1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/Bitcode/BitcodeReader.h" 10 #include "MetadataLoader.h" 11 #include "ValueList.h" 12 #include "llvm/ADT/APFloat.h" 13 #include "llvm/ADT/APInt.h" 14 #include "llvm/ADT/ArrayRef.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/Optional.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallString.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/StringRef.h" 21 #include "llvm/ADT/Triple.h" 22 #include "llvm/ADT/Twine.h" 23 #include "llvm/Bitcode/BitcodeCommon.h" 24 #include "llvm/Bitcode/LLVMBitCodes.h" 25 #include "llvm/Bitstream/BitstreamReader.h" 26 #include "llvm/Config/llvm-config.h" 27 #include "llvm/IR/Argument.h" 28 #include "llvm/IR/Attributes.h" 29 #include "llvm/IR/AutoUpgrade.h" 30 #include "llvm/IR/BasicBlock.h" 31 #include "llvm/IR/CallingConv.h" 32 #include "llvm/IR/Comdat.h" 33 #include "llvm/IR/Constant.h" 34 #include "llvm/IR/Constants.h" 35 #include "llvm/IR/DataLayout.h" 36 #include "llvm/IR/DebugInfo.h" 37 #include "llvm/IR/DebugInfoMetadata.h" 38 #include "llvm/IR/DebugLoc.h" 39 #include "llvm/IR/DerivedTypes.h" 40 #include "llvm/IR/Function.h" 41 #include "llvm/IR/GVMaterializer.h" 42 #include "llvm/IR/GlobalAlias.h" 43 #include "llvm/IR/GlobalIFunc.h" 44 #include "llvm/IR/GlobalObject.h" 45 #include "llvm/IR/GlobalValue.h" 46 #include "llvm/IR/GlobalVariable.h" 47 #include "llvm/IR/InlineAsm.h" 48 #include "llvm/IR/InstIterator.h" 49 #include "llvm/IR/InstrTypes.h" 50 #include "llvm/IR/Instruction.h" 51 #include "llvm/IR/Instructions.h" 52 #include "llvm/IR/Intrinsics.h" 53 #include "llvm/IR/LLVMContext.h" 54 #include "llvm/IR/Metadata.h" 55 #include "llvm/IR/Module.h" 56 #include "llvm/IR/ModuleSummaryIndex.h" 57 #include "llvm/IR/Operator.h" 58 #include "llvm/IR/Type.h" 59 #include "llvm/IR/Value.h" 60 #include "llvm/IR/Verifier.h" 61 #include "llvm/Support/AtomicOrdering.h" 62 #include "llvm/Support/Casting.h" 63 #include "llvm/Support/CommandLine.h" 64 #include "llvm/Support/Compiler.h" 65 #include "llvm/Support/Debug.h" 66 #include "llvm/Support/Error.h" 67 #include "llvm/Support/ErrorHandling.h" 68 #include "llvm/Support/ErrorOr.h" 69 #include "llvm/Support/ManagedStatic.h" 70 #include "llvm/Support/MathExtras.h" 71 #include "llvm/Support/MemoryBuffer.h" 72 #include "llvm/Support/raw_ostream.h" 73 #include <algorithm> 74 #include <cassert> 75 #include <cstddef> 76 #include <cstdint> 77 #include <deque> 78 #include <map> 79 #include <memory> 80 #include <set> 81 #include <string> 82 #include <system_error> 83 #include <tuple> 84 #include <utility> 85 #include <vector> 86 87 using namespace llvm; 88 89 static cl::opt<bool> PrintSummaryGUIDs( 90 "print-summary-global-ids", cl::init(false), cl::Hidden, 91 cl::desc( 92 "Print the global id for each value when reading the module summary")); 93 94 namespace { 95 96 enum { 97 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 98 }; 99 100 } // end anonymous namespace 101 102 static Error error(const Twine &Message) { 103 return make_error<StringError>( 104 Message, make_error_code(BitcodeError::CorruptedBitcode)); 105 } 106 107 static Error hasInvalidBitcodeHeader(BitstreamCursor &Stream) { 108 if (!Stream.canSkipToPos(4)) 109 return createStringError(std::errc::illegal_byte_sequence, 110 "file too small to contain bitcode header"); 111 for (unsigned C : {'B', 'C'}) 112 if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(8)) { 113 if (Res.get() != C) 114 return createStringError(std::errc::illegal_byte_sequence, 115 "file doesn't start with bitcode header"); 116 } else 117 return Res.takeError(); 118 for (unsigned C : {0x0, 0xC, 0xE, 0xD}) 119 if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(4)) { 120 if (Res.get() != C) 121 return createStringError(std::errc::illegal_byte_sequence, 122 "file doesn't start with bitcode header"); 123 } else 124 return Res.takeError(); 125 return Error::success(); 126 } 127 128 static Expected<BitstreamCursor> initStream(MemoryBufferRef Buffer) { 129 const unsigned char *BufPtr = (const unsigned char *)Buffer.getBufferStart(); 130 const unsigned char *BufEnd = BufPtr + Buffer.getBufferSize(); 131 132 if (Buffer.getBufferSize() & 3) 133 return error("Invalid bitcode signature"); 134 135 // If we have a wrapper header, parse it and ignore the non-bc file contents. 136 // The magic number is 0x0B17C0DE stored in little endian. 137 if (isBitcodeWrapper(BufPtr, BufEnd)) 138 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 139 return error("Invalid bitcode wrapper header"); 140 141 BitstreamCursor Stream(ArrayRef<uint8_t>(BufPtr, BufEnd)); 142 if (Error Err = hasInvalidBitcodeHeader(Stream)) 143 return std::move(Err); 144 145 return std::move(Stream); 146 } 147 148 /// Convert a string from a record into an std::string, return true on failure. 149 template <typename StrTy> 150 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx, 151 StrTy &Result) { 152 if (Idx > Record.size()) 153 return true; 154 155 Result.append(Record.begin() + Idx, Record.end()); 156 return false; 157 } 158 159 // Strip all the TBAA attachment for the module. 160 static void stripTBAA(Module *M) { 161 for (auto &F : *M) { 162 if (F.isMaterializable()) 163 continue; 164 for (auto &I : instructions(F)) 165 I.setMetadata(LLVMContext::MD_tbaa, nullptr); 166 } 167 } 168 169 /// Read the "IDENTIFICATION_BLOCK_ID" block, do some basic enforcement on the 170 /// "epoch" encoded in the bitcode, and return the producer name if any. 171 static Expected<std::string> readIdentificationBlock(BitstreamCursor &Stream) { 172 if (Error Err = Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID)) 173 return std::move(Err); 174 175 // Read all the records. 176 SmallVector<uint64_t, 64> Record; 177 178 std::string ProducerIdentification; 179 180 while (true) { 181 BitstreamEntry Entry; 182 if (Error E = Stream.advance().moveInto(Entry)) 183 return std::move(E); 184 185 switch (Entry.Kind) { 186 default: 187 case BitstreamEntry::Error: 188 return error("Malformed block"); 189 case BitstreamEntry::EndBlock: 190 return ProducerIdentification; 191 case BitstreamEntry::Record: 192 // The interesting case. 193 break; 194 } 195 196 // Read a record. 197 Record.clear(); 198 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 199 if (!MaybeBitCode) 200 return MaybeBitCode.takeError(); 201 switch (MaybeBitCode.get()) { 202 default: // Default behavior: reject 203 return error("Invalid value"); 204 case bitc::IDENTIFICATION_CODE_STRING: // IDENTIFICATION: [strchr x N] 205 convertToString(Record, 0, ProducerIdentification); 206 break; 207 case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#] 208 unsigned epoch = (unsigned)Record[0]; 209 if (epoch != bitc::BITCODE_CURRENT_EPOCH) { 210 return error( 211 Twine("Incompatible epoch: Bitcode '") + Twine(epoch) + 212 "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'"); 213 } 214 } 215 } 216 } 217 } 218 219 static Expected<std::string> readIdentificationCode(BitstreamCursor &Stream) { 220 // We expect a number of well-defined blocks, though we don't necessarily 221 // need to understand them all. 222 while (true) { 223 if (Stream.AtEndOfStream()) 224 return ""; 225 226 BitstreamEntry Entry; 227 if (Error E = Stream.advance().moveInto(Entry)) 228 return std::move(E); 229 230 switch (Entry.Kind) { 231 case BitstreamEntry::EndBlock: 232 case BitstreamEntry::Error: 233 return error("Malformed block"); 234 235 case BitstreamEntry::SubBlock: 236 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) 237 return readIdentificationBlock(Stream); 238 239 // Ignore other sub-blocks. 240 if (Error Err = Stream.SkipBlock()) 241 return std::move(Err); 242 continue; 243 case BitstreamEntry::Record: 244 if (Error E = Stream.skipRecord(Entry.ID).takeError()) 245 return std::move(E); 246 continue; 247 } 248 } 249 } 250 251 static Expected<bool> hasObjCCategoryInModule(BitstreamCursor &Stream) { 252 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 253 return std::move(Err); 254 255 SmallVector<uint64_t, 64> Record; 256 // Read all the records for this module. 257 258 while (true) { 259 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 260 if (!MaybeEntry) 261 return MaybeEntry.takeError(); 262 BitstreamEntry Entry = MaybeEntry.get(); 263 264 switch (Entry.Kind) { 265 case BitstreamEntry::SubBlock: // Handled for us already. 266 case BitstreamEntry::Error: 267 return error("Malformed block"); 268 case BitstreamEntry::EndBlock: 269 return false; 270 case BitstreamEntry::Record: 271 // The interesting case. 272 break; 273 } 274 275 // Read a record. 276 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 277 if (!MaybeRecord) 278 return MaybeRecord.takeError(); 279 switch (MaybeRecord.get()) { 280 default: 281 break; // Default behavior, ignore unknown content. 282 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 283 std::string S; 284 if (convertToString(Record, 0, S)) 285 return error("Invalid record"); 286 // Check for the i386 and other (x86_64, ARM) conventions 287 if (S.find("__DATA,__objc_catlist") != std::string::npos || 288 S.find("__OBJC,__category") != std::string::npos) 289 return true; 290 break; 291 } 292 } 293 Record.clear(); 294 } 295 llvm_unreachable("Exit infinite loop"); 296 } 297 298 static Expected<bool> hasObjCCategory(BitstreamCursor &Stream) { 299 // We expect a number of well-defined blocks, though we don't necessarily 300 // need to understand them all. 301 while (true) { 302 BitstreamEntry Entry; 303 if (Error E = Stream.advance().moveInto(Entry)) 304 return std::move(E); 305 306 switch (Entry.Kind) { 307 case BitstreamEntry::Error: 308 return error("Malformed block"); 309 case BitstreamEntry::EndBlock: 310 return false; 311 312 case BitstreamEntry::SubBlock: 313 if (Entry.ID == bitc::MODULE_BLOCK_ID) 314 return hasObjCCategoryInModule(Stream); 315 316 // Ignore other sub-blocks. 317 if (Error Err = Stream.SkipBlock()) 318 return std::move(Err); 319 continue; 320 321 case BitstreamEntry::Record: 322 if (Error E = Stream.skipRecord(Entry.ID).takeError()) 323 return std::move(E); 324 continue; 325 } 326 } 327 } 328 329 static Expected<std::string> readModuleTriple(BitstreamCursor &Stream) { 330 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 331 return std::move(Err); 332 333 SmallVector<uint64_t, 64> Record; 334 335 std::string Triple; 336 337 // Read all the records for this module. 338 while (true) { 339 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 340 if (!MaybeEntry) 341 return MaybeEntry.takeError(); 342 BitstreamEntry Entry = MaybeEntry.get(); 343 344 switch (Entry.Kind) { 345 case BitstreamEntry::SubBlock: // Handled for us already. 346 case BitstreamEntry::Error: 347 return error("Malformed block"); 348 case BitstreamEntry::EndBlock: 349 return Triple; 350 case BitstreamEntry::Record: 351 // The interesting case. 352 break; 353 } 354 355 // Read a record. 356 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 357 if (!MaybeRecord) 358 return MaybeRecord.takeError(); 359 switch (MaybeRecord.get()) { 360 default: break; // Default behavior, ignore unknown content. 361 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 362 std::string S; 363 if (convertToString(Record, 0, S)) 364 return error("Invalid record"); 365 Triple = S; 366 break; 367 } 368 } 369 Record.clear(); 370 } 371 llvm_unreachable("Exit infinite loop"); 372 } 373 374 static Expected<std::string> readTriple(BitstreamCursor &Stream) { 375 // We expect a number of well-defined blocks, though we don't necessarily 376 // need to understand them all. 377 while (true) { 378 Expected<BitstreamEntry> MaybeEntry = Stream.advance(); 379 if (!MaybeEntry) 380 return MaybeEntry.takeError(); 381 BitstreamEntry Entry = MaybeEntry.get(); 382 383 switch (Entry.Kind) { 384 case BitstreamEntry::Error: 385 return error("Malformed block"); 386 case BitstreamEntry::EndBlock: 387 return ""; 388 389 case BitstreamEntry::SubBlock: 390 if (Entry.ID == bitc::MODULE_BLOCK_ID) 391 return readModuleTriple(Stream); 392 393 // Ignore other sub-blocks. 394 if (Error Err = Stream.SkipBlock()) 395 return std::move(Err); 396 continue; 397 398 case BitstreamEntry::Record: 399 if (llvm::Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID)) 400 continue; 401 else 402 return Skipped.takeError(); 403 } 404 } 405 } 406 407 namespace { 408 409 class BitcodeReaderBase { 410 protected: 411 BitcodeReaderBase(BitstreamCursor Stream, StringRef Strtab) 412 : Stream(std::move(Stream)), Strtab(Strtab) { 413 this->Stream.setBlockInfo(&BlockInfo); 414 } 415 416 BitstreamBlockInfo BlockInfo; 417 BitstreamCursor Stream; 418 StringRef Strtab; 419 420 /// In version 2 of the bitcode we store names of global values and comdats in 421 /// a string table rather than in the VST. 422 bool UseStrtab = false; 423 424 Expected<unsigned> parseVersionRecord(ArrayRef<uint64_t> Record); 425 426 /// If this module uses a string table, pop the reference to the string table 427 /// and return the referenced string and the rest of the record. Otherwise 428 /// just return the record itself. 429 std::pair<StringRef, ArrayRef<uint64_t>> 430 readNameFromStrtab(ArrayRef<uint64_t> Record); 431 432 Error readBlockInfo(); 433 434 // Contains an arbitrary and optional string identifying the bitcode producer 435 std::string ProducerIdentification; 436 437 Error error(const Twine &Message); 438 }; 439 440 } // end anonymous namespace 441 442 Error BitcodeReaderBase::error(const Twine &Message) { 443 std::string FullMsg = Message.str(); 444 if (!ProducerIdentification.empty()) 445 FullMsg += " (Producer: '" + ProducerIdentification + "' Reader: 'LLVM " + 446 LLVM_VERSION_STRING "')"; 447 return ::error(FullMsg); 448 } 449 450 Expected<unsigned> 451 BitcodeReaderBase::parseVersionRecord(ArrayRef<uint64_t> Record) { 452 if (Record.empty()) 453 return error("Invalid record"); 454 unsigned ModuleVersion = Record[0]; 455 if (ModuleVersion > 2) 456 return error("Invalid value"); 457 UseStrtab = ModuleVersion >= 2; 458 return ModuleVersion; 459 } 460 461 std::pair<StringRef, ArrayRef<uint64_t>> 462 BitcodeReaderBase::readNameFromStrtab(ArrayRef<uint64_t> Record) { 463 if (!UseStrtab) 464 return {"", Record}; 465 // Invalid reference. Let the caller complain about the record being empty. 466 if (Record[0] + Record[1] > Strtab.size()) 467 return {"", {}}; 468 return {StringRef(Strtab.data() + Record[0], Record[1]), Record.slice(2)}; 469 } 470 471 namespace { 472 473 class BitcodeReader : public BitcodeReaderBase, public GVMaterializer { 474 LLVMContext &Context; 475 Module *TheModule = nullptr; 476 // Next offset to start scanning for lazy parsing of function bodies. 477 uint64_t NextUnreadBit = 0; 478 // Last function offset found in the VST. 479 uint64_t LastFunctionBlockBit = 0; 480 bool SeenValueSymbolTable = false; 481 uint64_t VSTOffset = 0; 482 483 std::vector<std::string> SectionTable; 484 std::vector<std::string> GCTable; 485 486 std::vector<Type*> TypeList; 487 DenseMap<Function *, FunctionType *> FunctionTypes; 488 BitcodeReaderValueList ValueList; 489 Optional<MetadataLoader> MDLoader; 490 std::vector<Comdat *> ComdatList; 491 DenseSet<GlobalObject *> ImplicitComdatObjects; 492 SmallVector<Instruction *, 64> InstructionList; 493 494 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInits; 495 std::vector<std::pair<GlobalValue *, unsigned>> IndirectSymbolInits; 496 497 struct FunctionOperandInfo { 498 Function *F; 499 unsigned PersonalityFn; 500 unsigned Prefix; 501 unsigned Prologue; 502 }; 503 std::vector<FunctionOperandInfo> FunctionOperands; 504 505 /// The set of attributes by index. Index zero in the file is for null, and 506 /// is thus not represented here. As such all indices are off by one. 507 std::vector<AttributeList> MAttributes; 508 509 /// The set of attribute groups. 510 std::map<unsigned, AttributeList> MAttributeGroups; 511 512 /// While parsing a function body, this is a list of the basic blocks for the 513 /// function. 514 std::vector<BasicBlock*> FunctionBBs; 515 516 // When reading the module header, this list is populated with functions that 517 // have bodies later in the file. 518 std::vector<Function*> FunctionsWithBodies; 519 520 // When intrinsic functions are encountered which require upgrading they are 521 // stored here with their replacement function. 522 using UpdatedIntrinsicMap = DenseMap<Function *, Function *>; 523 UpdatedIntrinsicMap UpgradedIntrinsics; 524 // Intrinsics which were remangled because of types rename 525 UpdatedIntrinsicMap RemangledIntrinsics; 526 527 // Several operations happen after the module header has been read, but 528 // before function bodies are processed. This keeps track of whether 529 // we've done this yet. 530 bool SeenFirstFunctionBody = false; 531 532 /// When function bodies are initially scanned, this map contains info about 533 /// where to find deferred function body in the stream. 534 DenseMap<Function*, uint64_t> DeferredFunctionInfo; 535 536 /// When Metadata block is initially scanned when parsing the module, we may 537 /// choose to defer parsing of the metadata. This vector contains info about 538 /// which Metadata blocks are deferred. 539 std::vector<uint64_t> DeferredMetadataInfo; 540 541 /// These are basic blocks forward-referenced by block addresses. They are 542 /// inserted lazily into functions when they're loaded. The basic block ID is 543 /// its index into the vector. 544 DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs; 545 std::deque<Function *> BasicBlockFwdRefQueue; 546 547 /// Indicates that we are using a new encoding for instruction operands where 548 /// most operands in the current FUNCTION_BLOCK are encoded relative to the 549 /// instruction number, for a more compact encoding. Some instruction 550 /// operands are not relative to the instruction ID: basic block numbers, and 551 /// types. Once the old style function blocks have been phased out, we would 552 /// not need this flag. 553 bool UseRelativeIDs = false; 554 555 /// True if all functions will be materialized, negating the need to process 556 /// (e.g.) blockaddress forward references. 557 bool WillMaterializeAllForwardRefs = false; 558 559 bool StripDebugInfo = false; 560 TBAAVerifier TBAAVerifyHelper; 561 562 std::vector<std::string> BundleTags; 563 SmallVector<SyncScope::ID, 8> SSIDs; 564 565 public: 566 BitcodeReader(BitstreamCursor Stream, StringRef Strtab, 567 StringRef ProducerIdentification, LLVMContext &Context); 568 569 Error materializeForwardReferencedFunctions(); 570 571 Error materialize(GlobalValue *GV) override; 572 Error materializeModule() override; 573 std::vector<StructType *> getIdentifiedStructTypes() const override; 574 575 /// Main interface to parsing a bitcode buffer. 576 /// \returns true if an error occurred. 577 Error parseBitcodeInto( 578 Module *M, bool ShouldLazyLoadMetadata = false, bool IsImporting = false, 579 DataLayoutCallbackTy DataLayoutCallback = [](StringRef) { return None; }); 580 581 static uint64_t decodeSignRotatedValue(uint64_t V); 582 583 /// Materialize any deferred Metadata block. 584 Error materializeMetadata() override; 585 586 void setStripDebugInfo() override; 587 588 private: 589 std::vector<StructType *> IdentifiedStructTypes; 590 StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name); 591 StructType *createIdentifiedStructType(LLVMContext &Context); 592 593 Type *getTypeByID(unsigned ID); 594 595 Value *getFnValueByID(unsigned ID, Type *Ty) { 596 if (Ty && Ty->isMetadataTy()) 597 return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID)); 598 return ValueList.getValueFwdRef(ID, Ty); 599 } 600 601 Metadata *getFnMetadataByID(unsigned ID) { 602 return MDLoader->getMetadataFwdRefOrLoad(ID); 603 } 604 605 BasicBlock *getBasicBlock(unsigned ID) const { 606 if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID 607 return FunctionBBs[ID]; 608 } 609 610 AttributeList getAttributes(unsigned i) const { 611 if (i-1 < MAttributes.size()) 612 return MAttributes[i-1]; 613 return AttributeList(); 614 } 615 616 /// Read a value/type pair out of the specified record from slot 'Slot'. 617 /// Increment Slot past the number of slots used in the record. Return true on 618 /// failure. 619 bool getValueTypePair(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 620 unsigned InstNum, Value *&ResVal) { 621 if (Slot == Record.size()) return true; 622 unsigned ValNo = (unsigned)Record[Slot++]; 623 // Adjust the ValNo, if it was encoded relative to the InstNum. 624 if (UseRelativeIDs) 625 ValNo = InstNum - ValNo; 626 if (ValNo < InstNum) { 627 // If this is not a forward reference, just return the value we already 628 // have. 629 ResVal = getFnValueByID(ValNo, nullptr); 630 return ResVal == nullptr; 631 } 632 if (Slot == Record.size()) 633 return true; 634 635 unsigned TypeNo = (unsigned)Record[Slot++]; 636 ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo)); 637 return ResVal == nullptr; 638 } 639 640 /// Read a value out of the specified record from slot 'Slot'. Increment Slot 641 /// past the number of slots used by the value in the record. Return true if 642 /// there is an error. 643 bool popValue(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 644 unsigned InstNum, Type *Ty, Value *&ResVal) { 645 if (getValue(Record, Slot, InstNum, Ty, ResVal)) 646 return true; 647 // All values currently take a single record slot. 648 ++Slot; 649 return false; 650 } 651 652 /// Like popValue, but does not increment the Slot number. 653 bool getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot, 654 unsigned InstNum, Type *Ty, Value *&ResVal) { 655 ResVal = getValue(Record, Slot, InstNum, Ty); 656 return ResVal == nullptr; 657 } 658 659 /// Version of getValue that returns ResVal directly, or 0 if there is an 660 /// error. 661 Value *getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot, 662 unsigned InstNum, Type *Ty) { 663 if (Slot == Record.size()) return nullptr; 664 unsigned ValNo = (unsigned)Record[Slot]; 665 // Adjust the ValNo, if it was encoded relative to the InstNum. 666 if (UseRelativeIDs) 667 ValNo = InstNum - ValNo; 668 return getFnValueByID(ValNo, Ty); 669 } 670 671 /// Like getValue, but decodes signed VBRs. 672 Value *getValueSigned(const SmallVectorImpl<uint64_t> &Record, unsigned Slot, 673 unsigned InstNum, Type *Ty) { 674 if (Slot == Record.size()) return nullptr; 675 unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]); 676 // Adjust the ValNo, if it was encoded relative to the InstNum. 677 if (UseRelativeIDs) 678 ValNo = InstNum - ValNo; 679 return getFnValueByID(ValNo, Ty); 680 } 681 682 /// Upgrades old-style typeless byval/sret/inalloca attributes by adding the 683 /// corresponding argument's pointee type. Also upgrades intrinsics that now 684 /// require an elementtype attribute. 685 void propagateAttributeTypes(CallBase *CB, ArrayRef<Type *> ArgsTys); 686 687 /// Converts alignment exponent (i.e. power of two (or zero)) to the 688 /// corresponding alignment to use. If alignment is too large, returns 689 /// a corresponding error code. 690 Error parseAlignmentValue(uint64_t Exponent, MaybeAlign &Alignment); 691 Error parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind); 692 Error parseModule( 693 uint64_t ResumeBit, bool ShouldLazyLoadMetadata = false, 694 DataLayoutCallbackTy DataLayoutCallback = [](StringRef) { return None; }); 695 696 Error parseComdatRecord(ArrayRef<uint64_t> Record); 697 Error parseGlobalVarRecord(ArrayRef<uint64_t> Record); 698 Error parseFunctionRecord(ArrayRef<uint64_t> Record); 699 Error parseGlobalIndirectSymbolRecord(unsigned BitCode, 700 ArrayRef<uint64_t> Record); 701 702 Error parseAttributeBlock(); 703 Error parseAttributeGroupBlock(); 704 Error parseTypeTable(); 705 Error parseTypeTableBody(); 706 Error parseOperandBundleTags(); 707 Error parseSyncScopeNames(); 708 709 Expected<Value *> recordValue(SmallVectorImpl<uint64_t> &Record, 710 unsigned NameIndex, Triple &TT); 711 void setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, Function *F, 712 ArrayRef<uint64_t> Record); 713 Error parseValueSymbolTable(uint64_t Offset = 0); 714 Error parseGlobalValueSymbolTable(); 715 Error parseConstants(); 716 Error rememberAndSkipFunctionBodies(); 717 Error rememberAndSkipFunctionBody(); 718 /// Save the positions of the Metadata blocks and skip parsing the blocks. 719 Error rememberAndSkipMetadata(); 720 Error typeCheckLoadStoreInst(Type *ValType, Type *PtrType); 721 Error parseFunctionBody(Function *F); 722 Error globalCleanup(); 723 Error resolveGlobalAndIndirectSymbolInits(); 724 Error parseUseLists(); 725 Error findFunctionInStream( 726 Function *F, 727 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator); 728 729 SyncScope::ID getDecodedSyncScopeID(unsigned Val); 730 }; 731 732 /// Class to manage reading and parsing function summary index bitcode 733 /// files/sections. 734 class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase { 735 /// The module index built during parsing. 736 ModuleSummaryIndex &TheIndex; 737 738 /// Indicates whether we have encountered a global value summary section 739 /// yet during parsing. 740 bool SeenGlobalValSummary = false; 741 742 /// Indicates whether we have already parsed the VST, used for error checking. 743 bool SeenValueSymbolTable = false; 744 745 /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record. 746 /// Used to enable on-demand parsing of the VST. 747 uint64_t VSTOffset = 0; 748 749 // Map to save ValueId to ValueInfo association that was recorded in the 750 // ValueSymbolTable. It is used after the VST is parsed to convert 751 // call graph edges read from the function summary from referencing 752 // callees by their ValueId to using the ValueInfo instead, which is how 753 // they are recorded in the summary index being built. 754 // We save a GUID which refers to the same global as the ValueInfo, but 755 // ignoring the linkage, i.e. for values other than local linkage they are 756 // identical. 757 DenseMap<unsigned, std::pair<ValueInfo, GlobalValue::GUID>> 758 ValueIdToValueInfoMap; 759 760 /// Map populated during module path string table parsing, from the 761 /// module ID to a string reference owned by the index's module 762 /// path string table, used to correlate with combined index 763 /// summary records. 764 DenseMap<uint64_t, StringRef> ModuleIdMap; 765 766 /// Original source file name recorded in a bitcode record. 767 std::string SourceFileName; 768 769 /// The string identifier given to this module by the client, normally the 770 /// path to the bitcode file. 771 StringRef ModulePath; 772 773 /// For per-module summary indexes, the unique numerical identifier given to 774 /// this module by the client. 775 unsigned ModuleId; 776 777 public: 778 ModuleSummaryIndexBitcodeReader(BitstreamCursor Stream, StringRef Strtab, 779 ModuleSummaryIndex &TheIndex, 780 StringRef ModulePath, unsigned ModuleId); 781 782 Error parseModule(); 783 784 private: 785 void setValueGUID(uint64_t ValueID, StringRef ValueName, 786 GlobalValue::LinkageTypes Linkage, 787 StringRef SourceFileName); 788 Error parseValueSymbolTable( 789 uint64_t Offset, 790 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap); 791 std::vector<ValueInfo> makeRefList(ArrayRef<uint64_t> Record); 792 std::vector<FunctionSummary::EdgeTy> makeCallList(ArrayRef<uint64_t> Record, 793 bool IsOldProfileFormat, 794 bool HasProfile, 795 bool HasRelBF); 796 Error parseEntireSummary(unsigned ID); 797 Error parseModuleStringTable(); 798 void parseTypeIdCompatibleVtableSummaryRecord(ArrayRef<uint64_t> Record); 799 void parseTypeIdCompatibleVtableInfo(ArrayRef<uint64_t> Record, size_t &Slot, 800 TypeIdCompatibleVtableInfo &TypeId); 801 std::vector<FunctionSummary::ParamAccess> 802 parseParamAccesses(ArrayRef<uint64_t> Record); 803 804 std::pair<ValueInfo, GlobalValue::GUID> 805 getValueInfoFromValueId(unsigned ValueId); 806 807 void addThisModule(); 808 ModuleSummaryIndex::ModuleInfo *getThisModule(); 809 }; 810 811 } // end anonymous namespace 812 813 std::error_code llvm::errorToErrorCodeAndEmitErrors(LLVMContext &Ctx, 814 Error Err) { 815 if (Err) { 816 std::error_code EC; 817 handleAllErrors(std::move(Err), [&](ErrorInfoBase &EIB) { 818 EC = EIB.convertToErrorCode(); 819 Ctx.emitError(EIB.message()); 820 }); 821 return EC; 822 } 823 return std::error_code(); 824 } 825 826 BitcodeReader::BitcodeReader(BitstreamCursor Stream, StringRef Strtab, 827 StringRef ProducerIdentification, 828 LLVMContext &Context) 829 : BitcodeReaderBase(std::move(Stream), Strtab), Context(Context), 830 ValueList(Context, Stream.SizeInBytes()) { 831 this->ProducerIdentification = std::string(ProducerIdentification); 832 } 833 834 Error BitcodeReader::materializeForwardReferencedFunctions() { 835 if (WillMaterializeAllForwardRefs) 836 return Error::success(); 837 838 // Prevent recursion. 839 WillMaterializeAllForwardRefs = true; 840 841 while (!BasicBlockFwdRefQueue.empty()) { 842 Function *F = BasicBlockFwdRefQueue.front(); 843 BasicBlockFwdRefQueue.pop_front(); 844 assert(F && "Expected valid function"); 845 if (!BasicBlockFwdRefs.count(F)) 846 // Already materialized. 847 continue; 848 849 // Check for a function that isn't materializable to prevent an infinite 850 // loop. When parsing a blockaddress stored in a global variable, there 851 // isn't a trivial way to check if a function will have a body without a 852 // linear search through FunctionsWithBodies, so just check it here. 853 if (!F->isMaterializable()) 854 return error("Never resolved function from blockaddress"); 855 856 // Try to materialize F. 857 if (Error Err = materialize(F)) 858 return Err; 859 } 860 assert(BasicBlockFwdRefs.empty() && "Function missing from queue"); 861 862 // Reset state. 863 WillMaterializeAllForwardRefs = false; 864 return Error::success(); 865 } 866 867 //===----------------------------------------------------------------------===// 868 // Helper functions to implement forward reference resolution, etc. 869 //===----------------------------------------------------------------------===// 870 871 static bool hasImplicitComdat(size_t Val) { 872 switch (Val) { 873 default: 874 return false; 875 case 1: // Old WeakAnyLinkage 876 case 4: // Old LinkOnceAnyLinkage 877 case 10: // Old WeakODRLinkage 878 case 11: // Old LinkOnceODRLinkage 879 return true; 880 } 881 } 882 883 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) { 884 switch (Val) { 885 default: // Map unknown/new linkages to external 886 case 0: 887 return GlobalValue::ExternalLinkage; 888 case 2: 889 return GlobalValue::AppendingLinkage; 890 case 3: 891 return GlobalValue::InternalLinkage; 892 case 5: 893 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage 894 case 6: 895 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage 896 case 7: 897 return GlobalValue::ExternalWeakLinkage; 898 case 8: 899 return GlobalValue::CommonLinkage; 900 case 9: 901 return GlobalValue::PrivateLinkage; 902 case 12: 903 return GlobalValue::AvailableExternallyLinkage; 904 case 13: 905 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage 906 case 14: 907 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage 908 case 15: 909 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage 910 case 1: // Old value with implicit comdat. 911 case 16: 912 return GlobalValue::WeakAnyLinkage; 913 case 10: // Old value with implicit comdat. 914 case 17: 915 return GlobalValue::WeakODRLinkage; 916 case 4: // Old value with implicit comdat. 917 case 18: 918 return GlobalValue::LinkOnceAnyLinkage; 919 case 11: // Old value with implicit comdat. 920 case 19: 921 return GlobalValue::LinkOnceODRLinkage; 922 } 923 } 924 925 static FunctionSummary::FFlags getDecodedFFlags(uint64_t RawFlags) { 926 FunctionSummary::FFlags Flags; 927 Flags.ReadNone = RawFlags & 0x1; 928 Flags.ReadOnly = (RawFlags >> 1) & 0x1; 929 Flags.NoRecurse = (RawFlags >> 2) & 0x1; 930 Flags.ReturnDoesNotAlias = (RawFlags >> 3) & 0x1; 931 Flags.NoInline = (RawFlags >> 4) & 0x1; 932 Flags.AlwaysInline = (RawFlags >> 5) & 0x1; 933 Flags.NoUnwind = (RawFlags >> 6) & 0x1; 934 Flags.MayThrow = (RawFlags >> 7) & 0x1; 935 Flags.HasUnknownCall = (RawFlags >> 8) & 0x1; 936 Flags.MustBeUnreachable = (RawFlags >> 9) & 0x1; 937 return Flags; 938 } 939 940 // Decode the flags for GlobalValue in the summary. The bits for each attribute: 941 // 942 // linkage: [0,4), notEligibleToImport: 4, live: 5, local: 6, canAutoHide: 7, 943 // visibility: [8, 10). 944 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags, 945 uint64_t Version) { 946 // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage 947 // like getDecodedLinkage() above. Any future change to the linkage enum and 948 // to getDecodedLinkage() will need to be taken into account here as above. 949 auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits 950 auto Visibility = GlobalValue::VisibilityTypes((RawFlags >> 8) & 3); // 2 bits 951 RawFlags = RawFlags >> 4; 952 bool NotEligibleToImport = (RawFlags & 0x1) || Version < 3; 953 // The Live flag wasn't introduced until version 3. For dead stripping 954 // to work correctly on earlier versions, we must conservatively treat all 955 // values as live. 956 bool Live = (RawFlags & 0x2) || Version < 3; 957 bool Local = (RawFlags & 0x4); 958 bool AutoHide = (RawFlags & 0x8); 959 960 return GlobalValueSummary::GVFlags(Linkage, Visibility, NotEligibleToImport, 961 Live, Local, AutoHide); 962 } 963 964 // Decode the flags for GlobalVariable in the summary 965 static GlobalVarSummary::GVarFlags getDecodedGVarFlags(uint64_t RawFlags) { 966 return GlobalVarSummary::GVarFlags( 967 (RawFlags & 0x1) ? true : false, (RawFlags & 0x2) ? true : false, 968 (RawFlags & 0x4) ? true : false, 969 (GlobalObject::VCallVisibility)(RawFlags >> 3)); 970 } 971 972 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) { 973 switch (Val) { 974 default: // Map unknown visibilities to default. 975 case 0: return GlobalValue::DefaultVisibility; 976 case 1: return GlobalValue::HiddenVisibility; 977 case 2: return GlobalValue::ProtectedVisibility; 978 } 979 } 980 981 static GlobalValue::DLLStorageClassTypes 982 getDecodedDLLStorageClass(unsigned Val) { 983 switch (Val) { 984 default: // Map unknown values to default. 985 case 0: return GlobalValue::DefaultStorageClass; 986 case 1: return GlobalValue::DLLImportStorageClass; 987 case 2: return GlobalValue::DLLExportStorageClass; 988 } 989 } 990 991 static bool getDecodedDSOLocal(unsigned Val) { 992 switch(Val) { 993 default: // Map unknown values to preemptable. 994 case 0: return false; 995 case 1: return true; 996 } 997 } 998 999 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) { 1000 switch (Val) { 1001 case 0: return GlobalVariable::NotThreadLocal; 1002 default: // Map unknown non-zero value to general dynamic. 1003 case 1: return GlobalVariable::GeneralDynamicTLSModel; 1004 case 2: return GlobalVariable::LocalDynamicTLSModel; 1005 case 3: return GlobalVariable::InitialExecTLSModel; 1006 case 4: return GlobalVariable::LocalExecTLSModel; 1007 } 1008 } 1009 1010 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) { 1011 switch (Val) { 1012 default: // Map unknown to UnnamedAddr::None. 1013 case 0: return GlobalVariable::UnnamedAddr::None; 1014 case 1: return GlobalVariable::UnnamedAddr::Global; 1015 case 2: return GlobalVariable::UnnamedAddr::Local; 1016 } 1017 } 1018 1019 static int getDecodedCastOpcode(unsigned Val) { 1020 switch (Val) { 1021 default: return -1; 1022 case bitc::CAST_TRUNC : return Instruction::Trunc; 1023 case bitc::CAST_ZEXT : return Instruction::ZExt; 1024 case bitc::CAST_SEXT : return Instruction::SExt; 1025 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 1026 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 1027 case bitc::CAST_UITOFP : return Instruction::UIToFP; 1028 case bitc::CAST_SITOFP : return Instruction::SIToFP; 1029 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 1030 case bitc::CAST_FPEXT : return Instruction::FPExt; 1031 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 1032 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 1033 case bitc::CAST_BITCAST : return Instruction::BitCast; 1034 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast; 1035 } 1036 } 1037 1038 static int getDecodedUnaryOpcode(unsigned Val, Type *Ty) { 1039 bool IsFP = Ty->isFPOrFPVectorTy(); 1040 // UnOps are only valid for int/fp or vector of int/fp types 1041 if (!IsFP && !Ty->isIntOrIntVectorTy()) 1042 return -1; 1043 1044 switch (Val) { 1045 default: 1046 return -1; 1047 case bitc::UNOP_FNEG: 1048 return IsFP ? Instruction::FNeg : -1; 1049 } 1050 } 1051 1052 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) { 1053 bool IsFP = Ty->isFPOrFPVectorTy(); 1054 // BinOps are only valid for int/fp or vector of int/fp types 1055 if (!IsFP && !Ty->isIntOrIntVectorTy()) 1056 return -1; 1057 1058 switch (Val) { 1059 default: 1060 return -1; 1061 case bitc::BINOP_ADD: 1062 return IsFP ? Instruction::FAdd : Instruction::Add; 1063 case bitc::BINOP_SUB: 1064 return IsFP ? Instruction::FSub : Instruction::Sub; 1065 case bitc::BINOP_MUL: 1066 return IsFP ? Instruction::FMul : Instruction::Mul; 1067 case bitc::BINOP_UDIV: 1068 return IsFP ? -1 : Instruction::UDiv; 1069 case bitc::BINOP_SDIV: 1070 return IsFP ? Instruction::FDiv : Instruction::SDiv; 1071 case bitc::BINOP_UREM: 1072 return IsFP ? -1 : Instruction::URem; 1073 case bitc::BINOP_SREM: 1074 return IsFP ? Instruction::FRem : Instruction::SRem; 1075 case bitc::BINOP_SHL: 1076 return IsFP ? -1 : Instruction::Shl; 1077 case bitc::BINOP_LSHR: 1078 return IsFP ? -1 : Instruction::LShr; 1079 case bitc::BINOP_ASHR: 1080 return IsFP ? -1 : Instruction::AShr; 1081 case bitc::BINOP_AND: 1082 return IsFP ? -1 : Instruction::And; 1083 case bitc::BINOP_OR: 1084 return IsFP ? -1 : Instruction::Or; 1085 case bitc::BINOP_XOR: 1086 return IsFP ? -1 : Instruction::Xor; 1087 } 1088 } 1089 1090 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) { 1091 switch (Val) { 1092 default: return AtomicRMWInst::BAD_BINOP; 1093 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 1094 case bitc::RMW_ADD: return AtomicRMWInst::Add; 1095 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 1096 case bitc::RMW_AND: return AtomicRMWInst::And; 1097 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 1098 case bitc::RMW_OR: return AtomicRMWInst::Or; 1099 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 1100 case bitc::RMW_MAX: return AtomicRMWInst::Max; 1101 case bitc::RMW_MIN: return AtomicRMWInst::Min; 1102 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 1103 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 1104 case bitc::RMW_FADD: return AtomicRMWInst::FAdd; 1105 case bitc::RMW_FSUB: return AtomicRMWInst::FSub; 1106 } 1107 } 1108 1109 static AtomicOrdering getDecodedOrdering(unsigned Val) { 1110 switch (Val) { 1111 case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic; 1112 case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered; 1113 case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic; 1114 case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire; 1115 case bitc::ORDERING_RELEASE: return AtomicOrdering::Release; 1116 case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease; 1117 default: // Map unknown orderings to sequentially-consistent. 1118 case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent; 1119 } 1120 } 1121 1122 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) { 1123 switch (Val) { 1124 default: // Map unknown selection kinds to any. 1125 case bitc::COMDAT_SELECTION_KIND_ANY: 1126 return Comdat::Any; 1127 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH: 1128 return Comdat::ExactMatch; 1129 case bitc::COMDAT_SELECTION_KIND_LARGEST: 1130 return Comdat::Largest; 1131 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES: 1132 return Comdat::NoDeduplicate; 1133 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE: 1134 return Comdat::SameSize; 1135 } 1136 } 1137 1138 static FastMathFlags getDecodedFastMathFlags(unsigned Val) { 1139 FastMathFlags FMF; 1140 if (0 != (Val & bitc::UnsafeAlgebra)) 1141 FMF.setFast(); 1142 if (0 != (Val & bitc::AllowReassoc)) 1143 FMF.setAllowReassoc(); 1144 if (0 != (Val & bitc::NoNaNs)) 1145 FMF.setNoNaNs(); 1146 if (0 != (Val & bitc::NoInfs)) 1147 FMF.setNoInfs(); 1148 if (0 != (Val & bitc::NoSignedZeros)) 1149 FMF.setNoSignedZeros(); 1150 if (0 != (Val & bitc::AllowReciprocal)) 1151 FMF.setAllowReciprocal(); 1152 if (0 != (Val & bitc::AllowContract)) 1153 FMF.setAllowContract(true); 1154 if (0 != (Val & bitc::ApproxFunc)) 1155 FMF.setApproxFunc(); 1156 return FMF; 1157 } 1158 1159 static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) { 1160 switch (Val) { 1161 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break; 1162 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break; 1163 } 1164 } 1165 1166 Type *BitcodeReader::getTypeByID(unsigned ID) { 1167 // The type table size is always specified correctly. 1168 if (ID >= TypeList.size()) 1169 return nullptr; 1170 1171 if (Type *Ty = TypeList[ID]) 1172 return Ty; 1173 1174 // If we have a forward reference, the only possible case is when it is to a 1175 // named struct. Just create a placeholder for now. 1176 return TypeList[ID] = createIdentifiedStructType(Context); 1177 } 1178 1179 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context, 1180 StringRef Name) { 1181 auto *Ret = StructType::create(Context, Name); 1182 IdentifiedStructTypes.push_back(Ret); 1183 return Ret; 1184 } 1185 1186 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) { 1187 auto *Ret = StructType::create(Context); 1188 IdentifiedStructTypes.push_back(Ret); 1189 return Ret; 1190 } 1191 1192 //===----------------------------------------------------------------------===// 1193 // Functions for parsing blocks from the bitcode file 1194 //===----------------------------------------------------------------------===// 1195 1196 static uint64_t getRawAttributeMask(Attribute::AttrKind Val) { 1197 switch (Val) { 1198 case Attribute::EndAttrKinds: 1199 case Attribute::EmptyKey: 1200 case Attribute::TombstoneKey: 1201 llvm_unreachable("Synthetic enumerators which should never get here"); 1202 1203 case Attribute::None: return 0; 1204 case Attribute::ZExt: return 1 << 0; 1205 case Attribute::SExt: return 1 << 1; 1206 case Attribute::NoReturn: return 1 << 2; 1207 case Attribute::InReg: return 1 << 3; 1208 case Attribute::StructRet: return 1 << 4; 1209 case Attribute::NoUnwind: return 1 << 5; 1210 case Attribute::NoAlias: return 1 << 6; 1211 case Attribute::ByVal: return 1 << 7; 1212 case Attribute::Nest: return 1 << 8; 1213 case Attribute::ReadNone: return 1 << 9; 1214 case Attribute::ReadOnly: return 1 << 10; 1215 case Attribute::NoInline: return 1 << 11; 1216 case Attribute::AlwaysInline: return 1 << 12; 1217 case Attribute::OptimizeForSize: return 1 << 13; 1218 case Attribute::StackProtect: return 1 << 14; 1219 case Attribute::StackProtectReq: return 1 << 15; 1220 case Attribute::Alignment: return 31 << 16; 1221 case Attribute::NoCapture: return 1 << 21; 1222 case Attribute::NoRedZone: return 1 << 22; 1223 case Attribute::NoImplicitFloat: return 1 << 23; 1224 case Attribute::Naked: return 1 << 24; 1225 case Attribute::InlineHint: return 1 << 25; 1226 case Attribute::StackAlignment: return 7 << 26; 1227 case Attribute::ReturnsTwice: return 1 << 29; 1228 case Attribute::UWTable: return 1 << 30; 1229 case Attribute::NonLazyBind: return 1U << 31; 1230 case Attribute::SanitizeAddress: return 1ULL << 32; 1231 case Attribute::MinSize: return 1ULL << 33; 1232 case Attribute::NoDuplicate: return 1ULL << 34; 1233 case Attribute::StackProtectStrong: return 1ULL << 35; 1234 case Attribute::SanitizeThread: return 1ULL << 36; 1235 case Attribute::SanitizeMemory: return 1ULL << 37; 1236 case Attribute::NoBuiltin: return 1ULL << 38; 1237 case Attribute::Returned: return 1ULL << 39; 1238 case Attribute::Cold: return 1ULL << 40; 1239 case Attribute::Builtin: return 1ULL << 41; 1240 case Attribute::OptimizeNone: return 1ULL << 42; 1241 case Attribute::InAlloca: return 1ULL << 43; 1242 case Attribute::NonNull: return 1ULL << 44; 1243 case Attribute::JumpTable: return 1ULL << 45; 1244 case Attribute::Convergent: return 1ULL << 46; 1245 case Attribute::SafeStack: return 1ULL << 47; 1246 case Attribute::NoRecurse: return 1ULL << 48; 1247 case Attribute::InaccessibleMemOnly: return 1ULL << 49; 1248 case Attribute::InaccessibleMemOrArgMemOnly: return 1ULL << 50; 1249 case Attribute::SwiftSelf: return 1ULL << 51; 1250 case Attribute::SwiftError: return 1ULL << 52; 1251 case Attribute::WriteOnly: return 1ULL << 53; 1252 case Attribute::Speculatable: return 1ULL << 54; 1253 case Attribute::StrictFP: return 1ULL << 55; 1254 case Attribute::SanitizeHWAddress: return 1ULL << 56; 1255 case Attribute::NoCfCheck: return 1ULL << 57; 1256 case Attribute::OptForFuzzing: return 1ULL << 58; 1257 case Attribute::ShadowCallStack: return 1ULL << 59; 1258 case Attribute::SpeculativeLoadHardening: 1259 return 1ULL << 60; 1260 case Attribute::ImmArg: 1261 return 1ULL << 61; 1262 case Attribute::WillReturn: 1263 return 1ULL << 62; 1264 case Attribute::NoFree: 1265 return 1ULL << 63; 1266 default: 1267 // Other attributes are not supported in the raw format, 1268 // as we ran out of space. 1269 return 0; 1270 } 1271 llvm_unreachable("Unsupported attribute type"); 1272 } 1273 1274 static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) { 1275 if (!Val) return; 1276 1277 for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds; 1278 I = Attribute::AttrKind(I + 1)) { 1279 if (uint64_t A = (Val & getRawAttributeMask(I))) { 1280 if (I == Attribute::Alignment) 1281 B.addAlignmentAttr(1ULL << ((A >> 16) - 1)); 1282 else if (I == Attribute::StackAlignment) 1283 B.addStackAlignmentAttr(1ULL << ((A >> 26)-1)); 1284 else if (Attribute::isTypeAttrKind(I)) 1285 B.addTypeAttr(I, nullptr); // Type will be auto-upgraded. 1286 else 1287 B.addAttribute(I); 1288 } 1289 } 1290 } 1291 1292 /// This fills an AttrBuilder object with the LLVM attributes that have 1293 /// been decoded from the given integer. This function must stay in sync with 1294 /// 'encodeLLVMAttributesForBitcode'. 1295 static void decodeLLVMAttributesForBitcode(AttrBuilder &B, 1296 uint64_t EncodedAttrs) { 1297 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift 1298 // the bits above 31 down by 11 bits. 1299 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; 1300 assert((!Alignment || isPowerOf2_32(Alignment)) && 1301 "Alignment must be a power of two."); 1302 1303 if (Alignment) 1304 B.addAlignmentAttr(Alignment); 1305 addRawAttributeValue(B, ((EncodedAttrs & (0xfffffULL << 32)) >> 11) | 1306 (EncodedAttrs & 0xffff)); 1307 } 1308 1309 Error BitcodeReader::parseAttributeBlock() { 1310 if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 1311 return Err; 1312 1313 if (!MAttributes.empty()) 1314 return error("Invalid multiple blocks"); 1315 1316 SmallVector<uint64_t, 64> Record; 1317 1318 SmallVector<AttributeList, 8> Attrs; 1319 1320 // Read all the records. 1321 while (true) { 1322 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1323 if (!MaybeEntry) 1324 return MaybeEntry.takeError(); 1325 BitstreamEntry Entry = MaybeEntry.get(); 1326 1327 switch (Entry.Kind) { 1328 case BitstreamEntry::SubBlock: // Handled for us already. 1329 case BitstreamEntry::Error: 1330 return error("Malformed block"); 1331 case BitstreamEntry::EndBlock: 1332 return Error::success(); 1333 case BitstreamEntry::Record: 1334 // The interesting case. 1335 break; 1336 } 1337 1338 // Read a record. 1339 Record.clear(); 1340 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1341 if (!MaybeRecord) 1342 return MaybeRecord.takeError(); 1343 switch (MaybeRecord.get()) { 1344 default: // Default behavior: ignore. 1345 break; 1346 case bitc::PARAMATTR_CODE_ENTRY_OLD: // ENTRY: [paramidx0, attr0, ...] 1347 // Deprecated, but still needed to read old bitcode files. 1348 if (Record.size() & 1) 1349 return error("Invalid record"); 1350 1351 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1352 AttrBuilder B(Context); 1353 decodeLLVMAttributesForBitcode(B, Record[i+1]); 1354 Attrs.push_back(AttributeList::get(Context, Record[i], B)); 1355 } 1356 1357 MAttributes.push_back(AttributeList::get(Context, Attrs)); 1358 Attrs.clear(); 1359 break; 1360 case bitc::PARAMATTR_CODE_ENTRY: // ENTRY: [attrgrp0, attrgrp1, ...] 1361 for (unsigned i = 0, e = Record.size(); i != e; ++i) 1362 Attrs.push_back(MAttributeGroups[Record[i]]); 1363 1364 MAttributes.push_back(AttributeList::get(Context, Attrs)); 1365 Attrs.clear(); 1366 break; 1367 } 1368 } 1369 } 1370 1371 // Returns Attribute::None on unrecognized codes. 1372 static Attribute::AttrKind getAttrFromCode(uint64_t Code) { 1373 switch (Code) { 1374 default: 1375 return Attribute::None; 1376 case bitc::ATTR_KIND_ALIGNMENT: 1377 return Attribute::Alignment; 1378 case bitc::ATTR_KIND_ALWAYS_INLINE: 1379 return Attribute::AlwaysInline; 1380 case bitc::ATTR_KIND_ARGMEMONLY: 1381 return Attribute::ArgMemOnly; 1382 case bitc::ATTR_KIND_BUILTIN: 1383 return Attribute::Builtin; 1384 case bitc::ATTR_KIND_BY_VAL: 1385 return Attribute::ByVal; 1386 case bitc::ATTR_KIND_IN_ALLOCA: 1387 return Attribute::InAlloca; 1388 case bitc::ATTR_KIND_COLD: 1389 return Attribute::Cold; 1390 case bitc::ATTR_KIND_CONVERGENT: 1391 return Attribute::Convergent; 1392 case bitc::ATTR_KIND_DISABLE_SANITIZER_INSTRUMENTATION: 1393 return Attribute::DisableSanitizerInstrumentation; 1394 case bitc::ATTR_KIND_ELEMENTTYPE: 1395 return Attribute::ElementType; 1396 case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY: 1397 return Attribute::InaccessibleMemOnly; 1398 case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY: 1399 return Attribute::InaccessibleMemOrArgMemOnly; 1400 case bitc::ATTR_KIND_INLINE_HINT: 1401 return Attribute::InlineHint; 1402 case bitc::ATTR_KIND_IN_REG: 1403 return Attribute::InReg; 1404 case bitc::ATTR_KIND_JUMP_TABLE: 1405 return Attribute::JumpTable; 1406 case bitc::ATTR_KIND_MIN_SIZE: 1407 return Attribute::MinSize; 1408 case bitc::ATTR_KIND_NAKED: 1409 return Attribute::Naked; 1410 case bitc::ATTR_KIND_NEST: 1411 return Attribute::Nest; 1412 case bitc::ATTR_KIND_NO_ALIAS: 1413 return Attribute::NoAlias; 1414 case bitc::ATTR_KIND_NO_BUILTIN: 1415 return Attribute::NoBuiltin; 1416 case bitc::ATTR_KIND_NO_CALLBACK: 1417 return Attribute::NoCallback; 1418 case bitc::ATTR_KIND_NO_CAPTURE: 1419 return Attribute::NoCapture; 1420 case bitc::ATTR_KIND_NO_DUPLICATE: 1421 return Attribute::NoDuplicate; 1422 case bitc::ATTR_KIND_NOFREE: 1423 return Attribute::NoFree; 1424 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: 1425 return Attribute::NoImplicitFloat; 1426 case bitc::ATTR_KIND_NO_INLINE: 1427 return Attribute::NoInline; 1428 case bitc::ATTR_KIND_NO_RECURSE: 1429 return Attribute::NoRecurse; 1430 case bitc::ATTR_KIND_NO_MERGE: 1431 return Attribute::NoMerge; 1432 case bitc::ATTR_KIND_NON_LAZY_BIND: 1433 return Attribute::NonLazyBind; 1434 case bitc::ATTR_KIND_NON_NULL: 1435 return Attribute::NonNull; 1436 case bitc::ATTR_KIND_DEREFERENCEABLE: 1437 return Attribute::Dereferenceable; 1438 case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL: 1439 return Attribute::DereferenceableOrNull; 1440 case bitc::ATTR_KIND_ALLOC_SIZE: 1441 return Attribute::AllocSize; 1442 case bitc::ATTR_KIND_NO_RED_ZONE: 1443 return Attribute::NoRedZone; 1444 case bitc::ATTR_KIND_NO_RETURN: 1445 return Attribute::NoReturn; 1446 case bitc::ATTR_KIND_NOSYNC: 1447 return Attribute::NoSync; 1448 case bitc::ATTR_KIND_NOCF_CHECK: 1449 return Attribute::NoCfCheck; 1450 case bitc::ATTR_KIND_NO_PROFILE: 1451 return Attribute::NoProfile; 1452 case bitc::ATTR_KIND_NO_UNWIND: 1453 return Attribute::NoUnwind; 1454 case bitc::ATTR_KIND_NO_SANITIZE_COVERAGE: 1455 return Attribute::NoSanitizeCoverage; 1456 case bitc::ATTR_KIND_NULL_POINTER_IS_VALID: 1457 return Attribute::NullPointerIsValid; 1458 case bitc::ATTR_KIND_OPT_FOR_FUZZING: 1459 return Attribute::OptForFuzzing; 1460 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: 1461 return Attribute::OptimizeForSize; 1462 case bitc::ATTR_KIND_OPTIMIZE_NONE: 1463 return Attribute::OptimizeNone; 1464 case bitc::ATTR_KIND_READ_NONE: 1465 return Attribute::ReadNone; 1466 case bitc::ATTR_KIND_READ_ONLY: 1467 return Attribute::ReadOnly; 1468 case bitc::ATTR_KIND_RETURNED: 1469 return Attribute::Returned; 1470 case bitc::ATTR_KIND_RETURNS_TWICE: 1471 return Attribute::ReturnsTwice; 1472 case bitc::ATTR_KIND_S_EXT: 1473 return Attribute::SExt; 1474 case bitc::ATTR_KIND_SPECULATABLE: 1475 return Attribute::Speculatable; 1476 case bitc::ATTR_KIND_STACK_ALIGNMENT: 1477 return Attribute::StackAlignment; 1478 case bitc::ATTR_KIND_STACK_PROTECT: 1479 return Attribute::StackProtect; 1480 case bitc::ATTR_KIND_STACK_PROTECT_REQ: 1481 return Attribute::StackProtectReq; 1482 case bitc::ATTR_KIND_STACK_PROTECT_STRONG: 1483 return Attribute::StackProtectStrong; 1484 case bitc::ATTR_KIND_SAFESTACK: 1485 return Attribute::SafeStack; 1486 case bitc::ATTR_KIND_SHADOWCALLSTACK: 1487 return Attribute::ShadowCallStack; 1488 case bitc::ATTR_KIND_STRICT_FP: 1489 return Attribute::StrictFP; 1490 case bitc::ATTR_KIND_STRUCT_RET: 1491 return Attribute::StructRet; 1492 case bitc::ATTR_KIND_SANITIZE_ADDRESS: 1493 return Attribute::SanitizeAddress; 1494 case bitc::ATTR_KIND_SANITIZE_HWADDRESS: 1495 return Attribute::SanitizeHWAddress; 1496 case bitc::ATTR_KIND_SANITIZE_THREAD: 1497 return Attribute::SanitizeThread; 1498 case bitc::ATTR_KIND_SANITIZE_MEMORY: 1499 return Attribute::SanitizeMemory; 1500 case bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING: 1501 return Attribute::SpeculativeLoadHardening; 1502 case bitc::ATTR_KIND_SWIFT_ERROR: 1503 return Attribute::SwiftError; 1504 case bitc::ATTR_KIND_SWIFT_SELF: 1505 return Attribute::SwiftSelf; 1506 case bitc::ATTR_KIND_SWIFT_ASYNC: 1507 return Attribute::SwiftAsync; 1508 case bitc::ATTR_KIND_UW_TABLE: 1509 return Attribute::UWTable; 1510 case bitc::ATTR_KIND_VSCALE_RANGE: 1511 return Attribute::VScaleRange; 1512 case bitc::ATTR_KIND_WILLRETURN: 1513 return Attribute::WillReturn; 1514 case bitc::ATTR_KIND_WRITEONLY: 1515 return Attribute::WriteOnly; 1516 case bitc::ATTR_KIND_Z_EXT: 1517 return Attribute::ZExt; 1518 case bitc::ATTR_KIND_IMMARG: 1519 return Attribute::ImmArg; 1520 case bitc::ATTR_KIND_SANITIZE_MEMTAG: 1521 return Attribute::SanitizeMemTag; 1522 case bitc::ATTR_KIND_PREALLOCATED: 1523 return Attribute::Preallocated; 1524 case bitc::ATTR_KIND_NOUNDEF: 1525 return Attribute::NoUndef; 1526 case bitc::ATTR_KIND_BYREF: 1527 return Attribute::ByRef; 1528 case bitc::ATTR_KIND_MUSTPROGRESS: 1529 return Attribute::MustProgress; 1530 case bitc::ATTR_KIND_HOT: 1531 return Attribute::Hot; 1532 } 1533 } 1534 1535 Error BitcodeReader::parseAlignmentValue(uint64_t Exponent, 1536 MaybeAlign &Alignment) { 1537 // Note: Alignment in bitcode files is incremented by 1, so that zero 1538 // can be used for default alignment. 1539 if (Exponent > Value::MaxAlignmentExponent + 1) 1540 return error("Invalid alignment value"); 1541 Alignment = decodeMaybeAlign(Exponent); 1542 return Error::success(); 1543 } 1544 1545 Error BitcodeReader::parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind) { 1546 *Kind = getAttrFromCode(Code); 1547 if (*Kind == Attribute::None) 1548 return error("Unknown attribute kind (" + Twine(Code) + ")"); 1549 return Error::success(); 1550 } 1551 1552 Error BitcodeReader::parseAttributeGroupBlock() { 1553 if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) 1554 return Err; 1555 1556 if (!MAttributeGroups.empty()) 1557 return error("Invalid multiple blocks"); 1558 1559 SmallVector<uint64_t, 64> Record; 1560 1561 // Read all the records. 1562 while (true) { 1563 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1564 if (!MaybeEntry) 1565 return MaybeEntry.takeError(); 1566 BitstreamEntry Entry = MaybeEntry.get(); 1567 1568 switch (Entry.Kind) { 1569 case BitstreamEntry::SubBlock: // Handled for us already. 1570 case BitstreamEntry::Error: 1571 return error("Malformed block"); 1572 case BitstreamEntry::EndBlock: 1573 return Error::success(); 1574 case BitstreamEntry::Record: 1575 // The interesting case. 1576 break; 1577 } 1578 1579 // Read a record. 1580 Record.clear(); 1581 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1582 if (!MaybeRecord) 1583 return MaybeRecord.takeError(); 1584 switch (MaybeRecord.get()) { 1585 default: // Default behavior: ignore. 1586 break; 1587 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] 1588 if (Record.size() < 3) 1589 return error("Invalid record"); 1590 1591 uint64_t GrpID = Record[0]; 1592 uint64_t Idx = Record[1]; // Index of the object this attribute refers to. 1593 1594 AttrBuilder B(Context); 1595 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1596 if (Record[i] == 0) { // Enum attribute 1597 Attribute::AttrKind Kind; 1598 if (Error Err = parseAttrKind(Record[++i], &Kind)) 1599 return Err; 1600 1601 // Upgrade old-style byval attribute to one with a type, even if it's 1602 // nullptr. We will have to insert the real type when we associate 1603 // this AttributeList with a function. 1604 if (Kind == Attribute::ByVal) 1605 B.addByValAttr(nullptr); 1606 else if (Kind == Attribute::StructRet) 1607 B.addStructRetAttr(nullptr); 1608 else if (Kind == Attribute::InAlloca) 1609 B.addInAllocaAttr(nullptr); 1610 else if (Attribute::isEnumAttrKind(Kind)) 1611 B.addAttribute(Kind); 1612 else 1613 return error("Not an enum attribute"); 1614 } else if (Record[i] == 1) { // Integer attribute 1615 Attribute::AttrKind Kind; 1616 if (Error Err = parseAttrKind(Record[++i], &Kind)) 1617 return Err; 1618 if (!Attribute::isIntAttrKind(Kind)) 1619 return error("Not an int attribute"); 1620 if (Kind == Attribute::Alignment) 1621 B.addAlignmentAttr(Record[++i]); 1622 else if (Kind == Attribute::StackAlignment) 1623 B.addStackAlignmentAttr(Record[++i]); 1624 else if (Kind == Attribute::Dereferenceable) 1625 B.addDereferenceableAttr(Record[++i]); 1626 else if (Kind == Attribute::DereferenceableOrNull) 1627 B.addDereferenceableOrNullAttr(Record[++i]); 1628 else if (Kind == Attribute::AllocSize) 1629 B.addAllocSizeAttrFromRawRepr(Record[++i]); 1630 else if (Kind == Attribute::VScaleRange) 1631 B.addVScaleRangeAttrFromRawRepr(Record[++i]); 1632 } else if (Record[i] == 3 || Record[i] == 4) { // String attribute 1633 bool HasValue = (Record[i++] == 4); 1634 SmallString<64> KindStr; 1635 SmallString<64> ValStr; 1636 1637 while (Record[i] != 0 && i != e) 1638 KindStr += Record[i++]; 1639 assert(Record[i] == 0 && "Kind string not null terminated"); 1640 1641 if (HasValue) { 1642 // Has a value associated with it. 1643 ++i; // Skip the '0' that terminates the "kind" string. 1644 while (Record[i] != 0 && i != e) 1645 ValStr += Record[i++]; 1646 assert(Record[i] == 0 && "Value string not null terminated"); 1647 } 1648 1649 B.addAttribute(KindStr.str(), ValStr.str()); 1650 } else if (Record[i] == 5 || Record[i] == 6) { 1651 bool HasType = Record[i] == 6; 1652 Attribute::AttrKind Kind; 1653 if (Error Err = parseAttrKind(Record[++i], &Kind)) 1654 return Err; 1655 if (!Attribute::isTypeAttrKind(Kind)) 1656 return error("Not a type attribute"); 1657 1658 B.addTypeAttr(Kind, HasType ? getTypeByID(Record[++i]) : nullptr); 1659 } else { 1660 return error("Invalid attribute group entry"); 1661 } 1662 } 1663 1664 UpgradeAttributes(B); 1665 MAttributeGroups[GrpID] = AttributeList::get(Context, Idx, B); 1666 break; 1667 } 1668 } 1669 } 1670 } 1671 1672 Error BitcodeReader::parseTypeTable() { 1673 if (Error Err = Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 1674 return Err; 1675 1676 return parseTypeTableBody(); 1677 } 1678 1679 Error BitcodeReader::parseTypeTableBody() { 1680 if (!TypeList.empty()) 1681 return error("Invalid multiple blocks"); 1682 1683 SmallVector<uint64_t, 64> Record; 1684 unsigned NumRecords = 0; 1685 1686 SmallString<64> TypeName; 1687 1688 // Read all the records for this type table. 1689 while (true) { 1690 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1691 if (!MaybeEntry) 1692 return MaybeEntry.takeError(); 1693 BitstreamEntry Entry = MaybeEntry.get(); 1694 1695 switch (Entry.Kind) { 1696 case BitstreamEntry::SubBlock: // Handled for us already. 1697 case BitstreamEntry::Error: 1698 return error("Malformed block"); 1699 case BitstreamEntry::EndBlock: 1700 if (NumRecords != TypeList.size()) 1701 return error("Malformed block"); 1702 return Error::success(); 1703 case BitstreamEntry::Record: 1704 // The interesting case. 1705 break; 1706 } 1707 1708 // Read a record. 1709 Record.clear(); 1710 Type *ResultTy = nullptr; 1711 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1712 if (!MaybeRecord) 1713 return MaybeRecord.takeError(); 1714 switch (MaybeRecord.get()) { 1715 default: 1716 return error("Invalid value"); 1717 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 1718 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 1719 // type list. This allows us to reserve space. 1720 if (Record.empty()) 1721 return error("Invalid record"); 1722 TypeList.resize(Record[0]); 1723 continue; 1724 case bitc::TYPE_CODE_VOID: // VOID 1725 ResultTy = Type::getVoidTy(Context); 1726 break; 1727 case bitc::TYPE_CODE_HALF: // HALF 1728 ResultTy = Type::getHalfTy(Context); 1729 break; 1730 case bitc::TYPE_CODE_BFLOAT: // BFLOAT 1731 ResultTy = Type::getBFloatTy(Context); 1732 break; 1733 case bitc::TYPE_CODE_FLOAT: // FLOAT 1734 ResultTy = Type::getFloatTy(Context); 1735 break; 1736 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 1737 ResultTy = Type::getDoubleTy(Context); 1738 break; 1739 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 1740 ResultTy = Type::getX86_FP80Ty(Context); 1741 break; 1742 case bitc::TYPE_CODE_FP128: // FP128 1743 ResultTy = Type::getFP128Ty(Context); 1744 break; 1745 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 1746 ResultTy = Type::getPPC_FP128Ty(Context); 1747 break; 1748 case bitc::TYPE_CODE_LABEL: // LABEL 1749 ResultTy = Type::getLabelTy(Context); 1750 break; 1751 case bitc::TYPE_CODE_METADATA: // METADATA 1752 ResultTy = Type::getMetadataTy(Context); 1753 break; 1754 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 1755 ResultTy = Type::getX86_MMXTy(Context); 1756 break; 1757 case bitc::TYPE_CODE_X86_AMX: // X86_AMX 1758 ResultTy = Type::getX86_AMXTy(Context); 1759 break; 1760 case bitc::TYPE_CODE_TOKEN: // TOKEN 1761 ResultTy = Type::getTokenTy(Context); 1762 break; 1763 case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width] 1764 if (Record.empty()) 1765 return error("Invalid record"); 1766 1767 uint64_t NumBits = Record[0]; 1768 if (NumBits < IntegerType::MIN_INT_BITS || 1769 NumBits > IntegerType::MAX_INT_BITS) 1770 return error("Bitwidth for integer type out of range"); 1771 ResultTy = IntegerType::get(Context, NumBits); 1772 break; 1773 } 1774 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 1775 // [pointee type, address space] 1776 if (Record.empty()) 1777 return error("Invalid record"); 1778 unsigned AddressSpace = 0; 1779 if (Record.size() == 2) 1780 AddressSpace = Record[1]; 1781 ResultTy = getTypeByID(Record[0]); 1782 if (!ResultTy || 1783 !PointerType::isValidElementType(ResultTy)) 1784 return error("Invalid type"); 1785 ResultTy = PointerType::get(ResultTy, AddressSpace); 1786 break; 1787 } 1788 case bitc::TYPE_CODE_OPAQUE_POINTER: { // OPAQUE_POINTER: [addrspace] 1789 if (Record.size() != 1) 1790 return error("Invalid record"); 1791 if (Context.supportsTypedPointers()) 1792 return error( 1793 "Opaque pointers are only supported in -opaque-pointers mode"); 1794 unsigned AddressSpace = Record[0]; 1795 ResultTy = PointerType::get(Context, AddressSpace); 1796 break; 1797 } 1798 case bitc::TYPE_CODE_FUNCTION_OLD: { 1799 // Deprecated, but still needed to read old bitcode files. 1800 // FUNCTION: [vararg, attrid, retty, paramty x N] 1801 if (Record.size() < 3) 1802 return error("Invalid record"); 1803 SmallVector<Type*, 8> ArgTys; 1804 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 1805 if (Type *T = getTypeByID(Record[i])) 1806 ArgTys.push_back(T); 1807 else 1808 break; 1809 } 1810 1811 ResultTy = getTypeByID(Record[2]); 1812 if (!ResultTy || ArgTys.size() < Record.size()-3) 1813 return error("Invalid type"); 1814 1815 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1816 break; 1817 } 1818 case bitc::TYPE_CODE_FUNCTION: { 1819 // FUNCTION: [vararg, retty, paramty x N] 1820 if (Record.size() < 2) 1821 return error("Invalid record"); 1822 SmallVector<Type*, 8> ArgTys; 1823 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1824 if (Type *T = getTypeByID(Record[i])) { 1825 if (!FunctionType::isValidArgumentType(T)) 1826 return error("Invalid function argument type"); 1827 ArgTys.push_back(T); 1828 } 1829 else 1830 break; 1831 } 1832 1833 ResultTy = getTypeByID(Record[1]); 1834 if (!ResultTy || ArgTys.size() < Record.size()-2) 1835 return error("Invalid type"); 1836 1837 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1838 break; 1839 } 1840 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 1841 if (Record.empty()) 1842 return error("Invalid record"); 1843 SmallVector<Type*, 8> EltTys; 1844 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1845 if (Type *T = getTypeByID(Record[i])) 1846 EltTys.push_back(T); 1847 else 1848 break; 1849 } 1850 if (EltTys.size() != Record.size()-1) 1851 return error("Invalid type"); 1852 ResultTy = StructType::get(Context, EltTys, Record[0]); 1853 break; 1854 } 1855 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 1856 if (convertToString(Record, 0, TypeName)) 1857 return error("Invalid record"); 1858 continue; 1859 1860 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 1861 if (Record.empty()) 1862 return error("Invalid record"); 1863 1864 if (NumRecords >= TypeList.size()) 1865 return error("Invalid TYPE table"); 1866 1867 // Check to see if this was forward referenced, if so fill in the temp. 1868 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1869 if (Res) { 1870 Res->setName(TypeName); 1871 TypeList[NumRecords] = nullptr; 1872 } else // Otherwise, create a new struct. 1873 Res = createIdentifiedStructType(Context, TypeName); 1874 TypeName.clear(); 1875 1876 SmallVector<Type*, 8> EltTys; 1877 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1878 if (Type *T = getTypeByID(Record[i])) 1879 EltTys.push_back(T); 1880 else 1881 break; 1882 } 1883 if (EltTys.size() != Record.size()-1) 1884 return error("Invalid record"); 1885 Res->setBody(EltTys, Record[0]); 1886 ResultTy = Res; 1887 break; 1888 } 1889 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 1890 if (Record.size() != 1) 1891 return error("Invalid record"); 1892 1893 if (NumRecords >= TypeList.size()) 1894 return error("Invalid TYPE table"); 1895 1896 // Check to see if this was forward referenced, if so fill in the temp. 1897 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1898 if (Res) { 1899 Res->setName(TypeName); 1900 TypeList[NumRecords] = nullptr; 1901 } else // Otherwise, create a new struct with no body. 1902 Res = createIdentifiedStructType(Context, TypeName); 1903 TypeName.clear(); 1904 ResultTy = Res; 1905 break; 1906 } 1907 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 1908 if (Record.size() < 2) 1909 return error("Invalid record"); 1910 ResultTy = getTypeByID(Record[1]); 1911 if (!ResultTy || !ArrayType::isValidElementType(ResultTy)) 1912 return error("Invalid type"); 1913 ResultTy = ArrayType::get(ResultTy, Record[0]); 1914 break; 1915 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] or 1916 // [numelts, eltty, scalable] 1917 if (Record.size() < 2) 1918 return error("Invalid record"); 1919 if (Record[0] == 0) 1920 return error("Invalid vector length"); 1921 ResultTy = getTypeByID(Record[1]); 1922 if (!ResultTy || !VectorType::isValidElementType(ResultTy)) 1923 return error("Invalid type"); 1924 bool Scalable = Record.size() > 2 ? Record[2] : false; 1925 ResultTy = VectorType::get(ResultTy, Record[0], Scalable); 1926 break; 1927 } 1928 1929 if (NumRecords >= TypeList.size()) 1930 return error("Invalid TYPE table"); 1931 if (TypeList[NumRecords]) 1932 return error( 1933 "Invalid TYPE table: Only named structs can be forward referenced"); 1934 assert(ResultTy && "Didn't read a type?"); 1935 TypeList[NumRecords++] = ResultTy; 1936 } 1937 } 1938 1939 Error BitcodeReader::parseOperandBundleTags() { 1940 if (Error Err = Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID)) 1941 return Err; 1942 1943 if (!BundleTags.empty()) 1944 return error("Invalid multiple blocks"); 1945 1946 SmallVector<uint64_t, 64> Record; 1947 1948 while (true) { 1949 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1950 if (!MaybeEntry) 1951 return MaybeEntry.takeError(); 1952 BitstreamEntry Entry = MaybeEntry.get(); 1953 1954 switch (Entry.Kind) { 1955 case BitstreamEntry::SubBlock: // Handled for us already. 1956 case BitstreamEntry::Error: 1957 return error("Malformed block"); 1958 case BitstreamEntry::EndBlock: 1959 return Error::success(); 1960 case BitstreamEntry::Record: 1961 // The interesting case. 1962 break; 1963 } 1964 1965 // Tags are implicitly mapped to integers by their order. 1966 1967 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1968 if (!MaybeRecord) 1969 return MaybeRecord.takeError(); 1970 if (MaybeRecord.get() != bitc::OPERAND_BUNDLE_TAG) 1971 return error("Invalid record"); 1972 1973 // OPERAND_BUNDLE_TAG: [strchr x N] 1974 BundleTags.emplace_back(); 1975 if (convertToString(Record, 0, BundleTags.back())) 1976 return error("Invalid record"); 1977 Record.clear(); 1978 } 1979 } 1980 1981 Error BitcodeReader::parseSyncScopeNames() { 1982 if (Error Err = Stream.EnterSubBlock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID)) 1983 return Err; 1984 1985 if (!SSIDs.empty()) 1986 return error("Invalid multiple synchronization scope names blocks"); 1987 1988 SmallVector<uint64_t, 64> Record; 1989 while (true) { 1990 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1991 if (!MaybeEntry) 1992 return MaybeEntry.takeError(); 1993 BitstreamEntry Entry = MaybeEntry.get(); 1994 1995 switch (Entry.Kind) { 1996 case BitstreamEntry::SubBlock: // Handled for us already. 1997 case BitstreamEntry::Error: 1998 return error("Malformed block"); 1999 case BitstreamEntry::EndBlock: 2000 if (SSIDs.empty()) 2001 return error("Invalid empty synchronization scope names block"); 2002 return Error::success(); 2003 case BitstreamEntry::Record: 2004 // The interesting case. 2005 break; 2006 } 2007 2008 // Synchronization scope names are implicitly mapped to synchronization 2009 // scope IDs by their order. 2010 2011 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2012 if (!MaybeRecord) 2013 return MaybeRecord.takeError(); 2014 if (MaybeRecord.get() != bitc::SYNC_SCOPE_NAME) 2015 return error("Invalid record"); 2016 2017 SmallString<16> SSN; 2018 if (convertToString(Record, 0, SSN)) 2019 return error("Invalid record"); 2020 2021 SSIDs.push_back(Context.getOrInsertSyncScopeID(SSN)); 2022 Record.clear(); 2023 } 2024 } 2025 2026 /// Associate a value with its name from the given index in the provided record. 2027 Expected<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record, 2028 unsigned NameIndex, Triple &TT) { 2029 SmallString<128> ValueName; 2030 if (convertToString(Record, NameIndex, ValueName)) 2031 return error("Invalid record"); 2032 unsigned ValueID = Record[0]; 2033 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 2034 return error("Invalid record"); 2035 Value *V = ValueList[ValueID]; 2036 2037 StringRef NameStr(ValueName.data(), ValueName.size()); 2038 if (NameStr.find_first_of(0) != StringRef::npos) 2039 return error("Invalid value name"); 2040 V->setName(NameStr); 2041 auto *GO = dyn_cast<GlobalObject>(V); 2042 if (GO && ImplicitComdatObjects.contains(GO) && TT.supportsCOMDAT()) 2043 GO->setComdat(TheModule->getOrInsertComdat(V->getName())); 2044 return V; 2045 } 2046 2047 /// Helper to note and return the current location, and jump to the given 2048 /// offset. 2049 static Expected<uint64_t> jumpToValueSymbolTable(uint64_t Offset, 2050 BitstreamCursor &Stream) { 2051 // Save the current parsing location so we can jump back at the end 2052 // of the VST read. 2053 uint64_t CurrentBit = Stream.GetCurrentBitNo(); 2054 if (Error JumpFailed = Stream.JumpToBit(Offset * 32)) 2055 return std::move(JumpFailed); 2056 Expected<BitstreamEntry> MaybeEntry = Stream.advance(); 2057 if (!MaybeEntry) 2058 return MaybeEntry.takeError(); 2059 if (MaybeEntry.get().Kind != BitstreamEntry::SubBlock || 2060 MaybeEntry.get().ID != bitc::VALUE_SYMTAB_BLOCK_ID) 2061 return error("Expected value symbol table subblock"); 2062 return CurrentBit; 2063 } 2064 2065 void BitcodeReader::setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, 2066 Function *F, 2067 ArrayRef<uint64_t> Record) { 2068 // Note that we subtract 1 here because the offset is relative to one word 2069 // before the start of the identification or module block, which was 2070 // historically always the start of the regular bitcode header. 2071 uint64_t FuncWordOffset = Record[1] - 1; 2072 uint64_t FuncBitOffset = FuncWordOffset * 32; 2073 DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta; 2074 // Set the LastFunctionBlockBit to point to the last function block. 2075 // Later when parsing is resumed after function materialization, 2076 // we can simply skip that last function block. 2077 if (FuncBitOffset > LastFunctionBlockBit) 2078 LastFunctionBlockBit = FuncBitOffset; 2079 } 2080 2081 /// Read a new-style GlobalValue symbol table. 2082 Error BitcodeReader::parseGlobalValueSymbolTable() { 2083 unsigned FuncBitcodeOffsetDelta = 2084 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 2085 2086 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 2087 return Err; 2088 2089 SmallVector<uint64_t, 64> Record; 2090 while (true) { 2091 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2092 if (!MaybeEntry) 2093 return MaybeEntry.takeError(); 2094 BitstreamEntry Entry = MaybeEntry.get(); 2095 2096 switch (Entry.Kind) { 2097 case BitstreamEntry::SubBlock: 2098 case BitstreamEntry::Error: 2099 return error("Malformed block"); 2100 case BitstreamEntry::EndBlock: 2101 return Error::success(); 2102 case BitstreamEntry::Record: 2103 break; 2104 } 2105 2106 Record.clear(); 2107 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2108 if (!MaybeRecord) 2109 return MaybeRecord.takeError(); 2110 switch (MaybeRecord.get()) { 2111 case bitc::VST_CODE_FNENTRY: { // [valueid, offset] 2112 unsigned ValueID = Record[0]; 2113 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 2114 return error("Invalid value reference in symbol table"); 2115 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, 2116 cast<Function>(ValueList[ValueID]), Record); 2117 break; 2118 } 2119 } 2120 } 2121 } 2122 2123 /// Parse the value symbol table at either the current parsing location or 2124 /// at the given bit offset if provided. 2125 Error BitcodeReader::parseValueSymbolTable(uint64_t Offset) { 2126 uint64_t CurrentBit; 2127 // Pass in the Offset to distinguish between calling for the module-level 2128 // VST (where we want to jump to the VST offset) and the function-level 2129 // VST (where we don't). 2130 if (Offset > 0) { 2131 Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream); 2132 if (!MaybeCurrentBit) 2133 return MaybeCurrentBit.takeError(); 2134 CurrentBit = MaybeCurrentBit.get(); 2135 // If this module uses a string table, read this as a module-level VST. 2136 if (UseStrtab) { 2137 if (Error Err = parseGlobalValueSymbolTable()) 2138 return Err; 2139 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 2140 return JumpFailed; 2141 return Error::success(); 2142 } 2143 // Otherwise, the VST will be in a similar format to a function-level VST, 2144 // and will contain symbol names. 2145 } 2146 2147 // Compute the delta between the bitcode indices in the VST (the word offset 2148 // to the word-aligned ENTER_SUBBLOCK for the function block, and that 2149 // expected by the lazy reader. The reader's EnterSubBlock expects to have 2150 // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID 2151 // (size BlockIDWidth). Note that we access the stream's AbbrevID width here 2152 // just before entering the VST subblock because: 1) the EnterSubBlock 2153 // changes the AbbrevID width; 2) the VST block is nested within the same 2154 // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same 2155 // AbbrevID width before calling EnterSubBlock; and 3) when we want to 2156 // jump to the FUNCTION_BLOCK using this offset later, we don't want 2157 // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK. 2158 unsigned FuncBitcodeOffsetDelta = 2159 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 2160 2161 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 2162 return Err; 2163 2164 SmallVector<uint64_t, 64> Record; 2165 2166 Triple TT(TheModule->getTargetTriple()); 2167 2168 // Read all the records for this value table. 2169 SmallString<128> ValueName; 2170 2171 while (true) { 2172 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2173 if (!MaybeEntry) 2174 return MaybeEntry.takeError(); 2175 BitstreamEntry Entry = MaybeEntry.get(); 2176 2177 switch (Entry.Kind) { 2178 case BitstreamEntry::SubBlock: // Handled for us already. 2179 case BitstreamEntry::Error: 2180 return error("Malformed block"); 2181 case BitstreamEntry::EndBlock: 2182 if (Offset > 0) 2183 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 2184 return JumpFailed; 2185 return Error::success(); 2186 case BitstreamEntry::Record: 2187 // The interesting case. 2188 break; 2189 } 2190 2191 // Read a record. 2192 Record.clear(); 2193 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2194 if (!MaybeRecord) 2195 return MaybeRecord.takeError(); 2196 switch (MaybeRecord.get()) { 2197 default: // Default behavior: unknown type. 2198 break; 2199 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 2200 Expected<Value *> ValOrErr = recordValue(Record, 1, TT); 2201 if (Error Err = ValOrErr.takeError()) 2202 return Err; 2203 ValOrErr.get(); 2204 break; 2205 } 2206 case bitc::VST_CODE_FNENTRY: { 2207 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 2208 Expected<Value *> ValOrErr = recordValue(Record, 2, TT); 2209 if (Error Err = ValOrErr.takeError()) 2210 return Err; 2211 Value *V = ValOrErr.get(); 2212 2213 // Ignore function offsets emitted for aliases of functions in older 2214 // versions of LLVM. 2215 if (auto *F = dyn_cast<Function>(V)) 2216 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, F, Record); 2217 break; 2218 } 2219 case bitc::VST_CODE_BBENTRY: { 2220 if (convertToString(Record, 1, ValueName)) 2221 return error("Invalid record"); 2222 BasicBlock *BB = getBasicBlock(Record[0]); 2223 if (!BB) 2224 return error("Invalid record"); 2225 2226 BB->setName(StringRef(ValueName.data(), ValueName.size())); 2227 ValueName.clear(); 2228 break; 2229 } 2230 } 2231 } 2232 } 2233 2234 /// Decode a signed value stored with the sign bit in the LSB for dense VBR 2235 /// encoding. 2236 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { 2237 if ((V & 1) == 0) 2238 return V >> 1; 2239 if (V != 1) 2240 return -(V >> 1); 2241 // There is no such thing as -0 with integers. "-0" really means MININT. 2242 return 1ULL << 63; 2243 } 2244 2245 /// Resolve all of the initializers for global values and aliases that we can. 2246 Error BitcodeReader::resolveGlobalAndIndirectSymbolInits() { 2247 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInitWorklist; 2248 std::vector<std::pair<GlobalValue *, unsigned>> IndirectSymbolInitWorklist; 2249 std::vector<FunctionOperandInfo> FunctionOperandWorklist; 2250 2251 GlobalInitWorklist.swap(GlobalInits); 2252 IndirectSymbolInitWorklist.swap(IndirectSymbolInits); 2253 FunctionOperandWorklist.swap(FunctionOperands); 2254 2255 while (!GlobalInitWorklist.empty()) { 2256 unsigned ValID = GlobalInitWorklist.back().second; 2257 if (ValID >= ValueList.size()) { 2258 // Not ready to resolve this yet, it requires something later in the file. 2259 GlobalInits.push_back(GlobalInitWorklist.back()); 2260 } else { 2261 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2262 GlobalInitWorklist.back().first->setInitializer(C); 2263 else 2264 return error("Expected a constant"); 2265 } 2266 GlobalInitWorklist.pop_back(); 2267 } 2268 2269 while (!IndirectSymbolInitWorklist.empty()) { 2270 unsigned ValID = IndirectSymbolInitWorklist.back().second; 2271 if (ValID >= ValueList.size()) { 2272 IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back()); 2273 } else { 2274 Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]); 2275 if (!C) 2276 return error("Expected a constant"); 2277 GlobalValue *GV = IndirectSymbolInitWorklist.back().first; 2278 if (auto *GA = dyn_cast<GlobalAlias>(GV)) { 2279 if (C->getType() != GV->getType()) 2280 return error("Alias and aliasee types don't match"); 2281 GA->setAliasee(C); 2282 } else if (auto *GI = dyn_cast<GlobalIFunc>(GV)) { 2283 Type *ResolverFTy = 2284 GlobalIFunc::getResolverFunctionType(GI->getValueType()); 2285 // Transparently fix up the type for compatiblity with older bitcode 2286 GI->setResolver( 2287 ConstantExpr::getBitCast(C, ResolverFTy->getPointerTo())); 2288 } else { 2289 return error("Expected an alias or an ifunc"); 2290 } 2291 } 2292 IndirectSymbolInitWorklist.pop_back(); 2293 } 2294 2295 while (!FunctionOperandWorklist.empty()) { 2296 FunctionOperandInfo &Info = FunctionOperandWorklist.back(); 2297 if (Info.PersonalityFn) { 2298 unsigned ValID = Info.PersonalityFn - 1; 2299 if (ValID < ValueList.size()) { 2300 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2301 Info.F->setPersonalityFn(C); 2302 else 2303 return error("Expected a constant"); 2304 Info.PersonalityFn = 0; 2305 } 2306 } 2307 if (Info.Prefix) { 2308 unsigned ValID = Info.Prefix - 1; 2309 if (ValID < ValueList.size()) { 2310 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2311 Info.F->setPrefixData(C); 2312 else 2313 return error("Expected a constant"); 2314 Info.Prefix = 0; 2315 } 2316 } 2317 if (Info.Prologue) { 2318 unsigned ValID = Info.Prologue - 1; 2319 if (ValID < ValueList.size()) { 2320 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2321 Info.F->setPrologueData(C); 2322 else 2323 return error("Expected a constant"); 2324 Info.Prologue = 0; 2325 } 2326 } 2327 if (Info.PersonalityFn || Info.Prefix || Info.Prologue) 2328 FunctionOperands.push_back(Info); 2329 FunctionOperandWorklist.pop_back(); 2330 } 2331 2332 return Error::success(); 2333 } 2334 2335 APInt llvm::readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { 2336 SmallVector<uint64_t, 8> Words(Vals.size()); 2337 transform(Vals, Words.begin(), 2338 BitcodeReader::decodeSignRotatedValue); 2339 2340 return APInt(TypeBits, Words); 2341 } 2342 2343 Error BitcodeReader::parseConstants() { 2344 if (Error Err = Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 2345 return Err; 2346 2347 SmallVector<uint64_t, 64> Record; 2348 2349 // Read all the records for this value table. 2350 Type *CurTy = Type::getInt32Ty(Context); 2351 unsigned NextCstNo = ValueList.size(); 2352 2353 struct DelayedShufTy { 2354 VectorType *OpTy; 2355 VectorType *RTy; 2356 uint64_t Op0Idx; 2357 uint64_t Op1Idx; 2358 uint64_t Op2Idx; 2359 unsigned CstNo; 2360 }; 2361 std::vector<DelayedShufTy> DelayedShuffles; 2362 struct DelayedSelTy { 2363 Type *OpTy; 2364 uint64_t Op0Idx; 2365 uint64_t Op1Idx; 2366 uint64_t Op2Idx; 2367 unsigned CstNo; 2368 }; 2369 std::vector<DelayedSelTy> DelayedSelectors; 2370 2371 while (true) { 2372 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2373 if (!MaybeEntry) 2374 return MaybeEntry.takeError(); 2375 BitstreamEntry Entry = MaybeEntry.get(); 2376 2377 switch (Entry.Kind) { 2378 case BitstreamEntry::SubBlock: // Handled for us already. 2379 case BitstreamEntry::Error: 2380 return error("Malformed block"); 2381 case BitstreamEntry::EndBlock: 2382 // Once all the constants have been read, go through and resolve forward 2383 // references. 2384 // 2385 // We have to treat shuffles specially because they don't have three 2386 // operands anymore. We need to convert the shuffle mask into an array, 2387 // and we can't convert a forward reference. 2388 for (auto &DelayedShuffle : DelayedShuffles) { 2389 VectorType *OpTy = DelayedShuffle.OpTy; 2390 VectorType *RTy = DelayedShuffle.RTy; 2391 uint64_t Op0Idx = DelayedShuffle.Op0Idx; 2392 uint64_t Op1Idx = DelayedShuffle.Op1Idx; 2393 uint64_t Op2Idx = DelayedShuffle.Op2Idx; 2394 uint64_t CstNo = DelayedShuffle.CstNo; 2395 Constant *Op0 = ValueList.getConstantFwdRef(Op0Idx, OpTy); 2396 Constant *Op1 = ValueList.getConstantFwdRef(Op1Idx, OpTy); 2397 Type *ShufTy = 2398 VectorType::get(Type::getInt32Ty(Context), RTy->getElementCount()); 2399 Constant *Op2 = ValueList.getConstantFwdRef(Op2Idx, ShufTy); 2400 if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2)) 2401 return error("Invalid shufflevector operands"); 2402 SmallVector<int, 16> Mask; 2403 ShuffleVectorInst::getShuffleMask(Op2, Mask); 2404 Value *V = ConstantExpr::getShuffleVector(Op0, Op1, Mask); 2405 ValueList.assignValue(V, CstNo); 2406 } 2407 for (auto &DelayedSelector : DelayedSelectors) { 2408 Type *OpTy = DelayedSelector.OpTy; 2409 Type *SelectorTy = Type::getInt1Ty(Context); 2410 uint64_t Op0Idx = DelayedSelector.Op0Idx; 2411 uint64_t Op1Idx = DelayedSelector.Op1Idx; 2412 uint64_t Op2Idx = DelayedSelector.Op2Idx; 2413 uint64_t CstNo = DelayedSelector.CstNo; 2414 Constant *Op1 = ValueList.getConstantFwdRef(Op1Idx, OpTy); 2415 Constant *Op2 = ValueList.getConstantFwdRef(Op2Idx, OpTy); 2416 // The selector might be an i1 or an <n x i1> 2417 // Get the type from the ValueList before getting a forward ref. 2418 if (VectorType *VTy = dyn_cast<VectorType>(OpTy)) { 2419 Value *V = ValueList[Op0Idx]; 2420 assert(V); 2421 if (SelectorTy != V->getType()) 2422 SelectorTy = VectorType::get(SelectorTy, VTy->getElementCount()); 2423 } 2424 Constant *Op0 = ValueList.getConstantFwdRef(Op0Idx, SelectorTy); 2425 Value *V = ConstantExpr::getSelect(Op0, Op1, Op2); 2426 ValueList.assignValue(V, CstNo); 2427 } 2428 2429 if (NextCstNo != ValueList.size()) 2430 return error("Invalid constant reference"); 2431 2432 ValueList.resolveConstantForwardRefs(); 2433 return Error::success(); 2434 case BitstreamEntry::Record: 2435 // The interesting case. 2436 break; 2437 } 2438 2439 // Read a record. 2440 Record.clear(); 2441 Type *VoidType = Type::getVoidTy(Context); 2442 Value *V = nullptr; 2443 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 2444 if (!MaybeBitCode) 2445 return MaybeBitCode.takeError(); 2446 switch (unsigned BitCode = MaybeBitCode.get()) { 2447 default: // Default behavior: unknown constant 2448 case bitc::CST_CODE_UNDEF: // UNDEF 2449 V = UndefValue::get(CurTy); 2450 break; 2451 case bitc::CST_CODE_POISON: // POISON 2452 V = PoisonValue::get(CurTy); 2453 break; 2454 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 2455 if (Record.empty()) 2456 return error("Invalid record"); 2457 if (Record[0] >= TypeList.size() || !TypeList[Record[0]]) 2458 return error("Invalid record"); 2459 if (TypeList[Record[0]] == VoidType) 2460 return error("Invalid constant type"); 2461 CurTy = TypeList[Record[0]]; 2462 continue; // Skip the ValueList manipulation. 2463 case bitc::CST_CODE_NULL: // NULL 2464 if (CurTy->isVoidTy() || CurTy->isFunctionTy() || CurTy->isLabelTy()) 2465 return error("Invalid type for a constant null value"); 2466 V = Constant::getNullValue(CurTy); 2467 break; 2468 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 2469 if (!CurTy->isIntegerTy() || Record.empty()) 2470 return error("Invalid record"); 2471 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); 2472 break; 2473 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 2474 if (!CurTy->isIntegerTy() || Record.empty()) 2475 return error("Invalid record"); 2476 2477 APInt VInt = 2478 readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth()); 2479 V = ConstantInt::get(Context, VInt); 2480 2481 break; 2482 } 2483 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 2484 if (Record.empty()) 2485 return error("Invalid record"); 2486 if (CurTy->isHalfTy()) 2487 V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf(), 2488 APInt(16, (uint16_t)Record[0]))); 2489 else if (CurTy->isBFloatTy()) 2490 V = ConstantFP::get(Context, APFloat(APFloat::BFloat(), 2491 APInt(16, (uint32_t)Record[0]))); 2492 else if (CurTy->isFloatTy()) 2493 V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle(), 2494 APInt(32, (uint32_t)Record[0]))); 2495 else if (CurTy->isDoubleTy()) 2496 V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble(), 2497 APInt(64, Record[0]))); 2498 else if (CurTy->isX86_FP80Ty()) { 2499 // Bits are not stored the same way as a normal i80 APInt, compensate. 2500 uint64_t Rearrange[2]; 2501 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 2502 Rearrange[1] = Record[0] >> 48; 2503 V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended(), 2504 APInt(80, Rearrange))); 2505 } else if (CurTy->isFP128Ty()) 2506 V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad(), 2507 APInt(128, Record))); 2508 else if (CurTy->isPPC_FP128Ty()) 2509 V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble(), 2510 APInt(128, Record))); 2511 else 2512 V = UndefValue::get(CurTy); 2513 break; 2514 } 2515 2516 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 2517 if (Record.empty()) 2518 return error("Invalid record"); 2519 2520 unsigned Size = Record.size(); 2521 SmallVector<Constant*, 16> Elts; 2522 2523 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 2524 for (unsigned i = 0; i != Size; ++i) 2525 Elts.push_back(ValueList.getConstantFwdRef(Record[i], 2526 STy->getElementType(i))); 2527 V = ConstantStruct::get(STy, Elts); 2528 } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) { 2529 Type *EltTy = ATy->getElementType(); 2530 for (unsigned i = 0; i != Size; ++i) 2531 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2532 V = ConstantArray::get(ATy, Elts); 2533 } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) { 2534 Type *EltTy = VTy->getElementType(); 2535 for (unsigned i = 0; i != Size; ++i) 2536 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2537 V = ConstantVector::get(Elts); 2538 } else { 2539 V = UndefValue::get(CurTy); 2540 } 2541 break; 2542 } 2543 case bitc::CST_CODE_STRING: // STRING: [values] 2544 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 2545 if (Record.empty()) 2546 return error("Invalid record"); 2547 2548 SmallString<16> Elts(Record.begin(), Record.end()); 2549 V = ConstantDataArray::getString(Context, Elts, 2550 BitCode == bitc::CST_CODE_CSTRING); 2551 break; 2552 } 2553 case bitc::CST_CODE_DATA: {// DATA: [n x value] 2554 if (Record.empty()) 2555 return error("Invalid record"); 2556 2557 Type *EltTy; 2558 if (auto *Array = dyn_cast<ArrayType>(CurTy)) 2559 EltTy = Array->getElementType(); 2560 else 2561 EltTy = cast<VectorType>(CurTy)->getElementType(); 2562 if (EltTy->isIntegerTy(8)) { 2563 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); 2564 if (isa<VectorType>(CurTy)) 2565 V = ConstantDataVector::get(Context, Elts); 2566 else 2567 V = ConstantDataArray::get(Context, Elts); 2568 } else if (EltTy->isIntegerTy(16)) { 2569 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2570 if (isa<VectorType>(CurTy)) 2571 V = ConstantDataVector::get(Context, Elts); 2572 else 2573 V = ConstantDataArray::get(Context, Elts); 2574 } else if (EltTy->isIntegerTy(32)) { 2575 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2576 if (isa<VectorType>(CurTy)) 2577 V = ConstantDataVector::get(Context, Elts); 2578 else 2579 V = ConstantDataArray::get(Context, Elts); 2580 } else if (EltTy->isIntegerTy(64)) { 2581 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2582 if (isa<VectorType>(CurTy)) 2583 V = ConstantDataVector::get(Context, Elts); 2584 else 2585 V = ConstantDataArray::get(Context, Elts); 2586 } else if (EltTy->isHalfTy()) { 2587 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2588 if (isa<VectorType>(CurTy)) 2589 V = ConstantDataVector::getFP(EltTy, Elts); 2590 else 2591 V = ConstantDataArray::getFP(EltTy, Elts); 2592 } else if (EltTy->isBFloatTy()) { 2593 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2594 if (isa<VectorType>(CurTy)) 2595 V = ConstantDataVector::getFP(EltTy, Elts); 2596 else 2597 V = ConstantDataArray::getFP(EltTy, Elts); 2598 } else if (EltTy->isFloatTy()) { 2599 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2600 if (isa<VectorType>(CurTy)) 2601 V = ConstantDataVector::getFP(EltTy, Elts); 2602 else 2603 V = ConstantDataArray::getFP(EltTy, Elts); 2604 } else if (EltTy->isDoubleTy()) { 2605 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2606 if (isa<VectorType>(CurTy)) 2607 V = ConstantDataVector::getFP(EltTy, Elts); 2608 else 2609 V = ConstantDataArray::getFP(EltTy, Elts); 2610 } else { 2611 return error("Invalid type for value"); 2612 } 2613 break; 2614 } 2615 case bitc::CST_CODE_CE_UNOP: { // CE_UNOP: [opcode, opval] 2616 if (Record.size() < 2) 2617 return error("Invalid record"); 2618 int Opc = getDecodedUnaryOpcode(Record[0], CurTy); 2619 if (Opc < 0) { 2620 V = UndefValue::get(CurTy); // Unknown unop. 2621 } else { 2622 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 2623 unsigned Flags = 0; 2624 V = ConstantExpr::get(Opc, LHS, Flags); 2625 } 2626 break; 2627 } 2628 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 2629 if (Record.size() < 3) 2630 return error("Invalid record"); 2631 int Opc = getDecodedBinaryOpcode(Record[0], CurTy); 2632 if (Opc < 0) { 2633 V = UndefValue::get(CurTy); // Unknown binop. 2634 } else { 2635 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 2636 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy); 2637 unsigned Flags = 0; 2638 if (Record.size() >= 4) { 2639 if (Opc == Instruction::Add || 2640 Opc == Instruction::Sub || 2641 Opc == Instruction::Mul || 2642 Opc == Instruction::Shl) { 2643 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 2644 Flags |= OverflowingBinaryOperator::NoSignedWrap; 2645 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 2646 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 2647 } else if (Opc == Instruction::SDiv || 2648 Opc == Instruction::UDiv || 2649 Opc == Instruction::LShr || 2650 Opc == Instruction::AShr) { 2651 if (Record[3] & (1 << bitc::PEO_EXACT)) 2652 Flags |= SDivOperator::IsExact; 2653 } 2654 } 2655 V = ConstantExpr::get(Opc, LHS, RHS, Flags); 2656 } 2657 break; 2658 } 2659 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 2660 if (Record.size() < 3) 2661 return error("Invalid record"); 2662 int Opc = getDecodedCastOpcode(Record[0]); 2663 if (Opc < 0) { 2664 V = UndefValue::get(CurTy); // Unknown cast. 2665 } else { 2666 Type *OpTy = getTypeByID(Record[1]); 2667 if (!OpTy) 2668 return error("Invalid record"); 2669 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy); 2670 V = UpgradeBitCastExpr(Opc, Op, CurTy); 2671 if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy); 2672 } 2673 break; 2674 } 2675 case bitc::CST_CODE_CE_INBOUNDS_GEP: // [ty, n x operands] 2676 case bitc::CST_CODE_CE_GEP: // [ty, n x operands] 2677 case bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX: { // [ty, flags, n x 2678 // operands] 2679 unsigned OpNum = 0; 2680 Type *PointeeType = nullptr; 2681 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX || 2682 Record.size() % 2) 2683 PointeeType = getTypeByID(Record[OpNum++]); 2684 2685 bool InBounds = false; 2686 Optional<unsigned> InRangeIndex; 2687 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX) { 2688 uint64_t Op = Record[OpNum++]; 2689 InBounds = Op & 1; 2690 InRangeIndex = Op >> 1; 2691 } else if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP) 2692 InBounds = true; 2693 2694 SmallVector<Constant*, 16> Elts; 2695 Type *Elt0FullTy = nullptr; 2696 while (OpNum != Record.size()) { 2697 if (!Elt0FullTy) 2698 Elt0FullTy = getTypeByID(Record[OpNum]); 2699 Type *ElTy = getTypeByID(Record[OpNum++]); 2700 if (!ElTy) 2701 return error("Invalid record"); 2702 Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy)); 2703 } 2704 2705 if (Elts.size() < 1) 2706 return error("Invalid gep with no operands"); 2707 2708 PointerType *OrigPtrTy = cast<PointerType>(Elt0FullTy->getScalarType()); 2709 if (!PointeeType) 2710 PointeeType = OrigPtrTy->getPointerElementType(); 2711 else if (!OrigPtrTy->isOpaqueOrPointeeTypeMatches(PointeeType)) 2712 return error("Explicit gep operator type does not match pointee type " 2713 "of pointer operand"); 2714 2715 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 2716 V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices, 2717 InBounds, InRangeIndex); 2718 break; 2719 } 2720 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] 2721 if (Record.size() < 3) 2722 return error("Invalid record"); 2723 2724 DelayedSelectors.push_back( 2725 {CurTy, Record[0], Record[1], Record[2], NextCstNo}); 2726 (void)ValueList.getConstantFwdRef(NextCstNo, CurTy); 2727 ++NextCstNo; 2728 continue; 2729 } 2730 case bitc::CST_CODE_CE_EXTRACTELT 2731 : { // CE_EXTRACTELT: [opty, opval, opty, opval] 2732 if (Record.size() < 3) 2733 return error("Invalid record"); 2734 VectorType *OpTy = 2735 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2736 if (!OpTy) 2737 return error("Invalid record"); 2738 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2739 Constant *Op1 = nullptr; 2740 if (Record.size() == 4) { 2741 Type *IdxTy = getTypeByID(Record[2]); 2742 if (!IdxTy) 2743 return error("Invalid record"); 2744 Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2745 } else { 2746 // Deprecated, but still needed to read old bitcode files. 2747 Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2748 } 2749 if (!Op1) 2750 return error("Invalid record"); 2751 V = ConstantExpr::getExtractElement(Op0, Op1); 2752 break; 2753 } 2754 case bitc::CST_CODE_CE_INSERTELT 2755 : { // CE_INSERTELT: [opval, opval, opty, opval] 2756 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2757 if (Record.size() < 3 || !OpTy) 2758 return error("Invalid record"); 2759 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2760 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], 2761 OpTy->getElementType()); 2762 Constant *Op2 = nullptr; 2763 if (Record.size() == 4) { 2764 Type *IdxTy = getTypeByID(Record[2]); 2765 if (!IdxTy) 2766 return error("Invalid record"); 2767 Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2768 } else { 2769 // Deprecated, but still needed to read old bitcode files. 2770 Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2771 } 2772 if (!Op2) 2773 return error("Invalid record"); 2774 V = ConstantExpr::getInsertElement(Op0, Op1, Op2); 2775 break; 2776 } 2777 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 2778 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2779 if (Record.size() < 3 || !OpTy) 2780 return error("Invalid record"); 2781 DelayedShuffles.push_back( 2782 {OpTy, OpTy, Record[0], Record[1], Record[2], NextCstNo}); 2783 ++NextCstNo; 2784 continue; 2785 } 2786 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 2787 VectorType *RTy = dyn_cast<VectorType>(CurTy); 2788 VectorType *OpTy = 2789 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2790 if (Record.size() < 4 || !RTy || !OpTy) 2791 return error("Invalid record"); 2792 DelayedShuffles.push_back( 2793 {OpTy, RTy, Record[1], Record[2], Record[3], NextCstNo}); 2794 ++NextCstNo; 2795 continue; 2796 } 2797 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 2798 if (Record.size() < 4) 2799 return error("Invalid record"); 2800 Type *OpTy = getTypeByID(Record[0]); 2801 if (!OpTy) 2802 return error("Invalid record"); 2803 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2804 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2805 2806 if (OpTy->isFPOrFPVectorTy()) 2807 V = ConstantExpr::getFCmp(Record[3], Op0, Op1); 2808 else 2809 V = ConstantExpr::getICmp(Record[3], Op0, Op1); 2810 break; 2811 } 2812 // This maintains backward compatibility, pre-asm dialect keywords. 2813 // Deprecated, but still needed to read old bitcode files. 2814 case bitc::CST_CODE_INLINEASM_OLD: { 2815 if (Record.size() < 2) 2816 return error("Invalid record"); 2817 std::string AsmStr, ConstrStr; 2818 bool HasSideEffects = Record[0] & 1; 2819 bool IsAlignStack = Record[0] >> 1; 2820 unsigned AsmStrSize = Record[1]; 2821 if (2+AsmStrSize >= Record.size()) 2822 return error("Invalid record"); 2823 unsigned ConstStrSize = Record[2+AsmStrSize]; 2824 if (3+AsmStrSize+ConstStrSize > Record.size()) 2825 return error("Invalid record"); 2826 2827 for (unsigned i = 0; i != AsmStrSize; ++i) 2828 AsmStr += (char)Record[2+i]; 2829 for (unsigned i = 0; i != ConstStrSize; ++i) 2830 ConstrStr += (char)Record[3+AsmStrSize+i]; 2831 UpgradeInlineAsmString(&AsmStr); 2832 // FIXME: support upgrading in opaque pointers mode. 2833 V = InlineAsm::get(cast<FunctionType>(CurTy->getPointerElementType()), 2834 AsmStr, ConstrStr, HasSideEffects, IsAlignStack); 2835 break; 2836 } 2837 // This version adds support for the asm dialect keywords (e.g., 2838 // inteldialect). 2839 case bitc::CST_CODE_INLINEASM_OLD2: { 2840 if (Record.size() < 2) 2841 return error("Invalid record"); 2842 std::string AsmStr, ConstrStr; 2843 bool HasSideEffects = Record[0] & 1; 2844 bool IsAlignStack = (Record[0] >> 1) & 1; 2845 unsigned AsmDialect = Record[0] >> 2; 2846 unsigned AsmStrSize = Record[1]; 2847 if (2+AsmStrSize >= Record.size()) 2848 return error("Invalid record"); 2849 unsigned ConstStrSize = Record[2+AsmStrSize]; 2850 if (3+AsmStrSize+ConstStrSize > Record.size()) 2851 return error("Invalid record"); 2852 2853 for (unsigned i = 0; i != AsmStrSize; ++i) 2854 AsmStr += (char)Record[2+i]; 2855 for (unsigned i = 0; i != ConstStrSize; ++i) 2856 ConstrStr += (char)Record[3+AsmStrSize+i]; 2857 UpgradeInlineAsmString(&AsmStr); 2858 // FIXME: support upgrading in opaque pointers mode. 2859 V = InlineAsm::get(cast<FunctionType>(CurTy->getPointerElementType()), 2860 AsmStr, ConstrStr, HasSideEffects, IsAlignStack, 2861 InlineAsm::AsmDialect(AsmDialect)); 2862 break; 2863 } 2864 // This version adds support for the unwind keyword. 2865 case bitc::CST_CODE_INLINEASM_OLD3: { 2866 if (Record.size() < 2) 2867 return error("Invalid record"); 2868 unsigned OpNum = 0; 2869 std::string AsmStr, ConstrStr; 2870 bool HasSideEffects = Record[OpNum] & 1; 2871 bool IsAlignStack = (Record[OpNum] >> 1) & 1; 2872 unsigned AsmDialect = (Record[OpNum] >> 2) & 1; 2873 bool CanThrow = (Record[OpNum] >> 3) & 1; 2874 ++OpNum; 2875 unsigned AsmStrSize = Record[OpNum]; 2876 ++OpNum; 2877 if (OpNum + AsmStrSize >= Record.size()) 2878 return error("Invalid record"); 2879 unsigned ConstStrSize = Record[OpNum + AsmStrSize]; 2880 if (OpNum + 1 + AsmStrSize + ConstStrSize > Record.size()) 2881 return error("Invalid record"); 2882 2883 for (unsigned i = 0; i != AsmStrSize; ++i) 2884 AsmStr += (char)Record[OpNum + i]; 2885 ++OpNum; 2886 for (unsigned i = 0; i != ConstStrSize; ++i) 2887 ConstrStr += (char)Record[OpNum + AsmStrSize + i]; 2888 UpgradeInlineAsmString(&AsmStr); 2889 // FIXME: support upgrading in opaque pointers mode. 2890 V = InlineAsm::get(cast<FunctionType>(CurTy->getPointerElementType()), 2891 AsmStr, ConstrStr, HasSideEffects, IsAlignStack, 2892 InlineAsm::AsmDialect(AsmDialect), CanThrow); 2893 break; 2894 } 2895 // This version adds explicit function type. 2896 case bitc::CST_CODE_INLINEASM: { 2897 if (Record.size() < 3) 2898 return error("Invalid record"); 2899 unsigned OpNum = 0; 2900 auto *FnTy = dyn_cast_or_null<FunctionType>(getTypeByID(Record[OpNum])); 2901 ++OpNum; 2902 if (!FnTy) 2903 return error("Invalid record"); 2904 std::string AsmStr, ConstrStr; 2905 bool HasSideEffects = Record[OpNum] & 1; 2906 bool IsAlignStack = (Record[OpNum] >> 1) & 1; 2907 unsigned AsmDialect = (Record[OpNum] >> 2) & 1; 2908 bool CanThrow = (Record[OpNum] >> 3) & 1; 2909 ++OpNum; 2910 unsigned AsmStrSize = Record[OpNum]; 2911 ++OpNum; 2912 if (OpNum + AsmStrSize >= Record.size()) 2913 return error("Invalid record"); 2914 unsigned ConstStrSize = Record[OpNum + AsmStrSize]; 2915 if (OpNum + 1 + AsmStrSize + ConstStrSize > Record.size()) 2916 return error("Invalid record"); 2917 2918 for (unsigned i = 0; i != AsmStrSize; ++i) 2919 AsmStr += (char)Record[OpNum + i]; 2920 ++OpNum; 2921 for (unsigned i = 0; i != ConstStrSize; ++i) 2922 ConstrStr += (char)Record[OpNum + AsmStrSize + i]; 2923 UpgradeInlineAsmString(&AsmStr); 2924 V = InlineAsm::get(FnTy, AsmStr, ConstrStr, HasSideEffects, IsAlignStack, 2925 InlineAsm::AsmDialect(AsmDialect), CanThrow); 2926 break; 2927 } 2928 case bitc::CST_CODE_BLOCKADDRESS:{ 2929 if (Record.size() < 3) 2930 return error("Invalid record"); 2931 Type *FnTy = getTypeByID(Record[0]); 2932 if (!FnTy) 2933 return error("Invalid record"); 2934 Function *Fn = 2935 dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy)); 2936 if (!Fn) 2937 return error("Invalid record"); 2938 2939 // If the function is already parsed we can insert the block address right 2940 // away. 2941 BasicBlock *BB; 2942 unsigned BBID = Record[2]; 2943 if (!BBID) 2944 // Invalid reference to entry block. 2945 return error("Invalid ID"); 2946 if (!Fn->empty()) { 2947 Function::iterator BBI = Fn->begin(), BBE = Fn->end(); 2948 for (size_t I = 0, E = BBID; I != E; ++I) { 2949 if (BBI == BBE) 2950 return error("Invalid ID"); 2951 ++BBI; 2952 } 2953 BB = &*BBI; 2954 } else { 2955 // Otherwise insert a placeholder and remember it so it can be inserted 2956 // when the function is parsed. 2957 auto &FwdBBs = BasicBlockFwdRefs[Fn]; 2958 if (FwdBBs.empty()) 2959 BasicBlockFwdRefQueue.push_back(Fn); 2960 if (FwdBBs.size() < BBID + 1) 2961 FwdBBs.resize(BBID + 1); 2962 if (!FwdBBs[BBID]) 2963 FwdBBs[BBID] = BasicBlock::Create(Context); 2964 BB = FwdBBs[BBID]; 2965 } 2966 V = BlockAddress::get(Fn, BB); 2967 break; 2968 } 2969 case bitc::CST_CODE_DSO_LOCAL_EQUIVALENT: { 2970 if (Record.size() < 2) 2971 return error("Invalid record"); 2972 Type *GVTy = getTypeByID(Record[0]); 2973 if (!GVTy) 2974 return error("Invalid record"); 2975 GlobalValue *GV = dyn_cast_or_null<GlobalValue>( 2976 ValueList.getConstantFwdRef(Record[1], GVTy)); 2977 if (!GV) 2978 return error("Invalid record"); 2979 2980 V = DSOLocalEquivalent::get(GV); 2981 break; 2982 } 2983 case bitc::CST_CODE_NO_CFI_VALUE: { 2984 if (Record.size() < 2) 2985 return error("Invalid record"); 2986 Type *GVTy = getTypeByID(Record[0]); 2987 if (!GVTy) 2988 return error("Invalid record"); 2989 GlobalValue *GV = dyn_cast_or_null<GlobalValue>( 2990 ValueList.getConstantFwdRef(Record[1], GVTy)); 2991 if (!GV) 2992 return error("Invalid record"); 2993 V = NoCFIValue::get(GV); 2994 break; 2995 } 2996 } 2997 2998 ValueList.assignValue(V, NextCstNo); 2999 ++NextCstNo; 3000 } 3001 } 3002 3003 Error BitcodeReader::parseUseLists() { 3004 if (Error Err = Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 3005 return Err; 3006 3007 // Read all the records. 3008 SmallVector<uint64_t, 64> Record; 3009 3010 while (true) { 3011 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 3012 if (!MaybeEntry) 3013 return MaybeEntry.takeError(); 3014 BitstreamEntry Entry = MaybeEntry.get(); 3015 3016 switch (Entry.Kind) { 3017 case BitstreamEntry::SubBlock: // Handled for us already. 3018 case BitstreamEntry::Error: 3019 return error("Malformed block"); 3020 case BitstreamEntry::EndBlock: 3021 return Error::success(); 3022 case BitstreamEntry::Record: 3023 // The interesting case. 3024 break; 3025 } 3026 3027 // Read a use list record. 3028 Record.clear(); 3029 bool IsBB = false; 3030 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 3031 if (!MaybeRecord) 3032 return MaybeRecord.takeError(); 3033 switch (MaybeRecord.get()) { 3034 default: // Default behavior: unknown type. 3035 break; 3036 case bitc::USELIST_CODE_BB: 3037 IsBB = true; 3038 LLVM_FALLTHROUGH; 3039 case bitc::USELIST_CODE_DEFAULT: { 3040 unsigned RecordLength = Record.size(); 3041 if (RecordLength < 3) 3042 // Records should have at least an ID and two indexes. 3043 return error("Invalid record"); 3044 unsigned ID = Record.pop_back_val(); 3045 3046 Value *V; 3047 if (IsBB) { 3048 assert(ID < FunctionBBs.size() && "Basic block not found"); 3049 V = FunctionBBs[ID]; 3050 } else 3051 V = ValueList[ID]; 3052 unsigned NumUses = 0; 3053 SmallDenseMap<const Use *, unsigned, 16> Order; 3054 for (const Use &U : V->materialized_uses()) { 3055 if (++NumUses > Record.size()) 3056 break; 3057 Order[&U] = Record[NumUses - 1]; 3058 } 3059 if (Order.size() != Record.size() || NumUses > Record.size()) 3060 // Mismatches can happen if the functions are being materialized lazily 3061 // (out-of-order), or a value has been upgraded. 3062 break; 3063 3064 V->sortUseList([&](const Use &L, const Use &R) { 3065 return Order.lookup(&L) < Order.lookup(&R); 3066 }); 3067 break; 3068 } 3069 } 3070 } 3071 } 3072 3073 /// When we see the block for metadata, remember where it is and then skip it. 3074 /// This lets us lazily deserialize the metadata. 3075 Error BitcodeReader::rememberAndSkipMetadata() { 3076 // Save the current stream state. 3077 uint64_t CurBit = Stream.GetCurrentBitNo(); 3078 DeferredMetadataInfo.push_back(CurBit); 3079 3080 // Skip over the block for now. 3081 if (Error Err = Stream.SkipBlock()) 3082 return Err; 3083 return Error::success(); 3084 } 3085 3086 Error BitcodeReader::materializeMetadata() { 3087 for (uint64_t BitPos : DeferredMetadataInfo) { 3088 // Move the bit stream to the saved position. 3089 if (Error JumpFailed = Stream.JumpToBit(BitPos)) 3090 return JumpFailed; 3091 if (Error Err = MDLoader->parseModuleMetadata()) 3092 return Err; 3093 } 3094 3095 // Upgrade "Linker Options" module flag to "llvm.linker.options" module-level 3096 // metadata. Only upgrade if the new option doesn't exist to avoid upgrade 3097 // multiple times. 3098 if (!TheModule->getNamedMetadata("llvm.linker.options")) { 3099 if (Metadata *Val = TheModule->getModuleFlag("Linker Options")) { 3100 NamedMDNode *LinkerOpts = 3101 TheModule->getOrInsertNamedMetadata("llvm.linker.options"); 3102 for (const MDOperand &MDOptions : cast<MDNode>(Val)->operands()) 3103 LinkerOpts->addOperand(cast<MDNode>(MDOptions)); 3104 } 3105 } 3106 3107 DeferredMetadataInfo.clear(); 3108 return Error::success(); 3109 } 3110 3111 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; } 3112 3113 /// When we see the block for a function body, remember where it is and then 3114 /// skip it. This lets us lazily deserialize the functions. 3115 Error BitcodeReader::rememberAndSkipFunctionBody() { 3116 // Get the function we are talking about. 3117 if (FunctionsWithBodies.empty()) 3118 return error("Insufficient function protos"); 3119 3120 Function *Fn = FunctionsWithBodies.back(); 3121 FunctionsWithBodies.pop_back(); 3122 3123 // Save the current stream state. 3124 uint64_t CurBit = Stream.GetCurrentBitNo(); 3125 assert( 3126 (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) && 3127 "Mismatch between VST and scanned function offsets"); 3128 DeferredFunctionInfo[Fn] = CurBit; 3129 3130 // Skip over the function block for now. 3131 if (Error Err = Stream.SkipBlock()) 3132 return Err; 3133 return Error::success(); 3134 } 3135 3136 Error BitcodeReader::globalCleanup() { 3137 // Patch the initializers for globals and aliases up. 3138 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 3139 return Err; 3140 if (!GlobalInits.empty() || !IndirectSymbolInits.empty()) 3141 return error("Malformed global initializer set"); 3142 3143 // Look for intrinsic functions which need to be upgraded at some point 3144 // and functions that need to have their function attributes upgraded. 3145 for (Function &F : *TheModule) { 3146 MDLoader->upgradeDebugIntrinsics(F); 3147 Function *NewFn; 3148 if (UpgradeIntrinsicFunction(&F, NewFn)) 3149 UpgradedIntrinsics[&F] = NewFn; 3150 else if (auto Remangled = Intrinsic::remangleIntrinsicFunction(&F)) 3151 // Some types could be renamed during loading if several modules are 3152 // loaded in the same LLVMContext (LTO scenario). In this case we should 3153 // remangle intrinsics names as well. 3154 RemangledIntrinsics[&F] = Remangled.getValue(); 3155 // Look for functions that rely on old function attribute behavior. 3156 UpgradeFunctionAttributes(F); 3157 } 3158 3159 // Look for global variables which need to be renamed. 3160 std::vector<std::pair<GlobalVariable *, GlobalVariable *>> UpgradedVariables; 3161 for (GlobalVariable &GV : TheModule->globals()) 3162 if (GlobalVariable *Upgraded = UpgradeGlobalVariable(&GV)) 3163 UpgradedVariables.emplace_back(&GV, Upgraded); 3164 for (auto &Pair : UpgradedVariables) { 3165 Pair.first->eraseFromParent(); 3166 TheModule->getGlobalList().push_back(Pair.second); 3167 } 3168 3169 // Force deallocation of memory for these vectors to favor the client that 3170 // want lazy deserialization. 3171 std::vector<std::pair<GlobalVariable *, unsigned>>().swap(GlobalInits); 3172 std::vector<std::pair<GlobalValue *, unsigned>>().swap(IndirectSymbolInits); 3173 return Error::success(); 3174 } 3175 3176 /// Support for lazy parsing of function bodies. This is required if we 3177 /// either have an old bitcode file without a VST forward declaration record, 3178 /// or if we have an anonymous function being materialized, since anonymous 3179 /// functions do not have a name and are therefore not in the VST. 3180 Error BitcodeReader::rememberAndSkipFunctionBodies() { 3181 if (Error JumpFailed = Stream.JumpToBit(NextUnreadBit)) 3182 return JumpFailed; 3183 3184 if (Stream.AtEndOfStream()) 3185 return error("Could not find function in stream"); 3186 3187 if (!SeenFirstFunctionBody) 3188 return error("Trying to materialize functions before seeing function blocks"); 3189 3190 // An old bitcode file with the symbol table at the end would have 3191 // finished the parse greedily. 3192 assert(SeenValueSymbolTable); 3193 3194 SmallVector<uint64_t, 64> Record; 3195 3196 while (true) { 3197 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 3198 if (!MaybeEntry) 3199 return MaybeEntry.takeError(); 3200 llvm::BitstreamEntry Entry = MaybeEntry.get(); 3201 3202 switch (Entry.Kind) { 3203 default: 3204 return error("Expect SubBlock"); 3205 case BitstreamEntry::SubBlock: 3206 switch (Entry.ID) { 3207 default: 3208 return error("Expect function block"); 3209 case bitc::FUNCTION_BLOCK_ID: 3210 if (Error Err = rememberAndSkipFunctionBody()) 3211 return Err; 3212 NextUnreadBit = Stream.GetCurrentBitNo(); 3213 return Error::success(); 3214 } 3215 } 3216 } 3217 } 3218 3219 Error BitcodeReaderBase::readBlockInfo() { 3220 Expected<Optional<BitstreamBlockInfo>> MaybeNewBlockInfo = 3221 Stream.ReadBlockInfoBlock(); 3222 if (!MaybeNewBlockInfo) 3223 return MaybeNewBlockInfo.takeError(); 3224 Optional<BitstreamBlockInfo> NewBlockInfo = 3225 std::move(MaybeNewBlockInfo.get()); 3226 if (!NewBlockInfo) 3227 return error("Malformed block"); 3228 BlockInfo = std::move(*NewBlockInfo); 3229 return Error::success(); 3230 } 3231 3232 Error BitcodeReader::parseComdatRecord(ArrayRef<uint64_t> Record) { 3233 // v1: [selection_kind, name] 3234 // v2: [strtab_offset, strtab_size, selection_kind] 3235 StringRef Name; 3236 std::tie(Name, Record) = readNameFromStrtab(Record); 3237 3238 if (Record.empty()) 3239 return error("Invalid record"); 3240 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]); 3241 std::string OldFormatName; 3242 if (!UseStrtab) { 3243 if (Record.size() < 2) 3244 return error("Invalid record"); 3245 unsigned ComdatNameSize = Record[1]; 3246 OldFormatName.reserve(ComdatNameSize); 3247 for (unsigned i = 0; i != ComdatNameSize; ++i) 3248 OldFormatName += (char)Record[2 + i]; 3249 Name = OldFormatName; 3250 } 3251 Comdat *C = TheModule->getOrInsertComdat(Name); 3252 C->setSelectionKind(SK); 3253 ComdatList.push_back(C); 3254 return Error::success(); 3255 } 3256 3257 static void inferDSOLocal(GlobalValue *GV) { 3258 // infer dso_local from linkage and visibility if it is not encoded. 3259 if (GV->hasLocalLinkage() || 3260 (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())) 3261 GV->setDSOLocal(true); 3262 } 3263 3264 Error BitcodeReader::parseGlobalVarRecord(ArrayRef<uint64_t> Record) { 3265 // v1: [pointer type, isconst, initid, linkage, alignment, section, 3266 // visibility, threadlocal, unnamed_addr, externally_initialized, 3267 // dllstorageclass, comdat, attributes, preemption specifier, 3268 // partition strtab offset, partition strtab size] (name in VST) 3269 // v2: [strtab_offset, strtab_size, v1] 3270 StringRef Name; 3271 std::tie(Name, Record) = readNameFromStrtab(Record); 3272 3273 if (Record.size() < 6) 3274 return error("Invalid record"); 3275 Type *Ty = getTypeByID(Record[0]); 3276 if (!Ty) 3277 return error("Invalid record"); 3278 bool isConstant = Record[1] & 1; 3279 bool explicitType = Record[1] & 2; 3280 unsigned AddressSpace; 3281 if (explicitType) { 3282 AddressSpace = Record[1] >> 2; 3283 } else { 3284 if (!Ty->isPointerTy()) 3285 return error("Invalid type for value"); 3286 AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 3287 Ty = Ty->getPointerElementType(); 3288 } 3289 3290 uint64_t RawLinkage = Record[3]; 3291 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 3292 MaybeAlign Alignment; 3293 if (Error Err = parseAlignmentValue(Record[4], Alignment)) 3294 return Err; 3295 std::string Section; 3296 if (Record[5]) { 3297 if (Record[5] - 1 >= SectionTable.size()) 3298 return error("Invalid ID"); 3299 Section = SectionTable[Record[5] - 1]; 3300 } 3301 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 3302 // Local linkage must have default visibility. 3303 // auto-upgrade `hidden` and `protected` for old bitcode. 3304 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage)) 3305 Visibility = getDecodedVisibility(Record[6]); 3306 3307 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; 3308 if (Record.size() > 7) 3309 TLM = getDecodedThreadLocalMode(Record[7]); 3310 3311 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 3312 if (Record.size() > 8) 3313 UnnamedAddr = getDecodedUnnamedAddrType(Record[8]); 3314 3315 bool ExternallyInitialized = false; 3316 if (Record.size() > 9) 3317 ExternallyInitialized = Record[9]; 3318 3319 GlobalVariable *NewGV = 3320 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, Name, 3321 nullptr, TLM, AddressSpace, ExternallyInitialized); 3322 NewGV->setAlignment(Alignment); 3323 if (!Section.empty()) 3324 NewGV->setSection(Section); 3325 NewGV->setVisibility(Visibility); 3326 NewGV->setUnnamedAddr(UnnamedAddr); 3327 3328 if (Record.size() > 10) 3329 NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10])); 3330 else 3331 upgradeDLLImportExportLinkage(NewGV, RawLinkage); 3332 3333 ValueList.push_back(NewGV); 3334 3335 // Remember which value to use for the global initializer. 3336 if (unsigned InitID = Record[2]) 3337 GlobalInits.push_back(std::make_pair(NewGV, InitID - 1)); 3338 3339 if (Record.size() > 11) { 3340 if (unsigned ComdatID = Record[11]) { 3341 if (ComdatID > ComdatList.size()) 3342 return error("Invalid global variable comdat ID"); 3343 NewGV->setComdat(ComdatList[ComdatID - 1]); 3344 } 3345 } else if (hasImplicitComdat(RawLinkage)) { 3346 ImplicitComdatObjects.insert(NewGV); 3347 } 3348 3349 if (Record.size() > 12) { 3350 auto AS = getAttributes(Record[12]).getFnAttrs(); 3351 NewGV->setAttributes(AS); 3352 } 3353 3354 if (Record.size() > 13) { 3355 NewGV->setDSOLocal(getDecodedDSOLocal(Record[13])); 3356 } 3357 inferDSOLocal(NewGV); 3358 3359 // Check whether we have enough values to read a partition name. 3360 if (Record.size() > 15) 3361 NewGV->setPartition(StringRef(Strtab.data() + Record[14], Record[15])); 3362 3363 return Error::success(); 3364 } 3365 3366 Error BitcodeReader::parseFunctionRecord(ArrayRef<uint64_t> Record) { 3367 // v1: [type, callingconv, isproto, linkage, paramattr, alignment, section, 3368 // visibility, gc, unnamed_addr, prologuedata, dllstorageclass, comdat, 3369 // prefixdata, personalityfn, preemption specifier, addrspace] (name in VST) 3370 // v2: [strtab_offset, strtab_size, v1] 3371 StringRef Name; 3372 std::tie(Name, Record) = readNameFromStrtab(Record); 3373 3374 if (Record.size() < 8) 3375 return error("Invalid record"); 3376 Type *FTy = getTypeByID(Record[0]); 3377 if (!FTy) 3378 return error("Invalid record"); 3379 if (auto *PTy = dyn_cast<PointerType>(FTy)) 3380 FTy = PTy->getPointerElementType(); 3381 3382 if (!isa<FunctionType>(FTy)) 3383 return error("Invalid type for value"); 3384 auto CC = static_cast<CallingConv::ID>(Record[1]); 3385 if (CC & ~CallingConv::MaxID) 3386 return error("Invalid calling convention ID"); 3387 3388 unsigned AddrSpace = TheModule->getDataLayout().getProgramAddressSpace(); 3389 if (Record.size() > 16) 3390 AddrSpace = Record[16]; 3391 3392 Function *Func = 3393 Function::Create(cast<FunctionType>(FTy), GlobalValue::ExternalLinkage, 3394 AddrSpace, Name, TheModule); 3395 3396 assert(Func->getFunctionType() == FTy && 3397 "Incorrect fully specified type provided for function"); 3398 FunctionTypes[Func] = cast<FunctionType>(FTy); 3399 3400 Func->setCallingConv(CC); 3401 bool isProto = Record[2]; 3402 uint64_t RawLinkage = Record[3]; 3403 Func->setLinkage(getDecodedLinkage(RawLinkage)); 3404 Func->setAttributes(getAttributes(Record[4])); 3405 3406 // Upgrade any old-style byval or sret without a type by propagating the 3407 // argument's pointee type. There should be no opaque pointers where the byval 3408 // type is implicit. 3409 for (unsigned i = 0; i != Func->arg_size(); ++i) { 3410 for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet, 3411 Attribute::InAlloca}) { 3412 if (!Func->hasParamAttribute(i, Kind)) 3413 continue; 3414 3415 if (Func->getParamAttribute(i, Kind).getValueAsType()) 3416 continue; 3417 3418 Func->removeParamAttr(i, Kind); 3419 3420 Type *PTy = cast<FunctionType>(FTy)->getParamType(i); 3421 Type *PtrEltTy = PTy->getPointerElementType(); 3422 Attribute NewAttr; 3423 switch (Kind) { 3424 case Attribute::ByVal: 3425 NewAttr = Attribute::getWithByValType(Context, PtrEltTy); 3426 break; 3427 case Attribute::StructRet: 3428 NewAttr = Attribute::getWithStructRetType(Context, PtrEltTy); 3429 break; 3430 case Attribute::InAlloca: 3431 NewAttr = Attribute::getWithInAllocaType(Context, PtrEltTy); 3432 break; 3433 default: 3434 llvm_unreachable("not an upgraded type attribute"); 3435 } 3436 3437 Func->addParamAttr(i, NewAttr); 3438 } 3439 } 3440 3441 MaybeAlign Alignment; 3442 if (Error Err = parseAlignmentValue(Record[5], Alignment)) 3443 return Err; 3444 Func->setAlignment(Alignment); 3445 if (Record[6]) { 3446 if (Record[6] - 1 >= SectionTable.size()) 3447 return error("Invalid ID"); 3448 Func->setSection(SectionTable[Record[6] - 1]); 3449 } 3450 // Local linkage must have default visibility. 3451 // auto-upgrade `hidden` and `protected` for old bitcode. 3452 if (!Func->hasLocalLinkage()) 3453 Func->setVisibility(getDecodedVisibility(Record[7])); 3454 if (Record.size() > 8 && Record[8]) { 3455 if (Record[8] - 1 >= GCTable.size()) 3456 return error("Invalid ID"); 3457 Func->setGC(GCTable[Record[8] - 1]); 3458 } 3459 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 3460 if (Record.size() > 9) 3461 UnnamedAddr = getDecodedUnnamedAddrType(Record[9]); 3462 Func->setUnnamedAddr(UnnamedAddr); 3463 3464 FunctionOperandInfo OperandInfo = {Func, 0, 0, 0}; 3465 if (Record.size() > 10) 3466 OperandInfo.Prologue = Record[10]; 3467 3468 if (Record.size() > 11) 3469 Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11])); 3470 else 3471 upgradeDLLImportExportLinkage(Func, RawLinkage); 3472 3473 if (Record.size() > 12) { 3474 if (unsigned ComdatID = Record[12]) { 3475 if (ComdatID > ComdatList.size()) 3476 return error("Invalid function comdat ID"); 3477 Func->setComdat(ComdatList[ComdatID - 1]); 3478 } 3479 } else if (hasImplicitComdat(RawLinkage)) { 3480 ImplicitComdatObjects.insert(Func); 3481 } 3482 3483 if (Record.size() > 13) 3484 OperandInfo.Prefix = Record[13]; 3485 3486 if (Record.size() > 14) 3487 OperandInfo.PersonalityFn = Record[14]; 3488 3489 if (Record.size() > 15) { 3490 Func->setDSOLocal(getDecodedDSOLocal(Record[15])); 3491 } 3492 inferDSOLocal(Func); 3493 3494 // Record[16] is the address space number. 3495 3496 // Check whether we have enough values to read a partition name. Also make 3497 // sure Strtab has enough values. 3498 if (Record.size() > 18 && Strtab.data() && 3499 Record[17] + Record[18] <= Strtab.size()) { 3500 Func->setPartition(StringRef(Strtab.data() + Record[17], Record[18])); 3501 } 3502 3503 ValueList.push_back(Func); 3504 3505 if (OperandInfo.PersonalityFn || OperandInfo.Prefix || OperandInfo.Prologue) 3506 FunctionOperands.push_back(OperandInfo); 3507 3508 // If this is a function with a body, remember the prototype we are 3509 // creating now, so that we can match up the body with them later. 3510 if (!isProto) { 3511 Func->setIsMaterializable(true); 3512 FunctionsWithBodies.push_back(Func); 3513 DeferredFunctionInfo[Func] = 0; 3514 } 3515 return Error::success(); 3516 } 3517 3518 Error BitcodeReader::parseGlobalIndirectSymbolRecord( 3519 unsigned BitCode, ArrayRef<uint64_t> Record) { 3520 // v1 ALIAS_OLD: [alias type, aliasee val#, linkage] (name in VST) 3521 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, 3522 // dllstorageclass, threadlocal, unnamed_addr, 3523 // preemption specifier] (name in VST) 3524 // v1 IFUNC: [alias type, addrspace, aliasee val#, linkage, 3525 // visibility, dllstorageclass, threadlocal, unnamed_addr, 3526 // preemption specifier] (name in VST) 3527 // v2: [strtab_offset, strtab_size, v1] 3528 StringRef Name; 3529 std::tie(Name, Record) = readNameFromStrtab(Record); 3530 3531 bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD; 3532 if (Record.size() < (3 + (unsigned)NewRecord)) 3533 return error("Invalid record"); 3534 unsigned OpNum = 0; 3535 Type *Ty = getTypeByID(Record[OpNum++]); 3536 if (!Ty) 3537 return error("Invalid record"); 3538 3539 unsigned AddrSpace; 3540 if (!NewRecord) { 3541 auto *PTy = dyn_cast<PointerType>(Ty); 3542 if (!PTy) 3543 return error("Invalid type for value"); 3544 Ty = PTy->getPointerElementType(); 3545 AddrSpace = PTy->getAddressSpace(); 3546 } else { 3547 AddrSpace = Record[OpNum++]; 3548 } 3549 3550 auto Val = Record[OpNum++]; 3551 auto Linkage = Record[OpNum++]; 3552 GlobalValue *NewGA; 3553 if (BitCode == bitc::MODULE_CODE_ALIAS || 3554 BitCode == bitc::MODULE_CODE_ALIAS_OLD) 3555 NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name, 3556 TheModule); 3557 else 3558 NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name, 3559 nullptr, TheModule); 3560 3561 // Local linkage must have default visibility. 3562 // auto-upgrade `hidden` and `protected` for old bitcode. 3563 if (OpNum != Record.size()) { 3564 auto VisInd = OpNum++; 3565 if (!NewGA->hasLocalLinkage()) 3566 NewGA->setVisibility(getDecodedVisibility(Record[VisInd])); 3567 } 3568 if (BitCode == bitc::MODULE_CODE_ALIAS || 3569 BitCode == bitc::MODULE_CODE_ALIAS_OLD) { 3570 if (OpNum != Record.size()) 3571 NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++])); 3572 else 3573 upgradeDLLImportExportLinkage(NewGA, Linkage); 3574 if (OpNum != Record.size()) 3575 NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++])); 3576 if (OpNum != Record.size()) 3577 NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++])); 3578 } 3579 if (OpNum != Record.size()) 3580 NewGA->setDSOLocal(getDecodedDSOLocal(Record[OpNum++])); 3581 inferDSOLocal(NewGA); 3582 3583 // Check whether we have enough values to read a partition name. 3584 if (OpNum + 1 < Record.size()) { 3585 NewGA->setPartition( 3586 StringRef(Strtab.data() + Record[OpNum], Record[OpNum + 1])); 3587 OpNum += 2; 3588 } 3589 3590 ValueList.push_back(NewGA); 3591 IndirectSymbolInits.push_back(std::make_pair(NewGA, Val)); 3592 return Error::success(); 3593 } 3594 3595 Error BitcodeReader::parseModule(uint64_t ResumeBit, 3596 bool ShouldLazyLoadMetadata, 3597 DataLayoutCallbackTy DataLayoutCallback) { 3598 if (ResumeBit) { 3599 if (Error JumpFailed = Stream.JumpToBit(ResumeBit)) 3600 return JumpFailed; 3601 } else if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 3602 return Err; 3603 3604 SmallVector<uint64_t, 64> Record; 3605 3606 // Parts of bitcode parsing depend on the datalayout. Make sure we 3607 // finalize the datalayout before we run any of that code. 3608 bool ResolvedDataLayout = false; 3609 auto ResolveDataLayout = [&] { 3610 if (ResolvedDataLayout) 3611 return; 3612 3613 // datalayout and triple can't be parsed after this point. 3614 ResolvedDataLayout = true; 3615 3616 // Upgrade data layout string. 3617 std::string DL = llvm::UpgradeDataLayoutString( 3618 TheModule->getDataLayoutStr(), TheModule->getTargetTriple()); 3619 TheModule->setDataLayout(DL); 3620 3621 if (auto LayoutOverride = 3622 DataLayoutCallback(TheModule->getTargetTriple())) 3623 TheModule->setDataLayout(*LayoutOverride); 3624 }; 3625 3626 // Read all the records for this module. 3627 while (true) { 3628 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 3629 if (!MaybeEntry) 3630 return MaybeEntry.takeError(); 3631 llvm::BitstreamEntry Entry = MaybeEntry.get(); 3632 3633 switch (Entry.Kind) { 3634 case BitstreamEntry::Error: 3635 return error("Malformed block"); 3636 case BitstreamEntry::EndBlock: 3637 ResolveDataLayout(); 3638 return globalCleanup(); 3639 3640 case BitstreamEntry::SubBlock: 3641 switch (Entry.ID) { 3642 default: // Skip unknown content. 3643 if (Error Err = Stream.SkipBlock()) 3644 return Err; 3645 break; 3646 case bitc::BLOCKINFO_BLOCK_ID: 3647 if (Error Err = readBlockInfo()) 3648 return Err; 3649 break; 3650 case bitc::PARAMATTR_BLOCK_ID: 3651 if (Error Err = parseAttributeBlock()) 3652 return Err; 3653 break; 3654 case bitc::PARAMATTR_GROUP_BLOCK_ID: 3655 if (Error Err = parseAttributeGroupBlock()) 3656 return Err; 3657 break; 3658 case bitc::TYPE_BLOCK_ID_NEW: 3659 if (Error Err = parseTypeTable()) 3660 return Err; 3661 break; 3662 case bitc::VALUE_SYMTAB_BLOCK_ID: 3663 if (!SeenValueSymbolTable) { 3664 // Either this is an old form VST without function index and an 3665 // associated VST forward declaration record (which would have caused 3666 // the VST to be jumped to and parsed before it was encountered 3667 // normally in the stream), or there were no function blocks to 3668 // trigger an earlier parsing of the VST. 3669 assert(VSTOffset == 0 || FunctionsWithBodies.empty()); 3670 if (Error Err = parseValueSymbolTable()) 3671 return Err; 3672 SeenValueSymbolTable = true; 3673 } else { 3674 // We must have had a VST forward declaration record, which caused 3675 // the parser to jump to and parse the VST earlier. 3676 assert(VSTOffset > 0); 3677 if (Error Err = Stream.SkipBlock()) 3678 return Err; 3679 } 3680 break; 3681 case bitc::CONSTANTS_BLOCK_ID: 3682 if (Error Err = parseConstants()) 3683 return Err; 3684 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 3685 return Err; 3686 break; 3687 case bitc::METADATA_BLOCK_ID: 3688 if (ShouldLazyLoadMetadata) { 3689 if (Error Err = rememberAndSkipMetadata()) 3690 return Err; 3691 break; 3692 } 3693 assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata"); 3694 if (Error Err = MDLoader->parseModuleMetadata()) 3695 return Err; 3696 break; 3697 case bitc::METADATA_KIND_BLOCK_ID: 3698 if (Error Err = MDLoader->parseMetadataKinds()) 3699 return Err; 3700 break; 3701 case bitc::FUNCTION_BLOCK_ID: 3702 ResolveDataLayout(); 3703 3704 // If this is the first function body we've seen, reverse the 3705 // FunctionsWithBodies list. 3706 if (!SeenFirstFunctionBody) { 3707 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 3708 if (Error Err = globalCleanup()) 3709 return Err; 3710 SeenFirstFunctionBody = true; 3711 } 3712 3713 if (VSTOffset > 0) { 3714 // If we have a VST forward declaration record, make sure we 3715 // parse the VST now if we haven't already. It is needed to 3716 // set up the DeferredFunctionInfo vector for lazy reading. 3717 if (!SeenValueSymbolTable) { 3718 if (Error Err = BitcodeReader::parseValueSymbolTable(VSTOffset)) 3719 return Err; 3720 SeenValueSymbolTable = true; 3721 // Fall through so that we record the NextUnreadBit below. 3722 // This is necessary in case we have an anonymous function that 3723 // is later materialized. Since it will not have a VST entry we 3724 // need to fall back to the lazy parse to find its offset. 3725 } else { 3726 // If we have a VST forward declaration record, but have already 3727 // parsed the VST (just above, when the first function body was 3728 // encountered here), then we are resuming the parse after 3729 // materializing functions. The ResumeBit points to the 3730 // start of the last function block recorded in the 3731 // DeferredFunctionInfo map. Skip it. 3732 if (Error Err = Stream.SkipBlock()) 3733 return Err; 3734 continue; 3735 } 3736 } 3737 3738 // Support older bitcode files that did not have the function 3739 // index in the VST, nor a VST forward declaration record, as 3740 // well as anonymous functions that do not have VST entries. 3741 // Build the DeferredFunctionInfo vector on the fly. 3742 if (Error Err = rememberAndSkipFunctionBody()) 3743 return Err; 3744 3745 // Suspend parsing when we reach the function bodies. Subsequent 3746 // materialization calls will resume it when necessary. If the bitcode 3747 // file is old, the symbol table will be at the end instead and will not 3748 // have been seen yet. In this case, just finish the parse now. 3749 if (SeenValueSymbolTable) { 3750 NextUnreadBit = Stream.GetCurrentBitNo(); 3751 // After the VST has been parsed, we need to make sure intrinsic name 3752 // are auto-upgraded. 3753 return globalCleanup(); 3754 } 3755 break; 3756 case bitc::USELIST_BLOCK_ID: 3757 if (Error Err = parseUseLists()) 3758 return Err; 3759 break; 3760 case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID: 3761 if (Error Err = parseOperandBundleTags()) 3762 return Err; 3763 break; 3764 case bitc::SYNC_SCOPE_NAMES_BLOCK_ID: 3765 if (Error Err = parseSyncScopeNames()) 3766 return Err; 3767 break; 3768 } 3769 continue; 3770 3771 case BitstreamEntry::Record: 3772 // The interesting case. 3773 break; 3774 } 3775 3776 // Read a record. 3777 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 3778 if (!MaybeBitCode) 3779 return MaybeBitCode.takeError(); 3780 switch (unsigned BitCode = MaybeBitCode.get()) { 3781 default: break; // Default behavior, ignore unknown content. 3782 case bitc::MODULE_CODE_VERSION: { 3783 Expected<unsigned> VersionOrErr = parseVersionRecord(Record); 3784 if (!VersionOrErr) 3785 return VersionOrErr.takeError(); 3786 UseRelativeIDs = *VersionOrErr >= 1; 3787 break; 3788 } 3789 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 3790 if (ResolvedDataLayout) 3791 return error("target triple too late in module"); 3792 std::string S; 3793 if (convertToString(Record, 0, S)) 3794 return error("Invalid record"); 3795 TheModule->setTargetTriple(S); 3796 break; 3797 } 3798 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 3799 if (ResolvedDataLayout) 3800 return error("datalayout too late in module"); 3801 std::string S; 3802 if (convertToString(Record, 0, S)) 3803 return error("Invalid record"); 3804 Expected<DataLayout> MaybeDL = DataLayout::parse(S); 3805 if (!MaybeDL) 3806 return MaybeDL.takeError(); 3807 TheModule->setDataLayout(MaybeDL.get()); 3808 break; 3809 } 3810 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 3811 std::string S; 3812 if (convertToString(Record, 0, S)) 3813 return error("Invalid record"); 3814 TheModule->setModuleInlineAsm(S); 3815 break; 3816 } 3817 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 3818 // Deprecated, but still needed to read old bitcode files. 3819 std::string S; 3820 if (convertToString(Record, 0, S)) 3821 return error("Invalid record"); 3822 // Ignore value. 3823 break; 3824 } 3825 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 3826 std::string S; 3827 if (convertToString(Record, 0, S)) 3828 return error("Invalid record"); 3829 SectionTable.push_back(S); 3830 break; 3831 } 3832 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 3833 std::string S; 3834 if (convertToString(Record, 0, S)) 3835 return error("Invalid record"); 3836 GCTable.push_back(S); 3837 break; 3838 } 3839 case bitc::MODULE_CODE_COMDAT: 3840 if (Error Err = parseComdatRecord(Record)) 3841 return Err; 3842 break; 3843 // FIXME: BitcodeReader should handle {GLOBALVAR, FUNCTION, ALIAS, IFUNC} 3844 // written by ThinLinkBitcodeWriter. See 3845 // `ThinLinkBitcodeWriter::writeSimplifiedModuleInfo` for the format of each 3846 // record 3847 // (https://github.com/llvm/llvm-project/blob/b6a93967d9c11e79802b5e75cec1584d6c8aa472/llvm/lib/Bitcode/Writer/BitcodeWriter.cpp#L4714) 3848 case bitc::MODULE_CODE_GLOBALVAR: 3849 if (Error Err = parseGlobalVarRecord(Record)) 3850 return Err; 3851 break; 3852 case bitc::MODULE_CODE_FUNCTION: 3853 ResolveDataLayout(); 3854 if (Error Err = parseFunctionRecord(Record)) 3855 return Err; 3856 break; 3857 case bitc::MODULE_CODE_IFUNC: 3858 case bitc::MODULE_CODE_ALIAS: 3859 case bitc::MODULE_CODE_ALIAS_OLD: 3860 if (Error Err = parseGlobalIndirectSymbolRecord(BitCode, Record)) 3861 return Err; 3862 break; 3863 /// MODULE_CODE_VSTOFFSET: [offset] 3864 case bitc::MODULE_CODE_VSTOFFSET: 3865 if (Record.empty()) 3866 return error("Invalid record"); 3867 // Note that we subtract 1 here because the offset is relative to one word 3868 // before the start of the identification or module block, which was 3869 // historically always the start of the regular bitcode header. 3870 VSTOffset = Record[0] - 1; 3871 break; 3872 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 3873 case bitc::MODULE_CODE_SOURCE_FILENAME: 3874 SmallString<128> ValueName; 3875 if (convertToString(Record, 0, ValueName)) 3876 return error("Invalid record"); 3877 TheModule->setSourceFileName(ValueName); 3878 break; 3879 } 3880 Record.clear(); 3881 } 3882 } 3883 3884 Error BitcodeReader::parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata, 3885 bool IsImporting, 3886 DataLayoutCallbackTy DataLayoutCallback) { 3887 TheModule = M; 3888 MDLoader = MetadataLoader(Stream, *M, ValueList, IsImporting, 3889 [&](unsigned ID) { return getTypeByID(ID); }); 3890 return parseModule(0, ShouldLazyLoadMetadata, DataLayoutCallback); 3891 } 3892 3893 Error BitcodeReader::typeCheckLoadStoreInst(Type *ValType, Type *PtrType) { 3894 if (!isa<PointerType>(PtrType)) 3895 return error("Load/Store operand is not a pointer type"); 3896 3897 if (!cast<PointerType>(PtrType)->isOpaqueOrPointeeTypeMatches(ValType)) 3898 return error("Explicit load/store type does not match pointee " 3899 "type of pointer operand"); 3900 if (!PointerType::isLoadableOrStorableType(ValType)) 3901 return error("Cannot load/store from pointer"); 3902 return Error::success(); 3903 } 3904 3905 void BitcodeReader::propagateAttributeTypes(CallBase *CB, 3906 ArrayRef<Type *> ArgsTys) { 3907 for (unsigned i = 0; i != CB->arg_size(); ++i) { 3908 for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet, 3909 Attribute::InAlloca}) { 3910 if (!CB->paramHasAttr(i, Kind) || 3911 CB->getParamAttr(i, Kind).getValueAsType()) 3912 continue; 3913 3914 CB->removeParamAttr(i, Kind); 3915 3916 Type *PtrEltTy = ArgsTys[i]->getPointerElementType(); 3917 Attribute NewAttr; 3918 switch (Kind) { 3919 case Attribute::ByVal: 3920 NewAttr = Attribute::getWithByValType(Context, PtrEltTy); 3921 break; 3922 case Attribute::StructRet: 3923 NewAttr = Attribute::getWithStructRetType(Context, PtrEltTy); 3924 break; 3925 case Attribute::InAlloca: 3926 NewAttr = Attribute::getWithInAllocaType(Context, PtrEltTy); 3927 break; 3928 default: 3929 llvm_unreachable("not an upgraded type attribute"); 3930 } 3931 3932 CB->addParamAttr(i, NewAttr); 3933 } 3934 } 3935 3936 if (CB->isInlineAsm()) { 3937 const InlineAsm *IA = cast<InlineAsm>(CB->getCalledOperand()); 3938 unsigned ArgNo = 0; 3939 for (const InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) { 3940 if (!CI.hasArg()) 3941 continue; 3942 3943 if (CI.isIndirect && !CB->getAttributes().getParamElementType(ArgNo)) { 3944 Type *ElemTy = ArgsTys[ArgNo]->getPointerElementType(); 3945 CB->addParamAttr( 3946 ArgNo, Attribute::get(Context, Attribute::ElementType, ElemTy)); 3947 } 3948 3949 ArgNo++; 3950 } 3951 } 3952 3953 switch (CB->getIntrinsicID()) { 3954 case Intrinsic::preserve_array_access_index: 3955 case Intrinsic::preserve_struct_access_index: 3956 if (!CB->getAttributes().getParamElementType(0)) { 3957 Type *ElTy = ArgsTys[0]->getPointerElementType(); 3958 Attribute NewAttr = Attribute::get(Context, Attribute::ElementType, ElTy); 3959 CB->addParamAttr(0, NewAttr); 3960 } 3961 break; 3962 default: 3963 break; 3964 } 3965 } 3966 3967 /// Lazily parse the specified function body block. 3968 Error BitcodeReader::parseFunctionBody(Function *F) { 3969 if (Error Err = Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 3970 return Err; 3971 3972 // Unexpected unresolved metadata when parsing function. 3973 if (MDLoader->hasFwdRefs()) 3974 return error("Invalid function metadata: incoming forward references"); 3975 3976 InstructionList.clear(); 3977 unsigned ModuleValueListSize = ValueList.size(); 3978 unsigned ModuleMDLoaderSize = MDLoader->size(); 3979 3980 // Add all the function arguments to the value table. 3981 #ifndef NDEBUG 3982 unsigned ArgNo = 0; 3983 FunctionType *FTy = FunctionTypes[F]; 3984 #endif 3985 for (Argument &I : F->args()) { 3986 assert(I.getType() == FTy->getParamType(ArgNo++) && 3987 "Incorrect fully specified type for Function Argument"); 3988 ValueList.push_back(&I); 3989 } 3990 unsigned NextValueNo = ValueList.size(); 3991 BasicBlock *CurBB = nullptr; 3992 unsigned CurBBNo = 0; 3993 3994 DebugLoc LastLoc; 3995 auto getLastInstruction = [&]() -> Instruction * { 3996 if (CurBB && !CurBB->empty()) 3997 return &CurBB->back(); 3998 else if (CurBBNo && FunctionBBs[CurBBNo - 1] && 3999 !FunctionBBs[CurBBNo - 1]->empty()) 4000 return &FunctionBBs[CurBBNo - 1]->back(); 4001 return nullptr; 4002 }; 4003 4004 std::vector<OperandBundleDef> OperandBundles; 4005 4006 // Read all the records. 4007 SmallVector<uint64_t, 64> Record; 4008 4009 while (true) { 4010 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 4011 if (!MaybeEntry) 4012 return MaybeEntry.takeError(); 4013 llvm::BitstreamEntry Entry = MaybeEntry.get(); 4014 4015 switch (Entry.Kind) { 4016 case BitstreamEntry::Error: 4017 return error("Malformed block"); 4018 case BitstreamEntry::EndBlock: 4019 goto OutOfRecordLoop; 4020 4021 case BitstreamEntry::SubBlock: 4022 switch (Entry.ID) { 4023 default: // Skip unknown content. 4024 if (Error Err = Stream.SkipBlock()) 4025 return Err; 4026 break; 4027 case bitc::CONSTANTS_BLOCK_ID: 4028 if (Error Err = parseConstants()) 4029 return Err; 4030 NextValueNo = ValueList.size(); 4031 break; 4032 case bitc::VALUE_SYMTAB_BLOCK_ID: 4033 if (Error Err = parseValueSymbolTable()) 4034 return Err; 4035 break; 4036 case bitc::METADATA_ATTACHMENT_ID: 4037 if (Error Err = MDLoader->parseMetadataAttachment(*F, InstructionList)) 4038 return Err; 4039 break; 4040 case bitc::METADATA_BLOCK_ID: 4041 assert(DeferredMetadataInfo.empty() && 4042 "Must read all module-level metadata before function-level"); 4043 if (Error Err = MDLoader->parseFunctionMetadata()) 4044 return Err; 4045 break; 4046 case bitc::USELIST_BLOCK_ID: 4047 if (Error Err = parseUseLists()) 4048 return Err; 4049 break; 4050 } 4051 continue; 4052 4053 case BitstreamEntry::Record: 4054 // The interesting case. 4055 break; 4056 } 4057 4058 // Read a record. 4059 Record.clear(); 4060 Instruction *I = nullptr; 4061 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 4062 if (!MaybeBitCode) 4063 return MaybeBitCode.takeError(); 4064 switch (unsigned BitCode = MaybeBitCode.get()) { 4065 default: // Default behavior: reject 4066 return error("Invalid value"); 4067 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks] 4068 if (Record.empty() || Record[0] == 0) 4069 return error("Invalid record"); 4070 // Create all the basic blocks for the function. 4071 FunctionBBs.resize(Record[0]); 4072 4073 // See if anything took the address of blocks in this function. 4074 auto BBFRI = BasicBlockFwdRefs.find(F); 4075 if (BBFRI == BasicBlockFwdRefs.end()) { 4076 for (BasicBlock *&BB : FunctionBBs) 4077 BB = BasicBlock::Create(Context, "", F); 4078 } else { 4079 auto &BBRefs = BBFRI->second; 4080 // Check for invalid basic block references. 4081 if (BBRefs.size() > FunctionBBs.size()) 4082 return error("Invalid ID"); 4083 assert(!BBRefs.empty() && "Unexpected empty array"); 4084 assert(!BBRefs.front() && "Invalid reference to entry block"); 4085 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E; 4086 ++I) 4087 if (I < RE && BBRefs[I]) { 4088 BBRefs[I]->insertInto(F); 4089 FunctionBBs[I] = BBRefs[I]; 4090 } else { 4091 FunctionBBs[I] = BasicBlock::Create(Context, "", F); 4092 } 4093 4094 // Erase from the table. 4095 BasicBlockFwdRefs.erase(BBFRI); 4096 } 4097 4098 CurBB = FunctionBBs[0]; 4099 continue; 4100 } 4101 4102 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 4103 // This record indicates that the last instruction is at the same 4104 // location as the previous instruction with a location. 4105 I = getLastInstruction(); 4106 4107 if (!I) 4108 return error("Invalid record"); 4109 I->setDebugLoc(LastLoc); 4110 I = nullptr; 4111 continue; 4112 4113 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 4114 I = getLastInstruction(); 4115 if (!I || Record.size() < 4) 4116 return error("Invalid record"); 4117 4118 unsigned Line = Record[0], Col = Record[1]; 4119 unsigned ScopeID = Record[2], IAID = Record[3]; 4120 bool isImplicitCode = Record.size() == 5 && Record[4]; 4121 4122 MDNode *Scope = nullptr, *IA = nullptr; 4123 if (ScopeID) { 4124 Scope = dyn_cast_or_null<MDNode>( 4125 MDLoader->getMetadataFwdRefOrLoad(ScopeID - 1)); 4126 if (!Scope) 4127 return error("Invalid record"); 4128 } 4129 if (IAID) { 4130 IA = dyn_cast_or_null<MDNode>( 4131 MDLoader->getMetadataFwdRefOrLoad(IAID - 1)); 4132 if (!IA) 4133 return error("Invalid record"); 4134 } 4135 LastLoc = DILocation::get(Scope->getContext(), Line, Col, Scope, IA, 4136 isImplicitCode); 4137 I->setDebugLoc(LastLoc); 4138 I = nullptr; 4139 continue; 4140 } 4141 case bitc::FUNC_CODE_INST_UNOP: { // UNOP: [opval, ty, opcode] 4142 unsigned OpNum = 0; 4143 Value *LHS; 4144 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 4145 OpNum+1 > Record.size()) 4146 return error("Invalid record"); 4147 4148 int Opc = getDecodedUnaryOpcode(Record[OpNum++], LHS->getType()); 4149 if (Opc == -1) 4150 return error("Invalid record"); 4151 I = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS); 4152 InstructionList.push_back(I); 4153 if (OpNum < Record.size()) { 4154 if (isa<FPMathOperator>(I)) { 4155 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 4156 if (FMF.any()) 4157 I->setFastMathFlags(FMF); 4158 } 4159 } 4160 break; 4161 } 4162 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 4163 unsigned OpNum = 0; 4164 Value *LHS, *RHS; 4165 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 4166 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 4167 OpNum+1 > Record.size()) 4168 return error("Invalid record"); 4169 4170 int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 4171 if (Opc == -1) 4172 return error("Invalid record"); 4173 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 4174 InstructionList.push_back(I); 4175 if (OpNum < Record.size()) { 4176 if (Opc == Instruction::Add || 4177 Opc == Instruction::Sub || 4178 Opc == Instruction::Mul || 4179 Opc == Instruction::Shl) { 4180 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 4181 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 4182 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 4183 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 4184 } else if (Opc == Instruction::SDiv || 4185 Opc == Instruction::UDiv || 4186 Opc == Instruction::LShr || 4187 Opc == Instruction::AShr) { 4188 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 4189 cast<BinaryOperator>(I)->setIsExact(true); 4190 } else if (isa<FPMathOperator>(I)) { 4191 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 4192 if (FMF.any()) 4193 I->setFastMathFlags(FMF); 4194 } 4195 4196 } 4197 break; 4198 } 4199 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 4200 unsigned OpNum = 0; 4201 Value *Op; 4202 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4203 OpNum+2 != Record.size()) 4204 return error("Invalid record"); 4205 4206 Type *ResTy = getTypeByID(Record[OpNum]); 4207 int Opc = getDecodedCastOpcode(Record[OpNum + 1]); 4208 if (Opc == -1 || !ResTy) 4209 return error("Invalid record"); 4210 Instruction *Temp = nullptr; 4211 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) { 4212 if (Temp) { 4213 InstructionList.push_back(Temp); 4214 assert(CurBB && "No current BB?"); 4215 CurBB->getInstList().push_back(Temp); 4216 } 4217 } else { 4218 auto CastOp = (Instruction::CastOps)Opc; 4219 if (!CastInst::castIsValid(CastOp, Op, ResTy)) 4220 return error("Invalid cast"); 4221 I = CastInst::Create(CastOp, Op, ResTy); 4222 } 4223 InstructionList.push_back(I); 4224 break; 4225 } 4226 case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD: 4227 case bitc::FUNC_CODE_INST_GEP_OLD: 4228 case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands] 4229 unsigned OpNum = 0; 4230 4231 Type *Ty; 4232 bool InBounds; 4233 4234 if (BitCode == bitc::FUNC_CODE_INST_GEP) { 4235 InBounds = Record[OpNum++]; 4236 Ty = getTypeByID(Record[OpNum++]); 4237 } else { 4238 InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD; 4239 Ty = nullptr; 4240 } 4241 4242 Value *BasePtr; 4243 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr)) 4244 return error("Invalid record"); 4245 4246 if (!Ty) { 4247 Ty = BasePtr->getType()->getScalarType()->getPointerElementType(); 4248 } else if (!cast<PointerType>(BasePtr->getType()->getScalarType()) 4249 ->isOpaqueOrPointeeTypeMatches(Ty)) { 4250 return error( 4251 "Explicit gep type does not match pointee type of pointer operand"); 4252 } 4253 4254 SmallVector<Value*, 16> GEPIdx; 4255 while (OpNum != Record.size()) { 4256 Value *Op; 4257 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4258 return error("Invalid record"); 4259 GEPIdx.push_back(Op); 4260 } 4261 4262 I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx); 4263 4264 InstructionList.push_back(I); 4265 if (InBounds) 4266 cast<GetElementPtrInst>(I)->setIsInBounds(true); 4267 break; 4268 } 4269 4270 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 4271 // EXTRACTVAL: [opty, opval, n x indices] 4272 unsigned OpNum = 0; 4273 Value *Agg; 4274 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 4275 return error("Invalid record"); 4276 Type *Ty = Agg->getType(); 4277 4278 unsigned RecSize = Record.size(); 4279 if (OpNum == RecSize) 4280 return error("EXTRACTVAL: Invalid instruction with 0 indices"); 4281 4282 SmallVector<unsigned, 4> EXTRACTVALIdx; 4283 for (; OpNum != RecSize; ++OpNum) { 4284 bool IsArray = Ty->isArrayTy(); 4285 bool IsStruct = Ty->isStructTy(); 4286 uint64_t Index = Record[OpNum]; 4287 4288 if (!IsStruct && !IsArray) 4289 return error("EXTRACTVAL: Invalid type"); 4290 if ((unsigned)Index != Index) 4291 return error("Invalid value"); 4292 if (IsStruct && Index >= Ty->getStructNumElements()) 4293 return error("EXTRACTVAL: Invalid struct index"); 4294 if (IsArray && Index >= Ty->getArrayNumElements()) 4295 return error("EXTRACTVAL: Invalid array index"); 4296 EXTRACTVALIdx.push_back((unsigned)Index); 4297 4298 if (IsStruct) 4299 Ty = Ty->getStructElementType(Index); 4300 else 4301 Ty = Ty->getArrayElementType(); 4302 } 4303 4304 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 4305 InstructionList.push_back(I); 4306 break; 4307 } 4308 4309 case bitc::FUNC_CODE_INST_INSERTVAL: { 4310 // INSERTVAL: [opty, opval, opty, opval, n x indices] 4311 unsigned OpNum = 0; 4312 Value *Agg; 4313 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 4314 return error("Invalid record"); 4315 Value *Val; 4316 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 4317 return error("Invalid record"); 4318 4319 unsigned RecSize = Record.size(); 4320 if (OpNum == RecSize) 4321 return error("INSERTVAL: Invalid instruction with 0 indices"); 4322 4323 SmallVector<unsigned, 4> INSERTVALIdx; 4324 Type *CurTy = Agg->getType(); 4325 for (; OpNum != RecSize; ++OpNum) { 4326 bool IsArray = CurTy->isArrayTy(); 4327 bool IsStruct = CurTy->isStructTy(); 4328 uint64_t Index = Record[OpNum]; 4329 4330 if (!IsStruct && !IsArray) 4331 return error("INSERTVAL: Invalid type"); 4332 if ((unsigned)Index != Index) 4333 return error("Invalid value"); 4334 if (IsStruct && Index >= CurTy->getStructNumElements()) 4335 return error("INSERTVAL: Invalid struct index"); 4336 if (IsArray && Index >= CurTy->getArrayNumElements()) 4337 return error("INSERTVAL: Invalid array index"); 4338 4339 INSERTVALIdx.push_back((unsigned)Index); 4340 if (IsStruct) 4341 CurTy = CurTy->getStructElementType(Index); 4342 else 4343 CurTy = CurTy->getArrayElementType(); 4344 } 4345 4346 if (CurTy != Val->getType()) 4347 return error("Inserted value type doesn't match aggregate type"); 4348 4349 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 4350 InstructionList.push_back(I); 4351 break; 4352 } 4353 4354 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 4355 // obsolete form of select 4356 // handles select i1 ... in old bitcode 4357 unsigned OpNum = 0; 4358 Value *TrueVal, *FalseVal, *Cond; 4359 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 4360 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 4361 popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond)) 4362 return error("Invalid record"); 4363 4364 I = SelectInst::Create(Cond, TrueVal, FalseVal); 4365 InstructionList.push_back(I); 4366 break; 4367 } 4368 4369 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 4370 // new form of select 4371 // handles select i1 or select [N x i1] 4372 unsigned OpNum = 0; 4373 Value *TrueVal, *FalseVal, *Cond; 4374 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 4375 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 4376 getValueTypePair(Record, OpNum, NextValueNo, Cond)) 4377 return error("Invalid record"); 4378 4379 // select condition can be either i1 or [N x i1] 4380 if (VectorType* vector_type = 4381 dyn_cast<VectorType>(Cond->getType())) { 4382 // expect <n x i1> 4383 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 4384 return error("Invalid type for value"); 4385 } else { 4386 // expect i1 4387 if (Cond->getType() != Type::getInt1Ty(Context)) 4388 return error("Invalid type for value"); 4389 } 4390 4391 I = SelectInst::Create(Cond, TrueVal, FalseVal); 4392 InstructionList.push_back(I); 4393 if (OpNum < Record.size() && isa<FPMathOperator>(I)) { 4394 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 4395 if (FMF.any()) 4396 I->setFastMathFlags(FMF); 4397 } 4398 break; 4399 } 4400 4401 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 4402 unsigned OpNum = 0; 4403 Value *Vec, *Idx; 4404 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 4405 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 4406 return error("Invalid record"); 4407 if (!Vec->getType()->isVectorTy()) 4408 return error("Invalid type for value"); 4409 I = ExtractElementInst::Create(Vec, Idx); 4410 InstructionList.push_back(I); 4411 break; 4412 } 4413 4414 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 4415 unsigned OpNum = 0; 4416 Value *Vec, *Elt, *Idx; 4417 if (getValueTypePair(Record, OpNum, NextValueNo, Vec)) 4418 return error("Invalid record"); 4419 if (!Vec->getType()->isVectorTy()) 4420 return error("Invalid type for value"); 4421 if (popValue(Record, OpNum, NextValueNo, 4422 cast<VectorType>(Vec->getType())->getElementType(), Elt) || 4423 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 4424 return error("Invalid record"); 4425 I = InsertElementInst::Create(Vec, Elt, Idx); 4426 InstructionList.push_back(I); 4427 break; 4428 } 4429 4430 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 4431 unsigned OpNum = 0; 4432 Value *Vec1, *Vec2, *Mask; 4433 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) || 4434 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2)) 4435 return error("Invalid record"); 4436 4437 if (getValueTypePair(Record, OpNum, NextValueNo, Mask)) 4438 return error("Invalid record"); 4439 if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy()) 4440 return error("Invalid type for value"); 4441 4442 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 4443 InstructionList.push_back(I); 4444 break; 4445 } 4446 4447 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 4448 // Old form of ICmp/FCmp returning bool 4449 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 4450 // both legal on vectors but had different behaviour. 4451 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 4452 // FCmp/ICmp returning bool or vector of bool 4453 4454 unsigned OpNum = 0; 4455 Value *LHS, *RHS; 4456 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 4457 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS)) 4458 return error("Invalid record"); 4459 4460 if (OpNum >= Record.size()) 4461 return error( 4462 "Invalid record: operand number exceeded available operands"); 4463 4464 unsigned PredVal = Record[OpNum]; 4465 bool IsFP = LHS->getType()->isFPOrFPVectorTy(); 4466 FastMathFlags FMF; 4467 if (IsFP && Record.size() > OpNum+1) 4468 FMF = getDecodedFastMathFlags(Record[++OpNum]); 4469 4470 if (OpNum+1 != Record.size()) 4471 return error("Invalid record"); 4472 4473 if (LHS->getType()->isFPOrFPVectorTy()) 4474 I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS); 4475 else 4476 I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS); 4477 4478 if (FMF.any()) 4479 I->setFastMathFlags(FMF); 4480 InstructionList.push_back(I); 4481 break; 4482 } 4483 4484 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 4485 { 4486 unsigned Size = Record.size(); 4487 if (Size == 0) { 4488 I = ReturnInst::Create(Context); 4489 InstructionList.push_back(I); 4490 break; 4491 } 4492 4493 unsigned OpNum = 0; 4494 Value *Op = nullptr; 4495 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4496 return error("Invalid record"); 4497 if (OpNum != Record.size()) 4498 return error("Invalid record"); 4499 4500 I = ReturnInst::Create(Context, Op); 4501 InstructionList.push_back(I); 4502 break; 4503 } 4504 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 4505 if (Record.size() != 1 && Record.size() != 3) 4506 return error("Invalid record"); 4507 BasicBlock *TrueDest = getBasicBlock(Record[0]); 4508 if (!TrueDest) 4509 return error("Invalid record"); 4510 4511 if (Record.size() == 1) { 4512 I = BranchInst::Create(TrueDest); 4513 InstructionList.push_back(I); 4514 } 4515 else { 4516 BasicBlock *FalseDest = getBasicBlock(Record[1]); 4517 Value *Cond = getValue(Record, 2, NextValueNo, 4518 Type::getInt1Ty(Context)); 4519 if (!FalseDest || !Cond) 4520 return error("Invalid record"); 4521 I = BranchInst::Create(TrueDest, FalseDest, Cond); 4522 InstructionList.push_back(I); 4523 } 4524 break; 4525 } 4526 case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#] 4527 if (Record.size() != 1 && Record.size() != 2) 4528 return error("Invalid record"); 4529 unsigned Idx = 0; 4530 Value *CleanupPad = 4531 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4532 if (!CleanupPad) 4533 return error("Invalid record"); 4534 BasicBlock *UnwindDest = nullptr; 4535 if (Record.size() == 2) { 4536 UnwindDest = getBasicBlock(Record[Idx++]); 4537 if (!UnwindDest) 4538 return error("Invalid record"); 4539 } 4540 4541 I = CleanupReturnInst::Create(CleanupPad, UnwindDest); 4542 InstructionList.push_back(I); 4543 break; 4544 } 4545 case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#] 4546 if (Record.size() != 2) 4547 return error("Invalid record"); 4548 unsigned Idx = 0; 4549 Value *CatchPad = 4550 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4551 if (!CatchPad) 4552 return error("Invalid record"); 4553 BasicBlock *BB = getBasicBlock(Record[Idx++]); 4554 if (!BB) 4555 return error("Invalid record"); 4556 4557 I = CatchReturnInst::Create(CatchPad, BB); 4558 InstructionList.push_back(I); 4559 break; 4560 } 4561 case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?] 4562 // We must have, at minimum, the outer scope and the number of arguments. 4563 if (Record.size() < 2) 4564 return error("Invalid record"); 4565 4566 unsigned Idx = 0; 4567 4568 Value *ParentPad = 4569 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4570 4571 unsigned NumHandlers = Record[Idx++]; 4572 4573 SmallVector<BasicBlock *, 2> Handlers; 4574 for (unsigned Op = 0; Op != NumHandlers; ++Op) { 4575 BasicBlock *BB = getBasicBlock(Record[Idx++]); 4576 if (!BB) 4577 return error("Invalid record"); 4578 Handlers.push_back(BB); 4579 } 4580 4581 BasicBlock *UnwindDest = nullptr; 4582 if (Idx + 1 == Record.size()) { 4583 UnwindDest = getBasicBlock(Record[Idx++]); 4584 if (!UnwindDest) 4585 return error("Invalid record"); 4586 } 4587 4588 if (Record.size() != Idx) 4589 return error("Invalid record"); 4590 4591 auto *CatchSwitch = 4592 CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers); 4593 for (BasicBlock *Handler : Handlers) 4594 CatchSwitch->addHandler(Handler); 4595 I = CatchSwitch; 4596 InstructionList.push_back(I); 4597 break; 4598 } 4599 case bitc::FUNC_CODE_INST_CATCHPAD: 4600 case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*] 4601 // We must have, at minimum, the outer scope and the number of arguments. 4602 if (Record.size() < 2) 4603 return error("Invalid record"); 4604 4605 unsigned Idx = 0; 4606 4607 Value *ParentPad = 4608 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4609 4610 unsigned NumArgOperands = Record[Idx++]; 4611 4612 SmallVector<Value *, 2> Args; 4613 for (unsigned Op = 0; Op != NumArgOperands; ++Op) { 4614 Value *Val; 4615 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 4616 return error("Invalid record"); 4617 Args.push_back(Val); 4618 } 4619 4620 if (Record.size() != Idx) 4621 return error("Invalid record"); 4622 4623 if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD) 4624 I = CleanupPadInst::Create(ParentPad, Args); 4625 else 4626 I = CatchPadInst::Create(ParentPad, Args); 4627 InstructionList.push_back(I); 4628 break; 4629 } 4630 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 4631 // Check magic 4632 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { 4633 // "New" SwitchInst format with case ranges. The changes to write this 4634 // format were reverted but we still recognize bitcode that uses it. 4635 // Hopefully someday we will have support for case ranges and can use 4636 // this format again. 4637 4638 Type *OpTy = getTypeByID(Record[1]); 4639 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); 4640 4641 Value *Cond = getValue(Record, 2, NextValueNo, OpTy); 4642 BasicBlock *Default = getBasicBlock(Record[3]); 4643 if (!OpTy || !Cond || !Default) 4644 return error("Invalid record"); 4645 4646 unsigned NumCases = Record[4]; 4647 4648 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 4649 InstructionList.push_back(SI); 4650 4651 unsigned CurIdx = 5; 4652 for (unsigned i = 0; i != NumCases; ++i) { 4653 SmallVector<ConstantInt*, 1> CaseVals; 4654 unsigned NumItems = Record[CurIdx++]; 4655 for (unsigned ci = 0; ci != NumItems; ++ci) { 4656 bool isSingleNumber = Record[CurIdx++]; 4657 4658 APInt Low; 4659 unsigned ActiveWords = 1; 4660 if (ValueBitWidth > 64) 4661 ActiveWords = Record[CurIdx++]; 4662 Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 4663 ValueBitWidth); 4664 CurIdx += ActiveWords; 4665 4666 if (!isSingleNumber) { 4667 ActiveWords = 1; 4668 if (ValueBitWidth > 64) 4669 ActiveWords = Record[CurIdx++]; 4670 APInt High = readWideAPInt( 4671 makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth); 4672 CurIdx += ActiveWords; 4673 4674 // FIXME: It is not clear whether values in the range should be 4675 // compared as signed or unsigned values. The partially 4676 // implemented changes that used this format in the past used 4677 // unsigned comparisons. 4678 for ( ; Low.ule(High); ++Low) 4679 CaseVals.push_back(ConstantInt::get(Context, Low)); 4680 } else 4681 CaseVals.push_back(ConstantInt::get(Context, Low)); 4682 } 4683 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); 4684 for (ConstantInt *Cst : CaseVals) 4685 SI->addCase(Cst, DestBB); 4686 } 4687 I = SI; 4688 break; 4689 } 4690 4691 // Old SwitchInst format without case ranges. 4692 4693 if (Record.size() < 3 || (Record.size() & 1) == 0) 4694 return error("Invalid record"); 4695 Type *OpTy = getTypeByID(Record[0]); 4696 Value *Cond = getValue(Record, 1, NextValueNo, OpTy); 4697 BasicBlock *Default = getBasicBlock(Record[2]); 4698 if (!OpTy || !Cond || !Default) 4699 return error("Invalid record"); 4700 unsigned NumCases = (Record.size()-3)/2; 4701 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 4702 InstructionList.push_back(SI); 4703 for (unsigned i = 0, e = NumCases; i != e; ++i) { 4704 ConstantInt *CaseVal = 4705 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy)); 4706 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 4707 if (!CaseVal || !DestBB) { 4708 delete SI; 4709 return error("Invalid record"); 4710 } 4711 SI->addCase(CaseVal, DestBB); 4712 } 4713 I = SI; 4714 break; 4715 } 4716 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 4717 if (Record.size() < 2) 4718 return error("Invalid record"); 4719 Type *OpTy = getTypeByID(Record[0]); 4720 Value *Address = getValue(Record, 1, NextValueNo, OpTy); 4721 if (!OpTy || !Address) 4722 return error("Invalid record"); 4723 unsigned NumDests = Record.size()-2; 4724 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 4725 InstructionList.push_back(IBI); 4726 for (unsigned i = 0, e = NumDests; i != e; ++i) { 4727 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 4728 IBI->addDestination(DestBB); 4729 } else { 4730 delete IBI; 4731 return error("Invalid record"); 4732 } 4733 } 4734 I = IBI; 4735 break; 4736 } 4737 4738 case bitc::FUNC_CODE_INST_INVOKE: { 4739 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 4740 if (Record.size() < 4) 4741 return error("Invalid record"); 4742 unsigned OpNum = 0; 4743 AttributeList PAL = getAttributes(Record[OpNum++]); 4744 unsigned CCInfo = Record[OpNum++]; 4745 BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]); 4746 BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]); 4747 4748 FunctionType *FTy = nullptr; 4749 if ((CCInfo >> 13) & 1) { 4750 FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])); 4751 if (!FTy) 4752 return error("Explicit invoke type is not a function type"); 4753 } 4754 4755 Value *Callee; 4756 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 4757 return error("Invalid record"); 4758 4759 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 4760 if (!CalleeTy) 4761 return error("Callee is not a pointer"); 4762 if (!FTy) { 4763 FTy = 4764 dyn_cast<FunctionType>(Callee->getType()->getPointerElementType()); 4765 if (!FTy) 4766 return error("Callee is not of pointer to function type"); 4767 } else if (!CalleeTy->isOpaqueOrPointeeTypeMatches(FTy)) 4768 return error("Explicit invoke type does not match pointee type of " 4769 "callee operand"); 4770 if (Record.size() < FTy->getNumParams() + OpNum) 4771 return error("Insufficient operands to call"); 4772 4773 SmallVector<Value*, 16> Ops; 4774 SmallVector<Type *, 16> ArgsTys; 4775 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 4776 Ops.push_back(getValue(Record, OpNum, NextValueNo, 4777 FTy->getParamType(i))); 4778 ArgsTys.push_back(FTy->getParamType(i)); 4779 if (!Ops.back()) 4780 return error("Invalid record"); 4781 } 4782 4783 if (!FTy->isVarArg()) { 4784 if (Record.size() != OpNum) 4785 return error("Invalid record"); 4786 } else { 4787 // Read type/value pairs for varargs params. 4788 while (OpNum != Record.size()) { 4789 Value *Op; 4790 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4791 return error("Invalid record"); 4792 Ops.push_back(Op); 4793 ArgsTys.push_back(Op->getType()); 4794 } 4795 } 4796 4797 I = InvokeInst::Create(FTy, Callee, NormalBB, UnwindBB, Ops, 4798 OperandBundles); 4799 OperandBundles.clear(); 4800 InstructionList.push_back(I); 4801 cast<InvokeInst>(I)->setCallingConv( 4802 static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo)); 4803 cast<InvokeInst>(I)->setAttributes(PAL); 4804 propagateAttributeTypes(cast<CallBase>(I), ArgsTys); 4805 4806 break; 4807 } 4808 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 4809 unsigned Idx = 0; 4810 Value *Val = nullptr; 4811 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 4812 return error("Invalid record"); 4813 I = ResumeInst::Create(Val); 4814 InstructionList.push_back(I); 4815 break; 4816 } 4817 case bitc::FUNC_CODE_INST_CALLBR: { 4818 // CALLBR: [attr, cc, norm, transfs, fty, fnid, args] 4819 unsigned OpNum = 0; 4820 AttributeList PAL = getAttributes(Record[OpNum++]); 4821 unsigned CCInfo = Record[OpNum++]; 4822 4823 BasicBlock *DefaultDest = getBasicBlock(Record[OpNum++]); 4824 unsigned NumIndirectDests = Record[OpNum++]; 4825 SmallVector<BasicBlock *, 16> IndirectDests; 4826 for (unsigned i = 0, e = NumIndirectDests; i != e; ++i) 4827 IndirectDests.push_back(getBasicBlock(Record[OpNum++])); 4828 4829 FunctionType *FTy = nullptr; 4830 if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) { 4831 FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])); 4832 if (!FTy) 4833 return error("Explicit call type is not a function type"); 4834 } 4835 4836 Value *Callee; 4837 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 4838 return error("Invalid record"); 4839 4840 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 4841 if (!OpTy) 4842 return error("Callee is not a pointer type"); 4843 if (!FTy) { 4844 FTy = 4845 dyn_cast<FunctionType>(Callee->getType()->getPointerElementType()); 4846 if (!FTy) 4847 return error("Callee is not of pointer to function type"); 4848 } else if (!OpTy->isOpaqueOrPointeeTypeMatches(FTy)) 4849 return error("Explicit call type does not match pointee type of " 4850 "callee operand"); 4851 if (Record.size() < FTy->getNumParams() + OpNum) 4852 return error("Insufficient operands to call"); 4853 4854 SmallVector<Value*, 16> Args; 4855 SmallVector<Type *, 16> ArgsTys; 4856 // Read the fixed params. 4857 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 4858 Value *Arg; 4859 if (FTy->getParamType(i)->isLabelTy()) 4860 Arg = getBasicBlock(Record[OpNum]); 4861 else 4862 Arg = getValue(Record, OpNum, NextValueNo, FTy->getParamType(i)); 4863 if (!Arg) 4864 return error("Invalid record"); 4865 Args.push_back(Arg); 4866 ArgsTys.push_back(Arg->getType()); 4867 } 4868 4869 // Read type/value pairs for varargs params. 4870 if (!FTy->isVarArg()) { 4871 if (OpNum != Record.size()) 4872 return error("Invalid record"); 4873 } else { 4874 while (OpNum != Record.size()) { 4875 Value *Op; 4876 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4877 return error("Invalid record"); 4878 Args.push_back(Op); 4879 ArgsTys.push_back(Op->getType()); 4880 } 4881 } 4882 4883 I = CallBrInst::Create(FTy, Callee, DefaultDest, IndirectDests, Args, 4884 OperandBundles); 4885 OperandBundles.clear(); 4886 InstructionList.push_back(I); 4887 cast<CallBrInst>(I)->setCallingConv( 4888 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 4889 cast<CallBrInst>(I)->setAttributes(PAL); 4890 propagateAttributeTypes(cast<CallBase>(I), ArgsTys); 4891 break; 4892 } 4893 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 4894 I = new UnreachableInst(Context); 4895 InstructionList.push_back(I); 4896 break; 4897 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 4898 if (Record.empty()) 4899 return error("Invalid record"); 4900 // The first record specifies the type. 4901 Type *Ty = getTypeByID(Record[0]); 4902 if (!Ty) 4903 return error("Invalid record"); 4904 4905 // Phi arguments are pairs of records of [value, basic block]. 4906 // There is an optional final record for fast-math-flags if this phi has a 4907 // floating-point type. 4908 size_t NumArgs = (Record.size() - 1) / 2; 4909 PHINode *PN = PHINode::Create(Ty, NumArgs); 4910 if ((Record.size() - 1) % 2 == 1 && !isa<FPMathOperator>(PN)) 4911 return error("Invalid record"); 4912 InstructionList.push_back(PN); 4913 4914 for (unsigned i = 0; i != NumArgs; i++) { 4915 Value *V; 4916 // With the new function encoding, it is possible that operands have 4917 // negative IDs (for forward references). Use a signed VBR 4918 // representation to keep the encoding small. 4919 if (UseRelativeIDs) 4920 V = getValueSigned(Record, i * 2 + 1, NextValueNo, Ty); 4921 else 4922 V = getValue(Record, i * 2 + 1, NextValueNo, Ty); 4923 BasicBlock *BB = getBasicBlock(Record[i * 2 + 2]); 4924 if (!V || !BB) 4925 return error("Invalid record"); 4926 PN->addIncoming(V, BB); 4927 } 4928 I = PN; 4929 4930 // If there are an even number of records, the final record must be FMF. 4931 if (Record.size() % 2 == 0) { 4932 assert(isa<FPMathOperator>(I) && "Unexpected phi type"); 4933 FastMathFlags FMF = getDecodedFastMathFlags(Record[Record.size() - 1]); 4934 if (FMF.any()) 4935 I->setFastMathFlags(FMF); 4936 } 4937 4938 break; 4939 } 4940 4941 case bitc::FUNC_CODE_INST_LANDINGPAD: 4942 case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: { 4943 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 4944 unsigned Idx = 0; 4945 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) { 4946 if (Record.size() < 3) 4947 return error("Invalid record"); 4948 } else { 4949 assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD); 4950 if (Record.size() < 4) 4951 return error("Invalid record"); 4952 } 4953 Type *Ty = getTypeByID(Record[Idx++]); 4954 if (!Ty) 4955 return error("Invalid record"); 4956 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) { 4957 Value *PersFn = nullptr; 4958 if (getValueTypePair(Record, Idx, NextValueNo, PersFn)) 4959 return error("Invalid record"); 4960 4961 if (!F->hasPersonalityFn()) 4962 F->setPersonalityFn(cast<Constant>(PersFn)); 4963 else if (F->getPersonalityFn() != cast<Constant>(PersFn)) 4964 return error("Personality function mismatch"); 4965 } 4966 4967 bool IsCleanup = !!Record[Idx++]; 4968 unsigned NumClauses = Record[Idx++]; 4969 LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses); 4970 LP->setCleanup(IsCleanup); 4971 for (unsigned J = 0; J != NumClauses; ++J) { 4972 LandingPadInst::ClauseType CT = 4973 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 4974 Value *Val; 4975 4976 if (getValueTypePair(Record, Idx, NextValueNo, Val)) { 4977 delete LP; 4978 return error("Invalid record"); 4979 } 4980 4981 assert((CT != LandingPadInst::Catch || 4982 !isa<ArrayType>(Val->getType())) && 4983 "Catch clause has a invalid type!"); 4984 assert((CT != LandingPadInst::Filter || 4985 isa<ArrayType>(Val->getType())) && 4986 "Filter clause has invalid type!"); 4987 LP->addClause(cast<Constant>(Val)); 4988 } 4989 4990 I = LP; 4991 InstructionList.push_back(I); 4992 break; 4993 } 4994 4995 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 4996 if (Record.size() != 4) 4997 return error("Invalid record"); 4998 using APV = AllocaPackedValues; 4999 const uint64_t Rec = Record[3]; 5000 const bool InAlloca = Bitfield::get<APV::UsedWithInAlloca>(Rec); 5001 const bool SwiftError = Bitfield::get<APV::SwiftError>(Rec); 5002 Type *Ty = getTypeByID(Record[0]); 5003 if (!Bitfield::get<APV::ExplicitType>(Rec)) { 5004 auto *PTy = dyn_cast_or_null<PointerType>(Ty); 5005 if (!PTy) 5006 return error("Old-style alloca with a non-pointer type"); 5007 Ty = PTy->getPointerElementType(); 5008 } 5009 Type *OpTy = getTypeByID(Record[1]); 5010 Value *Size = getFnValueByID(Record[2], OpTy); 5011 MaybeAlign Align; 5012 uint64_t AlignExp = 5013 Bitfield::get<APV::AlignLower>(Rec) | 5014 (Bitfield::get<APV::AlignUpper>(Rec) << APV::AlignLower::Bits); 5015 if (Error Err = parseAlignmentValue(AlignExp, Align)) { 5016 return Err; 5017 } 5018 if (!Ty || !Size) 5019 return error("Invalid record"); 5020 5021 // FIXME: Make this an optional field. 5022 const DataLayout &DL = TheModule->getDataLayout(); 5023 unsigned AS = DL.getAllocaAddrSpace(); 5024 5025 SmallPtrSet<Type *, 4> Visited; 5026 if (!Align && !Ty->isSized(&Visited)) 5027 return error("alloca of unsized type"); 5028 if (!Align) 5029 Align = DL.getPrefTypeAlign(Ty); 5030 5031 AllocaInst *AI = new AllocaInst(Ty, AS, Size, *Align); 5032 AI->setUsedWithInAlloca(InAlloca); 5033 AI->setSwiftError(SwiftError); 5034 I = AI; 5035 InstructionList.push_back(I); 5036 break; 5037 } 5038 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 5039 unsigned OpNum = 0; 5040 Value *Op; 5041 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 5042 (OpNum + 2 != Record.size() && OpNum + 3 != Record.size())) 5043 return error("Invalid record"); 5044 5045 if (!isa<PointerType>(Op->getType())) 5046 return error("Load operand is not a pointer type"); 5047 5048 Type *Ty = nullptr; 5049 if (OpNum + 3 == Record.size()) { 5050 Ty = getTypeByID(Record[OpNum++]); 5051 } else { 5052 Ty = Op->getType()->getPointerElementType(); 5053 } 5054 5055 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 5056 return Err; 5057 5058 MaybeAlign Align; 5059 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 5060 return Err; 5061 SmallPtrSet<Type *, 4> Visited; 5062 if (!Align && !Ty->isSized(&Visited)) 5063 return error("load of unsized type"); 5064 if (!Align) 5065 Align = TheModule->getDataLayout().getABITypeAlign(Ty); 5066 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align); 5067 InstructionList.push_back(I); 5068 break; 5069 } 5070 case bitc::FUNC_CODE_INST_LOADATOMIC: { 5071 // LOADATOMIC: [opty, op, align, vol, ordering, ssid] 5072 unsigned OpNum = 0; 5073 Value *Op; 5074 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 5075 (OpNum + 4 != Record.size() && OpNum + 5 != Record.size())) 5076 return error("Invalid record"); 5077 5078 if (!isa<PointerType>(Op->getType())) 5079 return error("Load operand is not a pointer type"); 5080 5081 Type *Ty = nullptr; 5082 if (OpNum + 5 == Record.size()) { 5083 Ty = getTypeByID(Record[OpNum++]); 5084 } else { 5085 Ty = Op->getType()->getPointerElementType(); 5086 } 5087 5088 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 5089 return Err; 5090 5091 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 5092 if (Ordering == AtomicOrdering::NotAtomic || 5093 Ordering == AtomicOrdering::Release || 5094 Ordering == AtomicOrdering::AcquireRelease) 5095 return error("Invalid record"); 5096 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 5097 return error("Invalid record"); 5098 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 5099 5100 MaybeAlign Align; 5101 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 5102 return Err; 5103 if (!Align) 5104 return error("Alignment missing from atomic load"); 5105 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align, Ordering, SSID); 5106 InstructionList.push_back(I); 5107 break; 5108 } 5109 case bitc::FUNC_CODE_INST_STORE: 5110 case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol] 5111 unsigned OpNum = 0; 5112 Value *Val, *Ptr; 5113 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 5114 (BitCode == bitc::FUNC_CODE_INST_STORE 5115 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 5116 : popValue(Record, OpNum, NextValueNo, 5117 Ptr->getType()->getPointerElementType(), Val)) || 5118 OpNum + 2 != Record.size()) 5119 return error("Invalid record"); 5120 5121 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 5122 return Err; 5123 MaybeAlign Align; 5124 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 5125 return Err; 5126 SmallPtrSet<Type *, 4> Visited; 5127 if (!Align && !Val->getType()->isSized(&Visited)) 5128 return error("store of unsized type"); 5129 if (!Align) 5130 Align = TheModule->getDataLayout().getABITypeAlign(Val->getType()); 5131 I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align); 5132 InstructionList.push_back(I); 5133 break; 5134 } 5135 case bitc::FUNC_CODE_INST_STOREATOMIC: 5136 case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: { 5137 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, ssid] 5138 unsigned OpNum = 0; 5139 Value *Val, *Ptr; 5140 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 5141 !isa<PointerType>(Ptr->getType()) || 5142 (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC 5143 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 5144 : popValue(Record, OpNum, NextValueNo, 5145 Ptr->getType()->getPointerElementType(), Val)) || 5146 OpNum + 4 != Record.size()) 5147 return error("Invalid record"); 5148 5149 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 5150 return Err; 5151 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 5152 if (Ordering == AtomicOrdering::NotAtomic || 5153 Ordering == AtomicOrdering::Acquire || 5154 Ordering == AtomicOrdering::AcquireRelease) 5155 return error("Invalid record"); 5156 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 5157 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 5158 return error("Invalid record"); 5159 5160 MaybeAlign Align; 5161 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 5162 return Err; 5163 if (!Align) 5164 return error("Alignment missing from atomic store"); 5165 I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align, Ordering, SSID); 5166 InstructionList.push_back(I); 5167 break; 5168 } 5169 case bitc::FUNC_CODE_INST_CMPXCHG_OLD: { 5170 // CMPXCHG_OLD: [ptrty, ptr, cmp, val, vol, ordering, synchscope, 5171 // failure_ordering?, weak?] 5172 const size_t NumRecords = Record.size(); 5173 unsigned OpNum = 0; 5174 Value *Ptr = nullptr; 5175 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr)) 5176 return error("Invalid record"); 5177 5178 if (!isa<PointerType>(Ptr->getType())) 5179 return error("Cmpxchg operand is not a pointer type"); 5180 5181 Value *Cmp = nullptr; 5182 if (popValue(Record, OpNum, NextValueNo, 5183 cast<PointerType>(Ptr->getType())->getPointerElementType(), 5184 Cmp)) 5185 return error("Invalid record"); 5186 5187 Value *New = nullptr; 5188 if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) || 5189 NumRecords < OpNum + 3 || NumRecords > OpNum + 5) 5190 return error("Invalid record"); 5191 5192 const AtomicOrdering SuccessOrdering = 5193 getDecodedOrdering(Record[OpNum + 1]); 5194 if (SuccessOrdering == AtomicOrdering::NotAtomic || 5195 SuccessOrdering == AtomicOrdering::Unordered) 5196 return error("Invalid record"); 5197 5198 const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]); 5199 5200 if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType())) 5201 return Err; 5202 5203 const AtomicOrdering FailureOrdering = 5204 NumRecords < 7 5205 ? AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering) 5206 : getDecodedOrdering(Record[OpNum + 3]); 5207 5208 if (FailureOrdering == AtomicOrdering::NotAtomic || 5209 FailureOrdering == AtomicOrdering::Unordered) 5210 return error("Invalid record"); 5211 5212 const Align Alignment( 5213 TheModule->getDataLayout().getTypeStoreSize(Cmp->getType())); 5214 5215 I = new AtomicCmpXchgInst(Ptr, Cmp, New, Alignment, SuccessOrdering, 5216 FailureOrdering, SSID); 5217 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 5218 5219 if (NumRecords < 8) { 5220 // Before weak cmpxchgs existed, the instruction simply returned the 5221 // value loaded from memory, so bitcode files from that era will be 5222 // expecting the first component of a modern cmpxchg. 5223 CurBB->getInstList().push_back(I); 5224 I = ExtractValueInst::Create(I, 0); 5225 } else { 5226 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum + 4]); 5227 } 5228 5229 InstructionList.push_back(I); 5230 break; 5231 } 5232 case bitc::FUNC_CODE_INST_CMPXCHG: { 5233 // CMPXCHG: [ptrty, ptr, cmp, val, vol, success_ordering, synchscope, 5234 // failure_ordering, weak, align?] 5235 const size_t NumRecords = Record.size(); 5236 unsigned OpNum = 0; 5237 Value *Ptr = nullptr; 5238 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr)) 5239 return error("Invalid record"); 5240 5241 if (!isa<PointerType>(Ptr->getType())) 5242 return error("Cmpxchg operand is not a pointer type"); 5243 5244 Value *Cmp = nullptr; 5245 if (getValueTypePair(Record, OpNum, NextValueNo, Cmp)) 5246 return error("Invalid record"); 5247 5248 Value *Val = nullptr; 5249 if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), Val)) 5250 return error("Invalid record"); 5251 5252 if (NumRecords < OpNum + 3 || NumRecords > OpNum + 6) 5253 return error("Invalid record"); 5254 5255 const bool IsVol = Record[OpNum]; 5256 5257 const AtomicOrdering SuccessOrdering = 5258 getDecodedOrdering(Record[OpNum + 1]); 5259 if (!AtomicCmpXchgInst::isValidSuccessOrdering(SuccessOrdering)) 5260 return error("Invalid cmpxchg success ordering"); 5261 5262 const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]); 5263 5264 if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType())) 5265 return Err; 5266 5267 const AtomicOrdering FailureOrdering = 5268 getDecodedOrdering(Record[OpNum + 3]); 5269 if (!AtomicCmpXchgInst::isValidFailureOrdering(FailureOrdering)) 5270 return error("Invalid cmpxchg failure ordering"); 5271 5272 const bool IsWeak = Record[OpNum + 4]; 5273 5274 MaybeAlign Alignment; 5275 5276 if (NumRecords == (OpNum + 6)) { 5277 if (Error Err = parseAlignmentValue(Record[OpNum + 5], Alignment)) 5278 return Err; 5279 } 5280 if (!Alignment) 5281 Alignment = 5282 Align(TheModule->getDataLayout().getTypeStoreSize(Cmp->getType())); 5283 5284 I = new AtomicCmpXchgInst(Ptr, Cmp, Val, *Alignment, SuccessOrdering, 5285 FailureOrdering, SSID); 5286 cast<AtomicCmpXchgInst>(I)->setVolatile(IsVol); 5287 cast<AtomicCmpXchgInst>(I)->setWeak(IsWeak); 5288 5289 InstructionList.push_back(I); 5290 break; 5291 } 5292 case bitc::FUNC_CODE_INST_ATOMICRMW_OLD: 5293 case bitc::FUNC_CODE_INST_ATOMICRMW: { 5294 // ATOMICRMW_OLD: [ptrty, ptr, val, op, vol, ordering, ssid, align?] 5295 // ATOMICRMW: [ptrty, ptr, valty, val, op, vol, ordering, ssid, align?] 5296 const size_t NumRecords = Record.size(); 5297 unsigned OpNum = 0; 5298 5299 Value *Ptr = nullptr; 5300 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr)) 5301 return error("Invalid record"); 5302 5303 if (!isa<PointerType>(Ptr->getType())) 5304 return error("Invalid record"); 5305 5306 Value *Val = nullptr; 5307 if (BitCode == bitc::FUNC_CODE_INST_ATOMICRMW_OLD) { 5308 if (popValue(Record, OpNum, NextValueNo, 5309 cast<PointerType>(Ptr->getType())->getPointerElementType(), 5310 Val)) 5311 return error("Invalid record"); 5312 } else { 5313 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 5314 return error("Invalid record"); 5315 } 5316 5317 if (!(NumRecords == (OpNum + 4) || NumRecords == (OpNum + 5))) 5318 return error("Invalid record"); 5319 5320 const AtomicRMWInst::BinOp Operation = 5321 getDecodedRMWOperation(Record[OpNum]); 5322 if (Operation < AtomicRMWInst::FIRST_BINOP || 5323 Operation > AtomicRMWInst::LAST_BINOP) 5324 return error("Invalid record"); 5325 5326 const bool IsVol = Record[OpNum + 1]; 5327 5328 const AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 5329 if (Ordering == AtomicOrdering::NotAtomic || 5330 Ordering == AtomicOrdering::Unordered) 5331 return error("Invalid record"); 5332 5333 const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 5334 5335 MaybeAlign Alignment; 5336 5337 if (NumRecords == (OpNum + 5)) { 5338 if (Error Err = parseAlignmentValue(Record[OpNum + 4], Alignment)) 5339 return Err; 5340 } 5341 5342 if (!Alignment) 5343 Alignment = 5344 Align(TheModule->getDataLayout().getTypeStoreSize(Val->getType())); 5345 5346 I = new AtomicRMWInst(Operation, Ptr, Val, *Alignment, Ordering, SSID); 5347 cast<AtomicRMWInst>(I)->setVolatile(IsVol); 5348 5349 InstructionList.push_back(I); 5350 break; 5351 } 5352 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, ssid] 5353 if (2 != Record.size()) 5354 return error("Invalid record"); 5355 AtomicOrdering Ordering = getDecodedOrdering(Record[0]); 5356 if (Ordering == AtomicOrdering::NotAtomic || 5357 Ordering == AtomicOrdering::Unordered || 5358 Ordering == AtomicOrdering::Monotonic) 5359 return error("Invalid record"); 5360 SyncScope::ID SSID = getDecodedSyncScopeID(Record[1]); 5361 I = new FenceInst(Context, Ordering, SSID); 5362 InstructionList.push_back(I); 5363 break; 5364 } 5365 case bitc::FUNC_CODE_INST_CALL: { 5366 // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...] 5367 if (Record.size() < 3) 5368 return error("Invalid record"); 5369 5370 unsigned OpNum = 0; 5371 AttributeList PAL = getAttributes(Record[OpNum++]); 5372 unsigned CCInfo = Record[OpNum++]; 5373 5374 FastMathFlags FMF; 5375 if ((CCInfo >> bitc::CALL_FMF) & 1) { 5376 FMF = getDecodedFastMathFlags(Record[OpNum++]); 5377 if (!FMF.any()) 5378 return error("Fast math flags indicator set for call with no FMF"); 5379 } 5380 5381 FunctionType *FTy = nullptr; 5382 if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) { 5383 FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])); 5384 if (!FTy) 5385 return error("Explicit call type is not a function type"); 5386 } 5387 5388 Value *Callee; 5389 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 5390 return error("Invalid record"); 5391 5392 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 5393 if (!OpTy) 5394 return error("Callee is not a pointer type"); 5395 if (!FTy) { 5396 FTy = 5397 dyn_cast<FunctionType>(Callee->getType()->getPointerElementType()); 5398 if (!FTy) 5399 return error("Callee is not of pointer to function type"); 5400 } else if (!OpTy->isOpaqueOrPointeeTypeMatches(FTy)) 5401 return error("Explicit call type does not match pointee type of " 5402 "callee operand"); 5403 if (Record.size() < FTy->getNumParams() + OpNum) 5404 return error("Insufficient operands to call"); 5405 5406 SmallVector<Value*, 16> Args; 5407 SmallVector<Type *, 16> ArgsTys; 5408 // Read the fixed params. 5409 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 5410 if (FTy->getParamType(i)->isLabelTy()) 5411 Args.push_back(getBasicBlock(Record[OpNum])); 5412 else 5413 Args.push_back(getValue(Record, OpNum, NextValueNo, 5414 FTy->getParamType(i))); 5415 ArgsTys.push_back(FTy->getParamType(i)); 5416 if (!Args.back()) 5417 return error("Invalid record"); 5418 } 5419 5420 // Read type/value pairs for varargs params. 5421 if (!FTy->isVarArg()) { 5422 if (OpNum != Record.size()) 5423 return error("Invalid record"); 5424 } else { 5425 while (OpNum != Record.size()) { 5426 Value *Op; 5427 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 5428 return error("Invalid record"); 5429 Args.push_back(Op); 5430 ArgsTys.push_back(Op->getType()); 5431 } 5432 } 5433 5434 I = CallInst::Create(FTy, Callee, Args, OperandBundles); 5435 OperandBundles.clear(); 5436 InstructionList.push_back(I); 5437 cast<CallInst>(I)->setCallingConv( 5438 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 5439 CallInst::TailCallKind TCK = CallInst::TCK_None; 5440 if (CCInfo & 1 << bitc::CALL_TAIL) 5441 TCK = CallInst::TCK_Tail; 5442 if (CCInfo & (1 << bitc::CALL_MUSTTAIL)) 5443 TCK = CallInst::TCK_MustTail; 5444 if (CCInfo & (1 << bitc::CALL_NOTAIL)) 5445 TCK = CallInst::TCK_NoTail; 5446 cast<CallInst>(I)->setTailCallKind(TCK); 5447 cast<CallInst>(I)->setAttributes(PAL); 5448 propagateAttributeTypes(cast<CallBase>(I), ArgsTys); 5449 if (FMF.any()) { 5450 if (!isa<FPMathOperator>(I)) 5451 return error("Fast-math-flags specified for call without " 5452 "floating-point scalar or vector return type"); 5453 I->setFastMathFlags(FMF); 5454 } 5455 break; 5456 } 5457 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 5458 if (Record.size() < 3) 5459 return error("Invalid record"); 5460 Type *OpTy = getTypeByID(Record[0]); 5461 Value *Op = getValue(Record, 1, NextValueNo, OpTy); 5462 Type *ResTy = getTypeByID(Record[2]); 5463 if (!OpTy || !Op || !ResTy) 5464 return error("Invalid record"); 5465 I = new VAArgInst(Op, ResTy); 5466 InstructionList.push_back(I); 5467 break; 5468 } 5469 5470 case bitc::FUNC_CODE_OPERAND_BUNDLE: { 5471 // A call or an invoke can be optionally prefixed with some variable 5472 // number of operand bundle blocks. These blocks are read into 5473 // OperandBundles and consumed at the next call or invoke instruction. 5474 5475 if (Record.empty() || Record[0] >= BundleTags.size()) 5476 return error("Invalid record"); 5477 5478 std::vector<Value *> Inputs; 5479 5480 unsigned OpNum = 1; 5481 while (OpNum != Record.size()) { 5482 Value *Op; 5483 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 5484 return error("Invalid record"); 5485 Inputs.push_back(Op); 5486 } 5487 5488 OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs)); 5489 continue; 5490 } 5491 5492 case bitc::FUNC_CODE_INST_FREEZE: { // FREEZE: [opty,opval] 5493 unsigned OpNum = 0; 5494 Value *Op = nullptr; 5495 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 5496 return error("Invalid record"); 5497 if (OpNum != Record.size()) 5498 return error("Invalid record"); 5499 5500 I = new FreezeInst(Op); 5501 InstructionList.push_back(I); 5502 break; 5503 } 5504 } 5505 5506 // Add instruction to end of current BB. If there is no current BB, reject 5507 // this file. 5508 if (!CurBB) { 5509 I->deleteValue(); 5510 return error("Invalid instruction with no BB"); 5511 } 5512 if (!OperandBundles.empty()) { 5513 I->deleteValue(); 5514 return error("Operand bundles found with no consumer"); 5515 } 5516 CurBB->getInstList().push_back(I); 5517 5518 // If this was a terminator instruction, move to the next block. 5519 if (I->isTerminator()) { 5520 ++CurBBNo; 5521 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr; 5522 } 5523 5524 // Non-void values get registered in the value table for future use. 5525 if (!I->getType()->isVoidTy()) 5526 ValueList.assignValue(I, NextValueNo++); 5527 } 5528 5529 OutOfRecordLoop: 5530 5531 if (!OperandBundles.empty()) 5532 return error("Operand bundles found with no consumer"); 5533 5534 // Check the function list for unresolved values. 5535 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 5536 if (!A->getParent()) { 5537 // We found at least one unresolved value. Nuke them all to avoid leaks. 5538 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 5539 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) { 5540 A->replaceAllUsesWith(UndefValue::get(A->getType())); 5541 delete A; 5542 } 5543 } 5544 return error("Never resolved value found in function"); 5545 } 5546 } 5547 5548 // Unexpected unresolved metadata about to be dropped. 5549 if (MDLoader->hasFwdRefs()) 5550 return error("Invalid function metadata: outgoing forward refs"); 5551 5552 // Trim the value list down to the size it was before we parsed this function. 5553 ValueList.shrinkTo(ModuleValueListSize); 5554 MDLoader->shrinkTo(ModuleMDLoaderSize); 5555 std::vector<BasicBlock*>().swap(FunctionBBs); 5556 return Error::success(); 5557 } 5558 5559 /// Find the function body in the bitcode stream 5560 Error BitcodeReader::findFunctionInStream( 5561 Function *F, 5562 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) { 5563 while (DeferredFunctionInfoIterator->second == 0) { 5564 // This is the fallback handling for the old format bitcode that 5565 // didn't contain the function index in the VST, or when we have 5566 // an anonymous function which would not have a VST entry. 5567 // Assert that we have one of those two cases. 5568 assert(VSTOffset == 0 || !F->hasName()); 5569 // Parse the next body in the stream and set its position in the 5570 // DeferredFunctionInfo map. 5571 if (Error Err = rememberAndSkipFunctionBodies()) 5572 return Err; 5573 } 5574 return Error::success(); 5575 } 5576 5577 SyncScope::ID BitcodeReader::getDecodedSyncScopeID(unsigned Val) { 5578 if (Val == SyncScope::SingleThread || Val == SyncScope::System) 5579 return SyncScope::ID(Val); 5580 if (Val >= SSIDs.size()) 5581 return SyncScope::System; // Map unknown synchronization scopes to system. 5582 return SSIDs[Val]; 5583 } 5584 5585 //===----------------------------------------------------------------------===// 5586 // GVMaterializer implementation 5587 //===----------------------------------------------------------------------===// 5588 5589 Error BitcodeReader::materialize(GlobalValue *GV) { 5590 Function *F = dyn_cast<Function>(GV); 5591 // If it's not a function or is already material, ignore the request. 5592 if (!F || !F->isMaterializable()) 5593 return Error::success(); 5594 5595 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 5596 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 5597 // If its position is recorded as 0, its body is somewhere in the stream 5598 // but we haven't seen it yet. 5599 if (DFII->second == 0) 5600 if (Error Err = findFunctionInStream(F, DFII)) 5601 return Err; 5602 5603 // Materialize metadata before parsing any function bodies. 5604 if (Error Err = materializeMetadata()) 5605 return Err; 5606 5607 // Move the bit stream to the saved position of the deferred function body. 5608 if (Error JumpFailed = Stream.JumpToBit(DFII->second)) 5609 return JumpFailed; 5610 if (Error Err = parseFunctionBody(F)) 5611 return Err; 5612 F->setIsMaterializable(false); 5613 5614 if (StripDebugInfo) 5615 stripDebugInfo(*F); 5616 5617 // Upgrade any old intrinsic calls in the function. 5618 for (auto &I : UpgradedIntrinsics) { 5619 for (User *U : llvm::make_early_inc_range(I.first->materialized_users())) 5620 if (CallInst *CI = dyn_cast<CallInst>(U)) 5621 UpgradeIntrinsicCall(CI, I.second); 5622 } 5623 5624 // Update calls to the remangled intrinsics 5625 for (auto &I : RemangledIntrinsics) 5626 for (User *U : llvm::make_early_inc_range(I.first->materialized_users())) 5627 // Don't expect any other users than call sites 5628 cast<CallBase>(U)->setCalledFunction(I.second); 5629 5630 // Finish fn->subprogram upgrade for materialized functions. 5631 if (DISubprogram *SP = MDLoader->lookupSubprogramForFunction(F)) 5632 F->setSubprogram(SP); 5633 5634 // Check if the TBAA Metadata are valid, otherwise we will need to strip them. 5635 if (!MDLoader->isStrippingTBAA()) { 5636 for (auto &I : instructions(F)) { 5637 MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa); 5638 if (!TBAA || TBAAVerifyHelper.visitTBAAMetadata(I, TBAA)) 5639 continue; 5640 MDLoader->setStripTBAA(true); 5641 stripTBAA(F->getParent()); 5642 } 5643 } 5644 5645 for (auto &I : instructions(F)) { 5646 // "Upgrade" older incorrect branch weights by dropping them. 5647 if (auto *MD = I.getMetadata(LLVMContext::MD_prof)) { 5648 if (MD->getOperand(0) != nullptr && isa<MDString>(MD->getOperand(0))) { 5649 MDString *MDS = cast<MDString>(MD->getOperand(0)); 5650 StringRef ProfName = MDS->getString(); 5651 // Check consistency of !prof branch_weights metadata. 5652 if (!ProfName.equals("branch_weights")) 5653 continue; 5654 unsigned ExpectedNumOperands = 0; 5655 if (BranchInst *BI = dyn_cast<BranchInst>(&I)) 5656 ExpectedNumOperands = BI->getNumSuccessors(); 5657 else if (SwitchInst *SI = dyn_cast<SwitchInst>(&I)) 5658 ExpectedNumOperands = SI->getNumSuccessors(); 5659 else if (isa<CallInst>(&I)) 5660 ExpectedNumOperands = 1; 5661 else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(&I)) 5662 ExpectedNumOperands = IBI->getNumDestinations(); 5663 else if (isa<SelectInst>(&I)) 5664 ExpectedNumOperands = 2; 5665 else 5666 continue; // ignore and continue. 5667 5668 // If branch weight doesn't match, just strip branch weight. 5669 if (MD->getNumOperands() != 1 + ExpectedNumOperands) 5670 I.setMetadata(LLVMContext::MD_prof, nullptr); 5671 } 5672 } 5673 5674 // Remove incompatible attributes on function calls. 5675 if (auto *CI = dyn_cast<CallBase>(&I)) { 5676 CI->removeRetAttrs(AttributeFuncs::typeIncompatible( 5677 CI->getFunctionType()->getReturnType())); 5678 5679 for (unsigned ArgNo = 0; ArgNo < CI->arg_size(); ++ArgNo) 5680 CI->removeParamAttrs(ArgNo, AttributeFuncs::typeIncompatible( 5681 CI->getArgOperand(ArgNo)->getType())); 5682 } 5683 } 5684 5685 // Look for functions that rely on old function attribute behavior. 5686 UpgradeFunctionAttributes(*F); 5687 5688 // Bring in any functions that this function forward-referenced via 5689 // blockaddresses. 5690 return materializeForwardReferencedFunctions(); 5691 } 5692 5693 Error BitcodeReader::materializeModule() { 5694 if (Error Err = materializeMetadata()) 5695 return Err; 5696 5697 // Promise to materialize all forward references. 5698 WillMaterializeAllForwardRefs = true; 5699 5700 // Iterate over the module, deserializing any functions that are still on 5701 // disk. 5702 for (Function &F : *TheModule) { 5703 if (Error Err = materialize(&F)) 5704 return Err; 5705 } 5706 // At this point, if there are any function bodies, parse the rest of 5707 // the bits in the module past the last function block we have recorded 5708 // through either lazy scanning or the VST. 5709 if (LastFunctionBlockBit || NextUnreadBit) 5710 if (Error Err = parseModule(LastFunctionBlockBit > NextUnreadBit 5711 ? LastFunctionBlockBit 5712 : NextUnreadBit)) 5713 return Err; 5714 5715 // Check that all block address forward references got resolved (as we 5716 // promised above). 5717 if (!BasicBlockFwdRefs.empty()) 5718 return error("Never resolved function from blockaddress"); 5719 5720 // Upgrade any intrinsic calls that slipped through (should not happen!) and 5721 // delete the old functions to clean up. We can't do this unless the entire 5722 // module is materialized because there could always be another function body 5723 // with calls to the old function. 5724 for (auto &I : UpgradedIntrinsics) { 5725 for (auto *U : I.first->users()) { 5726 if (CallInst *CI = dyn_cast<CallInst>(U)) 5727 UpgradeIntrinsicCall(CI, I.second); 5728 } 5729 if (!I.first->use_empty()) 5730 I.first->replaceAllUsesWith(I.second); 5731 I.first->eraseFromParent(); 5732 } 5733 UpgradedIntrinsics.clear(); 5734 // Do the same for remangled intrinsics 5735 for (auto &I : RemangledIntrinsics) { 5736 I.first->replaceAllUsesWith(I.second); 5737 I.first->eraseFromParent(); 5738 } 5739 RemangledIntrinsics.clear(); 5740 5741 UpgradeDebugInfo(*TheModule); 5742 5743 UpgradeModuleFlags(*TheModule); 5744 5745 UpgradeARCRuntime(*TheModule); 5746 5747 return Error::success(); 5748 } 5749 5750 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const { 5751 return IdentifiedStructTypes; 5752 } 5753 5754 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader( 5755 BitstreamCursor Cursor, StringRef Strtab, ModuleSummaryIndex &TheIndex, 5756 StringRef ModulePath, unsigned ModuleId) 5757 : BitcodeReaderBase(std::move(Cursor), Strtab), TheIndex(TheIndex), 5758 ModulePath(ModulePath), ModuleId(ModuleId) {} 5759 5760 void ModuleSummaryIndexBitcodeReader::addThisModule() { 5761 TheIndex.addModule(ModulePath, ModuleId); 5762 } 5763 5764 ModuleSummaryIndex::ModuleInfo * 5765 ModuleSummaryIndexBitcodeReader::getThisModule() { 5766 return TheIndex.getModule(ModulePath); 5767 } 5768 5769 std::pair<ValueInfo, GlobalValue::GUID> 5770 ModuleSummaryIndexBitcodeReader::getValueInfoFromValueId(unsigned ValueId) { 5771 auto VGI = ValueIdToValueInfoMap[ValueId]; 5772 assert(VGI.first); 5773 return VGI; 5774 } 5775 5776 void ModuleSummaryIndexBitcodeReader::setValueGUID( 5777 uint64_t ValueID, StringRef ValueName, GlobalValue::LinkageTypes Linkage, 5778 StringRef SourceFileName) { 5779 std::string GlobalId = 5780 GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName); 5781 auto ValueGUID = GlobalValue::getGUID(GlobalId); 5782 auto OriginalNameID = ValueGUID; 5783 if (GlobalValue::isLocalLinkage(Linkage)) 5784 OriginalNameID = GlobalValue::getGUID(ValueName); 5785 if (PrintSummaryGUIDs) 5786 dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is " 5787 << ValueName << "\n"; 5788 5789 // UseStrtab is false for legacy summary formats and value names are 5790 // created on stack. In that case we save the name in a string saver in 5791 // the index so that the value name can be recorded. 5792 ValueIdToValueInfoMap[ValueID] = std::make_pair( 5793 TheIndex.getOrInsertValueInfo( 5794 ValueGUID, 5795 UseStrtab ? ValueName : TheIndex.saveString(ValueName)), 5796 OriginalNameID); 5797 } 5798 5799 // Specialized value symbol table parser used when reading module index 5800 // blocks where we don't actually create global values. The parsed information 5801 // is saved in the bitcode reader for use when later parsing summaries. 5802 Error ModuleSummaryIndexBitcodeReader::parseValueSymbolTable( 5803 uint64_t Offset, 5804 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) { 5805 // With a strtab the VST is not required to parse the summary. 5806 if (UseStrtab) 5807 return Error::success(); 5808 5809 assert(Offset > 0 && "Expected non-zero VST offset"); 5810 Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream); 5811 if (!MaybeCurrentBit) 5812 return MaybeCurrentBit.takeError(); 5813 uint64_t CurrentBit = MaybeCurrentBit.get(); 5814 5815 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 5816 return Err; 5817 5818 SmallVector<uint64_t, 64> Record; 5819 5820 // Read all the records for this value table. 5821 SmallString<128> ValueName; 5822 5823 while (true) { 5824 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 5825 if (!MaybeEntry) 5826 return MaybeEntry.takeError(); 5827 BitstreamEntry Entry = MaybeEntry.get(); 5828 5829 switch (Entry.Kind) { 5830 case BitstreamEntry::SubBlock: // Handled for us already. 5831 case BitstreamEntry::Error: 5832 return error("Malformed block"); 5833 case BitstreamEntry::EndBlock: 5834 // Done parsing VST, jump back to wherever we came from. 5835 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 5836 return JumpFailed; 5837 return Error::success(); 5838 case BitstreamEntry::Record: 5839 // The interesting case. 5840 break; 5841 } 5842 5843 // Read a record. 5844 Record.clear(); 5845 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 5846 if (!MaybeRecord) 5847 return MaybeRecord.takeError(); 5848 switch (MaybeRecord.get()) { 5849 default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records). 5850 break; 5851 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 5852 if (convertToString(Record, 1, ValueName)) 5853 return error("Invalid record"); 5854 unsigned ValueID = Record[0]; 5855 assert(!SourceFileName.empty()); 5856 auto VLI = ValueIdToLinkageMap.find(ValueID); 5857 assert(VLI != ValueIdToLinkageMap.end() && 5858 "No linkage found for VST entry?"); 5859 auto Linkage = VLI->second; 5860 setValueGUID(ValueID, ValueName, Linkage, SourceFileName); 5861 ValueName.clear(); 5862 break; 5863 } 5864 case bitc::VST_CODE_FNENTRY: { 5865 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 5866 if (convertToString(Record, 2, ValueName)) 5867 return error("Invalid record"); 5868 unsigned ValueID = Record[0]; 5869 assert(!SourceFileName.empty()); 5870 auto VLI = ValueIdToLinkageMap.find(ValueID); 5871 assert(VLI != ValueIdToLinkageMap.end() && 5872 "No linkage found for VST entry?"); 5873 auto Linkage = VLI->second; 5874 setValueGUID(ValueID, ValueName, Linkage, SourceFileName); 5875 ValueName.clear(); 5876 break; 5877 } 5878 case bitc::VST_CODE_COMBINED_ENTRY: { 5879 // VST_CODE_COMBINED_ENTRY: [valueid, refguid] 5880 unsigned ValueID = Record[0]; 5881 GlobalValue::GUID RefGUID = Record[1]; 5882 // The "original name", which is the second value of the pair will be 5883 // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index. 5884 ValueIdToValueInfoMap[ValueID] = 5885 std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID); 5886 break; 5887 } 5888 } 5889 } 5890 } 5891 5892 // Parse just the blocks needed for building the index out of the module. 5893 // At the end of this routine the module Index is populated with a map 5894 // from global value id to GlobalValueSummary objects. 5895 Error ModuleSummaryIndexBitcodeReader::parseModule() { 5896 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 5897 return Err; 5898 5899 SmallVector<uint64_t, 64> Record; 5900 DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap; 5901 unsigned ValueId = 0; 5902 5903 // Read the index for this module. 5904 while (true) { 5905 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 5906 if (!MaybeEntry) 5907 return MaybeEntry.takeError(); 5908 llvm::BitstreamEntry Entry = MaybeEntry.get(); 5909 5910 switch (Entry.Kind) { 5911 case BitstreamEntry::Error: 5912 return error("Malformed block"); 5913 case BitstreamEntry::EndBlock: 5914 return Error::success(); 5915 5916 case BitstreamEntry::SubBlock: 5917 switch (Entry.ID) { 5918 default: // Skip unknown content. 5919 if (Error Err = Stream.SkipBlock()) 5920 return Err; 5921 break; 5922 case bitc::BLOCKINFO_BLOCK_ID: 5923 // Need to parse these to get abbrev ids (e.g. for VST) 5924 if (Error Err = readBlockInfo()) 5925 return Err; 5926 break; 5927 case bitc::VALUE_SYMTAB_BLOCK_ID: 5928 // Should have been parsed earlier via VSTOffset, unless there 5929 // is no summary section. 5930 assert(((SeenValueSymbolTable && VSTOffset > 0) || 5931 !SeenGlobalValSummary) && 5932 "Expected early VST parse via VSTOffset record"); 5933 if (Error Err = Stream.SkipBlock()) 5934 return Err; 5935 break; 5936 case bitc::GLOBALVAL_SUMMARY_BLOCK_ID: 5937 case bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID: 5938 // Add the module if it is a per-module index (has a source file name). 5939 if (!SourceFileName.empty()) 5940 addThisModule(); 5941 assert(!SeenValueSymbolTable && 5942 "Already read VST when parsing summary block?"); 5943 // We might not have a VST if there were no values in the 5944 // summary. An empty summary block generated when we are 5945 // performing ThinLTO compiles so we don't later invoke 5946 // the regular LTO process on them. 5947 if (VSTOffset > 0) { 5948 if (Error Err = parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap)) 5949 return Err; 5950 SeenValueSymbolTable = true; 5951 } 5952 SeenGlobalValSummary = true; 5953 if (Error Err = parseEntireSummary(Entry.ID)) 5954 return Err; 5955 break; 5956 case bitc::MODULE_STRTAB_BLOCK_ID: 5957 if (Error Err = parseModuleStringTable()) 5958 return Err; 5959 break; 5960 } 5961 continue; 5962 5963 case BitstreamEntry::Record: { 5964 Record.clear(); 5965 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 5966 if (!MaybeBitCode) 5967 return MaybeBitCode.takeError(); 5968 switch (MaybeBitCode.get()) { 5969 default: 5970 break; // Default behavior, ignore unknown content. 5971 case bitc::MODULE_CODE_VERSION: { 5972 if (Error Err = parseVersionRecord(Record).takeError()) 5973 return Err; 5974 break; 5975 } 5976 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 5977 case bitc::MODULE_CODE_SOURCE_FILENAME: { 5978 SmallString<128> ValueName; 5979 if (convertToString(Record, 0, ValueName)) 5980 return error("Invalid record"); 5981 SourceFileName = ValueName.c_str(); 5982 break; 5983 } 5984 /// MODULE_CODE_HASH: [5*i32] 5985 case bitc::MODULE_CODE_HASH: { 5986 if (Record.size() != 5) 5987 return error("Invalid hash length " + Twine(Record.size()).str()); 5988 auto &Hash = getThisModule()->second.second; 5989 int Pos = 0; 5990 for (auto &Val : Record) { 5991 assert(!(Val >> 32) && "Unexpected high bits set"); 5992 Hash[Pos++] = Val; 5993 } 5994 break; 5995 } 5996 /// MODULE_CODE_VSTOFFSET: [offset] 5997 case bitc::MODULE_CODE_VSTOFFSET: 5998 if (Record.empty()) 5999 return error("Invalid record"); 6000 // Note that we subtract 1 here because the offset is relative to one 6001 // word before the start of the identification or module block, which 6002 // was historically always the start of the regular bitcode header. 6003 VSTOffset = Record[0] - 1; 6004 break; 6005 // v1 GLOBALVAR: [pointer type, isconst, initid, linkage, ...] 6006 // v1 FUNCTION: [type, callingconv, isproto, linkage, ...] 6007 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, ...] 6008 // v2: [strtab offset, strtab size, v1] 6009 case bitc::MODULE_CODE_GLOBALVAR: 6010 case bitc::MODULE_CODE_FUNCTION: 6011 case bitc::MODULE_CODE_ALIAS: { 6012 StringRef Name; 6013 ArrayRef<uint64_t> GVRecord; 6014 std::tie(Name, GVRecord) = readNameFromStrtab(Record); 6015 if (GVRecord.size() <= 3) 6016 return error("Invalid record"); 6017 uint64_t RawLinkage = GVRecord[3]; 6018 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 6019 if (!UseStrtab) { 6020 ValueIdToLinkageMap[ValueId++] = Linkage; 6021 break; 6022 } 6023 6024 setValueGUID(ValueId++, Name, Linkage, SourceFileName); 6025 break; 6026 } 6027 } 6028 } 6029 continue; 6030 } 6031 } 6032 } 6033 6034 std::vector<ValueInfo> 6035 ModuleSummaryIndexBitcodeReader::makeRefList(ArrayRef<uint64_t> Record) { 6036 std::vector<ValueInfo> Ret; 6037 Ret.reserve(Record.size()); 6038 for (uint64_t RefValueId : Record) 6039 Ret.push_back(getValueInfoFromValueId(RefValueId).first); 6040 return Ret; 6041 } 6042 6043 std::vector<FunctionSummary::EdgeTy> 6044 ModuleSummaryIndexBitcodeReader::makeCallList(ArrayRef<uint64_t> Record, 6045 bool IsOldProfileFormat, 6046 bool HasProfile, bool HasRelBF) { 6047 std::vector<FunctionSummary::EdgeTy> Ret; 6048 Ret.reserve(Record.size()); 6049 for (unsigned I = 0, E = Record.size(); I != E; ++I) { 6050 CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown; 6051 uint64_t RelBF = 0; 6052 ValueInfo Callee = getValueInfoFromValueId(Record[I]).first; 6053 if (IsOldProfileFormat) { 6054 I += 1; // Skip old callsitecount field 6055 if (HasProfile) 6056 I += 1; // Skip old profilecount field 6057 } else if (HasProfile) 6058 Hotness = static_cast<CalleeInfo::HotnessType>(Record[++I]); 6059 else if (HasRelBF) 6060 RelBF = Record[++I]; 6061 Ret.push_back(FunctionSummary::EdgeTy{Callee, CalleeInfo(Hotness, RelBF)}); 6062 } 6063 return Ret; 6064 } 6065 6066 static void 6067 parseWholeProgramDevirtResolutionByArg(ArrayRef<uint64_t> Record, size_t &Slot, 6068 WholeProgramDevirtResolution &Wpd) { 6069 uint64_t ArgNum = Record[Slot++]; 6070 WholeProgramDevirtResolution::ByArg &B = 6071 Wpd.ResByArg[{Record.begin() + Slot, Record.begin() + Slot + ArgNum}]; 6072 Slot += ArgNum; 6073 6074 B.TheKind = 6075 static_cast<WholeProgramDevirtResolution::ByArg::Kind>(Record[Slot++]); 6076 B.Info = Record[Slot++]; 6077 B.Byte = Record[Slot++]; 6078 B.Bit = Record[Slot++]; 6079 } 6080 6081 static void parseWholeProgramDevirtResolution(ArrayRef<uint64_t> Record, 6082 StringRef Strtab, size_t &Slot, 6083 TypeIdSummary &TypeId) { 6084 uint64_t Id = Record[Slot++]; 6085 WholeProgramDevirtResolution &Wpd = TypeId.WPDRes[Id]; 6086 6087 Wpd.TheKind = static_cast<WholeProgramDevirtResolution::Kind>(Record[Slot++]); 6088 Wpd.SingleImplName = {Strtab.data() + Record[Slot], 6089 static_cast<size_t>(Record[Slot + 1])}; 6090 Slot += 2; 6091 6092 uint64_t ResByArgNum = Record[Slot++]; 6093 for (uint64_t I = 0; I != ResByArgNum; ++I) 6094 parseWholeProgramDevirtResolutionByArg(Record, Slot, Wpd); 6095 } 6096 6097 static void parseTypeIdSummaryRecord(ArrayRef<uint64_t> Record, 6098 StringRef Strtab, 6099 ModuleSummaryIndex &TheIndex) { 6100 size_t Slot = 0; 6101 TypeIdSummary &TypeId = TheIndex.getOrInsertTypeIdSummary( 6102 {Strtab.data() + Record[Slot], static_cast<size_t>(Record[Slot + 1])}); 6103 Slot += 2; 6104 6105 TypeId.TTRes.TheKind = static_cast<TypeTestResolution::Kind>(Record[Slot++]); 6106 TypeId.TTRes.SizeM1BitWidth = Record[Slot++]; 6107 TypeId.TTRes.AlignLog2 = Record[Slot++]; 6108 TypeId.TTRes.SizeM1 = Record[Slot++]; 6109 TypeId.TTRes.BitMask = Record[Slot++]; 6110 TypeId.TTRes.InlineBits = Record[Slot++]; 6111 6112 while (Slot < Record.size()) 6113 parseWholeProgramDevirtResolution(Record, Strtab, Slot, TypeId); 6114 } 6115 6116 std::vector<FunctionSummary::ParamAccess> 6117 ModuleSummaryIndexBitcodeReader::parseParamAccesses(ArrayRef<uint64_t> Record) { 6118 auto ReadRange = [&]() { 6119 APInt Lower(FunctionSummary::ParamAccess::RangeWidth, 6120 BitcodeReader::decodeSignRotatedValue(Record.front())); 6121 Record = Record.drop_front(); 6122 APInt Upper(FunctionSummary::ParamAccess::RangeWidth, 6123 BitcodeReader::decodeSignRotatedValue(Record.front())); 6124 Record = Record.drop_front(); 6125 ConstantRange Range{Lower, Upper}; 6126 assert(!Range.isFullSet()); 6127 assert(!Range.isUpperSignWrapped()); 6128 return Range; 6129 }; 6130 6131 std::vector<FunctionSummary::ParamAccess> PendingParamAccesses; 6132 while (!Record.empty()) { 6133 PendingParamAccesses.emplace_back(); 6134 FunctionSummary::ParamAccess &ParamAccess = PendingParamAccesses.back(); 6135 ParamAccess.ParamNo = Record.front(); 6136 Record = Record.drop_front(); 6137 ParamAccess.Use = ReadRange(); 6138 ParamAccess.Calls.resize(Record.front()); 6139 Record = Record.drop_front(); 6140 for (auto &Call : ParamAccess.Calls) { 6141 Call.ParamNo = Record.front(); 6142 Record = Record.drop_front(); 6143 Call.Callee = getValueInfoFromValueId(Record.front()).first; 6144 Record = Record.drop_front(); 6145 Call.Offsets = ReadRange(); 6146 } 6147 } 6148 return PendingParamAccesses; 6149 } 6150 6151 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableInfo( 6152 ArrayRef<uint64_t> Record, size_t &Slot, 6153 TypeIdCompatibleVtableInfo &TypeId) { 6154 uint64_t Offset = Record[Slot++]; 6155 ValueInfo Callee = getValueInfoFromValueId(Record[Slot++]).first; 6156 TypeId.push_back({Offset, Callee}); 6157 } 6158 6159 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableSummaryRecord( 6160 ArrayRef<uint64_t> Record) { 6161 size_t Slot = 0; 6162 TypeIdCompatibleVtableInfo &TypeId = 6163 TheIndex.getOrInsertTypeIdCompatibleVtableSummary( 6164 {Strtab.data() + Record[Slot], 6165 static_cast<size_t>(Record[Slot + 1])}); 6166 Slot += 2; 6167 6168 while (Slot < Record.size()) 6169 parseTypeIdCompatibleVtableInfo(Record, Slot, TypeId); 6170 } 6171 6172 static void setSpecialRefs(std::vector<ValueInfo> &Refs, unsigned ROCnt, 6173 unsigned WOCnt) { 6174 // Readonly and writeonly refs are in the end of the refs list. 6175 assert(ROCnt + WOCnt <= Refs.size()); 6176 unsigned FirstWORef = Refs.size() - WOCnt; 6177 unsigned RefNo = FirstWORef - ROCnt; 6178 for (; RefNo < FirstWORef; ++RefNo) 6179 Refs[RefNo].setReadOnly(); 6180 for (; RefNo < Refs.size(); ++RefNo) 6181 Refs[RefNo].setWriteOnly(); 6182 } 6183 6184 // Eagerly parse the entire summary block. This populates the GlobalValueSummary 6185 // objects in the index. 6186 Error ModuleSummaryIndexBitcodeReader::parseEntireSummary(unsigned ID) { 6187 if (Error Err = Stream.EnterSubBlock(ID)) 6188 return Err; 6189 SmallVector<uint64_t, 64> Record; 6190 6191 // Parse version 6192 { 6193 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 6194 if (!MaybeEntry) 6195 return MaybeEntry.takeError(); 6196 BitstreamEntry Entry = MaybeEntry.get(); 6197 6198 if (Entry.Kind != BitstreamEntry::Record) 6199 return error("Invalid Summary Block: record for version expected"); 6200 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 6201 if (!MaybeRecord) 6202 return MaybeRecord.takeError(); 6203 if (MaybeRecord.get() != bitc::FS_VERSION) 6204 return error("Invalid Summary Block: version expected"); 6205 } 6206 const uint64_t Version = Record[0]; 6207 const bool IsOldProfileFormat = Version == 1; 6208 if (Version < 1 || Version > ModuleSummaryIndex::BitcodeSummaryVersion) 6209 return error("Invalid summary version " + Twine(Version) + 6210 ". Version should be in the range [1-" + 6211 Twine(ModuleSummaryIndex::BitcodeSummaryVersion) + 6212 "]."); 6213 Record.clear(); 6214 6215 // Keep around the last seen summary to be used when we see an optional 6216 // "OriginalName" attachement. 6217 GlobalValueSummary *LastSeenSummary = nullptr; 6218 GlobalValue::GUID LastSeenGUID = 0; 6219 6220 // We can expect to see any number of type ID information records before 6221 // each function summary records; these variables store the information 6222 // collected so far so that it can be used to create the summary object. 6223 std::vector<GlobalValue::GUID> PendingTypeTests; 6224 std::vector<FunctionSummary::VFuncId> PendingTypeTestAssumeVCalls, 6225 PendingTypeCheckedLoadVCalls; 6226 std::vector<FunctionSummary::ConstVCall> PendingTypeTestAssumeConstVCalls, 6227 PendingTypeCheckedLoadConstVCalls; 6228 std::vector<FunctionSummary::ParamAccess> PendingParamAccesses; 6229 6230 while (true) { 6231 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 6232 if (!MaybeEntry) 6233 return MaybeEntry.takeError(); 6234 BitstreamEntry Entry = MaybeEntry.get(); 6235 6236 switch (Entry.Kind) { 6237 case BitstreamEntry::SubBlock: // Handled for us already. 6238 case BitstreamEntry::Error: 6239 return error("Malformed block"); 6240 case BitstreamEntry::EndBlock: 6241 return Error::success(); 6242 case BitstreamEntry::Record: 6243 // The interesting case. 6244 break; 6245 } 6246 6247 // Read a record. The record format depends on whether this 6248 // is a per-module index or a combined index file. In the per-module 6249 // case the records contain the associated value's ID for correlation 6250 // with VST entries. In the combined index the correlation is done 6251 // via the bitcode offset of the summary records (which were saved 6252 // in the combined index VST entries). The records also contain 6253 // information used for ThinLTO renaming and importing. 6254 Record.clear(); 6255 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 6256 if (!MaybeBitCode) 6257 return MaybeBitCode.takeError(); 6258 switch (unsigned BitCode = MaybeBitCode.get()) { 6259 default: // Default behavior: ignore. 6260 break; 6261 case bitc::FS_FLAGS: { // [flags] 6262 TheIndex.setFlags(Record[0]); 6263 break; 6264 } 6265 case bitc::FS_VALUE_GUID: { // [valueid, refguid] 6266 uint64_t ValueID = Record[0]; 6267 GlobalValue::GUID RefGUID = Record[1]; 6268 ValueIdToValueInfoMap[ValueID] = 6269 std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID); 6270 break; 6271 } 6272 // FS_PERMODULE: [valueid, flags, instcount, fflags, numrefs, 6273 // numrefs x valueid, n x (valueid)] 6274 // FS_PERMODULE_PROFILE: [valueid, flags, instcount, fflags, numrefs, 6275 // numrefs x valueid, 6276 // n x (valueid, hotness)] 6277 // FS_PERMODULE_RELBF: [valueid, flags, instcount, fflags, numrefs, 6278 // numrefs x valueid, 6279 // n x (valueid, relblockfreq)] 6280 case bitc::FS_PERMODULE: 6281 case bitc::FS_PERMODULE_RELBF: 6282 case bitc::FS_PERMODULE_PROFILE: { 6283 unsigned ValueID = Record[0]; 6284 uint64_t RawFlags = Record[1]; 6285 unsigned InstCount = Record[2]; 6286 uint64_t RawFunFlags = 0; 6287 unsigned NumRefs = Record[3]; 6288 unsigned NumRORefs = 0, NumWORefs = 0; 6289 int RefListStartIndex = 4; 6290 if (Version >= 4) { 6291 RawFunFlags = Record[3]; 6292 NumRefs = Record[4]; 6293 RefListStartIndex = 5; 6294 if (Version >= 5) { 6295 NumRORefs = Record[5]; 6296 RefListStartIndex = 6; 6297 if (Version >= 7) { 6298 NumWORefs = Record[6]; 6299 RefListStartIndex = 7; 6300 } 6301 } 6302 } 6303 6304 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6305 // The module path string ref set in the summary must be owned by the 6306 // index's module string table. Since we don't have a module path 6307 // string table section in the per-module index, we create a single 6308 // module path string table entry with an empty (0) ID to take 6309 // ownership. 6310 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 6311 assert(Record.size() >= RefListStartIndex + NumRefs && 6312 "Record size inconsistent with number of references"); 6313 std::vector<ValueInfo> Refs = makeRefList( 6314 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 6315 bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE); 6316 bool HasRelBF = (BitCode == bitc::FS_PERMODULE_RELBF); 6317 std::vector<FunctionSummary::EdgeTy> Calls = makeCallList( 6318 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex), 6319 IsOldProfileFormat, HasProfile, HasRelBF); 6320 setSpecialRefs(Refs, NumRORefs, NumWORefs); 6321 auto FS = std::make_unique<FunctionSummary>( 6322 Flags, InstCount, getDecodedFFlags(RawFunFlags), /*EntryCount=*/0, 6323 std::move(Refs), std::move(Calls), std::move(PendingTypeTests), 6324 std::move(PendingTypeTestAssumeVCalls), 6325 std::move(PendingTypeCheckedLoadVCalls), 6326 std::move(PendingTypeTestAssumeConstVCalls), 6327 std::move(PendingTypeCheckedLoadConstVCalls), 6328 std::move(PendingParamAccesses)); 6329 auto VIAndOriginalGUID = getValueInfoFromValueId(ValueID); 6330 FS->setModulePath(getThisModule()->first()); 6331 FS->setOriginalName(VIAndOriginalGUID.second); 6332 TheIndex.addGlobalValueSummary(VIAndOriginalGUID.first, std::move(FS)); 6333 break; 6334 } 6335 // FS_ALIAS: [valueid, flags, valueid] 6336 // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as 6337 // they expect all aliasee summaries to be available. 6338 case bitc::FS_ALIAS: { 6339 unsigned ValueID = Record[0]; 6340 uint64_t RawFlags = Record[1]; 6341 unsigned AliaseeID = Record[2]; 6342 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6343 auto AS = std::make_unique<AliasSummary>(Flags); 6344 // The module path string ref set in the summary must be owned by the 6345 // index's module string table. Since we don't have a module path 6346 // string table section in the per-module index, we create a single 6347 // module path string table entry with an empty (0) ID to take 6348 // ownership. 6349 AS->setModulePath(getThisModule()->first()); 6350 6351 auto AliaseeVI = getValueInfoFromValueId(AliaseeID).first; 6352 auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, ModulePath); 6353 if (!AliaseeInModule) 6354 return error("Alias expects aliasee summary to be parsed"); 6355 AS->setAliasee(AliaseeVI, AliaseeInModule); 6356 6357 auto GUID = getValueInfoFromValueId(ValueID); 6358 AS->setOriginalName(GUID.second); 6359 TheIndex.addGlobalValueSummary(GUID.first, std::move(AS)); 6360 break; 6361 } 6362 // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, n x valueid] 6363 case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: { 6364 unsigned ValueID = Record[0]; 6365 uint64_t RawFlags = Record[1]; 6366 unsigned RefArrayStart = 2; 6367 GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false, 6368 /* WriteOnly */ false, 6369 /* Constant */ false, 6370 GlobalObject::VCallVisibilityPublic); 6371 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6372 if (Version >= 5) { 6373 GVF = getDecodedGVarFlags(Record[2]); 6374 RefArrayStart = 3; 6375 } 6376 std::vector<ValueInfo> Refs = 6377 makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart)); 6378 auto FS = 6379 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 6380 FS->setModulePath(getThisModule()->first()); 6381 auto GUID = getValueInfoFromValueId(ValueID); 6382 FS->setOriginalName(GUID.second); 6383 TheIndex.addGlobalValueSummary(GUID.first, std::move(FS)); 6384 break; 6385 } 6386 // FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, 6387 // numrefs, numrefs x valueid, 6388 // n x (valueid, offset)] 6389 case bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: { 6390 unsigned ValueID = Record[0]; 6391 uint64_t RawFlags = Record[1]; 6392 GlobalVarSummary::GVarFlags GVF = getDecodedGVarFlags(Record[2]); 6393 unsigned NumRefs = Record[3]; 6394 unsigned RefListStartIndex = 4; 6395 unsigned VTableListStartIndex = RefListStartIndex + NumRefs; 6396 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6397 std::vector<ValueInfo> Refs = makeRefList( 6398 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 6399 VTableFuncList VTableFuncs; 6400 for (unsigned I = VTableListStartIndex, E = Record.size(); I != E; ++I) { 6401 ValueInfo Callee = getValueInfoFromValueId(Record[I]).first; 6402 uint64_t Offset = Record[++I]; 6403 VTableFuncs.push_back({Callee, Offset}); 6404 } 6405 auto VS = 6406 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 6407 VS->setModulePath(getThisModule()->first()); 6408 VS->setVTableFuncs(VTableFuncs); 6409 auto GUID = getValueInfoFromValueId(ValueID); 6410 VS->setOriginalName(GUID.second); 6411 TheIndex.addGlobalValueSummary(GUID.first, std::move(VS)); 6412 break; 6413 } 6414 // FS_COMBINED: [valueid, modid, flags, instcount, fflags, numrefs, 6415 // numrefs x valueid, n x (valueid)] 6416 // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, fflags, numrefs, 6417 // numrefs x valueid, n x (valueid, hotness)] 6418 case bitc::FS_COMBINED: 6419 case bitc::FS_COMBINED_PROFILE: { 6420 unsigned ValueID = Record[0]; 6421 uint64_t ModuleId = Record[1]; 6422 uint64_t RawFlags = Record[2]; 6423 unsigned InstCount = Record[3]; 6424 uint64_t RawFunFlags = 0; 6425 uint64_t EntryCount = 0; 6426 unsigned NumRefs = Record[4]; 6427 unsigned NumRORefs = 0, NumWORefs = 0; 6428 int RefListStartIndex = 5; 6429 6430 if (Version >= 4) { 6431 RawFunFlags = Record[4]; 6432 RefListStartIndex = 6; 6433 size_t NumRefsIndex = 5; 6434 if (Version >= 5) { 6435 unsigned NumRORefsOffset = 1; 6436 RefListStartIndex = 7; 6437 if (Version >= 6) { 6438 NumRefsIndex = 6; 6439 EntryCount = Record[5]; 6440 RefListStartIndex = 8; 6441 if (Version >= 7) { 6442 RefListStartIndex = 9; 6443 NumWORefs = Record[8]; 6444 NumRORefsOffset = 2; 6445 } 6446 } 6447 NumRORefs = Record[RefListStartIndex - NumRORefsOffset]; 6448 } 6449 NumRefs = Record[NumRefsIndex]; 6450 } 6451 6452 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6453 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 6454 assert(Record.size() >= RefListStartIndex + NumRefs && 6455 "Record size inconsistent with number of references"); 6456 std::vector<ValueInfo> Refs = makeRefList( 6457 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 6458 bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE); 6459 std::vector<FunctionSummary::EdgeTy> Edges = makeCallList( 6460 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex), 6461 IsOldProfileFormat, HasProfile, false); 6462 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 6463 setSpecialRefs(Refs, NumRORefs, NumWORefs); 6464 auto FS = std::make_unique<FunctionSummary>( 6465 Flags, InstCount, getDecodedFFlags(RawFunFlags), EntryCount, 6466 std::move(Refs), std::move(Edges), std::move(PendingTypeTests), 6467 std::move(PendingTypeTestAssumeVCalls), 6468 std::move(PendingTypeCheckedLoadVCalls), 6469 std::move(PendingTypeTestAssumeConstVCalls), 6470 std::move(PendingTypeCheckedLoadConstVCalls), 6471 std::move(PendingParamAccesses)); 6472 LastSeenSummary = FS.get(); 6473 LastSeenGUID = VI.getGUID(); 6474 FS->setModulePath(ModuleIdMap[ModuleId]); 6475 TheIndex.addGlobalValueSummary(VI, std::move(FS)); 6476 break; 6477 } 6478 // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid] 6479 // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as 6480 // they expect all aliasee summaries to be available. 6481 case bitc::FS_COMBINED_ALIAS: { 6482 unsigned ValueID = Record[0]; 6483 uint64_t ModuleId = Record[1]; 6484 uint64_t RawFlags = Record[2]; 6485 unsigned AliaseeValueId = Record[3]; 6486 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6487 auto AS = std::make_unique<AliasSummary>(Flags); 6488 LastSeenSummary = AS.get(); 6489 AS->setModulePath(ModuleIdMap[ModuleId]); 6490 6491 auto AliaseeVI = getValueInfoFromValueId(AliaseeValueId).first; 6492 auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, AS->modulePath()); 6493 AS->setAliasee(AliaseeVI, AliaseeInModule); 6494 6495 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 6496 LastSeenGUID = VI.getGUID(); 6497 TheIndex.addGlobalValueSummary(VI, std::move(AS)); 6498 break; 6499 } 6500 // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid] 6501 case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: { 6502 unsigned ValueID = Record[0]; 6503 uint64_t ModuleId = Record[1]; 6504 uint64_t RawFlags = Record[2]; 6505 unsigned RefArrayStart = 3; 6506 GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false, 6507 /* WriteOnly */ false, 6508 /* Constant */ false, 6509 GlobalObject::VCallVisibilityPublic); 6510 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6511 if (Version >= 5) { 6512 GVF = getDecodedGVarFlags(Record[3]); 6513 RefArrayStart = 4; 6514 } 6515 std::vector<ValueInfo> Refs = 6516 makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart)); 6517 auto FS = 6518 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 6519 LastSeenSummary = FS.get(); 6520 FS->setModulePath(ModuleIdMap[ModuleId]); 6521 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 6522 LastSeenGUID = VI.getGUID(); 6523 TheIndex.addGlobalValueSummary(VI, std::move(FS)); 6524 break; 6525 } 6526 // FS_COMBINED_ORIGINAL_NAME: [original_name] 6527 case bitc::FS_COMBINED_ORIGINAL_NAME: { 6528 uint64_t OriginalName = Record[0]; 6529 if (!LastSeenSummary) 6530 return error("Name attachment that does not follow a combined record"); 6531 LastSeenSummary->setOriginalName(OriginalName); 6532 TheIndex.addOriginalName(LastSeenGUID, OriginalName); 6533 // Reset the LastSeenSummary 6534 LastSeenSummary = nullptr; 6535 LastSeenGUID = 0; 6536 break; 6537 } 6538 case bitc::FS_TYPE_TESTS: 6539 assert(PendingTypeTests.empty()); 6540 llvm::append_range(PendingTypeTests, Record); 6541 break; 6542 6543 case bitc::FS_TYPE_TEST_ASSUME_VCALLS: 6544 assert(PendingTypeTestAssumeVCalls.empty()); 6545 for (unsigned I = 0; I != Record.size(); I += 2) 6546 PendingTypeTestAssumeVCalls.push_back({Record[I], Record[I+1]}); 6547 break; 6548 6549 case bitc::FS_TYPE_CHECKED_LOAD_VCALLS: 6550 assert(PendingTypeCheckedLoadVCalls.empty()); 6551 for (unsigned I = 0; I != Record.size(); I += 2) 6552 PendingTypeCheckedLoadVCalls.push_back({Record[I], Record[I+1]}); 6553 break; 6554 6555 case bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL: 6556 PendingTypeTestAssumeConstVCalls.push_back( 6557 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}}); 6558 break; 6559 6560 case bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL: 6561 PendingTypeCheckedLoadConstVCalls.push_back( 6562 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}}); 6563 break; 6564 6565 case bitc::FS_CFI_FUNCTION_DEFS: { 6566 std::set<std::string> &CfiFunctionDefs = TheIndex.cfiFunctionDefs(); 6567 for (unsigned I = 0; I != Record.size(); I += 2) 6568 CfiFunctionDefs.insert( 6569 {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])}); 6570 break; 6571 } 6572 6573 case bitc::FS_CFI_FUNCTION_DECLS: { 6574 std::set<std::string> &CfiFunctionDecls = TheIndex.cfiFunctionDecls(); 6575 for (unsigned I = 0; I != Record.size(); I += 2) 6576 CfiFunctionDecls.insert( 6577 {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])}); 6578 break; 6579 } 6580 6581 case bitc::FS_TYPE_ID: 6582 parseTypeIdSummaryRecord(Record, Strtab, TheIndex); 6583 break; 6584 6585 case bitc::FS_TYPE_ID_METADATA: 6586 parseTypeIdCompatibleVtableSummaryRecord(Record); 6587 break; 6588 6589 case bitc::FS_BLOCK_COUNT: 6590 TheIndex.addBlockCount(Record[0]); 6591 break; 6592 6593 case bitc::FS_PARAM_ACCESS: { 6594 PendingParamAccesses = parseParamAccesses(Record); 6595 break; 6596 } 6597 } 6598 } 6599 llvm_unreachable("Exit infinite loop"); 6600 } 6601 6602 // Parse the module string table block into the Index. 6603 // This populates the ModulePathStringTable map in the index. 6604 Error ModuleSummaryIndexBitcodeReader::parseModuleStringTable() { 6605 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID)) 6606 return Err; 6607 6608 SmallVector<uint64_t, 64> Record; 6609 6610 SmallString<128> ModulePath; 6611 ModuleSummaryIndex::ModuleInfo *LastSeenModule = nullptr; 6612 6613 while (true) { 6614 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 6615 if (!MaybeEntry) 6616 return MaybeEntry.takeError(); 6617 BitstreamEntry Entry = MaybeEntry.get(); 6618 6619 switch (Entry.Kind) { 6620 case BitstreamEntry::SubBlock: // Handled for us already. 6621 case BitstreamEntry::Error: 6622 return error("Malformed block"); 6623 case BitstreamEntry::EndBlock: 6624 return Error::success(); 6625 case BitstreamEntry::Record: 6626 // The interesting case. 6627 break; 6628 } 6629 6630 Record.clear(); 6631 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 6632 if (!MaybeRecord) 6633 return MaybeRecord.takeError(); 6634 switch (MaybeRecord.get()) { 6635 default: // Default behavior: ignore. 6636 break; 6637 case bitc::MST_CODE_ENTRY: { 6638 // MST_ENTRY: [modid, namechar x N] 6639 uint64_t ModuleId = Record[0]; 6640 6641 if (convertToString(Record, 1, ModulePath)) 6642 return error("Invalid record"); 6643 6644 LastSeenModule = TheIndex.addModule(ModulePath, ModuleId); 6645 ModuleIdMap[ModuleId] = LastSeenModule->first(); 6646 6647 ModulePath.clear(); 6648 break; 6649 } 6650 /// MST_CODE_HASH: [5*i32] 6651 case bitc::MST_CODE_HASH: { 6652 if (Record.size() != 5) 6653 return error("Invalid hash length " + Twine(Record.size()).str()); 6654 if (!LastSeenModule) 6655 return error("Invalid hash that does not follow a module path"); 6656 int Pos = 0; 6657 for (auto &Val : Record) { 6658 assert(!(Val >> 32) && "Unexpected high bits set"); 6659 LastSeenModule->second.second[Pos++] = Val; 6660 } 6661 // Reset LastSeenModule to avoid overriding the hash unexpectedly. 6662 LastSeenModule = nullptr; 6663 break; 6664 } 6665 } 6666 } 6667 llvm_unreachable("Exit infinite loop"); 6668 } 6669 6670 namespace { 6671 6672 // FIXME: This class is only here to support the transition to llvm::Error. It 6673 // will be removed once this transition is complete. Clients should prefer to 6674 // deal with the Error value directly, rather than converting to error_code. 6675 class BitcodeErrorCategoryType : public std::error_category { 6676 const char *name() const noexcept override { 6677 return "llvm.bitcode"; 6678 } 6679 6680 std::string message(int IE) const override { 6681 BitcodeError E = static_cast<BitcodeError>(IE); 6682 switch (E) { 6683 case BitcodeError::CorruptedBitcode: 6684 return "Corrupted bitcode"; 6685 } 6686 llvm_unreachable("Unknown error type!"); 6687 } 6688 }; 6689 6690 } // end anonymous namespace 6691 6692 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory; 6693 6694 const std::error_category &llvm::BitcodeErrorCategory() { 6695 return *ErrorCategory; 6696 } 6697 6698 static Expected<StringRef> readBlobInRecord(BitstreamCursor &Stream, 6699 unsigned Block, unsigned RecordID) { 6700 if (Error Err = Stream.EnterSubBlock(Block)) 6701 return std::move(Err); 6702 6703 StringRef Strtab; 6704 while (true) { 6705 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 6706 if (!MaybeEntry) 6707 return MaybeEntry.takeError(); 6708 llvm::BitstreamEntry Entry = MaybeEntry.get(); 6709 6710 switch (Entry.Kind) { 6711 case BitstreamEntry::EndBlock: 6712 return Strtab; 6713 6714 case BitstreamEntry::Error: 6715 return error("Malformed block"); 6716 6717 case BitstreamEntry::SubBlock: 6718 if (Error Err = Stream.SkipBlock()) 6719 return std::move(Err); 6720 break; 6721 6722 case BitstreamEntry::Record: 6723 StringRef Blob; 6724 SmallVector<uint64_t, 1> Record; 6725 Expected<unsigned> MaybeRecord = 6726 Stream.readRecord(Entry.ID, Record, &Blob); 6727 if (!MaybeRecord) 6728 return MaybeRecord.takeError(); 6729 if (MaybeRecord.get() == RecordID) 6730 Strtab = Blob; 6731 break; 6732 } 6733 } 6734 } 6735 6736 //===----------------------------------------------------------------------===// 6737 // External interface 6738 //===----------------------------------------------------------------------===// 6739 6740 Expected<std::vector<BitcodeModule>> 6741 llvm::getBitcodeModuleList(MemoryBufferRef Buffer) { 6742 auto FOrErr = getBitcodeFileContents(Buffer); 6743 if (!FOrErr) 6744 return FOrErr.takeError(); 6745 return std::move(FOrErr->Mods); 6746 } 6747 6748 Expected<BitcodeFileContents> 6749 llvm::getBitcodeFileContents(MemoryBufferRef Buffer) { 6750 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 6751 if (!StreamOrErr) 6752 return StreamOrErr.takeError(); 6753 BitstreamCursor &Stream = *StreamOrErr; 6754 6755 BitcodeFileContents F; 6756 while (true) { 6757 uint64_t BCBegin = Stream.getCurrentByteNo(); 6758 6759 // We may be consuming bitcode from a client that leaves garbage at the end 6760 // of the bitcode stream (e.g. Apple's ar tool). If we are close enough to 6761 // the end that there cannot possibly be another module, stop looking. 6762 if (BCBegin + 8 >= Stream.getBitcodeBytes().size()) 6763 return F; 6764 6765 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 6766 if (!MaybeEntry) 6767 return MaybeEntry.takeError(); 6768 llvm::BitstreamEntry Entry = MaybeEntry.get(); 6769 6770 switch (Entry.Kind) { 6771 case BitstreamEntry::EndBlock: 6772 case BitstreamEntry::Error: 6773 return error("Malformed block"); 6774 6775 case BitstreamEntry::SubBlock: { 6776 uint64_t IdentificationBit = -1ull; 6777 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) { 6778 IdentificationBit = Stream.GetCurrentBitNo() - BCBegin * 8; 6779 if (Error Err = Stream.SkipBlock()) 6780 return std::move(Err); 6781 6782 { 6783 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 6784 if (!MaybeEntry) 6785 return MaybeEntry.takeError(); 6786 Entry = MaybeEntry.get(); 6787 } 6788 6789 if (Entry.Kind != BitstreamEntry::SubBlock || 6790 Entry.ID != bitc::MODULE_BLOCK_ID) 6791 return error("Malformed block"); 6792 } 6793 6794 if (Entry.ID == bitc::MODULE_BLOCK_ID) { 6795 uint64_t ModuleBit = Stream.GetCurrentBitNo() - BCBegin * 8; 6796 if (Error Err = Stream.SkipBlock()) 6797 return std::move(Err); 6798 6799 F.Mods.push_back({Stream.getBitcodeBytes().slice( 6800 BCBegin, Stream.getCurrentByteNo() - BCBegin), 6801 Buffer.getBufferIdentifier(), IdentificationBit, 6802 ModuleBit}); 6803 continue; 6804 } 6805 6806 if (Entry.ID == bitc::STRTAB_BLOCK_ID) { 6807 Expected<StringRef> Strtab = 6808 readBlobInRecord(Stream, bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB); 6809 if (!Strtab) 6810 return Strtab.takeError(); 6811 // This string table is used by every preceding bitcode module that does 6812 // not have its own string table. A bitcode file may have multiple 6813 // string tables if it was created by binary concatenation, for example 6814 // with "llvm-cat -b". 6815 for (BitcodeModule &I : llvm::reverse(F.Mods)) { 6816 if (!I.Strtab.empty()) 6817 break; 6818 I.Strtab = *Strtab; 6819 } 6820 // Similarly, the string table is used by every preceding symbol table; 6821 // normally there will be just one unless the bitcode file was created 6822 // by binary concatenation. 6823 if (!F.Symtab.empty() && F.StrtabForSymtab.empty()) 6824 F.StrtabForSymtab = *Strtab; 6825 continue; 6826 } 6827 6828 if (Entry.ID == bitc::SYMTAB_BLOCK_ID) { 6829 Expected<StringRef> SymtabOrErr = 6830 readBlobInRecord(Stream, bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB); 6831 if (!SymtabOrErr) 6832 return SymtabOrErr.takeError(); 6833 6834 // We can expect the bitcode file to have multiple symbol tables if it 6835 // was created by binary concatenation. In that case we silently 6836 // ignore any subsequent symbol tables, which is fine because this is a 6837 // low level function. The client is expected to notice that the number 6838 // of modules in the symbol table does not match the number of modules 6839 // in the input file and regenerate the symbol table. 6840 if (F.Symtab.empty()) 6841 F.Symtab = *SymtabOrErr; 6842 continue; 6843 } 6844 6845 if (Error Err = Stream.SkipBlock()) 6846 return std::move(Err); 6847 continue; 6848 } 6849 case BitstreamEntry::Record: 6850 if (Error E = Stream.skipRecord(Entry.ID).takeError()) 6851 return std::move(E); 6852 continue; 6853 } 6854 } 6855 } 6856 6857 /// Get a lazy one-at-time loading module from bitcode. 6858 /// 6859 /// This isn't always used in a lazy context. In particular, it's also used by 6860 /// \a parseModule(). If this is truly lazy, then we need to eagerly pull 6861 /// in forward-referenced functions from block address references. 6862 /// 6863 /// \param[in] MaterializeAll Set to \c true if we should materialize 6864 /// everything. 6865 Expected<std::unique_ptr<Module>> 6866 BitcodeModule::getModuleImpl(LLVMContext &Context, bool MaterializeAll, 6867 bool ShouldLazyLoadMetadata, bool IsImporting, 6868 DataLayoutCallbackTy DataLayoutCallback) { 6869 BitstreamCursor Stream(Buffer); 6870 6871 std::string ProducerIdentification; 6872 if (IdentificationBit != -1ull) { 6873 if (Error JumpFailed = Stream.JumpToBit(IdentificationBit)) 6874 return std::move(JumpFailed); 6875 if (Error E = 6876 readIdentificationBlock(Stream).moveInto(ProducerIdentification)) 6877 return std::move(E); 6878 } 6879 6880 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 6881 return std::move(JumpFailed); 6882 auto *R = new BitcodeReader(std::move(Stream), Strtab, ProducerIdentification, 6883 Context); 6884 6885 std::unique_ptr<Module> M = 6886 std::make_unique<Module>(ModuleIdentifier, Context); 6887 M->setMaterializer(R); 6888 6889 // Delay parsing Metadata if ShouldLazyLoadMetadata is true. 6890 if (Error Err = R->parseBitcodeInto(M.get(), ShouldLazyLoadMetadata, 6891 IsImporting, DataLayoutCallback)) 6892 return std::move(Err); 6893 6894 if (MaterializeAll) { 6895 // Read in the entire module, and destroy the BitcodeReader. 6896 if (Error Err = M->materializeAll()) 6897 return std::move(Err); 6898 } else { 6899 // Resolve forward references from blockaddresses. 6900 if (Error Err = R->materializeForwardReferencedFunctions()) 6901 return std::move(Err); 6902 } 6903 return std::move(M); 6904 } 6905 6906 Expected<std::unique_ptr<Module>> 6907 BitcodeModule::getLazyModule(LLVMContext &Context, bool ShouldLazyLoadMetadata, 6908 bool IsImporting) { 6909 return getModuleImpl(Context, false, ShouldLazyLoadMetadata, IsImporting, 6910 [](StringRef) { return None; }); 6911 } 6912 6913 // Parse the specified bitcode buffer and merge the index into CombinedIndex. 6914 // We don't use ModuleIdentifier here because the client may need to control the 6915 // module path used in the combined summary (e.g. when reading summaries for 6916 // regular LTO modules). 6917 Error BitcodeModule::readSummary(ModuleSummaryIndex &CombinedIndex, 6918 StringRef ModulePath, uint64_t ModuleId) { 6919 BitstreamCursor Stream(Buffer); 6920 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 6921 return JumpFailed; 6922 6923 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, CombinedIndex, 6924 ModulePath, ModuleId); 6925 return R.parseModule(); 6926 } 6927 6928 // Parse the specified bitcode buffer, returning the function info index. 6929 Expected<std::unique_ptr<ModuleSummaryIndex>> BitcodeModule::getSummary() { 6930 BitstreamCursor Stream(Buffer); 6931 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 6932 return std::move(JumpFailed); 6933 6934 auto Index = std::make_unique<ModuleSummaryIndex>(/*HaveGVs=*/false); 6935 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, *Index, 6936 ModuleIdentifier, 0); 6937 6938 if (Error Err = R.parseModule()) 6939 return std::move(Err); 6940 6941 return std::move(Index); 6942 } 6943 6944 static Expected<bool> getEnableSplitLTOUnitFlag(BitstreamCursor &Stream, 6945 unsigned ID) { 6946 if (Error Err = Stream.EnterSubBlock(ID)) 6947 return std::move(Err); 6948 SmallVector<uint64_t, 64> Record; 6949 6950 while (true) { 6951 BitstreamEntry Entry; 6952 if (Error E = Stream.advanceSkippingSubblocks().moveInto(Entry)) 6953 return std::move(E); 6954 6955 switch (Entry.Kind) { 6956 case BitstreamEntry::SubBlock: // Handled for us already. 6957 case BitstreamEntry::Error: 6958 return error("Malformed block"); 6959 case BitstreamEntry::EndBlock: 6960 // If no flags record found, conservatively return true to mimic 6961 // behavior before this flag was added. 6962 return true; 6963 case BitstreamEntry::Record: 6964 // The interesting case. 6965 break; 6966 } 6967 6968 // Look for the FS_FLAGS record. 6969 Record.clear(); 6970 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 6971 if (!MaybeBitCode) 6972 return MaybeBitCode.takeError(); 6973 switch (MaybeBitCode.get()) { 6974 default: // Default behavior: ignore. 6975 break; 6976 case bitc::FS_FLAGS: { // [flags] 6977 uint64_t Flags = Record[0]; 6978 // Scan flags. 6979 assert(Flags <= 0x7f && "Unexpected bits in flag"); 6980 6981 return Flags & 0x8; 6982 } 6983 } 6984 } 6985 llvm_unreachable("Exit infinite loop"); 6986 } 6987 6988 // Check if the given bitcode buffer contains a global value summary block. 6989 Expected<BitcodeLTOInfo> BitcodeModule::getLTOInfo() { 6990 BitstreamCursor Stream(Buffer); 6991 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 6992 return std::move(JumpFailed); 6993 6994 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 6995 return std::move(Err); 6996 6997 while (true) { 6998 llvm::BitstreamEntry Entry; 6999 if (Error E = Stream.advance().moveInto(Entry)) 7000 return std::move(E); 7001 7002 switch (Entry.Kind) { 7003 case BitstreamEntry::Error: 7004 return error("Malformed block"); 7005 case BitstreamEntry::EndBlock: 7006 return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/false, 7007 /*EnableSplitLTOUnit=*/false}; 7008 7009 case BitstreamEntry::SubBlock: 7010 if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) { 7011 Expected<bool> EnableSplitLTOUnit = 7012 getEnableSplitLTOUnitFlag(Stream, Entry.ID); 7013 if (!EnableSplitLTOUnit) 7014 return EnableSplitLTOUnit.takeError(); 7015 return BitcodeLTOInfo{/*IsThinLTO=*/true, /*HasSummary=*/true, 7016 *EnableSplitLTOUnit}; 7017 } 7018 7019 if (Entry.ID == bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID) { 7020 Expected<bool> EnableSplitLTOUnit = 7021 getEnableSplitLTOUnitFlag(Stream, Entry.ID); 7022 if (!EnableSplitLTOUnit) 7023 return EnableSplitLTOUnit.takeError(); 7024 return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/true, 7025 *EnableSplitLTOUnit}; 7026 } 7027 7028 // Ignore other sub-blocks. 7029 if (Error Err = Stream.SkipBlock()) 7030 return std::move(Err); 7031 continue; 7032 7033 case BitstreamEntry::Record: 7034 if (Expected<unsigned> StreamFailed = Stream.skipRecord(Entry.ID)) 7035 continue; 7036 else 7037 return StreamFailed.takeError(); 7038 } 7039 } 7040 } 7041 7042 static Expected<BitcodeModule> getSingleModule(MemoryBufferRef Buffer) { 7043 Expected<std::vector<BitcodeModule>> MsOrErr = getBitcodeModuleList(Buffer); 7044 if (!MsOrErr) 7045 return MsOrErr.takeError(); 7046 7047 if (MsOrErr->size() != 1) 7048 return error("Expected a single module"); 7049 7050 return (*MsOrErr)[0]; 7051 } 7052 7053 Expected<std::unique_ptr<Module>> 7054 llvm::getLazyBitcodeModule(MemoryBufferRef Buffer, LLVMContext &Context, 7055 bool ShouldLazyLoadMetadata, bool IsImporting) { 7056 Expected<BitcodeModule> BM = getSingleModule(Buffer); 7057 if (!BM) 7058 return BM.takeError(); 7059 7060 return BM->getLazyModule(Context, ShouldLazyLoadMetadata, IsImporting); 7061 } 7062 7063 Expected<std::unique_ptr<Module>> llvm::getOwningLazyBitcodeModule( 7064 std::unique_ptr<MemoryBuffer> &&Buffer, LLVMContext &Context, 7065 bool ShouldLazyLoadMetadata, bool IsImporting) { 7066 auto MOrErr = getLazyBitcodeModule(*Buffer, Context, ShouldLazyLoadMetadata, 7067 IsImporting); 7068 if (MOrErr) 7069 (*MOrErr)->setOwnedMemoryBuffer(std::move(Buffer)); 7070 return MOrErr; 7071 } 7072 7073 Expected<std::unique_ptr<Module>> 7074 BitcodeModule::parseModule(LLVMContext &Context, 7075 DataLayoutCallbackTy DataLayoutCallback) { 7076 return getModuleImpl(Context, true, false, false, DataLayoutCallback); 7077 // TODO: Restore the use-lists to the in-memory state when the bitcode was 7078 // written. We must defer until the Module has been fully materialized. 7079 } 7080 7081 Expected<std::unique_ptr<Module>> 7082 llvm::parseBitcodeFile(MemoryBufferRef Buffer, LLVMContext &Context, 7083 DataLayoutCallbackTy DataLayoutCallback) { 7084 Expected<BitcodeModule> BM = getSingleModule(Buffer); 7085 if (!BM) 7086 return BM.takeError(); 7087 7088 return BM->parseModule(Context, DataLayoutCallback); 7089 } 7090 7091 Expected<std::string> llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer) { 7092 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 7093 if (!StreamOrErr) 7094 return StreamOrErr.takeError(); 7095 7096 return readTriple(*StreamOrErr); 7097 } 7098 7099 Expected<bool> llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer) { 7100 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 7101 if (!StreamOrErr) 7102 return StreamOrErr.takeError(); 7103 7104 return hasObjCCategory(*StreamOrErr); 7105 } 7106 7107 Expected<std::string> llvm::getBitcodeProducerString(MemoryBufferRef Buffer) { 7108 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 7109 if (!StreamOrErr) 7110 return StreamOrErr.takeError(); 7111 7112 return readIdentificationCode(*StreamOrErr); 7113 } 7114 7115 Error llvm::readModuleSummaryIndex(MemoryBufferRef Buffer, 7116 ModuleSummaryIndex &CombinedIndex, 7117 uint64_t ModuleId) { 7118 Expected<BitcodeModule> BM = getSingleModule(Buffer); 7119 if (!BM) 7120 return BM.takeError(); 7121 7122 return BM->readSummary(CombinedIndex, BM->getModuleIdentifier(), ModuleId); 7123 } 7124 7125 Expected<std::unique_ptr<ModuleSummaryIndex>> 7126 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer) { 7127 Expected<BitcodeModule> BM = getSingleModule(Buffer); 7128 if (!BM) 7129 return BM.takeError(); 7130 7131 return BM->getSummary(); 7132 } 7133 7134 Expected<BitcodeLTOInfo> llvm::getBitcodeLTOInfo(MemoryBufferRef Buffer) { 7135 Expected<BitcodeModule> BM = getSingleModule(Buffer); 7136 if (!BM) 7137 return BM.takeError(); 7138 7139 return BM->getLTOInfo(); 7140 } 7141 7142 Expected<std::unique_ptr<ModuleSummaryIndex>> 7143 llvm::getModuleSummaryIndexForFile(StringRef Path, 7144 bool IgnoreEmptyThinLTOIndexFile) { 7145 ErrorOr<std::unique_ptr<MemoryBuffer>> FileOrErr = 7146 MemoryBuffer::getFileOrSTDIN(Path); 7147 if (!FileOrErr) 7148 return errorCodeToError(FileOrErr.getError()); 7149 if (IgnoreEmptyThinLTOIndexFile && !(*FileOrErr)->getBufferSize()) 7150 return nullptr; 7151 return getModuleSummaryIndex(**FileOrErr); 7152 } 7153