1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "llvm/Bitcode/BitcodeReader.h" 11 #include "MetadataLoader.h" 12 #include "ValueList.h" 13 #include "llvm/ADT/APFloat.h" 14 #include "llvm/ADT/APInt.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallString.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/StringRef.h" 22 #include "llvm/ADT/Triple.h" 23 #include "llvm/ADT/Twine.h" 24 #include "llvm/Bitcode/BitstreamReader.h" 25 #include "llvm/Bitcode/LLVMBitCodes.h" 26 #include "llvm/Config/llvm-config.h" 27 #include "llvm/IR/Argument.h" 28 #include "llvm/IR/Attributes.h" 29 #include "llvm/IR/AutoUpgrade.h" 30 #include "llvm/IR/BasicBlock.h" 31 #include "llvm/IR/CallSite.h" 32 #include "llvm/IR/CallingConv.h" 33 #include "llvm/IR/Comdat.h" 34 #include "llvm/IR/Constant.h" 35 #include "llvm/IR/Constants.h" 36 #include "llvm/IR/DataLayout.h" 37 #include "llvm/IR/DebugInfo.h" 38 #include "llvm/IR/DebugInfoMetadata.h" 39 #include "llvm/IR/DebugLoc.h" 40 #include "llvm/IR/DerivedTypes.h" 41 #include "llvm/IR/Function.h" 42 #include "llvm/IR/GVMaterializer.h" 43 #include "llvm/IR/GlobalAlias.h" 44 #include "llvm/IR/GlobalIFunc.h" 45 #include "llvm/IR/GlobalIndirectSymbol.h" 46 #include "llvm/IR/GlobalObject.h" 47 #include "llvm/IR/GlobalValue.h" 48 #include "llvm/IR/GlobalVariable.h" 49 #include "llvm/IR/InlineAsm.h" 50 #include "llvm/IR/InstIterator.h" 51 #include "llvm/IR/InstrTypes.h" 52 #include "llvm/IR/Instruction.h" 53 #include "llvm/IR/Instructions.h" 54 #include "llvm/IR/Intrinsics.h" 55 #include "llvm/IR/LLVMContext.h" 56 #include "llvm/IR/Metadata.h" 57 #include "llvm/IR/Module.h" 58 #include "llvm/IR/ModuleSummaryIndex.h" 59 #include "llvm/IR/Operator.h" 60 #include "llvm/IR/Type.h" 61 #include "llvm/IR/Value.h" 62 #include "llvm/IR/Verifier.h" 63 #include "llvm/Support/AtomicOrdering.h" 64 #include "llvm/Support/Casting.h" 65 #include "llvm/Support/CommandLine.h" 66 #include "llvm/Support/Compiler.h" 67 #include "llvm/Support/Debug.h" 68 #include "llvm/Support/Error.h" 69 #include "llvm/Support/ErrorHandling.h" 70 #include "llvm/Support/ErrorOr.h" 71 #include "llvm/Support/ManagedStatic.h" 72 #include "llvm/Support/MathExtras.h" 73 #include "llvm/Support/MemoryBuffer.h" 74 #include "llvm/Support/raw_ostream.h" 75 #include <algorithm> 76 #include <cassert> 77 #include <cstddef> 78 #include <cstdint> 79 #include <deque> 80 #include <map> 81 #include <memory> 82 #include <set> 83 #include <string> 84 #include <system_error> 85 #include <tuple> 86 #include <utility> 87 #include <vector> 88 89 using namespace llvm; 90 91 static cl::opt<bool> PrintSummaryGUIDs( 92 "print-summary-global-ids", cl::init(false), cl::Hidden, 93 cl::desc( 94 "Print the global id for each value when reading the module summary")); 95 96 namespace { 97 98 enum { 99 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 100 }; 101 102 } // end anonymous namespace 103 104 static Error error(const Twine &Message) { 105 return make_error<StringError>( 106 Message, make_error_code(BitcodeError::CorruptedBitcode)); 107 } 108 109 /// Helper to read the header common to all bitcode files. 110 static bool hasValidBitcodeHeader(BitstreamCursor &Stream) { 111 // Sniff for the signature. 112 if (!Stream.canSkipToPos(4) || 113 Stream.Read(8) != 'B' || 114 Stream.Read(8) != 'C' || 115 Stream.Read(4) != 0x0 || 116 Stream.Read(4) != 0xC || 117 Stream.Read(4) != 0xE || 118 Stream.Read(4) != 0xD) 119 return false; 120 return true; 121 } 122 123 static Expected<BitstreamCursor> initStream(MemoryBufferRef Buffer) { 124 const unsigned char *BufPtr = (const unsigned char *)Buffer.getBufferStart(); 125 const unsigned char *BufEnd = BufPtr + Buffer.getBufferSize(); 126 127 if (Buffer.getBufferSize() & 3) 128 return error("Invalid bitcode signature"); 129 130 // If we have a wrapper header, parse it and ignore the non-bc file contents. 131 // The magic number is 0x0B17C0DE stored in little endian. 132 if (isBitcodeWrapper(BufPtr, BufEnd)) 133 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 134 return error("Invalid bitcode wrapper header"); 135 136 BitstreamCursor Stream(ArrayRef<uint8_t>(BufPtr, BufEnd)); 137 if (!hasValidBitcodeHeader(Stream)) 138 return error("Invalid bitcode signature"); 139 140 return std::move(Stream); 141 } 142 143 /// Convert a string from a record into an std::string, return true on failure. 144 template <typename StrTy> 145 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx, 146 StrTy &Result) { 147 if (Idx > Record.size()) 148 return true; 149 150 for (unsigned i = Idx, e = Record.size(); i != e; ++i) 151 Result += (char)Record[i]; 152 return false; 153 } 154 155 // Strip all the TBAA attachment for the module. 156 static void stripTBAA(Module *M) { 157 for (auto &F : *M) { 158 if (F.isMaterializable()) 159 continue; 160 for (auto &I : instructions(F)) 161 I.setMetadata(LLVMContext::MD_tbaa, nullptr); 162 } 163 } 164 165 /// Read the "IDENTIFICATION_BLOCK_ID" block, do some basic enforcement on the 166 /// "epoch" encoded in the bitcode, and return the producer name if any. 167 static Expected<std::string> readIdentificationBlock(BitstreamCursor &Stream) { 168 if (Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID)) 169 return error("Invalid record"); 170 171 // Read all the records. 172 SmallVector<uint64_t, 64> Record; 173 174 std::string ProducerIdentification; 175 176 while (true) { 177 BitstreamEntry Entry = Stream.advance(); 178 179 switch (Entry.Kind) { 180 default: 181 case BitstreamEntry::Error: 182 return error("Malformed block"); 183 case BitstreamEntry::EndBlock: 184 return ProducerIdentification; 185 case BitstreamEntry::Record: 186 // The interesting case. 187 break; 188 } 189 190 // Read a record. 191 Record.clear(); 192 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 193 switch (BitCode) { 194 default: // Default behavior: reject 195 return error("Invalid value"); 196 case bitc::IDENTIFICATION_CODE_STRING: // IDENTIFICATION: [strchr x N] 197 convertToString(Record, 0, ProducerIdentification); 198 break; 199 case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#] 200 unsigned epoch = (unsigned)Record[0]; 201 if (epoch != bitc::BITCODE_CURRENT_EPOCH) { 202 return error( 203 Twine("Incompatible epoch: Bitcode '") + Twine(epoch) + 204 "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'"); 205 } 206 } 207 } 208 } 209 } 210 211 static Expected<std::string> readIdentificationCode(BitstreamCursor &Stream) { 212 // We expect a number of well-defined blocks, though we don't necessarily 213 // need to understand them all. 214 while (true) { 215 if (Stream.AtEndOfStream()) 216 return ""; 217 218 BitstreamEntry Entry = Stream.advance(); 219 switch (Entry.Kind) { 220 case BitstreamEntry::EndBlock: 221 case BitstreamEntry::Error: 222 return error("Malformed block"); 223 224 case BitstreamEntry::SubBlock: 225 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) 226 return readIdentificationBlock(Stream); 227 228 // Ignore other sub-blocks. 229 if (Stream.SkipBlock()) 230 return error("Malformed block"); 231 continue; 232 case BitstreamEntry::Record: 233 Stream.skipRecord(Entry.ID); 234 continue; 235 } 236 } 237 } 238 239 static Expected<bool> hasObjCCategoryInModule(BitstreamCursor &Stream) { 240 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 241 return error("Invalid record"); 242 243 SmallVector<uint64_t, 64> Record; 244 // Read all the records for this module. 245 246 while (true) { 247 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 248 249 switch (Entry.Kind) { 250 case BitstreamEntry::SubBlock: // Handled for us already. 251 case BitstreamEntry::Error: 252 return error("Malformed block"); 253 case BitstreamEntry::EndBlock: 254 return false; 255 case BitstreamEntry::Record: 256 // The interesting case. 257 break; 258 } 259 260 // Read a record. 261 switch (Stream.readRecord(Entry.ID, Record)) { 262 default: 263 break; // Default behavior, ignore unknown content. 264 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 265 std::string S; 266 if (convertToString(Record, 0, S)) 267 return error("Invalid record"); 268 // Check for the i386 and other (x86_64, ARM) conventions 269 if (S.find("__DATA,__objc_catlist") != std::string::npos || 270 S.find("__OBJC,__category") != std::string::npos) 271 return true; 272 break; 273 } 274 } 275 Record.clear(); 276 } 277 llvm_unreachable("Exit infinite loop"); 278 } 279 280 static Expected<bool> hasObjCCategory(BitstreamCursor &Stream) { 281 // We expect a number of well-defined blocks, though we don't necessarily 282 // need to understand them all. 283 while (true) { 284 BitstreamEntry Entry = Stream.advance(); 285 286 switch (Entry.Kind) { 287 case BitstreamEntry::Error: 288 return error("Malformed block"); 289 case BitstreamEntry::EndBlock: 290 return false; 291 292 case BitstreamEntry::SubBlock: 293 if (Entry.ID == bitc::MODULE_BLOCK_ID) 294 return hasObjCCategoryInModule(Stream); 295 296 // Ignore other sub-blocks. 297 if (Stream.SkipBlock()) 298 return error("Malformed block"); 299 continue; 300 301 case BitstreamEntry::Record: 302 Stream.skipRecord(Entry.ID); 303 continue; 304 } 305 } 306 } 307 308 static Expected<std::string> readModuleTriple(BitstreamCursor &Stream) { 309 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 310 return error("Invalid record"); 311 312 SmallVector<uint64_t, 64> Record; 313 314 std::string Triple; 315 316 // Read all the records for this module. 317 while (true) { 318 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 319 320 switch (Entry.Kind) { 321 case BitstreamEntry::SubBlock: // Handled for us already. 322 case BitstreamEntry::Error: 323 return error("Malformed block"); 324 case BitstreamEntry::EndBlock: 325 return Triple; 326 case BitstreamEntry::Record: 327 // The interesting case. 328 break; 329 } 330 331 // Read a record. 332 switch (Stream.readRecord(Entry.ID, Record)) { 333 default: break; // Default behavior, ignore unknown content. 334 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 335 std::string S; 336 if (convertToString(Record, 0, S)) 337 return error("Invalid record"); 338 Triple = S; 339 break; 340 } 341 } 342 Record.clear(); 343 } 344 llvm_unreachable("Exit infinite loop"); 345 } 346 347 static Expected<std::string> readTriple(BitstreamCursor &Stream) { 348 // We expect a number of well-defined blocks, though we don't necessarily 349 // need to understand them all. 350 while (true) { 351 BitstreamEntry Entry = Stream.advance(); 352 353 switch (Entry.Kind) { 354 case BitstreamEntry::Error: 355 return error("Malformed block"); 356 case BitstreamEntry::EndBlock: 357 return ""; 358 359 case BitstreamEntry::SubBlock: 360 if (Entry.ID == bitc::MODULE_BLOCK_ID) 361 return readModuleTriple(Stream); 362 363 // Ignore other sub-blocks. 364 if (Stream.SkipBlock()) 365 return error("Malformed block"); 366 continue; 367 368 case BitstreamEntry::Record: 369 Stream.skipRecord(Entry.ID); 370 continue; 371 } 372 } 373 } 374 375 namespace { 376 377 class BitcodeReaderBase { 378 protected: 379 BitcodeReaderBase(BitstreamCursor Stream, StringRef Strtab) 380 : Stream(std::move(Stream)), Strtab(Strtab) { 381 this->Stream.setBlockInfo(&BlockInfo); 382 } 383 384 BitstreamBlockInfo BlockInfo; 385 BitstreamCursor Stream; 386 StringRef Strtab; 387 388 /// In version 2 of the bitcode we store names of global values and comdats in 389 /// a string table rather than in the VST. 390 bool UseStrtab = false; 391 392 Expected<unsigned> parseVersionRecord(ArrayRef<uint64_t> Record); 393 394 /// If this module uses a string table, pop the reference to the string table 395 /// and return the referenced string and the rest of the record. Otherwise 396 /// just return the record itself. 397 std::pair<StringRef, ArrayRef<uint64_t>> 398 readNameFromStrtab(ArrayRef<uint64_t> Record); 399 400 bool readBlockInfo(); 401 402 // Contains an arbitrary and optional string identifying the bitcode producer 403 std::string ProducerIdentification; 404 405 Error error(const Twine &Message); 406 }; 407 408 } // end anonymous namespace 409 410 Error BitcodeReaderBase::error(const Twine &Message) { 411 std::string FullMsg = Message.str(); 412 if (!ProducerIdentification.empty()) 413 FullMsg += " (Producer: '" + ProducerIdentification + "' Reader: 'LLVM " + 414 LLVM_VERSION_STRING "')"; 415 return ::error(FullMsg); 416 } 417 418 Expected<unsigned> 419 BitcodeReaderBase::parseVersionRecord(ArrayRef<uint64_t> Record) { 420 if (Record.empty()) 421 return error("Invalid record"); 422 unsigned ModuleVersion = Record[0]; 423 if (ModuleVersion > 2) 424 return error("Invalid value"); 425 UseStrtab = ModuleVersion >= 2; 426 return ModuleVersion; 427 } 428 429 std::pair<StringRef, ArrayRef<uint64_t>> 430 BitcodeReaderBase::readNameFromStrtab(ArrayRef<uint64_t> Record) { 431 if (!UseStrtab) 432 return {"", Record}; 433 // Invalid reference. Let the caller complain about the record being empty. 434 if (Record[0] + Record[1] > Strtab.size()) 435 return {"", {}}; 436 return {StringRef(Strtab.data() + Record[0], Record[1]), Record.slice(2)}; 437 } 438 439 namespace { 440 441 class BitcodeReader : public BitcodeReaderBase, public GVMaterializer { 442 LLVMContext &Context; 443 Module *TheModule = nullptr; 444 // Next offset to start scanning for lazy parsing of function bodies. 445 uint64_t NextUnreadBit = 0; 446 // Last function offset found in the VST. 447 uint64_t LastFunctionBlockBit = 0; 448 bool SeenValueSymbolTable = false; 449 uint64_t VSTOffset = 0; 450 451 std::vector<std::string> SectionTable; 452 std::vector<std::string> GCTable; 453 454 std::vector<Type*> TypeList; 455 BitcodeReaderValueList ValueList; 456 Optional<MetadataLoader> MDLoader; 457 std::vector<Comdat *> ComdatList; 458 SmallVector<Instruction *, 64> InstructionList; 459 460 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInits; 461 std::vector<std::pair<GlobalIndirectSymbol *, unsigned>> IndirectSymbolInits; 462 std::vector<std::pair<Function *, unsigned>> FunctionPrefixes; 463 std::vector<std::pair<Function *, unsigned>> FunctionPrologues; 464 std::vector<std::pair<Function *, unsigned>> FunctionPersonalityFns; 465 466 /// The set of attributes by index. Index zero in the file is for null, and 467 /// is thus not represented here. As such all indices are off by one. 468 std::vector<AttributeList> MAttributes; 469 470 /// The set of attribute groups. 471 std::map<unsigned, AttributeList> MAttributeGroups; 472 473 /// While parsing a function body, this is a list of the basic blocks for the 474 /// function. 475 std::vector<BasicBlock*> FunctionBBs; 476 477 // When reading the module header, this list is populated with functions that 478 // have bodies later in the file. 479 std::vector<Function*> FunctionsWithBodies; 480 481 // When intrinsic functions are encountered which require upgrading they are 482 // stored here with their replacement function. 483 using UpdatedIntrinsicMap = DenseMap<Function *, Function *>; 484 UpdatedIntrinsicMap UpgradedIntrinsics; 485 // Intrinsics which were remangled because of types rename 486 UpdatedIntrinsicMap RemangledIntrinsics; 487 488 // Several operations happen after the module header has been read, but 489 // before function bodies are processed. This keeps track of whether 490 // we've done this yet. 491 bool SeenFirstFunctionBody = false; 492 493 /// When function bodies are initially scanned, this map contains info about 494 /// where to find deferred function body in the stream. 495 DenseMap<Function*, uint64_t> DeferredFunctionInfo; 496 497 /// When Metadata block is initially scanned when parsing the module, we may 498 /// choose to defer parsing of the metadata. This vector contains info about 499 /// which Metadata blocks are deferred. 500 std::vector<uint64_t> DeferredMetadataInfo; 501 502 /// These are basic blocks forward-referenced by block addresses. They are 503 /// inserted lazily into functions when they're loaded. The basic block ID is 504 /// its index into the vector. 505 DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs; 506 std::deque<Function *> BasicBlockFwdRefQueue; 507 508 /// Indicates that we are using a new encoding for instruction operands where 509 /// most operands in the current FUNCTION_BLOCK are encoded relative to the 510 /// instruction number, for a more compact encoding. Some instruction 511 /// operands are not relative to the instruction ID: basic block numbers, and 512 /// types. Once the old style function blocks have been phased out, we would 513 /// not need this flag. 514 bool UseRelativeIDs = false; 515 516 /// True if all functions will be materialized, negating the need to process 517 /// (e.g.) blockaddress forward references. 518 bool WillMaterializeAllForwardRefs = false; 519 520 bool StripDebugInfo = false; 521 TBAAVerifier TBAAVerifyHelper; 522 523 std::vector<std::string> BundleTags; 524 SmallVector<SyncScope::ID, 8> SSIDs; 525 526 public: 527 BitcodeReader(BitstreamCursor Stream, StringRef Strtab, 528 StringRef ProducerIdentification, LLVMContext &Context); 529 530 Error materializeForwardReferencedFunctions(); 531 532 Error materialize(GlobalValue *GV) override; 533 Error materializeModule() override; 534 std::vector<StructType *> getIdentifiedStructTypes() const override; 535 536 /// Main interface to parsing a bitcode buffer. 537 /// \returns true if an error occurred. 538 Error parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata = false, 539 bool IsImporting = false); 540 541 static uint64_t decodeSignRotatedValue(uint64_t V); 542 543 /// Materialize any deferred Metadata block. 544 Error materializeMetadata() override; 545 546 void setStripDebugInfo() override; 547 548 private: 549 std::vector<StructType *> IdentifiedStructTypes; 550 StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name); 551 StructType *createIdentifiedStructType(LLVMContext &Context); 552 553 Type *getTypeByID(unsigned ID); 554 555 Value *getFnValueByID(unsigned ID, Type *Ty) { 556 if (Ty && Ty->isMetadataTy()) 557 return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID)); 558 return ValueList.getValueFwdRef(ID, Ty); 559 } 560 561 Metadata *getFnMetadataByID(unsigned ID) { 562 return MDLoader->getMetadataFwdRefOrLoad(ID); 563 } 564 565 BasicBlock *getBasicBlock(unsigned ID) const { 566 if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID 567 return FunctionBBs[ID]; 568 } 569 570 AttributeList getAttributes(unsigned i) const { 571 if (i-1 < MAttributes.size()) 572 return MAttributes[i-1]; 573 return AttributeList(); 574 } 575 576 /// Read a value/type pair out of the specified record from slot 'Slot'. 577 /// Increment Slot past the number of slots used in the record. Return true on 578 /// failure. 579 bool getValueTypePair(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 580 unsigned InstNum, Value *&ResVal) { 581 if (Slot == Record.size()) return true; 582 unsigned ValNo = (unsigned)Record[Slot++]; 583 // Adjust the ValNo, if it was encoded relative to the InstNum. 584 if (UseRelativeIDs) 585 ValNo = InstNum - ValNo; 586 if (ValNo < InstNum) { 587 // If this is not a forward reference, just return the value we already 588 // have. 589 ResVal = getFnValueByID(ValNo, nullptr); 590 return ResVal == nullptr; 591 } 592 if (Slot == Record.size()) 593 return true; 594 595 unsigned TypeNo = (unsigned)Record[Slot++]; 596 ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo)); 597 return ResVal == nullptr; 598 } 599 600 /// Read a value out of the specified record from slot 'Slot'. Increment Slot 601 /// past the number of slots used by the value in the record. Return true if 602 /// there is an error. 603 bool popValue(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 604 unsigned InstNum, Type *Ty, Value *&ResVal) { 605 if (getValue(Record, Slot, InstNum, Ty, ResVal)) 606 return true; 607 // All values currently take a single record slot. 608 ++Slot; 609 return false; 610 } 611 612 /// Like popValue, but does not increment the Slot number. 613 bool getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 614 unsigned InstNum, Type *Ty, Value *&ResVal) { 615 ResVal = getValue(Record, Slot, InstNum, Ty); 616 return ResVal == nullptr; 617 } 618 619 /// Version of getValue that returns ResVal directly, or 0 if there is an 620 /// error. 621 Value *getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 622 unsigned InstNum, Type *Ty) { 623 if (Slot == Record.size()) return nullptr; 624 unsigned ValNo = (unsigned)Record[Slot]; 625 // Adjust the ValNo, if it was encoded relative to the InstNum. 626 if (UseRelativeIDs) 627 ValNo = InstNum - ValNo; 628 return getFnValueByID(ValNo, Ty); 629 } 630 631 /// Like getValue, but decodes signed VBRs. 632 Value *getValueSigned(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 633 unsigned InstNum, Type *Ty) { 634 if (Slot == Record.size()) return nullptr; 635 unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]); 636 // Adjust the ValNo, if it was encoded relative to the InstNum. 637 if (UseRelativeIDs) 638 ValNo = InstNum - ValNo; 639 return getFnValueByID(ValNo, Ty); 640 } 641 642 /// Converts alignment exponent (i.e. power of two (or zero)) to the 643 /// corresponding alignment to use. If alignment is too large, returns 644 /// a corresponding error code. 645 Error parseAlignmentValue(uint64_t Exponent, unsigned &Alignment); 646 Error parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind); 647 Error parseModule(uint64_t ResumeBit, bool ShouldLazyLoadMetadata = false); 648 649 Error parseComdatRecord(ArrayRef<uint64_t> Record); 650 Error parseGlobalVarRecord(ArrayRef<uint64_t> Record); 651 Error parseFunctionRecord(ArrayRef<uint64_t> Record); 652 Error parseGlobalIndirectSymbolRecord(unsigned BitCode, 653 ArrayRef<uint64_t> Record); 654 655 Error parseAttributeBlock(); 656 Error parseAttributeGroupBlock(); 657 Error parseTypeTable(); 658 Error parseTypeTableBody(); 659 Error parseOperandBundleTags(); 660 Error parseSyncScopeNames(); 661 662 Expected<Value *> recordValue(SmallVectorImpl<uint64_t> &Record, 663 unsigned NameIndex, Triple &TT); 664 void setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, Function *F, 665 ArrayRef<uint64_t> Record); 666 Error parseValueSymbolTable(uint64_t Offset = 0); 667 Error parseGlobalValueSymbolTable(); 668 Error parseConstants(); 669 Error rememberAndSkipFunctionBodies(); 670 Error rememberAndSkipFunctionBody(); 671 /// Save the positions of the Metadata blocks and skip parsing the blocks. 672 Error rememberAndSkipMetadata(); 673 Error typeCheckLoadStoreInst(Type *ValType, Type *PtrType); 674 Error parseFunctionBody(Function *F); 675 Error globalCleanup(); 676 Error resolveGlobalAndIndirectSymbolInits(); 677 Error parseUseLists(); 678 Error findFunctionInStream( 679 Function *F, 680 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator); 681 682 SyncScope::ID getDecodedSyncScopeID(unsigned Val); 683 }; 684 685 /// Class to manage reading and parsing function summary index bitcode 686 /// files/sections. 687 class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase { 688 /// The module index built during parsing. 689 ModuleSummaryIndex &TheIndex; 690 691 /// Indicates whether we have encountered a global value summary section 692 /// yet during parsing. 693 bool SeenGlobalValSummary = false; 694 695 /// Indicates whether we have already parsed the VST, used for error checking. 696 bool SeenValueSymbolTable = false; 697 698 /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record. 699 /// Used to enable on-demand parsing of the VST. 700 uint64_t VSTOffset = 0; 701 702 // Map to save ValueId to ValueInfo association that was recorded in the 703 // ValueSymbolTable. It is used after the VST is parsed to convert 704 // call graph edges read from the function summary from referencing 705 // callees by their ValueId to using the ValueInfo instead, which is how 706 // they are recorded in the summary index being built. 707 // We save a GUID which refers to the same global as the ValueInfo, but 708 // ignoring the linkage, i.e. for values other than local linkage they are 709 // identical. 710 DenseMap<unsigned, std::pair<ValueInfo, GlobalValue::GUID>> 711 ValueIdToValueInfoMap; 712 713 /// Map populated during module path string table parsing, from the 714 /// module ID to a string reference owned by the index's module 715 /// path string table, used to correlate with combined index 716 /// summary records. 717 DenseMap<uint64_t, StringRef> ModuleIdMap; 718 719 /// Original source file name recorded in a bitcode record. 720 std::string SourceFileName; 721 722 /// The string identifier given to this module by the client, normally the 723 /// path to the bitcode file. 724 StringRef ModulePath; 725 726 /// For per-module summary indexes, the unique numerical identifier given to 727 /// this module by the client. 728 unsigned ModuleId; 729 730 public: 731 ModuleSummaryIndexBitcodeReader(BitstreamCursor Stream, StringRef Strtab, 732 ModuleSummaryIndex &TheIndex, 733 StringRef ModulePath, unsigned ModuleId); 734 735 Error parseModule(); 736 737 private: 738 void setValueGUID(uint64_t ValueID, StringRef ValueName, 739 GlobalValue::LinkageTypes Linkage, 740 StringRef SourceFileName); 741 Error parseValueSymbolTable( 742 uint64_t Offset, 743 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap); 744 std::vector<ValueInfo> makeRefList(ArrayRef<uint64_t> Record); 745 std::vector<FunctionSummary::EdgeTy> makeCallList(ArrayRef<uint64_t> Record, 746 bool IsOldProfileFormat, 747 bool HasProfile, 748 bool HasRelBF); 749 Error parseEntireSummary(unsigned ID); 750 Error parseModuleStringTable(); 751 752 std::pair<ValueInfo, GlobalValue::GUID> 753 getValueInfoFromValueId(unsigned ValueId); 754 755 void addThisModule(); 756 ModuleSummaryIndex::ModuleInfo *getThisModule(); 757 }; 758 759 } // end anonymous namespace 760 761 std::error_code llvm::errorToErrorCodeAndEmitErrors(LLVMContext &Ctx, 762 Error Err) { 763 if (Err) { 764 std::error_code EC; 765 handleAllErrors(std::move(Err), [&](ErrorInfoBase &EIB) { 766 EC = EIB.convertToErrorCode(); 767 Ctx.emitError(EIB.message()); 768 }); 769 return EC; 770 } 771 return std::error_code(); 772 } 773 774 BitcodeReader::BitcodeReader(BitstreamCursor Stream, StringRef Strtab, 775 StringRef ProducerIdentification, 776 LLVMContext &Context) 777 : BitcodeReaderBase(std::move(Stream), Strtab), Context(Context), 778 ValueList(Context) { 779 this->ProducerIdentification = ProducerIdentification; 780 } 781 782 Error BitcodeReader::materializeForwardReferencedFunctions() { 783 if (WillMaterializeAllForwardRefs) 784 return Error::success(); 785 786 // Prevent recursion. 787 WillMaterializeAllForwardRefs = true; 788 789 while (!BasicBlockFwdRefQueue.empty()) { 790 Function *F = BasicBlockFwdRefQueue.front(); 791 BasicBlockFwdRefQueue.pop_front(); 792 assert(F && "Expected valid function"); 793 if (!BasicBlockFwdRefs.count(F)) 794 // Already materialized. 795 continue; 796 797 // Check for a function that isn't materializable to prevent an infinite 798 // loop. When parsing a blockaddress stored in a global variable, there 799 // isn't a trivial way to check if a function will have a body without a 800 // linear search through FunctionsWithBodies, so just check it here. 801 if (!F->isMaterializable()) 802 return error("Never resolved function from blockaddress"); 803 804 // Try to materialize F. 805 if (Error Err = materialize(F)) 806 return Err; 807 } 808 assert(BasicBlockFwdRefs.empty() && "Function missing from queue"); 809 810 // Reset state. 811 WillMaterializeAllForwardRefs = false; 812 return Error::success(); 813 } 814 815 //===----------------------------------------------------------------------===// 816 // Helper functions to implement forward reference resolution, etc. 817 //===----------------------------------------------------------------------===// 818 819 static bool hasImplicitComdat(size_t Val) { 820 switch (Val) { 821 default: 822 return false; 823 case 1: // Old WeakAnyLinkage 824 case 4: // Old LinkOnceAnyLinkage 825 case 10: // Old WeakODRLinkage 826 case 11: // Old LinkOnceODRLinkage 827 return true; 828 } 829 } 830 831 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) { 832 switch (Val) { 833 default: // Map unknown/new linkages to external 834 case 0: 835 return GlobalValue::ExternalLinkage; 836 case 2: 837 return GlobalValue::AppendingLinkage; 838 case 3: 839 return GlobalValue::InternalLinkage; 840 case 5: 841 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage 842 case 6: 843 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage 844 case 7: 845 return GlobalValue::ExternalWeakLinkage; 846 case 8: 847 return GlobalValue::CommonLinkage; 848 case 9: 849 return GlobalValue::PrivateLinkage; 850 case 12: 851 return GlobalValue::AvailableExternallyLinkage; 852 case 13: 853 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage 854 case 14: 855 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage 856 case 15: 857 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage 858 case 1: // Old value with implicit comdat. 859 case 16: 860 return GlobalValue::WeakAnyLinkage; 861 case 10: // Old value with implicit comdat. 862 case 17: 863 return GlobalValue::WeakODRLinkage; 864 case 4: // Old value with implicit comdat. 865 case 18: 866 return GlobalValue::LinkOnceAnyLinkage; 867 case 11: // Old value with implicit comdat. 868 case 19: 869 return GlobalValue::LinkOnceODRLinkage; 870 } 871 } 872 873 static FunctionSummary::FFlags getDecodedFFlags(uint64_t RawFlags) { 874 FunctionSummary::FFlags Flags; 875 Flags.ReadNone = RawFlags & 0x1; 876 Flags.ReadOnly = (RawFlags >> 1) & 0x1; 877 Flags.NoRecurse = (RawFlags >> 2) & 0x1; 878 Flags.ReturnDoesNotAlias = (RawFlags >> 3) & 0x1; 879 Flags.NoInline = (RawFlags >> 4) & 0x1; 880 return Flags; 881 } 882 883 /// Decode the flags for GlobalValue in the summary. 884 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags, 885 uint64_t Version) { 886 // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage 887 // like getDecodedLinkage() above. Any future change to the linkage enum and 888 // to getDecodedLinkage() will need to be taken into account here as above. 889 auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits 890 RawFlags = RawFlags >> 4; 891 bool NotEligibleToImport = (RawFlags & 0x1) || Version < 3; 892 // The Live flag wasn't introduced until version 3. For dead stripping 893 // to work correctly on earlier versions, we must conservatively treat all 894 // values as live. 895 bool Live = (RawFlags & 0x2) || Version < 3; 896 bool Local = (RawFlags & 0x4); 897 898 return GlobalValueSummary::GVFlags(Linkage, NotEligibleToImport, Live, Local); 899 } 900 901 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) { 902 switch (Val) { 903 default: // Map unknown visibilities to default. 904 case 0: return GlobalValue::DefaultVisibility; 905 case 1: return GlobalValue::HiddenVisibility; 906 case 2: return GlobalValue::ProtectedVisibility; 907 } 908 } 909 910 static GlobalValue::DLLStorageClassTypes 911 getDecodedDLLStorageClass(unsigned Val) { 912 switch (Val) { 913 default: // Map unknown values to default. 914 case 0: return GlobalValue::DefaultStorageClass; 915 case 1: return GlobalValue::DLLImportStorageClass; 916 case 2: return GlobalValue::DLLExportStorageClass; 917 } 918 } 919 920 static bool getDecodedDSOLocal(unsigned Val) { 921 switch(Val) { 922 default: // Map unknown values to preemptable. 923 case 0: return false; 924 case 1: return true; 925 } 926 } 927 928 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) { 929 switch (Val) { 930 case 0: return GlobalVariable::NotThreadLocal; 931 default: // Map unknown non-zero value to general dynamic. 932 case 1: return GlobalVariable::GeneralDynamicTLSModel; 933 case 2: return GlobalVariable::LocalDynamicTLSModel; 934 case 3: return GlobalVariable::InitialExecTLSModel; 935 case 4: return GlobalVariable::LocalExecTLSModel; 936 } 937 } 938 939 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) { 940 switch (Val) { 941 default: // Map unknown to UnnamedAddr::None. 942 case 0: return GlobalVariable::UnnamedAddr::None; 943 case 1: return GlobalVariable::UnnamedAddr::Global; 944 case 2: return GlobalVariable::UnnamedAddr::Local; 945 } 946 } 947 948 static int getDecodedCastOpcode(unsigned Val) { 949 switch (Val) { 950 default: return -1; 951 case bitc::CAST_TRUNC : return Instruction::Trunc; 952 case bitc::CAST_ZEXT : return Instruction::ZExt; 953 case bitc::CAST_SEXT : return Instruction::SExt; 954 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 955 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 956 case bitc::CAST_UITOFP : return Instruction::UIToFP; 957 case bitc::CAST_SITOFP : return Instruction::SIToFP; 958 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 959 case bitc::CAST_FPEXT : return Instruction::FPExt; 960 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 961 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 962 case bitc::CAST_BITCAST : return Instruction::BitCast; 963 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast; 964 } 965 } 966 967 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) { 968 bool IsFP = Ty->isFPOrFPVectorTy(); 969 // BinOps are only valid for int/fp or vector of int/fp types 970 if (!IsFP && !Ty->isIntOrIntVectorTy()) 971 return -1; 972 973 switch (Val) { 974 default: 975 return -1; 976 case bitc::BINOP_ADD: 977 return IsFP ? Instruction::FAdd : Instruction::Add; 978 case bitc::BINOP_SUB: 979 return IsFP ? Instruction::FSub : Instruction::Sub; 980 case bitc::BINOP_MUL: 981 return IsFP ? Instruction::FMul : Instruction::Mul; 982 case bitc::BINOP_UDIV: 983 return IsFP ? -1 : Instruction::UDiv; 984 case bitc::BINOP_SDIV: 985 return IsFP ? Instruction::FDiv : Instruction::SDiv; 986 case bitc::BINOP_UREM: 987 return IsFP ? -1 : Instruction::URem; 988 case bitc::BINOP_SREM: 989 return IsFP ? Instruction::FRem : Instruction::SRem; 990 case bitc::BINOP_SHL: 991 return IsFP ? -1 : Instruction::Shl; 992 case bitc::BINOP_LSHR: 993 return IsFP ? -1 : Instruction::LShr; 994 case bitc::BINOP_ASHR: 995 return IsFP ? -1 : Instruction::AShr; 996 case bitc::BINOP_AND: 997 return IsFP ? -1 : Instruction::And; 998 case bitc::BINOP_OR: 999 return IsFP ? -1 : Instruction::Or; 1000 case bitc::BINOP_XOR: 1001 return IsFP ? -1 : Instruction::Xor; 1002 } 1003 } 1004 1005 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) { 1006 switch (Val) { 1007 default: return AtomicRMWInst::BAD_BINOP; 1008 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 1009 case bitc::RMW_ADD: return AtomicRMWInst::Add; 1010 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 1011 case bitc::RMW_AND: return AtomicRMWInst::And; 1012 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 1013 case bitc::RMW_OR: return AtomicRMWInst::Or; 1014 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 1015 case bitc::RMW_MAX: return AtomicRMWInst::Max; 1016 case bitc::RMW_MIN: return AtomicRMWInst::Min; 1017 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 1018 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 1019 } 1020 } 1021 1022 static AtomicOrdering getDecodedOrdering(unsigned Val) { 1023 switch (Val) { 1024 case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic; 1025 case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered; 1026 case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic; 1027 case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire; 1028 case bitc::ORDERING_RELEASE: return AtomicOrdering::Release; 1029 case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease; 1030 default: // Map unknown orderings to sequentially-consistent. 1031 case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent; 1032 } 1033 } 1034 1035 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) { 1036 switch (Val) { 1037 default: // Map unknown selection kinds to any. 1038 case bitc::COMDAT_SELECTION_KIND_ANY: 1039 return Comdat::Any; 1040 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH: 1041 return Comdat::ExactMatch; 1042 case bitc::COMDAT_SELECTION_KIND_LARGEST: 1043 return Comdat::Largest; 1044 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES: 1045 return Comdat::NoDuplicates; 1046 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE: 1047 return Comdat::SameSize; 1048 } 1049 } 1050 1051 static FastMathFlags getDecodedFastMathFlags(unsigned Val) { 1052 FastMathFlags FMF; 1053 if (0 != (Val & bitc::UnsafeAlgebra)) 1054 FMF.setFast(); 1055 if (0 != (Val & bitc::AllowReassoc)) 1056 FMF.setAllowReassoc(); 1057 if (0 != (Val & bitc::NoNaNs)) 1058 FMF.setNoNaNs(); 1059 if (0 != (Val & bitc::NoInfs)) 1060 FMF.setNoInfs(); 1061 if (0 != (Val & bitc::NoSignedZeros)) 1062 FMF.setNoSignedZeros(); 1063 if (0 != (Val & bitc::AllowReciprocal)) 1064 FMF.setAllowReciprocal(); 1065 if (0 != (Val & bitc::AllowContract)) 1066 FMF.setAllowContract(true); 1067 if (0 != (Val & bitc::ApproxFunc)) 1068 FMF.setApproxFunc(); 1069 return FMF; 1070 } 1071 1072 static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) { 1073 switch (Val) { 1074 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break; 1075 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break; 1076 } 1077 } 1078 1079 Type *BitcodeReader::getTypeByID(unsigned ID) { 1080 // The type table size is always specified correctly. 1081 if (ID >= TypeList.size()) 1082 return nullptr; 1083 1084 if (Type *Ty = TypeList[ID]) 1085 return Ty; 1086 1087 // If we have a forward reference, the only possible case is when it is to a 1088 // named struct. Just create a placeholder for now. 1089 return TypeList[ID] = createIdentifiedStructType(Context); 1090 } 1091 1092 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context, 1093 StringRef Name) { 1094 auto *Ret = StructType::create(Context, Name); 1095 IdentifiedStructTypes.push_back(Ret); 1096 return Ret; 1097 } 1098 1099 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) { 1100 auto *Ret = StructType::create(Context); 1101 IdentifiedStructTypes.push_back(Ret); 1102 return Ret; 1103 } 1104 1105 //===----------------------------------------------------------------------===// 1106 // Functions for parsing blocks from the bitcode file 1107 //===----------------------------------------------------------------------===// 1108 1109 static uint64_t getRawAttributeMask(Attribute::AttrKind Val) { 1110 switch (Val) { 1111 case Attribute::EndAttrKinds: 1112 llvm_unreachable("Synthetic enumerators which should never get here"); 1113 1114 case Attribute::None: return 0; 1115 case Attribute::ZExt: return 1 << 0; 1116 case Attribute::SExt: return 1 << 1; 1117 case Attribute::NoReturn: return 1 << 2; 1118 case Attribute::InReg: return 1 << 3; 1119 case Attribute::StructRet: return 1 << 4; 1120 case Attribute::NoUnwind: return 1 << 5; 1121 case Attribute::NoAlias: return 1 << 6; 1122 case Attribute::ByVal: return 1 << 7; 1123 case Attribute::Nest: return 1 << 8; 1124 case Attribute::ReadNone: return 1 << 9; 1125 case Attribute::ReadOnly: return 1 << 10; 1126 case Attribute::NoInline: return 1 << 11; 1127 case Attribute::AlwaysInline: return 1 << 12; 1128 case Attribute::OptimizeForSize: return 1 << 13; 1129 case Attribute::StackProtect: return 1 << 14; 1130 case Attribute::StackProtectReq: return 1 << 15; 1131 case Attribute::Alignment: return 31 << 16; 1132 case Attribute::NoCapture: return 1 << 21; 1133 case Attribute::NoRedZone: return 1 << 22; 1134 case Attribute::NoImplicitFloat: return 1 << 23; 1135 case Attribute::Naked: return 1 << 24; 1136 case Attribute::InlineHint: return 1 << 25; 1137 case Attribute::StackAlignment: return 7 << 26; 1138 case Attribute::ReturnsTwice: return 1 << 29; 1139 case Attribute::UWTable: return 1 << 30; 1140 case Attribute::NonLazyBind: return 1U << 31; 1141 case Attribute::SanitizeAddress: return 1ULL << 32; 1142 case Attribute::MinSize: return 1ULL << 33; 1143 case Attribute::NoDuplicate: return 1ULL << 34; 1144 case Attribute::StackProtectStrong: return 1ULL << 35; 1145 case Attribute::SanitizeThread: return 1ULL << 36; 1146 case Attribute::SanitizeMemory: return 1ULL << 37; 1147 case Attribute::NoBuiltin: return 1ULL << 38; 1148 case Attribute::Returned: return 1ULL << 39; 1149 case Attribute::Cold: return 1ULL << 40; 1150 case Attribute::Builtin: return 1ULL << 41; 1151 case Attribute::OptimizeNone: return 1ULL << 42; 1152 case Attribute::InAlloca: return 1ULL << 43; 1153 case Attribute::NonNull: return 1ULL << 44; 1154 case Attribute::JumpTable: return 1ULL << 45; 1155 case Attribute::Convergent: return 1ULL << 46; 1156 case Attribute::SafeStack: return 1ULL << 47; 1157 case Attribute::NoRecurse: return 1ULL << 48; 1158 case Attribute::InaccessibleMemOnly: return 1ULL << 49; 1159 case Attribute::InaccessibleMemOrArgMemOnly: return 1ULL << 50; 1160 case Attribute::SwiftSelf: return 1ULL << 51; 1161 case Attribute::SwiftError: return 1ULL << 52; 1162 case Attribute::WriteOnly: return 1ULL << 53; 1163 case Attribute::Speculatable: return 1ULL << 54; 1164 case Attribute::StrictFP: return 1ULL << 55; 1165 case Attribute::SanitizeHWAddress: return 1ULL << 56; 1166 case Attribute::NoCfCheck: return 1ULL << 57; 1167 case Attribute::OptForFuzzing: return 1ULL << 58; 1168 case Attribute::ShadowCallStack: return 1ULL << 59; 1169 case Attribute::SpeculativeLoadHardening: 1170 return 1ULL << 60; 1171 case Attribute::Dereferenceable: 1172 llvm_unreachable("dereferenceable attribute not supported in raw format"); 1173 break; 1174 case Attribute::DereferenceableOrNull: 1175 llvm_unreachable("dereferenceable_or_null attribute not supported in raw " 1176 "format"); 1177 break; 1178 case Attribute::ArgMemOnly: 1179 llvm_unreachable("argmemonly attribute not supported in raw format"); 1180 break; 1181 case Attribute::AllocSize: 1182 llvm_unreachable("allocsize not supported in raw format"); 1183 break; 1184 } 1185 llvm_unreachable("Unsupported attribute type"); 1186 } 1187 1188 static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) { 1189 if (!Val) return; 1190 1191 for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds; 1192 I = Attribute::AttrKind(I + 1)) { 1193 if (I == Attribute::Dereferenceable || 1194 I == Attribute::DereferenceableOrNull || 1195 I == Attribute::ArgMemOnly || 1196 I == Attribute::AllocSize) 1197 continue; 1198 if (uint64_t A = (Val & getRawAttributeMask(I))) { 1199 if (I == Attribute::Alignment) 1200 B.addAlignmentAttr(1ULL << ((A >> 16) - 1)); 1201 else if (I == Attribute::StackAlignment) 1202 B.addStackAlignmentAttr(1ULL << ((A >> 26)-1)); 1203 else 1204 B.addAttribute(I); 1205 } 1206 } 1207 } 1208 1209 /// This fills an AttrBuilder object with the LLVM attributes that have 1210 /// been decoded from the given integer. This function must stay in sync with 1211 /// 'encodeLLVMAttributesForBitcode'. 1212 static void decodeLLVMAttributesForBitcode(AttrBuilder &B, 1213 uint64_t EncodedAttrs) { 1214 // FIXME: Remove in 4.0. 1215 1216 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift 1217 // the bits above 31 down by 11 bits. 1218 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; 1219 assert((!Alignment || isPowerOf2_32(Alignment)) && 1220 "Alignment must be a power of two."); 1221 1222 if (Alignment) 1223 B.addAlignmentAttr(Alignment); 1224 addRawAttributeValue(B, ((EncodedAttrs & (0xfffffULL << 32)) >> 11) | 1225 (EncodedAttrs & 0xffff)); 1226 } 1227 1228 Error BitcodeReader::parseAttributeBlock() { 1229 if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 1230 return error("Invalid record"); 1231 1232 if (!MAttributes.empty()) 1233 return error("Invalid multiple blocks"); 1234 1235 SmallVector<uint64_t, 64> Record; 1236 1237 SmallVector<AttributeList, 8> Attrs; 1238 1239 // Read all the records. 1240 while (true) { 1241 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1242 1243 switch (Entry.Kind) { 1244 case BitstreamEntry::SubBlock: // Handled for us already. 1245 case BitstreamEntry::Error: 1246 return error("Malformed block"); 1247 case BitstreamEntry::EndBlock: 1248 return Error::success(); 1249 case BitstreamEntry::Record: 1250 // The interesting case. 1251 break; 1252 } 1253 1254 // Read a record. 1255 Record.clear(); 1256 switch (Stream.readRecord(Entry.ID, Record)) { 1257 default: // Default behavior: ignore. 1258 break; 1259 case bitc::PARAMATTR_CODE_ENTRY_OLD: // ENTRY: [paramidx0, attr0, ...] 1260 // FIXME: Remove in 4.0. 1261 if (Record.size() & 1) 1262 return error("Invalid record"); 1263 1264 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1265 AttrBuilder B; 1266 decodeLLVMAttributesForBitcode(B, Record[i+1]); 1267 Attrs.push_back(AttributeList::get(Context, Record[i], B)); 1268 } 1269 1270 MAttributes.push_back(AttributeList::get(Context, Attrs)); 1271 Attrs.clear(); 1272 break; 1273 case bitc::PARAMATTR_CODE_ENTRY: // ENTRY: [attrgrp0, attrgrp1, ...] 1274 for (unsigned i = 0, e = Record.size(); i != e; ++i) 1275 Attrs.push_back(MAttributeGroups[Record[i]]); 1276 1277 MAttributes.push_back(AttributeList::get(Context, Attrs)); 1278 Attrs.clear(); 1279 break; 1280 } 1281 } 1282 } 1283 1284 // Returns Attribute::None on unrecognized codes. 1285 static Attribute::AttrKind getAttrFromCode(uint64_t Code) { 1286 switch (Code) { 1287 default: 1288 return Attribute::None; 1289 case bitc::ATTR_KIND_ALIGNMENT: 1290 return Attribute::Alignment; 1291 case bitc::ATTR_KIND_ALWAYS_INLINE: 1292 return Attribute::AlwaysInline; 1293 case bitc::ATTR_KIND_ARGMEMONLY: 1294 return Attribute::ArgMemOnly; 1295 case bitc::ATTR_KIND_BUILTIN: 1296 return Attribute::Builtin; 1297 case bitc::ATTR_KIND_BY_VAL: 1298 return Attribute::ByVal; 1299 case bitc::ATTR_KIND_IN_ALLOCA: 1300 return Attribute::InAlloca; 1301 case bitc::ATTR_KIND_COLD: 1302 return Attribute::Cold; 1303 case bitc::ATTR_KIND_CONVERGENT: 1304 return Attribute::Convergent; 1305 case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY: 1306 return Attribute::InaccessibleMemOnly; 1307 case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY: 1308 return Attribute::InaccessibleMemOrArgMemOnly; 1309 case bitc::ATTR_KIND_INLINE_HINT: 1310 return Attribute::InlineHint; 1311 case bitc::ATTR_KIND_IN_REG: 1312 return Attribute::InReg; 1313 case bitc::ATTR_KIND_JUMP_TABLE: 1314 return Attribute::JumpTable; 1315 case bitc::ATTR_KIND_MIN_SIZE: 1316 return Attribute::MinSize; 1317 case bitc::ATTR_KIND_NAKED: 1318 return Attribute::Naked; 1319 case bitc::ATTR_KIND_NEST: 1320 return Attribute::Nest; 1321 case bitc::ATTR_KIND_NO_ALIAS: 1322 return Attribute::NoAlias; 1323 case bitc::ATTR_KIND_NO_BUILTIN: 1324 return Attribute::NoBuiltin; 1325 case bitc::ATTR_KIND_NO_CAPTURE: 1326 return Attribute::NoCapture; 1327 case bitc::ATTR_KIND_NO_DUPLICATE: 1328 return Attribute::NoDuplicate; 1329 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: 1330 return Attribute::NoImplicitFloat; 1331 case bitc::ATTR_KIND_NO_INLINE: 1332 return Attribute::NoInline; 1333 case bitc::ATTR_KIND_NO_RECURSE: 1334 return Attribute::NoRecurse; 1335 case bitc::ATTR_KIND_NON_LAZY_BIND: 1336 return Attribute::NonLazyBind; 1337 case bitc::ATTR_KIND_NON_NULL: 1338 return Attribute::NonNull; 1339 case bitc::ATTR_KIND_DEREFERENCEABLE: 1340 return Attribute::Dereferenceable; 1341 case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL: 1342 return Attribute::DereferenceableOrNull; 1343 case bitc::ATTR_KIND_ALLOC_SIZE: 1344 return Attribute::AllocSize; 1345 case bitc::ATTR_KIND_NO_RED_ZONE: 1346 return Attribute::NoRedZone; 1347 case bitc::ATTR_KIND_NO_RETURN: 1348 return Attribute::NoReturn; 1349 case bitc::ATTR_KIND_NOCF_CHECK: 1350 return Attribute::NoCfCheck; 1351 case bitc::ATTR_KIND_NO_UNWIND: 1352 return Attribute::NoUnwind; 1353 case bitc::ATTR_KIND_OPT_FOR_FUZZING: 1354 return Attribute::OptForFuzzing; 1355 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: 1356 return Attribute::OptimizeForSize; 1357 case bitc::ATTR_KIND_OPTIMIZE_NONE: 1358 return Attribute::OptimizeNone; 1359 case bitc::ATTR_KIND_READ_NONE: 1360 return Attribute::ReadNone; 1361 case bitc::ATTR_KIND_READ_ONLY: 1362 return Attribute::ReadOnly; 1363 case bitc::ATTR_KIND_RETURNED: 1364 return Attribute::Returned; 1365 case bitc::ATTR_KIND_RETURNS_TWICE: 1366 return Attribute::ReturnsTwice; 1367 case bitc::ATTR_KIND_S_EXT: 1368 return Attribute::SExt; 1369 case bitc::ATTR_KIND_SPECULATABLE: 1370 return Attribute::Speculatable; 1371 case bitc::ATTR_KIND_STACK_ALIGNMENT: 1372 return Attribute::StackAlignment; 1373 case bitc::ATTR_KIND_STACK_PROTECT: 1374 return Attribute::StackProtect; 1375 case bitc::ATTR_KIND_STACK_PROTECT_REQ: 1376 return Attribute::StackProtectReq; 1377 case bitc::ATTR_KIND_STACK_PROTECT_STRONG: 1378 return Attribute::StackProtectStrong; 1379 case bitc::ATTR_KIND_SAFESTACK: 1380 return Attribute::SafeStack; 1381 case bitc::ATTR_KIND_SHADOWCALLSTACK: 1382 return Attribute::ShadowCallStack; 1383 case bitc::ATTR_KIND_STRICT_FP: 1384 return Attribute::StrictFP; 1385 case bitc::ATTR_KIND_STRUCT_RET: 1386 return Attribute::StructRet; 1387 case bitc::ATTR_KIND_SANITIZE_ADDRESS: 1388 return Attribute::SanitizeAddress; 1389 case bitc::ATTR_KIND_SANITIZE_HWADDRESS: 1390 return Attribute::SanitizeHWAddress; 1391 case bitc::ATTR_KIND_SANITIZE_THREAD: 1392 return Attribute::SanitizeThread; 1393 case bitc::ATTR_KIND_SANITIZE_MEMORY: 1394 return Attribute::SanitizeMemory; 1395 case bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING: 1396 return Attribute::SpeculativeLoadHardening; 1397 case bitc::ATTR_KIND_SWIFT_ERROR: 1398 return Attribute::SwiftError; 1399 case bitc::ATTR_KIND_SWIFT_SELF: 1400 return Attribute::SwiftSelf; 1401 case bitc::ATTR_KIND_UW_TABLE: 1402 return Attribute::UWTable; 1403 case bitc::ATTR_KIND_WRITEONLY: 1404 return Attribute::WriteOnly; 1405 case bitc::ATTR_KIND_Z_EXT: 1406 return Attribute::ZExt; 1407 } 1408 } 1409 1410 Error BitcodeReader::parseAlignmentValue(uint64_t Exponent, 1411 unsigned &Alignment) { 1412 // Note: Alignment in bitcode files is incremented by 1, so that zero 1413 // can be used for default alignment. 1414 if (Exponent > Value::MaxAlignmentExponent + 1) 1415 return error("Invalid alignment value"); 1416 Alignment = (1 << static_cast<unsigned>(Exponent)) >> 1; 1417 return Error::success(); 1418 } 1419 1420 Error BitcodeReader::parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind) { 1421 *Kind = getAttrFromCode(Code); 1422 if (*Kind == Attribute::None) 1423 return error("Unknown attribute kind (" + Twine(Code) + ")"); 1424 return Error::success(); 1425 } 1426 1427 Error BitcodeReader::parseAttributeGroupBlock() { 1428 if (Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) 1429 return error("Invalid record"); 1430 1431 if (!MAttributeGroups.empty()) 1432 return error("Invalid multiple blocks"); 1433 1434 SmallVector<uint64_t, 64> Record; 1435 1436 // Read all the records. 1437 while (true) { 1438 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1439 1440 switch (Entry.Kind) { 1441 case BitstreamEntry::SubBlock: // Handled for us already. 1442 case BitstreamEntry::Error: 1443 return error("Malformed block"); 1444 case BitstreamEntry::EndBlock: 1445 return Error::success(); 1446 case BitstreamEntry::Record: 1447 // The interesting case. 1448 break; 1449 } 1450 1451 // Read a record. 1452 Record.clear(); 1453 switch (Stream.readRecord(Entry.ID, Record)) { 1454 default: // Default behavior: ignore. 1455 break; 1456 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] 1457 if (Record.size() < 3) 1458 return error("Invalid record"); 1459 1460 uint64_t GrpID = Record[0]; 1461 uint64_t Idx = Record[1]; // Index of the object this attribute refers to. 1462 1463 AttrBuilder B; 1464 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1465 if (Record[i] == 0) { // Enum attribute 1466 Attribute::AttrKind Kind; 1467 if (Error Err = parseAttrKind(Record[++i], &Kind)) 1468 return Err; 1469 1470 B.addAttribute(Kind); 1471 } else if (Record[i] == 1) { // Integer attribute 1472 Attribute::AttrKind Kind; 1473 if (Error Err = parseAttrKind(Record[++i], &Kind)) 1474 return Err; 1475 if (Kind == Attribute::Alignment) 1476 B.addAlignmentAttr(Record[++i]); 1477 else if (Kind == Attribute::StackAlignment) 1478 B.addStackAlignmentAttr(Record[++i]); 1479 else if (Kind == Attribute::Dereferenceable) 1480 B.addDereferenceableAttr(Record[++i]); 1481 else if (Kind == Attribute::DereferenceableOrNull) 1482 B.addDereferenceableOrNullAttr(Record[++i]); 1483 else if (Kind == Attribute::AllocSize) 1484 B.addAllocSizeAttrFromRawRepr(Record[++i]); 1485 } else { // String attribute 1486 assert((Record[i] == 3 || Record[i] == 4) && 1487 "Invalid attribute group entry"); 1488 bool HasValue = (Record[i++] == 4); 1489 SmallString<64> KindStr; 1490 SmallString<64> ValStr; 1491 1492 while (Record[i] != 0 && i != e) 1493 KindStr += Record[i++]; 1494 assert(Record[i] == 0 && "Kind string not null terminated"); 1495 1496 if (HasValue) { 1497 // Has a value associated with it. 1498 ++i; // Skip the '0' that terminates the "kind" string. 1499 while (Record[i] != 0 && i != e) 1500 ValStr += Record[i++]; 1501 assert(Record[i] == 0 && "Value string not null terminated"); 1502 } 1503 1504 B.addAttribute(KindStr.str(), ValStr.str()); 1505 } 1506 } 1507 1508 MAttributeGroups[GrpID] = AttributeList::get(Context, Idx, B); 1509 break; 1510 } 1511 } 1512 } 1513 } 1514 1515 Error BitcodeReader::parseTypeTable() { 1516 if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 1517 return error("Invalid record"); 1518 1519 return parseTypeTableBody(); 1520 } 1521 1522 Error BitcodeReader::parseTypeTableBody() { 1523 if (!TypeList.empty()) 1524 return error("Invalid multiple blocks"); 1525 1526 SmallVector<uint64_t, 64> Record; 1527 unsigned NumRecords = 0; 1528 1529 SmallString<64> TypeName; 1530 1531 // Read all the records for this type table. 1532 while (true) { 1533 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1534 1535 switch (Entry.Kind) { 1536 case BitstreamEntry::SubBlock: // Handled for us already. 1537 case BitstreamEntry::Error: 1538 return error("Malformed block"); 1539 case BitstreamEntry::EndBlock: 1540 if (NumRecords != TypeList.size()) 1541 return error("Malformed block"); 1542 return Error::success(); 1543 case BitstreamEntry::Record: 1544 // The interesting case. 1545 break; 1546 } 1547 1548 // Read a record. 1549 Record.clear(); 1550 Type *ResultTy = nullptr; 1551 switch (Stream.readRecord(Entry.ID, Record)) { 1552 default: 1553 return error("Invalid value"); 1554 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 1555 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 1556 // type list. This allows us to reserve space. 1557 if (Record.size() < 1) 1558 return error("Invalid record"); 1559 TypeList.resize(Record[0]); 1560 continue; 1561 case bitc::TYPE_CODE_VOID: // VOID 1562 ResultTy = Type::getVoidTy(Context); 1563 break; 1564 case bitc::TYPE_CODE_HALF: // HALF 1565 ResultTy = Type::getHalfTy(Context); 1566 break; 1567 case bitc::TYPE_CODE_FLOAT: // FLOAT 1568 ResultTy = Type::getFloatTy(Context); 1569 break; 1570 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 1571 ResultTy = Type::getDoubleTy(Context); 1572 break; 1573 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 1574 ResultTy = Type::getX86_FP80Ty(Context); 1575 break; 1576 case bitc::TYPE_CODE_FP128: // FP128 1577 ResultTy = Type::getFP128Ty(Context); 1578 break; 1579 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 1580 ResultTy = Type::getPPC_FP128Ty(Context); 1581 break; 1582 case bitc::TYPE_CODE_LABEL: // LABEL 1583 ResultTy = Type::getLabelTy(Context); 1584 break; 1585 case bitc::TYPE_CODE_METADATA: // METADATA 1586 ResultTy = Type::getMetadataTy(Context); 1587 break; 1588 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 1589 ResultTy = Type::getX86_MMXTy(Context); 1590 break; 1591 case bitc::TYPE_CODE_TOKEN: // TOKEN 1592 ResultTy = Type::getTokenTy(Context); 1593 break; 1594 case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width] 1595 if (Record.size() < 1) 1596 return error("Invalid record"); 1597 1598 uint64_t NumBits = Record[0]; 1599 if (NumBits < IntegerType::MIN_INT_BITS || 1600 NumBits > IntegerType::MAX_INT_BITS) 1601 return error("Bitwidth for integer type out of range"); 1602 ResultTy = IntegerType::get(Context, NumBits); 1603 break; 1604 } 1605 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 1606 // [pointee type, address space] 1607 if (Record.size() < 1) 1608 return error("Invalid record"); 1609 unsigned AddressSpace = 0; 1610 if (Record.size() == 2) 1611 AddressSpace = Record[1]; 1612 ResultTy = getTypeByID(Record[0]); 1613 if (!ResultTy || 1614 !PointerType::isValidElementType(ResultTy)) 1615 return error("Invalid type"); 1616 ResultTy = PointerType::get(ResultTy, AddressSpace); 1617 break; 1618 } 1619 case bitc::TYPE_CODE_FUNCTION_OLD: { 1620 // FIXME: attrid is dead, remove it in LLVM 4.0 1621 // FUNCTION: [vararg, attrid, retty, paramty x N] 1622 if (Record.size() < 3) 1623 return error("Invalid record"); 1624 SmallVector<Type*, 8> ArgTys; 1625 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 1626 if (Type *T = getTypeByID(Record[i])) 1627 ArgTys.push_back(T); 1628 else 1629 break; 1630 } 1631 1632 ResultTy = getTypeByID(Record[2]); 1633 if (!ResultTy || ArgTys.size() < Record.size()-3) 1634 return error("Invalid type"); 1635 1636 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1637 break; 1638 } 1639 case bitc::TYPE_CODE_FUNCTION: { 1640 // FUNCTION: [vararg, retty, paramty x N] 1641 if (Record.size() < 2) 1642 return error("Invalid record"); 1643 SmallVector<Type*, 8> ArgTys; 1644 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1645 if (Type *T = getTypeByID(Record[i])) { 1646 if (!FunctionType::isValidArgumentType(T)) 1647 return error("Invalid function argument type"); 1648 ArgTys.push_back(T); 1649 } 1650 else 1651 break; 1652 } 1653 1654 ResultTy = getTypeByID(Record[1]); 1655 if (!ResultTy || ArgTys.size() < Record.size()-2) 1656 return error("Invalid type"); 1657 1658 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1659 break; 1660 } 1661 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 1662 if (Record.size() < 1) 1663 return error("Invalid record"); 1664 SmallVector<Type*, 8> EltTys; 1665 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1666 if (Type *T = getTypeByID(Record[i])) 1667 EltTys.push_back(T); 1668 else 1669 break; 1670 } 1671 if (EltTys.size() != Record.size()-1) 1672 return error("Invalid type"); 1673 ResultTy = StructType::get(Context, EltTys, Record[0]); 1674 break; 1675 } 1676 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 1677 if (convertToString(Record, 0, TypeName)) 1678 return error("Invalid record"); 1679 continue; 1680 1681 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 1682 if (Record.size() < 1) 1683 return error("Invalid record"); 1684 1685 if (NumRecords >= TypeList.size()) 1686 return error("Invalid TYPE table"); 1687 1688 // Check to see if this was forward referenced, if so fill in the temp. 1689 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1690 if (Res) { 1691 Res->setName(TypeName); 1692 TypeList[NumRecords] = nullptr; 1693 } else // Otherwise, create a new struct. 1694 Res = createIdentifiedStructType(Context, TypeName); 1695 TypeName.clear(); 1696 1697 SmallVector<Type*, 8> EltTys; 1698 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1699 if (Type *T = getTypeByID(Record[i])) 1700 EltTys.push_back(T); 1701 else 1702 break; 1703 } 1704 if (EltTys.size() != Record.size()-1) 1705 return error("Invalid record"); 1706 Res->setBody(EltTys, Record[0]); 1707 ResultTy = Res; 1708 break; 1709 } 1710 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 1711 if (Record.size() != 1) 1712 return error("Invalid record"); 1713 1714 if (NumRecords >= TypeList.size()) 1715 return error("Invalid TYPE table"); 1716 1717 // Check to see if this was forward referenced, if so fill in the temp. 1718 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1719 if (Res) { 1720 Res->setName(TypeName); 1721 TypeList[NumRecords] = nullptr; 1722 } else // Otherwise, create a new struct with no body. 1723 Res = createIdentifiedStructType(Context, TypeName); 1724 TypeName.clear(); 1725 ResultTy = Res; 1726 break; 1727 } 1728 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 1729 if (Record.size() < 2) 1730 return error("Invalid record"); 1731 ResultTy = getTypeByID(Record[1]); 1732 if (!ResultTy || !ArrayType::isValidElementType(ResultTy)) 1733 return error("Invalid type"); 1734 ResultTy = ArrayType::get(ResultTy, Record[0]); 1735 break; 1736 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] 1737 if (Record.size() < 2) 1738 return error("Invalid record"); 1739 if (Record[0] == 0) 1740 return error("Invalid vector length"); 1741 ResultTy = getTypeByID(Record[1]); 1742 if (!ResultTy || !StructType::isValidElementType(ResultTy)) 1743 return error("Invalid type"); 1744 ResultTy = VectorType::get(ResultTy, Record[0]); 1745 break; 1746 } 1747 1748 if (NumRecords >= TypeList.size()) 1749 return error("Invalid TYPE table"); 1750 if (TypeList[NumRecords]) 1751 return error( 1752 "Invalid TYPE table: Only named structs can be forward referenced"); 1753 assert(ResultTy && "Didn't read a type?"); 1754 TypeList[NumRecords++] = ResultTy; 1755 } 1756 } 1757 1758 Error BitcodeReader::parseOperandBundleTags() { 1759 if (Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID)) 1760 return error("Invalid record"); 1761 1762 if (!BundleTags.empty()) 1763 return error("Invalid multiple blocks"); 1764 1765 SmallVector<uint64_t, 64> Record; 1766 1767 while (true) { 1768 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1769 1770 switch (Entry.Kind) { 1771 case BitstreamEntry::SubBlock: // Handled for us already. 1772 case BitstreamEntry::Error: 1773 return error("Malformed block"); 1774 case BitstreamEntry::EndBlock: 1775 return Error::success(); 1776 case BitstreamEntry::Record: 1777 // The interesting case. 1778 break; 1779 } 1780 1781 // Tags are implicitly mapped to integers by their order. 1782 1783 if (Stream.readRecord(Entry.ID, Record) != bitc::OPERAND_BUNDLE_TAG) 1784 return error("Invalid record"); 1785 1786 // OPERAND_BUNDLE_TAG: [strchr x N] 1787 BundleTags.emplace_back(); 1788 if (convertToString(Record, 0, BundleTags.back())) 1789 return error("Invalid record"); 1790 Record.clear(); 1791 } 1792 } 1793 1794 Error BitcodeReader::parseSyncScopeNames() { 1795 if (Stream.EnterSubBlock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID)) 1796 return error("Invalid record"); 1797 1798 if (!SSIDs.empty()) 1799 return error("Invalid multiple synchronization scope names blocks"); 1800 1801 SmallVector<uint64_t, 64> Record; 1802 while (true) { 1803 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1804 switch (Entry.Kind) { 1805 case BitstreamEntry::SubBlock: // Handled for us already. 1806 case BitstreamEntry::Error: 1807 return error("Malformed block"); 1808 case BitstreamEntry::EndBlock: 1809 if (SSIDs.empty()) 1810 return error("Invalid empty synchronization scope names block"); 1811 return Error::success(); 1812 case BitstreamEntry::Record: 1813 // The interesting case. 1814 break; 1815 } 1816 1817 // Synchronization scope names are implicitly mapped to synchronization 1818 // scope IDs by their order. 1819 1820 if (Stream.readRecord(Entry.ID, Record) != bitc::SYNC_SCOPE_NAME) 1821 return error("Invalid record"); 1822 1823 SmallString<16> SSN; 1824 if (convertToString(Record, 0, SSN)) 1825 return error("Invalid record"); 1826 1827 SSIDs.push_back(Context.getOrInsertSyncScopeID(SSN)); 1828 Record.clear(); 1829 } 1830 } 1831 1832 /// Associate a value with its name from the given index in the provided record. 1833 Expected<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record, 1834 unsigned NameIndex, Triple &TT) { 1835 SmallString<128> ValueName; 1836 if (convertToString(Record, NameIndex, ValueName)) 1837 return error("Invalid record"); 1838 unsigned ValueID = Record[0]; 1839 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 1840 return error("Invalid record"); 1841 Value *V = ValueList[ValueID]; 1842 1843 StringRef NameStr(ValueName.data(), ValueName.size()); 1844 if (NameStr.find_first_of(0) != StringRef::npos) 1845 return error("Invalid value name"); 1846 V->setName(NameStr); 1847 auto *GO = dyn_cast<GlobalObject>(V); 1848 if (GO) { 1849 if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) { 1850 if (TT.supportsCOMDAT()) 1851 GO->setComdat(TheModule->getOrInsertComdat(V->getName())); 1852 else 1853 GO->setComdat(nullptr); 1854 } 1855 } 1856 return V; 1857 } 1858 1859 /// Helper to note and return the current location, and jump to the given 1860 /// offset. 1861 static uint64_t jumpToValueSymbolTable(uint64_t Offset, 1862 BitstreamCursor &Stream) { 1863 // Save the current parsing location so we can jump back at the end 1864 // of the VST read. 1865 uint64_t CurrentBit = Stream.GetCurrentBitNo(); 1866 Stream.JumpToBit(Offset * 32); 1867 #ifndef NDEBUG 1868 // Do some checking if we are in debug mode. 1869 BitstreamEntry Entry = Stream.advance(); 1870 assert(Entry.Kind == BitstreamEntry::SubBlock); 1871 assert(Entry.ID == bitc::VALUE_SYMTAB_BLOCK_ID); 1872 #else 1873 // In NDEBUG mode ignore the output so we don't get an unused variable 1874 // warning. 1875 Stream.advance(); 1876 #endif 1877 return CurrentBit; 1878 } 1879 1880 void BitcodeReader::setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, 1881 Function *F, 1882 ArrayRef<uint64_t> Record) { 1883 // Note that we subtract 1 here because the offset is relative to one word 1884 // before the start of the identification or module block, which was 1885 // historically always the start of the regular bitcode header. 1886 uint64_t FuncWordOffset = Record[1] - 1; 1887 uint64_t FuncBitOffset = FuncWordOffset * 32; 1888 DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta; 1889 // Set the LastFunctionBlockBit to point to the last function block. 1890 // Later when parsing is resumed after function materialization, 1891 // we can simply skip that last function block. 1892 if (FuncBitOffset > LastFunctionBlockBit) 1893 LastFunctionBlockBit = FuncBitOffset; 1894 } 1895 1896 /// Read a new-style GlobalValue symbol table. 1897 Error BitcodeReader::parseGlobalValueSymbolTable() { 1898 unsigned FuncBitcodeOffsetDelta = 1899 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 1900 1901 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 1902 return error("Invalid record"); 1903 1904 SmallVector<uint64_t, 64> Record; 1905 while (true) { 1906 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1907 1908 switch (Entry.Kind) { 1909 case BitstreamEntry::SubBlock: 1910 case BitstreamEntry::Error: 1911 return error("Malformed block"); 1912 case BitstreamEntry::EndBlock: 1913 return Error::success(); 1914 case BitstreamEntry::Record: 1915 break; 1916 } 1917 1918 Record.clear(); 1919 switch (Stream.readRecord(Entry.ID, Record)) { 1920 case bitc::VST_CODE_FNENTRY: // [valueid, offset] 1921 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, 1922 cast<Function>(ValueList[Record[0]]), Record); 1923 break; 1924 } 1925 } 1926 } 1927 1928 /// Parse the value symbol table at either the current parsing location or 1929 /// at the given bit offset if provided. 1930 Error BitcodeReader::parseValueSymbolTable(uint64_t Offset) { 1931 uint64_t CurrentBit; 1932 // Pass in the Offset to distinguish between calling for the module-level 1933 // VST (where we want to jump to the VST offset) and the function-level 1934 // VST (where we don't). 1935 if (Offset > 0) { 1936 CurrentBit = jumpToValueSymbolTable(Offset, Stream); 1937 // If this module uses a string table, read this as a module-level VST. 1938 if (UseStrtab) { 1939 if (Error Err = parseGlobalValueSymbolTable()) 1940 return Err; 1941 Stream.JumpToBit(CurrentBit); 1942 return Error::success(); 1943 } 1944 // Otherwise, the VST will be in a similar format to a function-level VST, 1945 // and will contain symbol names. 1946 } 1947 1948 // Compute the delta between the bitcode indices in the VST (the word offset 1949 // to the word-aligned ENTER_SUBBLOCK for the function block, and that 1950 // expected by the lazy reader. The reader's EnterSubBlock expects to have 1951 // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID 1952 // (size BlockIDWidth). Note that we access the stream's AbbrevID width here 1953 // just before entering the VST subblock because: 1) the EnterSubBlock 1954 // changes the AbbrevID width; 2) the VST block is nested within the same 1955 // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same 1956 // AbbrevID width before calling EnterSubBlock; and 3) when we want to 1957 // jump to the FUNCTION_BLOCK using this offset later, we don't want 1958 // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK. 1959 unsigned FuncBitcodeOffsetDelta = 1960 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 1961 1962 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 1963 return error("Invalid record"); 1964 1965 SmallVector<uint64_t, 64> Record; 1966 1967 Triple TT(TheModule->getTargetTriple()); 1968 1969 // Read all the records for this value table. 1970 SmallString<128> ValueName; 1971 1972 while (true) { 1973 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1974 1975 switch (Entry.Kind) { 1976 case BitstreamEntry::SubBlock: // Handled for us already. 1977 case BitstreamEntry::Error: 1978 return error("Malformed block"); 1979 case BitstreamEntry::EndBlock: 1980 if (Offset > 0) 1981 Stream.JumpToBit(CurrentBit); 1982 return Error::success(); 1983 case BitstreamEntry::Record: 1984 // The interesting case. 1985 break; 1986 } 1987 1988 // Read a record. 1989 Record.clear(); 1990 switch (Stream.readRecord(Entry.ID, Record)) { 1991 default: // Default behavior: unknown type. 1992 break; 1993 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 1994 Expected<Value *> ValOrErr = recordValue(Record, 1, TT); 1995 if (Error Err = ValOrErr.takeError()) 1996 return Err; 1997 ValOrErr.get(); 1998 break; 1999 } 2000 case bitc::VST_CODE_FNENTRY: { 2001 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 2002 Expected<Value *> ValOrErr = recordValue(Record, 2, TT); 2003 if (Error Err = ValOrErr.takeError()) 2004 return Err; 2005 Value *V = ValOrErr.get(); 2006 2007 // Ignore function offsets emitted for aliases of functions in older 2008 // versions of LLVM. 2009 if (auto *F = dyn_cast<Function>(V)) 2010 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, F, Record); 2011 break; 2012 } 2013 case bitc::VST_CODE_BBENTRY: { 2014 if (convertToString(Record, 1, ValueName)) 2015 return error("Invalid record"); 2016 BasicBlock *BB = getBasicBlock(Record[0]); 2017 if (!BB) 2018 return error("Invalid record"); 2019 2020 BB->setName(StringRef(ValueName.data(), ValueName.size())); 2021 ValueName.clear(); 2022 break; 2023 } 2024 } 2025 } 2026 } 2027 2028 /// Decode a signed value stored with the sign bit in the LSB for dense VBR 2029 /// encoding. 2030 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { 2031 if ((V & 1) == 0) 2032 return V >> 1; 2033 if (V != 1) 2034 return -(V >> 1); 2035 // There is no such thing as -0 with integers. "-0" really means MININT. 2036 return 1ULL << 63; 2037 } 2038 2039 /// Resolve all of the initializers for global values and aliases that we can. 2040 Error BitcodeReader::resolveGlobalAndIndirectSymbolInits() { 2041 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInitWorklist; 2042 std::vector<std::pair<GlobalIndirectSymbol *, unsigned>> 2043 IndirectSymbolInitWorklist; 2044 std::vector<std::pair<Function *, unsigned>> FunctionPrefixWorklist; 2045 std::vector<std::pair<Function *, unsigned>> FunctionPrologueWorklist; 2046 std::vector<std::pair<Function *, unsigned>> FunctionPersonalityFnWorklist; 2047 2048 GlobalInitWorklist.swap(GlobalInits); 2049 IndirectSymbolInitWorklist.swap(IndirectSymbolInits); 2050 FunctionPrefixWorklist.swap(FunctionPrefixes); 2051 FunctionPrologueWorklist.swap(FunctionPrologues); 2052 FunctionPersonalityFnWorklist.swap(FunctionPersonalityFns); 2053 2054 while (!GlobalInitWorklist.empty()) { 2055 unsigned ValID = GlobalInitWorklist.back().second; 2056 if (ValID >= ValueList.size()) { 2057 // Not ready to resolve this yet, it requires something later in the file. 2058 GlobalInits.push_back(GlobalInitWorklist.back()); 2059 } else { 2060 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2061 GlobalInitWorklist.back().first->setInitializer(C); 2062 else 2063 return error("Expected a constant"); 2064 } 2065 GlobalInitWorklist.pop_back(); 2066 } 2067 2068 while (!IndirectSymbolInitWorklist.empty()) { 2069 unsigned ValID = IndirectSymbolInitWorklist.back().second; 2070 if (ValID >= ValueList.size()) { 2071 IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back()); 2072 } else { 2073 Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]); 2074 if (!C) 2075 return error("Expected a constant"); 2076 GlobalIndirectSymbol *GIS = IndirectSymbolInitWorklist.back().first; 2077 if (isa<GlobalAlias>(GIS) && C->getType() != GIS->getType()) 2078 return error("Alias and aliasee types don't match"); 2079 GIS->setIndirectSymbol(C); 2080 } 2081 IndirectSymbolInitWorklist.pop_back(); 2082 } 2083 2084 while (!FunctionPrefixWorklist.empty()) { 2085 unsigned ValID = FunctionPrefixWorklist.back().second; 2086 if (ValID >= ValueList.size()) { 2087 FunctionPrefixes.push_back(FunctionPrefixWorklist.back()); 2088 } else { 2089 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2090 FunctionPrefixWorklist.back().first->setPrefixData(C); 2091 else 2092 return error("Expected a constant"); 2093 } 2094 FunctionPrefixWorklist.pop_back(); 2095 } 2096 2097 while (!FunctionPrologueWorklist.empty()) { 2098 unsigned ValID = FunctionPrologueWorklist.back().second; 2099 if (ValID >= ValueList.size()) { 2100 FunctionPrologues.push_back(FunctionPrologueWorklist.back()); 2101 } else { 2102 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2103 FunctionPrologueWorklist.back().first->setPrologueData(C); 2104 else 2105 return error("Expected a constant"); 2106 } 2107 FunctionPrologueWorklist.pop_back(); 2108 } 2109 2110 while (!FunctionPersonalityFnWorklist.empty()) { 2111 unsigned ValID = FunctionPersonalityFnWorklist.back().second; 2112 if (ValID >= ValueList.size()) { 2113 FunctionPersonalityFns.push_back(FunctionPersonalityFnWorklist.back()); 2114 } else { 2115 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2116 FunctionPersonalityFnWorklist.back().first->setPersonalityFn(C); 2117 else 2118 return error("Expected a constant"); 2119 } 2120 FunctionPersonalityFnWorklist.pop_back(); 2121 } 2122 2123 return Error::success(); 2124 } 2125 2126 static APInt readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { 2127 SmallVector<uint64_t, 8> Words(Vals.size()); 2128 transform(Vals, Words.begin(), 2129 BitcodeReader::decodeSignRotatedValue); 2130 2131 return APInt(TypeBits, Words); 2132 } 2133 2134 Error BitcodeReader::parseConstants() { 2135 if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 2136 return error("Invalid record"); 2137 2138 SmallVector<uint64_t, 64> Record; 2139 2140 // Read all the records for this value table. 2141 Type *CurTy = Type::getInt32Ty(Context); 2142 unsigned NextCstNo = ValueList.size(); 2143 2144 while (true) { 2145 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2146 2147 switch (Entry.Kind) { 2148 case BitstreamEntry::SubBlock: // Handled for us already. 2149 case BitstreamEntry::Error: 2150 return error("Malformed block"); 2151 case BitstreamEntry::EndBlock: 2152 if (NextCstNo != ValueList.size()) 2153 return error("Invalid constant reference"); 2154 2155 // Once all the constants have been read, go through and resolve forward 2156 // references. 2157 ValueList.resolveConstantForwardRefs(); 2158 return Error::success(); 2159 case BitstreamEntry::Record: 2160 // The interesting case. 2161 break; 2162 } 2163 2164 // Read a record. 2165 Record.clear(); 2166 Type *VoidType = Type::getVoidTy(Context); 2167 Value *V = nullptr; 2168 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 2169 switch (BitCode) { 2170 default: // Default behavior: unknown constant 2171 case bitc::CST_CODE_UNDEF: // UNDEF 2172 V = UndefValue::get(CurTy); 2173 break; 2174 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 2175 if (Record.empty()) 2176 return error("Invalid record"); 2177 if (Record[0] >= TypeList.size() || !TypeList[Record[0]]) 2178 return error("Invalid record"); 2179 if (TypeList[Record[0]] == VoidType) 2180 return error("Invalid constant type"); 2181 CurTy = TypeList[Record[0]]; 2182 continue; // Skip the ValueList manipulation. 2183 case bitc::CST_CODE_NULL: // NULL 2184 V = Constant::getNullValue(CurTy); 2185 break; 2186 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 2187 if (!CurTy->isIntegerTy() || Record.empty()) 2188 return error("Invalid record"); 2189 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); 2190 break; 2191 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 2192 if (!CurTy->isIntegerTy() || Record.empty()) 2193 return error("Invalid record"); 2194 2195 APInt VInt = 2196 readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth()); 2197 V = ConstantInt::get(Context, VInt); 2198 2199 break; 2200 } 2201 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 2202 if (Record.empty()) 2203 return error("Invalid record"); 2204 if (CurTy->isHalfTy()) 2205 V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf(), 2206 APInt(16, (uint16_t)Record[0]))); 2207 else if (CurTy->isFloatTy()) 2208 V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle(), 2209 APInt(32, (uint32_t)Record[0]))); 2210 else if (CurTy->isDoubleTy()) 2211 V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble(), 2212 APInt(64, Record[0]))); 2213 else if (CurTy->isX86_FP80Ty()) { 2214 // Bits are not stored the same way as a normal i80 APInt, compensate. 2215 uint64_t Rearrange[2]; 2216 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 2217 Rearrange[1] = Record[0] >> 48; 2218 V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended(), 2219 APInt(80, Rearrange))); 2220 } else if (CurTy->isFP128Ty()) 2221 V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad(), 2222 APInt(128, Record))); 2223 else if (CurTy->isPPC_FP128Ty()) 2224 V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble(), 2225 APInt(128, Record))); 2226 else 2227 V = UndefValue::get(CurTy); 2228 break; 2229 } 2230 2231 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 2232 if (Record.empty()) 2233 return error("Invalid record"); 2234 2235 unsigned Size = Record.size(); 2236 SmallVector<Constant*, 16> Elts; 2237 2238 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 2239 for (unsigned i = 0; i != Size; ++i) 2240 Elts.push_back(ValueList.getConstantFwdRef(Record[i], 2241 STy->getElementType(i))); 2242 V = ConstantStruct::get(STy, Elts); 2243 } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) { 2244 Type *EltTy = ATy->getElementType(); 2245 for (unsigned i = 0; i != Size; ++i) 2246 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2247 V = ConstantArray::get(ATy, Elts); 2248 } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) { 2249 Type *EltTy = VTy->getElementType(); 2250 for (unsigned i = 0; i != Size; ++i) 2251 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2252 V = ConstantVector::get(Elts); 2253 } else { 2254 V = UndefValue::get(CurTy); 2255 } 2256 break; 2257 } 2258 case bitc::CST_CODE_STRING: // STRING: [values] 2259 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 2260 if (Record.empty()) 2261 return error("Invalid record"); 2262 2263 SmallString<16> Elts(Record.begin(), Record.end()); 2264 V = ConstantDataArray::getString(Context, Elts, 2265 BitCode == bitc::CST_CODE_CSTRING); 2266 break; 2267 } 2268 case bitc::CST_CODE_DATA: {// DATA: [n x value] 2269 if (Record.empty()) 2270 return error("Invalid record"); 2271 2272 Type *EltTy = cast<SequentialType>(CurTy)->getElementType(); 2273 if (EltTy->isIntegerTy(8)) { 2274 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); 2275 if (isa<VectorType>(CurTy)) 2276 V = ConstantDataVector::get(Context, Elts); 2277 else 2278 V = ConstantDataArray::get(Context, Elts); 2279 } else if (EltTy->isIntegerTy(16)) { 2280 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2281 if (isa<VectorType>(CurTy)) 2282 V = ConstantDataVector::get(Context, Elts); 2283 else 2284 V = ConstantDataArray::get(Context, Elts); 2285 } else if (EltTy->isIntegerTy(32)) { 2286 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2287 if (isa<VectorType>(CurTy)) 2288 V = ConstantDataVector::get(Context, Elts); 2289 else 2290 V = ConstantDataArray::get(Context, Elts); 2291 } else if (EltTy->isIntegerTy(64)) { 2292 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2293 if (isa<VectorType>(CurTy)) 2294 V = ConstantDataVector::get(Context, Elts); 2295 else 2296 V = ConstantDataArray::get(Context, Elts); 2297 } else if (EltTy->isHalfTy()) { 2298 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2299 if (isa<VectorType>(CurTy)) 2300 V = ConstantDataVector::getFP(Context, Elts); 2301 else 2302 V = ConstantDataArray::getFP(Context, Elts); 2303 } else if (EltTy->isFloatTy()) { 2304 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2305 if (isa<VectorType>(CurTy)) 2306 V = ConstantDataVector::getFP(Context, Elts); 2307 else 2308 V = ConstantDataArray::getFP(Context, Elts); 2309 } else if (EltTy->isDoubleTy()) { 2310 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2311 if (isa<VectorType>(CurTy)) 2312 V = ConstantDataVector::getFP(Context, Elts); 2313 else 2314 V = ConstantDataArray::getFP(Context, Elts); 2315 } else { 2316 return error("Invalid type for value"); 2317 } 2318 break; 2319 } 2320 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 2321 if (Record.size() < 3) 2322 return error("Invalid record"); 2323 int Opc = getDecodedBinaryOpcode(Record[0], CurTy); 2324 if (Opc < 0) { 2325 V = UndefValue::get(CurTy); // Unknown binop. 2326 } else { 2327 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 2328 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy); 2329 unsigned Flags = 0; 2330 if (Record.size() >= 4) { 2331 if (Opc == Instruction::Add || 2332 Opc == Instruction::Sub || 2333 Opc == Instruction::Mul || 2334 Opc == Instruction::Shl) { 2335 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 2336 Flags |= OverflowingBinaryOperator::NoSignedWrap; 2337 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 2338 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 2339 } else if (Opc == Instruction::SDiv || 2340 Opc == Instruction::UDiv || 2341 Opc == Instruction::LShr || 2342 Opc == Instruction::AShr) { 2343 if (Record[3] & (1 << bitc::PEO_EXACT)) 2344 Flags |= SDivOperator::IsExact; 2345 } 2346 } 2347 V = ConstantExpr::get(Opc, LHS, RHS, Flags); 2348 } 2349 break; 2350 } 2351 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 2352 if (Record.size() < 3) 2353 return error("Invalid record"); 2354 int Opc = getDecodedCastOpcode(Record[0]); 2355 if (Opc < 0) { 2356 V = UndefValue::get(CurTy); // Unknown cast. 2357 } else { 2358 Type *OpTy = getTypeByID(Record[1]); 2359 if (!OpTy) 2360 return error("Invalid record"); 2361 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy); 2362 V = UpgradeBitCastExpr(Opc, Op, CurTy); 2363 if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy); 2364 } 2365 break; 2366 } 2367 case bitc::CST_CODE_CE_INBOUNDS_GEP: // [ty, n x operands] 2368 case bitc::CST_CODE_CE_GEP: // [ty, n x operands] 2369 case bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX: { // [ty, flags, n x 2370 // operands] 2371 unsigned OpNum = 0; 2372 Type *PointeeType = nullptr; 2373 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX || 2374 Record.size() % 2) 2375 PointeeType = getTypeByID(Record[OpNum++]); 2376 2377 bool InBounds = false; 2378 Optional<unsigned> InRangeIndex; 2379 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX) { 2380 uint64_t Op = Record[OpNum++]; 2381 InBounds = Op & 1; 2382 InRangeIndex = Op >> 1; 2383 } else if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP) 2384 InBounds = true; 2385 2386 SmallVector<Constant*, 16> Elts; 2387 while (OpNum != Record.size()) { 2388 Type *ElTy = getTypeByID(Record[OpNum++]); 2389 if (!ElTy) 2390 return error("Invalid record"); 2391 Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy)); 2392 } 2393 2394 if (PointeeType && 2395 PointeeType != 2396 cast<PointerType>(Elts[0]->getType()->getScalarType()) 2397 ->getElementType()) 2398 return error("Explicit gep operator type does not match pointee type " 2399 "of pointer operand"); 2400 2401 if (Elts.size() < 1) 2402 return error("Invalid gep with no operands"); 2403 2404 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 2405 V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices, 2406 InBounds, InRangeIndex); 2407 break; 2408 } 2409 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] 2410 if (Record.size() < 3) 2411 return error("Invalid record"); 2412 2413 Type *SelectorTy = Type::getInt1Ty(Context); 2414 2415 // The selector might be an i1 or an <n x i1> 2416 // Get the type from the ValueList before getting a forward ref. 2417 if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) 2418 if (Value *V = ValueList[Record[0]]) 2419 if (SelectorTy != V->getType()) 2420 SelectorTy = VectorType::get(SelectorTy, VTy->getNumElements()); 2421 2422 V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0], 2423 SelectorTy), 2424 ValueList.getConstantFwdRef(Record[1],CurTy), 2425 ValueList.getConstantFwdRef(Record[2],CurTy)); 2426 break; 2427 } 2428 case bitc::CST_CODE_CE_EXTRACTELT 2429 : { // CE_EXTRACTELT: [opty, opval, opty, opval] 2430 if (Record.size() < 3) 2431 return error("Invalid record"); 2432 VectorType *OpTy = 2433 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2434 if (!OpTy) 2435 return error("Invalid record"); 2436 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2437 Constant *Op1 = nullptr; 2438 if (Record.size() == 4) { 2439 Type *IdxTy = getTypeByID(Record[2]); 2440 if (!IdxTy) 2441 return error("Invalid record"); 2442 Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2443 } else // TODO: Remove with llvm 4.0 2444 Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2445 if (!Op1) 2446 return error("Invalid record"); 2447 V = ConstantExpr::getExtractElement(Op0, Op1); 2448 break; 2449 } 2450 case bitc::CST_CODE_CE_INSERTELT 2451 : { // CE_INSERTELT: [opval, opval, opty, opval] 2452 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2453 if (Record.size() < 3 || !OpTy) 2454 return error("Invalid record"); 2455 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2456 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], 2457 OpTy->getElementType()); 2458 Constant *Op2 = nullptr; 2459 if (Record.size() == 4) { 2460 Type *IdxTy = getTypeByID(Record[2]); 2461 if (!IdxTy) 2462 return error("Invalid record"); 2463 Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2464 } else // TODO: Remove with llvm 4.0 2465 Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2466 if (!Op2) 2467 return error("Invalid record"); 2468 V = ConstantExpr::getInsertElement(Op0, Op1, Op2); 2469 break; 2470 } 2471 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 2472 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2473 if (Record.size() < 3 || !OpTy) 2474 return error("Invalid record"); 2475 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2476 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy); 2477 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 2478 OpTy->getNumElements()); 2479 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy); 2480 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 2481 break; 2482 } 2483 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 2484 VectorType *RTy = dyn_cast<VectorType>(CurTy); 2485 VectorType *OpTy = 2486 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2487 if (Record.size() < 4 || !RTy || !OpTy) 2488 return error("Invalid record"); 2489 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2490 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2491 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 2492 RTy->getNumElements()); 2493 Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy); 2494 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 2495 break; 2496 } 2497 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 2498 if (Record.size() < 4) 2499 return error("Invalid record"); 2500 Type *OpTy = getTypeByID(Record[0]); 2501 if (!OpTy) 2502 return error("Invalid record"); 2503 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2504 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2505 2506 if (OpTy->isFPOrFPVectorTy()) 2507 V = ConstantExpr::getFCmp(Record[3], Op0, Op1); 2508 else 2509 V = ConstantExpr::getICmp(Record[3], Op0, Op1); 2510 break; 2511 } 2512 // This maintains backward compatibility, pre-asm dialect keywords. 2513 // FIXME: Remove with the 4.0 release. 2514 case bitc::CST_CODE_INLINEASM_OLD: { 2515 if (Record.size() < 2) 2516 return error("Invalid record"); 2517 std::string AsmStr, ConstrStr; 2518 bool HasSideEffects = Record[0] & 1; 2519 bool IsAlignStack = Record[0] >> 1; 2520 unsigned AsmStrSize = Record[1]; 2521 if (2+AsmStrSize >= Record.size()) 2522 return error("Invalid record"); 2523 unsigned ConstStrSize = Record[2+AsmStrSize]; 2524 if (3+AsmStrSize+ConstStrSize > Record.size()) 2525 return error("Invalid record"); 2526 2527 for (unsigned i = 0; i != AsmStrSize; ++i) 2528 AsmStr += (char)Record[2+i]; 2529 for (unsigned i = 0; i != ConstStrSize; ++i) 2530 ConstrStr += (char)Record[3+AsmStrSize+i]; 2531 PointerType *PTy = cast<PointerType>(CurTy); 2532 UpgradeInlineAsmString(&AsmStr); 2533 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 2534 AsmStr, ConstrStr, HasSideEffects, IsAlignStack); 2535 break; 2536 } 2537 // This version adds support for the asm dialect keywords (e.g., 2538 // inteldialect). 2539 case bitc::CST_CODE_INLINEASM: { 2540 if (Record.size() < 2) 2541 return error("Invalid record"); 2542 std::string AsmStr, ConstrStr; 2543 bool HasSideEffects = Record[0] & 1; 2544 bool IsAlignStack = (Record[0] >> 1) & 1; 2545 unsigned AsmDialect = Record[0] >> 2; 2546 unsigned AsmStrSize = Record[1]; 2547 if (2+AsmStrSize >= Record.size()) 2548 return error("Invalid record"); 2549 unsigned ConstStrSize = Record[2+AsmStrSize]; 2550 if (3+AsmStrSize+ConstStrSize > Record.size()) 2551 return error("Invalid record"); 2552 2553 for (unsigned i = 0; i != AsmStrSize; ++i) 2554 AsmStr += (char)Record[2+i]; 2555 for (unsigned i = 0; i != ConstStrSize; ++i) 2556 ConstrStr += (char)Record[3+AsmStrSize+i]; 2557 PointerType *PTy = cast<PointerType>(CurTy); 2558 UpgradeInlineAsmString(&AsmStr); 2559 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 2560 AsmStr, ConstrStr, HasSideEffects, IsAlignStack, 2561 InlineAsm::AsmDialect(AsmDialect)); 2562 break; 2563 } 2564 case bitc::CST_CODE_BLOCKADDRESS:{ 2565 if (Record.size() < 3) 2566 return error("Invalid record"); 2567 Type *FnTy = getTypeByID(Record[0]); 2568 if (!FnTy) 2569 return error("Invalid record"); 2570 Function *Fn = 2571 dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy)); 2572 if (!Fn) 2573 return error("Invalid record"); 2574 2575 // If the function is already parsed we can insert the block address right 2576 // away. 2577 BasicBlock *BB; 2578 unsigned BBID = Record[2]; 2579 if (!BBID) 2580 // Invalid reference to entry block. 2581 return error("Invalid ID"); 2582 if (!Fn->empty()) { 2583 Function::iterator BBI = Fn->begin(), BBE = Fn->end(); 2584 for (size_t I = 0, E = BBID; I != E; ++I) { 2585 if (BBI == BBE) 2586 return error("Invalid ID"); 2587 ++BBI; 2588 } 2589 BB = &*BBI; 2590 } else { 2591 // Otherwise insert a placeholder and remember it so it can be inserted 2592 // when the function is parsed. 2593 auto &FwdBBs = BasicBlockFwdRefs[Fn]; 2594 if (FwdBBs.empty()) 2595 BasicBlockFwdRefQueue.push_back(Fn); 2596 if (FwdBBs.size() < BBID + 1) 2597 FwdBBs.resize(BBID + 1); 2598 if (!FwdBBs[BBID]) 2599 FwdBBs[BBID] = BasicBlock::Create(Context); 2600 BB = FwdBBs[BBID]; 2601 } 2602 V = BlockAddress::get(Fn, BB); 2603 break; 2604 } 2605 } 2606 2607 ValueList.assignValue(V, NextCstNo); 2608 ++NextCstNo; 2609 } 2610 } 2611 2612 Error BitcodeReader::parseUseLists() { 2613 if (Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 2614 return error("Invalid record"); 2615 2616 // Read all the records. 2617 SmallVector<uint64_t, 64> Record; 2618 2619 while (true) { 2620 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2621 2622 switch (Entry.Kind) { 2623 case BitstreamEntry::SubBlock: // Handled for us already. 2624 case BitstreamEntry::Error: 2625 return error("Malformed block"); 2626 case BitstreamEntry::EndBlock: 2627 return Error::success(); 2628 case BitstreamEntry::Record: 2629 // The interesting case. 2630 break; 2631 } 2632 2633 // Read a use list record. 2634 Record.clear(); 2635 bool IsBB = false; 2636 switch (Stream.readRecord(Entry.ID, Record)) { 2637 default: // Default behavior: unknown type. 2638 break; 2639 case bitc::USELIST_CODE_BB: 2640 IsBB = true; 2641 LLVM_FALLTHROUGH; 2642 case bitc::USELIST_CODE_DEFAULT: { 2643 unsigned RecordLength = Record.size(); 2644 if (RecordLength < 3) 2645 // Records should have at least an ID and two indexes. 2646 return error("Invalid record"); 2647 unsigned ID = Record.back(); 2648 Record.pop_back(); 2649 2650 Value *V; 2651 if (IsBB) { 2652 assert(ID < FunctionBBs.size() && "Basic block not found"); 2653 V = FunctionBBs[ID]; 2654 } else 2655 V = ValueList[ID]; 2656 unsigned NumUses = 0; 2657 SmallDenseMap<const Use *, unsigned, 16> Order; 2658 for (const Use &U : V->materialized_uses()) { 2659 if (++NumUses > Record.size()) 2660 break; 2661 Order[&U] = Record[NumUses - 1]; 2662 } 2663 if (Order.size() != Record.size() || NumUses > Record.size()) 2664 // Mismatches can happen if the functions are being materialized lazily 2665 // (out-of-order), or a value has been upgraded. 2666 break; 2667 2668 V->sortUseList([&](const Use &L, const Use &R) { 2669 return Order.lookup(&L) < Order.lookup(&R); 2670 }); 2671 break; 2672 } 2673 } 2674 } 2675 } 2676 2677 /// When we see the block for metadata, remember where it is and then skip it. 2678 /// This lets us lazily deserialize the metadata. 2679 Error BitcodeReader::rememberAndSkipMetadata() { 2680 // Save the current stream state. 2681 uint64_t CurBit = Stream.GetCurrentBitNo(); 2682 DeferredMetadataInfo.push_back(CurBit); 2683 2684 // Skip over the block for now. 2685 if (Stream.SkipBlock()) 2686 return error("Invalid record"); 2687 return Error::success(); 2688 } 2689 2690 Error BitcodeReader::materializeMetadata() { 2691 for (uint64_t BitPos : DeferredMetadataInfo) { 2692 // Move the bit stream to the saved position. 2693 Stream.JumpToBit(BitPos); 2694 if (Error Err = MDLoader->parseModuleMetadata()) 2695 return Err; 2696 } 2697 2698 // Upgrade "Linker Options" module flag to "llvm.linker.options" module-level 2699 // metadata. 2700 if (Metadata *Val = TheModule->getModuleFlag("Linker Options")) { 2701 NamedMDNode *LinkerOpts = 2702 TheModule->getOrInsertNamedMetadata("llvm.linker.options"); 2703 for (const MDOperand &MDOptions : cast<MDNode>(Val)->operands()) 2704 LinkerOpts->addOperand(cast<MDNode>(MDOptions)); 2705 } 2706 2707 DeferredMetadataInfo.clear(); 2708 return Error::success(); 2709 } 2710 2711 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; } 2712 2713 /// When we see the block for a function body, remember where it is and then 2714 /// skip it. This lets us lazily deserialize the functions. 2715 Error BitcodeReader::rememberAndSkipFunctionBody() { 2716 // Get the function we are talking about. 2717 if (FunctionsWithBodies.empty()) 2718 return error("Insufficient function protos"); 2719 2720 Function *Fn = FunctionsWithBodies.back(); 2721 FunctionsWithBodies.pop_back(); 2722 2723 // Save the current stream state. 2724 uint64_t CurBit = Stream.GetCurrentBitNo(); 2725 assert( 2726 (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) && 2727 "Mismatch between VST and scanned function offsets"); 2728 DeferredFunctionInfo[Fn] = CurBit; 2729 2730 // Skip over the function block for now. 2731 if (Stream.SkipBlock()) 2732 return error("Invalid record"); 2733 return Error::success(); 2734 } 2735 2736 Error BitcodeReader::globalCleanup() { 2737 // Patch the initializers for globals and aliases up. 2738 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 2739 return Err; 2740 if (!GlobalInits.empty() || !IndirectSymbolInits.empty()) 2741 return error("Malformed global initializer set"); 2742 2743 // Look for intrinsic functions which need to be upgraded at some point 2744 for (Function &F : *TheModule) { 2745 MDLoader->upgradeDebugIntrinsics(F); 2746 Function *NewFn; 2747 if (UpgradeIntrinsicFunction(&F, NewFn)) 2748 UpgradedIntrinsics[&F] = NewFn; 2749 else if (auto Remangled = Intrinsic::remangleIntrinsicFunction(&F)) 2750 // Some types could be renamed during loading if several modules are 2751 // loaded in the same LLVMContext (LTO scenario). In this case we should 2752 // remangle intrinsics names as well. 2753 RemangledIntrinsics[&F] = Remangled.getValue(); 2754 } 2755 2756 // Look for global variables which need to be renamed. 2757 for (GlobalVariable &GV : TheModule->globals()) 2758 UpgradeGlobalVariable(&GV); 2759 2760 // Force deallocation of memory for these vectors to favor the client that 2761 // want lazy deserialization. 2762 std::vector<std::pair<GlobalVariable *, unsigned>>().swap(GlobalInits); 2763 std::vector<std::pair<GlobalIndirectSymbol *, unsigned>>().swap( 2764 IndirectSymbolInits); 2765 return Error::success(); 2766 } 2767 2768 /// Support for lazy parsing of function bodies. This is required if we 2769 /// either have an old bitcode file without a VST forward declaration record, 2770 /// or if we have an anonymous function being materialized, since anonymous 2771 /// functions do not have a name and are therefore not in the VST. 2772 Error BitcodeReader::rememberAndSkipFunctionBodies() { 2773 Stream.JumpToBit(NextUnreadBit); 2774 2775 if (Stream.AtEndOfStream()) 2776 return error("Could not find function in stream"); 2777 2778 if (!SeenFirstFunctionBody) 2779 return error("Trying to materialize functions before seeing function blocks"); 2780 2781 // An old bitcode file with the symbol table at the end would have 2782 // finished the parse greedily. 2783 assert(SeenValueSymbolTable); 2784 2785 SmallVector<uint64_t, 64> Record; 2786 2787 while (true) { 2788 BitstreamEntry Entry = Stream.advance(); 2789 switch (Entry.Kind) { 2790 default: 2791 return error("Expect SubBlock"); 2792 case BitstreamEntry::SubBlock: 2793 switch (Entry.ID) { 2794 default: 2795 return error("Expect function block"); 2796 case bitc::FUNCTION_BLOCK_ID: 2797 if (Error Err = rememberAndSkipFunctionBody()) 2798 return Err; 2799 NextUnreadBit = Stream.GetCurrentBitNo(); 2800 return Error::success(); 2801 } 2802 } 2803 } 2804 } 2805 2806 bool BitcodeReaderBase::readBlockInfo() { 2807 Optional<BitstreamBlockInfo> NewBlockInfo = Stream.ReadBlockInfoBlock(); 2808 if (!NewBlockInfo) 2809 return true; 2810 BlockInfo = std::move(*NewBlockInfo); 2811 return false; 2812 } 2813 2814 Error BitcodeReader::parseComdatRecord(ArrayRef<uint64_t> Record) { 2815 // v1: [selection_kind, name] 2816 // v2: [strtab_offset, strtab_size, selection_kind] 2817 StringRef Name; 2818 std::tie(Name, Record) = readNameFromStrtab(Record); 2819 2820 if (Record.empty()) 2821 return error("Invalid record"); 2822 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]); 2823 std::string OldFormatName; 2824 if (!UseStrtab) { 2825 if (Record.size() < 2) 2826 return error("Invalid record"); 2827 unsigned ComdatNameSize = Record[1]; 2828 OldFormatName.reserve(ComdatNameSize); 2829 for (unsigned i = 0; i != ComdatNameSize; ++i) 2830 OldFormatName += (char)Record[2 + i]; 2831 Name = OldFormatName; 2832 } 2833 Comdat *C = TheModule->getOrInsertComdat(Name); 2834 C->setSelectionKind(SK); 2835 ComdatList.push_back(C); 2836 return Error::success(); 2837 } 2838 2839 static void inferDSOLocal(GlobalValue *GV) { 2840 // infer dso_local from linkage and visibility if it is not encoded. 2841 if (GV->hasLocalLinkage() || 2842 (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())) 2843 GV->setDSOLocal(true); 2844 } 2845 2846 Error BitcodeReader::parseGlobalVarRecord(ArrayRef<uint64_t> Record) { 2847 // v1: [pointer type, isconst, initid, linkage, alignment, section, 2848 // visibility, threadlocal, unnamed_addr, externally_initialized, 2849 // dllstorageclass, comdat, attributes, preemption specifier] (name in VST) 2850 // v2: [strtab_offset, strtab_size, v1] 2851 StringRef Name; 2852 std::tie(Name, Record) = readNameFromStrtab(Record); 2853 2854 if (Record.size() < 6) 2855 return error("Invalid record"); 2856 Type *Ty = getTypeByID(Record[0]); 2857 if (!Ty) 2858 return error("Invalid record"); 2859 bool isConstant = Record[1] & 1; 2860 bool explicitType = Record[1] & 2; 2861 unsigned AddressSpace; 2862 if (explicitType) { 2863 AddressSpace = Record[1] >> 2; 2864 } else { 2865 if (!Ty->isPointerTy()) 2866 return error("Invalid type for value"); 2867 AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 2868 Ty = cast<PointerType>(Ty)->getElementType(); 2869 } 2870 2871 uint64_t RawLinkage = Record[3]; 2872 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 2873 unsigned Alignment; 2874 if (Error Err = parseAlignmentValue(Record[4], Alignment)) 2875 return Err; 2876 std::string Section; 2877 if (Record[5]) { 2878 if (Record[5] - 1 >= SectionTable.size()) 2879 return error("Invalid ID"); 2880 Section = SectionTable[Record[5] - 1]; 2881 } 2882 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 2883 // Local linkage must have default visibility. 2884 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage)) 2885 // FIXME: Change to an error if non-default in 4.0. 2886 Visibility = getDecodedVisibility(Record[6]); 2887 2888 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; 2889 if (Record.size() > 7) 2890 TLM = getDecodedThreadLocalMode(Record[7]); 2891 2892 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 2893 if (Record.size() > 8) 2894 UnnamedAddr = getDecodedUnnamedAddrType(Record[8]); 2895 2896 bool ExternallyInitialized = false; 2897 if (Record.size() > 9) 2898 ExternallyInitialized = Record[9]; 2899 2900 GlobalVariable *NewGV = 2901 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, Name, 2902 nullptr, TLM, AddressSpace, ExternallyInitialized); 2903 NewGV->setAlignment(Alignment); 2904 if (!Section.empty()) 2905 NewGV->setSection(Section); 2906 NewGV->setVisibility(Visibility); 2907 NewGV->setUnnamedAddr(UnnamedAddr); 2908 2909 if (Record.size() > 10) 2910 NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10])); 2911 else 2912 upgradeDLLImportExportLinkage(NewGV, RawLinkage); 2913 2914 ValueList.push_back(NewGV); 2915 2916 // Remember which value to use for the global initializer. 2917 if (unsigned InitID = Record[2]) 2918 GlobalInits.push_back(std::make_pair(NewGV, InitID - 1)); 2919 2920 if (Record.size() > 11) { 2921 if (unsigned ComdatID = Record[11]) { 2922 if (ComdatID > ComdatList.size()) 2923 return error("Invalid global variable comdat ID"); 2924 NewGV->setComdat(ComdatList[ComdatID - 1]); 2925 } 2926 } else if (hasImplicitComdat(RawLinkage)) { 2927 NewGV->setComdat(reinterpret_cast<Comdat *>(1)); 2928 } 2929 2930 if (Record.size() > 12) { 2931 auto AS = getAttributes(Record[12]).getFnAttributes(); 2932 NewGV->setAttributes(AS); 2933 } 2934 2935 if (Record.size() > 13) { 2936 NewGV->setDSOLocal(getDecodedDSOLocal(Record[13])); 2937 } 2938 inferDSOLocal(NewGV); 2939 2940 return Error::success(); 2941 } 2942 2943 Error BitcodeReader::parseFunctionRecord(ArrayRef<uint64_t> Record) { 2944 // v1: [type, callingconv, isproto, linkage, paramattr, alignment, section, 2945 // visibility, gc, unnamed_addr, prologuedata, dllstorageclass, comdat, 2946 // prefixdata, personalityfn, preemption specifier, addrspace] (name in VST) 2947 // v2: [strtab_offset, strtab_size, v1] 2948 StringRef Name; 2949 std::tie(Name, Record) = readNameFromStrtab(Record); 2950 2951 if (Record.size() < 8) 2952 return error("Invalid record"); 2953 Type *Ty = getTypeByID(Record[0]); 2954 if (!Ty) 2955 return error("Invalid record"); 2956 if (auto *PTy = dyn_cast<PointerType>(Ty)) 2957 Ty = PTy->getElementType(); 2958 auto *FTy = dyn_cast<FunctionType>(Ty); 2959 if (!FTy) 2960 return error("Invalid type for value"); 2961 auto CC = static_cast<CallingConv::ID>(Record[1]); 2962 if (CC & ~CallingConv::MaxID) 2963 return error("Invalid calling convention ID"); 2964 2965 unsigned AddrSpace = TheModule->getDataLayout().getProgramAddressSpace(); 2966 if (Record.size() > 16) 2967 AddrSpace = Record[16]; 2968 2969 Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage, 2970 AddrSpace, Name, TheModule); 2971 2972 Func->setCallingConv(CC); 2973 bool isProto = Record[2]; 2974 uint64_t RawLinkage = Record[3]; 2975 Func->setLinkage(getDecodedLinkage(RawLinkage)); 2976 Func->setAttributes(getAttributes(Record[4])); 2977 2978 unsigned Alignment; 2979 if (Error Err = parseAlignmentValue(Record[5], Alignment)) 2980 return Err; 2981 Func->setAlignment(Alignment); 2982 if (Record[6]) { 2983 if (Record[6] - 1 >= SectionTable.size()) 2984 return error("Invalid ID"); 2985 Func->setSection(SectionTable[Record[6] - 1]); 2986 } 2987 // Local linkage must have default visibility. 2988 if (!Func->hasLocalLinkage()) 2989 // FIXME: Change to an error if non-default in 4.0. 2990 Func->setVisibility(getDecodedVisibility(Record[7])); 2991 if (Record.size() > 8 && Record[8]) { 2992 if (Record[8] - 1 >= GCTable.size()) 2993 return error("Invalid ID"); 2994 Func->setGC(GCTable[Record[8] - 1]); 2995 } 2996 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 2997 if (Record.size() > 9) 2998 UnnamedAddr = getDecodedUnnamedAddrType(Record[9]); 2999 Func->setUnnamedAddr(UnnamedAddr); 3000 if (Record.size() > 10 && Record[10] != 0) 3001 FunctionPrologues.push_back(std::make_pair(Func, Record[10] - 1)); 3002 3003 if (Record.size() > 11) 3004 Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11])); 3005 else 3006 upgradeDLLImportExportLinkage(Func, RawLinkage); 3007 3008 if (Record.size() > 12) { 3009 if (unsigned ComdatID = Record[12]) { 3010 if (ComdatID > ComdatList.size()) 3011 return error("Invalid function comdat ID"); 3012 Func->setComdat(ComdatList[ComdatID - 1]); 3013 } 3014 } else if (hasImplicitComdat(RawLinkage)) { 3015 Func->setComdat(reinterpret_cast<Comdat *>(1)); 3016 } 3017 3018 if (Record.size() > 13 && Record[13] != 0) 3019 FunctionPrefixes.push_back(std::make_pair(Func, Record[13] - 1)); 3020 3021 if (Record.size() > 14 && Record[14] != 0) 3022 FunctionPersonalityFns.push_back(std::make_pair(Func, Record[14] - 1)); 3023 3024 if (Record.size() > 15) { 3025 Func->setDSOLocal(getDecodedDSOLocal(Record[15])); 3026 } 3027 inferDSOLocal(Func); 3028 3029 ValueList.push_back(Func); 3030 3031 // If this is a function with a body, remember the prototype we are 3032 // creating now, so that we can match up the body with them later. 3033 if (!isProto) { 3034 Func->setIsMaterializable(true); 3035 FunctionsWithBodies.push_back(Func); 3036 DeferredFunctionInfo[Func] = 0; 3037 } 3038 return Error::success(); 3039 } 3040 3041 Error BitcodeReader::parseGlobalIndirectSymbolRecord( 3042 unsigned BitCode, ArrayRef<uint64_t> Record) { 3043 // v1 ALIAS_OLD: [alias type, aliasee val#, linkage] (name in VST) 3044 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, 3045 // dllstorageclass, threadlocal, unnamed_addr, 3046 // preemption specifier] (name in VST) 3047 // v1 IFUNC: [alias type, addrspace, aliasee val#, linkage, 3048 // visibility, dllstorageclass, threadlocal, unnamed_addr, 3049 // preemption specifier] (name in VST) 3050 // v2: [strtab_offset, strtab_size, v1] 3051 StringRef Name; 3052 std::tie(Name, Record) = readNameFromStrtab(Record); 3053 3054 bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD; 3055 if (Record.size() < (3 + (unsigned)NewRecord)) 3056 return error("Invalid record"); 3057 unsigned OpNum = 0; 3058 Type *Ty = getTypeByID(Record[OpNum++]); 3059 if (!Ty) 3060 return error("Invalid record"); 3061 3062 unsigned AddrSpace; 3063 if (!NewRecord) { 3064 auto *PTy = dyn_cast<PointerType>(Ty); 3065 if (!PTy) 3066 return error("Invalid type for value"); 3067 Ty = PTy->getElementType(); 3068 AddrSpace = PTy->getAddressSpace(); 3069 } else { 3070 AddrSpace = Record[OpNum++]; 3071 } 3072 3073 auto Val = Record[OpNum++]; 3074 auto Linkage = Record[OpNum++]; 3075 GlobalIndirectSymbol *NewGA; 3076 if (BitCode == bitc::MODULE_CODE_ALIAS || 3077 BitCode == bitc::MODULE_CODE_ALIAS_OLD) 3078 NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name, 3079 TheModule); 3080 else 3081 NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name, 3082 nullptr, TheModule); 3083 // Old bitcode files didn't have visibility field. 3084 // Local linkage must have default visibility. 3085 if (OpNum != Record.size()) { 3086 auto VisInd = OpNum++; 3087 if (!NewGA->hasLocalLinkage()) 3088 // FIXME: Change to an error if non-default in 4.0. 3089 NewGA->setVisibility(getDecodedVisibility(Record[VisInd])); 3090 } 3091 if (BitCode == bitc::MODULE_CODE_ALIAS || 3092 BitCode == bitc::MODULE_CODE_ALIAS_OLD) { 3093 if (OpNum != Record.size()) 3094 NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++])); 3095 else 3096 upgradeDLLImportExportLinkage(NewGA, Linkage); 3097 if (OpNum != Record.size()) 3098 NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++])); 3099 if (OpNum != Record.size()) 3100 NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++])); 3101 } 3102 if (OpNum != Record.size()) 3103 NewGA->setDSOLocal(getDecodedDSOLocal(Record[OpNum++])); 3104 inferDSOLocal(NewGA); 3105 3106 ValueList.push_back(NewGA); 3107 IndirectSymbolInits.push_back(std::make_pair(NewGA, Val)); 3108 return Error::success(); 3109 } 3110 3111 Error BitcodeReader::parseModule(uint64_t ResumeBit, 3112 bool ShouldLazyLoadMetadata) { 3113 if (ResumeBit) 3114 Stream.JumpToBit(ResumeBit); 3115 else if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 3116 return error("Invalid record"); 3117 3118 SmallVector<uint64_t, 64> Record; 3119 3120 // Read all the records for this module. 3121 while (true) { 3122 BitstreamEntry Entry = Stream.advance(); 3123 3124 switch (Entry.Kind) { 3125 case BitstreamEntry::Error: 3126 return error("Malformed block"); 3127 case BitstreamEntry::EndBlock: 3128 return globalCleanup(); 3129 3130 case BitstreamEntry::SubBlock: 3131 switch (Entry.ID) { 3132 default: // Skip unknown content. 3133 if (Stream.SkipBlock()) 3134 return error("Invalid record"); 3135 break; 3136 case bitc::BLOCKINFO_BLOCK_ID: 3137 if (readBlockInfo()) 3138 return error("Malformed block"); 3139 break; 3140 case bitc::PARAMATTR_BLOCK_ID: 3141 if (Error Err = parseAttributeBlock()) 3142 return Err; 3143 break; 3144 case bitc::PARAMATTR_GROUP_BLOCK_ID: 3145 if (Error Err = parseAttributeGroupBlock()) 3146 return Err; 3147 break; 3148 case bitc::TYPE_BLOCK_ID_NEW: 3149 if (Error Err = parseTypeTable()) 3150 return Err; 3151 break; 3152 case bitc::VALUE_SYMTAB_BLOCK_ID: 3153 if (!SeenValueSymbolTable) { 3154 // Either this is an old form VST without function index and an 3155 // associated VST forward declaration record (which would have caused 3156 // the VST to be jumped to and parsed before it was encountered 3157 // normally in the stream), or there were no function blocks to 3158 // trigger an earlier parsing of the VST. 3159 assert(VSTOffset == 0 || FunctionsWithBodies.empty()); 3160 if (Error Err = parseValueSymbolTable()) 3161 return Err; 3162 SeenValueSymbolTable = true; 3163 } else { 3164 // We must have had a VST forward declaration record, which caused 3165 // the parser to jump to and parse the VST earlier. 3166 assert(VSTOffset > 0); 3167 if (Stream.SkipBlock()) 3168 return error("Invalid record"); 3169 } 3170 break; 3171 case bitc::CONSTANTS_BLOCK_ID: 3172 if (Error Err = parseConstants()) 3173 return Err; 3174 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 3175 return Err; 3176 break; 3177 case bitc::METADATA_BLOCK_ID: 3178 if (ShouldLazyLoadMetadata) { 3179 if (Error Err = rememberAndSkipMetadata()) 3180 return Err; 3181 break; 3182 } 3183 assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata"); 3184 if (Error Err = MDLoader->parseModuleMetadata()) 3185 return Err; 3186 break; 3187 case bitc::METADATA_KIND_BLOCK_ID: 3188 if (Error Err = MDLoader->parseMetadataKinds()) 3189 return Err; 3190 break; 3191 case bitc::FUNCTION_BLOCK_ID: 3192 // If this is the first function body we've seen, reverse the 3193 // FunctionsWithBodies list. 3194 if (!SeenFirstFunctionBody) { 3195 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 3196 if (Error Err = globalCleanup()) 3197 return Err; 3198 SeenFirstFunctionBody = true; 3199 } 3200 3201 if (VSTOffset > 0) { 3202 // If we have a VST forward declaration record, make sure we 3203 // parse the VST now if we haven't already. It is needed to 3204 // set up the DeferredFunctionInfo vector for lazy reading. 3205 if (!SeenValueSymbolTable) { 3206 if (Error Err = BitcodeReader::parseValueSymbolTable(VSTOffset)) 3207 return Err; 3208 SeenValueSymbolTable = true; 3209 // Fall through so that we record the NextUnreadBit below. 3210 // This is necessary in case we have an anonymous function that 3211 // is later materialized. Since it will not have a VST entry we 3212 // need to fall back to the lazy parse to find its offset. 3213 } else { 3214 // If we have a VST forward declaration record, but have already 3215 // parsed the VST (just above, when the first function body was 3216 // encountered here), then we are resuming the parse after 3217 // materializing functions. The ResumeBit points to the 3218 // start of the last function block recorded in the 3219 // DeferredFunctionInfo map. Skip it. 3220 if (Stream.SkipBlock()) 3221 return error("Invalid record"); 3222 continue; 3223 } 3224 } 3225 3226 // Support older bitcode files that did not have the function 3227 // index in the VST, nor a VST forward declaration record, as 3228 // well as anonymous functions that do not have VST entries. 3229 // Build the DeferredFunctionInfo vector on the fly. 3230 if (Error Err = rememberAndSkipFunctionBody()) 3231 return Err; 3232 3233 // Suspend parsing when we reach the function bodies. Subsequent 3234 // materialization calls will resume it when necessary. If the bitcode 3235 // file is old, the symbol table will be at the end instead and will not 3236 // have been seen yet. In this case, just finish the parse now. 3237 if (SeenValueSymbolTable) { 3238 NextUnreadBit = Stream.GetCurrentBitNo(); 3239 // After the VST has been parsed, we need to make sure intrinsic name 3240 // are auto-upgraded. 3241 return globalCleanup(); 3242 } 3243 break; 3244 case bitc::USELIST_BLOCK_ID: 3245 if (Error Err = parseUseLists()) 3246 return Err; 3247 break; 3248 case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID: 3249 if (Error Err = parseOperandBundleTags()) 3250 return Err; 3251 break; 3252 case bitc::SYNC_SCOPE_NAMES_BLOCK_ID: 3253 if (Error Err = parseSyncScopeNames()) 3254 return Err; 3255 break; 3256 } 3257 continue; 3258 3259 case BitstreamEntry::Record: 3260 // The interesting case. 3261 break; 3262 } 3263 3264 // Read a record. 3265 auto BitCode = Stream.readRecord(Entry.ID, Record); 3266 switch (BitCode) { 3267 default: break; // Default behavior, ignore unknown content. 3268 case bitc::MODULE_CODE_VERSION: { 3269 Expected<unsigned> VersionOrErr = parseVersionRecord(Record); 3270 if (!VersionOrErr) 3271 return VersionOrErr.takeError(); 3272 UseRelativeIDs = *VersionOrErr >= 1; 3273 break; 3274 } 3275 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 3276 std::string S; 3277 if (convertToString(Record, 0, S)) 3278 return error("Invalid record"); 3279 TheModule->setTargetTriple(S); 3280 break; 3281 } 3282 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 3283 std::string S; 3284 if (convertToString(Record, 0, S)) 3285 return error("Invalid record"); 3286 TheModule->setDataLayout(S); 3287 break; 3288 } 3289 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 3290 std::string S; 3291 if (convertToString(Record, 0, S)) 3292 return error("Invalid record"); 3293 TheModule->setModuleInlineAsm(S); 3294 break; 3295 } 3296 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 3297 // FIXME: Remove in 4.0. 3298 std::string S; 3299 if (convertToString(Record, 0, S)) 3300 return error("Invalid record"); 3301 // Ignore value. 3302 break; 3303 } 3304 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 3305 std::string S; 3306 if (convertToString(Record, 0, S)) 3307 return error("Invalid record"); 3308 SectionTable.push_back(S); 3309 break; 3310 } 3311 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 3312 std::string S; 3313 if (convertToString(Record, 0, S)) 3314 return error("Invalid record"); 3315 GCTable.push_back(S); 3316 break; 3317 } 3318 case bitc::MODULE_CODE_COMDAT: 3319 if (Error Err = parseComdatRecord(Record)) 3320 return Err; 3321 break; 3322 case bitc::MODULE_CODE_GLOBALVAR: 3323 if (Error Err = parseGlobalVarRecord(Record)) 3324 return Err; 3325 break; 3326 case bitc::MODULE_CODE_FUNCTION: 3327 if (Error Err = parseFunctionRecord(Record)) 3328 return Err; 3329 break; 3330 case bitc::MODULE_CODE_IFUNC: 3331 case bitc::MODULE_CODE_ALIAS: 3332 case bitc::MODULE_CODE_ALIAS_OLD: 3333 if (Error Err = parseGlobalIndirectSymbolRecord(BitCode, Record)) 3334 return Err; 3335 break; 3336 /// MODULE_CODE_VSTOFFSET: [offset] 3337 case bitc::MODULE_CODE_VSTOFFSET: 3338 if (Record.size() < 1) 3339 return error("Invalid record"); 3340 // Note that we subtract 1 here because the offset is relative to one word 3341 // before the start of the identification or module block, which was 3342 // historically always the start of the regular bitcode header. 3343 VSTOffset = Record[0] - 1; 3344 break; 3345 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 3346 case bitc::MODULE_CODE_SOURCE_FILENAME: 3347 SmallString<128> ValueName; 3348 if (convertToString(Record, 0, ValueName)) 3349 return error("Invalid record"); 3350 TheModule->setSourceFileName(ValueName); 3351 break; 3352 } 3353 Record.clear(); 3354 } 3355 } 3356 3357 Error BitcodeReader::parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata, 3358 bool IsImporting) { 3359 TheModule = M; 3360 MDLoader = MetadataLoader(Stream, *M, ValueList, IsImporting, 3361 [&](unsigned ID) { return getTypeByID(ID); }); 3362 return parseModule(0, ShouldLazyLoadMetadata); 3363 } 3364 3365 Error BitcodeReader::typeCheckLoadStoreInst(Type *ValType, Type *PtrType) { 3366 if (!isa<PointerType>(PtrType)) 3367 return error("Load/Store operand is not a pointer type"); 3368 Type *ElemType = cast<PointerType>(PtrType)->getElementType(); 3369 3370 if (ValType && ValType != ElemType) 3371 return error("Explicit load/store type does not match pointee " 3372 "type of pointer operand"); 3373 if (!PointerType::isLoadableOrStorableType(ElemType)) 3374 return error("Cannot load/store from pointer"); 3375 return Error::success(); 3376 } 3377 3378 /// Lazily parse the specified function body block. 3379 Error BitcodeReader::parseFunctionBody(Function *F) { 3380 if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 3381 return error("Invalid record"); 3382 3383 // Unexpected unresolved metadata when parsing function. 3384 if (MDLoader->hasFwdRefs()) 3385 return error("Invalid function metadata: incoming forward references"); 3386 3387 InstructionList.clear(); 3388 unsigned ModuleValueListSize = ValueList.size(); 3389 unsigned ModuleMDLoaderSize = MDLoader->size(); 3390 3391 // Add all the function arguments to the value table. 3392 for (Argument &I : F->args()) 3393 ValueList.push_back(&I); 3394 3395 unsigned NextValueNo = ValueList.size(); 3396 BasicBlock *CurBB = nullptr; 3397 unsigned CurBBNo = 0; 3398 3399 DebugLoc LastLoc; 3400 auto getLastInstruction = [&]() -> Instruction * { 3401 if (CurBB && !CurBB->empty()) 3402 return &CurBB->back(); 3403 else if (CurBBNo && FunctionBBs[CurBBNo - 1] && 3404 !FunctionBBs[CurBBNo - 1]->empty()) 3405 return &FunctionBBs[CurBBNo - 1]->back(); 3406 return nullptr; 3407 }; 3408 3409 std::vector<OperandBundleDef> OperandBundles; 3410 3411 // Read all the records. 3412 SmallVector<uint64_t, 64> Record; 3413 3414 while (true) { 3415 BitstreamEntry Entry = Stream.advance(); 3416 3417 switch (Entry.Kind) { 3418 case BitstreamEntry::Error: 3419 return error("Malformed block"); 3420 case BitstreamEntry::EndBlock: 3421 goto OutOfRecordLoop; 3422 3423 case BitstreamEntry::SubBlock: 3424 switch (Entry.ID) { 3425 default: // Skip unknown content. 3426 if (Stream.SkipBlock()) 3427 return error("Invalid record"); 3428 break; 3429 case bitc::CONSTANTS_BLOCK_ID: 3430 if (Error Err = parseConstants()) 3431 return Err; 3432 NextValueNo = ValueList.size(); 3433 break; 3434 case bitc::VALUE_SYMTAB_BLOCK_ID: 3435 if (Error Err = parseValueSymbolTable()) 3436 return Err; 3437 break; 3438 case bitc::METADATA_ATTACHMENT_ID: 3439 if (Error Err = MDLoader->parseMetadataAttachment(*F, InstructionList)) 3440 return Err; 3441 break; 3442 case bitc::METADATA_BLOCK_ID: 3443 assert(DeferredMetadataInfo.empty() && 3444 "Must read all module-level metadata before function-level"); 3445 if (Error Err = MDLoader->parseFunctionMetadata()) 3446 return Err; 3447 break; 3448 case bitc::USELIST_BLOCK_ID: 3449 if (Error Err = parseUseLists()) 3450 return Err; 3451 break; 3452 } 3453 continue; 3454 3455 case BitstreamEntry::Record: 3456 // The interesting case. 3457 break; 3458 } 3459 3460 // Read a record. 3461 Record.clear(); 3462 Instruction *I = nullptr; 3463 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 3464 switch (BitCode) { 3465 default: // Default behavior: reject 3466 return error("Invalid value"); 3467 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks] 3468 if (Record.size() < 1 || Record[0] == 0) 3469 return error("Invalid record"); 3470 // Create all the basic blocks for the function. 3471 FunctionBBs.resize(Record[0]); 3472 3473 // See if anything took the address of blocks in this function. 3474 auto BBFRI = BasicBlockFwdRefs.find(F); 3475 if (BBFRI == BasicBlockFwdRefs.end()) { 3476 for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i) 3477 FunctionBBs[i] = BasicBlock::Create(Context, "", F); 3478 } else { 3479 auto &BBRefs = BBFRI->second; 3480 // Check for invalid basic block references. 3481 if (BBRefs.size() > FunctionBBs.size()) 3482 return error("Invalid ID"); 3483 assert(!BBRefs.empty() && "Unexpected empty array"); 3484 assert(!BBRefs.front() && "Invalid reference to entry block"); 3485 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E; 3486 ++I) 3487 if (I < RE && BBRefs[I]) { 3488 BBRefs[I]->insertInto(F); 3489 FunctionBBs[I] = BBRefs[I]; 3490 } else { 3491 FunctionBBs[I] = BasicBlock::Create(Context, "", F); 3492 } 3493 3494 // Erase from the table. 3495 BasicBlockFwdRefs.erase(BBFRI); 3496 } 3497 3498 CurBB = FunctionBBs[0]; 3499 continue; 3500 } 3501 3502 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 3503 // This record indicates that the last instruction is at the same 3504 // location as the previous instruction with a location. 3505 I = getLastInstruction(); 3506 3507 if (!I) 3508 return error("Invalid record"); 3509 I->setDebugLoc(LastLoc); 3510 I = nullptr; 3511 continue; 3512 3513 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 3514 I = getLastInstruction(); 3515 if (!I || Record.size() < 4) 3516 return error("Invalid record"); 3517 3518 unsigned Line = Record[0], Col = Record[1]; 3519 unsigned ScopeID = Record[2], IAID = Record[3]; 3520 bool isImplicitCode = Record.size() == 5 && Record[4]; 3521 3522 MDNode *Scope = nullptr, *IA = nullptr; 3523 if (ScopeID) { 3524 Scope = MDLoader->getMDNodeFwdRefOrNull(ScopeID - 1); 3525 if (!Scope) 3526 return error("Invalid record"); 3527 } 3528 if (IAID) { 3529 IA = MDLoader->getMDNodeFwdRefOrNull(IAID - 1); 3530 if (!IA) 3531 return error("Invalid record"); 3532 } 3533 LastLoc = DebugLoc::get(Line, Col, Scope, IA, isImplicitCode); 3534 I->setDebugLoc(LastLoc); 3535 I = nullptr; 3536 continue; 3537 } 3538 3539 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 3540 unsigned OpNum = 0; 3541 Value *LHS, *RHS; 3542 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 3543 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 3544 OpNum+1 > Record.size()) 3545 return error("Invalid record"); 3546 3547 int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 3548 if (Opc == -1) 3549 return error("Invalid record"); 3550 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 3551 InstructionList.push_back(I); 3552 if (OpNum < Record.size()) { 3553 if (Opc == Instruction::Add || 3554 Opc == Instruction::Sub || 3555 Opc == Instruction::Mul || 3556 Opc == Instruction::Shl) { 3557 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 3558 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 3559 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 3560 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 3561 } else if (Opc == Instruction::SDiv || 3562 Opc == Instruction::UDiv || 3563 Opc == Instruction::LShr || 3564 Opc == Instruction::AShr) { 3565 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 3566 cast<BinaryOperator>(I)->setIsExact(true); 3567 } else if (isa<FPMathOperator>(I)) { 3568 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 3569 if (FMF.any()) 3570 I->setFastMathFlags(FMF); 3571 } 3572 3573 } 3574 break; 3575 } 3576 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 3577 unsigned OpNum = 0; 3578 Value *Op; 3579 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 3580 OpNum+2 != Record.size()) 3581 return error("Invalid record"); 3582 3583 Type *ResTy = getTypeByID(Record[OpNum]); 3584 int Opc = getDecodedCastOpcode(Record[OpNum + 1]); 3585 if (Opc == -1 || !ResTy) 3586 return error("Invalid record"); 3587 Instruction *Temp = nullptr; 3588 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) { 3589 if (Temp) { 3590 InstructionList.push_back(Temp); 3591 CurBB->getInstList().push_back(Temp); 3592 } 3593 } else { 3594 auto CastOp = (Instruction::CastOps)Opc; 3595 if (!CastInst::castIsValid(CastOp, Op, ResTy)) 3596 return error("Invalid cast"); 3597 I = CastInst::Create(CastOp, Op, ResTy); 3598 } 3599 InstructionList.push_back(I); 3600 break; 3601 } 3602 case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD: 3603 case bitc::FUNC_CODE_INST_GEP_OLD: 3604 case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands] 3605 unsigned OpNum = 0; 3606 3607 Type *Ty; 3608 bool InBounds; 3609 3610 if (BitCode == bitc::FUNC_CODE_INST_GEP) { 3611 InBounds = Record[OpNum++]; 3612 Ty = getTypeByID(Record[OpNum++]); 3613 } else { 3614 InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD; 3615 Ty = nullptr; 3616 } 3617 3618 Value *BasePtr; 3619 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr)) 3620 return error("Invalid record"); 3621 3622 if (!Ty) 3623 Ty = cast<PointerType>(BasePtr->getType()->getScalarType()) 3624 ->getElementType(); 3625 else if (Ty != 3626 cast<PointerType>(BasePtr->getType()->getScalarType()) 3627 ->getElementType()) 3628 return error( 3629 "Explicit gep type does not match pointee type of pointer operand"); 3630 3631 SmallVector<Value*, 16> GEPIdx; 3632 while (OpNum != Record.size()) { 3633 Value *Op; 3634 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3635 return error("Invalid record"); 3636 GEPIdx.push_back(Op); 3637 } 3638 3639 I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx); 3640 3641 InstructionList.push_back(I); 3642 if (InBounds) 3643 cast<GetElementPtrInst>(I)->setIsInBounds(true); 3644 break; 3645 } 3646 3647 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 3648 // EXTRACTVAL: [opty, opval, n x indices] 3649 unsigned OpNum = 0; 3650 Value *Agg; 3651 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 3652 return error("Invalid record"); 3653 3654 unsigned RecSize = Record.size(); 3655 if (OpNum == RecSize) 3656 return error("EXTRACTVAL: Invalid instruction with 0 indices"); 3657 3658 SmallVector<unsigned, 4> EXTRACTVALIdx; 3659 Type *CurTy = Agg->getType(); 3660 for (; OpNum != RecSize; ++OpNum) { 3661 bool IsArray = CurTy->isArrayTy(); 3662 bool IsStruct = CurTy->isStructTy(); 3663 uint64_t Index = Record[OpNum]; 3664 3665 if (!IsStruct && !IsArray) 3666 return error("EXTRACTVAL: Invalid type"); 3667 if ((unsigned)Index != Index) 3668 return error("Invalid value"); 3669 if (IsStruct && Index >= CurTy->subtypes().size()) 3670 return error("EXTRACTVAL: Invalid struct index"); 3671 if (IsArray && Index >= CurTy->getArrayNumElements()) 3672 return error("EXTRACTVAL: Invalid array index"); 3673 EXTRACTVALIdx.push_back((unsigned)Index); 3674 3675 if (IsStruct) 3676 CurTy = CurTy->subtypes()[Index]; 3677 else 3678 CurTy = CurTy->subtypes()[0]; 3679 } 3680 3681 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 3682 InstructionList.push_back(I); 3683 break; 3684 } 3685 3686 case bitc::FUNC_CODE_INST_INSERTVAL: { 3687 // INSERTVAL: [opty, opval, opty, opval, n x indices] 3688 unsigned OpNum = 0; 3689 Value *Agg; 3690 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 3691 return error("Invalid record"); 3692 Value *Val; 3693 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 3694 return error("Invalid record"); 3695 3696 unsigned RecSize = Record.size(); 3697 if (OpNum == RecSize) 3698 return error("INSERTVAL: Invalid instruction with 0 indices"); 3699 3700 SmallVector<unsigned, 4> INSERTVALIdx; 3701 Type *CurTy = Agg->getType(); 3702 for (; OpNum != RecSize; ++OpNum) { 3703 bool IsArray = CurTy->isArrayTy(); 3704 bool IsStruct = CurTy->isStructTy(); 3705 uint64_t Index = Record[OpNum]; 3706 3707 if (!IsStruct && !IsArray) 3708 return error("INSERTVAL: Invalid type"); 3709 if ((unsigned)Index != Index) 3710 return error("Invalid value"); 3711 if (IsStruct && Index >= CurTy->subtypes().size()) 3712 return error("INSERTVAL: Invalid struct index"); 3713 if (IsArray && Index >= CurTy->getArrayNumElements()) 3714 return error("INSERTVAL: Invalid array index"); 3715 3716 INSERTVALIdx.push_back((unsigned)Index); 3717 if (IsStruct) 3718 CurTy = CurTy->subtypes()[Index]; 3719 else 3720 CurTy = CurTy->subtypes()[0]; 3721 } 3722 3723 if (CurTy != Val->getType()) 3724 return error("Inserted value type doesn't match aggregate type"); 3725 3726 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 3727 InstructionList.push_back(I); 3728 break; 3729 } 3730 3731 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 3732 // obsolete form of select 3733 // handles select i1 ... in old bitcode 3734 unsigned OpNum = 0; 3735 Value *TrueVal, *FalseVal, *Cond; 3736 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 3737 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 3738 popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond)) 3739 return error("Invalid record"); 3740 3741 I = SelectInst::Create(Cond, TrueVal, FalseVal); 3742 InstructionList.push_back(I); 3743 break; 3744 } 3745 3746 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 3747 // new form of select 3748 // handles select i1 or select [N x i1] 3749 unsigned OpNum = 0; 3750 Value *TrueVal, *FalseVal, *Cond; 3751 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 3752 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 3753 getValueTypePair(Record, OpNum, NextValueNo, Cond)) 3754 return error("Invalid record"); 3755 3756 // select condition can be either i1 or [N x i1] 3757 if (VectorType* vector_type = 3758 dyn_cast<VectorType>(Cond->getType())) { 3759 // expect <n x i1> 3760 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 3761 return error("Invalid type for value"); 3762 } else { 3763 // expect i1 3764 if (Cond->getType() != Type::getInt1Ty(Context)) 3765 return error("Invalid type for value"); 3766 } 3767 3768 I = SelectInst::Create(Cond, TrueVal, FalseVal); 3769 InstructionList.push_back(I); 3770 break; 3771 } 3772 3773 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 3774 unsigned OpNum = 0; 3775 Value *Vec, *Idx; 3776 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 3777 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 3778 return error("Invalid record"); 3779 if (!Vec->getType()->isVectorTy()) 3780 return error("Invalid type for value"); 3781 I = ExtractElementInst::Create(Vec, Idx); 3782 InstructionList.push_back(I); 3783 break; 3784 } 3785 3786 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 3787 unsigned OpNum = 0; 3788 Value *Vec, *Elt, *Idx; 3789 if (getValueTypePair(Record, OpNum, NextValueNo, Vec)) 3790 return error("Invalid record"); 3791 if (!Vec->getType()->isVectorTy()) 3792 return error("Invalid type for value"); 3793 if (popValue(Record, OpNum, NextValueNo, 3794 cast<VectorType>(Vec->getType())->getElementType(), Elt) || 3795 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 3796 return error("Invalid record"); 3797 I = InsertElementInst::Create(Vec, Elt, Idx); 3798 InstructionList.push_back(I); 3799 break; 3800 } 3801 3802 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 3803 unsigned OpNum = 0; 3804 Value *Vec1, *Vec2, *Mask; 3805 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) || 3806 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2)) 3807 return error("Invalid record"); 3808 3809 if (getValueTypePair(Record, OpNum, NextValueNo, Mask)) 3810 return error("Invalid record"); 3811 if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy()) 3812 return error("Invalid type for value"); 3813 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 3814 InstructionList.push_back(I); 3815 break; 3816 } 3817 3818 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 3819 // Old form of ICmp/FCmp returning bool 3820 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 3821 // both legal on vectors but had different behaviour. 3822 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 3823 // FCmp/ICmp returning bool or vector of bool 3824 3825 unsigned OpNum = 0; 3826 Value *LHS, *RHS; 3827 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 3828 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS)) 3829 return error("Invalid record"); 3830 3831 unsigned PredVal = Record[OpNum]; 3832 bool IsFP = LHS->getType()->isFPOrFPVectorTy(); 3833 FastMathFlags FMF; 3834 if (IsFP && Record.size() > OpNum+1) 3835 FMF = getDecodedFastMathFlags(Record[++OpNum]); 3836 3837 if (OpNum+1 != Record.size()) 3838 return error("Invalid record"); 3839 3840 if (LHS->getType()->isFPOrFPVectorTy()) 3841 I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS); 3842 else 3843 I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS); 3844 3845 if (FMF.any()) 3846 I->setFastMathFlags(FMF); 3847 InstructionList.push_back(I); 3848 break; 3849 } 3850 3851 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 3852 { 3853 unsigned Size = Record.size(); 3854 if (Size == 0) { 3855 I = ReturnInst::Create(Context); 3856 InstructionList.push_back(I); 3857 break; 3858 } 3859 3860 unsigned OpNum = 0; 3861 Value *Op = nullptr; 3862 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3863 return error("Invalid record"); 3864 if (OpNum != Record.size()) 3865 return error("Invalid record"); 3866 3867 I = ReturnInst::Create(Context, Op); 3868 InstructionList.push_back(I); 3869 break; 3870 } 3871 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 3872 if (Record.size() != 1 && Record.size() != 3) 3873 return error("Invalid record"); 3874 BasicBlock *TrueDest = getBasicBlock(Record[0]); 3875 if (!TrueDest) 3876 return error("Invalid record"); 3877 3878 if (Record.size() == 1) { 3879 I = BranchInst::Create(TrueDest); 3880 InstructionList.push_back(I); 3881 } 3882 else { 3883 BasicBlock *FalseDest = getBasicBlock(Record[1]); 3884 Value *Cond = getValue(Record, 2, NextValueNo, 3885 Type::getInt1Ty(Context)); 3886 if (!FalseDest || !Cond) 3887 return error("Invalid record"); 3888 I = BranchInst::Create(TrueDest, FalseDest, Cond); 3889 InstructionList.push_back(I); 3890 } 3891 break; 3892 } 3893 case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#] 3894 if (Record.size() != 1 && Record.size() != 2) 3895 return error("Invalid record"); 3896 unsigned Idx = 0; 3897 Value *CleanupPad = 3898 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 3899 if (!CleanupPad) 3900 return error("Invalid record"); 3901 BasicBlock *UnwindDest = nullptr; 3902 if (Record.size() == 2) { 3903 UnwindDest = getBasicBlock(Record[Idx++]); 3904 if (!UnwindDest) 3905 return error("Invalid record"); 3906 } 3907 3908 I = CleanupReturnInst::Create(CleanupPad, UnwindDest); 3909 InstructionList.push_back(I); 3910 break; 3911 } 3912 case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#] 3913 if (Record.size() != 2) 3914 return error("Invalid record"); 3915 unsigned Idx = 0; 3916 Value *CatchPad = 3917 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 3918 if (!CatchPad) 3919 return error("Invalid record"); 3920 BasicBlock *BB = getBasicBlock(Record[Idx++]); 3921 if (!BB) 3922 return error("Invalid record"); 3923 3924 I = CatchReturnInst::Create(CatchPad, BB); 3925 InstructionList.push_back(I); 3926 break; 3927 } 3928 case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?] 3929 // We must have, at minimum, the outer scope and the number of arguments. 3930 if (Record.size() < 2) 3931 return error("Invalid record"); 3932 3933 unsigned Idx = 0; 3934 3935 Value *ParentPad = 3936 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 3937 3938 unsigned NumHandlers = Record[Idx++]; 3939 3940 SmallVector<BasicBlock *, 2> Handlers; 3941 for (unsigned Op = 0; Op != NumHandlers; ++Op) { 3942 BasicBlock *BB = getBasicBlock(Record[Idx++]); 3943 if (!BB) 3944 return error("Invalid record"); 3945 Handlers.push_back(BB); 3946 } 3947 3948 BasicBlock *UnwindDest = nullptr; 3949 if (Idx + 1 == Record.size()) { 3950 UnwindDest = getBasicBlock(Record[Idx++]); 3951 if (!UnwindDest) 3952 return error("Invalid record"); 3953 } 3954 3955 if (Record.size() != Idx) 3956 return error("Invalid record"); 3957 3958 auto *CatchSwitch = 3959 CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers); 3960 for (BasicBlock *Handler : Handlers) 3961 CatchSwitch->addHandler(Handler); 3962 I = CatchSwitch; 3963 InstructionList.push_back(I); 3964 break; 3965 } 3966 case bitc::FUNC_CODE_INST_CATCHPAD: 3967 case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*] 3968 // We must have, at minimum, the outer scope and the number of arguments. 3969 if (Record.size() < 2) 3970 return error("Invalid record"); 3971 3972 unsigned Idx = 0; 3973 3974 Value *ParentPad = 3975 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 3976 3977 unsigned NumArgOperands = Record[Idx++]; 3978 3979 SmallVector<Value *, 2> Args; 3980 for (unsigned Op = 0; Op != NumArgOperands; ++Op) { 3981 Value *Val; 3982 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 3983 return error("Invalid record"); 3984 Args.push_back(Val); 3985 } 3986 3987 if (Record.size() != Idx) 3988 return error("Invalid record"); 3989 3990 if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD) 3991 I = CleanupPadInst::Create(ParentPad, Args); 3992 else 3993 I = CatchPadInst::Create(ParentPad, Args); 3994 InstructionList.push_back(I); 3995 break; 3996 } 3997 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 3998 // Check magic 3999 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { 4000 // "New" SwitchInst format with case ranges. The changes to write this 4001 // format were reverted but we still recognize bitcode that uses it. 4002 // Hopefully someday we will have support for case ranges and can use 4003 // this format again. 4004 4005 Type *OpTy = getTypeByID(Record[1]); 4006 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); 4007 4008 Value *Cond = getValue(Record, 2, NextValueNo, OpTy); 4009 BasicBlock *Default = getBasicBlock(Record[3]); 4010 if (!OpTy || !Cond || !Default) 4011 return error("Invalid record"); 4012 4013 unsigned NumCases = Record[4]; 4014 4015 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 4016 InstructionList.push_back(SI); 4017 4018 unsigned CurIdx = 5; 4019 for (unsigned i = 0; i != NumCases; ++i) { 4020 SmallVector<ConstantInt*, 1> CaseVals; 4021 unsigned NumItems = Record[CurIdx++]; 4022 for (unsigned ci = 0; ci != NumItems; ++ci) { 4023 bool isSingleNumber = Record[CurIdx++]; 4024 4025 APInt Low; 4026 unsigned ActiveWords = 1; 4027 if (ValueBitWidth > 64) 4028 ActiveWords = Record[CurIdx++]; 4029 Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 4030 ValueBitWidth); 4031 CurIdx += ActiveWords; 4032 4033 if (!isSingleNumber) { 4034 ActiveWords = 1; 4035 if (ValueBitWidth > 64) 4036 ActiveWords = Record[CurIdx++]; 4037 APInt High = readWideAPInt( 4038 makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth); 4039 CurIdx += ActiveWords; 4040 4041 // FIXME: It is not clear whether values in the range should be 4042 // compared as signed or unsigned values. The partially 4043 // implemented changes that used this format in the past used 4044 // unsigned comparisons. 4045 for ( ; Low.ule(High); ++Low) 4046 CaseVals.push_back(ConstantInt::get(Context, Low)); 4047 } else 4048 CaseVals.push_back(ConstantInt::get(Context, Low)); 4049 } 4050 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); 4051 for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(), 4052 cve = CaseVals.end(); cvi != cve; ++cvi) 4053 SI->addCase(*cvi, DestBB); 4054 } 4055 I = SI; 4056 break; 4057 } 4058 4059 // Old SwitchInst format without case ranges. 4060 4061 if (Record.size() < 3 || (Record.size() & 1) == 0) 4062 return error("Invalid record"); 4063 Type *OpTy = getTypeByID(Record[0]); 4064 Value *Cond = getValue(Record, 1, NextValueNo, OpTy); 4065 BasicBlock *Default = getBasicBlock(Record[2]); 4066 if (!OpTy || !Cond || !Default) 4067 return error("Invalid record"); 4068 unsigned NumCases = (Record.size()-3)/2; 4069 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 4070 InstructionList.push_back(SI); 4071 for (unsigned i = 0, e = NumCases; i != e; ++i) { 4072 ConstantInt *CaseVal = 4073 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy)); 4074 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 4075 if (!CaseVal || !DestBB) { 4076 delete SI; 4077 return error("Invalid record"); 4078 } 4079 SI->addCase(CaseVal, DestBB); 4080 } 4081 I = SI; 4082 break; 4083 } 4084 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 4085 if (Record.size() < 2) 4086 return error("Invalid record"); 4087 Type *OpTy = getTypeByID(Record[0]); 4088 Value *Address = getValue(Record, 1, NextValueNo, OpTy); 4089 if (!OpTy || !Address) 4090 return error("Invalid record"); 4091 unsigned NumDests = Record.size()-2; 4092 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 4093 InstructionList.push_back(IBI); 4094 for (unsigned i = 0, e = NumDests; i != e; ++i) { 4095 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 4096 IBI->addDestination(DestBB); 4097 } else { 4098 delete IBI; 4099 return error("Invalid record"); 4100 } 4101 } 4102 I = IBI; 4103 break; 4104 } 4105 4106 case bitc::FUNC_CODE_INST_INVOKE: { 4107 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 4108 if (Record.size() < 4) 4109 return error("Invalid record"); 4110 unsigned OpNum = 0; 4111 AttributeList PAL = getAttributes(Record[OpNum++]); 4112 unsigned CCInfo = Record[OpNum++]; 4113 BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]); 4114 BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]); 4115 4116 FunctionType *FTy = nullptr; 4117 if (CCInfo >> 13 & 1 && 4118 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])))) 4119 return error("Explicit invoke type is not a function type"); 4120 4121 Value *Callee; 4122 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 4123 return error("Invalid record"); 4124 4125 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 4126 if (!CalleeTy) 4127 return error("Callee is not a pointer"); 4128 if (!FTy) { 4129 FTy = dyn_cast<FunctionType>(CalleeTy->getElementType()); 4130 if (!FTy) 4131 return error("Callee is not of pointer to function type"); 4132 } else if (CalleeTy->getElementType() != FTy) 4133 return error("Explicit invoke type does not match pointee type of " 4134 "callee operand"); 4135 if (Record.size() < FTy->getNumParams() + OpNum) 4136 return error("Insufficient operands to call"); 4137 4138 SmallVector<Value*, 16> Ops; 4139 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 4140 Ops.push_back(getValue(Record, OpNum, NextValueNo, 4141 FTy->getParamType(i))); 4142 if (!Ops.back()) 4143 return error("Invalid record"); 4144 } 4145 4146 if (!FTy->isVarArg()) { 4147 if (Record.size() != OpNum) 4148 return error("Invalid record"); 4149 } else { 4150 // Read type/value pairs for varargs params. 4151 while (OpNum != Record.size()) { 4152 Value *Op; 4153 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4154 return error("Invalid record"); 4155 Ops.push_back(Op); 4156 } 4157 } 4158 4159 I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops, OperandBundles); 4160 OperandBundles.clear(); 4161 InstructionList.push_back(I); 4162 cast<InvokeInst>(I)->setCallingConv( 4163 static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo)); 4164 cast<InvokeInst>(I)->setAttributes(PAL); 4165 break; 4166 } 4167 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 4168 unsigned Idx = 0; 4169 Value *Val = nullptr; 4170 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 4171 return error("Invalid record"); 4172 I = ResumeInst::Create(Val); 4173 InstructionList.push_back(I); 4174 break; 4175 } 4176 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 4177 I = new UnreachableInst(Context); 4178 InstructionList.push_back(I); 4179 break; 4180 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 4181 if (Record.size() < 1 || ((Record.size()-1)&1)) 4182 return error("Invalid record"); 4183 Type *Ty = getTypeByID(Record[0]); 4184 if (!Ty) 4185 return error("Invalid record"); 4186 4187 PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2); 4188 InstructionList.push_back(PN); 4189 4190 for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) { 4191 Value *V; 4192 // With the new function encoding, it is possible that operands have 4193 // negative IDs (for forward references). Use a signed VBR 4194 // representation to keep the encoding small. 4195 if (UseRelativeIDs) 4196 V = getValueSigned(Record, 1+i, NextValueNo, Ty); 4197 else 4198 V = getValue(Record, 1+i, NextValueNo, Ty); 4199 BasicBlock *BB = getBasicBlock(Record[2+i]); 4200 if (!V || !BB) 4201 return error("Invalid record"); 4202 PN->addIncoming(V, BB); 4203 } 4204 I = PN; 4205 break; 4206 } 4207 4208 case bitc::FUNC_CODE_INST_LANDINGPAD: 4209 case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: { 4210 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 4211 unsigned Idx = 0; 4212 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) { 4213 if (Record.size() < 3) 4214 return error("Invalid record"); 4215 } else { 4216 assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD); 4217 if (Record.size() < 4) 4218 return error("Invalid record"); 4219 } 4220 Type *Ty = getTypeByID(Record[Idx++]); 4221 if (!Ty) 4222 return error("Invalid record"); 4223 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) { 4224 Value *PersFn = nullptr; 4225 if (getValueTypePair(Record, Idx, NextValueNo, PersFn)) 4226 return error("Invalid record"); 4227 4228 if (!F->hasPersonalityFn()) 4229 F->setPersonalityFn(cast<Constant>(PersFn)); 4230 else if (F->getPersonalityFn() != cast<Constant>(PersFn)) 4231 return error("Personality function mismatch"); 4232 } 4233 4234 bool IsCleanup = !!Record[Idx++]; 4235 unsigned NumClauses = Record[Idx++]; 4236 LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses); 4237 LP->setCleanup(IsCleanup); 4238 for (unsigned J = 0; J != NumClauses; ++J) { 4239 LandingPadInst::ClauseType CT = 4240 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 4241 Value *Val; 4242 4243 if (getValueTypePair(Record, Idx, NextValueNo, Val)) { 4244 delete LP; 4245 return error("Invalid record"); 4246 } 4247 4248 assert((CT != LandingPadInst::Catch || 4249 !isa<ArrayType>(Val->getType())) && 4250 "Catch clause has a invalid type!"); 4251 assert((CT != LandingPadInst::Filter || 4252 isa<ArrayType>(Val->getType())) && 4253 "Filter clause has invalid type!"); 4254 LP->addClause(cast<Constant>(Val)); 4255 } 4256 4257 I = LP; 4258 InstructionList.push_back(I); 4259 break; 4260 } 4261 4262 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 4263 if (Record.size() != 4) 4264 return error("Invalid record"); 4265 uint64_t AlignRecord = Record[3]; 4266 const uint64_t InAllocaMask = uint64_t(1) << 5; 4267 const uint64_t ExplicitTypeMask = uint64_t(1) << 6; 4268 const uint64_t SwiftErrorMask = uint64_t(1) << 7; 4269 const uint64_t FlagMask = InAllocaMask | ExplicitTypeMask | 4270 SwiftErrorMask; 4271 bool InAlloca = AlignRecord & InAllocaMask; 4272 bool SwiftError = AlignRecord & SwiftErrorMask; 4273 Type *Ty = getTypeByID(Record[0]); 4274 if ((AlignRecord & ExplicitTypeMask) == 0) { 4275 auto *PTy = dyn_cast_or_null<PointerType>(Ty); 4276 if (!PTy) 4277 return error("Old-style alloca with a non-pointer type"); 4278 Ty = PTy->getElementType(); 4279 } 4280 Type *OpTy = getTypeByID(Record[1]); 4281 Value *Size = getFnValueByID(Record[2], OpTy); 4282 unsigned Align; 4283 if (Error Err = parseAlignmentValue(AlignRecord & ~FlagMask, Align)) { 4284 return Err; 4285 } 4286 if (!Ty || !Size) 4287 return error("Invalid record"); 4288 4289 // FIXME: Make this an optional field. 4290 const DataLayout &DL = TheModule->getDataLayout(); 4291 unsigned AS = DL.getAllocaAddrSpace(); 4292 4293 AllocaInst *AI = new AllocaInst(Ty, AS, Size, Align); 4294 AI->setUsedWithInAlloca(InAlloca); 4295 AI->setSwiftError(SwiftError); 4296 I = AI; 4297 InstructionList.push_back(I); 4298 break; 4299 } 4300 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 4301 unsigned OpNum = 0; 4302 Value *Op; 4303 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4304 (OpNum + 2 != Record.size() && OpNum + 3 != Record.size())) 4305 return error("Invalid record"); 4306 4307 Type *Ty = nullptr; 4308 if (OpNum + 3 == Record.size()) 4309 Ty = getTypeByID(Record[OpNum++]); 4310 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 4311 return Err; 4312 if (!Ty) 4313 Ty = cast<PointerType>(Op->getType())->getElementType(); 4314 4315 unsigned Align; 4316 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4317 return Err; 4318 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], Align); 4319 4320 InstructionList.push_back(I); 4321 break; 4322 } 4323 case bitc::FUNC_CODE_INST_LOADATOMIC: { 4324 // LOADATOMIC: [opty, op, align, vol, ordering, ssid] 4325 unsigned OpNum = 0; 4326 Value *Op; 4327 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4328 (OpNum + 4 != Record.size() && OpNum + 5 != Record.size())) 4329 return error("Invalid record"); 4330 4331 Type *Ty = nullptr; 4332 if (OpNum + 5 == Record.size()) 4333 Ty = getTypeByID(Record[OpNum++]); 4334 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 4335 return Err; 4336 if (!Ty) 4337 Ty = cast<PointerType>(Op->getType())->getElementType(); 4338 4339 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4340 if (Ordering == AtomicOrdering::NotAtomic || 4341 Ordering == AtomicOrdering::Release || 4342 Ordering == AtomicOrdering::AcquireRelease) 4343 return error("Invalid record"); 4344 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 4345 return error("Invalid record"); 4346 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 4347 4348 unsigned Align; 4349 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4350 return Err; 4351 I = new LoadInst(Op, "", Record[OpNum+1], Align, Ordering, SSID); 4352 4353 InstructionList.push_back(I); 4354 break; 4355 } 4356 case bitc::FUNC_CODE_INST_STORE: 4357 case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol] 4358 unsigned OpNum = 0; 4359 Value *Val, *Ptr; 4360 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4361 (BitCode == bitc::FUNC_CODE_INST_STORE 4362 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 4363 : popValue(Record, OpNum, NextValueNo, 4364 cast<PointerType>(Ptr->getType())->getElementType(), 4365 Val)) || 4366 OpNum + 2 != Record.size()) 4367 return error("Invalid record"); 4368 4369 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 4370 return Err; 4371 unsigned Align; 4372 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4373 return Err; 4374 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align); 4375 InstructionList.push_back(I); 4376 break; 4377 } 4378 case bitc::FUNC_CODE_INST_STOREATOMIC: 4379 case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: { 4380 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, ssid] 4381 unsigned OpNum = 0; 4382 Value *Val, *Ptr; 4383 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4384 !isa<PointerType>(Ptr->getType()) || 4385 (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC 4386 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 4387 : popValue(Record, OpNum, NextValueNo, 4388 cast<PointerType>(Ptr->getType())->getElementType(), 4389 Val)) || 4390 OpNum + 4 != Record.size()) 4391 return error("Invalid record"); 4392 4393 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 4394 return Err; 4395 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4396 if (Ordering == AtomicOrdering::NotAtomic || 4397 Ordering == AtomicOrdering::Acquire || 4398 Ordering == AtomicOrdering::AcquireRelease) 4399 return error("Invalid record"); 4400 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 4401 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 4402 return error("Invalid record"); 4403 4404 unsigned Align; 4405 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4406 return Err; 4407 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align, Ordering, SSID); 4408 InstructionList.push_back(I); 4409 break; 4410 } 4411 case bitc::FUNC_CODE_INST_CMPXCHG_OLD: 4412 case bitc::FUNC_CODE_INST_CMPXCHG: { 4413 // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, ssid, 4414 // failureordering?, isweak?] 4415 unsigned OpNum = 0; 4416 Value *Ptr, *Cmp, *New; 4417 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4418 (BitCode == bitc::FUNC_CODE_INST_CMPXCHG 4419 ? getValueTypePair(Record, OpNum, NextValueNo, Cmp) 4420 : popValue(Record, OpNum, NextValueNo, 4421 cast<PointerType>(Ptr->getType())->getElementType(), 4422 Cmp)) || 4423 popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) || 4424 Record.size() < OpNum + 3 || Record.size() > OpNum + 5) 4425 return error("Invalid record"); 4426 AtomicOrdering SuccessOrdering = getDecodedOrdering(Record[OpNum + 1]); 4427 if (SuccessOrdering == AtomicOrdering::NotAtomic || 4428 SuccessOrdering == AtomicOrdering::Unordered) 4429 return error("Invalid record"); 4430 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]); 4431 4432 if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType())) 4433 return Err; 4434 AtomicOrdering FailureOrdering; 4435 if (Record.size() < 7) 4436 FailureOrdering = 4437 AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering); 4438 else 4439 FailureOrdering = getDecodedOrdering(Record[OpNum + 3]); 4440 4441 I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering, 4442 SSID); 4443 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 4444 4445 if (Record.size() < 8) { 4446 // Before weak cmpxchgs existed, the instruction simply returned the 4447 // value loaded from memory, so bitcode files from that era will be 4448 // expecting the first component of a modern cmpxchg. 4449 CurBB->getInstList().push_back(I); 4450 I = ExtractValueInst::Create(I, 0); 4451 } else { 4452 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]); 4453 } 4454 4455 InstructionList.push_back(I); 4456 break; 4457 } 4458 case bitc::FUNC_CODE_INST_ATOMICRMW: { 4459 // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, ssid] 4460 unsigned OpNum = 0; 4461 Value *Ptr, *Val; 4462 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4463 !isa<PointerType>(Ptr->getType()) || 4464 popValue(Record, OpNum, NextValueNo, 4465 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 4466 OpNum+4 != Record.size()) 4467 return error("Invalid record"); 4468 AtomicRMWInst::BinOp Operation = getDecodedRMWOperation(Record[OpNum]); 4469 if (Operation < AtomicRMWInst::FIRST_BINOP || 4470 Operation > AtomicRMWInst::LAST_BINOP) 4471 return error("Invalid record"); 4472 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4473 if (Ordering == AtomicOrdering::NotAtomic || 4474 Ordering == AtomicOrdering::Unordered) 4475 return error("Invalid record"); 4476 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 4477 I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SSID); 4478 cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]); 4479 InstructionList.push_back(I); 4480 break; 4481 } 4482 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, ssid] 4483 if (2 != Record.size()) 4484 return error("Invalid record"); 4485 AtomicOrdering Ordering = getDecodedOrdering(Record[0]); 4486 if (Ordering == AtomicOrdering::NotAtomic || 4487 Ordering == AtomicOrdering::Unordered || 4488 Ordering == AtomicOrdering::Monotonic) 4489 return error("Invalid record"); 4490 SyncScope::ID SSID = getDecodedSyncScopeID(Record[1]); 4491 I = new FenceInst(Context, Ordering, SSID); 4492 InstructionList.push_back(I); 4493 break; 4494 } 4495 case bitc::FUNC_CODE_INST_CALL: { 4496 // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...] 4497 if (Record.size() < 3) 4498 return error("Invalid record"); 4499 4500 unsigned OpNum = 0; 4501 AttributeList PAL = getAttributes(Record[OpNum++]); 4502 unsigned CCInfo = Record[OpNum++]; 4503 4504 FastMathFlags FMF; 4505 if ((CCInfo >> bitc::CALL_FMF) & 1) { 4506 FMF = getDecodedFastMathFlags(Record[OpNum++]); 4507 if (!FMF.any()) 4508 return error("Fast math flags indicator set for call with no FMF"); 4509 } 4510 4511 FunctionType *FTy = nullptr; 4512 if (CCInfo >> bitc::CALL_EXPLICIT_TYPE & 1 && 4513 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])))) 4514 return error("Explicit call type is not a function type"); 4515 4516 Value *Callee; 4517 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 4518 return error("Invalid record"); 4519 4520 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 4521 if (!OpTy) 4522 return error("Callee is not a pointer type"); 4523 if (!FTy) { 4524 FTy = dyn_cast<FunctionType>(OpTy->getElementType()); 4525 if (!FTy) 4526 return error("Callee is not of pointer to function type"); 4527 } else if (OpTy->getElementType() != FTy) 4528 return error("Explicit call type does not match pointee type of " 4529 "callee operand"); 4530 if (Record.size() < FTy->getNumParams() + OpNum) 4531 return error("Insufficient operands to call"); 4532 4533 SmallVector<Value*, 16> Args; 4534 // Read the fixed params. 4535 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 4536 if (FTy->getParamType(i)->isLabelTy()) 4537 Args.push_back(getBasicBlock(Record[OpNum])); 4538 else 4539 Args.push_back(getValue(Record, OpNum, NextValueNo, 4540 FTy->getParamType(i))); 4541 if (!Args.back()) 4542 return error("Invalid record"); 4543 } 4544 4545 // Read type/value pairs for varargs params. 4546 if (!FTy->isVarArg()) { 4547 if (OpNum != Record.size()) 4548 return error("Invalid record"); 4549 } else { 4550 while (OpNum != Record.size()) { 4551 Value *Op; 4552 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4553 return error("Invalid record"); 4554 Args.push_back(Op); 4555 } 4556 } 4557 4558 I = CallInst::Create(FTy, Callee, Args, OperandBundles); 4559 OperandBundles.clear(); 4560 InstructionList.push_back(I); 4561 cast<CallInst>(I)->setCallingConv( 4562 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 4563 CallInst::TailCallKind TCK = CallInst::TCK_None; 4564 if (CCInfo & 1 << bitc::CALL_TAIL) 4565 TCK = CallInst::TCK_Tail; 4566 if (CCInfo & (1 << bitc::CALL_MUSTTAIL)) 4567 TCK = CallInst::TCK_MustTail; 4568 if (CCInfo & (1 << bitc::CALL_NOTAIL)) 4569 TCK = CallInst::TCK_NoTail; 4570 cast<CallInst>(I)->setTailCallKind(TCK); 4571 cast<CallInst>(I)->setAttributes(PAL); 4572 if (FMF.any()) { 4573 if (!isa<FPMathOperator>(I)) 4574 return error("Fast-math-flags specified for call without " 4575 "floating-point scalar or vector return type"); 4576 I->setFastMathFlags(FMF); 4577 } 4578 break; 4579 } 4580 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 4581 if (Record.size() < 3) 4582 return error("Invalid record"); 4583 Type *OpTy = getTypeByID(Record[0]); 4584 Value *Op = getValue(Record, 1, NextValueNo, OpTy); 4585 Type *ResTy = getTypeByID(Record[2]); 4586 if (!OpTy || !Op || !ResTy) 4587 return error("Invalid record"); 4588 I = new VAArgInst(Op, ResTy); 4589 InstructionList.push_back(I); 4590 break; 4591 } 4592 4593 case bitc::FUNC_CODE_OPERAND_BUNDLE: { 4594 // A call or an invoke can be optionally prefixed with some variable 4595 // number of operand bundle blocks. These blocks are read into 4596 // OperandBundles and consumed at the next call or invoke instruction. 4597 4598 if (Record.size() < 1 || Record[0] >= BundleTags.size()) 4599 return error("Invalid record"); 4600 4601 std::vector<Value *> Inputs; 4602 4603 unsigned OpNum = 1; 4604 while (OpNum != Record.size()) { 4605 Value *Op; 4606 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4607 return error("Invalid record"); 4608 Inputs.push_back(Op); 4609 } 4610 4611 OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs)); 4612 continue; 4613 } 4614 } 4615 4616 // Add instruction to end of current BB. If there is no current BB, reject 4617 // this file. 4618 if (!CurBB) { 4619 I->deleteValue(); 4620 return error("Invalid instruction with no BB"); 4621 } 4622 if (!OperandBundles.empty()) { 4623 I->deleteValue(); 4624 return error("Operand bundles found with no consumer"); 4625 } 4626 CurBB->getInstList().push_back(I); 4627 4628 // If this was a terminator instruction, move to the next block. 4629 if (I->isTerminator()) { 4630 ++CurBBNo; 4631 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr; 4632 } 4633 4634 // Non-void values get registered in the value table for future use. 4635 if (I && !I->getType()->isVoidTy()) 4636 ValueList.assignValue(I, NextValueNo++); 4637 } 4638 4639 OutOfRecordLoop: 4640 4641 if (!OperandBundles.empty()) 4642 return error("Operand bundles found with no consumer"); 4643 4644 // Check the function list for unresolved values. 4645 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 4646 if (!A->getParent()) { 4647 // We found at least one unresolved value. Nuke them all to avoid leaks. 4648 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 4649 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) { 4650 A->replaceAllUsesWith(UndefValue::get(A->getType())); 4651 delete A; 4652 } 4653 } 4654 return error("Never resolved value found in function"); 4655 } 4656 } 4657 4658 // Unexpected unresolved metadata about to be dropped. 4659 if (MDLoader->hasFwdRefs()) 4660 return error("Invalid function metadata: outgoing forward refs"); 4661 4662 // Trim the value list down to the size it was before we parsed this function. 4663 ValueList.shrinkTo(ModuleValueListSize); 4664 MDLoader->shrinkTo(ModuleMDLoaderSize); 4665 std::vector<BasicBlock*>().swap(FunctionBBs); 4666 return Error::success(); 4667 } 4668 4669 /// Find the function body in the bitcode stream 4670 Error BitcodeReader::findFunctionInStream( 4671 Function *F, 4672 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) { 4673 while (DeferredFunctionInfoIterator->second == 0) { 4674 // This is the fallback handling for the old format bitcode that 4675 // didn't contain the function index in the VST, or when we have 4676 // an anonymous function which would not have a VST entry. 4677 // Assert that we have one of those two cases. 4678 assert(VSTOffset == 0 || !F->hasName()); 4679 // Parse the next body in the stream and set its position in the 4680 // DeferredFunctionInfo map. 4681 if (Error Err = rememberAndSkipFunctionBodies()) 4682 return Err; 4683 } 4684 return Error::success(); 4685 } 4686 4687 SyncScope::ID BitcodeReader::getDecodedSyncScopeID(unsigned Val) { 4688 if (Val == SyncScope::SingleThread || Val == SyncScope::System) 4689 return SyncScope::ID(Val); 4690 if (Val >= SSIDs.size()) 4691 return SyncScope::System; // Map unknown synchronization scopes to system. 4692 return SSIDs[Val]; 4693 } 4694 4695 //===----------------------------------------------------------------------===// 4696 // GVMaterializer implementation 4697 //===----------------------------------------------------------------------===// 4698 4699 Error BitcodeReader::materialize(GlobalValue *GV) { 4700 Function *F = dyn_cast<Function>(GV); 4701 // If it's not a function or is already material, ignore the request. 4702 if (!F || !F->isMaterializable()) 4703 return Error::success(); 4704 4705 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 4706 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 4707 // If its position is recorded as 0, its body is somewhere in the stream 4708 // but we haven't seen it yet. 4709 if (DFII->second == 0) 4710 if (Error Err = findFunctionInStream(F, DFII)) 4711 return Err; 4712 4713 // Materialize metadata before parsing any function bodies. 4714 if (Error Err = materializeMetadata()) 4715 return Err; 4716 4717 // Move the bit stream to the saved position of the deferred function body. 4718 Stream.JumpToBit(DFII->second); 4719 4720 if (Error Err = parseFunctionBody(F)) 4721 return Err; 4722 F->setIsMaterializable(false); 4723 4724 if (StripDebugInfo) 4725 stripDebugInfo(*F); 4726 4727 // Upgrade any old intrinsic calls in the function. 4728 for (auto &I : UpgradedIntrinsics) { 4729 for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end(); 4730 UI != UE;) { 4731 User *U = *UI; 4732 ++UI; 4733 if (CallInst *CI = dyn_cast<CallInst>(U)) 4734 UpgradeIntrinsicCall(CI, I.second); 4735 } 4736 } 4737 4738 // Update calls to the remangled intrinsics 4739 for (auto &I : RemangledIntrinsics) 4740 for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end(); 4741 UI != UE;) 4742 // Don't expect any other users than call sites 4743 CallSite(*UI++).setCalledFunction(I.second); 4744 4745 // Finish fn->subprogram upgrade for materialized functions. 4746 if (DISubprogram *SP = MDLoader->lookupSubprogramForFunction(F)) 4747 F->setSubprogram(SP); 4748 4749 // Check if the TBAA Metadata are valid, otherwise we will need to strip them. 4750 if (!MDLoader->isStrippingTBAA()) { 4751 for (auto &I : instructions(F)) { 4752 MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa); 4753 if (!TBAA || TBAAVerifyHelper.visitTBAAMetadata(I, TBAA)) 4754 continue; 4755 MDLoader->setStripTBAA(true); 4756 stripTBAA(F->getParent()); 4757 } 4758 } 4759 4760 // Bring in any functions that this function forward-referenced via 4761 // blockaddresses. 4762 return materializeForwardReferencedFunctions(); 4763 } 4764 4765 Error BitcodeReader::materializeModule() { 4766 if (Error Err = materializeMetadata()) 4767 return Err; 4768 4769 // Promise to materialize all forward references. 4770 WillMaterializeAllForwardRefs = true; 4771 4772 // Iterate over the module, deserializing any functions that are still on 4773 // disk. 4774 for (Function &F : *TheModule) { 4775 if (Error Err = materialize(&F)) 4776 return Err; 4777 } 4778 // At this point, if there are any function bodies, parse the rest of 4779 // the bits in the module past the last function block we have recorded 4780 // through either lazy scanning or the VST. 4781 if (LastFunctionBlockBit || NextUnreadBit) 4782 if (Error Err = parseModule(LastFunctionBlockBit > NextUnreadBit 4783 ? LastFunctionBlockBit 4784 : NextUnreadBit)) 4785 return Err; 4786 4787 // Check that all block address forward references got resolved (as we 4788 // promised above). 4789 if (!BasicBlockFwdRefs.empty()) 4790 return error("Never resolved function from blockaddress"); 4791 4792 // Upgrade any intrinsic calls that slipped through (should not happen!) and 4793 // delete the old functions to clean up. We can't do this unless the entire 4794 // module is materialized because there could always be another function body 4795 // with calls to the old function. 4796 for (auto &I : UpgradedIntrinsics) { 4797 for (auto *U : I.first->users()) { 4798 if (CallInst *CI = dyn_cast<CallInst>(U)) 4799 UpgradeIntrinsicCall(CI, I.second); 4800 } 4801 if (!I.first->use_empty()) 4802 I.first->replaceAllUsesWith(I.second); 4803 I.first->eraseFromParent(); 4804 } 4805 UpgradedIntrinsics.clear(); 4806 // Do the same for remangled intrinsics 4807 for (auto &I : RemangledIntrinsics) { 4808 I.first->replaceAllUsesWith(I.second); 4809 I.first->eraseFromParent(); 4810 } 4811 RemangledIntrinsics.clear(); 4812 4813 UpgradeDebugInfo(*TheModule); 4814 4815 UpgradeModuleFlags(*TheModule); 4816 4817 UpgradeRetainReleaseMarker(*TheModule); 4818 4819 return Error::success(); 4820 } 4821 4822 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const { 4823 return IdentifiedStructTypes; 4824 } 4825 4826 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader( 4827 BitstreamCursor Cursor, StringRef Strtab, ModuleSummaryIndex &TheIndex, 4828 StringRef ModulePath, unsigned ModuleId) 4829 : BitcodeReaderBase(std::move(Cursor), Strtab), TheIndex(TheIndex), 4830 ModulePath(ModulePath), ModuleId(ModuleId) {} 4831 4832 void ModuleSummaryIndexBitcodeReader::addThisModule() { 4833 TheIndex.addModule(ModulePath, ModuleId); 4834 } 4835 4836 ModuleSummaryIndex::ModuleInfo * 4837 ModuleSummaryIndexBitcodeReader::getThisModule() { 4838 return TheIndex.getModule(ModulePath); 4839 } 4840 4841 std::pair<ValueInfo, GlobalValue::GUID> 4842 ModuleSummaryIndexBitcodeReader::getValueInfoFromValueId(unsigned ValueId) { 4843 auto VGI = ValueIdToValueInfoMap[ValueId]; 4844 assert(VGI.first); 4845 return VGI; 4846 } 4847 4848 void ModuleSummaryIndexBitcodeReader::setValueGUID( 4849 uint64_t ValueID, StringRef ValueName, GlobalValue::LinkageTypes Linkage, 4850 StringRef SourceFileName) { 4851 std::string GlobalId = 4852 GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName); 4853 auto ValueGUID = GlobalValue::getGUID(GlobalId); 4854 auto OriginalNameID = ValueGUID; 4855 if (GlobalValue::isLocalLinkage(Linkage)) 4856 OriginalNameID = GlobalValue::getGUID(ValueName); 4857 if (PrintSummaryGUIDs) 4858 dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is " 4859 << ValueName << "\n"; 4860 4861 // UseStrtab is false for legacy summary formats and value names are 4862 // created on stack. In that case we save the name in a string saver in 4863 // the index so that the value name can be recorded. 4864 ValueIdToValueInfoMap[ValueID] = std::make_pair( 4865 TheIndex.getOrInsertValueInfo( 4866 ValueGUID, 4867 UseStrtab ? ValueName : TheIndex.saveString(ValueName.str())), 4868 OriginalNameID); 4869 } 4870 4871 // Specialized value symbol table parser used when reading module index 4872 // blocks where we don't actually create global values. The parsed information 4873 // is saved in the bitcode reader for use when later parsing summaries. 4874 Error ModuleSummaryIndexBitcodeReader::parseValueSymbolTable( 4875 uint64_t Offset, 4876 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) { 4877 // With a strtab the VST is not required to parse the summary. 4878 if (UseStrtab) 4879 return Error::success(); 4880 4881 assert(Offset > 0 && "Expected non-zero VST offset"); 4882 uint64_t CurrentBit = jumpToValueSymbolTable(Offset, Stream); 4883 4884 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 4885 return error("Invalid record"); 4886 4887 SmallVector<uint64_t, 64> Record; 4888 4889 // Read all the records for this value table. 4890 SmallString<128> ValueName; 4891 4892 while (true) { 4893 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 4894 4895 switch (Entry.Kind) { 4896 case BitstreamEntry::SubBlock: // Handled for us already. 4897 case BitstreamEntry::Error: 4898 return error("Malformed block"); 4899 case BitstreamEntry::EndBlock: 4900 // Done parsing VST, jump back to wherever we came from. 4901 Stream.JumpToBit(CurrentBit); 4902 return Error::success(); 4903 case BitstreamEntry::Record: 4904 // The interesting case. 4905 break; 4906 } 4907 4908 // Read a record. 4909 Record.clear(); 4910 switch (Stream.readRecord(Entry.ID, Record)) { 4911 default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records). 4912 break; 4913 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 4914 if (convertToString(Record, 1, ValueName)) 4915 return error("Invalid record"); 4916 unsigned ValueID = Record[0]; 4917 assert(!SourceFileName.empty()); 4918 auto VLI = ValueIdToLinkageMap.find(ValueID); 4919 assert(VLI != ValueIdToLinkageMap.end() && 4920 "No linkage found for VST entry?"); 4921 auto Linkage = VLI->second; 4922 setValueGUID(ValueID, ValueName, Linkage, SourceFileName); 4923 ValueName.clear(); 4924 break; 4925 } 4926 case bitc::VST_CODE_FNENTRY: { 4927 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 4928 if (convertToString(Record, 2, ValueName)) 4929 return error("Invalid record"); 4930 unsigned ValueID = Record[0]; 4931 assert(!SourceFileName.empty()); 4932 auto VLI = ValueIdToLinkageMap.find(ValueID); 4933 assert(VLI != ValueIdToLinkageMap.end() && 4934 "No linkage found for VST entry?"); 4935 auto Linkage = VLI->second; 4936 setValueGUID(ValueID, ValueName, Linkage, SourceFileName); 4937 ValueName.clear(); 4938 break; 4939 } 4940 case bitc::VST_CODE_COMBINED_ENTRY: { 4941 // VST_CODE_COMBINED_ENTRY: [valueid, refguid] 4942 unsigned ValueID = Record[0]; 4943 GlobalValue::GUID RefGUID = Record[1]; 4944 // The "original name", which is the second value of the pair will be 4945 // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index. 4946 ValueIdToValueInfoMap[ValueID] = 4947 std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID); 4948 break; 4949 } 4950 } 4951 } 4952 } 4953 4954 // Parse just the blocks needed for building the index out of the module. 4955 // At the end of this routine the module Index is populated with a map 4956 // from global value id to GlobalValueSummary objects. 4957 Error ModuleSummaryIndexBitcodeReader::parseModule() { 4958 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 4959 return error("Invalid record"); 4960 4961 SmallVector<uint64_t, 64> Record; 4962 DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap; 4963 unsigned ValueId = 0; 4964 4965 // Read the index for this module. 4966 while (true) { 4967 BitstreamEntry Entry = Stream.advance(); 4968 4969 switch (Entry.Kind) { 4970 case BitstreamEntry::Error: 4971 return error("Malformed block"); 4972 case BitstreamEntry::EndBlock: 4973 return Error::success(); 4974 4975 case BitstreamEntry::SubBlock: 4976 switch (Entry.ID) { 4977 default: // Skip unknown content. 4978 if (Stream.SkipBlock()) 4979 return error("Invalid record"); 4980 break; 4981 case bitc::BLOCKINFO_BLOCK_ID: 4982 // Need to parse these to get abbrev ids (e.g. for VST) 4983 if (readBlockInfo()) 4984 return error("Malformed block"); 4985 break; 4986 case bitc::VALUE_SYMTAB_BLOCK_ID: 4987 // Should have been parsed earlier via VSTOffset, unless there 4988 // is no summary section. 4989 assert(((SeenValueSymbolTable && VSTOffset > 0) || 4990 !SeenGlobalValSummary) && 4991 "Expected early VST parse via VSTOffset record"); 4992 if (Stream.SkipBlock()) 4993 return error("Invalid record"); 4994 break; 4995 case bitc::GLOBALVAL_SUMMARY_BLOCK_ID: 4996 case bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID: 4997 // Add the module if it is a per-module index (has a source file name). 4998 if (!SourceFileName.empty()) 4999 addThisModule(); 5000 assert(!SeenValueSymbolTable && 5001 "Already read VST when parsing summary block?"); 5002 // We might not have a VST if there were no values in the 5003 // summary. An empty summary block generated when we are 5004 // performing ThinLTO compiles so we don't later invoke 5005 // the regular LTO process on them. 5006 if (VSTOffset > 0) { 5007 if (Error Err = parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap)) 5008 return Err; 5009 SeenValueSymbolTable = true; 5010 } 5011 SeenGlobalValSummary = true; 5012 if (Error Err = parseEntireSummary(Entry.ID)) 5013 return Err; 5014 break; 5015 case bitc::MODULE_STRTAB_BLOCK_ID: 5016 if (Error Err = parseModuleStringTable()) 5017 return Err; 5018 break; 5019 } 5020 continue; 5021 5022 case BitstreamEntry::Record: { 5023 Record.clear(); 5024 auto BitCode = Stream.readRecord(Entry.ID, Record); 5025 switch (BitCode) { 5026 default: 5027 break; // Default behavior, ignore unknown content. 5028 case bitc::MODULE_CODE_VERSION: { 5029 if (Error Err = parseVersionRecord(Record).takeError()) 5030 return Err; 5031 break; 5032 } 5033 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 5034 case bitc::MODULE_CODE_SOURCE_FILENAME: { 5035 SmallString<128> ValueName; 5036 if (convertToString(Record, 0, ValueName)) 5037 return error("Invalid record"); 5038 SourceFileName = ValueName.c_str(); 5039 break; 5040 } 5041 /// MODULE_CODE_HASH: [5*i32] 5042 case bitc::MODULE_CODE_HASH: { 5043 if (Record.size() != 5) 5044 return error("Invalid hash length " + Twine(Record.size()).str()); 5045 auto &Hash = getThisModule()->second.second; 5046 int Pos = 0; 5047 for (auto &Val : Record) { 5048 assert(!(Val >> 32) && "Unexpected high bits set"); 5049 Hash[Pos++] = Val; 5050 } 5051 break; 5052 } 5053 /// MODULE_CODE_VSTOFFSET: [offset] 5054 case bitc::MODULE_CODE_VSTOFFSET: 5055 if (Record.size() < 1) 5056 return error("Invalid record"); 5057 // Note that we subtract 1 here because the offset is relative to one 5058 // word before the start of the identification or module block, which 5059 // was historically always the start of the regular bitcode header. 5060 VSTOffset = Record[0] - 1; 5061 break; 5062 // v1 GLOBALVAR: [pointer type, isconst, initid, linkage, ...] 5063 // v1 FUNCTION: [type, callingconv, isproto, linkage, ...] 5064 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, ...] 5065 // v2: [strtab offset, strtab size, v1] 5066 case bitc::MODULE_CODE_GLOBALVAR: 5067 case bitc::MODULE_CODE_FUNCTION: 5068 case bitc::MODULE_CODE_ALIAS: { 5069 StringRef Name; 5070 ArrayRef<uint64_t> GVRecord; 5071 std::tie(Name, GVRecord) = readNameFromStrtab(Record); 5072 if (GVRecord.size() <= 3) 5073 return error("Invalid record"); 5074 uint64_t RawLinkage = GVRecord[3]; 5075 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 5076 if (!UseStrtab) { 5077 ValueIdToLinkageMap[ValueId++] = Linkage; 5078 break; 5079 } 5080 5081 setValueGUID(ValueId++, Name, Linkage, SourceFileName); 5082 break; 5083 } 5084 } 5085 } 5086 continue; 5087 } 5088 } 5089 } 5090 5091 std::vector<ValueInfo> 5092 ModuleSummaryIndexBitcodeReader::makeRefList(ArrayRef<uint64_t> Record) { 5093 std::vector<ValueInfo> Ret; 5094 Ret.reserve(Record.size()); 5095 for (uint64_t RefValueId : Record) 5096 Ret.push_back(getValueInfoFromValueId(RefValueId).first); 5097 return Ret; 5098 } 5099 5100 std::vector<FunctionSummary::EdgeTy> 5101 ModuleSummaryIndexBitcodeReader::makeCallList(ArrayRef<uint64_t> Record, 5102 bool IsOldProfileFormat, 5103 bool HasProfile, bool HasRelBF) { 5104 std::vector<FunctionSummary::EdgeTy> Ret; 5105 Ret.reserve(Record.size()); 5106 for (unsigned I = 0, E = Record.size(); I != E; ++I) { 5107 CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown; 5108 uint64_t RelBF = 0; 5109 ValueInfo Callee = getValueInfoFromValueId(Record[I]).first; 5110 if (IsOldProfileFormat) { 5111 I += 1; // Skip old callsitecount field 5112 if (HasProfile) 5113 I += 1; // Skip old profilecount field 5114 } else if (HasProfile) 5115 Hotness = static_cast<CalleeInfo::HotnessType>(Record[++I]); 5116 else if (HasRelBF) 5117 RelBF = Record[++I]; 5118 Ret.push_back(FunctionSummary::EdgeTy{Callee, CalleeInfo(Hotness, RelBF)}); 5119 } 5120 return Ret; 5121 } 5122 5123 static void 5124 parseWholeProgramDevirtResolutionByArg(ArrayRef<uint64_t> Record, size_t &Slot, 5125 WholeProgramDevirtResolution &Wpd) { 5126 uint64_t ArgNum = Record[Slot++]; 5127 WholeProgramDevirtResolution::ByArg &B = 5128 Wpd.ResByArg[{Record.begin() + Slot, Record.begin() + Slot + ArgNum}]; 5129 Slot += ArgNum; 5130 5131 B.TheKind = 5132 static_cast<WholeProgramDevirtResolution::ByArg::Kind>(Record[Slot++]); 5133 B.Info = Record[Slot++]; 5134 B.Byte = Record[Slot++]; 5135 B.Bit = Record[Slot++]; 5136 } 5137 5138 static void parseWholeProgramDevirtResolution(ArrayRef<uint64_t> Record, 5139 StringRef Strtab, size_t &Slot, 5140 TypeIdSummary &TypeId) { 5141 uint64_t Id = Record[Slot++]; 5142 WholeProgramDevirtResolution &Wpd = TypeId.WPDRes[Id]; 5143 5144 Wpd.TheKind = static_cast<WholeProgramDevirtResolution::Kind>(Record[Slot++]); 5145 Wpd.SingleImplName = {Strtab.data() + Record[Slot], 5146 static_cast<size_t>(Record[Slot + 1])}; 5147 Slot += 2; 5148 5149 uint64_t ResByArgNum = Record[Slot++]; 5150 for (uint64_t I = 0; I != ResByArgNum; ++I) 5151 parseWholeProgramDevirtResolutionByArg(Record, Slot, Wpd); 5152 } 5153 5154 static void parseTypeIdSummaryRecord(ArrayRef<uint64_t> Record, 5155 StringRef Strtab, 5156 ModuleSummaryIndex &TheIndex) { 5157 size_t Slot = 0; 5158 TypeIdSummary &TypeId = TheIndex.getOrInsertTypeIdSummary( 5159 {Strtab.data() + Record[Slot], static_cast<size_t>(Record[Slot + 1])}); 5160 Slot += 2; 5161 5162 TypeId.TTRes.TheKind = static_cast<TypeTestResolution::Kind>(Record[Slot++]); 5163 TypeId.TTRes.SizeM1BitWidth = Record[Slot++]; 5164 TypeId.TTRes.AlignLog2 = Record[Slot++]; 5165 TypeId.TTRes.SizeM1 = Record[Slot++]; 5166 TypeId.TTRes.BitMask = Record[Slot++]; 5167 TypeId.TTRes.InlineBits = Record[Slot++]; 5168 5169 while (Slot < Record.size()) 5170 parseWholeProgramDevirtResolution(Record, Strtab, Slot, TypeId); 5171 } 5172 5173 // Eagerly parse the entire summary block. This populates the GlobalValueSummary 5174 // objects in the index. 5175 Error ModuleSummaryIndexBitcodeReader::parseEntireSummary(unsigned ID) { 5176 if (Stream.EnterSubBlock(ID)) 5177 return error("Invalid record"); 5178 SmallVector<uint64_t, 64> Record; 5179 5180 // Parse version 5181 { 5182 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5183 if (Entry.Kind != BitstreamEntry::Record) 5184 return error("Invalid Summary Block: record for version expected"); 5185 if (Stream.readRecord(Entry.ID, Record) != bitc::FS_VERSION) 5186 return error("Invalid Summary Block: version expected"); 5187 } 5188 const uint64_t Version = Record[0]; 5189 const bool IsOldProfileFormat = Version == 1; 5190 if (Version < 1 || Version > 4) 5191 return error("Invalid summary version " + Twine(Version) + 5192 ", 1, 2, 3 or 4 expected"); 5193 Record.clear(); 5194 5195 // Keep around the last seen summary to be used when we see an optional 5196 // "OriginalName" attachement. 5197 GlobalValueSummary *LastSeenSummary = nullptr; 5198 GlobalValue::GUID LastSeenGUID = 0; 5199 5200 // We can expect to see any number of type ID information records before 5201 // each function summary records; these variables store the information 5202 // collected so far so that it can be used to create the summary object. 5203 std::vector<GlobalValue::GUID> PendingTypeTests; 5204 std::vector<FunctionSummary::VFuncId> PendingTypeTestAssumeVCalls, 5205 PendingTypeCheckedLoadVCalls; 5206 std::vector<FunctionSummary::ConstVCall> PendingTypeTestAssumeConstVCalls, 5207 PendingTypeCheckedLoadConstVCalls; 5208 5209 while (true) { 5210 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5211 5212 switch (Entry.Kind) { 5213 case BitstreamEntry::SubBlock: // Handled for us already. 5214 case BitstreamEntry::Error: 5215 return error("Malformed block"); 5216 case BitstreamEntry::EndBlock: 5217 return Error::success(); 5218 case BitstreamEntry::Record: 5219 // The interesting case. 5220 break; 5221 } 5222 5223 // Read a record. The record format depends on whether this 5224 // is a per-module index or a combined index file. In the per-module 5225 // case the records contain the associated value's ID for correlation 5226 // with VST entries. In the combined index the correlation is done 5227 // via the bitcode offset of the summary records (which were saved 5228 // in the combined index VST entries). The records also contain 5229 // information used for ThinLTO renaming and importing. 5230 Record.clear(); 5231 auto BitCode = Stream.readRecord(Entry.ID, Record); 5232 switch (BitCode) { 5233 default: // Default behavior: ignore. 5234 break; 5235 case bitc::FS_FLAGS: { // [flags] 5236 uint64_t Flags = Record[0]; 5237 // Scan flags (set only on the combined index). 5238 assert(Flags <= 0x3 && "Unexpected bits in flag"); 5239 5240 // 1 bit: WithGlobalValueDeadStripping flag. 5241 if (Flags & 0x1) 5242 TheIndex.setWithGlobalValueDeadStripping(); 5243 // 1 bit: SkipModuleByDistributedBackend flag. 5244 if (Flags & 0x2) 5245 TheIndex.setSkipModuleByDistributedBackend(); 5246 break; 5247 } 5248 case bitc::FS_VALUE_GUID: { // [valueid, refguid] 5249 uint64_t ValueID = Record[0]; 5250 GlobalValue::GUID RefGUID = Record[1]; 5251 ValueIdToValueInfoMap[ValueID] = 5252 std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID); 5253 break; 5254 } 5255 // FS_PERMODULE: [valueid, flags, instcount, fflags, numrefs, 5256 // numrefs x valueid, n x (valueid)] 5257 // FS_PERMODULE_PROFILE: [valueid, flags, instcount, fflags, numrefs, 5258 // numrefs x valueid, 5259 // n x (valueid, hotness)] 5260 // FS_PERMODULE_RELBF: [valueid, flags, instcount, fflags, numrefs, 5261 // numrefs x valueid, 5262 // n x (valueid, relblockfreq)] 5263 case bitc::FS_PERMODULE: 5264 case bitc::FS_PERMODULE_RELBF: 5265 case bitc::FS_PERMODULE_PROFILE: { 5266 unsigned ValueID = Record[0]; 5267 uint64_t RawFlags = Record[1]; 5268 unsigned InstCount = Record[2]; 5269 uint64_t RawFunFlags = 0; 5270 unsigned NumRefs = Record[3]; 5271 int RefListStartIndex = 4; 5272 if (Version >= 4) { 5273 RawFunFlags = Record[3]; 5274 NumRefs = Record[4]; 5275 RefListStartIndex = 5; 5276 } 5277 5278 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5279 // The module path string ref set in the summary must be owned by the 5280 // index's module string table. Since we don't have a module path 5281 // string table section in the per-module index, we create a single 5282 // module path string table entry with an empty (0) ID to take 5283 // ownership. 5284 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 5285 assert(Record.size() >= RefListStartIndex + NumRefs && 5286 "Record size inconsistent with number of references"); 5287 std::vector<ValueInfo> Refs = makeRefList( 5288 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 5289 bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE); 5290 bool HasRelBF = (BitCode == bitc::FS_PERMODULE_RELBF); 5291 std::vector<FunctionSummary::EdgeTy> Calls = makeCallList( 5292 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex), 5293 IsOldProfileFormat, HasProfile, HasRelBF); 5294 auto FS = llvm::make_unique<FunctionSummary>( 5295 Flags, InstCount, getDecodedFFlags(RawFunFlags), std::move(Refs), 5296 std::move(Calls), std::move(PendingTypeTests), 5297 std::move(PendingTypeTestAssumeVCalls), 5298 std::move(PendingTypeCheckedLoadVCalls), 5299 std::move(PendingTypeTestAssumeConstVCalls), 5300 std::move(PendingTypeCheckedLoadConstVCalls)); 5301 PendingTypeTests.clear(); 5302 PendingTypeTestAssumeVCalls.clear(); 5303 PendingTypeCheckedLoadVCalls.clear(); 5304 PendingTypeTestAssumeConstVCalls.clear(); 5305 PendingTypeCheckedLoadConstVCalls.clear(); 5306 auto VIAndOriginalGUID = getValueInfoFromValueId(ValueID); 5307 FS->setModulePath(getThisModule()->first()); 5308 FS->setOriginalName(VIAndOriginalGUID.second); 5309 TheIndex.addGlobalValueSummary(VIAndOriginalGUID.first, std::move(FS)); 5310 break; 5311 } 5312 // FS_ALIAS: [valueid, flags, valueid] 5313 // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as 5314 // they expect all aliasee summaries to be available. 5315 case bitc::FS_ALIAS: { 5316 unsigned ValueID = Record[0]; 5317 uint64_t RawFlags = Record[1]; 5318 unsigned AliaseeID = Record[2]; 5319 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5320 auto AS = llvm::make_unique<AliasSummary>(Flags); 5321 // The module path string ref set in the summary must be owned by the 5322 // index's module string table. Since we don't have a module path 5323 // string table section in the per-module index, we create a single 5324 // module path string table entry with an empty (0) ID to take 5325 // ownership. 5326 AS->setModulePath(getThisModule()->first()); 5327 5328 GlobalValue::GUID AliaseeGUID = 5329 getValueInfoFromValueId(AliaseeID).first.getGUID(); 5330 auto AliaseeInModule = 5331 TheIndex.findSummaryInModule(AliaseeGUID, ModulePath); 5332 if (!AliaseeInModule) 5333 return error("Alias expects aliasee summary to be parsed"); 5334 AS->setAliasee(AliaseeInModule); 5335 AS->setAliaseeGUID(AliaseeGUID); 5336 5337 auto GUID = getValueInfoFromValueId(ValueID); 5338 AS->setOriginalName(GUID.second); 5339 TheIndex.addGlobalValueSummary(GUID.first, std::move(AS)); 5340 break; 5341 } 5342 // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, n x valueid] 5343 case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: { 5344 unsigned ValueID = Record[0]; 5345 uint64_t RawFlags = Record[1]; 5346 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5347 std::vector<ValueInfo> Refs = 5348 makeRefList(ArrayRef<uint64_t>(Record).slice(2)); 5349 auto FS = llvm::make_unique<GlobalVarSummary>(Flags, std::move(Refs)); 5350 FS->setModulePath(getThisModule()->first()); 5351 auto GUID = getValueInfoFromValueId(ValueID); 5352 FS->setOriginalName(GUID.second); 5353 TheIndex.addGlobalValueSummary(GUID.first, std::move(FS)); 5354 break; 5355 } 5356 // FS_COMBINED: [valueid, modid, flags, instcount, fflags, numrefs, 5357 // numrefs x valueid, n x (valueid)] 5358 // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, fflags, numrefs, 5359 // numrefs x valueid, n x (valueid, hotness)] 5360 case bitc::FS_COMBINED: 5361 case bitc::FS_COMBINED_PROFILE: { 5362 unsigned ValueID = Record[0]; 5363 uint64_t ModuleId = Record[1]; 5364 uint64_t RawFlags = Record[2]; 5365 unsigned InstCount = Record[3]; 5366 uint64_t RawFunFlags = 0; 5367 unsigned NumRefs = Record[4]; 5368 int RefListStartIndex = 5; 5369 5370 if (Version >= 4) { 5371 RawFunFlags = Record[4]; 5372 NumRefs = Record[5]; 5373 RefListStartIndex = 6; 5374 } 5375 5376 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5377 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 5378 assert(Record.size() >= RefListStartIndex + NumRefs && 5379 "Record size inconsistent with number of references"); 5380 std::vector<ValueInfo> Refs = makeRefList( 5381 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 5382 bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE); 5383 std::vector<FunctionSummary::EdgeTy> Edges = makeCallList( 5384 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex), 5385 IsOldProfileFormat, HasProfile, false); 5386 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 5387 auto FS = llvm::make_unique<FunctionSummary>( 5388 Flags, InstCount, getDecodedFFlags(RawFunFlags), std::move(Refs), 5389 std::move(Edges), std::move(PendingTypeTests), 5390 std::move(PendingTypeTestAssumeVCalls), 5391 std::move(PendingTypeCheckedLoadVCalls), 5392 std::move(PendingTypeTestAssumeConstVCalls), 5393 std::move(PendingTypeCheckedLoadConstVCalls)); 5394 PendingTypeTests.clear(); 5395 PendingTypeTestAssumeVCalls.clear(); 5396 PendingTypeCheckedLoadVCalls.clear(); 5397 PendingTypeTestAssumeConstVCalls.clear(); 5398 PendingTypeCheckedLoadConstVCalls.clear(); 5399 LastSeenSummary = FS.get(); 5400 LastSeenGUID = VI.getGUID(); 5401 FS->setModulePath(ModuleIdMap[ModuleId]); 5402 TheIndex.addGlobalValueSummary(VI, std::move(FS)); 5403 break; 5404 } 5405 // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid] 5406 // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as 5407 // they expect all aliasee summaries to be available. 5408 case bitc::FS_COMBINED_ALIAS: { 5409 unsigned ValueID = Record[0]; 5410 uint64_t ModuleId = Record[1]; 5411 uint64_t RawFlags = Record[2]; 5412 unsigned AliaseeValueId = Record[3]; 5413 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5414 auto AS = llvm::make_unique<AliasSummary>(Flags); 5415 LastSeenSummary = AS.get(); 5416 AS->setModulePath(ModuleIdMap[ModuleId]); 5417 5418 auto AliaseeGUID = 5419 getValueInfoFromValueId(AliaseeValueId).first.getGUID(); 5420 auto AliaseeInModule = 5421 TheIndex.findSummaryInModule(AliaseeGUID, AS->modulePath()); 5422 AS->setAliasee(AliaseeInModule); 5423 AS->setAliaseeGUID(AliaseeGUID); 5424 5425 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 5426 LastSeenGUID = VI.getGUID(); 5427 TheIndex.addGlobalValueSummary(VI, std::move(AS)); 5428 break; 5429 } 5430 // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid] 5431 case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: { 5432 unsigned ValueID = Record[0]; 5433 uint64_t ModuleId = Record[1]; 5434 uint64_t RawFlags = Record[2]; 5435 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5436 std::vector<ValueInfo> Refs = 5437 makeRefList(ArrayRef<uint64_t>(Record).slice(3)); 5438 auto FS = llvm::make_unique<GlobalVarSummary>(Flags, std::move(Refs)); 5439 LastSeenSummary = FS.get(); 5440 FS->setModulePath(ModuleIdMap[ModuleId]); 5441 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 5442 LastSeenGUID = VI.getGUID(); 5443 TheIndex.addGlobalValueSummary(VI, std::move(FS)); 5444 break; 5445 } 5446 // FS_COMBINED_ORIGINAL_NAME: [original_name] 5447 case bitc::FS_COMBINED_ORIGINAL_NAME: { 5448 uint64_t OriginalName = Record[0]; 5449 if (!LastSeenSummary) 5450 return error("Name attachment that does not follow a combined record"); 5451 LastSeenSummary->setOriginalName(OriginalName); 5452 TheIndex.addOriginalName(LastSeenGUID, OriginalName); 5453 // Reset the LastSeenSummary 5454 LastSeenSummary = nullptr; 5455 LastSeenGUID = 0; 5456 break; 5457 } 5458 case bitc::FS_TYPE_TESTS: 5459 assert(PendingTypeTests.empty()); 5460 PendingTypeTests.insert(PendingTypeTests.end(), Record.begin(), 5461 Record.end()); 5462 break; 5463 5464 case bitc::FS_TYPE_TEST_ASSUME_VCALLS: 5465 assert(PendingTypeTestAssumeVCalls.empty()); 5466 for (unsigned I = 0; I != Record.size(); I += 2) 5467 PendingTypeTestAssumeVCalls.push_back({Record[I], Record[I+1]}); 5468 break; 5469 5470 case bitc::FS_TYPE_CHECKED_LOAD_VCALLS: 5471 assert(PendingTypeCheckedLoadVCalls.empty()); 5472 for (unsigned I = 0; I != Record.size(); I += 2) 5473 PendingTypeCheckedLoadVCalls.push_back({Record[I], Record[I+1]}); 5474 break; 5475 5476 case bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL: 5477 PendingTypeTestAssumeConstVCalls.push_back( 5478 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}}); 5479 break; 5480 5481 case bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL: 5482 PendingTypeCheckedLoadConstVCalls.push_back( 5483 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}}); 5484 break; 5485 5486 case bitc::FS_CFI_FUNCTION_DEFS: { 5487 std::set<std::string> &CfiFunctionDefs = TheIndex.cfiFunctionDefs(); 5488 for (unsigned I = 0; I != Record.size(); I += 2) 5489 CfiFunctionDefs.insert( 5490 {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])}); 5491 break; 5492 } 5493 5494 case bitc::FS_CFI_FUNCTION_DECLS: { 5495 std::set<std::string> &CfiFunctionDecls = TheIndex.cfiFunctionDecls(); 5496 for (unsigned I = 0; I != Record.size(); I += 2) 5497 CfiFunctionDecls.insert( 5498 {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])}); 5499 break; 5500 } 5501 5502 case bitc::FS_TYPE_ID: 5503 parseTypeIdSummaryRecord(Record, Strtab, TheIndex); 5504 break; 5505 } 5506 } 5507 llvm_unreachable("Exit infinite loop"); 5508 } 5509 5510 // Parse the module string table block into the Index. 5511 // This populates the ModulePathStringTable map in the index. 5512 Error ModuleSummaryIndexBitcodeReader::parseModuleStringTable() { 5513 if (Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID)) 5514 return error("Invalid record"); 5515 5516 SmallVector<uint64_t, 64> Record; 5517 5518 SmallString<128> ModulePath; 5519 ModuleSummaryIndex::ModuleInfo *LastSeenModule = nullptr; 5520 5521 while (true) { 5522 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5523 5524 switch (Entry.Kind) { 5525 case BitstreamEntry::SubBlock: // Handled for us already. 5526 case BitstreamEntry::Error: 5527 return error("Malformed block"); 5528 case BitstreamEntry::EndBlock: 5529 return Error::success(); 5530 case BitstreamEntry::Record: 5531 // The interesting case. 5532 break; 5533 } 5534 5535 Record.clear(); 5536 switch (Stream.readRecord(Entry.ID, Record)) { 5537 default: // Default behavior: ignore. 5538 break; 5539 case bitc::MST_CODE_ENTRY: { 5540 // MST_ENTRY: [modid, namechar x N] 5541 uint64_t ModuleId = Record[0]; 5542 5543 if (convertToString(Record, 1, ModulePath)) 5544 return error("Invalid record"); 5545 5546 LastSeenModule = TheIndex.addModule(ModulePath, ModuleId); 5547 ModuleIdMap[ModuleId] = LastSeenModule->first(); 5548 5549 ModulePath.clear(); 5550 break; 5551 } 5552 /// MST_CODE_HASH: [5*i32] 5553 case bitc::MST_CODE_HASH: { 5554 if (Record.size() != 5) 5555 return error("Invalid hash length " + Twine(Record.size()).str()); 5556 if (!LastSeenModule) 5557 return error("Invalid hash that does not follow a module path"); 5558 int Pos = 0; 5559 for (auto &Val : Record) { 5560 assert(!(Val >> 32) && "Unexpected high bits set"); 5561 LastSeenModule->second.second[Pos++] = Val; 5562 } 5563 // Reset LastSeenModule to avoid overriding the hash unexpectedly. 5564 LastSeenModule = nullptr; 5565 break; 5566 } 5567 } 5568 } 5569 llvm_unreachable("Exit infinite loop"); 5570 } 5571 5572 namespace { 5573 5574 // FIXME: This class is only here to support the transition to llvm::Error. It 5575 // will be removed once this transition is complete. Clients should prefer to 5576 // deal with the Error value directly, rather than converting to error_code. 5577 class BitcodeErrorCategoryType : public std::error_category { 5578 const char *name() const noexcept override { 5579 return "llvm.bitcode"; 5580 } 5581 5582 std::string message(int IE) const override { 5583 BitcodeError E = static_cast<BitcodeError>(IE); 5584 switch (E) { 5585 case BitcodeError::CorruptedBitcode: 5586 return "Corrupted bitcode"; 5587 } 5588 llvm_unreachable("Unknown error type!"); 5589 } 5590 }; 5591 5592 } // end anonymous namespace 5593 5594 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory; 5595 5596 const std::error_category &llvm::BitcodeErrorCategory() { 5597 return *ErrorCategory; 5598 } 5599 5600 static Expected<StringRef> readBlobInRecord(BitstreamCursor &Stream, 5601 unsigned Block, unsigned RecordID) { 5602 if (Stream.EnterSubBlock(Block)) 5603 return error("Invalid record"); 5604 5605 StringRef Strtab; 5606 while (true) { 5607 BitstreamEntry Entry = Stream.advance(); 5608 switch (Entry.Kind) { 5609 case BitstreamEntry::EndBlock: 5610 return Strtab; 5611 5612 case BitstreamEntry::Error: 5613 return error("Malformed block"); 5614 5615 case BitstreamEntry::SubBlock: 5616 if (Stream.SkipBlock()) 5617 return error("Malformed block"); 5618 break; 5619 5620 case BitstreamEntry::Record: 5621 StringRef Blob; 5622 SmallVector<uint64_t, 1> Record; 5623 if (Stream.readRecord(Entry.ID, Record, &Blob) == RecordID) 5624 Strtab = Blob; 5625 break; 5626 } 5627 } 5628 } 5629 5630 //===----------------------------------------------------------------------===// 5631 // External interface 5632 //===----------------------------------------------------------------------===// 5633 5634 Expected<std::vector<BitcodeModule>> 5635 llvm::getBitcodeModuleList(MemoryBufferRef Buffer) { 5636 auto FOrErr = getBitcodeFileContents(Buffer); 5637 if (!FOrErr) 5638 return FOrErr.takeError(); 5639 return std::move(FOrErr->Mods); 5640 } 5641 5642 Expected<BitcodeFileContents> 5643 llvm::getBitcodeFileContents(MemoryBufferRef Buffer) { 5644 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 5645 if (!StreamOrErr) 5646 return StreamOrErr.takeError(); 5647 BitstreamCursor &Stream = *StreamOrErr; 5648 5649 BitcodeFileContents F; 5650 while (true) { 5651 uint64_t BCBegin = Stream.getCurrentByteNo(); 5652 5653 // We may be consuming bitcode from a client that leaves garbage at the end 5654 // of the bitcode stream (e.g. Apple's ar tool). If we are close enough to 5655 // the end that there cannot possibly be another module, stop looking. 5656 if (BCBegin + 8 >= Stream.getBitcodeBytes().size()) 5657 return F; 5658 5659 BitstreamEntry Entry = Stream.advance(); 5660 switch (Entry.Kind) { 5661 case BitstreamEntry::EndBlock: 5662 case BitstreamEntry::Error: 5663 return error("Malformed block"); 5664 5665 case BitstreamEntry::SubBlock: { 5666 uint64_t IdentificationBit = -1ull; 5667 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) { 5668 IdentificationBit = Stream.GetCurrentBitNo() - BCBegin * 8; 5669 if (Stream.SkipBlock()) 5670 return error("Malformed block"); 5671 5672 Entry = Stream.advance(); 5673 if (Entry.Kind != BitstreamEntry::SubBlock || 5674 Entry.ID != bitc::MODULE_BLOCK_ID) 5675 return error("Malformed block"); 5676 } 5677 5678 if (Entry.ID == bitc::MODULE_BLOCK_ID) { 5679 uint64_t ModuleBit = Stream.GetCurrentBitNo() - BCBegin * 8; 5680 if (Stream.SkipBlock()) 5681 return error("Malformed block"); 5682 5683 F.Mods.push_back({Stream.getBitcodeBytes().slice( 5684 BCBegin, Stream.getCurrentByteNo() - BCBegin), 5685 Buffer.getBufferIdentifier(), IdentificationBit, 5686 ModuleBit}); 5687 continue; 5688 } 5689 5690 if (Entry.ID == bitc::STRTAB_BLOCK_ID) { 5691 Expected<StringRef> Strtab = 5692 readBlobInRecord(Stream, bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB); 5693 if (!Strtab) 5694 return Strtab.takeError(); 5695 // This string table is used by every preceding bitcode module that does 5696 // not have its own string table. A bitcode file may have multiple 5697 // string tables if it was created by binary concatenation, for example 5698 // with "llvm-cat -b". 5699 for (auto I = F.Mods.rbegin(), E = F.Mods.rend(); I != E; ++I) { 5700 if (!I->Strtab.empty()) 5701 break; 5702 I->Strtab = *Strtab; 5703 } 5704 // Similarly, the string table is used by every preceding symbol table; 5705 // normally there will be just one unless the bitcode file was created 5706 // by binary concatenation. 5707 if (!F.Symtab.empty() && F.StrtabForSymtab.empty()) 5708 F.StrtabForSymtab = *Strtab; 5709 continue; 5710 } 5711 5712 if (Entry.ID == bitc::SYMTAB_BLOCK_ID) { 5713 Expected<StringRef> SymtabOrErr = 5714 readBlobInRecord(Stream, bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB); 5715 if (!SymtabOrErr) 5716 return SymtabOrErr.takeError(); 5717 5718 // We can expect the bitcode file to have multiple symbol tables if it 5719 // was created by binary concatenation. In that case we silently 5720 // ignore any subsequent symbol tables, which is fine because this is a 5721 // low level function. The client is expected to notice that the number 5722 // of modules in the symbol table does not match the number of modules 5723 // in the input file and regenerate the symbol table. 5724 if (F.Symtab.empty()) 5725 F.Symtab = *SymtabOrErr; 5726 continue; 5727 } 5728 5729 if (Stream.SkipBlock()) 5730 return error("Malformed block"); 5731 continue; 5732 } 5733 case BitstreamEntry::Record: 5734 Stream.skipRecord(Entry.ID); 5735 continue; 5736 } 5737 } 5738 } 5739 5740 /// Get a lazy one-at-time loading module from bitcode. 5741 /// 5742 /// This isn't always used in a lazy context. In particular, it's also used by 5743 /// \a parseModule(). If this is truly lazy, then we need to eagerly pull 5744 /// in forward-referenced functions from block address references. 5745 /// 5746 /// \param[in] MaterializeAll Set to \c true if we should materialize 5747 /// everything. 5748 Expected<std::unique_ptr<Module>> 5749 BitcodeModule::getModuleImpl(LLVMContext &Context, bool MaterializeAll, 5750 bool ShouldLazyLoadMetadata, bool IsImporting) { 5751 BitstreamCursor Stream(Buffer); 5752 5753 std::string ProducerIdentification; 5754 if (IdentificationBit != -1ull) { 5755 Stream.JumpToBit(IdentificationBit); 5756 Expected<std::string> ProducerIdentificationOrErr = 5757 readIdentificationBlock(Stream); 5758 if (!ProducerIdentificationOrErr) 5759 return ProducerIdentificationOrErr.takeError(); 5760 5761 ProducerIdentification = *ProducerIdentificationOrErr; 5762 } 5763 5764 Stream.JumpToBit(ModuleBit); 5765 auto *R = new BitcodeReader(std::move(Stream), Strtab, ProducerIdentification, 5766 Context); 5767 5768 std::unique_ptr<Module> M = 5769 llvm::make_unique<Module>(ModuleIdentifier, Context); 5770 M->setMaterializer(R); 5771 5772 // Delay parsing Metadata if ShouldLazyLoadMetadata is true. 5773 if (Error Err = 5774 R->parseBitcodeInto(M.get(), ShouldLazyLoadMetadata, IsImporting)) 5775 return std::move(Err); 5776 5777 if (MaterializeAll) { 5778 // Read in the entire module, and destroy the BitcodeReader. 5779 if (Error Err = M->materializeAll()) 5780 return std::move(Err); 5781 } else { 5782 // Resolve forward references from blockaddresses. 5783 if (Error Err = R->materializeForwardReferencedFunctions()) 5784 return std::move(Err); 5785 } 5786 return std::move(M); 5787 } 5788 5789 Expected<std::unique_ptr<Module>> 5790 BitcodeModule::getLazyModule(LLVMContext &Context, bool ShouldLazyLoadMetadata, 5791 bool IsImporting) { 5792 return getModuleImpl(Context, false, ShouldLazyLoadMetadata, IsImporting); 5793 } 5794 5795 // Parse the specified bitcode buffer and merge the index into CombinedIndex. 5796 // We don't use ModuleIdentifier here because the client may need to control the 5797 // module path used in the combined summary (e.g. when reading summaries for 5798 // regular LTO modules). 5799 Error BitcodeModule::readSummary(ModuleSummaryIndex &CombinedIndex, 5800 StringRef ModulePath, uint64_t ModuleId) { 5801 BitstreamCursor Stream(Buffer); 5802 Stream.JumpToBit(ModuleBit); 5803 5804 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, CombinedIndex, 5805 ModulePath, ModuleId); 5806 return R.parseModule(); 5807 } 5808 5809 // Parse the specified bitcode buffer, returning the function info index. 5810 Expected<std::unique_ptr<ModuleSummaryIndex>> BitcodeModule::getSummary() { 5811 BitstreamCursor Stream(Buffer); 5812 Stream.JumpToBit(ModuleBit); 5813 5814 auto Index = llvm::make_unique<ModuleSummaryIndex>(/*HaveGVs=*/false); 5815 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, *Index, 5816 ModuleIdentifier, 0); 5817 5818 if (Error Err = R.parseModule()) 5819 return std::move(Err); 5820 5821 return std::move(Index); 5822 } 5823 5824 // Check if the given bitcode buffer contains a global value summary block. 5825 Expected<BitcodeLTOInfo> BitcodeModule::getLTOInfo() { 5826 BitstreamCursor Stream(Buffer); 5827 Stream.JumpToBit(ModuleBit); 5828 5829 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 5830 return error("Invalid record"); 5831 5832 while (true) { 5833 BitstreamEntry Entry = Stream.advance(); 5834 5835 switch (Entry.Kind) { 5836 case BitstreamEntry::Error: 5837 return error("Malformed block"); 5838 case BitstreamEntry::EndBlock: 5839 return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/false}; 5840 5841 case BitstreamEntry::SubBlock: 5842 if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) 5843 return BitcodeLTOInfo{/*IsThinLTO=*/true, /*HasSummary=*/true}; 5844 5845 if (Entry.ID == bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID) 5846 return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/true}; 5847 5848 // Ignore other sub-blocks. 5849 if (Stream.SkipBlock()) 5850 return error("Malformed block"); 5851 continue; 5852 5853 case BitstreamEntry::Record: 5854 Stream.skipRecord(Entry.ID); 5855 continue; 5856 } 5857 } 5858 } 5859 5860 static Expected<BitcodeModule> getSingleModule(MemoryBufferRef Buffer) { 5861 Expected<std::vector<BitcodeModule>> MsOrErr = getBitcodeModuleList(Buffer); 5862 if (!MsOrErr) 5863 return MsOrErr.takeError(); 5864 5865 if (MsOrErr->size() != 1) 5866 return error("Expected a single module"); 5867 5868 return (*MsOrErr)[0]; 5869 } 5870 5871 Expected<std::unique_ptr<Module>> 5872 llvm::getLazyBitcodeModule(MemoryBufferRef Buffer, LLVMContext &Context, 5873 bool ShouldLazyLoadMetadata, bool IsImporting) { 5874 Expected<BitcodeModule> BM = getSingleModule(Buffer); 5875 if (!BM) 5876 return BM.takeError(); 5877 5878 return BM->getLazyModule(Context, ShouldLazyLoadMetadata, IsImporting); 5879 } 5880 5881 Expected<std::unique_ptr<Module>> llvm::getOwningLazyBitcodeModule( 5882 std::unique_ptr<MemoryBuffer> &&Buffer, LLVMContext &Context, 5883 bool ShouldLazyLoadMetadata, bool IsImporting) { 5884 auto MOrErr = getLazyBitcodeModule(*Buffer, Context, ShouldLazyLoadMetadata, 5885 IsImporting); 5886 if (MOrErr) 5887 (*MOrErr)->setOwnedMemoryBuffer(std::move(Buffer)); 5888 return MOrErr; 5889 } 5890 5891 Expected<std::unique_ptr<Module>> 5892 BitcodeModule::parseModule(LLVMContext &Context) { 5893 return getModuleImpl(Context, true, false, false); 5894 // TODO: Restore the use-lists to the in-memory state when the bitcode was 5895 // written. We must defer until the Module has been fully materialized. 5896 } 5897 5898 Expected<std::unique_ptr<Module>> llvm::parseBitcodeFile(MemoryBufferRef Buffer, 5899 LLVMContext &Context) { 5900 Expected<BitcodeModule> BM = getSingleModule(Buffer); 5901 if (!BM) 5902 return BM.takeError(); 5903 5904 return BM->parseModule(Context); 5905 } 5906 5907 Expected<std::string> llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer) { 5908 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 5909 if (!StreamOrErr) 5910 return StreamOrErr.takeError(); 5911 5912 return readTriple(*StreamOrErr); 5913 } 5914 5915 Expected<bool> llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer) { 5916 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 5917 if (!StreamOrErr) 5918 return StreamOrErr.takeError(); 5919 5920 return hasObjCCategory(*StreamOrErr); 5921 } 5922 5923 Expected<std::string> llvm::getBitcodeProducerString(MemoryBufferRef Buffer) { 5924 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 5925 if (!StreamOrErr) 5926 return StreamOrErr.takeError(); 5927 5928 return readIdentificationCode(*StreamOrErr); 5929 } 5930 5931 Error llvm::readModuleSummaryIndex(MemoryBufferRef Buffer, 5932 ModuleSummaryIndex &CombinedIndex, 5933 uint64_t ModuleId) { 5934 Expected<BitcodeModule> BM = getSingleModule(Buffer); 5935 if (!BM) 5936 return BM.takeError(); 5937 5938 return BM->readSummary(CombinedIndex, BM->getModuleIdentifier(), ModuleId); 5939 } 5940 5941 Expected<std::unique_ptr<ModuleSummaryIndex>> 5942 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer) { 5943 Expected<BitcodeModule> BM = getSingleModule(Buffer); 5944 if (!BM) 5945 return BM.takeError(); 5946 5947 return BM->getSummary(); 5948 } 5949 5950 Expected<BitcodeLTOInfo> llvm::getBitcodeLTOInfo(MemoryBufferRef Buffer) { 5951 Expected<BitcodeModule> BM = getSingleModule(Buffer); 5952 if (!BM) 5953 return BM.takeError(); 5954 5955 return BM->getLTOInfo(); 5956 } 5957 5958 Expected<std::unique_ptr<ModuleSummaryIndex>> 5959 llvm::getModuleSummaryIndexForFile(StringRef Path, 5960 bool IgnoreEmptyThinLTOIndexFile) { 5961 ErrorOr<std::unique_ptr<MemoryBuffer>> FileOrErr = 5962 MemoryBuffer::getFileOrSTDIN(Path); 5963 if (!FileOrErr) 5964 return errorCodeToError(FileOrErr.getError()); 5965 if (IgnoreEmptyThinLTOIndexFile && !(*FileOrErr)->getBufferSize()) 5966 return nullptr; 5967 return getModuleSummaryIndex(**FileOrErr); 5968 } 5969