1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/Bitcode/BitcodeReader.h" 10 #include "MetadataLoader.h" 11 #include "ValueList.h" 12 #include "llvm/ADT/APFloat.h" 13 #include "llvm/ADT/APInt.h" 14 #include "llvm/ADT/ArrayRef.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/Optional.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallString.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/StringRef.h" 21 #include "llvm/ADT/Triple.h" 22 #include "llvm/ADT/Twine.h" 23 #include "llvm/Bitcode/BitstreamReader.h" 24 #include "llvm/Bitcode/LLVMBitCodes.h" 25 #include "llvm/Config/llvm-config.h" 26 #include "llvm/IR/Argument.h" 27 #include "llvm/IR/Attributes.h" 28 #include "llvm/IR/AutoUpgrade.h" 29 #include "llvm/IR/BasicBlock.h" 30 #include "llvm/IR/CallSite.h" 31 #include "llvm/IR/CallingConv.h" 32 #include "llvm/IR/Comdat.h" 33 #include "llvm/IR/Constant.h" 34 #include "llvm/IR/Constants.h" 35 #include "llvm/IR/DataLayout.h" 36 #include "llvm/IR/DebugInfo.h" 37 #include "llvm/IR/DebugInfoMetadata.h" 38 #include "llvm/IR/DebugLoc.h" 39 #include "llvm/IR/DerivedTypes.h" 40 #include "llvm/IR/Function.h" 41 #include "llvm/IR/GVMaterializer.h" 42 #include "llvm/IR/GlobalAlias.h" 43 #include "llvm/IR/GlobalIFunc.h" 44 #include "llvm/IR/GlobalIndirectSymbol.h" 45 #include "llvm/IR/GlobalObject.h" 46 #include "llvm/IR/GlobalValue.h" 47 #include "llvm/IR/GlobalVariable.h" 48 #include "llvm/IR/InlineAsm.h" 49 #include "llvm/IR/InstIterator.h" 50 #include "llvm/IR/InstrTypes.h" 51 #include "llvm/IR/Instruction.h" 52 #include "llvm/IR/Instructions.h" 53 #include "llvm/IR/Intrinsics.h" 54 #include "llvm/IR/LLVMContext.h" 55 #include "llvm/IR/Metadata.h" 56 #include "llvm/IR/Module.h" 57 #include "llvm/IR/ModuleSummaryIndex.h" 58 #include "llvm/IR/Operator.h" 59 #include "llvm/IR/Type.h" 60 #include "llvm/IR/Value.h" 61 #include "llvm/IR/Verifier.h" 62 #include "llvm/Support/AtomicOrdering.h" 63 #include "llvm/Support/Casting.h" 64 #include "llvm/Support/CommandLine.h" 65 #include "llvm/Support/Compiler.h" 66 #include "llvm/Support/Debug.h" 67 #include "llvm/Support/Error.h" 68 #include "llvm/Support/ErrorHandling.h" 69 #include "llvm/Support/ErrorOr.h" 70 #include "llvm/Support/ManagedStatic.h" 71 #include "llvm/Support/MathExtras.h" 72 #include "llvm/Support/MemoryBuffer.h" 73 #include "llvm/Support/raw_ostream.h" 74 #include <algorithm> 75 #include <cassert> 76 #include <cstddef> 77 #include <cstdint> 78 #include <deque> 79 #include <map> 80 #include <memory> 81 #include <set> 82 #include <string> 83 #include <system_error> 84 #include <tuple> 85 #include <utility> 86 #include <vector> 87 88 using namespace llvm; 89 90 static cl::opt<bool> PrintSummaryGUIDs( 91 "print-summary-global-ids", cl::init(false), cl::Hidden, 92 cl::desc( 93 "Print the global id for each value when reading the module summary")); 94 95 namespace { 96 97 enum { 98 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 99 }; 100 101 } // end anonymous namespace 102 103 static Error error(const Twine &Message) { 104 return make_error<StringError>( 105 Message, make_error_code(BitcodeError::CorruptedBitcode)); 106 } 107 108 /// Helper to read the header common to all bitcode files. 109 static bool hasValidBitcodeHeader(BitstreamCursor &Stream) { 110 // Sniff for the signature. 111 if (!Stream.canSkipToPos(4) || 112 Stream.Read(8) != 'B' || 113 Stream.Read(8) != 'C' || 114 Stream.Read(4) != 0x0 || 115 Stream.Read(4) != 0xC || 116 Stream.Read(4) != 0xE || 117 Stream.Read(4) != 0xD) 118 return false; 119 return true; 120 } 121 122 static Expected<BitstreamCursor> initStream(MemoryBufferRef Buffer) { 123 const unsigned char *BufPtr = (const unsigned char *)Buffer.getBufferStart(); 124 const unsigned char *BufEnd = BufPtr + Buffer.getBufferSize(); 125 126 if (Buffer.getBufferSize() & 3) 127 return error("Invalid bitcode signature"); 128 129 // If we have a wrapper header, parse it and ignore the non-bc file contents. 130 // The magic number is 0x0B17C0DE stored in little endian. 131 if (isBitcodeWrapper(BufPtr, BufEnd)) 132 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 133 return error("Invalid bitcode wrapper header"); 134 135 BitstreamCursor Stream(ArrayRef<uint8_t>(BufPtr, BufEnd)); 136 if (!hasValidBitcodeHeader(Stream)) 137 return error("Invalid bitcode signature"); 138 139 return std::move(Stream); 140 } 141 142 /// Convert a string from a record into an std::string, return true on failure. 143 template <typename StrTy> 144 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx, 145 StrTy &Result) { 146 if (Idx > Record.size()) 147 return true; 148 149 for (unsigned i = Idx, e = Record.size(); i != e; ++i) 150 Result += (char)Record[i]; 151 return false; 152 } 153 154 // Strip all the TBAA attachment for the module. 155 static void stripTBAA(Module *M) { 156 for (auto &F : *M) { 157 if (F.isMaterializable()) 158 continue; 159 for (auto &I : instructions(F)) 160 I.setMetadata(LLVMContext::MD_tbaa, nullptr); 161 } 162 } 163 164 /// Read the "IDENTIFICATION_BLOCK_ID" block, do some basic enforcement on the 165 /// "epoch" encoded in the bitcode, and return the producer name if any. 166 static Expected<std::string> readIdentificationBlock(BitstreamCursor &Stream) { 167 if (Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID)) 168 return error("Invalid record"); 169 170 // Read all the records. 171 SmallVector<uint64_t, 64> Record; 172 173 std::string ProducerIdentification; 174 175 while (true) { 176 BitstreamEntry Entry = Stream.advance(); 177 178 switch (Entry.Kind) { 179 default: 180 case BitstreamEntry::Error: 181 return error("Malformed block"); 182 case BitstreamEntry::EndBlock: 183 return ProducerIdentification; 184 case BitstreamEntry::Record: 185 // The interesting case. 186 break; 187 } 188 189 // Read a record. 190 Record.clear(); 191 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 192 switch (BitCode) { 193 default: // Default behavior: reject 194 return error("Invalid value"); 195 case bitc::IDENTIFICATION_CODE_STRING: // IDENTIFICATION: [strchr x N] 196 convertToString(Record, 0, ProducerIdentification); 197 break; 198 case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#] 199 unsigned epoch = (unsigned)Record[0]; 200 if (epoch != bitc::BITCODE_CURRENT_EPOCH) { 201 return error( 202 Twine("Incompatible epoch: Bitcode '") + Twine(epoch) + 203 "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'"); 204 } 205 } 206 } 207 } 208 } 209 210 static Expected<std::string> readIdentificationCode(BitstreamCursor &Stream) { 211 // We expect a number of well-defined blocks, though we don't necessarily 212 // need to understand them all. 213 while (true) { 214 if (Stream.AtEndOfStream()) 215 return ""; 216 217 BitstreamEntry Entry = Stream.advance(); 218 switch (Entry.Kind) { 219 case BitstreamEntry::EndBlock: 220 case BitstreamEntry::Error: 221 return error("Malformed block"); 222 223 case BitstreamEntry::SubBlock: 224 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) 225 return readIdentificationBlock(Stream); 226 227 // Ignore other sub-blocks. 228 if (Stream.SkipBlock()) 229 return error("Malformed block"); 230 continue; 231 case BitstreamEntry::Record: 232 Stream.skipRecord(Entry.ID); 233 continue; 234 } 235 } 236 } 237 238 static Expected<bool> hasObjCCategoryInModule(BitstreamCursor &Stream) { 239 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 240 return error("Invalid record"); 241 242 SmallVector<uint64_t, 64> Record; 243 // Read all the records for this module. 244 245 while (true) { 246 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 247 248 switch (Entry.Kind) { 249 case BitstreamEntry::SubBlock: // Handled for us already. 250 case BitstreamEntry::Error: 251 return error("Malformed block"); 252 case BitstreamEntry::EndBlock: 253 return false; 254 case BitstreamEntry::Record: 255 // The interesting case. 256 break; 257 } 258 259 // Read a record. 260 switch (Stream.readRecord(Entry.ID, Record)) { 261 default: 262 break; // Default behavior, ignore unknown content. 263 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 264 std::string S; 265 if (convertToString(Record, 0, S)) 266 return error("Invalid record"); 267 // Check for the i386 and other (x86_64, ARM) conventions 268 if (S.find("__DATA,__objc_catlist") != std::string::npos || 269 S.find("__OBJC,__category") != std::string::npos) 270 return true; 271 break; 272 } 273 } 274 Record.clear(); 275 } 276 llvm_unreachable("Exit infinite loop"); 277 } 278 279 static Expected<bool> hasObjCCategory(BitstreamCursor &Stream) { 280 // We expect a number of well-defined blocks, though we don't necessarily 281 // need to understand them all. 282 while (true) { 283 BitstreamEntry Entry = Stream.advance(); 284 285 switch (Entry.Kind) { 286 case BitstreamEntry::Error: 287 return error("Malformed block"); 288 case BitstreamEntry::EndBlock: 289 return false; 290 291 case BitstreamEntry::SubBlock: 292 if (Entry.ID == bitc::MODULE_BLOCK_ID) 293 return hasObjCCategoryInModule(Stream); 294 295 // Ignore other sub-blocks. 296 if (Stream.SkipBlock()) 297 return error("Malformed block"); 298 continue; 299 300 case BitstreamEntry::Record: 301 Stream.skipRecord(Entry.ID); 302 continue; 303 } 304 } 305 } 306 307 static Expected<std::string> readModuleTriple(BitstreamCursor &Stream) { 308 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 309 return error("Invalid record"); 310 311 SmallVector<uint64_t, 64> Record; 312 313 std::string Triple; 314 315 // Read all the records for this module. 316 while (true) { 317 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 318 319 switch (Entry.Kind) { 320 case BitstreamEntry::SubBlock: // Handled for us already. 321 case BitstreamEntry::Error: 322 return error("Malformed block"); 323 case BitstreamEntry::EndBlock: 324 return Triple; 325 case BitstreamEntry::Record: 326 // The interesting case. 327 break; 328 } 329 330 // Read a record. 331 switch (Stream.readRecord(Entry.ID, Record)) { 332 default: break; // Default behavior, ignore unknown content. 333 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 334 std::string S; 335 if (convertToString(Record, 0, S)) 336 return error("Invalid record"); 337 Triple = S; 338 break; 339 } 340 } 341 Record.clear(); 342 } 343 llvm_unreachable("Exit infinite loop"); 344 } 345 346 static Expected<std::string> readTriple(BitstreamCursor &Stream) { 347 // We expect a number of well-defined blocks, though we don't necessarily 348 // need to understand them all. 349 while (true) { 350 BitstreamEntry Entry = Stream.advance(); 351 352 switch (Entry.Kind) { 353 case BitstreamEntry::Error: 354 return error("Malformed block"); 355 case BitstreamEntry::EndBlock: 356 return ""; 357 358 case BitstreamEntry::SubBlock: 359 if (Entry.ID == bitc::MODULE_BLOCK_ID) 360 return readModuleTriple(Stream); 361 362 // Ignore other sub-blocks. 363 if (Stream.SkipBlock()) 364 return error("Malformed block"); 365 continue; 366 367 case BitstreamEntry::Record: 368 Stream.skipRecord(Entry.ID); 369 continue; 370 } 371 } 372 } 373 374 namespace { 375 376 class BitcodeReaderBase { 377 protected: 378 BitcodeReaderBase(BitstreamCursor Stream, StringRef Strtab) 379 : Stream(std::move(Stream)), Strtab(Strtab) { 380 this->Stream.setBlockInfo(&BlockInfo); 381 } 382 383 BitstreamBlockInfo BlockInfo; 384 BitstreamCursor Stream; 385 StringRef Strtab; 386 387 /// In version 2 of the bitcode we store names of global values and comdats in 388 /// a string table rather than in the VST. 389 bool UseStrtab = false; 390 391 Expected<unsigned> parseVersionRecord(ArrayRef<uint64_t> Record); 392 393 /// If this module uses a string table, pop the reference to the string table 394 /// and return the referenced string and the rest of the record. Otherwise 395 /// just return the record itself. 396 std::pair<StringRef, ArrayRef<uint64_t>> 397 readNameFromStrtab(ArrayRef<uint64_t> Record); 398 399 bool readBlockInfo(); 400 401 // Contains an arbitrary and optional string identifying the bitcode producer 402 std::string ProducerIdentification; 403 404 Error error(const Twine &Message); 405 }; 406 407 } // end anonymous namespace 408 409 Error BitcodeReaderBase::error(const Twine &Message) { 410 std::string FullMsg = Message.str(); 411 if (!ProducerIdentification.empty()) 412 FullMsg += " (Producer: '" + ProducerIdentification + "' Reader: 'LLVM " + 413 LLVM_VERSION_STRING "')"; 414 return ::error(FullMsg); 415 } 416 417 Expected<unsigned> 418 BitcodeReaderBase::parseVersionRecord(ArrayRef<uint64_t> Record) { 419 if (Record.empty()) 420 return error("Invalid record"); 421 unsigned ModuleVersion = Record[0]; 422 if (ModuleVersion > 2) 423 return error("Invalid value"); 424 UseStrtab = ModuleVersion >= 2; 425 return ModuleVersion; 426 } 427 428 std::pair<StringRef, ArrayRef<uint64_t>> 429 BitcodeReaderBase::readNameFromStrtab(ArrayRef<uint64_t> Record) { 430 if (!UseStrtab) 431 return {"", Record}; 432 // Invalid reference. Let the caller complain about the record being empty. 433 if (Record[0] + Record[1] > Strtab.size()) 434 return {"", {}}; 435 return {StringRef(Strtab.data() + Record[0], Record[1]), Record.slice(2)}; 436 } 437 438 namespace { 439 440 class BitcodeReader : public BitcodeReaderBase, public GVMaterializer { 441 LLVMContext &Context; 442 Module *TheModule = nullptr; 443 // Next offset to start scanning for lazy parsing of function bodies. 444 uint64_t NextUnreadBit = 0; 445 // Last function offset found in the VST. 446 uint64_t LastFunctionBlockBit = 0; 447 bool SeenValueSymbolTable = false; 448 uint64_t VSTOffset = 0; 449 450 std::vector<std::string> SectionTable; 451 std::vector<std::string> GCTable; 452 453 std::vector<Type*> TypeList; 454 BitcodeReaderValueList ValueList; 455 Optional<MetadataLoader> MDLoader; 456 std::vector<Comdat *> ComdatList; 457 SmallVector<Instruction *, 64> InstructionList; 458 459 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInits; 460 std::vector<std::pair<GlobalIndirectSymbol *, unsigned>> IndirectSymbolInits; 461 std::vector<std::pair<Function *, unsigned>> FunctionPrefixes; 462 std::vector<std::pair<Function *, unsigned>> FunctionPrologues; 463 std::vector<std::pair<Function *, unsigned>> FunctionPersonalityFns; 464 465 /// The set of attributes by index. Index zero in the file is for null, and 466 /// is thus not represented here. As such all indices are off by one. 467 std::vector<AttributeList> MAttributes; 468 469 /// The set of attribute groups. 470 std::map<unsigned, AttributeList> MAttributeGroups; 471 472 /// While parsing a function body, this is a list of the basic blocks for the 473 /// function. 474 std::vector<BasicBlock*> FunctionBBs; 475 476 // When reading the module header, this list is populated with functions that 477 // have bodies later in the file. 478 std::vector<Function*> FunctionsWithBodies; 479 480 // When intrinsic functions are encountered which require upgrading they are 481 // stored here with their replacement function. 482 using UpdatedIntrinsicMap = DenseMap<Function *, Function *>; 483 UpdatedIntrinsicMap UpgradedIntrinsics; 484 // Intrinsics which were remangled because of types rename 485 UpdatedIntrinsicMap RemangledIntrinsics; 486 487 // Several operations happen after the module header has been read, but 488 // before function bodies are processed. This keeps track of whether 489 // we've done this yet. 490 bool SeenFirstFunctionBody = false; 491 492 /// When function bodies are initially scanned, this map contains info about 493 /// where to find deferred function body in the stream. 494 DenseMap<Function*, uint64_t> DeferredFunctionInfo; 495 496 /// When Metadata block is initially scanned when parsing the module, we may 497 /// choose to defer parsing of the metadata. This vector contains info about 498 /// which Metadata blocks are deferred. 499 std::vector<uint64_t> DeferredMetadataInfo; 500 501 /// These are basic blocks forward-referenced by block addresses. They are 502 /// inserted lazily into functions when they're loaded. The basic block ID is 503 /// its index into the vector. 504 DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs; 505 std::deque<Function *> BasicBlockFwdRefQueue; 506 507 /// Indicates that we are using a new encoding for instruction operands where 508 /// most operands in the current FUNCTION_BLOCK are encoded relative to the 509 /// instruction number, for a more compact encoding. Some instruction 510 /// operands are not relative to the instruction ID: basic block numbers, and 511 /// types. Once the old style function blocks have been phased out, we would 512 /// not need this flag. 513 bool UseRelativeIDs = false; 514 515 /// True if all functions will be materialized, negating the need to process 516 /// (e.g.) blockaddress forward references. 517 bool WillMaterializeAllForwardRefs = false; 518 519 bool StripDebugInfo = false; 520 TBAAVerifier TBAAVerifyHelper; 521 522 std::vector<std::string> BundleTags; 523 SmallVector<SyncScope::ID, 8> SSIDs; 524 525 public: 526 BitcodeReader(BitstreamCursor Stream, StringRef Strtab, 527 StringRef ProducerIdentification, LLVMContext &Context); 528 529 Error materializeForwardReferencedFunctions(); 530 531 Error materialize(GlobalValue *GV) override; 532 Error materializeModule() override; 533 std::vector<StructType *> getIdentifiedStructTypes() const override; 534 535 /// Main interface to parsing a bitcode buffer. 536 /// \returns true if an error occurred. 537 Error parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata = false, 538 bool IsImporting = false); 539 540 static uint64_t decodeSignRotatedValue(uint64_t V); 541 542 /// Materialize any deferred Metadata block. 543 Error materializeMetadata() override; 544 545 void setStripDebugInfo() override; 546 547 private: 548 std::vector<StructType *> IdentifiedStructTypes; 549 StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name); 550 StructType *createIdentifiedStructType(LLVMContext &Context); 551 552 Type *getTypeByID(unsigned ID); 553 554 Value *getFnValueByID(unsigned ID, Type *Ty) { 555 if (Ty && Ty->isMetadataTy()) 556 return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID)); 557 return ValueList.getValueFwdRef(ID, Ty); 558 } 559 560 Metadata *getFnMetadataByID(unsigned ID) { 561 return MDLoader->getMetadataFwdRefOrLoad(ID); 562 } 563 564 BasicBlock *getBasicBlock(unsigned ID) const { 565 if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID 566 return FunctionBBs[ID]; 567 } 568 569 AttributeList getAttributes(unsigned i) const { 570 if (i-1 < MAttributes.size()) 571 return MAttributes[i-1]; 572 return AttributeList(); 573 } 574 575 /// Read a value/type pair out of the specified record from slot 'Slot'. 576 /// Increment Slot past the number of slots used in the record. Return true on 577 /// failure. 578 bool getValueTypePair(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 579 unsigned InstNum, Value *&ResVal) { 580 if (Slot == Record.size()) return true; 581 unsigned ValNo = (unsigned)Record[Slot++]; 582 // Adjust the ValNo, if it was encoded relative to the InstNum. 583 if (UseRelativeIDs) 584 ValNo = InstNum - ValNo; 585 if (ValNo < InstNum) { 586 // If this is not a forward reference, just return the value we already 587 // have. 588 ResVal = getFnValueByID(ValNo, nullptr); 589 return ResVal == nullptr; 590 } 591 if (Slot == Record.size()) 592 return true; 593 594 unsigned TypeNo = (unsigned)Record[Slot++]; 595 ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo)); 596 return ResVal == nullptr; 597 } 598 599 /// Read a value out of the specified record from slot 'Slot'. Increment Slot 600 /// past the number of slots used by the value in the record. Return true if 601 /// there is an error. 602 bool popValue(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 603 unsigned InstNum, Type *Ty, Value *&ResVal) { 604 if (getValue(Record, Slot, InstNum, Ty, ResVal)) 605 return true; 606 // All values currently take a single record slot. 607 ++Slot; 608 return false; 609 } 610 611 /// Like popValue, but does not increment the Slot number. 612 bool getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 613 unsigned InstNum, Type *Ty, Value *&ResVal) { 614 ResVal = getValue(Record, Slot, InstNum, Ty); 615 return ResVal == nullptr; 616 } 617 618 /// Version of getValue that returns ResVal directly, or 0 if there is an 619 /// error. 620 Value *getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 621 unsigned InstNum, Type *Ty) { 622 if (Slot == Record.size()) return nullptr; 623 unsigned ValNo = (unsigned)Record[Slot]; 624 // Adjust the ValNo, if it was encoded relative to the InstNum. 625 if (UseRelativeIDs) 626 ValNo = InstNum - ValNo; 627 return getFnValueByID(ValNo, Ty); 628 } 629 630 /// Like getValue, but decodes signed VBRs. 631 Value *getValueSigned(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 632 unsigned InstNum, Type *Ty) { 633 if (Slot == Record.size()) return nullptr; 634 unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]); 635 // Adjust the ValNo, if it was encoded relative to the InstNum. 636 if (UseRelativeIDs) 637 ValNo = InstNum - ValNo; 638 return getFnValueByID(ValNo, Ty); 639 } 640 641 /// Converts alignment exponent (i.e. power of two (or zero)) to the 642 /// corresponding alignment to use. If alignment is too large, returns 643 /// a corresponding error code. 644 Error parseAlignmentValue(uint64_t Exponent, unsigned &Alignment); 645 Error parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind); 646 Error parseModule(uint64_t ResumeBit, bool ShouldLazyLoadMetadata = false); 647 648 Error parseComdatRecord(ArrayRef<uint64_t> Record); 649 Error parseGlobalVarRecord(ArrayRef<uint64_t> Record); 650 Error parseFunctionRecord(ArrayRef<uint64_t> Record); 651 Error parseGlobalIndirectSymbolRecord(unsigned BitCode, 652 ArrayRef<uint64_t> Record); 653 654 Error parseAttributeBlock(); 655 Error parseAttributeGroupBlock(); 656 Error parseTypeTable(); 657 Error parseTypeTableBody(); 658 Error parseOperandBundleTags(); 659 Error parseSyncScopeNames(); 660 661 Expected<Value *> recordValue(SmallVectorImpl<uint64_t> &Record, 662 unsigned NameIndex, Triple &TT); 663 void setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, Function *F, 664 ArrayRef<uint64_t> Record); 665 Error parseValueSymbolTable(uint64_t Offset = 0); 666 Error parseGlobalValueSymbolTable(); 667 Error parseConstants(); 668 Error rememberAndSkipFunctionBodies(); 669 Error rememberAndSkipFunctionBody(); 670 /// Save the positions of the Metadata blocks and skip parsing the blocks. 671 Error rememberAndSkipMetadata(); 672 Error typeCheckLoadStoreInst(Type *ValType, Type *PtrType); 673 Error parseFunctionBody(Function *F); 674 Error globalCleanup(); 675 Error resolveGlobalAndIndirectSymbolInits(); 676 Error parseUseLists(); 677 Error findFunctionInStream( 678 Function *F, 679 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator); 680 681 SyncScope::ID getDecodedSyncScopeID(unsigned Val); 682 }; 683 684 /// Class to manage reading and parsing function summary index bitcode 685 /// files/sections. 686 class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase { 687 /// The module index built during parsing. 688 ModuleSummaryIndex &TheIndex; 689 690 /// Indicates whether we have encountered a global value summary section 691 /// yet during parsing. 692 bool SeenGlobalValSummary = false; 693 694 /// Indicates whether we have already parsed the VST, used for error checking. 695 bool SeenValueSymbolTable = false; 696 697 /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record. 698 /// Used to enable on-demand parsing of the VST. 699 uint64_t VSTOffset = 0; 700 701 // Map to save ValueId to ValueInfo association that was recorded in the 702 // ValueSymbolTable. It is used after the VST is parsed to convert 703 // call graph edges read from the function summary from referencing 704 // callees by their ValueId to using the ValueInfo instead, which is how 705 // they are recorded in the summary index being built. 706 // We save a GUID which refers to the same global as the ValueInfo, but 707 // ignoring the linkage, i.e. for values other than local linkage they are 708 // identical. 709 DenseMap<unsigned, std::pair<ValueInfo, GlobalValue::GUID>> 710 ValueIdToValueInfoMap; 711 712 /// Map populated during module path string table parsing, from the 713 /// module ID to a string reference owned by the index's module 714 /// path string table, used to correlate with combined index 715 /// summary records. 716 DenseMap<uint64_t, StringRef> ModuleIdMap; 717 718 /// Original source file name recorded in a bitcode record. 719 std::string SourceFileName; 720 721 /// The string identifier given to this module by the client, normally the 722 /// path to the bitcode file. 723 StringRef ModulePath; 724 725 /// For per-module summary indexes, the unique numerical identifier given to 726 /// this module by the client. 727 unsigned ModuleId; 728 729 public: 730 ModuleSummaryIndexBitcodeReader(BitstreamCursor Stream, StringRef Strtab, 731 ModuleSummaryIndex &TheIndex, 732 StringRef ModulePath, unsigned ModuleId); 733 734 Error parseModule(); 735 736 private: 737 void setValueGUID(uint64_t ValueID, StringRef ValueName, 738 GlobalValue::LinkageTypes Linkage, 739 StringRef SourceFileName); 740 Error parseValueSymbolTable( 741 uint64_t Offset, 742 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap); 743 std::vector<ValueInfo> makeRefList(ArrayRef<uint64_t> Record); 744 std::vector<FunctionSummary::EdgeTy> makeCallList(ArrayRef<uint64_t> Record, 745 bool IsOldProfileFormat, 746 bool HasProfile, 747 bool HasRelBF); 748 Error parseEntireSummary(unsigned ID); 749 Error parseModuleStringTable(); 750 751 std::pair<ValueInfo, GlobalValue::GUID> 752 getValueInfoFromValueId(unsigned ValueId); 753 754 void addThisModule(); 755 ModuleSummaryIndex::ModuleInfo *getThisModule(); 756 }; 757 758 } // end anonymous namespace 759 760 std::error_code llvm::errorToErrorCodeAndEmitErrors(LLVMContext &Ctx, 761 Error Err) { 762 if (Err) { 763 std::error_code EC; 764 handleAllErrors(std::move(Err), [&](ErrorInfoBase &EIB) { 765 EC = EIB.convertToErrorCode(); 766 Ctx.emitError(EIB.message()); 767 }); 768 return EC; 769 } 770 return std::error_code(); 771 } 772 773 BitcodeReader::BitcodeReader(BitstreamCursor Stream, StringRef Strtab, 774 StringRef ProducerIdentification, 775 LLVMContext &Context) 776 : BitcodeReaderBase(std::move(Stream), Strtab), Context(Context), 777 ValueList(Context) { 778 this->ProducerIdentification = ProducerIdentification; 779 } 780 781 Error BitcodeReader::materializeForwardReferencedFunctions() { 782 if (WillMaterializeAllForwardRefs) 783 return Error::success(); 784 785 // Prevent recursion. 786 WillMaterializeAllForwardRefs = true; 787 788 while (!BasicBlockFwdRefQueue.empty()) { 789 Function *F = BasicBlockFwdRefQueue.front(); 790 BasicBlockFwdRefQueue.pop_front(); 791 assert(F && "Expected valid function"); 792 if (!BasicBlockFwdRefs.count(F)) 793 // Already materialized. 794 continue; 795 796 // Check for a function that isn't materializable to prevent an infinite 797 // loop. When parsing a blockaddress stored in a global variable, there 798 // isn't a trivial way to check if a function will have a body without a 799 // linear search through FunctionsWithBodies, so just check it here. 800 if (!F->isMaterializable()) 801 return error("Never resolved function from blockaddress"); 802 803 // Try to materialize F. 804 if (Error Err = materialize(F)) 805 return Err; 806 } 807 assert(BasicBlockFwdRefs.empty() && "Function missing from queue"); 808 809 // Reset state. 810 WillMaterializeAllForwardRefs = false; 811 return Error::success(); 812 } 813 814 //===----------------------------------------------------------------------===// 815 // Helper functions to implement forward reference resolution, etc. 816 //===----------------------------------------------------------------------===// 817 818 static bool hasImplicitComdat(size_t Val) { 819 switch (Val) { 820 default: 821 return false; 822 case 1: // Old WeakAnyLinkage 823 case 4: // Old LinkOnceAnyLinkage 824 case 10: // Old WeakODRLinkage 825 case 11: // Old LinkOnceODRLinkage 826 return true; 827 } 828 } 829 830 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) { 831 switch (Val) { 832 default: // Map unknown/new linkages to external 833 case 0: 834 return GlobalValue::ExternalLinkage; 835 case 2: 836 return GlobalValue::AppendingLinkage; 837 case 3: 838 return GlobalValue::InternalLinkage; 839 case 5: 840 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage 841 case 6: 842 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage 843 case 7: 844 return GlobalValue::ExternalWeakLinkage; 845 case 8: 846 return GlobalValue::CommonLinkage; 847 case 9: 848 return GlobalValue::PrivateLinkage; 849 case 12: 850 return GlobalValue::AvailableExternallyLinkage; 851 case 13: 852 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage 853 case 14: 854 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage 855 case 15: 856 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage 857 case 1: // Old value with implicit comdat. 858 case 16: 859 return GlobalValue::WeakAnyLinkage; 860 case 10: // Old value with implicit comdat. 861 case 17: 862 return GlobalValue::WeakODRLinkage; 863 case 4: // Old value with implicit comdat. 864 case 18: 865 return GlobalValue::LinkOnceAnyLinkage; 866 case 11: // Old value with implicit comdat. 867 case 19: 868 return GlobalValue::LinkOnceODRLinkage; 869 } 870 } 871 872 static FunctionSummary::FFlags getDecodedFFlags(uint64_t RawFlags) { 873 FunctionSummary::FFlags Flags; 874 Flags.ReadNone = RawFlags & 0x1; 875 Flags.ReadOnly = (RawFlags >> 1) & 0x1; 876 Flags.NoRecurse = (RawFlags >> 2) & 0x1; 877 Flags.ReturnDoesNotAlias = (RawFlags >> 3) & 0x1; 878 Flags.NoInline = (RawFlags >> 4) & 0x1; 879 return Flags; 880 } 881 882 /// Decode the flags for GlobalValue in the summary. 883 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags, 884 uint64_t Version) { 885 // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage 886 // like getDecodedLinkage() above. Any future change to the linkage enum and 887 // to getDecodedLinkage() will need to be taken into account here as above. 888 auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits 889 RawFlags = RawFlags >> 4; 890 bool NotEligibleToImport = (RawFlags & 0x1) || Version < 3; 891 // The Live flag wasn't introduced until version 3. For dead stripping 892 // to work correctly on earlier versions, we must conservatively treat all 893 // values as live. 894 bool Live = (RawFlags & 0x2) || Version < 3; 895 bool Local = (RawFlags & 0x4); 896 bool AutoHide = (RawFlags & 0x8); 897 898 return GlobalValueSummary::GVFlags(Linkage, NotEligibleToImport, Live, Local, AutoHide); 899 } 900 901 // Decode the flags for GlobalVariable in the summary 902 static GlobalVarSummary::GVarFlags getDecodedGVarFlags(uint64_t RawFlags) { 903 return GlobalVarSummary::GVarFlags((RawFlags & 0x1) ? true : false); 904 } 905 906 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) { 907 switch (Val) { 908 default: // Map unknown visibilities to default. 909 case 0: return GlobalValue::DefaultVisibility; 910 case 1: return GlobalValue::HiddenVisibility; 911 case 2: return GlobalValue::ProtectedVisibility; 912 } 913 } 914 915 static GlobalValue::DLLStorageClassTypes 916 getDecodedDLLStorageClass(unsigned Val) { 917 switch (Val) { 918 default: // Map unknown values to default. 919 case 0: return GlobalValue::DefaultStorageClass; 920 case 1: return GlobalValue::DLLImportStorageClass; 921 case 2: return GlobalValue::DLLExportStorageClass; 922 } 923 } 924 925 static bool getDecodedDSOLocal(unsigned Val) { 926 switch(Val) { 927 default: // Map unknown values to preemptable. 928 case 0: return false; 929 case 1: return true; 930 } 931 } 932 933 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) { 934 switch (Val) { 935 case 0: return GlobalVariable::NotThreadLocal; 936 default: // Map unknown non-zero value to general dynamic. 937 case 1: return GlobalVariable::GeneralDynamicTLSModel; 938 case 2: return GlobalVariable::LocalDynamicTLSModel; 939 case 3: return GlobalVariable::InitialExecTLSModel; 940 case 4: return GlobalVariable::LocalExecTLSModel; 941 } 942 } 943 944 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) { 945 switch (Val) { 946 default: // Map unknown to UnnamedAddr::None. 947 case 0: return GlobalVariable::UnnamedAddr::None; 948 case 1: return GlobalVariable::UnnamedAddr::Global; 949 case 2: return GlobalVariable::UnnamedAddr::Local; 950 } 951 } 952 953 static int getDecodedCastOpcode(unsigned Val) { 954 switch (Val) { 955 default: return -1; 956 case bitc::CAST_TRUNC : return Instruction::Trunc; 957 case bitc::CAST_ZEXT : return Instruction::ZExt; 958 case bitc::CAST_SEXT : return Instruction::SExt; 959 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 960 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 961 case bitc::CAST_UITOFP : return Instruction::UIToFP; 962 case bitc::CAST_SITOFP : return Instruction::SIToFP; 963 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 964 case bitc::CAST_FPEXT : return Instruction::FPExt; 965 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 966 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 967 case bitc::CAST_BITCAST : return Instruction::BitCast; 968 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast; 969 } 970 } 971 972 static int getDecodedUnaryOpcode(unsigned Val, Type *Ty) { 973 bool IsFP = Ty->isFPOrFPVectorTy(); 974 // UnOps are only valid for int/fp or vector of int/fp types 975 if (!IsFP && !Ty->isIntOrIntVectorTy()) 976 return -1; 977 978 switch (Val) { 979 default: 980 return -1; 981 case bitc::UNOP_NEG: 982 return IsFP ? Instruction::FNeg : -1; 983 } 984 } 985 986 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) { 987 bool IsFP = Ty->isFPOrFPVectorTy(); 988 // BinOps are only valid for int/fp or vector of int/fp types 989 if (!IsFP && !Ty->isIntOrIntVectorTy()) 990 return -1; 991 992 switch (Val) { 993 default: 994 return -1; 995 case bitc::BINOP_ADD: 996 return IsFP ? Instruction::FAdd : Instruction::Add; 997 case bitc::BINOP_SUB: 998 return IsFP ? Instruction::FSub : Instruction::Sub; 999 case bitc::BINOP_MUL: 1000 return IsFP ? Instruction::FMul : Instruction::Mul; 1001 case bitc::BINOP_UDIV: 1002 return IsFP ? -1 : Instruction::UDiv; 1003 case bitc::BINOP_SDIV: 1004 return IsFP ? Instruction::FDiv : Instruction::SDiv; 1005 case bitc::BINOP_UREM: 1006 return IsFP ? -1 : Instruction::URem; 1007 case bitc::BINOP_SREM: 1008 return IsFP ? Instruction::FRem : Instruction::SRem; 1009 case bitc::BINOP_SHL: 1010 return IsFP ? -1 : Instruction::Shl; 1011 case bitc::BINOP_LSHR: 1012 return IsFP ? -1 : Instruction::LShr; 1013 case bitc::BINOP_ASHR: 1014 return IsFP ? -1 : Instruction::AShr; 1015 case bitc::BINOP_AND: 1016 return IsFP ? -1 : Instruction::And; 1017 case bitc::BINOP_OR: 1018 return IsFP ? -1 : Instruction::Or; 1019 case bitc::BINOP_XOR: 1020 return IsFP ? -1 : Instruction::Xor; 1021 } 1022 } 1023 1024 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) { 1025 switch (Val) { 1026 default: return AtomicRMWInst::BAD_BINOP; 1027 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 1028 case bitc::RMW_ADD: return AtomicRMWInst::Add; 1029 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 1030 case bitc::RMW_AND: return AtomicRMWInst::And; 1031 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 1032 case bitc::RMW_OR: return AtomicRMWInst::Or; 1033 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 1034 case bitc::RMW_MAX: return AtomicRMWInst::Max; 1035 case bitc::RMW_MIN: return AtomicRMWInst::Min; 1036 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 1037 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 1038 case bitc::RMW_FADD: return AtomicRMWInst::FAdd; 1039 case bitc::RMW_FSUB: return AtomicRMWInst::FSub; 1040 } 1041 } 1042 1043 static AtomicOrdering getDecodedOrdering(unsigned Val) { 1044 switch (Val) { 1045 case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic; 1046 case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered; 1047 case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic; 1048 case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire; 1049 case bitc::ORDERING_RELEASE: return AtomicOrdering::Release; 1050 case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease; 1051 default: // Map unknown orderings to sequentially-consistent. 1052 case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent; 1053 } 1054 } 1055 1056 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) { 1057 switch (Val) { 1058 default: // Map unknown selection kinds to any. 1059 case bitc::COMDAT_SELECTION_KIND_ANY: 1060 return Comdat::Any; 1061 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH: 1062 return Comdat::ExactMatch; 1063 case bitc::COMDAT_SELECTION_KIND_LARGEST: 1064 return Comdat::Largest; 1065 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES: 1066 return Comdat::NoDuplicates; 1067 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE: 1068 return Comdat::SameSize; 1069 } 1070 } 1071 1072 static FastMathFlags getDecodedFastMathFlags(unsigned Val) { 1073 FastMathFlags FMF; 1074 if (0 != (Val & bitc::UnsafeAlgebra)) 1075 FMF.setFast(); 1076 if (0 != (Val & bitc::AllowReassoc)) 1077 FMF.setAllowReassoc(); 1078 if (0 != (Val & bitc::NoNaNs)) 1079 FMF.setNoNaNs(); 1080 if (0 != (Val & bitc::NoInfs)) 1081 FMF.setNoInfs(); 1082 if (0 != (Val & bitc::NoSignedZeros)) 1083 FMF.setNoSignedZeros(); 1084 if (0 != (Val & bitc::AllowReciprocal)) 1085 FMF.setAllowReciprocal(); 1086 if (0 != (Val & bitc::AllowContract)) 1087 FMF.setAllowContract(true); 1088 if (0 != (Val & bitc::ApproxFunc)) 1089 FMF.setApproxFunc(); 1090 return FMF; 1091 } 1092 1093 static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) { 1094 switch (Val) { 1095 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break; 1096 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break; 1097 } 1098 } 1099 1100 Type *BitcodeReader::getTypeByID(unsigned ID) { 1101 // The type table size is always specified correctly. 1102 if (ID >= TypeList.size()) 1103 return nullptr; 1104 1105 if (Type *Ty = TypeList[ID]) 1106 return Ty; 1107 1108 // If we have a forward reference, the only possible case is when it is to a 1109 // named struct. Just create a placeholder for now. 1110 return TypeList[ID] = createIdentifiedStructType(Context); 1111 } 1112 1113 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context, 1114 StringRef Name) { 1115 auto *Ret = StructType::create(Context, Name); 1116 IdentifiedStructTypes.push_back(Ret); 1117 return Ret; 1118 } 1119 1120 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) { 1121 auto *Ret = StructType::create(Context); 1122 IdentifiedStructTypes.push_back(Ret); 1123 return Ret; 1124 } 1125 1126 //===----------------------------------------------------------------------===// 1127 // Functions for parsing blocks from the bitcode file 1128 //===----------------------------------------------------------------------===// 1129 1130 static uint64_t getRawAttributeMask(Attribute::AttrKind Val) { 1131 switch (Val) { 1132 case Attribute::EndAttrKinds: 1133 llvm_unreachable("Synthetic enumerators which should never get here"); 1134 1135 case Attribute::None: return 0; 1136 case Attribute::ZExt: return 1 << 0; 1137 case Attribute::SExt: return 1 << 1; 1138 case Attribute::NoReturn: return 1 << 2; 1139 case Attribute::InReg: return 1 << 3; 1140 case Attribute::StructRet: return 1 << 4; 1141 case Attribute::NoUnwind: return 1 << 5; 1142 case Attribute::NoAlias: return 1 << 6; 1143 case Attribute::ByVal: return 1 << 7; 1144 case Attribute::Nest: return 1 << 8; 1145 case Attribute::ReadNone: return 1 << 9; 1146 case Attribute::ReadOnly: return 1 << 10; 1147 case Attribute::NoInline: return 1 << 11; 1148 case Attribute::AlwaysInline: return 1 << 12; 1149 case Attribute::OptimizeForSize: return 1 << 13; 1150 case Attribute::StackProtect: return 1 << 14; 1151 case Attribute::StackProtectReq: return 1 << 15; 1152 case Attribute::Alignment: return 31 << 16; 1153 case Attribute::NoCapture: return 1 << 21; 1154 case Attribute::NoRedZone: return 1 << 22; 1155 case Attribute::NoImplicitFloat: return 1 << 23; 1156 case Attribute::Naked: return 1 << 24; 1157 case Attribute::InlineHint: return 1 << 25; 1158 case Attribute::StackAlignment: return 7 << 26; 1159 case Attribute::ReturnsTwice: return 1 << 29; 1160 case Attribute::UWTable: return 1 << 30; 1161 case Attribute::NonLazyBind: return 1U << 31; 1162 case Attribute::SanitizeAddress: return 1ULL << 32; 1163 case Attribute::MinSize: return 1ULL << 33; 1164 case Attribute::NoDuplicate: return 1ULL << 34; 1165 case Attribute::StackProtectStrong: return 1ULL << 35; 1166 case Attribute::SanitizeThread: return 1ULL << 36; 1167 case Attribute::SanitizeMemory: return 1ULL << 37; 1168 case Attribute::NoBuiltin: return 1ULL << 38; 1169 case Attribute::Returned: return 1ULL << 39; 1170 case Attribute::Cold: return 1ULL << 40; 1171 case Attribute::Builtin: return 1ULL << 41; 1172 case Attribute::OptimizeNone: return 1ULL << 42; 1173 case Attribute::InAlloca: return 1ULL << 43; 1174 case Attribute::NonNull: return 1ULL << 44; 1175 case Attribute::JumpTable: return 1ULL << 45; 1176 case Attribute::Convergent: return 1ULL << 46; 1177 case Attribute::SafeStack: return 1ULL << 47; 1178 case Attribute::NoRecurse: return 1ULL << 48; 1179 case Attribute::InaccessibleMemOnly: return 1ULL << 49; 1180 case Attribute::InaccessibleMemOrArgMemOnly: return 1ULL << 50; 1181 case Attribute::SwiftSelf: return 1ULL << 51; 1182 case Attribute::SwiftError: return 1ULL << 52; 1183 case Attribute::WriteOnly: return 1ULL << 53; 1184 case Attribute::Speculatable: return 1ULL << 54; 1185 case Attribute::StrictFP: return 1ULL << 55; 1186 case Attribute::SanitizeHWAddress: return 1ULL << 56; 1187 case Attribute::NoCfCheck: return 1ULL << 57; 1188 case Attribute::OptForFuzzing: return 1ULL << 58; 1189 case Attribute::ShadowCallStack: return 1ULL << 59; 1190 case Attribute::SpeculativeLoadHardening: 1191 return 1ULL << 60; 1192 case Attribute::ImmArg: 1193 return 1ULL << 61; 1194 case Attribute::Dereferenceable: 1195 llvm_unreachable("dereferenceable attribute not supported in raw format"); 1196 break; 1197 case Attribute::DereferenceableOrNull: 1198 llvm_unreachable("dereferenceable_or_null attribute not supported in raw " 1199 "format"); 1200 break; 1201 case Attribute::ArgMemOnly: 1202 llvm_unreachable("argmemonly attribute not supported in raw format"); 1203 break; 1204 case Attribute::AllocSize: 1205 llvm_unreachable("allocsize not supported in raw format"); 1206 break; 1207 } 1208 llvm_unreachable("Unsupported attribute type"); 1209 } 1210 1211 static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) { 1212 if (!Val) return; 1213 1214 for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds; 1215 I = Attribute::AttrKind(I + 1)) { 1216 if (I == Attribute::Dereferenceable || 1217 I == Attribute::DereferenceableOrNull || 1218 I == Attribute::ArgMemOnly || 1219 I == Attribute::AllocSize) 1220 continue; 1221 if (uint64_t A = (Val & getRawAttributeMask(I))) { 1222 if (I == Attribute::Alignment) 1223 B.addAlignmentAttr(1ULL << ((A >> 16) - 1)); 1224 else if (I == Attribute::StackAlignment) 1225 B.addStackAlignmentAttr(1ULL << ((A >> 26)-1)); 1226 else 1227 B.addAttribute(I); 1228 } 1229 } 1230 } 1231 1232 /// This fills an AttrBuilder object with the LLVM attributes that have 1233 /// been decoded from the given integer. This function must stay in sync with 1234 /// 'encodeLLVMAttributesForBitcode'. 1235 static void decodeLLVMAttributesForBitcode(AttrBuilder &B, 1236 uint64_t EncodedAttrs) { 1237 // FIXME: Remove in 4.0. 1238 1239 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift 1240 // the bits above 31 down by 11 bits. 1241 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; 1242 assert((!Alignment || isPowerOf2_32(Alignment)) && 1243 "Alignment must be a power of two."); 1244 1245 if (Alignment) 1246 B.addAlignmentAttr(Alignment); 1247 addRawAttributeValue(B, ((EncodedAttrs & (0xfffffULL << 32)) >> 11) | 1248 (EncodedAttrs & 0xffff)); 1249 } 1250 1251 Error BitcodeReader::parseAttributeBlock() { 1252 if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 1253 return error("Invalid record"); 1254 1255 if (!MAttributes.empty()) 1256 return error("Invalid multiple blocks"); 1257 1258 SmallVector<uint64_t, 64> Record; 1259 1260 SmallVector<AttributeList, 8> Attrs; 1261 1262 // Read all the records. 1263 while (true) { 1264 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1265 1266 switch (Entry.Kind) { 1267 case BitstreamEntry::SubBlock: // Handled for us already. 1268 case BitstreamEntry::Error: 1269 return error("Malformed block"); 1270 case BitstreamEntry::EndBlock: 1271 return Error::success(); 1272 case BitstreamEntry::Record: 1273 // The interesting case. 1274 break; 1275 } 1276 1277 // Read a record. 1278 Record.clear(); 1279 switch (Stream.readRecord(Entry.ID, Record)) { 1280 default: // Default behavior: ignore. 1281 break; 1282 case bitc::PARAMATTR_CODE_ENTRY_OLD: // ENTRY: [paramidx0, attr0, ...] 1283 // FIXME: Remove in 4.0. 1284 if (Record.size() & 1) 1285 return error("Invalid record"); 1286 1287 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1288 AttrBuilder B; 1289 decodeLLVMAttributesForBitcode(B, Record[i+1]); 1290 Attrs.push_back(AttributeList::get(Context, Record[i], B)); 1291 } 1292 1293 MAttributes.push_back(AttributeList::get(Context, Attrs)); 1294 Attrs.clear(); 1295 break; 1296 case bitc::PARAMATTR_CODE_ENTRY: // ENTRY: [attrgrp0, attrgrp1, ...] 1297 for (unsigned i = 0, e = Record.size(); i != e; ++i) 1298 Attrs.push_back(MAttributeGroups[Record[i]]); 1299 1300 MAttributes.push_back(AttributeList::get(Context, Attrs)); 1301 Attrs.clear(); 1302 break; 1303 } 1304 } 1305 } 1306 1307 // Returns Attribute::None on unrecognized codes. 1308 static Attribute::AttrKind getAttrFromCode(uint64_t Code) { 1309 switch (Code) { 1310 default: 1311 return Attribute::None; 1312 case bitc::ATTR_KIND_ALIGNMENT: 1313 return Attribute::Alignment; 1314 case bitc::ATTR_KIND_ALWAYS_INLINE: 1315 return Attribute::AlwaysInline; 1316 case bitc::ATTR_KIND_ARGMEMONLY: 1317 return Attribute::ArgMemOnly; 1318 case bitc::ATTR_KIND_BUILTIN: 1319 return Attribute::Builtin; 1320 case bitc::ATTR_KIND_BY_VAL: 1321 return Attribute::ByVal; 1322 case bitc::ATTR_KIND_IN_ALLOCA: 1323 return Attribute::InAlloca; 1324 case bitc::ATTR_KIND_COLD: 1325 return Attribute::Cold; 1326 case bitc::ATTR_KIND_CONVERGENT: 1327 return Attribute::Convergent; 1328 case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY: 1329 return Attribute::InaccessibleMemOnly; 1330 case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY: 1331 return Attribute::InaccessibleMemOrArgMemOnly; 1332 case bitc::ATTR_KIND_INLINE_HINT: 1333 return Attribute::InlineHint; 1334 case bitc::ATTR_KIND_IN_REG: 1335 return Attribute::InReg; 1336 case bitc::ATTR_KIND_JUMP_TABLE: 1337 return Attribute::JumpTable; 1338 case bitc::ATTR_KIND_MIN_SIZE: 1339 return Attribute::MinSize; 1340 case bitc::ATTR_KIND_NAKED: 1341 return Attribute::Naked; 1342 case bitc::ATTR_KIND_NEST: 1343 return Attribute::Nest; 1344 case bitc::ATTR_KIND_NO_ALIAS: 1345 return Attribute::NoAlias; 1346 case bitc::ATTR_KIND_NO_BUILTIN: 1347 return Attribute::NoBuiltin; 1348 case bitc::ATTR_KIND_NO_CAPTURE: 1349 return Attribute::NoCapture; 1350 case bitc::ATTR_KIND_NO_DUPLICATE: 1351 return Attribute::NoDuplicate; 1352 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: 1353 return Attribute::NoImplicitFloat; 1354 case bitc::ATTR_KIND_NO_INLINE: 1355 return Attribute::NoInline; 1356 case bitc::ATTR_KIND_NO_RECURSE: 1357 return Attribute::NoRecurse; 1358 case bitc::ATTR_KIND_NON_LAZY_BIND: 1359 return Attribute::NonLazyBind; 1360 case bitc::ATTR_KIND_NON_NULL: 1361 return Attribute::NonNull; 1362 case bitc::ATTR_KIND_DEREFERENCEABLE: 1363 return Attribute::Dereferenceable; 1364 case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL: 1365 return Attribute::DereferenceableOrNull; 1366 case bitc::ATTR_KIND_ALLOC_SIZE: 1367 return Attribute::AllocSize; 1368 case bitc::ATTR_KIND_NO_RED_ZONE: 1369 return Attribute::NoRedZone; 1370 case bitc::ATTR_KIND_NO_RETURN: 1371 return Attribute::NoReturn; 1372 case bitc::ATTR_KIND_NOCF_CHECK: 1373 return Attribute::NoCfCheck; 1374 case bitc::ATTR_KIND_NO_UNWIND: 1375 return Attribute::NoUnwind; 1376 case bitc::ATTR_KIND_OPT_FOR_FUZZING: 1377 return Attribute::OptForFuzzing; 1378 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: 1379 return Attribute::OptimizeForSize; 1380 case bitc::ATTR_KIND_OPTIMIZE_NONE: 1381 return Attribute::OptimizeNone; 1382 case bitc::ATTR_KIND_READ_NONE: 1383 return Attribute::ReadNone; 1384 case bitc::ATTR_KIND_READ_ONLY: 1385 return Attribute::ReadOnly; 1386 case bitc::ATTR_KIND_RETURNED: 1387 return Attribute::Returned; 1388 case bitc::ATTR_KIND_RETURNS_TWICE: 1389 return Attribute::ReturnsTwice; 1390 case bitc::ATTR_KIND_S_EXT: 1391 return Attribute::SExt; 1392 case bitc::ATTR_KIND_SPECULATABLE: 1393 return Attribute::Speculatable; 1394 case bitc::ATTR_KIND_STACK_ALIGNMENT: 1395 return Attribute::StackAlignment; 1396 case bitc::ATTR_KIND_STACK_PROTECT: 1397 return Attribute::StackProtect; 1398 case bitc::ATTR_KIND_STACK_PROTECT_REQ: 1399 return Attribute::StackProtectReq; 1400 case bitc::ATTR_KIND_STACK_PROTECT_STRONG: 1401 return Attribute::StackProtectStrong; 1402 case bitc::ATTR_KIND_SAFESTACK: 1403 return Attribute::SafeStack; 1404 case bitc::ATTR_KIND_SHADOWCALLSTACK: 1405 return Attribute::ShadowCallStack; 1406 case bitc::ATTR_KIND_STRICT_FP: 1407 return Attribute::StrictFP; 1408 case bitc::ATTR_KIND_STRUCT_RET: 1409 return Attribute::StructRet; 1410 case bitc::ATTR_KIND_SANITIZE_ADDRESS: 1411 return Attribute::SanitizeAddress; 1412 case bitc::ATTR_KIND_SANITIZE_HWADDRESS: 1413 return Attribute::SanitizeHWAddress; 1414 case bitc::ATTR_KIND_SANITIZE_THREAD: 1415 return Attribute::SanitizeThread; 1416 case bitc::ATTR_KIND_SANITIZE_MEMORY: 1417 return Attribute::SanitizeMemory; 1418 case bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING: 1419 return Attribute::SpeculativeLoadHardening; 1420 case bitc::ATTR_KIND_SWIFT_ERROR: 1421 return Attribute::SwiftError; 1422 case bitc::ATTR_KIND_SWIFT_SELF: 1423 return Attribute::SwiftSelf; 1424 case bitc::ATTR_KIND_UW_TABLE: 1425 return Attribute::UWTable; 1426 case bitc::ATTR_KIND_WRITEONLY: 1427 return Attribute::WriteOnly; 1428 case bitc::ATTR_KIND_Z_EXT: 1429 return Attribute::ZExt; 1430 case bitc::ATTR_KIND_IMMARG: 1431 return Attribute::ImmArg; 1432 } 1433 } 1434 1435 Error BitcodeReader::parseAlignmentValue(uint64_t Exponent, 1436 unsigned &Alignment) { 1437 // Note: Alignment in bitcode files is incremented by 1, so that zero 1438 // can be used for default alignment. 1439 if (Exponent > Value::MaxAlignmentExponent + 1) 1440 return error("Invalid alignment value"); 1441 Alignment = (1 << static_cast<unsigned>(Exponent)) >> 1; 1442 return Error::success(); 1443 } 1444 1445 Error BitcodeReader::parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind) { 1446 *Kind = getAttrFromCode(Code); 1447 if (*Kind == Attribute::None) 1448 return error("Unknown attribute kind (" + Twine(Code) + ")"); 1449 return Error::success(); 1450 } 1451 1452 Error BitcodeReader::parseAttributeGroupBlock() { 1453 if (Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) 1454 return error("Invalid record"); 1455 1456 if (!MAttributeGroups.empty()) 1457 return error("Invalid multiple blocks"); 1458 1459 SmallVector<uint64_t, 64> Record; 1460 1461 // Read all the records. 1462 while (true) { 1463 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1464 1465 switch (Entry.Kind) { 1466 case BitstreamEntry::SubBlock: // Handled for us already. 1467 case BitstreamEntry::Error: 1468 return error("Malformed block"); 1469 case BitstreamEntry::EndBlock: 1470 return Error::success(); 1471 case BitstreamEntry::Record: 1472 // The interesting case. 1473 break; 1474 } 1475 1476 // Read a record. 1477 Record.clear(); 1478 switch (Stream.readRecord(Entry.ID, Record)) { 1479 default: // Default behavior: ignore. 1480 break; 1481 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] 1482 if (Record.size() < 3) 1483 return error("Invalid record"); 1484 1485 uint64_t GrpID = Record[0]; 1486 uint64_t Idx = Record[1]; // Index of the object this attribute refers to. 1487 1488 AttrBuilder B; 1489 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1490 if (Record[i] == 0) { // Enum attribute 1491 Attribute::AttrKind Kind; 1492 if (Error Err = parseAttrKind(Record[++i], &Kind)) 1493 return Err; 1494 1495 B.addAttribute(Kind); 1496 } else if (Record[i] == 1) { // Integer attribute 1497 Attribute::AttrKind Kind; 1498 if (Error Err = parseAttrKind(Record[++i], &Kind)) 1499 return Err; 1500 if (Kind == Attribute::Alignment) 1501 B.addAlignmentAttr(Record[++i]); 1502 else if (Kind == Attribute::StackAlignment) 1503 B.addStackAlignmentAttr(Record[++i]); 1504 else if (Kind == Attribute::Dereferenceable) 1505 B.addDereferenceableAttr(Record[++i]); 1506 else if (Kind == Attribute::DereferenceableOrNull) 1507 B.addDereferenceableOrNullAttr(Record[++i]); 1508 else if (Kind == Attribute::AllocSize) 1509 B.addAllocSizeAttrFromRawRepr(Record[++i]); 1510 } else { // String attribute 1511 assert((Record[i] == 3 || Record[i] == 4) && 1512 "Invalid attribute group entry"); 1513 bool HasValue = (Record[i++] == 4); 1514 SmallString<64> KindStr; 1515 SmallString<64> ValStr; 1516 1517 while (Record[i] != 0 && i != e) 1518 KindStr += Record[i++]; 1519 assert(Record[i] == 0 && "Kind string not null terminated"); 1520 1521 if (HasValue) { 1522 // Has a value associated with it. 1523 ++i; // Skip the '0' that terminates the "kind" string. 1524 while (Record[i] != 0 && i != e) 1525 ValStr += Record[i++]; 1526 assert(Record[i] == 0 && "Value string not null terminated"); 1527 } 1528 1529 B.addAttribute(KindStr.str(), ValStr.str()); 1530 } 1531 } 1532 1533 MAttributeGroups[GrpID] = AttributeList::get(Context, Idx, B); 1534 break; 1535 } 1536 } 1537 } 1538 } 1539 1540 Error BitcodeReader::parseTypeTable() { 1541 if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 1542 return error("Invalid record"); 1543 1544 return parseTypeTableBody(); 1545 } 1546 1547 Error BitcodeReader::parseTypeTableBody() { 1548 if (!TypeList.empty()) 1549 return error("Invalid multiple blocks"); 1550 1551 SmallVector<uint64_t, 64> Record; 1552 unsigned NumRecords = 0; 1553 1554 SmallString<64> TypeName; 1555 1556 // Read all the records for this type table. 1557 while (true) { 1558 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1559 1560 switch (Entry.Kind) { 1561 case BitstreamEntry::SubBlock: // Handled for us already. 1562 case BitstreamEntry::Error: 1563 return error("Malformed block"); 1564 case BitstreamEntry::EndBlock: 1565 if (NumRecords != TypeList.size()) 1566 return error("Malformed block"); 1567 return Error::success(); 1568 case BitstreamEntry::Record: 1569 // The interesting case. 1570 break; 1571 } 1572 1573 // Read a record. 1574 Record.clear(); 1575 Type *ResultTy = nullptr; 1576 switch (Stream.readRecord(Entry.ID, Record)) { 1577 default: 1578 return error("Invalid value"); 1579 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 1580 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 1581 // type list. This allows us to reserve space. 1582 if (Record.size() < 1) 1583 return error("Invalid record"); 1584 TypeList.resize(Record[0]); 1585 continue; 1586 case bitc::TYPE_CODE_VOID: // VOID 1587 ResultTy = Type::getVoidTy(Context); 1588 break; 1589 case bitc::TYPE_CODE_HALF: // HALF 1590 ResultTy = Type::getHalfTy(Context); 1591 break; 1592 case bitc::TYPE_CODE_FLOAT: // FLOAT 1593 ResultTy = Type::getFloatTy(Context); 1594 break; 1595 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 1596 ResultTy = Type::getDoubleTy(Context); 1597 break; 1598 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 1599 ResultTy = Type::getX86_FP80Ty(Context); 1600 break; 1601 case bitc::TYPE_CODE_FP128: // FP128 1602 ResultTy = Type::getFP128Ty(Context); 1603 break; 1604 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 1605 ResultTy = Type::getPPC_FP128Ty(Context); 1606 break; 1607 case bitc::TYPE_CODE_LABEL: // LABEL 1608 ResultTy = Type::getLabelTy(Context); 1609 break; 1610 case bitc::TYPE_CODE_METADATA: // METADATA 1611 ResultTy = Type::getMetadataTy(Context); 1612 break; 1613 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 1614 ResultTy = Type::getX86_MMXTy(Context); 1615 break; 1616 case bitc::TYPE_CODE_TOKEN: // TOKEN 1617 ResultTy = Type::getTokenTy(Context); 1618 break; 1619 case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width] 1620 if (Record.size() < 1) 1621 return error("Invalid record"); 1622 1623 uint64_t NumBits = Record[0]; 1624 if (NumBits < IntegerType::MIN_INT_BITS || 1625 NumBits > IntegerType::MAX_INT_BITS) 1626 return error("Bitwidth for integer type out of range"); 1627 ResultTy = IntegerType::get(Context, NumBits); 1628 break; 1629 } 1630 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 1631 // [pointee type, address space] 1632 if (Record.size() < 1) 1633 return error("Invalid record"); 1634 unsigned AddressSpace = 0; 1635 if (Record.size() == 2) 1636 AddressSpace = Record[1]; 1637 ResultTy = getTypeByID(Record[0]); 1638 if (!ResultTy || 1639 !PointerType::isValidElementType(ResultTy)) 1640 return error("Invalid type"); 1641 ResultTy = PointerType::get(ResultTy, AddressSpace); 1642 break; 1643 } 1644 case bitc::TYPE_CODE_FUNCTION_OLD: { 1645 // FIXME: attrid is dead, remove it in LLVM 4.0 1646 // FUNCTION: [vararg, attrid, retty, paramty x N] 1647 if (Record.size() < 3) 1648 return error("Invalid record"); 1649 SmallVector<Type*, 8> ArgTys; 1650 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 1651 if (Type *T = getTypeByID(Record[i])) 1652 ArgTys.push_back(T); 1653 else 1654 break; 1655 } 1656 1657 ResultTy = getTypeByID(Record[2]); 1658 if (!ResultTy || ArgTys.size() < Record.size()-3) 1659 return error("Invalid type"); 1660 1661 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1662 break; 1663 } 1664 case bitc::TYPE_CODE_FUNCTION: { 1665 // FUNCTION: [vararg, retty, paramty x N] 1666 if (Record.size() < 2) 1667 return error("Invalid record"); 1668 SmallVector<Type*, 8> ArgTys; 1669 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1670 if (Type *T = getTypeByID(Record[i])) { 1671 if (!FunctionType::isValidArgumentType(T)) 1672 return error("Invalid function argument type"); 1673 ArgTys.push_back(T); 1674 } 1675 else 1676 break; 1677 } 1678 1679 ResultTy = getTypeByID(Record[1]); 1680 if (!ResultTy || ArgTys.size() < Record.size()-2) 1681 return error("Invalid type"); 1682 1683 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1684 break; 1685 } 1686 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 1687 if (Record.size() < 1) 1688 return error("Invalid record"); 1689 SmallVector<Type*, 8> EltTys; 1690 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1691 if (Type *T = getTypeByID(Record[i])) 1692 EltTys.push_back(T); 1693 else 1694 break; 1695 } 1696 if (EltTys.size() != Record.size()-1) 1697 return error("Invalid type"); 1698 ResultTy = StructType::get(Context, EltTys, Record[0]); 1699 break; 1700 } 1701 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 1702 if (convertToString(Record, 0, TypeName)) 1703 return error("Invalid record"); 1704 continue; 1705 1706 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 1707 if (Record.size() < 1) 1708 return error("Invalid record"); 1709 1710 if (NumRecords >= TypeList.size()) 1711 return error("Invalid TYPE table"); 1712 1713 // Check to see if this was forward referenced, if so fill in the temp. 1714 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1715 if (Res) { 1716 Res->setName(TypeName); 1717 TypeList[NumRecords] = nullptr; 1718 } else // Otherwise, create a new struct. 1719 Res = createIdentifiedStructType(Context, TypeName); 1720 TypeName.clear(); 1721 1722 SmallVector<Type*, 8> EltTys; 1723 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1724 if (Type *T = getTypeByID(Record[i])) 1725 EltTys.push_back(T); 1726 else 1727 break; 1728 } 1729 if (EltTys.size() != Record.size()-1) 1730 return error("Invalid record"); 1731 Res->setBody(EltTys, Record[0]); 1732 ResultTy = Res; 1733 break; 1734 } 1735 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 1736 if (Record.size() != 1) 1737 return error("Invalid record"); 1738 1739 if (NumRecords >= TypeList.size()) 1740 return error("Invalid TYPE table"); 1741 1742 // Check to see if this was forward referenced, if so fill in the temp. 1743 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1744 if (Res) { 1745 Res->setName(TypeName); 1746 TypeList[NumRecords] = nullptr; 1747 } else // Otherwise, create a new struct with no body. 1748 Res = createIdentifiedStructType(Context, TypeName); 1749 TypeName.clear(); 1750 ResultTy = Res; 1751 break; 1752 } 1753 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 1754 if (Record.size() < 2) 1755 return error("Invalid record"); 1756 ResultTy = getTypeByID(Record[1]); 1757 if (!ResultTy || !ArrayType::isValidElementType(ResultTy)) 1758 return error("Invalid type"); 1759 ResultTy = ArrayType::get(ResultTy, Record[0]); 1760 break; 1761 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] or 1762 // [numelts, eltty, scalable] 1763 if (Record.size() < 2) 1764 return error("Invalid record"); 1765 if (Record[0] == 0) 1766 return error("Invalid vector length"); 1767 ResultTy = getTypeByID(Record[1]); 1768 if (!ResultTy || !StructType::isValidElementType(ResultTy)) 1769 return error("Invalid type"); 1770 bool Scalable = Record.size() > 2 ? Record[2] : false; 1771 ResultTy = VectorType::get(ResultTy, Record[0], Scalable); 1772 break; 1773 } 1774 1775 if (NumRecords >= TypeList.size()) 1776 return error("Invalid TYPE table"); 1777 if (TypeList[NumRecords]) 1778 return error( 1779 "Invalid TYPE table: Only named structs can be forward referenced"); 1780 assert(ResultTy && "Didn't read a type?"); 1781 TypeList[NumRecords++] = ResultTy; 1782 } 1783 } 1784 1785 Error BitcodeReader::parseOperandBundleTags() { 1786 if (Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID)) 1787 return error("Invalid record"); 1788 1789 if (!BundleTags.empty()) 1790 return error("Invalid multiple blocks"); 1791 1792 SmallVector<uint64_t, 64> Record; 1793 1794 while (true) { 1795 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1796 1797 switch (Entry.Kind) { 1798 case BitstreamEntry::SubBlock: // Handled for us already. 1799 case BitstreamEntry::Error: 1800 return error("Malformed block"); 1801 case BitstreamEntry::EndBlock: 1802 return Error::success(); 1803 case BitstreamEntry::Record: 1804 // The interesting case. 1805 break; 1806 } 1807 1808 // Tags are implicitly mapped to integers by their order. 1809 1810 if (Stream.readRecord(Entry.ID, Record) != bitc::OPERAND_BUNDLE_TAG) 1811 return error("Invalid record"); 1812 1813 // OPERAND_BUNDLE_TAG: [strchr x N] 1814 BundleTags.emplace_back(); 1815 if (convertToString(Record, 0, BundleTags.back())) 1816 return error("Invalid record"); 1817 Record.clear(); 1818 } 1819 } 1820 1821 Error BitcodeReader::parseSyncScopeNames() { 1822 if (Stream.EnterSubBlock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID)) 1823 return error("Invalid record"); 1824 1825 if (!SSIDs.empty()) 1826 return error("Invalid multiple synchronization scope names blocks"); 1827 1828 SmallVector<uint64_t, 64> Record; 1829 while (true) { 1830 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1831 switch (Entry.Kind) { 1832 case BitstreamEntry::SubBlock: // Handled for us already. 1833 case BitstreamEntry::Error: 1834 return error("Malformed block"); 1835 case BitstreamEntry::EndBlock: 1836 if (SSIDs.empty()) 1837 return error("Invalid empty synchronization scope names block"); 1838 return Error::success(); 1839 case BitstreamEntry::Record: 1840 // The interesting case. 1841 break; 1842 } 1843 1844 // Synchronization scope names are implicitly mapped to synchronization 1845 // scope IDs by their order. 1846 1847 if (Stream.readRecord(Entry.ID, Record) != bitc::SYNC_SCOPE_NAME) 1848 return error("Invalid record"); 1849 1850 SmallString<16> SSN; 1851 if (convertToString(Record, 0, SSN)) 1852 return error("Invalid record"); 1853 1854 SSIDs.push_back(Context.getOrInsertSyncScopeID(SSN)); 1855 Record.clear(); 1856 } 1857 } 1858 1859 /// Associate a value with its name from the given index in the provided record. 1860 Expected<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record, 1861 unsigned NameIndex, Triple &TT) { 1862 SmallString<128> ValueName; 1863 if (convertToString(Record, NameIndex, ValueName)) 1864 return error("Invalid record"); 1865 unsigned ValueID = Record[0]; 1866 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 1867 return error("Invalid record"); 1868 Value *V = ValueList[ValueID]; 1869 1870 StringRef NameStr(ValueName.data(), ValueName.size()); 1871 if (NameStr.find_first_of(0) != StringRef::npos) 1872 return error("Invalid value name"); 1873 V->setName(NameStr); 1874 auto *GO = dyn_cast<GlobalObject>(V); 1875 if (GO) { 1876 if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) { 1877 if (TT.supportsCOMDAT()) 1878 GO->setComdat(TheModule->getOrInsertComdat(V->getName())); 1879 else 1880 GO->setComdat(nullptr); 1881 } 1882 } 1883 return V; 1884 } 1885 1886 /// Helper to note and return the current location, and jump to the given 1887 /// offset. 1888 static uint64_t jumpToValueSymbolTable(uint64_t Offset, 1889 BitstreamCursor &Stream) { 1890 // Save the current parsing location so we can jump back at the end 1891 // of the VST read. 1892 uint64_t CurrentBit = Stream.GetCurrentBitNo(); 1893 Stream.JumpToBit(Offset * 32); 1894 #ifndef NDEBUG 1895 // Do some checking if we are in debug mode. 1896 BitstreamEntry Entry = Stream.advance(); 1897 assert(Entry.Kind == BitstreamEntry::SubBlock); 1898 assert(Entry.ID == bitc::VALUE_SYMTAB_BLOCK_ID); 1899 #else 1900 // In NDEBUG mode ignore the output so we don't get an unused variable 1901 // warning. 1902 Stream.advance(); 1903 #endif 1904 return CurrentBit; 1905 } 1906 1907 void BitcodeReader::setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, 1908 Function *F, 1909 ArrayRef<uint64_t> Record) { 1910 // Note that we subtract 1 here because the offset is relative to one word 1911 // before the start of the identification or module block, which was 1912 // historically always the start of the regular bitcode header. 1913 uint64_t FuncWordOffset = Record[1] - 1; 1914 uint64_t FuncBitOffset = FuncWordOffset * 32; 1915 DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta; 1916 // Set the LastFunctionBlockBit to point to the last function block. 1917 // Later when parsing is resumed after function materialization, 1918 // we can simply skip that last function block. 1919 if (FuncBitOffset > LastFunctionBlockBit) 1920 LastFunctionBlockBit = FuncBitOffset; 1921 } 1922 1923 /// Read a new-style GlobalValue symbol table. 1924 Error BitcodeReader::parseGlobalValueSymbolTable() { 1925 unsigned FuncBitcodeOffsetDelta = 1926 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 1927 1928 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 1929 return error("Invalid record"); 1930 1931 SmallVector<uint64_t, 64> Record; 1932 while (true) { 1933 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1934 1935 switch (Entry.Kind) { 1936 case BitstreamEntry::SubBlock: 1937 case BitstreamEntry::Error: 1938 return error("Malformed block"); 1939 case BitstreamEntry::EndBlock: 1940 return Error::success(); 1941 case BitstreamEntry::Record: 1942 break; 1943 } 1944 1945 Record.clear(); 1946 switch (Stream.readRecord(Entry.ID, Record)) { 1947 case bitc::VST_CODE_FNENTRY: // [valueid, offset] 1948 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, 1949 cast<Function>(ValueList[Record[0]]), Record); 1950 break; 1951 } 1952 } 1953 } 1954 1955 /// Parse the value symbol table at either the current parsing location or 1956 /// at the given bit offset if provided. 1957 Error BitcodeReader::parseValueSymbolTable(uint64_t Offset) { 1958 uint64_t CurrentBit; 1959 // Pass in the Offset to distinguish between calling for the module-level 1960 // VST (where we want to jump to the VST offset) and the function-level 1961 // VST (where we don't). 1962 if (Offset > 0) { 1963 CurrentBit = jumpToValueSymbolTable(Offset, Stream); 1964 // If this module uses a string table, read this as a module-level VST. 1965 if (UseStrtab) { 1966 if (Error Err = parseGlobalValueSymbolTable()) 1967 return Err; 1968 Stream.JumpToBit(CurrentBit); 1969 return Error::success(); 1970 } 1971 // Otherwise, the VST will be in a similar format to a function-level VST, 1972 // and will contain symbol names. 1973 } 1974 1975 // Compute the delta between the bitcode indices in the VST (the word offset 1976 // to the word-aligned ENTER_SUBBLOCK for the function block, and that 1977 // expected by the lazy reader. The reader's EnterSubBlock expects to have 1978 // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID 1979 // (size BlockIDWidth). Note that we access the stream's AbbrevID width here 1980 // just before entering the VST subblock because: 1) the EnterSubBlock 1981 // changes the AbbrevID width; 2) the VST block is nested within the same 1982 // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same 1983 // AbbrevID width before calling EnterSubBlock; and 3) when we want to 1984 // jump to the FUNCTION_BLOCK using this offset later, we don't want 1985 // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK. 1986 unsigned FuncBitcodeOffsetDelta = 1987 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 1988 1989 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 1990 return error("Invalid record"); 1991 1992 SmallVector<uint64_t, 64> Record; 1993 1994 Triple TT(TheModule->getTargetTriple()); 1995 1996 // Read all the records for this value table. 1997 SmallString<128> ValueName; 1998 1999 while (true) { 2000 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2001 2002 switch (Entry.Kind) { 2003 case BitstreamEntry::SubBlock: // Handled for us already. 2004 case BitstreamEntry::Error: 2005 return error("Malformed block"); 2006 case BitstreamEntry::EndBlock: 2007 if (Offset > 0) 2008 Stream.JumpToBit(CurrentBit); 2009 return Error::success(); 2010 case BitstreamEntry::Record: 2011 // The interesting case. 2012 break; 2013 } 2014 2015 // Read a record. 2016 Record.clear(); 2017 switch (Stream.readRecord(Entry.ID, Record)) { 2018 default: // Default behavior: unknown type. 2019 break; 2020 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 2021 Expected<Value *> ValOrErr = recordValue(Record, 1, TT); 2022 if (Error Err = ValOrErr.takeError()) 2023 return Err; 2024 ValOrErr.get(); 2025 break; 2026 } 2027 case bitc::VST_CODE_FNENTRY: { 2028 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 2029 Expected<Value *> ValOrErr = recordValue(Record, 2, TT); 2030 if (Error Err = ValOrErr.takeError()) 2031 return Err; 2032 Value *V = ValOrErr.get(); 2033 2034 // Ignore function offsets emitted for aliases of functions in older 2035 // versions of LLVM. 2036 if (auto *F = dyn_cast<Function>(V)) 2037 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, F, Record); 2038 break; 2039 } 2040 case bitc::VST_CODE_BBENTRY: { 2041 if (convertToString(Record, 1, ValueName)) 2042 return error("Invalid record"); 2043 BasicBlock *BB = getBasicBlock(Record[0]); 2044 if (!BB) 2045 return error("Invalid record"); 2046 2047 BB->setName(StringRef(ValueName.data(), ValueName.size())); 2048 ValueName.clear(); 2049 break; 2050 } 2051 } 2052 } 2053 } 2054 2055 /// Decode a signed value stored with the sign bit in the LSB for dense VBR 2056 /// encoding. 2057 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { 2058 if ((V & 1) == 0) 2059 return V >> 1; 2060 if (V != 1) 2061 return -(V >> 1); 2062 // There is no such thing as -0 with integers. "-0" really means MININT. 2063 return 1ULL << 63; 2064 } 2065 2066 /// Resolve all of the initializers for global values and aliases that we can. 2067 Error BitcodeReader::resolveGlobalAndIndirectSymbolInits() { 2068 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInitWorklist; 2069 std::vector<std::pair<GlobalIndirectSymbol *, unsigned>> 2070 IndirectSymbolInitWorklist; 2071 std::vector<std::pair<Function *, unsigned>> FunctionPrefixWorklist; 2072 std::vector<std::pair<Function *, unsigned>> FunctionPrologueWorklist; 2073 std::vector<std::pair<Function *, unsigned>> FunctionPersonalityFnWorklist; 2074 2075 GlobalInitWorklist.swap(GlobalInits); 2076 IndirectSymbolInitWorklist.swap(IndirectSymbolInits); 2077 FunctionPrefixWorklist.swap(FunctionPrefixes); 2078 FunctionPrologueWorklist.swap(FunctionPrologues); 2079 FunctionPersonalityFnWorklist.swap(FunctionPersonalityFns); 2080 2081 while (!GlobalInitWorklist.empty()) { 2082 unsigned ValID = GlobalInitWorklist.back().second; 2083 if (ValID >= ValueList.size()) { 2084 // Not ready to resolve this yet, it requires something later in the file. 2085 GlobalInits.push_back(GlobalInitWorklist.back()); 2086 } else { 2087 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2088 GlobalInitWorklist.back().first->setInitializer(C); 2089 else 2090 return error("Expected a constant"); 2091 } 2092 GlobalInitWorklist.pop_back(); 2093 } 2094 2095 while (!IndirectSymbolInitWorklist.empty()) { 2096 unsigned ValID = IndirectSymbolInitWorklist.back().second; 2097 if (ValID >= ValueList.size()) { 2098 IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back()); 2099 } else { 2100 Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]); 2101 if (!C) 2102 return error("Expected a constant"); 2103 GlobalIndirectSymbol *GIS = IndirectSymbolInitWorklist.back().first; 2104 if (isa<GlobalAlias>(GIS) && C->getType() != GIS->getType()) 2105 return error("Alias and aliasee types don't match"); 2106 GIS->setIndirectSymbol(C); 2107 } 2108 IndirectSymbolInitWorklist.pop_back(); 2109 } 2110 2111 while (!FunctionPrefixWorklist.empty()) { 2112 unsigned ValID = FunctionPrefixWorklist.back().second; 2113 if (ValID >= ValueList.size()) { 2114 FunctionPrefixes.push_back(FunctionPrefixWorklist.back()); 2115 } else { 2116 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2117 FunctionPrefixWorklist.back().first->setPrefixData(C); 2118 else 2119 return error("Expected a constant"); 2120 } 2121 FunctionPrefixWorklist.pop_back(); 2122 } 2123 2124 while (!FunctionPrologueWorklist.empty()) { 2125 unsigned ValID = FunctionPrologueWorklist.back().second; 2126 if (ValID >= ValueList.size()) { 2127 FunctionPrologues.push_back(FunctionPrologueWorklist.back()); 2128 } else { 2129 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2130 FunctionPrologueWorklist.back().first->setPrologueData(C); 2131 else 2132 return error("Expected a constant"); 2133 } 2134 FunctionPrologueWorklist.pop_back(); 2135 } 2136 2137 while (!FunctionPersonalityFnWorklist.empty()) { 2138 unsigned ValID = FunctionPersonalityFnWorklist.back().second; 2139 if (ValID >= ValueList.size()) { 2140 FunctionPersonalityFns.push_back(FunctionPersonalityFnWorklist.back()); 2141 } else { 2142 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2143 FunctionPersonalityFnWorklist.back().first->setPersonalityFn(C); 2144 else 2145 return error("Expected a constant"); 2146 } 2147 FunctionPersonalityFnWorklist.pop_back(); 2148 } 2149 2150 return Error::success(); 2151 } 2152 2153 static APInt readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { 2154 SmallVector<uint64_t, 8> Words(Vals.size()); 2155 transform(Vals, Words.begin(), 2156 BitcodeReader::decodeSignRotatedValue); 2157 2158 return APInt(TypeBits, Words); 2159 } 2160 2161 Error BitcodeReader::parseConstants() { 2162 if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 2163 return error("Invalid record"); 2164 2165 SmallVector<uint64_t, 64> Record; 2166 2167 // Read all the records for this value table. 2168 Type *CurTy = Type::getInt32Ty(Context); 2169 unsigned NextCstNo = ValueList.size(); 2170 2171 while (true) { 2172 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2173 2174 switch (Entry.Kind) { 2175 case BitstreamEntry::SubBlock: // Handled for us already. 2176 case BitstreamEntry::Error: 2177 return error("Malformed block"); 2178 case BitstreamEntry::EndBlock: 2179 if (NextCstNo != ValueList.size()) 2180 return error("Invalid constant reference"); 2181 2182 // Once all the constants have been read, go through and resolve forward 2183 // references. 2184 ValueList.resolveConstantForwardRefs(); 2185 return Error::success(); 2186 case BitstreamEntry::Record: 2187 // The interesting case. 2188 break; 2189 } 2190 2191 // Read a record. 2192 Record.clear(); 2193 Type *VoidType = Type::getVoidTy(Context); 2194 Value *V = nullptr; 2195 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 2196 switch (BitCode) { 2197 default: // Default behavior: unknown constant 2198 case bitc::CST_CODE_UNDEF: // UNDEF 2199 V = UndefValue::get(CurTy); 2200 break; 2201 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 2202 if (Record.empty()) 2203 return error("Invalid record"); 2204 if (Record[0] >= TypeList.size() || !TypeList[Record[0]]) 2205 return error("Invalid record"); 2206 if (TypeList[Record[0]] == VoidType) 2207 return error("Invalid constant type"); 2208 CurTy = TypeList[Record[0]]; 2209 continue; // Skip the ValueList manipulation. 2210 case bitc::CST_CODE_NULL: // NULL 2211 V = Constant::getNullValue(CurTy); 2212 break; 2213 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 2214 if (!CurTy->isIntegerTy() || Record.empty()) 2215 return error("Invalid record"); 2216 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); 2217 break; 2218 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 2219 if (!CurTy->isIntegerTy() || Record.empty()) 2220 return error("Invalid record"); 2221 2222 APInt VInt = 2223 readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth()); 2224 V = ConstantInt::get(Context, VInt); 2225 2226 break; 2227 } 2228 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 2229 if (Record.empty()) 2230 return error("Invalid record"); 2231 if (CurTy->isHalfTy()) 2232 V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf(), 2233 APInt(16, (uint16_t)Record[0]))); 2234 else if (CurTy->isFloatTy()) 2235 V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle(), 2236 APInt(32, (uint32_t)Record[0]))); 2237 else if (CurTy->isDoubleTy()) 2238 V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble(), 2239 APInt(64, Record[0]))); 2240 else if (CurTy->isX86_FP80Ty()) { 2241 // Bits are not stored the same way as a normal i80 APInt, compensate. 2242 uint64_t Rearrange[2]; 2243 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 2244 Rearrange[1] = Record[0] >> 48; 2245 V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended(), 2246 APInt(80, Rearrange))); 2247 } else if (CurTy->isFP128Ty()) 2248 V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad(), 2249 APInt(128, Record))); 2250 else if (CurTy->isPPC_FP128Ty()) 2251 V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble(), 2252 APInt(128, Record))); 2253 else 2254 V = UndefValue::get(CurTy); 2255 break; 2256 } 2257 2258 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 2259 if (Record.empty()) 2260 return error("Invalid record"); 2261 2262 unsigned Size = Record.size(); 2263 SmallVector<Constant*, 16> Elts; 2264 2265 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 2266 for (unsigned i = 0; i != Size; ++i) 2267 Elts.push_back(ValueList.getConstantFwdRef(Record[i], 2268 STy->getElementType(i))); 2269 V = ConstantStruct::get(STy, Elts); 2270 } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) { 2271 Type *EltTy = ATy->getElementType(); 2272 for (unsigned i = 0; i != Size; ++i) 2273 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2274 V = ConstantArray::get(ATy, Elts); 2275 } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) { 2276 Type *EltTy = VTy->getElementType(); 2277 for (unsigned i = 0; i != Size; ++i) 2278 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2279 V = ConstantVector::get(Elts); 2280 } else { 2281 V = UndefValue::get(CurTy); 2282 } 2283 break; 2284 } 2285 case bitc::CST_CODE_STRING: // STRING: [values] 2286 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 2287 if (Record.empty()) 2288 return error("Invalid record"); 2289 2290 SmallString<16> Elts(Record.begin(), Record.end()); 2291 V = ConstantDataArray::getString(Context, Elts, 2292 BitCode == bitc::CST_CODE_CSTRING); 2293 break; 2294 } 2295 case bitc::CST_CODE_DATA: {// DATA: [n x value] 2296 if (Record.empty()) 2297 return error("Invalid record"); 2298 2299 Type *EltTy = cast<SequentialType>(CurTy)->getElementType(); 2300 if (EltTy->isIntegerTy(8)) { 2301 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); 2302 if (isa<VectorType>(CurTy)) 2303 V = ConstantDataVector::get(Context, Elts); 2304 else 2305 V = ConstantDataArray::get(Context, Elts); 2306 } else if (EltTy->isIntegerTy(16)) { 2307 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2308 if (isa<VectorType>(CurTy)) 2309 V = ConstantDataVector::get(Context, Elts); 2310 else 2311 V = ConstantDataArray::get(Context, Elts); 2312 } else if (EltTy->isIntegerTy(32)) { 2313 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2314 if (isa<VectorType>(CurTy)) 2315 V = ConstantDataVector::get(Context, Elts); 2316 else 2317 V = ConstantDataArray::get(Context, Elts); 2318 } else if (EltTy->isIntegerTy(64)) { 2319 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2320 if (isa<VectorType>(CurTy)) 2321 V = ConstantDataVector::get(Context, Elts); 2322 else 2323 V = ConstantDataArray::get(Context, Elts); 2324 } else if (EltTy->isHalfTy()) { 2325 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2326 if (isa<VectorType>(CurTy)) 2327 V = ConstantDataVector::getFP(Context, Elts); 2328 else 2329 V = ConstantDataArray::getFP(Context, Elts); 2330 } else if (EltTy->isFloatTy()) { 2331 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2332 if (isa<VectorType>(CurTy)) 2333 V = ConstantDataVector::getFP(Context, Elts); 2334 else 2335 V = ConstantDataArray::getFP(Context, Elts); 2336 } else if (EltTy->isDoubleTy()) { 2337 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2338 if (isa<VectorType>(CurTy)) 2339 V = ConstantDataVector::getFP(Context, Elts); 2340 else 2341 V = ConstantDataArray::getFP(Context, Elts); 2342 } else { 2343 return error("Invalid type for value"); 2344 } 2345 break; 2346 } 2347 case bitc::CST_CODE_CE_UNOP: { // CE_UNOP: [opcode, opval] 2348 if (Record.size() < 2) 2349 return error("Invalid record"); 2350 int Opc = getDecodedUnaryOpcode(Record[0], CurTy); 2351 if (Opc < 0) { 2352 V = UndefValue::get(CurTy); // Unknown unop. 2353 } else { 2354 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 2355 unsigned Flags = 0; 2356 V = ConstantExpr::get(Opc, LHS, Flags); 2357 } 2358 break; 2359 } 2360 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 2361 if (Record.size() < 3) 2362 return error("Invalid record"); 2363 int Opc = getDecodedBinaryOpcode(Record[0], CurTy); 2364 if (Opc < 0) { 2365 V = UndefValue::get(CurTy); // Unknown binop. 2366 } else { 2367 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 2368 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy); 2369 unsigned Flags = 0; 2370 if (Record.size() >= 4) { 2371 if (Opc == Instruction::Add || 2372 Opc == Instruction::Sub || 2373 Opc == Instruction::Mul || 2374 Opc == Instruction::Shl) { 2375 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 2376 Flags |= OverflowingBinaryOperator::NoSignedWrap; 2377 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 2378 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 2379 } else if (Opc == Instruction::SDiv || 2380 Opc == Instruction::UDiv || 2381 Opc == Instruction::LShr || 2382 Opc == Instruction::AShr) { 2383 if (Record[3] & (1 << bitc::PEO_EXACT)) 2384 Flags |= SDivOperator::IsExact; 2385 } 2386 } 2387 V = ConstantExpr::get(Opc, LHS, RHS, Flags); 2388 } 2389 break; 2390 } 2391 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 2392 if (Record.size() < 3) 2393 return error("Invalid record"); 2394 int Opc = getDecodedCastOpcode(Record[0]); 2395 if (Opc < 0) { 2396 V = UndefValue::get(CurTy); // Unknown cast. 2397 } else { 2398 Type *OpTy = getTypeByID(Record[1]); 2399 if (!OpTy) 2400 return error("Invalid record"); 2401 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy); 2402 V = UpgradeBitCastExpr(Opc, Op, CurTy); 2403 if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy); 2404 } 2405 break; 2406 } 2407 case bitc::CST_CODE_CE_INBOUNDS_GEP: // [ty, n x operands] 2408 case bitc::CST_CODE_CE_GEP: // [ty, n x operands] 2409 case bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX: { // [ty, flags, n x 2410 // operands] 2411 unsigned OpNum = 0; 2412 Type *PointeeType = nullptr; 2413 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX || 2414 Record.size() % 2) 2415 PointeeType = getTypeByID(Record[OpNum++]); 2416 2417 bool InBounds = false; 2418 Optional<unsigned> InRangeIndex; 2419 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX) { 2420 uint64_t Op = Record[OpNum++]; 2421 InBounds = Op & 1; 2422 InRangeIndex = Op >> 1; 2423 } else if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP) 2424 InBounds = true; 2425 2426 SmallVector<Constant*, 16> Elts; 2427 while (OpNum != Record.size()) { 2428 Type *ElTy = getTypeByID(Record[OpNum++]); 2429 if (!ElTy) 2430 return error("Invalid record"); 2431 Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy)); 2432 } 2433 2434 if (Elts.size() < 1) 2435 return error("Invalid gep with no operands"); 2436 2437 Type *ImplicitPointeeType = 2438 cast<PointerType>(Elts[0]->getType()->getScalarType()) 2439 ->getElementType(); 2440 if (!PointeeType) 2441 PointeeType = ImplicitPointeeType; 2442 else if (PointeeType != ImplicitPointeeType) 2443 return error("Explicit gep operator type does not match pointee type " 2444 "of pointer operand"); 2445 2446 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 2447 V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices, 2448 InBounds, InRangeIndex); 2449 break; 2450 } 2451 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] 2452 if (Record.size() < 3) 2453 return error("Invalid record"); 2454 2455 Type *SelectorTy = Type::getInt1Ty(Context); 2456 2457 // The selector might be an i1 or an <n x i1> 2458 // Get the type from the ValueList before getting a forward ref. 2459 if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) 2460 if (Value *V = ValueList[Record[0]]) 2461 if (SelectorTy != V->getType()) 2462 SelectorTy = VectorType::get(SelectorTy, VTy->getNumElements()); 2463 2464 V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0], 2465 SelectorTy), 2466 ValueList.getConstantFwdRef(Record[1],CurTy), 2467 ValueList.getConstantFwdRef(Record[2],CurTy)); 2468 break; 2469 } 2470 case bitc::CST_CODE_CE_EXTRACTELT 2471 : { // CE_EXTRACTELT: [opty, opval, opty, opval] 2472 if (Record.size() < 3) 2473 return error("Invalid record"); 2474 VectorType *OpTy = 2475 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2476 if (!OpTy) 2477 return error("Invalid record"); 2478 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2479 Constant *Op1 = nullptr; 2480 if (Record.size() == 4) { 2481 Type *IdxTy = getTypeByID(Record[2]); 2482 if (!IdxTy) 2483 return error("Invalid record"); 2484 Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2485 } else // TODO: Remove with llvm 4.0 2486 Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2487 if (!Op1) 2488 return error("Invalid record"); 2489 V = ConstantExpr::getExtractElement(Op0, Op1); 2490 break; 2491 } 2492 case bitc::CST_CODE_CE_INSERTELT 2493 : { // CE_INSERTELT: [opval, opval, opty, opval] 2494 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2495 if (Record.size() < 3 || !OpTy) 2496 return error("Invalid record"); 2497 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2498 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], 2499 OpTy->getElementType()); 2500 Constant *Op2 = nullptr; 2501 if (Record.size() == 4) { 2502 Type *IdxTy = getTypeByID(Record[2]); 2503 if (!IdxTy) 2504 return error("Invalid record"); 2505 Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2506 } else // TODO: Remove with llvm 4.0 2507 Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2508 if (!Op2) 2509 return error("Invalid record"); 2510 V = ConstantExpr::getInsertElement(Op0, Op1, Op2); 2511 break; 2512 } 2513 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 2514 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2515 if (Record.size() < 3 || !OpTy) 2516 return error("Invalid record"); 2517 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2518 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy); 2519 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 2520 OpTy->getNumElements()); 2521 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy); 2522 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 2523 break; 2524 } 2525 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 2526 VectorType *RTy = dyn_cast<VectorType>(CurTy); 2527 VectorType *OpTy = 2528 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2529 if (Record.size() < 4 || !RTy || !OpTy) 2530 return error("Invalid record"); 2531 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2532 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2533 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 2534 RTy->getNumElements()); 2535 Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy); 2536 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 2537 break; 2538 } 2539 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 2540 if (Record.size() < 4) 2541 return error("Invalid record"); 2542 Type *OpTy = getTypeByID(Record[0]); 2543 if (!OpTy) 2544 return error("Invalid record"); 2545 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2546 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2547 2548 if (OpTy->isFPOrFPVectorTy()) 2549 V = ConstantExpr::getFCmp(Record[3], Op0, Op1); 2550 else 2551 V = ConstantExpr::getICmp(Record[3], Op0, Op1); 2552 break; 2553 } 2554 // This maintains backward compatibility, pre-asm dialect keywords. 2555 // FIXME: Remove with the 4.0 release. 2556 case bitc::CST_CODE_INLINEASM_OLD: { 2557 if (Record.size() < 2) 2558 return error("Invalid record"); 2559 std::string AsmStr, ConstrStr; 2560 bool HasSideEffects = Record[0] & 1; 2561 bool IsAlignStack = Record[0] >> 1; 2562 unsigned AsmStrSize = Record[1]; 2563 if (2+AsmStrSize >= Record.size()) 2564 return error("Invalid record"); 2565 unsigned ConstStrSize = Record[2+AsmStrSize]; 2566 if (3+AsmStrSize+ConstStrSize > Record.size()) 2567 return error("Invalid record"); 2568 2569 for (unsigned i = 0; i != AsmStrSize; ++i) 2570 AsmStr += (char)Record[2+i]; 2571 for (unsigned i = 0; i != ConstStrSize; ++i) 2572 ConstrStr += (char)Record[3+AsmStrSize+i]; 2573 PointerType *PTy = cast<PointerType>(CurTy); 2574 UpgradeInlineAsmString(&AsmStr); 2575 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 2576 AsmStr, ConstrStr, HasSideEffects, IsAlignStack); 2577 break; 2578 } 2579 // This version adds support for the asm dialect keywords (e.g., 2580 // inteldialect). 2581 case bitc::CST_CODE_INLINEASM: { 2582 if (Record.size() < 2) 2583 return error("Invalid record"); 2584 std::string AsmStr, ConstrStr; 2585 bool HasSideEffects = Record[0] & 1; 2586 bool IsAlignStack = (Record[0] >> 1) & 1; 2587 unsigned AsmDialect = Record[0] >> 2; 2588 unsigned AsmStrSize = Record[1]; 2589 if (2+AsmStrSize >= Record.size()) 2590 return error("Invalid record"); 2591 unsigned ConstStrSize = Record[2+AsmStrSize]; 2592 if (3+AsmStrSize+ConstStrSize > Record.size()) 2593 return error("Invalid record"); 2594 2595 for (unsigned i = 0; i != AsmStrSize; ++i) 2596 AsmStr += (char)Record[2+i]; 2597 for (unsigned i = 0; i != ConstStrSize; ++i) 2598 ConstrStr += (char)Record[3+AsmStrSize+i]; 2599 PointerType *PTy = cast<PointerType>(CurTy); 2600 UpgradeInlineAsmString(&AsmStr); 2601 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 2602 AsmStr, ConstrStr, HasSideEffects, IsAlignStack, 2603 InlineAsm::AsmDialect(AsmDialect)); 2604 break; 2605 } 2606 case bitc::CST_CODE_BLOCKADDRESS:{ 2607 if (Record.size() < 3) 2608 return error("Invalid record"); 2609 Type *FnTy = getTypeByID(Record[0]); 2610 if (!FnTy) 2611 return error("Invalid record"); 2612 Function *Fn = 2613 dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy)); 2614 if (!Fn) 2615 return error("Invalid record"); 2616 2617 // If the function is already parsed we can insert the block address right 2618 // away. 2619 BasicBlock *BB; 2620 unsigned BBID = Record[2]; 2621 if (!BBID) 2622 // Invalid reference to entry block. 2623 return error("Invalid ID"); 2624 if (!Fn->empty()) { 2625 Function::iterator BBI = Fn->begin(), BBE = Fn->end(); 2626 for (size_t I = 0, E = BBID; I != E; ++I) { 2627 if (BBI == BBE) 2628 return error("Invalid ID"); 2629 ++BBI; 2630 } 2631 BB = &*BBI; 2632 } else { 2633 // Otherwise insert a placeholder and remember it so it can be inserted 2634 // when the function is parsed. 2635 auto &FwdBBs = BasicBlockFwdRefs[Fn]; 2636 if (FwdBBs.empty()) 2637 BasicBlockFwdRefQueue.push_back(Fn); 2638 if (FwdBBs.size() < BBID + 1) 2639 FwdBBs.resize(BBID + 1); 2640 if (!FwdBBs[BBID]) 2641 FwdBBs[BBID] = BasicBlock::Create(Context); 2642 BB = FwdBBs[BBID]; 2643 } 2644 V = BlockAddress::get(Fn, BB); 2645 break; 2646 } 2647 } 2648 2649 ValueList.assignValue(V, NextCstNo); 2650 ++NextCstNo; 2651 } 2652 } 2653 2654 Error BitcodeReader::parseUseLists() { 2655 if (Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 2656 return error("Invalid record"); 2657 2658 // Read all the records. 2659 SmallVector<uint64_t, 64> Record; 2660 2661 while (true) { 2662 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2663 2664 switch (Entry.Kind) { 2665 case BitstreamEntry::SubBlock: // Handled for us already. 2666 case BitstreamEntry::Error: 2667 return error("Malformed block"); 2668 case BitstreamEntry::EndBlock: 2669 return Error::success(); 2670 case BitstreamEntry::Record: 2671 // The interesting case. 2672 break; 2673 } 2674 2675 // Read a use list record. 2676 Record.clear(); 2677 bool IsBB = false; 2678 switch (Stream.readRecord(Entry.ID, Record)) { 2679 default: // Default behavior: unknown type. 2680 break; 2681 case bitc::USELIST_CODE_BB: 2682 IsBB = true; 2683 LLVM_FALLTHROUGH; 2684 case bitc::USELIST_CODE_DEFAULT: { 2685 unsigned RecordLength = Record.size(); 2686 if (RecordLength < 3) 2687 // Records should have at least an ID and two indexes. 2688 return error("Invalid record"); 2689 unsigned ID = Record.back(); 2690 Record.pop_back(); 2691 2692 Value *V; 2693 if (IsBB) { 2694 assert(ID < FunctionBBs.size() && "Basic block not found"); 2695 V = FunctionBBs[ID]; 2696 } else 2697 V = ValueList[ID]; 2698 unsigned NumUses = 0; 2699 SmallDenseMap<const Use *, unsigned, 16> Order; 2700 for (const Use &U : V->materialized_uses()) { 2701 if (++NumUses > Record.size()) 2702 break; 2703 Order[&U] = Record[NumUses - 1]; 2704 } 2705 if (Order.size() != Record.size() || NumUses > Record.size()) 2706 // Mismatches can happen if the functions are being materialized lazily 2707 // (out-of-order), or a value has been upgraded. 2708 break; 2709 2710 V->sortUseList([&](const Use &L, const Use &R) { 2711 return Order.lookup(&L) < Order.lookup(&R); 2712 }); 2713 break; 2714 } 2715 } 2716 } 2717 } 2718 2719 /// When we see the block for metadata, remember where it is and then skip it. 2720 /// This lets us lazily deserialize the metadata. 2721 Error BitcodeReader::rememberAndSkipMetadata() { 2722 // Save the current stream state. 2723 uint64_t CurBit = Stream.GetCurrentBitNo(); 2724 DeferredMetadataInfo.push_back(CurBit); 2725 2726 // Skip over the block for now. 2727 if (Stream.SkipBlock()) 2728 return error("Invalid record"); 2729 return Error::success(); 2730 } 2731 2732 Error BitcodeReader::materializeMetadata() { 2733 for (uint64_t BitPos : DeferredMetadataInfo) { 2734 // Move the bit stream to the saved position. 2735 Stream.JumpToBit(BitPos); 2736 if (Error Err = MDLoader->parseModuleMetadata()) 2737 return Err; 2738 } 2739 2740 // Upgrade "Linker Options" module flag to "llvm.linker.options" module-level 2741 // metadata. 2742 if (Metadata *Val = TheModule->getModuleFlag("Linker Options")) { 2743 NamedMDNode *LinkerOpts = 2744 TheModule->getOrInsertNamedMetadata("llvm.linker.options"); 2745 for (const MDOperand &MDOptions : cast<MDNode>(Val)->operands()) 2746 LinkerOpts->addOperand(cast<MDNode>(MDOptions)); 2747 } 2748 2749 DeferredMetadataInfo.clear(); 2750 return Error::success(); 2751 } 2752 2753 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; } 2754 2755 /// When we see the block for a function body, remember where it is and then 2756 /// skip it. This lets us lazily deserialize the functions. 2757 Error BitcodeReader::rememberAndSkipFunctionBody() { 2758 // Get the function we are talking about. 2759 if (FunctionsWithBodies.empty()) 2760 return error("Insufficient function protos"); 2761 2762 Function *Fn = FunctionsWithBodies.back(); 2763 FunctionsWithBodies.pop_back(); 2764 2765 // Save the current stream state. 2766 uint64_t CurBit = Stream.GetCurrentBitNo(); 2767 assert( 2768 (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) && 2769 "Mismatch between VST and scanned function offsets"); 2770 DeferredFunctionInfo[Fn] = CurBit; 2771 2772 // Skip over the function block for now. 2773 if (Stream.SkipBlock()) 2774 return error("Invalid record"); 2775 return Error::success(); 2776 } 2777 2778 Error BitcodeReader::globalCleanup() { 2779 // Patch the initializers for globals and aliases up. 2780 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 2781 return Err; 2782 if (!GlobalInits.empty() || !IndirectSymbolInits.empty()) 2783 return error("Malformed global initializer set"); 2784 2785 // Look for intrinsic functions which need to be upgraded at some point 2786 for (Function &F : *TheModule) { 2787 MDLoader->upgradeDebugIntrinsics(F); 2788 Function *NewFn; 2789 if (UpgradeIntrinsicFunction(&F, NewFn)) 2790 UpgradedIntrinsics[&F] = NewFn; 2791 else if (auto Remangled = Intrinsic::remangleIntrinsicFunction(&F)) 2792 // Some types could be renamed during loading if several modules are 2793 // loaded in the same LLVMContext (LTO scenario). In this case we should 2794 // remangle intrinsics names as well. 2795 RemangledIntrinsics[&F] = Remangled.getValue(); 2796 } 2797 2798 // Look for global variables which need to be renamed. 2799 std::vector<std::pair<GlobalVariable *, GlobalVariable *>> UpgradedVariables; 2800 for (GlobalVariable &GV : TheModule->globals()) 2801 if (GlobalVariable *Upgraded = UpgradeGlobalVariable(&GV)) 2802 UpgradedVariables.emplace_back(&GV, Upgraded); 2803 for (auto &Pair : UpgradedVariables) { 2804 Pair.first->eraseFromParent(); 2805 TheModule->getGlobalList().push_back(Pair.second); 2806 } 2807 2808 // Force deallocation of memory for these vectors to favor the client that 2809 // want lazy deserialization. 2810 std::vector<std::pair<GlobalVariable *, unsigned>>().swap(GlobalInits); 2811 std::vector<std::pair<GlobalIndirectSymbol *, unsigned>>().swap( 2812 IndirectSymbolInits); 2813 return Error::success(); 2814 } 2815 2816 /// Support for lazy parsing of function bodies. This is required if we 2817 /// either have an old bitcode file without a VST forward declaration record, 2818 /// or if we have an anonymous function being materialized, since anonymous 2819 /// functions do not have a name and are therefore not in the VST. 2820 Error BitcodeReader::rememberAndSkipFunctionBodies() { 2821 Stream.JumpToBit(NextUnreadBit); 2822 2823 if (Stream.AtEndOfStream()) 2824 return error("Could not find function in stream"); 2825 2826 if (!SeenFirstFunctionBody) 2827 return error("Trying to materialize functions before seeing function blocks"); 2828 2829 // An old bitcode file with the symbol table at the end would have 2830 // finished the parse greedily. 2831 assert(SeenValueSymbolTable); 2832 2833 SmallVector<uint64_t, 64> Record; 2834 2835 while (true) { 2836 BitstreamEntry Entry = Stream.advance(); 2837 switch (Entry.Kind) { 2838 default: 2839 return error("Expect SubBlock"); 2840 case BitstreamEntry::SubBlock: 2841 switch (Entry.ID) { 2842 default: 2843 return error("Expect function block"); 2844 case bitc::FUNCTION_BLOCK_ID: 2845 if (Error Err = rememberAndSkipFunctionBody()) 2846 return Err; 2847 NextUnreadBit = Stream.GetCurrentBitNo(); 2848 return Error::success(); 2849 } 2850 } 2851 } 2852 } 2853 2854 bool BitcodeReaderBase::readBlockInfo() { 2855 Optional<BitstreamBlockInfo> NewBlockInfo = Stream.ReadBlockInfoBlock(); 2856 if (!NewBlockInfo) 2857 return true; 2858 BlockInfo = std::move(*NewBlockInfo); 2859 return false; 2860 } 2861 2862 Error BitcodeReader::parseComdatRecord(ArrayRef<uint64_t> Record) { 2863 // v1: [selection_kind, name] 2864 // v2: [strtab_offset, strtab_size, selection_kind] 2865 StringRef Name; 2866 std::tie(Name, Record) = readNameFromStrtab(Record); 2867 2868 if (Record.empty()) 2869 return error("Invalid record"); 2870 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]); 2871 std::string OldFormatName; 2872 if (!UseStrtab) { 2873 if (Record.size() < 2) 2874 return error("Invalid record"); 2875 unsigned ComdatNameSize = Record[1]; 2876 OldFormatName.reserve(ComdatNameSize); 2877 for (unsigned i = 0; i != ComdatNameSize; ++i) 2878 OldFormatName += (char)Record[2 + i]; 2879 Name = OldFormatName; 2880 } 2881 Comdat *C = TheModule->getOrInsertComdat(Name); 2882 C->setSelectionKind(SK); 2883 ComdatList.push_back(C); 2884 return Error::success(); 2885 } 2886 2887 static void inferDSOLocal(GlobalValue *GV) { 2888 // infer dso_local from linkage and visibility if it is not encoded. 2889 if (GV->hasLocalLinkage() || 2890 (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())) 2891 GV->setDSOLocal(true); 2892 } 2893 2894 Error BitcodeReader::parseGlobalVarRecord(ArrayRef<uint64_t> Record) { 2895 // v1: [pointer type, isconst, initid, linkage, alignment, section, 2896 // visibility, threadlocal, unnamed_addr, externally_initialized, 2897 // dllstorageclass, comdat, attributes, preemption specifier, 2898 // partition strtab offset, partition strtab size] (name in VST) 2899 // v2: [strtab_offset, strtab_size, v1] 2900 StringRef Name; 2901 std::tie(Name, Record) = readNameFromStrtab(Record); 2902 2903 if (Record.size() < 6) 2904 return error("Invalid record"); 2905 Type *Ty = getTypeByID(Record[0]); 2906 if (!Ty) 2907 return error("Invalid record"); 2908 bool isConstant = Record[1] & 1; 2909 bool explicitType = Record[1] & 2; 2910 unsigned AddressSpace; 2911 if (explicitType) { 2912 AddressSpace = Record[1] >> 2; 2913 } else { 2914 if (!Ty->isPointerTy()) 2915 return error("Invalid type for value"); 2916 AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 2917 Ty = cast<PointerType>(Ty)->getElementType(); 2918 } 2919 2920 uint64_t RawLinkage = Record[3]; 2921 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 2922 unsigned Alignment; 2923 if (Error Err = parseAlignmentValue(Record[4], Alignment)) 2924 return Err; 2925 std::string Section; 2926 if (Record[5]) { 2927 if (Record[5] - 1 >= SectionTable.size()) 2928 return error("Invalid ID"); 2929 Section = SectionTable[Record[5] - 1]; 2930 } 2931 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 2932 // Local linkage must have default visibility. 2933 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage)) 2934 // FIXME: Change to an error if non-default in 4.0. 2935 Visibility = getDecodedVisibility(Record[6]); 2936 2937 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; 2938 if (Record.size() > 7) 2939 TLM = getDecodedThreadLocalMode(Record[7]); 2940 2941 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 2942 if (Record.size() > 8) 2943 UnnamedAddr = getDecodedUnnamedAddrType(Record[8]); 2944 2945 bool ExternallyInitialized = false; 2946 if (Record.size() > 9) 2947 ExternallyInitialized = Record[9]; 2948 2949 GlobalVariable *NewGV = 2950 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, Name, 2951 nullptr, TLM, AddressSpace, ExternallyInitialized); 2952 NewGV->setAlignment(Alignment); 2953 if (!Section.empty()) 2954 NewGV->setSection(Section); 2955 NewGV->setVisibility(Visibility); 2956 NewGV->setUnnamedAddr(UnnamedAddr); 2957 2958 if (Record.size() > 10) 2959 NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10])); 2960 else 2961 upgradeDLLImportExportLinkage(NewGV, RawLinkage); 2962 2963 ValueList.push_back(NewGV); 2964 2965 // Remember which value to use for the global initializer. 2966 if (unsigned InitID = Record[2]) 2967 GlobalInits.push_back(std::make_pair(NewGV, InitID - 1)); 2968 2969 if (Record.size() > 11) { 2970 if (unsigned ComdatID = Record[11]) { 2971 if (ComdatID > ComdatList.size()) 2972 return error("Invalid global variable comdat ID"); 2973 NewGV->setComdat(ComdatList[ComdatID - 1]); 2974 } 2975 } else if (hasImplicitComdat(RawLinkage)) { 2976 NewGV->setComdat(reinterpret_cast<Comdat *>(1)); 2977 } 2978 2979 if (Record.size() > 12) { 2980 auto AS = getAttributes(Record[12]).getFnAttributes(); 2981 NewGV->setAttributes(AS); 2982 } 2983 2984 if (Record.size() > 13) { 2985 NewGV->setDSOLocal(getDecodedDSOLocal(Record[13])); 2986 } 2987 inferDSOLocal(NewGV); 2988 2989 // Check whether we have enough values to read a partition name. 2990 if (Record.size() > 15) 2991 NewGV->setPartition(StringRef(Strtab.data() + Record[14], Record[15])); 2992 2993 return Error::success(); 2994 } 2995 2996 Error BitcodeReader::parseFunctionRecord(ArrayRef<uint64_t> Record) { 2997 // v1: [type, callingconv, isproto, linkage, paramattr, alignment, section, 2998 // visibility, gc, unnamed_addr, prologuedata, dllstorageclass, comdat, 2999 // prefixdata, personalityfn, preemption specifier, addrspace] (name in VST) 3000 // v2: [strtab_offset, strtab_size, v1] 3001 StringRef Name; 3002 std::tie(Name, Record) = readNameFromStrtab(Record); 3003 3004 if (Record.size() < 8) 3005 return error("Invalid record"); 3006 Type *Ty = getTypeByID(Record[0]); 3007 if (!Ty) 3008 return error("Invalid record"); 3009 if (auto *PTy = dyn_cast<PointerType>(Ty)) 3010 Ty = PTy->getElementType(); 3011 auto *FTy = dyn_cast<FunctionType>(Ty); 3012 if (!FTy) 3013 return error("Invalid type for value"); 3014 auto CC = static_cast<CallingConv::ID>(Record[1]); 3015 if (CC & ~CallingConv::MaxID) 3016 return error("Invalid calling convention ID"); 3017 3018 unsigned AddrSpace = TheModule->getDataLayout().getProgramAddressSpace(); 3019 if (Record.size() > 16) 3020 AddrSpace = Record[16]; 3021 3022 Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage, 3023 AddrSpace, Name, TheModule); 3024 3025 Func->setCallingConv(CC); 3026 bool isProto = Record[2]; 3027 uint64_t RawLinkage = Record[3]; 3028 Func->setLinkage(getDecodedLinkage(RawLinkage)); 3029 Func->setAttributes(getAttributes(Record[4])); 3030 3031 unsigned Alignment; 3032 if (Error Err = parseAlignmentValue(Record[5], Alignment)) 3033 return Err; 3034 Func->setAlignment(Alignment); 3035 if (Record[6]) { 3036 if (Record[6] - 1 >= SectionTable.size()) 3037 return error("Invalid ID"); 3038 Func->setSection(SectionTable[Record[6] - 1]); 3039 } 3040 // Local linkage must have default visibility. 3041 if (!Func->hasLocalLinkage()) 3042 // FIXME: Change to an error if non-default in 4.0. 3043 Func->setVisibility(getDecodedVisibility(Record[7])); 3044 if (Record.size() > 8 && Record[8]) { 3045 if (Record[8] - 1 >= GCTable.size()) 3046 return error("Invalid ID"); 3047 Func->setGC(GCTable[Record[8] - 1]); 3048 } 3049 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 3050 if (Record.size() > 9) 3051 UnnamedAddr = getDecodedUnnamedAddrType(Record[9]); 3052 Func->setUnnamedAddr(UnnamedAddr); 3053 if (Record.size() > 10 && Record[10] != 0) 3054 FunctionPrologues.push_back(std::make_pair(Func, Record[10] - 1)); 3055 3056 if (Record.size() > 11) 3057 Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11])); 3058 else 3059 upgradeDLLImportExportLinkage(Func, RawLinkage); 3060 3061 if (Record.size() > 12) { 3062 if (unsigned ComdatID = Record[12]) { 3063 if (ComdatID > ComdatList.size()) 3064 return error("Invalid function comdat ID"); 3065 Func->setComdat(ComdatList[ComdatID - 1]); 3066 } 3067 } else if (hasImplicitComdat(RawLinkage)) { 3068 Func->setComdat(reinterpret_cast<Comdat *>(1)); 3069 } 3070 3071 if (Record.size() > 13 && Record[13] != 0) 3072 FunctionPrefixes.push_back(std::make_pair(Func, Record[13] - 1)); 3073 3074 if (Record.size() > 14 && Record[14] != 0) 3075 FunctionPersonalityFns.push_back(std::make_pair(Func, Record[14] - 1)); 3076 3077 if (Record.size() > 15) { 3078 Func->setDSOLocal(getDecodedDSOLocal(Record[15])); 3079 } 3080 inferDSOLocal(Func); 3081 3082 // Record[16] is the address space number. 3083 3084 // Check whether we have enough values to read a partition name. 3085 if (Record.size() > 18) 3086 Func->setPartition(StringRef(Strtab.data() + Record[17], Record[18])); 3087 3088 ValueList.push_back(Func); 3089 3090 // If this is a function with a body, remember the prototype we are 3091 // creating now, so that we can match up the body with them later. 3092 if (!isProto) { 3093 Func->setIsMaterializable(true); 3094 FunctionsWithBodies.push_back(Func); 3095 DeferredFunctionInfo[Func] = 0; 3096 } 3097 return Error::success(); 3098 } 3099 3100 Error BitcodeReader::parseGlobalIndirectSymbolRecord( 3101 unsigned BitCode, ArrayRef<uint64_t> Record) { 3102 // v1 ALIAS_OLD: [alias type, aliasee val#, linkage] (name in VST) 3103 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, 3104 // dllstorageclass, threadlocal, unnamed_addr, 3105 // preemption specifier] (name in VST) 3106 // v1 IFUNC: [alias type, addrspace, aliasee val#, linkage, 3107 // visibility, dllstorageclass, threadlocal, unnamed_addr, 3108 // preemption specifier] (name in VST) 3109 // v2: [strtab_offset, strtab_size, v1] 3110 StringRef Name; 3111 std::tie(Name, Record) = readNameFromStrtab(Record); 3112 3113 bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD; 3114 if (Record.size() < (3 + (unsigned)NewRecord)) 3115 return error("Invalid record"); 3116 unsigned OpNum = 0; 3117 Type *Ty = getTypeByID(Record[OpNum++]); 3118 if (!Ty) 3119 return error("Invalid record"); 3120 3121 unsigned AddrSpace; 3122 if (!NewRecord) { 3123 auto *PTy = dyn_cast<PointerType>(Ty); 3124 if (!PTy) 3125 return error("Invalid type for value"); 3126 Ty = PTy->getElementType(); 3127 AddrSpace = PTy->getAddressSpace(); 3128 } else { 3129 AddrSpace = Record[OpNum++]; 3130 } 3131 3132 auto Val = Record[OpNum++]; 3133 auto Linkage = Record[OpNum++]; 3134 GlobalIndirectSymbol *NewGA; 3135 if (BitCode == bitc::MODULE_CODE_ALIAS || 3136 BitCode == bitc::MODULE_CODE_ALIAS_OLD) 3137 NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name, 3138 TheModule); 3139 else 3140 NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name, 3141 nullptr, TheModule); 3142 // Old bitcode files didn't have visibility field. 3143 // Local linkage must have default visibility. 3144 if (OpNum != Record.size()) { 3145 auto VisInd = OpNum++; 3146 if (!NewGA->hasLocalLinkage()) 3147 // FIXME: Change to an error if non-default in 4.0. 3148 NewGA->setVisibility(getDecodedVisibility(Record[VisInd])); 3149 } 3150 if (BitCode == bitc::MODULE_CODE_ALIAS || 3151 BitCode == bitc::MODULE_CODE_ALIAS_OLD) { 3152 if (OpNum != Record.size()) 3153 NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++])); 3154 else 3155 upgradeDLLImportExportLinkage(NewGA, Linkage); 3156 if (OpNum != Record.size()) 3157 NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++])); 3158 if (OpNum != Record.size()) 3159 NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++])); 3160 } 3161 if (OpNum != Record.size()) 3162 NewGA->setDSOLocal(getDecodedDSOLocal(Record[OpNum++])); 3163 inferDSOLocal(NewGA); 3164 3165 // Check whether we have enough values to read a partition name. 3166 if (OpNum + 1 < Record.size()) { 3167 NewGA->setPartition( 3168 StringRef(Strtab.data() + Record[OpNum], Record[OpNum + 1])); 3169 OpNum += 2; 3170 } 3171 3172 ValueList.push_back(NewGA); 3173 IndirectSymbolInits.push_back(std::make_pair(NewGA, Val)); 3174 return Error::success(); 3175 } 3176 3177 Error BitcodeReader::parseModule(uint64_t ResumeBit, 3178 bool ShouldLazyLoadMetadata) { 3179 if (ResumeBit) 3180 Stream.JumpToBit(ResumeBit); 3181 else if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 3182 return error("Invalid record"); 3183 3184 SmallVector<uint64_t, 64> Record; 3185 3186 // Read all the records for this module. 3187 while (true) { 3188 BitstreamEntry Entry = Stream.advance(); 3189 3190 switch (Entry.Kind) { 3191 case BitstreamEntry::Error: 3192 return error("Malformed block"); 3193 case BitstreamEntry::EndBlock: 3194 return globalCleanup(); 3195 3196 case BitstreamEntry::SubBlock: 3197 switch (Entry.ID) { 3198 default: // Skip unknown content. 3199 if (Stream.SkipBlock()) 3200 return error("Invalid record"); 3201 break; 3202 case bitc::BLOCKINFO_BLOCK_ID: 3203 if (readBlockInfo()) 3204 return error("Malformed block"); 3205 break; 3206 case bitc::PARAMATTR_BLOCK_ID: 3207 if (Error Err = parseAttributeBlock()) 3208 return Err; 3209 break; 3210 case bitc::PARAMATTR_GROUP_BLOCK_ID: 3211 if (Error Err = parseAttributeGroupBlock()) 3212 return Err; 3213 break; 3214 case bitc::TYPE_BLOCK_ID_NEW: 3215 if (Error Err = parseTypeTable()) 3216 return Err; 3217 break; 3218 case bitc::VALUE_SYMTAB_BLOCK_ID: 3219 if (!SeenValueSymbolTable) { 3220 // Either this is an old form VST without function index and an 3221 // associated VST forward declaration record (which would have caused 3222 // the VST to be jumped to and parsed before it was encountered 3223 // normally in the stream), or there were no function blocks to 3224 // trigger an earlier parsing of the VST. 3225 assert(VSTOffset == 0 || FunctionsWithBodies.empty()); 3226 if (Error Err = parseValueSymbolTable()) 3227 return Err; 3228 SeenValueSymbolTable = true; 3229 } else { 3230 // We must have had a VST forward declaration record, which caused 3231 // the parser to jump to and parse the VST earlier. 3232 assert(VSTOffset > 0); 3233 if (Stream.SkipBlock()) 3234 return error("Invalid record"); 3235 } 3236 break; 3237 case bitc::CONSTANTS_BLOCK_ID: 3238 if (Error Err = parseConstants()) 3239 return Err; 3240 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 3241 return Err; 3242 break; 3243 case bitc::METADATA_BLOCK_ID: 3244 if (ShouldLazyLoadMetadata) { 3245 if (Error Err = rememberAndSkipMetadata()) 3246 return Err; 3247 break; 3248 } 3249 assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata"); 3250 if (Error Err = MDLoader->parseModuleMetadata()) 3251 return Err; 3252 break; 3253 case bitc::METADATA_KIND_BLOCK_ID: 3254 if (Error Err = MDLoader->parseMetadataKinds()) 3255 return Err; 3256 break; 3257 case bitc::FUNCTION_BLOCK_ID: 3258 // If this is the first function body we've seen, reverse the 3259 // FunctionsWithBodies list. 3260 if (!SeenFirstFunctionBody) { 3261 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 3262 if (Error Err = globalCleanup()) 3263 return Err; 3264 SeenFirstFunctionBody = true; 3265 } 3266 3267 if (VSTOffset > 0) { 3268 // If we have a VST forward declaration record, make sure we 3269 // parse the VST now if we haven't already. It is needed to 3270 // set up the DeferredFunctionInfo vector for lazy reading. 3271 if (!SeenValueSymbolTable) { 3272 if (Error Err = BitcodeReader::parseValueSymbolTable(VSTOffset)) 3273 return Err; 3274 SeenValueSymbolTable = true; 3275 // Fall through so that we record the NextUnreadBit below. 3276 // This is necessary in case we have an anonymous function that 3277 // is later materialized. Since it will not have a VST entry we 3278 // need to fall back to the lazy parse to find its offset. 3279 } else { 3280 // If we have a VST forward declaration record, but have already 3281 // parsed the VST (just above, when the first function body was 3282 // encountered here), then we are resuming the parse after 3283 // materializing functions. The ResumeBit points to the 3284 // start of the last function block recorded in the 3285 // DeferredFunctionInfo map. Skip it. 3286 if (Stream.SkipBlock()) 3287 return error("Invalid record"); 3288 continue; 3289 } 3290 } 3291 3292 // Support older bitcode files that did not have the function 3293 // index in the VST, nor a VST forward declaration record, as 3294 // well as anonymous functions that do not have VST entries. 3295 // Build the DeferredFunctionInfo vector on the fly. 3296 if (Error Err = rememberAndSkipFunctionBody()) 3297 return Err; 3298 3299 // Suspend parsing when we reach the function bodies. Subsequent 3300 // materialization calls will resume it when necessary. If the bitcode 3301 // file is old, the symbol table will be at the end instead and will not 3302 // have been seen yet. In this case, just finish the parse now. 3303 if (SeenValueSymbolTable) { 3304 NextUnreadBit = Stream.GetCurrentBitNo(); 3305 // After the VST has been parsed, we need to make sure intrinsic name 3306 // are auto-upgraded. 3307 return globalCleanup(); 3308 } 3309 break; 3310 case bitc::USELIST_BLOCK_ID: 3311 if (Error Err = parseUseLists()) 3312 return Err; 3313 break; 3314 case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID: 3315 if (Error Err = parseOperandBundleTags()) 3316 return Err; 3317 break; 3318 case bitc::SYNC_SCOPE_NAMES_BLOCK_ID: 3319 if (Error Err = parseSyncScopeNames()) 3320 return Err; 3321 break; 3322 } 3323 continue; 3324 3325 case BitstreamEntry::Record: 3326 // The interesting case. 3327 break; 3328 } 3329 3330 // Read a record. 3331 auto BitCode = Stream.readRecord(Entry.ID, Record); 3332 switch (BitCode) { 3333 default: break; // Default behavior, ignore unknown content. 3334 case bitc::MODULE_CODE_VERSION: { 3335 Expected<unsigned> VersionOrErr = parseVersionRecord(Record); 3336 if (!VersionOrErr) 3337 return VersionOrErr.takeError(); 3338 UseRelativeIDs = *VersionOrErr >= 1; 3339 break; 3340 } 3341 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 3342 std::string S; 3343 if (convertToString(Record, 0, S)) 3344 return error("Invalid record"); 3345 TheModule->setTargetTriple(S); 3346 break; 3347 } 3348 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 3349 std::string S; 3350 if (convertToString(Record, 0, S)) 3351 return error("Invalid record"); 3352 TheModule->setDataLayout(S); 3353 break; 3354 } 3355 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 3356 std::string S; 3357 if (convertToString(Record, 0, S)) 3358 return error("Invalid record"); 3359 TheModule->setModuleInlineAsm(S); 3360 break; 3361 } 3362 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 3363 // FIXME: Remove in 4.0. 3364 std::string S; 3365 if (convertToString(Record, 0, S)) 3366 return error("Invalid record"); 3367 // Ignore value. 3368 break; 3369 } 3370 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 3371 std::string S; 3372 if (convertToString(Record, 0, S)) 3373 return error("Invalid record"); 3374 SectionTable.push_back(S); 3375 break; 3376 } 3377 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 3378 std::string S; 3379 if (convertToString(Record, 0, S)) 3380 return error("Invalid record"); 3381 GCTable.push_back(S); 3382 break; 3383 } 3384 case bitc::MODULE_CODE_COMDAT: 3385 if (Error Err = parseComdatRecord(Record)) 3386 return Err; 3387 break; 3388 case bitc::MODULE_CODE_GLOBALVAR: 3389 if (Error Err = parseGlobalVarRecord(Record)) 3390 return Err; 3391 break; 3392 case bitc::MODULE_CODE_FUNCTION: 3393 if (Error Err = parseFunctionRecord(Record)) 3394 return Err; 3395 break; 3396 case bitc::MODULE_CODE_IFUNC: 3397 case bitc::MODULE_CODE_ALIAS: 3398 case bitc::MODULE_CODE_ALIAS_OLD: 3399 if (Error Err = parseGlobalIndirectSymbolRecord(BitCode, Record)) 3400 return Err; 3401 break; 3402 /// MODULE_CODE_VSTOFFSET: [offset] 3403 case bitc::MODULE_CODE_VSTOFFSET: 3404 if (Record.size() < 1) 3405 return error("Invalid record"); 3406 // Note that we subtract 1 here because the offset is relative to one word 3407 // before the start of the identification or module block, which was 3408 // historically always the start of the regular bitcode header. 3409 VSTOffset = Record[0] - 1; 3410 break; 3411 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 3412 case bitc::MODULE_CODE_SOURCE_FILENAME: 3413 SmallString<128> ValueName; 3414 if (convertToString(Record, 0, ValueName)) 3415 return error("Invalid record"); 3416 TheModule->setSourceFileName(ValueName); 3417 break; 3418 } 3419 Record.clear(); 3420 } 3421 } 3422 3423 Error BitcodeReader::parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata, 3424 bool IsImporting) { 3425 TheModule = M; 3426 MDLoader = MetadataLoader(Stream, *M, ValueList, IsImporting, 3427 [&](unsigned ID) { return getTypeByID(ID); }); 3428 return parseModule(0, ShouldLazyLoadMetadata); 3429 } 3430 3431 Error BitcodeReader::typeCheckLoadStoreInst(Type *ValType, Type *PtrType) { 3432 if (!isa<PointerType>(PtrType)) 3433 return error("Load/Store operand is not a pointer type"); 3434 Type *ElemType = cast<PointerType>(PtrType)->getElementType(); 3435 3436 if (ValType && ValType != ElemType) 3437 return error("Explicit load/store type does not match pointee " 3438 "type of pointer operand"); 3439 if (!PointerType::isLoadableOrStorableType(ElemType)) 3440 return error("Cannot load/store from pointer"); 3441 return Error::success(); 3442 } 3443 3444 /// Lazily parse the specified function body block. 3445 Error BitcodeReader::parseFunctionBody(Function *F) { 3446 if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 3447 return error("Invalid record"); 3448 3449 // Unexpected unresolved metadata when parsing function. 3450 if (MDLoader->hasFwdRefs()) 3451 return error("Invalid function metadata: incoming forward references"); 3452 3453 InstructionList.clear(); 3454 unsigned ModuleValueListSize = ValueList.size(); 3455 unsigned ModuleMDLoaderSize = MDLoader->size(); 3456 3457 // Add all the function arguments to the value table. 3458 for (Argument &I : F->args()) 3459 ValueList.push_back(&I); 3460 3461 unsigned NextValueNo = ValueList.size(); 3462 BasicBlock *CurBB = nullptr; 3463 unsigned CurBBNo = 0; 3464 3465 DebugLoc LastLoc; 3466 auto getLastInstruction = [&]() -> Instruction * { 3467 if (CurBB && !CurBB->empty()) 3468 return &CurBB->back(); 3469 else if (CurBBNo && FunctionBBs[CurBBNo - 1] && 3470 !FunctionBBs[CurBBNo - 1]->empty()) 3471 return &FunctionBBs[CurBBNo - 1]->back(); 3472 return nullptr; 3473 }; 3474 3475 std::vector<OperandBundleDef> OperandBundles; 3476 3477 // Read all the records. 3478 SmallVector<uint64_t, 64> Record; 3479 3480 while (true) { 3481 BitstreamEntry Entry = Stream.advance(); 3482 3483 switch (Entry.Kind) { 3484 case BitstreamEntry::Error: 3485 return error("Malformed block"); 3486 case BitstreamEntry::EndBlock: 3487 goto OutOfRecordLoop; 3488 3489 case BitstreamEntry::SubBlock: 3490 switch (Entry.ID) { 3491 default: // Skip unknown content. 3492 if (Stream.SkipBlock()) 3493 return error("Invalid record"); 3494 break; 3495 case bitc::CONSTANTS_BLOCK_ID: 3496 if (Error Err = parseConstants()) 3497 return Err; 3498 NextValueNo = ValueList.size(); 3499 break; 3500 case bitc::VALUE_SYMTAB_BLOCK_ID: 3501 if (Error Err = parseValueSymbolTable()) 3502 return Err; 3503 break; 3504 case bitc::METADATA_ATTACHMENT_ID: 3505 if (Error Err = MDLoader->parseMetadataAttachment(*F, InstructionList)) 3506 return Err; 3507 break; 3508 case bitc::METADATA_BLOCK_ID: 3509 assert(DeferredMetadataInfo.empty() && 3510 "Must read all module-level metadata before function-level"); 3511 if (Error Err = MDLoader->parseFunctionMetadata()) 3512 return Err; 3513 break; 3514 case bitc::USELIST_BLOCK_ID: 3515 if (Error Err = parseUseLists()) 3516 return Err; 3517 break; 3518 } 3519 continue; 3520 3521 case BitstreamEntry::Record: 3522 // The interesting case. 3523 break; 3524 } 3525 3526 // Read a record. 3527 Record.clear(); 3528 Instruction *I = nullptr; 3529 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 3530 switch (BitCode) { 3531 default: // Default behavior: reject 3532 return error("Invalid value"); 3533 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks] 3534 if (Record.size() < 1 || Record[0] == 0) 3535 return error("Invalid record"); 3536 // Create all the basic blocks for the function. 3537 FunctionBBs.resize(Record[0]); 3538 3539 // See if anything took the address of blocks in this function. 3540 auto BBFRI = BasicBlockFwdRefs.find(F); 3541 if (BBFRI == BasicBlockFwdRefs.end()) { 3542 for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i) 3543 FunctionBBs[i] = BasicBlock::Create(Context, "", F); 3544 } else { 3545 auto &BBRefs = BBFRI->second; 3546 // Check for invalid basic block references. 3547 if (BBRefs.size() > FunctionBBs.size()) 3548 return error("Invalid ID"); 3549 assert(!BBRefs.empty() && "Unexpected empty array"); 3550 assert(!BBRefs.front() && "Invalid reference to entry block"); 3551 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E; 3552 ++I) 3553 if (I < RE && BBRefs[I]) { 3554 BBRefs[I]->insertInto(F); 3555 FunctionBBs[I] = BBRefs[I]; 3556 } else { 3557 FunctionBBs[I] = BasicBlock::Create(Context, "", F); 3558 } 3559 3560 // Erase from the table. 3561 BasicBlockFwdRefs.erase(BBFRI); 3562 } 3563 3564 CurBB = FunctionBBs[0]; 3565 continue; 3566 } 3567 3568 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 3569 // This record indicates that the last instruction is at the same 3570 // location as the previous instruction with a location. 3571 I = getLastInstruction(); 3572 3573 if (!I) 3574 return error("Invalid record"); 3575 I->setDebugLoc(LastLoc); 3576 I = nullptr; 3577 continue; 3578 3579 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 3580 I = getLastInstruction(); 3581 if (!I || Record.size() < 4) 3582 return error("Invalid record"); 3583 3584 unsigned Line = Record[0], Col = Record[1]; 3585 unsigned ScopeID = Record[2], IAID = Record[3]; 3586 bool isImplicitCode = Record.size() == 5 && Record[4]; 3587 3588 MDNode *Scope = nullptr, *IA = nullptr; 3589 if (ScopeID) { 3590 Scope = dyn_cast_or_null<MDNode>( 3591 MDLoader->getMetadataFwdRefOrLoad(ScopeID - 1)); 3592 if (!Scope) 3593 return error("Invalid record"); 3594 } 3595 if (IAID) { 3596 IA = dyn_cast_or_null<MDNode>( 3597 MDLoader->getMetadataFwdRefOrLoad(IAID - 1)); 3598 if (!IA) 3599 return error("Invalid record"); 3600 } 3601 LastLoc = DebugLoc::get(Line, Col, Scope, IA, isImplicitCode); 3602 I->setDebugLoc(LastLoc); 3603 I = nullptr; 3604 continue; 3605 } 3606 case bitc::FUNC_CODE_INST_UNOP: { // UNOP: [opval, ty, opcode] 3607 unsigned OpNum = 0; 3608 Value *LHS; 3609 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 3610 OpNum+1 > Record.size()) 3611 return error("Invalid record"); 3612 3613 int Opc = getDecodedUnaryOpcode(Record[OpNum++], LHS->getType()); 3614 if (Opc == -1) 3615 return error("Invalid record"); 3616 I = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS); 3617 InstructionList.push_back(I); 3618 if (OpNum < Record.size()) { 3619 if (isa<FPMathOperator>(I)) { 3620 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 3621 if (FMF.any()) 3622 I->setFastMathFlags(FMF); 3623 } 3624 } 3625 break; 3626 } 3627 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 3628 unsigned OpNum = 0; 3629 Value *LHS, *RHS; 3630 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 3631 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 3632 OpNum+1 > Record.size()) 3633 return error("Invalid record"); 3634 3635 int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 3636 if (Opc == -1) 3637 return error("Invalid record"); 3638 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 3639 InstructionList.push_back(I); 3640 if (OpNum < Record.size()) { 3641 if (Opc == Instruction::Add || 3642 Opc == Instruction::Sub || 3643 Opc == Instruction::Mul || 3644 Opc == Instruction::Shl) { 3645 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 3646 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 3647 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 3648 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 3649 } else if (Opc == Instruction::SDiv || 3650 Opc == Instruction::UDiv || 3651 Opc == Instruction::LShr || 3652 Opc == Instruction::AShr) { 3653 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 3654 cast<BinaryOperator>(I)->setIsExact(true); 3655 } else if (isa<FPMathOperator>(I)) { 3656 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 3657 if (FMF.any()) 3658 I->setFastMathFlags(FMF); 3659 } 3660 3661 } 3662 break; 3663 } 3664 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 3665 unsigned OpNum = 0; 3666 Value *Op; 3667 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 3668 OpNum+2 != Record.size()) 3669 return error("Invalid record"); 3670 3671 Type *ResTy = getTypeByID(Record[OpNum]); 3672 int Opc = getDecodedCastOpcode(Record[OpNum + 1]); 3673 if (Opc == -1 || !ResTy) 3674 return error("Invalid record"); 3675 Instruction *Temp = nullptr; 3676 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) { 3677 if (Temp) { 3678 InstructionList.push_back(Temp); 3679 CurBB->getInstList().push_back(Temp); 3680 } 3681 } else { 3682 auto CastOp = (Instruction::CastOps)Opc; 3683 if (!CastInst::castIsValid(CastOp, Op, ResTy)) 3684 return error("Invalid cast"); 3685 I = CastInst::Create(CastOp, Op, ResTy); 3686 } 3687 InstructionList.push_back(I); 3688 break; 3689 } 3690 case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD: 3691 case bitc::FUNC_CODE_INST_GEP_OLD: 3692 case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands] 3693 unsigned OpNum = 0; 3694 3695 Type *Ty; 3696 bool InBounds; 3697 3698 if (BitCode == bitc::FUNC_CODE_INST_GEP) { 3699 InBounds = Record[OpNum++]; 3700 Ty = getTypeByID(Record[OpNum++]); 3701 } else { 3702 InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD; 3703 Ty = nullptr; 3704 } 3705 3706 Value *BasePtr; 3707 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr)) 3708 return error("Invalid record"); 3709 3710 if (!Ty) 3711 Ty = cast<PointerType>(BasePtr->getType()->getScalarType()) 3712 ->getElementType(); 3713 else if (Ty != 3714 cast<PointerType>(BasePtr->getType()->getScalarType()) 3715 ->getElementType()) 3716 return error( 3717 "Explicit gep type does not match pointee type of pointer operand"); 3718 3719 SmallVector<Value*, 16> GEPIdx; 3720 while (OpNum != Record.size()) { 3721 Value *Op; 3722 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3723 return error("Invalid record"); 3724 GEPIdx.push_back(Op); 3725 } 3726 3727 I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx); 3728 3729 InstructionList.push_back(I); 3730 if (InBounds) 3731 cast<GetElementPtrInst>(I)->setIsInBounds(true); 3732 break; 3733 } 3734 3735 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 3736 // EXTRACTVAL: [opty, opval, n x indices] 3737 unsigned OpNum = 0; 3738 Value *Agg; 3739 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 3740 return error("Invalid record"); 3741 3742 unsigned RecSize = Record.size(); 3743 if (OpNum == RecSize) 3744 return error("EXTRACTVAL: Invalid instruction with 0 indices"); 3745 3746 SmallVector<unsigned, 4> EXTRACTVALIdx; 3747 Type *CurTy = Agg->getType(); 3748 for (; OpNum != RecSize; ++OpNum) { 3749 bool IsArray = CurTy->isArrayTy(); 3750 bool IsStruct = CurTy->isStructTy(); 3751 uint64_t Index = Record[OpNum]; 3752 3753 if (!IsStruct && !IsArray) 3754 return error("EXTRACTVAL: Invalid type"); 3755 if ((unsigned)Index != Index) 3756 return error("Invalid value"); 3757 if (IsStruct && Index >= CurTy->getStructNumElements()) 3758 return error("EXTRACTVAL: Invalid struct index"); 3759 if (IsArray && Index >= CurTy->getArrayNumElements()) 3760 return error("EXTRACTVAL: Invalid array index"); 3761 EXTRACTVALIdx.push_back((unsigned)Index); 3762 3763 if (IsStruct) 3764 CurTy = CurTy->getStructElementType(Index); 3765 else 3766 CurTy = CurTy->getArrayElementType(); 3767 } 3768 3769 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 3770 InstructionList.push_back(I); 3771 break; 3772 } 3773 3774 case bitc::FUNC_CODE_INST_INSERTVAL: { 3775 // INSERTVAL: [opty, opval, opty, opval, n x indices] 3776 unsigned OpNum = 0; 3777 Value *Agg; 3778 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 3779 return error("Invalid record"); 3780 Value *Val; 3781 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 3782 return error("Invalid record"); 3783 3784 unsigned RecSize = Record.size(); 3785 if (OpNum == RecSize) 3786 return error("INSERTVAL: Invalid instruction with 0 indices"); 3787 3788 SmallVector<unsigned, 4> INSERTVALIdx; 3789 Type *CurTy = Agg->getType(); 3790 for (; OpNum != RecSize; ++OpNum) { 3791 bool IsArray = CurTy->isArrayTy(); 3792 bool IsStruct = CurTy->isStructTy(); 3793 uint64_t Index = Record[OpNum]; 3794 3795 if (!IsStruct && !IsArray) 3796 return error("INSERTVAL: Invalid type"); 3797 if ((unsigned)Index != Index) 3798 return error("Invalid value"); 3799 if (IsStruct && Index >= CurTy->getStructNumElements()) 3800 return error("INSERTVAL: Invalid struct index"); 3801 if (IsArray && Index >= CurTy->getArrayNumElements()) 3802 return error("INSERTVAL: Invalid array index"); 3803 3804 INSERTVALIdx.push_back((unsigned)Index); 3805 if (IsStruct) 3806 CurTy = CurTy->getStructElementType(Index); 3807 else 3808 CurTy = CurTy->getArrayElementType(); 3809 } 3810 3811 if (CurTy != Val->getType()) 3812 return error("Inserted value type doesn't match aggregate type"); 3813 3814 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 3815 InstructionList.push_back(I); 3816 break; 3817 } 3818 3819 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 3820 // obsolete form of select 3821 // handles select i1 ... in old bitcode 3822 unsigned OpNum = 0; 3823 Value *TrueVal, *FalseVal, *Cond; 3824 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 3825 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 3826 popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond)) 3827 return error("Invalid record"); 3828 3829 I = SelectInst::Create(Cond, TrueVal, FalseVal); 3830 InstructionList.push_back(I); 3831 break; 3832 } 3833 3834 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 3835 // new form of select 3836 // handles select i1 or select [N x i1] 3837 unsigned OpNum = 0; 3838 Value *TrueVal, *FalseVal, *Cond; 3839 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 3840 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 3841 getValueTypePair(Record, OpNum, NextValueNo, Cond)) 3842 return error("Invalid record"); 3843 3844 // select condition can be either i1 or [N x i1] 3845 if (VectorType* vector_type = 3846 dyn_cast<VectorType>(Cond->getType())) { 3847 // expect <n x i1> 3848 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 3849 return error("Invalid type for value"); 3850 } else { 3851 // expect i1 3852 if (Cond->getType() != Type::getInt1Ty(Context)) 3853 return error("Invalid type for value"); 3854 } 3855 3856 I = SelectInst::Create(Cond, TrueVal, FalseVal); 3857 InstructionList.push_back(I); 3858 if (OpNum < Record.size() && isa<FPMathOperator>(I)) { 3859 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 3860 if (FMF.any()) 3861 I->setFastMathFlags(FMF); 3862 } 3863 break; 3864 } 3865 3866 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 3867 unsigned OpNum = 0; 3868 Value *Vec, *Idx; 3869 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 3870 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 3871 return error("Invalid record"); 3872 if (!Vec->getType()->isVectorTy()) 3873 return error("Invalid type for value"); 3874 I = ExtractElementInst::Create(Vec, Idx); 3875 InstructionList.push_back(I); 3876 break; 3877 } 3878 3879 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 3880 unsigned OpNum = 0; 3881 Value *Vec, *Elt, *Idx; 3882 if (getValueTypePair(Record, OpNum, NextValueNo, Vec)) 3883 return error("Invalid record"); 3884 if (!Vec->getType()->isVectorTy()) 3885 return error("Invalid type for value"); 3886 if (popValue(Record, OpNum, NextValueNo, 3887 cast<VectorType>(Vec->getType())->getElementType(), Elt) || 3888 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 3889 return error("Invalid record"); 3890 I = InsertElementInst::Create(Vec, Elt, Idx); 3891 InstructionList.push_back(I); 3892 break; 3893 } 3894 3895 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 3896 unsigned OpNum = 0; 3897 Value *Vec1, *Vec2, *Mask; 3898 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) || 3899 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2)) 3900 return error("Invalid record"); 3901 3902 if (getValueTypePair(Record, OpNum, NextValueNo, Mask)) 3903 return error("Invalid record"); 3904 if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy()) 3905 return error("Invalid type for value"); 3906 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 3907 InstructionList.push_back(I); 3908 break; 3909 } 3910 3911 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 3912 // Old form of ICmp/FCmp returning bool 3913 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 3914 // both legal on vectors but had different behaviour. 3915 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 3916 // FCmp/ICmp returning bool or vector of bool 3917 3918 unsigned OpNum = 0; 3919 Value *LHS, *RHS; 3920 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 3921 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS)) 3922 return error("Invalid record"); 3923 3924 unsigned PredVal = Record[OpNum]; 3925 bool IsFP = LHS->getType()->isFPOrFPVectorTy(); 3926 FastMathFlags FMF; 3927 if (IsFP && Record.size() > OpNum+1) 3928 FMF = getDecodedFastMathFlags(Record[++OpNum]); 3929 3930 if (OpNum+1 != Record.size()) 3931 return error("Invalid record"); 3932 3933 if (LHS->getType()->isFPOrFPVectorTy()) 3934 I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS); 3935 else 3936 I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS); 3937 3938 if (FMF.any()) 3939 I->setFastMathFlags(FMF); 3940 InstructionList.push_back(I); 3941 break; 3942 } 3943 3944 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 3945 { 3946 unsigned Size = Record.size(); 3947 if (Size == 0) { 3948 I = ReturnInst::Create(Context); 3949 InstructionList.push_back(I); 3950 break; 3951 } 3952 3953 unsigned OpNum = 0; 3954 Value *Op = nullptr; 3955 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3956 return error("Invalid record"); 3957 if (OpNum != Record.size()) 3958 return error("Invalid record"); 3959 3960 I = ReturnInst::Create(Context, Op); 3961 InstructionList.push_back(I); 3962 break; 3963 } 3964 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 3965 if (Record.size() != 1 && Record.size() != 3) 3966 return error("Invalid record"); 3967 BasicBlock *TrueDest = getBasicBlock(Record[0]); 3968 if (!TrueDest) 3969 return error("Invalid record"); 3970 3971 if (Record.size() == 1) { 3972 I = BranchInst::Create(TrueDest); 3973 InstructionList.push_back(I); 3974 } 3975 else { 3976 BasicBlock *FalseDest = getBasicBlock(Record[1]); 3977 Value *Cond = getValue(Record, 2, NextValueNo, 3978 Type::getInt1Ty(Context)); 3979 if (!FalseDest || !Cond) 3980 return error("Invalid record"); 3981 I = BranchInst::Create(TrueDest, FalseDest, Cond); 3982 InstructionList.push_back(I); 3983 } 3984 break; 3985 } 3986 case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#] 3987 if (Record.size() != 1 && Record.size() != 2) 3988 return error("Invalid record"); 3989 unsigned Idx = 0; 3990 Value *CleanupPad = 3991 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 3992 if (!CleanupPad) 3993 return error("Invalid record"); 3994 BasicBlock *UnwindDest = nullptr; 3995 if (Record.size() == 2) { 3996 UnwindDest = getBasicBlock(Record[Idx++]); 3997 if (!UnwindDest) 3998 return error("Invalid record"); 3999 } 4000 4001 I = CleanupReturnInst::Create(CleanupPad, UnwindDest); 4002 InstructionList.push_back(I); 4003 break; 4004 } 4005 case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#] 4006 if (Record.size() != 2) 4007 return error("Invalid record"); 4008 unsigned Idx = 0; 4009 Value *CatchPad = 4010 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4011 if (!CatchPad) 4012 return error("Invalid record"); 4013 BasicBlock *BB = getBasicBlock(Record[Idx++]); 4014 if (!BB) 4015 return error("Invalid record"); 4016 4017 I = CatchReturnInst::Create(CatchPad, BB); 4018 InstructionList.push_back(I); 4019 break; 4020 } 4021 case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?] 4022 // We must have, at minimum, the outer scope and the number of arguments. 4023 if (Record.size() < 2) 4024 return error("Invalid record"); 4025 4026 unsigned Idx = 0; 4027 4028 Value *ParentPad = 4029 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4030 4031 unsigned NumHandlers = Record[Idx++]; 4032 4033 SmallVector<BasicBlock *, 2> Handlers; 4034 for (unsigned Op = 0; Op != NumHandlers; ++Op) { 4035 BasicBlock *BB = getBasicBlock(Record[Idx++]); 4036 if (!BB) 4037 return error("Invalid record"); 4038 Handlers.push_back(BB); 4039 } 4040 4041 BasicBlock *UnwindDest = nullptr; 4042 if (Idx + 1 == Record.size()) { 4043 UnwindDest = getBasicBlock(Record[Idx++]); 4044 if (!UnwindDest) 4045 return error("Invalid record"); 4046 } 4047 4048 if (Record.size() != Idx) 4049 return error("Invalid record"); 4050 4051 auto *CatchSwitch = 4052 CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers); 4053 for (BasicBlock *Handler : Handlers) 4054 CatchSwitch->addHandler(Handler); 4055 I = CatchSwitch; 4056 InstructionList.push_back(I); 4057 break; 4058 } 4059 case bitc::FUNC_CODE_INST_CATCHPAD: 4060 case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*] 4061 // We must have, at minimum, the outer scope and the number of arguments. 4062 if (Record.size() < 2) 4063 return error("Invalid record"); 4064 4065 unsigned Idx = 0; 4066 4067 Value *ParentPad = 4068 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4069 4070 unsigned NumArgOperands = Record[Idx++]; 4071 4072 SmallVector<Value *, 2> Args; 4073 for (unsigned Op = 0; Op != NumArgOperands; ++Op) { 4074 Value *Val; 4075 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 4076 return error("Invalid record"); 4077 Args.push_back(Val); 4078 } 4079 4080 if (Record.size() != Idx) 4081 return error("Invalid record"); 4082 4083 if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD) 4084 I = CleanupPadInst::Create(ParentPad, Args); 4085 else 4086 I = CatchPadInst::Create(ParentPad, Args); 4087 InstructionList.push_back(I); 4088 break; 4089 } 4090 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 4091 // Check magic 4092 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { 4093 // "New" SwitchInst format with case ranges. The changes to write this 4094 // format were reverted but we still recognize bitcode that uses it. 4095 // Hopefully someday we will have support for case ranges and can use 4096 // this format again. 4097 4098 Type *OpTy = getTypeByID(Record[1]); 4099 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); 4100 4101 Value *Cond = getValue(Record, 2, NextValueNo, OpTy); 4102 BasicBlock *Default = getBasicBlock(Record[3]); 4103 if (!OpTy || !Cond || !Default) 4104 return error("Invalid record"); 4105 4106 unsigned NumCases = Record[4]; 4107 4108 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 4109 InstructionList.push_back(SI); 4110 4111 unsigned CurIdx = 5; 4112 for (unsigned i = 0; i != NumCases; ++i) { 4113 SmallVector<ConstantInt*, 1> CaseVals; 4114 unsigned NumItems = Record[CurIdx++]; 4115 for (unsigned ci = 0; ci != NumItems; ++ci) { 4116 bool isSingleNumber = Record[CurIdx++]; 4117 4118 APInt Low; 4119 unsigned ActiveWords = 1; 4120 if (ValueBitWidth > 64) 4121 ActiveWords = Record[CurIdx++]; 4122 Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 4123 ValueBitWidth); 4124 CurIdx += ActiveWords; 4125 4126 if (!isSingleNumber) { 4127 ActiveWords = 1; 4128 if (ValueBitWidth > 64) 4129 ActiveWords = Record[CurIdx++]; 4130 APInt High = readWideAPInt( 4131 makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth); 4132 CurIdx += ActiveWords; 4133 4134 // FIXME: It is not clear whether values in the range should be 4135 // compared as signed or unsigned values. The partially 4136 // implemented changes that used this format in the past used 4137 // unsigned comparisons. 4138 for ( ; Low.ule(High); ++Low) 4139 CaseVals.push_back(ConstantInt::get(Context, Low)); 4140 } else 4141 CaseVals.push_back(ConstantInt::get(Context, Low)); 4142 } 4143 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); 4144 for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(), 4145 cve = CaseVals.end(); cvi != cve; ++cvi) 4146 SI->addCase(*cvi, DestBB); 4147 } 4148 I = SI; 4149 break; 4150 } 4151 4152 // Old SwitchInst format without case ranges. 4153 4154 if (Record.size() < 3 || (Record.size() & 1) == 0) 4155 return error("Invalid record"); 4156 Type *OpTy = getTypeByID(Record[0]); 4157 Value *Cond = getValue(Record, 1, NextValueNo, OpTy); 4158 BasicBlock *Default = getBasicBlock(Record[2]); 4159 if (!OpTy || !Cond || !Default) 4160 return error("Invalid record"); 4161 unsigned NumCases = (Record.size()-3)/2; 4162 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 4163 InstructionList.push_back(SI); 4164 for (unsigned i = 0, e = NumCases; i != e; ++i) { 4165 ConstantInt *CaseVal = 4166 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy)); 4167 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 4168 if (!CaseVal || !DestBB) { 4169 delete SI; 4170 return error("Invalid record"); 4171 } 4172 SI->addCase(CaseVal, DestBB); 4173 } 4174 I = SI; 4175 break; 4176 } 4177 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 4178 if (Record.size() < 2) 4179 return error("Invalid record"); 4180 Type *OpTy = getTypeByID(Record[0]); 4181 Value *Address = getValue(Record, 1, NextValueNo, OpTy); 4182 if (!OpTy || !Address) 4183 return error("Invalid record"); 4184 unsigned NumDests = Record.size()-2; 4185 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 4186 InstructionList.push_back(IBI); 4187 for (unsigned i = 0, e = NumDests; i != e; ++i) { 4188 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 4189 IBI->addDestination(DestBB); 4190 } else { 4191 delete IBI; 4192 return error("Invalid record"); 4193 } 4194 } 4195 I = IBI; 4196 break; 4197 } 4198 4199 case bitc::FUNC_CODE_INST_INVOKE: { 4200 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 4201 if (Record.size() < 4) 4202 return error("Invalid record"); 4203 unsigned OpNum = 0; 4204 AttributeList PAL = getAttributes(Record[OpNum++]); 4205 unsigned CCInfo = Record[OpNum++]; 4206 BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]); 4207 BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]); 4208 4209 FunctionType *FTy = nullptr; 4210 if (CCInfo >> 13 & 1 && 4211 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])))) 4212 return error("Explicit invoke type is not a function type"); 4213 4214 Value *Callee; 4215 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 4216 return error("Invalid record"); 4217 4218 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 4219 if (!CalleeTy) 4220 return error("Callee is not a pointer"); 4221 if (!FTy) { 4222 FTy = dyn_cast<FunctionType>(CalleeTy->getElementType()); 4223 if (!FTy) 4224 return error("Callee is not of pointer to function type"); 4225 } else if (CalleeTy->getElementType() != FTy) 4226 return error("Explicit invoke type does not match pointee type of " 4227 "callee operand"); 4228 if (Record.size() < FTy->getNumParams() + OpNum) 4229 return error("Insufficient operands to call"); 4230 4231 SmallVector<Value*, 16> Ops; 4232 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 4233 Ops.push_back(getValue(Record, OpNum, NextValueNo, 4234 FTy->getParamType(i))); 4235 if (!Ops.back()) 4236 return error("Invalid record"); 4237 } 4238 4239 if (!FTy->isVarArg()) { 4240 if (Record.size() != OpNum) 4241 return error("Invalid record"); 4242 } else { 4243 // Read type/value pairs for varargs params. 4244 while (OpNum != Record.size()) { 4245 Value *Op; 4246 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4247 return error("Invalid record"); 4248 Ops.push_back(Op); 4249 } 4250 } 4251 4252 I = InvokeInst::Create(FTy, Callee, NormalBB, UnwindBB, Ops, 4253 OperandBundles); 4254 OperandBundles.clear(); 4255 InstructionList.push_back(I); 4256 cast<InvokeInst>(I)->setCallingConv( 4257 static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo)); 4258 cast<InvokeInst>(I)->setAttributes(PAL); 4259 break; 4260 } 4261 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 4262 unsigned Idx = 0; 4263 Value *Val = nullptr; 4264 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 4265 return error("Invalid record"); 4266 I = ResumeInst::Create(Val); 4267 InstructionList.push_back(I); 4268 break; 4269 } 4270 case bitc::FUNC_CODE_INST_CALLBR: { 4271 // CALLBR: [attr, cc, norm, transfs, fty, fnid, args] 4272 unsigned OpNum = 0; 4273 AttributeList PAL = getAttributes(Record[OpNum++]); 4274 unsigned CCInfo = Record[OpNum++]; 4275 4276 BasicBlock *DefaultDest = getBasicBlock(Record[OpNum++]); 4277 unsigned NumIndirectDests = Record[OpNum++]; 4278 SmallVector<BasicBlock *, 16> IndirectDests; 4279 for (unsigned i = 0, e = NumIndirectDests; i != e; ++i) 4280 IndirectDests.push_back(getBasicBlock(Record[OpNum++])); 4281 4282 FunctionType *FTy = nullptr; 4283 if (CCInfo >> bitc::CALL_EXPLICIT_TYPE & 1 && 4284 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])))) 4285 return error("Explicit call type is not a function type"); 4286 4287 Value *Callee; 4288 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 4289 return error("Invalid record"); 4290 4291 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 4292 if (!OpTy) 4293 return error("Callee is not a pointer type"); 4294 if (!FTy) { 4295 FTy = dyn_cast<FunctionType>(OpTy->getElementType()); 4296 if (!FTy) 4297 return error("Callee is not of pointer to function type"); 4298 } else if (OpTy->getElementType() != FTy) 4299 return error("Explicit call type does not match pointee type of " 4300 "callee operand"); 4301 if (Record.size() < FTy->getNumParams() + OpNum) 4302 return error("Insufficient operands to call"); 4303 4304 SmallVector<Value*, 16> Args; 4305 // Read the fixed params. 4306 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 4307 if (FTy->getParamType(i)->isLabelTy()) 4308 Args.push_back(getBasicBlock(Record[OpNum])); 4309 else 4310 Args.push_back(getValue(Record, OpNum, NextValueNo, 4311 FTy->getParamType(i))); 4312 if (!Args.back()) 4313 return error("Invalid record"); 4314 } 4315 4316 // Read type/value pairs for varargs params. 4317 if (!FTy->isVarArg()) { 4318 if (OpNum != Record.size()) 4319 return error("Invalid record"); 4320 } else { 4321 while (OpNum != Record.size()) { 4322 Value *Op; 4323 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4324 return error("Invalid record"); 4325 Args.push_back(Op); 4326 } 4327 } 4328 4329 I = CallBrInst::Create(FTy, Callee, DefaultDest, IndirectDests, Args, 4330 OperandBundles); 4331 OperandBundles.clear(); 4332 InstructionList.push_back(I); 4333 cast<CallBrInst>(I)->setCallingConv( 4334 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 4335 cast<CallBrInst>(I)->setAttributes(PAL); 4336 break; 4337 } 4338 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 4339 I = new UnreachableInst(Context); 4340 InstructionList.push_back(I); 4341 break; 4342 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 4343 if (Record.size() < 1 || ((Record.size()-1)&1)) 4344 return error("Invalid record"); 4345 Type *Ty = getTypeByID(Record[0]); 4346 if (!Ty) 4347 return error("Invalid record"); 4348 4349 PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2); 4350 InstructionList.push_back(PN); 4351 4352 for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) { 4353 Value *V; 4354 // With the new function encoding, it is possible that operands have 4355 // negative IDs (for forward references). Use a signed VBR 4356 // representation to keep the encoding small. 4357 if (UseRelativeIDs) 4358 V = getValueSigned(Record, 1+i, NextValueNo, Ty); 4359 else 4360 V = getValue(Record, 1+i, NextValueNo, Ty); 4361 BasicBlock *BB = getBasicBlock(Record[2+i]); 4362 if (!V || !BB) 4363 return error("Invalid record"); 4364 PN->addIncoming(V, BB); 4365 } 4366 I = PN; 4367 break; 4368 } 4369 4370 case bitc::FUNC_CODE_INST_LANDINGPAD: 4371 case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: { 4372 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 4373 unsigned Idx = 0; 4374 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) { 4375 if (Record.size() < 3) 4376 return error("Invalid record"); 4377 } else { 4378 assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD); 4379 if (Record.size() < 4) 4380 return error("Invalid record"); 4381 } 4382 Type *Ty = getTypeByID(Record[Idx++]); 4383 if (!Ty) 4384 return error("Invalid record"); 4385 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) { 4386 Value *PersFn = nullptr; 4387 if (getValueTypePair(Record, Idx, NextValueNo, PersFn)) 4388 return error("Invalid record"); 4389 4390 if (!F->hasPersonalityFn()) 4391 F->setPersonalityFn(cast<Constant>(PersFn)); 4392 else if (F->getPersonalityFn() != cast<Constant>(PersFn)) 4393 return error("Personality function mismatch"); 4394 } 4395 4396 bool IsCleanup = !!Record[Idx++]; 4397 unsigned NumClauses = Record[Idx++]; 4398 LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses); 4399 LP->setCleanup(IsCleanup); 4400 for (unsigned J = 0; J != NumClauses; ++J) { 4401 LandingPadInst::ClauseType CT = 4402 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 4403 Value *Val; 4404 4405 if (getValueTypePair(Record, Idx, NextValueNo, Val)) { 4406 delete LP; 4407 return error("Invalid record"); 4408 } 4409 4410 assert((CT != LandingPadInst::Catch || 4411 !isa<ArrayType>(Val->getType())) && 4412 "Catch clause has a invalid type!"); 4413 assert((CT != LandingPadInst::Filter || 4414 isa<ArrayType>(Val->getType())) && 4415 "Filter clause has invalid type!"); 4416 LP->addClause(cast<Constant>(Val)); 4417 } 4418 4419 I = LP; 4420 InstructionList.push_back(I); 4421 break; 4422 } 4423 4424 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 4425 if (Record.size() != 4) 4426 return error("Invalid record"); 4427 uint64_t AlignRecord = Record[3]; 4428 const uint64_t InAllocaMask = uint64_t(1) << 5; 4429 const uint64_t ExplicitTypeMask = uint64_t(1) << 6; 4430 const uint64_t SwiftErrorMask = uint64_t(1) << 7; 4431 const uint64_t FlagMask = InAllocaMask | ExplicitTypeMask | 4432 SwiftErrorMask; 4433 bool InAlloca = AlignRecord & InAllocaMask; 4434 bool SwiftError = AlignRecord & SwiftErrorMask; 4435 Type *Ty = getTypeByID(Record[0]); 4436 if ((AlignRecord & ExplicitTypeMask) == 0) { 4437 auto *PTy = dyn_cast_or_null<PointerType>(Ty); 4438 if (!PTy) 4439 return error("Old-style alloca with a non-pointer type"); 4440 Ty = PTy->getElementType(); 4441 } 4442 Type *OpTy = getTypeByID(Record[1]); 4443 Value *Size = getFnValueByID(Record[2], OpTy); 4444 unsigned Align; 4445 if (Error Err = parseAlignmentValue(AlignRecord & ~FlagMask, Align)) { 4446 return Err; 4447 } 4448 if (!Ty || !Size) 4449 return error("Invalid record"); 4450 4451 // FIXME: Make this an optional field. 4452 const DataLayout &DL = TheModule->getDataLayout(); 4453 unsigned AS = DL.getAllocaAddrSpace(); 4454 4455 AllocaInst *AI = new AllocaInst(Ty, AS, Size, Align); 4456 AI->setUsedWithInAlloca(InAlloca); 4457 AI->setSwiftError(SwiftError); 4458 I = AI; 4459 InstructionList.push_back(I); 4460 break; 4461 } 4462 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 4463 unsigned OpNum = 0; 4464 Value *Op; 4465 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4466 (OpNum + 2 != Record.size() && OpNum + 3 != Record.size())) 4467 return error("Invalid record"); 4468 4469 Type *Ty = nullptr; 4470 if (OpNum + 3 == Record.size()) 4471 Ty = getTypeByID(Record[OpNum++]); 4472 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 4473 return Err; 4474 if (!Ty) 4475 Ty = cast<PointerType>(Op->getType())->getElementType(); 4476 4477 unsigned Align; 4478 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4479 return Err; 4480 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], Align); 4481 4482 InstructionList.push_back(I); 4483 break; 4484 } 4485 case bitc::FUNC_CODE_INST_LOADATOMIC: { 4486 // LOADATOMIC: [opty, op, align, vol, ordering, ssid] 4487 unsigned OpNum = 0; 4488 Value *Op; 4489 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4490 (OpNum + 4 != Record.size() && OpNum + 5 != Record.size())) 4491 return error("Invalid record"); 4492 4493 Type *Ty = nullptr; 4494 if (OpNum + 5 == Record.size()) 4495 Ty = getTypeByID(Record[OpNum++]); 4496 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 4497 return Err; 4498 if (!Ty) 4499 Ty = cast<PointerType>(Op->getType())->getElementType(); 4500 4501 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4502 if (Ordering == AtomicOrdering::NotAtomic || 4503 Ordering == AtomicOrdering::Release || 4504 Ordering == AtomicOrdering::AcquireRelease) 4505 return error("Invalid record"); 4506 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 4507 return error("Invalid record"); 4508 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 4509 4510 unsigned Align; 4511 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4512 return Err; 4513 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], Align, Ordering, SSID); 4514 4515 InstructionList.push_back(I); 4516 break; 4517 } 4518 case bitc::FUNC_CODE_INST_STORE: 4519 case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol] 4520 unsigned OpNum = 0; 4521 Value *Val, *Ptr; 4522 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4523 (BitCode == bitc::FUNC_CODE_INST_STORE 4524 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 4525 : popValue(Record, OpNum, NextValueNo, 4526 cast<PointerType>(Ptr->getType())->getElementType(), 4527 Val)) || 4528 OpNum + 2 != Record.size()) 4529 return error("Invalid record"); 4530 4531 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 4532 return Err; 4533 unsigned Align; 4534 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4535 return Err; 4536 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align); 4537 InstructionList.push_back(I); 4538 break; 4539 } 4540 case bitc::FUNC_CODE_INST_STOREATOMIC: 4541 case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: { 4542 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, ssid] 4543 unsigned OpNum = 0; 4544 Value *Val, *Ptr; 4545 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4546 !isa<PointerType>(Ptr->getType()) || 4547 (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC 4548 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 4549 : popValue(Record, OpNum, NextValueNo, 4550 cast<PointerType>(Ptr->getType())->getElementType(), 4551 Val)) || 4552 OpNum + 4 != Record.size()) 4553 return error("Invalid record"); 4554 4555 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 4556 return Err; 4557 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4558 if (Ordering == AtomicOrdering::NotAtomic || 4559 Ordering == AtomicOrdering::Acquire || 4560 Ordering == AtomicOrdering::AcquireRelease) 4561 return error("Invalid record"); 4562 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 4563 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 4564 return error("Invalid record"); 4565 4566 unsigned Align; 4567 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4568 return Err; 4569 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align, Ordering, SSID); 4570 InstructionList.push_back(I); 4571 break; 4572 } 4573 case bitc::FUNC_CODE_INST_CMPXCHG_OLD: 4574 case bitc::FUNC_CODE_INST_CMPXCHG: { 4575 // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, ssid, 4576 // failureordering?, isweak?] 4577 unsigned OpNum = 0; 4578 Value *Ptr, *Cmp, *New; 4579 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4580 (BitCode == bitc::FUNC_CODE_INST_CMPXCHG 4581 ? getValueTypePair(Record, OpNum, NextValueNo, Cmp) 4582 : popValue(Record, OpNum, NextValueNo, 4583 cast<PointerType>(Ptr->getType())->getElementType(), 4584 Cmp)) || 4585 popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) || 4586 Record.size() < OpNum + 3 || Record.size() > OpNum + 5) 4587 return error("Invalid record"); 4588 AtomicOrdering SuccessOrdering = getDecodedOrdering(Record[OpNum + 1]); 4589 if (SuccessOrdering == AtomicOrdering::NotAtomic || 4590 SuccessOrdering == AtomicOrdering::Unordered) 4591 return error("Invalid record"); 4592 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]); 4593 4594 if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType())) 4595 return Err; 4596 AtomicOrdering FailureOrdering; 4597 if (Record.size() < 7) 4598 FailureOrdering = 4599 AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering); 4600 else 4601 FailureOrdering = getDecodedOrdering(Record[OpNum + 3]); 4602 4603 I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering, 4604 SSID); 4605 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 4606 4607 if (Record.size() < 8) { 4608 // Before weak cmpxchgs existed, the instruction simply returned the 4609 // value loaded from memory, so bitcode files from that era will be 4610 // expecting the first component of a modern cmpxchg. 4611 CurBB->getInstList().push_back(I); 4612 I = ExtractValueInst::Create(I, 0); 4613 } else { 4614 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]); 4615 } 4616 4617 InstructionList.push_back(I); 4618 break; 4619 } 4620 case bitc::FUNC_CODE_INST_ATOMICRMW: { 4621 // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, ssid] 4622 unsigned OpNum = 0; 4623 Value *Ptr, *Val; 4624 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4625 !isa<PointerType>(Ptr->getType()) || 4626 popValue(Record, OpNum, NextValueNo, 4627 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 4628 OpNum+4 != Record.size()) 4629 return error("Invalid record"); 4630 AtomicRMWInst::BinOp Operation = getDecodedRMWOperation(Record[OpNum]); 4631 if (Operation < AtomicRMWInst::FIRST_BINOP || 4632 Operation > AtomicRMWInst::LAST_BINOP) 4633 return error("Invalid record"); 4634 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4635 if (Ordering == AtomicOrdering::NotAtomic || 4636 Ordering == AtomicOrdering::Unordered) 4637 return error("Invalid record"); 4638 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 4639 I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SSID); 4640 cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]); 4641 InstructionList.push_back(I); 4642 break; 4643 } 4644 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, ssid] 4645 if (2 != Record.size()) 4646 return error("Invalid record"); 4647 AtomicOrdering Ordering = getDecodedOrdering(Record[0]); 4648 if (Ordering == AtomicOrdering::NotAtomic || 4649 Ordering == AtomicOrdering::Unordered || 4650 Ordering == AtomicOrdering::Monotonic) 4651 return error("Invalid record"); 4652 SyncScope::ID SSID = getDecodedSyncScopeID(Record[1]); 4653 I = new FenceInst(Context, Ordering, SSID); 4654 InstructionList.push_back(I); 4655 break; 4656 } 4657 case bitc::FUNC_CODE_INST_CALL: { 4658 // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...] 4659 if (Record.size() < 3) 4660 return error("Invalid record"); 4661 4662 unsigned OpNum = 0; 4663 AttributeList PAL = getAttributes(Record[OpNum++]); 4664 unsigned CCInfo = Record[OpNum++]; 4665 4666 FastMathFlags FMF; 4667 if ((CCInfo >> bitc::CALL_FMF) & 1) { 4668 FMF = getDecodedFastMathFlags(Record[OpNum++]); 4669 if (!FMF.any()) 4670 return error("Fast math flags indicator set for call with no FMF"); 4671 } 4672 4673 FunctionType *FTy = nullptr; 4674 if (CCInfo >> bitc::CALL_EXPLICIT_TYPE & 1 && 4675 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])))) 4676 return error("Explicit call type is not a function type"); 4677 4678 Value *Callee; 4679 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 4680 return error("Invalid record"); 4681 4682 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 4683 if (!OpTy) 4684 return error("Callee is not a pointer type"); 4685 if (!FTy) { 4686 FTy = dyn_cast<FunctionType>(OpTy->getElementType()); 4687 if (!FTy) 4688 return error("Callee is not of pointer to function type"); 4689 } else if (OpTy->getElementType() != FTy) 4690 return error("Explicit call type does not match pointee type of " 4691 "callee operand"); 4692 if (Record.size() < FTy->getNumParams() + OpNum) 4693 return error("Insufficient operands to call"); 4694 4695 SmallVector<Value*, 16> Args; 4696 // Read the fixed params. 4697 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 4698 if (FTy->getParamType(i)->isLabelTy()) 4699 Args.push_back(getBasicBlock(Record[OpNum])); 4700 else 4701 Args.push_back(getValue(Record, OpNum, NextValueNo, 4702 FTy->getParamType(i))); 4703 if (!Args.back()) 4704 return error("Invalid record"); 4705 } 4706 4707 // Read type/value pairs for varargs params. 4708 if (!FTy->isVarArg()) { 4709 if (OpNum != Record.size()) 4710 return error("Invalid record"); 4711 } else { 4712 while (OpNum != Record.size()) { 4713 Value *Op; 4714 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4715 return error("Invalid record"); 4716 Args.push_back(Op); 4717 } 4718 } 4719 4720 I = CallInst::Create(FTy, Callee, Args, OperandBundles); 4721 OperandBundles.clear(); 4722 InstructionList.push_back(I); 4723 cast<CallInst>(I)->setCallingConv( 4724 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 4725 CallInst::TailCallKind TCK = CallInst::TCK_None; 4726 if (CCInfo & 1 << bitc::CALL_TAIL) 4727 TCK = CallInst::TCK_Tail; 4728 if (CCInfo & (1 << bitc::CALL_MUSTTAIL)) 4729 TCK = CallInst::TCK_MustTail; 4730 if (CCInfo & (1 << bitc::CALL_NOTAIL)) 4731 TCK = CallInst::TCK_NoTail; 4732 cast<CallInst>(I)->setTailCallKind(TCK); 4733 cast<CallInst>(I)->setAttributes(PAL); 4734 if (FMF.any()) { 4735 if (!isa<FPMathOperator>(I)) 4736 return error("Fast-math-flags specified for call without " 4737 "floating-point scalar or vector return type"); 4738 I->setFastMathFlags(FMF); 4739 } 4740 break; 4741 } 4742 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 4743 if (Record.size() < 3) 4744 return error("Invalid record"); 4745 Type *OpTy = getTypeByID(Record[0]); 4746 Value *Op = getValue(Record, 1, NextValueNo, OpTy); 4747 Type *ResTy = getTypeByID(Record[2]); 4748 if (!OpTy || !Op || !ResTy) 4749 return error("Invalid record"); 4750 I = new VAArgInst(Op, ResTy); 4751 InstructionList.push_back(I); 4752 break; 4753 } 4754 4755 case bitc::FUNC_CODE_OPERAND_BUNDLE: { 4756 // A call or an invoke can be optionally prefixed with some variable 4757 // number of operand bundle blocks. These blocks are read into 4758 // OperandBundles and consumed at the next call or invoke instruction. 4759 4760 if (Record.size() < 1 || Record[0] >= BundleTags.size()) 4761 return error("Invalid record"); 4762 4763 std::vector<Value *> Inputs; 4764 4765 unsigned OpNum = 1; 4766 while (OpNum != Record.size()) { 4767 Value *Op; 4768 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4769 return error("Invalid record"); 4770 Inputs.push_back(Op); 4771 } 4772 4773 OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs)); 4774 continue; 4775 } 4776 } 4777 4778 // Add instruction to end of current BB. If there is no current BB, reject 4779 // this file. 4780 if (!CurBB) { 4781 I->deleteValue(); 4782 return error("Invalid instruction with no BB"); 4783 } 4784 if (!OperandBundles.empty()) { 4785 I->deleteValue(); 4786 return error("Operand bundles found with no consumer"); 4787 } 4788 CurBB->getInstList().push_back(I); 4789 4790 // If this was a terminator instruction, move to the next block. 4791 if (I->isTerminator()) { 4792 ++CurBBNo; 4793 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr; 4794 } 4795 4796 // Non-void values get registered in the value table for future use. 4797 if (I && !I->getType()->isVoidTy()) 4798 ValueList.assignValue(I, NextValueNo++); 4799 } 4800 4801 OutOfRecordLoop: 4802 4803 if (!OperandBundles.empty()) 4804 return error("Operand bundles found with no consumer"); 4805 4806 // Check the function list for unresolved values. 4807 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 4808 if (!A->getParent()) { 4809 // We found at least one unresolved value. Nuke them all to avoid leaks. 4810 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 4811 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) { 4812 A->replaceAllUsesWith(UndefValue::get(A->getType())); 4813 delete A; 4814 } 4815 } 4816 return error("Never resolved value found in function"); 4817 } 4818 } 4819 4820 // Unexpected unresolved metadata about to be dropped. 4821 if (MDLoader->hasFwdRefs()) 4822 return error("Invalid function metadata: outgoing forward refs"); 4823 4824 // Trim the value list down to the size it was before we parsed this function. 4825 ValueList.shrinkTo(ModuleValueListSize); 4826 MDLoader->shrinkTo(ModuleMDLoaderSize); 4827 std::vector<BasicBlock*>().swap(FunctionBBs); 4828 return Error::success(); 4829 } 4830 4831 /// Find the function body in the bitcode stream 4832 Error BitcodeReader::findFunctionInStream( 4833 Function *F, 4834 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) { 4835 while (DeferredFunctionInfoIterator->second == 0) { 4836 // This is the fallback handling for the old format bitcode that 4837 // didn't contain the function index in the VST, or when we have 4838 // an anonymous function which would not have a VST entry. 4839 // Assert that we have one of those two cases. 4840 assert(VSTOffset == 0 || !F->hasName()); 4841 // Parse the next body in the stream and set its position in the 4842 // DeferredFunctionInfo map. 4843 if (Error Err = rememberAndSkipFunctionBodies()) 4844 return Err; 4845 } 4846 return Error::success(); 4847 } 4848 4849 SyncScope::ID BitcodeReader::getDecodedSyncScopeID(unsigned Val) { 4850 if (Val == SyncScope::SingleThread || Val == SyncScope::System) 4851 return SyncScope::ID(Val); 4852 if (Val >= SSIDs.size()) 4853 return SyncScope::System; // Map unknown synchronization scopes to system. 4854 return SSIDs[Val]; 4855 } 4856 4857 //===----------------------------------------------------------------------===// 4858 // GVMaterializer implementation 4859 //===----------------------------------------------------------------------===// 4860 4861 Error BitcodeReader::materialize(GlobalValue *GV) { 4862 Function *F = dyn_cast<Function>(GV); 4863 // If it's not a function or is already material, ignore the request. 4864 if (!F || !F->isMaterializable()) 4865 return Error::success(); 4866 4867 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 4868 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 4869 // If its position is recorded as 0, its body is somewhere in the stream 4870 // but we haven't seen it yet. 4871 if (DFII->second == 0) 4872 if (Error Err = findFunctionInStream(F, DFII)) 4873 return Err; 4874 4875 // Materialize metadata before parsing any function bodies. 4876 if (Error Err = materializeMetadata()) 4877 return Err; 4878 4879 // Move the bit stream to the saved position of the deferred function body. 4880 Stream.JumpToBit(DFII->second); 4881 4882 if (Error Err = parseFunctionBody(F)) 4883 return Err; 4884 F->setIsMaterializable(false); 4885 4886 if (StripDebugInfo) 4887 stripDebugInfo(*F); 4888 4889 // Upgrade any old intrinsic calls in the function. 4890 for (auto &I : UpgradedIntrinsics) { 4891 for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end(); 4892 UI != UE;) { 4893 User *U = *UI; 4894 ++UI; 4895 if (CallInst *CI = dyn_cast<CallInst>(U)) 4896 UpgradeIntrinsicCall(CI, I.second); 4897 } 4898 } 4899 4900 // Update calls to the remangled intrinsics 4901 for (auto &I : RemangledIntrinsics) 4902 for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end(); 4903 UI != UE;) 4904 // Don't expect any other users than call sites 4905 CallSite(*UI++).setCalledFunction(I.second); 4906 4907 // Finish fn->subprogram upgrade for materialized functions. 4908 if (DISubprogram *SP = MDLoader->lookupSubprogramForFunction(F)) 4909 F->setSubprogram(SP); 4910 4911 // Check if the TBAA Metadata are valid, otherwise we will need to strip them. 4912 if (!MDLoader->isStrippingTBAA()) { 4913 for (auto &I : instructions(F)) { 4914 MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa); 4915 if (!TBAA || TBAAVerifyHelper.visitTBAAMetadata(I, TBAA)) 4916 continue; 4917 MDLoader->setStripTBAA(true); 4918 stripTBAA(F->getParent()); 4919 } 4920 } 4921 4922 // Bring in any functions that this function forward-referenced via 4923 // blockaddresses. 4924 return materializeForwardReferencedFunctions(); 4925 } 4926 4927 Error BitcodeReader::materializeModule() { 4928 if (Error Err = materializeMetadata()) 4929 return Err; 4930 4931 // Promise to materialize all forward references. 4932 WillMaterializeAllForwardRefs = true; 4933 4934 // Iterate over the module, deserializing any functions that are still on 4935 // disk. 4936 for (Function &F : *TheModule) { 4937 if (Error Err = materialize(&F)) 4938 return Err; 4939 } 4940 // At this point, if there are any function bodies, parse the rest of 4941 // the bits in the module past the last function block we have recorded 4942 // through either lazy scanning or the VST. 4943 if (LastFunctionBlockBit || NextUnreadBit) 4944 if (Error Err = parseModule(LastFunctionBlockBit > NextUnreadBit 4945 ? LastFunctionBlockBit 4946 : NextUnreadBit)) 4947 return Err; 4948 4949 // Check that all block address forward references got resolved (as we 4950 // promised above). 4951 if (!BasicBlockFwdRefs.empty()) 4952 return error("Never resolved function from blockaddress"); 4953 4954 // Upgrade any intrinsic calls that slipped through (should not happen!) and 4955 // delete the old functions to clean up. We can't do this unless the entire 4956 // module is materialized because there could always be another function body 4957 // with calls to the old function. 4958 for (auto &I : UpgradedIntrinsics) { 4959 for (auto *U : I.first->users()) { 4960 if (CallInst *CI = dyn_cast<CallInst>(U)) 4961 UpgradeIntrinsicCall(CI, I.second); 4962 } 4963 if (!I.first->use_empty()) 4964 I.first->replaceAllUsesWith(I.second); 4965 I.first->eraseFromParent(); 4966 } 4967 UpgradedIntrinsics.clear(); 4968 // Do the same for remangled intrinsics 4969 for (auto &I : RemangledIntrinsics) { 4970 I.first->replaceAllUsesWith(I.second); 4971 I.first->eraseFromParent(); 4972 } 4973 RemangledIntrinsics.clear(); 4974 4975 UpgradeDebugInfo(*TheModule); 4976 4977 UpgradeModuleFlags(*TheModule); 4978 4979 UpgradeRetainReleaseMarker(*TheModule); 4980 4981 return Error::success(); 4982 } 4983 4984 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const { 4985 return IdentifiedStructTypes; 4986 } 4987 4988 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader( 4989 BitstreamCursor Cursor, StringRef Strtab, ModuleSummaryIndex &TheIndex, 4990 StringRef ModulePath, unsigned ModuleId) 4991 : BitcodeReaderBase(std::move(Cursor), Strtab), TheIndex(TheIndex), 4992 ModulePath(ModulePath), ModuleId(ModuleId) {} 4993 4994 void ModuleSummaryIndexBitcodeReader::addThisModule() { 4995 TheIndex.addModule(ModulePath, ModuleId); 4996 } 4997 4998 ModuleSummaryIndex::ModuleInfo * 4999 ModuleSummaryIndexBitcodeReader::getThisModule() { 5000 return TheIndex.getModule(ModulePath); 5001 } 5002 5003 std::pair<ValueInfo, GlobalValue::GUID> 5004 ModuleSummaryIndexBitcodeReader::getValueInfoFromValueId(unsigned ValueId) { 5005 auto VGI = ValueIdToValueInfoMap[ValueId]; 5006 assert(VGI.first); 5007 return VGI; 5008 } 5009 5010 void ModuleSummaryIndexBitcodeReader::setValueGUID( 5011 uint64_t ValueID, StringRef ValueName, GlobalValue::LinkageTypes Linkage, 5012 StringRef SourceFileName) { 5013 std::string GlobalId = 5014 GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName); 5015 auto ValueGUID = GlobalValue::getGUID(GlobalId); 5016 auto OriginalNameID = ValueGUID; 5017 if (GlobalValue::isLocalLinkage(Linkage)) 5018 OriginalNameID = GlobalValue::getGUID(ValueName); 5019 if (PrintSummaryGUIDs) 5020 dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is " 5021 << ValueName << "\n"; 5022 5023 // UseStrtab is false for legacy summary formats and value names are 5024 // created on stack. In that case we save the name in a string saver in 5025 // the index so that the value name can be recorded. 5026 ValueIdToValueInfoMap[ValueID] = std::make_pair( 5027 TheIndex.getOrInsertValueInfo( 5028 ValueGUID, 5029 UseStrtab ? ValueName : TheIndex.saveString(ValueName)), 5030 OriginalNameID); 5031 } 5032 5033 // Specialized value symbol table parser used when reading module index 5034 // blocks where we don't actually create global values. The parsed information 5035 // is saved in the bitcode reader for use when later parsing summaries. 5036 Error ModuleSummaryIndexBitcodeReader::parseValueSymbolTable( 5037 uint64_t Offset, 5038 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) { 5039 // With a strtab the VST is not required to parse the summary. 5040 if (UseStrtab) 5041 return Error::success(); 5042 5043 assert(Offset > 0 && "Expected non-zero VST offset"); 5044 uint64_t CurrentBit = jumpToValueSymbolTable(Offset, Stream); 5045 5046 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 5047 return error("Invalid record"); 5048 5049 SmallVector<uint64_t, 64> Record; 5050 5051 // Read all the records for this value table. 5052 SmallString<128> ValueName; 5053 5054 while (true) { 5055 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5056 5057 switch (Entry.Kind) { 5058 case BitstreamEntry::SubBlock: // Handled for us already. 5059 case BitstreamEntry::Error: 5060 return error("Malformed block"); 5061 case BitstreamEntry::EndBlock: 5062 // Done parsing VST, jump back to wherever we came from. 5063 Stream.JumpToBit(CurrentBit); 5064 return Error::success(); 5065 case BitstreamEntry::Record: 5066 // The interesting case. 5067 break; 5068 } 5069 5070 // Read a record. 5071 Record.clear(); 5072 switch (Stream.readRecord(Entry.ID, Record)) { 5073 default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records). 5074 break; 5075 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 5076 if (convertToString(Record, 1, ValueName)) 5077 return error("Invalid record"); 5078 unsigned ValueID = Record[0]; 5079 assert(!SourceFileName.empty()); 5080 auto VLI = ValueIdToLinkageMap.find(ValueID); 5081 assert(VLI != ValueIdToLinkageMap.end() && 5082 "No linkage found for VST entry?"); 5083 auto Linkage = VLI->second; 5084 setValueGUID(ValueID, ValueName, Linkage, SourceFileName); 5085 ValueName.clear(); 5086 break; 5087 } 5088 case bitc::VST_CODE_FNENTRY: { 5089 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 5090 if (convertToString(Record, 2, ValueName)) 5091 return error("Invalid record"); 5092 unsigned ValueID = Record[0]; 5093 assert(!SourceFileName.empty()); 5094 auto VLI = ValueIdToLinkageMap.find(ValueID); 5095 assert(VLI != ValueIdToLinkageMap.end() && 5096 "No linkage found for VST entry?"); 5097 auto Linkage = VLI->second; 5098 setValueGUID(ValueID, ValueName, Linkage, SourceFileName); 5099 ValueName.clear(); 5100 break; 5101 } 5102 case bitc::VST_CODE_COMBINED_ENTRY: { 5103 // VST_CODE_COMBINED_ENTRY: [valueid, refguid] 5104 unsigned ValueID = Record[0]; 5105 GlobalValue::GUID RefGUID = Record[1]; 5106 // The "original name", which is the second value of the pair will be 5107 // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index. 5108 ValueIdToValueInfoMap[ValueID] = 5109 std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID); 5110 break; 5111 } 5112 } 5113 } 5114 } 5115 5116 // Parse just the blocks needed for building the index out of the module. 5117 // At the end of this routine the module Index is populated with a map 5118 // from global value id to GlobalValueSummary objects. 5119 Error ModuleSummaryIndexBitcodeReader::parseModule() { 5120 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 5121 return error("Invalid record"); 5122 5123 SmallVector<uint64_t, 64> Record; 5124 DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap; 5125 unsigned ValueId = 0; 5126 5127 // Read the index for this module. 5128 while (true) { 5129 BitstreamEntry Entry = Stream.advance(); 5130 5131 switch (Entry.Kind) { 5132 case BitstreamEntry::Error: 5133 return error("Malformed block"); 5134 case BitstreamEntry::EndBlock: 5135 return Error::success(); 5136 5137 case BitstreamEntry::SubBlock: 5138 switch (Entry.ID) { 5139 default: // Skip unknown content. 5140 if (Stream.SkipBlock()) 5141 return error("Invalid record"); 5142 break; 5143 case bitc::BLOCKINFO_BLOCK_ID: 5144 // Need to parse these to get abbrev ids (e.g. for VST) 5145 if (readBlockInfo()) 5146 return error("Malformed block"); 5147 break; 5148 case bitc::VALUE_SYMTAB_BLOCK_ID: 5149 // Should have been parsed earlier via VSTOffset, unless there 5150 // is no summary section. 5151 assert(((SeenValueSymbolTable && VSTOffset > 0) || 5152 !SeenGlobalValSummary) && 5153 "Expected early VST parse via VSTOffset record"); 5154 if (Stream.SkipBlock()) 5155 return error("Invalid record"); 5156 break; 5157 case bitc::GLOBALVAL_SUMMARY_BLOCK_ID: 5158 case bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID: 5159 // Add the module if it is a per-module index (has a source file name). 5160 if (!SourceFileName.empty()) 5161 addThisModule(); 5162 assert(!SeenValueSymbolTable && 5163 "Already read VST when parsing summary block?"); 5164 // We might not have a VST if there were no values in the 5165 // summary. An empty summary block generated when we are 5166 // performing ThinLTO compiles so we don't later invoke 5167 // the regular LTO process on them. 5168 if (VSTOffset > 0) { 5169 if (Error Err = parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap)) 5170 return Err; 5171 SeenValueSymbolTable = true; 5172 } 5173 SeenGlobalValSummary = true; 5174 if (Error Err = parseEntireSummary(Entry.ID)) 5175 return Err; 5176 break; 5177 case bitc::MODULE_STRTAB_BLOCK_ID: 5178 if (Error Err = parseModuleStringTable()) 5179 return Err; 5180 break; 5181 } 5182 continue; 5183 5184 case BitstreamEntry::Record: { 5185 Record.clear(); 5186 auto BitCode = Stream.readRecord(Entry.ID, Record); 5187 switch (BitCode) { 5188 default: 5189 break; // Default behavior, ignore unknown content. 5190 case bitc::MODULE_CODE_VERSION: { 5191 if (Error Err = parseVersionRecord(Record).takeError()) 5192 return Err; 5193 break; 5194 } 5195 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 5196 case bitc::MODULE_CODE_SOURCE_FILENAME: { 5197 SmallString<128> ValueName; 5198 if (convertToString(Record, 0, ValueName)) 5199 return error("Invalid record"); 5200 SourceFileName = ValueName.c_str(); 5201 break; 5202 } 5203 /// MODULE_CODE_HASH: [5*i32] 5204 case bitc::MODULE_CODE_HASH: { 5205 if (Record.size() != 5) 5206 return error("Invalid hash length " + Twine(Record.size()).str()); 5207 auto &Hash = getThisModule()->second.second; 5208 int Pos = 0; 5209 for (auto &Val : Record) { 5210 assert(!(Val >> 32) && "Unexpected high bits set"); 5211 Hash[Pos++] = Val; 5212 } 5213 break; 5214 } 5215 /// MODULE_CODE_VSTOFFSET: [offset] 5216 case bitc::MODULE_CODE_VSTOFFSET: 5217 if (Record.size() < 1) 5218 return error("Invalid record"); 5219 // Note that we subtract 1 here because the offset is relative to one 5220 // word before the start of the identification or module block, which 5221 // was historically always the start of the regular bitcode header. 5222 VSTOffset = Record[0] - 1; 5223 break; 5224 // v1 GLOBALVAR: [pointer type, isconst, initid, linkage, ...] 5225 // v1 FUNCTION: [type, callingconv, isproto, linkage, ...] 5226 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, ...] 5227 // v2: [strtab offset, strtab size, v1] 5228 case bitc::MODULE_CODE_GLOBALVAR: 5229 case bitc::MODULE_CODE_FUNCTION: 5230 case bitc::MODULE_CODE_ALIAS: { 5231 StringRef Name; 5232 ArrayRef<uint64_t> GVRecord; 5233 std::tie(Name, GVRecord) = readNameFromStrtab(Record); 5234 if (GVRecord.size() <= 3) 5235 return error("Invalid record"); 5236 uint64_t RawLinkage = GVRecord[3]; 5237 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 5238 if (!UseStrtab) { 5239 ValueIdToLinkageMap[ValueId++] = Linkage; 5240 break; 5241 } 5242 5243 setValueGUID(ValueId++, Name, Linkage, SourceFileName); 5244 break; 5245 } 5246 } 5247 } 5248 continue; 5249 } 5250 } 5251 } 5252 5253 std::vector<ValueInfo> 5254 ModuleSummaryIndexBitcodeReader::makeRefList(ArrayRef<uint64_t> Record) { 5255 std::vector<ValueInfo> Ret; 5256 Ret.reserve(Record.size()); 5257 for (uint64_t RefValueId : Record) 5258 Ret.push_back(getValueInfoFromValueId(RefValueId).first); 5259 return Ret; 5260 } 5261 5262 std::vector<FunctionSummary::EdgeTy> 5263 ModuleSummaryIndexBitcodeReader::makeCallList(ArrayRef<uint64_t> Record, 5264 bool IsOldProfileFormat, 5265 bool HasProfile, bool HasRelBF) { 5266 std::vector<FunctionSummary::EdgeTy> Ret; 5267 Ret.reserve(Record.size()); 5268 for (unsigned I = 0, E = Record.size(); I != E; ++I) { 5269 CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown; 5270 uint64_t RelBF = 0; 5271 ValueInfo Callee = getValueInfoFromValueId(Record[I]).first; 5272 if (IsOldProfileFormat) { 5273 I += 1; // Skip old callsitecount field 5274 if (HasProfile) 5275 I += 1; // Skip old profilecount field 5276 } else if (HasProfile) 5277 Hotness = static_cast<CalleeInfo::HotnessType>(Record[++I]); 5278 else if (HasRelBF) 5279 RelBF = Record[++I]; 5280 Ret.push_back(FunctionSummary::EdgeTy{Callee, CalleeInfo(Hotness, RelBF)}); 5281 } 5282 return Ret; 5283 } 5284 5285 static void 5286 parseWholeProgramDevirtResolutionByArg(ArrayRef<uint64_t> Record, size_t &Slot, 5287 WholeProgramDevirtResolution &Wpd) { 5288 uint64_t ArgNum = Record[Slot++]; 5289 WholeProgramDevirtResolution::ByArg &B = 5290 Wpd.ResByArg[{Record.begin() + Slot, Record.begin() + Slot + ArgNum}]; 5291 Slot += ArgNum; 5292 5293 B.TheKind = 5294 static_cast<WholeProgramDevirtResolution::ByArg::Kind>(Record[Slot++]); 5295 B.Info = Record[Slot++]; 5296 B.Byte = Record[Slot++]; 5297 B.Bit = Record[Slot++]; 5298 } 5299 5300 static void parseWholeProgramDevirtResolution(ArrayRef<uint64_t> Record, 5301 StringRef Strtab, size_t &Slot, 5302 TypeIdSummary &TypeId) { 5303 uint64_t Id = Record[Slot++]; 5304 WholeProgramDevirtResolution &Wpd = TypeId.WPDRes[Id]; 5305 5306 Wpd.TheKind = static_cast<WholeProgramDevirtResolution::Kind>(Record[Slot++]); 5307 Wpd.SingleImplName = {Strtab.data() + Record[Slot], 5308 static_cast<size_t>(Record[Slot + 1])}; 5309 Slot += 2; 5310 5311 uint64_t ResByArgNum = Record[Slot++]; 5312 for (uint64_t I = 0; I != ResByArgNum; ++I) 5313 parseWholeProgramDevirtResolutionByArg(Record, Slot, Wpd); 5314 } 5315 5316 static void parseTypeIdSummaryRecord(ArrayRef<uint64_t> Record, 5317 StringRef Strtab, 5318 ModuleSummaryIndex &TheIndex) { 5319 size_t Slot = 0; 5320 TypeIdSummary &TypeId = TheIndex.getOrInsertTypeIdSummary( 5321 {Strtab.data() + Record[Slot], static_cast<size_t>(Record[Slot + 1])}); 5322 Slot += 2; 5323 5324 TypeId.TTRes.TheKind = static_cast<TypeTestResolution::Kind>(Record[Slot++]); 5325 TypeId.TTRes.SizeM1BitWidth = Record[Slot++]; 5326 TypeId.TTRes.AlignLog2 = Record[Slot++]; 5327 TypeId.TTRes.SizeM1 = Record[Slot++]; 5328 TypeId.TTRes.BitMask = Record[Slot++]; 5329 TypeId.TTRes.InlineBits = Record[Slot++]; 5330 5331 while (Slot < Record.size()) 5332 parseWholeProgramDevirtResolution(Record, Strtab, Slot, TypeId); 5333 } 5334 5335 static void setImmutableRefs(std::vector<ValueInfo> &Refs, unsigned Count) { 5336 // Read-only refs are in the end of the refs list. 5337 for (unsigned RefNo = Refs.size() - Count; RefNo < Refs.size(); ++RefNo) 5338 Refs[RefNo].setReadOnly(); 5339 } 5340 5341 // Eagerly parse the entire summary block. This populates the GlobalValueSummary 5342 // objects in the index. 5343 Error ModuleSummaryIndexBitcodeReader::parseEntireSummary(unsigned ID) { 5344 if (Stream.EnterSubBlock(ID)) 5345 return error("Invalid record"); 5346 SmallVector<uint64_t, 64> Record; 5347 5348 // Parse version 5349 { 5350 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5351 if (Entry.Kind != BitstreamEntry::Record) 5352 return error("Invalid Summary Block: record for version expected"); 5353 if (Stream.readRecord(Entry.ID, Record) != bitc::FS_VERSION) 5354 return error("Invalid Summary Block: version expected"); 5355 } 5356 const uint64_t Version = Record[0]; 5357 const bool IsOldProfileFormat = Version == 1; 5358 if (Version < 1 || Version > 6) 5359 return error("Invalid summary version " + Twine(Version) + 5360 ". Version should be in the range [1-6]."); 5361 Record.clear(); 5362 5363 // Keep around the last seen summary to be used when we see an optional 5364 // "OriginalName" attachement. 5365 GlobalValueSummary *LastSeenSummary = nullptr; 5366 GlobalValue::GUID LastSeenGUID = 0; 5367 5368 // We can expect to see any number of type ID information records before 5369 // each function summary records; these variables store the information 5370 // collected so far so that it can be used to create the summary object. 5371 std::vector<GlobalValue::GUID> PendingTypeTests; 5372 std::vector<FunctionSummary::VFuncId> PendingTypeTestAssumeVCalls, 5373 PendingTypeCheckedLoadVCalls; 5374 std::vector<FunctionSummary::ConstVCall> PendingTypeTestAssumeConstVCalls, 5375 PendingTypeCheckedLoadConstVCalls; 5376 5377 while (true) { 5378 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5379 5380 switch (Entry.Kind) { 5381 case BitstreamEntry::SubBlock: // Handled for us already. 5382 case BitstreamEntry::Error: 5383 return error("Malformed block"); 5384 case BitstreamEntry::EndBlock: 5385 return Error::success(); 5386 case BitstreamEntry::Record: 5387 // The interesting case. 5388 break; 5389 } 5390 5391 // Read a record. The record format depends on whether this 5392 // is a per-module index or a combined index file. In the per-module 5393 // case the records contain the associated value's ID for correlation 5394 // with VST entries. In the combined index the correlation is done 5395 // via the bitcode offset of the summary records (which were saved 5396 // in the combined index VST entries). The records also contain 5397 // information used for ThinLTO renaming and importing. 5398 Record.clear(); 5399 auto BitCode = Stream.readRecord(Entry.ID, Record); 5400 switch (BitCode) { 5401 default: // Default behavior: ignore. 5402 break; 5403 case bitc::FS_FLAGS: { // [flags] 5404 uint64_t Flags = Record[0]; 5405 // Scan flags. 5406 assert(Flags <= 0x1f && "Unexpected bits in flag"); 5407 5408 // 1 bit: WithGlobalValueDeadStripping flag. 5409 // Set on combined index only. 5410 if (Flags & 0x1) 5411 TheIndex.setWithGlobalValueDeadStripping(); 5412 // 1 bit: SkipModuleByDistributedBackend flag. 5413 // Set on combined index only. 5414 if (Flags & 0x2) 5415 TheIndex.setSkipModuleByDistributedBackend(); 5416 // 1 bit: HasSyntheticEntryCounts flag. 5417 // Set on combined index only. 5418 if (Flags & 0x4) 5419 TheIndex.setHasSyntheticEntryCounts(); 5420 // 1 bit: DisableSplitLTOUnit flag. 5421 // Set on per module indexes. It is up to the client to validate 5422 // the consistency of this flag across modules being linked. 5423 if (Flags & 0x8) 5424 TheIndex.setEnableSplitLTOUnit(); 5425 // 1 bit: PartiallySplitLTOUnits flag. 5426 // Set on combined index only. 5427 if (Flags & 0x10) 5428 TheIndex.setPartiallySplitLTOUnits(); 5429 break; 5430 } 5431 case bitc::FS_VALUE_GUID: { // [valueid, refguid] 5432 uint64_t ValueID = Record[0]; 5433 GlobalValue::GUID RefGUID = Record[1]; 5434 ValueIdToValueInfoMap[ValueID] = 5435 std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID); 5436 break; 5437 } 5438 // FS_PERMODULE: [valueid, flags, instcount, fflags, numrefs, 5439 // numrefs x valueid, n x (valueid)] 5440 // FS_PERMODULE_PROFILE: [valueid, flags, instcount, fflags, numrefs, 5441 // numrefs x valueid, 5442 // n x (valueid, hotness)] 5443 // FS_PERMODULE_RELBF: [valueid, flags, instcount, fflags, numrefs, 5444 // numrefs x valueid, 5445 // n x (valueid, relblockfreq)] 5446 case bitc::FS_PERMODULE: 5447 case bitc::FS_PERMODULE_RELBF: 5448 case bitc::FS_PERMODULE_PROFILE: { 5449 unsigned ValueID = Record[0]; 5450 uint64_t RawFlags = Record[1]; 5451 unsigned InstCount = Record[2]; 5452 uint64_t RawFunFlags = 0; 5453 unsigned NumRefs = Record[3]; 5454 unsigned NumImmutableRefs = 0; 5455 int RefListStartIndex = 4; 5456 if (Version >= 4) { 5457 RawFunFlags = Record[3]; 5458 NumRefs = Record[4]; 5459 RefListStartIndex = 5; 5460 if (Version >= 5) { 5461 NumImmutableRefs = Record[5]; 5462 RefListStartIndex = 6; 5463 } 5464 } 5465 5466 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5467 // The module path string ref set in the summary must be owned by the 5468 // index's module string table. Since we don't have a module path 5469 // string table section in the per-module index, we create a single 5470 // module path string table entry with an empty (0) ID to take 5471 // ownership. 5472 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 5473 assert(Record.size() >= RefListStartIndex + NumRefs && 5474 "Record size inconsistent with number of references"); 5475 std::vector<ValueInfo> Refs = makeRefList( 5476 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 5477 bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE); 5478 bool HasRelBF = (BitCode == bitc::FS_PERMODULE_RELBF); 5479 std::vector<FunctionSummary::EdgeTy> Calls = makeCallList( 5480 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex), 5481 IsOldProfileFormat, HasProfile, HasRelBF); 5482 setImmutableRefs(Refs, NumImmutableRefs); 5483 auto FS = llvm::make_unique<FunctionSummary>( 5484 Flags, InstCount, getDecodedFFlags(RawFunFlags), /*EntryCount=*/0, 5485 std::move(Refs), std::move(Calls), std::move(PendingTypeTests), 5486 std::move(PendingTypeTestAssumeVCalls), 5487 std::move(PendingTypeCheckedLoadVCalls), 5488 std::move(PendingTypeTestAssumeConstVCalls), 5489 std::move(PendingTypeCheckedLoadConstVCalls)); 5490 PendingTypeTests.clear(); 5491 PendingTypeTestAssumeVCalls.clear(); 5492 PendingTypeCheckedLoadVCalls.clear(); 5493 PendingTypeTestAssumeConstVCalls.clear(); 5494 PendingTypeCheckedLoadConstVCalls.clear(); 5495 auto VIAndOriginalGUID = getValueInfoFromValueId(ValueID); 5496 FS->setModulePath(getThisModule()->first()); 5497 FS->setOriginalName(VIAndOriginalGUID.second); 5498 TheIndex.addGlobalValueSummary(VIAndOriginalGUID.first, std::move(FS)); 5499 break; 5500 } 5501 // FS_ALIAS: [valueid, flags, valueid] 5502 // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as 5503 // they expect all aliasee summaries to be available. 5504 case bitc::FS_ALIAS: { 5505 unsigned ValueID = Record[0]; 5506 uint64_t RawFlags = Record[1]; 5507 unsigned AliaseeID = Record[2]; 5508 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5509 auto AS = llvm::make_unique<AliasSummary>(Flags); 5510 // The module path string ref set in the summary must be owned by the 5511 // index's module string table. Since we don't have a module path 5512 // string table section in the per-module index, we create a single 5513 // module path string table entry with an empty (0) ID to take 5514 // ownership. 5515 AS->setModulePath(getThisModule()->first()); 5516 5517 auto AliaseeVI = getValueInfoFromValueId(AliaseeID).first; 5518 auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, ModulePath); 5519 if (!AliaseeInModule) 5520 return error("Alias expects aliasee summary to be parsed"); 5521 AS->setAliasee(AliaseeVI, AliaseeInModule); 5522 5523 auto GUID = getValueInfoFromValueId(ValueID); 5524 AS->setOriginalName(GUID.second); 5525 TheIndex.addGlobalValueSummary(GUID.first, std::move(AS)); 5526 break; 5527 } 5528 // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, n x valueid] 5529 case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: { 5530 unsigned ValueID = Record[0]; 5531 uint64_t RawFlags = Record[1]; 5532 unsigned RefArrayStart = 2; 5533 GlobalVarSummary::GVarFlags GVF; 5534 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5535 if (Version >= 5) { 5536 GVF = getDecodedGVarFlags(Record[2]); 5537 RefArrayStart = 3; 5538 } 5539 std::vector<ValueInfo> Refs = 5540 makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart)); 5541 auto FS = 5542 llvm::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 5543 FS->setModulePath(getThisModule()->first()); 5544 auto GUID = getValueInfoFromValueId(ValueID); 5545 FS->setOriginalName(GUID.second); 5546 TheIndex.addGlobalValueSummary(GUID.first, std::move(FS)); 5547 break; 5548 } 5549 // FS_COMBINED: [valueid, modid, flags, instcount, fflags, numrefs, 5550 // numrefs x valueid, n x (valueid)] 5551 // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, fflags, numrefs, 5552 // numrefs x valueid, n x (valueid, hotness)] 5553 case bitc::FS_COMBINED: 5554 case bitc::FS_COMBINED_PROFILE: { 5555 unsigned ValueID = Record[0]; 5556 uint64_t ModuleId = Record[1]; 5557 uint64_t RawFlags = Record[2]; 5558 unsigned InstCount = Record[3]; 5559 uint64_t RawFunFlags = 0; 5560 uint64_t EntryCount = 0; 5561 unsigned NumRefs = Record[4]; 5562 unsigned NumImmutableRefs = 0; 5563 int RefListStartIndex = 5; 5564 5565 if (Version >= 4) { 5566 RawFunFlags = Record[4]; 5567 RefListStartIndex = 6; 5568 size_t NumRefsIndex = 5; 5569 if (Version >= 5) { 5570 RefListStartIndex = 7; 5571 if (Version >= 6) { 5572 NumRefsIndex = 6; 5573 EntryCount = Record[5]; 5574 RefListStartIndex = 8; 5575 } 5576 NumImmutableRefs = Record[RefListStartIndex - 1]; 5577 } 5578 NumRefs = Record[NumRefsIndex]; 5579 } 5580 5581 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5582 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 5583 assert(Record.size() >= RefListStartIndex + NumRefs && 5584 "Record size inconsistent with number of references"); 5585 std::vector<ValueInfo> Refs = makeRefList( 5586 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 5587 bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE); 5588 std::vector<FunctionSummary::EdgeTy> Edges = makeCallList( 5589 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex), 5590 IsOldProfileFormat, HasProfile, false); 5591 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 5592 setImmutableRefs(Refs, NumImmutableRefs); 5593 auto FS = llvm::make_unique<FunctionSummary>( 5594 Flags, InstCount, getDecodedFFlags(RawFunFlags), EntryCount, 5595 std::move(Refs), std::move(Edges), std::move(PendingTypeTests), 5596 std::move(PendingTypeTestAssumeVCalls), 5597 std::move(PendingTypeCheckedLoadVCalls), 5598 std::move(PendingTypeTestAssumeConstVCalls), 5599 std::move(PendingTypeCheckedLoadConstVCalls)); 5600 PendingTypeTests.clear(); 5601 PendingTypeTestAssumeVCalls.clear(); 5602 PendingTypeCheckedLoadVCalls.clear(); 5603 PendingTypeTestAssumeConstVCalls.clear(); 5604 PendingTypeCheckedLoadConstVCalls.clear(); 5605 LastSeenSummary = FS.get(); 5606 LastSeenGUID = VI.getGUID(); 5607 FS->setModulePath(ModuleIdMap[ModuleId]); 5608 TheIndex.addGlobalValueSummary(VI, std::move(FS)); 5609 break; 5610 } 5611 // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid] 5612 // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as 5613 // they expect all aliasee summaries to be available. 5614 case bitc::FS_COMBINED_ALIAS: { 5615 unsigned ValueID = Record[0]; 5616 uint64_t ModuleId = Record[1]; 5617 uint64_t RawFlags = Record[2]; 5618 unsigned AliaseeValueId = Record[3]; 5619 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5620 auto AS = llvm::make_unique<AliasSummary>(Flags); 5621 LastSeenSummary = AS.get(); 5622 AS->setModulePath(ModuleIdMap[ModuleId]); 5623 5624 auto AliaseeVI = getValueInfoFromValueId(AliaseeValueId).first; 5625 auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, AS->modulePath()); 5626 AS->setAliasee(AliaseeVI, AliaseeInModule); 5627 5628 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 5629 LastSeenGUID = VI.getGUID(); 5630 TheIndex.addGlobalValueSummary(VI, std::move(AS)); 5631 break; 5632 } 5633 // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid] 5634 case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: { 5635 unsigned ValueID = Record[0]; 5636 uint64_t ModuleId = Record[1]; 5637 uint64_t RawFlags = Record[2]; 5638 unsigned RefArrayStart = 3; 5639 GlobalVarSummary::GVarFlags GVF; 5640 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5641 if (Version >= 5) { 5642 GVF = getDecodedGVarFlags(Record[3]); 5643 RefArrayStart = 4; 5644 } 5645 std::vector<ValueInfo> Refs = 5646 makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart)); 5647 auto FS = 5648 llvm::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 5649 LastSeenSummary = FS.get(); 5650 FS->setModulePath(ModuleIdMap[ModuleId]); 5651 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 5652 LastSeenGUID = VI.getGUID(); 5653 TheIndex.addGlobalValueSummary(VI, std::move(FS)); 5654 break; 5655 } 5656 // FS_COMBINED_ORIGINAL_NAME: [original_name] 5657 case bitc::FS_COMBINED_ORIGINAL_NAME: { 5658 uint64_t OriginalName = Record[0]; 5659 if (!LastSeenSummary) 5660 return error("Name attachment that does not follow a combined record"); 5661 LastSeenSummary->setOriginalName(OriginalName); 5662 TheIndex.addOriginalName(LastSeenGUID, OriginalName); 5663 // Reset the LastSeenSummary 5664 LastSeenSummary = nullptr; 5665 LastSeenGUID = 0; 5666 break; 5667 } 5668 case bitc::FS_TYPE_TESTS: 5669 assert(PendingTypeTests.empty()); 5670 PendingTypeTests.insert(PendingTypeTests.end(), Record.begin(), 5671 Record.end()); 5672 break; 5673 5674 case bitc::FS_TYPE_TEST_ASSUME_VCALLS: 5675 assert(PendingTypeTestAssumeVCalls.empty()); 5676 for (unsigned I = 0; I != Record.size(); I += 2) 5677 PendingTypeTestAssumeVCalls.push_back({Record[I], Record[I+1]}); 5678 break; 5679 5680 case bitc::FS_TYPE_CHECKED_LOAD_VCALLS: 5681 assert(PendingTypeCheckedLoadVCalls.empty()); 5682 for (unsigned I = 0; I != Record.size(); I += 2) 5683 PendingTypeCheckedLoadVCalls.push_back({Record[I], Record[I+1]}); 5684 break; 5685 5686 case bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL: 5687 PendingTypeTestAssumeConstVCalls.push_back( 5688 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}}); 5689 break; 5690 5691 case bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL: 5692 PendingTypeCheckedLoadConstVCalls.push_back( 5693 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}}); 5694 break; 5695 5696 case bitc::FS_CFI_FUNCTION_DEFS: { 5697 std::set<std::string> &CfiFunctionDefs = TheIndex.cfiFunctionDefs(); 5698 for (unsigned I = 0; I != Record.size(); I += 2) 5699 CfiFunctionDefs.insert( 5700 {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])}); 5701 break; 5702 } 5703 5704 case bitc::FS_CFI_FUNCTION_DECLS: { 5705 std::set<std::string> &CfiFunctionDecls = TheIndex.cfiFunctionDecls(); 5706 for (unsigned I = 0; I != Record.size(); I += 2) 5707 CfiFunctionDecls.insert( 5708 {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])}); 5709 break; 5710 } 5711 5712 case bitc::FS_TYPE_ID: 5713 parseTypeIdSummaryRecord(Record, Strtab, TheIndex); 5714 break; 5715 } 5716 } 5717 llvm_unreachable("Exit infinite loop"); 5718 } 5719 5720 // Parse the module string table block into the Index. 5721 // This populates the ModulePathStringTable map in the index. 5722 Error ModuleSummaryIndexBitcodeReader::parseModuleStringTable() { 5723 if (Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID)) 5724 return error("Invalid record"); 5725 5726 SmallVector<uint64_t, 64> Record; 5727 5728 SmallString<128> ModulePath; 5729 ModuleSummaryIndex::ModuleInfo *LastSeenModule = nullptr; 5730 5731 while (true) { 5732 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5733 5734 switch (Entry.Kind) { 5735 case BitstreamEntry::SubBlock: // Handled for us already. 5736 case BitstreamEntry::Error: 5737 return error("Malformed block"); 5738 case BitstreamEntry::EndBlock: 5739 return Error::success(); 5740 case BitstreamEntry::Record: 5741 // The interesting case. 5742 break; 5743 } 5744 5745 Record.clear(); 5746 switch (Stream.readRecord(Entry.ID, Record)) { 5747 default: // Default behavior: ignore. 5748 break; 5749 case bitc::MST_CODE_ENTRY: { 5750 // MST_ENTRY: [modid, namechar x N] 5751 uint64_t ModuleId = Record[0]; 5752 5753 if (convertToString(Record, 1, ModulePath)) 5754 return error("Invalid record"); 5755 5756 LastSeenModule = TheIndex.addModule(ModulePath, ModuleId); 5757 ModuleIdMap[ModuleId] = LastSeenModule->first(); 5758 5759 ModulePath.clear(); 5760 break; 5761 } 5762 /// MST_CODE_HASH: [5*i32] 5763 case bitc::MST_CODE_HASH: { 5764 if (Record.size() != 5) 5765 return error("Invalid hash length " + Twine(Record.size()).str()); 5766 if (!LastSeenModule) 5767 return error("Invalid hash that does not follow a module path"); 5768 int Pos = 0; 5769 for (auto &Val : Record) { 5770 assert(!(Val >> 32) && "Unexpected high bits set"); 5771 LastSeenModule->second.second[Pos++] = Val; 5772 } 5773 // Reset LastSeenModule to avoid overriding the hash unexpectedly. 5774 LastSeenModule = nullptr; 5775 break; 5776 } 5777 } 5778 } 5779 llvm_unreachable("Exit infinite loop"); 5780 } 5781 5782 namespace { 5783 5784 // FIXME: This class is only here to support the transition to llvm::Error. It 5785 // will be removed once this transition is complete. Clients should prefer to 5786 // deal with the Error value directly, rather than converting to error_code. 5787 class BitcodeErrorCategoryType : public std::error_category { 5788 const char *name() const noexcept override { 5789 return "llvm.bitcode"; 5790 } 5791 5792 std::string message(int IE) const override { 5793 BitcodeError E = static_cast<BitcodeError>(IE); 5794 switch (E) { 5795 case BitcodeError::CorruptedBitcode: 5796 return "Corrupted bitcode"; 5797 } 5798 llvm_unreachable("Unknown error type!"); 5799 } 5800 }; 5801 5802 } // end anonymous namespace 5803 5804 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory; 5805 5806 const std::error_category &llvm::BitcodeErrorCategory() { 5807 return *ErrorCategory; 5808 } 5809 5810 static Expected<StringRef> readBlobInRecord(BitstreamCursor &Stream, 5811 unsigned Block, unsigned RecordID) { 5812 if (Stream.EnterSubBlock(Block)) 5813 return error("Invalid record"); 5814 5815 StringRef Strtab; 5816 while (true) { 5817 BitstreamEntry Entry = Stream.advance(); 5818 switch (Entry.Kind) { 5819 case BitstreamEntry::EndBlock: 5820 return Strtab; 5821 5822 case BitstreamEntry::Error: 5823 return error("Malformed block"); 5824 5825 case BitstreamEntry::SubBlock: 5826 if (Stream.SkipBlock()) 5827 return error("Malformed block"); 5828 break; 5829 5830 case BitstreamEntry::Record: 5831 StringRef Blob; 5832 SmallVector<uint64_t, 1> Record; 5833 if (Stream.readRecord(Entry.ID, Record, &Blob) == RecordID) 5834 Strtab = Blob; 5835 break; 5836 } 5837 } 5838 } 5839 5840 //===----------------------------------------------------------------------===// 5841 // External interface 5842 //===----------------------------------------------------------------------===// 5843 5844 Expected<std::vector<BitcodeModule>> 5845 llvm::getBitcodeModuleList(MemoryBufferRef Buffer) { 5846 auto FOrErr = getBitcodeFileContents(Buffer); 5847 if (!FOrErr) 5848 return FOrErr.takeError(); 5849 return std::move(FOrErr->Mods); 5850 } 5851 5852 Expected<BitcodeFileContents> 5853 llvm::getBitcodeFileContents(MemoryBufferRef Buffer) { 5854 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 5855 if (!StreamOrErr) 5856 return StreamOrErr.takeError(); 5857 BitstreamCursor &Stream = *StreamOrErr; 5858 5859 BitcodeFileContents F; 5860 while (true) { 5861 uint64_t BCBegin = Stream.getCurrentByteNo(); 5862 5863 // We may be consuming bitcode from a client that leaves garbage at the end 5864 // of the bitcode stream (e.g. Apple's ar tool). If we are close enough to 5865 // the end that there cannot possibly be another module, stop looking. 5866 if (BCBegin + 8 >= Stream.getBitcodeBytes().size()) 5867 return F; 5868 5869 BitstreamEntry Entry = Stream.advance(); 5870 switch (Entry.Kind) { 5871 case BitstreamEntry::EndBlock: 5872 case BitstreamEntry::Error: 5873 return error("Malformed block"); 5874 5875 case BitstreamEntry::SubBlock: { 5876 uint64_t IdentificationBit = -1ull; 5877 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) { 5878 IdentificationBit = Stream.GetCurrentBitNo() - BCBegin * 8; 5879 if (Stream.SkipBlock()) 5880 return error("Malformed block"); 5881 5882 Entry = Stream.advance(); 5883 if (Entry.Kind != BitstreamEntry::SubBlock || 5884 Entry.ID != bitc::MODULE_BLOCK_ID) 5885 return error("Malformed block"); 5886 } 5887 5888 if (Entry.ID == bitc::MODULE_BLOCK_ID) { 5889 uint64_t ModuleBit = Stream.GetCurrentBitNo() - BCBegin * 8; 5890 if (Stream.SkipBlock()) 5891 return error("Malformed block"); 5892 5893 F.Mods.push_back({Stream.getBitcodeBytes().slice( 5894 BCBegin, Stream.getCurrentByteNo() - BCBegin), 5895 Buffer.getBufferIdentifier(), IdentificationBit, 5896 ModuleBit}); 5897 continue; 5898 } 5899 5900 if (Entry.ID == bitc::STRTAB_BLOCK_ID) { 5901 Expected<StringRef> Strtab = 5902 readBlobInRecord(Stream, bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB); 5903 if (!Strtab) 5904 return Strtab.takeError(); 5905 // This string table is used by every preceding bitcode module that does 5906 // not have its own string table. A bitcode file may have multiple 5907 // string tables if it was created by binary concatenation, for example 5908 // with "llvm-cat -b". 5909 for (auto I = F.Mods.rbegin(), E = F.Mods.rend(); I != E; ++I) { 5910 if (!I->Strtab.empty()) 5911 break; 5912 I->Strtab = *Strtab; 5913 } 5914 // Similarly, the string table is used by every preceding symbol table; 5915 // normally there will be just one unless the bitcode file was created 5916 // by binary concatenation. 5917 if (!F.Symtab.empty() && F.StrtabForSymtab.empty()) 5918 F.StrtabForSymtab = *Strtab; 5919 continue; 5920 } 5921 5922 if (Entry.ID == bitc::SYMTAB_BLOCK_ID) { 5923 Expected<StringRef> SymtabOrErr = 5924 readBlobInRecord(Stream, bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB); 5925 if (!SymtabOrErr) 5926 return SymtabOrErr.takeError(); 5927 5928 // We can expect the bitcode file to have multiple symbol tables if it 5929 // was created by binary concatenation. In that case we silently 5930 // ignore any subsequent symbol tables, which is fine because this is a 5931 // low level function. The client is expected to notice that the number 5932 // of modules in the symbol table does not match the number of modules 5933 // in the input file and regenerate the symbol table. 5934 if (F.Symtab.empty()) 5935 F.Symtab = *SymtabOrErr; 5936 continue; 5937 } 5938 5939 if (Stream.SkipBlock()) 5940 return error("Malformed block"); 5941 continue; 5942 } 5943 case BitstreamEntry::Record: 5944 Stream.skipRecord(Entry.ID); 5945 continue; 5946 } 5947 } 5948 } 5949 5950 /// Get a lazy one-at-time loading module from bitcode. 5951 /// 5952 /// This isn't always used in a lazy context. In particular, it's also used by 5953 /// \a parseModule(). If this is truly lazy, then we need to eagerly pull 5954 /// in forward-referenced functions from block address references. 5955 /// 5956 /// \param[in] MaterializeAll Set to \c true if we should materialize 5957 /// everything. 5958 Expected<std::unique_ptr<Module>> 5959 BitcodeModule::getModuleImpl(LLVMContext &Context, bool MaterializeAll, 5960 bool ShouldLazyLoadMetadata, bool IsImporting) { 5961 BitstreamCursor Stream(Buffer); 5962 5963 std::string ProducerIdentification; 5964 if (IdentificationBit != -1ull) { 5965 Stream.JumpToBit(IdentificationBit); 5966 Expected<std::string> ProducerIdentificationOrErr = 5967 readIdentificationBlock(Stream); 5968 if (!ProducerIdentificationOrErr) 5969 return ProducerIdentificationOrErr.takeError(); 5970 5971 ProducerIdentification = *ProducerIdentificationOrErr; 5972 } 5973 5974 Stream.JumpToBit(ModuleBit); 5975 auto *R = new BitcodeReader(std::move(Stream), Strtab, ProducerIdentification, 5976 Context); 5977 5978 std::unique_ptr<Module> M = 5979 llvm::make_unique<Module>(ModuleIdentifier, Context); 5980 M->setMaterializer(R); 5981 5982 // Delay parsing Metadata if ShouldLazyLoadMetadata is true. 5983 if (Error Err = 5984 R->parseBitcodeInto(M.get(), ShouldLazyLoadMetadata, IsImporting)) 5985 return std::move(Err); 5986 5987 if (MaterializeAll) { 5988 // Read in the entire module, and destroy the BitcodeReader. 5989 if (Error Err = M->materializeAll()) 5990 return std::move(Err); 5991 } else { 5992 // Resolve forward references from blockaddresses. 5993 if (Error Err = R->materializeForwardReferencedFunctions()) 5994 return std::move(Err); 5995 } 5996 return std::move(M); 5997 } 5998 5999 Expected<std::unique_ptr<Module>> 6000 BitcodeModule::getLazyModule(LLVMContext &Context, bool ShouldLazyLoadMetadata, 6001 bool IsImporting) { 6002 return getModuleImpl(Context, false, ShouldLazyLoadMetadata, IsImporting); 6003 } 6004 6005 // Parse the specified bitcode buffer and merge the index into CombinedIndex. 6006 // We don't use ModuleIdentifier here because the client may need to control the 6007 // module path used in the combined summary (e.g. when reading summaries for 6008 // regular LTO modules). 6009 Error BitcodeModule::readSummary(ModuleSummaryIndex &CombinedIndex, 6010 StringRef ModulePath, uint64_t ModuleId) { 6011 BitstreamCursor Stream(Buffer); 6012 Stream.JumpToBit(ModuleBit); 6013 6014 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, CombinedIndex, 6015 ModulePath, ModuleId); 6016 return R.parseModule(); 6017 } 6018 6019 // Parse the specified bitcode buffer, returning the function info index. 6020 Expected<std::unique_ptr<ModuleSummaryIndex>> BitcodeModule::getSummary() { 6021 BitstreamCursor Stream(Buffer); 6022 Stream.JumpToBit(ModuleBit); 6023 6024 auto Index = llvm::make_unique<ModuleSummaryIndex>(/*HaveGVs=*/false); 6025 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, *Index, 6026 ModuleIdentifier, 0); 6027 6028 if (Error Err = R.parseModule()) 6029 return std::move(Err); 6030 6031 return std::move(Index); 6032 } 6033 6034 static Expected<bool> getEnableSplitLTOUnitFlag(BitstreamCursor &Stream, 6035 unsigned ID) { 6036 if (Stream.EnterSubBlock(ID)) 6037 return error("Invalid record"); 6038 SmallVector<uint64_t, 64> Record; 6039 6040 while (true) { 6041 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 6042 6043 switch (Entry.Kind) { 6044 case BitstreamEntry::SubBlock: // Handled for us already. 6045 case BitstreamEntry::Error: 6046 return error("Malformed block"); 6047 case BitstreamEntry::EndBlock: 6048 // If no flags record found, conservatively return true to mimic 6049 // behavior before this flag was added. 6050 return true; 6051 case BitstreamEntry::Record: 6052 // The interesting case. 6053 break; 6054 } 6055 6056 // Look for the FS_FLAGS record. 6057 Record.clear(); 6058 auto BitCode = Stream.readRecord(Entry.ID, Record); 6059 switch (BitCode) { 6060 default: // Default behavior: ignore. 6061 break; 6062 case bitc::FS_FLAGS: { // [flags] 6063 uint64_t Flags = Record[0]; 6064 // Scan flags. 6065 assert(Flags <= 0x1f && "Unexpected bits in flag"); 6066 6067 return Flags & 0x8; 6068 } 6069 } 6070 } 6071 llvm_unreachable("Exit infinite loop"); 6072 } 6073 6074 // Check if the given bitcode buffer contains a global value summary block. 6075 Expected<BitcodeLTOInfo> BitcodeModule::getLTOInfo() { 6076 BitstreamCursor Stream(Buffer); 6077 Stream.JumpToBit(ModuleBit); 6078 6079 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 6080 return error("Invalid record"); 6081 6082 while (true) { 6083 BitstreamEntry Entry = Stream.advance(); 6084 6085 switch (Entry.Kind) { 6086 case BitstreamEntry::Error: 6087 return error("Malformed block"); 6088 case BitstreamEntry::EndBlock: 6089 return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/false, 6090 /*EnableSplitLTOUnit=*/false}; 6091 6092 case BitstreamEntry::SubBlock: 6093 if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) { 6094 Expected<bool> EnableSplitLTOUnit = 6095 getEnableSplitLTOUnitFlag(Stream, Entry.ID); 6096 if (!EnableSplitLTOUnit) 6097 return EnableSplitLTOUnit.takeError(); 6098 return BitcodeLTOInfo{/*IsThinLTO=*/true, /*HasSummary=*/true, 6099 *EnableSplitLTOUnit}; 6100 } 6101 6102 if (Entry.ID == bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID) { 6103 Expected<bool> EnableSplitLTOUnit = 6104 getEnableSplitLTOUnitFlag(Stream, Entry.ID); 6105 if (!EnableSplitLTOUnit) 6106 return EnableSplitLTOUnit.takeError(); 6107 return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/true, 6108 *EnableSplitLTOUnit}; 6109 } 6110 6111 // Ignore other sub-blocks. 6112 if (Stream.SkipBlock()) 6113 return error("Malformed block"); 6114 continue; 6115 6116 case BitstreamEntry::Record: 6117 Stream.skipRecord(Entry.ID); 6118 continue; 6119 } 6120 } 6121 } 6122 6123 static Expected<BitcodeModule> getSingleModule(MemoryBufferRef Buffer) { 6124 Expected<std::vector<BitcodeModule>> MsOrErr = getBitcodeModuleList(Buffer); 6125 if (!MsOrErr) 6126 return MsOrErr.takeError(); 6127 6128 if (MsOrErr->size() != 1) 6129 return error("Expected a single module"); 6130 6131 return (*MsOrErr)[0]; 6132 } 6133 6134 Expected<std::unique_ptr<Module>> 6135 llvm::getLazyBitcodeModule(MemoryBufferRef Buffer, LLVMContext &Context, 6136 bool ShouldLazyLoadMetadata, bool IsImporting) { 6137 Expected<BitcodeModule> BM = getSingleModule(Buffer); 6138 if (!BM) 6139 return BM.takeError(); 6140 6141 return BM->getLazyModule(Context, ShouldLazyLoadMetadata, IsImporting); 6142 } 6143 6144 Expected<std::unique_ptr<Module>> llvm::getOwningLazyBitcodeModule( 6145 std::unique_ptr<MemoryBuffer> &&Buffer, LLVMContext &Context, 6146 bool ShouldLazyLoadMetadata, bool IsImporting) { 6147 auto MOrErr = getLazyBitcodeModule(*Buffer, Context, ShouldLazyLoadMetadata, 6148 IsImporting); 6149 if (MOrErr) 6150 (*MOrErr)->setOwnedMemoryBuffer(std::move(Buffer)); 6151 return MOrErr; 6152 } 6153 6154 Expected<std::unique_ptr<Module>> 6155 BitcodeModule::parseModule(LLVMContext &Context) { 6156 return getModuleImpl(Context, true, false, false); 6157 // TODO: Restore the use-lists to the in-memory state when the bitcode was 6158 // written. We must defer until the Module has been fully materialized. 6159 } 6160 6161 Expected<std::unique_ptr<Module>> llvm::parseBitcodeFile(MemoryBufferRef Buffer, 6162 LLVMContext &Context) { 6163 Expected<BitcodeModule> BM = getSingleModule(Buffer); 6164 if (!BM) 6165 return BM.takeError(); 6166 6167 return BM->parseModule(Context); 6168 } 6169 6170 Expected<std::string> llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer) { 6171 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 6172 if (!StreamOrErr) 6173 return StreamOrErr.takeError(); 6174 6175 return readTriple(*StreamOrErr); 6176 } 6177 6178 Expected<bool> llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer) { 6179 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 6180 if (!StreamOrErr) 6181 return StreamOrErr.takeError(); 6182 6183 return hasObjCCategory(*StreamOrErr); 6184 } 6185 6186 Expected<std::string> llvm::getBitcodeProducerString(MemoryBufferRef Buffer) { 6187 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 6188 if (!StreamOrErr) 6189 return StreamOrErr.takeError(); 6190 6191 return readIdentificationCode(*StreamOrErr); 6192 } 6193 6194 Error llvm::readModuleSummaryIndex(MemoryBufferRef Buffer, 6195 ModuleSummaryIndex &CombinedIndex, 6196 uint64_t ModuleId) { 6197 Expected<BitcodeModule> BM = getSingleModule(Buffer); 6198 if (!BM) 6199 return BM.takeError(); 6200 6201 return BM->readSummary(CombinedIndex, BM->getModuleIdentifier(), ModuleId); 6202 } 6203 6204 Expected<std::unique_ptr<ModuleSummaryIndex>> 6205 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer) { 6206 Expected<BitcodeModule> BM = getSingleModule(Buffer); 6207 if (!BM) 6208 return BM.takeError(); 6209 6210 return BM->getSummary(); 6211 } 6212 6213 Expected<BitcodeLTOInfo> llvm::getBitcodeLTOInfo(MemoryBufferRef Buffer) { 6214 Expected<BitcodeModule> BM = getSingleModule(Buffer); 6215 if (!BM) 6216 return BM.takeError(); 6217 6218 return BM->getLTOInfo(); 6219 } 6220 6221 Expected<std::unique_ptr<ModuleSummaryIndex>> 6222 llvm::getModuleSummaryIndexForFile(StringRef Path, 6223 bool IgnoreEmptyThinLTOIndexFile) { 6224 ErrorOr<std::unique_ptr<MemoryBuffer>> FileOrErr = 6225 MemoryBuffer::getFileOrSTDIN(Path); 6226 if (!FileOrErr) 6227 return errorCodeToError(FileOrErr.getError()); 6228 if (IgnoreEmptyThinLTOIndexFile && !(*FileOrErr)->getBufferSize()) 6229 return nullptr; 6230 return getModuleSummaryIndex(**FileOrErr); 6231 } 6232