1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/Bitcode/BitcodeReader.h"
10 #include "MetadataLoader.h"
11 #include "ValueList.h"
12 #include "llvm/ADT/APFloat.h"
13 #include "llvm/ADT/APInt.h"
14 #include "llvm/ADT/ArrayRef.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/Optional.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallString.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/StringRef.h"
21 #include "llvm/ADT/Triple.h"
22 #include "llvm/ADT/Twine.h"
23 #include "llvm/Bitcode/BitcodeCommon.h"
24 #include "llvm/Bitcode/LLVMBitCodes.h"
25 #include "llvm/Bitstream/BitstreamReader.h"
26 #include "llvm/Config/llvm-config.h"
27 #include "llvm/IR/Argument.h"
28 #include "llvm/IR/Attributes.h"
29 #include "llvm/IR/AutoUpgrade.h"
30 #include "llvm/IR/BasicBlock.h"
31 #include "llvm/IR/CallingConv.h"
32 #include "llvm/IR/Comdat.h"
33 #include "llvm/IR/Constant.h"
34 #include "llvm/IR/Constants.h"
35 #include "llvm/IR/DataLayout.h"
36 #include "llvm/IR/DebugInfo.h"
37 #include "llvm/IR/DebugInfoMetadata.h"
38 #include "llvm/IR/DebugLoc.h"
39 #include "llvm/IR/DerivedTypes.h"
40 #include "llvm/IR/Function.h"
41 #include "llvm/IR/GVMaterializer.h"
42 #include "llvm/IR/GlobalAlias.h"
43 #include "llvm/IR/GlobalIFunc.h"
44 #include "llvm/IR/GlobalObject.h"
45 #include "llvm/IR/GlobalValue.h"
46 #include "llvm/IR/GlobalVariable.h"
47 #include "llvm/IR/InlineAsm.h"
48 #include "llvm/IR/InstIterator.h"
49 #include "llvm/IR/InstrTypes.h"
50 #include "llvm/IR/Instruction.h"
51 #include "llvm/IR/Instructions.h"
52 #include "llvm/IR/Intrinsics.h"
53 #include "llvm/IR/LLVMContext.h"
54 #include "llvm/IR/Metadata.h"
55 #include "llvm/IR/Module.h"
56 #include "llvm/IR/ModuleSummaryIndex.h"
57 #include "llvm/IR/Operator.h"
58 #include "llvm/IR/Type.h"
59 #include "llvm/IR/Value.h"
60 #include "llvm/IR/Verifier.h"
61 #include "llvm/Support/AtomicOrdering.h"
62 #include "llvm/Support/Casting.h"
63 #include "llvm/Support/CommandLine.h"
64 #include "llvm/Support/Compiler.h"
65 #include "llvm/Support/Debug.h"
66 #include "llvm/Support/Error.h"
67 #include "llvm/Support/ErrorHandling.h"
68 #include "llvm/Support/ErrorOr.h"
69 #include "llvm/Support/ManagedStatic.h"
70 #include "llvm/Support/MathExtras.h"
71 #include "llvm/Support/MemoryBuffer.h"
72 #include "llvm/Support/raw_ostream.h"
73 #include <algorithm>
74 #include <cassert>
75 #include <cstddef>
76 #include <cstdint>
77 #include <deque>
78 #include <map>
79 #include <memory>
80 #include <set>
81 #include <string>
82 #include <system_error>
83 #include <tuple>
84 #include <utility>
85 #include <vector>
86 
87 using namespace llvm;
88 
89 static cl::opt<bool> PrintSummaryGUIDs(
90     "print-summary-global-ids", cl::init(false), cl::Hidden,
91     cl::desc(
92         "Print the global id for each value when reading the module summary"));
93 
94 namespace {
95 
96 enum {
97   SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex
98 };
99 
100 } // end anonymous namespace
101 
102 static Error error(const Twine &Message) {
103   return make_error<StringError>(
104       Message, make_error_code(BitcodeError::CorruptedBitcode));
105 }
106 
107 static Error hasInvalidBitcodeHeader(BitstreamCursor &Stream) {
108   if (!Stream.canSkipToPos(4))
109     return createStringError(std::errc::illegal_byte_sequence,
110                              "file too small to contain bitcode header");
111   for (unsigned C : {'B', 'C'})
112     if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(8)) {
113       if (Res.get() != C)
114         return createStringError(std::errc::illegal_byte_sequence,
115                                  "file doesn't start with bitcode header");
116     } else
117       return Res.takeError();
118   for (unsigned C : {0x0, 0xC, 0xE, 0xD})
119     if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(4)) {
120       if (Res.get() != C)
121         return createStringError(std::errc::illegal_byte_sequence,
122                                  "file doesn't start with bitcode header");
123     } else
124       return Res.takeError();
125   return Error::success();
126 }
127 
128 static Expected<BitstreamCursor> initStream(MemoryBufferRef Buffer) {
129   const unsigned char *BufPtr = (const unsigned char *)Buffer.getBufferStart();
130   const unsigned char *BufEnd = BufPtr + Buffer.getBufferSize();
131 
132   if (Buffer.getBufferSize() & 3)
133     return error("Invalid bitcode signature");
134 
135   // If we have a wrapper header, parse it and ignore the non-bc file contents.
136   // The magic number is 0x0B17C0DE stored in little endian.
137   if (isBitcodeWrapper(BufPtr, BufEnd))
138     if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true))
139       return error("Invalid bitcode wrapper header");
140 
141   BitstreamCursor Stream(ArrayRef<uint8_t>(BufPtr, BufEnd));
142   if (Error Err = hasInvalidBitcodeHeader(Stream))
143     return std::move(Err);
144 
145   return std::move(Stream);
146 }
147 
148 /// Convert a string from a record into an std::string, return true on failure.
149 template <typename StrTy>
150 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx,
151                             StrTy &Result) {
152   if (Idx > Record.size())
153     return true;
154 
155   Result.append(Record.begin() + Idx, Record.end());
156   return false;
157 }
158 
159 // Strip all the TBAA attachment for the module.
160 static void stripTBAA(Module *M) {
161   for (auto &F : *M) {
162     if (F.isMaterializable())
163       continue;
164     for (auto &I : instructions(F))
165       I.setMetadata(LLVMContext::MD_tbaa, nullptr);
166   }
167 }
168 
169 /// Read the "IDENTIFICATION_BLOCK_ID" block, do some basic enforcement on the
170 /// "epoch" encoded in the bitcode, and return the producer name if any.
171 static Expected<std::string> readIdentificationBlock(BitstreamCursor &Stream) {
172   if (Error Err = Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID))
173     return std::move(Err);
174 
175   // Read all the records.
176   SmallVector<uint64_t, 64> Record;
177 
178   std::string ProducerIdentification;
179 
180   while (true) {
181     BitstreamEntry Entry;
182     if (Error E = Stream.advance().moveInto(Entry))
183       return std::move(E);
184 
185     switch (Entry.Kind) {
186     default:
187     case BitstreamEntry::Error:
188       return error("Malformed block");
189     case BitstreamEntry::EndBlock:
190       return ProducerIdentification;
191     case BitstreamEntry::Record:
192       // The interesting case.
193       break;
194     }
195 
196     // Read a record.
197     Record.clear();
198     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
199     if (!MaybeBitCode)
200       return MaybeBitCode.takeError();
201     switch (MaybeBitCode.get()) {
202     default: // Default behavior: reject
203       return error("Invalid value");
204     case bitc::IDENTIFICATION_CODE_STRING: // IDENTIFICATION: [strchr x N]
205       convertToString(Record, 0, ProducerIdentification);
206       break;
207     case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#]
208       unsigned epoch = (unsigned)Record[0];
209       if (epoch != bitc::BITCODE_CURRENT_EPOCH) {
210         return error(
211           Twine("Incompatible epoch: Bitcode '") + Twine(epoch) +
212           "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'");
213       }
214     }
215     }
216   }
217 }
218 
219 static Expected<std::string> readIdentificationCode(BitstreamCursor &Stream) {
220   // We expect a number of well-defined blocks, though we don't necessarily
221   // need to understand them all.
222   while (true) {
223     if (Stream.AtEndOfStream())
224       return "";
225 
226     BitstreamEntry Entry;
227     if (Error E = Stream.advance().moveInto(Entry))
228       return std::move(E);
229 
230     switch (Entry.Kind) {
231     case BitstreamEntry::EndBlock:
232     case BitstreamEntry::Error:
233       return error("Malformed block");
234 
235     case BitstreamEntry::SubBlock:
236       if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID)
237         return readIdentificationBlock(Stream);
238 
239       // Ignore other sub-blocks.
240       if (Error Err = Stream.SkipBlock())
241         return std::move(Err);
242       continue;
243     case BitstreamEntry::Record:
244       if (Error E = Stream.skipRecord(Entry.ID).takeError())
245         return std::move(E);
246       continue;
247     }
248   }
249 }
250 
251 static Expected<bool> hasObjCCategoryInModule(BitstreamCursor &Stream) {
252   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
253     return std::move(Err);
254 
255   SmallVector<uint64_t, 64> Record;
256   // Read all the records for this module.
257 
258   while (true) {
259     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
260     if (!MaybeEntry)
261       return MaybeEntry.takeError();
262     BitstreamEntry Entry = MaybeEntry.get();
263 
264     switch (Entry.Kind) {
265     case BitstreamEntry::SubBlock: // Handled for us already.
266     case BitstreamEntry::Error:
267       return error("Malformed block");
268     case BitstreamEntry::EndBlock:
269       return false;
270     case BitstreamEntry::Record:
271       // The interesting case.
272       break;
273     }
274 
275     // Read a record.
276     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
277     if (!MaybeRecord)
278       return MaybeRecord.takeError();
279     switch (MaybeRecord.get()) {
280     default:
281       break; // Default behavior, ignore unknown content.
282     case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N]
283       std::string S;
284       if (convertToString(Record, 0, S))
285         return error("Invalid record");
286       // Check for the i386 and other (x86_64, ARM) conventions
287       if (S.find("__DATA,__objc_catlist") != std::string::npos ||
288           S.find("__OBJC,__category") != std::string::npos)
289         return true;
290       break;
291     }
292     }
293     Record.clear();
294   }
295   llvm_unreachable("Exit infinite loop");
296 }
297 
298 static Expected<bool> hasObjCCategory(BitstreamCursor &Stream) {
299   // We expect a number of well-defined blocks, though we don't necessarily
300   // need to understand them all.
301   while (true) {
302     BitstreamEntry Entry;
303     if (Error E = Stream.advance().moveInto(Entry))
304       return std::move(E);
305 
306     switch (Entry.Kind) {
307     case BitstreamEntry::Error:
308       return error("Malformed block");
309     case BitstreamEntry::EndBlock:
310       return false;
311 
312     case BitstreamEntry::SubBlock:
313       if (Entry.ID == bitc::MODULE_BLOCK_ID)
314         return hasObjCCategoryInModule(Stream);
315 
316       // Ignore other sub-blocks.
317       if (Error Err = Stream.SkipBlock())
318         return std::move(Err);
319       continue;
320 
321     case BitstreamEntry::Record:
322       if (Error E = Stream.skipRecord(Entry.ID).takeError())
323         return std::move(E);
324       continue;
325     }
326   }
327 }
328 
329 static Expected<std::string> readModuleTriple(BitstreamCursor &Stream) {
330   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
331     return std::move(Err);
332 
333   SmallVector<uint64_t, 64> Record;
334 
335   std::string Triple;
336 
337   // Read all the records for this module.
338   while (true) {
339     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
340     if (!MaybeEntry)
341       return MaybeEntry.takeError();
342     BitstreamEntry Entry = MaybeEntry.get();
343 
344     switch (Entry.Kind) {
345     case BitstreamEntry::SubBlock: // Handled for us already.
346     case BitstreamEntry::Error:
347       return error("Malformed block");
348     case BitstreamEntry::EndBlock:
349       return Triple;
350     case BitstreamEntry::Record:
351       // The interesting case.
352       break;
353     }
354 
355     // Read a record.
356     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
357     if (!MaybeRecord)
358       return MaybeRecord.takeError();
359     switch (MaybeRecord.get()) {
360     default: break;  // Default behavior, ignore unknown content.
361     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
362       std::string S;
363       if (convertToString(Record, 0, S))
364         return error("Invalid record");
365       Triple = S;
366       break;
367     }
368     }
369     Record.clear();
370   }
371   llvm_unreachable("Exit infinite loop");
372 }
373 
374 static Expected<std::string> readTriple(BitstreamCursor &Stream) {
375   // We expect a number of well-defined blocks, though we don't necessarily
376   // need to understand them all.
377   while (true) {
378     Expected<BitstreamEntry> MaybeEntry = Stream.advance();
379     if (!MaybeEntry)
380       return MaybeEntry.takeError();
381     BitstreamEntry Entry = MaybeEntry.get();
382 
383     switch (Entry.Kind) {
384     case BitstreamEntry::Error:
385       return error("Malformed block");
386     case BitstreamEntry::EndBlock:
387       return "";
388 
389     case BitstreamEntry::SubBlock:
390       if (Entry.ID == bitc::MODULE_BLOCK_ID)
391         return readModuleTriple(Stream);
392 
393       // Ignore other sub-blocks.
394       if (Error Err = Stream.SkipBlock())
395         return std::move(Err);
396       continue;
397 
398     case BitstreamEntry::Record:
399       if (llvm::Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID))
400         continue;
401       else
402         return Skipped.takeError();
403     }
404   }
405 }
406 
407 namespace {
408 
409 class BitcodeReaderBase {
410 protected:
411   BitcodeReaderBase(BitstreamCursor Stream, StringRef Strtab)
412       : Stream(std::move(Stream)), Strtab(Strtab) {
413     this->Stream.setBlockInfo(&BlockInfo);
414   }
415 
416   BitstreamBlockInfo BlockInfo;
417   BitstreamCursor Stream;
418   StringRef Strtab;
419 
420   /// In version 2 of the bitcode we store names of global values and comdats in
421   /// a string table rather than in the VST.
422   bool UseStrtab = false;
423 
424   Expected<unsigned> parseVersionRecord(ArrayRef<uint64_t> Record);
425 
426   /// If this module uses a string table, pop the reference to the string table
427   /// and return the referenced string and the rest of the record. Otherwise
428   /// just return the record itself.
429   std::pair<StringRef, ArrayRef<uint64_t>>
430   readNameFromStrtab(ArrayRef<uint64_t> Record);
431 
432   bool readBlockInfo();
433 
434   // Contains an arbitrary and optional string identifying the bitcode producer
435   std::string ProducerIdentification;
436 
437   Error error(const Twine &Message);
438 };
439 
440 } // end anonymous namespace
441 
442 Error BitcodeReaderBase::error(const Twine &Message) {
443   std::string FullMsg = Message.str();
444   if (!ProducerIdentification.empty())
445     FullMsg += " (Producer: '" + ProducerIdentification + "' Reader: 'LLVM " +
446                LLVM_VERSION_STRING "')";
447   return ::error(FullMsg);
448 }
449 
450 Expected<unsigned>
451 BitcodeReaderBase::parseVersionRecord(ArrayRef<uint64_t> Record) {
452   if (Record.empty())
453     return error("Invalid record");
454   unsigned ModuleVersion = Record[0];
455   if (ModuleVersion > 2)
456     return error("Invalid value");
457   UseStrtab = ModuleVersion >= 2;
458   return ModuleVersion;
459 }
460 
461 std::pair<StringRef, ArrayRef<uint64_t>>
462 BitcodeReaderBase::readNameFromStrtab(ArrayRef<uint64_t> Record) {
463   if (!UseStrtab)
464     return {"", Record};
465   // Invalid reference. Let the caller complain about the record being empty.
466   if (Record[0] + Record[1] > Strtab.size())
467     return {"", {}};
468   return {StringRef(Strtab.data() + Record[0], Record[1]), Record.slice(2)};
469 }
470 
471 namespace {
472 
473 class BitcodeReader : public BitcodeReaderBase, public GVMaterializer {
474   LLVMContext &Context;
475   Module *TheModule = nullptr;
476   // Next offset to start scanning for lazy parsing of function bodies.
477   uint64_t NextUnreadBit = 0;
478   // Last function offset found in the VST.
479   uint64_t LastFunctionBlockBit = 0;
480   bool SeenValueSymbolTable = false;
481   uint64_t VSTOffset = 0;
482 
483   std::vector<std::string> SectionTable;
484   std::vector<std::string> GCTable;
485 
486   std::vector<Type*> TypeList;
487   DenseMap<Function *, FunctionType *> FunctionTypes;
488   BitcodeReaderValueList ValueList;
489   Optional<MetadataLoader> MDLoader;
490   std::vector<Comdat *> ComdatList;
491   SmallVector<Instruction *, 64> InstructionList;
492 
493   std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInits;
494   std::vector<std::pair<GlobalValue *, unsigned>> IndirectSymbolInits;
495 
496   struct FunctionOperandInfo {
497     Function *F;
498     unsigned PersonalityFn;
499     unsigned Prefix;
500     unsigned Prologue;
501   };
502   std::vector<FunctionOperandInfo> FunctionOperands;
503 
504   /// The set of attributes by index.  Index zero in the file is for null, and
505   /// is thus not represented here.  As such all indices are off by one.
506   std::vector<AttributeList> MAttributes;
507 
508   /// The set of attribute groups.
509   std::map<unsigned, AttributeList> MAttributeGroups;
510 
511   /// While parsing a function body, this is a list of the basic blocks for the
512   /// function.
513   std::vector<BasicBlock*> FunctionBBs;
514 
515   // When reading the module header, this list is populated with functions that
516   // have bodies later in the file.
517   std::vector<Function*> FunctionsWithBodies;
518 
519   // When intrinsic functions are encountered which require upgrading they are
520   // stored here with their replacement function.
521   using UpdatedIntrinsicMap = DenseMap<Function *, Function *>;
522   UpdatedIntrinsicMap UpgradedIntrinsics;
523   // Intrinsics which were remangled because of types rename
524   UpdatedIntrinsicMap RemangledIntrinsics;
525 
526   // Several operations happen after the module header has been read, but
527   // before function bodies are processed. This keeps track of whether
528   // we've done this yet.
529   bool SeenFirstFunctionBody = false;
530 
531   /// When function bodies are initially scanned, this map contains info about
532   /// where to find deferred function body in the stream.
533   DenseMap<Function*, uint64_t> DeferredFunctionInfo;
534 
535   /// When Metadata block is initially scanned when parsing the module, we may
536   /// choose to defer parsing of the metadata. This vector contains info about
537   /// which Metadata blocks are deferred.
538   std::vector<uint64_t> DeferredMetadataInfo;
539 
540   /// These are basic blocks forward-referenced by block addresses.  They are
541   /// inserted lazily into functions when they're loaded.  The basic block ID is
542   /// its index into the vector.
543   DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs;
544   std::deque<Function *> BasicBlockFwdRefQueue;
545 
546   /// Indicates that we are using a new encoding for instruction operands where
547   /// most operands in the current FUNCTION_BLOCK are encoded relative to the
548   /// instruction number, for a more compact encoding.  Some instruction
549   /// operands are not relative to the instruction ID: basic block numbers, and
550   /// types. Once the old style function blocks have been phased out, we would
551   /// not need this flag.
552   bool UseRelativeIDs = false;
553 
554   /// True if all functions will be materialized, negating the need to process
555   /// (e.g.) blockaddress forward references.
556   bool WillMaterializeAllForwardRefs = false;
557 
558   bool StripDebugInfo = false;
559   TBAAVerifier TBAAVerifyHelper;
560 
561   std::vector<std::string> BundleTags;
562   SmallVector<SyncScope::ID, 8> SSIDs;
563 
564 public:
565   BitcodeReader(BitstreamCursor Stream, StringRef Strtab,
566                 StringRef ProducerIdentification, LLVMContext &Context);
567 
568   Error materializeForwardReferencedFunctions();
569 
570   Error materialize(GlobalValue *GV) override;
571   Error materializeModule() override;
572   std::vector<StructType *> getIdentifiedStructTypes() const override;
573 
574   /// Main interface to parsing a bitcode buffer.
575   /// \returns true if an error occurred.
576   Error parseBitcodeInto(
577       Module *M, bool ShouldLazyLoadMetadata = false, bool IsImporting = false,
578       DataLayoutCallbackTy DataLayoutCallback = [](StringRef) { return None; });
579 
580   static uint64_t decodeSignRotatedValue(uint64_t V);
581 
582   /// Materialize any deferred Metadata block.
583   Error materializeMetadata() override;
584 
585   void setStripDebugInfo() override;
586 
587 private:
588   std::vector<StructType *> IdentifiedStructTypes;
589   StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name);
590   StructType *createIdentifiedStructType(LLVMContext &Context);
591 
592   Type *getTypeByID(unsigned ID);
593 
594   Value *getFnValueByID(unsigned ID, Type *Ty) {
595     if (Ty && Ty->isMetadataTy())
596       return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID));
597     return ValueList.getValueFwdRef(ID, Ty);
598   }
599 
600   Metadata *getFnMetadataByID(unsigned ID) {
601     return MDLoader->getMetadataFwdRefOrLoad(ID);
602   }
603 
604   BasicBlock *getBasicBlock(unsigned ID) const {
605     if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID
606     return FunctionBBs[ID];
607   }
608 
609   AttributeList getAttributes(unsigned i) const {
610     if (i-1 < MAttributes.size())
611       return MAttributes[i-1];
612     return AttributeList();
613   }
614 
615   /// Read a value/type pair out of the specified record from slot 'Slot'.
616   /// Increment Slot past the number of slots used in the record. Return true on
617   /// failure.
618   bool getValueTypePair(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
619                         unsigned InstNum, Value *&ResVal) {
620     if (Slot == Record.size()) return true;
621     unsigned ValNo = (unsigned)Record[Slot++];
622     // Adjust the ValNo, if it was encoded relative to the InstNum.
623     if (UseRelativeIDs)
624       ValNo = InstNum - ValNo;
625     if (ValNo < InstNum) {
626       // If this is not a forward reference, just return the value we already
627       // have.
628       ResVal = getFnValueByID(ValNo, nullptr);
629       return ResVal == nullptr;
630     }
631     if (Slot == Record.size())
632       return true;
633 
634     unsigned TypeNo = (unsigned)Record[Slot++];
635     ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo));
636     return ResVal == nullptr;
637   }
638 
639   /// Read a value out of the specified record from slot 'Slot'. Increment Slot
640   /// past the number of slots used by the value in the record. Return true if
641   /// there is an error.
642   bool popValue(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
643                 unsigned InstNum, Type *Ty, Value *&ResVal) {
644     if (getValue(Record, Slot, InstNum, Ty, ResVal))
645       return true;
646     // All values currently take a single record slot.
647     ++Slot;
648     return false;
649   }
650 
651   /// Like popValue, but does not increment the Slot number.
652   bool getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot,
653                 unsigned InstNum, Type *Ty, Value *&ResVal) {
654     ResVal = getValue(Record, Slot, InstNum, Ty);
655     return ResVal == nullptr;
656   }
657 
658   /// Version of getValue that returns ResVal directly, or 0 if there is an
659   /// error.
660   Value *getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot,
661                   unsigned InstNum, Type *Ty) {
662     if (Slot == Record.size()) return nullptr;
663     unsigned ValNo = (unsigned)Record[Slot];
664     // Adjust the ValNo, if it was encoded relative to the InstNum.
665     if (UseRelativeIDs)
666       ValNo = InstNum - ValNo;
667     return getFnValueByID(ValNo, Ty);
668   }
669 
670   /// Like getValue, but decodes signed VBRs.
671   Value *getValueSigned(const SmallVectorImpl<uint64_t> &Record, unsigned Slot,
672                         unsigned InstNum, Type *Ty) {
673     if (Slot == Record.size()) return nullptr;
674     unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]);
675     // Adjust the ValNo, if it was encoded relative to the InstNum.
676     if (UseRelativeIDs)
677       ValNo = InstNum - ValNo;
678     return getFnValueByID(ValNo, Ty);
679   }
680 
681   /// Upgrades old-style typeless byval/sret/inalloca attributes by adding the
682   /// corresponding argument's pointee type. Also upgrades intrinsics that now
683   /// require an elementtype attribute.
684   void propagateAttributeTypes(CallBase *CB, ArrayRef<Type *> ArgsTys);
685 
686   /// Converts alignment exponent (i.e. power of two (or zero)) to the
687   /// corresponding alignment to use. If alignment is too large, returns
688   /// a corresponding error code.
689   Error parseAlignmentValue(uint64_t Exponent, MaybeAlign &Alignment);
690   Error parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind);
691   Error parseModule(
692       uint64_t ResumeBit, bool ShouldLazyLoadMetadata = false,
693       DataLayoutCallbackTy DataLayoutCallback = [](StringRef) { return None; });
694 
695   Error parseComdatRecord(ArrayRef<uint64_t> Record);
696   Error parseGlobalVarRecord(ArrayRef<uint64_t> Record);
697   Error parseFunctionRecord(ArrayRef<uint64_t> Record);
698   Error parseGlobalIndirectSymbolRecord(unsigned BitCode,
699                                         ArrayRef<uint64_t> Record);
700 
701   Error parseAttributeBlock();
702   Error parseAttributeGroupBlock();
703   Error parseTypeTable();
704   Error parseTypeTableBody();
705   Error parseOperandBundleTags();
706   Error parseSyncScopeNames();
707 
708   Expected<Value *> recordValue(SmallVectorImpl<uint64_t> &Record,
709                                 unsigned NameIndex, Triple &TT);
710   void setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, Function *F,
711                                ArrayRef<uint64_t> Record);
712   Error parseValueSymbolTable(uint64_t Offset = 0);
713   Error parseGlobalValueSymbolTable();
714   Error parseConstants();
715   Error rememberAndSkipFunctionBodies();
716   Error rememberAndSkipFunctionBody();
717   /// Save the positions of the Metadata blocks and skip parsing the blocks.
718   Error rememberAndSkipMetadata();
719   Error typeCheckLoadStoreInst(Type *ValType, Type *PtrType);
720   Error parseFunctionBody(Function *F);
721   Error globalCleanup();
722   Error resolveGlobalAndIndirectSymbolInits();
723   Error parseUseLists();
724   Error findFunctionInStream(
725       Function *F,
726       DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator);
727 
728   SyncScope::ID getDecodedSyncScopeID(unsigned Val);
729 };
730 
731 /// Class to manage reading and parsing function summary index bitcode
732 /// files/sections.
733 class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase {
734   /// The module index built during parsing.
735   ModuleSummaryIndex &TheIndex;
736 
737   /// Indicates whether we have encountered a global value summary section
738   /// yet during parsing.
739   bool SeenGlobalValSummary = false;
740 
741   /// Indicates whether we have already parsed the VST, used for error checking.
742   bool SeenValueSymbolTable = false;
743 
744   /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record.
745   /// Used to enable on-demand parsing of the VST.
746   uint64_t VSTOffset = 0;
747 
748   // Map to save ValueId to ValueInfo association that was recorded in the
749   // ValueSymbolTable. It is used after the VST is parsed to convert
750   // call graph edges read from the function summary from referencing
751   // callees by their ValueId to using the ValueInfo instead, which is how
752   // they are recorded in the summary index being built.
753   // We save a GUID which refers to the same global as the ValueInfo, but
754   // ignoring the linkage, i.e. for values other than local linkage they are
755   // identical.
756   DenseMap<unsigned, std::pair<ValueInfo, GlobalValue::GUID>>
757       ValueIdToValueInfoMap;
758 
759   /// Map populated during module path string table parsing, from the
760   /// module ID to a string reference owned by the index's module
761   /// path string table, used to correlate with combined index
762   /// summary records.
763   DenseMap<uint64_t, StringRef> ModuleIdMap;
764 
765   /// Original source file name recorded in a bitcode record.
766   std::string SourceFileName;
767 
768   /// The string identifier given to this module by the client, normally the
769   /// path to the bitcode file.
770   StringRef ModulePath;
771 
772   /// For per-module summary indexes, the unique numerical identifier given to
773   /// this module by the client.
774   unsigned ModuleId;
775 
776 public:
777   ModuleSummaryIndexBitcodeReader(BitstreamCursor Stream, StringRef Strtab,
778                                   ModuleSummaryIndex &TheIndex,
779                                   StringRef ModulePath, unsigned ModuleId);
780 
781   Error parseModule();
782 
783 private:
784   void setValueGUID(uint64_t ValueID, StringRef ValueName,
785                     GlobalValue::LinkageTypes Linkage,
786                     StringRef SourceFileName);
787   Error parseValueSymbolTable(
788       uint64_t Offset,
789       DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap);
790   std::vector<ValueInfo> makeRefList(ArrayRef<uint64_t> Record);
791   std::vector<FunctionSummary::EdgeTy> makeCallList(ArrayRef<uint64_t> Record,
792                                                     bool IsOldProfileFormat,
793                                                     bool HasProfile,
794                                                     bool HasRelBF);
795   Error parseEntireSummary(unsigned ID);
796   Error parseModuleStringTable();
797   void parseTypeIdCompatibleVtableSummaryRecord(ArrayRef<uint64_t> Record);
798   void parseTypeIdCompatibleVtableInfo(ArrayRef<uint64_t> Record, size_t &Slot,
799                                        TypeIdCompatibleVtableInfo &TypeId);
800   std::vector<FunctionSummary::ParamAccess>
801   parseParamAccesses(ArrayRef<uint64_t> Record);
802 
803   std::pair<ValueInfo, GlobalValue::GUID>
804   getValueInfoFromValueId(unsigned ValueId);
805 
806   void addThisModule();
807   ModuleSummaryIndex::ModuleInfo *getThisModule();
808 };
809 
810 } // end anonymous namespace
811 
812 std::error_code llvm::errorToErrorCodeAndEmitErrors(LLVMContext &Ctx,
813                                                     Error Err) {
814   if (Err) {
815     std::error_code EC;
816     handleAllErrors(std::move(Err), [&](ErrorInfoBase &EIB) {
817       EC = EIB.convertToErrorCode();
818       Ctx.emitError(EIB.message());
819     });
820     return EC;
821   }
822   return std::error_code();
823 }
824 
825 BitcodeReader::BitcodeReader(BitstreamCursor Stream, StringRef Strtab,
826                              StringRef ProducerIdentification,
827                              LLVMContext &Context)
828     : BitcodeReaderBase(std::move(Stream), Strtab), Context(Context),
829       ValueList(Context, Stream.SizeInBytes()) {
830   this->ProducerIdentification = std::string(ProducerIdentification);
831 }
832 
833 Error BitcodeReader::materializeForwardReferencedFunctions() {
834   if (WillMaterializeAllForwardRefs)
835     return Error::success();
836 
837   // Prevent recursion.
838   WillMaterializeAllForwardRefs = true;
839 
840   while (!BasicBlockFwdRefQueue.empty()) {
841     Function *F = BasicBlockFwdRefQueue.front();
842     BasicBlockFwdRefQueue.pop_front();
843     assert(F && "Expected valid function");
844     if (!BasicBlockFwdRefs.count(F))
845       // Already materialized.
846       continue;
847 
848     // Check for a function that isn't materializable to prevent an infinite
849     // loop.  When parsing a blockaddress stored in a global variable, there
850     // isn't a trivial way to check if a function will have a body without a
851     // linear search through FunctionsWithBodies, so just check it here.
852     if (!F->isMaterializable())
853       return error("Never resolved function from blockaddress");
854 
855     // Try to materialize F.
856     if (Error Err = materialize(F))
857       return Err;
858   }
859   assert(BasicBlockFwdRefs.empty() && "Function missing from queue");
860 
861   // Reset state.
862   WillMaterializeAllForwardRefs = false;
863   return Error::success();
864 }
865 
866 //===----------------------------------------------------------------------===//
867 //  Helper functions to implement forward reference resolution, etc.
868 //===----------------------------------------------------------------------===//
869 
870 static bool hasImplicitComdat(size_t Val) {
871   switch (Val) {
872   default:
873     return false;
874   case 1:  // Old WeakAnyLinkage
875   case 4:  // Old LinkOnceAnyLinkage
876   case 10: // Old WeakODRLinkage
877   case 11: // Old LinkOnceODRLinkage
878     return true;
879   }
880 }
881 
882 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) {
883   switch (Val) {
884   default: // Map unknown/new linkages to external
885   case 0:
886     return GlobalValue::ExternalLinkage;
887   case 2:
888     return GlobalValue::AppendingLinkage;
889   case 3:
890     return GlobalValue::InternalLinkage;
891   case 5:
892     return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage
893   case 6:
894     return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage
895   case 7:
896     return GlobalValue::ExternalWeakLinkage;
897   case 8:
898     return GlobalValue::CommonLinkage;
899   case 9:
900     return GlobalValue::PrivateLinkage;
901   case 12:
902     return GlobalValue::AvailableExternallyLinkage;
903   case 13:
904     return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage
905   case 14:
906     return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage
907   case 15:
908     return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage
909   case 1: // Old value with implicit comdat.
910   case 16:
911     return GlobalValue::WeakAnyLinkage;
912   case 10: // Old value with implicit comdat.
913   case 17:
914     return GlobalValue::WeakODRLinkage;
915   case 4: // Old value with implicit comdat.
916   case 18:
917     return GlobalValue::LinkOnceAnyLinkage;
918   case 11: // Old value with implicit comdat.
919   case 19:
920     return GlobalValue::LinkOnceODRLinkage;
921   }
922 }
923 
924 static FunctionSummary::FFlags getDecodedFFlags(uint64_t RawFlags) {
925   FunctionSummary::FFlags Flags;
926   Flags.ReadNone = RawFlags & 0x1;
927   Flags.ReadOnly = (RawFlags >> 1) & 0x1;
928   Flags.NoRecurse = (RawFlags >> 2) & 0x1;
929   Flags.ReturnDoesNotAlias = (RawFlags >> 3) & 0x1;
930   Flags.NoInline = (RawFlags >> 4) & 0x1;
931   Flags.AlwaysInline = (RawFlags >> 5) & 0x1;
932   Flags.NoUnwind = (RawFlags >> 6) & 0x1;
933   Flags.MayThrow = (RawFlags >> 7) & 0x1;
934   Flags.HasUnknownCall = (RawFlags >> 8) & 0x1;
935   return Flags;
936 }
937 
938 // Decode the flags for GlobalValue in the summary. The bits for each attribute:
939 //
940 // linkage: [0,4), notEligibleToImport: 4, live: 5, local: 6, canAutoHide: 7,
941 // visibility: [8, 10).
942 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags,
943                                                             uint64_t Version) {
944   // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage
945   // like getDecodedLinkage() above. Any future change to the linkage enum and
946   // to getDecodedLinkage() will need to be taken into account here as above.
947   auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits
948   auto Visibility = GlobalValue::VisibilityTypes((RawFlags >> 8) & 3); // 2 bits
949   RawFlags = RawFlags >> 4;
950   bool NotEligibleToImport = (RawFlags & 0x1) || Version < 3;
951   // The Live flag wasn't introduced until version 3. For dead stripping
952   // to work correctly on earlier versions, we must conservatively treat all
953   // values as live.
954   bool Live = (RawFlags & 0x2) || Version < 3;
955   bool Local = (RawFlags & 0x4);
956   bool AutoHide = (RawFlags & 0x8);
957 
958   return GlobalValueSummary::GVFlags(Linkage, Visibility, NotEligibleToImport,
959                                      Live, Local, AutoHide);
960 }
961 
962 // Decode the flags for GlobalVariable in the summary
963 static GlobalVarSummary::GVarFlags getDecodedGVarFlags(uint64_t RawFlags) {
964   return GlobalVarSummary::GVarFlags(
965       (RawFlags & 0x1) ? true : false, (RawFlags & 0x2) ? true : false,
966       (RawFlags & 0x4) ? true : false,
967       (GlobalObject::VCallVisibility)(RawFlags >> 3));
968 }
969 
970 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) {
971   switch (Val) {
972   default: // Map unknown visibilities to default.
973   case 0: return GlobalValue::DefaultVisibility;
974   case 1: return GlobalValue::HiddenVisibility;
975   case 2: return GlobalValue::ProtectedVisibility;
976   }
977 }
978 
979 static GlobalValue::DLLStorageClassTypes
980 getDecodedDLLStorageClass(unsigned Val) {
981   switch (Val) {
982   default: // Map unknown values to default.
983   case 0: return GlobalValue::DefaultStorageClass;
984   case 1: return GlobalValue::DLLImportStorageClass;
985   case 2: return GlobalValue::DLLExportStorageClass;
986   }
987 }
988 
989 static bool getDecodedDSOLocal(unsigned Val) {
990   switch(Val) {
991   default: // Map unknown values to preemptable.
992   case 0:  return false;
993   case 1:  return true;
994   }
995 }
996 
997 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) {
998   switch (Val) {
999     case 0: return GlobalVariable::NotThreadLocal;
1000     default: // Map unknown non-zero value to general dynamic.
1001     case 1: return GlobalVariable::GeneralDynamicTLSModel;
1002     case 2: return GlobalVariable::LocalDynamicTLSModel;
1003     case 3: return GlobalVariable::InitialExecTLSModel;
1004     case 4: return GlobalVariable::LocalExecTLSModel;
1005   }
1006 }
1007 
1008 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) {
1009   switch (Val) {
1010     default: // Map unknown to UnnamedAddr::None.
1011     case 0: return GlobalVariable::UnnamedAddr::None;
1012     case 1: return GlobalVariable::UnnamedAddr::Global;
1013     case 2: return GlobalVariable::UnnamedAddr::Local;
1014   }
1015 }
1016 
1017 static int getDecodedCastOpcode(unsigned Val) {
1018   switch (Val) {
1019   default: return -1;
1020   case bitc::CAST_TRUNC   : return Instruction::Trunc;
1021   case bitc::CAST_ZEXT    : return Instruction::ZExt;
1022   case bitc::CAST_SEXT    : return Instruction::SExt;
1023   case bitc::CAST_FPTOUI  : return Instruction::FPToUI;
1024   case bitc::CAST_FPTOSI  : return Instruction::FPToSI;
1025   case bitc::CAST_UITOFP  : return Instruction::UIToFP;
1026   case bitc::CAST_SITOFP  : return Instruction::SIToFP;
1027   case bitc::CAST_FPTRUNC : return Instruction::FPTrunc;
1028   case bitc::CAST_FPEXT   : return Instruction::FPExt;
1029   case bitc::CAST_PTRTOINT: return Instruction::PtrToInt;
1030   case bitc::CAST_INTTOPTR: return Instruction::IntToPtr;
1031   case bitc::CAST_BITCAST : return Instruction::BitCast;
1032   case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast;
1033   }
1034 }
1035 
1036 static int getDecodedUnaryOpcode(unsigned Val, Type *Ty) {
1037   bool IsFP = Ty->isFPOrFPVectorTy();
1038   // UnOps are only valid for int/fp or vector of int/fp types
1039   if (!IsFP && !Ty->isIntOrIntVectorTy())
1040     return -1;
1041 
1042   switch (Val) {
1043   default:
1044     return -1;
1045   case bitc::UNOP_FNEG:
1046     return IsFP ? Instruction::FNeg : -1;
1047   }
1048 }
1049 
1050 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) {
1051   bool IsFP = Ty->isFPOrFPVectorTy();
1052   // BinOps are only valid for int/fp or vector of int/fp types
1053   if (!IsFP && !Ty->isIntOrIntVectorTy())
1054     return -1;
1055 
1056   switch (Val) {
1057   default:
1058     return -1;
1059   case bitc::BINOP_ADD:
1060     return IsFP ? Instruction::FAdd : Instruction::Add;
1061   case bitc::BINOP_SUB:
1062     return IsFP ? Instruction::FSub : Instruction::Sub;
1063   case bitc::BINOP_MUL:
1064     return IsFP ? Instruction::FMul : Instruction::Mul;
1065   case bitc::BINOP_UDIV:
1066     return IsFP ? -1 : Instruction::UDiv;
1067   case bitc::BINOP_SDIV:
1068     return IsFP ? Instruction::FDiv : Instruction::SDiv;
1069   case bitc::BINOP_UREM:
1070     return IsFP ? -1 : Instruction::URem;
1071   case bitc::BINOP_SREM:
1072     return IsFP ? Instruction::FRem : Instruction::SRem;
1073   case bitc::BINOP_SHL:
1074     return IsFP ? -1 : Instruction::Shl;
1075   case bitc::BINOP_LSHR:
1076     return IsFP ? -1 : Instruction::LShr;
1077   case bitc::BINOP_ASHR:
1078     return IsFP ? -1 : Instruction::AShr;
1079   case bitc::BINOP_AND:
1080     return IsFP ? -1 : Instruction::And;
1081   case bitc::BINOP_OR:
1082     return IsFP ? -1 : Instruction::Or;
1083   case bitc::BINOP_XOR:
1084     return IsFP ? -1 : Instruction::Xor;
1085   }
1086 }
1087 
1088 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) {
1089   switch (Val) {
1090   default: return AtomicRMWInst::BAD_BINOP;
1091   case bitc::RMW_XCHG: return AtomicRMWInst::Xchg;
1092   case bitc::RMW_ADD: return AtomicRMWInst::Add;
1093   case bitc::RMW_SUB: return AtomicRMWInst::Sub;
1094   case bitc::RMW_AND: return AtomicRMWInst::And;
1095   case bitc::RMW_NAND: return AtomicRMWInst::Nand;
1096   case bitc::RMW_OR: return AtomicRMWInst::Or;
1097   case bitc::RMW_XOR: return AtomicRMWInst::Xor;
1098   case bitc::RMW_MAX: return AtomicRMWInst::Max;
1099   case bitc::RMW_MIN: return AtomicRMWInst::Min;
1100   case bitc::RMW_UMAX: return AtomicRMWInst::UMax;
1101   case bitc::RMW_UMIN: return AtomicRMWInst::UMin;
1102   case bitc::RMW_FADD: return AtomicRMWInst::FAdd;
1103   case bitc::RMW_FSUB: return AtomicRMWInst::FSub;
1104   }
1105 }
1106 
1107 static AtomicOrdering getDecodedOrdering(unsigned Val) {
1108   switch (Val) {
1109   case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic;
1110   case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered;
1111   case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic;
1112   case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire;
1113   case bitc::ORDERING_RELEASE: return AtomicOrdering::Release;
1114   case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease;
1115   default: // Map unknown orderings to sequentially-consistent.
1116   case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent;
1117   }
1118 }
1119 
1120 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) {
1121   switch (Val) {
1122   default: // Map unknown selection kinds to any.
1123   case bitc::COMDAT_SELECTION_KIND_ANY:
1124     return Comdat::Any;
1125   case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH:
1126     return Comdat::ExactMatch;
1127   case bitc::COMDAT_SELECTION_KIND_LARGEST:
1128     return Comdat::Largest;
1129   case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES:
1130     return Comdat::NoDeduplicate;
1131   case bitc::COMDAT_SELECTION_KIND_SAME_SIZE:
1132     return Comdat::SameSize;
1133   }
1134 }
1135 
1136 static FastMathFlags getDecodedFastMathFlags(unsigned Val) {
1137   FastMathFlags FMF;
1138   if (0 != (Val & bitc::UnsafeAlgebra))
1139     FMF.setFast();
1140   if (0 != (Val & bitc::AllowReassoc))
1141     FMF.setAllowReassoc();
1142   if (0 != (Val & bitc::NoNaNs))
1143     FMF.setNoNaNs();
1144   if (0 != (Val & bitc::NoInfs))
1145     FMF.setNoInfs();
1146   if (0 != (Val & bitc::NoSignedZeros))
1147     FMF.setNoSignedZeros();
1148   if (0 != (Val & bitc::AllowReciprocal))
1149     FMF.setAllowReciprocal();
1150   if (0 != (Val & bitc::AllowContract))
1151     FMF.setAllowContract(true);
1152   if (0 != (Val & bitc::ApproxFunc))
1153     FMF.setApproxFunc();
1154   return FMF;
1155 }
1156 
1157 static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) {
1158   switch (Val) {
1159   case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break;
1160   case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break;
1161   }
1162 }
1163 
1164 Type *BitcodeReader::getTypeByID(unsigned ID) {
1165   // The type table size is always specified correctly.
1166   if (ID >= TypeList.size())
1167     return nullptr;
1168 
1169   if (Type *Ty = TypeList[ID])
1170     return Ty;
1171 
1172   // If we have a forward reference, the only possible case is when it is to a
1173   // named struct.  Just create a placeholder for now.
1174   return TypeList[ID] = createIdentifiedStructType(Context);
1175 }
1176 
1177 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context,
1178                                                       StringRef Name) {
1179   auto *Ret = StructType::create(Context, Name);
1180   IdentifiedStructTypes.push_back(Ret);
1181   return Ret;
1182 }
1183 
1184 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) {
1185   auto *Ret = StructType::create(Context);
1186   IdentifiedStructTypes.push_back(Ret);
1187   return Ret;
1188 }
1189 
1190 //===----------------------------------------------------------------------===//
1191 //  Functions for parsing blocks from the bitcode file
1192 //===----------------------------------------------------------------------===//
1193 
1194 static uint64_t getRawAttributeMask(Attribute::AttrKind Val) {
1195   switch (Val) {
1196   case Attribute::EndAttrKinds:
1197   case Attribute::EmptyKey:
1198   case Attribute::TombstoneKey:
1199     llvm_unreachable("Synthetic enumerators which should never get here");
1200 
1201   case Attribute::None:            return 0;
1202   case Attribute::ZExt:            return 1 << 0;
1203   case Attribute::SExt:            return 1 << 1;
1204   case Attribute::NoReturn:        return 1 << 2;
1205   case Attribute::InReg:           return 1 << 3;
1206   case Attribute::StructRet:       return 1 << 4;
1207   case Attribute::NoUnwind:        return 1 << 5;
1208   case Attribute::NoAlias:         return 1 << 6;
1209   case Attribute::ByVal:           return 1 << 7;
1210   case Attribute::Nest:            return 1 << 8;
1211   case Attribute::ReadNone:        return 1 << 9;
1212   case Attribute::ReadOnly:        return 1 << 10;
1213   case Attribute::NoInline:        return 1 << 11;
1214   case Attribute::AlwaysInline:    return 1 << 12;
1215   case Attribute::OptimizeForSize: return 1 << 13;
1216   case Attribute::StackProtect:    return 1 << 14;
1217   case Attribute::StackProtectReq: return 1 << 15;
1218   case Attribute::Alignment:       return 31 << 16;
1219   case Attribute::NoCapture:       return 1 << 21;
1220   case Attribute::NoRedZone:       return 1 << 22;
1221   case Attribute::NoImplicitFloat: return 1 << 23;
1222   case Attribute::Naked:           return 1 << 24;
1223   case Attribute::InlineHint:      return 1 << 25;
1224   case Attribute::StackAlignment:  return 7 << 26;
1225   case Attribute::ReturnsTwice:    return 1 << 29;
1226   case Attribute::UWTable:         return 1 << 30;
1227   case Attribute::NonLazyBind:     return 1U << 31;
1228   case Attribute::SanitizeAddress: return 1ULL << 32;
1229   case Attribute::MinSize:         return 1ULL << 33;
1230   case Attribute::NoDuplicate:     return 1ULL << 34;
1231   case Attribute::StackProtectStrong: return 1ULL << 35;
1232   case Attribute::SanitizeThread:  return 1ULL << 36;
1233   case Attribute::SanitizeMemory:  return 1ULL << 37;
1234   case Attribute::NoBuiltin:       return 1ULL << 38;
1235   case Attribute::Returned:        return 1ULL << 39;
1236   case Attribute::Cold:            return 1ULL << 40;
1237   case Attribute::Builtin:         return 1ULL << 41;
1238   case Attribute::OptimizeNone:    return 1ULL << 42;
1239   case Attribute::InAlloca:        return 1ULL << 43;
1240   case Attribute::NonNull:         return 1ULL << 44;
1241   case Attribute::JumpTable:       return 1ULL << 45;
1242   case Attribute::Convergent:      return 1ULL << 46;
1243   case Attribute::SafeStack:       return 1ULL << 47;
1244   case Attribute::NoRecurse:       return 1ULL << 48;
1245   case Attribute::InaccessibleMemOnly:         return 1ULL << 49;
1246   case Attribute::InaccessibleMemOrArgMemOnly: return 1ULL << 50;
1247   case Attribute::SwiftSelf:       return 1ULL << 51;
1248   case Attribute::SwiftError:      return 1ULL << 52;
1249   case Attribute::WriteOnly:       return 1ULL << 53;
1250   case Attribute::Speculatable:    return 1ULL << 54;
1251   case Attribute::StrictFP:        return 1ULL << 55;
1252   case Attribute::SanitizeHWAddress: return 1ULL << 56;
1253   case Attribute::NoCfCheck:       return 1ULL << 57;
1254   case Attribute::OptForFuzzing:   return 1ULL << 58;
1255   case Attribute::ShadowCallStack: return 1ULL << 59;
1256   case Attribute::SpeculativeLoadHardening:
1257     return 1ULL << 60;
1258   case Attribute::ImmArg:
1259     return 1ULL << 61;
1260   case Attribute::WillReturn:
1261     return 1ULL << 62;
1262   case Attribute::NoFree:
1263     return 1ULL << 63;
1264   default:
1265     // Other attributes are not supported in the raw format,
1266     // as we ran out of space.
1267     return 0;
1268   }
1269   llvm_unreachable("Unsupported attribute type");
1270 }
1271 
1272 static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) {
1273   if (!Val) return;
1274 
1275   for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds;
1276        I = Attribute::AttrKind(I + 1)) {
1277     if (uint64_t A = (Val & getRawAttributeMask(I))) {
1278       if (I == Attribute::Alignment)
1279         B.addAlignmentAttr(1ULL << ((A >> 16) - 1));
1280       else if (I == Attribute::StackAlignment)
1281         B.addStackAlignmentAttr(1ULL << ((A >> 26)-1));
1282       else if (Attribute::isTypeAttrKind(I))
1283         B.addTypeAttr(I, nullptr); // Type will be auto-upgraded.
1284       else
1285         B.addAttribute(I);
1286     }
1287   }
1288 }
1289 
1290 /// This fills an AttrBuilder object with the LLVM attributes that have
1291 /// been decoded from the given integer. This function must stay in sync with
1292 /// 'encodeLLVMAttributesForBitcode'.
1293 static void decodeLLVMAttributesForBitcode(AttrBuilder &B,
1294                                            uint64_t EncodedAttrs) {
1295   // The alignment is stored as a 16-bit raw value from bits 31--16.  We shift
1296   // the bits above 31 down by 11 bits.
1297   unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16;
1298   assert((!Alignment || isPowerOf2_32(Alignment)) &&
1299          "Alignment must be a power of two.");
1300 
1301   if (Alignment)
1302     B.addAlignmentAttr(Alignment);
1303   addRawAttributeValue(B, ((EncodedAttrs & (0xfffffULL << 32)) >> 11) |
1304                           (EncodedAttrs & 0xffff));
1305 }
1306 
1307 Error BitcodeReader::parseAttributeBlock() {
1308   if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID))
1309     return Err;
1310 
1311   if (!MAttributes.empty())
1312     return error("Invalid multiple blocks");
1313 
1314   SmallVector<uint64_t, 64> Record;
1315 
1316   SmallVector<AttributeList, 8> Attrs;
1317 
1318   // Read all the records.
1319   while (true) {
1320     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1321     if (!MaybeEntry)
1322       return MaybeEntry.takeError();
1323     BitstreamEntry Entry = MaybeEntry.get();
1324 
1325     switch (Entry.Kind) {
1326     case BitstreamEntry::SubBlock: // Handled for us already.
1327     case BitstreamEntry::Error:
1328       return error("Malformed block");
1329     case BitstreamEntry::EndBlock:
1330       return Error::success();
1331     case BitstreamEntry::Record:
1332       // The interesting case.
1333       break;
1334     }
1335 
1336     // Read a record.
1337     Record.clear();
1338     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
1339     if (!MaybeRecord)
1340       return MaybeRecord.takeError();
1341     switch (MaybeRecord.get()) {
1342     default:  // Default behavior: ignore.
1343       break;
1344     case bitc::PARAMATTR_CODE_ENTRY_OLD: // ENTRY: [paramidx0, attr0, ...]
1345       // Deprecated, but still needed to read old bitcode files.
1346       if (Record.size() & 1)
1347         return error("Invalid record");
1348 
1349       for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
1350         AttrBuilder B;
1351         decodeLLVMAttributesForBitcode(B, Record[i+1]);
1352         Attrs.push_back(AttributeList::get(Context, Record[i], B));
1353       }
1354 
1355       MAttributes.push_back(AttributeList::get(Context, Attrs));
1356       Attrs.clear();
1357       break;
1358     case bitc::PARAMATTR_CODE_ENTRY: // ENTRY: [attrgrp0, attrgrp1, ...]
1359       for (unsigned i = 0, e = Record.size(); i != e; ++i)
1360         Attrs.push_back(MAttributeGroups[Record[i]]);
1361 
1362       MAttributes.push_back(AttributeList::get(Context, Attrs));
1363       Attrs.clear();
1364       break;
1365     }
1366   }
1367 }
1368 
1369 // Returns Attribute::None on unrecognized codes.
1370 static Attribute::AttrKind getAttrFromCode(uint64_t Code) {
1371   switch (Code) {
1372   default:
1373     return Attribute::None;
1374   case bitc::ATTR_KIND_ALIGNMENT:
1375     return Attribute::Alignment;
1376   case bitc::ATTR_KIND_ALWAYS_INLINE:
1377     return Attribute::AlwaysInline;
1378   case bitc::ATTR_KIND_ARGMEMONLY:
1379     return Attribute::ArgMemOnly;
1380   case bitc::ATTR_KIND_BUILTIN:
1381     return Attribute::Builtin;
1382   case bitc::ATTR_KIND_BY_VAL:
1383     return Attribute::ByVal;
1384   case bitc::ATTR_KIND_IN_ALLOCA:
1385     return Attribute::InAlloca;
1386   case bitc::ATTR_KIND_COLD:
1387     return Attribute::Cold;
1388   case bitc::ATTR_KIND_CONVERGENT:
1389     return Attribute::Convergent;
1390   case bitc::ATTR_KIND_DISABLE_SANITIZER_INSTRUMENTATION:
1391     return Attribute::DisableSanitizerInstrumentation;
1392   case bitc::ATTR_KIND_ELEMENTTYPE:
1393     return Attribute::ElementType;
1394   case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY:
1395     return Attribute::InaccessibleMemOnly;
1396   case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY:
1397     return Attribute::InaccessibleMemOrArgMemOnly;
1398   case bitc::ATTR_KIND_INLINE_HINT:
1399     return Attribute::InlineHint;
1400   case bitc::ATTR_KIND_IN_REG:
1401     return Attribute::InReg;
1402   case bitc::ATTR_KIND_JUMP_TABLE:
1403     return Attribute::JumpTable;
1404   case bitc::ATTR_KIND_MIN_SIZE:
1405     return Attribute::MinSize;
1406   case bitc::ATTR_KIND_NAKED:
1407     return Attribute::Naked;
1408   case bitc::ATTR_KIND_NEST:
1409     return Attribute::Nest;
1410   case bitc::ATTR_KIND_NO_ALIAS:
1411     return Attribute::NoAlias;
1412   case bitc::ATTR_KIND_NO_BUILTIN:
1413     return Attribute::NoBuiltin;
1414   case bitc::ATTR_KIND_NO_CALLBACK:
1415     return Attribute::NoCallback;
1416   case bitc::ATTR_KIND_NO_CAPTURE:
1417     return Attribute::NoCapture;
1418   case bitc::ATTR_KIND_NO_DUPLICATE:
1419     return Attribute::NoDuplicate;
1420   case bitc::ATTR_KIND_NOFREE:
1421     return Attribute::NoFree;
1422   case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT:
1423     return Attribute::NoImplicitFloat;
1424   case bitc::ATTR_KIND_NO_INLINE:
1425     return Attribute::NoInline;
1426   case bitc::ATTR_KIND_NO_RECURSE:
1427     return Attribute::NoRecurse;
1428   case bitc::ATTR_KIND_NO_MERGE:
1429     return Attribute::NoMerge;
1430   case bitc::ATTR_KIND_NON_LAZY_BIND:
1431     return Attribute::NonLazyBind;
1432   case bitc::ATTR_KIND_NON_NULL:
1433     return Attribute::NonNull;
1434   case bitc::ATTR_KIND_DEREFERENCEABLE:
1435     return Attribute::Dereferenceable;
1436   case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL:
1437     return Attribute::DereferenceableOrNull;
1438   case bitc::ATTR_KIND_ALLOC_SIZE:
1439     return Attribute::AllocSize;
1440   case bitc::ATTR_KIND_NO_RED_ZONE:
1441     return Attribute::NoRedZone;
1442   case bitc::ATTR_KIND_NO_RETURN:
1443     return Attribute::NoReturn;
1444   case bitc::ATTR_KIND_NOSYNC:
1445     return Attribute::NoSync;
1446   case bitc::ATTR_KIND_NOCF_CHECK:
1447     return Attribute::NoCfCheck;
1448   case bitc::ATTR_KIND_NO_PROFILE:
1449     return Attribute::NoProfile;
1450   case bitc::ATTR_KIND_NO_UNWIND:
1451     return Attribute::NoUnwind;
1452   case bitc::ATTR_KIND_NO_SANITIZE_COVERAGE:
1453     return Attribute::NoSanitizeCoverage;
1454   case bitc::ATTR_KIND_NULL_POINTER_IS_VALID:
1455     return Attribute::NullPointerIsValid;
1456   case bitc::ATTR_KIND_OPT_FOR_FUZZING:
1457     return Attribute::OptForFuzzing;
1458   case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE:
1459     return Attribute::OptimizeForSize;
1460   case bitc::ATTR_KIND_OPTIMIZE_NONE:
1461     return Attribute::OptimizeNone;
1462   case bitc::ATTR_KIND_READ_NONE:
1463     return Attribute::ReadNone;
1464   case bitc::ATTR_KIND_READ_ONLY:
1465     return Attribute::ReadOnly;
1466   case bitc::ATTR_KIND_RETURNED:
1467     return Attribute::Returned;
1468   case bitc::ATTR_KIND_RETURNS_TWICE:
1469     return Attribute::ReturnsTwice;
1470   case bitc::ATTR_KIND_S_EXT:
1471     return Attribute::SExt;
1472   case bitc::ATTR_KIND_SPECULATABLE:
1473     return Attribute::Speculatable;
1474   case bitc::ATTR_KIND_STACK_ALIGNMENT:
1475     return Attribute::StackAlignment;
1476   case bitc::ATTR_KIND_STACK_PROTECT:
1477     return Attribute::StackProtect;
1478   case bitc::ATTR_KIND_STACK_PROTECT_REQ:
1479     return Attribute::StackProtectReq;
1480   case bitc::ATTR_KIND_STACK_PROTECT_STRONG:
1481     return Attribute::StackProtectStrong;
1482   case bitc::ATTR_KIND_SAFESTACK:
1483     return Attribute::SafeStack;
1484   case bitc::ATTR_KIND_SHADOWCALLSTACK:
1485     return Attribute::ShadowCallStack;
1486   case bitc::ATTR_KIND_STRICT_FP:
1487     return Attribute::StrictFP;
1488   case bitc::ATTR_KIND_STRUCT_RET:
1489     return Attribute::StructRet;
1490   case bitc::ATTR_KIND_SANITIZE_ADDRESS:
1491     return Attribute::SanitizeAddress;
1492   case bitc::ATTR_KIND_SANITIZE_HWADDRESS:
1493     return Attribute::SanitizeHWAddress;
1494   case bitc::ATTR_KIND_SANITIZE_THREAD:
1495     return Attribute::SanitizeThread;
1496   case bitc::ATTR_KIND_SANITIZE_MEMORY:
1497     return Attribute::SanitizeMemory;
1498   case bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING:
1499     return Attribute::SpeculativeLoadHardening;
1500   case bitc::ATTR_KIND_SWIFT_ERROR:
1501     return Attribute::SwiftError;
1502   case bitc::ATTR_KIND_SWIFT_SELF:
1503     return Attribute::SwiftSelf;
1504   case bitc::ATTR_KIND_SWIFT_ASYNC:
1505     return Attribute::SwiftAsync;
1506   case bitc::ATTR_KIND_UW_TABLE:
1507     return Attribute::UWTable;
1508   case bitc::ATTR_KIND_VSCALE_RANGE:
1509     return Attribute::VScaleRange;
1510   case bitc::ATTR_KIND_WILLRETURN:
1511     return Attribute::WillReturn;
1512   case bitc::ATTR_KIND_WRITEONLY:
1513     return Attribute::WriteOnly;
1514   case bitc::ATTR_KIND_Z_EXT:
1515     return Attribute::ZExt;
1516   case bitc::ATTR_KIND_IMMARG:
1517     return Attribute::ImmArg;
1518   case bitc::ATTR_KIND_SANITIZE_MEMTAG:
1519     return Attribute::SanitizeMemTag;
1520   case bitc::ATTR_KIND_PREALLOCATED:
1521     return Attribute::Preallocated;
1522   case bitc::ATTR_KIND_NOUNDEF:
1523     return Attribute::NoUndef;
1524   case bitc::ATTR_KIND_BYREF:
1525     return Attribute::ByRef;
1526   case bitc::ATTR_KIND_MUSTPROGRESS:
1527     return Attribute::MustProgress;
1528   case bitc::ATTR_KIND_HOT:
1529     return Attribute::Hot;
1530   }
1531 }
1532 
1533 Error BitcodeReader::parseAlignmentValue(uint64_t Exponent,
1534                                          MaybeAlign &Alignment) {
1535   // Note: Alignment in bitcode files is incremented by 1, so that zero
1536   // can be used for default alignment.
1537   if (Exponent > Value::MaxAlignmentExponent + 1)
1538     return error("Invalid alignment value");
1539   Alignment = decodeMaybeAlign(Exponent);
1540   return Error::success();
1541 }
1542 
1543 Error BitcodeReader::parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind) {
1544   *Kind = getAttrFromCode(Code);
1545   if (*Kind == Attribute::None)
1546     return error("Unknown attribute kind (" + Twine(Code) + ")");
1547   return Error::success();
1548 }
1549 
1550 Error BitcodeReader::parseAttributeGroupBlock() {
1551   if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID))
1552     return Err;
1553 
1554   if (!MAttributeGroups.empty())
1555     return error("Invalid multiple blocks");
1556 
1557   SmallVector<uint64_t, 64> Record;
1558 
1559   // Read all the records.
1560   while (true) {
1561     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1562     if (!MaybeEntry)
1563       return MaybeEntry.takeError();
1564     BitstreamEntry Entry = MaybeEntry.get();
1565 
1566     switch (Entry.Kind) {
1567     case BitstreamEntry::SubBlock: // Handled for us already.
1568     case BitstreamEntry::Error:
1569       return error("Malformed block");
1570     case BitstreamEntry::EndBlock:
1571       return Error::success();
1572     case BitstreamEntry::Record:
1573       // The interesting case.
1574       break;
1575     }
1576 
1577     // Read a record.
1578     Record.clear();
1579     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
1580     if (!MaybeRecord)
1581       return MaybeRecord.takeError();
1582     switch (MaybeRecord.get()) {
1583     default:  // Default behavior: ignore.
1584       break;
1585     case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...]
1586       if (Record.size() < 3)
1587         return error("Invalid record");
1588 
1589       uint64_t GrpID = Record[0];
1590       uint64_t Idx = Record[1]; // Index of the object this attribute refers to.
1591 
1592       AttrBuilder B;
1593       for (unsigned i = 2, e = Record.size(); i != e; ++i) {
1594         if (Record[i] == 0) {        // Enum attribute
1595           Attribute::AttrKind Kind;
1596           if (Error Err = parseAttrKind(Record[++i], &Kind))
1597             return Err;
1598 
1599           // Upgrade old-style byval attribute to one with a type, even if it's
1600           // nullptr. We will have to insert the real type when we associate
1601           // this AttributeList with a function.
1602           if (Kind == Attribute::ByVal)
1603             B.addByValAttr(nullptr);
1604           else if (Kind == Attribute::StructRet)
1605             B.addStructRetAttr(nullptr);
1606           else if (Kind == Attribute::InAlloca)
1607             B.addInAllocaAttr(nullptr);
1608           else if (Attribute::isEnumAttrKind(Kind))
1609             B.addAttribute(Kind);
1610           else
1611             return error("Not an enum attribute");
1612         } else if (Record[i] == 1) { // Integer attribute
1613           Attribute::AttrKind Kind;
1614           if (Error Err = parseAttrKind(Record[++i], &Kind))
1615             return Err;
1616           if (!Attribute::isIntAttrKind(Kind))
1617             return error("Not an int attribute");
1618           if (Kind == Attribute::Alignment)
1619             B.addAlignmentAttr(Record[++i]);
1620           else if (Kind == Attribute::StackAlignment)
1621             B.addStackAlignmentAttr(Record[++i]);
1622           else if (Kind == Attribute::Dereferenceable)
1623             B.addDereferenceableAttr(Record[++i]);
1624           else if (Kind == Attribute::DereferenceableOrNull)
1625             B.addDereferenceableOrNullAttr(Record[++i]);
1626           else if (Kind == Attribute::AllocSize)
1627             B.addAllocSizeAttrFromRawRepr(Record[++i]);
1628           else if (Kind == Attribute::VScaleRange)
1629             B.addVScaleRangeAttrFromRawRepr(Record[++i]);
1630         } else if (Record[i] == 3 || Record[i] == 4) { // String attribute
1631           bool HasValue = (Record[i++] == 4);
1632           SmallString<64> KindStr;
1633           SmallString<64> ValStr;
1634 
1635           while (Record[i] != 0 && i != e)
1636             KindStr += Record[i++];
1637           assert(Record[i] == 0 && "Kind string not null terminated");
1638 
1639           if (HasValue) {
1640             // Has a value associated with it.
1641             ++i; // Skip the '0' that terminates the "kind" string.
1642             while (Record[i] != 0 && i != e)
1643               ValStr += Record[i++];
1644             assert(Record[i] == 0 && "Value string not null terminated");
1645           }
1646 
1647           B.addAttribute(KindStr.str(), ValStr.str());
1648         } else {
1649           assert((Record[i] == 5 || Record[i] == 6) &&
1650                  "Invalid attribute group entry");
1651           bool HasType = Record[i] == 6;
1652           Attribute::AttrKind Kind;
1653           if (Error Err = parseAttrKind(Record[++i], &Kind))
1654             return Err;
1655           if (!Attribute::isTypeAttrKind(Kind))
1656             return error("Not a type attribute");
1657 
1658           B.addTypeAttr(Kind, HasType ? getTypeByID(Record[++i]) : nullptr);
1659         }
1660       }
1661 
1662       UpgradeAttributes(B);
1663       MAttributeGroups[GrpID] = AttributeList::get(Context, Idx, B);
1664       break;
1665     }
1666     }
1667   }
1668 }
1669 
1670 Error BitcodeReader::parseTypeTable() {
1671   if (Error Err = Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW))
1672     return Err;
1673 
1674   return parseTypeTableBody();
1675 }
1676 
1677 Error BitcodeReader::parseTypeTableBody() {
1678   if (!TypeList.empty())
1679     return error("Invalid multiple blocks");
1680 
1681   SmallVector<uint64_t, 64> Record;
1682   unsigned NumRecords = 0;
1683 
1684   SmallString<64> TypeName;
1685 
1686   // Read all the records for this type table.
1687   while (true) {
1688     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1689     if (!MaybeEntry)
1690       return MaybeEntry.takeError();
1691     BitstreamEntry Entry = MaybeEntry.get();
1692 
1693     switch (Entry.Kind) {
1694     case BitstreamEntry::SubBlock: // Handled for us already.
1695     case BitstreamEntry::Error:
1696       return error("Malformed block");
1697     case BitstreamEntry::EndBlock:
1698       if (NumRecords != TypeList.size())
1699         return error("Malformed block");
1700       return Error::success();
1701     case BitstreamEntry::Record:
1702       // The interesting case.
1703       break;
1704     }
1705 
1706     // Read a record.
1707     Record.clear();
1708     Type *ResultTy = nullptr;
1709     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
1710     if (!MaybeRecord)
1711       return MaybeRecord.takeError();
1712     switch (MaybeRecord.get()) {
1713     default:
1714       return error("Invalid value");
1715     case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
1716       // TYPE_CODE_NUMENTRY contains a count of the number of types in the
1717       // type list.  This allows us to reserve space.
1718       if (Record.empty())
1719         return error("Invalid record");
1720       TypeList.resize(Record[0]);
1721       continue;
1722     case bitc::TYPE_CODE_VOID:      // VOID
1723       ResultTy = Type::getVoidTy(Context);
1724       break;
1725     case bitc::TYPE_CODE_HALF:     // HALF
1726       ResultTy = Type::getHalfTy(Context);
1727       break;
1728     case bitc::TYPE_CODE_BFLOAT:    // BFLOAT
1729       ResultTy = Type::getBFloatTy(Context);
1730       break;
1731     case bitc::TYPE_CODE_FLOAT:     // FLOAT
1732       ResultTy = Type::getFloatTy(Context);
1733       break;
1734     case bitc::TYPE_CODE_DOUBLE:    // DOUBLE
1735       ResultTy = Type::getDoubleTy(Context);
1736       break;
1737     case bitc::TYPE_CODE_X86_FP80:  // X86_FP80
1738       ResultTy = Type::getX86_FP80Ty(Context);
1739       break;
1740     case bitc::TYPE_CODE_FP128:     // FP128
1741       ResultTy = Type::getFP128Ty(Context);
1742       break;
1743     case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
1744       ResultTy = Type::getPPC_FP128Ty(Context);
1745       break;
1746     case bitc::TYPE_CODE_LABEL:     // LABEL
1747       ResultTy = Type::getLabelTy(Context);
1748       break;
1749     case bitc::TYPE_CODE_METADATA:  // METADATA
1750       ResultTy = Type::getMetadataTy(Context);
1751       break;
1752     case bitc::TYPE_CODE_X86_MMX:   // X86_MMX
1753       ResultTy = Type::getX86_MMXTy(Context);
1754       break;
1755     case bitc::TYPE_CODE_X86_AMX:   // X86_AMX
1756       ResultTy = Type::getX86_AMXTy(Context);
1757       break;
1758     case bitc::TYPE_CODE_TOKEN:     // TOKEN
1759       ResultTy = Type::getTokenTy(Context);
1760       break;
1761     case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width]
1762       if (Record.empty())
1763         return error("Invalid record");
1764 
1765       uint64_t NumBits = Record[0];
1766       if (NumBits < IntegerType::MIN_INT_BITS ||
1767           NumBits > IntegerType::MAX_INT_BITS)
1768         return error("Bitwidth for integer type out of range");
1769       ResultTy = IntegerType::get(Context, NumBits);
1770       break;
1771     }
1772     case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
1773                                     //          [pointee type, address space]
1774       if (Record.empty())
1775         return error("Invalid record");
1776       unsigned AddressSpace = 0;
1777       if (Record.size() == 2)
1778         AddressSpace = Record[1];
1779       ResultTy = getTypeByID(Record[0]);
1780       if (!ResultTy ||
1781           !PointerType::isValidElementType(ResultTy))
1782         return error("Invalid type");
1783       ResultTy = PointerType::get(ResultTy, AddressSpace);
1784       break;
1785     }
1786     case bitc::TYPE_CODE_OPAQUE_POINTER: { // OPAQUE_POINTER: [addrspace]
1787       if (Record.size() != 1)
1788         return error("Invalid record");
1789       if (Context.supportsTypedPointers())
1790         return error(
1791             "Opaque pointers are only supported in -opaque-pointers mode");
1792       unsigned AddressSpace = Record[0];
1793       ResultTy = PointerType::get(Context, AddressSpace);
1794       break;
1795     }
1796     case bitc::TYPE_CODE_FUNCTION_OLD: {
1797       // Deprecated, but still needed to read old bitcode files.
1798       // FUNCTION: [vararg, attrid, retty, paramty x N]
1799       if (Record.size() < 3)
1800         return error("Invalid record");
1801       SmallVector<Type*, 8> ArgTys;
1802       for (unsigned i = 3, e = Record.size(); i != e; ++i) {
1803         if (Type *T = getTypeByID(Record[i]))
1804           ArgTys.push_back(T);
1805         else
1806           break;
1807       }
1808 
1809       ResultTy = getTypeByID(Record[2]);
1810       if (!ResultTy || ArgTys.size() < Record.size()-3)
1811         return error("Invalid type");
1812 
1813       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
1814       break;
1815     }
1816     case bitc::TYPE_CODE_FUNCTION: {
1817       // FUNCTION: [vararg, retty, paramty x N]
1818       if (Record.size() < 2)
1819         return error("Invalid record");
1820       SmallVector<Type*, 8> ArgTys;
1821       for (unsigned i = 2, e = Record.size(); i != e; ++i) {
1822         if (Type *T = getTypeByID(Record[i])) {
1823           if (!FunctionType::isValidArgumentType(T))
1824             return error("Invalid function argument type");
1825           ArgTys.push_back(T);
1826         }
1827         else
1828           break;
1829       }
1830 
1831       ResultTy = getTypeByID(Record[1]);
1832       if (!ResultTy || ArgTys.size() < Record.size()-2)
1833         return error("Invalid type");
1834 
1835       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
1836       break;
1837     }
1838     case bitc::TYPE_CODE_STRUCT_ANON: {  // STRUCT: [ispacked, eltty x N]
1839       if (Record.empty())
1840         return error("Invalid record");
1841       SmallVector<Type*, 8> EltTys;
1842       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
1843         if (Type *T = getTypeByID(Record[i]))
1844           EltTys.push_back(T);
1845         else
1846           break;
1847       }
1848       if (EltTys.size() != Record.size()-1)
1849         return error("Invalid type");
1850       ResultTy = StructType::get(Context, EltTys, Record[0]);
1851       break;
1852     }
1853     case bitc::TYPE_CODE_STRUCT_NAME:   // STRUCT_NAME: [strchr x N]
1854       if (convertToString(Record, 0, TypeName))
1855         return error("Invalid record");
1856       continue;
1857 
1858     case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N]
1859       if (Record.empty())
1860         return error("Invalid record");
1861 
1862       if (NumRecords >= TypeList.size())
1863         return error("Invalid TYPE table");
1864 
1865       // Check to see if this was forward referenced, if so fill in the temp.
1866       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
1867       if (Res) {
1868         Res->setName(TypeName);
1869         TypeList[NumRecords] = nullptr;
1870       } else  // Otherwise, create a new struct.
1871         Res = createIdentifiedStructType(Context, TypeName);
1872       TypeName.clear();
1873 
1874       SmallVector<Type*, 8> EltTys;
1875       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
1876         if (Type *T = getTypeByID(Record[i]))
1877           EltTys.push_back(T);
1878         else
1879           break;
1880       }
1881       if (EltTys.size() != Record.size()-1)
1882         return error("Invalid record");
1883       Res->setBody(EltTys, Record[0]);
1884       ResultTy = Res;
1885       break;
1886     }
1887     case bitc::TYPE_CODE_OPAQUE: {       // OPAQUE: []
1888       if (Record.size() != 1)
1889         return error("Invalid record");
1890 
1891       if (NumRecords >= TypeList.size())
1892         return error("Invalid TYPE table");
1893 
1894       // Check to see if this was forward referenced, if so fill in the temp.
1895       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
1896       if (Res) {
1897         Res->setName(TypeName);
1898         TypeList[NumRecords] = nullptr;
1899       } else  // Otherwise, create a new struct with no body.
1900         Res = createIdentifiedStructType(Context, TypeName);
1901       TypeName.clear();
1902       ResultTy = Res;
1903       break;
1904     }
1905     case bitc::TYPE_CODE_ARRAY:     // ARRAY: [numelts, eltty]
1906       if (Record.size() < 2)
1907         return error("Invalid record");
1908       ResultTy = getTypeByID(Record[1]);
1909       if (!ResultTy || !ArrayType::isValidElementType(ResultTy))
1910         return error("Invalid type");
1911       ResultTy = ArrayType::get(ResultTy, Record[0]);
1912       break;
1913     case bitc::TYPE_CODE_VECTOR:    // VECTOR: [numelts, eltty] or
1914                                     //         [numelts, eltty, scalable]
1915       if (Record.size() < 2)
1916         return error("Invalid record");
1917       if (Record[0] == 0)
1918         return error("Invalid vector length");
1919       ResultTy = getTypeByID(Record[1]);
1920       if (!ResultTy || !VectorType::isValidElementType(ResultTy))
1921         return error("Invalid type");
1922       bool Scalable = Record.size() > 2 ? Record[2] : false;
1923       ResultTy = VectorType::get(ResultTy, Record[0], Scalable);
1924       break;
1925     }
1926 
1927     if (NumRecords >= TypeList.size())
1928       return error("Invalid TYPE table");
1929     if (TypeList[NumRecords])
1930       return error(
1931           "Invalid TYPE table: Only named structs can be forward referenced");
1932     assert(ResultTy && "Didn't read a type?");
1933     TypeList[NumRecords++] = ResultTy;
1934   }
1935 }
1936 
1937 Error BitcodeReader::parseOperandBundleTags() {
1938   if (Error Err = Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID))
1939     return Err;
1940 
1941   if (!BundleTags.empty())
1942     return error("Invalid multiple blocks");
1943 
1944   SmallVector<uint64_t, 64> Record;
1945 
1946   while (true) {
1947     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1948     if (!MaybeEntry)
1949       return MaybeEntry.takeError();
1950     BitstreamEntry Entry = MaybeEntry.get();
1951 
1952     switch (Entry.Kind) {
1953     case BitstreamEntry::SubBlock: // Handled for us already.
1954     case BitstreamEntry::Error:
1955       return error("Malformed block");
1956     case BitstreamEntry::EndBlock:
1957       return Error::success();
1958     case BitstreamEntry::Record:
1959       // The interesting case.
1960       break;
1961     }
1962 
1963     // Tags are implicitly mapped to integers by their order.
1964 
1965     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
1966     if (!MaybeRecord)
1967       return MaybeRecord.takeError();
1968     if (MaybeRecord.get() != bitc::OPERAND_BUNDLE_TAG)
1969       return error("Invalid record");
1970 
1971     // OPERAND_BUNDLE_TAG: [strchr x N]
1972     BundleTags.emplace_back();
1973     if (convertToString(Record, 0, BundleTags.back()))
1974       return error("Invalid record");
1975     Record.clear();
1976   }
1977 }
1978 
1979 Error BitcodeReader::parseSyncScopeNames() {
1980   if (Error Err = Stream.EnterSubBlock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID))
1981     return Err;
1982 
1983   if (!SSIDs.empty())
1984     return error("Invalid multiple synchronization scope names blocks");
1985 
1986   SmallVector<uint64_t, 64> Record;
1987   while (true) {
1988     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1989     if (!MaybeEntry)
1990       return MaybeEntry.takeError();
1991     BitstreamEntry Entry = MaybeEntry.get();
1992 
1993     switch (Entry.Kind) {
1994     case BitstreamEntry::SubBlock: // Handled for us already.
1995     case BitstreamEntry::Error:
1996       return error("Malformed block");
1997     case BitstreamEntry::EndBlock:
1998       if (SSIDs.empty())
1999         return error("Invalid empty synchronization scope names block");
2000       return Error::success();
2001     case BitstreamEntry::Record:
2002       // The interesting case.
2003       break;
2004     }
2005 
2006     // Synchronization scope names are implicitly mapped to synchronization
2007     // scope IDs by their order.
2008 
2009     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2010     if (!MaybeRecord)
2011       return MaybeRecord.takeError();
2012     if (MaybeRecord.get() != bitc::SYNC_SCOPE_NAME)
2013       return error("Invalid record");
2014 
2015     SmallString<16> SSN;
2016     if (convertToString(Record, 0, SSN))
2017       return error("Invalid record");
2018 
2019     SSIDs.push_back(Context.getOrInsertSyncScopeID(SSN));
2020     Record.clear();
2021   }
2022 }
2023 
2024 /// Associate a value with its name from the given index in the provided record.
2025 Expected<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record,
2026                                              unsigned NameIndex, Triple &TT) {
2027   SmallString<128> ValueName;
2028   if (convertToString(Record, NameIndex, ValueName))
2029     return error("Invalid record");
2030   unsigned ValueID = Record[0];
2031   if (ValueID >= ValueList.size() || !ValueList[ValueID])
2032     return error("Invalid record");
2033   Value *V = ValueList[ValueID];
2034 
2035   StringRef NameStr(ValueName.data(), ValueName.size());
2036   if (NameStr.find_first_of(0) != StringRef::npos)
2037     return error("Invalid value name");
2038   V->setName(NameStr);
2039   auto *GO = dyn_cast<GlobalObject>(V);
2040   if (GO) {
2041     if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) {
2042       if (TT.supportsCOMDAT())
2043         GO->setComdat(TheModule->getOrInsertComdat(V->getName()));
2044       else
2045         GO->setComdat(nullptr);
2046     }
2047   }
2048   return V;
2049 }
2050 
2051 /// Helper to note and return the current location, and jump to the given
2052 /// offset.
2053 static Expected<uint64_t> jumpToValueSymbolTable(uint64_t Offset,
2054                                                  BitstreamCursor &Stream) {
2055   // Save the current parsing location so we can jump back at the end
2056   // of the VST read.
2057   uint64_t CurrentBit = Stream.GetCurrentBitNo();
2058   if (Error JumpFailed = Stream.JumpToBit(Offset * 32))
2059     return std::move(JumpFailed);
2060   Expected<BitstreamEntry> MaybeEntry = Stream.advance();
2061   if (!MaybeEntry)
2062     return MaybeEntry.takeError();
2063   assert(MaybeEntry.get().Kind == BitstreamEntry::SubBlock);
2064   assert(MaybeEntry.get().ID == bitc::VALUE_SYMTAB_BLOCK_ID);
2065   return CurrentBit;
2066 }
2067 
2068 void BitcodeReader::setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta,
2069                                             Function *F,
2070                                             ArrayRef<uint64_t> Record) {
2071   // Note that we subtract 1 here because the offset is relative to one word
2072   // before the start of the identification or module block, which was
2073   // historically always the start of the regular bitcode header.
2074   uint64_t FuncWordOffset = Record[1] - 1;
2075   uint64_t FuncBitOffset = FuncWordOffset * 32;
2076   DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta;
2077   // Set the LastFunctionBlockBit to point to the last function block.
2078   // Later when parsing is resumed after function materialization,
2079   // we can simply skip that last function block.
2080   if (FuncBitOffset > LastFunctionBlockBit)
2081     LastFunctionBlockBit = FuncBitOffset;
2082 }
2083 
2084 /// Read a new-style GlobalValue symbol table.
2085 Error BitcodeReader::parseGlobalValueSymbolTable() {
2086   unsigned FuncBitcodeOffsetDelta =
2087       Stream.getAbbrevIDWidth() + bitc::BlockIDWidth;
2088 
2089   if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
2090     return Err;
2091 
2092   SmallVector<uint64_t, 64> Record;
2093   while (true) {
2094     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2095     if (!MaybeEntry)
2096       return MaybeEntry.takeError();
2097     BitstreamEntry Entry = MaybeEntry.get();
2098 
2099     switch (Entry.Kind) {
2100     case BitstreamEntry::SubBlock:
2101     case BitstreamEntry::Error:
2102       return error("Malformed block");
2103     case BitstreamEntry::EndBlock:
2104       return Error::success();
2105     case BitstreamEntry::Record:
2106       break;
2107     }
2108 
2109     Record.clear();
2110     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2111     if (!MaybeRecord)
2112       return MaybeRecord.takeError();
2113     switch (MaybeRecord.get()) {
2114     case bitc::VST_CODE_FNENTRY: // [valueid, offset]
2115       setDeferredFunctionInfo(FuncBitcodeOffsetDelta,
2116                               cast<Function>(ValueList[Record[0]]), Record);
2117       break;
2118     }
2119   }
2120 }
2121 
2122 /// Parse the value symbol table at either the current parsing location or
2123 /// at the given bit offset if provided.
2124 Error BitcodeReader::parseValueSymbolTable(uint64_t Offset) {
2125   uint64_t CurrentBit;
2126   // Pass in the Offset to distinguish between calling for the module-level
2127   // VST (where we want to jump to the VST offset) and the function-level
2128   // VST (where we don't).
2129   if (Offset > 0) {
2130     Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream);
2131     if (!MaybeCurrentBit)
2132       return MaybeCurrentBit.takeError();
2133     CurrentBit = MaybeCurrentBit.get();
2134     // If this module uses a string table, read this as a module-level VST.
2135     if (UseStrtab) {
2136       if (Error Err = parseGlobalValueSymbolTable())
2137         return Err;
2138       if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
2139         return JumpFailed;
2140       return Error::success();
2141     }
2142     // Otherwise, the VST will be in a similar format to a function-level VST,
2143     // and will contain symbol names.
2144   }
2145 
2146   // Compute the delta between the bitcode indices in the VST (the word offset
2147   // to the word-aligned ENTER_SUBBLOCK for the function block, and that
2148   // expected by the lazy reader. The reader's EnterSubBlock expects to have
2149   // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID
2150   // (size BlockIDWidth). Note that we access the stream's AbbrevID width here
2151   // just before entering the VST subblock because: 1) the EnterSubBlock
2152   // changes the AbbrevID width; 2) the VST block is nested within the same
2153   // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same
2154   // AbbrevID width before calling EnterSubBlock; and 3) when we want to
2155   // jump to the FUNCTION_BLOCK using this offset later, we don't want
2156   // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK.
2157   unsigned FuncBitcodeOffsetDelta =
2158       Stream.getAbbrevIDWidth() + bitc::BlockIDWidth;
2159 
2160   if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
2161     return Err;
2162 
2163   SmallVector<uint64_t, 64> Record;
2164 
2165   Triple TT(TheModule->getTargetTriple());
2166 
2167   // Read all the records for this value table.
2168   SmallString<128> ValueName;
2169 
2170   while (true) {
2171     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2172     if (!MaybeEntry)
2173       return MaybeEntry.takeError();
2174     BitstreamEntry Entry = MaybeEntry.get();
2175 
2176     switch (Entry.Kind) {
2177     case BitstreamEntry::SubBlock: // Handled for us already.
2178     case BitstreamEntry::Error:
2179       return error("Malformed block");
2180     case BitstreamEntry::EndBlock:
2181       if (Offset > 0)
2182         if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
2183           return JumpFailed;
2184       return Error::success();
2185     case BitstreamEntry::Record:
2186       // The interesting case.
2187       break;
2188     }
2189 
2190     // Read a record.
2191     Record.clear();
2192     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2193     if (!MaybeRecord)
2194       return MaybeRecord.takeError();
2195     switch (MaybeRecord.get()) {
2196     default:  // Default behavior: unknown type.
2197       break;
2198     case bitc::VST_CODE_ENTRY: {  // VST_CODE_ENTRY: [valueid, namechar x N]
2199       Expected<Value *> ValOrErr = recordValue(Record, 1, TT);
2200       if (Error Err = ValOrErr.takeError())
2201         return Err;
2202       ValOrErr.get();
2203       break;
2204     }
2205     case bitc::VST_CODE_FNENTRY: {
2206       // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
2207       Expected<Value *> ValOrErr = recordValue(Record, 2, TT);
2208       if (Error Err = ValOrErr.takeError())
2209         return Err;
2210       Value *V = ValOrErr.get();
2211 
2212       // Ignore function offsets emitted for aliases of functions in older
2213       // versions of LLVM.
2214       if (auto *F = dyn_cast<Function>(V))
2215         setDeferredFunctionInfo(FuncBitcodeOffsetDelta, F, Record);
2216       break;
2217     }
2218     case bitc::VST_CODE_BBENTRY: {
2219       if (convertToString(Record, 1, ValueName))
2220         return error("Invalid record");
2221       BasicBlock *BB = getBasicBlock(Record[0]);
2222       if (!BB)
2223         return error("Invalid record");
2224 
2225       BB->setName(StringRef(ValueName.data(), ValueName.size()));
2226       ValueName.clear();
2227       break;
2228     }
2229     }
2230   }
2231 }
2232 
2233 /// Decode a signed value stored with the sign bit in the LSB for dense VBR
2234 /// encoding.
2235 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) {
2236   if ((V & 1) == 0)
2237     return V >> 1;
2238   if (V != 1)
2239     return -(V >> 1);
2240   // There is no such thing as -0 with integers.  "-0" really means MININT.
2241   return 1ULL << 63;
2242 }
2243 
2244 /// Resolve all of the initializers for global values and aliases that we can.
2245 Error BitcodeReader::resolveGlobalAndIndirectSymbolInits() {
2246   std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInitWorklist;
2247   std::vector<std::pair<GlobalValue *, unsigned>> IndirectSymbolInitWorklist;
2248   std::vector<FunctionOperandInfo> FunctionOperandWorklist;
2249 
2250   GlobalInitWorklist.swap(GlobalInits);
2251   IndirectSymbolInitWorklist.swap(IndirectSymbolInits);
2252   FunctionOperandWorklist.swap(FunctionOperands);
2253 
2254   while (!GlobalInitWorklist.empty()) {
2255     unsigned ValID = GlobalInitWorklist.back().second;
2256     if (ValID >= ValueList.size()) {
2257       // Not ready to resolve this yet, it requires something later in the file.
2258       GlobalInits.push_back(GlobalInitWorklist.back());
2259     } else {
2260       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2261         GlobalInitWorklist.back().first->setInitializer(C);
2262       else
2263         return error("Expected a constant");
2264     }
2265     GlobalInitWorklist.pop_back();
2266   }
2267 
2268   while (!IndirectSymbolInitWorklist.empty()) {
2269     unsigned ValID = IndirectSymbolInitWorklist.back().second;
2270     if (ValID >= ValueList.size()) {
2271       IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back());
2272     } else {
2273       Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]);
2274       if (!C)
2275         return error("Expected a constant");
2276       GlobalValue *GV = IndirectSymbolInitWorklist.back().first;
2277       if (auto *GA = dyn_cast<GlobalAlias>(GV)) {
2278         if (C->getType() != GV->getType())
2279           return error("Alias and aliasee types don't match");
2280         GA->setAliasee(C);
2281       } else if (auto *GI = dyn_cast<GlobalIFunc>(GV)) {
2282         GI->setResolver(C);
2283       } else {
2284         return error("Expected an alias or an ifunc");
2285       }
2286     }
2287     IndirectSymbolInitWorklist.pop_back();
2288   }
2289 
2290   while (!FunctionOperandWorklist.empty()) {
2291     FunctionOperandInfo &Info = FunctionOperandWorklist.back();
2292     if (Info.PersonalityFn) {
2293       unsigned ValID = Info.PersonalityFn - 1;
2294       if (ValID < ValueList.size()) {
2295         if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2296           Info.F->setPersonalityFn(C);
2297         else
2298           return error("Expected a constant");
2299         Info.PersonalityFn = 0;
2300       }
2301     }
2302     if (Info.Prefix) {
2303       unsigned ValID = Info.Prefix - 1;
2304       if (ValID < ValueList.size()) {
2305         if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2306           Info.F->setPrefixData(C);
2307         else
2308           return error("Expected a constant");
2309         Info.Prefix = 0;
2310       }
2311     }
2312     if (Info.Prologue) {
2313       unsigned ValID = Info.Prologue - 1;
2314       if (ValID < ValueList.size()) {
2315         if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2316           Info.F->setPrologueData(C);
2317         else
2318           return error("Expected a constant");
2319         Info.Prologue = 0;
2320       }
2321     }
2322     if (Info.PersonalityFn || Info.Prefix || Info.Prologue)
2323       FunctionOperands.push_back(Info);
2324     FunctionOperandWorklist.pop_back();
2325   }
2326 
2327   return Error::success();
2328 }
2329 
2330 APInt llvm::readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) {
2331   SmallVector<uint64_t, 8> Words(Vals.size());
2332   transform(Vals, Words.begin(),
2333                  BitcodeReader::decodeSignRotatedValue);
2334 
2335   return APInt(TypeBits, Words);
2336 }
2337 
2338 Error BitcodeReader::parseConstants() {
2339   if (Error Err = Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID))
2340     return Err;
2341 
2342   SmallVector<uint64_t, 64> Record;
2343 
2344   // Read all the records for this value table.
2345   Type *CurTy = Type::getInt32Ty(Context);
2346   unsigned NextCstNo = ValueList.size();
2347 
2348   struct DelayedShufTy {
2349     VectorType *OpTy;
2350     VectorType *RTy;
2351     uint64_t Op0Idx;
2352     uint64_t Op1Idx;
2353     uint64_t Op2Idx;
2354     unsigned CstNo;
2355   };
2356   std::vector<DelayedShufTy> DelayedShuffles;
2357   struct DelayedSelTy {
2358     Type *OpTy;
2359     uint64_t Op0Idx;
2360     uint64_t Op1Idx;
2361     uint64_t Op2Idx;
2362     unsigned CstNo;
2363   };
2364   std::vector<DelayedSelTy> DelayedSelectors;
2365 
2366   while (true) {
2367     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2368     if (!MaybeEntry)
2369       return MaybeEntry.takeError();
2370     BitstreamEntry Entry = MaybeEntry.get();
2371 
2372     switch (Entry.Kind) {
2373     case BitstreamEntry::SubBlock: // Handled for us already.
2374     case BitstreamEntry::Error:
2375       return error("Malformed block");
2376     case BitstreamEntry::EndBlock:
2377       // Once all the constants have been read, go through and resolve forward
2378       // references.
2379       //
2380       // We have to treat shuffles specially because they don't have three
2381       // operands anymore.  We need to convert the shuffle mask into an array,
2382       // and we can't convert a forward reference.
2383       for (auto &DelayedShuffle : DelayedShuffles) {
2384         VectorType *OpTy = DelayedShuffle.OpTy;
2385         VectorType *RTy = DelayedShuffle.RTy;
2386         uint64_t Op0Idx = DelayedShuffle.Op0Idx;
2387         uint64_t Op1Idx = DelayedShuffle.Op1Idx;
2388         uint64_t Op2Idx = DelayedShuffle.Op2Idx;
2389         uint64_t CstNo = DelayedShuffle.CstNo;
2390         Constant *Op0 = ValueList.getConstantFwdRef(Op0Idx, OpTy);
2391         Constant *Op1 = ValueList.getConstantFwdRef(Op1Idx, OpTy);
2392         Type *ShufTy =
2393             VectorType::get(Type::getInt32Ty(Context), RTy->getElementCount());
2394         Constant *Op2 = ValueList.getConstantFwdRef(Op2Idx, ShufTy);
2395         if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2))
2396           return error("Invalid shufflevector operands");
2397         SmallVector<int, 16> Mask;
2398         ShuffleVectorInst::getShuffleMask(Op2, Mask);
2399         Value *V = ConstantExpr::getShuffleVector(Op0, Op1, Mask);
2400         ValueList.assignValue(V, CstNo);
2401       }
2402       for (auto &DelayedSelector : DelayedSelectors) {
2403         Type *OpTy = DelayedSelector.OpTy;
2404         Type *SelectorTy = Type::getInt1Ty(Context);
2405         uint64_t Op0Idx = DelayedSelector.Op0Idx;
2406         uint64_t Op1Idx = DelayedSelector.Op1Idx;
2407         uint64_t Op2Idx = DelayedSelector.Op2Idx;
2408         uint64_t CstNo = DelayedSelector.CstNo;
2409         Constant *Op1 = ValueList.getConstantFwdRef(Op1Idx, OpTy);
2410         Constant *Op2 = ValueList.getConstantFwdRef(Op2Idx, OpTy);
2411         // The selector might be an i1 or an <n x i1>
2412         // Get the type from the ValueList before getting a forward ref.
2413         if (VectorType *VTy = dyn_cast<VectorType>(OpTy)) {
2414           Value *V = ValueList[Op0Idx];
2415           assert(V);
2416           if (SelectorTy != V->getType())
2417             SelectorTy = VectorType::get(SelectorTy, VTy->getElementCount());
2418         }
2419         Constant *Op0 = ValueList.getConstantFwdRef(Op0Idx, SelectorTy);
2420         Value *V = ConstantExpr::getSelect(Op0, Op1, Op2);
2421         ValueList.assignValue(V, CstNo);
2422       }
2423 
2424       if (NextCstNo != ValueList.size())
2425         return error("Invalid constant reference");
2426 
2427       ValueList.resolveConstantForwardRefs();
2428       return Error::success();
2429     case BitstreamEntry::Record:
2430       // The interesting case.
2431       break;
2432     }
2433 
2434     // Read a record.
2435     Record.clear();
2436     Type *VoidType = Type::getVoidTy(Context);
2437     Value *V = nullptr;
2438     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
2439     if (!MaybeBitCode)
2440       return MaybeBitCode.takeError();
2441     switch (unsigned BitCode = MaybeBitCode.get()) {
2442     default:  // Default behavior: unknown constant
2443     case bitc::CST_CODE_UNDEF:     // UNDEF
2444       V = UndefValue::get(CurTy);
2445       break;
2446     case bitc::CST_CODE_POISON:    // POISON
2447       V = PoisonValue::get(CurTy);
2448       break;
2449     case bitc::CST_CODE_SETTYPE:   // SETTYPE: [typeid]
2450       if (Record.empty())
2451         return error("Invalid record");
2452       if (Record[0] >= TypeList.size() || !TypeList[Record[0]])
2453         return error("Invalid record");
2454       if (TypeList[Record[0]] == VoidType)
2455         return error("Invalid constant type");
2456       CurTy = TypeList[Record[0]];
2457       continue;  // Skip the ValueList manipulation.
2458     case bitc::CST_CODE_NULL:      // NULL
2459       if (CurTy->isVoidTy() || CurTy->isFunctionTy() || CurTy->isLabelTy())
2460         return error("Invalid type for a constant null value");
2461       V = Constant::getNullValue(CurTy);
2462       break;
2463     case bitc::CST_CODE_INTEGER:   // INTEGER: [intval]
2464       if (!CurTy->isIntegerTy() || Record.empty())
2465         return error("Invalid record");
2466       V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0]));
2467       break;
2468     case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
2469       if (!CurTy->isIntegerTy() || Record.empty())
2470         return error("Invalid record");
2471 
2472       APInt VInt =
2473           readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth());
2474       V = ConstantInt::get(Context, VInt);
2475 
2476       break;
2477     }
2478     case bitc::CST_CODE_FLOAT: {    // FLOAT: [fpval]
2479       if (Record.empty())
2480         return error("Invalid record");
2481       if (CurTy->isHalfTy())
2482         V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf(),
2483                                              APInt(16, (uint16_t)Record[0])));
2484       else if (CurTy->isBFloatTy())
2485         V = ConstantFP::get(Context, APFloat(APFloat::BFloat(),
2486                                              APInt(16, (uint32_t)Record[0])));
2487       else if (CurTy->isFloatTy())
2488         V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle(),
2489                                              APInt(32, (uint32_t)Record[0])));
2490       else if (CurTy->isDoubleTy())
2491         V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble(),
2492                                              APInt(64, Record[0])));
2493       else if (CurTy->isX86_FP80Ty()) {
2494         // Bits are not stored the same way as a normal i80 APInt, compensate.
2495         uint64_t Rearrange[2];
2496         Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16);
2497         Rearrange[1] = Record[0] >> 48;
2498         V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended(),
2499                                              APInt(80, Rearrange)));
2500       } else if (CurTy->isFP128Ty())
2501         V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad(),
2502                                              APInt(128, Record)));
2503       else if (CurTy->isPPC_FP128Ty())
2504         V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble(),
2505                                              APInt(128, Record)));
2506       else
2507         V = UndefValue::get(CurTy);
2508       break;
2509     }
2510 
2511     case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
2512       if (Record.empty())
2513         return error("Invalid record");
2514 
2515       unsigned Size = Record.size();
2516       SmallVector<Constant*, 16> Elts;
2517 
2518       if (StructType *STy = dyn_cast<StructType>(CurTy)) {
2519         for (unsigned i = 0; i != Size; ++i)
2520           Elts.push_back(ValueList.getConstantFwdRef(Record[i],
2521                                                      STy->getElementType(i)));
2522         V = ConstantStruct::get(STy, Elts);
2523       } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) {
2524         Type *EltTy = ATy->getElementType();
2525         for (unsigned i = 0; i != Size; ++i)
2526           Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
2527         V = ConstantArray::get(ATy, Elts);
2528       } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) {
2529         Type *EltTy = VTy->getElementType();
2530         for (unsigned i = 0; i != Size; ++i)
2531           Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
2532         V = ConstantVector::get(Elts);
2533       } else {
2534         V = UndefValue::get(CurTy);
2535       }
2536       break;
2537     }
2538     case bitc::CST_CODE_STRING:    // STRING: [values]
2539     case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
2540       if (Record.empty())
2541         return error("Invalid record");
2542 
2543       SmallString<16> Elts(Record.begin(), Record.end());
2544       V = ConstantDataArray::getString(Context, Elts,
2545                                        BitCode == bitc::CST_CODE_CSTRING);
2546       break;
2547     }
2548     case bitc::CST_CODE_DATA: {// DATA: [n x value]
2549       if (Record.empty())
2550         return error("Invalid record");
2551 
2552       Type *EltTy;
2553       if (auto *Array = dyn_cast<ArrayType>(CurTy))
2554         EltTy = Array->getElementType();
2555       else
2556         EltTy = cast<VectorType>(CurTy)->getElementType();
2557       if (EltTy->isIntegerTy(8)) {
2558         SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end());
2559         if (isa<VectorType>(CurTy))
2560           V = ConstantDataVector::get(Context, Elts);
2561         else
2562           V = ConstantDataArray::get(Context, Elts);
2563       } else if (EltTy->isIntegerTy(16)) {
2564         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
2565         if (isa<VectorType>(CurTy))
2566           V = ConstantDataVector::get(Context, Elts);
2567         else
2568           V = ConstantDataArray::get(Context, Elts);
2569       } else if (EltTy->isIntegerTy(32)) {
2570         SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
2571         if (isa<VectorType>(CurTy))
2572           V = ConstantDataVector::get(Context, Elts);
2573         else
2574           V = ConstantDataArray::get(Context, Elts);
2575       } else if (EltTy->isIntegerTy(64)) {
2576         SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
2577         if (isa<VectorType>(CurTy))
2578           V = ConstantDataVector::get(Context, Elts);
2579         else
2580           V = ConstantDataArray::get(Context, Elts);
2581       } else if (EltTy->isHalfTy()) {
2582         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
2583         if (isa<VectorType>(CurTy))
2584           V = ConstantDataVector::getFP(EltTy, Elts);
2585         else
2586           V = ConstantDataArray::getFP(EltTy, Elts);
2587       } else if (EltTy->isBFloatTy()) {
2588         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
2589         if (isa<VectorType>(CurTy))
2590           V = ConstantDataVector::getFP(EltTy, Elts);
2591         else
2592           V = ConstantDataArray::getFP(EltTy, Elts);
2593       } else if (EltTy->isFloatTy()) {
2594         SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
2595         if (isa<VectorType>(CurTy))
2596           V = ConstantDataVector::getFP(EltTy, Elts);
2597         else
2598           V = ConstantDataArray::getFP(EltTy, Elts);
2599       } else if (EltTy->isDoubleTy()) {
2600         SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
2601         if (isa<VectorType>(CurTy))
2602           V = ConstantDataVector::getFP(EltTy, Elts);
2603         else
2604           V = ConstantDataArray::getFP(EltTy, Elts);
2605       } else {
2606         return error("Invalid type for value");
2607       }
2608       break;
2609     }
2610     case bitc::CST_CODE_CE_UNOP: {  // CE_UNOP: [opcode, opval]
2611       if (Record.size() < 2)
2612         return error("Invalid record");
2613       int Opc = getDecodedUnaryOpcode(Record[0], CurTy);
2614       if (Opc < 0) {
2615         V = UndefValue::get(CurTy);  // Unknown unop.
2616       } else {
2617         Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
2618         unsigned Flags = 0;
2619         V = ConstantExpr::get(Opc, LHS, Flags);
2620       }
2621       break;
2622     }
2623     case bitc::CST_CODE_CE_BINOP: {  // CE_BINOP: [opcode, opval, opval]
2624       if (Record.size() < 3)
2625         return error("Invalid record");
2626       int Opc = getDecodedBinaryOpcode(Record[0], CurTy);
2627       if (Opc < 0) {
2628         V = UndefValue::get(CurTy);  // Unknown binop.
2629       } else {
2630         Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
2631         Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy);
2632         unsigned Flags = 0;
2633         if (Record.size() >= 4) {
2634           if (Opc == Instruction::Add ||
2635               Opc == Instruction::Sub ||
2636               Opc == Instruction::Mul ||
2637               Opc == Instruction::Shl) {
2638             if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP))
2639               Flags |= OverflowingBinaryOperator::NoSignedWrap;
2640             if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
2641               Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
2642           } else if (Opc == Instruction::SDiv ||
2643                      Opc == Instruction::UDiv ||
2644                      Opc == Instruction::LShr ||
2645                      Opc == Instruction::AShr) {
2646             if (Record[3] & (1 << bitc::PEO_EXACT))
2647               Flags |= SDivOperator::IsExact;
2648           }
2649         }
2650         V = ConstantExpr::get(Opc, LHS, RHS, Flags);
2651       }
2652       break;
2653     }
2654     case bitc::CST_CODE_CE_CAST: {  // CE_CAST: [opcode, opty, opval]
2655       if (Record.size() < 3)
2656         return error("Invalid record");
2657       int Opc = getDecodedCastOpcode(Record[0]);
2658       if (Opc < 0) {
2659         V = UndefValue::get(CurTy);  // Unknown cast.
2660       } else {
2661         Type *OpTy = getTypeByID(Record[1]);
2662         if (!OpTy)
2663           return error("Invalid record");
2664         Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy);
2665         V = UpgradeBitCastExpr(Opc, Op, CurTy);
2666         if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy);
2667       }
2668       break;
2669     }
2670     case bitc::CST_CODE_CE_INBOUNDS_GEP: // [ty, n x operands]
2671     case bitc::CST_CODE_CE_GEP: // [ty, n x operands]
2672     case bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX: { // [ty, flags, n x
2673                                                      // operands]
2674       unsigned OpNum = 0;
2675       Type *PointeeType = nullptr;
2676       if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX ||
2677           Record.size() % 2)
2678         PointeeType = getTypeByID(Record[OpNum++]);
2679 
2680       bool InBounds = false;
2681       Optional<unsigned> InRangeIndex;
2682       if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX) {
2683         uint64_t Op = Record[OpNum++];
2684         InBounds = Op & 1;
2685         InRangeIndex = Op >> 1;
2686       } else if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP)
2687         InBounds = true;
2688 
2689       SmallVector<Constant*, 16> Elts;
2690       Type *Elt0FullTy = nullptr;
2691       while (OpNum != Record.size()) {
2692         if (!Elt0FullTy)
2693           Elt0FullTy = getTypeByID(Record[OpNum]);
2694         Type *ElTy = getTypeByID(Record[OpNum++]);
2695         if (!ElTy)
2696           return error("Invalid record");
2697         Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy));
2698       }
2699 
2700       if (Elts.size() < 1)
2701         return error("Invalid gep with no operands");
2702 
2703       PointerType *OrigPtrTy = cast<PointerType>(Elt0FullTy->getScalarType());
2704       if (!PointeeType)
2705         PointeeType = OrigPtrTy->getElementType();
2706       else if (!OrigPtrTy->isOpaqueOrPointeeTypeMatches(PointeeType))
2707         return error("Explicit gep operator type does not match pointee type "
2708                      "of pointer operand");
2709 
2710       ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
2711       V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices,
2712                                          InBounds, InRangeIndex);
2713       break;
2714     }
2715     case bitc::CST_CODE_CE_SELECT: {  // CE_SELECT: [opval#, opval#, opval#]
2716       if (Record.size() < 3)
2717         return error("Invalid record");
2718 
2719       DelayedSelectors.push_back(
2720           {CurTy, Record[0], Record[1], Record[2], NextCstNo});
2721       (void)ValueList.getConstantFwdRef(NextCstNo, CurTy);
2722       ++NextCstNo;
2723       continue;
2724     }
2725     case bitc::CST_CODE_CE_EXTRACTELT
2726         : { // CE_EXTRACTELT: [opty, opval, opty, opval]
2727       if (Record.size() < 3)
2728         return error("Invalid record");
2729       VectorType *OpTy =
2730         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
2731       if (!OpTy)
2732         return error("Invalid record");
2733       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
2734       Constant *Op1 = nullptr;
2735       if (Record.size() == 4) {
2736         Type *IdxTy = getTypeByID(Record[2]);
2737         if (!IdxTy)
2738           return error("Invalid record");
2739         Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy);
2740       } else {
2741         // Deprecated, but still needed to read old bitcode files.
2742         Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
2743       }
2744       if (!Op1)
2745         return error("Invalid record");
2746       V = ConstantExpr::getExtractElement(Op0, Op1);
2747       break;
2748     }
2749     case bitc::CST_CODE_CE_INSERTELT
2750         : { // CE_INSERTELT: [opval, opval, opty, opval]
2751       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
2752       if (Record.size() < 3 || !OpTy)
2753         return error("Invalid record");
2754       Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
2755       Constant *Op1 = ValueList.getConstantFwdRef(Record[1],
2756                                                   OpTy->getElementType());
2757       Constant *Op2 = nullptr;
2758       if (Record.size() == 4) {
2759         Type *IdxTy = getTypeByID(Record[2]);
2760         if (!IdxTy)
2761           return error("Invalid record");
2762         Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy);
2763       } else {
2764         // Deprecated, but still needed to read old bitcode files.
2765         Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
2766       }
2767       if (!Op2)
2768         return error("Invalid record");
2769       V = ConstantExpr::getInsertElement(Op0, Op1, Op2);
2770       break;
2771     }
2772     case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
2773       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
2774       if (Record.size() < 3 || !OpTy)
2775         return error("Invalid record");
2776       DelayedShuffles.push_back(
2777           {OpTy, OpTy, Record[0], Record[1], Record[2], NextCstNo});
2778       ++NextCstNo;
2779       continue;
2780     }
2781     case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval]
2782       VectorType *RTy = dyn_cast<VectorType>(CurTy);
2783       VectorType *OpTy =
2784         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
2785       if (Record.size() < 4 || !RTy || !OpTy)
2786         return error("Invalid record");
2787       DelayedShuffles.push_back(
2788           {OpTy, RTy, Record[1], Record[2], Record[3], NextCstNo});
2789       ++NextCstNo;
2790       continue;
2791     }
2792     case bitc::CST_CODE_CE_CMP: {     // CE_CMP: [opty, opval, opval, pred]
2793       if (Record.size() < 4)
2794         return error("Invalid record");
2795       Type *OpTy = getTypeByID(Record[0]);
2796       if (!OpTy)
2797         return error("Invalid record");
2798       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
2799       Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
2800 
2801       if (OpTy->isFPOrFPVectorTy())
2802         V = ConstantExpr::getFCmp(Record[3], Op0, Op1);
2803       else
2804         V = ConstantExpr::getICmp(Record[3], Op0, Op1);
2805       break;
2806     }
2807     // This maintains backward compatibility, pre-asm dialect keywords.
2808     // Deprecated, but still needed to read old bitcode files.
2809     case bitc::CST_CODE_INLINEASM_OLD: {
2810       if (Record.size() < 2)
2811         return error("Invalid record");
2812       std::string AsmStr, ConstrStr;
2813       bool HasSideEffects = Record[0] & 1;
2814       bool IsAlignStack = Record[0] >> 1;
2815       unsigned AsmStrSize = Record[1];
2816       if (2+AsmStrSize >= Record.size())
2817         return error("Invalid record");
2818       unsigned ConstStrSize = Record[2+AsmStrSize];
2819       if (3+AsmStrSize+ConstStrSize > Record.size())
2820         return error("Invalid record");
2821 
2822       for (unsigned i = 0; i != AsmStrSize; ++i)
2823         AsmStr += (char)Record[2+i];
2824       for (unsigned i = 0; i != ConstStrSize; ++i)
2825         ConstrStr += (char)Record[3+AsmStrSize+i];
2826       UpgradeInlineAsmString(&AsmStr);
2827       V = InlineAsm::get(
2828           cast<FunctionType>(cast<PointerType>(CurTy)->getElementType()),
2829           AsmStr, ConstrStr, HasSideEffects, IsAlignStack);
2830       break;
2831     }
2832     // This version adds support for the asm dialect keywords (e.g.,
2833     // inteldialect).
2834     case bitc::CST_CODE_INLINEASM_OLD2: {
2835       if (Record.size() < 2)
2836         return error("Invalid record");
2837       std::string AsmStr, ConstrStr;
2838       bool HasSideEffects = Record[0] & 1;
2839       bool IsAlignStack = (Record[0] >> 1) & 1;
2840       unsigned AsmDialect = Record[0] >> 2;
2841       unsigned AsmStrSize = Record[1];
2842       if (2+AsmStrSize >= Record.size())
2843         return error("Invalid record");
2844       unsigned ConstStrSize = Record[2+AsmStrSize];
2845       if (3+AsmStrSize+ConstStrSize > Record.size())
2846         return error("Invalid record");
2847 
2848       for (unsigned i = 0; i != AsmStrSize; ++i)
2849         AsmStr += (char)Record[2+i];
2850       for (unsigned i = 0; i != ConstStrSize; ++i)
2851         ConstrStr += (char)Record[3+AsmStrSize+i];
2852       UpgradeInlineAsmString(&AsmStr);
2853       V = InlineAsm::get(
2854           cast<FunctionType>(cast<PointerType>(CurTy)->getElementType()),
2855           AsmStr, ConstrStr, HasSideEffects, IsAlignStack,
2856           InlineAsm::AsmDialect(AsmDialect));
2857       break;
2858     }
2859     // This version adds support for the unwind keyword.
2860     case bitc::CST_CODE_INLINEASM: {
2861       if (Record.size() < 2)
2862         return error("Invalid record");
2863       std::string AsmStr, ConstrStr;
2864       bool HasSideEffects = Record[0] & 1;
2865       bool IsAlignStack = (Record[0] >> 1) & 1;
2866       unsigned AsmDialect = (Record[0] >> 2) & 1;
2867       bool CanThrow = (Record[0] >> 3) & 1;
2868       unsigned AsmStrSize = Record[1];
2869       if (2 + AsmStrSize >= Record.size())
2870         return error("Invalid record");
2871       unsigned ConstStrSize = Record[2 + AsmStrSize];
2872       if (3 + AsmStrSize + ConstStrSize > Record.size())
2873         return error("Invalid record");
2874 
2875       for (unsigned i = 0; i != AsmStrSize; ++i)
2876         AsmStr += (char)Record[2 + i];
2877       for (unsigned i = 0; i != ConstStrSize; ++i)
2878         ConstrStr += (char)Record[3 + AsmStrSize + i];
2879       UpgradeInlineAsmString(&AsmStr);
2880       V = InlineAsm::get(
2881           cast<FunctionType>(cast<PointerType>(CurTy)->getElementType()),
2882           AsmStr, ConstrStr, HasSideEffects, IsAlignStack,
2883           InlineAsm::AsmDialect(AsmDialect), CanThrow);
2884       break;
2885     }
2886     case bitc::CST_CODE_BLOCKADDRESS:{
2887       if (Record.size() < 3)
2888         return error("Invalid record");
2889       Type *FnTy = getTypeByID(Record[0]);
2890       if (!FnTy)
2891         return error("Invalid record");
2892       Function *Fn =
2893         dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy));
2894       if (!Fn)
2895         return error("Invalid record");
2896 
2897       // If the function is already parsed we can insert the block address right
2898       // away.
2899       BasicBlock *BB;
2900       unsigned BBID = Record[2];
2901       if (!BBID)
2902         // Invalid reference to entry block.
2903         return error("Invalid ID");
2904       if (!Fn->empty()) {
2905         Function::iterator BBI = Fn->begin(), BBE = Fn->end();
2906         for (size_t I = 0, E = BBID; I != E; ++I) {
2907           if (BBI == BBE)
2908             return error("Invalid ID");
2909           ++BBI;
2910         }
2911         BB = &*BBI;
2912       } else {
2913         // Otherwise insert a placeholder and remember it so it can be inserted
2914         // when the function is parsed.
2915         auto &FwdBBs = BasicBlockFwdRefs[Fn];
2916         if (FwdBBs.empty())
2917           BasicBlockFwdRefQueue.push_back(Fn);
2918         if (FwdBBs.size() < BBID + 1)
2919           FwdBBs.resize(BBID + 1);
2920         if (!FwdBBs[BBID])
2921           FwdBBs[BBID] = BasicBlock::Create(Context);
2922         BB = FwdBBs[BBID];
2923       }
2924       V = BlockAddress::get(Fn, BB);
2925       break;
2926     }
2927     case bitc::CST_CODE_DSO_LOCAL_EQUIVALENT: {
2928       if (Record.size() < 2)
2929         return error("Invalid record");
2930       Type *GVTy = getTypeByID(Record[0]);
2931       if (!GVTy)
2932         return error("Invalid record");
2933       GlobalValue *GV = dyn_cast_or_null<GlobalValue>(
2934           ValueList.getConstantFwdRef(Record[1], GVTy));
2935       if (!GV)
2936         return error("Invalid record");
2937 
2938       V = DSOLocalEquivalent::get(GV);
2939       break;
2940     }
2941     }
2942 
2943     ValueList.assignValue(V, NextCstNo);
2944     ++NextCstNo;
2945   }
2946 }
2947 
2948 Error BitcodeReader::parseUseLists() {
2949   if (Error Err = Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID))
2950     return Err;
2951 
2952   // Read all the records.
2953   SmallVector<uint64_t, 64> Record;
2954 
2955   while (true) {
2956     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2957     if (!MaybeEntry)
2958       return MaybeEntry.takeError();
2959     BitstreamEntry Entry = MaybeEntry.get();
2960 
2961     switch (Entry.Kind) {
2962     case BitstreamEntry::SubBlock: // Handled for us already.
2963     case BitstreamEntry::Error:
2964       return error("Malformed block");
2965     case BitstreamEntry::EndBlock:
2966       return Error::success();
2967     case BitstreamEntry::Record:
2968       // The interesting case.
2969       break;
2970     }
2971 
2972     // Read a use list record.
2973     Record.clear();
2974     bool IsBB = false;
2975     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2976     if (!MaybeRecord)
2977       return MaybeRecord.takeError();
2978     switch (MaybeRecord.get()) {
2979     default:  // Default behavior: unknown type.
2980       break;
2981     case bitc::USELIST_CODE_BB:
2982       IsBB = true;
2983       LLVM_FALLTHROUGH;
2984     case bitc::USELIST_CODE_DEFAULT: {
2985       unsigned RecordLength = Record.size();
2986       if (RecordLength < 3)
2987         // Records should have at least an ID and two indexes.
2988         return error("Invalid record");
2989       unsigned ID = Record.pop_back_val();
2990 
2991       Value *V;
2992       if (IsBB) {
2993         assert(ID < FunctionBBs.size() && "Basic block not found");
2994         V = FunctionBBs[ID];
2995       } else
2996         V = ValueList[ID];
2997       unsigned NumUses = 0;
2998       SmallDenseMap<const Use *, unsigned, 16> Order;
2999       for (const Use &U : V->materialized_uses()) {
3000         if (++NumUses > Record.size())
3001           break;
3002         Order[&U] = Record[NumUses - 1];
3003       }
3004       if (Order.size() != Record.size() || NumUses > Record.size())
3005         // Mismatches can happen if the functions are being materialized lazily
3006         // (out-of-order), or a value has been upgraded.
3007         break;
3008 
3009       V->sortUseList([&](const Use &L, const Use &R) {
3010         return Order.lookup(&L) < Order.lookup(&R);
3011       });
3012       break;
3013     }
3014     }
3015   }
3016 }
3017 
3018 /// When we see the block for metadata, remember where it is and then skip it.
3019 /// This lets us lazily deserialize the metadata.
3020 Error BitcodeReader::rememberAndSkipMetadata() {
3021   // Save the current stream state.
3022   uint64_t CurBit = Stream.GetCurrentBitNo();
3023   DeferredMetadataInfo.push_back(CurBit);
3024 
3025   // Skip over the block for now.
3026   if (Error Err = Stream.SkipBlock())
3027     return Err;
3028   return Error::success();
3029 }
3030 
3031 Error BitcodeReader::materializeMetadata() {
3032   for (uint64_t BitPos : DeferredMetadataInfo) {
3033     // Move the bit stream to the saved position.
3034     if (Error JumpFailed = Stream.JumpToBit(BitPos))
3035       return JumpFailed;
3036     if (Error Err = MDLoader->parseModuleMetadata())
3037       return Err;
3038   }
3039 
3040   // Upgrade "Linker Options" module flag to "llvm.linker.options" module-level
3041   // metadata. Only upgrade if the new option doesn't exist to avoid upgrade
3042   // multiple times.
3043   if (!TheModule->getNamedMetadata("llvm.linker.options")) {
3044     if (Metadata *Val = TheModule->getModuleFlag("Linker Options")) {
3045       NamedMDNode *LinkerOpts =
3046           TheModule->getOrInsertNamedMetadata("llvm.linker.options");
3047       for (const MDOperand &MDOptions : cast<MDNode>(Val)->operands())
3048         LinkerOpts->addOperand(cast<MDNode>(MDOptions));
3049     }
3050   }
3051 
3052   DeferredMetadataInfo.clear();
3053   return Error::success();
3054 }
3055 
3056 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; }
3057 
3058 /// When we see the block for a function body, remember where it is and then
3059 /// skip it.  This lets us lazily deserialize the functions.
3060 Error BitcodeReader::rememberAndSkipFunctionBody() {
3061   // Get the function we are talking about.
3062   if (FunctionsWithBodies.empty())
3063     return error("Insufficient function protos");
3064 
3065   Function *Fn = FunctionsWithBodies.back();
3066   FunctionsWithBodies.pop_back();
3067 
3068   // Save the current stream state.
3069   uint64_t CurBit = Stream.GetCurrentBitNo();
3070   assert(
3071       (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) &&
3072       "Mismatch between VST and scanned function offsets");
3073   DeferredFunctionInfo[Fn] = CurBit;
3074 
3075   // Skip over the function block for now.
3076   if (Error Err = Stream.SkipBlock())
3077     return Err;
3078   return Error::success();
3079 }
3080 
3081 Error BitcodeReader::globalCleanup() {
3082   // Patch the initializers for globals and aliases up.
3083   if (Error Err = resolveGlobalAndIndirectSymbolInits())
3084     return Err;
3085   if (!GlobalInits.empty() || !IndirectSymbolInits.empty())
3086     return error("Malformed global initializer set");
3087 
3088   // Look for intrinsic functions which need to be upgraded at some point
3089   // and functions that need to have their function attributes upgraded.
3090   for (Function &F : *TheModule) {
3091     MDLoader->upgradeDebugIntrinsics(F);
3092     Function *NewFn;
3093     if (UpgradeIntrinsicFunction(&F, NewFn))
3094       UpgradedIntrinsics[&F] = NewFn;
3095     else if (auto Remangled = Intrinsic::remangleIntrinsicFunction(&F))
3096       // Some types could be renamed during loading if several modules are
3097       // loaded in the same LLVMContext (LTO scenario). In this case we should
3098       // remangle intrinsics names as well.
3099       RemangledIntrinsics[&F] = Remangled.getValue();
3100     // Look for functions that rely on old function attribute behavior.
3101     UpgradeFunctionAttributes(F);
3102   }
3103 
3104   // Look for global variables which need to be renamed.
3105   std::vector<std::pair<GlobalVariable *, GlobalVariable *>> UpgradedVariables;
3106   for (GlobalVariable &GV : TheModule->globals())
3107     if (GlobalVariable *Upgraded = UpgradeGlobalVariable(&GV))
3108       UpgradedVariables.emplace_back(&GV, Upgraded);
3109   for (auto &Pair : UpgradedVariables) {
3110     Pair.first->eraseFromParent();
3111     TheModule->getGlobalList().push_back(Pair.second);
3112   }
3113 
3114   // Force deallocation of memory for these vectors to favor the client that
3115   // want lazy deserialization.
3116   std::vector<std::pair<GlobalVariable *, unsigned>>().swap(GlobalInits);
3117   std::vector<std::pair<GlobalValue *, unsigned>>().swap(IndirectSymbolInits);
3118   return Error::success();
3119 }
3120 
3121 /// Support for lazy parsing of function bodies. This is required if we
3122 /// either have an old bitcode file without a VST forward declaration record,
3123 /// or if we have an anonymous function being materialized, since anonymous
3124 /// functions do not have a name and are therefore not in the VST.
3125 Error BitcodeReader::rememberAndSkipFunctionBodies() {
3126   if (Error JumpFailed = Stream.JumpToBit(NextUnreadBit))
3127     return JumpFailed;
3128 
3129   if (Stream.AtEndOfStream())
3130     return error("Could not find function in stream");
3131 
3132   if (!SeenFirstFunctionBody)
3133     return error("Trying to materialize functions before seeing function blocks");
3134 
3135   // An old bitcode file with the symbol table at the end would have
3136   // finished the parse greedily.
3137   assert(SeenValueSymbolTable);
3138 
3139   SmallVector<uint64_t, 64> Record;
3140 
3141   while (true) {
3142     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
3143     if (!MaybeEntry)
3144       return MaybeEntry.takeError();
3145     llvm::BitstreamEntry Entry = MaybeEntry.get();
3146 
3147     switch (Entry.Kind) {
3148     default:
3149       return error("Expect SubBlock");
3150     case BitstreamEntry::SubBlock:
3151       switch (Entry.ID) {
3152       default:
3153         return error("Expect function block");
3154       case bitc::FUNCTION_BLOCK_ID:
3155         if (Error Err = rememberAndSkipFunctionBody())
3156           return Err;
3157         NextUnreadBit = Stream.GetCurrentBitNo();
3158         return Error::success();
3159       }
3160     }
3161   }
3162 }
3163 
3164 bool BitcodeReaderBase::readBlockInfo() {
3165   Expected<Optional<BitstreamBlockInfo>> MaybeNewBlockInfo =
3166       Stream.ReadBlockInfoBlock();
3167   if (!MaybeNewBlockInfo)
3168     return true; // FIXME Handle the error.
3169   Optional<BitstreamBlockInfo> NewBlockInfo =
3170       std::move(MaybeNewBlockInfo.get());
3171   if (!NewBlockInfo)
3172     return true;
3173   BlockInfo = std::move(*NewBlockInfo);
3174   return false;
3175 }
3176 
3177 Error BitcodeReader::parseComdatRecord(ArrayRef<uint64_t> Record) {
3178   // v1: [selection_kind, name]
3179   // v2: [strtab_offset, strtab_size, selection_kind]
3180   StringRef Name;
3181   std::tie(Name, Record) = readNameFromStrtab(Record);
3182 
3183   if (Record.empty())
3184     return error("Invalid record");
3185   Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]);
3186   std::string OldFormatName;
3187   if (!UseStrtab) {
3188     if (Record.size() < 2)
3189       return error("Invalid record");
3190     unsigned ComdatNameSize = Record[1];
3191     OldFormatName.reserve(ComdatNameSize);
3192     for (unsigned i = 0; i != ComdatNameSize; ++i)
3193       OldFormatName += (char)Record[2 + i];
3194     Name = OldFormatName;
3195   }
3196   Comdat *C = TheModule->getOrInsertComdat(Name);
3197   C->setSelectionKind(SK);
3198   ComdatList.push_back(C);
3199   return Error::success();
3200 }
3201 
3202 static void inferDSOLocal(GlobalValue *GV) {
3203   // infer dso_local from linkage and visibility if it is not encoded.
3204   if (GV->hasLocalLinkage() ||
3205       (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage()))
3206     GV->setDSOLocal(true);
3207 }
3208 
3209 Error BitcodeReader::parseGlobalVarRecord(ArrayRef<uint64_t> Record) {
3210   // v1: [pointer type, isconst, initid, linkage, alignment, section,
3211   // visibility, threadlocal, unnamed_addr, externally_initialized,
3212   // dllstorageclass, comdat, attributes, preemption specifier,
3213   // partition strtab offset, partition strtab size] (name in VST)
3214   // v2: [strtab_offset, strtab_size, v1]
3215   StringRef Name;
3216   std::tie(Name, Record) = readNameFromStrtab(Record);
3217 
3218   if (Record.size() < 6)
3219     return error("Invalid record");
3220   Type *Ty = getTypeByID(Record[0]);
3221   if (!Ty)
3222     return error("Invalid record");
3223   bool isConstant = Record[1] & 1;
3224   bool explicitType = Record[1] & 2;
3225   unsigned AddressSpace;
3226   if (explicitType) {
3227     AddressSpace = Record[1] >> 2;
3228   } else {
3229     if (!Ty->isPointerTy())
3230       return error("Invalid type for value");
3231     AddressSpace = cast<PointerType>(Ty)->getAddressSpace();
3232     Ty = cast<PointerType>(Ty)->getElementType();
3233   }
3234 
3235   uint64_t RawLinkage = Record[3];
3236   GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
3237   MaybeAlign Alignment;
3238   if (Error Err = parseAlignmentValue(Record[4], Alignment))
3239     return Err;
3240   std::string Section;
3241   if (Record[5]) {
3242     if (Record[5] - 1 >= SectionTable.size())
3243       return error("Invalid ID");
3244     Section = SectionTable[Record[5] - 1];
3245   }
3246   GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility;
3247   // Local linkage must have default visibility.
3248   // auto-upgrade `hidden` and `protected` for old bitcode.
3249   if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage))
3250     Visibility = getDecodedVisibility(Record[6]);
3251 
3252   GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal;
3253   if (Record.size() > 7)
3254     TLM = getDecodedThreadLocalMode(Record[7]);
3255 
3256   GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
3257   if (Record.size() > 8)
3258     UnnamedAddr = getDecodedUnnamedAddrType(Record[8]);
3259 
3260   bool ExternallyInitialized = false;
3261   if (Record.size() > 9)
3262     ExternallyInitialized = Record[9];
3263 
3264   GlobalVariable *NewGV =
3265       new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, Name,
3266                          nullptr, TLM, AddressSpace, ExternallyInitialized);
3267   NewGV->setAlignment(Alignment);
3268   if (!Section.empty())
3269     NewGV->setSection(Section);
3270   NewGV->setVisibility(Visibility);
3271   NewGV->setUnnamedAddr(UnnamedAddr);
3272 
3273   if (Record.size() > 10)
3274     NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10]));
3275   else
3276     upgradeDLLImportExportLinkage(NewGV, RawLinkage);
3277 
3278   ValueList.push_back(NewGV);
3279 
3280   // Remember which value to use for the global initializer.
3281   if (unsigned InitID = Record[2])
3282     GlobalInits.push_back(std::make_pair(NewGV, InitID - 1));
3283 
3284   if (Record.size() > 11) {
3285     if (unsigned ComdatID = Record[11]) {
3286       if (ComdatID > ComdatList.size())
3287         return error("Invalid global variable comdat ID");
3288       NewGV->setComdat(ComdatList[ComdatID - 1]);
3289     }
3290   } else if (hasImplicitComdat(RawLinkage)) {
3291     NewGV->setComdat(reinterpret_cast<Comdat *>(1));
3292   }
3293 
3294   if (Record.size() > 12) {
3295     auto AS = getAttributes(Record[12]).getFnAttrs();
3296     NewGV->setAttributes(AS);
3297   }
3298 
3299   if (Record.size() > 13) {
3300     NewGV->setDSOLocal(getDecodedDSOLocal(Record[13]));
3301   }
3302   inferDSOLocal(NewGV);
3303 
3304   // Check whether we have enough values to read a partition name.
3305   if (Record.size() > 15)
3306     NewGV->setPartition(StringRef(Strtab.data() + Record[14], Record[15]));
3307 
3308   return Error::success();
3309 }
3310 
3311 Error BitcodeReader::parseFunctionRecord(ArrayRef<uint64_t> Record) {
3312   // v1: [type, callingconv, isproto, linkage, paramattr, alignment, section,
3313   // visibility, gc, unnamed_addr, prologuedata, dllstorageclass, comdat,
3314   // prefixdata,  personalityfn, preemption specifier, addrspace] (name in VST)
3315   // v2: [strtab_offset, strtab_size, v1]
3316   StringRef Name;
3317   std::tie(Name, Record) = readNameFromStrtab(Record);
3318 
3319   if (Record.size() < 8)
3320     return error("Invalid record");
3321   Type *FTy = getTypeByID(Record[0]);
3322   if (!FTy)
3323     return error("Invalid record");
3324   if (auto *PTy = dyn_cast<PointerType>(FTy))
3325     FTy = PTy->getElementType();
3326 
3327   if (!isa<FunctionType>(FTy))
3328     return error("Invalid type for value");
3329   auto CC = static_cast<CallingConv::ID>(Record[1]);
3330   if (CC & ~CallingConv::MaxID)
3331     return error("Invalid calling convention ID");
3332 
3333   unsigned AddrSpace = TheModule->getDataLayout().getProgramAddressSpace();
3334   if (Record.size() > 16)
3335     AddrSpace = Record[16];
3336 
3337   Function *Func =
3338       Function::Create(cast<FunctionType>(FTy), GlobalValue::ExternalLinkage,
3339                        AddrSpace, Name, TheModule);
3340 
3341   assert(Func->getFunctionType() == FTy &&
3342          "Incorrect fully specified type provided for function");
3343   FunctionTypes[Func] = cast<FunctionType>(FTy);
3344 
3345   Func->setCallingConv(CC);
3346   bool isProto = Record[2];
3347   uint64_t RawLinkage = Record[3];
3348   Func->setLinkage(getDecodedLinkage(RawLinkage));
3349   Func->setAttributes(getAttributes(Record[4]));
3350 
3351   // Upgrade any old-style byval or sret without a type by propagating the
3352   // argument's pointee type. There should be no opaque pointers where the byval
3353   // type is implicit.
3354   for (unsigned i = 0; i != Func->arg_size(); ++i) {
3355     for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet,
3356                                      Attribute::InAlloca}) {
3357       if (!Func->hasParamAttribute(i, Kind))
3358         continue;
3359 
3360       if (Func->getParamAttribute(i, Kind).getValueAsType())
3361         continue;
3362 
3363       Func->removeParamAttr(i, Kind);
3364 
3365       Type *PTy = cast<FunctionType>(FTy)->getParamType(i);
3366       Type *PtrEltTy = cast<PointerType>(PTy)->getElementType();
3367       Attribute NewAttr;
3368       switch (Kind) {
3369       case Attribute::ByVal:
3370         NewAttr = Attribute::getWithByValType(Context, PtrEltTy);
3371         break;
3372       case Attribute::StructRet:
3373         NewAttr = Attribute::getWithStructRetType(Context, PtrEltTy);
3374         break;
3375       case Attribute::InAlloca:
3376         NewAttr = Attribute::getWithInAllocaType(Context, PtrEltTy);
3377         break;
3378       default:
3379         llvm_unreachable("not an upgraded type attribute");
3380       }
3381 
3382       Func->addParamAttr(i, NewAttr);
3383     }
3384   }
3385 
3386   MaybeAlign Alignment;
3387   if (Error Err = parseAlignmentValue(Record[5], Alignment))
3388     return Err;
3389   Func->setAlignment(Alignment);
3390   if (Record[6]) {
3391     if (Record[6] - 1 >= SectionTable.size())
3392       return error("Invalid ID");
3393     Func->setSection(SectionTable[Record[6] - 1]);
3394   }
3395   // Local linkage must have default visibility.
3396   // auto-upgrade `hidden` and `protected` for old bitcode.
3397   if (!Func->hasLocalLinkage())
3398     Func->setVisibility(getDecodedVisibility(Record[7]));
3399   if (Record.size() > 8 && Record[8]) {
3400     if (Record[8] - 1 >= GCTable.size())
3401       return error("Invalid ID");
3402     Func->setGC(GCTable[Record[8] - 1]);
3403   }
3404   GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
3405   if (Record.size() > 9)
3406     UnnamedAddr = getDecodedUnnamedAddrType(Record[9]);
3407   Func->setUnnamedAddr(UnnamedAddr);
3408 
3409   FunctionOperandInfo OperandInfo = {Func, 0, 0, 0};
3410   if (Record.size() > 10)
3411     OperandInfo.Prologue = Record[10];
3412 
3413   if (Record.size() > 11)
3414     Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11]));
3415   else
3416     upgradeDLLImportExportLinkage(Func, RawLinkage);
3417 
3418   if (Record.size() > 12) {
3419     if (unsigned ComdatID = Record[12]) {
3420       if (ComdatID > ComdatList.size())
3421         return error("Invalid function comdat ID");
3422       Func->setComdat(ComdatList[ComdatID - 1]);
3423     }
3424   } else if (hasImplicitComdat(RawLinkage)) {
3425     Func->setComdat(reinterpret_cast<Comdat *>(1));
3426   }
3427 
3428   if (Record.size() > 13)
3429     OperandInfo.Prefix = Record[13];
3430 
3431   if (Record.size() > 14)
3432     OperandInfo.PersonalityFn = Record[14];
3433 
3434   if (Record.size() > 15) {
3435     Func->setDSOLocal(getDecodedDSOLocal(Record[15]));
3436   }
3437   inferDSOLocal(Func);
3438 
3439   // Record[16] is the address space number.
3440 
3441   // Check whether we have enough values to read a partition name. Also make
3442   // sure Strtab has enough values.
3443   if (Record.size() > 18 && Strtab.data() &&
3444       Record[17] + Record[18] <= Strtab.size()) {
3445     Func->setPartition(StringRef(Strtab.data() + Record[17], Record[18]));
3446   }
3447 
3448   ValueList.push_back(Func);
3449 
3450   if (OperandInfo.PersonalityFn || OperandInfo.Prefix || OperandInfo.Prologue)
3451     FunctionOperands.push_back(OperandInfo);
3452 
3453   // If this is a function with a body, remember the prototype we are
3454   // creating now, so that we can match up the body with them later.
3455   if (!isProto) {
3456     Func->setIsMaterializable(true);
3457     FunctionsWithBodies.push_back(Func);
3458     DeferredFunctionInfo[Func] = 0;
3459   }
3460   return Error::success();
3461 }
3462 
3463 Error BitcodeReader::parseGlobalIndirectSymbolRecord(
3464     unsigned BitCode, ArrayRef<uint64_t> Record) {
3465   // v1 ALIAS_OLD: [alias type, aliasee val#, linkage] (name in VST)
3466   // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility,
3467   // dllstorageclass, threadlocal, unnamed_addr,
3468   // preemption specifier] (name in VST)
3469   // v1 IFUNC: [alias type, addrspace, aliasee val#, linkage,
3470   // visibility, dllstorageclass, threadlocal, unnamed_addr,
3471   // preemption specifier] (name in VST)
3472   // v2: [strtab_offset, strtab_size, v1]
3473   StringRef Name;
3474   std::tie(Name, Record) = readNameFromStrtab(Record);
3475 
3476   bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD;
3477   if (Record.size() < (3 + (unsigned)NewRecord))
3478     return error("Invalid record");
3479   unsigned OpNum = 0;
3480   Type *Ty = getTypeByID(Record[OpNum++]);
3481   if (!Ty)
3482     return error("Invalid record");
3483 
3484   unsigned AddrSpace;
3485   if (!NewRecord) {
3486     auto *PTy = dyn_cast<PointerType>(Ty);
3487     if (!PTy)
3488       return error("Invalid type for value");
3489     Ty = PTy->getElementType();
3490     AddrSpace = PTy->getAddressSpace();
3491   } else {
3492     AddrSpace = Record[OpNum++];
3493   }
3494 
3495   auto Val = Record[OpNum++];
3496   auto Linkage = Record[OpNum++];
3497   GlobalValue *NewGA;
3498   if (BitCode == bitc::MODULE_CODE_ALIAS ||
3499       BitCode == bitc::MODULE_CODE_ALIAS_OLD)
3500     NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name,
3501                                 TheModule);
3502   else
3503     NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name,
3504                                 nullptr, TheModule);
3505 
3506   // Local linkage must have default visibility.
3507   // auto-upgrade `hidden` and `protected` for old bitcode.
3508   if (OpNum != Record.size()) {
3509     auto VisInd = OpNum++;
3510     if (!NewGA->hasLocalLinkage())
3511       NewGA->setVisibility(getDecodedVisibility(Record[VisInd]));
3512   }
3513   if (BitCode == bitc::MODULE_CODE_ALIAS ||
3514       BitCode == bitc::MODULE_CODE_ALIAS_OLD) {
3515     if (OpNum != Record.size())
3516       NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++]));
3517     else
3518       upgradeDLLImportExportLinkage(NewGA, Linkage);
3519     if (OpNum != Record.size())
3520       NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++]));
3521     if (OpNum != Record.size())
3522       NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++]));
3523   }
3524   if (OpNum != Record.size())
3525     NewGA->setDSOLocal(getDecodedDSOLocal(Record[OpNum++]));
3526   inferDSOLocal(NewGA);
3527 
3528   // Check whether we have enough values to read a partition name.
3529   if (OpNum + 1 < Record.size()) {
3530     NewGA->setPartition(
3531         StringRef(Strtab.data() + Record[OpNum], Record[OpNum + 1]));
3532     OpNum += 2;
3533   }
3534 
3535   ValueList.push_back(NewGA);
3536   IndirectSymbolInits.push_back(std::make_pair(NewGA, Val));
3537   return Error::success();
3538 }
3539 
3540 Error BitcodeReader::parseModule(uint64_t ResumeBit,
3541                                  bool ShouldLazyLoadMetadata,
3542                                  DataLayoutCallbackTy DataLayoutCallback) {
3543   if (ResumeBit) {
3544     if (Error JumpFailed = Stream.JumpToBit(ResumeBit))
3545       return JumpFailed;
3546   } else if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
3547     return Err;
3548 
3549   SmallVector<uint64_t, 64> Record;
3550 
3551   // Parts of bitcode parsing depend on the datalayout.  Make sure we
3552   // finalize the datalayout before we run any of that code.
3553   bool ResolvedDataLayout = false;
3554   auto ResolveDataLayout = [&] {
3555     if (ResolvedDataLayout)
3556       return;
3557 
3558     // datalayout and triple can't be parsed after this point.
3559     ResolvedDataLayout = true;
3560 
3561     // Upgrade data layout string.
3562     std::string DL = llvm::UpgradeDataLayoutString(
3563         TheModule->getDataLayoutStr(), TheModule->getTargetTriple());
3564     TheModule->setDataLayout(DL);
3565 
3566     if (auto LayoutOverride =
3567             DataLayoutCallback(TheModule->getTargetTriple()))
3568       TheModule->setDataLayout(*LayoutOverride);
3569   };
3570 
3571   // Read all the records for this module.
3572   while (true) {
3573     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
3574     if (!MaybeEntry)
3575       return MaybeEntry.takeError();
3576     llvm::BitstreamEntry Entry = MaybeEntry.get();
3577 
3578     switch (Entry.Kind) {
3579     case BitstreamEntry::Error:
3580       return error("Malformed block");
3581     case BitstreamEntry::EndBlock:
3582       ResolveDataLayout();
3583       return globalCleanup();
3584 
3585     case BitstreamEntry::SubBlock:
3586       switch (Entry.ID) {
3587       default:  // Skip unknown content.
3588         if (Error Err = Stream.SkipBlock())
3589           return Err;
3590         break;
3591       case bitc::BLOCKINFO_BLOCK_ID:
3592         if (readBlockInfo())
3593           return error("Malformed block");
3594         break;
3595       case bitc::PARAMATTR_BLOCK_ID:
3596         if (Error Err = parseAttributeBlock())
3597           return Err;
3598         break;
3599       case bitc::PARAMATTR_GROUP_BLOCK_ID:
3600         if (Error Err = parseAttributeGroupBlock())
3601           return Err;
3602         break;
3603       case bitc::TYPE_BLOCK_ID_NEW:
3604         if (Error Err = parseTypeTable())
3605           return Err;
3606         break;
3607       case bitc::VALUE_SYMTAB_BLOCK_ID:
3608         if (!SeenValueSymbolTable) {
3609           // Either this is an old form VST without function index and an
3610           // associated VST forward declaration record (which would have caused
3611           // the VST to be jumped to and parsed before it was encountered
3612           // normally in the stream), or there were no function blocks to
3613           // trigger an earlier parsing of the VST.
3614           assert(VSTOffset == 0 || FunctionsWithBodies.empty());
3615           if (Error Err = parseValueSymbolTable())
3616             return Err;
3617           SeenValueSymbolTable = true;
3618         } else {
3619           // We must have had a VST forward declaration record, which caused
3620           // the parser to jump to and parse the VST earlier.
3621           assert(VSTOffset > 0);
3622           if (Error Err = Stream.SkipBlock())
3623             return Err;
3624         }
3625         break;
3626       case bitc::CONSTANTS_BLOCK_ID:
3627         if (Error Err = parseConstants())
3628           return Err;
3629         if (Error Err = resolveGlobalAndIndirectSymbolInits())
3630           return Err;
3631         break;
3632       case bitc::METADATA_BLOCK_ID:
3633         if (ShouldLazyLoadMetadata) {
3634           if (Error Err = rememberAndSkipMetadata())
3635             return Err;
3636           break;
3637         }
3638         assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata");
3639         if (Error Err = MDLoader->parseModuleMetadata())
3640           return Err;
3641         break;
3642       case bitc::METADATA_KIND_BLOCK_ID:
3643         if (Error Err = MDLoader->parseMetadataKinds())
3644           return Err;
3645         break;
3646       case bitc::FUNCTION_BLOCK_ID:
3647         ResolveDataLayout();
3648 
3649         // If this is the first function body we've seen, reverse the
3650         // FunctionsWithBodies list.
3651         if (!SeenFirstFunctionBody) {
3652           std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end());
3653           if (Error Err = globalCleanup())
3654             return Err;
3655           SeenFirstFunctionBody = true;
3656         }
3657 
3658         if (VSTOffset > 0) {
3659           // If we have a VST forward declaration record, make sure we
3660           // parse the VST now if we haven't already. It is needed to
3661           // set up the DeferredFunctionInfo vector for lazy reading.
3662           if (!SeenValueSymbolTable) {
3663             if (Error Err = BitcodeReader::parseValueSymbolTable(VSTOffset))
3664               return Err;
3665             SeenValueSymbolTable = true;
3666             // Fall through so that we record the NextUnreadBit below.
3667             // This is necessary in case we have an anonymous function that
3668             // is later materialized. Since it will not have a VST entry we
3669             // need to fall back to the lazy parse to find its offset.
3670           } else {
3671             // If we have a VST forward declaration record, but have already
3672             // parsed the VST (just above, when the first function body was
3673             // encountered here), then we are resuming the parse after
3674             // materializing functions. The ResumeBit points to the
3675             // start of the last function block recorded in the
3676             // DeferredFunctionInfo map. Skip it.
3677             if (Error Err = Stream.SkipBlock())
3678               return Err;
3679             continue;
3680           }
3681         }
3682 
3683         // Support older bitcode files that did not have the function
3684         // index in the VST, nor a VST forward declaration record, as
3685         // well as anonymous functions that do not have VST entries.
3686         // Build the DeferredFunctionInfo vector on the fly.
3687         if (Error Err = rememberAndSkipFunctionBody())
3688           return Err;
3689 
3690         // Suspend parsing when we reach the function bodies. Subsequent
3691         // materialization calls will resume it when necessary. If the bitcode
3692         // file is old, the symbol table will be at the end instead and will not
3693         // have been seen yet. In this case, just finish the parse now.
3694         if (SeenValueSymbolTable) {
3695           NextUnreadBit = Stream.GetCurrentBitNo();
3696           // After the VST has been parsed, we need to make sure intrinsic name
3697           // are auto-upgraded.
3698           return globalCleanup();
3699         }
3700         break;
3701       case bitc::USELIST_BLOCK_ID:
3702         if (Error Err = parseUseLists())
3703           return Err;
3704         break;
3705       case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID:
3706         if (Error Err = parseOperandBundleTags())
3707           return Err;
3708         break;
3709       case bitc::SYNC_SCOPE_NAMES_BLOCK_ID:
3710         if (Error Err = parseSyncScopeNames())
3711           return Err;
3712         break;
3713       }
3714       continue;
3715 
3716     case BitstreamEntry::Record:
3717       // The interesting case.
3718       break;
3719     }
3720 
3721     // Read a record.
3722     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
3723     if (!MaybeBitCode)
3724       return MaybeBitCode.takeError();
3725     switch (unsigned BitCode = MaybeBitCode.get()) {
3726     default: break;  // Default behavior, ignore unknown content.
3727     case bitc::MODULE_CODE_VERSION: {
3728       Expected<unsigned> VersionOrErr = parseVersionRecord(Record);
3729       if (!VersionOrErr)
3730         return VersionOrErr.takeError();
3731       UseRelativeIDs = *VersionOrErr >= 1;
3732       break;
3733     }
3734     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
3735       if (ResolvedDataLayout)
3736         return error("target triple too late in module");
3737       std::string S;
3738       if (convertToString(Record, 0, S))
3739         return error("Invalid record");
3740       TheModule->setTargetTriple(S);
3741       break;
3742     }
3743     case bitc::MODULE_CODE_DATALAYOUT: {  // DATALAYOUT: [strchr x N]
3744       if (ResolvedDataLayout)
3745         return error("datalayout too late in module");
3746       std::string S;
3747       if (convertToString(Record, 0, S))
3748         return error("Invalid record");
3749       TheModule->setDataLayout(S);
3750       break;
3751     }
3752     case bitc::MODULE_CODE_ASM: {  // ASM: [strchr x N]
3753       std::string S;
3754       if (convertToString(Record, 0, S))
3755         return error("Invalid record");
3756       TheModule->setModuleInlineAsm(S);
3757       break;
3758     }
3759     case bitc::MODULE_CODE_DEPLIB: {  // DEPLIB: [strchr x N]
3760       // Deprecated, but still needed to read old bitcode files.
3761       std::string S;
3762       if (convertToString(Record, 0, S))
3763         return error("Invalid record");
3764       // Ignore value.
3765       break;
3766     }
3767     case bitc::MODULE_CODE_SECTIONNAME: {  // SECTIONNAME: [strchr x N]
3768       std::string S;
3769       if (convertToString(Record, 0, S))
3770         return error("Invalid record");
3771       SectionTable.push_back(S);
3772       break;
3773     }
3774     case bitc::MODULE_CODE_GCNAME: {  // SECTIONNAME: [strchr x N]
3775       std::string S;
3776       if (convertToString(Record, 0, S))
3777         return error("Invalid record");
3778       GCTable.push_back(S);
3779       break;
3780     }
3781     case bitc::MODULE_CODE_COMDAT:
3782       if (Error Err = parseComdatRecord(Record))
3783         return Err;
3784       break;
3785     case bitc::MODULE_CODE_GLOBALVAR:
3786       if (Error Err = parseGlobalVarRecord(Record))
3787         return Err;
3788       break;
3789     case bitc::MODULE_CODE_FUNCTION:
3790       ResolveDataLayout();
3791       if (Error Err = parseFunctionRecord(Record))
3792         return Err;
3793       break;
3794     case bitc::MODULE_CODE_IFUNC:
3795     case bitc::MODULE_CODE_ALIAS:
3796     case bitc::MODULE_CODE_ALIAS_OLD:
3797       if (Error Err = parseGlobalIndirectSymbolRecord(BitCode, Record))
3798         return Err;
3799       break;
3800     /// MODULE_CODE_VSTOFFSET: [offset]
3801     case bitc::MODULE_CODE_VSTOFFSET:
3802       if (Record.empty())
3803         return error("Invalid record");
3804       // Note that we subtract 1 here because the offset is relative to one word
3805       // before the start of the identification or module block, which was
3806       // historically always the start of the regular bitcode header.
3807       VSTOffset = Record[0] - 1;
3808       break;
3809     /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
3810     case bitc::MODULE_CODE_SOURCE_FILENAME:
3811       SmallString<128> ValueName;
3812       if (convertToString(Record, 0, ValueName))
3813         return error("Invalid record");
3814       TheModule->setSourceFileName(ValueName);
3815       break;
3816     }
3817     Record.clear();
3818   }
3819 }
3820 
3821 Error BitcodeReader::parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata,
3822                                       bool IsImporting,
3823                                       DataLayoutCallbackTy DataLayoutCallback) {
3824   TheModule = M;
3825   MDLoader = MetadataLoader(Stream, *M, ValueList, IsImporting,
3826                             [&](unsigned ID) { return getTypeByID(ID); });
3827   return parseModule(0, ShouldLazyLoadMetadata, DataLayoutCallback);
3828 }
3829 
3830 Error BitcodeReader::typeCheckLoadStoreInst(Type *ValType, Type *PtrType) {
3831   if (!isa<PointerType>(PtrType))
3832     return error("Load/Store operand is not a pointer type");
3833 
3834   if (!cast<PointerType>(PtrType)->isOpaqueOrPointeeTypeMatches(ValType))
3835     return error("Explicit load/store type does not match pointee "
3836                  "type of pointer operand");
3837   if (!PointerType::isLoadableOrStorableType(ValType))
3838     return error("Cannot load/store from pointer");
3839   return Error::success();
3840 }
3841 
3842 void BitcodeReader::propagateAttributeTypes(CallBase *CB,
3843                                             ArrayRef<Type *> ArgsTys) {
3844   for (unsigned i = 0; i != CB->arg_size(); ++i) {
3845     for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet,
3846                                      Attribute::InAlloca}) {
3847       if (!CB->paramHasAttr(i, Kind))
3848         continue;
3849 
3850       CB->removeParamAttr(i, Kind);
3851 
3852       Type *PtrEltTy = cast<PointerType>(ArgsTys[i])->getElementType();
3853       Attribute NewAttr;
3854       switch (Kind) {
3855       case Attribute::ByVal:
3856         NewAttr = Attribute::getWithByValType(Context, PtrEltTy);
3857         break;
3858       case Attribute::StructRet:
3859         NewAttr = Attribute::getWithStructRetType(Context, PtrEltTy);
3860         break;
3861       case Attribute::InAlloca:
3862         NewAttr = Attribute::getWithInAllocaType(Context, PtrEltTy);
3863         break;
3864       default:
3865         llvm_unreachable("not an upgraded type attribute");
3866       }
3867 
3868       CB->addParamAttr(i, NewAttr);
3869     }
3870   }
3871 
3872   switch (CB->getIntrinsicID()) {
3873   case Intrinsic::preserve_array_access_index:
3874   case Intrinsic::preserve_struct_access_index:
3875     if (!CB->getAttributes().getParamElementType(0)) {
3876       Type *ElTy = cast<PointerType>(ArgsTys[0])->getElementType();
3877       Attribute NewAttr = Attribute::get(Context, Attribute::ElementType, ElTy);
3878       CB->addParamAttr(0, NewAttr);
3879     }
3880     break;
3881   default:
3882     break;
3883   }
3884 }
3885 
3886 /// Lazily parse the specified function body block.
3887 Error BitcodeReader::parseFunctionBody(Function *F) {
3888   if (Error Err = Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID))
3889     return Err;
3890 
3891   // Unexpected unresolved metadata when parsing function.
3892   if (MDLoader->hasFwdRefs())
3893     return error("Invalid function metadata: incoming forward references");
3894 
3895   InstructionList.clear();
3896   unsigned ModuleValueListSize = ValueList.size();
3897   unsigned ModuleMDLoaderSize = MDLoader->size();
3898 
3899   // Add all the function arguments to the value table.
3900 #ifndef NDEBUG
3901   unsigned ArgNo = 0;
3902   FunctionType *FTy = FunctionTypes[F];
3903 #endif
3904   for (Argument &I : F->args()) {
3905     assert(I.getType() == FTy->getParamType(ArgNo++) &&
3906            "Incorrect fully specified type for Function Argument");
3907     ValueList.push_back(&I);
3908   }
3909   unsigned NextValueNo = ValueList.size();
3910   BasicBlock *CurBB = nullptr;
3911   unsigned CurBBNo = 0;
3912 
3913   DebugLoc LastLoc;
3914   auto getLastInstruction = [&]() -> Instruction * {
3915     if (CurBB && !CurBB->empty())
3916       return &CurBB->back();
3917     else if (CurBBNo && FunctionBBs[CurBBNo - 1] &&
3918              !FunctionBBs[CurBBNo - 1]->empty())
3919       return &FunctionBBs[CurBBNo - 1]->back();
3920     return nullptr;
3921   };
3922 
3923   std::vector<OperandBundleDef> OperandBundles;
3924 
3925   // Read all the records.
3926   SmallVector<uint64_t, 64> Record;
3927 
3928   while (true) {
3929     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
3930     if (!MaybeEntry)
3931       return MaybeEntry.takeError();
3932     llvm::BitstreamEntry Entry = MaybeEntry.get();
3933 
3934     switch (Entry.Kind) {
3935     case BitstreamEntry::Error:
3936       return error("Malformed block");
3937     case BitstreamEntry::EndBlock:
3938       goto OutOfRecordLoop;
3939 
3940     case BitstreamEntry::SubBlock:
3941       switch (Entry.ID) {
3942       default:  // Skip unknown content.
3943         if (Error Err = Stream.SkipBlock())
3944           return Err;
3945         break;
3946       case bitc::CONSTANTS_BLOCK_ID:
3947         if (Error Err = parseConstants())
3948           return Err;
3949         NextValueNo = ValueList.size();
3950         break;
3951       case bitc::VALUE_SYMTAB_BLOCK_ID:
3952         if (Error Err = parseValueSymbolTable())
3953           return Err;
3954         break;
3955       case bitc::METADATA_ATTACHMENT_ID:
3956         if (Error Err = MDLoader->parseMetadataAttachment(*F, InstructionList))
3957           return Err;
3958         break;
3959       case bitc::METADATA_BLOCK_ID:
3960         assert(DeferredMetadataInfo.empty() &&
3961                "Must read all module-level metadata before function-level");
3962         if (Error Err = MDLoader->parseFunctionMetadata())
3963           return Err;
3964         break;
3965       case bitc::USELIST_BLOCK_ID:
3966         if (Error Err = parseUseLists())
3967           return Err;
3968         break;
3969       }
3970       continue;
3971 
3972     case BitstreamEntry::Record:
3973       // The interesting case.
3974       break;
3975     }
3976 
3977     // Read a record.
3978     Record.clear();
3979     Instruction *I = nullptr;
3980     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
3981     if (!MaybeBitCode)
3982       return MaybeBitCode.takeError();
3983     switch (unsigned BitCode = MaybeBitCode.get()) {
3984     default: // Default behavior: reject
3985       return error("Invalid value");
3986     case bitc::FUNC_CODE_DECLAREBLOCKS: {   // DECLAREBLOCKS: [nblocks]
3987       if (Record.empty() || Record[0] == 0)
3988         return error("Invalid record");
3989       // Create all the basic blocks for the function.
3990       FunctionBBs.resize(Record[0]);
3991 
3992       // See if anything took the address of blocks in this function.
3993       auto BBFRI = BasicBlockFwdRefs.find(F);
3994       if (BBFRI == BasicBlockFwdRefs.end()) {
3995         for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i)
3996           FunctionBBs[i] = BasicBlock::Create(Context, "", F);
3997       } else {
3998         auto &BBRefs = BBFRI->second;
3999         // Check for invalid basic block references.
4000         if (BBRefs.size() > FunctionBBs.size())
4001           return error("Invalid ID");
4002         assert(!BBRefs.empty() && "Unexpected empty array");
4003         assert(!BBRefs.front() && "Invalid reference to entry block");
4004         for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E;
4005              ++I)
4006           if (I < RE && BBRefs[I]) {
4007             BBRefs[I]->insertInto(F);
4008             FunctionBBs[I] = BBRefs[I];
4009           } else {
4010             FunctionBBs[I] = BasicBlock::Create(Context, "", F);
4011           }
4012 
4013         // Erase from the table.
4014         BasicBlockFwdRefs.erase(BBFRI);
4015       }
4016 
4017       CurBB = FunctionBBs[0];
4018       continue;
4019     }
4020 
4021     case bitc::FUNC_CODE_DEBUG_LOC_AGAIN:  // DEBUG_LOC_AGAIN
4022       // This record indicates that the last instruction is at the same
4023       // location as the previous instruction with a location.
4024       I = getLastInstruction();
4025 
4026       if (!I)
4027         return error("Invalid record");
4028       I->setDebugLoc(LastLoc);
4029       I = nullptr;
4030       continue;
4031 
4032     case bitc::FUNC_CODE_DEBUG_LOC: {      // DEBUG_LOC: [line, col, scope, ia]
4033       I = getLastInstruction();
4034       if (!I || Record.size() < 4)
4035         return error("Invalid record");
4036 
4037       unsigned Line = Record[0], Col = Record[1];
4038       unsigned ScopeID = Record[2], IAID = Record[3];
4039       bool isImplicitCode = Record.size() == 5 && Record[4];
4040 
4041       MDNode *Scope = nullptr, *IA = nullptr;
4042       if (ScopeID) {
4043         Scope = dyn_cast_or_null<MDNode>(
4044             MDLoader->getMetadataFwdRefOrLoad(ScopeID - 1));
4045         if (!Scope)
4046           return error("Invalid record");
4047       }
4048       if (IAID) {
4049         IA = dyn_cast_or_null<MDNode>(
4050             MDLoader->getMetadataFwdRefOrLoad(IAID - 1));
4051         if (!IA)
4052           return error("Invalid record");
4053       }
4054       LastLoc = DILocation::get(Scope->getContext(), Line, Col, Scope, IA,
4055                                 isImplicitCode);
4056       I->setDebugLoc(LastLoc);
4057       I = nullptr;
4058       continue;
4059     }
4060     case bitc::FUNC_CODE_INST_UNOP: {    // UNOP: [opval, ty, opcode]
4061       unsigned OpNum = 0;
4062       Value *LHS;
4063       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
4064           OpNum+1 > Record.size())
4065         return error("Invalid record");
4066 
4067       int Opc = getDecodedUnaryOpcode(Record[OpNum++], LHS->getType());
4068       if (Opc == -1)
4069         return error("Invalid record");
4070       I = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS);
4071       InstructionList.push_back(I);
4072       if (OpNum < Record.size()) {
4073         if (isa<FPMathOperator>(I)) {
4074           FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
4075           if (FMF.any())
4076             I->setFastMathFlags(FMF);
4077         }
4078       }
4079       break;
4080     }
4081     case bitc::FUNC_CODE_INST_BINOP: {    // BINOP: [opval, ty, opval, opcode]
4082       unsigned OpNum = 0;
4083       Value *LHS, *RHS;
4084       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
4085           popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) ||
4086           OpNum+1 > Record.size())
4087         return error("Invalid record");
4088 
4089       int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType());
4090       if (Opc == -1)
4091         return error("Invalid record");
4092       I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
4093       InstructionList.push_back(I);
4094       if (OpNum < Record.size()) {
4095         if (Opc == Instruction::Add ||
4096             Opc == Instruction::Sub ||
4097             Opc == Instruction::Mul ||
4098             Opc == Instruction::Shl) {
4099           if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP))
4100             cast<BinaryOperator>(I)->setHasNoSignedWrap(true);
4101           if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
4102             cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true);
4103         } else if (Opc == Instruction::SDiv ||
4104                    Opc == Instruction::UDiv ||
4105                    Opc == Instruction::LShr ||
4106                    Opc == Instruction::AShr) {
4107           if (Record[OpNum] & (1 << bitc::PEO_EXACT))
4108             cast<BinaryOperator>(I)->setIsExact(true);
4109         } else if (isa<FPMathOperator>(I)) {
4110           FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
4111           if (FMF.any())
4112             I->setFastMathFlags(FMF);
4113         }
4114 
4115       }
4116       break;
4117     }
4118     case bitc::FUNC_CODE_INST_CAST: {    // CAST: [opval, opty, destty, castopc]
4119       unsigned OpNum = 0;
4120       Value *Op;
4121       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
4122           OpNum+2 != Record.size())
4123         return error("Invalid record");
4124 
4125       Type *ResTy = getTypeByID(Record[OpNum]);
4126       int Opc = getDecodedCastOpcode(Record[OpNum + 1]);
4127       if (Opc == -1 || !ResTy)
4128         return error("Invalid record");
4129       Instruction *Temp = nullptr;
4130       if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) {
4131         if (Temp) {
4132           InstructionList.push_back(Temp);
4133           assert(CurBB && "No current BB?");
4134           CurBB->getInstList().push_back(Temp);
4135         }
4136       } else {
4137         auto CastOp = (Instruction::CastOps)Opc;
4138         if (!CastInst::castIsValid(CastOp, Op, ResTy))
4139           return error("Invalid cast");
4140         I = CastInst::Create(CastOp, Op, ResTy);
4141       }
4142       InstructionList.push_back(I);
4143       break;
4144     }
4145     case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD:
4146     case bitc::FUNC_CODE_INST_GEP_OLD:
4147     case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands]
4148       unsigned OpNum = 0;
4149 
4150       Type *Ty;
4151       bool InBounds;
4152 
4153       if (BitCode == bitc::FUNC_CODE_INST_GEP) {
4154         InBounds = Record[OpNum++];
4155         Ty = getTypeByID(Record[OpNum++]);
4156       } else {
4157         InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD;
4158         Ty = nullptr;
4159       }
4160 
4161       Value *BasePtr;
4162       if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr))
4163         return error("Invalid record");
4164 
4165       if (!Ty) {
4166         Ty = cast<PointerType>(BasePtr->getType()->getScalarType())
4167                  ->getElementType();
4168       } else if (!cast<PointerType>(BasePtr->getType()->getScalarType())
4169                       ->isOpaqueOrPointeeTypeMatches(Ty)) {
4170         return error(
4171             "Explicit gep type does not match pointee type of pointer operand");
4172       }
4173 
4174       SmallVector<Value*, 16> GEPIdx;
4175       while (OpNum != Record.size()) {
4176         Value *Op;
4177         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4178           return error("Invalid record");
4179         GEPIdx.push_back(Op);
4180       }
4181 
4182       I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx);
4183 
4184       InstructionList.push_back(I);
4185       if (InBounds)
4186         cast<GetElementPtrInst>(I)->setIsInBounds(true);
4187       break;
4188     }
4189 
4190     case bitc::FUNC_CODE_INST_EXTRACTVAL: {
4191                                        // EXTRACTVAL: [opty, opval, n x indices]
4192       unsigned OpNum = 0;
4193       Value *Agg;
4194       if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
4195         return error("Invalid record");
4196       Type *Ty = Agg->getType();
4197 
4198       unsigned RecSize = Record.size();
4199       if (OpNum == RecSize)
4200         return error("EXTRACTVAL: Invalid instruction with 0 indices");
4201 
4202       SmallVector<unsigned, 4> EXTRACTVALIdx;
4203       for (; OpNum != RecSize; ++OpNum) {
4204         bool IsArray = Ty->isArrayTy();
4205         bool IsStruct = Ty->isStructTy();
4206         uint64_t Index = Record[OpNum];
4207 
4208         if (!IsStruct && !IsArray)
4209           return error("EXTRACTVAL: Invalid type");
4210         if ((unsigned)Index != Index)
4211           return error("Invalid value");
4212         if (IsStruct && Index >= Ty->getStructNumElements())
4213           return error("EXTRACTVAL: Invalid struct index");
4214         if (IsArray && Index >= Ty->getArrayNumElements())
4215           return error("EXTRACTVAL: Invalid array index");
4216         EXTRACTVALIdx.push_back((unsigned)Index);
4217 
4218         if (IsStruct)
4219           Ty = Ty->getStructElementType(Index);
4220         else
4221           Ty = Ty->getArrayElementType();
4222       }
4223 
4224       I = ExtractValueInst::Create(Agg, EXTRACTVALIdx);
4225       InstructionList.push_back(I);
4226       break;
4227     }
4228 
4229     case bitc::FUNC_CODE_INST_INSERTVAL: {
4230                            // INSERTVAL: [opty, opval, opty, opval, n x indices]
4231       unsigned OpNum = 0;
4232       Value *Agg;
4233       if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
4234         return error("Invalid record");
4235       Value *Val;
4236       if (getValueTypePair(Record, OpNum, NextValueNo, Val))
4237         return error("Invalid record");
4238 
4239       unsigned RecSize = Record.size();
4240       if (OpNum == RecSize)
4241         return error("INSERTVAL: Invalid instruction with 0 indices");
4242 
4243       SmallVector<unsigned, 4> INSERTVALIdx;
4244       Type *CurTy = Agg->getType();
4245       for (; OpNum != RecSize; ++OpNum) {
4246         bool IsArray = CurTy->isArrayTy();
4247         bool IsStruct = CurTy->isStructTy();
4248         uint64_t Index = Record[OpNum];
4249 
4250         if (!IsStruct && !IsArray)
4251           return error("INSERTVAL: Invalid type");
4252         if ((unsigned)Index != Index)
4253           return error("Invalid value");
4254         if (IsStruct && Index >= CurTy->getStructNumElements())
4255           return error("INSERTVAL: Invalid struct index");
4256         if (IsArray && Index >= CurTy->getArrayNumElements())
4257           return error("INSERTVAL: Invalid array index");
4258 
4259         INSERTVALIdx.push_back((unsigned)Index);
4260         if (IsStruct)
4261           CurTy = CurTy->getStructElementType(Index);
4262         else
4263           CurTy = CurTy->getArrayElementType();
4264       }
4265 
4266       if (CurTy != Val->getType())
4267         return error("Inserted value type doesn't match aggregate type");
4268 
4269       I = InsertValueInst::Create(Agg, Val, INSERTVALIdx);
4270       InstructionList.push_back(I);
4271       break;
4272     }
4273 
4274     case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval]
4275       // obsolete form of select
4276       // handles select i1 ... in old bitcode
4277       unsigned OpNum = 0;
4278       Value *TrueVal, *FalseVal, *Cond;
4279       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
4280           popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) ||
4281           popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond))
4282         return error("Invalid record");
4283 
4284       I = SelectInst::Create(Cond, TrueVal, FalseVal);
4285       InstructionList.push_back(I);
4286       break;
4287     }
4288 
4289     case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred]
4290       // new form of select
4291       // handles select i1 or select [N x i1]
4292       unsigned OpNum = 0;
4293       Value *TrueVal, *FalseVal, *Cond;
4294       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
4295           popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) ||
4296           getValueTypePair(Record, OpNum, NextValueNo, Cond))
4297         return error("Invalid record");
4298 
4299       // select condition can be either i1 or [N x i1]
4300       if (VectorType* vector_type =
4301           dyn_cast<VectorType>(Cond->getType())) {
4302         // expect <n x i1>
4303         if (vector_type->getElementType() != Type::getInt1Ty(Context))
4304           return error("Invalid type for value");
4305       } else {
4306         // expect i1
4307         if (Cond->getType() != Type::getInt1Ty(Context))
4308           return error("Invalid type for value");
4309       }
4310 
4311       I = SelectInst::Create(Cond, TrueVal, FalseVal);
4312       InstructionList.push_back(I);
4313       if (OpNum < Record.size() && isa<FPMathOperator>(I)) {
4314         FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
4315         if (FMF.any())
4316           I->setFastMathFlags(FMF);
4317       }
4318       break;
4319     }
4320 
4321     case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval]
4322       unsigned OpNum = 0;
4323       Value *Vec, *Idx;
4324       if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
4325           getValueTypePair(Record, OpNum, NextValueNo, Idx))
4326         return error("Invalid record");
4327       if (!Vec->getType()->isVectorTy())
4328         return error("Invalid type for value");
4329       I = ExtractElementInst::Create(Vec, Idx);
4330       InstructionList.push_back(I);
4331       break;
4332     }
4333 
4334     case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval]
4335       unsigned OpNum = 0;
4336       Value *Vec, *Elt, *Idx;
4337       if (getValueTypePair(Record, OpNum, NextValueNo, Vec))
4338         return error("Invalid record");
4339       if (!Vec->getType()->isVectorTy())
4340         return error("Invalid type for value");
4341       if (popValue(Record, OpNum, NextValueNo,
4342                    cast<VectorType>(Vec->getType())->getElementType(), Elt) ||
4343           getValueTypePair(Record, OpNum, NextValueNo, Idx))
4344         return error("Invalid record");
4345       I = InsertElementInst::Create(Vec, Elt, Idx);
4346       InstructionList.push_back(I);
4347       break;
4348     }
4349 
4350     case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval]
4351       unsigned OpNum = 0;
4352       Value *Vec1, *Vec2, *Mask;
4353       if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) ||
4354           popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2))
4355         return error("Invalid record");
4356 
4357       if (getValueTypePair(Record, OpNum, NextValueNo, Mask))
4358         return error("Invalid record");
4359       if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy())
4360         return error("Invalid type for value");
4361 
4362       I = new ShuffleVectorInst(Vec1, Vec2, Mask);
4363       InstructionList.push_back(I);
4364       break;
4365     }
4366 
4367     case bitc::FUNC_CODE_INST_CMP:   // CMP: [opty, opval, opval, pred]
4368       // Old form of ICmp/FCmp returning bool
4369       // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were
4370       // both legal on vectors but had different behaviour.
4371     case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred]
4372       // FCmp/ICmp returning bool or vector of bool
4373 
4374       unsigned OpNum = 0;
4375       Value *LHS, *RHS;
4376       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
4377           popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS))
4378         return error("Invalid record");
4379 
4380       if (OpNum >= Record.size())
4381         return error(
4382             "Invalid record: operand number exceeded available operands");
4383 
4384       unsigned PredVal = Record[OpNum];
4385       bool IsFP = LHS->getType()->isFPOrFPVectorTy();
4386       FastMathFlags FMF;
4387       if (IsFP && Record.size() > OpNum+1)
4388         FMF = getDecodedFastMathFlags(Record[++OpNum]);
4389 
4390       if (OpNum+1 != Record.size())
4391         return error("Invalid record");
4392 
4393       if (LHS->getType()->isFPOrFPVectorTy())
4394         I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS);
4395       else
4396         I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS);
4397 
4398       if (FMF.any())
4399         I->setFastMathFlags(FMF);
4400       InstructionList.push_back(I);
4401       break;
4402     }
4403 
4404     case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>]
4405       {
4406         unsigned Size = Record.size();
4407         if (Size == 0) {
4408           I = ReturnInst::Create(Context);
4409           InstructionList.push_back(I);
4410           break;
4411         }
4412 
4413         unsigned OpNum = 0;
4414         Value *Op = nullptr;
4415         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4416           return error("Invalid record");
4417         if (OpNum != Record.size())
4418           return error("Invalid record");
4419 
4420         I = ReturnInst::Create(Context, Op);
4421         InstructionList.push_back(I);
4422         break;
4423       }
4424     case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#]
4425       if (Record.size() != 1 && Record.size() != 3)
4426         return error("Invalid record");
4427       BasicBlock *TrueDest = getBasicBlock(Record[0]);
4428       if (!TrueDest)
4429         return error("Invalid record");
4430 
4431       if (Record.size() == 1) {
4432         I = BranchInst::Create(TrueDest);
4433         InstructionList.push_back(I);
4434       }
4435       else {
4436         BasicBlock *FalseDest = getBasicBlock(Record[1]);
4437         Value *Cond = getValue(Record, 2, NextValueNo,
4438                                Type::getInt1Ty(Context));
4439         if (!FalseDest || !Cond)
4440           return error("Invalid record");
4441         I = BranchInst::Create(TrueDest, FalseDest, Cond);
4442         InstructionList.push_back(I);
4443       }
4444       break;
4445     }
4446     case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#]
4447       if (Record.size() != 1 && Record.size() != 2)
4448         return error("Invalid record");
4449       unsigned Idx = 0;
4450       Value *CleanupPad =
4451           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4452       if (!CleanupPad)
4453         return error("Invalid record");
4454       BasicBlock *UnwindDest = nullptr;
4455       if (Record.size() == 2) {
4456         UnwindDest = getBasicBlock(Record[Idx++]);
4457         if (!UnwindDest)
4458           return error("Invalid record");
4459       }
4460 
4461       I = CleanupReturnInst::Create(CleanupPad, UnwindDest);
4462       InstructionList.push_back(I);
4463       break;
4464     }
4465     case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#]
4466       if (Record.size() != 2)
4467         return error("Invalid record");
4468       unsigned Idx = 0;
4469       Value *CatchPad =
4470           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4471       if (!CatchPad)
4472         return error("Invalid record");
4473       BasicBlock *BB = getBasicBlock(Record[Idx++]);
4474       if (!BB)
4475         return error("Invalid record");
4476 
4477       I = CatchReturnInst::Create(CatchPad, BB);
4478       InstructionList.push_back(I);
4479       break;
4480     }
4481     case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?]
4482       // We must have, at minimum, the outer scope and the number of arguments.
4483       if (Record.size() < 2)
4484         return error("Invalid record");
4485 
4486       unsigned Idx = 0;
4487 
4488       Value *ParentPad =
4489           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4490 
4491       unsigned NumHandlers = Record[Idx++];
4492 
4493       SmallVector<BasicBlock *, 2> Handlers;
4494       for (unsigned Op = 0; Op != NumHandlers; ++Op) {
4495         BasicBlock *BB = getBasicBlock(Record[Idx++]);
4496         if (!BB)
4497           return error("Invalid record");
4498         Handlers.push_back(BB);
4499       }
4500 
4501       BasicBlock *UnwindDest = nullptr;
4502       if (Idx + 1 == Record.size()) {
4503         UnwindDest = getBasicBlock(Record[Idx++]);
4504         if (!UnwindDest)
4505           return error("Invalid record");
4506       }
4507 
4508       if (Record.size() != Idx)
4509         return error("Invalid record");
4510 
4511       auto *CatchSwitch =
4512           CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers);
4513       for (BasicBlock *Handler : Handlers)
4514         CatchSwitch->addHandler(Handler);
4515       I = CatchSwitch;
4516       InstructionList.push_back(I);
4517       break;
4518     }
4519     case bitc::FUNC_CODE_INST_CATCHPAD:
4520     case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*]
4521       // We must have, at minimum, the outer scope and the number of arguments.
4522       if (Record.size() < 2)
4523         return error("Invalid record");
4524 
4525       unsigned Idx = 0;
4526 
4527       Value *ParentPad =
4528           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4529 
4530       unsigned NumArgOperands = Record[Idx++];
4531 
4532       SmallVector<Value *, 2> Args;
4533       for (unsigned Op = 0; Op != NumArgOperands; ++Op) {
4534         Value *Val;
4535         if (getValueTypePair(Record, Idx, NextValueNo, Val))
4536           return error("Invalid record");
4537         Args.push_back(Val);
4538       }
4539 
4540       if (Record.size() != Idx)
4541         return error("Invalid record");
4542 
4543       if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD)
4544         I = CleanupPadInst::Create(ParentPad, Args);
4545       else
4546         I = CatchPadInst::Create(ParentPad, Args);
4547       InstructionList.push_back(I);
4548       break;
4549     }
4550     case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...]
4551       // Check magic
4552       if ((Record[0] >> 16) == SWITCH_INST_MAGIC) {
4553         // "New" SwitchInst format with case ranges. The changes to write this
4554         // format were reverted but we still recognize bitcode that uses it.
4555         // Hopefully someday we will have support for case ranges and can use
4556         // this format again.
4557 
4558         Type *OpTy = getTypeByID(Record[1]);
4559         unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth();
4560 
4561         Value *Cond = getValue(Record, 2, NextValueNo, OpTy);
4562         BasicBlock *Default = getBasicBlock(Record[3]);
4563         if (!OpTy || !Cond || !Default)
4564           return error("Invalid record");
4565 
4566         unsigned NumCases = Record[4];
4567 
4568         SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
4569         InstructionList.push_back(SI);
4570 
4571         unsigned CurIdx = 5;
4572         for (unsigned i = 0; i != NumCases; ++i) {
4573           SmallVector<ConstantInt*, 1> CaseVals;
4574           unsigned NumItems = Record[CurIdx++];
4575           for (unsigned ci = 0; ci != NumItems; ++ci) {
4576             bool isSingleNumber = Record[CurIdx++];
4577 
4578             APInt Low;
4579             unsigned ActiveWords = 1;
4580             if (ValueBitWidth > 64)
4581               ActiveWords = Record[CurIdx++];
4582             Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords),
4583                                 ValueBitWidth);
4584             CurIdx += ActiveWords;
4585 
4586             if (!isSingleNumber) {
4587               ActiveWords = 1;
4588               if (ValueBitWidth > 64)
4589                 ActiveWords = Record[CurIdx++];
4590               APInt High = readWideAPInt(
4591                   makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth);
4592               CurIdx += ActiveWords;
4593 
4594               // FIXME: It is not clear whether values in the range should be
4595               // compared as signed or unsigned values. The partially
4596               // implemented changes that used this format in the past used
4597               // unsigned comparisons.
4598               for ( ; Low.ule(High); ++Low)
4599                 CaseVals.push_back(ConstantInt::get(Context, Low));
4600             } else
4601               CaseVals.push_back(ConstantInt::get(Context, Low));
4602           }
4603           BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]);
4604           for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(),
4605                  cve = CaseVals.end(); cvi != cve; ++cvi)
4606             SI->addCase(*cvi, DestBB);
4607         }
4608         I = SI;
4609         break;
4610       }
4611 
4612       // Old SwitchInst format without case ranges.
4613 
4614       if (Record.size() < 3 || (Record.size() & 1) == 0)
4615         return error("Invalid record");
4616       Type *OpTy = getTypeByID(Record[0]);
4617       Value *Cond = getValue(Record, 1, NextValueNo, OpTy);
4618       BasicBlock *Default = getBasicBlock(Record[2]);
4619       if (!OpTy || !Cond || !Default)
4620         return error("Invalid record");
4621       unsigned NumCases = (Record.size()-3)/2;
4622       SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
4623       InstructionList.push_back(SI);
4624       for (unsigned i = 0, e = NumCases; i != e; ++i) {
4625         ConstantInt *CaseVal =
4626           dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy));
4627         BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]);
4628         if (!CaseVal || !DestBB) {
4629           delete SI;
4630           return error("Invalid record");
4631         }
4632         SI->addCase(CaseVal, DestBB);
4633       }
4634       I = SI;
4635       break;
4636     }
4637     case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...]
4638       if (Record.size() < 2)
4639         return error("Invalid record");
4640       Type *OpTy = getTypeByID(Record[0]);
4641       Value *Address = getValue(Record, 1, NextValueNo, OpTy);
4642       if (!OpTy || !Address)
4643         return error("Invalid record");
4644       unsigned NumDests = Record.size()-2;
4645       IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests);
4646       InstructionList.push_back(IBI);
4647       for (unsigned i = 0, e = NumDests; i != e; ++i) {
4648         if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) {
4649           IBI->addDestination(DestBB);
4650         } else {
4651           delete IBI;
4652           return error("Invalid record");
4653         }
4654       }
4655       I = IBI;
4656       break;
4657     }
4658 
4659     case bitc::FUNC_CODE_INST_INVOKE: {
4660       // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...]
4661       if (Record.size() < 4)
4662         return error("Invalid record");
4663       unsigned OpNum = 0;
4664       AttributeList PAL = getAttributes(Record[OpNum++]);
4665       unsigned CCInfo = Record[OpNum++];
4666       BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]);
4667       BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]);
4668 
4669       FunctionType *FTy = nullptr;
4670       if ((CCInfo >> 13) & 1) {
4671         FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++]));
4672         if (!FTy)
4673           return error("Explicit invoke type is not a function type");
4674       }
4675 
4676       Value *Callee;
4677       if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
4678         return error("Invalid record");
4679 
4680       PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType());
4681       if (!CalleeTy)
4682         return error("Callee is not a pointer");
4683       if (!FTy) {
4684         FTy = dyn_cast<FunctionType>(
4685             cast<PointerType>(Callee->getType())->getElementType());
4686         if (!FTy)
4687           return error("Callee is not of pointer to function type");
4688       } else if (!CalleeTy->isOpaqueOrPointeeTypeMatches(FTy))
4689         return error("Explicit invoke type does not match pointee type of "
4690                      "callee operand");
4691       if (Record.size() < FTy->getNumParams() + OpNum)
4692         return error("Insufficient operands to call");
4693 
4694       SmallVector<Value*, 16> Ops;
4695       SmallVector<Type *, 16> ArgsTys;
4696       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
4697         Ops.push_back(getValue(Record, OpNum, NextValueNo,
4698                                FTy->getParamType(i)));
4699         ArgsTys.push_back(FTy->getParamType(i));
4700         if (!Ops.back())
4701           return error("Invalid record");
4702       }
4703 
4704       if (!FTy->isVarArg()) {
4705         if (Record.size() != OpNum)
4706           return error("Invalid record");
4707       } else {
4708         // Read type/value pairs for varargs params.
4709         while (OpNum != Record.size()) {
4710           Value *Op;
4711           if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4712             return error("Invalid record");
4713           Ops.push_back(Op);
4714           ArgsTys.push_back(Op->getType());
4715         }
4716       }
4717 
4718       I = InvokeInst::Create(FTy, Callee, NormalBB, UnwindBB, Ops,
4719                              OperandBundles);
4720       OperandBundles.clear();
4721       InstructionList.push_back(I);
4722       cast<InvokeInst>(I)->setCallingConv(
4723           static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo));
4724       cast<InvokeInst>(I)->setAttributes(PAL);
4725       propagateAttributeTypes(cast<CallBase>(I), ArgsTys);
4726 
4727       break;
4728     }
4729     case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval]
4730       unsigned Idx = 0;
4731       Value *Val = nullptr;
4732       if (getValueTypePair(Record, Idx, NextValueNo, Val))
4733         return error("Invalid record");
4734       I = ResumeInst::Create(Val);
4735       InstructionList.push_back(I);
4736       break;
4737     }
4738     case bitc::FUNC_CODE_INST_CALLBR: {
4739       // CALLBR: [attr, cc, norm, transfs, fty, fnid, args]
4740       unsigned OpNum = 0;
4741       AttributeList PAL = getAttributes(Record[OpNum++]);
4742       unsigned CCInfo = Record[OpNum++];
4743 
4744       BasicBlock *DefaultDest = getBasicBlock(Record[OpNum++]);
4745       unsigned NumIndirectDests = Record[OpNum++];
4746       SmallVector<BasicBlock *, 16> IndirectDests;
4747       for (unsigned i = 0, e = NumIndirectDests; i != e; ++i)
4748         IndirectDests.push_back(getBasicBlock(Record[OpNum++]));
4749 
4750       FunctionType *FTy = nullptr;
4751       if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) {
4752         FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++]));
4753         if (!FTy)
4754           return error("Explicit call type is not a function type");
4755       }
4756 
4757       Value *Callee;
4758       if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
4759         return error("Invalid record");
4760 
4761       PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
4762       if (!OpTy)
4763         return error("Callee is not a pointer type");
4764       if (!FTy) {
4765         FTy = dyn_cast<FunctionType>(
4766             cast<PointerType>(Callee->getType())->getElementType());
4767         if (!FTy)
4768           return error("Callee is not of pointer to function type");
4769       } else if (cast<PointerType>(Callee->getType())->getElementType() != FTy)
4770         return error("Explicit call type does not match pointee type of "
4771                      "callee operand");
4772       if (Record.size() < FTy->getNumParams() + OpNum)
4773         return error("Insufficient operands to call");
4774 
4775       SmallVector<Value*, 16> Args;
4776       // Read the fixed params.
4777       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
4778         if (FTy->getParamType(i)->isLabelTy())
4779           Args.push_back(getBasicBlock(Record[OpNum]));
4780         else
4781           Args.push_back(getValue(Record, OpNum, NextValueNo,
4782                                   FTy->getParamType(i)));
4783         if (!Args.back())
4784           return error("Invalid record");
4785       }
4786 
4787       // Read type/value pairs for varargs params.
4788       if (!FTy->isVarArg()) {
4789         if (OpNum != Record.size())
4790           return error("Invalid record");
4791       } else {
4792         while (OpNum != Record.size()) {
4793           Value *Op;
4794           if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4795             return error("Invalid record");
4796           Args.push_back(Op);
4797         }
4798       }
4799 
4800       I = CallBrInst::Create(FTy, Callee, DefaultDest, IndirectDests, Args,
4801                              OperandBundles);
4802       OperandBundles.clear();
4803       InstructionList.push_back(I);
4804       cast<CallBrInst>(I)->setCallingConv(
4805           static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV));
4806       cast<CallBrInst>(I)->setAttributes(PAL);
4807       break;
4808     }
4809     case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE
4810       I = new UnreachableInst(Context);
4811       InstructionList.push_back(I);
4812       break;
4813     case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...]
4814       if (Record.empty())
4815         return error("Invalid record");
4816       // The first record specifies the type.
4817       Type *Ty = getTypeByID(Record[0]);
4818       if (!Ty)
4819         return error("Invalid record");
4820 
4821       // Phi arguments are pairs of records of [value, basic block].
4822       // There is an optional final record for fast-math-flags if this phi has a
4823       // floating-point type.
4824       size_t NumArgs = (Record.size() - 1) / 2;
4825       PHINode *PN = PHINode::Create(Ty, NumArgs);
4826       if ((Record.size() - 1) % 2 == 1 && !isa<FPMathOperator>(PN))
4827         return error("Invalid record");
4828       InstructionList.push_back(PN);
4829 
4830       for (unsigned i = 0; i != NumArgs; i++) {
4831         Value *V;
4832         // With the new function encoding, it is possible that operands have
4833         // negative IDs (for forward references).  Use a signed VBR
4834         // representation to keep the encoding small.
4835         if (UseRelativeIDs)
4836           V = getValueSigned(Record, i * 2 + 1, NextValueNo, Ty);
4837         else
4838           V = getValue(Record, i * 2 + 1, NextValueNo, Ty);
4839         BasicBlock *BB = getBasicBlock(Record[i * 2 + 2]);
4840         if (!V || !BB)
4841           return error("Invalid record");
4842         PN->addIncoming(V, BB);
4843       }
4844       I = PN;
4845 
4846       // If there are an even number of records, the final record must be FMF.
4847       if (Record.size() % 2 == 0) {
4848         assert(isa<FPMathOperator>(I) && "Unexpected phi type");
4849         FastMathFlags FMF = getDecodedFastMathFlags(Record[Record.size() - 1]);
4850         if (FMF.any())
4851           I->setFastMathFlags(FMF);
4852       }
4853 
4854       break;
4855     }
4856 
4857     case bitc::FUNC_CODE_INST_LANDINGPAD:
4858     case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: {
4859       // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?]
4860       unsigned Idx = 0;
4861       if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) {
4862         if (Record.size() < 3)
4863           return error("Invalid record");
4864       } else {
4865         assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD);
4866         if (Record.size() < 4)
4867           return error("Invalid record");
4868       }
4869       Type *Ty = getTypeByID(Record[Idx++]);
4870       if (!Ty)
4871         return error("Invalid record");
4872       if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) {
4873         Value *PersFn = nullptr;
4874         if (getValueTypePair(Record, Idx, NextValueNo, PersFn))
4875           return error("Invalid record");
4876 
4877         if (!F->hasPersonalityFn())
4878           F->setPersonalityFn(cast<Constant>(PersFn));
4879         else if (F->getPersonalityFn() != cast<Constant>(PersFn))
4880           return error("Personality function mismatch");
4881       }
4882 
4883       bool IsCleanup = !!Record[Idx++];
4884       unsigned NumClauses = Record[Idx++];
4885       LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses);
4886       LP->setCleanup(IsCleanup);
4887       for (unsigned J = 0; J != NumClauses; ++J) {
4888         LandingPadInst::ClauseType CT =
4889           LandingPadInst::ClauseType(Record[Idx++]); (void)CT;
4890         Value *Val;
4891 
4892         if (getValueTypePair(Record, Idx, NextValueNo, Val)) {
4893           delete LP;
4894           return error("Invalid record");
4895         }
4896 
4897         assert((CT != LandingPadInst::Catch ||
4898                 !isa<ArrayType>(Val->getType())) &&
4899                "Catch clause has a invalid type!");
4900         assert((CT != LandingPadInst::Filter ||
4901                 isa<ArrayType>(Val->getType())) &&
4902                "Filter clause has invalid type!");
4903         LP->addClause(cast<Constant>(Val));
4904       }
4905 
4906       I = LP;
4907       InstructionList.push_back(I);
4908       break;
4909     }
4910 
4911     case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align]
4912       if (Record.size() != 4)
4913         return error("Invalid record");
4914       using APV = AllocaPackedValues;
4915       const uint64_t Rec = Record[3];
4916       const bool InAlloca = Bitfield::get<APV::UsedWithInAlloca>(Rec);
4917       const bool SwiftError = Bitfield::get<APV::SwiftError>(Rec);
4918       Type *Ty = getTypeByID(Record[0]);
4919       if (!Bitfield::get<APV::ExplicitType>(Rec)) {
4920         auto *PTy = dyn_cast_or_null<PointerType>(Ty);
4921         if (!PTy)
4922           return error("Old-style alloca with a non-pointer type");
4923         Ty = PTy->getElementType();
4924       }
4925       Type *OpTy = getTypeByID(Record[1]);
4926       Value *Size = getFnValueByID(Record[2], OpTy);
4927       MaybeAlign Align;
4928       uint64_t AlignExp =
4929           Bitfield::get<APV::AlignLower>(Rec) |
4930           (Bitfield::get<APV::AlignUpper>(Rec) << APV::AlignLower::Bits);
4931       if (Error Err = parseAlignmentValue(AlignExp, Align)) {
4932         return Err;
4933       }
4934       if (!Ty || !Size)
4935         return error("Invalid record");
4936 
4937       // FIXME: Make this an optional field.
4938       const DataLayout &DL = TheModule->getDataLayout();
4939       unsigned AS = DL.getAllocaAddrSpace();
4940 
4941       SmallPtrSet<Type *, 4> Visited;
4942       if (!Align && !Ty->isSized(&Visited))
4943         return error("alloca of unsized type");
4944       if (!Align)
4945         Align = DL.getPrefTypeAlign(Ty);
4946 
4947       AllocaInst *AI = new AllocaInst(Ty, AS, Size, *Align);
4948       AI->setUsedWithInAlloca(InAlloca);
4949       AI->setSwiftError(SwiftError);
4950       I = AI;
4951       InstructionList.push_back(I);
4952       break;
4953     }
4954     case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol]
4955       unsigned OpNum = 0;
4956       Value *Op;
4957       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
4958           (OpNum + 2 != Record.size() && OpNum + 3 != Record.size()))
4959         return error("Invalid record");
4960 
4961       if (!isa<PointerType>(Op->getType()))
4962         return error("Load operand is not a pointer type");
4963 
4964       Type *Ty = nullptr;
4965       if (OpNum + 3 == Record.size()) {
4966         Ty = getTypeByID(Record[OpNum++]);
4967       } else {
4968         Ty = cast<PointerType>(Op->getType())->getElementType();
4969       }
4970 
4971       if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType()))
4972         return Err;
4973 
4974       MaybeAlign Align;
4975       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
4976         return Err;
4977       SmallPtrSet<Type *, 4> Visited;
4978       if (!Align && !Ty->isSized(&Visited))
4979         return error("load of unsized type");
4980       if (!Align)
4981         Align = TheModule->getDataLayout().getABITypeAlign(Ty);
4982       I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align);
4983       InstructionList.push_back(I);
4984       break;
4985     }
4986     case bitc::FUNC_CODE_INST_LOADATOMIC: {
4987        // LOADATOMIC: [opty, op, align, vol, ordering, ssid]
4988       unsigned OpNum = 0;
4989       Value *Op;
4990       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
4991           (OpNum + 4 != Record.size() && OpNum + 5 != Record.size()))
4992         return error("Invalid record");
4993 
4994       if (!isa<PointerType>(Op->getType()))
4995         return error("Load operand is not a pointer type");
4996 
4997       Type *Ty = nullptr;
4998       if (OpNum + 5 == Record.size()) {
4999         Ty = getTypeByID(Record[OpNum++]);
5000       } else {
5001         Ty = cast<PointerType>(Op->getType())->getElementType();
5002       }
5003 
5004       if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType()))
5005         return Err;
5006 
5007       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
5008       if (Ordering == AtomicOrdering::NotAtomic ||
5009           Ordering == AtomicOrdering::Release ||
5010           Ordering == AtomicOrdering::AcquireRelease)
5011         return error("Invalid record");
5012       if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
5013         return error("Invalid record");
5014       SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
5015 
5016       MaybeAlign Align;
5017       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
5018         return Err;
5019       if (!Align)
5020         return error("Alignment missing from atomic load");
5021       I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align, Ordering, SSID);
5022       InstructionList.push_back(I);
5023       break;
5024     }
5025     case bitc::FUNC_CODE_INST_STORE:
5026     case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol]
5027       unsigned OpNum = 0;
5028       Value *Val, *Ptr;
5029       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
5030           (BitCode == bitc::FUNC_CODE_INST_STORE
5031                ? getValueTypePair(Record, OpNum, NextValueNo, Val)
5032                : popValue(Record, OpNum, NextValueNo,
5033                           cast<PointerType>(Ptr->getType())->getElementType(),
5034                           Val)) ||
5035           OpNum + 2 != Record.size())
5036         return error("Invalid record");
5037 
5038       if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
5039         return Err;
5040       MaybeAlign Align;
5041       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
5042         return Err;
5043       SmallPtrSet<Type *, 4> Visited;
5044       if (!Align && !Val->getType()->isSized(&Visited))
5045         return error("store of unsized type");
5046       if (!Align)
5047         Align = TheModule->getDataLayout().getABITypeAlign(Val->getType());
5048       I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align);
5049       InstructionList.push_back(I);
5050       break;
5051     }
5052     case bitc::FUNC_CODE_INST_STOREATOMIC:
5053     case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: {
5054       // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, ssid]
5055       unsigned OpNum = 0;
5056       Value *Val, *Ptr;
5057       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
5058           !isa<PointerType>(Ptr->getType()) ||
5059           (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC
5060                ? getValueTypePair(Record, OpNum, NextValueNo, Val)
5061                : popValue(Record, OpNum, NextValueNo,
5062                           cast<PointerType>(Ptr->getType())->getElementType(),
5063                           Val)) ||
5064           OpNum + 4 != Record.size())
5065         return error("Invalid record");
5066 
5067       if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
5068         return Err;
5069       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
5070       if (Ordering == AtomicOrdering::NotAtomic ||
5071           Ordering == AtomicOrdering::Acquire ||
5072           Ordering == AtomicOrdering::AcquireRelease)
5073         return error("Invalid record");
5074       SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
5075       if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
5076         return error("Invalid record");
5077 
5078       MaybeAlign Align;
5079       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
5080         return Err;
5081       if (!Align)
5082         return error("Alignment missing from atomic store");
5083       I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align, Ordering, SSID);
5084       InstructionList.push_back(I);
5085       break;
5086     }
5087     case bitc::FUNC_CODE_INST_CMPXCHG_OLD: {
5088       // CMPXCHG_OLD: [ptrty, ptr, cmp, val, vol, ordering, synchscope,
5089       // failure_ordering?, weak?]
5090       const size_t NumRecords = Record.size();
5091       unsigned OpNum = 0;
5092       Value *Ptr = nullptr;
5093       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr))
5094         return error("Invalid record");
5095 
5096       if (!isa<PointerType>(Ptr->getType()))
5097         return error("Cmpxchg operand is not a pointer type");
5098 
5099       Value *Cmp = nullptr;
5100       if (popValue(Record, OpNum, NextValueNo,
5101                    cast<PointerType>(Ptr->getType())->getPointerElementType(),
5102                    Cmp))
5103         return error("Invalid record");
5104 
5105       Value *New = nullptr;
5106       if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) ||
5107           NumRecords < OpNum + 3 || NumRecords > OpNum + 5)
5108         return error("Invalid record");
5109 
5110       const AtomicOrdering SuccessOrdering =
5111           getDecodedOrdering(Record[OpNum + 1]);
5112       if (SuccessOrdering == AtomicOrdering::NotAtomic ||
5113           SuccessOrdering == AtomicOrdering::Unordered)
5114         return error("Invalid record");
5115 
5116       const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]);
5117 
5118       if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType()))
5119         return Err;
5120 
5121       const AtomicOrdering FailureOrdering =
5122           NumRecords < 7
5123               ? AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering)
5124               : getDecodedOrdering(Record[OpNum + 3]);
5125 
5126       if (FailureOrdering == AtomicOrdering::NotAtomic ||
5127           FailureOrdering == AtomicOrdering::Unordered)
5128         return error("Invalid record");
5129 
5130       const Align Alignment(
5131           TheModule->getDataLayout().getTypeStoreSize(Cmp->getType()));
5132 
5133       I = new AtomicCmpXchgInst(Ptr, Cmp, New, Alignment, SuccessOrdering,
5134                                 FailureOrdering, SSID);
5135       cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]);
5136 
5137       if (NumRecords < 8) {
5138         // Before weak cmpxchgs existed, the instruction simply returned the
5139         // value loaded from memory, so bitcode files from that era will be
5140         // expecting the first component of a modern cmpxchg.
5141         CurBB->getInstList().push_back(I);
5142         I = ExtractValueInst::Create(I, 0);
5143       } else {
5144         cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum + 4]);
5145       }
5146 
5147       InstructionList.push_back(I);
5148       break;
5149     }
5150     case bitc::FUNC_CODE_INST_CMPXCHG: {
5151       // CMPXCHG: [ptrty, ptr, cmp, val, vol, success_ordering, synchscope,
5152       // failure_ordering, weak, align?]
5153       const size_t NumRecords = Record.size();
5154       unsigned OpNum = 0;
5155       Value *Ptr = nullptr;
5156       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr))
5157         return error("Invalid record");
5158 
5159       if (!isa<PointerType>(Ptr->getType()))
5160         return error("Cmpxchg operand is not a pointer type");
5161 
5162       Value *Cmp = nullptr;
5163       if (getValueTypePair(Record, OpNum, NextValueNo, Cmp))
5164         return error("Invalid record");
5165 
5166       Value *Val = nullptr;
5167       if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), Val))
5168         return error("Invalid record");
5169 
5170       if (NumRecords < OpNum + 3 || NumRecords > OpNum + 6)
5171         return error("Invalid record");
5172 
5173       const bool IsVol = Record[OpNum];
5174 
5175       const AtomicOrdering SuccessOrdering =
5176           getDecodedOrdering(Record[OpNum + 1]);
5177       if (!AtomicCmpXchgInst::isValidSuccessOrdering(SuccessOrdering))
5178         return error("Invalid cmpxchg success ordering");
5179 
5180       const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]);
5181 
5182       if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType()))
5183         return Err;
5184 
5185       const AtomicOrdering FailureOrdering =
5186           getDecodedOrdering(Record[OpNum + 3]);
5187       if (!AtomicCmpXchgInst::isValidFailureOrdering(FailureOrdering))
5188         return error("Invalid cmpxchg failure ordering");
5189 
5190       const bool IsWeak = Record[OpNum + 4];
5191 
5192       MaybeAlign Alignment;
5193 
5194       if (NumRecords == (OpNum + 6)) {
5195         if (Error Err = parseAlignmentValue(Record[OpNum + 5], Alignment))
5196           return Err;
5197       }
5198       if (!Alignment)
5199         Alignment =
5200             Align(TheModule->getDataLayout().getTypeStoreSize(Cmp->getType()));
5201 
5202       I = new AtomicCmpXchgInst(Ptr, Cmp, Val, *Alignment, SuccessOrdering,
5203                                 FailureOrdering, SSID);
5204       cast<AtomicCmpXchgInst>(I)->setVolatile(IsVol);
5205       cast<AtomicCmpXchgInst>(I)->setWeak(IsWeak);
5206 
5207       InstructionList.push_back(I);
5208       break;
5209     }
5210     case bitc::FUNC_CODE_INST_ATOMICRMW_OLD:
5211     case bitc::FUNC_CODE_INST_ATOMICRMW: {
5212       // ATOMICRMW_OLD: [ptrty, ptr, val, op, vol, ordering, ssid, align?]
5213       // ATOMICRMW: [ptrty, ptr, valty, val, op, vol, ordering, ssid, align?]
5214       const size_t NumRecords = Record.size();
5215       unsigned OpNum = 0;
5216 
5217       Value *Ptr = nullptr;
5218       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr))
5219         return error("Invalid record");
5220 
5221       if (!isa<PointerType>(Ptr->getType()))
5222         return error("Invalid record");
5223 
5224       Value *Val = nullptr;
5225       if (BitCode == bitc::FUNC_CODE_INST_ATOMICRMW_OLD) {
5226         if (popValue(Record, OpNum, NextValueNo,
5227                      cast<PointerType>(Ptr->getType())->getPointerElementType(),
5228                      Val))
5229           return error("Invalid record");
5230       } else {
5231         if (getValueTypePair(Record, OpNum, NextValueNo, Val))
5232           return error("Invalid record");
5233       }
5234 
5235       if (!(NumRecords == (OpNum + 4) || NumRecords == (OpNum + 5)))
5236         return error("Invalid record");
5237 
5238       const AtomicRMWInst::BinOp Operation =
5239           getDecodedRMWOperation(Record[OpNum]);
5240       if (Operation < AtomicRMWInst::FIRST_BINOP ||
5241           Operation > AtomicRMWInst::LAST_BINOP)
5242         return error("Invalid record");
5243 
5244       const bool IsVol = Record[OpNum + 1];
5245 
5246       const AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
5247       if (Ordering == AtomicOrdering::NotAtomic ||
5248           Ordering == AtomicOrdering::Unordered)
5249         return error("Invalid record");
5250 
5251       const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
5252 
5253       MaybeAlign Alignment;
5254 
5255       if (NumRecords == (OpNum + 5)) {
5256         if (Error Err = parseAlignmentValue(Record[OpNum + 4], Alignment))
5257           return Err;
5258       }
5259 
5260       if (!Alignment)
5261         Alignment =
5262             Align(TheModule->getDataLayout().getTypeStoreSize(Val->getType()));
5263 
5264       I = new AtomicRMWInst(Operation, Ptr, Val, *Alignment, Ordering, SSID);
5265       cast<AtomicRMWInst>(I)->setVolatile(IsVol);
5266 
5267       InstructionList.push_back(I);
5268       break;
5269     }
5270     case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, ssid]
5271       if (2 != Record.size())
5272         return error("Invalid record");
5273       AtomicOrdering Ordering = getDecodedOrdering(Record[0]);
5274       if (Ordering == AtomicOrdering::NotAtomic ||
5275           Ordering == AtomicOrdering::Unordered ||
5276           Ordering == AtomicOrdering::Monotonic)
5277         return error("Invalid record");
5278       SyncScope::ID SSID = getDecodedSyncScopeID(Record[1]);
5279       I = new FenceInst(Context, Ordering, SSID);
5280       InstructionList.push_back(I);
5281       break;
5282     }
5283     case bitc::FUNC_CODE_INST_CALL: {
5284       // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...]
5285       if (Record.size() < 3)
5286         return error("Invalid record");
5287 
5288       unsigned OpNum = 0;
5289       AttributeList PAL = getAttributes(Record[OpNum++]);
5290       unsigned CCInfo = Record[OpNum++];
5291 
5292       FastMathFlags FMF;
5293       if ((CCInfo >> bitc::CALL_FMF) & 1) {
5294         FMF = getDecodedFastMathFlags(Record[OpNum++]);
5295         if (!FMF.any())
5296           return error("Fast math flags indicator set for call with no FMF");
5297       }
5298 
5299       FunctionType *FTy = nullptr;
5300       if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) {
5301         FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++]));
5302         if (!FTy)
5303           return error("Explicit call type is not a function type");
5304       }
5305 
5306       Value *Callee;
5307       if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
5308         return error("Invalid record");
5309 
5310       PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
5311       if (!OpTy)
5312         return error("Callee is not a pointer type");
5313       if (!FTy) {
5314         FTy = dyn_cast<FunctionType>(
5315             cast<PointerType>(Callee->getType())->getElementType());
5316         if (!FTy)
5317           return error("Callee is not of pointer to function type");
5318       } else if (!OpTy->isOpaqueOrPointeeTypeMatches(FTy))
5319         return error("Explicit call type does not match pointee type of "
5320                      "callee operand");
5321       if (Record.size() < FTy->getNumParams() + OpNum)
5322         return error("Insufficient operands to call");
5323 
5324       SmallVector<Value*, 16> Args;
5325       SmallVector<Type *, 16> ArgsTys;
5326       // Read the fixed params.
5327       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
5328         if (FTy->getParamType(i)->isLabelTy())
5329           Args.push_back(getBasicBlock(Record[OpNum]));
5330         else
5331           Args.push_back(getValue(Record, OpNum, NextValueNo,
5332                                   FTy->getParamType(i)));
5333         ArgsTys.push_back(FTy->getParamType(i));
5334         if (!Args.back())
5335           return error("Invalid record");
5336       }
5337 
5338       // Read type/value pairs for varargs params.
5339       if (!FTy->isVarArg()) {
5340         if (OpNum != Record.size())
5341           return error("Invalid record");
5342       } else {
5343         while (OpNum != Record.size()) {
5344           Value *Op;
5345           if (getValueTypePair(Record, OpNum, NextValueNo, Op))
5346             return error("Invalid record");
5347           Args.push_back(Op);
5348           ArgsTys.push_back(Op->getType());
5349         }
5350       }
5351 
5352       I = CallInst::Create(FTy, Callee, Args, OperandBundles);
5353       OperandBundles.clear();
5354       InstructionList.push_back(I);
5355       cast<CallInst>(I)->setCallingConv(
5356           static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV));
5357       CallInst::TailCallKind TCK = CallInst::TCK_None;
5358       if (CCInfo & 1 << bitc::CALL_TAIL)
5359         TCK = CallInst::TCK_Tail;
5360       if (CCInfo & (1 << bitc::CALL_MUSTTAIL))
5361         TCK = CallInst::TCK_MustTail;
5362       if (CCInfo & (1 << bitc::CALL_NOTAIL))
5363         TCK = CallInst::TCK_NoTail;
5364       cast<CallInst>(I)->setTailCallKind(TCK);
5365       cast<CallInst>(I)->setAttributes(PAL);
5366       propagateAttributeTypes(cast<CallBase>(I), ArgsTys);
5367       if (FMF.any()) {
5368         if (!isa<FPMathOperator>(I))
5369           return error("Fast-math-flags specified for call without "
5370                        "floating-point scalar or vector return type");
5371         I->setFastMathFlags(FMF);
5372       }
5373       break;
5374     }
5375     case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty]
5376       if (Record.size() < 3)
5377         return error("Invalid record");
5378       Type *OpTy = getTypeByID(Record[0]);
5379       Value *Op = getValue(Record, 1, NextValueNo, OpTy);
5380       Type *ResTy = getTypeByID(Record[2]);
5381       if (!OpTy || !Op || !ResTy)
5382         return error("Invalid record");
5383       I = new VAArgInst(Op, ResTy);
5384       InstructionList.push_back(I);
5385       break;
5386     }
5387 
5388     case bitc::FUNC_CODE_OPERAND_BUNDLE: {
5389       // A call or an invoke can be optionally prefixed with some variable
5390       // number of operand bundle blocks.  These blocks are read into
5391       // OperandBundles and consumed at the next call or invoke instruction.
5392 
5393       if (Record.empty() || Record[0] >= BundleTags.size())
5394         return error("Invalid record");
5395 
5396       std::vector<Value *> Inputs;
5397 
5398       unsigned OpNum = 1;
5399       while (OpNum != Record.size()) {
5400         Value *Op;
5401         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
5402           return error("Invalid record");
5403         Inputs.push_back(Op);
5404       }
5405 
5406       OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs));
5407       continue;
5408     }
5409 
5410     case bitc::FUNC_CODE_INST_FREEZE: { // FREEZE: [opty,opval]
5411       unsigned OpNum = 0;
5412       Value *Op = nullptr;
5413       if (getValueTypePair(Record, OpNum, NextValueNo, Op))
5414         return error("Invalid record");
5415       if (OpNum != Record.size())
5416         return error("Invalid record");
5417 
5418       I = new FreezeInst(Op);
5419       InstructionList.push_back(I);
5420       break;
5421     }
5422     }
5423 
5424     // Add instruction to end of current BB.  If there is no current BB, reject
5425     // this file.
5426     if (!CurBB) {
5427       I->deleteValue();
5428       return error("Invalid instruction with no BB");
5429     }
5430     if (!OperandBundles.empty()) {
5431       I->deleteValue();
5432       return error("Operand bundles found with no consumer");
5433     }
5434     CurBB->getInstList().push_back(I);
5435 
5436     // If this was a terminator instruction, move to the next block.
5437     if (I->isTerminator()) {
5438       ++CurBBNo;
5439       CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr;
5440     }
5441 
5442     // Non-void values get registered in the value table for future use.
5443     if (!I->getType()->isVoidTy())
5444       ValueList.assignValue(I, NextValueNo++);
5445   }
5446 
5447 OutOfRecordLoop:
5448 
5449   if (!OperandBundles.empty())
5450     return error("Operand bundles found with no consumer");
5451 
5452   // Check the function list for unresolved values.
5453   if (Argument *A = dyn_cast<Argument>(ValueList.back())) {
5454     if (!A->getParent()) {
5455       // We found at least one unresolved value.  Nuke them all to avoid leaks.
5456       for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){
5457         if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) {
5458           A->replaceAllUsesWith(UndefValue::get(A->getType()));
5459           delete A;
5460         }
5461       }
5462       return error("Never resolved value found in function");
5463     }
5464   }
5465 
5466   // Unexpected unresolved metadata about to be dropped.
5467   if (MDLoader->hasFwdRefs())
5468     return error("Invalid function metadata: outgoing forward refs");
5469 
5470   // Trim the value list down to the size it was before we parsed this function.
5471   ValueList.shrinkTo(ModuleValueListSize);
5472   MDLoader->shrinkTo(ModuleMDLoaderSize);
5473   std::vector<BasicBlock*>().swap(FunctionBBs);
5474   return Error::success();
5475 }
5476 
5477 /// Find the function body in the bitcode stream
5478 Error BitcodeReader::findFunctionInStream(
5479     Function *F,
5480     DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) {
5481   while (DeferredFunctionInfoIterator->second == 0) {
5482     // This is the fallback handling for the old format bitcode that
5483     // didn't contain the function index in the VST, or when we have
5484     // an anonymous function which would not have a VST entry.
5485     // Assert that we have one of those two cases.
5486     assert(VSTOffset == 0 || !F->hasName());
5487     // Parse the next body in the stream and set its position in the
5488     // DeferredFunctionInfo map.
5489     if (Error Err = rememberAndSkipFunctionBodies())
5490       return Err;
5491   }
5492   return Error::success();
5493 }
5494 
5495 SyncScope::ID BitcodeReader::getDecodedSyncScopeID(unsigned Val) {
5496   if (Val == SyncScope::SingleThread || Val == SyncScope::System)
5497     return SyncScope::ID(Val);
5498   if (Val >= SSIDs.size())
5499     return SyncScope::System; // Map unknown synchronization scopes to system.
5500   return SSIDs[Val];
5501 }
5502 
5503 //===----------------------------------------------------------------------===//
5504 // GVMaterializer implementation
5505 //===----------------------------------------------------------------------===//
5506 
5507 Error BitcodeReader::materialize(GlobalValue *GV) {
5508   Function *F = dyn_cast<Function>(GV);
5509   // If it's not a function or is already material, ignore the request.
5510   if (!F || !F->isMaterializable())
5511     return Error::success();
5512 
5513   DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F);
5514   assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!");
5515   // If its position is recorded as 0, its body is somewhere in the stream
5516   // but we haven't seen it yet.
5517   if (DFII->second == 0)
5518     if (Error Err = findFunctionInStream(F, DFII))
5519       return Err;
5520 
5521   // Materialize metadata before parsing any function bodies.
5522   if (Error Err = materializeMetadata())
5523     return Err;
5524 
5525   // Move the bit stream to the saved position of the deferred function body.
5526   if (Error JumpFailed = Stream.JumpToBit(DFII->second))
5527     return JumpFailed;
5528   if (Error Err = parseFunctionBody(F))
5529     return Err;
5530   F->setIsMaterializable(false);
5531 
5532   if (StripDebugInfo)
5533     stripDebugInfo(*F);
5534 
5535   // Upgrade any old intrinsic calls in the function.
5536   for (auto &I : UpgradedIntrinsics) {
5537     for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end();
5538          UI != UE;) {
5539       User *U = *UI;
5540       ++UI;
5541       if (CallInst *CI = dyn_cast<CallInst>(U))
5542         UpgradeIntrinsicCall(CI, I.second);
5543     }
5544   }
5545 
5546   // Update calls to the remangled intrinsics
5547   for (auto &I : RemangledIntrinsics)
5548     for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end();
5549          UI != UE;)
5550       // Don't expect any other users than call sites
5551       cast<CallBase>(*UI++)->setCalledFunction(I.second);
5552 
5553   // Finish fn->subprogram upgrade for materialized functions.
5554   if (DISubprogram *SP = MDLoader->lookupSubprogramForFunction(F))
5555     F->setSubprogram(SP);
5556 
5557   // Check if the TBAA Metadata are valid, otherwise we will need to strip them.
5558   if (!MDLoader->isStrippingTBAA()) {
5559     for (auto &I : instructions(F)) {
5560       MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa);
5561       if (!TBAA || TBAAVerifyHelper.visitTBAAMetadata(I, TBAA))
5562         continue;
5563       MDLoader->setStripTBAA(true);
5564       stripTBAA(F->getParent());
5565     }
5566   }
5567 
5568   for (auto &I : instructions(F)) {
5569     // "Upgrade" older incorrect branch weights by dropping them.
5570     if (auto *MD = I.getMetadata(LLVMContext::MD_prof)) {
5571       if (MD->getOperand(0) != nullptr && isa<MDString>(MD->getOperand(0))) {
5572         MDString *MDS = cast<MDString>(MD->getOperand(0));
5573         StringRef ProfName = MDS->getString();
5574         // Check consistency of !prof branch_weights metadata.
5575         if (!ProfName.equals("branch_weights"))
5576           continue;
5577         unsigned ExpectedNumOperands = 0;
5578         if (BranchInst *BI = dyn_cast<BranchInst>(&I))
5579           ExpectedNumOperands = BI->getNumSuccessors();
5580         else if (SwitchInst *SI = dyn_cast<SwitchInst>(&I))
5581           ExpectedNumOperands = SI->getNumSuccessors();
5582         else if (isa<CallInst>(&I))
5583           ExpectedNumOperands = 1;
5584         else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(&I))
5585           ExpectedNumOperands = IBI->getNumDestinations();
5586         else if (isa<SelectInst>(&I))
5587           ExpectedNumOperands = 2;
5588         else
5589           continue; // ignore and continue.
5590 
5591         // If branch weight doesn't match, just strip branch weight.
5592         if (MD->getNumOperands() != 1 + ExpectedNumOperands)
5593           I.setMetadata(LLVMContext::MD_prof, nullptr);
5594       }
5595     }
5596 
5597     // Remove incompatible attributes on function calls.
5598     if (auto *CI = dyn_cast<CallBase>(&I)) {
5599       CI->removeRetAttrs(AttributeFuncs::typeIncompatible(
5600           CI->getFunctionType()->getReturnType()));
5601 
5602       for (unsigned ArgNo = 0; ArgNo < CI->arg_size(); ++ArgNo)
5603         CI->removeParamAttrs(ArgNo, AttributeFuncs::typeIncompatible(
5604                                         CI->getArgOperand(ArgNo)->getType()));
5605     }
5606   }
5607 
5608   // Look for functions that rely on old function attribute behavior.
5609   UpgradeFunctionAttributes(*F);
5610 
5611   // Bring in any functions that this function forward-referenced via
5612   // blockaddresses.
5613   return materializeForwardReferencedFunctions();
5614 }
5615 
5616 Error BitcodeReader::materializeModule() {
5617   if (Error Err = materializeMetadata())
5618     return Err;
5619 
5620   // Promise to materialize all forward references.
5621   WillMaterializeAllForwardRefs = true;
5622 
5623   // Iterate over the module, deserializing any functions that are still on
5624   // disk.
5625   for (Function &F : *TheModule) {
5626     if (Error Err = materialize(&F))
5627       return Err;
5628   }
5629   // At this point, if there are any function bodies, parse the rest of
5630   // the bits in the module past the last function block we have recorded
5631   // through either lazy scanning or the VST.
5632   if (LastFunctionBlockBit || NextUnreadBit)
5633     if (Error Err = parseModule(LastFunctionBlockBit > NextUnreadBit
5634                                     ? LastFunctionBlockBit
5635                                     : NextUnreadBit))
5636       return Err;
5637 
5638   // Check that all block address forward references got resolved (as we
5639   // promised above).
5640   if (!BasicBlockFwdRefs.empty())
5641     return error("Never resolved function from blockaddress");
5642 
5643   // Upgrade any intrinsic calls that slipped through (should not happen!) and
5644   // delete the old functions to clean up. We can't do this unless the entire
5645   // module is materialized because there could always be another function body
5646   // with calls to the old function.
5647   for (auto &I : UpgradedIntrinsics) {
5648     for (auto *U : I.first->users()) {
5649       if (CallInst *CI = dyn_cast<CallInst>(U))
5650         UpgradeIntrinsicCall(CI, I.second);
5651     }
5652     if (!I.first->use_empty())
5653       I.first->replaceAllUsesWith(I.second);
5654     I.first->eraseFromParent();
5655   }
5656   UpgradedIntrinsics.clear();
5657   // Do the same for remangled intrinsics
5658   for (auto &I : RemangledIntrinsics) {
5659     I.first->replaceAllUsesWith(I.second);
5660     I.first->eraseFromParent();
5661   }
5662   RemangledIntrinsics.clear();
5663 
5664   UpgradeDebugInfo(*TheModule);
5665 
5666   UpgradeModuleFlags(*TheModule);
5667 
5668   UpgradeARCRuntime(*TheModule);
5669 
5670   return Error::success();
5671 }
5672 
5673 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const {
5674   return IdentifiedStructTypes;
5675 }
5676 
5677 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader(
5678     BitstreamCursor Cursor, StringRef Strtab, ModuleSummaryIndex &TheIndex,
5679     StringRef ModulePath, unsigned ModuleId)
5680     : BitcodeReaderBase(std::move(Cursor), Strtab), TheIndex(TheIndex),
5681       ModulePath(ModulePath), ModuleId(ModuleId) {}
5682 
5683 void ModuleSummaryIndexBitcodeReader::addThisModule() {
5684   TheIndex.addModule(ModulePath, ModuleId);
5685 }
5686 
5687 ModuleSummaryIndex::ModuleInfo *
5688 ModuleSummaryIndexBitcodeReader::getThisModule() {
5689   return TheIndex.getModule(ModulePath);
5690 }
5691 
5692 std::pair<ValueInfo, GlobalValue::GUID>
5693 ModuleSummaryIndexBitcodeReader::getValueInfoFromValueId(unsigned ValueId) {
5694   auto VGI = ValueIdToValueInfoMap[ValueId];
5695   assert(VGI.first);
5696   return VGI;
5697 }
5698 
5699 void ModuleSummaryIndexBitcodeReader::setValueGUID(
5700     uint64_t ValueID, StringRef ValueName, GlobalValue::LinkageTypes Linkage,
5701     StringRef SourceFileName) {
5702   std::string GlobalId =
5703       GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName);
5704   auto ValueGUID = GlobalValue::getGUID(GlobalId);
5705   auto OriginalNameID = ValueGUID;
5706   if (GlobalValue::isLocalLinkage(Linkage))
5707     OriginalNameID = GlobalValue::getGUID(ValueName);
5708   if (PrintSummaryGUIDs)
5709     dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is "
5710            << ValueName << "\n";
5711 
5712   // UseStrtab is false for legacy summary formats and value names are
5713   // created on stack. In that case we save the name in a string saver in
5714   // the index so that the value name can be recorded.
5715   ValueIdToValueInfoMap[ValueID] = std::make_pair(
5716       TheIndex.getOrInsertValueInfo(
5717           ValueGUID,
5718           UseStrtab ? ValueName : TheIndex.saveString(ValueName)),
5719       OriginalNameID);
5720 }
5721 
5722 // Specialized value symbol table parser used when reading module index
5723 // blocks where we don't actually create global values. The parsed information
5724 // is saved in the bitcode reader for use when later parsing summaries.
5725 Error ModuleSummaryIndexBitcodeReader::parseValueSymbolTable(
5726     uint64_t Offset,
5727     DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) {
5728   // With a strtab the VST is not required to parse the summary.
5729   if (UseStrtab)
5730     return Error::success();
5731 
5732   assert(Offset > 0 && "Expected non-zero VST offset");
5733   Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream);
5734   if (!MaybeCurrentBit)
5735     return MaybeCurrentBit.takeError();
5736   uint64_t CurrentBit = MaybeCurrentBit.get();
5737 
5738   if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
5739     return Err;
5740 
5741   SmallVector<uint64_t, 64> Record;
5742 
5743   // Read all the records for this value table.
5744   SmallString<128> ValueName;
5745 
5746   while (true) {
5747     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
5748     if (!MaybeEntry)
5749       return MaybeEntry.takeError();
5750     BitstreamEntry Entry = MaybeEntry.get();
5751 
5752     switch (Entry.Kind) {
5753     case BitstreamEntry::SubBlock: // Handled for us already.
5754     case BitstreamEntry::Error:
5755       return error("Malformed block");
5756     case BitstreamEntry::EndBlock:
5757       // Done parsing VST, jump back to wherever we came from.
5758       if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
5759         return JumpFailed;
5760       return Error::success();
5761     case BitstreamEntry::Record:
5762       // The interesting case.
5763       break;
5764     }
5765 
5766     // Read a record.
5767     Record.clear();
5768     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
5769     if (!MaybeRecord)
5770       return MaybeRecord.takeError();
5771     switch (MaybeRecord.get()) {
5772     default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records).
5773       break;
5774     case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N]
5775       if (convertToString(Record, 1, ValueName))
5776         return error("Invalid record");
5777       unsigned ValueID = Record[0];
5778       assert(!SourceFileName.empty());
5779       auto VLI = ValueIdToLinkageMap.find(ValueID);
5780       assert(VLI != ValueIdToLinkageMap.end() &&
5781              "No linkage found for VST entry?");
5782       auto Linkage = VLI->second;
5783       setValueGUID(ValueID, ValueName, Linkage, SourceFileName);
5784       ValueName.clear();
5785       break;
5786     }
5787     case bitc::VST_CODE_FNENTRY: {
5788       // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
5789       if (convertToString(Record, 2, ValueName))
5790         return error("Invalid record");
5791       unsigned ValueID = Record[0];
5792       assert(!SourceFileName.empty());
5793       auto VLI = ValueIdToLinkageMap.find(ValueID);
5794       assert(VLI != ValueIdToLinkageMap.end() &&
5795              "No linkage found for VST entry?");
5796       auto Linkage = VLI->second;
5797       setValueGUID(ValueID, ValueName, Linkage, SourceFileName);
5798       ValueName.clear();
5799       break;
5800     }
5801     case bitc::VST_CODE_COMBINED_ENTRY: {
5802       // VST_CODE_COMBINED_ENTRY: [valueid, refguid]
5803       unsigned ValueID = Record[0];
5804       GlobalValue::GUID RefGUID = Record[1];
5805       // The "original name", which is the second value of the pair will be
5806       // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index.
5807       ValueIdToValueInfoMap[ValueID] =
5808           std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID);
5809       break;
5810     }
5811     }
5812   }
5813 }
5814 
5815 // Parse just the blocks needed for building the index out of the module.
5816 // At the end of this routine the module Index is populated with a map
5817 // from global value id to GlobalValueSummary objects.
5818 Error ModuleSummaryIndexBitcodeReader::parseModule() {
5819   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
5820     return Err;
5821 
5822   SmallVector<uint64_t, 64> Record;
5823   DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap;
5824   unsigned ValueId = 0;
5825 
5826   // Read the index for this module.
5827   while (true) {
5828     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
5829     if (!MaybeEntry)
5830       return MaybeEntry.takeError();
5831     llvm::BitstreamEntry Entry = MaybeEntry.get();
5832 
5833     switch (Entry.Kind) {
5834     case BitstreamEntry::Error:
5835       return error("Malformed block");
5836     case BitstreamEntry::EndBlock:
5837       return Error::success();
5838 
5839     case BitstreamEntry::SubBlock:
5840       switch (Entry.ID) {
5841       default: // Skip unknown content.
5842         if (Error Err = Stream.SkipBlock())
5843           return Err;
5844         break;
5845       case bitc::BLOCKINFO_BLOCK_ID:
5846         // Need to parse these to get abbrev ids (e.g. for VST)
5847         if (readBlockInfo())
5848           return error("Malformed block");
5849         break;
5850       case bitc::VALUE_SYMTAB_BLOCK_ID:
5851         // Should have been parsed earlier via VSTOffset, unless there
5852         // is no summary section.
5853         assert(((SeenValueSymbolTable && VSTOffset > 0) ||
5854                 !SeenGlobalValSummary) &&
5855                "Expected early VST parse via VSTOffset record");
5856         if (Error Err = Stream.SkipBlock())
5857           return Err;
5858         break;
5859       case bitc::GLOBALVAL_SUMMARY_BLOCK_ID:
5860       case bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID:
5861         // Add the module if it is a per-module index (has a source file name).
5862         if (!SourceFileName.empty())
5863           addThisModule();
5864         assert(!SeenValueSymbolTable &&
5865                "Already read VST when parsing summary block?");
5866         // We might not have a VST if there were no values in the
5867         // summary. An empty summary block generated when we are
5868         // performing ThinLTO compiles so we don't later invoke
5869         // the regular LTO process on them.
5870         if (VSTOffset > 0) {
5871           if (Error Err = parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap))
5872             return Err;
5873           SeenValueSymbolTable = true;
5874         }
5875         SeenGlobalValSummary = true;
5876         if (Error Err = parseEntireSummary(Entry.ID))
5877           return Err;
5878         break;
5879       case bitc::MODULE_STRTAB_BLOCK_ID:
5880         if (Error Err = parseModuleStringTable())
5881           return Err;
5882         break;
5883       }
5884       continue;
5885 
5886     case BitstreamEntry::Record: {
5887         Record.clear();
5888         Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
5889         if (!MaybeBitCode)
5890           return MaybeBitCode.takeError();
5891         switch (MaybeBitCode.get()) {
5892         default:
5893           break; // Default behavior, ignore unknown content.
5894         case bitc::MODULE_CODE_VERSION: {
5895           if (Error Err = parseVersionRecord(Record).takeError())
5896             return Err;
5897           break;
5898         }
5899         /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
5900         case bitc::MODULE_CODE_SOURCE_FILENAME: {
5901           SmallString<128> ValueName;
5902           if (convertToString(Record, 0, ValueName))
5903             return error("Invalid record");
5904           SourceFileName = ValueName.c_str();
5905           break;
5906         }
5907         /// MODULE_CODE_HASH: [5*i32]
5908         case bitc::MODULE_CODE_HASH: {
5909           if (Record.size() != 5)
5910             return error("Invalid hash length " + Twine(Record.size()).str());
5911           auto &Hash = getThisModule()->second.second;
5912           int Pos = 0;
5913           for (auto &Val : Record) {
5914             assert(!(Val >> 32) && "Unexpected high bits set");
5915             Hash[Pos++] = Val;
5916           }
5917           break;
5918         }
5919         /// MODULE_CODE_VSTOFFSET: [offset]
5920         case bitc::MODULE_CODE_VSTOFFSET:
5921           if (Record.empty())
5922             return error("Invalid record");
5923           // Note that we subtract 1 here because the offset is relative to one
5924           // word before the start of the identification or module block, which
5925           // was historically always the start of the regular bitcode header.
5926           VSTOffset = Record[0] - 1;
5927           break;
5928         // v1 GLOBALVAR: [pointer type, isconst,     initid,       linkage, ...]
5929         // v1 FUNCTION:  [type,         callingconv, isproto,      linkage, ...]
5930         // v1 ALIAS:     [alias type,   addrspace,   aliasee val#, linkage, ...]
5931         // v2: [strtab offset, strtab size, v1]
5932         case bitc::MODULE_CODE_GLOBALVAR:
5933         case bitc::MODULE_CODE_FUNCTION:
5934         case bitc::MODULE_CODE_ALIAS: {
5935           StringRef Name;
5936           ArrayRef<uint64_t> GVRecord;
5937           std::tie(Name, GVRecord) = readNameFromStrtab(Record);
5938           if (GVRecord.size() <= 3)
5939             return error("Invalid record");
5940           uint64_t RawLinkage = GVRecord[3];
5941           GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
5942           if (!UseStrtab) {
5943             ValueIdToLinkageMap[ValueId++] = Linkage;
5944             break;
5945           }
5946 
5947           setValueGUID(ValueId++, Name, Linkage, SourceFileName);
5948           break;
5949         }
5950         }
5951       }
5952       continue;
5953     }
5954   }
5955 }
5956 
5957 std::vector<ValueInfo>
5958 ModuleSummaryIndexBitcodeReader::makeRefList(ArrayRef<uint64_t> Record) {
5959   std::vector<ValueInfo> Ret;
5960   Ret.reserve(Record.size());
5961   for (uint64_t RefValueId : Record)
5962     Ret.push_back(getValueInfoFromValueId(RefValueId).first);
5963   return Ret;
5964 }
5965 
5966 std::vector<FunctionSummary::EdgeTy>
5967 ModuleSummaryIndexBitcodeReader::makeCallList(ArrayRef<uint64_t> Record,
5968                                               bool IsOldProfileFormat,
5969                                               bool HasProfile, bool HasRelBF) {
5970   std::vector<FunctionSummary::EdgeTy> Ret;
5971   Ret.reserve(Record.size());
5972   for (unsigned I = 0, E = Record.size(); I != E; ++I) {
5973     CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown;
5974     uint64_t RelBF = 0;
5975     ValueInfo Callee = getValueInfoFromValueId(Record[I]).first;
5976     if (IsOldProfileFormat) {
5977       I += 1; // Skip old callsitecount field
5978       if (HasProfile)
5979         I += 1; // Skip old profilecount field
5980     } else if (HasProfile)
5981       Hotness = static_cast<CalleeInfo::HotnessType>(Record[++I]);
5982     else if (HasRelBF)
5983       RelBF = Record[++I];
5984     Ret.push_back(FunctionSummary::EdgeTy{Callee, CalleeInfo(Hotness, RelBF)});
5985   }
5986   return Ret;
5987 }
5988 
5989 static void
5990 parseWholeProgramDevirtResolutionByArg(ArrayRef<uint64_t> Record, size_t &Slot,
5991                                        WholeProgramDevirtResolution &Wpd) {
5992   uint64_t ArgNum = Record[Slot++];
5993   WholeProgramDevirtResolution::ByArg &B =
5994       Wpd.ResByArg[{Record.begin() + Slot, Record.begin() + Slot + ArgNum}];
5995   Slot += ArgNum;
5996 
5997   B.TheKind =
5998       static_cast<WholeProgramDevirtResolution::ByArg::Kind>(Record[Slot++]);
5999   B.Info = Record[Slot++];
6000   B.Byte = Record[Slot++];
6001   B.Bit = Record[Slot++];
6002 }
6003 
6004 static void parseWholeProgramDevirtResolution(ArrayRef<uint64_t> Record,
6005                                               StringRef Strtab, size_t &Slot,
6006                                               TypeIdSummary &TypeId) {
6007   uint64_t Id = Record[Slot++];
6008   WholeProgramDevirtResolution &Wpd = TypeId.WPDRes[Id];
6009 
6010   Wpd.TheKind = static_cast<WholeProgramDevirtResolution::Kind>(Record[Slot++]);
6011   Wpd.SingleImplName = {Strtab.data() + Record[Slot],
6012                         static_cast<size_t>(Record[Slot + 1])};
6013   Slot += 2;
6014 
6015   uint64_t ResByArgNum = Record[Slot++];
6016   for (uint64_t I = 0; I != ResByArgNum; ++I)
6017     parseWholeProgramDevirtResolutionByArg(Record, Slot, Wpd);
6018 }
6019 
6020 static void parseTypeIdSummaryRecord(ArrayRef<uint64_t> Record,
6021                                      StringRef Strtab,
6022                                      ModuleSummaryIndex &TheIndex) {
6023   size_t Slot = 0;
6024   TypeIdSummary &TypeId = TheIndex.getOrInsertTypeIdSummary(
6025       {Strtab.data() + Record[Slot], static_cast<size_t>(Record[Slot + 1])});
6026   Slot += 2;
6027 
6028   TypeId.TTRes.TheKind = static_cast<TypeTestResolution::Kind>(Record[Slot++]);
6029   TypeId.TTRes.SizeM1BitWidth = Record[Slot++];
6030   TypeId.TTRes.AlignLog2 = Record[Slot++];
6031   TypeId.TTRes.SizeM1 = Record[Slot++];
6032   TypeId.TTRes.BitMask = Record[Slot++];
6033   TypeId.TTRes.InlineBits = Record[Slot++];
6034 
6035   while (Slot < Record.size())
6036     parseWholeProgramDevirtResolution(Record, Strtab, Slot, TypeId);
6037 }
6038 
6039 std::vector<FunctionSummary::ParamAccess>
6040 ModuleSummaryIndexBitcodeReader::parseParamAccesses(ArrayRef<uint64_t> Record) {
6041   auto ReadRange = [&]() {
6042     APInt Lower(FunctionSummary::ParamAccess::RangeWidth,
6043                 BitcodeReader::decodeSignRotatedValue(Record.front()));
6044     Record = Record.drop_front();
6045     APInt Upper(FunctionSummary::ParamAccess::RangeWidth,
6046                 BitcodeReader::decodeSignRotatedValue(Record.front()));
6047     Record = Record.drop_front();
6048     ConstantRange Range{Lower, Upper};
6049     assert(!Range.isFullSet());
6050     assert(!Range.isUpperSignWrapped());
6051     return Range;
6052   };
6053 
6054   std::vector<FunctionSummary::ParamAccess> PendingParamAccesses;
6055   while (!Record.empty()) {
6056     PendingParamAccesses.emplace_back();
6057     FunctionSummary::ParamAccess &ParamAccess = PendingParamAccesses.back();
6058     ParamAccess.ParamNo = Record.front();
6059     Record = Record.drop_front();
6060     ParamAccess.Use = ReadRange();
6061     ParamAccess.Calls.resize(Record.front());
6062     Record = Record.drop_front();
6063     for (auto &Call : ParamAccess.Calls) {
6064       Call.ParamNo = Record.front();
6065       Record = Record.drop_front();
6066       Call.Callee = getValueInfoFromValueId(Record.front()).first;
6067       Record = Record.drop_front();
6068       Call.Offsets = ReadRange();
6069     }
6070   }
6071   return PendingParamAccesses;
6072 }
6073 
6074 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableInfo(
6075     ArrayRef<uint64_t> Record, size_t &Slot,
6076     TypeIdCompatibleVtableInfo &TypeId) {
6077   uint64_t Offset = Record[Slot++];
6078   ValueInfo Callee = getValueInfoFromValueId(Record[Slot++]).first;
6079   TypeId.push_back({Offset, Callee});
6080 }
6081 
6082 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableSummaryRecord(
6083     ArrayRef<uint64_t> Record) {
6084   size_t Slot = 0;
6085   TypeIdCompatibleVtableInfo &TypeId =
6086       TheIndex.getOrInsertTypeIdCompatibleVtableSummary(
6087           {Strtab.data() + Record[Slot],
6088            static_cast<size_t>(Record[Slot + 1])});
6089   Slot += 2;
6090 
6091   while (Slot < Record.size())
6092     parseTypeIdCompatibleVtableInfo(Record, Slot, TypeId);
6093 }
6094 
6095 static void setSpecialRefs(std::vector<ValueInfo> &Refs, unsigned ROCnt,
6096                            unsigned WOCnt) {
6097   // Readonly and writeonly refs are in the end of the refs list.
6098   assert(ROCnt + WOCnt <= Refs.size());
6099   unsigned FirstWORef = Refs.size() - WOCnt;
6100   unsigned RefNo = FirstWORef - ROCnt;
6101   for (; RefNo < FirstWORef; ++RefNo)
6102     Refs[RefNo].setReadOnly();
6103   for (; RefNo < Refs.size(); ++RefNo)
6104     Refs[RefNo].setWriteOnly();
6105 }
6106 
6107 // Eagerly parse the entire summary block. This populates the GlobalValueSummary
6108 // objects in the index.
6109 Error ModuleSummaryIndexBitcodeReader::parseEntireSummary(unsigned ID) {
6110   if (Error Err = Stream.EnterSubBlock(ID))
6111     return Err;
6112   SmallVector<uint64_t, 64> Record;
6113 
6114   // Parse version
6115   {
6116     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
6117     if (!MaybeEntry)
6118       return MaybeEntry.takeError();
6119     BitstreamEntry Entry = MaybeEntry.get();
6120 
6121     if (Entry.Kind != BitstreamEntry::Record)
6122       return error("Invalid Summary Block: record for version expected");
6123     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
6124     if (!MaybeRecord)
6125       return MaybeRecord.takeError();
6126     if (MaybeRecord.get() != bitc::FS_VERSION)
6127       return error("Invalid Summary Block: version expected");
6128   }
6129   const uint64_t Version = Record[0];
6130   const bool IsOldProfileFormat = Version == 1;
6131   if (Version < 1 || Version > ModuleSummaryIndex::BitcodeSummaryVersion)
6132     return error("Invalid summary version " + Twine(Version) +
6133                  ". Version should be in the range [1-" +
6134                  Twine(ModuleSummaryIndex::BitcodeSummaryVersion) +
6135                  "].");
6136   Record.clear();
6137 
6138   // Keep around the last seen summary to be used when we see an optional
6139   // "OriginalName" attachement.
6140   GlobalValueSummary *LastSeenSummary = nullptr;
6141   GlobalValue::GUID LastSeenGUID = 0;
6142 
6143   // We can expect to see any number of type ID information records before
6144   // each function summary records; these variables store the information
6145   // collected so far so that it can be used to create the summary object.
6146   std::vector<GlobalValue::GUID> PendingTypeTests;
6147   std::vector<FunctionSummary::VFuncId> PendingTypeTestAssumeVCalls,
6148       PendingTypeCheckedLoadVCalls;
6149   std::vector<FunctionSummary::ConstVCall> PendingTypeTestAssumeConstVCalls,
6150       PendingTypeCheckedLoadConstVCalls;
6151   std::vector<FunctionSummary::ParamAccess> PendingParamAccesses;
6152 
6153   while (true) {
6154     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
6155     if (!MaybeEntry)
6156       return MaybeEntry.takeError();
6157     BitstreamEntry Entry = MaybeEntry.get();
6158 
6159     switch (Entry.Kind) {
6160     case BitstreamEntry::SubBlock: // Handled for us already.
6161     case BitstreamEntry::Error:
6162       return error("Malformed block");
6163     case BitstreamEntry::EndBlock:
6164       return Error::success();
6165     case BitstreamEntry::Record:
6166       // The interesting case.
6167       break;
6168     }
6169 
6170     // Read a record. The record format depends on whether this
6171     // is a per-module index or a combined index file. In the per-module
6172     // case the records contain the associated value's ID for correlation
6173     // with VST entries. In the combined index the correlation is done
6174     // via the bitcode offset of the summary records (which were saved
6175     // in the combined index VST entries). The records also contain
6176     // information used for ThinLTO renaming and importing.
6177     Record.clear();
6178     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
6179     if (!MaybeBitCode)
6180       return MaybeBitCode.takeError();
6181     switch (unsigned BitCode = MaybeBitCode.get()) {
6182     default: // Default behavior: ignore.
6183       break;
6184     case bitc::FS_FLAGS: {  // [flags]
6185       TheIndex.setFlags(Record[0]);
6186       break;
6187     }
6188     case bitc::FS_VALUE_GUID: { // [valueid, refguid]
6189       uint64_t ValueID = Record[0];
6190       GlobalValue::GUID RefGUID = Record[1];
6191       ValueIdToValueInfoMap[ValueID] =
6192           std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID);
6193       break;
6194     }
6195     // FS_PERMODULE: [valueid, flags, instcount, fflags, numrefs,
6196     //                numrefs x valueid, n x (valueid)]
6197     // FS_PERMODULE_PROFILE: [valueid, flags, instcount, fflags, numrefs,
6198     //                        numrefs x valueid,
6199     //                        n x (valueid, hotness)]
6200     // FS_PERMODULE_RELBF: [valueid, flags, instcount, fflags, numrefs,
6201     //                      numrefs x valueid,
6202     //                      n x (valueid, relblockfreq)]
6203     case bitc::FS_PERMODULE:
6204     case bitc::FS_PERMODULE_RELBF:
6205     case bitc::FS_PERMODULE_PROFILE: {
6206       unsigned ValueID = Record[0];
6207       uint64_t RawFlags = Record[1];
6208       unsigned InstCount = Record[2];
6209       uint64_t RawFunFlags = 0;
6210       unsigned NumRefs = Record[3];
6211       unsigned NumRORefs = 0, NumWORefs = 0;
6212       int RefListStartIndex = 4;
6213       if (Version >= 4) {
6214         RawFunFlags = Record[3];
6215         NumRefs = Record[4];
6216         RefListStartIndex = 5;
6217         if (Version >= 5) {
6218           NumRORefs = Record[5];
6219           RefListStartIndex = 6;
6220           if (Version >= 7) {
6221             NumWORefs = Record[6];
6222             RefListStartIndex = 7;
6223           }
6224         }
6225       }
6226 
6227       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6228       // The module path string ref set in the summary must be owned by the
6229       // index's module string table. Since we don't have a module path
6230       // string table section in the per-module index, we create a single
6231       // module path string table entry with an empty (0) ID to take
6232       // ownership.
6233       int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
6234       assert(Record.size() >= RefListStartIndex + NumRefs &&
6235              "Record size inconsistent with number of references");
6236       std::vector<ValueInfo> Refs = makeRefList(
6237           ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
6238       bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE);
6239       bool HasRelBF = (BitCode == bitc::FS_PERMODULE_RELBF);
6240       std::vector<FunctionSummary::EdgeTy> Calls = makeCallList(
6241           ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex),
6242           IsOldProfileFormat, HasProfile, HasRelBF);
6243       setSpecialRefs(Refs, NumRORefs, NumWORefs);
6244       auto FS = std::make_unique<FunctionSummary>(
6245           Flags, InstCount, getDecodedFFlags(RawFunFlags), /*EntryCount=*/0,
6246           std::move(Refs), std::move(Calls), std::move(PendingTypeTests),
6247           std::move(PendingTypeTestAssumeVCalls),
6248           std::move(PendingTypeCheckedLoadVCalls),
6249           std::move(PendingTypeTestAssumeConstVCalls),
6250           std::move(PendingTypeCheckedLoadConstVCalls),
6251           std::move(PendingParamAccesses));
6252       auto VIAndOriginalGUID = getValueInfoFromValueId(ValueID);
6253       FS->setModulePath(getThisModule()->first());
6254       FS->setOriginalName(VIAndOriginalGUID.second);
6255       TheIndex.addGlobalValueSummary(VIAndOriginalGUID.first, std::move(FS));
6256       break;
6257     }
6258     // FS_ALIAS: [valueid, flags, valueid]
6259     // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as
6260     // they expect all aliasee summaries to be available.
6261     case bitc::FS_ALIAS: {
6262       unsigned ValueID = Record[0];
6263       uint64_t RawFlags = Record[1];
6264       unsigned AliaseeID = Record[2];
6265       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6266       auto AS = std::make_unique<AliasSummary>(Flags);
6267       // The module path string ref set in the summary must be owned by the
6268       // index's module string table. Since we don't have a module path
6269       // string table section in the per-module index, we create a single
6270       // module path string table entry with an empty (0) ID to take
6271       // ownership.
6272       AS->setModulePath(getThisModule()->first());
6273 
6274       auto AliaseeVI = getValueInfoFromValueId(AliaseeID).first;
6275       auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, ModulePath);
6276       if (!AliaseeInModule)
6277         return error("Alias expects aliasee summary to be parsed");
6278       AS->setAliasee(AliaseeVI, AliaseeInModule);
6279 
6280       auto GUID = getValueInfoFromValueId(ValueID);
6281       AS->setOriginalName(GUID.second);
6282       TheIndex.addGlobalValueSummary(GUID.first, std::move(AS));
6283       break;
6284     }
6285     // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, n x valueid]
6286     case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: {
6287       unsigned ValueID = Record[0];
6288       uint64_t RawFlags = Record[1];
6289       unsigned RefArrayStart = 2;
6290       GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false,
6291                                       /* WriteOnly */ false,
6292                                       /* Constant */ false,
6293                                       GlobalObject::VCallVisibilityPublic);
6294       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6295       if (Version >= 5) {
6296         GVF = getDecodedGVarFlags(Record[2]);
6297         RefArrayStart = 3;
6298       }
6299       std::vector<ValueInfo> Refs =
6300           makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart));
6301       auto FS =
6302           std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
6303       FS->setModulePath(getThisModule()->first());
6304       auto GUID = getValueInfoFromValueId(ValueID);
6305       FS->setOriginalName(GUID.second);
6306       TheIndex.addGlobalValueSummary(GUID.first, std::move(FS));
6307       break;
6308     }
6309     // FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags,
6310     //                        numrefs, numrefs x valueid,
6311     //                        n x (valueid, offset)]
6312     case bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: {
6313       unsigned ValueID = Record[0];
6314       uint64_t RawFlags = Record[1];
6315       GlobalVarSummary::GVarFlags GVF = getDecodedGVarFlags(Record[2]);
6316       unsigned NumRefs = Record[3];
6317       unsigned RefListStartIndex = 4;
6318       unsigned VTableListStartIndex = RefListStartIndex + NumRefs;
6319       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6320       std::vector<ValueInfo> Refs = makeRefList(
6321           ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
6322       VTableFuncList VTableFuncs;
6323       for (unsigned I = VTableListStartIndex, E = Record.size(); I != E; ++I) {
6324         ValueInfo Callee = getValueInfoFromValueId(Record[I]).first;
6325         uint64_t Offset = Record[++I];
6326         VTableFuncs.push_back({Callee, Offset});
6327       }
6328       auto VS =
6329           std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
6330       VS->setModulePath(getThisModule()->first());
6331       VS->setVTableFuncs(VTableFuncs);
6332       auto GUID = getValueInfoFromValueId(ValueID);
6333       VS->setOriginalName(GUID.second);
6334       TheIndex.addGlobalValueSummary(GUID.first, std::move(VS));
6335       break;
6336     }
6337     // FS_COMBINED: [valueid, modid, flags, instcount, fflags, numrefs,
6338     //               numrefs x valueid, n x (valueid)]
6339     // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, fflags, numrefs,
6340     //                       numrefs x valueid, n x (valueid, hotness)]
6341     case bitc::FS_COMBINED:
6342     case bitc::FS_COMBINED_PROFILE: {
6343       unsigned ValueID = Record[0];
6344       uint64_t ModuleId = Record[1];
6345       uint64_t RawFlags = Record[2];
6346       unsigned InstCount = Record[3];
6347       uint64_t RawFunFlags = 0;
6348       uint64_t EntryCount = 0;
6349       unsigned NumRefs = Record[4];
6350       unsigned NumRORefs = 0, NumWORefs = 0;
6351       int RefListStartIndex = 5;
6352 
6353       if (Version >= 4) {
6354         RawFunFlags = Record[4];
6355         RefListStartIndex = 6;
6356         size_t NumRefsIndex = 5;
6357         if (Version >= 5) {
6358           unsigned NumRORefsOffset = 1;
6359           RefListStartIndex = 7;
6360           if (Version >= 6) {
6361             NumRefsIndex = 6;
6362             EntryCount = Record[5];
6363             RefListStartIndex = 8;
6364             if (Version >= 7) {
6365               RefListStartIndex = 9;
6366               NumWORefs = Record[8];
6367               NumRORefsOffset = 2;
6368             }
6369           }
6370           NumRORefs = Record[RefListStartIndex - NumRORefsOffset];
6371         }
6372         NumRefs = Record[NumRefsIndex];
6373       }
6374 
6375       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6376       int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
6377       assert(Record.size() >= RefListStartIndex + NumRefs &&
6378              "Record size inconsistent with number of references");
6379       std::vector<ValueInfo> Refs = makeRefList(
6380           ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
6381       bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE);
6382       std::vector<FunctionSummary::EdgeTy> Edges = makeCallList(
6383           ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex),
6384           IsOldProfileFormat, HasProfile, false);
6385       ValueInfo VI = getValueInfoFromValueId(ValueID).first;
6386       setSpecialRefs(Refs, NumRORefs, NumWORefs);
6387       auto FS = std::make_unique<FunctionSummary>(
6388           Flags, InstCount, getDecodedFFlags(RawFunFlags), EntryCount,
6389           std::move(Refs), std::move(Edges), std::move(PendingTypeTests),
6390           std::move(PendingTypeTestAssumeVCalls),
6391           std::move(PendingTypeCheckedLoadVCalls),
6392           std::move(PendingTypeTestAssumeConstVCalls),
6393           std::move(PendingTypeCheckedLoadConstVCalls),
6394           std::move(PendingParamAccesses));
6395       LastSeenSummary = FS.get();
6396       LastSeenGUID = VI.getGUID();
6397       FS->setModulePath(ModuleIdMap[ModuleId]);
6398       TheIndex.addGlobalValueSummary(VI, std::move(FS));
6399       break;
6400     }
6401     // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid]
6402     // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as
6403     // they expect all aliasee summaries to be available.
6404     case bitc::FS_COMBINED_ALIAS: {
6405       unsigned ValueID = Record[0];
6406       uint64_t ModuleId = Record[1];
6407       uint64_t RawFlags = Record[2];
6408       unsigned AliaseeValueId = Record[3];
6409       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6410       auto AS = std::make_unique<AliasSummary>(Flags);
6411       LastSeenSummary = AS.get();
6412       AS->setModulePath(ModuleIdMap[ModuleId]);
6413 
6414       auto AliaseeVI = getValueInfoFromValueId(AliaseeValueId).first;
6415       auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, AS->modulePath());
6416       AS->setAliasee(AliaseeVI, AliaseeInModule);
6417 
6418       ValueInfo VI = getValueInfoFromValueId(ValueID).first;
6419       LastSeenGUID = VI.getGUID();
6420       TheIndex.addGlobalValueSummary(VI, std::move(AS));
6421       break;
6422     }
6423     // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid]
6424     case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: {
6425       unsigned ValueID = Record[0];
6426       uint64_t ModuleId = Record[1];
6427       uint64_t RawFlags = Record[2];
6428       unsigned RefArrayStart = 3;
6429       GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false,
6430                                       /* WriteOnly */ false,
6431                                       /* Constant */ false,
6432                                       GlobalObject::VCallVisibilityPublic);
6433       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6434       if (Version >= 5) {
6435         GVF = getDecodedGVarFlags(Record[3]);
6436         RefArrayStart = 4;
6437       }
6438       std::vector<ValueInfo> Refs =
6439           makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart));
6440       auto FS =
6441           std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
6442       LastSeenSummary = FS.get();
6443       FS->setModulePath(ModuleIdMap[ModuleId]);
6444       ValueInfo VI = getValueInfoFromValueId(ValueID).first;
6445       LastSeenGUID = VI.getGUID();
6446       TheIndex.addGlobalValueSummary(VI, std::move(FS));
6447       break;
6448     }
6449     // FS_COMBINED_ORIGINAL_NAME: [original_name]
6450     case bitc::FS_COMBINED_ORIGINAL_NAME: {
6451       uint64_t OriginalName = Record[0];
6452       if (!LastSeenSummary)
6453         return error("Name attachment that does not follow a combined record");
6454       LastSeenSummary->setOriginalName(OriginalName);
6455       TheIndex.addOriginalName(LastSeenGUID, OriginalName);
6456       // Reset the LastSeenSummary
6457       LastSeenSummary = nullptr;
6458       LastSeenGUID = 0;
6459       break;
6460     }
6461     case bitc::FS_TYPE_TESTS:
6462       assert(PendingTypeTests.empty());
6463       llvm::append_range(PendingTypeTests, Record);
6464       break;
6465 
6466     case bitc::FS_TYPE_TEST_ASSUME_VCALLS:
6467       assert(PendingTypeTestAssumeVCalls.empty());
6468       for (unsigned I = 0; I != Record.size(); I += 2)
6469         PendingTypeTestAssumeVCalls.push_back({Record[I], Record[I+1]});
6470       break;
6471 
6472     case bitc::FS_TYPE_CHECKED_LOAD_VCALLS:
6473       assert(PendingTypeCheckedLoadVCalls.empty());
6474       for (unsigned I = 0; I != Record.size(); I += 2)
6475         PendingTypeCheckedLoadVCalls.push_back({Record[I], Record[I+1]});
6476       break;
6477 
6478     case bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL:
6479       PendingTypeTestAssumeConstVCalls.push_back(
6480           {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}});
6481       break;
6482 
6483     case bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL:
6484       PendingTypeCheckedLoadConstVCalls.push_back(
6485           {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}});
6486       break;
6487 
6488     case bitc::FS_CFI_FUNCTION_DEFS: {
6489       std::set<std::string> &CfiFunctionDefs = TheIndex.cfiFunctionDefs();
6490       for (unsigned I = 0; I != Record.size(); I += 2)
6491         CfiFunctionDefs.insert(
6492             {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])});
6493       break;
6494     }
6495 
6496     case bitc::FS_CFI_FUNCTION_DECLS: {
6497       std::set<std::string> &CfiFunctionDecls = TheIndex.cfiFunctionDecls();
6498       for (unsigned I = 0; I != Record.size(); I += 2)
6499         CfiFunctionDecls.insert(
6500             {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])});
6501       break;
6502     }
6503 
6504     case bitc::FS_TYPE_ID:
6505       parseTypeIdSummaryRecord(Record, Strtab, TheIndex);
6506       break;
6507 
6508     case bitc::FS_TYPE_ID_METADATA:
6509       parseTypeIdCompatibleVtableSummaryRecord(Record);
6510       break;
6511 
6512     case bitc::FS_BLOCK_COUNT:
6513       TheIndex.addBlockCount(Record[0]);
6514       break;
6515 
6516     case bitc::FS_PARAM_ACCESS: {
6517       PendingParamAccesses = parseParamAccesses(Record);
6518       break;
6519     }
6520     }
6521   }
6522   llvm_unreachable("Exit infinite loop");
6523 }
6524 
6525 // Parse the  module string table block into the Index.
6526 // This populates the ModulePathStringTable map in the index.
6527 Error ModuleSummaryIndexBitcodeReader::parseModuleStringTable() {
6528   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID))
6529     return Err;
6530 
6531   SmallVector<uint64_t, 64> Record;
6532 
6533   SmallString<128> ModulePath;
6534   ModuleSummaryIndex::ModuleInfo *LastSeenModule = nullptr;
6535 
6536   while (true) {
6537     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
6538     if (!MaybeEntry)
6539       return MaybeEntry.takeError();
6540     BitstreamEntry Entry = MaybeEntry.get();
6541 
6542     switch (Entry.Kind) {
6543     case BitstreamEntry::SubBlock: // Handled for us already.
6544     case BitstreamEntry::Error:
6545       return error("Malformed block");
6546     case BitstreamEntry::EndBlock:
6547       return Error::success();
6548     case BitstreamEntry::Record:
6549       // The interesting case.
6550       break;
6551     }
6552 
6553     Record.clear();
6554     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
6555     if (!MaybeRecord)
6556       return MaybeRecord.takeError();
6557     switch (MaybeRecord.get()) {
6558     default: // Default behavior: ignore.
6559       break;
6560     case bitc::MST_CODE_ENTRY: {
6561       // MST_ENTRY: [modid, namechar x N]
6562       uint64_t ModuleId = Record[0];
6563 
6564       if (convertToString(Record, 1, ModulePath))
6565         return error("Invalid record");
6566 
6567       LastSeenModule = TheIndex.addModule(ModulePath, ModuleId);
6568       ModuleIdMap[ModuleId] = LastSeenModule->first();
6569 
6570       ModulePath.clear();
6571       break;
6572     }
6573     /// MST_CODE_HASH: [5*i32]
6574     case bitc::MST_CODE_HASH: {
6575       if (Record.size() != 5)
6576         return error("Invalid hash length " + Twine(Record.size()).str());
6577       if (!LastSeenModule)
6578         return error("Invalid hash that does not follow a module path");
6579       int Pos = 0;
6580       for (auto &Val : Record) {
6581         assert(!(Val >> 32) && "Unexpected high bits set");
6582         LastSeenModule->second.second[Pos++] = Val;
6583       }
6584       // Reset LastSeenModule to avoid overriding the hash unexpectedly.
6585       LastSeenModule = nullptr;
6586       break;
6587     }
6588     }
6589   }
6590   llvm_unreachable("Exit infinite loop");
6591 }
6592 
6593 namespace {
6594 
6595 // FIXME: This class is only here to support the transition to llvm::Error. It
6596 // will be removed once this transition is complete. Clients should prefer to
6597 // deal with the Error value directly, rather than converting to error_code.
6598 class BitcodeErrorCategoryType : public std::error_category {
6599   const char *name() const noexcept override {
6600     return "llvm.bitcode";
6601   }
6602 
6603   std::string message(int IE) const override {
6604     BitcodeError E = static_cast<BitcodeError>(IE);
6605     switch (E) {
6606     case BitcodeError::CorruptedBitcode:
6607       return "Corrupted bitcode";
6608     }
6609     llvm_unreachable("Unknown error type!");
6610   }
6611 };
6612 
6613 } // end anonymous namespace
6614 
6615 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory;
6616 
6617 const std::error_category &llvm::BitcodeErrorCategory() {
6618   return *ErrorCategory;
6619 }
6620 
6621 static Expected<StringRef> readBlobInRecord(BitstreamCursor &Stream,
6622                                             unsigned Block, unsigned RecordID) {
6623   if (Error Err = Stream.EnterSubBlock(Block))
6624     return std::move(Err);
6625 
6626   StringRef Strtab;
6627   while (true) {
6628     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
6629     if (!MaybeEntry)
6630       return MaybeEntry.takeError();
6631     llvm::BitstreamEntry Entry = MaybeEntry.get();
6632 
6633     switch (Entry.Kind) {
6634     case BitstreamEntry::EndBlock:
6635       return Strtab;
6636 
6637     case BitstreamEntry::Error:
6638       return error("Malformed block");
6639 
6640     case BitstreamEntry::SubBlock:
6641       if (Error Err = Stream.SkipBlock())
6642         return std::move(Err);
6643       break;
6644 
6645     case BitstreamEntry::Record:
6646       StringRef Blob;
6647       SmallVector<uint64_t, 1> Record;
6648       Expected<unsigned> MaybeRecord =
6649           Stream.readRecord(Entry.ID, Record, &Blob);
6650       if (!MaybeRecord)
6651         return MaybeRecord.takeError();
6652       if (MaybeRecord.get() == RecordID)
6653         Strtab = Blob;
6654       break;
6655     }
6656   }
6657 }
6658 
6659 //===----------------------------------------------------------------------===//
6660 // External interface
6661 //===----------------------------------------------------------------------===//
6662 
6663 Expected<std::vector<BitcodeModule>>
6664 llvm::getBitcodeModuleList(MemoryBufferRef Buffer) {
6665   auto FOrErr = getBitcodeFileContents(Buffer);
6666   if (!FOrErr)
6667     return FOrErr.takeError();
6668   return std::move(FOrErr->Mods);
6669 }
6670 
6671 Expected<BitcodeFileContents>
6672 llvm::getBitcodeFileContents(MemoryBufferRef Buffer) {
6673   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
6674   if (!StreamOrErr)
6675     return StreamOrErr.takeError();
6676   BitstreamCursor &Stream = *StreamOrErr;
6677 
6678   BitcodeFileContents F;
6679   while (true) {
6680     uint64_t BCBegin = Stream.getCurrentByteNo();
6681 
6682     // We may be consuming bitcode from a client that leaves garbage at the end
6683     // of the bitcode stream (e.g. Apple's ar tool). If we are close enough to
6684     // the end that there cannot possibly be another module, stop looking.
6685     if (BCBegin + 8 >= Stream.getBitcodeBytes().size())
6686       return F;
6687 
6688     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
6689     if (!MaybeEntry)
6690       return MaybeEntry.takeError();
6691     llvm::BitstreamEntry Entry = MaybeEntry.get();
6692 
6693     switch (Entry.Kind) {
6694     case BitstreamEntry::EndBlock:
6695     case BitstreamEntry::Error:
6696       return error("Malformed block");
6697 
6698     case BitstreamEntry::SubBlock: {
6699       uint64_t IdentificationBit = -1ull;
6700       if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) {
6701         IdentificationBit = Stream.GetCurrentBitNo() - BCBegin * 8;
6702         if (Error Err = Stream.SkipBlock())
6703           return std::move(Err);
6704 
6705         {
6706           Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
6707           if (!MaybeEntry)
6708             return MaybeEntry.takeError();
6709           Entry = MaybeEntry.get();
6710         }
6711 
6712         if (Entry.Kind != BitstreamEntry::SubBlock ||
6713             Entry.ID != bitc::MODULE_BLOCK_ID)
6714           return error("Malformed block");
6715       }
6716 
6717       if (Entry.ID == bitc::MODULE_BLOCK_ID) {
6718         uint64_t ModuleBit = Stream.GetCurrentBitNo() - BCBegin * 8;
6719         if (Error Err = Stream.SkipBlock())
6720           return std::move(Err);
6721 
6722         F.Mods.push_back({Stream.getBitcodeBytes().slice(
6723                               BCBegin, Stream.getCurrentByteNo() - BCBegin),
6724                           Buffer.getBufferIdentifier(), IdentificationBit,
6725                           ModuleBit});
6726         continue;
6727       }
6728 
6729       if (Entry.ID == bitc::STRTAB_BLOCK_ID) {
6730         Expected<StringRef> Strtab =
6731             readBlobInRecord(Stream, bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB);
6732         if (!Strtab)
6733           return Strtab.takeError();
6734         // This string table is used by every preceding bitcode module that does
6735         // not have its own string table. A bitcode file may have multiple
6736         // string tables if it was created by binary concatenation, for example
6737         // with "llvm-cat -b".
6738         for (auto I = F.Mods.rbegin(), E = F.Mods.rend(); I != E; ++I) {
6739           if (!I->Strtab.empty())
6740             break;
6741           I->Strtab = *Strtab;
6742         }
6743         // Similarly, the string table is used by every preceding symbol table;
6744         // normally there will be just one unless the bitcode file was created
6745         // by binary concatenation.
6746         if (!F.Symtab.empty() && F.StrtabForSymtab.empty())
6747           F.StrtabForSymtab = *Strtab;
6748         continue;
6749       }
6750 
6751       if (Entry.ID == bitc::SYMTAB_BLOCK_ID) {
6752         Expected<StringRef> SymtabOrErr =
6753             readBlobInRecord(Stream, bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB);
6754         if (!SymtabOrErr)
6755           return SymtabOrErr.takeError();
6756 
6757         // We can expect the bitcode file to have multiple symbol tables if it
6758         // was created by binary concatenation. In that case we silently
6759         // ignore any subsequent symbol tables, which is fine because this is a
6760         // low level function. The client is expected to notice that the number
6761         // of modules in the symbol table does not match the number of modules
6762         // in the input file and regenerate the symbol table.
6763         if (F.Symtab.empty())
6764           F.Symtab = *SymtabOrErr;
6765         continue;
6766       }
6767 
6768       if (Error Err = Stream.SkipBlock())
6769         return std::move(Err);
6770       continue;
6771     }
6772     case BitstreamEntry::Record:
6773       if (Error E = Stream.skipRecord(Entry.ID).takeError())
6774         return std::move(E);
6775       continue;
6776     }
6777   }
6778 }
6779 
6780 /// Get a lazy one-at-time loading module from bitcode.
6781 ///
6782 /// This isn't always used in a lazy context.  In particular, it's also used by
6783 /// \a parseModule().  If this is truly lazy, then we need to eagerly pull
6784 /// in forward-referenced functions from block address references.
6785 ///
6786 /// \param[in] MaterializeAll Set to \c true if we should materialize
6787 /// everything.
6788 Expected<std::unique_ptr<Module>>
6789 BitcodeModule::getModuleImpl(LLVMContext &Context, bool MaterializeAll,
6790                              bool ShouldLazyLoadMetadata, bool IsImporting,
6791                              DataLayoutCallbackTy DataLayoutCallback) {
6792   BitstreamCursor Stream(Buffer);
6793 
6794   std::string ProducerIdentification;
6795   if (IdentificationBit != -1ull) {
6796     if (Error JumpFailed = Stream.JumpToBit(IdentificationBit))
6797       return std::move(JumpFailed);
6798     if (Error E =
6799             readIdentificationBlock(Stream).moveInto(ProducerIdentification))
6800       return std::move(E);
6801   }
6802 
6803   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
6804     return std::move(JumpFailed);
6805   auto *R = new BitcodeReader(std::move(Stream), Strtab, ProducerIdentification,
6806                               Context);
6807 
6808   std::unique_ptr<Module> M =
6809       std::make_unique<Module>(ModuleIdentifier, Context);
6810   M->setMaterializer(R);
6811 
6812   // Delay parsing Metadata if ShouldLazyLoadMetadata is true.
6813   if (Error Err = R->parseBitcodeInto(M.get(), ShouldLazyLoadMetadata,
6814                                       IsImporting, DataLayoutCallback))
6815     return std::move(Err);
6816 
6817   if (MaterializeAll) {
6818     // Read in the entire module, and destroy the BitcodeReader.
6819     if (Error Err = M->materializeAll())
6820       return std::move(Err);
6821   } else {
6822     // Resolve forward references from blockaddresses.
6823     if (Error Err = R->materializeForwardReferencedFunctions())
6824       return std::move(Err);
6825   }
6826   return std::move(M);
6827 }
6828 
6829 Expected<std::unique_ptr<Module>>
6830 BitcodeModule::getLazyModule(LLVMContext &Context, bool ShouldLazyLoadMetadata,
6831                              bool IsImporting) {
6832   return getModuleImpl(Context, false, ShouldLazyLoadMetadata, IsImporting,
6833                        [](StringRef) { return None; });
6834 }
6835 
6836 // Parse the specified bitcode buffer and merge the index into CombinedIndex.
6837 // We don't use ModuleIdentifier here because the client may need to control the
6838 // module path used in the combined summary (e.g. when reading summaries for
6839 // regular LTO modules).
6840 Error BitcodeModule::readSummary(ModuleSummaryIndex &CombinedIndex,
6841                                  StringRef ModulePath, uint64_t ModuleId) {
6842   BitstreamCursor Stream(Buffer);
6843   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
6844     return JumpFailed;
6845 
6846   ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, CombinedIndex,
6847                                     ModulePath, ModuleId);
6848   return R.parseModule();
6849 }
6850 
6851 // Parse the specified bitcode buffer, returning the function info index.
6852 Expected<std::unique_ptr<ModuleSummaryIndex>> BitcodeModule::getSummary() {
6853   BitstreamCursor Stream(Buffer);
6854   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
6855     return std::move(JumpFailed);
6856 
6857   auto Index = std::make_unique<ModuleSummaryIndex>(/*HaveGVs=*/false);
6858   ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, *Index,
6859                                     ModuleIdentifier, 0);
6860 
6861   if (Error Err = R.parseModule())
6862     return std::move(Err);
6863 
6864   return std::move(Index);
6865 }
6866 
6867 static Expected<bool> getEnableSplitLTOUnitFlag(BitstreamCursor &Stream,
6868                                                 unsigned ID) {
6869   if (Error Err = Stream.EnterSubBlock(ID))
6870     return std::move(Err);
6871   SmallVector<uint64_t, 64> Record;
6872 
6873   while (true) {
6874     BitstreamEntry Entry;
6875     if (Error E = Stream.advanceSkippingSubblocks().moveInto(Entry))
6876       return std::move(E);
6877 
6878     switch (Entry.Kind) {
6879     case BitstreamEntry::SubBlock: // Handled for us already.
6880     case BitstreamEntry::Error:
6881       return error("Malformed block");
6882     case BitstreamEntry::EndBlock:
6883       // If no flags record found, conservatively return true to mimic
6884       // behavior before this flag was added.
6885       return true;
6886     case BitstreamEntry::Record:
6887       // The interesting case.
6888       break;
6889     }
6890 
6891     // Look for the FS_FLAGS record.
6892     Record.clear();
6893     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
6894     if (!MaybeBitCode)
6895       return MaybeBitCode.takeError();
6896     switch (MaybeBitCode.get()) {
6897     default: // Default behavior: ignore.
6898       break;
6899     case bitc::FS_FLAGS: { // [flags]
6900       uint64_t Flags = Record[0];
6901       // Scan flags.
6902       assert(Flags <= 0x7f && "Unexpected bits in flag");
6903 
6904       return Flags & 0x8;
6905     }
6906     }
6907   }
6908   llvm_unreachable("Exit infinite loop");
6909 }
6910 
6911 // Check if the given bitcode buffer contains a global value summary block.
6912 Expected<BitcodeLTOInfo> BitcodeModule::getLTOInfo() {
6913   BitstreamCursor Stream(Buffer);
6914   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
6915     return std::move(JumpFailed);
6916 
6917   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
6918     return std::move(Err);
6919 
6920   while (true) {
6921     llvm::BitstreamEntry Entry;
6922     if (Error E = Stream.advance().moveInto(Entry))
6923       return std::move(E);
6924 
6925     switch (Entry.Kind) {
6926     case BitstreamEntry::Error:
6927       return error("Malformed block");
6928     case BitstreamEntry::EndBlock:
6929       return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/false,
6930                             /*EnableSplitLTOUnit=*/false};
6931 
6932     case BitstreamEntry::SubBlock:
6933       if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) {
6934         Expected<bool> EnableSplitLTOUnit =
6935             getEnableSplitLTOUnitFlag(Stream, Entry.ID);
6936         if (!EnableSplitLTOUnit)
6937           return EnableSplitLTOUnit.takeError();
6938         return BitcodeLTOInfo{/*IsThinLTO=*/true, /*HasSummary=*/true,
6939                               *EnableSplitLTOUnit};
6940       }
6941 
6942       if (Entry.ID == bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID) {
6943         Expected<bool> EnableSplitLTOUnit =
6944             getEnableSplitLTOUnitFlag(Stream, Entry.ID);
6945         if (!EnableSplitLTOUnit)
6946           return EnableSplitLTOUnit.takeError();
6947         return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/true,
6948                               *EnableSplitLTOUnit};
6949       }
6950 
6951       // Ignore other sub-blocks.
6952       if (Error Err = Stream.SkipBlock())
6953         return std::move(Err);
6954       continue;
6955 
6956     case BitstreamEntry::Record:
6957       if (Expected<unsigned> StreamFailed = Stream.skipRecord(Entry.ID))
6958         continue;
6959       else
6960         return StreamFailed.takeError();
6961     }
6962   }
6963 }
6964 
6965 static Expected<BitcodeModule> getSingleModule(MemoryBufferRef Buffer) {
6966   Expected<std::vector<BitcodeModule>> MsOrErr = getBitcodeModuleList(Buffer);
6967   if (!MsOrErr)
6968     return MsOrErr.takeError();
6969 
6970   if (MsOrErr->size() != 1)
6971     return error("Expected a single module");
6972 
6973   return (*MsOrErr)[0];
6974 }
6975 
6976 Expected<std::unique_ptr<Module>>
6977 llvm::getLazyBitcodeModule(MemoryBufferRef Buffer, LLVMContext &Context,
6978                            bool ShouldLazyLoadMetadata, bool IsImporting) {
6979   Expected<BitcodeModule> BM = getSingleModule(Buffer);
6980   if (!BM)
6981     return BM.takeError();
6982 
6983   return BM->getLazyModule(Context, ShouldLazyLoadMetadata, IsImporting);
6984 }
6985 
6986 Expected<std::unique_ptr<Module>> llvm::getOwningLazyBitcodeModule(
6987     std::unique_ptr<MemoryBuffer> &&Buffer, LLVMContext &Context,
6988     bool ShouldLazyLoadMetadata, bool IsImporting) {
6989   auto MOrErr = getLazyBitcodeModule(*Buffer, Context, ShouldLazyLoadMetadata,
6990                                      IsImporting);
6991   if (MOrErr)
6992     (*MOrErr)->setOwnedMemoryBuffer(std::move(Buffer));
6993   return MOrErr;
6994 }
6995 
6996 Expected<std::unique_ptr<Module>>
6997 BitcodeModule::parseModule(LLVMContext &Context,
6998                            DataLayoutCallbackTy DataLayoutCallback) {
6999   return getModuleImpl(Context, true, false, false, DataLayoutCallback);
7000   // TODO: Restore the use-lists to the in-memory state when the bitcode was
7001   // written.  We must defer until the Module has been fully materialized.
7002 }
7003 
7004 Expected<std::unique_ptr<Module>>
7005 llvm::parseBitcodeFile(MemoryBufferRef Buffer, LLVMContext &Context,
7006                        DataLayoutCallbackTy DataLayoutCallback) {
7007   Expected<BitcodeModule> BM = getSingleModule(Buffer);
7008   if (!BM)
7009     return BM.takeError();
7010 
7011   return BM->parseModule(Context, DataLayoutCallback);
7012 }
7013 
7014 Expected<std::string> llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer) {
7015   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
7016   if (!StreamOrErr)
7017     return StreamOrErr.takeError();
7018 
7019   return readTriple(*StreamOrErr);
7020 }
7021 
7022 Expected<bool> llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer) {
7023   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
7024   if (!StreamOrErr)
7025     return StreamOrErr.takeError();
7026 
7027   return hasObjCCategory(*StreamOrErr);
7028 }
7029 
7030 Expected<std::string> llvm::getBitcodeProducerString(MemoryBufferRef Buffer) {
7031   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
7032   if (!StreamOrErr)
7033     return StreamOrErr.takeError();
7034 
7035   return readIdentificationCode(*StreamOrErr);
7036 }
7037 
7038 Error llvm::readModuleSummaryIndex(MemoryBufferRef Buffer,
7039                                    ModuleSummaryIndex &CombinedIndex,
7040                                    uint64_t ModuleId) {
7041   Expected<BitcodeModule> BM = getSingleModule(Buffer);
7042   if (!BM)
7043     return BM.takeError();
7044 
7045   return BM->readSummary(CombinedIndex, BM->getModuleIdentifier(), ModuleId);
7046 }
7047 
7048 Expected<std::unique_ptr<ModuleSummaryIndex>>
7049 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer) {
7050   Expected<BitcodeModule> BM = getSingleModule(Buffer);
7051   if (!BM)
7052     return BM.takeError();
7053 
7054   return BM->getSummary();
7055 }
7056 
7057 Expected<BitcodeLTOInfo> llvm::getBitcodeLTOInfo(MemoryBufferRef Buffer) {
7058   Expected<BitcodeModule> BM = getSingleModule(Buffer);
7059   if (!BM)
7060     return BM.takeError();
7061 
7062   return BM->getLTOInfo();
7063 }
7064 
7065 Expected<std::unique_ptr<ModuleSummaryIndex>>
7066 llvm::getModuleSummaryIndexForFile(StringRef Path,
7067                                    bool IgnoreEmptyThinLTOIndexFile) {
7068   ErrorOr<std::unique_ptr<MemoryBuffer>> FileOrErr =
7069       MemoryBuffer::getFileOrSTDIN(Path);
7070   if (!FileOrErr)
7071     return errorCodeToError(FileOrErr.getError());
7072   if (IgnoreEmptyThinLTOIndexFile && !(*FileOrErr)->getBufferSize())
7073     return nullptr;
7074   return getModuleSummaryIndex(**FileOrErr);
7075 }
7076