1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/Bitcode/BitcodeReader.h" 10 #include "MetadataLoader.h" 11 #include "ValueList.h" 12 #include "llvm/ADT/APFloat.h" 13 #include "llvm/ADT/APInt.h" 14 #include "llvm/ADT/ArrayRef.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/Optional.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallString.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/StringRef.h" 21 #include "llvm/ADT/Triple.h" 22 #include "llvm/ADT/Twine.h" 23 #include "llvm/Bitcode/BitcodeCommon.h" 24 #include "llvm/Bitcode/LLVMBitCodes.h" 25 #include "llvm/Bitstream/BitstreamReader.h" 26 #include "llvm/Config/llvm-config.h" 27 #include "llvm/IR/Argument.h" 28 #include "llvm/IR/Attributes.h" 29 #include "llvm/IR/AutoUpgrade.h" 30 #include "llvm/IR/BasicBlock.h" 31 #include "llvm/IR/CallingConv.h" 32 #include "llvm/IR/Comdat.h" 33 #include "llvm/IR/Constant.h" 34 #include "llvm/IR/Constants.h" 35 #include "llvm/IR/DataLayout.h" 36 #include "llvm/IR/DebugInfo.h" 37 #include "llvm/IR/DebugInfoMetadata.h" 38 #include "llvm/IR/DebugLoc.h" 39 #include "llvm/IR/DerivedTypes.h" 40 #include "llvm/IR/Function.h" 41 #include "llvm/IR/GVMaterializer.h" 42 #include "llvm/IR/GlobalAlias.h" 43 #include "llvm/IR/GlobalIFunc.h" 44 #include "llvm/IR/GlobalIndirectSymbol.h" 45 #include "llvm/IR/GlobalObject.h" 46 #include "llvm/IR/GlobalValue.h" 47 #include "llvm/IR/GlobalVariable.h" 48 #include "llvm/IR/InlineAsm.h" 49 #include "llvm/IR/InstIterator.h" 50 #include "llvm/IR/InstrTypes.h" 51 #include "llvm/IR/Instruction.h" 52 #include "llvm/IR/Instructions.h" 53 #include "llvm/IR/Intrinsics.h" 54 #include "llvm/IR/LLVMContext.h" 55 #include "llvm/IR/Metadata.h" 56 #include "llvm/IR/Module.h" 57 #include "llvm/IR/ModuleSummaryIndex.h" 58 #include "llvm/IR/Operator.h" 59 #include "llvm/IR/Type.h" 60 #include "llvm/IR/Value.h" 61 #include "llvm/IR/Verifier.h" 62 #include "llvm/Support/AtomicOrdering.h" 63 #include "llvm/Support/Casting.h" 64 #include "llvm/Support/CommandLine.h" 65 #include "llvm/Support/Compiler.h" 66 #include "llvm/Support/Debug.h" 67 #include "llvm/Support/Error.h" 68 #include "llvm/Support/ErrorHandling.h" 69 #include "llvm/Support/ErrorOr.h" 70 #include "llvm/Support/ManagedStatic.h" 71 #include "llvm/Support/MathExtras.h" 72 #include "llvm/Support/MemoryBuffer.h" 73 #include "llvm/Support/raw_ostream.h" 74 #include <algorithm> 75 #include <cassert> 76 #include <cstddef> 77 #include <cstdint> 78 #include <deque> 79 #include <map> 80 #include <memory> 81 #include <set> 82 #include <string> 83 #include <system_error> 84 #include <tuple> 85 #include <utility> 86 #include <vector> 87 88 using namespace llvm; 89 90 static cl::opt<bool> PrintSummaryGUIDs( 91 "print-summary-global-ids", cl::init(false), cl::Hidden, 92 cl::desc( 93 "Print the global id for each value when reading the module summary")); 94 95 namespace { 96 97 enum { 98 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 99 }; 100 101 } // end anonymous namespace 102 103 static Error error(const Twine &Message) { 104 return make_error<StringError>( 105 Message, make_error_code(BitcodeError::CorruptedBitcode)); 106 } 107 108 static Error hasInvalidBitcodeHeader(BitstreamCursor &Stream) { 109 if (!Stream.canSkipToPos(4)) 110 return createStringError(std::errc::illegal_byte_sequence, 111 "file too small to contain bitcode header"); 112 for (unsigned C : {'B', 'C'}) 113 if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(8)) { 114 if (Res.get() != C) 115 return createStringError(std::errc::illegal_byte_sequence, 116 "file doesn't start with bitcode header"); 117 } else 118 return Res.takeError(); 119 for (unsigned C : {0x0, 0xC, 0xE, 0xD}) 120 if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(4)) { 121 if (Res.get() != C) 122 return createStringError(std::errc::illegal_byte_sequence, 123 "file doesn't start with bitcode header"); 124 } else 125 return Res.takeError(); 126 return Error::success(); 127 } 128 129 static Expected<BitstreamCursor> initStream(MemoryBufferRef Buffer) { 130 const unsigned char *BufPtr = (const unsigned char *)Buffer.getBufferStart(); 131 const unsigned char *BufEnd = BufPtr + Buffer.getBufferSize(); 132 133 if (Buffer.getBufferSize() & 3) 134 return error("Invalid bitcode signature"); 135 136 // If we have a wrapper header, parse it and ignore the non-bc file contents. 137 // The magic number is 0x0B17C0DE stored in little endian. 138 if (isBitcodeWrapper(BufPtr, BufEnd)) 139 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 140 return error("Invalid bitcode wrapper header"); 141 142 BitstreamCursor Stream(ArrayRef<uint8_t>(BufPtr, BufEnd)); 143 if (Error Err = hasInvalidBitcodeHeader(Stream)) 144 return std::move(Err); 145 146 return std::move(Stream); 147 } 148 149 /// Convert a string from a record into an std::string, return true on failure. 150 template <typename StrTy> 151 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx, 152 StrTy &Result) { 153 if (Idx > Record.size()) 154 return true; 155 156 Result.append(Record.begin() + Idx, Record.end()); 157 return false; 158 } 159 160 // Strip all the TBAA attachment for the module. 161 static void stripTBAA(Module *M) { 162 for (auto &F : *M) { 163 if (F.isMaterializable()) 164 continue; 165 for (auto &I : instructions(F)) 166 I.setMetadata(LLVMContext::MD_tbaa, nullptr); 167 } 168 } 169 170 /// Read the "IDENTIFICATION_BLOCK_ID" block, do some basic enforcement on the 171 /// "epoch" encoded in the bitcode, and return the producer name if any. 172 static Expected<std::string> readIdentificationBlock(BitstreamCursor &Stream) { 173 if (Error Err = Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID)) 174 return std::move(Err); 175 176 // Read all the records. 177 SmallVector<uint64_t, 64> Record; 178 179 std::string ProducerIdentification; 180 181 while (true) { 182 BitstreamEntry Entry; 183 if (Expected<BitstreamEntry> Res = Stream.advance()) 184 Entry = Res.get(); 185 else 186 return Res.takeError(); 187 188 switch (Entry.Kind) { 189 default: 190 case BitstreamEntry::Error: 191 return error("Malformed block"); 192 case BitstreamEntry::EndBlock: 193 return ProducerIdentification; 194 case BitstreamEntry::Record: 195 // The interesting case. 196 break; 197 } 198 199 // Read a record. 200 Record.clear(); 201 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 202 if (!MaybeBitCode) 203 return MaybeBitCode.takeError(); 204 switch (MaybeBitCode.get()) { 205 default: // Default behavior: reject 206 return error("Invalid value"); 207 case bitc::IDENTIFICATION_CODE_STRING: // IDENTIFICATION: [strchr x N] 208 convertToString(Record, 0, ProducerIdentification); 209 break; 210 case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#] 211 unsigned epoch = (unsigned)Record[0]; 212 if (epoch != bitc::BITCODE_CURRENT_EPOCH) { 213 return error( 214 Twine("Incompatible epoch: Bitcode '") + Twine(epoch) + 215 "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'"); 216 } 217 } 218 } 219 } 220 } 221 222 static Expected<std::string> readIdentificationCode(BitstreamCursor &Stream) { 223 // We expect a number of well-defined blocks, though we don't necessarily 224 // need to understand them all. 225 while (true) { 226 if (Stream.AtEndOfStream()) 227 return ""; 228 229 BitstreamEntry Entry; 230 if (Expected<BitstreamEntry> Res = Stream.advance()) 231 Entry = std::move(Res.get()); 232 else 233 return Res.takeError(); 234 235 switch (Entry.Kind) { 236 case BitstreamEntry::EndBlock: 237 case BitstreamEntry::Error: 238 return error("Malformed block"); 239 240 case BitstreamEntry::SubBlock: 241 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) 242 return readIdentificationBlock(Stream); 243 244 // Ignore other sub-blocks. 245 if (Error Err = Stream.SkipBlock()) 246 return std::move(Err); 247 continue; 248 case BitstreamEntry::Record: 249 if (Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID)) 250 continue; 251 else 252 return Skipped.takeError(); 253 } 254 } 255 } 256 257 static Expected<bool> hasObjCCategoryInModule(BitstreamCursor &Stream) { 258 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 259 return std::move(Err); 260 261 SmallVector<uint64_t, 64> Record; 262 // Read all the records for this module. 263 264 while (true) { 265 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 266 if (!MaybeEntry) 267 return MaybeEntry.takeError(); 268 BitstreamEntry Entry = MaybeEntry.get(); 269 270 switch (Entry.Kind) { 271 case BitstreamEntry::SubBlock: // Handled for us already. 272 case BitstreamEntry::Error: 273 return error("Malformed block"); 274 case BitstreamEntry::EndBlock: 275 return false; 276 case BitstreamEntry::Record: 277 // The interesting case. 278 break; 279 } 280 281 // Read a record. 282 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 283 if (!MaybeRecord) 284 return MaybeRecord.takeError(); 285 switch (MaybeRecord.get()) { 286 default: 287 break; // Default behavior, ignore unknown content. 288 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 289 std::string S; 290 if (convertToString(Record, 0, S)) 291 return error("Invalid record"); 292 // Check for the i386 and other (x86_64, ARM) conventions 293 if (S.find("__DATA,__objc_catlist") != std::string::npos || 294 S.find("__OBJC,__category") != std::string::npos) 295 return true; 296 break; 297 } 298 } 299 Record.clear(); 300 } 301 llvm_unreachable("Exit infinite loop"); 302 } 303 304 static Expected<bool> hasObjCCategory(BitstreamCursor &Stream) { 305 // We expect a number of well-defined blocks, though we don't necessarily 306 // need to understand them all. 307 while (true) { 308 BitstreamEntry Entry; 309 if (Expected<BitstreamEntry> Res = Stream.advance()) 310 Entry = std::move(Res.get()); 311 else 312 return Res.takeError(); 313 314 switch (Entry.Kind) { 315 case BitstreamEntry::Error: 316 return error("Malformed block"); 317 case BitstreamEntry::EndBlock: 318 return false; 319 320 case BitstreamEntry::SubBlock: 321 if (Entry.ID == bitc::MODULE_BLOCK_ID) 322 return hasObjCCategoryInModule(Stream); 323 324 // Ignore other sub-blocks. 325 if (Error Err = Stream.SkipBlock()) 326 return std::move(Err); 327 continue; 328 329 case BitstreamEntry::Record: 330 if (Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID)) 331 continue; 332 else 333 return Skipped.takeError(); 334 } 335 } 336 } 337 338 static Expected<std::string> readModuleTriple(BitstreamCursor &Stream) { 339 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 340 return std::move(Err); 341 342 SmallVector<uint64_t, 64> Record; 343 344 std::string Triple; 345 346 // Read all the records for this module. 347 while (true) { 348 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 349 if (!MaybeEntry) 350 return MaybeEntry.takeError(); 351 BitstreamEntry Entry = MaybeEntry.get(); 352 353 switch (Entry.Kind) { 354 case BitstreamEntry::SubBlock: // Handled for us already. 355 case BitstreamEntry::Error: 356 return error("Malformed block"); 357 case BitstreamEntry::EndBlock: 358 return Triple; 359 case BitstreamEntry::Record: 360 // The interesting case. 361 break; 362 } 363 364 // Read a record. 365 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 366 if (!MaybeRecord) 367 return MaybeRecord.takeError(); 368 switch (MaybeRecord.get()) { 369 default: break; // Default behavior, ignore unknown content. 370 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 371 std::string S; 372 if (convertToString(Record, 0, S)) 373 return error("Invalid record"); 374 Triple = S; 375 break; 376 } 377 } 378 Record.clear(); 379 } 380 llvm_unreachable("Exit infinite loop"); 381 } 382 383 static Expected<std::string> readTriple(BitstreamCursor &Stream) { 384 // We expect a number of well-defined blocks, though we don't necessarily 385 // need to understand them all. 386 while (true) { 387 Expected<BitstreamEntry> MaybeEntry = Stream.advance(); 388 if (!MaybeEntry) 389 return MaybeEntry.takeError(); 390 BitstreamEntry Entry = MaybeEntry.get(); 391 392 switch (Entry.Kind) { 393 case BitstreamEntry::Error: 394 return error("Malformed block"); 395 case BitstreamEntry::EndBlock: 396 return ""; 397 398 case BitstreamEntry::SubBlock: 399 if (Entry.ID == bitc::MODULE_BLOCK_ID) 400 return readModuleTriple(Stream); 401 402 // Ignore other sub-blocks. 403 if (Error Err = Stream.SkipBlock()) 404 return std::move(Err); 405 continue; 406 407 case BitstreamEntry::Record: 408 if (llvm::Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID)) 409 continue; 410 else 411 return Skipped.takeError(); 412 } 413 } 414 } 415 416 namespace { 417 418 class BitcodeReaderBase { 419 protected: 420 BitcodeReaderBase(BitstreamCursor Stream, StringRef Strtab) 421 : Stream(std::move(Stream)), Strtab(Strtab) { 422 this->Stream.setBlockInfo(&BlockInfo); 423 } 424 425 BitstreamBlockInfo BlockInfo; 426 BitstreamCursor Stream; 427 StringRef Strtab; 428 429 /// In version 2 of the bitcode we store names of global values and comdats in 430 /// a string table rather than in the VST. 431 bool UseStrtab = false; 432 433 Expected<unsigned> parseVersionRecord(ArrayRef<uint64_t> Record); 434 435 /// If this module uses a string table, pop the reference to the string table 436 /// and return the referenced string and the rest of the record. Otherwise 437 /// just return the record itself. 438 std::pair<StringRef, ArrayRef<uint64_t>> 439 readNameFromStrtab(ArrayRef<uint64_t> Record); 440 441 bool readBlockInfo(); 442 443 // Contains an arbitrary and optional string identifying the bitcode producer 444 std::string ProducerIdentification; 445 446 Error error(const Twine &Message); 447 }; 448 449 } // end anonymous namespace 450 451 Error BitcodeReaderBase::error(const Twine &Message) { 452 std::string FullMsg = Message.str(); 453 if (!ProducerIdentification.empty()) 454 FullMsg += " (Producer: '" + ProducerIdentification + "' Reader: 'LLVM " + 455 LLVM_VERSION_STRING "')"; 456 return ::error(FullMsg); 457 } 458 459 Expected<unsigned> 460 BitcodeReaderBase::parseVersionRecord(ArrayRef<uint64_t> Record) { 461 if (Record.empty()) 462 return error("Invalid record"); 463 unsigned ModuleVersion = Record[0]; 464 if (ModuleVersion > 2) 465 return error("Invalid value"); 466 UseStrtab = ModuleVersion >= 2; 467 return ModuleVersion; 468 } 469 470 std::pair<StringRef, ArrayRef<uint64_t>> 471 BitcodeReaderBase::readNameFromStrtab(ArrayRef<uint64_t> Record) { 472 if (!UseStrtab) 473 return {"", Record}; 474 // Invalid reference. Let the caller complain about the record being empty. 475 if (Record[0] + Record[1] > Strtab.size()) 476 return {"", {}}; 477 return {StringRef(Strtab.data() + Record[0], Record[1]), Record.slice(2)}; 478 } 479 480 namespace { 481 482 class BitcodeReader : public BitcodeReaderBase, public GVMaterializer { 483 LLVMContext &Context; 484 Module *TheModule = nullptr; 485 // Next offset to start scanning for lazy parsing of function bodies. 486 uint64_t NextUnreadBit = 0; 487 // Last function offset found in the VST. 488 uint64_t LastFunctionBlockBit = 0; 489 bool SeenValueSymbolTable = false; 490 uint64_t VSTOffset = 0; 491 492 std::vector<std::string> SectionTable; 493 std::vector<std::string> GCTable; 494 495 std::vector<Type*> TypeList; 496 DenseMap<Function *, FunctionType *> FunctionTypes; 497 BitcodeReaderValueList ValueList; 498 Optional<MetadataLoader> MDLoader; 499 std::vector<Comdat *> ComdatList; 500 SmallVector<Instruction *, 64> InstructionList; 501 502 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInits; 503 std::vector<std::pair<GlobalIndirectSymbol *, unsigned>> IndirectSymbolInits; 504 505 struct FunctionOperandInfo { 506 Function *F; 507 unsigned PersonalityFn; 508 unsigned Prefix; 509 unsigned Prologue; 510 }; 511 std::vector<FunctionOperandInfo> FunctionOperands; 512 513 /// The set of attributes by index. Index zero in the file is for null, and 514 /// is thus not represented here. As such all indices are off by one. 515 std::vector<AttributeList> MAttributes; 516 517 /// The set of attribute groups. 518 std::map<unsigned, AttributeList> MAttributeGroups; 519 520 /// While parsing a function body, this is a list of the basic blocks for the 521 /// function. 522 std::vector<BasicBlock*> FunctionBBs; 523 524 // When reading the module header, this list is populated with functions that 525 // have bodies later in the file. 526 std::vector<Function*> FunctionsWithBodies; 527 528 // When intrinsic functions are encountered which require upgrading they are 529 // stored here with their replacement function. 530 using UpdatedIntrinsicMap = DenseMap<Function *, Function *>; 531 UpdatedIntrinsicMap UpgradedIntrinsics; 532 // Intrinsics which were remangled because of types rename 533 UpdatedIntrinsicMap RemangledIntrinsics; 534 535 // Several operations happen after the module header has been read, but 536 // before function bodies are processed. This keeps track of whether 537 // we've done this yet. 538 bool SeenFirstFunctionBody = false; 539 540 /// When function bodies are initially scanned, this map contains info about 541 /// where to find deferred function body in the stream. 542 DenseMap<Function*, uint64_t> DeferredFunctionInfo; 543 544 /// When Metadata block is initially scanned when parsing the module, we may 545 /// choose to defer parsing of the metadata. This vector contains info about 546 /// which Metadata blocks are deferred. 547 std::vector<uint64_t> DeferredMetadataInfo; 548 549 /// These are basic blocks forward-referenced by block addresses. They are 550 /// inserted lazily into functions when they're loaded. The basic block ID is 551 /// its index into the vector. 552 DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs; 553 std::deque<Function *> BasicBlockFwdRefQueue; 554 555 /// Indicates that we are using a new encoding for instruction operands where 556 /// most operands in the current FUNCTION_BLOCK are encoded relative to the 557 /// instruction number, for a more compact encoding. Some instruction 558 /// operands are not relative to the instruction ID: basic block numbers, and 559 /// types. Once the old style function blocks have been phased out, we would 560 /// not need this flag. 561 bool UseRelativeIDs = false; 562 563 /// True if all functions will be materialized, negating the need to process 564 /// (e.g.) blockaddress forward references. 565 bool WillMaterializeAllForwardRefs = false; 566 567 bool StripDebugInfo = false; 568 TBAAVerifier TBAAVerifyHelper; 569 570 std::vector<std::string> BundleTags; 571 SmallVector<SyncScope::ID, 8> SSIDs; 572 573 public: 574 BitcodeReader(BitstreamCursor Stream, StringRef Strtab, 575 StringRef ProducerIdentification, LLVMContext &Context); 576 577 Error materializeForwardReferencedFunctions(); 578 579 Error materialize(GlobalValue *GV) override; 580 Error materializeModule() override; 581 std::vector<StructType *> getIdentifiedStructTypes() const override; 582 583 /// Main interface to parsing a bitcode buffer. 584 /// \returns true if an error occurred. 585 Error parseBitcodeInto( 586 Module *M, bool ShouldLazyLoadMetadata = false, bool IsImporting = false, 587 DataLayoutCallbackTy DataLayoutCallback = [](StringRef) { return None; }); 588 589 static uint64_t decodeSignRotatedValue(uint64_t V); 590 591 /// Materialize any deferred Metadata block. 592 Error materializeMetadata() override; 593 594 void setStripDebugInfo() override; 595 596 private: 597 std::vector<StructType *> IdentifiedStructTypes; 598 StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name); 599 StructType *createIdentifiedStructType(LLVMContext &Context); 600 601 Type *getTypeByID(unsigned ID); 602 603 Value *getFnValueByID(unsigned ID, Type *Ty) { 604 if (Ty && Ty->isMetadataTy()) 605 return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID)); 606 return ValueList.getValueFwdRef(ID, Ty); 607 } 608 609 Metadata *getFnMetadataByID(unsigned ID) { 610 return MDLoader->getMetadataFwdRefOrLoad(ID); 611 } 612 613 BasicBlock *getBasicBlock(unsigned ID) const { 614 if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID 615 return FunctionBBs[ID]; 616 } 617 618 AttributeList getAttributes(unsigned i) const { 619 if (i-1 < MAttributes.size()) 620 return MAttributes[i-1]; 621 return AttributeList(); 622 } 623 624 /// Read a value/type pair out of the specified record from slot 'Slot'. 625 /// Increment Slot past the number of slots used in the record. Return true on 626 /// failure. 627 bool getValueTypePair(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 628 unsigned InstNum, Value *&ResVal) { 629 if (Slot == Record.size()) return true; 630 unsigned ValNo = (unsigned)Record[Slot++]; 631 // Adjust the ValNo, if it was encoded relative to the InstNum. 632 if (UseRelativeIDs) 633 ValNo = InstNum - ValNo; 634 if (ValNo < InstNum) { 635 // If this is not a forward reference, just return the value we already 636 // have. 637 ResVal = getFnValueByID(ValNo, nullptr); 638 return ResVal == nullptr; 639 } 640 if (Slot == Record.size()) 641 return true; 642 643 unsigned TypeNo = (unsigned)Record[Slot++]; 644 ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo)); 645 return ResVal == nullptr; 646 } 647 648 /// Read a value out of the specified record from slot 'Slot'. Increment Slot 649 /// past the number of slots used by the value in the record. Return true if 650 /// there is an error. 651 bool popValue(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 652 unsigned InstNum, Type *Ty, Value *&ResVal) { 653 if (getValue(Record, Slot, InstNum, Ty, ResVal)) 654 return true; 655 // All values currently take a single record slot. 656 ++Slot; 657 return false; 658 } 659 660 /// Like popValue, but does not increment the Slot number. 661 bool getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot, 662 unsigned InstNum, Type *Ty, Value *&ResVal) { 663 ResVal = getValue(Record, Slot, InstNum, Ty); 664 return ResVal == nullptr; 665 } 666 667 /// Version of getValue that returns ResVal directly, or 0 if there is an 668 /// error. 669 Value *getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot, 670 unsigned InstNum, Type *Ty) { 671 if (Slot == Record.size()) return nullptr; 672 unsigned ValNo = (unsigned)Record[Slot]; 673 // Adjust the ValNo, if it was encoded relative to the InstNum. 674 if (UseRelativeIDs) 675 ValNo = InstNum - ValNo; 676 return getFnValueByID(ValNo, Ty); 677 } 678 679 /// Like getValue, but decodes signed VBRs. 680 Value *getValueSigned(const SmallVectorImpl<uint64_t> &Record, unsigned Slot, 681 unsigned InstNum, Type *Ty) { 682 if (Slot == Record.size()) return nullptr; 683 unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]); 684 // Adjust the ValNo, if it was encoded relative to the InstNum. 685 if (UseRelativeIDs) 686 ValNo = InstNum - ValNo; 687 return getFnValueByID(ValNo, Ty); 688 } 689 690 /// Upgrades old-style typeless byval/sret/inalloca attributes by adding the 691 /// corresponding argument's pointee type. Also upgrades intrinsics that now 692 /// require an elementtype attribute. 693 void propagateAttributeTypes(CallBase *CB, ArrayRef<Type *> ArgsTys); 694 695 /// Converts alignment exponent (i.e. power of two (or zero)) to the 696 /// corresponding alignment to use. If alignment is too large, returns 697 /// a corresponding error code. 698 Error parseAlignmentValue(uint64_t Exponent, MaybeAlign &Alignment); 699 Error parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind); 700 Error parseModule( 701 uint64_t ResumeBit, bool ShouldLazyLoadMetadata = false, 702 DataLayoutCallbackTy DataLayoutCallback = [](StringRef) { return None; }); 703 704 Error parseComdatRecord(ArrayRef<uint64_t> Record); 705 Error parseGlobalVarRecord(ArrayRef<uint64_t> Record); 706 Error parseFunctionRecord(ArrayRef<uint64_t> Record); 707 Error parseGlobalIndirectSymbolRecord(unsigned BitCode, 708 ArrayRef<uint64_t> Record); 709 710 Error parseAttributeBlock(); 711 Error parseAttributeGroupBlock(); 712 Error parseTypeTable(); 713 Error parseTypeTableBody(); 714 Error parseOperandBundleTags(); 715 Error parseSyncScopeNames(); 716 717 Expected<Value *> recordValue(SmallVectorImpl<uint64_t> &Record, 718 unsigned NameIndex, Triple &TT); 719 void setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, Function *F, 720 ArrayRef<uint64_t> Record); 721 Error parseValueSymbolTable(uint64_t Offset = 0); 722 Error parseGlobalValueSymbolTable(); 723 Error parseConstants(); 724 Error rememberAndSkipFunctionBodies(); 725 Error rememberAndSkipFunctionBody(); 726 /// Save the positions of the Metadata blocks and skip parsing the blocks. 727 Error rememberAndSkipMetadata(); 728 Error typeCheckLoadStoreInst(Type *ValType, Type *PtrType); 729 Error parseFunctionBody(Function *F); 730 Error globalCleanup(); 731 Error resolveGlobalAndIndirectSymbolInits(); 732 Error parseUseLists(); 733 Error findFunctionInStream( 734 Function *F, 735 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator); 736 737 SyncScope::ID getDecodedSyncScopeID(unsigned Val); 738 }; 739 740 /// Class to manage reading and parsing function summary index bitcode 741 /// files/sections. 742 class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase { 743 /// The module index built during parsing. 744 ModuleSummaryIndex &TheIndex; 745 746 /// Indicates whether we have encountered a global value summary section 747 /// yet during parsing. 748 bool SeenGlobalValSummary = false; 749 750 /// Indicates whether we have already parsed the VST, used for error checking. 751 bool SeenValueSymbolTable = false; 752 753 /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record. 754 /// Used to enable on-demand parsing of the VST. 755 uint64_t VSTOffset = 0; 756 757 // Map to save ValueId to ValueInfo association that was recorded in the 758 // ValueSymbolTable. It is used after the VST is parsed to convert 759 // call graph edges read from the function summary from referencing 760 // callees by their ValueId to using the ValueInfo instead, which is how 761 // they are recorded in the summary index being built. 762 // We save a GUID which refers to the same global as the ValueInfo, but 763 // ignoring the linkage, i.e. for values other than local linkage they are 764 // identical. 765 DenseMap<unsigned, std::pair<ValueInfo, GlobalValue::GUID>> 766 ValueIdToValueInfoMap; 767 768 /// Map populated during module path string table parsing, from the 769 /// module ID to a string reference owned by the index's module 770 /// path string table, used to correlate with combined index 771 /// summary records. 772 DenseMap<uint64_t, StringRef> ModuleIdMap; 773 774 /// Original source file name recorded in a bitcode record. 775 std::string SourceFileName; 776 777 /// The string identifier given to this module by the client, normally the 778 /// path to the bitcode file. 779 StringRef ModulePath; 780 781 /// For per-module summary indexes, the unique numerical identifier given to 782 /// this module by the client. 783 unsigned ModuleId; 784 785 public: 786 ModuleSummaryIndexBitcodeReader(BitstreamCursor Stream, StringRef Strtab, 787 ModuleSummaryIndex &TheIndex, 788 StringRef ModulePath, unsigned ModuleId); 789 790 Error parseModule(); 791 792 private: 793 void setValueGUID(uint64_t ValueID, StringRef ValueName, 794 GlobalValue::LinkageTypes Linkage, 795 StringRef SourceFileName); 796 Error parseValueSymbolTable( 797 uint64_t Offset, 798 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap); 799 std::vector<ValueInfo> makeRefList(ArrayRef<uint64_t> Record); 800 std::vector<FunctionSummary::EdgeTy> makeCallList(ArrayRef<uint64_t> Record, 801 bool IsOldProfileFormat, 802 bool HasProfile, 803 bool HasRelBF); 804 Error parseEntireSummary(unsigned ID); 805 Error parseModuleStringTable(); 806 void parseTypeIdCompatibleVtableSummaryRecord(ArrayRef<uint64_t> Record); 807 void parseTypeIdCompatibleVtableInfo(ArrayRef<uint64_t> Record, size_t &Slot, 808 TypeIdCompatibleVtableInfo &TypeId); 809 std::vector<FunctionSummary::ParamAccess> 810 parseParamAccesses(ArrayRef<uint64_t> Record); 811 812 std::pair<ValueInfo, GlobalValue::GUID> 813 getValueInfoFromValueId(unsigned ValueId); 814 815 void addThisModule(); 816 ModuleSummaryIndex::ModuleInfo *getThisModule(); 817 }; 818 819 } // end anonymous namespace 820 821 std::error_code llvm::errorToErrorCodeAndEmitErrors(LLVMContext &Ctx, 822 Error Err) { 823 if (Err) { 824 std::error_code EC; 825 handleAllErrors(std::move(Err), [&](ErrorInfoBase &EIB) { 826 EC = EIB.convertToErrorCode(); 827 Ctx.emitError(EIB.message()); 828 }); 829 return EC; 830 } 831 return std::error_code(); 832 } 833 834 BitcodeReader::BitcodeReader(BitstreamCursor Stream, StringRef Strtab, 835 StringRef ProducerIdentification, 836 LLVMContext &Context) 837 : BitcodeReaderBase(std::move(Stream), Strtab), Context(Context), 838 ValueList(Context, Stream.SizeInBytes()) { 839 this->ProducerIdentification = std::string(ProducerIdentification); 840 } 841 842 Error BitcodeReader::materializeForwardReferencedFunctions() { 843 if (WillMaterializeAllForwardRefs) 844 return Error::success(); 845 846 // Prevent recursion. 847 WillMaterializeAllForwardRefs = true; 848 849 while (!BasicBlockFwdRefQueue.empty()) { 850 Function *F = BasicBlockFwdRefQueue.front(); 851 BasicBlockFwdRefQueue.pop_front(); 852 assert(F && "Expected valid function"); 853 if (!BasicBlockFwdRefs.count(F)) 854 // Already materialized. 855 continue; 856 857 // Check for a function that isn't materializable to prevent an infinite 858 // loop. When parsing a blockaddress stored in a global variable, there 859 // isn't a trivial way to check if a function will have a body without a 860 // linear search through FunctionsWithBodies, so just check it here. 861 if (!F->isMaterializable()) 862 return error("Never resolved function from blockaddress"); 863 864 // Try to materialize F. 865 if (Error Err = materialize(F)) 866 return Err; 867 } 868 assert(BasicBlockFwdRefs.empty() && "Function missing from queue"); 869 870 // Reset state. 871 WillMaterializeAllForwardRefs = false; 872 return Error::success(); 873 } 874 875 //===----------------------------------------------------------------------===// 876 // Helper functions to implement forward reference resolution, etc. 877 //===----------------------------------------------------------------------===// 878 879 static bool hasImplicitComdat(size_t Val) { 880 switch (Val) { 881 default: 882 return false; 883 case 1: // Old WeakAnyLinkage 884 case 4: // Old LinkOnceAnyLinkage 885 case 10: // Old WeakODRLinkage 886 case 11: // Old LinkOnceODRLinkage 887 return true; 888 } 889 } 890 891 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) { 892 switch (Val) { 893 default: // Map unknown/new linkages to external 894 case 0: 895 return GlobalValue::ExternalLinkage; 896 case 2: 897 return GlobalValue::AppendingLinkage; 898 case 3: 899 return GlobalValue::InternalLinkage; 900 case 5: 901 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage 902 case 6: 903 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage 904 case 7: 905 return GlobalValue::ExternalWeakLinkage; 906 case 8: 907 return GlobalValue::CommonLinkage; 908 case 9: 909 return GlobalValue::PrivateLinkage; 910 case 12: 911 return GlobalValue::AvailableExternallyLinkage; 912 case 13: 913 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage 914 case 14: 915 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage 916 case 15: 917 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage 918 case 1: // Old value with implicit comdat. 919 case 16: 920 return GlobalValue::WeakAnyLinkage; 921 case 10: // Old value with implicit comdat. 922 case 17: 923 return GlobalValue::WeakODRLinkage; 924 case 4: // Old value with implicit comdat. 925 case 18: 926 return GlobalValue::LinkOnceAnyLinkage; 927 case 11: // Old value with implicit comdat. 928 case 19: 929 return GlobalValue::LinkOnceODRLinkage; 930 } 931 } 932 933 static FunctionSummary::FFlags getDecodedFFlags(uint64_t RawFlags) { 934 FunctionSummary::FFlags Flags; 935 Flags.ReadNone = RawFlags & 0x1; 936 Flags.ReadOnly = (RawFlags >> 1) & 0x1; 937 Flags.NoRecurse = (RawFlags >> 2) & 0x1; 938 Flags.ReturnDoesNotAlias = (RawFlags >> 3) & 0x1; 939 Flags.NoInline = (RawFlags >> 4) & 0x1; 940 Flags.AlwaysInline = (RawFlags >> 5) & 0x1; 941 return Flags; 942 } 943 944 // Decode the flags for GlobalValue in the summary. The bits for each attribute: 945 // 946 // linkage: [0,4), notEligibleToImport: 4, live: 5, local: 6, canAutoHide: 7, 947 // visibility: [8, 10). 948 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags, 949 uint64_t Version) { 950 // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage 951 // like getDecodedLinkage() above. Any future change to the linkage enum and 952 // to getDecodedLinkage() will need to be taken into account here as above. 953 auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits 954 auto Visibility = GlobalValue::VisibilityTypes((RawFlags >> 8) & 3); // 2 bits 955 RawFlags = RawFlags >> 4; 956 bool NotEligibleToImport = (RawFlags & 0x1) || Version < 3; 957 // The Live flag wasn't introduced until version 3. For dead stripping 958 // to work correctly on earlier versions, we must conservatively treat all 959 // values as live. 960 bool Live = (RawFlags & 0x2) || Version < 3; 961 bool Local = (RawFlags & 0x4); 962 bool AutoHide = (RawFlags & 0x8); 963 964 return GlobalValueSummary::GVFlags(Linkage, Visibility, NotEligibleToImport, 965 Live, Local, AutoHide); 966 } 967 968 // Decode the flags for GlobalVariable in the summary 969 static GlobalVarSummary::GVarFlags getDecodedGVarFlags(uint64_t RawFlags) { 970 return GlobalVarSummary::GVarFlags( 971 (RawFlags & 0x1) ? true : false, (RawFlags & 0x2) ? true : false, 972 (RawFlags & 0x4) ? true : false, 973 (GlobalObject::VCallVisibility)(RawFlags >> 3)); 974 } 975 976 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) { 977 switch (Val) { 978 default: // Map unknown visibilities to default. 979 case 0: return GlobalValue::DefaultVisibility; 980 case 1: return GlobalValue::HiddenVisibility; 981 case 2: return GlobalValue::ProtectedVisibility; 982 } 983 } 984 985 static GlobalValue::DLLStorageClassTypes 986 getDecodedDLLStorageClass(unsigned Val) { 987 switch (Val) { 988 default: // Map unknown values to default. 989 case 0: return GlobalValue::DefaultStorageClass; 990 case 1: return GlobalValue::DLLImportStorageClass; 991 case 2: return GlobalValue::DLLExportStorageClass; 992 } 993 } 994 995 static bool getDecodedDSOLocal(unsigned Val) { 996 switch(Val) { 997 default: // Map unknown values to preemptable. 998 case 0: return false; 999 case 1: return true; 1000 } 1001 } 1002 1003 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) { 1004 switch (Val) { 1005 case 0: return GlobalVariable::NotThreadLocal; 1006 default: // Map unknown non-zero value to general dynamic. 1007 case 1: return GlobalVariable::GeneralDynamicTLSModel; 1008 case 2: return GlobalVariable::LocalDynamicTLSModel; 1009 case 3: return GlobalVariable::InitialExecTLSModel; 1010 case 4: return GlobalVariable::LocalExecTLSModel; 1011 } 1012 } 1013 1014 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) { 1015 switch (Val) { 1016 default: // Map unknown to UnnamedAddr::None. 1017 case 0: return GlobalVariable::UnnamedAddr::None; 1018 case 1: return GlobalVariable::UnnamedAddr::Global; 1019 case 2: return GlobalVariable::UnnamedAddr::Local; 1020 } 1021 } 1022 1023 static int getDecodedCastOpcode(unsigned Val) { 1024 switch (Val) { 1025 default: return -1; 1026 case bitc::CAST_TRUNC : return Instruction::Trunc; 1027 case bitc::CAST_ZEXT : return Instruction::ZExt; 1028 case bitc::CAST_SEXT : return Instruction::SExt; 1029 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 1030 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 1031 case bitc::CAST_UITOFP : return Instruction::UIToFP; 1032 case bitc::CAST_SITOFP : return Instruction::SIToFP; 1033 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 1034 case bitc::CAST_FPEXT : return Instruction::FPExt; 1035 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 1036 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 1037 case bitc::CAST_BITCAST : return Instruction::BitCast; 1038 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast; 1039 } 1040 } 1041 1042 static int getDecodedUnaryOpcode(unsigned Val, Type *Ty) { 1043 bool IsFP = Ty->isFPOrFPVectorTy(); 1044 // UnOps are only valid for int/fp or vector of int/fp types 1045 if (!IsFP && !Ty->isIntOrIntVectorTy()) 1046 return -1; 1047 1048 switch (Val) { 1049 default: 1050 return -1; 1051 case bitc::UNOP_FNEG: 1052 return IsFP ? Instruction::FNeg : -1; 1053 } 1054 } 1055 1056 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) { 1057 bool IsFP = Ty->isFPOrFPVectorTy(); 1058 // BinOps are only valid for int/fp or vector of int/fp types 1059 if (!IsFP && !Ty->isIntOrIntVectorTy()) 1060 return -1; 1061 1062 switch (Val) { 1063 default: 1064 return -1; 1065 case bitc::BINOP_ADD: 1066 return IsFP ? Instruction::FAdd : Instruction::Add; 1067 case bitc::BINOP_SUB: 1068 return IsFP ? Instruction::FSub : Instruction::Sub; 1069 case bitc::BINOP_MUL: 1070 return IsFP ? Instruction::FMul : Instruction::Mul; 1071 case bitc::BINOP_UDIV: 1072 return IsFP ? -1 : Instruction::UDiv; 1073 case bitc::BINOP_SDIV: 1074 return IsFP ? Instruction::FDiv : Instruction::SDiv; 1075 case bitc::BINOP_UREM: 1076 return IsFP ? -1 : Instruction::URem; 1077 case bitc::BINOP_SREM: 1078 return IsFP ? Instruction::FRem : Instruction::SRem; 1079 case bitc::BINOP_SHL: 1080 return IsFP ? -1 : Instruction::Shl; 1081 case bitc::BINOP_LSHR: 1082 return IsFP ? -1 : Instruction::LShr; 1083 case bitc::BINOP_ASHR: 1084 return IsFP ? -1 : Instruction::AShr; 1085 case bitc::BINOP_AND: 1086 return IsFP ? -1 : Instruction::And; 1087 case bitc::BINOP_OR: 1088 return IsFP ? -1 : Instruction::Or; 1089 case bitc::BINOP_XOR: 1090 return IsFP ? -1 : Instruction::Xor; 1091 } 1092 } 1093 1094 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) { 1095 switch (Val) { 1096 default: return AtomicRMWInst::BAD_BINOP; 1097 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 1098 case bitc::RMW_ADD: return AtomicRMWInst::Add; 1099 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 1100 case bitc::RMW_AND: return AtomicRMWInst::And; 1101 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 1102 case bitc::RMW_OR: return AtomicRMWInst::Or; 1103 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 1104 case bitc::RMW_MAX: return AtomicRMWInst::Max; 1105 case bitc::RMW_MIN: return AtomicRMWInst::Min; 1106 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 1107 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 1108 case bitc::RMW_FADD: return AtomicRMWInst::FAdd; 1109 case bitc::RMW_FSUB: return AtomicRMWInst::FSub; 1110 } 1111 } 1112 1113 static AtomicOrdering getDecodedOrdering(unsigned Val) { 1114 switch (Val) { 1115 case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic; 1116 case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered; 1117 case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic; 1118 case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire; 1119 case bitc::ORDERING_RELEASE: return AtomicOrdering::Release; 1120 case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease; 1121 default: // Map unknown orderings to sequentially-consistent. 1122 case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent; 1123 } 1124 } 1125 1126 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) { 1127 switch (Val) { 1128 default: // Map unknown selection kinds to any. 1129 case bitc::COMDAT_SELECTION_KIND_ANY: 1130 return Comdat::Any; 1131 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH: 1132 return Comdat::ExactMatch; 1133 case bitc::COMDAT_SELECTION_KIND_LARGEST: 1134 return Comdat::Largest; 1135 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES: 1136 return Comdat::NoDeduplicate; 1137 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE: 1138 return Comdat::SameSize; 1139 } 1140 } 1141 1142 static FastMathFlags getDecodedFastMathFlags(unsigned Val) { 1143 FastMathFlags FMF; 1144 if (0 != (Val & bitc::UnsafeAlgebra)) 1145 FMF.setFast(); 1146 if (0 != (Val & bitc::AllowReassoc)) 1147 FMF.setAllowReassoc(); 1148 if (0 != (Val & bitc::NoNaNs)) 1149 FMF.setNoNaNs(); 1150 if (0 != (Val & bitc::NoInfs)) 1151 FMF.setNoInfs(); 1152 if (0 != (Val & bitc::NoSignedZeros)) 1153 FMF.setNoSignedZeros(); 1154 if (0 != (Val & bitc::AllowReciprocal)) 1155 FMF.setAllowReciprocal(); 1156 if (0 != (Val & bitc::AllowContract)) 1157 FMF.setAllowContract(true); 1158 if (0 != (Val & bitc::ApproxFunc)) 1159 FMF.setApproxFunc(); 1160 return FMF; 1161 } 1162 1163 static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) { 1164 switch (Val) { 1165 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break; 1166 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break; 1167 } 1168 } 1169 1170 Type *BitcodeReader::getTypeByID(unsigned ID) { 1171 // The type table size is always specified correctly. 1172 if (ID >= TypeList.size()) 1173 return nullptr; 1174 1175 if (Type *Ty = TypeList[ID]) 1176 return Ty; 1177 1178 // If we have a forward reference, the only possible case is when it is to a 1179 // named struct. Just create a placeholder for now. 1180 return TypeList[ID] = createIdentifiedStructType(Context); 1181 } 1182 1183 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context, 1184 StringRef Name) { 1185 auto *Ret = StructType::create(Context, Name); 1186 IdentifiedStructTypes.push_back(Ret); 1187 return Ret; 1188 } 1189 1190 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) { 1191 auto *Ret = StructType::create(Context); 1192 IdentifiedStructTypes.push_back(Ret); 1193 return Ret; 1194 } 1195 1196 //===----------------------------------------------------------------------===// 1197 // Functions for parsing blocks from the bitcode file 1198 //===----------------------------------------------------------------------===// 1199 1200 static uint64_t getRawAttributeMask(Attribute::AttrKind Val) { 1201 switch (Val) { 1202 case Attribute::EndAttrKinds: 1203 case Attribute::EmptyKey: 1204 case Attribute::TombstoneKey: 1205 llvm_unreachable("Synthetic enumerators which should never get here"); 1206 1207 case Attribute::None: return 0; 1208 case Attribute::ZExt: return 1 << 0; 1209 case Attribute::SExt: return 1 << 1; 1210 case Attribute::NoReturn: return 1 << 2; 1211 case Attribute::InReg: return 1 << 3; 1212 case Attribute::StructRet: return 1 << 4; 1213 case Attribute::NoUnwind: return 1 << 5; 1214 case Attribute::NoAlias: return 1 << 6; 1215 case Attribute::ByVal: return 1 << 7; 1216 case Attribute::Nest: return 1 << 8; 1217 case Attribute::ReadNone: return 1 << 9; 1218 case Attribute::ReadOnly: return 1 << 10; 1219 case Attribute::NoInline: return 1 << 11; 1220 case Attribute::AlwaysInline: return 1 << 12; 1221 case Attribute::OptimizeForSize: return 1 << 13; 1222 case Attribute::StackProtect: return 1 << 14; 1223 case Attribute::StackProtectReq: return 1 << 15; 1224 case Attribute::Alignment: return 31 << 16; 1225 case Attribute::NoCapture: return 1 << 21; 1226 case Attribute::NoRedZone: return 1 << 22; 1227 case Attribute::NoImplicitFloat: return 1 << 23; 1228 case Attribute::Naked: return 1 << 24; 1229 case Attribute::InlineHint: return 1 << 25; 1230 case Attribute::StackAlignment: return 7 << 26; 1231 case Attribute::ReturnsTwice: return 1 << 29; 1232 case Attribute::UWTable: return 1 << 30; 1233 case Attribute::NonLazyBind: return 1U << 31; 1234 case Attribute::SanitizeAddress: return 1ULL << 32; 1235 case Attribute::MinSize: return 1ULL << 33; 1236 case Attribute::NoDuplicate: return 1ULL << 34; 1237 case Attribute::StackProtectStrong: return 1ULL << 35; 1238 case Attribute::SanitizeThread: return 1ULL << 36; 1239 case Attribute::SanitizeMemory: return 1ULL << 37; 1240 case Attribute::NoBuiltin: return 1ULL << 38; 1241 case Attribute::Returned: return 1ULL << 39; 1242 case Attribute::Cold: return 1ULL << 40; 1243 case Attribute::Builtin: return 1ULL << 41; 1244 case Attribute::OptimizeNone: return 1ULL << 42; 1245 case Attribute::InAlloca: return 1ULL << 43; 1246 case Attribute::NonNull: return 1ULL << 44; 1247 case Attribute::JumpTable: return 1ULL << 45; 1248 case Attribute::Convergent: return 1ULL << 46; 1249 case Attribute::SafeStack: return 1ULL << 47; 1250 case Attribute::NoRecurse: return 1ULL << 48; 1251 case Attribute::InaccessibleMemOnly: return 1ULL << 49; 1252 case Attribute::InaccessibleMemOrArgMemOnly: return 1ULL << 50; 1253 case Attribute::SwiftSelf: return 1ULL << 51; 1254 case Attribute::SwiftError: return 1ULL << 52; 1255 case Attribute::WriteOnly: return 1ULL << 53; 1256 case Attribute::Speculatable: return 1ULL << 54; 1257 case Attribute::StrictFP: return 1ULL << 55; 1258 case Attribute::SanitizeHWAddress: return 1ULL << 56; 1259 case Attribute::NoCfCheck: return 1ULL << 57; 1260 case Attribute::OptForFuzzing: return 1ULL << 58; 1261 case Attribute::ShadowCallStack: return 1ULL << 59; 1262 case Attribute::SpeculativeLoadHardening: 1263 return 1ULL << 60; 1264 case Attribute::ImmArg: 1265 return 1ULL << 61; 1266 case Attribute::WillReturn: 1267 return 1ULL << 62; 1268 case Attribute::NoFree: 1269 return 1ULL << 63; 1270 default: 1271 // Other attributes are not supported in the raw format, 1272 // as we ran out of space. 1273 return 0; 1274 } 1275 llvm_unreachable("Unsupported attribute type"); 1276 } 1277 1278 static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) { 1279 if (!Val) return; 1280 1281 for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds; 1282 I = Attribute::AttrKind(I + 1)) { 1283 if (uint64_t A = (Val & getRawAttributeMask(I))) { 1284 if (I == Attribute::Alignment) 1285 B.addAlignmentAttr(1ULL << ((A >> 16) - 1)); 1286 else if (I == Attribute::StackAlignment) 1287 B.addStackAlignmentAttr(1ULL << ((A >> 26)-1)); 1288 else if (Attribute::isTypeAttrKind(I)) 1289 B.addTypeAttr(I, nullptr); // Type will be auto-upgraded. 1290 else 1291 B.addAttribute(I); 1292 } 1293 } 1294 } 1295 1296 /// This fills an AttrBuilder object with the LLVM attributes that have 1297 /// been decoded from the given integer. This function must stay in sync with 1298 /// 'encodeLLVMAttributesForBitcode'. 1299 static void decodeLLVMAttributesForBitcode(AttrBuilder &B, 1300 uint64_t EncodedAttrs) { 1301 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift 1302 // the bits above 31 down by 11 bits. 1303 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; 1304 assert((!Alignment || isPowerOf2_32(Alignment)) && 1305 "Alignment must be a power of two."); 1306 1307 if (Alignment) 1308 B.addAlignmentAttr(Alignment); 1309 addRawAttributeValue(B, ((EncodedAttrs & (0xfffffULL << 32)) >> 11) | 1310 (EncodedAttrs & 0xffff)); 1311 } 1312 1313 Error BitcodeReader::parseAttributeBlock() { 1314 if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 1315 return Err; 1316 1317 if (!MAttributes.empty()) 1318 return error("Invalid multiple blocks"); 1319 1320 SmallVector<uint64_t, 64> Record; 1321 1322 SmallVector<AttributeList, 8> Attrs; 1323 1324 // Read all the records. 1325 while (true) { 1326 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1327 if (!MaybeEntry) 1328 return MaybeEntry.takeError(); 1329 BitstreamEntry Entry = MaybeEntry.get(); 1330 1331 switch (Entry.Kind) { 1332 case BitstreamEntry::SubBlock: // Handled for us already. 1333 case BitstreamEntry::Error: 1334 return error("Malformed block"); 1335 case BitstreamEntry::EndBlock: 1336 return Error::success(); 1337 case BitstreamEntry::Record: 1338 // The interesting case. 1339 break; 1340 } 1341 1342 // Read a record. 1343 Record.clear(); 1344 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1345 if (!MaybeRecord) 1346 return MaybeRecord.takeError(); 1347 switch (MaybeRecord.get()) { 1348 default: // Default behavior: ignore. 1349 break; 1350 case bitc::PARAMATTR_CODE_ENTRY_OLD: // ENTRY: [paramidx0, attr0, ...] 1351 // Deprecated, but still needed to read old bitcode files. 1352 if (Record.size() & 1) 1353 return error("Invalid record"); 1354 1355 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1356 AttrBuilder B; 1357 decodeLLVMAttributesForBitcode(B, Record[i+1]); 1358 Attrs.push_back(AttributeList::get(Context, Record[i], B)); 1359 } 1360 1361 MAttributes.push_back(AttributeList::get(Context, Attrs)); 1362 Attrs.clear(); 1363 break; 1364 case bitc::PARAMATTR_CODE_ENTRY: // ENTRY: [attrgrp0, attrgrp1, ...] 1365 for (unsigned i = 0, e = Record.size(); i != e; ++i) 1366 Attrs.push_back(MAttributeGroups[Record[i]]); 1367 1368 MAttributes.push_back(AttributeList::get(Context, Attrs)); 1369 Attrs.clear(); 1370 break; 1371 } 1372 } 1373 } 1374 1375 // Returns Attribute::None on unrecognized codes. 1376 static Attribute::AttrKind getAttrFromCode(uint64_t Code) { 1377 switch (Code) { 1378 default: 1379 return Attribute::None; 1380 case bitc::ATTR_KIND_ALIGNMENT: 1381 return Attribute::Alignment; 1382 case bitc::ATTR_KIND_ALWAYS_INLINE: 1383 return Attribute::AlwaysInline; 1384 case bitc::ATTR_KIND_ARGMEMONLY: 1385 return Attribute::ArgMemOnly; 1386 case bitc::ATTR_KIND_BUILTIN: 1387 return Attribute::Builtin; 1388 case bitc::ATTR_KIND_BY_VAL: 1389 return Attribute::ByVal; 1390 case bitc::ATTR_KIND_IN_ALLOCA: 1391 return Attribute::InAlloca; 1392 case bitc::ATTR_KIND_COLD: 1393 return Attribute::Cold; 1394 case bitc::ATTR_KIND_CONVERGENT: 1395 return Attribute::Convergent; 1396 case bitc::ATTR_KIND_DISABLE_SANITIZER_INSTRUMENTATION: 1397 return Attribute::DisableSanitizerInstrumentation; 1398 case bitc::ATTR_KIND_ELEMENTTYPE: 1399 return Attribute::ElementType; 1400 case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY: 1401 return Attribute::InaccessibleMemOnly; 1402 case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY: 1403 return Attribute::InaccessibleMemOrArgMemOnly; 1404 case bitc::ATTR_KIND_INLINE_HINT: 1405 return Attribute::InlineHint; 1406 case bitc::ATTR_KIND_IN_REG: 1407 return Attribute::InReg; 1408 case bitc::ATTR_KIND_JUMP_TABLE: 1409 return Attribute::JumpTable; 1410 case bitc::ATTR_KIND_MIN_SIZE: 1411 return Attribute::MinSize; 1412 case bitc::ATTR_KIND_NAKED: 1413 return Attribute::Naked; 1414 case bitc::ATTR_KIND_NEST: 1415 return Attribute::Nest; 1416 case bitc::ATTR_KIND_NO_ALIAS: 1417 return Attribute::NoAlias; 1418 case bitc::ATTR_KIND_NO_BUILTIN: 1419 return Attribute::NoBuiltin; 1420 case bitc::ATTR_KIND_NO_CALLBACK: 1421 return Attribute::NoCallback; 1422 case bitc::ATTR_KIND_NO_CAPTURE: 1423 return Attribute::NoCapture; 1424 case bitc::ATTR_KIND_NO_DUPLICATE: 1425 return Attribute::NoDuplicate; 1426 case bitc::ATTR_KIND_NOFREE: 1427 return Attribute::NoFree; 1428 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: 1429 return Attribute::NoImplicitFloat; 1430 case bitc::ATTR_KIND_NO_INLINE: 1431 return Attribute::NoInline; 1432 case bitc::ATTR_KIND_NO_RECURSE: 1433 return Attribute::NoRecurse; 1434 case bitc::ATTR_KIND_NO_MERGE: 1435 return Attribute::NoMerge; 1436 case bitc::ATTR_KIND_NON_LAZY_BIND: 1437 return Attribute::NonLazyBind; 1438 case bitc::ATTR_KIND_NON_NULL: 1439 return Attribute::NonNull; 1440 case bitc::ATTR_KIND_DEREFERENCEABLE: 1441 return Attribute::Dereferenceable; 1442 case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL: 1443 return Attribute::DereferenceableOrNull; 1444 case bitc::ATTR_KIND_ALLOC_SIZE: 1445 return Attribute::AllocSize; 1446 case bitc::ATTR_KIND_NO_RED_ZONE: 1447 return Attribute::NoRedZone; 1448 case bitc::ATTR_KIND_NO_RETURN: 1449 return Attribute::NoReturn; 1450 case bitc::ATTR_KIND_NOSYNC: 1451 return Attribute::NoSync; 1452 case bitc::ATTR_KIND_NOCF_CHECK: 1453 return Attribute::NoCfCheck; 1454 case bitc::ATTR_KIND_NO_PROFILE: 1455 return Attribute::NoProfile; 1456 case bitc::ATTR_KIND_NO_UNWIND: 1457 return Attribute::NoUnwind; 1458 case bitc::ATTR_KIND_NO_SANITIZE_COVERAGE: 1459 return Attribute::NoSanitizeCoverage; 1460 case bitc::ATTR_KIND_NULL_POINTER_IS_VALID: 1461 return Attribute::NullPointerIsValid; 1462 case bitc::ATTR_KIND_OPT_FOR_FUZZING: 1463 return Attribute::OptForFuzzing; 1464 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: 1465 return Attribute::OptimizeForSize; 1466 case bitc::ATTR_KIND_OPTIMIZE_NONE: 1467 return Attribute::OptimizeNone; 1468 case bitc::ATTR_KIND_READ_NONE: 1469 return Attribute::ReadNone; 1470 case bitc::ATTR_KIND_READ_ONLY: 1471 return Attribute::ReadOnly; 1472 case bitc::ATTR_KIND_RETURNED: 1473 return Attribute::Returned; 1474 case bitc::ATTR_KIND_RETURNS_TWICE: 1475 return Attribute::ReturnsTwice; 1476 case bitc::ATTR_KIND_S_EXT: 1477 return Attribute::SExt; 1478 case bitc::ATTR_KIND_SPECULATABLE: 1479 return Attribute::Speculatable; 1480 case bitc::ATTR_KIND_STACK_ALIGNMENT: 1481 return Attribute::StackAlignment; 1482 case bitc::ATTR_KIND_STACK_PROTECT: 1483 return Attribute::StackProtect; 1484 case bitc::ATTR_KIND_STACK_PROTECT_REQ: 1485 return Attribute::StackProtectReq; 1486 case bitc::ATTR_KIND_STACK_PROTECT_STRONG: 1487 return Attribute::StackProtectStrong; 1488 case bitc::ATTR_KIND_SAFESTACK: 1489 return Attribute::SafeStack; 1490 case bitc::ATTR_KIND_SHADOWCALLSTACK: 1491 return Attribute::ShadowCallStack; 1492 case bitc::ATTR_KIND_STRICT_FP: 1493 return Attribute::StrictFP; 1494 case bitc::ATTR_KIND_STRUCT_RET: 1495 return Attribute::StructRet; 1496 case bitc::ATTR_KIND_SANITIZE_ADDRESS: 1497 return Attribute::SanitizeAddress; 1498 case bitc::ATTR_KIND_SANITIZE_HWADDRESS: 1499 return Attribute::SanitizeHWAddress; 1500 case bitc::ATTR_KIND_SANITIZE_THREAD: 1501 return Attribute::SanitizeThread; 1502 case bitc::ATTR_KIND_SANITIZE_MEMORY: 1503 return Attribute::SanitizeMemory; 1504 case bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING: 1505 return Attribute::SpeculativeLoadHardening; 1506 case bitc::ATTR_KIND_SWIFT_ERROR: 1507 return Attribute::SwiftError; 1508 case bitc::ATTR_KIND_SWIFT_SELF: 1509 return Attribute::SwiftSelf; 1510 case bitc::ATTR_KIND_SWIFT_ASYNC: 1511 return Attribute::SwiftAsync; 1512 case bitc::ATTR_KIND_UW_TABLE: 1513 return Attribute::UWTable; 1514 case bitc::ATTR_KIND_VSCALE_RANGE: 1515 return Attribute::VScaleRange; 1516 case bitc::ATTR_KIND_WILLRETURN: 1517 return Attribute::WillReturn; 1518 case bitc::ATTR_KIND_WRITEONLY: 1519 return Attribute::WriteOnly; 1520 case bitc::ATTR_KIND_Z_EXT: 1521 return Attribute::ZExt; 1522 case bitc::ATTR_KIND_IMMARG: 1523 return Attribute::ImmArg; 1524 case bitc::ATTR_KIND_SANITIZE_MEMTAG: 1525 return Attribute::SanitizeMemTag; 1526 case bitc::ATTR_KIND_PREALLOCATED: 1527 return Attribute::Preallocated; 1528 case bitc::ATTR_KIND_NOUNDEF: 1529 return Attribute::NoUndef; 1530 case bitc::ATTR_KIND_BYREF: 1531 return Attribute::ByRef; 1532 case bitc::ATTR_KIND_MUSTPROGRESS: 1533 return Attribute::MustProgress; 1534 case bitc::ATTR_KIND_HOT: 1535 return Attribute::Hot; 1536 } 1537 } 1538 1539 Error BitcodeReader::parseAlignmentValue(uint64_t Exponent, 1540 MaybeAlign &Alignment) { 1541 // Note: Alignment in bitcode files is incremented by 1, so that zero 1542 // can be used for default alignment. 1543 if (Exponent > Value::MaxAlignmentExponent + 1) 1544 return error("Invalid alignment value"); 1545 Alignment = decodeMaybeAlign(Exponent); 1546 return Error::success(); 1547 } 1548 1549 Error BitcodeReader::parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind) { 1550 *Kind = getAttrFromCode(Code); 1551 if (*Kind == Attribute::None) 1552 return error("Unknown attribute kind (" + Twine(Code) + ")"); 1553 return Error::success(); 1554 } 1555 1556 Error BitcodeReader::parseAttributeGroupBlock() { 1557 if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) 1558 return Err; 1559 1560 if (!MAttributeGroups.empty()) 1561 return error("Invalid multiple blocks"); 1562 1563 SmallVector<uint64_t, 64> Record; 1564 1565 // Read all the records. 1566 while (true) { 1567 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1568 if (!MaybeEntry) 1569 return MaybeEntry.takeError(); 1570 BitstreamEntry Entry = MaybeEntry.get(); 1571 1572 switch (Entry.Kind) { 1573 case BitstreamEntry::SubBlock: // Handled for us already. 1574 case BitstreamEntry::Error: 1575 return error("Malformed block"); 1576 case BitstreamEntry::EndBlock: 1577 return Error::success(); 1578 case BitstreamEntry::Record: 1579 // The interesting case. 1580 break; 1581 } 1582 1583 // Read a record. 1584 Record.clear(); 1585 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1586 if (!MaybeRecord) 1587 return MaybeRecord.takeError(); 1588 switch (MaybeRecord.get()) { 1589 default: // Default behavior: ignore. 1590 break; 1591 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] 1592 if (Record.size() < 3) 1593 return error("Invalid record"); 1594 1595 uint64_t GrpID = Record[0]; 1596 uint64_t Idx = Record[1]; // Index of the object this attribute refers to. 1597 1598 AttrBuilder B; 1599 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1600 if (Record[i] == 0) { // Enum attribute 1601 Attribute::AttrKind Kind; 1602 if (Error Err = parseAttrKind(Record[++i], &Kind)) 1603 return Err; 1604 1605 // Upgrade old-style byval attribute to one with a type, even if it's 1606 // nullptr. We will have to insert the real type when we associate 1607 // this AttributeList with a function. 1608 if (Kind == Attribute::ByVal) 1609 B.addByValAttr(nullptr); 1610 else if (Kind == Attribute::StructRet) 1611 B.addStructRetAttr(nullptr); 1612 else if (Kind == Attribute::InAlloca) 1613 B.addInAllocaAttr(nullptr); 1614 else if (Attribute::isEnumAttrKind(Kind)) 1615 B.addAttribute(Kind); 1616 else 1617 return error("Not an enum attribute"); 1618 } else if (Record[i] == 1) { // Integer attribute 1619 Attribute::AttrKind Kind; 1620 if (Error Err = parseAttrKind(Record[++i], &Kind)) 1621 return Err; 1622 if (!Attribute::isIntAttrKind(Kind)) 1623 return error("Not an int attribute"); 1624 if (Kind == Attribute::Alignment) 1625 B.addAlignmentAttr(Record[++i]); 1626 else if (Kind == Attribute::StackAlignment) 1627 B.addStackAlignmentAttr(Record[++i]); 1628 else if (Kind == Attribute::Dereferenceable) 1629 B.addDereferenceableAttr(Record[++i]); 1630 else if (Kind == Attribute::DereferenceableOrNull) 1631 B.addDereferenceableOrNullAttr(Record[++i]); 1632 else if (Kind == Attribute::AllocSize) 1633 B.addAllocSizeAttrFromRawRepr(Record[++i]); 1634 else if (Kind == Attribute::VScaleRange) 1635 B.addVScaleRangeAttrFromRawRepr(Record[++i]); 1636 } else if (Record[i] == 3 || Record[i] == 4) { // String attribute 1637 bool HasValue = (Record[i++] == 4); 1638 SmallString<64> KindStr; 1639 SmallString<64> ValStr; 1640 1641 while (Record[i] != 0 && i != e) 1642 KindStr += Record[i++]; 1643 assert(Record[i] == 0 && "Kind string not null terminated"); 1644 1645 if (HasValue) { 1646 // Has a value associated with it. 1647 ++i; // Skip the '0' that terminates the "kind" string. 1648 while (Record[i] != 0 && i != e) 1649 ValStr += Record[i++]; 1650 assert(Record[i] == 0 && "Value string not null terminated"); 1651 } 1652 1653 B.addAttribute(KindStr.str(), ValStr.str()); 1654 } else { 1655 assert((Record[i] == 5 || Record[i] == 6) && 1656 "Invalid attribute group entry"); 1657 bool HasType = Record[i] == 6; 1658 Attribute::AttrKind Kind; 1659 if (Error Err = parseAttrKind(Record[++i], &Kind)) 1660 return Err; 1661 if (!Attribute::isTypeAttrKind(Kind)) 1662 return error("Not a type attribute"); 1663 1664 B.addTypeAttr(Kind, HasType ? getTypeByID(Record[++i]) : nullptr); 1665 } 1666 } 1667 1668 UpgradeAttributes(B); 1669 MAttributeGroups[GrpID] = AttributeList::get(Context, Idx, B); 1670 break; 1671 } 1672 } 1673 } 1674 } 1675 1676 Error BitcodeReader::parseTypeTable() { 1677 if (Error Err = Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 1678 return Err; 1679 1680 return parseTypeTableBody(); 1681 } 1682 1683 Error BitcodeReader::parseTypeTableBody() { 1684 if (!TypeList.empty()) 1685 return error("Invalid multiple blocks"); 1686 1687 SmallVector<uint64_t, 64> Record; 1688 unsigned NumRecords = 0; 1689 1690 SmallString<64> TypeName; 1691 1692 // Read all the records for this type table. 1693 while (true) { 1694 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1695 if (!MaybeEntry) 1696 return MaybeEntry.takeError(); 1697 BitstreamEntry Entry = MaybeEntry.get(); 1698 1699 switch (Entry.Kind) { 1700 case BitstreamEntry::SubBlock: // Handled for us already. 1701 case BitstreamEntry::Error: 1702 return error("Malformed block"); 1703 case BitstreamEntry::EndBlock: 1704 if (NumRecords != TypeList.size()) 1705 return error("Malformed block"); 1706 return Error::success(); 1707 case BitstreamEntry::Record: 1708 // The interesting case. 1709 break; 1710 } 1711 1712 // Read a record. 1713 Record.clear(); 1714 Type *ResultTy = nullptr; 1715 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1716 if (!MaybeRecord) 1717 return MaybeRecord.takeError(); 1718 switch (MaybeRecord.get()) { 1719 default: 1720 return error("Invalid value"); 1721 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 1722 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 1723 // type list. This allows us to reserve space. 1724 if (Record.empty()) 1725 return error("Invalid record"); 1726 TypeList.resize(Record[0]); 1727 continue; 1728 case bitc::TYPE_CODE_VOID: // VOID 1729 ResultTy = Type::getVoidTy(Context); 1730 break; 1731 case bitc::TYPE_CODE_HALF: // HALF 1732 ResultTy = Type::getHalfTy(Context); 1733 break; 1734 case bitc::TYPE_CODE_BFLOAT: // BFLOAT 1735 ResultTy = Type::getBFloatTy(Context); 1736 break; 1737 case bitc::TYPE_CODE_FLOAT: // FLOAT 1738 ResultTy = Type::getFloatTy(Context); 1739 break; 1740 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 1741 ResultTy = Type::getDoubleTy(Context); 1742 break; 1743 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 1744 ResultTy = Type::getX86_FP80Ty(Context); 1745 break; 1746 case bitc::TYPE_CODE_FP128: // FP128 1747 ResultTy = Type::getFP128Ty(Context); 1748 break; 1749 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 1750 ResultTy = Type::getPPC_FP128Ty(Context); 1751 break; 1752 case bitc::TYPE_CODE_LABEL: // LABEL 1753 ResultTy = Type::getLabelTy(Context); 1754 break; 1755 case bitc::TYPE_CODE_METADATA: // METADATA 1756 ResultTy = Type::getMetadataTy(Context); 1757 break; 1758 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 1759 ResultTy = Type::getX86_MMXTy(Context); 1760 break; 1761 case bitc::TYPE_CODE_X86_AMX: // X86_AMX 1762 ResultTy = Type::getX86_AMXTy(Context); 1763 break; 1764 case bitc::TYPE_CODE_TOKEN: // TOKEN 1765 ResultTy = Type::getTokenTy(Context); 1766 break; 1767 case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width] 1768 if (Record.empty()) 1769 return error("Invalid record"); 1770 1771 uint64_t NumBits = Record[0]; 1772 if (NumBits < IntegerType::MIN_INT_BITS || 1773 NumBits > IntegerType::MAX_INT_BITS) 1774 return error("Bitwidth for integer type out of range"); 1775 ResultTy = IntegerType::get(Context, NumBits); 1776 break; 1777 } 1778 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 1779 // [pointee type, address space] 1780 if (Record.empty()) 1781 return error("Invalid record"); 1782 unsigned AddressSpace = 0; 1783 if (Record.size() == 2) 1784 AddressSpace = Record[1]; 1785 ResultTy = getTypeByID(Record[0]); 1786 if (!ResultTy || 1787 !PointerType::isValidElementType(ResultTy)) 1788 return error("Invalid type"); 1789 ResultTy = PointerType::get(ResultTy, AddressSpace); 1790 break; 1791 } 1792 case bitc::TYPE_CODE_OPAQUE_POINTER: { // OPAQUE_POINTER: [addrspace] 1793 if (Record.size() != 1) 1794 return error("Invalid record"); 1795 unsigned AddressSpace = Record[0]; 1796 ResultTy = PointerType::get(Context, AddressSpace); 1797 break; 1798 } 1799 case bitc::TYPE_CODE_FUNCTION_OLD: { 1800 // Deprecated, but still needed to read old bitcode files. 1801 // FUNCTION: [vararg, attrid, retty, paramty x N] 1802 if (Record.size() < 3) 1803 return error("Invalid record"); 1804 SmallVector<Type*, 8> ArgTys; 1805 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 1806 if (Type *T = getTypeByID(Record[i])) 1807 ArgTys.push_back(T); 1808 else 1809 break; 1810 } 1811 1812 ResultTy = getTypeByID(Record[2]); 1813 if (!ResultTy || ArgTys.size() < Record.size()-3) 1814 return error("Invalid type"); 1815 1816 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1817 break; 1818 } 1819 case bitc::TYPE_CODE_FUNCTION: { 1820 // FUNCTION: [vararg, retty, paramty x N] 1821 if (Record.size() < 2) 1822 return error("Invalid record"); 1823 SmallVector<Type*, 8> ArgTys; 1824 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1825 if (Type *T = getTypeByID(Record[i])) { 1826 if (!FunctionType::isValidArgumentType(T)) 1827 return error("Invalid function argument type"); 1828 ArgTys.push_back(T); 1829 } 1830 else 1831 break; 1832 } 1833 1834 ResultTy = getTypeByID(Record[1]); 1835 if (!ResultTy || ArgTys.size() < Record.size()-2) 1836 return error("Invalid type"); 1837 1838 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1839 break; 1840 } 1841 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 1842 if (Record.empty()) 1843 return error("Invalid record"); 1844 SmallVector<Type*, 8> EltTys; 1845 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1846 if (Type *T = getTypeByID(Record[i])) 1847 EltTys.push_back(T); 1848 else 1849 break; 1850 } 1851 if (EltTys.size() != Record.size()-1) 1852 return error("Invalid type"); 1853 ResultTy = StructType::get(Context, EltTys, Record[0]); 1854 break; 1855 } 1856 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 1857 if (convertToString(Record, 0, TypeName)) 1858 return error("Invalid record"); 1859 continue; 1860 1861 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 1862 if (Record.empty()) 1863 return error("Invalid record"); 1864 1865 if (NumRecords >= TypeList.size()) 1866 return error("Invalid TYPE table"); 1867 1868 // Check to see if this was forward referenced, if so fill in the temp. 1869 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1870 if (Res) { 1871 Res->setName(TypeName); 1872 TypeList[NumRecords] = nullptr; 1873 } else // Otherwise, create a new struct. 1874 Res = createIdentifiedStructType(Context, TypeName); 1875 TypeName.clear(); 1876 1877 SmallVector<Type*, 8> EltTys; 1878 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1879 if (Type *T = getTypeByID(Record[i])) 1880 EltTys.push_back(T); 1881 else 1882 break; 1883 } 1884 if (EltTys.size() != Record.size()-1) 1885 return error("Invalid record"); 1886 Res->setBody(EltTys, Record[0]); 1887 ResultTy = Res; 1888 break; 1889 } 1890 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 1891 if (Record.size() != 1) 1892 return error("Invalid record"); 1893 1894 if (NumRecords >= TypeList.size()) 1895 return error("Invalid TYPE table"); 1896 1897 // Check to see if this was forward referenced, if so fill in the temp. 1898 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1899 if (Res) { 1900 Res->setName(TypeName); 1901 TypeList[NumRecords] = nullptr; 1902 } else // Otherwise, create a new struct with no body. 1903 Res = createIdentifiedStructType(Context, TypeName); 1904 TypeName.clear(); 1905 ResultTy = Res; 1906 break; 1907 } 1908 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 1909 if (Record.size() < 2) 1910 return error("Invalid record"); 1911 ResultTy = getTypeByID(Record[1]); 1912 if (!ResultTy || !ArrayType::isValidElementType(ResultTy)) 1913 return error("Invalid type"); 1914 ResultTy = ArrayType::get(ResultTy, Record[0]); 1915 break; 1916 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] or 1917 // [numelts, eltty, scalable] 1918 if (Record.size() < 2) 1919 return error("Invalid record"); 1920 if (Record[0] == 0) 1921 return error("Invalid vector length"); 1922 ResultTy = getTypeByID(Record[1]); 1923 if (!ResultTy || !StructType::isValidElementType(ResultTy)) 1924 return error("Invalid type"); 1925 bool Scalable = Record.size() > 2 ? Record[2] : false; 1926 ResultTy = VectorType::get(ResultTy, Record[0], Scalable); 1927 break; 1928 } 1929 1930 if (NumRecords >= TypeList.size()) 1931 return error("Invalid TYPE table"); 1932 if (TypeList[NumRecords]) 1933 return error( 1934 "Invalid TYPE table: Only named structs can be forward referenced"); 1935 assert(ResultTy && "Didn't read a type?"); 1936 TypeList[NumRecords++] = ResultTy; 1937 } 1938 } 1939 1940 Error BitcodeReader::parseOperandBundleTags() { 1941 if (Error Err = Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID)) 1942 return Err; 1943 1944 if (!BundleTags.empty()) 1945 return error("Invalid multiple blocks"); 1946 1947 SmallVector<uint64_t, 64> Record; 1948 1949 while (true) { 1950 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1951 if (!MaybeEntry) 1952 return MaybeEntry.takeError(); 1953 BitstreamEntry Entry = MaybeEntry.get(); 1954 1955 switch (Entry.Kind) { 1956 case BitstreamEntry::SubBlock: // Handled for us already. 1957 case BitstreamEntry::Error: 1958 return error("Malformed block"); 1959 case BitstreamEntry::EndBlock: 1960 return Error::success(); 1961 case BitstreamEntry::Record: 1962 // The interesting case. 1963 break; 1964 } 1965 1966 // Tags are implicitly mapped to integers by their order. 1967 1968 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1969 if (!MaybeRecord) 1970 return MaybeRecord.takeError(); 1971 if (MaybeRecord.get() != bitc::OPERAND_BUNDLE_TAG) 1972 return error("Invalid record"); 1973 1974 // OPERAND_BUNDLE_TAG: [strchr x N] 1975 BundleTags.emplace_back(); 1976 if (convertToString(Record, 0, BundleTags.back())) 1977 return error("Invalid record"); 1978 Record.clear(); 1979 } 1980 } 1981 1982 Error BitcodeReader::parseSyncScopeNames() { 1983 if (Error Err = Stream.EnterSubBlock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID)) 1984 return Err; 1985 1986 if (!SSIDs.empty()) 1987 return error("Invalid multiple synchronization scope names blocks"); 1988 1989 SmallVector<uint64_t, 64> Record; 1990 while (true) { 1991 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1992 if (!MaybeEntry) 1993 return MaybeEntry.takeError(); 1994 BitstreamEntry Entry = MaybeEntry.get(); 1995 1996 switch (Entry.Kind) { 1997 case BitstreamEntry::SubBlock: // Handled for us already. 1998 case BitstreamEntry::Error: 1999 return error("Malformed block"); 2000 case BitstreamEntry::EndBlock: 2001 if (SSIDs.empty()) 2002 return error("Invalid empty synchronization scope names block"); 2003 return Error::success(); 2004 case BitstreamEntry::Record: 2005 // The interesting case. 2006 break; 2007 } 2008 2009 // Synchronization scope names are implicitly mapped to synchronization 2010 // scope IDs by their order. 2011 2012 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2013 if (!MaybeRecord) 2014 return MaybeRecord.takeError(); 2015 if (MaybeRecord.get() != bitc::SYNC_SCOPE_NAME) 2016 return error("Invalid record"); 2017 2018 SmallString<16> SSN; 2019 if (convertToString(Record, 0, SSN)) 2020 return error("Invalid record"); 2021 2022 SSIDs.push_back(Context.getOrInsertSyncScopeID(SSN)); 2023 Record.clear(); 2024 } 2025 } 2026 2027 /// Associate a value with its name from the given index in the provided record. 2028 Expected<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record, 2029 unsigned NameIndex, Triple &TT) { 2030 SmallString<128> ValueName; 2031 if (convertToString(Record, NameIndex, ValueName)) 2032 return error("Invalid record"); 2033 unsigned ValueID = Record[0]; 2034 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 2035 return error("Invalid record"); 2036 Value *V = ValueList[ValueID]; 2037 2038 StringRef NameStr(ValueName.data(), ValueName.size()); 2039 if (NameStr.find_first_of(0) != StringRef::npos) 2040 return error("Invalid value name"); 2041 V->setName(NameStr); 2042 auto *GO = dyn_cast<GlobalObject>(V); 2043 if (GO) { 2044 if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) { 2045 if (TT.supportsCOMDAT()) 2046 GO->setComdat(TheModule->getOrInsertComdat(V->getName())); 2047 else 2048 GO->setComdat(nullptr); 2049 } 2050 } 2051 return V; 2052 } 2053 2054 /// Helper to note and return the current location, and jump to the given 2055 /// offset. 2056 static Expected<uint64_t> jumpToValueSymbolTable(uint64_t Offset, 2057 BitstreamCursor &Stream) { 2058 // Save the current parsing location so we can jump back at the end 2059 // of the VST read. 2060 uint64_t CurrentBit = Stream.GetCurrentBitNo(); 2061 if (Error JumpFailed = Stream.JumpToBit(Offset * 32)) 2062 return std::move(JumpFailed); 2063 Expected<BitstreamEntry> MaybeEntry = Stream.advance(); 2064 if (!MaybeEntry) 2065 return MaybeEntry.takeError(); 2066 assert(MaybeEntry.get().Kind == BitstreamEntry::SubBlock); 2067 assert(MaybeEntry.get().ID == bitc::VALUE_SYMTAB_BLOCK_ID); 2068 return CurrentBit; 2069 } 2070 2071 void BitcodeReader::setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, 2072 Function *F, 2073 ArrayRef<uint64_t> Record) { 2074 // Note that we subtract 1 here because the offset is relative to one word 2075 // before the start of the identification or module block, which was 2076 // historically always the start of the regular bitcode header. 2077 uint64_t FuncWordOffset = Record[1] - 1; 2078 uint64_t FuncBitOffset = FuncWordOffset * 32; 2079 DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta; 2080 // Set the LastFunctionBlockBit to point to the last function block. 2081 // Later when parsing is resumed after function materialization, 2082 // we can simply skip that last function block. 2083 if (FuncBitOffset > LastFunctionBlockBit) 2084 LastFunctionBlockBit = FuncBitOffset; 2085 } 2086 2087 /// Read a new-style GlobalValue symbol table. 2088 Error BitcodeReader::parseGlobalValueSymbolTable() { 2089 unsigned FuncBitcodeOffsetDelta = 2090 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 2091 2092 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 2093 return Err; 2094 2095 SmallVector<uint64_t, 64> Record; 2096 while (true) { 2097 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2098 if (!MaybeEntry) 2099 return MaybeEntry.takeError(); 2100 BitstreamEntry Entry = MaybeEntry.get(); 2101 2102 switch (Entry.Kind) { 2103 case BitstreamEntry::SubBlock: 2104 case BitstreamEntry::Error: 2105 return error("Malformed block"); 2106 case BitstreamEntry::EndBlock: 2107 return Error::success(); 2108 case BitstreamEntry::Record: 2109 break; 2110 } 2111 2112 Record.clear(); 2113 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2114 if (!MaybeRecord) 2115 return MaybeRecord.takeError(); 2116 switch (MaybeRecord.get()) { 2117 case bitc::VST_CODE_FNENTRY: // [valueid, offset] 2118 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, 2119 cast<Function>(ValueList[Record[0]]), Record); 2120 break; 2121 } 2122 } 2123 } 2124 2125 /// Parse the value symbol table at either the current parsing location or 2126 /// at the given bit offset if provided. 2127 Error BitcodeReader::parseValueSymbolTable(uint64_t Offset) { 2128 uint64_t CurrentBit; 2129 // Pass in the Offset to distinguish between calling for the module-level 2130 // VST (where we want to jump to the VST offset) and the function-level 2131 // VST (where we don't). 2132 if (Offset > 0) { 2133 Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream); 2134 if (!MaybeCurrentBit) 2135 return MaybeCurrentBit.takeError(); 2136 CurrentBit = MaybeCurrentBit.get(); 2137 // If this module uses a string table, read this as a module-level VST. 2138 if (UseStrtab) { 2139 if (Error Err = parseGlobalValueSymbolTable()) 2140 return Err; 2141 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 2142 return JumpFailed; 2143 return Error::success(); 2144 } 2145 // Otherwise, the VST will be in a similar format to a function-level VST, 2146 // and will contain symbol names. 2147 } 2148 2149 // Compute the delta between the bitcode indices in the VST (the word offset 2150 // to the word-aligned ENTER_SUBBLOCK for the function block, and that 2151 // expected by the lazy reader. The reader's EnterSubBlock expects to have 2152 // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID 2153 // (size BlockIDWidth). Note that we access the stream's AbbrevID width here 2154 // just before entering the VST subblock because: 1) the EnterSubBlock 2155 // changes the AbbrevID width; 2) the VST block is nested within the same 2156 // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same 2157 // AbbrevID width before calling EnterSubBlock; and 3) when we want to 2158 // jump to the FUNCTION_BLOCK using this offset later, we don't want 2159 // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK. 2160 unsigned FuncBitcodeOffsetDelta = 2161 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 2162 2163 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 2164 return Err; 2165 2166 SmallVector<uint64_t, 64> Record; 2167 2168 Triple TT(TheModule->getTargetTriple()); 2169 2170 // Read all the records for this value table. 2171 SmallString<128> ValueName; 2172 2173 while (true) { 2174 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2175 if (!MaybeEntry) 2176 return MaybeEntry.takeError(); 2177 BitstreamEntry Entry = MaybeEntry.get(); 2178 2179 switch (Entry.Kind) { 2180 case BitstreamEntry::SubBlock: // Handled for us already. 2181 case BitstreamEntry::Error: 2182 return error("Malformed block"); 2183 case BitstreamEntry::EndBlock: 2184 if (Offset > 0) 2185 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 2186 return JumpFailed; 2187 return Error::success(); 2188 case BitstreamEntry::Record: 2189 // The interesting case. 2190 break; 2191 } 2192 2193 // Read a record. 2194 Record.clear(); 2195 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2196 if (!MaybeRecord) 2197 return MaybeRecord.takeError(); 2198 switch (MaybeRecord.get()) { 2199 default: // Default behavior: unknown type. 2200 break; 2201 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 2202 Expected<Value *> ValOrErr = recordValue(Record, 1, TT); 2203 if (Error Err = ValOrErr.takeError()) 2204 return Err; 2205 ValOrErr.get(); 2206 break; 2207 } 2208 case bitc::VST_CODE_FNENTRY: { 2209 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 2210 Expected<Value *> ValOrErr = recordValue(Record, 2, TT); 2211 if (Error Err = ValOrErr.takeError()) 2212 return Err; 2213 Value *V = ValOrErr.get(); 2214 2215 // Ignore function offsets emitted for aliases of functions in older 2216 // versions of LLVM. 2217 if (auto *F = dyn_cast<Function>(V)) 2218 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, F, Record); 2219 break; 2220 } 2221 case bitc::VST_CODE_BBENTRY: { 2222 if (convertToString(Record, 1, ValueName)) 2223 return error("Invalid record"); 2224 BasicBlock *BB = getBasicBlock(Record[0]); 2225 if (!BB) 2226 return error("Invalid record"); 2227 2228 BB->setName(StringRef(ValueName.data(), ValueName.size())); 2229 ValueName.clear(); 2230 break; 2231 } 2232 } 2233 } 2234 } 2235 2236 /// Decode a signed value stored with the sign bit in the LSB for dense VBR 2237 /// encoding. 2238 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { 2239 if ((V & 1) == 0) 2240 return V >> 1; 2241 if (V != 1) 2242 return -(V >> 1); 2243 // There is no such thing as -0 with integers. "-0" really means MININT. 2244 return 1ULL << 63; 2245 } 2246 2247 /// Resolve all of the initializers for global values and aliases that we can. 2248 Error BitcodeReader::resolveGlobalAndIndirectSymbolInits() { 2249 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInitWorklist; 2250 std::vector<std::pair<GlobalIndirectSymbol *, unsigned>> 2251 IndirectSymbolInitWorklist; 2252 std::vector<FunctionOperandInfo> FunctionOperandWorklist; 2253 2254 GlobalInitWorklist.swap(GlobalInits); 2255 IndirectSymbolInitWorklist.swap(IndirectSymbolInits); 2256 FunctionOperandWorklist.swap(FunctionOperands); 2257 2258 while (!GlobalInitWorklist.empty()) { 2259 unsigned ValID = GlobalInitWorklist.back().second; 2260 if (ValID >= ValueList.size()) { 2261 // Not ready to resolve this yet, it requires something later in the file. 2262 GlobalInits.push_back(GlobalInitWorklist.back()); 2263 } else { 2264 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2265 GlobalInitWorklist.back().first->setInitializer(C); 2266 else 2267 return error("Expected a constant"); 2268 } 2269 GlobalInitWorklist.pop_back(); 2270 } 2271 2272 while (!IndirectSymbolInitWorklist.empty()) { 2273 unsigned ValID = IndirectSymbolInitWorklist.back().second; 2274 if (ValID >= ValueList.size()) { 2275 IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back()); 2276 } else { 2277 Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]); 2278 if (!C) 2279 return error("Expected a constant"); 2280 GlobalIndirectSymbol *GIS = IndirectSymbolInitWorklist.back().first; 2281 if (isa<GlobalAlias>(GIS) && C->getType() != GIS->getType()) 2282 return error("Alias and aliasee types don't match"); 2283 GIS->setIndirectSymbol(C); 2284 } 2285 IndirectSymbolInitWorklist.pop_back(); 2286 } 2287 2288 while (!FunctionOperandWorklist.empty()) { 2289 FunctionOperandInfo &Info = FunctionOperandWorklist.back(); 2290 if (Info.PersonalityFn) { 2291 unsigned ValID = Info.PersonalityFn - 1; 2292 if (ValID < ValueList.size()) { 2293 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2294 Info.F->setPersonalityFn(C); 2295 else 2296 return error("Expected a constant"); 2297 Info.PersonalityFn = 0; 2298 } 2299 } 2300 if (Info.Prefix) { 2301 unsigned ValID = Info.Prefix - 1; 2302 if (ValID < ValueList.size()) { 2303 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2304 Info.F->setPrefixData(C); 2305 else 2306 return error("Expected a constant"); 2307 Info.Prefix = 0; 2308 } 2309 } 2310 if (Info.Prologue) { 2311 unsigned ValID = Info.Prologue - 1; 2312 if (ValID < ValueList.size()) { 2313 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2314 Info.F->setPrologueData(C); 2315 else 2316 return error("Expected a constant"); 2317 Info.Prologue = 0; 2318 } 2319 } 2320 if (Info.PersonalityFn || Info.Prefix || Info.Prologue) 2321 FunctionOperands.push_back(Info); 2322 FunctionOperandWorklist.pop_back(); 2323 } 2324 2325 return Error::success(); 2326 } 2327 2328 APInt llvm::readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { 2329 SmallVector<uint64_t, 8> Words(Vals.size()); 2330 transform(Vals, Words.begin(), 2331 BitcodeReader::decodeSignRotatedValue); 2332 2333 return APInt(TypeBits, Words); 2334 } 2335 2336 Error BitcodeReader::parseConstants() { 2337 if (Error Err = Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 2338 return Err; 2339 2340 SmallVector<uint64_t, 64> Record; 2341 2342 // Read all the records for this value table. 2343 Type *CurTy = Type::getInt32Ty(Context); 2344 unsigned NextCstNo = ValueList.size(); 2345 2346 struct DelayedShufTy { 2347 VectorType *OpTy; 2348 VectorType *RTy; 2349 uint64_t Op0Idx; 2350 uint64_t Op1Idx; 2351 uint64_t Op2Idx; 2352 unsigned CstNo; 2353 }; 2354 std::vector<DelayedShufTy> DelayedShuffles; 2355 while (true) { 2356 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2357 if (!MaybeEntry) 2358 return MaybeEntry.takeError(); 2359 BitstreamEntry Entry = MaybeEntry.get(); 2360 2361 switch (Entry.Kind) { 2362 case BitstreamEntry::SubBlock: // Handled for us already. 2363 case BitstreamEntry::Error: 2364 return error("Malformed block"); 2365 case BitstreamEntry::EndBlock: 2366 // Once all the constants have been read, go through and resolve forward 2367 // references. 2368 // 2369 // We have to treat shuffles specially because they don't have three 2370 // operands anymore. We need to convert the shuffle mask into an array, 2371 // and we can't convert a forward reference. 2372 for (auto &DelayedShuffle : DelayedShuffles) { 2373 VectorType *OpTy = DelayedShuffle.OpTy; 2374 VectorType *RTy = DelayedShuffle.RTy; 2375 uint64_t Op0Idx = DelayedShuffle.Op0Idx; 2376 uint64_t Op1Idx = DelayedShuffle.Op1Idx; 2377 uint64_t Op2Idx = DelayedShuffle.Op2Idx; 2378 uint64_t CstNo = DelayedShuffle.CstNo; 2379 Constant *Op0 = ValueList.getConstantFwdRef(Op0Idx, OpTy); 2380 Constant *Op1 = ValueList.getConstantFwdRef(Op1Idx, OpTy); 2381 Type *ShufTy = 2382 VectorType::get(Type::getInt32Ty(Context), RTy->getElementCount()); 2383 Constant *Op2 = ValueList.getConstantFwdRef(Op2Idx, ShufTy); 2384 if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2)) 2385 return error("Invalid shufflevector operands"); 2386 SmallVector<int, 16> Mask; 2387 ShuffleVectorInst::getShuffleMask(Op2, Mask); 2388 Value *V = ConstantExpr::getShuffleVector(Op0, Op1, Mask); 2389 ValueList.assignValue(V, CstNo); 2390 } 2391 2392 if (NextCstNo != ValueList.size()) 2393 return error("Invalid constant reference"); 2394 2395 ValueList.resolveConstantForwardRefs(); 2396 return Error::success(); 2397 case BitstreamEntry::Record: 2398 // The interesting case. 2399 break; 2400 } 2401 2402 // Read a record. 2403 Record.clear(); 2404 Type *VoidType = Type::getVoidTy(Context); 2405 Value *V = nullptr; 2406 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 2407 if (!MaybeBitCode) 2408 return MaybeBitCode.takeError(); 2409 switch (unsigned BitCode = MaybeBitCode.get()) { 2410 default: // Default behavior: unknown constant 2411 case bitc::CST_CODE_UNDEF: // UNDEF 2412 V = UndefValue::get(CurTy); 2413 break; 2414 case bitc::CST_CODE_POISON: // POISON 2415 V = PoisonValue::get(CurTy); 2416 break; 2417 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 2418 if (Record.empty()) 2419 return error("Invalid record"); 2420 if (Record[0] >= TypeList.size() || !TypeList[Record[0]]) 2421 return error("Invalid record"); 2422 if (TypeList[Record[0]] == VoidType) 2423 return error("Invalid constant type"); 2424 CurTy = TypeList[Record[0]]; 2425 continue; // Skip the ValueList manipulation. 2426 case bitc::CST_CODE_NULL: // NULL 2427 if (CurTy->isVoidTy() || CurTy->isFunctionTy() || CurTy->isLabelTy()) 2428 return error("Invalid type for a constant null value"); 2429 V = Constant::getNullValue(CurTy); 2430 break; 2431 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 2432 if (!CurTy->isIntegerTy() || Record.empty()) 2433 return error("Invalid record"); 2434 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); 2435 break; 2436 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 2437 if (!CurTy->isIntegerTy() || Record.empty()) 2438 return error("Invalid record"); 2439 2440 APInt VInt = 2441 readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth()); 2442 V = ConstantInt::get(Context, VInt); 2443 2444 break; 2445 } 2446 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 2447 if (Record.empty()) 2448 return error("Invalid record"); 2449 if (CurTy->isHalfTy()) 2450 V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf(), 2451 APInt(16, (uint16_t)Record[0]))); 2452 else if (CurTy->isBFloatTy()) 2453 V = ConstantFP::get(Context, APFloat(APFloat::BFloat(), 2454 APInt(16, (uint32_t)Record[0]))); 2455 else if (CurTy->isFloatTy()) 2456 V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle(), 2457 APInt(32, (uint32_t)Record[0]))); 2458 else if (CurTy->isDoubleTy()) 2459 V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble(), 2460 APInt(64, Record[0]))); 2461 else if (CurTy->isX86_FP80Ty()) { 2462 // Bits are not stored the same way as a normal i80 APInt, compensate. 2463 uint64_t Rearrange[2]; 2464 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 2465 Rearrange[1] = Record[0] >> 48; 2466 V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended(), 2467 APInt(80, Rearrange))); 2468 } else if (CurTy->isFP128Ty()) 2469 V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad(), 2470 APInt(128, Record))); 2471 else if (CurTy->isPPC_FP128Ty()) 2472 V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble(), 2473 APInt(128, Record))); 2474 else 2475 V = UndefValue::get(CurTy); 2476 break; 2477 } 2478 2479 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 2480 if (Record.empty()) 2481 return error("Invalid record"); 2482 2483 unsigned Size = Record.size(); 2484 SmallVector<Constant*, 16> Elts; 2485 2486 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 2487 for (unsigned i = 0; i != Size; ++i) 2488 Elts.push_back(ValueList.getConstantFwdRef(Record[i], 2489 STy->getElementType(i))); 2490 V = ConstantStruct::get(STy, Elts); 2491 } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) { 2492 Type *EltTy = ATy->getElementType(); 2493 for (unsigned i = 0; i != Size; ++i) 2494 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2495 V = ConstantArray::get(ATy, Elts); 2496 } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) { 2497 Type *EltTy = VTy->getElementType(); 2498 for (unsigned i = 0; i != Size; ++i) 2499 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2500 V = ConstantVector::get(Elts); 2501 } else { 2502 V = UndefValue::get(CurTy); 2503 } 2504 break; 2505 } 2506 case bitc::CST_CODE_STRING: // STRING: [values] 2507 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 2508 if (Record.empty()) 2509 return error("Invalid record"); 2510 2511 SmallString<16> Elts(Record.begin(), Record.end()); 2512 V = ConstantDataArray::getString(Context, Elts, 2513 BitCode == bitc::CST_CODE_CSTRING); 2514 break; 2515 } 2516 case bitc::CST_CODE_DATA: {// DATA: [n x value] 2517 if (Record.empty()) 2518 return error("Invalid record"); 2519 2520 Type *EltTy; 2521 if (auto *Array = dyn_cast<ArrayType>(CurTy)) 2522 EltTy = Array->getElementType(); 2523 else 2524 EltTy = cast<VectorType>(CurTy)->getElementType(); 2525 if (EltTy->isIntegerTy(8)) { 2526 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); 2527 if (isa<VectorType>(CurTy)) 2528 V = ConstantDataVector::get(Context, Elts); 2529 else 2530 V = ConstantDataArray::get(Context, Elts); 2531 } else if (EltTy->isIntegerTy(16)) { 2532 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2533 if (isa<VectorType>(CurTy)) 2534 V = ConstantDataVector::get(Context, Elts); 2535 else 2536 V = ConstantDataArray::get(Context, Elts); 2537 } else if (EltTy->isIntegerTy(32)) { 2538 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2539 if (isa<VectorType>(CurTy)) 2540 V = ConstantDataVector::get(Context, Elts); 2541 else 2542 V = ConstantDataArray::get(Context, Elts); 2543 } else if (EltTy->isIntegerTy(64)) { 2544 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2545 if (isa<VectorType>(CurTy)) 2546 V = ConstantDataVector::get(Context, Elts); 2547 else 2548 V = ConstantDataArray::get(Context, Elts); 2549 } else if (EltTy->isHalfTy()) { 2550 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2551 if (isa<VectorType>(CurTy)) 2552 V = ConstantDataVector::getFP(EltTy, Elts); 2553 else 2554 V = ConstantDataArray::getFP(EltTy, Elts); 2555 } else if (EltTy->isBFloatTy()) { 2556 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2557 if (isa<VectorType>(CurTy)) 2558 V = ConstantDataVector::getFP(EltTy, Elts); 2559 else 2560 V = ConstantDataArray::getFP(EltTy, Elts); 2561 } else if (EltTy->isFloatTy()) { 2562 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2563 if (isa<VectorType>(CurTy)) 2564 V = ConstantDataVector::getFP(EltTy, Elts); 2565 else 2566 V = ConstantDataArray::getFP(EltTy, Elts); 2567 } else if (EltTy->isDoubleTy()) { 2568 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2569 if (isa<VectorType>(CurTy)) 2570 V = ConstantDataVector::getFP(EltTy, Elts); 2571 else 2572 V = ConstantDataArray::getFP(EltTy, Elts); 2573 } else { 2574 return error("Invalid type for value"); 2575 } 2576 break; 2577 } 2578 case bitc::CST_CODE_CE_UNOP: { // CE_UNOP: [opcode, opval] 2579 if (Record.size() < 2) 2580 return error("Invalid record"); 2581 int Opc = getDecodedUnaryOpcode(Record[0], CurTy); 2582 if (Opc < 0) { 2583 V = UndefValue::get(CurTy); // Unknown unop. 2584 } else { 2585 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 2586 unsigned Flags = 0; 2587 V = ConstantExpr::get(Opc, LHS, Flags); 2588 } 2589 break; 2590 } 2591 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 2592 if (Record.size() < 3) 2593 return error("Invalid record"); 2594 int Opc = getDecodedBinaryOpcode(Record[0], CurTy); 2595 if (Opc < 0) { 2596 V = UndefValue::get(CurTy); // Unknown binop. 2597 } else { 2598 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 2599 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy); 2600 unsigned Flags = 0; 2601 if (Record.size() >= 4) { 2602 if (Opc == Instruction::Add || 2603 Opc == Instruction::Sub || 2604 Opc == Instruction::Mul || 2605 Opc == Instruction::Shl) { 2606 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 2607 Flags |= OverflowingBinaryOperator::NoSignedWrap; 2608 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 2609 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 2610 } else if (Opc == Instruction::SDiv || 2611 Opc == Instruction::UDiv || 2612 Opc == Instruction::LShr || 2613 Opc == Instruction::AShr) { 2614 if (Record[3] & (1 << bitc::PEO_EXACT)) 2615 Flags |= SDivOperator::IsExact; 2616 } 2617 } 2618 V = ConstantExpr::get(Opc, LHS, RHS, Flags); 2619 } 2620 break; 2621 } 2622 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 2623 if (Record.size() < 3) 2624 return error("Invalid record"); 2625 int Opc = getDecodedCastOpcode(Record[0]); 2626 if (Opc < 0) { 2627 V = UndefValue::get(CurTy); // Unknown cast. 2628 } else { 2629 Type *OpTy = getTypeByID(Record[1]); 2630 if (!OpTy) 2631 return error("Invalid record"); 2632 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy); 2633 V = UpgradeBitCastExpr(Opc, Op, CurTy); 2634 if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy); 2635 } 2636 break; 2637 } 2638 case bitc::CST_CODE_CE_INBOUNDS_GEP: // [ty, n x operands] 2639 case bitc::CST_CODE_CE_GEP: // [ty, n x operands] 2640 case bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX: { // [ty, flags, n x 2641 // operands] 2642 unsigned OpNum = 0; 2643 Type *PointeeType = nullptr; 2644 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX || 2645 Record.size() % 2) 2646 PointeeType = getTypeByID(Record[OpNum++]); 2647 2648 bool InBounds = false; 2649 Optional<unsigned> InRangeIndex; 2650 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX) { 2651 uint64_t Op = Record[OpNum++]; 2652 InBounds = Op & 1; 2653 InRangeIndex = Op >> 1; 2654 } else if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP) 2655 InBounds = true; 2656 2657 SmallVector<Constant*, 16> Elts; 2658 Type *Elt0FullTy = nullptr; 2659 while (OpNum != Record.size()) { 2660 if (!Elt0FullTy) 2661 Elt0FullTy = getTypeByID(Record[OpNum]); 2662 Type *ElTy = getTypeByID(Record[OpNum++]); 2663 if (!ElTy) 2664 return error("Invalid record"); 2665 Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy)); 2666 } 2667 2668 if (Elts.size() < 1) 2669 return error("Invalid gep with no operands"); 2670 2671 PointerType *OrigPtrTy = cast<PointerType>(Elt0FullTy->getScalarType()); 2672 if (!PointeeType) 2673 PointeeType = OrigPtrTy->getElementType(); 2674 else if (!OrigPtrTy->isOpaqueOrPointeeTypeMatches(PointeeType)) 2675 return error("Explicit gep operator type does not match pointee type " 2676 "of pointer operand"); 2677 2678 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 2679 V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices, 2680 InBounds, InRangeIndex); 2681 break; 2682 } 2683 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] 2684 if (Record.size() < 3) 2685 return error("Invalid record"); 2686 2687 Type *SelectorTy = Type::getInt1Ty(Context); 2688 2689 // The selector might be an i1, an <n x i1>, or a <vscale x n x i1> 2690 // Get the type from the ValueList before getting a forward ref. 2691 if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) 2692 if (Value *V = ValueList[Record[0]]) 2693 if (SelectorTy != V->getType()) 2694 SelectorTy = VectorType::get(SelectorTy, 2695 VTy->getElementCount()); 2696 2697 V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0], 2698 SelectorTy), 2699 ValueList.getConstantFwdRef(Record[1],CurTy), 2700 ValueList.getConstantFwdRef(Record[2],CurTy)); 2701 break; 2702 } 2703 case bitc::CST_CODE_CE_EXTRACTELT 2704 : { // CE_EXTRACTELT: [opty, opval, opty, opval] 2705 if (Record.size() < 3) 2706 return error("Invalid record"); 2707 VectorType *OpTy = 2708 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2709 if (!OpTy) 2710 return error("Invalid record"); 2711 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2712 Constant *Op1 = nullptr; 2713 if (Record.size() == 4) { 2714 Type *IdxTy = getTypeByID(Record[2]); 2715 if (!IdxTy) 2716 return error("Invalid record"); 2717 Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2718 } else { 2719 // Deprecated, but still needed to read old bitcode files. 2720 Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2721 } 2722 if (!Op1) 2723 return error("Invalid record"); 2724 V = ConstantExpr::getExtractElement(Op0, Op1); 2725 break; 2726 } 2727 case bitc::CST_CODE_CE_INSERTELT 2728 : { // CE_INSERTELT: [opval, opval, opty, opval] 2729 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2730 if (Record.size() < 3 || !OpTy) 2731 return error("Invalid record"); 2732 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2733 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], 2734 OpTy->getElementType()); 2735 Constant *Op2 = nullptr; 2736 if (Record.size() == 4) { 2737 Type *IdxTy = getTypeByID(Record[2]); 2738 if (!IdxTy) 2739 return error("Invalid record"); 2740 Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2741 } else { 2742 // Deprecated, but still needed to read old bitcode files. 2743 Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2744 } 2745 if (!Op2) 2746 return error("Invalid record"); 2747 V = ConstantExpr::getInsertElement(Op0, Op1, Op2); 2748 break; 2749 } 2750 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 2751 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2752 if (Record.size() < 3 || !OpTy) 2753 return error("Invalid record"); 2754 DelayedShuffles.push_back( 2755 {OpTy, OpTy, Record[0], Record[1], Record[2], NextCstNo}); 2756 ++NextCstNo; 2757 continue; 2758 } 2759 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 2760 VectorType *RTy = dyn_cast<VectorType>(CurTy); 2761 VectorType *OpTy = 2762 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2763 if (Record.size() < 4 || !RTy || !OpTy) 2764 return error("Invalid record"); 2765 DelayedShuffles.push_back( 2766 {OpTy, RTy, Record[1], Record[2], Record[3], NextCstNo}); 2767 ++NextCstNo; 2768 continue; 2769 } 2770 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 2771 if (Record.size() < 4) 2772 return error("Invalid record"); 2773 Type *OpTy = getTypeByID(Record[0]); 2774 if (!OpTy) 2775 return error("Invalid record"); 2776 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2777 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2778 2779 if (OpTy->isFPOrFPVectorTy()) 2780 V = ConstantExpr::getFCmp(Record[3], Op0, Op1); 2781 else 2782 V = ConstantExpr::getICmp(Record[3], Op0, Op1); 2783 break; 2784 } 2785 // This maintains backward compatibility, pre-asm dialect keywords. 2786 // Deprecated, but still needed to read old bitcode files. 2787 case bitc::CST_CODE_INLINEASM_OLD: { 2788 if (Record.size() < 2) 2789 return error("Invalid record"); 2790 std::string AsmStr, ConstrStr; 2791 bool HasSideEffects = Record[0] & 1; 2792 bool IsAlignStack = Record[0] >> 1; 2793 unsigned AsmStrSize = Record[1]; 2794 if (2+AsmStrSize >= Record.size()) 2795 return error("Invalid record"); 2796 unsigned ConstStrSize = Record[2+AsmStrSize]; 2797 if (3+AsmStrSize+ConstStrSize > Record.size()) 2798 return error("Invalid record"); 2799 2800 for (unsigned i = 0; i != AsmStrSize; ++i) 2801 AsmStr += (char)Record[2+i]; 2802 for (unsigned i = 0; i != ConstStrSize; ++i) 2803 ConstrStr += (char)Record[3+AsmStrSize+i]; 2804 UpgradeInlineAsmString(&AsmStr); 2805 V = InlineAsm::get( 2806 cast<FunctionType>(cast<PointerType>(CurTy)->getElementType()), 2807 AsmStr, ConstrStr, HasSideEffects, IsAlignStack); 2808 break; 2809 } 2810 // This version adds support for the asm dialect keywords (e.g., 2811 // inteldialect). 2812 case bitc::CST_CODE_INLINEASM_OLD2: { 2813 if (Record.size() < 2) 2814 return error("Invalid record"); 2815 std::string AsmStr, ConstrStr; 2816 bool HasSideEffects = Record[0] & 1; 2817 bool IsAlignStack = (Record[0] >> 1) & 1; 2818 unsigned AsmDialect = Record[0] >> 2; 2819 unsigned AsmStrSize = Record[1]; 2820 if (2+AsmStrSize >= Record.size()) 2821 return error("Invalid record"); 2822 unsigned ConstStrSize = Record[2+AsmStrSize]; 2823 if (3+AsmStrSize+ConstStrSize > Record.size()) 2824 return error("Invalid record"); 2825 2826 for (unsigned i = 0; i != AsmStrSize; ++i) 2827 AsmStr += (char)Record[2+i]; 2828 for (unsigned i = 0; i != ConstStrSize; ++i) 2829 ConstrStr += (char)Record[3+AsmStrSize+i]; 2830 UpgradeInlineAsmString(&AsmStr); 2831 V = InlineAsm::get( 2832 cast<FunctionType>(cast<PointerType>(CurTy)->getElementType()), 2833 AsmStr, ConstrStr, HasSideEffects, IsAlignStack, 2834 InlineAsm::AsmDialect(AsmDialect)); 2835 break; 2836 } 2837 // This version adds support for the unwind keyword. 2838 case bitc::CST_CODE_INLINEASM: { 2839 if (Record.size() < 2) 2840 return error("Invalid record"); 2841 std::string AsmStr, ConstrStr; 2842 bool HasSideEffects = Record[0] & 1; 2843 bool IsAlignStack = (Record[0] >> 1) & 1; 2844 unsigned AsmDialect = (Record[0] >> 2) & 1; 2845 bool CanThrow = (Record[0] >> 3) & 1; 2846 unsigned AsmStrSize = Record[1]; 2847 if (2 + AsmStrSize >= Record.size()) 2848 return error("Invalid record"); 2849 unsigned ConstStrSize = Record[2 + AsmStrSize]; 2850 if (3 + AsmStrSize + ConstStrSize > Record.size()) 2851 return error("Invalid record"); 2852 2853 for (unsigned i = 0; i != AsmStrSize; ++i) 2854 AsmStr += (char)Record[2 + i]; 2855 for (unsigned i = 0; i != ConstStrSize; ++i) 2856 ConstrStr += (char)Record[3 + AsmStrSize + i]; 2857 UpgradeInlineAsmString(&AsmStr); 2858 V = InlineAsm::get( 2859 cast<FunctionType>(cast<PointerType>(CurTy)->getElementType()), 2860 AsmStr, ConstrStr, HasSideEffects, IsAlignStack, 2861 InlineAsm::AsmDialect(AsmDialect), CanThrow); 2862 break; 2863 } 2864 case bitc::CST_CODE_BLOCKADDRESS:{ 2865 if (Record.size() < 3) 2866 return error("Invalid record"); 2867 Type *FnTy = getTypeByID(Record[0]); 2868 if (!FnTy) 2869 return error("Invalid record"); 2870 Function *Fn = 2871 dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy)); 2872 if (!Fn) 2873 return error("Invalid record"); 2874 2875 // If the function is already parsed we can insert the block address right 2876 // away. 2877 BasicBlock *BB; 2878 unsigned BBID = Record[2]; 2879 if (!BBID) 2880 // Invalid reference to entry block. 2881 return error("Invalid ID"); 2882 if (!Fn->empty()) { 2883 Function::iterator BBI = Fn->begin(), BBE = Fn->end(); 2884 for (size_t I = 0, E = BBID; I != E; ++I) { 2885 if (BBI == BBE) 2886 return error("Invalid ID"); 2887 ++BBI; 2888 } 2889 BB = &*BBI; 2890 } else { 2891 // Otherwise insert a placeholder and remember it so it can be inserted 2892 // when the function is parsed. 2893 auto &FwdBBs = BasicBlockFwdRefs[Fn]; 2894 if (FwdBBs.empty()) 2895 BasicBlockFwdRefQueue.push_back(Fn); 2896 if (FwdBBs.size() < BBID + 1) 2897 FwdBBs.resize(BBID + 1); 2898 if (!FwdBBs[BBID]) 2899 FwdBBs[BBID] = BasicBlock::Create(Context); 2900 BB = FwdBBs[BBID]; 2901 } 2902 V = BlockAddress::get(Fn, BB); 2903 break; 2904 } 2905 case bitc::CST_CODE_DSO_LOCAL_EQUIVALENT: { 2906 if (Record.size() < 2) 2907 return error("Invalid record"); 2908 Type *GVTy = getTypeByID(Record[0]); 2909 if (!GVTy) 2910 return error("Invalid record"); 2911 GlobalValue *GV = dyn_cast_or_null<GlobalValue>( 2912 ValueList.getConstantFwdRef(Record[1], GVTy)); 2913 if (!GV) 2914 return error("Invalid record"); 2915 2916 V = DSOLocalEquivalent::get(GV); 2917 break; 2918 } 2919 } 2920 2921 ValueList.assignValue(V, NextCstNo); 2922 ++NextCstNo; 2923 } 2924 } 2925 2926 Error BitcodeReader::parseUseLists() { 2927 if (Error Err = Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 2928 return Err; 2929 2930 // Read all the records. 2931 SmallVector<uint64_t, 64> Record; 2932 2933 while (true) { 2934 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2935 if (!MaybeEntry) 2936 return MaybeEntry.takeError(); 2937 BitstreamEntry Entry = MaybeEntry.get(); 2938 2939 switch (Entry.Kind) { 2940 case BitstreamEntry::SubBlock: // Handled for us already. 2941 case BitstreamEntry::Error: 2942 return error("Malformed block"); 2943 case BitstreamEntry::EndBlock: 2944 return Error::success(); 2945 case BitstreamEntry::Record: 2946 // The interesting case. 2947 break; 2948 } 2949 2950 // Read a use list record. 2951 Record.clear(); 2952 bool IsBB = false; 2953 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2954 if (!MaybeRecord) 2955 return MaybeRecord.takeError(); 2956 switch (MaybeRecord.get()) { 2957 default: // Default behavior: unknown type. 2958 break; 2959 case bitc::USELIST_CODE_BB: 2960 IsBB = true; 2961 LLVM_FALLTHROUGH; 2962 case bitc::USELIST_CODE_DEFAULT: { 2963 unsigned RecordLength = Record.size(); 2964 if (RecordLength < 3) 2965 // Records should have at least an ID and two indexes. 2966 return error("Invalid record"); 2967 unsigned ID = Record.pop_back_val(); 2968 2969 Value *V; 2970 if (IsBB) { 2971 assert(ID < FunctionBBs.size() && "Basic block not found"); 2972 V = FunctionBBs[ID]; 2973 } else 2974 V = ValueList[ID]; 2975 unsigned NumUses = 0; 2976 SmallDenseMap<const Use *, unsigned, 16> Order; 2977 for (const Use &U : V->materialized_uses()) { 2978 if (++NumUses > Record.size()) 2979 break; 2980 Order[&U] = Record[NumUses - 1]; 2981 } 2982 if (Order.size() != Record.size() || NumUses > Record.size()) 2983 // Mismatches can happen if the functions are being materialized lazily 2984 // (out-of-order), or a value has been upgraded. 2985 break; 2986 2987 V->sortUseList([&](const Use &L, const Use &R) { 2988 return Order.lookup(&L) < Order.lookup(&R); 2989 }); 2990 break; 2991 } 2992 } 2993 } 2994 } 2995 2996 /// When we see the block for metadata, remember where it is and then skip it. 2997 /// This lets us lazily deserialize the metadata. 2998 Error BitcodeReader::rememberAndSkipMetadata() { 2999 // Save the current stream state. 3000 uint64_t CurBit = Stream.GetCurrentBitNo(); 3001 DeferredMetadataInfo.push_back(CurBit); 3002 3003 // Skip over the block for now. 3004 if (Error Err = Stream.SkipBlock()) 3005 return Err; 3006 return Error::success(); 3007 } 3008 3009 Error BitcodeReader::materializeMetadata() { 3010 for (uint64_t BitPos : DeferredMetadataInfo) { 3011 // Move the bit stream to the saved position. 3012 if (Error JumpFailed = Stream.JumpToBit(BitPos)) 3013 return JumpFailed; 3014 if (Error Err = MDLoader->parseModuleMetadata()) 3015 return Err; 3016 } 3017 3018 // Upgrade "Linker Options" module flag to "llvm.linker.options" module-level 3019 // metadata. Only upgrade if the new option doesn't exist to avoid upgrade 3020 // multiple times. 3021 if (!TheModule->getNamedMetadata("llvm.linker.options")) { 3022 if (Metadata *Val = TheModule->getModuleFlag("Linker Options")) { 3023 NamedMDNode *LinkerOpts = 3024 TheModule->getOrInsertNamedMetadata("llvm.linker.options"); 3025 for (const MDOperand &MDOptions : cast<MDNode>(Val)->operands()) 3026 LinkerOpts->addOperand(cast<MDNode>(MDOptions)); 3027 } 3028 } 3029 3030 DeferredMetadataInfo.clear(); 3031 return Error::success(); 3032 } 3033 3034 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; } 3035 3036 /// When we see the block for a function body, remember where it is and then 3037 /// skip it. This lets us lazily deserialize the functions. 3038 Error BitcodeReader::rememberAndSkipFunctionBody() { 3039 // Get the function we are talking about. 3040 if (FunctionsWithBodies.empty()) 3041 return error("Insufficient function protos"); 3042 3043 Function *Fn = FunctionsWithBodies.back(); 3044 FunctionsWithBodies.pop_back(); 3045 3046 // Save the current stream state. 3047 uint64_t CurBit = Stream.GetCurrentBitNo(); 3048 assert( 3049 (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) && 3050 "Mismatch between VST and scanned function offsets"); 3051 DeferredFunctionInfo[Fn] = CurBit; 3052 3053 // Skip over the function block for now. 3054 if (Error Err = Stream.SkipBlock()) 3055 return Err; 3056 return Error::success(); 3057 } 3058 3059 Error BitcodeReader::globalCleanup() { 3060 // Patch the initializers for globals and aliases up. 3061 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 3062 return Err; 3063 if (!GlobalInits.empty() || !IndirectSymbolInits.empty()) 3064 return error("Malformed global initializer set"); 3065 3066 // Look for intrinsic functions which need to be upgraded at some point 3067 // and functions that need to have their function attributes upgraded. 3068 for (Function &F : *TheModule) { 3069 MDLoader->upgradeDebugIntrinsics(F); 3070 Function *NewFn; 3071 if (UpgradeIntrinsicFunction(&F, NewFn)) 3072 UpgradedIntrinsics[&F] = NewFn; 3073 else if (auto Remangled = Intrinsic::remangleIntrinsicFunction(&F)) 3074 // Some types could be renamed during loading if several modules are 3075 // loaded in the same LLVMContext (LTO scenario). In this case we should 3076 // remangle intrinsics names as well. 3077 RemangledIntrinsics[&F] = Remangled.getValue(); 3078 // Look for functions that rely on old function attribute behavior. 3079 UpgradeFunctionAttributes(F); 3080 } 3081 3082 // Look for global variables which need to be renamed. 3083 std::vector<std::pair<GlobalVariable *, GlobalVariable *>> UpgradedVariables; 3084 for (GlobalVariable &GV : TheModule->globals()) 3085 if (GlobalVariable *Upgraded = UpgradeGlobalVariable(&GV)) 3086 UpgradedVariables.emplace_back(&GV, Upgraded); 3087 for (auto &Pair : UpgradedVariables) { 3088 Pair.first->eraseFromParent(); 3089 TheModule->getGlobalList().push_back(Pair.second); 3090 } 3091 3092 // Force deallocation of memory for these vectors to favor the client that 3093 // want lazy deserialization. 3094 std::vector<std::pair<GlobalVariable *, unsigned>>().swap(GlobalInits); 3095 std::vector<std::pair<GlobalIndirectSymbol *, unsigned>>().swap( 3096 IndirectSymbolInits); 3097 return Error::success(); 3098 } 3099 3100 /// Support for lazy parsing of function bodies. This is required if we 3101 /// either have an old bitcode file without a VST forward declaration record, 3102 /// or if we have an anonymous function being materialized, since anonymous 3103 /// functions do not have a name and are therefore not in the VST. 3104 Error BitcodeReader::rememberAndSkipFunctionBodies() { 3105 if (Error JumpFailed = Stream.JumpToBit(NextUnreadBit)) 3106 return JumpFailed; 3107 3108 if (Stream.AtEndOfStream()) 3109 return error("Could not find function in stream"); 3110 3111 if (!SeenFirstFunctionBody) 3112 return error("Trying to materialize functions before seeing function blocks"); 3113 3114 // An old bitcode file with the symbol table at the end would have 3115 // finished the parse greedily. 3116 assert(SeenValueSymbolTable); 3117 3118 SmallVector<uint64_t, 64> Record; 3119 3120 while (true) { 3121 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 3122 if (!MaybeEntry) 3123 return MaybeEntry.takeError(); 3124 llvm::BitstreamEntry Entry = MaybeEntry.get(); 3125 3126 switch (Entry.Kind) { 3127 default: 3128 return error("Expect SubBlock"); 3129 case BitstreamEntry::SubBlock: 3130 switch (Entry.ID) { 3131 default: 3132 return error("Expect function block"); 3133 case bitc::FUNCTION_BLOCK_ID: 3134 if (Error Err = rememberAndSkipFunctionBody()) 3135 return Err; 3136 NextUnreadBit = Stream.GetCurrentBitNo(); 3137 return Error::success(); 3138 } 3139 } 3140 } 3141 } 3142 3143 bool BitcodeReaderBase::readBlockInfo() { 3144 Expected<Optional<BitstreamBlockInfo>> MaybeNewBlockInfo = 3145 Stream.ReadBlockInfoBlock(); 3146 if (!MaybeNewBlockInfo) 3147 return true; // FIXME Handle the error. 3148 Optional<BitstreamBlockInfo> NewBlockInfo = 3149 std::move(MaybeNewBlockInfo.get()); 3150 if (!NewBlockInfo) 3151 return true; 3152 BlockInfo = std::move(*NewBlockInfo); 3153 return false; 3154 } 3155 3156 Error BitcodeReader::parseComdatRecord(ArrayRef<uint64_t> Record) { 3157 // v1: [selection_kind, name] 3158 // v2: [strtab_offset, strtab_size, selection_kind] 3159 StringRef Name; 3160 std::tie(Name, Record) = readNameFromStrtab(Record); 3161 3162 if (Record.empty()) 3163 return error("Invalid record"); 3164 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]); 3165 std::string OldFormatName; 3166 if (!UseStrtab) { 3167 if (Record.size() < 2) 3168 return error("Invalid record"); 3169 unsigned ComdatNameSize = Record[1]; 3170 OldFormatName.reserve(ComdatNameSize); 3171 for (unsigned i = 0; i != ComdatNameSize; ++i) 3172 OldFormatName += (char)Record[2 + i]; 3173 Name = OldFormatName; 3174 } 3175 Comdat *C = TheModule->getOrInsertComdat(Name); 3176 C->setSelectionKind(SK); 3177 ComdatList.push_back(C); 3178 return Error::success(); 3179 } 3180 3181 static void inferDSOLocal(GlobalValue *GV) { 3182 // infer dso_local from linkage and visibility if it is not encoded. 3183 if (GV->hasLocalLinkage() || 3184 (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())) 3185 GV->setDSOLocal(true); 3186 } 3187 3188 Error BitcodeReader::parseGlobalVarRecord(ArrayRef<uint64_t> Record) { 3189 // v1: [pointer type, isconst, initid, linkage, alignment, section, 3190 // visibility, threadlocal, unnamed_addr, externally_initialized, 3191 // dllstorageclass, comdat, attributes, preemption specifier, 3192 // partition strtab offset, partition strtab size] (name in VST) 3193 // v2: [strtab_offset, strtab_size, v1] 3194 StringRef Name; 3195 std::tie(Name, Record) = readNameFromStrtab(Record); 3196 3197 if (Record.size() < 6) 3198 return error("Invalid record"); 3199 Type *Ty = getTypeByID(Record[0]); 3200 if (!Ty) 3201 return error("Invalid record"); 3202 bool isConstant = Record[1] & 1; 3203 bool explicitType = Record[1] & 2; 3204 unsigned AddressSpace; 3205 if (explicitType) { 3206 AddressSpace = Record[1] >> 2; 3207 } else { 3208 if (!Ty->isPointerTy()) 3209 return error("Invalid type for value"); 3210 AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 3211 Ty = cast<PointerType>(Ty)->getElementType(); 3212 } 3213 3214 uint64_t RawLinkage = Record[3]; 3215 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 3216 MaybeAlign Alignment; 3217 if (Error Err = parseAlignmentValue(Record[4], Alignment)) 3218 return Err; 3219 std::string Section; 3220 if (Record[5]) { 3221 if (Record[5] - 1 >= SectionTable.size()) 3222 return error("Invalid ID"); 3223 Section = SectionTable[Record[5] - 1]; 3224 } 3225 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 3226 // Local linkage must have default visibility. 3227 // auto-upgrade `hidden` and `protected` for old bitcode. 3228 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage)) 3229 Visibility = getDecodedVisibility(Record[6]); 3230 3231 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; 3232 if (Record.size() > 7) 3233 TLM = getDecodedThreadLocalMode(Record[7]); 3234 3235 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 3236 if (Record.size() > 8) 3237 UnnamedAddr = getDecodedUnnamedAddrType(Record[8]); 3238 3239 bool ExternallyInitialized = false; 3240 if (Record.size() > 9) 3241 ExternallyInitialized = Record[9]; 3242 3243 GlobalVariable *NewGV = 3244 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, Name, 3245 nullptr, TLM, AddressSpace, ExternallyInitialized); 3246 NewGV->setAlignment(Alignment); 3247 if (!Section.empty()) 3248 NewGV->setSection(Section); 3249 NewGV->setVisibility(Visibility); 3250 NewGV->setUnnamedAddr(UnnamedAddr); 3251 3252 if (Record.size() > 10) 3253 NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10])); 3254 else 3255 upgradeDLLImportExportLinkage(NewGV, RawLinkage); 3256 3257 ValueList.push_back(NewGV); 3258 3259 // Remember which value to use for the global initializer. 3260 if (unsigned InitID = Record[2]) 3261 GlobalInits.push_back(std::make_pair(NewGV, InitID - 1)); 3262 3263 if (Record.size() > 11) { 3264 if (unsigned ComdatID = Record[11]) { 3265 if (ComdatID > ComdatList.size()) 3266 return error("Invalid global variable comdat ID"); 3267 NewGV->setComdat(ComdatList[ComdatID - 1]); 3268 } 3269 } else if (hasImplicitComdat(RawLinkage)) { 3270 NewGV->setComdat(reinterpret_cast<Comdat *>(1)); 3271 } 3272 3273 if (Record.size() > 12) { 3274 auto AS = getAttributes(Record[12]).getFnAttrs(); 3275 NewGV->setAttributes(AS); 3276 } 3277 3278 if (Record.size() > 13) { 3279 NewGV->setDSOLocal(getDecodedDSOLocal(Record[13])); 3280 } 3281 inferDSOLocal(NewGV); 3282 3283 // Check whether we have enough values to read a partition name. 3284 if (Record.size() > 15) 3285 NewGV->setPartition(StringRef(Strtab.data() + Record[14], Record[15])); 3286 3287 return Error::success(); 3288 } 3289 3290 Error BitcodeReader::parseFunctionRecord(ArrayRef<uint64_t> Record) { 3291 // v1: [type, callingconv, isproto, linkage, paramattr, alignment, section, 3292 // visibility, gc, unnamed_addr, prologuedata, dllstorageclass, comdat, 3293 // prefixdata, personalityfn, preemption specifier, addrspace] (name in VST) 3294 // v2: [strtab_offset, strtab_size, v1] 3295 StringRef Name; 3296 std::tie(Name, Record) = readNameFromStrtab(Record); 3297 3298 if (Record.size() < 8) 3299 return error("Invalid record"); 3300 Type *FTy = getTypeByID(Record[0]); 3301 if (!FTy) 3302 return error("Invalid record"); 3303 if (auto *PTy = dyn_cast<PointerType>(FTy)) 3304 FTy = PTy->getElementType(); 3305 3306 if (!isa<FunctionType>(FTy)) 3307 return error("Invalid type for value"); 3308 auto CC = static_cast<CallingConv::ID>(Record[1]); 3309 if (CC & ~CallingConv::MaxID) 3310 return error("Invalid calling convention ID"); 3311 3312 unsigned AddrSpace = TheModule->getDataLayout().getProgramAddressSpace(); 3313 if (Record.size() > 16) 3314 AddrSpace = Record[16]; 3315 3316 Function *Func = 3317 Function::Create(cast<FunctionType>(FTy), GlobalValue::ExternalLinkage, 3318 AddrSpace, Name, TheModule); 3319 3320 assert(Func->getFunctionType() == FTy && 3321 "Incorrect fully specified type provided for function"); 3322 FunctionTypes[Func] = cast<FunctionType>(FTy); 3323 3324 Func->setCallingConv(CC); 3325 bool isProto = Record[2]; 3326 uint64_t RawLinkage = Record[3]; 3327 Func->setLinkage(getDecodedLinkage(RawLinkage)); 3328 Func->setAttributes(getAttributes(Record[4])); 3329 3330 // Upgrade any old-style byval or sret without a type by propagating the 3331 // argument's pointee type. There should be no opaque pointers where the byval 3332 // type is implicit. 3333 for (unsigned i = 0; i != Func->arg_size(); ++i) { 3334 for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet, 3335 Attribute::InAlloca}) { 3336 if (!Func->hasParamAttribute(i, Kind)) 3337 continue; 3338 3339 if (Func->getParamAttribute(i, Kind).getValueAsType()) 3340 continue; 3341 3342 Func->removeParamAttr(i, Kind); 3343 3344 Type *PTy = cast<FunctionType>(FTy)->getParamType(i); 3345 Type *PtrEltTy = cast<PointerType>(PTy)->getElementType(); 3346 Attribute NewAttr; 3347 switch (Kind) { 3348 case Attribute::ByVal: 3349 NewAttr = Attribute::getWithByValType(Context, PtrEltTy); 3350 break; 3351 case Attribute::StructRet: 3352 NewAttr = Attribute::getWithStructRetType(Context, PtrEltTy); 3353 break; 3354 case Attribute::InAlloca: 3355 NewAttr = Attribute::getWithInAllocaType(Context, PtrEltTy); 3356 break; 3357 default: 3358 llvm_unreachable("not an upgraded type attribute"); 3359 } 3360 3361 Func->addParamAttr(i, NewAttr); 3362 } 3363 } 3364 3365 MaybeAlign Alignment; 3366 if (Error Err = parseAlignmentValue(Record[5], Alignment)) 3367 return Err; 3368 Func->setAlignment(Alignment); 3369 if (Record[6]) { 3370 if (Record[6] - 1 >= SectionTable.size()) 3371 return error("Invalid ID"); 3372 Func->setSection(SectionTable[Record[6] - 1]); 3373 } 3374 // Local linkage must have default visibility. 3375 // auto-upgrade `hidden` and `protected` for old bitcode. 3376 if (!Func->hasLocalLinkage()) 3377 Func->setVisibility(getDecodedVisibility(Record[7])); 3378 if (Record.size() > 8 && Record[8]) { 3379 if (Record[8] - 1 >= GCTable.size()) 3380 return error("Invalid ID"); 3381 Func->setGC(GCTable[Record[8] - 1]); 3382 } 3383 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 3384 if (Record.size() > 9) 3385 UnnamedAddr = getDecodedUnnamedAddrType(Record[9]); 3386 Func->setUnnamedAddr(UnnamedAddr); 3387 3388 FunctionOperandInfo OperandInfo = {Func, 0, 0, 0}; 3389 if (Record.size() > 10) 3390 OperandInfo.Prologue = Record[10]; 3391 3392 if (Record.size() > 11) 3393 Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11])); 3394 else 3395 upgradeDLLImportExportLinkage(Func, RawLinkage); 3396 3397 if (Record.size() > 12) { 3398 if (unsigned ComdatID = Record[12]) { 3399 if (ComdatID > ComdatList.size()) 3400 return error("Invalid function comdat ID"); 3401 Func->setComdat(ComdatList[ComdatID - 1]); 3402 } 3403 } else if (hasImplicitComdat(RawLinkage)) { 3404 Func->setComdat(reinterpret_cast<Comdat *>(1)); 3405 } 3406 3407 if (Record.size() > 13) 3408 OperandInfo.Prefix = Record[13]; 3409 3410 if (Record.size() > 14) 3411 OperandInfo.PersonalityFn = Record[14]; 3412 3413 if (Record.size() > 15) { 3414 Func->setDSOLocal(getDecodedDSOLocal(Record[15])); 3415 } 3416 inferDSOLocal(Func); 3417 3418 // Record[16] is the address space number. 3419 3420 // Check whether we have enough values to read a partition name. Also make 3421 // sure Strtab has enough values. 3422 if (Record.size() > 18 && Strtab.data() && 3423 Record[17] + Record[18] <= Strtab.size()) { 3424 Func->setPartition(StringRef(Strtab.data() + Record[17], Record[18])); 3425 } 3426 3427 ValueList.push_back(Func); 3428 3429 if (OperandInfo.PersonalityFn || OperandInfo.Prefix || OperandInfo.Prologue) 3430 FunctionOperands.push_back(OperandInfo); 3431 3432 // If this is a function with a body, remember the prototype we are 3433 // creating now, so that we can match up the body with them later. 3434 if (!isProto) { 3435 Func->setIsMaterializable(true); 3436 FunctionsWithBodies.push_back(Func); 3437 DeferredFunctionInfo[Func] = 0; 3438 } 3439 return Error::success(); 3440 } 3441 3442 Error BitcodeReader::parseGlobalIndirectSymbolRecord( 3443 unsigned BitCode, ArrayRef<uint64_t> Record) { 3444 // v1 ALIAS_OLD: [alias type, aliasee val#, linkage] (name in VST) 3445 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, 3446 // dllstorageclass, threadlocal, unnamed_addr, 3447 // preemption specifier] (name in VST) 3448 // v1 IFUNC: [alias type, addrspace, aliasee val#, linkage, 3449 // visibility, dllstorageclass, threadlocal, unnamed_addr, 3450 // preemption specifier] (name in VST) 3451 // v2: [strtab_offset, strtab_size, v1] 3452 StringRef Name; 3453 std::tie(Name, Record) = readNameFromStrtab(Record); 3454 3455 bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD; 3456 if (Record.size() < (3 + (unsigned)NewRecord)) 3457 return error("Invalid record"); 3458 unsigned OpNum = 0; 3459 Type *Ty = getTypeByID(Record[OpNum++]); 3460 if (!Ty) 3461 return error("Invalid record"); 3462 3463 unsigned AddrSpace; 3464 if (!NewRecord) { 3465 auto *PTy = dyn_cast<PointerType>(Ty); 3466 if (!PTy) 3467 return error("Invalid type for value"); 3468 Ty = PTy->getElementType(); 3469 AddrSpace = PTy->getAddressSpace(); 3470 } else { 3471 AddrSpace = Record[OpNum++]; 3472 } 3473 3474 auto Val = Record[OpNum++]; 3475 auto Linkage = Record[OpNum++]; 3476 GlobalIndirectSymbol *NewGA; 3477 if (BitCode == bitc::MODULE_CODE_ALIAS || 3478 BitCode == bitc::MODULE_CODE_ALIAS_OLD) 3479 NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name, 3480 TheModule); 3481 else 3482 NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name, 3483 nullptr, TheModule); 3484 3485 // Local linkage must have default visibility. 3486 // auto-upgrade `hidden` and `protected` for old bitcode. 3487 if (OpNum != Record.size()) { 3488 auto VisInd = OpNum++; 3489 if (!NewGA->hasLocalLinkage()) 3490 NewGA->setVisibility(getDecodedVisibility(Record[VisInd])); 3491 } 3492 if (BitCode == bitc::MODULE_CODE_ALIAS || 3493 BitCode == bitc::MODULE_CODE_ALIAS_OLD) { 3494 if (OpNum != Record.size()) 3495 NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++])); 3496 else 3497 upgradeDLLImportExportLinkage(NewGA, Linkage); 3498 if (OpNum != Record.size()) 3499 NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++])); 3500 if (OpNum != Record.size()) 3501 NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++])); 3502 } 3503 if (OpNum != Record.size()) 3504 NewGA->setDSOLocal(getDecodedDSOLocal(Record[OpNum++])); 3505 inferDSOLocal(NewGA); 3506 3507 // Check whether we have enough values to read a partition name. 3508 if (OpNum + 1 < Record.size()) { 3509 NewGA->setPartition( 3510 StringRef(Strtab.data() + Record[OpNum], Record[OpNum + 1])); 3511 OpNum += 2; 3512 } 3513 3514 ValueList.push_back(NewGA); 3515 IndirectSymbolInits.push_back(std::make_pair(NewGA, Val)); 3516 return Error::success(); 3517 } 3518 3519 Error BitcodeReader::parseModule(uint64_t ResumeBit, 3520 bool ShouldLazyLoadMetadata, 3521 DataLayoutCallbackTy DataLayoutCallback) { 3522 if (ResumeBit) { 3523 if (Error JumpFailed = Stream.JumpToBit(ResumeBit)) 3524 return JumpFailed; 3525 } else if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 3526 return Err; 3527 3528 SmallVector<uint64_t, 64> Record; 3529 3530 // Parts of bitcode parsing depend on the datalayout. Make sure we 3531 // finalize the datalayout before we run any of that code. 3532 bool ResolvedDataLayout = false; 3533 auto ResolveDataLayout = [&] { 3534 if (ResolvedDataLayout) 3535 return; 3536 3537 // datalayout and triple can't be parsed after this point. 3538 ResolvedDataLayout = true; 3539 3540 // Upgrade data layout string. 3541 std::string DL = llvm::UpgradeDataLayoutString( 3542 TheModule->getDataLayoutStr(), TheModule->getTargetTriple()); 3543 TheModule->setDataLayout(DL); 3544 3545 if (auto LayoutOverride = 3546 DataLayoutCallback(TheModule->getTargetTriple())) 3547 TheModule->setDataLayout(*LayoutOverride); 3548 }; 3549 3550 // Read all the records for this module. 3551 while (true) { 3552 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 3553 if (!MaybeEntry) 3554 return MaybeEntry.takeError(); 3555 llvm::BitstreamEntry Entry = MaybeEntry.get(); 3556 3557 switch (Entry.Kind) { 3558 case BitstreamEntry::Error: 3559 return error("Malformed block"); 3560 case BitstreamEntry::EndBlock: 3561 ResolveDataLayout(); 3562 return globalCleanup(); 3563 3564 case BitstreamEntry::SubBlock: 3565 switch (Entry.ID) { 3566 default: // Skip unknown content. 3567 if (Error Err = Stream.SkipBlock()) 3568 return Err; 3569 break; 3570 case bitc::BLOCKINFO_BLOCK_ID: 3571 if (readBlockInfo()) 3572 return error("Malformed block"); 3573 break; 3574 case bitc::PARAMATTR_BLOCK_ID: 3575 if (Error Err = parseAttributeBlock()) 3576 return Err; 3577 break; 3578 case bitc::PARAMATTR_GROUP_BLOCK_ID: 3579 if (Error Err = parseAttributeGroupBlock()) 3580 return Err; 3581 break; 3582 case bitc::TYPE_BLOCK_ID_NEW: 3583 if (Error Err = parseTypeTable()) 3584 return Err; 3585 break; 3586 case bitc::VALUE_SYMTAB_BLOCK_ID: 3587 if (!SeenValueSymbolTable) { 3588 // Either this is an old form VST without function index and an 3589 // associated VST forward declaration record (which would have caused 3590 // the VST to be jumped to and parsed before it was encountered 3591 // normally in the stream), or there were no function blocks to 3592 // trigger an earlier parsing of the VST. 3593 assert(VSTOffset == 0 || FunctionsWithBodies.empty()); 3594 if (Error Err = parseValueSymbolTable()) 3595 return Err; 3596 SeenValueSymbolTable = true; 3597 } else { 3598 // We must have had a VST forward declaration record, which caused 3599 // the parser to jump to and parse the VST earlier. 3600 assert(VSTOffset > 0); 3601 if (Error Err = Stream.SkipBlock()) 3602 return Err; 3603 } 3604 break; 3605 case bitc::CONSTANTS_BLOCK_ID: 3606 if (Error Err = parseConstants()) 3607 return Err; 3608 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 3609 return Err; 3610 break; 3611 case bitc::METADATA_BLOCK_ID: 3612 if (ShouldLazyLoadMetadata) { 3613 if (Error Err = rememberAndSkipMetadata()) 3614 return Err; 3615 break; 3616 } 3617 assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata"); 3618 if (Error Err = MDLoader->parseModuleMetadata()) 3619 return Err; 3620 break; 3621 case bitc::METADATA_KIND_BLOCK_ID: 3622 if (Error Err = MDLoader->parseMetadataKinds()) 3623 return Err; 3624 break; 3625 case bitc::FUNCTION_BLOCK_ID: 3626 ResolveDataLayout(); 3627 3628 // If this is the first function body we've seen, reverse the 3629 // FunctionsWithBodies list. 3630 if (!SeenFirstFunctionBody) { 3631 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 3632 if (Error Err = globalCleanup()) 3633 return Err; 3634 SeenFirstFunctionBody = true; 3635 } 3636 3637 if (VSTOffset > 0) { 3638 // If we have a VST forward declaration record, make sure we 3639 // parse the VST now if we haven't already. It is needed to 3640 // set up the DeferredFunctionInfo vector for lazy reading. 3641 if (!SeenValueSymbolTable) { 3642 if (Error Err = BitcodeReader::parseValueSymbolTable(VSTOffset)) 3643 return Err; 3644 SeenValueSymbolTable = true; 3645 // Fall through so that we record the NextUnreadBit below. 3646 // This is necessary in case we have an anonymous function that 3647 // is later materialized. Since it will not have a VST entry we 3648 // need to fall back to the lazy parse to find its offset. 3649 } else { 3650 // If we have a VST forward declaration record, but have already 3651 // parsed the VST (just above, when the first function body was 3652 // encountered here), then we are resuming the parse after 3653 // materializing functions. The ResumeBit points to the 3654 // start of the last function block recorded in the 3655 // DeferredFunctionInfo map. Skip it. 3656 if (Error Err = Stream.SkipBlock()) 3657 return Err; 3658 continue; 3659 } 3660 } 3661 3662 // Support older bitcode files that did not have the function 3663 // index in the VST, nor a VST forward declaration record, as 3664 // well as anonymous functions that do not have VST entries. 3665 // Build the DeferredFunctionInfo vector on the fly. 3666 if (Error Err = rememberAndSkipFunctionBody()) 3667 return Err; 3668 3669 // Suspend parsing when we reach the function bodies. Subsequent 3670 // materialization calls will resume it when necessary. If the bitcode 3671 // file is old, the symbol table will be at the end instead and will not 3672 // have been seen yet. In this case, just finish the parse now. 3673 if (SeenValueSymbolTable) { 3674 NextUnreadBit = Stream.GetCurrentBitNo(); 3675 // After the VST has been parsed, we need to make sure intrinsic name 3676 // are auto-upgraded. 3677 return globalCleanup(); 3678 } 3679 break; 3680 case bitc::USELIST_BLOCK_ID: 3681 if (Error Err = parseUseLists()) 3682 return Err; 3683 break; 3684 case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID: 3685 if (Error Err = parseOperandBundleTags()) 3686 return Err; 3687 break; 3688 case bitc::SYNC_SCOPE_NAMES_BLOCK_ID: 3689 if (Error Err = parseSyncScopeNames()) 3690 return Err; 3691 break; 3692 } 3693 continue; 3694 3695 case BitstreamEntry::Record: 3696 // The interesting case. 3697 break; 3698 } 3699 3700 // Read a record. 3701 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 3702 if (!MaybeBitCode) 3703 return MaybeBitCode.takeError(); 3704 switch (unsigned BitCode = MaybeBitCode.get()) { 3705 default: break; // Default behavior, ignore unknown content. 3706 case bitc::MODULE_CODE_VERSION: { 3707 Expected<unsigned> VersionOrErr = parseVersionRecord(Record); 3708 if (!VersionOrErr) 3709 return VersionOrErr.takeError(); 3710 UseRelativeIDs = *VersionOrErr >= 1; 3711 break; 3712 } 3713 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 3714 if (ResolvedDataLayout) 3715 return error("target triple too late in module"); 3716 std::string S; 3717 if (convertToString(Record, 0, S)) 3718 return error("Invalid record"); 3719 TheModule->setTargetTriple(S); 3720 break; 3721 } 3722 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 3723 if (ResolvedDataLayout) 3724 return error("datalayout too late in module"); 3725 std::string S; 3726 if (convertToString(Record, 0, S)) 3727 return error("Invalid record"); 3728 TheModule->setDataLayout(S); 3729 break; 3730 } 3731 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 3732 std::string S; 3733 if (convertToString(Record, 0, S)) 3734 return error("Invalid record"); 3735 TheModule->setModuleInlineAsm(S); 3736 break; 3737 } 3738 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 3739 // Deprecated, but still needed to read old bitcode files. 3740 std::string S; 3741 if (convertToString(Record, 0, S)) 3742 return error("Invalid record"); 3743 // Ignore value. 3744 break; 3745 } 3746 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 3747 std::string S; 3748 if (convertToString(Record, 0, S)) 3749 return error("Invalid record"); 3750 SectionTable.push_back(S); 3751 break; 3752 } 3753 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 3754 std::string S; 3755 if (convertToString(Record, 0, S)) 3756 return error("Invalid record"); 3757 GCTable.push_back(S); 3758 break; 3759 } 3760 case bitc::MODULE_CODE_COMDAT: 3761 if (Error Err = parseComdatRecord(Record)) 3762 return Err; 3763 break; 3764 case bitc::MODULE_CODE_GLOBALVAR: 3765 if (Error Err = parseGlobalVarRecord(Record)) 3766 return Err; 3767 break; 3768 case bitc::MODULE_CODE_FUNCTION: 3769 ResolveDataLayout(); 3770 if (Error Err = parseFunctionRecord(Record)) 3771 return Err; 3772 break; 3773 case bitc::MODULE_CODE_IFUNC: 3774 case bitc::MODULE_CODE_ALIAS: 3775 case bitc::MODULE_CODE_ALIAS_OLD: 3776 if (Error Err = parseGlobalIndirectSymbolRecord(BitCode, Record)) 3777 return Err; 3778 break; 3779 /// MODULE_CODE_VSTOFFSET: [offset] 3780 case bitc::MODULE_CODE_VSTOFFSET: 3781 if (Record.empty()) 3782 return error("Invalid record"); 3783 // Note that we subtract 1 here because the offset is relative to one word 3784 // before the start of the identification or module block, which was 3785 // historically always the start of the regular bitcode header. 3786 VSTOffset = Record[0] - 1; 3787 break; 3788 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 3789 case bitc::MODULE_CODE_SOURCE_FILENAME: 3790 SmallString<128> ValueName; 3791 if (convertToString(Record, 0, ValueName)) 3792 return error("Invalid record"); 3793 TheModule->setSourceFileName(ValueName); 3794 break; 3795 } 3796 Record.clear(); 3797 } 3798 } 3799 3800 Error BitcodeReader::parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata, 3801 bool IsImporting, 3802 DataLayoutCallbackTy DataLayoutCallback) { 3803 TheModule = M; 3804 MDLoader = MetadataLoader(Stream, *M, ValueList, IsImporting, 3805 [&](unsigned ID) { return getTypeByID(ID); }); 3806 return parseModule(0, ShouldLazyLoadMetadata, DataLayoutCallback); 3807 } 3808 3809 Error BitcodeReader::typeCheckLoadStoreInst(Type *ValType, Type *PtrType) { 3810 if (!isa<PointerType>(PtrType)) 3811 return error("Load/Store operand is not a pointer type"); 3812 3813 if (!cast<PointerType>(PtrType)->isOpaqueOrPointeeTypeMatches(ValType)) 3814 return error("Explicit load/store type does not match pointee " 3815 "type of pointer operand"); 3816 if (!PointerType::isLoadableOrStorableType(ValType)) 3817 return error("Cannot load/store from pointer"); 3818 return Error::success(); 3819 } 3820 3821 void BitcodeReader::propagateAttributeTypes(CallBase *CB, 3822 ArrayRef<Type *> ArgsTys) { 3823 for (unsigned i = 0; i != CB->arg_size(); ++i) { 3824 for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet, 3825 Attribute::InAlloca}) { 3826 if (!CB->paramHasAttr(i, Kind)) 3827 continue; 3828 3829 CB->removeParamAttr(i, Kind); 3830 3831 Type *PtrEltTy = cast<PointerType>(ArgsTys[i])->getElementType(); 3832 Attribute NewAttr; 3833 switch (Kind) { 3834 case Attribute::ByVal: 3835 NewAttr = Attribute::getWithByValType(Context, PtrEltTy); 3836 break; 3837 case Attribute::StructRet: 3838 NewAttr = Attribute::getWithStructRetType(Context, PtrEltTy); 3839 break; 3840 case Attribute::InAlloca: 3841 NewAttr = Attribute::getWithInAllocaType(Context, PtrEltTy); 3842 break; 3843 default: 3844 llvm_unreachable("not an upgraded type attribute"); 3845 } 3846 3847 CB->addParamAttr(i, NewAttr); 3848 } 3849 } 3850 3851 switch (CB->getIntrinsicID()) { 3852 case Intrinsic::preserve_array_access_index: 3853 case Intrinsic::preserve_struct_access_index: 3854 if (!CB->getAttributes().getParamElementType(0)) { 3855 Type *ElTy = cast<PointerType>(ArgsTys[0])->getElementType(); 3856 Attribute NewAttr = Attribute::get(Context, Attribute::ElementType, ElTy); 3857 CB->addParamAttr(0, NewAttr); 3858 } 3859 break; 3860 default: 3861 break; 3862 } 3863 } 3864 3865 /// Lazily parse the specified function body block. 3866 Error BitcodeReader::parseFunctionBody(Function *F) { 3867 if (Error Err = Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 3868 return Err; 3869 3870 // Unexpected unresolved metadata when parsing function. 3871 if (MDLoader->hasFwdRefs()) 3872 return error("Invalid function metadata: incoming forward references"); 3873 3874 InstructionList.clear(); 3875 unsigned ModuleValueListSize = ValueList.size(); 3876 unsigned ModuleMDLoaderSize = MDLoader->size(); 3877 3878 // Add all the function arguments to the value table. 3879 #ifndef NDEBUG 3880 unsigned ArgNo = 0; 3881 FunctionType *FTy = FunctionTypes[F]; 3882 #endif 3883 for (Argument &I : F->args()) { 3884 assert(I.getType() == FTy->getParamType(ArgNo++) && 3885 "Incorrect fully specified type for Function Argument"); 3886 ValueList.push_back(&I); 3887 } 3888 unsigned NextValueNo = ValueList.size(); 3889 BasicBlock *CurBB = nullptr; 3890 unsigned CurBBNo = 0; 3891 3892 DebugLoc LastLoc; 3893 auto getLastInstruction = [&]() -> Instruction * { 3894 if (CurBB && !CurBB->empty()) 3895 return &CurBB->back(); 3896 else if (CurBBNo && FunctionBBs[CurBBNo - 1] && 3897 !FunctionBBs[CurBBNo - 1]->empty()) 3898 return &FunctionBBs[CurBBNo - 1]->back(); 3899 return nullptr; 3900 }; 3901 3902 std::vector<OperandBundleDef> OperandBundles; 3903 3904 // Read all the records. 3905 SmallVector<uint64_t, 64> Record; 3906 3907 while (true) { 3908 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 3909 if (!MaybeEntry) 3910 return MaybeEntry.takeError(); 3911 llvm::BitstreamEntry Entry = MaybeEntry.get(); 3912 3913 switch (Entry.Kind) { 3914 case BitstreamEntry::Error: 3915 return error("Malformed block"); 3916 case BitstreamEntry::EndBlock: 3917 goto OutOfRecordLoop; 3918 3919 case BitstreamEntry::SubBlock: 3920 switch (Entry.ID) { 3921 default: // Skip unknown content. 3922 if (Error Err = Stream.SkipBlock()) 3923 return Err; 3924 break; 3925 case bitc::CONSTANTS_BLOCK_ID: 3926 if (Error Err = parseConstants()) 3927 return Err; 3928 NextValueNo = ValueList.size(); 3929 break; 3930 case bitc::VALUE_SYMTAB_BLOCK_ID: 3931 if (Error Err = parseValueSymbolTable()) 3932 return Err; 3933 break; 3934 case bitc::METADATA_ATTACHMENT_ID: 3935 if (Error Err = MDLoader->parseMetadataAttachment(*F, InstructionList)) 3936 return Err; 3937 break; 3938 case bitc::METADATA_BLOCK_ID: 3939 assert(DeferredMetadataInfo.empty() && 3940 "Must read all module-level metadata before function-level"); 3941 if (Error Err = MDLoader->parseFunctionMetadata()) 3942 return Err; 3943 break; 3944 case bitc::USELIST_BLOCK_ID: 3945 if (Error Err = parseUseLists()) 3946 return Err; 3947 break; 3948 } 3949 continue; 3950 3951 case BitstreamEntry::Record: 3952 // The interesting case. 3953 break; 3954 } 3955 3956 // Read a record. 3957 Record.clear(); 3958 Instruction *I = nullptr; 3959 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 3960 if (!MaybeBitCode) 3961 return MaybeBitCode.takeError(); 3962 switch (unsigned BitCode = MaybeBitCode.get()) { 3963 default: // Default behavior: reject 3964 return error("Invalid value"); 3965 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks] 3966 if (Record.empty() || Record[0] == 0) 3967 return error("Invalid record"); 3968 // Create all the basic blocks for the function. 3969 FunctionBBs.resize(Record[0]); 3970 3971 // See if anything took the address of blocks in this function. 3972 auto BBFRI = BasicBlockFwdRefs.find(F); 3973 if (BBFRI == BasicBlockFwdRefs.end()) { 3974 for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i) 3975 FunctionBBs[i] = BasicBlock::Create(Context, "", F); 3976 } else { 3977 auto &BBRefs = BBFRI->second; 3978 // Check for invalid basic block references. 3979 if (BBRefs.size() > FunctionBBs.size()) 3980 return error("Invalid ID"); 3981 assert(!BBRefs.empty() && "Unexpected empty array"); 3982 assert(!BBRefs.front() && "Invalid reference to entry block"); 3983 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E; 3984 ++I) 3985 if (I < RE && BBRefs[I]) { 3986 BBRefs[I]->insertInto(F); 3987 FunctionBBs[I] = BBRefs[I]; 3988 } else { 3989 FunctionBBs[I] = BasicBlock::Create(Context, "", F); 3990 } 3991 3992 // Erase from the table. 3993 BasicBlockFwdRefs.erase(BBFRI); 3994 } 3995 3996 CurBB = FunctionBBs[0]; 3997 continue; 3998 } 3999 4000 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 4001 // This record indicates that the last instruction is at the same 4002 // location as the previous instruction with a location. 4003 I = getLastInstruction(); 4004 4005 if (!I) 4006 return error("Invalid record"); 4007 I->setDebugLoc(LastLoc); 4008 I = nullptr; 4009 continue; 4010 4011 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 4012 I = getLastInstruction(); 4013 if (!I || Record.size() < 4) 4014 return error("Invalid record"); 4015 4016 unsigned Line = Record[0], Col = Record[1]; 4017 unsigned ScopeID = Record[2], IAID = Record[3]; 4018 bool isImplicitCode = Record.size() == 5 && Record[4]; 4019 4020 MDNode *Scope = nullptr, *IA = nullptr; 4021 if (ScopeID) { 4022 Scope = dyn_cast_or_null<MDNode>( 4023 MDLoader->getMetadataFwdRefOrLoad(ScopeID - 1)); 4024 if (!Scope) 4025 return error("Invalid record"); 4026 } 4027 if (IAID) { 4028 IA = dyn_cast_or_null<MDNode>( 4029 MDLoader->getMetadataFwdRefOrLoad(IAID - 1)); 4030 if (!IA) 4031 return error("Invalid record"); 4032 } 4033 LastLoc = DILocation::get(Scope->getContext(), Line, Col, Scope, IA, 4034 isImplicitCode); 4035 I->setDebugLoc(LastLoc); 4036 I = nullptr; 4037 continue; 4038 } 4039 case bitc::FUNC_CODE_INST_UNOP: { // UNOP: [opval, ty, opcode] 4040 unsigned OpNum = 0; 4041 Value *LHS; 4042 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 4043 OpNum+1 > Record.size()) 4044 return error("Invalid record"); 4045 4046 int Opc = getDecodedUnaryOpcode(Record[OpNum++], LHS->getType()); 4047 if (Opc == -1) 4048 return error("Invalid record"); 4049 I = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS); 4050 InstructionList.push_back(I); 4051 if (OpNum < Record.size()) { 4052 if (isa<FPMathOperator>(I)) { 4053 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 4054 if (FMF.any()) 4055 I->setFastMathFlags(FMF); 4056 } 4057 } 4058 break; 4059 } 4060 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 4061 unsigned OpNum = 0; 4062 Value *LHS, *RHS; 4063 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 4064 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 4065 OpNum+1 > Record.size()) 4066 return error("Invalid record"); 4067 4068 int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 4069 if (Opc == -1) 4070 return error("Invalid record"); 4071 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 4072 InstructionList.push_back(I); 4073 if (OpNum < Record.size()) { 4074 if (Opc == Instruction::Add || 4075 Opc == Instruction::Sub || 4076 Opc == Instruction::Mul || 4077 Opc == Instruction::Shl) { 4078 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 4079 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 4080 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 4081 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 4082 } else if (Opc == Instruction::SDiv || 4083 Opc == Instruction::UDiv || 4084 Opc == Instruction::LShr || 4085 Opc == Instruction::AShr) { 4086 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 4087 cast<BinaryOperator>(I)->setIsExact(true); 4088 } else if (isa<FPMathOperator>(I)) { 4089 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 4090 if (FMF.any()) 4091 I->setFastMathFlags(FMF); 4092 } 4093 4094 } 4095 break; 4096 } 4097 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 4098 unsigned OpNum = 0; 4099 Value *Op; 4100 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4101 OpNum+2 != Record.size()) 4102 return error("Invalid record"); 4103 4104 Type *ResTy = getTypeByID(Record[OpNum]); 4105 int Opc = getDecodedCastOpcode(Record[OpNum + 1]); 4106 if (Opc == -1 || !ResTy) 4107 return error("Invalid record"); 4108 Instruction *Temp = nullptr; 4109 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) { 4110 if (Temp) { 4111 InstructionList.push_back(Temp); 4112 assert(CurBB && "No current BB?"); 4113 CurBB->getInstList().push_back(Temp); 4114 } 4115 } else { 4116 auto CastOp = (Instruction::CastOps)Opc; 4117 if (!CastInst::castIsValid(CastOp, Op, ResTy)) 4118 return error("Invalid cast"); 4119 I = CastInst::Create(CastOp, Op, ResTy); 4120 } 4121 InstructionList.push_back(I); 4122 break; 4123 } 4124 case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD: 4125 case bitc::FUNC_CODE_INST_GEP_OLD: 4126 case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands] 4127 unsigned OpNum = 0; 4128 4129 Type *Ty; 4130 bool InBounds; 4131 4132 if (BitCode == bitc::FUNC_CODE_INST_GEP) { 4133 InBounds = Record[OpNum++]; 4134 Ty = getTypeByID(Record[OpNum++]); 4135 } else { 4136 InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD; 4137 Ty = nullptr; 4138 } 4139 4140 Value *BasePtr; 4141 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr)) 4142 return error("Invalid record"); 4143 4144 if (!Ty) { 4145 Ty = cast<PointerType>(BasePtr->getType()->getScalarType()) 4146 ->getElementType(); 4147 } else if (!cast<PointerType>(BasePtr->getType()->getScalarType()) 4148 ->isOpaqueOrPointeeTypeMatches(Ty)) { 4149 return error( 4150 "Explicit gep type does not match pointee type of pointer operand"); 4151 } 4152 4153 SmallVector<Value*, 16> GEPIdx; 4154 while (OpNum != Record.size()) { 4155 Value *Op; 4156 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4157 return error("Invalid record"); 4158 GEPIdx.push_back(Op); 4159 } 4160 4161 I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx); 4162 4163 InstructionList.push_back(I); 4164 if (InBounds) 4165 cast<GetElementPtrInst>(I)->setIsInBounds(true); 4166 break; 4167 } 4168 4169 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 4170 // EXTRACTVAL: [opty, opval, n x indices] 4171 unsigned OpNum = 0; 4172 Value *Agg; 4173 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 4174 return error("Invalid record"); 4175 Type *Ty = Agg->getType(); 4176 4177 unsigned RecSize = Record.size(); 4178 if (OpNum == RecSize) 4179 return error("EXTRACTVAL: Invalid instruction with 0 indices"); 4180 4181 SmallVector<unsigned, 4> EXTRACTVALIdx; 4182 for (; OpNum != RecSize; ++OpNum) { 4183 bool IsArray = Ty->isArrayTy(); 4184 bool IsStruct = Ty->isStructTy(); 4185 uint64_t Index = Record[OpNum]; 4186 4187 if (!IsStruct && !IsArray) 4188 return error("EXTRACTVAL: Invalid type"); 4189 if ((unsigned)Index != Index) 4190 return error("Invalid value"); 4191 if (IsStruct && Index >= Ty->getStructNumElements()) 4192 return error("EXTRACTVAL: Invalid struct index"); 4193 if (IsArray && Index >= Ty->getArrayNumElements()) 4194 return error("EXTRACTVAL: Invalid array index"); 4195 EXTRACTVALIdx.push_back((unsigned)Index); 4196 4197 if (IsStruct) 4198 Ty = Ty->getStructElementType(Index); 4199 else 4200 Ty = Ty->getArrayElementType(); 4201 } 4202 4203 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 4204 InstructionList.push_back(I); 4205 break; 4206 } 4207 4208 case bitc::FUNC_CODE_INST_INSERTVAL: { 4209 // INSERTVAL: [opty, opval, opty, opval, n x indices] 4210 unsigned OpNum = 0; 4211 Value *Agg; 4212 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 4213 return error("Invalid record"); 4214 Value *Val; 4215 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 4216 return error("Invalid record"); 4217 4218 unsigned RecSize = Record.size(); 4219 if (OpNum == RecSize) 4220 return error("INSERTVAL: Invalid instruction with 0 indices"); 4221 4222 SmallVector<unsigned, 4> INSERTVALIdx; 4223 Type *CurTy = Agg->getType(); 4224 for (; OpNum != RecSize; ++OpNum) { 4225 bool IsArray = CurTy->isArrayTy(); 4226 bool IsStruct = CurTy->isStructTy(); 4227 uint64_t Index = Record[OpNum]; 4228 4229 if (!IsStruct && !IsArray) 4230 return error("INSERTVAL: Invalid type"); 4231 if ((unsigned)Index != Index) 4232 return error("Invalid value"); 4233 if (IsStruct && Index >= CurTy->getStructNumElements()) 4234 return error("INSERTVAL: Invalid struct index"); 4235 if (IsArray && Index >= CurTy->getArrayNumElements()) 4236 return error("INSERTVAL: Invalid array index"); 4237 4238 INSERTVALIdx.push_back((unsigned)Index); 4239 if (IsStruct) 4240 CurTy = CurTy->getStructElementType(Index); 4241 else 4242 CurTy = CurTy->getArrayElementType(); 4243 } 4244 4245 if (CurTy != Val->getType()) 4246 return error("Inserted value type doesn't match aggregate type"); 4247 4248 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 4249 InstructionList.push_back(I); 4250 break; 4251 } 4252 4253 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 4254 // obsolete form of select 4255 // handles select i1 ... in old bitcode 4256 unsigned OpNum = 0; 4257 Value *TrueVal, *FalseVal, *Cond; 4258 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 4259 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 4260 popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond)) 4261 return error("Invalid record"); 4262 4263 I = SelectInst::Create(Cond, TrueVal, FalseVal); 4264 InstructionList.push_back(I); 4265 break; 4266 } 4267 4268 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 4269 // new form of select 4270 // handles select i1 or select [N x i1] 4271 unsigned OpNum = 0; 4272 Value *TrueVal, *FalseVal, *Cond; 4273 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 4274 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 4275 getValueTypePair(Record, OpNum, NextValueNo, Cond)) 4276 return error("Invalid record"); 4277 4278 // select condition can be either i1 or [N x i1] 4279 if (VectorType* vector_type = 4280 dyn_cast<VectorType>(Cond->getType())) { 4281 // expect <n x i1> 4282 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 4283 return error("Invalid type for value"); 4284 } else { 4285 // expect i1 4286 if (Cond->getType() != Type::getInt1Ty(Context)) 4287 return error("Invalid type for value"); 4288 } 4289 4290 I = SelectInst::Create(Cond, TrueVal, FalseVal); 4291 InstructionList.push_back(I); 4292 if (OpNum < Record.size() && isa<FPMathOperator>(I)) { 4293 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 4294 if (FMF.any()) 4295 I->setFastMathFlags(FMF); 4296 } 4297 break; 4298 } 4299 4300 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 4301 unsigned OpNum = 0; 4302 Value *Vec, *Idx; 4303 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 4304 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 4305 return error("Invalid record"); 4306 if (!Vec->getType()->isVectorTy()) 4307 return error("Invalid type for value"); 4308 I = ExtractElementInst::Create(Vec, Idx); 4309 InstructionList.push_back(I); 4310 break; 4311 } 4312 4313 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 4314 unsigned OpNum = 0; 4315 Value *Vec, *Elt, *Idx; 4316 if (getValueTypePair(Record, OpNum, NextValueNo, Vec)) 4317 return error("Invalid record"); 4318 if (!Vec->getType()->isVectorTy()) 4319 return error("Invalid type for value"); 4320 if (popValue(Record, OpNum, NextValueNo, 4321 cast<VectorType>(Vec->getType())->getElementType(), Elt) || 4322 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 4323 return error("Invalid record"); 4324 I = InsertElementInst::Create(Vec, Elt, Idx); 4325 InstructionList.push_back(I); 4326 break; 4327 } 4328 4329 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 4330 unsigned OpNum = 0; 4331 Value *Vec1, *Vec2, *Mask; 4332 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) || 4333 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2)) 4334 return error("Invalid record"); 4335 4336 if (getValueTypePair(Record, OpNum, NextValueNo, Mask)) 4337 return error("Invalid record"); 4338 if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy()) 4339 return error("Invalid type for value"); 4340 4341 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 4342 InstructionList.push_back(I); 4343 break; 4344 } 4345 4346 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 4347 // Old form of ICmp/FCmp returning bool 4348 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 4349 // both legal on vectors but had different behaviour. 4350 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 4351 // FCmp/ICmp returning bool or vector of bool 4352 4353 unsigned OpNum = 0; 4354 Value *LHS, *RHS; 4355 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 4356 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS)) 4357 return error("Invalid record"); 4358 4359 if (OpNum >= Record.size()) 4360 return error( 4361 "Invalid record: operand number exceeded available operands"); 4362 4363 unsigned PredVal = Record[OpNum]; 4364 bool IsFP = LHS->getType()->isFPOrFPVectorTy(); 4365 FastMathFlags FMF; 4366 if (IsFP && Record.size() > OpNum+1) 4367 FMF = getDecodedFastMathFlags(Record[++OpNum]); 4368 4369 if (OpNum+1 != Record.size()) 4370 return error("Invalid record"); 4371 4372 if (LHS->getType()->isFPOrFPVectorTy()) 4373 I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS); 4374 else 4375 I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS); 4376 4377 if (FMF.any()) 4378 I->setFastMathFlags(FMF); 4379 InstructionList.push_back(I); 4380 break; 4381 } 4382 4383 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 4384 { 4385 unsigned Size = Record.size(); 4386 if (Size == 0) { 4387 I = ReturnInst::Create(Context); 4388 InstructionList.push_back(I); 4389 break; 4390 } 4391 4392 unsigned OpNum = 0; 4393 Value *Op = nullptr; 4394 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4395 return error("Invalid record"); 4396 if (OpNum != Record.size()) 4397 return error("Invalid record"); 4398 4399 I = ReturnInst::Create(Context, Op); 4400 InstructionList.push_back(I); 4401 break; 4402 } 4403 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 4404 if (Record.size() != 1 && Record.size() != 3) 4405 return error("Invalid record"); 4406 BasicBlock *TrueDest = getBasicBlock(Record[0]); 4407 if (!TrueDest) 4408 return error("Invalid record"); 4409 4410 if (Record.size() == 1) { 4411 I = BranchInst::Create(TrueDest); 4412 InstructionList.push_back(I); 4413 } 4414 else { 4415 BasicBlock *FalseDest = getBasicBlock(Record[1]); 4416 Value *Cond = getValue(Record, 2, NextValueNo, 4417 Type::getInt1Ty(Context)); 4418 if (!FalseDest || !Cond) 4419 return error("Invalid record"); 4420 I = BranchInst::Create(TrueDest, FalseDest, Cond); 4421 InstructionList.push_back(I); 4422 } 4423 break; 4424 } 4425 case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#] 4426 if (Record.size() != 1 && Record.size() != 2) 4427 return error("Invalid record"); 4428 unsigned Idx = 0; 4429 Value *CleanupPad = 4430 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4431 if (!CleanupPad) 4432 return error("Invalid record"); 4433 BasicBlock *UnwindDest = nullptr; 4434 if (Record.size() == 2) { 4435 UnwindDest = getBasicBlock(Record[Idx++]); 4436 if (!UnwindDest) 4437 return error("Invalid record"); 4438 } 4439 4440 I = CleanupReturnInst::Create(CleanupPad, UnwindDest); 4441 InstructionList.push_back(I); 4442 break; 4443 } 4444 case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#] 4445 if (Record.size() != 2) 4446 return error("Invalid record"); 4447 unsigned Idx = 0; 4448 Value *CatchPad = 4449 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4450 if (!CatchPad) 4451 return error("Invalid record"); 4452 BasicBlock *BB = getBasicBlock(Record[Idx++]); 4453 if (!BB) 4454 return error("Invalid record"); 4455 4456 I = CatchReturnInst::Create(CatchPad, BB); 4457 InstructionList.push_back(I); 4458 break; 4459 } 4460 case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?] 4461 // We must have, at minimum, the outer scope and the number of arguments. 4462 if (Record.size() < 2) 4463 return error("Invalid record"); 4464 4465 unsigned Idx = 0; 4466 4467 Value *ParentPad = 4468 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4469 4470 unsigned NumHandlers = Record[Idx++]; 4471 4472 SmallVector<BasicBlock *, 2> Handlers; 4473 for (unsigned Op = 0; Op != NumHandlers; ++Op) { 4474 BasicBlock *BB = getBasicBlock(Record[Idx++]); 4475 if (!BB) 4476 return error("Invalid record"); 4477 Handlers.push_back(BB); 4478 } 4479 4480 BasicBlock *UnwindDest = nullptr; 4481 if (Idx + 1 == Record.size()) { 4482 UnwindDest = getBasicBlock(Record[Idx++]); 4483 if (!UnwindDest) 4484 return error("Invalid record"); 4485 } 4486 4487 if (Record.size() != Idx) 4488 return error("Invalid record"); 4489 4490 auto *CatchSwitch = 4491 CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers); 4492 for (BasicBlock *Handler : Handlers) 4493 CatchSwitch->addHandler(Handler); 4494 I = CatchSwitch; 4495 InstructionList.push_back(I); 4496 break; 4497 } 4498 case bitc::FUNC_CODE_INST_CATCHPAD: 4499 case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*] 4500 // We must have, at minimum, the outer scope and the number of arguments. 4501 if (Record.size() < 2) 4502 return error("Invalid record"); 4503 4504 unsigned Idx = 0; 4505 4506 Value *ParentPad = 4507 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4508 4509 unsigned NumArgOperands = Record[Idx++]; 4510 4511 SmallVector<Value *, 2> Args; 4512 for (unsigned Op = 0; Op != NumArgOperands; ++Op) { 4513 Value *Val; 4514 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 4515 return error("Invalid record"); 4516 Args.push_back(Val); 4517 } 4518 4519 if (Record.size() != Idx) 4520 return error("Invalid record"); 4521 4522 if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD) 4523 I = CleanupPadInst::Create(ParentPad, Args); 4524 else 4525 I = CatchPadInst::Create(ParentPad, Args); 4526 InstructionList.push_back(I); 4527 break; 4528 } 4529 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 4530 // Check magic 4531 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { 4532 // "New" SwitchInst format with case ranges. The changes to write this 4533 // format were reverted but we still recognize bitcode that uses it. 4534 // Hopefully someday we will have support for case ranges and can use 4535 // this format again. 4536 4537 Type *OpTy = getTypeByID(Record[1]); 4538 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); 4539 4540 Value *Cond = getValue(Record, 2, NextValueNo, OpTy); 4541 BasicBlock *Default = getBasicBlock(Record[3]); 4542 if (!OpTy || !Cond || !Default) 4543 return error("Invalid record"); 4544 4545 unsigned NumCases = Record[4]; 4546 4547 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 4548 InstructionList.push_back(SI); 4549 4550 unsigned CurIdx = 5; 4551 for (unsigned i = 0; i != NumCases; ++i) { 4552 SmallVector<ConstantInt*, 1> CaseVals; 4553 unsigned NumItems = Record[CurIdx++]; 4554 for (unsigned ci = 0; ci != NumItems; ++ci) { 4555 bool isSingleNumber = Record[CurIdx++]; 4556 4557 APInt Low; 4558 unsigned ActiveWords = 1; 4559 if (ValueBitWidth > 64) 4560 ActiveWords = Record[CurIdx++]; 4561 Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 4562 ValueBitWidth); 4563 CurIdx += ActiveWords; 4564 4565 if (!isSingleNumber) { 4566 ActiveWords = 1; 4567 if (ValueBitWidth > 64) 4568 ActiveWords = Record[CurIdx++]; 4569 APInt High = readWideAPInt( 4570 makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth); 4571 CurIdx += ActiveWords; 4572 4573 // FIXME: It is not clear whether values in the range should be 4574 // compared as signed or unsigned values. The partially 4575 // implemented changes that used this format in the past used 4576 // unsigned comparisons. 4577 for ( ; Low.ule(High); ++Low) 4578 CaseVals.push_back(ConstantInt::get(Context, Low)); 4579 } else 4580 CaseVals.push_back(ConstantInt::get(Context, Low)); 4581 } 4582 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); 4583 for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(), 4584 cve = CaseVals.end(); cvi != cve; ++cvi) 4585 SI->addCase(*cvi, DestBB); 4586 } 4587 I = SI; 4588 break; 4589 } 4590 4591 // Old SwitchInst format without case ranges. 4592 4593 if (Record.size() < 3 || (Record.size() & 1) == 0) 4594 return error("Invalid record"); 4595 Type *OpTy = getTypeByID(Record[0]); 4596 Value *Cond = getValue(Record, 1, NextValueNo, OpTy); 4597 BasicBlock *Default = getBasicBlock(Record[2]); 4598 if (!OpTy || !Cond || !Default) 4599 return error("Invalid record"); 4600 unsigned NumCases = (Record.size()-3)/2; 4601 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 4602 InstructionList.push_back(SI); 4603 for (unsigned i = 0, e = NumCases; i != e; ++i) { 4604 ConstantInt *CaseVal = 4605 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy)); 4606 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 4607 if (!CaseVal || !DestBB) { 4608 delete SI; 4609 return error("Invalid record"); 4610 } 4611 SI->addCase(CaseVal, DestBB); 4612 } 4613 I = SI; 4614 break; 4615 } 4616 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 4617 if (Record.size() < 2) 4618 return error("Invalid record"); 4619 Type *OpTy = getTypeByID(Record[0]); 4620 Value *Address = getValue(Record, 1, NextValueNo, OpTy); 4621 if (!OpTy || !Address) 4622 return error("Invalid record"); 4623 unsigned NumDests = Record.size()-2; 4624 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 4625 InstructionList.push_back(IBI); 4626 for (unsigned i = 0, e = NumDests; i != e; ++i) { 4627 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 4628 IBI->addDestination(DestBB); 4629 } else { 4630 delete IBI; 4631 return error("Invalid record"); 4632 } 4633 } 4634 I = IBI; 4635 break; 4636 } 4637 4638 case bitc::FUNC_CODE_INST_INVOKE: { 4639 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 4640 if (Record.size() < 4) 4641 return error("Invalid record"); 4642 unsigned OpNum = 0; 4643 AttributeList PAL = getAttributes(Record[OpNum++]); 4644 unsigned CCInfo = Record[OpNum++]; 4645 BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]); 4646 BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]); 4647 4648 FunctionType *FTy = nullptr; 4649 if ((CCInfo >> 13) & 1) { 4650 FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])); 4651 if (!FTy) 4652 return error("Explicit invoke type is not a function type"); 4653 } 4654 4655 Value *Callee; 4656 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 4657 return error("Invalid record"); 4658 4659 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 4660 if (!CalleeTy) 4661 return error("Callee is not a pointer"); 4662 if (!FTy) { 4663 FTy = dyn_cast<FunctionType>( 4664 cast<PointerType>(Callee->getType())->getElementType()); 4665 if (!FTy) 4666 return error("Callee is not of pointer to function type"); 4667 } else if (!CalleeTy->isOpaqueOrPointeeTypeMatches(FTy)) 4668 return error("Explicit invoke type does not match pointee type of " 4669 "callee operand"); 4670 if (Record.size() < FTy->getNumParams() + OpNum) 4671 return error("Insufficient operands to call"); 4672 4673 SmallVector<Value*, 16> Ops; 4674 SmallVector<Type *, 16> ArgsTys; 4675 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 4676 Ops.push_back(getValue(Record, OpNum, NextValueNo, 4677 FTy->getParamType(i))); 4678 ArgsTys.push_back(FTy->getParamType(i)); 4679 if (!Ops.back()) 4680 return error("Invalid record"); 4681 } 4682 4683 if (!FTy->isVarArg()) { 4684 if (Record.size() != OpNum) 4685 return error("Invalid record"); 4686 } else { 4687 // Read type/value pairs for varargs params. 4688 while (OpNum != Record.size()) { 4689 Value *Op; 4690 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4691 return error("Invalid record"); 4692 Ops.push_back(Op); 4693 ArgsTys.push_back(Op->getType()); 4694 } 4695 } 4696 4697 I = InvokeInst::Create(FTy, Callee, NormalBB, UnwindBB, Ops, 4698 OperandBundles); 4699 OperandBundles.clear(); 4700 InstructionList.push_back(I); 4701 cast<InvokeInst>(I)->setCallingConv( 4702 static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo)); 4703 cast<InvokeInst>(I)->setAttributes(PAL); 4704 propagateAttributeTypes(cast<CallBase>(I), ArgsTys); 4705 4706 break; 4707 } 4708 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 4709 unsigned Idx = 0; 4710 Value *Val = nullptr; 4711 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 4712 return error("Invalid record"); 4713 I = ResumeInst::Create(Val); 4714 InstructionList.push_back(I); 4715 break; 4716 } 4717 case bitc::FUNC_CODE_INST_CALLBR: { 4718 // CALLBR: [attr, cc, norm, transfs, fty, fnid, args] 4719 unsigned OpNum = 0; 4720 AttributeList PAL = getAttributes(Record[OpNum++]); 4721 unsigned CCInfo = Record[OpNum++]; 4722 4723 BasicBlock *DefaultDest = getBasicBlock(Record[OpNum++]); 4724 unsigned NumIndirectDests = Record[OpNum++]; 4725 SmallVector<BasicBlock *, 16> IndirectDests; 4726 for (unsigned i = 0, e = NumIndirectDests; i != e; ++i) 4727 IndirectDests.push_back(getBasicBlock(Record[OpNum++])); 4728 4729 FunctionType *FTy = nullptr; 4730 if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) { 4731 FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])); 4732 if (!FTy) 4733 return error("Explicit call type is not a function type"); 4734 } 4735 4736 Value *Callee; 4737 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 4738 return error("Invalid record"); 4739 4740 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 4741 if (!OpTy) 4742 return error("Callee is not a pointer type"); 4743 if (!FTy) { 4744 FTy = dyn_cast<FunctionType>( 4745 cast<PointerType>(Callee->getType())->getElementType()); 4746 if (!FTy) 4747 return error("Callee is not of pointer to function type"); 4748 } else if (cast<PointerType>(Callee->getType())->getElementType() != FTy) 4749 return error("Explicit call type does not match pointee type of " 4750 "callee operand"); 4751 if (Record.size() < FTy->getNumParams() + OpNum) 4752 return error("Insufficient operands to call"); 4753 4754 SmallVector<Value*, 16> Args; 4755 // Read the fixed params. 4756 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 4757 if (FTy->getParamType(i)->isLabelTy()) 4758 Args.push_back(getBasicBlock(Record[OpNum])); 4759 else 4760 Args.push_back(getValue(Record, OpNum, NextValueNo, 4761 FTy->getParamType(i))); 4762 if (!Args.back()) 4763 return error("Invalid record"); 4764 } 4765 4766 // Read type/value pairs for varargs params. 4767 if (!FTy->isVarArg()) { 4768 if (OpNum != Record.size()) 4769 return error("Invalid record"); 4770 } else { 4771 while (OpNum != Record.size()) { 4772 Value *Op; 4773 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4774 return error("Invalid record"); 4775 Args.push_back(Op); 4776 } 4777 } 4778 4779 I = CallBrInst::Create(FTy, Callee, DefaultDest, IndirectDests, Args, 4780 OperandBundles); 4781 OperandBundles.clear(); 4782 InstructionList.push_back(I); 4783 cast<CallBrInst>(I)->setCallingConv( 4784 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 4785 cast<CallBrInst>(I)->setAttributes(PAL); 4786 break; 4787 } 4788 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 4789 I = new UnreachableInst(Context); 4790 InstructionList.push_back(I); 4791 break; 4792 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 4793 if (Record.empty()) 4794 return error("Invalid record"); 4795 // The first record specifies the type. 4796 Type *Ty = getTypeByID(Record[0]); 4797 if (!Ty) 4798 return error("Invalid record"); 4799 4800 // Phi arguments are pairs of records of [value, basic block]. 4801 // There is an optional final record for fast-math-flags if this phi has a 4802 // floating-point type. 4803 size_t NumArgs = (Record.size() - 1) / 2; 4804 PHINode *PN = PHINode::Create(Ty, NumArgs); 4805 if ((Record.size() - 1) % 2 == 1 && !isa<FPMathOperator>(PN)) 4806 return error("Invalid record"); 4807 InstructionList.push_back(PN); 4808 4809 for (unsigned i = 0; i != NumArgs; i++) { 4810 Value *V; 4811 // With the new function encoding, it is possible that operands have 4812 // negative IDs (for forward references). Use a signed VBR 4813 // representation to keep the encoding small. 4814 if (UseRelativeIDs) 4815 V = getValueSigned(Record, i * 2 + 1, NextValueNo, Ty); 4816 else 4817 V = getValue(Record, i * 2 + 1, NextValueNo, Ty); 4818 BasicBlock *BB = getBasicBlock(Record[i * 2 + 2]); 4819 if (!V || !BB) 4820 return error("Invalid record"); 4821 PN->addIncoming(V, BB); 4822 } 4823 I = PN; 4824 4825 // If there are an even number of records, the final record must be FMF. 4826 if (Record.size() % 2 == 0) { 4827 assert(isa<FPMathOperator>(I) && "Unexpected phi type"); 4828 FastMathFlags FMF = getDecodedFastMathFlags(Record[Record.size() - 1]); 4829 if (FMF.any()) 4830 I->setFastMathFlags(FMF); 4831 } 4832 4833 break; 4834 } 4835 4836 case bitc::FUNC_CODE_INST_LANDINGPAD: 4837 case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: { 4838 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 4839 unsigned Idx = 0; 4840 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) { 4841 if (Record.size() < 3) 4842 return error("Invalid record"); 4843 } else { 4844 assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD); 4845 if (Record.size() < 4) 4846 return error("Invalid record"); 4847 } 4848 Type *Ty = getTypeByID(Record[Idx++]); 4849 if (!Ty) 4850 return error("Invalid record"); 4851 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) { 4852 Value *PersFn = nullptr; 4853 if (getValueTypePair(Record, Idx, NextValueNo, PersFn)) 4854 return error("Invalid record"); 4855 4856 if (!F->hasPersonalityFn()) 4857 F->setPersonalityFn(cast<Constant>(PersFn)); 4858 else if (F->getPersonalityFn() != cast<Constant>(PersFn)) 4859 return error("Personality function mismatch"); 4860 } 4861 4862 bool IsCleanup = !!Record[Idx++]; 4863 unsigned NumClauses = Record[Idx++]; 4864 LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses); 4865 LP->setCleanup(IsCleanup); 4866 for (unsigned J = 0; J != NumClauses; ++J) { 4867 LandingPadInst::ClauseType CT = 4868 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 4869 Value *Val; 4870 4871 if (getValueTypePair(Record, Idx, NextValueNo, Val)) { 4872 delete LP; 4873 return error("Invalid record"); 4874 } 4875 4876 assert((CT != LandingPadInst::Catch || 4877 !isa<ArrayType>(Val->getType())) && 4878 "Catch clause has a invalid type!"); 4879 assert((CT != LandingPadInst::Filter || 4880 isa<ArrayType>(Val->getType())) && 4881 "Filter clause has invalid type!"); 4882 LP->addClause(cast<Constant>(Val)); 4883 } 4884 4885 I = LP; 4886 InstructionList.push_back(I); 4887 break; 4888 } 4889 4890 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 4891 if (Record.size() != 4) 4892 return error("Invalid record"); 4893 using APV = AllocaPackedValues; 4894 const uint64_t Rec = Record[3]; 4895 const bool InAlloca = Bitfield::get<APV::UsedWithInAlloca>(Rec); 4896 const bool SwiftError = Bitfield::get<APV::SwiftError>(Rec); 4897 Type *Ty = getTypeByID(Record[0]); 4898 if (!Bitfield::get<APV::ExplicitType>(Rec)) { 4899 auto *PTy = dyn_cast_or_null<PointerType>(Ty); 4900 if (!PTy) 4901 return error("Old-style alloca with a non-pointer type"); 4902 Ty = PTy->getElementType(); 4903 } 4904 Type *OpTy = getTypeByID(Record[1]); 4905 Value *Size = getFnValueByID(Record[2], OpTy); 4906 MaybeAlign Align; 4907 if (Error Err = 4908 parseAlignmentValue(Bitfield::get<APV::Align>(Rec), Align)) { 4909 return Err; 4910 } 4911 if (!Ty || !Size) 4912 return error("Invalid record"); 4913 4914 // FIXME: Make this an optional field. 4915 const DataLayout &DL = TheModule->getDataLayout(); 4916 unsigned AS = DL.getAllocaAddrSpace(); 4917 4918 SmallPtrSet<Type *, 4> Visited; 4919 if (!Align && !Ty->isSized(&Visited)) 4920 return error("alloca of unsized type"); 4921 if (!Align) 4922 Align = DL.getPrefTypeAlign(Ty); 4923 4924 AllocaInst *AI = new AllocaInst(Ty, AS, Size, *Align); 4925 AI->setUsedWithInAlloca(InAlloca); 4926 AI->setSwiftError(SwiftError); 4927 I = AI; 4928 InstructionList.push_back(I); 4929 break; 4930 } 4931 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 4932 unsigned OpNum = 0; 4933 Value *Op; 4934 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4935 (OpNum + 2 != Record.size() && OpNum + 3 != Record.size())) 4936 return error("Invalid record"); 4937 4938 if (!isa<PointerType>(Op->getType())) 4939 return error("Load operand is not a pointer type"); 4940 4941 Type *Ty = nullptr; 4942 if (OpNum + 3 == Record.size()) { 4943 Ty = getTypeByID(Record[OpNum++]); 4944 } else { 4945 Ty = cast<PointerType>(Op->getType())->getElementType(); 4946 } 4947 4948 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 4949 return Err; 4950 4951 MaybeAlign Align; 4952 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4953 return Err; 4954 SmallPtrSet<Type *, 4> Visited; 4955 if (!Align && !Ty->isSized(&Visited)) 4956 return error("load of unsized type"); 4957 if (!Align) 4958 Align = TheModule->getDataLayout().getABITypeAlign(Ty); 4959 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align); 4960 InstructionList.push_back(I); 4961 break; 4962 } 4963 case bitc::FUNC_CODE_INST_LOADATOMIC: { 4964 // LOADATOMIC: [opty, op, align, vol, ordering, ssid] 4965 unsigned OpNum = 0; 4966 Value *Op; 4967 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4968 (OpNum + 4 != Record.size() && OpNum + 5 != Record.size())) 4969 return error("Invalid record"); 4970 4971 if (!isa<PointerType>(Op->getType())) 4972 return error("Load operand is not a pointer type"); 4973 4974 Type *Ty = nullptr; 4975 if (OpNum + 5 == Record.size()) { 4976 Ty = getTypeByID(Record[OpNum++]); 4977 } else { 4978 Ty = cast<PointerType>(Op->getType())->getElementType(); 4979 } 4980 4981 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 4982 return Err; 4983 4984 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4985 if (Ordering == AtomicOrdering::NotAtomic || 4986 Ordering == AtomicOrdering::Release || 4987 Ordering == AtomicOrdering::AcquireRelease) 4988 return error("Invalid record"); 4989 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 4990 return error("Invalid record"); 4991 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 4992 4993 MaybeAlign Align; 4994 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4995 return Err; 4996 if (!Align) 4997 return error("Alignment missing from atomic load"); 4998 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align, Ordering, SSID); 4999 InstructionList.push_back(I); 5000 break; 5001 } 5002 case bitc::FUNC_CODE_INST_STORE: 5003 case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol] 5004 unsigned OpNum = 0; 5005 Value *Val, *Ptr; 5006 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 5007 (BitCode == bitc::FUNC_CODE_INST_STORE 5008 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 5009 : popValue(Record, OpNum, NextValueNo, 5010 cast<PointerType>(Ptr->getType())->getElementType(), 5011 Val)) || 5012 OpNum + 2 != Record.size()) 5013 return error("Invalid record"); 5014 5015 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 5016 return Err; 5017 MaybeAlign Align; 5018 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 5019 return Err; 5020 SmallPtrSet<Type *, 4> Visited; 5021 if (!Align && !Val->getType()->isSized(&Visited)) 5022 return error("store of unsized type"); 5023 if (!Align) 5024 Align = TheModule->getDataLayout().getABITypeAlign(Val->getType()); 5025 I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align); 5026 InstructionList.push_back(I); 5027 break; 5028 } 5029 case bitc::FUNC_CODE_INST_STOREATOMIC: 5030 case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: { 5031 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, ssid] 5032 unsigned OpNum = 0; 5033 Value *Val, *Ptr; 5034 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 5035 !isa<PointerType>(Ptr->getType()) || 5036 (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC 5037 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 5038 : popValue(Record, OpNum, NextValueNo, 5039 cast<PointerType>(Ptr->getType())->getElementType(), 5040 Val)) || 5041 OpNum + 4 != Record.size()) 5042 return error("Invalid record"); 5043 5044 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 5045 return Err; 5046 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 5047 if (Ordering == AtomicOrdering::NotAtomic || 5048 Ordering == AtomicOrdering::Acquire || 5049 Ordering == AtomicOrdering::AcquireRelease) 5050 return error("Invalid record"); 5051 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 5052 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 5053 return error("Invalid record"); 5054 5055 MaybeAlign Align; 5056 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 5057 return Err; 5058 if (!Align) 5059 return error("Alignment missing from atomic store"); 5060 I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align, Ordering, SSID); 5061 InstructionList.push_back(I); 5062 break; 5063 } 5064 case bitc::FUNC_CODE_INST_CMPXCHG_OLD: { 5065 // CMPXCHG_OLD: [ptrty, ptr, cmp, val, vol, ordering, synchscope, 5066 // failure_ordering?, weak?] 5067 const size_t NumRecords = Record.size(); 5068 unsigned OpNum = 0; 5069 Value *Ptr = nullptr; 5070 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr)) 5071 return error("Invalid record"); 5072 5073 if (!isa<PointerType>(Ptr->getType())) 5074 return error("Cmpxchg operand is not a pointer type"); 5075 5076 Value *Cmp = nullptr; 5077 if (popValue(Record, OpNum, NextValueNo, 5078 cast<PointerType>(Ptr->getType())->getPointerElementType(), 5079 Cmp)) 5080 return error("Invalid record"); 5081 5082 Value *New = nullptr; 5083 if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) || 5084 NumRecords < OpNum + 3 || NumRecords > OpNum + 5) 5085 return error("Invalid record"); 5086 5087 const AtomicOrdering SuccessOrdering = 5088 getDecodedOrdering(Record[OpNum + 1]); 5089 if (SuccessOrdering == AtomicOrdering::NotAtomic || 5090 SuccessOrdering == AtomicOrdering::Unordered) 5091 return error("Invalid record"); 5092 5093 const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]); 5094 5095 if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType())) 5096 return Err; 5097 5098 const AtomicOrdering FailureOrdering = 5099 NumRecords < 7 5100 ? AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering) 5101 : getDecodedOrdering(Record[OpNum + 3]); 5102 5103 if (FailureOrdering == AtomicOrdering::NotAtomic || 5104 FailureOrdering == AtomicOrdering::Unordered) 5105 return error("Invalid record"); 5106 5107 const Align Alignment( 5108 TheModule->getDataLayout().getTypeStoreSize(Cmp->getType())); 5109 5110 I = new AtomicCmpXchgInst(Ptr, Cmp, New, Alignment, SuccessOrdering, 5111 FailureOrdering, SSID); 5112 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 5113 5114 if (NumRecords < 8) { 5115 // Before weak cmpxchgs existed, the instruction simply returned the 5116 // value loaded from memory, so bitcode files from that era will be 5117 // expecting the first component of a modern cmpxchg. 5118 CurBB->getInstList().push_back(I); 5119 I = ExtractValueInst::Create(I, 0); 5120 } else { 5121 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum + 4]); 5122 } 5123 5124 InstructionList.push_back(I); 5125 break; 5126 } 5127 case bitc::FUNC_CODE_INST_CMPXCHG: { 5128 // CMPXCHG: [ptrty, ptr, cmp, val, vol, success_ordering, synchscope, 5129 // failure_ordering, weak, align?] 5130 const size_t NumRecords = Record.size(); 5131 unsigned OpNum = 0; 5132 Value *Ptr = nullptr; 5133 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr)) 5134 return error("Invalid record"); 5135 5136 if (!isa<PointerType>(Ptr->getType())) 5137 return error("Cmpxchg operand is not a pointer type"); 5138 5139 Value *Cmp = nullptr; 5140 if (getValueTypePair(Record, OpNum, NextValueNo, Cmp)) 5141 return error("Invalid record"); 5142 5143 Value *Val = nullptr; 5144 if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), Val)) 5145 return error("Invalid record"); 5146 5147 if (NumRecords < OpNum + 3 || NumRecords > OpNum + 6) 5148 return error("Invalid record"); 5149 5150 const bool IsVol = Record[OpNum]; 5151 5152 const AtomicOrdering SuccessOrdering = 5153 getDecodedOrdering(Record[OpNum + 1]); 5154 if (!AtomicCmpXchgInst::isValidSuccessOrdering(SuccessOrdering)) 5155 return error("Invalid cmpxchg success ordering"); 5156 5157 const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]); 5158 5159 if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType())) 5160 return Err; 5161 5162 const AtomicOrdering FailureOrdering = 5163 getDecodedOrdering(Record[OpNum + 3]); 5164 if (!AtomicCmpXchgInst::isValidFailureOrdering(FailureOrdering)) 5165 return error("Invalid cmpxchg failure ordering"); 5166 5167 const bool IsWeak = Record[OpNum + 4]; 5168 5169 MaybeAlign Alignment; 5170 5171 if (NumRecords == (OpNum + 6)) { 5172 if (Error Err = parseAlignmentValue(Record[OpNum + 5], Alignment)) 5173 return Err; 5174 } 5175 if (!Alignment) 5176 Alignment = 5177 Align(TheModule->getDataLayout().getTypeStoreSize(Cmp->getType())); 5178 5179 I = new AtomicCmpXchgInst(Ptr, Cmp, Val, *Alignment, SuccessOrdering, 5180 FailureOrdering, SSID); 5181 cast<AtomicCmpXchgInst>(I)->setVolatile(IsVol); 5182 cast<AtomicCmpXchgInst>(I)->setWeak(IsWeak); 5183 5184 InstructionList.push_back(I); 5185 break; 5186 } 5187 case bitc::FUNC_CODE_INST_ATOMICRMW_OLD: 5188 case bitc::FUNC_CODE_INST_ATOMICRMW: { 5189 // ATOMICRMW_OLD: [ptrty, ptr, val, op, vol, ordering, ssid, align?] 5190 // ATOMICRMW: [ptrty, ptr, valty, val, op, vol, ordering, ssid, align?] 5191 const size_t NumRecords = Record.size(); 5192 unsigned OpNum = 0; 5193 5194 Value *Ptr = nullptr; 5195 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr)) 5196 return error("Invalid record"); 5197 5198 if (!isa<PointerType>(Ptr->getType())) 5199 return error("Invalid record"); 5200 5201 Value *Val = nullptr; 5202 if (BitCode == bitc::FUNC_CODE_INST_ATOMICRMW_OLD) { 5203 if (popValue(Record, OpNum, NextValueNo, 5204 cast<PointerType>(Ptr->getType())->getPointerElementType(), 5205 Val)) 5206 return error("Invalid record"); 5207 } else { 5208 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 5209 return error("Invalid record"); 5210 } 5211 5212 if (!(NumRecords == (OpNum + 4) || NumRecords == (OpNum + 5))) 5213 return error("Invalid record"); 5214 5215 const AtomicRMWInst::BinOp Operation = 5216 getDecodedRMWOperation(Record[OpNum]); 5217 if (Operation < AtomicRMWInst::FIRST_BINOP || 5218 Operation > AtomicRMWInst::LAST_BINOP) 5219 return error("Invalid record"); 5220 5221 const bool IsVol = Record[OpNum + 1]; 5222 5223 const AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 5224 if (Ordering == AtomicOrdering::NotAtomic || 5225 Ordering == AtomicOrdering::Unordered) 5226 return error("Invalid record"); 5227 5228 const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 5229 5230 MaybeAlign Alignment; 5231 5232 if (NumRecords == (OpNum + 5)) { 5233 if (Error Err = parseAlignmentValue(Record[OpNum + 4], Alignment)) 5234 return Err; 5235 } 5236 5237 if (!Alignment) 5238 Alignment = 5239 Align(TheModule->getDataLayout().getTypeStoreSize(Val->getType())); 5240 5241 I = new AtomicRMWInst(Operation, Ptr, Val, *Alignment, Ordering, SSID); 5242 cast<AtomicRMWInst>(I)->setVolatile(IsVol); 5243 5244 InstructionList.push_back(I); 5245 break; 5246 } 5247 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, ssid] 5248 if (2 != Record.size()) 5249 return error("Invalid record"); 5250 AtomicOrdering Ordering = getDecodedOrdering(Record[0]); 5251 if (Ordering == AtomicOrdering::NotAtomic || 5252 Ordering == AtomicOrdering::Unordered || 5253 Ordering == AtomicOrdering::Monotonic) 5254 return error("Invalid record"); 5255 SyncScope::ID SSID = getDecodedSyncScopeID(Record[1]); 5256 I = new FenceInst(Context, Ordering, SSID); 5257 InstructionList.push_back(I); 5258 break; 5259 } 5260 case bitc::FUNC_CODE_INST_CALL: { 5261 // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...] 5262 if (Record.size() < 3) 5263 return error("Invalid record"); 5264 5265 unsigned OpNum = 0; 5266 AttributeList PAL = getAttributes(Record[OpNum++]); 5267 unsigned CCInfo = Record[OpNum++]; 5268 5269 FastMathFlags FMF; 5270 if ((CCInfo >> bitc::CALL_FMF) & 1) { 5271 FMF = getDecodedFastMathFlags(Record[OpNum++]); 5272 if (!FMF.any()) 5273 return error("Fast math flags indicator set for call with no FMF"); 5274 } 5275 5276 FunctionType *FTy = nullptr; 5277 if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) { 5278 FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])); 5279 if (!FTy) 5280 return error("Explicit call type is not a function type"); 5281 } 5282 5283 Value *Callee; 5284 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 5285 return error("Invalid record"); 5286 5287 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 5288 if (!OpTy) 5289 return error("Callee is not a pointer type"); 5290 if (!FTy) { 5291 FTy = dyn_cast<FunctionType>( 5292 cast<PointerType>(Callee->getType())->getElementType()); 5293 if (!FTy) 5294 return error("Callee is not of pointer to function type"); 5295 } else if (!OpTy->isOpaqueOrPointeeTypeMatches(FTy)) 5296 return error("Explicit call type does not match pointee type of " 5297 "callee operand"); 5298 if (Record.size() < FTy->getNumParams() + OpNum) 5299 return error("Insufficient operands to call"); 5300 5301 SmallVector<Value*, 16> Args; 5302 SmallVector<Type *, 16> ArgsTys; 5303 // Read the fixed params. 5304 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 5305 if (FTy->getParamType(i)->isLabelTy()) 5306 Args.push_back(getBasicBlock(Record[OpNum])); 5307 else 5308 Args.push_back(getValue(Record, OpNum, NextValueNo, 5309 FTy->getParamType(i))); 5310 ArgsTys.push_back(FTy->getParamType(i)); 5311 if (!Args.back()) 5312 return error("Invalid record"); 5313 } 5314 5315 // Read type/value pairs for varargs params. 5316 if (!FTy->isVarArg()) { 5317 if (OpNum != Record.size()) 5318 return error("Invalid record"); 5319 } else { 5320 while (OpNum != Record.size()) { 5321 Value *Op; 5322 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 5323 return error("Invalid record"); 5324 Args.push_back(Op); 5325 ArgsTys.push_back(Op->getType()); 5326 } 5327 } 5328 5329 I = CallInst::Create(FTy, Callee, Args, OperandBundles); 5330 OperandBundles.clear(); 5331 InstructionList.push_back(I); 5332 cast<CallInst>(I)->setCallingConv( 5333 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 5334 CallInst::TailCallKind TCK = CallInst::TCK_None; 5335 if (CCInfo & 1 << bitc::CALL_TAIL) 5336 TCK = CallInst::TCK_Tail; 5337 if (CCInfo & (1 << bitc::CALL_MUSTTAIL)) 5338 TCK = CallInst::TCK_MustTail; 5339 if (CCInfo & (1 << bitc::CALL_NOTAIL)) 5340 TCK = CallInst::TCK_NoTail; 5341 cast<CallInst>(I)->setTailCallKind(TCK); 5342 cast<CallInst>(I)->setAttributes(PAL); 5343 propagateAttributeTypes(cast<CallBase>(I), ArgsTys); 5344 if (FMF.any()) { 5345 if (!isa<FPMathOperator>(I)) 5346 return error("Fast-math-flags specified for call without " 5347 "floating-point scalar or vector return type"); 5348 I->setFastMathFlags(FMF); 5349 } 5350 break; 5351 } 5352 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 5353 if (Record.size() < 3) 5354 return error("Invalid record"); 5355 Type *OpTy = getTypeByID(Record[0]); 5356 Value *Op = getValue(Record, 1, NextValueNo, OpTy); 5357 Type *ResTy = getTypeByID(Record[2]); 5358 if (!OpTy || !Op || !ResTy) 5359 return error("Invalid record"); 5360 I = new VAArgInst(Op, ResTy); 5361 InstructionList.push_back(I); 5362 break; 5363 } 5364 5365 case bitc::FUNC_CODE_OPERAND_BUNDLE: { 5366 // A call or an invoke can be optionally prefixed with some variable 5367 // number of operand bundle blocks. These blocks are read into 5368 // OperandBundles and consumed at the next call or invoke instruction. 5369 5370 if (Record.empty() || Record[0] >= BundleTags.size()) 5371 return error("Invalid record"); 5372 5373 std::vector<Value *> Inputs; 5374 5375 unsigned OpNum = 1; 5376 while (OpNum != Record.size()) { 5377 Value *Op; 5378 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 5379 return error("Invalid record"); 5380 Inputs.push_back(Op); 5381 } 5382 5383 OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs)); 5384 continue; 5385 } 5386 5387 case bitc::FUNC_CODE_INST_FREEZE: { // FREEZE: [opty,opval] 5388 unsigned OpNum = 0; 5389 Value *Op = nullptr; 5390 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 5391 return error("Invalid record"); 5392 if (OpNum != Record.size()) 5393 return error("Invalid record"); 5394 5395 I = new FreezeInst(Op); 5396 InstructionList.push_back(I); 5397 break; 5398 } 5399 } 5400 5401 // Add instruction to end of current BB. If there is no current BB, reject 5402 // this file. 5403 if (!CurBB) { 5404 I->deleteValue(); 5405 return error("Invalid instruction with no BB"); 5406 } 5407 if (!OperandBundles.empty()) { 5408 I->deleteValue(); 5409 return error("Operand bundles found with no consumer"); 5410 } 5411 CurBB->getInstList().push_back(I); 5412 5413 // If this was a terminator instruction, move to the next block. 5414 if (I->isTerminator()) { 5415 ++CurBBNo; 5416 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr; 5417 } 5418 5419 // Non-void values get registered in the value table for future use. 5420 if (!I->getType()->isVoidTy()) 5421 ValueList.assignValue(I, NextValueNo++); 5422 } 5423 5424 OutOfRecordLoop: 5425 5426 if (!OperandBundles.empty()) 5427 return error("Operand bundles found with no consumer"); 5428 5429 // Check the function list for unresolved values. 5430 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 5431 if (!A->getParent()) { 5432 // We found at least one unresolved value. Nuke them all to avoid leaks. 5433 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 5434 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) { 5435 A->replaceAllUsesWith(UndefValue::get(A->getType())); 5436 delete A; 5437 } 5438 } 5439 return error("Never resolved value found in function"); 5440 } 5441 } 5442 5443 // Unexpected unresolved metadata about to be dropped. 5444 if (MDLoader->hasFwdRefs()) 5445 return error("Invalid function metadata: outgoing forward refs"); 5446 5447 // Trim the value list down to the size it was before we parsed this function. 5448 ValueList.shrinkTo(ModuleValueListSize); 5449 MDLoader->shrinkTo(ModuleMDLoaderSize); 5450 std::vector<BasicBlock*>().swap(FunctionBBs); 5451 return Error::success(); 5452 } 5453 5454 /// Find the function body in the bitcode stream 5455 Error BitcodeReader::findFunctionInStream( 5456 Function *F, 5457 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) { 5458 while (DeferredFunctionInfoIterator->second == 0) { 5459 // This is the fallback handling for the old format bitcode that 5460 // didn't contain the function index in the VST, or when we have 5461 // an anonymous function which would not have a VST entry. 5462 // Assert that we have one of those two cases. 5463 assert(VSTOffset == 0 || !F->hasName()); 5464 // Parse the next body in the stream and set its position in the 5465 // DeferredFunctionInfo map. 5466 if (Error Err = rememberAndSkipFunctionBodies()) 5467 return Err; 5468 } 5469 return Error::success(); 5470 } 5471 5472 SyncScope::ID BitcodeReader::getDecodedSyncScopeID(unsigned Val) { 5473 if (Val == SyncScope::SingleThread || Val == SyncScope::System) 5474 return SyncScope::ID(Val); 5475 if (Val >= SSIDs.size()) 5476 return SyncScope::System; // Map unknown synchronization scopes to system. 5477 return SSIDs[Val]; 5478 } 5479 5480 //===----------------------------------------------------------------------===// 5481 // GVMaterializer implementation 5482 //===----------------------------------------------------------------------===// 5483 5484 Error BitcodeReader::materialize(GlobalValue *GV) { 5485 Function *F = dyn_cast<Function>(GV); 5486 // If it's not a function or is already material, ignore the request. 5487 if (!F || !F->isMaterializable()) 5488 return Error::success(); 5489 5490 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 5491 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 5492 // If its position is recorded as 0, its body is somewhere in the stream 5493 // but we haven't seen it yet. 5494 if (DFII->second == 0) 5495 if (Error Err = findFunctionInStream(F, DFII)) 5496 return Err; 5497 5498 // Materialize metadata before parsing any function bodies. 5499 if (Error Err = materializeMetadata()) 5500 return Err; 5501 5502 // Move the bit stream to the saved position of the deferred function body. 5503 if (Error JumpFailed = Stream.JumpToBit(DFII->second)) 5504 return JumpFailed; 5505 if (Error Err = parseFunctionBody(F)) 5506 return Err; 5507 F->setIsMaterializable(false); 5508 5509 if (StripDebugInfo) 5510 stripDebugInfo(*F); 5511 5512 // Upgrade any old intrinsic calls in the function. 5513 for (auto &I : UpgradedIntrinsics) { 5514 for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end(); 5515 UI != UE;) { 5516 User *U = *UI; 5517 ++UI; 5518 if (CallInst *CI = dyn_cast<CallInst>(U)) 5519 UpgradeIntrinsicCall(CI, I.second); 5520 } 5521 } 5522 5523 // Update calls to the remangled intrinsics 5524 for (auto &I : RemangledIntrinsics) 5525 for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end(); 5526 UI != UE;) 5527 // Don't expect any other users than call sites 5528 cast<CallBase>(*UI++)->setCalledFunction(I.second); 5529 5530 // Finish fn->subprogram upgrade for materialized functions. 5531 if (DISubprogram *SP = MDLoader->lookupSubprogramForFunction(F)) 5532 F->setSubprogram(SP); 5533 5534 // Check if the TBAA Metadata are valid, otherwise we will need to strip them. 5535 if (!MDLoader->isStrippingTBAA()) { 5536 for (auto &I : instructions(F)) { 5537 MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa); 5538 if (!TBAA || TBAAVerifyHelper.visitTBAAMetadata(I, TBAA)) 5539 continue; 5540 MDLoader->setStripTBAA(true); 5541 stripTBAA(F->getParent()); 5542 } 5543 } 5544 5545 for (auto &I : instructions(F)) { 5546 // "Upgrade" older incorrect branch weights by dropping them. 5547 if (auto *MD = I.getMetadata(LLVMContext::MD_prof)) { 5548 if (MD->getOperand(0) != nullptr && isa<MDString>(MD->getOperand(0))) { 5549 MDString *MDS = cast<MDString>(MD->getOperand(0)); 5550 StringRef ProfName = MDS->getString(); 5551 // Check consistency of !prof branch_weights metadata. 5552 if (!ProfName.equals("branch_weights")) 5553 continue; 5554 unsigned ExpectedNumOperands = 0; 5555 if (BranchInst *BI = dyn_cast<BranchInst>(&I)) 5556 ExpectedNumOperands = BI->getNumSuccessors(); 5557 else if (SwitchInst *SI = dyn_cast<SwitchInst>(&I)) 5558 ExpectedNumOperands = SI->getNumSuccessors(); 5559 else if (isa<CallInst>(&I)) 5560 ExpectedNumOperands = 1; 5561 else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(&I)) 5562 ExpectedNumOperands = IBI->getNumDestinations(); 5563 else if (isa<SelectInst>(&I)) 5564 ExpectedNumOperands = 2; 5565 else 5566 continue; // ignore and continue. 5567 5568 // If branch weight doesn't match, just strip branch weight. 5569 if (MD->getNumOperands() != 1 + ExpectedNumOperands) 5570 I.setMetadata(LLVMContext::MD_prof, nullptr); 5571 } 5572 } 5573 5574 // Remove incompatible attributes on function calls. 5575 if (auto *CI = dyn_cast<CallBase>(&I)) { 5576 CI->removeRetAttrs(AttributeFuncs::typeIncompatible( 5577 CI->getFunctionType()->getReturnType())); 5578 5579 for (unsigned ArgNo = 0; ArgNo < CI->arg_size(); ++ArgNo) 5580 CI->removeParamAttrs(ArgNo, AttributeFuncs::typeIncompatible( 5581 CI->getArgOperand(ArgNo)->getType())); 5582 } 5583 } 5584 5585 // Look for functions that rely on old function attribute behavior. 5586 UpgradeFunctionAttributes(*F); 5587 5588 // Bring in any functions that this function forward-referenced via 5589 // blockaddresses. 5590 return materializeForwardReferencedFunctions(); 5591 } 5592 5593 Error BitcodeReader::materializeModule() { 5594 if (Error Err = materializeMetadata()) 5595 return Err; 5596 5597 // Promise to materialize all forward references. 5598 WillMaterializeAllForwardRefs = true; 5599 5600 // Iterate over the module, deserializing any functions that are still on 5601 // disk. 5602 for (Function &F : *TheModule) { 5603 if (Error Err = materialize(&F)) 5604 return Err; 5605 } 5606 // At this point, if there are any function bodies, parse the rest of 5607 // the bits in the module past the last function block we have recorded 5608 // through either lazy scanning or the VST. 5609 if (LastFunctionBlockBit || NextUnreadBit) 5610 if (Error Err = parseModule(LastFunctionBlockBit > NextUnreadBit 5611 ? LastFunctionBlockBit 5612 : NextUnreadBit)) 5613 return Err; 5614 5615 // Check that all block address forward references got resolved (as we 5616 // promised above). 5617 if (!BasicBlockFwdRefs.empty()) 5618 return error("Never resolved function from blockaddress"); 5619 5620 // Upgrade any intrinsic calls that slipped through (should not happen!) and 5621 // delete the old functions to clean up. We can't do this unless the entire 5622 // module is materialized because there could always be another function body 5623 // with calls to the old function. 5624 for (auto &I : UpgradedIntrinsics) { 5625 for (auto *U : I.first->users()) { 5626 if (CallInst *CI = dyn_cast<CallInst>(U)) 5627 UpgradeIntrinsicCall(CI, I.second); 5628 } 5629 if (!I.first->use_empty()) 5630 I.first->replaceAllUsesWith(I.second); 5631 I.first->eraseFromParent(); 5632 } 5633 UpgradedIntrinsics.clear(); 5634 // Do the same for remangled intrinsics 5635 for (auto &I : RemangledIntrinsics) { 5636 I.first->replaceAllUsesWith(I.second); 5637 I.first->eraseFromParent(); 5638 } 5639 RemangledIntrinsics.clear(); 5640 5641 UpgradeDebugInfo(*TheModule); 5642 5643 UpgradeModuleFlags(*TheModule); 5644 5645 UpgradeARCRuntime(*TheModule); 5646 5647 return Error::success(); 5648 } 5649 5650 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const { 5651 return IdentifiedStructTypes; 5652 } 5653 5654 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader( 5655 BitstreamCursor Cursor, StringRef Strtab, ModuleSummaryIndex &TheIndex, 5656 StringRef ModulePath, unsigned ModuleId) 5657 : BitcodeReaderBase(std::move(Cursor), Strtab), TheIndex(TheIndex), 5658 ModulePath(ModulePath), ModuleId(ModuleId) {} 5659 5660 void ModuleSummaryIndexBitcodeReader::addThisModule() { 5661 TheIndex.addModule(ModulePath, ModuleId); 5662 } 5663 5664 ModuleSummaryIndex::ModuleInfo * 5665 ModuleSummaryIndexBitcodeReader::getThisModule() { 5666 return TheIndex.getModule(ModulePath); 5667 } 5668 5669 std::pair<ValueInfo, GlobalValue::GUID> 5670 ModuleSummaryIndexBitcodeReader::getValueInfoFromValueId(unsigned ValueId) { 5671 auto VGI = ValueIdToValueInfoMap[ValueId]; 5672 assert(VGI.first); 5673 return VGI; 5674 } 5675 5676 void ModuleSummaryIndexBitcodeReader::setValueGUID( 5677 uint64_t ValueID, StringRef ValueName, GlobalValue::LinkageTypes Linkage, 5678 StringRef SourceFileName) { 5679 std::string GlobalId = 5680 GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName); 5681 auto ValueGUID = GlobalValue::getGUID(GlobalId); 5682 auto OriginalNameID = ValueGUID; 5683 if (GlobalValue::isLocalLinkage(Linkage)) 5684 OriginalNameID = GlobalValue::getGUID(ValueName); 5685 if (PrintSummaryGUIDs) 5686 dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is " 5687 << ValueName << "\n"; 5688 5689 // UseStrtab is false for legacy summary formats and value names are 5690 // created on stack. In that case we save the name in a string saver in 5691 // the index so that the value name can be recorded. 5692 ValueIdToValueInfoMap[ValueID] = std::make_pair( 5693 TheIndex.getOrInsertValueInfo( 5694 ValueGUID, 5695 UseStrtab ? ValueName : TheIndex.saveString(ValueName)), 5696 OriginalNameID); 5697 } 5698 5699 // Specialized value symbol table parser used when reading module index 5700 // blocks where we don't actually create global values. The parsed information 5701 // is saved in the bitcode reader for use when later parsing summaries. 5702 Error ModuleSummaryIndexBitcodeReader::parseValueSymbolTable( 5703 uint64_t Offset, 5704 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) { 5705 // With a strtab the VST is not required to parse the summary. 5706 if (UseStrtab) 5707 return Error::success(); 5708 5709 assert(Offset > 0 && "Expected non-zero VST offset"); 5710 Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream); 5711 if (!MaybeCurrentBit) 5712 return MaybeCurrentBit.takeError(); 5713 uint64_t CurrentBit = MaybeCurrentBit.get(); 5714 5715 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 5716 return Err; 5717 5718 SmallVector<uint64_t, 64> Record; 5719 5720 // Read all the records for this value table. 5721 SmallString<128> ValueName; 5722 5723 while (true) { 5724 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 5725 if (!MaybeEntry) 5726 return MaybeEntry.takeError(); 5727 BitstreamEntry Entry = MaybeEntry.get(); 5728 5729 switch (Entry.Kind) { 5730 case BitstreamEntry::SubBlock: // Handled for us already. 5731 case BitstreamEntry::Error: 5732 return error("Malformed block"); 5733 case BitstreamEntry::EndBlock: 5734 // Done parsing VST, jump back to wherever we came from. 5735 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 5736 return JumpFailed; 5737 return Error::success(); 5738 case BitstreamEntry::Record: 5739 // The interesting case. 5740 break; 5741 } 5742 5743 // Read a record. 5744 Record.clear(); 5745 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 5746 if (!MaybeRecord) 5747 return MaybeRecord.takeError(); 5748 switch (MaybeRecord.get()) { 5749 default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records). 5750 break; 5751 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 5752 if (convertToString(Record, 1, ValueName)) 5753 return error("Invalid record"); 5754 unsigned ValueID = Record[0]; 5755 assert(!SourceFileName.empty()); 5756 auto VLI = ValueIdToLinkageMap.find(ValueID); 5757 assert(VLI != ValueIdToLinkageMap.end() && 5758 "No linkage found for VST entry?"); 5759 auto Linkage = VLI->second; 5760 setValueGUID(ValueID, ValueName, Linkage, SourceFileName); 5761 ValueName.clear(); 5762 break; 5763 } 5764 case bitc::VST_CODE_FNENTRY: { 5765 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 5766 if (convertToString(Record, 2, ValueName)) 5767 return error("Invalid record"); 5768 unsigned ValueID = Record[0]; 5769 assert(!SourceFileName.empty()); 5770 auto VLI = ValueIdToLinkageMap.find(ValueID); 5771 assert(VLI != ValueIdToLinkageMap.end() && 5772 "No linkage found for VST entry?"); 5773 auto Linkage = VLI->second; 5774 setValueGUID(ValueID, ValueName, Linkage, SourceFileName); 5775 ValueName.clear(); 5776 break; 5777 } 5778 case bitc::VST_CODE_COMBINED_ENTRY: { 5779 // VST_CODE_COMBINED_ENTRY: [valueid, refguid] 5780 unsigned ValueID = Record[0]; 5781 GlobalValue::GUID RefGUID = Record[1]; 5782 // The "original name", which is the second value of the pair will be 5783 // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index. 5784 ValueIdToValueInfoMap[ValueID] = 5785 std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID); 5786 break; 5787 } 5788 } 5789 } 5790 } 5791 5792 // Parse just the blocks needed for building the index out of the module. 5793 // At the end of this routine the module Index is populated with a map 5794 // from global value id to GlobalValueSummary objects. 5795 Error ModuleSummaryIndexBitcodeReader::parseModule() { 5796 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 5797 return Err; 5798 5799 SmallVector<uint64_t, 64> Record; 5800 DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap; 5801 unsigned ValueId = 0; 5802 5803 // Read the index for this module. 5804 while (true) { 5805 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 5806 if (!MaybeEntry) 5807 return MaybeEntry.takeError(); 5808 llvm::BitstreamEntry Entry = MaybeEntry.get(); 5809 5810 switch (Entry.Kind) { 5811 case BitstreamEntry::Error: 5812 return error("Malformed block"); 5813 case BitstreamEntry::EndBlock: 5814 return Error::success(); 5815 5816 case BitstreamEntry::SubBlock: 5817 switch (Entry.ID) { 5818 default: // Skip unknown content. 5819 if (Error Err = Stream.SkipBlock()) 5820 return Err; 5821 break; 5822 case bitc::BLOCKINFO_BLOCK_ID: 5823 // Need to parse these to get abbrev ids (e.g. for VST) 5824 if (readBlockInfo()) 5825 return error("Malformed block"); 5826 break; 5827 case bitc::VALUE_SYMTAB_BLOCK_ID: 5828 // Should have been parsed earlier via VSTOffset, unless there 5829 // is no summary section. 5830 assert(((SeenValueSymbolTable && VSTOffset > 0) || 5831 !SeenGlobalValSummary) && 5832 "Expected early VST parse via VSTOffset record"); 5833 if (Error Err = Stream.SkipBlock()) 5834 return Err; 5835 break; 5836 case bitc::GLOBALVAL_SUMMARY_BLOCK_ID: 5837 case bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID: 5838 // Add the module if it is a per-module index (has a source file name). 5839 if (!SourceFileName.empty()) 5840 addThisModule(); 5841 assert(!SeenValueSymbolTable && 5842 "Already read VST when parsing summary block?"); 5843 // We might not have a VST if there were no values in the 5844 // summary. An empty summary block generated when we are 5845 // performing ThinLTO compiles so we don't later invoke 5846 // the regular LTO process on them. 5847 if (VSTOffset > 0) { 5848 if (Error Err = parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap)) 5849 return Err; 5850 SeenValueSymbolTable = true; 5851 } 5852 SeenGlobalValSummary = true; 5853 if (Error Err = parseEntireSummary(Entry.ID)) 5854 return Err; 5855 break; 5856 case bitc::MODULE_STRTAB_BLOCK_ID: 5857 if (Error Err = parseModuleStringTable()) 5858 return Err; 5859 break; 5860 } 5861 continue; 5862 5863 case BitstreamEntry::Record: { 5864 Record.clear(); 5865 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 5866 if (!MaybeBitCode) 5867 return MaybeBitCode.takeError(); 5868 switch (MaybeBitCode.get()) { 5869 default: 5870 break; // Default behavior, ignore unknown content. 5871 case bitc::MODULE_CODE_VERSION: { 5872 if (Error Err = parseVersionRecord(Record).takeError()) 5873 return Err; 5874 break; 5875 } 5876 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 5877 case bitc::MODULE_CODE_SOURCE_FILENAME: { 5878 SmallString<128> ValueName; 5879 if (convertToString(Record, 0, ValueName)) 5880 return error("Invalid record"); 5881 SourceFileName = ValueName.c_str(); 5882 break; 5883 } 5884 /// MODULE_CODE_HASH: [5*i32] 5885 case bitc::MODULE_CODE_HASH: { 5886 if (Record.size() != 5) 5887 return error("Invalid hash length " + Twine(Record.size()).str()); 5888 auto &Hash = getThisModule()->second.second; 5889 int Pos = 0; 5890 for (auto &Val : Record) { 5891 assert(!(Val >> 32) && "Unexpected high bits set"); 5892 Hash[Pos++] = Val; 5893 } 5894 break; 5895 } 5896 /// MODULE_CODE_VSTOFFSET: [offset] 5897 case bitc::MODULE_CODE_VSTOFFSET: 5898 if (Record.empty()) 5899 return error("Invalid record"); 5900 // Note that we subtract 1 here because the offset is relative to one 5901 // word before the start of the identification or module block, which 5902 // was historically always the start of the regular bitcode header. 5903 VSTOffset = Record[0] - 1; 5904 break; 5905 // v1 GLOBALVAR: [pointer type, isconst, initid, linkage, ...] 5906 // v1 FUNCTION: [type, callingconv, isproto, linkage, ...] 5907 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, ...] 5908 // v2: [strtab offset, strtab size, v1] 5909 case bitc::MODULE_CODE_GLOBALVAR: 5910 case bitc::MODULE_CODE_FUNCTION: 5911 case bitc::MODULE_CODE_ALIAS: { 5912 StringRef Name; 5913 ArrayRef<uint64_t> GVRecord; 5914 std::tie(Name, GVRecord) = readNameFromStrtab(Record); 5915 if (GVRecord.size() <= 3) 5916 return error("Invalid record"); 5917 uint64_t RawLinkage = GVRecord[3]; 5918 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 5919 if (!UseStrtab) { 5920 ValueIdToLinkageMap[ValueId++] = Linkage; 5921 break; 5922 } 5923 5924 setValueGUID(ValueId++, Name, Linkage, SourceFileName); 5925 break; 5926 } 5927 } 5928 } 5929 continue; 5930 } 5931 } 5932 } 5933 5934 std::vector<ValueInfo> 5935 ModuleSummaryIndexBitcodeReader::makeRefList(ArrayRef<uint64_t> Record) { 5936 std::vector<ValueInfo> Ret; 5937 Ret.reserve(Record.size()); 5938 for (uint64_t RefValueId : Record) 5939 Ret.push_back(getValueInfoFromValueId(RefValueId).first); 5940 return Ret; 5941 } 5942 5943 std::vector<FunctionSummary::EdgeTy> 5944 ModuleSummaryIndexBitcodeReader::makeCallList(ArrayRef<uint64_t> Record, 5945 bool IsOldProfileFormat, 5946 bool HasProfile, bool HasRelBF) { 5947 std::vector<FunctionSummary::EdgeTy> Ret; 5948 Ret.reserve(Record.size()); 5949 for (unsigned I = 0, E = Record.size(); I != E; ++I) { 5950 CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown; 5951 uint64_t RelBF = 0; 5952 ValueInfo Callee = getValueInfoFromValueId(Record[I]).first; 5953 if (IsOldProfileFormat) { 5954 I += 1; // Skip old callsitecount field 5955 if (HasProfile) 5956 I += 1; // Skip old profilecount field 5957 } else if (HasProfile) 5958 Hotness = static_cast<CalleeInfo::HotnessType>(Record[++I]); 5959 else if (HasRelBF) 5960 RelBF = Record[++I]; 5961 Ret.push_back(FunctionSummary::EdgeTy{Callee, CalleeInfo(Hotness, RelBF)}); 5962 } 5963 return Ret; 5964 } 5965 5966 static void 5967 parseWholeProgramDevirtResolutionByArg(ArrayRef<uint64_t> Record, size_t &Slot, 5968 WholeProgramDevirtResolution &Wpd) { 5969 uint64_t ArgNum = Record[Slot++]; 5970 WholeProgramDevirtResolution::ByArg &B = 5971 Wpd.ResByArg[{Record.begin() + Slot, Record.begin() + Slot + ArgNum}]; 5972 Slot += ArgNum; 5973 5974 B.TheKind = 5975 static_cast<WholeProgramDevirtResolution::ByArg::Kind>(Record[Slot++]); 5976 B.Info = Record[Slot++]; 5977 B.Byte = Record[Slot++]; 5978 B.Bit = Record[Slot++]; 5979 } 5980 5981 static void parseWholeProgramDevirtResolution(ArrayRef<uint64_t> Record, 5982 StringRef Strtab, size_t &Slot, 5983 TypeIdSummary &TypeId) { 5984 uint64_t Id = Record[Slot++]; 5985 WholeProgramDevirtResolution &Wpd = TypeId.WPDRes[Id]; 5986 5987 Wpd.TheKind = static_cast<WholeProgramDevirtResolution::Kind>(Record[Slot++]); 5988 Wpd.SingleImplName = {Strtab.data() + Record[Slot], 5989 static_cast<size_t>(Record[Slot + 1])}; 5990 Slot += 2; 5991 5992 uint64_t ResByArgNum = Record[Slot++]; 5993 for (uint64_t I = 0; I != ResByArgNum; ++I) 5994 parseWholeProgramDevirtResolutionByArg(Record, Slot, Wpd); 5995 } 5996 5997 static void parseTypeIdSummaryRecord(ArrayRef<uint64_t> Record, 5998 StringRef Strtab, 5999 ModuleSummaryIndex &TheIndex) { 6000 size_t Slot = 0; 6001 TypeIdSummary &TypeId = TheIndex.getOrInsertTypeIdSummary( 6002 {Strtab.data() + Record[Slot], static_cast<size_t>(Record[Slot + 1])}); 6003 Slot += 2; 6004 6005 TypeId.TTRes.TheKind = static_cast<TypeTestResolution::Kind>(Record[Slot++]); 6006 TypeId.TTRes.SizeM1BitWidth = Record[Slot++]; 6007 TypeId.TTRes.AlignLog2 = Record[Slot++]; 6008 TypeId.TTRes.SizeM1 = Record[Slot++]; 6009 TypeId.TTRes.BitMask = Record[Slot++]; 6010 TypeId.TTRes.InlineBits = Record[Slot++]; 6011 6012 while (Slot < Record.size()) 6013 parseWholeProgramDevirtResolution(Record, Strtab, Slot, TypeId); 6014 } 6015 6016 std::vector<FunctionSummary::ParamAccess> 6017 ModuleSummaryIndexBitcodeReader::parseParamAccesses(ArrayRef<uint64_t> Record) { 6018 auto ReadRange = [&]() { 6019 APInt Lower(FunctionSummary::ParamAccess::RangeWidth, 6020 BitcodeReader::decodeSignRotatedValue(Record.front())); 6021 Record = Record.drop_front(); 6022 APInt Upper(FunctionSummary::ParamAccess::RangeWidth, 6023 BitcodeReader::decodeSignRotatedValue(Record.front())); 6024 Record = Record.drop_front(); 6025 ConstantRange Range{Lower, Upper}; 6026 assert(!Range.isFullSet()); 6027 assert(!Range.isUpperSignWrapped()); 6028 return Range; 6029 }; 6030 6031 std::vector<FunctionSummary::ParamAccess> PendingParamAccesses; 6032 while (!Record.empty()) { 6033 PendingParamAccesses.emplace_back(); 6034 FunctionSummary::ParamAccess &ParamAccess = PendingParamAccesses.back(); 6035 ParamAccess.ParamNo = Record.front(); 6036 Record = Record.drop_front(); 6037 ParamAccess.Use = ReadRange(); 6038 ParamAccess.Calls.resize(Record.front()); 6039 Record = Record.drop_front(); 6040 for (auto &Call : ParamAccess.Calls) { 6041 Call.ParamNo = Record.front(); 6042 Record = Record.drop_front(); 6043 Call.Callee = getValueInfoFromValueId(Record.front()).first; 6044 Record = Record.drop_front(); 6045 Call.Offsets = ReadRange(); 6046 } 6047 } 6048 return PendingParamAccesses; 6049 } 6050 6051 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableInfo( 6052 ArrayRef<uint64_t> Record, size_t &Slot, 6053 TypeIdCompatibleVtableInfo &TypeId) { 6054 uint64_t Offset = Record[Slot++]; 6055 ValueInfo Callee = getValueInfoFromValueId(Record[Slot++]).first; 6056 TypeId.push_back({Offset, Callee}); 6057 } 6058 6059 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableSummaryRecord( 6060 ArrayRef<uint64_t> Record) { 6061 size_t Slot = 0; 6062 TypeIdCompatibleVtableInfo &TypeId = 6063 TheIndex.getOrInsertTypeIdCompatibleVtableSummary( 6064 {Strtab.data() + Record[Slot], 6065 static_cast<size_t>(Record[Slot + 1])}); 6066 Slot += 2; 6067 6068 while (Slot < Record.size()) 6069 parseTypeIdCompatibleVtableInfo(Record, Slot, TypeId); 6070 } 6071 6072 static void setSpecialRefs(std::vector<ValueInfo> &Refs, unsigned ROCnt, 6073 unsigned WOCnt) { 6074 // Readonly and writeonly refs are in the end of the refs list. 6075 assert(ROCnt + WOCnt <= Refs.size()); 6076 unsigned FirstWORef = Refs.size() - WOCnt; 6077 unsigned RefNo = FirstWORef - ROCnt; 6078 for (; RefNo < FirstWORef; ++RefNo) 6079 Refs[RefNo].setReadOnly(); 6080 for (; RefNo < Refs.size(); ++RefNo) 6081 Refs[RefNo].setWriteOnly(); 6082 } 6083 6084 // Eagerly parse the entire summary block. This populates the GlobalValueSummary 6085 // objects in the index. 6086 Error ModuleSummaryIndexBitcodeReader::parseEntireSummary(unsigned ID) { 6087 if (Error Err = Stream.EnterSubBlock(ID)) 6088 return Err; 6089 SmallVector<uint64_t, 64> Record; 6090 6091 // Parse version 6092 { 6093 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 6094 if (!MaybeEntry) 6095 return MaybeEntry.takeError(); 6096 BitstreamEntry Entry = MaybeEntry.get(); 6097 6098 if (Entry.Kind != BitstreamEntry::Record) 6099 return error("Invalid Summary Block: record for version expected"); 6100 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 6101 if (!MaybeRecord) 6102 return MaybeRecord.takeError(); 6103 if (MaybeRecord.get() != bitc::FS_VERSION) 6104 return error("Invalid Summary Block: version expected"); 6105 } 6106 const uint64_t Version = Record[0]; 6107 const bool IsOldProfileFormat = Version == 1; 6108 if (Version < 1 || Version > ModuleSummaryIndex::BitcodeSummaryVersion) 6109 return error("Invalid summary version " + Twine(Version) + 6110 ". Version should be in the range [1-" + 6111 Twine(ModuleSummaryIndex::BitcodeSummaryVersion) + 6112 "]."); 6113 Record.clear(); 6114 6115 // Keep around the last seen summary to be used when we see an optional 6116 // "OriginalName" attachement. 6117 GlobalValueSummary *LastSeenSummary = nullptr; 6118 GlobalValue::GUID LastSeenGUID = 0; 6119 6120 // We can expect to see any number of type ID information records before 6121 // each function summary records; these variables store the information 6122 // collected so far so that it can be used to create the summary object. 6123 std::vector<GlobalValue::GUID> PendingTypeTests; 6124 std::vector<FunctionSummary::VFuncId> PendingTypeTestAssumeVCalls, 6125 PendingTypeCheckedLoadVCalls; 6126 std::vector<FunctionSummary::ConstVCall> PendingTypeTestAssumeConstVCalls, 6127 PendingTypeCheckedLoadConstVCalls; 6128 std::vector<FunctionSummary::ParamAccess> PendingParamAccesses; 6129 6130 while (true) { 6131 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 6132 if (!MaybeEntry) 6133 return MaybeEntry.takeError(); 6134 BitstreamEntry Entry = MaybeEntry.get(); 6135 6136 switch (Entry.Kind) { 6137 case BitstreamEntry::SubBlock: // Handled for us already. 6138 case BitstreamEntry::Error: 6139 return error("Malformed block"); 6140 case BitstreamEntry::EndBlock: 6141 return Error::success(); 6142 case BitstreamEntry::Record: 6143 // The interesting case. 6144 break; 6145 } 6146 6147 // Read a record. The record format depends on whether this 6148 // is a per-module index or a combined index file. In the per-module 6149 // case the records contain the associated value's ID for correlation 6150 // with VST entries. In the combined index the correlation is done 6151 // via the bitcode offset of the summary records (which were saved 6152 // in the combined index VST entries). The records also contain 6153 // information used for ThinLTO renaming and importing. 6154 Record.clear(); 6155 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 6156 if (!MaybeBitCode) 6157 return MaybeBitCode.takeError(); 6158 switch (unsigned BitCode = MaybeBitCode.get()) { 6159 default: // Default behavior: ignore. 6160 break; 6161 case bitc::FS_FLAGS: { // [flags] 6162 TheIndex.setFlags(Record[0]); 6163 break; 6164 } 6165 case bitc::FS_VALUE_GUID: { // [valueid, refguid] 6166 uint64_t ValueID = Record[0]; 6167 GlobalValue::GUID RefGUID = Record[1]; 6168 ValueIdToValueInfoMap[ValueID] = 6169 std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID); 6170 break; 6171 } 6172 // FS_PERMODULE: [valueid, flags, instcount, fflags, numrefs, 6173 // numrefs x valueid, n x (valueid)] 6174 // FS_PERMODULE_PROFILE: [valueid, flags, instcount, fflags, numrefs, 6175 // numrefs x valueid, 6176 // n x (valueid, hotness)] 6177 // FS_PERMODULE_RELBF: [valueid, flags, instcount, fflags, numrefs, 6178 // numrefs x valueid, 6179 // n x (valueid, relblockfreq)] 6180 case bitc::FS_PERMODULE: 6181 case bitc::FS_PERMODULE_RELBF: 6182 case bitc::FS_PERMODULE_PROFILE: { 6183 unsigned ValueID = Record[0]; 6184 uint64_t RawFlags = Record[1]; 6185 unsigned InstCount = Record[2]; 6186 uint64_t RawFunFlags = 0; 6187 unsigned NumRefs = Record[3]; 6188 unsigned NumRORefs = 0, NumWORefs = 0; 6189 int RefListStartIndex = 4; 6190 if (Version >= 4) { 6191 RawFunFlags = Record[3]; 6192 NumRefs = Record[4]; 6193 RefListStartIndex = 5; 6194 if (Version >= 5) { 6195 NumRORefs = Record[5]; 6196 RefListStartIndex = 6; 6197 if (Version >= 7) { 6198 NumWORefs = Record[6]; 6199 RefListStartIndex = 7; 6200 } 6201 } 6202 } 6203 6204 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6205 // The module path string ref set in the summary must be owned by the 6206 // index's module string table. Since we don't have a module path 6207 // string table section in the per-module index, we create a single 6208 // module path string table entry with an empty (0) ID to take 6209 // ownership. 6210 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 6211 assert(Record.size() >= RefListStartIndex + NumRefs && 6212 "Record size inconsistent with number of references"); 6213 std::vector<ValueInfo> Refs = makeRefList( 6214 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 6215 bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE); 6216 bool HasRelBF = (BitCode == bitc::FS_PERMODULE_RELBF); 6217 std::vector<FunctionSummary::EdgeTy> Calls = makeCallList( 6218 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex), 6219 IsOldProfileFormat, HasProfile, HasRelBF); 6220 setSpecialRefs(Refs, NumRORefs, NumWORefs); 6221 auto FS = std::make_unique<FunctionSummary>( 6222 Flags, InstCount, getDecodedFFlags(RawFunFlags), /*EntryCount=*/0, 6223 std::move(Refs), std::move(Calls), std::move(PendingTypeTests), 6224 std::move(PendingTypeTestAssumeVCalls), 6225 std::move(PendingTypeCheckedLoadVCalls), 6226 std::move(PendingTypeTestAssumeConstVCalls), 6227 std::move(PendingTypeCheckedLoadConstVCalls), 6228 std::move(PendingParamAccesses)); 6229 auto VIAndOriginalGUID = getValueInfoFromValueId(ValueID); 6230 FS->setModulePath(getThisModule()->first()); 6231 FS->setOriginalName(VIAndOriginalGUID.second); 6232 TheIndex.addGlobalValueSummary(VIAndOriginalGUID.first, std::move(FS)); 6233 break; 6234 } 6235 // FS_ALIAS: [valueid, flags, valueid] 6236 // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as 6237 // they expect all aliasee summaries to be available. 6238 case bitc::FS_ALIAS: { 6239 unsigned ValueID = Record[0]; 6240 uint64_t RawFlags = Record[1]; 6241 unsigned AliaseeID = Record[2]; 6242 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6243 auto AS = std::make_unique<AliasSummary>(Flags); 6244 // The module path string ref set in the summary must be owned by the 6245 // index's module string table. Since we don't have a module path 6246 // string table section in the per-module index, we create a single 6247 // module path string table entry with an empty (0) ID to take 6248 // ownership. 6249 AS->setModulePath(getThisModule()->first()); 6250 6251 auto AliaseeVI = getValueInfoFromValueId(AliaseeID).first; 6252 auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, ModulePath); 6253 if (!AliaseeInModule) 6254 return error("Alias expects aliasee summary to be parsed"); 6255 AS->setAliasee(AliaseeVI, AliaseeInModule); 6256 6257 auto GUID = getValueInfoFromValueId(ValueID); 6258 AS->setOriginalName(GUID.second); 6259 TheIndex.addGlobalValueSummary(GUID.first, std::move(AS)); 6260 break; 6261 } 6262 // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, n x valueid] 6263 case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: { 6264 unsigned ValueID = Record[0]; 6265 uint64_t RawFlags = Record[1]; 6266 unsigned RefArrayStart = 2; 6267 GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false, 6268 /* WriteOnly */ false, 6269 /* Constant */ false, 6270 GlobalObject::VCallVisibilityPublic); 6271 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6272 if (Version >= 5) { 6273 GVF = getDecodedGVarFlags(Record[2]); 6274 RefArrayStart = 3; 6275 } 6276 std::vector<ValueInfo> Refs = 6277 makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart)); 6278 auto FS = 6279 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 6280 FS->setModulePath(getThisModule()->first()); 6281 auto GUID = getValueInfoFromValueId(ValueID); 6282 FS->setOriginalName(GUID.second); 6283 TheIndex.addGlobalValueSummary(GUID.first, std::move(FS)); 6284 break; 6285 } 6286 // FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, 6287 // numrefs, numrefs x valueid, 6288 // n x (valueid, offset)] 6289 case bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: { 6290 unsigned ValueID = Record[0]; 6291 uint64_t RawFlags = Record[1]; 6292 GlobalVarSummary::GVarFlags GVF = getDecodedGVarFlags(Record[2]); 6293 unsigned NumRefs = Record[3]; 6294 unsigned RefListStartIndex = 4; 6295 unsigned VTableListStartIndex = RefListStartIndex + NumRefs; 6296 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6297 std::vector<ValueInfo> Refs = makeRefList( 6298 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 6299 VTableFuncList VTableFuncs; 6300 for (unsigned I = VTableListStartIndex, E = Record.size(); I != E; ++I) { 6301 ValueInfo Callee = getValueInfoFromValueId(Record[I]).first; 6302 uint64_t Offset = Record[++I]; 6303 VTableFuncs.push_back({Callee, Offset}); 6304 } 6305 auto VS = 6306 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 6307 VS->setModulePath(getThisModule()->first()); 6308 VS->setVTableFuncs(VTableFuncs); 6309 auto GUID = getValueInfoFromValueId(ValueID); 6310 VS->setOriginalName(GUID.second); 6311 TheIndex.addGlobalValueSummary(GUID.first, std::move(VS)); 6312 break; 6313 } 6314 // FS_COMBINED: [valueid, modid, flags, instcount, fflags, numrefs, 6315 // numrefs x valueid, n x (valueid)] 6316 // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, fflags, numrefs, 6317 // numrefs x valueid, n x (valueid, hotness)] 6318 case bitc::FS_COMBINED: 6319 case bitc::FS_COMBINED_PROFILE: { 6320 unsigned ValueID = Record[0]; 6321 uint64_t ModuleId = Record[1]; 6322 uint64_t RawFlags = Record[2]; 6323 unsigned InstCount = Record[3]; 6324 uint64_t RawFunFlags = 0; 6325 uint64_t EntryCount = 0; 6326 unsigned NumRefs = Record[4]; 6327 unsigned NumRORefs = 0, NumWORefs = 0; 6328 int RefListStartIndex = 5; 6329 6330 if (Version >= 4) { 6331 RawFunFlags = Record[4]; 6332 RefListStartIndex = 6; 6333 size_t NumRefsIndex = 5; 6334 if (Version >= 5) { 6335 unsigned NumRORefsOffset = 1; 6336 RefListStartIndex = 7; 6337 if (Version >= 6) { 6338 NumRefsIndex = 6; 6339 EntryCount = Record[5]; 6340 RefListStartIndex = 8; 6341 if (Version >= 7) { 6342 RefListStartIndex = 9; 6343 NumWORefs = Record[8]; 6344 NumRORefsOffset = 2; 6345 } 6346 } 6347 NumRORefs = Record[RefListStartIndex - NumRORefsOffset]; 6348 } 6349 NumRefs = Record[NumRefsIndex]; 6350 } 6351 6352 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6353 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 6354 assert(Record.size() >= RefListStartIndex + NumRefs && 6355 "Record size inconsistent with number of references"); 6356 std::vector<ValueInfo> Refs = makeRefList( 6357 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 6358 bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE); 6359 std::vector<FunctionSummary::EdgeTy> Edges = makeCallList( 6360 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex), 6361 IsOldProfileFormat, HasProfile, false); 6362 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 6363 setSpecialRefs(Refs, NumRORefs, NumWORefs); 6364 auto FS = std::make_unique<FunctionSummary>( 6365 Flags, InstCount, getDecodedFFlags(RawFunFlags), EntryCount, 6366 std::move(Refs), std::move(Edges), std::move(PendingTypeTests), 6367 std::move(PendingTypeTestAssumeVCalls), 6368 std::move(PendingTypeCheckedLoadVCalls), 6369 std::move(PendingTypeTestAssumeConstVCalls), 6370 std::move(PendingTypeCheckedLoadConstVCalls), 6371 std::move(PendingParamAccesses)); 6372 LastSeenSummary = FS.get(); 6373 LastSeenGUID = VI.getGUID(); 6374 FS->setModulePath(ModuleIdMap[ModuleId]); 6375 TheIndex.addGlobalValueSummary(VI, std::move(FS)); 6376 break; 6377 } 6378 // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid] 6379 // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as 6380 // they expect all aliasee summaries to be available. 6381 case bitc::FS_COMBINED_ALIAS: { 6382 unsigned ValueID = Record[0]; 6383 uint64_t ModuleId = Record[1]; 6384 uint64_t RawFlags = Record[2]; 6385 unsigned AliaseeValueId = Record[3]; 6386 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6387 auto AS = std::make_unique<AliasSummary>(Flags); 6388 LastSeenSummary = AS.get(); 6389 AS->setModulePath(ModuleIdMap[ModuleId]); 6390 6391 auto AliaseeVI = getValueInfoFromValueId(AliaseeValueId).first; 6392 auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, AS->modulePath()); 6393 AS->setAliasee(AliaseeVI, AliaseeInModule); 6394 6395 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 6396 LastSeenGUID = VI.getGUID(); 6397 TheIndex.addGlobalValueSummary(VI, std::move(AS)); 6398 break; 6399 } 6400 // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid] 6401 case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: { 6402 unsigned ValueID = Record[0]; 6403 uint64_t ModuleId = Record[1]; 6404 uint64_t RawFlags = Record[2]; 6405 unsigned RefArrayStart = 3; 6406 GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false, 6407 /* WriteOnly */ false, 6408 /* Constant */ false, 6409 GlobalObject::VCallVisibilityPublic); 6410 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6411 if (Version >= 5) { 6412 GVF = getDecodedGVarFlags(Record[3]); 6413 RefArrayStart = 4; 6414 } 6415 std::vector<ValueInfo> Refs = 6416 makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart)); 6417 auto FS = 6418 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 6419 LastSeenSummary = FS.get(); 6420 FS->setModulePath(ModuleIdMap[ModuleId]); 6421 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 6422 LastSeenGUID = VI.getGUID(); 6423 TheIndex.addGlobalValueSummary(VI, std::move(FS)); 6424 break; 6425 } 6426 // FS_COMBINED_ORIGINAL_NAME: [original_name] 6427 case bitc::FS_COMBINED_ORIGINAL_NAME: { 6428 uint64_t OriginalName = Record[0]; 6429 if (!LastSeenSummary) 6430 return error("Name attachment that does not follow a combined record"); 6431 LastSeenSummary->setOriginalName(OriginalName); 6432 TheIndex.addOriginalName(LastSeenGUID, OriginalName); 6433 // Reset the LastSeenSummary 6434 LastSeenSummary = nullptr; 6435 LastSeenGUID = 0; 6436 break; 6437 } 6438 case bitc::FS_TYPE_TESTS: 6439 assert(PendingTypeTests.empty()); 6440 llvm::append_range(PendingTypeTests, Record); 6441 break; 6442 6443 case bitc::FS_TYPE_TEST_ASSUME_VCALLS: 6444 assert(PendingTypeTestAssumeVCalls.empty()); 6445 for (unsigned I = 0; I != Record.size(); I += 2) 6446 PendingTypeTestAssumeVCalls.push_back({Record[I], Record[I+1]}); 6447 break; 6448 6449 case bitc::FS_TYPE_CHECKED_LOAD_VCALLS: 6450 assert(PendingTypeCheckedLoadVCalls.empty()); 6451 for (unsigned I = 0; I != Record.size(); I += 2) 6452 PendingTypeCheckedLoadVCalls.push_back({Record[I], Record[I+1]}); 6453 break; 6454 6455 case bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL: 6456 PendingTypeTestAssumeConstVCalls.push_back( 6457 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}}); 6458 break; 6459 6460 case bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL: 6461 PendingTypeCheckedLoadConstVCalls.push_back( 6462 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}}); 6463 break; 6464 6465 case bitc::FS_CFI_FUNCTION_DEFS: { 6466 std::set<std::string> &CfiFunctionDefs = TheIndex.cfiFunctionDefs(); 6467 for (unsigned I = 0; I != Record.size(); I += 2) 6468 CfiFunctionDefs.insert( 6469 {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])}); 6470 break; 6471 } 6472 6473 case bitc::FS_CFI_FUNCTION_DECLS: { 6474 std::set<std::string> &CfiFunctionDecls = TheIndex.cfiFunctionDecls(); 6475 for (unsigned I = 0; I != Record.size(); I += 2) 6476 CfiFunctionDecls.insert( 6477 {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])}); 6478 break; 6479 } 6480 6481 case bitc::FS_TYPE_ID: 6482 parseTypeIdSummaryRecord(Record, Strtab, TheIndex); 6483 break; 6484 6485 case bitc::FS_TYPE_ID_METADATA: 6486 parseTypeIdCompatibleVtableSummaryRecord(Record); 6487 break; 6488 6489 case bitc::FS_BLOCK_COUNT: 6490 TheIndex.addBlockCount(Record[0]); 6491 break; 6492 6493 case bitc::FS_PARAM_ACCESS: { 6494 PendingParamAccesses = parseParamAccesses(Record); 6495 break; 6496 } 6497 } 6498 } 6499 llvm_unreachable("Exit infinite loop"); 6500 } 6501 6502 // Parse the module string table block into the Index. 6503 // This populates the ModulePathStringTable map in the index. 6504 Error ModuleSummaryIndexBitcodeReader::parseModuleStringTable() { 6505 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID)) 6506 return Err; 6507 6508 SmallVector<uint64_t, 64> Record; 6509 6510 SmallString<128> ModulePath; 6511 ModuleSummaryIndex::ModuleInfo *LastSeenModule = nullptr; 6512 6513 while (true) { 6514 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 6515 if (!MaybeEntry) 6516 return MaybeEntry.takeError(); 6517 BitstreamEntry Entry = MaybeEntry.get(); 6518 6519 switch (Entry.Kind) { 6520 case BitstreamEntry::SubBlock: // Handled for us already. 6521 case BitstreamEntry::Error: 6522 return error("Malformed block"); 6523 case BitstreamEntry::EndBlock: 6524 return Error::success(); 6525 case BitstreamEntry::Record: 6526 // The interesting case. 6527 break; 6528 } 6529 6530 Record.clear(); 6531 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 6532 if (!MaybeRecord) 6533 return MaybeRecord.takeError(); 6534 switch (MaybeRecord.get()) { 6535 default: // Default behavior: ignore. 6536 break; 6537 case bitc::MST_CODE_ENTRY: { 6538 // MST_ENTRY: [modid, namechar x N] 6539 uint64_t ModuleId = Record[0]; 6540 6541 if (convertToString(Record, 1, ModulePath)) 6542 return error("Invalid record"); 6543 6544 LastSeenModule = TheIndex.addModule(ModulePath, ModuleId); 6545 ModuleIdMap[ModuleId] = LastSeenModule->first(); 6546 6547 ModulePath.clear(); 6548 break; 6549 } 6550 /// MST_CODE_HASH: [5*i32] 6551 case bitc::MST_CODE_HASH: { 6552 if (Record.size() != 5) 6553 return error("Invalid hash length " + Twine(Record.size()).str()); 6554 if (!LastSeenModule) 6555 return error("Invalid hash that does not follow a module path"); 6556 int Pos = 0; 6557 for (auto &Val : Record) { 6558 assert(!(Val >> 32) && "Unexpected high bits set"); 6559 LastSeenModule->second.second[Pos++] = Val; 6560 } 6561 // Reset LastSeenModule to avoid overriding the hash unexpectedly. 6562 LastSeenModule = nullptr; 6563 break; 6564 } 6565 } 6566 } 6567 llvm_unreachable("Exit infinite loop"); 6568 } 6569 6570 namespace { 6571 6572 // FIXME: This class is only here to support the transition to llvm::Error. It 6573 // will be removed once this transition is complete. Clients should prefer to 6574 // deal with the Error value directly, rather than converting to error_code. 6575 class BitcodeErrorCategoryType : public std::error_category { 6576 const char *name() const noexcept override { 6577 return "llvm.bitcode"; 6578 } 6579 6580 std::string message(int IE) const override { 6581 BitcodeError E = static_cast<BitcodeError>(IE); 6582 switch (E) { 6583 case BitcodeError::CorruptedBitcode: 6584 return "Corrupted bitcode"; 6585 } 6586 llvm_unreachable("Unknown error type!"); 6587 } 6588 }; 6589 6590 } // end anonymous namespace 6591 6592 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory; 6593 6594 const std::error_category &llvm::BitcodeErrorCategory() { 6595 return *ErrorCategory; 6596 } 6597 6598 static Expected<StringRef> readBlobInRecord(BitstreamCursor &Stream, 6599 unsigned Block, unsigned RecordID) { 6600 if (Error Err = Stream.EnterSubBlock(Block)) 6601 return std::move(Err); 6602 6603 StringRef Strtab; 6604 while (true) { 6605 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 6606 if (!MaybeEntry) 6607 return MaybeEntry.takeError(); 6608 llvm::BitstreamEntry Entry = MaybeEntry.get(); 6609 6610 switch (Entry.Kind) { 6611 case BitstreamEntry::EndBlock: 6612 return Strtab; 6613 6614 case BitstreamEntry::Error: 6615 return error("Malformed block"); 6616 6617 case BitstreamEntry::SubBlock: 6618 if (Error Err = Stream.SkipBlock()) 6619 return std::move(Err); 6620 break; 6621 6622 case BitstreamEntry::Record: 6623 StringRef Blob; 6624 SmallVector<uint64_t, 1> Record; 6625 Expected<unsigned> MaybeRecord = 6626 Stream.readRecord(Entry.ID, Record, &Blob); 6627 if (!MaybeRecord) 6628 return MaybeRecord.takeError(); 6629 if (MaybeRecord.get() == RecordID) 6630 Strtab = Blob; 6631 break; 6632 } 6633 } 6634 } 6635 6636 //===----------------------------------------------------------------------===// 6637 // External interface 6638 //===----------------------------------------------------------------------===// 6639 6640 Expected<std::vector<BitcodeModule>> 6641 llvm::getBitcodeModuleList(MemoryBufferRef Buffer) { 6642 auto FOrErr = getBitcodeFileContents(Buffer); 6643 if (!FOrErr) 6644 return FOrErr.takeError(); 6645 return std::move(FOrErr->Mods); 6646 } 6647 6648 Expected<BitcodeFileContents> 6649 llvm::getBitcodeFileContents(MemoryBufferRef Buffer) { 6650 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 6651 if (!StreamOrErr) 6652 return StreamOrErr.takeError(); 6653 BitstreamCursor &Stream = *StreamOrErr; 6654 6655 BitcodeFileContents F; 6656 while (true) { 6657 uint64_t BCBegin = Stream.getCurrentByteNo(); 6658 6659 // We may be consuming bitcode from a client that leaves garbage at the end 6660 // of the bitcode stream (e.g. Apple's ar tool). If we are close enough to 6661 // the end that there cannot possibly be another module, stop looking. 6662 if (BCBegin + 8 >= Stream.getBitcodeBytes().size()) 6663 return F; 6664 6665 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 6666 if (!MaybeEntry) 6667 return MaybeEntry.takeError(); 6668 llvm::BitstreamEntry Entry = MaybeEntry.get(); 6669 6670 switch (Entry.Kind) { 6671 case BitstreamEntry::EndBlock: 6672 case BitstreamEntry::Error: 6673 return error("Malformed block"); 6674 6675 case BitstreamEntry::SubBlock: { 6676 uint64_t IdentificationBit = -1ull; 6677 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) { 6678 IdentificationBit = Stream.GetCurrentBitNo() - BCBegin * 8; 6679 if (Error Err = Stream.SkipBlock()) 6680 return std::move(Err); 6681 6682 { 6683 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 6684 if (!MaybeEntry) 6685 return MaybeEntry.takeError(); 6686 Entry = MaybeEntry.get(); 6687 } 6688 6689 if (Entry.Kind != BitstreamEntry::SubBlock || 6690 Entry.ID != bitc::MODULE_BLOCK_ID) 6691 return error("Malformed block"); 6692 } 6693 6694 if (Entry.ID == bitc::MODULE_BLOCK_ID) { 6695 uint64_t ModuleBit = Stream.GetCurrentBitNo() - BCBegin * 8; 6696 if (Error Err = Stream.SkipBlock()) 6697 return std::move(Err); 6698 6699 F.Mods.push_back({Stream.getBitcodeBytes().slice( 6700 BCBegin, Stream.getCurrentByteNo() - BCBegin), 6701 Buffer.getBufferIdentifier(), IdentificationBit, 6702 ModuleBit}); 6703 continue; 6704 } 6705 6706 if (Entry.ID == bitc::STRTAB_BLOCK_ID) { 6707 Expected<StringRef> Strtab = 6708 readBlobInRecord(Stream, bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB); 6709 if (!Strtab) 6710 return Strtab.takeError(); 6711 // This string table is used by every preceding bitcode module that does 6712 // not have its own string table. A bitcode file may have multiple 6713 // string tables if it was created by binary concatenation, for example 6714 // with "llvm-cat -b". 6715 for (auto I = F.Mods.rbegin(), E = F.Mods.rend(); I != E; ++I) { 6716 if (!I->Strtab.empty()) 6717 break; 6718 I->Strtab = *Strtab; 6719 } 6720 // Similarly, the string table is used by every preceding symbol table; 6721 // normally there will be just one unless the bitcode file was created 6722 // by binary concatenation. 6723 if (!F.Symtab.empty() && F.StrtabForSymtab.empty()) 6724 F.StrtabForSymtab = *Strtab; 6725 continue; 6726 } 6727 6728 if (Entry.ID == bitc::SYMTAB_BLOCK_ID) { 6729 Expected<StringRef> SymtabOrErr = 6730 readBlobInRecord(Stream, bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB); 6731 if (!SymtabOrErr) 6732 return SymtabOrErr.takeError(); 6733 6734 // We can expect the bitcode file to have multiple symbol tables if it 6735 // was created by binary concatenation. In that case we silently 6736 // ignore any subsequent symbol tables, which is fine because this is a 6737 // low level function. The client is expected to notice that the number 6738 // of modules in the symbol table does not match the number of modules 6739 // in the input file and regenerate the symbol table. 6740 if (F.Symtab.empty()) 6741 F.Symtab = *SymtabOrErr; 6742 continue; 6743 } 6744 6745 if (Error Err = Stream.SkipBlock()) 6746 return std::move(Err); 6747 continue; 6748 } 6749 case BitstreamEntry::Record: 6750 if (Expected<unsigned> StreamFailed = Stream.skipRecord(Entry.ID)) 6751 continue; 6752 else 6753 return StreamFailed.takeError(); 6754 } 6755 } 6756 } 6757 6758 /// Get a lazy one-at-time loading module from bitcode. 6759 /// 6760 /// This isn't always used in a lazy context. In particular, it's also used by 6761 /// \a parseModule(). If this is truly lazy, then we need to eagerly pull 6762 /// in forward-referenced functions from block address references. 6763 /// 6764 /// \param[in] MaterializeAll Set to \c true if we should materialize 6765 /// everything. 6766 Expected<std::unique_ptr<Module>> 6767 BitcodeModule::getModuleImpl(LLVMContext &Context, bool MaterializeAll, 6768 bool ShouldLazyLoadMetadata, bool IsImporting, 6769 DataLayoutCallbackTy DataLayoutCallback) { 6770 BitstreamCursor Stream(Buffer); 6771 6772 std::string ProducerIdentification; 6773 if (IdentificationBit != -1ull) { 6774 if (Error JumpFailed = Stream.JumpToBit(IdentificationBit)) 6775 return std::move(JumpFailed); 6776 Expected<std::string> ProducerIdentificationOrErr = 6777 readIdentificationBlock(Stream); 6778 if (!ProducerIdentificationOrErr) 6779 return ProducerIdentificationOrErr.takeError(); 6780 6781 ProducerIdentification = *ProducerIdentificationOrErr; 6782 } 6783 6784 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 6785 return std::move(JumpFailed); 6786 auto *R = new BitcodeReader(std::move(Stream), Strtab, ProducerIdentification, 6787 Context); 6788 6789 std::unique_ptr<Module> M = 6790 std::make_unique<Module>(ModuleIdentifier, Context); 6791 M->setMaterializer(R); 6792 6793 // Delay parsing Metadata if ShouldLazyLoadMetadata is true. 6794 if (Error Err = R->parseBitcodeInto(M.get(), ShouldLazyLoadMetadata, 6795 IsImporting, DataLayoutCallback)) 6796 return std::move(Err); 6797 6798 if (MaterializeAll) { 6799 // Read in the entire module, and destroy the BitcodeReader. 6800 if (Error Err = M->materializeAll()) 6801 return std::move(Err); 6802 } else { 6803 // Resolve forward references from blockaddresses. 6804 if (Error Err = R->materializeForwardReferencedFunctions()) 6805 return std::move(Err); 6806 } 6807 return std::move(M); 6808 } 6809 6810 Expected<std::unique_ptr<Module>> 6811 BitcodeModule::getLazyModule(LLVMContext &Context, bool ShouldLazyLoadMetadata, 6812 bool IsImporting) { 6813 return getModuleImpl(Context, false, ShouldLazyLoadMetadata, IsImporting, 6814 [](StringRef) { return None; }); 6815 } 6816 6817 // Parse the specified bitcode buffer and merge the index into CombinedIndex. 6818 // We don't use ModuleIdentifier here because the client may need to control the 6819 // module path used in the combined summary (e.g. when reading summaries for 6820 // regular LTO modules). 6821 Error BitcodeModule::readSummary(ModuleSummaryIndex &CombinedIndex, 6822 StringRef ModulePath, uint64_t ModuleId) { 6823 BitstreamCursor Stream(Buffer); 6824 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 6825 return JumpFailed; 6826 6827 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, CombinedIndex, 6828 ModulePath, ModuleId); 6829 return R.parseModule(); 6830 } 6831 6832 // Parse the specified bitcode buffer, returning the function info index. 6833 Expected<std::unique_ptr<ModuleSummaryIndex>> BitcodeModule::getSummary() { 6834 BitstreamCursor Stream(Buffer); 6835 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 6836 return std::move(JumpFailed); 6837 6838 auto Index = std::make_unique<ModuleSummaryIndex>(/*HaveGVs=*/false); 6839 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, *Index, 6840 ModuleIdentifier, 0); 6841 6842 if (Error Err = R.parseModule()) 6843 return std::move(Err); 6844 6845 return std::move(Index); 6846 } 6847 6848 static Expected<bool> getEnableSplitLTOUnitFlag(BitstreamCursor &Stream, 6849 unsigned ID) { 6850 if (Error Err = Stream.EnterSubBlock(ID)) 6851 return std::move(Err); 6852 SmallVector<uint64_t, 64> Record; 6853 6854 while (true) { 6855 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 6856 if (!MaybeEntry) 6857 return MaybeEntry.takeError(); 6858 BitstreamEntry Entry = MaybeEntry.get(); 6859 6860 switch (Entry.Kind) { 6861 case BitstreamEntry::SubBlock: // Handled for us already. 6862 case BitstreamEntry::Error: 6863 return error("Malformed block"); 6864 case BitstreamEntry::EndBlock: 6865 // If no flags record found, conservatively return true to mimic 6866 // behavior before this flag was added. 6867 return true; 6868 case BitstreamEntry::Record: 6869 // The interesting case. 6870 break; 6871 } 6872 6873 // Look for the FS_FLAGS record. 6874 Record.clear(); 6875 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 6876 if (!MaybeBitCode) 6877 return MaybeBitCode.takeError(); 6878 switch (MaybeBitCode.get()) { 6879 default: // Default behavior: ignore. 6880 break; 6881 case bitc::FS_FLAGS: { // [flags] 6882 uint64_t Flags = Record[0]; 6883 // Scan flags. 6884 assert(Flags <= 0x7f && "Unexpected bits in flag"); 6885 6886 return Flags & 0x8; 6887 } 6888 } 6889 } 6890 llvm_unreachable("Exit infinite loop"); 6891 } 6892 6893 // Check if the given bitcode buffer contains a global value summary block. 6894 Expected<BitcodeLTOInfo> BitcodeModule::getLTOInfo() { 6895 BitstreamCursor Stream(Buffer); 6896 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 6897 return std::move(JumpFailed); 6898 6899 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 6900 return std::move(Err); 6901 6902 while (true) { 6903 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 6904 if (!MaybeEntry) 6905 return MaybeEntry.takeError(); 6906 llvm::BitstreamEntry Entry = MaybeEntry.get(); 6907 6908 switch (Entry.Kind) { 6909 case BitstreamEntry::Error: 6910 return error("Malformed block"); 6911 case BitstreamEntry::EndBlock: 6912 return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/false, 6913 /*EnableSplitLTOUnit=*/false}; 6914 6915 case BitstreamEntry::SubBlock: 6916 if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) { 6917 Expected<bool> EnableSplitLTOUnit = 6918 getEnableSplitLTOUnitFlag(Stream, Entry.ID); 6919 if (!EnableSplitLTOUnit) 6920 return EnableSplitLTOUnit.takeError(); 6921 return BitcodeLTOInfo{/*IsThinLTO=*/true, /*HasSummary=*/true, 6922 *EnableSplitLTOUnit}; 6923 } 6924 6925 if (Entry.ID == bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID) { 6926 Expected<bool> EnableSplitLTOUnit = 6927 getEnableSplitLTOUnitFlag(Stream, Entry.ID); 6928 if (!EnableSplitLTOUnit) 6929 return EnableSplitLTOUnit.takeError(); 6930 return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/true, 6931 *EnableSplitLTOUnit}; 6932 } 6933 6934 // Ignore other sub-blocks. 6935 if (Error Err = Stream.SkipBlock()) 6936 return std::move(Err); 6937 continue; 6938 6939 case BitstreamEntry::Record: 6940 if (Expected<unsigned> StreamFailed = Stream.skipRecord(Entry.ID)) 6941 continue; 6942 else 6943 return StreamFailed.takeError(); 6944 } 6945 } 6946 } 6947 6948 static Expected<BitcodeModule> getSingleModule(MemoryBufferRef Buffer) { 6949 Expected<std::vector<BitcodeModule>> MsOrErr = getBitcodeModuleList(Buffer); 6950 if (!MsOrErr) 6951 return MsOrErr.takeError(); 6952 6953 if (MsOrErr->size() != 1) 6954 return error("Expected a single module"); 6955 6956 return (*MsOrErr)[0]; 6957 } 6958 6959 Expected<std::unique_ptr<Module>> 6960 llvm::getLazyBitcodeModule(MemoryBufferRef Buffer, LLVMContext &Context, 6961 bool ShouldLazyLoadMetadata, bool IsImporting) { 6962 Expected<BitcodeModule> BM = getSingleModule(Buffer); 6963 if (!BM) 6964 return BM.takeError(); 6965 6966 return BM->getLazyModule(Context, ShouldLazyLoadMetadata, IsImporting); 6967 } 6968 6969 Expected<std::unique_ptr<Module>> llvm::getOwningLazyBitcodeModule( 6970 std::unique_ptr<MemoryBuffer> &&Buffer, LLVMContext &Context, 6971 bool ShouldLazyLoadMetadata, bool IsImporting) { 6972 auto MOrErr = getLazyBitcodeModule(*Buffer, Context, ShouldLazyLoadMetadata, 6973 IsImporting); 6974 if (MOrErr) 6975 (*MOrErr)->setOwnedMemoryBuffer(std::move(Buffer)); 6976 return MOrErr; 6977 } 6978 6979 Expected<std::unique_ptr<Module>> 6980 BitcodeModule::parseModule(LLVMContext &Context, 6981 DataLayoutCallbackTy DataLayoutCallback) { 6982 return getModuleImpl(Context, true, false, false, DataLayoutCallback); 6983 // TODO: Restore the use-lists to the in-memory state when the bitcode was 6984 // written. We must defer until the Module has been fully materialized. 6985 } 6986 6987 Expected<std::unique_ptr<Module>> 6988 llvm::parseBitcodeFile(MemoryBufferRef Buffer, LLVMContext &Context, 6989 DataLayoutCallbackTy DataLayoutCallback) { 6990 Expected<BitcodeModule> BM = getSingleModule(Buffer); 6991 if (!BM) 6992 return BM.takeError(); 6993 6994 return BM->parseModule(Context, DataLayoutCallback); 6995 } 6996 6997 Expected<std::string> llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer) { 6998 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 6999 if (!StreamOrErr) 7000 return StreamOrErr.takeError(); 7001 7002 return readTriple(*StreamOrErr); 7003 } 7004 7005 Expected<bool> llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer) { 7006 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 7007 if (!StreamOrErr) 7008 return StreamOrErr.takeError(); 7009 7010 return hasObjCCategory(*StreamOrErr); 7011 } 7012 7013 Expected<std::string> llvm::getBitcodeProducerString(MemoryBufferRef Buffer) { 7014 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 7015 if (!StreamOrErr) 7016 return StreamOrErr.takeError(); 7017 7018 return readIdentificationCode(*StreamOrErr); 7019 } 7020 7021 Error llvm::readModuleSummaryIndex(MemoryBufferRef Buffer, 7022 ModuleSummaryIndex &CombinedIndex, 7023 uint64_t ModuleId) { 7024 Expected<BitcodeModule> BM = getSingleModule(Buffer); 7025 if (!BM) 7026 return BM.takeError(); 7027 7028 return BM->readSummary(CombinedIndex, BM->getModuleIdentifier(), ModuleId); 7029 } 7030 7031 Expected<std::unique_ptr<ModuleSummaryIndex>> 7032 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer) { 7033 Expected<BitcodeModule> BM = getSingleModule(Buffer); 7034 if (!BM) 7035 return BM.takeError(); 7036 7037 return BM->getSummary(); 7038 } 7039 7040 Expected<BitcodeLTOInfo> llvm::getBitcodeLTOInfo(MemoryBufferRef Buffer) { 7041 Expected<BitcodeModule> BM = getSingleModule(Buffer); 7042 if (!BM) 7043 return BM.takeError(); 7044 7045 return BM->getLTOInfo(); 7046 } 7047 7048 Expected<std::unique_ptr<ModuleSummaryIndex>> 7049 llvm::getModuleSummaryIndexForFile(StringRef Path, 7050 bool IgnoreEmptyThinLTOIndexFile) { 7051 ErrorOr<std::unique_ptr<MemoryBuffer>> FileOrErr = 7052 MemoryBuffer::getFileOrSTDIN(Path); 7053 if (!FileOrErr) 7054 return errorCodeToError(FileOrErr.getError()); 7055 if (IgnoreEmptyThinLTOIndexFile && !(*FileOrErr)->getBufferSize()) 7056 return nullptr; 7057 return getModuleSummaryIndex(**FileOrErr); 7058 } 7059