1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "llvm/ADT/STLExtras.h" 11 #include "llvm/ADT/SmallString.h" 12 #include "llvm/ADT/SmallVector.h" 13 #include "llvm/ADT/Triple.h" 14 #include "llvm/Bitcode/BitstreamReader.h" 15 #include "llvm/Bitcode/LLVMBitCodes.h" 16 #include "llvm/Bitcode/ReaderWriter.h" 17 #include "llvm/IR/AutoUpgrade.h" 18 #include "llvm/IR/Constants.h" 19 #include "llvm/IR/DebugInfo.h" 20 #include "llvm/IR/DebugInfoMetadata.h" 21 #include "llvm/IR/DerivedTypes.h" 22 #include "llvm/IR/DiagnosticPrinter.h" 23 #include "llvm/IR/GVMaterializer.h" 24 #include "llvm/IR/InlineAsm.h" 25 #include "llvm/IR/IntrinsicInst.h" 26 #include "llvm/IR/LLVMContext.h" 27 #include "llvm/IR/Module.h" 28 #include "llvm/IR/ModuleSummaryIndex.h" 29 #include "llvm/IR/OperandTraits.h" 30 #include "llvm/IR/Operator.h" 31 #include "llvm/IR/ValueHandle.h" 32 #include "llvm/Support/DataStream.h" 33 #include "llvm/Support/ManagedStatic.h" 34 #include "llvm/Support/MathExtras.h" 35 #include "llvm/Support/MemoryBuffer.h" 36 #include "llvm/Support/raw_ostream.h" 37 #include <deque> 38 39 using namespace llvm; 40 41 namespace { 42 enum { 43 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 44 }; 45 46 class BitcodeReaderValueList { 47 std::vector<WeakVH> ValuePtrs; 48 49 /// As we resolve forward-referenced constants, we add information about them 50 /// to this vector. This allows us to resolve them in bulk instead of 51 /// resolving each reference at a time. See the code in 52 /// ResolveConstantForwardRefs for more information about this. 53 /// 54 /// The key of this vector is the placeholder constant, the value is the slot 55 /// number that holds the resolved value. 56 typedef std::vector<std::pair<Constant*, unsigned> > ResolveConstantsTy; 57 ResolveConstantsTy ResolveConstants; 58 LLVMContext &Context; 59 public: 60 BitcodeReaderValueList(LLVMContext &C) : Context(C) {} 61 ~BitcodeReaderValueList() { 62 assert(ResolveConstants.empty() && "Constants not resolved?"); 63 } 64 65 // vector compatibility methods 66 unsigned size() const { return ValuePtrs.size(); } 67 void resize(unsigned N) { ValuePtrs.resize(N); } 68 void push_back(Value *V) { ValuePtrs.emplace_back(V); } 69 70 void clear() { 71 assert(ResolveConstants.empty() && "Constants not resolved?"); 72 ValuePtrs.clear(); 73 } 74 75 Value *operator[](unsigned i) const { 76 assert(i < ValuePtrs.size()); 77 return ValuePtrs[i]; 78 } 79 80 Value *back() const { return ValuePtrs.back(); } 81 void pop_back() { ValuePtrs.pop_back(); } 82 bool empty() const { return ValuePtrs.empty(); } 83 void shrinkTo(unsigned N) { 84 assert(N <= size() && "Invalid shrinkTo request!"); 85 ValuePtrs.resize(N); 86 } 87 88 Constant *getConstantFwdRef(unsigned Idx, Type *Ty); 89 Value *getValueFwdRef(unsigned Idx, Type *Ty); 90 91 void assignValue(Value *V, unsigned Idx); 92 93 /// Once all constants are read, this method bulk resolves any forward 94 /// references. 95 void resolveConstantForwardRefs(); 96 }; 97 98 class BitcodeReaderMetadataList { 99 unsigned NumFwdRefs; 100 bool AnyFwdRefs; 101 unsigned MinFwdRef; 102 unsigned MaxFwdRef; 103 std::vector<TrackingMDRef> MetadataPtrs; 104 105 LLVMContext &Context; 106 public: 107 BitcodeReaderMetadataList(LLVMContext &C) 108 : NumFwdRefs(0), AnyFwdRefs(false), Context(C) {} 109 110 // vector compatibility methods 111 unsigned size() const { return MetadataPtrs.size(); } 112 void resize(unsigned N) { MetadataPtrs.resize(N); } 113 void push_back(Metadata *MD) { MetadataPtrs.emplace_back(MD); } 114 void clear() { MetadataPtrs.clear(); } 115 Metadata *back() const { return MetadataPtrs.back(); } 116 void pop_back() { MetadataPtrs.pop_back(); } 117 bool empty() const { return MetadataPtrs.empty(); } 118 119 Metadata *operator[](unsigned i) const { 120 assert(i < MetadataPtrs.size()); 121 return MetadataPtrs[i]; 122 } 123 124 void shrinkTo(unsigned N) { 125 assert(N <= size() && "Invalid shrinkTo request!"); 126 MetadataPtrs.resize(N); 127 } 128 129 Metadata *getMetadataFwdRef(unsigned Idx); 130 MDNode *getMDNodeFwdRefOrNull(unsigned Idx); 131 void assignValue(Metadata *MD, unsigned Idx); 132 void tryToResolveCycles(); 133 }; 134 135 class BitcodeReader : public GVMaterializer { 136 LLVMContext &Context; 137 Module *TheModule = nullptr; 138 std::unique_ptr<MemoryBuffer> Buffer; 139 std::unique_ptr<BitstreamReader> StreamFile; 140 BitstreamCursor Stream; 141 // Next offset to start scanning for lazy parsing of function bodies. 142 uint64_t NextUnreadBit = 0; 143 // Last function offset found in the VST. 144 uint64_t LastFunctionBlockBit = 0; 145 bool SeenValueSymbolTable = false; 146 uint64_t VSTOffset = 0; 147 // Contains an arbitrary and optional string identifying the bitcode producer 148 std::string ProducerIdentification; 149 150 std::vector<Type*> TypeList; 151 BitcodeReaderValueList ValueList; 152 BitcodeReaderMetadataList MetadataList; 153 std::vector<Comdat *> ComdatList; 154 SmallVector<Instruction *, 64> InstructionList; 155 156 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInits; 157 std::vector<std::pair<GlobalAlias*, unsigned> > AliasInits; 158 std::vector<std::pair<Function*, unsigned> > FunctionPrefixes; 159 std::vector<std::pair<Function*, unsigned> > FunctionPrologues; 160 std::vector<std::pair<Function*, unsigned> > FunctionPersonalityFns; 161 162 SmallVector<Instruction*, 64> InstsWithTBAATag; 163 164 bool HasSeenOldLoopTags = false; 165 166 /// The set of attributes by index. Index zero in the file is for null, and 167 /// is thus not represented here. As such all indices are off by one. 168 std::vector<AttributeSet> MAttributes; 169 170 /// The set of attribute groups. 171 std::map<unsigned, AttributeSet> MAttributeGroups; 172 173 /// While parsing a function body, this is a list of the basic blocks for the 174 /// function. 175 std::vector<BasicBlock*> FunctionBBs; 176 177 // When reading the module header, this list is populated with functions that 178 // have bodies later in the file. 179 std::vector<Function*> FunctionsWithBodies; 180 181 // When intrinsic functions are encountered which require upgrading they are 182 // stored here with their replacement function. 183 typedef DenseMap<Function*, Function*> UpgradedIntrinsicMap; 184 UpgradedIntrinsicMap UpgradedIntrinsics; 185 186 // Map the bitcode's custom MDKind ID to the Module's MDKind ID. 187 DenseMap<unsigned, unsigned> MDKindMap; 188 189 // Several operations happen after the module header has been read, but 190 // before function bodies are processed. This keeps track of whether 191 // we've done this yet. 192 bool SeenFirstFunctionBody = false; 193 194 /// When function bodies are initially scanned, this map contains info about 195 /// where to find deferred function body in the stream. 196 DenseMap<Function*, uint64_t> DeferredFunctionInfo; 197 198 /// When Metadata block is initially scanned when parsing the module, we may 199 /// choose to defer parsing of the metadata. This vector contains info about 200 /// which Metadata blocks are deferred. 201 std::vector<uint64_t> DeferredMetadataInfo; 202 203 /// These are basic blocks forward-referenced by block addresses. They are 204 /// inserted lazily into functions when they're loaded. The basic block ID is 205 /// its index into the vector. 206 DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs; 207 std::deque<Function *> BasicBlockFwdRefQueue; 208 209 /// Indicates that we are using a new encoding for instruction operands where 210 /// most operands in the current FUNCTION_BLOCK are encoded relative to the 211 /// instruction number, for a more compact encoding. Some instruction 212 /// operands are not relative to the instruction ID: basic block numbers, and 213 /// types. Once the old style function blocks have been phased out, we would 214 /// not need this flag. 215 bool UseRelativeIDs = false; 216 217 /// True if all functions will be materialized, negating the need to process 218 /// (e.g.) blockaddress forward references. 219 bool WillMaterializeAllForwardRefs = false; 220 221 /// True if any Metadata block has been materialized. 222 bool IsMetadataMaterialized = false; 223 224 bool StripDebugInfo = false; 225 226 /// Functions that need to be matched with subprograms when upgrading old 227 /// metadata. 228 SmallDenseMap<Function *, DISubprogram *, 16> FunctionsWithSPs; 229 230 std::vector<std::string> BundleTags; 231 232 public: 233 std::error_code error(BitcodeError E, const Twine &Message); 234 std::error_code error(BitcodeError E); 235 std::error_code error(const Twine &Message); 236 237 BitcodeReader(MemoryBuffer *Buffer, LLVMContext &Context); 238 BitcodeReader(LLVMContext &Context); 239 ~BitcodeReader() override { freeState(); } 240 241 std::error_code materializeForwardReferencedFunctions(); 242 243 void freeState(); 244 245 void releaseBuffer(); 246 247 std::error_code materialize(GlobalValue *GV) override; 248 std::error_code materializeModule() override; 249 std::vector<StructType *> getIdentifiedStructTypes() const override; 250 251 /// \brief Main interface to parsing a bitcode buffer. 252 /// \returns true if an error occurred. 253 std::error_code parseBitcodeInto(std::unique_ptr<DataStreamer> Streamer, 254 Module *M, 255 bool ShouldLazyLoadMetadata = false); 256 257 /// \brief Cheap mechanism to just extract module triple 258 /// \returns true if an error occurred. 259 ErrorOr<std::string> parseTriple(); 260 261 /// Cheap mechanism to just extract the identification block out of bitcode. 262 ErrorOr<std::string> parseIdentificationBlock(); 263 264 static uint64_t decodeSignRotatedValue(uint64_t V); 265 266 /// Materialize any deferred Metadata block. 267 std::error_code materializeMetadata() override; 268 269 void setStripDebugInfo() override; 270 271 /// Save the mapping between the metadata values and the corresponding 272 /// value id that were recorded in the MetadataList during parsing. If 273 /// OnlyTempMD is true, then only record those entries that are still 274 /// temporary metadata. This interface is used when metadata linking is 275 /// performed as a postpass, such as during function importing. 276 void saveMetadataList(DenseMap<const Metadata *, unsigned> &MetadataToIDs, 277 bool OnlyTempMD) override; 278 279 private: 280 /// Parse the "IDENTIFICATION_BLOCK_ID" block, populate the 281 // ProducerIdentification data member, and do some basic enforcement on the 282 // "epoch" encoded in the bitcode. 283 std::error_code parseBitcodeVersion(); 284 285 std::vector<StructType *> IdentifiedStructTypes; 286 StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name); 287 StructType *createIdentifiedStructType(LLVMContext &Context); 288 289 Type *getTypeByID(unsigned ID); 290 Value *getFnValueByID(unsigned ID, Type *Ty) { 291 if (Ty && Ty->isMetadataTy()) 292 return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID)); 293 return ValueList.getValueFwdRef(ID, Ty); 294 } 295 Metadata *getFnMetadataByID(unsigned ID) { 296 return MetadataList.getMetadataFwdRef(ID); 297 } 298 BasicBlock *getBasicBlock(unsigned ID) const { 299 if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID 300 return FunctionBBs[ID]; 301 } 302 AttributeSet getAttributes(unsigned i) const { 303 if (i-1 < MAttributes.size()) 304 return MAttributes[i-1]; 305 return AttributeSet(); 306 } 307 308 /// Read a value/type pair out of the specified record from slot 'Slot'. 309 /// Increment Slot past the number of slots used in the record. Return true on 310 /// failure. 311 bool getValueTypePair(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 312 unsigned InstNum, Value *&ResVal) { 313 if (Slot == Record.size()) return true; 314 unsigned ValNo = (unsigned)Record[Slot++]; 315 // Adjust the ValNo, if it was encoded relative to the InstNum. 316 if (UseRelativeIDs) 317 ValNo = InstNum - ValNo; 318 if (ValNo < InstNum) { 319 // If this is not a forward reference, just return the value we already 320 // have. 321 ResVal = getFnValueByID(ValNo, nullptr); 322 return ResVal == nullptr; 323 } 324 if (Slot == Record.size()) 325 return true; 326 327 unsigned TypeNo = (unsigned)Record[Slot++]; 328 ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo)); 329 return ResVal == nullptr; 330 } 331 332 /// Read a value out of the specified record from slot 'Slot'. Increment Slot 333 /// past the number of slots used by the value in the record. Return true if 334 /// there is an error. 335 bool popValue(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 336 unsigned InstNum, Type *Ty, Value *&ResVal) { 337 if (getValue(Record, Slot, InstNum, Ty, ResVal)) 338 return true; 339 // All values currently take a single record slot. 340 ++Slot; 341 return false; 342 } 343 344 /// Like popValue, but does not increment the Slot number. 345 bool getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 346 unsigned InstNum, Type *Ty, Value *&ResVal) { 347 ResVal = getValue(Record, Slot, InstNum, Ty); 348 return ResVal == nullptr; 349 } 350 351 /// Version of getValue that returns ResVal directly, or 0 if there is an 352 /// error. 353 Value *getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 354 unsigned InstNum, Type *Ty) { 355 if (Slot == Record.size()) return nullptr; 356 unsigned ValNo = (unsigned)Record[Slot]; 357 // Adjust the ValNo, if it was encoded relative to the InstNum. 358 if (UseRelativeIDs) 359 ValNo = InstNum - ValNo; 360 return getFnValueByID(ValNo, Ty); 361 } 362 363 /// Like getValue, but decodes signed VBRs. 364 Value *getValueSigned(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 365 unsigned InstNum, Type *Ty) { 366 if (Slot == Record.size()) return nullptr; 367 unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]); 368 // Adjust the ValNo, if it was encoded relative to the InstNum. 369 if (UseRelativeIDs) 370 ValNo = InstNum - ValNo; 371 return getFnValueByID(ValNo, Ty); 372 } 373 374 /// Converts alignment exponent (i.e. power of two (or zero)) to the 375 /// corresponding alignment to use. If alignment is too large, returns 376 /// a corresponding error code. 377 std::error_code parseAlignmentValue(uint64_t Exponent, unsigned &Alignment); 378 std::error_code parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind); 379 std::error_code parseModule(uint64_t ResumeBit, 380 bool ShouldLazyLoadMetadata = false); 381 std::error_code parseAttributeBlock(); 382 std::error_code parseAttributeGroupBlock(); 383 std::error_code parseTypeTable(); 384 std::error_code parseTypeTableBody(); 385 std::error_code parseOperandBundleTags(); 386 387 ErrorOr<Value *> recordValue(SmallVectorImpl<uint64_t> &Record, 388 unsigned NameIndex, Triple &TT); 389 std::error_code parseValueSymbolTable(uint64_t Offset = 0); 390 std::error_code parseConstants(); 391 std::error_code rememberAndSkipFunctionBodies(); 392 std::error_code rememberAndSkipFunctionBody(); 393 /// Save the positions of the Metadata blocks and skip parsing the blocks. 394 std::error_code rememberAndSkipMetadata(); 395 std::error_code parseFunctionBody(Function *F); 396 std::error_code globalCleanup(); 397 std::error_code resolveGlobalAndAliasInits(); 398 std::error_code parseMetadata(bool ModuleLevel = false); 399 std::error_code parseMetadataStrings(ArrayRef<uint64_t> Record, 400 StringRef Blob, 401 unsigned &NextMetadataNo); 402 std::error_code parseMetadataKinds(); 403 std::error_code parseMetadataKindRecord(SmallVectorImpl<uint64_t> &Record); 404 std::error_code parseMetadataAttachment(Function &F); 405 ErrorOr<std::string> parseModuleTriple(); 406 std::error_code parseUseLists(); 407 std::error_code initStream(std::unique_ptr<DataStreamer> Streamer); 408 std::error_code initStreamFromBuffer(); 409 std::error_code initLazyStream(std::unique_ptr<DataStreamer> Streamer); 410 std::error_code findFunctionInStream( 411 Function *F, 412 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator); 413 }; 414 415 /// Class to manage reading and parsing function summary index bitcode 416 /// files/sections. 417 class ModuleSummaryIndexBitcodeReader { 418 DiagnosticHandlerFunction DiagnosticHandler; 419 420 /// Eventually points to the module index built during parsing. 421 ModuleSummaryIndex *TheIndex = nullptr; 422 423 std::unique_ptr<MemoryBuffer> Buffer; 424 std::unique_ptr<BitstreamReader> StreamFile; 425 BitstreamCursor Stream; 426 427 /// \brief Used to indicate whether we are doing lazy parsing of summary data. 428 /// 429 /// If false, the summary section is fully parsed into the index during 430 /// the initial parse. Otherwise, if true, the caller is expected to 431 /// invoke \a readGlobalValueSummary for each summary needed, and the summary 432 /// section is thus parsed lazily. 433 bool IsLazy = false; 434 435 /// Used to indicate whether caller only wants to check for the presence 436 /// of the global value summary bitcode section. All blocks are skipped, 437 /// but the SeenGlobalValSummary boolean is set. 438 bool CheckGlobalValSummaryPresenceOnly = false; 439 440 /// Indicates whether we have encountered a global value summary section 441 /// yet during parsing, used when checking if file contains global value 442 /// summary section. 443 bool SeenGlobalValSummary = false; 444 445 /// Indicates whether we have already parsed the VST, used for error checking. 446 bool SeenValueSymbolTable = false; 447 448 /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record. 449 /// Used to enable on-demand parsing of the VST. 450 uint64_t VSTOffset = 0; 451 452 // Map to save ValueId to GUID association that was recorded in the 453 // ValueSymbolTable. It is used after the VST is parsed to convert 454 // call graph edges read from the function summary from referencing 455 // callees by their ValueId to using the GUID instead, which is how 456 // they are recorded in the summary index being built. 457 DenseMap<unsigned, uint64_t> ValueIdToCallGraphGUIDMap; 458 459 /// Map to save the association between summary offset in the VST to the 460 /// GlobalValueInfo object created when parsing it. Used to access the 461 /// info object when parsing the summary section. 462 DenseMap<uint64_t, GlobalValueInfo *> SummaryOffsetToInfoMap; 463 464 /// Map populated during module path string table parsing, from the 465 /// module ID to a string reference owned by the index's module 466 /// path string table, used to correlate with combined index 467 /// summary records. 468 DenseMap<uint64_t, StringRef> ModuleIdMap; 469 470 /// Original source file name recorded in a bitcode record. 471 std::string SourceFileName; 472 473 public: 474 std::error_code error(BitcodeError E, const Twine &Message); 475 std::error_code error(BitcodeError E); 476 std::error_code error(const Twine &Message); 477 478 ModuleSummaryIndexBitcodeReader( 479 MemoryBuffer *Buffer, DiagnosticHandlerFunction DiagnosticHandler, 480 bool IsLazy = false, bool CheckGlobalValSummaryPresenceOnly = false); 481 ModuleSummaryIndexBitcodeReader( 482 DiagnosticHandlerFunction DiagnosticHandler, bool IsLazy = false, 483 bool CheckGlobalValSummaryPresenceOnly = false); 484 ~ModuleSummaryIndexBitcodeReader() { freeState(); } 485 486 void freeState(); 487 488 void releaseBuffer(); 489 490 /// Check if the parser has encountered a summary section. 491 bool foundGlobalValSummary() { return SeenGlobalValSummary; } 492 493 /// \brief Main interface to parsing a bitcode buffer. 494 /// \returns true if an error occurred. 495 std::error_code parseSummaryIndexInto(std::unique_ptr<DataStreamer> Streamer, 496 ModuleSummaryIndex *I); 497 498 /// \brief Interface for parsing a summary lazily. 499 std::error_code 500 parseGlobalValueSummary(std::unique_ptr<DataStreamer> Streamer, 501 ModuleSummaryIndex *I, size_t SummaryOffset); 502 503 private: 504 std::error_code parseModule(); 505 std::error_code parseValueSymbolTable( 506 uint64_t Offset, 507 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap); 508 std::error_code parseEntireSummary(); 509 std::error_code parseModuleStringTable(); 510 std::error_code initStream(std::unique_ptr<DataStreamer> Streamer); 511 std::error_code initStreamFromBuffer(); 512 std::error_code initLazyStream(std::unique_ptr<DataStreamer> Streamer); 513 uint64_t getGUIDFromValueId(unsigned ValueId); 514 GlobalValueInfo *getInfoFromSummaryOffset(uint64_t Offset); 515 }; 516 } // end anonymous namespace 517 518 BitcodeDiagnosticInfo::BitcodeDiagnosticInfo(std::error_code EC, 519 DiagnosticSeverity Severity, 520 const Twine &Msg) 521 : DiagnosticInfo(DK_Bitcode, Severity), Msg(Msg), EC(EC) {} 522 523 void BitcodeDiagnosticInfo::print(DiagnosticPrinter &DP) const { DP << Msg; } 524 525 static std::error_code error(DiagnosticHandlerFunction DiagnosticHandler, 526 std::error_code EC, const Twine &Message) { 527 BitcodeDiagnosticInfo DI(EC, DS_Error, Message); 528 DiagnosticHandler(DI); 529 return EC; 530 } 531 532 static std::error_code error(DiagnosticHandlerFunction DiagnosticHandler, 533 std::error_code EC) { 534 return error(DiagnosticHandler, EC, EC.message()); 535 } 536 537 static std::error_code error(LLVMContext &Context, std::error_code EC, 538 const Twine &Message) { 539 return error([&](const DiagnosticInfo &DI) { Context.diagnose(DI); }, EC, 540 Message); 541 } 542 543 static std::error_code error(LLVMContext &Context, std::error_code EC) { 544 return error(Context, EC, EC.message()); 545 } 546 547 static std::error_code error(LLVMContext &Context, const Twine &Message) { 548 return error(Context, make_error_code(BitcodeError::CorruptedBitcode), 549 Message); 550 } 551 552 std::error_code BitcodeReader::error(BitcodeError E, const Twine &Message) { 553 if (!ProducerIdentification.empty()) { 554 return ::error(Context, make_error_code(E), 555 Message + " (Producer: '" + ProducerIdentification + 556 "' Reader: 'LLVM " + LLVM_VERSION_STRING "')"); 557 } 558 return ::error(Context, make_error_code(E), Message); 559 } 560 561 std::error_code BitcodeReader::error(const Twine &Message) { 562 if (!ProducerIdentification.empty()) { 563 return ::error(Context, make_error_code(BitcodeError::CorruptedBitcode), 564 Message + " (Producer: '" + ProducerIdentification + 565 "' Reader: 'LLVM " + LLVM_VERSION_STRING "')"); 566 } 567 return ::error(Context, make_error_code(BitcodeError::CorruptedBitcode), 568 Message); 569 } 570 571 std::error_code BitcodeReader::error(BitcodeError E) { 572 return ::error(Context, make_error_code(E)); 573 } 574 575 BitcodeReader::BitcodeReader(MemoryBuffer *Buffer, LLVMContext &Context) 576 : Context(Context), Buffer(Buffer), ValueList(Context), 577 MetadataList(Context) {} 578 579 BitcodeReader::BitcodeReader(LLVMContext &Context) 580 : Context(Context), Buffer(nullptr), ValueList(Context), 581 MetadataList(Context) {} 582 583 std::error_code BitcodeReader::materializeForwardReferencedFunctions() { 584 if (WillMaterializeAllForwardRefs) 585 return std::error_code(); 586 587 // Prevent recursion. 588 WillMaterializeAllForwardRefs = true; 589 590 while (!BasicBlockFwdRefQueue.empty()) { 591 Function *F = BasicBlockFwdRefQueue.front(); 592 BasicBlockFwdRefQueue.pop_front(); 593 assert(F && "Expected valid function"); 594 if (!BasicBlockFwdRefs.count(F)) 595 // Already materialized. 596 continue; 597 598 // Check for a function that isn't materializable to prevent an infinite 599 // loop. When parsing a blockaddress stored in a global variable, there 600 // isn't a trivial way to check if a function will have a body without a 601 // linear search through FunctionsWithBodies, so just check it here. 602 if (!F->isMaterializable()) 603 return error("Never resolved function from blockaddress"); 604 605 // Try to materialize F. 606 if (std::error_code EC = materialize(F)) 607 return EC; 608 } 609 assert(BasicBlockFwdRefs.empty() && "Function missing from queue"); 610 611 // Reset state. 612 WillMaterializeAllForwardRefs = false; 613 return std::error_code(); 614 } 615 616 void BitcodeReader::freeState() { 617 Buffer = nullptr; 618 std::vector<Type*>().swap(TypeList); 619 ValueList.clear(); 620 MetadataList.clear(); 621 std::vector<Comdat *>().swap(ComdatList); 622 623 std::vector<AttributeSet>().swap(MAttributes); 624 std::vector<BasicBlock*>().swap(FunctionBBs); 625 std::vector<Function*>().swap(FunctionsWithBodies); 626 DeferredFunctionInfo.clear(); 627 DeferredMetadataInfo.clear(); 628 MDKindMap.clear(); 629 630 assert(BasicBlockFwdRefs.empty() && "Unresolved blockaddress fwd references"); 631 BasicBlockFwdRefQueue.clear(); 632 } 633 634 //===----------------------------------------------------------------------===// 635 // Helper functions to implement forward reference resolution, etc. 636 //===----------------------------------------------------------------------===// 637 638 /// Convert a string from a record into an std::string, return true on failure. 639 template <typename StrTy> 640 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx, 641 StrTy &Result) { 642 if (Idx > Record.size()) 643 return true; 644 645 for (unsigned i = Idx, e = Record.size(); i != e; ++i) 646 Result += (char)Record[i]; 647 return false; 648 } 649 650 static bool hasImplicitComdat(size_t Val) { 651 switch (Val) { 652 default: 653 return false; 654 case 1: // Old WeakAnyLinkage 655 case 4: // Old LinkOnceAnyLinkage 656 case 10: // Old WeakODRLinkage 657 case 11: // Old LinkOnceODRLinkage 658 return true; 659 } 660 } 661 662 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) { 663 switch (Val) { 664 default: // Map unknown/new linkages to external 665 case 0: 666 return GlobalValue::ExternalLinkage; 667 case 2: 668 return GlobalValue::AppendingLinkage; 669 case 3: 670 return GlobalValue::InternalLinkage; 671 case 5: 672 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage 673 case 6: 674 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage 675 case 7: 676 return GlobalValue::ExternalWeakLinkage; 677 case 8: 678 return GlobalValue::CommonLinkage; 679 case 9: 680 return GlobalValue::PrivateLinkage; 681 case 12: 682 return GlobalValue::AvailableExternallyLinkage; 683 case 13: 684 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage 685 case 14: 686 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage 687 case 15: 688 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage 689 case 1: // Old value with implicit comdat. 690 case 16: 691 return GlobalValue::WeakAnyLinkage; 692 case 10: // Old value with implicit comdat. 693 case 17: 694 return GlobalValue::WeakODRLinkage; 695 case 4: // Old value with implicit comdat. 696 case 18: 697 return GlobalValue::LinkOnceAnyLinkage; 698 case 11: // Old value with implicit comdat. 699 case 19: 700 return GlobalValue::LinkOnceODRLinkage; 701 } 702 } 703 704 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) { 705 switch (Val) { 706 default: // Map unknown visibilities to default. 707 case 0: return GlobalValue::DefaultVisibility; 708 case 1: return GlobalValue::HiddenVisibility; 709 case 2: return GlobalValue::ProtectedVisibility; 710 } 711 } 712 713 static GlobalValue::DLLStorageClassTypes 714 getDecodedDLLStorageClass(unsigned Val) { 715 switch (Val) { 716 default: // Map unknown values to default. 717 case 0: return GlobalValue::DefaultStorageClass; 718 case 1: return GlobalValue::DLLImportStorageClass; 719 case 2: return GlobalValue::DLLExportStorageClass; 720 } 721 } 722 723 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) { 724 switch (Val) { 725 case 0: return GlobalVariable::NotThreadLocal; 726 default: // Map unknown non-zero value to general dynamic. 727 case 1: return GlobalVariable::GeneralDynamicTLSModel; 728 case 2: return GlobalVariable::LocalDynamicTLSModel; 729 case 3: return GlobalVariable::InitialExecTLSModel; 730 case 4: return GlobalVariable::LocalExecTLSModel; 731 } 732 } 733 734 static int getDecodedCastOpcode(unsigned Val) { 735 switch (Val) { 736 default: return -1; 737 case bitc::CAST_TRUNC : return Instruction::Trunc; 738 case bitc::CAST_ZEXT : return Instruction::ZExt; 739 case bitc::CAST_SEXT : return Instruction::SExt; 740 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 741 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 742 case bitc::CAST_UITOFP : return Instruction::UIToFP; 743 case bitc::CAST_SITOFP : return Instruction::SIToFP; 744 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 745 case bitc::CAST_FPEXT : return Instruction::FPExt; 746 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 747 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 748 case bitc::CAST_BITCAST : return Instruction::BitCast; 749 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast; 750 } 751 } 752 753 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) { 754 bool IsFP = Ty->isFPOrFPVectorTy(); 755 // BinOps are only valid for int/fp or vector of int/fp types 756 if (!IsFP && !Ty->isIntOrIntVectorTy()) 757 return -1; 758 759 switch (Val) { 760 default: 761 return -1; 762 case bitc::BINOP_ADD: 763 return IsFP ? Instruction::FAdd : Instruction::Add; 764 case bitc::BINOP_SUB: 765 return IsFP ? Instruction::FSub : Instruction::Sub; 766 case bitc::BINOP_MUL: 767 return IsFP ? Instruction::FMul : Instruction::Mul; 768 case bitc::BINOP_UDIV: 769 return IsFP ? -1 : Instruction::UDiv; 770 case bitc::BINOP_SDIV: 771 return IsFP ? Instruction::FDiv : Instruction::SDiv; 772 case bitc::BINOP_UREM: 773 return IsFP ? -1 : Instruction::URem; 774 case bitc::BINOP_SREM: 775 return IsFP ? Instruction::FRem : Instruction::SRem; 776 case bitc::BINOP_SHL: 777 return IsFP ? -1 : Instruction::Shl; 778 case bitc::BINOP_LSHR: 779 return IsFP ? -1 : Instruction::LShr; 780 case bitc::BINOP_ASHR: 781 return IsFP ? -1 : Instruction::AShr; 782 case bitc::BINOP_AND: 783 return IsFP ? -1 : Instruction::And; 784 case bitc::BINOP_OR: 785 return IsFP ? -1 : Instruction::Or; 786 case bitc::BINOP_XOR: 787 return IsFP ? -1 : Instruction::Xor; 788 } 789 } 790 791 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) { 792 switch (Val) { 793 default: return AtomicRMWInst::BAD_BINOP; 794 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 795 case bitc::RMW_ADD: return AtomicRMWInst::Add; 796 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 797 case bitc::RMW_AND: return AtomicRMWInst::And; 798 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 799 case bitc::RMW_OR: return AtomicRMWInst::Or; 800 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 801 case bitc::RMW_MAX: return AtomicRMWInst::Max; 802 case bitc::RMW_MIN: return AtomicRMWInst::Min; 803 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 804 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 805 } 806 } 807 808 static AtomicOrdering getDecodedOrdering(unsigned Val) { 809 switch (Val) { 810 case bitc::ORDERING_NOTATOMIC: return NotAtomic; 811 case bitc::ORDERING_UNORDERED: return Unordered; 812 case bitc::ORDERING_MONOTONIC: return Monotonic; 813 case bitc::ORDERING_ACQUIRE: return Acquire; 814 case bitc::ORDERING_RELEASE: return Release; 815 case bitc::ORDERING_ACQREL: return AcquireRelease; 816 default: // Map unknown orderings to sequentially-consistent. 817 case bitc::ORDERING_SEQCST: return SequentiallyConsistent; 818 } 819 } 820 821 static SynchronizationScope getDecodedSynchScope(unsigned Val) { 822 switch (Val) { 823 case bitc::SYNCHSCOPE_SINGLETHREAD: return SingleThread; 824 default: // Map unknown scopes to cross-thread. 825 case bitc::SYNCHSCOPE_CROSSTHREAD: return CrossThread; 826 } 827 } 828 829 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) { 830 switch (Val) { 831 default: // Map unknown selection kinds to any. 832 case bitc::COMDAT_SELECTION_KIND_ANY: 833 return Comdat::Any; 834 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH: 835 return Comdat::ExactMatch; 836 case bitc::COMDAT_SELECTION_KIND_LARGEST: 837 return Comdat::Largest; 838 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES: 839 return Comdat::NoDuplicates; 840 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE: 841 return Comdat::SameSize; 842 } 843 } 844 845 static FastMathFlags getDecodedFastMathFlags(unsigned Val) { 846 FastMathFlags FMF; 847 if (0 != (Val & FastMathFlags::UnsafeAlgebra)) 848 FMF.setUnsafeAlgebra(); 849 if (0 != (Val & FastMathFlags::NoNaNs)) 850 FMF.setNoNaNs(); 851 if (0 != (Val & FastMathFlags::NoInfs)) 852 FMF.setNoInfs(); 853 if (0 != (Val & FastMathFlags::NoSignedZeros)) 854 FMF.setNoSignedZeros(); 855 if (0 != (Val & FastMathFlags::AllowReciprocal)) 856 FMF.setAllowReciprocal(); 857 return FMF; 858 } 859 860 static void upgradeDLLImportExportLinkage(llvm::GlobalValue *GV, unsigned Val) { 861 switch (Val) { 862 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break; 863 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break; 864 } 865 } 866 867 namespace llvm { 868 namespace { 869 /// \brief A class for maintaining the slot number definition 870 /// as a placeholder for the actual definition for forward constants defs. 871 class ConstantPlaceHolder : public ConstantExpr { 872 void operator=(const ConstantPlaceHolder &) = delete; 873 874 public: 875 // allocate space for exactly one operand 876 void *operator new(size_t s) { return User::operator new(s, 1); } 877 explicit ConstantPlaceHolder(Type *Ty, LLVMContext &Context) 878 : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) { 879 Op<0>() = UndefValue::get(Type::getInt32Ty(Context)); 880 } 881 882 /// \brief Methods to support type inquiry through isa, cast, and dyn_cast. 883 static bool classof(const Value *V) { 884 return isa<ConstantExpr>(V) && 885 cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1; 886 } 887 888 /// Provide fast operand accessors 889 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); 890 }; 891 } // end anonymous namespace 892 893 // FIXME: can we inherit this from ConstantExpr? 894 template <> 895 struct OperandTraits<ConstantPlaceHolder> : 896 public FixedNumOperandTraits<ConstantPlaceHolder, 1> { 897 }; 898 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantPlaceHolder, Value) 899 } // end namespace llvm 900 901 void BitcodeReaderValueList::assignValue(Value *V, unsigned Idx) { 902 if (Idx == size()) { 903 push_back(V); 904 return; 905 } 906 907 if (Idx >= size()) 908 resize(Idx+1); 909 910 WeakVH &OldV = ValuePtrs[Idx]; 911 if (!OldV) { 912 OldV = V; 913 return; 914 } 915 916 // Handle constants and non-constants (e.g. instrs) differently for 917 // efficiency. 918 if (Constant *PHC = dyn_cast<Constant>(&*OldV)) { 919 ResolveConstants.push_back(std::make_pair(PHC, Idx)); 920 OldV = V; 921 } else { 922 // If there was a forward reference to this value, replace it. 923 Value *PrevVal = OldV; 924 OldV->replaceAllUsesWith(V); 925 delete PrevVal; 926 } 927 } 928 929 Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx, 930 Type *Ty) { 931 if (Idx >= size()) 932 resize(Idx + 1); 933 934 if (Value *V = ValuePtrs[Idx]) { 935 if (Ty != V->getType()) 936 report_fatal_error("Type mismatch in constant table!"); 937 return cast<Constant>(V); 938 } 939 940 // Create and return a placeholder, which will later be RAUW'd. 941 Constant *C = new ConstantPlaceHolder(Ty, Context); 942 ValuePtrs[Idx] = C; 943 return C; 944 } 945 946 Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, Type *Ty) { 947 // Bail out for a clearly invalid value. This would make us call resize(0) 948 if (Idx == UINT_MAX) 949 return nullptr; 950 951 if (Idx >= size()) 952 resize(Idx + 1); 953 954 if (Value *V = ValuePtrs[Idx]) { 955 // If the types don't match, it's invalid. 956 if (Ty && Ty != V->getType()) 957 return nullptr; 958 return V; 959 } 960 961 // No type specified, must be invalid reference. 962 if (!Ty) return nullptr; 963 964 // Create and return a placeholder, which will later be RAUW'd. 965 Value *V = new Argument(Ty); 966 ValuePtrs[Idx] = V; 967 return V; 968 } 969 970 /// Once all constants are read, this method bulk resolves any forward 971 /// references. The idea behind this is that we sometimes get constants (such 972 /// as large arrays) which reference *many* forward ref constants. Replacing 973 /// each of these causes a lot of thrashing when building/reuniquing the 974 /// constant. Instead of doing this, we look at all the uses and rewrite all 975 /// the place holders at once for any constant that uses a placeholder. 976 void BitcodeReaderValueList::resolveConstantForwardRefs() { 977 // Sort the values by-pointer so that they are efficient to look up with a 978 // binary search. 979 std::sort(ResolveConstants.begin(), ResolveConstants.end()); 980 981 SmallVector<Constant*, 64> NewOps; 982 983 while (!ResolveConstants.empty()) { 984 Value *RealVal = operator[](ResolveConstants.back().second); 985 Constant *Placeholder = ResolveConstants.back().first; 986 ResolveConstants.pop_back(); 987 988 // Loop over all users of the placeholder, updating them to reference the 989 // new value. If they reference more than one placeholder, update them all 990 // at once. 991 while (!Placeholder->use_empty()) { 992 auto UI = Placeholder->user_begin(); 993 User *U = *UI; 994 995 // If the using object isn't uniqued, just update the operands. This 996 // handles instructions and initializers for global variables. 997 if (!isa<Constant>(U) || isa<GlobalValue>(U)) { 998 UI.getUse().set(RealVal); 999 continue; 1000 } 1001 1002 // Otherwise, we have a constant that uses the placeholder. Replace that 1003 // constant with a new constant that has *all* placeholder uses updated. 1004 Constant *UserC = cast<Constant>(U); 1005 for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end(); 1006 I != E; ++I) { 1007 Value *NewOp; 1008 if (!isa<ConstantPlaceHolder>(*I)) { 1009 // Not a placeholder reference. 1010 NewOp = *I; 1011 } else if (*I == Placeholder) { 1012 // Common case is that it just references this one placeholder. 1013 NewOp = RealVal; 1014 } else { 1015 // Otherwise, look up the placeholder in ResolveConstants. 1016 ResolveConstantsTy::iterator It = 1017 std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(), 1018 std::pair<Constant*, unsigned>(cast<Constant>(*I), 1019 0)); 1020 assert(It != ResolveConstants.end() && It->first == *I); 1021 NewOp = operator[](It->second); 1022 } 1023 1024 NewOps.push_back(cast<Constant>(NewOp)); 1025 } 1026 1027 // Make the new constant. 1028 Constant *NewC; 1029 if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) { 1030 NewC = ConstantArray::get(UserCA->getType(), NewOps); 1031 } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) { 1032 NewC = ConstantStruct::get(UserCS->getType(), NewOps); 1033 } else if (isa<ConstantVector>(UserC)) { 1034 NewC = ConstantVector::get(NewOps); 1035 } else { 1036 assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr."); 1037 NewC = cast<ConstantExpr>(UserC)->getWithOperands(NewOps); 1038 } 1039 1040 UserC->replaceAllUsesWith(NewC); 1041 UserC->destroyConstant(); 1042 NewOps.clear(); 1043 } 1044 1045 // Update all ValueHandles, they should be the only users at this point. 1046 Placeholder->replaceAllUsesWith(RealVal); 1047 delete Placeholder; 1048 } 1049 } 1050 1051 void BitcodeReaderMetadataList::assignValue(Metadata *MD, unsigned Idx) { 1052 if (Idx == size()) { 1053 push_back(MD); 1054 return; 1055 } 1056 1057 if (Idx >= size()) 1058 resize(Idx+1); 1059 1060 TrackingMDRef &OldMD = MetadataPtrs[Idx]; 1061 if (!OldMD) { 1062 OldMD.reset(MD); 1063 return; 1064 } 1065 1066 // If there was a forward reference to this value, replace it. 1067 TempMDTuple PrevMD(cast<MDTuple>(OldMD.get())); 1068 PrevMD->replaceAllUsesWith(MD); 1069 --NumFwdRefs; 1070 } 1071 1072 Metadata *BitcodeReaderMetadataList::getMetadataFwdRef(unsigned Idx) { 1073 if (Idx >= size()) 1074 resize(Idx + 1); 1075 1076 if (Metadata *MD = MetadataPtrs[Idx]) 1077 return MD; 1078 1079 // Track forward refs to be resolved later. 1080 if (AnyFwdRefs) { 1081 MinFwdRef = std::min(MinFwdRef, Idx); 1082 MaxFwdRef = std::max(MaxFwdRef, Idx); 1083 } else { 1084 AnyFwdRefs = true; 1085 MinFwdRef = MaxFwdRef = Idx; 1086 } 1087 ++NumFwdRefs; 1088 1089 // Create and return a placeholder, which will later be RAUW'd. 1090 Metadata *MD = MDNode::getTemporary(Context, None).release(); 1091 MetadataPtrs[Idx].reset(MD); 1092 return MD; 1093 } 1094 1095 MDNode *BitcodeReaderMetadataList::getMDNodeFwdRefOrNull(unsigned Idx) { 1096 return dyn_cast_or_null<MDNode>(getMetadataFwdRef(Idx)); 1097 } 1098 1099 void BitcodeReaderMetadataList::tryToResolveCycles() { 1100 if (!AnyFwdRefs) 1101 // Nothing to do. 1102 return; 1103 1104 if (NumFwdRefs) 1105 // Still forward references... can't resolve cycles. 1106 return; 1107 1108 // Resolve any cycles. 1109 for (unsigned I = MinFwdRef, E = MaxFwdRef + 1; I != E; ++I) { 1110 auto &MD = MetadataPtrs[I]; 1111 auto *N = dyn_cast_or_null<MDNode>(MD); 1112 if (!N) 1113 continue; 1114 1115 assert(!N->isTemporary() && "Unexpected forward reference"); 1116 N->resolveCycles(); 1117 } 1118 1119 // Make sure we return early again until there's another forward ref. 1120 AnyFwdRefs = false; 1121 } 1122 1123 Type *BitcodeReader::getTypeByID(unsigned ID) { 1124 // The type table size is always specified correctly. 1125 if (ID >= TypeList.size()) 1126 return nullptr; 1127 1128 if (Type *Ty = TypeList[ID]) 1129 return Ty; 1130 1131 // If we have a forward reference, the only possible case is when it is to a 1132 // named struct. Just create a placeholder for now. 1133 return TypeList[ID] = createIdentifiedStructType(Context); 1134 } 1135 1136 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context, 1137 StringRef Name) { 1138 auto *Ret = StructType::create(Context, Name); 1139 IdentifiedStructTypes.push_back(Ret); 1140 return Ret; 1141 } 1142 1143 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) { 1144 auto *Ret = StructType::create(Context); 1145 IdentifiedStructTypes.push_back(Ret); 1146 return Ret; 1147 } 1148 1149 //===----------------------------------------------------------------------===// 1150 // Functions for parsing blocks from the bitcode file 1151 //===----------------------------------------------------------------------===// 1152 1153 1154 /// \brief This fills an AttrBuilder object with the LLVM attributes that have 1155 /// been decoded from the given integer. This function must stay in sync with 1156 /// 'encodeLLVMAttributesForBitcode'. 1157 static void decodeLLVMAttributesForBitcode(AttrBuilder &B, 1158 uint64_t EncodedAttrs) { 1159 // FIXME: Remove in 4.0. 1160 1161 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift 1162 // the bits above 31 down by 11 bits. 1163 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; 1164 assert((!Alignment || isPowerOf2_32(Alignment)) && 1165 "Alignment must be a power of two."); 1166 1167 if (Alignment) 1168 B.addAlignmentAttr(Alignment); 1169 B.addRawValue(((EncodedAttrs & (0xfffffULL << 32)) >> 11) | 1170 (EncodedAttrs & 0xffff)); 1171 } 1172 1173 std::error_code BitcodeReader::parseAttributeBlock() { 1174 if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 1175 return error("Invalid record"); 1176 1177 if (!MAttributes.empty()) 1178 return error("Invalid multiple blocks"); 1179 1180 SmallVector<uint64_t, 64> Record; 1181 1182 SmallVector<AttributeSet, 8> Attrs; 1183 1184 // Read all the records. 1185 while (1) { 1186 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1187 1188 switch (Entry.Kind) { 1189 case BitstreamEntry::SubBlock: // Handled for us already. 1190 case BitstreamEntry::Error: 1191 return error("Malformed block"); 1192 case BitstreamEntry::EndBlock: 1193 return std::error_code(); 1194 case BitstreamEntry::Record: 1195 // The interesting case. 1196 break; 1197 } 1198 1199 // Read a record. 1200 Record.clear(); 1201 switch (Stream.readRecord(Entry.ID, Record)) { 1202 default: // Default behavior: ignore. 1203 break; 1204 case bitc::PARAMATTR_CODE_ENTRY_OLD: { // ENTRY: [paramidx0, attr0, ...] 1205 // FIXME: Remove in 4.0. 1206 if (Record.size() & 1) 1207 return error("Invalid record"); 1208 1209 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1210 AttrBuilder B; 1211 decodeLLVMAttributesForBitcode(B, Record[i+1]); 1212 Attrs.push_back(AttributeSet::get(Context, Record[i], B)); 1213 } 1214 1215 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 1216 Attrs.clear(); 1217 break; 1218 } 1219 case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [attrgrp0, attrgrp1, ...] 1220 for (unsigned i = 0, e = Record.size(); i != e; ++i) 1221 Attrs.push_back(MAttributeGroups[Record[i]]); 1222 1223 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 1224 Attrs.clear(); 1225 break; 1226 } 1227 } 1228 } 1229 } 1230 1231 // Returns Attribute::None on unrecognized codes. 1232 static Attribute::AttrKind getAttrFromCode(uint64_t Code) { 1233 switch (Code) { 1234 default: 1235 return Attribute::None; 1236 case bitc::ATTR_KIND_ALIGNMENT: 1237 return Attribute::Alignment; 1238 case bitc::ATTR_KIND_ALWAYS_INLINE: 1239 return Attribute::AlwaysInline; 1240 case bitc::ATTR_KIND_ARGMEMONLY: 1241 return Attribute::ArgMemOnly; 1242 case bitc::ATTR_KIND_BUILTIN: 1243 return Attribute::Builtin; 1244 case bitc::ATTR_KIND_BY_VAL: 1245 return Attribute::ByVal; 1246 case bitc::ATTR_KIND_IN_ALLOCA: 1247 return Attribute::InAlloca; 1248 case bitc::ATTR_KIND_COLD: 1249 return Attribute::Cold; 1250 case bitc::ATTR_KIND_CONVERGENT: 1251 return Attribute::Convergent; 1252 case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY: 1253 return Attribute::InaccessibleMemOnly; 1254 case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY: 1255 return Attribute::InaccessibleMemOrArgMemOnly; 1256 case bitc::ATTR_KIND_INLINE_HINT: 1257 return Attribute::InlineHint; 1258 case bitc::ATTR_KIND_IN_REG: 1259 return Attribute::InReg; 1260 case bitc::ATTR_KIND_JUMP_TABLE: 1261 return Attribute::JumpTable; 1262 case bitc::ATTR_KIND_MIN_SIZE: 1263 return Attribute::MinSize; 1264 case bitc::ATTR_KIND_NAKED: 1265 return Attribute::Naked; 1266 case bitc::ATTR_KIND_NEST: 1267 return Attribute::Nest; 1268 case bitc::ATTR_KIND_NO_ALIAS: 1269 return Attribute::NoAlias; 1270 case bitc::ATTR_KIND_NO_BUILTIN: 1271 return Attribute::NoBuiltin; 1272 case bitc::ATTR_KIND_NO_CAPTURE: 1273 return Attribute::NoCapture; 1274 case bitc::ATTR_KIND_NO_DUPLICATE: 1275 return Attribute::NoDuplicate; 1276 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: 1277 return Attribute::NoImplicitFloat; 1278 case bitc::ATTR_KIND_NO_INLINE: 1279 return Attribute::NoInline; 1280 case bitc::ATTR_KIND_NO_RECURSE: 1281 return Attribute::NoRecurse; 1282 case bitc::ATTR_KIND_NON_LAZY_BIND: 1283 return Attribute::NonLazyBind; 1284 case bitc::ATTR_KIND_NON_NULL: 1285 return Attribute::NonNull; 1286 case bitc::ATTR_KIND_DEREFERENCEABLE: 1287 return Attribute::Dereferenceable; 1288 case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL: 1289 return Attribute::DereferenceableOrNull; 1290 case bitc::ATTR_KIND_NO_RED_ZONE: 1291 return Attribute::NoRedZone; 1292 case bitc::ATTR_KIND_NO_RETURN: 1293 return Attribute::NoReturn; 1294 case bitc::ATTR_KIND_NO_UNWIND: 1295 return Attribute::NoUnwind; 1296 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: 1297 return Attribute::OptimizeForSize; 1298 case bitc::ATTR_KIND_OPTIMIZE_NONE: 1299 return Attribute::OptimizeNone; 1300 case bitc::ATTR_KIND_READ_NONE: 1301 return Attribute::ReadNone; 1302 case bitc::ATTR_KIND_READ_ONLY: 1303 return Attribute::ReadOnly; 1304 case bitc::ATTR_KIND_RETURNED: 1305 return Attribute::Returned; 1306 case bitc::ATTR_KIND_RETURNS_TWICE: 1307 return Attribute::ReturnsTwice; 1308 case bitc::ATTR_KIND_S_EXT: 1309 return Attribute::SExt; 1310 case bitc::ATTR_KIND_STACK_ALIGNMENT: 1311 return Attribute::StackAlignment; 1312 case bitc::ATTR_KIND_STACK_PROTECT: 1313 return Attribute::StackProtect; 1314 case bitc::ATTR_KIND_STACK_PROTECT_REQ: 1315 return Attribute::StackProtectReq; 1316 case bitc::ATTR_KIND_STACK_PROTECT_STRONG: 1317 return Attribute::StackProtectStrong; 1318 case bitc::ATTR_KIND_SAFESTACK: 1319 return Attribute::SafeStack; 1320 case bitc::ATTR_KIND_STRUCT_RET: 1321 return Attribute::StructRet; 1322 case bitc::ATTR_KIND_SANITIZE_ADDRESS: 1323 return Attribute::SanitizeAddress; 1324 case bitc::ATTR_KIND_SANITIZE_THREAD: 1325 return Attribute::SanitizeThread; 1326 case bitc::ATTR_KIND_SANITIZE_MEMORY: 1327 return Attribute::SanitizeMemory; 1328 case bitc::ATTR_KIND_SWIFT_SELF: 1329 return Attribute::SwiftSelf; 1330 case bitc::ATTR_KIND_UW_TABLE: 1331 return Attribute::UWTable; 1332 case bitc::ATTR_KIND_Z_EXT: 1333 return Attribute::ZExt; 1334 } 1335 } 1336 1337 std::error_code BitcodeReader::parseAlignmentValue(uint64_t Exponent, 1338 unsigned &Alignment) { 1339 // Note: Alignment in bitcode files is incremented by 1, so that zero 1340 // can be used for default alignment. 1341 if (Exponent > Value::MaxAlignmentExponent + 1) 1342 return error("Invalid alignment value"); 1343 Alignment = (1 << static_cast<unsigned>(Exponent)) >> 1; 1344 return std::error_code(); 1345 } 1346 1347 std::error_code BitcodeReader::parseAttrKind(uint64_t Code, 1348 Attribute::AttrKind *Kind) { 1349 *Kind = getAttrFromCode(Code); 1350 if (*Kind == Attribute::None) 1351 return error(BitcodeError::CorruptedBitcode, 1352 "Unknown attribute kind (" + Twine(Code) + ")"); 1353 return std::error_code(); 1354 } 1355 1356 std::error_code BitcodeReader::parseAttributeGroupBlock() { 1357 if (Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) 1358 return error("Invalid record"); 1359 1360 if (!MAttributeGroups.empty()) 1361 return error("Invalid multiple blocks"); 1362 1363 SmallVector<uint64_t, 64> Record; 1364 1365 // Read all the records. 1366 while (1) { 1367 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1368 1369 switch (Entry.Kind) { 1370 case BitstreamEntry::SubBlock: // Handled for us already. 1371 case BitstreamEntry::Error: 1372 return error("Malformed block"); 1373 case BitstreamEntry::EndBlock: 1374 return std::error_code(); 1375 case BitstreamEntry::Record: 1376 // The interesting case. 1377 break; 1378 } 1379 1380 // Read a record. 1381 Record.clear(); 1382 switch (Stream.readRecord(Entry.ID, Record)) { 1383 default: // Default behavior: ignore. 1384 break; 1385 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] 1386 if (Record.size() < 3) 1387 return error("Invalid record"); 1388 1389 uint64_t GrpID = Record[0]; 1390 uint64_t Idx = Record[1]; // Index of the object this attribute refers to. 1391 1392 AttrBuilder B; 1393 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1394 if (Record[i] == 0) { // Enum attribute 1395 Attribute::AttrKind Kind; 1396 if (std::error_code EC = parseAttrKind(Record[++i], &Kind)) 1397 return EC; 1398 1399 B.addAttribute(Kind); 1400 } else if (Record[i] == 1) { // Integer attribute 1401 Attribute::AttrKind Kind; 1402 if (std::error_code EC = parseAttrKind(Record[++i], &Kind)) 1403 return EC; 1404 if (Kind == Attribute::Alignment) 1405 B.addAlignmentAttr(Record[++i]); 1406 else if (Kind == Attribute::StackAlignment) 1407 B.addStackAlignmentAttr(Record[++i]); 1408 else if (Kind == Attribute::Dereferenceable) 1409 B.addDereferenceableAttr(Record[++i]); 1410 else if (Kind == Attribute::DereferenceableOrNull) 1411 B.addDereferenceableOrNullAttr(Record[++i]); 1412 } else { // String attribute 1413 assert((Record[i] == 3 || Record[i] == 4) && 1414 "Invalid attribute group entry"); 1415 bool HasValue = (Record[i++] == 4); 1416 SmallString<64> KindStr; 1417 SmallString<64> ValStr; 1418 1419 while (Record[i] != 0 && i != e) 1420 KindStr += Record[i++]; 1421 assert(Record[i] == 0 && "Kind string not null terminated"); 1422 1423 if (HasValue) { 1424 // Has a value associated with it. 1425 ++i; // Skip the '0' that terminates the "kind" string. 1426 while (Record[i] != 0 && i != e) 1427 ValStr += Record[i++]; 1428 assert(Record[i] == 0 && "Value string not null terminated"); 1429 } 1430 1431 B.addAttribute(KindStr.str(), ValStr.str()); 1432 } 1433 } 1434 1435 MAttributeGroups[GrpID] = AttributeSet::get(Context, Idx, B); 1436 break; 1437 } 1438 } 1439 } 1440 } 1441 1442 std::error_code BitcodeReader::parseTypeTable() { 1443 if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 1444 return error("Invalid record"); 1445 1446 return parseTypeTableBody(); 1447 } 1448 1449 std::error_code BitcodeReader::parseTypeTableBody() { 1450 if (!TypeList.empty()) 1451 return error("Invalid multiple blocks"); 1452 1453 SmallVector<uint64_t, 64> Record; 1454 unsigned NumRecords = 0; 1455 1456 SmallString<64> TypeName; 1457 1458 // Read all the records for this type table. 1459 while (1) { 1460 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1461 1462 switch (Entry.Kind) { 1463 case BitstreamEntry::SubBlock: // Handled for us already. 1464 case BitstreamEntry::Error: 1465 return error("Malformed block"); 1466 case BitstreamEntry::EndBlock: 1467 if (NumRecords != TypeList.size()) 1468 return error("Malformed block"); 1469 return std::error_code(); 1470 case BitstreamEntry::Record: 1471 // The interesting case. 1472 break; 1473 } 1474 1475 // Read a record. 1476 Record.clear(); 1477 Type *ResultTy = nullptr; 1478 switch (Stream.readRecord(Entry.ID, Record)) { 1479 default: 1480 return error("Invalid value"); 1481 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 1482 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 1483 // type list. This allows us to reserve space. 1484 if (Record.size() < 1) 1485 return error("Invalid record"); 1486 TypeList.resize(Record[0]); 1487 continue; 1488 case bitc::TYPE_CODE_VOID: // VOID 1489 ResultTy = Type::getVoidTy(Context); 1490 break; 1491 case bitc::TYPE_CODE_HALF: // HALF 1492 ResultTy = Type::getHalfTy(Context); 1493 break; 1494 case bitc::TYPE_CODE_FLOAT: // FLOAT 1495 ResultTy = Type::getFloatTy(Context); 1496 break; 1497 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 1498 ResultTy = Type::getDoubleTy(Context); 1499 break; 1500 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 1501 ResultTy = Type::getX86_FP80Ty(Context); 1502 break; 1503 case bitc::TYPE_CODE_FP128: // FP128 1504 ResultTy = Type::getFP128Ty(Context); 1505 break; 1506 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 1507 ResultTy = Type::getPPC_FP128Ty(Context); 1508 break; 1509 case bitc::TYPE_CODE_LABEL: // LABEL 1510 ResultTy = Type::getLabelTy(Context); 1511 break; 1512 case bitc::TYPE_CODE_METADATA: // METADATA 1513 ResultTy = Type::getMetadataTy(Context); 1514 break; 1515 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 1516 ResultTy = Type::getX86_MMXTy(Context); 1517 break; 1518 case bitc::TYPE_CODE_TOKEN: // TOKEN 1519 ResultTy = Type::getTokenTy(Context); 1520 break; 1521 case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width] 1522 if (Record.size() < 1) 1523 return error("Invalid record"); 1524 1525 uint64_t NumBits = Record[0]; 1526 if (NumBits < IntegerType::MIN_INT_BITS || 1527 NumBits > IntegerType::MAX_INT_BITS) 1528 return error("Bitwidth for integer type out of range"); 1529 ResultTy = IntegerType::get(Context, NumBits); 1530 break; 1531 } 1532 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 1533 // [pointee type, address space] 1534 if (Record.size() < 1) 1535 return error("Invalid record"); 1536 unsigned AddressSpace = 0; 1537 if (Record.size() == 2) 1538 AddressSpace = Record[1]; 1539 ResultTy = getTypeByID(Record[0]); 1540 if (!ResultTy || 1541 !PointerType::isValidElementType(ResultTy)) 1542 return error("Invalid type"); 1543 ResultTy = PointerType::get(ResultTy, AddressSpace); 1544 break; 1545 } 1546 case bitc::TYPE_CODE_FUNCTION_OLD: { 1547 // FIXME: attrid is dead, remove it in LLVM 4.0 1548 // FUNCTION: [vararg, attrid, retty, paramty x N] 1549 if (Record.size() < 3) 1550 return error("Invalid record"); 1551 SmallVector<Type*, 8> ArgTys; 1552 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 1553 if (Type *T = getTypeByID(Record[i])) 1554 ArgTys.push_back(T); 1555 else 1556 break; 1557 } 1558 1559 ResultTy = getTypeByID(Record[2]); 1560 if (!ResultTy || ArgTys.size() < Record.size()-3) 1561 return error("Invalid type"); 1562 1563 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1564 break; 1565 } 1566 case bitc::TYPE_CODE_FUNCTION: { 1567 // FUNCTION: [vararg, retty, paramty x N] 1568 if (Record.size() < 2) 1569 return error("Invalid record"); 1570 SmallVector<Type*, 8> ArgTys; 1571 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1572 if (Type *T = getTypeByID(Record[i])) { 1573 if (!FunctionType::isValidArgumentType(T)) 1574 return error("Invalid function argument type"); 1575 ArgTys.push_back(T); 1576 } 1577 else 1578 break; 1579 } 1580 1581 ResultTy = getTypeByID(Record[1]); 1582 if (!ResultTy || ArgTys.size() < Record.size()-2) 1583 return error("Invalid type"); 1584 1585 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1586 break; 1587 } 1588 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 1589 if (Record.size() < 1) 1590 return error("Invalid record"); 1591 SmallVector<Type*, 8> EltTys; 1592 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1593 if (Type *T = getTypeByID(Record[i])) 1594 EltTys.push_back(T); 1595 else 1596 break; 1597 } 1598 if (EltTys.size() != Record.size()-1) 1599 return error("Invalid type"); 1600 ResultTy = StructType::get(Context, EltTys, Record[0]); 1601 break; 1602 } 1603 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 1604 if (convertToString(Record, 0, TypeName)) 1605 return error("Invalid record"); 1606 continue; 1607 1608 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 1609 if (Record.size() < 1) 1610 return error("Invalid record"); 1611 1612 if (NumRecords >= TypeList.size()) 1613 return error("Invalid TYPE table"); 1614 1615 // Check to see if this was forward referenced, if so fill in the temp. 1616 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1617 if (Res) { 1618 Res->setName(TypeName); 1619 TypeList[NumRecords] = nullptr; 1620 } else // Otherwise, create a new struct. 1621 Res = createIdentifiedStructType(Context, TypeName); 1622 TypeName.clear(); 1623 1624 SmallVector<Type*, 8> EltTys; 1625 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1626 if (Type *T = getTypeByID(Record[i])) 1627 EltTys.push_back(T); 1628 else 1629 break; 1630 } 1631 if (EltTys.size() != Record.size()-1) 1632 return error("Invalid record"); 1633 Res->setBody(EltTys, Record[0]); 1634 ResultTy = Res; 1635 break; 1636 } 1637 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 1638 if (Record.size() != 1) 1639 return error("Invalid record"); 1640 1641 if (NumRecords >= TypeList.size()) 1642 return error("Invalid TYPE table"); 1643 1644 // Check to see if this was forward referenced, if so fill in the temp. 1645 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1646 if (Res) { 1647 Res->setName(TypeName); 1648 TypeList[NumRecords] = nullptr; 1649 } else // Otherwise, create a new struct with no body. 1650 Res = createIdentifiedStructType(Context, TypeName); 1651 TypeName.clear(); 1652 ResultTy = Res; 1653 break; 1654 } 1655 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 1656 if (Record.size() < 2) 1657 return error("Invalid record"); 1658 ResultTy = getTypeByID(Record[1]); 1659 if (!ResultTy || !ArrayType::isValidElementType(ResultTy)) 1660 return error("Invalid type"); 1661 ResultTy = ArrayType::get(ResultTy, Record[0]); 1662 break; 1663 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] 1664 if (Record.size() < 2) 1665 return error("Invalid record"); 1666 if (Record[0] == 0) 1667 return error("Invalid vector length"); 1668 ResultTy = getTypeByID(Record[1]); 1669 if (!ResultTy || !StructType::isValidElementType(ResultTy)) 1670 return error("Invalid type"); 1671 ResultTy = VectorType::get(ResultTy, Record[0]); 1672 break; 1673 } 1674 1675 if (NumRecords >= TypeList.size()) 1676 return error("Invalid TYPE table"); 1677 if (TypeList[NumRecords]) 1678 return error( 1679 "Invalid TYPE table: Only named structs can be forward referenced"); 1680 assert(ResultTy && "Didn't read a type?"); 1681 TypeList[NumRecords++] = ResultTy; 1682 } 1683 } 1684 1685 std::error_code BitcodeReader::parseOperandBundleTags() { 1686 if (Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID)) 1687 return error("Invalid record"); 1688 1689 if (!BundleTags.empty()) 1690 return error("Invalid multiple blocks"); 1691 1692 SmallVector<uint64_t, 64> Record; 1693 1694 while (1) { 1695 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1696 1697 switch (Entry.Kind) { 1698 case BitstreamEntry::SubBlock: // Handled for us already. 1699 case BitstreamEntry::Error: 1700 return error("Malformed block"); 1701 case BitstreamEntry::EndBlock: 1702 return std::error_code(); 1703 case BitstreamEntry::Record: 1704 // The interesting case. 1705 break; 1706 } 1707 1708 // Tags are implicitly mapped to integers by their order. 1709 1710 if (Stream.readRecord(Entry.ID, Record) != bitc::OPERAND_BUNDLE_TAG) 1711 return error("Invalid record"); 1712 1713 // OPERAND_BUNDLE_TAG: [strchr x N] 1714 BundleTags.emplace_back(); 1715 if (convertToString(Record, 0, BundleTags.back())) 1716 return error("Invalid record"); 1717 Record.clear(); 1718 } 1719 } 1720 1721 /// Associate a value with its name from the given index in the provided record. 1722 ErrorOr<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record, 1723 unsigned NameIndex, Triple &TT) { 1724 SmallString<128> ValueName; 1725 if (convertToString(Record, NameIndex, ValueName)) 1726 return error("Invalid record"); 1727 unsigned ValueID = Record[0]; 1728 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 1729 return error("Invalid record"); 1730 Value *V = ValueList[ValueID]; 1731 1732 StringRef NameStr(ValueName.data(), ValueName.size()); 1733 if (NameStr.find_first_of(0) != StringRef::npos) 1734 return error("Invalid value name"); 1735 V->setName(NameStr); 1736 auto *GO = dyn_cast<GlobalObject>(V); 1737 if (GO) { 1738 if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) { 1739 if (TT.isOSBinFormatMachO()) 1740 GO->setComdat(nullptr); 1741 else 1742 GO->setComdat(TheModule->getOrInsertComdat(V->getName())); 1743 } 1744 } 1745 return V; 1746 } 1747 1748 /// Helper to note and return the current location, and jump to the given 1749 /// offset. 1750 static uint64_t jumpToValueSymbolTable(uint64_t Offset, 1751 BitstreamCursor &Stream) { 1752 // Save the current parsing location so we can jump back at the end 1753 // of the VST read. 1754 uint64_t CurrentBit = Stream.GetCurrentBitNo(); 1755 Stream.JumpToBit(Offset * 32); 1756 #ifndef NDEBUG 1757 // Do some checking if we are in debug mode. 1758 BitstreamEntry Entry = Stream.advance(); 1759 assert(Entry.Kind == BitstreamEntry::SubBlock); 1760 assert(Entry.ID == bitc::VALUE_SYMTAB_BLOCK_ID); 1761 #else 1762 // In NDEBUG mode ignore the output so we don't get an unused variable 1763 // warning. 1764 Stream.advance(); 1765 #endif 1766 return CurrentBit; 1767 } 1768 1769 /// Parse the value symbol table at either the current parsing location or 1770 /// at the given bit offset if provided. 1771 std::error_code BitcodeReader::parseValueSymbolTable(uint64_t Offset) { 1772 uint64_t CurrentBit; 1773 // Pass in the Offset to distinguish between calling for the module-level 1774 // VST (where we want to jump to the VST offset) and the function-level 1775 // VST (where we don't). 1776 if (Offset > 0) 1777 CurrentBit = jumpToValueSymbolTable(Offset, Stream); 1778 1779 // Compute the delta between the bitcode indices in the VST (the word offset 1780 // to the word-aligned ENTER_SUBBLOCK for the function block, and that 1781 // expected by the lazy reader. The reader's EnterSubBlock expects to have 1782 // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID 1783 // (size BlockIDWidth). Note that we access the stream's AbbrevID width here 1784 // just before entering the VST subblock because: 1) the EnterSubBlock 1785 // changes the AbbrevID width; 2) the VST block is nested within the same 1786 // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same 1787 // AbbrevID width before calling EnterSubBlock; and 3) when we want to 1788 // jump to the FUNCTION_BLOCK using this offset later, we don't want 1789 // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK. 1790 unsigned FuncBitcodeOffsetDelta = 1791 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 1792 1793 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 1794 return error("Invalid record"); 1795 1796 SmallVector<uint64_t, 64> Record; 1797 1798 Triple TT(TheModule->getTargetTriple()); 1799 1800 // Read all the records for this value table. 1801 SmallString<128> ValueName; 1802 while (1) { 1803 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1804 1805 switch (Entry.Kind) { 1806 case BitstreamEntry::SubBlock: // Handled for us already. 1807 case BitstreamEntry::Error: 1808 return error("Malformed block"); 1809 case BitstreamEntry::EndBlock: 1810 if (Offset > 0) 1811 Stream.JumpToBit(CurrentBit); 1812 return std::error_code(); 1813 case BitstreamEntry::Record: 1814 // The interesting case. 1815 break; 1816 } 1817 1818 // Read a record. 1819 Record.clear(); 1820 switch (Stream.readRecord(Entry.ID, Record)) { 1821 default: // Default behavior: unknown type. 1822 break; 1823 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 1824 ErrorOr<Value *> ValOrErr = recordValue(Record, 1, TT); 1825 if (std::error_code EC = ValOrErr.getError()) 1826 return EC; 1827 ValOrErr.get(); 1828 break; 1829 } 1830 case bitc::VST_CODE_FNENTRY: { 1831 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 1832 ErrorOr<Value *> ValOrErr = recordValue(Record, 2, TT); 1833 if (std::error_code EC = ValOrErr.getError()) 1834 return EC; 1835 Value *V = ValOrErr.get(); 1836 1837 auto *GO = dyn_cast<GlobalObject>(V); 1838 if (!GO) { 1839 // If this is an alias, need to get the actual Function object 1840 // it aliases, in order to set up the DeferredFunctionInfo entry below. 1841 auto *GA = dyn_cast<GlobalAlias>(V); 1842 if (GA) 1843 GO = GA->getBaseObject(); 1844 assert(GO); 1845 } 1846 1847 uint64_t FuncWordOffset = Record[1]; 1848 Function *F = dyn_cast<Function>(GO); 1849 assert(F); 1850 uint64_t FuncBitOffset = FuncWordOffset * 32; 1851 DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta; 1852 // Set the LastFunctionBlockBit to point to the last function block. 1853 // Later when parsing is resumed after function materialization, 1854 // we can simply skip that last function block. 1855 if (FuncBitOffset > LastFunctionBlockBit) 1856 LastFunctionBlockBit = FuncBitOffset; 1857 break; 1858 } 1859 case bitc::VST_CODE_BBENTRY: { 1860 if (convertToString(Record, 1, ValueName)) 1861 return error("Invalid record"); 1862 BasicBlock *BB = getBasicBlock(Record[0]); 1863 if (!BB) 1864 return error("Invalid record"); 1865 1866 BB->setName(StringRef(ValueName.data(), ValueName.size())); 1867 ValueName.clear(); 1868 break; 1869 } 1870 } 1871 } 1872 } 1873 1874 /// Parse a single METADATA_KIND record, inserting result in MDKindMap. 1875 std::error_code 1876 BitcodeReader::parseMetadataKindRecord(SmallVectorImpl<uint64_t> &Record) { 1877 if (Record.size() < 2) 1878 return error("Invalid record"); 1879 1880 unsigned Kind = Record[0]; 1881 SmallString<8> Name(Record.begin() + 1, Record.end()); 1882 1883 unsigned NewKind = TheModule->getMDKindID(Name.str()); 1884 if (!MDKindMap.insert(std::make_pair(Kind, NewKind)).second) 1885 return error("Conflicting METADATA_KIND records"); 1886 return std::error_code(); 1887 } 1888 1889 static int64_t unrotateSign(uint64_t U) { return U & 1 ? ~(U >> 1) : U >> 1; } 1890 1891 std::error_code BitcodeReader::parseMetadataStrings(ArrayRef<uint64_t> Record, 1892 StringRef Blob, 1893 unsigned &NextMetadataNo) { 1894 // All the MDStrings in the block are emitted together in a single 1895 // record. The strings are concatenated and stored in a blob along with 1896 // their sizes. 1897 if (Record.size() != 2) 1898 return error("Invalid record: metadata strings layout"); 1899 1900 unsigned NumStrings = Record[0]; 1901 unsigned StringsOffset = Record[1]; 1902 if (!NumStrings) 1903 return error("Invalid record: metadata strings with no strings"); 1904 if (StringsOffset > Blob.size()) 1905 return error("Invalid record: metadata strings corrupt offset"); 1906 1907 StringRef Lengths = Blob.slice(0, StringsOffset); 1908 SimpleBitstreamCursor R(*StreamFile); 1909 R.jumpToPointer(Lengths.begin()); 1910 1911 // Ensure that Blob doesn't get invalidated, even if this is reading from 1912 // a StreamingMemoryObject with corrupt data. 1913 R.setArtificialByteLimit(R.getCurrentByteNo() + StringsOffset); 1914 1915 StringRef Strings = Blob.drop_front(StringsOffset); 1916 do { 1917 if (R.AtEndOfStream()) 1918 return error("Invalid record: metadata strings bad length"); 1919 1920 unsigned Size = R.ReadVBR(6); 1921 if (Strings.size() < Size) 1922 return error("Invalid record: metadata strings truncated chars"); 1923 1924 MetadataList.assignValue(MDString::get(Context, Strings.slice(0, Size)), 1925 NextMetadataNo++); 1926 Strings = Strings.drop_front(Size); 1927 } while (--NumStrings); 1928 1929 return std::error_code(); 1930 } 1931 1932 /// Parse a METADATA_BLOCK. If ModuleLevel is true then we are parsing 1933 /// module level metadata. 1934 std::error_code BitcodeReader::parseMetadata(bool ModuleLevel) { 1935 IsMetadataMaterialized = true; 1936 unsigned NextMetadataNo = MetadataList.size(); 1937 1938 if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID)) 1939 return error("Invalid record"); 1940 1941 SmallVector<uint64_t, 64> Record; 1942 1943 auto getMD = [&](unsigned ID) -> Metadata * { 1944 return MetadataList.getMetadataFwdRef(ID); 1945 }; 1946 auto getMDOrNull = [&](unsigned ID) -> Metadata *{ 1947 if (ID) 1948 return getMD(ID - 1); 1949 return nullptr; 1950 }; 1951 auto getMDString = [&](unsigned ID) -> MDString *{ 1952 // This requires that the ID is not really a forward reference. In 1953 // particular, the MDString must already have been resolved. 1954 return cast_or_null<MDString>(getMDOrNull(ID)); 1955 }; 1956 1957 #define GET_OR_DISTINCT(CLASS, DISTINCT, ARGS) \ 1958 (DISTINCT ? CLASS::getDistinct ARGS : CLASS::get ARGS) 1959 1960 // Read all the records. 1961 while (1) { 1962 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1963 1964 switch (Entry.Kind) { 1965 case BitstreamEntry::SubBlock: // Handled for us already. 1966 case BitstreamEntry::Error: 1967 return error("Malformed block"); 1968 case BitstreamEntry::EndBlock: 1969 MetadataList.tryToResolveCycles(); 1970 return std::error_code(); 1971 case BitstreamEntry::Record: 1972 // The interesting case. 1973 break; 1974 } 1975 1976 // Read a record. 1977 Record.clear(); 1978 StringRef Blob; 1979 unsigned Code = Stream.readRecord(Entry.ID, Record, &Blob); 1980 bool IsDistinct = false; 1981 switch (Code) { 1982 default: // Default behavior: ignore. 1983 break; 1984 case bitc::METADATA_NAME: { 1985 // Read name of the named metadata. 1986 SmallString<8> Name(Record.begin(), Record.end()); 1987 Record.clear(); 1988 Code = Stream.ReadCode(); 1989 1990 unsigned NextBitCode = Stream.readRecord(Code, Record); 1991 if (NextBitCode != bitc::METADATA_NAMED_NODE) 1992 return error("METADATA_NAME not followed by METADATA_NAMED_NODE"); 1993 1994 // Read named metadata elements. 1995 unsigned Size = Record.size(); 1996 NamedMDNode *NMD = TheModule->getOrInsertNamedMetadata(Name); 1997 for (unsigned i = 0; i != Size; ++i) { 1998 MDNode *MD = MetadataList.getMDNodeFwdRefOrNull(Record[i]); 1999 if (!MD) 2000 return error("Invalid record"); 2001 NMD->addOperand(MD); 2002 } 2003 break; 2004 } 2005 case bitc::METADATA_OLD_FN_NODE: { 2006 // FIXME: Remove in 4.0. 2007 // This is a LocalAsMetadata record, the only type of function-local 2008 // metadata. 2009 if (Record.size() % 2 == 1) 2010 return error("Invalid record"); 2011 2012 // If this isn't a LocalAsMetadata record, we're dropping it. This used 2013 // to be legal, but there's no upgrade path. 2014 auto dropRecord = [&] { 2015 MetadataList.assignValue(MDNode::get(Context, None), NextMetadataNo++); 2016 }; 2017 if (Record.size() != 2) { 2018 dropRecord(); 2019 break; 2020 } 2021 2022 Type *Ty = getTypeByID(Record[0]); 2023 if (Ty->isMetadataTy() || Ty->isVoidTy()) { 2024 dropRecord(); 2025 break; 2026 } 2027 2028 MetadataList.assignValue( 2029 LocalAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)), 2030 NextMetadataNo++); 2031 break; 2032 } 2033 case bitc::METADATA_OLD_NODE: { 2034 // FIXME: Remove in 4.0. 2035 if (Record.size() % 2 == 1) 2036 return error("Invalid record"); 2037 2038 unsigned Size = Record.size(); 2039 SmallVector<Metadata *, 8> Elts; 2040 for (unsigned i = 0; i != Size; i += 2) { 2041 Type *Ty = getTypeByID(Record[i]); 2042 if (!Ty) 2043 return error("Invalid record"); 2044 if (Ty->isMetadataTy()) 2045 Elts.push_back(MetadataList.getMetadataFwdRef(Record[i + 1])); 2046 else if (!Ty->isVoidTy()) { 2047 auto *MD = 2048 ValueAsMetadata::get(ValueList.getValueFwdRef(Record[i + 1], Ty)); 2049 assert(isa<ConstantAsMetadata>(MD) && 2050 "Expected non-function-local metadata"); 2051 Elts.push_back(MD); 2052 } else 2053 Elts.push_back(nullptr); 2054 } 2055 MetadataList.assignValue(MDNode::get(Context, Elts), NextMetadataNo++); 2056 break; 2057 } 2058 case bitc::METADATA_VALUE: { 2059 if (Record.size() != 2) 2060 return error("Invalid record"); 2061 2062 Type *Ty = getTypeByID(Record[0]); 2063 if (Ty->isMetadataTy() || Ty->isVoidTy()) 2064 return error("Invalid record"); 2065 2066 MetadataList.assignValue( 2067 ValueAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)), 2068 NextMetadataNo++); 2069 break; 2070 } 2071 case bitc::METADATA_DISTINCT_NODE: 2072 IsDistinct = true; 2073 // fallthrough... 2074 case bitc::METADATA_NODE: { 2075 SmallVector<Metadata *, 8> Elts; 2076 Elts.reserve(Record.size()); 2077 for (unsigned ID : Record) 2078 Elts.push_back(ID ? MetadataList.getMetadataFwdRef(ID - 1) : nullptr); 2079 MetadataList.assignValue(IsDistinct ? MDNode::getDistinct(Context, Elts) 2080 : MDNode::get(Context, Elts), 2081 NextMetadataNo++); 2082 break; 2083 } 2084 case bitc::METADATA_LOCATION: { 2085 if (Record.size() != 5) 2086 return error("Invalid record"); 2087 2088 unsigned Line = Record[1]; 2089 unsigned Column = Record[2]; 2090 MDNode *Scope = MetadataList.getMDNodeFwdRefOrNull(Record[3]); 2091 if (!Scope) 2092 return error("Invalid record"); 2093 Metadata *InlinedAt = 2094 Record[4] ? MetadataList.getMetadataFwdRef(Record[4] - 1) : nullptr; 2095 MetadataList.assignValue( 2096 GET_OR_DISTINCT(DILocation, Record[0], 2097 (Context, Line, Column, Scope, InlinedAt)), 2098 NextMetadataNo++); 2099 break; 2100 } 2101 case bitc::METADATA_GENERIC_DEBUG: { 2102 if (Record.size() < 4) 2103 return error("Invalid record"); 2104 2105 unsigned Tag = Record[1]; 2106 unsigned Version = Record[2]; 2107 2108 if (Tag >= 1u << 16 || Version != 0) 2109 return error("Invalid record"); 2110 2111 auto *Header = getMDString(Record[3]); 2112 SmallVector<Metadata *, 8> DwarfOps; 2113 for (unsigned I = 4, E = Record.size(); I != E; ++I) 2114 DwarfOps.push_back(Record[I] 2115 ? MetadataList.getMetadataFwdRef(Record[I] - 1) 2116 : nullptr); 2117 MetadataList.assignValue( 2118 GET_OR_DISTINCT(GenericDINode, Record[0], 2119 (Context, Tag, Header, DwarfOps)), 2120 NextMetadataNo++); 2121 break; 2122 } 2123 case bitc::METADATA_SUBRANGE: { 2124 if (Record.size() != 3) 2125 return error("Invalid record"); 2126 2127 MetadataList.assignValue( 2128 GET_OR_DISTINCT(DISubrange, Record[0], 2129 (Context, Record[1], unrotateSign(Record[2]))), 2130 NextMetadataNo++); 2131 break; 2132 } 2133 case bitc::METADATA_ENUMERATOR: { 2134 if (Record.size() != 3) 2135 return error("Invalid record"); 2136 2137 MetadataList.assignValue( 2138 GET_OR_DISTINCT( 2139 DIEnumerator, Record[0], 2140 (Context, unrotateSign(Record[1]), getMDString(Record[2]))), 2141 NextMetadataNo++); 2142 break; 2143 } 2144 case bitc::METADATA_BASIC_TYPE: { 2145 if (Record.size() != 6) 2146 return error("Invalid record"); 2147 2148 MetadataList.assignValue( 2149 GET_OR_DISTINCT(DIBasicType, Record[0], 2150 (Context, Record[1], getMDString(Record[2]), 2151 Record[3], Record[4], Record[5])), 2152 NextMetadataNo++); 2153 break; 2154 } 2155 case bitc::METADATA_DERIVED_TYPE: { 2156 if (Record.size() != 12) 2157 return error("Invalid record"); 2158 2159 MetadataList.assignValue( 2160 GET_OR_DISTINCT(DIDerivedType, Record[0], 2161 (Context, Record[1], getMDString(Record[2]), 2162 getMDOrNull(Record[3]), Record[4], 2163 getMDOrNull(Record[5]), getMDOrNull(Record[6]), 2164 Record[7], Record[8], Record[9], Record[10], 2165 getMDOrNull(Record[11]))), 2166 NextMetadataNo++); 2167 break; 2168 } 2169 case bitc::METADATA_COMPOSITE_TYPE: { 2170 if (Record.size() != 16) 2171 return error("Invalid record"); 2172 2173 MetadataList.assignValue( 2174 GET_OR_DISTINCT(DICompositeType, Record[0], 2175 (Context, Record[1], getMDString(Record[2]), 2176 getMDOrNull(Record[3]), Record[4], 2177 getMDOrNull(Record[5]), getMDOrNull(Record[6]), 2178 Record[7], Record[8], Record[9], Record[10], 2179 getMDOrNull(Record[11]), Record[12], 2180 getMDOrNull(Record[13]), getMDOrNull(Record[14]), 2181 getMDString(Record[15]))), 2182 NextMetadataNo++); 2183 break; 2184 } 2185 case bitc::METADATA_SUBROUTINE_TYPE: { 2186 if (Record.size() != 3) 2187 return error("Invalid record"); 2188 2189 MetadataList.assignValue( 2190 GET_OR_DISTINCT(DISubroutineType, Record[0], 2191 (Context, Record[1], getMDOrNull(Record[2]))), 2192 NextMetadataNo++); 2193 break; 2194 } 2195 2196 case bitc::METADATA_MODULE: { 2197 if (Record.size() != 6) 2198 return error("Invalid record"); 2199 2200 MetadataList.assignValue( 2201 GET_OR_DISTINCT(DIModule, Record[0], 2202 (Context, getMDOrNull(Record[1]), 2203 getMDString(Record[2]), getMDString(Record[3]), 2204 getMDString(Record[4]), getMDString(Record[5]))), 2205 NextMetadataNo++); 2206 break; 2207 } 2208 2209 case bitc::METADATA_FILE: { 2210 if (Record.size() != 3) 2211 return error("Invalid record"); 2212 2213 MetadataList.assignValue( 2214 GET_OR_DISTINCT(DIFile, Record[0], (Context, getMDString(Record[1]), 2215 getMDString(Record[2]))), 2216 NextMetadataNo++); 2217 break; 2218 } 2219 case bitc::METADATA_COMPILE_UNIT: { 2220 if (Record.size() < 14 || Record.size() > 16) 2221 return error("Invalid record"); 2222 2223 // Ignore Record[0], which indicates whether this compile unit is 2224 // distinct. It's always distinct. 2225 MetadataList.assignValue( 2226 DICompileUnit::getDistinct( 2227 Context, Record[1], getMDOrNull(Record[2]), 2228 getMDString(Record[3]), Record[4], getMDString(Record[5]), 2229 Record[6], getMDString(Record[7]), Record[8], 2230 getMDOrNull(Record[9]), getMDOrNull(Record[10]), 2231 getMDOrNull(Record[11]), getMDOrNull(Record[12]), 2232 getMDOrNull(Record[13]), 2233 Record.size() <= 15 ? nullptr : getMDOrNull(Record[15]), 2234 Record.size() <= 14 ? 0 : Record[14]), 2235 NextMetadataNo++); 2236 break; 2237 } 2238 case bitc::METADATA_SUBPROGRAM: { 2239 if (Record.size() != 18 && Record.size() != 19) 2240 return error("Invalid record"); 2241 2242 bool HasFn = Record.size() == 19; 2243 DISubprogram *SP = GET_OR_DISTINCT( 2244 DISubprogram, 2245 Record[0] || Record[8], // All definitions should be distinct. 2246 (Context, getMDOrNull(Record[1]), getMDString(Record[2]), 2247 getMDString(Record[3]), getMDOrNull(Record[4]), Record[5], 2248 getMDOrNull(Record[6]), Record[7], Record[8], Record[9], 2249 getMDOrNull(Record[10]), Record[11], Record[12], Record[13], 2250 Record[14], getMDOrNull(Record[15 + HasFn]), 2251 getMDOrNull(Record[16 + HasFn]), getMDOrNull(Record[17 + HasFn]))); 2252 MetadataList.assignValue(SP, NextMetadataNo++); 2253 2254 // Upgrade sp->function mapping to function->sp mapping. 2255 if (HasFn && Record[15]) { 2256 if (auto *CMD = dyn_cast<ConstantAsMetadata>(getMDOrNull(Record[15]))) 2257 if (auto *F = dyn_cast<Function>(CMD->getValue())) { 2258 if (F->isMaterializable()) 2259 // Defer until materialized; unmaterialized functions may not have 2260 // metadata. 2261 FunctionsWithSPs[F] = SP; 2262 else if (!F->empty()) 2263 F->setSubprogram(SP); 2264 } 2265 } 2266 break; 2267 } 2268 case bitc::METADATA_LEXICAL_BLOCK: { 2269 if (Record.size() != 5) 2270 return error("Invalid record"); 2271 2272 MetadataList.assignValue( 2273 GET_OR_DISTINCT(DILexicalBlock, Record[0], 2274 (Context, getMDOrNull(Record[1]), 2275 getMDOrNull(Record[2]), Record[3], Record[4])), 2276 NextMetadataNo++); 2277 break; 2278 } 2279 case bitc::METADATA_LEXICAL_BLOCK_FILE: { 2280 if (Record.size() != 4) 2281 return error("Invalid record"); 2282 2283 MetadataList.assignValue( 2284 GET_OR_DISTINCT(DILexicalBlockFile, Record[0], 2285 (Context, getMDOrNull(Record[1]), 2286 getMDOrNull(Record[2]), Record[3])), 2287 NextMetadataNo++); 2288 break; 2289 } 2290 case bitc::METADATA_NAMESPACE: { 2291 if (Record.size() != 5) 2292 return error("Invalid record"); 2293 2294 MetadataList.assignValue( 2295 GET_OR_DISTINCT(DINamespace, Record[0], 2296 (Context, getMDOrNull(Record[1]), 2297 getMDOrNull(Record[2]), getMDString(Record[3]), 2298 Record[4])), 2299 NextMetadataNo++); 2300 break; 2301 } 2302 case bitc::METADATA_MACRO: { 2303 if (Record.size() != 5) 2304 return error("Invalid record"); 2305 2306 MetadataList.assignValue( 2307 GET_OR_DISTINCT(DIMacro, Record[0], 2308 (Context, Record[1], Record[2], 2309 getMDString(Record[3]), getMDString(Record[4]))), 2310 NextMetadataNo++); 2311 break; 2312 } 2313 case bitc::METADATA_MACRO_FILE: { 2314 if (Record.size() != 5) 2315 return error("Invalid record"); 2316 2317 MetadataList.assignValue( 2318 GET_OR_DISTINCT(DIMacroFile, Record[0], 2319 (Context, Record[1], Record[2], 2320 getMDOrNull(Record[3]), getMDOrNull(Record[4]))), 2321 NextMetadataNo++); 2322 break; 2323 } 2324 case bitc::METADATA_TEMPLATE_TYPE: { 2325 if (Record.size() != 3) 2326 return error("Invalid record"); 2327 2328 MetadataList.assignValue(GET_OR_DISTINCT(DITemplateTypeParameter, 2329 Record[0], 2330 (Context, getMDString(Record[1]), 2331 getMDOrNull(Record[2]))), 2332 NextMetadataNo++); 2333 break; 2334 } 2335 case bitc::METADATA_TEMPLATE_VALUE: { 2336 if (Record.size() != 5) 2337 return error("Invalid record"); 2338 2339 MetadataList.assignValue( 2340 GET_OR_DISTINCT(DITemplateValueParameter, Record[0], 2341 (Context, Record[1], getMDString(Record[2]), 2342 getMDOrNull(Record[3]), getMDOrNull(Record[4]))), 2343 NextMetadataNo++); 2344 break; 2345 } 2346 case bitc::METADATA_GLOBAL_VAR: { 2347 if (Record.size() != 11) 2348 return error("Invalid record"); 2349 2350 MetadataList.assignValue( 2351 GET_OR_DISTINCT(DIGlobalVariable, Record[0], 2352 (Context, getMDOrNull(Record[1]), 2353 getMDString(Record[2]), getMDString(Record[3]), 2354 getMDOrNull(Record[4]), Record[5], 2355 getMDOrNull(Record[6]), Record[7], Record[8], 2356 getMDOrNull(Record[9]), getMDOrNull(Record[10]))), 2357 NextMetadataNo++); 2358 break; 2359 } 2360 case bitc::METADATA_LOCAL_VAR: { 2361 // 10th field is for the obseleted 'inlinedAt:' field. 2362 if (Record.size() < 8 || Record.size() > 10) 2363 return error("Invalid record"); 2364 2365 // 2nd field used to be an artificial tag, either DW_TAG_auto_variable or 2366 // DW_TAG_arg_variable. 2367 bool HasTag = Record.size() > 8; 2368 MetadataList.assignValue( 2369 GET_OR_DISTINCT(DILocalVariable, Record[0], 2370 (Context, getMDOrNull(Record[1 + HasTag]), 2371 getMDString(Record[2 + HasTag]), 2372 getMDOrNull(Record[3 + HasTag]), Record[4 + HasTag], 2373 getMDOrNull(Record[5 + HasTag]), Record[6 + HasTag], 2374 Record[7 + HasTag])), 2375 NextMetadataNo++); 2376 break; 2377 } 2378 case bitc::METADATA_EXPRESSION: { 2379 if (Record.size() < 1) 2380 return error("Invalid record"); 2381 2382 MetadataList.assignValue( 2383 GET_OR_DISTINCT(DIExpression, Record[0], 2384 (Context, makeArrayRef(Record).slice(1))), 2385 NextMetadataNo++); 2386 break; 2387 } 2388 case bitc::METADATA_OBJC_PROPERTY: { 2389 if (Record.size() != 8) 2390 return error("Invalid record"); 2391 2392 MetadataList.assignValue( 2393 GET_OR_DISTINCT(DIObjCProperty, Record[0], 2394 (Context, getMDString(Record[1]), 2395 getMDOrNull(Record[2]), Record[3], 2396 getMDString(Record[4]), getMDString(Record[5]), 2397 Record[6], getMDOrNull(Record[7]))), 2398 NextMetadataNo++); 2399 break; 2400 } 2401 case bitc::METADATA_IMPORTED_ENTITY: { 2402 if (Record.size() != 6) 2403 return error("Invalid record"); 2404 2405 MetadataList.assignValue( 2406 GET_OR_DISTINCT(DIImportedEntity, Record[0], 2407 (Context, Record[1], getMDOrNull(Record[2]), 2408 getMDOrNull(Record[3]), Record[4], 2409 getMDString(Record[5]))), 2410 NextMetadataNo++); 2411 break; 2412 } 2413 case bitc::METADATA_STRING_OLD: { 2414 std::string String(Record.begin(), Record.end()); 2415 2416 // Test for upgrading !llvm.loop. 2417 HasSeenOldLoopTags |= mayBeOldLoopAttachmentTag(String); 2418 2419 Metadata *MD = MDString::get(Context, String); 2420 MetadataList.assignValue(MD, NextMetadataNo++); 2421 break; 2422 } 2423 case bitc::METADATA_STRINGS: 2424 if (std::error_code EC = 2425 parseMetadataStrings(Record, Blob, NextMetadataNo)) 2426 return EC; 2427 break; 2428 case bitc::METADATA_KIND: { 2429 // Support older bitcode files that had METADATA_KIND records in a 2430 // block with METADATA_BLOCK_ID. 2431 if (std::error_code EC = parseMetadataKindRecord(Record)) 2432 return EC; 2433 break; 2434 } 2435 } 2436 } 2437 #undef GET_OR_DISTINCT 2438 } 2439 2440 /// Parse the metadata kinds out of the METADATA_KIND_BLOCK. 2441 std::error_code BitcodeReader::parseMetadataKinds() { 2442 if (Stream.EnterSubBlock(bitc::METADATA_KIND_BLOCK_ID)) 2443 return error("Invalid record"); 2444 2445 SmallVector<uint64_t, 64> Record; 2446 2447 // Read all the records. 2448 while (1) { 2449 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2450 2451 switch (Entry.Kind) { 2452 case BitstreamEntry::SubBlock: // Handled for us already. 2453 case BitstreamEntry::Error: 2454 return error("Malformed block"); 2455 case BitstreamEntry::EndBlock: 2456 return std::error_code(); 2457 case BitstreamEntry::Record: 2458 // The interesting case. 2459 break; 2460 } 2461 2462 // Read a record. 2463 Record.clear(); 2464 unsigned Code = Stream.readRecord(Entry.ID, Record); 2465 switch (Code) { 2466 default: // Default behavior: ignore. 2467 break; 2468 case bitc::METADATA_KIND: { 2469 if (std::error_code EC = parseMetadataKindRecord(Record)) 2470 return EC; 2471 break; 2472 } 2473 } 2474 } 2475 } 2476 2477 /// Decode a signed value stored with the sign bit in the LSB for dense VBR 2478 /// encoding. 2479 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { 2480 if ((V & 1) == 0) 2481 return V >> 1; 2482 if (V != 1) 2483 return -(V >> 1); 2484 // There is no such thing as -0 with integers. "-0" really means MININT. 2485 return 1ULL << 63; 2486 } 2487 2488 /// Resolve all of the initializers for global values and aliases that we can. 2489 std::error_code BitcodeReader::resolveGlobalAndAliasInits() { 2490 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist; 2491 std::vector<std::pair<GlobalAlias*, unsigned> > AliasInitWorklist; 2492 std::vector<std::pair<Function*, unsigned> > FunctionPrefixWorklist; 2493 std::vector<std::pair<Function*, unsigned> > FunctionPrologueWorklist; 2494 std::vector<std::pair<Function*, unsigned> > FunctionPersonalityFnWorklist; 2495 2496 GlobalInitWorklist.swap(GlobalInits); 2497 AliasInitWorklist.swap(AliasInits); 2498 FunctionPrefixWorklist.swap(FunctionPrefixes); 2499 FunctionPrologueWorklist.swap(FunctionPrologues); 2500 FunctionPersonalityFnWorklist.swap(FunctionPersonalityFns); 2501 2502 while (!GlobalInitWorklist.empty()) { 2503 unsigned ValID = GlobalInitWorklist.back().second; 2504 if (ValID >= ValueList.size()) { 2505 // Not ready to resolve this yet, it requires something later in the file. 2506 GlobalInits.push_back(GlobalInitWorklist.back()); 2507 } else { 2508 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2509 GlobalInitWorklist.back().first->setInitializer(C); 2510 else 2511 return error("Expected a constant"); 2512 } 2513 GlobalInitWorklist.pop_back(); 2514 } 2515 2516 while (!AliasInitWorklist.empty()) { 2517 unsigned ValID = AliasInitWorklist.back().second; 2518 if (ValID >= ValueList.size()) { 2519 AliasInits.push_back(AliasInitWorklist.back()); 2520 } else { 2521 Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]); 2522 if (!C) 2523 return error("Expected a constant"); 2524 GlobalAlias *Alias = AliasInitWorklist.back().first; 2525 if (C->getType() != Alias->getType()) 2526 return error("Alias and aliasee types don't match"); 2527 Alias->setAliasee(C); 2528 } 2529 AliasInitWorklist.pop_back(); 2530 } 2531 2532 while (!FunctionPrefixWorklist.empty()) { 2533 unsigned ValID = FunctionPrefixWorklist.back().second; 2534 if (ValID >= ValueList.size()) { 2535 FunctionPrefixes.push_back(FunctionPrefixWorklist.back()); 2536 } else { 2537 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2538 FunctionPrefixWorklist.back().first->setPrefixData(C); 2539 else 2540 return error("Expected a constant"); 2541 } 2542 FunctionPrefixWorklist.pop_back(); 2543 } 2544 2545 while (!FunctionPrologueWorklist.empty()) { 2546 unsigned ValID = FunctionPrologueWorklist.back().second; 2547 if (ValID >= ValueList.size()) { 2548 FunctionPrologues.push_back(FunctionPrologueWorklist.back()); 2549 } else { 2550 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2551 FunctionPrologueWorklist.back().first->setPrologueData(C); 2552 else 2553 return error("Expected a constant"); 2554 } 2555 FunctionPrologueWorklist.pop_back(); 2556 } 2557 2558 while (!FunctionPersonalityFnWorklist.empty()) { 2559 unsigned ValID = FunctionPersonalityFnWorklist.back().second; 2560 if (ValID >= ValueList.size()) { 2561 FunctionPersonalityFns.push_back(FunctionPersonalityFnWorklist.back()); 2562 } else { 2563 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2564 FunctionPersonalityFnWorklist.back().first->setPersonalityFn(C); 2565 else 2566 return error("Expected a constant"); 2567 } 2568 FunctionPersonalityFnWorklist.pop_back(); 2569 } 2570 2571 return std::error_code(); 2572 } 2573 2574 static APInt readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { 2575 SmallVector<uint64_t, 8> Words(Vals.size()); 2576 std::transform(Vals.begin(), Vals.end(), Words.begin(), 2577 BitcodeReader::decodeSignRotatedValue); 2578 2579 return APInt(TypeBits, Words); 2580 } 2581 2582 std::error_code BitcodeReader::parseConstants() { 2583 if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 2584 return error("Invalid record"); 2585 2586 SmallVector<uint64_t, 64> Record; 2587 2588 // Read all the records for this value table. 2589 Type *CurTy = Type::getInt32Ty(Context); 2590 unsigned NextCstNo = ValueList.size(); 2591 while (1) { 2592 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2593 2594 switch (Entry.Kind) { 2595 case BitstreamEntry::SubBlock: // Handled for us already. 2596 case BitstreamEntry::Error: 2597 return error("Malformed block"); 2598 case BitstreamEntry::EndBlock: 2599 if (NextCstNo != ValueList.size()) 2600 return error("Invalid constant reference"); 2601 2602 // Once all the constants have been read, go through and resolve forward 2603 // references. 2604 ValueList.resolveConstantForwardRefs(); 2605 return std::error_code(); 2606 case BitstreamEntry::Record: 2607 // The interesting case. 2608 break; 2609 } 2610 2611 // Read a record. 2612 Record.clear(); 2613 Value *V = nullptr; 2614 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 2615 switch (BitCode) { 2616 default: // Default behavior: unknown constant 2617 case bitc::CST_CODE_UNDEF: // UNDEF 2618 V = UndefValue::get(CurTy); 2619 break; 2620 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 2621 if (Record.empty()) 2622 return error("Invalid record"); 2623 if (Record[0] >= TypeList.size() || !TypeList[Record[0]]) 2624 return error("Invalid record"); 2625 CurTy = TypeList[Record[0]]; 2626 continue; // Skip the ValueList manipulation. 2627 case bitc::CST_CODE_NULL: // NULL 2628 V = Constant::getNullValue(CurTy); 2629 break; 2630 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 2631 if (!CurTy->isIntegerTy() || Record.empty()) 2632 return error("Invalid record"); 2633 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); 2634 break; 2635 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 2636 if (!CurTy->isIntegerTy() || Record.empty()) 2637 return error("Invalid record"); 2638 2639 APInt VInt = 2640 readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth()); 2641 V = ConstantInt::get(Context, VInt); 2642 2643 break; 2644 } 2645 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 2646 if (Record.empty()) 2647 return error("Invalid record"); 2648 if (CurTy->isHalfTy()) 2649 V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf, 2650 APInt(16, (uint16_t)Record[0]))); 2651 else if (CurTy->isFloatTy()) 2652 V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle, 2653 APInt(32, (uint32_t)Record[0]))); 2654 else if (CurTy->isDoubleTy()) 2655 V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble, 2656 APInt(64, Record[0]))); 2657 else if (CurTy->isX86_FP80Ty()) { 2658 // Bits are not stored the same way as a normal i80 APInt, compensate. 2659 uint64_t Rearrange[2]; 2660 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 2661 Rearrange[1] = Record[0] >> 48; 2662 V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended, 2663 APInt(80, Rearrange))); 2664 } else if (CurTy->isFP128Ty()) 2665 V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad, 2666 APInt(128, Record))); 2667 else if (CurTy->isPPC_FP128Ty()) 2668 V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble, 2669 APInt(128, Record))); 2670 else 2671 V = UndefValue::get(CurTy); 2672 break; 2673 } 2674 2675 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 2676 if (Record.empty()) 2677 return error("Invalid record"); 2678 2679 unsigned Size = Record.size(); 2680 SmallVector<Constant*, 16> Elts; 2681 2682 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 2683 for (unsigned i = 0; i != Size; ++i) 2684 Elts.push_back(ValueList.getConstantFwdRef(Record[i], 2685 STy->getElementType(i))); 2686 V = ConstantStruct::get(STy, Elts); 2687 } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) { 2688 Type *EltTy = ATy->getElementType(); 2689 for (unsigned i = 0; i != Size; ++i) 2690 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2691 V = ConstantArray::get(ATy, Elts); 2692 } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) { 2693 Type *EltTy = VTy->getElementType(); 2694 for (unsigned i = 0; i != Size; ++i) 2695 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2696 V = ConstantVector::get(Elts); 2697 } else { 2698 V = UndefValue::get(CurTy); 2699 } 2700 break; 2701 } 2702 case bitc::CST_CODE_STRING: // STRING: [values] 2703 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 2704 if (Record.empty()) 2705 return error("Invalid record"); 2706 2707 SmallString<16> Elts(Record.begin(), Record.end()); 2708 V = ConstantDataArray::getString(Context, Elts, 2709 BitCode == bitc::CST_CODE_CSTRING); 2710 break; 2711 } 2712 case bitc::CST_CODE_DATA: {// DATA: [n x value] 2713 if (Record.empty()) 2714 return error("Invalid record"); 2715 2716 Type *EltTy = cast<SequentialType>(CurTy)->getElementType(); 2717 if (EltTy->isIntegerTy(8)) { 2718 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); 2719 if (isa<VectorType>(CurTy)) 2720 V = ConstantDataVector::get(Context, Elts); 2721 else 2722 V = ConstantDataArray::get(Context, Elts); 2723 } else if (EltTy->isIntegerTy(16)) { 2724 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2725 if (isa<VectorType>(CurTy)) 2726 V = ConstantDataVector::get(Context, Elts); 2727 else 2728 V = ConstantDataArray::get(Context, Elts); 2729 } else if (EltTy->isIntegerTy(32)) { 2730 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2731 if (isa<VectorType>(CurTy)) 2732 V = ConstantDataVector::get(Context, Elts); 2733 else 2734 V = ConstantDataArray::get(Context, Elts); 2735 } else if (EltTy->isIntegerTy(64)) { 2736 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2737 if (isa<VectorType>(CurTy)) 2738 V = ConstantDataVector::get(Context, Elts); 2739 else 2740 V = ConstantDataArray::get(Context, Elts); 2741 } else if (EltTy->isHalfTy()) { 2742 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2743 if (isa<VectorType>(CurTy)) 2744 V = ConstantDataVector::getFP(Context, Elts); 2745 else 2746 V = ConstantDataArray::getFP(Context, Elts); 2747 } else if (EltTy->isFloatTy()) { 2748 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2749 if (isa<VectorType>(CurTy)) 2750 V = ConstantDataVector::getFP(Context, Elts); 2751 else 2752 V = ConstantDataArray::getFP(Context, Elts); 2753 } else if (EltTy->isDoubleTy()) { 2754 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2755 if (isa<VectorType>(CurTy)) 2756 V = ConstantDataVector::getFP(Context, Elts); 2757 else 2758 V = ConstantDataArray::getFP(Context, Elts); 2759 } else { 2760 return error("Invalid type for value"); 2761 } 2762 break; 2763 } 2764 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 2765 if (Record.size() < 3) 2766 return error("Invalid record"); 2767 int Opc = getDecodedBinaryOpcode(Record[0], CurTy); 2768 if (Opc < 0) { 2769 V = UndefValue::get(CurTy); // Unknown binop. 2770 } else { 2771 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 2772 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy); 2773 unsigned Flags = 0; 2774 if (Record.size() >= 4) { 2775 if (Opc == Instruction::Add || 2776 Opc == Instruction::Sub || 2777 Opc == Instruction::Mul || 2778 Opc == Instruction::Shl) { 2779 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 2780 Flags |= OverflowingBinaryOperator::NoSignedWrap; 2781 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 2782 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 2783 } else if (Opc == Instruction::SDiv || 2784 Opc == Instruction::UDiv || 2785 Opc == Instruction::LShr || 2786 Opc == Instruction::AShr) { 2787 if (Record[3] & (1 << bitc::PEO_EXACT)) 2788 Flags |= SDivOperator::IsExact; 2789 } 2790 } 2791 V = ConstantExpr::get(Opc, LHS, RHS, Flags); 2792 } 2793 break; 2794 } 2795 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 2796 if (Record.size() < 3) 2797 return error("Invalid record"); 2798 int Opc = getDecodedCastOpcode(Record[0]); 2799 if (Opc < 0) { 2800 V = UndefValue::get(CurTy); // Unknown cast. 2801 } else { 2802 Type *OpTy = getTypeByID(Record[1]); 2803 if (!OpTy) 2804 return error("Invalid record"); 2805 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy); 2806 V = UpgradeBitCastExpr(Opc, Op, CurTy); 2807 if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy); 2808 } 2809 break; 2810 } 2811 case bitc::CST_CODE_CE_INBOUNDS_GEP: 2812 case bitc::CST_CODE_CE_GEP: { // CE_GEP: [n x operands] 2813 unsigned OpNum = 0; 2814 Type *PointeeType = nullptr; 2815 if (Record.size() % 2) 2816 PointeeType = getTypeByID(Record[OpNum++]); 2817 SmallVector<Constant*, 16> Elts; 2818 while (OpNum != Record.size()) { 2819 Type *ElTy = getTypeByID(Record[OpNum++]); 2820 if (!ElTy) 2821 return error("Invalid record"); 2822 Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy)); 2823 } 2824 2825 if (PointeeType && 2826 PointeeType != 2827 cast<SequentialType>(Elts[0]->getType()->getScalarType()) 2828 ->getElementType()) 2829 return error("Explicit gep operator type does not match pointee type " 2830 "of pointer operand"); 2831 2832 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 2833 V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices, 2834 BitCode == 2835 bitc::CST_CODE_CE_INBOUNDS_GEP); 2836 break; 2837 } 2838 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] 2839 if (Record.size() < 3) 2840 return error("Invalid record"); 2841 2842 Type *SelectorTy = Type::getInt1Ty(Context); 2843 2844 // The selector might be an i1 or an <n x i1> 2845 // Get the type from the ValueList before getting a forward ref. 2846 if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) 2847 if (Value *V = ValueList[Record[0]]) 2848 if (SelectorTy != V->getType()) 2849 SelectorTy = VectorType::get(SelectorTy, VTy->getNumElements()); 2850 2851 V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0], 2852 SelectorTy), 2853 ValueList.getConstantFwdRef(Record[1],CurTy), 2854 ValueList.getConstantFwdRef(Record[2],CurTy)); 2855 break; 2856 } 2857 case bitc::CST_CODE_CE_EXTRACTELT 2858 : { // CE_EXTRACTELT: [opty, opval, opty, opval] 2859 if (Record.size() < 3) 2860 return error("Invalid record"); 2861 VectorType *OpTy = 2862 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2863 if (!OpTy) 2864 return error("Invalid record"); 2865 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2866 Constant *Op1 = nullptr; 2867 if (Record.size() == 4) { 2868 Type *IdxTy = getTypeByID(Record[2]); 2869 if (!IdxTy) 2870 return error("Invalid record"); 2871 Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2872 } else // TODO: Remove with llvm 4.0 2873 Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2874 if (!Op1) 2875 return error("Invalid record"); 2876 V = ConstantExpr::getExtractElement(Op0, Op1); 2877 break; 2878 } 2879 case bitc::CST_CODE_CE_INSERTELT 2880 : { // CE_INSERTELT: [opval, opval, opty, opval] 2881 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2882 if (Record.size() < 3 || !OpTy) 2883 return error("Invalid record"); 2884 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2885 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], 2886 OpTy->getElementType()); 2887 Constant *Op2 = nullptr; 2888 if (Record.size() == 4) { 2889 Type *IdxTy = getTypeByID(Record[2]); 2890 if (!IdxTy) 2891 return error("Invalid record"); 2892 Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2893 } else // TODO: Remove with llvm 4.0 2894 Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2895 if (!Op2) 2896 return error("Invalid record"); 2897 V = ConstantExpr::getInsertElement(Op0, Op1, Op2); 2898 break; 2899 } 2900 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 2901 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2902 if (Record.size() < 3 || !OpTy) 2903 return error("Invalid record"); 2904 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2905 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy); 2906 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 2907 OpTy->getNumElements()); 2908 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy); 2909 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 2910 break; 2911 } 2912 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 2913 VectorType *RTy = dyn_cast<VectorType>(CurTy); 2914 VectorType *OpTy = 2915 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2916 if (Record.size() < 4 || !RTy || !OpTy) 2917 return error("Invalid record"); 2918 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2919 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2920 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 2921 RTy->getNumElements()); 2922 Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy); 2923 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 2924 break; 2925 } 2926 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 2927 if (Record.size() < 4) 2928 return error("Invalid record"); 2929 Type *OpTy = getTypeByID(Record[0]); 2930 if (!OpTy) 2931 return error("Invalid record"); 2932 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2933 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2934 2935 if (OpTy->isFPOrFPVectorTy()) 2936 V = ConstantExpr::getFCmp(Record[3], Op0, Op1); 2937 else 2938 V = ConstantExpr::getICmp(Record[3], Op0, Op1); 2939 break; 2940 } 2941 // This maintains backward compatibility, pre-asm dialect keywords. 2942 // FIXME: Remove with the 4.0 release. 2943 case bitc::CST_CODE_INLINEASM_OLD: { 2944 if (Record.size() < 2) 2945 return error("Invalid record"); 2946 std::string AsmStr, ConstrStr; 2947 bool HasSideEffects = Record[0] & 1; 2948 bool IsAlignStack = Record[0] >> 1; 2949 unsigned AsmStrSize = Record[1]; 2950 if (2+AsmStrSize >= Record.size()) 2951 return error("Invalid record"); 2952 unsigned ConstStrSize = Record[2+AsmStrSize]; 2953 if (3+AsmStrSize+ConstStrSize > Record.size()) 2954 return error("Invalid record"); 2955 2956 for (unsigned i = 0; i != AsmStrSize; ++i) 2957 AsmStr += (char)Record[2+i]; 2958 for (unsigned i = 0; i != ConstStrSize; ++i) 2959 ConstrStr += (char)Record[3+AsmStrSize+i]; 2960 PointerType *PTy = cast<PointerType>(CurTy); 2961 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 2962 AsmStr, ConstrStr, HasSideEffects, IsAlignStack); 2963 break; 2964 } 2965 // This version adds support for the asm dialect keywords (e.g., 2966 // inteldialect). 2967 case bitc::CST_CODE_INLINEASM: { 2968 if (Record.size() < 2) 2969 return error("Invalid record"); 2970 std::string AsmStr, ConstrStr; 2971 bool HasSideEffects = Record[0] & 1; 2972 bool IsAlignStack = (Record[0] >> 1) & 1; 2973 unsigned AsmDialect = Record[0] >> 2; 2974 unsigned AsmStrSize = Record[1]; 2975 if (2+AsmStrSize >= Record.size()) 2976 return error("Invalid record"); 2977 unsigned ConstStrSize = Record[2+AsmStrSize]; 2978 if (3+AsmStrSize+ConstStrSize > Record.size()) 2979 return error("Invalid record"); 2980 2981 for (unsigned i = 0; i != AsmStrSize; ++i) 2982 AsmStr += (char)Record[2+i]; 2983 for (unsigned i = 0; i != ConstStrSize; ++i) 2984 ConstrStr += (char)Record[3+AsmStrSize+i]; 2985 PointerType *PTy = cast<PointerType>(CurTy); 2986 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 2987 AsmStr, ConstrStr, HasSideEffects, IsAlignStack, 2988 InlineAsm::AsmDialect(AsmDialect)); 2989 break; 2990 } 2991 case bitc::CST_CODE_BLOCKADDRESS:{ 2992 if (Record.size() < 3) 2993 return error("Invalid record"); 2994 Type *FnTy = getTypeByID(Record[0]); 2995 if (!FnTy) 2996 return error("Invalid record"); 2997 Function *Fn = 2998 dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy)); 2999 if (!Fn) 3000 return error("Invalid record"); 3001 3002 // If the function is already parsed we can insert the block address right 3003 // away. 3004 BasicBlock *BB; 3005 unsigned BBID = Record[2]; 3006 if (!BBID) 3007 // Invalid reference to entry block. 3008 return error("Invalid ID"); 3009 if (!Fn->empty()) { 3010 Function::iterator BBI = Fn->begin(), BBE = Fn->end(); 3011 for (size_t I = 0, E = BBID; I != E; ++I) { 3012 if (BBI == BBE) 3013 return error("Invalid ID"); 3014 ++BBI; 3015 } 3016 BB = &*BBI; 3017 } else { 3018 // Otherwise insert a placeholder and remember it so it can be inserted 3019 // when the function is parsed. 3020 auto &FwdBBs = BasicBlockFwdRefs[Fn]; 3021 if (FwdBBs.empty()) 3022 BasicBlockFwdRefQueue.push_back(Fn); 3023 if (FwdBBs.size() < BBID + 1) 3024 FwdBBs.resize(BBID + 1); 3025 if (!FwdBBs[BBID]) 3026 FwdBBs[BBID] = BasicBlock::Create(Context); 3027 BB = FwdBBs[BBID]; 3028 } 3029 V = BlockAddress::get(Fn, BB); 3030 break; 3031 } 3032 } 3033 3034 ValueList.assignValue(V, NextCstNo); 3035 ++NextCstNo; 3036 } 3037 } 3038 3039 std::error_code BitcodeReader::parseUseLists() { 3040 if (Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 3041 return error("Invalid record"); 3042 3043 // Read all the records. 3044 SmallVector<uint64_t, 64> Record; 3045 while (1) { 3046 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 3047 3048 switch (Entry.Kind) { 3049 case BitstreamEntry::SubBlock: // Handled for us already. 3050 case BitstreamEntry::Error: 3051 return error("Malformed block"); 3052 case BitstreamEntry::EndBlock: 3053 return std::error_code(); 3054 case BitstreamEntry::Record: 3055 // The interesting case. 3056 break; 3057 } 3058 3059 // Read a use list record. 3060 Record.clear(); 3061 bool IsBB = false; 3062 switch (Stream.readRecord(Entry.ID, Record)) { 3063 default: // Default behavior: unknown type. 3064 break; 3065 case bitc::USELIST_CODE_BB: 3066 IsBB = true; 3067 // fallthrough 3068 case bitc::USELIST_CODE_DEFAULT: { 3069 unsigned RecordLength = Record.size(); 3070 if (RecordLength < 3) 3071 // Records should have at least an ID and two indexes. 3072 return error("Invalid record"); 3073 unsigned ID = Record.back(); 3074 Record.pop_back(); 3075 3076 Value *V; 3077 if (IsBB) { 3078 assert(ID < FunctionBBs.size() && "Basic block not found"); 3079 V = FunctionBBs[ID]; 3080 } else 3081 V = ValueList[ID]; 3082 unsigned NumUses = 0; 3083 SmallDenseMap<const Use *, unsigned, 16> Order; 3084 for (const Use &U : V->materialized_uses()) { 3085 if (++NumUses > Record.size()) 3086 break; 3087 Order[&U] = Record[NumUses - 1]; 3088 } 3089 if (Order.size() != Record.size() || NumUses > Record.size()) 3090 // Mismatches can happen if the functions are being materialized lazily 3091 // (out-of-order), or a value has been upgraded. 3092 break; 3093 3094 V->sortUseList([&](const Use &L, const Use &R) { 3095 return Order.lookup(&L) < Order.lookup(&R); 3096 }); 3097 break; 3098 } 3099 } 3100 } 3101 } 3102 3103 /// When we see the block for metadata, remember where it is and then skip it. 3104 /// This lets us lazily deserialize the metadata. 3105 std::error_code BitcodeReader::rememberAndSkipMetadata() { 3106 // Save the current stream state. 3107 uint64_t CurBit = Stream.GetCurrentBitNo(); 3108 DeferredMetadataInfo.push_back(CurBit); 3109 3110 // Skip over the block for now. 3111 if (Stream.SkipBlock()) 3112 return error("Invalid record"); 3113 return std::error_code(); 3114 } 3115 3116 std::error_code BitcodeReader::materializeMetadata() { 3117 for (uint64_t BitPos : DeferredMetadataInfo) { 3118 // Move the bit stream to the saved position. 3119 Stream.JumpToBit(BitPos); 3120 if (std::error_code EC = parseMetadata(true)) 3121 return EC; 3122 } 3123 DeferredMetadataInfo.clear(); 3124 return std::error_code(); 3125 } 3126 3127 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; } 3128 3129 void BitcodeReader::saveMetadataList( 3130 DenseMap<const Metadata *, unsigned> &MetadataToIDs, bool OnlyTempMD) { 3131 for (unsigned ID = 0; ID < MetadataList.size(); ++ID) { 3132 Metadata *MD = MetadataList[ID]; 3133 auto *N = dyn_cast_or_null<MDNode>(MD); 3134 assert((!N || (N->isResolved() || N->isTemporary())) && 3135 "Found non-resolved non-temp MDNode while saving metadata"); 3136 // Save all values if !OnlyTempMD, otherwise just the temporary metadata. 3137 // Note that in the !OnlyTempMD case we need to save all Metadata, not 3138 // just MDNode, as we may have references to other types of module-level 3139 // metadata (e.g. ValueAsMetadata) from instructions. 3140 if (!OnlyTempMD || (N && N->isTemporary())) { 3141 // Will call this after materializing each function, in order to 3142 // handle remapping of the function's instructions/metadata. 3143 auto IterBool = MetadataToIDs.insert(std::make_pair(MD, ID)); 3144 // See if we already have an entry in that case. 3145 if (OnlyTempMD && !IterBool.second) { 3146 assert(IterBool.first->second == ID && 3147 "Inconsistent metadata value id"); 3148 continue; 3149 } 3150 if (N && N->isTemporary()) 3151 // Ensure that we assert if someone tries to RAUW this temporary 3152 // metadata while it is the key of a map. The flag will be set back 3153 // to true when the saved metadata list is destroyed. 3154 N->setCanReplace(false); 3155 } 3156 } 3157 } 3158 3159 /// When we see the block for a function body, remember where it is and then 3160 /// skip it. This lets us lazily deserialize the functions. 3161 std::error_code BitcodeReader::rememberAndSkipFunctionBody() { 3162 // Get the function we are talking about. 3163 if (FunctionsWithBodies.empty()) 3164 return error("Insufficient function protos"); 3165 3166 Function *Fn = FunctionsWithBodies.back(); 3167 FunctionsWithBodies.pop_back(); 3168 3169 // Save the current stream state. 3170 uint64_t CurBit = Stream.GetCurrentBitNo(); 3171 assert( 3172 (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) && 3173 "Mismatch between VST and scanned function offsets"); 3174 DeferredFunctionInfo[Fn] = CurBit; 3175 3176 // Skip over the function block for now. 3177 if (Stream.SkipBlock()) 3178 return error("Invalid record"); 3179 return std::error_code(); 3180 } 3181 3182 std::error_code BitcodeReader::globalCleanup() { 3183 // Patch the initializers for globals and aliases up. 3184 resolveGlobalAndAliasInits(); 3185 if (!GlobalInits.empty() || !AliasInits.empty()) 3186 return error("Malformed global initializer set"); 3187 3188 // Look for intrinsic functions which need to be upgraded at some point 3189 for (Function &F : *TheModule) { 3190 Function *NewFn; 3191 if (UpgradeIntrinsicFunction(&F, NewFn)) 3192 UpgradedIntrinsics[&F] = NewFn; 3193 } 3194 3195 // Look for global variables which need to be renamed. 3196 for (GlobalVariable &GV : TheModule->globals()) 3197 UpgradeGlobalVariable(&GV); 3198 3199 // Force deallocation of memory for these vectors to favor the client that 3200 // want lazy deserialization. 3201 std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits); 3202 std::vector<std::pair<GlobalAlias*, unsigned> >().swap(AliasInits); 3203 return std::error_code(); 3204 } 3205 3206 /// Support for lazy parsing of function bodies. This is required if we 3207 /// either have an old bitcode file without a VST forward declaration record, 3208 /// or if we have an anonymous function being materialized, since anonymous 3209 /// functions do not have a name and are therefore not in the VST. 3210 std::error_code BitcodeReader::rememberAndSkipFunctionBodies() { 3211 Stream.JumpToBit(NextUnreadBit); 3212 3213 if (Stream.AtEndOfStream()) 3214 return error("Could not find function in stream"); 3215 3216 if (!SeenFirstFunctionBody) 3217 return error("Trying to materialize functions before seeing function blocks"); 3218 3219 // An old bitcode file with the symbol table at the end would have 3220 // finished the parse greedily. 3221 assert(SeenValueSymbolTable); 3222 3223 SmallVector<uint64_t, 64> Record; 3224 3225 while (1) { 3226 BitstreamEntry Entry = Stream.advance(); 3227 switch (Entry.Kind) { 3228 default: 3229 return error("Expect SubBlock"); 3230 case BitstreamEntry::SubBlock: 3231 switch (Entry.ID) { 3232 default: 3233 return error("Expect function block"); 3234 case bitc::FUNCTION_BLOCK_ID: 3235 if (std::error_code EC = rememberAndSkipFunctionBody()) 3236 return EC; 3237 NextUnreadBit = Stream.GetCurrentBitNo(); 3238 return std::error_code(); 3239 } 3240 } 3241 } 3242 } 3243 3244 std::error_code BitcodeReader::parseBitcodeVersion() { 3245 if (Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID)) 3246 return error("Invalid record"); 3247 3248 // Read all the records. 3249 SmallVector<uint64_t, 64> Record; 3250 while (1) { 3251 BitstreamEntry Entry = Stream.advance(); 3252 3253 switch (Entry.Kind) { 3254 default: 3255 case BitstreamEntry::Error: 3256 return error("Malformed block"); 3257 case BitstreamEntry::EndBlock: 3258 return std::error_code(); 3259 case BitstreamEntry::Record: 3260 // The interesting case. 3261 break; 3262 } 3263 3264 // Read a record. 3265 Record.clear(); 3266 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 3267 switch (BitCode) { 3268 default: // Default behavior: reject 3269 return error("Invalid value"); 3270 case bitc::IDENTIFICATION_CODE_STRING: { // IDENTIFICATION: [strchr x 3271 // N] 3272 convertToString(Record, 0, ProducerIdentification); 3273 break; 3274 } 3275 case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#] 3276 unsigned epoch = (unsigned)Record[0]; 3277 if (epoch != bitc::BITCODE_CURRENT_EPOCH) { 3278 return error( 3279 Twine("Incompatible epoch: Bitcode '") + Twine(epoch) + 3280 "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'"); 3281 } 3282 } 3283 } 3284 } 3285 } 3286 3287 std::error_code BitcodeReader::parseModule(uint64_t ResumeBit, 3288 bool ShouldLazyLoadMetadata) { 3289 if (ResumeBit) 3290 Stream.JumpToBit(ResumeBit); 3291 else if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 3292 return error("Invalid record"); 3293 3294 SmallVector<uint64_t, 64> Record; 3295 std::vector<std::string> SectionTable; 3296 std::vector<std::string> GCTable; 3297 3298 // Read all the records for this module. 3299 while (1) { 3300 BitstreamEntry Entry = Stream.advance(); 3301 3302 switch (Entry.Kind) { 3303 case BitstreamEntry::Error: 3304 return error("Malformed block"); 3305 case BitstreamEntry::EndBlock: 3306 return globalCleanup(); 3307 3308 case BitstreamEntry::SubBlock: 3309 switch (Entry.ID) { 3310 default: // Skip unknown content. 3311 if (Stream.SkipBlock()) 3312 return error("Invalid record"); 3313 break; 3314 case bitc::BLOCKINFO_BLOCK_ID: 3315 if (Stream.ReadBlockInfoBlock()) 3316 return error("Malformed block"); 3317 break; 3318 case bitc::PARAMATTR_BLOCK_ID: 3319 if (std::error_code EC = parseAttributeBlock()) 3320 return EC; 3321 break; 3322 case bitc::PARAMATTR_GROUP_BLOCK_ID: 3323 if (std::error_code EC = parseAttributeGroupBlock()) 3324 return EC; 3325 break; 3326 case bitc::TYPE_BLOCK_ID_NEW: 3327 if (std::error_code EC = parseTypeTable()) 3328 return EC; 3329 break; 3330 case bitc::VALUE_SYMTAB_BLOCK_ID: 3331 if (!SeenValueSymbolTable) { 3332 // Either this is an old form VST without function index and an 3333 // associated VST forward declaration record (which would have caused 3334 // the VST to be jumped to and parsed before it was encountered 3335 // normally in the stream), or there were no function blocks to 3336 // trigger an earlier parsing of the VST. 3337 assert(VSTOffset == 0 || FunctionsWithBodies.empty()); 3338 if (std::error_code EC = parseValueSymbolTable()) 3339 return EC; 3340 SeenValueSymbolTable = true; 3341 } else { 3342 // We must have had a VST forward declaration record, which caused 3343 // the parser to jump to and parse the VST earlier. 3344 assert(VSTOffset > 0); 3345 if (Stream.SkipBlock()) 3346 return error("Invalid record"); 3347 } 3348 break; 3349 case bitc::CONSTANTS_BLOCK_ID: 3350 if (std::error_code EC = parseConstants()) 3351 return EC; 3352 if (std::error_code EC = resolveGlobalAndAliasInits()) 3353 return EC; 3354 break; 3355 case bitc::METADATA_BLOCK_ID: 3356 if (ShouldLazyLoadMetadata && !IsMetadataMaterialized) { 3357 if (std::error_code EC = rememberAndSkipMetadata()) 3358 return EC; 3359 break; 3360 } 3361 assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata"); 3362 if (std::error_code EC = parseMetadata(true)) 3363 return EC; 3364 break; 3365 case bitc::METADATA_KIND_BLOCK_ID: 3366 if (std::error_code EC = parseMetadataKinds()) 3367 return EC; 3368 break; 3369 case bitc::FUNCTION_BLOCK_ID: 3370 // If this is the first function body we've seen, reverse the 3371 // FunctionsWithBodies list. 3372 if (!SeenFirstFunctionBody) { 3373 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 3374 if (std::error_code EC = globalCleanup()) 3375 return EC; 3376 SeenFirstFunctionBody = true; 3377 } 3378 3379 if (VSTOffset > 0) { 3380 // If we have a VST forward declaration record, make sure we 3381 // parse the VST now if we haven't already. It is needed to 3382 // set up the DeferredFunctionInfo vector for lazy reading. 3383 if (!SeenValueSymbolTable) { 3384 if (std::error_code EC = 3385 BitcodeReader::parseValueSymbolTable(VSTOffset)) 3386 return EC; 3387 SeenValueSymbolTable = true; 3388 // Fall through so that we record the NextUnreadBit below. 3389 // This is necessary in case we have an anonymous function that 3390 // is later materialized. Since it will not have a VST entry we 3391 // need to fall back to the lazy parse to find its offset. 3392 } else { 3393 // If we have a VST forward declaration record, but have already 3394 // parsed the VST (just above, when the first function body was 3395 // encountered here), then we are resuming the parse after 3396 // materializing functions. The ResumeBit points to the 3397 // start of the last function block recorded in the 3398 // DeferredFunctionInfo map. Skip it. 3399 if (Stream.SkipBlock()) 3400 return error("Invalid record"); 3401 continue; 3402 } 3403 } 3404 3405 // Support older bitcode files that did not have the function 3406 // index in the VST, nor a VST forward declaration record, as 3407 // well as anonymous functions that do not have VST entries. 3408 // Build the DeferredFunctionInfo vector on the fly. 3409 if (std::error_code EC = rememberAndSkipFunctionBody()) 3410 return EC; 3411 3412 // Suspend parsing when we reach the function bodies. Subsequent 3413 // materialization calls will resume it when necessary. If the bitcode 3414 // file is old, the symbol table will be at the end instead and will not 3415 // have been seen yet. In this case, just finish the parse now. 3416 if (SeenValueSymbolTable) { 3417 NextUnreadBit = Stream.GetCurrentBitNo(); 3418 return std::error_code(); 3419 } 3420 break; 3421 case bitc::USELIST_BLOCK_ID: 3422 if (std::error_code EC = parseUseLists()) 3423 return EC; 3424 break; 3425 case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID: 3426 if (std::error_code EC = parseOperandBundleTags()) 3427 return EC; 3428 break; 3429 } 3430 continue; 3431 3432 case BitstreamEntry::Record: 3433 // The interesting case. 3434 break; 3435 } 3436 3437 // Read a record. 3438 auto BitCode = Stream.readRecord(Entry.ID, Record); 3439 switch (BitCode) { 3440 default: break; // Default behavior, ignore unknown content. 3441 case bitc::MODULE_CODE_VERSION: { // VERSION: [version#] 3442 if (Record.size() < 1) 3443 return error("Invalid record"); 3444 // Only version #0 and #1 are supported so far. 3445 unsigned module_version = Record[0]; 3446 switch (module_version) { 3447 default: 3448 return error("Invalid value"); 3449 case 0: 3450 UseRelativeIDs = false; 3451 break; 3452 case 1: 3453 UseRelativeIDs = true; 3454 break; 3455 } 3456 break; 3457 } 3458 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 3459 std::string S; 3460 if (convertToString(Record, 0, S)) 3461 return error("Invalid record"); 3462 TheModule->setTargetTriple(S); 3463 break; 3464 } 3465 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 3466 std::string S; 3467 if (convertToString(Record, 0, S)) 3468 return error("Invalid record"); 3469 TheModule->setDataLayout(S); 3470 break; 3471 } 3472 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 3473 std::string S; 3474 if (convertToString(Record, 0, S)) 3475 return error("Invalid record"); 3476 TheModule->setModuleInlineAsm(S); 3477 break; 3478 } 3479 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 3480 // FIXME: Remove in 4.0. 3481 std::string S; 3482 if (convertToString(Record, 0, S)) 3483 return error("Invalid record"); 3484 // Ignore value. 3485 break; 3486 } 3487 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 3488 std::string S; 3489 if (convertToString(Record, 0, S)) 3490 return error("Invalid record"); 3491 SectionTable.push_back(S); 3492 break; 3493 } 3494 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 3495 std::string S; 3496 if (convertToString(Record, 0, S)) 3497 return error("Invalid record"); 3498 GCTable.push_back(S); 3499 break; 3500 } 3501 case bitc::MODULE_CODE_COMDAT: { // COMDAT: [selection_kind, name] 3502 if (Record.size() < 2) 3503 return error("Invalid record"); 3504 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]); 3505 unsigned ComdatNameSize = Record[1]; 3506 std::string ComdatName; 3507 ComdatName.reserve(ComdatNameSize); 3508 for (unsigned i = 0; i != ComdatNameSize; ++i) 3509 ComdatName += (char)Record[2 + i]; 3510 Comdat *C = TheModule->getOrInsertComdat(ComdatName); 3511 C->setSelectionKind(SK); 3512 ComdatList.push_back(C); 3513 break; 3514 } 3515 // GLOBALVAR: [pointer type, isconst, initid, 3516 // linkage, alignment, section, visibility, threadlocal, 3517 // unnamed_addr, externally_initialized, dllstorageclass, 3518 // comdat] 3519 case bitc::MODULE_CODE_GLOBALVAR: { 3520 if (Record.size() < 6) 3521 return error("Invalid record"); 3522 Type *Ty = getTypeByID(Record[0]); 3523 if (!Ty) 3524 return error("Invalid record"); 3525 bool isConstant = Record[1] & 1; 3526 bool explicitType = Record[1] & 2; 3527 unsigned AddressSpace; 3528 if (explicitType) { 3529 AddressSpace = Record[1] >> 2; 3530 } else { 3531 if (!Ty->isPointerTy()) 3532 return error("Invalid type for value"); 3533 AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 3534 Ty = cast<PointerType>(Ty)->getElementType(); 3535 } 3536 3537 uint64_t RawLinkage = Record[3]; 3538 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 3539 unsigned Alignment; 3540 if (std::error_code EC = parseAlignmentValue(Record[4], Alignment)) 3541 return EC; 3542 std::string Section; 3543 if (Record[5]) { 3544 if (Record[5]-1 >= SectionTable.size()) 3545 return error("Invalid ID"); 3546 Section = SectionTable[Record[5]-1]; 3547 } 3548 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 3549 // Local linkage must have default visibility. 3550 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage)) 3551 // FIXME: Change to an error if non-default in 4.0. 3552 Visibility = getDecodedVisibility(Record[6]); 3553 3554 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; 3555 if (Record.size() > 7) 3556 TLM = getDecodedThreadLocalMode(Record[7]); 3557 3558 bool UnnamedAddr = false; 3559 if (Record.size() > 8) 3560 UnnamedAddr = Record[8]; 3561 3562 bool ExternallyInitialized = false; 3563 if (Record.size() > 9) 3564 ExternallyInitialized = Record[9]; 3565 3566 GlobalVariable *NewGV = 3567 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, "", nullptr, 3568 TLM, AddressSpace, ExternallyInitialized); 3569 NewGV->setAlignment(Alignment); 3570 if (!Section.empty()) 3571 NewGV->setSection(Section); 3572 NewGV->setVisibility(Visibility); 3573 NewGV->setUnnamedAddr(UnnamedAddr); 3574 3575 if (Record.size() > 10) 3576 NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10])); 3577 else 3578 upgradeDLLImportExportLinkage(NewGV, RawLinkage); 3579 3580 ValueList.push_back(NewGV); 3581 3582 // Remember which value to use for the global initializer. 3583 if (unsigned InitID = Record[2]) 3584 GlobalInits.push_back(std::make_pair(NewGV, InitID-1)); 3585 3586 if (Record.size() > 11) { 3587 if (unsigned ComdatID = Record[11]) { 3588 if (ComdatID > ComdatList.size()) 3589 return error("Invalid global variable comdat ID"); 3590 NewGV->setComdat(ComdatList[ComdatID - 1]); 3591 } 3592 } else if (hasImplicitComdat(RawLinkage)) { 3593 NewGV->setComdat(reinterpret_cast<Comdat *>(1)); 3594 } 3595 break; 3596 } 3597 // FUNCTION: [type, callingconv, isproto, linkage, paramattr, 3598 // alignment, section, visibility, gc, unnamed_addr, 3599 // prologuedata, dllstorageclass, comdat, prefixdata] 3600 case bitc::MODULE_CODE_FUNCTION: { 3601 if (Record.size() < 8) 3602 return error("Invalid record"); 3603 Type *Ty = getTypeByID(Record[0]); 3604 if (!Ty) 3605 return error("Invalid record"); 3606 if (auto *PTy = dyn_cast<PointerType>(Ty)) 3607 Ty = PTy->getElementType(); 3608 auto *FTy = dyn_cast<FunctionType>(Ty); 3609 if (!FTy) 3610 return error("Invalid type for value"); 3611 auto CC = static_cast<CallingConv::ID>(Record[1]); 3612 if (CC & ~CallingConv::MaxID) 3613 return error("Invalid calling convention ID"); 3614 3615 Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage, 3616 "", TheModule); 3617 3618 Func->setCallingConv(CC); 3619 bool isProto = Record[2]; 3620 uint64_t RawLinkage = Record[3]; 3621 Func->setLinkage(getDecodedLinkage(RawLinkage)); 3622 Func->setAttributes(getAttributes(Record[4])); 3623 3624 unsigned Alignment; 3625 if (std::error_code EC = parseAlignmentValue(Record[5], Alignment)) 3626 return EC; 3627 Func->setAlignment(Alignment); 3628 if (Record[6]) { 3629 if (Record[6]-1 >= SectionTable.size()) 3630 return error("Invalid ID"); 3631 Func->setSection(SectionTable[Record[6]-1]); 3632 } 3633 // Local linkage must have default visibility. 3634 if (!Func->hasLocalLinkage()) 3635 // FIXME: Change to an error if non-default in 4.0. 3636 Func->setVisibility(getDecodedVisibility(Record[7])); 3637 if (Record.size() > 8 && Record[8]) { 3638 if (Record[8]-1 >= GCTable.size()) 3639 return error("Invalid ID"); 3640 Func->setGC(GCTable[Record[8]-1].c_str()); 3641 } 3642 bool UnnamedAddr = false; 3643 if (Record.size() > 9) 3644 UnnamedAddr = Record[9]; 3645 Func->setUnnamedAddr(UnnamedAddr); 3646 if (Record.size() > 10 && Record[10] != 0) 3647 FunctionPrologues.push_back(std::make_pair(Func, Record[10]-1)); 3648 3649 if (Record.size() > 11) 3650 Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11])); 3651 else 3652 upgradeDLLImportExportLinkage(Func, RawLinkage); 3653 3654 if (Record.size() > 12) { 3655 if (unsigned ComdatID = Record[12]) { 3656 if (ComdatID > ComdatList.size()) 3657 return error("Invalid function comdat ID"); 3658 Func->setComdat(ComdatList[ComdatID - 1]); 3659 } 3660 } else if (hasImplicitComdat(RawLinkage)) { 3661 Func->setComdat(reinterpret_cast<Comdat *>(1)); 3662 } 3663 3664 if (Record.size() > 13 && Record[13] != 0) 3665 FunctionPrefixes.push_back(std::make_pair(Func, Record[13]-1)); 3666 3667 if (Record.size() > 14 && Record[14] != 0) 3668 FunctionPersonalityFns.push_back(std::make_pair(Func, Record[14] - 1)); 3669 3670 ValueList.push_back(Func); 3671 3672 // If this is a function with a body, remember the prototype we are 3673 // creating now, so that we can match up the body with them later. 3674 if (!isProto) { 3675 Func->setIsMaterializable(true); 3676 FunctionsWithBodies.push_back(Func); 3677 DeferredFunctionInfo[Func] = 0; 3678 } 3679 break; 3680 } 3681 // ALIAS: [alias type, addrspace, aliasee val#, linkage] 3682 // ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, dllstorageclass] 3683 case bitc::MODULE_CODE_ALIAS: 3684 case bitc::MODULE_CODE_ALIAS_OLD: { 3685 bool NewRecord = BitCode == bitc::MODULE_CODE_ALIAS; 3686 if (Record.size() < (3 + (unsigned)NewRecord)) 3687 return error("Invalid record"); 3688 unsigned OpNum = 0; 3689 Type *Ty = getTypeByID(Record[OpNum++]); 3690 if (!Ty) 3691 return error("Invalid record"); 3692 3693 unsigned AddrSpace; 3694 if (!NewRecord) { 3695 auto *PTy = dyn_cast<PointerType>(Ty); 3696 if (!PTy) 3697 return error("Invalid type for value"); 3698 Ty = PTy->getElementType(); 3699 AddrSpace = PTy->getAddressSpace(); 3700 } else { 3701 AddrSpace = Record[OpNum++]; 3702 } 3703 3704 auto Val = Record[OpNum++]; 3705 auto Linkage = Record[OpNum++]; 3706 auto *NewGA = GlobalAlias::create( 3707 Ty, AddrSpace, getDecodedLinkage(Linkage), "", TheModule); 3708 // Old bitcode files didn't have visibility field. 3709 // Local linkage must have default visibility. 3710 if (OpNum != Record.size()) { 3711 auto VisInd = OpNum++; 3712 if (!NewGA->hasLocalLinkage()) 3713 // FIXME: Change to an error if non-default in 4.0. 3714 NewGA->setVisibility(getDecodedVisibility(Record[VisInd])); 3715 } 3716 if (OpNum != Record.size()) 3717 NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++])); 3718 else 3719 upgradeDLLImportExportLinkage(NewGA, Linkage); 3720 if (OpNum != Record.size()) 3721 NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++])); 3722 if (OpNum != Record.size()) 3723 NewGA->setUnnamedAddr(Record[OpNum++]); 3724 ValueList.push_back(NewGA); 3725 AliasInits.push_back(std::make_pair(NewGA, Val)); 3726 break; 3727 } 3728 /// MODULE_CODE_PURGEVALS: [numvals] 3729 case bitc::MODULE_CODE_PURGEVALS: 3730 // Trim down the value list to the specified size. 3731 if (Record.size() < 1 || Record[0] > ValueList.size()) 3732 return error("Invalid record"); 3733 ValueList.shrinkTo(Record[0]); 3734 break; 3735 /// MODULE_CODE_VSTOFFSET: [offset] 3736 case bitc::MODULE_CODE_VSTOFFSET: 3737 if (Record.size() < 1) 3738 return error("Invalid record"); 3739 VSTOffset = Record[0]; 3740 break; 3741 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 3742 case bitc::MODULE_CODE_SOURCE_FILENAME: 3743 SmallString<128> ValueName; 3744 if (convertToString(Record, 0, ValueName)) 3745 return error("Invalid record"); 3746 TheModule->setSourceFileName(ValueName); 3747 break; 3748 } 3749 Record.clear(); 3750 } 3751 } 3752 3753 /// Helper to read the header common to all bitcode files. 3754 static bool hasValidBitcodeHeader(BitstreamCursor &Stream) { 3755 // Sniff for the signature. 3756 if (Stream.Read(8) != 'B' || 3757 Stream.Read(8) != 'C' || 3758 Stream.Read(4) != 0x0 || 3759 Stream.Read(4) != 0xC || 3760 Stream.Read(4) != 0xE || 3761 Stream.Read(4) != 0xD) 3762 return false; 3763 return true; 3764 } 3765 3766 std::error_code 3767 BitcodeReader::parseBitcodeInto(std::unique_ptr<DataStreamer> Streamer, 3768 Module *M, bool ShouldLazyLoadMetadata) { 3769 TheModule = M; 3770 3771 if (std::error_code EC = initStream(std::move(Streamer))) 3772 return EC; 3773 3774 // Sniff for the signature. 3775 if (!hasValidBitcodeHeader(Stream)) 3776 return error("Invalid bitcode signature"); 3777 3778 // We expect a number of well-defined blocks, though we don't necessarily 3779 // need to understand them all. 3780 while (1) { 3781 if (Stream.AtEndOfStream()) { 3782 // We didn't really read a proper Module. 3783 return error("Malformed IR file"); 3784 } 3785 3786 BitstreamEntry Entry = 3787 Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs); 3788 3789 if (Entry.Kind != BitstreamEntry::SubBlock) 3790 return error("Malformed block"); 3791 3792 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) { 3793 parseBitcodeVersion(); 3794 continue; 3795 } 3796 3797 if (Entry.ID == bitc::MODULE_BLOCK_ID) 3798 return parseModule(0, ShouldLazyLoadMetadata); 3799 3800 if (Stream.SkipBlock()) 3801 return error("Invalid record"); 3802 } 3803 } 3804 3805 ErrorOr<std::string> BitcodeReader::parseModuleTriple() { 3806 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 3807 return error("Invalid record"); 3808 3809 SmallVector<uint64_t, 64> Record; 3810 3811 std::string Triple; 3812 // Read all the records for this module. 3813 while (1) { 3814 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 3815 3816 switch (Entry.Kind) { 3817 case BitstreamEntry::SubBlock: // Handled for us already. 3818 case BitstreamEntry::Error: 3819 return error("Malformed block"); 3820 case BitstreamEntry::EndBlock: 3821 return Triple; 3822 case BitstreamEntry::Record: 3823 // The interesting case. 3824 break; 3825 } 3826 3827 // Read a record. 3828 switch (Stream.readRecord(Entry.ID, Record)) { 3829 default: break; // Default behavior, ignore unknown content. 3830 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 3831 std::string S; 3832 if (convertToString(Record, 0, S)) 3833 return error("Invalid record"); 3834 Triple = S; 3835 break; 3836 } 3837 } 3838 Record.clear(); 3839 } 3840 llvm_unreachable("Exit infinite loop"); 3841 } 3842 3843 ErrorOr<std::string> BitcodeReader::parseTriple() { 3844 if (std::error_code EC = initStream(nullptr)) 3845 return EC; 3846 3847 // Sniff for the signature. 3848 if (!hasValidBitcodeHeader(Stream)) 3849 return error("Invalid bitcode signature"); 3850 3851 // We expect a number of well-defined blocks, though we don't necessarily 3852 // need to understand them all. 3853 while (1) { 3854 BitstreamEntry Entry = Stream.advance(); 3855 3856 switch (Entry.Kind) { 3857 case BitstreamEntry::Error: 3858 return error("Malformed block"); 3859 case BitstreamEntry::EndBlock: 3860 return std::error_code(); 3861 3862 case BitstreamEntry::SubBlock: 3863 if (Entry.ID == bitc::MODULE_BLOCK_ID) 3864 return parseModuleTriple(); 3865 3866 // Ignore other sub-blocks. 3867 if (Stream.SkipBlock()) 3868 return error("Malformed block"); 3869 continue; 3870 3871 case BitstreamEntry::Record: 3872 Stream.skipRecord(Entry.ID); 3873 continue; 3874 } 3875 } 3876 } 3877 3878 ErrorOr<std::string> BitcodeReader::parseIdentificationBlock() { 3879 if (std::error_code EC = initStream(nullptr)) 3880 return EC; 3881 3882 // Sniff for the signature. 3883 if (!hasValidBitcodeHeader(Stream)) 3884 return error("Invalid bitcode signature"); 3885 3886 // We expect a number of well-defined blocks, though we don't necessarily 3887 // need to understand them all. 3888 while (1) { 3889 BitstreamEntry Entry = Stream.advance(); 3890 switch (Entry.Kind) { 3891 case BitstreamEntry::Error: 3892 return error("Malformed block"); 3893 case BitstreamEntry::EndBlock: 3894 return std::error_code(); 3895 3896 case BitstreamEntry::SubBlock: 3897 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) { 3898 if (std::error_code EC = parseBitcodeVersion()) 3899 return EC; 3900 return ProducerIdentification; 3901 } 3902 // Ignore other sub-blocks. 3903 if (Stream.SkipBlock()) 3904 return error("Malformed block"); 3905 continue; 3906 case BitstreamEntry::Record: 3907 Stream.skipRecord(Entry.ID); 3908 continue; 3909 } 3910 } 3911 } 3912 3913 /// Parse metadata attachments. 3914 std::error_code BitcodeReader::parseMetadataAttachment(Function &F) { 3915 if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID)) 3916 return error("Invalid record"); 3917 3918 SmallVector<uint64_t, 64> Record; 3919 while (1) { 3920 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 3921 3922 switch (Entry.Kind) { 3923 case BitstreamEntry::SubBlock: // Handled for us already. 3924 case BitstreamEntry::Error: 3925 return error("Malformed block"); 3926 case BitstreamEntry::EndBlock: 3927 return std::error_code(); 3928 case BitstreamEntry::Record: 3929 // The interesting case. 3930 break; 3931 } 3932 3933 // Read a metadata attachment record. 3934 Record.clear(); 3935 switch (Stream.readRecord(Entry.ID, Record)) { 3936 default: // Default behavior: ignore. 3937 break; 3938 case bitc::METADATA_ATTACHMENT: { 3939 unsigned RecordLength = Record.size(); 3940 if (Record.empty()) 3941 return error("Invalid record"); 3942 if (RecordLength % 2 == 0) { 3943 // A function attachment. 3944 for (unsigned I = 0; I != RecordLength; I += 2) { 3945 auto K = MDKindMap.find(Record[I]); 3946 if (K == MDKindMap.end()) 3947 return error("Invalid ID"); 3948 MDNode *MD = MetadataList.getMDNodeFwdRefOrNull(Record[I + 1]); 3949 if (!MD) 3950 return error("Invalid metadata attachment"); 3951 F.setMetadata(K->second, MD); 3952 } 3953 continue; 3954 } 3955 3956 // An instruction attachment. 3957 Instruction *Inst = InstructionList[Record[0]]; 3958 for (unsigned i = 1; i != RecordLength; i = i+2) { 3959 unsigned Kind = Record[i]; 3960 DenseMap<unsigned, unsigned>::iterator I = 3961 MDKindMap.find(Kind); 3962 if (I == MDKindMap.end()) 3963 return error("Invalid ID"); 3964 Metadata *Node = MetadataList.getMetadataFwdRef(Record[i + 1]); 3965 if (isa<LocalAsMetadata>(Node)) 3966 // Drop the attachment. This used to be legal, but there's no 3967 // upgrade path. 3968 break; 3969 MDNode *MD = dyn_cast_or_null<MDNode>(Node); 3970 if (!MD) 3971 return error("Invalid metadata attachment"); 3972 3973 if (HasSeenOldLoopTags && I->second == LLVMContext::MD_loop) 3974 MD = upgradeInstructionLoopAttachment(*MD); 3975 3976 Inst->setMetadata(I->second, MD); 3977 if (I->second == LLVMContext::MD_tbaa) { 3978 InstsWithTBAATag.push_back(Inst); 3979 continue; 3980 } 3981 } 3982 break; 3983 } 3984 } 3985 } 3986 } 3987 3988 static std::error_code typeCheckLoadStoreInst(Type *ValType, Type *PtrType) { 3989 LLVMContext &Context = PtrType->getContext(); 3990 if (!isa<PointerType>(PtrType)) 3991 return error(Context, "Load/Store operand is not a pointer type"); 3992 Type *ElemType = cast<PointerType>(PtrType)->getElementType(); 3993 3994 if (ValType && ValType != ElemType) 3995 return error(Context, "Explicit load/store type does not match pointee " 3996 "type of pointer operand"); 3997 if (!PointerType::isLoadableOrStorableType(ElemType)) 3998 return error(Context, "Cannot load/store from pointer"); 3999 return std::error_code(); 4000 } 4001 4002 /// Lazily parse the specified function body block. 4003 std::error_code BitcodeReader::parseFunctionBody(Function *F) { 4004 if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 4005 return error("Invalid record"); 4006 4007 InstructionList.clear(); 4008 unsigned ModuleValueListSize = ValueList.size(); 4009 unsigned ModuleMetadataListSize = MetadataList.size(); 4010 4011 // Add all the function arguments to the value table. 4012 for (Argument &I : F->args()) 4013 ValueList.push_back(&I); 4014 4015 unsigned NextValueNo = ValueList.size(); 4016 BasicBlock *CurBB = nullptr; 4017 unsigned CurBBNo = 0; 4018 4019 DebugLoc LastLoc; 4020 auto getLastInstruction = [&]() -> Instruction * { 4021 if (CurBB && !CurBB->empty()) 4022 return &CurBB->back(); 4023 else if (CurBBNo && FunctionBBs[CurBBNo - 1] && 4024 !FunctionBBs[CurBBNo - 1]->empty()) 4025 return &FunctionBBs[CurBBNo - 1]->back(); 4026 return nullptr; 4027 }; 4028 4029 std::vector<OperandBundleDef> OperandBundles; 4030 4031 // Read all the records. 4032 SmallVector<uint64_t, 64> Record; 4033 while (1) { 4034 BitstreamEntry Entry = Stream.advance(); 4035 4036 switch (Entry.Kind) { 4037 case BitstreamEntry::Error: 4038 return error("Malformed block"); 4039 case BitstreamEntry::EndBlock: 4040 goto OutOfRecordLoop; 4041 4042 case BitstreamEntry::SubBlock: 4043 switch (Entry.ID) { 4044 default: // Skip unknown content. 4045 if (Stream.SkipBlock()) 4046 return error("Invalid record"); 4047 break; 4048 case bitc::CONSTANTS_BLOCK_ID: 4049 if (std::error_code EC = parseConstants()) 4050 return EC; 4051 NextValueNo = ValueList.size(); 4052 break; 4053 case bitc::VALUE_SYMTAB_BLOCK_ID: 4054 if (std::error_code EC = parseValueSymbolTable()) 4055 return EC; 4056 break; 4057 case bitc::METADATA_ATTACHMENT_ID: 4058 if (std::error_code EC = parseMetadataAttachment(*F)) 4059 return EC; 4060 break; 4061 case bitc::METADATA_BLOCK_ID: 4062 if (std::error_code EC = parseMetadata()) 4063 return EC; 4064 break; 4065 case bitc::USELIST_BLOCK_ID: 4066 if (std::error_code EC = parseUseLists()) 4067 return EC; 4068 break; 4069 } 4070 continue; 4071 4072 case BitstreamEntry::Record: 4073 // The interesting case. 4074 break; 4075 } 4076 4077 // Read a record. 4078 Record.clear(); 4079 Instruction *I = nullptr; 4080 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 4081 switch (BitCode) { 4082 default: // Default behavior: reject 4083 return error("Invalid value"); 4084 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks] 4085 if (Record.size() < 1 || Record[0] == 0) 4086 return error("Invalid record"); 4087 // Create all the basic blocks for the function. 4088 FunctionBBs.resize(Record[0]); 4089 4090 // See if anything took the address of blocks in this function. 4091 auto BBFRI = BasicBlockFwdRefs.find(F); 4092 if (BBFRI == BasicBlockFwdRefs.end()) { 4093 for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i) 4094 FunctionBBs[i] = BasicBlock::Create(Context, "", F); 4095 } else { 4096 auto &BBRefs = BBFRI->second; 4097 // Check for invalid basic block references. 4098 if (BBRefs.size() > FunctionBBs.size()) 4099 return error("Invalid ID"); 4100 assert(!BBRefs.empty() && "Unexpected empty array"); 4101 assert(!BBRefs.front() && "Invalid reference to entry block"); 4102 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E; 4103 ++I) 4104 if (I < RE && BBRefs[I]) { 4105 BBRefs[I]->insertInto(F); 4106 FunctionBBs[I] = BBRefs[I]; 4107 } else { 4108 FunctionBBs[I] = BasicBlock::Create(Context, "", F); 4109 } 4110 4111 // Erase from the table. 4112 BasicBlockFwdRefs.erase(BBFRI); 4113 } 4114 4115 CurBB = FunctionBBs[0]; 4116 continue; 4117 } 4118 4119 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 4120 // This record indicates that the last instruction is at the same 4121 // location as the previous instruction with a location. 4122 I = getLastInstruction(); 4123 4124 if (!I) 4125 return error("Invalid record"); 4126 I->setDebugLoc(LastLoc); 4127 I = nullptr; 4128 continue; 4129 4130 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 4131 I = getLastInstruction(); 4132 if (!I || Record.size() < 4) 4133 return error("Invalid record"); 4134 4135 unsigned Line = Record[0], Col = Record[1]; 4136 unsigned ScopeID = Record[2], IAID = Record[3]; 4137 4138 MDNode *Scope = nullptr, *IA = nullptr; 4139 if (ScopeID) { 4140 Scope = MetadataList.getMDNodeFwdRefOrNull(ScopeID - 1); 4141 if (!Scope) 4142 return error("Invalid record"); 4143 } 4144 if (IAID) { 4145 IA = MetadataList.getMDNodeFwdRefOrNull(IAID - 1); 4146 if (!IA) 4147 return error("Invalid record"); 4148 } 4149 LastLoc = DebugLoc::get(Line, Col, Scope, IA); 4150 I->setDebugLoc(LastLoc); 4151 I = nullptr; 4152 continue; 4153 } 4154 4155 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 4156 unsigned OpNum = 0; 4157 Value *LHS, *RHS; 4158 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 4159 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 4160 OpNum+1 > Record.size()) 4161 return error("Invalid record"); 4162 4163 int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 4164 if (Opc == -1) 4165 return error("Invalid record"); 4166 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 4167 InstructionList.push_back(I); 4168 if (OpNum < Record.size()) { 4169 if (Opc == Instruction::Add || 4170 Opc == Instruction::Sub || 4171 Opc == Instruction::Mul || 4172 Opc == Instruction::Shl) { 4173 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 4174 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 4175 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 4176 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 4177 } else if (Opc == Instruction::SDiv || 4178 Opc == Instruction::UDiv || 4179 Opc == Instruction::LShr || 4180 Opc == Instruction::AShr) { 4181 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 4182 cast<BinaryOperator>(I)->setIsExact(true); 4183 } else if (isa<FPMathOperator>(I)) { 4184 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 4185 if (FMF.any()) 4186 I->setFastMathFlags(FMF); 4187 } 4188 4189 } 4190 break; 4191 } 4192 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 4193 unsigned OpNum = 0; 4194 Value *Op; 4195 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4196 OpNum+2 != Record.size()) 4197 return error("Invalid record"); 4198 4199 Type *ResTy = getTypeByID(Record[OpNum]); 4200 int Opc = getDecodedCastOpcode(Record[OpNum + 1]); 4201 if (Opc == -1 || !ResTy) 4202 return error("Invalid record"); 4203 Instruction *Temp = nullptr; 4204 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) { 4205 if (Temp) { 4206 InstructionList.push_back(Temp); 4207 CurBB->getInstList().push_back(Temp); 4208 } 4209 } else { 4210 auto CastOp = (Instruction::CastOps)Opc; 4211 if (!CastInst::castIsValid(CastOp, Op, ResTy)) 4212 return error("Invalid cast"); 4213 I = CastInst::Create(CastOp, Op, ResTy); 4214 } 4215 InstructionList.push_back(I); 4216 break; 4217 } 4218 case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD: 4219 case bitc::FUNC_CODE_INST_GEP_OLD: 4220 case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands] 4221 unsigned OpNum = 0; 4222 4223 Type *Ty; 4224 bool InBounds; 4225 4226 if (BitCode == bitc::FUNC_CODE_INST_GEP) { 4227 InBounds = Record[OpNum++]; 4228 Ty = getTypeByID(Record[OpNum++]); 4229 } else { 4230 InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD; 4231 Ty = nullptr; 4232 } 4233 4234 Value *BasePtr; 4235 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr)) 4236 return error("Invalid record"); 4237 4238 if (!Ty) 4239 Ty = cast<SequentialType>(BasePtr->getType()->getScalarType()) 4240 ->getElementType(); 4241 else if (Ty != 4242 cast<SequentialType>(BasePtr->getType()->getScalarType()) 4243 ->getElementType()) 4244 return error( 4245 "Explicit gep type does not match pointee type of pointer operand"); 4246 4247 SmallVector<Value*, 16> GEPIdx; 4248 while (OpNum != Record.size()) { 4249 Value *Op; 4250 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4251 return error("Invalid record"); 4252 GEPIdx.push_back(Op); 4253 } 4254 4255 I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx); 4256 4257 InstructionList.push_back(I); 4258 if (InBounds) 4259 cast<GetElementPtrInst>(I)->setIsInBounds(true); 4260 break; 4261 } 4262 4263 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 4264 // EXTRACTVAL: [opty, opval, n x indices] 4265 unsigned OpNum = 0; 4266 Value *Agg; 4267 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 4268 return error("Invalid record"); 4269 4270 unsigned RecSize = Record.size(); 4271 if (OpNum == RecSize) 4272 return error("EXTRACTVAL: Invalid instruction with 0 indices"); 4273 4274 SmallVector<unsigned, 4> EXTRACTVALIdx; 4275 Type *CurTy = Agg->getType(); 4276 for (; OpNum != RecSize; ++OpNum) { 4277 bool IsArray = CurTy->isArrayTy(); 4278 bool IsStruct = CurTy->isStructTy(); 4279 uint64_t Index = Record[OpNum]; 4280 4281 if (!IsStruct && !IsArray) 4282 return error("EXTRACTVAL: Invalid type"); 4283 if ((unsigned)Index != Index) 4284 return error("Invalid value"); 4285 if (IsStruct && Index >= CurTy->subtypes().size()) 4286 return error("EXTRACTVAL: Invalid struct index"); 4287 if (IsArray && Index >= CurTy->getArrayNumElements()) 4288 return error("EXTRACTVAL: Invalid array index"); 4289 EXTRACTVALIdx.push_back((unsigned)Index); 4290 4291 if (IsStruct) 4292 CurTy = CurTy->subtypes()[Index]; 4293 else 4294 CurTy = CurTy->subtypes()[0]; 4295 } 4296 4297 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 4298 InstructionList.push_back(I); 4299 break; 4300 } 4301 4302 case bitc::FUNC_CODE_INST_INSERTVAL: { 4303 // INSERTVAL: [opty, opval, opty, opval, n x indices] 4304 unsigned OpNum = 0; 4305 Value *Agg; 4306 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 4307 return error("Invalid record"); 4308 Value *Val; 4309 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 4310 return error("Invalid record"); 4311 4312 unsigned RecSize = Record.size(); 4313 if (OpNum == RecSize) 4314 return error("INSERTVAL: Invalid instruction with 0 indices"); 4315 4316 SmallVector<unsigned, 4> INSERTVALIdx; 4317 Type *CurTy = Agg->getType(); 4318 for (; OpNum != RecSize; ++OpNum) { 4319 bool IsArray = CurTy->isArrayTy(); 4320 bool IsStruct = CurTy->isStructTy(); 4321 uint64_t Index = Record[OpNum]; 4322 4323 if (!IsStruct && !IsArray) 4324 return error("INSERTVAL: Invalid type"); 4325 if ((unsigned)Index != Index) 4326 return error("Invalid value"); 4327 if (IsStruct && Index >= CurTy->subtypes().size()) 4328 return error("INSERTVAL: Invalid struct index"); 4329 if (IsArray && Index >= CurTy->getArrayNumElements()) 4330 return error("INSERTVAL: Invalid array index"); 4331 4332 INSERTVALIdx.push_back((unsigned)Index); 4333 if (IsStruct) 4334 CurTy = CurTy->subtypes()[Index]; 4335 else 4336 CurTy = CurTy->subtypes()[0]; 4337 } 4338 4339 if (CurTy != Val->getType()) 4340 return error("Inserted value type doesn't match aggregate type"); 4341 4342 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 4343 InstructionList.push_back(I); 4344 break; 4345 } 4346 4347 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 4348 // obsolete form of select 4349 // handles select i1 ... in old bitcode 4350 unsigned OpNum = 0; 4351 Value *TrueVal, *FalseVal, *Cond; 4352 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 4353 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 4354 popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond)) 4355 return error("Invalid record"); 4356 4357 I = SelectInst::Create(Cond, TrueVal, FalseVal); 4358 InstructionList.push_back(I); 4359 break; 4360 } 4361 4362 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 4363 // new form of select 4364 // handles select i1 or select [N x i1] 4365 unsigned OpNum = 0; 4366 Value *TrueVal, *FalseVal, *Cond; 4367 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 4368 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 4369 getValueTypePair(Record, OpNum, NextValueNo, Cond)) 4370 return error("Invalid record"); 4371 4372 // select condition can be either i1 or [N x i1] 4373 if (VectorType* vector_type = 4374 dyn_cast<VectorType>(Cond->getType())) { 4375 // expect <n x i1> 4376 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 4377 return error("Invalid type for value"); 4378 } else { 4379 // expect i1 4380 if (Cond->getType() != Type::getInt1Ty(Context)) 4381 return error("Invalid type for value"); 4382 } 4383 4384 I = SelectInst::Create(Cond, TrueVal, FalseVal); 4385 InstructionList.push_back(I); 4386 break; 4387 } 4388 4389 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 4390 unsigned OpNum = 0; 4391 Value *Vec, *Idx; 4392 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 4393 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 4394 return error("Invalid record"); 4395 if (!Vec->getType()->isVectorTy()) 4396 return error("Invalid type for value"); 4397 I = ExtractElementInst::Create(Vec, Idx); 4398 InstructionList.push_back(I); 4399 break; 4400 } 4401 4402 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 4403 unsigned OpNum = 0; 4404 Value *Vec, *Elt, *Idx; 4405 if (getValueTypePair(Record, OpNum, NextValueNo, Vec)) 4406 return error("Invalid record"); 4407 if (!Vec->getType()->isVectorTy()) 4408 return error("Invalid type for value"); 4409 if (popValue(Record, OpNum, NextValueNo, 4410 cast<VectorType>(Vec->getType())->getElementType(), Elt) || 4411 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 4412 return error("Invalid record"); 4413 I = InsertElementInst::Create(Vec, Elt, Idx); 4414 InstructionList.push_back(I); 4415 break; 4416 } 4417 4418 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 4419 unsigned OpNum = 0; 4420 Value *Vec1, *Vec2, *Mask; 4421 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) || 4422 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2)) 4423 return error("Invalid record"); 4424 4425 if (getValueTypePair(Record, OpNum, NextValueNo, Mask)) 4426 return error("Invalid record"); 4427 if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy()) 4428 return error("Invalid type for value"); 4429 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 4430 InstructionList.push_back(I); 4431 break; 4432 } 4433 4434 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 4435 // Old form of ICmp/FCmp returning bool 4436 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 4437 // both legal on vectors but had different behaviour. 4438 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 4439 // FCmp/ICmp returning bool or vector of bool 4440 4441 unsigned OpNum = 0; 4442 Value *LHS, *RHS; 4443 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 4444 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS)) 4445 return error("Invalid record"); 4446 4447 unsigned PredVal = Record[OpNum]; 4448 bool IsFP = LHS->getType()->isFPOrFPVectorTy(); 4449 FastMathFlags FMF; 4450 if (IsFP && Record.size() > OpNum+1) 4451 FMF = getDecodedFastMathFlags(Record[++OpNum]); 4452 4453 if (OpNum+1 != Record.size()) 4454 return error("Invalid record"); 4455 4456 if (LHS->getType()->isFPOrFPVectorTy()) 4457 I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS); 4458 else 4459 I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS); 4460 4461 if (FMF.any()) 4462 I->setFastMathFlags(FMF); 4463 InstructionList.push_back(I); 4464 break; 4465 } 4466 4467 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 4468 { 4469 unsigned Size = Record.size(); 4470 if (Size == 0) { 4471 I = ReturnInst::Create(Context); 4472 InstructionList.push_back(I); 4473 break; 4474 } 4475 4476 unsigned OpNum = 0; 4477 Value *Op = nullptr; 4478 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4479 return error("Invalid record"); 4480 if (OpNum != Record.size()) 4481 return error("Invalid record"); 4482 4483 I = ReturnInst::Create(Context, Op); 4484 InstructionList.push_back(I); 4485 break; 4486 } 4487 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 4488 if (Record.size() != 1 && Record.size() != 3) 4489 return error("Invalid record"); 4490 BasicBlock *TrueDest = getBasicBlock(Record[0]); 4491 if (!TrueDest) 4492 return error("Invalid record"); 4493 4494 if (Record.size() == 1) { 4495 I = BranchInst::Create(TrueDest); 4496 InstructionList.push_back(I); 4497 } 4498 else { 4499 BasicBlock *FalseDest = getBasicBlock(Record[1]); 4500 Value *Cond = getValue(Record, 2, NextValueNo, 4501 Type::getInt1Ty(Context)); 4502 if (!FalseDest || !Cond) 4503 return error("Invalid record"); 4504 I = BranchInst::Create(TrueDest, FalseDest, Cond); 4505 InstructionList.push_back(I); 4506 } 4507 break; 4508 } 4509 case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#] 4510 if (Record.size() != 1 && Record.size() != 2) 4511 return error("Invalid record"); 4512 unsigned Idx = 0; 4513 Value *CleanupPad = 4514 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4515 if (!CleanupPad) 4516 return error("Invalid record"); 4517 BasicBlock *UnwindDest = nullptr; 4518 if (Record.size() == 2) { 4519 UnwindDest = getBasicBlock(Record[Idx++]); 4520 if (!UnwindDest) 4521 return error("Invalid record"); 4522 } 4523 4524 I = CleanupReturnInst::Create(CleanupPad, UnwindDest); 4525 InstructionList.push_back(I); 4526 break; 4527 } 4528 case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#] 4529 if (Record.size() != 2) 4530 return error("Invalid record"); 4531 unsigned Idx = 0; 4532 Value *CatchPad = 4533 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4534 if (!CatchPad) 4535 return error("Invalid record"); 4536 BasicBlock *BB = getBasicBlock(Record[Idx++]); 4537 if (!BB) 4538 return error("Invalid record"); 4539 4540 I = CatchReturnInst::Create(CatchPad, BB); 4541 InstructionList.push_back(I); 4542 break; 4543 } 4544 case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?] 4545 // We must have, at minimum, the outer scope and the number of arguments. 4546 if (Record.size() < 2) 4547 return error("Invalid record"); 4548 4549 unsigned Idx = 0; 4550 4551 Value *ParentPad = 4552 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4553 4554 unsigned NumHandlers = Record[Idx++]; 4555 4556 SmallVector<BasicBlock *, 2> Handlers; 4557 for (unsigned Op = 0; Op != NumHandlers; ++Op) { 4558 BasicBlock *BB = getBasicBlock(Record[Idx++]); 4559 if (!BB) 4560 return error("Invalid record"); 4561 Handlers.push_back(BB); 4562 } 4563 4564 BasicBlock *UnwindDest = nullptr; 4565 if (Idx + 1 == Record.size()) { 4566 UnwindDest = getBasicBlock(Record[Idx++]); 4567 if (!UnwindDest) 4568 return error("Invalid record"); 4569 } 4570 4571 if (Record.size() != Idx) 4572 return error("Invalid record"); 4573 4574 auto *CatchSwitch = 4575 CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers); 4576 for (BasicBlock *Handler : Handlers) 4577 CatchSwitch->addHandler(Handler); 4578 I = CatchSwitch; 4579 InstructionList.push_back(I); 4580 break; 4581 } 4582 case bitc::FUNC_CODE_INST_CATCHPAD: 4583 case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*] 4584 // We must have, at minimum, the outer scope and the number of arguments. 4585 if (Record.size() < 2) 4586 return error("Invalid record"); 4587 4588 unsigned Idx = 0; 4589 4590 Value *ParentPad = 4591 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4592 4593 unsigned NumArgOperands = Record[Idx++]; 4594 4595 SmallVector<Value *, 2> Args; 4596 for (unsigned Op = 0; Op != NumArgOperands; ++Op) { 4597 Value *Val; 4598 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 4599 return error("Invalid record"); 4600 Args.push_back(Val); 4601 } 4602 4603 if (Record.size() != Idx) 4604 return error("Invalid record"); 4605 4606 if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD) 4607 I = CleanupPadInst::Create(ParentPad, Args); 4608 else 4609 I = CatchPadInst::Create(ParentPad, Args); 4610 InstructionList.push_back(I); 4611 break; 4612 } 4613 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 4614 // Check magic 4615 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { 4616 // "New" SwitchInst format with case ranges. The changes to write this 4617 // format were reverted but we still recognize bitcode that uses it. 4618 // Hopefully someday we will have support for case ranges and can use 4619 // this format again. 4620 4621 Type *OpTy = getTypeByID(Record[1]); 4622 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); 4623 4624 Value *Cond = getValue(Record, 2, NextValueNo, OpTy); 4625 BasicBlock *Default = getBasicBlock(Record[3]); 4626 if (!OpTy || !Cond || !Default) 4627 return error("Invalid record"); 4628 4629 unsigned NumCases = Record[4]; 4630 4631 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 4632 InstructionList.push_back(SI); 4633 4634 unsigned CurIdx = 5; 4635 for (unsigned i = 0; i != NumCases; ++i) { 4636 SmallVector<ConstantInt*, 1> CaseVals; 4637 unsigned NumItems = Record[CurIdx++]; 4638 for (unsigned ci = 0; ci != NumItems; ++ci) { 4639 bool isSingleNumber = Record[CurIdx++]; 4640 4641 APInt Low; 4642 unsigned ActiveWords = 1; 4643 if (ValueBitWidth > 64) 4644 ActiveWords = Record[CurIdx++]; 4645 Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 4646 ValueBitWidth); 4647 CurIdx += ActiveWords; 4648 4649 if (!isSingleNumber) { 4650 ActiveWords = 1; 4651 if (ValueBitWidth > 64) 4652 ActiveWords = Record[CurIdx++]; 4653 APInt High = readWideAPInt( 4654 makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth); 4655 CurIdx += ActiveWords; 4656 4657 // FIXME: It is not clear whether values in the range should be 4658 // compared as signed or unsigned values. The partially 4659 // implemented changes that used this format in the past used 4660 // unsigned comparisons. 4661 for ( ; Low.ule(High); ++Low) 4662 CaseVals.push_back(ConstantInt::get(Context, Low)); 4663 } else 4664 CaseVals.push_back(ConstantInt::get(Context, Low)); 4665 } 4666 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); 4667 for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(), 4668 cve = CaseVals.end(); cvi != cve; ++cvi) 4669 SI->addCase(*cvi, DestBB); 4670 } 4671 I = SI; 4672 break; 4673 } 4674 4675 // Old SwitchInst format without case ranges. 4676 4677 if (Record.size() < 3 || (Record.size() & 1) == 0) 4678 return error("Invalid record"); 4679 Type *OpTy = getTypeByID(Record[0]); 4680 Value *Cond = getValue(Record, 1, NextValueNo, OpTy); 4681 BasicBlock *Default = getBasicBlock(Record[2]); 4682 if (!OpTy || !Cond || !Default) 4683 return error("Invalid record"); 4684 unsigned NumCases = (Record.size()-3)/2; 4685 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 4686 InstructionList.push_back(SI); 4687 for (unsigned i = 0, e = NumCases; i != e; ++i) { 4688 ConstantInt *CaseVal = 4689 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy)); 4690 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 4691 if (!CaseVal || !DestBB) { 4692 delete SI; 4693 return error("Invalid record"); 4694 } 4695 SI->addCase(CaseVal, DestBB); 4696 } 4697 I = SI; 4698 break; 4699 } 4700 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 4701 if (Record.size() < 2) 4702 return error("Invalid record"); 4703 Type *OpTy = getTypeByID(Record[0]); 4704 Value *Address = getValue(Record, 1, NextValueNo, OpTy); 4705 if (!OpTy || !Address) 4706 return error("Invalid record"); 4707 unsigned NumDests = Record.size()-2; 4708 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 4709 InstructionList.push_back(IBI); 4710 for (unsigned i = 0, e = NumDests; i != e; ++i) { 4711 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 4712 IBI->addDestination(DestBB); 4713 } else { 4714 delete IBI; 4715 return error("Invalid record"); 4716 } 4717 } 4718 I = IBI; 4719 break; 4720 } 4721 4722 case bitc::FUNC_CODE_INST_INVOKE: { 4723 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 4724 if (Record.size() < 4) 4725 return error("Invalid record"); 4726 unsigned OpNum = 0; 4727 AttributeSet PAL = getAttributes(Record[OpNum++]); 4728 unsigned CCInfo = Record[OpNum++]; 4729 BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]); 4730 BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]); 4731 4732 FunctionType *FTy = nullptr; 4733 if (CCInfo >> 13 & 1 && 4734 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])))) 4735 return error("Explicit invoke type is not a function type"); 4736 4737 Value *Callee; 4738 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 4739 return error("Invalid record"); 4740 4741 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 4742 if (!CalleeTy) 4743 return error("Callee is not a pointer"); 4744 if (!FTy) { 4745 FTy = dyn_cast<FunctionType>(CalleeTy->getElementType()); 4746 if (!FTy) 4747 return error("Callee is not of pointer to function type"); 4748 } else if (CalleeTy->getElementType() != FTy) 4749 return error("Explicit invoke type does not match pointee type of " 4750 "callee operand"); 4751 if (Record.size() < FTy->getNumParams() + OpNum) 4752 return error("Insufficient operands to call"); 4753 4754 SmallVector<Value*, 16> Ops; 4755 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 4756 Ops.push_back(getValue(Record, OpNum, NextValueNo, 4757 FTy->getParamType(i))); 4758 if (!Ops.back()) 4759 return error("Invalid record"); 4760 } 4761 4762 if (!FTy->isVarArg()) { 4763 if (Record.size() != OpNum) 4764 return error("Invalid record"); 4765 } else { 4766 // Read type/value pairs for varargs params. 4767 while (OpNum != Record.size()) { 4768 Value *Op; 4769 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4770 return error("Invalid record"); 4771 Ops.push_back(Op); 4772 } 4773 } 4774 4775 I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops, OperandBundles); 4776 OperandBundles.clear(); 4777 InstructionList.push_back(I); 4778 cast<InvokeInst>(I)->setCallingConv( 4779 static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo)); 4780 cast<InvokeInst>(I)->setAttributes(PAL); 4781 break; 4782 } 4783 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 4784 unsigned Idx = 0; 4785 Value *Val = nullptr; 4786 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 4787 return error("Invalid record"); 4788 I = ResumeInst::Create(Val); 4789 InstructionList.push_back(I); 4790 break; 4791 } 4792 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 4793 I = new UnreachableInst(Context); 4794 InstructionList.push_back(I); 4795 break; 4796 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 4797 if (Record.size() < 1 || ((Record.size()-1)&1)) 4798 return error("Invalid record"); 4799 Type *Ty = getTypeByID(Record[0]); 4800 if (!Ty) 4801 return error("Invalid record"); 4802 4803 PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2); 4804 InstructionList.push_back(PN); 4805 4806 for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) { 4807 Value *V; 4808 // With the new function encoding, it is possible that operands have 4809 // negative IDs (for forward references). Use a signed VBR 4810 // representation to keep the encoding small. 4811 if (UseRelativeIDs) 4812 V = getValueSigned(Record, 1+i, NextValueNo, Ty); 4813 else 4814 V = getValue(Record, 1+i, NextValueNo, Ty); 4815 BasicBlock *BB = getBasicBlock(Record[2+i]); 4816 if (!V || !BB) 4817 return error("Invalid record"); 4818 PN->addIncoming(V, BB); 4819 } 4820 I = PN; 4821 break; 4822 } 4823 4824 case bitc::FUNC_CODE_INST_LANDINGPAD: 4825 case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: { 4826 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 4827 unsigned Idx = 0; 4828 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) { 4829 if (Record.size() < 3) 4830 return error("Invalid record"); 4831 } else { 4832 assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD); 4833 if (Record.size() < 4) 4834 return error("Invalid record"); 4835 } 4836 Type *Ty = getTypeByID(Record[Idx++]); 4837 if (!Ty) 4838 return error("Invalid record"); 4839 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) { 4840 Value *PersFn = nullptr; 4841 if (getValueTypePair(Record, Idx, NextValueNo, PersFn)) 4842 return error("Invalid record"); 4843 4844 if (!F->hasPersonalityFn()) 4845 F->setPersonalityFn(cast<Constant>(PersFn)); 4846 else if (F->getPersonalityFn() != cast<Constant>(PersFn)) 4847 return error("Personality function mismatch"); 4848 } 4849 4850 bool IsCleanup = !!Record[Idx++]; 4851 unsigned NumClauses = Record[Idx++]; 4852 LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses); 4853 LP->setCleanup(IsCleanup); 4854 for (unsigned J = 0; J != NumClauses; ++J) { 4855 LandingPadInst::ClauseType CT = 4856 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 4857 Value *Val; 4858 4859 if (getValueTypePair(Record, Idx, NextValueNo, Val)) { 4860 delete LP; 4861 return error("Invalid record"); 4862 } 4863 4864 assert((CT != LandingPadInst::Catch || 4865 !isa<ArrayType>(Val->getType())) && 4866 "Catch clause has a invalid type!"); 4867 assert((CT != LandingPadInst::Filter || 4868 isa<ArrayType>(Val->getType())) && 4869 "Filter clause has invalid type!"); 4870 LP->addClause(cast<Constant>(Val)); 4871 } 4872 4873 I = LP; 4874 InstructionList.push_back(I); 4875 break; 4876 } 4877 4878 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 4879 if (Record.size() != 4) 4880 return error("Invalid record"); 4881 uint64_t AlignRecord = Record[3]; 4882 const uint64_t InAllocaMask = uint64_t(1) << 5; 4883 const uint64_t ExplicitTypeMask = uint64_t(1) << 6; 4884 // Reserve bit 7 for SwiftError flag. 4885 // const uint64_t SwiftErrorMask = uint64_t(1) << 7; 4886 const uint64_t FlagMask = InAllocaMask | ExplicitTypeMask; 4887 bool InAlloca = AlignRecord & InAllocaMask; 4888 Type *Ty = getTypeByID(Record[0]); 4889 if ((AlignRecord & ExplicitTypeMask) == 0) { 4890 auto *PTy = dyn_cast_or_null<PointerType>(Ty); 4891 if (!PTy) 4892 return error("Old-style alloca with a non-pointer type"); 4893 Ty = PTy->getElementType(); 4894 } 4895 Type *OpTy = getTypeByID(Record[1]); 4896 Value *Size = getFnValueByID(Record[2], OpTy); 4897 unsigned Align; 4898 if (std::error_code EC = 4899 parseAlignmentValue(AlignRecord & ~FlagMask, Align)) { 4900 return EC; 4901 } 4902 if (!Ty || !Size) 4903 return error("Invalid record"); 4904 AllocaInst *AI = new AllocaInst(Ty, Size, Align); 4905 AI->setUsedWithInAlloca(InAlloca); 4906 I = AI; 4907 InstructionList.push_back(I); 4908 break; 4909 } 4910 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 4911 unsigned OpNum = 0; 4912 Value *Op; 4913 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4914 (OpNum + 2 != Record.size() && OpNum + 3 != Record.size())) 4915 return error("Invalid record"); 4916 4917 Type *Ty = nullptr; 4918 if (OpNum + 3 == Record.size()) 4919 Ty = getTypeByID(Record[OpNum++]); 4920 if (std::error_code EC = typeCheckLoadStoreInst(Ty, Op->getType())) 4921 return EC; 4922 if (!Ty) 4923 Ty = cast<PointerType>(Op->getType())->getElementType(); 4924 4925 unsigned Align; 4926 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 4927 return EC; 4928 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], Align); 4929 4930 InstructionList.push_back(I); 4931 break; 4932 } 4933 case bitc::FUNC_CODE_INST_LOADATOMIC: { 4934 // LOADATOMIC: [opty, op, align, vol, ordering, synchscope] 4935 unsigned OpNum = 0; 4936 Value *Op; 4937 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4938 (OpNum + 4 != Record.size() && OpNum + 5 != Record.size())) 4939 return error("Invalid record"); 4940 4941 Type *Ty = nullptr; 4942 if (OpNum + 5 == Record.size()) 4943 Ty = getTypeByID(Record[OpNum++]); 4944 if (std::error_code EC = typeCheckLoadStoreInst(Ty, Op->getType())) 4945 return EC; 4946 if (!Ty) 4947 Ty = cast<PointerType>(Op->getType())->getElementType(); 4948 4949 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4950 if (Ordering == NotAtomic || Ordering == Release || 4951 Ordering == AcquireRelease) 4952 return error("Invalid record"); 4953 if (Ordering != NotAtomic && Record[OpNum] == 0) 4954 return error("Invalid record"); 4955 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]); 4956 4957 unsigned Align; 4958 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 4959 return EC; 4960 I = new LoadInst(Op, "", Record[OpNum+1], Align, Ordering, SynchScope); 4961 4962 InstructionList.push_back(I); 4963 break; 4964 } 4965 case bitc::FUNC_CODE_INST_STORE: 4966 case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol] 4967 unsigned OpNum = 0; 4968 Value *Val, *Ptr; 4969 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4970 (BitCode == bitc::FUNC_CODE_INST_STORE 4971 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 4972 : popValue(Record, OpNum, NextValueNo, 4973 cast<PointerType>(Ptr->getType())->getElementType(), 4974 Val)) || 4975 OpNum + 2 != Record.size()) 4976 return error("Invalid record"); 4977 4978 if (std::error_code EC = 4979 typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 4980 return EC; 4981 unsigned Align; 4982 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 4983 return EC; 4984 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align); 4985 InstructionList.push_back(I); 4986 break; 4987 } 4988 case bitc::FUNC_CODE_INST_STOREATOMIC: 4989 case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: { 4990 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, synchscope] 4991 unsigned OpNum = 0; 4992 Value *Val, *Ptr; 4993 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4994 (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC 4995 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 4996 : popValue(Record, OpNum, NextValueNo, 4997 cast<PointerType>(Ptr->getType())->getElementType(), 4998 Val)) || 4999 OpNum + 4 != Record.size()) 5000 return error("Invalid record"); 5001 5002 if (std::error_code EC = 5003 typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 5004 return EC; 5005 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 5006 if (Ordering == NotAtomic || Ordering == Acquire || 5007 Ordering == AcquireRelease) 5008 return error("Invalid record"); 5009 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]); 5010 if (Ordering != NotAtomic && Record[OpNum] == 0) 5011 return error("Invalid record"); 5012 5013 unsigned Align; 5014 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 5015 return EC; 5016 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align, Ordering, SynchScope); 5017 InstructionList.push_back(I); 5018 break; 5019 } 5020 case bitc::FUNC_CODE_INST_CMPXCHG_OLD: 5021 case bitc::FUNC_CODE_INST_CMPXCHG: { 5022 // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, synchscope, 5023 // failureordering?, isweak?] 5024 unsigned OpNum = 0; 5025 Value *Ptr, *Cmp, *New; 5026 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 5027 (BitCode == bitc::FUNC_CODE_INST_CMPXCHG 5028 ? getValueTypePair(Record, OpNum, NextValueNo, Cmp) 5029 : popValue(Record, OpNum, NextValueNo, 5030 cast<PointerType>(Ptr->getType())->getElementType(), 5031 Cmp)) || 5032 popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) || 5033 Record.size() < OpNum + 3 || Record.size() > OpNum + 5) 5034 return error("Invalid record"); 5035 AtomicOrdering SuccessOrdering = getDecodedOrdering(Record[OpNum + 1]); 5036 if (SuccessOrdering == NotAtomic || SuccessOrdering == Unordered) 5037 return error("Invalid record"); 5038 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 2]); 5039 5040 if (std::error_code EC = 5041 typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType())) 5042 return EC; 5043 AtomicOrdering FailureOrdering; 5044 if (Record.size() < 7) 5045 FailureOrdering = 5046 AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering); 5047 else 5048 FailureOrdering = getDecodedOrdering(Record[OpNum + 3]); 5049 5050 I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering, 5051 SynchScope); 5052 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 5053 5054 if (Record.size() < 8) { 5055 // Before weak cmpxchgs existed, the instruction simply returned the 5056 // value loaded from memory, so bitcode files from that era will be 5057 // expecting the first component of a modern cmpxchg. 5058 CurBB->getInstList().push_back(I); 5059 I = ExtractValueInst::Create(I, 0); 5060 } else { 5061 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]); 5062 } 5063 5064 InstructionList.push_back(I); 5065 break; 5066 } 5067 case bitc::FUNC_CODE_INST_ATOMICRMW: { 5068 // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, synchscope] 5069 unsigned OpNum = 0; 5070 Value *Ptr, *Val; 5071 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 5072 popValue(Record, OpNum, NextValueNo, 5073 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 5074 OpNum+4 != Record.size()) 5075 return error("Invalid record"); 5076 AtomicRMWInst::BinOp Operation = getDecodedRMWOperation(Record[OpNum]); 5077 if (Operation < AtomicRMWInst::FIRST_BINOP || 5078 Operation > AtomicRMWInst::LAST_BINOP) 5079 return error("Invalid record"); 5080 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 5081 if (Ordering == NotAtomic || Ordering == Unordered) 5082 return error("Invalid record"); 5083 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]); 5084 I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SynchScope); 5085 cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]); 5086 InstructionList.push_back(I); 5087 break; 5088 } 5089 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, synchscope] 5090 if (2 != Record.size()) 5091 return error("Invalid record"); 5092 AtomicOrdering Ordering = getDecodedOrdering(Record[0]); 5093 if (Ordering == NotAtomic || Ordering == Unordered || 5094 Ordering == Monotonic) 5095 return error("Invalid record"); 5096 SynchronizationScope SynchScope = getDecodedSynchScope(Record[1]); 5097 I = new FenceInst(Context, Ordering, SynchScope); 5098 InstructionList.push_back(I); 5099 break; 5100 } 5101 case bitc::FUNC_CODE_INST_CALL: { 5102 // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...] 5103 if (Record.size() < 3) 5104 return error("Invalid record"); 5105 5106 unsigned OpNum = 0; 5107 AttributeSet PAL = getAttributes(Record[OpNum++]); 5108 unsigned CCInfo = Record[OpNum++]; 5109 5110 FastMathFlags FMF; 5111 if ((CCInfo >> bitc::CALL_FMF) & 1) { 5112 FMF = getDecodedFastMathFlags(Record[OpNum++]); 5113 if (!FMF.any()) 5114 return error("Fast math flags indicator set for call with no FMF"); 5115 } 5116 5117 FunctionType *FTy = nullptr; 5118 if (CCInfo >> bitc::CALL_EXPLICIT_TYPE & 1 && 5119 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])))) 5120 return error("Explicit call type is not a function type"); 5121 5122 Value *Callee; 5123 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 5124 return error("Invalid record"); 5125 5126 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 5127 if (!OpTy) 5128 return error("Callee is not a pointer type"); 5129 if (!FTy) { 5130 FTy = dyn_cast<FunctionType>(OpTy->getElementType()); 5131 if (!FTy) 5132 return error("Callee is not of pointer to function type"); 5133 } else if (OpTy->getElementType() != FTy) 5134 return error("Explicit call type does not match pointee type of " 5135 "callee operand"); 5136 if (Record.size() < FTy->getNumParams() + OpNum) 5137 return error("Insufficient operands to call"); 5138 5139 SmallVector<Value*, 16> Args; 5140 // Read the fixed params. 5141 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 5142 if (FTy->getParamType(i)->isLabelTy()) 5143 Args.push_back(getBasicBlock(Record[OpNum])); 5144 else 5145 Args.push_back(getValue(Record, OpNum, NextValueNo, 5146 FTy->getParamType(i))); 5147 if (!Args.back()) 5148 return error("Invalid record"); 5149 } 5150 5151 // Read type/value pairs for varargs params. 5152 if (!FTy->isVarArg()) { 5153 if (OpNum != Record.size()) 5154 return error("Invalid record"); 5155 } else { 5156 while (OpNum != Record.size()) { 5157 Value *Op; 5158 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 5159 return error("Invalid record"); 5160 Args.push_back(Op); 5161 } 5162 } 5163 5164 I = CallInst::Create(FTy, Callee, Args, OperandBundles); 5165 OperandBundles.clear(); 5166 InstructionList.push_back(I); 5167 cast<CallInst>(I)->setCallingConv( 5168 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 5169 CallInst::TailCallKind TCK = CallInst::TCK_None; 5170 if (CCInfo & 1 << bitc::CALL_TAIL) 5171 TCK = CallInst::TCK_Tail; 5172 if (CCInfo & (1 << bitc::CALL_MUSTTAIL)) 5173 TCK = CallInst::TCK_MustTail; 5174 if (CCInfo & (1 << bitc::CALL_NOTAIL)) 5175 TCK = CallInst::TCK_NoTail; 5176 cast<CallInst>(I)->setTailCallKind(TCK); 5177 cast<CallInst>(I)->setAttributes(PAL); 5178 if (FMF.any()) { 5179 if (!isa<FPMathOperator>(I)) 5180 return error("Fast-math-flags specified for call without " 5181 "floating-point scalar or vector return type"); 5182 I->setFastMathFlags(FMF); 5183 } 5184 break; 5185 } 5186 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 5187 if (Record.size() < 3) 5188 return error("Invalid record"); 5189 Type *OpTy = getTypeByID(Record[0]); 5190 Value *Op = getValue(Record, 1, NextValueNo, OpTy); 5191 Type *ResTy = getTypeByID(Record[2]); 5192 if (!OpTy || !Op || !ResTy) 5193 return error("Invalid record"); 5194 I = new VAArgInst(Op, ResTy); 5195 InstructionList.push_back(I); 5196 break; 5197 } 5198 5199 case bitc::FUNC_CODE_OPERAND_BUNDLE: { 5200 // A call or an invoke can be optionally prefixed with some variable 5201 // number of operand bundle blocks. These blocks are read into 5202 // OperandBundles and consumed at the next call or invoke instruction. 5203 5204 if (Record.size() < 1 || Record[0] >= BundleTags.size()) 5205 return error("Invalid record"); 5206 5207 std::vector<Value *> Inputs; 5208 5209 unsigned OpNum = 1; 5210 while (OpNum != Record.size()) { 5211 Value *Op; 5212 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 5213 return error("Invalid record"); 5214 Inputs.push_back(Op); 5215 } 5216 5217 OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs)); 5218 continue; 5219 } 5220 } 5221 5222 // Add instruction to end of current BB. If there is no current BB, reject 5223 // this file. 5224 if (!CurBB) { 5225 delete I; 5226 return error("Invalid instruction with no BB"); 5227 } 5228 if (!OperandBundles.empty()) { 5229 delete I; 5230 return error("Operand bundles found with no consumer"); 5231 } 5232 CurBB->getInstList().push_back(I); 5233 5234 // If this was a terminator instruction, move to the next block. 5235 if (isa<TerminatorInst>(I)) { 5236 ++CurBBNo; 5237 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr; 5238 } 5239 5240 // Non-void values get registered in the value table for future use. 5241 if (I && !I->getType()->isVoidTy()) 5242 ValueList.assignValue(I, NextValueNo++); 5243 } 5244 5245 OutOfRecordLoop: 5246 5247 if (!OperandBundles.empty()) 5248 return error("Operand bundles found with no consumer"); 5249 5250 // Check the function list for unresolved values. 5251 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 5252 if (!A->getParent()) { 5253 // We found at least one unresolved value. Nuke them all to avoid leaks. 5254 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 5255 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) { 5256 A->replaceAllUsesWith(UndefValue::get(A->getType())); 5257 delete A; 5258 } 5259 } 5260 return error("Never resolved value found in function"); 5261 } 5262 } 5263 5264 // FIXME: Check for unresolved forward-declared metadata references 5265 // and clean up leaks. 5266 5267 // Trim the value list down to the size it was before we parsed this function. 5268 ValueList.shrinkTo(ModuleValueListSize); 5269 MetadataList.shrinkTo(ModuleMetadataListSize); 5270 std::vector<BasicBlock*>().swap(FunctionBBs); 5271 return std::error_code(); 5272 } 5273 5274 /// Find the function body in the bitcode stream 5275 std::error_code BitcodeReader::findFunctionInStream( 5276 Function *F, 5277 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) { 5278 while (DeferredFunctionInfoIterator->second == 0) { 5279 // This is the fallback handling for the old format bitcode that 5280 // didn't contain the function index in the VST, or when we have 5281 // an anonymous function which would not have a VST entry. 5282 // Assert that we have one of those two cases. 5283 assert(VSTOffset == 0 || !F->hasName()); 5284 // Parse the next body in the stream and set its position in the 5285 // DeferredFunctionInfo map. 5286 if (std::error_code EC = rememberAndSkipFunctionBodies()) 5287 return EC; 5288 } 5289 return std::error_code(); 5290 } 5291 5292 //===----------------------------------------------------------------------===// 5293 // GVMaterializer implementation 5294 //===----------------------------------------------------------------------===// 5295 5296 void BitcodeReader::releaseBuffer() { Buffer.release(); } 5297 5298 std::error_code BitcodeReader::materialize(GlobalValue *GV) { 5299 if (std::error_code EC = materializeMetadata()) 5300 return EC; 5301 5302 Function *F = dyn_cast<Function>(GV); 5303 // If it's not a function or is already material, ignore the request. 5304 if (!F || !F->isMaterializable()) 5305 return std::error_code(); 5306 5307 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 5308 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 5309 // If its position is recorded as 0, its body is somewhere in the stream 5310 // but we haven't seen it yet. 5311 if (DFII->second == 0) 5312 if (std::error_code EC = findFunctionInStream(F, DFII)) 5313 return EC; 5314 5315 // Move the bit stream to the saved position of the deferred function body. 5316 Stream.JumpToBit(DFII->second); 5317 5318 if (std::error_code EC = parseFunctionBody(F)) 5319 return EC; 5320 F->setIsMaterializable(false); 5321 5322 if (StripDebugInfo) 5323 stripDebugInfo(*F); 5324 5325 // Upgrade any old intrinsic calls in the function. 5326 for (auto &I : UpgradedIntrinsics) { 5327 for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end(); 5328 UI != UE;) { 5329 User *U = *UI; 5330 ++UI; 5331 if (CallInst *CI = dyn_cast<CallInst>(U)) 5332 UpgradeIntrinsicCall(CI, I.second); 5333 } 5334 } 5335 5336 // Finish fn->subprogram upgrade for materialized functions. 5337 if (DISubprogram *SP = FunctionsWithSPs.lookup(F)) 5338 F->setSubprogram(SP); 5339 5340 // Bring in any functions that this function forward-referenced via 5341 // blockaddresses. 5342 return materializeForwardReferencedFunctions(); 5343 } 5344 5345 std::error_code BitcodeReader::materializeModule() { 5346 if (std::error_code EC = materializeMetadata()) 5347 return EC; 5348 5349 // Promise to materialize all forward references. 5350 WillMaterializeAllForwardRefs = true; 5351 5352 // Iterate over the module, deserializing any functions that are still on 5353 // disk. 5354 for (Function &F : *TheModule) { 5355 if (std::error_code EC = materialize(&F)) 5356 return EC; 5357 } 5358 // At this point, if there are any function bodies, parse the rest of 5359 // the bits in the module past the last function block we have recorded 5360 // through either lazy scanning or the VST. 5361 if (LastFunctionBlockBit || NextUnreadBit) 5362 parseModule(LastFunctionBlockBit > NextUnreadBit ? LastFunctionBlockBit 5363 : NextUnreadBit); 5364 5365 // Check that all block address forward references got resolved (as we 5366 // promised above). 5367 if (!BasicBlockFwdRefs.empty()) 5368 return error("Never resolved function from blockaddress"); 5369 5370 // Upgrading intrinsic calls before TBAA can cause TBAA metadata to be lost, 5371 // to prevent this instructions with TBAA tags should be upgraded first. 5372 for (unsigned I = 0, E = InstsWithTBAATag.size(); I < E; I++) 5373 UpgradeInstWithTBAATag(InstsWithTBAATag[I]); 5374 5375 // Upgrade any intrinsic calls that slipped through (should not happen!) and 5376 // delete the old functions to clean up. We can't do this unless the entire 5377 // module is materialized because there could always be another function body 5378 // with calls to the old function. 5379 for (auto &I : UpgradedIntrinsics) { 5380 for (auto *U : I.first->users()) { 5381 if (CallInst *CI = dyn_cast<CallInst>(U)) 5382 UpgradeIntrinsicCall(CI, I.second); 5383 } 5384 if (!I.first->use_empty()) 5385 I.first->replaceAllUsesWith(I.second); 5386 I.first->eraseFromParent(); 5387 } 5388 UpgradedIntrinsics.clear(); 5389 5390 UpgradeDebugInfo(*TheModule); 5391 return std::error_code(); 5392 } 5393 5394 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const { 5395 return IdentifiedStructTypes; 5396 } 5397 5398 std::error_code 5399 BitcodeReader::initStream(std::unique_ptr<DataStreamer> Streamer) { 5400 if (Streamer) 5401 return initLazyStream(std::move(Streamer)); 5402 return initStreamFromBuffer(); 5403 } 5404 5405 std::error_code BitcodeReader::initStreamFromBuffer() { 5406 const unsigned char *BufPtr = (const unsigned char*)Buffer->getBufferStart(); 5407 const unsigned char *BufEnd = BufPtr+Buffer->getBufferSize(); 5408 5409 if (Buffer->getBufferSize() & 3) 5410 return error("Invalid bitcode signature"); 5411 5412 // If we have a wrapper header, parse it and ignore the non-bc file contents. 5413 // The magic number is 0x0B17C0DE stored in little endian. 5414 if (isBitcodeWrapper(BufPtr, BufEnd)) 5415 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 5416 return error("Invalid bitcode wrapper header"); 5417 5418 StreamFile.reset(new BitstreamReader(BufPtr, BufEnd)); 5419 Stream.init(&*StreamFile); 5420 5421 return std::error_code(); 5422 } 5423 5424 std::error_code 5425 BitcodeReader::initLazyStream(std::unique_ptr<DataStreamer> Streamer) { 5426 // Check and strip off the bitcode wrapper; BitstreamReader expects never to 5427 // see it. 5428 auto OwnedBytes = 5429 llvm::make_unique<StreamingMemoryObject>(std::move(Streamer)); 5430 StreamingMemoryObject &Bytes = *OwnedBytes; 5431 StreamFile = llvm::make_unique<BitstreamReader>(std::move(OwnedBytes)); 5432 Stream.init(&*StreamFile); 5433 5434 unsigned char buf[16]; 5435 if (Bytes.readBytes(buf, 16, 0) != 16) 5436 return error("Invalid bitcode signature"); 5437 5438 if (!isBitcode(buf, buf + 16)) 5439 return error("Invalid bitcode signature"); 5440 5441 if (isBitcodeWrapper(buf, buf + 4)) { 5442 const unsigned char *bitcodeStart = buf; 5443 const unsigned char *bitcodeEnd = buf + 16; 5444 SkipBitcodeWrapperHeader(bitcodeStart, bitcodeEnd, false); 5445 Bytes.dropLeadingBytes(bitcodeStart - buf); 5446 Bytes.setKnownObjectSize(bitcodeEnd - bitcodeStart); 5447 } 5448 return std::error_code(); 5449 } 5450 5451 std::error_code ModuleSummaryIndexBitcodeReader::error(BitcodeError E, 5452 const Twine &Message) { 5453 return ::error(DiagnosticHandler, make_error_code(E), Message); 5454 } 5455 5456 std::error_code ModuleSummaryIndexBitcodeReader::error(const Twine &Message) { 5457 return ::error(DiagnosticHandler, 5458 make_error_code(BitcodeError::CorruptedBitcode), Message); 5459 } 5460 5461 std::error_code ModuleSummaryIndexBitcodeReader::error(BitcodeError E) { 5462 return ::error(DiagnosticHandler, make_error_code(E)); 5463 } 5464 5465 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader( 5466 MemoryBuffer *Buffer, DiagnosticHandlerFunction DiagnosticHandler, 5467 bool IsLazy, bool CheckGlobalValSummaryPresenceOnly) 5468 : DiagnosticHandler(DiagnosticHandler), Buffer(Buffer), IsLazy(IsLazy), 5469 CheckGlobalValSummaryPresenceOnly(CheckGlobalValSummaryPresenceOnly) {} 5470 5471 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader( 5472 DiagnosticHandlerFunction DiagnosticHandler, bool IsLazy, 5473 bool CheckGlobalValSummaryPresenceOnly) 5474 : DiagnosticHandler(DiagnosticHandler), Buffer(nullptr), IsLazy(IsLazy), 5475 CheckGlobalValSummaryPresenceOnly(CheckGlobalValSummaryPresenceOnly) {} 5476 5477 void ModuleSummaryIndexBitcodeReader::freeState() { Buffer = nullptr; } 5478 5479 void ModuleSummaryIndexBitcodeReader::releaseBuffer() { Buffer.release(); } 5480 5481 uint64_t ModuleSummaryIndexBitcodeReader::getGUIDFromValueId(unsigned ValueId) { 5482 auto VGI = ValueIdToCallGraphGUIDMap.find(ValueId); 5483 assert(VGI != ValueIdToCallGraphGUIDMap.end()); 5484 return VGI->second; 5485 } 5486 5487 GlobalValueInfo * 5488 ModuleSummaryIndexBitcodeReader::getInfoFromSummaryOffset(uint64_t Offset) { 5489 auto I = SummaryOffsetToInfoMap.find(Offset); 5490 assert(I != SummaryOffsetToInfoMap.end()); 5491 return I->second; 5492 } 5493 5494 // Specialized value symbol table parser used when reading module index 5495 // blocks where we don't actually create global values. 5496 // At the end of this routine the module index is populated with a map 5497 // from global value name to GlobalValueInfo. The global value info contains 5498 // the function block's bitcode offset (if applicable), or the offset into the 5499 // summary section for the combined index. 5500 std::error_code ModuleSummaryIndexBitcodeReader::parseValueSymbolTable( 5501 uint64_t Offset, 5502 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) { 5503 assert(Offset > 0 && "Expected non-zero VST offset"); 5504 uint64_t CurrentBit = jumpToValueSymbolTable(Offset, Stream); 5505 5506 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 5507 return error("Invalid record"); 5508 5509 SmallVector<uint64_t, 64> Record; 5510 5511 // Read all the records for this value table. 5512 SmallString<128> ValueName; 5513 while (1) { 5514 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5515 5516 switch (Entry.Kind) { 5517 case BitstreamEntry::SubBlock: // Handled for us already. 5518 case BitstreamEntry::Error: 5519 return error("Malformed block"); 5520 case BitstreamEntry::EndBlock: 5521 // Done parsing VST, jump back to wherever we came from. 5522 Stream.JumpToBit(CurrentBit); 5523 return std::error_code(); 5524 case BitstreamEntry::Record: 5525 // The interesting case. 5526 break; 5527 } 5528 5529 // Read a record. 5530 Record.clear(); 5531 switch (Stream.readRecord(Entry.ID, Record)) { 5532 default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records). 5533 break; 5534 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 5535 if (convertToString(Record, 1, ValueName)) 5536 return error("Invalid record"); 5537 unsigned ValueID = Record[0]; 5538 std::unique_ptr<GlobalValueInfo> GlobalValInfo = 5539 llvm::make_unique<GlobalValueInfo>(); 5540 assert(!SourceFileName.empty()); 5541 auto VLI = ValueIdToLinkageMap.find(ValueID); 5542 assert(VLI != ValueIdToLinkageMap.end() && 5543 "No linkage found for VST entry?"); 5544 std::string GlobalId = GlobalValue::getGlobalIdentifier( 5545 ValueName, VLI->second, SourceFileName); 5546 TheIndex->addGlobalValueInfo(GlobalId, std::move(GlobalValInfo)); 5547 ValueIdToCallGraphGUIDMap[ValueID] = GlobalValue::getGUID(GlobalId); 5548 ValueName.clear(); 5549 break; 5550 } 5551 case bitc::VST_CODE_FNENTRY: { 5552 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 5553 if (convertToString(Record, 2, ValueName)) 5554 return error("Invalid record"); 5555 unsigned ValueID = Record[0]; 5556 uint64_t FuncOffset = Record[1]; 5557 assert(!IsLazy && "Lazy summary read only supported for combined index"); 5558 std::unique_ptr<GlobalValueInfo> FuncInfo = 5559 llvm::make_unique<GlobalValueInfo>(FuncOffset); 5560 assert(!SourceFileName.empty()); 5561 auto VLI = ValueIdToLinkageMap.find(ValueID); 5562 assert(VLI != ValueIdToLinkageMap.end() && 5563 "No linkage found for VST entry?"); 5564 std::string FunctionGlobalId = GlobalValue::getGlobalIdentifier( 5565 ValueName, VLI->second, SourceFileName); 5566 TheIndex->addGlobalValueInfo(FunctionGlobalId, std::move(FuncInfo)); 5567 ValueIdToCallGraphGUIDMap[ValueID] = 5568 GlobalValue::getGUID(FunctionGlobalId); 5569 5570 ValueName.clear(); 5571 break; 5572 } 5573 case bitc::VST_CODE_COMBINED_GVDEFENTRY: { 5574 // VST_CODE_COMBINED_GVDEFENTRY: [valueid, offset, guid] 5575 unsigned ValueID = Record[0]; 5576 uint64_t GlobalValSummaryOffset = Record[1]; 5577 uint64_t GlobalValGUID = Record[2]; 5578 std::unique_ptr<GlobalValueInfo> GlobalValInfo = 5579 llvm::make_unique<GlobalValueInfo>(GlobalValSummaryOffset); 5580 SummaryOffsetToInfoMap[GlobalValSummaryOffset] = GlobalValInfo.get(); 5581 TheIndex->addGlobalValueInfo(GlobalValGUID, std::move(GlobalValInfo)); 5582 ValueIdToCallGraphGUIDMap[ValueID] = GlobalValGUID; 5583 break; 5584 } 5585 case bitc::VST_CODE_COMBINED_ENTRY: { 5586 // VST_CODE_COMBINED_ENTRY: [valueid, refguid] 5587 unsigned ValueID = Record[0]; 5588 uint64_t RefGUID = Record[1]; 5589 ValueIdToCallGraphGUIDMap[ValueID] = RefGUID; 5590 break; 5591 } 5592 } 5593 } 5594 } 5595 5596 // Parse just the blocks needed for building the index out of the module. 5597 // At the end of this routine the module Index is populated with a map 5598 // from global value name to GlobalValueInfo. The global value info contains 5599 // either the parsed summary information (when parsing summaries 5600 // eagerly), or just to the summary record's offset 5601 // if parsing lazily (IsLazy). 5602 std::error_code ModuleSummaryIndexBitcodeReader::parseModule() { 5603 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 5604 return error("Invalid record"); 5605 5606 SmallVector<uint64_t, 64> Record; 5607 DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap; 5608 unsigned ValueId = 0; 5609 5610 // Read the index for this module. 5611 while (1) { 5612 BitstreamEntry Entry = Stream.advance(); 5613 5614 switch (Entry.Kind) { 5615 case BitstreamEntry::Error: 5616 return error("Malformed block"); 5617 case BitstreamEntry::EndBlock: 5618 return std::error_code(); 5619 5620 case BitstreamEntry::SubBlock: 5621 if (CheckGlobalValSummaryPresenceOnly) { 5622 if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) { 5623 SeenGlobalValSummary = true; 5624 // No need to parse the rest since we found the summary. 5625 return std::error_code(); 5626 } 5627 if (Stream.SkipBlock()) 5628 return error("Invalid record"); 5629 continue; 5630 } 5631 switch (Entry.ID) { 5632 default: // Skip unknown content. 5633 if (Stream.SkipBlock()) 5634 return error("Invalid record"); 5635 break; 5636 case bitc::BLOCKINFO_BLOCK_ID: 5637 // Need to parse these to get abbrev ids (e.g. for VST) 5638 if (Stream.ReadBlockInfoBlock()) 5639 return error("Malformed block"); 5640 break; 5641 case bitc::VALUE_SYMTAB_BLOCK_ID: 5642 // Should have been parsed earlier via VSTOffset, unless there 5643 // is no summary section. 5644 assert(((SeenValueSymbolTable && VSTOffset > 0) || 5645 !SeenGlobalValSummary) && 5646 "Expected early VST parse via VSTOffset record"); 5647 if (Stream.SkipBlock()) 5648 return error("Invalid record"); 5649 break; 5650 case bitc::GLOBALVAL_SUMMARY_BLOCK_ID: 5651 assert(VSTOffset > 0 && "Expected non-zero VST offset"); 5652 assert(!SeenValueSymbolTable && 5653 "Already read VST when parsing summary block?"); 5654 if (std::error_code EC = 5655 parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap)) 5656 return EC; 5657 SeenValueSymbolTable = true; 5658 SeenGlobalValSummary = true; 5659 if (IsLazy) { 5660 // Lazy parsing of summary info, skip it. 5661 if (Stream.SkipBlock()) 5662 return error("Invalid record"); 5663 } else if (std::error_code EC = parseEntireSummary()) 5664 return EC; 5665 break; 5666 case bitc::MODULE_STRTAB_BLOCK_ID: 5667 if (std::error_code EC = parseModuleStringTable()) 5668 return EC; 5669 break; 5670 } 5671 continue; 5672 5673 case BitstreamEntry::Record: 5674 // Once we find the last record of interest, skip the rest. 5675 if (VSTOffset > 0) 5676 Stream.skipRecord(Entry.ID); 5677 else { 5678 Record.clear(); 5679 auto BitCode = Stream.readRecord(Entry.ID, Record); 5680 switch (BitCode) { 5681 default: 5682 break; // Default behavior, ignore unknown content. 5683 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 5684 case bitc::MODULE_CODE_SOURCE_FILENAME: { 5685 SmallString<128> ValueName; 5686 if (convertToString(Record, 0, ValueName)) 5687 return error("Invalid record"); 5688 SourceFileName = ValueName.c_str(); 5689 break; 5690 } 5691 /// MODULE_CODE_VSTOFFSET: [offset] 5692 case bitc::MODULE_CODE_VSTOFFSET: 5693 if (Record.size() < 1) 5694 return error("Invalid record"); 5695 VSTOffset = Record[0]; 5696 break; 5697 // GLOBALVAR: [pointer type, isconst, initid, 5698 // linkage, alignment, section, visibility, threadlocal, 5699 // unnamed_addr, externally_initialized, dllstorageclass, 5700 // comdat] 5701 case bitc::MODULE_CODE_GLOBALVAR: { 5702 if (Record.size() < 6) 5703 return error("Invalid record"); 5704 uint64_t RawLinkage = Record[3]; 5705 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 5706 ValueIdToLinkageMap[ValueId++] = Linkage; 5707 break; 5708 } 5709 // FUNCTION: [type, callingconv, isproto, linkage, paramattr, 5710 // alignment, section, visibility, gc, unnamed_addr, 5711 // prologuedata, dllstorageclass, comdat, prefixdata] 5712 case bitc::MODULE_CODE_FUNCTION: { 5713 if (Record.size() < 8) 5714 return error("Invalid record"); 5715 uint64_t RawLinkage = Record[3]; 5716 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 5717 ValueIdToLinkageMap[ValueId++] = Linkage; 5718 break; 5719 } 5720 // ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, 5721 // dllstorageclass] 5722 case bitc::MODULE_CODE_ALIAS: { 5723 if (Record.size() < 6) 5724 return error("Invalid record"); 5725 uint64_t RawLinkage = Record[3]; 5726 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 5727 ValueIdToLinkageMap[ValueId++] = Linkage; 5728 break; 5729 } 5730 } 5731 } 5732 continue; 5733 } 5734 } 5735 } 5736 5737 // Eagerly parse the entire summary block. This populates the GlobalValueSummary 5738 // objects in the index. 5739 std::error_code ModuleSummaryIndexBitcodeReader::parseEntireSummary() { 5740 if (Stream.EnterSubBlock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID)) 5741 return error("Invalid record"); 5742 5743 SmallVector<uint64_t, 64> Record; 5744 5745 bool Combined = false; 5746 while (1) { 5747 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5748 5749 switch (Entry.Kind) { 5750 case BitstreamEntry::SubBlock: // Handled for us already. 5751 case BitstreamEntry::Error: 5752 return error("Malformed block"); 5753 case BitstreamEntry::EndBlock: 5754 // For a per-module index, remove any entries that still have empty 5755 // summaries. The VST parsing creates entries eagerly for all symbols, 5756 // but not all have associated summaries (e.g. it doesn't know how to 5757 // distinguish between VST_CODE_ENTRY for function declarations vs global 5758 // variables with initializers that end up with a summary). Remove those 5759 // entries now so that we don't need to rely on the combined index merger 5760 // to clean them up (especially since that may not run for the first 5761 // module's index if we merge into that). 5762 if (!Combined) 5763 TheIndex->removeEmptySummaryEntries(); 5764 return std::error_code(); 5765 case BitstreamEntry::Record: 5766 // The interesting case. 5767 break; 5768 } 5769 5770 // Read a record. The record format depends on whether this 5771 // is a per-module index or a combined index file. In the per-module 5772 // case the records contain the associated value's ID for correlation 5773 // with VST entries. In the combined index the correlation is done 5774 // via the bitcode offset of the summary records (which were saved 5775 // in the combined index VST entries). The records also contain 5776 // information used for ThinLTO renaming and importing. 5777 Record.clear(); 5778 uint64_t CurRecordBit = Stream.GetCurrentBitNo(); 5779 auto BitCode = Stream.readRecord(Entry.ID, Record); 5780 switch (BitCode) { 5781 default: // Default behavior: ignore. 5782 break; 5783 // FS_PERMODULE: [valueid, linkage, instcount, numrefs, numrefs x valueid, 5784 // n x (valueid, callsitecount)] 5785 // FS_PERMODULE_PROFILE: [valueid, linkage, instcount, numrefs, 5786 // numrefs x valueid, 5787 // n x (valueid, callsitecount, profilecount)] 5788 case bitc::FS_PERMODULE: 5789 case bitc::FS_PERMODULE_PROFILE: { 5790 unsigned ValueID = Record[0]; 5791 uint64_t RawLinkage = Record[1]; 5792 unsigned InstCount = Record[2]; 5793 unsigned NumRefs = Record[3]; 5794 std::unique_ptr<FunctionSummary> FS = llvm::make_unique<FunctionSummary>( 5795 getDecodedLinkage(RawLinkage), InstCount); 5796 // The module path string ref set in the summary must be owned by the 5797 // index's module string table. Since we don't have a module path 5798 // string table section in the per-module index, we create a single 5799 // module path string table entry with an empty (0) ID to take 5800 // ownership. 5801 FS->setModulePath( 5802 TheIndex->addModulePath(Buffer->getBufferIdentifier(), 0)); 5803 static int RefListStartIndex = 4; 5804 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 5805 assert(Record.size() >= RefListStartIndex + NumRefs && 5806 "Record size inconsistent with number of references"); 5807 for (unsigned I = 4, E = CallGraphEdgeStartIndex; I != E; ++I) { 5808 unsigned RefValueId = Record[I]; 5809 uint64_t RefGUID = getGUIDFromValueId(RefValueId); 5810 FS->addRefEdge(RefGUID); 5811 } 5812 bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE); 5813 for (unsigned I = CallGraphEdgeStartIndex, E = Record.size(); I != E; 5814 ++I) { 5815 unsigned CalleeValueId = Record[I]; 5816 unsigned CallsiteCount = Record[++I]; 5817 uint64_t ProfileCount = HasProfile ? Record[++I] : 0; 5818 uint64_t CalleeGUID = getGUIDFromValueId(CalleeValueId); 5819 FS->addCallGraphEdge(CalleeGUID, 5820 CalleeInfo(CallsiteCount, ProfileCount)); 5821 } 5822 uint64_t GUID = getGUIDFromValueId(ValueID); 5823 auto InfoList = TheIndex->findGlobalValueInfoList(GUID); 5824 assert(InfoList != TheIndex->end() && 5825 "Expected VST parse to create GlobalValueInfo entry"); 5826 assert(InfoList->second.size() == 1 && 5827 "Expected a single GlobalValueInfo per GUID in module"); 5828 auto &Info = InfoList->second[0]; 5829 assert(!Info->summary() && "Expected a single summary per VST entry"); 5830 Info->setSummary(std::move(FS)); 5831 break; 5832 } 5833 // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, linkage, n x valueid] 5834 case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: { 5835 unsigned ValueID = Record[0]; 5836 uint64_t RawLinkage = Record[1]; 5837 std::unique_ptr<GlobalVarSummary> FS = 5838 llvm::make_unique<GlobalVarSummary>(getDecodedLinkage(RawLinkage)); 5839 FS->setModulePath( 5840 TheIndex->addModulePath(Buffer->getBufferIdentifier(), 0)); 5841 for (unsigned I = 2, E = Record.size(); I != E; ++I) { 5842 unsigned RefValueId = Record[I]; 5843 uint64_t RefGUID = getGUIDFromValueId(RefValueId); 5844 FS->addRefEdge(RefGUID); 5845 } 5846 uint64_t GUID = getGUIDFromValueId(ValueID); 5847 auto InfoList = TheIndex->findGlobalValueInfoList(GUID); 5848 assert(InfoList != TheIndex->end() && 5849 "Expected VST parse to create GlobalValueInfo entry"); 5850 assert(InfoList->second.size() == 1 && 5851 "Expected a single GlobalValueInfo per GUID in module"); 5852 auto &Info = InfoList->second[0]; 5853 assert(!Info->summary() && "Expected a single summary per VST entry"); 5854 Info->setSummary(std::move(FS)); 5855 break; 5856 } 5857 // FS_COMBINED: [modid, linkage, instcount, numrefs, numrefs x valueid, 5858 // n x (valueid, callsitecount)] 5859 // FS_COMBINED_PROFILE: [modid, linkage, instcount, numrefs, 5860 // numrefs x valueid, 5861 // n x (valueid, callsitecount, profilecount)] 5862 case bitc::FS_COMBINED: 5863 case bitc::FS_COMBINED_PROFILE: { 5864 uint64_t ModuleId = Record[0]; 5865 uint64_t RawLinkage = Record[1]; 5866 unsigned InstCount = Record[2]; 5867 unsigned NumRefs = Record[3]; 5868 std::unique_ptr<FunctionSummary> FS = llvm::make_unique<FunctionSummary>( 5869 getDecodedLinkage(RawLinkage), InstCount); 5870 FS->setModulePath(ModuleIdMap[ModuleId]); 5871 static int RefListStartIndex = 4; 5872 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 5873 assert(Record.size() >= RefListStartIndex + NumRefs && 5874 "Record size inconsistent with number of references"); 5875 for (unsigned I = 4, E = CallGraphEdgeStartIndex; I != E; ++I) { 5876 unsigned RefValueId = Record[I]; 5877 uint64_t RefGUID = getGUIDFromValueId(RefValueId); 5878 FS->addRefEdge(RefGUID); 5879 } 5880 bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE); 5881 for (unsigned I = CallGraphEdgeStartIndex, E = Record.size(); I != E; 5882 ++I) { 5883 unsigned CalleeValueId = Record[I]; 5884 unsigned CallsiteCount = Record[++I]; 5885 uint64_t ProfileCount = HasProfile ? Record[++I] : 0; 5886 uint64_t CalleeGUID = getGUIDFromValueId(CalleeValueId); 5887 FS->addCallGraphEdge(CalleeGUID, 5888 CalleeInfo(CallsiteCount, ProfileCount)); 5889 } 5890 auto *Info = getInfoFromSummaryOffset(CurRecordBit); 5891 assert(!Info->summary() && "Expected a single summary per VST entry"); 5892 Info->setSummary(std::move(FS)); 5893 Combined = true; 5894 break; 5895 } 5896 // FS_COMBINED_GLOBALVAR_INIT_REFS: [modid, linkage, n x valueid] 5897 case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: { 5898 uint64_t ModuleId = Record[0]; 5899 uint64_t RawLinkage = Record[1]; 5900 std::unique_ptr<GlobalVarSummary> FS = 5901 llvm::make_unique<GlobalVarSummary>(getDecodedLinkage(RawLinkage)); 5902 FS->setModulePath(ModuleIdMap[ModuleId]); 5903 for (unsigned I = 2, E = Record.size(); I != E; ++I) { 5904 unsigned RefValueId = Record[I]; 5905 uint64_t RefGUID = getGUIDFromValueId(RefValueId); 5906 FS->addRefEdge(RefGUID); 5907 } 5908 auto *Info = getInfoFromSummaryOffset(CurRecordBit); 5909 assert(!Info->summary() && "Expected a single summary per VST entry"); 5910 Info->setSummary(std::move(FS)); 5911 Combined = true; 5912 break; 5913 } 5914 } 5915 } 5916 llvm_unreachable("Exit infinite loop"); 5917 } 5918 5919 // Parse the module string table block into the Index. 5920 // This populates the ModulePathStringTable map in the index. 5921 std::error_code ModuleSummaryIndexBitcodeReader::parseModuleStringTable() { 5922 if (Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID)) 5923 return error("Invalid record"); 5924 5925 SmallVector<uint64_t, 64> Record; 5926 5927 SmallString<128> ModulePath; 5928 while (1) { 5929 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5930 5931 switch (Entry.Kind) { 5932 case BitstreamEntry::SubBlock: // Handled for us already. 5933 case BitstreamEntry::Error: 5934 return error("Malformed block"); 5935 case BitstreamEntry::EndBlock: 5936 return std::error_code(); 5937 case BitstreamEntry::Record: 5938 // The interesting case. 5939 break; 5940 } 5941 5942 Record.clear(); 5943 switch (Stream.readRecord(Entry.ID, Record)) { 5944 default: // Default behavior: ignore. 5945 break; 5946 case bitc::MST_CODE_ENTRY: { 5947 // MST_ENTRY: [modid, namechar x N] 5948 if (convertToString(Record, 1, ModulePath)) 5949 return error("Invalid record"); 5950 uint64_t ModuleId = Record[0]; 5951 StringRef ModulePathInMap = TheIndex->addModulePath(ModulePath, ModuleId); 5952 ModuleIdMap[ModuleId] = ModulePathInMap; 5953 ModulePath.clear(); 5954 break; 5955 } 5956 } 5957 } 5958 llvm_unreachable("Exit infinite loop"); 5959 } 5960 5961 // Parse the function info index from the bitcode streamer into the given index. 5962 std::error_code ModuleSummaryIndexBitcodeReader::parseSummaryIndexInto( 5963 std::unique_ptr<DataStreamer> Streamer, ModuleSummaryIndex *I) { 5964 TheIndex = I; 5965 5966 if (std::error_code EC = initStream(std::move(Streamer))) 5967 return EC; 5968 5969 // Sniff for the signature. 5970 if (!hasValidBitcodeHeader(Stream)) 5971 return error("Invalid bitcode signature"); 5972 5973 // We expect a number of well-defined blocks, though we don't necessarily 5974 // need to understand them all. 5975 while (1) { 5976 if (Stream.AtEndOfStream()) { 5977 // We didn't really read a proper Module block. 5978 return error("Malformed block"); 5979 } 5980 5981 BitstreamEntry Entry = 5982 Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs); 5983 5984 if (Entry.Kind != BitstreamEntry::SubBlock) 5985 return error("Malformed block"); 5986 5987 // If we see a MODULE_BLOCK, parse it to find the blocks needed for 5988 // building the function summary index. 5989 if (Entry.ID == bitc::MODULE_BLOCK_ID) 5990 return parseModule(); 5991 5992 if (Stream.SkipBlock()) 5993 return error("Invalid record"); 5994 } 5995 } 5996 5997 // Parse the summary information at the given offset in the buffer into 5998 // the index. Used to support lazy parsing of summaries from the 5999 // combined index during importing. 6000 // TODO: This function is not yet complete as it won't have a consumer 6001 // until ThinLTO function importing is added. 6002 std::error_code ModuleSummaryIndexBitcodeReader::parseGlobalValueSummary( 6003 std::unique_ptr<DataStreamer> Streamer, ModuleSummaryIndex *I, 6004 size_t SummaryOffset) { 6005 TheIndex = I; 6006 6007 if (std::error_code EC = initStream(std::move(Streamer))) 6008 return EC; 6009 6010 // Sniff for the signature. 6011 if (!hasValidBitcodeHeader(Stream)) 6012 return error("Invalid bitcode signature"); 6013 6014 Stream.JumpToBit(SummaryOffset); 6015 6016 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 6017 6018 switch (Entry.Kind) { 6019 default: 6020 return error("Malformed block"); 6021 case BitstreamEntry::Record: 6022 // The expected case. 6023 break; 6024 } 6025 6026 // TODO: Read a record. This interface will be completed when ThinLTO 6027 // importing is added so that it can be tested. 6028 SmallVector<uint64_t, 64> Record; 6029 switch (Stream.readRecord(Entry.ID, Record)) { 6030 case bitc::FS_COMBINED: 6031 case bitc::FS_COMBINED_PROFILE: 6032 case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: 6033 default: 6034 return error("Invalid record"); 6035 } 6036 6037 return std::error_code(); 6038 } 6039 6040 std::error_code ModuleSummaryIndexBitcodeReader::initStream( 6041 std::unique_ptr<DataStreamer> Streamer) { 6042 if (Streamer) 6043 return initLazyStream(std::move(Streamer)); 6044 return initStreamFromBuffer(); 6045 } 6046 6047 std::error_code ModuleSummaryIndexBitcodeReader::initStreamFromBuffer() { 6048 const unsigned char *BufPtr = (const unsigned char *)Buffer->getBufferStart(); 6049 const unsigned char *BufEnd = BufPtr + Buffer->getBufferSize(); 6050 6051 if (Buffer->getBufferSize() & 3) 6052 return error("Invalid bitcode signature"); 6053 6054 // If we have a wrapper header, parse it and ignore the non-bc file contents. 6055 // The magic number is 0x0B17C0DE stored in little endian. 6056 if (isBitcodeWrapper(BufPtr, BufEnd)) 6057 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 6058 return error("Invalid bitcode wrapper header"); 6059 6060 StreamFile.reset(new BitstreamReader(BufPtr, BufEnd)); 6061 Stream.init(&*StreamFile); 6062 6063 return std::error_code(); 6064 } 6065 6066 std::error_code ModuleSummaryIndexBitcodeReader::initLazyStream( 6067 std::unique_ptr<DataStreamer> Streamer) { 6068 // Check and strip off the bitcode wrapper; BitstreamReader expects never to 6069 // see it. 6070 auto OwnedBytes = 6071 llvm::make_unique<StreamingMemoryObject>(std::move(Streamer)); 6072 StreamingMemoryObject &Bytes = *OwnedBytes; 6073 StreamFile = llvm::make_unique<BitstreamReader>(std::move(OwnedBytes)); 6074 Stream.init(&*StreamFile); 6075 6076 unsigned char buf[16]; 6077 if (Bytes.readBytes(buf, 16, 0) != 16) 6078 return error("Invalid bitcode signature"); 6079 6080 if (!isBitcode(buf, buf + 16)) 6081 return error("Invalid bitcode signature"); 6082 6083 if (isBitcodeWrapper(buf, buf + 4)) { 6084 const unsigned char *bitcodeStart = buf; 6085 const unsigned char *bitcodeEnd = buf + 16; 6086 SkipBitcodeWrapperHeader(bitcodeStart, bitcodeEnd, false); 6087 Bytes.dropLeadingBytes(bitcodeStart - buf); 6088 Bytes.setKnownObjectSize(bitcodeEnd - bitcodeStart); 6089 } 6090 return std::error_code(); 6091 } 6092 6093 namespace { 6094 class BitcodeErrorCategoryType : public std::error_category { 6095 const char *name() const LLVM_NOEXCEPT override { 6096 return "llvm.bitcode"; 6097 } 6098 std::string message(int IE) const override { 6099 BitcodeError E = static_cast<BitcodeError>(IE); 6100 switch (E) { 6101 case BitcodeError::InvalidBitcodeSignature: 6102 return "Invalid bitcode signature"; 6103 case BitcodeError::CorruptedBitcode: 6104 return "Corrupted bitcode"; 6105 } 6106 llvm_unreachable("Unknown error type!"); 6107 } 6108 }; 6109 } // end anonymous namespace 6110 6111 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory; 6112 6113 const std::error_category &llvm::BitcodeErrorCategory() { 6114 return *ErrorCategory; 6115 } 6116 6117 //===----------------------------------------------------------------------===// 6118 // External interface 6119 //===----------------------------------------------------------------------===// 6120 6121 static ErrorOr<std::unique_ptr<Module>> 6122 getBitcodeModuleImpl(std::unique_ptr<DataStreamer> Streamer, StringRef Name, 6123 BitcodeReader *R, LLVMContext &Context, 6124 bool MaterializeAll, bool ShouldLazyLoadMetadata) { 6125 std::unique_ptr<Module> M = make_unique<Module>(Name, Context); 6126 M->setMaterializer(R); 6127 6128 auto cleanupOnError = [&](std::error_code EC) { 6129 R->releaseBuffer(); // Never take ownership on error. 6130 return EC; 6131 }; 6132 6133 // Delay parsing Metadata if ShouldLazyLoadMetadata is true. 6134 if (std::error_code EC = R->parseBitcodeInto(std::move(Streamer), M.get(), 6135 ShouldLazyLoadMetadata)) 6136 return cleanupOnError(EC); 6137 6138 if (MaterializeAll) { 6139 // Read in the entire module, and destroy the BitcodeReader. 6140 if (std::error_code EC = M->materializeAll()) 6141 return cleanupOnError(EC); 6142 } else { 6143 // Resolve forward references from blockaddresses. 6144 if (std::error_code EC = R->materializeForwardReferencedFunctions()) 6145 return cleanupOnError(EC); 6146 } 6147 return std::move(M); 6148 } 6149 6150 /// \brief Get a lazy one-at-time loading module from bitcode. 6151 /// 6152 /// This isn't always used in a lazy context. In particular, it's also used by 6153 /// \a parseBitcodeFile(). If this is truly lazy, then we need to eagerly pull 6154 /// in forward-referenced functions from block address references. 6155 /// 6156 /// \param[in] MaterializeAll Set to \c true if we should materialize 6157 /// everything. 6158 static ErrorOr<std::unique_ptr<Module>> 6159 getLazyBitcodeModuleImpl(std::unique_ptr<MemoryBuffer> &&Buffer, 6160 LLVMContext &Context, bool MaterializeAll, 6161 bool ShouldLazyLoadMetadata = false) { 6162 BitcodeReader *R = new BitcodeReader(Buffer.get(), Context); 6163 6164 ErrorOr<std::unique_ptr<Module>> Ret = 6165 getBitcodeModuleImpl(nullptr, Buffer->getBufferIdentifier(), R, Context, 6166 MaterializeAll, ShouldLazyLoadMetadata); 6167 if (!Ret) 6168 return Ret; 6169 6170 Buffer.release(); // The BitcodeReader owns it now. 6171 return Ret; 6172 } 6173 6174 ErrorOr<std::unique_ptr<Module>> 6175 llvm::getLazyBitcodeModule(std::unique_ptr<MemoryBuffer> &&Buffer, 6176 LLVMContext &Context, bool ShouldLazyLoadMetadata) { 6177 return getLazyBitcodeModuleImpl(std::move(Buffer), Context, false, 6178 ShouldLazyLoadMetadata); 6179 } 6180 6181 ErrorOr<std::unique_ptr<Module>> 6182 llvm::getStreamedBitcodeModule(StringRef Name, 6183 std::unique_ptr<DataStreamer> Streamer, 6184 LLVMContext &Context) { 6185 std::unique_ptr<Module> M = make_unique<Module>(Name, Context); 6186 BitcodeReader *R = new BitcodeReader(Context); 6187 6188 return getBitcodeModuleImpl(std::move(Streamer), Name, R, Context, false, 6189 false); 6190 } 6191 6192 ErrorOr<std::unique_ptr<Module>> llvm::parseBitcodeFile(MemoryBufferRef Buffer, 6193 LLVMContext &Context) { 6194 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 6195 return getLazyBitcodeModuleImpl(std::move(Buf), Context, true); 6196 // TODO: Restore the use-lists to the in-memory state when the bitcode was 6197 // written. We must defer until the Module has been fully materialized. 6198 } 6199 6200 std::string llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer, 6201 LLVMContext &Context) { 6202 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 6203 auto R = llvm::make_unique<BitcodeReader>(Buf.release(), Context); 6204 ErrorOr<std::string> Triple = R->parseTriple(); 6205 if (Triple.getError()) 6206 return ""; 6207 return Triple.get(); 6208 } 6209 6210 std::string llvm::getBitcodeProducerString(MemoryBufferRef Buffer, 6211 LLVMContext &Context) { 6212 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 6213 BitcodeReader R(Buf.release(), Context); 6214 ErrorOr<std::string> ProducerString = R.parseIdentificationBlock(); 6215 if (ProducerString.getError()) 6216 return ""; 6217 return ProducerString.get(); 6218 } 6219 6220 // Parse the specified bitcode buffer, returning the function info index. 6221 // If IsLazy is false, parse the entire function summary into 6222 // the index. Otherwise skip the function summary section, and only create 6223 // an index object with a map from function name to function summary offset. 6224 // The index is used to perform lazy function summary reading later. 6225 ErrorOr<std::unique_ptr<ModuleSummaryIndex>> 6226 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer, 6227 DiagnosticHandlerFunction DiagnosticHandler, 6228 bool IsLazy) { 6229 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 6230 ModuleSummaryIndexBitcodeReader R(Buf.get(), DiagnosticHandler, IsLazy); 6231 6232 auto Index = llvm::make_unique<ModuleSummaryIndex>(); 6233 6234 auto cleanupOnError = [&](std::error_code EC) { 6235 R.releaseBuffer(); // Never take ownership on error. 6236 return EC; 6237 }; 6238 6239 if (std::error_code EC = R.parseSummaryIndexInto(nullptr, Index.get())) 6240 return cleanupOnError(EC); 6241 6242 Buf.release(); // The ModuleSummaryIndexBitcodeReader owns it now. 6243 return std::move(Index); 6244 } 6245 6246 // Check if the given bitcode buffer contains a global value summary block. 6247 bool llvm::hasGlobalValueSummary(MemoryBufferRef Buffer, 6248 DiagnosticHandlerFunction DiagnosticHandler) { 6249 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 6250 ModuleSummaryIndexBitcodeReader R(Buf.get(), DiagnosticHandler, false, true); 6251 6252 auto cleanupOnError = [&](std::error_code EC) { 6253 R.releaseBuffer(); // Never take ownership on error. 6254 return false; 6255 }; 6256 6257 if (std::error_code EC = R.parseSummaryIndexInto(nullptr, nullptr)) 6258 return cleanupOnError(EC); 6259 6260 Buf.release(); // The ModuleSummaryIndexBitcodeReader owns it now. 6261 return R.foundGlobalValSummary(); 6262 } 6263 6264 // This method supports lazy reading of summary data from the combined 6265 // index during ThinLTO function importing. When reading the combined index 6266 // file, getModuleSummaryIndex is first invoked with IsLazy=true. 6267 // Then this method is called for each value considered for importing, 6268 // to parse the summary information for the given value name into 6269 // the index. 6270 std::error_code llvm::readGlobalValueSummary( 6271 MemoryBufferRef Buffer, DiagnosticHandlerFunction DiagnosticHandler, 6272 StringRef ValueName, std::unique_ptr<ModuleSummaryIndex> Index) { 6273 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 6274 ModuleSummaryIndexBitcodeReader R(Buf.get(), DiagnosticHandler); 6275 6276 auto cleanupOnError = [&](std::error_code EC) { 6277 R.releaseBuffer(); // Never take ownership on error. 6278 return EC; 6279 }; 6280 6281 // Lookup the given value name in the GlobalValueMap, which may 6282 // contain a list of global value infos in the case of a COMDAT. Walk through 6283 // and parse each summary info at the summary offset 6284 // recorded when parsing the value symbol table. 6285 for (const auto &FI : Index->getGlobalValueInfoList(ValueName)) { 6286 size_t SummaryOffset = FI->bitcodeIndex(); 6287 if (std::error_code EC = 6288 R.parseGlobalValueSummary(nullptr, Index.get(), SummaryOffset)) 6289 return cleanupOnError(EC); 6290 } 6291 6292 Buf.release(); // The ModuleSummaryIndexBitcodeReader owns it now. 6293 return std::error_code(); 6294 } 6295