1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/Bitcode/BitcodeReader.h" 10 #include "MetadataLoader.h" 11 #include "ValueList.h" 12 #include "llvm/ADT/APFloat.h" 13 #include "llvm/ADT/APInt.h" 14 #include "llvm/ADT/ArrayRef.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/Optional.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallString.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/StringRef.h" 21 #include "llvm/ADT/Triple.h" 22 #include "llvm/ADT/Twine.h" 23 #include "llvm/Bitstream/BitstreamReader.h" 24 #include "llvm/Bitcode/LLVMBitCodes.h" 25 #include "llvm/Config/llvm-config.h" 26 #include "llvm/IR/Argument.h" 27 #include "llvm/IR/Attributes.h" 28 #include "llvm/IR/AutoUpgrade.h" 29 #include "llvm/IR/BasicBlock.h" 30 #include "llvm/IR/CallSite.h" 31 #include "llvm/IR/CallingConv.h" 32 #include "llvm/IR/Comdat.h" 33 #include "llvm/IR/Constant.h" 34 #include "llvm/IR/Constants.h" 35 #include "llvm/IR/DataLayout.h" 36 #include "llvm/IR/DebugInfo.h" 37 #include "llvm/IR/DebugInfoMetadata.h" 38 #include "llvm/IR/DebugLoc.h" 39 #include "llvm/IR/DerivedTypes.h" 40 #include "llvm/IR/Function.h" 41 #include "llvm/IR/GVMaterializer.h" 42 #include "llvm/IR/GlobalAlias.h" 43 #include "llvm/IR/GlobalIFunc.h" 44 #include "llvm/IR/GlobalIndirectSymbol.h" 45 #include "llvm/IR/GlobalObject.h" 46 #include "llvm/IR/GlobalValue.h" 47 #include "llvm/IR/GlobalVariable.h" 48 #include "llvm/IR/InlineAsm.h" 49 #include "llvm/IR/InstIterator.h" 50 #include "llvm/IR/InstrTypes.h" 51 #include "llvm/IR/Instruction.h" 52 #include "llvm/IR/Instructions.h" 53 #include "llvm/IR/Intrinsics.h" 54 #include "llvm/IR/LLVMContext.h" 55 #include "llvm/IR/Metadata.h" 56 #include "llvm/IR/Module.h" 57 #include "llvm/IR/ModuleSummaryIndex.h" 58 #include "llvm/IR/Operator.h" 59 #include "llvm/IR/Type.h" 60 #include "llvm/IR/Value.h" 61 #include "llvm/IR/Verifier.h" 62 #include "llvm/Support/AtomicOrdering.h" 63 #include "llvm/Support/Casting.h" 64 #include "llvm/Support/CommandLine.h" 65 #include "llvm/Support/Compiler.h" 66 #include "llvm/Support/Debug.h" 67 #include "llvm/Support/Error.h" 68 #include "llvm/Support/ErrorHandling.h" 69 #include "llvm/Support/ErrorOr.h" 70 #include "llvm/Support/ManagedStatic.h" 71 #include "llvm/Support/MathExtras.h" 72 #include "llvm/Support/MemoryBuffer.h" 73 #include "llvm/Support/raw_ostream.h" 74 #include <algorithm> 75 #include <cassert> 76 #include <cstddef> 77 #include <cstdint> 78 #include <deque> 79 #include <map> 80 #include <memory> 81 #include <set> 82 #include <string> 83 #include <system_error> 84 #include <tuple> 85 #include <utility> 86 #include <vector> 87 88 using namespace llvm; 89 90 static cl::opt<bool> PrintSummaryGUIDs( 91 "print-summary-global-ids", cl::init(false), cl::Hidden, 92 cl::desc( 93 "Print the global id for each value when reading the module summary")); 94 95 namespace { 96 97 enum { 98 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 99 }; 100 101 } // end anonymous namespace 102 103 static Error error(const Twine &Message) { 104 return make_error<StringError>( 105 Message, make_error_code(BitcodeError::CorruptedBitcode)); 106 } 107 108 static Error hasInvalidBitcodeHeader(BitstreamCursor &Stream) { 109 if (!Stream.canSkipToPos(4)) 110 return createStringError(std::errc::illegal_byte_sequence, 111 "file too small to contain bitcode header"); 112 for (unsigned C : {'B', 'C'}) 113 if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(8)) { 114 if (Res.get() != C) 115 return createStringError(std::errc::illegal_byte_sequence, 116 "file doesn't start with bitcode header"); 117 } else 118 return Res.takeError(); 119 for (unsigned C : {0x0, 0xC, 0xE, 0xD}) 120 if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(4)) { 121 if (Res.get() != C) 122 return createStringError(std::errc::illegal_byte_sequence, 123 "file doesn't start with bitcode header"); 124 } else 125 return Res.takeError(); 126 return Error::success(); 127 } 128 129 static Expected<BitstreamCursor> initStream(MemoryBufferRef Buffer) { 130 const unsigned char *BufPtr = (const unsigned char *)Buffer.getBufferStart(); 131 const unsigned char *BufEnd = BufPtr + Buffer.getBufferSize(); 132 133 if (Buffer.getBufferSize() & 3) 134 return error("Invalid bitcode signature"); 135 136 // If we have a wrapper header, parse it and ignore the non-bc file contents. 137 // The magic number is 0x0B17C0DE stored in little endian. 138 if (isBitcodeWrapper(BufPtr, BufEnd)) 139 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 140 return error("Invalid bitcode wrapper header"); 141 142 BitstreamCursor Stream(ArrayRef<uint8_t>(BufPtr, BufEnd)); 143 if (Error Err = hasInvalidBitcodeHeader(Stream)) 144 return std::move(Err); 145 146 return std::move(Stream); 147 } 148 149 /// Convert a string from a record into an std::string, return true on failure. 150 template <typename StrTy> 151 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx, 152 StrTy &Result) { 153 if (Idx > Record.size()) 154 return true; 155 156 for (unsigned i = Idx, e = Record.size(); i != e; ++i) 157 Result += (char)Record[i]; 158 return false; 159 } 160 161 // Strip all the TBAA attachment for the module. 162 static void stripTBAA(Module *M) { 163 for (auto &F : *M) { 164 if (F.isMaterializable()) 165 continue; 166 for (auto &I : instructions(F)) 167 I.setMetadata(LLVMContext::MD_tbaa, nullptr); 168 } 169 } 170 171 /// Read the "IDENTIFICATION_BLOCK_ID" block, do some basic enforcement on the 172 /// "epoch" encoded in the bitcode, and return the producer name if any. 173 static Expected<std::string> readIdentificationBlock(BitstreamCursor &Stream) { 174 if (Error Err = Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID)) 175 return std::move(Err); 176 177 // Read all the records. 178 SmallVector<uint64_t, 64> Record; 179 180 std::string ProducerIdentification; 181 182 while (true) { 183 BitstreamEntry Entry; 184 if (Expected<BitstreamEntry> Res = Stream.advance()) 185 Entry = Res.get(); 186 else 187 return Res.takeError(); 188 189 switch (Entry.Kind) { 190 default: 191 case BitstreamEntry::Error: 192 return error("Malformed block"); 193 case BitstreamEntry::EndBlock: 194 return ProducerIdentification; 195 case BitstreamEntry::Record: 196 // The interesting case. 197 break; 198 } 199 200 // Read a record. 201 Record.clear(); 202 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 203 if (!MaybeBitCode) 204 return MaybeBitCode.takeError(); 205 switch (MaybeBitCode.get()) { 206 default: // Default behavior: reject 207 return error("Invalid value"); 208 case bitc::IDENTIFICATION_CODE_STRING: // IDENTIFICATION: [strchr x N] 209 convertToString(Record, 0, ProducerIdentification); 210 break; 211 case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#] 212 unsigned epoch = (unsigned)Record[0]; 213 if (epoch != bitc::BITCODE_CURRENT_EPOCH) { 214 return error( 215 Twine("Incompatible epoch: Bitcode '") + Twine(epoch) + 216 "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'"); 217 } 218 } 219 } 220 } 221 } 222 223 static Expected<std::string> readIdentificationCode(BitstreamCursor &Stream) { 224 // We expect a number of well-defined blocks, though we don't necessarily 225 // need to understand them all. 226 while (true) { 227 if (Stream.AtEndOfStream()) 228 return ""; 229 230 BitstreamEntry Entry; 231 if (Expected<BitstreamEntry> Res = Stream.advance()) 232 Entry = std::move(Res.get()); 233 else 234 return Res.takeError(); 235 236 switch (Entry.Kind) { 237 case BitstreamEntry::EndBlock: 238 case BitstreamEntry::Error: 239 return error("Malformed block"); 240 241 case BitstreamEntry::SubBlock: 242 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) 243 return readIdentificationBlock(Stream); 244 245 // Ignore other sub-blocks. 246 if (Error Err = Stream.SkipBlock()) 247 return std::move(Err); 248 continue; 249 case BitstreamEntry::Record: 250 if (Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID)) 251 continue; 252 else 253 return Skipped.takeError(); 254 } 255 } 256 } 257 258 static Expected<bool> hasObjCCategoryInModule(BitstreamCursor &Stream) { 259 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 260 return std::move(Err); 261 262 SmallVector<uint64_t, 64> Record; 263 // Read all the records for this module. 264 265 while (true) { 266 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 267 if (!MaybeEntry) 268 return MaybeEntry.takeError(); 269 BitstreamEntry Entry = MaybeEntry.get(); 270 271 switch (Entry.Kind) { 272 case BitstreamEntry::SubBlock: // Handled for us already. 273 case BitstreamEntry::Error: 274 return error("Malformed block"); 275 case BitstreamEntry::EndBlock: 276 return false; 277 case BitstreamEntry::Record: 278 // The interesting case. 279 break; 280 } 281 282 // Read a record. 283 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 284 if (!MaybeRecord) 285 return MaybeRecord.takeError(); 286 switch (MaybeRecord.get()) { 287 default: 288 break; // Default behavior, ignore unknown content. 289 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 290 std::string S; 291 if (convertToString(Record, 0, S)) 292 return error("Invalid record"); 293 // Check for the i386 and other (x86_64, ARM) conventions 294 if (S.find("__DATA,__objc_catlist") != std::string::npos || 295 S.find("__OBJC,__category") != std::string::npos) 296 return true; 297 break; 298 } 299 } 300 Record.clear(); 301 } 302 llvm_unreachable("Exit infinite loop"); 303 } 304 305 static Expected<bool> hasObjCCategory(BitstreamCursor &Stream) { 306 // We expect a number of well-defined blocks, though we don't necessarily 307 // need to understand them all. 308 while (true) { 309 BitstreamEntry Entry; 310 if (Expected<BitstreamEntry> Res = Stream.advance()) 311 Entry = std::move(Res.get()); 312 else 313 return Res.takeError(); 314 315 switch (Entry.Kind) { 316 case BitstreamEntry::Error: 317 return error("Malformed block"); 318 case BitstreamEntry::EndBlock: 319 return false; 320 321 case BitstreamEntry::SubBlock: 322 if (Entry.ID == bitc::MODULE_BLOCK_ID) 323 return hasObjCCategoryInModule(Stream); 324 325 // Ignore other sub-blocks. 326 if (Error Err = Stream.SkipBlock()) 327 return std::move(Err); 328 continue; 329 330 case BitstreamEntry::Record: 331 if (Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID)) 332 continue; 333 else 334 return Skipped.takeError(); 335 } 336 } 337 } 338 339 static Expected<std::string> readModuleTriple(BitstreamCursor &Stream) { 340 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 341 return std::move(Err); 342 343 SmallVector<uint64_t, 64> Record; 344 345 std::string Triple; 346 347 // Read all the records for this module. 348 while (true) { 349 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 350 if (!MaybeEntry) 351 return MaybeEntry.takeError(); 352 BitstreamEntry Entry = MaybeEntry.get(); 353 354 switch (Entry.Kind) { 355 case BitstreamEntry::SubBlock: // Handled for us already. 356 case BitstreamEntry::Error: 357 return error("Malformed block"); 358 case BitstreamEntry::EndBlock: 359 return Triple; 360 case BitstreamEntry::Record: 361 // The interesting case. 362 break; 363 } 364 365 // Read a record. 366 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 367 if (!MaybeRecord) 368 return MaybeRecord.takeError(); 369 switch (MaybeRecord.get()) { 370 default: break; // Default behavior, ignore unknown content. 371 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 372 std::string S; 373 if (convertToString(Record, 0, S)) 374 return error("Invalid record"); 375 Triple = S; 376 break; 377 } 378 } 379 Record.clear(); 380 } 381 llvm_unreachable("Exit infinite loop"); 382 } 383 384 static Expected<std::string> readTriple(BitstreamCursor &Stream) { 385 // We expect a number of well-defined blocks, though we don't necessarily 386 // need to understand them all. 387 while (true) { 388 Expected<BitstreamEntry> MaybeEntry = Stream.advance(); 389 if (!MaybeEntry) 390 return MaybeEntry.takeError(); 391 BitstreamEntry Entry = MaybeEntry.get(); 392 393 switch (Entry.Kind) { 394 case BitstreamEntry::Error: 395 return error("Malformed block"); 396 case BitstreamEntry::EndBlock: 397 return ""; 398 399 case BitstreamEntry::SubBlock: 400 if (Entry.ID == bitc::MODULE_BLOCK_ID) 401 return readModuleTriple(Stream); 402 403 // Ignore other sub-blocks. 404 if (Error Err = Stream.SkipBlock()) 405 return std::move(Err); 406 continue; 407 408 case BitstreamEntry::Record: 409 if (llvm::Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID)) 410 continue; 411 else 412 return Skipped.takeError(); 413 } 414 } 415 } 416 417 namespace { 418 419 class BitcodeReaderBase { 420 protected: 421 BitcodeReaderBase(BitstreamCursor Stream, StringRef Strtab) 422 : Stream(std::move(Stream)), Strtab(Strtab) { 423 this->Stream.setBlockInfo(&BlockInfo); 424 } 425 426 BitstreamBlockInfo BlockInfo; 427 BitstreamCursor Stream; 428 StringRef Strtab; 429 430 /// In version 2 of the bitcode we store names of global values and comdats in 431 /// a string table rather than in the VST. 432 bool UseStrtab = false; 433 434 Expected<unsigned> parseVersionRecord(ArrayRef<uint64_t> Record); 435 436 /// If this module uses a string table, pop the reference to the string table 437 /// and return the referenced string and the rest of the record. Otherwise 438 /// just return the record itself. 439 std::pair<StringRef, ArrayRef<uint64_t>> 440 readNameFromStrtab(ArrayRef<uint64_t> Record); 441 442 bool readBlockInfo(); 443 444 // Contains an arbitrary and optional string identifying the bitcode producer 445 std::string ProducerIdentification; 446 447 Error error(const Twine &Message); 448 }; 449 450 } // end anonymous namespace 451 452 Error BitcodeReaderBase::error(const Twine &Message) { 453 std::string FullMsg = Message.str(); 454 if (!ProducerIdentification.empty()) 455 FullMsg += " (Producer: '" + ProducerIdentification + "' Reader: 'LLVM " + 456 LLVM_VERSION_STRING "')"; 457 return ::error(FullMsg); 458 } 459 460 Expected<unsigned> 461 BitcodeReaderBase::parseVersionRecord(ArrayRef<uint64_t> Record) { 462 if (Record.empty()) 463 return error("Invalid record"); 464 unsigned ModuleVersion = Record[0]; 465 if (ModuleVersion > 2) 466 return error("Invalid value"); 467 UseStrtab = ModuleVersion >= 2; 468 return ModuleVersion; 469 } 470 471 std::pair<StringRef, ArrayRef<uint64_t>> 472 BitcodeReaderBase::readNameFromStrtab(ArrayRef<uint64_t> Record) { 473 if (!UseStrtab) 474 return {"", Record}; 475 // Invalid reference. Let the caller complain about the record being empty. 476 if (Record[0] + Record[1] > Strtab.size()) 477 return {"", {}}; 478 return {StringRef(Strtab.data() + Record[0], Record[1]), Record.slice(2)}; 479 } 480 481 namespace { 482 483 class BitcodeReader : public BitcodeReaderBase, public GVMaterializer { 484 LLVMContext &Context; 485 Module *TheModule = nullptr; 486 // Next offset to start scanning for lazy parsing of function bodies. 487 uint64_t NextUnreadBit = 0; 488 // Last function offset found in the VST. 489 uint64_t LastFunctionBlockBit = 0; 490 bool SeenValueSymbolTable = false; 491 uint64_t VSTOffset = 0; 492 493 std::vector<std::string> SectionTable; 494 std::vector<std::string> GCTable; 495 496 std::vector<Type*> TypeList; 497 DenseMap<Function *, FunctionType *> FunctionTypes; 498 BitcodeReaderValueList ValueList; 499 Optional<MetadataLoader> MDLoader; 500 std::vector<Comdat *> ComdatList; 501 SmallVector<Instruction *, 64> InstructionList; 502 503 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInits; 504 std::vector<std::pair<GlobalIndirectSymbol *, unsigned>> IndirectSymbolInits; 505 std::vector<std::pair<Function *, unsigned>> FunctionPrefixes; 506 std::vector<std::pair<Function *, unsigned>> FunctionPrologues; 507 std::vector<std::pair<Function *, unsigned>> FunctionPersonalityFns; 508 509 /// The set of attributes by index. Index zero in the file is for null, and 510 /// is thus not represented here. As such all indices are off by one. 511 std::vector<AttributeList> MAttributes; 512 513 /// The set of attribute groups. 514 std::map<unsigned, AttributeList> MAttributeGroups; 515 516 /// While parsing a function body, this is a list of the basic blocks for the 517 /// function. 518 std::vector<BasicBlock*> FunctionBBs; 519 520 // When reading the module header, this list is populated with functions that 521 // have bodies later in the file. 522 std::vector<Function*> FunctionsWithBodies; 523 524 // When intrinsic functions are encountered which require upgrading they are 525 // stored here with their replacement function. 526 using UpdatedIntrinsicMap = DenseMap<Function *, Function *>; 527 UpdatedIntrinsicMap UpgradedIntrinsics; 528 // Intrinsics which were remangled because of types rename 529 UpdatedIntrinsicMap RemangledIntrinsics; 530 531 // Several operations happen after the module header has been read, but 532 // before function bodies are processed. This keeps track of whether 533 // we've done this yet. 534 bool SeenFirstFunctionBody = false; 535 536 /// When function bodies are initially scanned, this map contains info about 537 /// where to find deferred function body in the stream. 538 DenseMap<Function*, uint64_t> DeferredFunctionInfo; 539 540 /// When Metadata block is initially scanned when parsing the module, we may 541 /// choose to defer parsing of the metadata. This vector contains info about 542 /// which Metadata blocks are deferred. 543 std::vector<uint64_t> DeferredMetadataInfo; 544 545 /// These are basic blocks forward-referenced by block addresses. They are 546 /// inserted lazily into functions when they're loaded. The basic block ID is 547 /// its index into the vector. 548 DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs; 549 std::deque<Function *> BasicBlockFwdRefQueue; 550 551 /// Indicates that we are using a new encoding for instruction operands where 552 /// most operands in the current FUNCTION_BLOCK are encoded relative to the 553 /// instruction number, for a more compact encoding. Some instruction 554 /// operands are not relative to the instruction ID: basic block numbers, and 555 /// types. Once the old style function blocks have been phased out, we would 556 /// not need this flag. 557 bool UseRelativeIDs = false; 558 559 /// True if all functions will be materialized, negating the need to process 560 /// (e.g.) blockaddress forward references. 561 bool WillMaterializeAllForwardRefs = false; 562 563 bool StripDebugInfo = false; 564 TBAAVerifier TBAAVerifyHelper; 565 566 std::vector<std::string> BundleTags; 567 SmallVector<SyncScope::ID, 8> SSIDs; 568 569 public: 570 BitcodeReader(BitstreamCursor Stream, StringRef Strtab, 571 StringRef ProducerIdentification, LLVMContext &Context); 572 573 Error materializeForwardReferencedFunctions(); 574 575 Error materialize(GlobalValue *GV) override; 576 Error materializeModule() override; 577 std::vector<StructType *> getIdentifiedStructTypes() const override; 578 579 /// Main interface to parsing a bitcode buffer. 580 /// \returns true if an error occurred. 581 Error parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata = false, 582 bool IsImporting = false); 583 584 static uint64_t decodeSignRotatedValue(uint64_t V); 585 586 /// Materialize any deferred Metadata block. 587 Error materializeMetadata() override; 588 589 void setStripDebugInfo() override; 590 591 private: 592 std::vector<StructType *> IdentifiedStructTypes; 593 StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name); 594 StructType *createIdentifiedStructType(LLVMContext &Context); 595 596 /// Map all pointer types within \param Ty to the opaque pointer 597 /// type in the same address space if opaque pointers are being 598 /// used, otherwise nop. This converts a bitcode-reader internal 599 /// type into one suitable for use in a Value. 600 Type *flattenPointerTypes(Type *Ty) { 601 return Ty; 602 } 603 604 /// Given a fully structured pointer type (i.e. not opaque), return 605 /// the flattened form of its element, suitable for use in a Value. 606 Type *getPointerElementFlatType(Type *Ty) { 607 return flattenPointerTypes(cast<PointerType>(Ty)->getElementType()); 608 } 609 610 /// Given a fully structured pointer type, get its element type in 611 /// both fully structured form, and flattened form suitable for use 612 /// in a Value. 613 std::pair<Type *, Type *> getPointerElementTypes(Type *FullTy) { 614 Type *ElTy = cast<PointerType>(FullTy)->getElementType(); 615 return std::make_pair(ElTy, flattenPointerTypes(ElTy)); 616 } 617 618 /// Return the flattened type (suitable for use in a Value) 619 /// specified by the given \param ID. 620 Type *getTypeByID(unsigned ID) { 621 return flattenPointerTypes(getFullyStructuredTypeByID(ID)); 622 } 623 624 /// Return the fully structured (bitcode-reader internal) type 625 /// corresponding to the given \param ID. 626 Type *getFullyStructuredTypeByID(unsigned ID); 627 628 Value *getFnValueByID(unsigned ID, Type *Ty, Type **FullTy = nullptr) { 629 if (Ty && Ty->isMetadataTy()) 630 return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID)); 631 return ValueList.getValueFwdRef(ID, Ty, FullTy); 632 } 633 634 Metadata *getFnMetadataByID(unsigned ID) { 635 return MDLoader->getMetadataFwdRefOrLoad(ID); 636 } 637 638 BasicBlock *getBasicBlock(unsigned ID) const { 639 if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID 640 return FunctionBBs[ID]; 641 } 642 643 AttributeList getAttributes(unsigned i) const { 644 if (i-1 < MAttributes.size()) 645 return MAttributes[i-1]; 646 return AttributeList(); 647 } 648 649 /// Read a value/type pair out of the specified record from slot 'Slot'. 650 /// Increment Slot past the number of slots used in the record. Return true on 651 /// failure. 652 bool getValueTypePair(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 653 unsigned InstNum, Value *&ResVal, 654 Type **FullTy = nullptr) { 655 if (Slot == Record.size()) return true; 656 unsigned ValNo = (unsigned)Record[Slot++]; 657 // Adjust the ValNo, if it was encoded relative to the InstNum. 658 if (UseRelativeIDs) 659 ValNo = InstNum - ValNo; 660 if (ValNo < InstNum) { 661 // If this is not a forward reference, just return the value we already 662 // have. 663 ResVal = getFnValueByID(ValNo, nullptr, FullTy); 664 return ResVal == nullptr; 665 } 666 if (Slot == Record.size()) 667 return true; 668 669 unsigned TypeNo = (unsigned)Record[Slot++]; 670 ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo)); 671 if (FullTy) 672 *FullTy = getFullyStructuredTypeByID(TypeNo); 673 return ResVal == nullptr; 674 } 675 676 /// Read a value out of the specified record from slot 'Slot'. Increment Slot 677 /// past the number of slots used by the value in the record. Return true if 678 /// there is an error. 679 bool popValue(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 680 unsigned InstNum, Type *Ty, Value *&ResVal) { 681 if (getValue(Record, Slot, InstNum, Ty, ResVal)) 682 return true; 683 // All values currently take a single record slot. 684 ++Slot; 685 return false; 686 } 687 688 /// Like popValue, but does not increment the Slot number. 689 bool getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 690 unsigned InstNum, Type *Ty, Value *&ResVal) { 691 ResVal = getValue(Record, Slot, InstNum, Ty); 692 return ResVal == nullptr; 693 } 694 695 /// Version of getValue that returns ResVal directly, or 0 if there is an 696 /// error. 697 Value *getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 698 unsigned InstNum, Type *Ty) { 699 if (Slot == Record.size()) return nullptr; 700 unsigned ValNo = (unsigned)Record[Slot]; 701 // Adjust the ValNo, if it was encoded relative to the InstNum. 702 if (UseRelativeIDs) 703 ValNo = InstNum - ValNo; 704 return getFnValueByID(ValNo, Ty); 705 } 706 707 /// Like getValue, but decodes signed VBRs. 708 Value *getValueSigned(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 709 unsigned InstNum, Type *Ty) { 710 if (Slot == Record.size()) return nullptr; 711 unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]); 712 // Adjust the ValNo, if it was encoded relative to the InstNum. 713 if (UseRelativeIDs) 714 ValNo = InstNum - ValNo; 715 return getFnValueByID(ValNo, Ty); 716 } 717 718 /// Upgrades old-style typeless byval attributes by adding the corresponding 719 /// argument's pointee type. 720 void propagateByValTypes(CallBase *CB, ArrayRef<Type *> ArgsFullTys); 721 722 /// Converts alignment exponent (i.e. power of two (or zero)) to the 723 /// corresponding alignment to use. If alignment is too large, returns 724 /// a corresponding error code. 725 Error parseAlignmentValue(uint64_t Exponent, unsigned &Alignment); 726 Error parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind); 727 Error parseModule(uint64_t ResumeBit, bool ShouldLazyLoadMetadata = false); 728 729 Error parseComdatRecord(ArrayRef<uint64_t> Record); 730 Error parseGlobalVarRecord(ArrayRef<uint64_t> Record); 731 Error parseFunctionRecord(ArrayRef<uint64_t> Record); 732 Error parseGlobalIndirectSymbolRecord(unsigned BitCode, 733 ArrayRef<uint64_t> Record); 734 735 Error parseAttributeBlock(); 736 Error parseAttributeGroupBlock(); 737 Error parseTypeTable(); 738 Error parseTypeTableBody(); 739 Error parseOperandBundleTags(); 740 Error parseSyncScopeNames(); 741 742 Expected<Value *> recordValue(SmallVectorImpl<uint64_t> &Record, 743 unsigned NameIndex, Triple &TT); 744 void setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, Function *F, 745 ArrayRef<uint64_t> Record); 746 Error parseValueSymbolTable(uint64_t Offset = 0); 747 Error parseGlobalValueSymbolTable(); 748 Error parseConstants(); 749 Error rememberAndSkipFunctionBodies(); 750 Error rememberAndSkipFunctionBody(); 751 /// Save the positions of the Metadata blocks and skip parsing the blocks. 752 Error rememberAndSkipMetadata(); 753 Error typeCheckLoadStoreInst(Type *ValType, Type *PtrType); 754 Error parseFunctionBody(Function *F); 755 Error globalCleanup(); 756 Error resolveGlobalAndIndirectSymbolInits(); 757 Error parseUseLists(); 758 Error findFunctionInStream( 759 Function *F, 760 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator); 761 762 SyncScope::ID getDecodedSyncScopeID(unsigned Val); 763 }; 764 765 /// Class to manage reading and parsing function summary index bitcode 766 /// files/sections. 767 class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase { 768 /// The module index built during parsing. 769 ModuleSummaryIndex &TheIndex; 770 771 /// Indicates whether we have encountered a global value summary section 772 /// yet during parsing. 773 bool SeenGlobalValSummary = false; 774 775 /// Indicates whether we have already parsed the VST, used for error checking. 776 bool SeenValueSymbolTable = false; 777 778 /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record. 779 /// Used to enable on-demand parsing of the VST. 780 uint64_t VSTOffset = 0; 781 782 // Map to save ValueId to ValueInfo association that was recorded in the 783 // ValueSymbolTable. It is used after the VST is parsed to convert 784 // call graph edges read from the function summary from referencing 785 // callees by their ValueId to using the ValueInfo instead, which is how 786 // they are recorded in the summary index being built. 787 // We save a GUID which refers to the same global as the ValueInfo, but 788 // ignoring the linkage, i.e. for values other than local linkage they are 789 // identical. 790 DenseMap<unsigned, std::pair<ValueInfo, GlobalValue::GUID>> 791 ValueIdToValueInfoMap; 792 793 /// Map populated during module path string table parsing, from the 794 /// module ID to a string reference owned by the index's module 795 /// path string table, used to correlate with combined index 796 /// summary records. 797 DenseMap<uint64_t, StringRef> ModuleIdMap; 798 799 /// Original source file name recorded in a bitcode record. 800 std::string SourceFileName; 801 802 /// The string identifier given to this module by the client, normally the 803 /// path to the bitcode file. 804 StringRef ModulePath; 805 806 /// For per-module summary indexes, the unique numerical identifier given to 807 /// this module by the client. 808 unsigned ModuleId; 809 810 public: 811 ModuleSummaryIndexBitcodeReader(BitstreamCursor Stream, StringRef Strtab, 812 ModuleSummaryIndex &TheIndex, 813 StringRef ModulePath, unsigned ModuleId); 814 815 Error parseModule(); 816 817 private: 818 void setValueGUID(uint64_t ValueID, StringRef ValueName, 819 GlobalValue::LinkageTypes Linkage, 820 StringRef SourceFileName); 821 Error parseValueSymbolTable( 822 uint64_t Offset, 823 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap); 824 std::vector<ValueInfo> makeRefList(ArrayRef<uint64_t> Record); 825 std::vector<FunctionSummary::EdgeTy> makeCallList(ArrayRef<uint64_t> Record, 826 bool IsOldProfileFormat, 827 bool HasProfile, 828 bool HasRelBF); 829 Error parseEntireSummary(unsigned ID); 830 Error parseModuleStringTable(); 831 void parseTypeIdCompatibleVtableSummaryRecord(ArrayRef<uint64_t> Record); 832 void parseTypeIdCompatibleVtableInfo(ArrayRef<uint64_t> Record, size_t &Slot, 833 TypeIdCompatibleVtableInfo &TypeId); 834 835 std::pair<ValueInfo, GlobalValue::GUID> 836 getValueInfoFromValueId(unsigned ValueId); 837 838 void addThisModule(); 839 ModuleSummaryIndex::ModuleInfo *getThisModule(); 840 }; 841 842 } // end anonymous namespace 843 844 std::error_code llvm::errorToErrorCodeAndEmitErrors(LLVMContext &Ctx, 845 Error Err) { 846 if (Err) { 847 std::error_code EC; 848 handleAllErrors(std::move(Err), [&](ErrorInfoBase &EIB) { 849 EC = EIB.convertToErrorCode(); 850 Ctx.emitError(EIB.message()); 851 }); 852 return EC; 853 } 854 return std::error_code(); 855 } 856 857 BitcodeReader::BitcodeReader(BitstreamCursor Stream, StringRef Strtab, 858 StringRef ProducerIdentification, 859 LLVMContext &Context) 860 : BitcodeReaderBase(std::move(Stream), Strtab), Context(Context), 861 ValueList(Context) { 862 this->ProducerIdentification = ProducerIdentification; 863 } 864 865 Error BitcodeReader::materializeForwardReferencedFunctions() { 866 if (WillMaterializeAllForwardRefs) 867 return Error::success(); 868 869 // Prevent recursion. 870 WillMaterializeAllForwardRefs = true; 871 872 while (!BasicBlockFwdRefQueue.empty()) { 873 Function *F = BasicBlockFwdRefQueue.front(); 874 BasicBlockFwdRefQueue.pop_front(); 875 assert(F && "Expected valid function"); 876 if (!BasicBlockFwdRefs.count(F)) 877 // Already materialized. 878 continue; 879 880 // Check for a function that isn't materializable to prevent an infinite 881 // loop. When parsing a blockaddress stored in a global variable, there 882 // isn't a trivial way to check if a function will have a body without a 883 // linear search through FunctionsWithBodies, so just check it here. 884 if (!F->isMaterializable()) 885 return error("Never resolved function from blockaddress"); 886 887 // Try to materialize F. 888 if (Error Err = materialize(F)) 889 return Err; 890 } 891 assert(BasicBlockFwdRefs.empty() && "Function missing from queue"); 892 893 // Reset state. 894 WillMaterializeAllForwardRefs = false; 895 return Error::success(); 896 } 897 898 //===----------------------------------------------------------------------===// 899 // Helper functions to implement forward reference resolution, etc. 900 //===----------------------------------------------------------------------===// 901 902 static bool hasImplicitComdat(size_t Val) { 903 switch (Val) { 904 default: 905 return false; 906 case 1: // Old WeakAnyLinkage 907 case 4: // Old LinkOnceAnyLinkage 908 case 10: // Old WeakODRLinkage 909 case 11: // Old LinkOnceODRLinkage 910 return true; 911 } 912 } 913 914 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) { 915 switch (Val) { 916 default: // Map unknown/new linkages to external 917 case 0: 918 return GlobalValue::ExternalLinkage; 919 case 2: 920 return GlobalValue::AppendingLinkage; 921 case 3: 922 return GlobalValue::InternalLinkage; 923 case 5: 924 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage 925 case 6: 926 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage 927 case 7: 928 return GlobalValue::ExternalWeakLinkage; 929 case 8: 930 return GlobalValue::CommonLinkage; 931 case 9: 932 return GlobalValue::PrivateLinkage; 933 case 12: 934 return GlobalValue::AvailableExternallyLinkage; 935 case 13: 936 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage 937 case 14: 938 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage 939 case 15: 940 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage 941 case 1: // Old value with implicit comdat. 942 case 16: 943 return GlobalValue::WeakAnyLinkage; 944 case 10: // Old value with implicit comdat. 945 case 17: 946 return GlobalValue::WeakODRLinkage; 947 case 4: // Old value with implicit comdat. 948 case 18: 949 return GlobalValue::LinkOnceAnyLinkage; 950 case 11: // Old value with implicit comdat. 951 case 19: 952 return GlobalValue::LinkOnceODRLinkage; 953 } 954 } 955 956 static FunctionSummary::FFlags getDecodedFFlags(uint64_t RawFlags) { 957 FunctionSummary::FFlags Flags; 958 Flags.ReadNone = RawFlags & 0x1; 959 Flags.ReadOnly = (RawFlags >> 1) & 0x1; 960 Flags.NoRecurse = (RawFlags >> 2) & 0x1; 961 Flags.ReturnDoesNotAlias = (RawFlags >> 3) & 0x1; 962 Flags.NoInline = (RawFlags >> 4) & 0x1; 963 return Flags; 964 } 965 966 /// Decode the flags for GlobalValue in the summary. 967 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags, 968 uint64_t Version) { 969 // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage 970 // like getDecodedLinkage() above. Any future change to the linkage enum and 971 // to getDecodedLinkage() will need to be taken into account here as above. 972 auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits 973 RawFlags = RawFlags >> 4; 974 bool NotEligibleToImport = (RawFlags & 0x1) || Version < 3; 975 // The Live flag wasn't introduced until version 3. For dead stripping 976 // to work correctly on earlier versions, we must conservatively treat all 977 // values as live. 978 bool Live = (RawFlags & 0x2) || Version < 3; 979 bool Local = (RawFlags & 0x4); 980 bool AutoHide = (RawFlags & 0x8); 981 982 return GlobalValueSummary::GVFlags(Linkage, NotEligibleToImport, Live, Local, AutoHide); 983 } 984 985 // Decode the flags for GlobalVariable in the summary 986 static GlobalVarSummary::GVarFlags getDecodedGVarFlags(uint64_t RawFlags) { 987 return GlobalVarSummary::GVarFlags((RawFlags & 0x1) ? true : false); 988 } 989 990 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) { 991 switch (Val) { 992 default: // Map unknown visibilities to default. 993 case 0: return GlobalValue::DefaultVisibility; 994 case 1: return GlobalValue::HiddenVisibility; 995 case 2: return GlobalValue::ProtectedVisibility; 996 } 997 } 998 999 static GlobalValue::DLLStorageClassTypes 1000 getDecodedDLLStorageClass(unsigned Val) { 1001 switch (Val) { 1002 default: // Map unknown values to default. 1003 case 0: return GlobalValue::DefaultStorageClass; 1004 case 1: return GlobalValue::DLLImportStorageClass; 1005 case 2: return GlobalValue::DLLExportStorageClass; 1006 } 1007 } 1008 1009 static bool getDecodedDSOLocal(unsigned Val) { 1010 switch(Val) { 1011 default: // Map unknown values to preemptable. 1012 case 0: return false; 1013 case 1: return true; 1014 } 1015 } 1016 1017 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) { 1018 switch (Val) { 1019 case 0: return GlobalVariable::NotThreadLocal; 1020 default: // Map unknown non-zero value to general dynamic. 1021 case 1: return GlobalVariable::GeneralDynamicTLSModel; 1022 case 2: return GlobalVariable::LocalDynamicTLSModel; 1023 case 3: return GlobalVariable::InitialExecTLSModel; 1024 case 4: return GlobalVariable::LocalExecTLSModel; 1025 } 1026 } 1027 1028 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) { 1029 switch (Val) { 1030 default: // Map unknown to UnnamedAddr::None. 1031 case 0: return GlobalVariable::UnnamedAddr::None; 1032 case 1: return GlobalVariable::UnnamedAddr::Global; 1033 case 2: return GlobalVariable::UnnamedAddr::Local; 1034 } 1035 } 1036 1037 static int getDecodedCastOpcode(unsigned Val) { 1038 switch (Val) { 1039 default: return -1; 1040 case bitc::CAST_TRUNC : return Instruction::Trunc; 1041 case bitc::CAST_ZEXT : return Instruction::ZExt; 1042 case bitc::CAST_SEXT : return Instruction::SExt; 1043 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 1044 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 1045 case bitc::CAST_UITOFP : return Instruction::UIToFP; 1046 case bitc::CAST_SITOFP : return Instruction::SIToFP; 1047 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 1048 case bitc::CAST_FPEXT : return Instruction::FPExt; 1049 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 1050 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 1051 case bitc::CAST_BITCAST : return Instruction::BitCast; 1052 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast; 1053 } 1054 } 1055 1056 static int getDecodedUnaryOpcode(unsigned Val, Type *Ty) { 1057 bool IsFP = Ty->isFPOrFPVectorTy(); 1058 // UnOps are only valid for int/fp or vector of int/fp types 1059 if (!IsFP && !Ty->isIntOrIntVectorTy()) 1060 return -1; 1061 1062 switch (Val) { 1063 default: 1064 return -1; 1065 case bitc::UNOP_NEG: 1066 return IsFP ? Instruction::FNeg : -1; 1067 } 1068 } 1069 1070 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) { 1071 bool IsFP = Ty->isFPOrFPVectorTy(); 1072 // BinOps are only valid for int/fp or vector of int/fp types 1073 if (!IsFP && !Ty->isIntOrIntVectorTy()) 1074 return -1; 1075 1076 switch (Val) { 1077 default: 1078 return -1; 1079 case bitc::BINOP_ADD: 1080 return IsFP ? Instruction::FAdd : Instruction::Add; 1081 case bitc::BINOP_SUB: 1082 return IsFP ? Instruction::FSub : Instruction::Sub; 1083 case bitc::BINOP_MUL: 1084 return IsFP ? Instruction::FMul : Instruction::Mul; 1085 case bitc::BINOP_UDIV: 1086 return IsFP ? -1 : Instruction::UDiv; 1087 case bitc::BINOP_SDIV: 1088 return IsFP ? Instruction::FDiv : Instruction::SDiv; 1089 case bitc::BINOP_UREM: 1090 return IsFP ? -1 : Instruction::URem; 1091 case bitc::BINOP_SREM: 1092 return IsFP ? Instruction::FRem : Instruction::SRem; 1093 case bitc::BINOP_SHL: 1094 return IsFP ? -1 : Instruction::Shl; 1095 case bitc::BINOP_LSHR: 1096 return IsFP ? -1 : Instruction::LShr; 1097 case bitc::BINOP_ASHR: 1098 return IsFP ? -1 : Instruction::AShr; 1099 case bitc::BINOP_AND: 1100 return IsFP ? -1 : Instruction::And; 1101 case bitc::BINOP_OR: 1102 return IsFP ? -1 : Instruction::Or; 1103 case bitc::BINOP_XOR: 1104 return IsFP ? -1 : Instruction::Xor; 1105 } 1106 } 1107 1108 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) { 1109 switch (Val) { 1110 default: return AtomicRMWInst::BAD_BINOP; 1111 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 1112 case bitc::RMW_ADD: return AtomicRMWInst::Add; 1113 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 1114 case bitc::RMW_AND: return AtomicRMWInst::And; 1115 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 1116 case bitc::RMW_OR: return AtomicRMWInst::Or; 1117 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 1118 case bitc::RMW_MAX: return AtomicRMWInst::Max; 1119 case bitc::RMW_MIN: return AtomicRMWInst::Min; 1120 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 1121 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 1122 case bitc::RMW_FADD: return AtomicRMWInst::FAdd; 1123 case bitc::RMW_FSUB: return AtomicRMWInst::FSub; 1124 } 1125 } 1126 1127 static AtomicOrdering getDecodedOrdering(unsigned Val) { 1128 switch (Val) { 1129 case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic; 1130 case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered; 1131 case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic; 1132 case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire; 1133 case bitc::ORDERING_RELEASE: return AtomicOrdering::Release; 1134 case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease; 1135 default: // Map unknown orderings to sequentially-consistent. 1136 case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent; 1137 } 1138 } 1139 1140 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) { 1141 switch (Val) { 1142 default: // Map unknown selection kinds to any. 1143 case bitc::COMDAT_SELECTION_KIND_ANY: 1144 return Comdat::Any; 1145 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH: 1146 return Comdat::ExactMatch; 1147 case bitc::COMDAT_SELECTION_KIND_LARGEST: 1148 return Comdat::Largest; 1149 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES: 1150 return Comdat::NoDuplicates; 1151 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE: 1152 return Comdat::SameSize; 1153 } 1154 } 1155 1156 static FastMathFlags getDecodedFastMathFlags(unsigned Val) { 1157 FastMathFlags FMF; 1158 if (0 != (Val & bitc::UnsafeAlgebra)) 1159 FMF.setFast(); 1160 if (0 != (Val & bitc::AllowReassoc)) 1161 FMF.setAllowReassoc(); 1162 if (0 != (Val & bitc::NoNaNs)) 1163 FMF.setNoNaNs(); 1164 if (0 != (Val & bitc::NoInfs)) 1165 FMF.setNoInfs(); 1166 if (0 != (Val & bitc::NoSignedZeros)) 1167 FMF.setNoSignedZeros(); 1168 if (0 != (Val & bitc::AllowReciprocal)) 1169 FMF.setAllowReciprocal(); 1170 if (0 != (Val & bitc::AllowContract)) 1171 FMF.setAllowContract(true); 1172 if (0 != (Val & bitc::ApproxFunc)) 1173 FMF.setApproxFunc(); 1174 return FMF; 1175 } 1176 1177 static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) { 1178 switch (Val) { 1179 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break; 1180 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break; 1181 } 1182 } 1183 1184 Type *BitcodeReader::getFullyStructuredTypeByID(unsigned ID) { 1185 // The type table size is always specified correctly. 1186 if (ID >= TypeList.size()) 1187 return nullptr; 1188 1189 if (Type *Ty = TypeList[ID]) 1190 return Ty; 1191 1192 // If we have a forward reference, the only possible case is when it is to a 1193 // named struct. Just create a placeholder for now. 1194 return TypeList[ID] = createIdentifiedStructType(Context); 1195 } 1196 1197 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context, 1198 StringRef Name) { 1199 auto *Ret = StructType::create(Context, Name); 1200 IdentifiedStructTypes.push_back(Ret); 1201 return Ret; 1202 } 1203 1204 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) { 1205 auto *Ret = StructType::create(Context); 1206 IdentifiedStructTypes.push_back(Ret); 1207 return Ret; 1208 } 1209 1210 //===----------------------------------------------------------------------===// 1211 // Functions for parsing blocks from the bitcode file 1212 //===----------------------------------------------------------------------===// 1213 1214 static uint64_t getRawAttributeMask(Attribute::AttrKind Val) { 1215 switch (Val) { 1216 case Attribute::EndAttrKinds: 1217 llvm_unreachable("Synthetic enumerators which should never get here"); 1218 1219 case Attribute::None: return 0; 1220 case Attribute::ZExt: return 1 << 0; 1221 case Attribute::SExt: return 1 << 1; 1222 case Attribute::NoReturn: return 1 << 2; 1223 case Attribute::InReg: return 1 << 3; 1224 case Attribute::StructRet: return 1 << 4; 1225 case Attribute::NoUnwind: return 1 << 5; 1226 case Attribute::NoAlias: return 1 << 6; 1227 case Attribute::ByVal: return 1 << 7; 1228 case Attribute::Nest: return 1 << 8; 1229 case Attribute::ReadNone: return 1 << 9; 1230 case Attribute::ReadOnly: return 1 << 10; 1231 case Attribute::NoInline: return 1 << 11; 1232 case Attribute::AlwaysInline: return 1 << 12; 1233 case Attribute::OptimizeForSize: return 1 << 13; 1234 case Attribute::StackProtect: return 1 << 14; 1235 case Attribute::StackProtectReq: return 1 << 15; 1236 case Attribute::Alignment: return 31 << 16; 1237 case Attribute::NoCapture: return 1 << 21; 1238 case Attribute::NoRedZone: return 1 << 22; 1239 case Attribute::NoImplicitFloat: return 1 << 23; 1240 case Attribute::Naked: return 1 << 24; 1241 case Attribute::InlineHint: return 1 << 25; 1242 case Attribute::StackAlignment: return 7 << 26; 1243 case Attribute::ReturnsTwice: return 1 << 29; 1244 case Attribute::UWTable: return 1 << 30; 1245 case Attribute::NonLazyBind: return 1U << 31; 1246 case Attribute::SanitizeAddress: return 1ULL << 32; 1247 case Attribute::MinSize: return 1ULL << 33; 1248 case Attribute::NoDuplicate: return 1ULL << 34; 1249 case Attribute::StackProtectStrong: return 1ULL << 35; 1250 case Attribute::SanitizeThread: return 1ULL << 36; 1251 case Attribute::SanitizeMemory: return 1ULL << 37; 1252 case Attribute::NoBuiltin: return 1ULL << 38; 1253 case Attribute::Returned: return 1ULL << 39; 1254 case Attribute::Cold: return 1ULL << 40; 1255 case Attribute::Builtin: return 1ULL << 41; 1256 case Attribute::OptimizeNone: return 1ULL << 42; 1257 case Attribute::InAlloca: return 1ULL << 43; 1258 case Attribute::NonNull: return 1ULL << 44; 1259 case Attribute::JumpTable: return 1ULL << 45; 1260 case Attribute::Convergent: return 1ULL << 46; 1261 case Attribute::SafeStack: return 1ULL << 47; 1262 case Attribute::NoRecurse: return 1ULL << 48; 1263 case Attribute::InaccessibleMemOnly: return 1ULL << 49; 1264 case Attribute::InaccessibleMemOrArgMemOnly: return 1ULL << 50; 1265 case Attribute::SwiftSelf: return 1ULL << 51; 1266 case Attribute::SwiftError: return 1ULL << 52; 1267 case Attribute::WriteOnly: return 1ULL << 53; 1268 case Attribute::Speculatable: return 1ULL << 54; 1269 case Attribute::StrictFP: return 1ULL << 55; 1270 case Attribute::SanitizeHWAddress: return 1ULL << 56; 1271 case Attribute::NoCfCheck: return 1ULL << 57; 1272 case Attribute::OptForFuzzing: return 1ULL << 58; 1273 case Attribute::ShadowCallStack: return 1ULL << 59; 1274 case Attribute::SpeculativeLoadHardening: 1275 return 1ULL << 60; 1276 case Attribute::ImmArg: 1277 return 1ULL << 61; 1278 case Attribute::WillReturn: 1279 return 1ULL << 62; 1280 case Attribute::Dereferenceable: 1281 llvm_unreachable("dereferenceable attribute not supported in raw format"); 1282 break; 1283 case Attribute::DereferenceableOrNull: 1284 llvm_unreachable("dereferenceable_or_null attribute not supported in raw " 1285 "format"); 1286 break; 1287 case Attribute::ArgMemOnly: 1288 llvm_unreachable("argmemonly attribute not supported in raw format"); 1289 break; 1290 case Attribute::AllocSize: 1291 llvm_unreachable("allocsize not supported in raw format"); 1292 break; 1293 } 1294 llvm_unreachable("Unsupported attribute type"); 1295 } 1296 1297 static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) { 1298 if (!Val) return; 1299 1300 for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds; 1301 I = Attribute::AttrKind(I + 1)) { 1302 if (I == Attribute::Dereferenceable || 1303 I == Attribute::DereferenceableOrNull || 1304 I == Attribute::ArgMemOnly || 1305 I == Attribute::AllocSize) 1306 continue; 1307 if (uint64_t A = (Val & getRawAttributeMask(I))) { 1308 if (I == Attribute::Alignment) 1309 B.addAlignmentAttr(1ULL << ((A >> 16) - 1)); 1310 else if (I == Attribute::StackAlignment) 1311 B.addStackAlignmentAttr(1ULL << ((A >> 26)-1)); 1312 else 1313 B.addAttribute(I); 1314 } 1315 } 1316 } 1317 1318 /// This fills an AttrBuilder object with the LLVM attributes that have 1319 /// been decoded from the given integer. This function must stay in sync with 1320 /// 'encodeLLVMAttributesForBitcode'. 1321 static void decodeLLVMAttributesForBitcode(AttrBuilder &B, 1322 uint64_t EncodedAttrs) { 1323 // FIXME: Remove in 4.0. 1324 1325 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift 1326 // the bits above 31 down by 11 bits. 1327 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; 1328 assert((!Alignment || isPowerOf2_32(Alignment)) && 1329 "Alignment must be a power of two."); 1330 1331 if (Alignment) 1332 B.addAlignmentAttr(Alignment); 1333 addRawAttributeValue(B, ((EncodedAttrs & (0xfffffULL << 32)) >> 11) | 1334 (EncodedAttrs & 0xffff)); 1335 } 1336 1337 Error BitcodeReader::parseAttributeBlock() { 1338 if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 1339 return Err; 1340 1341 if (!MAttributes.empty()) 1342 return error("Invalid multiple blocks"); 1343 1344 SmallVector<uint64_t, 64> Record; 1345 1346 SmallVector<AttributeList, 8> Attrs; 1347 1348 // Read all the records. 1349 while (true) { 1350 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1351 if (!MaybeEntry) 1352 return MaybeEntry.takeError(); 1353 BitstreamEntry Entry = MaybeEntry.get(); 1354 1355 switch (Entry.Kind) { 1356 case BitstreamEntry::SubBlock: // Handled for us already. 1357 case BitstreamEntry::Error: 1358 return error("Malformed block"); 1359 case BitstreamEntry::EndBlock: 1360 return Error::success(); 1361 case BitstreamEntry::Record: 1362 // The interesting case. 1363 break; 1364 } 1365 1366 // Read a record. 1367 Record.clear(); 1368 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1369 if (!MaybeRecord) 1370 return MaybeRecord.takeError(); 1371 switch (MaybeRecord.get()) { 1372 default: // Default behavior: ignore. 1373 break; 1374 case bitc::PARAMATTR_CODE_ENTRY_OLD: // ENTRY: [paramidx0, attr0, ...] 1375 // FIXME: Remove in 4.0. 1376 if (Record.size() & 1) 1377 return error("Invalid record"); 1378 1379 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1380 AttrBuilder B; 1381 decodeLLVMAttributesForBitcode(B, Record[i+1]); 1382 Attrs.push_back(AttributeList::get(Context, Record[i], B)); 1383 } 1384 1385 MAttributes.push_back(AttributeList::get(Context, Attrs)); 1386 Attrs.clear(); 1387 break; 1388 case bitc::PARAMATTR_CODE_ENTRY: // ENTRY: [attrgrp0, attrgrp1, ...] 1389 for (unsigned i = 0, e = Record.size(); i != e; ++i) 1390 Attrs.push_back(MAttributeGroups[Record[i]]); 1391 1392 MAttributes.push_back(AttributeList::get(Context, Attrs)); 1393 Attrs.clear(); 1394 break; 1395 } 1396 } 1397 } 1398 1399 // Returns Attribute::None on unrecognized codes. 1400 static Attribute::AttrKind getAttrFromCode(uint64_t Code) { 1401 switch (Code) { 1402 default: 1403 return Attribute::None; 1404 case bitc::ATTR_KIND_ALIGNMENT: 1405 return Attribute::Alignment; 1406 case bitc::ATTR_KIND_ALWAYS_INLINE: 1407 return Attribute::AlwaysInline; 1408 case bitc::ATTR_KIND_ARGMEMONLY: 1409 return Attribute::ArgMemOnly; 1410 case bitc::ATTR_KIND_BUILTIN: 1411 return Attribute::Builtin; 1412 case bitc::ATTR_KIND_BY_VAL: 1413 return Attribute::ByVal; 1414 case bitc::ATTR_KIND_IN_ALLOCA: 1415 return Attribute::InAlloca; 1416 case bitc::ATTR_KIND_COLD: 1417 return Attribute::Cold; 1418 case bitc::ATTR_KIND_CONVERGENT: 1419 return Attribute::Convergent; 1420 case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY: 1421 return Attribute::InaccessibleMemOnly; 1422 case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY: 1423 return Attribute::InaccessibleMemOrArgMemOnly; 1424 case bitc::ATTR_KIND_INLINE_HINT: 1425 return Attribute::InlineHint; 1426 case bitc::ATTR_KIND_IN_REG: 1427 return Attribute::InReg; 1428 case bitc::ATTR_KIND_JUMP_TABLE: 1429 return Attribute::JumpTable; 1430 case bitc::ATTR_KIND_MIN_SIZE: 1431 return Attribute::MinSize; 1432 case bitc::ATTR_KIND_NAKED: 1433 return Attribute::Naked; 1434 case bitc::ATTR_KIND_NEST: 1435 return Attribute::Nest; 1436 case bitc::ATTR_KIND_NO_ALIAS: 1437 return Attribute::NoAlias; 1438 case bitc::ATTR_KIND_NO_BUILTIN: 1439 return Attribute::NoBuiltin; 1440 case bitc::ATTR_KIND_NO_CAPTURE: 1441 return Attribute::NoCapture; 1442 case bitc::ATTR_KIND_NO_DUPLICATE: 1443 return Attribute::NoDuplicate; 1444 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: 1445 return Attribute::NoImplicitFloat; 1446 case bitc::ATTR_KIND_NO_INLINE: 1447 return Attribute::NoInline; 1448 case bitc::ATTR_KIND_NO_RECURSE: 1449 return Attribute::NoRecurse; 1450 case bitc::ATTR_KIND_NON_LAZY_BIND: 1451 return Attribute::NonLazyBind; 1452 case bitc::ATTR_KIND_NON_NULL: 1453 return Attribute::NonNull; 1454 case bitc::ATTR_KIND_DEREFERENCEABLE: 1455 return Attribute::Dereferenceable; 1456 case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL: 1457 return Attribute::DereferenceableOrNull; 1458 case bitc::ATTR_KIND_ALLOC_SIZE: 1459 return Attribute::AllocSize; 1460 case bitc::ATTR_KIND_NO_RED_ZONE: 1461 return Attribute::NoRedZone; 1462 case bitc::ATTR_KIND_NO_RETURN: 1463 return Attribute::NoReturn; 1464 case bitc::ATTR_KIND_NOCF_CHECK: 1465 return Attribute::NoCfCheck; 1466 case bitc::ATTR_KIND_NO_UNWIND: 1467 return Attribute::NoUnwind; 1468 case bitc::ATTR_KIND_OPT_FOR_FUZZING: 1469 return Attribute::OptForFuzzing; 1470 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: 1471 return Attribute::OptimizeForSize; 1472 case bitc::ATTR_KIND_OPTIMIZE_NONE: 1473 return Attribute::OptimizeNone; 1474 case bitc::ATTR_KIND_READ_NONE: 1475 return Attribute::ReadNone; 1476 case bitc::ATTR_KIND_READ_ONLY: 1477 return Attribute::ReadOnly; 1478 case bitc::ATTR_KIND_RETURNED: 1479 return Attribute::Returned; 1480 case bitc::ATTR_KIND_RETURNS_TWICE: 1481 return Attribute::ReturnsTwice; 1482 case bitc::ATTR_KIND_S_EXT: 1483 return Attribute::SExt; 1484 case bitc::ATTR_KIND_SPECULATABLE: 1485 return Attribute::Speculatable; 1486 case bitc::ATTR_KIND_STACK_ALIGNMENT: 1487 return Attribute::StackAlignment; 1488 case bitc::ATTR_KIND_STACK_PROTECT: 1489 return Attribute::StackProtect; 1490 case bitc::ATTR_KIND_STACK_PROTECT_REQ: 1491 return Attribute::StackProtectReq; 1492 case bitc::ATTR_KIND_STACK_PROTECT_STRONG: 1493 return Attribute::StackProtectStrong; 1494 case bitc::ATTR_KIND_SAFESTACK: 1495 return Attribute::SafeStack; 1496 case bitc::ATTR_KIND_SHADOWCALLSTACK: 1497 return Attribute::ShadowCallStack; 1498 case bitc::ATTR_KIND_STRICT_FP: 1499 return Attribute::StrictFP; 1500 case bitc::ATTR_KIND_STRUCT_RET: 1501 return Attribute::StructRet; 1502 case bitc::ATTR_KIND_SANITIZE_ADDRESS: 1503 return Attribute::SanitizeAddress; 1504 case bitc::ATTR_KIND_SANITIZE_HWADDRESS: 1505 return Attribute::SanitizeHWAddress; 1506 case bitc::ATTR_KIND_SANITIZE_THREAD: 1507 return Attribute::SanitizeThread; 1508 case bitc::ATTR_KIND_SANITIZE_MEMORY: 1509 return Attribute::SanitizeMemory; 1510 case bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING: 1511 return Attribute::SpeculativeLoadHardening; 1512 case bitc::ATTR_KIND_SWIFT_ERROR: 1513 return Attribute::SwiftError; 1514 case bitc::ATTR_KIND_SWIFT_SELF: 1515 return Attribute::SwiftSelf; 1516 case bitc::ATTR_KIND_UW_TABLE: 1517 return Attribute::UWTable; 1518 case bitc::ATTR_KIND_WILLRETURN: 1519 return Attribute::WillReturn; 1520 case bitc::ATTR_KIND_WRITEONLY: 1521 return Attribute::WriteOnly; 1522 case bitc::ATTR_KIND_Z_EXT: 1523 return Attribute::ZExt; 1524 case bitc::ATTR_KIND_IMMARG: 1525 return Attribute::ImmArg; 1526 } 1527 } 1528 1529 Error BitcodeReader::parseAlignmentValue(uint64_t Exponent, 1530 unsigned &Alignment) { 1531 // Note: Alignment in bitcode files is incremented by 1, so that zero 1532 // can be used for default alignment. 1533 if (Exponent > Value::MaxAlignmentExponent + 1) 1534 return error("Invalid alignment value"); 1535 Alignment = (1 << static_cast<unsigned>(Exponent)) >> 1; 1536 return Error::success(); 1537 } 1538 1539 Error BitcodeReader::parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind) { 1540 *Kind = getAttrFromCode(Code); 1541 if (*Kind == Attribute::None) 1542 return error("Unknown attribute kind (" + Twine(Code) + ")"); 1543 return Error::success(); 1544 } 1545 1546 Error BitcodeReader::parseAttributeGroupBlock() { 1547 if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) 1548 return Err; 1549 1550 if (!MAttributeGroups.empty()) 1551 return error("Invalid multiple blocks"); 1552 1553 SmallVector<uint64_t, 64> Record; 1554 1555 // Read all the records. 1556 while (true) { 1557 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1558 if (!MaybeEntry) 1559 return MaybeEntry.takeError(); 1560 BitstreamEntry Entry = MaybeEntry.get(); 1561 1562 switch (Entry.Kind) { 1563 case BitstreamEntry::SubBlock: // Handled for us already. 1564 case BitstreamEntry::Error: 1565 return error("Malformed block"); 1566 case BitstreamEntry::EndBlock: 1567 return Error::success(); 1568 case BitstreamEntry::Record: 1569 // The interesting case. 1570 break; 1571 } 1572 1573 // Read a record. 1574 Record.clear(); 1575 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1576 if (!MaybeRecord) 1577 return MaybeRecord.takeError(); 1578 switch (MaybeRecord.get()) { 1579 default: // Default behavior: ignore. 1580 break; 1581 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] 1582 if (Record.size() < 3) 1583 return error("Invalid record"); 1584 1585 uint64_t GrpID = Record[0]; 1586 uint64_t Idx = Record[1]; // Index of the object this attribute refers to. 1587 1588 AttrBuilder B; 1589 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1590 if (Record[i] == 0) { // Enum attribute 1591 Attribute::AttrKind Kind; 1592 if (Error Err = parseAttrKind(Record[++i], &Kind)) 1593 return Err; 1594 1595 // Upgrade old-style byval attribute to one with a type, even if it's 1596 // nullptr. We will have to insert the real type when we associate 1597 // this AttributeList with a function. 1598 if (Kind == Attribute::ByVal) 1599 B.addByValAttr(nullptr); 1600 1601 B.addAttribute(Kind); 1602 } else if (Record[i] == 1) { // Integer attribute 1603 Attribute::AttrKind Kind; 1604 if (Error Err = parseAttrKind(Record[++i], &Kind)) 1605 return Err; 1606 if (Kind == Attribute::Alignment) 1607 B.addAlignmentAttr(Record[++i]); 1608 else if (Kind == Attribute::StackAlignment) 1609 B.addStackAlignmentAttr(Record[++i]); 1610 else if (Kind == Attribute::Dereferenceable) 1611 B.addDereferenceableAttr(Record[++i]); 1612 else if (Kind == Attribute::DereferenceableOrNull) 1613 B.addDereferenceableOrNullAttr(Record[++i]); 1614 else if (Kind == Attribute::AllocSize) 1615 B.addAllocSizeAttrFromRawRepr(Record[++i]); 1616 } else if (Record[i] == 3 || Record[i] == 4) { // String attribute 1617 bool HasValue = (Record[i++] == 4); 1618 SmallString<64> KindStr; 1619 SmallString<64> ValStr; 1620 1621 while (Record[i] != 0 && i != e) 1622 KindStr += Record[i++]; 1623 assert(Record[i] == 0 && "Kind string not null terminated"); 1624 1625 if (HasValue) { 1626 // Has a value associated with it. 1627 ++i; // Skip the '0' that terminates the "kind" string. 1628 while (Record[i] != 0 && i != e) 1629 ValStr += Record[i++]; 1630 assert(Record[i] == 0 && "Value string not null terminated"); 1631 } 1632 1633 B.addAttribute(KindStr.str(), ValStr.str()); 1634 } else { 1635 assert((Record[i] == 5 || Record[i] == 6) && 1636 "Invalid attribute group entry"); 1637 bool HasType = Record[i] == 6; 1638 Attribute::AttrKind Kind; 1639 if (Error Err = parseAttrKind(Record[++i], &Kind)) 1640 return Err; 1641 if (Kind == Attribute::ByVal) 1642 B.addByValAttr(HasType ? getTypeByID(Record[++i]) : nullptr); 1643 } 1644 } 1645 1646 MAttributeGroups[GrpID] = AttributeList::get(Context, Idx, B); 1647 break; 1648 } 1649 } 1650 } 1651 } 1652 1653 Error BitcodeReader::parseTypeTable() { 1654 if (Error Err = Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 1655 return Err; 1656 1657 return parseTypeTableBody(); 1658 } 1659 1660 Error BitcodeReader::parseTypeTableBody() { 1661 if (!TypeList.empty()) 1662 return error("Invalid multiple blocks"); 1663 1664 SmallVector<uint64_t, 64> Record; 1665 unsigned NumRecords = 0; 1666 1667 SmallString<64> TypeName; 1668 1669 // Read all the records for this type table. 1670 while (true) { 1671 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1672 if (!MaybeEntry) 1673 return MaybeEntry.takeError(); 1674 BitstreamEntry Entry = MaybeEntry.get(); 1675 1676 switch (Entry.Kind) { 1677 case BitstreamEntry::SubBlock: // Handled for us already. 1678 case BitstreamEntry::Error: 1679 return error("Malformed block"); 1680 case BitstreamEntry::EndBlock: 1681 if (NumRecords != TypeList.size()) 1682 return error("Malformed block"); 1683 return Error::success(); 1684 case BitstreamEntry::Record: 1685 // The interesting case. 1686 break; 1687 } 1688 1689 // Read a record. 1690 Record.clear(); 1691 Type *ResultTy = nullptr; 1692 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1693 if (!MaybeRecord) 1694 return MaybeRecord.takeError(); 1695 switch (MaybeRecord.get()) { 1696 default: 1697 return error("Invalid value"); 1698 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 1699 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 1700 // type list. This allows us to reserve space. 1701 if (Record.size() < 1) 1702 return error("Invalid record"); 1703 TypeList.resize(Record[0]); 1704 continue; 1705 case bitc::TYPE_CODE_VOID: // VOID 1706 ResultTy = Type::getVoidTy(Context); 1707 break; 1708 case bitc::TYPE_CODE_HALF: // HALF 1709 ResultTy = Type::getHalfTy(Context); 1710 break; 1711 case bitc::TYPE_CODE_FLOAT: // FLOAT 1712 ResultTy = Type::getFloatTy(Context); 1713 break; 1714 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 1715 ResultTy = Type::getDoubleTy(Context); 1716 break; 1717 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 1718 ResultTy = Type::getX86_FP80Ty(Context); 1719 break; 1720 case bitc::TYPE_CODE_FP128: // FP128 1721 ResultTy = Type::getFP128Ty(Context); 1722 break; 1723 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 1724 ResultTy = Type::getPPC_FP128Ty(Context); 1725 break; 1726 case bitc::TYPE_CODE_LABEL: // LABEL 1727 ResultTy = Type::getLabelTy(Context); 1728 break; 1729 case bitc::TYPE_CODE_METADATA: // METADATA 1730 ResultTy = Type::getMetadataTy(Context); 1731 break; 1732 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 1733 ResultTy = Type::getX86_MMXTy(Context); 1734 break; 1735 case bitc::TYPE_CODE_TOKEN: // TOKEN 1736 ResultTy = Type::getTokenTy(Context); 1737 break; 1738 case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width] 1739 if (Record.size() < 1) 1740 return error("Invalid record"); 1741 1742 uint64_t NumBits = Record[0]; 1743 if (NumBits < IntegerType::MIN_INT_BITS || 1744 NumBits > IntegerType::MAX_INT_BITS) 1745 return error("Bitwidth for integer type out of range"); 1746 ResultTy = IntegerType::get(Context, NumBits); 1747 break; 1748 } 1749 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 1750 // [pointee type, address space] 1751 if (Record.size() < 1) 1752 return error("Invalid record"); 1753 unsigned AddressSpace = 0; 1754 if (Record.size() == 2) 1755 AddressSpace = Record[1]; 1756 ResultTy = getTypeByID(Record[0]); 1757 if (!ResultTy || 1758 !PointerType::isValidElementType(ResultTy)) 1759 return error("Invalid type"); 1760 ResultTy = PointerType::get(ResultTy, AddressSpace); 1761 break; 1762 } 1763 case bitc::TYPE_CODE_FUNCTION_OLD: { 1764 // FIXME: attrid is dead, remove it in LLVM 4.0 1765 // FUNCTION: [vararg, attrid, retty, paramty x N] 1766 if (Record.size() < 3) 1767 return error("Invalid record"); 1768 SmallVector<Type*, 8> ArgTys; 1769 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 1770 if (Type *T = getTypeByID(Record[i])) 1771 ArgTys.push_back(T); 1772 else 1773 break; 1774 } 1775 1776 ResultTy = getTypeByID(Record[2]); 1777 if (!ResultTy || ArgTys.size() < Record.size()-3) 1778 return error("Invalid type"); 1779 1780 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1781 break; 1782 } 1783 case bitc::TYPE_CODE_FUNCTION: { 1784 // FUNCTION: [vararg, retty, paramty x N] 1785 if (Record.size() < 2) 1786 return error("Invalid record"); 1787 SmallVector<Type*, 8> ArgTys; 1788 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1789 if (Type *T = getTypeByID(Record[i])) { 1790 if (!FunctionType::isValidArgumentType(T)) 1791 return error("Invalid function argument type"); 1792 ArgTys.push_back(T); 1793 } 1794 else 1795 break; 1796 } 1797 1798 ResultTy = getTypeByID(Record[1]); 1799 if (!ResultTy || ArgTys.size() < Record.size()-2) 1800 return error("Invalid type"); 1801 1802 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1803 break; 1804 } 1805 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 1806 if (Record.size() < 1) 1807 return error("Invalid record"); 1808 SmallVector<Type*, 8> EltTys; 1809 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1810 if (Type *T = getTypeByID(Record[i])) 1811 EltTys.push_back(T); 1812 else 1813 break; 1814 } 1815 if (EltTys.size() != Record.size()-1) 1816 return error("Invalid type"); 1817 ResultTy = StructType::get(Context, EltTys, Record[0]); 1818 break; 1819 } 1820 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 1821 if (convertToString(Record, 0, TypeName)) 1822 return error("Invalid record"); 1823 continue; 1824 1825 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 1826 if (Record.size() < 1) 1827 return error("Invalid record"); 1828 1829 if (NumRecords >= TypeList.size()) 1830 return error("Invalid TYPE table"); 1831 1832 // Check to see if this was forward referenced, if so fill in the temp. 1833 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1834 if (Res) { 1835 Res->setName(TypeName); 1836 TypeList[NumRecords] = nullptr; 1837 } else // Otherwise, create a new struct. 1838 Res = createIdentifiedStructType(Context, TypeName); 1839 TypeName.clear(); 1840 1841 SmallVector<Type*, 8> EltTys; 1842 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1843 if (Type *T = getTypeByID(Record[i])) 1844 EltTys.push_back(T); 1845 else 1846 break; 1847 } 1848 if (EltTys.size() != Record.size()-1) 1849 return error("Invalid record"); 1850 Res->setBody(EltTys, Record[0]); 1851 ResultTy = Res; 1852 break; 1853 } 1854 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 1855 if (Record.size() != 1) 1856 return error("Invalid record"); 1857 1858 if (NumRecords >= TypeList.size()) 1859 return error("Invalid TYPE table"); 1860 1861 // Check to see if this was forward referenced, if so fill in the temp. 1862 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1863 if (Res) { 1864 Res->setName(TypeName); 1865 TypeList[NumRecords] = nullptr; 1866 } else // Otherwise, create a new struct with no body. 1867 Res = createIdentifiedStructType(Context, TypeName); 1868 TypeName.clear(); 1869 ResultTy = Res; 1870 break; 1871 } 1872 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 1873 if (Record.size() < 2) 1874 return error("Invalid record"); 1875 ResultTy = getTypeByID(Record[1]); 1876 if (!ResultTy || !ArrayType::isValidElementType(ResultTy)) 1877 return error("Invalid type"); 1878 ResultTy = ArrayType::get(ResultTy, Record[0]); 1879 break; 1880 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] 1881 if (Record.size() < 2) 1882 return error("Invalid record"); 1883 if (Record[0] == 0) 1884 return error("Invalid vector length"); 1885 ResultTy = getTypeByID(Record[1]); 1886 if (!ResultTy || !StructType::isValidElementType(ResultTy)) 1887 return error("Invalid type"); 1888 ResultTy = VectorType::get(ResultTy, Record[0]); 1889 break; 1890 } 1891 1892 if (NumRecords >= TypeList.size()) 1893 return error("Invalid TYPE table"); 1894 if (TypeList[NumRecords]) 1895 return error( 1896 "Invalid TYPE table: Only named structs can be forward referenced"); 1897 assert(ResultTy && "Didn't read a type?"); 1898 TypeList[NumRecords++] = ResultTy; 1899 } 1900 } 1901 1902 Error BitcodeReader::parseOperandBundleTags() { 1903 if (Error Err = Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID)) 1904 return Err; 1905 1906 if (!BundleTags.empty()) 1907 return error("Invalid multiple blocks"); 1908 1909 SmallVector<uint64_t, 64> Record; 1910 1911 while (true) { 1912 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1913 if (!MaybeEntry) 1914 return MaybeEntry.takeError(); 1915 BitstreamEntry Entry = MaybeEntry.get(); 1916 1917 switch (Entry.Kind) { 1918 case BitstreamEntry::SubBlock: // Handled for us already. 1919 case BitstreamEntry::Error: 1920 return error("Malformed block"); 1921 case BitstreamEntry::EndBlock: 1922 return Error::success(); 1923 case BitstreamEntry::Record: 1924 // The interesting case. 1925 break; 1926 } 1927 1928 // Tags are implicitly mapped to integers by their order. 1929 1930 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1931 if (!MaybeRecord) 1932 return MaybeRecord.takeError(); 1933 if (MaybeRecord.get() != bitc::OPERAND_BUNDLE_TAG) 1934 return error("Invalid record"); 1935 1936 // OPERAND_BUNDLE_TAG: [strchr x N] 1937 BundleTags.emplace_back(); 1938 if (convertToString(Record, 0, BundleTags.back())) 1939 return error("Invalid record"); 1940 Record.clear(); 1941 } 1942 } 1943 1944 Error BitcodeReader::parseSyncScopeNames() { 1945 if (Error Err = Stream.EnterSubBlock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID)) 1946 return Err; 1947 1948 if (!SSIDs.empty()) 1949 return error("Invalid multiple synchronization scope names blocks"); 1950 1951 SmallVector<uint64_t, 64> Record; 1952 while (true) { 1953 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1954 if (!MaybeEntry) 1955 return MaybeEntry.takeError(); 1956 BitstreamEntry Entry = MaybeEntry.get(); 1957 1958 switch (Entry.Kind) { 1959 case BitstreamEntry::SubBlock: // Handled for us already. 1960 case BitstreamEntry::Error: 1961 return error("Malformed block"); 1962 case BitstreamEntry::EndBlock: 1963 if (SSIDs.empty()) 1964 return error("Invalid empty synchronization scope names block"); 1965 return Error::success(); 1966 case BitstreamEntry::Record: 1967 // The interesting case. 1968 break; 1969 } 1970 1971 // Synchronization scope names are implicitly mapped to synchronization 1972 // scope IDs by their order. 1973 1974 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1975 if (!MaybeRecord) 1976 return MaybeRecord.takeError(); 1977 if (MaybeRecord.get() != bitc::SYNC_SCOPE_NAME) 1978 return error("Invalid record"); 1979 1980 SmallString<16> SSN; 1981 if (convertToString(Record, 0, SSN)) 1982 return error("Invalid record"); 1983 1984 SSIDs.push_back(Context.getOrInsertSyncScopeID(SSN)); 1985 Record.clear(); 1986 } 1987 } 1988 1989 /// Associate a value with its name from the given index in the provided record. 1990 Expected<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record, 1991 unsigned NameIndex, Triple &TT) { 1992 SmallString<128> ValueName; 1993 if (convertToString(Record, NameIndex, ValueName)) 1994 return error("Invalid record"); 1995 unsigned ValueID = Record[0]; 1996 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 1997 return error("Invalid record"); 1998 Value *V = ValueList[ValueID]; 1999 2000 StringRef NameStr(ValueName.data(), ValueName.size()); 2001 if (NameStr.find_first_of(0) != StringRef::npos) 2002 return error("Invalid value name"); 2003 V->setName(NameStr); 2004 auto *GO = dyn_cast<GlobalObject>(V); 2005 if (GO) { 2006 if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) { 2007 if (TT.supportsCOMDAT()) 2008 GO->setComdat(TheModule->getOrInsertComdat(V->getName())); 2009 else 2010 GO->setComdat(nullptr); 2011 } 2012 } 2013 return V; 2014 } 2015 2016 /// Helper to note and return the current location, and jump to the given 2017 /// offset. 2018 static Expected<uint64_t> jumpToValueSymbolTable(uint64_t Offset, 2019 BitstreamCursor &Stream) { 2020 // Save the current parsing location so we can jump back at the end 2021 // of the VST read. 2022 uint64_t CurrentBit = Stream.GetCurrentBitNo(); 2023 if (Error JumpFailed = Stream.JumpToBit(Offset * 32)) 2024 return std::move(JumpFailed); 2025 Expected<BitstreamEntry> MaybeEntry = Stream.advance(); 2026 if (!MaybeEntry) 2027 return MaybeEntry.takeError(); 2028 assert(MaybeEntry.get().Kind == BitstreamEntry::SubBlock); 2029 assert(MaybeEntry.get().ID == bitc::VALUE_SYMTAB_BLOCK_ID); 2030 return CurrentBit; 2031 } 2032 2033 void BitcodeReader::setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, 2034 Function *F, 2035 ArrayRef<uint64_t> Record) { 2036 // Note that we subtract 1 here because the offset is relative to one word 2037 // before the start of the identification or module block, which was 2038 // historically always the start of the regular bitcode header. 2039 uint64_t FuncWordOffset = Record[1] - 1; 2040 uint64_t FuncBitOffset = FuncWordOffset * 32; 2041 DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta; 2042 // Set the LastFunctionBlockBit to point to the last function block. 2043 // Later when parsing is resumed after function materialization, 2044 // we can simply skip that last function block. 2045 if (FuncBitOffset > LastFunctionBlockBit) 2046 LastFunctionBlockBit = FuncBitOffset; 2047 } 2048 2049 /// Read a new-style GlobalValue symbol table. 2050 Error BitcodeReader::parseGlobalValueSymbolTable() { 2051 unsigned FuncBitcodeOffsetDelta = 2052 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 2053 2054 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 2055 return Err; 2056 2057 SmallVector<uint64_t, 64> Record; 2058 while (true) { 2059 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2060 if (!MaybeEntry) 2061 return MaybeEntry.takeError(); 2062 BitstreamEntry Entry = MaybeEntry.get(); 2063 2064 switch (Entry.Kind) { 2065 case BitstreamEntry::SubBlock: 2066 case BitstreamEntry::Error: 2067 return error("Malformed block"); 2068 case BitstreamEntry::EndBlock: 2069 return Error::success(); 2070 case BitstreamEntry::Record: 2071 break; 2072 } 2073 2074 Record.clear(); 2075 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2076 if (!MaybeRecord) 2077 return MaybeRecord.takeError(); 2078 switch (MaybeRecord.get()) { 2079 case bitc::VST_CODE_FNENTRY: // [valueid, offset] 2080 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, 2081 cast<Function>(ValueList[Record[0]]), Record); 2082 break; 2083 } 2084 } 2085 } 2086 2087 /// Parse the value symbol table at either the current parsing location or 2088 /// at the given bit offset if provided. 2089 Error BitcodeReader::parseValueSymbolTable(uint64_t Offset) { 2090 uint64_t CurrentBit; 2091 // Pass in the Offset to distinguish between calling for the module-level 2092 // VST (where we want to jump to the VST offset) and the function-level 2093 // VST (where we don't). 2094 if (Offset > 0) { 2095 Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream); 2096 if (!MaybeCurrentBit) 2097 return MaybeCurrentBit.takeError(); 2098 CurrentBit = MaybeCurrentBit.get(); 2099 // If this module uses a string table, read this as a module-level VST. 2100 if (UseStrtab) { 2101 if (Error Err = parseGlobalValueSymbolTable()) 2102 return Err; 2103 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 2104 return JumpFailed; 2105 return Error::success(); 2106 } 2107 // Otherwise, the VST will be in a similar format to a function-level VST, 2108 // and will contain symbol names. 2109 } 2110 2111 // Compute the delta between the bitcode indices in the VST (the word offset 2112 // to the word-aligned ENTER_SUBBLOCK for the function block, and that 2113 // expected by the lazy reader. The reader's EnterSubBlock expects to have 2114 // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID 2115 // (size BlockIDWidth). Note that we access the stream's AbbrevID width here 2116 // just before entering the VST subblock because: 1) the EnterSubBlock 2117 // changes the AbbrevID width; 2) the VST block is nested within the same 2118 // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same 2119 // AbbrevID width before calling EnterSubBlock; and 3) when we want to 2120 // jump to the FUNCTION_BLOCK using this offset later, we don't want 2121 // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK. 2122 unsigned FuncBitcodeOffsetDelta = 2123 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 2124 2125 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 2126 return Err; 2127 2128 SmallVector<uint64_t, 64> Record; 2129 2130 Triple TT(TheModule->getTargetTriple()); 2131 2132 // Read all the records for this value table. 2133 SmallString<128> ValueName; 2134 2135 while (true) { 2136 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2137 if (!MaybeEntry) 2138 return MaybeEntry.takeError(); 2139 BitstreamEntry Entry = MaybeEntry.get(); 2140 2141 switch (Entry.Kind) { 2142 case BitstreamEntry::SubBlock: // Handled for us already. 2143 case BitstreamEntry::Error: 2144 return error("Malformed block"); 2145 case BitstreamEntry::EndBlock: 2146 if (Offset > 0) 2147 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 2148 return JumpFailed; 2149 return Error::success(); 2150 case BitstreamEntry::Record: 2151 // The interesting case. 2152 break; 2153 } 2154 2155 // Read a record. 2156 Record.clear(); 2157 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2158 if (!MaybeRecord) 2159 return MaybeRecord.takeError(); 2160 switch (MaybeRecord.get()) { 2161 default: // Default behavior: unknown type. 2162 break; 2163 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 2164 Expected<Value *> ValOrErr = recordValue(Record, 1, TT); 2165 if (Error Err = ValOrErr.takeError()) 2166 return Err; 2167 ValOrErr.get(); 2168 break; 2169 } 2170 case bitc::VST_CODE_FNENTRY: { 2171 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 2172 Expected<Value *> ValOrErr = recordValue(Record, 2, TT); 2173 if (Error Err = ValOrErr.takeError()) 2174 return Err; 2175 Value *V = ValOrErr.get(); 2176 2177 // Ignore function offsets emitted for aliases of functions in older 2178 // versions of LLVM. 2179 if (auto *F = dyn_cast<Function>(V)) 2180 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, F, Record); 2181 break; 2182 } 2183 case bitc::VST_CODE_BBENTRY: { 2184 if (convertToString(Record, 1, ValueName)) 2185 return error("Invalid record"); 2186 BasicBlock *BB = getBasicBlock(Record[0]); 2187 if (!BB) 2188 return error("Invalid record"); 2189 2190 BB->setName(StringRef(ValueName.data(), ValueName.size())); 2191 ValueName.clear(); 2192 break; 2193 } 2194 } 2195 } 2196 } 2197 2198 /// Decode a signed value stored with the sign bit in the LSB for dense VBR 2199 /// encoding. 2200 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { 2201 if ((V & 1) == 0) 2202 return V >> 1; 2203 if (V != 1) 2204 return -(V >> 1); 2205 // There is no such thing as -0 with integers. "-0" really means MININT. 2206 return 1ULL << 63; 2207 } 2208 2209 /// Resolve all of the initializers for global values and aliases that we can. 2210 Error BitcodeReader::resolveGlobalAndIndirectSymbolInits() { 2211 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInitWorklist; 2212 std::vector<std::pair<GlobalIndirectSymbol *, unsigned>> 2213 IndirectSymbolInitWorklist; 2214 std::vector<std::pair<Function *, unsigned>> FunctionPrefixWorklist; 2215 std::vector<std::pair<Function *, unsigned>> FunctionPrologueWorklist; 2216 std::vector<std::pair<Function *, unsigned>> FunctionPersonalityFnWorklist; 2217 2218 GlobalInitWorklist.swap(GlobalInits); 2219 IndirectSymbolInitWorklist.swap(IndirectSymbolInits); 2220 FunctionPrefixWorklist.swap(FunctionPrefixes); 2221 FunctionPrologueWorklist.swap(FunctionPrologues); 2222 FunctionPersonalityFnWorklist.swap(FunctionPersonalityFns); 2223 2224 while (!GlobalInitWorklist.empty()) { 2225 unsigned ValID = GlobalInitWorklist.back().second; 2226 if (ValID >= ValueList.size()) { 2227 // Not ready to resolve this yet, it requires something later in the file. 2228 GlobalInits.push_back(GlobalInitWorklist.back()); 2229 } else { 2230 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2231 GlobalInitWorklist.back().first->setInitializer(C); 2232 else 2233 return error("Expected a constant"); 2234 } 2235 GlobalInitWorklist.pop_back(); 2236 } 2237 2238 while (!IndirectSymbolInitWorklist.empty()) { 2239 unsigned ValID = IndirectSymbolInitWorklist.back().second; 2240 if (ValID >= ValueList.size()) { 2241 IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back()); 2242 } else { 2243 Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]); 2244 if (!C) 2245 return error("Expected a constant"); 2246 GlobalIndirectSymbol *GIS = IndirectSymbolInitWorklist.back().first; 2247 if (isa<GlobalAlias>(GIS) && C->getType() != GIS->getType()) 2248 return error("Alias and aliasee types don't match"); 2249 GIS->setIndirectSymbol(C); 2250 } 2251 IndirectSymbolInitWorklist.pop_back(); 2252 } 2253 2254 while (!FunctionPrefixWorklist.empty()) { 2255 unsigned ValID = FunctionPrefixWorklist.back().second; 2256 if (ValID >= ValueList.size()) { 2257 FunctionPrefixes.push_back(FunctionPrefixWorklist.back()); 2258 } else { 2259 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2260 FunctionPrefixWorklist.back().first->setPrefixData(C); 2261 else 2262 return error("Expected a constant"); 2263 } 2264 FunctionPrefixWorklist.pop_back(); 2265 } 2266 2267 while (!FunctionPrologueWorklist.empty()) { 2268 unsigned ValID = FunctionPrologueWorklist.back().second; 2269 if (ValID >= ValueList.size()) { 2270 FunctionPrologues.push_back(FunctionPrologueWorklist.back()); 2271 } else { 2272 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2273 FunctionPrologueWorklist.back().first->setPrologueData(C); 2274 else 2275 return error("Expected a constant"); 2276 } 2277 FunctionPrologueWorklist.pop_back(); 2278 } 2279 2280 while (!FunctionPersonalityFnWorklist.empty()) { 2281 unsigned ValID = FunctionPersonalityFnWorklist.back().second; 2282 if (ValID >= ValueList.size()) { 2283 FunctionPersonalityFns.push_back(FunctionPersonalityFnWorklist.back()); 2284 } else { 2285 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2286 FunctionPersonalityFnWorklist.back().first->setPersonalityFn(C); 2287 else 2288 return error("Expected a constant"); 2289 } 2290 FunctionPersonalityFnWorklist.pop_back(); 2291 } 2292 2293 return Error::success(); 2294 } 2295 2296 static APInt readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { 2297 SmallVector<uint64_t, 8> Words(Vals.size()); 2298 transform(Vals, Words.begin(), 2299 BitcodeReader::decodeSignRotatedValue); 2300 2301 return APInt(TypeBits, Words); 2302 } 2303 2304 Error BitcodeReader::parseConstants() { 2305 if (Error Err = Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 2306 return Err; 2307 2308 SmallVector<uint64_t, 64> Record; 2309 2310 // Read all the records for this value table. 2311 Type *CurTy = Type::getInt32Ty(Context); 2312 Type *CurFullTy = Type::getInt32Ty(Context); 2313 unsigned NextCstNo = ValueList.size(); 2314 2315 while (true) { 2316 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2317 if (!MaybeEntry) 2318 return MaybeEntry.takeError(); 2319 BitstreamEntry Entry = MaybeEntry.get(); 2320 2321 switch (Entry.Kind) { 2322 case BitstreamEntry::SubBlock: // Handled for us already. 2323 case BitstreamEntry::Error: 2324 return error("Malformed block"); 2325 case BitstreamEntry::EndBlock: 2326 if (NextCstNo != ValueList.size()) 2327 return error("Invalid constant reference"); 2328 2329 // Once all the constants have been read, go through and resolve forward 2330 // references. 2331 ValueList.resolveConstantForwardRefs(); 2332 return Error::success(); 2333 case BitstreamEntry::Record: 2334 // The interesting case. 2335 break; 2336 } 2337 2338 // Read a record. 2339 Record.clear(); 2340 Type *VoidType = Type::getVoidTy(Context); 2341 Value *V = nullptr; 2342 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 2343 if (!MaybeBitCode) 2344 return MaybeBitCode.takeError(); 2345 switch (unsigned BitCode = MaybeBitCode.get()) { 2346 default: // Default behavior: unknown constant 2347 case bitc::CST_CODE_UNDEF: // UNDEF 2348 V = UndefValue::get(CurTy); 2349 break; 2350 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 2351 if (Record.empty()) 2352 return error("Invalid record"); 2353 if (Record[0] >= TypeList.size() || !TypeList[Record[0]]) 2354 return error("Invalid record"); 2355 if (TypeList[Record[0]] == VoidType) 2356 return error("Invalid constant type"); 2357 CurFullTy = TypeList[Record[0]]; 2358 CurTy = flattenPointerTypes(CurFullTy); 2359 continue; // Skip the ValueList manipulation. 2360 case bitc::CST_CODE_NULL: // NULL 2361 V = Constant::getNullValue(CurTy); 2362 break; 2363 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 2364 if (!CurTy->isIntegerTy() || Record.empty()) 2365 return error("Invalid record"); 2366 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); 2367 break; 2368 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 2369 if (!CurTy->isIntegerTy() || Record.empty()) 2370 return error("Invalid record"); 2371 2372 APInt VInt = 2373 readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth()); 2374 V = ConstantInt::get(Context, VInt); 2375 2376 break; 2377 } 2378 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 2379 if (Record.empty()) 2380 return error("Invalid record"); 2381 if (CurTy->isHalfTy()) 2382 V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf(), 2383 APInt(16, (uint16_t)Record[0]))); 2384 else if (CurTy->isFloatTy()) 2385 V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle(), 2386 APInt(32, (uint32_t)Record[0]))); 2387 else if (CurTy->isDoubleTy()) 2388 V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble(), 2389 APInt(64, Record[0]))); 2390 else if (CurTy->isX86_FP80Ty()) { 2391 // Bits are not stored the same way as a normal i80 APInt, compensate. 2392 uint64_t Rearrange[2]; 2393 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 2394 Rearrange[1] = Record[0] >> 48; 2395 V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended(), 2396 APInt(80, Rearrange))); 2397 } else if (CurTy->isFP128Ty()) 2398 V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad(), 2399 APInt(128, Record))); 2400 else if (CurTy->isPPC_FP128Ty()) 2401 V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble(), 2402 APInt(128, Record))); 2403 else 2404 V = UndefValue::get(CurTy); 2405 break; 2406 } 2407 2408 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 2409 if (Record.empty()) 2410 return error("Invalid record"); 2411 2412 unsigned Size = Record.size(); 2413 SmallVector<Constant*, 16> Elts; 2414 2415 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 2416 for (unsigned i = 0; i != Size; ++i) 2417 Elts.push_back(ValueList.getConstantFwdRef(Record[i], 2418 STy->getElementType(i))); 2419 V = ConstantStruct::get(STy, Elts); 2420 } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) { 2421 Type *EltTy = ATy->getElementType(); 2422 for (unsigned i = 0; i != Size; ++i) 2423 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2424 V = ConstantArray::get(ATy, Elts); 2425 } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) { 2426 Type *EltTy = VTy->getElementType(); 2427 for (unsigned i = 0; i != Size; ++i) 2428 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2429 V = ConstantVector::get(Elts); 2430 } else { 2431 V = UndefValue::get(CurTy); 2432 } 2433 break; 2434 } 2435 case bitc::CST_CODE_STRING: // STRING: [values] 2436 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 2437 if (Record.empty()) 2438 return error("Invalid record"); 2439 2440 SmallString<16> Elts(Record.begin(), Record.end()); 2441 V = ConstantDataArray::getString(Context, Elts, 2442 BitCode == bitc::CST_CODE_CSTRING); 2443 break; 2444 } 2445 case bitc::CST_CODE_DATA: {// DATA: [n x value] 2446 if (Record.empty()) 2447 return error("Invalid record"); 2448 2449 Type *EltTy = cast<SequentialType>(CurTy)->getElementType(); 2450 if (EltTy->isIntegerTy(8)) { 2451 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); 2452 if (isa<VectorType>(CurTy)) 2453 V = ConstantDataVector::get(Context, Elts); 2454 else 2455 V = ConstantDataArray::get(Context, Elts); 2456 } else if (EltTy->isIntegerTy(16)) { 2457 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2458 if (isa<VectorType>(CurTy)) 2459 V = ConstantDataVector::get(Context, Elts); 2460 else 2461 V = ConstantDataArray::get(Context, Elts); 2462 } else if (EltTy->isIntegerTy(32)) { 2463 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2464 if (isa<VectorType>(CurTy)) 2465 V = ConstantDataVector::get(Context, Elts); 2466 else 2467 V = ConstantDataArray::get(Context, Elts); 2468 } else if (EltTy->isIntegerTy(64)) { 2469 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2470 if (isa<VectorType>(CurTy)) 2471 V = ConstantDataVector::get(Context, Elts); 2472 else 2473 V = ConstantDataArray::get(Context, Elts); 2474 } else if (EltTy->isHalfTy()) { 2475 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2476 if (isa<VectorType>(CurTy)) 2477 V = ConstantDataVector::getFP(Context, Elts); 2478 else 2479 V = ConstantDataArray::getFP(Context, Elts); 2480 } else if (EltTy->isFloatTy()) { 2481 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2482 if (isa<VectorType>(CurTy)) 2483 V = ConstantDataVector::getFP(Context, Elts); 2484 else 2485 V = ConstantDataArray::getFP(Context, Elts); 2486 } else if (EltTy->isDoubleTy()) { 2487 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2488 if (isa<VectorType>(CurTy)) 2489 V = ConstantDataVector::getFP(Context, Elts); 2490 else 2491 V = ConstantDataArray::getFP(Context, Elts); 2492 } else { 2493 return error("Invalid type for value"); 2494 } 2495 break; 2496 } 2497 case bitc::CST_CODE_CE_UNOP: { // CE_UNOP: [opcode, opval] 2498 if (Record.size() < 2) 2499 return error("Invalid record"); 2500 int Opc = getDecodedUnaryOpcode(Record[0], CurTy); 2501 if (Opc < 0) { 2502 V = UndefValue::get(CurTy); // Unknown unop. 2503 } else { 2504 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 2505 unsigned Flags = 0; 2506 V = ConstantExpr::get(Opc, LHS, Flags); 2507 } 2508 break; 2509 } 2510 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 2511 if (Record.size() < 3) 2512 return error("Invalid record"); 2513 int Opc = getDecodedBinaryOpcode(Record[0], CurTy); 2514 if (Opc < 0) { 2515 V = UndefValue::get(CurTy); // Unknown binop. 2516 } else { 2517 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 2518 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy); 2519 unsigned Flags = 0; 2520 if (Record.size() >= 4) { 2521 if (Opc == Instruction::Add || 2522 Opc == Instruction::Sub || 2523 Opc == Instruction::Mul || 2524 Opc == Instruction::Shl) { 2525 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 2526 Flags |= OverflowingBinaryOperator::NoSignedWrap; 2527 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 2528 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 2529 } else if (Opc == Instruction::SDiv || 2530 Opc == Instruction::UDiv || 2531 Opc == Instruction::LShr || 2532 Opc == Instruction::AShr) { 2533 if (Record[3] & (1 << bitc::PEO_EXACT)) 2534 Flags |= SDivOperator::IsExact; 2535 } 2536 } 2537 V = ConstantExpr::get(Opc, LHS, RHS, Flags); 2538 } 2539 break; 2540 } 2541 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 2542 if (Record.size() < 3) 2543 return error("Invalid record"); 2544 int Opc = getDecodedCastOpcode(Record[0]); 2545 if (Opc < 0) { 2546 V = UndefValue::get(CurTy); // Unknown cast. 2547 } else { 2548 Type *OpTy = getTypeByID(Record[1]); 2549 if (!OpTy) 2550 return error("Invalid record"); 2551 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy); 2552 V = UpgradeBitCastExpr(Opc, Op, CurTy); 2553 if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy); 2554 } 2555 break; 2556 } 2557 case bitc::CST_CODE_CE_INBOUNDS_GEP: // [ty, n x operands] 2558 case bitc::CST_CODE_CE_GEP: // [ty, n x operands] 2559 case bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX: { // [ty, flags, n x 2560 // operands] 2561 unsigned OpNum = 0; 2562 Type *PointeeType = nullptr; 2563 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX || 2564 Record.size() % 2) 2565 PointeeType = getTypeByID(Record[OpNum++]); 2566 2567 bool InBounds = false; 2568 Optional<unsigned> InRangeIndex; 2569 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX) { 2570 uint64_t Op = Record[OpNum++]; 2571 InBounds = Op & 1; 2572 InRangeIndex = Op >> 1; 2573 } else if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP) 2574 InBounds = true; 2575 2576 SmallVector<Constant*, 16> Elts; 2577 Type *Elt0FullTy = nullptr; 2578 while (OpNum != Record.size()) { 2579 if (!Elt0FullTy) 2580 Elt0FullTy = getFullyStructuredTypeByID(Record[OpNum]); 2581 Type *ElTy = getTypeByID(Record[OpNum++]); 2582 if (!ElTy) 2583 return error("Invalid record"); 2584 Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy)); 2585 } 2586 2587 if (Elts.size() < 1) 2588 return error("Invalid gep with no operands"); 2589 2590 Type *ImplicitPointeeType = 2591 getPointerElementFlatType(Elt0FullTy->getScalarType()); 2592 if (!PointeeType) 2593 PointeeType = ImplicitPointeeType; 2594 else if (PointeeType != ImplicitPointeeType) 2595 return error("Explicit gep operator type does not match pointee type " 2596 "of pointer operand"); 2597 2598 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 2599 V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices, 2600 InBounds, InRangeIndex); 2601 break; 2602 } 2603 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] 2604 if (Record.size() < 3) 2605 return error("Invalid record"); 2606 2607 Type *SelectorTy = Type::getInt1Ty(Context); 2608 2609 // The selector might be an i1 or an <n x i1> 2610 // Get the type from the ValueList before getting a forward ref. 2611 if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) 2612 if (Value *V = ValueList[Record[0]]) 2613 if (SelectorTy != V->getType()) 2614 SelectorTy = VectorType::get(SelectorTy, VTy->getNumElements()); 2615 2616 V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0], 2617 SelectorTy), 2618 ValueList.getConstantFwdRef(Record[1],CurTy), 2619 ValueList.getConstantFwdRef(Record[2],CurTy)); 2620 break; 2621 } 2622 case bitc::CST_CODE_CE_EXTRACTELT 2623 : { // CE_EXTRACTELT: [opty, opval, opty, opval] 2624 if (Record.size() < 3) 2625 return error("Invalid record"); 2626 VectorType *OpTy = 2627 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2628 if (!OpTy) 2629 return error("Invalid record"); 2630 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2631 Constant *Op1 = nullptr; 2632 if (Record.size() == 4) { 2633 Type *IdxTy = getTypeByID(Record[2]); 2634 if (!IdxTy) 2635 return error("Invalid record"); 2636 Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2637 } else // TODO: Remove with llvm 4.0 2638 Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2639 if (!Op1) 2640 return error("Invalid record"); 2641 V = ConstantExpr::getExtractElement(Op0, Op1); 2642 break; 2643 } 2644 case bitc::CST_CODE_CE_INSERTELT 2645 : { // CE_INSERTELT: [opval, opval, opty, opval] 2646 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2647 if (Record.size() < 3 || !OpTy) 2648 return error("Invalid record"); 2649 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2650 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], 2651 OpTy->getElementType()); 2652 Constant *Op2 = nullptr; 2653 if (Record.size() == 4) { 2654 Type *IdxTy = getTypeByID(Record[2]); 2655 if (!IdxTy) 2656 return error("Invalid record"); 2657 Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2658 } else // TODO: Remove with llvm 4.0 2659 Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2660 if (!Op2) 2661 return error("Invalid record"); 2662 V = ConstantExpr::getInsertElement(Op0, Op1, Op2); 2663 break; 2664 } 2665 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 2666 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2667 if (Record.size() < 3 || !OpTy) 2668 return error("Invalid record"); 2669 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2670 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy); 2671 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 2672 OpTy->getNumElements()); 2673 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy); 2674 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 2675 break; 2676 } 2677 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 2678 VectorType *RTy = dyn_cast<VectorType>(CurTy); 2679 VectorType *OpTy = 2680 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2681 if (Record.size() < 4 || !RTy || !OpTy) 2682 return error("Invalid record"); 2683 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2684 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2685 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 2686 RTy->getNumElements()); 2687 Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy); 2688 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 2689 break; 2690 } 2691 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 2692 if (Record.size() < 4) 2693 return error("Invalid record"); 2694 Type *OpTy = getTypeByID(Record[0]); 2695 if (!OpTy) 2696 return error("Invalid record"); 2697 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2698 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2699 2700 if (OpTy->isFPOrFPVectorTy()) 2701 V = ConstantExpr::getFCmp(Record[3], Op0, Op1); 2702 else 2703 V = ConstantExpr::getICmp(Record[3], Op0, Op1); 2704 break; 2705 } 2706 // This maintains backward compatibility, pre-asm dialect keywords. 2707 // FIXME: Remove with the 4.0 release. 2708 case bitc::CST_CODE_INLINEASM_OLD: { 2709 if (Record.size() < 2) 2710 return error("Invalid record"); 2711 std::string AsmStr, ConstrStr; 2712 bool HasSideEffects = Record[0] & 1; 2713 bool IsAlignStack = Record[0] >> 1; 2714 unsigned AsmStrSize = Record[1]; 2715 if (2+AsmStrSize >= Record.size()) 2716 return error("Invalid record"); 2717 unsigned ConstStrSize = Record[2+AsmStrSize]; 2718 if (3+AsmStrSize+ConstStrSize > Record.size()) 2719 return error("Invalid record"); 2720 2721 for (unsigned i = 0; i != AsmStrSize; ++i) 2722 AsmStr += (char)Record[2+i]; 2723 for (unsigned i = 0; i != ConstStrSize; ++i) 2724 ConstrStr += (char)Record[3+AsmStrSize+i]; 2725 UpgradeInlineAsmString(&AsmStr); 2726 V = InlineAsm::get( 2727 cast<FunctionType>(getPointerElementFlatType(CurFullTy)), AsmStr, 2728 ConstrStr, HasSideEffects, IsAlignStack); 2729 break; 2730 } 2731 // This version adds support for the asm dialect keywords (e.g., 2732 // inteldialect). 2733 case bitc::CST_CODE_INLINEASM: { 2734 if (Record.size() < 2) 2735 return error("Invalid record"); 2736 std::string AsmStr, ConstrStr; 2737 bool HasSideEffects = Record[0] & 1; 2738 bool IsAlignStack = (Record[0] >> 1) & 1; 2739 unsigned AsmDialect = Record[0] >> 2; 2740 unsigned AsmStrSize = Record[1]; 2741 if (2+AsmStrSize >= Record.size()) 2742 return error("Invalid record"); 2743 unsigned ConstStrSize = Record[2+AsmStrSize]; 2744 if (3+AsmStrSize+ConstStrSize > Record.size()) 2745 return error("Invalid record"); 2746 2747 for (unsigned i = 0; i != AsmStrSize; ++i) 2748 AsmStr += (char)Record[2+i]; 2749 for (unsigned i = 0; i != ConstStrSize; ++i) 2750 ConstrStr += (char)Record[3+AsmStrSize+i]; 2751 UpgradeInlineAsmString(&AsmStr); 2752 V = InlineAsm::get( 2753 cast<FunctionType>(getPointerElementFlatType(CurFullTy)), AsmStr, 2754 ConstrStr, HasSideEffects, IsAlignStack, 2755 InlineAsm::AsmDialect(AsmDialect)); 2756 break; 2757 } 2758 case bitc::CST_CODE_BLOCKADDRESS:{ 2759 if (Record.size() < 3) 2760 return error("Invalid record"); 2761 Type *FnTy = getTypeByID(Record[0]); 2762 if (!FnTy) 2763 return error("Invalid record"); 2764 Function *Fn = 2765 dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy)); 2766 if (!Fn) 2767 return error("Invalid record"); 2768 2769 // If the function is already parsed we can insert the block address right 2770 // away. 2771 BasicBlock *BB; 2772 unsigned BBID = Record[2]; 2773 if (!BBID) 2774 // Invalid reference to entry block. 2775 return error("Invalid ID"); 2776 if (!Fn->empty()) { 2777 Function::iterator BBI = Fn->begin(), BBE = Fn->end(); 2778 for (size_t I = 0, E = BBID; I != E; ++I) { 2779 if (BBI == BBE) 2780 return error("Invalid ID"); 2781 ++BBI; 2782 } 2783 BB = &*BBI; 2784 } else { 2785 // Otherwise insert a placeholder and remember it so it can be inserted 2786 // when the function is parsed. 2787 auto &FwdBBs = BasicBlockFwdRefs[Fn]; 2788 if (FwdBBs.empty()) 2789 BasicBlockFwdRefQueue.push_back(Fn); 2790 if (FwdBBs.size() < BBID + 1) 2791 FwdBBs.resize(BBID + 1); 2792 if (!FwdBBs[BBID]) 2793 FwdBBs[BBID] = BasicBlock::Create(Context); 2794 BB = FwdBBs[BBID]; 2795 } 2796 V = BlockAddress::get(Fn, BB); 2797 break; 2798 } 2799 } 2800 2801 assert(V->getType() == flattenPointerTypes(CurFullTy) && 2802 "Incorrect fully structured type provided for Constant"); 2803 ValueList.assignValue(V, NextCstNo, CurFullTy); 2804 ++NextCstNo; 2805 } 2806 } 2807 2808 Error BitcodeReader::parseUseLists() { 2809 if (Error Err = Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 2810 return Err; 2811 2812 // Read all the records. 2813 SmallVector<uint64_t, 64> Record; 2814 2815 while (true) { 2816 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2817 if (!MaybeEntry) 2818 return MaybeEntry.takeError(); 2819 BitstreamEntry Entry = MaybeEntry.get(); 2820 2821 switch (Entry.Kind) { 2822 case BitstreamEntry::SubBlock: // Handled for us already. 2823 case BitstreamEntry::Error: 2824 return error("Malformed block"); 2825 case BitstreamEntry::EndBlock: 2826 return Error::success(); 2827 case BitstreamEntry::Record: 2828 // The interesting case. 2829 break; 2830 } 2831 2832 // Read a use list record. 2833 Record.clear(); 2834 bool IsBB = false; 2835 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2836 if (!MaybeRecord) 2837 return MaybeRecord.takeError(); 2838 switch (MaybeRecord.get()) { 2839 default: // Default behavior: unknown type. 2840 break; 2841 case bitc::USELIST_CODE_BB: 2842 IsBB = true; 2843 LLVM_FALLTHROUGH; 2844 case bitc::USELIST_CODE_DEFAULT: { 2845 unsigned RecordLength = Record.size(); 2846 if (RecordLength < 3) 2847 // Records should have at least an ID and two indexes. 2848 return error("Invalid record"); 2849 unsigned ID = Record.back(); 2850 Record.pop_back(); 2851 2852 Value *V; 2853 if (IsBB) { 2854 assert(ID < FunctionBBs.size() && "Basic block not found"); 2855 V = FunctionBBs[ID]; 2856 } else 2857 V = ValueList[ID]; 2858 unsigned NumUses = 0; 2859 SmallDenseMap<const Use *, unsigned, 16> Order; 2860 for (const Use &U : V->materialized_uses()) { 2861 if (++NumUses > Record.size()) 2862 break; 2863 Order[&U] = Record[NumUses - 1]; 2864 } 2865 if (Order.size() != Record.size() || NumUses > Record.size()) 2866 // Mismatches can happen if the functions are being materialized lazily 2867 // (out-of-order), or a value has been upgraded. 2868 break; 2869 2870 V->sortUseList([&](const Use &L, const Use &R) { 2871 return Order.lookup(&L) < Order.lookup(&R); 2872 }); 2873 break; 2874 } 2875 } 2876 } 2877 } 2878 2879 /// When we see the block for metadata, remember where it is and then skip it. 2880 /// This lets us lazily deserialize the metadata. 2881 Error BitcodeReader::rememberAndSkipMetadata() { 2882 // Save the current stream state. 2883 uint64_t CurBit = Stream.GetCurrentBitNo(); 2884 DeferredMetadataInfo.push_back(CurBit); 2885 2886 // Skip over the block for now. 2887 if (Error Err = Stream.SkipBlock()) 2888 return Err; 2889 return Error::success(); 2890 } 2891 2892 Error BitcodeReader::materializeMetadata() { 2893 for (uint64_t BitPos : DeferredMetadataInfo) { 2894 // Move the bit stream to the saved position. 2895 if (Error JumpFailed = Stream.JumpToBit(BitPos)) 2896 return JumpFailed; 2897 if (Error Err = MDLoader->parseModuleMetadata()) 2898 return Err; 2899 } 2900 2901 // Upgrade "Linker Options" module flag to "llvm.linker.options" module-level 2902 // metadata. 2903 if (Metadata *Val = TheModule->getModuleFlag("Linker Options")) { 2904 NamedMDNode *LinkerOpts = 2905 TheModule->getOrInsertNamedMetadata("llvm.linker.options"); 2906 for (const MDOperand &MDOptions : cast<MDNode>(Val)->operands()) 2907 LinkerOpts->addOperand(cast<MDNode>(MDOptions)); 2908 } 2909 2910 DeferredMetadataInfo.clear(); 2911 return Error::success(); 2912 } 2913 2914 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; } 2915 2916 /// When we see the block for a function body, remember where it is and then 2917 /// skip it. This lets us lazily deserialize the functions. 2918 Error BitcodeReader::rememberAndSkipFunctionBody() { 2919 // Get the function we are talking about. 2920 if (FunctionsWithBodies.empty()) 2921 return error("Insufficient function protos"); 2922 2923 Function *Fn = FunctionsWithBodies.back(); 2924 FunctionsWithBodies.pop_back(); 2925 2926 // Save the current stream state. 2927 uint64_t CurBit = Stream.GetCurrentBitNo(); 2928 assert( 2929 (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) && 2930 "Mismatch between VST and scanned function offsets"); 2931 DeferredFunctionInfo[Fn] = CurBit; 2932 2933 // Skip over the function block for now. 2934 if (Error Err = Stream.SkipBlock()) 2935 return Err; 2936 return Error::success(); 2937 } 2938 2939 Error BitcodeReader::globalCleanup() { 2940 // Patch the initializers for globals and aliases up. 2941 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 2942 return Err; 2943 if (!GlobalInits.empty() || !IndirectSymbolInits.empty()) 2944 return error("Malformed global initializer set"); 2945 2946 // Look for intrinsic functions which need to be upgraded at some point 2947 for (Function &F : *TheModule) { 2948 MDLoader->upgradeDebugIntrinsics(F); 2949 Function *NewFn; 2950 if (UpgradeIntrinsicFunction(&F, NewFn)) 2951 UpgradedIntrinsics[&F] = NewFn; 2952 else if (auto Remangled = Intrinsic::remangleIntrinsicFunction(&F)) 2953 // Some types could be renamed during loading if several modules are 2954 // loaded in the same LLVMContext (LTO scenario). In this case we should 2955 // remangle intrinsics names as well. 2956 RemangledIntrinsics[&F] = Remangled.getValue(); 2957 } 2958 2959 // Look for global variables which need to be renamed. 2960 std::vector<std::pair<GlobalVariable *, GlobalVariable *>> UpgradedVariables; 2961 for (GlobalVariable &GV : TheModule->globals()) 2962 if (GlobalVariable *Upgraded = UpgradeGlobalVariable(&GV)) 2963 UpgradedVariables.emplace_back(&GV, Upgraded); 2964 for (auto &Pair : UpgradedVariables) { 2965 Pair.first->eraseFromParent(); 2966 TheModule->getGlobalList().push_back(Pair.second); 2967 } 2968 2969 // Force deallocation of memory for these vectors to favor the client that 2970 // want lazy deserialization. 2971 std::vector<std::pair<GlobalVariable *, unsigned>>().swap(GlobalInits); 2972 std::vector<std::pair<GlobalIndirectSymbol *, unsigned>>().swap( 2973 IndirectSymbolInits); 2974 return Error::success(); 2975 } 2976 2977 /// Support for lazy parsing of function bodies. This is required if we 2978 /// either have an old bitcode file without a VST forward declaration record, 2979 /// or if we have an anonymous function being materialized, since anonymous 2980 /// functions do not have a name and are therefore not in the VST. 2981 Error BitcodeReader::rememberAndSkipFunctionBodies() { 2982 if (Error JumpFailed = Stream.JumpToBit(NextUnreadBit)) 2983 return JumpFailed; 2984 2985 if (Stream.AtEndOfStream()) 2986 return error("Could not find function in stream"); 2987 2988 if (!SeenFirstFunctionBody) 2989 return error("Trying to materialize functions before seeing function blocks"); 2990 2991 // An old bitcode file with the symbol table at the end would have 2992 // finished the parse greedily. 2993 assert(SeenValueSymbolTable); 2994 2995 SmallVector<uint64_t, 64> Record; 2996 2997 while (true) { 2998 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 2999 if (!MaybeEntry) 3000 return MaybeEntry.takeError(); 3001 llvm::BitstreamEntry Entry = MaybeEntry.get(); 3002 3003 switch (Entry.Kind) { 3004 default: 3005 return error("Expect SubBlock"); 3006 case BitstreamEntry::SubBlock: 3007 switch (Entry.ID) { 3008 default: 3009 return error("Expect function block"); 3010 case bitc::FUNCTION_BLOCK_ID: 3011 if (Error Err = rememberAndSkipFunctionBody()) 3012 return Err; 3013 NextUnreadBit = Stream.GetCurrentBitNo(); 3014 return Error::success(); 3015 } 3016 } 3017 } 3018 } 3019 3020 bool BitcodeReaderBase::readBlockInfo() { 3021 Expected<Optional<BitstreamBlockInfo>> MaybeNewBlockInfo = 3022 Stream.ReadBlockInfoBlock(); 3023 if (!MaybeNewBlockInfo) 3024 return true; // FIXME Handle the error. 3025 Optional<BitstreamBlockInfo> NewBlockInfo = 3026 std::move(MaybeNewBlockInfo.get()); 3027 if (!NewBlockInfo) 3028 return true; 3029 BlockInfo = std::move(*NewBlockInfo); 3030 return false; 3031 } 3032 3033 Error BitcodeReader::parseComdatRecord(ArrayRef<uint64_t> Record) { 3034 // v1: [selection_kind, name] 3035 // v2: [strtab_offset, strtab_size, selection_kind] 3036 StringRef Name; 3037 std::tie(Name, Record) = readNameFromStrtab(Record); 3038 3039 if (Record.empty()) 3040 return error("Invalid record"); 3041 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]); 3042 std::string OldFormatName; 3043 if (!UseStrtab) { 3044 if (Record.size() < 2) 3045 return error("Invalid record"); 3046 unsigned ComdatNameSize = Record[1]; 3047 OldFormatName.reserve(ComdatNameSize); 3048 for (unsigned i = 0; i != ComdatNameSize; ++i) 3049 OldFormatName += (char)Record[2 + i]; 3050 Name = OldFormatName; 3051 } 3052 Comdat *C = TheModule->getOrInsertComdat(Name); 3053 C->setSelectionKind(SK); 3054 ComdatList.push_back(C); 3055 return Error::success(); 3056 } 3057 3058 static void inferDSOLocal(GlobalValue *GV) { 3059 // infer dso_local from linkage and visibility if it is not encoded. 3060 if (GV->hasLocalLinkage() || 3061 (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())) 3062 GV->setDSOLocal(true); 3063 } 3064 3065 Error BitcodeReader::parseGlobalVarRecord(ArrayRef<uint64_t> Record) { 3066 // v1: [pointer type, isconst, initid, linkage, alignment, section, 3067 // visibility, threadlocal, unnamed_addr, externally_initialized, 3068 // dllstorageclass, comdat, attributes, preemption specifier, 3069 // partition strtab offset, partition strtab size] (name in VST) 3070 // v2: [strtab_offset, strtab_size, v1] 3071 StringRef Name; 3072 std::tie(Name, Record) = readNameFromStrtab(Record); 3073 3074 if (Record.size() < 6) 3075 return error("Invalid record"); 3076 Type *FullTy = getFullyStructuredTypeByID(Record[0]); 3077 Type *Ty = flattenPointerTypes(FullTy); 3078 if (!Ty) 3079 return error("Invalid record"); 3080 bool isConstant = Record[1] & 1; 3081 bool explicitType = Record[1] & 2; 3082 unsigned AddressSpace; 3083 if (explicitType) { 3084 AddressSpace = Record[1] >> 2; 3085 } else { 3086 if (!Ty->isPointerTy()) 3087 return error("Invalid type for value"); 3088 AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 3089 std::tie(FullTy, Ty) = getPointerElementTypes(FullTy); 3090 } 3091 3092 uint64_t RawLinkage = Record[3]; 3093 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 3094 unsigned Alignment; 3095 if (Error Err = parseAlignmentValue(Record[4], Alignment)) 3096 return Err; 3097 std::string Section; 3098 if (Record[5]) { 3099 if (Record[5] - 1 >= SectionTable.size()) 3100 return error("Invalid ID"); 3101 Section = SectionTable[Record[5] - 1]; 3102 } 3103 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 3104 // Local linkage must have default visibility. 3105 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage)) 3106 // FIXME: Change to an error if non-default in 4.0. 3107 Visibility = getDecodedVisibility(Record[6]); 3108 3109 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; 3110 if (Record.size() > 7) 3111 TLM = getDecodedThreadLocalMode(Record[7]); 3112 3113 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 3114 if (Record.size() > 8) 3115 UnnamedAddr = getDecodedUnnamedAddrType(Record[8]); 3116 3117 bool ExternallyInitialized = false; 3118 if (Record.size() > 9) 3119 ExternallyInitialized = Record[9]; 3120 3121 GlobalVariable *NewGV = 3122 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, Name, 3123 nullptr, TLM, AddressSpace, ExternallyInitialized); 3124 NewGV->setAlignment(Alignment); 3125 if (!Section.empty()) 3126 NewGV->setSection(Section); 3127 NewGV->setVisibility(Visibility); 3128 NewGV->setUnnamedAddr(UnnamedAddr); 3129 3130 if (Record.size() > 10) 3131 NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10])); 3132 else 3133 upgradeDLLImportExportLinkage(NewGV, RawLinkage); 3134 3135 FullTy = PointerType::get(FullTy, AddressSpace); 3136 assert(NewGV->getType() == flattenPointerTypes(FullTy) && 3137 "Incorrect fully specified type for GlobalVariable"); 3138 ValueList.push_back(NewGV, FullTy); 3139 3140 // Remember which value to use for the global initializer. 3141 if (unsigned InitID = Record[2]) 3142 GlobalInits.push_back(std::make_pair(NewGV, InitID - 1)); 3143 3144 if (Record.size() > 11) { 3145 if (unsigned ComdatID = Record[11]) { 3146 if (ComdatID > ComdatList.size()) 3147 return error("Invalid global variable comdat ID"); 3148 NewGV->setComdat(ComdatList[ComdatID - 1]); 3149 } 3150 } else if (hasImplicitComdat(RawLinkage)) { 3151 NewGV->setComdat(reinterpret_cast<Comdat *>(1)); 3152 } 3153 3154 if (Record.size() > 12) { 3155 auto AS = getAttributes(Record[12]).getFnAttributes(); 3156 NewGV->setAttributes(AS); 3157 } 3158 3159 if (Record.size() > 13) { 3160 NewGV->setDSOLocal(getDecodedDSOLocal(Record[13])); 3161 } 3162 inferDSOLocal(NewGV); 3163 3164 // Check whether we have enough values to read a partition name. 3165 if (Record.size() > 15) 3166 NewGV->setPartition(StringRef(Strtab.data() + Record[14], Record[15])); 3167 3168 return Error::success(); 3169 } 3170 3171 Error BitcodeReader::parseFunctionRecord(ArrayRef<uint64_t> Record) { 3172 // v1: [type, callingconv, isproto, linkage, paramattr, alignment, section, 3173 // visibility, gc, unnamed_addr, prologuedata, dllstorageclass, comdat, 3174 // prefixdata, personalityfn, preemption specifier, addrspace] (name in VST) 3175 // v2: [strtab_offset, strtab_size, v1] 3176 StringRef Name; 3177 std::tie(Name, Record) = readNameFromStrtab(Record); 3178 3179 if (Record.size() < 8) 3180 return error("Invalid record"); 3181 Type *FullFTy = getFullyStructuredTypeByID(Record[0]); 3182 Type *FTy = flattenPointerTypes(FullFTy); 3183 if (!FTy) 3184 return error("Invalid record"); 3185 if (isa<PointerType>(FTy)) 3186 std::tie(FullFTy, FTy) = getPointerElementTypes(FullFTy); 3187 3188 if (!isa<FunctionType>(FTy)) 3189 return error("Invalid type for value"); 3190 auto CC = static_cast<CallingConv::ID>(Record[1]); 3191 if (CC & ~CallingConv::MaxID) 3192 return error("Invalid calling convention ID"); 3193 3194 unsigned AddrSpace = TheModule->getDataLayout().getProgramAddressSpace(); 3195 if (Record.size() > 16) 3196 AddrSpace = Record[16]; 3197 3198 Function *Func = 3199 Function::Create(cast<FunctionType>(FTy), GlobalValue::ExternalLinkage, 3200 AddrSpace, Name, TheModule); 3201 3202 assert(Func->getFunctionType() == flattenPointerTypes(FullFTy) && 3203 "Incorrect fully specified type provided for function"); 3204 FunctionTypes[Func] = cast<FunctionType>(FullFTy); 3205 3206 Func->setCallingConv(CC); 3207 bool isProto = Record[2]; 3208 uint64_t RawLinkage = Record[3]; 3209 Func->setLinkage(getDecodedLinkage(RawLinkage)); 3210 Func->setAttributes(getAttributes(Record[4])); 3211 3212 // Upgrade any old-style byval without a type by propagating the argument's 3213 // pointee type. There should be no opaque pointers where the byval type is 3214 // implicit. 3215 for (unsigned i = 0; i != Func->arg_size(); ++i) { 3216 if (!Func->hasParamAttribute(i, Attribute::ByVal)) 3217 continue; 3218 3219 Type *PTy = cast<FunctionType>(FullFTy)->getParamType(i); 3220 Func->removeParamAttr(i, Attribute::ByVal); 3221 Func->addParamAttr(i, Attribute::getWithByValType( 3222 Context, getPointerElementFlatType(PTy))); 3223 } 3224 3225 unsigned Alignment; 3226 if (Error Err = parseAlignmentValue(Record[5], Alignment)) 3227 return Err; 3228 Func->setAlignment(Alignment); 3229 if (Record[6]) { 3230 if (Record[6] - 1 >= SectionTable.size()) 3231 return error("Invalid ID"); 3232 Func->setSection(SectionTable[Record[6] - 1]); 3233 } 3234 // Local linkage must have default visibility. 3235 if (!Func->hasLocalLinkage()) 3236 // FIXME: Change to an error if non-default in 4.0. 3237 Func->setVisibility(getDecodedVisibility(Record[7])); 3238 if (Record.size() > 8 && Record[8]) { 3239 if (Record[8] - 1 >= GCTable.size()) 3240 return error("Invalid ID"); 3241 Func->setGC(GCTable[Record[8] - 1]); 3242 } 3243 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 3244 if (Record.size() > 9) 3245 UnnamedAddr = getDecodedUnnamedAddrType(Record[9]); 3246 Func->setUnnamedAddr(UnnamedAddr); 3247 if (Record.size() > 10 && Record[10] != 0) 3248 FunctionPrologues.push_back(std::make_pair(Func, Record[10] - 1)); 3249 3250 if (Record.size() > 11) 3251 Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11])); 3252 else 3253 upgradeDLLImportExportLinkage(Func, RawLinkage); 3254 3255 if (Record.size() > 12) { 3256 if (unsigned ComdatID = Record[12]) { 3257 if (ComdatID > ComdatList.size()) 3258 return error("Invalid function comdat ID"); 3259 Func->setComdat(ComdatList[ComdatID - 1]); 3260 } 3261 } else if (hasImplicitComdat(RawLinkage)) { 3262 Func->setComdat(reinterpret_cast<Comdat *>(1)); 3263 } 3264 3265 if (Record.size() > 13 && Record[13] != 0) 3266 FunctionPrefixes.push_back(std::make_pair(Func, Record[13] - 1)); 3267 3268 if (Record.size() > 14 && Record[14] != 0) 3269 FunctionPersonalityFns.push_back(std::make_pair(Func, Record[14] - 1)); 3270 3271 if (Record.size() > 15) { 3272 Func->setDSOLocal(getDecodedDSOLocal(Record[15])); 3273 } 3274 inferDSOLocal(Func); 3275 3276 // Record[16] is the address space number. 3277 3278 // Check whether we have enough values to read a partition name. 3279 if (Record.size() > 18) 3280 Func->setPartition(StringRef(Strtab.data() + Record[17], Record[18])); 3281 3282 Type *FullTy = PointerType::get(FullFTy, AddrSpace); 3283 assert(Func->getType() == flattenPointerTypes(FullTy) && 3284 "Incorrect fully specified type provided for Function"); 3285 ValueList.push_back(Func, FullTy); 3286 3287 // If this is a function with a body, remember the prototype we are 3288 // creating now, so that we can match up the body with them later. 3289 if (!isProto) { 3290 Func->setIsMaterializable(true); 3291 FunctionsWithBodies.push_back(Func); 3292 DeferredFunctionInfo[Func] = 0; 3293 } 3294 return Error::success(); 3295 } 3296 3297 Error BitcodeReader::parseGlobalIndirectSymbolRecord( 3298 unsigned BitCode, ArrayRef<uint64_t> Record) { 3299 // v1 ALIAS_OLD: [alias type, aliasee val#, linkage] (name in VST) 3300 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, 3301 // dllstorageclass, threadlocal, unnamed_addr, 3302 // preemption specifier] (name in VST) 3303 // v1 IFUNC: [alias type, addrspace, aliasee val#, linkage, 3304 // visibility, dllstorageclass, threadlocal, unnamed_addr, 3305 // preemption specifier] (name in VST) 3306 // v2: [strtab_offset, strtab_size, v1] 3307 StringRef Name; 3308 std::tie(Name, Record) = readNameFromStrtab(Record); 3309 3310 bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD; 3311 if (Record.size() < (3 + (unsigned)NewRecord)) 3312 return error("Invalid record"); 3313 unsigned OpNum = 0; 3314 Type *FullTy = getFullyStructuredTypeByID(Record[OpNum++]); 3315 Type *Ty = flattenPointerTypes(FullTy); 3316 if (!Ty) 3317 return error("Invalid record"); 3318 3319 unsigned AddrSpace; 3320 if (!NewRecord) { 3321 auto *PTy = dyn_cast<PointerType>(Ty); 3322 if (!PTy) 3323 return error("Invalid type for value"); 3324 std::tie(FullTy, Ty) = getPointerElementTypes(FullTy); 3325 AddrSpace = PTy->getAddressSpace(); 3326 } else { 3327 AddrSpace = Record[OpNum++]; 3328 } 3329 3330 auto Val = Record[OpNum++]; 3331 auto Linkage = Record[OpNum++]; 3332 GlobalIndirectSymbol *NewGA; 3333 if (BitCode == bitc::MODULE_CODE_ALIAS || 3334 BitCode == bitc::MODULE_CODE_ALIAS_OLD) 3335 NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name, 3336 TheModule); 3337 else 3338 NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name, 3339 nullptr, TheModule); 3340 3341 assert(NewGA->getValueType() == flattenPointerTypes(FullTy) && 3342 "Incorrect fully structured type provided for GlobalIndirectSymbol"); 3343 // Old bitcode files didn't have visibility field. 3344 // Local linkage must have default visibility. 3345 if (OpNum != Record.size()) { 3346 auto VisInd = OpNum++; 3347 if (!NewGA->hasLocalLinkage()) 3348 // FIXME: Change to an error if non-default in 4.0. 3349 NewGA->setVisibility(getDecodedVisibility(Record[VisInd])); 3350 } 3351 if (BitCode == bitc::MODULE_CODE_ALIAS || 3352 BitCode == bitc::MODULE_CODE_ALIAS_OLD) { 3353 if (OpNum != Record.size()) 3354 NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++])); 3355 else 3356 upgradeDLLImportExportLinkage(NewGA, Linkage); 3357 if (OpNum != Record.size()) 3358 NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++])); 3359 if (OpNum != Record.size()) 3360 NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++])); 3361 } 3362 if (OpNum != Record.size()) 3363 NewGA->setDSOLocal(getDecodedDSOLocal(Record[OpNum++])); 3364 inferDSOLocal(NewGA); 3365 3366 // Check whether we have enough values to read a partition name. 3367 if (OpNum + 1 < Record.size()) { 3368 NewGA->setPartition( 3369 StringRef(Strtab.data() + Record[OpNum], Record[OpNum + 1])); 3370 OpNum += 2; 3371 } 3372 3373 FullTy = PointerType::get(FullTy, AddrSpace); 3374 assert(NewGA->getType() == flattenPointerTypes(FullTy) && 3375 "Incorrect fully structured type provided for GlobalIndirectSymbol"); 3376 ValueList.push_back(NewGA, FullTy); 3377 IndirectSymbolInits.push_back(std::make_pair(NewGA, Val)); 3378 return Error::success(); 3379 } 3380 3381 Error BitcodeReader::parseModule(uint64_t ResumeBit, 3382 bool ShouldLazyLoadMetadata) { 3383 if (ResumeBit) { 3384 if (Error JumpFailed = Stream.JumpToBit(ResumeBit)) 3385 return JumpFailed; 3386 } else if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 3387 return Err; 3388 3389 SmallVector<uint64_t, 64> Record; 3390 3391 // Read all the records for this module. 3392 while (true) { 3393 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 3394 if (!MaybeEntry) 3395 return MaybeEntry.takeError(); 3396 llvm::BitstreamEntry Entry = MaybeEntry.get(); 3397 3398 switch (Entry.Kind) { 3399 case BitstreamEntry::Error: 3400 return error("Malformed block"); 3401 case BitstreamEntry::EndBlock: 3402 return globalCleanup(); 3403 3404 case BitstreamEntry::SubBlock: 3405 switch (Entry.ID) { 3406 default: // Skip unknown content. 3407 if (Error Err = Stream.SkipBlock()) 3408 return Err; 3409 break; 3410 case bitc::BLOCKINFO_BLOCK_ID: 3411 if (readBlockInfo()) 3412 return error("Malformed block"); 3413 break; 3414 case bitc::PARAMATTR_BLOCK_ID: 3415 if (Error Err = parseAttributeBlock()) 3416 return Err; 3417 break; 3418 case bitc::PARAMATTR_GROUP_BLOCK_ID: 3419 if (Error Err = parseAttributeGroupBlock()) 3420 return Err; 3421 break; 3422 case bitc::TYPE_BLOCK_ID_NEW: 3423 if (Error Err = parseTypeTable()) 3424 return Err; 3425 break; 3426 case bitc::VALUE_SYMTAB_BLOCK_ID: 3427 if (!SeenValueSymbolTable) { 3428 // Either this is an old form VST without function index and an 3429 // associated VST forward declaration record (which would have caused 3430 // the VST to be jumped to and parsed before it was encountered 3431 // normally in the stream), or there were no function blocks to 3432 // trigger an earlier parsing of the VST. 3433 assert(VSTOffset == 0 || FunctionsWithBodies.empty()); 3434 if (Error Err = parseValueSymbolTable()) 3435 return Err; 3436 SeenValueSymbolTable = true; 3437 } else { 3438 // We must have had a VST forward declaration record, which caused 3439 // the parser to jump to and parse the VST earlier. 3440 assert(VSTOffset > 0); 3441 if (Error Err = Stream.SkipBlock()) 3442 return Err; 3443 } 3444 break; 3445 case bitc::CONSTANTS_BLOCK_ID: 3446 if (Error Err = parseConstants()) 3447 return Err; 3448 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 3449 return Err; 3450 break; 3451 case bitc::METADATA_BLOCK_ID: 3452 if (ShouldLazyLoadMetadata) { 3453 if (Error Err = rememberAndSkipMetadata()) 3454 return Err; 3455 break; 3456 } 3457 assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata"); 3458 if (Error Err = MDLoader->parseModuleMetadata()) 3459 return Err; 3460 break; 3461 case bitc::METADATA_KIND_BLOCK_ID: 3462 if (Error Err = MDLoader->parseMetadataKinds()) 3463 return Err; 3464 break; 3465 case bitc::FUNCTION_BLOCK_ID: 3466 // If this is the first function body we've seen, reverse the 3467 // FunctionsWithBodies list. 3468 if (!SeenFirstFunctionBody) { 3469 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 3470 if (Error Err = globalCleanup()) 3471 return Err; 3472 SeenFirstFunctionBody = true; 3473 } 3474 3475 if (VSTOffset > 0) { 3476 // If we have a VST forward declaration record, make sure we 3477 // parse the VST now if we haven't already. It is needed to 3478 // set up the DeferredFunctionInfo vector for lazy reading. 3479 if (!SeenValueSymbolTable) { 3480 if (Error Err = BitcodeReader::parseValueSymbolTable(VSTOffset)) 3481 return Err; 3482 SeenValueSymbolTable = true; 3483 // Fall through so that we record the NextUnreadBit below. 3484 // This is necessary in case we have an anonymous function that 3485 // is later materialized. Since it will not have a VST entry we 3486 // need to fall back to the lazy parse to find its offset. 3487 } else { 3488 // If we have a VST forward declaration record, but have already 3489 // parsed the VST (just above, when the first function body was 3490 // encountered here), then we are resuming the parse after 3491 // materializing functions. The ResumeBit points to the 3492 // start of the last function block recorded in the 3493 // DeferredFunctionInfo map. Skip it. 3494 if (Error Err = Stream.SkipBlock()) 3495 return Err; 3496 continue; 3497 } 3498 } 3499 3500 // Support older bitcode files that did not have the function 3501 // index in the VST, nor a VST forward declaration record, as 3502 // well as anonymous functions that do not have VST entries. 3503 // Build the DeferredFunctionInfo vector on the fly. 3504 if (Error Err = rememberAndSkipFunctionBody()) 3505 return Err; 3506 3507 // Suspend parsing when we reach the function bodies. Subsequent 3508 // materialization calls will resume it when necessary. If the bitcode 3509 // file is old, the symbol table will be at the end instead and will not 3510 // have been seen yet. In this case, just finish the parse now. 3511 if (SeenValueSymbolTable) { 3512 NextUnreadBit = Stream.GetCurrentBitNo(); 3513 // After the VST has been parsed, we need to make sure intrinsic name 3514 // are auto-upgraded. 3515 return globalCleanup(); 3516 } 3517 break; 3518 case bitc::USELIST_BLOCK_ID: 3519 if (Error Err = parseUseLists()) 3520 return Err; 3521 break; 3522 case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID: 3523 if (Error Err = parseOperandBundleTags()) 3524 return Err; 3525 break; 3526 case bitc::SYNC_SCOPE_NAMES_BLOCK_ID: 3527 if (Error Err = parseSyncScopeNames()) 3528 return Err; 3529 break; 3530 } 3531 continue; 3532 3533 case BitstreamEntry::Record: 3534 // The interesting case. 3535 break; 3536 } 3537 3538 // Read a record. 3539 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 3540 if (!MaybeBitCode) 3541 return MaybeBitCode.takeError(); 3542 switch (unsigned BitCode = MaybeBitCode.get()) { 3543 default: break; // Default behavior, ignore unknown content. 3544 case bitc::MODULE_CODE_VERSION: { 3545 Expected<unsigned> VersionOrErr = parseVersionRecord(Record); 3546 if (!VersionOrErr) 3547 return VersionOrErr.takeError(); 3548 UseRelativeIDs = *VersionOrErr >= 1; 3549 break; 3550 } 3551 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 3552 std::string S; 3553 if (convertToString(Record, 0, S)) 3554 return error("Invalid record"); 3555 TheModule->setTargetTriple(S); 3556 break; 3557 } 3558 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 3559 std::string S; 3560 if (convertToString(Record, 0, S)) 3561 return error("Invalid record"); 3562 TheModule->setDataLayout(S); 3563 break; 3564 } 3565 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 3566 std::string S; 3567 if (convertToString(Record, 0, S)) 3568 return error("Invalid record"); 3569 TheModule->setModuleInlineAsm(S); 3570 break; 3571 } 3572 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 3573 // FIXME: Remove in 4.0. 3574 std::string S; 3575 if (convertToString(Record, 0, S)) 3576 return error("Invalid record"); 3577 // Ignore value. 3578 break; 3579 } 3580 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 3581 std::string S; 3582 if (convertToString(Record, 0, S)) 3583 return error("Invalid record"); 3584 SectionTable.push_back(S); 3585 break; 3586 } 3587 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 3588 std::string S; 3589 if (convertToString(Record, 0, S)) 3590 return error("Invalid record"); 3591 GCTable.push_back(S); 3592 break; 3593 } 3594 case bitc::MODULE_CODE_COMDAT: 3595 if (Error Err = parseComdatRecord(Record)) 3596 return Err; 3597 break; 3598 case bitc::MODULE_CODE_GLOBALVAR: 3599 if (Error Err = parseGlobalVarRecord(Record)) 3600 return Err; 3601 break; 3602 case bitc::MODULE_CODE_FUNCTION: 3603 if (Error Err = parseFunctionRecord(Record)) 3604 return Err; 3605 break; 3606 case bitc::MODULE_CODE_IFUNC: 3607 case bitc::MODULE_CODE_ALIAS: 3608 case bitc::MODULE_CODE_ALIAS_OLD: 3609 if (Error Err = parseGlobalIndirectSymbolRecord(BitCode, Record)) 3610 return Err; 3611 break; 3612 /// MODULE_CODE_VSTOFFSET: [offset] 3613 case bitc::MODULE_CODE_VSTOFFSET: 3614 if (Record.size() < 1) 3615 return error("Invalid record"); 3616 // Note that we subtract 1 here because the offset is relative to one word 3617 // before the start of the identification or module block, which was 3618 // historically always the start of the regular bitcode header. 3619 VSTOffset = Record[0] - 1; 3620 break; 3621 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 3622 case bitc::MODULE_CODE_SOURCE_FILENAME: 3623 SmallString<128> ValueName; 3624 if (convertToString(Record, 0, ValueName)) 3625 return error("Invalid record"); 3626 TheModule->setSourceFileName(ValueName); 3627 break; 3628 } 3629 Record.clear(); 3630 } 3631 } 3632 3633 Error BitcodeReader::parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata, 3634 bool IsImporting) { 3635 TheModule = M; 3636 MDLoader = MetadataLoader(Stream, *M, ValueList, IsImporting, 3637 [&](unsigned ID) { return getTypeByID(ID); }); 3638 return parseModule(0, ShouldLazyLoadMetadata); 3639 } 3640 3641 Error BitcodeReader::typeCheckLoadStoreInst(Type *ValType, Type *PtrType) { 3642 if (!isa<PointerType>(PtrType)) 3643 return error("Load/Store operand is not a pointer type"); 3644 Type *ElemType = cast<PointerType>(PtrType)->getElementType(); 3645 3646 if (ValType && ValType != ElemType) 3647 return error("Explicit load/store type does not match pointee " 3648 "type of pointer operand"); 3649 if (!PointerType::isLoadableOrStorableType(ElemType)) 3650 return error("Cannot load/store from pointer"); 3651 return Error::success(); 3652 } 3653 3654 void BitcodeReader::propagateByValTypes(CallBase *CB, 3655 ArrayRef<Type *> ArgsFullTys) { 3656 for (unsigned i = 0; i != CB->arg_size(); ++i) { 3657 if (!CB->paramHasAttr(i, Attribute::ByVal)) 3658 continue; 3659 3660 CB->removeParamAttr(i, Attribute::ByVal); 3661 CB->addParamAttr( 3662 i, Attribute::getWithByValType( 3663 Context, getPointerElementFlatType(ArgsFullTys[i]))); 3664 } 3665 } 3666 3667 /// Lazily parse the specified function body block. 3668 Error BitcodeReader::parseFunctionBody(Function *F) { 3669 if (Error Err = Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 3670 return Err; 3671 3672 // Unexpected unresolved metadata when parsing function. 3673 if (MDLoader->hasFwdRefs()) 3674 return error("Invalid function metadata: incoming forward references"); 3675 3676 InstructionList.clear(); 3677 unsigned ModuleValueListSize = ValueList.size(); 3678 unsigned ModuleMDLoaderSize = MDLoader->size(); 3679 3680 // Add all the function arguments to the value table. 3681 unsigned ArgNo = 0; 3682 FunctionType *FullFTy = FunctionTypes[F]; 3683 for (Argument &I : F->args()) { 3684 assert(I.getType() == flattenPointerTypes(FullFTy->getParamType(ArgNo)) && 3685 "Incorrect fully specified type for Function Argument"); 3686 ValueList.push_back(&I, FullFTy->getParamType(ArgNo++)); 3687 } 3688 unsigned NextValueNo = ValueList.size(); 3689 BasicBlock *CurBB = nullptr; 3690 unsigned CurBBNo = 0; 3691 3692 DebugLoc LastLoc; 3693 auto getLastInstruction = [&]() -> Instruction * { 3694 if (CurBB && !CurBB->empty()) 3695 return &CurBB->back(); 3696 else if (CurBBNo && FunctionBBs[CurBBNo - 1] && 3697 !FunctionBBs[CurBBNo - 1]->empty()) 3698 return &FunctionBBs[CurBBNo - 1]->back(); 3699 return nullptr; 3700 }; 3701 3702 std::vector<OperandBundleDef> OperandBundles; 3703 3704 // Read all the records. 3705 SmallVector<uint64_t, 64> Record; 3706 3707 while (true) { 3708 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 3709 if (!MaybeEntry) 3710 return MaybeEntry.takeError(); 3711 llvm::BitstreamEntry Entry = MaybeEntry.get(); 3712 3713 switch (Entry.Kind) { 3714 case BitstreamEntry::Error: 3715 return error("Malformed block"); 3716 case BitstreamEntry::EndBlock: 3717 goto OutOfRecordLoop; 3718 3719 case BitstreamEntry::SubBlock: 3720 switch (Entry.ID) { 3721 default: // Skip unknown content. 3722 if (Error Err = Stream.SkipBlock()) 3723 return Err; 3724 break; 3725 case bitc::CONSTANTS_BLOCK_ID: 3726 if (Error Err = parseConstants()) 3727 return Err; 3728 NextValueNo = ValueList.size(); 3729 break; 3730 case bitc::VALUE_SYMTAB_BLOCK_ID: 3731 if (Error Err = parseValueSymbolTable()) 3732 return Err; 3733 break; 3734 case bitc::METADATA_ATTACHMENT_ID: 3735 if (Error Err = MDLoader->parseMetadataAttachment(*F, InstructionList)) 3736 return Err; 3737 break; 3738 case bitc::METADATA_BLOCK_ID: 3739 assert(DeferredMetadataInfo.empty() && 3740 "Must read all module-level metadata before function-level"); 3741 if (Error Err = MDLoader->parseFunctionMetadata()) 3742 return Err; 3743 break; 3744 case bitc::USELIST_BLOCK_ID: 3745 if (Error Err = parseUseLists()) 3746 return Err; 3747 break; 3748 } 3749 continue; 3750 3751 case BitstreamEntry::Record: 3752 // The interesting case. 3753 break; 3754 } 3755 3756 // Read a record. 3757 Record.clear(); 3758 Instruction *I = nullptr; 3759 Type *FullTy = nullptr; 3760 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 3761 if (!MaybeBitCode) 3762 return MaybeBitCode.takeError(); 3763 switch (unsigned BitCode = MaybeBitCode.get()) { 3764 default: // Default behavior: reject 3765 return error("Invalid value"); 3766 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks] 3767 if (Record.size() < 1 || Record[0] == 0) 3768 return error("Invalid record"); 3769 // Create all the basic blocks for the function. 3770 FunctionBBs.resize(Record[0]); 3771 3772 // See if anything took the address of blocks in this function. 3773 auto BBFRI = BasicBlockFwdRefs.find(F); 3774 if (BBFRI == BasicBlockFwdRefs.end()) { 3775 for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i) 3776 FunctionBBs[i] = BasicBlock::Create(Context, "", F); 3777 } else { 3778 auto &BBRefs = BBFRI->second; 3779 // Check for invalid basic block references. 3780 if (BBRefs.size() > FunctionBBs.size()) 3781 return error("Invalid ID"); 3782 assert(!BBRefs.empty() && "Unexpected empty array"); 3783 assert(!BBRefs.front() && "Invalid reference to entry block"); 3784 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E; 3785 ++I) 3786 if (I < RE && BBRefs[I]) { 3787 BBRefs[I]->insertInto(F); 3788 FunctionBBs[I] = BBRefs[I]; 3789 } else { 3790 FunctionBBs[I] = BasicBlock::Create(Context, "", F); 3791 } 3792 3793 // Erase from the table. 3794 BasicBlockFwdRefs.erase(BBFRI); 3795 } 3796 3797 CurBB = FunctionBBs[0]; 3798 continue; 3799 } 3800 3801 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 3802 // This record indicates that the last instruction is at the same 3803 // location as the previous instruction with a location. 3804 I = getLastInstruction(); 3805 3806 if (!I) 3807 return error("Invalid record"); 3808 I->setDebugLoc(LastLoc); 3809 I = nullptr; 3810 continue; 3811 3812 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 3813 I = getLastInstruction(); 3814 if (!I || Record.size() < 4) 3815 return error("Invalid record"); 3816 3817 unsigned Line = Record[0], Col = Record[1]; 3818 unsigned ScopeID = Record[2], IAID = Record[3]; 3819 bool isImplicitCode = Record.size() == 5 && Record[4]; 3820 3821 MDNode *Scope = nullptr, *IA = nullptr; 3822 if (ScopeID) { 3823 Scope = dyn_cast_or_null<MDNode>( 3824 MDLoader->getMetadataFwdRefOrLoad(ScopeID - 1)); 3825 if (!Scope) 3826 return error("Invalid record"); 3827 } 3828 if (IAID) { 3829 IA = dyn_cast_or_null<MDNode>( 3830 MDLoader->getMetadataFwdRefOrLoad(IAID - 1)); 3831 if (!IA) 3832 return error("Invalid record"); 3833 } 3834 LastLoc = DebugLoc::get(Line, Col, Scope, IA, isImplicitCode); 3835 I->setDebugLoc(LastLoc); 3836 I = nullptr; 3837 continue; 3838 } 3839 case bitc::FUNC_CODE_INST_UNOP: { // UNOP: [opval, ty, opcode] 3840 unsigned OpNum = 0; 3841 Value *LHS; 3842 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 3843 OpNum+1 > Record.size()) 3844 return error("Invalid record"); 3845 3846 int Opc = getDecodedUnaryOpcode(Record[OpNum++], LHS->getType()); 3847 if (Opc == -1) 3848 return error("Invalid record"); 3849 I = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS); 3850 InstructionList.push_back(I); 3851 if (OpNum < Record.size()) { 3852 if (isa<FPMathOperator>(I)) { 3853 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 3854 if (FMF.any()) 3855 I->setFastMathFlags(FMF); 3856 } 3857 } 3858 break; 3859 } 3860 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 3861 unsigned OpNum = 0; 3862 Value *LHS, *RHS; 3863 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 3864 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 3865 OpNum+1 > Record.size()) 3866 return error("Invalid record"); 3867 3868 int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 3869 if (Opc == -1) 3870 return error("Invalid record"); 3871 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 3872 InstructionList.push_back(I); 3873 if (OpNum < Record.size()) { 3874 if (Opc == Instruction::Add || 3875 Opc == Instruction::Sub || 3876 Opc == Instruction::Mul || 3877 Opc == Instruction::Shl) { 3878 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 3879 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 3880 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 3881 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 3882 } else if (Opc == Instruction::SDiv || 3883 Opc == Instruction::UDiv || 3884 Opc == Instruction::LShr || 3885 Opc == Instruction::AShr) { 3886 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 3887 cast<BinaryOperator>(I)->setIsExact(true); 3888 } else if (isa<FPMathOperator>(I)) { 3889 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 3890 if (FMF.any()) 3891 I->setFastMathFlags(FMF); 3892 } 3893 3894 } 3895 break; 3896 } 3897 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 3898 unsigned OpNum = 0; 3899 Value *Op; 3900 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 3901 OpNum+2 != Record.size()) 3902 return error("Invalid record"); 3903 3904 FullTy = getFullyStructuredTypeByID(Record[OpNum]); 3905 Type *ResTy = flattenPointerTypes(FullTy); 3906 int Opc = getDecodedCastOpcode(Record[OpNum + 1]); 3907 if (Opc == -1 || !ResTy) 3908 return error("Invalid record"); 3909 Instruction *Temp = nullptr; 3910 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) { 3911 if (Temp) { 3912 InstructionList.push_back(Temp); 3913 CurBB->getInstList().push_back(Temp); 3914 } 3915 } else { 3916 auto CastOp = (Instruction::CastOps)Opc; 3917 if (!CastInst::castIsValid(CastOp, Op, ResTy)) 3918 return error("Invalid cast"); 3919 I = CastInst::Create(CastOp, Op, ResTy); 3920 } 3921 InstructionList.push_back(I); 3922 break; 3923 } 3924 case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD: 3925 case bitc::FUNC_CODE_INST_GEP_OLD: 3926 case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands] 3927 unsigned OpNum = 0; 3928 3929 Type *Ty; 3930 bool InBounds; 3931 3932 if (BitCode == bitc::FUNC_CODE_INST_GEP) { 3933 InBounds = Record[OpNum++]; 3934 FullTy = getFullyStructuredTypeByID(Record[OpNum++]); 3935 Ty = flattenPointerTypes(FullTy); 3936 } else { 3937 InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD; 3938 Ty = nullptr; 3939 } 3940 3941 Value *BasePtr; 3942 Type *FullBaseTy = nullptr; 3943 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr, &FullBaseTy)) 3944 return error("Invalid record"); 3945 3946 if (!Ty) { 3947 std::tie(FullTy, Ty) = 3948 getPointerElementTypes(FullBaseTy->getScalarType()); 3949 } else if (Ty != getPointerElementFlatType(FullBaseTy->getScalarType())) 3950 return error( 3951 "Explicit gep type does not match pointee type of pointer operand"); 3952 3953 SmallVector<Value*, 16> GEPIdx; 3954 while (OpNum != Record.size()) { 3955 Value *Op; 3956 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3957 return error("Invalid record"); 3958 GEPIdx.push_back(Op); 3959 } 3960 3961 I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx); 3962 FullTy = GetElementPtrInst::getGEPReturnType(FullTy, I, GEPIdx); 3963 3964 InstructionList.push_back(I); 3965 if (InBounds) 3966 cast<GetElementPtrInst>(I)->setIsInBounds(true); 3967 break; 3968 } 3969 3970 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 3971 // EXTRACTVAL: [opty, opval, n x indices] 3972 unsigned OpNum = 0; 3973 Value *Agg; 3974 if (getValueTypePair(Record, OpNum, NextValueNo, Agg, &FullTy)) 3975 return error("Invalid record"); 3976 3977 unsigned RecSize = Record.size(); 3978 if (OpNum == RecSize) 3979 return error("EXTRACTVAL: Invalid instruction with 0 indices"); 3980 3981 SmallVector<unsigned, 4> EXTRACTVALIdx; 3982 for (; OpNum != RecSize; ++OpNum) { 3983 bool IsArray = FullTy->isArrayTy(); 3984 bool IsStruct = FullTy->isStructTy(); 3985 uint64_t Index = Record[OpNum]; 3986 3987 if (!IsStruct && !IsArray) 3988 return error("EXTRACTVAL: Invalid type"); 3989 if ((unsigned)Index != Index) 3990 return error("Invalid value"); 3991 if (IsStruct && Index >= FullTy->getStructNumElements()) 3992 return error("EXTRACTVAL: Invalid struct index"); 3993 if (IsArray && Index >= FullTy->getArrayNumElements()) 3994 return error("EXTRACTVAL: Invalid array index"); 3995 EXTRACTVALIdx.push_back((unsigned)Index); 3996 3997 if (IsStruct) 3998 FullTy = FullTy->getStructElementType(Index); 3999 else 4000 FullTy = FullTy->getArrayElementType(); 4001 } 4002 4003 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 4004 InstructionList.push_back(I); 4005 break; 4006 } 4007 4008 case bitc::FUNC_CODE_INST_INSERTVAL: { 4009 // INSERTVAL: [opty, opval, opty, opval, n x indices] 4010 unsigned OpNum = 0; 4011 Value *Agg; 4012 if (getValueTypePair(Record, OpNum, NextValueNo, Agg, &FullTy)) 4013 return error("Invalid record"); 4014 Value *Val; 4015 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 4016 return error("Invalid record"); 4017 4018 unsigned RecSize = Record.size(); 4019 if (OpNum == RecSize) 4020 return error("INSERTVAL: Invalid instruction with 0 indices"); 4021 4022 SmallVector<unsigned, 4> INSERTVALIdx; 4023 Type *CurTy = Agg->getType(); 4024 for (; OpNum != RecSize; ++OpNum) { 4025 bool IsArray = CurTy->isArrayTy(); 4026 bool IsStruct = CurTy->isStructTy(); 4027 uint64_t Index = Record[OpNum]; 4028 4029 if (!IsStruct && !IsArray) 4030 return error("INSERTVAL: Invalid type"); 4031 if ((unsigned)Index != Index) 4032 return error("Invalid value"); 4033 if (IsStruct && Index >= CurTy->getStructNumElements()) 4034 return error("INSERTVAL: Invalid struct index"); 4035 if (IsArray && Index >= CurTy->getArrayNumElements()) 4036 return error("INSERTVAL: Invalid array index"); 4037 4038 INSERTVALIdx.push_back((unsigned)Index); 4039 if (IsStruct) 4040 CurTy = CurTy->getStructElementType(Index); 4041 else 4042 CurTy = CurTy->getArrayElementType(); 4043 } 4044 4045 if (CurTy != Val->getType()) 4046 return error("Inserted value type doesn't match aggregate type"); 4047 4048 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 4049 InstructionList.push_back(I); 4050 break; 4051 } 4052 4053 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 4054 // obsolete form of select 4055 // handles select i1 ... in old bitcode 4056 unsigned OpNum = 0; 4057 Value *TrueVal, *FalseVal, *Cond; 4058 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, &FullTy) || 4059 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 4060 popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond)) 4061 return error("Invalid record"); 4062 4063 I = SelectInst::Create(Cond, TrueVal, FalseVal); 4064 InstructionList.push_back(I); 4065 break; 4066 } 4067 4068 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 4069 // new form of select 4070 // handles select i1 or select [N x i1] 4071 unsigned OpNum = 0; 4072 Value *TrueVal, *FalseVal, *Cond; 4073 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, &FullTy) || 4074 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 4075 getValueTypePair(Record, OpNum, NextValueNo, Cond)) 4076 return error("Invalid record"); 4077 4078 // select condition can be either i1 or [N x i1] 4079 if (VectorType* vector_type = 4080 dyn_cast<VectorType>(Cond->getType())) { 4081 // expect <n x i1> 4082 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 4083 return error("Invalid type for value"); 4084 } else { 4085 // expect i1 4086 if (Cond->getType() != Type::getInt1Ty(Context)) 4087 return error("Invalid type for value"); 4088 } 4089 4090 I = SelectInst::Create(Cond, TrueVal, FalseVal); 4091 InstructionList.push_back(I); 4092 if (OpNum < Record.size() && isa<FPMathOperator>(I)) { 4093 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 4094 if (FMF.any()) 4095 I->setFastMathFlags(FMF); 4096 } 4097 break; 4098 } 4099 4100 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 4101 unsigned OpNum = 0; 4102 Value *Vec, *Idx; 4103 if (getValueTypePair(Record, OpNum, NextValueNo, Vec, &FullTy) || 4104 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 4105 return error("Invalid record"); 4106 if (!Vec->getType()->isVectorTy()) 4107 return error("Invalid type for value"); 4108 I = ExtractElementInst::Create(Vec, Idx); 4109 FullTy = FullTy->getVectorElementType(); 4110 InstructionList.push_back(I); 4111 break; 4112 } 4113 4114 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 4115 unsigned OpNum = 0; 4116 Value *Vec, *Elt, *Idx; 4117 if (getValueTypePair(Record, OpNum, NextValueNo, Vec, &FullTy)) 4118 return error("Invalid record"); 4119 if (!Vec->getType()->isVectorTy()) 4120 return error("Invalid type for value"); 4121 if (popValue(Record, OpNum, NextValueNo, 4122 cast<VectorType>(Vec->getType())->getElementType(), Elt) || 4123 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 4124 return error("Invalid record"); 4125 I = InsertElementInst::Create(Vec, Elt, Idx); 4126 InstructionList.push_back(I); 4127 break; 4128 } 4129 4130 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 4131 unsigned OpNum = 0; 4132 Value *Vec1, *Vec2, *Mask; 4133 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1, &FullTy) || 4134 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2)) 4135 return error("Invalid record"); 4136 4137 if (getValueTypePair(Record, OpNum, NextValueNo, Mask)) 4138 return error("Invalid record"); 4139 if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy()) 4140 return error("Invalid type for value"); 4141 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 4142 FullTy = VectorType::get(FullTy->getVectorElementType(), 4143 Mask->getType()->getVectorNumElements()); 4144 InstructionList.push_back(I); 4145 break; 4146 } 4147 4148 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 4149 // Old form of ICmp/FCmp returning bool 4150 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 4151 // both legal on vectors but had different behaviour. 4152 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 4153 // FCmp/ICmp returning bool or vector of bool 4154 4155 unsigned OpNum = 0; 4156 Value *LHS, *RHS; 4157 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 4158 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS)) 4159 return error("Invalid record"); 4160 4161 unsigned PredVal = Record[OpNum]; 4162 bool IsFP = LHS->getType()->isFPOrFPVectorTy(); 4163 FastMathFlags FMF; 4164 if (IsFP && Record.size() > OpNum+1) 4165 FMF = getDecodedFastMathFlags(Record[++OpNum]); 4166 4167 if (OpNum+1 != Record.size()) 4168 return error("Invalid record"); 4169 4170 if (LHS->getType()->isFPOrFPVectorTy()) 4171 I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS); 4172 else 4173 I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS); 4174 4175 if (FMF.any()) 4176 I->setFastMathFlags(FMF); 4177 InstructionList.push_back(I); 4178 break; 4179 } 4180 4181 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 4182 { 4183 unsigned Size = Record.size(); 4184 if (Size == 0) { 4185 I = ReturnInst::Create(Context); 4186 InstructionList.push_back(I); 4187 break; 4188 } 4189 4190 unsigned OpNum = 0; 4191 Value *Op = nullptr; 4192 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4193 return error("Invalid record"); 4194 if (OpNum != Record.size()) 4195 return error("Invalid record"); 4196 4197 I = ReturnInst::Create(Context, Op); 4198 InstructionList.push_back(I); 4199 break; 4200 } 4201 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 4202 if (Record.size() != 1 && Record.size() != 3) 4203 return error("Invalid record"); 4204 BasicBlock *TrueDest = getBasicBlock(Record[0]); 4205 if (!TrueDest) 4206 return error("Invalid record"); 4207 4208 if (Record.size() == 1) { 4209 I = BranchInst::Create(TrueDest); 4210 InstructionList.push_back(I); 4211 } 4212 else { 4213 BasicBlock *FalseDest = getBasicBlock(Record[1]); 4214 Value *Cond = getValue(Record, 2, NextValueNo, 4215 Type::getInt1Ty(Context)); 4216 if (!FalseDest || !Cond) 4217 return error("Invalid record"); 4218 I = BranchInst::Create(TrueDest, FalseDest, Cond); 4219 InstructionList.push_back(I); 4220 } 4221 break; 4222 } 4223 case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#] 4224 if (Record.size() != 1 && Record.size() != 2) 4225 return error("Invalid record"); 4226 unsigned Idx = 0; 4227 Value *CleanupPad = 4228 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4229 if (!CleanupPad) 4230 return error("Invalid record"); 4231 BasicBlock *UnwindDest = nullptr; 4232 if (Record.size() == 2) { 4233 UnwindDest = getBasicBlock(Record[Idx++]); 4234 if (!UnwindDest) 4235 return error("Invalid record"); 4236 } 4237 4238 I = CleanupReturnInst::Create(CleanupPad, UnwindDest); 4239 InstructionList.push_back(I); 4240 break; 4241 } 4242 case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#] 4243 if (Record.size() != 2) 4244 return error("Invalid record"); 4245 unsigned Idx = 0; 4246 Value *CatchPad = 4247 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4248 if (!CatchPad) 4249 return error("Invalid record"); 4250 BasicBlock *BB = getBasicBlock(Record[Idx++]); 4251 if (!BB) 4252 return error("Invalid record"); 4253 4254 I = CatchReturnInst::Create(CatchPad, BB); 4255 InstructionList.push_back(I); 4256 break; 4257 } 4258 case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?] 4259 // We must have, at minimum, the outer scope and the number of arguments. 4260 if (Record.size() < 2) 4261 return error("Invalid record"); 4262 4263 unsigned Idx = 0; 4264 4265 Value *ParentPad = 4266 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4267 4268 unsigned NumHandlers = Record[Idx++]; 4269 4270 SmallVector<BasicBlock *, 2> Handlers; 4271 for (unsigned Op = 0; Op != NumHandlers; ++Op) { 4272 BasicBlock *BB = getBasicBlock(Record[Idx++]); 4273 if (!BB) 4274 return error("Invalid record"); 4275 Handlers.push_back(BB); 4276 } 4277 4278 BasicBlock *UnwindDest = nullptr; 4279 if (Idx + 1 == Record.size()) { 4280 UnwindDest = getBasicBlock(Record[Idx++]); 4281 if (!UnwindDest) 4282 return error("Invalid record"); 4283 } 4284 4285 if (Record.size() != Idx) 4286 return error("Invalid record"); 4287 4288 auto *CatchSwitch = 4289 CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers); 4290 for (BasicBlock *Handler : Handlers) 4291 CatchSwitch->addHandler(Handler); 4292 I = CatchSwitch; 4293 InstructionList.push_back(I); 4294 break; 4295 } 4296 case bitc::FUNC_CODE_INST_CATCHPAD: 4297 case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*] 4298 // We must have, at minimum, the outer scope and the number of arguments. 4299 if (Record.size() < 2) 4300 return error("Invalid record"); 4301 4302 unsigned Idx = 0; 4303 4304 Value *ParentPad = 4305 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4306 4307 unsigned NumArgOperands = Record[Idx++]; 4308 4309 SmallVector<Value *, 2> Args; 4310 for (unsigned Op = 0; Op != NumArgOperands; ++Op) { 4311 Value *Val; 4312 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 4313 return error("Invalid record"); 4314 Args.push_back(Val); 4315 } 4316 4317 if (Record.size() != Idx) 4318 return error("Invalid record"); 4319 4320 if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD) 4321 I = CleanupPadInst::Create(ParentPad, Args); 4322 else 4323 I = CatchPadInst::Create(ParentPad, Args); 4324 InstructionList.push_back(I); 4325 break; 4326 } 4327 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 4328 // Check magic 4329 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { 4330 // "New" SwitchInst format with case ranges. The changes to write this 4331 // format were reverted but we still recognize bitcode that uses it. 4332 // Hopefully someday we will have support for case ranges and can use 4333 // this format again. 4334 4335 Type *OpTy = getTypeByID(Record[1]); 4336 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); 4337 4338 Value *Cond = getValue(Record, 2, NextValueNo, OpTy); 4339 BasicBlock *Default = getBasicBlock(Record[3]); 4340 if (!OpTy || !Cond || !Default) 4341 return error("Invalid record"); 4342 4343 unsigned NumCases = Record[4]; 4344 4345 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 4346 InstructionList.push_back(SI); 4347 4348 unsigned CurIdx = 5; 4349 for (unsigned i = 0; i != NumCases; ++i) { 4350 SmallVector<ConstantInt*, 1> CaseVals; 4351 unsigned NumItems = Record[CurIdx++]; 4352 for (unsigned ci = 0; ci != NumItems; ++ci) { 4353 bool isSingleNumber = Record[CurIdx++]; 4354 4355 APInt Low; 4356 unsigned ActiveWords = 1; 4357 if (ValueBitWidth > 64) 4358 ActiveWords = Record[CurIdx++]; 4359 Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 4360 ValueBitWidth); 4361 CurIdx += ActiveWords; 4362 4363 if (!isSingleNumber) { 4364 ActiveWords = 1; 4365 if (ValueBitWidth > 64) 4366 ActiveWords = Record[CurIdx++]; 4367 APInt High = readWideAPInt( 4368 makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth); 4369 CurIdx += ActiveWords; 4370 4371 // FIXME: It is not clear whether values in the range should be 4372 // compared as signed or unsigned values. The partially 4373 // implemented changes that used this format in the past used 4374 // unsigned comparisons. 4375 for ( ; Low.ule(High); ++Low) 4376 CaseVals.push_back(ConstantInt::get(Context, Low)); 4377 } else 4378 CaseVals.push_back(ConstantInt::get(Context, Low)); 4379 } 4380 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); 4381 for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(), 4382 cve = CaseVals.end(); cvi != cve; ++cvi) 4383 SI->addCase(*cvi, DestBB); 4384 } 4385 I = SI; 4386 break; 4387 } 4388 4389 // Old SwitchInst format without case ranges. 4390 4391 if (Record.size() < 3 || (Record.size() & 1) == 0) 4392 return error("Invalid record"); 4393 Type *OpTy = getTypeByID(Record[0]); 4394 Value *Cond = getValue(Record, 1, NextValueNo, OpTy); 4395 BasicBlock *Default = getBasicBlock(Record[2]); 4396 if (!OpTy || !Cond || !Default) 4397 return error("Invalid record"); 4398 unsigned NumCases = (Record.size()-3)/2; 4399 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 4400 InstructionList.push_back(SI); 4401 for (unsigned i = 0, e = NumCases; i != e; ++i) { 4402 ConstantInt *CaseVal = 4403 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy)); 4404 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 4405 if (!CaseVal || !DestBB) { 4406 delete SI; 4407 return error("Invalid record"); 4408 } 4409 SI->addCase(CaseVal, DestBB); 4410 } 4411 I = SI; 4412 break; 4413 } 4414 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 4415 if (Record.size() < 2) 4416 return error("Invalid record"); 4417 Type *OpTy = getTypeByID(Record[0]); 4418 Value *Address = getValue(Record, 1, NextValueNo, OpTy); 4419 if (!OpTy || !Address) 4420 return error("Invalid record"); 4421 unsigned NumDests = Record.size()-2; 4422 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 4423 InstructionList.push_back(IBI); 4424 for (unsigned i = 0, e = NumDests; i != e; ++i) { 4425 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 4426 IBI->addDestination(DestBB); 4427 } else { 4428 delete IBI; 4429 return error("Invalid record"); 4430 } 4431 } 4432 I = IBI; 4433 break; 4434 } 4435 4436 case bitc::FUNC_CODE_INST_INVOKE: { 4437 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 4438 if (Record.size() < 4) 4439 return error("Invalid record"); 4440 unsigned OpNum = 0; 4441 AttributeList PAL = getAttributes(Record[OpNum++]); 4442 unsigned CCInfo = Record[OpNum++]; 4443 BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]); 4444 BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]); 4445 4446 FunctionType *FTy = nullptr; 4447 FunctionType *FullFTy = nullptr; 4448 if ((CCInfo >> 13) & 1) { 4449 FullFTy = 4450 dyn_cast<FunctionType>(getFullyStructuredTypeByID(Record[OpNum++])); 4451 if (!FullFTy) 4452 return error("Explicit invoke type is not a function type"); 4453 FTy = cast<FunctionType>(flattenPointerTypes(FullFTy)); 4454 } 4455 4456 Value *Callee; 4457 if (getValueTypePair(Record, OpNum, NextValueNo, Callee, &FullTy)) 4458 return error("Invalid record"); 4459 4460 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 4461 if (!CalleeTy) 4462 return error("Callee is not a pointer"); 4463 if (!FTy) { 4464 FullFTy = 4465 dyn_cast<FunctionType>(cast<PointerType>(FullTy)->getElementType()); 4466 if (!FullFTy) 4467 return error("Callee is not of pointer to function type"); 4468 FTy = cast<FunctionType>(flattenPointerTypes(FullFTy)); 4469 } else if (getPointerElementFlatType(FullTy) != FTy) 4470 return error("Explicit invoke type does not match pointee type of " 4471 "callee operand"); 4472 if (Record.size() < FTy->getNumParams() + OpNum) 4473 return error("Insufficient operands to call"); 4474 4475 SmallVector<Value*, 16> Ops; 4476 SmallVector<Type *, 16> ArgsFullTys; 4477 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 4478 Ops.push_back(getValue(Record, OpNum, NextValueNo, 4479 FTy->getParamType(i))); 4480 ArgsFullTys.push_back(FullFTy->getParamType(i)); 4481 if (!Ops.back()) 4482 return error("Invalid record"); 4483 } 4484 4485 if (!FTy->isVarArg()) { 4486 if (Record.size() != OpNum) 4487 return error("Invalid record"); 4488 } else { 4489 // Read type/value pairs for varargs params. 4490 while (OpNum != Record.size()) { 4491 Value *Op; 4492 Type *FullTy; 4493 if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy)) 4494 return error("Invalid record"); 4495 Ops.push_back(Op); 4496 ArgsFullTys.push_back(FullTy); 4497 } 4498 } 4499 4500 I = InvokeInst::Create(FTy, Callee, NormalBB, UnwindBB, Ops, 4501 OperandBundles); 4502 FullTy = FullFTy->getReturnType(); 4503 OperandBundles.clear(); 4504 InstructionList.push_back(I); 4505 cast<InvokeInst>(I)->setCallingConv( 4506 static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo)); 4507 cast<InvokeInst>(I)->setAttributes(PAL); 4508 propagateByValTypes(cast<CallBase>(I), ArgsFullTys); 4509 4510 break; 4511 } 4512 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 4513 unsigned Idx = 0; 4514 Value *Val = nullptr; 4515 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 4516 return error("Invalid record"); 4517 I = ResumeInst::Create(Val); 4518 InstructionList.push_back(I); 4519 break; 4520 } 4521 case bitc::FUNC_CODE_INST_CALLBR: { 4522 // CALLBR: [attr, cc, norm, transfs, fty, fnid, args] 4523 unsigned OpNum = 0; 4524 AttributeList PAL = getAttributes(Record[OpNum++]); 4525 unsigned CCInfo = Record[OpNum++]; 4526 4527 BasicBlock *DefaultDest = getBasicBlock(Record[OpNum++]); 4528 unsigned NumIndirectDests = Record[OpNum++]; 4529 SmallVector<BasicBlock *, 16> IndirectDests; 4530 for (unsigned i = 0, e = NumIndirectDests; i != e; ++i) 4531 IndirectDests.push_back(getBasicBlock(Record[OpNum++])); 4532 4533 FunctionType *FTy = nullptr; 4534 FunctionType *FullFTy = nullptr; 4535 if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) { 4536 FullFTy = 4537 dyn_cast<FunctionType>(getFullyStructuredTypeByID(Record[OpNum++])); 4538 if (!FullFTy) 4539 return error("Explicit call type is not a function type"); 4540 FTy = cast<FunctionType>(flattenPointerTypes(FullFTy)); 4541 } 4542 4543 Value *Callee; 4544 if (getValueTypePair(Record, OpNum, NextValueNo, Callee, &FullTy)) 4545 return error("Invalid record"); 4546 4547 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 4548 if (!OpTy) 4549 return error("Callee is not a pointer type"); 4550 if (!FTy) { 4551 FullFTy = 4552 dyn_cast<FunctionType>(cast<PointerType>(FullTy)->getElementType()); 4553 if (!FullFTy) 4554 return error("Callee is not of pointer to function type"); 4555 FTy = cast<FunctionType>(flattenPointerTypes(FullFTy)); 4556 } else if (getPointerElementFlatType(FullTy) != FTy) 4557 return error("Explicit call type does not match pointee type of " 4558 "callee operand"); 4559 if (Record.size() < FTy->getNumParams() + OpNum) 4560 return error("Insufficient operands to call"); 4561 4562 SmallVector<Value*, 16> Args; 4563 // Read the fixed params. 4564 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 4565 if (FTy->getParamType(i)->isLabelTy()) 4566 Args.push_back(getBasicBlock(Record[OpNum])); 4567 else 4568 Args.push_back(getValue(Record, OpNum, NextValueNo, 4569 FTy->getParamType(i))); 4570 if (!Args.back()) 4571 return error("Invalid record"); 4572 } 4573 4574 // Read type/value pairs for varargs params. 4575 if (!FTy->isVarArg()) { 4576 if (OpNum != Record.size()) 4577 return error("Invalid record"); 4578 } else { 4579 while (OpNum != Record.size()) { 4580 Value *Op; 4581 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4582 return error("Invalid record"); 4583 Args.push_back(Op); 4584 } 4585 } 4586 4587 I = CallBrInst::Create(FTy, Callee, DefaultDest, IndirectDests, Args, 4588 OperandBundles); 4589 FullTy = FullFTy->getReturnType(); 4590 OperandBundles.clear(); 4591 InstructionList.push_back(I); 4592 cast<CallBrInst>(I)->setCallingConv( 4593 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 4594 cast<CallBrInst>(I)->setAttributes(PAL); 4595 break; 4596 } 4597 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 4598 I = new UnreachableInst(Context); 4599 InstructionList.push_back(I); 4600 break; 4601 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 4602 if (Record.size() < 1 || ((Record.size()-1)&1)) 4603 return error("Invalid record"); 4604 FullTy = getFullyStructuredTypeByID(Record[0]); 4605 Type *Ty = flattenPointerTypes(FullTy); 4606 if (!Ty) 4607 return error("Invalid record"); 4608 4609 PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2); 4610 InstructionList.push_back(PN); 4611 4612 for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) { 4613 Value *V; 4614 // With the new function encoding, it is possible that operands have 4615 // negative IDs (for forward references). Use a signed VBR 4616 // representation to keep the encoding small. 4617 if (UseRelativeIDs) 4618 V = getValueSigned(Record, 1+i, NextValueNo, Ty); 4619 else 4620 V = getValue(Record, 1+i, NextValueNo, Ty); 4621 BasicBlock *BB = getBasicBlock(Record[2+i]); 4622 if (!V || !BB) 4623 return error("Invalid record"); 4624 PN->addIncoming(V, BB); 4625 } 4626 I = PN; 4627 break; 4628 } 4629 4630 case bitc::FUNC_CODE_INST_LANDINGPAD: 4631 case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: { 4632 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 4633 unsigned Idx = 0; 4634 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) { 4635 if (Record.size() < 3) 4636 return error("Invalid record"); 4637 } else { 4638 assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD); 4639 if (Record.size() < 4) 4640 return error("Invalid record"); 4641 } 4642 FullTy = getFullyStructuredTypeByID(Record[Idx++]); 4643 Type *Ty = flattenPointerTypes(FullTy); 4644 if (!Ty) 4645 return error("Invalid record"); 4646 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) { 4647 Value *PersFn = nullptr; 4648 if (getValueTypePair(Record, Idx, NextValueNo, PersFn)) 4649 return error("Invalid record"); 4650 4651 if (!F->hasPersonalityFn()) 4652 F->setPersonalityFn(cast<Constant>(PersFn)); 4653 else if (F->getPersonalityFn() != cast<Constant>(PersFn)) 4654 return error("Personality function mismatch"); 4655 } 4656 4657 bool IsCleanup = !!Record[Idx++]; 4658 unsigned NumClauses = Record[Idx++]; 4659 LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses); 4660 LP->setCleanup(IsCleanup); 4661 for (unsigned J = 0; J != NumClauses; ++J) { 4662 LandingPadInst::ClauseType CT = 4663 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 4664 Value *Val; 4665 4666 if (getValueTypePair(Record, Idx, NextValueNo, Val)) { 4667 delete LP; 4668 return error("Invalid record"); 4669 } 4670 4671 assert((CT != LandingPadInst::Catch || 4672 !isa<ArrayType>(Val->getType())) && 4673 "Catch clause has a invalid type!"); 4674 assert((CT != LandingPadInst::Filter || 4675 isa<ArrayType>(Val->getType())) && 4676 "Filter clause has invalid type!"); 4677 LP->addClause(cast<Constant>(Val)); 4678 } 4679 4680 I = LP; 4681 InstructionList.push_back(I); 4682 break; 4683 } 4684 4685 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 4686 if (Record.size() != 4) 4687 return error("Invalid record"); 4688 uint64_t AlignRecord = Record[3]; 4689 const uint64_t InAllocaMask = uint64_t(1) << 5; 4690 const uint64_t ExplicitTypeMask = uint64_t(1) << 6; 4691 const uint64_t SwiftErrorMask = uint64_t(1) << 7; 4692 const uint64_t FlagMask = InAllocaMask | ExplicitTypeMask | 4693 SwiftErrorMask; 4694 bool InAlloca = AlignRecord & InAllocaMask; 4695 bool SwiftError = AlignRecord & SwiftErrorMask; 4696 FullTy = getFullyStructuredTypeByID(Record[0]); 4697 Type *Ty = flattenPointerTypes(FullTy); 4698 if ((AlignRecord & ExplicitTypeMask) == 0) { 4699 auto *PTy = dyn_cast_or_null<PointerType>(Ty); 4700 if (!PTy) 4701 return error("Old-style alloca with a non-pointer type"); 4702 std::tie(FullTy, Ty) = getPointerElementTypes(FullTy); 4703 } 4704 Type *OpTy = getTypeByID(Record[1]); 4705 Value *Size = getFnValueByID(Record[2], OpTy); 4706 unsigned Align; 4707 if (Error Err = parseAlignmentValue(AlignRecord & ~FlagMask, Align)) { 4708 return Err; 4709 } 4710 if (!Ty || !Size) 4711 return error("Invalid record"); 4712 4713 // FIXME: Make this an optional field. 4714 const DataLayout &DL = TheModule->getDataLayout(); 4715 unsigned AS = DL.getAllocaAddrSpace(); 4716 4717 AllocaInst *AI = new AllocaInst(Ty, AS, Size, Align); 4718 AI->setUsedWithInAlloca(InAlloca); 4719 AI->setSwiftError(SwiftError); 4720 I = AI; 4721 FullTy = PointerType::get(FullTy, AS); 4722 InstructionList.push_back(I); 4723 break; 4724 } 4725 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 4726 unsigned OpNum = 0; 4727 Value *Op; 4728 if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy) || 4729 (OpNum + 2 != Record.size() && OpNum + 3 != Record.size())) 4730 return error("Invalid record"); 4731 4732 if (!isa<PointerType>(Op->getType())) 4733 return error("Load operand is not a pointer type"); 4734 4735 Type *Ty = nullptr; 4736 if (OpNum + 3 == Record.size()) { 4737 FullTy = getFullyStructuredTypeByID(Record[OpNum++]); 4738 Ty = flattenPointerTypes(FullTy); 4739 } else 4740 std::tie(FullTy, Ty) = getPointerElementTypes(FullTy); 4741 4742 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 4743 return Err; 4744 4745 unsigned Align; 4746 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4747 return Err; 4748 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], Align); 4749 InstructionList.push_back(I); 4750 break; 4751 } 4752 case bitc::FUNC_CODE_INST_LOADATOMIC: { 4753 // LOADATOMIC: [opty, op, align, vol, ordering, ssid] 4754 unsigned OpNum = 0; 4755 Value *Op; 4756 if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy) || 4757 (OpNum + 4 != Record.size() && OpNum + 5 != Record.size())) 4758 return error("Invalid record"); 4759 4760 if (!isa<PointerType>(Op->getType())) 4761 return error("Load operand is not a pointer type"); 4762 4763 Type *Ty = nullptr; 4764 if (OpNum + 5 == Record.size()) { 4765 FullTy = getFullyStructuredTypeByID(Record[OpNum++]); 4766 Ty = flattenPointerTypes(FullTy); 4767 } else 4768 std::tie(FullTy, Ty) = getPointerElementTypes(FullTy); 4769 4770 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 4771 return Err; 4772 4773 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4774 if (Ordering == AtomicOrdering::NotAtomic || 4775 Ordering == AtomicOrdering::Release || 4776 Ordering == AtomicOrdering::AcquireRelease) 4777 return error("Invalid record"); 4778 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 4779 return error("Invalid record"); 4780 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 4781 4782 unsigned Align; 4783 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4784 return Err; 4785 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], Align, Ordering, SSID); 4786 InstructionList.push_back(I); 4787 break; 4788 } 4789 case bitc::FUNC_CODE_INST_STORE: 4790 case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol] 4791 unsigned OpNum = 0; 4792 Value *Val, *Ptr; 4793 Type *FullTy; 4794 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, &FullTy) || 4795 (BitCode == bitc::FUNC_CODE_INST_STORE 4796 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 4797 : popValue(Record, OpNum, NextValueNo, 4798 getPointerElementFlatType(FullTy), Val)) || 4799 OpNum + 2 != Record.size()) 4800 return error("Invalid record"); 4801 4802 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 4803 return Err; 4804 unsigned Align; 4805 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4806 return Err; 4807 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align); 4808 InstructionList.push_back(I); 4809 break; 4810 } 4811 case bitc::FUNC_CODE_INST_STOREATOMIC: 4812 case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: { 4813 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, ssid] 4814 unsigned OpNum = 0; 4815 Value *Val, *Ptr; 4816 Type *FullTy; 4817 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, &FullTy) || 4818 !isa<PointerType>(Ptr->getType()) || 4819 (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC 4820 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 4821 : popValue(Record, OpNum, NextValueNo, 4822 getPointerElementFlatType(FullTy), Val)) || 4823 OpNum + 4 != Record.size()) 4824 return error("Invalid record"); 4825 4826 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 4827 return Err; 4828 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4829 if (Ordering == AtomicOrdering::NotAtomic || 4830 Ordering == AtomicOrdering::Acquire || 4831 Ordering == AtomicOrdering::AcquireRelease) 4832 return error("Invalid record"); 4833 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 4834 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 4835 return error("Invalid record"); 4836 4837 unsigned Align; 4838 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4839 return Err; 4840 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align, Ordering, SSID); 4841 InstructionList.push_back(I); 4842 break; 4843 } 4844 case bitc::FUNC_CODE_INST_CMPXCHG_OLD: 4845 case bitc::FUNC_CODE_INST_CMPXCHG: { 4846 // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, ssid, 4847 // failureordering?, isweak?] 4848 unsigned OpNum = 0; 4849 Value *Ptr, *Cmp, *New; 4850 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, &FullTy)) 4851 return error("Invalid record"); 4852 4853 if (!isa<PointerType>(Ptr->getType())) 4854 return error("Cmpxchg operand is not a pointer type"); 4855 4856 if (BitCode == bitc::FUNC_CODE_INST_CMPXCHG) { 4857 if (getValueTypePair(Record, OpNum, NextValueNo, Cmp, &FullTy)) 4858 return error("Invalid record"); 4859 } else if (popValue(Record, OpNum, NextValueNo, 4860 getPointerElementFlatType(FullTy), Cmp)) 4861 return error("Invalid record"); 4862 else 4863 FullTy = cast<PointerType>(FullTy)->getElementType(); 4864 4865 if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) || 4866 Record.size() < OpNum + 3 || Record.size() > OpNum + 5) 4867 return error("Invalid record"); 4868 4869 AtomicOrdering SuccessOrdering = getDecodedOrdering(Record[OpNum + 1]); 4870 if (SuccessOrdering == AtomicOrdering::NotAtomic || 4871 SuccessOrdering == AtomicOrdering::Unordered) 4872 return error("Invalid record"); 4873 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]); 4874 4875 if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType())) 4876 return Err; 4877 AtomicOrdering FailureOrdering; 4878 if (Record.size() < 7) 4879 FailureOrdering = 4880 AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering); 4881 else 4882 FailureOrdering = getDecodedOrdering(Record[OpNum + 3]); 4883 4884 I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering, 4885 SSID); 4886 FullTy = StructType::get(Context, {FullTy, Type::getInt1Ty(Context)}); 4887 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 4888 4889 if (Record.size() < 8) { 4890 // Before weak cmpxchgs existed, the instruction simply returned the 4891 // value loaded from memory, so bitcode files from that era will be 4892 // expecting the first component of a modern cmpxchg. 4893 CurBB->getInstList().push_back(I); 4894 I = ExtractValueInst::Create(I, 0); 4895 FullTy = cast<StructType>(FullTy)->getElementType(0); 4896 } else { 4897 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]); 4898 } 4899 4900 InstructionList.push_back(I); 4901 break; 4902 } 4903 case bitc::FUNC_CODE_INST_ATOMICRMW: { 4904 // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, ssid] 4905 unsigned OpNum = 0; 4906 Value *Ptr, *Val; 4907 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, &FullTy) || 4908 !isa<PointerType>(Ptr->getType()) || 4909 popValue(Record, OpNum, NextValueNo, 4910 getPointerElementFlatType(FullTy), Val) || 4911 OpNum + 4 != Record.size()) 4912 return error("Invalid record"); 4913 AtomicRMWInst::BinOp Operation = getDecodedRMWOperation(Record[OpNum]); 4914 if (Operation < AtomicRMWInst::FIRST_BINOP || 4915 Operation > AtomicRMWInst::LAST_BINOP) 4916 return error("Invalid record"); 4917 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4918 if (Ordering == AtomicOrdering::NotAtomic || 4919 Ordering == AtomicOrdering::Unordered) 4920 return error("Invalid record"); 4921 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 4922 I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SSID); 4923 FullTy = getPointerElementFlatType(FullTy); 4924 cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]); 4925 InstructionList.push_back(I); 4926 break; 4927 } 4928 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, ssid] 4929 if (2 != Record.size()) 4930 return error("Invalid record"); 4931 AtomicOrdering Ordering = getDecodedOrdering(Record[0]); 4932 if (Ordering == AtomicOrdering::NotAtomic || 4933 Ordering == AtomicOrdering::Unordered || 4934 Ordering == AtomicOrdering::Monotonic) 4935 return error("Invalid record"); 4936 SyncScope::ID SSID = getDecodedSyncScopeID(Record[1]); 4937 I = new FenceInst(Context, Ordering, SSID); 4938 InstructionList.push_back(I); 4939 break; 4940 } 4941 case bitc::FUNC_CODE_INST_CALL: { 4942 // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...] 4943 if (Record.size() < 3) 4944 return error("Invalid record"); 4945 4946 unsigned OpNum = 0; 4947 AttributeList PAL = getAttributes(Record[OpNum++]); 4948 unsigned CCInfo = Record[OpNum++]; 4949 4950 FastMathFlags FMF; 4951 if ((CCInfo >> bitc::CALL_FMF) & 1) { 4952 FMF = getDecodedFastMathFlags(Record[OpNum++]); 4953 if (!FMF.any()) 4954 return error("Fast math flags indicator set for call with no FMF"); 4955 } 4956 4957 FunctionType *FTy = nullptr; 4958 FunctionType *FullFTy = nullptr; 4959 if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) { 4960 FullFTy = 4961 dyn_cast<FunctionType>(getFullyStructuredTypeByID(Record[OpNum++])); 4962 if (!FullFTy) 4963 return error("Explicit call type is not a function type"); 4964 FTy = cast<FunctionType>(flattenPointerTypes(FullFTy)); 4965 } 4966 4967 Value *Callee; 4968 if (getValueTypePair(Record, OpNum, NextValueNo, Callee, &FullTy)) 4969 return error("Invalid record"); 4970 4971 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 4972 if (!OpTy) 4973 return error("Callee is not a pointer type"); 4974 if (!FTy) { 4975 FullFTy = 4976 dyn_cast<FunctionType>(cast<PointerType>(FullTy)->getElementType()); 4977 if (!FullFTy) 4978 return error("Callee is not of pointer to function type"); 4979 FTy = cast<FunctionType>(flattenPointerTypes(FullFTy)); 4980 } else if (getPointerElementFlatType(FullTy) != FTy) 4981 return error("Explicit call type does not match pointee type of " 4982 "callee operand"); 4983 if (Record.size() < FTy->getNumParams() + OpNum) 4984 return error("Insufficient operands to call"); 4985 4986 SmallVector<Value*, 16> Args; 4987 SmallVector<Type*, 16> ArgsFullTys; 4988 // Read the fixed params. 4989 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 4990 if (FTy->getParamType(i)->isLabelTy()) 4991 Args.push_back(getBasicBlock(Record[OpNum])); 4992 else 4993 Args.push_back(getValue(Record, OpNum, NextValueNo, 4994 FTy->getParamType(i))); 4995 ArgsFullTys.push_back(FullFTy->getParamType(i)); 4996 if (!Args.back()) 4997 return error("Invalid record"); 4998 } 4999 5000 // Read type/value pairs for varargs params. 5001 if (!FTy->isVarArg()) { 5002 if (OpNum != Record.size()) 5003 return error("Invalid record"); 5004 } else { 5005 while (OpNum != Record.size()) { 5006 Value *Op; 5007 Type *FullTy; 5008 if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy)) 5009 return error("Invalid record"); 5010 Args.push_back(Op); 5011 ArgsFullTys.push_back(FullTy); 5012 } 5013 } 5014 5015 I = CallInst::Create(FTy, Callee, Args, OperandBundles); 5016 FullTy = FullFTy->getReturnType(); 5017 OperandBundles.clear(); 5018 InstructionList.push_back(I); 5019 cast<CallInst>(I)->setCallingConv( 5020 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 5021 CallInst::TailCallKind TCK = CallInst::TCK_None; 5022 if (CCInfo & 1 << bitc::CALL_TAIL) 5023 TCK = CallInst::TCK_Tail; 5024 if (CCInfo & (1 << bitc::CALL_MUSTTAIL)) 5025 TCK = CallInst::TCK_MustTail; 5026 if (CCInfo & (1 << bitc::CALL_NOTAIL)) 5027 TCK = CallInst::TCK_NoTail; 5028 cast<CallInst>(I)->setTailCallKind(TCK); 5029 cast<CallInst>(I)->setAttributes(PAL); 5030 propagateByValTypes(cast<CallBase>(I), ArgsFullTys); 5031 if (FMF.any()) { 5032 if (!isa<FPMathOperator>(I)) 5033 return error("Fast-math-flags specified for call without " 5034 "floating-point scalar or vector return type"); 5035 I->setFastMathFlags(FMF); 5036 } 5037 break; 5038 } 5039 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 5040 if (Record.size() < 3) 5041 return error("Invalid record"); 5042 Type *OpTy = getTypeByID(Record[0]); 5043 Value *Op = getValue(Record, 1, NextValueNo, OpTy); 5044 FullTy = getFullyStructuredTypeByID(Record[2]); 5045 Type *ResTy = flattenPointerTypes(FullTy); 5046 if (!OpTy || !Op || !ResTy) 5047 return error("Invalid record"); 5048 I = new VAArgInst(Op, ResTy); 5049 InstructionList.push_back(I); 5050 break; 5051 } 5052 5053 case bitc::FUNC_CODE_OPERAND_BUNDLE: { 5054 // A call or an invoke can be optionally prefixed with some variable 5055 // number of operand bundle blocks. These blocks are read into 5056 // OperandBundles and consumed at the next call or invoke instruction. 5057 5058 if (Record.size() < 1 || Record[0] >= BundleTags.size()) 5059 return error("Invalid record"); 5060 5061 std::vector<Value *> Inputs; 5062 5063 unsigned OpNum = 1; 5064 while (OpNum != Record.size()) { 5065 Value *Op; 5066 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 5067 return error("Invalid record"); 5068 Inputs.push_back(Op); 5069 } 5070 5071 OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs)); 5072 continue; 5073 } 5074 } 5075 5076 // Add instruction to end of current BB. If there is no current BB, reject 5077 // this file. 5078 if (!CurBB) { 5079 I->deleteValue(); 5080 return error("Invalid instruction with no BB"); 5081 } 5082 if (!OperandBundles.empty()) { 5083 I->deleteValue(); 5084 return error("Operand bundles found with no consumer"); 5085 } 5086 CurBB->getInstList().push_back(I); 5087 5088 // If this was a terminator instruction, move to the next block. 5089 if (I->isTerminator()) { 5090 ++CurBBNo; 5091 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr; 5092 } 5093 5094 // Non-void values get registered in the value table for future use. 5095 if (I && !I->getType()->isVoidTy()) { 5096 if (!FullTy) { 5097 FullTy = I->getType(); 5098 assert( 5099 !FullTy->isPointerTy() && !isa<StructType>(FullTy) && 5100 !isa<ArrayType>(FullTy) && 5101 (!isa<VectorType>(FullTy) || 5102 FullTy->getVectorElementType()->isFloatingPointTy() || 5103 FullTy->getVectorElementType()->isIntegerTy()) && 5104 "Structured types must be assigned with corresponding non-opaque " 5105 "pointer type"); 5106 } 5107 5108 assert(I->getType() == flattenPointerTypes(FullTy) && 5109 "Incorrect fully structured type provided for Instruction"); 5110 ValueList.assignValue(I, NextValueNo++, FullTy); 5111 } 5112 } 5113 5114 OutOfRecordLoop: 5115 5116 if (!OperandBundles.empty()) 5117 return error("Operand bundles found with no consumer"); 5118 5119 // Check the function list for unresolved values. 5120 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 5121 if (!A->getParent()) { 5122 // We found at least one unresolved value. Nuke them all to avoid leaks. 5123 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 5124 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) { 5125 A->replaceAllUsesWith(UndefValue::get(A->getType())); 5126 delete A; 5127 } 5128 } 5129 return error("Never resolved value found in function"); 5130 } 5131 } 5132 5133 // Unexpected unresolved metadata about to be dropped. 5134 if (MDLoader->hasFwdRefs()) 5135 return error("Invalid function metadata: outgoing forward refs"); 5136 5137 // Trim the value list down to the size it was before we parsed this function. 5138 ValueList.shrinkTo(ModuleValueListSize); 5139 MDLoader->shrinkTo(ModuleMDLoaderSize); 5140 std::vector<BasicBlock*>().swap(FunctionBBs); 5141 return Error::success(); 5142 } 5143 5144 /// Find the function body in the bitcode stream 5145 Error BitcodeReader::findFunctionInStream( 5146 Function *F, 5147 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) { 5148 while (DeferredFunctionInfoIterator->second == 0) { 5149 // This is the fallback handling for the old format bitcode that 5150 // didn't contain the function index in the VST, or when we have 5151 // an anonymous function which would not have a VST entry. 5152 // Assert that we have one of those two cases. 5153 assert(VSTOffset == 0 || !F->hasName()); 5154 // Parse the next body in the stream and set its position in the 5155 // DeferredFunctionInfo map. 5156 if (Error Err = rememberAndSkipFunctionBodies()) 5157 return Err; 5158 } 5159 return Error::success(); 5160 } 5161 5162 SyncScope::ID BitcodeReader::getDecodedSyncScopeID(unsigned Val) { 5163 if (Val == SyncScope::SingleThread || Val == SyncScope::System) 5164 return SyncScope::ID(Val); 5165 if (Val >= SSIDs.size()) 5166 return SyncScope::System; // Map unknown synchronization scopes to system. 5167 return SSIDs[Val]; 5168 } 5169 5170 //===----------------------------------------------------------------------===// 5171 // GVMaterializer implementation 5172 //===----------------------------------------------------------------------===// 5173 5174 Error BitcodeReader::materialize(GlobalValue *GV) { 5175 Function *F = dyn_cast<Function>(GV); 5176 // If it's not a function or is already material, ignore the request. 5177 if (!F || !F->isMaterializable()) 5178 return Error::success(); 5179 5180 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 5181 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 5182 // If its position is recorded as 0, its body is somewhere in the stream 5183 // but we haven't seen it yet. 5184 if (DFII->second == 0) 5185 if (Error Err = findFunctionInStream(F, DFII)) 5186 return Err; 5187 5188 // Materialize metadata before parsing any function bodies. 5189 if (Error Err = materializeMetadata()) 5190 return Err; 5191 5192 // Move the bit stream to the saved position of the deferred function body. 5193 if (Error JumpFailed = Stream.JumpToBit(DFII->second)) 5194 return JumpFailed; 5195 if (Error Err = parseFunctionBody(F)) 5196 return Err; 5197 F->setIsMaterializable(false); 5198 5199 if (StripDebugInfo) 5200 stripDebugInfo(*F); 5201 5202 // Upgrade any old intrinsic calls in the function. 5203 for (auto &I : UpgradedIntrinsics) { 5204 for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end(); 5205 UI != UE;) { 5206 User *U = *UI; 5207 ++UI; 5208 if (CallInst *CI = dyn_cast<CallInst>(U)) 5209 UpgradeIntrinsicCall(CI, I.second); 5210 } 5211 } 5212 5213 // Update calls to the remangled intrinsics 5214 for (auto &I : RemangledIntrinsics) 5215 for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end(); 5216 UI != UE;) 5217 // Don't expect any other users than call sites 5218 CallSite(*UI++).setCalledFunction(I.second); 5219 5220 // Finish fn->subprogram upgrade for materialized functions. 5221 if (DISubprogram *SP = MDLoader->lookupSubprogramForFunction(F)) 5222 F->setSubprogram(SP); 5223 5224 // Check if the TBAA Metadata are valid, otherwise we will need to strip them. 5225 if (!MDLoader->isStrippingTBAA()) { 5226 for (auto &I : instructions(F)) { 5227 MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa); 5228 if (!TBAA || TBAAVerifyHelper.visitTBAAMetadata(I, TBAA)) 5229 continue; 5230 MDLoader->setStripTBAA(true); 5231 stripTBAA(F->getParent()); 5232 } 5233 } 5234 5235 // Bring in any functions that this function forward-referenced via 5236 // blockaddresses. 5237 return materializeForwardReferencedFunctions(); 5238 } 5239 5240 Error BitcodeReader::materializeModule() { 5241 if (Error Err = materializeMetadata()) 5242 return Err; 5243 5244 // Promise to materialize all forward references. 5245 WillMaterializeAllForwardRefs = true; 5246 5247 // Iterate over the module, deserializing any functions that are still on 5248 // disk. 5249 for (Function &F : *TheModule) { 5250 if (Error Err = materialize(&F)) 5251 return Err; 5252 } 5253 // At this point, if there are any function bodies, parse the rest of 5254 // the bits in the module past the last function block we have recorded 5255 // through either lazy scanning or the VST. 5256 if (LastFunctionBlockBit || NextUnreadBit) 5257 if (Error Err = parseModule(LastFunctionBlockBit > NextUnreadBit 5258 ? LastFunctionBlockBit 5259 : NextUnreadBit)) 5260 return Err; 5261 5262 // Check that all block address forward references got resolved (as we 5263 // promised above). 5264 if (!BasicBlockFwdRefs.empty()) 5265 return error("Never resolved function from blockaddress"); 5266 5267 // Upgrade any intrinsic calls that slipped through (should not happen!) and 5268 // delete the old functions to clean up. We can't do this unless the entire 5269 // module is materialized because there could always be another function body 5270 // with calls to the old function. 5271 for (auto &I : UpgradedIntrinsics) { 5272 for (auto *U : I.first->users()) { 5273 if (CallInst *CI = dyn_cast<CallInst>(U)) 5274 UpgradeIntrinsicCall(CI, I.second); 5275 } 5276 if (!I.first->use_empty()) 5277 I.first->replaceAllUsesWith(I.second); 5278 I.first->eraseFromParent(); 5279 } 5280 UpgradedIntrinsics.clear(); 5281 // Do the same for remangled intrinsics 5282 for (auto &I : RemangledIntrinsics) { 5283 I.first->replaceAllUsesWith(I.second); 5284 I.first->eraseFromParent(); 5285 } 5286 RemangledIntrinsics.clear(); 5287 5288 UpgradeDebugInfo(*TheModule); 5289 5290 UpgradeModuleFlags(*TheModule); 5291 5292 UpgradeRetainReleaseMarker(*TheModule); 5293 5294 return Error::success(); 5295 } 5296 5297 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const { 5298 return IdentifiedStructTypes; 5299 } 5300 5301 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader( 5302 BitstreamCursor Cursor, StringRef Strtab, ModuleSummaryIndex &TheIndex, 5303 StringRef ModulePath, unsigned ModuleId) 5304 : BitcodeReaderBase(std::move(Cursor), Strtab), TheIndex(TheIndex), 5305 ModulePath(ModulePath), ModuleId(ModuleId) {} 5306 5307 void ModuleSummaryIndexBitcodeReader::addThisModule() { 5308 TheIndex.addModule(ModulePath, ModuleId); 5309 } 5310 5311 ModuleSummaryIndex::ModuleInfo * 5312 ModuleSummaryIndexBitcodeReader::getThisModule() { 5313 return TheIndex.getModule(ModulePath); 5314 } 5315 5316 std::pair<ValueInfo, GlobalValue::GUID> 5317 ModuleSummaryIndexBitcodeReader::getValueInfoFromValueId(unsigned ValueId) { 5318 auto VGI = ValueIdToValueInfoMap[ValueId]; 5319 assert(VGI.first); 5320 return VGI; 5321 } 5322 5323 void ModuleSummaryIndexBitcodeReader::setValueGUID( 5324 uint64_t ValueID, StringRef ValueName, GlobalValue::LinkageTypes Linkage, 5325 StringRef SourceFileName) { 5326 std::string GlobalId = 5327 GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName); 5328 auto ValueGUID = GlobalValue::getGUID(GlobalId); 5329 auto OriginalNameID = ValueGUID; 5330 if (GlobalValue::isLocalLinkage(Linkage)) 5331 OriginalNameID = GlobalValue::getGUID(ValueName); 5332 if (PrintSummaryGUIDs) 5333 dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is " 5334 << ValueName << "\n"; 5335 5336 // UseStrtab is false for legacy summary formats and value names are 5337 // created on stack. In that case we save the name in a string saver in 5338 // the index so that the value name can be recorded. 5339 ValueIdToValueInfoMap[ValueID] = std::make_pair( 5340 TheIndex.getOrInsertValueInfo( 5341 ValueGUID, 5342 UseStrtab ? ValueName : TheIndex.saveString(ValueName)), 5343 OriginalNameID); 5344 } 5345 5346 // Specialized value symbol table parser used when reading module index 5347 // blocks where we don't actually create global values. The parsed information 5348 // is saved in the bitcode reader for use when later parsing summaries. 5349 Error ModuleSummaryIndexBitcodeReader::parseValueSymbolTable( 5350 uint64_t Offset, 5351 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) { 5352 // With a strtab the VST is not required to parse the summary. 5353 if (UseStrtab) 5354 return Error::success(); 5355 5356 assert(Offset > 0 && "Expected non-zero VST offset"); 5357 Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream); 5358 if (!MaybeCurrentBit) 5359 return MaybeCurrentBit.takeError(); 5360 uint64_t CurrentBit = MaybeCurrentBit.get(); 5361 5362 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 5363 return Err; 5364 5365 SmallVector<uint64_t, 64> Record; 5366 5367 // Read all the records for this value table. 5368 SmallString<128> ValueName; 5369 5370 while (true) { 5371 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 5372 if (!MaybeEntry) 5373 return MaybeEntry.takeError(); 5374 BitstreamEntry Entry = MaybeEntry.get(); 5375 5376 switch (Entry.Kind) { 5377 case BitstreamEntry::SubBlock: // Handled for us already. 5378 case BitstreamEntry::Error: 5379 return error("Malformed block"); 5380 case BitstreamEntry::EndBlock: 5381 // Done parsing VST, jump back to wherever we came from. 5382 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 5383 return JumpFailed; 5384 return Error::success(); 5385 case BitstreamEntry::Record: 5386 // The interesting case. 5387 break; 5388 } 5389 5390 // Read a record. 5391 Record.clear(); 5392 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 5393 if (!MaybeRecord) 5394 return MaybeRecord.takeError(); 5395 switch (MaybeRecord.get()) { 5396 default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records). 5397 break; 5398 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 5399 if (convertToString(Record, 1, ValueName)) 5400 return error("Invalid record"); 5401 unsigned ValueID = Record[0]; 5402 assert(!SourceFileName.empty()); 5403 auto VLI = ValueIdToLinkageMap.find(ValueID); 5404 assert(VLI != ValueIdToLinkageMap.end() && 5405 "No linkage found for VST entry?"); 5406 auto Linkage = VLI->second; 5407 setValueGUID(ValueID, ValueName, Linkage, SourceFileName); 5408 ValueName.clear(); 5409 break; 5410 } 5411 case bitc::VST_CODE_FNENTRY: { 5412 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 5413 if (convertToString(Record, 2, ValueName)) 5414 return error("Invalid record"); 5415 unsigned ValueID = Record[0]; 5416 assert(!SourceFileName.empty()); 5417 auto VLI = ValueIdToLinkageMap.find(ValueID); 5418 assert(VLI != ValueIdToLinkageMap.end() && 5419 "No linkage found for VST entry?"); 5420 auto Linkage = VLI->second; 5421 setValueGUID(ValueID, ValueName, Linkage, SourceFileName); 5422 ValueName.clear(); 5423 break; 5424 } 5425 case bitc::VST_CODE_COMBINED_ENTRY: { 5426 // VST_CODE_COMBINED_ENTRY: [valueid, refguid] 5427 unsigned ValueID = Record[0]; 5428 GlobalValue::GUID RefGUID = Record[1]; 5429 // The "original name", which is the second value of the pair will be 5430 // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index. 5431 ValueIdToValueInfoMap[ValueID] = 5432 std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID); 5433 break; 5434 } 5435 } 5436 } 5437 } 5438 5439 // Parse just the blocks needed for building the index out of the module. 5440 // At the end of this routine the module Index is populated with a map 5441 // from global value id to GlobalValueSummary objects. 5442 Error ModuleSummaryIndexBitcodeReader::parseModule() { 5443 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 5444 return Err; 5445 5446 SmallVector<uint64_t, 64> Record; 5447 DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap; 5448 unsigned ValueId = 0; 5449 5450 // Read the index for this module. 5451 while (true) { 5452 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 5453 if (!MaybeEntry) 5454 return MaybeEntry.takeError(); 5455 llvm::BitstreamEntry Entry = MaybeEntry.get(); 5456 5457 switch (Entry.Kind) { 5458 case BitstreamEntry::Error: 5459 return error("Malformed block"); 5460 case BitstreamEntry::EndBlock: 5461 return Error::success(); 5462 5463 case BitstreamEntry::SubBlock: 5464 switch (Entry.ID) { 5465 default: // Skip unknown content. 5466 if (Error Err = Stream.SkipBlock()) 5467 return Err; 5468 break; 5469 case bitc::BLOCKINFO_BLOCK_ID: 5470 // Need to parse these to get abbrev ids (e.g. for VST) 5471 if (readBlockInfo()) 5472 return error("Malformed block"); 5473 break; 5474 case bitc::VALUE_SYMTAB_BLOCK_ID: 5475 // Should have been parsed earlier via VSTOffset, unless there 5476 // is no summary section. 5477 assert(((SeenValueSymbolTable && VSTOffset > 0) || 5478 !SeenGlobalValSummary) && 5479 "Expected early VST parse via VSTOffset record"); 5480 if (Error Err = Stream.SkipBlock()) 5481 return Err; 5482 break; 5483 case bitc::GLOBALVAL_SUMMARY_BLOCK_ID: 5484 case bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID: 5485 // Add the module if it is a per-module index (has a source file name). 5486 if (!SourceFileName.empty()) 5487 addThisModule(); 5488 assert(!SeenValueSymbolTable && 5489 "Already read VST when parsing summary block?"); 5490 // We might not have a VST if there were no values in the 5491 // summary. An empty summary block generated when we are 5492 // performing ThinLTO compiles so we don't later invoke 5493 // the regular LTO process on them. 5494 if (VSTOffset > 0) { 5495 if (Error Err = parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap)) 5496 return Err; 5497 SeenValueSymbolTable = true; 5498 } 5499 SeenGlobalValSummary = true; 5500 if (Error Err = parseEntireSummary(Entry.ID)) 5501 return Err; 5502 break; 5503 case bitc::MODULE_STRTAB_BLOCK_ID: 5504 if (Error Err = parseModuleStringTable()) 5505 return Err; 5506 break; 5507 } 5508 continue; 5509 5510 case BitstreamEntry::Record: { 5511 Record.clear(); 5512 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 5513 if (!MaybeBitCode) 5514 return MaybeBitCode.takeError(); 5515 switch (MaybeBitCode.get()) { 5516 default: 5517 break; // Default behavior, ignore unknown content. 5518 case bitc::MODULE_CODE_VERSION: { 5519 if (Error Err = parseVersionRecord(Record).takeError()) 5520 return Err; 5521 break; 5522 } 5523 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 5524 case bitc::MODULE_CODE_SOURCE_FILENAME: { 5525 SmallString<128> ValueName; 5526 if (convertToString(Record, 0, ValueName)) 5527 return error("Invalid record"); 5528 SourceFileName = ValueName.c_str(); 5529 break; 5530 } 5531 /// MODULE_CODE_HASH: [5*i32] 5532 case bitc::MODULE_CODE_HASH: { 5533 if (Record.size() != 5) 5534 return error("Invalid hash length " + Twine(Record.size()).str()); 5535 auto &Hash = getThisModule()->second.second; 5536 int Pos = 0; 5537 for (auto &Val : Record) { 5538 assert(!(Val >> 32) && "Unexpected high bits set"); 5539 Hash[Pos++] = Val; 5540 } 5541 break; 5542 } 5543 /// MODULE_CODE_VSTOFFSET: [offset] 5544 case bitc::MODULE_CODE_VSTOFFSET: 5545 if (Record.size() < 1) 5546 return error("Invalid record"); 5547 // Note that we subtract 1 here because the offset is relative to one 5548 // word before the start of the identification or module block, which 5549 // was historically always the start of the regular bitcode header. 5550 VSTOffset = Record[0] - 1; 5551 break; 5552 // v1 GLOBALVAR: [pointer type, isconst, initid, linkage, ...] 5553 // v1 FUNCTION: [type, callingconv, isproto, linkage, ...] 5554 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, ...] 5555 // v2: [strtab offset, strtab size, v1] 5556 case bitc::MODULE_CODE_GLOBALVAR: 5557 case bitc::MODULE_CODE_FUNCTION: 5558 case bitc::MODULE_CODE_ALIAS: { 5559 StringRef Name; 5560 ArrayRef<uint64_t> GVRecord; 5561 std::tie(Name, GVRecord) = readNameFromStrtab(Record); 5562 if (GVRecord.size() <= 3) 5563 return error("Invalid record"); 5564 uint64_t RawLinkage = GVRecord[3]; 5565 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 5566 if (!UseStrtab) { 5567 ValueIdToLinkageMap[ValueId++] = Linkage; 5568 break; 5569 } 5570 5571 setValueGUID(ValueId++, Name, Linkage, SourceFileName); 5572 break; 5573 } 5574 } 5575 } 5576 continue; 5577 } 5578 } 5579 } 5580 5581 std::vector<ValueInfo> 5582 ModuleSummaryIndexBitcodeReader::makeRefList(ArrayRef<uint64_t> Record) { 5583 std::vector<ValueInfo> Ret; 5584 Ret.reserve(Record.size()); 5585 for (uint64_t RefValueId : Record) 5586 Ret.push_back(getValueInfoFromValueId(RefValueId).first); 5587 return Ret; 5588 } 5589 5590 std::vector<FunctionSummary::EdgeTy> 5591 ModuleSummaryIndexBitcodeReader::makeCallList(ArrayRef<uint64_t> Record, 5592 bool IsOldProfileFormat, 5593 bool HasProfile, bool HasRelBF) { 5594 std::vector<FunctionSummary::EdgeTy> Ret; 5595 Ret.reserve(Record.size()); 5596 for (unsigned I = 0, E = Record.size(); I != E; ++I) { 5597 CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown; 5598 uint64_t RelBF = 0; 5599 ValueInfo Callee = getValueInfoFromValueId(Record[I]).first; 5600 if (IsOldProfileFormat) { 5601 I += 1; // Skip old callsitecount field 5602 if (HasProfile) 5603 I += 1; // Skip old profilecount field 5604 } else if (HasProfile) 5605 Hotness = static_cast<CalleeInfo::HotnessType>(Record[++I]); 5606 else if (HasRelBF) 5607 RelBF = Record[++I]; 5608 Ret.push_back(FunctionSummary::EdgeTy{Callee, CalleeInfo(Hotness, RelBF)}); 5609 } 5610 return Ret; 5611 } 5612 5613 static void 5614 parseWholeProgramDevirtResolutionByArg(ArrayRef<uint64_t> Record, size_t &Slot, 5615 WholeProgramDevirtResolution &Wpd) { 5616 uint64_t ArgNum = Record[Slot++]; 5617 WholeProgramDevirtResolution::ByArg &B = 5618 Wpd.ResByArg[{Record.begin() + Slot, Record.begin() + Slot + ArgNum}]; 5619 Slot += ArgNum; 5620 5621 B.TheKind = 5622 static_cast<WholeProgramDevirtResolution::ByArg::Kind>(Record[Slot++]); 5623 B.Info = Record[Slot++]; 5624 B.Byte = Record[Slot++]; 5625 B.Bit = Record[Slot++]; 5626 } 5627 5628 static void parseWholeProgramDevirtResolution(ArrayRef<uint64_t> Record, 5629 StringRef Strtab, size_t &Slot, 5630 TypeIdSummary &TypeId) { 5631 uint64_t Id = Record[Slot++]; 5632 WholeProgramDevirtResolution &Wpd = TypeId.WPDRes[Id]; 5633 5634 Wpd.TheKind = static_cast<WholeProgramDevirtResolution::Kind>(Record[Slot++]); 5635 Wpd.SingleImplName = {Strtab.data() + Record[Slot], 5636 static_cast<size_t>(Record[Slot + 1])}; 5637 Slot += 2; 5638 5639 uint64_t ResByArgNum = Record[Slot++]; 5640 for (uint64_t I = 0; I != ResByArgNum; ++I) 5641 parseWholeProgramDevirtResolutionByArg(Record, Slot, Wpd); 5642 } 5643 5644 static void parseTypeIdSummaryRecord(ArrayRef<uint64_t> Record, 5645 StringRef Strtab, 5646 ModuleSummaryIndex &TheIndex) { 5647 size_t Slot = 0; 5648 TypeIdSummary &TypeId = TheIndex.getOrInsertTypeIdSummary( 5649 {Strtab.data() + Record[Slot], static_cast<size_t>(Record[Slot + 1])}); 5650 Slot += 2; 5651 5652 TypeId.TTRes.TheKind = static_cast<TypeTestResolution::Kind>(Record[Slot++]); 5653 TypeId.TTRes.SizeM1BitWidth = Record[Slot++]; 5654 TypeId.TTRes.AlignLog2 = Record[Slot++]; 5655 TypeId.TTRes.SizeM1 = Record[Slot++]; 5656 TypeId.TTRes.BitMask = Record[Slot++]; 5657 TypeId.TTRes.InlineBits = Record[Slot++]; 5658 5659 while (Slot < Record.size()) 5660 parseWholeProgramDevirtResolution(Record, Strtab, Slot, TypeId); 5661 } 5662 5663 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableInfo( 5664 ArrayRef<uint64_t> Record, size_t &Slot, 5665 TypeIdCompatibleVtableInfo &TypeId) { 5666 uint64_t Offset = Record[Slot++]; 5667 ValueInfo Callee = getValueInfoFromValueId(Record[Slot++]).first; 5668 TypeId.push_back({Offset, Callee}); 5669 } 5670 5671 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableSummaryRecord( 5672 ArrayRef<uint64_t> Record) { 5673 size_t Slot = 0; 5674 TypeIdCompatibleVtableInfo &TypeId = 5675 TheIndex.getOrInsertTypeIdCompatibleVtableSummary( 5676 {Strtab.data() + Record[Slot], 5677 static_cast<size_t>(Record[Slot + 1])}); 5678 Slot += 2; 5679 5680 while (Slot < Record.size()) 5681 parseTypeIdCompatibleVtableInfo(Record, Slot, TypeId); 5682 } 5683 5684 static void setImmutableRefs(std::vector<ValueInfo> &Refs, unsigned Count) { 5685 // Read-only refs are in the end of the refs list. 5686 for (unsigned RefNo = Refs.size() - Count; RefNo < Refs.size(); ++RefNo) 5687 Refs[RefNo].setReadOnly(); 5688 } 5689 5690 // Eagerly parse the entire summary block. This populates the GlobalValueSummary 5691 // objects in the index. 5692 Error ModuleSummaryIndexBitcodeReader::parseEntireSummary(unsigned ID) { 5693 if (Error Err = Stream.EnterSubBlock(ID)) 5694 return Err; 5695 SmallVector<uint64_t, 64> Record; 5696 5697 // Parse version 5698 { 5699 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 5700 if (!MaybeEntry) 5701 return MaybeEntry.takeError(); 5702 BitstreamEntry Entry = MaybeEntry.get(); 5703 5704 if (Entry.Kind != BitstreamEntry::Record) 5705 return error("Invalid Summary Block: record for version expected"); 5706 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 5707 if (!MaybeRecord) 5708 return MaybeRecord.takeError(); 5709 if (MaybeRecord.get() != bitc::FS_VERSION) 5710 return error("Invalid Summary Block: version expected"); 5711 } 5712 const uint64_t Version = Record[0]; 5713 const bool IsOldProfileFormat = Version == 1; 5714 if (Version < 1 || Version > 6) 5715 return error("Invalid summary version " + Twine(Version) + 5716 ". Version should be in the range [1-6]."); 5717 Record.clear(); 5718 5719 // Keep around the last seen summary to be used when we see an optional 5720 // "OriginalName" attachement. 5721 GlobalValueSummary *LastSeenSummary = nullptr; 5722 GlobalValue::GUID LastSeenGUID = 0; 5723 5724 // We can expect to see any number of type ID information records before 5725 // each function summary records; these variables store the information 5726 // collected so far so that it can be used to create the summary object. 5727 std::vector<GlobalValue::GUID> PendingTypeTests; 5728 std::vector<FunctionSummary::VFuncId> PendingTypeTestAssumeVCalls, 5729 PendingTypeCheckedLoadVCalls; 5730 std::vector<FunctionSummary::ConstVCall> PendingTypeTestAssumeConstVCalls, 5731 PendingTypeCheckedLoadConstVCalls; 5732 5733 while (true) { 5734 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 5735 if (!MaybeEntry) 5736 return MaybeEntry.takeError(); 5737 BitstreamEntry Entry = MaybeEntry.get(); 5738 5739 switch (Entry.Kind) { 5740 case BitstreamEntry::SubBlock: // Handled for us already. 5741 case BitstreamEntry::Error: 5742 return error("Malformed block"); 5743 case BitstreamEntry::EndBlock: 5744 return Error::success(); 5745 case BitstreamEntry::Record: 5746 // The interesting case. 5747 break; 5748 } 5749 5750 // Read a record. The record format depends on whether this 5751 // is a per-module index or a combined index file. In the per-module 5752 // case the records contain the associated value's ID for correlation 5753 // with VST entries. In the combined index the correlation is done 5754 // via the bitcode offset of the summary records (which were saved 5755 // in the combined index VST entries). The records also contain 5756 // information used for ThinLTO renaming and importing. 5757 Record.clear(); 5758 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 5759 if (!MaybeBitCode) 5760 return MaybeBitCode.takeError(); 5761 switch (unsigned BitCode = MaybeBitCode.get()) { 5762 default: // Default behavior: ignore. 5763 break; 5764 case bitc::FS_FLAGS: { // [flags] 5765 uint64_t Flags = Record[0]; 5766 // Scan flags. 5767 assert(Flags <= 0x1f && "Unexpected bits in flag"); 5768 5769 // 1 bit: WithGlobalValueDeadStripping flag. 5770 // Set on combined index only. 5771 if (Flags & 0x1) 5772 TheIndex.setWithGlobalValueDeadStripping(); 5773 // 1 bit: SkipModuleByDistributedBackend flag. 5774 // Set on combined index only. 5775 if (Flags & 0x2) 5776 TheIndex.setSkipModuleByDistributedBackend(); 5777 // 1 bit: HasSyntheticEntryCounts flag. 5778 // Set on combined index only. 5779 if (Flags & 0x4) 5780 TheIndex.setHasSyntheticEntryCounts(); 5781 // 1 bit: DisableSplitLTOUnit flag. 5782 // Set on per module indexes. It is up to the client to validate 5783 // the consistency of this flag across modules being linked. 5784 if (Flags & 0x8) 5785 TheIndex.setEnableSplitLTOUnit(); 5786 // 1 bit: PartiallySplitLTOUnits flag. 5787 // Set on combined index only. 5788 if (Flags & 0x10) 5789 TheIndex.setPartiallySplitLTOUnits(); 5790 break; 5791 } 5792 case bitc::FS_VALUE_GUID: { // [valueid, refguid] 5793 uint64_t ValueID = Record[0]; 5794 GlobalValue::GUID RefGUID = Record[1]; 5795 ValueIdToValueInfoMap[ValueID] = 5796 std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID); 5797 break; 5798 } 5799 // FS_PERMODULE: [valueid, flags, instcount, fflags, numrefs, 5800 // numrefs x valueid, n x (valueid)] 5801 // FS_PERMODULE_PROFILE: [valueid, flags, instcount, fflags, numrefs, 5802 // numrefs x valueid, 5803 // n x (valueid, hotness)] 5804 // FS_PERMODULE_RELBF: [valueid, flags, instcount, fflags, numrefs, 5805 // numrefs x valueid, 5806 // n x (valueid, relblockfreq)] 5807 case bitc::FS_PERMODULE: 5808 case bitc::FS_PERMODULE_RELBF: 5809 case bitc::FS_PERMODULE_PROFILE: { 5810 unsigned ValueID = Record[0]; 5811 uint64_t RawFlags = Record[1]; 5812 unsigned InstCount = Record[2]; 5813 uint64_t RawFunFlags = 0; 5814 unsigned NumRefs = Record[3]; 5815 unsigned NumImmutableRefs = 0; 5816 int RefListStartIndex = 4; 5817 if (Version >= 4) { 5818 RawFunFlags = Record[3]; 5819 NumRefs = Record[4]; 5820 RefListStartIndex = 5; 5821 if (Version >= 5) { 5822 NumImmutableRefs = Record[5]; 5823 RefListStartIndex = 6; 5824 } 5825 } 5826 5827 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5828 // The module path string ref set in the summary must be owned by the 5829 // index's module string table. Since we don't have a module path 5830 // string table section in the per-module index, we create a single 5831 // module path string table entry with an empty (0) ID to take 5832 // ownership. 5833 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 5834 assert(Record.size() >= RefListStartIndex + NumRefs && 5835 "Record size inconsistent with number of references"); 5836 std::vector<ValueInfo> Refs = makeRefList( 5837 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 5838 bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE); 5839 bool HasRelBF = (BitCode == bitc::FS_PERMODULE_RELBF); 5840 std::vector<FunctionSummary::EdgeTy> Calls = makeCallList( 5841 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex), 5842 IsOldProfileFormat, HasProfile, HasRelBF); 5843 setImmutableRefs(Refs, NumImmutableRefs); 5844 auto FS = llvm::make_unique<FunctionSummary>( 5845 Flags, InstCount, getDecodedFFlags(RawFunFlags), /*EntryCount=*/0, 5846 std::move(Refs), std::move(Calls), std::move(PendingTypeTests), 5847 std::move(PendingTypeTestAssumeVCalls), 5848 std::move(PendingTypeCheckedLoadVCalls), 5849 std::move(PendingTypeTestAssumeConstVCalls), 5850 std::move(PendingTypeCheckedLoadConstVCalls)); 5851 PendingTypeTests.clear(); 5852 PendingTypeTestAssumeVCalls.clear(); 5853 PendingTypeCheckedLoadVCalls.clear(); 5854 PendingTypeTestAssumeConstVCalls.clear(); 5855 PendingTypeCheckedLoadConstVCalls.clear(); 5856 auto VIAndOriginalGUID = getValueInfoFromValueId(ValueID); 5857 FS->setModulePath(getThisModule()->first()); 5858 FS->setOriginalName(VIAndOriginalGUID.second); 5859 TheIndex.addGlobalValueSummary(VIAndOriginalGUID.first, std::move(FS)); 5860 break; 5861 } 5862 // FS_ALIAS: [valueid, flags, valueid] 5863 // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as 5864 // they expect all aliasee summaries to be available. 5865 case bitc::FS_ALIAS: { 5866 unsigned ValueID = Record[0]; 5867 uint64_t RawFlags = Record[1]; 5868 unsigned AliaseeID = Record[2]; 5869 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5870 auto AS = llvm::make_unique<AliasSummary>(Flags); 5871 // The module path string ref set in the summary must be owned by the 5872 // index's module string table. Since we don't have a module path 5873 // string table section in the per-module index, we create a single 5874 // module path string table entry with an empty (0) ID to take 5875 // ownership. 5876 AS->setModulePath(getThisModule()->first()); 5877 5878 auto AliaseeVI = getValueInfoFromValueId(AliaseeID).first; 5879 auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, ModulePath); 5880 if (!AliaseeInModule) 5881 return error("Alias expects aliasee summary to be parsed"); 5882 AS->setAliasee(AliaseeVI, AliaseeInModule); 5883 5884 auto GUID = getValueInfoFromValueId(ValueID); 5885 AS->setOriginalName(GUID.second); 5886 TheIndex.addGlobalValueSummary(GUID.first, std::move(AS)); 5887 break; 5888 } 5889 // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, n x valueid] 5890 case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: { 5891 unsigned ValueID = Record[0]; 5892 uint64_t RawFlags = Record[1]; 5893 unsigned RefArrayStart = 2; 5894 GlobalVarSummary::GVarFlags GVF; 5895 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5896 if (Version >= 5) { 5897 GVF = getDecodedGVarFlags(Record[2]); 5898 RefArrayStart = 3; 5899 } 5900 std::vector<ValueInfo> Refs = 5901 makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart)); 5902 auto FS = 5903 llvm::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 5904 FS->setModulePath(getThisModule()->first()); 5905 auto GUID = getValueInfoFromValueId(ValueID); 5906 FS->setOriginalName(GUID.second); 5907 TheIndex.addGlobalValueSummary(GUID.first, std::move(FS)); 5908 break; 5909 } 5910 // FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, 5911 // numrefs, numrefs x valueid, 5912 // n x (valueid, offset)] 5913 case bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: { 5914 unsigned ValueID = Record[0]; 5915 uint64_t RawFlags = Record[1]; 5916 GlobalVarSummary::GVarFlags GVF = getDecodedGVarFlags(Record[2]); 5917 unsigned NumRefs = Record[3]; 5918 unsigned RefListStartIndex = 4; 5919 unsigned VTableListStartIndex = RefListStartIndex + NumRefs; 5920 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5921 std::vector<ValueInfo> Refs = makeRefList( 5922 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 5923 VTableFuncList VTableFuncs; 5924 for (unsigned I = VTableListStartIndex, E = Record.size(); I != E; ++I) { 5925 ValueInfo Callee = getValueInfoFromValueId(Record[I]).first; 5926 uint64_t Offset = Record[++I]; 5927 VTableFuncs.push_back({Callee, Offset}); 5928 } 5929 auto VS = 5930 llvm::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 5931 VS->setModulePath(getThisModule()->first()); 5932 VS->setVTableFuncs(VTableFuncs); 5933 auto GUID = getValueInfoFromValueId(ValueID); 5934 VS->setOriginalName(GUID.second); 5935 TheIndex.addGlobalValueSummary(GUID.first, std::move(VS)); 5936 break; 5937 } 5938 // FS_COMBINED: [valueid, modid, flags, instcount, fflags, numrefs, 5939 // numrefs x valueid, n x (valueid)] 5940 // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, fflags, numrefs, 5941 // numrefs x valueid, n x (valueid, hotness)] 5942 case bitc::FS_COMBINED: 5943 case bitc::FS_COMBINED_PROFILE: { 5944 unsigned ValueID = Record[0]; 5945 uint64_t ModuleId = Record[1]; 5946 uint64_t RawFlags = Record[2]; 5947 unsigned InstCount = Record[3]; 5948 uint64_t RawFunFlags = 0; 5949 uint64_t EntryCount = 0; 5950 unsigned NumRefs = Record[4]; 5951 unsigned NumImmutableRefs = 0; 5952 int RefListStartIndex = 5; 5953 5954 if (Version >= 4) { 5955 RawFunFlags = Record[4]; 5956 RefListStartIndex = 6; 5957 size_t NumRefsIndex = 5; 5958 if (Version >= 5) { 5959 RefListStartIndex = 7; 5960 if (Version >= 6) { 5961 NumRefsIndex = 6; 5962 EntryCount = Record[5]; 5963 RefListStartIndex = 8; 5964 } 5965 NumImmutableRefs = Record[RefListStartIndex - 1]; 5966 } 5967 NumRefs = Record[NumRefsIndex]; 5968 } 5969 5970 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5971 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 5972 assert(Record.size() >= RefListStartIndex + NumRefs && 5973 "Record size inconsistent with number of references"); 5974 std::vector<ValueInfo> Refs = makeRefList( 5975 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 5976 bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE); 5977 std::vector<FunctionSummary::EdgeTy> Edges = makeCallList( 5978 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex), 5979 IsOldProfileFormat, HasProfile, false); 5980 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 5981 setImmutableRefs(Refs, NumImmutableRefs); 5982 auto FS = llvm::make_unique<FunctionSummary>( 5983 Flags, InstCount, getDecodedFFlags(RawFunFlags), EntryCount, 5984 std::move(Refs), std::move(Edges), std::move(PendingTypeTests), 5985 std::move(PendingTypeTestAssumeVCalls), 5986 std::move(PendingTypeCheckedLoadVCalls), 5987 std::move(PendingTypeTestAssumeConstVCalls), 5988 std::move(PendingTypeCheckedLoadConstVCalls)); 5989 PendingTypeTests.clear(); 5990 PendingTypeTestAssumeVCalls.clear(); 5991 PendingTypeCheckedLoadVCalls.clear(); 5992 PendingTypeTestAssumeConstVCalls.clear(); 5993 PendingTypeCheckedLoadConstVCalls.clear(); 5994 LastSeenSummary = FS.get(); 5995 LastSeenGUID = VI.getGUID(); 5996 FS->setModulePath(ModuleIdMap[ModuleId]); 5997 TheIndex.addGlobalValueSummary(VI, std::move(FS)); 5998 break; 5999 } 6000 // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid] 6001 // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as 6002 // they expect all aliasee summaries to be available. 6003 case bitc::FS_COMBINED_ALIAS: { 6004 unsigned ValueID = Record[0]; 6005 uint64_t ModuleId = Record[1]; 6006 uint64_t RawFlags = Record[2]; 6007 unsigned AliaseeValueId = Record[3]; 6008 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6009 auto AS = llvm::make_unique<AliasSummary>(Flags); 6010 LastSeenSummary = AS.get(); 6011 AS->setModulePath(ModuleIdMap[ModuleId]); 6012 6013 auto AliaseeVI = getValueInfoFromValueId(AliaseeValueId).first; 6014 auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, AS->modulePath()); 6015 AS->setAliasee(AliaseeVI, AliaseeInModule); 6016 6017 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 6018 LastSeenGUID = VI.getGUID(); 6019 TheIndex.addGlobalValueSummary(VI, std::move(AS)); 6020 break; 6021 } 6022 // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid] 6023 case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: { 6024 unsigned ValueID = Record[0]; 6025 uint64_t ModuleId = Record[1]; 6026 uint64_t RawFlags = Record[2]; 6027 unsigned RefArrayStart = 3; 6028 GlobalVarSummary::GVarFlags GVF; 6029 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6030 if (Version >= 5) { 6031 GVF = getDecodedGVarFlags(Record[3]); 6032 RefArrayStart = 4; 6033 } 6034 std::vector<ValueInfo> Refs = 6035 makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart)); 6036 auto FS = 6037 llvm::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 6038 LastSeenSummary = FS.get(); 6039 FS->setModulePath(ModuleIdMap[ModuleId]); 6040 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 6041 LastSeenGUID = VI.getGUID(); 6042 TheIndex.addGlobalValueSummary(VI, std::move(FS)); 6043 break; 6044 } 6045 // FS_COMBINED_ORIGINAL_NAME: [original_name] 6046 case bitc::FS_COMBINED_ORIGINAL_NAME: { 6047 uint64_t OriginalName = Record[0]; 6048 if (!LastSeenSummary) 6049 return error("Name attachment that does not follow a combined record"); 6050 LastSeenSummary->setOriginalName(OriginalName); 6051 TheIndex.addOriginalName(LastSeenGUID, OriginalName); 6052 // Reset the LastSeenSummary 6053 LastSeenSummary = nullptr; 6054 LastSeenGUID = 0; 6055 break; 6056 } 6057 case bitc::FS_TYPE_TESTS: 6058 assert(PendingTypeTests.empty()); 6059 PendingTypeTests.insert(PendingTypeTests.end(), Record.begin(), 6060 Record.end()); 6061 break; 6062 6063 case bitc::FS_TYPE_TEST_ASSUME_VCALLS: 6064 assert(PendingTypeTestAssumeVCalls.empty()); 6065 for (unsigned I = 0; I != Record.size(); I += 2) 6066 PendingTypeTestAssumeVCalls.push_back({Record[I], Record[I+1]}); 6067 break; 6068 6069 case bitc::FS_TYPE_CHECKED_LOAD_VCALLS: 6070 assert(PendingTypeCheckedLoadVCalls.empty()); 6071 for (unsigned I = 0; I != Record.size(); I += 2) 6072 PendingTypeCheckedLoadVCalls.push_back({Record[I], Record[I+1]}); 6073 break; 6074 6075 case bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL: 6076 PendingTypeTestAssumeConstVCalls.push_back( 6077 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}}); 6078 break; 6079 6080 case bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL: 6081 PendingTypeCheckedLoadConstVCalls.push_back( 6082 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}}); 6083 break; 6084 6085 case bitc::FS_CFI_FUNCTION_DEFS: { 6086 std::set<std::string> &CfiFunctionDefs = TheIndex.cfiFunctionDefs(); 6087 for (unsigned I = 0; I != Record.size(); I += 2) 6088 CfiFunctionDefs.insert( 6089 {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])}); 6090 break; 6091 } 6092 6093 case bitc::FS_CFI_FUNCTION_DECLS: { 6094 std::set<std::string> &CfiFunctionDecls = TheIndex.cfiFunctionDecls(); 6095 for (unsigned I = 0; I != Record.size(); I += 2) 6096 CfiFunctionDecls.insert( 6097 {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])}); 6098 break; 6099 } 6100 6101 case bitc::FS_TYPE_ID: 6102 parseTypeIdSummaryRecord(Record, Strtab, TheIndex); 6103 break; 6104 6105 case bitc::FS_TYPE_ID_METADATA: 6106 parseTypeIdCompatibleVtableSummaryRecord(Record); 6107 break; 6108 } 6109 } 6110 llvm_unreachable("Exit infinite loop"); 6111 } 6112 6113 // Parse the module string table block into the Index. 6114 // This populates the ModulePathStringTable map in the index. 6115 Error ModuleSummaryIndexBitcodeReader::parseModuleStringTable() { 6116 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID)) 6117 return Err; 6118 6119 SmallVector<uint64_t, 64> Record; 6120 6121 SmallString<128> ModulePath; 6122 ModuleSummaryIndex::ModuleInfo *LastSeenModule = nullptr; 6123 6124 while (true) { 6125 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 6126 if (!MaybeEntry) 6127 return MaybeEntry.takeError(); 6128 BitstreamEntry Entry = MaybeEntry.get(); 6129 6130 switch (Entry.Kind) { 6131 case BitstreamEntry::SubBlock: // Handled for us already. 6132 case BitstreamEntry::Error: 6133 return error("Malformed block"); 6134 case BitstreamEntry::EndBlock: 6135 return Error::success(); 6136 case BitstreamEntry::Record: 6137 // The interesting case. 6138 break; 6139 } 6140 6141 Record.clear(); 6142 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 6143 if (!MaybeRecord) 6144 return MaybeRecord.takeError(); 6145 switch (MaybeRecord.get()) { 6146 default: // Default behavior: ignore. 6147 break; 6148 case bitc::MST_CODE_ENTRY: { 6149 // MST_ENTRY: [modid, namechar x N] 6150 uint64_t ModuleId = Record[0]; 6151 6152 if (convertToString(Record, 1, ModulePath)) 6153 return error("Invalid record"); 6154 6155 LastSeenModule = TheIndex.addModule(ModulePath, ModuleId); 6156 ModuleIdMap[ModuleId] = LastSeenModule->first(); 6157 6158 ModulePath.clear(); 6159 break; 6160 } 6161 /// MST_CODE_HASH: [5*i32] 6162 case bitc::MST_CODE_HASH: { 6163 if (Record.size() != 5) 6164 return error("Invalid hash length " + Twine(Record.size()).str()); 6165 if (!LastSeenModule) 6166 return error("Invalid hash that does not follow a module path"); 6167 int Pos = 0; 6168 for (auto &Val : Record) { 6169 assert(!(Val >> 32) && "Unexpected high bits set"); 6170 LastSeenModule->second.second[Pos++] = Val; 6171 } 6172 // Reset LastSeenModule to avoid overriding the hash unexpectedly. 6173 LastSeenModule = nullptr; 6174 break; 6175 } 6176 } 6177 } 6178 llvm_unreachable("Exit infinite loop"); 6179 } 6180 6181 namespace { 6182 6183 // FIXME: This class is only here to support the transition to llvm::Error. It 6184 // will be removed once this transition is complete. Clients should prefer to 6185 // deal with the Error value directly, rather than converting to error_code. 6186 class BitcodeErrorCategoryType : public std::error_category { 6187 const char *name() const noexcept override { 6188 return "llvm.bitcode"; 6189 } 6190 6191 std::string message(int IE) const override { 6192 BitcodeError E = static_cast<BitcodeError>(IE); 6193 switch (E) { 6194 case BitcodeError::CorruptedBitcode: 6195 return "Corrupted bitcode"; 6196 } 6197 llvm_unreachable("Unknown error type!"); 6198 } 6199 }; 6200 6201 } // end anonymous namespace 6202 6203 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory; 6204 6205 const std::error_category &llvm::BitcodeErrorCategory() { 6206 return *ErrorCategory; 6207 } 6208 6209 static Expected<StringRef> readBlobInRecord(BitstreamCursor &Stream, 6210 unsigned Block, unsigned RecordID) { 6211 if (Error Err = Stream.EnterSubBlock(Block)) 6212 return std::move(Err); 6213 6214 StringRef Strtab; 6215 while (true) { 6216 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 6217 if (!MaybeEntry) 6218 return MaybeEntry.takeError(); 6219 llvm::BitstreamEntry Entry = MaybeEntry.get(); 6220 6221 switch (Entry.Kind) { 6222 case BitstreamEntry::EndBlock: 6223 return Strtab; 6224 6225 case BitstreamEntry::Error: 6226 return error("Malformed block"); 6227 6228 case BitstreamEntry::SubBlock: 6229 if (Error Err = Stream.SkipBlock()) 6230 return std::move(Err); 6231 break; 6232 6233 case BitstreamEntry::Record: 6234 StringRef Blob; 6235 SmallVector<uint64_t, 1> Record; 6236 Expected<unsigned> MaybeRecord = 6237 Stream.readRecord(Entry.ID, Record, &Blob); 6238 if (!MaybeRecord) 6239 return MaybeRecord.takeError(); 6240 if (MaybeRecord.get() == RecordID) 6241 Strtab = Blob; 6242 break; 6243 } 6244 } 6245 } 6246 6247 //===----------------------------------------------------------------------===// 6248 // External interface 6249 //===----------------------------------------------------------------------===// 6250 6251 Expected<std::vector<BitcodeModule>> 6252 llvm::getBitcodeModuleList(MemoryBufferRef Buffer) { 6253 auto FOrErr = getBitcodeFileContents(Buffer); 6254 if (!FOrErr) 6255 return FOrErr.takeError(); 6256 return std::move(FOrErr->Mods); 6257 } 6258 6259 Expected<BitcodeFileContents> 6260 llvm::getBitcodeFileContents(MemoryBufferRef Buffer) { 6261 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 6262 if (!StreamOrErr) 6263 return StreamOrErr.takeError(); 6264 BitstreamCursor &Stream = *StreamOrErr; 6265 6266 BitcodeFileContents F; 6267 while (true) { 6268 uint64_t BCBegin = Stream.getCurrentByteNo(); 6269 6270 // We may be consuming bitcode from a client that leaves garbage at the end 6271 // of the bitcode stream (e.g. Apple's ar tool). If we are close enough to 6272 // the end that there cannot possibly be another module, stop looking. 6273 if (BCBegin + 8 >= Stream.getBitcodeBytes().size()) 6274 return F; 6275 6276 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 6277 if (!MaybeEntry) 6278 return MaybeEntry.takeError(); 6279 llvm::BitstreamEntry Entry = MaybeEntry.get(); 6280 6281 switch (Entry.Kind) { 6282 case BitstreamEntry::EndBlock: 6283 case BitstreamEntry::Error: 6284 return error("Malformed block"); 6285 6286 case BitstreamEntry::SubBlock: { 6287 uint64_t IdentificationBit = -1ull; 6288 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) { 6289 IdentificationBit = Stream.GetCurrentBitNo() - BCBegin * 8; 6290 if (Error Err = Stream.SkipBlock()) 6291 return std::move(Err); 6292 6293 { 6294 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 6295 if (!MaybeEntry) 6296 return MaybeEntry.takeError(); 6297 Entry = MaybeEntry.get(); 6298 } 6299 6300 if (Entry.Kind != BitstreamEntry::SubBlock || 6301 Entry.ID != bitc::MODULE_BLOCK_ID) 6302 return error("Malformed block"); 6303 } 6304 6305 if (Entry.ID == bitc::MODULE_BLOCK_ID) { 6306 uint64_t ModuleBit = Stream.GetCurrentBitNo() - BCBegin * 8; 6307 if (Error Err = Stream.SkipBlock()) 6308 return std::move(Err); 6309 6310 F.Mods.push_back({Stream.getBitcodeBytes().slice( 6311 BCBegin, Stream.getCurrentByteNo() - BCBegin), 6312 Buffer.getBufferIdentifier(), IdentificationBit, 6313 ModuleBit}); 6314 continue; 6315 } 6316 6317 if (Entry.ID == bitc::STRTAB_BLOCK_ID) { 6318 Expected<StringRef> Strtab = 6319 readBlobInRecord(Stream, bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB); 6320 if (!Strtab) 6321 return Strtab.takeError(); 6322 // This string table is used by every preceding bitcode module that does 6323 // not have its own string table. A bitcode file may have multiple 6324 // string tables if it was created by binary concatenation, for example 6325 // with "llvm-cat -b". 6326 for (auto I = F.Mods.rbegin(), E = F.Mods.rend(); I != E; ++I) { 6327 if (!I->Strtab.empty()) 6328 break; 6329 I->Strtab = *Strtab; 6330 } 6331 // Similarly, the string table is used by every preceding symbol table; 6332 // normally there will be just one unless the bitcode file was created 6333 // by binary concatenation. 6334 if (!F.Symtab.empty() && F.StrtabForSymtab.empty()) 6335 F.StrtabForSymtab = *Strtab; 6336 continue; 6337 } 6338 6339 if (Entry.ID == bitc::SYMTAB_BLOCK_ID) { 6340 Expected<StringRef> SymtabOrErr = 6341 readBlobInRecord(Stream, bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB); 6342 if (!SymtabOrErr) 6343 return SymtabOrErr.takeError(); 6344 6345 // We can expect the bitcode file to have multiple symbol tables if it 6346 // was created by binary concatenation. In that case we silently 6347 // ignore any subsequent symbol tables, which is fine because this is a 6348 // low level function. The client is expected to notice that the number 6349 // of modules in the symbol table does not match the number of modules 6350 // in the input file and regenerate the symbol table. 6351 if (F.Symtab.empty()) 6352 F.Symtab = *SymtabOrErr; 6353 continue; 6354 } 6355 6356 if (Error Err = Stream.SkipBlock()) 6357 return std::move(Err); 6358 continue; 6359 } 6360 case BitstreamEntry::Record: 6361 if (Expected<unsigned> StreamFailed = Stream.skipRecord(Entry.ID)) 6362 continue; 6363 else 6364 return StreamFailed.takeError(); 6365 } 6366 } 6367 } 6368 6369 /// Get a lazy one-at-time loading module from bitcode. 6370 /// 6371 /// This isn't always used in a lazy context. In particular, it's also used by 6372 /// \a parseModule(). If this is truly lazy, then we need to eagerly pull 6373 /// in forward-referenced functions from block address references. 6374 /// 6375 /// \param[in] MaterializeAll Set to \c true if we should materialize 6376 /// everything. 6377 Expected<std::unique_ptr<Module>> 6378 BitcodeModule::getModuleImpl(LLVMContext &Context, bool MaterializeAll, 6379 bool ShouldLazyLoadMetadata, bool IsImporting) { 6380 BitstreamCursor Stream(Buffer); 6381 6382 std::string ProducerIdentification; 6383 if (IdentificationBit != -1ull) { 6384 if (Error JumpFailed = Stream.JumpToBit(IdentificationBit)) 6385 return std::move(JumpFailed); 6386 Expected<std::string> ProducerIdentificationOrErr = 6387 readIdentificationBlock(Stream); 6388 if (!ProducerIdentificationOrErr) 6389 return ProducerIdentificationOrErr.takeError(); 6390 6391 ProducerIdentification = *ProducerIdentificationOrErr; 6392 } 6393 6394 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 6395 return std::move(JumpFailed); 6396 auto *R = new BitcodeReader(std::move(Stream), Strtab, ProducerIdentification, 6397 Context); 6398 6399 std::unique_ptr<Module> M = 6400 llvm::make_unique<Module>(ModuleIdentifier, Context); 6401 M->setMaterializer(R); 6402 6403 // Delay parsing Metadata if ShouldLazyLoadMetadata is true. 6404 if (Error Err = 6405 R->parseBitcodeInto(M.get(), ShouldLazyLoadMetadata, IsImporting)) 6406 return std::move(Err); 6407 6408 if (MaterializeAll) { 6409 // Read in the entire module, and destroy the BitcodeReader. 6410 if (Error Err = M->materializeAll()) 6411 return std::move(Err); 6412 } else { 6413 // Resolve forward references from blockaddresses. 6414 if (Error Err = R->materializeForwardReferencedFunctions()) 6415 return std::move(Err); 6416 } 6417 return std::move(M); 6418 } 6419 6420 Expected<std::unique_ptr<Module>> 6421 BitcodeModule::getLazyModule(LLVMContext &Context, bool ShouldLazyLoadMetadata, 6422 bool IsImporting) { 6423 return getModuleImpl(Context, false, ShouldLazyLoadMetadata, IsImporting); 6424 } 6425 6426 // Parse the specified bitcode buffer and merge the index into CombinedIndex. 6427 // We don't use ModuleIdentifier here because the client may need to control the 6428 // module path used in the combined summary (e.g. when reading summaries for 6429 // regular LTO modules). 6430 Error BitcodeModule::readSummary(ModuleSummaryIndex &CombinedIndex, 6431 StringRef ModulePath, uint64_t ModuleId) { 6432 BitstreamCursor Stream(Buffer); 6433 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 6434 return JumpFailed; 6435 6436 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, CombinedIndex, 6437 ModulePath, ModuleId); 6438 return R.parseModule(); 6439 } 6440 6441 // Parse the specified bitcode buffer, returning the function info index. 6442 Expected<std::unique_ptr<ModuleSummaryIndex>> BitcodeModule::getSummary() { 6443 BitstreamCursor Stream(Buffer); 6444 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 6445 return std::move(JumpFailed); 6446 6447 auto Index = llvm::make_unique<ModuleSummaryIndex>(/*HaveGVs=*/false); 6448 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, *Index, 6449 ModuleIdentifier, 0); 6450 6451 if (Error Err = R.parseModule()) 6452 return std::move(Err); 6453 6454 return std::move(Index); 6455 } 6456 6457 static Expected<bool> getEnableSplitLTOUnitFlag(BitstreamCursor &Stream, 6458 unsigned ID) { 6459 if (Error Err = Stream.EnterSubBlock(ID)) 6460 return std::move(Err); 6461 SmallVector<uint64_t, 64> Record; 6462 6463 while (true) { 6464 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 6465 if (!MaybeEntry) 6466 return MaybeEntry.takeError(); 6467 BitstreamEntry Entry = MaybeEntry.get(); 6468 6469 switch (Entry.Kind) { 6470 case BitstreamEntry::SubBlock: // Handled for us already. 6471 case BitstreamEntry::Error: 6472 return error("Malformed block"); 6473 case BitstreamEntry::EndBlock: 6474 // If no flags record found, conservatively return true to mimic 6475 // behavior before this flag was added. 6476 return true; 6477 case BitstreamEntry::Record: 6478 // The interesting case. 6479 break; 6480 } 6481 6482 // Look for the FS_FLAGS record. 6483 Record.clear(); 6484 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 6485 if (!MaybeBitCode) 6486 return MaybeBitCode.takeError(); 6487 switch (MaybeBitCode.get()) { 6488 default: // Default behavior: ignore. 6489 break; 6490 case bitc::FS_FLAGS: { // [flags] 6491 uint64_t Flags = Record[0]; 6492 // Scan flags. 6493 assert(Flags <= 0x1f && "Unexpected bits in flag"); 6494 6495 return Flags & 0x8; 6496 } 6497 } 6498 } 6499 llvm_unreachable("Exit infinite loop"); 6500 } 6501 6502 // Check if the given bitcode buffer contains a global value summary block. 6503 Expected<BitcodeLTOInfo> BitcodeModule::getLTOInfo() { 6504 BitstreamCursor Stream(Buffer); 6505 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 6506 return std::move(JumpFailed); 6507 6508 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 6509 return std::move(Err); 6510 6511 while (true) { 6512 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 6513 if (!MaybeEntry) 6514 return MaybeEntry.takeError(); 6515 llvm::BitstreamEntry Entry = MaybeEntry.get(); 6516 6517 switch (Entry.Kind) { 6518 case BitstreamEntry::Error: 6519 return error("Malformed block"); 6520 case BitstreamEntry::EndBlock: 6521 return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/false, 6522 /*EnableSplitLTOUnit=*/false}; 6523 6524 case BitstreamEntry::SubBlock: 6525 if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) { 6526 Expected<bool> EnableSplitLTOUnit = 6527 getEnableSplitLTOUnitFlag(Stream, Entry.ID); 6528 if (!EnableSplitLTOUnit) 6529 return EnableSplitLTOUnit.takeError(); 6530 return BitcodeLTOInfo{/*IsThinLTO=*/true, /*HasSummary=*/true, 6531 *EnableSplitLTOUnit}; 6532 } 6533 6534 if (Entry.ID == bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID) { 6535 Expected<bool> EnableSplitLTOUnit = 6536 getEnableSplitLTOUnitFlag(Stream, Entry.ID); 6537 if (!EnableSplitLTOUnit) 6538 return EnableSplitLTOUnit.takeError(); 6539 return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/true, 6540 *EnableSplitLTOUnit}; 6541 } 6542 6543 // Ignore other sub-blocks. 6544 if (Error Err = Stream.SkipBlock()) 6545 return std::move(Err); 6546 continue; 6547 6548 case BitstreamEntry::Record: 6549 if (Expected<unsigned> StreamFailed = Stream.skipRecord(Entry.ID)) 6550 continue; 6551 else 6552 return StreamFailed.takeError(); 6553 } 6554 } 6555 } 6556 6557 static Expected<BitcodeModule> getSingleModule(MemoryBufferRef Buffer) { 6558 Expected<std::vector<BitcodeModule>> MsOrErr = getBitcodeModuleList(Buffer); 6559 if (!MsOrErr) 6560 return MsOrErr.takeError(); 6561 6562 if (MsOrErr->size() != 1) 6563 return error("Expected a single module"); 6564 6565 return (*MsOrErr)[0]; 6566 } 6567 6568 Expected<std::unique_ptr<Module>> 6569 llvm::getLazyBitcodeModule(MemoryBufferRef Buffer, LLVMContext &Context, 6570 bool ShouldLazyLoadMetadata, bool IsImporting) { 6571 Expected<BitcodeModule> BM = getSingleModule(Buffer); 6572 if (!BM) 6573 return BM.takeError(); 6574 6575 return BM->getLazyModule(Context, ShouldLazyLoadMetadata, IsImporting); 6576 } 6577 6578 Expected<std::unique_ptr<Module>> llvm::getOwningLazyBitcodeModule( 6579 std::unique_ptr<MemoryBuffer> &&Buffer, LLVMContext &Context, 6580 bool ShouldLazyLoadMetadata, bool IsImporting) { 6581 auto MOrErr = getLazyBitcodeModule(*Buffer, Context, ShouldLazyLoadMetadata, 6582 IsImporting); 6583 if (MOrErr) 6584 (*MOrErr)->setOwnedMemoryBuffer(std::move(Buffer)); 6585 return MOrErr; 6586 } 6587 6588 Expected<std::unique_ptr<Module>> 6589 BitcodeModule::parseModule(LLVMContext &Context) { 6590 return getModuleImpl(Context, true, false, false); 6591 // TODO: Restore the use-lists to the in-memory state when the bitcode was 6592 // written. We must defer until the Module has been fully materialized. 6593 } 6594 6595 Expected<std::unique_ptr<Module>> llvm::parseBitcodeFile(MemoryBufferRef Buffer, 6596 LLVMContext &Context) { 6597 Expected<BitcodeModule> BM = getSingleModule(Buffer); 6598 if (!BM) 6599 return BM.takeError(); 6600 6601 return BM->parseModule(Context); 6602 } 6603 6604 Expected<std::string> llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer) { 6605 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 6606 if (!StreamOrErr) 6607 return StreamOrErr.takeError(); 6608 6609 return readTriple(*StreamOrErr); 6610 } 6611 6612 Expected<bool> llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer) { 6613 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 6614 if (!StreamOrErr) 6615 return StreamOrErr.takeError(); 6616 6617 return hasObjCCategory(*StreamOrErr); 6618 } 6619 6620 Expected<std::string> llvm::getBitcodeProducerString(MemoryBufferRef Buffer) { 6621 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 6622 if (!StreamOrErr) 6623 return StreamOrErr.takeError(); 6624 6625 return readIdentificationCode(*StreamOrErr); 6626 } 6627 6628 Error llvm::readModuleSummaryIndex(MemoryBufferRef Buffer, 6629 ModuleSummaryIndex &CombinedIndex, 6630 uint64_t ModuleId) { 6631 Expected<BitcodeModule> BM = getSingleModule(Buffer); 6632 if (!BM) 6633 return BM.takeError(); 6634 6635 return BM->readSummary(CombinedIndex, BM->getModuleIdentifier(), ModuleId); 6636 } 6637 6638 Expected<std::unique_ptr<ModuleSummaryIndex>> 6639 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer) { 6640 Expected<BitcodeModule> BM = getSingleModule(Buffer); 6641 if (!BM) 6642 return BM.takeError(); 6643 6644 return BM->getSummary(); 6645 } 6646 6647 Expected<BitcodeLTOInfo> llvm::getBitcodeLTOInfo(MemoryBufferRef Buffer) { 6648 Expected<BitcodeModule> BM = getSingleModule(Buffer); 6649 if (!BM) 6650 return BM.takeError(); 6651 6652 return BM->getLTOInfo(); 6653 } 6654 6655 Expected<std::unique_ptr<ModuleSummaryIndex>> 6656 llvm::getModuleSummaryIndexForFile(StringRef Path, 6657 bool IgnoreEmptyThinLTOIndexFile) { 6658 ErrorOr<std::unique_ptr<MemoryBuffer>> FileOrErr = 6659 MemoryBuffer::getFileOrSTDIN(Path); 6660 if (!FileOrErr) 6661 return errorCodeToError(FileOrErr.getError()); 6662 if (IgnoreEmptyThinLTOIndexFile && !(*FileOrErr)->getBufferSize()) 6663 return nullptr; 6664 return getModuleSummaryIndex(**FileOrErr); 6665 } 6666