1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "llvm/Bitcode/ReaderWriter.h" 11 #include "llvm/ADT/STLExtras.h" 12 #include "llvm/ADT/SmallString.h" 13 #include "llvm/ADT/SmallVector.h" 14 #include "llvm/ADT/Triple.h" 15 #include "llvm/Bitcode/BitstreamReader.h" 16 #include "llvm/Bitcode/LLVMBitCodes.h" 17 #include "llvm/IR/AutoUpgrade.h" 18 #include "llvm/IR/Constants.h" 19 #include "llvm/IR/DebugInfo.h" 20 #include "llvm/IR/DebugInfoMetadata.h" 21 #include "llvm/IR/DerivedTypes.h" 22 #include "llvm/IR/DiagnosticPrinter.h" 23 #include "llvm/IR/GVMaterializer.h" 24 #include "llvm/IR/InlineAsm.h" 25 #include "llvm/IR/IntrinsicInst.h" 26 #include "llvm/IR/LLVMContext.h" 27 #include "llvm/IR/Module.h" 28 #include "llvm/IR/OperandTraits.h" 29 #include "llvm/IR/Operator.h" 30 #include "llvm/IR/ValueHandle.h" 31 #include "llvm/Support/DataStream.h" 32 #include "llvm/Support/ManagedStatic.h" 33 #include "llvm/Support/MathExtras.h" 34 #include "llvm/Support/MemoryBuffer.h" 35 #include "llvm/Support/raw_ostream.h" 36 #include <deque> 37 using namespace llvm; 38 39 namespace { 40 enum { 41 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 42 }; 43 44 class BitcodeReaderValueList { 45 std::vector<WeakVH> ValuePtrs; 46 47 /// ResolveConstants - As we resolve forward-referenced constants, we add 48 /// information about them to this vector. This allows us to resolve them in 49 /// bulk instead of resolving each reference at a time. See the code in 50 /// ResolveConstantForwardRefs for more information about this. 51 /// 52 /// The key of this vector is the placeholder constant, the value is the slot 53 /// number that holds the resolved value. 54 typedef std::vector<std::pair<Constant*, unsigned> > ResolveConstantsTy; 55 ResolveConstantsTy ResolveConstants; 56 LLVMContext &Context; 57 public: 58 BitcodeReaderValueList(LLVMContext &C) : Context(C) {} 59 ~BitcodeReaderValueList() { 60 assert(ResolveConstants.empty() && "Constants not resolved?"); 61 } 62 63 // vector compatibility methods 64 unsigned size() const { return ValuePtrs.size(); } 65 void resize(unsigned N) { ValuePtrs.resize(N); } 66 void push_back(Value *V) { ValuePtrs.emplace_back(V); } 67 68 void clear() { 69 assert(ResolveConstants.empty() && "Constants not resolved?"); 70 ValuePtrs.clear(); 71 } 72 73 Value *operator[](unsigned i) const { 74 assert(i < ValuePtrs.size()); 75 return ValuePtrs[i]; 76 } 77 78 Value *back() const { return ValuePtrs.back(); } 79 void pop_back() { ValuePtrs.pop_back(); } 80 bool empty() const { return ValuePtrs.empty(); } 81 void shrinkTo(unsigned N) { 82 assert(N <= size() && "Invalid shrinkTo request!"); 83 ValuePtrs.resize(N); 84 } 85 86 Constant *getConstantFwdRef(unsigned Idx, Type *Ty); 87 Value *getValueFwdRef(unsigned Idx, Type *Ty); 88 89 void AssignValue(Value *V, unsigned Idx); 90 91 /// ResolveConstantForwardRefs - Once all constants are read, this method bulk 92 /// resolves any forward references. 93 void ResolveConstantForwardRefs(); 94 }; 95 96 class BitcodeReaderMDValueList { 97 unsigned NumFwdRefs; 98 bool AnyFwdRefs; 99 unsigned MinFwdRef; 100 unsigned MaxFwdRef; 101 std::vector<TrackingMDRef> MDValuePtrs; 102 103 LLVMContext &Context; 104 public: 105 BitcodeReaderMDValueList(LLVMContext &C) 106 : NumFwdRefs(0), AnyFwdRefs(false), Context(C) {} 107 108 // vector compatibility methods 109 unsigned size() const { return MDValuePtrs.size(); } 110 void resize(unsigned N) { MDValuePtrs.resize(N); } 111 void push_back(Metadata *MD) { MDValuePtrs.emplace_back(MD); } 112 void clear() { MDValuePtrs.clear(); } 113 Metadata *back() const { return MDValuePtrs.back(); } 114 void pop_back() { MDValuePtrs.pop_back(); } 115 bool empty() const { return MDValuePtrs.empty(); } 116 117 Metadata *operator[](unsigned i) const { 118 assert(i < MDValuePtrs.size()); 119 return MDValuePtrs[i]; 120 } 121 122 void shrinkTo(unsigned N) { 123 assert(N <= size() && "Invalid shrinkTo request!"); 124 MDValuePtrs.resize(N); 125 } 126 127 Metadata *getValueFwdRef(unsigned Idx); 128 void AssignValue(Metadata *MD, unsigned Idx); 129 void tryToResolveCycles(); 130 }; 131 132 class BitcodeReader : public GVMaterializer { 133 LLVMContext &Context; 134 DiagnosticHandlerFunction DiagnosticHandler; 135 Module *TheModule; 136 std::unique_ptr<MemoryBuffer> Buffer; 137 std::unique_ptr<BitstreamReader> StreamFile; 138 BitstreamCursor Stream; 139 DataStreamer *LazyStreamer; 140 uint64_t NextUnreadBit; 141 bool SeenValueSymbolTable; 142 143 std::vector<Type*> TypeList; 144 BitcodeReaderValueList ValueList; 145 BitcodeReaderMDValueList MDValueList; 146 std::vector<Comdat *> ComdatList; 147 SmallVector<Instruction *, 64> InstructionList; 148 149 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInits; 150 std::vector<std::pair<GlobalAlias*, unsigned> > AliasInits; 151 std::vector<std::pair<Function*, unsigned> > FunctionPrefixes; 152 std::vector<std::pair<Function*, unsigned> > FunctionPrologues; 153 154 SmallVector<Instruction*, 64> InstsWithTBAATag; 155 156 /// MAttributes - The set of attributes by index. Index zero in the 157 /// file is for null, and is thus not represented here. As such all indices 158 /// are off by one. 159 std::vector<AttributeSet> MAttributes; 160 161 /// \brief The set of attribute groups. 162 std::map<unsigned, AttributeSet> MAttributeGroups; 163 164 /// FunctionBBs - While parsing a function body, this is a list of the basic 165 /// blocks for the function. 166 std::vector<BasicBlock*> FunctionBBs; 167 168 // When reading the module header, this list is populated with functions that 169 // have bodies later in the file. 170 std::vector<Function*> FunctionsWithBodies; 171 172 // When intrinsic functions are encountered which require upgrading they are 173 // stored here with their replacement function. 174 typedef std::vector<std::pair<Function*, Function*> > UpgradedIntrinsicMap; 175 UpgradedIntrinsicMap UpgradedIntrinsics; 176 177 // Map the bitcode's custom MDKind ID to the Module's MDKind ID. 178 DenseMap<unsigned, unsigned> MDKindMap; 179 180 // Several operations happen after the module header has been read, but 181 // before function bodies are processed. This keeps track of whether 182 // we've done this yet. 183 bool SeenFirstFunctionBody; 184 185 /// DeferredFunctionInfo - When function bodies are initially scanned, this 186 /// map contains info about where to find deferred function body in the 187 /// stream. 188 DenseMap<Function*, uint64_t> DeferredFunctionInfo; 189 190 /// When Metadata block is initially scanned when parsing the module, we may 191 /// choose to defer parsing of the metadata. This vector contains info about 192 /// which Metadata blocks are deferred. 193 std::vector<uint64_t> DeferredMetadataInfo; 194 195 /// These are basic blocks forward-referenced by block addresses. They are 196 /// inserted lazily into functions when they're loaded. The basic block ID is 197 /// its index into the vector. 198 DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs; 199 std::deque<Function *> BasicBlockFwdRefQueue; 200 201 /// UseRelativeIDs - Indicates that we are using a new encoding for 202 /// instruction operands where most operands in the current 203 /// FUNCTION_BLOCK are encoded relative to the instruction number, 204 /// for a more compact encoding. Some instruction operands are not 205 /// relative to the instruction ID: basic block numbers, and types. 206 /// Once the old style function blocks have been phased out, we would 207 /// not need this flag. 208 bool UseRelativeIDs; 209 210 /// True if all functions will be materialized, negating the need to process 211 /// (e.g.) blockaddress forward references. 212 bool WillMaterializeAllForwardRefs; 213 214 /// Functions that have block addresses taken. This is usually empty. 215 SmallPtrSet<const Function *, 4> BlockAddressesTaken; 216 217 /// True if any Metadata block has been materialized. 218 bool IsMetadataMaterialized; 219 220 bool StripDebugInfo = false; 221 222 public: 223 std::error_code Error(BitcodeError E, const Twine &Message); 224 std::error_code Error(BitcodeError E); 225 std::error_code Error(const Twine &Message); 226 227 explicit BitcodeReader(MemoryBuffer *buffer, LLVMContext &C, 228 DiagnosticHandlerFunction DiagnosticHandler); 229 explicit BitcodeReader(DataStreamer *streamer, LLVMContext &C, 230 DiagnosticHandlerFunction DiagnosticHandler); 231 ~BitcodeReader() override { FreeState(); } 232 233 std::error_code materializeForwardReferencedFunctions(); 234 235 void FreeState(); 236 237 void releaseBuffer(); 238 239 bool isDematerializable(const GlobalValue *GV) const override; 240 std::error_code materialize(GlobalValue *GV) override; 241 std::error_code materializeModule(Module *M) override; 242 std::vector<StructType *> getIdentifiedStructTypes() const override; 243 void dematerialize(GlobalValue *GV) override; 244 245 /// @brief Main interface to parsing a bitcode buffer. 246 /// @returns true if an error occurred. 247 std::error_code ParseBitcodeInto(Module *M, 248 bool ShouldLazyLoadMetadata = false); 249 250 /// @brief Cheap mechanism to just extract module triple 251 /// @returns true if an error occurred. 252 ErrorOr<std::string> parseTriple(); 253 254 static uint64_t decodeSignRotatedValue(uint64_t V); 255 256 /// Materialize any deferred Metadata block. 257 std::error_code materializeMetadata() override; 258 259 void setStripDebugInfo() override; 260 261 private: 262 std::vector<StructType *> IdentifiedStructTypes; 263 StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name); 264 StructType *createIdentifiedStructType(LLVMContext &Context); 265 266 Type *getTypeByID(unsigned ID); 267 Value *getFnValueByID(unsigned ID, Type *Ty) { 268 if (Ty && Ty->isMetadataTy()) 269 return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID)); 270 return ValueList.getValueFwdRef(ID, Ty); 271 } 272 Metadata *getFnMetadataByID(unsigned ID) { 273 return MDValueList.getValueFwdRef(ID); 274 } 275 BasicBlock *getBasicBlock(unsigned ID) const { 276 if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID 277 return FunctionBBs[ID]; 278 } 279 AttributeSet getAttributes(unsigned i) const { 280 if (i-1 < MAttributes.size()) 281 return MAttributes[i-1]; 282 return AttributeSet(); 283 } 284 285 /// getValueTypePair - Read a value/type pair out of the specified record from 286 /// slot 'Slot'. Increment Slot past the number of slots used in the record. 287 /// Return true on failure. 288 bool getValueTypePair(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 289 unsigned InstNum, Value *&ResVal) { 290 if (Slot == Record.size()) return true; 291 unsigned ValNo = (unsigned)Record[Slot++]; 292 // Adjust the ValNo, if it was encoded relative to the InstNum. 293 if (UseRelativeIDs) 294 ValNo = InstNum - ValNo; 295 if (ValNo < InstNum) { 296 // If this is not a forward reference, just return the value we already 297 // have. 298 ResVal = getFnValueByID(ValNo, nullptr); 299 return ResVal == nullptr; 300 } 301 if (Slot == Record.size()) 302 return true; 303 304 unsigned TypeNo = (unsigned)Record[Slot++]; 305 ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo)); 306 return ResVal == nullptr; 307 } 308 309 /// popValue - Read a value out of the specified record from slot 'Slot'. 310 /// Increment Slot past the number of slots used by the value in the record. 311 /// Return true if there is an error. 312 bool popValue(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 313 unsigned InstNum, Type *Ty, Value *&ResVal) { 314 if (getValue(Record, Slot, InstNum, Ty, ResVal)) 315 return true; 316 // All values currently take a single record slot. 317 ++Slot; 318 return false; 319 } 320 321 /// getValue -- Like popValue, but does not increment the Slot number. 322 bool getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 323 unsigned InstNum, Type *Ty, Value *&ResVal) { 324 ResVal = getValue(Record, Slot, InstNum, Ty); 325 return ResVal == nullptr; 326 } 327 328 /// getValue -- Version of getValue that returns ResVal directly, 329 /// or 0 if there is an error. 330 Value *getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 331 unsigned InstNum, Type *Ty) { 332 if (Slot == Record.size()) return nullptr; 333 unsigned ValNo = (unsigned)Record[Slot]; 334 // Adjust the ValNo, if it was encoded relative to the InstNum. 335 if (UseRelativeIDs) 336 ValNo = InstNum - ValNo; 337 return getFnValueByID(ValNo, Ty); 338 } 339 340 /// getValueSigned -- Like getValue, but decodes signed VBRs. 341 Value *getValueSigned(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 342 unsigned InstNum, Type *Ty) { 343 if (Slot == Record.size()) return nullptr; 344 unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]); 345 // Adjust the ValNo, if it was encoded relative to the InstNum. 346 if (UseRelativeIDs) 347 ValNo = InstNum - ValNo; 348 return getFnValueByID(ValNo, Ty); 349 } 350 351 /// Converts alignment exponent (i.e. power of two (or zero)) to the 352 /// corresponding alignment to use. If alignment is too large, returns 353 /// a corresponding error code. 354 std::error_code parseAlignmentValue(uint64_t Exponent, unsigned &Alignment); 355 std::error_code ParseAttrKind(uint64_t Code, Attribute::AttrKind *Kind); 356 std::error_code ParseModule(bool Resume, bool ShouldLazyLoadMetadata = false); 357 std::error_code ParseAttributeBlock(); 358 std::error_code ParseAttributeGroupBlock(); 359 std::error_code ParseTypeTable(); 360 std::error_code ParseTypeTableBody(); 361 362 std::error_code ParseValueSymbolTable(); 363 std::error_code ParseConstants(); 364 std::error_code RememberAndSkipFunctionBody(); 365 /// Save the positions of the Metadata blocks and skip parsing the blocks. 366 std::error_code rememberAndSkipMetadata(); 367 std::error_code ParseFunctionBody(Function *F); 368 std::error_code GlobalCleanup(); 369 std::error_code ResolveGlobalAndAliasInits(); 370 std::error_code ParseMetadata(); 371 std::error_code ParseMetadataAttachment(Function &F); 372 ErrorOr<std::string> parseModuleTriple(); 373 std::error_code ParseUseLists(); 374 std::error_code InitStream(); 375 std::error_code InitStreamFromBuffer(); 376 std::error_code InitLazyStream(); 377 std::error_code FindFunctionInStream( 378 Function *F, 379 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator); 380 }; 381 } // namespace 382 383 BitcodeDiagnosticInfo::BitcodeDiagnosticInfo(std::error_code EC, 384 DiagnosticSeverity Severity, 385 const Twine &Msg) 386 : DiagnosticInfo(DK_Bitcode, Severity), Msg(Msg), EC(EC) {} 387 388 void BitcodeDiagnosticInfo::print(DiagnosticPrinter &DP) const { DP << Msg; } 389 390 static std::error_code Error(DiagnosticHandlerFunction DiagnosticHandler, 391 std::error_code EC, const Twine &Message) { 392 BitcodeDiagnosticInfo DI(EC, DS_Error, Message); 393 DiagnosticHandler(DI); 394 return EC; 395 } 396 397 static std::error_code Error(DiagnosticHandlerFunction DiagnosticHandler, 398 std::error_code EC) { 399 return Error(DiagnosticHandler, EC, EC.message()); 400 } 401 402 static std::error_code Error(DiagnosticHandlerFunction DiagnosticHandler, 403 const Twine &Message) { 404 return Error(DiagnosticHandler, 405 make_error_code(BitcodeError::CorruptedBitcode), Message); 406 } 407 408 std::error_code BitcodeReader::Error(BitcodeError E, const Twine &Message) { 409 return ::Error(DiagnosticHandler, make_error_code(E), Message); 410 } 411 412 std::error_code BitcodeReader::Error(const Twine &Message) { 413 return ::Error(DiagnosticHandler, 414 make_error_code(BitcodeError::CorruptedBitcode), Message); 415 } 416 417 std::error_code BitcodeReader::Error(BitcodeError E) { 418 return ::Error(DiagnosticHandler, make_error_code(E)); 419 } 420 421 static DiagnosticHandlerFunction getDiagHandler(DiagnosticHandlerFunction F, 422 LLVMContext &C) { 423 if (F) 424 return F; 425 return [&C](const DiagnosticInfo &DI) { C.diagnose(DI); }; 426 } 427 428 BitcodeReader::BitcodeReader(MemoryBuffer *buffer, LLVMContext &C, 429 DiagnosticHandlerFunction DiagnosticHandler) 430 : Context(C), DiagnosticHandler(getDiagHandler(DiagnosticHandler, C)), 431 TheModule(nullptr), Buffer(buffer), LazyStreamer(nullptr), 432 NextUnreadBit(0), SeenValueSymbolTable(false), ValueList(C), 433 MDValueList(C), SeenFirstFunctionBody(false), UseRelativeIDs(false), 434 WillMaterializeAllForwardRefs(false), IsMetadataMaterialized(false) {} 435 436 BitcodeReader::BitcodeReader(DataStreamer *streamer, LLVMContext &C, 437 DiagnosticHandlerFunction DiagnosticHandler) 438 : Context(C), DiagnosticHandler(getDiagHandler(DiagnosticHandler, C)), 439 TheModule(nullptr), Buffer(nullptr), LazyStreamer(streamer), 440 NextUnreadBit(0), SeenValueSymbolTable(false), ValueList(C), 441 MDValueList(C), SeenFirstFunctionBody(false), UseRelativeIDs(false), 442 WillMaterializeAllForwardRefs(false), IsMetadataMaterialized(false) {} 443 444 std::error_code BitcodeReader::materializeForwardReferencedFunctions() { 445 if (WillMaterializeAllForwardRefs) 446 return std::error_code(); 447 448 // Prevent recursion. 449 WillMaterializeAllForwardRefs = true; 450 451 while (!BasicBlockFwdRefQueue.empty()) { 452 Function *F = BasicBlockFwdRefQueue.front(); 453 BasicBlockFwdRefQueue.pop_front(); 454 assert(F && "Expected valid function"); 455 if (!BasicBlockFwdRefs.count(F)) 456 // Already materialized. 457 continue; 458 459 // Check for a function that isn't materializable to prevent an infinite 460 // loop. When parsing a blockaddress stored in a global variable, there 461 // isn't a trivial way to check if a function will have a body without a 462 // linear search through FunctionsWithBodies, so just check it here. 463 if (!F->isMaterializable()) 464 return Error("Never resolved function from blockaddress"); 465 466 // Try to materialize F. 467 if (std::error_code EC = materialize(F)) 468 return EC; 469 } 470 assert(BasicBlockFwdRefs.empty() && "Function missing from queue"); 471 472 // Reset state. 473 WillMaterializeAllForwardRefs = false; 474 return std::error_code(); 475 } 476 477 void BitcodeReader::FreeState() { 478 Buffer = nullptr; 479 std::vector<Type*>().swap(TypeList); 480 ValueList.clear(); 481 MDValueList.clear(); 482 std::vector<Comdat *>().swap(ComdatList); 483 484 std::vector<AttributeSet>().swap(MAttributes); 485 std::vector<BasicBlock*>().swap(FunctionBBs); 486 std::vector<Function*>().swap(FunctionsWithBodies); 487 DeferredFunctionInfo.clear(); 488 DeferredMetadataInfo.clear(); 489 MDKindMap.clear(); 490 491 assert(BasicBlockFwdRefs.empty() && "Unresolved blockaddress fwd references"); 492 BasicBlockFwdRefQueue.clear(); 493 } 494 495 //===----------------------------------------------------------------------===// 496 // Helper functions to implement forward reference resolution, etc. 497 //===----------------------------------------------------------------------===// 498 499 /// ConvertToString - Convert a string from a record into an std::string, return 500 /// true on failure. 501 template<typename StrTy> 502 static bool ConvertToString(ArrayRef<uint64_t> Record, unsigned Idx, 503 StrTy &Result) { 504 if (Idx > Record.size()) 505 return true; 506 507 for (unsigned i = Idx, e = Record.size(); i != e; ++i) 508 Result += (char)Record[i]; 509 return false; 510 } 511 512 static bool hasImplicitComdat(size_t Val) { 513 switch (Val) { 514 default: 515 return false; 516 case 1: // Old WeakAnyLinkage 517 case 4: // Old LinkOnceAnyLinkage 518 case 10: // Old WeakODRLinkage 519 case 11: // Old LinkOnceODRLinkage 520 return true; 521 } 522 } 523 524 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) { 525 switch (Val) { 526 default: // Map unknown/new linkages to external 527 case 0: 528 return GlobalValue::ExternalLinkage; 529 case 2: 530 return GlobalValue::AppendingLinkage; 531 case 3: 532 return GlobalValue::InternalLinkage; 533 case 5: 534 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage 535 case 6: 536 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage 537 case 7: 538 return GlobalValue::ExternalWeakLinkage; 539 case 8: 540 return GlobalValue::CommonLinkage; 541 case 9: 542 return GlobalValue::PrivateLinkage; 543 case 12: 544 return GlobalValue::AvailableExternallyLinkage; 545 case 13: 546 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage 547 case 14: 548 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage 549 case 15: 550 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage 551 case 1: // Old value with implicit comdat. 552 case 16: 553 return GlobalValue::WeakAnyLinkage; 554 case 10: // Old value with implicit comdat. 555 case 17: 556 return GlobalValue::WeakODRLinkage; 557 case 4: // Old value with implicit comdat. 558 case 18: 559 return GlobalValue::LinkOnceAnyLinkage; 560 case 11: // Old value with implicit comdat. 561 case 19: 562 return GlobalValue::LinkOnceODRLinkage; 563 } 564 } 565 566 static GlobalValue::VisibilityTypes GetDecodedVisibility(unsigned Val) { 567 switch (Val) { 568 default: // Map unknown visibilities to default. 569 case 0: return GlobalValue::DefaultVisibility; 570 case 1: return GlobalValue::HiddenVisibility; 571 case 2: return GlobalValue::ProtectedVisibility; 572 } 573 } 574 575 static GlobalValue::DLLStorageClassTypes 576 GetDecodedDLLStorageClass(unsigned Val) { 577 switch (Val) { 578 default: // Map unknown values to default. 579 case 0: return GlobalValue::DefaultStorageClass; 580 case 1: return GlobalValue::DLLImportStorageClass; 581 case 2: return GlobalValue::DLLExportStorageClass; 582 } 583 } 584 585 static GlobalVariable::ThreadLocalMode GetDecodedThreadLocalMode(unsigned Val) { 586 switch (Val) { 587 case 0: return GlobalVariable::NotThreadLocal; 588 default: // Map unknown non-zero value to general dynamic. 589 case 1: return GlobalVariable::GeneralDynamicTLSModel; 590 case 2: return GlobalVariable::LocalDynamicTLSModel; 591 case 3: return GlobalVariable::InitialExecTLSModel; 592 case 4: return GlobalVariable::LocalExecTLSModel; 593 } 594 } 595 596 static int GetDecodedCastOpcode(unsigned Val) { 597 switch (Val) { 598 default: return -1; 599 case bitc::CAST_TRUNC : return Instruction::Trunc; 600 case bitc::CAST_ZEXT : return Instruction::ZExt; 601 case bitc::CAST_SEXT : return Instruction::SExt; 602 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 603 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 604 case bitc::CAST_UITOFP : return Instruction::UIToFP; 605 case bitc::CAST_SITOFP : return Instruction::SIToFP; 606 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 607 case bitc::CAST_FPEXT : return Instruction::FPExt; 608 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 609 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 610 case bitc::CAST_BITCAST : return Instruction::BitCast; 611 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast; 612 } 613 } 614 615 static int GetDecodedBinaryOpcode(unsigned Val, Type *Ty) { 616 bool IsFP = Ty->isFPOrFPVectorTy(); 617 // BinOps are only valid for int/fp or vector of int/fp types 618 if (!IsFP && !Ty->isIntOrIntVectorTy()) 619 return -1; 620 621 switch (Val) { 622 default: 623 return -1; 624 case bitc::BINOP_ADD: 625 return IsFP ? Instruction::FAdd : Instruction::Add; 626 case bitc::BINOP_SUB: 627 return IsFP ? Instruction::FSub : Instruction::Sub; 628 case bitc::BINOP_MUL: 629 return IsFP ? Instruction::FMul : Instruction::Mul; 630 case bitc::BINOP_UDIV: 631 return IsFP ? -1 : Instruction::UDiv; 632 case bitc::BINOP_SDIV: 633 return IsFP ? Instruction::FDiv : Instruction::SDiv; 634 case bitc::BINOP_UREM: 635 return IsFP ? -1 : Instruction::URem; 636 case bitc::BINOP_SREM: 637 return IsFP ? Instruction::FRem : Instruction::SRem; 638 case bitc::BINOP_SHL: 639 return IsFP ? -1 : Instruction::Shl; 640 case bitc::BINOP_LSHR: 641 return IsFP ? -1 : Instruction::LShr; 642 case bitc::BINOP_ASHR: 643 return IsFP ? -1 : Instruction::AShr; 644 case bitc::BINOP_AND: 645 return IsFP ? -1 : Instruction::And; 646 case bitc::BINOP_OR: 647 return IsFP ? -1 : Instruction::Or; 648 case bitc::BINOP_XOR: 649 return IsFP ? -1 : Instruction::Xor; 650 } 651 } 652 653 static AtomicRMWInst::BinOp GetDecodedRMWOperation(unsigned Val) { 654 switch (Val) { 655 default: return AtomicRMWInst::BAD_BINOP; 656 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 657 case bitc::RMW_ADD: return AtomicRMWInst::Add; 658 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 659 case bitc::RMW_AND: return AtomicRMWInst::And; 660 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 661 case bitc::RMW_OR: return AtomicRMWInst::Or; 662 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 663 case bitc::RMW_MAX: return AtomicRMWInst::Max; 664 case bitc::RMW_MIN: return AtomicRMWInst::Min; 665 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 666 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 667 } 668 } 669 670 static AtomicOrdering GetDecodedOrdering(unsigned Val) { 671 switch (Val) { 672 case bitc::ORDERING_NOTATOMIC: return NotAtomic; 673 case bitc::ORDERING_UNORDERED: return Unordered; 674 case bitc::ORDERING_MONOTONIC: return Monotonic; 675 case bitc::ORDERING_ACQUIRE: return Acquire; 676 case bitc::ORDERING_RELEASE: return Release; 677 case bitc::ORDERING_ACQREL: return AcquireRelease; 678 default: // Map unknown orderings to sequentially-consistent. 679 case bitc::ORDERING_SEQCST: return SequentiallyConsistent; 680 } 681 } 682 683 static SynchronizationScope GetDecodedSynchScope(unsigned Val) { 684 switch (Val) { 685 case bitc::SYNCHSCOPE_SINGLETHREAD: return SingleThread; 686 default: // Map unknown scopes to cross-thread. 687 case bitc::SYNCHSCOPE_CROSSTHREAD: return CrossThread; 688 } 689 } 690 691 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) { 692 switch (Val) { 693 default: // Map unknown selection kinds to any. 694 case bitc::COMDAT_SELECTION_KIND_ANY: 695 return Comdat::Any; 696 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH: 697 return Comdat::ExactMatch; 698 case bitc::COMDAT_SELECTION_KIND_LARGEST: 699 return Comdat::Largest; 700 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES: 701 return Comdat::NoDuplicates; 702 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE: 703 return Comdat::SameSize; 704 } 705 } 706 707 static void UpgradeDLLImportExportLinkage(llvm::GlobalValue *GV, unsigned Val) { 708 switch (Val) { 709 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break; 710 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break; 711 } 712 } 713 714 namespace llvm { 715 namespace { 716 /// @brief A class for maintaining the slot number definition 717 /// as a placeholder for the actual definition for forward constants defs. 718 class ConstantPlaceHolder : public ConstantExpr { 719 void operator=(const ConstantPlaceHolder &) = delete; 720 public: 721 // allocate space for exactly one operand 722 void *operator new(size_t s) { 723 return User::operator new(s, 1); 724 } 725 explicit ConstantPlaceHolder(Type *Ty, LLVMContext& Context) 726 : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) { 727 Op<0>() = UndefValue::get(Type::getInt32Ty(Context)); 728 } 729 730 /// @brief Methods to support type inquiry through isa, cast, and dyn_cast. 731 static bool classof(const Value *V) { 732 return isa<ConstantExpr>(V) && 733 cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1; 734 } 735 736 737 /// Provide fast operand accessors 738 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); 739 }; 740 } 741 742 // FIXME: can we inherit this from ConstantExpr? 743 template <> 744 struct OperandTraits<ConstantPlaceHolder> : 745 public FixedNumOperandTraits<ConstantPlaceHolder, 1> { 746 }; 747 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantPlaceHolder, Value) 748 } 749 750 751 void BitcodeReaderValueList::AssignValue(Value *V, unsigned Idx) { 752 if (Idx == size()) { 753 push_back(V); 754 return; 755 } 756 757 if (Idx >= size()) 758 resize(Idx+1); 759 760 WeakVH &OldV = ValuePtrs[Idx]; 761 if (!OldV) { 762 OldV = V; 763 return; 764 } 765 766 // Handle constants and non-constants (e.g. instrs) differently for 767 // efficiency. 768 if (Constant *PHC = dyn_cast<Constant>(&*OldV)) { 769 ResolveConstants.push_back(std::make_pair(PHC, Idx)); 770 OldV = V; 771 } else { 772 // If there was a forward reference to this value, replace it. 773 Value *PrevVal = OldV; 774 OldV->replaceAllUsesWith(V); 775 delete PrevVal; 776 } 777 } 778 779 780 Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx, 781 Type *Ty) { 782 if (Idx >= size()) 783 resize(Idx + 1); 784 785 if (Value *V = ValuePtrs[Idx]) { 786 if (Ty != V->getType()) 787 report_fatal_error("Type mismatch in constant table!"); 788 return cast<Constant>(V); 789 } 790 791 // Create and return a placeholder, which will later be RAUW'd. 792 Constant *C = new ConstantPlaceHolder(Ty, Context); 793 ValuePtrs[Idx] = C; 794 return C; 795 } 796 797 Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, Type *Ty) { 798 // Bail out for a clearly invalid value. This would make us call resize(0) 799 if (Idx == UINT_MAX) 800 return nullptr; 801 802 if (Idx >= size()) 803 resize(Idx + 1); 804 805 if (Value *V = ValuePtrs[Idx]) { 806 // If the types don't match, it's invalid. 807 if (Ty && Ty != V->getType()) 808 return nullptr; 809 return V; 810 } 811 812 // No type specified, must be invalid reference. 813 if (!Ty) return nullptr; 814 815 // Create and return a placeholder, which will later be RAUW'd. 816 Value *V = new Argument(Ty); 817 ValuePtrs[Idx] = V; 818 return V; 819 } 820 821 /// ResolveConstantForwardRefs - Once all constants are read, this method bulk 822 /// resolves any forward references. The idea behind this is that we sometimes 823 /// get constants (such as large arrays) which reference *many* forward ref 824 /// constants. Replacing each of these causes a lot of thrashing when 825 /// building/reuniquing the constant. Instead of doing this, we look at all the 826 /// uses and rewrite all the place holders at once for any constant that uses 827 /// a placeholder. 828 void BitcodeReaderValueList::ResolveConstantForwardRefs() { 829 // Sort the values by-pointer so that they are efficient to look up with a 830 // binary search. 831 std::sort(ResolveConstants.begin(), ResolveConstants.end()); 832 833 SmallVector<Constant*, 64> NewOps; 834 835 while (!ResolveConstants.empty()) { 836 Value *RealVal = operator[](ResolveConstants.back().second); 837 Constant *Placeholder = ResolveConstants.back().first; 838 ResolveConstants.pop_back(); 839 840 // Loop over all users of the placeholder, updating them to reference the 841 // new value. If they reference more than one placeholder, update them all 842 // at once. 843 while (!Placeholder->use_empty()) { 844 auto UI = Placeholder->user_begin(); 845 User *U = *UI; 846 847 // If the using object isn't uniqued, just update the operands. This 848 // handles instructions and initializers for global variables. 849 if (!isa<Constant>(U) || isa<GlobalValue>(U)) { 850 UI.getUse().set(RealVal); 851 continue; 852 } 853 854 // Otherwise, we have a constant that uses the placeholder. Replace that 855 // constant with a new constant that has *all* placeholder uses updated. 856 Constant *UserC = cast<Constant>(U); 857 for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end(); 858 I != E; ++I) { 859 Value *NewOp; 860 if (!isa<ConstantPlaceHolder>(*I)) { 861 // Not a placeholder reference. 862 NewOp = *I; 863 } else if (*I == Placeholder) { 864 // Common case is that it just references this one placeholder. 865 NewOp = RealVal; 866 } else { 867 // Otherwise, look up the placeholder in ResolveConstants. 868 ResolveConstantsTy::iterator It = 869 std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(), 870 std::pair<Constant*, unsigned>(cast<Constant>(*I), 871 0)); 872 assert(It != ResolveConstants.end() && It->first == *I); 873 NewOp = operator[](It->second); 874 } 875 876 NewOps.push_back(cast<Constant>(NewOp)); 877 } 878 879 // Make the new constant. 880 Constant *NewC; 881 if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) { 882 NewC = ConstantArray::get(UserCA->getType(), NewOps); 883 } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) { 884 NewC = ConstantStruct::get(UserCS->getType(), NewOps); 885 } else if (isa<ConstantVector>(UserC)) { 886 NewC = ConstantVector::get(NewOps); 887 } else { 888 assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr."); 889 NewC = cast<ConstantExpr>(UserC)->getWithOperands(NewOps); 890 } 891 892 UserC->replaceAllUsesWith(NewC); 893 UserC->destroyConstant(); 894 NewOps.clear(); 895 } 896 897 // Update all ValueHandles, they should be the only users at this point. 898 Placeholder->replaceAllUsesWith(RealVal); 899 delete Placeholder; 900 } 901 } 902 903 void BitcodeReaderMDValueList::AssignValue(Metadata *MD, unsigned Idx) { 904 if (Idx == size()) { 905 push_back(MD); 906 return; 907 } 908 909 if (Idx >= size()) 910 resize(Idx+1); 911 912 TrackingMDRef &OldMD = MDValuePtrs[Idx]; 913 if (!OldMD) { 914 OldMD.reset(MD); 915 return; 916 } 917 918 // If there was a forward reference to this value, replace it. 919 TempMDTuple PrevMD(cast<MDTuple>(OldMD.get())); 920 PrevMD->replaceAllUsesWith(MD); 921 --NumFwdRefs; 922 } 923 924 Metadata *BitcodeReaderMDValueList::getValueFwdRef(unsigned Idx) { 925 if (Idx >= size()) 926 resize(Idx + 1); 927 928 if (Metadata *MD = MDValuePtrs[Idx]) 929 return MD; 930 931 // Track forward refs to be resolved later. 932 if (AnyFwdRefs) { 933 MinFwdRef = std::min(MinFwdRef, Idx); 934 MaxFwdRef = std::max(MaxFwdRef, Idx); 935 } else { 936 AnyFwdRefs = true; 937 MinFwdRef = MaxFwdRef = Idx; 938 } 939 ++NumFwdRefs; 940 941 // Create and return a placeholder, which will later be RAUW'd. 942 Metadata *MD = MDNode::getTemporary(Context, None).release(); 943 MDValuePtrs[Idx].reset(MD); 944 return MD; 945 } 946 947 void BitcodeReaderMDValueList::tryToResolveCycles() { 948 if (!AnyFwdRefs) 949 // Nothing to do. 950 return; 951 952 if (NumFwdRefs) 953 // Still forward references... can't resolve cycles. 954 return; 955 956 // Resolve any cycles. 957 for (unsigned I = MinFwdRef, E = MaxFwdRef + 1; I != E; ++I) { 958 auto &MD = MDValuePtrs[I]; 959 auto *N = dyn_cast_or_null<MDNode>(MD); 960 if (!N) 961 continue; 962 963 assert(!N->isTemporary() && "Unexpected forward reference"); 964 N->resolveCycles(); 965 } 966 967 // Make sure we return early again until there's another forward ref. 968 AnyFwdRefs = false; 969 } 970 971 Type *BitcodeReader::getTypeByID(unsigned ID) { 972 // The type table size is always specified correctly. 973 if (ID >= TypeList.size()) 974 return nullptr; 975 976 if (Type *Ty = TypeList[ID]) 977 return Ty; 978 979 // If we have a forward reference, the only possible case is when it is to a 980 // named struct. Just create a placeholder for now. 981 return TypeList[ID] = createIdentifiedStructType(Context); 982 } 983 984 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context, 985 StringRef Name) { 986 auto *Ret = StructType::create(Context, Name); 987 IdentifiedStructTypes.push_back(Ret); 988 return Ret; 989 } 990 991 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) { 992 auto *Ret = StructType::create(Context); 993 IdentifiedStructTypes.push_back(Ret); 994 return Ret; 995 } 996 997 998 //===----------------------------------------------------------------------===// 999 // Functions for parsing blocks from the bitcode file 1000 //===----------------------------------------------------------------------===// 1001 1002 1003 /// \brief This fills an AttrBuilder object with the LLVM attributes that have 1004 /// been decoded from the given integer. This function must stay in sync with 1005 /// 'encodeLLVMAttributesForBitcode'. 1006 static void decodeLLVMAttributesForBitcode(AttrBuilder &B, 1007 uint64_t EncodedAttrs) { 1008 // FIXME: Remove in 4.0. 1009 1010 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift 1011 // the bits above 31 down by 11 bits. 1012 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; 1013 assert((!Alignment || isPowerOf2_32(Alignment)) && 1014 "Alignment must be a power of two."); 1015 1016 if (Alignment) 1017 B.addAlignmentAttr(Alignment); 1018 B.addRawValue(((EncodedAttrs & (0xfffffULL << 32)) >> 11) | 1019 (EncodedAttrs & 0xffff)); 1020 } 1021 1022 std::error_code BitcodeReader::ParseAttributeBlock() { 1023 if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 1024 return Error("Invalid record"); 1025 1026 if (!MAttributes.empty()) 1027 return Error("Invalid multiple blocks"); 1028 1029 SmallVector<uint64_t, 64> Record; 1030 1031 SmallVector<AttributeSet, 8> Attrs; 1032 1033 // Read all the records. 1034 while (1) { 1035 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1036 1037 switch (Entry.Kind) { 1038 case BitstreamEntry::SubBlock: // Handled for us already. 1039 case BitstreamEntry::Error: 1040 return Error("Malformed block"); 1041 case BitstreamEntry::EndBlock: 1042 return std::error_code(); 1043 case BitstreamEntry::Record: 1044 // The interesting case. 1045 break; 1046 } 1047 1048 // Read a record. 1049 Record.clear(); 1050 switch (Stream.readRecord(Entry.ID, Record)) { 1051 default: // Default behavior: ignore. 1052 break; 1053 case bitc::PARAMATTR_CODE_ENTRY_OLD: { // ENTRY: [paramidx0, attr0, ...] 1054 // FIXME: Remove in 4.0. 1055 if (Record.size() & 1) 1056 return Error("Invalid record"); 1057 1058 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1059 AttrBuilder B; 1060 decodeLLVMAttributesForBitcode(B, Record[i+1]); 1061 Attrs.push_back(AttributeSet::get(Context, Record[i], B)); 1062 } 1063 1064 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 1065 Attrs.clear(); 1066 break; 1067 } 1068 case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [attrgrp0, attrgrp1, ...] 1069 for (unsigned i = 0, e = Record.size(); i != e; ++i) 1070 Attrs.push_back(MAttributeGroups[Record[i]]); 1071 1072 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 1073 Attrs.clear(); 1074 break; 1075 } 1076 } 1077 } 1078 } 1079 1080 // Returns Attribute::None on unrecognized codes. 1081 static Attribute::AttrKind GetAttrFromCode(uint64_t Code) { 1082 switch (Code) { 1083 default: 1084 return Attribute::None; 1085 case bitc::ATTR_KIND_ALIGNMENT: 1086 return Attribute::Alignment; 1087 case bitc::ATTR_KIND_ALWAYS_INLINE: 1088 return Attribute::AlwaysInline; 1089 case bitc::ATTR_KIND_BUILTIN: 1090 return Attribute::Builtin; 1091 case bitc::ATTR_KIND_BY_VAL: 1092 return Attribute::ByVal; 1093 case bitc::ATTR_KIND_IN_ALLOCA: 1094 return Attribute::InAlloca; 1095 case bitc::ATTR_KIND_COLD: 1096 return Attribute::Cold; 1097 case bitc::ATTR_KIND_CONVERGENT: 1098 return Attribute::Convergent; 1099 case bitc::ATTR_KIND_INLINE_HINT: 1100 return Attribute::InlineHint; 1101 case bitc::ATTR_KIND_IN_REG: 1102 return Attribute::InReg; 1103 case bitc::ATTR_KIND_JUMP_TABLE: 1104 return Attribute::JumpTable; 1105 case bitc::ATTR_KIND_MIN_SIZE: 1106 return Attribute::MinSize; 1107 case bitc::ATTR_KIND_NAKED: 1108 return Attribute::Naked; 1109 case bitc::ATTR_KIND_NEST: 1110 return Attribute::Nest; 1111 case bitc::ATTR_KIND_NO_ALIAS: 1112 return Attribute::NoAlias; 1113 case bitc::ATTR_KIND_NO_BUILTIN: 1114 return Attribute::NoBuiltin; 1115 case bitc::ATTR_KIND_NO_CAPTURE: 1116 return Attribute::NoCapture; 1117 case bitc::ATTR_KIND_NO_DUPLICATE: 1118 return Attribute::NoDuplicate; 1119 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: 1120 return Attribute::NoImplicitFloat; 1121 case bitc::ATTR_KIND_NO_INLINE: 1122 return Attribute::NoInline; 1123 case bitc::ATTR_KIND_NON_LAZY_BIND: 1124 return Attribute::NonLazyBind; 1125 case bitc::ATTR_KIND_NON_NULL: 1126 return Attribute::NonNull; 1127 case bitc::ATTR_KIND_DEREFERENCEABLE: 1128 return Attribute::Dereferenceable; 1129 case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL: 1130 return Attribute::DereferenceableOrNull; 1131 case bitc::ATTR_KIND_NO_RED_ZONE: 1132 return Attribute::NoRedZone; 1133 case bitc::ATTR_KIND_NO_RETURN: 1134 return Attribute::NoReturn; 1135 case bitc::ATTR_KIND_NO_UNWIND: 1136 return Attribute::NoUnwind; 1137 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: 1138 return Attribute::OptimizeForSize; 1139 case bitc::ATTR_KIND_OPTIMIZE_NONE: 1140 return Attribute::OptimizeNone; 1141 case bitc::ATTR_KIND_READ_NONE: 1142 return Attribute::ReadNone; 1143 case bitc::ATTR_KIND_READ_ONLY: 1144 return Attribute::ReadOnly; 1145 case bitc::ATTR_KIND_RETURNED: 1146 return Attribute::Returned; 1147 case bitc::ATTR_KIND_RETURNS_TWICE: 1148 return Attribute::ReturnsTwice; 1149 case bitc::ATTR_KIND_S_EXT: 1150 return Attribute::SExt; 1151 case bitc::ATTR_KIND_STACK_ALIGNMENT: 1152 return Attribute::StackAlignment; 1153 case bitc::ATTR_KIND_STACK_PROTECT: 1154 return Attribute::StackProtect; 1155 case bitc::ATTR_KIND_STACK_PROTECT_REQ: 1156 return Attribute::StackProtectReq; 1157 case bitc::ATTR_KIND_STACK_PROTECT_STRONG: 1158 return Attribute::StackProtectStrong; 1159 case bitc::ATTR_KIND_STRUCT_RET: 1160 return Attribute::StructRet; 1161 case bitc::ATTR_KIND_SANITIZE_ADDRESS: 1162 return Attribute::SanitizeAddress; 1163 case bitc::ATTR_KIND_SANITIZE_THREAD: 1164 return Attribute::SanitizeThread; 1165 case bitc::ATTR_KIND_SANITIZE_MEMORY: 1166 return Attribute::SanitizeMemory; 1167 case bitc::ATTR_KIND_UW_TABLE: 1168 return Attribute::UWTable; 1169 case bitc::ATTR_KIND_Z_EXT: 1170 return Attribute::ZExt; 1171 } 1172 } 1173 1174 std::error_code BitcodeReader::parseAlignmentValue(uint64_t Exponent, 1175 unsigned &Alignment) { 1176 // Note: Alignment in bitcode files is incremented by 1, so that zero 1177 // can be used for default alignment. 1178 if (Exponent > Value::MaxAlignmentExponent + 1) 1179 return Error("Invalid alignment value"); 1180 Alignment = (1 << static_cast<unsigned>(Exponent)) >> 1; 1181 return std::error_code(); 1182 } 1183 1184 std::error_code BitcodeReader::ParseAttrKind(uint64_t Code, 1185 Attribute::AttrKind *Kind) { 1186 *Kind = GetAttrFromCode(Code); 1187 if (*Kind == Attribute::None) 1188 return Error(BitcodeError::CorruptedBitcode, 1189 "Unknown attribute kind (" + Twine(Code) + ")"); 1190 return std::error_code(); 1191 } 1192 1193 std::error_code BitcodeReader::ParseAttributeGroupBlock() { 1194 if (Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) 1195 return Error("Invalid record"); 1196 1197 if (!MAttributeGroups.empty()) 1198 return Error("Invalid multiple blocks"); 1199 1200 SmallVector<uint64_t, 64> Record; 1201 1202 // Read all the records. 1203 while (1) { 1204 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1205 1206 switch (Entry.Kind) { 1207 case BitstreamEntry::SubBlock: // Handled for us already. 1208 case BitstreamEntry::Error: 1209 return Error("Malformed block"); 1210 case BitstreamEntry::EndBlock: 1211 return std::error_code(); 1212 case BitstreamEntry::Record: 1213 // The interesting case. 1214 break; 1215 } 1216 1217 // Read a record. 1218 Record.clear(); 1219 switch (Stream.readRecord(Entry.ID, Record)) { 1220 default: // Default behavior: ignore. 1221 break; 1222 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] 1223 if (Record.size() < 3) 1224 return Error("Invalid record"); 1225 1226 uint64_t GrpID = Record[0]; 1227 uint64_t Idx = Record[1]; // Index of the object this attribute refers to. 1228 1229 AttrBuilder B; 1230 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1231 if (Record[i] == 0) { // Enum attribute 1232 Attribute::AttrKind Kind; 1233 if (std::error_code EC = ParseAttrKind(Record[++i], &Kind)) 1234 return EC; 1235 1236 B.addAttribute(Kind); 1237 } else if (Record[i] == 1) { // Integer attribute 1238 Attribute::AttrKind Kind; 1239 if (std::error_code EC = ParseAttrKind(Record[++i], &Kind)) 1240 return EC; 1241 if (Kind == Attribute::Alignment) 1242 B.addAlignmentAttr(Record[++i]); 1243 else if (Kind == Attribute::StackAlignment) 1244 B.addStackAlignmentAttr(Record[++i]); 1245 else if (Kind == Attribute::Dereferenceable) 1246 B.addDereferenceableAttr(Record[++i]); 1247 else if (Kind == Attribute::DereferenceableOrNull) 1248 B.addDereferenceableOrNullAttr(Record[++i]); 1249 } else { // String attribute 1250 assert((Record[i] == 3 || Record[i] == 4) && 1251 "Invalid attribute group entry"); 1252 bool HasValue = (Record[i++] == 4); 1253 SmallString<64> KindStr; 1254 SmallString<64> ValStr; 1255 1256 while (Record[i] != 0 && i != e) 1257 KindStr += Record[i++]; 1258 assert(Record[i] == 0 && "Kind string not null terminated"); 1259 1260 if (HasValue) { 1261 // Has a value associated with it. 1262 ++i; // Skip the '0' that terminates the "kind" string. 1263 while (Record[i] != 0 && i != e) 1264 ValStr += Record[i++]; 1265 assert(Record[i] == 0 && "Value string not null terminated"); 1266 } 1267 1268 B.addAttribute(KindStr.str(), ValStr.str()); 1269 } 1270 } 1271 1272 MAttributeGroups[GrpID] = AttributeSet::get(Context, Idx, B); 1273 break; 1274 } 1275 } 1276 } 1277 } 1278 1279 std::error_code BitcodeReader::ParseTypeTable() { 1280 if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 1281 return Error("Invalid record"); 1282 1283 return ParseTypeTableBody(); 1284 } 1285 1286 std::error_code BitcodeReader::ParseTypeTableBody() { 1287 if (!TypeList.empty()) 1288 return Error("Invalid multiple blocks"); 1289 1290 SmallVector<uint64_t, 64> Record; 1291 unsigned NumRecords = 0; 1292 1293 SmallString<64> TypeName; 1294 1295 // Read all the records for this type table. 1296 while (1) { 1297 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1298 1299 switch (Entry.Kind) { 1300 case BitstreamEntry::SubBlock: // Handled for us already. 1301 case BitstreamEntry::Error: 1302 return Error("Malformed block"); 1303 case BitstreamEntry::EndBlock: 1304 if (NumRecords != TypeList.size()) 1305 return Error("Malformed block"); 1306 return std::error_code(); 1307 case BitstreamEntry::Record: 1308 // The interesting case. 1309 break; 1310 } 1311 1312 // Read a record. 1313 Record.clear(); 1314 Type *ResultTy = nullptr; 1315 switch (Stream.readRecord(Entry.ID, Record)) { 1316 default: 1317 return Error("Invalid value"); 1318 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 1319 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 1320 // type list. This allows us to reserve space. 1321 if (Record.size() < 1) 1322 return Error("Invalid record"); 1323 TypeList.resize(Record[0]); 1324 continue; 1325 case bitc::TYPE_CODE_VOID: // VOID 1326 ResultTy = Type::getVoidTy(Context); 1327 break; 1328 case bitc::TYPE_CODE_HALF: // HALF 1329 ResultTy = Type::getHalfTy(Context); 1330 break; 1331 case bitc::TYPE_CODE_FLOAT: // FLOAT 1332 ResultTy = Type::getFloatTy(Context); 1333 break; 1334 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 1335 ResultTy = Type::getDoubleTy(Context); 1336 break; 1337 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 1338 ResultTy = Type::getX86_FP80Ty(Context); 1339 break; 1340 case bitc::TYPE_CODE_FP128: // FP128 1341 ResultTy = Type::getFP128Ty(Context); 1342 break; 1343 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 1344 ResultTy = Type::getPPC_FP128Ty(Context); 1345 break; 1346 case bitc::TYPE_CODE_LABEL: // LABEL 1347 ResultTy = Type::getLabelTy(Context); 1348 break; 1349 case bitc::TYPE_CODE_METADATA: // METADATA 1350 ResultTy = Type::getMetadataTy(Context); 1351 break; 1352 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 1353 ResultTy = Type::getX86_MMXTy(Context); 1354 break; 1355 case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width] 1356 if (Record.size() < 1) 1357 return Error("Invalid record"); 1358 1359 uint64_t NumBits = Record[0]; 1360 if (NumBits < IntegerType::MIN_INT_BITS || 1361 NumBits > IntegerType::MAX_INT_BITS) 1362 return Error("Bitwidth for integer type out of range"); 1363 ResultTy = IntegerType::get(Context, NumBits); 1364 break; 1365 } 1366 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 1367 // [pointee type, address space] 1368 if (Record.size() < 1) 1369 return Error("Invalid record"); 1370 unsigned AddressSpace = 0; 1371 if (Record.size() == 2) 1372 AddressSpace = Record[1]; 1373 ResultTy = getTypeByID(Record[0]); 1374 if (!ResultTy || 1375 !PointerType::isValidElementType(ResultTy)) 1376 return Error("Invalid type"); 1377 ResultTy = PointerType::get(ResultTy, AddressSpace); 1378 break; 1379 } 1380 case bitc::TYPE_CODE_FUNCTION_OLD: { 1381 // FIXME: attrid is dead, remove it in LLVM 4.0 1382 // FUNCTION: [vararg, attrid, retty, paramty x N] 1383 if (Record.size() < 3) 1384 return Error("Invalid record"); 1385 SmallVector<Type*, 8> ArgTys; 1386 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 1387 if (Type *T = getTypeByID(Record[i])) 1388 ArgTys.push_back(T); 1389 else 1390 break; 1391 } 1392 1393 ResultTy = getTypeByID(Record[2]); 1394 if (!ResultTy || ArgTys.size() < Record.size()-3) 1395 return Error("Invalid type"); 1396 1397 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1398 break; 1399 } 1400 case bitc::TYPE_CODE_FUNCTION: { 1401 // FUNCTION: [vararg, retty, paramty x N] 1402 if (Record.size() < 2) 1403 return Error("Invalid record"); 1404 SmallVector<Type*, 8> ArgTys; 1405 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1406 if (Type *T = getTypeByID(Record[i])) { 1407 if (!FunctionType::isValidArgumentType(T)) 1408 return Error("Invalid function argument type"); 1409 ArgTys.push_back(T); 1410 } 1411 else 1412 break; 1413 } 1414 1415 ResultTy = getTypeByID(Record[1]); 1416 if (!ResultTy || ArgTys.size() < Record.size()-2) 1417 return Error("Invalid type"); 1418 1419 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1420 break; 1421 } 1422 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 1423 if (Record.size() < 1) 1424 return Error("Invalid record"); 1425 SmallVector<Type*, 8> EltTys; 1426 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1427 if (Type *T = getTypeByID(Record[i])) 1428 EltTys.push_back(T); 1429 else 1430 break; 1431 } 1432 if (EltTys.size() != Record.size()-1) 1433 return Error("Invalid type"); 1434 ResultTy = StructType::get(Context, EltTys, Record[0]); 1435 break; 1436 } 1437 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 1438 if (ConvertToString(Record, 0, TypeName)) 1439 return Error("Invalid record"); 1440 continue; 1441 1442 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 1443 if (Record.size() < 1) 1444 return Error("Invalid record"); 1445 1446 if (NumRecords >= TypeList.size()) 1447 return Error("Invalid TYPE table"); 1448 1449 // Check to see if this was forward referenced, if so fill in the temp. 1450 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1451 if (Res) { 1452 Res->setName(TypeName); 1453 TypeList[NumRecords] = nullptr; 1454 } else // Otherwise, create a new struct. 1455 Res = createIdentifiedStructType(Context, TypeName); 1456 TypeName.clear(); 1457 1458 SmallVector<Type*, 8> EltTys; 1459 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1460 if (Type *T = getTypeByID(Record[i])) 1461 EltTys.push_back(T); 1462 else 1463 break; 1464 } 1465 if (EltTys.size() != Record.size()-1) 1466 return Error("Invalid record"); 1467 Res->setBody(EltTys, Record[0]); 1468 ResultTy = Res; 1469 break; 1470 } 1471 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 1472 if (Record.size() != 1) 1473 return Error("Invalid record"); 1474 1475 if (NumRecords >= TypeList.size()) 1476 return Error("Invalid TYPE table"); 1477 1478 // Check to see if this was forward referenced, if so fill in the temp. 1479 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1480 if (Res) { 1481 Res->setName(TypeName); 1482 TypeList[NumRecords] = nullptr; 1483 } else // Otherwise, create a new struct with no body. 1484 Res = createIdentifiedStructType(Context, TypeName); 1485 TypeName.clear(); 1486 ResultTy = Res; 1487 break; 1488 } 1489 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 1490 if (Record.size() < 2) 1491 return Error("Invalid record"); 1492 ResultTy = getTypeByID(Record[1]); 1493 if (!ResultTy || !ArrayType::isValidElementType(ResultTy)) 1494 return Error("Invalid type"); 1495 ResultTy = ArrayType::get(ResultTy, Record[0]); 1496 break; 1497 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] 1498 if (Record.size() < 2) 1499 return Error("Invalid record"); 1500 ResultTy = getTypeByID(Record[1]); 1501 if (!ResultTy || !StructType::isValidElementType(ResultTy)) 1502 return Error("Invalid type"); 1503 ResultTy = VectorType::get(ResultTy, Record[0]); 1504 break; 1505 } 1506 1507 if (NumRecords >= TypeList.size()) 1508 return Error("Invalid TYPE table"); 1509 if (TypeList[NumRecords]) 1510 return Error( 1511 "Invalid TYPE table: Only named structs can be forward referenced"); 1512 assert(ResultTy && "Didn't read a type?"); 1513 TypeList[NumRecords++] = ResultTy; 1514 } 1515 } 1516 1517 std::error_code BitcodeReader::ParseValueSymbolTable() { 1518 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 1519 return Error("Invalid record"); 1520 1521 SmallVector<uint64_t, 64> Record; 1522 1523 Triple TT(TheModule->getTargetTriple()); 1524 1525 // Read all the records for this value table. 1526 SmallString<128> ValueName; 1527 while (1) { 1528 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1529 1530 switch (Entry.Kind) { 1531 case BitstreamEntry::SubBlock: // Handled for us already. 1532 case BitstreamEntry::Error: 1533 return Error("Malformed block"); 1534 case BitstreamEntry::EndBlock: 1535 return std::error_code(); 1536 case BitstreamEntry::Record: 1537 // The interesting case. 1538 break; 1539 } 1540 1541 // Read a record. 1542 Record.clear(); 1543 switch (Stream.readRecord(Entry.ID, Record)) { 1544 default: // Default behavior: unknown type. 1545 break; 1546 case bitc::VST_CODE_ENTRY: { // VST_ENTRY: [valueid, namechar x N] 1547 if (ConvertToString(Record, 1, ValueName)) 1548 return Error("Invalid record"); 1549 unsigned ValueID = Record[0]; 1550 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 1551 return Error("Invalid record"); 1552 Value *V = ValueList[ValueID]; 1553 1554 V->setName(StringRef(ValueName.data(), ValueName.size())); 1555 if (auto *GO = dyn_cast<GlobalObject>(V)) { 1556 if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) { 1557 if (TT.isOSBinFormatMachO()) 1558 GO->setComdat(nullptr); 1559 else 1560 GO->setComdat(TheModule->getOrInsertComdat(V->getName())); 1561 } 1562 } 1563 ValueName.clear(); 1564 break; 1565 } 1566 case bitc::VST_CODE_BBENTRY: { 1567 if (ConvertToString(Record, 1, ValueName)) 1568 return Error("Invalid record"); 1569 BasicBlock *BB = getBasicBlock(Record[0]); 1570 if (!BB) 1571 return Error("Invalid record"); 1572 1573 BB->setName(StringRef(ValueName.data(), ValueName.size())); 1574 ValueName.clear(); 1575 break; 1576 } 1577 } 1578 } 1579 } 1580 1581 static int64_t unrotateSign(uint64_t U) { return U & 1 ? ~(U >> 1) : U >> 1; } 1582 1583 std::error_code BitcodeReader::ParseMetadata() { 1584 IsMetadataMaterialized = true; 1585 unsigned NextMDValueNo = MDValueList.size(); 1586 1587 if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID)) 1588 return Error("Invalid record"); 1589 1590 SmallVector<uint64_t, 64> Record; 1591 1592 auto getMD = 1593 [&](unsigned ID) -> Metadata *{ return MDValueList.getValueFwdRef(ID); }; 1594 auto getMDOrNull = [&](unsigned ID) -> Metadata *{ 1595 if (ID) 1596 return getMD(ID - 1); 1597 return nullptr; 1598 }; 1599 auto getMDString = [&](unsigned ID) -> MDString *{ 1600 // This requires that the ID is not really a forward reference. In 1601 // particular, the MDString must already have been resolved. 1602 return cast_or_null<MDString>(getMDOrNull(ID)); 1603 }; 1604 1605 #define GET_OR_DISTINCT(CLASS, DISTINCT, ARGS) \ 1606 (DISTINCT ? CLASS::getDistinct ARGS : CLASS::get ARGS) 1607 1608 // Read all the records. 1609 while (1) { 1610 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1611 1612 switch (Entry.Kind) { 1613 case BitstreamEntry::SubBlock: // Handled for us already. 1614 case BitstreamEntry::Error: 1615 return Error("Malformed block"); 1616 case BitstreamEntry::EndBlock: 1617 MDValueList.tryToResolveCycles(); 1618 return std::error_code(); 1619 case BitstreamEntry::Record: 1620 // The interesting case. 1621 break; 1622 } 1623 1624 // Read a record. 1625 Record.clear(); 1626 unsigned Code = Stream.readRecord(Entry.ID, Record); 1627 bool IsDistinct = false; 1628 switch (Code) { 1629 default: // Default behavior: ignore. 1630 break; 1631 case bitc::METADATA_NAME: { 1632 // Read name of the named metadata. 1633 SmallString<8> Name(Record.begin(), Record.end()); 1634 Record.clear(); 1635 Code = Stream.ReadCode(); 1636 1637 // METADATA_NAME is always followed by METADATA_NAMED_NODE. 1638 unsigned NextBitCode = Stream.readRecord(Code, Record); 1639 assert(NextBitCode == bitc::METADATA_NAMED_NODE); (void)NextBitCode; 1640 1641 // Read named metadata elements. 1642 unsigned Size = Record.size(); 1643 NamedMDNode *NMD = TheModule->getOrInsertNamedMetadata(Name); 1644 for (unsigned i = 0; i != Size; ++i) { 1645 MDNode *MD = dyn_cast_or_null<MDNode>(MDValueList.getValueFwdRef(Record[i])); 1646 if (!MD) 1647 return Error("Invalid record"); 1648 NMD->addOperand(MD); 1649 } 1650 break; 1651 } 1652 case bitc::METADATA_OLD_FN_NODE: { 1653 // FIXME: Remove in 4.0. 1654 // This is a LocalAsMetadata record, the only type of function-local 1655 // metadata. 1656 if (Record.size() % 2 == 1) 1657 return Error("Invalid record"); 1658 1659 // If this isn't a LocalAsMetadata record, we're dropping it. This used 1660 // to be legal, but there's no upgrade path. 1661 auto dropRecord = [&] { 1662 MDValueList.AssignValue(MDNode::get(Context, None), NextMDValueNo++); 1663 }; 1664 if (Record.size() != 2) { 1665 dropRecord(); 1666 break; 1667 } 1668 1669 Type *Ty = getTypeByID(Record[0]); 1670 if (Ty->isMetadataTy() || Ty->isVoidTy()) { 1671 dropRecord(); 1672 break; 1673 } 1674 1675 MDValueList.AssignValue( 1676 LocalAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)), 1677 NextMDValueNo++); 1678 break; 1679 } 1680 case bitc::METADATA_OLD_NODE: { 1681 // FIXME: Remove in 4.0. 1682 if (Record.size() % 2 == 1) 1683 return Error("Invalid record"); 1684 1685 unsigned Size = Record.size(); 1686 SmallVector<Metadata *, 8> Elts; 1687 for (unsigned i = 0; i != Size; i += 2) { 1688 Type *Ty = getTypeByID(Record[i]); 1689 if (!Ty) 1690 return Error("Invalid record"); 1691 if (Ty->isMetadataTy()) 1692 Elts.push_back(MDValueList.getValueFwdRef(Record[i+1])); 1693 else if (!Ty->isVoidTy()) { 1694 auto *MD = 1695 ValueAsMetadata::get(ValueList.getValueFwdRef(Record[i + 1], Ty)); 1696 assert(isa<ConstantAsMetadata>(MD) && 1697 "Expected non-function-local metadata"); 1698 Elts.push_back(MD); 1699 } else 1700 Elts.push_back(nullptr); 1701 } 1702 MDValueList.AssignValue(MDNode::get(Context, Elts), NextMDValueNo++); 1703 break; 1704 } 1705 case bitc::METADATA_VALUE: { 1706 if (Record.size() != 2) 1707 return Error("Invalid record"); 1708 1709 Type *Ty = getTypeByID(Record[0]); 1710 if (Ty->isMetadataTy() || Ty->isVoidTy()) 1711 return Error("Invalid record"); 1712 1713 MDValueList.AssignValue( 1714 ValueAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)), 1715 NextMDValueNo++); 1716 break; 1717 } 1718 case bitc::METADATA_DISTINCT_NODE: 1719 IsDistinct = true; 1720 // fallthrough... 1721 case bitc::METADATA_NODE: { 1722 SmallVector<Metadata *, 8> Elts; 1723 Elts.reserve(Record.size()); 1724 for (unsigned ID : Record) 1725 Elts.push_back(ID ? MDValueList.getValueFwdRef(ID - 1) : nullptr); 1726 MDValueList.AssignValue(IsDistinct ? MDNode::getDistinct(Context, Elts) 1727 : MDNode::get(Context, Elts), 1728 NextMDValueNo++); 1729 break; 1730 } 1731 case bitc::METADATA_LOCATION: { 1732 if (Record.size() != 5) 1733 return Error("Invalid record"); 1734 1735 unsigned Line = Record[1]; 1736 unsigned Column = Record[2]; 1737 MDNode *Scope = cast<MDNode>(MDValueList.getValueFwdRef(Record[3])); 1738 Metadata *InlinedAt = 1739 Record[4] ? MDValueList.getValueFwdRef(Record[4] - 1) : nullptr; 1740 MDValueList.AssignValue( 1741 GET_OR_DISTINCT(DILocation, Record[0], 1742 (Context, Line, Column, Scope, InlinedAt)), 1743 NextMDValueNo++); 1744 break; 1745 } 1746 case bitc::METADATA_GENERIC_DEBUG: { 1747 if (Record.size() < 4) 1748 return Error("Invalid record"); 1749 1750 unsigned Tag = Record[1]; 1751 unsigned Version = Record[2]; 1752 1753 if (Tag >= 1u << 16 || Version != 0) 1754 return Error("Invalid record"); 1755 1756 auto *Header = getMDString(Record[3]); 1757 SmallVector<Metadata *, 8> DwarfOps; 1758 for (unsigned I = 4, E = Record.size(); I != E; ++I) 1759 DwarfOps.push_back(Record[I] ? MDValueList.getValueFwdRef(Record[I] - 1) 1760 : nullptr); 1761 MDValueList.AssignValue(GET_OR_DISTINCT(GenericDINode, Record[0], 1762 (Context, Tag, Header, DwarfOps)), 1763 NextMDValueNo++); 1764 break; 1765 } 1766 case bitc::METADATA_SUBRANGE: { 1767 if (Record.size() != 3) 1768 return Error("Invalid record"); 1769 1770 MDValueList.AssignValue( 1771 GET_OR_DISTINCT(DISubrange, Record[0], 1772 (Context, Record[1], unrotateSign(Record[2]))), 1773 NextMDValueNo++); 1774 break; 1775 } 1776 case bitc::METADATA_ENUMERATOR: { 1777 if (Record.size() != 3) 1778 return Error("Invalid record"); 1779 1780 MDValueList.AssignValue(GET_OR_DISTINCT(DIEnumerator, Record[0], 1781 (Context, unrotateSign(Record[1]), 1782 getMDString(Record[2]))), 1783 NextMDValueNo++); 1784 break; 1785 } 1786 case bitc::METADATA_BASIC_TYPE: { 1787 if (Record.size() != 6) 1788 return Error("Invalid record"); 1789 1790 MDValueList.AssignValue( 1791 GET_OR_DISTINCT(DIBasicType, Record[0], 1792 (Context, Record[1], getMDString(Record[2]), 1793 Record[3], Record[4], Record[5])), 1794 NextMDValueNo++); 1795 break; 1796 } 1797 case bitc::METADATA_DERIVED_TYPE: { 1798 if (Record.size() != 12) 1799 return Error("Invalid record"); 1800 1801 MDValueList.AssignValue( 1802 GET_OR_DISTINCT(DIDerivedType, Record[0], 1803 (Context, Record[1], getMDString(Record[2]), 1804 getMDOrNull(Record[3]), Record[4], 1805 getMDOrNull(Record[5]), getMDOrNull(Record[6]), 1806 Record[7], Record[8], Record[9], Record[10], 1807 getMDOrNull(Record[11]))), 1808 NextMDValueNo++); 1809 break; 1810 } 1811 case bitc::METADATA_COMPOSITE_TYPE: { 1812 if (Record.size() != 16) 1813 return Error("Invalid record"); 1814 1815 MDValueList.AssignValue( 1816 GET_OR_DISTINCT(DICompositeType, Record[0], 1817 (Context, Record[1], getMDString(Record[2]), 1818 getMDOrNull(Record[3]), Record[4], 1819 getMDOrNull(Record[5]), getMDOrNull(Record[6]), 1820 Record[7], Record[8], Record[9], Record[10], 1821 getMDOrNull(Record[11]), Record[12], 1822 getMDOrNull(Record[13]), getMDOrNull(Record[14]), 1823 getMDString(Record[15]))), 1824 NextMDValueNo++); 1825 break; 1826 } 1827 case bitc::METADATA_SUBROUTINE_TYPE: { 1828 if (Record.size() != 3) 1829 return Error("Invalid record"); 1830 1831 MDValueList.AssignValue( 1832 GET_OR_DISTINCT(DISubroutineType, Record[0], 1833 (Context, Record[1], getMDOrNull(Record[2]))), 1834 NextMDValueNo++); 1835 break; 1836 } 1837 case bitc::METADATA_FILE: { 1838 if (Record.size() != 3) 1839 return Error("Invalid record"); 1840 1841 MDValueList.AssignValue( 1842 GET_OR_DISTINCT(DIFile, Record[0], (Context, getMDString(Record[1]), 1843 getMDString(Record[2]))), 1844 NextMDValueNo++); 1845 break; 1846 } 1847 case bitc::METADATA_COMPILE_UNIT: { 1848 if (Record.size() < 14 || Record.size() > 15) 1849 return Error("Invalid record"); 1850 1851 MDValueList.AssignValue( 1852 GET_OR_DISTINCT(DICompileUnit, Record[0], 1853 (Context, Record[1], getMDOrNull(Record[2]), 1854 getMDString(Record[3]), Record[4], 1855 getMDString(Record[5]), Record[6], 1856 getMDString(Record[7]), Record[8], 1857 getMDOrNull(Record[9]), getMDOrNull(Record[10]), 1858 getMDOrNull(Record[11]), getMDOrNull(Record[12]), 1859 getMDOrNull(Record[13]), 1860 Record.size() == 14 ? 0 : Record[14])), 1861 NextMDValueNo++); 1862 break; 1863 } 1864 case bitc::METADATA_SUBPROGRAM: { 1865 if (Record.size() != 19) 1866 return Error("Invalid record"); 1867 1868 MDValueList.AssignValue( 1869 GET_OR_DISTINCT( 1870 DISubprogram, Record[0], 1871 (Context, getMDOrNull(Record[1]), getMDString(Record[2]), 1872 getMDString(Record[3]), getMDOrNull(Record[4]), Record[5], 1873 getMDOrNull(Record[6]), Record[7], Record[8], Record[9], 1874 getMDOrNull(Record[10]), Record[11], Record[12], Record[13], 1875 Record[14], getMDOrNull(Record[15]), getMDOrNull(Record[16]), 1876 getMDOrNull(Record[17]), getMDOrNull(Record[18]))), 1877 NextMDValueNo++); 1878 break; 1879 } 1880 case bitc::METADATA_LEXICAL_BLOCK: { 1881 if (Record.size() != 5) 1882 return Error("Invalid record"); 1883 1884 MDValueList.AssignValue( 1885 GET_OR_DISTINCT(DILexicalBlock, Record[0], 1886 (Context, getMDOrNull(Record[1]), 1887 getMDOrNull(Record[2]), Record[3], Record[4])), 1888 NextMDValueNo++); 1889 break; 1890 } 1891 case bitc::METADATA_LEXICAL_BLOCK_FILE: { 1892 if (Record.size() != 4) 1893 return Error("Invalid record"); 1894 1895 MDValueList.AssignValue( 1896 GET_OR_DISTINCT(DILexicalBlockFile, Record[0], 1897 (Context, getMDOrNull(Record[1]), 1898 getMDOrNull(Record[2]), Record[3])), 1899 NextMDValueNo++); 1900 break; 1901 } 1902 case bitc::METADATA_NAMESPACE: { 1903 if (Record.size() != 5) 1904 return Error("Invalid record"); 1905 1906 MDValueList.AssignValue( 1907 GET_OR_DISTINCT(DINamespace, Record[0], 1908 (Context, getMDOrNull(Record[1]), 1909 getMDOrNull(Record[2]), getMDString(Record[3]), 1910 Record[4])), 1911 NextMDValueNo++); 1912 break; 1913 } 1914 case bitc::METADATA_TEMPLATE_TYPE: { 1915 if (Record.size() != 3) 1916 return Error("Invalid record"); 1917 1918 MDValueList.AssignValue(GET_OR_DISTINCT(DITemplateTypeParameter, 1919 Record[0], 1920 (Context, getMDString(Record[1]), 1921 getMDOrNull(Record[2]))), 1922 NextMDValueNo++); 1923 break; 1924 } 1925 case bitc::METADATA_TEMPLATE_VALUE: { 1926 if (Record.size() != 5) 1927 return Error("Invalid record"); 1928 1929 MDValueList.AssignValue( 1930 GET_OR_DISTINCT(DITemplateValueParameter, Record[0], 1931 (Context, Record[1], getMDString(Record[2]), 1932 getMDOrNull(Record[3]), getMDOrNull(Record[4]))), 1933 NextMDValueNo++); 1934 break; 1935 } 1936 case bitc::METADATA_GLOBAL_VAR: { 1937 if (Record.size() != 11) 1938 return Error("Invalid record"); 1939 1940 MDValueList.AssignValue( 1941 GET_OR_DISTINCT(DIGlobalVariable, Record[0], 1942 (Context, getMDOrNull(Record[1]), 1943 getMDString(Record[2]), getMDString(Record[3]), 1944 getMDOrNull(Record[4]), Record[5], 1945 getMDOrNull(Record[6]), Record[7], Record[8], 1946 getMDOrNull(Record[9]), getMDOrNull(Record[10]))), 1947 NextMDValueNo++); 1948 break; 1949 } 1950 case bitc::METADATA_LOCAL_VAR: { 1951 // 10th field is for the obseleted 'inlinedAt:' field. 1952 if (Record.size() != 9 && Record.size() != 10) 1953 return Error("Invalid record"); 1954 1955 MDValueList.AssignValue( 1956 GET_OR_DISTINCT(DILocalVariable, Record[0], 1957 (Context, Record[1], getMDOrNull(Record[2]), 1958 getMDString(Record[3]), getMDOrNull(Record[4]), 1959 Record[5], getMDOrNull(Record[6]), Record[7], 1960 Record[8])), 1961 NextMDValueNo++); 1962 break; 1963 } 1964 case bitc::METADATA_EXPRESSION: { 1965 if (Record.size() < 1) 1966 return Error("Invalid record"); 1967 1968 MDValueList.AssignValue( 1969 GET_OR_DISTINCT(DIExpression, Record[0], 1970 (Context, makeArrayRef(Record).slice(1))), 1971 NextMDValueNo++); 1972 break; 1973 } 1974 case bitc::METADATA_OBJC_PROPERTY: { 1975 if (Record.size() != 8) 1976 return Error("Invalid record"); 1977 1978 MDValueList.AssignValue( 1979 GET_OR_DISTINCT(DIObjCProperty, Record[0], 1980 (Context, getMDString(Record[1]), 1981 getMDOrNull(Record[2]), Record[3], 1982 getMDString(Record[4]), getMDString(Record[5]), 1983 Record[6], getMDOrNull(Record[7]))), 1984 NextMDValueNo++); 1985 break; 1986 } 1987 case bitc::METADATA_IMPORTED_ENTITY: { 1988 if (Record.size() != 6) 1989 return Error("Invalid record"); 1990 1991 MDValueList.AssignValue( 1992 GET_OR_DISTINCT(DIImportedEntity, Record[0], 1993 (Context, Record[1], getMDOrNull(Record[2]), 1994 getMDOrNull(Record[3]), Record[4], 1995 getMDString(Record[5]))), 1996 NextMDValueNo++); 1997 break; 1998 } 1999 case bitc::METADATA_STRING: { 2000 std::string String(Record.begin(), Record.end()); 2001 llvm::UpgradeMDStringConstant(String); 2002 Metadata *MD = MDString::get(Context, String); 2003 MDValueList.AssignValue(MD, NextMDValueNo++); 2004 break; 2005 } 2006 case bitc::METADATA_KIND: { 2007 if (Record.size() < 2) 2008 return Error("Invalid record"); 2009 2010 unsigned Kind = Record[0]; 2011 SmallString<8> Name(Record.begin()+1, Record.end()); 2012 2013 unsigned NewKind = TheModule->getMDKindID(Name.str()); 2014 if (!MDKindMap.insert(std::make_pair(Kind, NewKind)).second) 2015 return Error("Conflicting METADATA_KIND records"); 2016 break; 2017 } 2018 } 2019 } 2020 #undef GET_OR_DISTINCT 2021 } 2022 2023 /// decodeSignRotatedValue - Decode a signed value stored with the sign bit in 2024 /// the LSB for dense VBR encoding. 2025 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { 2026 if ((V & 1) == 0) 2027 return V >> 1; 2028 if (V != 1) 2029 return -(V >> 1); 2030 // There is no such thing as -0 with integers. "-0" really means MININT. 2031 return 1ULL << 63; 2032 } 2033 2034 /// ResolveGlobalAndAliasInits - Resolve all of the initializers for global 2035 /// values and aliases that we can. 2036 std::error_code BitcodeReader::ResolveGlobalAndAliasInits() { 2037 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist; 2038 std::vector<std::pair<GlobalAlias*, unsigned> > AliasInitWorklist; 2039 std::vector<std::pair<Function*, unsigned> > FunctionPrefixWorklist; 2040 std::vector<std::pair<Function*, unsigned> > FunctionPrologueWorklist; 2041 2042 GlobalInitWorklist.swap(GlobalInits); 2043 AliasInitWorklist.swap(AliasInits); 2044 FunctionPrefixWorklist.swap(FunctionPrefixes); 2045 FunctionPrologueWorklist.swap(FunctionPrologues); 2046 2047 while (!GlobalInitWorklist.empty()) { 2048 unsigned ValID = GlobalInitWorklist.back().second; 2049 if (ValID >= ValueList.size()) { 2050 // Not ready to resolve this yet, it requires something later in the file. 2051 GlobalInits.push_back(GlobalInitWorklist.back()); 2052 } else { 2053 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2054 GlobalInitWorklist.back().first->setInitializer(C); 2055 else 2056 return Error("Expected a constant"); 2057 } 2058 GlobalInitWorklist.pop_back(); 2059 } 2060 2061 while (!AliasInitWorklist.empty()) { 2062 unsigned ValID = AliasInitWorklist.back().second; 2063 if (ValID >= ValueList.size()) { 2064 AliasInits.push_back(AliasInitWorklist.back()); 2065 } else { 2066 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2067 AliasInitWorklist.back().first->setAliasee(C); 2068 else 2069 return Error("Expected a constant"); 2070 } 2071 AliasInitWorklist.pop_back(); 2072 } 2073 2074 while (!FunctionPrefixWorklist.empty()) { 2075 unsigned ValID = FunctionPrefixWorklist.back().second; 2076 if (ValID >= ValueList.size()) { 2077 FunctionPrefixes.push_back(FunctionPrefixWorklist.back()); 2078 } else { 2079 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2080 FunctionPrefixWorklist.back().first->setPrefixData(C); 2081 else 2082 return Error("Expected a constant"); 2083 } 2084 FunctionPrefixWorklist.pop_back(); 2085 } 2086 2087 while (!FunctionPrologueWorklist.empty()) { 2088 unsigned ValID = FunctionPrologueWorklist.back().second; 2089 if (ValID >= ValueList.size()) { 2090 FunctionPrologues.push_back(FunctionPrologueWorklist.back()); 2091 } else { 2092 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2093 FunctionPrologueWorklist.back().first->setPrologueData(C); 2094 else 2095 return Error("Expected a constant"); 2096 } 2097 FunctionPrologueWorklist.pop_back(); 2098 } 2099 2100 return std::error_code(); 2101 } 2102 2103 static APInt ReadWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { 2104 SmallVector<uint64_t, 8> Words(Vals.size()); 2105 std::transform(Vals.begin(), Vals.end(), Words.begin(), 2106 BitcodeReader::decodeSignRotatedValue); 2107 2108 return APInt(TypeBits, Words); 2109 } 2110 2111 std::error_code BitcodeReader::ParseConstants() { 2112 if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 2113 return Error("Invalid record"); 2114 2115 SmallVector<uint64_t, 64> Record; 2116 2117 // Read all the records for this value table. 2118 Type *CurTy = Type::getInt32Ty(Context); 2119 unsigned NextCstNo = ValueList.size(); 2120 while (1) { 2121 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2122 2123 switch (Entry.Kind) { 2124 case BitstreamEntry::SubBlock: // Handled for us already. 2125 case BitstreamEntry::Error: 2126 return Error("Malformed block"); 2127 case BitstreamEntry::EndBlock: 2128 if (NextCstNo != ValueList.size()) 2129 return Error("Invalid ronstant reference"); 2130 2131 // Once all the constants have been read, go through and resolve forward 2132 // references. 2133 ValueList.ResolveConstantForwardRefs(); 2134 return std::error_code(); 2135 case BitstreamEntry::Record: 2136 // The interesting case. 2137 break; 2138 } 2139 2140 // Read a record. 2141 Record.clear(); 2142 Value *V = nullptr; 2143 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 2144 switch (BitCode) { 2145 default: // Default behavior: unknown constant 2146 case bitc::CST_CODE_UNDEF: // UNDEF 2147 V = UndefValue::get(CurTy); 2148 break; 2149 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 2150 if (Record.empty()) 2151 return Error("Invalid record"); 2152 if (Record[0] >= TypeList.size() || !TypeList[Record[0]]) 2153 return Error("Invalid record"); 2154 CurTy = TypeList[Record[0]]; 2155 continue; // Skip the ValueList manipulation. 2156 case bitc::CST_CODE_NULL: // NULL 2157 V = Constant::getNullValue(CurTy); 2158 break; 2159 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 2160 if (!CurTy->isIntegerTy() || Record.empty()) 2161 return Error("Invalid record"); 2162 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); 2163 break; 2164 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 2165 if (!CurTy->isIntegerTy() || Record.empty()) 2166 return Error("Invalid record"); 2167 2168 APInt VInt = ReadWideAPInt(Record, 2169 cast<IntegerType>(CurTy)->getBitWidth()); 2170 V = ConstantInt::get(Context, VInt); 2171 2172 break; 2173 } 2174 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 2175 if (Record.empty()) 2176 return Error("Invalid record"); 2177 if (CurTy->isHalfTy()) 2178 V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf, 2179 APInt(16, (uint16_t)Record[0]))); 2180 else if (CurTy->isFloatTy()) 2181 V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle, 2182 APInt(32, (uint32_t)Record[0]))); 2183 else if (CurTy->isDoubleTy()) 2184 V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble, 2185 APInt(64, Record[0]))); 2186 else if (CurTy->isX86_FP80Ty()) { 2187 // Bits are not stored the same way as a normal i80 APInt, compensate. 2188 uint64_t Rearrange[2]; 2189 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 2190 Rearrange[1] = Record[0] >> 48; 2191 V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended, 2192 APInt(80, Rearrange))); 2193 } else if (CurTy->isFP128Ty()) 2194 V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad, 2195 APInt(128, Record))); 2196 else if (CurTy->isPPC_FP128Ty()) 2197 V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble, 2198 APInt(128, Record))); 2199 else 2200 V = UndefValue::get(CurTy); 2201 break; 2202 } 2203 2204 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 2205 if (Record.empty()) 2206 return Error("Invalid record"); 2207 2208 unsigned Size = Record.size(); 2209 SmallVector<Constant*, 16> Elts; 2210 2211 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 2212 for (unsigned i = 0; i != Size; ++i) 2213 Elts.push_back(ValueList.getConstantFwdRef(Record[i], 2214 STy->getElementType(i))); 2215 V = ConstantStruct::get(STy, Elts); 2216 } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) { 2217 Type *EltTy = ATy->getElementType(); 2218 for (unsigned i = 0; i != Size; ++i) 2219 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2220 V = ConstantArray::get(ATy, Elts); 2221 } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) { 2222 Type *EltTy = VTy->getElementType(); 2223 for (unsigned i = 0; i != Size; ++i) 2224 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2225 V = ConstantVector::get(Elts); 2226 } else { 2227 V = UndefValue::get(CurTy); 2228 } 2229 break; 2230 } 2231 case bitc::CST_CODE_STRING: // STRING: [values] 2232 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 2233 if (Record.empty()) 2234 return Error("Invalid record"); 2235 2236 SmallString<16> Elts(Record.begin(), Record.end()); 2237 V = ConstantDataArray::getString(Context, Elts, 2238 BitCode == bitc::CST_CODE_CSTRING); 2239 break; 2240 } 2241 case bitc::CST_CODE_DATA: {// DATA: [n x value] 2242 if (Record.empty()) 2243 return Error("Invalid record"); 2244 2245 Type *EltTy = cast<SequentialType>(CurTy)->getElementType(); 2246 unsigned Size = Record.size(); 2247 2248 if (EltTy->isIntegerTy(8)) { 2249 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); 2250 if (isa<VectorType>(CurTy)) 2251 V = ConstantDataVector::get(Context, Elts); 2252 else 2253 V = ConstantDataArray::get(Context, Elts); 2254 } else if (EltTy->isIntegerTy(16)) { 2255 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2256 if (isa<VectorType>(CurTy)) 2257 V = ConstantDataVector::get(Context, Elts); 2258 else 2259 V = ConstantDataArray::get(Context, Elts); 2260 } else if (EltTy->isIntegerTy(32)) { 2261 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2262 if (isa<VectorType>(CurTy)) 2263 V = ConstantDataVector::get(Context, Elts); 2264 else 2265 V = ConstantDataArray::get(Context, Elts); 2266 } else if (EltTy->isIntegerTy(64)) { 2267 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2268 if (isa<VectorType>(CurTy)) 2269 V = ConstantDataVector::get(Context, Elts); 2270 else 2271 V = ConstantDataArray::get(Context, Elts); 2272 } else if (EltTy->isFloatTy()) { 2273 SmallVector<float, 16> Elts(Size); 2274 std::transform(Record.begin(), Record.end(), Elts.begin(), BitsToFloat); 2275 if (isa<VectorType>(CurTy)) 2276 V = ConstantDataVector::get(Context, Elts); 2277 else 2278 V = ConstantDataArray::get(Context, Elts); 2279 } else if (EltTy->isDoubleTy()) { 2280 SmallVector<double, 16> Elts(Size); 2281 std::transform(Record.begin(), Record.end(), Elts.begin(), 2282 BitsToDouble); 2283 if (isa<VectorType>(CurTy)) 2284 V = ConstantDataVector::get(Context, Elts); 2285 else 2286 V = ConstantDataArray::get(Context, Elts); 2287 } else { 2288 return Error("Invalid type for value"); 2289 } 2290 break; 2291 } 2292 2293 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 2294 if (Record.size() < 3) 2295 return Error("Invalid record"); 2296 int Opc = GetDecodedBinaryOpcode(Record[0], CurTy); 2297 if (Opc < 0) { 2298 V = UndefValue::get(CurTy); // Unknown binop. 2299 } else { 2300 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 2301 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy); 2302 unsigned Flags = 0; 2303 if (Record.size() >= 4) { 2304 if (Opc == Instruction::Add || 2305 Opc == Instruction::Sub || 2306 Opc == Instruction::Mul || 2307 Opc == Instruction::Shl) { 2308 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 2309 Flags |= OverflowingBinaryOperator::NoSignedWrap; 2310 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 2311 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 2312 } else if (Opc == Instruction::SDiv || 2313 Opc == Instruction::UDiv || 2314 Opc == Instruction::LShr || 2315 Opc == Instruction::AShr) { 2316 if (Record[3] & (1 << bitc::PEO_EXACT)) 2317 Flags |= SDivOperator::IsExact; 2318 } 2319 } 2320 V = ConstantExpr::get(Opc, LHS, RHS, Flags); 2321 } 2322 break; 2323 } 2324 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 2325 if (Record.size() < 3) 2326 return Error("Invalid record"); 2327 int Opc = GetDecodedCastOpcode(Record[0]); 2328 if (Opc < 0) { 2329 V = UndefValue::get(CurTy); // Unknown cast. 2330 } else { 2331 Type *OpTy = getTypeByID(Record[1]); 2332 if (!OpTy) 2333 return Error("Invalid record"); 2334 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy); 2335 V = UpgradeBitCastExpr(Opc, Op, CurTy); 2336 if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy); 2337 } 2338 break; 2339 } 2340 case bitc::CST_CODE_CE_INBOUNDS_GEP: 2341 case bitc::CST_CODE_CE_GEP: { // CE_GEP: [n x operands] 2342 unsigned OpNum = 0; 2343 Type *PointeeType = nullptr; 2344 if (Record.size() % 2) 2345 PointeeType = getTypeByID(Record[OpNum++]); 2346 SmallVector<Constant*, 16> Elts; 2347 while (OpNum != Record.size()) { 2348 Type *ElTy = getTypeByID(Record[OpNum++]); 2349 if (!ElTy) 2350 return Error("Invalid record"); 2351 Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy)); 2352 } 2353 2354 if (PointeeType && 2355 PointeeType != 2356 cast<SequentialType>(Elts[0]->getType()->getScalarType()) 2357 ->getElementType()) 2358 return Error("Explicit gep operator type does not match pointee type " 2359 "of pointer operand"); 2360 2361 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 2362 V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices, 2363 BitCode == 2364 bitc::CST_CODE_CE_INBOUNDS_GEP); 2365 break; 2366 } 2367 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] 2368 if (Record.size() < 3) 2369 return Error("Invalid record"); 2370 2371 Type *SelectorTy = Type::getInt1Ty(Context); 2372 2373 // If CurTy is a vector of length n, then Record[0] must be a <n x i1> 2374 // vector. Otherwise, it must be a single bit. 2375 if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) 2376 SelectorTy = VectorType::get(Type::getInt1Ty(Context), 2377 VTy->getNumElements()); 2378 2379 V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0], 2380 SelectorTy), 2381 ValueList.getConstantFwdRef(Record[1],CurTy), 2382 ValueList.getConstantFwdRef(Record[2],CurTy)); 2383 break; 2384 } 2385 case bitc::CST_CODE_CE_EXTRACTELT 2386 : { // CE_EXTRACTELT: [opty, opval, opty, opval] 2387 if (Record.size() < 3) 2388 return Error("Invalid record"); 2389 VectorType *OpTy = 2390 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2391 if (!OpTy) 2392 return Error("Invalid record"); 2393 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2394 Constant *Op1 = nullptr; 2395 if (Record.size() == 4) { 2396 Type *IdxTy = getTypeByID(Record[2]); 2397 if (!IdxTy) 2398 return Error("Invalid record"); 2399 Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2400 } else // TODO: Remove with llvm 4.0 2401 Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2402 if (!Op1) 2403 return Error("Invalid record"); 2404 V = ConstantExpr::getExtractElement(Op0, Op1); 2405 break; 2406 } 2407 case bitc::CST_CODE_CE_INSERTELT 2408 : { // CE_INSERTELT: [opval, opval, opty, opval] 2409 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2410 if (Record.size() < 3 || !OpTy) 2411 return Error("Invalid record"); 2412 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2413 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], 2414 OpTy->getElementType()); 2415 Constant *Op2 = nullptr; 2416 if (Record.size() == 4) { 2417 Type *IdxTy = getTypeByID(Record[2]); 2418 if (!IdxTy) 2419 return Error("Invalid record"); 2420 Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2421 } else // TODO: Remove with llvm 4.0 2422 Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2423 if (!Op2) 2424 return Error("Invalid record"); 2425 V = ConstantExpr::getInsertElement(Op0, Op1, Op2); 2426 break; 2427 } 2428 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 2429 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2430 if (Record.size() < 3 || !OpTy) 2431 return Error("Invalid record"); 2432 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2433 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy); 2434 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 2435 OpTy->getNumElements()); 2436 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy); 2437 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 2438 break; 2439 } 2440 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 2441 VectorType *RTy = dyn_cast<VectorType>(CurTy); 2442 VectorType *OpTy = 2443 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2444 if (Record.size() < 4 || !RTy || !OpTy) 2445 return Error("Invalid record"); 2446 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2447 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2448 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 2449 RTy->getNumElements()); 2450 Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy); 2451 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 2452 break; 2453 } 2454 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 2455 if (Record.size() < 4) 2456 return Error("Invalid record"); 2457 Type *OpTy = getTypeByID(Record[0]); 2458 if (!OpTy) 2459 return Error("Invalid record"); 2460 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2461 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2462 2463 if (OpTy->isFPOrFPVectorTy()) 2464 V = ConstantExpr::getFCmp(Record[3], Op0, Op1); 2465 else 2466 V = ConstantExpr::getICmp(Record[3], Op0, Op1); 2467 break; 2468 } 2469 // This maintains backward compatibility, pre-asm dialect keywords. 2470 // FIXME: Remove with the 4.0 release. 2471 case bitc::CST_CODE_INLINEASM_OLD: { 2472 if (Record.size() < 2) 2473 return Error("Invalid record"); 2474 std::string AsmStr, ConstrStr; 2475 bool HasSideEffects = Record[0] & 1; 2476 bool IsAlignStack = Record[0] >> 1; 2477 unsigned AsmStrSize = Record[1]; 2478 if (2+AsmStrSize >= Record.size()) 2479 return Error("Invalid record"); 2480 unsigned ConstStrSize = Record[2+AsmStrSize]; 2481 if (3+AsmStrSize+ConstStrSize > Record.size()) 2482 return Error("Invalid record"); 2483 2484 for (unsigned i = 0; i != AsmStrSize; ++i) 2485 AsmStr += (char)Record[2+i]; 2486 for (unsigned i = 0; i != ConstStrSize; ++i) 2487 ConstrStr += (char)Record[3+AsmStrSize+i]; 2488 PointerType *PTy = cast<PointerType>(CurTy); 2489 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 2490 AsmStr, ConstrStr, HasSideEffects, IsAlignStack); 2491 break; 2492 } 2493 // This version adds support for the asm dialect keywords (e.g., 2494 // inteldialect). 2495 case bitc::CST_CODE_INLINEASM: { 2496 if (Record.size() < 2) 2497 return Error("Invalid record"); 2498 std::string AsmStr, ConstrStr; 2499 bool HasSideEffects = Record[0] & 1; 2500 bool IsAlignStack = (Record[0] >> 1) & 1; 2501 unsigned AsmDialect = Record[0] >> 2; 2502 unsigned AsmStrSize = Record[1]; 2503 if (2+AsmStrSize >= Record.size()) 2504 return Error("Invalid record"); 2505 unsigned ConstStrSize = Record[2+AsmStrSize]; 2506 if (3+AsmStrSize+ConstStrSize > Record.size()) 2507 return Error("Invalid record"); 2508 2509 for (unsigned i = 0; i != AsmStrSize; ++i) 2510 AsmStr += (char)Record[2+i]; 2511 for (unsigned i = 0; i != ConstStrSize; ++i) 2512 ConstrStr += (char)Record[3+AsmStrSize+i]; 2513 PointerType *PTy = cast<PointerType>(CurTy); 2514 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 2515 AsmStr, ConstrStr, HasSideEffects, IsAlignStack, 2516 InlineAsm::AsmDialect(AsmDialect)); 2517 break; 2518 } 2519 case bitc::CST_CODE_BLOCKADDRESS:{ 2520 if (Record.size() < 3) 2521 return Error("Invalid record"); 2522 Type *FnTy = getTypeByID(Record[0]); 2523 if (!FnTy) 2524 return Error("Invalid record"); 2525 Function *Fn = 2526 dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy)); 2527 if (!Fn) 2528 return Error("Invalid record"); 2529 2530 // Don't let Fn get dematerialized. 2531 BlockAddressesTaken.insert(Fn); 2532 2533 // If the function is already parsed we can insert the block address right 2534 // away. 2535 BasicBlock *BB; 2536 unsigned BBID = Record[2]; 2537 if (!BBID) 2538 // Invalid reference to entry block. 2539 return Error("Invalid ID"); 2540 if (!Fn->empty()) { 2541 Function::iterator BBI = Fn->begin(), BBE = Fn->end(); 2542 for (size_t I = 0, E = BBID; I != E; ++I) { 2543 if (BBI == BBE) 2544 return Error("Invalid ID"); 2545 ++BBI; 2546 } 2547 BB = BBI; 2548 } else { 2549 // Otherwise insert a placeholder and remember it so it can be inserted 2550 // when the function is parsed. 2551 auto &FwdBBs = BasicBlockFwdRefs[Fn]; 2552 if (FwdBBs.empty()) 2553 BasicBlockFwdRefQueue.push_back(Fn); 2554 if (FwdBBs.size() < BBID + 1) 2555 FwdBBs.resize(BBID + 1); 2556 if (!FwdBBs[BBID]) 2557 FwdBBs[BBID] = BasicBlock::Create(Context); 2558 BB = FwdBBs[BBID]; 2559 } 2560 V = BlockAddress::get(Fn, BB); 2561 break; 2562 } 2563 } 2564 2565 ValueList.AssignValue(V, NextCstNo); 2566 ++NextCstNo; 2567 } 2568 } 2569 2570 std::error_code BitcodeReader::ParseUseLists() { 2571 if (Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 2572 return Error("Invalid record"); 2573 2574 // Read all the records. 2575 SmallVector<uint64_t, 64> Record; 2576 while (1) { 2577 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2578 2579 switch (Entry.Kind) { 2580 case BitstreamEntry::SubBlock: // Handled for us already. 2581 case BitstreamEntry::Error: 2582 return Error("Malformed block"); 2583 case BitstreamEntry::EndBlock: 2584 return std::error_code(); 2585 case BitstreamEntry::Record: 2586 // The interesting case. 2587 break; 2588 } 2589 2590 // Read a use list record. 2591 Record.clear(); 2592 bool IsBB = false; 2593 switch (Stream.readRecord(Entry.ID, Record)) { 2594 default: // Default behavior: unknown type. 2595 break; 2596 case bitc::USELIST_CODE_BB: 2597 IsBB = true; 2598 // fallthrough 2599 case bitc::USELIST_CODE_DEFAULT: { 2600 unsigned RecordLength = Record.size(); 2601 if (RecordLength < 3) 2602 // Records should have at least an ID and two indexes. 2603 return Error("Invalid record"); 2604 unsigned ID = Record.back(); 2605 Record.pop_back(); 2606 2607 Value *V; 2608 if (IsBB) { 2609 assert(ID < FunctionBBs.size() && "Basic block not found"); 2610 V = FunctionBBs[ID]; 2611 } else 2612 V = ValueList[ID]; 2613 unsigned NumUses = 0; 2614 SmallDenseMap<const Use *, unsigned, 16> Order; 2615 for (const Use &U : V->uses()) { 2616 if (++NumUses > Record.size()) 2617 break; 2618 Order[&U] = Record[NumUses - 1]; 2619 } 2620 if (Order.size() != Record.size() || NumUses > Record.size()) 2621 // Mismatches can happen if the functions are being materialized lazily 2622 // (out-of-order), or a value has been upgraded. 2623 break; 2624 2625 V->sortUseList([&](const Use &L, const Use &R) { 2626 return Order.lookup(&L) < Order.lookup(&R); 2627 }); 2628 break; 2629 } 2630 } 2631 } 2632 } 2633 2634 /// When we see the block for metadata, remember where it is and then skip it. 2635 /// This lets us lazily deserialize the metadata. 2636 std::error_code BitcodeReader::rememberAndSkipMetadata() { 2637 // Save the current stream state. 2638 uint64_t CurBit = Stream.GetCurrentBitNo(); 2639 DeferredMetadataInfo.push_back(CurBit); 2640 2641 // Skip over the block for now. 2642 if (Stream.SkipBlock()) 2643 return Error("Invalid record"); 2644 return std::error_code(); 2645 } 2646 2647 std::error_code BitcodeReader::materializeMetadata() { 2648 for (uint64_t BitPos : DeferredMetadataInfo) { 2649 // Move the bit stream to the saved position. 2650 Stream.JumpToBit(BitPos); 2651 if (std::error_code EC = ParseMetadata()) 2652 return EC; 2653 } 2654 DeferredMetadataInfo.clear(); 2655 return std::error_code(); 2656 } 2657 2658 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; } 2659 2660 /// RememberAndSkipFunctionBody - When we see the block for a function body, 2661 /// remember where it is and then skip it. This lets us lazily deserialize the 2662 /// functions. 2663 std::error_code BitcodeReader::RememberAndSkipFunctionBody() { 2664 // Get the function we are talking about. 2665 if (FunctionsWithBodies.empty()) 2666 return Error("Insufficient function protos"); 2667 2668 Function *Fn = FunctionsWithBodies.back(); 2669 FunctionsWithBodies.pop_back(); 2670 2671 // Save the current stream state. 2672 uint64_t CurBit = Stream.GetCurrentBitNo(); 2673 DeferredFunctionInfo[Fn] = CurBit; 2674 2675 // Skip over the function block for now. 2676 if (Stream.SkipBlock()) 2677 return Error("Invalid record"); 2678 return std::error_code(); 2679 } 2680 2681 std::error_code BitcodeReader::GlobalCleanup() { 2682 // Patch the initializers for globals and aliases up. 2683 ResolveGlobalAndAliasInits(); 2684 if (!GlobalInits.empty() || !AliasInits.empty()) 2685 return Error("Malformed global initializer set"); 2686 2687 // Look for intrinsic functions which need to be upgraded at some point 2688 for (Module::iterator FI = TheModule->begin(), FE = TheModule->end(); 2689 FI != FE; ++FI) { 2690 Function *NewFn; 2691 if (UpgradeIntrinsicFunction(FI, NewFn)) 2692 UpgradedIntrinsics.push_back(std::make_pair(FI, NewFn)); 2693 } 2694 2695 // Look for global variables which need to be renamed. 2696 for (Module::global_iterator 2697 GI = TheModule->global_begin(), GE = TheModule->global_end(); 2698 GI != GE;) { 2699 GlobalVariable *GV = GI++; 2700 UpgradeGlobalVariable(GV); 2701 } 2702 2703 // Force deallocation of memory for these vectors to favor the client that 2704 // want lazy deserialization. 2705 std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits); 2706 std::vector<std::pair<GlobalAlias*, unsigned> >().swap(AliasInits); 2707 return std::error_code(); 2708 } 2709 2710 std::error_code BitcodeReader::ParseModule(bool Resume, 2711 bool ShouldLazyLoadMetadata) { 2712 if (Resume) 2713 Stream.JumpToBit(NextUnreadBit); 2714 else if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 2715 return Error("Invalid record"); 2716 2717 SmallVector<uint64_t, 64> Record; 2718 std::vector<std::string> SectionTable; 2719 std::vector<std::string> GCTable; 2720 2721 // Read all the records for this module. 2722 while (1) { 2723 BitstreamEntry Entry = Stream.advance(); 2724 2725 switch (Entry.Kind) { 2726 case BitstreamEntry::Error: 2727 return Error("Malformed block"); 2728 case BitstreamEntry::EndBlock: 2729 return GlobalCleanup(); 2730 2731 case BitstreamEntry::SubBlock: 2732 switch (Entry.ID) { 2733 default: // Skip unknown content. 2734 if (Stream.SkipBlock()) 2735 return Error("Invalid record"); 2736 break; 2737 case bitc::BLOCKINFO_BLOCK_ID: 2738 if (Stream.ReadBlockInfoBlock()) 2739 return Error("Malformed block"); 2740 break; 2741 case bitc::PARAMATTR_BLOCK_ID: 2742 if (std::error_code EC = ParseAttributeBlock()) 2743 return EC; 2744 break; 2745 case bitc::PARAMATTR_GROUP_BLOCK_ID: 2746 if (std::error_code EC = ParseAttributeGroupBlock()) 2747 return EC; 2748 break; 2749 case bitc::TYPE_BLOCK_ID_NEW: 2750 if (std::error_code EC = ParseTypeTable()) 2751 return EC; 2752 break; 2753 case bitc::VALUE_SYMTAB_BLOCK_ID: 2754 if (std::error_code EC = ParseValueSymbolTable()) 2755 return EC; 2756 SeenValueSymbolTable = true; 2757 break; 2758 case bitc::CONSTANTS_BLOCK_ID: 2759 if (std::error_code EC = ParseConstants()) 2760 return EC; 2761 if (std::error_code EC = ResolveGlobalAndAliasInits()) 2762 return EC; 2763 break; 2764 case bitc::METADATA_BLOCK_ID: 2765 if (ShouldLazyLoadMetadata && !IsMetadataMaterialized) { 2766 if (std::error_code EC = rememberAndSkipMetadata()) 2767 return EC; 2768 break; 2769 } 2770 assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata"); 2771 if (std::error_code EC = ParseMetadata()) 2772 return EC; 2773 break; 2774 case bitc::FUNCTION_BLOCK_ID: 2775 // If this is the first function body we've seen, reverse the 2776 // FunctionsWithBodies list. 2777 if (!SeenFirstFunctionBody) { 2778 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 2779 if (std::error_code EC = GlobalCleanup()) 2780 return EC; 2781 SeenFirstFunctionBody = true; 2782 } 2783 2784 if (std::error_code EC = RememberAndSkipFunctionBody()) 2785 return EC; 2786 // For streaming bitcode, suspend parsing when we reach the function 2787 // bodies. Subsequent materialization calls will resume it when 2788 // necessary. For streaming, the function bodies must be at the end of 2789 // the bitcode. If the bitcode file is old, the symbol table will be 2790 // at the end instead and will not have been seen yet. In this case, 2791 // just finish the parse now. 2792 if (LazyStreamer && SeenValueSymbolTable) { 2793 NextUnreadBit = Stream.GetCurrentBitNo(); 2794 return std::error_code(); 2795 } 2796 break; 2797 case bitc::USELIST_BLOCK_ID: 2798 if (std::error_code EC = ParseUseLists()) 2799 return EC; 2800 break; 2801 } 2802 continue; 2803 2804 case BitstreamEntry::Record: 2805 // The interesting case. 2806 break; 2807 } 2808 2809 2810 // Read a record. 2811 switch (Stream.readRecord(Entry.ID, Record)) { 2812 default: break; // Default behavior, ignore unknown content. 2813 case bitc::MODULE_CODE_VERSION: { // VERSION: [version#] 2814 if (Record.size() < 1) 2815 return Error("Invalid record"); 2816 // Only version #0 and #1 are supported so far. 2817 unsigned module_version = Record[0]; 2818 switch (module_version) { 2819 default: 2820 return Error("Invalid value"); 2821 case 0: 2822 UseRelativeIDs = false; 2823 break; 2824 case 1: 2825 UseRelativeIDs = true; 2826 break; 2827 } 2828 break; 2829 } 2830 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 2831 std::string S; 2832 if (ConvertToString(Record, 0, S)) 2833 return Error("Invalid record"); 2834 TheModule->setTargetTriple(S); 2835 break; 2836 } 2837 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 2838 std::string S; 2839 if (ConvertToString(Record, 0, S)) 2840 return Error("Invalid record"); 2841 TheModule->setDataLayout(S); 2842 break; 2843 } 2844 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 2845 std::string S; 2846 if (ConvertToString(Record, 0, S)) 2847 return Error("Invalid record"); 2848 TheModule->setModuleInlineAsm(S); 2849 break; 2850 } 2851 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 2852 // FIXME: Remove in 4.0. 2853 std::string S; 2854 if (ConvertToString(Record, 0, S)) 2855 return Error("Invalid record"); 2856 // Ignore value. 2857 break; 2858 } 2859 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 2860 std::string S; 2861 if (ConvertToString(Record, 0, S)) 2862 return Error("Invalid record"); 2863 SectionTable.push_back(S); 2864 break; 2865 } 2866 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 2867 std::string S; 2868 if (ConvertToString(Record, 0, S)) 2869 return Error("Invalid record"); 2870 GCTable.push_back(S); 2871 break; 2872 } 2873 case bitc::MODULE_CODE_COMDAT: { // COMDAT: [selection_kind, name] 2874 if (Record.size() < 2) 2875 return Error("Invalid record"); 2876 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]); 2877 unsigned ComdatNameSize = Record[1]; 2878 std::string ComdatName; 2879 ComdatName.reserve(ComdatNameSize); 2880 for (unsigned i = 0; i != ComdatNameSize; ++i) 2881 ComdatName += (char)Record[2 + i]; 2882 Comdat *C = TheModule->getOrInsertComdat(ComdatName); 2883 C->setSelectionKind(SK); 2884 ComdatList.push_back(C); 2885 break; 2886 } 2887 // GLOBALVAR: [pointer type, isconst, initid, 2888 // linkage, alignment, section, visibility, threadlocal, 2889 // unnamed_addr, externally_initialized, dllstorageclass, 2890 // comdat] 2891 case bitc::MODULE_CODE_GLOBALVAR: { 2892 if (Record.size() < 6) 2893 return Error("Invalid record"); 2894 Type *Ty = getTypeByID(Record[0]); 2895 if (!Ty) 2896 return Error("Invalid record"); 2897 bool isConstant = Record[1] & 1; 2898 bool explicitType = Record[1] & 2; 2899 unsigned AddressSpace; 2900 if (explicitType) { 2901 AddressSpace = Record[1] >> 2; 2902 } else { 2903 if (!Ty->isPointerTy()) 2904 return Error("Invalid type for value"); 2905 AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 2906 Ty = cast<PointerType>(Ty)->getElementType(); 2907 } 2908 2909 uint64_t RawLinkage = Record[3]; 2910 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 2911 unsigned Alignment; 2912 if (std::error_code EC = parseAlignmentValue(Record[4], Alignment)) 2913 return EC; 2914 std::string Section; 2915 if (Record[5]) { 2916 if (Record[5]-1 >= SectionTable.size()) 2917 return Error("Invalid ID"); 2918 Section = SectionTable[Record[5]-1]; 2919 } 2920 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 2921 // Local linkage must have default visibility. 2922 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage)) 2923 // FIXME: Change to an error if non-default in 4.0. 2924 Visibility = GetDecodedVisibility(Record[6]); 2925 2926 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; 2927 if (Record.size() > 7) 2928 TLM = GetDecodedThreadLocalMode(Record[7]); 2929 2930 bool UnnamedAddr = false; 2931 if (Record.size() > 8) 2932 UnnamedAddr = Record[8]; 2933 2934 bool ExternallyInitialized = false; 2935 if (Record.size() > 9) 2936 ExternallyInitialized = Record[9]; 2937 2938 GlobalVariable *NewGV = 2939 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, "", nullptr, 2940 TLM, AddressSpace, ExternallyInitialized); 2941 NewGV->setAlignment(Alignment); 2942 if (!Section.empty()) 2943 NewGV->setSection(Section); 2944 NewGV->setVisibility(Visibility); 2945 NewGV->setUnnamedAddr(UnnamedAddr); 2946 2947 if (Record.size() > 10) 2948 NewGV->setDLLStorageClass(GetDecodedDLLStorageClass(Record[10])); 2949 else 2950 UpgradeDLLImportExportLinkage(NewGV, RawLinkage); 2951 2952 ValueList.push_back(NewGV); 2953 2954 // Remember which value to use for the global initializer. 2955 if (unsigned InitID = Record[2]) 2956 GlobalInits.push_back(std::make_pair(NewGV, InitID-1)); 2957 2958 if (Record.size() > 11) { 2959 if (unsigned ComdatID = Record[11]) { 2960 if (ComdatID > ComdatList.size()) 2961 return Error("Invalid global variable comdat ID"); 2962 NewGV->setComdat(ComdatList[ComdatID - 1]); 2963 } 2964 } else if (hasImplicitComdat(RawLinkage)) { 2965 NewGV->setComdat(reinterpret_cast<Comdat *>(1)); 2966 } 2967 break; 2968 } 2969 // FUNCTION: [type, callingconv, isproto, linkage, paramattr, 2970 // alignment, section, visibility, gc, unnamed_addr, 2971 // prologuedata, dllstorageclass, comdat, prefixdata] 2972 case bitc::MODULE_CODE_FUNCTION: { 2973 if (Record.size() < 8) 2974 return Error("Invalid record"); 2975 Type *Ty = getTypeByID(Record[0]); 2976 if (!Ty) 2977 return Error("Invalid record"); 2978 if (auto *PTy = dyn_cast<PointerType>(Ty)) 2979 Ty = PTy->getElementType(); 2980 auto *FTy = dyn_cast<FunctionType>(Ty); 2981 if (!FTy) 2982 return Error("Invalid type for value"); 2983 2984 Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage, 2985 "", TheModule); 2986 2987 Func->setCallingConv(static_cast<CallingConv::ID>(Record[1])); 2988 bool isProto = Record[2]; 2989 uint64_t RawLinkage = Record[3]; 2990 Func->setLinkage(getDecodedLinkage(RawLinkage)); 2991 Func->setAttributes(getAttributes(Record[4])); 2992 2993 unsigned Alignment; 2994 if (std::error_code EC = parseAlignmentValue(Record[5], Alignment)) 2995 return EC; 2996 Func->setAlignment(Alignment); 2997 if (Record[6]) { 2998 if (Record[6]-1 >= SectionTable.size()) 2999 return Error("Invalid ID"); 3000 Func->setSection(SectionTable[Record[6]-1]); 3001 } 3002 // Local linkage must have default visibility. 3003 if (!Func->hasLocalLinkage()) 3004 // FIXME: Change to an error if non-default in 4.0. 3005 Func->setVisibility(GetDecodedVisibility(Record[7])); 3006 if (Record.size() > 8 && Record[8]) { 3007 if (Record[8]-1 >= GCTable.size()) 3008 return Error("Invalid ID"); 3009 Func->setGC(GCTable[Record[8]-1].c_str()); 3010 } 3011 bool UnnamedAddr = false; 3012 if (Record.size() > 9) 3013 UnnamedAddr = Record[9]; 3014 Func->setUnnamedAddr(UnnamedAddr); 3015 if (Record.size() > 10 && Record[10] != 0) 3016 FunctionPrologues.push_back(std::make_pair(Func, Record[10]-1)); 3017 3018 if (Record.size() > 11) 3019 Func->setDLLStorageClass(GetDecodedDLLStorageClass(Record[11])); 3020 else 3021 UpgradeDLLImportExportLinkage(Func, RawLinkage); 3022 3023 if (Record.size() > 12) { 3024 if (unsigned ComdatID = Record[12]) { 3025 if (ComdatID > ComdatList.size()) 3026 return Error("Invalid function comdat ID"); 3027 Func->setComdat(ComdatList[ComdatID - 1]); 3028 } 3029 } else if (hasImplicitComdat(RawLinkage)) { 3030 Func->setComdat(reinterpret_cast<Comdat *>(1)); 3031 } 3032 3033 if (Record.size() > 13 && Record[13] != 0) 3034 FunctionPrefixes.push_back(std::make_pair(Func, Record[13]-1)); 3035 3036 ValueList.push_back(Func); 3037 3038 // If this is a function with a body, remember the prototype we are 3039 // creating now, so that we can match up the body with them later. 3040 if (!isProto) { 3041 Func->setIsMaterializable(true); 3042 FunctionsWithBodies.push_back(Func); 3043 if (LazyStreamer) 3044 DeferredFunctionInfo[Func] = 0; 3045 } 3046 break; 3047 } 3048 // ALIAS: [alias type, aliasee val#, linkage] 3049 // ALIAS: [alias type, aliasee val#, linkage, visibility, dllstorageclass] 3050 case bitc::MODULE_CODE_ALIAS: { 3051 if (Record.size() < 3) 3052 return Error("Invalid record"); 3053 Type *Ty = getTypeByID(Record[0]); 3054 if (!Ty) 3055 return Error("Invalid record"); 3056 auto *PTy = dyn_cast<PointerType>(Ty); 3057 if (!PTy) 3058 return Error("Invalid type for value"); 3059 3060 auto *NewGA = 3061 GlobalAlias::create(PTy, getDecodedLinkage(Record[2]), "", TheModule); 3062 // Old bitcode files didn't have visibility field. 3063 // Local linkage must have default visibility. 3064 if (Record.size() > 3 && !NewGA->hasLocalLinkage()) 3065 // FIXME: Change to an error if non-default in 4.0. 3066 NewGA->setVisibility(GetDecodedVisibility(Record[3])); 3067 if (Record.size() > 4) 3068 NewGA->setDLLStorageClass(GetDecodedDLLStorageClass(Record[4])); 3069 else 3070 UpgradeDLLImportExportLinkage(NewGA, Record[2]); 3071 if (Record.size() > 5) 3072 NewGA->setThreadLocalMode(GetDecodedThreadLocalMode(Record[5])); 3073 if (Record.size() > 6) 3074 NewGA->setUnnamedAddr(Record[6]); 3075 ValueList.push_back(NewGA); 3076 AliasInits.push_back(std::make_pair(NewGA, Record[1])); 3077 break; 3078 } 3079 /// MODULE_CODE_PURGEVALS: [numvals] 3080 case bitc::MODULE_CODE_PURGEVALS: 3081 // Trim down the value list to the specified size. 3082 if (Record.size() < 1 || Record[0] > ValueList.size()) 3083 return Error("Invalid record"); 3084 ValueList.shrinkTo(Record[0]); 3085 break; 3086 } 3087 Record.clear(); 3088 } 3089 } 3090 3091 std::error_code BitcodeReader::ParseBitcodeInto(Module *M, 3092 bool ShouldLazyLoadMetadata) { 3093 TheModule = nullptr; 3094 3095 if (std::error_code EC = InitStream()) 3096 return EC; 3097 3098 // Sniff for the signature. 3099 if (Stream.Read(8) != 'B' || 3100 Stream.Read(8) != 'C' || 3101 Stream.Read(4) != 0x0 || 3102 Stream.Read(4) != 0xC || 3103 Stream.Read(4) != 0xE || 3104 Stream.Read(4) != 0xD) 3105 return Error("Invalid bitcode signature"); 3106 3107 // We expect a number of well-defined blocks, though we don't necessarily 3108 // need to understand them all. 3109 while (1) { 3110 if (Stream.AtEndOfStream()) { 3111 if (TheModule) 3112 return std::error_code(); 3113 // We didn't really read a proper Module. 3114 return Error("Malformed IR file"); 3115 } 3116 3117 BitstreamEntry Entry = 3118 Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs); 3119 3120 switch (Entry.Kind) { 3121 case BitstreamEntry::Error: 3122 return Error("Malformed block"); 3123 case BitstreamEntry::EndBlock: 3124 return std::error_code(); 3125 3126 case BitstreamEntry::SubBlock: 3127 switch (Entry.ID) { 3128 case bitc::BLOCKINFO_BLOCK_ID: 3129 if (Stream.ReadBlockInfoBlock()) 3130 return Error("Malformed block"); 3131 break; 3132 case bitc::MODULE_BLOCK_ID: 3133 // Reject multiple MODULE_BLOCK's in a single bitstream. 3134 if (TheModule) 3135 return Error("Invalid multiple blocks"); 3136 TheModule = M; 3137 if (std::error_code EC = ParseModule(false, ShouldLazyLoadMetadata)) 3138 return EC; 3139 if (LazyStreamer) 3140 return std::error_code(); 3141 break; 3142 default: 3143 if (Stream.SkipBlock()) 3144 return Error("Invalid record"); 3145 break; 3146 } 3147 continue; 3148 case BitstreamEntry::Record: 3149 // There should be no records in the top-level of blocks. 3150 3151 // The ranlib in Xcode 4 will align archive members by appending newlines 3152 // to the end of them. If this file size is a multiple of 4 but not 8, we 3153 // have to read and ignore these final 4 bytes :-( 3154 if (Stream.getAbbrevIDWidth() == 2 && Entry.ID == 2 && 3155 Stream.Read(6) == 2 && Stream.Read(24) == 0xa0a0a && 3156 Stream.AtEndOfStream()) 3157 return std::error_code(); 3158 3159 return Error("Invalid record"); 3160 } 3161 } 3162 } 3163 3164 ErrorOr<std::string> BitcodeReader::parseModuleTriple() { 3165 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 3166 return Error("Invalid record"); 3167 3168 SmallVector<uint64_t, 64> Record; 3169 3170 std::string Triple; 3171 // Read all the records for this module. 3172 while (1) { 3173 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 3174 3175 switch (Entry.Kind) { 3176 case BitstreamEntry::SubBlock: // Handled for us already. 3177 case BitstreamEntry::Error: 3178 return Error("Malformed block"); 3179 case BitstreamEntry::EndBlock: 3180 return Triple; 3181 case BitstreamEntry::Record: 3182 // The interesting case. 3183 break; 3184 } 3185 3186 // Read a record. 3187 switch (Stream.readRecord(Entry.ID, Record)) { 3188 default: break; // Default behavior, ignore unknown content. 3189 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 3190 std::string S; 3191 if (ConvertToString(Record, 0, S)) 3192 return Error("Invalid record"); 3193 Triple = S; 3194 break; 3195 } 3196 } 3197 Record.clear(); 3198 } 3199 llvm_unreachable("Exit infinite loop"); 3200 } 3201 3202 ErrorOr<std::string> BitcodeReader::parseTriple() { 3203 if (std::error_code EC = InitStream()) 3204 return EC; 3205 3206 // Sniff for the signature. 3207 if (Stream.Read(8) != 'B' || 3208 Stream.Read(8) != 'C' || 3209 Stream.Read(4) != 0x0 || 3210 Stream.Read(4) != 0xC || 3211 Stream.Read(4) != 0xE || 3212 Stream.Read(4) != 0xD) 3213 return Error("Invalid bitcode signature"); 3214 3215 // We expect a number of well-defined blocks, though we don't necessarily 3216 // need to understand them all. 3217 while (1) { 3218 BitstreamEntry Entry = Stream.advance(); 3219 3220 switch (Entry.Kind) { 3221 case BitstreamEntry::Error: 3222 return Error("Malformed block"); 3223 case BitstreamEntry::EndBlock: 3224 return std::error_code(); 3225 3226 case BitstreamEntry::SubBlock: 3227 if (Entry.ID == bitc::MODULE_BLOCK_ID) 3228 return parseModuleTriple(); 3229 3230 // Ignore other sub-blocks. 3231 if (Stream.SkipBlock()) 3232 return Error("Malformed block"); 3233 continue; 3234 3235 case BitstreamEntry::Record: 3236 Stream.skipRecord(Entry.ID); 3237 continue; 3238 } 3239 } 3240 } 3241 3242 /// ParseMetadataAttachment - Parse metadata attachments. 3243 std::error_code BitcodeReader::ParseMetadataAttachment(Function &F) { 3244 if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID)) 3245 return Error("Invalid record"); 3246 3247 SmallVector<uint64_t, 64> Record; 3248 while (1) { 3249 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 3250 3251 switch (Entry.Kind) { 3252 case BitstreamEntry::SubBlock: // Handled for us already. 3253 case BitstreamEntry::Error: 3254 return Error("Malformed block"); 3255 case BitstreamEntry::EndBlock: 3256 return std::error_code(); 3257 case BitstreamEntry::Record: 3258 // The interesting case. 3259 break; 3260 } 3261 3262 // Read a metadata attachment record. 3263 Record.clear(); 3264 switch (Stream.readRecord(Entry.ID, Record)) { 3265 default: // Default behavior: ignore. 3266 break; 3267 case bitc::METADATA_ATTACHMENT: { 3268 unsigned RecordLength = Record.size(); 3269 if (Record.empty()) 3270 return Error("Invalid record"); 3271 if (RecordLength % 2 == 0) { 3272 // A function attachment. 3273 for (unsigned I = 0; I != RecordLength; I += 2) { 3274 auto K = MDKindMap.find(Record[I]); 3275 if (K == MDKindMap.end()) 3276 return Error("Invalid ID"); 3277 Metadata *MD = MDValueList.getValueFwdRef(Record[I + 1]); 3278 F.setMetadata(K->second, cast<MDNode>(MD)); 3279 } 3280 continue; 3281 } 3282 3283 // An instruction attachment. 3284 Instruction *Inst = InstructionList[Record[0]]; 3285 for (unsigned i = 1; i != RecordLength; i = i+2) { 3286 unsigned Kind = Record[i]; 3287 DenseMap<unsigned, unsigned>::iterator I = 3288 MDKindMap.find(Kind); 3289 if (I == MDKindMap.end()) 3290 return Error("Invalid ID"); 3291 Metadata *Node = MDValueList.getValueFwdRef(Record[i + 1]); 3292 if (isa<LocalAsMetadata>(Node)) 3293 // Drop the attachment. This used to be legal, but there's no 3294 // upgrade path. 3295 break; 3296 Inst->setMetadata(I->second, cast<MDNode>(Node)); 3297 if (I->second == LLVMContext::MD_tbaa) 3298 InstsWithTBAATag.push_back(Inst); 3299 } 3300 break; 3301 } 3302 } 3303 } 3304 } 3305 3306 static std::error_code TypeCheckLoadStoreInst(DiagnosticHandlerFunction DH, 3307 Type *ValType, Type *PtrType) { 3308 if (!isa<PointerType>(PtrType)) 3309 return Error(DH, "Load/Store operand is not a pointer type"); 3310 Type *ElemType = cast<PointerType>(PtrType)->getElementType(); 3311 3312 if (ValType && ValType != ElemType) 3313 return Error(DH, "Explicit load/store type does not match pointee type of " 3314 "pointer operand"); 3315 if (!PointerType::isLoadableOrStorableType(ElemType)) 3316 return Error(DH, "Cannot load/store from pointer"); 3317 return std::error_code(); 3318 } 3319 3320 /// ParseFunctionBody - Lazily parse the specified function body block. 3321 std::error_code BitcodeReader::ParseFunctionBody(Function *F) { 3322 if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 3323 return Error("Invalid record"); 3324 3325 InstructionList.clear(); 3326 unsigned ModuleValueListSize = ValueList.size(); 3327 unsigned ModuleMDValueListSize = MDValueList.size(); 3328 3329 // Add all the function arguments to the value table. 3330 for(Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I) 3331 ValueList.push_back(I); 3332 3333 unsigned NextValueNo = ValueList.size(); 3334 BasicBlock *CurBB = nullptr; 3335 unsigned CurBBNo = 0; 3336 3337 DebugLoc LastLoc; 3338 auto getLastInstruction = [&]() -> Instruction * { 3339 if (CurBB && !CurBB->empty()) 3340 return &CurBB->back(); 3341 else if (CurBBNo && FunctionBBs[CurBBNo - 1] && 3342 !FunctionBBs[CurBBNo - 1]->empty()) 3343 return &FunctionBBs[CurBBNo - 1]->back(); 3344 return nullptr; 3345 }; 3346 3347 // Read all the records. 3348 SmallVector<uint64_t, 64> Record; 3349 while (1) { 3350 BitstreamEntry Entry = Stream.advance(); 3351 3352 switch (Entry.Kind) { 3353 case BitstreamEntry::Error: 3354 return Error("Malformed block"); 3355 case BitstreamEntry::EndBlock: 3356 goto OutOfRecordLoop; 3357 3358 case BitstreamEntry::SubBlock: 3359 switch (Entry.ID) { 3360 default: // Skip unknown content. 3361 if (Stream.SkipBlock()) 3362 return Error("Invalid record"); 3363 break; 3364 case bitc::CONSTANTS_BLOCK_ID: 3365 if (std::error_code EC = ParseConstants()) 3366 return EC; 3367 NextValueNo = ValueList.size(); 3368 break; 3369 case bitc::VALUE_SYMTAB_BLOCK_ID: 3370 if (std::error_code EC = ParseValueSymbolTable()) 3371 return EC; 3372 break; 3373 case bitc::METADATA_ATTACHMENT_ID: 3374 if (std::error_code EC = ParseMetadataAttachment(*F)) 3375 return EC; 3376 break; 3377 case bitc::METADATA_BLOCK_ID: 3378 if (std::error_code EC = ParseMetadata()) 3379 return EC; 3380 break; 3381 case bitc::USELIST_BLOCK_ID: 3382 if (std::error_code EC = ParseUseLists()) 3383 return EC; 3384 break; 3385 } 3386 continue; 3387 3388 case BitstreamEntry::Record: 3389 // The interesting case. 3390 break; 3391 } 3392 3393 // Read a record. 3394 Record.clear(); 3395 Instruction *I = nullptr; 3396 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 3397 switch (BitCode) { 3398 default: // Default behavior: reject 3399 return Error("Invalid value"); 3400 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks] 3401 if (Record.size() < 1 || Record[0] == 0) 3402 return Error("Invalid record"); 3403 // Create all the basic blocks for the function. 3404 FunctionBBs.resize(Record[0]); 3405 3406 // See if anything took the address of blocks in this function. 3407 auto BBFRI = BasicBlockFwdRefs.find(F); 3408 if (BBFRI == BasicBlockFwdRefs.end()) { 3409 for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i) 3410 FunctionBBs[i] = BasicBlock::Create(Context, "", F); 3411 } else { 3412 auto &BBRefs = BBFRI->second; 3413 // Check for invalid basic block references. 3414 if (BBRefs.size() > FunctionBBs.size()) 3415 return Error("Invalid ID"); 3416 assert(!BBRefs.empty() && "Unexpected empty array"); 3417 assert(!BBRefs.front() && "Invalid reference to entry block"); 3418 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E; 3419 ++I) 3420 if (I < RE && BBRefs[I]) { 3421 BBRefs[I]->insertInto(F); 3422 FunctionBBs[I] = BBRefs[I]; 3423 } else { 3424 FunctionBBs[I] = BasicBlock::Create(Context, "", F); 3425 } 3426 3427 // Erase from the table. 3428 BasicBlockFwdRefs.erase(BBFRI); 3429 } 3430 3431 CurBB = FunctionBBs[0]; 3432 continue; 3433 } 3434 3435 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 3436 // This record indicates that the last instruction is at the same 3437 // location as the previous instruction with a location. 3438 I = getLastInstruction(); 3439 3440 if (!I) 3441 return Error("Invalid record"); 3442 I->setDebugLoc(LastLoc); 3443 I = nullptr; 3444 continue; 3445 3446 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 3447 I = getLastInstruction(); 3448 if (!I || Record.size() < 4) 3449 return Error("Invalid record"); 3450 3451 unsigned Line = Record[0], Col = Record[1]; 3452 unsigned ScopeID = Record[2], IAID = Record[3]; 3453 3454 MDNode *Scope = nullptr, *IA = nullptr; 3455 if (ScopeID) Scope = cast<MDNode>(MDValueList.getValueFwdRef(ScopeID-1)); 3456 if (IAID) IA = cast<MDNode>(MDValueList.getValueFwdRef(IAID-1)); 3457 LastLoc = DebugLoc::get(Line, Col, Scope, IA); 3458 I->setDebugLoc(LastLoc); 3459 I = nullptr; 3460 continue; 3461 } 3462 3463 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 3464 unsigned OpNum = 0; 3465 Value *LHS, *RHS; 3466 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 3467 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 3468 OpNum+1 > Record.size()) 3469 return Error("Invalid record"); 3470 3471 int Opc = GetDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 3472 if (Opc == -1) 3473 return Error("Invalid record"); 3474 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 3475 InstructionList.push_back(I); 3476 if (OpNum < Record.size()) { 3477 if (Opc == Instruction::Add || 3478 Opc == Instruction::Sub || 3479 Opc == Instruction::Mul || 3480 Opc == Instruction::Shl) { 3481 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 3482 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 3483 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 3484 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 3485 } else if (Opc == Instruction::SDiv || 3486 Opc == Instruction::UDiv || 3487 Opc == Instruction::LShr || 3488 Opc == Instruction::AShr) { 3489 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 3490 cast<BinaryOperator>(I)->setIsExact(true); 3491 } else if (isa<FPMathOperator>(I)) { 3492 FastMathFlags FMF; 3493 if (0 != (Record[OpNum] & FastMathFlags::UnsafeAlgebra)) 3494 FMF.setUnsafeAlgebra(); 3495 if (0 != (Record[OpNum] & FastMathFlags::NoNaNs)) 3496 FMF.setNoNaNs(); 3497 if (0 != (Record[OpNum] & FastMathFlags::NoInfs)) 3498 FMF.setNoInfs(); 3499 if (0 != (Record[OpNum] & FastMathFlags::NoSignedZeros)) 3500 FMF.setNoSignedZeros(); 3501 if (0 != (Record[OpNum] & FastMathFlags::AllowReciprocal)) 3502 FMF.setAllowReciprocal(); 3503 if (FMF.any()) 3504 I->setFastMathFlags(FMF); 3505 } 3506 3507 } 3508 break; 3509 } 3510 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 3511 unsigned OpNum = 0; 3512 Value *Op; 3513 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 3514 OpNum+2 != Record.size()) 3515 return Error("Invalid record"); 3516 3517 Type *ResTy = getTypeByID(Record[OpNum]); 3518 int Opc = GetDecodedCastOpcode(Record[OpNum+1]); 3519 if (Opc == -1 || !ResTy) 3520 return Error("Invalid record"); 3521 Instruction *Temp = nullptr; 3522 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) { 3523 if (Temp) { 3524 InstructionList.push_back(Temp); 3525 CurBB->getInstList().push_back(Temp); 3526 } 3527 } else { 3528 I = CastInst::Create((Instruction::CastOps)Opc, Op, ResTy); 3529 } 3530 InstructionList.push_back(I); 3531 break; 3532 } 3533 case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD: 3534 case bitc::FUNC_CODE_INST_GEP_OLD: 3535 case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands] 3536 unsigned OpNum = 0; 3537 3538 Type *Ty; 3539 bool InBounds; 3540 3541 if (BitCode == bitc::FUNC_CODE_INST_GEP) { 3542 InBounds = Record[OpNum++]; 3543 Ty = getTypeByID(Record[OpNum++]); 3544 } else { 3545 InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD; 3546 Ty = nullptr; 3547 } 3548 3549 Value *BasePtr; 3550 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr)) 3551 return Error("Invalid record"); 3552 3553 if (!Ty) 3554 Ty = cast<SequentialType>(BasePtr->getType()->getScalarType()) 3555 ->getElementType(); 3556 else if (Ty != 3557 cast<SequentialType>(BasePtr->getType()->getScalarType()) 3558 ->getElementType()) 3559 return Error( 3560 "Explicit gep type does not match pointee type of pointer operand"); 3561 3562 SmallVector<Value*, 16> GEPIdx; 3563 while (OpNum != Record.size()) { 3564 Value *Op; 3565 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3566 return Error("Invalid record"); 3567 GEPIdx.push_back(Op); 3568 } 3569 3570 I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx); 3571 3572 InstructionList.push_back(I); 3573 if (InBounds) 3574 cast<GetElementPtrInst>(I)->setIsInBounds(true); 3575 break; 3576 } 3577 3578 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 3579 // EXTRACTVAL: [opty, opval, n x indices] 3580 unsigned OpNum = 0; 3581 Value *Agg; 3582 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 3583 return Error("Invalid record"); 3584 3585 unsigned RecSize = Record.size(); 3586 if (OpNum == RecSize) 3587 return Error("EXTRACTVAL: Invalid instruction with 0 indices"); 3588 3589 SmallVector<unsigned, 4> EXTRACTVALIdx; 3590 Type *CurTy = Agg->getType(); 3591 for (; OpNum != RecSize; ++OpNum) { 3592 bool IsArray = CurTy->isArrayTy(); 3593 bool IsStruct = CurTy->isStructTy(); 3594 uint64_t Index = Record[OpNum]; 3595 3596 if (!IsStruct && !IsArray) 3597 return Error("EXTRACTVAL: Invalid type"); 3598 if ((unsigned)Index != Index) 3599 return Error("Invalid value"); 3600 if (IsStruct && Index >= CurTy->subtypes().size()) 3601 return Error("EXTRACTVAL: Invalid struct index"); 3602 if (IsArray && Index >= CurTy->getArrayNumElements()) 3603 return Error("EXTRACTVAL: Invalid array index"); 3604 EXTRACTVALIdx.push_back((unsigned)Index); 3605 3606 if (IsStruct) 3607 CurTy = CurTy->subtypes()[Index]; 3608 else 3609 CurTy = CurTy->subtypes()[0]; 3610 } 3611 3612 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 3613 InstructionList.push_back(I); 3614 break; 3615 } 3616 3617 case bitc::FUNC_CODE_INST_INSERTVAL: { 3618 // INSERTVAL: [opty, opval, opty, opval, n x indices] 3619 unsigned OpNum = 0; 3620 Value *Agg; 3621 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 3622 return Error("Invalid record"); 3623 Value *Val; 3624 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 3625 return Error("Invalid record"); 3626 3627 unsigned RecSize = Record.size(); 3628 if (OpNum == RecSize) 3629 return Error("INSERTVAL: Invalid instruction with 0 indices"); 3630 3631 SmallVector<unsigned, 4> INSERTVALIdx; 3632 Type *CurTy = Agg->getType(); 3633 for (; OpNum != RecSize; ++OpNum) { 3634 bool IsArray = CurTy->isArrayTy(); 3635 bool IsStruct = CurTy->isStructTy(); 3636 uint64_t Index = Record[OpNum]; 3637 3638 if (!IsStruct && !IsArray) 3639 return Error("INSERTVAL: Invalid type"); 3640 if ((unsigned)Index != Index) 3641 return Error("Invalid value"); 3642 if (IsStruct && Index >= CurTy->subtypes().size()) 3643 return Error("INSERTVAL: Invalid struct index"); 3644 if (IsArray && Index >= CurTy->getArrayNumElements()) 3645 return Error("INSERTVAL: Invalid array index"); 3646 3647 INSERTVALIdx.push_back((unsigned)Index); 3648 if (IsStruct) 3649 CurTy = CurTy->subtypes()[Index]; 3650 else 3651 CurTy = CurTy->subtypes()[0]; 3652 } 3653 3654 if (CurTy != Val->getType()) 3655 return Error("Inserted value type doesn't match aggregate type"); 3656 3657 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 3658 InstructionList.push_back(I); 3659 break; 3660 } 3661 3662 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 3663 // obsolete form of select 3664 // handles select i1 ... in old bitcode 3665 unsigned OpNum = 0; 3666 Value *TrueVal, *FalseVal, *Cond; 3667 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 3668 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 3669 popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond)) 3670 return Error("Invalid record"); 3671 3672 I = SelectInst::Create(Cond, TrueVal, FalseVal); 3673 InstructionList.push_back(I); 3674 break; 3675 } 3676 3677 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 3678 // new form of select 3679 // handles select i1 or select [N x i1] 3680 unsigned OpNum = 0; 3681 Value *TrueVal, *FalseVal, *Cond; 3682 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 3683 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 3684 getValueTypePair(Record, OpNum, NextValueNo, Cond)) 3685 return Error("Invalid record"); 3686 3687 // select condition can be either i1 or [N x i1] 3688 if (VectorType* vector_type = 3689 dyn_cast<VectorType>(Cond->getType())) { 3690 // expect <n x i1> 3691 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 3692 return Error("Invalid type for value"); 3693 } else { 3694 // expect i1 3695 if (Cond->getType() != Type::getInt1Ty(Context)) 3696 return Error("Invalid type for value"); 3697 } 3698 3699 I = SelectInst::Create(Cond, TrueVal, FalseVal); 3700 InstructionList.push_back(I); 3701 break; 3702 } 3703 3704 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 3705 unsigned OpNum = 0; 3706 Value *Vec, *Idx; 3707 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 3708 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 3709 return Error("Invalid record"); 3710 if (!Vec->getType()->isVectorTy()) 3711 return Error("Invalid type for value"); 3712 I = ExtractElementInst::Create(Vec, Idx); 3713 InstructionList.push_back(I); 3714 break; 3715 } 3716 3717 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 3718 unsigned OpNum = 0; 3719 Value *Vec, *Elt, *Idx; 3720 if (getValueTypePair(Record, OpNum, NextValueNo, Vec)) 3721 return Error("Invalid record"); 3722 if (!Vec->getType()->isVectorTy()) 3723 return Error("Invalid type for value"); 3724 if (popValue(Record, OpNum, NextValueNo, 3725 cast<VectorType>(Vec->getType())->getElementType(), Elt) || 3726 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 3727 return Error("Invalid record"); 3728 I = InsertElementInst::Create(Vec, Elt, Idx); 3729 InstructionList.push_back(I); 3730 break; 3731 } 3732 3733 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 3734 unsigned OpNum = 0; 3735 Value *Vec1, *Vec2, *Mask; 3736 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) || 3737 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2)) 3738 return Error("Invalid record"); 3739 3740 if (getValueTypePair(Record, OpNum, NextValueNo, Mask)) 3741 return Error("Invalid record"); 3742 if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy()) 3743 return Error("Invalid type for value"); 3744 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 3745 InstructionList.push_back(I); 3746 break; 3747 } 3748 3749 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 3750 // Old form of ICmp/FCmp returning bool 3751 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 3752 // both legal on vectors but had different behaviour. 3753 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 3754 // FCmp/ICmp returning bool or vector of bool 3755 3756 unsigned OpNum = 0; 3757 Value *LHS, *RHS; 3758 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 3759 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 3760 OpNum+1 != Record.size()) 3761 return Error("Invalid record"); 3762 3763 if (LHS->getType()->isFPOrFPVectorTy()) 3764 I = new FCmpInst((FCmpInst::Predicate)Record[OpNum], LHS, RHS); 3765 else 3766 I = new ICmpInst((ICmpInst::Predicate)Record[OpNum], LHS, RHS); 3767 InstructionList.push_back(I); 3768 break; 3769 } 3770 3771 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 3772 { 3773 unsigned Size = Record.size(); 3774 if (Size == 0) { 3775 I = ReturnInst::Create(Context); 3776 InstructionList.push_back(I); 3777 break; 3778 } 3779 3780 unsigned OpNum = 0; 3781 Value *Op = nullptr; 3782 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3783 return Error("Invalid record"); 3784 if (OpNum != Record.size()) 3785 return Error("Invalid record"); 3786 3787 I = ReturnInst::Create(Context, Op); 3788 InstructionList.push_back(I); 3789 break; 3790 } 3791 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 3792 if (Record.size() != 1 && Record.size() != 3) 3793 return Error("Invalid record"); 3794 BasicBlock *TrueDest = getBasicBlock(Record[0]); 3795 if (!TrueDest) 3796 return Error("Invalid record"); 3797 3798 if (Record.size() == 1) { 3799 I = BranchInst::Create(TrueDest); 3800 InstructionList.push_back(I); 3801 } 3802 else { 3803 BasicBlock *FalseDest = getBasicBlock(Record[1]); 3804 Value *Cond = getValue(Record, 2, NextValueNo, 3805 Type::getInt1Ty(Context)); 3806 if (!FalseDest || !Cond) 3807 return Error("Invalid record"); 3808 I = BranchInst::Create(TrueDest, FalseDest, Cond); 3809 InstructionList.push_back(I); 3810 } 3811 break; 3812 } 3813 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 3814 // Check magic 3815 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { 3816 // "New" SwitchInst format with case ranges. The changes to write this 3817 // format were reverted but we still recognize bitcode that uses it. 3818 // Hopefully someday we will have support for case ranges and can use 3819 // this format again. 3820 3821 Type *OpTy = getTypeByID(Record[1]); 3822 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); 3823 3824 Value *Cond = getValue(Record, 2, NextValueNo, OpTy); 3825 BasicBlock *Default = getBasicBlock(Record[3]); 3826 if (!OpTy || !Cond || !Default) 3827 return Error("Invalid record"); 3828 3829 unsigned NumCases = Record[4]; 3830 3831 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 3832 InstructionList.push_back(SI); 3833 3834 unsigned CurIdx = 5; 3835 for (unsigned i = 0; i != NumCases; ++i) { 3836 SmallVector<ConstantInt*, 1> CaseVals; 3837 unsigned NumItems = Record[CurIdx++]; 3838 for (unsigned ci = 0; ci != NumItems; ++ci) { 3839 bool isSingleNumber = Record[CurIdx++]; 3840 3841 APInt Low; 3842 unsigned ActiveWords = 1; 3843 if (ValueBitWidth > 64) 3844 ActiveWords = Record[CurIdx++]; 3845 Low = ReadWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 3846 ValueBitWidth); 3847 CurIdx += ActiveWords; 3848 3849 if (!isSingleNumber) { 3850 ActiveWords = 1; 3851 if (ValueBitWidth > 64) 3852 ActiveWords = Record[CurIdx++]; 3853 APInt High = 3854 ReadWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 3855 ValueBitWidth); 3856 CurIdx += ActiveWords; 3857 3858 // FIXME: It is not clear whether values in the range should be 3859 // compared as signed or unsigned values. The partially 3860 // implemented changes that used this format in the past used 3861 // unsigned comparisons. 3862 for ( ; Low.ule(High); ++Low) 3863 CaseVals.push_back(ConstantInt::get(Context, Low)); 3864 } else 3865 CaseVals.push_back(ConstantInt::get(Context, Low)); 3866 } 3867 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); 3868 for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(), 3869 cve = CaseVals.end(); cvi != cve; ++cvi) 3870 SI->addCase(*cvi, DestBB); 3871 } 3872 I = SI; 3873 break; 3874 } 3875 3876 // Old SwitchInst format without case ranges. 3877 3878 if (Record.size() < 3 || (Record.size() & 1) == 0) 3879 return Error("Invalid record"); 3880 Type *OpTy = getTypeByID(Record[0]); 3881 Value *Cond = getValue(Record, 1, NextValueNo, OpTy); 3882 BasicBlock *Default = getBasicBlock(Record[2]); 3883 if (!OpTy || !Cond || !Default) 3884 return Error("Invalid record"); 3885 unsigned NumCases = (Record.size()-3)/2; 3886 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 3887 InstructionList.push_back(SI); 3888 for (unsigned i = 0, e = NumCases; i != e; ++i) { 3889 ConstantInt *CaseVal = 3890 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy)); 3891 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 3892 if (!CaseVal || !DestBB) { 3893 delete SI; 3894 return Error("Invalid record"); 3895 } 3896 SI->addCase(CaseVal, DestBB); 3897 } 3898 I = SI; 3899 break; 3900 } 3901 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 3902 if (Record.size() < 2) 3903 return Error("Invalid record"); 3904 Type *OpTy = getTypeByID(Record[0]); 3905 Value *Address = getValue(Record, 1, NextValueNo, OpTy); 3906 if (!OpTy || !Address) 3907 return Error("Invalid record"); 3908 unsigned NumDests = Record.size()-2; 3909 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 3910 InstructionList.push_back(IBI); 3911 for (unsigned i = 0, e = NumDests; i != e; ++i) { 3912 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 3913 IBI->addDestination(DestBB); 3914 } else { 3915 delete IBI; 3916 return Error("Invalid record"); 3917 } 3918 } 3919 I = IBI; 3920 break; 3921 } 3922 3923 case bitc::FUNC_CODE_INST_INVOKE: { 3924 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 3925 if (Record.size() < 4) 3926 return Error("Invalid record"); 3927 unsigned OpNum = 0; 3928 AttributeSet PAL = getAttributes(Record[OpNum++]); 3929 unsigned CCInfo = Record[OpNum++]; 3930 BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]); 3931 BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]); 3932 3933 FunctionType *FTy = nullptr; 3934 if (CCInfo >> 13 & 1 && 3935 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])))) 3936 return Error("Explicit invoke type is not a function type"); 3937 3938 Value *Callee; 3939 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 3940 return Error("Invalid record"); 3941 3942 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 3943 if (!CalleeTy) 3944 return Error("Callee is not a pointer"); 3945 if (!FTy) { 3946 FTy = dyn_cast<FunctionType>(CalleeTy->getElementType()); 3947 if (!FTy) 3948 return Error("Callee is not of pointer to function type"); 3949 } else if (CalleeTy->getElementType() != FTy) 3950 return Error("Explicit invoke type does not match pointee type of " 3951 "callee operand"); 3952 if (Record.size() < FTy->getNumParams() + OpNum) 3953 return Error("Insufficient operands to call"); 3954 3955 SmallVector<Value*, 16> Ops; 3956 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 3957 Ops.push_back(getValue(Record, OpNum, NextValueNo, 3958 FTy->getParamType(i))); 3959 if (!Ops.back()) 3960 return Error("Invalid record"); 3961 } 3962 3963 if (!FTy->isVarArg()) { 3964 if (Record.size() != OpNum) 3965 return Error("Invalid record"); 3966 } else { 3967 // Read type/value pairs for varargs params. 3968 while (OpNum != Record.size()) { 3969 Value *Op; 3970 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3971 return Error("Invalid record"); 3972 Ops.push_back(Op); 3973 } 3974 } 3975 3976 I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops); 3977 InstructionList.push_back(I); 3978 cast<InvokeInst>(I) 3979 ->setCallingConv(static_cast<CallingConv::ID>(~(1U << 13) & CCInfo)); 3980 cast<InvokeInst>(I)->setAttributes(PAL); 3981 break; 3982 } 3983 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 3984 unsigned Idx = 0; 3985 Value *Val = nullptr; 3986 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 3987 return Error("Invalid record"); 3988 I = ResumeInst::Create(Val); 3989 InstructionList.push_back(I); 3990 break; 3991 } 3992 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 3993 I = new UnreachableInst(Context); 3994 InstructionList.push_back(I); 3995 break; 3996 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 3997 if (Record.size() < 1 || ((Record.size()-1)&1)) 3998 return Error("Invalid record"); 3999 Type *Ty = getTypeByID(Record[0]); 4000 if (!Ty) 4001 return Error("Invalid record"); 4002 4003 PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2); 4004 InstructionList.push_back(PN); 4005 4006 for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) { 4007 Value *V; 4008 // With the new function encoding, it is possible that operands have 4009 // negative IDs (for forward references). Use a signed VBR 4010 // representation to keep the encoding small. 4011 if (UseRelativeIDs) 4012 V = getValueSigned(Record, 1+i, NextValueNo, Ty); 4013 else 4014 V = getValue(Record, 1+i, NextValueNo, Ty); 4015 BasicBlock *BB = getBasicBlock(Record[2+i]); 4016 if (!V || !BB) 4017 return Error("Invalid record"); 4018 PN->addIncoming(V, BB); 4019 } 4020 I = PN; 4021 break; 4022 } 4023 4024 case bitc::FUNC_CODE_INST_LANDINGPAD: { 4025 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 4026 unsigned Idx = 0; 4027 if (Record.size() < 4) 4028 return Error("Invalid record"); 4029 Type *Ty = getTypeByID(Record[Idx++]); 4030 if (!Ty) 4031 return Error("Invalid record"); 4032 Value *PersFn = nullptr; 4033 if (getValueTypePair(Record, Idx, NextValueNo, PersFn)) 4034 return Error("Invalid record"); 4035 4036 bool IsCleanup = !!Record[Idx++]; 4037 unsigned NumClauses = Record[Idx++]; 4038 LandingPadInst *LP = LandingPadInst::Create(Ty, PersFn, NumClauses); 4039 LP->setCleanup(IsCleanup); 4040 for (unsigned J = 0; J != NumClauses; ++J) { 4041 LandingPadInst::ClauseType CT = 4042 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 4043 Value *Val; 4044 4045 if (getValueTypePair(Record, Idx, NextValueNo, Val)) { 4046 delete LP; 4047 return Error("Invalid record"); 4048 } 4049 4050 assert((CT != LandingPadInst::Catch || 4051 !isa<ArrayType>(Val->getType())) && 4052 "Catch clause has a invalid type!"); 4053 assert((CT != LandingPadInst::Filter || 4054 isa<ArrayType>(Val->getType())) && 4055 "Filter clause has invalid type!"); 4056 LP->addClause(cast<Constant>(Val)); 4057 } 4058 4059 I = LP; 4060 InstructionList.push_back(I); 4061 break; 4062 } 4063 4064 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 4065 if (Record.size() != 4) 4066 return Error("Invalid record"); 4067 uint64_t AlignRecord = Record[3]; 4068 const uint64_t InAllocaMask = uint64_t(1) << 5; 4069 const uint64_t ExplicitTypeMask = uint64_t(1) << 6; 4070 const uint64_t FlagMask = InAllocaMask | ExplicitTypeMask; 4071 bool InAlloca = AlignRecord & InAllocaMask; 4072 Type *Ty = getTypeByID(Record[0]); 4073 if ((AlignRecord & ExplicitTypeMask) == 0) { 4074 auto *PTy = dyn_cast_or_null<PointerType>(Ty); 4075 if (!PTy) 4076 return Error("Old-style alloca with a non-pointer type"); 4077 Ty = PTy->getElementType(); 4078 } 4079 Type *OpTy = getTypeByID(Record[1]); 4080 Value *Size = getFnValueByID(Record[2], OpTy); 4081 unsigned Align; 4082 if (std::error_code EC = 4083 parseAlignmentValue(AlignRecord & ~FlagMask, Align)) { 4084 return EC; 4085 } 4086 if (!Ty || !Size) 4087 return Error("Invalid record"); 4088 AllocaInst *AI = new AllocaInst(Ty, Size, Align); 4089 AI->setUsedWithInAlloca(InAlloca); 4090 I = AI; 4091 InstructionList.push_back(I); 4092 break; 4093 } 4094 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 4095 unsigned OpNum = 0; 4096 Value *Op; 4097 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4098 (OpNum + 2 != Record.size() && OpNum + 3 != Record.size())) 4099 return Error("Invalid record"); 4100 4101 Type *Ty = nullptr; 4102 if (OpNum + 3 == Record.size()) 4103 Ty = getTypeByID(Record[OpNum++]); 4104 if (std::error_code EC = 4105 TypeCheckLoadStoreInst(DiagnosticHandler, Ty, Op->getType())) 4106 return EC; 4107 if (!Ty) 4108 Ty = cast<PointerType>(Op->getType())->getElementType(); 4109 4110 unsigned Align; 4111 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 4112 return EC; 4113 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], Align); 4114 4115 InstructionList.push_back(I); 4116 break; 4117 } 4118 case bitc::FUNC_CODE_INST_LOADATOMIC: { 4119 // LOADATOMIC: [opty, op, align, vol, ordering, synchscope] 4120 unsigned OpNum = 0; 4121 Value *Op; 4122 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4123 (OpNum + 4 != Record.size() && OpNum + 5 != Record.size())) 4124 return Error("Invalid record"); 4125 4126 Type *Ty = nullptr; 4127 if (OpNum + 5 == Record.size()) 4128 Ty = getTypeByID(Record[OpNum++]); 4129 if (std::error_code EC = 4130 TypeCheckLoadStoreInst(DiagnosticHandler, Ty, Op->getType())) 4131 return EC; 4132 if (!Ty) 4133 Ty = cast<PointerType>(Op->getType())->getElementType(); 4134 4135 AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]); 4136 if (Ordering == NotAtomic || Ordering == Release || 4137 Ordering == AcquireRelease) 4138 return Error("Invalid record"); 4139 if (Ordering != NotAtomic && Record[OpNum] == 0) 4140 return Error("Invalid record"); 4141 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]); 4142 4143 unsigned Align; 4144 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 4145 return EC; 4146 I = new LoadInst(Op, "", Record[OpNum+1], Align, Ordering, SynchScope); 4147 4148 InstructionList.push_back(I); 4149 break; 4150 } 4151 case bitc::FUNC_CODE_INST_STORE: 4152 case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol] 4153 unsigned OpNum = 0; 4154 Value *Val, *Ptr; 4155 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4156 (BitCode == bitc::FUNC_CODE_INST_STORE 4157 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 4158 : popValue(Record, OpNum, NextValueNo, 4159 cast<PointerType>(Ptr->getType())->getElementType(), 4160 Val)) || 4161 OpNum + 2 != Record.size()) 4162 return Error("Invalid record"); 4163 4164 if (std::error_code EC = TypeCheckLoadStoreInst( 4165 DiagnosticHandler, Val->getType(), Ptr->getType())) 4166 return EC; 4167 unsigned Align; 4168 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 4169 return EC; 4170 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align); 4171 InstructionList.push_back(I); 4172 break; 4173 } 4174 case bitc::FUNC_CODE_INST_STOREATOMIC: 4175 case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: { 4176 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, synchscope] 4177 unsigned OpNum = 0; 4178 Value *Val, *Ptr; 4179 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4180 (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC 4181 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 4182 : popValue(Record, OpNum, NextValueNo, 4183 cast<PointerType>(Ptr->getType())->getElementType(), 4184 Val)) || 4185 OpNum + 4 != Record.size()) 4186 return Error("Invalid record"); 4187 4188 if (std::error_code EC = TypeCheckLoadStoreInst( 4189 DiagnosticHandler, Val->getType(), Ptr->getType())) 4190 return EC; 4191 AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]); 4192 if (Ordering == NotAtomic || Ordering == Acquire || 4193 Ordering == AcquireRelease) 4194 return Error("Invalid record"); 4195 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]); 4196 if (Ordering != NotAtomic && Record[OpNum] == 0) 4197 return Error("Invalid record"); 4198 4199 unsigned Align; 4200 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 4201 return EC; 4202 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align, Ordering, SynchScope); 4203 InstructionList.push_back(I); 4204 break; 4205 } 4206 case bitc::FUNC_CODE_INST_CMPXCHG_OLD: 4207 case bitc::FUNC_CODE_INST_CMPXCHG: { 4208 // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, synchscope, 4209 // failureordering?, isweak?] 4210 unsigned OpNum = 0; 4211 Value *Ptr, *Cmp, *New; 4212 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4213 (BitCode == bitc::FUNC_CODE_INST_CMPXCHG 4214 ? getValueTypePair(Record, OpNum, NextValueNo, Cmp) 4215 : popValue(Record, OpNum, NextValueNo, 4216 cast<PointerType>(Ptr->getType())->getElementType(), 4217 Cmp)) || 4218 popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) || 4219 Record.size() < OpNum + 3 || Record.size() > OpNum + 5) 4220 return Error("Invalid record"); 4221 AtomicOrdering SuccessOrdering = GetDecodedOrdering(Record[OpNum+1]); 4222 if (SuccessOrdering == NotAtomic || SuccessOrdering == Unordered) 4223 return Error("Invalid record"); 4224 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+2]); 4225 4226 if (std::error_code EC = TypeCheckLoadStoreInst( 4227 DiagnosticHandler, Cmp->getType(), Ptr->getType())) 4228 return EC; 4229 AtomicOrdering FailureOrdering; 4230 if (Record.size() < 7) 4231 FailureOrdering = 4232 AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering); 4233 else 4234 FailureOrdering = GetDecodedOrdering(Record[OpNum+3]); 4235 4236 I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering, 4237 SynchScope); 4238 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 4239 4240 if (Record.size() < 8) { 4241 // Before weak cmpxchgs existed, the instruction simply returned the 4242 // value loaded from memory, so bitcode files from that era will be 4243 // expecting the first component of a modern cmpxchg. 4244 CurBB->getInstList().push_back(I); 4245 I = ExtractValueInst::Create(I, 0); 4246 } else { 4247 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]); 4248 } 4249 4250 InstructionList.push_back(I); 4251 break; 4252 } 4253 case bitc::FUNC_CODE_INST_ATOMICRMW: { 4254 // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, synchscope] 4255 unsigned OpNum = 0; 4256 Value *Ptr, *Val; 4257 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4258 popValue(Record, OpNum, NextValueNo, 4259 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 4260 OpNum+4 != Record.size()) 4261 return Error("Invalid record"); 4262 AtomicRMWInst::BinOp Operation = GetDecodedRMWOperation(Record[OpNum]); 4263 if (Operation < AtomicRMWInst::FIRST_BINOP || 4264 Operation > AtomicRMWInst::LAST_BINOP) 4265 return Error("Invalid record"); 4266 AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]); 4267 if (Ordering == NotAtomic || Ordering == Unordered) 4268 return Error("Invalid record"); 4269 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]); 4270 I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SynchScope); 4271 cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]); 4272 InstructionList.push_back(I); 4273 break; 4274 } 4275 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, synchscope] 4276 if (2 != Record.size()) 4277 return Error("Invalid record"); 4278 AtomicOrdering Ordering = GetDecodedOrdering(Record[0]); 4279 if (Ordering == NotAtomic || Ordering == Unordered || 4280 Ordering == Monotonic) 4281 return Error("Invalid record"); 4282 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[1]); 4283 I = new FenceInst(Context, Ordering, SynchScope); 4284 InstructionList.push_back(I); 4285 break; 4286 } 4287 case bitc::FUNC_CODE_INST_CALL: { 4288 // CALL: [paramattrs, cc, fnty, fnid, arg0, arg1...] 4289 if (Record.size() < 3) 4290 return Error("Invalid record"); 4291 4292 unsigned OpNum = 0; 4293 AttributeSet PAL = getAttributes(Record[OpNum++]); 4294 unsigned CCInfo = Record[OpNum++]; 4295 4296 FunctionType *FTy = nullptr; 4297 if (CCInfo >> 15 & 1 && 4298 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])))) 4299 return Error("Explicit call type is not a function type"); 4300 4301 Value *Callee; 4302 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 4303 return Error("Invalid record"); 4304 4305 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 4306 if (!OpTy) 4307 return Error("Callee is not a pointer type"); 4308 if (!FTy) { 4309 FTy = dyn_cast<FunctionType>(OpTy->getElementType()); 4310 if (!FTy) 4311 return Error("Callee is not of pointer to function type"); 4312 } else if (OpTy->getElementType() != FTy) 4313 return Error("Explicit call type does not match pointee type of " 4314 "callee operand"); 4315 if (Record.size() < FTy->getNumParams() + OpNum) 4316 return Error("Insufficient operands to call"); 4317 4318 SmallVector<Value*, 16> Args; 4319 // Read the fixed params. 4320 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 4321 if (FTy->getParamType(i)->isLabelTy()) 4322 Args.push_back(getBasicBlock(Record[OpNum])); 4323 else 4324 Args.push_back(getValue(Record, OpNum, NextValueNo, 4325 FTy->getParamType(i))); 4326 if (!Args.back()) 4327 return Error("Invalid record"); 4328 } 4329 4330 // Read type/value pairs for varargs params. 4331 if (!FTy->isVarArg()) { 4332 if (OpNum != Record.size()) 4333 return Error("Invalid record"); 4334 } else { 4335 while (OpNum != Record.size()) { 4336 Value *Op; 4337 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4338 return Error("Invalid record"); 4339 Args.push_back(Op); 4340 } 4341 } 4342 4343 I = CallInst::Create(FTy, Callee, Args); 4344 InstructionList.push_back(I); 4345 cast<CallInst>(I)->setCallingConv( 4346 static_cast<CallingConv::ID>((~(1U << 14) & CCInfo) >> 1)); 4347 CallInst::TailCallKind TCK = CallInst::TCK_None; 4348 if (CCInfo & 1) 4349 TCK = CallInst::TCK_Tail; 4350 if (CCInfo & (1 << 14)) 4351 TCK = CallInst::TCK_MustTail; 4352 cast<CallInst>(I)->setTailCallKind(TCK); 4353 cast<CallInst>(I)->setAttributes(PAL); 4354 break; 4355 } 4356 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 4357 if (Record.size() < 3) 4358 return Error("Invalid record"); 4359 Type *OpTy = getTypeByID(Record[0]); 4360 Value *Op = getValue(Record, 1, NextValueNo, OpTy); 4361 Type *ResTy = getTypeByID(Record[2]); 4362 if (!OpTy || !Op || !ResTy) 4363 return Error("Invalid record"); 4364 I = new VAArgInst(Op, ResTy); 4365 InstructionList.push_back(I); 4366 break; 4367 } 4368 } 4369 4370 // Add instruction to end of current BB. If there is no current BB, reject 4371 // this file. 4372 if (!CurBB) { 4373 delete I; 4374 return Error("Invalid instruction with no BB"); 4375 } 4376 CurBB->getInstList().push_back(I); 4377 4378 // If this was a terminator instruction, move to the next block. 4379 if (isa<TerminatorInst>(I)) { 4380 ++CurBBNo; 4381 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr; 4382 } 4383 4384 // Non-void values get registered in the value table for future use. 4385 if (I && !I->getType()->isVoidTy()) 4386 ValueList.AssignValue(I, NextValueNo++); 4387 } 4388 4389 OutOfRecordLoop: 4390 4391 // Check the function list for unresolved values. 4392 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 4393 if (!A->getParent()) { 4394 // We found at least one unresolved value. Nuke them all to avoid leaks. 4395 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 4396 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) { 4397 A->replaceAllUsesWith(UndefValue::get(A->getType())); 4398 delete A; 4399 } 4400 } 4401 return Error("Never resolved value found in function"); 4402 } 4403 } 4404 4405 // FIXME: Check for unresolved forward-declared metadata references 4406 // and clean up leaks. 4407 4408 // Trim the value list down to the size it was before we parsed this function. 4409 ValueList.shrinkTo(ModuleValueListSize); 4410 MDValueList.shrinkTo(ModuleMDValueListSize); 4411 std::vector<BasicBlock*>().swap(FunctionBBs); 4412 return std::error_code(); 4413 } 4414 4415 /// Find the function body in the bitcode stream 4416 std::error_code BitcodeReader::FindFunctionInStream( 4417 Function *F, 4418 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) { 4419 while (DeferredFunctionInfoIterator->second == 0) { 4420 if (Stream.AtEndOfStream()) 4421 return Error("Could not find function in stream"); 4422 // ParseModule will parse the next body in the stream and set its 4423 // position in the DeferredFunctionInfo map. 4424 if (std::error_code EC = ParseModule(true)) 4425 return EC; 4426 } 4427 return std::error_code(); 4428 } 4429 4430 //===----------------------------------------------------------------------===// 4431 // GVMaterializer implementation 4432 //===----------------------------------------------------------------------===// 4433 4434 void BitcodeReader::releaseBuffer() { Buffer.release(); } 4435 4436 std::error_code BitcodeReader::materialize(GlobalValue *GV) { 4437 if (std::error_code EC = materializeMetadata()) 4438 return EC; 4439 4440 Function *F = dyn_cast<Function>(GV); 4441 // If it's not a function or is already material, ignore the request. 4442 if (!F || !F->isMaterializable()) 4443 return std::error_code(); 4444 4445 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 4446 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 4447 // If its position is recorded as 0, its body is somewhere in the stream 4448 // but we haven't seen it yet. 4449 if (DFII->second == 0 && LazyStreamer) 4450 if (std::error_code EC = FindFunctionInStream(F, DFII)) 4451 return EC; 4452 4453 // Move the bit stream to the saved position of the deferred function body. 4454 Stream.JumpToBit(DFII->second); 4455 4456 if (std::error_code EC = ParseFunctionBody(F)) 4457 return EC; 4458 F->setIsMaterializable(false); 4459 4460 if (StripDebugInfo) 4461 stripDebugInfo(*F); 4462 4463 // Upgrade any old intrinsic calls in the function. 4464 for (UpgradedIntrinsicMap::iterator I = UpgradedIntrinsics.begin(), 4465 E = UpgradedIntrinsics.end(); I != E; ++I) { 4466 if (I->first != I->second) { 4467 for (auto UI = I->first->user_begin(), UE = I->first->user_end(); 4468 UI != UE;) { 4469 if (CallInst* CI = dyn_cast<CallInst>(*UI++)) 4470 UpgradeIntrinsicCall(CI, I->second); 4471 } 4472 } 4473 } 4474 4475 // Bring in any functions that this function forward-referenced via 4476 // blockaddresses. 4477 return materializeForwardReferencedFunctions(); 4478 } 4479 4480 bool BitcodeReader::isDematerializable(const GlobalValue *GV) const { 4481 const Function *F = dyn_cast<Function>(GV); 4482 if (!F || F->isDeclaration()) 4483 return false; 4484 4485 // Dematerializing F would leave dangling references that wouldn't be 4486 // reconnected on re-materialization. 4487 if (BlockAddressesTaken.count(F)) 4488 return false; 4489 4490 return DeferredFunctionInfo.count(const_cast<Function*>(F)); 4491 } 4492 4493 void BitcodeReader::dematerialize(GlobalValue *GV) { 4494 Function *F = dyn_cast<Function>(GV); 4495 // If this function isn't dematerializable, this is a noop. 4496 if (!F || !isDematerializable(F)) 4497 return; 4498 4499 assert(DeferredFunctionInfo.count(F) && "No info to read function later?"); 4500 4501 // Just forget the function body, we can remat it later. 4502 F->dropAllReferences(); 4503 F->setIsMaterializable(true); 4504 } 4505 4506 std::error_code BitcodeReader::materializeModule(Module *M) { 4507 assert(M == TheModule && 4508 "Can only Materialize the Module this BitcodeReader is attached to."); 4509 4510 if (std::error_code EC = materializeMetadata()) 4511 return EC; 4512 4513 // Promise to materialize all forward references. 4514 WillMaterializeAllForwardRefs = true; 4515 4516 // Iterate over the module, deserializing any functions that are still on 4517 // disk. 4518 for (Module::iterator F = TheModule->begin(), E = TheModule->end(); 4519 F != E; ++F) { 4520 if (std::error_code EC = materialize(F)) 4521 return EC; 4522 } 4523 // At this point, if there are any function bodies, the current bit is 4524 // pointing to the END_BLOCK record after them. Now make sure the rest 4525 // of the bits in the module have been read. 4526 if (NextUnreadBit) 4527 ParseModule(true); 4528 4529 // Check that all block address forward references got resolved (as we 4530 // promised above). 4531 if (!BasicBlockFwdRefs.empty()) 4532 return Error("Never resolved function from blockaddress"); 4533 4534 // Upgrade any intrinsic calls that slipped through (should not happen!) and 4535 // delete the old functions to clean up. We can't do this unless the entire 4536 // module is materialized because there could always be another function body 4537 // with calls to the old function. 4538 for (std::vector<std::pair<Function*, Function*> >::iterator I = 4539 UpgradedIntrinsics.begin(), E = UpgradedIntrinsics.end(); I != E; ++I) { 4540 if (I->first != I->second) { 4541 for (auto UI = I->first->user_begin(), UE = I->first->user_end(); 4542 UI != UE;) { 4543 if (CallInst* CI = dyn_cast<CallInst>(*UI++)) 4544 UpgradeIntrinsicCall(CI, I->second); 4545 } 4546 if (!I->first->use_empty()) 4547 I->first->replaceAllUsesWith(I->second); 4548 I->first->eraseFromParent(); 4549 } 4550 } 4551 std::vector<std::pair<Function*, Function*> >().swap(UpgradedIntrinsics); 4552 4553 for (unsigned I = 0, E = InstsWithTBAATag.size(); I < E; I++) 4554 UpgradeInstWithTBAATag(InstsWithTBAATag[I]); 4555 4556 UpgradeDebugInfo(*M); 4557 return std::error_code(); 4558 } 4559 4560 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const { 4561 return IdentifiedStructTypes; 4562 } 4563 4564 std::error_code BitcodeReader::InitStream() { 4565 if (LazyStreamer) 4566 return InitLazyStream(); 4567 return InitStreamFromBuffer(); 4568 } 4569 4570 std::error_code BitcodeReader::InitStreamFromBuffer() { 4571 const unsigned char *BufPtr = (const unsigned char*)Buffer->getBufferStart(); 4572 const unsigned char *BufEnd = BufPtr+Buffer->getBufferSize(); 4573 4574 if (Buffer->getBufferSize() & 3) 4575 return Error("Invalid bitcode signature"); 4576 4577 // If we have a wrapper header, parse it and ignore the non-bc file contents. 4578 // The magic number is 0x0B17C0DE stored in little endian. 4579 if (isBitcodeWrapper(BufPtr, BufEnd)) 4580 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 4581 return Error("Invalid bitcode wrapper header"); 4582 4583 StreamFile.reset(new BitstreamReader(BufPtr, BufEnd)); 4584 Stream.init(&*StreamFile); 4585 4586 return std::error_code(); 4587 } 4588 4589 std::error_code BitcodeReader::InitLazyStream() { 4590 // Check and strip off the bitcode wrapper; BitstreamReader expects never to 4591 // see it. 4592 auto OwnedBytes = llvm::make_unique<StreamingMemoryObject>(LazyStreamer); 4593 StreamingMemoryObject &Bytes = *OwnedBytes; 4594 StreamFile = llvm::make_unique<BitstreamReader>(std::move(OwnedBytes)); 4595 Stream.init(&*StreamFile); 4596 4597 unsigned char buf[16]; 4598 if (Bytes.readBytes(buf, 16, 0) != 16) 4599 return Error("Invalid bitcode signature"); 4600 4601 if (!isBitcode(buf, buf + 16)) 4602 return Error("Invalid bitcode signature"); 4603 4604 if (isBitcodeWrapper(buf, buf + 4)) { 4605 const unsigned char *bitcodeStart = buf; 4606 const unsigned char *bitcodeEnd = buf + 16; 4607 SkipBitcodeWrapperHeader(bitcodeStart, bitcodeEnd, false); 4608 Bytes.dropLeadingBytes(bitcodeStart - buf); 4609 Bytes.setKnownObjectSize(bitcodeEnd - bitcodeStart); 4610 } 4611 return std::error_code(); 4612 } 4613 4614 namespace { 4615 class BitcodeErrorCategoryType : public std::error_category { 4616 const char *name() const LLVM_NOEXCEPT override { 4617 return "llvm.bitcode"; 4618 } 4619 std::string message(int IE) const override { 4620 BitcodeError E = static_cast<BitcodeError>(IE); 4621 switch (E) { 4622 case BitcodeError::InvalidBitcodeSignature: 4623 return "Invalid bitcode signature"; 4624 case BitcodeError::CorruptedBitcode: 4625 return "Corrupted bitcode"; 4626 } 4627 llvm_unreachable("Unknown error type!"); 4628 } 4629 }; 4630 } 4631 4632 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory; 4633 4634 const std::error_category &llvm::BitcodeErrorCategory() { 4635 return *ErrorCategory; 4636 } 4637 4638 //===----------------------------------------------------------------------===// 4639 // External interface 4640 //===----------------------------------------------------------------------===// 4641 4642 /// \brief Get a lazy one-at-time loading module from bitcode. 4643 /// 4644 /// This isn't always used in a lazy context. In particular, it's also used by 4645 /// \a parseBitcodeFile(). If this is truly lazy, then we need to eagerly pull 4646 /// in forward-referenced functions from block address references. 4647 /// 4648 /// \param[in] WillMaterializeAll Set to \c true if the caller promises to 4649 /// materialize everything -- in particular, if this isn't truly lazy. 4650 static ErrorOr<Module *> 4651 getLazyBitcodeModuleImpl(std::unique_ptr<MemoryBuffer> &&Buffer, 4652 LLVMContext &Context, bool WillMaterializeAll, 4653 DiagnosticHandlerFunction DiagnosticHandler, 4654 bool ShouldLazyLoadMetadata = false) { 4655 Module *M = new Module(Buffer->getBufferIdentifier(), Context); 4656 BitcodeReader *R = 4657 new BitcodeReader(Buffer.get(), Context, DiagnosticHandler); 4658 M->setMaterializer(R); 4659 4660 auto cleanupOnError = [&](std::error_code EC) { 4661 R->releaseBuffer(); // Never take ownership on error. 4662 delete M; // Also deletes R. 4663 return EC; 4664 }; 4665 4666 // Delay parsing Metadata if ShouldLazyLoadMetadata is true. 4667 if (std::error_code EC = R->ParseBitcodeInto(M, ShouldLazyLoadMetadata)) 4668 return cleanupOnError(EC); 4669 4670 if (!WillMaterializeAll) 4671 // Resolve forward references from blockaddresses. 4672 if (std::error_code EC = R->materializeForwardReferencedFunctions()) 4673 return cleanupOnError(EC); 4674 4675 Buffer.release(); // The BitcodeReader owns it now. 4676 return M; 4677 } 4678 4679 ErrorOr<Module *> 4680 llvm::getLazyBitcodeModule(std::unique_ptr<MemoryBuffer> &&Buffer, 4681 LLVMContext &Context, 4682 DiagnosticHandlerFunction DiagnosticHandler, 4683 bool ShouldLazyLoadMetadata) { 4684 return getLazyBitcodeModuleImpl(std::move(Buffer), Context, false, 4685 DiagnosticHandler, ShouldLazyLoadMetadata); 4686 } 4687 4688 ErrorOr<std::unique_ptr<Module>> 4689 llvm::getStreamedBitcodeModule(StringRef Name, DataStreamer *Streamer, 4690 LLVMContext &Context, 4691 DiagnosticHandlerFunction DiagnosticHandler) { 4692 std::unique_ptr<Module> M = make_unique<Module>(Name, Context); 4693 BitcodeReader *R = new BitcodeReader(Streamer, Context, DiagnosticHandler); 4694 M->setMaterializer(R); 4695 if (std::error_code EC = R->ParseBitcodeInto(M.get())) 4696 return EC; 4697 return std::move(M); 4698 } 4699 4700 ErrorOr<Module *> 4701 llvm::parseBitcodeFile(MemoryBufferRef Buffer, LLVMContext &Context, 4702 DiagnosticHandlerFunction DiagnosticHandler) { 4703 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 4704 ErrorOr<Module *> ModuleOrErr = getLazyBitcodeModuleImpl( 4705 std::move(Buf), Context, true, DiagnosticHandler); 4706 if (!ModuleOrErr) 4707 return ModuleOrErr; 4708 Module *M = ModuleOrErr.get(); 4709 // Read in the entire module, and destroy the BitcodeReader. 4710 if (std::error_code EC = M->materializeAllPermanently()) { 4711 delete M; 4712 return EC; 4713 } 4714 4715 // TODO: Restore the use-lists to the in-memory state when the bitcode was 4716 // written. We must defer until the Module has been fully materialized. 4717 4718 return M; 4719 } 4720 4721 std::string 4722 llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer, LLVMContext &Context, 4723 DiagnosticHandlerFunction DiagnosticHandler) { 4724 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 4725 auto R = llvm::make_unique<BitcodeReader>(Buf.release(), Context, 4726 DiagnosticHandler); 4727 ErrorOr<std::string> Triple = R->parseTriple(); 4728 if (Triple.getError()) 4729 return ""; 4730 return Triple.get(); 4731 } 4732