1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "llvm/Bitcode/ReaderWriter.h" 11 #include "llvm/ADT/STLExtras.h" 12 #include "llvm/ADT/SmallString.h" 13 #include "llvm/ADT/SmallVector.h" 14 #include "llvm/ADT/Triple.h" 15 #include "llvm/Bitcode/BitstreamReader.h" 16 #include "llvm/Bitcode/LLVMBitCodes.h" 17 #include "llvm/IR/AutoUpgrade.h" 18 #include "llvm/IR/Constants.h" 19 #include "llvm/IR/DebugInfo.h" 20 #include "llvm/IR/DebugInfoMetadata.h" 21 #include "llvm/IR/DerivedTypes.h" 22 #include "llvm/IR/DiagnosticPrinter.h" 23 #include "llvm/IR/GVMaterializer.h" 24 #include "llvm/IR/InlineAsm.h" 25 #include "llvm/IR/IntrinsicInst.h" 26 #include "llvm/IR/LLVMContext.h" 27 #include "llvm/IR/Module.h" 28 #include "llvm/IR/OperandTraits.h" 29 #include "llvm/IR/Operator.h" 30 #include "llvm/IR/FunctionInfo.h" 31 #include "llvm/IR/ValueHandle.h" 32 #include "llvm/Support/DataStream.h" 33 #include "llvm/Support/ManagedStatic.h" 34 #include "llvm/Support/MathExtras.h" 35 #include "llvm/Support/MemoryBuffer.h" 36 #include "llvm/Support/raw_ostream.h" 37 #include <deque> 38 using namespace llvm; 39 40 namespace { 41 enum { 42 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 43 }; 44 45 /// Indicates which operator an operand allows (for the few operands that may 46 /// only reference a certain operator). 47 enum OperatorConstraint { 48 OC_None = 0, // No constraint 49 OC_CatchPad, // Must be CatchPadInst 50 OC_CleanupPad // Must be CleanupPadInst 51 }; 52 53 class BitcodeReaderValueList { 54 std::vector<WeakVH> ValuePtrs; 55 56 /// As we resolve forward-referenced constants, we add information about them 57 /// to this vector. This allows us to resolve them in bulk instead of 58 /// resolving each reference at a time. See the code in 59 /// ResolveConstantForwardRefs for more information about this. 60 /// 61 /// The key of this vector is the placeholder constant, the value is the slot 62 /// number that holds the resolved value. 63 typedef std::vector<std::pair<Constant*, unsigned> > ResolveConstantsTy; 64 ResolveConstantsTy ResolveConstants; 65 LLVMContext &Context; 66 public: 67 BitcodeReaderValueList(LLVMContext &C) : Context(C) {} 68 ~BitcodeReaderValueList() { 69 assert(ResolveConstants.empty() && "Constants not resolved?"); 70 } 71 72 // vector compatibility methods 73 unsigned size() const { return ValuePtrs.size(); } 74 void resize(unsigned N) { ValuePtrs.resize(N); } 75 void push_back(Value *V) { ValuePtrs.emplace_back(V); } 76 77 void clear() { 78 assert(ResolveConstants.empty() && "Constants not resolved?"); 79 ValuePtrs.clear(); 80 } 81 82 Value *operator[](unsigned i) const { 83 assert(i < ValuePtrs.size()); 84 return ValuePtrs[i]; 85 } 86 87 Value *back() const { return ValuePtrs.back(); } 88 void pop_back() { ValuePtrs.pop_back(); } 89 bool empty() const { return ValuePtrs.empty(); } 90 void shrinkTo(unsigned N) { 91 assert(N <= size() && "Invalid shrinkTo request!"); 92 ValuePtrs.resize(N); 93 } 94 95 Constant *getConstantFwdRef(unsigned Idx, Type *Ty); 96 Value *getValueFwdRef(unsigned Idx, Type *Ty, 97 OperatorConstraint OC = OC_None); 98 99 bool assignValue(Value *V, unsigned Idx); 100 101 /// Once all constants are read, this method bulk resolves any forward 102 /// references. 103 void resolveConstantForwardRefs(); 104 }; 105 106 class BitcodeReaderMDValueList { 107 unsigned NumFwdRefs; 108 bool AnyFwdRefs; 109 unsigned MinFwdRef; 110 unsigned MaxFwdRef; 111 std::vector<TrackingMDRef> MDValuePtrs; 112 113 LLVMContext &Context; 114 public: 115 BitcodeReaderMDValueList(LLVMContext &C) 116 : NumFwdRefs(0), AnyFwdRefs(false), Context(C) {} 117 118 // vector compatibility methods 119 unsigned size() const { return MDValuePtrs.size(); } 120 void resize(unsigned N) { MDValuePtrs.resize(N); } 121 void push_back(Metadata *MD) { MDValuePtrs.emplace_back(MD); } 122 void clear() { MDValuePtrs.clear(); } 123 Metadata *back() const { return MDValuePtrs.back(); } 124 void pop_back() { MDValuePtrs.pop_back(); } 125 bool empty() const { return MDValuePtrs.empty(); } 126 127 Metadata *operator[](unsigned i) const { 128 assert(i < MDValuePtrs.size()); 129 return MDValuePtrs[i]; 130 } 131 132 void shrinkTo(unsigned N) { 133 assert(N <= size() && "Invalid shrinkTo request!"); 134 MDValuePtrs.resize(N); 135 } 136 137 Metadata *getValueFwdRef(unsigned Idx); 138 void assignValue(Metadata *MD, unsigned Idx); 139 void tryToResolveCycles(); 140 }; 141 142 class BitcodeReader : public GVMaterializer { 143 LLVMContext &Context; 144 DiagnosticHandlerFunction DiagnosticHandler; 145 Module *TheModule = nullptr; 146 std::unique_ptr<MemoryBuffer> Buffer; 147 std::unique_ptr<BitstreamReader> StreamFile; 148 BitstreamCursor Stream; 149 // Next offset to start scanning for lazy parsing of function bodies. 150 uint64_t NextUnreadBit = 0; 151 // Last function offset found in the VST. 152 uint64_t LastFunctionBlockBit = 0; 153 bool SeenValueSymbolTable = false; 154 unsigned VSTOffset = 0; 155 156 std::vector<Type*> TypeList; 157 BitcodeReaderValueList ValueList; 158 BitcodeReaderMDValueList MDValueList; 159 std::vector<Comdat *> ComdatList; 160 SmallVector<Instruction *, 64> InstructionList; 161 162 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInits; 163 std::vector<std::pair<GlobalAlias*, unsigned> > AliasInits; 164 std::vector<std::pair<Function*, unsigned> > FunctionPrefixes; 165 std::vector<std::pair<Function*, unsigned> > FunctionPrologues; 166 std::vector<std::pair<Function*, unsigned> > FunctionPersonalityFns; 167 168 SmallVector<Instruction*, 64> InstsWithTBAATag; 169 170 /// The set of attributes by index. Index zero in the file is for null, and 171 /// is thus not represented here. As such all indices are off by one. 172 std::vector<AttributeSet> MAttributes; 173 174 /// The set of attribute groups. 175 std::map<unsigned, AttributeSet> MAttributeGroups; 176 177 /// While parsing a function body, this is a list of the basic blocks for the 178 /// function. 179 std::vector<BasicBlock*> FunctionBBs; 180 181 // When reading the module header, this list is populated with functions that 182 // have bodies later in the file. 183 std::vector<Function*> FunctionsWithBodies; 184 185 // When intrinsic functions are encountered which require upgrading they are 186 // stored here with their replacement function. 187 typedef DenseMap<Function*, Function*> UpgradedIntrinsicMap; 188 UpgradedIntrinsicMap UpgradedIntrinsics; 189 190 // Map the bitcode's custom MDKind ID to the Module's MDKind ID. 191 DenseMap<unsigned, unsigned> MDKindMap; 192 193 // Several operations happen after the module header has been read, but 194 // before function bodies are processed. This keeps track of whether 195 // we've done this yet. 196 bool SeenFirstFunctionBody = false; 197 198 /// When function bodies are initially scanned, this map contains info about 199 /// where to find deferred function body in the stream. 200 DenseMap<Function*, uint64_t> DeferredFunctionInfo; 201 202 /// When Metadata block is initially scanned when parsing the module, we may 203 /// choose to defer parsing of the metadata. This vector contains info about 204 /// which Metadata blocks are deferred. 205 std::vector<uint64_t> DeferredMetadataInfo; 206 207 /// These are basic blocks forward-referenced by block addresses. They are 208 /// inserted lazily into functions when they're loaded. The basic block ID is 209 /// its index into the vector. 210 DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs; 211 std::deque<Function *> BasicBlockFwdRefQueue; 212 213 /// Indicates that we are using a new encoding for instruction operands where 214 /// most operands in the current FUNCTION_BLOCK are encoded relative to the 215 /// instruction number, for a more compact encoding. Some instruction 216 /// operands are not relative to the instruction ID: basic block numbers, and 217 /// types. Once the old style function blocks have been phased out, we would 218 /// not need this flag. 219 bool UseRelativeIDs = false; 220 221 /// True if all functions will be materialized, negating the need to process 222 /// (e.g.) blockaddress forward references. 223 bool WillMaterializeAllForwardRefs = false; 224 225 /// Functions that have block addresses taken. This is usually empty. 226 SmallPtrSet<const Function *, 4> BlockAddressesTaken; 227 228 /// True if any Metadata block has been materialized. 229 bool IsMetadataMaterialized = false; 230 231 bool StripDebugInfo = false; 232 233 std::vector<std::string> BundleTags; 234 235 public: 236 std::error_code error(BitcodeError E, const Twine &Message); 237 std::error_code error(BitcodeError E); 238 std::error_code error(const Twine &Message); 239 240 BitcodeReader(MemoryBuffer *Buffer, LLVMContext &Context, 241 DiagnosticHandlerFunction DiagnosticHandler); 242 BitcodeReader(LLVMContext &Context, 243 DiagnosticHandlerFunction DiagnosticHandler); 244 ~BitcodeReader() override { freeState(); } 245 246 std::error_code materializeForwardReferencedFunctions(); 247 248 void freeState(); 249 250 void releaseBuffer(); 251 252 bool isDematerializable(const GlobalValue *GV) const override; 253 std::error_code materialize(GlobalValue *GV) override; 254 std::error_code materializeModule(Module *M) override; 255 std::vector<StructType *> getIdentifiedStructTypes() const override; 256 void dematerialize(GlobalValue *GV) override; 257 258 /// \brief Main interface to parsing a bitcode buffer. 259 /// \returns true if an error occurred. 260 std::error_code parseBitcodeInto(std::unique_ptr<DataStreamer> Streamer, 261 Module *M, 262 bool ShouldLazyLoadMetadata = false); 263 264 /// \brief Cheap mechanism to just extract module triple 265 /// \returns true if an error occurred. 266 ErrorOr<std::string> parseTriple(); 267 268 static uint64_t decodeSignRotatedValue(uint64_t V); 269 270 /// Materialize any deferred Metadata block. 271 std::error_code materializeMetadata() override; 272 273 void setStripDebugInfo() override; 274 275 private: 276 std::vector<StructType *> IdentifiedStructTypes; 277 StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name); 278 StructType *createIdentifiedStructType(LLVMContext &Context); 279 280 Type *getTypeByID(unsigned ID); 281 Value *getFnValueByID(unsigned ID, Type *Ty, 282 OperatorConstraint OC = OC_None) { 283 if (Ty && Ty->isMetadataTy()) 284 return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID)); 285 return ValueList.getValueFwdRef(ID, Ty, OC); 286 } 287 Metadata *getFnMetadataByID(unsigned ID) { 288 return MDValueList.getValueFwdRef(ID); 289 } 290 BasicBlock *getBasicBlock(unsigned ID) const { 291 if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID 292 return FunctionBBs[ID]; 293 } 294 AttributeSet getAttributes(unsigned i) const { 295 if (i-1 < MAttributes.size()) 296 return MAttributes[i-1]; 297 return AttributeSet(); 298 } 299 300 /// Read a value/type pair out of the specified record from slot 'Slot'. 301 /// Increment Slot past the number of slots used in the record. Return true on 302 /// failure. 303 bool getValueTypePair(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 304 unsigned InstNum, Value *&ResVal) { 305 if (Slot == Record.size()) return true; 306 unsigned ValNo = (unsigned)Record[Slot++]; 307 // Adjust the ValNo, if it was encoded relative to the InstNum. 308 if (UseRelativeIDs) 309 ValNo = InstNum - ValNo; 310 if (ValNo < InstNum) { 311 // If this is not a forward reference, just return the value we already 312 // have. 313 ResVal = getFnValueByID(ValNo, nullptr); 314 return ResVal == nullptr; 315 } 316 if (Slot == Record.size()) 317 return true; 318 319 unsigned TypeNo = (unsigned)Record[Slot++]; 320 ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo)); 321 return ResVal == nullptr; 322 } 323 324 /// Read a value out of the specified record from slot 'Slot'. Increment Slot 325 /// past the number of slots used by the value in the record. Return true if 326 /// there is an error. 327 bool popValue(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 328 unsigned InstNum, Type *Ty, Value *&ResVal, 329 OperatorConstraint OC = OC_None) { 330 if (getValue(Record, Slot, InstNum, Ty, ResVal, OC)) 331 return true; 332 // All values currently take a single record slot. 333 ++Slot; 334 return false; 335 } 336 337 /// Like popValue, but does not increment the Slot number. 338 bool getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 339 unsigned InstNum, Type *Ty, Value *&ResVal, 340 OperatorConstraint OC = OC_None) { 341 ResVal = getValue(Record, Slot, InstNum, Ty, OC); 342 return ResVal == nullptr; 343 } 344 345 /// Version of getValue that returns ResVal directly, or 0 if there is an 346 /// error. 347 Value *getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 348 unsigned InstNum, Type *Ty, OperatorConstraint OC = OC_None) { 349 if (Slot == Record.size()) return nullptr; 350 unsigned ValNo = (unsigned)Record[Slot]; 351 // Adjust the ValNo, if it was encoded relative to the InstNum. 352 if (UseRelativeIDs) 353 ValNo = InstNum - ValNo; 354 return getFnValueByID(ValNo, Ty, OC); 355 } 356 357 /// Like getValue, but decodes signed VBRs. 358 Value *getValueSigned(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 359 unsigned InstNum, Type *Ty, 360 OperatorConstraint OC = OC_None) { 361 if (Slot == Record.size()) return nullptr; 362 unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]); 363 // Adjust the ValNo, if it was encoded relative to the InstNum. 364 if (UseRelativeIDs) 365 ValNo = InstNum - ValNo; 366 return getFnValueByID(ValNo, Ty, OC); 367 } 368 369 /// Converts alignment exponent (i.e. power of two (or zero)) to the 370 /// corresponding alignment to use. If alignment is too large, returns 371 /// a corresponding error code. 372 std::error_code parseAlignmentValue(uint64_t Exponent, unsigned &Alignment); 373 std::error_code parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind); 374 std::error_code parseModule(uint64_t ResumeBit, 375 bool ShouldLazyLoadMetadata = false); 376 std::error_code parseAttributeBlock(); 377 std::error_code parseAttributeGroupBlock(); 378 std::error_code parseTypeTable(); 379 std::error_code parseTypeTableBody(); 380 std::error_code parseOperandBundleTags(); 381 382 ErrorOr<Value *> recordValue(SmallVectorImpl<uint64_t> &Record, 383 unsigned NameIndex, Triple &TT); 384 std::error_code parseValueSymbolTable(unsigned Offset = 0); 385 std::error_code parseConstants(); 386 std::error_code rememberAndSkipFunctionBodies(); 387 std::error_code rememberAndSkipFunctionBody(); 388 /// Save the positions of the Metadata blocks and skip parsing the blocks. 389 std::error_code rememberAndSkipMetadata(); 390 std::error_code parseFunctionBody(Function *F); 391 std::error_code globalCleanup(); 392 std::error_code resolveGlobalAndAliasInits(); 393 std::error_code parseMetadata(); 394 std::error_code parseMetadataAttachment(Function &F); 395 ErrorOr<std::string> parseModuleTriple(); 396 std::error_code parseUseLists(); 397 std::error_code initStream(std::unique_ptr<DataStreamer> Streamer); 398 std::error_code initStreamFromBuffer(); 399 std::error_code initLazyStream(std::unique_ptr<DataStreamer> Streamer); 400 std::error_code findFunctionInStream( 401 Function *F, 402 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator); 403 }; 404 405 /// Class to manage reading and parsing function summary index bitcode 406 /// files/sections. 407 class FunctionIndexBitcodeReader { 408 DiagnosticHandlerFunction DiagnosticHandler; 409 410 /// Eventually points to the function index built during parsing. 411 FunctionInfoIndex *TheIndex = nullptr; 412 413 std::unique_ptr<MemoryBuffer> Buffer; 414 std::unique_ptr<BitstreamReader> StreamFile; 415 BitstreamCursor Stream; 416 417 /// \brief Used to indicate whether we are doing lazy parsing of summary data. 418 /// 419 /// If false, the summary section is fully parsed into the index during 420 /// the initial parse. Otherwise, if true, the caller is expected to 421 /// invoke \a readFunctionSummary for each summary needed, and the summary 422 /// section is thus parsed lazily. 423 bool IsLazy = false; 424 425 /// Used to indicate whether caller only wants to check for the presence 426 /// of the function summary bitcode section. All blocks are skipped, 427 /// but the SeenFuncSummary boolean is set. 428 bool CheckFuncSummaryPresenceOnly = false; 429 430 /// Indicates whether we have encountered a function summary section 431 /// yet during parsing, used when checking if file contains function 432 /// summary section. 433 bool SeenFuncSummary = false; 434 435 /// \brief Map populated during function summary section parsing, and 436 /// consumed during ValueSymbolTable parsing. 437 /// 438 /// Used to correlate summary records with VST entries. For the per-module 439 /// index this maps the ValueID to the parsed function summary, and 440 /// for the combined index this maps the summary record's bitcode 441 /// offset to the function summary (since in the combined index the 442 /// VST records do not hold value IDs but rather hold the function 443 /// summary record offset). 444 DenseMap<uint64_t, std::unique_ptr<FunctionSummary>> SummaryMap; 445 446 /// Map populated during module path string table parsing, from the 447 /// module ID to a string reference owned by the index's module 448 /// path string table, used to correlate with combined index function 449 /// summary records. 450 DenseMap<uint64_t, StringRef> ModuleIdMap; 451 452 public: 453 std::error_code error(BitcodeError E, const Twine &Message); 454 std::error_code error(BitcodeError E); 455 std::error_code error(const Twine &Message); 456 457 FunctionIndexBitcodeReader(MemoryBuffer *Buffer, LLVMContext &Context, 458 DiagnosticHandlerFunction DiagnosticHandler, 459 bool IsLazy = false, 460 bool CheckFuncSummaryPresenceOnly = false); 461 FunctionIndexBitcodeReader(LLVMContext &Context, 462 DiagnosticHandlerFunction DiagnosticHandler, 463 bool IsLazy = false, 464 bool CheckFuncSummaryPresenceOnly = false); 465 ~FunctionIndexBitcodeReader() { freeState(); } 466 467 void freeState(); 468 469 void releaseBuffer(); 470 471 /// Check if the parser has encountered a function summary section. 472 bool foundFuncSummary() { return SeenFuncSummary; } 473 474 /// \brief Main interface to parsing a bitcode buffer. 475 /// \returns true if an error occurred. 476 std::error_code parseSummaryIndexInto(std::unique_ptr<DataStreamer> Streamer, 477 FunctionInfoIndex *I); 478 479 /// \brief Interface for parsing a function summary lazily. 480 std::error_code parseFunctionSummary(std::unique_ptr<DataStreamer> Streamer, 481 FunctionInfoIndex *I, 482 size_t FunctionSummaryOffset); 483 484 private: 485 std::error_code parseModule(); 486 std::error_code parseValueSymbolTable(); 487 std::error_code parseEntireSummary(); 488 std::error_code parseModuleStringTable(); 489 std::error_code initStream(std::unique_ptr<DataStreamer> Streamer); 490 std::error_code initStreamFromBuffer(); 491 std::error_code initLazyStream(std::unique_ptr<DataStreamer> Streamer); 492 }; 493 } // namespace 494 495 BitcodeDiagnosticInfo::BitcodeDiagnosticInfo(std::error_code EC, 496 DiagnosticSeverity Severity, 497 const Twine &Msg) 498 : DiagnosticInfo(DK_Bitcode, Severity), Msg(Msg), EC(EC) {} 499 500 void BitcodeDiagnosticInfo::print(DiagnosticPrinter &DP) const { DP << Msg; } 501 502 static std::error_code error(DiagnosticHandlerFunction DiagnosticHandler, 503 std::error_code EC, const Twine &Message) { 504 BitcodeDiagnosticInfo DI(EC, DS_Error, Message); 505 DiagnosticHandler(DI); 506 return EC; 507 } 508 509 static std::error_code error(DiagnosticHandlerFunction DiagnosticHandler, 510 std::error_code EC) { 511 return error(DiagnosticHandler, EC, EC.message()); 512 } 513 514 static std::error_code error(DiagnosticHandlerFunction DiagnosticHandler, 515 const Twine &Message) { 516 return error(DiagnosticHandler, 517 make_error_code(BitcodeError::CorruptedBitcode), Message); 518 } 519 520 std::error_code BitcodeReader::error(BitcodeError E, const Twine &Message) { 521 return ::error(DiagnosticHandler, make_error_code(E), Message); 522 } 523 524 std::error_code BitcodeReader::error(const Twine &Message) { 525 return ::error(DiagnosticHandler, 526 make_error_code(BitcodeError::CorruptedBitcode), Message); 527 } 528 529 std::error_code BitcodeReader::error(BitcodeError E) { 530 return ::error(DiagnosticHandler, make_error_code(E)); 531 } 532 533 static DiagnosticHandlerFunction getDiagHandler(DiagnosticHandlerFunction F, 534 LLVMContext &C) { 535 if (F) 536 return F; 537 return [&C](const DiagnosticInfo &DI) { C.diagnose(DI); }; 538 } 539 540 BitcodeReader::BitcodeReader(MemoryBuffer *Buffer, LLVMContext &Context, 541 DiagnosticHandlerFunction DiagnosticHandler) 542 : Context(Context), 543 DiagnosticHandler(getDiagHandler(DiagnosticHandler, Context)), 544 Buffer(Buffer), ValueList(Context), MDValueList(Context) {} 545 546 BitcodeReader::BitcodeReader(LLVMContext &Context, 547 DiagnosticHandlerFunction DiagnosticHandler) 548 : Context(Context), 549 DiagnosticHandler(getDiagHandler(DiagnosticHandler, Context)), 550 Buffer(nullptr), ValueList(Context), MDValueList(Context) {} 551 552 std::error_code BitcodeReader::materializeForwardReferencedFunctions() { 553 if (WillMaterializeAllForwardRefs) 554 return std::error_code(); 555 556 // Prevent recursion. 557 WillMaterializeAllForwardRefs = true; 558 559 while (!BasicBlockFwdRefQueue.empty()) { 560 Function *F = BasicBlockFwdRefQueue.front(); 561 BasicBlockFwdRefQueue.pop_front(); 562 assert(F && "Expected valid function"); 563 if (!BasicBlockFwdRefs.count(F)) 564 // Already materialized. 565 continue; 566 567 // Check for a function that isn't materializable to prevent an infinite 568 // loop. When parsing a blockaddress stored in a global variable, there 569 // isn't a trivial way to check if a function will have a body without a 570 // linear search through FunctionsWithBodies, so just check it here. 571 if (!F->isMaterializable()) 572 return error("Never resolved function from blockaddress"); 573 574 // Try to materialize F. 575 if (std::error_code EC = materialize(F)) 576 return EC; 577 } 578 assert(BasicBlockFwdRefs.empty() && "Function missing from queue"); 579 580 // Reset state. 581 WillMaterializeAllForwardRefs = false; 582 return std::error_code(); 583 } 584 585 void BitcodeReader::freeState() { 586 Buffer = nullptr; 587 std::vector<Type*>().swap(TypeList); 588 ValueList.clear(); 589 MDValueList.clear(); 590 std::vector<Comdat *>().swap(ComdatList); 591 592 std::vector<AttributeSet>().swap(MAttributes); 593 std::vector<BasicBlock*>().swap(FunctionBBs); 594 std::vector<Function*>().swap(FunctionsWithBodies); 595 DeferredFunctionInfo.clear(); 596 DeferredMetadataInfo.clear(); 597 MDKindMap.clear(); 598 599 assert(BasicBlockFwdRefs.empty() && "Unresolved blockaddress fwd references"); 600 BasicBlockFwdRefQueue.clear(); 601 } 602 603 //===----------------------------------------------------------------------===// 604 // Helper functions to implement forward reference resolution, etc. 605 //===----------------------------------------------------------------------===// 606 607 /// Convert a string from a record into an std::string, return true on failure. 608 template <typename StrTy> 609 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx, 610 StrTy &Result) { 611 if (Idx > Record.size()) 612 return true; 613 614 for (unsigned i = Idx, e = Record.size(); i != e; ++i) 615 Result += (char)Record[i]; 616 return false; 617 } 618 619 static bool hasImplicitComdat(size_t Val) { 620 switch (Val) { 621 default: 622 return false; 623 case 1: // Old WeakAnyLinkage 624 case 4: // Old LinkOnceAnyLinkage 625 case 10: // Old WeakODRLinkage 626 case 11: // Old LinkOnceODRLinkage 627 return true; 628 } 629 } 630 631 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) { 632 switch (Val) { 633 default: // Map unknown/new linkages to external 634 case 0: 635 return GlobalValue::ExternalLinkage; 636 case 2: 637 return GlobalValue::AppendingLinkage; 638 case 3: 639 return GlobalValue::InternalLinkage; 640 case 5: 641 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage 642 case 6: 643 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage 644 case 7: 645 return GlobalValue::ExternalWeakLinkage; 646 case 8: 647 return GlobalValue::CommonLinkage; 648 case 9: 649 return GlobalValue::PrivateLinkage; 650 case 12: 651 return GlobalValue::AvailableExternallyLinkage; 652 case 13: 653 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage 654 case 14: 655 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage 656 case 15: 657 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage 658 case 1: // Old value with implicit comdat. 659 case 16: 660 return GlobalValue::WeakAnyLinkage; 661 case 10: // Old value with implicit comdat. 662 case 17: 663 return GlobalValue::WeakODRLinkage; 664 case 4: // Old value with implicit comdat. 665 case 18: 666 return GlobalValue::LinkOnceAnyLinkage; 667 case 11: // Old value with implicit comdat. 668 case 19: 669 return GlobalValue::LinkOnceODRLinkage; 670 } 671 } 672 673 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) { 674 switch (Val) { 675 default: // Map unknown visibilities to default. 676 case 0: return GlobalValue::DefaultVisibility; 677 case 1: return GlobalValue::HiddenVisibility; 678 case 2: return GlobalValue::ProtectedVisibility; 679 } 680 } 681 682 static GlobalValue::DLLStorageClassTypes 683 getDecodedDLLStorageClass(unsigned Val) { 684 switch (Val) { 685 default: // Map unknown values to default. 686 case 0: return GlobalValue::DefaultStorageClass; 687 case 1: return GlobalValue::DLLImportStorageClass; 688 case 2: return GlobalValue::DLLExportStorageClass; 689 } 690 } 691 692 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) { 693 switch (Val) { 694 case 0: return GlobalVariable::NotThreadLocal; 695 default: // Map unknown non-zero value to general dynamic. 696 case 1: return GlobalVariable::GeneralDynamicTLSModel; 697 case 2: return GlobalVariable::LocalDynamicTLSModel; 698 case 3: return GlobalVariable::InitialExecTLSModel; 699 case 4: return GlobalVariable::LocalExecTLSModel; 700 } 701 } 702 703 static int getDecodedCastOpcode(unsigned Val) { 704 switch (Val) { 705 default: return -1; 706 case bitc::CAST_TRUNC : return Instruction::Trunc; 707 case bitc::CAST_ZEXT : return Instruction::ZExt; 708 case bitc::CAST_SEXT : return Instruction::SExt; 709 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 710 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 711 case bitc::CAST_UITOFP : return Instruction::UIToFP; 712 case bitc::CAST_SITOFP : return Instruction::SIToFP; 713 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 714 case bitc::CAST_FPEXT : return Instruction::FPExt; 715 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 716 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 717 case bitc::CAST_BITCAST : return Instruction::BitCast; 718 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast; 719 } 720 } 721 722 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) { 723 bool IsFP = Ty->isFPOrFPVectorTy(); 724 // BinOps are only valid for int/fp or vector of int/fp types 725 if (!IsFP && !Ty->isIntOrIntVectorTy()) 726 return -1; 727 728 switch (Val) { 729 default: 730 return -1; 731 case bitc::BINOP_ADD: 732 return IsFP ? Instruction::FAdd : Instruction::Add; 733 case bitc::BINOP_SUB: 734 return IsFP ? Instruction::FSub : Instruction::Sub; 735 case bitc::BINOP_MUL: 736 return IsFP ? Instruction::FMul : Instruction::Mul; 737 case bitc::BINOP_UDIV: 738 return IsFP ? -1 : Instruction::UDiv; 739 case bitc::BINOP_SDIV: 740 return IsFP ? Instruction::FDiv : Instruction::SDiv; 741 case bitc::BINOP_UREM: 742 return IsFP ? -1 : Instruction::URem; 743 case bitc::BINOP_SREM: 744 return IsFP ? Instruction::FRem : Instruction::SRem; 745 case bitc::BINOP_SHL: 746 return IsFP ? -1 : Instruction::Shl; 747 case bitc::BINOP_LSHR: 748 return IsFP ? -1 : Instruction::LShr; 749 case bitc::BINOP_ASHR: 750 return IsFP ? -1 : Instruction::AShr; 751 case bitc::BINOP_AND: 752 return IsFP ? -1 : Instruction::And; 753 case bitc::BINOP_OR: 754 return IsFP ? -1 : Instruction::Or; 755 case bitc::BINOP_XOR: 756 return IsFP ? -1 : Instruction::Xor; 757 } 758 } 759 760 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) { 761 switch (Val) { 762 default: return AtomicRMWInst::BAD_BINOP; 763 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 764 case bitc::RMW_ADD: return AtomicRMWInst::Add; 765 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 766 case bitc::RMW_AND: return AtomicRMWInst::And; 767 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 768 case bitc::RMW_OR: return AtomicRMWInst::Or; 769 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 770 case bitc::RMW_MAX: return AtomicRMWInst::Max; 771 case bitc::RMW_MIN: return AtomicRMWInst::Min; 772 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 773 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 774 } 775 } 776 777 static AtomicOrdering getDecodedOrdering(unsigned Val) { 778 switch (Val) { 779 case bitc::ORDERING_NOTATOMIC: return NotAtomic; 780 case bitc::ORDERING_UNORDERED: return Unordered; 781 case bitc::ORDERING_MONOTONIC: return Monotonic; 782 case bitc::ORDERING_ACQUIRE: return Acquire; 783 case bitc::ORDERING_RELEASE: return Release; 784 case bitc::ORDERING_ACQREL: return AcquireRelease; 785 default: // Map unknown orderings to sequentially-consistent. 786 case bitc::ORDERING_SEQCST: return SequentiallyConsistent; 787 } 788 } 789 790 static SynchronizationScope getDecodedSynchScope(unsigned Val) { 791 switch (Val) { 792 case bitc::SYNCHSCOPE_SINGLETHREAD: return SingleThread; 793 default: // Map unknown scopes to cross-thread. 794 case bitc::SYNCHSCOPE_CROSSTHREAD: return CrossThread; 795 } 796 } 797 798 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) { 799 switch (Val) { 800 default: // Map unknown selection kinds to any. 801 case bitc::COMDAT_SELECTION_KIND_ANY: 802 return Comdat::Any; 803 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH: 804 return Comdat::ExactMatch; 805 case bitc::COMDAT_SELECTION_KIND_LARGEST: 806 return Comdat::Largest; 807 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES: 808 return Comdat::NoDuplicates; 809 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE: 810 return Comdat::SameSize; 811 } 812 } 813 814 static FastMathFlags getDecodedFastMathFlags(unsigned Val) { 815 FastMathFlags FMF; 816 if (0 != (Val & FastMathFlags::UnsafeAlgebra)) 817 FMF.setUnsafeAlgebra(); 818 if (0 != (Val & FastMathFlags::NoNaNs)) 819 FMF.setNoNaNs(); 820 if (0 != (Val & FastMathFlags::NoInfs)) 821 FMF.setNoInfs(); 822 if (0 != (Val & FastMathFlags::NoSignedZeros)) 823 FMF.setNoSignedZeros(); 824 if (0 != (Val & FastMathFlags::AllowReciprocal)) 825 FMF.setAllowReciprocal(); 826 return FMF; 827 } 828 829 static void upgradeDLLImportExportLinkage(llvm::GlobalValue *GV, unsigned Val) { 830 switch (Val) { 831 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break; 832 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break; 833 } 834 } 835 836 namespace llvm { 837 namespace { 838 /// \brief A class for maintaining the slot number definition 839 /// as a placeholder for the actual definition for forward constants defs. 840 class ConstantPlaceHolder : public ConstantExpr { 841 void operator=(const ConstantPlaceHolder &) = delete; 842 843 public: 844 // allocate space for exactly one operand 845 void *operator new(size_t s) { return User::operator new(s, 1); } 846 explicit ConstantPlaceHolder(Type *Ty, LLVMContext &Context) 847 : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) { 848 Op<0>() = UndefValue::get(Type::getInt32Ty(Context)); 849 } 850 851 /// \brief Methods to support type inquiry through isa, cast, and dyn_cast. 852 static bool classof(const Value *V) { 853 return isa<ConstantExpr>(V) && 854 cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1; 855 } 856 857 /// Provide fast operand accessors 858 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); 859 }; 860 } 861 862 // FIXME: can we inherit this from ConstantExpr? 863 template <> 864 struct OperandTraits<ConstantPlaceHolder> : 865 public FixedNumOperandTraits<ConstantPlaceHolder, 1> { 866 }; 867 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantPlaceHolder, Value) 868 } 869 870 bool BitcodeReaderValueList::assignValue(Value *V, unsigned Idx) { 871 if (Idx == size()) { 872 push_back(V); 873 return false; 874 } 875 876 if (Idx >= size()) 877 resize(Idx+1); 878 879 WeakVH &OldV = ValuePtrs[Idx]; 880 if (!OldV) { 881 OldV = V; 882 return false; 883 } 884 885 // Handle constants and non-constants (e.g. instrs) differently for 886 // efficiency. 887 if (Constant *PHC = dyn_cast<Constant>(&*OldV)) { 888 ResolveConstants.push_back(std::make_pair(PHC, Idx)); 889 OldV = V; 890 } else { 891 // If there was a forward reference to this value, replace it. 892 Value *PrevVal = OldV; 893 // Check operator constraints. We only put cleanuppads or catchpads in 894 // the forward value map if the value is constrained to match. 895 if (CatchPadInst *CatchPad = dyn_cast<CatchPadInst>(PrevVal)) { 896 if (!isa<CatchPadInst>(V)) 897 return true; 898 // Delete the dummy basic block that was created with the sentinel 899 // catchpad. 900 BasicBlock *DummyBlock = CatchPad->getUnwindDest(); 901 assert(DummyBlock == CatchPad->getNormalDest()); 902 CatchPad->dropAllReferences(); 903 delete DummyBlock; 904 } else if (isa<CleanupPadInst>(PrevVal)) { 905 if (!isa<CleanupPadInst>(V)) 906 return true; 907 } 908 OldV->replaceAllUsesWith(V); 909 delete PrevVal; 910 } 911 912 return false; 913 } 914 915 916 Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx, 917 Type *Ty) { 918 if (Idx >= size()) 919 resize(Idx + 1); 920 921 if (Value *V = ValuePtrs[Idx]) { 922 if (Ty != V->getType()) 923 report_fatal_error("Type mismatch in constant table!"); 924 return cast<Constant>(V); 925 } 926 927 // Create and return a placeholder, which will later be RAUW'd. 928 Constant *C = new ConstantPlaceHolder(Ty, Context); 929 ValuePtrs[Idx] = C; 930 return C; 931 } 932 933 Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, Type *Ty, 934 OperatorConstraint OC) { 935 // Bail out for a clearly invalid value. This would make us call resize(0) 936 if (Idx == UINT_MAX) 937 return nullptr; 938 939 if (Idx >= size()) 940 resize(Idx + 1); 941 942 if (Value *V = ValuePtrs[Idx]) { 943 // If the types don't match, it's invalid. 944 if (Ty && Ty != V->getType()) 945 return nullptr; 946 if (!OC) 947 return V; 948 // Use dyn_cast to enforce operator constraints 949 switch (OC) { 950 case OC_CatchPad: 951 return dyn_cast<CatchPadInst>(V); 952 case OC_CleanupPad: 953 return dyn_cast<CleanupPadInst>(V); 954 default: 955 llvm_unreachable("Unexpected operator constraint"); 956 } 957 } 958 959 // No type specified, must be invalid reference. 960 if (!Ty) return nullptr; 961 962 // Create and return a placeholder, which will later be RAUW'd. 963 Value *V; 964 switch (OC) { 965 case OC_None: 966 V = new Argument(Ty); 967 break; 968 case OC_CatchPad: { 969 BasicBlock *BB = BasicBlock::Create(Context); 970 V = CatchPadInst::Create(BB, BB, {}); 971 break; 972 } 973 default: 974 assert(OC == OC_CleanupPad && "unexpected operator constraint"); 975 V = CleanupPadInst::Create(Context, {}); 976 break; 977 } 978 979 ValuePtrs[Idx] = V; 980 return V; 981 } 982 983 /// Once all constants are read, this method bulk resolves any forward 984 /// references. The idea behind this is that we sometimes get constants (such 985 /// as large arrays) which reference *many* forward ref constants. Replacing 986 /// each of these causes a lot of thrashing when building/reuniquing the 987 /// constant. Instead of doing this, we look at all the uses and rewrite all 988 /// the place holders at once for any constant that uses a placeholder. 989 void BitcodeReaderValueList::resolveConstantForwardRefs() { 990 // Sort the values by-pointer so that they are efficient to look up with a 991 // binary search. 992 std::sort(ResolveConstants.begin(), ResolveConstants.end()); 993 994 SmallVector<Constant*, 64> NewOps; 995 996 while (!ResolveConstants.empty()) { 997 Value *RealVal = operator[](ResolveConstants.back().second); 998 Constant *Placeholder = ResolveConstants.back().first; 999 ResolveConstants.pop_back(); 1000 1001 // Loop over all users of the placeholder, updating them to reference the 1002 // new value. If they reference more than one placeholder, update them all 1003 // at once. 1004 while (!Placeholder->use_empty()) { 1005 auto UI = Placeholder->user_begin(); 1006 User *U = *UI; 1007 1008 // If the using object isn't uniqued, just update the operands. This 1009 // handles instructions and initializers for global variables. 1010 if (!isa<Constant>(U) || isa<GlobalValue>(U)) { 1011 UI.getUse().set(RealVal); 1012 continue; 1013 } 1014 1015 // Otherwise, we have a constant that uses the placeholder. Replace that 1016 // constant with a new constant that has *all* placeholder uses updated. 1017 Constant *UserC = cast<Constant>(U); 1018 for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end(); 1019 I != E; ++I) { 1020 Value *NewOp; 1021 if (!isa<ConstantPlaceHolder>(*I)) { 1022 // Not a placeholder reference. 1023 NewOp = *I; 1024 } else if (*I == Placeholder) { 1025 // Common case is that it just references this one placeholder. 1026 NewOp = RealVal; 1027 } else { 1028 // Otherwise, look up the placeholder in ResolveConstants. 1029 ResolveConstantsTy::iterator It = 1030 std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(), 1031 std::pair<Constant*, unsigned>(cast<Constant>(*I), 1032 0)); 1033 assert(It != ResolveConstants.end() && It->first == *I); 1034 NewOp = operator[](It->second); 1035 } 1036 1037 NewOps.push_back(cast<Constant>(NewOp)); 1038 } 1039 1040 // Make the new constant. 1041 Constant *NewC; 1042 if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) { 1043 NewC = ConstantArray::get(UserCA->getType(), NewOps); 1044 } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) { 1045 NewC = ConstantStruct::get(UserCS->getType(), NewOps); 1046 } else if (isa<ConstantVector>(UserC)) { 1047 NewC = ConstantVector::get(NewOps); 1048 } else { 1049 assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr."); 1050 NewC = cast<ConstantExpr>(UserC)->getWithOperands(NewOps); 1051 } 1052 1053 UserC->replaceAllUsesWith(NewC); 1054 UserC->destroyConstant(); 1055 NewOps.clear(); 1056 } 1057 1058 // Update all ValueHandles, they should be the only users at this point. 1059 Placeholder->replaceAllUsesWith(RealVal); 1060 delete Placeholder; 1061 } 1062 } 1063 1064 void BitcodeReaderMDValueList::assignValue(Metadata *MD, unsigned Idx) { 1065 if (Idx == size()) { 1066 push_back(MD); 1067 return; 1068 } 1069 1070 if (Idx >= size()) 1071 resize(Idx+1); 1072 1073 TrackingMDRef &OldMD = MDValuePtrs[Idx]; 1074 if (!OldMD) { 1075 OldMD.reset(MD); 1076 return; 1077 } 1078 1079 // If there was a forward reference to this value, replace it. 1080 TempMDTuple PrevMD(cast<MDTuple>(OldMD.get())); 1081 PrevMD->replaceAllUsesWith(MD); 1082 --NumFwdRefs; 1083 } 1084 1085 Metadata *BitcodeReaderMDValueList::getValueFwdRef(unsigned Idx) { 1086 if (Idx >= size()) 1087 resize(Idx + 1); 1088 1089 if (Metadata *MD = MDValuePtrs[Idx]) 1090 return MD; 1091 1092 // Track forward refs to be resolved later. 1093 if (AnyFwdRefs) { 1094 MinFwdRef = std::min(MinFwdRef, Idx); 1095 MaxFwdRef = std::max(MaxFwdRef, Idx); 1096 } else { 1097 AnyFwdRefs = true; 1098 MinFwdRef = MaxFwdRef = Idx; 1099 } 1100 ++NumFwdRefs; 1101 1102 // Create and return a placeholder, which will later be RAUW'd. 1103 Metadata *MD = MDNode::getTemporary(Context, None).release(); 1104 MDValuePtrs[Idx].reset(MD); 1105 return MD; 1106 } 1107 1108 void BitcodeReaderMDValueList::tryToResolveCycles() { 1109 if (!AnyFwdRefs) 1110 // Nothing to do. 1111 return; 1112 1113 if (NumFwdRefs) 1114 // Still forward references... can't resolve cycles. 1115 return; 1116 1117 // Resolve any cycles. 1118 for (unsigned I = MinFwdRef, E = MaxFwdRef + 1; I != E; ++I) { 1119 auto &MD = MDValuePtrs[I]; 1120 auto *N = dyn_cast_or_null<MDNode>(MD); 1121 if (!N) 1122 continue; 1123 1124 assert(!N->isTemporary() && "Unexpected forward reference"); 1125 N->resolveCycles(); 1126 } 1127 1128 // Make sure we return early again until there's another forward ref. 1129 AnyFwdRefs = false; 1130 } 1131 1132 Type *BitcodeReader::getTypeByID(unsigned ID) { 1133 // The type table size is always specified correctly. 1134 if (ID >= TypeList.size()) 1135 return nullptr; 1136 1137 if (Type *Ty = TypeList[ID]) 1138 return Ty; 1139 1140 // If we have a forward reference, the only possible case is when it is to a 1141 // named struct. Just create a placeholder for now. 1142 return TypeList[ID] = createIdentifiedStructType(Context); 1143 } 1144 1145 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context, 1146 StringRef Name) { 1147 auto *Ret = StructType::create(Context, Name); 1148 IdentifiedStructTypes.push_back(Ret); 1149 return Ret; 1150 } 1151 1152 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) { 1153 auto *Ret = StructType::create(Context); 1154 IdentifiedStructTypes.push_back(Ret); 1155 return Ret; 1156 } 1157 1158 1159 //===----------------------------------------------------------------------===// 1160 // Functions for parsing blocks from the bitcode file 1161 //===----------------------------------------------------------------------===// 1162 1163 1164 /// \brief This fills an AttrBuilder object with the LLVM attributes that have 1165 /// been decoded from the given integer. This function must stay in sync with 1166 /// 'encodeLLVMAttributesForBitcode'. 1167 static void decodeLLVMAttributesForBitcode(AttrBuilder &B, 1168 uint64_t EncodedAttrs) { 1169 // FIXME: Remove in 4.0. 1170 1171 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift 1172 // the bits above 31 down by 11 bits. 1173 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; 1174 assert((!Alignment || isPowerOf2_32(Alignment)) && 1175 "Alignment must be a power of two."); 1176 1177 if (Alignment) 1178 B.addAlignmentAttr(Alignment); 1179 B.addRawValue(((EncodedAttrs & (0xfffffULL << 32)) >> 11) | 1180 (EncodedAttrs & 0xffff)); 1181 } 1182 1183 std::error_code BitcodeReader::parseAttributeBlock() { 1184 if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 1185 return error("Invalid record"); 1186 1187 if (!MAttributes.empty()) 1188 return error("Invalid multiple blocks"); 1189 1190 SmallVector<uint64_t, 64> Record; 1191 1192 SmallVector<AttributeSet, 8> Attrs; 1193 1194 // Read all the records. 1195 while (1) { 1196 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1197 1198 switch (Entry.Kind) { 1199 case BitstreamEntry::SubBlock: // Handled for us already. 1200 case BitstreamEntry::Error: 1201 return error("Malformed block"); 1202 case BitstreamEntry::EndBlock: 1203 return std::error_code(); 1204 case BitstreamEntry::Record: 1205 // The interesting case. 1206 break; 1207 } 1208 1209 // Read a record. 1210 Record.clear(); 1211 switch (Stream.readRecord(Entry.ID, Record)) { 1212 default: // Default behavior: ignore. 1213 break; 1214 case bitc::PARAMATTR_CODE_ENTRY_OLD: { // ENTRY: [paramidx0, attr0, ...] 1215 // FIXME: Remove in 4.0. 1216 if (Record.size() & 1) 1217 return error("Invalid record"); 1218 1219 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1220 AttrBuilder B; 1221 decodeLLVMAttributesForBitcode(B, Record[i+1]); 1222 Attrs.push_back(AttributeSet::get(Context, Record[i], B)); 1223 } 1224 1225 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 1226 Attrs.clear(); 1227 break; 1228 } 1229 case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [attrgrp0, attrgrp1, ...] 1230 for (unsigned i = 0, e = Record.size(); i != e; ++i) 1231 Attrs.push_back(MAttributeGroups[Record[i]]); 1232 1233 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 1234 Attrs.clear(); 1235 break; 1236 } 1237 } 1238 } 1239 } 1240 1241 // Returns Attribute::None on unrecognized codes. 1242 static Attribute::AttrKind getAttrFromCode(uint64_t Code) { 1243 switch (Code) { 1244 default: 1245 return Attribute::None; 1246 case bitc::ATTR_KIND_ALIGNMENT: 1247 return Attribute::Alignment; 1248 case bitc::ATTR_KIND_ALWAYS_INLINE: 1249 return Attribute::AlwaysInline; 1250 case bitc::ATTR_KIND_ARGMEMONLY: 1251 return Attribute::ArgMemOnly; 1252 case bitc::ATTR_KIND_BUILTIN: 1253 return Attribute::Builtin; 1254 case bitc::ATTR_KIND_BY_VAL: 1255 return Attribute::ByVal; 1256 case bitc::ATTR_KIND_IN_ALLOCA: 1257 return Attribute::InAlloca; 1258 case bitc::ATTR_KIND_COLD: 1259 return Attribute::Cold; 1260 case bitc::ATTR_KIND_CONVERGENT: 1261 return Attribute::Convergent; 1262 case bitc::ATTR_KIND_INLINE_HINT: 1263 return Attribute::InlineHint; 1264 case bitc::ATTR_KIND_IN_REG: 1265 return Attribute::InReg; 1266 case bitc::ATTR_KIND_JUMP_TABLE: 1267 return Attribute::JumpTable; 1268 case bitc::ATTR_KIND_MIN_SIZE: 1269 return Attribute::MinSize; 1270 case bitc::ATTR_KIND_NAKED: 1271 return Attribute::Naked; 1272 case bitc::ATTR_KIND_NEST: 1273 return Attribute::Nest; 1274 case bitc::ATTR_KIND_NO_ALIAS: 1275 return Attribute::NoAlias; 1276 case bitc::ATTR_KIND_NO_BUILTIN: 1277 return Attribute::NoBuiltin; 1278 case bitc::ATTR_KIND_NO_CAPTURE: 1279 return Attribute::NoCapture; 1280 case bitc::ATTR_KIND_NO_DUPLICATE: 1281 return Attribute::NoDuplicate; 1282 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: 1283 return Attribute::NoImplicitFloat; 1284 case bitc::ATTR_KIND_NO_INLINE: 1285 return Attribute::NoInline; 1286 case bitc::ATTR_KIND_NON_LAZY_BIND: 1287 return Attribute::NonLazyBind; 1288 case bitc::ATTR_KIND_NON_NULL: 1289 return Attribute::NonNull; 1290 case bitc::ATTR_KIND_DEREFERENCEABLE: 1291 return Attribute::Dereferenceable; 1292 case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL: 1293 return Attribute::DereferenceableOrNull; 1294 case bitc::ATTR_KIND_NO_RED_ZONE: 1295 return Attribute::NoRedZone; 1296 case bitc::ATTR_KIND_NO_RETURN: 1297 return Attribute::NoReturn; 1298 case bitc::ATTR_KIND_NO_UNWIND: 1299 return Attribute::NoUnwind; 1300 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: 1301 return Attribute::OptimizeForSize; 1302 case bitc::ATTR_KIND_OPTIMIZE_NONE: 1303 return Attribute::OptimizeNone; 1304 case bitc::ATTR_KIND_READ_NONE: 1305 return Attribute::ReadNone; 1306 case bitc::ATTR_KIND_READ_ONLY: 1307 return Attribute::ReadOnly; 1308 case bitc::ATTR_KIND_RETURNED: 1309 return Attribute::Returned; 1310 case bitc::ATTR_KIND_RETURNS_TWICE: 1311 return Attribute::ReturnsTwice; 1312 case bitc::ATTR_KIND_S_EXT: 1313 return Attribute::SExt; 1314 case bitc::ATTR_KIND_STACK_ALIGNMENT: 1315 return Attribute::StackAlignment; 1316 case bitc::ATTR_KIND_STACK_PROTECT: 1317 return Attribute::StackProtect; 1318 case bitc::ATTR_KIND_STACK_PROTECT_REQ: 1319 return Attribute::StackProtectReq; 1320 case bitc::ATTR_KIND_STACK_PROTECT_STRONG: 1321 return Attribute::StackProtectStrong; 1322 case bitc::ATTR_KIND_SAFESTACK: 1323 return Attribute::SafeStack; 1324 case bitc::ATTR_KIND_STRUCT_RET: 1325 return Attribute::StructRet; 1326 case bitc::ATTR_KIND_SANITIZE_ADDRESS: 1327 return Attribute::SanitizeAddress; 1328 case bitc::ATTR_KIND_SANITIZE_THREAD: 1329 return Attribute::SanitizeThread; 1330 case bitc::ATTR_KIND_SANITIZE_MEMORY: 1331 return Attribute::SanitizeMemory; 1332 case bitc::ATTR_KIND_UW_TABLE: 1333 return Attribute::UWTable; 1334 case bitc::ATTR_KIND_Z_EXT: 1335 return Attribute::ZExt; 1336 } 1337 } 1338 1339 std::error_code BitcodeReader::parseAlignmentValue(uint64_t Exponent, 1340 unsigned &Alignment) { 1341 // Note: Alignment in bitcode files is incremented by 1, so that zero 1342 // can be used for default alignment. 1343 if (Exponent > Value::MaxAlignmentExponent + 1) 1344 return error("Invalid alignment value"); 1345 Alignment = (1 << static_cast<unsigned>(Exponent)) >> 1; 1346 return std::error_code(); 1347 } 1348 1349 std::error_code BitcodeReader::parseAttrKind(uint64_t Code, 1350 Attribute::AttrKind *Kind) { 1351 *Kind = getAttrFromCode(Code); 1352 if (*Kind == Attribute::None) 1353 return error(BitcodeError::CorruptedBitcode, 1354 "Unknown attribute kind (" + Twine(Code) + ")"); 1355 return std::error_code(); 1356 } 1357 1358 std::error_code BitcodeReader::parseAttributeGroupBlock() { 1359 if (Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) 1360 return error("Invalid record"); 1361 1362 if (!MAttributeGroups.empty()) 1363 return error("Invalid multiple blocks"); 1364 1365 SmallVector<uint64_t, 64> Record; 1366 1367 // Read all the records. 1368 while (1) { 1369 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1370 1371 switch (Entry.Kind) { 1372 case BitstreamEntry::SubBlock: // Handled for us already. 1373 case BitstreamEntry::Error: 1374 return error("Malformed block"); 1375 case BitstreamEntry::EndBlock: 1376 return std::error_code(); 1377 case BitstreamEntry::Record: 1378 // The interesting case. 1379 break; 1380 } 1381 1382 // Read a record. 1383 Record.clear(); 1384 switch (Stream.readRecord(Entry.ID, Record)) { 1385 default: // Default behavior: ignore. 1386 break; 1387 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] 1388 if (Record.size() < 3) 1389 return error("Invalid record"); 1390 1391 uint64_t GrpID = Record[0]; 1392 uint64_t Idx = Record[1]; // Index of the object this attribute refers to. 1393 1394 AttrBuilder B; 1395 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1396 if (Record[i] == 0) { // Enum attribute 1397 Attribute::AttrKind Kind; 1398 if (std::error_code EC = parseAttrKind(Record[++i], &Kind)) 1399 return EC; 1400 1401 B.addAttribute(Kind); 1402 } else if (Record[i] == 1) { // Integer attribute 1403 Attribute::AttrKind Kind; 1404 if (std::error_code EC = parseAttrKind(Record[++i], &Kind)) 1405 return EC; 1406 if (Kind == Attribute::Alignment) 1407 B.addAlignmentAttr(Record[++i]); 1408 else if (Kind == Attribute::StackAlignment) 1409 B.addStackAlignmentAttr(Record[++i]); 1410 else if (Kind == Attribute::Dereferenceable) 1411 B.addDereferenceableAttr(Record[++i]); 1412 else if (Kind == Attribute::DereferenceableOrNull) 1413 B.addDereferenceableOrNullAttr(Record[++i]); 1414 } else { // String attribute 1415 assert((Record[i] == 3 || Record[i] == 4) && 1416 "Invalid attribute group entry"); 1417 bool HasValue = (Record[i++] == 4); 1418 SmallString<64> KindStr; 1419 SmallString<64> ValStr; 1420 1421 while (Record[i] != 0 && i != e) 1422 KindStr += Record[i++]; 1423 assert(Record[i] == 0 && "Kind string not null terminated"); 1424 1425 if (HasValue) { 1426 // Has a value associated with it. 1427 ++i; // Skip the '0' that terminates the "kind" string. 1428 while (Record[i] != 0 && i != e) 1429 ValStr += Record[i++]; 1430 assert(Record[i] == 0 && "Value string not null terminated"); 1431 } 1432 1433 B.addAttribute(KindStr.str(), ValStr.str()); 1434 } 1435 } 1436 1437 MAttributeGroups[GrpID] = AttributeSet::get(Context, Idx, B); 1438 break; 1439 } 1440 } 1441 } 1442 } 1443 1444 std::error_code BitcodeReader::parseTypeTable() { 1445 if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 1446 return error("Invalid record"); 1447 1448 return parseTypeTableBody(); 1449 } 1450 1451 std::error_code BitcodeReader::parseTypeTableBody() { 1452 if (!TypeList.empty()) 1453 return error("Invalid multiple blocks"); 1454 1455 SmallVector<uint64_t, 64> Record; 1456 unsigned NumRecords = 0; 1457 1458 SmallString<64> TypeName; 1459 1460 // Read all the records for this type table. 1461 while (1) { 1462 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1463 1464 switch (Entry.Kind) { 1465 case BitstreamEntry::SubBlock: // Handled for us already. 1466 case BitstreamEntry::Error: 1467 return error("Malformed block"); 1468 case BitstreamEntry::EndBlock: 1469 if (NumRecords != TypeList.size()) 1470 return error("Malformed block"); 1471 return std::error_code(); 1472 case BitstreamEntry::Record: 1473 // The interesting case. 1474 break; 1475 } 1476 1477 // Read a record. 1478 Record.clear(); 1479 Type *ResultTy = nullptr; 1480 switch (Stream.readRecord(Entry.ID, Record)) { 1481 default: 1482 return error("Invalid value"); 1483 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 1484 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 1485 // type list. This allows us to reserve space. 1486 if (Record.size() < 1) 1487 return error("Invalid record"); 1488 TypeList.resize(Record[0]); 1489 continue; 1490 case bitc::TYPE_CODE_VOID: // VOID 1491 ResultTy = Type::getVoidTy(Context); 1492 break; 1493 case bitc::TYPE_CODE_HALF: // HALF 1494 ResultTy = Type::getHalfTy(Context); 1495 break; 1496 case bitc::TYPE_CODE_FLOAT: // FLOAT 1497 ResultTy = Type::getFloatTy(Context); 1498 break; 1499 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 1500 ResultTy = Type::getDoubleTy(Context); 1501 break; 1502 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 1503 ResultTy = Type::getX86_FP80Ty(Context); 1504 break; 1505 case bitc::TYPE_CODE_FP128: // FP128 1506 ResultTy = Type::getFP128Ty(Context); 1507 break; 1508 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 1509 ResultTy = Type::getPPC_FP128Ty(Context); 1510 break; 1511 case bitc::TYPE_CODE_LABEL: // LABEL 1512 ResultTy = Type::getLabelTy(Context); 1513 break; 1514 case bitc::TYPE_CODE_METADATA: // METADATA 1515 ResultTy = Type::getMetadataTy(Context); 1516 break; 1517 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 1518 ResultTy = Type::getX86_MMXTy(Context); 1519 break; 1520 case bitc::TYPE_CODE_TOKEN: // TOKEN 1521 ResultTy = Type::getTokenTy(Context); 1522 break; 1523 case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width] 1524 if (Record.size() < 1) 1525 return error("Invalid record"); 1526 1527 uint64_t NumBits = Record[0]; 1528 if (NumBits < IntegerType::MIN_INT_BITS || 1529 NumBits > IntegerType::MAX_INT_BITS) 1530 return error("Bitwidth for integer type out of range"); 1531 ResultTy = IntegerType::get(Context, NumBits); 1532 break; 1533 } 1534 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 1535 // [pointee type, address space] 1536 if (Record.size() < 1) 1537 return error("Invalid record"); 1538 unsigned AddressSpace = 0; 1539 if (Record.size() == 2) 1540 AddressSpace = Record[1]; 1541 ResultTy = getTypeByID(Record[0]); 1542 if (!ResultTy || 1543 !PointerType::isValidElementType(ResultTy)) 1544 return error("Invalid type"); 1545 ResultTy = PointerType::get(ResultTy, AddressSpace); 1546 break; 1547 } 1548 case bitc::TYPE_CODE_FUNCTION_OLD: { 1549 // FIXME: attrid is dead, remove it in LLVM 4.0 1550 // FUNCTION: [vararg, attrid, retty, paramty x N] 1551 if (Record.size() < 3) 1552 return error("Invalid record"); 1553 SmallVector<Type*, 8> ArgTys; 1554 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 1555 if (Type *T = getTypeByID(Record[i])) 1556 ArgTys.push_back(T); 1557 else 1558 break; 1559 } 1560 1561 ResultTy = getTypeByID(Record[2]); 1562 if (!ResultTy || ArgTys.size() < Record.size()-3) 1563 return error("Invalid type"); 1564 1565 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1566 break; 1567 } 1568 case bitc::TYPE_CODE_FUNCTION: { 1569 // FUNCTION: [vararg, retty, paramty x N] 1570 if (Record.size() < 2) 1571 return error("Invalid record"); 1572 SmallVector<Type*, 8> ArgTys; 1573 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1574 if (Type *T = getTypeByID(Record[i])) { 1575 if (!FunctionType::isValidArgumentType(T)) 1576 return error("Invalid function argument type"); 1577 ArgTys.push_back(T); 1578 } 1579 else 1580 break; 1581 } 1582 1583 ResultTy = getTypeByID(Record[1]); 1584 if (!ResultTy || ArgTys.size() < Record.size()-2) 1585 return error("Invalid type"); 1586 1587 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1588 break; 1589 } 1590 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 1591 if (Record.size() < 1) 1592 return error("Invalid record"); 1593 SmallVector<Type*, 8> EltTys; 1594 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1595 if (Type *T = getTypeByID(Record[i])) 1596 EltTys.push_back(T); 1597 else 1598 break; 1599 } 1600 if (EltTys.size() != Record.size()-1) 1601 return error("Invalid type"); 1602 ResultTy = StructType::get(Context, EltTys, Record[0]); 1603 break; 1604 } 1605 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 1606 if (convertToString(Record, 0, TypeName)) 1607 return error("Invalid record"); 1608 continue; 1609 1610 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 1611 if (Record.size() < 1) 1612 return error("Invalid record"); 1613 1614 if (NumRecords >= TypeList.size()) 1615 return error("Invalid TYPE table"); 1616 1617 // Check to see if this was forward referenced, if so fill in the temp. 1618 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1619 if (Res) { 1620 Res->setName(TypeName); 1621 TypeList[NumRecords] = nullptr; 1622 } else // Otherwise, create a new struct. 1623 Res = createIdentifiedStructType(Context, TypeName); 1624 TypeName.clear(); 1625 1626 SmallVector<Type*, 8> EltTys; 1627 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1628 if (Type *T = getTypeByID(Record[i])) 1629 EltTys.push_back(T); 1630 else 1631 break; 1632 } 1633 if (EltTys.size() != Record.size()-1) 1634 return error("Invalid record"); 1635 Res->setBody(EltTys, Record[0]); 1636 ResultTy = Res; 1637 break; 1638 } 1639 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 1640 if (Record.size() != 1) 1641 return error("Invalid record"); 1642 1643 if (NumRecords >= TypeList.size()) 1644 return error("Invalid TYPE table"); 1645 1646 // Check to see if this was forward referenced, if so fill in the temp. 1647 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1648 if (Res) { 1649 Res->setName(TypeName); 1650 TypeList[NumRecords] = nullptr; 1651 } else // Otherwise, create a new struct with no body. 1652 Res = createIdentifiedStructType(Context, TypeName); 1653 TypeName.clear(); 1654 ResultTy = Res; 1655 break; 1656 } 1657 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 1658 if (Record.size() < 2) 1659 return error("Invalid record"); 1660 ResultTy = getTypeByID(Record[1]); 1661 if (!ResultTy || !ArrayType::isValidElementType(ResultTy)) 1662 return error("Invalid type"); 1663 ResultTy = ArrayType::get(ResultTy, Record[0]); 1664 break; 1665 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] 1666 if (Record.size() < 2) 1667 return error("Invalid record"); 1668 if (Record[0] == 0) 1669 return error("Invalid vector length"); 1670 ResultTy = getTypeByID(Record[1]); 1671 if (!ResultTy || !StructType::isValidElementType(ResultTy)) 1672 return error("Invalid type"); 1673 ResultTy = VectorType::get(ResultTy, Record[0]); 1674 break; 1675 } 1676 1677 if (NumRecords >= TypeList.size()) 1678 return error("Invalid TYPE table"); 1679 if (TypeList[NumRecords]) 1680 return error( 1681 "Invalid TYPE table: Only named structs can be forward referenced"); 1682 assert(ResultTy && "Didn't read a type?"); 1683 TypeList[NumRecords++] = ResultTy; 1684 } 1685 } 1686 1687 std::error_code BitcodeReader::parseOperandBundleTags() { 1688 if (Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID)) 1689 return error("Invalid record"); 1690 1691 if (!BundleTags.empty()) 1692 return error("Invalid multiple blocks"); 1693 1694 SmallVector<uint64_t, 64> Record; 1695 1696 while (1) { 1697 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1698 1699 switch (Entry.Kind) { 1700 case BitstreamEntry::SubBlock: // Handled for us already. 1701 case BitstreamEntry::Error: 1702 return error("Malformed block"); 1703 case BitstreamEntry::EndBlock: 1704 return std::error_code(); 1705 case BitstreamEntry::Record: 1706 // The interesting case. 1707 break; 1708 } 1709 1710 // Tags are implicitly mapped to integers by their order. 1711 1712 if (Stream.readRecord(Entry.ID, Record) != bitc::OPERAND_BUNDLE_TAG) 1713 return error("Invalid record"); 1714 1715 // OPERAND_BUNDLE_TAG: [strchr x N] 1716 BundleTags.emplace_back(); 1717 if (convertToString(Record, 0, BundleTags.back())) 1718 return error("Invalid record"); 1719 Record.clear(); 1720 } 1721 } 1722 1723 /// Associate a value with its name from the given index in the provided record. 1724 ErrorOr<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record, 1725 unsigned NameIndex, Triple &TT) { 1726 SmallString<128> ValueName; 1727 if (convertToString(Record, NameIndex, ValueName)) 1728 return error("Invalid record"); 1729 unsigned ValueID = Record[0]; 1730 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 1731 return error("Invalid record"); 1732 Value *V = ValueList[ValueID]; 1733 1734 V->setName(StringRef(ValueName.data(), ValueName.size())); 1735 auto *GO = dyn_cast<GlobalObject>(V); 1736 if (GO) { 1737 if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) { 1738 if (TT.isOSBinFormatMachO()) 1739 GO->setComdat(nullptr); 1740 else 1741 GO->setComdat(TheModule->getOrInsertComdat(V->getName())); 1742 } 1743 } 1744 return V; 1745 } 1746 1747 /// Parse the value symbol table at either the current parsing location or 1748 /// at the given bit offset if provided. 1749 std::error_code BitcodeReader::parseValueSymbolTable(unsigned Offset) { 1750 uint64_t CurrentBit; 1751 // Pass in the Offset to distinguish between calling for the module-level 1752 // VST (where we want to jump to the VST offset) and the function-level 1753 // VST (where we don't). 1754 if (Offset > 0) { 1755 // Save the current parsing location so we can jump back at the end 1756 // of the VST read. 1757 CurrentBit = Stream.GetCurrentBitNo(); 1758 Stream.JumpToBit(Offset * 32); 1759 #ifndef NDEBUG 1760 // Do some checking if we are in debug mode. 1761 BitstreamEntry Entry = Stream.advance(); 1762 assert(Entry.Kind == BitstreamEntry::SubBlock); 1763 assert(Entry.ID == bitc::VALUE_SYMTAB_BLOCK_ID); 1764 #else 1765 // In NDEBUG mode ignore the output so we don't get an unused variable 1766 // warning. 1767 Stream.advance(); 1768 #endif 1769 } 1770 1771 // Compute the delta between the bitcode indices in the VST (the word offset 1772 // to the word-aligned ENTER_SUBBLOCK for the function block, and that 1773 // expected by the lazy reader. The reader's EnterSubBlock expects to have 1774 // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID 1775 // (size BlockIDWidth). Note that we access the stream's AbbrevID width here 1776 // just before entering the VST subblock because: 1) the EnterSubBlock 1777 // changes the AbbrevID width; 2) the VST block is nested within the same 1778 // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same 1779 // AbbrevID width before calling EnterSubBlock; and 3) when we want to 1780 // jump to the FUNCTION_BLOCK using this offset later, we don't want 1781 // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK. 1782 unsigned FuncBitcodeOffsetDelta = 1783 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 1784 1785 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 1786 return error("Invalid record"); 1787 1788 SmallVector<uint64_t, 64> Record; 1789 1790 Triple TT(TheModule->getTargetTriple()); 1791 1792 // Read all the records for this value table. 1793 SmallString<128> ValueName; 1794 while (1) { 1795 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1796 1797 switch (Entry.Kind) { 1798 case BitstreamEntry::SubBlock: // Handled for us already. 1799 case BitstreamEntry::Error: 1800 return error("Malformed block"); 1801 case BitstreamEntry::EndBlock: 1802 if (Offset > 0) 1803 Stream.JumpToBit(CurrentBit); 1804 return std::error_code(); 1805 case BitstreamEntry::Record: 1806 // The interesting case. 1807 break; 1808 } 1809 1810 // Read a record. 1811 Record.clear(); 1812 switch (Stream.readRecord(Entry.ID, Record)) { 1813 default: // Default behavior: unknown type. 1814 break; 1815 case bitc::VST_CODE_ENTRY: { // VST_ENTRY: [valueid, namechar x N] 1816 ErrorOr<Value *> ValOrErr = recordValue(Record, 1, TT); 1817 if (std::error_code EC = ValOrErr.getError()) 1818 return EC; 1819 ValOrErr.get(); 1820 break; 1821 } 1822 case bitc::VST_CODE_FNENTRY: { 1823 // VST_FNENTRY: [valueid, offset, namechar x N] 1824 ErrorOr<Value *> ValOrErr = recordValue(Record, 2, TT); 1825 if (std::error_code EC = ValOrErr.getError()) 1826 return EC; 1827 Value *V = ValOrErr.get(); 1828 1829 auto *GO = dyn_cast<GlobalObject>(V); 1830 if (!GO) { 1831 // If this is an alias, need to get the actual Function object 1832 // it aliases, in order to set up the DeferredFunctionInfo entry below. 1833 auto *GA = dyn_cast<GlobalAlias>(V); 1834 if (GA) 1835 GO = GA->getBaseObject(); 1836 assert(GO); 1837 } 1838 1839 uint64_t FuncWordOffset = Record[1]; 1840 Function *F = dyn_cast<Function>(GO); 1841 assert(F); 1842 uint64_t FuncBitOffset = FuncWordOffset * 32; 1843 DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta; 1844 // Set the LastFunctionBlockBit to point to the last function block. 1845 // Later when parsing is resumed after function materialization, 1846 // we can simply skip that last function block. 1847 if (FuncBitOffset > LastFunctionBlockBit) 1848 LastFunctionBlockBit = FuncBitOffset; 1849 break; 1850 } 1851 case bitc::VST_CODE_BBENTRY: { 1852 if (convertToString(Record, 1, ValueName)) 1853 return error("Invalid record"); 1854 BasicBlock *BB = getBasicBlock(Record[0]); 1855 if (!BB) 1856 return error("Invalid record"); 1857 1858 BB->setName(StringRef(ValueName.data(), ValueName.size())); 1859 ValueName.clear(); 1860 break; 1861 } 1862 } 1863 } 1864 } 1865 1866 static int64_t unrotateSign(uint64_t U) { return U & 1 ? ~(U >> 1) : U >> 1; } 1867 1868 std::error_code BitcodeReader::parseMetadata() { 1869 IsMetadataMaterialized = true; 1870 unsigned NextMDValueNo = MDValueList.size(); 1871 1872 if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID)) 1873 return error("Invalid record"); 1874 1875 SmallVector<uint64_t, 64> Record; 1876 1877 auto getMD = 1878 [&](unsigned ID) -> Metadata *{ return MDValueList.getValueFwdRef(ID); }; 1879 auto getMDOrNull = [&](unsigned ID) -> Metadata *{ 1880 if (ID) 1881 return getMD(ID - 1); 1882 return nullptr; 1883 }; 1884 auto getMDString = [&](unsigned ID) -> MDString *{ 1885 // This requires that the ID is not really a forward reference. In 1886 // particular, the MDString must already have been resolved. 1887 return cast_or_null<MDString>(getMDOrNull(ID)); 1888 }; 1889 1890 #define GET_OR_DISTINCT(CLASS, DISTINCT, ARGS) \ 1891 (DISTINCT ? CLASS::getDistinct ARGS : CLASS::get ARGS) 1892 1893 // Read all the records. 1894 while (1) { 1895 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1896 1897 switch (Entry.Kind) { 1898 case BitstreamEntry::SubBlock: // Handled for us already. 1899 case BitstreamEntry::Error: 1900 return error("Malformed block"); 1901 case BitstreamEntry::EndBlock: 1902 MDValueList.tryToResolveCycles(); 1903 return std::error_code(); 1904 case BitstreamEntry::Record: 1905 // The interesting case. 1906 break; 1907 } 1908 1909 // Read a record. 1910 Record.clear(); 1911 unsigned Code = Stream.readRecord(Entry.ID, Record); 1912 bool IsDistinct = false; 1913 switch (Code) { 1914 default: // Default behavior: ignore. 1915 break; 1916 case bitc::METADATA_NAME: { 1917 // Read name of the named metadata. 1918 SmallString<8> Name(Record.begin(), Record.end()); 1919 Record.clear(); 1920 Code = Stream.ReadCode(); 1921 1922 unsigned NextBitCode = Stream.readRecord(Code, Record); 1923 if (NextBitCode != bitc::METADATA_NAMED_NODE) 1924 return error("METADATA_NAME not followed by METADATA_NAMED_NODE"); 1925 1926 // Read named metadata elements. 1927 unsigned Size = Record.size(); 1928 NamedMDNode *NMD = TheModule->getOrInsertNamedMetadata(Name); 1929 for (unsigned i = 0; i != Size; ++i) { 1930 MDNode *MD = dyn_cast_or_null<MDNode>(MDValueList.getValueFwdRef(Record[i])); 1931 if (!MD) 1932 return error("Invalid record"); 1933 NMD->addOperand(MD); 1934 } 1935 break; 1936 } 1937 case bitc::METADATA_OLD_FN_NODE: { 1938 // FIXME: Remove in 4.0. 1939 // This is a LocalAsMetadata record, the only type of function-local 1940 // metadata. 1941 if (Record.size() % 2 == 1) 1942 return error("Invalid record"); 1943 1944 // If this isn't a LocalAsMetadata record, we're dropping it. This used 1945 // to be legal, but there's no upgrade path. 1946 auto dropRecord = [&] { 1947 MDValueList.assignValue(MDNode::get(Context, None), NextMDValueNo++); 1948 }; 1949 if (Record.size() != 2) { 1950 dropRecord(); 1951 break; 1952 } 1953 1954 Type *Ty = getTypeByID(Record[0]); 1955 if (Ty->isMetadataTy() || Ty->isVoidTy()) { 1956 dropRecord(); 1957 break; 1958 } 1959 1960 MDValueList.assignValue( 1961 LocalAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)), 1962 NextMDValueNo++); 1963 break; 1964 } 1965 case bitc::METADATA_OLD_NODE: { 1966 // FIXME: Remove in 4.0. 1967 if (Record.size() % 2 == 1) 1968 return error("Invalid record"); 1969 1970 unsigned Size = Record.size(); 1971 SmallVector<Metadata *, 8> Elts; 1972 for (unsigned i = 0; i != Size; i += 2) { 1973 Type *Ty = getTypeByID(Record[i]); 1974 if (!Ty) 1975 return error("Invalid record"); 1976 if (Ty->isMetadataTy()) 1977 Elts.push_back(MDValueList.getValueFwdRef(Record[i+1])); 1978 else if (!Ty->isVoidTy()) { 1979 auto *MD = 1980 ValueAsMetadata::get(ValueList.getValueFwdRef(Record[i + 1], Ty)); 1981 assert(isa<ConstantAsMetadata>(MD) && 1982 "Expected non-function-local metadata"); 1983 Elts.push_back(MD); 1984 } else 1985 Elts.push_back(nullptr); 1986 } 1987 MDValueList.assignValue(MDNode::get(Context, Elts), NextMDValueNo++); 1988 break; 1989 } 1990 case bitc::METADATA_VALUE: { 1991 if (Record.size() != 2) 1992 return error("Invalid record"); 1993 1994 Type *Ty = getTypeByID(Record[0]); 1995 if (Ty->isMetadataTy() || Ty->isVoidTy()) 1996 return error("Invalid record"); 1997 1998 MDValueList.assignValue( 1999 ValueAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)), 2000 NextMDValueNo++); 2001 break; 2002 } 2003 case bitc::METADATA_DISTINCT_NODE: 2004 IsDistinct = true; 2005 // fallthrough... 2006 case bitc::METADATA_NODE: { 2007 SmallVector<Metadata *, 8> Elts; 2008 Elts.reserve(Record.size()); 2009 for (unsigned ID : Record) 2010 Elts.push_back(ID ? MDValueList.getValueFwdRef(ID - 1) : nullptr); 2011 MDValueList.assignValue(IsDistinct ? MDNode::getDistinct(Context, Elts) 2012 : MDNode::get(Context, Elts), 2013 NextMDValueNo++); 2014 break; 2015 } 2016 case bitc::METADATA_LOCATION: { 2017 if (Record.size() != 5) 2018 return error("Invalid record"); 2019 2020 unsigned Line = Record[1]; 2021 unsigned Column = Record[2]; 2022 MDNode *Scope = cast<MDNode>(MDValueList.getValueFwdRef(Record[3])); 2023 Metadata *InlinedAt = 2024 Record[4] ? MDValueList.getValueFwdRef(Record[4] - 1) : nullptr; 2025 MDValueList.assignValue( 2026 GET_OR_DISTINCT(DILocation, Record[0], 2027 (Context, Line, Column, Scope, InlinedAt)), 2028 NextMDValueNo++); 2029 break; 2030 } 2031 case bitc::METADATA_GENERIC_DEBUG: { 2032 if (Record.size() < 4) 2033 return error("Invalid record"); 2034 2035 unsigned Tag = Record[1]; 2036 unsigned Version = Record[2]; 2037 2038 if (Tag >= 1u << 16 || Version != 0) 2039 return error("Invalid record"); 2040 2041 auto *Header = getMDString(Record[3]); 2042 SmallVector<Metadata *, 8> DwarfOps; 2043 for (unsigned I = 4, E = Record.size(); I != E; ++I) 2044 DwarfOps.push_back(Record[I] ? MDValueList.getValueFwdRef(Record[I] - 1) 2045 : nullptr); 2046 MDValueList.assignValue(GET_OR_DISTINCT(GenericDINode, Record[0], 2047 (Context, Tag, Header, DwarfOps)), 2048 NextMDValueNo++); 2049 break; 2050 } 2051 case bitc::METADATA_SUBRANGE: { 2052 if (Record.size() != 3) 2053 return error("Invalid record"); 2054 2055 MDValueList.assignValue( 2056 GET_OR_DISTINCT(DISubrange, Record[0], 2057 (Context, Record[1], unrotateSign(Record[2]))), 2058 NextMDValueNo++); 2059 break; 2060 } 2061 case bitc::METADATA_ENUMERATOR: { 2062 if (Record.size() != 3) 2063 return error("Invalid record"); 2064 2065 MDValueList.assignValue(GET_OR_DISTINCT(DIEnumerator, Record[0], 2066 (Context, unrotateSign(Record[1]), 2067 getMDString(Record[2]))), 2068 NextMDValueNo++); 2069 break; 2070 } 2071 case bitc::METADATA_BASIC_TYPE: { 2072 if (Record.size() != 6) 2073 return error("Invalid record"); 2074 2075 MDValueList.assignValue( 2076 GET_OR_DISTINCT(DIBasicType, Record[0], 2077 (Context, Record[1], getMDString(Record[2]), 2078 Record[3], Record[4], Record[5])), 2079 NextMDValueNo++); 2080 break; 2081 } 2082 case bitc::METADATA_DERIVED_TYPE: { 2083 if (Record.size() != 12) 2084 return error("Invalid record"); 2085 2086 MDValueList.assignValue( 2087 GET_OR_DISTINCT(DIDerivedType, Record[0], 2088 (Context, Record[1], getMDString(Record[2]), 2089 getMDOrNull(Record[3]), Record[4], 2090 getMDOrNull(Record[5]), getMDOrNull(Record[6]), 2091 Record[7], Record[8], Record[9], Record[10], 2092 getMDOrNull(Record[11]))), 2093 NextMDValueNo++); 2094 break; 2095 } 2096 case bitc::METADATA_COMPOSITE_TYPE: { 2097 if (Record.size() != 16) 2098 return error("Invalid record"); 2099 2100 MDValueList.assignValue( 2101 GET_OR_DISTINCT(DICompositeType, Record[0], 2102 (Context, Record[1], getMDString(Record[2]), 2103 getMDOrNull(Record[3]), Record[4], 2104 getMDOrNull(Record[5]), getMDOrNull(Record[6]), 2105 Record[7], Record[8], Record[9], Record[10], 2106 getMDOrNull(Record[11]), Record[12], 2107 getMDOrNull(Record[13]), getMDOrNull(Record[14]), 2108 getMDString(Record[15]))), 2109 NextMDValueNo++); 2110 break; 2111 } 2112 case bitc::METADATA_SUBROUTINE_TYPE: { 2113 if (Record.size() != 3) 2114 return error("Invalid record"); 2115 2116 MDValueList.assignValue( 2117 GET_OR_DISTINCT(DISubroutineType, Record[0], 2118 (Context, Record[1], getMDOrNull(Record[2]))), 2119 NextMDValueNo++); 2120 break; 2121 } 2122 2123 case bitc::METADATA_MODULE: { 2124 if (Record.size() != 6) 2125 return error("Invalid record"); 2126 2127 MDValueList.assignValue( 2128 GET_OR_DISTINCT(DIModule, Record[0], 2129 (Context, getMDOrNull(Record[1]), 2130 getMDString(Record[2]), getMDString(Record[3]), 2131 getMDString(Record[4]), getMDString(Record[5]))), 2132 NextMDValueNo++); 2133 break; 2134 } 2135 2136 case bitc::METADATA_FILE: { 2137 if (Record.size() != 3) 2138 return error("Invalid record"); 2139 2140 MDValueList.assignValue( 2141 GET_OR_DISTINCT(DIFile, Record[0], (Context, getMDString(Record[1]), 2142 getMDString(Record[2]))), 2143 NextMDValueNo++); 2144 break; 2145 } 2146 case bitc::METADATA_COMPILE_UNIT: { 2147 if (Record.size() < 14 || Record.size() > 15) 2148 return error("Invalid record"); 2149 2150 // Ignore Record[1], which indicates whether this compile unit is 2151 // distinct. It's always distinct. 2152 MDValueList.assignValue( 2153 DICompileUnit::getDistinct( 2154 Context, Record[1], getMDOrNull(Record[2]), 2155 getMDString(Record[3]), Record[4], getMDString(Record[5]), 2156 Record[6], getMDString(Record[7]), Record[8], 2157 getMDOrNull(Record[9]), getMDOrNull(Record[10]), 2158 getMDOrNull(Record[11]), getMDOrNull(Record[12]), 2159 getMDOrNull(Record[13]), Record.size() == 14 ? 0 : Record[14]), 2160 NextMDValueNo++); 2161 break; 2162 } 2163 case bitc::METADATA_SUBPROGRAM: { 2164 if (Record.size() != 19) 2165 return error("Invalid record"); 2166 2167 MDValueList.assignValue( 2168 GET_OR_DISTINCT( 2169 DISubprogram, 2170 Record[0] || Record[8], // All definitions should be distinct. 2171 (Context, getMDOrNull(Record[1]), getMDString(Record[2]), 2172 getMDString(Record[3]), getMDOrNull(Record[4]), Record[5], 2173 getMDOrNull(Record[6]), Record[7], Record[8], Record[9], 2174 getMDOrNull(Record[10]), Record[11], Record[12], Record[13], 2175 Record[14], getMDOrNull(Record[15]), getMDOrNull(Record[16]), 2176 getMDOrNull(Record[17]), getMDOrNull(Record[18]))), 2177 NextMDValueNo++); 2178 break; 2179 } 2180 case bitc::METADATA_LEXICAL_BLOCK: { 2181 if (Record.size() != 5) 2182 return error("Invalid record"); 2183 2184 MDValueList.assignValue( 2185 GET_OR_DISTINCT(DILexicalBlock, Record[0], 2186 (Context, getMDOrNull(Record[1]), 2187 getMDOrNull(Record[2]), Record[3], Record[4])), 2188 NextMDValueNo++); 2189 break; 2190 } 2191 case bitc::METADATA_LEXICAL_BLOCK_FILE: { 2192 if (Record.size() != 4) 2193 return error("Invalid record"); 2194 2195 MDValueList.assignValue( 2196 GET_OR_DISTINCT(DILexicalBlockFile, Record[0], 2197 (Context, getMDOrNull(Record[1]), 2198 getMDOrNull(Record[2]), Record[3])), 2199 NextMDValueNo++); 2200 break; 2201 } 2202 case bitc::METADATA_NAMESPACE: { 2203 if (Record.size() != 5) 2204 return error("Invalid record"); 2205 2206 MDValueList.assignValue( 2207 GET_OR_DISTINCT(DINamespace, Record[0], 2208 (Context, getMDOrNull(Record[1]), 2209 getMDOrNull(Record[2]), getMDString(Record[3]), 2210 Record[4])), 2211 NextMDValueNo++); 2212 break; 2213 } 2214 case bitc::METADATA_TEMPLATE_TYPE: { 2215 if (Record.size() != 3) 2216 return error("Invalid record"); 2217 2218 MDValueList.assignValue(GET_OR_DISTINCT(DITemplateTypeParameter, 2219 Record[0], 2220 (Context, getMDString(Record[1]), 2221 getMDOrNull(Record[2]))), 2222 NextMDValueNo++); 2223 break; 2224 } 2225 case bitc::METADATA_TEMPLATE_VALUE: { 2226 if (Record.size() != 5) 2227 return error("Invalid record"); 2228 2229 MDValueList.assignValue( 2230 GET_OR_DISTINCT(DITemplateValueParameter, Record[0], 2231 (Context, Record[1], getMDString(Record[2]), 2232 getMDOrNull(Record[3]), getMDOrNull(Record[4]))), 2233 NextMDValueNo++); 2234 break; 2235 } 2236 case bitc::METADATA_GLOBAL_VAR: { 2237 if (Record.size() != 11) 2238 return error("Invalid record"); 2239 2240 MDValueList.assignValue( 2241 GET_OR_DISTINCT(DIGlobalVariable, Record[0], 2242 (Context, getMDOrNull(Record[1]), 2243 getMDString(Record[2]), getMDString(Record[3]), 2244 getMDOrNull(Record[4]), Record[5], 2245 getMDOrNull(Record[6]), Record[7], Record[8], 2246 getMDOrNull(Record[9]), getMDOrNull(Record[10]))), 2247 NextMDValueNo++); 2248 break; 2249 } 2250 case bitc::METADATA_LOCAL_VAR: { 2251 // 10th field is for the obseleted 'inlinedAt:' field. 2252 if (Record.size() < 8 || Record.size() > 10) 2253 return error("Invalid record"); 2254 2255 // 2nd field used to be an artificial tag, either DW_TAG_auto_variable or 2256 // DW_TAG_arg_variable. 2257 bool HasTag = Record.size() > 8; 2258 MDValueList.assignValue( 2259 GET_OR_DISTINCT(DILocalVariable, Record[0], 2260 (Context, getMDOrNull(Record[1 + HasTag]), 2261 getMDString(Record[2 + HasTag]), 2262 getMDOrNull(Record[3 + HasTag]), Record[4 + HasTag], 2263 getMDOrNull(Record[5 + HasTag]), Record[6 + HasTag], 2264 Record[7 + HasTag])), 2265 NextMDValueNo++); 2266 break; 2267 } 2268 case bitc::METADATA_EXPRESSION: { 2269 if (Record.size() < 1) 2270 return error("Invalid record"); 2271 2272 MDValueList.assignValue( 2273 GET_OR_DISTINCT(DIExpression, Record[0], 2274 (Context, makeArrayRef(Record).slice(1))), 2275 NextMDValueNo++); 2276 break; 2277 } 2278 case bitc::METADATA_OBJC_PROPERTY: { 2279 if (Record.size() != 8) 2280 return error("Invalid record"); 2281 2282 MDValueList.assignValue( 2283 GET_OR_DISTINCT(DIObjCProperty, Record[0], 2284 (Context, getMDString(Record[1]), 2285 getMDOrNull(Record[2]), Record[3], 2286 getMDString(Record[4]), getMDString(Record[5]), 2287 Record[6], getMDOrNull(Record[7]))), 2288 NextMDValueNo++); 2289 break; 2290 } 2291 case bitc::METADATA_IMPORTED_ENTITY: { 2292 if (Record.size() != 6) 2293 return error("Invalid record"); 2294 2295 MDValueList.assignValue( 2296 GET_OR_DISTINCT(DIImportedEntity, Record[0], 2297 (Context, Record[1], getMDOrNull(Record[2]), 2298 getMDOrNull(Record[3]), Record[4], 2299 getMDString(Record[5]))), 2300 NextMDValueNo++); 2301 break; 2302 } 2303 case bitc::METADATA_STRING: { 2304 std::string String(Record.begin(), Record.end()); 2305 llvm::UpgradeMDStringConstant(String); 2306 Metadata *MD = MDString::get(Context, String); 2307 MDValueList.assignValue(MD, NextMDValueNo++); 2308 break; 2309 } 2310 case bitc::METADATA_KIND: { 2311 if (Record.size() < 2) 2312 return error("Invalid record"); 2313 2314 unsigned Kind = Record[0]; 2315 SmallString<8> Name(Record.begin()+1, Record.end()); 2316 2317 unsigned NewKind = TheModule->getMDKindID(Name.str()); 2318 if (!MDKindMap.insert(std::make_pair(Kind, NewKind)).second) 2319 return error("Conflicting METADATA_KIND records"); 2320 break; 2321 } 2322 } 2323 } 2324 #undef GET_OR_DISTINCT 2325 } 2326 2327 /// Decode a signed value stored with the sign bit in the LSB for dense VBR 2328 /// encoding. 2329 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { 2330 if ((V & 1) == 0) 2331 return V >> 1; 2332 if (V != 1) 2333 return -(V >> 1); 2334 // There is no such thing as -0 with integers. "-0" really means MININT. 2335 return 1ULL << 63; 2336 } 2337 2338 /// Resolve all of the initializers for global values and aliases that we can. 2339 std::error_code BitcodeReader::resolveGlobalAndAliasInits() { 2340 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist; 2341 std::vector<std::pair<GlobalAlias*, unsigned> > AliasInitWorklist; 2342 std::vector<std::pair<Function*, unsigned> > FunctionPrefixWorklist; 2343 std::vector<std::pair<Function*, unsigned> > FunctionPrologueWorklist; 2344 std::vector<std::pair<Function*, unsigned> > FunctionPersonalityFnWorklist; 2345 2346 GlobalInitWorklist.swap(GlobalInits); 2347 AliasInitWorklist.swap(AliasInits); 2348 FunctionPrefixWorklist.swap(FunctionPrefixes); 2349 FunctionPrologueWorklist.swap(FunctionPrologues); 2350 FunctionPersonalityFnWorklist.swap(FunctionPersonalityFns); 2351 2352 while (!GlobalInitWorklist.empty()) { 2353 unsigned ValID = GlobalInitWorklist.back().second; 2354 if (ValID >= ValueList.size()) { 2355 // Not ready to resolve this yet, it requires something later in the file. 2356 GlobalInits.push_back(GlobalInitWorklist.back()); 2357 } else { 2358 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2359 GlobalInitWorklist.back().first->setInitializer(C); 2360 else 2361 return error("Expected a constant"); 2362 } 2363 GlobalInitWorklist.pop_back(); 2364 } 2365 2366 while (!AliasInitWorklist.empty()) { 2367 unsigned ValID = AliasInitWorklist.back().second; 2368 if (ValID >= ValueList.size()) { 2369 AliasInits.push_back(AliasInitWorklist.back()); 2370 } else { 2371 Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]); 2372 if (!C) 2373 return error("Expected a constant"); 2374 GlobalAlias *Alias = AliasInitWorklist.back().first; 2375 if (C->getType() != Alias->getType()) 2376 return error("Alias and aliasee types don't match"); 2377 Alias->setAliasee(C); 2378 } 2379 AliasInitWorklist.pop_back(); 2380 } 2381 2382 while (!FunctionPrefixWorklist.empty()) { 2383 unsigned ValID = FunctionPrefixWorklist.back().second; 2384 if (ValID >= ValueList.size()) { 2385 FunctionPrefixes.push_back(FunctionPrefixWorklist.back()); 2386 } else { 2387 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2388 FunctionPrefixWorklist.back().first->setPrefixData(C); 2389 else 2390 return error("Expected a constant"); 2391 } 2392 FunctionPrefixWorklist.pop_back(); 2393 } 2394 2395 while (!FunctionPrologueWorklist.empty()) { 2396 unsigned ValID = FunctionPrologueWorklist.back().second; 2397 if (ValID >= ValueList.size()) { 2398 FunctionPrologues.push_back(FunctionPrologueWorklist.back()); 2399 } else { 2400 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2401 FunctionPrologueWorklist.back().first->setPrologueData(C); 2402 else 2403 return error("Expected a constant"); 2404 } 2405 FunctionPrologueWorklist.pop_back(); 2406 } 2407 2408 while (!FunctionPersonalityFnWorklist.empty()) { 2409 unsigned ValID = FunctionPersonalityFnWorklist.back().second; 2410 if (ValID >= ValueList.size()) { 2411 FunctionPersonalityFns.push_back(FunctionPersonalityFnWorklist.back()); 2412 } else { 2413 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2414 FunctionPersonalityFnWorklist.back().first->setPersonalityFn(C); 2415 else 2416 return error("Expected a constant"); 2417 } 2418 FunctionPersonalityFnWorklist.pop_back(); 2419 } 2420 2421 return std::error_code(); 2422 } 2423 2424 static APInt readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { 2425 SmallVector<uint64_t, 8> Words(Vals.size()); 2426 std::transform(Vals.begin(), Vals.end(), Words.begin(), 2427 BitcodeReader::decodeSignRotatedValue); 2428 2429 return APInt(TypeBits, Words); 2430 } 2431 2432 std::error_code BitcodeReader::parseConstants() { 2433 if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 2434 return error("Invalid record"); 2435 2436 SmallVector<uint64_t, 64> Record; 2437 2438 // Read all the records for this value table. 2439 Type *CurTy = Type::getInt32Ty(Context); 2440 unsigned NextCstNo = ValueList.size(); 2441 while (1) { 2442 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2443 2444 switch (Entry.Kind) { 2445 case BitstreamEntry::SubBlock: // Handled for us already. 2446 case BitstreamEntry::Error: 2447 return error("Malformed block"); 2448 case BitstreamEntry::EndBlock: 2449 if (NextCstNo != ValueList.size()) 2450 return error("Invalid ronstant reference"); 2451 2452 // Once all the constants have been read, go through and resolve forward 2453 // references. 2454 ValueList.resolveConstantForwardRefs(); 2455 return std::error_code(); 2456 case BitstreamEntry::Record: 2457 // The interesting case. 2458 break; 2459 } 2460 2461 // Read a record. 2462 Record.clear(); 2463 Value *V = nullptr; 2464 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 2465 switch (BitCode) { 2466 default: // Default behavior: unknown constant 2467 case bitc::CST_CODE_UNDEF: // UNDEF 2468 V = UndefValue::get(CurTy); 2469 break; 2470 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 2471 if (Record.empty()) 2472 return error("Invalid record"); 2473 if (Record[0] >= TypeList.size() || !TypeList[Record[0]]) 2474 return error("Invalid record"); 2475 CurTy = TypeList[Record[0]]; 2476 continue; // Skip the ValueList manipulation. 2477 case bitc::CST_CODE_NULL: // NULL 2478 V = Constant::getNullValue(CurTy); 2479 break; 2480 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 2481 if (!CurTy->isIntegerTy() || Record.empty()) 2482 return error("Invalid record"); 2483 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); 2484 break; 2485 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 2486 if (!CurTy->isIntegerTy() || Record.empty()) 2487 return error("Invalid record"); 2488 2489 APInt VInt = 2490 readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth()); 2491 V = ConstantInt::get(Context, VInt); 2492 2493 break; 2494 } 2495 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 2496 if (Record.empty()) 2497 return error("Invalid record"); 2498 if (CurTy->isHalfTy()) 2499 V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf, 2500 APInt(16, (uint16_t)Record[0]))); 2501 else if (CurTy->isFloatTy()) 2502 V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle, 2503 APInt(32, (uint32_t)Record[0]))); 2504 else if (CurTy->isDoubleTy()) 2505 V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble, 2506 APInt(64, Record[0]))); 2507 else if (CurTy->isX86_FP80Ty()) { 2508 // Bits are not stored the same way as a normal i80 APInt, compensate. 2509 uint64_t Rearrange[2]; 2510 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 2511 Rearrange[1] = Record[0] >> 48; 2512 V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended, 2513 APInt(80, Rearrange))); 2514 } else if (CurTy->isFP128Ty()) 2515 V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad, 2516 APInt(128, Record))); 2517 else if (CurTy->isPPC_FP128Ty()) 2518 V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble, 2519 APInt(128, Record))); 2520 else 2521 V = UndefValue::get(CurTy); 2522 break; 2523 } 2524 2525 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 2526 if (Record.empty()) 2527 return error("Invalid record"); 2528 2529 unsigned Size = Record.size(); 2530 SmallVector<Constant*, 16> Elts; 2531 2532 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 2533 for (unsigned i = 0; i != Size; ++i) 2534 Elts.push_back(ValueList.getConstantFwdRef(Record[i], 2535 STy->getElementType(i))); 2536 V = ConstantStruct::get(STy, Elts); 2537 } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) { 2538 Type *EltTy = ATy->getElementType(); 2539 for (unsigned i = 0; i != Size; ++i) 2540 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2541 V = ConstantArray::get(ATy, Elts); 2542 } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) { 2543 Type *EltTy = VTy->getElementType(); 2544 for (unsigned i = 0; i != Size; ++i) 2545 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2546 V = ConstantVector::get(Elts); 2547 } else { 2548 V = UndefValue::get(CurTy); 2549 } 2550 break; 2551 } 2552 case bitc::CST_CODE_STRING: // STRING: [values] 2553 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 2554 if (Record.empty()) 2555 return error("Invalid record"); 2556 2557 SmallString<16> Elts(Record.begin(), Record.end()); 2558 V = ConstantDataArray::getString(Context, Elts, 2559 BitCode == bitc::CST_CODE_CSTRING); 2560 break; 2561 } 2562 case bitc::CST_CODE_DATA: {// DATA: [n x value] 2563 if (Record.empty()) 2564 return error("Invalid record"); 2565 2566 Type *EltTy = cast<SequentialType>(CurTy)->getElementType(); 2567 unsigned Size = Record.size(); 2568 2569 if (EltTy->isIntegerTy(8)) { 2570 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); 2571 if (isa<VectorType>(CurTy)) 2572 V = ConstantDataVector::get(Context, Elts); 2573 else 2574 V = ConstantDataArray::get(Context, Elts); 2575 } else if (EltTy->isIntegerTy(16)) { 2576 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2577 if (isa<VectorType>(CurTy)) 2578 V = ConstantDataVector::get(Context, Elts); 2579 else 2580 V = ConstantDataArray::get(Context, Elts); 2581 } else if (EltTy->isIntegerTy(32)) { 2582 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2583 if (isa<VectorType>(CurTy)) 2584 V = ConstantDataVector::get(Context, Elts); 2585 else 2586 V = ConstantDataArray::get(Context, Elts); 2587 } else if (EltTy->isIntegerTy(64)) { 2588 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2589 if (isa<VectorType>(CurTy)) 2590 V = ConstantDataVector::get(Context, Elts); 2591 else 2592 V = ConstantDataArray::get(Context, Elts); 2593 } else if (EltTy->isFloatTy()) { 2594 SmallVector<float, 16> Elts(Size); 2595 std::transform(Record.begin(), Record.end(), Elts.begin(), BitsToFloat); 2596 if (isa<VectorType>(CurTy)) 2597 V = ConstantDataVector::get(Context, Elts); 2598 else 2599 V = ConstantDataArray::get(Context, Elts); 2600 } else if (EltTy->isDoubleTy()) { 2601 SmallVector<double, 16> Elts(Size); 2602 std::transform(Record.begin(), Record.end(), Elts.begin(), 2603 BitsToDouble); 2604 if (isa<VectorType>(CurTy)) 2605 V = ConstantDataVector::get(Context, Elts); 2606 else 2607 V = ConstantDataArray::get(Context, Elts); 2608 } else { 2609 return error("Invalid type for value"); 2610 } 2611 break; 2612 } 2613 2614 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 2615 if (Record.size() < 3) 2616 return error("Invalid record"); 2617 int Opc = getDecodedBinaryOpcode(Record[0], CurTy); 2618 if (Opc < 0) { 2619 V = UndefValue::get(CurTy); // Unknown binop. 2620 } else { 2621 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 2622 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy); 2623 unsigned Flags = 0; 2624 if (Record.size() >= 4) { 2625 if (Opc == Instruction::Add || 2626 Opc == Instruction::Sub || 2627 Opc == Instruction::Mul || 2628 Opc == Instruction::Shl) { 2629 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 2630 Flags |= OverflowingBinaryOperator::NoSignedWrap; 2631 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 2632 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 2633 } else if (Opc == Instruction::SDiv || 2634 Opc == Instruction::UDiv || 2635 Opc == Instruction::LShr || 2636 Opc == Instruction::AShr) { 2637 if (Record[3] & (1 << bitc::PEO_EXACT)) 2638 Flags |= SDivOperator::IsExact; 2639 } 2640 } 2641 V = ConstantExpr::get(Opc, LHS, RHS, Flags); 2642 } 2643 break; 2644 } 2645 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 2646 if (Record.size() < 3) 2647 return error("Invalid record"); 2648 int Opc = getDecodedCastOpcode(Record[0]); 2649 if (Opc < 0) { 2650 V = UndefValue::get(CurTy); // Unknown cast. 2651 } else { 2652 Type *OpTy = getTypeByID(Record[1]); 2653 if (!OpTy) 2654 return error("Invalid record"); 2655 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy); 2656 V = UpgradeBitCastExpr(Opc, Op, CurTy); 2657 if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy); 2658 } 2659 break; 2660 } 2661 case bitc::CST_CODE_CE_INBOUNDS_GEP: 2662 case bitc::CST_CODE_CE_GEP: { // CE_GEP: [n x operands] 2663 unsigned OpNum = 0; 2664 Type *PointeeType = nullptr; 2665 if (Record.size() % 2) 2666 PointeeType = getTypeByID(Record[OpNum++]); 2667 SmallVector<Constant*, 16> Elts; 2668 while (OpNum != Record.size()) { 2669 Type *ElTy = getTypeByID(Record[OpNum++]); 2670 if (!ElTy) 2671 return error("Invalid record"); 2672 Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy)); 2673 } 2674 2675 if (PointeeType && 2676 PointeeType != 2677 cast<SequentialType>(Elts[0]->getType()->getScalarType()) 2678 ->getElementType()) 2679 return error("Explicit gep operator type does not match pointee type " 2680 "of pointer operand"); 2681 2682 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 2683 V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices, 2684 BitCode == 2685 bitc::CST_CODE_CE_INBOUNDS_GEP); 2686 break; 2687 } 2688 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] 2689 if (Record.size() < 3) 2690 return error("Invalid record"); 2691 2692 Type *SelectorTy = Type::getInt1Ty(Context); 2693 2694 // The selector might be an i1 or an <n x i1> 2695 // Get the type from the ValueList before getting a forward ref. 2696 if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) 2697 if (Value *V = ValueList[Record[0]]) 2698 if (SelectorTy != V->getType()) 2699 SelectorTy = VectorType::get(SelectorTy, VTy->getNumElements()); 2700 2701 V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0], 2702 SelectorTy), 2703 ValueList.getConstantFwdRef(Record[1],CurTy), 2704 ValueList.getConstantFwdRef(Record[2],CurTy)); 2705 break; 2706 } 2707 case bitc::CST_CODE_CE_EXTRACTELT 2708 : { // CE_EXTRACTELT: [opty, opval, opty, opval] 2709 if (Record.size() < 3) 2710 return error("Invalid record"); 2711 VectorType *OpTy = 2712 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2713 if (!OpTy) 2714 return error("Invalid record"); 2715 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2716 Constant *Op1 = nullptr; 2717 if (Record.size() == 4) { 2718 Type *IdxTy = getTypeByID(Record[2]); 2719 if (!IdxTy) 2720 return error("Invalid record"); 2721 Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2722 } else // TODO: Remove with llvm 4.0 2723 Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2724 if (!Op1) 2725 return error("Invalid record"); 2726 V = ConstantExpr::getExtractElement(Op0, Op1); 2727 break; 2728 } 2729 case bitc::CST_CODE_CE_INSERTELT 2730 : { // CE_INSERTELT: [opval, opval, opty, opval] 2731 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2732 if (Record.size() < 3 || !OpTy) 2733 return error("Invalid record"); 2734 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2735 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], 2736 OpTy->getElementType()); 2737 Constant *Op2 = nullptr; 2738 if (Record.size() == 4) { 2739 Type *IdxTy = getTypeByID(Record[2]); 2740 if (!IdxTy) 2741 return error("Invalid record"); 2742 Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2743 } else // TODO: Remove with llvm 4.0 2744 Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2745 if (!Op2) 2746 return error("Invalid record"); 2747 V = ConstantExpr::getInsertElement(Op0, Op1, Op2); 2748 break; 2749 } 2750 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 2751 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2752 if (Record.size() < 3 || !OpTy) 2753 return error("Invalid record"); 2754 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2755 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy); 2756 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 2757 OpTy->getNumElements()); 2758 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy); 2759 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 2760 break; 2761 } 2762 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 2763 VectorType *RTy = dyn_cast<VectorType>(CurTy); 2764 VectorType *OpTy = 2765 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2766 if (Record.size() < 4 || !RTy || !OpTy) 2767 return error("Invalid record"); 2768 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2769 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2770 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 2771 RTy->getNumElements()); 2772 Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy); 2773 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 2774 break; 2775 } 2776 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 2777 if (Record.size() < 4) 2778 return error("Invalid record"); 2779 Type *OpTy = getTypeByID(Record[0]); 2780 if (!OpTy) 2781 return error("Invalid record"); 2782 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2783 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2784 2785 if (OpTy->isFPOrFPVectorTy()) 2786 V = ConstantExpr::getFCmp(Record[3], Op0, Op1); 2787 else 2788 V = ConstantExpr::getICmp(Record[3], Op0, Op1); 2789 break; 2790 } 2791 // This maintains backward compatibility, pre-asm dialect keywords. 2792 // FIXME: Remove with the 4.0 release. 2793 case bitc::CST_CODE_INLINEASM_OLD: { 2794 if (Record.size() < 2) 2795 return error("Invalid record"); 2796 std::string AsmStr, ConstrStr; 2797 bool HasSideEffects = Record[0] & 1; 2798 bool IsAlignStack = Record[0] >> 1; 2799 unsigned AsmStrSize = Record[1]; 2800 if (2+AsmStrSize >= Record.size()) 2801 return error("Invalid record"); 2802 unsigned ConstStrSize = Record[2+AsmStrSize]; 2803 if (3+AsmStrSize+ConstStrSize > Record.size()) 2804 return error("Invalid record"); 2805 2806 for (unsigned i = 0; i != AsmStrSize; ++i) 2807 AsmStr += (char)Record[2+i]; 2808 for (unsigned i = 0; i != ConstStrSize; ++i) 2809 ConstrStr += (char)Record[3+AsmStrSize+i]; 2810 PointerType *PTy = cast<PointerType>(CurTy); 2811 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 2812 AsmStr, ConstrStr, HasSideEffects, IsAlignStack); 2813 break; 2814 } 2815 // This version adds support for the asm dialect keywords (e.g., 2816 // inteldialect). 2817 case bitc::CST_CODE_INLINEASM: { 2818 if (Record.size() < 2) 2819 return error("Invalid record"); 2820 std::string AsmStr, ConstrStr; 2821 bool HasSideEffects = Record[0] & 1; 2822 bool IsAlignStack = (Record[0] >> 1) & 1; 2823 unsigned AsmDialect = Record[0] >> 2; 2824 unsigned AsmStrSize = Record[1]; 2825 if (2+AsmStrSize >= Record.size()) 2826 return error("Invalid record"); 2827 unsigned ConstStrSize = Record[2+AsmStrSize]; 2828 if (3+AsmStrSize+ConstStrSize > Record.size()) 2829 return error("Invalid record"); 2830 2831 for (unsigned i = 0; i != AsmStrSize; ++i) 2832 AsmStr += (char)Record[2+i]; 2833 for (unsigned i = 0; i != ConstStrSize; ++i) 2834 ConstrStr += (char)Record[3+AsmStrSize+i]; 2835 PointerType *PTy = cast<PointerType>(CurTy); 2836 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 2837 AsmStr, ConstrStr, HasSideEffects, IsAlignStack, 2838 InlineAsm::AsmDialect(AsmDialect)); 2839 break; 2840 } 2841 case bitc::CST_CODE_BLOCKADDRESS:{ 2842 if (Record.size() < 3) 2843 return error("Invalid record"); 2844 Type *FnTy = getTypeByID(Record[0]); 2845 if (!FnTy) 2846 return error("Invalid record"); 2847 Function *Fn = 2848 dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy)); 2849 if (!Fn) 2850 return error("Invalid record"); 2851 2852 // Don't let Fn get dematerialized. 2853 BlockAddressesTaken.insert(Fn); 2854 2855 // If the function is already parsed we can insert the block address right 2856 // away. 2857 BasicBlock *BB; 2858 unsigned BBID = Record[2]; 2859 if (!BBID) 2860 // Invalid reference to entry block. 2861 return error("Invalid ID"); 2862 if (!Fn->empty()) { 2863 Function::iterator BBI = Fn->begin(), BBE = Fn->end(); 2864 for (size_t I = 0, E = BBID; I != E; ++I) { 2865 if (BBI == BBE) 2866 return error("Invalid ID"); 2867 ++BBI; 2868 } 2869 BB = &*BBI; 2870 } else { 2871 // Otherwise insert a placeholder and remember it so it can be inserted 2872 // when the function is parsed. 2873 auto &FwdBBs = BasicBlockFwdRefs[Fn]; 2874 if (FwdBBs.empty()) 2875 BasicBlockFwdRefQueue.push_back(Fn); 2876 if (FwdBBs.size() < BBID + 1) 2877 FwdBBs.resize(BBID + 1); 2878 if (!FwdBBs[BBID]) 2879 FwdBBs[BBID] = BasicBlock::Create(Context); 2880 BB = FwdBBs[BBID]; 2881 } 2882 V = BlockAddress::get(Fn, BB); 2883 break; 2884 } 2885 } 2886 2887 if (ValueList.assignValue(V, NextCstNo)) 2888 return error("Invalid forward reference"); 2889 ++NextCstNo; 2890 } 2891 } 2892 2893 std::error_code BitcodeReader::parseUseLists() { 2894 if (Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 2895 return error("Invalid record"); 2896 2897 // Read all the records. 2898 SmallVector<uint64_t, 64> Record; 2899 while (1) { 2900 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2901 2902 switch (Entry.Kind) { 2903 case BitstreamEntry::SubBlock: // Handled for us already. 2904 case BitstreamEntry::Error: 2905 return error("Malformed block"); 2906 case BitstreamEntry::EndBlock: 2907 return std::error_code(); 2908 case BitstreamEntry::Record: 2909 // The interesting case. 2910 break; 2911 } 2912 2913 // Read a use list record. 2914 Record.clear(); 2915 bool IsBB = false; 2916 switch (Stream.readRecord(Entry.ID, Record)) { 2917 default: // Default behavior: unknown type. 2918 break; 2919 case bitc::USELIST_CODE_BB: 2920 IsBB = true; 2921 // fallthrough 2922 case bitc::USELIST_CODE_DEFAULT: { 2923 unsigned RecordLength = Record.size(); 2924 if (RecordLength < 3) 2925 // Records should have at least an ID and two indexes. 2926 return error("Invalid record"); 2927 unsigned ID = Record.back(); 2928 Record.pop_back(); 2929 2930 Value *V; 2931 if (IsBB) { 2932 assert(ID < FunctionBBs.size() && "Basic block not found"); 2933 V = FunctionBBs[ID]; 2934 } else 2935 V = ValueList[ID]; 2936 unsigned NumUses = 0; 2937 SmallDenseMap<const Use *, unsigned, 16> Order; 2938 for (const Use &U : V->uses()) { 2939 if (++NumUses > Record.size()) 2940 break; 2941 Order[&U] = Record[NumUses - 1]; 2942 } 2943 if (Order.size() != Record.size() || NumUses > Record.size()) 2944 // Mismatches can happen if the functions are being materialized lazily 2945 // (out-of-order), or a value has been upgraded. 2946 break; 2947 2948 V->sortUseList([&](const Use &L, const Use &R) { 2949 return Order.lookup(&L) < Order.lookup(&R); 2950 }); 2951 break; 2952 } 2953 } 2954 } 2955 } 2956 2957 /// When we see the block for metadata, remember where it is and then skip it. 2958 /// This lets us lazily deserialize the metadata. 2959 std::error_code BitcodeReader::rememberAndSkipMetadata() { 2960 // Save the current stream state. 2961 uint64_t CurBit = Stream.GetCurrentBitNo(); 2962 DeferredMetadataInfo.push_back(CurBit); 2963 2964 // Skip over the block for now. 2965 if (Stream.SkipBlock()) 2966 return error("Invalid record"); 2967 return std::error_code(); 2968 } 2969 2970 std::error_code BitcodeReader::materializeMetadata() { 2971 for (uint64_t BitPos : DeferredMetadataInfo) { 2972 // Move the bit stream to the saved position. 2973 Stream.JumpToBit(BitPos); 2974 if (std::error_code EC = parseMetadata()) 2975 return EC; 2976 } 2977 DeferredMetadataInfo.clear(); 2978 return std::error_code(); 2979 } 2980 2981 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; } 2982 2983 /// When we see the block for a function body, remember where it is and then 2984 /// skip it. This lets us lazily deserialize the functions. 2985 std::error_code BitcodeReader::rememberAndSkipFunctionBody() { 2986 // Get the function we are talking about. 2987 if (FunctionsWithBodies.empty()) 2988 return error("Insufficient function protos"); 2989 2990 Function *Fn = FunctionsWithBodies.back(); 2991 FunctionsWithBodies.pop_back(); 2992 2993 // Save the current stream state. 2994 uint64_t CurBit = Stream.GetCurrentBitNo(); 2995 assert( 2996 (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) && 2997 "Mismatch between VST and scanned function offsets"); 2998 DeferredFunctionInfo[Fn] = CurBit; 2999 3000 // Skip over the function block for now. 3001 if (Stream.SkipBlock()) 3002 return error("Invalid record"); 3003 return std::error_code(); 3004 } 3005 3006 std::error_code BitcodeReader::globalCleanup() { 3007 // Patch the initializers for globals and aliases up. 3008 resolveGlobalAndAliasInits(); 3009 if (!GlobalInits.empty() || !AliasInits.empty()) 3010 return error("Malformed global initializer set"); 3011 3012 // Look for intrinsic functions which need to be upgraded at some point 3013 for (Function &F : *TheModule) { 3014 Function *NewFn; 3015 if (UpgradeIntrinsicFunction(&F, NewFn)) 3016 UpgradedIntrinsics[&F] = NewFn; 3017 } 3018 3019 // Look for global variables which need to be renamed. 3020 for (GlobalVariable &GV : TheModule->globals()) 3021 UpgradeGlobalVariable(&GV); 3022 3023 // Force deallocation of memory for these vectors to favor the client that 3024 // want lazy deserialization. 3025 std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits); 3026 std::vector<std::pair<GlobalAlias*, unsigned> >().swap(AliasInits); 3027 return std::error_code(); 3028 } 3029 3030 /// Support for lazy parsing of function bodies. This is required if we 3031 /// either have an old bitcode file without a VST forward declaration record, 3032 /// or if we have an anonymous function being materialized, since anonymous 3033 /// functions do not have a name and are therefore not in the VST. 3034 std::error_code BitcodeReader::rememberAndSkipFunctionBodies() { 3035 Stream.JumpToBit(NextUnreadBit); 3036 3037 if (Stream.AtEndOfStream()) return error("Could not find function in stream"); 3038 3039 assert(SeenFirstFunctionBody); 3040 // An old bitcode file with the symbol table at the end would have 3041 // finished the parse greedily. 3042 assert(SeenValueSymbolTable); 3043 3044 SmallVector<uint64_t, 64> Record; 3045 3046 while (1) { 3047 BitstreamEntry Entry = Stream.advance(); 3048 switch (Entry.Kind) { 3049 default: 3050 return error("Expect SubBlock"); 3051 case BitstreamEntry::SubBlock: 3052 switch (Entry.ID) { 3053 default: 3054 return error("Expect function block"); 3055 case bitc::FUNCTION_BLOCK_ID: 3056 if (std::error_code EC = rememberAndSkipFunctionBody()) return EC; 3057 NextUnreadBit = Stream.GetCurrentBitNo(); 3058 return std::error_code(); 3059 } 3060 } 3061 } 3062 } 3063 3064 std::error_code BitcodeReader::parseModule(uint64_t ResumeBit, 3065 bool ShouldLazyLoadMetadata) { 3066 if (ResumeBit) 3067 Stream.JumpToBit(ResumeBit); 3068 else if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 3069 return error("Invalid record"); 3070 3071 SmallVector<uint64_t, 64> Record; 3072 std::vector<std::string> SectionTable; 3073 std::vector<std::string> GCTable; 3074 3075 // Read all the records for this module. 3076 while (1) { 3077 BitstreamEntry Entry = Stream.advance(); 3078 3079 switch (Entry.Kind) { 3080 case BitstreamEntry::Error: 3081 return error("Malformed block"); 3082 case BitstreamEntry::EndBlock: 3083 return globalCleanup(); 3084 3085 case BitstreamEntry::SubBlock: 3086 switch (Entry.ID) { 3087 default: // Skip unknown content. 3088 if (Stream.SkipBlock()) 3089 return error("Invalid record"); 3090 break; 3091 case bitc::BLOCKINFO_BLOCK_ID: 3092 if (Stream.ReadBlockInfoBlock()) 3093 return error("Malformed block"); 3094 break; 3095 case bitc::PARAMATTR_BLOCK_ID: 3096 if (std::error_code EC = parseAttributeBlock()) 3097 return EC; 3098 break; 3099 case bitc::PARAMATTR_GROUP_BLOCK_ID: 3100 if (std::error_code EC = parseAttributeGroupBlock()) 3101 return EC; 3102 break; 3103 case bitc::TYPE_BLOCK_ID_NEW: 3104 if (std::error_code EC = parseTypeTable()) 3105 return EC; 3106 break; 3107 case bitc::VALUE_SYMTAB_BLOCK_ID: 3108 if (!SeenValueSymbolTable) { 3109 // Either this is an old form VST without function index and an 3110 // associated VST forward declaration record (which would have caused 3111 // the VST to be jumped to and parsed before it was encountered 3112 // normally in the stream), or there were no function blocks to 3113 // trigger an earlier parsing of the VST. 3114 assert(VSTOffset == 0 || FunctionsWithBodies.empty()); 3115 if (std::error_code EC = parseValueSymbolTable()) 3116 return EC; 3117 SeenValueSymbolTable = true; 3118 } else { 3119 // We must have had a VST forward declaration record, which caused 3120 // the parser to jump to and parse the VST earlier. 3121 assert(VSTOffset > 0); 3122 if (Stream.SkipBlock()) 3123 return error("Invalid record"); 3124 } 3125 break; 3126 case bitc::CONSTANTS_BLOCK_ID: 3127 if (std::error_code EC = parseConstants()) 3128 return EC; 3129 if (std::error_code EC = resolveGlobalAndAliasInits()) 3130 return EC; 3131 break; 3132 case bitc::METADATA_BLOCK_ID: 3133 if (ShouldLazyLoadMetadata && !IsMetadataMaterialized) { 3134 if (std::error_code EC = rememberAndSkipMetadata()) 3135 return EC; 3136 break; 3137 } 3138 assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata"); 3139 if (std::error_code EC = parseMetadata()) 3140 return EC; 3141 break; 3142 case bitc::FUNCTION_BLOCK_ID: 3143 // If this is the first function body we've seen, reverse the 3144 // FunctionsWithBodies list. 3145 if (!SeenFirstFunctionBody) { 3146 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 3147 if (std::error_code EC = globalCleanup()) 3148 return EC; 3149 SeenFirstFunctionBody = true; 3150 } 3151 3152 if (VSTOffset > 0) { 3153 // If we have a VST forward declaration record, make sure we 3154 // parse the VST now if we haven't already. It is needed to 3155 // set up the DeferredFunctionInfo vector for lazy reading. 3156 if (!SeenValueSymbolTable) { 3157 if (std::error_code EC = 3158 BitcodeReader::parseValueSymbolTable(VSTOffset)) 3159 return EC; 3160 SeenValueSymbolTable = true; 3161 // Fall through so that we record the NextUnreadBit below. 3162 // This is necessary in case we have an anonymous function that 3163 // is later materialized. Since it will not have a VST entry we 3164 // need to fall back to the lazy parse to find its offset. 3165 } else { 3166 // If we have a VST forward declaration record, but have already 3167 // parsed the VST (just above, when the first function body was 3168 // encountered here), then we are resuming the parse after 3169 // materializing functions. The ResumeBit points to the 3170 // start of the last function block recorded in the 3171 // DeferredFunctionInfo map. Skip it. 3172 if (Stream.SkipBlock()) 3173 return error("Invalid record"); 3174 continue; 3175 } 3176 } 3177 3178 // Support older bitcode files that did not have the function 3179 // index in the VST, nor a VST forward declaration record, as 3180 // well as anonymous functions that do not have VST entries. 3181 // Build the DeferredFunctionInfo vector on the fly. 3182 if (std::error_code EC = rememberAndSkipFunctionBody()) 3183 return EC; 3184 3185 // Suspend parsing when we reach the function bodies. Subsequent 3186 // materialization calls will resume it when necessary. If the bitcode 3187 // file is old, the symbol table will be at the end instead and will not 3188 // have been seen yet. In this case, just finish the parse now. 3189 if (SeenValueSymbolTable) { 3190 NextUnreadBit = Stream.GetCurrentBitNo(); 3191 return std::error_code(); 3192 } 3193 break; 3194 case bitc::USELIST_BLOCK_ID: 3195 if (std::error_code EC = parseUseLists()) 3196 return EC; 3197 break; 3198 case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID: 3199 if (std::error_code EC = parseOperandBundleTags()) 3200 return EC; 3201 break; 3202 } 3203 continue; 3204 3205 case BitstreamEntry::Record: 3206 // The interesting case. 3207 break; 3208 } 3209 3210 3211 // Read a record. 3212 auto BitCode = Stream.readRecord(Entry.ID, Record); 3213 switch (BitCode) { 3214 default: break; // Default behavior, ignore unknown content. 3215 case bitc::MODULE_CODE_VERSION: { // VERSION: [version#] 3216 if (Record.size() < 1) 3217 return error("Invalid record"); 3218 // Only version #0 and #1 are supported so far. 3219 unsigned module_version = Record[0]; 3220 switch (module_version) { 3221 default: 3222 return error("Invalid value"); 3223 case 0: 3224 UseRelativeIDs = false; 3225 break; 3226 case 1: 3227 UseRelativeIDs = true; 3228 break; 3229 } 3230 break; 3231 } 3232 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 3233 std::string S; 3234 if (convertToString(Record, 0, S)) 3235 return error("Invalid record"); 3236 TheModule->setTargetTriple(S); 3237 break; 3238 } 3239 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 3240 std::string S; 3241 if (convertToString(Record, 0, S)) 3242 return error("Invalid record"); 3243 TheModule->setDataLayout(S); 3244 break; 3245 } 3246 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 3247 std::string S; 3248 if (convertToString(Record, 0, S)) 3249 return error("Invalid record"); 3250 TheModule->setModuleInlineAsm(S); 3251 break; 3252 } 3253 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 3254 // FIXME: Remove in 4.0. 3255 std::string S; 3256 if (convertToString(Record, 0, S)) 3257 return error("Invalid record"); 3258 // Ignore value. 3259 break; 3260 } 3261 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 3262 std::string S; 3263 if (convertToString(Record, 0, S)) 3264 return error("Invalid record"); 3265 SectionTable.push_back(S); 3266 break; 3267 } 3268 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 3269 std::string S; 3270 if (convertToString(Record, 0, S)) 3271 return error("Invalid record"); 3272 GCTable.push_back(S); 3273 break; 3274 } 3275 case bitc::MODULE_CODE_COMDAT: { // COMDAT: [selection_kind, name] 3276 if (Record.size() < 2) 3277 return error("Invalid record"); 3278 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]); 3279 unsigned ComdatNameSize = Record[1]; 3280 std::string ComdatName; 3281 ComdatName.reserve(ComdatNameSize); 3282 for (unsigned i = 0; i != ComdatNameSize; ++i) 3283 ComdatName += (char)Record[2 + i]; 3284 Comdat *C = TheModule->getOrInsertComdat(ComdatName); 3285 C->setSelectionKind(SK); 3286 ComdatList.push_back(C); 3287 break; 3288 } 3289 // GLOBALVAR: [pointer type, isconst, initid, 3290 // linkage, alignment, section, visibility, threadlocal, 3291 // unnamed_addr, externally_initialized, dllstorageclass, 3292 // comdat] 3293 case bitc::MODULE_CODE_GLOBALVAR: { 3294 if (Record.size() < 6) 3295 return error("Invalid record"); 3296 Type *Ty = getTypeByID(Record[0]); 3297 if (!Ty) 3298 return error("Invalid record"); 3299 bool isConstant = Record[1] & 1; 3300 bool explicitType = Record[1] & 2; 3301 unsigned AddressSpace; 3302 if (explicitType) { 3303 AddressSpace = Record[1] >> 2; 3304 } else { 3305 if (!Ty->isPointerTy()) 3306 return error("Invalid type for value"); 3307 AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 3308 Ty = cast<PointerType>(Ty)->getElementType(); 3309 } 3310 3311 uint64_t RawLinkage = Record[3]; 3312 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 3313 unsigned Alignment; 3314 if (std::error_code EC = parseAlignmentValue(Record[4], Alignment)) 3315 return EC; 3316 std::string Section; 3317 if (Record[5]) { 3318 if (Record[5]-1 >= SectionTable.size()) 3319 return error("Invalid ID"); 3320 Section = SectionTable[Record[5]-1]; 3321 } 3322 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 3323 // Local linkage must have default visibility. 3324 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage)) 3325 // FIXME: Change to an error if non-default in 4.0. 3326 Visibility = getDecodedVisibility(Record[6]); 3327 3328 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; 3329 if (Record.size() > 7) 3330 TLM = getDecodedThreadLocalMode(Record[7]); 3331 3332 bool UnnamedAddr = false; 3333 if (Record.size() > 8) 3334 UnnamedAddr = Record[8]; 3335 3336 bool ExternallyInitialized = false; 3337 if (Record.size() > 9) 3338 ExternallyInitialized = Record[9]; 3339 3340 GlobalVariable *NewGV = 3341 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, "", nullptr, 3342 TLM, AddressSpace, ExternallyInitialized); 3343 NewGV->setAlignment(Alignment); 3344 if (!Section.empty()) 3345 NewGV->setSection(Section); 3346 NewGV->setVisibility(Visibility); 3347 NewGV->setUnnamedAddr(UnnamedAddr); 3348 3349 if (Record.size() > 10) 3350 NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10])); 3351 else 3352 upgradeDLLImportExportLinkage(NewGV, RawLinkage); 3353 3354 ValueList.push_back(NewGV); 3355 3356 // Remember which value to use for the global initializer. 3357 if (unsigned InitID = Record[2]) 3358 GlobalInits.push_back(std::make_pair(NewGV, InitID-1)); 3359 3360 if (Record.size() > 11) { 3361 if (unsigned ComdatID = Record[11]) { 3362 if (ComdatID > ComdatList.size()) 3363 return error("Invalid global variable comdat ID"); 3364 NewGV->setComdat(ComdatList[ComdatID - 1]); 3365 } 3366 } else if (hasImplicitComdat(RawLinkage)) { 3367 NewGV->setComdat(reinterpret_cast<Comdat *>(1)); 3368 } 3369 break; 3370 } 3371 // FUNCTION: [type, callingconv, isproto, linkage, paramattr, 3372 // alignment, section, visibility, gc, unnamed_addr, 3373 // prologuedata, dllstorageclass, comdat, prefixdata] 3374 case bitc::MODULE_CODE_FUNCTION: { 3375 if (Record.size() < 8) 3376 return error("Invalid record"); 3377 Type *Ty = getTypeByID(Record[0]); 3378 if (!Ty) 3379 return error("Invalid record"); 3380 if (auto *PTy = dyn_cast<PointerType>(Ty)) 3381 Ty = PTy->getElementType(); 3382 auto *FTy = dyn_cast<FunctionType>(Ty); 3383 if (!FTy) 3384 return error("Invalid type for value"); 3385 3386 Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage, 3387 "", TheModule); 3388 3389 Func->setCallingConv(static_cast<CallingConv::ID>(Record[1])); 3390 bool isProto = Record[2]; 3391 uint64_t RawLinkage = Record[3]; 3392 Func->setLinkage(getDecodedLinkage(RawLinkage)); 3393 Func->setAttributes(getAttributes(Record[4])); 3394 3395 unsigned Alignment; 3396 if (std::error_code EC = parseAlignmentValue(Record[5], Alignment)) 3397 return EC; 3398 Func->setAlignment(Alignment); 3399 if (Record[6]) { 3400 if (Record[6]-1 >= SectionTable.size()) 3401 return error("Invalid ID"); 3402 Func->setSection(SectionTable[Record[6]-1]); 3403 } 3404 // Local linkage must have default visibility. 3405 if (!Func->hasLocalLinkage()) 3406 // FIXME: Change to an error if non-default in 4.0. 3407 Func->setVisibility(getDecodedVisibility(Record[7])); 3408 if (Record.size() > 8 && Record[8]) { 3409 if (Record[8]-1 >= GCTable.size()) 3410 return error("Invalid ID"); 3411 Func->setGC(GCTable[Record[8]-1].c_str()); 3412 } 3413 bool UnnamedAddr = false; 3414 if (Record.size() > 9) 3415 UnnamedAddr = Record[9]; 3416 Func->setUnnamedAddr(UnnamedAddr); 3417 if (Record.size() > 10 && Record[10] != 0) 3418 FunctionPrologues.push_back(std::make_pair(Func, Record[10]-1)); 3419 3420 if (Record.size() > 11) 3421 Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11])); 3422 else 3423 upgradeDLLImportExportLinkage(Func, RawLinkage); 3424 3425 if (Record.size() > 12) { 3426 if (unsigned ComdatID = Record[12]) { 3427 if (ComdatID > ComdatList.size()) 3428 return error("Invalid function comdat ID"); 3429 Func->setComdat(ComdatList[ComdatID - 1]); 3430 } 3431 } else if (hasImplicitComdat(RawLinkage)) { 3432 Func->setComdat(reinterpret_cast<Comdat *>(1)); 3433 } 3434 3435 if (Record.size() > 13 && Record[13] != 0) 3436 FunctionPrefixes.push_back(std::make_pair(Func, Record[13]-1)); 3437 3438 if (Record.size() > 14 && Record[14] != 0) 3439 FunctionPersonalityFns.push_back(std::make_pair(Func, Record[14] - 1)); 3440 3441 ValueList.push_back(Func); 3442 3443 // If this is a function with a body, remember the prototype we are 3444 // creating now, so that we can match up the body with them later. 3445 if (!isProto) { 3446 Func->setIsMaterializable(true); 3447 FunctionsWithBodies.push_back(Func); 3448 DeferredFunctionInfo[Func] = 0; 3449 } 3450 break; 3451 } 3452 // ALIAS: [alias type, addrspace, aliasee val#, linkage] 3453 // ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, dllstorageclass] 3454 case bitc::MODULE_CODE_ALIAS: 3455 case bitc::MODULE_CODE_ALIAS_OLD: { 3456 bool NewRecord = BitCode == bitc::MODULE_CODE_ALIAS; 3457 if (Record.size() < (3 + (unsigned)NewRecord)) 3458 return error("Invalid record"); 3459 unsigned OpNum = 0; 3460 Type *Ty = getTypeByID(Record[OpNum++]); 3461 if (!Ty) 3462 return error("Invalid record"); 3463 3464 unsigned AddrSpace; 3465 if (!NewRecord) { 3466 auto *PTy = dyn_cast<PointerType>(Ty); 3467 if (!PTy) 3468 return error("Invalid type for value"); 3469 Ty = PTy->getElementType(); 3470 AddrSpace = PTy->getAddressSpace(); 3471 } else { 3472 AddrSpace = Record[OpNum++]; 3473 } 3474 3475 auto Val = Record[OpNum++]; 3476 auto Linkage = Record[OpNum++]; 3477 auto *NewGA = GlobalAlias::create( 3478 Ty, AddrSpace, getDecodedLinkage(Linkage), "", TheModule); 3479 // Old bitcode files didn't have visibility field. 3480 // Local linkage must have default visibility. 3481 if (OpNum != Record.size()) { 3482 auto VisInd = OpNum++; 3483 if (!NewGA->hasLocalLinkage()) 3484 // FIXME: Change to an error if non-default in 4.0. 3485 NewGA->setVisibility(getDecodedVisibility(Record[VisInd])); 3486 } 3487 if (OpNum != Record.size()) 3488 NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++])); 3489 else 3490 upgradeDLLImportExportLinkage(NewGA, Linkage); 3491 if (OpNum != Record.size()) 3492 NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++])); 3493 if (OpNum != Record.size()) 3494 NewGA->setUnnamedAddr(Record[OpNum++]); 3495 ValueList.push_back(NewGA); 3496 AliasInits.push_back(std::make_pair(NewGA, Val)); 3497 break; 3498 } 3499 /// MODULE_CODE_PURGEVALS: [numvals] 3500 case bitc::MODULE_CODE_PURGEVALS: 3501 // Trim down the value list to the specified size. 3502 if (Record.size() < 1 || Record[0] > ValueList.size()) 3503 return error("Invalid record"); 3504 ValueList.shrinkTo(Record[0]); 3505 break; 3506 /// MODULE_CODE_VSTOFFSET: [offset] 3507 case bitc::MODULE_CODE_VSTOFFSET: 3508 if (Record.size() < 1) 3509 return error("Invalid record"); 3510 VSTOffset = Record[0]; 3511 break; 3512 } 3513 Record.clear(); 3514 } 3515 } 3516 3517 /// Helper to read the header common to all bitcode files. 3518 static bool hasValidBitcodeHeader(BitstreamCursor &Stream) { 3519 // Sniff for the signature. 3520 if (Stream.Read(8) != 'B' || 3521 Stream.Read(8) != 'C' || 3522 Stream.Read(4) != 0x0 || 3523 Stream.Read(4) != 0xC || 3524 Stream.Read(4) != 0xE || 3525 Stream.Read(4) != 0xD) 3526 return false; 3527 return true; 3528 } 3529 3530 std::error_code 3531 BitcodeReader::parseBitcodeInto(std::unique_ptr<DataStreamer> Streamer, 3532 Module *M, bool ShouldLazyLoadMetadata) { 3533 TheModule = M; 3534 3535 if (std::error_code EC = initStream(std::move(Streamer))) 3536 return EC; 3537 3538 // Sniff for the signature. 3539 if (!hasValidBitcodeHeader(Stream)) return error("Invalid bitcode signature"); 3540 3541 // We expect a number of well-defined blocks, though we don't necessarily 3542 // need to understand them all. 3543 while (1) { 3544 if (Stream.AtEndOfStream()) { 3545 // We didn't really read a proper Module. 3546 return error("Malformed IR file"); 3547 } 3548 3549 BitstreamEntry Entry = 3550 Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs); 3551 3552 if (Entry.Kind != BitstreamEntry::SubBlock) 3553 return error("Malformed block"); 3554 3555 if (Entry.ID == bitc::MODULE_BLOCK_ID) 3556 return parseModule(0, ShouldLazyLoadMetadata); 3557 3558 if (Stream.SkipBlock()) 3559 return error("Invalid record"); 3560 } 3561 } 3562 3563 ErrorOr<std::string> BitcodeReader::parseModuleTriple() { 3564 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 3565 return error("Invalid record"); 3566 3567 SmallVector<uint64_t, 64> Record; 3568 3569 std::string Triple; 3570 // Read all the records for this module. 3571 while (1) { 3572 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 3573 3574 switch (Entry.Kind) { 3575 case BitstreamEntry::SubBlock: // Handled for us already. 3576 case BitstreamEntry::Error: 3577 return error("Malformed block"); 3578 case BitstreamEntry::EndBlock: 3579 return Triple; 3580 case BitstreamEntry::Record: 3581 // The interesting case. 3582 break; 3583 } 3584 3585 // Read a record. 3586 switch (Stream.readRecord(Entry.ID, Record)) { 3587 default: break; // Default behavior, ignore unknown content. 3588 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 3589 std::string S; 3590 if (convertToString(Record, 0, S)) 3591 return error("Invalid record"); 3592 Triple = S; 3593 break; 3594 } 3595 } 3596 Record.clear(); 3597 } 3598 llvm_unreachable("Exit infinite loop"); 3599 } 3600 3601 ErrorOr<std::string> BitcodeReader::parseTriple() { 3602 if (std::error_code EC = initStream(nullptr)) 3603 return EC; 3604 3605 // Sniff for the signature. 3606 if (!hasValidBitcodeHeader(Stream)) return error("Invalid bitcode signature"); 3607 3608 // We expect a number of well-defined blocks, though we don't necessarily 3609 // need to understand them all. 3610 while (1) { 3611 BitstreamEntry Entry = Stream.advance(); 3612 3613 switch (Entry.Kind) { 3614 case BitstreamEntry::Error: 3615 return error("Malformed block"); 3616 case BitstreamEntry::EndBlock: 3617 return std::error_code(); 3618 3619 case BitstreamEntry::SubBlock: 3620 if (Entry.ID == bitc::MODULE_BLOCK_ID) 3621 return parseModuleTriple(); 3622 3623 // Ignore other sub-blocks. 3624 if (Stream.SkipBlock()) 3625 return error("Malformed block"); 3626 continue; 3627 3628 case BitstreamEntry::Record: 3629 Stream.skipRecord(Entry.ID); 3630 continue; 3631 } 3632 } 3633 } 3634 3635 /// Parse metadata attachments. 3636 std::error_code BitcodeReader::parseMetadataAttachment(Function &F) { 3637 if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID)) 3638 return error("Invalid record"); 3639 3640 SmallVector<uint64_t, 64> Record; 3641 while (1) { 3642 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 3643 3644 switch (Entry.Kind) { 3645 case BitstreamEntry::SubBlock: // Handled for us already. 3646 case BitstreamEntry::Error: 3647 return error("Malformed block"); 3648 case BitstreamEntry::EndBlock: 3649 return std::error_code(); 3650 case BitstreamEntry::Record: 3651 // The interesting case. 3652 break; 3653 } 3654 3655 // Read a metadata attachment record. 3656 Record.clear(); 3657 switch (Stream.readRecord(Entry.ID, Record)) { 3658 default: // Default behavior: ignore. 3659 break; 3660 case bitc::METADATA_ATTACHMENT: { 3661 unsigned RecordLength = Record.size(); 3662 if (Record.empty()) 3663 return error("Invalid record"); 3664 if (RecordLength % 2 == 0) { 3665 // A function attachment. 3666 for (unsigned I = 0; I != RecordLength; I += 2) { 3667 auto K = MDKindMap.find(Record[I]); 3668 if (K == MDKindMap.end()) 3669 return error("Invalid ID"); 3670 Metadata *MD = MDValueList.getValueFwdRef(Record[I + 1]); 3671 F.setMetadata(K->second, cast<MDNode>(MD)); 3672 } 3673 continue; 3674 } 3675 3676 // An instruction attachment. 3677 Instruction *Inst = InstructionList[Record[0]]; 3678 for (unsigned i = 1; i != RecordLength; i = i+2) { 3679 unsigned Kind = Record[i]; 3680 DenseMap<unsigned, unsigned>::iterator I = 3681 MDKindMap.find(Kind); 3682 if (I == MDKindMap.end()) 3683 return error("Invalid ID"); 3684 Metadata *Node = MDValueList.getValueFwdRef(Record[i + 1]); 3685 if (isa<LocalAsMetadata>(Node)) 3686 // Drop the attachment. This used to be legal, but there's no 3687 // upgrade path. 3688 break; 3689 Inst->setMetadata(I->second, cast<MDNode>(Node)); 3690 if (I->second == LLVMContext::MD_tbaa) 3691 InstsWithTBAATag.push_back(Inst); 3692 } 3693 break; 3694 } 3695 } 3696 } 3697 } 3698 3699 static std::error_code typeCheckLoadStoreInst(DiagnosticHandlerFunction DH, 3700 Type *ValType, Type *PtrType) { 3701 if (!isa<PointerType>(PtrType)) 3702 return error(DH, "Load/Store operand is not a pointer type"); 3703 Type *ElemType = cast<PointerType>(PtrType)->getElementType(); 3704 3705 if (ValType && ValType != ElemType) 3706 return error(DH, "Explicit load/store type does not match pointee type of " 3707 "pointer operand"); 3708 if (!PointerType::isLoadableOrStorableType(ElemType)) 3709 return error(DH, "Cannot load/store from pointer"); 3710 return std::error_code(); 3711 } 3712 3713 /// Lazily parse the specified function body block. 3714 std::error_code BitcodeReader::parseFunctionBody(Function *F) { 3715 if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 3716 return error("Invalid record"); 3717 3718 InstructionList.clear(); 3719 unsigned ModuleValueListSize = ValueList.size(); 3720 unsigned ModuleMDValueListSize = MDValueList.size(); 3721 3722 // Add all the function arguments to the value table. 3723 for (Argument &I : F->args()) 3724 ValueList.push_back(&I); 3725 3726 unsigned NextValueNo = ValueList.size(); 3727 BasicBlock *CurBB = nullptr; 3728 unsigned CurBBNo = 0; 3729 3730 DebugLoc LastLoc; 3731 auto getLastInstruction = [&]() -> Instruction * { 3732 if (CurBB && !CurBB->empty()) 3733 return &CurBB->back(); 3734 else if (CurBBNo && FunctionBBs[CurBBNo - 1] && 3735 !FunctionBBs[CurBBNo - 1]->empty()) 3736 return &FunctionBBs[CurBBNo - 1]->back(); 3737 return nullptr; 3738 }; 3739 3740 std::vector<OperandBundleDef> OperandBundles; 3741 3742 // Read all the records. 3743 SmallVector<uint64_t, 64> Record; 3744 while (1) { 3745 BitstreamEntry Entry = Stream.advance(); 3746 3747 switch (Entry.Kind) { 3748 case BitstreamEntry::Error: 3749 return error("Malformed block"); 3750 case BitstreamEntry::EndBlock: 3751 goto OutOfRecordLoop; 3752 3753 case BitstreamEntry::SubBlock: 3754 switch (Entry.ID) { 3755 default: // Skip unknown content. 3756 if (Stream.SkipBlock()) 3757 return error("Invalid record"); 3758 break; 3759 case bitc::CONSTANTS_BLOCK_ID: 3760 if (std::error_code EC = parseConstants()) 3761 return EC; 3762 NextValueNo = ValueList.size(); 3763 break; 3764 case bitc::VALUE_SYMTAB_BLOCK_ID: 3765 if (std::error_code EC = parseValueSymbolTable()) 3766 return EC; 3767 break; 3768 case bitc::METADATA_ATTACHMENT_ID: 3769 if (std::error_code EC = parseMetadataAttachment(*F)) 3770 return EC; 3771 break; 3772 case bitc::METADATA_BLOCK_ID: 3773 if (std::error_code EC = parseMetadata()) 3774 return EC; 3775 break; 3776 case bitc::USELIST_BLOCK_ID: 3777 if (std::error_code EC = parseUseLists()) 3778 return EC; 3779 break; 3780 } 3781 continue; 3782 3783 case BitstreamEntry::Record: 3784 // The interesting case. 3785 break; 3786 } 3787 3788 // Read a record. 3789 Record.clear(); 3790 Instruction *I = nullptr; 3791 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 3792 switch (BitCode) { 3793 default: // Default behavior: reject 3794 return error("Invalid value"); 3795 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks] 3796 if (Record.size() < 1 || Record[0] == 0) 3797 return error("Invalid record"); 3798 // Create all the basic blocks for the function. 3799 FunctionBBs.resize(Record[0]); 3800 3801 // See if anything took the address of blocks in this function. 3802 auto BBFRI = BasicBlockFwdRefs.find(F); 3803 if (BBFRI == BasicBlockFwdRefs.end()) { 3804 for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i) 3805 FunctionBBs[i] = BasicBlock::Create(Context, "", F); 3806 } else { 3807 auto &BBRefs = BBFRI->second; 3808 // Check for invalid basic block references. 3809 if (BBRefs.size() > FunctionBBs.size()) 3810 return error("Invalid ID"); 3811 assert(!BBRefs.empty() && "Unexpected empty array"); 3812 assert(!BBRefs.front() && "Invalid reference to entry block"); 3813 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E; 3814 ++I) 3815 if (I < RE && BBRefs[I]) { 3816 BBRefs[I]->insertInto(F); 3817 FunctionBBs[I] = BBRefs[I]; 3818 } else { 3819 FunctionBBs[I] = BasicBlock::Create(Context, "", F); 3820 } 3821 3822 // Erase from the table. 3823 BasicBlockFwdRefs.erase(BBFRI); 3824 } 3825 3826 CurBB = FunctionBBs[0]; 3827 continue; 3828 } 3829 3830 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 3831 // This record indicates that the last instruction is at the same 3832 // location as the previous instruction with a location. 3833 I = getLastInstruction(); 3834 3835 if (!I) 3836 return error("Invalid record"); 3837 I->setDebugLoc(LastLoc); 3838 I = nullptr; 3839 continue; 3840 3841 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 3842 I = getLastInstruction(); 3843 if (!I || Record.size() < 4) 3844 return error("Invalid record"); 3845 3846 unsigned Line = Record[0], Col = Record[1]; 3847 unsigned ScopeID = Record[2], IAID = Record[3]; 3848 3849 MDNode *Scope = nullptr, *IA = nullptr; 3850 if (ScopeID) Scope = cast<MDNode>(MDValueList.getValueFwdRef(ScopeID-1)); 3851 if (IAID) IA = cast<MDNode>(MDValueList.getValueFwdRef(IAID-1)); 3852 LastLoc = DebugLoc::get(Line, Col, Scope, IA); 3853 I->setDebugLoc(LastLoc); 3854 I = nullptr; 3855 continue; 3856 } 3857 3858 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 3859 unsigned OpNum = 0; 3860 Value *LHS, *RHS; 3861 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 3862 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 3863 OpNum+1 > Record.size()) 3864 return error("Invalid record"); 3865 3866 int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 3867 if (Opc == -1) 3868 return error("Invalid record"); 3869 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 3870 InstructionList.push_back(I); 3871 if (OpNum < Record.size()) { 3872 if (Opc == Instruction::Add || 3873 Opc == Instruction::Sub || 3874 Opc == Instruction::Mul || 3875 Opc == Instruction::Shl) { 3876 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 3877 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 3878 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 3879 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 3880 } else if (Opc == Instruction::SDiv || 3881 Opc == Instruction::UDiv || 3882 Opc == Instruction::LShr || 3883 Opc == Instruction::AShr) { 3884 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 3885 cast<BinaryOperator>(I)->setIsExact(true); 3886 } else if (isa<FPMathOperator>(I)) { 3887 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 3888 if (FMF.any()) 3889 I->setFastMathFlags(FMF); 3890 } 3891 3892 } 3893 break; 3894 } 3895 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 3896 unsigned OpNum = 0; 3897 Value *Op; 3898 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 3899 OpNum+2 != Record.size()) 3900 return error("Invalid record"); 3901 3902 Type *ResTy = getTypeByID(Record[OpNum]); 3903 int Opc = getDecodedCastOpcode(Record[OpNum + 1]); 3904 if (Opc == -1 || !ResTy) 3905 return error("Invalid record"); 3906 Instruction *Temp = nullptr; 3907 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) { 3908 if (Temp) { 3909 InstructionList.push_back(Temp); 3910 CurBB->getInstList().push_back(Temp); 3911 } 3912 } else { 3913 auto CastOp = (Instruction::CastOps)Opc; 3914 if (!CastInst::castIsValid(CastOp, Op, ResTy)) 3915 return error("Invalid cast"); 3916 I = CastInst::Create(CastOp, Op, ResTy); 3917 } 3918 InstructionList.push_back(I); 3919 break; 3920 } 3921 case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD: 3922 case bitc::FUNC_CODE_INST_GEP_OLD: 3923 case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands] 3924 unsigned OpNum = 0; 3925 3926 Type *Ty; 3927 bool InBounds; 3928 3929 if (BitCode == bitc::FUNC_CODE_INST_GEP) { 3930 InBounds = Record[OpNum++]; 3931 Ty = getTypeByID(Record[OpNum++]); 3932 } else { 3933 InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD; 3934 Ty = nullptr; 3935 } 3936 3937 Value *BasePtr; 3938 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr)) 3939 return error("Invalid record"); 3940 3941 if (!Ty) 3942 Ty = cast<SequentialType>(BasePtr->getType()->getScalarType()) 3943 ->getElementType(); 3944 else if (Ty != 3945 cast<SequentialType>(BasePtr->getType()->getScalarType()) 3946 ->getElementType()) 3947 return error( 3948 "Explicit gep type does not match pointee type of pointer operand"); 3949 3950 SmallVector<Value*, 16> GEPIdx; 3951 while (OpNum != Record.size()) { 3952 Value *Op; 3953 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3954 return error("Invalid record"); 3955 GEPIdx.push_back(Op); 3956 } 3957 3958 I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx); 3959 3960 InstructionList.push_back(I); 3961 if (InBounds) 3962 cast<GetElementPtrInst>(I)->setIsInBounds(true); 3963 break; 3964 } 3965 3966 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 3967 // EXTRACTVAL: [opty, opval, n x indices] 3968 unsigned OpNum = 0; 3969 Value *Agg; 3970 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 3971 return error("Invalid record"); 3972 3973 unsigned RecSize = Record.size(); 3974 if (OpNum == RecSize) 3975 return error("EXTRACTVAL: Invalid instruction with 0 indices"); 3976 3977 SmallVector<unsigned, 4> EXTRACTVALIdx; 3978 Type *CurTy = Agg->getType(); 3979 for (; OpNum != RecSize; ++OpNum) { 3980 bool IsArray = CurTy->isArrayTy(); 3981 bool IsStruct = CurTy->isStructTy(); 3982 uint64_t Index = Record[OpNum]; 3983 3984 if (!IsStruct && !IsArray) 3985 return error("EXTRACTVAL: Invalid type"); 3986 if ((unsigned)Index != Index) 3987 return error("Invalid value"); 3988 if (IsStruct && Index >= CurTy->subtypes().size()) 3989 return error("EXTRACTVAL: Invalid struct index"); 3990 if (IsArray && Index >= CurTy->getArrayNumElements()) 3991 return error("EXTRACTVAL: Invalid array index"); 3992 EXTRACTVALIdx.push_back((unsigned)Index); 3993 3994 if (IsStruct) 3995 CurTy = CurTy->subtypes()[Index]; 3996 else 3997 CurTy = CurTy->subtypes()[0]; 3998 } 3999 4000 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 4001 InstructionList.push_back(I); 4002 break; 4003 } 4004 4005 case bitc::FUNC_CODE_INST_INSERTVAL: { 4006 // INSERTVAL: [opty, opval, opty, opval, n x indices] 4007 unsigned OpNum = 0; 4008 Value *Agg; 4009 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 4010 return error("Invalid record"); 4011 Value *Val; 4012 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 4013 return error("Invalid record"); 4014 4015 unsigned RecSize = Record.size(); 4016 if (OpNum == RecSize) 4017 return error("INSERTVAL: Invalid instruction with 0 indices"); 4018 4019 SmallVector<unsigned, 4> INSERTVALIdx; 4020 Type *CurTy = Agg->getType(); 4021 for (; OpNum != RecSize; ++OpNum) { 4022 bool IsArray = CurTy->isArrayTy(); 4023 bool IsStruct = CurTy->isStructTy(); 4024 uint64_t Index = Record[OpNum]; 4025 4026 if (!IsStruct && !IsArray) 4027 return error("INSERTVAL: Invalid type"); 4028 if ((unsigned)Index != Index) 4029 return error("Invalid value"); 4030 if (IsStruct && Index >= CurTy->subtypes().size()) 4031 return error("INSERTVAL: Invalid struct index"); 4032 if (IsArray && Index >= CurTy->getArrayNumElements()) 4033 return error("INSERTVAL: Invalid array index"); 4034 4035 INSERTVALIdx.push_back((unsigned)Index); 4036 if (IsStruct) 4037 CurTy = CurTy->subtypes()[Index]; 4038 else 4039 CurTy = CurTy->subtypes()[0]; 4040 } 4041 4042 if (CurTy != Val->getType()) 4043 return error("Inserted value type doesn't match aggregate type"); 4044 4045 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 4046 InstructionList.push_back(I); 4047 break; 4048 } 4049 4050 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 4051 // obsolete form of select 4052 // handles select i1 ... in old bitcode 4053 unsigned OpNum = 0; 4054 Value *TrueVal, *FalseVal, *Cond; 4055 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 4056 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 4057 popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond)) 4058 return error("Invalid record"); 4059 4060 I = SelectInst::Create(Cond, TrueVal, FalseVal); 4061 InstructionList.push_back(I); 4062 break; 4063 } 4064 4065 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 4066 // new form of select 4067 // handles select i1 or select [N x i1] 4068 unsigned OpNum = 0; 4069 Value *TrueVal, *FalseVal, *Cond; 4070 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 4071 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 4072 getValueTypePair(Record, OpNum, NextValueNo, Cond)) 4073 return error("Invalid record"); 4074 4075 // select condition can be either i1 or [N x i1] 4076 if (VectorType* vector_type = 4077 dyn_cast<VectorType>(Cond->getType())) { 4078 // expect <n x i1> 4079 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 4080 return error("Invalid type for value"); 4081 } else { 4082 // expect i1 4083 if (Cond->getType() != Type::getInt1Ty(Context)) 4084 return error("Invalid type for value"); 4085 } 4086 4087 I = SelectInst::Create(Cond, TrueVal, FalseVal); 4088 InstructionList.push_back(I); 4089 break; 4090 } 4091 4092 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 4093 unsigned OpNum = 0; 4094 Value *Vec, *Idx; 4095 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 4096 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 4097 return error("Invalid record"); 4098 if (!Vec->getType()->isVectorTy()) 4099 return error("Invalid type for value"); 4100 I = ExtractElementInst::Create(Vec, Idx); 4101 InstructionList.push_back(I); 4102 break; 4103 } 4104 4105 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 4106 unsigned OpNum = 0; 4107 Value *Vec, *Elt, *Idx; 4108 if (getValueTypePair(Record, OpNum, NextValueNo, Vec)) 4109 return error("Invalid record"); 4110 if (!Vec->getType()->isVectorTy()) 4111 return error("Invalid type for value"); 4112 if (popValue(Record, OpNum, NextValueNo, 4113 cast<VectorType>(Vec->getType())->getElementType(), Elt) || 4114 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 4115 return error("Invalid record"); 4116 I = InsertElementInst::Create(Vec, Elt, Idx); 4117 InstructionList.push_back(I); 4118 break; 4119 } 4120 4121 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 4122 unsigned OpNum = 0; 4123 Value *Vec1, *Vec2, *Mask; 4124 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) || 4125 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2)) 4126 return error("Invalid record"); 4127 4128 if (getValueTypePair(Record, OpNum, NextValueNo, Mask)) 4129 return error("Invalid record"); 4130 if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy()) 4131 return error("Invalid type for value"); 4132 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 4133 InstructionList.push_back(I); 4134 break; 4135 } 4136 4137 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 4138 // Old form of ICmp/FCmp returning bool 4139 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 4140 // both legal on vectors but had different behaviour. 4141 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 4142 // FCmp/ICmp returning bool or vector of bool 4143 4144 unsigned OpNum = 0; 4145 Value *LHS, *RHS; 4146 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 4147 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS)) 4148 return error("Invalid record"); 4149 4150 unsigned PredVal = Record[OpNum]; 4151 bool IsFP = LHS->getType()->isFPOrFPVectorTy(); 4152 FastMathFlags FMF; 4153 if (IsFP && Record.size() > OpNum+1) 4154 FMF = getDecodedFastMathFlags(Record[++OpNum]); 4155 4156 if (OpNum+1 != Record.size()) 4157 return error("Invalid record"); 4158 4159 if (LHS->getType()->isFPOrFPVectorTy()) 4160 I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS); 4161 else 4162 I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS); 4163 4164 if (FMF.any()) 4165 I->setFastMathFlags(FMF); 4166 InstructionList.push_back(I); 4167 break; 4168 } 4169 4170 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 4171 { 4172 unsigned Size = Record.size(); 4173 if (Size == 0) { 4174 I = ReturnInst::Create(Context); 4175 InstructionList.push_back(I); 4176 break; 4177 } 4178 4179 unsigned OpNum = 0; 4180 Value *Op = nullptr; 4181 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4182 return error("Invalid record"); 4183 if (OpNum != Record.size()) 4184 return error("Invalid record"); 4185 4186 I = ReturnInst::Create(Context, Op); 4187 InstructionList.push_back(I); 4188 break; 4189 } 4190 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 4191 if (Record.size() != 1 && Record.size() != 3) 4192 return error("Invalid record"); 4193 BasicBlock *TrueDest = getBasicBlock(Record[0]); 4194 if (!TrueDest) 4195 return error("Invalid record"); 4196 4197 if (Record.size() == 1) { 4198 I = BranchInst::Create(TrueDest); 4199 InstructionList.push_back(I); 4200 } 4201 else { 4202 BasicBlock *FalseDest = getBasicBlock(Record[1]); 4203 Value *Cond = getValue(Record, 2, NextValueNo, 4204 Type::getInt1Ty(Context)); 4205 if (!FalseDest || !Cond) 4206 return error("Invalid record"); 4207 I = BranchInst::Create(TrueDest, FalseDest, Cond); 4208 InstructionList.push_back(I); 4209 } 4210 break; 4211 } 4212 case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#] 4213 if (Record.size() != 1 && Record.size() != 2) 4214 return error("Invalid record"); 4215 unsigned Idx = 0; 4216 Value *CleanupPad = getValue(Record, Idx++, NextValueNo, 4217 Type::getTokenTy(Context), OC_CleanupPad); 4218 if (!CleanupPad) 4219 return error("Invalid record"); 4220 BasicBlock *UnwindDest = nullptr; 4221 if (Record.size() == 2) { 4222 UnwindDest = getBasicBlock(Record[Idx++]); 4223 if (!UnwindDest) 4224 return error("Invalid record"); 4225 } 4226 4227 I = CleanupReturnInst::Create(cast<CleanupPadInst>(CleanupPad), 4228 UnwindDest); 4229 InstructionList.push_back(I); 4230 break; 4231 } 4232 case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#] 4233 if (Record.size() != 2) 4234 return error("Invalid record"); 4235 unsigned Idx = 0; 4236 Value *CatchPad = getValue(Record, Idx++, NextValueNo, 4237 Type::getTokenTy(Context), OC_CatchPad); 4238 if (!CatchPad) 4239 return error("Invalid record"); 4240 BasicBlock *BB = getBasicBlock(Record[Idx++]); 4241 if (!BB) 4242 return error("Invalid record"); 4243 4244 I = CatchReturnInst::Create(cast<CatchPadInst>(CatchPad), BB); 4245 InstructionList.push_back(I); 4246 break; 4247 } 4248 case bitc::FUNC_CODE_INST_CATCHPAD: { // CATCHPAD: [bb#,bb#,num,(ty,val)*] 4249 if (Record.size() < 3) 4250 return error("Invalid record"); 4251 unsigned Idx = 0; 4252 BasicBlock *NormalBB = getBasicBlock(Record[Idx++]); 4253 if (!NormalBB) 4254 return error("Invalid record"); 4255 BasicBlock *UnwindBB = getBasicBlock(Record[Idx++]); 4256 if (!UnwindBB) 4257 return error("Invalid record"); 4258 unsigned NumArgOperands = Record[Idx++]; 4259 SmallVector<Value *, 2> Args; 4260 for (unsigned Op = 0; Op != NumArgOperands; ++Op) { 4261 Value *Val; 4262 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 4263 return error("Invalid record"); 4264 Args.push_back(Val); 4265 } 4266 if (Record.size() != Idx) 4267 return error("Invalid record"); 4268 4269 I = CatchPadInst::Create(NormalBB, UnwindBB, Args); 4270 InstructionList.push_back(I); 4271 break; 4272 } 4273 case bitc::FUNC_CODE_INST_TERMINATEPAD: { // TERMINATEPAD: [bb#,num,(ty,val)*] 4274 if (Record.size() < 1) 4275 return error("Invalid record"); 4276 unsigned Idx = 0; 4277 bool HasUnwindDest = !!Record[Idx++]; 4278 BasicBlock *UnwindDest = nullptr; 4279 if (HasUnwindDest) { 4280 if (Idx == Record.size()) 4281 return error("Invalid record"); 4282 UnwindDest = getBasicBlock(Record[Idx++]); 4283 if (!UnwindDest) 4284 return error("Invalid record"); 4285 } 4286 unsigned NumArgOperands = Record[Idx++]; 4287 SmallVector<Value *, 2> Args; 4288 for (unsigned Op = 0; Op != NumArgOperands; ++Op) { 4289 Value *Val; 4290 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 4291 return error("Invalid record"); 4292 Args.push_back(Val); 4293 } 4294 if (Record.size() != Idx) 4295 return error("Invalid record"); 4296 4297 I = TerminatePadInst::Create(Context, UnwindDest, Args); 4298 InstructionList.push_back(I); 4299 break; 4300 } 4301 case bitc::FUNC_CODE_INST_CLEANUPPAD: { // CLEANUPPAD: [num,(ty,val)*] 4302 if (Record.size() < 1) 4303 return error("Invalid record"); 4304 unsigned Idx = 0; 4305 unsigned NumArgOperands = Record[Idx++]; 4306 SmallVector<Value *, 2> Args; 4307 for (unsigned Op = 0; Op != NumArgOperands; ++Op) { 4308 Value *Val; 4309 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 4310 return error("Invalid record"); 4311 Args.push_back(Val); 4312 } 4313 if (Record.size() != Idx) 4314 return error("Invalid record"); 4315 4316 I = CleanupPadInst::Create(Context, Args); 4317 InstructionList.push_back(I); 4318 break; 4319 } 4320 case bitc::FUNC_CODE_INST_CATCHENDPAD: { // CATCHENDPADINST: [bb#] or [] 4321 if (Record.size() > 1) 4322 return error("Invalid record"); 4323 BasicBlock *BB = nullptr; 4324 if (Record.size() == 1) { 4325 BB = getBasicBlock(Record[0]); 4326 if (!BB) 4327 return error("Invalid record"); 4328 } 4329 I = CatchEndPadInst::Create(Context, BB); 4330 InstructionList.push_back(I); 4331 break; 4332 } 4333 case bitc::FUNC_CODE_INST_CLEANUPENDPAD: { // CLEANUPENDPADINST: [val] or [val,bb#] 4334 if (Record.size() != 1 && Record.size() != 2) 4335 return error("Invalid record"); 4336 unsigned Idx = 0; 4337 Value *CleanupPad = getValue(Record, Idx++, NextValueNo, 4338 Type::getTokenTy(Context), OC_CleanupPad); 4339 if (!CleanupPad) 4340 return error("Invalid record"); 4341 4342 BasicBlock *BB = nullptr; 4343 if (Record.size() == 2) { 4344 BB = getBasicBlock(Record[Idx++]); 4345 if (!BB) 4346 return error("Invalid record"); 4347 } 4348 I = CleanupEndPadInst::Create(cast<CleanupPadInst>(CleanupPad), BB); 4349 InstructionList.push_back(I); 4350 break; 4351 } 4352 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 4353 // Check magic 4354 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { 4355 // "New" SwitchInst format with case ranges. The changes to write this 4356 // format were reverted but we still recognize bitcode that uses it. 4357 // Hopefully someday we will have support for case ranges and can use 4358 // this format again. 4359 4360 Type *OpTy = getTypeByID(Record[1]); 4361 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); 4362 4363 Value *Cond = getValue(Record, 2, NextValueNo, OpTy); 4364 BasicBlock *Default = getBasicBlock(Record[3]); 4365 if (!OpTy || !Cond || !Default) 4366 return error("Invalid record"); 4367 4368 unsigned NumCases = Record[4]; 4369 4370 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 4371 InstructionList.push_back(SI); 4372 4373 unsigned CurIdx = 5; 4374 for (unsigned i = 0; i != NumCases; ++i) { 4375 SmallVector<ConstantInt*, 1> CaseVals; 4376 unsigned NumItems = Record[CurIdx++]; 4377 for (unsigned ci = 0; ci != NumItems; ++ci) { 4378 bool isSingleNumber = Record[CurIdx++]; 4379 4380 APInt Low; 4381 unsigned ActiveWords = 1; 4382 if (ValueBitWidth > 64) 4383 ActiveWords = Record[CurIdx++]; 4384 Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 4385 ValueBitWidth); 4386 CurIdx += ActiveWords; 4387 4388 if (!isSingleNumber) { 4389 ActiveWords = 1; 4390 if (ValueBitWidth > 64) 4391 ActiveWords = Record[CurIdx++]; 4392 APInt High = readWideAPInt( 4393 makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth); 4394 CurIdx += ActiveWords; 4395 4396 // FIXME: It is not clear whether values in the range should be 4397 // compared as signed or unsigned values. The partially 4398 // implemented changes that used this format in the past used 4399 // unsigned comparisons. 4400 for ( ; Low.ule(High); ++Low) 4401 CaseVals.push_back(ConstantInt::get(Context, Low)); 4402 } else 4403 CaseVals.push_back(ConstantInt::get(Context, Low)); 4404 } 4405 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); 4406 for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(), 4407 cve = CaseVals.end(); cvi != cve; ++cvi) 4408 SI->addCase(*cvi, DestBB); 4409 } 4410 I = SI; 4411 break; 4412 } 4413 4414 // Old SwitchInst format without case ranges. 4415 4416 if (Record.size() < 3 || (Record.size() & 1) == 0) 4417 return error("Invalid record"); 4418 Type *OpTy = getTypeByID(Record[0]); 4419 Value *Cond = getValue(Record, 1, NextValueNo, OpTy); 4420 BasicBlock *Default = getBasicBlock(Record[2]); 4421 if (!OpTy || !Cond || !Default) 4422 return error("Invalid record"); 4423 unsigned NumCases = (Record.size()-3)/2; 4424 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 4425 InstructionList.push_back(SI); 4426 for (unsigned i = 0, e = NumCases; i != e; ++i) { 4427 ConstantInt *CaseVal = 4428 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy)); 4429 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 4430 if (!CaseVal || !DestBB) { 4431 delete SI; 4432 return error("Invalid record"); 4433 } 4434 SI->addCase(CaseVal, DestBB); 4435 } 4436 I = SI; 4437 break; 4438 } 4439 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 4440 if (Record.size() < 2) 4441 return error("Invalid record"); 4442 Type *OpTy = getTypeByID(Record[0]); 4443 Value *Address = getValue(Record, 1, NextValueNo, OpTy); 4444 if (!OpTy || !Address) 4445 return error("Invalid record"); 4446 unsigned NumDests = Record.size()-2; 4447 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 4448 InstructionList.push_back(IBI); 4449 for (unsigned i = 0, e = NumDests; i != e; ++i) { 4450 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 4451 IBI->addDestination(DestBB); 4452 } else { 4453 delete IBI; 4454 return error("Invalid record"); 4455 } 4456 } 4457 I = IBI; 4458 break; 4459 } 4460 4461 case bitc::FUNC_CODE_INST_INVOKE: { 4462 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 4463 if (Record.size() < 4) 4464 return error("Invalid record"); 4465 unsigned OpNum = 0; 4466 AttributeSet PAL = getAttributes(Record[OpNum++]); 4467 unsigned CCInfo = Record[OpNum++]; 4468 BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]); 4469 BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]); 4470 4471 FunctionType *FTy = nullptr; 4472 if (CCInfo >> 13 & 1 && 4473 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])))) 4474 return error("Explicit invoke type is not a function type"); 4475 4476 Value *Callee; 4477 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 4478 return error("Invalid record"); 4479 4480 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 4481 if (!CalleeTy) 4482 return error("Callee is not a pointer"); 4483 if (!FTy) { 4484 FTy = dyn_cast<FunctionType>(CalleeTy->getElementType()); 4485 if (!FTy) 4486 return error("Callee is not of pointer to function type"); 4487 } else if (CalleeTy->getElementType() != FTy) 4488 return error("Explicit invoke type does not match pointee type of " 4489 "callee operand"); 4490 if (Record.size() < FTy->getNumParams() + OpNum) 4491 return error("Insufficient operands to call"); 4492 4493 SmallVector<Value*, 16> Ops; 4494 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 4495 Ops.push_back(getValue(Record, OpNum, NextValueNo, 4496 FTy->getParamType(i))); 4497 if (!Ops.back()) 4498 return error("Invalid record"); 4499 } 4500 4501 if (!FTy->isVarArg()) { 4502 if (Record.size() != OpNum) 4503 return error("Invalid record"); 4504 } else { 4505 // Read type/value pairs for varargs params. 4506 while (OpNum != Record.size()) { 4507 Value *Op; 4508 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4509 return error("Invalid record"); 4510 Ops.push_back(Op); 4511 } 4512 } 4513 4514 I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops, OperandBundles); 4515 OperandBundles.clear(); 4516 InstructionList.push_back(I); 4517 cast<InvokeInst>(I) 4518 ->setCallingConv(static_cast<CallingConv::ID>(~(1U << 13) & CCInfo)); 4519 cast<InvokeInst>(I)->setAttributes(PAL); 4520 break; 4521 } 4522 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 4523 unsigned Idx = 0; 4524 Value *Val = nullptr; 4525 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 4526 return error("Invalid record"); 4527 I = ResumeInst::Create(Val); 4528 InstructionList.push_back(I); 4529 break; 4530 } 4531 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 4532 I = new UnreachableInst(Context); 4533 InstructionList.push_back(I); 4534 break; 4535 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 4536 if (Record.size() < 1 || ((Record.size()-1)&1)) 4537 return error("Invalid record"); 4538 Type *Ty = getTypeByID(Record[0]); 4539 if (!Ty) 4540 return error("Invalid record"); 4541 4542 PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2); 4543 InstructionList.push_back(PN); 4544 4545 for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) { 4546 Value *V; 4547 // With the new function encoding, it is possible that operands have 4548 // negative IDs (for forward references). Use a signed VBR 4549 // representation to keep the encoding small. 4550 if (UseRelativeIDs) 4551 V = getValueSigned(Record, 1+i, NextValueNo, Ty); 4552 else 4553 V = getValue(Record, 1+i, NextValueNo, Ty); 4554 BasicBlock *BB = getBasicBlock(Record[2+i]); 4555 if (!V || !BB) 4556 return error("Invalid record"); 4557 PN->addIncoming(V, BB); 4558 } 4559 I = PN; 4560 break; 4561 } 4562 4563 case bitc::FUNC_CODE_INST_LANDINGPAD: 4564 case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: { 4565 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 4566 unsigned Idx = 0; 4567 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) { 4568 if (Record.size() < 3) 4569 return error("Invalid record"); 4570 } else { 4571 assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD); 4572 if (Record.size() < 4) 4573 return error("Invalid record"); 4574 } 4575 Type *Ty = getTypeByID(Record[Idx++]); 4576 if (!Ty) 4577 return error("Invalid record"); 4578 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) { 4579 Value *PersFn = nullptr; 4580 if (getValueTypePair(Record, Idx, NextValueNo, PersFn)) 4581 return error("Invalid record"); 4582 4583 if (!F->hasPersonalityFn()) 4584 F->setPersonalityFn(cast<Constant>(PersFn)); 4585 else if (F->getPersonalityFn() != cast<Constant>(PersFn)) 4586 return error("Personality function mismatch"); 4587 } 4588 4589 bool IsCleanup = !!Record[Idx++]; 4590 unsigned NumClauses = Record[Idx++]; 4591 LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses); 4592 LP->setCleanup(IsCleanup); 4593 for (unsigned J = 0; J != NumClauses; ++J) { 4594 LandingPadInst::ClauseType CT = 4595 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 4596 Value *Val; 4597 4598 if (getValueTypePair(Record, Idx, NextValueNo, Val)) { 4599 delete LP; 4600 return error("Invalid record"); 4601 } 4602 4603 assert((CT != LandingPadInst::Catch || 4604 !isa<ArrayType>(Val->getType())) && 4605 "Catch clause has a invalid type!"); 4606 assert((CT != LandingPadInst::Filter || 4607 isa<ArrayType>(Val->getType())) && 4608 "Filter clause has invalid type!"); 4609 LP->addClause(cast<Constant>(Val)); 4610 } 4611 4612 I = LP; 4613 InstructionList.push_back(I); 4614 break; 4615 } 4616 4617 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 4618 if (Record.size() != 4) 4619 return error("Invalid record"); 4620 uint64_t AlignRecord = Record[3]; 4621 const uint64_t InAllocaMask = uint64_t(1) << 5; 4622 const uint64_t ExplicitTypeMask = uint64_t(1) << 6; 4623 // Reserve bit 7 for SwiftError flag. 4624 // const uint64_t SwiftErrorMask = uint64_t(1) << 7; 4625 const uint64_t FlagMask = InAllocaMask | ExplicitTypeMask; 4626 bool InAlloca = AlignRecord & InAllocaMask; 4627 Type *Ty = getTypeByID(Record[0]); 4628 if ((AlignRecord & ExplicitTypeMask) == 0) { 4629 auto *PTy = dyn_cast_or_null<PointerType>(Ty); 4630 if (!PTy) 4631 return error("Old-style alloca with a non-pointer type"); 4632 Ty = PTy->getElementType(); 4633 } 4634 Type *OpTy = getTypeByID(Record[1]); 4635 Value *Size = getFnValueByID(Record[2], OpTy); 4636 unsigned Align; 4637 if (std::error_code EC = 4638 parseAlignmentValue(AlignRecord & ~FlagMask, Align)) { 4639 return EC; 4640 } 4641 if (!Ty || !Size) 4642 return error("Invalid record"); 4643 AllocaInst *AI = new AllocaInst(Ty, Size, Align); 4644 AI->setUsedWithInAlloca(InAlloca); 4645 I = AI; 4646 InstructionList.push_back(I); 4647 break; 4648 } 4649 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 4650 unsigned OpNum = 0; 4651 Value *Op; 4652 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4653 (OpNum + 2 != Record.size() && OpNum + 3 != Record.size())) 4654 return error("Invalid record"); 4655 4656 Type *Ty = nullptr; 4657 if (OpNum + 3 == Record.size()) 4658 Ty = getTypeByID(Record[OpNum++]); 4659 if (std::error_code EC = 4660 typeCheckLoadStoreInst(DiagnosticHandler, Ty, Op->getType())) 4661 return EC; 4662 if (!Ty) 4663 Ty = cast<PointerType>(Op->getType())->getElementType(); 4664 4665 unsigned Align; 4666 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 4667 return EC; 4668 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], Align); 4669 4670 InstructionList.push_back(I); 4671 break; 4672 } 4673 case bitc::FUNC_CODE_INST_LOADATOMIC: { 4674 // LOADATOMIC: [opty, op, align, vol, ordering, synchscope] 4675 unsigned OpNum = 0; 4676 Value *Op; 4677 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4678 (OpNum + 4 != Record.size() && OpNum + 5 != Record.size())) 4679 return error("Invalid record"); 4680 4681 Type *Ty = nullptr; 4682 if (OpNum + 5 == Record.size()) 4683 Ty = getTypeByID(Record[OpNum++]); 4684 if (std::error_code EC = 4685 typeCheckLoadStoreInst(DiagnosticHandler, Ty, Op->getType())) 4686 return EC; 4687 if (!Ty) 4688 Ty = cast<PointerType>(Op->getType())->getElementType(); 4689 4690 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4691 if (Ordering == NotAtomic || Ordering == Release || 4692 Ordering == AcquireRelease) 4693 return error("Invalid record"); 4694 if (Ordering != NotAtomic && Record[OpNum] == 0) 4695 return error("Invalid record"); 4696 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]); 4697 4698 unsigned Align; 4699 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 4700 return EC; 4701 I = new LoadInst(Op, "", Record[OpNum+1], Align, Ordering, SynchScope); 4702 4703 InstructionList.push_back(I); 4704 break; 4705 } 4706 case bitc::FUNC_CODE_INST_STORE: 4707 case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol] 4708 unsigned OpNum = 0; 4709 Value *Val, *Ptr; 4710 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4711 (BitCode == bitc::FUNC_CODE_INST_STORE 4712 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 4713 : popValue(Record, OpNum, NextValueNo, 4714 cast<PointerType>(Ptr->getType())->getElementType(), 4715 Val)) || 4716 OpNum + 2 != Record.size()) 4717 return error("Invalid record"); 4718 4719 if (std::error_code EC = typeCheckLoadStoreInst( 4720 DiagnosticHandler, Val->getType(), Ptr->getType())) 4721 return EC; 4722 unsigned Align; 4723 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 4724 return EC; 4725 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align); 4726 InstructionList.push_back(I); 4727 break; 4728 } 4729 case bitc::FUNC_CODE_INST_STOREATOMIC: 4730 case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: { 4731 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, synchscope] 4732 unsigned OpNum = 0; 4733 Value *Val, *Ptr; 4734 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4735 (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC 4736 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 4737 : popValue(Record, OpNum, NextValueNo, 4738 cast<PointerType>(Ptr->getType())->getElementType(), 4739 Val)) || 4740 OpNum + 4 != Record.size()) 4741 return error("Invalid record"); 4742 4743 if (std::error_code EC = typeCheckLoadStoreInst( 4744 DiagnosticHandler, Val->getType(), Ptr->getType())) 4745 return EC; 4746 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4747 if (Ordering == NotAtomic || Ordering == Acquire || 4748 Ordering == AcquireRelease) 4749 return error("Invalid record"); 4750 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]); 4751 if (Ordering != NotAtomic && Record[OpNum] == 0) 4752 return error("Invalid record"); 4753 4754 unsigned Align; 4755 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 4756 return EC; 4757 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align, Ordering, SynchScope); 4758 InstructionList.push_back(I); 4759 break; 4760 } 4761 case bitc::FUNC_CODE_INST_CMPXCHG_OLD: 4762 case bitc::FUNC_CODE_INST_CMPXCHG: { 4763 // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, synchscope, 4764 // failureordering?, isweak?] 4765 unsigned OpNum = 0; 4766 Value *Ptr, *Cmp, *New; 4767 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4768 (BitCode == bitc::FUNC_CODE_INST_CMPXCHG 4769 ? getValueTypePair(Record, OpNum, NextValueNo, Cmp) 4770 : popValue(Record, OpNum, NextValueNo, 4771 cast<PointerType>(Ptr->getType())->getElementType(), 4772 Cmp)) || 4773 popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) || 4774 Record.size() < OpNum + 3 || Record.size() > OpNum + 5) 4775 return error("Invalid record"); 4776 AtomicOrdering SuccessOrdering = getDecodedOrdering(Record[OpNum + 1]); 4777 if (SuccessOrdering == NotAtomic || SuccessOrdering == Unordered) 4778 return error("Invalid record"); 4779 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 2]); 4780 4781 if (std::error_code EC = typeCheckLoadStoreInst( 4782 DiagnosticHandler, Cmp->getType(), Ptr->getType())) 4783 return EC; 4784 AtomicOrdering FailureOrdering; 4785 if (Record.size() < 7) 4786 FailureOrdering = 4787 AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering); 4788 else 4789 FailureOrdering = getDecodedOrdering(Record[OpNum + 3]); 4790 4791 I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering, 4792 SynchScope); 4793 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 4794 4795 if (Record.size() < 8) { 4796 // Before weak cmpxchgs existed, the instruction simply returned the 4797 // value loaded from memory, so bitcode files from that era will be 4798 // expecting the first component of a modern cmpxchg. 4799 CurBB->getInstList().push_back(I); 4800 I = ExtractValueInst::Create(I, 0); 4801 } else { 4802 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]); 4803 } 4804 4805 InstructionList.push_back(I); 4806 break; 4807 } 4808 case bitc::FUNC_CODE_INST_ATOMICRMW: { 4809 // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, synchscope] 4810 unsigned OpNum = 0; 4811 Value *Ptr, *Val; 4812 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4813 popValue(Record, OpNum, NextValueNo, 4814 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 4815 OpNum+4 != Record.size()) 4816 return error("Invalid record"); 4817 AtomicRMWInst::BinOp Operation = getDecodedRMWOperation(Record[OpNum]); 4818 if (Operation < AtomicRMWInst::FIRST_BINOP || 4819 Operation > AtomicRMWInst::LAST_BINOP) 4820 return error("Invalid record"); 4821 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4822 if (Ordering == NotAtomic || Ordering == Unordered) 4823 return error("Invalid record"); 4824 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]); 4825 I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SynchScope); 4826 cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]); 4827 InstructionList.push_back(I); 4828 break; 4829 } 4830 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, synchscope] 4831 if (2 != Record.size()) 4832 return error("Invalid record"); 4833 AtomicOrdering Ordering = getDecodedOrdering(Record[0]); 4834 if (Ordering == NotAtomic || Ordering == Unordered || 4835 Ordering == Monotonic) 4836 return error("Invalid record"); 4837 SynchronizationScope SynchScope = getDecodedSynchScope(Record[1]); 4838 I = new FenceInst(Context, Ordering, SynchScope); 4839 InstructionList.push_back(I); 4840 break; 4841 } 4842 case bitc::FUNC_CODE_INST_CALL: { 4843 // CALL: [paramattrs, cc, fnty, fnid, arg0, arg1...] 4844 if (Record.size() < 3) 4845 return error("Invalid record"); 4846 4847 unsigned OpNum = 0; 4848 AttributeSet PAL = getAttributes(Record[OpNum++]); 4849 unsigned CCInfo = Record[OpNum++]; 4850 4851 FunctionType *FTy = nullptr; 4852 if (CCInfo >> 15 & 1 && 4853 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])))) 4854 return error("Explicit call type is not a function type"); 4855 4856 Value *Callee; 4857 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 4858 return error("Invalid record"); 4859 4860 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 4861 if (!OpTy) 4862 return error("Callee is not a pointer type"); 4863 if (!FTy) { 4864 FTy = dyn_cast<FunctionType>(OpTy->getElementType()); 4865 if (!FTy) 4866 return error("Callee is not of pointer to function type"); 4867 } else if (OpTy->getElementType() != FTy) 4868 return error("Explicit call type does not match pointee type of " 4869 "callee operand"); 4870 if (Record.size() < FTy->getNumParams() + OpNum) 4871 return error("Insufficient operands to call"); 4872 4873 SmallVector<Value*, 16> Args; 4874 // Read the fixed params. 4875 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 4876 if (FTy->getParamType(i)->isLabelTy()) 4877 Args.push_back(getBasicBlock(Record[OpNum])); 4878 else 4879 Args.push_back(getValue(Record, OpNum, NextValueNo, 4880 FTy->getParamType(i))); 4881 if (!Args.back()) 4882 return error("Invalid record"); 4883 } 4884 4885 // Read type/value pairs for varargs params. 4886 if (!FTy->isVarArg()) { 4887 if (OpNum != Record.size()) 4888 return error("Invalid record"); 4889 } else { 4890 while (OpNum != Record.size()) { 4891 Value *Op; 4892 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4893 return error("Invalid record"); 4894 Args.push_back(Op); 4895 } 4896 } 4897 4898 I = CallInst::Create(FTy, Callee, Args, OperandBundles); 4899 OperandBundles.clear(); 4900 InstructionList.push_back(I); 4901 cast<CallInst>(I)->setCallingConv( 4902 static_cast<CallingConv::ID>((~(1U << 14) & CCInfo) >> 1)); 4903 CallInst::TailCallKind TCK = CallInst::TCK_None; 4904 if (CCInfo & 1) 4905 TCK = CallInst::TCK_Tail; 4906 if (CCInfo & (1 << 14)) 4907 TCK = CallInst::TCK_MustTail; 4908 cast<CallInst>(I)->setTailCallKind(TCK); 4909 cast<CallInst>(I)->setAttributes(PAL); 4910 break; 4911 } 4912 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 4913 if (Record.size() < 3) 4914 return error("Invalid record"); 4915 Type *OpTy = getTypeByID(Record[0]); 4916 Value *Op = getValue(Record, 1, NextValueNo, OpTy); 4917 Type *ResTy = getTypeByID(Record[2]); 4918 if (!OpTy || !Op || !ResTy) 4919 return error("Invalid record"); 4920 I = new VAArgInst(Op, ResTy); 4921 InstructionList.push_back(I); 4922 break; 4923 } 4924 4925 case bitc::FUNC_CODE_OPERAND_BUNDLE: { 4926 // A call or an invoke can be optionally prefixed with some variable 4927 // number of operand bundle blocks. These blocks are read into 4928 // OperandBundles and consumed at the next call or invoke instruction. 4929 4930 if (Record.size() < 1 || Record[0] >= BundleTags.size()) 4931 return error("Invalid record"); 4932 4933 OperandBundles.emplace_back(); 4934 OperandBundles.back().Tag = BundleTags[Record[0]]; 4935 4936 std::vector<Value *> &Inputs = OperandBundles.back().Inputs; 4937 4938 unsigned OpNum = 1; 4939 while (OpNum != Record.size()) { 4940 Value *Op; 4941 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4942 return error("Invalid record"); 4943 Inputs.push_back(Op); 4944 } 4945 4946 continue; 4947 } 4948 } 4949 4950 // Add instruction to end of current BB. If there is no current BB, reject 4951 // this file. 4952 if (!CurBB) { 4953 delete I; 4954 return error("Invalid instruction with no BB"); 4955 } 4956 if (!OperandBundles.empty()) { 4957 delete I; 4958 return error("Operand bundles found with no consumer"); 4959 } 4960 CurBB->getInstList().push_back(I); 4961 4962 // If this was a terminator instruction, move to the next block. 4963 if (isa<TerminatorInst>(I)) { 4964 ++CurBBNo; 4965 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr; 4966 } 4967 4968 // Non-void values get registered in the value table for future use. 4969 if (I && !I->getType()->isVoidTy()) 4970 if (ValueList.assignValue(I, NextValueNo++)) 4971 return error("Invalid forward reference"); 4972 } 4973 4974 OutOfRecordLoop: 4975 4976 if (!OperandBundles.empty()) 4977 return error("Operand bundles found with no consumer"); 4978 4979 // Check the function list for unresolved values. 4980 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 4981 if (!A->getParent()) { 4982 // We found at least one unresolved value. Nuke them all to avoid leaks. 4983 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 4984 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) { 4985 A->replaceAllUsesWith(UndefValue::get(A->getType())); 4986 delete A; 4987 } 4988 } 4989 return error("Never resolved value found in function"); 4990 } 4991 } 4992 4993 // FIXME: Check for unresolved forward-declared metadata references 4994 // and clean up leaks. 4995 4996 // Trim the value list down to the size it was before we parsed this function. 4997 ValueList.shrinkTo(ModuleValueListSize); 4998 MDValueList.shrinkTo(ModuleMDValueListSize); 4999 std::vector<BasicBlock*>().swap(FunctionBBs); 5000 return std::error_code(); 5001 } 5002 5003 /// Find the function body in the bitcode stream 5004 std::error_code BitcodeReader::findFunctionInStream( 5005 Function *F, 5006 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) { 5007 while (DeferredFunctionInfoIterator->second == 0) { 5008 // This is the fallback handling for the old format bitcode that 5009 // didn't contain the function index in the VST, or when we have 5010 // an anonymous function which would not have a VST entry. 5011 // Assert that we have one of those two cases. 5012 assert(VSTOffset == 0 || !F->hasName()); 5013 // Parse the next body in the stream and set its position in the 5014 // DeferredFunctionInfo map. 5015 if (std::error_code EC = rememberAndSkipFunctionBodies()) return EC; 5016 } 5017 return std::error_code(); 5018 } 5019 5020 //===----------------------------------------------------------------------===// 5021 // GVMaterializer implementation 5022 //===----------------------------------------------------------------------===// 5023 5024 void BitcodeReader::releaseBuffer() { Buffer.release(); } 5025 5026 std::error_code BitcodeReader::materialize(GlobalValue *GV) { 5027 if (std::error_code EC = materializeMetadata()) 5028 return EC; 5029 5030 Function *F = dyn_cast<Function>(GV); 5031 // If it's not a function or is already material, ignore the request. 5032 if (!F || !F->isMaterializable()) 5033 return std::error_code(); 5034 5035 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 5036 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 5037 // If its position is recorded as 0, its body is somewhere in the stream 5038 // but we haven't seen it yet. 5039 if (DFII->second == 0) 5040 if (std::error_code EC = findFunctionInStream(F, DFII)) 5041 return EC; 5042 5043 // Move the bit stream to the saved position of the deferred function body. 5044 Stream.JumpToBit(DFII->second); 5045 5046 if (std::error_code EC = parseFunctionBody(F)) 5047 return EC; 5048 F->setIsMaterializable(false); 5049 5050 if (StripDebugInfo) 5051 stripDebugInfo(*F); 5052 5053 // Upgrade any old intrinsic calls in the function. 5054 for (auto &I : UpgradedIntrinsics) { 5055 for (auto UI = I.first->user_begin(), UE = I.first->user_end(); UI != UE;) { 5056 User *U = *UI; 5057 ++UI; 5058 if (CallInst *CI = dyn_cast<CallInst>(U)) 5059 UpgradeIntrinsicCall(CI, I.second); 5060 } 5061 } 5062 5063 // Bring in any functions that this function forward-referenced via 5064 // blockaddresses. 5065 return materializeForwardReferencedFunctions(); 5066 } 5067 5068 bool BitcodeReader::isDematerializable(const GlobalValue *GV) const { 5069 const Function *F = dyn_cast<Function>(GV); 5070 if (!F || F->isDeclaration()) 5071 return false; 5072 5073 // Dematerializing F would leave dangling references that wouldn't be 5074 // reconnected on re-materialization. 5075 if (BlockAddressesTaken.count(F)) 5076 return false; 5077 5078 return DeferredFunctionInfo.count(const_cast<Function*>(F)); 5079 } 5080 5081 void BitcodeReader::dematerialize(GlobalValue *GV) { 5082 Function *F = dyn_cast<Function>(GV); 5083 // If this function isn't dematerializable, this is a noop. 5084 if (!F || !isDematerializable(F)) 5085 return; 5086 5087 assert(DeferredFunctionInfo.count(F) && "No info to read function later?"); 5088 5089 // Just forget the function body, we can remat it later. 5090 F->dropAllReferences(); 5091 F->setIsMaterializable(true); 5092 } 5093 5094 std::error_code BitcodeReader::materializeModule(Module *M) { 5095 assert(M == TheModule && 5096 "Can only Materialize the Module this BitcodeReader is attached to."); 5097 5098 if (std::error_code EC = materializeMetadata()) 5099 return EC; 5100 5101 // Promise to materialize all forward references. 5102 WillMaterializeAllForwardRefs = true; 5103 5104 // Iterate over the module, deserializing any functions that are still on 5105 // disk. 5106 for (Function &F : *TheModule) { 5107 if (std::error_code EC = materialize(&F)) 5108 return EC; 5109 } 5110 // At this point, if there are any function bodies, parse the rest of 5111 // the bits in the module past the last function block we have recorded 5112 // through either lazy scanning or the VST. 5113 if (LastFunctionBlockBit || NextUnreadBit) 5114 parseModule(LastFunctionBlockBit > NextUnreadBit ? LastFunctionBlockBit 5115 : NextUnreadBit); 5116 5117 // Check that all block address forward references got resolved (as we 5118 // promised above). 5119 if (!BasicBlockFwdRefs.empty()) 5120 return error("Never resolved function from blockaddress"); 5121 5122 // Upgrade any intrinsic calls that slipped through (should not happen!) and 5123 // delete the old functions to clean up. We can't do this unless the entire 5124 // module is materialized because there could always be another function body 5125 // with calls to the old function. 5126 for (auto &I : UpgradedIntrinsics) { 5127 for (auto *U : I.first->users()) { 5128 if (CallInst *CI = dyn_cast<CallInst>(U)) 5129 UpgradeIntrinsicCall(CI, I.second); 5130 } 5131 if (!I.first->use_empty()) 5132 I.first->replaceAllUsesWith(I.second); 5133 I.first->eraseFromParent(); 5134 } 5135 UpgradedIntrinsics.clear(); 5136 5137 for (unsigned I = 0, E = InstsWithTBAATag.size(); I < E; I++) 5138 UpgradeInstWithTBAATag(InstsWithTBAATag[I]); 5139 5140 UpgradeDebugInfo(*M); 5141 return std::error_code(); 5142 } 5143 5144 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const { 5145 return IdentifiedStructTypes; 5146 } 5147 5148 std::error_code 5149 BitcodeReader::initStream(std::unique_ptr<DataStreamer> Streamer) { 5150 if (Streamer) 5151 return initLazyStream(std::move(Streamer)); 5152 return initStreamFromBuffer(); 5153 } 5154 5155 std::error_code BitcodeReader::initStreamFromBuffer() { 5156 const unsigned char *BufPtr = (const unsigned char*)Buffer->getBufferStart(); 5157 const unsigned char *BufEnd = BufPtr+Buffer->getBufferSize(); 5158 5159 if (Buffer->getBufferSize() & 3) 5160 return error("Invalid bitcode signature"); 5161 5162 // If we have a wrapper header, parse it and ignore the non-bc file contents. 5163 // The magic number is 0x0B17C0DE stored in little endian. 5164 if (isBitcodeWrapper(BufPtr, BufEnd)) 5165 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 5166 return error("Invalid bitcode wrapper header"); 5167 5168 StreamFile.reset(new BitstreamReader(BufPtr, BufEnd)); 5169 Stream.init(&*StreamFile); 5170 5171 return std::error_code(); 5172 } 5173 5174 std::error_code 5175 BitcodeReader::initLazyStream(std::unique_ptr<DataStreamer> Streamer) { 5176 // Check and strip off the bitcode wrapper; BitstreamReader expects never to 5177 // see it. 5178 auto OwnedBytes = 5179 llvm::make_unique<StreamingMemoryObject>(std::move(Streamer)); 5180 StreamingMemoryObject &Bytes = *OwnedBytes; 5181 StreamFile = llvm::make_unique<BitstreamReader>(std::move(OwnedBytes)); 5182 Stream.init(&*StreamFile); 5183 5184 unsigned char buf[16]; 5185 if (Bytes.readBytes(buf, 16, 0) != 16) 5186 return error("Invalid bitcode signature"); 5187 5188 if (!isBitcode(buf, buf + 16)) 5189 return error("Invalid bitcode signature"); 5190 5191 if (isBitcodeWrapper(buf, buf + 4)) { 5192 const unsigned char *bitcodeStart = buf; 5193 const unsigned char *bitcodeEnd = buf + 16; 5194 SkipBitcodeWrapperHeader(bitcodeStart, bitcodeEnd, false); 5195 Bytes.dropLeadingBytes(bitcodeStart - buf); 5196 Bytes.setKnownObjectSize(bitcodeEnd - bitcodeStart); 5197 } 5198 return std::error_code(); 5199 } 5200 5201 std::error_code FunctionIndexBitcodeReader::error(BitcodeError E, 5202 const Twine &Message) { 5203 return ::error(DiagnosticHandler, make_error_code(E), Message); 5204 } 5205 5206 std::error_code FunctionIndexBitcodeReader::error(const Twine &Message) { 5207 return ::error(DiagnosticHandler, 5208 make_error_code(BitcodeError::CorruptedBitcode), Message); 5209 } 5210 5211 std::error_code FunctionIndexBitcodeReader::error(BitcodeError E) { 5212 return ::error(DiagnosticHandler, make_error_code(E)); 5213 } 5214 5215 FunctionIndexBitcodeReader::FunctionIndexBitcodeReader( 5216 MemoryBuffer *Buffer, LLVMContext &Context, 5217 DiagnosticHandlerFunction DiagnosticHandler, bool IsLazy, 5218 bool CheckFuncSummaryPresenceOnly) 5219 : DiagnosticHandler(getDiagHandler(DiagnosticHandler, Context)), 5220 Buffer(Buffer), 5221 IsLazy(IsLazy), 5222 CheckFuncSummaryPresenceOnly(CheckFuncSummaryPresenceOnly) {} 5223 5224 FunctionIndexBitcodeReader::FunctionIndexBitcodeReader( 5225 LLVMContext &Context, DiagnosticHandlerFunction DiagnosticHandler, 5226 bool IsLazy, bool CheckFuncSummaryPresenceOnly) 5227 : DiagnosticHandler(getDiagHandler(DiagnosticHandler, Context)), 5228 Buffer(nullptr), 5229 IsLazy(IsLazy), 5230 CheckFuncSummaryPresenceOnly(CheckFuncSummaryPresenceOnly) {} 5231 5232 void FunctionIndexBitcodeReader::freeState() { Buffer = nullptr; } 5233 5234 void FunctionIndexBitcodeReader::releaseBuffer() { Buffer.release(); } 5235 5236 // Specialized value symbol table parser used when reading function index 5237 // blocks where we don't actually create global values. 5238 // At the end of this routine the function index is populated with a map 5239 // from function name to FunctionInfo. The function info contains 5240 // the function block's bitcode offset as well as the offset into the 5241 // function summary section. 5242 std::error_code FunctionIndexBitcodeReader::parseValueSymbolTable() { 5243 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 5244 return error("Invalid record"); 5245 5246 SmallVector<uint64_t, 64> Record; 5247 5248 // Read all the records for this value table. 5249 SmallString<128> ValueName; 5250 while (1) { 5251 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5252 5253 switch (Entry.Kind) { 5254 case BitstreamEntry::SubBlock: // Handled for us already. 5255 case BitstreamEntry::Error: 5256 return error("Malformed block"); 5257 case BitstreamEntry::EndBlock: 5258 return std::error_code(); 5259 case BitstreamEntry::Record: 5260 // The interesting case. 5261 break; 5262 } 5263 5264 // Read a record. 5265 Record.clear(); 5266 switch (Stream.readRecord(Entry.ID, Record)) { 5267 default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records). 5268 break; 5269 case bitc::VST_CODE_FNENTRY: { 5270 // VST_FNENTRY: [valueid, offset, namechar x N] 5271 if (convertToString(Record, 2, ValueName)) 5272 return error("Invalid record"); 5273 unsigned ValueID = Record[0]; 5274 uint64_t FuncOffset = Record[1]; 5275 std::unique_ptr<FunctionInfo> FuncInfo = 5276 llvm::make_unique<FunctionInfo>(FuncOffset); 5277 if (foundFuncSummary() && !IsLazy) { 5278 DenseMap<uint64_t, std::unique_ptr<FunctionSummary>>::iterator SMI = 5279 SummaryMap.find(ValueID); 5280 assert(SMI != SummaryMap.end() && "Summary info not found"); 5281 FuncInfo->setFunctionSummary(std::move(SMI->second)); 5282 } 5283 TheIndex->addFunctionInfo(ValueName, std::move(FuncInfo)); 5284 5285 ValueName.clear(); 5286 break; 5287 } 5288 case bitc::VST_CODE_COMBINED_FNENTRY: { 5289 // VST_FNENTRY: [offset, namechar x N] 5290 if (convertToString(Record, 1, ValueName)) 5291 return error("Invalid record"); 5292 uint64_t FuncSummaryOffset = Record[0]; 5293 std::unique_ptr<FunctionInfo> FuncInfo = 5294 llvm::make_unique<FunctionInfo>(FuncSummaryOffset); 5295 if (foundFuncSummary() && !IsLazy) { 5296 DenseMap<uint64_t, std::unique_ptr<FunctionSummary>>::iterator SMI = 5297 SummaryMap.find(FuncSummaryOffset); 5298 assert(SMI != SummaryMap.end() && "Summary info not found"); 5299 FuncInfo->setFunctionSummary(std::move(SMI->second)); 5300 } 5301 TheIndex->addFunctionInfo(ValueName, std::move(FuncInfo)); 5302 5303 ValueName.clear(); 5304 break; 5305 } 5306 } 5307 } 5308 } 5309 5310 // Parse just the blocks needed for function index building out of the module. 5311 // At the end of this routine the function Index is populated with a map 5312 // from function name to FunctionInfo. The function info contains 5313 // either the parsed function summary information (when parsing summaries 5314 // eagerly), or just to the function summary record's offset 5315 // if parsing lazily (IsLazy). 5316 std::error_code FunctionIndexBitcodeReader::parseModule() { 5317 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 5318 return error("Invalid record"); 5319 5320 // Read the function index for this module. 5321 while (1) { 5322 BitstreamEntry Entry = Stream.advance(); 5323 5324 switch (Entry.Kind) { 5325 case BitstreamEntry::Error: 5326 return error("Malformed block"); 5327 case BitstreamEntry::EndBlock: 5328 return std::error_code(); 5329 5330 case BitstreamEntry::SubBlock: 5331 if (CheckFuncSummaryPresenceOnly) { 5332 if (Entry.ID == bitc::FUNCTION_SUMMARY_BLOCK_ID) 5333 SeenFuncSummary = true; 5334 if (Stream.SkipBlock()) return error("Invalid record"); 5335 // No need to parse the rest since we found the summary. 5336 return std::error_code(); 5337 } 5338 switch (Entry.ID) { 5339 default: // Skip unknown content. 5340 if (Stream.SkipBlock()) return error("Invalid record"); 5341 break; 5342 case bitc::BLOCKINFO_BLOCK_ID: 5343 // Need to parse these to get abbrev ids (e.g. for VST) 5344 if (Stream.ReadBlockInfoBlock()) return error("Malformed block"); 5345 break; 5346 case bitc::VALUE_SYMTAB_BLOCK_ID: 5347 if (std::error_code EC = parseValueSymbolTable()) return EC; 5348 break; 5349 case bitc::FUNCTION_SUMMARY_BLOCK_ID: 5350 SeenFuncSummary = true; 5351 if (IsLazy) { 5352 // Lazy parsing of summary info, skip it. 5353 if (Stream.SkipBlock()) return error("Invalid record"); 5354 } else if (std::error_code EC = parseEntireSummary()) 5355 return EC; 5356 break; 5357 case bitc::MODULE_STRTAB_BLOCK_ID: 5358 if (std::error_code EC = parseModuleStringTable()) return EC; 5359 break; 5360 } 5361 continue; 5362 5363 case BitstreamEntry::Record: 5364 Stream.skipRecord(Entry.ID); 5365 continue; 5366 } 5367 } 5368 } 5369 5370 // Eagerly parse the entire function summary block (i.e. for all functions 5371 // in the index). This populates the FunctionSummary objects in 5372 // the index. 5373 std::error_code FunctionIndexBitcodeReader::parseEntireSummary() { 5374 if (Stream.EnterSubBlock(bitc::FUNCTION_SUMMARY_BLOCK_ID)) 5375 return error("Invalid record"); 5376 5377 SmallVector<uint64_t, 64> Record; 5378 5379 while (1) { 5380 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5381 5382 switch (Entry.Kind) { 5383 case BitstreamEntry::SubBlock: // Handled for us already. 5384 case BitstreamEntry::Error: 5385 return error("Malformed block"); 5386 case BitstreamEntry::EndBlock: 5387 return std::error_code(); 5388 case BitstreamEntry::Record: 5389 // The interesting case. 5390 break; 5391 } 5392 5393 // Read a record. The record format depends on whether this 5394 // is a per-module index or a combined index file. In the per-module 5395 // case the records contain the associated value's ID for correlation 5396 // with VST entries. In the combined index the correlation is done 5397 // via the bitcode offset of the summary records (which were saved 5398 // in the combined index VST entries). The records also contain 5399 // information used for ThinLTO renaming and importing. 5400 Record.clear(); 5401 uint64_t CurRecordBit = Stream.GetCurrentBitNo(); 5402 switch (Stream.readRecord(Entry.ID, Record)) { 5403 default: // Default behavior: ignore. 5404 break; 5405 // FS_PERMODULE_ENTRY: [valueid, islocal, instcount] 5406 case bitc::FS_CODE_PERMODULE_ENTRY: { 5407 unsigned ValueID = Record[0]; 5408 bool IsLocal = Record[1]; 5409 unsigned InstCount = Record[2]; 5410 std::unique_ptr<FunctionSummary> FS = 5411 llvm::make_unique<FunctionSummary>(InstCount); 5412 FS->setLocalFunction(IsLocal); 5413 // The module path string ref set in the summary must be owned by the 5414 // index's module string table. Since we don't have a module path 5415 // string table section in the per-module index, we create a single 5416 // module path string table entry with an empty (0) ID to take 5417 // ownership. 5418 FS->setModulePath( 5419 TheIndex->addModulePath(Buffer->getBufferIdentifier(), 0)); 5420 SummaryMap[ValueID] = std::move(FS); 5421 } 5422 // FS_COMBINED_ENTRY: [modid, instcount] 5423 case bitc::FS_CODE_COMBINED_ENTRY: { 5424 uint64_t ModuleId = Record[0]; 5425 unsigned InstCount = Record[1]; 5426 std::unique_ptr<FunctionSummary> FS = 5427 llvm::make_unique<FunctionSummary>(InstCount); 5428 FS->setModulePath(ModuleIdMap[ModuleId]); 5429 SummaryMap[CurRecordBit] = std::move(FS); 5430 } 5431 } 5432 } 5433 llvm_unreachable("Exit infinite loop"); 5434 } 5435 5436 // Parse the module string table block into the Index. 5437 // This populates the ModulePathStringTable map in the index. 5438 std::error_code FunctionIndexBitcodeReader::parseModuleStringTable() { 5439 if (Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID)) 5440 return error("Invalid record"); 5441 5442 SmallVector<uint64_t, 64> Record; 5443 5444 SmallString<128> ModulePath; 5445 while (1) { 5446 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5447 5448 switch (Entry.Kind) { 5449 case BitstreamEntry::SubBlock: // Handled for us already. 5450 case BitstreamEntry::Error: 5451 return error("Malformed block"); 5452 case BitstreamEntry::EndBlock: 5453 return std::error_code(); 5454 case BitstreamEntry::Record: 5455 // The interesting case. 5456 break; 5457 } 5458 5459 Record.clear(); 5460 switch (Stream.readRecord(Entry.ID, Record)) { 5461 default: // Default behavior: ignore. 5462 break; 5463 case bitc::MST_CODE_ENTRY: { 5464 // MST_ENTRY: [modid, namechar x N] 5465 if (convertToString(Record, 1, ModulePath)) 5466 return error("Invalid record"); 5467 uint64_t ModuleId = Record[0]; 5468 StringRef ModulePathInMap = 5469 TheIndex->addModulePath(ModulePath, ModuleId); 5470 ModuleIdMap[ModuleId] = ModulePathInMap; 5471 ModulePath.clear(); 5472 break; 5473 } 5474 } 5475 } 5476 llvm_unreachable("Exit infinite loop"); 5477 } 5478 5479 // Parse the function info index from the bitcode streamer into the given index. 5480 std::error_code FunctionIndexBitcodeReader::parseSummaryIndexInto( 5481 std::unique_ptr<DataStreamer> Streamer, FunctionInfoIndex *I) { 5482 TheIndex = I; 5483 5484 if (std::error_code EC = initStream(std::move(Streamer))) return EC; 5485 5486 // Sniff for the signature. 5487 if (!hasValidBitcodeHeader(Stream)) return error("Invalid bitcode signature"); 5488 5489 // We expect a number of well-defined blocks, though we don't necessarily 5490 // need to understand them all. 5491 while (1) { 5492 if (Stream.AtEndOfStream()) { 5493 // We didn't really read a proper Module block. 5494 return error("Malformed block"); 5495 } 5496 5497 BitstreamEntry Entry = 5498 Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs); 5499 5500 if (Entry.Kind != BitstreamEntry::SubBlock) return error("Malformed block"); 5501 5502 // If we see a MODULE_BLOCK, parse it to find the blocks needed for 5503 // building the function summary index. 5504 if (Entry.ID == bitc::MODULE_BLOCK_ID) return parseModule(); 5505 5506 if (Stream.SkipBlock()) return error("Invalid record"); 5507 } 5508 } 5509 5510 // Parse the function information at the given offset in the buffer into 5511 // the index. Used to support lazy parsing of function summaries from the 5512 // combined index during importing. 5513 // TODO: This function is not yet complete as it won't have a consumer 5514 // until ThinLTO function importing is added. 5515 std::error_code FunctionIndexBitcodeReader::parseFunctionSummary( 5516 std::unique_ptr<DataStreamer> Streamer, FunctionInfoIndex *I, 5517 size_t FunctionSummaryOffset) { 5518 TheIndex = I; 5519 5520 if (std::error_code EC = initStream(std::move(Streamer))) return EC; 5521 5522 // Sniff for the signature. 5523 if (!hasValidBitcodeHeader(Stream)) return error("Invalid bitcode signature"); 5524 5525 Stream.JumpToBit(FunctionSummaryOffset); 5526 5527 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5528 5529 switch (Entry.Kind) { 5530 default: 5531 return error("Malformed block"); 5532 case BitstreamEntry::Record: 5533 // The expected case. 5534 break; 5535 } 5536 5537 // TODO: Read a record. This interface will be completed when ThinLTO 5538 // importing is added so that it can be tested. 5539 SmallVector<uint64_t, 64> Record; 5540 switch (Stream.readRecord(Entry.ID, Record)) { 5541 default: 5542 return error("Invalid record"); 5543 } 5544 5545 return std::error_code(); 5546 } 5547 5548 std::error_code FunctionIndexBitcodeReader::initStream( 5549 std::unique_ptr<DataStreamer> Streamer) { 5550 if (Streamer) return initLazyStream(std::move(Streamer)); 5551 return initStreamFromBuffer(); 5552 } 5553 5554 std::error_code FunctionIndexBitcodeReader::initStreamFromBuffer() { 5555 const unsigned char *BufPtr = (const unsigned char *)Buffer->getBufferStart(); 5556 const unsigned char *BufEnd = BufPtr + Buffer->getBufferSize(); 5557 5558 if (Buffer->getBufferSize() & 3) return error("Invalid bitcode signature"); 5559 5560 // If we have a wrapper header, parse it and ignore the non-bc file contents. 5561 // The magic number is 0x0B17C0DE stored in little endian. 5562 if (isBitcodeWrapper(BufPtr, BufEnd)) 5563 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 5564 return error("Invalid bitcode wrapper header"); 5565 5566 StreamFile.reset(new BitstreamReader(BufPtr, BufEnd)); 5567 Stream.init(&*StreamFile); 5568 5569 return std::error_code(); 5570 } 5571 5572 std::error_code FunctionIndexBitcodeReader::initLazyStream( 5573 std::unique_ptr<DataStreamer> Streamer) { 5574 // Check and strip off the bitcode wrapper; BitstreamReader expects never to 5575 // see it. 5576 auto OwnedBytes = 5577 llvm::make_unique<StreamingMemoryObject>(std::move(Streamer)); 5578 StreamingMemoryObject &Bytes = *OwnedBytes; 5579 StreamFile = llvm::make_unique<BitstreamReader>(std::move(OwnedBytes)); 5580 Stream.init(&*StreamFile); 5581 5582 unsigned char buf[16]; 5583 if (Bytes.readBytes(buf, 16, 0) != 16) 5584 return error("Invalid bitcode signature"); 5585 5586 if (!isBitcode(buf, buf + 16)) return error("Invalid bitcode signature"); 5587 5588 if (isBitcodeWrapper(buf, buf + 4)) { 5589 const unsigned char *bitcodeStart = buf; 5590 const unsigned char *bitcodeEnd = buf + 16; 5591 SkipBitcodeWrapperHeader(bitcodeStart, bitcodeEnd, false); 5592 Bytes.dropLeadingBytes(bitcodeStart - buf); 5593 Bytes.setKnownObjectSize(bitcodeEnd - bitcodeStart); 5594 } 5595 return std::error_code(); 5596 } 5597 5598 namespace { 5599 class BitcodeErrorCategoryType : public std::error_category { 5600 const char *name() const LLVM_NOEXCEPT override { 5601 return "llvm.bitcode"; 5602 } 5603 std::string message(int IE) const override { 5604 BitcodeError E = static_cast<BitcodeError>(IE); 5605 switch (E) { 5606 case BitcodeError::InvalidBitcodeSignature: 5607 return "Invalid bitcode signature"; 5608 case BitcodeError::CorruptedBitcode: 5609 return "Corrupted bitcode"; 5610 } 5611 llvm_unreachable("Unknown error type!"); 5612 } 5613 }; 5614 } 5615 5616 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory; 5617 5618 const std::error_category &llvm::BitcodeErrorCategory() { 5619 return *ErrorCategory; 5620 } 5621 5622 //===----------------------------------------------------------------------===// 5623 // External interface 5624 //===----------------------------------------------------------------------===// 5625 5626 static ErrorOr<std::unique_ptr<Module>> 5627 getBitcodeModuleImpl(std::unique_ptr<DataStreamer> Streamer, StringRef Name, 5628 BitcodeReader *R, LLVMContext &Context, 5629 bool MaterializeAll, bool ShouldLazyLoadMetadata) { 5630 std::unique_ptr<Module> M = make_unique<Module>(Name, Context); 5631 M->setMaterializer(R); 5632 5633 auto cleanupOnError = [&](std::error_code EC) { 5634 R->releaseBuffer(); // Never take ownership on error. 5635 return EC; 5636 }; 5637 5638 // Delay parsing Metadata if ShouldLazyLoadMetadata is true. 5639 if (std::error_code EC = R->parseBitcodeInto(std::move(Streamer), M.get(), 5640 ShouldLazyLoadMetadata)) 5641 return cleanupOnError(EC); 5642 5643 if (MaterializeAll) { 5644 // Read in the entire module, and destroy the BitcodeReader. 5645 if (std::error_code EC = M->materializeAllPermanently()) 5646 return cleanupOnError(EC); 5647 } else { 5648 // Resolve forward references from blockaddresses. 5649 if (std::error_code EC = R->materializeForwardReferencedFunctions()) 5650 return cleanupOnError(EC); 5651 } 5652 return std::move(M); 5653 } 5654 5655 /// \brief Get a lazy one-at-time loading module from bitcode. 5656 /// 5657 /// This isn't always used in a lazy context. In particular, it's also used by 5658 /// \a parseBitcodeFile(). If this is truly lazy, then we need to eagerly pull 5659 /// in forward-referenced functions from block address references. 5660 /// 5661 /// \param[in] MaterializeAll Set to \c true if we should materialize 5662 /// everything. 5663 static ErrorOr<std::unique_ptr<Module>> 5664 getLazyBitcodeModuleImpl(std::unique_ptr<MemoryBuffer> &&Buffer, 5665 LLVMContext &Context, bool MaterializeAll, 5666 DiagnosticHandlerFunction DiagnosticHandler, 5667 bool ShouldLazyLoadMetadata = false) { 5668 BitcodeReader *R = 5669 new BitcodeReader(Buffer.get(), Context, DiagnosticHandler); 5670 5671 ErrorOr<std::unique_ptr<Module>> Ret = 5672 getBitcodeModuleImpl(nullptr, Buffer->getBufferIdentifier(), R, Context, 5673 MaterializeAll, ShouldLazyLoadMetadata); 5674 if (!Ret) 5675 return Ret; 5676 5677 Buffer.release(); // The BitcodeReader owns it now. 5678 return Ret; 5679 } 5680 5681 ErrorOr<std::unique_ptr<Module>> llvm::getLazyBitcodeModule( 5682 std::unique_ptr<MemoryBuffer> &&Buffer, LLVMContext &Context, 5683 DiagnosticHandlerFunction DiagnosticHandler, bool ShouldLazyLoadMetadata) { 5684 return getLazyBitcodeModuleImpl(std::move(Buffer), Context, false, 5685 DiagnosticHandler, ShouldLazyLoadMetadata); 5686 } 5687 5688 ErrorOr<std::unique_ptr<Module>> llvm::getStreamedBitcodeModule( 5689 StringRef Name, std::unique_ptr<DataStreamer> Streamer, 5690 LLVMContext &Context, DiagnosticHandlerFunction DiagnosticHandler) { 5691 std::unique_ptr<Module> M = make_unique<Module>(Name, Context); 5692 BitcodeReader *R = new BitcodeReader(Context, DiagnosticHandler); 5693 5694 return getBitcodeModuleImpl(std::move(Streamer), Name, R, Context, false, 5695 false); 5696 } 5697 5698 ErrorOr<std::unique_ptr<Module>> 5699 llvm::parseBitcodeFile(MemoryBufferRef Buffer, LLVMContext &Context, 5700 DiagnosticHandlerFunction DiagnosticHandler) { 5701 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 5702 return getLazyBitcodeModuleImpl(std::move(Buf), Context, true, 5703 DiagnosticHandler); 5704 // TODO: Restore the use-lists to the in-memory state when the bitcode was 5705 // written. We must defer until the Module has been fully materialized. 5706 } 5707 5708 std::string 5709 llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer, LLVMContext &Context, 5710 DiagnosticHandlerFunction DiagnosticHandler) { 5711 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 5712 auto R = llvm::make_unique<BitcodeReader>(Buf.release(), Context, 5713 DiagnosticHandler); 5714 ErrorOr<std::string> Triple = R->parseTriple(); 5715 if (Triple.getError()) 5716 return ""; 5717 return Triple.get(); 5718 } 5719 5720 // Parse the specified bitcode buffer, returning the function info index. 5721 // If IsLazy is false, parse the entire function summary into 5722 // the index. Otherwise skip the function summary section, and only create 5723 // an index object with a map from function name to function summary offset. 5724 // The index is used to perform lazy function summary reading later. 5725 ErrorOr<std::unique_ptr<FunctionInfoIndex>> llvm::getFunctionInfoIndex( 5726 MemoryBufferRef Buffer, LLVMContext &Context, 5727 DiagnosticHandlerFunction DiagnosticHandler, bool IsLazy) { 5728 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 5729 FunctionIndexBitcodeReader R(Buf.get(), Context, DiagnosticHandler, IsLazy); 5730 5731 std::unique_ptr<FunctionInfoIndex> Index = 5732 llvm::make_unique<FunctionInfoIndex>(); 5733 5734 auto cleanupOnError = [&](std::error_code EC) { 5735 R.releaseBuffer(); // Never take ownership on error. 5736 return EC; 5737 }; 5738 5739 if (std::error_code EC = R.parseSummaryIndexInto(nullptr, Index.get())) 5740 return cleanupOnError(EC); 5741 5742 Buf.release(); // The FunctionIndexBitcodeReader owns it now. 5743 return std::move(Index); 5744 } 5745 5746 // Check if the given bitcode buffer contains a function summary block. 5747 bool llvm::hasFunctionSummary(MemoryBufferRef Buffer, LLVMContext &Context, 5748 DiagnosticHandlerFunction DiagnosticHandler) { 5749 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 5750 FunctionIndexBitcodeReader R(Buf.get(), Context, DiagnosticHandler, false, 5751 true); 5752 5753 auto cleanupOnError = [&](std::error_code EC) { 5754 R.releaseBuffer(); // Never take ownership on error. 5755 return false; 5756 }; 5757 5758 if (std::error_code EC = R.parseSummaryIndexInto(nullptr, nullptr)) 5759 return cleanupOnError(EC); 5760 5761 Buf.release(); // The FunctionIndexBitcodeReader owns it now. 5762 return R.foundFuncSummary(); 5763 } 5764 5765 // This method supports lazy reading of function summary data from the combined 5766 // index during ThinLTO function importing. When reading the combined index 5767 // file, getFunctionInfoIndex is first invoked with IsLazy=true. 5768 // Then this method is called for each function considered for importing, 5769 // to parse the summary information for the given function name into 5770 // the index. 5771 std::error_code llvm::readFunctionSummary( 5772 MemoryBufferRef Buffer, LLVMContext &Context, 5773 DiagnosticHandlerFunction DiagnosticHandler, StringRef FunctionName, 5774 std::unique_ptr<FunctionInfoIndex> Index) { 5775 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 5776 FunctionIndexBitcodeReader R(Buf.get(), Context, DiagnosticHandler); 5777 5778 auto cleanupOnError = [&](std::error_code EC) { 5779 R.releaseBuffer(); // Never take ownership on error. 5780 return EC; 5781 }; 5782 5783 // Lookup the given function name in the FunctionMap, which may 5784 // contain a list of function infos in the case of a COMDAT. Walk through 5785 // and parse each function summary info at the function summary offset 5786 // recorded when parsing the value symbol table. 5787 for (const auto &FI : Index->getFunctionInfoList(FunctionName)) { 5788 size_t FunctionSummaryOffset = FI->bitcodeIndex(); 5789 if (std::error_code EC = 5790 R.parseFunctionSummary(nullptr, Index.get(), FunctionSummaryOffset)) 5791 return cleanupOnError(EC); 5792 } 5793 5794 Buf.release(); // The FunctionIndexBitcodeReader owns it now. 5795 return std::error_code(); 5796 } 5797