1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "llvm/Bitcode/ReaderWriter.h" 11 #include "BitcodeReader.h" 12 #include "llvm/ADT/SmallString.h" 13 #include "llvm/ADT/SmallVector.h" 14 #include "llvm/Bitcode/LLVMBitCodes.h" 15 #include "llvm/IR/AutoUpgrade.h" 16 #include "llvm/IR/Constants.h" 17 #include "llvm/IR/DerivedTypes.h" 18 #include "llvm/IR/DiagnosticPrinter.h" 19 #include "llvm/IR/InlineAsm.h" 20 #include "llvm/IR/IntrinsicInst.h" 21 #include "llvm/IR/LLVMContext.h" 22 #include "llvm/IR/Module.h" 23 #include "llvm/IR/OperandTraits.h" 24 #include "llvm/IR/Operator.h" 25 #include "llvm/Support/DataStream.h" 26 #include "llvm/Support/ManagedStatic.h" 27 #include "llvm/Support/MathExtras.h" 28 #include "llvm/Support/MemoryBuffer.h" 29 #include "llvm/Support/raw_ostream.h" 30 31 using namespace llvm; 32 33 enum { 34 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 35 }; 36 37 BitcodeDiagnosticInfo::BitcodeDiagnosticInfo(std::error_code EC, 38 DiagnosticSeverity Severity, 39 const Twine &Msg) 40 : DiagnosticInfo(DK_Bitcode, Severity), Msg(Msg), EC(EC) {} 41 42 void BitcodeDiagnosticInfo::print(DiagnosticPrinter &DP) const { DP << Msg; } 43 44 static std::error_code Error(DiagnosticHandlerFunction DiagnosticHandler, 45 std::error_code EC, const Twine &Message) { 46 BitcodeDiagnosticInfo DI(EC, DS_Error, Message); 47 DiagnosticHandler(DI); 48 return EC; 49 } 50 51 static std::error_code Error(DiagnosticHandlerFunction DiagnosticHandler, 52 std::error_code EC) { 53 return Error(DiagnosticHandler, EC, EC.message()); 54 } 55 56 std::error_code BitcodeReader::Error(BitcodeError E, const Twine &Message) { 57 return ::Error(DiagnosticHandler, make_error_code(E), Message); 58 } 59 60 std::error_code BitcodeReader::Error(const Twine &Message) { 61 return ::Error(DiagnosticHandler, 62 make_error_code(BitcodeError::CorruptedBitcode), Message); 63 } 64 65 std::error_code BitcodeReader::Error(BitcodeError E) { 66 return ::Error(DiagnosticHandler, make_error_code(E)); 67 } 68 69 static DiagnosticHandlerFunction getDiagHandler(DiagnosticHandlerFunction F, 70 LLVMContext &C) { 71 if (F) 72 return F; 73 return [&C](const DiagnosticInfo &DI) { C.diagnose(DI); }; 74 } 75 76 BitcodeReader::BitcodeReader(MemoryBuffer *buffer, LLVMContext &C, 77 DiagnosticHandlerFunction DiagnosticHandler) 78 : Context(C), DiagnosticHandler(getDiagHandler(DiagnosticHandler, C)), 79 TheModule(nullptr), Buffer(buffer), LazyStreamer(nullptr), 80 NextUnreadBit(0), SeenValueSymbolTable(false), ValueList(C), 81 MDValueList(C), SeenFirstFunctionBody(false), UseRelativeIDs(false), 82 WillMaterializeAllForwardRefs(false) {} 83 84 BitcodeReader::BitcodeReader(DataStreamer *streamer, LLVMContext &C, 85 DiagnosticHandlerFunction DiagnosticHandler) 86 : Context(C), DiagnosticHandler(getDiagHandler(DiagnosticHandler, C)), 87 TheModule(nullptr), Buffer(nullptr), LazyStreamer(streamer), 88 NextUnreadBit(0), SeenValueSymbolTable(false), ValueList(C), 89 MDValueList(C), SeenFirstFunctionBody(false), UseRelativeIDs(false), 90 WillMaterializeAllForwardRefs(false) {} 91 92 std::error_code BitcodeReader::materializeForwardReferencedFunctions() { 93 if (WillMaterializeAllForwardRefs) 94 return std::error_code(); 95 96 // Prevent recursion. 97 WillMaterializeAllForwardRefs = true; 98 99 while (!BasicBlockFwdRefQueue.empty()) { 100 Function *F = BasicBlockFwdRefQueue.front(); 101 BasicBlockFwdRefQueue.pop_front(); 102 assert(F && "Expected valid function"); 103 if (!BasicBlockFwdRefs.count(F)) 104 // Already materialized. 105 continue; 106 107 // Check for a function that isn't materializable to prevent an infinite 108 // loop. When parsing a blockaddress stored in a global variable, there 109 // isn't a trivial way to check if a function will have a body without a 110 // linear search through FunctionsWithBodies, so just check it here. 111 if (!F->isMaterializable()) 112 return Error("Never resolved function from blockaddress"); 113 114 // Try to materialize F. 115 if (std::error_code EC = materialize(F)) 116 return EC; 117 } 118 assert(BasicBlockFwdRefs.empty() && "Function missing from queue"); 119 120 // Reset state. 121 WillMaterializeAllForwardRefs = false; 122 return std::error_code(); 123 } 124 125 void BitcodeReader::FreeState() { 126 Buffer = nullptr; 127 std::vector<Type*>().swap(TypeList); 128 ValueList.clear(); 129 MDValueList.clear(); 130 std::vector<Comdat *>().swap(ComdatList); 131 132 std::vector<AttributeSet>().swap(MAttributes); 133 std::vector<BasicBlock*>().swap(FunctionBBs); 134 std::vector<Function*>().swap(FunctionsWithBodies); 135 DeferredFunctionInfo.clear(); 136 MDKindMap.clear(); 137 138 assert(BasicBlockFwdRefs.empty() && "Unresolved blockaddress fwd references"); 139 BasicBlockFwdRefQueue.clear(); 140 } 141 142 //===----------------------------------------------------------------------===// 143 // Helper functions to implement forward reference resolution, etc. 144 //===----------------------------------------------------------------------===// 145 146 /// ConvertToString - Convert a string from a record into an std::string, return 147 /// true on failure. 148 template<typename StrTy> 149 static bool ConvertToString(ArrayRef<uint64_t> Record, unsigned Idx, 150 StrTy &Result) { 151 if (Idx > Record.size()) 152 return true; 153 154 for (unsigned i = Idx, e = Record.size(); i != e; ++i) 155 Result += (char)Record[i]; 156 return false; 157 } 158 159 static bool hasImplicitComdat(size_t Val) { 160 switch (Val) { 161 default: 162 return false; 163 case 1: // Old WeakAnyLinkage 164 case 4: // Old LinkOnceAnyLinkage 165 case 10: // Old WeakODRLinkage 166 case 11: // Old LinkOnceODRLinkage 167 return true; 168 } 169 } 170 171 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) { 172 switch (Val) { 173 default: // Map unknown/new linkages to external 174 case 0: 175 return GlobalValue::ExternalLinkage; 176 case 2: 177 return GlobalValue::AppendingLinkage; 178 case 3: 179 return GlobalValue::InternalLinkage; 180 case 5: 181 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage 182 case 6: 183 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage 184 case 7: 185 return GlobalValue::ExternalWeakLinkage; 186 case 8: 187 return GlobalValue::CommonLinkage; 188 case 9: 189 return GlobalValue::PrivateLinkage; 190 case 12: 191 return GlobalValue::AvailableExternallyLinkage; 192 case 13: 193 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage 194 case 14: 195 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage 196 case 15: 197 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage 198 case 1: // Old value with implicit comdat. 199 case 16: 200 return GlobalValue::WeakAnyLinkage; 201 case 10: // Old value with implicit comdat. 202 case 17: 203 return GlobalValue::WeakODRLinkage; 204 case 4: // Old value with implicit comdat. 205 case 18: 206 return GlobalValue::LinkOnceAnyLinkage; 207 case 11: // Old value with implicit comdat. 208 case 19: 209 return GlobalValue::LinkOnceODRLinkage; 210 } 211 } 212 213 static GlobalValue::VisibilityTypes GetDecodedVisibility(unsigned Val) { 214 switch (Val) { 215 default: // Map unknown visibilities to default. 216 case 0: return GlobalValue::DefaultVisibility; 217 case 1: return GlobalValue::HiddenVisibility; 218 case 2: return GlobalValue::ProtectedVisibility; 219 } 220 } 221 222 static GlobalValue::DLLStorageClassTypes 223 GetDecodedDLLStorageClass(unsigned Val) { 224 switch (Val) { 225 default: // Map unknown values to default. 226 case 0: return GlobalValue::DefaultStorageClass; 227 case 1: return GlobalValue::DLLImportStorageClass; 228 case 2: return GlobalValue::DLLExportStorageClass; 229 } 230 } 231 232 static GlobalVariable::ThreadLocalMode GetDecodedThreadLocalMode(unsigned Val) { 233 switch (Val) { 234 case 0: return GlobalVariable::NotThreadLocal; 235 default: // Map unknown non-zero value to general dynamic. 236 case 1: return GlobalVariable::GeneralDynamicTLSModel; 237 case 2: return GlobalVariable::LocalDynamicTLSModel; 238 case 3: return GlobalVariable::InitialExecTLSModel; 239 case 4: return GlobalVariable::LocalExecTLSModel; 240 } 241 } 242 243 static int GetDecodedCastOpcode(unsigned Val) { 244 switch (Val) { 245 default: return -1; 246 case bitc::CAST_TRUNC : return Instruction::Trunc; 247 case bitc::CAST_ZEXT : return Instruction::ZExt; 248 case bitc::CAST_SEXT : return Instruction::SExt; 249 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 250 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 251 case bitc::CAST_UITOFP : return Instruction::UIToFP; 252 case bitc::CAST_SITOFP : return Instruction::SIToFP; 253 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 254 case bitc::CAST_FPEXT : return Instruction::FPExt; 255 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 256 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 257 case bitc::CAST_BITCAST : return Instruction::BitCast; 258 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast; 259 } 260 } 261 static int GetDecodedBinaryOpcode(unsigned Val, Type *Ty) { 262 switch (Val) { 263 default: return -1; 264 case bitc::BINOP_ADD: 265 return Ty->isFPOrFPVectorTy() ? Instruction::FAdd : Instruction::Add; 266 case bitc::BINOP_SUB: 267 return Ty->isFPOrFPVectorTy() ? Instruction::FSub : Instruction::Sub; 268 case bitc::BINOP_MUL: 269 return Ty->isFPOrFPVectorTy() ? Instruction::FMul : Instruction::Mul; 270 case bitc::BINOP_UDIV: return Instruction::UDiv; 271 case bitc::BINOP_SDIV: 272 return Ty->isFPOrFPVectorTy() ? Instruction::FDiv : Instruction::SDiv; 273 case bitc::BINOP_UREM: return Instruction::URem; 274 case bitc::BINOP_SREM: 275 return Ty->isFPOrFPVectorTy() ? Instruction::FRem : Instruction::SRem; 276 case bitc::BINOP_SHL: return Instruction::Shl; 277 case bitc::BINOP_LSHR: return Instruction::LShr; 278 case bitc::BINOP_ASHR: return Instruction::AShr; 279 case bitc::BINOP_AND: return Instruction::And; 280 case bitc::BINOP_OR: return Instruction::Or; 281 case bitc::BINOP_XOR: return Instruction::Xor; 282 } 283 } 284 285 static AtomicRMWInst::BinOp GetDecodedRMWOperation(unsigned Val) { 286 switch (Val) { 287 default: return AtomicRMWInst::BAD_BINOP; 288 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 289 case bitc::RMW_ADD: return AtomicRMWInst::Add; 290 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 291 case bitc::RMW_AND: return AtomicRMWInst::And; 292 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 293 case bitc::RMW_OR: return AtomicRMWInst::Or; 294 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 295 case bitc::RMW_MAX: return AtomicRMWInst::Max; 296 case bitc::RMW_MIN: return AtomicRMWInst::Min; 297 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 298 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 299 } 300 } 301 302 static AtomicOrdering GetDecodedOrdering(unsigned Val) { 303 switch (Val) { 304 case bitc::ORDERING_NOTATOMIC: return NotAtomic; 305 case bitc::ORDERING_UNORDERED: return Unordered; 306 case bitc::ORDERING_MONOTONIC: return Monotonic; 307 case bitc::ORDERING_ACQUIRE: return Acquire; 308 case bitc::ORDERING_RELEASE: return Release; 309 case bitc::ORDERING_ACQREL: return AcquireRelease; 310 default: // Map unknown orderings to sequentially-consistent. 311 case bitc::ORDERING_SEQCST: return SequentiallyConsistent; 312 } 313 } 314 315 static SynchronizationScope GetDecodedSynchScope(unsigned Val) { 316 switch (Val) { 317 case bitc::SYNCHSCOPE_SINGLETHREAD: return SingleThread; 318 default: // Map unknown scopes to cross-thread. 319 case bitc::SYNCHSCOPE_CROSSTHREAD: return CrossThread; 320 } 321 } 322 323 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) { 324 switch (Val) { 325 default: // Map unknown selection kinds to any. 326 case bitc::COMDAT_SELECTION_KIND_ANY: 327 return Comdat::Any; 328 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH: 329 return Comdat::ExactMatch; 330 case bitc::COMDAT_SELECTION_KIND_LARGEST: 331 return Comdat::Largest; 332 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES: 333 return Comdat::NoDuplicates; 334 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE: 335 return Comdat::SameSize; 336 } 337 } 338 339 static void UpgradeDLLImportExportLinkage(llvm::GlobalValue *GV, unsigned Val) { 340 switch (Val) { 341 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break; 342 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break; 343 } 344 } 345 346 namespace llvm { 347 namespace { 348 /// @brief A class for maintaining the slot number definition 349 /// as a placeholder for the actual definition for forward constants defs. 350 class ConstantPlaceHolder : public ConstantExpr { 351 void operator=(const ConstantPlaceHolder &) LLVM_DELETED_FUNCTION; 352 public: 353 // allocate space for exactly one operand 354 void *operator new(size_t s) { 355 return User::operator new(s, 1); 356 } 357 explicit ConstantPlaceHolder(Type *Ty, LLVMContext& Context) 358 : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) { 359 Op<0>() = UndefValue::get(Type::getInt32Ty(Context)); 360 } 361 362 /// @brief Methods to support type inquiry through isa, cast, and dyn_cast. 363 static bool classof(const Value *V) { 364 return isa<ConstantExpr>(V) && 365 cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1; 366 } 367 368 369 /// Provide fast operand accessors 370 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); 371 }; 372 } 373 374 // FIXME: can we inherit this from ConstantExpr? 375 template <> 376 struct OperandTraits<ConstantPlaceHolder> : 377 public FixedNumOperandTraits<ConstantPlaceHolder, 1> { 378 }; 379 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantPlaceHolder, Value) 380 } 381 382 383 void BitcodeReaderValueList::AssignValue(Value *V, unsigned Idx) { 384 if (Idx == size()) { 385 push_back(V); 386 return; 387 } 388 389 if (Idx >= size()) 390 resize(Idx+1); 391 392 WeakVH &OldV = ValuePtrs[Idx]; 393 if (!OldV) { 394 OldV = V; 395 return; 396 } 397 398 // Handle constants and non-constants (e.g. instrs) differently for 399 // efficiency. 400 if (Constant *PHC = dyn_cast<Constant>(&*OldV)) { 401 ResolveConstants.push_back(std::make_pair(PHC, Idx)); 402 OldV = V; 403 } else { 404 // If there was a forward reference to this value, replace it. 405 Value *PrevVal = OldV; 406 OldV->replaceAllUsesWith(V); 407 delete PrevVal; 408 } 409 } 410 411 412 Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx, 413 Type *Ty) { 414 if (Idx >= size()) 415 resize(Idx + 1); 416 417 if (Value *V = ValuePtrs[Idx]) { 418 assert(Ty == V->getType() && "Type mismatch in constant table!"); 419 return cast<Constant>(V); 420 } 421 422 // Create and return a placeholder, which will later be RAUW'd. 423 Constant *C = new ConstantPlaceHolder(Ty, Context); 424 ValuePtrs[Idx] = C; 425 return C; 426 } 427 428 Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, Type *Ty) { 429 if (Idx >= size()) 430 resize(Idx + 1); 431 432 if (Value *V = ValuePtrs[Idx]) { 433 assert((!Ty || Ty == V->getType()) && "Type mismatch in value table!"); 434 return V; 435 } 436 437 // No type specified, must be invalid reference. 438 if (!Ty) return nullptr; 439 440 // Create and return a placeholder, which will later be RAUW'd. 441 Value *V = new Argument(Ty); 442 ValuePtrs[Idx] = V; 443 return V; 444 } 445 446 /// ResolveConstantForwardRefs - Once all constants are read, this method bulk 447 /// resolves any forward references. The idea behind this is that we sometimes 448 /// get constants (such as large arrays) which reference *many* forward ref 449 /// constants. Replacing each of these causes a lot of thrashing when 450 /// building/reuniquing the constant. Instead of doing this, we look at all the 451 /// uses and rewrite all the place holders at once for any constant that uses 452 /// a placeholder. 453 void BitcodeReaderValueList::ResolveConstantForwardRefs() { 454 // Sort the values by-pointer so that they are efficient to look up with a 455 // binary search. 456 std::sort(ResolveConstants.begin(), ResolveConstants.end()); 457 458 SmallVector<Constant*, 64> NewOps; 459 460 while (!ResolveConstants.empty()) { 461 Value *RealVal = operator[](ResolveConstants.back().second); 462 Constant *Placeholder = ResolveConstants.back().first; 463 ResolveConstants.pop_back(); 464 465 // Loop over all users of the placeholder, updating them to reference the 466 // new value. If they reference more than one placeholder, update them all 467 // at once. 468 while (!Placeholder->use_empty()) { 469 auto UI = Placeholder->user_begin(); 470 User *U = *UI; 471 472 // If the using object isn't uniqued, just update the operands. This 473 // handles instructions and initializers for global variables. 474 if (!isa<Constant>(U) || isa<GlobalValue>(U)) { 475 UI.getUse().set(RealVal); 476 continue; 477 } 478 479 // Otherwise, we have a constant that uses the placeholder. Replace that 480 // constant with a new constant that has *all* placeholder uses updated. 481 Constant *UserC = cast<Constant>(U); 482 for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end(); 483 I != E; ++I) { 484 Value *NewOp; 485 if (!isa<ConstantPlaceHolder>(*I)) { 486 // Not a placeholder reference. 487 NewOp = *I; 488 } else if (*I == Placeholder) { 489 // Common case is that it just references this one placeholder. 490 NewOp = RealVal; 491 } else { 492 // Otherwise, look up the placeholder in ResolveConstants. 493 ResolveConstantsTy::iterator It = 494 std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(), 495 std::pair<Constant*, unsigned>(cast<Constant>(*I), 496 0)); 497 assert(It != ResolveConstants.end() && It->first == *I); 498 NewOp = operator[](It->second); 499 } 500 501 NewOps.push_back(cast<Constant>(NewOp)); 502 } 503 504 // Make the new constant. 505 Constant *NewC; 506 if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) { 507 NewC = ConstantArray::get(UserCA->getType(), NewOps); 508 } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) { 509 NewC = ConstantStruct::get(UserCS->getType(), NewOps); 510 } else if (isa<ConstantVector>(UserC)) { 511 NewC = ConstantVector::get(NewOps); 512 } else { 513 assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr."); 514 NewC = cast<ConstantExpr>(UserC)->getWithOperands(NewOps); 515 } 516 517 UserC->replaceAllUsesWith(NewC); 518 UserC->destroyConstant(); 519 NewOps.clear(); 520 } 521 522 // Update all ValueHandles, they should be the only users at this point. 523 Placeholder->replaceAllUsesWith(RealVal); 524 delete Placeholder; 525 } 526 } 527 528 void BitcodeReaderMDValueList::AssignValue(Metadata *MD, unsigned Idx) { 529 if (Idx == size()) { 530 push_back(MD); 531 return; 532 } 533 534 if (Idx >= size()) 535 resize(Idx+1); 536 537 TrackingMDRef &OldMD = MDValuePtrs[Idx]; 538 if (!OldMD) { 539 OldMD.reset(MD); 540 return; 541 } 542 543 // If there was a forward reference to this value, replace it. 544 MDNodeFwdDecl *PrevMD = cast<MDNodeFwdDecl>(OldMD.get()); 545 PrevMD->replaceAllUsesWith(MD); 546 MDNode::deleteTemporary(PrevMD); 547 --NumFwdRefs; 548 } 549 550 Metadata *BitcodeReaderMDValueList::getValueFwdRef(unsigned Idx) { 551 if (Idx >= size()) 552 resize(Idx + 1); 553 554 if (Metadata *MD = MDValuePtrs[Idx]) 555 return MD; 556 557 // Create and return a placeholder, which will later be RAUW'd. 558 AnyFwdRefs = true; 559 ++NumFwdRefs; 560 Metadata *MD = MDNode::getTemporary(Context, None); 561 MDValuePtrs[Idx].reset(MD); 562 return MD; 563 } 564 565 void BitcodeReaderMDValueList::tryToResolveCycles() { 566 if (!AnyFwdRefs) 567 // Nothing to do. 568 return; 569 570 if (NumFwdRefs) 571 // Still forward references... can't resolve cycles. 572 return; 573 574 // Resolve any cycles. 575 for (auto &MD : MDValuePtrs) { 576 assert(!(MD && isa<MDNodeFwdDecl>(MD)) && "Unexpected forward reference"); 577 if (auto *N = dyn_cast_or_null<UniquableMDNode>(MD)) 578 N->resolveCycles(); 579 } 580 } 581 582 Type *BitcodeReader::getTypeByID(unsigned ID) { 583 // The type table size is always specified correctly. 584 if (ID >= TypeList.size()) 585 return nullptr; 586 587 if (Type *Ty = TypeList[ID]) 588 return Ty; 589 590 // If we have a forward reference, the only possible case is when it is to a 591 // named struct. Just create a placeholder for now. 592 return TypeList[ID] = createIdentifiedStructType(Context); 593 } 594 595 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context, 596 StringRef Name) { 597 auto *Ret = StructType::create(Context, Name); 598 IdentifiedStructTypes.push_back(Ret); 599 return Ret; 600 } 601 602 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) { 603 auto *Ret = StructType::create(Context); 604 IdentifiedStructTypes.push_back(Ret); 605 return Ret; 606 } 607 608 609 //===----------------------------------------------------------------------===// 610 // Functions for parsing blocks from the bitcode file 611 //===----------------------------------------------------------------------===// 612 613 614 /// \brief This fills an AttrBuilder object with the LLVM attributes that have 615 /// been decoded from the given integer. This function must stay in sync with 616 /// 'encodeLLVMAttributesForBitcode'. 617 static void decodeLLVMAttributesForBitcode(AttrBuilder &B, 618 uint64_t EncodedAttrs) { 619 // FIXME: Remove in 4.0. 620 621 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift 622 // the bits above 31 down by 11 bits. 623 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; 624 assert((!Alignment || isPowerOf2_32(Alignment)) && 625 "Alignment must be a power of two."); 626 627 if (Alignment) 628 B.addAlignmentAttr(Alignment); 629 B.addRawValue(((EncodedAttrs & (0xfffffULL << 32)) >> 11) | 630 (EncodedAttrs & 0xffff)); 631 } 632 633 std::error_code BitcodeReader::ParseAttributeBlock() { 634 if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 635 return Error("Invalid record"); 636 637 if (!MAttributes.empty()) 638 return Error("Invalid multiple blocks"); 639 640 SmallVector<uint64_t, 64> Record; 641 642 SmallVector<AttributeSet, 8> Attrs; 643 644 // Read all the records. 645 while (1) { 646 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 647 648 switch (Entry.Kind) { 649 case BitstreamEntry::SubBlock: // Handled for us already. 650 case BitstreamEntry::Error: 651 return Error("Malformed block"); 652 case BitstreamEntry::EndBlock: 653 return std::error_code(); 654 case BitstreamEntry::Record: 655 // The interesting case. 656 break; 657 } 658 659 // Read a record. 660 Record.clear(); 661 switch (Stream.readRecord(Entry.ID, Record)) { 662 default: // Default behavior: ignore. 663 break; 664 case bitc::PARAMATTR_CODE_ENTRY_OLD: { // ENTRY: [paramidx0, attr0, ...] 665 // FIXME: Remove in 4.0. 666 if (Record.size() & 1) 667 return Error("Invalid record"); 668 669 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 670 AttrBuilder B; 671 decodeLLVMAttributesForBitcode(B, Record[i+1]); 672 Attrs.push_back(AttributeSet::get(Context, Record[i], B)); 673 } 674 675 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 676 Attrs.clear(); 677 break; 678 } 679 case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [attrgrp0, attrgrp1, ...] 680 for (unsigned i = 0, e = Record.size(); i != e; ++i) 681 Attrs.push_back(MAttributeGroups[Record[i]]); 682 683 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 684 Attrs.clear(); 685 break; 686 } 687 } 688 } 689 } 690 691 // Returns Attribute::None on unrecognized codes. 692 static Attribute::AttrKind GetAttrFromCode(uint64_t Code) { 693 switch (Code) { 694 default: 695 return Attribute::None; 696 case bitc::ATTR_KIND_ALIGNMENT: 697 return Attribute::Alignment; 698 case bitc::ATTR_KIND_ALWAYS_INLINE: 699 return Attribute::AlwaysInline; 700 case bitc::ATTR_KIND_BUILTIN: 701 return Attribute::Builtin; 702 case bitc::ATTR_KIND_BY_VAL: 703 return Attribute::ByVal; 704 case bitc::ATTR_KIND_IN_ALLOCA: 705 return Attribute::InAlloca; 706 case bitc::ATTR_KIND_COLD: 707 return Attribute::Cold; 708 case bitc::ATTR_KIND_INLINE_HINT: 709 return Attribute::InlineHint; 710 case bitc::ATTR_KIND_IN_REG: 711 return Attribute::InReg; 712 case bitc::ATTR_KIND_JUMP_TABLE: 713 return Attribute::JumpTable; 714 case bitc::ATTR_KIND_MIN_SIZE: 715 return Attribute::MinSize; 716 case bitc::ATTR_KIND_NAKED: 717 return Attribute::Naked; 718 case bitc::ATTR_KIND_NEST: 719 return Attribute::Nest; 720 case bitc::ATTR_KIND_NO_ALIAS: 721 return Attribute::NoAlias; 722 case bitc::ATTR_KIND_NO_BUILTIN: 723 return Attribute::NoBuiltin; 724 case bitc::ATTR_KIND_NO_CAPTURE: 725 return Attribute::NoCapture; 726 case bitc::ATTR_KIND_NO_DUPLICATE: 727 return Attribute::NoDuplicate; 728 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: 729 return Attribute::NoImplicitFloat; 730 case bitc::ATTR_KIND_NO_INLINE: 731 return Attribute::NoInline; 732 case bitc::ATTR_KIND_NON_LAZY_BIND: 733 return Attribute::NonLazyBind; 734 case bitc::ATTR_KIND_NON_NULL: 735 return Attribute::NonNull; 736 case bitc::ATTR_KIND_DEREFERENCEABLE: 737 return Attribute::Dereferenceable; 738 case bitc::ATTR_KIND_NO_RED_ZONE: 739 return Attribute::NoRedZone; 740 case bitc::ATTR_KIND_NO_RETURN: 741 return Attribute::NoReturn; 742 case bitc::ATTR_KIND_NO_UNWIND: 743 return Attribute::NoUnwind; 744 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: 745 return Attribute::OptimizeForSize; 746 case bitc::ATTR_KIND_OPTIMIZE_NONE: 747 return Attribute::OptimizeNone; 748 case bitc::ATTR_KIND_READ_NONE: 749 return Attribute::ReadNone; 750 case bitc::ATTR_KIND_READ_ONLY: 751 return Attribute::ReadOnly; 752 case bitc::ATTR_KIND_RETURNED: 753 return Attribute::Returned; 754 case bitc::ATTR_KIND_RETURNS_TWICE: 755 return Attribute::ReturnsTwice; 756 case bitc::ATTR_KIND_S_EXT: 757 return Attribute::SExt; 758 case bitc::ATTR_KIND_STACK_ALIGNMENT: 759 return Attribute::StackAlignment; 760 case bitc::ATTR_KIND_STACK_PROTECT: 761 return Attribute::StackProtect; 762 case bitc::ATTR_KIND_STACK_PROTECT_REQ: 763 return Attribute::StackProtectReq; 764 case bitc::ATTR_KIND_STACK_PROTECT_STRONG: 765 return Attribute::StackProtectStrong; 766 case bitc::ATTR_KIND_STRUCT_RET: 767 return Attribute::StructRet; 768 case bitc::ATTR_KIND_SANITIZE_ADDRESS: 769 return Attribute::SanitizeAddress; 770 case bitc::ATTR_KIND_SANITIZE_THREAD: 771 return Attribute::SanitizeThread; 772 case bitc::ATTR_KIND_SANITIZE_MEMORY: 773 return Attribute::SanitizeMemory; 774 case bitc::ATTR_KIND_UW_TABLE: 775 return Attribute::UWTable; 776 case bitc::ATTR_KIND_Z_EXT: 777 return Attribute::ZExt; 778 } 779 } 780 781 std::error_code BitcodeReader::ParseAttrKind(uint64_t Code, 782 Attribute::AttrKind *Kind) { 783 *Kind = GetAttrFromCode(Code); 784 if (*Kind == Attribute::None) 785 return Error(BitcodeError::CorruptedBitcode, 786 "Unknown attribute kind (" + Twine(Code) + ")"); 787 return std::error_code(); 788 } 789 790 std::error_code BitcodeReader::ParseAttributeGroupBlock() { 791 if (Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) 792 return Error("Invalid record"); 793 794 if (!MAttributeGroups.empty()) 795 return Error("Invalid multiple blocks"); 796 797 SmallVector<uint64_t, 64> Record; 798 799 // Read all the records. 800 while (1) { 801 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 802 803 switch (Entry.Kind) { 804 case BitstreamEntry::SubBlock: // Handled for us already. 805 case BitstreamEntry::Error: 806 return Error("Malformed block"); 807 case BitstreamEntry::EndBlock: 808 return std::error_code(); 809 case BitstreamEntry::Record: 810 // The interesting case. 811 break; 812 } 813 814 // Read a record. 815 Record.clear(); 816 switch (Stream.readRecord(Entry.ID, Record)) { 817 default: // Default behavior: ignore. 818 break; 819 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] 820 if (Record.size() < 3) 821 return Error("Invalid record"); 822 823 uint64_t GrpID = Record[0]; 824 uint64_t Idx = Record[1]; // Index of the object this attribute refers to. 825 826 AttrBuilder B; 827 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 828 if (Record[i] == 0) { // Enum attribute 829 Attribute::AttrKind Kind; 830 if (std::error_code EC = ParseAttrKind(Record[++i], &Kind)) 831 return EC; 832 833 B.addAttribute(Kind); 834 } else if (Record[i] == 1) { // Integer attribute 835 Attribute::AttrKind Kind; 836 if (std::error_code EC = ParseAttrKind(Record[++i], &Kind)) 837 return EC; 838 if (Kind == Attribute::Alignment) 839 B.addAlignmentAttr(Record[++i]); 840 else if (Kind == Attribute::StackAlignment) 841 B.addStackAlignmentAttr(Record[++i]); 842 else if (Kind == Attribute::Dereferenceable) 843 B.addDereferenceableAttr(Record[++i]); 844 } else { // String attribute 845 assert((Record[i] == 3 || Record[i] == 4) && 846 "Invalid attribute group entry"); 847 bool HasValue = (Record[i++] == 4); 848 SmallString<64> KindStr; 849 SmallString<64> ValStr; 850 851 while (Record[i] != 0 && i != e) 852 KindStr += Record[i++]; 853 assert(Record[i] == 0 && "Kind string not null terminated"); 854 855 if (HasValue) { 856 // Has a value associated with it. 857 ++i; // Skip the '0' that terminates the "kind" string. 858 while (Record[i] != 0 && i != e) 859 ValStr += Record[i++]; 860 assert(Record[i] == 0 && "Value string not null terminated"); 861 } 862 863 B.addAttribute(KindStr.str(), ValStr.str()); 864 } 865 } 866 867 MAttributeGroups[GrpID] = AttributeSet::get(Context, Idx, B); 868 break; 869 } 870 } 871 } 872 } 873 874 std::error_code BitcodeReader::ParseTypeTable() { 875 if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 876 return Error("Invalid record"); 877 878 return ParseTypeTableBody(); 879 } 880 881 std::error_code BitcodeReader::ParseTypeTableBody() { 882 if (!TypeList.empty()) 883 return Error("Invalid multiple blocks"); 884 885 SmallVector<uint64_t, 64> Record; 886 unsigned NumRecords = 0; 887 888 SmallString<64> TypeName; 889 890 // Read all the records for this type table. 891 while (1) { 892 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 893 894 switch (Entry.Kind) { 895 case BitstreamEntry::SubBlock: // Handled for us already. 896 case BitstreamEntry::Error: 897 return Error("Malformed block"); 898 case BitstreamEntry::EndBlock: 899 if (NumRecords != TypeList.size()) 900 return Error("Malformed block"); 901 return std::error_code(); 902 case BitstreamEntry::Record: 903 // The interesting case. 904 break; 905 } 906 907 // Read a record. 908 Record.clear(); 909 Type *ResultTy = nullptr; 910 switch (Stream.readRecord(Entry.ID, Record)) { 911 default: 912 return Error("Invalid value"); 913 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 914 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 915 // type list. This allows us to reserve space. 916 if (Record.size() < 1) 917 return Error("Invalid record"); 918 TypeList.resize(Record[0]); 919 continue; 920 case bitc::TYPE_CODE_VOID: // VOID 921 ResultTy = Type::getVoidTy(Context); 922 break; 923 case bitc::TYPE_CODE_HALF: // HALF 924 ResultTy = Type::getHalfTy(Context); 925 break; 926 case bitc::TYPE_CODE_FLOAT: // FLOAT 927 ResultTy = Type::getFloatTy(Context); 928 break; 929 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 930 ResultTy = Type::getDoubleTy(Context); 931 break; 932 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 933 ResultTy = Type::getX86_FP80Ty(Context); 934 break; 935 case bitc::TYPE_CODE_FP128: // FP128 936 ResultTy = Type::getFP128Ty(Context); 937 break; 938 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 939 ResultTy = Type::getPPC_FP128Ty(Context); 940 break; 941 case bitc::TYPE_CODE_LABEL: // LABEL 942 ResultTy = Type::getLabelTy(Context); 943 break; 944 case bitc::TYPE_CODE_METADATA: // METADATA 945 ResultTy = Type::getMetadataTy(Context); 946 break; 947 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 948 ResultTy = Type::getX86_MMXTy(Context); 949 break; 950 case bitc::TYPE_CODE_INTEGER: // INTEGER: [width] 951 if (Record.size() < 1) 952 return Error("Invalid record"); 953 954 ResultTy = IntegerType::get(Context, Record[0]); 955 break; 956 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 957 // [pointee type, address space] 958 if (Record.size() < 1) 959 return Error("Invalid record"); 960 unsigned AddressSpace = 0; 961 if (Record.size() == 2) 962 AddressSpace = Record[1]; 963 ResultTy = getTypeByID(Record[0]); 964 if (!ResultTy) 965 return Error("Invalid type"); 966 ResultTy = PointerType::get(ResultTy, AddressSpace); 967 break; 968 } 969 case bitc::TYPE_CODE_FUNCTION_OLD: { 970 // FIXME: attrid is dead, remove it in LLVM 4.0 971 // FUNCTION: [vararg, attrid, retty, paramty x N] 972 if (Record.size() < 3) 973 return Error("Invalid record"); 974 SmallVector<Type*, 8> ArgTys; 975 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 976 if (Type *T = getTypeByID(Record[i])) 977 ArgTys.push_back(T); 978 else 979 break; 980 } 981 982 ResultTy = getTypeByID(Record[2]); 983 if (!ResultTy || ArgTys.size() < Record.size()-3) 984 return Error("Invalid type"); 985 986 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 987 break; 988 } 989 case bitc::TYPE_CODE_FUNCTION: { 990 // FUNCTION: [vararg, retty, paramty x N] 991 if (Record.size() < 2) 992 return Error("Invalid record"); 993 SmallVector<Type*, 8> ArgTys; 994 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 995 if (Type *T = getTypeByID(Record[i])) 996 ArgTys.push_back(T); 997 else 998 break; 999 } 1000 1001 ResultTy = getTypeByID(Record[1]); 1002 if (!ResultTy || ArgTys.size() < Record.size()-2) 1003 return Error("Invalid type"); 1004 1005 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1006 break; 1007 } 1008 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 1009 if (Record.size() < 1) 1010 return Error("Invalid record"); 1011 SmallVector<Type*, 8> EltTys; 1012 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1013 if (Type *T = getTypeByID(Record[i])) 1014 EltTys.push_back(T); 1015 else 1016 break; 1017 } 1018 if (EltTys.size() != Record.size()-1) 1019 return Error("Invalid type"); 1020 ResultTy = StructType::get(Context, EltTys, Record[0]); 1021 break; 1022 } 1023 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 1024 if (ConvertToString(Record, 0, TypeName)) 1025 return Error("Invalid record"); 1026 continue; 1027 1028 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 1029 if (Record.size() < 1) 1030 return Error("Invalid record"); 1031 1032 if (NumRecords >= TypeList.size()) 1033 return Error("Invalid TYPE table"); 1034 1035 // Check to see if this was forward referenced, if so fill in the temp. 1036 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1037 if (Res) { 1038 Res->setName(TypeName); 1039 TypeList[NumRecords] = nullptr; 1040 } else // Otherwise, create a new struct. 1041 Res = createIdentifiedStructType(Context, TypeName); 1042 TypeName.clear(); 1043 1044 SmallVector<Type*, 8> EltTys; 1045 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1046 if (Type *T = getTypeByID(Record[i])) 1047 EltTys.push_back(T); 1048 else 1049 break; 1050 } 1051 if (EltTys.size() != Record.size()-1) 1052 return Error("Invalid record"); 1053 Res->setBody(EltTys, Record[0]); 1054 ResultTy = Res; 1055 break; 1056 } 1057 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 1058 if (Record.size() != 1) 1059 return Error("Invalid record"); 1060 1061 if (NumRecords >= TypeList.size()) 1062 return Error("Invalid TYPE table"); 1063 1064 // Check to see if this was forward referenced, if so fill in the temp. 1065 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1066 if (Res) { 1067 Res->setName(TypeName); 1068 TypeList[NumRecords] = nullptr; 1069 } else // Otherwise, create a new struct with no body. 1070 Res = createIdentifiedStructType(Context, TypeName); 1071 TypeName.clear(); 1072 ResultTy = Res; 1073 break; 1074 } 1075 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 1076 if (Record.size() < 2) 1077 return Error("Invalid record"); 1078 if ((ResultTy = getTypeByID(Record[1]))) 1079 ResultTy = ArrayType::get(ResultTy, Record[0]); 1080 else 1081 return Error("Invalid type"); 1082 break; 1083 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] 1084 if (Record.size() < 2) 1085 return Error("Invalid record"); 1086 if ((ResultTy = getTypeByID(Record[1]))) 1087 ResultTy = VectorType::get(ResultTy, Record[0]); 1088 else 1089 return Error("Invalid type"); 1090 break; 1091 } 1092 1093 if (NumRecords >= TypeList.size()) 1094 return Error("Invalid TYPE table"); 1095 assert(ResultTy && "Didn't read a type?"); 1096 assert(!TypeList[NumRecords] && "Already read type?"); 1097 TypeList[NumRecords++] = ResultTy; 1098 } 1099 } 1100 1101 std::error_code BitcodeReader::ParseValueSymbolTable() { 1102 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 1103 return Error("Invalid record"); 1104 1105 SmallVector<uint64_t, 64> Record; 1106 1107 // Read all the records for this value table. 1108 SmallString<128> ValueName; 1109 while (1) { 1110 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1111 1112 switch (Entry.Kind) { 1113 case BitstreamEntry::SubBlock: // Handled for us already. 1114 case BitstreamEntry::Error: 1115 return Error("Malformed block"); 1116 case BitstreamEntry::EndBlock: 1117 return std::error_code(); 1118 case BitstreamEntry::Record: 1119 // The interesting case. 1120 break; 1121 } 1122 1123 // Read a record. 1124 Record.clear(); 1125 switch (Stream.readRecord(Entry.ID, Record)) { 1126 default: // Default behavior: unknown type. 1127 break; 1128 case bitc::VST_CODE_ENTRY: { // VST_ENTRY: [valueid, namechar x N] 1129 if (ConvertToString(Record, 1, ValueName)) 1130 return Error("Invalid record"); 1131 unsigned ValueID = Record[0]; 1132 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 1133 return Error("Invalid record"); 1134 Value *V = ValueList[ValueID]; 1135 1136 V->setName(StringRef(ValueName.data(), ValueName.size())); 1137 if (auto *GO = dyn_cast<GlobalObject>(V)) { 1138 if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) 1139 GO->setComdat(TheModule->getOrInsertComdat(V->getName())); 1140 } 1141 ValueName.clear(); 1142 break; 1143 } 1144 case bitc::VST_CODE_BBENTRY: { 1145 if (ConvertToString(Record, 1, ValueName)) 1146 return Error("Invalid record"); 1147 BasicBlock *BB = getBasicBlock(Record[0]); 1148 if (!BB) 1149 return Error("Invalid record"); 1150 1151 BB->setName(StringRef(ValueName.data(), ValueName.size())); 1152 ValueName.clear(); 1153 break; 1154 } 1155 } 1156 } 1157 } 1158 1159 std::error_code BitcodeReader::ParseMetadata() { 1160 unsigned NextMDValueNo = MDValueList.size(); 1161 1162 if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID)) 1163 return Error("Invalid record"); 1164 1165 SmallVector<uint64_t, 64> Record; 1166 1167 // Read all the records. 1168 while (1) { 1169 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1170 1171 switch (Entry.Kind) { 1172 case BitstreamEntry::SubBlock: // Handled for us already. 1173 case BitstreamEntry::Error: 1174 return Error("Malformed block"); 1175 case BitstreamEntry::EndBlock: 1176 MDValueList.tryToResolveCycles(); 1177 return std::error_code(); 1178 case BitstreamEntry::Record: 1179 // The interesting case. 1180 break; 1181 } 1182 1183 // Read a record. 1184 Record.clear(); 1185 unsigned Code = Stream.readRecord(Entry.ID, Record); 1186 bool IsDistinct = false; 1187 switch (Code) { 1188 default: // Default behavior: ignore. 1189 break; 1190 case bitc::METADATA_NAME: { 1191 // Read name of the named metadata. 1192 SmallString<8> Name(Record.begin(), Record.end()); 1193 Record.clear(); 1194 Code = Stream.ReadCode(); 1195 1196 // METADATA_NAME is always followed by METADATA_NAMED_NODE. 1197 unsigned NextBitCode = Stream.readRecord(Code, Record); 1198 assert(NextBitCode == bitc::METADATA_NAMED_NODE); (void)NextBitCode; 1199 1200 // Read named metadata elements. 1201 unsigned Size = Record.size(); 1202 NamedMDNode *NMD = TheModule->getOrInsertNamedMetadata(Name); 1203 for (unsigned i = 0; i != Size; ++i) { 1204 MDNode *MD = dyn_cast_or_null<MDNode>(MDValueList.getValueFwdRef(Record[i])); 1205 if (!MD) 1206 return Error("Invalid record"); 1207 NMD->addOperand(MD); 1208 } 1209 break; 1210 } 1211 case bitc::METADATA_OLD_FN_NODE: { 1212 // FIXME: Remove in 4.0. 1213 // This is a LocalAsMetadata record, the only type of function-local 1214 // metadata. 1215 if (Record.size() % 2 == 1) 1216 return Error("Invalid record"); 1217 1218 // If this isn't a LocalAsMetadata record, we're dropping it. This used 1219 // to be legal, but there's no upgrade path. 1220 auto dropRecord = [&] { 1221 MDValueList.AssignValue(MDNode::get(Context, None), NextMDValueNo++); 1222 }; 1223 if (Record.size() != 2) { 1224 dropRecord(); 1225 break; 1226 } 1227 1228 Type *Ty = getTypeByID(Record[0]); 1229 if (Ty->isMetadataTy() || Ty->isVoidTy()) { 1230 dropRecord(); 1231 break; 1232 } 1233 1234 MDValueList.AssignValue( 1235 LocalAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)), 1236 NextMDValueNo++); 1237 break; 1238 } 1239 case bitc::METADATA_OLD_NODE: { 1240 // FIXME: Remove in 4.0. 1241 if (Record.size() % 2 == 1) 1242 return Error("Invalid record"); 1243 1244 unsigned Size = Record.size(); 1245 SmallVector<Metadata *, 8> Elts; 1246 for (unsigned i = 0; i != Size; i += 2) { 1247 Type *Ty = getTypeByID(Record[i]); 1248 if (!Ty) 1249 return Error("Invalid record"); 1250 if (Ty->isMetadataTy()) 1251 Elts.push_back(MDValueList.getValueFwdRef(Record[i+1])); 1252 else if (!Ty->isVoidTy()) { 1253 auto *MD = 1254 ValueAsMetadata::get(ValueList.getValueFwdRef(Record[i + 1], Ty)); 1255 assert(isa<ConstantAsMetadata>(MD) && 1256 "Expected non-function-local metadata"); 1257 Elts.push_back(MD); 1258 } else 1259 Elts.push_back(nullptr); 1260 } 1261 MDValueList.AssignValue(MDNode::get(Context, Elts), NextMDValueNo++); 1262 break; 1263 } 1264 case bitc::METADATA_VALUE: { 1265 if (Record.size() != 2) 1266 return Error("Invalid record"); 1267 1268 Type *Ty = getTypeByID(Record[0]); 1269 if (Ty->isMetadataTy() || Ty->isVoidTy()) 1270 return Error("Invalid record"); 1271 1272 MDValueList.AssignValue( 1273 ValueAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)), 1274 NextMDValueNo++); 1275 break; 1276 } 1277 case bitc::METADATA_DISTINCT_NODE: 1278 IsDistinct = true; 1279 // fallthrough... 1280 case bitc::METADATA_NODE: { 1281 SmallVector<Metadata *, 8> Elts; 1282 Elts.reserve(Record.size()); 1283 for (unsigned ID : Record) 1284 Elts.push_back(ID ? MDValueList.getValueFwdRef(ID - 1) : nullptr); 1285 MDValueList.AssignValue(IsDistinct ? MDNode::getDistinct(Context, Elts) 1286 : MDNode::get(Context, Elts), 1287 NextMDValueNo++); 1288 break; 1289 } 1290 case bitc::METADATA_LOCATION: { 1291 if (Record.size() != 5) 1292 return Error("Invalid record"); 1293 1294 auto get = Record[0] ? MDLocation::getDistinct : MDLocation::get; 1295 unsigned Line = Record[1]; 1296 unsigned Column = Record[2]; 1297 MDNode *Scope = cast<MDNode>(MDValueList.getValueFwdRef(Record[3])); 1298 Metadata *InlinedAt = 1299 Record[4] ? MDValueList.getValueFwdRef(Record[4] - 1) : nullptr; 1300 MDValueList.AssignValue(get(Context, Line, Column, Scope, InlinedAt), 1301 NextMDValueNo++); 1302 break; 1303 } 1304 case bitc::METADATA_STRING: { 1305 std::string String(Record.begin(), Record.end()); 1306 llvm::UpgradeMDStringConstant(String); 1307 Metadata *MD = MDString::get(Context, String); 1308 MDValueList.AssignValue(MD, NextMDValueNo++); 1309 break; 1310 } 1311 case bitc::METADATA_KIND: { 1312 if (Record.size() < 2) 1313 return Error("Invalid record"); 1314 1315 unsigned Kind = Record[0]; 1316 SmallString<8> Name(Record.begin()+1, Record.end()); 1317 1318 unsigned NewKind = TheModule->getMDKindID(Name.str()); 1319 if (!MDKindMap.insert(std::make_pair(Kind, NewKind)).second) 1320 return Error("Conflicting METADATA_KIND records"); 1321 break; 1322 } 1323 } 1324 } 1325 } 1326 1327 /// decodeSignRotatedValue - Decode a signed value stored with the sign bit in 1328 /// the LSB for dense VBR encoding. 1329 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { 1330 if ((V & 1) == 0) 1331 return V >> 1; 1332 if (V != 1) 1333 return -(V >> 1); 1334 // There is no such thing as -0 with integers. "-0" really means MININT. 1335 return 1ULL << 63; 1336 } 1337 1338 /// ResolveGlobalAndAliasInits - Resolve all of the initializers for global 1339 /// values and aliases that we can. 1340 std::error_code BitcodeReader::ResolveGlobalAndAliasInits() { 1341 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist; 1342 std::vector<std::pair<GlobalAlias*, unsigned> > AliasInitWorklist; 1343 std::vector<std::pair<Function*, unsigned> > FunctionPrefixWorklist; 1344 std::vector<std::pair<Function*, unsigned> > FunctionPrologueWorklist; 1345 1346 GlobalInitWorklist.swap(GlobalInits); 1347 AliasInitWorklist.swap(AliasInits); 1348 FunctionPrefixWorklist.swap(FunctionPrefixes); 1349 FunctionPrologueWorklist.swap(FunctionPrologues); 1350 1351 while (!GlobalInitWorklist.empty()) { 1352 unsigned ValID = GlobalInitWorklist.back().second; 1353 if (ValID >= ValueList.size()) { 1354 // Not ready to resolve this yet, it requires something later in the file. 1355 GlobalInits.push_back(GlobalInitWorklist.back()); 1356 } else { 1357 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 1358 GlobalInitWorklist.back().first->setInitializer(C); 1359 else 1360 return Error("Expected a constant"); 1361 } 1362 GlobalInitWorklist.pop_back(); 1363 } 1364 1365 while (!AliasInitWorklist.empty()) { 1366 unsigned ValID = AliasInitWorklist.back().second; 1367 if (ValID >= ValueList.size()) { 1368 AliasInits.push_back(AliasInitWorklist.back()); 1369 } else { 1370 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 1371 AliasInitWorklist.back().first->setAliasee(C); 1372 else 1373 return Error("Expected a constant"); 1374 } 1375 AliasInitWorklist.pop_back(); 1376 } 1377 1378 while (!FunctionPrefixWorklist.empty()) { 1379 unsigned ValID = FunctionPrefixWorklist.back().second; 1380 if (ValID >= ValueList.size()) { 1381 FunctionPrefixes.push_back(FunctionPrefixWorklist.back()); 1382 } else { 1383 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 1384 FunctionPrefixWorklist.back().first->setPrefixData(C); 1385 else 1386 return Error("Expected a constant"); 1387 } 1388 FunctionPrefixWorklist.pop_back(); 1389 } 1390 1391 while (!FunctionPrologueWorklist.empty()) { 1392 unsigned ValID = FunctionPrologueWorklist.back().second; 1393 if (ValID >= ValueList.size()) { 1394 FunctionPrologues.push_back(FunctionPrologueWorklist.back()); 1395 } else { 1396 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 1397 FunctionPrologueWorklist.back().first->setPrologueData(C); 1398 else 1399 return Error("Expected a constant"); 1400 } 1401 FunctionPrologueWorklist.pop_back(); 1402 } 1403 1404 return std::error_code(); 1405 } 1406 1407 static APInt ReadWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { 1408 SmallVector<uint64_t, 8> Words(Vals.size()); 1409 std::transform(Vals.begin(), Vals.end(), Words.begin(), 1410 BitcodeReader::decodeSignRotatedValue); 1411 1412 return APInt(TypeBits, Words); 1413 } 1414 1415 std::error_code BitcodeReader::ParseConstants() { 1416 if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 1417 return Error("Invalid record"); 1418 1419 SmallVector<uint64_t, 64> Record; 1420 1421 // Read all the records for this value table. 1422 Type *CurTy = Type::getInt32Ty(Context); 1423 unsigned NextCstNo = ValueList.size(); 1424 while (1) { 1425 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1426 1427 switch (Entry.Kind) { 1428 case BitstreamEntry::SubBlock: // Handled for us already. 1429 case BitstreamEntry::Error: 1430 return Error("Malformed block"); 1431 case BitstreamEntry::EndBlock: 1432 if (NextCstNo != ValueList.size()) 1433 return Error("Invalid ronstant reference"); 1434 1435 // Once all the constants have been read, go through and resolve forward 1436 // references. 1437 ValueList.ResolveConstantForwardRefs(); 1438 return std::error_code(); 1439 case BitstreamEntry::Record: 1440 // The interesting case. 1441 break; 1442 } 1443 1444 // Read a record. 1445 Record.clear(); 1446 Value *V = nullptr; 1447 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 1448 switch (BitCode) { 1449 default: // Default behavior: unknown constant 1450 case bitc::CST_CODE_UNDEF: // UNDEF 1451 V = UndefValue::get(CurTy); 1452 break; 1453 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 1454 if (Record.empty()) 1455 return Error("Invalid record"); 1456 if (Record[0] >= TypeList.size() || !TypeList[Record[0]]) 1457 return Error("Invalid record"); 1458 CurTy = TypeList[Record[0]]; 1459 continue; // Skip the ValueList manipulation. 1460 case bitc::CST_CODE_NULL: // NULL 1461 V = Constant::getNullValue(CurTy); 1462 break; 1463 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 1464 if (!CurTy->isIntegerTy() || Record.empty()) 1465 return Error("Invalid record"); 1466 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); 1467 break; 1468 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 1469 if (!CurTy->isIntegerTy() || Record.empty()) 1470 return Error("Invalid record"); 1471 1472 APInt VInt = ReadWideAPInt(Record, 1473 cast<IntegerType>(CurTy)->getBitWidth()); 1474 V = ConstantInt::get(Context, VInt); 1475 1476 break; 1477 } 1478 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 1479 if (Record.empty()) 1480 return Error("Invalid record"); 1481 if (CurTy->isHalfTy()) 1482 V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf, 1483 APInt(16, (uint16_t)Record[0]))); 1484 else if (CurTy->isFloatTy()) 1485 V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle, 1486 APInt(32, (uint32_t)Record[0]))); 1487 else if (CurTy->isDoubleTy()) 1488 V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble, 1489 APInt(64, Record[0]))); 1490 else if (CurTy->isX86_FP80Ty()) { 1491 // Bits are not stored the same way as a normal i80 APInt, compensate. 1492 uint64_t Rearrange[2]; 1493 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 1494 Rearrange[1] = Record[0] >> 48; 1495 V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended, 1496 APInt(80, Rearrange))); 1497 } else if (CurTy->isFP128Ty()) 1498 V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad, 1499 APInt(128, Record))); 1500 else if (CurTy->isPPC_FP128Ty()) 1501 V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble, 1502 APInt(128, Record))); 1503 else 1504 V = UndefValue::get(CurTy); 1505 break; 1506 } 1507 1508 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 1509 if (Record.empty()) 1510 return Error("Invalid record"); 1511 1512 unsigned Size = Record.size(); 1513 SmallVector<Constant*, 16> Elts; 1514 1515 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 1516 for (unsigned i = 0; i != Size; ++i) 1517 Elts.push_back(ValueList.getConstantFwdRef(Record[i], 1518 STy->getElementType(i))); 1519 V = ConstantStruct::get(STy, Elts); 1520 } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) { 1521 Type *EltTy = ATy->getElementType(); 1522 for (unsigned i = 0; i != Size; ++i) 1523 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 1524 V = ConstantArray::get(ATy, Elts); 1525 } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) { 1526 Type *EltTy = VTy->getElementType(); 1527 for (unsigned i = 0; i != Size; ++i) 1528 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 1529 V = ConstantVector::get(Elts); 1530 } else { 1531 V = UndefValue::get(CurTy); 1532 } 1533 break; 1534 } 1535 case bitc::CST_CODE_STRING: // STRING: [values] 1536 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 1537 if (Record.empty()) 1538 return Error("Invalid record"); 1539 1540 SmallString<16> Elts(Record.begin(), Record.end()); 1541 V = ConstantDataArray::getString(Context, Elts, 1542 BitCode == bitc::CST_CODE_CSTRING); 1543 break; 1544 } 1545 case bitc::CST_CODE_DATA: {// DATA: [n x value] 1546 if (Record.empty()) 1547 return Error("Invalid record"); 1548 1549 Type *EltTy = cast<SequentialType>(CurTy)->getElementType(); 1550 unsigned Size = Record.size(); 1551 1552 if (EltTy->isIntegerTy(8)) { 1553 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); 1554 if (isa<VectorType>(CurTy)) 1555 V = ConstantDataVector::get(Context, Elts); 1556 else 1557 V = ConstantDataArray::get(Context, Elts); 1558 } else if (EltTy->isIntegerTy(16)) { 1559 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 1560 if (isa<VectorType>(CurTy)) 1561 V = ConstantDataVector::get(Context, Elts); 1562 else 1563 V = ConstantDataArray::get(Context, Elts); 1564 } else if (EltTy->isIntegerTy(32)) { 1565 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 1566 if (isa<VectorType>(CurTy)) 1567 V = ConstantDataVector::get(Context, Elts); 1568 else 1569 V = ConstantDataArray::get(Context, Elts); 1570 } else if (EltTy->isIntegerTy(64)) { 1571 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 1572 if (isa<VectorType>(CurTy)) 1573 V = ConstantDataVector::get(Context, Elts); 1574 else 1575 V = ConstantDataArray::get(Context, Elts); 1576 } else if (EltTy->isFloatTy()) { 1577 SmallVector<float, 16> Elts(Size); 1578 std::transform(Record.begin(), Record.end(), Elts.begin(), BitsToFloat); 1579 if (isa<VectorType>(CurTy)) 1580 V = ConstantDataVector::get(Context, Elts); 1581 else 1582 V = ConstantDataArray::get(Context, Elts); 1583 } else if (EltTy->isDoubleTy()) { 1584 SmallVector<double, 16> Elts(Size); 1585 std::transform(Record.begin(), Record.end(), Elts.begin(), 1586 BitsToDouble); 1587 if (isa<VectorType>(CurTy)) 1588 V = ConstantDataVector::get(Context, Elts); 1589 else 1590 V = ConstantDataArray::get(Context, Elts); 1591 } else { 1592 return Error("Invalid type for value"); 1593 } 1594 break; 1595 } 1596 1597 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 1598 if (Record.size() < 3) 1599 return Error("Invalid record"); 1600 int Opc = GetDecodedBinaryOpcode(Record[0], CurTy); 1601 if (Opc < 0) { 1602 V = UndefValue::get(CurTy); // Unknown binop. 1603 } else { 1604 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 1605 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy); 1606 unsigned Flags = 0; 1607 if (Record.size() >= 4) { 1608 if (Opc == Instruction::Add || 1609 Opc == Instruction::Sub || 1610 Opc == Instruction::Mul || 1611 Opc == Instruction::Shl) { 1612 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 1613 Flags |= OverflowingBinaryOperator::NoSignedWrap; 1614 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 1615 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 1616 } else if (Opc == Instruction::SDiv || 1617 Opc == Instruction::UDiv || 1618 Opc == Instruction::LShr || 1619 Opc == Instruction::AShr) { 1620 if (Record[3] & (1 << bitc::PEO_EXACT)) 1621 Flags |= SDivOperator::IsExact; 1622 } 1623 } 1624 V = ConstantExpr::get(Opc, LHS, RHS, Flags); 1625 } 1626 break; 1627 } 1628 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 1629 if (Record.size() < 3) 1630 return Error("Invalid record"); 1631 int Opc = GetDecodedCastOpcode(Record[0]); 1632 if (Opc < 0) { 1633 V = UndefValue::get(CurTy); // Unknown cast. 1634 } else { 1635 Type *OpTy = getTypeByID(Record[1]); 1636 if (!OpTy) 1637 return Error("Invalid record"); 1638 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy); 1639 V = UpgradeBitCastExpr(Opc, Op, CurTy); 1640 if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy); 1641 } 1642 break; 1643 } 1644 case bitc::CST_CODE_CE_INBOUNDS_GEP: 1645 case bitc::CST_CODE_CE_GEP: { // CE_GEP: [n x operands] 1646 if (Record.size() & 1) 1647 return Error("Invalid record"); 1648 SmallVector<Constant*, 16> Elts; 1649 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1650 Type *ElTy = getTypeByID(Record[i]); 1651 if (!ElTy) 1652 return Error("Invalid record"); 1653 Elts.push_back(ValueList.getConstantFwdRef(Record[i+1], ElTy)); 1654 } 1655 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 1656 V = ConstantExpr::getGetElementPtr(Elts[0], Indices, 1657 BitCode == 1658 bitc::CST_CODE_CE_INBOUNDS_GEP); 1659 break; 1660 } 1661 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] 1662 if (Record.size() < 3) 1663 return Error("Invalid record"); 1664 1665 Type *SelectorTy = Type::getInt1Ty(Context); 1666 1667 // If CurTy is a vector of length n, then Record[0] must be a <n x i1> 1668 // vector. Otherwise, it must be a single bit. 1669 if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) 1670 SelectorTy = VectorType::get(Type::getInt1Ty(Context), 1671 VTy->getNumElements()); 1672 1673 V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0], 1674 SelectorTy), 1675 ValueList.getConstantFwdRef(Record[1],CurTy), 1676 ValueList.getConstantFwdRef(Record[2],CurTy)); 1677 break; 1678 } 1679 case bitc::CST_CODE_CE_EXTRACTELT 1680 : { // CE_EXTRACTELT: [opty, opval, opty, opval] 1681 if (Record.size() < 3) 1682 return Error("Invalid record"); 1683 VectorType *OpTy = 1684 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 1685 if (!OpTy) 1686 return Error("Invalid record"); 1687 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 1688 Constant *Op1 = nullptr; 1689 if (Record.size() == 4) { 1690 Type *IdxTy = getTypeByID(Record[2]); 1691 if (!IdxTy) 1692 return Error("Invalid record"); 1693 Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy); 1694 } else // TODO: Remove with llvm 4.0 1695 Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 1696 if (!Op1) 1697 return Error("Invalid record"); 1698 V = ConstantExpr::getExtractElement(Op0, Op1); 1699 break; 1700 } 1701 case bitc::CST_CODE_CE_INSERTELT 1702 : { // CE_INSERTELT: [opval, opval, opty, opval] 1703 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 1704 if (Record.size() < 3 || !OpTy) 1705 return Error("Invalid record"); 1706 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 1707 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], 1708 OpTy->getElementType()); 1709 Constant *Op2 = nullptr; 1710 if (Record.size() == 4) { 1711 Type *IdxTy = getTypeByID(Record[2]); 1712 if (!IdxTy) 1713 return Error("Invalid record"); 1714 Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy); 1715 } else // TODO: Remove with llvm 4.0 1716 Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 1717 if (!Op2) 1718 return Error("Invalid record"); 1719 V = ConstantExpr::getInsertElement(Op0, Op1, Op2); 1720 break; 1721 } 1722 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 1723 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 1724 if (Record.size() < 3 || !OpTy) 1725 return Error("Invalid record"); 1726 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 1727 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy); 1728 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 1729 OpTy->getNumElements()); 1730 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy); 1731 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 1732 break; 1733 } 1734 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 1735 VectorType *RTy = dyn_cast<VectorType>(CurTy); 1736 VectorType *OpTy = 1737 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 1738 if (Record.size() < 4 || !RTy || !OpTy) 1739 return Error("Invalid record"); 1740 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 1741 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 1742 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 1743 RTy->getNumElements()); 1744 Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy); 1745 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 1746 break; 1747 } 1748 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 1749 if (Record.size() < 4) 1750 return Error("Invalid record"); 1751 Type *OpTy = getTypeByID(Record[0]); 1752 if (!OpTy) 1753 return Error("Invalid record"); 1754 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 1755 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 1756 1757 if (OpTy->isFPOrFPVectorTy()) 1758 V = ConstantExpr::getFCmp(Record[3], Op0, Op1); 1759 else 1760 V = ConstantExpr::getICmp(Record[3], Op0, Op1); 1761 break; 1762 } 1763 // This maintains backward compatibility, pre-asm dialect keywords. 1764 // FIXME: Remove with the 4.0 release. 1765 case bitc::CST_CODE_INLINEASM_OLD: { 1766 if (Record.size() < 2) 1767 return Error("Invalid record"); 1768 std::string AsmStr, ConstrStr; 1769 bool HasSideEffects = Record[0] & 1; 1770 bool IsAlignStack = Record[0] >> 1; 1771 unsigned AsmStrSize = Record[1]; 1772 if (2+AsmStrSize >= Record.size()) 1773 return Error("Invalid record"); 1774 unsigned ConstStrSize = Record[2+AsmStrSize]; 1775 if (3+AsmStrSize+ConstStrSize > Record.size()) 1776 return Error("Invalid record"); 1777 1778 for (unsigned i = 0; i != AsmStrSize; ++i) 1779 AsmStr += (char)Record[2+i]; 1780 for (unsigned i = 0; i != ConstStrSize; ++i) 1781 ConstrStr += (char)Record[3+AsmStrSize+i]; 1782 PointerType *PTy = cast<PointerType>(CurTy); 1783 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 1784 AsmStr, ConstrStr, HasSideEffects, IsAlignStack); 1785 break; 1786 } 1787 // This version adds support for the asm dialect keywords (e.g., 1788 // inteldialect). 1789 case bitc::CST_CODE_INLINEASM: { 1790 if (Record.size() < 2) 1791 return Error("Invalid record"); 1792 std::string AsmStr, ConstrStr; 1793 bool HasSideEffects = Record[0] & 1; 1794 bool IsAlignStack = (Record[0] >> 1) & 1; 1795 unsigned AsmDialect = Record[0] >> 2; 1796 unsigned AsmStrSize = Record[1]; 1797 if (2+AsmStrSize >= Record.size()) 1798 return Error("Invalid record"); 1799 unsigned ConstStrSize = Record[2+AsmStrSize]; 1800 if (3+AsmStrSize+ConstStrSize > Record.size()) 1801 return Error("Invalid record"); 1802 1803 for (unsigned i = 0; i != AsmStrSize; ++i) 1804 AsmStr += (char)Record[2+i]; 1805 for (unsigned i = 0; i != ConstStrSize; ++i) 1806 ConstrStr += (char)Record[3+AsmStrSize+i]; 1807 PointerType *PTy = cast<PointerType>(CurTy); 1808 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 1809 AsmStr, ConstrStr, HasSideEffects, IsAlignStack, 1810 InlineAsm::AsmDialect(AsmDialect)); 1811 break; 1812 } 1813 case bitc::CST_CODE_BLOCKADDRESS:{ 1814 if (Record.size() < 3) 1815 return Error("Invalid record"); 1816 Type *FnTy = getTypeByID(Record[0]); 1817 if (!FnTy) 1818 return Error("Invalid record"); 1819 Function *Fn = 1820 dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy)); 1821 if (!Fn) 1822 return Error("Invalid record"); 1823 1824 // Don't let Fn get dematerialized. 1825 BlockAddressesTaken.insert(Fn); 1826 1827 // If the function is already parsed we can insert the block address right 1828 // away. 1829 BasicBlock *BB; 1830 unsigned BBID = Record[2]; 1831 if (!BBID) 1832 // Invalid reference to entry block. 1833 return Error("Invalid ID"); 1834 if (!Fn->empty()) { 1835 Function::iterator BBI = Fn->begin(), BBE = Fn->end(); 1836 for (size_t I = 0, E = BBID; I != E; ++I) { 1837 if (BBI == BBE) 1838 return Error("Invalid ID"); 1839 ++BBI; 1840 } 1841 BB = BBI; 1842 } else { 1843 // Otherwise insert a placeholder and remember it so it can be inserted 1844 // when the function is parsed. 1845 auto &FwdBBs = BasicBlockFwdRefs[Fn]; 1846 if (FwdBBs.empty()) 1847 BasicBlockFwdRefQueue.push_back(Fn); 1848 if (FwdBBs.size() < BBID + 1) 1849 FwdBBs.resize(BBID + 1); 1850 if (!FwdBBs[BBID]) 1851 FwdBBs[BBID] = BasicBlock::Create(Context); 1852 BB = FwdBBs[BBID]; 1853 } 1854 V = BlockAddress::get(Fn, BB); 1855 break; 1856 } 1857 } 1858 1859 ValueList.AssignValue(V, NextCstNo); 1860 ++NextCstNo; 1861 } 1862 } 1863 1864 std::error_code BitcodeReader::ParseUseLists() { 1865 if (Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 1866 return Error("Invalid record"); 1867 1868 // Read all the records. 1869 SmallVector<uint64_t, 64> Record; 1870 while (1) { 1871 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1872 1873 switch (Entry.Kind) { 1874 case BitstreamEntry::SubBlock: // Handled for us already. 1875 case BitstreamEntry::Error: 1876 return Error("Malformed block"); 1877 case BitstreamEntry::EndBlock: 1878 return std::error_code(); 1879 case BitstreamEntry::Record: 1880 // The interesting case. 1881 break; 1882 } 1883 1884 // Read a use list record. 1885 Record.clear(); 1886 bool IsBB = false; 1887 switch (Stream.readRecord(Entry.ID, Record)) { 1888 default: // Default behavior: unknown type. 1889 break; 1890 case bitc::USELIST_CODE_BB: 1891 IsBB = true; 1892 // fallthrough 1893 case bitc::USELIST_CODE_DEFAULT: { 1894 unsigned RecordLength = Record.size(); 1895 if (RecordLength < 3) 1896 // Records should have at least an ID and two indexes. 1897 return Error("Invalid record"); 1898 unsigned ID = Record.back(); 1899 Record.pop_back(); 1900 1901 Value *V; 1902 if (IsBB) { 1903 assert(ID < FunctionBBs.size() && "Basic block not found"); 1904 V = FunctionBBs[ID]; 1905 } else 1906 V = ValueList[ID]; 1907 unsigned NumUses = 0; 1908 SmallDenseMap<const Use *, unsigned, 16> Order; 1909 for (const Use &U : V->uses()) { 1910 if (++NumUses > Record.size()) 1911 break; 1912 Order[&U] = Record[NumUses - 1]; 1913 } 1914 if (Order.size() != Record.size() || NumUses > Record.size()) 1915 // Mismatches can happen if the functions are being materialized lazily 1916 // (out-of-order), or a value has been upgraded. 1917 break; 1918 1919 V->sortUseList([&](const Use &L, const Use &R) { 1920 return Order.lookup(&L) < Order.lookup(&R); 1921 }); 1922 break; 1923 } 1924 } 1925 } 1926 } 1927 1928 /// RememberAndSkipFunctionBody - When we see the block for a function body, 1929 /// remember where it is and then skip it. This lets us lazily deserialize the 1930 /// functions. 1931 std::error_code BitcodeReader::RememberAndSkipFunctionBody() { 1932 // Get the function we are talking about. 1933 if (FunctionsWithBodies.empty()) 1934 return Error("Insufficient function protos"); 1935 1936 Function *Fn = FunctionsWithBodies.back(); 1937 FunctionsWithBodies.pop_back(); 1938 1939 // Save the current stream state. 1940 uint64_t CurBit = Stream.GetCurrentBitNo(); 1941 DeferredFunctionInfo[Fn] = CurBit; 1942 1943 // Skip over the function block for now. 1944 if (Stream.SkipBlock()) 1945 return Error("Invalid record"); 1946 return std::error_code(); 1947 } 1948 1949 std::error_code BitcodeReader::GlobalCleanup() { 1950 // Patch the initializers for globals and aliases up. 1951 ResolveGlobalAndAliasInits(); 1952 if (!GlobalInits.empty() || !AliasInits.empty()) 1953 return Error("Malformed global initializer set"); 1954 1955 // Look for intrinsic functions which need to be upgraded at some point 1956 for (Module::iterator FI = TheModule->begin(), FE = TheModule->end(); 1957 FI != FE; ++FI) { 1958 Function *NewFn; 1959 if (UpgradeIntrinsicFunction(FI, NewFn)) 1960 UpgradedIntrinsics.push_back(std::make_pair(FI, NewFn)); 1961 } 1962 1963 // Look for global variables which need to be renamed. 1964 for (Module::global_iterator 1965 GI = TheModule->global_begin(), GE = TheModule->global_end(); 1966 GI != GE;) { 1967 GlobalVariable *GV = GI++; 1968 UpgradeGlobalVariable(GV); 1969 } 1970 1971 // Force deallocation of memory for these vectors to favor the client that 1972 // want lazy deserialization. 1973 std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits); 1974 std::vector<std::pair<GlobalAlias*, unsigned> >().swap(AliasInits); 1975 return std::error_code(); 1976 } 1977 1978 std::error_code BitcodeReader::ParseModule(bool Resume) { 1979 if (Resume) 1980 Stream.JumpToBit(NextUnreadBit); 1981 else if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 1982 return Error("Invalid record"); 1983 1984 SmallVector<uint64_t, 64> Record; 1985 std::vector<std::string> SectionTable; 1986 std::vector<std::string> GCTable; 1987 1988 // Read all the records for this module. 1989 while (1) { 1990 BitstreamEntry Entry = Stream.advance(); 1991 1992 switch (Entry.Kind) { 1993 case BitstreamEntry::Error: 1994 return Error("Malformed block"); 1995 case BitstreamEntry::EndBlock: 1996 return GlobalCleanup(); 1997 1998 case BitstreamEntry::SubBlock: 1999 switch (Entry.ID) { 2000 default: // Skip unknown content. 2001 if (Stream.SkipBlock()) 2002 return Error("Invalid record"); 2003 break; 2004 case bitc::BLOCKINFO_BLOCK_ID: 2005 if (Stream.ReadBlockInfoBlock()) 2006 return Error("Malformed block"); 2007 break; 2008 case bitc::PARAMATTR_BLOCK_ID: 2009 if (std::error_code EC = ParseAttributeBlock()) 2010 return EC; 2011 break; 2012 case bitc::PARAMATTR_GROUP_BLOCK_ID: 2013 if (std::error_code EC = ParseAttributeGroupBlock()) 2014 return EC; 2015 break; 2016 case bitc::TYPE_BLOCK_ID_NEW: 2017 if (std::error_code EC = ParseTypeTable()) 2018 return EC; 2019 break; 2020 case bitc::VALUE_SYMTAB_BLOCK_ID: 2021 if (std::error_code EC = ParseValueSymbolTable()) 2022 return EC; 2023 SeenValueSymbolTable = true; 2024 break; 2025 case bitc::CONSTANTS_BLOCK_ID: 2026 if (std::error_code EC = ParseConstants()) 2027 return EC; 2028 if (std::error_code EC = ResolveGlobalAndAliasInits()) 2029 return EC; 2030 break; 2031 case bitc::METADATA_BLOCK_ID: 2032 if (std::error_code EC = ParseMetadata()) 2033 return EC; 2034 break; 2035 case bitc::FUNCTION_BLOCK_ID: 2036 // If this is the first function body we've seen, reverse the 2037 // FunctionsWithBodies list. 2038 if (!SeenFirstFunctionBody) { 2039 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 2040 if (std::error_code EC = GlobalCleanup()) 2041 return EC; 2042 SeenFirstFunctionBody = true; 2043 } 2044 2045 if (std::error_code EC = RememberAndSkipFunctionBody()) 2046 return EC; 2047 // For streaming bitcode, suspend parsing when we reach the function 2048 // bodies. Subsequent materialization calls will resume it when 2049 // necessary. For streaming, the function bodies must be at the end of 2050 // the bitcode. If the bitcode file is old, the symbol table will be 2051 // at the end instead and will not have been seen yet. In this case, 2052 // just finish the parse now. 2053 if (LazyStreamer && SeenValueSymbolTable) { 2054 NextUnreadBit = Stream.GetCurrentBitNo(); 2055 return std::error_code(); 2056 } 2057 break; 2058 case bitc::USELIST_BLOCK_ID: 2059 if (std::error_code EC = ParseUseLists()) 2060 return EC; 2061 break; 2062 } 2063 continue; 2064 2065 case BitstreamEntry::Record: 2066 // The interesting case. 2067 break; 2068 } 2069 2070 2071 // Read a record. 2072 switch (Stream.readRecord(Entry.ID, Record)) { 2073 default: break; // Default behavior, ignore unknown content. 2074 case bitc::MODULE_CODE_VERSION: { // VERSION: [version#] 2075 if (Record.size() < 1) 2076 return Error("Invalid record"); 2077 // Only version #0 and #1 are supported so far. 2078 unsigned module_version = Record[0]; 2079 switch (module_version) { 2080 default: 2081 return Error("Invalid value"); 2082 case 0: 2083 UseRelativeIDs = false; 2084 break; 2085 case 1: 2086 UseRelativeIDs = true; 2087 break; 2088 } 2089 break; 2090 } 2091 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 2092 std::string S; 2093 if (ConvertToString(Record, 0, S)) 2094 return Error("Invalid record"); 2095 TheModule->setTargetTriple(S); 2096 break; 2097 } 2098 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 2099 std::string S; 2100 if (ConvertToString(Record, 0, S)) 2101 return Error("Invalid record"); 2102 TheModule->setDataLayout(S); 2103 break; 2104 } 2105 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 2106 std::string S; 2107 if (ConvertToString(Record, 0, S)) 2108 return Error("Invalid record"); 2109 TheModule->setModuleInlineAsm(S); 2110 break; 2111 } 2112 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 2113 // FIXME: Remove in 4.0. 2114 std::string S; 2115 if (ConvertToString(Record, 0, S)) 2116 return Error("Invalid record"); 2117 // Ignore value. 2118 break; 2119 } 2120 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 2121 std::string S; 2122 if (ConvertToString(Record, 0, S)) 2123 return Error("Invalid record"); 2124 SectionTable.push_back(S); 2125 break; 2126 } 2127 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 2128 std::string S; 2129 if (ConvertToString(Record, 0, S)) 2130 return Error("Invalid record"); 2131 GCTable.push_back(S); 2132 break; 2133 } 2134 case bitc::MODULE_CODE_COMDAT: { // COMDAT: [selection_kind, name] 2135 if (Record.size() < 2) 2136 return Error("Invalid record"); 2137 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]); 2138 unsigned ComdatNameSize = Record[1]; 2139 std::string ComdatName; 2140 ComdatName.reserve(ComdatNameSize); 2141 for (unsigned i = 0; i != ComdatNameSize; ++i) 2142 ComdatName += (char)Record[2 + i]; 2143 Comdat *C = TheModule->getOrInsertComdat(ComdatName); 2144 C->setSelectionKind(SK); 2145 ComdatList.push_back(C); 2146 break; 2147 } 2148 // GLOBALVAR: [pointer type, isconst, initid, 2149 // linkage, alignment, section, visibility, threadlocal, 2150 // unnamed_addr, dllstorageclass] 2151 case bitc::MODULE_CODE_GLOBALVAR: { 2152 if (Record.size() < 6) 2153 return Error("Invalid record"); 2154 Type *Ty = getTypeByID(Record[0]); 2155 if (!Ty) 2156 return Error("Invalid record"); 2157 if (!Ty->isPointerTy()) 2158 return Error("Invalid type for value"); 2159 unsigned AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 2160 Ty = cast<PointerType>(Ty)->getElementType(); 2161 2162 bool isConstant = Record[1]; 2163 uint64_t RawLinkage = Record[3]; 2164 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 2165 unsigned Alignment = (1 << Record[4]) >> 1; 2166 std::string Section; 2167 if (Record[5]) { 2168 if (Record[5]-1 >= SectionTable.size()) 2169 return Error("Invalid ID"); 2170 Section = SectionTable[Record[5]-1]; 2171 } 2172 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 2173 // Local linkage must have default visibility. 2174 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage)) 2175 // FIXME: Change to an error if non-default in 4.0. 2176 Visibility = GetDecodedVisibility(Record[6]); 2177 2178 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; 2179 if (Record.size() > 7) 2180 TLM = GetDecodedThreadLocalMode(Record[7]); 2181 2182 bool UnnamedAddr = false; 2183 if (Record.size() > 8) 2184 UnnamedAddr = Record[8]; 2185 2186 bool ExternallyInitialized = false; 2187 if (Record.size() > 9) 2188 ExternallyInitialized = Record[9]; 2189 2190 GlobalVariable *NewGV = 2191 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, "", nullptr, 2192 TLM, AddressSpace, ExternallyInitialized); 2193 NewGV->setAlignment(Alignment); 2194 if (!Section.empty()) 2195 NewGV->setSection(Section); 2196 NewGV->setVisibility(Visibility); 2197 NewGV->setUnnamedAddr(UnnamedAddr); 2198 2199 if (Record.size() > 10) 2200 NewGV->setDLLStorageClass(GetDecodedDLLStorageClass(Record[10])); 2201 else 2202 UpgradeDLLImportExportLinkage(NewGV, RawLinkage); 2203 2204 ValueList.push_back(NewGV); 2205 2206 // Remember which value to use for the global initializer. 2207 if (unsigned InitID = Record[2]) 2208 GlobalInits.push_back(std::make_pair(NewGV, InitID-1)); 2209 2210 if (Record.size() > 11) { 2211 if (unsigned ComdatID = Record[11]) { 2212 assert(ComdatID <= ComdatList.size()); 2213 NewGV->setComdat(ComdatList[ComdatID - 1]); 2214 } 2215 } else if (hasImplicitComdat(RawLinkage)) { 2216 NewGV->setComdat(reinterpret_cast<Comdat *>(1)); 2217 } 2218 break; 2219 } 2220 // FUNCTION: [type, callingconv, isproto, linkage, paramattr, 2221 // alignment, section, visibility, gc, unnamed_addr, 2222 // prologuedata, dllstorageclass, comdat, prefixdata] 2223 case bitc::MODULE_CODE_FUNCTION: { 2224 if (Record.size() < 8) 2225 return Error("Invalid record"); 2226 Type *Ty = getTypeByID(Record[0]); 2227 if (!Ty) 2228 return Error("Invalid record"); 2229 if (!Ty->isPointerTy()) 2230 return Error("Invalid type for value"); 2231 FunctionType *FTy = 2232 dyn_cast<FunctionType>(cast<PointerType>(Ty)->getElementType()); 2233 if (!FTy) 2234 return Error("Invalid type for value"); 2235 2236 Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage, 2237 "", TheModule); 2238 2239 Func->setCallingConv(static_cast<CallingConv::ID>(Record[1])); 2240 bool isProto = Record[2]; 2241 uint64_t RawLinkage = Record[3]; 2242 Func->setLinkage(getDecodedLinkage(RawLinkage)); 2243 Func->setAttributes(getAttributes(Record[4])); 2244 2245 Func->setAlignment((1 << Record[5]) >> 1); 2246 if (Record[6]) { 2247 if (Record[6]-1 >= SectionTable.size()) 2248 return Error("Invalid ID"); 2249 Func->setSection(SectionTable[Record[6]-1]); 2250 } 2251 // Local linkage must have default visibility. 2252 if (!Func->hasLocalLinkage()) 2253 // FIXME: Change to an error if non-default in 4.0. 2254 Func->setVisibility(GetDecodedVisibility(Record[7])); 2255 if (Record.size() > 8 && Record[8]) { 2256 if (Record[8]-1 > GCTable.size()) 2257 return Error("Invalid ID"); 2258 Func->setGC(GCTable[Record[8]-1].c_str()); 2259 } 2260 bool UnnamedAddr = false; 2261 if (Record.size() > 9) 2262 UnnamedAddr = Record[9]; 2263 Func->setUnnamedAddr(UnnamedAddr); 2264 if (Record.size() > 10 && Record[10] != 0) 2265 FunctionPrologues.push_back(std::make_pair(Func, Record[10]-1)); 2266 2267 if (Record.size() > 11) 2268 Func->setDLLStorageClass(GetDecodedDLLStorageClass(Record[11])); 2269 else 2270 UpgradeDLLImportExportLinkage(Func, RawLinkage); 2271 2272 if (Record.size() > 12) { 2273 if (unsigned ComdatID = Record[12]) { 2274 assert(ComdatID <= ComdatList.size()); 2275 Func->setComdat(ComdatList[ComdatID - 1]); 2276 } 2277 } else if (hasImplicitComdat(RawLinkage)) { 2278 Func->setComdat(reinterpret_cast<Comdat *>(1)); 2279 } 2280 2281 if (Record.size() > 13 && Record[13] != 0) 2282 FunctionPrefixes.push_back(std::make_pair(Func, Record[13]-1)); 2283 2284 ValueList.push_back(Func); 2285 2286 // If this is a function with a body, remember the prototype we are 2287 // creating now, so that we can match up the body with them later. 2288 if (!isProto) { 2289 Func->setIsMaterializable(true); 2290 FunctionsWithBodies.push_back(Func); 2291 if (LazyStreamer) 2292 DeferredFunctionInfo[Func] = 0; 2293 } 2294 break; 2295 } 2296 // ALIAS: [alias type, aliasee val#, linkage] 2297 // ALIAS: [alias type, aliasee val#, linkage, visibility, dllstorageclass] 2298 case bitc::MODULE_CODE_ALIAS: { 2299 if (Record.size() < 3) 2300 return Error("Invalid record"); 2301 Type *Ty = getTypeByID(Record[0]); 2302 if (!Ty) 2303 return Error("Invalid record"); 2304 auto *PTy = dyn_cast<PointerType>(Ty); 2305 if (!PTy) 2306 return Error("Invalid type for value"); 2307 2308 auto *NewGA = 2309 GlobalAlias::create(PTy->getElementType(), PTy->getAddressSpace(), 2310 getDecodedLinkage(Record[2]), "", TheModule); 2311 // Old bitcode files didn't have visibility field. 2312 // Local linkage must have default visibility. 2313 if (Record.size() > 3 && !NewGA->hasLocalLinkage()) 2314 // FIXME: Change to an error if non-default in 4.0. 2315 NewGA->setVisibility(GetDecodedVisibility(Record[3])); 2316 if (Record.size() > 4) 2317 NewGA->setDLLStorageClass(GetDecodedDLLStorageClass(Record[4])); 2318 else 2319 UpgradeDLLImportExportLinkage(NewGA, Record[2]); 2320 if (Record.size() > 5) 2321 NewGA->setThreadLocalMode(GetDecodedThreadLocalMode(Record[5])); 2322 if (Record.size() > 6) 2323 NewGA->setUnnamedAddr(Record[6]); 2324 ValueList.push_back(NewGA); 2325 AliasInits.push_back(std::make_pair(NewGA, Record[1])); 2326 break; 2327 } 2328 /// MODULE_CODE_PURGEVALS: [numvals] 2329 case bitc::MODULE_CODE_PURGEVALS: 2330 // Trim down the value list to the specified size. 2331 if (Record.size() < 1 || Record[0] > ValueList.size()) 2332 return Error("Invalid record"); 2333 ValueList.shrinkTo(Record[0]); 2334 break; 2335 } 2336 Record.clear(); 2337 } 2338 } 2339 2340 std::error_code BitcodeReader::ParseBitcodeInto(Module *M) { 2341 TheModule = nullptr; 2342 2343 if (std::error_code EC = InitStream()) 2344 return EC; 2345 2346 // Sniff for the signature. 2347 if (Stream.Read(8) != 'B' || 2348 Stream.Read(8) != 'C' || 2349 Stream.Read(4) != 0x0 || 2350 Stream.Read(4) != 0xC || 2351 Stream.Read(4) != 0xE || 2352 Stream.Read(4) != 0xD) 2353 return Error("Invalid bitcode signature"); 2354 2355 // We expect a number of well-defined blocks, though we don't necessarily 2356 // need to understand them all. 2357 while (1) { 2358 if (Stream.AtEndOfStream()) 2359 return std::error_code(); 2360 2361 BitstreamEntry Entry = 2362 Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs); 2363 2364 switch (Entry.Kind) { 2365 case BitstreamEntry::Error: 2366 return Error("Malformed block"); 2367 case BitstreamEntry::EndBlock: 2368 return std::error_code(); 2369 2370 case BitstreamEntry::SubBlock: 2371 switch (Entry.ID) { 2372 case bitc::BLOCKINFO_BLOCK_ID: 2373 if (Stream.ReadBlockInfoBlock()) 2374 return Error("Malformed block"); 2375 break; 2376 case bitc::MODULE_BLOCK_ID: 2377 // Reject multiple MODULE_BLOCK's in a single bitstream. 2378 if (TheModule) 2379 return Error("Invalid multiple blocks"); 2380 TheModule = M; 2381 if (std::error_code EC = ParseModule(false)) 2382 return EC; 2383 if (LazyStreamer) 2384 return std::error_code(); 2385 break; 2386 default: 2387 if (Stream.SkipBlock()) 2388 return Error("Invalid record"); 2389 break; 2390 } 2391 continue; 2392 case BitstreamEntry::Record: 2393 // There should be no records in the top-level of blocks. 2394 2395 // The ranlib in Xcode 4 will align archive members by appending newlines 2396 // to the end of them. If this file size is a multiple of 4 but not 8, we 2397 // have to read and ignore these final 4 bytes :-( 2398 if (Stream.getAbbrevIDWidth() == 2 && Entry.ID == 2 && 2399 Stream.Read(6) == 2 && Stream.Read(24) == 0xa0a0a && 2400 Stream.AtEndOfStream()) 2401 return std::error_code(); 2402 2403 return Error("Invalid record"); 2404 } 2405 } 2406 } 2407 2408 ErrorOr<std::string> BitcodeReader::parseModuleTriple() { 2409 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 2410 return Error("Invalid record"); 2411 2412 SmallVector<uint64_t, 64> Record; 2413 2414 std::string Triple; 2415 // Read all the records for this module. 2416 while (1) { 2417 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2418 2419 switch (Entry.Kind) { 2420 case BitstreamEntry::SubBlock: // Handled for us already. 2421 case BitstreamEntry::Error: 2422 return Error("Malformed block"); 2423 case BitstreamEntry::EndBlock: 2424 return Triple; 2425 case BitstreamEntry::Record: 2426 // The interesting case. 2427 break; 2428 } 2429 2430 // Read a record. 2431 switch (Stream.readRecord(Entry.ID, Record)) { 2432 default: break; // Default behavior, ignore unknown content. 2433 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 2434 std::string S; 2435 if (ConvertToString(Record, 0, S)) 2436 return Error("Invalid record"); 2437 Triple = S; 2438 break; 2439 } 2440 } 2441 Record.clear(); 2442 } 2443 llvm_unreachable("Exit infinite loop"); 2444 } 2445 2446 ErrorOr<std::string> BitcodeReader::parseTriple() { 2447 if (std::error_code EC = InitStream()) 2448 return EC; 2449 2450 // Sniff for the signature. 2451 if (Stream.Read(8) != 'B' || 2452 Stream.Read(8) != 'C' || 2453 Stream.Read(4) != 0x0 || 2454 Stream.Read(4) != 0xC || 2455 Stream.Read(4) != 0xE || 2456 Stream.Read(4) != 0xD) 2457 return Error("Invalid bitcode signature"); 2458 2459 // We expect a number of well-defined blocks, though we don't necessarily 2460 // need to understand them all. 2461 while (1) { 2462 BitstreamEntry Entry = Stream.advance(); 2463 2464 switch (Entry.Kind) { 2465 case BitstreamEntry::Error: 2466 return Error("Malformed block"); 2467 case BitstreamEntry::EndBlock: 2468 return std::error_code(); 2469 2470 case BitstreamEntry::SubBlock: 2471 if (Entry.ID == bitc::MODULE_BLOCK_ID) 2472 return parseModuleTriple(); 2473 2474 // Ignore other sub-blocks. 2475 if (Stream.SkipBlock()) 2476 return Error("Malformed block"); 2477 continue; 2478 2479 case BitstreamEntry::Record: 2480 Stream.skipRecord(Entry.ID); 2481 continue; 2482 } 2483 } 2484 } 2485 2486 /// ParseMetadataAttachment - Parse metadata attachments. 2487 std::error_code BitcodeReader::ParseMetadataAttachment() { 2488 if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID)) 2489 return Error("Invalid record"); 2490 2491 SmallVector<uint64_t, 64> Record; 2492 while (1) { 2493 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2494 2495 switch (Entry.Kind) { 2496 case BitstreamEntry::SubBlock: // Handled for us already. 2497 case BitstreamEntry::Error: 2498 return Error("Malformed block"); 2499 case BitstreamEntry::EndBlock: 2500 return std::error_code(); 2501 case BitstreamEntry::Record: 2502 // The interesting case. 2503 break; 2504 } 2505 2506 // Read a metadata attachment record. 2507 Record.clear(); 2508 switch (Stream.readRecord(Entry.ID, Record)) { 2509 default: // Default behavior: ignore. 2510 break; 2511 case bitc::METADATA_ATTACHMENT: { 2512 unsigned RecordLength = Record.size(); 2513 if (Record.empty() || (RecordLength - 1) % 2 == 1) 2514 return Error("Invalid record"); 2515 Instruction *Inst = InstructionList[Record[0]]; 2516 for (unsigned i = 1; i != RecordLength; i = i+2) { 2517 unsigned Kind = Record[i]; 2518 DenseMap<unsigned, unsigned>::iterator I = 2519 MDKindMap.find(Kind); 2520 if (I == MDKindMap.end()) 2521 return Error("Invalid ID"); 2522 Metadata *Node = MDValueList.getValueFwdRef(Record[i + 1]); 2523 if (isa<LocalAsMetadata>(Node)) 2524 // Drop the attachment. This used to be legal, but there's no 2525 // upgrade path. 2526 break; 2527 Inst->setMetadata(I->second, cast<MDNode>(Node)); 2528 if (I->second == LLVMContext::MD_tbaa) 2529 InstsWithTBAATag.push_back(Inst); 2530 } 2531 break; 2532 } 2533 } 2534 } 2535 } 2536 2537 /// ParseFunctionBody - Lazily parse the specified function body block. 2538 std::error_code BitcodeReader::ParseFunctionBody(Function *F) { 2539 if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 2540 return Error("Invalid record"); 2541 2542 InstructionList.clear(); 2543 unsigned ModuleValueListSize = ValueList.size(); 2544 unsigned ModuleMDValueListSize = MDValueList.size(); 2545 2546 // Add all the function arguments to the value table. 2547 for(Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I) 2548 ValueList.push_back(I); 2549 2550 unsigned NextValueNo = ValueList.size(); 2551 BasicBlock *CurBB = nullptr; 2552 unsigned CurBBNo = 0; 2553 2554 DebugLoc LastLoc; 2555 auto getLastInstruction = [&]() -> Instruction * { 2556 if (CurBB && !CurBB->empty()) 2557 return &CurBB->back(); 2558 else if (CurBBNo && FunctionBBs[CurBBNo - 1] && 2559 !FunctionBBs[CurBBNo - 1]->empty()) 2560 return &FunctionBBs[CurBBNo - 1]->back(); 2561 return nullptr; 2562 }; 2563 2564 // Read all the records. 2565 SmallVector<uint64_t, 64> Record; 2566 while (1) { 2567 BitstreamEntry Entry = Stream.advance(); 2568 2569 switch (Entry.Kind) { 2570 case BitstreamEntry::Error: 2571 return Error("Malformed block"); 2572 case BitstreamEntry::EndBlock: 2573 goto OutOfRecordLoop; 2574 2575 case BitstreamEntry::SubBlock: 2576 switch (Entry.ID) { 2577 default: // Skip unknown content. 2578 if (Stream.SkipBlock()) 2579 return Error("Invalid record"); 2580 break; 2581 case bitc::CONSTANTS_BLOCK_ID: 2582 if (std::error_code EC = ParseConstants()) 2583 return EC; 2584 NextValueNo = ValueList.size(); 2585 break; 2586 case bitc::VALUE_SYMTAB_BLOCK_ID: 2587 if (std::error_code EC = ParseValueSymbolTable()) 2588 return EC; 2589 break; 2590 case bitc::METADATA_ATTACHMENT_ID: 2591 if (std::error_code EC = ParseMetadataAttachment()) 2592 return EC; 2593 break; 2594 case bitc::METADATA_BLOCK_ID: 2595 if (std::error_code EC = ParseMetadata()) 2596 return EC; 2597 break; 2598 case bitc::USELIST_BLOCK_ID: 2599 if (std::error_code EC = ParseUseLists()) 2600 return EC; 2601 break; 2602 } 2603 continue; 2604 2605 case BitstreamEntry::Record: 2606 // The interesting case. 2607 break; 2608 } 2609 2610 // Read a record. 2611 Record.clear(); 2612 Instruction *I = nullptr; 2613 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 2614 switch (BitCode) { 2615 default: // Default behavior: reject 2616 return Error("Invalid value"); 2617 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks] 2618 if (Record.size() < 1 || Record[0] == 0) 2619 return Error("Invalid record"); 2620 // Create all the basic blocks for the function. 2621 FunctionBBs.resize(Record[0]); 2622 2623 // See if anything took the address of blocks in this function. 2624 auto BBFRI = BasicBlockFwdRefs.find(F); 2625 if (BBFRI == BasicBlockFwdRefs.end()) { 2626 for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i) 2627 FunctionBBs[i] = BasicBlock::Create(Context, "", F); 2628 } else { 2629 auto &BBRefs = BBFRI->second; 2630 // Check for invalid basic block references. 2631 if (BBRefs.size() > FunctionBBs.size()) 2632 return Error("Invalid ID"); 2633 assert(!BBRefs.empty() && "Unexpected empty array"); 2634 assert(!BBRefs.front() && "Invalid reference to entry block"); 2635 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E; 2636 ++I) 2637 if (I < RE && BBRefs[I]) { 2638 BBRefs[I]->insertInto(F); 2639 FunctionBBs[I] = BBRefs[I]; 2640 } else { 2641 FunctionBBs[I] = BasicBlock::Create(Context, "", F); 2642 } 2643 2644 // Erase from the table. 2645 BasicBlockFwdRefs.erase(BBFRI); 2646 } 2647 2648 CurBB = FunctionBBs[0]; 2649 continue; 2650 } 2651 2652 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 2653 // This record indicates that the last instruction is at the same 2654 // location as the previous instruction with a location. 2655 I = getLastInstruction(); 2656 2657 if (!I) 2658 return Error("Invalid record"); 2659 I->setDebugLoc(LastLoc); 2660 I = nullptr; 2661 continue; 2662 2663 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 2664 I = getLastInstruction(); 2665 if (!I || Record.size() < 4) 2666 return Error("Invalid record"); 2667 2668 unsigned Line = Record[0], Col = Record[1]; 2669 unsigned ScopeID = Record[2], IAID = Record[3]; 2670 2671 MDNode *Scope = nullptr, *IA = nullptr; 2672 if (ScopeID) Scope = cast<MDNode>(MDValueList.getValueFwdRef(ScopeID-1)); 2673 if (IAID) IA = cast<MDNode>(MDValueList.getValueFwdRef(IAID-1)); 2674 LastLoc = DebugLoc::get(Line, Col, Scope, IA); 2675 I->setDebugLoc(LastLoc); 2676 I = nullptr; 2677 continue; 2678 } 2679 2680 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 2681 unsigned OpNum = 0; 2682 Value *LHS, *RHS; 2683 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 2684 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 2685 OpNum+1 > Record.size()) 2686 return Error("Invalid record"); 2687 2688 int Opc = GetDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 2689 if (Opc == -1) 2690 return Error("Invalid record"); 2691 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 2692 InstructionList.push_back(I); 2693 if (OpNum < Record.size()) { 2694 if (Opc == Instruction::Add || 2695 Opc == Instruction::Sub || 2696 Opc == Instruction::Mul || 2697 Opc == Instruction::Shl) { 2698 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 2699 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 2700 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 2701 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 2702 } else if (Opc == Instruction::SDiv || 2703 Opc == Instruction::UDiv || 2704 Opc == Instruction::LShr || 2705 Opc == Instruction::AShr) { 2706 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 2707 cast<BinaryOperator>(I)->setIsExact(true); 2708 } else if (isa<FPMathOperator>(I)) { 2709 FastMathFlags FMF; 2710 if (0 != (Record[OpNum] & FastMathFlags::UnsafeAlgebra)) 2711 FMF.setUnsafeAlgebra(); 2712 if (0 != (Record[OpNum] & FastMathFlags::NoNaNs)) 2713 FMF.setNoNaNs(); 2714 if (0 != (Record[OpNum] & FastMathFlags::NoInfs)) 2715 FMF.setNoInfs(); 2716 if (0 != (Record[OpNum] & FastMathFlags::NoSignedZeros)) 2717 FMF.setNoSignedZeros(); 2718 if (0 != (Record[OpNum] & FastMathFlags::AllowReciprocal)) 2719 FMF.setAllowReciprocal(); 2720 if (FMF.any()) 2721 I->setFastMathFlags(FMF); 2722 } 2723 2724 } 2725 break; 2726 } 2727 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 2728 unsigned OpNum = 0; 2729 Value *Op; 2730 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 2731 OpNum+2 != Record.size()) 2732 return Error("Invalid record"); 2733 2734 Type *ResTy = getTypeByID(Record[OpNum]); 2735 int Opc = GetDecodedCastOpcode(Record[OpNum+1]); 2736 if (Opc == -1 || !ResTy) 2737 return Error("Invalid record"); 2738 Instruction *Temp = nullptr; 2739 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) { 2740 if (Temp) { 2741 InstructionList.push_back(Temp); 2742 CurBB->getInstList().push_back(Temp); 2743 } 2744 } else { 2745 I = CastInst::Create((Instruction::CastOps)Opc, Op, ResTy); 2746 } 2747 InstructionList.push_back(I); 2748 break; 2749 } 2750 case bitc::FUNC_CODE_INST_INBOUNDS_GEP: 2751 case bitc::FUNC_CODE_INST_GEP: { // GEP: [n x operands] 2752 unsigned OpNum = 0; 2753 Value *BasePtr; 2754 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr)) 2755 return Error("Invalid record"); 2756 2757 SmallVector<Value*, 16> GEPIdx; 2758 while (OpNum != Record.size()) { 2759 Value *Op; 2760 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 2761 return Error("Invalid record"); 2762 GEPIdx.push_back(Op); 2763 } 2764 2765 I = GetElementPtrInst::Create(BasePtr, GEPIdx); 2766 InstructionList.push_back(I); 2767 if (BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP) 2768 cast<GetElementPtrInst>(I)->setIsInBounds(true); 2769 break; 2770 } 2771 2772 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 2773 // EXTRACTVAL: [opty, opval, n x indices] 2774 unsigned OpNum = 0; 2775 Value *Agg; 2776 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 2777 return Error("Invalid record"); 2778 2779 SmallVector<unsigned, 4> EXTRACTVALIdx; 2780 for (unsigned RecSize = Record.size(); 2781 OpNum != RecSize; ++OpNum) { 2782 uint64_t Index = Record[OpNum]; 2783 if ((unsigned)Index != Index) 2784 return Error("Invalid value"); 2785 EXTRACTVALIdx.push_back((unsigned)Index); 2786 } 2787 2788 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 2789 InstructionList.push_back(I); 2790 break; 2791 } 2792 2793 case bitc::FUNC_CODE_INST_INSERTVAL: { 2794 // INSERTVAL: [opty, opval, opty, opval, n x indices] 2795 unsigned OpNum = 0; 2796 Value *Agg; 2797 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 2798 return Error("Invalid record"); 2799 Value *Val; 2800 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 2801 return Error("Invalid record"); 2802 2803 SmallVector<unsigned, 4> INSERTVALIdx; 2804 for (unsigned RecSize = Record.size(); 2805 OpNum != RecSize; ++OpNum) { 2806 uint64_t Index = Record[OpNum]; 2807 if ((unsigned)Index != Index) 2808 return Error("Invalid value"); 2809 INSERTVALIdx.push_back((unsigned)Index); 2810 } 2811 2812 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 2813 InstructionList.push_back(I); 2814 break; 2815 } 2816 2817 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 2818 // obsolete form of select 2819 // handles select i1 ... in old bitcode 2820 unsigned OpNum = 0; 2821 Value *TrueVal, *FalseVal, *Cond; 2822 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 2823 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 2824 popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond)) 2825 return Error("Invalid record"); 2826 2827 I = SelectInst::Create(Cond, TrueVal, FalseVal); 2828 InstructionList.push_back(I); 2829 break; 2830 } 2831 2832 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 2833 // new form of select 2834 // handles select i1 or select [N x i1] 2835 unsigned OpNum = 0; 2836 Value *TrueVal, *FalseVal, *Cond; 2837 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 2838 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 2839 getValueTypePair(Record, OpNum, NextValueNo, Cond)) 2840 return Error("Invalid record"); 2841 2842 // select condition can be either i1 or [N x i1] 2843 if (VectorType* vector_type = 2844 dyn_cast<VectorType>(Cond->getType())) { 2845 // expect <n x i1> 2846 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 2847 return Error("Invalid type for value"); 2848 } else { 2849 // expect i1 2850 if (Cond->getType() != Type::getInt1Ty(Context)) 2851 return Error("Invalid type for value"); 2852 } 2853 2854 I = SelectInst::Create(Cond, TrueVal, FalseVal); 2855 InstructionList.push_back(I); 2856 break; 2857 } 2858 2859 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 2860 unsigned OpNum = 0; 2861 Value *Vec, *Idx; 2862 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 2863 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 2864 return Error("Invalid record"); 2865 I = ExtractElementInst::Create(Vec, Idx); 2866 InstructionList.push_back(I); 2867 break; 2868 } 2869 2870 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 2871 unsigned OpNum = 0; 2872 Value *Vec, *Elt, *Idx; 2873 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 2874 popValue(Record, OpNum, NextValueNo, 2875 cast<VectorType>(Vec->getType())->getElementType(), Elt) || 2876 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 2877 return Error("Invalid record"); 2878 I = InsertElementInst::Create(Vec, Elt, Idx); 2879 InstructionList.push_back(I); 2880 break; 2881 } 2882 2883 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 2884 unsigned OpNum = 0; 2885 Value *Vec1, *Vec2, *Mask; 2886 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) || 2887 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2)) 2888 return Error("Invalid record"); 2889 2890 if (getValueTypePair(Record, OpNum, NextValueNo, Mask)) 2891 return Error("Invalid record"); 2892 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 2893 InstructionList.push_back(I); 2894 break; 2895 } 2896 2897 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 2898 // Old form of ICmp/FCmp returning bool 2899 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 2900 // both legal on vectors but had different behaviour. 2901 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 2902 // FCmp/ICmp returning bool or vector of bool 2903 2904 unsigned OpNum = 0; 2905 Value *LHS, *RHS; 2906 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 2907 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 2908 OpNum+1 != Record.size()) 2909 return Error("Invalid record"); 2910 2911 if (LHS->getType()->isFPOrFPVectorTy()) 2912 I = new FCmpInst((FCmpInst::Predicate)Record[OpNum], LHS, RHS); 2913 else 2914 I = new ICmpInst((ICmpInst::Predicate)Record[OpNum], LHS, RHS); 2915 InstructionList.push_back(I); 2916 break; 2917 } 2918 2919 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 2920 { 2921 unsigned Size = Record.size(); 2922 if (Size == 0) { 2923 I = ReturnInst::Create(Context); 2924 InstructionList.push_back(I); 2925 break; 2926 } 2927 2928 unsigned OpNum = 0; 2929 Value *Op = nullptr; 2930 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 2931 return Error("Invalid record"); 2932 if (OpNum != Record.size()) 2933 return Error("Invalid record"); 2934 2935 I = ReturnInst::Create(Context, Op); 2936 InstructionList.push_back(I); 2937 break; 2938 } 2939 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 2940 if (Record.size() != 1 && Record.size() != 3) 2941 return Error("Invalid record"); 2942 BasicBlock *TrueDest = getBasicBlock(Record[0]); 2943 if (!TrueDest) 2944 return Error("Invalid record"); 2945 2946 if (Record.size() == 1) { 2947 I = BranchInst::Create(TrueDest); 2948 InstructionList.push_back(I); 2949 } 2950 else { 2951 BasicBlock *FalseDest = getBasicBlock(Record[1]); 2952 Value *Cond = getValue(Record, 2, NextValueNo, 2953 Type::getInt1Ty(Context)); 2954 if (!FalseDest || !Cond) 2955 return Error("Invalid record"); 2956 I = BranchInst::Create(TrueDest, FalseDest, Cond); 2957 InstructionList.push_back(I); 2958 } 2959 break; 2960 } 2961 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 2962 // Check magic 2963 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { 2964 // "New" SwitchInst format with case ranges. The changes to write this 2965 // format were reverted but we still recognize bitcode that uses it. 2966 // Hopefully someday we will have support for case ranges and can use 2967 // this format again. 2968 2969 Type *OpTy = getTypeByID(Record[1]); 2970 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); 2971 2972 Value *Cond = getValue(Record, 2, NextValueNo, OpTy); 2973 BasicBlock *Default = getBasicBlock(Record[3]); 2974 if (!OpTy || !Cond || !Default) 2975 return Error("Invalid record"); 2976 2977 unsigned NumCases = Record[4]; 2978 2979 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 2980 InstructionList.push_back(SI); 2981 2982 unsigned CurIdx = 5; 2983 for (unsigned i = 0; i != NumCases; ++i) { 2984 SmallVector<ConstantInt*, 1> CaseVals; 2985 unsigned NumItems = Record[CurIdx++]; 2986 for (unsigned ci = 0; ci != NumItems; ++ci) { 2987 bool isSingleNumber = Record[CurIdx++]; 2988 2989 APInt Low; 2990 unsigned ActiveWords = 1; 2991 if (ValueBitWidth > 64) 2992 ActiveWords = Record[CurIdx++]; 2993 Low = ReadWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 2994 ValueBitWidth); 2995 CurIdx += ActiveWords; 2996 2997 if (!isSingleNumber) { 2998 ActiveWords = 1; 2999 if (ValueBitWidth > 64) 3000 ActiveWords = Record[CurIdx++]; 3001 APInt High = 3002 ReadWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 3003 ValueBitWidth); 3004 CurIdx += ActiveWords; 3005 3006 // FIXME: It is not clear whether values in the range should be 3007 // compared as signed or unsigned values. The partially 3008 // implemented changes that used this format in the past used 3009 // unsigned comparisons. 3010 for ( ; Low.ule(High); ++Low) 3011 CaseVals.push_back(ConstantInt::get(Context, Low)); 3012 } else 3013 CaseVals.push_back(ConstantInt::get(Context, Low)); 3014 } 3015 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); 3016 for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(), 3017 cve = CaseVals.end(); cvi != cve; ++cvi) 3018 SI->addCase(*cvi, DestBB); 3019 } 3020 I = SI; 3021 break; 3022 } 3023 3024 // Old SwitchInst format without case ranges. 3025 3026 if (Record.size() < 3 || (Record.size() & 1) == 0) 3027 return Error("Invalid record"); 3028 Type *OpTy = getTypeByID(Record[0]); 3029 Value *Cond = getValue(Record, 1, NextValueNo, OpTy); 3030 BasicBlock *Default = getBasicBlock(Record[2]); 3031 if (!OpTy || !Cond || !Default) 3032 return Error("Invalid record"); 3033 unsigned NumCases = (Record.size()-3)/2; 3034 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 3035 InstructionList.push_back(SI); 3036 for (unsigned i = 0, e = NumCases; i != e; ++i) { 3037 ConstantInt *CaseVal = 3038 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy)); 3039 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 3040 if (!CaseVal || !DestBB) { 3041 delete SI; 3042 return Error("Invalid record"); 3043 } 3044 SI->addCase(CaseVal, DestBB); 3045 } 3046 I = SI; 3047 break; 3048 } 3049 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 3050 if (Record.size() < 2) 3051 return Error("Invalid record"); 3052 Type *OpTy = getTypeByID(Record[0]); 3053 Value *Address = getValue(Record, 1, NextValueNo, OpTy); 3054 if (!OpTy || !Address) 3055 return Error("Invalid record"); 3056 unsigned NumDests = Record.size()-2; 3057 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 3058 InstructionList.push_back(IBI); 3059 for (unsigned i = 0, e = NumDests; i != e; ++i) { 3060 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 3061 IBI->addDestination(DestBB); 3062 } else { 3063 delete IBI; 3064 return Error("Invalid record"); 3065 } 3066 } 3067 I = IBI; 3068 break; 3069 } 3070 3071 case bitc::FUNC_CODE_INST_INVOKE: { 3072 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 3073 if (Record.size() < 4) 3074 return Error("Invalid record"); 3075 AttributeSet PAL = getAttributes(Record[0]); 3076 unsigned CCInfo = Record[1]; 3077 BasicBlock *NormalBB = getBasicBlock(Record[2]); 3078 BasicBlock *UnwindBB = getBasicBlock(Record[3]); 3079 3080 unsigned OpNum = 4; 3081 Value *Callee; 3082 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 3083 return Error("Invalid record"); 3084 3085 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 3086 FunctionType *FTy = !CalleeTy ? nullptr : 3087 dyn_cast<FunctionType>(CalleeTy->getElementType()); 3088 3089 // Check that the right number of fixed parameters are here. 3090 if (!FTy || !NormalBB || !UnwindBB || 3091 Record.size() < OpNum+FTy->getNumParams()) 3092 return Error("Invalid record"); 3093 3094 SmallVector<Value*, 16> Ops; 3095 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 3096 Ops.push_back(getValue(Record, OpNum, NextValueNo, 3097 FTy->getParamType(i))); 3098 if (!Ops.back()) 3099 return Error("Invalid record"); 3100 } 3101 3102 if (!FTy->isVarArg()) { 3103 if (Record.size() != OpNum) 3104 return Error("Invalid record"); 3105 } else { 3106 // Read type/value pairs for varargs params. 3107 while (OpNum != Record.size()) { 3108 Value *Op; 3109 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3110 return Error("Invalid record"); 3111 Ops.push_back(Op); 3112 } 3113 } 3114 3115 I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops); 3116 InstructionList.push_back(I); 3117 cast<InvokeInst>(I)->setCallingConv( 3118 static_cast<CallingConv::ID>(CCInfo)); 3119 cast<InvokeInst>(I)->setAttributes(PAL); 3120 break; 3121 } 3122 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 3123 unsigned Idx = 0; 3124 Value *Val = nullptr; 3125 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 3126 return Error("Invalid record"); 3127 I = ResumeInst::Create(Val); 3128 InstructionList.push_back(I); 3129 break; 3130 } 3131 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 3132 I = new UnreachableInst(Context); 3133 InstructionList.push_back(I); 3134 break; 3135 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 3136 if (Record.size() < 1 || ((Record.size()-1)&1)) 3137 return Error("Invalid record"); 3138 Type *Ty = getTypeByID(Record[0]); 3139 if (!Ty) 3140 return Error("Invalid record"); 3141 3142 PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2); 3143 InstructionList.push_back(PN); 3144 3145 for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) { 3146 Value *V; 3147 // With the new function encoding, it is possible that operands have 3148 // negative IDs (for forward references). Use a signed VBR 3149 // representation to keep the encoding small. 3150 if (UseRelativeIDs) 3151 V = getValueSigned(Record, 1+i, NextValueNo, Ty); 3152 else 3153 V = getValue(Record, 1+i, NextValueNo, Ty); 3154 BasicBlock *BB = getBasicBlock(Record[2+i]); 3155 if (!V || !BB) 3156 return Error("Invalid record"); 3157 PN->addIncoming(V, BB); 3158 } 3159 I = PN; 3160 break; 3161 } 3162 3163 case bitc::FUNC_CODE_INST_LANDINGPAD: { 3164 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 3165 unsigned Idx = 0; 3166 if (Record.size() < 4) 3167 return Error("Invalid record"); 3168 Type *Ty = getTypeByID(Record[Idx++]); 3169 if (!Ty) 3170 return Error("Invalid record"); 3171 Value *PersFn = nullptr; 3172 if (getValueTypePair(Record, Idx, NextValueNo, PersFn)) 3173 return Error("Invalid record"); 3174 3175 bool IsCleanup = !!Record[Idx++]; 3176 unsigned NumClauses = Record[Idx++]; 3177 LandingPadInst *LP = LandingPadInst::Create(Ty, PersFn, NumClauses); 3178 LP->setCleanup(IsCleanup); 3179 for (unsigned J = 0; J != NumClauses; ++J) { 3180 LandingPadInst::ClauseType CT = 3181 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 3182 Value *Val; 3183 3184 if (getValueTypePair(Record, Idx, NextValueNo, Val)) { 3185 delete LP; 3186 return Error("Invalid record"); 3187 } 3188 3189 assert((CT != LandingPadInst::Catch || 3190 !isa<ArrayType>(Val->getType())) && 3191 "Catch clause has a invalid type!"); 3192 assert((CT != LandingPadInst::Filter || 3193 isa<ArrayType>(Val->getType())) && 3194 "Filter clause has invalid type!"); 3195 LP->addClause(cast<Constant>(Val)); 3196 } 3197 3198 I = LP; 3199 InstructionList.push_back(I); 3200 break; 3201 } 3202 3203 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 3204 if (Record.size() != 4) 3205 return Error("Invalid record"); 3206 PointerType *Ty = 3207 dyn_cast_or_null<PointerType>(getTypeByID(Record[0])); 3208 Type *OpTy = getTypeByID(Record[1]); 3209 Value *Size = getFnValueByID(Record[2], OpTy); 3210 unsigned AlignRecord = Record[3]; 3211 bool InAlloca = AlignRecord & (1 << 5); 3212 unsigned Align = AlignRecord & ((1 << 5) - 1); 3213 if (!Ty || !Size) 3214 return Error("Invalid record"); 3215 AllocaInst *AI = new AllocaInst(Ty->getElementType(), Size, (1 << Align) >> 1); 3216 AI->setUsedWithInAlloca(InAlloca); 3217 I = AI; 3218 InstructionList.push_back(I); 3219 break; 3220 } 3221 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 3222 unsigned OpNum = 0; 3223 Value *Op; 3224 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 3225 OpNum+2 != Record.size()) 3226 return Error("Invalid record"); 3227 3228 I = new LoadInst(Op, "", Record[OpNum+1], (1 << Record[OpNum]) >> 1); 3229 InstructionList.push_back(I); 3230 break; 3231 } 3232 case bitc::FUNC_CODE_INST_LOADATOMIC: { 3233 // LOADATOMIC: [opty, op, align, vol, ordering, synchscope] 3234 unsigned OpNum = 0; 3235 Value *Op; 3236 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 3237 OpNum+4 != Record.size()) 3238 return Error("Invalid record"); 3239 3240 AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]); 3241 if (Ordering == NotAtomic || Ordering == Release || 3242 Ordering == AcquireRelease) 3243 return Error("Invalid record"); 3244 if (Ordering != NotAtomic && Record[OpNum] == 0) 3245 return Error("Invalid record"); 3246 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]); 3247 3248 I = new LoadInst(Op, "", Record[OpNum+1], (1 << Record[OpNum]) >> 1, 3249 Ordering, SynchScope); 3250 InstructionList.push_back(I); 3251 break; 3252 } 3253 case bitc::FUNC_CODE_INST_STORE: { // STORE2:[ptrty, ptr, val, align, vol] 3254 unsigned OpNum = 0; 3255 Value *Val, *Ptr; 3256 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 3257 popValue(Record, OpNum, NextValueNo, 3258 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 3259 OpNum+2 != Record.size()) 3260 return Error("Invalid record"); 3261 3262 I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1); 3263 InstructionList.push_back(I); 3264 break; 3265 } 3266 case bitc::FUNC_CODE_INST_STOREATOMIC: { 3267 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, synchscope] 3268 unsigned OpNum = 0; 3269 Value *Val, *Ptr; 3270 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 3271 popValue(Record, OpNum, NextValueNo, 3272 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 3273 OpNum+4 != Record.size()) 3274 return Error("Invalid record"); 3275 3276 AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]); 3277 if (Ordering == NotAtomic || Ordering == Acquire || 3278 Ordering == AcquireRelease) 3279 return Error("Invalid record"); 3280 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]); 3281 if (Ordering != NotAtomic && Record[OpNum] == 0) 3282 return Error("Invalid record"); 3283 3284 I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1, 3285 Ordering, SynchScope); 3286 InstructionList.push_back(I); 3287 break; 3288 } 3289 case bitc::FUNC_CODE_INST_CMPXCHG: { 3290 // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, synchscope, 3291 // failureordering?, isweak?] 3292 unsigned OpNum = 0; 3293 Value *Ptr, *Cmp, *New; 3294 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 3295 popValue(Record, OpNum, NextValueNo, 3296 cast<PointerType>(Ptr->getType())->getElementType(), Cmp) || 3297 popValue(Record, OpNum, NextValueNo, 3298 cast<PointerType>(Ptr->getType())->getElementType(), New) || 3299 (Record.size() < OpNum + 3 || Record.size() > OpNum + 5)) 3300 return Error("Invalid record"); 3301 AtomicOrdering SuccessOrdering = GetDecodedOrdering(Record[OpNum+1]); 3302 if (SuccessOrdering == NotAtomic || SuccessOrdering == Unordered) 3303 return Error("Invalid record"); 3304 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+2]); 3305 3306 AtomicOrdering FailureOrdering; 3307 if (Record.size() < 7) 3308 FailureOrdering = 3309 AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering); 3310 else 3311 FailureOrdering = GetDecodedOrdering(Record[OpNum+3]); 3312 3313 I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering, 3314 SynchScope); 3315 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 3316 3317 if (Record.size() < 8) { 3318 // Before weak cmpxchgs existed, the instruction simply returned the 3319 // value loaded from memory, so bitcode files from that era will be 3320 // expecting the first component of a modern cmpxchg. 3321 CurBB->getInstList().push_back(I); 3322 I = ExtractValueInst::Create(I, 0); 3323 } else { 3324 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]); 3325 } 3326 3327 InstructionList.push_back(I); 3328 break; 3329 } 3330 case bitc::FUNC_CODE_INST_ATOMICRMW: { 3331 // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, synchscope] 3332 unsigned OpNum = 0; 3333 Value *Ptr, *Val; 3334 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 3335 popValue(Record, OpNum, NextValueNo, 3336 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 3337 OpNum+4 != Record.size()) 3338 return Error("Invalid record"); 3339 AtomicRMWInst::BinOp Operation = GetDecodedRMWOperation(Record[OpNum]); 3340 if (Operation < AtomicRMWInst::FIRST_BINOP || 3341 Operation > AtomicRMWInst::LAST_BINOP) 3342 return Error("Invalid record"); 3343 AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]); 3344 if (Ordering == NotAtomic || Ordering == Unordered) 3345 return Error("Invalid record"); 3346 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]); 3347 I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SynchScope); 3348 cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]); 3349 InstructionList.push_back(I); 3350 break; 3351 } 3352 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, synchscope] 3353 if (2 != Record.size()) 3354 return Error("Invalid record"); 3355 AtomicOrdering Ordering = GetDecodedOrdering(Record[0]); 3356 if (Ordering == NotAtomic || Ordering == Unordered || 3357 Ordering == Monotonic) 3358 return Error("Invalid record"); 3359 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[1]); 3360 I = new FenceInst(Context, Ordering, SynchScope); 3361 InstructionList.push_back(I); 3362 break; 3363 } 3364 case bitc::FUNC_CODE_INST_CALL: { 3365 // CALL: [paramattrs, cc, fnty, fnid, arg0, arg1...] 3366 if (Record.size() < 3) 3367 return Error("Invalid record"); 3368 3369 AttributeSet PAL = getAttributes(Record[0]); 3370 unsigned CCInfo = Record[1]; 3371 3372 unsigned OpNum = 2; 3373 Value *Callee; 3374 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 3375 return Error("Invalid record"); 3376 3377 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 3378 FunctionType *FTy = nullptr; 3379 if (OpTy) FTy = dyn_cast<FunctionType>(OpTy->getElementType()); 3380 if (!FTy || Record.size() < FTy->getNumParams()+OpNum) 3381 return Error("Invalid record"); 3382 3383 SmallVector<Value*, 16> Args; 3384 // Read the fixed params. 3385 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 3386 if (FTy->getParamType(i)->isLabelTy()) 3387 Args.push_back(getBasicBlock(Record[OpNum])); 3388 else 3389 Args.push_back(getValue(Record, OpNum, NextValueNo, 3390 FTy->getParamType(i))); 3391 if (!Args.back()) 3392 return Error("Invalid record"); 3393 } 3394 3395 // Read type/value pairs for varargs params. 3396 if (!FTy->isVarArg()) { 3397 if (OpNum != Record.size()) 3398 return Error("Invalid record"); 3399 } else { 3400 while (OpNum != Record.size()) { 3401 Value *Op; 3402 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3403 return Error("Invalid record"); 3404 Args.push_back(Op); 3405 } 3406 } 3407 3408 I = CallInst::Create(Callee, Args); 3409 InstructionList.push_back(I); 3410 cast<CallInst>(I)->setCallingConv( 3411 static_cast<CallingConv::ID>((~(1U << 14) & CCInfo) >> 1)); 3412 CallInst::TailCallKind TCK = CallInst::TCK_None; 3413 if (CCInfo & 1) 3414 TCK = CallInst::TCK_Tail; 3415 if (CCInfo & (1 << 14)) 3416 TCK = CallInst::TCK_MustTail; 3417 cast<CallInst>(I)->setTailCallKind(TCK); 3418 cast<CallInst>(I)->setAttributes(PAL); 3419 break; 3420 } 3421 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 3422 if (Record.size() < 3) 3423 return Error("Invalid record"); 3424 Type *OpTy = getTypeByID(Record[0]); 3425 Value *Op = getValue(Record, 1, NextValueNo, OpTy); 3426 Type *ResTy = getTypeByID(Record[2]); 3427 if (!OpTy || !Op || !ResTy) 3428 return Error("Invalid record"); 3429 I = new VAArgInst(Op, ResTy); 3430 InstructionList.push_back(I); 3431 break; 3432 } 3433 } 3434 3435 // Add instruction to end of current BB. If there is no current BB, reject 3436 // this file. 3437 if (!CurBB) { 3438 delete I; 3439 return Error("Invalid instruction with no BB"); 3440 } 3441 CurBB->getInstList().push_back(I); 3442 3443 // If this was a terminator instruction, move to the next block. 3444 if (isa<TerminatorInst>(I)) { 3445 ++CurBBNo; 3446 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr; 3447 } 3448 3449 // Non-void values get registered in the value table for future use. 3450 if (I && !I->getType()->isVoidTy()) 3451 ValueList.AssignValue(I, NextValueNo++); 3452 } 3453 3454 OutOfRecordLoop: 3455 3456 // Check the function list for unresolved values. 3457 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 3458 if (!A->getParent()) { 3459 // We found at least one unresolved value. Nuke them all to avoid leaks. 3460 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 3461 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) { 3462 A->replaceAllUsesWith(UndefValue::get(A->getType())); 3463 delete A; 3464 } 3465 } 3466 return Error("Never resolved value found in function"); 3467 } 3468 } 3469 3470 // FIXME: Check for unresolved forward-declared metadata references 3471 // and clean up leaks. 3472 3473 // Trim the value list down to the size it was before we parsed this function. 3474 ValueList.shrinkTo(ModuleValueListSize); 3475 MDValueList.shrinkTo(ModuleMDValueListSize); 3476 std::vector<BasicBlock*>().swap(FunctionBBs); 3477 return std::error_code(); 3478 } 3479 3480 /// Find the function body in the bitcode stream 3481 std::error_code BitcodeReader::FindFunctionInStream( 3482 Function *F, 3483 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) { 3484 while (DeferredFunctionInfoIterator->second == 0) { 3485 if (Stream.AtEndOfStream()) 3486 return Error("Could not find function in stream"); 3487 // ParseModule will parse the next body in the stream and set its 3488 // position in the DeferredFunctionInfo map. 3489 if (std::error_code EC = ParseModule(true)) 3490 return EC; 3491 } 3492 return std::error_code(); 3493 } 3494 3495 //===----------------------------------------------------------------------===// 3496 // GVMaterializer implementation 3497 //===----------------------------------------------------------------------===// 3498 3499 void BitcodeReader::releaseBuffer() { Buffer.release(); } 3500 3501 std::error_code BitcodeReader::materialize(GlobalValue *GV) { 3502 Function *F = dyn_cast<Function>(GV); 3503 // If it's not a function or is already material, ignore the request. 3504 if (!F || !F->isMaterializable()) 3505 return std::error_code(); 3506 3507 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 3508 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 3509 // If its position is recorded as 0, its body is somewhere in the stream 3510 // but we haven't seen it yet. 3511 if (DFII->second == 0 && LazyStreamer) 3512 if (std::error_code EC = FindFunctionInStream(F, DFII)) 3513 return EC; 3514 3515 // Move the bit stream to the saved position of the deferred function body. 3516 Stream.JumpToBit(DFII->second); 3517 3518 if (std::error_code EC = ParseFunctionBody(F)) 3519 return EC; 3520 F->setIsMaterializable(false); 3521 3522 // Upgrade any old intrinsic calls in the function. 3523 for (UpgradedIntrinsicMap::iterator I = UpgradedIntrinsics.begin(), 3524 E = UpgradedIntrinsics.end(); I != E; ++I) { 3525 if (I->first != I->second) { 3526 for (auto UI = I->first->user_begin(), UE = I->first->user_end(); 3527 UI != UE;) { 3528 if (CallInst* CI = dyn_cast<CallInst>(*UI++)) 3529 UpgradeIntrinsicCall(CI, I->second); 3530 } 3531 } 3532 } 3533 3534 // Bring in any functions that this function forward-referenced via 3535 // blockaddresses. 3536 return materializeForwardReferencedFunctions(); 3537 } 3538 3539 bool BitcodeReader::isDematerializable(const GlobalValue *GV) const { 3540 const Function *F = dyn_cast<Function>(GV); 3541 if (!F || F->isDeclaration()) 3542 return false; 3543 3544 // Dematerializing F would leave dangling references that wouldn't be 3545 // reconnected on re-materialization. 3546 if (BlockAddressesTaken.count(F)) 3547 return false; 3548 3549 return DeferredFunctionInfo.count(const_cast<Function*>(F)); 3550 } 3551 3552 void BitcodeReader::Dematerialize(GlobalValue *GV) { 3553 Function *F = dyn_cast<Function>(GV); 3554 // If this function isn't dematerializable, this is a noop. 3555 if (!F || !isDematerializable(F)) 3556 return; 3557 3558 assert(DeferredFunctionInfo.count(F) && "No info to read function later?"); 3559 3560 // Just forget the function body, we can remat it later. 3561 F->dropAllReferences(); 3562 F->setIsMaterializable(true); 3563 } 3564 3565 std::error_code BitcodeReader::MaterializeModule(Module *M) { 3566 assert(M == TheModule && 3567 "Can only Materialize the Module this BitcodeReader is attached to."); 3568 3569 // Promise to materialize all forward references. 3570 WillMaterializeAllForwardRefs = true; 3571 3572 // Iterate over the module, deserializing any functions that are still on 3573 // disk. 3574 for (Module::iterator F = TheModule->begin(), E = TheModule->end(); 3575 F != E; ++F) { 3576 if (std::error_code EC = materialize(F)) 3577 return EC; 3578 } 3579 // At this point, if there are any function bodies, the current bit is 3580 // pointing to the END_BLOCK record after them. Now make sure the rest 3581 // of the bits in the module have been read. 3582 if (NextUnreadBit) 3583 ParseModule(true); 3584 3585 // Check that all block address forward references got resolved (as we 3586 // promised above). 3587 if (!BasicBlockFwdRefs.empty()) 3588 return Error("Never resolved function from blockaddress"); 3589 3590 // Upgrade any intrinsic calls that slipped through (should not happen!) and 3591 // delete the old functions to clean up. We can't do this unless the entire 3592 // module is materialized because there could always be another function body 3593 // with calls to the old function. 3594 for (std::vector<std::pair<Function*, Function*> >::iterator I = 3595 UpgradedIntrinsics.begin(), E = UpgradedIntrinsics.end(); I != E; ++I) { 3596 if (I->first != I->second) { 3597 for (auto UI = I->first->user_begin(), UE = I->first->user_end(); 3598 UI != UE;) { 3599 if (CallInst* CI = dyn_cast<CallInst>(*UI++)) 3600 UpgradeIntrinsicCall(CI, I->second); 3601 } 3602 if (!I->first->use_empty()) 3603 I->first->replaceAllUsesWith(I->second); 3604 I->first->eraseFromParent(); 3605 } 3606 } 3607 std::vector<std::pair<Function*, Function*> >().swap(UpgradedIntrinsics); 3608 3609 for (unsigned I = 0, E = InstsWithTBAATag.size(); I < E; I++) 3610 UpgradeInstWithTBAATag(InstsWithTBAATag[I]); 3611 3612 UpgradeDebugInfo(*M); 3613 return std::error_code(); 3614 } 3615 3616 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const { 3617 return IdentifiedStructTypes; 3618 } 3619 3620 std::error_code BitcodeReader::InitStream() { 3621 if (LazyStreamer) 3622 return InitLazyStream(); 3623 return InitStreamFromBuffer(); 3624 } 3625 3626 std::error_code BitcodeReader::InitStreamFromBuffer() { 3627 const unsigned char *BufPtr = (const unsigned char*)Buffer->getBufferStart(); 3628 const unsigned char *BufEnd = BufPtr+Buffer->getBufferSize(); 3629 3630 if (Buffer->getBufferSize() & 3) 3631 return Error("Invalid bitcode signature"); 3632 3633 // If we have a wrapper header, parse it and ignore the non-bc file contents. 3634 // The magic number is 0x0B17C0DE stored in little endian. 3635 if (isBitcodeWrapper(BufPtr, BufEnd)) 3636 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 3637 return Error("Invalid bitcode wrapper header"); 3638 3639 StreamFile.reset(new BitstreamReader(BufPtr, BufEnd)); 3640 Stream.init(&*StreamFile); 3641 3642 return std::error_code(); 3643 } 3644 3645 std::error_code BitcodeReader::InitLazyStream() { 3646 // Check and strip off the bitcode wrapper; BitstreamReader expects never to 3647 // see it. 3648 auto OwnedBytes = llvm::make_unique<StreamingMemoryObject>(LazyStreamer); 3649 StreamingMemoryObject &Bytes = *OwnedBytes; 3650 StreamFile = llvm::make_unique<BitstreamReader>(std::move(OwnedBytes)); 3651 Stream.init(&*StreamFile); 3652 3653 unsigned char buf[16]; 3654 if (Bytes.readBytes(buf, 16, 0) != 16) 3655 return Error("Invalid bitcode signature"); 3656 3657 if (!isBitcode(buf, buf + 16)) 3658 return Error("Invalid bitcode signature"); 3659 3660 if (isBitcodeWrapper(buf, buf + 4)) { 3661 const unsigned char *bitcodeStart = buf; 3662 const unsigned char *bitcodeEnd = buf + 16; 3663 SkipBitcodeWrapperHeader(bitcodeStart, bitcodeEnd, false); 3664 Bytes.dropLeadingBytes(bitcodeStart - buf); 3665 Bytes.setKnownObjectSize(bitcodeEnd - bitcodeStart); 3666 } 3667 return std::error_code(); 3668 } 3669 3670 namespace { 3671 class BitcodeErrorCategoryType : public std::error_category { 3672 const char *name() const LLVM_NOEXCEPT override { 3673 return "llvm.bitcode"; 3674 } 3675 std::string message(int IE) const override { 3676 BitcodeError E = static_cast<BitcodeError>(IE); 3677 switch (E) { 3678 case BitcodeError::InvalidBitcodeSignature: 3679 return "Invalid bitcode signature"; 3680 case BitcodeError::CorruptedBitcode: 3681 return "Corrupted bitcode"; 3682 } 3683 llvm_unreachable("Unknown error type!"); 3684 } 3685 }; 3686 } 3687 3688 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory; 3689 3690 const std::error_category &llvm::BitcodeErrorCategory() { 3691 return *ErrorCategory; 3692 } 3693 3694 //===----------------------------------------------------------------------===// 3695 // External interface 3696 //===----------------------------------------------------------------------===// 3697 3698 /// \brief Get a lazy one-at-time loading module from bitcode. 3699 /// 3700 /// This isn't always used in a lazy context. In particular, it's also used by 3701 /// \a parseBitcodeFile(). If this is truly lazy, then we need to eagerly pull 3702 /// in forward-referenced functions from block address references. 3703 /// 3704 /// \param[in] WillMaterializeAll Set to \c true if the caller promises to 3705 /// materialize everything -- in particular, if this isn't truly lazy. 3706 static ErrorOr<Module *> 3707 getLazyBitcodeModuleImpl(std::unique_ptr<MemoryBuffer> &&Buffer, 3708 LLVMContext &Context, bool WillMaterializeAll, 3709 DiagnosticHandlerFunction DiagnosticHandler) { 3710 Module *M = new Module(Buffer->getBufferIdentifier(), Context); 3711 BitcodeReader *R = 3712 new BitcodeReader(Buffer.get(), Context, DiagnosticHandler); 3713 M->setMaterializer(R); 3714 3715 auto cleanupOnError = [&](std::error_code EC) { 3716 R->releaseBuffer(); // Never take ownership on error. 3717 delete M; // Also deletes R. 3718 return EC; 3719 }; 3720 3721 if (std::error_code EC = R->ParseBitcodeInto(M)) 3722 return cleanupOnError(EC); 3723 3724 if (!WillMaterializeAll) 3725 // Resolve forward references from blockaddresses. 3726 if (std::error_code EC = R->materializeForwardReferencedFunctions()) 3727 return cleanupOnError(EC); 3728 3729 Buffer.release(); // The BitcodeReader owns it now. 3730 return M; 3731 } 3732 3733 ErrorOr<Module *> 3734 llvm::getLazyBitcodeModule(std::unique_ptr<MemoryBuffer> &&Buffer, 3735 LLVMContext &Context, 3736 DiagnosticHandlerFunction DiagnosticHandler) { 3737 return getLazyBitcodeModuleImpl(std::move(Buffer), Context, false, 3738 DiagnosticHandler); 3739 } 3740 3741 ErrorOr<std::unique_ptr<Module>> 3742 llvm::getStreamedBitcodeModule(StringRef Name, DataStreamer *Streamer, 3743 LLVMContext &Context, 3744 DiagnosticHandlerFunction DiagnosticHandler) { 3745 std::unique_ptr<Module> M = make_unique<Module>(Name, Context); 3746 BitcodeReader *R = new BitcodeReader(Streamer, Context, DiagnosticHandler); 3747 M->setMaterializer(R); 3748 if (std::error_code EC = R->ParseBitcodeInto(M.get())) 3749 return EC; 3750 return std::move(M); 3751 } 3752 3753 ErrorOr<Module *> 3754 llvm::parseBitcodeFile(MemoryBufferRef Buffer, LLVMContext &Context, 3755 DiagnosticHandlerFunction DiagnosticHandler) { 3756 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 3757 ErrorOr<Module *> ModuleOrErr = getLazyBitcodeModuleImpl( 3758 std::move(Buf), Context, true, DiagnosticHandler); 3759 if (!ModuleOrErr) 3760 return ModuleOrErr; 3761 Module *M = ModuleOrErr.get(); 3762 // Read in the entire module, and destroy the BitcodeReader. 3763 if (std::error_code EC = M->materializeAllPermanently()) { 3764 delete M; 3765 return EC; 3766 } 3767 3768 // TODO: Restore the use-lists to the in-memory state when the bitcode was 3769 // written. We must defer until the Module has been fully materialized. 3770 3771 return M; 3772 } 3773 3774 std::string 3775 llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer, LLVMContext &Context, 3776 DiagnosticHandlerFunction DiagnosticHandler) { 3777 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 3778 auto R = llvm::make_unique<BitcodeReader>(Buf.release(), Context, 3779 DiagnosticHandler); 3780 ErrorOr<std::string> Triple = R->parseTriple(); 3781 if (Triple.getError()) 3782 return ""; 3783 return Triple.get(); 3784 } 3785