummary(std::unique_ptr<DataStreamer> Streamer,
502                           ModuleSummaryIndex *I, size_t SummaryOffset);
503 
504 private:
505   std::error_code parseModule();
506   std::error_code parseValueSymbolTable(
507       uint64_t Offset,
508       DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap);
509   std::error_code parseEntireSummary();
510   std::error_code parseModuleStringTable();
511   std::error_code initStream(std::unique_ptr<DataStreamer> Streamer);
512   std::error_code initStreamFromBuffer();
513   std::error_code initLazyStream(std::unique_ptr<DataStreamer> Streamer);
514   GlobalValue::GUID getGUIDFromValueId(unsigned ValueId);
515   GlobalValueInfo *getInfoFromSummaryOffset(uint64_t Offset);
516 };
517 } // end anonymous namespace
518 
519 BitcodeDiagnosticInfo::BitcodeDiagnosticInfo(std::error_code EC,
520                                              DiagnosticSeverity Severity,
521                                              const Twine &Msg)
522     : DiagnosticInfo(DK_Bitcode, Severity), Msg(Msg), EC(EC) {}
523 
524 void BitcodeDiagnosticInfo::print(DiagnosticPrinter &DP) const { DP << Msg; }
525 
526 static std::error_code error(DiagnosticHandlerFunction DiagnosticHandler,
527                              std::error_code EC, const Twine &Message) {
528   BitcodeDiagnosticInfo DI(EC, DS_Error, Message);
529   DiagnosticHandler(DI);
530   return EC;
531 }
532 
533 static std::error_code error(DiagnosticHandlerFunction DiagnosticHandler,
534                              std::error_code EC) {
535   return error(DiagnosticHandler, EC, EC.message());
536 }
537 
538 static std::error_code error(LLVMContext &Context, std::error_code EC,
539                              const Twine &Message) {
540   return error([&](const DiagnosticInfo &DI) { Context.diagnose(DI); }, EC,
541                Message);
542 }
543 
544 static std::error_code error(LLVMContext &Context, std::error_code EC) {
545   return error(Context, EC, EC.message());
546 }
547 
548 static std::error_code error(LLVMContext &Context, const Twine &Message) {
549   return error(Context, make_error_code(BitcodeError::CorruptedBitcode),
550                Message);
551 }
552 
553 std::error_code BitcodeReader::error(BitcodeError E, const Twine &Message) {
554   if (!ProducerIdentification.empty()) {
555     return ::error(Context, make_error_code(E),
556                    Message + " (Producer: '" + ProducerIdentification +
557                        "' Reader: 'LLVM " + LLVM_VERSION_STRING "')");
558   }
559   return ::error(Context, make_error_code(E), Message);
560 }
561 
562 std::error_code BitcodeReader::error(const Twine &Message) {
563   if (!ProducerIdentification.empty()) {
564     return ::error(Context, make_error_code(BitcodeError::CorruptedBitcode),
565                    Message + " (Producer: '" + ProducerIdentification +
566                        "' Reader: 'LLVM " + LLVM_VERSION_STRING "')");
567   }
568   return ::error(Context, make_error_code(BitcodeError::CorruptedBitcode),
569                  Message);
570 }
571 
572 std::error_code BitcodeReader::error(BitcodeError E) {
573   return ::error(Context, make_error_code(E));
574 }
575 
576 BitcodeReader::BitcodeReader(MemoryBuffer *Buffer, LLVMContext &Context)
577     : Context(Context), Buffer(Buffer), ValueList(Context),
578       MetadataList(Context) {}
579 
580 BitcodeReader::BitcodeReader(LLVMContext &Context)
581     : Context(Context), Buffer(nullptr), ValueList(Context),
582       MetadataList(Context) {}
583 
584 std::error_code BitcodeReader::materializeForwardReferencedFunctions() {
585   if (WillMaterializeAllForwardRefs)
586     return std::error_code();
587 
588   // Prevent recursion.
589   WillMaterializeAllForwardRefs = true;
590 
591   while (!BasicBlockFwdRefQueue.empty()) {
592     Function *F = BasicBlockFwdRefQueue.front();
593     BasicBlockFwdRefQueue.pop_front();
594     assert(F && "Expected valid function");
595     if (!BasicBlockFwdRefs.count(F))
596       // Already materialized.
597       continue;
598 
599     // Check for a function that isn't materializable to prevent an infinite
600     // loop.  When parsing a blockaddress stored in a global variable, there
601     // isn't a trivial way to check if a function will have a body without a
602     // linear search through FunctionsWithBodies, so just check it here.
603     if (!F->isMaterializable())
604       return error("Never resolved function from blockaddress");
605 
606     // Try to materialize F.
607     if (std::error_code EC = materialize(F))
608       return EC;
609   }
610   assert(BasicBlockFwdRefs.empty() && "Function missing from queue");
611 
612   // Reset state.
613   WillMaterializeAllForwardRefs = false;
614   return std::error_code();
615 }
616 
617 void BitcodeReader::freeState() {
618   Buffer = nullptr;
619   std::vector<Type*>().swap(TypeList);
620   ValueList.clear();
621   MetadataList.clear();
622   std::vector<Comdat *>().swap(ComdatList);
623 
624   std::vector<AttributeSet>().swap(MAttributes);
625   std::vector<BasicBlock*>().swap(FunctionBBs);
626   std::vector<Function*>().swap(FunctionsWithBodies);
627   DeferredFunctionInfo.clear();
628   DeferredMetadataInfo.clear();
629   MDKindMap.clear();
630 
631   assert(BasicBlockFwdRefs.empty() && "Unresolved blockaddress fwd references");
632   BasicBlockFwdRefQueue.clear();
633 }
634 
635 //===----------------------------------------------------------------------===//
636 //  Helper functions to implement forward reference resolution, etc.
637 //===----------------------------------------------------------------------===//
638 
639 /// Convert a string from a record into an std::string, return true on failure.
640 template <typename StrTy>
641 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx,
642                             StrTy &Result) {
643   if (Idx > Record.size())
644     return true;
645 
646   for (unsigned i = Idx, e = Record.size(); i != e; ++i)
647     Result += (char)Record[i];
648   return false;
649 }
650 
651 static bool hasImplicitComdat(size_t Val) {
652   switch (Val) {
653   default:
654     return false;
655   case 1:  // Old WeakAnyLinkage
656   case 4:  // Old LinkOnceAnyLinkage
657   case 10: // Old WeakODRLinkage
658   case 11: // Old LinkOnceODRLinkage
659     return true;
660   }
661 }
662 
663 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) {
664   switch (Val) {
665   default: // Map unknown/new linkages to external
666   case 0:
667     return GlobalValue::ExternalLinkage;
668   case 2:
669     return GlobalValue::AppendingLinkage;
670   case 3:
671     return GlobalValue::InternalLinkage;
672   case 5:
673     return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage
674   case 6:
675     return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage
676   case 7:
677     return GlobalValue::ExternalWeakLinkage;
678   case 8:
679     return GlobalValue::CommonLinkage;
680   case 9:
681     return GlobalValue::PrivateLinkage;
682   case 12:
683     return GlobalValue::AvailableExternallyLinkage;
684   case 13:
685     return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage
686   case 14:
687     return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage
688   case 15:
689     return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage
690   case 1: // Old value with implicit comdat.
691   case 16:
692     return GlobalValue::WeakAnyLinkage;
693   case 10: // Old value with implicit comdat.
694   case 17:
695     return GlobalValue::WeakODRLinkage;
696   case 4: // Old value with implicit comdat.
697   case 18:
698     return GlobalValue::LinkOnceAnyLinkage;
699   case 11: // Old value with implicit comdat.
700   case 19:
701     return GlobalValue::LinkOnceODRLinkage;
702   }
703 }
704 
705 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) {
706   switch (Val) {
707   default: // Map unknown visibilities to default.
708   case 0: return GlobalValue::DefaultVisibility;
709   case 1: return GlobalValue::HiddenVisibility;
710   case 2: return GlobalValue::ProtectedVisibility;
711   }
712 }
713 
714 static GlobalValue::DLLStorageClassTypes
715 getDecodedDLLStorageClass(unsigned Val) {
716   switch (Val) {
717   default: // Map unknown values to default.
718   case 0: return GlobalValue::DefaultStorageClass;
719   case 1: return GlobalValue::DLLImportStorageClass;
720   case 2: return GlobalValue::DLLExportStorageClass;
721   }
722 }
723 
724 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) {
725   switch (Val) {
726     case 0: return GlobalVariable::NotThreadLocal;
727     default: // Map unknown non-zero value to general dynamic.
728     case 1: return GlobalVariable::GeneralDynamicTLSModel;
729     case 2: return GlobalVariable::LocalDynamicTLSModel;
730     case 3: return GlobalVariable::InitialExecTLSModel;
731     case 4: return GlobalVariable::LocalExecTLSModel;
732   }
733 }
734 
735 static int getDecodedCastOpcode(unsigned Val) {
736   switch (Val) {
737   default: return -1;
738   case bitc::CAST_TRUNC   : return Instruction::Trunc;
739   case bitc::CAST_ZEXT    : return Instruction::ZExt;
740   case bitc::CAST_SEXT    : return Instruction::SExt;
741   case bitc::CAST_FPTOUI  : return Instruction::FPToUI;
742   case bitc::CAST_FPTOSI  : return Instruction::FPToSI;
743   case bitc::CAST_UITOFP  : return Instruction::UIToFP;
744   case bitc::CAST_SITOFP  : return Instruction::SIToFP;
745   case bitc::CAST_FPTRUNC : return Instruction::FPTrunc;
746   case bitc::CAST_FPEXT   : return Instruction::FPExt;
747   case bitc::CAST_PTRTOINT: return Instruction::PtrToInt;
748   case bitc::CAST_INTTOPTR: return Instruction::IntToPtr;
749   case bitc::CAST_BITCAST : return Instruction::BitCast;
750   case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast;
751   }
752 }
753 
754 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) {
755   bool IsFP = Ty->isFPOrFPVectorTy();
756   // BinOps are only valid for int/fp or vector of int/fp types
757   if (!IsFP && !Ty->isIntOrIntVectorTy())
758     return -1;
759 
760   switch (Val) {
761   default:
762     return -1;
763   case bitc::BINOP_ADD:
764     return IsFP ? Instruction::FAdd : Instruction::Add;
765   case bitc::BINOP_SUB:
766     return IsFP ? Instruction::FSub : Instruction::Sub;
767   case bitc::BINOP_MUL:
768     return IsFP ? Instruction::FMul : Instruction::Mul;
769   case bitc::BINOP_UDIV:
770     return IsFP ? -1 : Instruction::UDiv;
771   case bitc::BINOP_SDIV:
772     return IsFP ? Instruction::FDiv : Instruction::SDiv;
773   case bitc::BINOP_UREM:
774     return IsFP ? -1 : Instruction::URem;
775   case bitc::BINOP_SREM:
776     return IsFP ? Instruction::FRem : Instruction::SRem;
777   case bitc::BINOP_SHL:
778     return IsFP ? -1 : Instruction::Shl;
779   case bitc::BINOP_LSHR:
780     return IsFP ? -1 : Instruction::LShr;
781   case bitc::BINOP_ASHR:
782     return IsFP ? -1 : Instruction::AShr;
783   case bitc::BINOP_AND:
784     return IsFP ? -1 : Instruction::And;
785   case bitc::BINOP_OR:
786     return IsFP ? -1 : Instruction::Or;
787   case bitc::BINOP_XOR:
788     return IsFP ? -1 : Instruction::Xor;
789   }
790 }
791 
792 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) {
793   switch (Val) {
794   default: return AtomicRMWInst::BAD_BINOP;
795   case bitc::RMW_XCHG: return AtomicRMWInst::Xchg;
796   case bitc::RMW_ADD: return AtomicRMWInst::Add;
797   case bitc::RMW_SUB: return AtomicRMWInst::Sub;
798   case bitc::RMW_AND: return AtomicRMWInst::And;
799   case bitc::RMW_NAND: return AtomicRMWInst::Nand;
800   case bitc::RMW_OR: return AtomicRMWInst::Or;
801   case bitc::RMW_XOR: return AtomicRMWInst::Xor;
802   case bitc::RMW_MAX: return AtomicRMWInst::Max;
803   case bitc::RMW_MIN: return AtomicRMWInst::Min;
804   case bitc::RMW_UMAX: return AtomicRMWInst::UMax;
805   case bitc::RMW_UMIN: return AtomicRMWInst::UMin;
806   }
807 }
808 
809 static AtomicOrdering getDecodedOrdering(unsigned Val) {
810   switch (Val) {
811   case bitc::ORDERING_NOTATOMIC: return NotAtomic;
812   case bitc::ORDERING_UNORDERED: return Unordered;
813   case bitc::ORDERING_MONOTONIC: return Monotonic;
814   case bitc::ORDERING_ACQUIRE: return Acquire;
815   case bitc::ORDERING_RELEASE: return Release;
816   case bitc::ORDERING_ACQREL: return AcquireRelease;
817   default: // Map unknown orderings to sequentially-consistent.
818   case bitc::ORDERING_SEQCST: return SequentiallyConsistent;
819   }
820 }
821 
822 static SynchronizationScope getDecodedSynchScope(unsigned Val) {
823   switch (Val) {
824   case bitc::SYNCHSCOPE_SINGLETHREAD: return SingleThread;
825   default: // Map unknown scopes to cross-thread.
826   case bitc::SYNCHSCOPE_CROSSTHREAD: return CrossThread;
827   }
828 }
829 
830 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) {
831   switch (Val) {
832   default: // Map unknown selection kinds to any.
833   case bitc::COMDAT_SELECTION_KIND_ANY:
834     return Comdat::Any;
835   case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH:
836     return Comdat::ExactMatch;
837   case bitc::COMDAT_SELECTION_KIND_LARGEST:
838     return Comdat::Largest;
839   case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES:
840     return Comdat::NoDuplicates;
841   case bitc::COMDAT_SELECTION_KIND_SAME_SIZE:
842     return Comdat::SameSize;
843   }
844 }
845 
846 static FastMathFlags getDecodedFastMathFlags(unsigned Val) {
847   FastMathFlags FMF;
848   if (0 != (Val & FastMathFlags::UnsafeAlgebra))
849     FMF.setUnsafeAlgebra();
850   if (0 != (Val & FastMathFlags::NoNaNs))
851     FMF.setNoNaNs();
852   if (0 != (Val & FastMathFlags::NoInfs))
853     FMF.setNoInfs();
854   if (0 != (Val & FastMathFlags::NoSignedZeros))
855     FMF.setNoSignedZeros();
856   if (0 != (Val & FastMathFlags::AllowReciprocal))
857     FMF.setAllowReciprocal();
858   return FMF;
859 }
860 
861 static void upgradeDLLImportExportLinkage(llvm::GlobalValue *GV, unsigned Val) {
862   switch (Val) {
863   case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break;
864   case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break;
865   }
866 }
867 
868 namespace llvm {
869 namespace {
870 /// \brief A class for maintaining the slot number definition
871 /// as a placeholder for the actual definition for forward constants defs.
872 class ConstantPlaceHolder : public ConstantExpr {
873   void operator=(const ConstantPlaceHolder &) = delete;
874 
875 public:
876   // allocate space for exactly one operand
877   void *operator new(size_t s) { return User::operator new(s, 1); }
878   explicit ConstantPlaceHolder(Type *Ty, LLVMContext &Context)
879       : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) {
880     Op<0>() = UndefValue::get(Type::getInt32Ty(Context));
881   }
882 
883   /// \brief Methods to support type inquiry through isa, cast, and dyn_cast.
884   static bool classof(const Value *V) {
885     return isa<ConstantExpr>(V) &&
886            cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1;
887   }
888 
889   /// Provide fast operand accessors
890   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
891 };
892 } // end anonymous namespace
893 
894 // FIXME: can we inherit this from ConstantExpr?
895 template <>
896 struct OperandTraits<ConstantPlaceHolder> :
897   public FixedNumOperandTraits<ConstantPlaceHolder, 1> {
898 };
899 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantPlaceHolder, Value)
900 } // end namespace llvm
901 
902 void BitcodeReaderValueList::assignValue(Value *V, unsigned Idx) {
903   if (Idx == size()) {
904     push_back(V);
905     return;
906   }
907 
908   if (Idx >= size())
909     resize(Idx+1);
910 
911   WeakVH &OldV = ValuePtrs[Idx];
912   if (!OldV) {
913     OldV = V;
914     return;
915   }
916 
917   // Handle constants and non-constants (e.g. instrs) differently for
918   // efficiency.
919   if (Constant *PHC = dyn_cast<Constant>(&*OldV)) {
920     ResolveConstants.push_back(std::make_pair(PHC, Idx));
921     OldV = V;
922   } else {
923     // If there was a forward reference to this value, replace it.
924     Value *PrevVal = OldV;
925     OldV->replaceAllUsesWith(V);
926     delete PrevVal;
927   }
928 }
929 
930 Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx,
931                                                     Type *Ty) {
932   if (Idx >= size())
933     resize(Idx + 1);
934 
935   if (Value *V = ValuePtrs[Idx]) {
936     if (Ty != V->getType())
937       report_fatal_error("Type mismatch in constant table!");
938     return cast<Constant>(V);
939   }
940 
941   // Create and return a placeholder, which will later be RAUW'd.
942   Constant *C = new ConstantPlaceHolder(Ty, Context);
943   ValuePtrs[Idx] = C;
944   return C;
945 }
946 
947 Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, Type *Ty) {
948   // Bail out for a clearly invalid value. This would make us call resize(0)
949   if (Idx == UINT_MAX)
950     return nullptr;
951 
952   if (Idx >= size())
953     resize(Idx + 1);
954 
955   if (Value *V = ValuePtrs[Idx]) {
956     // If the types don't match, it's invalid.
957     if (Ty && Ty != V->getType())
958       return nullptr;
959     return V;
960   }
961 
962   // No type specified, must be invalid reference.
963   if (!Ty) return nullptr;
964 
965   // Create and return a placeholder, which will later be RAUW'd.
966   Value *V = new Argument(Ty);
967   ValuePtrs[Idx] = V;
968   return V;
969 }
970 
971 /// Once all constants are read, this method bulk resolves any forward
972 /// references.  The idea behind this is that we sometimes get constants (such
973 /// as large arrays) which reference *many* forward ref constants.  Replacing
974 /// each of these causes a lot of thrashing when building/reuniquing the
975 /// constant.  Instead of doing this, we look at all the uses and rewrite all
976 /// the place holders at once for any constant that uses a placeholder.
977 void BitcodeReaderValueList::resolveConstantForwardRefs() {
978   // Sort the values by-pointer so that they are efficient to look up with a
979   // binary search.
980   std::sort(ResolveConstants.begin(), ResolveConstants.end());
981 
982   SmallVector<Constant*, 64> NewOps;
983 
984   while (!ResolveConstants.empty()) {
985     Value *RealVal = operator[](ResolveConstants.back().second);
986     Constant *Placeholder = ResolveConstants.back().first;
987     ResolveConstants.pop_back();
988 
989     // Loop over all users of the placeholder, updating them to reference the
990     // new value.  If they reference more than one placeholder, update them all
991     // at once.
992     while (!Placeholder->use_empty()) {
993       auto UI = Placeholder->user_begin();
994       User *U = *UI;
995 
996       // If the using object isn't uniqued, just update the operands.  This
997       // handles instructions and initializers for global variables.
998       if (!isa<Constant>(U) || isa<GlobalValue>(U)) {
999         UI.getUse().set(RealVal);
1000         continue;
1001       }
1002 
1003       // Otherwise, we have a constant that uses the placeholder.  Replace that
1004       // constant with a new constant that has *all* placeholder uses updated.
1005       Constant *UserC = cast<Constant>(U);
1006       for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end();
1007            I != E; ++I) {
1008         Value *NewOp;
1009         if (!isa<ConstantPlaceHolder>(*I)) {
1010           // Not a placeholder reference.
1011           NewOp = *I;
1012         } else if (*I == Placeholder) {
1013           // Common case is that it just references this one placeholder.
1014           NewOp = RealVal;
1015         } else {
1016           // Otherwise, look up the placeholder in ResolveConstants.
1017           ResolveConstantsTy::iterator It =
1018             std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(),
1019                              std::pair<Constant*, unsigned>(cast<Constant>(*I),
1020                                                             0));
1021           assert(It != ResolveConstants.end() && It->first == *I);
1022           NewOp = operator[](It->second);
1023         }
1024 
1025         NewOps.push_back(cast<Constant>(NewOp));
1026       }
1027 
1028       // Make the new constant.
1029       Constant *NewC;
1030       if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) {
1031         NewC = ConstantArray::get(UserCA->getType(), NewOps);
1032       } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) {
1033         NewC = ConstantStruct::get(UserCS->getType(), NewOps);
1034       } else if (isa<ConstantVector>(UserC)) {
1035         NewC = ConstantVector::get(NewOps);
1036       } else {
1037         assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr.");
1038         NewC = cast<ConstantExpr>(UserC)->getWithOperands(NewOps);
1039       }
1040 
1041       UserC->replaceAllUsesWith(NewC);
1042       UserC->destroyConstant();
1043       NewOps.clear();
1044     }
1045 
1046     // Update all ValueHandles, they should be the only users at this point.
1047     Placeholder->replaceAllUsesWith(RealVal);
1048     delete Placeholder;
1049   }
1050 }
1051 
1052 void BitcodeReaderMetadataList::assignValue(Metadata *MD, unsigned Idx) {
1053   if (Idx == size()) {
1054     push_back(MD);
1055     return;
1056   }
1057 
1058   if (Idx >= size())
1059     resize(Idx+1);
1060 
1061   TrackingMDRef &OldMD = MetadataPtrs[Idx];
1062   if (!OldMD) {
1063     OldMD.reset(MD);
1064     return;
1065   }
1066 
1067   // If there was a forward reference to this value, replace it.
1068   TempMDTuple PrevMD(cast<MDTuple>(OldMD.get()));
1069   PrevMD->replaceAllUsesWith(MD);
1070   --NumFwdRefs;
1071 }
1072 
1073 Metadata *BitcodeReaderMetadataList::getMetadataFwdRef(unsigned Idx) {
1074   if (Idx >= size())
1075     resize(Idx + 1);
1076 
1077   if (Metadata *MD = MetadataPtrs[Idx])
1078     return MD;
1079 
1080   // Track forward refs to be resolved later.
1081   if (AnyFwdRefs) {
1082     MinFwdRef = std::min(MinFwdRef, Idx);
1083     MaxFwdRef = std::max(MaxFwdRef, Idx);
1084   } else {
1085     AnyFwdRefs = true;
1086     MinFwdRef = MaxFwdRef = Idx;
1087   }
1088   ++NumFwdRefs;
1089 
1090   // Create and return a placeholder, which will later be RAUW'd.
1091   Metadata *MD = MDNode::getTemporary(Context, None).release();
1092   MetadataPtrs[Idx].reset(MD);
1093   return MD;
1094 }
1095 
1096 MDNode *BitcodeReaderMetadataList::getMDNodeFwdRefOrNull(unsigned Idx) {
1097   return dyn_cast_or_null<MDNode>(getMetadataFwdRef(Idx));
1098 }
1099 
1100 void BitcodeReaderMetadataList::tryToResolveCycles() {
1101   if (!AnyFwdRefs)
1102     // Nothing to do.
1103     return;
1104 
1105   if (NumFwdRefs)
1106     // Still forward references... can't resolve cycles.
1107     return;
1108 
1109   // Resolve any cycles.
1110   for (unsigned I = MinFwdRef, E = MaxFwdRef + 1; I != E; ++I) {
1111     auto &MD = MetadataPtrs[I];
1112     auto *N = dyn_cast_or_null<MDNode>(MD);
1113     if (!N)
1114       continue;
1115 
1116     assert(!N->isTemporary() && "Unexpected forward reference");
1117     N->resolveCycles();
1118   }
1119 
1120   // Make sure we return early again until there's another forward ref.
1121   AnyFwdRefs = false;
1122 }
1123 
1124 Type *BitcodeReader::getTypeByID(unsigned ID) {
1125   // The type table size is always specified correctly.
1126   if (ID >= TypeList.size())
1127     return nullptr;
1128 
1129   if (Type *Ty = TypeList[ID])
1130     return Ty;
1131 
1132   // If we have a forward reference, the only possible case is when it is to a
1133   // named struct.  Just create a placeholder for now.
1134   return TypeList[ID] = createIdentifiedStructType(Context);
1135 }
1136 
1137 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context,
1138                                                       StringRef Name) {
1139   auto *Ret = StructType::create(Context, Name);
1140   IdentifiedStructTypes.push_back(Ret);
1141   return Ret;
1142 }
1143 
1144 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) {
1145   auto *Ret = StructType::create(Context);
1146   IdentifiedStructTypes.push_back(Ret);
1147   return Ret;
1148 }
1149 
1150 //===----------------------------------------------------------------------===//
1151 //  Functions for parsing blocks from the bitcode file
1152 //===----------------------------------------------------------------------===//
1153 
1154 
1155 /// \brief This fills an AttrBuilder object with the LLVM attributes that have
1156 /// been decoded from the given integer. This function must stay in sync with
1157 /// 'encodeLLVMAttributesForBitcode'.
1158 static void decodeLLVMAttributesForBitcode(AttrBuilder &B,
1159                                            uint64_t EncodedAttrs) {
1160   // FIXME: Remove in 4.0.
1161 
1162   // The alignment is stored as a 16-bit raw value from bits 31--16.  We shift
1163   // the bits above 31 down by 11 bits.
1164   unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16;
1165   assert((!Alignment || isPowerOf2_32(Alignment)) &&
1166          "Alignment must be a power of two.");
1167 
1168   if (Alignment)
1169     B.addAlignmentAttr(Alignment);
1170   B.addRawValue(((EncodedAttrs & (0xfffffULL << 32)) >> 11) |
1171                 (EncodedAttrs & 0xffff));
1172 }
1173 
1174 std::error_code BitcodeReader::parseAttributeBlock() {
1175   if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID))
1176     return error("Invalid record");
1177 
1178   if (!MAttributes.empty())
1179     return error("Invalid multiple blocks");
1180 
1181   SmallVector<uint64_t, 64> Record;
1182 
1183   SmallVector<AttributeSet, 8> Attrs;
1184 
1185   // Read all the records.
1186   while (1) {
1187     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1188 
1189     switch (Entry.Kind) {
1190     case BitstreamEntry::SubBlock: // Handled for us already.
1191     case BitstreamEntry::Error:
1192       return error("Malformed block");
1193     case BitstreamEntry::EndBlock:
1194       return std::error_code();
1195     case BitstreamEntry::Record:
1196       // The interesting case.
1197       break;
1198     }
1199 
1200     // Read a record.
1201     Record.clear();
1202     switch (Stream.readRecord(Entry.ID, Record)) {
1203     default:  // Default behavior: ignore.
1204       break;
1205     case bitc::PARAMATTR_CODE_ENTRY_OLD: { // ENTRY: [paramidx0, attr0, ...]
1206       // FIXME: Remove in 4.0.
1207       if (Record.size() & 1)
1208         return error("Invalid record");
1209 
1210       for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
1211         AttrBuilder B;
1212         decodeLLVMAttributesForBitcode(B, Record[i+1]);
1213         Attrs.push_back(AttributeSet::get(Context, Record[i], B));
1214       }
1215 
1216       MAttributes.push_back(AttributeSet::get(Context, Attrs));
1217       Attrs.clear();
1218       break;
1219     }
1220     case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [attrgrp0, attrgrp1, ...]
1221       for (unsigned i = 0, e = Record.size(); i != e; ++i)
1222         Attrs.push_back(MAttributeGroups[Record[i]]);
1223 
1224       MAttributes.push_back(AttributeSet::get(Context, Attrs));
1225       Attrs.clear();
1226       break;
1227     }
1228     }
1229   }
1230 }
1231 
1232 // Returns Attribute::None on unrecognized codes.
1233 static Attribute::AttrKind getAttrFromCode(uint64_t Code) {
1234   switch (Code) {
1235   default:
1236     return Attribute::None;
1237   case bitc::ATTR_KIND_ALIGNMENT:
1238     return Attribute::Alignment;
1239   case bitc::ATTR_KIND_ALWAYS_INLINE:
1240     return Attribute::AlwaysInline;
1241   case bitc::ATTR_KIND_ARGMEMONLY:
1242     return Attribute::ArgMemOnly;
1243   case bitc::ATTR_KIND_BUILTIN:
1244     return Attribute::Builtin;
1245   case bitc::ATTR_KIND_BY_VAL:
1246     return Attribute::ByVal;
1247   case bitc::ATTR_KIND_IN_ALLOCA:
1248     return Attribute::InAlloca;
1249   case bitc::ATTR_KIND_COLD:
1250     return Attribute::Cold;
1251   case bitc::ATTR_KIND_CONVERGENT:
1252     return Attribute::Convergent;
1253   case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY:
1254     return Attribute::InaccessibleMemOnly;
1255   case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY:
1256     return Attribute::InaccessibleMemOrArgMemOnly;
1257   case bitc::ATTR_KIND_INLINE_HINT:
1258     return Attribute::InlineHint;
1259   case bitc::ATTR_KIND_IN_REG:
1260     return Attribute::InReg;
1261   case bitc::ATTR_KIND_JUMP_TABLE:
1262     return Attribute::JumpTable;
1263   case bitc::ATTR_KIND_MIN_SIZE:
1264     return Attribute::MinSize;
1265   case bitc::ATTR_KIND_NAKED:
1266     return Attribute::Naked;
1267   case bitc::ATTR_KIND_NEST:
1268     return Attribute::Nest;
1269   case bitc::ATTR_KIND_NO_ALIAS:
1270     return Attribute::NoAlias;
1271   case bitc::ATTR_KIND_NO_BUILTIN:
1272     return Attribute::NoBuiltin;
1273   case bitc::ATTR_KIND_NO_CAPTURE:
1274     return Attribute::NoCapture;
1275   case bitc::ATTR_KIND_NO_DUPLICATE:
1276     return Attribute::NoDuplicate;
1277   case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT:
1278     return Attribute::NoImplicitFloat;
1279   case bitc::ATTR_KIND_NO_INLINE:
1280     return Attribute::NoInline;
1281   case bitc::ATTR_KIND_NO_RECURSE:
1282     return Attribute::NoRecurse;
1283   case bitc::ATTR_KIND_NON_LAZY_BIND:
1284     return Attribute::NonLazyBind;
1285   case bitc::ATTR_KIND_NON_NULL:
1286     return Attribute::NonNull;
1287   case bitc::ATTR_KIND_DEREFERENCEABLE:
1288     return Attribute::Dereferenceable;
1289   case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL:
1290     return Attribute::DereferenceableOrNull;
1291   case bitc::ATTR_KIND_NO_RED_ZONE:
1292     return Attribute::NoRedZone;
1293   case bitc::ATTR_KIND_NO_RETURN:
1294     return Attribute::NoReturn;
1295   case bitc::ATTR_KIND_NO_UNWIND:
1296     return Attribute::NoUnwind;
1297   case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE:
1298     return Attribute::OptimizeForSize;
1299   case bitc::ATTR_KIND_OPTIMIZE_NONE:
1300     return Attribute::OptimizeNone;
1301   case bitc::ATTR_KIND_READ_NONE:
1302     return Attribute::ReadNone;
1303   case bitc::ATTR_KIND_READ_ONLY:
1304     return Attribute::ReadOnly;
1305   case bitc::ATTR_KIND_RETURNED:
1306     return Attribute::Returned;
1307   case bitc::ATTR_KIND_RETURNS_TWICE:
1308     return Attribute::ReturnsTwice;
1309   case bitc::ATTR_KIND_S_EXT:
1310     return Attribute::SExt;
1311   case bitc::ATTR_KIND_STACK_ALIGNMENT:
1312     return Attribute::StackAlignment;
1313   case bitc::ATTR_KIND_STACK_PROTECT:
1314     return Attribute::StackProtect;
1315   case bitc::ATTR_KIND_STACK_PROTECT_REQ:
1316     return Attribute::StackProtectReq;
1317   case bitc::ATTR_KIND_STACK_PROTECT_STRONG:
1318     return Attribute::StackProtectStrong;
1319   case bitc::ATTR_KIND_SAFESTACK:
1320     return Attribute::SafeStack;
1321   case bitc::ATTR_KIND_STRUCT_RET:
1322     return Attribute::StructRet;
1323   case bitc::ATTR_KIND_SANITIZE_ADDRESS:
1324     return Attribute::SanitizeAddress;
1325   case bitc::ATTR_KIND_SANITIZE_THREAD:
1326     return Attribute::SanitizeThread;
1327   case bitc::ATTR_KIND_SANITIZE_MEMORY:
1328     return Attribute::SanitizeMemory;
1329   case bitc::ATTR_KIND_SWIFT_ERROR:
1330     return Attribute::SwiftError;
1331   case bitc::ATTR_KIND_SWIFT_SELF:
1332     return Attribute::SwiftSelf;
1333   case bitc::ATTR_KIND_UW_TABLE:
1334     return Attribute::UWTable;
1335   case bitc::ATTR_KIND_Z_EXT:
1336     return Attribute::ZExt;
1337   }
1338 }
1339 
1340 std::error_code BitcodeReader::parseAlignmentValue(uint64_t Exponent,
1341                                                    unsigned &Alignment) {
1342   // Note: Alignment in bitcode files is incremented by 1, so that zero
1343   // can be used for default alignment.
1344   if (Exponent > Value::MaxAlignmentExponent + 1)
1345     return error("Invalid alignment value");
1346   Alignment = (1 << static_cast<unsigned>(Exponent)) >> 1;
1347   return std::error_code();
1348 }
1349 
1350 std::error_code BitcodeReader::parseAttrKind(uint64_t Code,
1351                                              Attribute::AttrKind *Kind) {
1352   *Kind = getAttrFromCode(Code);
1353   if (*Kind == Attribute::None)
1354     return error(BitcodeError::CorruptedBitcode,
1355                  "Unknown attribute kind (" + Twine(Code) + ")");
1356   return std::error_code();
1357 }
1358 
1359 std::error_code BitcodeReader::parseAttributeGroupBlock() {
1360   if (Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID))
1361     return error("Invalid record");
1362 
1363   if (!MAttributeGroups.empty())
1364     return error("Invalid multiple blocks");
1365 
1366   SmallVector<uint64_t, 64> Record;
1367 
1368   // Read all the records.
1369   while (1) {
1370     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1371 
1372     switch (Entry.Kind) {
1373     case BitstreamEntry::SubBlock: // Handled for us already.
1374     case BitstreamEntry::Error:
1375       return error("Malformed block");
1376     case BitstreamEntry::EndBlock:
1377       return std::error_code();
1378     case BitstreamEntry::Record:
1379       // The interesting case.
1380       break;
1381     }
1382 
1383     // Read a record.
1384     Record.clear();
1385     switch (Stream.readRecord(Entry.ID, Record)) {
1386     default:  // Default behavior: ignore.
1387       break;
1388     case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...]
1389       if (Record.size() < 3)
1390         return error("Invalid record");
1391 
1392       uint64_t GrpID = Record[0];
1393       uint64_t Idx = Record[1]; // Index of the object this attribute refers to.
1394 
1395       AttrBuilder B;
1396       for (unsigned i = 2, e = Record.size(); i != e; ++i) {
1397         if (Record[i] == 0) {        // Enum attribute
1398           Attribute::AttrKind Kind;
1399           if (std::error_code EC = parseAttrKind(Record[++i], &Kind))
1400             return EC;
1401 
1402           B.addAttribute(Kind);
1403         } else if (Record[i] == 1) { // Integer attribute
1404           Attribute::AttrKind Kind;
1405           if (std::error_code EC = parseAttrKind(Record[++i], &Kind))
1406             return EC;
1407           if (Kind == Attribute::Alignment)
1408             B.addAlignmentAttr(Record[++i]);
1409           else if (Kind == Attribute::StackAlignment)
1410             B.addStackAlignmentAttr(Record[++i]);
1411           else if (Kind == Attribute::Dereferenceable)
1412             B.addDereferenceableAttr(Record[++i]);
1413           else if (Kind == Attribute::DereferenceableOrNull)
1414             B.addDereferenceableOrNullAttr(Record[++i]);
1415         } else {                     // String attribute
1416           assert((Record[i] == 3 || Record[i] == 4) &&
1417                  "Invalid attribute group entry");
1418           bool HasValue = (Record[i++] == 4);
1419           SmallString<64> KindStr;
1420           SmallString<64> ValStr;
1421 
1422           while (Record[i] != 0 && i != e)
1423             KindStr += Record[i++];
1424           assert(Record[i] == 0 && "Kind string not null terminated");
1425 
1426           if (HasValue) {
1427             // Has a value associated with it.
1428             ++i; // Skip the '0' that terminates the "kind" string.
1429             while (Record[i] != 0 && i != e)
1430               ValStr += Record[i++];
1431             assert(Record[i] == 0 && "Value string not null terminated");
1432           }
1433 
1434           B.addAttribute(KindStr.str(), ValStr.str());
1435         }
1436       }
1437 
1438       MAttributeGroups[GrpID] = AttributeSet::get(Context, Idx, B);
1439       break;
1440     }
1441     }
1442   }
1443 }
1444 
1445 std::error_code BitcodeReader::parseTypeTable() {
1446   if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW))
1447     return error("Invalid record");
1448 
1449   return parseTypeTableBody();
1450 }
1451 
1452 std::error_code BitcodeReader::parseTypeTableBody() {
1453   if (!TypeList.empty())
1454     return error("Invalid multiple blocks");
1455 
1456   SmallVector<uint64_t, 64> Record;
1457   unsigned NumRecords = 0;
1458 
1459   SmallString<64> TypeName;
1460 
1461   // Read all the records for this type table.
1462   while (1) {
1463     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1464 
1465     switch (Entry.Kind) {
1466     case BitstreamEntry::SubBlock: // Handled for us already.
1467     case BitstreamEntry::Error:
1468       return error("Malformed block");
1469     case BitstreamEntry::EndBlock:
1470       if (NumRecords != TypeList.size())
1471         return error("Malformed block");
1472       return std::error_code();
1473     case BitstreamEntry::Record:
1474       // The interesting case.
1475       break;
1476     }
1477 
1478     // Read a record.
1479     Record.clear();
1480     Type *ResultTy = nullptr;
1481     switch (Stream.readRecord(Entry.ID, Record)) {
1482     default:
1483       return error("Invalid value");
1484     case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
1485       // TYPE_CODE_NUMENTRY contains a count of the number of types in the
1486       // type list.  This allows us to reserve space.
1487       if (Record.size() < 1)
1488         return error("Invalid record");
1489       TypeList.resize(Record[0]);
1490       continue;
1491     case bitc::TYPE_CODE_VOID:      // VOID
1492       ResultTy = Type::getVoidTy(Context);
1493       break;
1494     case bitc::TYPE_CODE_HALF:     // HALF
1495       ResultTy = Type::getHalfTy(Context);
1496       break;
1497     case bitc::TYPE_CODE_FLOAT:     // FLOAT
1498       ResultTy = Type::getFloatTy(Context);
1499       break;
1500     case bitc::TYPE_CODE_DOUBLE:    // DOUBLE
1501       ResultTy = Type::getDoubleTy(Context);
1502       break;
1503     case bitc::TYPE_CODE_X86_FP80:  // X86_FP80
1504       ResultTy = Type::getX86_FP80Ty(Context);
1505       break;
1506     case bitc::TYPE_CODE_FP128:     // FP128
1507       ResultTy = Type::getFP128Ty(Context);
1508       break;
1509     case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
1510       ResultTy = Type::getPPC_FP128Ty(Context);
1511       break;
1512     case bitc::TYPE_CODE_LABEL:     // LABEL
1513       ResultTy = Type::getLabelTy(Context);
1514       break;
1515     case bitc::TYPE_CODE_METADATA:  // METADATA
1516       ResultTy = Type::getMetadataTy(Context);
1517       break;
1518     case bitc::TYPE_CODE_X86_MMX:   // X86_MMX
1519       ResultTy = Type::getX86_MMXTy(Context);
1520       break;
1521     case bitc::TYPE_CODE_TOKEN:     // TOKEN
1522       ResultTy = Type::getTokenTy(Context);
1523       break;
1524     case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width]
1525       if (Record.size() < 1)
1526         return error("Invalid record");
1527 
1528       uint64_t NumBits = Record[0];
1529       if (NumBits < IntegerType::MIN_INT_BITS ||
1530           NumBits > IntegerType::MAX_INT_BITS)
1531         return error("Bitwidth for integer type out of range");
1532       ResultTy = IntegerType::get(Context, NumBits);
1533       break;
1534     }
1535     case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
1536                                     //          [pointee type, address space]
1537       if (Record.size() < 1)
1538         return error("Invalid record");
1539       unsigned AddressSpace = 0;
1540       if (Record.size() == 2)
1541         AddressSpace = Record[1];
1542       ResultTy = getTypeByID(Record[0]);
1543       if (!ResultTy ||
1544           !PointerType::isValidElementType(ResultTy))
1545         return error("Invalid type");
1546       ResultTy = PointerType::get(ResultTy, AddressSpace);
1547       break;
1548     }
1549     case bitc::TYPE_CODE_FUNCTION_OLD: {
1550       // FIXME: attrid is dead, remove it in LLVM 4.0
1551       // FUNCTION: [vararg, attrid, retty, paramty x N]
1552       if (Record.size() < 3)
1553         return error("Invalid record");
1554       SmallVector<Type*, 8> ArgTys;
1555       for (unsigned i = 3, e = Record.size(); i != e; ++i) {
1556         if (Type *T = getTypeByID(Record[i]))
1557           ArgTys.push_back(T);
1558         else
1559           break;
1560       }
1561 
1562       ResultTy = getTypeByID(Record[2]);
1563       if (!ResultTy || ArgTys.size() < Record.size()-3)
1564         return error("Invalid type");
1565 
1566       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
1567       break;
1568     }
1569     case bitc::TYPE_CODE_FUNCTION: {
1570       // FUNCTION: [vararg, retty, paramty x N]
1571       if (Record.size() < 2)
1572         return error("Invalid record");
1573       SmallVector<Type*, 8> ArgTys;
1574       for (unsigned i = 2, e = Record.size(); i != e; ++i) {
1575         if (Type *T = getTypeByID(Record[i])) {
1576           if (!FunctionType::isValidArgumentType(T))
1577             return error("Invalid function argument type");
1578           ArgTys.push_back(T);
1579         }
1580         else
1581           break;
1582       }
1583 
1584       ResultTy = getTypeByID(Record[1]);
1585       if (!ResultTy || ArgTys.size() < Record.size()-2)
1586         return error("Invalid type");
1587 
1588       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
1589       break;
1590     }
1591     case bitc::TYPE_CODE_STRUCT_ANON: {  // STRUCT: [ispacked, eltty x N]
1592       if (Record.size() < 1)
1593         return error("Invalid record");
1594       SmallVector<Type*, 8> EltTys;
1595       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
1596         if (Type *T = getTypeByID(Record[i]))
1597           EltTys.push_back(T);
1598         else
1599           break;
1600       }
1601       if (EltTys.size() != Record.size()-1)
1602         return error("Invalid type");
1603       ResultTy = StructType::get(Context, EltTys, Record[0]);
1604       break;
1605     }
1606     case bitc::TYPE_CODE_STRUCT_NAME:   // STRUCT_NAME: [strchr x N]
1607       if (convertToString(Record, 0, TypeName))
1608         return error("Invalid record");
1609       continue;
1610 
1611     case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N]
1612       if (Record.size() < 1)
1613         return error("Invalid record");
1614 
1615       if (NumRecords >= TypeList.size())
1616         return error("Invalid TYPE table");
1617 
1618       // Check to see if this was forward referenced, if so fill in the temp.
1619       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
1620       if (Res) {
1621         Res->setName(TypeName);
1622         TypeList[NumRecords] = nullptr;
1623       } else  // Otherwise, create a new struct.
1624         Res = createIdentifiedStructType(Context, TypeName);
1625       TypeName.clear();
1626 
1627       SmallVector<Type*, 8> EltTys;
1628       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
1629         if (Type *T = getTypeByID(Record[i]))
1630           EltTys.push_back(T);
1631         else
1632           break;
1633       }
1634       if (EltTys.size() != Record.size()-1)
1635         return error("Invalid record");
1636       Res->setBody(EltTys, Record[0]);
1637       ResultTy = Res;
1638       break;
1639     }
1640     case bitc::TYPE_CODE_OPAQUE: {       // OPAQUE: []
1641       if (Record.size() != 1)
1642         return error("Invalid record");
1643 
1644       if (NumRecords >= TypeList.size())
1645         return error("Invalid TYPE table");
1646 
1647       // Check to see if this was forward referenced, if so fill in the temp.
1648       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
1649       if (Res) {
1650         Res->setName(TypeName);
1651         TypeList[NumRecords] = nullptr;
1652       } else  // Otherwise, create a new struct with no body.
1653         Res = createIdentifiedStructType(Context, TypeName);
1654       TypeName.clear();
1655       ResultTy = Res;
1656       break;
1657     }
1658     case bitc::TYPE_CODE_ARRAY:     // ARRAY: [numelts, eltty]
1659       if (Record.size() < 2)
1660         return error("Invalid record");
1661       ResultTy = getTypeByID(Record[1]);
1662       if (!ResultTy || !ArrayType::isValidElementType(ResultTy))
1663         return error("Invalid type");
1664       ResultTy = ArrayType::get(ResultTy, Record[0]);
1665       break;
1666     case bitc::TYPE_CODE_VECTOR:    // VECTOR: [numelts, eltty]
1667       if (Record.size() < 2)
1668         return error("Invalid record");
1669       if (Record[0] == 0)
1670         return error("Invalid vector length");
1671       ResultTy = getTypeByID(Record[1]);
1672       if (!ResultTy || !StructType::isValidElementType(ResultTy))
1673         return error("Invalid type");
1674       ResultTy = VectorType::get(ResultTy, Record[0]);
1675       break;
1676     }
1677 
1678     if (NumRecords >= TypeList.size())
1679       return error("Invalid TYPE table");
1680     if (TypeList[NumRecords])
1681       return error(
1682           "Invalid TYPE table: Only named structs can be forward referenced");
1683     assert(ResultTy && "Didn't read a type?");
1684     TypeList[NumRecords++] = ResultTy;
1685   }
1686 }
1687 
1688 std::error_code BitcodeReader::parseOperandBundleTags() {
1689   if (Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID))
1690     return error("Invalid record");
1691 
1692   if (!BundleTags.empty())
1693     return error("Invalid multiple blocks");
1694 
1695   SmallVector<uint64_t, 64> Record;
1696 
1697   while (1) {
1698     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1699 
1700     switch (Entry.Kind) {
1701     case BitstreamEntry::SubBlock: // Handled for us already.
1702     case BitstreamEntry::Error:
1703       return error("Malformed block");
1704     case BitstreamEntry::EndBlock:
1705       return std::error_code();
1706     case BitstreamEntry::Record:
1707       // The interesting case.
1708       break;
1709     }
1710 
1711     // Tags are implicitly mapped to integers by their order.
1712 
1713     if (Stream.readRecord(Entry.ID, Record) != bitc::OPERAND_BUNDLE_TAG)
1714       return error("Invalid record");
1715 
1716     // OPERAND_BUNDLE_TAG: [strchr x N]
1717     BundleTags.emplace_back();
1718     if (convertToString(Record, 0, BundleTags.back()))
1719       return error("Invalid record");
1720     Record.clear();
1721   }
1722 }
1723 
1724 /// Associate a value with its name from the given index in the provided record.
1725 ErrorOr<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record,
1726                                             unsigned NameIndex, Triple &TT) {
1727   SmallString<128> ValueName;
1728   if (convertToString(Record, NameIndex, ValueName))
1729     return error("Invalid record");
1730   unsigned ValueID = Record[0];
1731   if (ValueID >= ValueList.size() || !ValueList[ValueID])
1732     return error("Invalid record");
1733   Value *V = ValueList[ValueID];
1734 
1735   StringRef NameStr(ValueName.data(), ValueName.size());
1736   if (NameStr.find_first_of(0) != StringRef::npos)
1737     return error("Invalid value name");
1738   V->setName(NameStr);
1739   auto *GO = dyn_cast<GlobalObject>(V);
1740   if (GO) {
1741     if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) {
1742       if (TT.isOSBinFormatMachO())
1743         GO->setComdat(nullptr);
1744       else
1745         GO->setComdat(TheModule->getOrInsertComdat(V->getName()));
1746     }
1747   }
1748   return V;
1749 }
1750 
1751 /// Helper to note and return the current location, and jump to the given
1752 /// offset.
1753 static uint64_t jumpToValueSymbolTable(uint64_t Offset,
1754                                        BitstreamCursor &Stream) {
1755   // Save the current parsing location so we can jump back at the end
1756   // of the VST read.
1757   uint64_t CurrentBit = Stream.GetCurrentBitNo();
1758   Stream.JumpToBit(Offset * 32);
1759 #ifndef NDEBUG
1760   // Do some checking if we are in debug mode.
1761   BitstreamEntry Entry = Stream.advance();
1762   assert(Entry.Kind == BitstreamEntry::SubBlock);
1763   assert(Entry.ID == bitc::VALUE_SYMTAB_BLOCK_ID);
1764 #else
1765   // In NDEBUG mode ignore the output so we don't get an unused variable
1766   // warning.
1767   Stream.advance();
1768 #endif
1769   return CurrentBit;
1770 }
1771 
1772 /// Parse the value symbol table at either the current parsing location or
1773 /// at the given bit offset if provided.
1774 std::error_code BitcodeReader::parseValueSymbolTable(uint64_t Offset) {
1775   uint64_t CurrentBit;
1776   // Pass in the Offset to distinguish between calling for the module-level
1777   // VST (where we want to jump to the VST offset) and the function-level
1778   // VST (where we don't).
1779   if (Offset > 0)
1780     CurrentBit = jumpToValueSymbolTable(Offset, Stream);
1781 
1782   // Compute the delta between the bitcode indices in the VST (the word offset
1783   // to the word-aligned ENTER_SUBBLOCK for the function block, and that
1784   // expected by the lazy reader. The reader's EnterSubBlock expects to have
1785   // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID
1786   // (size BlockIDWidth). Note that we access the stream's AbbrevID width here
1787   // just before entering the VST subblock because: 1) the EnterSubBlock
1788   // changes the AbbrevID width; 2) the VST block is nested within the same
1789   // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same
1790   // AbbrevID width before calling EnterSubBlock; and 3) when we want to
1791   // jump to the FUNCTION_BLOCK using this offset later, we don't want
1792   // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK.
1793   unsigned FuncBitcodeOffsetDelta =
1794       Stream.getAbbrevIDWidth() + bitc::BlockIDWidth;
1795 
1796   if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
1797     return error("Invalid record");
1798 
1799   SmallVector<uint64_t, 64> Record;
1800 
1801   Triple TT(TheModule->getTargetTriple());
1802 
1803   // Read all the records for this value table.
1804   SmallString<128> ValueName;
1805   while (1) {
1806     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1807 
1808     switch (Entry.Kind) {
1809     case BitstreamEntry::SubBlock: // Handled for us already.
1810     case BitstreamEntry::Error:
1811       return error("Malformed block");
1812     case BitstreamEntry::EndBlock:
1813       if (Offset > 0)
1814         Stream.JumpToBit(CurrentBit);
1815       return std::error_code();
1816     case BitstreamEntry::Record:
1817       // The interesting case.
1818       break;
1819     }
1820 
1821     // Read a record.
1822     Record.clear();
1823     switch (Stream.readRecord(Entry.ID, Record)) {
1824     default:  // Default behavior: unknown type.
1825       break;
1826     case bitc::VST_CODE_ENTRY: {  // VST_CODE_ENTRY: [valueid, namechar x N]
1827       ErrorOr<Value *> ValOrErr = recordValue(Record, 1, TT);
1828       if (std::error_code EC = ValOrErr.getError())
1829         return EC;
1830       ValOrErr.get();
1831       break;
1832     }
1833     case bitc::VST_CODE_FNENTRY: {
1834       // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
1835       ErrorOr<Value *> ValOrErr = recordValue(Record, 2, TT);
1836       if (std::error_code EC = ValOrErr.getError())
1837         return EC;
1838       Value *V = ValOrErr.get();
1839 
1840       auto *GO = dyn_cast<GlobalObject>(V);
1841       if (!GO) {
1842         // If this is an alias, need to get the actual Function object
1843         // it aliases, in order to set up the DeferredFunctionInfo entry below.
1844         auto *GA = dyn_cast<GlobalAlias>(V);
1845         if (GA)
1846           GO = GA->getBaseObject();
1847         assert(GO);
1848       }
1849 
1850       uint64_t FuncWordOffset = Record[1];
1851       Function *F = dyn_cast<Function>(GO);
1852       assert(F);
1853       uint64_t FuncBitOffset = FuncWordOffset * 32;
1854       DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta;
1855       // Set the LastFunctionBlockBit to point to the last function block.
1856       // Later when parsing is resumed after function materialization,
1857       // we can simply skip that last function block.
1858       if (FuncBitOffset > LastFunctionBlockBit)
1859         LastFunctionBlockBit = FuncBitOffset;
1860       break;
1861     }
1862     case bitc::VST_CODE_BBENTRY: {
1863       if (convertToString(Record, 1, ValueName))
1864         return error("Invalid record");
1865       BasicBlock *BB = getBasicBlock(Record[0]);
1866       if (!BB)
1867         return error("Invalid record");
1868 
1869       BB->setName(StringRef(ValueName.data(), ValueName.size()));
1870       ValueName.clear();
1871       break;
1872     }
1873     }
1874   }
1875 }
1876 
1877 /// Parse a single METADATA_KIND record, inserting result in MDKindMap.
1878 std::error_code
1879 BitcodeReader::parseMetadataKindRecord(SmallVectorImpl<uint64_t> &Record) {
1880   if (Record.size() < 2)
1881     return error("Invalid record");
1882 
1883   unsigned Kind = Record[0];
1884   SmallString<8> Name(Record.begin() + 1, Record.end());
1885 
1886   unsigned NewKind = TheModule->getMDKindID(Name.str());
1887   if (!MDKindMap.insert(std::make_pair(Kind, NewKind)).second)
1888     return error("Conflicting METADATA_KIND records");
1889   return std::error_code();
1890 }
1891 
1892 static int64_t unrotateSign(uint64_t U) { return U & 1 ? ~(U >> 1) : U >> 1; }
1893 
1894 std::error_code BitcodeReader::parseMetadataStrings(ArrayRef<uint64_t> Record,
1895                                                     StringRef Blob,
1896                                                     unsigned &NextMetadataNo) {
1897   // All the MDStrings in the block are emitted together in a single
1898   // record.  The strings are concatenated and stored in a blob along with
1899   // their sizes.
1900   if (Record.size() != 2)
1901     return error("Invalid record: metadata strings layout");
1902 
1903   unsigned NumStrings = Record[0];
1904   unsigned StringsOffset = Record[1];
1905   if (!NumStrings)
1906     return error("Invalid record: metadata strings with no strings");
1907   if (StringsOffset > Blob.size())
1908     return error("Invalid record: metadata strings corrupt offset");
1909 
1910   StringRef Lengths = Blob.slice(0, StringsOffset);
1911   SimpleBitstreamCursor R(*StreamFile);
1912   R.jumpToPointer(Lengths.begin());
1913 
1914   // Ensure that Blob doesn't get invalidated, even if this is reading from
1915   // a StreamingMemoryObject with corrupt data.
1916   R.setArtificialByteLimit(R.getCurrentByteNo() + StringsOffset);
1917 
1918   StringRef Strings = Blob.drop_front(StringsOffset);
1919   do {
1920     if (R.AtEndOfStream())
1921       return error("Invalid record: metadata strings bad length");
1922 
1923     unsigned Size = R.ReadVBR(6);
1924     if (Strings.size() < Size)
1925       return error("Invalid record: metadata strings truncated chars");
1926 
1927     MetadataList.assignValue(MDString::get(Context, Strings.slice(0, Size)),
1928                              NextMetadataNo++);
1929     Strings = Strings.drop_front(Size);
1930   } while (--NumStrings);
1931 
1932   return std::error_code();
1933 }
1934 
1935 /// Parse a METADATA_BLOCK. If ModuleLevel is true then we are parsing
1936 /// module level metadata.
1937 std::error_code BitcodeReader::parseMetadata(bool ModuleLevel) {
1938   IsMetadataMaterialized = true;
1939   unsigned NextMetadataNo = MetadataList.size();
1940 
1941   if (!ModuleLevel && MetadataList.hasFwdRefs())
1942     return error("Invalid metadata: fwd refs into function blocks");
1943 
1944   if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID))
1945     return error("Invalid record");
1946 
1947   SmallVector<uint64_t, 64> Record;
1948 
1949   auto getMD = [&](unsigned ID) -> Metadata * {
1950     return MetadataList.getMetadataFwdRef(ID);
1951   };
1952   auto getMDOrNull = [&](unsigned ID) -> Metadata *{
1953     if (ID)
1954       return getMD(ID - 1);
1955     return nullptr;
1956   };
1957   auto getMDString = [&](unsigned ID) -> MDString *{
1958     // This requires that the ID is not really a forward reference.  In
1959     // particular, the MDString must already have been resolved.
1960     return cast_or_null<MDString>(getMDOrNull(ID));
1961   };
1962 
1963 #define GET_OR_DISTINCT(CLASS, DISTINCT, ARGS)                                 \
1964   (DISTINCT ? CLASS::getDistinct ARGS : CLASS::get ARGS)
1965 
1966   // Read all the records.
1967   while (1) {
1968     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1969 
1970     switch (Entry.Kind) {
1971     case BitstreamEntry::SubBlock: // Handled for us already.
1972     case BitstreamEntry::Error:
1973       return error("Malformed block");
1974     case BitstreamEntry::EndBlock:
1975       MetadataList.tryToResolveCycles();
1976       return std::error_code();
1977     case BitstreamEntry::Record:
1978       // The interesting case.
1979       break;
1980     }
1981 
1982     // Read a record.
1983     Record.clear();
1984     StringRef Blob;
1985     unsigned Code = Stream.readRecord(Entry.ID, Record, &Blob);
1986     bool IsDistinct = false;
1987     switch (Code) {
1988     default:  // Default behavior: ignore.
1989       break;
1990     case bitc::METADATA_NAME: {
1991       // Read name of the named metadata.
1992       SmallString<8> Name(Record.begin(), Record.end());
1993       Record.clear();
1994       Code = Stream.ReadCode();
1995 
1996       unsigned NextBitCode = Stream.readRecord(Code, Record);
1997       if (NextBitCode != bitc::METADATA_NAMED_NODE)
1998         return error("METADATA_NAME not followed by METADATA_NAMED_NODE");
1999 
2000       // Read named metadata elements.
2001       unsigned Size = Record.size();
2002       NamedMDNode *NMD = TheModule->getOrInsertNamedMetadata(Name);
2003       for (unsigned i = 0; i != Size; ++i) {
2004         MDNode *MD = MetadataList.getMDNodeFwdRefOrNull(Record[i]);
2005         if (!MD)
2006           return error("Invalid record");
2007         NMD->addOperand(MD);
2008       }
2009       break;
2010     }
2011     case bitc::METADATA_OLD_FN_NODE: {
2012       // FIXME: Remove in 4.0.
2013       // This is a LocalAsMetadata record, the only type of function-local
2014       // metadata.
2015       if (Record.size() % 2 == 1)
2016         return error("Invalid record");
2017 
2018       // If this isn't a LocalAsMetadata record, we're dropping it.  This used
2019       // to be legal, but there's no upgrade path.
2020       auto dropRecord = [&] {
2021         MetadataList.assignValue(MDNode::get(Context, None), NextMetadataNo++);
2022       };
2023       if (Record.size() != 2) {
2024         dropRecord();
2025         break;
2026       }
2027 
2028       Type *Ty = getTypeByID(Record[0]);
2029       if (Ty->isMetadataTy() || Ty->isVoidTy()) {
2030         dropRecord();
2031         break;
2032       }
2033 
2034       MetadataList.assignValue(
2035           LocalAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)),
2036           NextMetadataNo++);
2037       break;
2038     }
2039     case bitc::METADATA_OLD_NODE: {
2040       // FIXME: Remove in 4.0.
2041       if (Record.size() % 2 == 1)
2042         return error("Invalid record");
2043 
2044       unsigned Size = Record.size();
2045       SmallVector<Metadata *, 8> Elts;
2046       for (unsigned i = 0; i != Size; i += 2) {
2047         Type *Ty = getTypeByID(Record[i]);
2048         if (!Ty)
2049           return error("Invalid record");
2050         if (Ty->isMetadataTy())
2051           Elts.push_back(MetadataList.getMetadataFwdRef(Record[i + 1]));
2052         else if (!Ty->isVoidTy()) {
2053           auto *MD =
2054               ValueAsMetadata::get(ValueList.getValueFwdRef(Record[i + 1], Ty));
2055           assert(isa<ConstantAsMetadata>(MD) &&
2056                  "Expected non-function-local metadata");
2057           Elts.push_back(MD);
2058         } else
2059           Elts.push_back(nullptr);
2060       }
2061       MetadataList.assignValue(MDNode::get(Context, Elts), NextMetadataNo++);
2062       break;
2063     }
2064     case bitc::METADATA_VALUE: {
2065       if (Record.size() != 2)
2066         return error("Invalid record");
2067 
2068       Type *Ty = getTypeByID(Record[0]);
2069       if (Ty->isMetadataTy() || Ty->isVoidTy())
2070         return error("Invalid record");
2071 
2072       MetadataList.assignValue(
2073           ValueAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)),
2074           NextMetadataNo++);
2075       break;
2076     }
2077     case bitc::METADATA_DISTINCT_NODE:
2078       IsDistinct = true;
2079       // fallthrough...
2080     case bitc::METADATA_NODE: {
2081       SmallVector<Metadata *, 8> Elts;
2082       Elts.reserve(Record.size());
2083       for (unsigned ID : Record)
2084         Elts.push_back(ID ? MetadataList.getMetadataFwdRef(ID - 1) : nullptr);
2085       MetadataList.assignValue(IsDistinct ? MDNode::getDistinct(Context, Elts)
2086                                           : MDNode::get(Context, Elts),
2087                                NextMetadataNo++);
2088       break;
2089     }
2090     case bitc::METADATA_LOCATION: {
2091       if (Record.size() != 5)
2092         return error("Invalid record");
2093 
2094       unsigned Line = Record[1];
2095       unsigned Column = Record[2];
2096       MDNode *Scope = MetadataList.getMDNodeFwdRefOrNull(Record[3]);
2097       if (!Scope)
2098         return error("Invalid record");
2099       Metadata *InlinedAt =
2100           Record[4] ? MetadataList.getMetadataFwdRef(Record[4] - 1) : nullptr;
2101       MetadataList.assignValue(
2102           GET_OR_DISTINCT(DILocation, Record[0],
2103                           (Context, Line, Column, Scope, InlinedAt)),
2104           NextMetadataNo++);
2105       break;
2106     }
2107     case bitc::METADATA_GENERIC_DEBUG: {
2108       if (Record.size() < 4)
2109         return error("Invalid record");
2110 
2111       unsigned Tag = Record[1];
2112       unsigned Version = Record[2];
2113 
2114       if (Tag >= 1u << 16 || Version != 0)
2115         return error("Invalid record");
2116 
2117       auto *Header = getMDString(Record[3]);
2118       SmallVector<Metadata *, 8> DwarfOps;
2119       for (unsigned I = 4, E = Record.size(); I != E; ++I)
2120         DwarfOps.push_back(Record[I]
2121                                ? MetadataList.getMetadataFwdRef(Record[I] - 1)
2122                                : nullptr);
2123       MetadataList.assignValue(
2124           GET_OR_DISTINCT(GenericDINode, Record[0],
2125                           (Context, Tag, Header, DwarfOps)),
2126           NextMetadataNo++);
2127       break;
2128     }
2129     case bitc::METADATA_SUBRANGE: {
2130       if (Record.size() != 3)
2131         return error("Invalid record");
2132 
2133       MetadataList.assignValue(
2134           GET_OR_DISTINCT(DISubrange, Record[0],
2135                           (Context, Record[1], unrotateSign(Record[2]))),
2136           NextMetadataNo++);
2137       break;
2138     }
2139     case bitc::METADATA_ENUMERATOR: {
2140       if (Record.size() != 3)
2141         return error("Invalid record");
2142 
2143       MetadataList.assignValue(
2144           GET_OR_DISTINCT(
2145               DIEnumerator, Record[0],
2146               (Context, unrotateSign(Record[1]), getMDString(Record[2]))),
2147           NextMetadataNo++);
2148       break;
2149     }
2150     case bitc::METADATA_BASIC_TYPE: {
2151       if (Record.size() != 6)
2152         return error("Invalid record");
2153 
2154       MetadataList.assignValue(
2155           GET_OR_DISTINCT(DIBasicType, Record[0],
2156                           (Context, Record[1], getMDString(Record[2]),
2157                            Record[3], Record[4], Record[5])),
2158           NextMetadataNo++);
2159       break;
2160     }
2161     case bitc::METADATA_DERIVED_TYPE: {
2162       if (Record.size() != 12)
2163         return error("Invalid record");
2164 
2165       MetadataList.assignValue(
2166           GET_OR_DISTINCT(DIDerivedType, Record[0],
2167                           (Context, Record[1], getMDString(Record[2]),
2168                            getMDOrNull(Record[3]), Record[4],
2169                            getMDOrNull(Record[5]), getMDOrNull(Record[6]),
2170                            Record[7], Record[8], Record[9], Record[10],
2171                            getMDOrNull(Record[11]))),
2172           NextMetadataNo++);
2173       break;
2174     }
2175     case bitc::METADATA_COMPOSITE_TYPE: {
2176       if (Record.size() != 16)
2177         return error("Invalid record");
2178 
2179       MetadataList.assignValue(
2180           GET_OR_DISTINCT(DICompositeType, Record[0],
2181                           (Context, Record[1], getMDString(Record[2]),
2182                            getMDOrNull(Record[3]), Record[4],
2183                            getMDOrNull(Record[5]), getMDOrNull(Record[6]),
2184                            Record[7], Record[8], Record[9], Record[10],
2185                            getMDOrNull(Record[11]), Record[12],
2186                            getMDOrNull(Record[13]), getMDOrNull(Record[14]),
2187                            getMDString(Record[15]))),
2188           NextMetadataNo++);
2189       break;
2190     }
2191     case bitc::METADATA_SUBROUTINE_TYPE: {
2192       if (Record.size() != 3)
2193         return error("Invalid record");
2194 
2195       MetadataList.assignValue(
2196           GET_OR_DISTINCT(DISubroutineType, Record[0],
2197                           (Context, Record[1], getMDOrNull(Record[2]))),
2198           NextMetadataNo++);
2199       break;
2200     }
2201 
2202     case bitc::METADATA_MODULE: {
2203       if (Record.size() != 6)
2204         return error("Invalid record");
2205 
2206       MetadataList.assignValue(
2207           GET_OR_DISTINCT(DIModule, Record[0],
2208                           (Context, getMDOrNull(Record[1]),
2209                            getMDString(Record[2]), getMDString(Record[3]),
2210                            getMDString(Record[4]), getMDString(Record[5]))),
2211           NextMetadataNo++);
2212       break;
2213     }
2214 
2215     case bitc::METADATA_FILE: {
2216       if (Record.size() != 3)
2217         return error("Invalid record");
2218 
2219       MetadataList.assignValue(
2220           GET_OR_DISTINCT(DIFile, Record[0], (Context, getMDString(Record[1]),
2221                                               getMDString(Record[2]))),
2222           NextMetadataNo++);
2223       break;
2224     }
2225     case bitc::METADATA_COMPILE_UNIT: {
2226       if (Record.size() < 14 || Record.size() > 16)
2227         return error("Invalid record");
2228 
2229       // Ignore Record[0], which indicates whether this compile unit is
2230       // distinct.  It's always distinct.
2231       MetadataList.assignValue(
2232           DICompileUnit::getDistinct(
2233               Context, Record[1], getMDOrNull(Record[2]),
2234               getMDString(Record[3]), Record[4], getMDString(Record[5]),
2235               Record[6], getMDString(Record[7]), Record[8],
2236               getMDOrNull(Record[9]), getMDOrNull(Record[10]),
2237               getMDOrNull(Record[11]), getMDOrNull(Record[12]),
2238               getMDOrNull(Record[13]),
2239               Record.size() <= 15 ? nullptr : getMDOrNull(Record[15]),
2240               Record.size() <= 14 ? 0 : Record[14]),
2241           NextMetadataNo++);
2242       break;
2243     }
2244     case bitc::METADATA_SUBPROGRAM: {
2245       if (Record.size() != 18 && Record.size() != 19)
2246         return error("Invalid record");
2247 
2248       bool HasFn = Record.size() == 19;
2249       DISubprogram *SP = GET_OR_DISTINCT(
2250           DISubprogram,
2251           Record[0] || Record[8], // All definitions should be distinct.
2252           (Context, getMDOrNull(Record[1]), getMDString(Record[2]),
2253            getMDString(Record[3]), getMDOrNull(Record[4]), Record[5],
2254            getMDOrNull(Record[6]), Record[7], Record[8], Record[9],
2255            getMDOrNull(Record[10]), Record[11], Record[12], Record[13],
2256            Record[14], getMDOrNull(Record[15 + HasFn]),
2257            getMDOrNull(Record[16 + HasFn]), getMDOrNull(Record[17 + HasFn])));
2258       MetadataList.assignValue(SP, NextMetadataNo++);
2259 
2260       // Upgrade sp->function mapping to function->sp mapping.
2261       if (HasFn && Record[15]) {
2262         if (auto *CMD = dyn_cast<ConstantAsMetadata>(getMDOrNull(Record[15])))
2263           if (auto *F = dyn_cast<Function>(CMD->getValue())) {
2264             if (F->isMaterializable())
2265               // Defer until materialized; unmaterialized functions may not have
2266               // metadata.
2267               FunctionsWithSPs[F] = SP;
2268             else if (!F->empty())
2269               F->setSubprogram(SP);
2270           }
2271       }
2272       break;
2273     }
2274     case bitc::METADATA_LEXICAL_BLOCK: {
2275       if (Record.size() != 5)
2276         return error("Invalid record");
2277 
2278       MetadataList.assignValue(
2279           GET_OR_DISTINCT(DILexicalBlock, Record[0],
2280                           (Context, getMDOrNull(Record[1]),
2281                            getMDOrNull(Record[2]), Record[3], Record[4])),
2282           NextMetadataNo++);
2283       break;
2284     }
2285     case bitc::METADATA_LEXICAL_BLOCK_FILE: {
2286       if (Record.size() != 4)
2287         return error("Invalid record");
2288 
2289       MetadataList.assignValue(
2290           GET_OR_DISTINCT(DILexicalBlockFile, Record[0],
2291                           (Context, getMDOrNull(Record[1]),
2292                            getMDOrNull(Record[2]), Record[3])),
2293           NextMetadataNo++);
2294       break;
2295     }
2296     case bitc::METADATA_NAMESPACE: {
2297       if (Record.size() != 5)
2298         return error("Invalid record");
2299 
2300       MetadataList.assignValue(
2301           GET_OR_DISTINCT(DINamespace, Record[0],
2302                           (Context, getMDOrNull(Record[1]),
2303                            getMDOrNull(Record[2]), getMDString(Record[3]),
2304                            Record[4])),
2305           NextMetadataNo++);
2306       break;
2307     }
2308     case bitc::METADATA_MACRO: {
2309       if (Record.size() != 5)
2310         return error("Invalid record");
2311 
2312       MetadataList.assignValue(
2313           GET_OR_DISTINCT(DIMacro, Record[0],
2314                           (Context, Record[1], Record[2],
2315                            getMDString(Record[3]), getMDString(Record[4]))),
2316           NextMetadataNo++);
2317       break;
2318     }
2319     case bitc::METADATA_MACRO_FILE: {
2320       if (Record.size() != 5)
2321         return error("Invalid record");
2322 
2323       MetadataList.assignValue(
2324           GET_OR_DISTINCT(DIMacroFile, Record[0],
2325                           (Context, Record[1], Record[2],
2326                            getMDOrNull(Record[3]), getMDOrNull(Record[4]))),
2327           NextMetadataNo++);
2328       break;
2329     }
2330     case bitc::METADATA_TEMPLATE_TYPE: {
2331       if (Record.size() != 3)
2332         return error("Invalid record");
2333 
2334       MetadataList.assignValue(GET_OR_DISTINCT(DITemplateTypeParameter,
2335                                                Record[0],
2336                                                (Context, getMDString(Record[1]),
2337                                                 getMDOrNull(Record[2]))),
2338                                NextMetadataNo++);
2339       break;
2340     }
2341     case bitc::METADATA_TEMPLATE_VALUE: {
2342       if (Record.size() != 5)
2343         return error("Invalid record");
2344 
2345       MetadataList.assignValue(
2346           GET_OR_DISTINCT(DITemplateValueParameter, Record[0],
2347                           (Context, Record[1], getMDString(Record[2]),
2348                            getMDOrNull(Record[3]), getMDOrNull(Record[4]))),
2349           NextMetadataNo++);
2350       break;
2351     }
2352     case bitc::METADATA_GLOBAL_VAR: {
2353       if (Record.size() != 11)
2354         return error("Invalid record");
2355 
2356       MetadataList.assignValue(
2357           GET_OR_DISTINCT(DIGlobalVariable, Record[0],
2358                           (Context, getMDOrNull(Record[1]),
2359                            getMDString(Record[2]), getMDString(Record[3]),
2360                            getMDOrNull(Record[4]), Record[5],
2361                            getMDOrNull(Record[6]), Record[7], Record[8],
2362                            getMDOrNull(Record[9]), getMDOrNull(Record[10]))),
2363           NextMetadataNo++);
2364       break;
2365     }
2366     case bitc::METADATA_LOCAL_VAR: {
2367       // 10th field is for the obseleted 'inlinedAt:' field.
2368       if (Record.size() < 8 || Record.size() > 10)
2369         return error("Invalid record");
2370 
2371       // 2nd field used to be an artificial tag, either DW_TAG_auto_variable or
2372       // DW_TAG_arg_variable.
2373       bool HasTag = Record.size() > 8;
2374       MetadataList.assignValue(
2375           GET_OR_DISTINCT(DILocalVariable, Record[0],
2376                           (Context, getMDOrNull(Record[1 + HasTag]),
2377                            getMDString(Record[2 + HasTag]),
2378                            getMDOrNull(Record[3 + HasTag]), Record[4 + HasTag],
2379                            getMDOrNull(Record[5 + HasTag]), Record[6 + HasTag],
2380                            Record[7 + HasTag])),
2381           NextMetadataNo++);
2382       break;
2383     }
2384     case bitc::METADATA_EXPRESSION: {
2385       if (Record.size() < 1)
2386         return error("Invalid record");
2387 
2388       MetadataList.assignValue(
2389           GET_OR_DISTINCT(DIExpression, Record[0],
2390                           (Context, makeArrayRef(Record).slice(1))),
2391           NextMetadataNo++);
2392       break;
2393     }
2394     case bitc::METADATA_OBJC_PROPERTY: {
2395       if (Record.size() != 8)
2396         return error("Invalid record");
2397 
2398       MetadataList.assignValue(
2399           GET_OR_DISTINCT(DIObjCProperty, Record[0],
2400                           (Context, getMDString(Record[1]),
2401                            getMDOrNull(Record[2]), Record[3],
2402                            getMDString(Record[4]), getMDString(Record[5]),
2403                            Record[6], getMDOrNull(Record[7]))),
2404           NextMetadataNo++);
2405       break;
2406     }
2407     case bitc::METADATA_IMPORTED_ENTITY: {
2408       if (Record.size() != 6)
2409         return error("Invalid record");
2410 
2411       MetadataList.assignValue(
2412           GET_OR_DISTINCT(DIImportedEntity, Record[0],
2413                           (Context, Record[1], getMDOrNull(Record[2]),
2414                            getMDOrNull(Record[3]), Record[4],
2415                            getMDString(Record[5]))),
2416           NextMetadataNo++);
2417       break;
2418     }
2419     case bitc::METADATA_STRING_OLD: {
2420       std::string String(Record.begin(), Record.end());
2421 
2422       // Test for upgrading !llvm.loop.
2423       HasSeenOldLoopTags |= mayBeOldLoopAttachmentTag(String);
2424 
2425       Metadata *MD = MDString::get(Context, String);
2426       MetadataList.assignValue(MD, NextMetadataNo++);
2427       break;
2428     }
2429     case bitc::METADATA_STRINGS:
2430       if (std::error_code EC =
2431               parseMetadataStrings(Record, Blob, NextMetadataNo))
2432         return EC;
2433       break;
2434     case bitc::METADATA_KIND: {
2435       // Support older bitcode files that had METADATA_KIND records in a
2436       // block with METADATA_BLOCK_ID.
2437       if (std::error_code EC = parseMetadataKindRecord(Record))
2438         return EC;
2439       break;
2440     }
2441     }
2442   }
2443 #undef GET_OR_DISTINCT
2444 }
2445 
2446 /// Parse the metadata kinds out of the METADATA_KIND_BLOCK.
2447 std::error_code BitcodeReader::parseMetadataKinds() {
2448   if (Stream.EnterSubBlock(bitc::METADATA_KIND_BLOCK_ID))
2449     return error("Invalid record");
2450 
2451   SmallVector<uint64_t, 64> Record;
2452 
2453   // Read all the records.
2454   while (1) {
2455     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
2456 
2457     switch (Entry.Kind) {
2458     case BitstreamEntry::SubBlock: // Handled for us already.
2459     case BitstreamEntry::Error:
2460       return error("Malformed block");
2461     case BitstreamEntry::EndBlock:
2462       return std::error_code();
2463     case BitstreamEntry::Record:
2464       // The interesting case.
2465       break;
2466     }
2467 
2468     // Read a record.
2469     Record.clear();
2470     unsigned Code = Stream.readRecord(Entry.ID, Record);
2471     switch (Code) {
2472     default: // Default behavior: ignore.
2473       break;
2474     case bitc::METADATA_KIND: {
2475       if (std::error_code EC = parseMetadataKindRecord(Record))
2476         return EC;
2477       break;
2478     }
2479     }
2480   }
2481 }
2482 
2483 /// Decode a signed value stored with the sign bit in the LSB for dense VBR
2484 /// encoding.
2485 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) {
2486   if ((V & 1) == 0)
2487     return V >> 1;
2488   if (V != 1)
2489     return -(V >> 1);
2490   // There is no such thing as -0 with integers.  "-0" really means MININT.
2491   return 1ULL << 63;
2492 }
2493 
2494 /// Resolve all of the initializers for global values and aliases that we can.
2495 std::error_code BitcodeReader::resolveGlobalAndAliasInits() {
2496   std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist;
2497   std::vector<std::pair<GlobalAlias*, unsigned> > AliasInitWorklist;
2498   std::vector<std::pair<Function*, unsigned> > FunctionPrefixWorklist;
2499   std::vector<std::pair<Function*, unsigned> > FunctionPrologueWorklist;
2500   std::vector<std::pair<Function*, unsigned> > FunctionPersonalityFnWorklist;
2501 
2502   GlobalInitWorklist.swap(GlobalInits);
2503   AliasInitWorklist.swap(AliasInits);
2504   FunctionPrefixWorklist.swap(FunctionPrefixes);
2505   FunctionPrologueWorklist.swap(FunctionPrologues);
2506   FunctionPersonalityFnWorklist.swap(FunctionPersonalityFns);
2507 
2508   while (!GlobalInitWorklist.empty()) {
2509     unsigned ValID = GlobalInitWorklist.back().second;
2510     if (ValID >= ValueList.size()) {
2511       // Not ready to resolve this yet, it requires something later in the file.
2512       GlobalInits.push_back(GlobalInitWorklist.back());
2513     } else {
2514       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2515         GlobalInitWorklist.back().first->setInitializer(C);
2516       else
2517         return error("Expected a constant");
2518     }
2519     GlobalInitWorklist.pop_back();
2520   }
2521 
2522   while (!AliasInitWorklist.empty()) {
2523     unsigned ValID = AliasInitWorklist.back().second;
2524     if (ValID >= ValueList.size()) {
2525       AliasInits.push_back(AliasInitWorklist.back());
2526     } else {
2527       Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]);
2528       if (!C)
2529         return error("Expected a constant");
2530       GlobalAlias *Alias = AliasInitWorklist.back().first;
2531       if (C->getType() != Alias->getType())
2532         return error("Alias and aliasee types don't match");
2533       Alias->setAliasee(C);
2534     }
2535     AliasInitWorklist.pop_back();
2536   }
2537 
2538   while (!FunctionPrefixWorklist.empty()) {
2539     unsigned ValID = FunctionPrefixWorklist.back().second;
2540     if (ValID >= ValueList.size()) {
2541       FunctionPrefixes.push_back(FunctionPrefixWorklist.back());
2542     } else {
2543       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2544         FunctionPrefixWorklist.back().first->setPrefixData(C);
2545       else
2546         return error("Expected a constant");
2547     }
2548     FunctionPrefixWorklist.pop_back();
2549   }
2550 
2551   while (!FunctionPrologueWorklist.empty()) {
2552     unsigned ValID = FunctionPrologueWorklist.back().second;
2553     if (ValID >= ValueList.size()) {
2554       FunctionPrologues.push_back(FunctionPrologueWorklist.back());
2555     } else {
2556       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2557         FunctionPrologueWorklist.back().first->setPrologueData(C);
2558       else
2559         return error("Expected a constant");
2560     }
2561     FunctionPrologueWorklist.pop_back();
2562   }
2563 
2564   while (!FunctionPersonalityFnWorklist.empty()) {
2565     unsigned ValID = FunctionPersonalityFnWorklist.back().second;
2566     if (ValID >= ValueList.size()) {
2567       FunctionPersonalityFns.push_back(FunctionPersonalityFnWorklist.back());
2568     } else {
2569       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2570         FunctionPersonalityFnWorklist.back().first->setPersonalityFn(C);
2571       else
2572         return error("Expected a constant");
2573     }
2574     FunctionPersonalityFnWorklist.pop_back();
2575   }
2576 
2577   return std::error_code();
2578 }
2579 
2580 static APInt readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) {
2581   SmallVector<uint64_t, 8> Words(Vals.size());
2582   std::transform(Vals.begin(), Vals.end(), Words.begin(),
2583                  BitcodeReader::decodeSignRotatedValue);
2584 
2585   return APInt(TypeBits, Words);
2586 }
2587 
2588 std::error_code BitcodeReader::parseConstants() {
2589   if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID))
2590     return error("Invalid record");
2591 
2592   SmallVector<uint64_t, 64> Record;
2593 
2594   // Read all the records for this value table.
2595   Type *CurTy = Type::getInt32Ty(Context);
2596   unsigned NextCstNo = ValueList.size();
2597   while (1) {
2598     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
2599 
2600     switch (Entry.Kind) {
2601     case BitstreamEntry::SubBlock: // Handled for us already.
2602     case BitstreamEntry::Error:
2603       return error("Malformed block");
2604     case BitstreamEntry::EndBlock:
2605       if (NextCstNo != ValueList.size())
2606         return error("Invalid constant reference");
2607 
2608       // Once all the constants have been read, go through and resolve forward
2609       // references.
2610       ValueList.resolveConstantForwardRefs();
2611       return std::error_code();
2612     case BitstreamEntry::Record:
2613       // The interesting case.
2614       break;
2615     }
2616 
2617     // Read a record.
2618     Record.clear();
2619     Value *V = nullptr;
2620     unsigned BitCode = Stream.readRecord(Entry.ID, Record);
2621     switch (BitCode) {
2622     default:  // Default behavior: unknown constant
2623     case bitc::CST_CODE_UNDEF:     // UNDEF
2624       V = UndefValue::get(CurTy);
2625       break;
2626     case bitc::CST_CODE_SETTYPE:   // SETTYPE: [typeid]
2627       if (Record.empty())
2628         return error("Invalid record");
2629       if (Record[0] >= TypeList.size() || !TypeList[Record[0]])
2630         return error("Invalid record");
2631       CurTy = TypeList[Record[0]];
2632       continue;  // Skip the ValueList manipulation.
2633     case bitc::CST_CODE_NULL:      // NULL
2634       V = Constant::getNullValue(CurTy);
2635       break;
2636     case bitc::CST_CODE_INTEGER:   // INTEGER: [intval]
2637       if (!CurTy->isIntegerTy() || Record.empty())
2638         return error("Invalid record");
2639       V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0]));
2640       break;
2641     case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
2642       if (!CurTy->isIntegerTy() || Record.empty())
2643         return error("Invalid record");
2644 
2645       APInt VInt =
2646           readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth());
2647       V = ConstantInt::get(Context, VInt);
2648 
2649       break;
2650     }
2651     case bitc::CST_CODE_FLOAT: {    // FLOAT: [fpval]
2652       if (Record.empty())
2653         return error("Invalid record");
2654       if (CurTy->isHalfTy())
2655         V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf,
2656                                              APInt(16, (uint16_t)Record[0])));
2657       else if (CurTy->isFloatTy())
2658         V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle,
2659                                              APInt(32, (uint32_t)Record[0])));
2660       else if (CurTy->isDoubleTy())
2661         V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble,
2662                                              APInt(64, Record[0])));
2663       else if (CurTy->isX86_FP80Ty()) {
2664         // Bits are not stored the same way as a normal i80 APInt, compensate.
2665         uint64_t Rearrange[2];
2666         Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16);
2667         Rearrange[1] = Record[0] >> 48;
2668         V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended,
2669                                              APInt(80, Rearrange)));
2670       } else if (CurTy->isFP128Ty())
2671         V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad,
2672                                              APInt(128, Record)));
2673       else if (CurTy->isPPC_FP128Ty())
2674         V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble,
2675                                              APInt(128, Record)));
2676       else
2677         V = UndefValue::get(CurTy);
2678       break;
2679     }
2680 
2681     case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
2682       if (Record.empty())
2683         return error("Invalid record");
2684 
2685       unsigned Size = Record.size();
2686       SmallVector<Constant*, 16> Elts;
2687 
2688       if (StructType *STy = dyn_cast<StructType>(CurTy)) {
2689         for (unsigned i = 0; i != Size; ++i)
2690           Elts.push_back(ValueList.getConstantFwdRef(Record[i],
2691                                                      STy->getElementType(i)));
2692         V = ConstantStruct::get(STy, Elts);
2693       } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) {
2694         Type *EltTy = ATy->getElementType();
2695         for (unsigned i = 0; i != Size; ++i)
2696           Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
2697         V = ConstantArray::get(ATy, Elts);
2698       } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) {
2699         Type *EltTy = VTy->getElementType();
2700         for (unsigned i = 0; i != Size; ++i)
2701           Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
2702         V = ConstantVector::get(Elts);
2703       } else {
2704         V = UndefValue::get(CurTy);
2705       }
2706       break;
2707     }
2708     case bitc::CST_CODE_STRING:    // STRING: [values]
2709     case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
2710       if (Record.empty())
2711         return error("Invalid record");
2712 
2713       SmallString<16> Elts(Record.begin(), Record.end());
2714       V = ConstantDataArray::getString(Context, Elts,
2715                                        BitCode == bitc::CST_CODE_CSTRING);
2716       break;
2717     }
2718     case bitc::CST_CODE_DATA: {// DATA: [n x value]
2719       if (Record.empty())
2720         return error("Invalid record");
2721 
2722       Type *EltTy = cast<SequentialType>(CurTy)->getElementType();
2723       if (EltTy->isIntegerTy(8)) {
2724         SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end());
2725         if (isa<VectorType>(CurTy))
2726           V = ConstantDataVector::get(Context, Elts);
2727         else
2728           V = ConstantDataArray::get(Context, Elts);
2729       } else if (EltTy->isIntegerTy(16)) {
2730         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
2731         if (isa<VectorType>(CurTy))
2732           V = ConstantDataVector::get(Context, Elts);
2733         else
2734           V = ConstantDataArray::get(Context, Elts);
2735       } else if (EltTy->isIntegerTy(32)) {
2736         SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
2737         if (isa<VectorType>(CurTy))
2738           V = ConstantDataVector::get(Context, Elts);
2739         else
2740           V = ConstantDataArray::get(Context, Elts);
2741       } else if (EltTy->isIntegerTy(64)) {
2742         SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
2743         if (isa<VectorType>(CurTy))
2744           V = ConstantDataVector::get(Context, Elts);
2745         else
2746           V = ConstantDataArray::get(Context, Elts);
2747       } else if (EltTy->isHalfTy()) {
2748         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
2749         if (isa<VectorType>(CurTy))
2750           V = ConstantDataVector::getFP(Context, Elts);
2751         else
2752           V = ConstantDataArray::getFP(Context, Elts);
2753       } else if (EltTy->isFloatTy()) {
2754         SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
2755         if (isa<VectorType>(CurTy))
2756           V = ConstantDataVector::getFP(Context, Elts);
2757         else
2758           V = ConstantDataArray::getFP(Context, Elts);
2759       } else if (EltTy->isDoubleTy()) {
2760         SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
2761         if (isa<VectorType>(CurTy))
2762           V = ConstantDataVector::getFP(Context, Elts);
2763         else
2764           V = ConstantDataArray::getFP(Context, Elts);
2765       } else {
2766         return error("Invalid type for value");
2767       }
2768       break;
2769     }
2770     case bitc::CST_CODE_CE_BINOP: {  // CE_BINOP: [opcode, opval, opval]
2771       if (Record.size() < 3)
2772         return error("Invalid record");
2773       int Opc = getDecodedBinaryOpcode(Record[0], CurTy);
2774       if (Opc < 0) {
2775         V = UndefValue::get(CurTy);  // Unknown binop.
2776       } else {
2777         Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
2778         Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy);
2779         unsigned Flags = 0;
2780         if (Record.size() >= 4) {
2781           if (Opc == Instruction::Add ||
2782               Opc == Instruction::Sub ||
2783               Opc == Instruction::Mul ||
2784               Opc == Instruction::Shl) {
2785             if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP))
2786               Flags |= OverflowingBinaryOperator::NoSignedWrap;
2787             if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
2788               Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
2789           } else if (Opc == Instruction::SDiv ||
2790                      Opc == Instruction::UDiv ||
2791                      Opc == Instruction::LShr ||
2792                      Opc == Instruction::AShr) {
2793             if (Record[3] & (1 << bitc::PEO_EXACT))
2794               Flags |= SDivOperator::IsExact;
2795           }
2796         }
2797         V = ConstantExpr::get(Opc, LHS, RHS, Flags);
2798       }
2799       break;
2800     }
2801     case bitc::CST_CODE_CE_CAST: {  // CE_CAST: [opcode, opty, opval]
2802       if (Record.size() < 3)
2803         return error("Invalid record");
2804       int Opc = getDecodedCastOpcode(Record[0]);
2805       if (Opc < 0) {
2806         V = UndefValue::get(CurTy);  // Unknown cast.
2807       } else {
2808         Type *OpTy = getTypeByID(Record[1]);
2809         if (!OpTy)
2810           return error("Invalid record");
2811         Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy);
2812         V = UpgradeBitCastExpr(Opc, Op, CurTy);
2813         if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy);
2814       }
2815       break;
2816     }
2817     case bitc::CST_CODE_CE_INBOUNDS_GEP:
2818     case bitc::CST_CODE_CE_GEP: {  // CE_GEP:        [n x operands]
2819       unsigned OpNum = 0;
2820       Type *PointeeType = nullptr;
2821       if (Record.size() % 2)
2822         PointeeType = getTypeByID(Record[OpNum++]);
2823       SmallVector<Constant*, 16> Elts;
2824       while (OpNum != Record.size()) {
2825         Type *ElTy = getTypeByID(Record[OpNum++]);
2826         if (!ElTy)
2827           return error("Invalid record");
2828         Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy));
2829       }
2830 
2831       if (PointeeType &&
2832           PointeeType !=
2833               cast<SequentialType>(Elts[0]->getType()->getScalarType())
2834                   ->getElementType())
2835         return error("Explicit gep operator type does not match pointee type "
2836                      "of pointer operand");
2837 
2838       ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
2839       V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices,
2840                                          BitCode ==
2841                                              bitc::CST_CODE_CE_INBOUNDS_GEP);
2842       break;
2843     }
2844     case bitc::CST_CODE_CE_SELECT: {  // CE_SELECT: [opval#, opval#, opval#]
2845       if (Record.size() < 3)
2846         return error("Invalid record");
2847 
2848       Type *SelectorTy = Type::getInt1Ty(Context);
2849 
2850       // The selector might be an i1 or an <n x i1>
2851       // Get the type from the ValueList before getting a forward ref.
2852       if (VectorType *VTy = dyn_cast<VectorType>(CurTy))
2853         if (Value *V = ValueList[Record[0]])
2854           if (SelectorTy != V->getType())
2855             SelectorTy = VectorType::get(SelectorTy, VTy->getNumElements());
2856 
2857       V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0],
2858                                                               SelectorTy),
2859                                   ValueList.getConstantFwdRef(Record[1],CurTy),
2860                                   ValueList.getConstantFwdRef(Record[2],CurTy));
2861       break;
2862     }
2863     case bitc::CST_CODE_CE_EXTRACTELT
2864         : { // CE_EXTRACTELT: [opty, opval, opty, opval]
2865       if (Record.size() < 3)
2866         return error("Invalid record");
2867       VectorType *OpTy =
2868         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
2869       if (!OpTy)
2870         return error("Invalid record");
2871       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
2872       Constant *Op1 = nullptr;
2873       if (Record.size() == 4) {
2874         Type *IdxTy = getTypeByID(Record[2]);
2875         if (!IdxTy)
2876           return error("Invalid record");
2877         Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy);
2878       } else // TODO: Remove with llvm 4.0
2879         Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
2880       if (!Op1)
2881         return error("Invalid record");
2882       V = ConstantExpr::getExtractElement(Op0, Op1);
2883       break;
2884     }
2885     case bitc::CST_CODE_CE_INSERTELT
2886         : { // CE_INSERTELT: [opval, opval, opty, opval]
2887       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
2888       if (Record.size() < 3 || !OpTy)
2889         return error("Invalid record");
2890       Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
2891       Constant *Op1 = ValueList.getConstantFwdRef(Record[1],
2892                                                   OpTy->getElementType());
2893       Constant *Op2 = nullptr;
2894       if (Record.size() == 4) {
2895         Type *IdxTy = getTypeByID(Record[2]);
2896         if (!IdxTy)
2897           return error("Invalid record");
2898         Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy);
2899       } else // TODO: Remove with llvm 4.0
2900         Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
2901       if (!Op2)
2902         return error("Invalid record");
2903       V = ConstantExpr::getInsertElement(Op0, Op1, Op2);
2904       break;
2905     }
2906     case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
2907       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
2908       if (Record.size() < 3 || !OpTy)
2909         return error("Invalid record");
2910       Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
2911       Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy);
2912       Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
2913                                                  OpTy->getNumElements());
2914       Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy);
2915       V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
2916       break;
2917     }
2918     case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval]
2919       VectorType *RTy = dyn_cast<VectorType>(CurTy);
2920       VectorType *OpTy =
2921         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
2922       if (Record.size() < 4 || !RTy || !OpTy)
2923         return error("Invalid record");
2924       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
2925       Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
2926       Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
2927                                                  RTy->getNumElements());
2928       Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy);
2929       V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
2930       break;
2931     }
2932     case bitc::CST_CODE_CE_CMP: {     // CE_CMP: [opty, opval, opval, pred]
2933       if (Record.size() < 4)
2934         return error("Invalid record");
2935       Type *OpTy = getTypeByID(Record[0]);
2936       if (!OpTy)
2937         return error("Invalid record");
2938       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
2939       Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
2940 
2941       if (OpTy->isFPOrFPVectorTy())
2942         V = ConstantExpr::getFCmp(Record[3], Op0, Op1);
2943       else
2944         V = ConstantExpr::getICmp(Record[3], Op0, Op1);
2945       break;
2946     }
2947     // This maintains backward compatibility, pre-asm dialect keywords.
2948     // FIXME: Remove with the 4.0 release.
2949     case bitc::CST_CODE_INLINEASM_OLD: {
2950       if (Record.size() < 2)
2951         return error("Invalid record");
2952       std::string AsmStr, ConstrStr;
2953       bool HasSideEffects = Record[0] & 1;
2954       bool IsAlignStack = Record[0] >> 1;
2955       unsigned AsmStrSize = Record[1];
2956       if (2+AsmStrSize >= Record.size())
2957         return error("Invalid record");
2958       unsigned ConstStrSize = Record[2+AsmStrSize];
2959       if (3+AsmStrSize+ConstStrSize > Record.size())
2960         return error("Invalid record");
2961 
2962       for (unsigned i = 0; i != AsmStrSize; ++i)
2963         AsmStr += (char)Record[2+i];
2964       for (unsigned i = 0; i != ConstStrSize; ++i)
2965         ConstrStr += (char)Record[3+AsmStrSize+i];
2966       PointerType *PTy = cast<PointerType>(CurTy);
2967       V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()),
2968                          AsmStr, ConstrStr, HasSideEffects, IsAlignStack);
2969       break;
2970     }
2971     // This version adds support for the asm dialect keywords (e.g.,
2972     // inteldialect).
2973     case bitc::CST_CODE_INLINEASM: {
2974       if (Record.size() < 2)
2975         return error("Invalid record");
2976       std::string AsmStr, ConstrStr;
2977       bool HasSideEffects = Record[0] & 1;
2978       bool IsAlignStack = (Record[0] >> 1) & 1;
2979       unsigned AsmDialect = Record[0] >> 2;
2980       unsigned AsmStrSize = Record[1];
2981       if (2+AsmStrSize >= Record.size())
2982         return error("Invalid record");
2983       unsigned ConstStrSize = Record[2+AsmStrSize];
2984       if (3+AsmStrSize+ConstStrSize > Record.size())
2985         return error("Invalid record");
2986 
2987       for (unsigned i = 0; i != AsmStrSize; ++i)
2988         AsmStr += (char)Record[2+i];
2989       for (unsigned i = 0; i != ConstStrSize; ++i)
2990         ConstrStr += (char)Record[3+AsmStrSize+i];
2991       PointerType *PTy = cast<PointerType>(CurTy);
2992       V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()),
2993                          AsmStr, ConstrStr, HasSideEffects, IsAlignStack,
2994                          InlineAsm::AsmDialect(AsmDialect));
2995       break;
2996     }
2997     case bitc::CST_CODE_BLOCKADDRESS:{
2998       if (Record.size() < 3)
2999         return error("Invalid record");
3000       Type *FnTy = getTypeByID(Record[0]);
3001       if (!FnTy)
3002         return error("Invalid record");
3003       Function *Fn =
3004         dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy));
3005       if (!Fn)
3006         return error("Invalid record");
3007 
3008       // If the function is already parsed we can insert the block address right
3009       // away.
3010       BasicBlock *BB;
3011       unsigned BBID = Record[2];
3012       if (!BBID)
3013         // Invalid reference to entry block.
3014         return error("Invalid ID");
3015       if (!Fn->empty()) {
3016         Function::iterator BBI = Fn->begin(), BBE = Fn->end();
3017         for (size_t I = 0, E = BBID; I != E; ++I) {
3018           if (BBI == BBE)
3019             return error("Invalid ID");
3020           ++BBI;
3021         }
3022         BB = &*BBI;
3023       } else {
3024         // Otherwise insert a placeholder and remember it so it can be inserted
3025         // when the function is parsed.
3026         auto &FwdBBs = BasicBlockFwdRefs[Fn];
3027         if (FwdBBs.empty())
3028           BasicBlockFwdRefQueue.push_back(Fn);
3029         if (FwdBBs.size() < BBID + 1)
3030           FwdBBs.resize(BBID + 1);
3031         if (!FwdBBs[BBID])
3032           FwdBBs[BBID] = BasicBlock::Create(Context);
3033         BB = FwdBBs[BBID];
3034       }
3035       V = BlockAddress::get(Fn, BB);
3036       break;
3037     }
3038     }
3039 
3040     ValueList.assignValue(V, NextCstNo);
3041     ++NextCstNo;
3042   }
3043 }
3044 
3045 std::error_code BitcodeReader::parseUseLists() {
3046   if (Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID))
3047     return error("Invalid record");
3048 
3049   // Read all the records.
3050   SmallVector<uint64_t, 64> Record;
3051   while (1) {
3052     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
3053 
3054     switch (Entry.Kind) {
3055     case BitstreamEntry::SubBlock: // Handled for us already.
3056     case BitstreamEntry::Error:
3057       return error("Malformed block");
3058     case BitstreamEntry::EndBlock:
3059       return std::error_code();
3060     case BitstreamEntry::Record:
3061       // The interesting case.
3062       break;
3063     }
3064 
3065     // Read a use list record.
3066     Record.clear();
3067     bool IsBB = false;
3068     switch (Stream.readRecord(Entry.ID, Record)) {
3069     default:  // Default behavior: unknown type.
3070       break;
3071     case bitc::USELIST_CODE_BB:
3072       IsBB = true;
3073       // fallthrough
3074     case bitc::USELIST_CODE_DEFAULT: {
3075       unsigned RecordLength = Record.size();
3076       if (RecordLength < 3)
3077         // Records should have at least an ID and two indexes.
3078         return error("Invalid record");
3079       unsigned ID = Record.back();
3080       Record.pop_back();
3081 
3082       Value *V;
3083       if (IsBB) {
3084         assert(ID < FunctionBBs.size() && "Basic block not found");
3085         V = FunctionBBs[ID];
3086       } else
3087         V = ValueList[ID];
3088       unsigned NumUses = 0;
3089       SmallDenseMap<const Use *, unsigned, 16> Order;
3090       for (const Use &U : V->materialized_uses()) {
3091         if (++NumUses > Record.size())
3092           break;
3093         Order[&U] = Record[NumUses - 1];
3094       }
3095       if (Order.size() != Record.size() || NumUses > Record.size())
3096         // Mismatches can happen if the functions are being materialized lazily
3097         // (out-of-order), or a value has been upgraded.
3098         break;
3099 
3100       V->sortUseList([&](const Use &L, const Use &R) {
3101         return Order.lookup(&L) < Order.lookup(&R);
3102       });
3103       break;
3104     }
3105     }
3106   }
3107 }
3108 
3109 /// When we see the block for metadata, remember where it is and then skip it.
3110 /// This lets us lazily deserialize the metadata.
3111 std::error_code BitcodeReader::rememberAndSkipMetadata() {
3112   // Save the current stream state.
3113   uint64_t CurBit = Stream.GetCurrentBitNo();
3114   DeferredMetadataInfo.push_back(CurBit);
3115 
3116   // Skip over the block for now.
3117   if (Stream.SkipBlock())
3118     return error("Invalid record");
3119   return std::error_code();
3120 }
3121 
3122 std::error_code BitcodeReader::materializeMetadata() {
3123   for (uint64_t BitPos : DeferredMetadataInfo) {
3124     // Move the bit stream to the saved position.
3125     Stream.JumpToBit(BitPos);
3126     if (std::error_code EC = parseMetadata(true))
3127       return EC;
3128   }
3129   DeferredMetadataInfo.clear();
3130   return std::error_code();
3131 }
3132 
3133 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; }
3134 
3135 /// When we see the block for a function body, remember where it is and then
3136 /// skip it.  This lets us lazily deserialize the functions.
3137 std::error_code BitcodeReader::rememberAndSkipFunctionBody() {
3138   // Get the function we are talking about.
3139   if (FunctionsWithBodies.empty())
3140     return error("Insufficient function protos");
3141 
3142   Function *Fn = FunctionsWithBodies.back();
3143   FunctionsWithBodies.pop_back();
3144 
3145   // Save the current stream state.
3146   uint64_t CurBit = Stream.GetCurrentBitNo();
3147   assert(
3148       (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) &&
3149       "Mismatch between VST and scanned function offsets");
3150   DeferredFunctionInfo[Fn] = CurBit;
3151 
3152   // Skip over the function block for now.
3153   if (Stream.SkipBlock())
3154     return error("Invalid record");
3155   return std::error_code();
3156 }
3157 
3158 std::error_code BitcodeReader::globalCleanup() {
3159   // Patch the initializers for globals and aliases up.
3160   resolveGlobalAndAliasInits();
3161   if (!GlobalInits.empty() || !AliasInits.empty())
3162     return error("Malformed global initializer set");
3163 
3164   // Look for intrinsic functions which need to be upgraded at some point
3165   for (Function &F : *TheModule) {
3166     Function *NewFn;
3167     if (UpgradeIntrinsicFunction(&F, NewFn))
3168       UpgradedIntrinsics[&F] = NewFn;
3169   }
3170 
3171   // Look for global variables which need to be renamed.
3172   for (GlobalVariable &GV : TheModule->globals())
3173     UpgradeGlobalVariable(&GV);
3174 
3175   // Force deallocation of memory for these vectors to favor the client that
3176   // want lazy deserialization.
3177   std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits);
3178   std::vector<std::pair<GlobalAlias*, unsigned> >().swap(AliasInits);
3179   return std::error_code();
3180 }
3181 
3182 /// Support for lazy parsing of function bodies. This is required if we
3183 /// either have an old bitcode file without a VST forward declaration record,
3184 /// or if we have an anonymous function being materialized, since anonymous
3185 /// functions do not have a name and are therefore not in the VST.
3186 std::error_code BitcodeReader::rememberAndSkipFunctionBodies() {
3187   Stream.JumpToBit(NextUnreadBit);
3188 
3189   if (Stream.AtEndOfStream())
3190     return error("Could not find function in stream");
3191 
3192   if (!SeenFirstFunctionBody)
3193     return error("Trying to materialize functions before seeing function blocks");
3194 
3195   // An old bitcode file with the symbol table at the end would have
3196   // finished the parse greedily.
3197   assert(SeenValueSymbolTable);
3198 
3199   SmallVector<uint64_t, 64> Record;
3200 
3201   while (1) {
3202     BitstreamEntry Entry = Stream.advance();
3203     switch (Entry.Kind) {
3204     default:
3205       return error("Expect SubBlock");
3206     case BitstreamEntry::SubBlock:
3207       switch (Entry.ID) {
3208       default:
3209         return error("Expect function block");
3210       case bitc::FUNCTION_BLOCK_ID:
3211         if (std::error_code EC = rememberAndSkipFunctionBody())
3212           return EC;
3213         NextUnreadBit = Stream.GetCurrentBitNo();
3214         return std::error_code();
3215       }
3216     }
3217   }
3218 }
3219 
3220 std::error_code BitcodeReader::parseBitcodeVersion() {
3221   if (Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID))
3222     return error("Invalid record");
3223 
3224   // Read all the records.
3225   SmallVector<uint64_t, 64> Record;
3226   while (1) {
3227     BitstreamEntry Entry = Stream.advance();
3228 
3229     switch (Entry.Kind) {
3230     default:
3231     case BitstreamEntry::Error:
3232       return error("Malformed block");
3233     case BitstreamEntry::EndBlock:
3234       return std::error_code();
3235     case BitstreamEntry::Record:
3236       // The interesting case.
3237       break;
3238     }
3239 
3240     // Read a record.
3241     Record.clear();
3242     unsigned BitCode = Stream.readRecord(Entry.ID, Record);
3243     switch (BitCode) {
3244     default: // Default behavior: reject
3245       return error("Invalid value");
3246     case bitc::IDENTIFICATION_CODE_STRING: { // IDENTIFICATION:      [strchr x
3247                                              // N]
3248       convertToString(Record, 0, ProducerIdentification);
3249       break;
3250     }
3251     case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH:      [epoch#]
3252       unsigned epoch = (unsigned)Record[0];
3253       if (epoch != bitc::BITCODE_CURRENT_EPOCH) {
3254         return error(
3255           Twine("Incompatible epoch: Bitcode '") + Twine(epoch) +
3256           "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'");
3257       }
3258     }
3259     }
3260   }
3261 }
3262 
3263 std::error_code BitcodeReader::parseModule(uint64_t ResumeBit,
3264                                            bool ShouldLazyLoadMetadata) {
3265   if (ResumeBit)
3266     Stream.JumpToBit(ResumeBit);
3267   else if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
3268     return error("Invalid record");
3269 
3270   SmallVector<uint64_t, 64> Record;
3271   std::vector<std::string> SectionTable;
3272   std::vector<std::string> GCTable;
3273 
3274   // Read all the records for this module.
3275   while (1) {
3276     BitstreamEntry Entry = Stream.advance();
3277 
3278     switch (Entry.Kind) {
3279     case BitstreamEntry::Error:
3280       return error("Malformed block");
3281     case BitstreamEntry::EndBlock:
3282       return globalCleanup();
3283 
3284     case BitstreamEntry::SubBlock:
3285       switch (Entry.ID) {
3286       default:  // Skip unknown content.
3287         if (Stream.SkipBlock())
3288           return error("Invalid record");
3289         break;
3290       case bitc::BLOCKINFO_BLOCK_ID:
3291         if (Stream.ReadBlockInfoBlock())
3292           return error("Malformed block");
3293         break;
3294       case bitc::PARAMATTR_BLOCK_ID:
3295         if (std::error_code EC = parseAttributeBlock())
3296           return EC;
3297         break;
3298       case bitc::PARAMATTR_GROUP_BLOCK_ID:
3299         if (std::error_code EC = parseAttributeGroupBlock())
3300           return EC;
3301         break;
3302       case bitc::TYPE_BLOCK_ID_NEW:
3303         if (std::error_code EC = parseTypeTable())
3304           return EC;
3305         break;
3306       case bitc::VALUE_SYMTAB_BLOCK_ID:
3307         if (!SeenValueSymbolTable) {
3308           // Either this is an old form VST without function index and an
3309           // associated VST forward declaration record (which would have caused
3310           // the VST to be jumped to and parsed before it was encountered
3311           // normally in the stream), or there were no function blocks to
3312           // trigger an earlier parsing of the VST.
3313           assert(VSTOffset == 0 || FunctionsWithBodies.empty());
3314           if (std::error_code EC = parseValueSymbolTable())
3315             return EC;
3316           SeenValueSymbolTable = true;
3317         } else {
3318           // We must have had a VST forward declaration record, which caused
3319           // the parser to jump to and parse the VST earlier.
3320           assert(VSTOffset > 0);
3321           if (Stream.SkipBlock())
3322             return error("Invalid record");
3323         }
3324         break;
3325       case bitc::CONSTANTS_BLOCK_ID:
3326         if (std::error_code EC = parseConstants())
3327           return EC;
3328         if (std::error_code EC = resolveGlobalAndAliasInits())
3329           return EC;
3330         break;
3331       case bitc::METADATA_BLOCK_ID:
3332         if (ShouldLazyLoadMetadata && !IsMetadataMaterialized) {
3333           if (std::error_code EC = rememberAndSkipMetadata())
3334             return EC;
3335           break;
3336         }
3337         assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata");
3338         if (std::error_code EC = parseMetadata(true))
3339           return EC;
3340         break;
3341       case bitc::METADATA_KIND_BLOCK_ID:
3342         if (std::error_code EC = parseMetadataKinds())
3343           return EC;
3344         break;
3345       case bitc::FUNCTION_BLOCK_ID:
3346         // If this is the first function body we've seen, reverse the
3347         // FunctionsWithBodies list.
3348         if (!SeenFirstFunctionBody) {
3349           std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end());
3350           if (std::error_code EC = globalCleanup())
3351             return EC;
3352           SeenFirstFunctionBody = true;
3353         }
3354 
3355         if (VSTOffset > 0) {
3356           // If we have a VST forward declaration record, make sure we
3357           // parse the VST now if we haven't already. It is needed to
3358           // set up the DeferredFunctionInfo vector for lazy reading.
3359           if (!SeenValueSymbolTable) {
3360             if (std::error_code EC =
3361                     BitcodeReader::parseValueSymbolTable(VSTOffset))
3362               return EC;
3363             SeenValueSymbolTable = true;
3364             // Fall through so that we record the NextUnreadBit below.
3365             // This is necessary in case we have an anonymous function that
3366             // is later materialized. Since it will not have a VST entry we
3367             // need to fall back to the lazy parse to find its offset.
3368           } else {
3369             // If we have a VST forward declaration record, but have already
3370             // parsed the VST (just above, when the first function body was
3371             // encountered here), then we are resuming the parse after
3372             // materializing functions. The ResumeBit points to the
3373             // start of the last function block recorded in the
3374             // DeferredFunctionInfo map. Skip it.
3375             if (Stream.SkipBlock())
3376               return error("Invalid record");
3377             continue;
3378           }
3379         }
3380 
3381         // Support older bitcode files that did not have the function
3382         // index in the VST, nor a VST forward declaration record, as
3383         // well as anonymous functions that do not have VST entries.
3384         // Build the DeferredFunctionInfo vector on the fly.
3385         if (std::error_code EC = rememberAndSkipFunctionBody())
3386           return EC;
3387 
3388         // Suspend parsing when we reach the function bodies. Subsequent
3389         // materialization calls will resume it when necessary. If the bitcode
3390         // file is old, the symbol table will be at the end instead and will not
3391         // have been seen yet. In this case, just finish the parse now.
3392         if (SeenValueSymbolTable) {
3393           NextUnreadBit = Stream.GetCurrentBitNo();
3394           return std::error_code();
3395         }
3396         break;
3397       case bitc::USELIST_BLOCK_ID:
3398         if (std::error_code EC = parseUseLists())
3399           return EC;
3400         break;
3401       case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID:
3402         if (std::error_code EC = parseOperandBundleTags())
3403           return EC;
3404         break;
3405       }
3406       continue;
3407 
3408     case BitstreamEntry::Record:
3409       // The interesting case.
3410       break;
3411     }
3412 
3413     // Read a record.
3414     auto BitCode = Stream.readRecord(Entry.ID, Record);
3415     switch (BitCode) {
3416     default: break;  // Default behavior, ignore unknown content.
3417     case bitc::MODULE_CODE_VERSION: {  // VERSION: [version#]
3418       if (Record.size() < 1)
3419         return error("Invalid record");
3420       // Only version #0 and #1 are supported so far.
3421       unsigned module_version = Record[0];
3422       switch (module_version) {
3423         default:
3424           return error("Invalid value");
3425         case 0:
3426           UseRelativeIDs = false;
3427           break;
3428         case 1:
3429           UseRelativeIDs = true;
3430           break;
3431       }
3432       break;
3433     }
3434     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
3435       std::string S;
3436       if (convertToString(Record, 0, S))
3437         return error("Invalid record");
3438       TheModule->setTargetTriple(S);
3439       break;
3440     }
3441     case bitc::MODULE_CODE_DATALAYOUT: {  // DATALAYOUT: [strchr x N]
3442       std::string S;
3443       if (convertToString(Record, 0, S))
3444         return error("Invalid record");
3445       TheModule->setDataLayout(S);
3446       break;
3447     }
3448     case bitc::MODULE_CODE_ASM: {  // ASM: [strchr x N]
3449       std::string S;
3450       if (convertToString(Record, 0, S))
3451         return error("Invalid record");
3452       TheModule->setModuleInlineAsm(S);
3453       break;
3454     }
3455     case bitc::MODULE_CODE_DEPLIB: {  // DEPLIB: [strchr x N]
3456       // FIXME: Remove in 4.0.
3457       std::string S;
3458       if (convertToString(Record, 0, S))
3459         return error("Invalid record");
3460       // Ignore value.
3461       break;
3462     }
3463     case bitc::MODULE_CODE_SECTIONNAME: {  // SECTIONNAME: [strchr x N]
3464       std::string S;
3465       if (convertToString(Record, 0, S))
3466         return error("Invalid record");
3467       SectionTable.push_back(S);
3468       break;
3469     }
3470     case bitc::MODULE_CODE_GCNAME: {  // SECTIONNAME: [strchr x N]
3471       std::string S;
3472       if (convertToString(Record, 0, S))
3473         return error("Invalid record");
3474       GCTable.push_back(S);
3475       break;
3476     }
3477     case bitc::MODULE_CODE_COMDAT: { // COMDAT: [selection_kind, name]
3478       if (Record.size() < 2)
3479         return error("Invalid record");
3480       Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]);
3481       unsigned ComdatNameSize = Record[1];
3482       std::string ComdatName;
3483       ComdatName.reserve(ComdatNameSize);
3484       for (unsigned i = 0; i != ComdatNameSize; ++i)
3485         ComdatName += (char)Record[2 + i];
3486       Comdat *C = TheModule->getOrInsertComdat(ComdatName);
3487       C->setSelectionKind(SK);
3488       ComdatList.push_back(C);
3489       break;
3490     }
3491     // GLOBALVAR: [pointer type, isconst, initid,
3492     //             linkage, alignment, section, visibility, threadlocal,
3493     //             unnamed_addr, externally_initialized, dllstorageclass,
3494     //             comdat]
3495     case bitc::MODULE_CODE_GLOBALVAR: {
3496       if (Record.size() < 6)
3497         return error("Invalid record");
3498       Type *Ty = getTypeByID(Record[0]);
3499       if (!Ty)
3500         return error("Invalid record");
3501       bool isConstant = Record[1] & 1;
3502       bool explicitType = Record[1] & 2;
3503       unsigned AddressSpace;
3504       if (explicitType) {
3505         AddressSpace = Record[1] >> 2;
3506       } else {
3507         if (!Ty->isPointerTy())
3508           return error("Invalid type for value");
3509         AddressSpace = cast<PointerType>(Ty)->getAddressSpace();
3510         Ty = cast<PointerType>(Ty)->getElementType();
3511       }
3512 
3513       uint64_t RawLinkage = Record[3];
3514       GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
3515       unsigned Alignment;
3516       if (std::error_code EC = parseAlignmentValue(Record[4], Alignment))
3517         return EC;
3518       std::string Section;
3519       if (Record[5]) {
3520         if (Record[5]-1 >= SectionTable.size())
3521           return error("Invalid ID");
3522         Section = SectionTable[Record[5]-1];
3523       }
3524       GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility;
3525       // Local linkage must have default visibility.
3526       if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage))
3527         // FIXME: Change to an error if non-default in 4.0.
3528         Visibility = getDecodedVisibility(Record[6]);
3529 
3530       GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal;
3531       if (Record.size() > 7)
3532         TLM = getDecodedThreadLocalMode(Record[7]);
3533 
3534       bool UnnamedAddr = false;
3535       if (Record.size() > 8)
3536         UnnamedAddr = Record[8];
3537 
3538       bool ExternallyInitialized = false;
3539       if (Record.size() > 9)
3540         ExternallyInitialized = Record[9];
3541 
3542       GlobalVariable *NewGV =
3543         new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, "", nullptr,
3544                            TLM, AddressSpace, ExternallyInitialized);
3545       NewGV->setAlignment(Alignment);
3546       if (!Section.empty())
3547         NewGV->setSection(Section);
3548       NewGV->setVisibility(Visibility);
3549       NewGV->setUnnamedAddr(UnnamedAddr);
3550 
3551       if (Record.size() > 10)
3552         NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10]));
3553       else
3554         upgradeDLLImportExportLinkage(NewGV, RawLinkage);
3555 
3556       ValueList.push_back(NewGV);
3557 
3558       // Remember which value to use for the global initializer.
3559       if (unsigned InitID = Record[2])
3560         GlobalInits.push_back(std::make_pair(NewGV, InitID-1));
3561 
3562       if (Record.size() > 11) {
3563         if (unsigned ComdatID = Record[11]) {
3564           if (ComdatID > ComdatList.size())
3565             return error("Invalid global variable comdat ID");
3566           NewGV->setComdat(ComdatList[ComdatID - 1]);
3567         }
3568       } else if (hasImplicitComdat(RawLinkage)) {
3569         NewGV->setComdat(reinterpret_cast<Comdat *>(1));
3570       }
3571       break;
3572     }
3573     // FUNCTION:  [type, callingconv, isproto, linkage, paramattr,
3574     //             alignment, section, visibility, gc, unnamed_addr,
3575     //             prologuedata, dllstorageclass, comdat, prefixdata]
3576     case bitc::MODULE_CODE_FUNCTION: {
3577       if (Record.size() < 8)
3578         return error("Invalid record");
3579       Type *Ty = getTypeByID(Record[0]);
3580       if (!Ty)
3581         return error("Invalid record");
3582       if (auto *PTy = dyn_cast<PointerType>(Ty))
3583         Ty = PTy->getElementType();
3584       auto *FTy = dyn_cast<FunctionType>(Ty);
3585       if (!FTy)
3586         return error("Invalid type for value");
3587       auto CC = static_cast<CallingConv::ID>(Record[1]);
3588       if (CC & ~CallingConv::MaxID)
3589         return error("Invalid calling convention ID");
3590 
3591       Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage,
3592                                         "", TheModule);
3593 
3594       Func->setCallingConv(CC);
3595       bool isProto = Record[2];
3596       uint64_t RawLinkage = Record[3];
3597       Func->setLinkage(getDecodedLinkage(RawLinkage));
3598       Func->setAttributes(getAttributes(Record[4]));
3599 
3600       unsigned Alignment;
3601       if (std::error_code EC = parseAlignmentValue(Record[5], Alignment))
3602         return EC;
3603       Func->setAlignment(Alignment);
3604       if (Record[6]) {
3605         if (Record[6]-1 >= SectionTable.size())
3606           return error("Invalid ID");
3607         Func->setSection(SectionTable[Record[6]-1]);
3608       }
3609       // Local linkage must have default visibility.
3610       if (!Func->hasLocalLinkage())
3611         // FIXME: Change to an error if non-default in 4.0.
3612         Func->setVisibility(getDecodedVisibility(Record[7]));
3613       if (Record.size() > 8 && Record[8]) {
3614         if (Record[8]-1 >= GCTable.size())
3615           return error("Invalid ID");
3616         Func->setGC(GCTable[Record[8]-1].c_str());
3617       }
3618       bool UnnamedAddr = false;
3619       if (Record.size() > 9)
3620         UnnamedAddr = Record[9];
3621       Func->setUnnamedAddr(UnnamedAddr);
3622       if (Record.size() > 10 && Record[10] != 0)
3623         FunctionPrologues.push_back(std::make_pair(Func, Record[10]-1));
3624 
3625       if (Record.size() > 11)
3626         Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11]));
3627       else
3628         upgradeDLLImportExportLinkage(Func, RawLinkage);
3629 
3630       if (Record.size() > 12) {
3631         if (unsigned ComdatID = Record[12]) {
3632           if (ComdatID > ComdatList.size())
3633             return error("Invalid function comdat ID");
3634           Func->setComdat(ComdatList[ComdatID - 1]);
3635         }
3636       } else if (hasImplicitComdat(RawLinkage)) {
3637         Func->setComdat(reinterpret_cast<Comdat *>(1));
3638       }
3639 
3640       if (Record.size() > 13 && Record[13] != 0)
3641         FunctionPrefixes.push_back(std::make_pair(Func, Record[13]-1));
3642 
3643       if (Record.size() > 14 && Record[14] != 0)
3644         FunctionPersonalityFns.push_back(std::make_pair(Func, Record[14] - 1));
3645 
3646       ValueList.push_back(Func);
3647 
3648       // If this is a function with a body, remember the prototype we are
3649       // creating now, so that we can match up the body with them later.
3650       if (!isProto) {
3651         Func->setIsMaterializable(true);
3652         FunctionsWithBodies.push_back(Func);
3653         DeferredFunctionInfo[Func] = 0;
3654       }
3655       break;
3656     }
3657     // ALIAS: [alias type, addrspace, aliasee val#, linkage]
3658     // ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, dllstorageclass]
3659     case bitc::MODULE_CODE_ALIAS:
3660     case bitc::MODULE_CODE_ALIAS_OLD: {
3661       bool NewRecord = BitCode == bitc::MODULE_CODE_ALIAS;
3662       if (Record.size() < (3 + (unsigned)NewRecord))
3663         return error("Invalid record");
3664       unsigned OpNum = 0;
3665       Type *Ty = getTypeByID(Record[OpNum++]);
3666       if (!Ty)
3667         return error("Invalid record");
3668 
3669       unsigned AddrSpace;
3670       if (!NewRecord) {
3671         auto *PTy = dyn_cast<PointerType>(Ty);
3672         if (!PTy)
3673           return error("Invalid type for value");
3674         Ty = PTy->getElementType();
3675         AddrSpace = PTy->getAddressSpace();
3676       } else {
3677         AddrSpace = Record[OpNum++];
3678       }
3679 
3680       auto Val = Record[OpNum++];
3681       auto Linkage = Record[OpNum++];
3682       auto *NewGA = GlobalAlias::create(
3683           Ty, AddrSpace, getDecodedLinkage(Linkage), "", TheModule);
3684       // Old bitcode files didn't have visibility field.
3685       // Local linkage must have default visibility.
3686       if (OpNum != Record.size()) {
3687         auto VisInd = OpNum++;
3688         if (!NewGA->hasLocalLinkage())
3689           // FIXME: Change to an error if non-default in 4.0.
3690           NewGA->setVisibility(getDecodedVisibility(Record[VisInd]));
3691       }
3692       if (OpNum != Record.size())
3693         NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++]));
3694       else
3695         upgradeDLLImportExportLinkage(NewGA, Linkage);
3696       if (OpNum != Record.size())
3697         NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++]));
3698       if (OpNum != Record.size())
3699         NewGA->setUnnamedAddr(Record[OpNum++]);
3700       ValueList.push_back(NewGA);
3701       AliasInits.push_back(std::make_pair(NewGA, Val));
3702       break;
3703     }
3704     /// MODULE_CODE_PURGEVALS: [numvals]
3705     case bitc::MODULE_CODE_PURGEVALS:
3706       // Trim down the value list to the specified size.
3707       if (Record.size() < 1 || Record[0] > ValueList.size())
3708         return error("Invalid record");
3709       ValueList.shrinkTo(Record[0]);
3710       break;
3711     /// MODULE_CODE_VSTOFFSET: [offset]
3712     case bitc::MODULE_CODE_VSTOFFSET:
3713       if (Record.size() < 1)
3714         return error("Invalid record");
3715       VSTOffset = Record[0];
3716       break;
3717     /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
3718     case bitc::MODULE_CODE_SOURCE_FILENAME:
3719       SmallString<128> ValueName;
3720       if (convertToString(Record, 0, ValueName))
3721         return error("Invalid record");
3722       TheModule->setSourceFileName(ValueName);
3723       break;
3724     }
3725     Record.clear();
3726   }
3727 }
3728 
3729 /// Helper to read the header common to all bitcode files.
3730 static bool hasValidBitcodeHeader(BitstreamCursor &Stream) {
3731   // Sniff for the signature.
3732   if (Stream.Read(8) != 'B' ||
3733       Stream.Read(8) != 'C' ||
3734       Stream.Read(4) != 0x0 ||
3735       Stream.Read(4) != 0xC ||
3736       Stream.Read(4) != 0xE ||
3737       Stream.Read(4) != 0xD)
3738     return false;
3739   return true;
3740 }
3741 
3742 std::error_code
3743 BitcodeReader::parseBitcodeInto(std::unique_ptr<DataStreamer> Streamer,
3744                                 Module *M, bool ShouldLazyLoadMetadata) {
3745   TheModule = M;
3746 
3747   if (std::error_code EC = initStream(std::move(Streamer)))
3748     return EC;
3749 
3750   // Sniff for the signature.
3751   if (!hasValidBitcodeHeader(Stream))
3752     return error("Invalid bitcode signature");
3753 
3754   // We expect a number of well-defined blocks, though we don't necessarily
3755   // need to understand them all.
3756   while (1) {
3757     if (Stream.AtEndOfStream()) {
3758       // We didn't really read a proper Module.
3759       return error("Malformed IR file");
3760     }
3761 
3762     BitstreamEntry Entry =
3763       Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs);
3764 
3765     if (Entry.Kind != BitstreamEntry::SubBlock)
3766       return error("Malformed block");
3767 
3768     if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) {
3769       parseBitcodeVersion();
3770       continue;
3771     }
3772 
3773     if (Entry.ID == bitc::MODULE_BLOCK_ID)
3774       return parseModule(0, ShouldLazyLoadMetadata);
3775 
3776     if (Stream.SkipBlock())
3777       return error("Invalid record");
3778   }
3779 }
3780 
3781 ErrorOr<std::string> BitcodeReader::parseModuleTriple() {
3782   if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
3783     return error("Invalid record");
3784 
3785   SmallVector<uint64_t, 64> Record;
3786 
3787   std::string Triple;
3788   // Read all the records for this module.
3789   while (1) {
3790     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
3791 
3792     switch (Entry.Kind) {
3793     case BitstreamEntry::SubBlock: // Handled for us already.
3794     case BitstreamEntry::Error:
3795       return error("Malformed block");
3796     case BitstreamEntry::EndBlock:
3797       return Triple;
3798     case BitstreamEntry::Record:
3799       // The interesting case.
3800       break;
3801     }
3802 
3803     // Read a record.
3804     switch (Stream.readRecord(Entry.ID, Record)) {
3805     default: break;  // Default behavior, ignore unknown content.
3806     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
3807       std::string S;
3808       if (convertToString(Record, 0, S))
3809         return error("Invalid record");
3810       Triple = S;
3811       break;
3812     }
3813     }
3814     Record.clear();
3815   }
3816   llvm_unreachable("Exit infinite loop");
3817 }
3818 
3819 ErrorOr<std::string> BitcodeReader::parseTriple() {
3820   if (std::error_code EC = initStream(nullptr))
3821     return EC;
3822 
3823   // Sniff for the signature.
3824   if (!hasValidBitcodeHeader(Stream))
3825     return error("Invalid bitcode signature");
3826 
3827   // We expect a number of well-defined blocks, though we don't necessarily
3828   // need to understand them all.
3829   while (1) {
3830     BitstreamEntry Entry = Stream.advance();
3831 
3832     switch (Entry.Kind) {
3833     case BitstreamEntry::Error:
3834       return error("Malformed block");
3835     case BitstreamEntry::EndBlock:
3836       return std::error_code();
3837 
3838     case BitstreamEntry::SubBlock:
3839       if (Entry.ID == bitc::MODULE_BLOCK_ID)
3840         return parseModuleTriple();
3841 
3842       // Ignore other sub-blocks.
3843       if (Stream.SkipBlock())
3844         return error("Malformed block");
3845       continue;
3846 
3847     case BitstreamEntry::Record:
3848       Stream.skipRecord(Entry.ID);
3849       continue;
3850     }
3851   }
3852 }
3853 
3854 ErrorOr<std::string> BitcodeReader::parseIdentificationBlock() {
3855   if (std::error_code EC = initStream(nullptr))
3856     return EC;
3857 
3858   // Sniff for the signature.
3859   if (!hasValidBitcodeHeader(Stream))
3860     return error("Invalid bitcode signature");
3861 
3862   // We expect a number of well-defined blocks, though we don't necessarily
3863   // need to understand them all.
3864   while (1) {
3865     BitstreamEntry Entry = Stream.advance();
3866     switch (Entry.Kind) {
3867     case BitstreamEntry::Error:
3868       return error("Malformed block");
3869     case BitstreamEntry::EndBlock:
3870       return std::error_code();
3871 
3872     case BitstreamEntry::SubBlock:
3873       if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) {
3874         if (std::error_code EC = parseBitcodeVersion())
3875           return EC;
3876         return ProducerIdentification;
3877       }
3878       // Ignore other sub-blocks.
3879       if (Stream.SkipBlock())
3880         return error("Malformed block");
3881       continue;
3882     case BitstreamEntry::Record:
3883       Stream.skipRecord(Entry.ID);
3884       continue;
3885     }
3886   }
3887 }
3888 
3889 /// Parse metadata attachments.
3890 std::error_code BitcodeReader::parseMetadataAttachment(Function &F) {
3891   if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID))
3892     return error("Invalid record");
3893 
3894   SmallVector<uint64_t, 64> Record;
3895   while (1) {
3896     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
3897 
3898     switch (Entry.Kind) {
3899     case BitstreamEntry::SubBlock: // Handled for us already.
3900     case BitstreamEntry::Error:
3901       return error("Malformed block");
3902     case BitstreamEntry::EndBlock:
3903       return std::error_code();
3904     case BitstreamEntry::Record:
3905       // The interesting case.
3906       break;
3907     }
3908 
3909     // Read a metadata attachment record.
3910     Record.clear();
3911     switch (Stream.readRecord(Entry.ID, Record)) {
3912     default:  // Default behavior: ignore.
3913       break;
3914     case bitc::METADATA_ATTACHMENT: {
3915       unsigned RecordLength = Record.size();
3916       if (Record.empty())
3917         return error("Invalid record");
3918       if (RecordLength % 2 == 0) {
3919         // A function attachment.
3920         for (unsigned I = 0; I != RecordLength; I += 2) {
3921           auto K = MDKindMap.find(Record[I]);
3922           if (K == MDKindMap.end())
3923             return error("Invalid ID");
3924           MDNode *MD = MetadataList.getMDNodeFwdRefOrNull(Record[I + 1]);
3925           if (!MD)
3926             return error("Invalid metadata attachment");
3927           F.setMetadata(K->second, MD);
3928         }
3929         continue;
3930       }
3931 
3932       // An instruction attachment.
3933       Instruction *Inst = InstructionList[Record[0]];
3934       for (unsigned i = 1; i != RecordLength; i = i+2) {
3935         unsigned Kind = Record[i];
3936         DenseMap<unsigned, unsigned>::iterator I =
3937           MDKindMap.find(Kind);
3938         if (I == MDKindMap.end())
3939           return error("Invalid ID");
3940         Metadata *Node = MetadataList.getMetadataFwdRef(Record[i + 1]);
3941         if (isa<LocalAsMetadata>(Node))
3942           // Drop the attachment.  This used to be legal, but there's no
3943           // upgrade path.
3944           break;
3945         MDNode *MD = dyn_cast_or_null<MDNode>(Node);
3946         if (!MD)
3947           return error("Invalid metadata attachment");
3948 
3949         if (HasSeenOldLoopTags && I->second == LLVMContext::MD_loop)
3950           MD = upgradeInstructionLoopAttachment(*MD);
3951 
3952         Inst->setMetadata(I->second, MD);
3953         if (I->second == LLVMContext::MD_tbaa) {
3954           InstsWithTBAATag.push_back(Inst);
3955           continue;
3956         }
3957       }
3958       break;
3959     }
3960     }
3961   }
3962 }
3963 
3964 static std::error_code typeCheckLoadStoreInst(Type *ValType, Type *PtrType) {
3965   LLVMContext &Context = PtrType->getContext();
3966   if (!isa<PointerType>(PtrType))
3967     return error(Context, "Load/Store operand is not a pointer type");
3968   Type *ElemType = cast<PointerType>(PtrType)->getElementType();
3969 
3970   if (ValType && ValType != ElemType)
3971     return error(Context, "Explicit load/store type does not match pointee "
3972                           "type of pointer operand");
3973   if (!PointerType::isLoadableOrStorableType(ElemType))
3974     return error(Context, "Cannot load/store from pointer");
3975   return std::error_code();
3976 }
3977 
3978 /// Lazily parse the specified function body block.
3979 std::error_code BitcodeReader::parseFunctionBody(Function *F) {
3980   if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID))
3981     return error("Invalid record");
3982 
3983   // Unexpected unresolved metadata when parsing function.
3984   if (MetadataList.hasFwdRefs())
3985     return error("Invalid function metadata: incoming forward references");
3986 
3987   InstructionList.clear();
3988   unsigned ModuleValueListSize = ValueList.size();
3989   unsigned ModuleMetadataListSize = MetadataList.size();
3990 
3991   // Add all the function arguments to the value table.
3992   for (Argument &I : F->args())
3993     ValueList.push_back(&I);
3994 
3995   unsigned NextValueNo = ValueList.size();
3996   BasicBlock *CurBB = nullptr;
3997   unsigned CurBBNo = 0;
3998 
3999   DebugLoc LastLoc;
4000   auto getLastInstruction = [&]() -> Instruction * {
4001     if (CurBB && !CurBB->empty())
4002       return &CurBB->back();
4003     else if (CurBBNo && FunctionBBs[CurBBNo - 1] &&
4004              !FunctionBBs[CurBBNo - 1]->empty())
4005       return &FunctionBBs[CurBBNo - 1]->back();
4006     return nullptr;
4007   };
4008 
4009   std::vector<OperandBundleDef> OperandBundles;
4010 
4011   // Read all the records.
4012   SmallVector<uint64_t, 64> Record;
4013   while (1) {
4014     BitstreamEntry Entry = Stream.advance();
4015 
4016     switch (Entry.Kind) {
4017     case BitstreamEntry::Error:
4018       return error("Malformed block");
4019     case BitstreamEntry::EndBlock:
4020       goto OutOfRecordLoop;
4021 
4022     case BitstreamEntry::SubBlock:
4023       switch (Entry.ID) {
4024       default:  // Skip unknown content.
4025         if (Stream.SkipBlock())
4026           return error("Invalid record");
4027         break;
4028       case bitc::CONSTANTS_BLOCK_ID:
4029         if (std::error_code EC = parseConstants())
4030           return EC;
4031         NextValueNo = ValueList.size();
4032         break;
4033       case bitc::VALUE_SYMTAB_BLOCK_ID:
4034         if (std::error_code EC = parseValueSymbolTable())
4035           return EC;
4036         break;
4037       case bitc::METADATA_ATTACHMENT_ID:
4038         if (std::error_code EC = parseMetadataAttachment(*F))
4039           return EC;
4040         break;
4041       case bitc::METADATA_BLOCK_ID:
4042         if (std::error_code EC = parseMetadata())
4043           return EC;
4044         break;
4045       case bitc::USELIST_BLOCK_ID:
4046         if (std::error_code EC = parseUseLists())
4047           return EC;
4048         break;
4049       }
4050       continue;
4051 
4052     case BitstreamEntry::Record:
4053       // The interesting case.
4054       break;
4055     }
4056 
4057     // Read a record.
4058     Record.clear();
4059     Instruction *I = nullptr;
4060     unsigned BitCode = Stream.readRecord(Entry.ID, Record);
4061     switch (BitCode) {
4062     default: // Default behavior: reject
4063       return error("Invalid value");
4064     case bitc::FUNC_CODE_DECLAREBLOCKS: {   // DECLAREBLOCKS: [nblocks]
4065       if (Record.size() < 1 || Record[0] == 0)
4066         return error("Invalid record");
4067       // Create all the basic blocks for the function.
4068       FunctionBBs.resize(Record[0]);
4069 
4070       // See if anything took the address of blocks in this function.
4071       auto BBFRI = BasicBlockFwdRefs.find(F);
4072       if (BBFRI == BasicBlockFwdRefs.end()) {
4073         for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i)
4074           FunctionBBs[i] = BasicBlock::Create(Context, "", F);
4075       } else {
4076         auto &BBRefs = BBFRI->second;
4077         // Check for invalid basic block references.
4078         if (BBRefs.size() > FunctionBBs.size())
4079           return error("Invalid ID");
4080         assert(!BBRefs.empty() && "Unexpected empty array");
4081         assert(!BBRefs.front() && "Invalid reference to entry block");
4082         for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E;
4083              ++I)
4084           if (I < RE && BBRefs[I]) {
4085             BBRefs[I]->insertInto(F);
4086             FunctionBBs[I] = BBRefs[I];
4087           } else {
4088             FunctionBBs[I] = BasicBlock::Create(Context, "", F);
4089           }
4090 
4091         // Erase from the table.
4092         BasicBlockFwdRefs.erase(BBFRI);
4093       }
4094 
4095       CurBB = FunctionBBs[0];
4096       continue;
4097     }
4098 
4099     case bitc::FUNC_CODE_DEBUG_LOC_AGAIN:  // DEBUG_LOC_AGAIN
4100       // This record indicates that the last instruction is at the same
4101       // location as the previous instruction with a location.
4102       I = getLastInstruction();
4103 
4104       if (!I)
4105         return error("Invalid record");
4106       I->setDebugLoc(LastLoc);
4107       I = nullptr;
4108       continue;
4109 
4110     case bitc::FUNC_CODE_DEBUG_LOC: {      // DEBUG_LOC: [line, col, scope, ia]
4111       I = getLastInstruction();
4112       if (!I || Record.size() < 4)
4113         return error("Invalid record");
4114 
4115       unsigned Line = Record[0], Col = Record[1];
4116       unsigned ScopeID = Record[2], IAID = Record[3];
4117 
4118       MDNode *Scope = nullptr, *IA = nullptr;
4119       if (ScopeID) {
4120         Scope = MetadataList.getMDNodeFwdRefOrNull(ScopeID - 1);
4121         if (!Scope)
4122           return error("Invalid record");
4123       }
4124       if (IAID) {
4125         IA = MetadataList.getMDNodeFwdRefOrNull(IAID - 1);
4126         if (!IA)
4127           return error("Invalid record");
4128       }
4129       LastLoc = DebugLoc::get(Line, Col, Scope, IA);
4130       I->setDebugLoc(LastLoc);
4131       I = nullptr;
4132       continue;
4133     }
4134 
4135     case bitc::FUNC_CODE_INST_BINOP: {    // BINOP: [opval, ty, opval, opcode]
4136       unsigned OpNum = 0;
4137       Value *LHS, *RHS;
4138       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
4139           popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) ||
4140           OpNum+1 > Record.size())
4141         return error("Invalid record");
4142 
4143       int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType());
4144       if (Opc == -1)
4145         return error("Invalid record");
4146       I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
4147       InstructionList.push_back(I);
4148       if (OpNum < Record.size()) {
4149         if (Opc == Instruction::Add ||
4150             Opc == Instruction::Sub ||
4151             Opc == Instruction::Mul ||
4152             Opc == Instruction::Shl) {
4153           if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP))
4154             cast<BinaryOperator>(I)->setHasNoSignedWrap(true);
4155           if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
4156             cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true);
4157         } else if (Opc == Instruction::SDiv ||
4158                    Opc == Instruction::UDiv ||
4159                    Opc == Instruction::LShr ||
4160                    Opc == Instruction::AShr) {
4161           if (Record[OpNum] & (1 << bitc::PEO_EXACT))
4162             cast<BinaryOperator>(I)->setIsExact(true);
4163         } else if (isa<FPMathOperator>(I)) {
4164           FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
4165           if (FMF.any())
4166             I->setFastMathFlags(FMF);
4167         }
4168 
4169       }
4170       break;
4171     }
4172     case bitc::FUNC_CODE_INST_CAST: {    // CAST: [opval, opty, destty, castopc]
4173       unsigned OpNum = 0;
4174       Value *Op;
4175       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
4176           OpNum+2 != Record.size())
4177         return error("Invalid record");
4178 
4179       Type *ResTy = getTypeByID(Record[OpNum]);
4180       int Opc = getDecodedCastOpcode(Record[OpNum + 1]);
4181       if (Opc == -1 || !ResTy)
4182         return error("Invalid record");
4183       Instruction *Temp = nullptr;
4184       if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) {
4185         if (Temp) {
4186           InstructionList.push_back(Temp);
4187           CurBB->getInstList().push_back(Temp);
4188         }
4189       } else {
4190         auto CastOp = (Instruction::CastOps)Opc;
4191         if (!CastInst::castIsValid(CastOp, Op, ResTy))
4192           return error("Invalid cast");
4193         I = CastInst::Create(CastOp, Op, ResTy);
4194       }
4195       InstructionList.push_back(I);
4196       break;
4197     }
4198     case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD:
4199     case bitc::FUNC_CODE_INST_GEP_OLD:
4200     case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands]
4201       unsigned OpNum = 0;
4202 
4203       Type *Ty;
4204       bool InBounds;
4205 
4206       if (BitCode == bitc::FUNC_CODE_INST_GEP) {
4207         InBounds = Record[OpNum++];
4208         Ty = getTypeByID(Record[OpNum++]);
4209       } else {
4210         InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD;
4211         Ty = nullptr;
4212       }
4213 
4214       Value *BasePtr;
4215       if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr))
4216         return error("Invalid record");
4217 
4218       if (!Ty)
4219         Ty = cast<SequentialType>(BasePtr->getType()->getScalarType())
4220                  ->getElementType();
4221       else if (Ty !=
4222                cast<SequentialType>(BasePtr->getType()->getScalarType())
4223                    ->getElementType())
4224         return error(
4225             "Explicit gep type does not match pointee type of pointer operand");
4226 
4227       SmallVector<Value*, 16> GEPIdx;
4228       while (OpNum != Record.size()) {
4229         Value *Op;
4230         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4231           return error("Invalid record");
4232         GEPIdx.push_back(Op);
4233       }
4234 
4235       I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx);
4236 
4237       InstructionList.push_back(I);
4238       if (InBounds)
4239         cast<GetElementPtrInst>(I)->setIsInBounds(true);
4240       break;
4241     }
4242 
4243     case bitc::FUNC_CODE_INST_EXTRACTVAL: {
4244                                        // EXTRACTVAL: [opty, opval, n x indices]
4245       unsigned OpNum = 0;
4246       Value *Agg;
4247       if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
4248         return error("Invalid record");
4249 
4250       unsigned RecSize = Record.size();
4251       if (OpNum == RecSize)
4252         return error("EXTRACTVAL: Invalid instruction with 0 indices");
4253 
4254       SmallVector<unsigned, 4> EXTRACTVALIdx;
4255       Type *CurTy = Agg->getType();
4256       for (; OpNum != RecSize; ++OpNum) {
4257         bool IsArray = CurTy->isArrayTy();
4258         bool IsStruct = CurTy->isStructTy();
4259         uint64_t Index = Record[OpNum];
4260 
4261         if (!IsStruct && !IsArray)
4262           return error("EXTRACTVAL: Invalid type");
4263         if ((unsigned)Index != Index)
4264           return error("Invalid value");
4265         if (IsStruct && Index >= CurTy->subtypes().size())
4266           return error("EXTRACTVAL: Invalid struct index");
4267         if (IsArray && Index >= CurTy->getArrayNumElements())
4268           return error("EXTRACTVAL: Invalid array index");
4269         EXTRACTVALIdx.push_back((unsigned)Index);
4270 
4271         if (IsStruct)
4272           CurTy = CurTy->subtypes()[Index];
4273         else
4274           CurTy = CurTy->subtypes()[0];
4275       }
4276 
4277       I = ExtractValueInst::Create(Agg, EXTRACTVALIdx);
4278       InstructionList.push_back(I);
4279       break;
4280     }
4281 
4282     case bitc::FUNC_CODE_INST_INSERTVAL: {
4283                            // INSERTVAL: [opty, opval, opty, opval, n x indices]
4284       unsigned OpNum = 0;
4285       Value *Agg;
4286       if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
4287         return error("Invalid record");
4288       Value *Val;
4289       if (getValueTypePair(Record, OpNum, NextValueNo, Val))
4290         return error("Invalid record");
4291 
4292       unsigned RecSize = Record.size();
4293       if (OpNum == RecSize)
4294         return error("INSERTVAL: Invalid instruction with 0 indices");
4295 
4296       SmallVector<unsigned, 4> INSERTVALIdx;
4297       Type *CurTy = Agg->getType();
4298       for (; OpNum != RecSize; ++OpNum) {
4299         bool IsArray = CurTy->isArrayTy();
4300         bool IsStruct = CurTy->isStructTy();
4301         uint64_t Index = Record[OpNum];
4302 
4303         if (!IsStruct && !IsArray)
4304           return error("INSERTVAL: Invalid type");
4305         if ((unsigned)Index != Index)
4306           return error("Invalid value");
4307         if (IsStruct && Index >= CurTy->subtypes().size())
4308           return error("INSERTVAL: Invalid struct index");
4309         if (IsArray && Index >= CurTy->getArrayNumElements())
4310           return error("INSERTVAL: Invalid array index");
4311 
4312         INSERTVALIdx.push_back((unsigned)Index);
4313         if (IsStruct)
4314           CurTy = CurTy->subtypes()[Index];
4315         else
4316           CurTy = CurTy->subtypes()[0];
4317       }
4318 
4319       if (CurTy != Val->getType())
4320         return error("Inserted value type doesn't match aggregate type");
4321 
4322       I = InsertValueInst::Create(Agg, Val, INSERTVALIdx);
4323       InstructionList.push_back(I);
4324       break;
4325     }
4326 
4327     case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval]
4328       // obsolete form of select
4329       // handles select i1 ... in old bitcode
4330       unsigned OpNum = 0;
4331       Value *TrueVal, *FalseVal, *Cond;
4332       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
4333           popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) ||
4334           popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond))
4335         return error("Invalid record");
4336 
4337       I = SelectInst::Create(Cond, TrueVal, FalseVal);
4338       InstructionList.push_back(I);
4339       break;
4340     }
4341 
4342     case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred]
4343       // new form of select
4344       // handles select i1 or select [N x i1]
4345       unsigned OpNum = 0;
4346       Value *TrueVal, *FalseVal, *Cond;
4347       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
4348           popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) ||
4349           getValueTypePair(Record, OpNum, NextValueNo, Cond))
4350         return error("Invalid record");
4351 
4352       // select condition can be either i1 or [N x i1]
4353       if (VectorType* vector_type =
4354           dyn_cast<VectorType>(Cond->getType())) {
4355         // expect <n x i1>
4356         if (vector_type->getElementType() != Type::getInt1Ty(Context))
4357           return error("Invalid type for value");
4358       } else {
4359         // expect i1
4360         if (Cond->getType() != Type::getInt1Ty(Context))
4361           return error("Invalid type for value");
4362       }
4363 
4364       I = SelectInst::Create(Cond, TrueVal, FalseVal);
4365       InstructionList.push_back(I);
4366       break;
4367     }
4368 
4369     case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval]
4370       unsigned OpNum = 0;
4371       Value *Vec, *Idx;
4372       if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
4373           getValueTypePair(Record, OpNum, NextValueNo, Idx))
4374         return error("Invalid record");
4375       if (!Vec->getType()->isVectorTy())
4376         return error("Invalid type for value");
4377       I = ExtractElementInst::Create(Vec, Idx);
4378       InstructionList.push_back(I);
4379       break;
4380     }
4381 
4382     case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval]
4383       unsigned OpNum = 0;
4384       Value *Vec, *Elt, *Idx;
4385       if (getValueTypePair(Record, OpNum, NextValueNo, Vec))
4386         return error("Invalid record");
4387       if (!Vec->getType()->isVectorTy())
4388         return error("Invalid type for value");
4389       if (popValue(Record, OpNum, NextValueNo,
4390                    cast<VectorType>(Vec->getType())->getElementType(), Elt) ||
4391           getValueTypePair(Record, OpNum, NextValueNo, Idx))
4392         return error("Invalid record");
4393       I = InsertElementInst::Create(Vec, Elt, Idx);
4394       InstructionList.push_back(I);
4395       break;
4396     }
4397 
4398     case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval]
4399       unsigned OpNum = 0;
4400       Value *Vec1, *Vec2, *Mask;
4401       if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) ||
4402           popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2))
4403         return error("Invalid record");
4404 
4405       if (getValueTypePair(Record, OpNum, NextValueNo, Mask))
4406         return error("Invalid record");
4407       if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy())
4408         return error("Invalid type for value");
4409       I = new ShuffleVectorInst(Vec1, Vec2, Mask);
4410       InstructionList.push_back(I);
4411       break;
4412     }
4413 
4414     case bitc::FUNC_CODE_INST_CMP:   // CMP: [opty, opval, opval, pred]
4415       // Old form of ICmp/FCmp returning bool
4416       // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were
4417       // both legal on vectors but had different behaviour.
4418     case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred]
4419       // FCmp/ICmp returning bool or vector of bool
4420 
4421       unsigned OpNum = 0;
4422       Value *LHS, *RHS;
4423       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
4424           popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS))
4425         return error("Invalid record");
4426 
4427       unsigned PredVal = Record[OpNum];
4428       bool IsFP = LHS->getType()->isFPOrFPVectorTy();
4429       FastMathFlags FMF;
4430       if (IsFP && Record.size() > OpNum+1)
4431         FMF = getDecodedFastMathFlags(Record[++OpNum]);
4432 
4433       if (OpNum+1 != Record.size())
4434         return error("Invalid record");
4435 
4436       if (LHS->getType()->isFPOrFPVectorTy())
4437         I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS);
4438       else
4439         I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS);
4440 
4441       if (FMF.any())
4442         I->setFastMathFlags(FMF);
4443       InstructionList.push_back(I);
4444       break;
4445     }
4446 
4447     case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>]
4448       {
4449         unsigned Size = Record.size();
4450         if (Size == 0) {
4451           I = ReturnInst::Create(Context);
4452           InstructionList.push_back(I);
4453           break;
4454         }
4455 
4456         unsigned OpNum = 0;
4457         Value *Op = nullptr;
4458         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4459           return error("Invalid record");
4460         if (OpNum != Record.size())
4461           return error("Invalid record");
4462 
4463         I = ReturnInst::Create(Context, Op);
4464         InstructionList.push_back(I);
4465         break;
4466       }
4467     case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#]
4468       if (Record.size() != 1 && Record.size() != 3)
4469         return error("Invalid record");
4470       BasicBlock *TrueDest = getBasicBlock(Record[0]);
4471       if (!TrueDest)
4472         return error("Invalid record");
4473 
4474       if (Record.size() == 1) {
4475         I = BranchInst::Create(TrueDest);
4476         InstructionList.push_back(I);
4477       }
4478       else {
4479         BasicBlock *FalseDest = getBasicBlock(Record[1]);
4480         Value *Cond = getValue(Record, 2, NextValueNo,
4481                                Type::getInt1Ty(Context));
4482         if (!FalseDest || !Cond)
4483           return error("Invalid record");
4484         I = BranchInst::Create(TrueDest, FalseDest, Cond);
4485         InstructionList.push_back(I);
4486       }
4487       break;
4488     }
4489     case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#]
4490       if (Record.size() != 1 && Record.size() != 2)
4491         return error("Invalid record");
4492       unsigned Idx = 0;
4493       Value *CleanupPad =
4494           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4495       if (!CleanupPad)
4496         return error("Invalid record");
4497       BasicBlock *UnwindDest = nullptr;
4498       if (Record.size() == 2) {
4499         UnwindDest = getBasicBlock(Record[Idx++]);
4500         if (!UnwindDest)
4501           return error("Invalid record");
4502       }
4503 
4504       I = CleanupReturnInst::Create(CleanupPad, UnwindDest);
4505       InstructionList.push_back(I);
4506       break;
4507     }
4508     case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#]
4509       if (Record.size() != 2)
4510         return error("Invalid record");
4511       unsigned Idx = 0;
4512       Value *CatchPad =
4513           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4514       if (!CatchPad)
4515         return error("Invalid record");
4516       BasicBlock *BB = getBasicBlock(Record[Idx++]);
4517       if (!BB)
4518         return error("Invalid record");
4519 
4520       I = CatchReturnInst::Create(CatchPad, BB);
4521       InstructionList.push_back(I);
4522       break;
4523     }
4524     case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?]
4525       // We must have, at minimum, the outer scope and the number of arguments.
4526       if (Record.size() < 2)
4527         return error("Invalid record");
4528 
4529       unsigned Idx = 0;
4530 
4531       Value *ParentPad =
4532           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4533 
4534       unsigned NumHandlers = Record[Idx++];
4535 
4536       SmallVector<BasicBlock *, 2> Handlers;
4537       for (unsigned Op = 0; Op != NumHandlers; ++Op) {
4538         BasicBlock *BB = getBasicBlock(Record[Idx++]);
4539         if (!BB)
4540           return error("Invalid record");
4541         Handlers.push_back(BB);
4542       }
4543 
4544       BasicBlock *UnwindDest = nullptr;
4545       if (Idx + 1 == Record.size()) {
4546         UnwindDest = getBasicBlock(Record[Idx++]);
4547         if (!UnwindDest)
4548           return error("Invalid record");
4549       }
4550 
4551       if (Record.size() != Idx)
4552         return error("Invalid record");
4553 
4554       auto *CatchSwitch =
4555           CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers);
4556       for (BasicBlock *Handler : Handlers)
4557         CatchSwitch->addHandler(Handler);
4558       I = CatchSwitch;
4559       InstructionList.push_back(I);
4560       break;
4561     }
4562     case bitc::FUNC_CODE_INST_CATCHPAD:
4563     case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*]
4564       // We must have, at minimum, the outer scope and the number of arguments.
4565       if (Record.size() < 2)
4566         return error("Invalid record");
4567 
4568       unsigned Idx = 0;
4569 
4570       Value *ParentPad =
4571           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4572 
4573       unsigned NumArgOperands = Record[Idx++];
4574 
4575       SmallVector<Value *, 2> Args;
4576       for (unsigned Op = 0; Op != NumArgOperands; ++Op) {
4577         Value *Val;
4578         if (getValueTypePair(Record, Idx, NextValueNo, Val))
4579           return error("Invalid record");
4580         Args.push_back(Val);
4581       }
4582 
4583       if (Record.size() != Idx)
4584         return error("Invalid record");
4585 
4586       if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD)
4587         I = CleanupPadInst::Create(ParentPad, Args);
4588       else
4589         I = CatchPadInst::Create(ParentPad, Args);
4590       InstructionList.push_back(I);
4591       break;
4592     }
4593     case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...]
4594       // Check magic
4595       if ((Record[0] >> 16) == SWITCH_INST_MAGIC) {
4596         // "New" SwitchInst format with case ranges. The changes to write this
4597         // format were reverted but we still recognize bitcode that uses it.
4598         // Hopefully someday we will have support for case ranges and can use
4599         // this format again.
4600 
4601         Type *OpTy = getTypeByID(Record[1]);
4602         unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth();
4603 
4604         Value *Cond = getValue(Record, 2, NextValueNo, OpTy);
4605         BasicBlock *Default = getBasicBlock(Record[3]);
4606         if (!OpTy || !Cond || !Default)
4607           return error("Invalid record");
4608 
4609         unsigned NumCases = Record[4];
4610 
4611         SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
4612         InstructionList.push_back(SI);
4613 
4614         unsigned CurIdx = 5;
4615         for (unsigned i = 0; i != NumCases; ++i) {
4616           SmallVector<ConstantInt*, 1> CaseVals;
4617           unsigned NumItems = Record[CurIdx++];
4618           for (unsigned ci = 0; ci != NumItems; ++ci) {
4619             bool isSingleNumber = Record[CurIdx++];
4620 
4621             APInt Low;
4622             unsigned ActiveWords = 1;
4623             if (ValueBitWidth > 64)
4624               ActiveWords = Record[CurIdx++];
4625             Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords),
4626                                 ValueBitWidth);
4627             CurIdx += ActiveWords;
4628 
4629             if (!isSingleNumber) {
4630               ActiveWords = 1;
4631               if (ValueBitWidth > 64)
4632                 ActiveWords = Record[CurIdx++];
4633               APInt High = readWideAPInt(
4634                   makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth);
4635               CurIdx += ActiveWords;
4636 
4637               // FIXME: It is not clear whether values in the range should be
4638               // compared as signed or unsigned values. The partially
4639               // implemented changes that used this format in the past used
4640               // unsigned comparisons.
4641               for ( ; Low.ule(High); ++Low)
4642                 CaseVals.push_back(ConstantInt::get(Context, Low));
4643             } else
4644               CaseVals.push_back(ConstantInt::get(Context, Low));
4645           }
4646           BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]);
4647           for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(),
4648                  cve = CaseVals.end(); cvi != cve; ++cvi)
4649             SI->addCase(*cvi, DestBB);
4650         }
4651         I = SI;
4652         break;
4653       }
4654 
4655       // Old SwitchInst format without case ranges.
4656 
4657       if (Record.size() < 3 || (Record.size() & 1) == 0)
4658         return error("Invalid record");
4659       Type *OpTy = getTypeByID(Record[0]);
4660       Value *Cond = getValue(Record, 1, NextValueNo, OpTy);
4661       BasicBlock *Default = getBasicBlock(Record[2]);
4662       if (!OpTy || !Cond || !Default)
4663         return error("Invalid record");
4664       unsigned NumCases = (Record.size()-3)/2;
4665       SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
4666       InstructionList.push_back(SI);
4667       for (unsigned i = 0, e = NumCases; i != e; ++i) {
4668         ConstantInt *CaseVal =
4669           dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy));
4670         BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]);
4671         if (!CaseVal || !DestBB) {
4672           delete SI;
4673           return error("Invalid record");
4674         }
4675         SI->addCase(CaseVal, DestBB);
4676       }
4677       I = SI;
4678       break;
4679     }
4680     case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...]
4681       if (Record.size() < 2)
4682         return error("Invalid record");
4683       Type *OpTy = getTypeByID(Record[0]);
4684       Value *Address = getValue(Record, 1, NextValueNo, OpTy);
4685       if (!OpTy || !Address)
4686         return error("Invalid record");
4687       unsigned NumDests = Record.size()-2;
4688       IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests);
4689       InstructionList.push_back(IBI);
4690       for (unsigned i = 0, e = NumDests; i != e; ++i) {
4691         if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) {
4692           IBI->addDestination(DestBB);
4693         } else {
4694           delete IBI;
4695           return error("Invalid record");
4696         }
4697       }
4698       I = IBI;
4699       break;
4700     }
4701 
4702     case bitc::FUNC_CODE_INST_INVOKE: {
4703       // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...]
4704       if (Record.size() < 4)
4705         return error("Invalid record");
4706       unsigned OpNum = 0;
4707       AttributeSet PAL = getAttributes(Record[OpNum++]);
4708       unsigned CCInfo = Record[OpNum++];
4709       BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]);
4710       BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]);
4711 
4712       FunctionType *FTy = nullptr;
4713       if (CCInfo >> 13 & 1 &&
4714           !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++]))))
4715         return error("Explicit invoke type is not a function type");
4716 
4717       Value *Callee;
4718       if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
4719         return error("Invalid record");
4720 
4721       PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType());
4722       if (!CalleeTy)
4723         return error("Callee is not a pointer");
4724       if (!FTy) {
4725         FTy = dyn_cast<FunctionType>(CalleeTy->getElementType());
4726         if (!FTy)
4727           return error("Callee is not of pointer to function type");
4728       } else if (CalleeTy->getElementType() != FTy)
4729         return error("Explicit invoke type does not match pointee type of "
4730                      "callee operand");
4731       if (Record.size() < FTy->getNumParams() + OpNum)
4732         return error("Insufficient operands to call");
4733 
4734       SmallVector<Value*, 16> Ops;
4735       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
4736         Ops.push_back(getValue(Record, OpNum, NextValueNo,
4737                                FTy->getParamType(i)));
4738         if (!Ops.back())
4739           return error("Invalid record");
4740       }
4741 
4742       if (!FTy->isVarArg()) {
4743         if (Record.size() != OpNum)
4744           return error("Invalid record");
4745       } else {
4746         // Read type/value pairs for varargs params.
4747         while (OpNum != Record.size()) {
4748           Value *Op;
4749           if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4750             return error("Invalid record");
4751           Ops.push_back(Op);
4752         }
4753       }
4754 
4755       I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops, OperandBundles);
4756       OperandBundles.clear();
4757       InstructionList.push_back(I);
4758       cast<InvokeInst>(I)->setCallingConv(
4759           static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo));
4760       cast<InvokeInst>(I)->setAttributes(PAL);
4761       break;
4762     }
4763     case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval]
4764       unsigned Idx = 0;
4765       Value *Val = nullptr;
4766       if (getValueTypePair(Record, Idx, NextValueNo, Val))
4767         return error("Invalid record");
4768       I = ResumeInst::Create(Val);
4769       InstructionList.push_back(I);
4770       break;
4771     }
4772     case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE
4773       I = new UnreachableInst(Context);
4774       InstructionList.push_back(I);
4775       break;
4776     case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...]
4777       if (Record.size() < 1 || ((Record.size()-1)&1))
4778         return error("Invalid record");
4779       Type *Ty = getTypeByID(Record[0]);
4780       if (!Ty)
4781         return error("Invalid record");
4782 
4783       PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2);
4784       InstructionList.push_back(PN);
4785 
4786       for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) {
4787         Value *V;
4788         // With the new function encoding, it is possible that operands have
4789         // negative IDs (for forward references).  Use a signed VBR
4790         // representation to keep the encoding small.
4791         if (UseRelativeIDs)
4792           V = getValueSigned(Record, 1+i, NextValueNo, Ty);
4793         else
4794           V = getValue(Record, 1+i, NextValueNo, Ty);
4795         BasicBlock *BB = getBasicBlock(Record[2+i]);
4796         if (!V || !BB)
4797           return error("Invalid record");
4798         PN->addIncoming(V, BB);
4799       }
4800       I = PN;
4801       break;
4802     }
4803 
4804     case bitc::FUNC_CODE_INST_LANDINGPAD:
4805     case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: {
4806       // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?]
4807       unsigned Idx = 0;
4808       if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) {
4809         if (Record.size() < 3)
4810           return error("Invalid record");
4811       } else {
4812         assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD);
4813         if (Record.size() < 4)
4814           return error("Invalid record");
4815       }
4816       Type *Ty = getTypeByID(Record[Idx++]);
4817       if (!Ty)
4818         return error("Invalid record");
4819       if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) {
4820         Value *PersFn = nullptr;
4821         if (getValueTypePair(Record, Idx, NextValueNo, PersFn))
4822           return error("Invalid record");
4823 
4824         if (!F->hasPersonalityFn())
4825           F->setPersonalityFn(cast<Constant>(PersFn));
4826         else if (F->getPersonalityFn() != cast<Constant>(PersFn))
4827           return error("Personality function mismatch");
4828       }
4829 
4830       bool IsCleanup = !!Record[Idx++];
4831       unsigned NumClauses = Record[Idx++];
4832       LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses);
4833       LP->setCleanup(IsCleanup);
4834       for (unsigned J = 0; J != NumClauses; ++J) {
4835         LandingPadInst::ClauseType CT =
4836           LandingPadInst::ClauseType(Record[Idx++]); (void)CT;
4837         Value *Val;
4838 
4839         if (getValueTypePair(Record, Idx, NextValueNo, Val)) {
4840           delete LP;
4841           return error("Invalid record");
4842         }
4843 
4844         assert((CT != LandingPadInst::Catch ||
4845                 !isa<ArrayType>(Val->getType())) &&
4846                "Catch clause has a invalid type!");
4847         assert((CT != LandingPadInst::Filter ||
4848                 isa<ArrayType>(Val->getType())) &&
4849                "Filter clause has invalid type!");
4850         LP->addClause(cast<Constant>(Val));
4851       }
4852 
4853       I = LP;
4854       InstructionList.push_back(I);
4855       break;
4856     }
4857 
4858     case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align]
4859       if (Record.size() != 4)
4860         return error("Invalid record");
4861       uint64_t AlignRecord = Record[3];
4862       const uint64_t InAllocaMask = uint64_t(1) << 5;
4863       const uint64_t ExplicitTypeMask = uint64_t(1) << 6;
4864       const uint64_t SwiftErrorMask = uint64_t(1) << 7;
4865       const uint64_t FlagMask = InAllocaMask | ExplicitTypeMask |
4866                                 SwiftErrorMask;
4867       bool InAlloca = AlignRecord & InAllocaMask;
4868       bool SwiftError = AlignRecord & SwiftErrorMask;
4869       Type *Ty = getTypeByID(Record[0]);
4870       if ((AlignRecord & ExplicitTypeMask) == 0) {
4871         auto *PTy = dyn_cast_or_null<PointerType>(Ty);
4872         if (!PTy)
4873           return error("Old-style alloca with a non-pointer type");
4874         Ty = PTy->getElementType();
4875       }
4876       Type *OpTy = getTypeByID(Record[1]);
4877       Value *Size = getFnValueByID(Record[2], OpTy);
4878       unsigned Align;
4879       if (std::error_code EC =
4880               parseAlignmentValue(AlignRecord & ~FlagMask, Align)) {
4881         return EC;
4882       }
4883       if (!Ty || !Size)
4884         return error("Invalid record");
4885       AllocaInst *AI = new AllocaInst(Ty, Size, Align);
4886       AI->setUsedWithInAlloca(InAlloca);
4887       AI->setSwiftError(SwiftError);
4888       I = AI;
4889       InstructionList.push_back(I);
4890       break;
4891     }
4892     case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol]
4893       unsigned OpNum = 0;
4894       Value *Op;
4895       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
4896           (OpNum + 2 != Record.size() && OpNum + 3 != Record.size()))
4897         return error("Invalid record");
4898 
4899       Type *Ty = nullptr;
4900       if (OpNum + 3 == Record.size())
4901         Ty = getTypeByID(Record[OpNum++]);
4902       if (std::error_code EC = typeCheckLoadStoreInst(Ty, Op->getType()))
4903         return EC;
4904       if (!Ty)
4905         Ty = cast<PointerType>(Op->getType())->getElementType();
4906 
4907       unsigned Align;
4908       if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align))
4909         return EC;
4910       I = new LoadInst(Ty, Op, "", Record[OpNum + 1], Align);
4911 
4912       InstructionList.push_back(I);
4913       break;
4914     }
4915     case bitc::FUNC_CODE_INST_LOADATOMIC: {
4916        // LOADATOMIC: [opty, op, align, vol, ordering, synchscope]
4917       unsigned OpNum = 0;
4918       Value *Op;
4919       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
4920           (OpNum + 4 != Record.size() && OpNum + 5 != Record.size()))
4921         return error("Invalid record");
4922 
4923       Type *Ty = nullptr;
4924       if (OpNum + 5 == Record.size())
4925         Ty = getTypeByID(Record[OpNum++]);
4926       if (std::error_code EC = typeCheckLoadStoreInst(Ty, Op->getType()))
4927         return EC;
4928       if (!Ty)
4929         Ty = cast<PointerType>(Op->getType())->getElementType();
4930 
4931       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
4932       if (Ordering == NotAtomic || Ordering == Release ||
4933           Ordering == AcquireRelease)
4934         return error("Invalid record");
4935       if (Ordering != NotAtomic && Record[OpNum] == 0)
4936         return error("Invalid record");
4937       SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]);
4938 
4939       unsigned Align;
4940       if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align))
4941         return EC;
4942       I = new LoadInst(Op, "", Record[OpNum+1], Align, Ordering, SynchScope);
4943 
4944       InstructionList.push_back(I);
4945       break;
4946     }
4947     case bitc::FUNC_CODE_INST_STORE:
4948     case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol]
4949       unsigned OpNum = 0;
4950       Value *Val, *Ptr;
4951       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
4952           (BitCode == bitc::FUNC_CODE_INST_STORE
4953                ? getValueTypePair(Record, OpNum, NextValueNo, Val)
4954                : popValue(Record, OpNum, NextValueNo,
4955                           cast<PointerType>(Ptr->getType())->getElementType(),
4956                           Val)) ||
4957           OpNum + 2 != Record.size())
4958         return error("Invalid record");
4959 
4960       if (std::error_code EC =
4961               typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
4962         return EC;
4963       unsigned Align;
4964       if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align))
4965         return EC;
4966       I = new StoreInst(Val, Ptr, Record[OpNum+1], Align);
4967       InstructionList.push_back(I);
4968       break;
4969     }
4970     case bitc::FUNC_CODE_INST_STOREATOMIC:
4971     case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: {
4972       // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, synchscope]
4973       unsigned OpNum = 0;
4974       Value *Val, *Ptr;
4975       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
4976           (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC
4977                ? getValueTypePair(Record, OpNum, NextValueNo, Val)
4978                : popValue(Record, OpNum, NextValueNo,
4979                           cast<PointerType>(Ptr->getType())->getElementType(),
4980                           Val)) ||
4981           OpNum + 4 != Record.size())
4982         return error("Invalid record");
4983 
4984       if (std::error_code EC =
4985               typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
4986         return EC;
4987       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
4988       if (Ordering == NotAtomic || Ordering == Acquire ||
4989           Ordering == AcquireRelease)
4990         return error("Invalid record");
4991       SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]);
4992       if (Ordering != NotAtomic && Record[OpNum] == 0)
4993         return error("Invalid record");
4994 
4995       unsigned Align;
4996       if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align))
4997         return EC;
4998       I = new StoreInst(Val, Ptr, Record[OpNum+1], Align, Ordering, SynchScope);
4999       InstructionList.push_back(I);
5000       break;
5001     }
5002     case bitc::FUNC_CODE_INST_CMPXCHG_OLD:
5003     case bitc::FUNC_CODE_INST_CMPXCHG: {
5004       // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, synchscope,
5005       //          failureordering?, isweak?]
5006       unsigned OpNum = 0;
5007       Value *Ptr, *Cmp, *New;
5008       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
5009           (BitCode == bitc::FUNC_CODE_INST_CMPXCHG
5010                ? getValueTypePair(Record, OpNum, NextValueNo, Cmp)
5011                : popValue(Record, OpNum, NextValueNo,
5012                           cast<PointerType>(Ptr->getType())->getElementType(),
5013                           Cmp)) ||
5014           popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) ||
5015           Record.size() < OpNum + 3 || Record.size() > OpNum + 5)
5016         return error("Invalid record");
5017       AtomicOrdering SuccessOrdering = getDecodedOrdering(Record[OpNum + 1]);
5018       if (SuccessOrdering == NotAtomic || SuccessOrdering == Unordered)
5019         return error("Invalid record");
5020       SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 2]);
5021 
5022       if (std::error_code EC =
5023               typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType()))
5024         return EC;
5025       AtomicOrdering FailureOrdering;
5026       if (Record.size() < 7)
5027         FailureOrdering =
5028             AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering);
5029       else
5030         FailureOrdering = getDecodedOrdering(Record[OpNum + 3]);
5031 
5032       I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering,
5033                                 SynchScope);
5034       cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]);
5035 
5036       if (Record.size() < 8) {
5037         // Before weak cmpxchgs existed, the instruction simply returned the
5038         // value loaded from memory, so bitcode files from that era will be
5039         // expecting the first component of a modern cmpxchg.
5040         CurBB->getInstList().push_back(I);
5041         I = ExtractValueInst::Create(I, 0);
5042       } else {
5043         cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]);
5044       }
5045 
5046       InstructionList.push_back(I);
5047       break;
5048     }
5049     case bitc::FUNC_CODE_INST_ATOMICRMW: {
5050       // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, synchscope]
5051       unsigned OpNum = 0;
5052       Value *Ptr, *Val;
5053       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
5054           popValue(Record, OpNum, NextValueNo,
5055                     cast<PointerType>(Ptr->getType())->getElementType(), Val) ||
5056           OpNum+4 != Record.size())
5057         return error("Invalid record");
5058       AtomicRMWInst::BinOp Operation = getDecodedRMWOperation(Record[OpNum]);
5059       if (Operation < AtomicRMWInst::FIRST_BINOP ||
5060           Operation > AtomicRMWInst::LAST_BINOP)
5061         return error("Invalid record");
5062       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
5063       if (Ordering == NotAtomic || Ordering == Unordered)
5064         return error("Invalid record");
5065       SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]);
5066       I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SynchScope);
5067       cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]);
5068       InstructionList.push_back(I);
5069       break;
5070     }
5071     case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, synchscope]
5072       if (2 != Record.size())
5073         return error("Invalid record");
5074       AtomicOrdering Ordering = getDecodedOrdering(Record[0]);
5075       if (Ordering == NotAtomic || Ordering == Unordered ||
5076           Ordering == Monotonic)
5077         return error("Invalid record");
5078       SynchronizationScope SynchScope = getDecodedSynchScope(Record[1]);
5079       I = new FenceInst(Context, Ordering, SynchScope);
5080       InstructionList.push_back(I);
5081       break;
5082     }
5083     case bitc::FUNC_CODE_INST_CALL: {
5084       // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...]
5085       if (Record.size() < 3)
5086         return error("Invalid record");
5087 
5088       unsigned OpNum = 0;
5089       AttributeSet PAL = getAttributes(Record[OpNum++]);
5090       unsigned CCInfo = Record[OpNum++];
5091 
5092       FastMathFlags FMF;
5093       if ((CCInfo >> bitc::CALL_FMF) & 1) {
5094         FMF = getDecodedFastMathFlags(Record[OpNum++]);
5095         if (!FMF.any())
5096           return error("Fast math flags indicator set for call with no FMF");
5097       }
5098 
5099       FunctionType *FTy = nullptr;
5100       if (CCInfo >> bitc::CALL_EXPLICIT_TYPE & 1 &&
5101           !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++]))))
5102         return error("Explicit call type is not a function type");
5103 
5104       Value *Callee;
5105       if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
5106         return error("Invalid record");
5107 
5108       PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
5109       if (!OpTy)
5110         return error("Callee is not a pointer type");
5111       if (!FTy) {
5112         FTy = dyn_cast<FunctionType>(OpTy->getElementType());
5113         if (!FTy)
5114           return error("Callee is not of pointer to function type");
5115       } else if (OpTy->getElementType() != FTy)
5116         return error("Explicit call type does not match pointee type of "
5117                      "callee operand");
5118       if (Record.size() < FTy->getNumParams() + OpNum)
5119         return error("Insufficient operands to call");
5120 
5121       SmallVector<Value*, 16> Args;
5122       // Read the fixed params.
5123       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
5124         if (FTy->getParamType(i)->isLabelTy())
5125           Args.push_back(getBasicBlock(Record[OpNum]));
5126         else
5127           Args.push_back(getValue(Record, OpNum, NextValueNo,
5128                                   FTy->getParamType(i)));
5129         if (!Args.back())
5130           return error("Invalid record");
5131       }
5132 
5133       // Read type/value pairs for varargs params.
5134       if (!FTy->isVarArg()) {
5135         if (OpNum != Record.size())
5136           return error("Invalid record");
5137       } else {
5138         while (OpNum != Record.size()) {
5139           Value *Op;
5140           if (getValueTypePair(Record, OpNum, NextValueNo, Op))
5141             return error("Invalid record");
5142           Args.push_back(Op);
5143         }
5144       }
5145 
5146       I = CallInst::Create(FTy, Callee, Args, OperandBundles);
5147       OperandBundles.clear();
5148       InstructionList.push_back(I);
5149       cast<CallInst>(I)->setCallingConv(
5150           static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV));
5151       CallInst::TailCallKind TCK = CallInst::TCK_None;
5152       if (CCInfo & 1 << bitc::CALL_TAIL)
5153         TCK = CallInst::TCK_Tail;
5154       if (CCInfo & (1 << bitc::CALL_MUSTTAIL))
5155         TCK = CallInst::TCK_MustTail;
5156       if (CCInfo & (1 << bitc::CALL_NOTAIL))
5157         TCK = CallInst::TCK_NoTail;
5158       cast<CallInst>(I)->setTailCallKind(TCK);
5159       cast<CallInst>(I)->setAttributes(PAL);
5160       if (FMF.any()) {
5161         if (!isa<FPMathOperator>(I))
5162           return error("Fast-math-flags specified for call without "
5163                        "floating-point scalar or vector return type");
5164         I->setFastMathFlags(FMF);
5165       }
5166       break;
5167     }
5168     case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty]
5169       if (Record.size() < 3)
5170         return error("Invalid record");
5171       Type *OpTy = getTypeByID(Record[0]);
5172       Value *Op = getValue(Record, 1, NextValueNo, OpTy);
5173       Type *ResTy = getTypeByID(Record[2]);
5174       if (!OpTy || !Op || !ResTy)
5175         return error("Invalid record");
5176       I = new VAArgInst(Op, ResTy);
5177       InstructionList.push_back(I);
5178       break;
5179     }
5180 
5181     case bitc::FUNC_CODE_OPERAND_BUNDLE: {
5182       // A call or an invoke can be optionally prefixed with some variable
5183       // number of operand bundle blocks.  These blocks are read into
5184       // OperandBundles and consumed at the next call or invoke instruction.
5185 
5186       if (Record.size() < 1 || Record[0] >= BundleTags.size())
5187         return error("Invalid record");
5188 
5189       std::vector<Value *> Inputs;
5190 
5191       unsigned OpNum = 1;
5192       while (OpNum != Record.size()) {
5193         Value *Op;
5194         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
5195           return error("Invalid record");
5196         Inputs.push_back(Op);
5197       }
5198 
5199       OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs));
5200       continue;
5201     }
5202     }
5203 
5204     // Add instruction to end of current BB.  If there is no current BB, reject
5205     // this file.
5206     if (!CurBB) {
5207       delete I;
5208       return error("Invalid instruction with no BB");
5209     }
5210     if (!OperandBundles.empty()) {
5211       delete I;
5212       return error("Operand bundles found with no consumer");
5213     }
5214     CurBB->getInstList().push_back(I);
5215 
5216     // If this was a terminator instruction, move to the next block.
5217     if (isa<TerminatorInst>(I)) {
5218       ++CurBBNo;
5219       CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr;
5220     }
5221 
5222     // Non-void values get registered in the value table for future use.
5223     if (I && !I->getType()->isVoidTy())
5224       ValueList.assignValue(I, NextValueNo++);
5225   }
5226 
5227 OutOfRecordLoop:
5228 
5229   if (!OperandBundles.empty())
5230     return error("Operand bundles found with no consumer");
5231 
5232   // Check the function list for unresolved values.
5233   if (Argument *A = dyn_cast<Argument>(ValueList.back())) {
5234     if (!A->getParent()) {
5235       // We found at least one unresolved value.  Nuke them all to avoid leaks.
5236       for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){
5237         if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) {
5238           A->replaceAllUsesWith(UndefValue::get(A->getType()));
5239           delete A;
5240         }
5241       }
5242       return error("Never resolved value found in function");
5243     }
5244   }
5245 
5246   // Unexpected unresolved metadata about to be dropped.
5247   if (MetadataList.hasFwdRefs())
5248     return error("Invalid function metadata: outgoing forward refs");
5249 
5250   // Trim the value list down to the size it was before we parsed this function.
5251   ValueList.shrinkTo(ModuleValueListSize);
5252   MetadataList.shrinkTo(ModuleMetadataListSize);
5253   std::vector<BasicBlock*>().swap(FunctionBBs);
5254   return std::error_code();
5255 }
5256 
5257 /// Find the function body in the bitcode stream
5258 std::error_code BitcodeReader::findFunctionInStream(
5259     Function *F,
5260     DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) {
5261   while (DeferredFunctionInfoIterator->second == 0) {
5262     // This is the fallback handling for the old format bitcode that
5263     // didn't contain the function index in the VST, or when we have
5264     // an anonymous function which would not have a VST entry.
5265     // Assert that we have one of those two cases.
5266     assert(VSTOffset == 0 || !F->hasName());
5267     // Parse the next body in the stream and set its position in the
5268     // DeferredFunctionInfo map.
5269     if (std::error_code EC = rememberAndSkipFunctionBodies())
5270       return EC;
5271   }
5272   return std::error_code();
5273 }
5274 
5275 //===----------------------------------------------------------------------===//
5276 // GVMaterializer implementation
5277 //===----------------------------------------------------------------------===//
5278 
5279 void BitcodeReader::releaseBuffer() { Buffer.release(); }
5280 
5281 std::error_code BitcodeReader::materialize(GlobalValue *GV) {
5282   if (std::error_code EC = materializeMetadata())
5283     return EC;
5284 
5285   Function *F = dyn_cast<Function>(GV);
5286   // If it's not a function or is already material, ignore the request.
5287   if (!F || !F->isMaterializable())
5288     return std::error_code();
5289 
5290   DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F);
5291   assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!");
5292   // If its position is recorded as 0, its body is somewhere in the stream
5293   // but we haven't seen it yet.
5294   if (DFII->second == 0)
5295     if (std::error_code EC = findFunctionInStream(F, DFII))
5296       return EC;
5297 
5298   // Move the bit stream to the saved position of the deferred function body.
5299   Stream.JumpToBit(DFII->second);
5300 
5301   if (std::error_code EC = parseFunctionBody(F))
5302     return EC;
5303   F->setIsMaterializable(false);
5304 
5305   if (StripDebugInfo)
5306     stripDebugInfo(*F);
5307 
5308   // Upgrade any old intrinsic calls in the function.
5309   for (auto &I : UpgradedIntrinsics) {
5310     for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end();
5311          UI != UE;) {
5312       User *U = *UI;
5313       ++UI;
5314       if (CallInst *CI = dyn_cast<CallInst>(U))
5315         UpgradeIntrinsicCall(CI, I.second);
5316     }
5317   }
5318 
5319   // Finish fn->subprogram upgrade for materialized functions.
5320   if (DISubprogram *SP = FunctionsWithSPs.lookup(F))
5321     F->setSubprogram(SP);
5322 
5323   // Bring in any functions that this function forward-referenced via
5324   // blockaddresses.
5325   return materializeForwardReferencedFunctions();
5326 }
5327 
5328 std::error_code BitcodeReader::materializeModule() {
5329   if (std::error_code EC = materializeMetadata())
5330     return EC;
5331 
5332   // Promise to materialize all forward references.
5333   WillMaterializeAllForwardRefs = true;
5334 
5335   // Iterate over the module, deserializing any functions that are still on
5336   // disk.
5337   for (Function &F : *TheModule) {
5338     if (std::error_code EC = materialize(&F))
5339       return EC;
5340   }
5341   // At this point, if there are any function bodies, parse the rest of
5342   // the bits in the module past the last function block we have recorded
5343   // through either lazy scanning or the VST.
5344   if (LastFunctionBlockBit || NextUnreadBit)
5345     parseModule(LastFunctionBlockBit > NextUnreadBit ? LastFunctionBlockBit
5346                                                      : NextUnreadBit);
5347 
5348   // Check that all block address forward references got resolved (as we
5349   // promised above).
5350   if (!BasicBlockFwdRefs.empty())
5351     return error("Never resolved function from blockaddress");
5352 
5353   // Upgrading intrinsic calls before TBAA can cause TBAA metadata to be lost,
5354   // to prevent this instructions with TBAA tags should be upgraded first.
5355   for (unsigned I = 0, E = InstsWithTBAATag.size(); I < E; I++)
5356     UpgradeInstWithTBAATag(InstsWithTBAATag[I]);
5357 
5358   // Upgrade any intrinsic calls that slipped through (should not happen!) and
5359   // delete the old functions to clean up. We can't do this unless the entire
5360   // module is materialized because there could always be another function body
5361   // with calls to the old function.
5362   for (auto &I : UpgradedIntrinsics) {
5363     for (auto *U : I.first->users()) {
5364       if (CallInst *CI = dyn_cast<CallInst>(U))
5365         UpgradeIntrinsicCall(CI, I.second);
5366     }
5367     if (!I.first->use_empty())
5368       I.first->replaceAllUsesWith(I.second);
5369     I.first->eraseFromParent();
5370   }
5371   UpgradedIntrinsics.clear();
5372 
5373   UpgradeDebugInfo(*TheModule);
5374   return std::error_code();
5375 }
5376 
5377 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const {
5378   return IdentifiedStructTypes;
5379 }
5380 
5381 std::error_code
5382 BitcodeReader::initStream(std::unique_ptr<DataStreamer> Streamer) {
5383   if (Streamer)
5384     return initLazyStream(std::move(Streamer));
5385   return initStreamFromBuffer();
5386 }
5387 
5388 std::error_code BitcodeReader::initStreamFromBuffer() {
5389   const unsigned char *BufPtr = (const unsigned char*)Buffer->getBufferStart();
5390   const unsigned char *BufEnd = BufPtr+Buffer->getBufferSize();
5391 
5392   if (Buffer->getBufferSize() & 3)
5393     return error("Invalid bitcode signature");
5394 
5395   // If we have a wrapper header, parse it and ignore the non-bc file contents.
5396   // The magic number is 0x0B17C0DE stored in little endian.
5397   if (isBitcodeWrapper(BufPtr, BufEnd))
5398     if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true))
5399       return error("Invalid bitcode wrapper header");
5400 
5401   StreamFile.reset(new BitstreamReader(BufPtr, BufEnd));
5402   Stream.init(&*StreamFile);
5403 
5404   return std::error_code();
5405 }
5406 
5407 std::error_code
5408 BitcodeReader::initLazyStream(std::unique_ptr<DataStreamer> Streamer) {
5409   // Check and strip off the bitcode wrapper; BitstreamReader expects never to
5410   // see it.
5411   auto OwnedBytes =
5412       llvm::make_unique<StreamingMemoryObject>(std::move(Streamer));
5413   StreamingMemoryObject &Bytes = *OwnedBytes;
5414   StreamFile = llvm::make_unique<BitstreamReader>(std::move(OwnedBytes));
5415   Stream.init(&*StreamFile);
5416 
5417   unsigned char buf[16];
5418   if (Bytes.readBytes(buf, 16, 0) != 16)
5419     return error("Invalid bitcode signature");
5420 
5421   if (!isBitcode(buf, buf + 16))
5422     return error("Invalid bitcode signature");
5423 
5424   if (isBitcodeWrapper(buf, buf + 4)) {
5425     const unsigned char *bitcodeStart = buf;
5426     const unsigned char *bitcodeEnd = buf + 16;
5427     SkipBitcodeWrapperHeader(bitcodeStart, bitcodeEnd, false);
5428     Bytes.dropLeadingBytes(bitcodeStart - buf);
5429     Bytes.setKnownObjectSize(bitcodeEnd - bitcodeStart);
5430   }
5431   return std::error_code();
5432 }
5433 
5434 std::error_code ModuleSummaryIndexBitcodeReader::error(BitcodeError E,
5435                                                        const Twine &Message) {
5436   return ::error(DiagnosticHandler, make_error_code(E), Message);
5437 }
5438 
5439 std::error_code ModuleSummaryIndexBitcodeReader::error(const Twine &Message) {
5440   return ::error(DiagnosticHandler,
5441                  make_error_code(BitcodeError::CorruptedBitcode), Message);
5442 }
5443 
5444 std::error_code ModuleSummaryIndexBitcodeReader::error(BitcodeError E) {
5445   return ::error(DiagnosticHandler, make_error_code(E));
5446 }
5447 
5448 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader(
5449     MemoryBuffer *Buffer, DiagnosticHandlerFunction DiagnosticHandler,
5450     bool IsLazy, bool CheckGlobalValSummaryPresenceOnly)
5451     : DiagnosticHandler(DiagnosticHandler), Buffer(Buffer), IsLazy(IsLazy),
5452       CheckGlobalValSummaryPresenceOnly(CheckGlobalValSummaryPresenceOnly) {}
5453 
5454 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader(
5455     DiagnosticHandlerFunction DiagnosticHandler, bool IsLazy,
5456     bool CheckGlobalValSummaryPresenceOnly)
5457     : DiagnosticHandler(DiagnosticHandler), Buffer(nullptr), IsLazy(IsLazy),
5458       CheckGlobalValSummaryPresenceOnly(CheckGlobalValSummaryPresenceOnly) {}
5459 
5460 void ModuleSummaryIndexBitcodeReader::freeState() { Buffer = nullptr; }
5461 
5462 void ModuleSummaryIndexBitcodeReader::releaseBuffer() { Buffer.release(); }
5463 
5464 GlobalValue::GUID
5465 ModuleSummaryIndexBitcodeReader::getGUIDFromValueId(unsigned ValueId) {
5466   auto VGI = ValueIdToCallGraphGUIDMap.find(ValueId);
5467   assert(VGI != ValueIdToCallGraphGUIDMap.end());
5468   return VGI->second;
5469 }
5470 
5471 GlobalValueInfo *
5472 ModuleSummaryIndexBitcodeReader::getInfoFromSummaryOffset(uint64_t Offset) {
5473   auto I = SummaryOffsetToInfoMap.find(Offset);
5474   assert(I != SummaryOffsetToInfoMap.end());
5475   return I->second;
5476 }
5477 
5478 // Specialized value symbol table parser used when reading module index
5479 // blocks where we don't actually create global values.
5480 // At the end of this routine the module index is populated with a map
5481 // from global value name to GlobalValueInfo. The global value info contains
5482 // the function block's bitcode offset (if applicable), or the offset into the
5483 // summary section for the combined index.
5484 std::error_code ModuleSummaryIndexBitcodeReader::parseValueSymbolTable(
5485     uint64_t Offset,
5486     DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) {
5487   assert(Offset > 0 && "Expected non-zero VST offset");
5488   uint64_t CurrentBit = jumpToValueSymbolTable(Offset, Stream);
5489 
5490   if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
5491     return error("Invalid record");
5492 
5493   SmallVector<uint64_t, 64> Record;
5494 
5495   // Read all the records for this value table.
5496   SmallString<128> ValueName;
5497   while (1) {
5498     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
5499 
5500     switch (Entry.Kind) {
5501     case BitstreamEntry::SubBlock: // Handled for us already.
5502     case BitstreamEntry::Error:
5503       return error("Malformed block");
5504     case BitstreamEntry::EndBlock:
5505       // Done parsing VST, jump back to wherever we came from.
5506       Stream.JumpToBit(CurrentBit);
5507       return std::error_code();
5508     case BitstreamEntry::Record:
5509       // The interesting case.
5510       break;
5511     }
5512 
5513     // Read a record.
5514     Record.clear();
5515     switch (Stream.readRecord(Entry.ID, Record)) {
5516     default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records).
5517       break;
5518     case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N]
5519       if (convertToString(Record, 1, ValueName))
5520         return error("Invalid record");
5521       unsigned ValueID = Record[0];
5522       std::unique_ptr<GlobalValueInfo> GlobalValInfo =
5523           llvm::make_unique<GlobalValueInfo>();
5524       assert(!SourceFileName.empty());
5525       auto VLI = ValueIdToLinkageMap.find(ValueID);
5526       assert(VLI != ValueIdToLinkageMap.end() &&
5527              "No linkage found for VST entry?");
5528       std::string GlobalId = GlobalValue::getGlobalIdentifier(
5529           ValueName, VLI->second, SourceFileName);
5530       auto ValueGUID = GlobalValue::getGUID(GlobalId);
5531       if (PrintSummaryGUIDs)
5532         dbgs() << "GUID " << ValueGUID << " is " << ValueName << "\n";
5533       TheIndex->addGlobalValueInfo(ValueGUID, std::move(GlobalValInfo));
5534       ValueIdToCallGraphGUIDMap[ValueID] = ValueGUID;
5535       ValueName.clear();
5536       break;
5537     }
5538     case bitc::VST_CODE_FNENTRY: {
5539       // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
5540       if (convertToString(Record, 2, ValueName))
5541         return error("Invalid record");
5542       unsigned ValueID = Record[0];
5543       uint64_t FuncOffset = Record[1];
5544       assert(!IsLazy && "Lazy summary read only supported for combined index");
5545       std::unique_ptr<GlobalValueInfo> FuncInfo =
5546           llvm::make_unique<GlobalValueInfo>(FuncOffset);
5547       assert(!SourceFileName.empty());
5548       auto VLI = ValueIdToLinkageMap.find(ValueID);
5549       assert(VLI != ValueIdToLinkageMap.end() &&
5550              "No linkage found for VST entry?");
5551       std::string FunctionGlobalId = GlobalValue::getGlobalIdentifier(
5552           ValueName, VLI->second, SourceFileName);
5553       auto FunctionGUID = GlobalValue::getGUID(FunctionGlobalId);
5554       if (PrintSummaryGUIDs)
5555         dbgs() << "GUID " << FunctionGUID << " is " << ValueName << "\n";
5556       TheIndex->addGlobalValueInfo(FunctionGUID, std::move(FuncInfo));
5557       ValueIdToCallGraphGUIDMap[ValueID] = FunctionGUID;
5558 
5559       ValueName.clear();
5560       break;
5561     }
5562     case bitc::VST_CODE_COMBINED_GVDEFENTRY: {
5563       // VST_CODE_COMBINED_GVDEFENTRY: [valueid, offset, guid]
5564       unsigned ValueID = Record[0];
5565       uint64_t GlobalValSummaryOffset = Record[1];
5566       GlobalValue::GUID GlobalValGUID = Record[2];
5567       std::unique_ptr<GlobalValueInfo> GlobalValInfo =
5568           llvm::make_unique<GlobalValueInfo>(GlobalValSummaryOffset);
5569       SummaryOffsetToInfoMap[GlobalValSummaryOffset] = GlobalValInfo.get();
5570       TheIndex->addGlobalValueInfo(GlobalValGUID, std::move(GlobalValInfo));
5571       ValueIdToCallGraphGUIDMap[ValueID] = GlobalValGUID;
5572       break;
5573     }
5574     case bitc::VST_CODE_COMBINED_ENTRY: {
5575       // VST_CODE_COMBINED_ENTRY: [valueid, refguid]
5576       unsigned ValueID = Record[0];
5577       GlobalValue::GUID RefGUID = Record[1];
5578       ValueIdToCallGraphGUIDMap[ValueID] = RefGUID;
5579       break;
5580     }
5581     }
5582   }
5583 }
5584 
5585 // Parse just the blocks needed for building the index out of the module.
5586 // At the end of this routine the module Index is populated with a map
5587 // from global value name to GlobalValueInfo. The global value info contains
5588 // either the parsed summary information (when parsing summaries
5589 // eagerly), or just to the summary record's offset
5590 // if parsing lazily (IsLazy).
5591 std::error_code ModuleSummaryIndexBitcodeReader::parseModule() {
5592   if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
5593     return error("Invalid record");
5594 
5595   SmallVector<uint64_t, 64> Record;
5596   DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap;
5597   unsigned ValueId = 0;
5598 
5599   // Read the index for this module.
5600   while (1) {
5601     BitstreamEntry Entry = Stream.advance();
5602 
5603     switch (Entry.Kind) {
5604     case BitstreamEntry::Error:
5605       return error("Malformed block");
5606     case BitstreamEntry::EndBlock:
5607       return std::error_code();
5608 
5609     case BitstreamEntry::SubBlock:
5610       if (CheckGlobalValSummaryPresenceOnly) {
5611         if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) {
5612           SeenGlobalValSummary = true;
5613           // No need to parse the rest since we found the summary.
5614           return std::error_code();
5615         }
5616         if (Stream.SkipBlock())
5617           return error("Invalid record");
5618         continue;
5619       }
5620       switch (Entry.ID) {
5621       default: // Skip unknown content.
5622         if (Stream.SkipBlock())
5623           return error("Invalid record");
5624         break;
5625       case bitc::BLOCKINFO_BLOCK_ID:
5626         // Need to parse these to get abbrev ids (e.g. for VST)
5627         if (Stream.ReadBlockInfoBlock())
5628           return error("Malformed block");
5629         break;
5630       case bitc::VALUE_SYMTAB_BLOCK_ID:
5631         // Should have been parsed earlier via VSTOffset, unless there
5632         // is no summary section.
5633         assert(((SeenValueSymbolTable && VSTOffset > 0) ||
5634                 !SeenGlobalValSummary) &&
5635                "Expected early VST parse via VSTOffset record");
5636         if (Stream.SkipBlock())
5637           return error("Invalid record");
5638         break;
5639       case bitc::GLOBALVAL_SUMMARY_BLOCK_ID:
5640         assert(VSTOffset > 0 && "Expected non-zero VST offset");
5641         assert(!SeenValueSymbolTable &&
5642                "Already read VST when parsing summary block?");
5643         if (std::error_code EC =
5644                 parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap))
5645           return EC;
5646         SeenValueSymbolTable = true;
5647         SeenGlobalValSummary = true;
5648         if (IsLazy) {
5649           // Lazy parsing of summary info, skip it.
5650           if (Stream.SkipBlock())
5651             return error("Invalid record");
5652         } else if (std::error_code EC = parseEntireSummary())
5653           return EC;
5654         break;
5655       case bitc::MODULE_STRTAB_BLOCK_ID:
5656         if (std::error_code EC = parseModuleStringTable())
5657           return EC;
5658         break;
5659       }
5660       continue;
5661 
5662     case BitstreamEntry::Record: {
5663         Record.clear();
5664         auto BitCode = Stream.readRecord(Entry.ID, Record);
5665         switch (BitCode) {
5666         default:
5667           break; // Default behavior, ignore unknown content.
5668         /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
5669         case bitc::MODULE_CODE_SOURCE_FILENAME: {
5670           SmallString<128> ValueName;
5671           if (convertToString(Record, 0, ValueName))
5672             return error("Invalid record");
5673           SourceFileName = ValueName.c_str();
5674           break;
5675         }
5676         /// MODULE_CODE_HASH: [5*i32]
5677         case bitc::MODULE_CODE_HASH: {
5678           if (Record.size() != 5)
5679             return error("Invalid hash length " + Twine(Record.size()).str());
5680           if (!TheIndex)
5681             break;
5682           if (TheIndex->modulePaths().empty())
5683             // Does not have any summary emitted.
5684             break;
5685           if (TheIndex->modulePaths().size() != 1)
5686             return error("Don't expect multiple modules defined?");
5687           auto &Hash = TheIndex->modulePaths().begin()->second.second;
5688           int Pos = 0;
5689           for (auto &Val : Record) {
5690             assert(!(Val >> 32) && "Unexpected high bits set");
5691             Hash[Pos++] = Val;
5692           }
5693           break;
5694         }
5695         /// MODULE_CODE_VSTOFFSET: [offset]
5696         case bitc::MODULE_CODE_VSTOFFSET:
5697           if (Record.size() < 1)
5698             return error("Invalid record");
5699           VSTOffset = Record[0];
5700           break;
5701         // GLOBALVAR: [pointer type, isconst, initid,
5702         //             linkage, alignment, section, visibility, threadlocal,
5703         //             unnamed_addr, externally_initialized, dllstorageclass,
5704         //             comdat]
5705         case bitc::MODULE_CODE_GLOBALVAR: {
5706           if (Record.size() < 6)
5707             return error("Invalid record");
5708           uint64_t RawLinkage = Record[3];
5709           GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
5710           ValueIdToLinkageMap[ValueId++] = Linkage;
5711           break;
5712         }
5713         // FUNCTION:  [type, callingconv, isproto, linkage, paramattr,
5714         //             alignment, section, visibility, gc, unnamed_addr,
5715         //             prologuedata, dllstorageclass, comdat, prefixdata]
5716         case bitc::MODULE_CODE_FUNCTION: {
5717           if (Record.size() < 8)
5718             return error("Invalid record");
5719           uint64_t RawLinkage = Record[3];
5720           GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
5721           ValueIdToLinkageMap[ValueId++] = Linkage;
5722           break;
5723         }
5724         // ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility,
5725         // dllstorageclass]
5726         case bitc::MODULE_CODE_ALIAS: {
5727           if (Record.size() < 6)
5728             return error("Invalid record");
5729           uint64_t RawLinkage = Record[3];
5730           GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
5731           ValueIdToLinkageMap[ValueId++] = Linkage;
5732           break;
5733         }
5734         }
5735       }
5736       continue;
5737     }
5738   }
5739 }
5740 
5741 // Eagerly parse the entire summary block. This populates the GlobalValueSummary
5742 // objects in the index.
5743 std::error_code ModuleSummaryIndexBitcodeReader::parseEntireSummary() {
5744   if (Stream.EnterSubBlock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID))
5745     return error("Invalid record");
5746 
5747   SmallVector<uint64_t, 64> Record;
5748 
5749   bool Combined = false;
5750   while (1) {
5751     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
5752 
5753     switch (Entry.Kind) {
5754     case BitstreamEntry::SubBlock: // Handled for us already.
5755     case BitstreamEntry::Error:
5756       return error("Malformed block");
5757     case BitstreamEntry::EndBlock:
5758       // For a per-module index, remove any entries that still have empty
5759       // summaries. The VST parsing creates entries eagerly for all symbols,
5760       // but not all have associated summaries (e.g. it doesn't know how to
5761       // distinguish between VST_CODE_ENTRY for function declarations vs global
5762       // variables with initializers that end up with a summary). Remove those
5763       // entries now so that we don't need to rely on the combined index merger
5764       // to clean them up (especially since that may not run for the first
5765       // module's index if we merge into that).
5766       if (!Combined)
5767         TheIndex->removeEmptySummaryEntries();
5768       return std::error_code();
5769     case BitstreamEntry::Record:
5770       // The interesting case.
5771       break;
5772     }
5773 
5774     // Read a record. The record format depends on whether this
5775     // is a per-module index or a combined index file. In the per-module
5776     // case the records contain the associated value's ID for correlation
5777     // with VST entries. In the combined index the correlation is done
5778     // via the bitcode offset of the summary records (which were saved
5779     // in the combined index VST entries). The records also contain
5780     // information used for ThinLTO renaming and importing.
5781     Record.clear();
5782     uint64_t CurRecordBit = Stream.GetCurrentBitNo();
5783     auto BitCode = Stream.readRecord(Entry.ID, Record);
5784     switch (BitCode) {
5785     default: // Default behavior: ignore.
5786       break;
5787     // FS_PERMODULE: [valueid, linkage, instcount, numrefs, numrefs x valueid,
5788     //                n x (valueid, callsitecount)]
5789     // FS_PERMODULE_PROFILE: [valueid, linkage, instcount, numrefs,
5790     //                        numrefs x valueid,
5791     //                        n x (valueid, callsitecount, profilecount)]
5792     case bitc::FS_PERMODULE:
5793     case bitc::FS_PERMODULE_PROFILE: {
5794       unsigned ValueID = Record[0];
5795       uint64_t RawLinkage = Record[1];
5796       unsigned InstCount = Record[2];
5797       unsigned NumRefs = Record[3];
5798       std::unique_ptr<FunctionSummary> FS = llvm::make_unique<FunctionSummary>(
5799           getDecodedLinkage(RawLinkage), InstCount);
5800       // The module path string ref set in the summary must be owned by the
5801       // index's module string table. Since we don't have a module path
5802       // string table section in the per-module index, we create a single
5803       // module path string table entry with an empty (0) ID to take
5804       // ownership.
5805       FS->setModulePath(
5806           TheIndex->addModulePath(Buffer->getBufferIdentifier(), 0)->first());
5807       static int RefListStartIndex = 4;
5808       int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
5809       assert(Record.size() >= RefListStartIndex + NumRefs &&
5810              "Record size inconsistent with number of references");
5811       for (unsigned I = 4, E = CallGraphEdgeStartIndex; I != E; ++I) {
5812         unsigned RefValueId = Record[I];
5813         GlobalValue::GUID RefGUID = getGUIDFromValueId(RefValueId);
5814         FS->addRefEdge(RefGUID);
5815       }
5816       bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE);
5817       for (unsigned I = CallGraphEdgeStartIndex, E = Record.size(); I != E;
5818            ++I) {
5819         unsigned CalleeValueId = Record[I];
5820         unsigned CallsiteCount = Record[++I];
5821         uint64_t ProfileCount = HasProfile ? Record[++I] : 0;
5822         GlobalValue::GUID CalleeGUID = getGUIDFromValueId(CalleeValueId);
5823         FS->addCallGraphEdge(CalleeGUID,
5824                              CalleeInfo(CallsiteCount, ProfileCount));
5825       }
5826       GlobalValue::GUID GUID = getGUIDFromValueId(ValueID);
5827       auto *Info = TheIndex->getGlobalValueInfo(GUID);
5828       assert(!Info->summary() && "Expected a single summary per VST entry");
5829       Info->setSummary(std::move(FS));
5830       break;
5831     }
5832     // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, linkage, n x valueid]
5833     case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: {
5834       unsigned ValueID = Record[0];
5835       uint64_t RawLinkage = Record[1];
5836       std::unique_ptr<GlobalVarSummary> FS =
5837           llvm::make_unique<GlobalVarSummary>(getDecodedLinkage(RawLinkage));
5838       FS->setModulePath(
5839           TheIndex->addModulePath(Buffer->getBufferIdentifier(), 0)->first());
5840       for (unsigned I = 2, E = Record.size(); I != E; ++I) {
5841         unsigned RefValueId = Record[I];
5842         GlobalValue::GUID RefGUID = getGUIDFromValueId(RefValueId);
5843         FS->addRefEdge(RefGUID);
5844       }
5845       GlobalValue::GUID GUID = getGUIDFromValueId(ValueID);
5846       auto *Info = TheIndex->getGlobalValueInfo(GUID);
5847       assert(!Info->summary() && "Expected a single summary per VST entry");
5848       Info->setSummary(std::move(FS));
5849       break;
5850     }
5851     // FS_COMBINED: [modid, linkage, instcount, numrefs, numrefs x valueid,
5852     //               n x (valueid, callsitecount)]
5853     // FS_COMBINED_PROFILE: [modid, linkage, instcount, numrefs,
5854     //                       numrefs x valueid,
5855     //                       n x (valueid, callsitecount, profilecount)]
5856     case bitc::FS_COMBINED:
5857     case bitc::FS_COMBINED_PROFILE: {
5858       uint64_t ModuleId = Record[0];
5859       uint64_t RawLinkage = Record[1];
5860       unsigned InstCount = Record[2];
5861       unsigned NumRefs = Record[3];
5862       std::unique_ptr<FunctionSummary> FS = llvm::make_unique<FunctionSummary>(
5863           getDecodedLinkage(RawLinkage), InstCount);
5864       FS->setModulePath(ModuleIdMap[ModuleId]);
5865       static int RefListStartIndex = 4;
5866       int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
5867       assert(Record.size() >= RefListStartIndex + NumRefs &&
5868              "Record size inconsistent with number of references");
5869       for (unsigned I = 4, E = CallGraphEdgeStartIndex; I != E; ++I) {
5870         unsigned RefValueId = Record[I];
5871         GlobalValue::GUID RefGUID = getGUIDFromValueId(RefValueId);
5872         FS->addRefEdge(RefGUID);
5873       }
5874       bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE);
5875       for (unsigned I = CallGraphEdgeStartIndex, E = Record.size(); I != E;
5876            ++I) {
5877         unsigned CalleeValueId = Record[I];
5878         unsigned CallsiteCount = Record[++I];
5879         uint64_t ProfileCount = HasProfile ? Record[++I] : 0;
5880         GlobalValue::GUID CalleeGUID = getGUIDFromValueId(CalleeValueId);
5881         FS->addCallGraphEdge(CalleeGUID,
5882                              CalleeInfo(CallsiteCount, ProfileCount));
5883       }
5884       auto *Info = getInfoFromSummaryOffset(CurRecordBit);
5885       assert(!Info->summary() && "Expected a single summary per VST entry");
5886       Info->setSummary(std::move(FS));
5887       Combined = true;
5888       break;
5889     }
5890     // FS_COMBINED_GLOBALVAR_INIT_REFS: [modid, linkage, n x valueid]
5891     case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: {
5892       uint64_t ModuleId = Record[0];
5893       uint64_t RawLinkage = Record[1];
5894       std::unique_ptr<GlobalVarSummary> FS =
5895           llvm::make_unique<GlobalVarSummary>(getDecodedLinkage(RawLinkage));
5896       FS->setModulePath(ModuleIdMap[ModuleId]);
5897       for (unsigned I = 2, E = Record.size(); I != E; ++I) {
5898         unsigned RefValueId = Record[I];
5899         GlobalValue::GUID RefGUID = getGUIDFromValueId(RefValueId);
5900         FS->addRefEdge(RefGUID);
5901       }
5902       auto *Info = getInfoFromSummaryOffset(CurRecordBit);
5903       assert(!Info->summary() && "Expected a single summary per VST entry");
5904       Info->setSummary(std::move(FS));
5905       Combined = true;
5906       break;
5907     }
5908     }
5909   }
5910   llvm_unreachable("Exit infinite loop");
5911 }
5912 
5913 // Parse the  module string table block into the Index.
5914 // This populates the ModulePathStringTable map in the index.
5915 std::error_code ModuleSummaryIndexBitcodeReader::parseModuleStringTable() {
5916   if (Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID))
5917     return error("Invalid record");
5918 
5919   SmallVector<uint64_t, 64> Record;
5920 
5921   SmallString<128> ModulePath;
5922   ModulePathStringTableTy::iterator LastSeenModulePath;
5923   while (1) {
5924     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
5925 
5926     switch (Entry.Kind) {
5927     case BitstreamEntry::SubBlock: // Handled for us already.
5928     case BitstreamEntry::Error:
5929       return error("Malformed block");
5930     case BitstreamEntry::EndBlock:
5931       return std::error_code();
5932     case BitstreamEntry::Record:
5933       // The interesting case.
5934       break;
5935     }
5936 
5937     Record.clear();
5938     switch (Stream.readRecord(Entry.ID, Record)) {
5939     default: // Default behavior: ignore.
5940       break;
5941     case bitc::MST_CODE_ENTRY: {
5942       // MST_ENTRY: [modid, namechar x N]
5943       uint64_t ModuleId = Record[0];
5944 
5945       if (convertToString(Record, 1, ModulePath))
5946         return error("Invalid record");
5947 
5948       LastSeenModulePath = TheIndex->addModulePath(ModulePath, ModuleId);
5949       ModuleIdMap[ModuleId] = LastSeenModulePath->first();
5950 
5951       ModulePath.clear();
5952       break;
5953     }
5954     /// MST_CODE_HASH: [5*i32]
5955     case bitc::MST_CODE_HASH: {
5956       if (Record.size() != 5)
5957         return error("Invalid hash length " + Twine(Record.size()).str());
5958       if (LastSeenModulePath == TheIndex->modulePaths().end())
5959         return error("Invalid hash that does not follow a module path");
5960       int Pos = 0;
5961       for (auto &Val : Record) {
5962         assert(!(Val >> 32) && "Unexpected high bits set");
5963         LastSeenModulePath->second.second[Pos++] = Val;
5964       }
5965       // Reset LastSeenModulePath to avoid overriding the hash unexpectedly.
5966       LastSeenModulePath = TheIndex->modulePaths().end();
5967       break;
5968     }
5969     }
5970   }
5971   llvm_unreachable("Exit infinite loop");
5972 }
5973 
5974 // Parse the function info index from the bitcode streamer into the given index.
5975 std::error_code ModuleSummaryIndexBitcodeReader::parseSummaryIndexInto(
5976     std::unique_ptr<DataStreamer> Streamer, ModuleSummaryIndex *I) {
5977   TheIndex = I;
5978 
5979   if (std::error_code EC = initStream(std::move(Streamer)))
5980     return EC;
5981 
5982   // Sniff for the signature.
5983   if (!hasValidBitcodeHeader(Stream))
5984     return error("Invalid bitcode signature");
5985 
5986   // We expect a number of well-defined blocks, though we don't necessarily
5987   // need to understand them all.
5988   while (1) {
5989     if (Stream.AtEndOfStream()) {
5990       // We didn't really read a proper Module block.
5991       return error("Malformed block");
5992     }
5993 
5994     BitstreamEntry Entry =
5995         Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs);
5996 
5997     if (Entry.Kind != BitstreamEntry::SubBlock)
5998       return error("Malformed block");
5999 
6000     // If we see a MODULE_BLOCK, parse it to find the blocks needed for
6001     // building the function summary index.
6002     if (Entry.ID == bitc::MODULE_BLOCK_ID)
6003       return parseModule();
6004 
6005     if (Stream.SkipBlock())
6006       return error("Invalid record");
6007   }
6008 }
6009 
6010 // Parse the summary information at the given offset in the buffer into
6011 // the index. Used to support lazy parsing of summaries from the
6012 // combined index during importing.
6013 // TODO: This function is not yet complete as it won't have a consumer
6014 // until ThinLTO function importing is added.
6015 std::error_code ModuleSummaryIndexBitcodeReader::parseGlobalValueSummary(
6016     std::unique_ptr<DataStreamer> Streamer, ModuleSummaryIndex *I,
6017     size_t SummaryOffset) {
6018   TheIndex = I;
6019 
6020   if (std::error_code EC = initStream(std::move(Streamer)))
6021     return EC;
6022 
6023   // Sniff for the signature.
6024   if (!hasValidBitcodeHeader(Stream))
6025     return error("Invalid bitcode signature");
6026 
6027   Stream.JumpToBit(SummaryOffset);
6028 
6029   BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
6030 
6031   switch (Entry.Kind) {
6032   default:
6033     return error("Malformed block");
6034   case BitstreamEntry::Record:
6035     // The expected case.
6036     break;
6037   }
6038 
6039   // TODO: Read a record. This interface will be completed when ThinLTO
6040   // importing is added so that it can be tested.
6041   SmallVector<uint64_t, 64> Record;
6042   switch (Stream.readRecord(Entry.ID, Record)) {
6043   case bitc::FS_COMBINED:
6044   case bitc::FS_COMBINED_PROFILE:
6045   case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS:
6046   default:
6047     return error("Invalid record");
6048   }
6049 
6050   return std::error_code();
6051 }
6052 
6053 std::error_code ModuleSummaryIndexBitcodeReader::initStream(
6054     std::unique_ptr<DataStreamer> Streamer) {
6055   if (Streamer)
6056     return initLazyStream(std::move(Streamer));
6057   return initStreamFromBuffer();
6058 }
6059 
6060 std::error_code ModuleSummaryIndexBitcodeReader::initStreamFromBuffer() {
6061   const unsigned char *BufPtr = (const unsigned char *)Buffer->getBufferStart();
6062   const unsigned char *BufEnd = BufPtr + Buffer->getBufferSize();
6063 
6064   if (Buffer->getBufferSize() & 3)
6065     return error("Invalid bitcode signature");
6066 
6067   // If we have a wrapper header, parse it and ignore the non-bc file contents.
6068   // The magic number is 0x0B17C0DE stored in little endian.
6069   if (isBitcodeWrapper(BufPtr, BufEnd))
6070     if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true))
6071       return error("Invalid bitcode wrapper header");
6072 
6073   StreamFile.reset(new BitstreamReader(BufPtr, BufEnd));
6074   Stream.init(&*StreamFile);
6075 
6076   return std::error_code();
6077 }
6078 
6079 std::error_code ModuleSummaryIndexBitcodeReader::initLazyStream(
6080     std::unique_ptr<DataStreamer> Streamer) {
6081   // Check and strip off the bitcode wrapper; BitstreamReader expects never to
6082   // see it.
6083   auto OwnedBytes =
6084       llvm::make_unique<StreamingMemoryObject>(std::move(Streamer));
6085   StreamingMemoryObject &Bytes = *OwnedBytes;
6086   StreamFile = llvm::make_unique<BitstreamReader>(std::move(OwnedBytes));
6087   Stream.init(&*StreamFile);
6088 
6089   unsigned char buf[16];
6090   if (Bytes.readBytes(buf, 16, 0) != 16)
6091     return error("Invalid bitcode signature");
6092 
6093   if (!isBitcode(buf, buf + 16))
6094     return error("Invalid bitcode signature");
6095 
6096   if (isBitcodeWrapper(buf, buf + 4)) {
6097     const unsigned char *bitcodeStart = buf;
6098     const unsigned char *bitcodeEnd = buf + 16;
6099     SkipBitcodeWrapperHeader(bitcodeStart, bitcodeEnd, false);
6100     Bytes.dropLeadingBytes(bitcodeStart - buf);
6101     Bytes.setKnownObjectSize(bitcodeEnd - bitcodeStart);
6102   }
6103   return std::error_code();
6104 }
6105 
6106 namespace {
6107 class BitcodeErrorCategoryType : public std::error_category {
6108   const char *name() const LLVM_NOEXCEPT override {
6109     return "llvm.bitcode";
6110   }
6111   std::string message(int IE) const override {
6112     BitcodeError E = static_cast<BitcodeError>(IE);
6113     switch (E) {
6114     case BitcodeError::InvalidBitcodeSignature:
6115       return "Invalid bitcode signature";
6116     case BitcodeError::CorruptedBitcode:
6117       return "Corrupted bitcode";
6118     }
6119     llvm_unreachable("Unknown error type!");
6120   }
6121 };
6122 } // end anonymous namespace
6123 
6124 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory;
6125 
6126 const std::error_category &llvm::BitcodeErrorCategory() {
6127   return *ErrorCategory;
6128 }
6129 
6130 //===----------------------------------------------------------------------===//
6131 // External interface
6132 //===----------------------------------------------------------------------===//
6133 
6134 static ErrorOr<std::unique_ptr<Module>>
6135 getBitcodeModuleImpl(std::unique_ptr<DataStreamer> Streamer, StringRef Name,
6136                      BitcodeReader *R, LLVMContext &Context,
6137                      bool MaterializeAll, bool ShouldLazyLoadMetadata) {
6138   std::unique_ptr<Module> M = make_unique<Module>(Name, Context);
6139   M->setMaterializer(R);
6140 
6141   auto cleanupOnError = [&](std::error_code EC) {
6142     R->releaseBuffer(); // Never take ownership on error.
6143     return EC;
6144   };
6145 
6146   // Delay parsing Metadata if ShouldLazyLoadMetadata is true.
6147   if (std::error_code EC = R->parseBitcodeInto(std::move(Streamer), M.get(),
6148                                                ShouldLazyLoadMetadata))
6149     return cleanupOnError(EC);
6150 
6151   if (MaterializeAll) {
6152     // Read in the entire module, and destroy the BitcodeReader.
6153     if (std::error_code EC = M->materializeAll())
6154       return cleanupOnError(EC);
6155   } else {
6156     // Resolve forward references from blockaddresses.
6157     if (std::error_code EC = R->materializeForwardReferencedFunctions())
6158       return cleanupOnError(EC);
6159   }
6160   return std::move(M);
6161 }
6162 
6163 /// \brief Get a lazy one-at-time loading module from bitcode.
6164 ///
6165 /// This isn't always used in a lazy context.  In particular, it's also used by
6166 /// \a parseBitcodeFile().  If this is truly lazy, then we need to eagerly pull
6167 /// in forward-referenced functions from block address references.
6168 ///
6169 /// \param[in] MaterializeAll Set to \c true if we should materialize
6170 /// everything.
6171 static ErrorOr<std::unique_ptr<Module>>
6172 getLazyBitcodeModuleImpl(std::unique_ptr<MemoryBuffer> &&Buffer,
6173                          LLVMContext &Context, bool MaterializeAll,
6174                          bool ShouldLazyLoadMetadata = false) {
6175   BitcodeReader *R = new BitcodeReader(Buffer.get(), Context);
6176 
6177   ErrorOr<std::unique_ptr<Module>> Ret =
6178       getBitcodeModuleImpl(nullptr, Buffer->getBufferIdentifier(), R, Context,
6179                            MaterializeAll, ShouldLazyLoadMetadata);
6180   if (!Ret)
6181     return Ret;
6182 
6183   Buffer.release(); // The BitcodeReader owns it now.
6184   return Ret;
6185 }
6186 
6187 ErrorOr<std::unique_ptr<Module>>
6188 llvm::getLazyBitcodeModule(std::unique_ptr<MemoryBuffer> &&Buffer,
6189                            LLVMContext &Context, bool ShouldLazyLoadMetadata) {
6190   return getLazyBitcodeModuleImpl(std::move(Buffer), Context, false,
6191                                   ShouldLazyLoadMetadata);
6192 }
6193 
6194 ErrorOr<std::unique_ptr<Module>>
6195 llvm::getStreamedBitcodeModule(StringRef Name,
6196                                std::unique_ptr<DataStreamer> Streamer,
6197                                LLVMContext &Context) {
6198   std::unique_ptr<Module> M = make_unique<Module>(Name, Context);
6199   BitcodeReader *R = new BitcodeReader(Context);
6200 
6201   return getBitcodeModuleImpl(std::move(Streamer), Name, R, Context, false,
6202                               false);
6203 }
6204 
6205 ErrorOr<std::unique_ptr<Module>> llvm::parseBitcodeFile(MemoryBufferRef Buffer,
6206                                                         LLVMContext &Context) {
6207   std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false);
6208   return getLazyBitcodeModuleImpl(std::move(Buf), Context, true);
6209   // TODO: Restore the use-lists to the in-memory state when the bitcode was
6210   // written.  We must defer until the Module has been fully materialized.
6211 }
6212 
6213 std::string llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer,
6214                                          LLVMContext &Context) {
6215   std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false);
6216   auto R = llvm::make_unique<BitcodeReader>(Buf.release(), Context);
6217   ErrorOr<std::string> Triple = R->parseTriple();
6218   if (Triple.getError())
6219     return "";
6220   return Triple.get();
6221 }
6222 
6223 std::string llvm::getBitcodeProducerString(MemoryBufferRef Buffer,
6224                                            LLVMContext &Context) {
6225   std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false);
6226   BitcodeReader R(Buf.release(), Context);
6227   ErrorOr<std::string> ProducerString = R.parseIdentificationBlock();
6228   if (ProducerString.getError())
6229     return "";
6230   return ProducerString.get();
6231 }
6232 
6233 // Parse the specified bitcode buffer, returning the function info index.
6234 // If IsLazy is false, parse the entire function summary into
6235 // the index. Otherwise skip the function summary section, and only create
6236 // an index object with a map from function name to function summary offset.
6237 // The index is used to perform lazy function summary reading later.
6238 ErrorOr<std::unique_ptr<ModuleSummaryIndex>>
6239 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer,
6240                             DiagnosticHandlerFunction DiagnosticHandler,
6241                             bool IsLazy) {
6242   std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false);
6243   ModuleSummaryIndexBitcodeReader R(Buf.get(), DiagnosticHandler, IsLazy);
6244 
6245   auto Index = llvm::make_unique<ModuleSummaryIndex>();
6246 
6247   auto cleanupOnError = [&](std::error_code EC) {
6248     R.releaseBuffer(); // Never take ownership on error.
6249     return EC;
6250   };
6251 
6252   if (std::error_code EC = R.parseSummaryIndexInto(nullptr, Index.get()))
6253     return cleanupOnError(EC);
6254 
6255   Buf.release(); // The ModuleSummaryIndexBitcodeReader owns it now.
6256   return std::move(Index);
6257 }
6258 
6259 // Check if the given bitcode buffer contains a global value summary block.
6260 bool llvm::hasGlobalValueSummary(MemoryBufferRef Buffer,
6261                                  DiagnosticHandlerFunction DiagnosticHandler) {
6262   std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false);
6263   ModuleSummaryIndexBitcodeReader R(Buf.get(), DiagnosticHandler, false, true);
6264 
6265   auto cleanupOnError = [&](std::error_code EC) {
6266     R.releaseBuffer(); // Never take ownership on error.
6267     return false;
6268   };
6269 
6270   if (std::error_code EC = R.parseSummaryIndexInto(nullptr, nullptr))
6271     return cleanupOnError(EC);
6272 
6273   Buf.release(); // The ModuleSummaryIndexBitcodeReader owns it now.
6274   return R.foundGlobalValSummary();
6275 }
6276 
6277 // This method supports lazy reading of summary data from the combined
6278 // index during ThinLTO function importing. When reading the combined index
6279 // file, getModuleSummaryIndex is first invoked with IsLazy=true.
6280 // Then this method is called for each value considered for importing,
6281 // to parse the summary information for the given value name into
6282 // the index.
6283 std::error_code llvm::readGlobalValueSummary(
6284     MemoryBufferRef Buffer, DiagnosticHandlerFunction DiagnosticHandler,
6285     StringRef ValueName, std::unique_ptr<ModuleSummaryIndex> Index) {
6286   std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false);
6287   ModuleSummaryIndexBitcodeReader R(Buf.get(), DiagnosticHandler);
6288 
6289   auto cleanupOnError = [&](std::error_code EC) {
6290     R.releaseBuffer(); // Never take ownership on error.
6291     return EC;
6292   };
6293 
6294   // Lookup the given value name in the GlobalValueMap, which may
6295   // contain a list of global value infos in the case of a COMDAT. Walk through
6296   // and parse each summary info at the summary offset
6297   // recorded when parsing the value symbol table.
6298   for (const auto &FI : Index->getGlobalValueInfoList(ValueName)) {
6299     size_t SummaryOffset = FI->bitcodeIndex();
6300     if (std::error_code EC =
6301             R.parseGlobalValueSummary(nullptr, Index.get(), SummaryOffset))
6302       return cleanupOnError(EC);
6303   }
6304 
6305   Buf.release(); // The ModuleSummaryIndexBitcodeReader owns it now.
6306   return std::error_code();
6307 }
6308