1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "llvm/Bitcode/ReaderWriter.h" 11 #include "llvm/ADT/STLExtras.h" 12 #include "llvm/ADT/SmallString.h" 13 #include "llvm/ADT/SmallVector.h" 14 #include "llvm/ADT/Triple.h" 15 #include "llvm/Bitcode/BitstreamReader.h" 16 #include "llvm/Bitcode/LLVMBitCodes.h" 17 #include "llvm/IR/AutoUpgrade.h" 18 #include "llvm/IR/Constants.h" 19 #include "llvm/IR/DebugInfo.h" 20 #include "llvm/IR/DebugInfoMetadata.h" 21 #include "llvm/IR/DerivedTypes.h" 22 #include "llvm/IR/DiagnosticPrinter.h" 23 #include "llvm/IR/GVMaterializer.h" 24 #include "llvm/IR/InlineAsm.h" 25 #include "llvm/IR/IntrinsicInst.h" 26 #include "llvm/IR/LLVMContext.h" 27 #include "llvm/IR/Module.h" 28 #include "llvm/IR/OperandTraits.h" 29 #include "llvm/IR/Operator.h" 30 #include "llvm/IR/FunctionInfo.h" 31 #include "llvm/IR/ValueHandle.h" 32 #include "llvm/Support/DataStream.h" 33 #include "llvm/Support/ManagedStatic.h" 34 #include "llvm/Support/MathExtras.h" 35 #include "llvm/Support/MemoryBuffer.h" 36 #include "llvm/Support/raw_ostream.h" 37 #include <deque> 38 using namespace llvm; 39 40 namespace { 41 enum { 42 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 43 }; 44 45 /// Indicates which operator an operand allows (for the few operands that may 46 /// only reference a certain operator). 47 enum OperatorConstraint { 48 OC_None = 0, // No constraint 49 OC_CatchPad, // Must be CatchPadInst 50 OC_CleanupPad // Must be CleanupPadInst 51 }; 52 53 class BitcodeReaderValueList { 54 std::vector<WeakVH> ValuePtrs; 55 56 /// As we resolve forward-referenced constants, we add information about them 57 /// to this vector. This allows us to resolve them in bulk instead of 58 /// resolving each reference at a time. See the code in 59 /// ResolveConstantForwardRefs for more information about this. 60 /// 61 /// The key of this vector is the placeholder constant, the value is the slot 62 /// number that holds the resolved value. 63 typedef std::vector<std::pair<Constant*, unsigned> > ResolveConstantsTy; 64 ResolveConstantsTy ResolveConstants; 65 LLVMContext &Context; 66 public: 67 BitcodeReaderValueList(LLVMContext &C) : Context(C) {} 68 ~BitcodeReaderValueList() { 69 assert(ResolveConstants.empty() && "Constants not resolved?"); 70 } 71 72 // vector compatibility methods 73 unsigned size() const { return ValuePtrs.size(); } 74 void resize(unsigned N) { ValuePtrs.resize(N); } 75 void push_back(Value *V) { ValuePtrs.emplace_back(V); } 76 77 void clear() { 78 assert(ResolveConstants.empty() && "Constants not resolved?"); 79 ValuePtrs.clear(); 80 } 81 82 Value *operator[](unsigned i) const { 83 assert(i < ValuePtrs.size()); 84 return ValuePtrs[i]; 85 } 86 87 Value *back() const { return ValuePtrs.back(); } 88 void pop_back() { ValuePtrs.pop_back(); } 89 bool empty() const { return ValuePtrs.empty(); } 90 void shrinkTo(unsigned N) { 91 assert(N <= size() && "Invalid shrinkTo request!"); 92 ValuePtrs.resize(N); 93 } 94 95 Constant *getConstantFwdRef(unsigned Idx, Type *Ty); 96 Value *getValueFwdRef(unsigned Idx, Type *Ty, 97 OperatorConstraint OC = OC_None); 98 99 bool assignValue(Value *V, unsigned Idx); 100 101 /// Once all constants are read, this method bulk resolves any forward 102 /// references. 103 void resolveConstantForwardRefs(); 104 }; 105 106 class BitcodeReaderMDValueList { 107 unsigned NumFwdRefs; 108 bool AnyFwdRefs; 109 unsigned MinFwdRef; 110 unsigned MaxFwdRef; 111 std::vector<TrackingMDRef> MDValuePtrs; 112 113 LLVMContext &Context; 114 public: 115 BitcodeReaderMDValueList(LLVMContext &C) 116 : NumFwdRefs(0), AnyFwdRefs(false), Context(C) {} 117 118 // vector compatibility methods 119 unsigned size() const { return MDValuePtrs.size(); } 120 void resize(unsigned N) { MDValuePtrs.resize(N); } 121 void push_back(Metadata *MD) { MDValuePtrs.emplace_back(MD); } 122 void clear() { MDValuePtrs.clear(); } 123 Metadata *back() const { return MDValuePtrs.back(); } 124 void pop_back() { MDValuePtrs.pop_back(); } 125 bool empty() const { return MDValuePtrs.empty(); } 126 127 Metadata *operator[](unsigned i) const { 128 assert(i < MDValuePtrs.size()); 129 return MDValuePtrs[i]; 130 } 131 132 void shrinkTo(unsigned N) { 133 assert(N <= size() && "Invalid shrinkTo request!"); 134 MDValuePtrs.resize(N); 135 } 136 137 Metadata *getValueFwdRef(unsigned Idx); 138 void assignValue(Metadata *MD, unsigned Idx); 139 void tryToResolveCycles(); 140 }; 141 142 class BitcodeReader : public GVMaterializer { 143 LLVMContext &Context; 144 DiagnosticHandlerFunction DiagnosticHandler; 145 Module *TheModule = nullptr; 146 std::unique_ptr<MemoryBuffer> Buffer; 147 std::unique_ptr<BitstreamReader> StreamFile; 148 BitstreamCursor Stream; 149 // Next offset to start scanning for lazy parsing of function bodies. 150 uint64_t NextUnreadBit = 0; 151 // Last function offset found in the VST. 152 uint64_t LastFunctionBlockBit = 0; 153 bool SeenValueSymbolTable = false; 154 uint64_t VSTOffset = 0; 155 // Contains an arbitrary and optional string identifying the bitcode producer 156 std::string ProducerIdentification; 157 158 std::vector<Type*> TypeList; 159 BitcodeReaderValueList ValueList; 160 BitcodeReaderMDValueList MDValueList; 161 std::vector<Comdat *> ComdatList; 162 SmallVector<Instruction *, 64> InstructionList; 163 164 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInits; 165 std::vector<std::pair<GlobalAlias*, unsigned> > AliasInits; 166 std::vector<std::pair<Function*, unsigned> > FunctionPrefixes; 167 std::vector<std::pair<Function*, unsigned> > FunctionPrologues; 168 std::vector<std::pair<Function*, unsigned> > FunctionPersonalityFns; 169 170 SmallVector<Instruction*, 64> InstsWithTBAATag; 171 172 /// The set of attributes by index. Index zero in the file is for null, and 173 /// is thus not represented here. As such all indices are off by one. 174 std::vector<AttributeSet> MAttributes; 175 176 /// The set of attribute groups. 177 std::map<unsigned, AttributeSet> MAttributeGroups; 178 179 /// While parsing a function body, this is a list of the basic blocks for the 180 /// function. 181 std::vector<BasicBlock*> FunctionBBs; 182 183 // When reading the module header, this list is populated with functions that 184 // have bodies later in the file. 185 std::vector<Function*> FunctionsWithBodies; 186 187 // When intrinsic functions are encountered which require upgrading they are 188 // stored here with their replacement function. 189 typedef DenseMap<Function*, Function*> UpgradedIntrinsicMap; 190 UpgradedIntrinsicMap UpgradedIntrinsics; 191 192 // Map the bitcode's custom MDKind ID to the Module's MDKind ID. 193 DenseMap<unsigned, unsigned> MDKindMap; 194 195 // Several operations happen after the module header has been read, but 196 // before function bodies are processed. This keeps track of whether 197 // we've done this yet. 198 bool SeenFirstFunctionBody = false; 199 200 /// When function bodies are initially scanned, this map contains info about 201 /// where to find deferred function body in the stream. 202 DenseMap<Function*, uint64_t> DeferredFunctionInfo; 203 204 /// When Metadata block is initially scanned when parsing the module, we may 205 /// choose to defer parsing of the metadata. This vector contains info about 206 /// which Metadata blocks are deferred. 207 std::vector<uint64_t> DeferredMetadataInfo; 208 209 /// These are basic blocks forward-referenced by block addresses. They are 210 /// inserted lazily into functions when they're loaded. The basic block ID is 211 /// its index into the vector. 212 DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs; 213 std::deque<Function *> BasicBlockFwdRefQueue; 214 215 /// Indicates that we are using a new encoding for instruction operands where 216 /// most operands in the current FUNCTION_BLOCK are encoded relative to the 217 /// instruction number, for a more compact encoding. Some instruction 218 /// operands are not relative to the instruction ID: basic block numbers, and 219 /// types. Once the old style function blocks have been phased out, we would 220 /// not need this flag. 221 bool UseRelativeIDs = false; 222 223 /// True if all functions will be materialized, negating the need to process 224 /// (e.g.) blockaddress forward references. 225 bool WillMaterializeAllForwardRefs = false; 226 227 /// Functions that have block addresses taken. This is usually empty. 228 SmallPtrSet<const Function *, 4> BlockAddressesTaken; 229 230 /// True if any Metadata block has been materialized. 231 bool IsMetadataMaterialized = false; 232 233 bool StripDebugInfo = false; 234 235 /// Functions that need to be matched with subprograms when upgrading old 236 /// metadata. 237 SmallDenseMap<Function *, DISubprogram *, 16> FunctionsWithSPs; 238 239 std::vector<std::string> BundleTags; 240 241 public: 242 std::error_code error(BitcodeError E, const Twine &Message); 243 std::error_code error(BitcodeError E); 244 std::error_code error(const Twine &Message); 245 246 BitcodeReader(MemoryBuffer *Buffer, LLVMContext &Context, 247 DiagnosticHandlerFunction DiagnosticHandler); 248 BitcodeReader(LLVMContext &Context, 249 DiagnosticHandlerFunction DiagnosticHandler); 250 ~BitcodeReader() override { freeState(); } 251 252 std::error_code materializeForwardReferencedFunctions(); 253 254 void freeState(); 255 256 void releaseBuffer(); 257 258 bool isDematerializable(const GlobalValue *GV) const override; 259 std::error_code materialize(GlobalValue *GV) override; 260 std::error_code materializeModule(Module *M) override; 261 std::vector<StructType *> getIdentifiedStructTypes() const override; 262 void dematerialize(GlobalValue *GV) override; 263 264 /// \brief Main interface to parsing a bitcode buffer. 265 /// \returns true if an error occurred. 266 std::error_code parseBitcodeInto(std::unique_ptr<DataStreamer> Streamer, 267 Module *M, 268 bool ShouldLazyLoadMetadata = false); 269 270 /// \brief Cheap mechanism to just extract module triple 271 /// \returns true if an error occurred. 272 ErrorOr<std::string> parseTriple(); 273 274 /// Cheap mechanism to just extract the identification block out of bitcode. 275 ErrorOr<std::string> parseIdentificationBlock(); 276 277 static uint64_t decodeSignRotatedValue(uint64_t V); 278 279 /// Materialize any deferred Metadata block. 280 std::error_code materializeMetadata() override; 281 282 void setStripDebugInfo() override; 283 284 private: 285 /// Parse the "IDENTIFICATION_BLOCK_ID" block, populate the 286 // ProducerIdentification data member, and do some basic enforcement on the 287 // "epoch" encoded in the bitcode. 288 std::error_code parseBitcodeVersion(); 289 290 std::vector<StructType *> IdentifiedStructTypes; 291 StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name); 292 StructType *createIdentifiedStructType(LLVMContext &Context); 293 294 Type *getTypeByID(unsigned ID); 295 Value *getFnValueByID(unsigned ID, Type *Ty, 296 OperatorConstraint OC = OC_None) { 297 if (Ty && Ty->isMetadataTy()) 298 return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID)); 299 return ValueList.getValueFwdRef(ID, Ty, OC); 300 } 301 Metadata *getFnMetadataByID(unsigned ID) { 302 return MDValueList.getValueFwdRef(ID); 303 } 304 BasicBlock *getBasicBlock(unsigned ID) const { 305 if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID 306 return FunctionBBs[ID]; 307 } 308 AttributeSet getAttributes(unsigned i) const { 309 if (i-1 < MAttributes.size()) 310 return MAttributes[i-1]; 311 return AttributeSet(); 312 } 313 314 /// Read a value/type pair out of the specified record from slot 'Slot'. 315 /// Increment Slot past the number of slots used in the record. Return true on 316 /// failure. 317 bool getValueTypePair(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 318 unsigned InstNum, Value *&ResVal) { 319 if (Slot == Record.size()) return true; 320 unsigned ValNo = (unsigned)Record[Slot++]; 321 // Adjust the ValNo, if it was encoded relative to the InstNum. 322 if (UseRelativeIDs) 323 ValNo = InstNum - ValNo; 324 if (ValNo < InstNum) { 325 // If this is not a forward reference, just return the value we already 326 // have. 327 ResVal = getFnValueByID(ValNo, nullptr); 328 return ResVal == nullptr; 329 } 330 if (Slot == Record.size()) 331 return true; 332 333 unsigned TypeNo = (unsigned)Record[Slot++]; 334 ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo)); 335 return ResVal == nullptr; 336 } 337 338 /// Read a value out of the specified record from slot 'Slot'. Increment Slot 339 /// past the number of slots used by the value in the record. Return true if 340 /// there is an error. 341 bool popValue(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 342 unsigned InstNum, Type *Ty, Value *&ResVal, 343 OperatorConstraint OC = OC_None) { 344 if (getValue(Record, Slot, InstNum, Ty, ResVal, OC)) 345 return true; 346 // All values currently take a single record slot. 347 ++Slot; 348 return false; 349 } 350 351 /// Like popValue, but does not increment the Slot number. 352 bool getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 353 unsigned InstNum, Type *Ty, Value *&ResVal, 354 OperatorConstraint OC = OC_None) { 355 ResVal = getValue(Record, Slot, InstNum, Ty, OC); 356 return ResVal == nullptr; 357 } 358 359 /// Version of getValue that returns ResVal directly, or 0 if there is an 360 /// error. 361 Value *getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 362 unsigned InstNum, Type *Ty, OperatorConstraint OC = OC_None) { 363 if (Slot == Record.size()) return nullptr; 364 unsigned ValNo = (unsigned)Record[Slot]; 365 // Adjust the ValNo, if it was encoded relative to the InstNum. 366 if (UseRelativeIDs) 367 ValNo = InstNum - ValNo; 368 return getFnValueByID(ValNo, Ty, OC); 369 } 370 371 /// Like getValue, but decodes signed VBRs. 372 Value *getValueSigned(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 373 unsigned InstNum, Type *Ty, 374 OperatorConstraint OC = OC_None) { 375 if (Slot == Record.size()) return nullptr; 376 unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]); 377 // Adjust the ValNo, if it was encoded relative to the InstNum. 378 if (UseRelativeIDs) 379 ValNo = InstNum - ValNo; 380 return getFnValueByID(ValNo, Ty, OC); 381 } 382 383 /// Converts alignment exponent (i.e. power of two (or zero)) to the 384 /// corresponding alignment to use. If alignment is too large, returns 385 /// a corresponding error code. 386 std::error_code parseAlignmentValue(uint64_t Exponent, unsigned &Alignment); 387 std::error_code parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind); 388 std::error_code parseModule(uint64_t ResumeBit, 389 bool ShouldLazyLoadMetadata = false); 390 std::error_code parseAttributeBlock(); 391 std::error_code parseAttributeGroupBlock(); 392 std::error_code parseTypeTable(); 393 std::error_code parseTypeTableBody(); 394 std::error_code parseOperandBundleTags(); 395 396 ErrorOr<Value *> recordValue(SmallVectorImpl<uint64_t> &Record, 397 unsigned NameIndex, Triple &TT); 398 std::error_code parseValueSymbolTable(uint64_t Offset = 0); 399 std::error_code parseConstants(); 400 std::error_code rememberAndSkipFunctionBodies(); 401 std::error_code rememberAndSkipFunctionBody(); 402 /// Save the positions of the Metadata blocks and skip parsing the blocks. 403 std::error_code rememberAndSkipMetadata(); 404 std::error_code parseFunctionBody(Function *F); 405 std::error_code globalCleanup(); 406 std::error_code resolveGlobalAndAliasInits(); 407 std::error_code parseMetadata(); 408 std::error_code parseMetadataKinds(); 409 std::error_code parseMetadataKindRecord(SmallVectorImpl<uint64_t> &Record); 410 std::error_code parseMetadataAttachment(Function &F); 411 ErrorOr<std::string> parseModuleTriple(); 412 std::error_code parseUseLists(); 413 std::error_code initStream(std::unique_ptr<DataStreamer> Streamer); 414 std::error_code initStreamFromBuffer(); 415 std::error_code initLazyStream(std::unique_ptr<DataStreamer> Streamer); 416 std::error_code findFunctionInStream( 417 Function *F, 418 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator); 419 }; 420 421 /// Class to manage reading and parsing function summary index bitcode 422 /// files/sections. 423 class FunctionIndexBitcodeReader { 424 DiagnosticHandlerFunction DiagnosticHandler; 425 426 /// Eventually points to the function index built during parsing. 427 FunctionInfoIndex *TheIndex = nullptr; 428 429 std::unique_ptr<MemoryBuffer> Buffer; 430 std::unique_ptr<BitstreamReader> StreamFile; 431 BitstreamCursor Stream; 432 433 /// \brief Used to indicate whether we are doing lazy parsing of summary data. 434 /// 435 /// If false, the summary section is fully parsed into the index during 436 /// the initial parse. Otherwise, if true, the caller is expected to 437 /// invoke \a readFunctionSummary for each summary needed, and the summary 438 /// section is thus parsed lazily. 439 bool IsLazy = false; 440 441 /// Used to indicate whether caller only wants to check for the presence 442 /// of the function summary bitcode section. All blocks are skipped, 443 /// but the SeenFuncSummary boolean is set. 444 bool CheckFuncSummaryPresenceOnly = false; 445 446 /// Indicates whether we have encountered a function summary section 447 /// yet during parsing, used when checking if file contains function 448 /// summary section. 449 bool SeenFuncSummary = false; 450 451 /// \brief Map populated during function summary section parsing, and 452 /// consumed during ValueSymbolTable parsing. 453 /// 454 /// Used to correlate summary records with VST entries. For the per-module 455 /// index this maps the ValueID to the parsed function summary, and 456 /// for the combined index this maps the summary record's bitcode 457 /// offset to the function summary (since in the combined index the 458 /// VST records do not hold value IDs but rather hold the function 459 /// summary record offset). 460 DenseMap<uint64_t, std::unique_ptr<FunctionSummary>> SummaryMap; 461 462 /// Map populated during module path string table parsing, from the 463 /// module ID to a string reference owned by the index's module 464 /// path string table, used to correlate with combined index function 465 /// summary records. 466 DenseMap<uint64_t, StringRef> ModuleIdMap; 467 468 public: 469 std::error_code error(BitcodeError E, const Twine &Message); 470 std::error_code error(BitcodeError E); 471 std::error_code error(const Twine &Message); 472 473 FunctionIndexBitcodeReader(MemoryBuffer *Buffer, LLVMContext &Context, 474 DiagnosticHandlerFunction DiagnosticHandler, 475 bool IsLazy = false, 476 bool CheckFuncSummaryPresenceOnly = false); 477 FunctionIndexBitcodeReader(LLVMContext &Context, 478 DiagnosticHandlerFunction DiagnosticHandler, 479 bool IsLazy = false, 480 bool CheckFuncSummaryPresenceOnly = false); 481 ~FunctionIndexBitcodeReader() { freeState(); } 482 483 void freeState(); 484 485 void releaseBuffer(); 486 487 /// Check if the parser has encountered a function summary section. 488 bool foundFuncSummary() { return SeenFuncSummary; } 489 490 /// \brief Main interface to parsing a bitcode buffer. 491 /// \returns true if an error occurred. 492 std::error_code parseSummaryIndexInto(std::unique_ptr<DataStreamer> Streamer, 493 FunctionInfoIndex *I); 494 495 /// \brief Interface for parsing a function summary lazily. 496 std::error_code parseFunctionSummary(std::unique_ptr<DataStreamer> Streamer, 497 FunctionInfoIndex *I, 498 size_t FunctionSummaryOffset); 499 500 private: 501 std::error_code parseModule(); 502 std::error_code parseValueSymbolTable(); 503 std::error_code parseEntireSummary(); 504 std::error_code parseModuleStringTable(); 505 std::error_code initStream(std::unique_ptr<DataStreamer> Streamer); 506 std::error_code initStreamFromBuffer(); 507 std::error_code initLazyStream(std::unique_ptr<DataStreamer> Streamer); 508 }; 509 } // namespace 510 511 BitcodeDiagnosticInfo::BitcodeDiagnosticInfo(std::error_code EC, 512 DiagnosticSeverity Severity, 513 const Twine &Msg) 514 : DiagnosticInfo(DK_Bitcode, Severity), Msg(Msg), EC(EC) {} 515 516 void BitcodeDiagnosticInfo::print(DiagnosticPrinter &DP) const { DP << Msg; } 517 518 static std::error_code error(DiagnosticHandlerFunction DiagnosticHandler, 519 std::error_code EC, const Twine &Message) { 520 BitcodeDiagnosticInfo DI(EC, DS_Error, Message); 521 DiagnosticHandler(DI); 522 return EC; 523 } 524 525 static std::error_code error(DiagnosticHandlerFunction DiagnosticHandler, 526 std::error_code EC) { 527 return error(DiagnosticHandler, EC, EC.message()); 528 } 529 530 static std::error_code error(DiagnosticHandlerFunction DiagnosticHandler, 531 const Twine &Message) { 532 return error(DiagnosticHandler, 533 make_error_code(BitcodeError::CorruptedBitcode), Message); 534 } 535 536 std::error_code BitcodeReader::error(BitcodeError E, const Twine &Message) { 537 if (!ProducerIdentification.empty()) { 538 return ::error(DiagnosticHandler, make_error_code(E), 539 Message + " (Producer: '" + ProducerIdentification + 540 "' Reader: 'LLVM " + LLVM_VERSION_STRING "')"); 541 } 542 return ::error(DiagnosticHandler, make_error_code(E), Message); 543 } 544 545 std::error_code BitcodeReader::error(const Twine &Message) { 546 if (!ProducerIdentification.empty()) { 547 return ::error(DiagnosticHandler, 548 make_error_code(BitcodeError::CorruptedBitcode), 549 Message + " (Producer: '" + ProducerIdentification + 550 "' Reader: 'LLVM " + LLVM_VERSION_STRING "')"); 551 } 552 return ::error(DiagnosticHandler, 553 make_error_code(BitcodeError::CorruptedBitcode), Message); 554 } 555 556 std::error_code BitcodeReader::error(BitcodeError E) { 557 return ::error(DiagnosticHandler, make_error_code(E)); 558 } 559 560 static DiagnosticHandlerFunction getDiagHandler(DiagnosticHandlerFunction F, 561 LLVMContext &C) { 562 if (F) 563 return F; 564 return [&C](const DiagnosticInfo &DI) { C.diagnose(DI); }; 565 } 566 567 BitcodeReader::BitcodeReader(MemoryBuffer *Buffer, LLVMContext &Context, 568 DiagnosticHandlerFunction DiagnosticHandler) 569 : Context(Context), 570 DiagnosticHandler(getDiagHandler(DiagnosticHandler, Context)), 571 Buffer(Buffer), ValueList(Context), MDValueList(Context) {} 572 573 BitcodeReader::BitcodeReader(LLVMContext &Context, 574 DiagnosticHandlerFunction DiagnosticHandler) 575 : Context(Context), 576 DiagnosticHandler(getDiagHandler(DiagnosticHandler, Context)), 577 Buffer(nullptr), ValueList(Context), MDValueList(Context) {} 578 579 std::error_code BitcodeReader::materializeForwardReferencedFunctions() { 580 if (WillMaterializeAllForwardRefs) 581 return std::error_code(); 582 583 // Prevent recursion. 584 WillMaterializeAllForwardRefs = true; 585 586 while (!BasicBlockFwdRefQueue.empty()) { 587 Function *F = BasicBlockFwdRefQueue.front(); 588 BasicBlockFwdRefQueue.pop_front(); 589 assert(F && "Expected valid function"); 590 if (!BasicBlockFwdRefs.count(F)) 591 // Already materialized. 592 continue; 593 594 // Check for a function that isn't materializable to prevent an infinite 595 // loop. When parsing a blockaddress stored in a global variable, there 596 // isn't a trivial way to check if a function will have a body without a 597 // linear search through FunctionsWithBodies, so just check it here. 598 if (!F->isMaterializable()) 599 return error("Never resolved function from blockaddress"); 600 601 // Try to materialize F. 602 if (std::error_code EC = materialize(F)) 603 return EC; 604 } 605 assert(BasicBlockFwdRefs.empty() && "Function missing from queue"); 606 607 // Reset state. 608 WillMaterializeAllForwardRefs = false; 609 return std::error_code(); 610 } 611 612 void BitcodeReader::freeState() { 613 Buffer = nullptr; 614 std::vector<Type*>().swap(TypeList); 615 ValueList.clear(); 616 MDValueList.clear(); 617 std::vector<Comdat *>().swap(ComdatList); 618 619 std::vector<AttributeSet>().swap(MAttributes); 620 std::vector<BasicBlock*>().swap(FunctionBBs); 621 std::vector<Function*>().swap(FunctionsWithBodies); 622 DeferredFunctionInfo.clear(); 623 DeferredMetadataInfo.clear(); 624 MDKindMap.clear(); 625 626 assert(BasicBlockFwdRefs.empty() && "Unresolved blockaddress fwd references"); 627 BasicBlockFwdRefQueue.clear(); 628 } 629 630 //===----------------------------------------------------------------------===// 631 // Helper functions to implement forward reference resolution, etc. 632 //===----------------------------------------------------------------------===// 633 634 /// Convert a string from a record into an std::string, return true on failure. 635 template <typename StrTy> 636 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx, 637 StrTy &Result) { 638 if (Idx > Record.size()) 639 return true; 640 641 for (unsigned i = Idx, e = Record.size(); i != e; ++i) 642 Result += (char)Record[i]; 643 return false; 644 } 645 646 static bool hasImplicitComdat(size_t Val) { 647 switch (Val) { 648 default: 649 return false; 650 case 1: // Old WeakAnyLinkage 651 case 4: // Old LinkOnceAnyLinkage 652 case 10: // Old WeakODRLinkage 653 case 11: // Old LinkOnceODRLinkage 654 return true; 655 } 656 } 657 658 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) { 659 switch (Val) { 660 default: // Map unknown/new linkages to external 661 case 0: 662 return GlobalValue::ExternalLinkage; 663 case 2: 664 return GlobalValue::AppendingLinkage; 665 case 3: 666 return GlobalValue::InternalLinkage; 667 case 5: 668 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage 669 case 6: 670 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage 671 case 7: 672 return GlobalValue::ExternalWeakLinkage; 673 case 8: 674 return GlobalValue::CommonLinkage; 675 case 9: 676 return GlobalValue::PrivateLinkage; 677 case 12: 678 return GlobalValue::AvailableExternallyLinkage; 679 case 13: 680 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage 681 case 14: 682 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage 683 case 15: 684 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage 685 case 1: // Old value with implicit comdat. 686 case 16: 687 return GlobalValue::WeakAnyLinkage; 688 case 10: // Old value with implicit comdat. 689 case 17: 690 return GlobalValue::WeakODRLinkage; 691 case 4: // Old value with implicit comdat. 692 case 18: 693 return GlobalValue::LinkOnceAnyLinkage; 694 case 11: // Old value with implicit comdat. 695 case 19: 696 return GlobalValue::LinkOnceODRLinkage; 697 } 698 } 699 700 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) { 701 switch (Val) { 702 default: // Map unknown visibilities to default. 703 case 0: return GlobalValue::DefaultVisibility; 704 case 1: return GlobalValue::HiddenVisibility; 705 case 2: return GlobalValue::ProtectedVisibility; 706 } 707 } 708 709 static GlobalValue::DLLStorageClassTypes 710 getDecodedDLLStorageClass(unsigned Val) { 711 switch (Val) { 712 default: // Map unknown values to default. 713 case 0: return GlobalValue::DefaultStorageClass; 714 case 1: return GlobalValue::DLLImportStorageClass; 715 case 2: return GlobalValue::DLLExportStorageClass; 716 } 717 } 718 719 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) { 720 switch (Val) { 721 case 0: return GlobalVariable::NotThreadLocal; 722 default: // Map unknown non-zero value to general dynamic. 723 case 1: return GlobalVariable::GeneralDynamicTLSModel; 724 case 2: return GlobalVariable::LocalDynamicTLSModel; 725 case 3: return GlobalVariable::InitialExecTLSModel; 726 case 4: return GlobalVariable::LocalExecTLSModel; 727 } 728 } 729 730 static int getDecodedCastOpcode(unsigned Val) { 731 switch (Val) { 732 default: return -1; 733 case bitc::CAST_TRUNC : return Instruction::Trunc; 734 case bitc::CAST_ZEXT : return Instruction::ZExt; 735 case bitc::CAST_SEXT : return Instruction::SExt; 736 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 737 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 738 case bitc::CAST_UITOFP : return Instruction::UIToFP; 739 case bitc::CAST_SITOFP : return Instruction::SIToFP; 740 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 741 case bitc::CAST_FPEXT : return Instruction::FPExt; 742 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 743 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 744 case bitc::CAST_BITCAST : return Instruction::BitCast; 745 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast; 746 } 747 } 748 749 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) { 750 bool IsFP = Ty->isFPOrFPVectorTy(); 751 // BinOps are only valid for int/fp or vector of int/fp types 752 if (!IsFP && !Ty->isIntOrIntVectorTy()) 753 return -1; 754 755 switch (Val) { 756 default: 757 return -1; 758 case bitc::BINOP_ADD: 759 return IsFP ? Instruction::FAdd : Instruction::Add; 760 case bitc::BINOP_SUB: 761 return IsFP ? Instruction::FSub : Instruction::Sub; 762 case bitc::BINOP_MUL: 763 return IsFP ? Instruction::FMul : Instruction::Mul; 764 case bitc::BINOP_UDIV: 765 return IsFP ? -1 : Instruction::UDiv; 766 case bitc::BINOP_SDIV: 767 return IsFP ? Instruction::FDiv : Instruction::SDiv; 768 case bitc::BINOP_UREM: 769 return IsFP ? -1 : Instruction::URem; 770 case bitc::BINOP_SREM: 771 return IsFP ? Instruction::FRem : Instruction::SRem; 772 case bitc::BINOP_SHL: 773 return IsFP ? -1 : Instruction::Shl; 774 case bitc::BINOP_LSHR: 775 return IsFP ? -1 : Instruction::LShr; 776 case bitc::BINOP_ASHR: 777 return IsFP ? -1 : Instruction::AShr; 778 case bitc::BINOP_AND: 779 return IsFP ? -1 : Instruction::And; 780 case bitc::BINOP_OR: 781 return IsFP ? -1 : Instruction::Or; 782 case bitc::BINOP_XOR: 783 return IsFP ? -1 : Instruction::Xor; 784 } 785 } 786 787 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) { 788 switch (Val) { 789 default: return AtomicRMWInst::BAD_BINOP; 790 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 791 case bitc::RMW_ADD: return AtomicRMWInst::Add; 792 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 793 case bitc::RMW_AND: return AtomicRMWInst::And; 794 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 795 case bitc::RMW_OR: return AtomicRMWInst::Or; 796 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 797 case bitc::RMW_MAX: return AtomicRMWInst::Max; 798 case bitc::RMW_MIN: return AtomicRMWInst::Min; 799 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 800 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 801 } 802 } 803 804 static AtomicOrdering getDecodedOrdering(unsigned Val) { 805 switch (Val) { 806 case bitc::ORDERING_NOTATOMIC: return NotAtomic; 807 case bitc::ORDERING_UNORDERED: return Unordered; 808 case bitc::ORDERING_MONOTONIC: return Monotonic; 809 case bitc::ORDERING_ACQUIRE: return Acquire; 810 case bitc::ORDERING_RELEASE: return Release; 811 case bitc::ORDERING_ACQREL: return AcquireRelease; 812 default: // Map unknown orderings to sequentially-consistent. 813 case bitc::ORDERING_SEQCST: return SequentiallyConsistent; 814 } 815 } 816 817 static SynchronizationScope getDecodedSynchScope(unsigned Val) { 818 switch (Val) { 819 case bitc::SYNCHSCOPE_SINGLETHREAD: return SingleThread; 820 default: // Map unknown scopes to cross-thread. 821 case bitc::SYNCHSCOPE_CROSSTHREAD: return CrossThread; 822 } 823 } 824 825 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) { 826 switch (Val) { 827 default: // Map unknown selection kinds to any. 828 case bitc::COMDAT_SELECTION_KIND_ANY: 829 return Comdat::Any; 830 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH: 831 return Comdat::ExactMatch; 832 case bitc::COMDAT_SELECTION_KIND_LARGEST: 833 return Comdat::Largest; 834 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES: 835 return Comdat::NoDuplicates; 836 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE: 837 return Comdat::SameSize; 838 } 839 } 840 841 static FastMathFlags getDecodedFastMathFlags(unsigned Val) { 842 FastMathFlags FMF; 843 if (0 != (Val & FastMathFlags::UnsafeAlgebra)) 844 FMF.setUnsafeAlgebra(); 845 if (0 != (Val & FastMathFlags::NoNaNs)) 846 FMF.setNoNaNs(); 847 if (0 != (Val & FastMathFlags::NoInfs)) 848 FMF.setNoInfs(); 849 if (0 != (Val & FastMathFlags::NoSignedZeros)) 850 FMF.setNoSignedZeros(); 851 if (0 != (Val & FastMathFlags::AllowReciprocal)) 852 FMF.setAllowReciprocal(); 853 return FMF; 854 } 855 856 static void upgradeDLLImportExportLinkage(llvm::GlobalValue *GV, unsigned Val) { 857 switch (Val) { 858 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break; 859 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break; 860 } 861 } 862 863 namespace llvm { 864 namespace { 865 /// \brief A class for maintaining the slot number definition 866 /// as a placeholder for the actual definition for forward constants defs. 867 class ConstantPlaceHolder : public ConstantExpr { 868 void operator=(const ConstantPlaceHolder &) = delete; 869 870 public: 871 // allocate space for exactly one operand 872 void *operator new(size_t s) { return User::operator new(s, 1); } 873 explicit ConstantPlaceHolder(Type *Ty, LLVMContext &Context) 874 : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) { 875 Op<0>() = UndefValue::get(Type::getInt32Ty(Context)); 876 } 877 878 /// \brief Methods to support type inquiry through isa, cast, and dyn_cast. 879 static bool classof(const Value *V) { 880 return isa<ConstantExpr>(V) && 881 cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1; 882 } 883 884 /// Provide fast operand accessors 885 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); 886 }; 887 } 888 889 // FIXME: can we inherit this from ConstantExpr? 890 template <> 891 struct OperandTraits<ConstantPlaceHolder> : 892 public FixedNumOperandTraits<ConstantPlaceHolder, 1> { 893 }; 894 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantPlaceHolder, Value) 895 } 896 897 bool BitcodeReaderValueList::assignValue(Value *V, unsigned Idx) { 898 if (Idx == size()) { 899 push_back(V); 900 return false; 901 } 902 903 if (Idx >= size()) 904 resize(Idx+1); 905 906 WeakVH &OldV = ValuePtrs[Idx]; 907 if (!OldV) { 908 OldV = V; 909 return false; 910 } 911 912 // Handle constants and non-constants (e.g. instrs) differently for 913 // efficiency. 914 if (Constant *PHC = dyn_cast<Constant>(&*OldV)) { 915 ResolveConstants.push_back(std::make_pair(PHC, Idx)); 916 OldV = V; 917 } else { 918 // If there was a forward reference to this value, replace it. 919 Value *PrevVal = OldV; 920 // Check operator constraints. We only put cleanuppads or catchpads in 921 // the forward value map if the value is constrained to match. 922 if (CatchPadInst *CatchPad = dyn_cast<CatchPadInst>(PrevVal)) { 923 if (!isa<CatchPadInst>(V)) 924 return true; 925 // Delete the dummy basic block that was created with the sentinel 926 // catchpad. 927 BasicBlock *DummyBlock = CatchPad->getUnwindDest(); 928 assert(DummyBlock == CatchPad->getNormalDest()); 929 CatchPad->dropAllReferences(); 930 delete DummyBlock; 931 } else if (isa<CleanupPadInst>(PrevVal)) { 932 if (!isa<CleanupPadInst>(V)) 933 return true; 934 } 935 OldV->replaceAllUsesWith(V); 936 delete PrevVal; 937 } 938 939 return false; 940 } 941 942 943 Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx, 944 Type *Ty) { 945 if (Idx >= size()) 946 resize(Idx + 1); 947 948 if (Value *V = ValuePtrs[Idx]) { 949 if (Ty != V->getType()) 950 report_fatal_error("Type mismatch in constant table!"); 951 return cast<Constant>(V); 952 } 953 954 // Create and return a placeholder, which will later be RAUW'd. 955 Constant *C = new ConstantPlaceHolder(Ty, Context); 956 ValuePtrs[Idx] = C; 957 return C; 958 } 959 960 Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, Type *Ty, 961 OperatorConstraint OC) { 962 // Bail out for a clearly invalid value. This would make us call resize(0) 963 if (Idx == UINT_MAX) 964 return nullptr; 965 966 if (Idx >= size()) 967 resize(Idx + 1); 968 969 if (Value *V = ValuePtrs[Idx]) { 970 // If the types don't match, it's invalid. 971 if (Ty && Ty != V->getType()) 972 return nullptr; 973 if (!OC) 974 return V; 975 // Use dyn_cast to enforce operator constraints 976 switch (OC) { 977 case OC_CatchPad: 978 return dyn_cast<CatchPadInst>(V); 979 case OC_CleanupPad: 980 return dyn_cast<CleanupPadInst>(V); 981 default: 982 llvm_unreachable("Unexpected operator constraint"); 983 } 984 } 985 986 // No type specified, must be invalid reference. 987 if (!Ty) return nullptr; 988 989 // Create and return a placeholder, which will later be RAUW'd. 990 Value *V; 991 switch (OC) { 992 case OC_None: 993 V = new Argument(Ty); 994 break; 995 case OC_CatchPad: { 996 BasicBlock *BB = BasicBlock::Create(Context); 997 V = CatchPadInst::Create(BB, BB, {}); 998 break; 999 } 1000 default: 1001 assert(OC == OC_CleanupPad && "unexpected operator constraint"); 1002 V = CleanupPadInst::Create(Context, {}); 1003 break; 1004 } 1005 1006 ValuePtrs[Idx] = V; 1007 return V; 1008 } 1009 1010 /// Once all constants are read, this method bulk resolves any forward 1011 /// references. The idea behind this is that we sometimes get constants (such 1012 /// as large arrays) which reference *many* forward ref constants. Replacing 1013 /// each of these causes a lot of thrashing when building/reuniquing the 1014 /// constant. Instead of doing this, we look at all the uses and rewrite all 1015 /// the place holders at once for any constant that uses a placeholder. 1016 void BitcodeReaderValueList::resolveConstantForwardRefs() { 1017 // Sort the values by-pointer so that they are efficient to look up with a 1018 // binary search. 1019 std::sort(ResolveConstants.begin(), ResolveConstants.end()); 1020 1021 SmallVector<Constant*, 64> NewOps; 1022 1023 while (!ResolveConstants.empty()) { 1024 Value *RealVal = operator[](ResolveConstants.back().second); 1025 Constant *Placeholder = ResolveConstants.back().first; 1026 ResolveConstants.pop_back(); 1027 1028 // Loop over all users of the placeholder, updating them to reference the 1029 // new value. If they reference more than one placeholder, update them all 1030 // at once. 1031 while (!Placeholder->use_empty()) { 1032 auto UI = Placeholder->user_begin(); 1033 User *U = *UI; 1034 1035 // If the using object isn't uniqued, just update the operands. This 1036 // handles instructions and initializers for global variables. 1037 if (!isa<Constant>(U) || isa<GlobalValue>(U)) { 1038 UI.getUse().set(RealVal); 1039 continue; 1040 } 1041 1042 // Otherwise, we have a constant that uses the placeholder. Replace that 1043 // constant with a new constant that has *all* placeholder uses updated. 1044 Constant *UserC = cast<Constant>(U); 1045 for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end(); 1046 I != E; ++I) { 1047 Value *NewOp; 1048 if (!isa<ConstantPlaceHolder>(*I)) { 1049 // Not a placeholder reference. 1050 NewOp = *I; 1051 } else if (*I == Placeholder) { 1052 // Common case is that it just references this one placeholder. 1053 NewOp = RealVal; 1054 } else { 1055 // Otherwise, look up the placeholder in ResolveConstants. 1056 ResolveConstantsTy::iterator It = 1057 std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(), 1058 std::pair<Constant*, unsigned>(cast<Constant>(*I), 1059 0)); 1060 assert(It != ResolveConstants.end() && It->first == *I); 1061 NewOp = operator[](It->second); 1062 } 1063 1064 NewOps.push_back(cast<Constant>(NewOp)); 1065 } 1066 1067 // Make the new constant. 1068 Constant *NewC; 1069 if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) { 1070 NewC = ConstantArray::get(UserCA->getType(), NewOps); 1071 } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) { 1072 NewC = ConstantStruct::get(UserCS->getType(), NewOps); 1073 } else if (isa<ConstantVector>(UserC)) { 1074 NewC = ConstantVector::get(NewOps); 1075 } else { 1076 assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr."); 1077 NewC = cast<ConstantExpr>(UserC)->getWithOperands(NewOps); 1078 } 1079 1080 UserC->replaceAllUsesWith(NewC); 1081 UserC->destroyConstant(); 1082 NewOps.clear(); 1083 } 1084 1085 // Update all ValueHandles, they should be the only users at this point. 1086 Placeholder->replaceAllUsesWith(RealVal); 1087 delete Placeholder; 1088 } 1089 } 1090 1091 void BitcodeReaderMDValueList::assignValue(Metadata *MD, unsigned Idx) { 1092 if (Idx == size()) { 1093 push_back(MD); 1094 return; 1095 } 1096 1097 if (Idx >= size()) 1098 resize(Idx+1); 1099 1100 TrackingMDRef &OldMD = MDValuePtrs[Idx]; 1101 if (!OldMD) { 1102 OldMD.reset(MD); 1103 return; 1104 } 1105 1106 // If there was a forward reference to this value, replace it. 1107 TempMDTuple PrevMD(cast<MDTuple>(OldMD.get())); 1108 PrevMD->replaceAllUsesWith(MD); 1109 --NumFwdRefs; 1110 } 1111 1112 Metadata *BitcodeReaderMDValueList::getValueFwdRef(unsigned Idx) { 1113 if (Idx >= size()) 1114 resize(Idx + 1); 1115 1116 if (Metadata *MD = MDValuePtrs[Idx]) 1117 return MD; 1118 1119 // Track forward refs to be resolved later. 1120 if (AnyFwdRefs) { 1121 MinFwdRef = std::min(MinFwdRef, Idx); 1122 MaxFwdRef = std::max(MaxFwdRef, Idx); 1123 } else { 1124 AnyFwdRefs = true; 1125 MinFwdRef = MaxFwdRef = Idx; 1126 } 1127 ++NumFwdRefs; 1128 1129 // Create and return a placeholder, which will later be RAUW'd. 1130 Metadata *MD = MDNode::getTemporary(Context, None).release(); 1131 MDValuePtrs[Idx].reset(MD); 1132 return MD; 1133 } 1134 1135 void BitcodeReaderMDValueList::tryToResolveCycles() { 1136 if (!AnyFwdRefs) 1137 // Nothing to do. 1138 return; 1139 1140 if (NumFwdRefs) 1141 // Still forward references... can't resolve cycles. 1142 return; 1143 1144 // Resolve any cycles. 1145 for (unsigned I = MinFwdRef, E = MaxFwdRef + 1; I != E; ++I) { 1146 auto &MD = MDValuePtrs[I]; 1147 auto *N = dyn_cast_or_null<MDNode>(MD); 1148 if (!N) 1149 continue; 1150 1151 assert(!N->isTemporary() && "Unexpected forward reference"); 1152 N->resolveCycles(); 1153 } 1154 1155 // Make sure we return early again until there's another forward ref. 1156 AnyFwdRefs = false; 1157 } 1158 1159 Type *BitcodeReader::getTypeByID(unsigned ID) { 1160 // The type table size is always specified correctly. 1161 if (ID >= TypeList.size()) 1162 return nullptr; 1163 1164 if (Type *Ty = TypeList[ID]) 1165 return Ty; 1166 1167 // If we have a forward reference, the only possible case is when it is to a 1168 // named struct. Just create a placeholder for now. 1169 return TypeList[ID] = createIdentifiedStructType(Context); 1170 } 1171 1172 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context, 1173 StringRef Name) { 1174 auto *Ret = StructType::create(Context, Name); 1175 IdentifiedStructTypes.push_back(Ret); 1176 return Ret; 1177 } 1178 1179 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) { 1180 auto *Ret = StructType::create(Context); 1181 IdentifiedStructTypes.push_back(Ret); 1182 return Ret; 1183 } 1184 1185 1186 //===----------------------------------------------------------------------===// 1187 // Functions for parsing blocks from the bitcode file 1188 //===----------------------------------------------------------------------===// 1189 1190 1191 /// \brief This fills an AttrBuilder object with the LLVM attributes that have 1192 /// been decoded from the given integer. This function must stay in sync with 1193 /// 'encodeLLVMAttributesForBitcode'. 1194 static void decodeLLVMAttributesForBitcode(AttrBuilder &B, 1195 uint64_t EncodedAttrs) { 1196 // FIXME: Remove in 4.0. 1197 1198 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift 1199 // the bits above 31 down by 11 bits. 1200 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; 1201 assert((!Alignment || isPowerOf2_32(Alignment)) && 1202 "Alignment must be a power of two."); 1203 1204 if (Alignment) 1205 B.addAlignmentAttr(Alignment); 1206 B.addRawValue(((EncodedAttrs & (0xfffffULL << 32)) >> 11) | 1207 (EncodedAttrs & 0xffff)); 1208 } 1209 1210 std::error_code BitcodeReader::parseAttributeBlock() { 1211 if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 1212 return error("Invalid record"); 1213 1214 if (!MAttributes.empty()) 1215 return error("Invalid multiple blocks"); 1216 1217 SmallVector<uint64_t, 64> Record; 1218 1219 SmallVector<AttributeSet, 8> Attrs; 1220 1221 // Read all the records. 1222 while (1) { 1223 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1224 1225 switch (Entry.Kind) { 1226 case BitstreamEntry::SubBlock: // Handled for us already. 1227 case BitstreamEntry::Error: 1228 return error("Malformed block"); 1229 case BitstreamEntry::EndBlock: 1230 return std::error_code(); 1231 case BitstreamEntry::Record: 1232 // The interesting case. 1233 break; 1234 } 1235 1236 // Read a record. 1237 Record.clear(); 1238 switch (Stream.readRecord(Entry.ID, Record)) { 1239 default: // Default behavior: ignore. 1240 break; 1241 case bitc::PARAMATTR_CODE_ENTRY_OLD: { // ENTRY: [paramidx0, attr0, ...] 1242 // FIXME: Remove in 4.0. 1243 if (Record.size() & 1) 1244 return error("Invalid record"); 1245 1246 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1247 AttrBuilder B; 1248 decodeLLVMAttributesForBitcode(B, Record[i+1]); 1249 Attrs.push_back(AttributeSet::get(Context, Record[i], B)); 1250 } 1251 1252 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 1253 Attrs.clear(); 1254 break; 1255 } 1256 case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [attrgrp0, attrgrp1, ...] 1257 for (unsigned i = 0, e = Record.size(); i != e; ++i) 1258 Attrs.push_back(MAttributeGroups[Record[i]]); 1259 1260 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 1261 Attrs.clear(); 1262 break; 1263 } 1264 } 1265 } 1266 } 1267 1268 // Returns Attribute::None on unrecognized codes. 1269 static Attribute::AttrKind getAttrFromCode(uint64_t Code) { 1270 switch (Code) { 1271 default: 1272 return Attribute::None; 1273 case bitc::ATTR_KIND_ALIGNMENT: 1274 return Attribute::Alignment; 1275 case bitc::ATTR_KIND_ALWAYS_INLINE: 1276 return Attribute::AlwaysInline; 1277 case bitc::ATTR_KIND_ARGMEMONLY: 1278 return Attribute::ArgMemOnly; 1279 case bitc::ATTR_KIND_BUILTIN: 1280 return Attribute::Builtin; 1281 case bitc::ATTR_KIND_BY_VAL: 1282 return Attribute::ByVal; 1283 case bitc::ATTR_KIND_IN_ALLOCA: 1284 return Attribute::InAlloca; 1285 case bitc::ATTR_KIND_COLD: 1286 return Attribute::Cold; 1287 case bitc::ATTR_KIND_CONVERGENT: 1288 return Attribute::Convergent; 1289 case bitc::ATTR_KIND_INLINE_HINT: 1290 return Attribute::InlineHint; 1291 case bitc::ATTR_KIND_IN_REG: 1292 return Attribute::InReg; 1293 case bitc::ATTR_KIND_JUMP_TABLE: 1294 return Attribute::JumpTable; 1295 case bitc::ATTR_KIND_MIN_SIZE: 1296 return Attribute::MinSize; 1297 case bitc::ATTR_KIND_NAKED: 1298 return Attribute::Naked; 1299 case bitc::ATTR_KIND_NEST: 1300 return Attribute::Nest; 1301 case bitc::ATTR_KIND_NO_ALIAS: 1302 return Attribute::NoAlias; 1303 case bitc::ATTR_KIND_NO_BUILTIN: 1304 return Attribute::NoBuiltin; 1305 case bitc::ATTR_KIND_NO_CAPTURE: 1306 return Attribute::NoCapture; 1307 case bitc::ATTR_KIND_NO_DUPLICATE: 1308 return Attribute::NoDuplicate; 1309 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: 1310 return Attribute::NoImplicitFloat; 1311 case bitc::ATTR_KIND_NO_INLINE: 1312 return Attribute::NoInline; 1313 case bitc::ATTR_KIND_NO_RECURSE: 1314 return Attribute::NoRecurse; 1315 case bitc::ATTR_KIND_NON_LAZY_BIND: 1316 return Attribute::NonLazyBind; 1317 case bitc::ATTR_KIND_NON_NULL: 1318 return Attribute::NonNull; 1319 case bitc::ATTR_KIND_DEREFERENCEABLE: 1320 return Attribute::Dereferenceable; 1321 case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL: 1322 return Attribute::DereferenceableOrNull; 1323 case bitc::ATTR_KIND_NO_RED_ZONE: 1324 return Attribute::NoRedZone; 1325 case bitc::ATTR_KIND_NO_RETURN: 1326 return Attribute::NoReturn; 1327 case bitc::ATTR_KIND_NO_UNWIND: 1328 return Attribute::NoUnwind; 1329 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: 1330 return Attribute::OptimizeForSize; 1331 case bitc::ATTR_KIND_OPTIMIZE_NONE: 1332 return Attribute::OptimizeNone; 1333 case bitc::ATTR_KIND_READ_NONE: 1334 return Attribute::ReadNone; 1335 case bitc::ATTR_KIND_READ_ONLY: 1336 return Attribute::ReadOnly; 1337 case bitc::ATTR_KIND_RETURNED: 1338 return Attribute::Returned; 1339 case bitc::ATTR_KIND_RETURNS_TWICE: 1340 return Attribute::ReturnsTwice; 1341 case bitc::ATTR_KIND_S_EXT: 1342 return Attribute::SExt; 1343 case bitc::ATTR_KIND_STACK_ALIGNMENT: 1344 return Attribute::StackAlignment; 1345 case bitc::ATTR_KIND_STACK_PROTECT: 1346 return Attribute::StackProtect; 1347 case bitc::ATTR_KIND_STACK_PROTECT_REQ: 1348 return Attribute::StackProtectReq; 1349 case bitc::ATTR_KIND_STACK_PROTECT_STRONG: 1350 return Attribute::StackProtectStrong; 1351 case bitc::ATTR_KIND_SAFESTACK: 1352 return Attribute::SafeStack; 1353 case bitc::ATTR_KIND_STRUCT_RET: 1354 return Attribute::StructRet; 1355 case bitc::ATTR_KIND_SANITIZE_ADDRESS: 1356 return Attribute::SanitizeAddress; 1357 case bitc::ATTR_KIND_SANITIZE_THREAD: 1358 return Attribute::SanitizeThread; 1359 case bitc::ATTR_KIND_SANITIZE_MEMORY: 1360 return Attribute::SanitizeMemory; 1361 case bitc::ATTR_KIND_UW_TABLE: 1362 return Attribute::UWTable; 1363 case bitc::ATTR_KIND_Z_EXT: 1364 return Attribute::ZExt; 1365 } 1366 } 1367 1368 std::error_code BitcodeReader::parseAlignmentValue(uint64_t Exponent, 1369 unsigned &Alignment) { 1370 // Note: Alignment in bitcode files is incremented by 1, so that zero 1371 // can be used for default alignment. 1372 if (Exponent > Value::MaxAlignmentExponent + 1) 1373 return error("Invalid alignment value"); 1374 Alignment = (1 << static_cast<unsigned>(Exponent)) >> 1; 1375 return std::error_code(); 1376 } 1377 1378 std::error_code BitcodeReader::parseAttrKind(uint64_t Code, 1379 Attribute::AttrKind *Kind) { 1380 *Kind = getAttrFromCode(Code); 1381 if (*Kind == Attribute::None) 1382 return error(BitcodeError::CorruptedBitcode, 1383 "Unknown attribute kind (" + Twine(Code) + ")"); 1384 return std::error_code(); 1385 } 1386 1387 std::error_code BitcodeReader::parseAttributeGroupBlock() { 1388 if (Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) 1389 return error("Invalid record"); 1390 1391 if (!MAttributeGroups.empty()) 1392 return error("Invalid multiple blocks"); 1393 1394 SmallVector<uint64_t, 64> Record; 1395 1396 // Read all the records. 1397 while (1) { 1398 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1399 1400 switch (Entry.Kind) { 1401 case BitstreamEntry::SubBlock: // Handled for us already. 1402 case BitstreamEntry::Error: 1403 return error("Malformed block"); 1404 case BitstreamEntry::EndBlock: 1405 return std::error_code(); 1406 case BitstreamEntry::Record: 1407 // The interesting case. 1408 break; 1409 } 1410 1411 // Read a record. 1412 Record.clear(); 1413 switch (Stream.readRecord(Entry.ID, Record)) { 1414 default: // Default behavior: ignore. 1415 break; 1416 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] 1417 if (Record.size() < 3) 1418 return error("Invalid record"); 1419 1420 uint64_t GrpID = Record[0]; 1421 uint64_t Idx = Record[1]; // Index of the object this attribute refers to. 1422 1423 AttrBuilder B; 1424 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1425 if (Record[i] == 0) { // Enum attribute 1426 Attribute::AttrKind Kind; 1427 if (std::error_code EC = parseAttrKind(Record[++i], &Kind)) 1428 return EC; 1429 1430 B.addAttribute(Kind); 1431 } else if (Record[i] == 1) { // Integer attribute 1432 Attribute::AttrKind Kind; 1433 if (std::error_code EC = parseAttrKind(Record[++i], &Kind)) 1434 return EC; 1435 if (Kind == Attribute::Alignment) 1436 B.addAlignmentAttr(Record[++i]); 1437 else if (Kind == Attribute::StackAlignment) 1438 B.addStackAlignmentAttr(Record[++i]); 1439 else if (Kind == Attribute::Dereferenceable) 1440 B.addDereferenceableAttr(Record[++i]); 1441 else if (Kind == Attribute::DereferenceableOrNull) 1442 B.addDereferenceableOrNullAttr(Record[++i]); 1443 } else { // String attribute 1444 assert((Record[i] == 3 || Record[i] == 4) && 1445 "Invalid attribute group entry"); 1446 bool HasValue = (Record[i++] == 4); 1447 SmallString<64> KindStr; 1448 SmallString<64> ValStr; 1449 1450 while (Record[i] != 0 && i != e) 1451 KindStr += Record[i++]; 1452 assert(Record[i] == 0 && "Kind string not null terminated"); 1453 1454 if (HasValue) { 1455 // Has a value associated with it. 1456 ++i; // Skip the '0' that terminates the "kind" string. 1457 while (Record[i] != 0 && i != e) 1458 ValStr += Record[i++]; 1459 assert(Record[i] == 0 && "Value string not null terminated"); 1460 } 1461 1462 B.addAttribute(KindStr.str(), ValStr.str()); 1463 } 1464 } 1465 1466 MAttributeGroups[GrpID] = AttributeSet::get(Context, Idx, B); 1467 break; 1468 } 1469 } 1470 } 1471 } 1472 1473 std::error_code BitcodeReader::parseTypeTable() { 1474 if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 1475 return error("Invalid record"); 1476 1477 return parseTypeTableBody(); 1478 } 1479 1480 std::error_code BitcodeReader::parseTypeTableBody() { 1481 if (!TypeList.empty()) 1482 return error("Invalid multiple blocks"); 1483 1484 SmallVector<uint64_t, 64> Record; 1485 unsigned NumRecords = 0; 1486 1487 SmallString<64> TypeName; 1488 1489 // Read all the records for this type table. 1490 while (1) { 1491 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1492 1493 switch (Entry.Kind) { 1494 case BitstreamEntry::SubBlock: // Handled for us already. 1495 case BitstreamEntry::Error: 1496 return error("Malformed block"); 1497 case BitstreamEntry::EndBlock: 1498 if (NumRecords != TypeList.size()) 1499 return error("Malformed block"); 1500 return std::error_code(); 1501 case BitstreamEntry::Record: 1502 // The interesting case. 1503 break; 1504 } 1505 1506 // Read a record. 1507 Record.clear(); 1508 Type *ResultTy = nullptr; 1509 switch (Stream.readRecord(Entry.ID, Record)) { 1510 default: 1511 return error("Invalid value"); 1512 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 1513 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 1514 // type list. This allows us to reserve space. 1515 if (Record.size() < 1) 1516 return error("Invalid record"); 1517 TypeList.resize(Record[0]); 1518 continue; 1519 case bitc::TYPE_CODE_VOID: // VOID 1520 ResultTy = Type::getVoidTy(Context); 1521 break; 1522 case bitc::TYPE_CODE_HALF: // HALF 1523 ResultTy = Type::getHalfTy(Context); 1524 break; 1525 case bitc::TYPE_CODE_FLOAT: // FLOAT 1526 ResultTy = Type::getFloatTy(Context); 1527 break; 1528 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 1529 ResultTy = Type::getDoubleTy(Context); 1530 break; 1531 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 1532 ResultTy = Type::getX86_FP80Ty(Context); 1533 break; 1534 case bitc::TYPE_CODE_FP128: // FP128 1535 ResultTy = Type::getFP128Ty(Context); 1536 break; 1537 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 1538 ResultTy = Type::getPPC_FP128Ty(Context); 1539 break; 1540 case bitc::TYPE_CODE_LABEL: // LABEL 1541 ResultTy = Type::getLabelTy(Context); 1542 break; 1543 case bitc::TYPE_CODE_METADATA: // METADATA 1544 ResultTy = Type::getMetadataTy(Context); 1545 break; 1546 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 1547 ResultTy = Type::getX86_MMXTy(Context); 1548 break; 1549 case bitc::TYPE_CODE_TOKEN: // TOKEN 1550 ResultTy = Type::getTokenTy(Context); 1551 break; 1552 case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width] 1553 if (Record.size() < 1) 1554 return error("Invalid record"); 1555 1556 uint64_t NumBits = Record[0]; 1557 if (NumBits < IntegerType::MIN_INT_BITS || 1558 NumBits > IntegerType::MAX_INT_BITS) 1559 return error("Bitwidth for integer type out of range"); 1560 ResultTy = IntegerType::get(Context, NumBits); 1561 break; 1562 } 1563 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 1564 // [pointee type, address space] 1565 if (Record.size() < 1) 1566 return error("Invalid record"); 1567 unsigned AddressSpace = 0; 1568 if (Record.size() == 2) 1569 AddressSpace = Record[1]; 1570 ResultTy = getTypeByID(Record[0]); 1571 if (!ResultTy || 1572 !PointerType::isValidElementType(ResultTy)) 1573 return error("Invalid type"); 1574 ResultTy = PointerType::get(ResultTy, AddressSpace); 1575 break; 1576 } 1577 case bitc::TYPE_CODE_FUNCTION_OLD: { 1578 // FIXME: attrid is dead, remove it in LLVM 4.0 1579 // FUNCTION: [vararg, attrid, retty, paramty x N] 1580 if (Record.size() < 3) 1581 return error("Invalid record"); 1582 SmallVector<Type*, 8> ArgTys; 1583 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 1584 if (Type *T = getTypeByID(Record[i])) 1585 ArgTys.push_back(T); 1586 else 1587 break; 1588 } 1589 1590 ResultTy = getTypeByID(Record[2]); 1591 if (!ResultTy || ArgTys.size() < Record.size()-3) 1592 return error("Invalid type"); 1593 1594 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1595 break; 1596 } 1597 case bitc::TYPE_CODE_FUNCTION: { 1598 // FUNCTION: [vararg, retty, paramty x N] 1599 if (Record.size() < 2) 1600 return error("Invalid record"); 1601 SmallVector<Type*, 8> ArgTys; 1602 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1603 if (Type *T = getTypeByID(Record[i])) { 1604 if (!FunctionType::isValidArgumentType(T)) 1605 return error("Invalid function argument type"); 1606 ArgTys.push_back(T); 1607 } 1608 else 1609 break; 1610 } 1611 1612 ResultTy = getTypeByID(Record[1]); 1613 if (!ResultTy || ArgTys.size() < Record.size()-2) 1614 return error("Invalid type"); 1615 1616 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1617 break; 1618 } 1619 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 1620 if (Record.size() < 1) 1621 return error("Invalid record"); 1622 SmallVector<Type*, 8> EltTys; 1623 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1624 if (Type *T = getTypeByID(Record[i])) 1625 EltTys.push_back(T); 1626 else 1627 break; 1628 } 1629 if (EltTys.size() != Record.size()-1) 1630 return error("Invalid type"); 1631 ResultTy = StructType::get(Context, EltTys, Record[0]); 1632 break; 1633 } 1634 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 1635 if (convertToString(Record, 0, TypeName)) 1636 return error("Invalid record"); 1637 continue; 1638 1639 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 1640 if (Record.size() < 1) 1641 return error("Invalid record"); 1642 1643 if (NumRecords >= TypeList.size()) 1644 return error("Invalid TYPE table"); 1645 1646 // Check to see if this was forward referenced, if so fill in the temp. 1647 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1648 if (Res) { 1649 Res->setName(TypeName); 1650 TypeList[NumRecords] = nullptr; 1651 } else // Otherwise, create a new struct. 1652 Res = createIdentifiedStructType(Context, TypeName); 1653 TypeName.clear(); 1654 1655 SmallVector<Type*, 8> EltTys; 1656 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1657 if (Type *T = getTypeByID(Record[i])) 1658 EltTys.push_back(T); 1659 else 1660 break; 1661 } 1662 if (EltTys.size() != Record.size()-1) 1663 return error("Invalid record"); 1664 Res->setBody(EltTys, Record[0]); 1665 ResultTy = Res; 1666 break; 1667 } 1668 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 1669 if (Record.size() != 1) 1670 return error("Invalid record"); 1671 1672 if (NumRecords >= TypeList.size()) 1673 return error("Invalid TYPE table"); 1674 1675 // Check to see if this was forward referenced, if so fill in the temp. 1676 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1677 if (Res) { 1678 Res->setName(TypeName); 1679 TypeList[NumRecords] = nullptr; 1680 } else // Otherwise, create a new struct with no body. 1681 Res = createIdentifiedStructType(Context, TypeName); 1682 TypeName.clear(); 1683 ResultTy = Res; 1684 break; 1685 } 1686 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 1687 if (Record.size() < 2) 1688 return error("Invalid record"); 1689 ResultTy = getTypeByID(Record[1]); 1690 if (!ResultTy || !ArrayType::isValidElementType(ResultTy)) 1691 return error("Invalid type"); 1692 ResultTy = ArrayType::get(ResultTy, Record[0]); 1693 break; 1694 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] 1695 if (Record.size() < 2) 1696 return error("Invalid record"); 1697 if (Record[0] == 0) 1698 return error("Invalid vector length"); 1699 ResultTy = getTypeByID(Record[1]); 1700 if (!ResultTy || !StructType::isValidElementType(ResultTy)) 1701 return error("Invalid type"); 1702 ResultTy = VectorType::get(ResultTy, Record[0]); 1703 break; 1704 } 1705 1706 if (NumRecords >= TypeList.size()) 1707 return error("Invalid TYPE table"); 1708 if (TypeList[NumRecords]) 1709 return error( 1710 "Invalid TYPE table: Only named structs can be forward referenced"); 1711 assert(ResultTy && "Didn't read a type?"); 1712 TypeList[NumRecords++] = ResultTy; 1713 } 1714 } 1715 1716 std::error_code BitcodeReader::parseOperandBundleTags() { 1717 if (Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID)) 1718 return error("Invalid record"); 1719 1720 if (!BundleTags.empty()) 1721 return error("Invalid multiple blocks"); 1722 1723 SmallVector<uint64_t, 64> Record; 1724 1725 while (1) { 1726 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1727 1728 switch (Entry.Kind) { 1729 case BitstreamEntry::SubBlock: // Handled for us already. 1730 case BitstreamEntry::Error: 1731 return error("Malformed block"); 1732 case BitstreamEntry::EndBlock: 1733 return std::error_code(); 1734 case BitstreamEntry::Record: 1735 // The interesting case. 1736 break; 1737 } 1738 1739 // Tags are implicitly mapped to integers by their order. 1740 1741 if (Stream.readRecord(Entry.ID, Record) != bitc::OPERAND_BUNDLE_TAG) 1742 return error("Invalid record"); 1743 1744 // OPERAND_BUNDLE_TAG: [strchr x N] 1745 BundleTags.emplace_back(); 1746 if (convertToString(Record, 0, BundleTags.back())) 1747 return error("Invalid record"); 1748 Record.clear(); 1749 } 1750 } 1751 1752 /// Associate a value with its name from the given index in the provided record. 1753 ErrorOr<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record, 1754 unsigned NameIndex, Triple &TT) { 1755 SmallString<128> ValueName; 1756 if (convertToString(Record, NameIndex, ValueName)) 1757 return error("Invalid record"); 1758 unsigned ValueID = Record[0]; 1759 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 1760 return error("Invalid record"); 1761 Value *V = ValueList[ValueID]; 1762 1763 StringRef NameStr(ValueName.data(), ValueName.size()); 1764 if (NameStr.find_first_of(0) != StringRef::npos) 1765 return error("Invalid value name"); 1766 V->setName(NameStr); 1767 auto *GO = dyn_cast<GlobalObject>(V); 1768 if (GO) { 1769 if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) { 1770 if (TT.isOSBinFormatMachO()) 1771 GO->setComdat(nullptr); 1772 else 1773 GO->setComdat(TheModule->getOrInsertComdat(V->getName())); 1774 } 1775 } 1776 return V; 1777 } 1778 1779 /// Parse the value symbol table at either the current parsing location or 1780 /// at the given bit offset if provided. 1781 std::error_code BitcodeReader::parseValueSymbolTable(uint64_t Offset) { 1782 uint64_t CurrentBit; 1783 // Pass in the Offset to distinguish between calling for the module-level 1784 // VST (where we want to jump to the VST offset) and the function-level 1785 // VST (where we don't). 1786 if (Offset > 0) { 1787 // Save the current parsing location so we can jump back at the end 1788 // of the VST read. 1789 CurrentBit = Stream.GetCurrentBitNo(); 1790 Stream.JumpToBit(Offset * 32); 1791 #ifndef NDEBUG 1792 // Do some checking if we are in debug mode. 1793 BitstreamEntry Entry = Stream.advance(); 1794 assert(Entry.Kind == BitstreamEntry::SubBlock); 1795 assert(Entry.ID == bitc::VALUE_SYMTAB_BLOCK_ID); 1796 #else 1797 // In NDEBUG mode ignore the output so we don't get an unused variable 1798 // warning. 1799 Stream.advance(); 1800 #endif 1801 } 1802 1803 // Compute the delta between the bitcode indices in the VST (the word offset 1804 // to the word-aligned ENTER_SUBBLOCK for the function block, and that 1805 // expected by the lazy reader. The reader's EnterSubBlock expects to have 1806 // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID 1807 // (size BlockIDWidth). Note that we access the stream's AbbrevID width here 1808 // just before entering the VST subblock because: 1) the EnterSubBlock 1809 // changes the AbbrevID width; 2) the VST block is nested within the same 1810 // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same 1811 // AbbrevID width before calling EnterSubBlock; and 3) when we want to 1812 // jump to the FUNCTION_BLOCK using this offset later, we don't want 1813 // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK. 1814 unsigned FuncBitcodeOffsetDelta = 1815 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 1816 1817 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 1818 return error("Invalid record"); 1819 1820 SmallVector<uint64_t, 64> Record; 1821 1822 Triple TT(TheModule->getTargetTriple()); 1823 1824 // Read all the records for this value table. 1825 SmallString<128> ValueName; 1826 while (1) { 1827 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1828 1829 switch (Entry.Kind) { 1830 case BitstreamEntry::SubBlock: // Handled for us already. 1831 case BitstreamEntry::Error: 1832 return error("Malformed block"); 1833 case BitstreamEntry::EndBlock: 1834 if (Offset > 0) 1835 Stream.JumpToBit(CurrentBit); 1836 return std::error_code(); 1837 case BitstreamEntry::Record: 1838 // The interesting case. 1839 break; 1840 } 1841 1842 // Read a record. 1843 Record.clear(); 1844 switch (Stream.readRecord(Entry.ID, Record)) { 1845 default: // Default behavior: unknown type. 1846 break; 1847 case bitc::VST_CODE_ENTRY: { // VST_ENTRY: [valueid, namechar x N] 1848 ErrorOr<Value *> ValOrErr = recordValue(Record, 1, TT); 1849 if (std::error_code EC = ValOrErr.getError()) 1850 return EC; 1851 ValOrErr.get(); 1852 break; 1853 } 1854 case bitc::VST_CODE_FNENTRY: { 1855 // VST_FNENTRY: [valueid, offset, namechar x N] 1856 ErrorOr<Value *> ValOrErr = recordValue(Record, 2, TT); 1857 if (std::error_code EC = ValOrErr.getError()) 1858 return EC; 1859 Value *V = ValOrErr.get(); 1860 1861 auto *GO = dyn_cast<GlobalObject>(V); 1862 if (!GO) { 1863 // If this is an alias, need to get the actual Function object 1864 // it aliases, in order to set up the DeferredFunctionInfo entry below. 1865 auto *GA = dyn_cast<GlobalAlias>(V); 1866 if (GA) 1867 GO = GA->getBaseObject(); 1868 assert(GO); 1869 } 1870 1871 uint64_t FuncWordOffset = Record[1]; 1872 Function *F = dyn_cast<Function>(GO); 1873 assert(F); 1874 uint64_t FuncBitOffset = FuncWordOffset * 32; 1875 DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta; 1876 // Set the LastFunctionBlockBit to point to the last function block. 1877 // Later when parsing is resumed after function materialization, 1878 // we can simply skip that last function block. 1879 if (FuncBitOffset > LastFunctionBlockBit) 1880 LastFunctionBlockBit = FuncBitOffset; 1881 break; 1882 } 1883 case bitc::VST_CODE_BBENTRY: { 1884 if (convertToString(Record, 1, ValueName)) 1885 return error("Invalid record"); 1886 BasicBlock *BB = getBasicBlock(Record[0]); 1887 if (!BB) 1888 return error("Invalid record"); 1889 1890 BB->setName(StringRef(ValueName.data(), ValueName.size())); 1891 ValueName.clear(); 1892 break; 1893 } 1894 } 1895 } 1896 } 1897 1898 /// Parse a single METADATA_KIND record, inserting result in MDKindMap. 1899 std::error_code 1900 BitcodeReader::parseMetadataKindRecord(SmallVectorImpl<uint64_t> &Record) { 1901 if (Record.size() < 2) 1902 return error("Invalid record"); 1903 1904 unsigned Kind = Record[0]; 1905 SmallString<8> Name(Record.begin() + 1, Record.end()); 1906 1907 unsigned NewKind = TheModule->getMDKindID(Name.str()); 1908 if (!MDKindMap.insert(std::make_pair(Kind, NewKind)).second) 1909 return error("Conflicting METADATA_KIND records"); 1910 return std::error_code(); 1911 } 1912 1913 static int64_t unrotateSign(uint64_t U) { return U & 1 ? ~(U >> 1) : U >> 1; } 1914 1915 std::error_code BitcodeReader::parseMetadata() { 1916 IsMetadataMaterialized = true; 1917 unsigned NextMDValueNo = MDValueList.size(); 1918 1919 if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID)) 1920 return error("Invalid record"); 1921 1922 SmallVector<uint64_t, 64> Record; 1923 1924 auto getMD = 1925 [&](unsigned ID) -> Metadata *{ return MDValueList.getValueFwdRef(ID); }; 1926 auto getMDOrNull = [&](unsigned ID) -> Metadata *{ 1927 if (ID) 1928 return getMD(ID - 1); 1929 return nullptr; 1930 }; 1931 auto getMDString = [&](unsigned ID) -> MDString *{ 1932 // This requires that the ID is not really a forward reference. In 1933 // particular, the MDString must already have been resolved. 1934 return cast_or_null<MDString>(getMDOrNull(ID)); 1935 }; 1936 1937 #define GET_OR_DISTINCT(CLASS, DISTINCT, ARGS) \ 1938 (DISTINCT ? CLASS::getDistinct ARGS : CLASS::get ARGS) 1939 1940 // Read all the records. 1941 while (1) { 1942 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1943 1944 switch (Entry.Kind) { 1945 case BitstreamEntry::SubBlock: // Handled for us already. 1946 case BitstreamEntry::Error: 1947 return error("Malformed block"); 1948 case BitstreamEntry::EndBlock: 1949 MDValueList.tryToResolveCycles(); 1950 return std::error_code(); 1951 case BitstreamEntry::Record: 1952 // The interesting case. 1953 break; 1954 } 1955 1956 // Read a record. 1957 Record.clear(); 1958 unsigned Code = Stream.readRecord(Entry.ID, Record); 1959 bool IsDistinct = false; 1960 switch (Code) { 1961 default: // Default behavior: ignore. 1962 break; 1963 case bitc::METADATA_NAME: { 1964 // Read name of the named metadata. 1965 SmallString<8> Name(Record.begin(), Record.end()); 1966 Record.clear(); 1967 Code = Stream.ReadCode(); 1968 1969 unsigned NextBitCode = Stream.readRecord(Code, Record); 1970 if (NextBitCode != bitc::METADATA_NAMED_NODE) 1971 return error("METADATA_NAME not followed by METADATA_NAMED_NODE"); 1972 1973 // Read named metadata elements. 1974 unsigned Size = Record.size(); 1975 NamedMDNode *NMD = TheModule->getOrInsertNamedMetadata(Name); 1976 for (unsigned i = 0; i != Size; ++i) { 1977 MDNode *MD = dyn_cast_or_null<MDNode>(MDValueList.getValueFwdRef(Record[i])); 1978 if (!MD) 1979 return error("Invalid record"); 1980 NMD->addOperand(MD); 1981 } 1982 break; 1983 } 1984 case bitc::METADATA_OLD_FN_NODE: { 1985 // FIXME: Remove in 4.0. 1986 // This is a LocalAsMetadata record, the only type of function-local 1987 // metadata. 1988 if (Record.size() % 2 == 1) 1989 return error("Invalid record"); 1990 1991 // If this isn't a LocalAsMetadata record, we're dropping it. This used 1992 // to be legal, but there's no upgrade path. 1993 auto dropRecord = [&] { 1994 MDValueList.assignValue(MDNode::get(Context, None), NextMDValueNo++); 1995 }; 1996 if (Record.size() != 2) { 1997 dropRecord(); 1998 break; 1999 } 2000 2001 Type *Ty = getTypeByID(Record[0]); 2002 if (Ty->isMetadataTy() || Ty->isVoidTy()) { 2003 dropRecord(); 2004 break; 2005 } 2006 2007 MDValueList.assignValue( 2008 LocalAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)), 2009 NextMDValueNo++); 2010 break; 2011 } 2012 case bitc::METADATA_OLD_NODE: { 2013 // FIXME: Remove in 4.0. 2014 if (Record.size() % 2 == 1) 2015 return error("Invalid record"); 2016 2017 unsigned Size = Record.size(); 2018 SmallVector<Metadata *, 8> Elts; 2019 for (unsigned i = 0; i != Size; i += 2) { 2020 Type *Ty = getTypeByID(Record[i]); 2021 if (!Ty) 2022 return error("Invalid record"); 2023 if (Ty->isMetadataTy()) 2024 Elts.push_back(MDValueList.getValueFwdRef(Record[i+1])); 2025 else if (!Ty->isVoidTy()) { 2026 auto *MD = 2027 ValueAsMetadata::get(ValueList.getValueFwdRef(Record[i + 1], Ty)); 2028 assert(isa<ConstantAsMetadata>(MD) && 2029 "Expected non-function-local metadata"); 2030 Elts.push_back(MD); 2031 } else 2032 Elts.push_back(nullptr); 2033 } 2034 MDValueList.assignValue(MDNode::get(Context, Elts), NextMDValueNo++); 2035 break; 2036 } 2037 case bitc::METADATA_VALUE: { 2038 if (Record.size() != 2) 2039 return error("Invalid record"); 2040 2041 Type *Ty = getTypeByID(Record[0]); 2042 if (Ty->isMetadataTy() || Ty->isVoidTy()) 2043 return error("Invalid record"); 2044 2045 MDValueList.assignValue( 2046 ValueAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)), 2047 NextMDValueNo++); 2048 break; 2049 } 2050 case bitc::METADATA_DISTINCT_NODE: 2051 IsDistinct = true; 2052 // fallthrough... 2053 case bitc::METADATA_NODE: { 2054 SmallVector<Metadata *, 8> Elts; 2055 Elts.reserve(Record.size()); 2056 for (unsigned ID : Record) 2057 Elts.push_back(ID ? MDValueList.getValueFwdRef(ID - 1) : nullptr); 2058 MDValueList.assignValue(IsDistinct ? MDNode::getDistinct(Context, Elts) 2059 : MDNode::get(Context, Elts), 2060 NextMDValueNo++); 2061 break; 2062 } 2063 case bitc::METADATA_LOCATION: { 2064 if (Record.size() != 5) 2065 return error("Invalid record"); 2066 2067 unsigned Line = Record[1]; 2068 unsigned Column = Record[2]; 2069 MDNode *Scope = cast<MDNode>(MDValueList.getValueFwdRef(Record[3])); 2070 Metadata *InlinedAt = 2071 Record[4] ? MDValueList.getValueFwdRef(Record[4] - 1) : nullptr; 2072 MDValueList.assignValue( 2073 GET_OR_DISTINCT(DILocation, Record[0], 2074 (Context, Line, Column, Scope, InlinedAt)), 2075 NextMDValueNo++); 2076 break; 2077 } 2078 case bitc::METADATA_GENERIC_DEBUG: { 2079 if (Record.size() < 4) 2080 return error("Invalid record"); 2081 2082 unsigned Tag = Record[1]; 2083 unsigned Version = Record[2]; 2084 2085 if (Tag >= 1u << 16 || Version != 0) 2086 return error("Invalid record"); 2087 2088 auto *Header = getMDString(Record[3]); 2089 SmallVector<Metadata *, 8> DwarfOps; 2090 for (unsigned I = 4, E = Record.size(); I != E; ++I) 2091 DwarfOps.push_back(Record[I] ? MDValueList.getValueFwdRef(Record[I] - 1) 2092 : nullptr); 2093 MDValueList.assignValue(GET_OR_DISTINCT(GenericDINode, Record[0], 2094 (Context, Tag, Header, DwarfOps)), 2095 NextMDValueNo++); 2096 break; 2097 } 2098 case bitc::METADATA_SUBRANGE: { 2099 if (Record.size() != 3) 2100 return error("Invalid record"); 2101 2102 MDValueList.assignValue( 2103 GET_OR_DISTINCT(DISubrange, Record[0], 2104 (Context, Record[1], unrotateSign(Record[2]))), 2105 NextMDValueNo++); 2106 break; 2107 } 2108 case bitc::METADATA_ENUMERATOR: { 2109 if (Record.size() != 3) 2110 return error("Invalid record"); 2111 2112 MDValueList.assignValue(GET_OR_DISTINCT(DIEnumerator, Record[0], 2113 (Context, unrotateSign(Record[1]), 2114 getMDString(Record[2]))), 2115 NextMDValueNo++); 2116 break; 2117 } 2118 case bitc::METADATA_BASIC_TYPE: { 2119 if (Record.size() != 6) 2120 return error("Invalid record"); 2121 2122 MDValueList.assignValue( 2123 GET_OR_DISTINCT(DIBasicType, Record[0], 2124 (Context, Record[1], getMDString(Record[2]), 2125 Record[3], Record[4], Record[5])), 2126 NextMDValueNo++); 2127 break; 2128 } 2129 case bitc::METADATA_DERIVED_TYPE: { 2130 if (Record.size() != 12) 2131 return error("Invalid record"); 2132 2133 MDValueList.assignValue( 2134 GET_OR_DISTINCT(DIDerivedType, Record[0], 2135 (Context, Record[1], getMDString(Record[2]), 2136 getMDOrNull(Record[3]), Record[4], 2137 getMDOrNull(Record[5]), getMDOrNull(Record[6]), 2138 Record[7], Record[8], Record[9], Record[10], 2139 getMDOrNull(Record[11]))), 2140 NextMDValueNo++); 2141 break; 2142 } 2143 case bitc::METADATA_COMPOSITE_TYPE: { 2144 if (Record.size() != 16) 2145 return error("Invalid record"); 2146 2147 MDValueList.assignValue( 2148 GET_OR_DISTINCT(DICompositeType, Record[0], 2149 (Context, Record[1], getMDString(Record[2]), 2150 getMDOrNull(Record[3]), Record[4], 2151 getMDOrNull(Record[5]), getMDOrNull(Record[6]), 2152 Record[7], Record[8], Record[9], Record[10], 2153 getMDOrNull(Record[11]), Record[12], 2154 getMDOrNull(Record[13]), getMDOrNull(Record[14]), 2155 getMDString(Record[15]))), 2156 NextMDValueNo++); 2157 break; 2158 } 2159 case bitc::METADATA_SUBROUTINE_TYPE: { 2160 if (Record.size() != 3) 2161 return error("Invalid record"); 2162 2163 MDValueList.assignValue( 2164 GET_OR_DISTINCT(DISubroutineType, Record[0], 2165 (Context, Record[1], getMDOrNull(Record[2]))), 2166 NextMDValueNo++); 2167 break; 2168 } 2169 2170 case bitc::METADATA_MODULE: { 2171 if (Record.size() != 6) 2172 return error("Invalid record"); 2173 2174 MDValueList.assignValue( 2175 GET_OR_DISTINCT(DIModule, Record[0], 2176 (Context, getMDOrNull(Record[1]), 2177 getMDString(Record[2]), getMDString(Record[3]), 2178 getMDString(Record[4]), getMDString(Record[5]))), 2179 NextMDValueNo++); 2180 break; 2181 } 2182 2183 case bitc::METADATA_FILE: { 2184 if (Record.size() != 3) 2185 return error("Invalid record"); 2186 2187 MDValueList.assignValue( 2188 GET_OR_DISTINCT(DIFile, Record[0], (Context, getMDString(Record[1]), 2189 getMDString(Record[2]))), 2190 NextMDValueNo++); 2191 break; 2192 } 2193 case bitc::METADATA_COMPILE_UNIT: { 2194 if (Record.size() < 14 || Record.size() > 15) 2195 return error("Invalid record"); 2196 2197 // Ignore Record[1], which indicates whether this compile unit is 2198 // distinct. It's always distinct. 2199 MDValueList.assignValue( 2200 DICompileUnit::getDistinct( 2201 Context, Record[1], getMDOrNull(Record[2]), 2202 getMDString(Record[3]), Record[4], getMDString(Record[5]), 2203 Record[6], getMDString(Record[7]), Record[8], 2204 getMDOrNull(Record[9]), getMDOrNull(Record[10]), 2205 getMDOrNull(Record[11]), getMDOrNull(Record[12]), 2206 getMDOrNull(Record[13]), Record.size() == 14 ? 0 : Record[14]), 2207 NextMDValueNo++); 2208 break; 2209 } 2210 case bitc::METADATA_SUBPROGRAM: { 2211 if (Record.size() != 18 && Record.size() != 19) 2212 return error("Invalid record"); 2213 2214 bool HasFn = Record.size() == 19; 2215 DISubprogram *SP = GET_OR_DISTINCT( 2216 DISubprogram, 2217 Record[0] || Record[8], // All definitions should be distinct. 2218 (Context, getMDOrNull(Record[1]), getMDString(Record[2]), 2219 getMDString(Record[3]), getMDOrNull(Record[4]), Record[5], 2220 getMDOrNull(Record[6]), Record[7], Record[8], Record[9], 2221 getMDOrNull(Record[10]), Record[11], Record[12], Record[13], 2222 Record[14], getMDOrNull(Record[15 + HasFn]), 2223 getMDOrNull(Record[16 + HasFn]), getMDOrNull(Record[17 + HasFn]))); 2224 MDValueList.assignValue(SP, NextMDValueNo++); 2225 2226 // Upgrade sp->function mapping to function->sp mapping. 2227 if (HasFn && Record[15]) { 2228 if (auto *CMD = dyn_cast<ConstantAsMetadata>(getMDOrNull(Record[15]))) 2229 if (auto *F = dyn_cast<Function>(CMD->getValue())) { 2230 if (F->isMaterializable()) 2231 // Defer until materialized; unmaterialized functions may not have 2232 // metadata. 2233 FunctionsWithSPs[F] = SP; 2234 else if (!F->empty()) 2235 F->setSubprogram(SP); 2236 } 2237 } 2238 break; 2239 } 2240 case bitc::METADATA_LEXICAL_BLOCK: { 2241 if (Record.size() != 5) 2242 return error("Invalid record"); 2243 2244 MDValueList.assignValue( 2245 GET_OR_DISTINCT(DILexicalBlock, Record[0], 2246 (Context, getMDOrNull(Record[1]), 2247 getMDOrNull(Record[2]), Record[3], Record[4])), 2248 NextMDValueNo++); 2249 break; 2250 } 2251 case bitc::METADATA_LEXICAL_BLOCK_FILE: { 2252 if (Record.size() != 4) 2253 return error("Invalid record"); 2254 2255 MDValueList.assignValue( 2256 GET_OR_DISTINCT(DILexicalBlockFile, Record[0], 2257 (Context, getMDOrNull(Record[1]), 2258 getMDOrNull(Record[2]), Record[3])), 2259 NextMDValueNo++); 2260 break; 2261 } 2262 case bitc::METADATA_NAMESPACE: { 2263 if (Record.size() != 5) 2264 return error("Invalid record"); 2265 2266 MDValueList.assignValue( 2267 GET_OR_DISTINCT(DINamespace, Record[0], 2268 (Context, getMDOrNull(Record[1]), 2269 getMDOrNull(Record[2]), getMDString(Record[3]), 2270 Record[4])), 2271 NextMDValueNo++); 2272 break; 2273 } 2274 case bitc::METADATA_TEMPLATE_TYPE: { 2275 if (Record.size() != 3) 2276 return error("Invalid record"); 2277 2278 MDValueList.assignValue(GET_OR_DISTINCT(DITemplateTypeParameter, 2279 Record[0], 2280 (Context, getMDString(Record[1]), 2281 getMDOrNull(Record[2]))), 2282 NextMDValueNo++); 2283 break; 2284 } 2285 case bitc::METADATA_TEMPLATE_VALUE: { 2286 if (Record.size() != 5) 2287 return error("Invalid record"); 2288 2289 MDValueList.assignValue( 2290 GET_OR_DISTINCT(DITemplateValueParameter, Record[0], 2291 (Context, Record[1], getMDString(Record[2]), 2292 getMDOrNull(Record[3]), getMDOrNull(Record[4]))), 2293 NextMDValueNo++); 2294 break; 2295 } 2296 case bitc::METADATA_GLOBAL_VAR: { 2297 if (Record.size() != 11) 2298 return error("Invalid record"); 2299 2300 MDValueList.assignValue( 2301 GET_OR_DISTINCT(DIGlobalVariable, Record[0], 2302 (Context, getMDOrNull(Record[1]), 2303 getMDString(Record[2]), getMDString(Record[3]), 2304 getMDOrNull(Record[4]), Record[5], 2305 getMDOrNull(Record[6]), Record[7], Record[8], 2306 getMDOrNull(Record[9]), getMDOrNull(Record[10]))), 2307 NextMDValueNo++); 2308 break; 2309 } 2310 case bitc::METADATA_LOCAL_VAR: { 2311 // 10th field is for the obseleted 'inlinedAt:' field. 2312 if (Record.size() < 8 || Record.size() > 10) 2313 return error("Invalid record"); 2314 2315 // 2nd field used to be an artificial tag, either DW_TAG_auto_variable or 2316 // DW_TAG_arg_variable. 2317 bool HasTag = Record.size() > 8; 2318 MDValueList.assignValue( 2319 GET_OR_DISTINCT(DILocalVariable, Record[0], 2320 (Context, getMDOrNull(Record[1 + HasTag]), 2321 getMDString(Record[2 + HasTag]), 2322 getMDOrNull(Record[3 + HasTag]), Record[4 + HasTag], 2323 getMDOrNull(Record[5 + HasTag]), Record[6 + HasTag], 2324 Record[7 + HasTag])), 2325 NextMDValueNo++); 2326 break; 2327 } 2328 case bitc::METADATA_EXPRESSION: { 2329 if (Record.size() < 1) 2330 return error("Invalid record"); 2331 2332 MDValueList.assignValue( 2333 GET_OR_DISTINCT(DIExpression, Record[0], 2334 (Context, makeArrayRef(Record).slice(1))), 2335 NextMDValueNo++); 2336 break; 2337 } 2338 case bitc::METADATA_OBJC_PROPERTY: { 2339 if (Record.size() != 8) 2340 return error("Invalid record"); 2341 2342 MDValueList.assignValue( 2343 GET_OR_DISTINCT(DIObjCProperty, Record[0], 2344 (Context, getMDString(Record[1]), 2345 getMDOrNull(Record[2]), Record[3], 2346 getMDString(Record[4]), getMDString(Record[5]), 2347 Record[6], getMDOrNull(Record[7]))), 2348 NextMDValueNo++); 2349 break; 2350 } 2351 case bitc::METADATA_IMPORTED_ENTITY: { 2352 if (Record.size() != 6) 2353 return error("Invalid record"); 2354 2355 MDValueList.assignValue( 2356 GET_OR_DISTINCT(DIImportedEntity, Record[0], 2357 (Context, Record[1], getMDOrNull(Record[2]), 2358 getMDOrNull(Record[3]), Record[4], 2359 getMDString(Record[5]))), 2360 NextMDValueNo++); 2361 break; 2362 } 2363 case bitc::METADATA_STRING: { 2364 std::string String(Record.begin(), Record.end()); 2365 llvm::UpgradeMDStringConstant(String); 2366 Metadata *MD = MDString::get(Context, String); 2367 MDValueList.assignValue(MD, NextMDValueNo++); 2368 break; 2369 } 2370 case bitc::METADATA_KIND: { 2371 // Support older bitcode files that had METADATA_KIND records in a 2372 // block with METADATA_BLOCK_ID. 2373 if (std::error_code EC = parseMetadataKindRecord(Record)) 2374 return EC; 2375 break; 2376 } 2377 } 2378 } 2379 #undef GET_OR_DISTINCT 2380 } 2381 2382 /// Parse the metadata kinds out of the METADATA_KIND_BLOCK. 2383 std::error_code BitcodeReader::parseMetadataKinds() { 2384 if (Stream.EnterSubBlock(bitc::METADATA_KIND_BLOCK_ID)) 2385 return error("Invalid record"); 2386 2387 SmallVector<uint64_t, 64> Record; 2388 2389 // Read all the records. 2390 while (1) { 2391 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2392 2393 switch (Entry.Kind) { 2394 case BitstreamEntry::SubBlock: // Handled for us already. 2395 case BitstreamEntry::Error: 2396 return error("Malformed block"); 2397 case BitstreamEntry::EndBlock: 2398 return std::error_code(); 2399 case BitstreamEntry::Record: 2400 // The interesting case. 2401 break; 2402 } 2403 2404 // Read a record. 2405 Record.clear(); 2406 unsigned Code = Stream.readRecord(Entry.ID, Record); 2407 switch (Code) { 2408 default: // Default behavior: ignore. 2409 break; 2410 case bitc::METADATA_KIND: { 2411 if (std::error_code EC = parseMetadataKindRecord(Record)) 2412 return EC; 2413 break; 2414 } 2415 } 2416 } 2417 } 2418 2419 /// Decode a signed value stored with the sign bit in the LSB for dense VBR 2420 /// encoding. 2421 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { 2422 if ((V & 1) == 0) 2423 return V >> 1; 2424 if (V != 1) 2425 return -(V >> 1); 2426 // There is no such thing as -0 with integers. "-0" really means MININT. 2427 return 1ULL << 63; 2428 } 2429 2430 /// Resolve all of the initializers for global values and aliases that we can. 2431 std::error_code BitcodeReader::resolveGlobalAndAliasInits() { 2432 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist; 2433 std::vector<std::pair<GlobalAlias*, unsigned> > AliasInitWorklist; 2434 std::vector<std::pair<Function*, unsigned> > FunctionPrefixWorklist; 2435 std::vector<std::pair<Function*, unsigned> > FunctionPrologueWorklist; 2436 std::vector<std::pair<Function*, unsigned> > FunctionPersonalityFnWorklist; 2437 2438 GlobalInitWorklist.swap(GlobalInits); 2439 AliasInitWorklist.swap(AliasInits); 2440 FunctionPrefixWorklist.swap(FunctionPrefixes); 2441 FunctionPrologueWorklist.swap(FunctionPrologues); 2442 FunctionPersonalityFnWorklist.swap(FunctionPersonalityFns); 2443 2444 while (!GlobalInitWorklist.empty()) { 2445 unsigned ValID = GlobalInitWorklist.back().second; 2446 if (ValID >= ValueList.size()) { 2447 // Not ready to resolve this yet, it requires something later in the file. 2448 GlobalInits.push_back(GlobalInitWorklist.back()); 2449 } else { 2450 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2451 GlobalInitWorklist.back().first->setInitializer(C); 2452 else 2453 return error("Expected a constant"); 2454 } 2455 GlobalInitWorklist.pop_back(); 2456 } 2457 2458 while (!AliasInitWorklist.empty()) { 2459 unsigned ValID = AliasInitWorklist.back().second; 2460 if (ValID >= ValueList.size()) { 2461 AliasInits.push_back(AliasInitWorklist.back()); 2462 } else { 2463 Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]); 2464 if (!C) 2465 return error("Expected a constant"); 2466 GlobalAlias *Alias = AliasInitWorklist.back().first; 2467 if (C->getType() != Alias->getType()) 2468 return error("Alias and aliasee types don't match"); 2469 Alias->setAliasee(C); 2470 } 2471 AliasInitWorklist.pop_back(); 2472 } 2473 2474 while (!FunctionPrefixWorklist.empty()) { 2475 unsigned ValID = FunctionPrefixWorklist.back().second; 2476 if (ValID >= ValueList.size()) { 2477 FunctionPrefixes.push_back(FunctionPrefixWorklist.back()); 2478 } else { 2479 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2480 FunctionPrefixWorklist.back().first->setPrefixData(C); 2481 else 2482 return error("Expected a constant"); 2483 } 2484 FunctionPrefixWorklist.pop_back(); 2485 } 2486 2487 while (!FunctionPrologueWorklist.empty()) { 2488 unsigned ValID = FunctionPrologueWorklist.back().second; 2489 if (ValID >= ValueList.size()) { 2490 FunctionPrologues.push_back(FunctionPrologueWorklist.back()); 2491 } else { 2492 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2493 FunctionPrologueWorklist.back().first->setPrologueData(C); 2494 else 2495 return error("Expected a constant"); 2496 } 2497 FunctionPrologueWorklist.pop_back(); 2498 } 2499 2500 while (!FunctionPersonalityFnWorklist.empty()) { 2501 unsigned ValID = FunctionPersonalityFnWorklist.back().second; 2502 if (ValID >= ValueList.size()) { 2503 FunctionPersonalityFns.push_back(FunctionPersonalityFnWorklist.back()); 2504 } else { 2505 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2506 FunctionPersonalityFnWorklist.back().first->setPersonalityFn(C); 2507 else 2508 return error("Expected a constant"); 2509 } 2510 FunctionPersonalityFnWorklist.pop_back(); 2511 } 2512 2513 return std::error_code(); 2514 } 2515 2516 static APInt readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { 2517 SmallVector<uint64_t, 8> Words(Vals.size()); 2518 std::transform(Vals.begin(), Vals.end(), Words.begin(), 2519 BitcodeReader::decodeSignRotatedValue); 2520 2521 return APInt(TypeBits, Words); 2522 } 2523 2524 std::error_code BitcodeReader::parseConstants() { 2525 if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 2526 return error("Invalid record"); 2527 2528 SmallVector<uint64_t, 64> Record; 2529 2530 // Read all the records for this value table. 2531 Type *CurTy = Type::getInt32Ty(Context); 2532 unsigned NextCstNo = ValueList.size(); 2533 while (1) { 2534 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2535 2536 switch (Entry.Kind) { 2537 case BitstreamEntry::SubBlock: // Handled for us already. 2538 case BitstreamEntry::Error: 2539 return error("Malformed block"); 2540 case BitstreamEntry::EndBlock: 2541 if (NextCstNo != ValueList.size()) 2542 return error("Invalid ronstant reference"); 2543 2544 // Once all the constants have been read, go through and resolve forward 2545 // references. 2546 ValueList.resolveConstantForwardRefs(); 2547 return std::error_code(); 2548 case BitstreamEntry::Record: 2549 // The interesting case. 2550 break; 2551 } 2552 2553 // Read a record. 2554 Record.clear(); 2555 Value *V = nullptr; 2556 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 2557 switch (BitCode) { 2558 default: // Default behavior: unknown constant 2559 case bitc::CST_CODE_UNDEF: // UNDEF 2560 V = UndefValue::get(CurTy); 2561 break; 2562 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 2563 if (Record.empty()) 2564 return error("Invalid record"); 2565 if (Record[0] >= TypeList.size() || !TypeList[Record[0]]) 2566 return error("Invalid record"); 2567 CurTy = TypeList[Record[0]]; 2568 continue; // Skip the ValueList manipulation. 2569 case bitc::CST_CODE_NULL: // NULL 2570 V = Constant::getNullValue(CurTy); 2571 break; 2572 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 2573 if (!CurTy->isIntegerTy() || Record.empty()) 2574 return error("Invalid record"); 2575 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); 2576 break; 2577 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 2578 if (!CurTy->isIntegerTy() || Record.empty()) 2579 return error("Invalid record"); 2580 2581 APInt VInt = 2582 readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth()); 2583 V = ConstantInt::get(Context, VInt); 2584 2585 break; 2586 } 2587 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 2588 if (Record.empty()) 2589 return error("Invalid record"); 2590 if (CurTy->isHalfTy()) 2591 V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf, 2592 APInt(16, (uint16_t)Record[0]))); 2593 else if (CurTy->isFloatTy()) 2594 V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle, 2595 APInt(32, (uint32_t)Record[0]))); 2596 else if (CurTy->isDoubleTy()) 2597 V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble, 2598 APInt(64, Record[0]))); 2599 else if (CurTy->isX86_FP80Ty()) { 2600 // Bits are not stored the same way as a normal i80 APInt, compensate. 2601 uint64_t Rearrange[2]; 2602 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 2603 Rearrange[1] = Record[0] >> 48; 2604 V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended, 2605 APInt(80, Rearrange))); 2606 } else if (CurTy->isFP128Ty()) 2607 V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad, 2608 APInt(128, Record))); 2609 else if (CurTy->isPPC_FP128Ty()) 2610 V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble, 2611 APInt(128, Record))); 2612 else 2613 V = UndefValue::get(CurTy); 2614 break; 2615 } 2616 2617 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 2618 if (Record.empty()) 2619 return error("Invalid record"); 2620 2621 unsigned Size = Record.size(); 2622 SmallVector<Constant*, 16> Elts; 2623 2624 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 2625 for (unsigned i = 0; i != Size; ++i) 2626 Elts.push_back(ValueList.getConstantFwdRef(Record[i], 2627 STy->getElementType(i))); 2628 V = ConstantStruct::get(STy, Elts); 2629 } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) { 2630 Type *EltTy = ATy->getElementType(); 2631 for (unsigned i = 0; i != Size; ++i) 2632 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2633 V = ConstantArray::get(ATy, Elts); 2634 } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) { 2635 Type *EltTy = VTy->getElementType(); 2636 for (unsigned i = 0; i != Size; ++i) 2637 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2638 V = ConstantVector::get(Elts); 2639 } else { 2640 V = UndefValue::get(CurTy); 2641 } 2642 break; 2643 } 2644 case bitc::CST_CODE_STRING: // STRING: [values] 2645 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 2646 if (Record.empty()) 2647 return error("Invalid record"); 2648 2649 SmallString<16> Elts(Record.begin(), Record.end()); 2650 V = ConstantDataArray::getString(Context, Elts, 2651 BitCode == bitc::CST_CODE_CSTRING); 2652 break; 2653 } 2654 case bitc::CST_CODE_DATA: {// DATA: [n x value] 2655 if (Record.empty()) 2656 return error("Invalid record"); 2657 2658 Type *EltTy = cast<SequentialType>(CurTy)->getElementType(); 2659 unsigned Size = Record.size(); 2660 2661 if (EltTy->isIntegerTy(8)) { 2662 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); 2663 if (isa<VectorType>(CurTy)) 2664 V = ConstantDataVector::get(Context, Elts); 2665 else 2666 V = ConstantDataArray::get(Context, Elts); 2667 } else if (EltTy->isIntegerTy(16)) { 2668 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2669 if (isa<VectorType>(CurTy)) 2670 V = ConstantDataVector::get(Context, Elts); 2671 else 2672 V = ConstantDataArray::get(Context, Elts); 2673 } else if (EltTy->isIntegerTy(32)) { 2674 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2675 if (isa<VectorType>(CurTy)) 2676 V = ConstantDataVector::get(Context, Elts); 2677 else 2678 V = ConstantDataArray::get(Context, Elts); 2679 } else if (EltTy->isIntegerTy(64)) { 2680 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2681 if (isa<VectorType>(CurTy)) 2682 V = ConstantDataVector::get(Context, Elts); 2683 else 2684 V = ConstantDataArray::get(Context, Elts); 2685 } else if (EltTy->isFloatTy()) { 2686 SmallVector<float, 16> Elts(Size); 2687 std::transform(Record.begin(), Record.end(), Elts.begin(), BitsToFloat); 2688 if (isa<VectorType>(CurTy)) 2689 V = ConstantDataVector::get(Context, Elts); 2690 else 2691 V = ConstantDataArray::get(Context, Elts); 2692 } else if (EltTy->isDoubleTy()) { 2693 SmallVector<double, 16> Elts(Size); 2694 std::transform(Record.begin(), Record.end(), Elts.begin(), 2695 BitsToDouble); 2696 if (isa<VectorType>(CurTy)) 2697 V = ConstantDataVector::get(Context, Elts); 2698 else 2699 V = ConstantDataArray::get(Context, Elts); 2700 } else { 2701 return error("Invalid type for value"); 2702 } 2703 break; 2704 } 2705 2706 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 2707 if (Record.size() < 3) 2708 return error("Invalid record"); 2709 int Opc = getDecodedBinaryOpcode(Record[0], CurTy); 2710 if (Opc < 0) { 2711 V = UndefValue::get(CurTy); // Unknown binop. 2712 } else { 2713 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 2714 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy); 2715 unsigned Flags = 0; 2716 if (Record.size() >= 4) { 2717 if (Opc == Instruction::Add || 2718 Opc == Instruction::Sub || 2719 Opc == Instruction::Mul || 2720 Opc == Instruction::Shl) { 2721 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 2722 Flags |= OverflowingBinaryOperator::NoSignedWrap; 2723 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 2724 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 2725 } else if (Opc == Instruction::SDiv || 2726 Opc == Instruction::UDiv || 2727 Opc == Instruction::LShr || 2728 Opc == Instruction::AShr) { 2729 if (Record[3] & (1 << bitc::PEO_EXACT)) 2730 Flags |= SDivOperator::IsExact; 2731 } 2732 } 2733 V = ConstantExpr::get(Opc, LHS, RHS, Flags); 2734 } 2735 break; 2736 } 2737 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 2738 if (Record.size() < 3) 2739 return error("Invalid record"); 2740 int Opc = getDecodedCastOpcode(Record[0]); 2741 if (Opc < 0) { 2742 V = UndefValue::get(CurTy); // Unknown cast. 2743 } else { 2744 Type *OpTy = getTypeByID(Record[1]); 2745 if (!OpTy) 2746 return error("Invalid record"); 2747 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy); 2748 V = UpgradeBitCastExpr(Opc, Op, CurTy); 2749 if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy); 2750 } 2751 break; 2752 } 2753 case bitc::CST_CODE_CE_INBOUNDS_GEP: 2754 case bitc::CST_CODE_CE_GEP: { // CE_GEP: [n x operands] 2755 unsigned OpNum = 0; 2756 Type *PointeeType = nullptr; 2757 if (Record.size() % 2) 2758 PointeeType = getTypeByID(Record[OpNum++]); 2759 SmallVector<Constant*, 16> Elts; 2760 while (OpNum != Record.size()) { 2761 Type *ElTy = getTypeByID(Record[OpNum++]); 2762 if (!ElTy) 2763 return error("Invalid record"); 2764 Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy)); 2765 } 2766 2767 if (PointeeType && 2768 PointeeType != 2769 cast<SequentialType>(Elts[0]->getType()->getScalarType()) 2770 ->getElementType()) 2771 return error("Explicit gep operator type does not match pointee type " 2772 "of pointer operand"); 2773 2774 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 2775 V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices, 2776 BitCode == 2777 bitc::CST_CODE_CE_INBOUNDS_GEP); 2778 break; 2779 } 2780 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] 2781 if (Record.size() < 3) 2782 return error("Invalid record"); 2783 2784 Type *SelectorTy = Type::getInt1Ty(Context); 2785 2786 // The selector might be an i1 or an <n x i1> 2787 // Get the type from the ValueList before getting a forward ref. 2788 if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) 2789 if (Value *V = ValueList[Record[0]]) 2790 if (SelectorTy != V->getType()) 2791 SelectorTy = VectorType::get(SelectorTy, VTy->getNumElements()); 2792 2793 V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0], 2794 SelectorTy), 2795 ValueList.getConstantFwdRef(Record[1],CurTy), 2796 ValueList.getConstantFwdRef(Record[2],CurTy)); 2797 break; 2798 } 2799 case bitc::CST_CODE_CE_EXTRACTELT 2800 : { // CE_EXTRACTELT: [opty, opval, opty, opval] 2801 if (Record.size() < 3) 2802 return error("Invalid record"); 2803 VectorType *OpTy = 2804 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2805 if (!OpTy) 2806 return error("Invalid record"); 2807 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2808 Constant *Op1 = nullptr; 2809 if (Record.size() == 4) { 2810 Type *IdxTy = getTypeByID(Record[2]); 2811 if (!IdxTy) 2812 return error("Invalid record"); 2813 Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2814 } else // TODO: Remove with llvm 4.0 2815 Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2816 if (!Op1) 2817 return error("Invalid record"); 2818 V = ConstantExpr::getExtractElement(Op0, Op1); 2819 break; 2820 } 2821 case bitc::CST_CODE_CE_INSERTELT 2822 : { // CE_INSERTELT: [opval, opval, opty, opval] 2823 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2824 if (Record.size() < 3 || !OpTy) 2825 return error("Invalid record"); 2826 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2827 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], 2828 OpTy->getElementType()); 2829 Constant *Op2 = nullptr; 2830 if (Record.size() == 4) { 2831 Type *IdxTy = getTypeByID(Record[2]); 2832 if (!IdxTy) 2833 return error("Invalid record"); 2834 Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2835 } else // TODO: Remove with llvm 4.0 2836 Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2837 if (!Op2) 2838 return error("Invalid record"); 2839 V = ConstantExpr::getInsertElement(Op0, Op1, Op2); 2840 break; 2841 } 2842 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 2843 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2844 if (Record.size() < 3 || !OpTy) 2845 return error("Invalid record"); 2846 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2847 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy); 2848 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 2849 OpTy->getNumElements()); 2850 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy); 2851 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 2852 break; 2853 } 2854 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 2855 VectorType *RTy = dyn_cast<VectorType>(CurTy); 2856 VectorType *OpTy = 2857 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2858 if (Record.size() < 4 || !RTy || !OpTy) 2859 return error("Invalid record"); 2860 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2861 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2862 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 2863 RTy->getNumElements()); 2864 Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy); 2865 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 2866 break; 2867 } 2868 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 2869 if (Record.size() < 4) 2870 return error("Invalid record"); 2871 Type *OpTy = getTypeByID(Record[0]); 2872 if (!OpTy) 2873 return error("Invalid record"); 2874 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2875 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2876 2877 if (OpTy->isFPOrFPVectorTy()) 2878 V = ConstantExpr::getFCmp(Record[3], Op0, Op1); 2879 else 2880 V = ConstantExpr::getICmp(Record[3], Op0, Op1); 2881 break; 2882 } 2883 // This maintains backward compatibility, pre-asm dialect keywords. 2884 // FIXME: Remove with the 4.0 release. 2885 case bitc::CST_CODE_INLINEASM_OLD: { 2886 if (Record.size() < 2) 2887 return error("Invalid record"); 2888 std::string AsmStr, ConstrStr; 2889 bool HasSideEffects = Record[0] & 1; 2890 bool IsAlignStack = Record[0] >> 1; 2891 unsigned AsmStrSize = Record[1]; 2892 if (2+AsmStrSize >= Record.size()) 2893 return error("Invalid record"); 2894 unsigned ConstStrSize = Record[2+AsmStrSize]; 2895 if (3+AsmStrSize+ConstStrSize > Record.size()) 2896 return error("Invalid record"); 2897 2898 for (unsigned i = 0; i != AsmStrSize; ++i) 2899 AsmStr += (char)Record[2+i]; 2900 for (unsigned i = 0; i != ConstStrSize; ++i) 2901 ConstrStr += (char)Record[3+AsmStrSize+i]; 2902 PointerType *PTy = cast<PointerType>(CurTy); 2903 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 2904 AsmStr, ConstrStr, HasSideEffects, IsAlignStack); 2905 break; 2906 } 2907 // This version adds support for the asm dialect keywords (e.g., 2908 // inteldialect). 2909 case bitc::CST_CODE_INLINEASM: { 2910 if (Record.size() < 2) 2911 return error("Invalid record"); 2912 std::string AsmStr, ConstrStr; 2913 bool HasSideEffects = Record[0] & 1; 2914 bool IsAlignStack = (Record[0] >> 1) & 1; 2915 unsigned AsmDialect = Record[0] >> 2; 2916 unsigned AsmStrSize = Record[1]; 2917 if (2+AsmStrSize >= Record.size()) 2918 return error("Invalid record"); 2919 unsigned ConstStrSize = Record[2+AsmStrSize]; 2920 if (3+AsmStrSize+ConstStrSize > Record.size()) 2921 return error("Invalid record"); 2922 2923 for (unsigned i = 0; i != AsmStrSize; ++i) 2924 AsmStr += (char)Record[2+i]; 2925 for (unsigned i = 0; i != ConstStrSize; ++i) 2926 ConstrStr += (char)Record[3+AsmStrSize+i]; 2927 PointerType *PTy = cast<PointerType>(CurTy); 2928 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 2929 AsmStr, ConstrStr, HasSideEffects, IsAlignStack, 2930 InlineAsm::AsmDialect(AsmDialect)); 2931 break; 2932 } 2933 case bitc::CST_CODE_BLOCKADDRESS:{ 2934 if (Record.size() < 3) 2935 return error("Invalid record"); 2936 Type *FnTy = getTypeByID(Record[0]); 2937 if (!FnTy) 2938 return error("Invalid record"); 2939 Function *Fn = 2940 dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy)); 2941 if (!Fn) 2942 return error("Invalid record"); 2943 2944 // Don't let Fn get dematerialized. 2945 BlockAddressesTaken.insert(Fn); 2946 2947 // If the function is already parsed we can insert the block address right 2948 // away. 2949 BasicBlock *BB; 2950 unsigned BBID = Record[2]; 2951 if (!BBID) 2952 // Invalid reference to entry block. 2953 return error("Invalid ID"); 2954 if (!Fn->empty()) { 2955 Function::iterator BBI = Fn->begin(), BBE = Fn->end(); 2956 for (size_t I = 0, E = BBID; I != E; ++I) { 2957 if (BBI == BBE) 2958 return error("Invalid ID"); 2959 ++BBI; 2960 } 2961 BB = &*BBI; 2962 } else { 2963 // Otherwise insert a placeholder and remember it so it can be inserted 2964 // when the function is parsed. 2965 auto &FwdBBs = BasicBlockFwdRefs[Fn]; 2966 if (FwdBBs.empty()) 2967 BasicBlockFwdRefQueue.push_back(Fn); 2968 if (FwdBBs.size() < BBID + 1) 2969 FwdBBs.resize(BBID + 1); 2970 if (!FwdBBs[BBID]) 2971 FwdBBs[BBID] = BasicBlock::Create(Context); 2972 BB = FwdBBs[BBID]; 2973 } 2974 V = BlockAddress::get(Fn, BB); 2975 break; 2976 } 2977 } 2978 2979 if (ValueList.assignValue(V, NextCstNo)) 2980 return error("Invalid forward reference"); 2981 ++NextCstNo; 2982 } 2983 } 2984 2985 std::error_code BitcodeReader::parseUseLists() { 2986 if (Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 2987 return error("Invalid record"); 2988 2989 // Read all the records. 2990 SmallVector<uint64_t, 64> Record; 2991 while (1) { 2992 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2993 2994 switch (Entry.Kind) { 2995 case BitstreamEntry::SubBlock: // Handled for us already. 2996 case BitstreamEntry::Error: 2997 return error("Malformed block"); 2998 case BitstreamEntry::EndBlock: 2999 return std::error_code(); 3000 case BitstreamEntry::Record: 3001 // The interesting case. 3002 break; 3003 } 3004 3005 // Read a use list record. 3006 Record.clear(); 3007 bool IsBB = false; 3008 switch (Stream.readRecord(Entry.ID, Record)) { 3009 default: // Default behavior: unknown type. 3010 break; 3011 case bitc::USELIST_CODE_BB: 3012 IsBB = true; 3013 // fallthrough 3014 case bitc::USELIST_CODE_DEFAULT: { 3015 unsigned RecordLength = Record.size(); 3016 if (RecordLength < 3) 3017 // Records should have at least an ID and two indexes. 3018 return error("Invalid record"); 3019 unsigned ID = Record.back(); 3020 Record.pop_back(); 3021 3022 Value *V; 3023 if (IsBB) { 3024 assert(ID < FunctionBBs.size() && "Basic block not found"); 3025 V = FunctionBBs[ID]; 3026 } else 3027 V = ValueList[ID]; 3028 unsigned NumUses = 0; 3029 SmallDenseMap<const Use *, unsigned, 16> Order; 3030 for (const Use &U : V->uses()) { 3031 if (++NumUses > Record.size()) 3032 break; 3033 Order[&U] = Record[NumUses - 1]; 3034 } 3035 if (Order.size() != Record.size() || NumUses > Record.size()) 3036 // Mismatches can happen if the functions are being materialized lazily 3037 // (out-of-order), or a value has been upgraded. 3038 break; 3039 3040 V->sortUseList([&](const Use &L, const Use &R) { 3041 return Order.lookup(&L) < Order.lookup(&R); 3042 }); 3043 break; 3044 } 3045 } 3046 } 3047 } 3048 3049 /// When we see the block for metadata, remember where it is and then skip it. 3050 /// This lets us lazily deserialize the metadata. 3051 std::error_code BitcodeReader::rememberAndSkipMetadata() { 3052 // Save the current stream state. 3053 uint64_t CurBit = Stream.GetCurrentBitNo(); 3054 DeferredMetadataInfo.push_back(CurBit); 3055 3056 // Skip over the block for now. 3057 if (Stream.SkipBlock()) 3058 return error("Invalid record"); 3059 return std::error_code(); 3060 } 3061 3062 std::error_code BitcodeReader::materializeMetadata() { 3063 for (uint64_t BitPos : DeferredMetadataInfo) { 3064 // Move the bit stream to the saved position. 3065 Stream.JumpToBit(BitPos); 3066 if (std::error_code EC = parseMetadata()) 3067 return EC; 3068 } 3069 DeferredMetadataInfo.clear(); 3070 return std::error_code(); 3071 } 3072 3073 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; } 3074 3075 /// When we see the block for a function body, remember where it is and then 3076 /// skip it. This lets us lazily deserialize the functions. 3077 std::error_code BitcodeReader::rememberAndSkipFunctionBody() { 3078 // Get the function we are talking about. 3079 if (FunctionsWithBodies.empty()) 3080 return error("Insufficient function protos"); 3081 3082 Function *Fn = FunctionsWithBodies.back(); 3083 FunctionsWithBodies.pop_back(); 3084 3085 // Save the current stream state. 3086 uint64_t CurBit = Stream.GetCurrentBitNo(); 3087 assert( 3088 (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) && 3089 "Mismatch between VST and scanned function offsets"); 3090 DeferredFunctionInfo[Fn] = CurBit; 3091 3092 // Skip over the function block for now. 3093 if (Stream.SkipBlock()) 3094 return error("Invalid record"); 3095 return std::error_code(); 3096 } 3097 3098 std::error_code BitcodeReader::globalCleanup() { 3099 // Patch the initializers for globals and aliases up. 3100 resolveGlobalAndAliasInits(); 3101 if (!GlobalInits.empty() || !AliasInits.empty()) 3102 return error("Malformed global initializer set"); 3103 3104 // Look for intrinsic functions which need to be upgraded at some point 3105 for (Function &F : *TheModule) { 3106 Function *NewFn; 3107 if (UpgradeIntrinsicFunction(&F, NewFn)) 3108 UpgradedIntrinsics[&F] = NewFn; 3109 } 3110 3111 // Look for global variables which need to be renamed. 3112 for (GlobalVariable &GV : TheModule->globals()) 3113 UpgradeGlobalVariable(&GV); 3114 3115 // Force deallocation of memory for these vectors to favor the client that 3116 // want lazy deserialization. 3117 std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits); 3118 std::vector<std::pair<GlobalAlias*, unsigned> >().swap(AliasInits); 3119 return std::error_code(); 3120 } 3121 3122 /// Support for lazy parsing of function bodies. This is required if we 3123 /// either have an old bitcode file without a VST forward declaration record, 3124 /// or if we have an anonymous function being materialized, since anonymous 3125 /// functions do not have a name and are therefore not in the VST. 3126 std::error_code BitcodeReader::rememberAndSkipFunctionBodies() { 3127 Stream.JumpToBit(NextUnreadBit); 3128 3129 if (Stream.AtEndOfStream()) 3130 return error("Could not find function in stream"); 3131 3132 if (!SeenFirstFunctionBody) 3133 return error("Trying to materialize functions before seeing function blocks"); 3134 3135 // An old bitcode file with the symbol table at the end would have 3136 // finished the parse greedily. 3137 assert(SeenValueSymbolTable); 3138 3139 SmallVector<uint64_t, 64> Record; 3140 3141 while (1) { 3142 BitstreamEntry Entry = Stream.advance(); 3143 switch (Entry.Kind) { 3144 default: 3145 return error("Expect SubBlock"); 3146 case BitstreamEntry::SubBlock: 3147 switch (Entry.ID) { 3148 default: 3149 return error("Expect function block"); 3150 case bitc::FUNCTION_BLOCK_ID: 3151 if (std::error_code EC = rememberAndSkipFunctionBody()) 3152 return EC; 3153 NextUnreadBit = Stream.GetCurrentBitNo(); 3154 return std::error_code(); 3155 } 3156 } 3157 } 3158 } 3159 3160 std::error_code BitcodeReader::parseBitcodeVersion() { 3161 if (Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID)) 3162 return error("Invalid record"); 3163 3164 // Read all the records. 3165 SmallVector<uint64_t, 64> Record; 3166 while (1) { 3167 BitstreamEntry Entry = Stream.advance(); 3168 3169 switch (Entry.Kind) { 3170 default: 3171 case BitstreamEntry::Error: 3172 return error("Malformed block"); 3173 case BitstreamEntry::EndBlock: 3174 return std::error_code(); 3175 case BitstreamEntry::Record: 3176 // The interesting case. 3177 break; 3178 } 3179 3180 // Read a record. 3181 Record.clear(); 3182 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 3183 switch (BitCode) { 3184 default: // Default behavior: reject 3185 return error("Invalid value"); 3186 case bitc::IDENTIFICATION_CODE_STRING: { // IDENTIFICATION: [strchr x 3187 // N] 3188 convertToString(Record, 0, ProducerIdentification); 3189 break; 3190 } 3191 case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#] 3192 unsigned epoch = (unsigned)Record[0]; 3193 if (epoch != bitc::BITCODE_CURRENT_EPOCH) { 3194 return error( 3195 Twine("Incompatible epoch: Bitcode '") + Twine(epoch) + 3196 "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'"); 3197 } 3198 } 3199 } 3200 } 3201 } 3202 3203 std::error_code BitcodeReader::parseModule(uint64_t ResumeBit, 3204 bool ShouldLazyLoadMetadata) { 3205 if (ResumeBit) 3206 Stream.JumpToBit(ResumeBit); 3207 else if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 3208 return error("Invalid record"); 3209 3210 SmallVector<uint64_t, 64> Record; 3211 std::vector<std::string> SectionTable; 3212 std::vector<std::string> GCTable; 3213 3214 // Read all the records for this module. 3215 while (1) { 3216 BitstreamEntry Entry = Stream.advance(); 3217 3218 switch (Entry.Kind) { 3219 case BitstreamEntry::Error: 3220 return error("Malformed block"); 3221 case BitstreamEntry::EndBlock: 3222 return globalCleanup(); 3223 3224 case BitstreamEntry::SubBlock: 3225 switch (Entry.ID) { 3226 default: // Skip unknown content. 3227 if (Stream.SkipBlock()) 3228 return error("Invalid record"); 3229 break; 3230 case bitc::BLOCKINFO_BLOCK_ID: 3231 if (Stream.ReadBlockInfoBlock()) 3232 return error("Malformed block"); 3233 break; 3234 case bitc::PARAMATTR_BLOCK_ID: 3235 if (std::error_code EC = parseAttributeBlock()) 3236 return EC; 3237 break; 3238 case bitc::PARAMATTR_GROUP_BLOCK_ID: 3239 if (std::error_code EC = parseAttributeGroupBlock()) 3240 return EC; 3241 break; 3242 case bitc::TYPE_BLOCK_ID_NEW: 3243 if (std::error_code EC = parseTypeTable()) 3244 return EC; 3245 break; 3246 case bitc::VALUE_SYMTAB_BLOCK_ID: 3247 if (!SeenValueSymbolTable) { 3248 // Either this is an old form VST without function index and an 3249 // associated VST forward declaration record (which would have caused 3250 // the VST to be jumped to and parsed before it was encountered 3251 // normally in the stream), or there were no function blocks to 3252 // trigger an earlier parsing of the VST. 3253 assert(VSTOffset == 0 || FunctionsWithBodies.empty()); 3254 if (std::error_code EC = parseValueSymbolTable()) 3255 return EC; 3256 SeenValueSymbolTable = true; 3257 } else { 3258 // We must have had a VST forward declaration record, which caused 3259 // the parser to jump to and parse the VST earlier. 3260 assert(VSTOffset > 0); 3261 if (Stream.SkipBlock()) 3262 return error("Invalid record"); 3263 } 3264 break; 3265 case bitc::CONSTANTS_BLOCK_ID: 3266 if (std::error_code EC = parseConstants()) 3267 return EC; 3268 if (std::error_code EC = resolveGlobalAndAliasInits()) 3269 return EC; 3270 break; 3271 case bitc::METADATA_BLOCK_ID: 3272 if (ShouldLazyLoadMetadata && !IsMetadataMaterialized) { 3273 if (std::error_code EC = rememberAndSkipMetadata()) 3274 return EC; 3275 break; 3276 } 3277 assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata"); 3278 if (std::error_code EC = parseMetadata()) 3279 return EC; 3280 break; 3281 case bitc::METADATA_KIND_BLOCK_ID: 3282 if (std::error_code EC = parseMetadataKinds()) 3283 return EC; 3284 break; 3285 case bitc::FUNCTION_BLOCK_ID: 3286 // If this is the first function body we've seen, reverse the 3287 // FunctionsWithBodies list. 3288 if (!SeenFirstFunctionBody) { 3289 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 3290 if (std::error_code EC = globalCleanup()) 3291 return EC; 3292 SeenFirstFunctionBody = true; 3293 } 3294 3295 if (VSTOffset > 0) { 3296 // If we have a VST forward declaration record, make sure we 3297 // parse the VST now if we haven't already. It is needed to 3298 // set up the DeferredFunctionInfo vector for lazy reading. 3299 if (!SeenValueSymbolTable) { 3300 if (std::error_code EC = 3301 BitcodeReader::parseValueSymbolTable(VSTOffset)) 3302 return EC; 3303 SeenValueSymbolTable = true; 3304 // Fall through so that we record the NextUnreadBit below. 3305 // This is necessary in case we have an anonymous function that 3306 // is later materialized. Since it will not have a VST entry we 3307 // need to fall back to the lazy parse to find its offset. 3308 } else { 3309 // If we have a VST forward declaration record, but have already 3310 // parsed the VST (just above, when the first function body was 3311 // encountered here), then we are resuming the parse after 3312 // materializing functions. The ResumeBit points to the 3313 // start of the last function block recorded in the 3314 // DeferredFunctionInfo map. Skip it. 3315 if (Stream.SkipBlock()) 3316 return error("Invalid record"); 3317 continue; 3318 } 3319 } 3320 3321 // Support older bitcode files that did not have the function 3322 // index in the VST, nor a VST forward declaration record, as 3323 // well as anonymous functions that do not have VST entries. 3324 // Build the DeferredFunctionInfo vector on the fly. 3325 if (std::error_code EC = rememberAndSkipFunctionBody()) 3326 return EC; 3327 3328 // Suspend parsing when we reach the function bodies. Subsequent 3329 // materialization calls will resume it when necessary. If the bitcode 3330 // file is old, the symbol table will be at the end instead and will not 3331 // have been seen yet. In this case, just finish the parse now. 3332 if (SeenValueSymbolTable) { 3333 NextUnreadBit = Stream.GetCurrentBitNo(); 3334 return std::error_code(); 3335 } 3336 break; 3337 case bitc::USELIST_BLOCK_ID: 3338 if (std::error_code EC = parseUseLists()) 3339 return EC; 3340 break; 3341 case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID: 3342 if (std::error_code EC = parseOperandBundleTags()) 3343 return EC; 3344 break; 3345 } 3346 continue; 3347 3348 case BitstreamEntry::Record: 3349 // The interesting case. 3350 break; 3351 } 3352 3353 3354 // Read a record. 3355 auto BitCode = Stream.readRecord(Entry.ID, Record); 3356 switch (BitCode) { 3357 default: break; // Default behavior, ignore unknown content. 3358 case bitc::MODULE_CODE_VERSION: { // VERSION: [version#] 3359 if (Record.size() < 1) 3360 return error("Invalid record"); 3361 // Only version #0 and #1 are supported so far. 3362 unsigned module_version = Record[0]; 3363 switch (module_version) { 3364 default: 3365 return error("Invalid value"); 3366 case 0: 3367 UseRelativeIDs = false; 3368 break; 3369 case 1: 3370 UseRelativeIDs = true; 3371 break; 3372 } 3373 break; 3374 } 3375 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 3376 std::string S; 3377 if (convertToString(Record, 0, S)) 3378 return error("Invalid record"); 3379 TheModule->setTargetTriple(S); 3380 break; 3381 } 3382 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 3383 std::string S; 3384 if (convertToString(Record, 0, S)) 3385 return error("Invalid record"); 3386 TheModule->setDataLayout(S); 3387 break; 3388 } 3389 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 3390 std::string S; 3391 if (convertToString(Record, 0, S)) 3392 return error("Invalid record"); 3393 TheModule->setModuleInlineAsm(S); 3394 break; 3395 } 3396 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 3397 // FIXME: Remove in 4.0. 3398 std::string S; 3399 if (convertToString(Record, 0, S)) 3400 return error("Invalid record"); 3401 // Ignore value. 3402 break; 3403 } 3404 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 3405 std::string S; 3406 if (convertToString(Record, 0, S)) 3407 return error("Invalid record"); 3408 SectionTable.push_back(S); 3409 break; 3410 } 3411 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 3412 std::string S; 3413 if (convertToString(Record, 0, S)) 3414 return error("Invalid record"); 3415 GCTable.push_back(S); 3416 break; 3417 } 3418 case bitc::MODULE_CODE_COMDAT: { // COMDAT: [selection_kind, name] 3419 if (Record.size() < 2) 3420 return error("Invalid record"); 3421 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]); 3422 unsigned ComdatNameSize = Record[1]; 3423 std::string ComdatName; 3424 ComdatName.reserve(ComdatNameSize); 3425 for (unsigned i = 0; i != ComdatNameSize; ++i) 3426 ComdatName += (char)Record[2 + i]; 3427 Comdat *C = TheModule->getOrInsertComdat(ComdatName); 3428 C->setSelectionKind(SK); 3429 ComdatList.push_back(C); 3430 break; 3431 } 3432 // GLOBALVAR: [pointer type, isconst, initid, 3433 // linkage, alignment, section, visibility, threadlocal, 3434 // unnamed_addr, externally_initialized, dllstorageclass, 3435 // comdat] 3436 case bitc::MODULE_CODE_GLOBALVAR: { 3437 if (Record.size() < 6) 3438 return error("Invalid record"); 3439 Type *Ty = getTypeByID(Record[0]); 3440 if (!Ty) 3441 return error("Invalid record"); 3442 bool isConstant = Record[1] & 1; 3443 bool explicitType = Record[1] & 2; 3444 unsigned AddressSpace; 3445 if (explicitType) { 3446 AddressSpace = Record[1] >> 2; 3447 } else { 3448 if (!Ty->isPointerTy()) 3449 return error("Invalid type for value"); 3450 AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 3451 Ty = cast<PointerType>(Ty)->getElementType(); 3452 } 3453 3454 uint64_t RawLinkage = Record[3]; 3455 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 3456 unsigned Alignment; 3457 if (std::error_code EC = parseAlignmentValue(Record[4], Alignment)) 3458 return EC; 3459 std::string Section; 3460 if (Record[5]) { 3461 if (Record[5]-1 >= SectionTable.size()) 3462 return error("Invalid ID"); 3463 Section = SectionTable[Record[5]-1]; 3464 } 3465 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 3466 // Local linkage must have default visibility. 3467 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage)) 3468 // FIXME: Change to an error if non-default in 4.0. 3469 Visibility = getDecodedVisibility(Record[6]); 3470 3471 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; 3472 if (Record.size() > 7) 3473 TLM = getDecodedThreadLocalMode(Record[7]); 3474 3475 bool UnnamedAddr = false; 3476 if (Record.size() > 8) 3477 UnnamedAddr = Record[8]; 3478 3479 bool ExternallyInitialized = false; 3480 if (Record.size() > 9) 3481 ExternallyInitialized = Record[9]; 3482 3483 GlobalVariable *NewGV = 3484 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, "", nullptr, 3485 TLM, AddressSpace, ExternallyInitialized); 3486 NewGV->setAlignment(Alignment); 3487 if (!Section.empty()) 3488 NewGV->setSection(Section); 3489 NewGV->setVisibility(Visibility); 3490 NewGV->setUnnamedAddr(UnnamedAddr); 3491 3492 if (Record.size() > 10) 3493 NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10])); 3494 else 3495 upgradeDLLImportExportLinkage(NewGV, RawLinkage); 3496 3497 ValueList.push_back(NewGV); 3498 3499 // Remember which value to use for the global initializer. 3500 if (unsigned InitID = Record[2]) 3501 GlobalInits.push_back(std::make_pair(NewGV, InitID-1)); 3502 3503 if (Record.size() > 11) { 3504 if (unsigned ComdatID = Record[11]) { 3505 if (ComdatID > ComdatList.size()) 3506 return error("Invalid global variable comdat ID"); 3507 NewGV->setComdat(ComdatList[ComdatID - 1]); 3508 } 3509 } else if (hasImplicitComdat(RawLinkage)) { 3510 NewGV->setComdat(reinterpret_cast<Comdat *>(1)); 3511 } 3512 break; 3513 } 3514 // FUNCTION: [type, callingconv, isproto, linkage, paramattr, 3515 // alignment, section, visibility, gc, unnamed_addr, 3516 // prologuedata, dllstorageclass, comdat, prefixdata] 3517 case bitc::MODULE_CODE_FUNCTION: { 3518 if (Record.size() < 8) 3519 return error("Invalid record"); 3520 Type *Ty = getTypeByID(Record[0]); 3521 if (!Ty) 3522 return error("Invalid record"); 3523 if (auto *PTy = dyn_cast<PointerType>(Ty)) 3524 Ty = PTy->getElementType(); 3525 auto *FTy = dyn_cast<FunctionType>(Ty); 3526 if (!FTy) 3527 return error("Invalid type for value"); 3528 auto CC = static_cast<CallingConv::ID>(Record[1]); 3529 if (CC & ~CallingConv::MaxID) 3530 return error("Invalid calling convention ID"); 3531 3532 Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage, 3533 "", TheModule); 3534 3535 Func->setCallingConv(CC); 3536 bool isProto = Record[2]; 3537 uint64_t RawLinkage = Record[3]; 3538 Func->setLinkage(getDecodedLinkage(RawLinkage)); 3539 Func->setAttributes(getAttributes(Record[4])); 3540 3541 unsigned Alignment; 3542 if (std::error_code EC = parseAlignmentValue(Record[5], Alignment)) 3543 return EC; 3544 Func->setAlignment(Alignment); 3545 if (Record[6]) { 3546 if (Record[6]-1 >= SectionTable.size()) 3547 return error("Invalid ID"); 3548 Func->setSection(SectionTable[Record[6]-1]); 3549 } 3550 // Local linkage must have default visibility. 3551 if (!Func->hasLocalLinkage()) 3552 // FIXME: Change to an error if non-default in 4.0. 3553 Func->setVisibility(getDecodedVisibility(Record[7])); 3554 if (Record.size() > 8 && Record[8]) { 3555 if (Record[8]-1 >= GCTable.size()) 3556 return error("Invalid ID"); 3557 Func->setGC(GCTable[Record[8]-1].c_str()); 3558 } 3559 bool UnnamedAddr = false; 3560 if (Record.size() > 9) 3561 UnnamedAddr = Record[9]; 3562 Func->setUnnamedAddr(UnnamedAddr); 3563 if (Record.size() > 10 && Record[10] != 0) 3564 FunctionPrologues.push_back(std::make_pair(Func, Record[10]-1)); 3565 3566 if (Record.size() > 11) 3567 Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11])); 3568 else 3569 upgradeDLLImportExportLinkage(Func, RawLinkage); 3570 3571 if (Record.size() > 12) { 3572 if (unsigned ComdatID = Record[12]) { 3573 if (ComdatID > ComdatList.size()) 3574 return error("Invalid function comdat ID"); 3575 Func->setComdat(ComdatList[ComdatID - 1]); 3576 } 3577 } else if (hasImplicitComdat(RawLinkage)) { 3578 Func->setComdat(reinterpret_cast<Comdat *>(1)); 3579 } 3580 3581 if (Record.size() > 13 && Record[13] != 0) 3582 FunctionPrefixes.push_back(std::make_pair(Func, Record[13]-1)); 3583 3584 if (Record.size() > 14 && Record[14] != 0) 3585 FunctionPersonalityFns.push_back(std::make_pair(Func, Record[14] - 1)); 3586 3587 ValueList.push_back(Func); 3588 3589 // If this is a function with a body, remember the prototype we are 3590 // creating now, so that we can match up the body with them later. 3591 if (!isProto) { 3592 Func->setIsMaterializable(true); 3593 FunctionsWithBodies.push_back(Func); 3594 DeferredFunctionInfo[Func] = 0; 3595 } 3596 break; 3597 } 3598 // ALIAS: [alias type, addrspace, aliasee val#, linkage] 3599 // ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, dllstorageclass] 3600 case bitc::MODULE_CODE_ALIAS: 3601 case bitc::MODULE_CODE_ALIAS_OLD: { 3602 bool NewRecord = BitCode == bitc::MODULE_CODE_ALIAS; 3603 if (Record.size() < (3 + (unsigned)NewRecord)) 3604 return error("Invalid record"); 3605 unsigned OpNum = 0; 3606 Type *Ty = getTypeByID(Record[OpNum++]); 3607 if (!Ty) 3608 return error("Invalid record"); 3609 3610 unsigned AddrSpace; 3611 if (!NewRecord) { 3612 auto *PTy = dyn_cast<PointerType>(Ty); 3613 if (!PTy) 3614 return error("Invalid type for value"); 3615 Ty = PTy->getElementType(); 3616 AddrSpace = PTy->getAddressSpace(); 3617 } else { 3618 AddrSpace = Record[OpNum++]; 3619 } 3620 3621 auto Val = Record[OpNum++]; 3622 auto Linkage = Record[OpNum++]; 3623 auto *NewGA = GlobalAlias::create( 3624 Ty, AddrSpace, getDecodedLinkage(Linkage), "", TheModule); 3625 // Old bitcode files didn't have visibility field. 3626 // Local linkage must have default visibility. 3627 if (OpNum != Record.size()) { 3628 auto VisInd = OpNum++; 3629 if (!NewGA->hasLocalLinkage()) 3630 // FIXME: Change to an error if non-default in 4.0. 3631 NewGA->setVisibility(getDecodedVisibility(Record[VisInd])); 3632 } 3633 if (OpNum != Record.size()) 3634 NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++])); 3635 else 3636 upgradeDLLImportExportLinkage(NewGA, Linkage); 3637 if (OpNum != Record.size()) 3638 NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++])); 3639 if (OpNum != Record.size()) 3640 NewGA->setUnnamedAddr(Record[OpNum++]); 3641 ValueList.push_back(NewGA); 3642 AliasInits.push_back(std::make_pair(NewGA, Val)); 3643 break; 3644 } 3645 /// MODULE_CODE_PURGEVALS: [numvals] 3646 case bitc::MODULE_CODE_PURGEVALS: 3647 // Trim down the value list to the specified size. 3648 if (Record.size() < 1 || Record[0] > ValueList.size()) 3649 return error("Invalid record"); 3650 ValueList.shrinkTo(Record[0]); 3651 break; 3652 /// MODULE_CODE_VSTOFFSET: [offset] 3653 case bitc::MODULE_CODE_VSTOFFSET: 3654 if (Record.size() < 1) 3655 return error("Invalid record"); 3656 VSTOffset = Record[0]; 3657 break; 3658 } 3659 Record.clear(); 3660 } 3661 } 3662 3663 /// Helper to read the header common to all bitcode files. 3664 static bool hasValidBitcodeHeader(BitstreamCursor &Stream) { 3665 // Sniff for the signature. 3666 if (Stream.Read(8) != 'B' || 3667 Stream.Read(8) != 'C' || 3668 Stream.Read(4) != 0x0 || 3669 Stream.Read(4) != 0xC || 3670 Stream.Read(4) != 0xE || 3671 Stream.Read(4) != 0xD) 3672 return false; 3673 return true; 3674 } 3675 3676 std::error_code 3677 BitcodeReader::parseBitcodeInto(std::unique_ptr<DataStreamer> Streamer, 3678 Module *M, bool ShouldLazyLoadMetadata) { 3679 TheModule = M; 3680 3681 if (std::error_code EC = initStream(std::move(Streamer))) 3682 return EC; 3683 3684 // Sniff for the signature. 3685 if (!hasValidBitcodeHeader(Stream)) 3686 return error("Invalid bitcode signature"); 3687 3688 // We expect a number of well-defined blocks, though we don't necessarily 3689 // need to understand them all. 3690 while (1) { 3691 if (Stream.AtEndOfStream()) { 3692 // We didn't really read a proper Module. 3693 return error("Malformed IR file"); 3694 } 3695 3696 BitstreamEntry Entry = 3697 Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs); 3698 3699 if (Entry.Kind != BitstreamEntry::SubBlock) 3700 return error("Malformed block"); 3701 3702 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) { 3703 parseBitcodeVersion(); 3704 continue; 3705 } 3706 3707 if (Entry.ID == bitc::MODULE_BLOCK_ID) 3708 return parseModule(0, ShouldLazyLoadMetadata); 3709 3710 if (Stream.SkipBlock()) 3711 return error("Invalid record"); 3712 } 3713 } 3714 3715 ErrorOr<std::string> BitcodeReader::parseModuleTriple() { 3716 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 3717 return error("Invalid record"); 3718 3719 SmallVector<uint64_t, 64> Record; 3720 3721 std::string Triple; 3722 // Read all the records for this module. 3723 while (1) { 3724 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 3725 3726 switch (Entry.Kind) { 3727 case BitstreamEntry::SubBlock: // Handled for us already. 3728 case BitstreamEntry::Error: 3729 return error("Malformed block"); 3730 case BitstreamEntry::EndBlock: 3731 return Triple; 3732 case BitstreamEntry::Record: 3733 // The interesting case. 3734 break; 3735 } 3736 3737 // Read a record. 3738 switch (Stream.readRecord(Entry.ID, Record)) { 3739 default: break; // Default behavior, ignore unknown content. 3740 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 3741 std::string S; 3742 if (convertToString(Record, 0, S)) 3743 return error("Invalid record"); 3744 Triple = S; 3745 break; 3746 } 3747 } 3748 Record.clear(); 3749 } 3750 llvm_unreachable("Exit infinite loop"); 3751 } 3752 3753 ErrorOr<std::string> BitcodeReader::parseTriple() { 3754 if (std::error_code EC = initStream(nullptr)) 3755 return EC; 3756 3757 // Sniff for the signature. 3758 if (!hasValidBitcodeHeader(Stream)) 3759 return error("Invalid bitcode signature"); 3760 3761 // We expect a number of well-defined blocks, though we don't necessarily 3762 // need to understand them all. 3763 while (1) { 3764 BitstreamEntry Entry = Stream.advance(); 3765 3766 switch (Entry.Kind) { 3767 case BitstreamEntry::Error: 3768 return error("Malformed block"); 3769 case BitstreamEntry::EndBlock: 3770 return std::error_code(); 3771 3772 case BitstreamEntry::SubBlock: 3773 if (Entry.ID == bitc::MODULE_BLOCK_ID) 3774 return parseModuleTriple(); 3775 3776 // Ignore other sub-blocks. 3777 if (Stream.SkipBlock()) 3778 return error("Malformed block"); 3779 continue; 3780 3781 case BitstreamEntry::Record: 3782 Stream.skipRecord(Entry.ID); 3783 continue; 3784 } 3785 } 3786 } 3787 3788 ErrorOr<std::string> BitcodeReader::parseIdentificationBlock() { 3789 if (std::error_code EC = initStream(nullptr)) 3790 return EC; 3791 3792 // Sniff for the signature. 3793 if (!hasValidBitcodeHeader(Stream)) 3794 return error("Invalid bitcode signature"); 3795 3796 // We expect a number of well-defined blocks, though we don't necessarily 3797 // need to understand them all. 3798 while (1) { 3799 BitstreamEntry Entry = Stream.advance(); 3800 switch (Entry.Kind) { 3801 case BitstreamEntry::Error: 3802 return error("Malformed block"); 3803 case BitstreamEntry::EndBlock: 3804 return std::error_code(); 3805 3806 case BitstreamEntry::SubBlock: 3807 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) { 3808 if (std::error_code EC = parseBitcodeVersion()) 3809 return EC; 3810 return ProducerIdentification; 3811 } 3812 // Ignore other sub-blocks. 3813 if (Stream.SkipBlock()) 3814 return error("Malformed block"); 3815 continue; 3816 case BitstreamEntry::Record: 3817 Stream.skipRecord(Entry.ID); 3818 continue; 3819 } 3820 } 3821 } 3822 3823 /// Parse metadata attachments. 3824 std::error_code BitcodeReader::parseMetadataAttachment(Function &F) { 3825 if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID)) 3826 return error("Invalid record"); 3827 3828 SmallVector<uint64_t, 64> Record; 3829 while (1) { 3830 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 3831 3832 switch (Entry.Kind) { 3833 case BitstreamEntry::SubBlock: // Handled for us already. 3834 case BitstreamEntry::Error: 3835 return error("Malformed block"); 3836 case BitstreamEntry::EndBlock: 3837 return std::error_code(); 3838 case BitstreamEntry::Record: 3839 // The interesting case. 3840 break; 3841 } 3842 3843 // Read a metadata attachment record. 3844 Record.clear(); 3845 switch (Stream.readRecord(Entry.ID, Record)) { 3846 default: // Default behavior: ignore. 3847 break; 3848 case bitc::METADATA_ATTACHMENT: { 3849 unsigned RecordLength = Record.size(); 3850 if (Record.empty()) 3851 return error("Invalid record"); 3852 if (RecordLength % 2 == 0) { 3853 // A function attachment. 3854 for (unsigned I = 0; I != RecordLength; I += 2) { 3855 auto K = MDKindMap.find(Record[I]); 3856 if (K == MDKindMap.end()) 3857 return error("Invalid ID"); 3858 Metadata *MD = MDValueList.getValueFwdRef(Record[I + 1]); 3859 F.setMetadata(K->second, cast<MDNode>(MD)); 3860 } 3861 continue; 3862 } 3863 3864 // An instruction attachment. 3865 Instruction *Inst = InstructionList[Record[0]]; 3866 for (unsigned i = 1; i != RecordLength; i = i+2) { 3867 unsigned Kind = Record[i]; 3868 DenseMap<unsigned, unsigned>::iterator I = 3869 MDKindMap.find(Kind); 3870 if (I == MDKindMap.end()) 3871 return error("Invalid ID"); 3872 Metadata *Node = MDValueList.getValueFwdRef(Record[i + 1]); 3873 if (isa<LocalAsMetadata>(Node)) 3874 // Drop the attachment. This used to be legal, but there's no 3875 // upgrade path. 3876 break; 3877 Inst->setMetadata(I->second, cast<MDNode>(Node)); 3878 if (I->second == LLVMContext::MD_tbaa) 3879 InstsWithTBAATag.push_back(Inst); 3880 } 3881 break; 3882 } 3883 } 3884 } 3885 } 3886 3887 static std::error_code typeCheckLoadStoreInst(DiagnosticHandlerFunction DH, 3888 Type *ValType, Type *PtrType) { 3889 if (!isa<PointerType>(PtrType)) 3890 return error(DH, "Load/Store operand is not a pointer type"); 3891 Type *ElemType = cast<PointerType>(PtrType)->getElementType(); 3892 3893 if (ValType && ValType != ElemType) 3894 return error(DH, "Explicit load/store type does not match pointee type of " 3895 "pointer operand"); 3896 if (!PointerType::isLoadableOrStorableType(ElemType)) 3897 return error(DH, "Cannot load/store from pointer"); 3898 return std::error_code(); 3899 } 3900 3901 /// Lazily parse the specified function body block. 3902 std::error_code BitcodeReader::parseFunctionBody(Function *F) { 3903 if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 3904 return error("Invalid record"); 3905 3906 InstructionList.clear(); 3907 unsigned ModuleValueListSize = ValueList.size(); 3908 unsigned ModuleMDValueListSize = MDValueList.size(); 3909 3910 // Add all the function arguments to the value table. 3911 for (Argument &I : F->args()) 3912 ValueList.push_back(&I); 3913 3914 unsigned NextValueNo = ValueList.size(); 3915 BasicBlock *CurBB = nullptr; 3916 unsigned CurBBNo = 0; 3917 3918 DebugLoc LastLoc; 3919 auto getLastInstruction = [&]() -> Instruction * { 3920 if (CurBB && !CurBB->empty()) 3921 return &CurBB->back(); 3922 else if (CurBBNo && FunctionBBs[CurBBNo - 1] && 3923 !FunctionBBs[CurBBNo - 1]->empty()) 3924 return &FunctionBBs[CurBBNo - 1]->back(); 3925 return nullptr; 3926 }; 3927 3928 std::vector<OperandBundleDef> OperandBundles; 3929 3930 // Read all the records. 3931 SmallVector<uint64_t, 64> Record; 3932 while (1) { 3933 BitstreamEntry Entry = Stream.advance(); 3934 3935 switch (Entry.Kind) { 3936 case BitstreamEntry::Error: 3937 return error("Malformed block"); 3938 case BitstreamEntry::EndBlock: 3939 goto OutOfRecordLoop; 3940 3941 case BitstreamEntry::SubBlock: 3942 switch (Entry.ID) { 3943 default: // Skip unknown content. 3944 if (Stream.SkipBlock()) 3945 return error("Invalid record"); 3946 break; 3947 case bitc::CONSTANTS_BLOCK_ID: 3948 if (std::error_code EC = parseConstants()) 3949 return EC; 3950 NextValueNo = ValueList.size(); 3951 break; 3952 case bitc::VALUE_SYMTAB_BLOCK_ID: 3953 if (std::error_code EC = parseValueSymbolTable()) 3954 return EC; 3955 break; 3956 case bitc::METADATA_ATTACHMENT_ID: 3957 if (std::error_code EC = parseMetadataAttachment(*F)) 3958 return EC; 3959 break; 3960 case bitc::METADATA_BLOCK_ID: 3961 if (std::error_code EC = parseMetadata()) 3962 return EC; 3963 break; 3964 case bitc::USELIST_BLOCK_ID: 3965 if (std::error_code EC = parseUseLists()) 3966 return EC; 3967 break; 3968 } 3969 continue; 3970 3971 case BitstreamEntry::Record: 3972 // The interesting case. 3973 break; 3974 } 3975 3976 // Read a record. 3977 Record.clear(); 3978 Instruction *I = nullptr; 3979 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 3980 switch (BitCode) { 3981 default: // Default behavior: reject 3982 return error("Invalid value"); 3983 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks] 3984 if (Record.size() < 1 || Record[0] == 0) 3985 return error("Invalid record"); 3986 // Create all the basic blocks for the function. 3987 FunctionBBs.resize(Record[0]); 3988 3989 // See if anything took the address of blocks in this function. 3990 auto BBFRI = BasicBlockFwdRefs.find(F); 3991 if (BBFRI == BasicBlockFwdRefs.end()) { 3992 for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i) 3993 FunctionBBs[i] = BasicBlock::Create(Context, "", F); 3994 } else { 3995 auto &BBRefs = BBFRI->second; 3996 // Check for invalid basic block references. 3997 if (BBRefs.size() > FunctionBBs.size()) 3998 return error("Invalid ID"); 3999 assert(!BBRefs.empty() && "Unexpected empty array"); 4000 assert(!BBRefs.front() && "Invalid reference to entry block"); 4001 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E; 4002 ++I) 4003 if (I < RE && BBRefs[I]) { 4004 BBRefs[I]->insertInto(F); 4005 FunctionBBs[I] = BBRefs[I]; 4006 } else { 4007 FunctionBBs[I] = BasicBlock::Create(Context, "", F); 4008 } 4009 4010 // Erase from the table. 4011 BasicBlockFwdRefs.erase(BBFRI); 4012 } 4013 4014 CurBB = FunctionBBs[0]; 4015 continue; 4016 } 4017 4018 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 4019 // This record indicates that the last instruction is at the same 4020 // location as the previous instruction with a location. 4021 I = getLastInstruction(); 4022 4023 if (!I) 4024 return error("Invalid record"); 4025 I->setDebugLoc(LastLoc); 4026 I = nullptr; 4027 continue; 4028 4029 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 4030 I = getLastInstruction(); 4031 if (!I || Record.size() < 4) 4032 return error("Invalid record"); 4033 4034 unsigned Line = Record[0], Col = Record[1]; 4035 unsigned ScopeID = Record[2], IAID = Record[3]; 4036 4037 MDNode *Scope = nullptr, *IA = nullptr; 4038 if (ScopeID) Scope = cast<MDNode>(MDValueList.getValueFwdRef(ScopeID-1)); 4039 if (IAID) IA = cast<MDNode>(MDValueList.getValueFwdRef(IAID-1)); 4040 LastLoc = DebugLoc::get(Line, Col, Scope, IA); 4041 I->setDebugLoc(LastLoc); 4042 I = nullptr; 4043 continue; 4044 } 4045 4046 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 4047 unsigned OpNum = 0; 4048 Value *LHS, *RHS; 4049 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 4050 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 4051 OpNum+1 > Record.size()) 4052 return error("Invalid record"); 4053 4054 int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 4055 if (Opc == -1) 4056 return error("Invalid record"); 4057 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 4058 InstructionList.push_back(I); 4059 if (OpNum < Record.size()) { 4060 if (Opc == Instruction::Add || 4061 Opc == Instruction::Sub || 4062 Opc == Instruction::Mul || 4063 Opc == Instruction::Shl) { 4064 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 4065 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 4066 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 4067 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 4068 } else if (Opc == Instruction::SDiv || 4069 Opc == Instruction::UDiv || 4070 Opc == Instruction::LShr || 4071 Opc == Instruction::AShr) { 4072 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 4073 cast<BinaryOperator>(I)->setIsExact(true); 4074 } else if (isa<FPMathOperator>(I)) { 4075 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 4076 if (FMF.any()) 4077 I->setFastMathFlags(FMF); 4078 } 4079 4080 } 4081 break; 4082 } 4083 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 4084 unsigned OpNum = 0; 4085 Value *Op; 4086 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4087 OpNum+2 != Record.size()) 4088 return error("Invalid record"); 4089 4090 Type *ResTy = getTypeByID(Record[OpNum]); 4091 int Opc = getDecodedCastOpcode(Record[OpNum + 1]); 4092 if (Opc == -1 || !ResTy) 4093 return error("Invalid record"); 4094 Instruction *Temp = nullptr; 4095 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) { 4096 if (Temp) { 4097 InstructionList.push_back(Temp); 4098 CurBB->getInstList().push_back(Temp); 4099 } 4100 } else { 4101 auto CastOp = (Instruction::CastOps)Opc; 4102 if (!CastInst::castIsValid(CastOp, Op, ResTy)) 4103 return error("Invalid cast"); 4104 I = CastInst::Create(CastOp, Op, ResTy); 4105 } 4106 InstructionList.push_back(I); 4107 break; 4108 } 4109 case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD: 4110 case bitc::FUNC_CODE_INST_GEP_OLD: 4111 case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands] 4112 unsigned OpNum = 0; 4113 4114 Type *Ty; 4115 bool InBounds; 4116 4117 if (BitCode == bitc::FUNC_CODE_INST_GEP) { 4118 InBounds = Record[OpNum++]; 4119 Ty = getTypeByID(Record[OpNum++]); 4120 } else { 4121 InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD; 4122 Ty = nullptr; 4123 } 4124 4125 Value *BasePtr; 4126 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr)) 4127 return error("Invalid record"); 4128 4129 if (!Ty) 4130 Ty = cast<SequentialType>(BasePtr->getType()->getScalarType()) 4131 ->getElementType(); 4132 else if (Ty != 4133 cast<SequentialType>(BasePtr->getType()->getScalarType()) 4134 ->getElementType()) 4135 return error( 4136 "Explicit gep type does not match pointee type of pointer operand"); 4137 4138 SmallVector<Value*, 16> GEPIdx; 4139 while (OpNum != Record.size()) { 4140 Value *Op; 4141 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4142 return error("Invalid record"); 4143 GEPIdx.push_back(Op); 4144 } 4145 4146 I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx); 4147 4148 InstructionList.push_back(I); 4149 if (InBounds) 4150 cast<GetElementPtrInst>(I)->setIsInBounds(true); 4151 break; 4152 } 4153 4154 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 4155 // EXTRACTVAL: [opty, opval, n x indices] 4156 unsigned OpNum = 0; 4157 Value *Agg; 4158 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 4159 return error("Invalid record"); 4160 4161 unsigned RecSize = Record.size(); 4162 if (OpNum == RecSize) 4163 return error("EXTRACTVAL: Invalid instruction with 0 indices"); 4164 4165 SmallVector<unsigned, 4> EXTRACTVALIdx; 4166 Type *CurTy = Agg->getType(); 4167 for (; OpNum != RecSize; ++OpNum) { 4168 bool IsArray = CurTy->isArrayTy(); 4169 bool IsStruct = CurTy->isStructTy(); 4170 uint64_t Index = Record[OpNum]; 4171 4172 if (!IsStruct && !IsArray) 4173 return error("EXTRACTVAL: Invalid type"); 4174 if ((unsigned)Index != Index) 4175 return error("Invalid value"); 4176 if (IsStruct && Index >= CurTy->subtypes().size()) 4177 return error("EXTRACTVAL: Invalid struct index"); 4178 if (IsArray && Index >= CurTy->getArrayNumElements()) 4179 return error("EXTRACTVAL: Invalid array index"); 4180 EXTRACTVALIdx.push_back((unsigned)Index); 4181 4182 if (IsStruct) 4183 CurTy = CurTy->subtypes()[Index]; 4184 else 4185 CurTy = CurTy->subtypes()[0]; 4186 } 4187 4188 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 4189 InstructionList.push_back(I); 4190 break; 4191 } 4192 4193 case bitc::FUNC_CODE_INST_INSERTVAL: { 4194 // INSERTVAL: [opty, opval, opty, opval, n x indices] 4195 unsigned OpNum = 0; 4196 Value *Agg; 4197 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 4198 return error("Invalid record"); 4199 Value *Val; 4200 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 4201 return error("Invalid record"); 4202 4203 unsigned RecSize = Record.size(); 4204 if (OpNum == RecSize) 4205 return error("INSERTVAL: Invalid instruction with 0 indices"); 4206 4207 SmallVector<unsigned, 4> INSERTVALIdx; 4208 Type *CurTy = Agg->getType(); 4209 for (; OpNum != RecSize; ++OpNum) { 4210 bool IsArray = CurTy->isArrayTy(); 4211 bool IsStruct = CurTy->isStructTy(); 4212 uint64_t Index = Record[OpNum]; 4213 4214 if (!IsStruct && !IsArray) 4215 return error("INSERTVAL: Invalid type"); 4216 if ((unsigned)Index != Index) 4217 return error("Invalid value"); 4218 if (IsStruct && Index >= CurTy->subtypes().size()) 4219 return error("INSERTVAL: Invalid struct index"); 4220 if (IsArray && Index >= CurTy->getArrayNumElements()) 4221 return error("INSERTVAL: Invalid array index"); 4222 4223 INSERTVALIdx.push_back((unsigned)Index); 4224 if (IsStruct) 4225 CurTy = CurTy->subtypes()[Index]; 4226 else 4227 CurTy = CurTy->subtypes()[0]; 4228 } 4229 4230 if (CurTy != Val->getType()) 4231 return error("Inserted value type doesn't match aggregate type"); 4232 4233 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 4234 InstructionList.push_back(I); 4235 break; 4236 } 4237 4238 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 4239 // obsolete form of select 4240 // handles select i1 ... in old bitcode 4241 unsigned OpNum = 0; 4242 Value *TrueVal, *FalseVal, *Cond; 4243 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 4244 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 4245 popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond)) 4246 return error("Invalid record"); 4247 4248 I = SelectInst::Create(Cond, TrueVal, FalseVal); 4249 InstructionList.push_back(I); 4250 break; 4251 } 4252 4253 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 4254 // new form of select 4255 // handles select i1 or select [N x i1] 4256 unsigned OpNum = 0; 4257 Value *TrueVal, *FalseVal, *Cond; 4258 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 4259 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 4260 getValueTypePair(Record, OpNum, NextValueNo, Cond)) 4261 return error("Invalid record"); 4262 4263 // select condition can be either i1 or [N x i1] 4264 if (VectorType* vector_type = 4265 dyn_cast<VectorType>(Cond->getType())) { 4266 // expect <n x i1> 4267 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 4268 return error("Invalid type for value"); 4269 } else { 4270 // expect i1 4271 if (Cond->getType() != Type::getInt1Ty(Context)) 4272 return error("Invalid type for value"); 4273 } 4274 4275 I = SelectInst::Create(Cond, TrueVal, FalseVal); 4276 InstructionList.push_back(I); 4277 break; 4278 } 4279 4280 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 4281 unsigned OpNum = 0; 4282 Value *Vec, *Idx; 4283 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 4284 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 4285 return error("Invalid record"); 4286 if (!Vec->getType()->isVectorTy()) 4287 return error("Invalid type for value"); 4288 I = ExtractElementInst::Create(Vec, Idx); 4289 InstructionList.push_back(I); 4290 break; 4291 } 4292 4293 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 4294 unsigned OpNum = 0; 4295 Value *Vec, *Elt, *Idx; 4296 if (getValueTypePair(Record, OpNum, NextValueNo, Vec)) 4297 return error("Invalid record"); 4298 if (!Vec->getType()->isVectorTy()) 4299 return error("Invalid type for value"); 4300 if (popValue(Record, OpNum, NextValueNo, 4301 cast<VectorType>(Vec->getType())->getElementType(), Elt) || 4302 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 4303 return error("Invalid record"); 4304 I = InsertElementInst::Create(Vec, Elt, Idx); 4305 InstructionList.push_back(I); 4306 break; 4307 } 4308 4309 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 4310 unsigned OpNum = 0; 4311 Value *Vec1, *Vec2, *Mask; 4312 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) || 4313 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2)) 4314 return error("Invalid record"); 4315 4316 if (getValueTypePair(Record, OpNum, NextValueNo, Mask)) 4317 return error("Invalid record"); 4318 if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy()) 4319 return error("Invalid type for value"); 4320 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 4321 InstructionList.push_back(I); 4322 break; 4323 } 4324 4325 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 4326 // Old form of ICmp/FCmp returning bool 4327 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 4328 // both legal on vectors but had different behaviour. 4329 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 4330 // FCmp/ICmp returning bool or vector of bool 4331 4332 unsigned OpNum = 0; 4333 Value *LHS, *RHS; 4334 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 4335 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS)) 4336 return error("Invalid record"); 4337 4338 unsigned PredVal = Record[OpNum]; 4339 bool IsFP = LHS->getType()->isFPOrFPVectorTy(); 4340 FastMathFlags FMF; 4341 if (IsFP && Record.size() > OpNum+1) 4342 FMF = getDecodedFastMathFlags(Record[++OpNum]); 4343 4344 if (OpNum+1 != Record.size()) 4345 return error("Invalid record"); 4346 4347 if (LHS->getType()->isFPOrFPVectorTy()) 4348 I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS); 4349 else 4350 I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS); 4351 4352 if (FMF.any()) 4353 I->setFastMathFlags(FMF); 4354 InstructionList.push_back(I); 4355 break; 4356 } 4357 4358 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 4359 { 4360 unsigned Size = Record.size(); 4361 if (Size == 0) { 4362 I = ReturnInst::Create(Context); 4363 InstructionList.push_back(I); 4364 break; 4365 } 4366 4367 unsigned OpNum = 0; 4368 Value *Op = nullptr; 4369 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4370 return error("Invalid record"); 4371 if (OpNum != Record.size()) 4372 return error("Invalid record"); 4373 4374 I = ReturnInst::Create(Context, Op); 4375 InstructionList.push_back(I); 4376 break; 4377 } 4378 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 4379 if (Record.size() != 1 && Record.size() != 3) 4380 return error("Invalid record"); 4381 BasicBlock *TrueDest = getBasicBlock(Record[0]); 4382 if (!TrueDest) 4383 return error("Invalid record"); 4384 4385 if (Record.size() == 1) { 4386 I = BranchInst::Create(TrueDest); 4387 InstructionList.push_back(I); 4388 } 4389 else { 4390 BasicBlock *FalseDest = getBasicBlock(Record[1]); 4391 Value *Cond = getValue(Record, 2, NextValueNo, 4392 Type::getInt1Ty(Context)); 4393 if (!FalseDest || !Cond) 4394 return error("Invalid record"); 4395 I = BranchInst::Create(TrueDest, FalseDest, Cond); 4396 InstructionList.push_back(I); 4397 } 4398 break; 4399 } 4400 case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#] 4401 if (Record.size() != 1 && Record.size() != 2) 4402 return error("Invalid record"); 4403 unsigned Idx = 0; 4404 Value *CleanupPad = getValue(Record, Idx++, NextValueNo, 4405 Type::getTokenTy(Context), OC_CleanupPad); 4406 if (!CleanupPad) 4407 return error("Invalid record"); 4408 BasicBlock *UnwindDest = nullptr; 4409 if (Record.size() == 2) { 4410 UnwindDest = getBasicBlock(Record[Idx++]); 4411 if (!UnwindDest) 4412 return error("Invalid record"); 4413 } 4414 4415 I = CleanupReturnInst::Create(cast<CleanupPadInst>(CleanupPad), 4416 UnwindDest); 4417 InstructionList.push_back(I); 4418 break; 4419 } 4420 case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#] 4421 if (Record.size() != 2) 4422 return error("Invalid record"); 4423 unsigned Idx = 0; 4424 Value *CatchPad = getValue(Record, Idx++, NextValueNo, 4425 Type::getTokenTy(Context), OC_CatchPad); 4426 if (!CatchPad) 4427 return error("Invalid record"); 4428 BasicBlock *BB = getBasicBlock(Record[Idx++]); 4429 if (!BB) 4430 return error("Invalid record"); 4431 4432 I = CatchReturnInst::Create(cast<CatchPadInst>(CatchPad), BB); 4433 InstructionList.push_back(I); 4434 break; 4435 } 4436 case bitc::FUNC_CODE_INST_CATCHPAD: { // CATCHPAD: [bb#,bb#,num,(ty,val)*] 4437 if (Record.size() < 3) 4438 return error("Invalid record"); 4439 unsigned Idx = 0; 4440 BasicBlock *NormalBB = getBasicBlock(Record[Idx++]); 4441 if (!NormalBB) 4442 return error("Invalid record"); 4443 BasicBlock *UnwindBB = getBasicBlock(Record[Idx++]); 4444 if (!UnwindBB) 4445 return error("Invalid record"); 4446 unsigned NumArgOperands = Record[Idx++]; 4447 SmallVector<Value *, 2> Args; 4448 for (unsigned Op = 0; Op != NumArgOperands; ++Op) { 4449 Value *Val; 4450 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 4451 return error("Invalid record"); 4452 Args.push_back(Val); 4453 } 4454 if (Record.size() != Idx) 4455 return error("Invalid record"); 4456 4457 I = CatchPadInst::Create(NormalBB, UnwindBB, Args); 4458 InstructionList.push_back(I); 4459 break; 4460 } 4461 case bitc::FUNC_CODE_INST_TERMINATEPAD: { // TERMINATEPAD: [bb#,num,(ty,val)*] 4462 if (Record.size() < 1) 4463 return error("Invalid record"); 4464 unsigned Idx = 0; 4465 bool HasUnwindDest = !!Record[Idx++]; 4466 BasicBlock *UnwindDest = nullptr; 4467 if (HasUnwindDest) { 4468 if (Idx == Record.size()) 4469 return error("Invalid record"); 4470 UnwindDest = getBasicBlock(Record[Idx++]); 4471 if (!UnwindDest) 4472 return error("Invalid record"); 4473 } 4474 unsigned NumArgOperands = Record[Idx++]; 4475 SmallVector<Value *, 2> Args; 4476 for (unsigned Op = 0; Op != NumArgOperands; ++Op) { 4477 Value *Val; 4478 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 4479 return error("Invalid record"); 4480 Args.push_back(Val); 4481 } 4482 if (Record.size() != Idx) 4483 return error("Invalid record"); 4484 4485 I = TerminatePadInst::Create(Context, UnwindDest, Args); 4486 InstructionList.push_back(I); 4487 break; 4488 } 4489 case bitc::FUNC_CODE_INST_CLEANUPPAD: { // CLEANUPPAD: [num,(ty,val)*] 4490 if (Record.size() < 1) 4491 return error("Invalid record"); 4492 unsigned Idx = 0; 4493 unsigned NumArgOperands = Record[Idx++]; 4494 SmallVector<Value *, 2> Args; 4495 for (unsigned Op = 0; Op != NumArgOperands; ++Op) { 4496 Value *Val; 4497 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 4498 return error("Invalid record"); 4499 Args.push_back(Val); 4500 } 4501 if (Record.size() != Idx) 4502 return error("Invalid record"); 4503 4504 I = CleanupPadInst::Create(Context, Args); 4505 InstructionList.push_back(I); 4506 break; 4507 } 4508 case bitc::FUNC_CODE_INST_CATCHENDPAD: { // CATCHENDPADINST: [bb#] or [] 4509 if (Record.size() > 1) 4510 return error("Invalid record"); 4511 BasicBlock *BB = nullptr; 4512 if (Record.size() == 1) { 4513 BB = getBasicBlock(Record[0]); 4514 if (!BB) 4515 return error("Invalid record"); 4516 } 4517 I = CatchEndPadInst::Create(Context, BB); 4518 InstructionList.push_back(I); 4519 break; 4520 } 4521 case bitc::FUNC_CODE_INST_CLEANUPENDPAD: { // CLEANUPENDPADINST: [val] or [val,bb#] 4522 if (Record.size() != 1 && Record.size() != 2) 4523 return error("Invalid record"); 4524 unsigned Idx = 0; 4525 Value *CleanupPad = getValue(Record, Idx++, NextValueNo, 4526 Type::getTokenTy(Context), OC_CleanupPad); 4527 if (!CleanupPad) 4528 return error("Invalid record"); 4529 4530 BasicBlock *BB = nullptr; 4531 if (Record.size() == 2) { 4532 BB = getBasicBlock(Record[Idx++]); 4533 if (!BB) 4534 return error("Invalid record"); 4535 } 4536 I = CleanupEndPadInst::Create(cast<CleanupPadInst>(CleanupPad), BB); 4537 InstructionList.push_back(I); 4538 break; 4539 } 4540 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 4541 // Check magic 4542 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { 4543 // "New" SwitchInst format with case ranges. The changes to write this 4544 // format were reverted but we still recognize bitcode that uses it. 4545 // Hopefully someday we will have support for case ranges and can use 4546 // this format again. 4547 4548 Type *OpTy = getTypeByID(Record[1]); 4549 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); 4550 4551 Value *Cond = getValue(Record, 2, NextValueNo, OpTy); 4552 BasicBlock *Default = getBasicBlock(Record[3]); 4553 if (!OpTy || !Cond || !Default) 4554 return error("Invalid record"); 4555 4556 unsigned NumCases = Record[4]; 4557 4558 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 4559 InstructionList.push_back(SI); 4560 4561 unsigned CurIdx = 5; 4562 for (unsigned i = 0; i != NumCases; ++i) { 4563 SmallVector<ConstantInt*, 1> CaseVals; 4564 unsigned NumItems = Record[CurIdx++]; 4565 for (unsigned ci = 0; ci != NumItems; ++ci) { 4566 bool isSingleNumber = Record[CurIdx++]; 4567 4568 APInt Low; 4569 unsigned ActiveWords = 1; 4570 if (ValueBitWidth > 64) 4571 ActiveWords = Record[CurIdx++]; 4572 Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 4573 ValueBitWidth); 4574 CurIdx += ActiveWords; 4575 4576 if (!isSingleNumber) { 4577 ActiveWords = 1; 4578 if (ValueBitWidth > 64) 4579 ActiveWords = Record[CurIdx++]; 4580 APInt High = readWideAPInt( 4581 makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth); 4582 CurIdx += ActiveWords; 4583 4584 // FIXME: It is not clear whether values in the range should be 4585 // compared as signed or unsigned values. The partially 4586 // implemented changes that used this format in the past used 4587 // unsigned comparisons. 4588 for ( ; Low.ule(High); ++Low) 4589 CaseVals.push_back(ConstantInt::get(Context, Low)); 4590 } else 4591 CaseVals.push_back(ConstantInt::get(Context, Low)); 4592 } 4593 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); 4594 for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(), 4595 cve = CaseVals.end(); cvi != cve; ++cvi) 4596 SI->addCase(*cvi, DestBB); 4597 } 4598 I = SI; 4599 break; 4600 } 4601 4602 // Old SwitchInst format without case ranges. 4603 4604 if (Record.size() < 3 || (Record.size() & 1) == 0) 4605 return error("Invalid record"); 4606 Type *OpTy = getTypeByID(Record[0]); 4607 Value *Cond = getValue(Record, 1, NextValueNo, OpTy); 4608 BasicBlock *Default = getBasicBlock(Record[2]); 4609 if (!OpTy || !Cond || !Default) 4610 return error("Invalid record"); 4611 unsigned NumCases = (Record.size()-3)/2; 4612 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 4613 InstructionList.push_back(SI); 4614 for (unsigned i = 0, e = NumCases; i != e; ++i) { 4615 ConstantInt *CaseVal = 4616 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy)); 4617 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 4618 if (!CaseVal || !DestBB) { 4619 delete SI; 4620 return error("Invalid record"); 4621 } 4622 SI->addCase(CaseVal, DestBB); 4623 } 4624 I = SI; 4625 break; 4626 } 4627 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 4628 if (Record.size() < 2) 4629 return error("Invalid record"); 4630 Type *OpTy = getTypeByID(Record[0]); 4631 Value *Address = getValue(Record, 1, NextValueNo, OpTy); 4632 if (!OpTy || !Address) 4633 return error("Invalid record"); 4634 unsigned NumDests = Record.size()-2; 4635 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 4636 InstructionList.push_back(IBI); 4637 for (unsigned i = 0, e = NumDests; i != e; ++i) { 4638 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 4639 IBI->addDestination(DestBB); 4640 } else { 4641 delete IBI; 4642 return error("Invalid record"); 4643 } 4644 } 4645 I = IBI; 4646 break; 4647 } 4648 4649 case bitc::FUNC_CODE_INST_INVOKE: { 4650 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 4651 if (Record.size() < 4) 4652 return error("Invalid record"); 4653 unsigned OpNum = 0; 4654 AttributeSet PAL = getAttributes(Record[OpNum++]); 4655 unsigned CCInfo = Record[OpNum++]; 4656 BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]); 4657 BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]); 4658 4659 FunctionType *FTy = nullptr; 4660 if (CCInfo >> 13 & 1 && 4661 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])))) 4662 return error("Explicit invoke type is not a function type"); 4663 4664 Value *Callee; 4665 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 4666 return error("Invalid record"); 4667 4668 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 4669 if (!CalleeTy) 4670 return error("Callee is not a pointer"); 4671 if (!FTy) { 4672 FTy = dyn_cast<FunctionType>(CalleeTy->getElementType()); 4673 if (!FTy) 4674 return error("Callee is not of pointer to function type"); 4675 } else if (CalleeTy->getElementType() != FTy) 4676 return error("Explicit invoke type does not match pointee type of " 4677 "callee operand"); 4678 if (Record.size() < FTy->getNumParams() + OpNum) 4679 return error("Insufficient operands to call"); 4680 4681 SmallVector<Value*, 16> Ops; 4682 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 4683 Ops.push_back(getValue(Record, OpNum, NextValueNo, 4684 FTy->getParamType(i))); 4685 if (!Ops.back()) 4686 return error("Invalid record"); 4687 } 4688 4689 if (!FTy->isVarArg()) { 4690 if (Record.size() != OpNum) 4691 return error("Invalid record"); 4692 } else { 4693 // Read type/value pairs for varargs params. 4694 while (OpNum != Record.size()) { 4695 Value *Op; 4696 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4697 return error("Invalid record"); 4698 Ops.push_back(Op); 4699 } 4700 } 4701 4702 I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops, OperandBundles); 4703 OperandBundles.clear(); 4704 InstructionList.push_back(I); 4705 cast<InvokeInst>(I)->setCallingConv( 4706 static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo)); 4707 cast<InvokeInst>(I)->setAttributes(PAL); 4708 break; 4709 } 4710 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 4711 unsigned Idx = 0; 4712 Value *Val = nullptr; 4713 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 4714 return error("Invalid record"); 4715 I = ResumeInst::Create(Val); 4716 InstructionList.push_back(I); 4717 break; 4718 } 4719 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 4720 I = new UnreachableInst(Context); 4721 InstructionList.push_back(I); 4722 break; 4723 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 4724 if (Record.size() < 1 || ((Record.size()-1)&1)) 4725 return error("Invalid record"); 4726 Type *Ty = getTypeByID(Record[0]); 4727 if (!Ty) 4728 return error("Invalid record"); 4729 4730 PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2); 4731 InstructionList.push_back(PN); 4732 4733 for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) { 4734 Value *V; 4735 // With the new function encoding, it is possible that operands have 4736 // negative IDs (for forward references). Use a signed VBR 4737 // representation to keep the encoding small. 4738 if (UseRelativeIDs) 4739 V = getValueSigned(Record, 1+i, NextValueNo, Ty); 4740 else 4741 V = getValue(Record, 1+i, NextValueNo, Ty); 4742 BasicBlock *BB = getBasicBlock(Record[2+i]); 4743 if (!V || !BB) 4744 return error("Invalid record"); 4745 PN->addIncoming(V, BB); 4746 } 4747 I = PN; 4748 break; 4749 } 4750 4751 case bitc::FUNC_CODE_INST_LANDINGPAD: 4752 case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: { 4753 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 4754 unsigned Idx = 0; 4755 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) { 4756 if (Record.size() < 3) 4757 return error("Invalid record"); 4758 } else { 4759 assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD); 4760 if (Record.size() < 4) 4761 return error("Invalid record"); 4762 } 4763 Type *Ty = getTypeByID(Record[Idx++]); 4764 if (!Ty) 4765 return error("Invalid record"); 4766 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) { 4767 Value *PersFn = nullptr; 4768 if (getValueTypePair(Record, Idx, NextValueNo, PersFn)) 4769 return error("Invalid record"); 4770 4771 if (!F->hasPersonalityFn()) 4772 F->setPersonalityFn(cast<Constant>(PersFn)); 4773 else if (F->getPersonalityFn() != cast<Constant>(PersFn)) 4774 return error("Personality function mismatch"); 4775 } 4776 4777 bool IsCleanup = !!Record[Idx++]; 4778 unsigned NumClauses = Record[Idx++]; 4779 LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses); 4780 LP->setCleanup(IsCleanup); 4781 for (unsigned J = 0; J != NumClauses; ++J) { 4782 LandingPadInst::ClauseType CT = 4783 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 4784 Value *Val; 4785 4786 if (getValueTypePair(Record, Idx, NextValueNo, Val)) { 4787 delete LP; 4788 return error("Invalid record"); 4789 } 4790 4791 assert((CT != LandingPadInst::Catch || 4792 !isa<ArrayType>(Val->getType())) && 4793 "Catch clause has a invalid type!"); 4794 assert((CT != LandingPadInst::Filter || 4795 isa<ArrayType>(Val->getType())) && 4796 "Filter clause has invalid type!"); 4797 LP->addClause(cast<Constant>(Val)); 4798 } 4799 4800 I = LP; 4801 InstructionList.push_back(I); 4802 break; 4803 } 4804 4805 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 4806 if (Record.size() != 4) 4807 return error("Invalid record"); 4808 uint64_t AlignRecord = Record[3]; 4809 const uint64_t InAllocaMask = uint64_t(1) << 5; 4810 const uint64_t ExplicitTypeMask = uint64_t(1) << 6; 4811 // Reserve bit 7 for SwiftError flag. 4812 // const uint64_t SwiftErrorMask = uint64_t(1) << 7; 4813 const uint64_t FlagMask = InAllocaMask | ExplicitTypeMask; 4814 bool InAlloca = AlignRecord & InAllocaMask; 4815 Type *Ty = getTypeByID(Record[0]); 4816 if ((AlignRecord & ExplicitTypeMask) == 0) { 4817 auto *PTy = dyn_cast_or_null<PointerType>(Ty); 4818 if (!PTy) 4819 return error("Old-style alloca with a non-pointer type"); 4820 Ty = PTy->getElementType(); 4821 } 4822 Type *OpTy = getTypeByID(Record[1]); 4823 Value *Size = getFnValueByID(Record[2], OpTy); 4824 unsigned Align; 4825 if (std::error_code EC = 4826 parseAlignmentValue(AlignRecord & ~FlagMask, Align)) { 4827 return EC; 4828 } 4829 if (!Ty || !Size) 4830 return error("Invalid record"); 4831 AllocaInst *AI = new AllocaInst(Ty, Size, Align); 4832 AI->setUsedWithInAlloca(InAlloca); 4833 I = AI; 4834 InstructionList.push_back(I); 4835 break; 4836 } 4837 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 4838 unsigned OpNum = 0; 4839 Value *Op; 4840 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4841 (OpNum + 2 != Record.size() && OpNum + 3 != Record.size())) 4842 return error("Invalid record"); 4843 4844 Type *Ty = nullptr; 4845 if (OpNum + 3 == Record.size()) 4846 Ty = getTypeByID(Record[OpNum++]); 4847 if (std::error_code EC = 4848 typeCheckLoadStoreInst(DiagnosticHandler, Ty, Op->getType())) 4849 return EC; 4850 if (!Ty) 4851 Ty = cast<PointerType>(Op->getType())->getElementType(); 4852 4853 unsigned Align; 4854 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 4855 return EC; 4856 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], Align); 4857 4858 InstructionList.push_back(I); 4859 break; 4860 } 4861 case bitc::FUNC_CODE_INST_LOADATOMIC: { 4862 // LOADATOMIC: [opty, op, align, vol, ordering, synchscope] 4863 unsigned OpNum = 0; 4864 Value *Op; 4865 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4866 (OpNum + 4 != Record.size() && OpNum + 5 != Record.size())) 4867 return error("Invalid record"); 4868 4869 Type *Ty = nullptr; 4870 if (OpNum + 5 == Record.size()) 4871 Ty = getTypeByID(Record[OpNum++]); 4872 if (std::error_code EC = 4873 typeCheckLoadStoreInst(DiagnosticHandler, Ty, Op->getType())) 4874 return EC; 4875 if (!Ty) 4876 Ty = cast<PointerType>(Op->getType())->getElementType(); 4877 4878 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4879 if (Ordering == NotAtomic || Ordering == Release || 4880 Ordering == AcquireRelease) 4881 return error("Invalid record"); 4882 if (Ordering != NotAtomic && Record[OpNum] == 0) 4883 return error("Invalid record"); 4884 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]); 4885 4886 unsigned Align; 4887 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 4888 return EC; 4889 I = new LoadInst(Op, "", Record[OpNum+1], Align, Ordering, SynchScope); 4890 4891 InstructionList.push_back(I); 4892 break; 4893 } 4894 case bitc::FUNC_CODE_INST_STORE: 4895 case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol] 4896 unsigned OpNum = 0; 4897 Value *Val, *Ptr; 4898 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4899 (BitCode == bitc::FUNC_CODE_INST_STORE 4900 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 4901 : popValue(Record, OpNum, NextValueNo, 4902 cast<PointerType>(Ptr->getType())->getElementType(), 4903 Val)) || 4904 OpNum + 2 != Record.size()) 4905 return error("Invalid record"); 4906 4907 if (std::error_code EC = typeCheckLoadStoreInst( 4908 DiagnosticHandler, Val->getType(), Ptr->getType())) 4909 return EC; 4910 unsigned Align; 4911 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 4912 return EC; 4913 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align); 4914 InstructionList.push_back(I); 4915 break; 4916 } 4917 case bitc::FUNC_CODE_INST_STOREATOMIC: 4918 case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: { 4919 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, synchscope] 4920 unsigned OpNum = 0; 4921 Value *Val, *Ptr; 4922 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4923 (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC 4924 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 4925 : popValue(Record, OpNum, NextValueNo, 4926 cast<PointerType>(Ptr->getType())->getElementType(), 4927 Val)) || 4928 OpNum + 4 != Record.size()) 4929 return error("Invalid record"); 4930 4931 if (std::error_code EC = typeCheckLoadStoreInst( 4932 DiagnosticHandler, Val->getType(), Ptr->getType())) 4933 return EC; 4934 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4935 if (Ordering == NotAtomic || Ordering == Acquire || 4936 Ordering == AcquireRelease) 4937 return error("Invalid record"); 4938 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]); 4939 if (Ordering != NotAtomic && Record[OpNum] == 0) 4940 return error("Invalid record"); 4941 4942 unsigned Align; 4943 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 4944 return EC; 4945 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align, Ordering, SynchScope); 4946 InstructionList.push_back(I); 4947 break; 4948 } 4949 case bitc::FUNC_CODE_INST_CMPXCHG_OLD: 4950 case bitc::FUNC_CODE_INST_CMPXCHG: { 4951 // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, synchscope, 4952 // failureordering?, isweak?] 4953 unsigned OpNum = 0; 4954 Value *Ptr, *Cmp, *New; 4955 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4956 (BitCode == bitc::FUNC_CODE_INST_CMPXCHG 4957 ? getValueTypePair(Record, OpNum, NextValueNo, Cmp) 4958 : popValue(Record, OpNum, NextValueNo, 4959 cast<PointerType>(Ptr->getType())->getElementType(), 4960 Cmp)) || 4961 popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) || 4962 Record.size() < OpNum + 3 || Record.size() > OpNum + 5) 4963 return error("Invalid record"); 4964 AtomicOrdering SuccessOrdering = getDecodedOrdering(Record[OpNum + 1]); 4965 if (SuccessOrdering == NotAtomic || SuccessOrdering == Unordered) 4966 return error("Invalid record"); 4967 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 2]); 4968 4969 if (std::error_code EC = typeCheckLoadStoreInst( 4970 DiagnosticHandler, Cmp->getType(), Ptr->getType())) 4971 return EC; 4972 AtomicOrdering FailureOrdering; 4973 if (Record.size() < 7) 4974 FailureOrdering = 4975 AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering); 4976 else 4977 FailureOrdering = getDecodedOrdering(Record[OpNum + 3]); 4978 4979 I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering, 4980 SynchScope); 4981 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 4982 4983 if (Record.size() < 8) { 4984 // Before weak cmpxchgs existed, the instruction simply returned the 4985 // value loaded from memory, so bitcode files from that era will be 4986 // expecting the first component of a modern cmpxchg. 4987 CurBB->getInstList().push_back(I); 4988 I = ExtractValueInst::Create(I, 0); 4989 } else { 4990 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]); 4991 } 4992 4993 InstructionList.push_back(I); 4994 break; 4995 } 4996 case bitc::FUNC_CODE_INST_ATOMICRMW: { 4997 // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, synchscope] 4998 unsigned OpNum = 0; 4999 Value *Ptr, *Val; 5000 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 5001 popValue(Record, OpNum, NextValueNo, 5002 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 5003 OpNum+4 != Record.size()) 5004 return error("Invalid record"); 5005 AtomicRMWInst::BinOp Operation = getDecodedRMWOperation(Record[OpNum]); 5006 if (Operation < AtomicRMWInst::FIRST_BINOP || 5007 Operation > AtomicRMWInst::LAST_BINOP) 5008 return error("Invalid record"); 5009 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 5010 if (Ordering == NotAtomic || Ordering == Unordered) 5011 return error("Invalid record"); 5012 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]); 5013 I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SynchScope); 5014 cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]); 5015 InstructionList.push_back(I); 5016 break; 5017 } 5018 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, synchscope] 5019 if (2 != Record.size()) 5020 return error("Invalid record"); 5021 AtomicOrdering Ordering = getDecodedOrdering(Record[0]); 5022 if (Ordering == NotAtomic || Ordering == Unordered || 5023 Ordering == Monotonic) 5024 return error("Invalid record"); 5025 SynchronizationScope SynchScope = getDecodedSynchScope(Record[1]); 5026 I = new FenceInst(Context, Ordering, SynchScope); 5027 InstructionList.push_back(I); 5028 break; 5029 } 5030 case bitc::FUNC_CODE_INST_CALL: { 5031 // CALL: [paramattrs, cc, fnty, fnid, arg0, arg1...] 5032 if (Record.size() < 3) 5033 return error("Invalid record"); 5034 5035 unsigned OpNum = 0; 5036 AttributeSet PAL = getAttributes(Record[OpNum++]); 5037 unsigned CCInfo = Record[OpNum++]; 5038 5039 FunctionType *FTy = nullptr; 5040 if (CCInfo >> bitc::CALL_EXPLICIT_TYPE & 1 && 5041 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])))) 5042 return error("Explicit call type is not a function type"); 5043 5044 Value *Callee; 5045 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 5046 return error("Invalid record"); 5047 5048 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 5049 if (!OpTy) 5050 return error("Callee is not a pointer type"); 5051 if (!FTy) { 5052 FTy = dyn_cast<FunctionType>(OpTy->getElementType()); 5053 if (!FTy) 5054 return error("Callee is not of pointer to function type"); 5055 } else if (OpTy->getElementType() != FTy) 5056 return error("Explicit call type does not match pointee type of " 5057 "callee operand"); 5058 if (Record.size() < FTy->getNumParams() + OpNum) 5059 return error("Insufficient operands to call"); 5060 5061 SmallVector<Value*, 16> Args; 5062 // Read the fixed params. 5063 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 5064 if (FTy->getParamType(i)->isLabelTy()) 5065 Args.push_back(getBasicBlock(Record[OpNum])); 5066 else 5067 Args.push_back(getValue(Record, OpNum, NextValueNo, 5068 FTy->getParamType(i))); 5069 if (!Args.back()) 5070 return error("Invalid record"); 5071 } 5072 5073 // Read type/value pairs for varargs params. 5074 if (!FTy->isVarArg()) { 5075 if (OpNum != Record.size()) 5076 return error("Invalid record"); 5077 } else { 5078 while (OpNum != Record.size()) { 5079 Value *Op; 5080 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 5081 return error("Invalid record"); 5082 Args.push_back(Op); 5083 } 5084 } 5085 5086 I = CallInst::Create(FTy, Callee, Args, OperandBundles); 5087 OperandBundles.clear(); 5088 InstructionList.push_back(I); 5089 cast<CallInst>(I)->setCallingConv( 5090 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 5091 CallInst::TailCallKind TCK = CallInst::TCK_None; 5092 if (CCInfo & 1 << bitc::CALL_TAIL) 5093 TCK = CallInst::TCK_Tail; 5094 if (CCInfo & (1 << bitc::CALL_MUSTTAIL)) 5095 TCK = CallInst::TCK_MustTail; 5096 if (CCInfo & (1 << bitc::CALL_NOTAIL)) 5097 TCK = CallInst::TCK_NoTail; 5098 cast<CallInst>(I)->setTailCallKind(TCK); 5099 cast<CallInst>(I)->setAttributes(PAL); 5100 break; 5101 } 5102 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 5103 if (Record.size() < 3) 5104 return error("Invalid record"); 5105 Type *OpTy = getTypeByID(Record[0]); 5106 Value *Op = getValue(Record, 1, NextValueNo, OpTy); 5107 Type *ResTy = getTypeByID(Record[2]); 5108 if (!OpTy || !Op || !ResTy) 5109 return error("Invalid record"); 5110 I = new VAArgInst(Op, ResTy); 5111 InstructionList.push_back(I); 5112 break; 5113 } 5114 5115 case bitc::FUNC_CODE_OPERAND_BUNDLE: { 5116 // A call or an invoke can be optionally prefixed with some variable 5117 // number of operand bundle blocks. These blocks are read into 5118 // OperandBundles and consumed at the next call or invoke instruction. 5119 5120 if (Record.size() < 1 || Record[0] >= BundleTags.size()) 5121 return error("Invalid record"); 5122 5123 std::vector<Value *> Inputs; 5124 5125 unsigned OpNum = 1; 5126 while (OpNum != Record.size()) { 5127 Value *Op; 5128 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 5129 return error("Invalid record"); 5130 Inputs.push_back(Op); 5131 } 5132 5133 OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs)); 5134 continue; 5135 } 5136 } 5137 5138 // Add instruction to end of current BB. If there is no current BB, reject 5139 // this file. 5140 if (!CurBB) { 5141 delete I; 5142 return error("Invalid instruction with no BB"); 5143 } 5144 if (!OperandBundles.empty()) { 5145 delete I; 5146 return error("Operand bundles found with no consumer"); 5147 } 5148 CurBB->getInstList().push_back(I); 5149 5150 // If this was a terminator instruction, move to the next block. 5151 if (isa<TerminatorInst>(I)) { 5152 ++CurBBNo; 5153 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr; 5154 } 5155 5156 // Non-void values get registered in the value table for future use. 5157 if (I && !I->getType()->isVoidTy()) 5158 if (ValueList.assignValue(I, NextValueNo++)) 5159 return error("Invalid forward reference"); 5160 } 5161 5162 OutOfRecordLoop: 5163 5164 if (!OperandBundles.empty()) 5165 return error("Operand bundles found with no consumer"); 5166 5167 // Check the function list for unresolved values. 5168 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 5169 if (!A->getParent()) { 5170 // We found at least one unresolved value. Nuke them all to avoid leaks. 5171 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 5172 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) { 5173 A->replaceAllUsesWith(UndefValue::get(A->getType())); 5174 delete A; 5175 } 5176 } 5177 return error("Never resolved value found in function"); 5178 } 5179 } 5180 5181 // FIXME: Check for unresolved forward-declared metadata references 5182 // and clean up leaks. 5183 5184 // Trim the value list down to the size it was before we parsed this function. 5185 ValueList.shrinkTo(ModuleValueListSize); 5186 MDValueList.shrinkTo(ModuleMDValueListSize); 5187 std::vector<BasicBlock*>().swap(FunctionBBs); 5188 return std::error_code(); 5189 } 5190 5191 /// Find the function body in the bitcode stream 5192 std::error_code BitcodeReader::findFunctionInStream( 5193 Function *F, 5194 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) { 5195 while (DeferredFunctionInfoIterator->second == 0) { 5196 // This is the fallback handling for the old format bitcode that 5197 // didn't contain the function index in the VST, or when we have 5198 // an anonymous function which would not have a VST entry. 5199 // Assert that we have one of those two cases. 5200 assert(VSTOffset == 0 || !F->hasName()); 5201 // Parse the next body in the stream and set its position in the 5202 // DeferredFunctionInfo map. 5203 if (std::error_code EC = rememberAndSkipFunctionBodies()) 5204 return EC; 5205 } 5206 return std::error_code(); 5207 } 5208 5209 //===----------------------------------------------------------------------===// 5210 // GVMaterializer implementation 5211 //===----------------------------------------------------------------------===// 5212 5213 void BitcodeReader::releaseBuffer() { Buffer.release(); } 5214 5215 std::error_code BitcodeReader::materialize(GlobalValue *GV) { 5216 if (std::error_code EC = materializeMetadata()) 5217 return EC; 5218 5219 Function *F = dyn_cast<Function>(GV); 5220 // If it's not a function or is already material, ignore the request. 5221 if (!F || !F->isMaterializable()) 5222 return std::error_code(); 5223 5224 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 5225 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 5226 // If its position is recorded as 0, its body is somewhere in the stream 5227 // but we haven't seen it yet. 5228 if (DFII->second == 0) 5229 if (std::error_code EC = findFunctionInStream(F, DFII)) 5230 return EC; 5231 5232 // Move the bit stream to the saved position of the deferred function body. 5233 Stream.JumpToBit(DFII->second); 5234 5235 if (std::error_code EC = parseFunctionBody(F)) 5236 return EC; 5237 F->setIsMaterializable(false); 5238 5239 if (StripDebugInfo) 5240 stripDebugInfo(*F); 5241 5242 // Upgrade any old intrinsic calls in the function. 5243 for (auto &I : UpgradedIntrinsics) { 5244 for (auto UI = I.first->user_begin(), UE = I.first->user_end(); UI != UE;) { 5245 User *U = *UI; 5246 ++UI; 5247 if (CallInst *CI = dyn_cast<CallInst>(U)) 5248 UpgradeIntrinsicCall(CI, I.second); 5249 } 5250 } 5251 5252 // Finish fn->subprogram upgrade for materialized functions. 5253 if (DISubprogram *SP = FunctionsWithSPs.lookup(F)) 5254 F->setSubprogram(SP); 5255 5256 // Bring in any functions that this function forward-referenced via 5257 // blockaddresses. 5258 return materializeForwardReferencedFunctions(); 5259 } 5260 5261 bool BitcodeReader::isDematerializable(const GlobalValue *GV) const { 5262 const Function *F = dyn_cast<Function>(GV); 5263 if (!F || F->isDeclaration()) 5264 return false; 5265 5266 // Dematerializing F would leave dangling references that wouldn't be 5267 // reconnected on re-materialization. 5268 if (BlockAddressesTaken.count(F)) 5269 return false; 5270 5271 return DeferredFunctionInfo.count(const_cast<Function*>(F)); 5272 } 5273 5274 void BitcodeReader::dematerialize(GlobalValue *GV) { 5275 Function *F = dyn_cast<Function>(GV); 5276 // If this function isn't dematerializable, this is a noop. 5277 if (!F || !isDematerializable(F)) 5278 return; 5279 5280 assert(DeferredFunctionInfo.count(F) && "No info to read function later?"); 5281 5282 // Just forget the function body, we can remat it later. 5283 F->dropAllReferences(); 5284 F->setIsMaterializable(true); 5285 } 5286 5287 std::error_code BitcodeReader::materializeModule(Module *M) { 5288 assert(M == TheModule && 5289 "Can only Materialize the Module this BitcodeReader is attached to."); 5290 5291 if (std::error_code EC = materializeMetadata()) 5292 return EC; 5293 5294 // Promise to materialize all forward references. 5295 WillMaterializeAllForwardRefs = true; 5296 5297 // Iterate over the module, deserializing any functions that are still on 5298 // disk. 5299 for (Function &F : *TheModule) { 5300 if (std::error_code EC = materialize(&F)) 5301 return EC; 5302 } 5303 // At this point, if there are any function bodies, parse the rest of 5304 // the bits in the module past the last function block we have recorded 5305 // through either lazy scanning or the VST. 5306 if (LastFunctionBlockBit || NextUnreadBit) 5307 parseModule(LastFunctionBlockBit > NextUnreadBit ? LastFunctionBlockBit 5308 : NextUnreadBit); 5309 5310 // Check that all block address forward references got resolved (as we 5311 // promised above). 5312 if (!BasicBlockFwdRefs.empty()) 5313 return error("Never resolved function from blockaddress"); 5314 5315 // Upgrade any intrinsic calls that slipped through (should not happen!) and 5316 // delete the old functions to clean up. We can't do this unless the entire 5317 // module is materialized because there could always be another function body 5318 // with calls to the old function. 5319 for (auto &I : UpgradedIntrinsics) { 5320 for (auto *U : I.first->users()) { 5321 if (CallInst *CI = dyn_cast<CallInst>(U)) 5322 UpgradeIntrinsicCall(CI, I.second); 5323 } 5324 if (!I.first->use_empty()) 5325 I.first->replaceAllUsesWith(I.second); 5326 I.first->eraseFromParent(); 5327 } 5328 UpgradedIntrinsics.clear(); 5329 5330 for (unsigned I = 0, E = InstsWithTBAATag.size(); I < E; I++) 5331 UpgradeInstWithTBAATag(InstsWithTBAATag[I]); 5332 5333 UpgradeDebugInfo(*M); 5334 return std::error_code(); 5335 } 5336 5337 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const { 5338 return IdentifiedStructTypes; 5339 } 5340 5341 std::error_code 5342 BitcodeReader::initStream(std::unique_ptr<DataStreamer> Streamer) { 5343 if (Streamer) 5344 return initLazyStream(std::move(Streamer)); 5345 return initStreamFromBuffer(); 5346 } 5347 5348 std::error_code BitcodeReader::initStreamFromBuffer() { 5349 const unsigned char *BufPtr = (const unsigned char*)Buffer->getBufferStart(); 5350 const unsigned char *BufEnd = BufPtr+Buffer->getBufferSize(); 5351 5352 if (Buffer->getBufferSize() & 3) 5353 return error("Invalid bitcode signature"); 5354 5355 // If we have a wrapper header, parse it and ignore the non-bc file contents. 5356 // The magic number is 0x0B17C0DE stored in little endian. 5357 if (isBitcodeWrapper(BufPtr, BufEnd)) 5358 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 5359 return error("Invalid bitcode wrapper header"); 5360 5361 StreamFile.reset(new BitstreamReader(BufPtr, BufEnd)); 5362 Stream.init(&*StreamFile); 5363 5364 return std::error_code(); 5365 } 5366 5367 std::error_code 5368 BitcodeReader::initLazyStream(std::unique_ptr<DataStreamer> Streamer) { 5369 // Check and strip off the bitcode wrapper; BitstreamReader expects never to 5370 // see it. 5371 auto OwnedBytes = 5372 llvm::make_unique<StreamingMemoryObject>(std::move(Streamer)); 5373 StreamingMemoryObject &Bytes = *OwnedBytes; 5374 StreamFile = llvm::make_unique<BitstreamReader>(std::move(OwnedBytes)); 5375 Stream.init(&*StreamFile); 5376 5377 unsigned char buf[16]; 5378 if (Bytes.readBytes(buf, 16, 0) != 16) 5379 return error("Invalid bitcode signature"); 5380 5381 if (!isBitcode(buf, buf + 16)) 5382 return error("Invalid bitcode signature"); 5383 5384 if (isBitcodeWrapper(buf, buf + 4)) { 5385 const unsigned char *bitcodeStart = buf; 5386 const unsigned char *bitcodeEnd = buf + 16; 5387 SkipBitcodeWrapperHeader(bitcodeStart, bitcodeEnd, false); 5388 Bytes.dropLeadingBytes(bitcodeStart - buf); 5389 Bytes.setKnownObjectSize(bitcodeEnd - bitcodeStart); 5390 } 5391 return std::error_code(); 5392 } 5393 5394 std::error_code FunctionIndexBitcodeReader::error(BitcodeError E, 5395 const Twine &Message) { 5396 return ::error(DiagnosticHandler, make_error_code(E), Message); 5397 } 5398 5399 std::error_code FunctionIndexBitcodeReader::error(const Twine &Message) { 5400 return ::error(DiagnosticHandler, 5401 make_error_code(BitcodeError::CorruptedBitcode), Message); 5402 } 5403 5404 std::error_code FunctionIndexBitcodeReader::error(BitcodeError E) { 5405 return ::error(DiagnosticHandler, make_error_code(E)); 5406 } 5407 5408 FunctionIndexBitcodeReader::FunctionIndexBitcodeReader( 5409 MemoryBuffer *Buffer, LLVMContext &Context, 5410 DiagnosticHandlerFunction DiagnosticHandler, bool IsLazy, 5411 bool CheckFuncSummaryPresenceOnly) 5412 : DiagnosticHandler(getDiagHandler(DiagnosticHandler, Context)), 5413 Buffer(Buffer), IsLazy(IsLazy), 5414 CheckFuncSummaryPresenceOnly(CheckFuncSummaryPresenceOnly) {} 5415 5416 FunctionIndexBitcodeReader::FunctionIndexBitcodeReader( 5417 LLVMContext &Context, DiagnosticHandlerFunction DiagnosticHandler, 5418 bool IsLazy, bool CheckFuncSummaryPresenceOnly) 5419 : DiagnosticHandler(getDiagHandler(DiagnosticHandler, Context)), 5420 Buffer(nullptr), IsLazy(IsLazy), 5421 CheckFuncSummaryPresenceOnly(CheckFuncSummaryPresenceOnly) {} 5422 5423 void FunctionIndexBitcodeReader::freeState() { Buffer = nullptr; } 5424 5425 void FunctionIndexBitcodeReader::releaseBuffer() { Buffer.release(); } 5426 5427 // Specialized value symbol table parser used when reading function index 5428 // blocks where we don't actually create global values. 5429 // At the end of this routine the function index is populated with a map 5430 // from function name to FunctionInfo. The function info contains 5431 // the function block's bitcode offset as well as the offset into the 5432 // function summary section. 5433 std::error_code FunctionIndexBitcodeReader::parseValueSymbolTable() { 5434 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 5435 return error("Invalid record"); 5436 5437 SmallVector<uint64_t, 64> Record; 5438 5439 // Read all the records for this value table. 5440 SmallString<128> ValueName; 5441 while (1) { 5442 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5443 5444 switch (Entry.Kind) { 5445 case BitstreamEntry::SubBlock: // Handled for us already. 5446 case BitstreamEntry::Error: 5447 return error("Malformed block"); 5448 case BitstreamEntry::EndBlock: 5449 return std::error_code(); 5450 case BitstreamEntry::Record: 5451 // The interesting case. 5452 break; 5453 } 5454 5455 // Read a record. 5456 Record.clear(); 5457 switch (Stream.readRecord(Entry.ID, Record)) { 5458 default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records). 5459 break; 5460 case bitc::VST_CODE_FNENTRY: { 5461 // VST_FNENTRY: [valueid, offset, namechar x N] 5462 if (convertToString(Record, 2, ValueName)) 5463 return error("Invalid record"); 5464 unsigned ValueID = Record[0]; 5465 uint64_t FuncOffset = Record[1]; 5466 std::unique_ptr<FunctionInfo> FuncInfo = 5467 llvm::make_unique<FunctionInfo>(FuncOffset); 5468 if (foundFuncSummary() && !IsLazy) { 5469 DenseMap<uint64_t, std::unique_ptr<FunctionSummary>>::iterator SMI = 5470 SummaryMap.find(ValueID); 5471 assert(SMI != SummaryMap.end() && "Summary info not found"); 5472 FuncInfo->setFunctionSummary(std::move(SMI->second)); 5473 } 5474 TheIndex->addFunctionInfo(ValueName, std::move(FuncInfo)); 5475 5476 ValueName.clear(); 5477 break; 5478 } 5479 case bitc::VST_CODE_COMBINED_FNENTRY: { 5480 // VST_FNENTRY: [offset, namechar x N] 5481 if (convertToString(Record, 1, ValueName)) 5482 return error("Invalid record"); 5483 uint64_t FuncSummaryOffset = Record[0]; 5484 std::unique_ptr<FunctionInfo> FuncInfo = 5485 llvm::make_unique<FunctionInfo>(FuncSummaryOffset); 5486 if (foundFuncSummary() && !IsLazy) { 5487 DenseMap<uint64_t, std::unique_ptr<FunctionSummary>>::iterator SMI = 5488 SummaryMap.find(FuncSummaryOffset); 5489 assert(SMI != SummaryMap.end() && "Summary info not found"); 5490 FuncInfo->setFunctionSummary(std::move(SMI->second)); 5491 } 5492 TheIndex->addFunctionInfo(ValueName, std::move(FuncInfo)); 5493 5494 ValueName.clear(); 5495 break; 5496 } 5497 } 5498 } 5499 } 5500 5501 // Parse just the blocks needed for function index building out of the module. 5502 // At the end of this routine the function Index is populated with a map 5503 // from function name to FunctionInfo. The function info contains 5504 // either the parsed function summary information (when parsing summaries 5505 // eagerly), or just to the function summary record's offset 5506 // if parsing lazily (IsLazy). 5507 std::error_code FunctionIndexBitcodeReader::parseModule() { 5508 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 5509 return error("Invalid record"); 5510 5511 // Read the function index for this module. 5512 while (1) { 5513 BitstreamEntry Entry = Stream.advance(); 5514 5515 switch (Entry.Kind) { 5516 case BitstreamEntry::Error: 5517 return error("Malformed block"); 5518 case BitstreamEntry::EndBlock: 5519 return std::error_code(); 5520 5521 case BitstreamEntry::SubBlock: 5522 if (CheckFuncSummaryPresenceOnly) { 5523 if (Entry.ID == bitc::FUNCTION_SUMMARY_BLOCK_ID) 5524 SeenFuncSummary = true; 5525 if (Stream.SkipBlock()) 5526 return error("Invalid record"); 5527 // No need to parse the rest since we found the summary. 5528 return std::error_code(); 5529 } 5530 switch (Entry.ID) { 5531 default: // Skip unknown content. 5532 if (Stream.SkipBlock()) 5533 return error("Invalid record"); 5534 break; 5535 case bitc::BLOCKINFO_BLOCK_ID: 5536 // Need to parse these to get abbrev ids (e.g. for VST) 5537 if (Stream.ReadBlockInfoBlock()) 5538 return error("Malformed block"); 5539 break; 5540 case bitc::VALUE_SYMTAB_BLOCK_ID: 5541 if (std::error_code EC = parseValueSymbolTable()) 5542 return EC; 5543 break; 5544 case bitc::FUNCTION_SUMMARY_BLOCK_ID: 5545 SeenFuncSummary = true; 5546 if (IsLazy) { 5547 // Lazy parsing of summary info, skip it. 5548 if (Stream.SkipBlock()) 5549 return error("Invalid record"); 5550 } else if (std::error_code EC = parseEntireSummary()) 5551 return EC; 5552 break; 5553 case bitc::MODULE_STRTAB_BLOCK_ID: 5554 if (std::error_code EC = parseModuleStringTable()) 5555 return EC; 5556 break; 5557 } 5558 continue; 5559 5560 case BitstreamEntry::Record: 5561 Stream.skipRecord(Entry.ID); 5562 continue; 5563 } 5564 } 5565 } 5566 5567 // Eagerly parse the entire function summary block (i.e. for all functions 5568 // in the index). This populates the FunctionSummary objects in 5569 // the index. 5570 std::error_code FunctionIndexBitcodeReader::parseEntireSummary() { 5571 if (Stream.EnterSubBlock(bitc::FUNCTION_SUMMARY_BLOCK_ID)) 5572 return error("Invalid record"); 5573 5574 SmallVector<uint64_t, 64> Record; 5575 5576 while (1) { 5577 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5578 5579 switch (Entry.Kind) { 5580 case BitstreamEntry::SubBlock: // Handled for us already. 5581 case BitstreamEntry::Error: 5582 return error("Malformed block"); 5583 case BitstreamEntry::EndBlock: 5584 return std::error_code(); 5585 case BitstreamEntry::Record: 5586 // The interesting case. 5587 break; 5588 } 5589 5590 // Read a record. The record format depends on whether this 5591 // is a per-module index or a combined index file. In the per-module 5592 // case the records contain the associated value's ID for correlation 5593 // with VST entries. In the combined index the correlation is done 5594 // via the bitcode offset of the summary records (which were saved 5595 // in the combined index VST entries). The records also contain 5596 // information used for ThinLTO renaming and importing. 5597 Record.clear(); 5598 uint64_t CurRecordBit = Stream.GetCurrentBitNo(); 5599 switch (Stream.readRecord(Entry.ID, Record)) { 5600 default: // Default behavior: ignore. 5601 break; 5602 // FS_PERMODULE_ENTRY: [valueid, islocal, instcount] 5603 case bitc::FS_CODE_PERMODULE_ENTRY: { 5604 unsigned ValueID = Record[0]; 5605 bool IsLocal = Record[1]; 5606 unsigned InstCount = Record[2]; 5607 std::unique_ptr<FunctionSummary> FS = 5608 llvm::make_unique<FunctionSummary>(InstCount); 5609 FS->setLocalFunction(IsLocal); 5610 // The module path string ref set in the summary must be owned by the 5611 // index's module string table. Since we don't have a module path 5612 // string table section in the per-module index, we create a single 5613 // module path string table entry with an empty (0) ID to take 5614 // ownership. 5615 FS->setModulePath( 5616 TheIndex->addModulePath(Buffer->getBufferIdentifier(), 0)); 5617 SummaryMap[ValueID] = std::move(FS); 5618 } 5619 // FS_COMBINED_ENTRY: [modid, instcount] 5620 case bitc::FS_CODE_COMBINED_ENTRY: { 5621 uint64_t ModuleId = Record[0]; 5622 unsigned InstCount = Record[1]; 5623 std::unique_ptr<FunctionSummary> FS = 5624 llvm::make_unique<FunctionSummary>(InstCount); 5625 FS->setModulePath(ModuleIdMap[ModuleId]); 5626 SummaryMap[CurRecordBit] = std::move(FS); 5627 } 5628 } 5629 } 5630 llvm_unreachable("Exit infinite loop"); 5631 } 5632 5633 // Parse the module string table block into the Index. 5634 // This populates the ModulePathStringTable map in the index. 5635 std::error_code FunctionIndexBitcodeReader::parseModuleStringTable() { 5636 if (Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID)) 5637 return error("Invalid record"); 5638 5639 SmallVector<uint64_t, 64> Record; 5640 5641 SmallString<128> ModulePath; 5642 while (1) { 5643 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5644 5645 switch (Entry.Kind) { 5646 case BitstreamEntry::SubBlock: // Handled for us already. 5647 case BitstreamEntry::Error: 5648 return error("Malformed block"); 5649 case BitstreamEntry::EndBlock: 5650 return std::error_code(); 5651 case BitstreamEntry::Record: 5652 // The interesting case. 5653 break; 5654 } 5655 5656 Record.clear(); 5657 switch (Stream.readRecord(Entry.ID, Record)) { 5658 default: // Default behavior: ignore. 5659 break; 5660 case bitc::MST_CODE_ENTRY: { 5661 // MST_ENTRY: [modid, namechar x N] 5662 if (convertToString(Record, 1, ModulePath)) 5663 return error("Invalid record"); 5664 uint64_t ModuleId = Record[0]; 5665 StringRef ModulePathInMap = TheIndex->addModulePath(ModulePath, ModuleId); 5666 ModuleIdMap[ModuleId] = ModulePathInMap; 5667 ModulePath.clear(); 5668 break; 5669 } 5670 } 5671 } 5672 llvm_unreachable("Exit infinite loop"); 5673 } 5674 5675 // Parse the function info index from the bitcode streamer into the given index. 5676 std::error_code FunctionIndexBitcodeReader::parseSummaryIndexInto( 5677 std::unique_ptr<DataStreamer> Streamer, FunctionInfoIndex *I) { 5678 TheIndex = I; 5679 5680 if (std::error_code EC = initStream(std::move(Streamer))) 5681 return EC; 5682 5683 // Sniff for the signature. 5684 if (!hasValidBitcodeHeader(Stream)) 5685 return error("Invalid bitcode signature"); 5686 5687 // We expect a number of well-defined blocks, though we don't necessarily 5688 // need to understand them all. 5689 while (1) { 5690 if (Stream.AtEndOfStream()) { 5691 // We didn't really read a proper Module block. 5692 return error("Malformed block"); 5693 } 5694 5695 BitstreamEntry Entry = 5696 Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs); 5697 5698 if (Entry.Kind != BitstreamEntry::SubBlock) 5699 return error("Malformed block"); 5700 5701 // If we see a MODULE_BLOCK, parse it to find the blocks needed for 5702 // building the function summary index. 5703 if (Entry.ID == bitc::MODULE_BLOCK_ID) 5704 return parseModule(); 5705 5706 if (Stream.SkipBlock()) 5707 return error("Invalid record"); 5708 } 5709 } 5710 5711 // Parse the function information at the given offset in the buffer into 5712 // the index. Used to support lazy parsing of function summaries from the 5713 // combined index during importing. 5714 // TODO: This function is not yet complete as it won't have a consumer 5715 // until ThinLTO function importing is added. 5716 std::error_code FunctionIndexBitcodeReader::parseFunctionSummary( 5717 std::unique_ptr<DataStreamer> Streamer, FunctionInfoIndex *I, 5718 size_t FunctionSummaryOffset) { 5719 TheIndex = I; 5720 5721 if (std::error_code EC = initStream(std::move(Streamer))) 5722 return EC; 5723 5724 // Sniff for the signature. 5725 if (!hasValidBitcodeHeader(Stream)) 5726 return error("Invalid bitcode signature"); 5727 5728 Stream.JumpToBit(FunctionSummaryOffset); 5729 5730 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5731 5732 switch (Entry.Kind) { 5733 default: 5734 return error("Malformed block"); 5735 case BitstreamEntry::Record: 5736 // The expected case. 5737 break; 5738 } 5739 5740 // TODO: Read a record. This interface will be completed when ThinLTO 5741 // importing is added so that it can be tested. 5742 SmallVector<uint64_t, 64> Record; 5743 switch (Stream.readRecord(Entry.ID, Record)) { 5744 case bitc::FS_CODE_COMBINED_ENTRY: 5745 default: 5746 return error("Invalid record"); 5747 } 5748 5749 return std::error_code(); 5750 } 5751 5752 std::error_code 5753 FunctionIndexBitcodeReader::initStream(std::unique_ptr<DataStreamer> Streamer) { 5754 if (Streamer) 5755 return initLazyStream(std::move(Streamer)); 5756 return initStreamFromBuffer(); 5757 } 5758 5759 std::error_code FunctionIndexBitcodeReader::initStreamFromBuffer() { 5760 const unsigned char *BufPtr = (const unsigned char *)Buffer->getBufferStart(); 5761 const unsigned char *BufEnd = BufPtr + Buffer->getBufferSize(); 5762 5763 if (Buffer->getBufferSize() & 3) 5764 return error("Invalid bitcode signature"); 5765 5766 // If we have a wrapper header, parse it and ignore the non-bc file contents. 5767 // The magic number is 0x0B17C0DE stored in little endian. 5768 if (isBitcodeWrapper(BufPtr, BufEnd)) 5769 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 5770 return error("Invalid bitcode wrapper header"); 5771 5772 StreamFile.reset(new BitstreamReader(BufPtr, BufEnd)); 5773 Stream.init(&*StreamFile); 5774 5775 return std::error_code(); 5776 } 5777 5778 std::error_code FunctionIndexBitcodeReader::initLazyStream( 5779 std::unique_ptr<DataStreamer> Streamer) { 5780 // Check and strip off the bitcode wrapper; BitstreamReader expects never to 5781 // see it. 5782 auto OwnedBytes = 5783 llvm::make_unique<StreamingMemoryObject>(std::move(Streamer)); 5784 StreamingMemoryObject &Bytes = *OwnedBytes; 5785 StreamFile = llvm::make_unique<BitstreamReader>(std::move(OwnedBytes)); 5786 Stream.init(&*StreamFile); 5787 5788 unsigned char buf[16]; 5789 if (Bytes.readBytes(buf, 16, 0) != 16) 5790 return error("Invalid bitcode signature"); 5791 5792 if (!isBitcode(buf, buf + 16)) 5793 return error("Invalid bitcode signature"); 5794 5795 if (isBitcodeWrapper(buf, buf + 4)) { 5796 const unsigned char *bitcodeStart = buf; 5797 const unsigned char *bitcodeEnd = buf + 16; 5798 SkipBitcodeWrapperHeader(bitcodeStart, bitcodeEnd, false); 5799 Bytes.dropLeadingBytes(bitcodeStart - buf); 5800 Bytes.setKnownObjectSize(bitcodeEnd - bitcodeStart); 5801 } 5802 return std::error_code(); 5803 } 5804 5805 namespace { 5806 class BitcodeErrorCategoryType : public std::error_category { 5807 const char *name() const LLVM_NOEXCEPT override { 5808 return "llvm.bitcode"; 5809 } 5810 std::string message(int IE) const override { 5811 BitcodeError E = static_cast<BitcodeError>(IE); 5812 switch (E) { 5813 case BitcodeError::InvalidBitcodeSignature: 5814 return "Invalid bitcode signature"; 5815 case BitcodeError::CorruptedBitcode: 5816 return "Corrupted bitcode"; 5817 } 5818 llvm_unreachable("Unknown error type!"); 5819 } 5820 }; 5821 } 5822 5823 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory; 5824 5825 const std::error_category &llvm::BitcodeErrorCategory() { 5826 return *ErrorCategory; 5827 } 5828 5829 //===----------------------------------------------------------------------===// 5830 // External interface 5831 //===----------------------------------------------------------------------===// 5832 5833 static ErrorOr<std::unique_ptr<Module>> 5834 getBitcodeModuleImpl(std::unique_ptr<DataStreamer> Streamer, StringRef Name, 5835 BitcodeReader *R, LLVMContext &Context, 5836 bool MaterializeAll, bool ShouldLazyLoadMetadata) { 5837 std::unique_ptr<Module> M = make_unique<Module>(Name, Context); 5838 M->setMaterializer(R); 5839 5840 auto cleanupOnError = [&](std::error_code EC) { 5841 R->releaseBuffer(); // Never take ownership on error. 5842 return EC; 5843 }; 5844 5845 // Delay parsing Metadata if ShouldLazyLoadMetadata is true. 5846 if (std::error_code EC = R->parseBitcodeInto(std::move(Streamer), M.get(), 5847 ShouldLazyLoadMetadata)) 5848 return cleanupOnError(EC); 5849 5850 if (MaterializeAll) { 5851 // Read in the entire module, and destroy the BitcodeReader. 5852 if (std::error_code EC = M->materializeAllPermanently()) 5853 return cleanupOnError(EC); 5854 } else { 5855 // Resolve forward references from blockaddresses. 5856 if (std::error_code EC = R->materializeForwardReferencedFunctions()) 5857 return cleanupOnError(EC); 5858 } 5859 return std::move(M); 5860 } 5861 5862 /// \brief Get a lazy one-at-time loading module from bitcode. 5863 /// 5864 /// This isn't always used in a lazy context. In particular, it's also used by 5865 /// \a parseBitcodeFile(). If this is truly lazy, then we need to eagerly pull 5866 /// in forward-referenced functions from block address references. 5867 /// 5868 /// \param[in] MaterializeAll Set to \c true if we should materialize 5869 /// everything. 5870 static ErrorOr<std::unique_ptr<Module>> 5871 getLazyBitcodeModuleImpl(std::unique_ptr<MemoryBuffer> &&Buffer, 5872 LLVMContext &Context, bool MaterializeAll, 5873 DiagnosticHandlerFunction DiagnosticHandler, 5874 bool ShouldLazyLoadMetadata = false) { 5875 BitcodeReader *R = 5876 new BitcodeReader(Buffer.get(), Context, DiagnosticHandler); 5877 5878 ErrorOr<std::unique_ptr<Module>> Ret = 5879 getBitcodeModuleImpl(nullptr, Buffer->getBufferIdentifier(), R, Context, 5880 MaterializeAll, ShouldLazyLoadMetadata); 5881 if (!Ret) 5882 return Ret; 5883 5884 Buffer.release(); // The BitcodeReader owns it now. 5885 return Ret; 5886 } 5887 5888 ErrorOr<std::unique_ptr<Module>> llvm::getLazyBitcodeModule( 5889 std::unique_ptr<MemoryBuffer> &&Buffer, LLVMContext &Context, 5890 DiagnosticHandlerFunction DiagnosticHandler, bool ShouldLazyLoadMetadata) { 5891 return getLazyBitcodeModuleImpl(std::move(Buffer), Context, false, 5892 DiagnosticHandler, ShouldLazyLoadMetadata); 5893 } 5894 5895 ErrorOr<std::unique_ptr<Module>> llvm::getStreamedBitcodeModule( 5896 StringRef Name, std::unique_ptr<DataStreamer> Streamer, 5897 LLVMContext &Context, DiagnosticHandlerFunction DiagnosticHandler) { 5898 std::unique_ptr<Module> M = make_unique<Module>(Name, Context); 5899 BitcodeReader *R = new BitcodeReader(Context, DiagnosticHandler); 5900 5901 return getBitcodeModuleImpl(std::move(Streamer), Name, R, Context, false, 5902 false); 5903 } 5904 5905 ErrorOr<std::unique_ptr<Module>> 5906 llvm::parseBitcodeFile(MemoryBufferRef Buffer, LLVMContext &Context, 5907 DiagnosticHandlerFunction DiagnosticHandler) { 5908 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 5909 return getLazyBitcodeModuleImpl(std::move(Buf), Context, true, 5910 DiagnosticHandler); 5911 // TODO: Restore the use-lists to the in-memory state when the bitcode was 5912 // written. We must defer until the Module has been fully materialized. 5913 } 5914 5915 std::string 5916 llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer, LLVMContext &Context, 5917 DiagnosticHandlerFunction DiagnosticHandler) { 5918 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 5919 auto R = llvm::make_unique<BitcodeReader>(Buf.release(), Context, 5920 DiagnosticHandler); 5921 ErrorOr<std::string> Triple = R->parseTriple(); 5922 if (Triple.getError()) 5923 return ""; 5924 return Triple.get(); 5925 } 5926 5927 std::string 5928 llvm::getBitcodeProducerString(MemoryBufferRef Buffer, LLVMContext &Context, 5929 DiagnosticHandlerFunction DiagnosticHandler) { 5930 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 5931 BitcodeReader R(Buf.release(), Context, DiagnosticHandler); 5932 ErrorOr<std::string> ProducerString = R.parseIdentificationBlock(); 5933 if (ProducerString.getError()) 5934 return ""; 5935 return ProducerString.get(); 5936 } 5937 5938 // Parse the specified bitcode buffer, returning the function info index. 5939 // If IsLazy is false, parse the entire function summary into 5940 // the index. Otherwise skip the function summary section, and only create 5941 // an index object with a map from function name to function summary offset. 5942 // The index is used to perform lazy function summary reading later. 5943 ErrorOr<std::unique_ptr<FunctionInfoIndex>> 5944 llvm::getFunctionInfoIndex(MemoryBufferRef Buffer, LLVMContext &Context, 5945 DiagnosticHandlerFunction DiagnosticHandler, 5946 const Module *ExportingModule, bool IsLazy) { 5947 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 5948 FunctionIndexBitcodeReader R(Buf.get(), Context, DiagnosticHandler, IsLazy); 5949 5950 std::unique_ptr<FunctionInfoIndex> Index = 5951 llvm::make_unique<FunctionInfoIndex>(ExportingModule); 5952 5953 auto cleanupOnError = [&](std::error_code EC) { 5954 R.releaseBuffer(); // Never take ownership on error. 5955 return EC; 5956 }; 5957 5958 if (std::error_code EC = R.parseSummaryIndexInto(nullptr, Index.get())) 5959 return cleanupOnError(EC); 5960 5961 Buf.release(); // The FunctionIndexBitcodeReader owns it now. 5962 return std::move(Index); 5963 } 5964 5965 // Check if the given bitcode buffer contains a function summary block. 5966 bool llvm::hasFunctionSummary(MemoryBufferRef Buffer, LLVMContext &Context, 5967 DiagnosticHandlerFunction DiagnosticHandler) { 5968 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 5969 FunctionIndexBitcodeReader R(Buf.get(), Context, DiagnosticHandler, false, 5970 true); 5971 5972 auto cleanupOnError = [&](std::error_code EC) { 5973 R.releaseBuffer(); // Never take ownership on error. 5974 return false; 5975 }; 5976 5977 if (std::error_code EC = R.parseSummaryIndexInto(nullptr, nullptr)) 5978 return cleanupOnError(EC); 5979 5980 Buf.release(); // The FunctionIndexBitcodeReader owns it now. 5981 return R.foundFuncSummary(); 5982 } 5983 5984 // This method supports lazy reading of function summary data from the combined 5985 // index during ThinLTO function importing. When reading the combined index 5986 // file, getFunctionInfoIndex is first invoked with IsLazy=true. 5987 // Then this method is called for each function considered for importing, 5988 // to parse the summary information for the given function name into 5989 // the index. 5990 std::error_code 5991 llvm::readFunctionSummary(MemoryBufferRef Buffer, LLVMContext &Context, 5992 DiagnosticHandlerFunction DiagnosticHandler, 5993 StringRef FunctionName, 5994 std::unique_ptr<FunctionInfoIndex> Index) { 5995 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 5996 FunctionIndexBitcodeReader R(Buf.get(), Context, DiagnosticHandler); 5997 5998 auto cleanupOnError = [&](std::error_code EC) { 5999 R.releaseBuffer(); // Never take ownership on error. 6000 return EC; 6001 }; 6002 6003 // Lookup the given function name in the FunctionMap, which may 6004 // contain a list of function infos in the case of a COMDAT. Walk through 6005 // and parse each function summary info at the function summary offset 6006 // recorded when parsing the value symbol table. 6007 for (const auto &FI : Index->getFunctionInfoList(FunctionName)) { 6008 size_t FunctionSummaryOffset = FI->bitcodeIndex(); 6009 if (std::error_code EC = 6010 R.parseFunctionSummary(nullptr, Index.get(), FunctionSummaryOffset)) 6011 return cleanupOnError(EC); 6012 } 6013 6014 Buf.release(); // The FunctionIndexBitcodeReader owns it now. 6015 return std::error_code(); 6016 } 6017