1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "llvm/Bitcode/BitcodeReader.h" 11 #include "MetadataLoader.h" 12 #include "ValueList.h" 13 #include "llvm/ADT/APFloat.h" 14 #include "llvm/ADT/APInt.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallString.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/StringRef.h" 22 #include "llvm/ADT/Triple.h" 23 #include "llvm/ADT/Twine.h" 24 #include "llvm/Bitcode/BitstreamReader.h" 25 #include "llvm/Bitcode/LLVMBitCodes.h" 26 #include "llvm/IR/Argument.h" 27 #include "llvm/IR/Attributes.h" 28 #include "llvm/IR/AutoUpgrade.h" 29 #include "llvm/IR/BasicBlock.h" 30 #include "llvm/IR/CallSite.h" 31 #include "llvm/IR/CallingConv.h" 32 #include "llvm/IR/Comdat.h" 33 #include "llvm/IR/Constant.h" 34 #include "llvm/IR/Constants.h" 35 #include "llvm/IR/DataLayout.h" 36 #include "llvm/IR/DebugInfo.h" 37 #include "llvm/IR/DebugInfoMetadata.h" 38 #include "llvm/IR/DebugLoc.h" 39 #include "llvm/IR/DerivedTypes.h" 40 #include "llvm/IR/Function.h" 41 #include "llvm/IR/GVMaterializer.h" 42 #include "llvm/IR/GlobalAlias.h" 43 #include "llvm/IR/GlobalIFunc.h" 44 #include "llvm/IR/GlobalIndirectSymbol.h" 45 #include "llvm/IR/GlobalObject.h" 46 #include "llvm/IR/GlobalValue.h" 47 #include "llvm/IR/GlobalVariable.h" 48 #include "llvm/IR/InlineAsm.h" 49 #include "llvm/IR/InstIterator.h" 50 #include "llvm/IR/InstrTypes.h" 51 #include "llvm/IR/Instruction.h" 52 #include "llvm/IR/Instructions.h" 53 #include "llvm/IR/Intrinsics.h" 54 #include "llvm/IR/LLVMContext.h" 55 #include "llvm/IR/Metadata.h" 56 #include "llvm/IR/Module.h" 57 #include "llvm/IR/ModuleSummaryIndex.h" 58 #include "llvm/IR/Operator.h" 59 #include "llvm/IR/Type.h" 60 #include "llvm/IR/Value.h" 61 #include "llvm/IR/Verifier.h" 62 #include "llvm/Support/AtomicOrdering.h" 63 #include "llvm/Support/Casting.h" 64 #include "llvm/Support/CommandLine.h" 65 #include "llvm/Support/Compiler.h" 66 #include "llvm/Support/Debug.h" 67 #include "llvm/Support/Error.h" 68 #include "llvm/Support/ErrorHandling.h" 69 #include "llvm/Support/ErrorOr.h" 70 #include "llvm/Support/ManagedStatic.h" 71 #include "llvm/Support/MathExtras.h" 72 #include "llvm/Support/MemoryBuffer.h" 73 #include "llvm/Support/raw_ostream.h" 74 #include <algorithm> 75 #include <cassert> 76 #include <cstddef> 77 #include <cstdint> 78 #include <deque> 79 #include <map> 80 #include <memory> 81 #include <set> 82 #include <string> 83 #include <system_error> 84 #include <tuple> 85 #include <utility> 86 #include <vector> 87 88 using namespace llvm; 89 90 static cl::opt<bool> PrintSummaryGUIDs( 91 "print-summary-global-ids", cl::init(false), cl::Hidden, 92 cl::desc( 93 "Print the global id for each value when reading the module summary")); 94 95 namespace { 96 97 enum { 98 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 99 }; 100 101 } // end anonymous namespace 102 103 static Error error(const Twine &Message) { 104 return make_error<StringError>( 105 Message, make_error_code(BitcodeError::CorruptedBitcode)); 106 } 107 108 /// Helper to read the header common to all bitcode files. 109 static bool hasValidBitcodeHeader(BitstreamCursor &Stream) { 110 // Sniff for the signature. 111 if (!Stream.canSkipToPos(4) || 112 Stream.Read(8) != 'B' || 113 Stream.Read(8) != 'C' || 114 Stream.Read(4) != 0x0 || 115 Stream.Read(4) != 0xC || 116 Stream.Read(4) != 0xE || 117 Stream.Read(4) != 0xD) 118 return false; 119 return true; 120 } 121 122 static Expected<BitstreamCursor> initStream(MemoryBufferRef Buffer) { 123 const unsigned char *BufPtr = (const unsigned char *)Buffer.getBufferStart(); 124 const unsigned char *BufEnd = BufPtr + Buffer.getBufferSize(); 125 126 if (Buffer.getBufferSize() & 3) 127 return error("Invalid bitcode signature"); 128 129 // If we have a wrapper header, parse it and ignore the non-bc file contents. 130 // The magic number is 0x0B17C0DE stored in little endian. 131 if (isBitcodeWrapper(BufPtr, BufEnd)) 132 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 133 return error("Invalid bitcode wrapper header"); 134 135 BitstreamCursor Stream(ArrayRef<uint8_t>(BufPtr, BufEnd)); 136 if (!hasValidBitcodeHeader(Stream)) 137 return error("Invalid bitcode signature"); 138 139 return std::move(Stream); 140 } 141 142 /// Convert a string from a record into an std::string, return true on failure. 143 template <typename StrTy> 144 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx, 145 StrTy &Result) { 146 if (Idx > Record.size()) 147 return true; 148 149 for (unsigned i = Idx, e = Record.size(); i != e; ++i) 150 Result += (char)Record[i]; 151 return false; 152 } 153 154 // Strip all the TBAA attachment for the module. 155 static void stripTBAA(Module *M) { 156 for (auto &F : *M) { 157 if (F.isMaterializable()) 158 continue; 159 for (auto &I : instructions(F)) 160 I.setMetadata(LLVMContext::MD_tbaa, nullptr); 161 } 162 } 163 164 /// Read the "IDENTIFICATION_BLOCK_ID" block, do some basic enforcement on the 165 /// "epoch" encoded in the bitcode, and return the producer name if any. 166 static Expected<std::string> readIdentificationBlock(BitstreamCursor &Stream) { 167 if (Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID)) 168 return error("Invalid record"); 169 170 // Read all the records. 171 SmallVector<uint64_t, 64> Record; 172 173 std::string ProducerIdentification; 174 175 while (true) { 176 BitstreamEntry Entry = Stream.advance(); 177 178 switch (Entry.Kind) { 179 default: 180 case BitstreamEntry::Error: 181 return error("Malformed block"); 182 case BitstreamEntry::EndBlock: 183 return ProducerIdentification; 184 case BitstreamEntry::Record: 185 // The interesting case. 186 break; 187 } 188 189 // Read a record. 190 Record.clear(); 191 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 192 switch (BitCode) { 193 default: // Default behavior: reject 194 return error("Invalid value"); 195 case bitc::IDENTIFICATION_CODE_STRING: // IDENTIFICATION: [strchr x N] 196 convertToString(Record, 0, ProducerIdentification); 197 break; 198 case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#] 199 unsigned epoch = (unsigned)Record[0]; 200 if (epoch != bitc::BITCODE_CURRENT_EPOCH) { 201 return error( 202 Twine("Incompatible epoch: Bitcode '") + Twine(epoch) + 203 "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'"); 204 } 205 } 206 } 207 } 208 } 209 210 static Expected<std::string> readIdentificationCode(BitstreamCursor &Stream) { 211 // We expect a number of well-defined blocks, though we don't necessarily 212 // need to understand them all. 213 while (true) { 214 if (Stream.AtEndOfStream()) 215 return ""; 216 217 BitstreamEntry Entry = Stream.advance(); 218 switch (Entry.Kind) { 219 case BitstreamEntry::EndBlock: 220 case BitstreamEntry::Error: 221 return error("Malformed block"); 222 223 case BitstreamEntry::SubBlock: 224 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) 225 return readIdentificationBlock(Stream); 226 227 // Ignore other sub-blocks. 228 if (Stream.SkipBlock()) 229 return error("Malformed block"); 230 continue; 231 case BitstreamEntry::Record: 232 Stream.skipRecord(Entry.ID); 233 continue; 234 } 235 } 236 } 237 238 static Expected<bool> hasObjCCategoryInModule(BitstreamCursor &Stream) { 239 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 240 return error("Invalid record"); 241 242 SmallVector<uint64_t, 64> Record; 243 // Read all the records for this module. 244 245 while (true) { 246 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 247 248 switch (Entry.Kind) { 249 case BitstreamEntry::SubBlock: // Handled for us already. 250 case BitstreamEntry::Error: 251 return error("Malformed block"); 252 case BitstreamEntry::EndBlock: 253 return false; 254 case BitstreamEntry::Record: 255 // The interesting case. 256 break; 257 } 258 259 // Read a record. 260 switch (Stream.readRecord(Entry.ID, Record)) { 261 default: 262 break; // Default behavior, ignore unknown content. 263 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 264 std::string S; 265 if (convertToString(Record, 0, S)) 266 return error("Invalid record"); 267 // Check for the i386 and other (x86_64, ARM) conventions 268 if (S.find("__DATA,__objc_catlist") != std::string::npos || 269 S.find("__OBJC,__category") != std::string::npos) 270 return true; 271 break; 272 } 273 } 274 Record.clear(); 275 } 276 llvm_unreachable("Exit infinite loop"); 277 } 278 279 static Expected<bool> hasObjCCategory(BitstreamCursor &Stream) { 280 // We expect a number of well-defined blocks, though we don't necessarily 281 // need to understand them all. 282 while (true) { 283 BitstreamEntry Entry = Stream.advance(); 284 285 switch (Entry.Kind) { 286 case BitstreamEntry::Error: 287 return error("Malformed block"); 288 case BitstreamEntry::EndBlock: 289 return false; 290 291 case BitstreamEntry::SubBlock: 292 if (Entry.ID == bitc::MODULE_BLOCK_ID) 293 return hasObjCCategoryInModule(Stream); 294 295 // Ignore other sub-blocks. 296 if (Stream.SkipBlock()) 297 return error("Malformed block"); 298 continue; 299 300 case BitstreamEntry::Record: 301 Stream.skipRecord(Entry.ID); 302 continue; 303 } 304 } 305 } 306 307 static Expected<std::string> readModuleTriple(BitstreamCursor &Stream) { 308 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 309 return error("Invalid record"); 310 311 SmallVector<uint64_t, 64> Record; 312 313 std::string Triple; 314 315 // Read all the records for this module. 316 while (true) { 317 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 318 319 switch (Entry.Kind) { 320 case BitstreamEntry::SubBlock: // Handled for us already. 321 case BitstreamEntry::Error: 322 return error("Malformed block"); 323 case BitstreamEntry::EndBlock: 324 return Triple; 325 case BitstreamEntry::Record: 326 // The interesting case. 327 break; 328 } 329 330 // Read a record. 331 switch (Stream.readRecord(Entry.ID, Record)) { 332 default: break; // Default behavior, ignore unknown content. 333 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 334 std::string S; 335 if (convertToString(Record, 0, S)) 336 return error("Invalid record"); 337 Triple = S; 338 break; 339 } 340 } 341 Record.clear(); 342 } 343 llvm_unreachable("Exit infinite loop"); 344 } 345 346 static Expected<std::string> readTriple(BitstreamCursor &Stream) { 347 // We expect a number of well-defined blocks, though we don't necessarily 348 // need to understand them all. 349 while (true) { 350 BitstreamEntry Entry = Stream.advance(); 351 352 switch (Entry.Kind) { 353 case BitstreamEntry::Error: 354 return error("Malformed block"); 355 case BitstreamEntry::EndBlock: 356 return ""; 357 358 case BitstreamEntry::SubBlock: 359 if (Entry.ID == bitc::MODULE_BLOCK_ID) 360 return readModuleTriple(Stream); 361 362 // Ignore other sub-blocks. 363 if (Stream.SkipBlock()) 364 return error("Malformed block"); 365 continue; 366 367 case BitstreamEntry::Record: 368 Stream.skipRecord(Entry.ID); 369 continue; 370 } 371 } 372 } 373 374 namespace { 375 376 class BitcodeReaderBase { 377 protected: 378 BitcodeReaderBase(BitstreamCursor Stream, StringRef Strtab) 379 : Stream(std::move(Stream)), Strtab(Strtab) { 380 this->Stream.setBlockInfo(&BlockInfo); 381 } 382 383 BitstreamBlockInfo BlockInfo; 384 BitstreamCursor Stream; 385 StringRef Strtab; 386 387 /// In version 2 of the bitcode we store names of global values and comdats in 388 /// a string table rather than in the VST. 389 bool UseStrtab = false; 390 391 Expected<unsigned> parseVersionRecord(ArrayRef<uint64_t> Record); 392 393 /// If this module uses a string table, pop the reference to the string table 394 /// and return the referenced string and the rest of the record. Otherwise 395 /// just return the record itself. 396 std::pair<StringRef, ArrayRef<uint64_t>> 397 readNameFromStrtab(ArrayRef<uint64_t> Record); 398 399 bool readBlockInfo(); 400 401 // Contains an arbitrary and optional string identifying the bitcode producer 402 std::string ProducerIdentification; 403 404 Error error(const Twine &Message); 405 }; 406 407 } // end anonymous namespace 408 409 Error BitcodeReaderBase::error(const Twine &Message) { 410 std::string FullMsg = Message.str(); 411 if (!ProducerIdentification.empty()) 412 FullMsg += " (Producer: '" + ProducerIdentification + "' Reader: 'LLVM " + 413 LLVM_VERSION_STRING "')"; 414 return ::error(FullMsg); 415 } 416 417 Expected<unsigned> 418 BitcodeReaderBase::parseVersionRecord(ArrayRef<uint64_t> Record) { 419 if (Record.empty()) 420 return error("Invalid record"); 421 unsigned ModuleVersion = Record[0]; 422 if (ModuleVersion > 2) 423 return error("Invalid value"); 424 UseStrtab = ModuleVersion >= 2; 425 return ModuleVersion; 426 } 427 428 std::pair<StringRef, ArrayRef<uint64_t>> 429 BitcodeReaderBase::readNameFromStrtab(ArrayRef<uint64_t> Record) { 430 if (!UseStrtab) 431 return {"", Record}; 432 // Invalid reference. Let the caller complain about the record being empty. 433 if (Record[0] + Record[1] > Strtab.size()) 434 return {"", {}}; 435 return {StringRef(Strtab.data() + Record[0], Record[1]), Record.slice(2)}; 436 } 437 438 namespace { 439 440 class BitcodeReader : public BitcodeReaderBase, public GVMaterializer { 441 LLVMContext &Context; 442 Module *TheModule = nullptr; 443 // Next offset to start scanning for lazy parsing of function bodies. 444 uint64_t NextUnreadBit = 0; 445 // Last function offset found in the VST. 446 uint64_t LastFunctionBlockBit = 0; 447 bool SeenValueSymbolTable = false; 448 uint64_t VSTOffset = 0; 449 450 std::vector<std::string> SectionTable; 451 std::vector<std::string> GCTable; 452 453 std::vector<Type*> TypeList; 454 BitcodeReaderValueList ValueList; 455 Optional<MetadataLoader> MDLoader; 456 std::vector<Comdat *> ComdatList; 457 SmallVector<Instruction *, 64> InstructionList; 458 459 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInits; 460 std::vector<std::pair<GlobalIndirectSymbol *, unsigned>> IndirectSymbolInits; 461 std::vector<std::pair<Function *, unsigned>> FunctionPrefixes; 462 std::vector<std::pair<Function *, unsigned>> FunctionPrologues; 463 std::vector<std::pair<Function *, unsigned>> FunctionPersonalityFns; 464 465 /// The set of attributes by index. Index zero in the file is for null, and 466 /// is thus not represented here. As such all indices are off by one. 467 std::vector<AttributeList> MAttributes; 468 469 /// The set of attribute groups. 470 std::map<unsigned, AttributeList> MAttributeGroups; 471 472 /// While parsing a function body, this is a list of the basic blocks for the 473 /// function. 474 std::vector<BasicBlock*> FunctionBBs; 475 476 // When reading the module header, this list is populated with functions that 477 // have bodies later in the file. 478 std::vector<Function*> FunctionsWithBodies; 479 480 // When intrinsic functions are encountered which require upgrading they are 481 // stored here with their replacement function. 482 using UpdatedIntrinsicMap = DenseMap<Function *, Function *>; 483 UpdatedIntrinsicMap UpgradedIntrinsics; 484 // Intrinsics which were remangled because of types rename 485 UpdatedIntrinsicMap RemangledIntrinsics; 486 487 // Several operations happen after the module header has been read, but 488 // before function bodies are processed. This keeps track of whether 489 // we've done this yet. 490 bool SeenFirstFunctionBody = false; 491 492 /// When function bodies are initially scanned, this map contains info about 493 /// where to find deferred function body in the stream. 494 DenseMap<Function*, uint64_t> DeferredFunctionInfo; 495 496 /// When Metadata block is initially scanned when parsing the module, we may 497 /// choose to defer parsing of the metadata. This vector contains info about 498 /// which Metadata blocks are deferred. 499 std::vector<uint64_t> DeferredMetadataInfo; 500 501 /// These are basic blocks forward-referenced by block addresses. They are 502 /// inserted lazily into functions when they're loaded. The basic block ID is 503 /// its index into the vector. 504 DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs; 505 std::deque<Function *> BasicBlockFwdRefQueue; 506 507 /// Indicates that we are using a new encoding for instruction operands where 508 /// most operands in the current FUNCTION_BLOCK are encoded relative to the 509 /// instruction number, for a more compact encoding. Some instruction 510 /// operands are not relative to the instruction ID: basic block numbers, and 511 /// types. Once the old style function blocks have been phased out, we would 512 /// not need this flag. 513 bool UseRelativeIDs = false; 514 515 /// True if all functions will be materialized, negating the need to process 516 /// (e.g.) blockaddress forward references. 517 bool WillMaterializeAllForwardRefs = false; 518 519 bool StripDebugInfo = false; 520 TBAAVerifier TBAAVerifyHelper; 521 522 std::vector<std::string> BundleTags; 523 SmallVector<SyncScope::ID, 8> SSIDs; 524 525 public: 526 BitcodeReader(BitstreamCursor Stream, StringRef Strtab, 527 StringRef ProducerIdentification, LLVMContext &Context); 528 529 Error materializeForwardReferencedFunctions(); 530 531 Error materialize(GlobalValue *GV) override; 532 Error materializeModule() override; 533 std::vector<StructType *> getIdentifiedStructTypes() const override; 534 535 /// \brief Main interface to parsing a bitcode buffer. 536 /// \returns true if an error occurred. 537 Error parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata = false, 538 bool IsImporting = false); 539 540 static uint64_t decodeSignRotatedValue(uint64_t V); 541 542 /// Materialize any deferred Metadata block. 543 Error materializeMetadata() override; 544 545 void setStripDebugInfo() override; 546 547 private: 548 std::vector<StructType *> IdentifiedStructTypes; 549 StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name); 550 StructType *createIdentifiedStructType(LLVMContext &Context); 551 552 Type *getTypeByID(unsigned ID); 553 554 Value *getFnValueByID(unsigned ID, Type *Ty) { 555 if (Ty && Ty->isMetadataTy()) 556 return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID)); 557 return ValueList.getValueFwdRef(ID, Ty); 558 } 559 560 Metadata *getFnMetadataByID(unsigned ID) { 561 return MDLoader->getMetadataFwdRefOrLoad(ID); 562 } 563 564 BasicBlock *getBasicBlock(unsigned ID) const { 565 if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID 566 return FunctionBBs[ID]; 567 } 568 569 AttributeList getAttributes(unsigned i) const { 570 if (i-1 < MAttributes.size()) 571 return MAttributes[i-1]; 572 return AttributeList(); 573 } 574 575 /// Read a value/type pair out of the specified record from slot 'Slot'. 576 /// Increment Slot past the number of slots used in the record. Return true on 577 /// failure. 578 bool getValueTypePair(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 579 unsigned InstNum, Value *&ResVal) { 580 if (Slot == Record.size()) return true; 581 unsigned ValNo = (unsigned)Record[Slot++]; 582 // Adjust the ValNo, if it was encoded relative to the InstNum. 583 if (UseRelativeIDs) 584 ValNo = InstNum - ValNo; 585 if (ValNo < InstNum) { 586 // If this is not a forward reference, just return the value we already 587 // have. 588 ResVal = getFnValueByID(ValNo, nullptr); 589 return ResVal == nullptr; 590 } 591 if (Slot == Record.size()) 592 return true; 593 594 unsigned TypeNo = (unsigned)Record[Slot++]; 595 ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo)); 596 return ResVal == nullptr; 597 } 598 599 /// Read a value out of the specified record from slot 'Slot'. Increment Slot 600 /// past the number of slots used by the value in the record. Return true if 601 /// there is an error. 602 bool popValue(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 603 unsigned InstNum, Type *Ty, Value *&ResVal) { 604 if (getValue(Record, Slot, InstNum, Ty, ResVal)) 605 return true; 606 // All values currently take a single record slot. 607 ++Slot; 608 return false; 609 } 610 611 /// Like popValue, but does not increment the Slot number. 612 bool getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 613 unsigned InstNum, Type *Ty, Value *&ResVal) { 614 ResVal = getValue(Record, Slot, InstNum, Ty); 615 return ResVal == nullptr; 616 } 617 618 /// Version of getValue that returns ResVal directly, or 0 if there is an 619 /// error. 620 Value *getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 621 unsigned InstNum, Type *Ty) { 622 if (Slot == Record.size()) return nullptr; 623 unsigned ValNo = (unsigned)Record[Slot]; 624 // Adjust the ValNo, if it was encoded relative to the InstNum. 625 if (UseRelativeIDs) 626 ValNo = InstNum - ValNo; 627 return getFnValueByID(ValNo, Ty); 628 } 629 630 /// Like getValue, but decodes signed VBRs. 631 Value *getValueSigned(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 632 unsigned InstNum, Type *Ty) { 633 if (Slot == Record.size()) return nullptr; 634 unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]); 635 // Adjust the ValNo, if it was encoded relative to the InstNum. 636 if (UseRelativeIDs) 637 ValNo = InstNum - ValNo; 638 return getFnValueByID(ValNo, Ty); 639 } 640 641 /// Converts alignment exponent (i.e. power of two (or zero)) to the 642 /// corresponding alignment to use. If alignment is too large, returns 643 /// a corresponding error code. 644 Error parseAlignmentValue(uint64_t Exponent, unsigned &Alignment); 645 Error parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind); 646 Error parseModule(uint64_t ResumeBit, bool ShouldLazyLoadMetadata = false); 647 648 Error parseComdatRecord(ArrayRef<uint64_t> Record); 649 Error parseGlobalVarRecord(ArrayRef<uint64_t> Record); 650 Error parseFunctionRecord(ArrayRef<uint64_t> Record); 651 Error parseGlobalIndirectSymbolRecord(unsigned BitCode, 652 ArrayRef<uint64_t> Record); 653 654 Error parseAttributeBlock(); 655 Error parseAttributeGroupBlock(); 656 Error parseTypeTable(); 657 Error parseTypeTableBody(); 658 Error parseOperandBundleTags(); 659 Error parseSyncScopeNames(); 660 661 Expected<Value *> recordValue(SmallVectorImpl<uint64_t> &Record, 662 unsigned NameIndex, Triple &TT); 663 void setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, Function *F, 664 ArrayRef<uint64_t> Record); 665 Error parseValueSymbolTable(uint64_t Offset = 0); 666 Error parseGlobalValueSymbolTable(); 667 Error parseConstants(); 668 Error rememberAndSkipFunctionBodies(); 669 Error rememberAndSkipFunctionBody(); 670 /// Save the positions of the Metadata blocks and skip parsing the blocks. 671 Error rememberAndSkipMetadata(); 672 Error typeCheckLoadStoreInst(Type *ValType, Type *PtrType); 673 Error parseFunctionBody(Function *F); 674 Error globalCleanup(); 675 Error resolveGlobalAndIndirectSymbolInits(); 676 Error parseUseLists(); 677 Error findFunctionInStream( 678 Function *F, 679 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator); 680 681 SyncScope::ID getDecodedSyncScopeID(unsigned Val); 682 }; 683 684 /// Class to manage reading and parsing function summary index bitcode 685 /// files/sections. 686 class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase { 687 /// The module index built during parsing. 688 ModuleSummaryIndex &TheIndex; 689 690 /// Indicates whether we have encountered a global value summary section 691 /// yet during parsing. 692 bool SeenGlobalValSummary = false; 693 694 /// Indicates whether we have already parsed the VST, used for error checking. 695 bool SeenValueSymbolTable = false; 696 697 /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record. 698 /// Used to enable on-demand parsing of the VST. 699 uint64_t VSTOffset = 0; 700 701 // Map to save ValueId to ValueInfo association that was recorded in the 702 // ValueSymbolTable. It is used after the VST is parsed to convert 703 // call graph edges read from the function summary from referencing 704 // callees by their ValueId to using the ValueInfo instead, which is how 705 // they are recorded in the summary index being built. 706 // We save a GUID which refers to the same global as the ValueInfo, but 707 // ignoring the linkage, i.e. for values other than local linkage they are 708 // identical. 709 DenseMap<unsigned, std::pair<ValueInfo, GlobalValue::GUID>> 710 ValueIdToValueInfoMap; 711 712 /// Map populated during module path string table parsing, from the 713 /// module ID to a string reference owned by the index's module 714 /// path string table, used to correlate with combined index 715 /// summary records. 716 DenseMap<uint64_t, StringRef> ModuleIdMap; 717 718 /// Original source file name recorded in a bitcode record. 719 std::string SourceFileName; 720 721 /// The string identifier given to this module by the client, normally the 722 /// path to the bitcode file. 723 StringRef ModulePath; 724 725 /// For per-module summary indexes, the unique numerical identifier given to 726 /// this module by the client. 727 unsigned ModuleId; 728 729 public: 730 ModuleSummaryIndexBitcodeReader(BitstreamCursor Stream, StringRef Strtab, 731 ModuleSummaryIndex &TheIndex, 732 StringRef ModulePath, unsigned ModuleId); 733 734 Error parseModule(); 735 736 private: 737 void setValueGUID(uint64_t ValueID, StringRef ValueName, 738 GlobalValue::LinkageTypes Linkage, 739 StringRef SourceFileName); 740 Error parseValueSymbolTable( 741 uint64_t Offset, 742 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap); 743 std::vector<ValueInfo> makeRefList(ArrayRef<uint64_t> Record); 744 std::vector<FunctionSummary::EdgeTy> makeCallList(ArrayRef<uint64_t> Record, 745 bool IsOldProfileFormat, 746 bool HasProfile, 747 bool HasRelBF); 748 Error parseEntireSummary(unsigned ID); 749 Error parseModuleStringTable(); 750 751 std::pair<ValueInfo, GlobalValue::GUID> 752 getValueInfoFromValueId(unsigned ValueId); 753 754 ModuleSummaryIndex::ModuleInfo *addThisModule(); 755 }; 756 757 } // end anonymous namespace 758 759 std::error_code llvm::errorToErrorCodeAndEmitErrors(LLVMContext &Ctx, 760 Error Err) { 761 if (Err) { 762 std::error_code EC; 763 handleAllErrors(std::move(Err), [&](ErrorInfoBase &EIB) { 764 EC = EIB.convertToErrorCode(); 765 Ctx.emitError(EIB.message()); 766 }); 767 return EC; 768 } 769 return std::error_code(); 770 } 771 772 BitcodeReader::BitcodeReader(BitstreamCursor Stream, StringRef Strtab, 773 StringRef ProducerIdentification, 774 LLVMContext &Context) 775 : BitcodeReaderBase(std::move(Stream), Strtab), Context(Context), 776 ValueList(Context) { 777 this->ProducerIdentification = ProducerIdentification; 778 } 779 780 Error BitcodeReader::materializeForwardReferencedFunctions() { 781 if (WillMaterializeAllForwardRefs) 782 return Error::success(); 783 784 // Prevent recursion. 785 WillMaterializeAllForwardRefs = true; 786 787 while (!BasicBlockFwdRefQueue.empty()) { 788 Function *F = BasicBlockFwdRefQueue.front(); 789 BasicBlockFwdRefQueue.pop_front(); 790 assert(F && "Expected valid function"); 791 if (!BasicBlockFwdRefs.count(F)) 792 // Already materialized. 793 continue; 794 795 // Check for a function that isn't materializable to prevent an infinite 796 // loop. When parsing a blockaddress stored in a global variable, there 797 // isn't a trivial way to check if a function will have a body without a 798 // linear search through FunctionsWithBodies, so just check it here. 799 if (!F->isMaterializable()) 800 return error("Never resolved function from blockaddress"); 801 802 // Try to materialize F. 803 if (Error Err = materialize(F)) 804 return Err; 805 } 806 assert(BasicBlockFwdRefs.empty() && "Function missing from queue"); 807 808 // Reset state. 809 WillMaterializeAllForwardRefs = false; 810 return Error::success(); 811 } 812 813 //===----------------------------------------------------------------------===// 814 // Helper functions to implement forward reference resolution, etc. 815 //===----------------------------------------------------------------------===// 816 817 static bool hasImplicitComdat(size_t Val) { 818 switch (Val) { 819 default: 820 return false; 821 case 1: // Old WeakAnyLinkage 822 case 4: // Old LinkOnceAnyLinkage 823 case 10: // Old WeakODRLinkage 824 case 11: // Old LinkOnceODRLinkage 825 return true; 826 } 827 } 828 829 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) { 830 switch (Val) { 831 default: // Map unknown/new linkages to external 832 case 0: 833 return GlobalValue::ExternalLinkage; 834 case 2: 835 return GlobalValue::AppendingLinkage; 836 case 3: 837 return GlobalValue::InternalLinkage; 838 case 5: 839 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage 840 case 6: 841 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage 842 case 7: 843 return GlobalValue::ExternalWeakLinkage; 844 case 8: 845 return GlobalValue::CommonLinkage; 846 case 9: 847 return GlobalValue::PrivateLinkage; 848 case 12: 849 return GlobalValue::AvailableExternallyLinkage; 850 case 13: 851 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage 852 case 14: 853 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage 854 case 15: 855 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage 856 case 1: // Old value with implicit comdat. 857 case 16: 858 return GlobalValue::WeakAnyLinkage; 859 case 10: // Old value with implicit comdat. 860 case 17: 861 return GlobalValue::WeakODRLinkage; 862 case 4: // Old value with implicit comdat. 863 case 18: 864 return GlobalValue::LinkOnceAnyLinkage; 865 case 11: // Old value with implicit comdat. 866 case 19: 867 return GlobalValue::LinkOnceODRLinkage; 868 } 869 } 870 871 static FunctionSummary::FFlags getDecodedFFlags(uint64_t RawFlags) { 872 FunctionSummary::FFlags Flags; 873 Flags.ReadNone = RawFlags & 0x1; 874 Flags.ReadOnly = (RawFlags >> 1) & 0x1; 875 Flags.NoRecurse = (RawFlags >> 2) & 0x1; 876 Flags.ReturnDoesNotAlias = (RawFlags >> 3) & 0x1; 877 return Flags; 878 } 879 880 /// Decode the flags for GlobalValue in the summary. 881 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags, 882 uint64_t Version) { 883 // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage 884 // like getDecodedLinkage() above. Any future change to the linkage enum and 885 // to getDecodedLinkage() will need to be taken into account here as above. 886 auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits 887 RawFlags = RawFlags >> 4; 888 bool NotEligibleToImport = (RawFlags & 0x1) || Version < 3; 889 // The Live flag wasn't introduced until version 3. For dead stripping 890 // to work correctly on earlier versions, we must conservatively treat all 891 // values as live. 892 bool Live = (RawFlags & 0x2) || Version < 3; 893 bool Local = (RawFlags & 0x4); 894 895 return GlobalValueSummary::GVFlags(Linkage, NotEligibleToImport, Live, Local); 896 } 897 898 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) { 899 switch (Val) { 900 default: // Map unknown visibilities to default. 901 case 0: return GlobalValue::DefaultVisibility; 902 case 1: return GlobalValue::HiddenVisibility; 903 case 2: return GlobalValue::ProtectedVisibility; 904 } 905 } 906 907 static GlobalValue::DLLStorageClassTypes 908 getDecodedDLLStorageClass(unsigned Val) { 909 switch (Val) { 910 default: // Map unknown values to default. 911 case 0: return GlobalValue::DefaultStorageClass; 912 case 1: return GlobalValue::DLLImportStorageClass; 913 case 2: return GlobalValue::DLLExportStorageClass; 914 } 915 } 916 917 static bool getDecodedDSOLocal(unsigned Val) { 918 switch(Val) { 919 default: // Map unknown values to preemptable. 920 case 0: return false; 921 case 1: return true; 922 } 923 } 924 925 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) { 926 switch (Val) { 927 case 0: return GlobalVariable::NotThreadLocal; 928 default: // Map unknown non-zero value to general dynamic. 929 case 1: return GlobalVariable::GeneralDynamicTLSModel; 930 case 2: return GlobalVariable::LocalDynamicTLSModel; 931 case 3: return GlobalVariable::InitialExecTLSModel; 932 case 4: return GlobalVariable::LocalExecTLSModel; 933 } 934 } 935 936 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) { 937 switch (Val) { 938 default: // Map unknown to UnnamedAddr::None. 939 case 0: return GlobalVariable::UnnamedAddr::None; 940 case 1: return GlobalVariable::UnnamedAddr::Global; 941 case 2: return GlobalVariable::UnnamedAddr::Local; 942 } 943 } 944 945 static int getDecodedCastOpcode(unsigned Val) { 946 switch (Val) { 947 default: return -1; 948 case bitc::CAST_TRUNC : return Instruction::Trunc; 949 case bitc::CAST_ZEXT : return Instruction::ZExt; 950 case bitc::CAST_SEXT : return Instruction::SExt; 951 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 952 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 953 case bitc::CAST_UITOFP : return Instruction::UIToFP; 954 case bitc::CAST_SITOFP : return Instruction::SIToFP; 955 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 956 case bitc::CAST_FPEXT : return Instruction::FPExt; 957 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 958 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 959 case bitc::CAST_BITCAST : return Instruction::BitCast; 960 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast; 961 } 962 } 963 964 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) { 965 bool IsFP = Ty->isFPOrFPVectorTy(); 966 // BinOps are only valid for int/fp or vector of int/fp types 967 if (!IsFP && !Ty->isIntOrIntVectorTy()) 968 return -1; 969 970 switch (Val) { 971 default: 972 return -1; 973 case bitc::BINOP_ADD: 974 return IsFP ? Instruction::FAdd : Instruction::Add; 975 case bitc::BINOP_SUB: 976 return IsFP ? Instruction::FSub : Instruction::Sub; 977 case bitc::BINOP_MUL: 978 return IsFP ? Instruction::FMul : Instruction::Mul; 979 case bitc::BINOP_UDIV: 980 return IsFP ? -1 : Instruction::UDiv; 981 case bitc::BINOP_SDIV: 982 return IsFP ? Instruction::FDiv : Instruction::SDiv; 983 case bitc::BINOP_UREM: 984 return IsFP ? -1 : Instruction::URem; 985 case bitc::BINOP_SREM: 986 return IsFP ? Instruction::FRem : Instruction::SRem; 987 case bitc::BINOP_SHL: 988 return IsFP ? -1 : Instruction::Shl; 989 case bitc::BINOP_LSHR: 990 return IsFP ? -1 : Instruction::LShr; 991 case bitc::BINOP_ASHR: 992 return IsFP ? -1 : Instruction::AShr; 993 case bitc::BINOP_AND: 994 return IsFP ? -1 : Instruction::And; 995 case bitc::BINOP_OR: 996 return IsFP ? -1 : Instruction::Or; 997 case bitc::BINOP_XOR: 998 return IsFP ? -1 : Instruction::Xor; 999 } 1000 } 1001 1002 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) { 1003 switch (Val) { 1004 default: return AtomicRMWInst::BAD_BINOP; 1005 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 1006 case bitc::RMW_ADD: return AtomicRMWInst::Add; 1007 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 1008 case bitc::RMW_AND: return AtomicRMWInst::And; 1009 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 1010 case bitc::RMW_OR: return AtomicRMWInst::Or; 1011 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 1012 case bitc::RMW_MAX: return AtomicRMWInst::Max; 1013 case bitc::RMW_MIN: return AtomicRMWInst::Min; 1014 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 1015 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 1016 } 1017 } 1018 1019 static AtomicOrdering getDecodedOrdering(unsigned Val) { 1020 switch (Val) { 1021 case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic; 1022 case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered; 1023 case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic; 1024 case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire; 1025 case bitc::ORDERING_RELEASE: return AtomicOrdering::Release; 1026 case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease; 1027 default: // Map unknown orderings to sequentially-consistent. 1028 case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent; 1029 } 1030 } 1031 1032 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) { 1033 switch (Val) { 1034 default: // Map unknown selection kinds to any. 1035 case bitc::COMDAT_SELECTION_KIND_ANY: 1036 return Comdat::Any; 1037 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH: 1038 return Comdat::ExactMatch; 1039 case bitc::COMDAT_SELECTION_KIND_LARGEST: 1040 return Comdat::Largest; 1041 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES: 1042 return Comdat::NoDuplicates; 1043 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE: 1044 return Comdat::SameSize; 1045 } 1046 } 1047 1048 static FastMathFlags getDecodedFastMathFlags(unsigned Val) { 1049 FastMathFlags FMF; 1050 if (0 != (Val & bitc::UnsafeAlgebra)) 1051 FMF.setFast(); 1052 if (0 != (Val & bitc::AllowReassoc)) 1053 FMF.setAllowReassoc(); 1054 if (0 != (Val & bitc::NoNaNs)) 1055 FMF.setNoNaNs(); 1056 if (0 != (Val & bitc::NoInfs)) 1057 FMF.setNoInfs(); 1058 if (0 != (Val & bitc::NoSignedZeros)) 1059 FMF.setNoSignedZeros(); 1060 if (0 != (Val & bitc::AllowReciprocal)) 1061 FMF.setAllowReciprocal(); 1062 if (0 != (Val & bitc::AllowContract)) 1063 FMF.setAllowContract(true); 1064 if (0 != (Val & bitc::ApproxFunc)) 1065 FMF.setApproxFunc(); 1066 return FMF; 1067 } 1068 1069 static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) { 1070 switch (Val) { 1071 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break; 1072 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break; 1073 } 1074 } 1075 1076 Type *BitcodeReader::getTypeByID(unsigned ID) { 1077 // The type table size is always specified correctly. 1078 if (ID >= TypeList.size()) 1079 return nullptr; 1080 1081 if (Type *Ty = TypeList[ID]) 1082 return Ty; 1083 1084 // If we have a forward reference, the only possible case is when it is to a 1085 // named struct. Just create a placeholder for now. 1086 return TypeList[ID] = createIdentifiedStructType(Context); 1087 } 1088 1089 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context, 1090 StringRef Name) { 1091 auto *Ret = StructType::create(Context, Name); 1092 IdentifiedStructTypes.push_back(Ret); 1093 return Ret; 1094 } 1095 1096 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) { 1097 auto *Ret = StructType::create(Context); 1098 IdentifiedStructTypes.push_back(Ret); 1099 return Ret; 1100 } 1101 1102 //===----------------------------------------------------------------------===// 1103 // Functions for parsing blocks from the bitcode file 1104 //===----------------------------------------------------------------------===// 1105 1106 static uint64_t getRawAttributeMask(Attribute::AttrKind Val) { 1107 switch (Val) { 1108 case Attribute::EndAttrKinds: 1109 llvm_unreachable("Synthetic enumerators which should never get here"); 1110 1111 case Attribute::None: return 0; 1112 case Attribute::ZExt: return 1 << 0; 1113 case Attribute::SExt: return 1 << 1; 1114 case Attribute::NoReturn: return 1 << 2; 1115 case Attribute::InReg: return 1 << 3; 1116 case Attribute::StructRet: return 1 << 4; 1117 case Attribute::NoUnwind: return 1 << 5; 1118 case Attribute::NoAlias: return 1 << 6; 1119 case Attribute::ByVal: return 1 << 7; 1120 case Attribute::Nest: return 1 << 8; 1121 case Attribute::ReadNone: return 1 << 9; 1122 case Attribute::ReadOnly: return 1 << 10; 1123 case Attribute::NoInline: return 1 << 11; 1124 case Attribute::AlwaysInline: return 1 << 12; 1125 case Attribute::OptimizeForSize: return 1 << 13; 1126 case Attribute::StackProtect: return 1 << 14; 1127 case Attribute::StackProtectReq: return 1 << 15; 1128 case Attribute::Alignment: return 31 << 16; 1129 case Attribute::NoCapture: return 1 << 21; 1130 case Attribute::NoRedZone: return 1 << 22; 1131 case Attribute::NoImplicitFloat: return 1 << 23; 1132 case Attribute::Naked: return 1 << 24; 1133 case Attribute::InlineHint: return 1 << 25; 1134 case Attribute::StackAlignment: return 7 << 26; 1135 case Attribute::ReturnsTwice: return 1 << 29; 1136 case Attribute::UWTable: return 1 << 30; 1137 case Attribute::NonLazyBind: return 1U << 31; 1138 case Attribute::SanitizeAddress: return 1ULL << 32; 1139 case Attribute::MinSize: return 1ULL << 33; 1140 case Attribute::NoDuplicate: return 1ULL << 34; 1141 case Attribute::StackProtectStrong: return 1ULL << 35; 1142 case Attribute::SanitizeThread: return 1ULL << 36; 1143 case Attribute::SanitizeMemory: return 1ULL << 37; 1144 case Attribute::NoBuiltin: return 1ULL << 38; 1145 case Attribute::Returned: return 1ULL << 39; 1146 case Attribute::Cold: return 1ULL << 40; 1147 case Attribute::Builtin: return 1ULL << 41; 1148 case Attribute::OptimizeNone: return 1ULL << 42; 1149 case Attribute::InAlloca: return 1ULL << 43; 1150 case Attribute::NonNull: return 1ULL << 44; 1151 case Attribute::JumpTable: return 1ULL << 45; 1152 case Attribute::Convergent: return 1ULL << 46; 1153 case Attribute::SafeStack: return 1ULL << 47; 1154 case Attribute::NoRecurse: return 1ULL << 48; 1155 case Attribute::InaccessibleMemOnly: return 1ULL << 49; 1156 case Attribute::InaccessibleMemOrArgMemOnly: return 1ULL << 50; 1157 case Attribute::SwiftSelf: return 1ULL << 51; 1158 case Attribute::SwiftError: return 1ULL << 52; 1159 case Attribute::WriteOnly: return 1ULL << 53; 1160 case Attribute::Speculatable: return 1ULL << 54; 1161 case Attribute::StrictFP: return 1ULL << 55; 1162 case Attribute::SanitizeHWAddress: return 1ULL << 56; 1163 case Attribute::NoCfCheck: return 1ULL << 57; 1164 case Attribute::OptForFuzzing: return 1ULL << 58; 1165 case Attribute::ShadowCallStack: return 1ULL << 59; 1166 case Attribute::Dereferenceable: 1167 llvm_unreachable("dereferenceable attribute not supported in raw format"); 1168 break; 1169 case Attribute::DereferenceableOrNull: 1170 llvm_unreachable("dereferenceable_or_null attribute not supported in raw " 1171 "format"); 1172 break; 1173 case Attribute::ArgMemOnly: 1174 llvm_unreachable("argmemonly attribute not supported in raw format"); 1175 break; 1176 case Attribute::AllocSize: 1177 llvm_unreachable("allocsize not supported in raw format"); 1178 break; 1179 } 1180 llvm_unreachable("Unsupported attribute type"); 1181 } 1182 1183 static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) { 1184 if (!Val) return; 1185 1186 for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds; 1187 I = Attribute::AttrKind(I + 1)) { 1188 if (I == Attribute::Dereferenceable || 1189 I == Attribute::DereferenceableOrNull || 1190 I == Attribute::ArgMemOnly || 1191 I == Attribute::AllocSize) 1192 continue; 1193 if (uint64_t A = (Val & getRawAttributeMask(I))) { 1194 if (I == Attribute::Alignment) 1195 B.addAlignmentAttr(1ULL << ((A >> 16) - 1)); 1196 else if (I == Attribute::StackAlignment) 1197 B.addStackAlignmentAttr(1ULL << ((A >> 26)-1)); 1198 else 1199 B.addAttribute(I); 1200 } 1201 } 1202 } 1203 1204 /// \brief This fills an AttrBuilder object with the LLVM attributes that have 1205 /// been decoded from the given integer. This function must stay in sync with 1206 /// 'encodeLLVMAttributesForBitcode'. 1207 static void decodeLLVMAttributesForBitcode(AttrBuilder &B, 1208 uint64_t EncodedAttrs) { 1209 // FIXME: Remove in 4.0. 1210 1211 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift 1212 // the bits above 31 down by 11 bits. 1213 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; 1214 assert((!Alignment || isPowerOf2_32(Alignment)) && 1215 "Alignment must be a power of two."); 1216 1217 if (Alignment) 1218 B.addAlignmentAttr(Alignment); 1219 addRawAttributeValue(B, ((EncodedAttrs & (0xfffffULL << 32)) >> 11) | 1220 (EncodedAttrs & 0xffff)); 1221 } 1222 1223 Error BitcodeReader::parseAttributeBlock() { 1224 if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 1225 return error("Invalid record"); 1226 1227 if (!MAttributes.empty()) 1228 return error("Invalid multiple blocks"); 1229 1230 SmallVector<uint64_t, 64> Record; 1231 1232 SmallVector<AttributeList, 8> Attrs; 1233 1234 // Read all the records. 1235 while (true) { 1236 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1237 1238 switch (Entry.Kind) { 1239 case BitstreamEntry::SubBlock: // Handled for us already. 1240 case BitstreamEntry::Error: 1241 return error("Malformed block"); 1242 case BitstreamEntry::EndBlock: 1243 return Error::success(); 1244 case BitstreamEntry::Record: 1245 // The interesting case. 1246 break; 1247 } 1248 1249 // Read a record. 1250 Record.clear(); 1251 switch (Stream.readRecord(Entry.ID, Record)) { 1252 default: // Default behavior: ignore. 1253 break; 1254 case bitc::PARAMATTR_CODE_ENTRY_OLD: // ENTRY: [paramidx0, attr0, ...] 1255 // FIXME: Remove in 4.0. 1256 if (Record.size() & 1) 1257 return error("Invalid record"); 1258 1259 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1260 AttrBuilder B; 1261 decodeLLVMAttributesForBitcode(B, Record[i+1]); 1262 Attrs.push_back(AttributeList::get(Context, Record[i], B)); 1263 } 1264 1265 MAttributes.push_back(AttributeList::get(Context, Attrs)); 1266 Attrs.clear(); 1267 break; 1268 case bitc::PARAMATTR_CODE_ENTRY: // ENTRY: [attrgrp0, attrgrp1, ...] 1269 for (unsigned i = 0, e = Record.size(); i != e; ++i) 1270 Attrs.push_back(MAttributeGroups[Record[i]]); 1271 1272 MAttributes.push_back(AttributeList::get(Context, Attrs)); 1273 Attrs.clear(); 1274 break; 1275 } 1276 } 1277 } 1278 1279 // Returns Attribute::None on unrecognized codes. 1280 static Attribute::AttrKind getAttrFromCode(uint64_t Code) { 1281 switch (Code) { 1282 default: 1283 return Attribute::None; 1284 case bitc::ATTR_KIND_ALIGNMENT: 1285 return Attribute::Alignment; 1286 case bitc::ATTR_KIND_ALWAYS_INLINE: 1287 return Attribute::AlwaysInline; 1288 case bitc::ATTR_KIND_ARGMEMONLY: 1289 return Attribute::ArgMemOnly; 1290 case bitc::ATTR_KIND_BUILTIN: 1291 return Attribute::Builtin; 1292 case bitc::ATTR_KIND_BY_VAL: 1293 return Attribute::ByVal; 1294 case bitc::ATTR_KIND_IN_ALLOCA: 1295 return Attribute::InAlloca; 1296 case bitc::ATTR_KIND_COLD: 1297 return Attribute::Cold; 1298 case bitc::ATTR_KIND_CONVERGENT: 1299 return Attribute::Convergent; 1300 case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY: 1301 return Attribute::InaccessibleMemOnly; 1302 case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY: 1303 return Attribute::InaccessibleMemOrArgMemOnly; 1304 case bitc::ATTR_KIND_INLINE_HINT: 1305 return Attribute::InlineHint; 1306 case bitc::ATTR_KIND_IN_REG: 1307 return Attribute::InReg; 1308 case bitc::ATTR_KIND_JUMP_TABLE: 1309 return Attribute::JumpTable; 1310 case bitc::ATTR_KIND_MIN_SIZE: 1311 return Attribute::MinSize; 1312 case bitc::ATTR_KIND_NAKED: 1313 return Attribute::Naked; 1314 case bitc::ATTR_KIND_NEST: 1315 return Attribute::Nest; 1316 case bitc::ATTR_KIND_NO_ALIAS: 1317 return Attribute::NoAlias; 1318 case bitc::ATTR_KIND_NO_BUILTIN: 1319 return Attribute::NoBuiltin; 1320 case bitc::ATTR_KIND_NO_CAPTURE: 1321 return Attribute::NoCapture; 1322 case bitc::ATTR_KIND_NO_DUPLICATE: 1323 return Attribute::NoDuplicate; 1324 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: 1325 return Attribute::NoImplicitFloat; 1326 case bitc::ATTR_KIND_NO_INLINE: 1327 return Attribute::NoInline; 1328 case bitc::ATTR_KIND_NO_RECURSE: 1329 return Attribute::NoRecurse; 1330 case bitc::ATTR_KIND_NON_LAZY_BIND: 1331 return Attribute::NonLazyBind; 1332 case bitc::ATTR_KIND_NON_NULL: 1333 return Attribute::NonNull; 1334 case bitc::ATTR_KIND_DEREFERENCEABLE: 1335 return Attribute::Dereferenceable; 1336 case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL: 1337 return Attribute::DereferenceableOrNull; 1338 case bitc::ATTR_KIND_ALLOC_SIZE: 1339 return Attribute::AllocSize; 1340 case bitc::ATTR_KIND_NO_RED_ZONE: 1341 return Attribute::NoRedZone; 1342 case bitc::ATTR_KIND_NO_RETURN: 1343 return Attribute::NoReturn; 1344 case bitc::ATTR_KIND_NOCF_CHECK: 1345 return Attribute::NoCfCheck; 1346 case bitc::ATTR_KIND_NO_UNWIND: 1347 return Attribute::NoUnwind; 1348 case bitc::ATTR_KIND_OPT_FOR_FUZZING: 1349 return Attribute::OptForFuzzing; 1350 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: 1351 return Attribute::OptimizeForSize; 1352 case bitc::ATTR_KIND_OPTIMIZE_NONE: 1353 return Attribute::OptimizeNone; 1354 case bitc::ATTR_KIND_READ_NONE: 1355 return Attribute::ReadNone; 1356 case bitc::ATTR_KIND_READ_ONLY: 1357 return Attribute::ReadOnly; 1358 case bitc::ATTR_KIND_RETURNED: 1359 return Attribute::Returned; 1360 case bitc::ATTR_KIND_RETURNS_TWICE: 1361 return Attribute::ReturnsTwice; 1362 case bitc::ATTR_KIND_S_EXT: 1363 return Attribute::SExt; 1364 case bitc::ATTR_KIND_SPECULATABLE: 1365 return Attribute::Speculatable; 1366 case bitc::ATTR_KIND_STACK_ALIGNMENT: 1367 return Attribute::StackAlignment; 1368 case bitc::ATTR_KIND_STACK_PROTECT: 1369 return Attribute::StackProtect; 1370 case bitc::ATTR_KIND_STACK_PROTECT_REQ: 1371 return Attribute::StackProtectReq; 1372 case bitc::ATTR_KIND_STACK_PROTECT_STRONG: 1373 return Attribute::StackProtectStrong; 1374 case bitc::ATTR_KIND_SAFESTACK: 1375 return Attribute::SafeStack; 1376 case bitc::ATTR_KIND_SHADOWCALLSTACK: 1377 return Attribute::ShadowCallStack; 1378 case bitc::ATTR_KIND_STRICT_FP: 1379 return Attribute::StrictFP; 1380 case bitc::ATTR_KIND_STRUCT_RET: 1381 return Attribute::StructRet; 1382 case bitc::ATTR_KIND_SANITIZE_ADDRESS: 1383 return Attribute::SanitizeAddress; 1384 case bitc::ATTR_KIND_SANITIZE_HWADDRESS: 1385 return Attribute::SanitizeHWAddress; 1386 case bitc::ATTR_KIND_SANITIZE_THREAD: 1387 return Attribute::SanitizeThread; 1388 case bitc::ATTR_KIND_SANITIZE_MEMORY: 1389 return Attribute::SanitizeMemory; 1390 case bitc::ATTR_KIND_SWIFT_ERROR: 1391 return Attribute::SwiftError; 1392 case bitc::ATTR_KIND_SWIFT_SELF: 1393 return Attribute::SwiftSelf; 1394 case bitc::ATTR_KIND_UW_TABLE: 1395 return Attribute::UWTable; 1396 case bitc::ATTR_KIND_WRITEONLY: 1397 return Attribute::WriteOnly; 1398 case bitc::ATTR_KIND_Z_EXT: 1399 return Attribute::ZExt; 1400 } 1401 } 1402 1403 Error BitcodeReader::parseAlignmentValue(uint64_t Exponent, 1404 unsigned &Alignment) { 1405 // Note: Alignment in bitcode files is incremented by 1, so that zero 1406 // can be used for default alignment. 1407 if (Exponent > Value::MaxAlignmentExponent + 1) 1408 return error("Invalid alignment value"); 1409 Alignment = (1 << static_cast<unsigned>(Exponent)) >> 1; 1410 return Error::success(); 1411 } 1412 1413 Error BitcodeReader::parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind) { 1414 *Kind = getAttrFromCode(Code); 1415 if (*Kind == Attribute::None) 1416 return error("Unknown attribute kind (" + Twine(Code) + ")"); 1417 return Error::success(); 1418 } 1419 1420 Error BitcodeReader::parseAttributeGroupBlock() { 1421 if (Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) 1422 return error("Invalid record"); 1423 1424 if (!MAttributeGroups.empty()) 1425 return error("Invalid multiple blocks"); 1426 1427 SmallVector<uint64_t, 64> Record; 1428 1429 // Read all the records. 1430 while (true) { 1431 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1432 1433 switch (Entry.Kind) { 1434 case BitstreamEntry::SubBlock: // Handled for us already. 1435 case BitstreamEntry::Error: 1436 return error("Malformed block"); 1437 case BitstreamEntry::EndBlock: 1438 return Error::success(); 1439 case BitstreamEntry::Record: 1440 // The interesting case. 1441 break; 1442 } 1443 1444 // Read a record. 1445 Record.clear(); 1446 switch (Stream.readRecord(Entry.ID, Record)) { 1447 default: // Default behavior: ignore. 1448 break; 1449 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] 1450 if (Record.size() < 3) 1451 return error("Invalid record"); 1452 1453 uint64_t GrpID = Record[0]; 1454 uint64_t Idx = Record[1]; // Index of the object this attribute refers to. 1455 1456 AttrBuilder B; 1457 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1458 if (Record[i] == 0) { // Enum attribute 1459 Attribute::AttrKind Kind; 1460 if (Error Err = parseAttrKind(Record[++i], &Kind)) 1461 return Err; 1462 1463 B.addAttribute(Kind); 1464 } else if (Record[i] == 1) { // Integer attribute 1465 Attribute::AttrKind Kind; 1466 if (Error Err = parseAttrKind(Record[++i], &Kind)) 1467 return Err; 1468 if (Kind == Attribute::Alignment) 1469 B.addAlignmentAttr(Record[++i]); 1470 else if (Kind == Attribute::StackAlignment) 1471 B.addStackAlignmentAttr(Record[++i]); 1472 else if (Kind == Attribute::Dereferenceable) 1473 B.addDereferenceableAttr(Record[++i]); 1474 else if (Kind == Attribute::DereferenceableOrNull) 1475 B.addDereferenceableOrNullAttr(Record[++i]); 1476 else if (Kind == Attribute::AllocSize) 1477 B.addAllocSizeAttrFromRawRepr(Record[++i]); 1478 } else { // String attribute 1479 assert((Record[i] == 3 || Record[i] == 4) && 1480 "Invalid attribute group entry"); 1481 bool HasValue = (Record[i++] == 4); 1482 SmallString<64> KindStr; 1483 SmallString<64> ValStr; 1484 1485 while (Record[i] != 0 && i != e) 1486 KindStr += Record[i++]; 1487 assert(Record[i] == 0 && "Kind string not null terminated"); 1488 1489 if (HasValue) { 1490 // Has a value associated with it. 1491 ++i; // Skip the '0' that terminates the "kind" string. 1492 while (Record[i] != 0 && i != e) 1493 ValStr += Record[i++]; 1494 assert(Record[i] == 0 && "Value string not null terminated"); 1495 } 1496 1497 B.addAttribute(KindStr.str(), ValStr.str()); 1498 } 1499 } 1500 1501 MAttributeGroups[GrpID] = AttributeList::get(Context, Idx, B); 1502 break; 1503 } 1504 } 1505 } 1506 } 1507 1508 Error BitcodeReader::parseTypeTable() { 1509 if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 1510 return error("Invalid record"); 1511 1512 return parseTypeTableBody(); 1513 } 1514 1515 Error BitcodeReader::parseTypeTableBody() { 1516 if (!TypeList.empty()) 1517 return error("Invalid multiple blocks"); 1518 1519 SmallVector<uint64_t, 64> Record; 1520 unsigned NumRecords = 0; 1521 1522 SmallString<64> TypeName; 1523 1524 // Read all the records for this type table. 1525 while (true) { 1526 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1527 1528 switch (Entry.Kind) { 1529 case BitstreamEntry::SubBlock: // Handled for us already. 1530 case BitstreamEntry::Error: 1531 return error("Malformed block"); 1532 case BitstreamEntry::EndBlock: 1533 if (NumRecords != TypeList.size()) 1534 return error("Malformed block"); 1535 return Error::success(); 1536 case BitstreamEntry::Record: 1537 // The interesting case. 1538 break; 1539 } 1540 1541 // Read a record. 1542 Record.clear(); 1543 Type *ResultTy = nullptr; 1544 switch (Stream.readRecord(Entry.ID, Record)) { 1545 default: 1546 return error("Invalid value"); 1547 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 1548 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 1549 // type list. This allows us to reserve space. 1550 if (Record.size() < 1) 1551 return error("Invalid record"); 1552 TypeList.resize(Record[0]); 1553 continue; 1554 case bitc::TYPE_CODE_VOID: // VOID 1555 ResultTy = Type::getVoidTy(Context); 1556 break; 1557 case bitc::TYPE_CODE_HALF: // HALF 1558 ResultTy = Type::getHalfTy(Context); 1559 break; 1560 case bitc::TYPE_CODE_FLOAT: // FLOAT 1561 ResultTy = Type::getFloatTy(Context); 1562 break; 1563 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 1564 ResultTy = Type::getDoubleTy(Context); 1565 break; 1566 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 1567 ResultTy = Type::getX86_FP80Ty(Context); 1568 break; 1569 case bitc::TYPE_CODE_FP128: // FP128 1570 ResultTy = Type::getFP128Ty(Context); 1571 break; 1572 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 1573 ResultTy = Type::getPPC_FP128Ty(Context); 1574 break; 1575 case bitc::TYPE_CODE_LABEL: // LABEL 1576 ResultTy = Type::getLabelTy(Context); 1577 break; 1578 case bitc::TYPE_CODE_METADATA: // METADATA 1579 ResultTy = Type::getMetadataTy(Context); 1580 break; 1581 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 1582 ResultTy = Type::getX86_MMXTy(Context); 1583 break; 1584 case bitc::TYPE_CODE_TOKEN: // TOKEN 1585 ResultTy = Type::getTokenTy(Context); 1586 break; 1587 case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width] 1588 if (Record.size() < 1) 1589 return error("Invalid record"); 1590 1591 uint64_t NumBits = Record[0]; 1592 if (NumBits < IntegerType::MIN_INT_BITS || 1593 NumBits > IntegerType::MAX_INT_BITS) 1594 return error("Bitwidth for integer type out of range"); 1595 ResultTy = IntegerType::get(Context, NumBits); 1596 break; 1597 } 1598 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 1599 // [pointee type, address space] 1600 if (Record.size() < 1) 1601 return error("Invalid record"); 1602 unsigned AddressSpace = 0; 1603 if (Record.size() == 2) 1604 AddressSpace = Record[1]; 1605 ResultTy = getTypeByID(Record[0]); 1606 if (!ResultTy || 1607 !PointerType::isValidElementType(ResultTy)) 1608 return error("Invalid type"); 1609 ResultTy = PointerType::get(ResultTy, AddressSpace); 1610 break; 1611 } 1612 case bitc::TYPE_CODE_FUNCTION_OLD: { 1613 // FIXME: attrid is dead, remove it in LLVM 4.0 1614 // FUNCTION: [vararg, attrid, retty, paramty x N] 1615 if (Record.size() < 3) 1616 return error("Invalid record"); 1617 SmallVector<Type*, 8> ArgTys; 1618 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 1619 if (Type *T = getTypeByID(Record[i])) 1620 ArgTys.push_back(T); 1621 else 1622 break; 1623 } 1624 1625 ResultTy = getTypeByID(Record[2]); 1626 if (!ResultTy || ArgTys.size() < Record.size()-3) 1627 return error("Invalid type"); 1628 1629 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1630 break; 1631 } 1632 case bitc::TYPE_CODE_FUNCTION: { 1633 // FUNCTION: [vararg, retty, paramty x N] 1634 if (Record.size() < 2) 1635 return error("Invalid record"); 1636 SmallVector<Type*, 8> ArgTys; 1637 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1638 if (Type *T = getTypeByID(Record[i])) { 1639 if (!FunctionType::isValidArgumentType(T)) 1640 return error("Invalid function argument type"); 1641 ArgTys.push_back(T); 1642 } 1643 else 1644 break; 1645 } 1646 1647 ResultTy = getTypeByID(Record[1]); 1648 if (!ResultTy || ArgTys.size() < Record.size()-2) 1649 return error("Invalid type"); 1650 1651 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1652 break; 1653 } 1654 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 1655 if (Record.size() < 1) 1656 return error("Invalid record"); 1657 SmallVector<Type*, 8> EltTys; 1658 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1659 if (Type *T = getTypeByID(Record[i])) 1660 EltTys.push_back(T); 1661 else 1662 break; 1663 } 1664 if (EltTys.size() != Record.size()-1) 1665 return error("Invalid type"); 1666 ResultTy = StructType::get(Context, EltTys, Record[0]); 1667 break; 1668 } 1669 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 1670 if (convertToString(Record, 0, TypeName)) 1671 return error("Invalid record"); 1672 continue; 1673 1674 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 1675 if (Record.size() < 1) 1676 return error("Invalid record"); 1677 1678 if (NumRecords >= TypeList.size()) 1679 return error("Invalid TYPE table"); 1680 1681 // Check to see if this was forward referenced, if so fill in the temp. 1682 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1683 if (Res) { 1684 Res->setName(TypeName); 1685 TypeList[NumRecords] = nullptr; 1686 } else // Otherwise, create a new struct. 1687 Res = createIdentifiedStructType(Context, TypeName); 1688 TypeName.clear(); 1689 1690 SmallVector<Type*, 8> EltTys; 1691 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1692 if (Type *T = getTypeByID(Record[i])) 1693 EltTys.push_back(T); 1694 else 1695 break; 1696 } 1697 if (EltTys.size() != Record.size()-1) 1698 return error("Invalid record"); 1699 Res->setBody(EltTys, Record[0]); 1700 ResultTy = Res; 1701 break; 1702 } 1703 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 1704 if (Record.size() != 1) 1705 return error("Invalid record"); 1706 1707 if (NumRecords >= TypeList.size()) 1708 return error("Invalid TYPE table"); 1709 1710 // Check to see if this was forward referenced, if so fill in the temp. 1711 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1712 if (Res) { 1713 Res->setName(TypeName); 1714 TypeList[NumRecords] = nullptr; 1715 } else // Otherwise, create a new struct with no body. 1716 Res = createIdentifiedStructType(Context, TypeName); 1717 TypeName.clear(); 1718 ResultTy = Res; 1719 break; 1720 } 1721 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 1722 if (Record.size() < 2) 1723 return error("Invalid record"); 1724 ResultTy = getTypeByID(Record[1]); 1725 if (!ResultTy || !ArrayType::isValidElementType(ResultTy)) 1726 return error("Invalid type"); 1727 ResultTy = ArrayType::get(ResultTy, Record[0]); 1728 break; 1729 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] 1730 if (Record.size() < 2) 1731 return error("Invalid record"); 1732 if (Record[0] == 0) 1733 return error("Invalid vector length"); 1734 ResultTy = getTypeByID(Record[1]); 1735 if (!ResultTy || !StructType::isValidElementType(ResultTy)) 1736 return error("Invalid type"); 1737 ResultTy = VectorType::get(ResultTy, Record[0]); 1738 break; 1739 } 1740 1741 if (NumRecords >= TypeList.size()) 1742 return error("Invalid TYPE table"); 1743 if (TypeList[NumRecords]) 1744 return error( 1745 "Invalid TYPE table: Only named structs can be forward referenced"); 1746 assert(ResultTy && "Didn't read a type?"); 1747 TypeList[NumRecords++] = ResultTy; 1748 } 1749 } 1750 1751 Error BitcodeReader::parseOperandBundleTags() { 1752 if (Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID)) 1753 return error("Invalid record"); 1754 1755 if (!BundleTags.empty()) 1756 return error("Invalid multiple blocks"); 1757 1758 SmallVector<uint64_t, 64> Record; 1759 1760 while (true) { 1761 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1762 1763 switch (Entry.Kind) { 1764 case BitstreamEntry::SubBlock: // Handled for us already. 1765 case BitstreamEntry::Error: 1766 return error("Malformed block"); 1767 case BitstreamEntry::EndBlock: 1768 return Error::success(); 1769 case BitstreamEntry::Record: 1770 // The interesting case. 1771 break; 1772 } 1773 1774 // Tags are implicitly mapped to integers by their order. 1775 1776 if (Stream.readRecord(Entry.ID, Record) != bitc::OPERAND_BUNDLE_TAG) 1777 return error("Invalid record"); 1778 1779 // OPERAND_BUNDLE_TAG: [strchr x N] 1780 BundleTags.emplace_back(); 1781 if (convertToString(Record, 0, BundleTags.back())) 1782 return error("Invalid record"); 1783 Record.clear(); 1784 } 1785 } 1786 1787 Error BitcodeReader::parseSyncScopeNames() { 1788 if (Stream.EnterSubBlock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID)) 1789 return error("Invalid record"); 1790 1791 if (!SSIDs.empty()) 1792 return error("Invalid multiple synchronization scope names blocks"); 1793 1794 SmallVector<uint64_t, 64> Record; 1795 while (true) { 1796 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1797 switch (Entry.Kind) { 1798 case BitstreamEntry::SubBlock: // Handled for us already. 1799 case BitstreamEntry::Error: 1800 return error("Malformed block"); 1801 case BitstreamEntry::EndBlock: 1802 if (SSIDs.empty()) 1803 return error("Invalid empty synchronization scope names block"); 1804 return Error::success(); 1805 case BitstreamEntry::Record: 1806 // The interesting case. 1807 break; 1808 } 1809 1810 // Synchronization scope names are implicitly mapped to synchronization 1811 // scope IDs by their order. 1812 1813 if (Stream.readRecord(Entry.ID, Record) != bitc::SYNC_SCOPE_NAME) 1814 return error("Invalid record"); 1815 1816 SmallString<16> SSN; 1817 if (convertToString(Record, 0, SSN)) 1818 return error("Invalid record"); 1819 1820 SSIDs.push_back(Context.getOrInsertSyncScopeID(SSN)); 1821 Record.clear(); 1822 } 1823 } 1824 1825 /// Associate a value with its name from the given index in the provided record. 1826 Expected<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record, 1827 unsigned NameIndex, Triple &TT) { 1828 SmallString<128> ValueName; 1829 if (convertToString(Record, NameIndex, ValueName)) 1830 return error("Invalid record"); 1831 unsigned ValueID = Record[0]; 1832 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 1833 return error("Invalid record"); 1834 Value *V = ValueList[ValueID]; 1835 1836 StringRef NameStr(ValueName.data(), ValueName.size()); 1837 if (NameStr.find_first_of(0) != StringRef::npos) 1838 return error("Invalid value name"); 1839 V->setName(NameStr); 1840 auto *GO = dyn_cast<GlobalObject>(V); 1841 if (GO) { 1842 if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) { 1843 if (TT.supportsCOMDAT()) 1844 GO->setComdat(TheModule->getOrInsertComdat(V->getName())); 1845 else 1846 GO->setComdat(nullptr); 1847 } 1848 } 1849 return V; 1850 } 1851 1852 /// Helper to note and return the current location, and jump to the given 1853 /// offset. 1854 static uint64_t jumpToValueSymbolTable(uint64_t Offset, 1855 BitstreamCursor &Stream) { 1856 // Save the current parsing location so we can jump back at the end 1857 // of the VST read. 1858 uint64_t CurrentBit = Stream.GetCurrentBitNo(); 1859 Stream.JumpToBit(Offset * 32); 1860 #ifndef NDEBUG 1861 // Do some checking if we are in debug mode. 1862 BitstreamEntry Entry = Stream.advance(); 1863 assert(Entry.Kind == BitstreamEntry::SubBlock); 1864 assert(Entry.ID == bitc::VALUE_SYMTAB_BLOCK_ID); 1865 #else 1866 // In NDEBUG mode ignore the output so we don't get an unused variable 1867 // warning. 1868 Stream.advance(); 1869 #endif 1870 return CurrentBit; 1871 } 1872 1873 void BitcodeReader::setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, 1874 Function *F, 1875 ArrayRef<uint64_t> Record) { 1876 // Note that we subtract 1 here because the offset is relative to one word 1877 // before the start of the identification or module block, which was 1878 // historically always the start of the regular bitcode header. 1879 uint64_t FuncWordOffset = Record[1] - 1; 1880 uint64_t FuncBitOffset = FuncWordOffset * 32; 1881 DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta; 1882 // Set the LastFunctionBlockBit to point to the last function block. 1883 // Later when parsing is resumed after function materialization, 1884 // we can simply skip that last function block. 1885 if (FuncBitOffset > LastFunctionBlockBit) 1886 LastFunctionBlockBit = FuncBitOffset; 1887 } 1888 1889 /// Read a new-style GlobalValue symbol table. 1890 Error BitcodeReader::parseGlobalValueSymbolTable() { 1891 unsigned FuncBitcodeOffsetDelta = 1892 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 1893 1894 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 1895 return error("Invalid record"); 1896 1897 SmallVector<uint64_t, 64> Record; 1898 while (true) { 1899 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1900 1901 switch (Entry.Kind) { 1902 case BitstreamEntry::SubBlock: 1903 case BitstreamEntry::Error: 1904 return error("Malformed block"); 1905 case BitstreamEntry::EndBlock: 1906 return Error::success(); 1907 case BitstreamEntry::Record: 1908 break; 1909 } 1910 1911 Record.clear(); 1912 switch (Stream.readRecord(Entry.ID, Record)) { 1913 case bitc::VST_CODE_FNENTRY: // [valueid, offset] 1914 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, 1915 cast<Function>(ValueList[Record[0]]), Record); 1916 break; 1917 } 1918 } 1919 } 1920 1921 /// Parse the value symbol table at either the current parsing location or 1922 /// at the given bit offset if provided. 1923 Error BitcodeReader::parseValueSymbolTable(uint64_t Offset) { 1924 uint64_t CurrentBit; 1925 // Pass in the Offset to distinguish between calling for the module-level 1926 // VST (where we want to jump to the VST offset) and the function-level 1927 // VST (where we don't). 1928 if (Offset > 0) { 1929 CurrentBit = jumpToValueSymbolTable(Offset, Stream); 1930 // If this module uses a string table, read this as a module-level VST. 1931 if (UseStrtab) { 1932 if (Error Err = parseGlobalValueSymbolTable()) 1933 return Err; 1934 Stream.JumpToBit(CurrentBit); 1935 return Error::success(); 1936 } 1937 // Otherwise, the VST will be in a similar format to a function-level VST, 1938 // and will contain symbol names. 1939 } 1940 1941 // Compute the delta between the bitcode indices in the VST (the word offset 1942 // to the word-aligned ENTER_SUBBLOCK for the function block, and that 1943 // expected by the lazy reader. The reader's EnterSubBlock expects to have 1944 // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID 1945 // (size BlockIDWidth). Note that we access the stream's AbbrevID width here 1946 // just before entering the VST subblock because: 1) the EnterSubBlock 1947 // changes the AbbrevID width; 2) the VST block is nested within the same 1948 // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same 1949 // AbbrevID width before calling EnterSubBlock; and 3) when we want to 1950 // jump to the FUNCTION_BLOCK using this offset later, we don't want 1951 // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK. 1952 unsigned FuncBitcodeOffsetDelta = 1953 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 1954 1955 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 1956 return error("Invalid record"); 1957 1958 SmallVector<uint64_t, 64> Record; 1959 1960 Triple TT(TheModule->getTargetTriple()); 1961 1962 // Read all the records for this value table. 1963 SmallString<128> ValueName; 1964 1965 while (true) { 1966 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1967 1968 switch (Entry.Kind) { 1969 case BitstreamEntry::SubBlock: // Handled for us already. 1970 case BitstreamEntry::Error: 1971 return error("Malformed block"); 1972 case BitstreamEntry::EndBlock: 1973 if (Offset > 0) 1974 Stream.JumpToBit(CurrentBit); 1975 return Error::success(); 1976 case BitstreamEntry::Record: 1977 // The interesting case. 1978 break; 1979 } 1980 1981 // Read a record. 1982 Record.clear(); 1983 switch (Stream.readRecord(Entry.ID, Record)) { 1984 default: // Default behavior: unknown type. 1985 break; 1986 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 1987 Expected<Value *> ValOrErr = recordValue(Record, 1, TT); 1988 if (Error Err = ValOrErr.takeError()) 1989 return Err; 1990 ValOrErr.get(); 1991 break; 1992 } 1993 case bitc::VST_CODE_FNENTRY: { 1994 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 1995 Expected<Value *> ValOrErr = recordValue(Record, 2, TT); 1996 if (Error Err = ValOrErr.takeError()) 1997 return Err; 1998 Value *V = ValOrErr.get(); 1999 2000 // Ignore function offsets emitted for aliases of functions in older 2001 // versions of LLVM. 2002 if (auto *F = dyn_cast<Function>(V)) 2003 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, F, Record); 2004 break; 2005 } 2006 case bitc::VST_CODE_BBENTRY: { 2007 if (convertToString(Record, 1, ValueName)) 2008 return error("Invalid record"); 2009 BasicBlock *BB = getBasicBlock(Record[0]); 2010 if (!BB) 2011 return error("Invalid record"); 2012 2013 BB->setName(StringRef(ValueName.data(), ValueName.size())); 2014 ValueName.clear(); 2015 break; 2016 } 2017 } 2018 } 2019 } 2020 2021 /// Decode a signed value stored with the sign bit in the LSB for dense VBR 2022 /// encoding. 2023 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { 2024 if ((V & 1) == 0) 2025 return V >> 1; 2026 if (V != 1) 2027 return -(V >> 1); 2028 // There is no such thing as -0 with integers. "-0" really means MININT. 2029 return 1ULL << 63; 2030 } 2031 2032 /// Resolve all of the initializers for global values and aliases that we can. 2033 Error BitcodeReader::resolveGlobalAndIndirectSymbolInits() { 2034 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInitWorklist; 2035 std::vector<std::pair<GlobalIndirectSymbol *, unsigned>> 2036 IndirectSymbolInitWorklist; 2037 std::vector<std::pair<Function *, unsigned>> FunctionPrefixWorklist; 2038 std::vector<std::pair<Function *, unsigned>> FunctionPrologueWorklist; 2039 std::vector<std::pair<Function *, unsigned>> FunctionPersonalityFnWorklist; 2040 2041 GlobalInitWorklist.swap(GlobalInits); 2042 IndirectSymbolInitWorklist.swap(IndirectSymbolInits); 2043 FunctionPrefixWorklist.swap(FunctionPrefixes); 2044 FunctionPrologueWorklist.swap(FunctionPrologues); 2045 FunctionPersonalityFnWorklist.swap(FunctionPersonalityFns); 2046 2047 while (!GlobalInitWorklist.empty()) { 2048 unsigned ValID = GlobalInitWorklist.back().second; 2049 if (ValID >= ValueList.size()) { 2050 // Not ready to resolve this yet, it requires something later in the file. 2051 GlobalInits.push_back(GlobalInitWorklist.back()); 2052 } else { 2053 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2054 GlobalInitWorklist.back().first->setInitializer(C); 2055 else 2056 return error("Expected a constant"); 2057 } 2058 GlobalInitWorklist.pop_back(); 2059 } 2060 2061 while (!IndirectSymbolInitWorklist.empty()) { 2062 unsigned ValID = IndirectSymbolInitWorklist.back().second; 2063 if (ValID >= ValueList.size()) { 2064 IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back()); 2065 } else { 2066 Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]); 2067 if (!C) 2068 return error("Expected a constant"); 2069 GlobalIndirectSymbol *GIS = IndirectSymbolInitWorklist.back().first; 2070 if (isa<GlobalAlias>(GIS) && C->getType() != GIS->getType()) 2071 return error("Alias and aliasee types don't match"); 2072 GIS->setIndirectSymbol(C); 2073 } 2074 IndirectSymbolInitWorklist.pop_back(); 2075 } 2076 2077 while (!FunctionPrefixWorklist.empty()) { 2078 unsigned ValID = FunctionPrefixWorklist.back().second; 2079 if (ValID >= ValueList.size()) { 2080 FunctionPrefixes.push_back(FunctionPrefixWorklist.back()); 2081 } else { 2082 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2083 FunctionPrefixWorklist.back().first->setPrefixData(C); 2084 else 2085 return error("Expected a constant"); 2086 } 2087 FunctionPrefixWorklist.pop_back(); 2088 } 2089 2090 while (!FunctionPrologueWorklist.empty()) { 2091 unsigned ValID = FunctionPrologueWorklist.back().second; 2092 if (ValID >= ValueList.size()) { 2093 FunctionPrologues.push_back(FunctionPrologueWorklist.back()); 2094 } else { 2095 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2096 FunctionPrologueWorklist.back().first->setPrologueData(C); 2097 else 2098 return error("Expected a constant"); 2099 } 2100 FunctionPrologueWorklist.pop_back(); 2101 } 2102 2103 while (!FunctionPersonalityFnWorklist.empty()) { 2104 unsigned ValID = FunctionPersonalityFnWorklist.back().second; 2105 if (ValID >= ValueList.size()) { 2106 FunctionPersonalityFns.push_back(FunctionPersonalityFnWorklist.back()); 2107 } else { 2108 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2109 FunctionPersonalityFnWorklist.back().first->setPersonalityFn(C); 2110 else 2111 return error("Expected a constant"); 2112 } 2113 FunctionPersonalityFnWorklist.pop_back(); 2114 } 2115 2116 return Error::success(); 2117 } 2118 2119 static APInt readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { 2120 SmallVector<uint64_t, 8> Words(Vals.size()); 2121 transform(Vals, Words.begin(), 2122 BitcodeReader::decodeSignRotatedValue); 2123 2124 return APInt(TypeBits, Words); 2125 } 2126 2127 Error BitcodeReader::parseConstants() { 2128 if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 2129 return error("Invalid record"); 2130 2131 SmallVector<uint64_t, 64> Record; 2132 2133 // Read all the records for this value table. 2134 Type *CurTy = Type::getInt32Ty(Context); 2135 unsigned NextCstNo = ValueList.size(); 2136 2137 while (true) { 2138 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2139 2140 switch (Entry.Kind) { 2141 case BitstreamEntry::SubBlock: // Handled for us already. 2142 case BitstreamEntry::Error: 2143 return error("Malformed block"); 2144 case BitstreamEntry::EndBlock: 2145 if (NextCstNo != ValueList.size()) 2146 return error("Invalid constant reference"); 2147 2148 // Once all the constants have been read, go through and resolve forward 2149 // references. 2150 ValueList.resolveConstantForwardRefs(); 2151 return Error::success(); 2152 case BitstreamEntry::Record: 2153 // The interesting case. 2154 break; 2155 } 2156 2157 // Read a record. 2158 Record.clear(); 2159 Type *VoidType = Type::getVoidTy(Context); 2160 Value *V = nullptr; 2161 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 2162 switch (BitCode) { 2163 default: // Default behavior: unknown constant 2164 case bitc::CST_CODE_UNDEF: // UNDEF 2165 V = UndefValue::get(CurTy); 2166 break; 2167 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 2168 if (Record.empty()) 2169 return error("Invalid record"); 2170 if (Record[0] >= TypeList.size() || !TypeList[Record[0]]) 2171 return error("Invalid record"); 2172 if (TypeList[Record[0]] == VoidType) 2173 return error("Invalid constant type"); 2174 CurTy = TypeList[Record[0]]; 2175 continue; // Skip the ValueList manipulation. 2176 case bitc::CST_CODE_NULL: // NULL 2177 V = Constant::getNullValue(CurTy); 2178 break; 2179 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 2180 if (!CurTy->isIntegerTy() || Record.empty()) 2181 return error("Invalid record"); 2182 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); 2183 break; 2184 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 2185 if (!CurTy->isIntegerTy() || Record.empty()) 2186 return error("Invalid record"); 2187 2188 APInt VInt = 2189 readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth()); 2190 V = ConstantInt::get(Context, VInt); 2191 2192 break; 2193 } 2194 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 2195 if (Record.empty()) 2196 return error("Invalid record"); 2197 if (CurTy->isHalfTy()) 2198 V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf(), 2199 APInt(16, (uint16_t)Record[0]))); 2200 else if (CurTy->isFloatTy()) 2201 V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle(), 2202 APInt(32, (uint32_t)Record[0]))); 2203 else if (CurTy->isDoubleTy()) 2204 V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble(), 2205 APInt(64, Record[0]))); 2206 else if (CurTy->isX86_FP80Ty()) { 2207 // Bits are not stored the same way as a normal i80 APInt, compensate. 2208 uint64_t Rearrange[2]; 2209 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 2210 Rearrange[1] = Record[0] >> 48; 2211 V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended(), 2212 APInt(80, Rearrange))); 2213 } else if (CurTy->isFP128Ty()) 2214 V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad(), 2215 APInt(128, Record))); 2216 else if (CurTy->isPPC_FP128Ty()) 2217 V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble(), 2218 APInt(128, Record))); 2219 else 2220 V = UndefValue::get(CurTy); 2221 break; 2222 } 2223 2224 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 2225 if (Record.empty()) 2226 return error("Invalid record"); 2227 2228 unsigned Size = Record.size(); 2229 SmallVector<Constant*, 16> Elts; 2230 2231 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 2232 for (unsigned i = 0; i != Size; ++i) 2233 Elts.push_back(ValueList.getConstantFwdRef(Record[i], 2234 STy->getElementType(i))); 2235 V = ConstantStruct::get(STy, Elts); 2236 } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) { 2237 Type *EltTy = ATy->getElementType(); 2238 for (unsigned i = 0; i != Size; ++i) 2239 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2240 V = ConstantArray::get(ATy, Elts); 2241 } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) { 2242 Type *EltTy = VTy->getElementType(); 2243 for (unsigned i = 0; i != Size; ++i) 2244 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2245 V = ConstantVector::get(Elts); 2246 } else { 2247 V = UndefValue::get(CurTy); 2248 } 2249 break; 2250 } 2251 case bitc::CST_CODE_STRING: // STRING: [values] 2252 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 2253 if (Record.empty()) 2254 return error("Invalid record"); 2255 2256 SmallString<16> Elts(Record.begin(), Record.end()); 2257 V = ConstantDataArray::getString(Context, Elts, 2258 BitCode == bitc::CST_CODE_CSTRING); 2259 break; 2260 } 2261 case bitc::CST_CODE_DATA: {// DATA: [n x value] 2262 if (Record.empty()) 2263 return error("Invalid record"); 2264 2265 Type *EltTy = cast<SequentialType>(CurTy)->getElementType(); 2266 if (EltTy->isIntegerTy(8)) { 2267 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); 2268 if (isa<VectorType>(CurTy)) 2269 V = ConstantDataVector::get(Context, Elts); 2270 else 2271 V = ConstantDataArray::get(Context, Elts); 2272 } else if (EltTy->isIntegerTy(16)) { 2273 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2274 if (isa<VectorType>(CurTy)) 2275 V = ConstantDataVector::get(Context, Elts); 2276 else 2277 V = ConstantDataArray::get(Context, Elts); 2278 } else if (EltTy->isIntegerTy(32)) { 2279 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2280 if (isa<VectorType>(CurTy)) 2281 V = ConstantDataVector::get(Context, Elts); 2282 else 2283 V = ConstantDataArray::get(Context, Elts); 2284 } else if (EltTy->isIntegerTy(64)) { 2285 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2286 if (isa<VectorType>(CurTy)) 2287 V = ConstantDataVector::get(Context, Elts); 2288 else 2289 V = ConstantDataArray::get(Context, Elts); 2290 } else if (EltTy->isHalfTy()) { 2291 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2292 if (isa<VectorType>(CurTy)) 2293 V = ConstantDataVector::getFP(Context, Elts); 2294 else 2295 V = ConstantDataArray::getFP(Context, Elts); 2296 } else if (EltTy->isFloatTy()) { 2297 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2298 if (isa<VectorType>(CurTy)) 2299 V = ConstantDataVector::getFP(Context, Elts); 2300 else 2301 V = ConstantDataArray::getFP(Context, Elts); 2302 } else if (EltTy->isDoubleTy()) { 2303 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2304 if (isa<VectorType>(CurTy)) 2305 V = ConstantDataVector::getFP(Context, Elts); 2306 else 2307 V = ConstantDataArray::getFP(Context, Elts); 2308 } else { 2309 return error("Invalid type for value"); 2310 } 2311 break; 2312 } 2313 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 2314 if (Record.size() < 3) 2315 return error("Invalid record"); 2316 int Opc = getDecodedBinaryOpcode(Record[0], CurTy); 2317 if (Opc < 0) { 2318 V = UndefValue::get(CurTy); // Unknown binop. 2319 } else { 2320 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 2321 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy); 2322 unsigned Flags = 0; 2323 if (Record.size() >= 4) { 2324 if (Opc == Instruction::Add || 2325 Opc == Instruction::Sub || 2326 Opc == Instruction::Mul || 2327 Opc == Instruction::Shl) { 2328 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 2329 Flags |= OverflowingBinaryOperator::NoSignedWrap; 2330 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 2331 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 2332 } else if (Opc == Instruction::SDiv || 2333 Opc == Instruction::UDiv || 2334 Opc == Instruction::LShr || 2335 Opc == Instruction::AShr) { 2336 if (Record[3] & (1 << bitc::PEO_EXACT)) 2337 Flags |= SDivOperator::IsExact; 2338 } 2339 } 2340 V = ConstantExpr::get(Opc, LHS, RHS, Flags); 2341 } 2342 break; 2343 } 2344 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 2345 if (Record.size() < 3) 2346 return error("Invalid record"); 2347 int Opc = getDecodedCastOpcode(Record[0]); 2348 if (Opc < 0) { 2349 V = UndefValue::get(CurTy); // Unknown cast. 2350 } else { 2351 Type *OpTy = getTypeByID(Record[1]); 2352 if (!OpTy) 2353 return error("Invalid record"); 2354 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy); 2355 V = UpgradeBitCastExpr(Opc, Op, CurTy); 2356 if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy); 2357 } 2358 break; 2359 } 2360 case bitc::CST_CODE_CE_INBOUNDS_GEP: // [ty, n x operands] 2361 case bitc::CST_CODE_CE_GEP: // [ty, n x operands] 2362 case bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX: { // [ty, flags, n x 2363 // operands] 2364 unsigned OpNum = 0; 2365 Type *PointeeType = nullptr; 2366 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX || 2367 Record.size() % 2) 2368 PointeeType = getTypeByID(Record[OpNum++]); 2369 2370 bool InBounds = false; 2371 Optional<unsigned> InRangeIndex; 2372 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX) { 2373 uint64_t Op = Record[OpNum++]; 2374 InBounds = Op & 1; 2375 InRangeIndex = Op >> 1; 2376 } else if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP) 2377 InBounds = true; 2378 2379 SmallVector<Constant*, 16> Elts; 2380 while (OpNum != Record.size()) { 2381 Type *ElTy = getTypeByID(Record[OpNum++]); 2382 if (!ElTy) 2383 return error("Invalid record"); 2384 Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy)); 2385 } 2386 2387 if (PointeeType && 2388 PointeeType != 2389 cast<PointerType>(Elts[0]->getType()->getScalarType()) 2390 ->getElementType()) 2391 return error("Explicit gep operator type does not match pointee type " 2392 "of pointer operand"); 2393 2394 if (Elts.size() < 1) 2395 return error("Invalid gep with no operands"); 2396 2397 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 2398 V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices, 2399 InBounds, InRangeIndex); 2400 break; 2401 } 2402 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] 2403 if (Record.size() < 3) 2404 return error("Invalid record"); 2405 2406 Type *SelectorTy = Type::getInt1Ty(Context); 2407 2408 // The selector might be an i1 or an <n x i1> 2409 // Get the type from the ValueList before getting a forward ref. 2410 if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) 2411 if (Value *V = ValueList[Record[0]]) 2412 if (SelectorTy != V->getType()) 2413 SelectorTy = VectorType::get(SelectorTy, VTy->getNumElements()); 2414 2415 V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0], 2416 SelectorTy), 2417 ValueList.getConstantFwdRef(Record[1],CurTy), 2418 ValueList.getConstantFwdRef(Record[2],CurTy)); 2419 break; 2420 } 2421 case bitc::CST_CODE_CE_EXTRACTELT 2422 : { // CE_EXTRACTELT: [opty, opval, opty, opval] 2423 if (Record.size() < 3) 2424 return error("Invalid record"); 2425 VectorType *OpTy = 2426 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2427 if (!OpTy) 2428 return error("Invalid record"); 2429 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2430 Constant *Op1 = nullptr; 2431 if (Record.size() == 4) { 2432 Type *IdxTy = getTypeByID(Record[2]); 2433 if (!IdxTy) 2434 return error("Invalid record"); 2435 Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2436 } else // TODO: Remove with llvm 4.0 2437 Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2438 if (!Op1) 2439 return error("Invalid record"); 2440 V = ConstantExpr::getExtractElement(Op0, Op1); 2441 break; 2442 } 2443 case bitc::CST_CODE_CE_INSERTELT 2444 : { // CE_INSERTELT: [opval, opval, opty, opval] 2445 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2446 if (Record.size() < 3 || !OpTy) 2447 return error("Invalid record"); 2448 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2449 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], 2450 OpTy->getElementType()); 2451 Constant *Op2 = nullptr; 2452 if (Record.size() == 4) { 2453 Type *IdxTy = getTypeByID(Record[2]); 2454 if (!IdxTy) 2455 return error("Invalid record"); 2456 Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2457 } else // TODO: Remove with llvm 4.0 2458 Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2459 if (!Op2) 2460 return error("Invalid record"); 2461 V = ConstantExpr::getInsertElement(Op0, Op1, Op2); 2462 break; 2463 } 2464 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 2465 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2466 if (Record.size() < 3 || !OpTy) 2467 return error("Invalid record"); 2468 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2469 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy); 2470 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 2471 OpTy->getNumElements()); 2472 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy); 2473 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 2474 break; 2475 } 2476 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 2477 VectorType *RTy = dyn_cast<VectorType>(CurTy); 2478 VectorType *OpTy = 2479 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2480 if (Record.size() < 4 || !RTy || !OpTy) 2481 return error("Invalid record"); 2482 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2483 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2484 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 2485 RTy->getNumElements()); 2486 Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy); 2487 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 2488 break; 2489 } 2490 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 2491 if (Record.size() < 4) 2492 return error("Invalid record"); 2493 Type *OpTy = getTypeByID(Record[0]); 2494 if (!OpTy) 2495 return error("Invalid record"); 2496 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2497 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2498 2499 if (OpTy->isFPOrFPVectorTy()) 2500 V = ConstantExpr::getFCmp(Record[3], Op0, Op1); 2501 else 2502 V = ConstantExpr::getICmp(Record[3], Op0, Op1); 2503 break; 2504 } 2505 // This maintains backward compatibility, pre-asm dialect keywords. 2506 // FIXME: Remove with the 4.0 release. 2507 case bitc::CST_CODE_INLINEASM_OLD: { 2508 if (Record.size() < 2) 2509 return error("Invalid record"); 2510 std::string AsmStr, ConstrStr; 2511 bool HasSideEffects = Record[0] & 1; 2512 bool IsAlignStack = Record[0] >> 1; 2513 unsigned AsmStrSize = Record[1]; 2514 if (2+AsmStrSize >= Record.size()) 2515 return error("Invalid record"); 2516 unsigned ConstStrSize = Record[2+AsmStrSize]; 2517 if (3+AsmStrSize+ConstStrSize > Record.size()) 2518 return error("Invalid record"); 2519 2520 for (unsigned i = 0; i != AsmStrSize; ++i) 2521 AsmStr += (char)Record[2+i]; 2522 for (unsigned i = 0; i != ConstStrSize; ++i) 2523 ConstrStr += (char)Record[3+AsmStrSize+i]; 2524 PointerType *PTy = cast<PointerType>(CurTy); 2525 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 2526 AsmStr, ConstrStr, HasSideEffects, IsAlignStack); 2527 break; 2528 } 2529 // This version adds support for the asm dialect keywords (e.g., 2530 // inteldialect). 2531 case bitc::CST_CODE_INLINEASM: { 2532 if (Record.size() < 2) 2533 return error("Invalid record"); 2534 std::string AsmStr, ConstrStr; 2535 bool HasSideEffects = Record[0] & 1; 2536 bool IsAlignStack = (Record[0] >> 1) & 1; 2537 unsigned AsmDialect = Record[0] >> 2; 2538 unsigned AsmStrSize = Record[1]; 2539 if (2+AsmStrSize >= Record.size()) 2540 return error("Invalid record"); 2541 unsigned ConstStrSize = Record[2+AsmStrSize]; 2542 if (3+AsmStrSize+ConstStrSize > Record.size()) 2543 return error("Invalid record"); 2544 2545 for (unsigned i = 0; i != AsmStrSize; ++i) 2546 AsmStr += (char)Record[2+i]; 2547 for (unsigned i = 0; i != ConstStrSize; ++i) 2548 ConstrStr += (char)Record[3+AsmStrSize+i]; 2549 PointerType *PTy = cast<PointerType>(CurTy); 2550 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 2551 AsmStr, ConstrStr, HasSideEffects, IsAlignStack, 2552 InlineAsm::AsmDialect(AsmDialect)); 2553 break; 2554 } 2555 case bitc::CST_CODE_BLOCKADDRESS:{ 2556 if (Record.size() < 3) 2557 return error("Invalid record"); 2558 Type *FnTy = getTypeByID(Record[0]); 2559 if (!FnTy) 2560 return error("Invalid record"); 2561 Function *Fn = 2562 dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy)); 2563 if (!Fn) 2564 return error("Invalid record"); 2565 2566 // If the function is already parsed we can insert the block address right 2567 // away. 2568 BasicBlock *BB; 2569 unsigned BBID = Record[2]; 2570 if (!BBID) 2571 // Invalid reference to entry block. 2572 return error("Invalid ID"); 2573 if (!Fn->empty()) { 2574 Function::iterator BBI = Fn->begin(), BBE = Fn->end(); 2575 for (size_t I = 0, E = BBID; I != E; ++I) { 2576 if (BBI == BBE) 2577 return error("Invalid ID"); 2578 ++BBI; 2579 } 2580 BB = &*BBI; 2581 } else { 2582 // Otherwise insert a placeholder and remember it so it can be inserted 2583 // when the function is parsed. 2584 auto &FwdBBs = BasicBlockFwdRefs[Fn]; 2585 if (FwdBBs.empty()) 2586 BasicBlockFwdRefQueue.push_back(Fn); 2587 if (FwdBBs.size() < BBID + 1) 2588 FwdBBs.resize(BBID + 1); 2589 if (!FwdBBs[BBID]) 2590 FwdBBs[BBID] = BasicBlock::Create(Context); 2591 BB = FwdBBs[BBID]; 2592 } 2593 V = BlockAddress::get(Fn, BB); 2594 break; 2595 } 2596 } 2597 2598 ValueList.assignValue(V, NextCstNo); 2599 ++NextCstNo; 2600 } 2601 } 2602 2603 Error BitcodeReader::parseUseLists() { 2604 if (Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 2605 return error("Invalid record"); 2606 2607 // Read all the records. 2608 SmallVector<uint64_t, 64> Record; 2609 2610 while (true) { 2611 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2612 2613 switch (Entry.Kind) { 2614 case BitstreamEntry::SubBlock: // Handled for us already. 2615 case BitstreamEntry::Error: 2616 return error("Malformed block"); 2617 case BitstreamEntry::EndBlock: 2618 return Error::success(); 2619 case BitstreamEntry::Record: 2620 // The interesting case. 2621 break; 2622 } 2623 2624 // Read a use list record. 2625 Record.clear(); 2626 bool IsBB = false; 2627 switch (Stream.readRecord(Entry.ID, Record)) { 2628 default: // Default behavior: unknown type. 2629 break; 2630 case bitc::USELIST_CODE_BB: 2631 IsBB = true; 2632 LLVM_FALLTHROUGH; 2633 case bitc::USELIST_CODE_DEFAULT: { 2634 unsigned RecordLength = Record.size(); 2635 if (RecordLength < 3) 2636 // Records should have at least an ID and two indexes. 2637 return error("Invalid record"); 2638 unsigned ID = Record.back(); 2639 Record.pop_back(); 2640 2641 Value *V; 2642 if (IsBB) { 2643 assert(ID < FunctionBBs.size() && "Basic block not found"); 2644 V = FunctionBBs[ID]; 2645 } else 2646 V = ValueList[ID]; 2647 unsigned NumUses = 0; 2648 SmallDenseMap<const Use *, unsigned, 16> Order; 2649 for (const Use &U : V->materialized_uses()) { 2650 if (++NumUses > Record.size()) 2651 break; 2652 Order[&U] = Record[NumUses - 1]; 2653 } 2654 if (Order.size() != Record.size() || NumUses > Record.size()) 2655 // Mismatches can happen if the functions are being materialized lazily 2656 // (out-of-order), or a value has been upgraded. 2657 break; 2658 2659 V->sortUseList([&](const Use &L, const Use &R) { 2660 return Order.lookup(&L) < Order.lookup(&R); 2661 }); 2662 break; 2663 } 2664 } 2665 } 2666 } 2667 2668 /// When we see the block for metadata, remember where it is and then skip it. 2669 /// This lets us lazily deserialize the metadata. 2670 Error BitcodeReader::rememberAndSkipMetadata() { 2671 // Save the current stream state. 2672 uint64_t CurBit = Stream.GetCurrentBitNo(); 2673 DeferredMetadataInfo.push_back(CurBit); 2674 2675 // Skip over the block for now. 2676 if (Stream.SkipBlock()) 2677 return error("Invalid record"); 2678 return Error::success(); 2679 } 2680 2681 Error BitcodeReader::materializeMetadata() { 2682 for (uint64_t BitPos : DeferredMetadataInfo) { 2683 // Move the bit stream to the saved position. 2684 Stream.JumpToBit(BitPos); 2685 if (Error Err = MDLoader->parseModuleMetadata()) 2686 return Err; 2687 } 2688 2689 // Upgrade "Linker Options" module flag to "llvm.linker.options" module-level 2690 // metadata. 2691 if (Metadata *Val = TheModule->getModuleFlag("Linker Options")) { 2692 NamedMDNode *LinkerOpts = 2693 TheModule->getOrInsertNamedMetadata("llvm.linker.options"); 2694 for (const MDOperand &MDOptions : cast<MDNode>(Val)->operands()) 2695 LinkerOpts->addOperand(cast<MDNode>(MDOptions)); 2696 } 2697 2698 DeferredMetadataInfo.clear(); 2699 return Error::success(); 2700 } 2701 2702 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; } 2703 2704 /// When we see the block for a function body, remember where it is and then 2705 /// skip it. This lets us lazily deserialize the functions. 2706 Error BitcodeReader::rememberAndSkipFunctionBody() { 2707 // Get the function we are talking about. 2708 if (FunctionsWithBodies.empty()) 2709 return error("Insufficient function protos"); 2710 2711 Function *Fn = FunctionsWithBodies.back(); 2712 FunctionsWithBodies.pop_back(); 2713 2714 // Save the current stream state. 2715 uint64_t CurBit = Stream.GetCurrentBitNo(); 2716 assert( 2717 (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) && 2718 "Mismatch between VST and scanned function offsets"); 2719 DeferredFunctionInfo[Fn] = CurBit; 2720 2721 // Skip over the function block for now. 2722 if (Stream.SkipBlock()) 2723 return error("Invalid record"); 2724 return Error::success(); 2725 } 2726 2727 Error BitcodeReader::globalCleanup() { 2728 // Patch the initializers for globals and aliases up. 2729 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 2730 return Err; 2731 if (!GlobalInits.empty() || !IndirectSymbolInits.empty()) 2732 return error("Malformed global initializer set"); 2733 2734 // Look for intrinsic functions which need to be upgraded at some point 2735 for (Function &F : *TheModule) { 2736 MDLoader->upgradeDebugIntrinsics(F); 2737 Function *NewFn; 2738 if (UpgradeIntrinsicFunction(&F, NewFn)) 2739 UpgradedIntrinsics[&F] = NewFn; 2740 else if (auto Remangled = Intrinsic::remangleIntrinsicFunction(&F)) 2741 // Some types could be renamed during loading if several modules are 2742 // loaded in the same LLVMContext (LTO scenario). In this case we should 2743 // remangle intrinsics names as well. 2744 RemangledIntrinsics[&F] = Remangled.getValue(); 2745 } 2746 2747 // Look for global variables which need to be renamed. 2748 for (GlobalVariable &GV : TheModule->globals()) 2749 UpgradeGlobalVariable(&GV); 2750 2751 // Force deallocation of memory for these vectors to favor the client that 2752 // want lazy deserialization. 2753 std::vector<std::pair<GlobalVariable *, unsigned>>().swap(GlobalInits); 2754 std::vector<std::pair<GlobalIndirectSymbol *, unsigned>>().swap( 2755 IndirectSymbolInits); 2756 return Error::success(); 2757 } 2758 2759 /// Support for lazy parsing of function bodies. This is required if we 2760 /// either have an old bitcode file without a VST forward declaration record, 2761 /// or if we have an anonymous function being materialized, since anonymous 2762 /// functions do not have a name and are therefore not in the VST. 2763 Error BitcodeReader::rememberAndSkipFunctionBodies() { 2764 Stream.JumpToBit(NextUnreadBit); 2765 2766 if (Stream.AtEndOfStream()) 2767 return error("Could not find function in stream"); 2768 2769 if (!SeenFirstFunctionBody) 2770 return error("Trying to materialize functions before seeing function blocks"); 2771 2772 // An old bitcode file with the symbol table at the end would have 2773 // finished the parse greedily. 2774 assert(SeenValueSymbolTable); 2775 2776 SmallVector<uint64_t, 64> Record; 2777 2778 while (true) { 2779 BitstreamEntry Entry = Stream.advance(); 2780 switch (Entry.Kind) { 2781 default: 2782 return error("Expect SubBlock"); 2783 case BitstreamEntry::SubBlock: 2784 switch (Entry.ID) { 2785 default: 2786 return error("Expect function block"); 2787 case bitc::FUNCTION_BLOCK_ID: 2788 if (Error Err = rememberAndSkipFunctionBody()) 2789 return Err; 2790 NextUnreadBit = Stream.GetCurrentBitNo(); 2791 return Error::success(); 2792 } 2793 } 2794 } 2795 } 2796 2797 bool BitcodeReaderBase::readBlockInfo() { 2798 Optional<BitstreamBlockInfo> NewBlockInfo = Stream.ReadBlockInfoBlock(); 2799 if (!NewBlockInfo) 2800 return true; 2801 BlockInfo = std::move(*NewBlockInfo); 2802 return false; 2803 } 2804 2805 Error BitcodeReader::parseComdatRecord(ArrayRef<uint64_t> Record) { 2806 // v1: [selection_kind, name] 2807 // v2: [strtab_offset, strtab_size, selection_kind] 2808 StringRef Name; 2809 std::tie(Name, Record) = readNameFromStrtab(Record); 2810 2811 if (Record.empty()) 2812 return error("Invalid record"); 2813 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]); 2814 std::string OldFormatName; 2815 if (!UseStrtab) { 2816 if (Record.size() < 2) 2817 return error("Invalid record"); 2818 unsigned ComdatNameSize = Record[1]; 2819 OldFormatName.reserve(ComdatNameSize); 2820 for (unsigned i = 0; i != ComdatNameSize; ++i) 2821 OldFormatName += (char)Record[2 + i]; 2822 Name = OldFormatName; 2823 } 2824 Comdat *C = TheModule->getOrInsertComdat(Name); 2825 C->setSelectionKind(SK); 2826 ComdatList.push_back(C); 2827 return Error::success(); 2828 } 2829 2830 Error BitcodeReader::parseGlobalVarRecord(ArrayRef<uint64_t> Record) { 2831 // v1: [pointer type, isconst, initid, linkage, alignment, section, 2832 // visibility, threadlocal, unnamed_addr, externally_initialized, 2833 // dllstorageclass, comdat, attributes, preemption specifier] (name in VST) 2834 // v2: [strtab_offset, strtab_size, v1] 2835 StringRef Name; 2836 std::tie(Name, Record) = readNameFromStrtab(Record); 2837 2838 if (Record.size() < 6) 2839 return error("Invalid record"); 2840 Type *Ty = getTypeByID(Record[0]); 2841 if (!Ty) 2842 return error("Invalid record"); 2843 bool isConstant = Record[1] & 1; 2844 bool explicitType = Record[1] & 2; 2845 unsigned AddressSpace; 2846 if (explicitType) { 2847 AddressSpace = Record[1] >> 2; 2848 } else { 2849 if (!Ty->isPointerTy()) 2850 return error("Invalid type for value"); 2851 AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 2852 Ty = cast<PointerType>(Ty)->getElementType(); 2853 } 2854 2855 uint64_t RawLinkage = Record[3]; 2856 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 2857 unsigned Alignment; 2858 if (Error Err = parseAlignmentValue(Record[4], Alignment)) 2859 return Err; 2860 std::string Section; 2861 if (Record[5]) { 2862 if (Record[5] - 1 >= SectionTable.size()) 2863 return error("Invalid ID"); 2864 Section = SectionTable[Record[5] - 1]; 2865 } 2866 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 2867 // Local linkage must have default visibility. 2868 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage)) 2869 // FIXME: Change to an error if non-default in 4.0. 2870 Visibility = getDecodedVisibility(Record[6]); 2871 2872 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; 2873 if (Record.size() > 7) 2874 TLM = getDecodedThreadLocalMode(Record[7]); 2875 2876 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 2877 if (Record.size() > 8) 2878 UnnamedAddr = getDecodedUnnamedAddrType(Record[8]); 2879 2880 bool ExternallyInitialized = false; 2881 if (Record.size() > 9) 2882 ExternallyInitialized = Record[9]; 2883 2884 GlobalVariable *NewGV = 2885 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, Name, 2886 nullptr, TLM, AddressSpace, ExternallyInitialized); 2887 NewGV->setAlignment(Alignment); 2888 if (!Section.empty()) 2889 NewGV->setSection(Section); 2890 NewGV->setVisibility(Visibility); 2891 NewGV->setUnnamedAddr(UnnamedAddr); 2892 2893 if (Record.size() > 10) 2894 NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10])); 2895 else 2896 upgradeDLLImportExportLinkage(NewGV, RawLinkage); 2897 2898 ValueList.push_back(NewGV); 2899 2900 // Remember which value to use for the global initializer. 2901 if (unsigned InitID = Record[2]) 2902 GlobalInits.push_back(std::make_pair(NewGV, InitID - 1)); 2903 2904 if (Record.size() > 11) { 2905 if (unsigned ComdatID = Record[11]) { 2906 if (ComdatID > ComdatList.size()) 2907 return error("Invalid global variable comdat ID"); 2908 NewGV->setComdat(ComdatList[ComdatID - 1]); 2909 } 2910 } else if (hasImplicitComdat(RawLinkage)) { 2911 NewGV->setComdat(reinterpret_cast<Comdat *>(1)); 2912 } 2913 2914 if (Record.size() > 12) { 2915 auto AS = getAttributes(Record[12]).getFnAttributes(); 2916 NewGV->setAttributes(AS); 2917 } 2918 2919 if (Record.size() > 13) { 2920 NewGV->setDSOLocal(getDecodedDSOLocal(Record[13])); 2921 } 2922 2923 return Error::success(); 2924 } 2925 2926 Error BitcodeReader::parseFunctionRecord(ArrayRef<uint64_t> Record) { 2927 // v1: [type, callingconv, isproto, linkage, paramattr, alignment, section, 2928 // visibility, gc, unnamed_addr, prologuedata, dllstorageclass, comdat, 2929 // prefixdata, personalityfn, preemption specifier] (name in VST) 2930 // v2: [strtab_offset, strtab_size, v1] 2931 StringRef Name; 2932 std::tie(Name, Record) = readNameFromStrtab(Record); 2933 2934 if (Record.size() < 8) 2935 return error("Invalid record"); 2936 Type *Ty = getTypeByID(Record[0]); 2937 if (!Ty) 2938 return error("Invalid record"); 2939 if (auto *PTy = dyn_cast<PointerType>(Ty)) 2940 Ty = PTy->getElementType(); 2941 auto *FTy = dyn_cast<FunctionType>(Ty); 2942 if (!FTy) 2943 return error("Invalid type for value"); 2944 auto CC = static_cast<CallingConv::ID>(Record[1]); 2945 if (CC & ~CallingConv::MaxID) 2946 return error("Invalid calling convention ID"); 2947 2948 Function *Func = 2949 Function::Create(FTy, GlobalValue::ExternalLinkage, Name, TheModule); 2950 2951 Func->setCallingConv(CC); 2952 bool isProto = Record[2]; 2953 uint64_t RawLinkage = Record[3]; 2954 Func->setLinkage(getDecodedLinkage(RawLinkage)); 2955 Func->setAttributes(getAttributes(Record[4])); 2956 2957 unsigned Alignment; 2958 if (Error Err = parseAlignmentValue(Record[5], Alignment)) 2959 return Err; 2960 Func->setAlignment(Alignment); 2961 if (Record[6]) { 2962 if (Record[6] - 1 >= SectionTable.size()) 2963 return error("Invalid ID"); 2964 Func->setSection(SectionTable[Record[6] - 1]); 2965 } 2966 // Local linkage must have default visibility. 2967 if (!Func->hasLocalLinkage()) 2968 // FIXME: Change to an error if non-default in 4.0. 2969 Func->setVisibility(getDecodedVisibility(Record[7])); 2970 if (Record.size() > 8 && Record[8]) { 2971 if (Record[8] - 1 >= GCTable.size()) 2972 return error("Invalid ID"); 2973 Func->setGC(GCTable[Record[8] - 1]); 2974 } 2975 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 2976 if (Record.size() > 9) 2977 UnnamedAddr = getDecodedUnnamedAddrType(Record[9]); 2978 Func->setUnnamedAddr(UnnamedAddr); 2979 if (Record.size() > 10 && Record[10] != 0) 2980 FunctionPrologues.push_back(std::make_pair(Func, Record[10] - 1)); 2981 2982 if (Record.size() > 11) 2983 Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11])); 2984 else 2985 upgradeDLLImportExportLinkage(Func, RawLinkage); 2986 2987 if (Record.size() > 12) { 2988 if (unsigned ComdatID = Record[12]) { 2989 if (ComdatID > ComdatList.size()) 2990 return error("Invalid function comdat ID"); 2991 Func->setComdat(ComdatList[ComdatID - 1]); 2992 } 2993 } else if (hasImplicitComdat(RawLinkage)) { 2994 Func->setComdat(reinterpret_cast<Comdat *>(1)); 2995 } 2996 2997 if (Record.size() > 13 && Record[13] != 0) 2998 FunctionPrefixes.push_back(std::make_pair(Func, Record[13] - 1)); 2999 3000 if (Record.size() > 14 && Record[14] != 0) 3001 FunctionPersonalityFns.push_back(std::make_pair(Func, Record[14] - 1)); 3002 3003 if (Record.size() > 15) { 3004 Func->setDSOLocal(getDecodedDSOLocal(Record[15])); 3005 } 3006 3007 ValueList.push_back(Func); 3008 3009 // If this is a function with a body, remember the prototype we are 3010 // creating now, so that we can match up the body with them later. 3011 if (!isProto) { 3012 Func->setIsMaterializable(true); 3013 FunctionsWithBodies.push_back(Func); 3014 DeferredFunctionInfo[Func] = 0; 3015 } 3016 return Error::success(); 3017 } 3018 3019 Error BitcodeReader::parseGlobalIndirectSymbolRecord( 3020 unsigned BitCode, ArrayRef<uint64_t> Record) { 3021 // v1 ALIAS_OLD: [alias type, aliasee val#, linkage] (name in VST) 3022 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, 3023 // dllstorageclass, threadlocal, unnamed_addr, 3024 // preemption specifier] (name in VST) 3025 // v1 IFUNC: [alias type, addrspace, aliasee val#, linkage, 3026 // visibility, dllstorageclass, threadlocal, unnamed_addr, 3027 // preemption specifier] (name in VST) 3028 // v2: [strtab_offset, strtab_size, v1] 3029 StringRef Name; 3030 std::tie(Name, Record) = readNameFromStrtab(Record); 3031 3032 bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD; 3033 if (Record.size() < (3 + (unsigned)NewRecord)) 3034 return error("Invalid record"); 3035 unsigned OpNum = 0; 3036 Type *Ty = getTypeByID(Record[OpNum++]); 3037 if (!Ty) 3038 return error("Invalid record"); 3039 3040 unsigned AddrSpace; 3041 if (!NewRecord) { 3042 auto *PTy = dyn_cast<PointerType>(Ty); 3043 if (!PTy) 3044 return error("Invalid type for value"); 3045 Ty = PTy->getElementType(); 3046 AddrSpace = PTy->getAddressSpace(); 3047 } else { 3048 AddrSpace = Record[OpNum++]; 3049 } 3050 3051 auto Val = Record[OpNum++]; 3052 auto Linkage = Record[OpNum++]; 3053 GlobalIndirectSymbol *NewGA; 3054 if (BitCode == bitc::MODULE_CODE_ALIAS || 3055 BitCode == bitc::MODULE_CODE_ALIAS_OLD) 3056 NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name, 3057 TheModule); 3058 else 3059 NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name, 3060 nullptr, TheModule); 3061 // Old bitcode files didn't have visibility field. 3062 // Local linkage must have default visibility. 3063 if (OpNum != Record.size()) { 3064 auto VisInd = OpNum++; 3065 if (!NewGA->hasLocalLinkage()) 3066 // FIXME: Change to an error if non-default in 4.0. 3067 NewGA->setVisibility(getDecodedVisibility(Record[VisInd])); 3068 } 3069 if (BitCode == bitc::MODULE_CODE_ALIAS || 3070 BitCode == bitc::MODULE_CODE_ALIAS_OLD) { 3071 if (OpNum != Record.size()) 3072 NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++])); 3073 else 3074 upgradeDLLImportExportLinkage(NewGA, Linkage); 3075 if (OpNum != Record.size()) 3076 NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++])); 3077 if (OpNum != Record.size()) 3078 NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++])); 3079 } 3080 if (OpNum != Record.size()) 3081 NewGA->setDSOLocal(getDecodedDSOLocal(Record[OpNum++])); 3082 ValueList.push_back(NewGA); 3083 IndirectSymbolInits.push_back(std::make_pair(NewGA, Val)); 3084 return Error::success(); 3085 } 3086 3087 Error BitcodeReader::parseModule(uint64_t ResumeBit, 3088 bool ShouldLazyLoadMetadata) { 3089 if (ResumeBit) 3090 Stream.JumpToBit(ResumeBit); 3091 else if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 3092 return error("Invalid record"); 3093 3094 SmallVector<uint64_t, 64> Record; 3095 3096 // Read all the records for this module. 3097 while (true) { 3098 BitstreamEntry Entry = Stream.advance(); 3099 3100 switch (Entry.Kind) { 3101 case BitstreamEntry::Error: 3102 return error("Malformed block"); 3103 case BitstreamEntry::EndBlock: 3104 return globalCleanup(); 3105 3106 case BitstreamEntry::SubBlock: 3107 switch (Entry.ID) { 3108 default: // Skip unknown content. 3109 if (Stream.SkipBlock()) 3110 return error("Invalid record"); 3111 break; 3112 case bitc::BLOCKINFO_BLOCK_ID: 3113 if (readBlockInfo()) 3114 return error("Malformed block"); 3115 break; 3116 case bitc::PARAMATTR_BLOCK_ID: 3117 if (Error Err = parseAttributeBlock()) 3118 return Err; 3119 break; 3120 case bitc::PARAMATTR_GROUP_BLOCK_ID: 3121 if (Error Err = parseAttributeGroupBlock()) 3122 return Err; 3123 break; 3124 case bitc::TYPE_BLOCK_ID_NEW: 3125 if (Error Err = parseTypeTable()) 3126 return Err; 3127 break; 3128 case bitc::VALUE_SYMTAB_BLOCK_ID: 3129 if (!SeenValueSymbolTable) { 3130 // Either this is an old form VST without function index and an 3131 // associated VST forward declaration record (which would have caused 3132 // the VST to be jumped to and parsed before it was encountered 3133 // normally in the stream), or there were no function blocks to 3134 // trigger an earlier parsing of the VST. 3135 assert(VSTOffset == 0 || FunctionsWithBodies.empty()); 3136 if (Error Err = parseValueSymbolTable()) 3137 return Err; 3138 SeenValueSymbolTable = true; 3139 } else { 3140 // We must have had a VST forward declaration record, which caused 3141 // the parser to jump to and parse the VST earlier. 3142 assert(VSTOffset > 0); 3143 if (Stream.SkipBlock()) 3144 return error("Invalid record"); 3145 } 3146 break; 3147 case bitc::CONSTANTS_BLOCK_ID: 3148 if (Error Err = parseConstants()) 3149 return Err; 3150 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 3151 return Err; 3152 break; 3153 case bitc::METADATA_BLOCK_ID: 3154 if (ShouldLazyLoadMetadata) { 3155 if (Error Err = rememberAndSkipMetadata()) 3156 return Err; 3157 break; 3158 } 3159 assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata"); 3160 if (Error Err = MDLoader->parseModuleMetadata()) 3161 return Err; 3162 break; 3163 case bitc::METADATA_KIND_BLOCK_ID: 3164 if (Error Err = MDLoader->parseMetadataKinds()) 3165 return Err; 3166 break; 3167 case bitc::FUNCTION_BLOCK_ID: 3168 // If this is the first function body we've seen, reverse the 3169 // FunctionsWithBodies list. 3170 if (!SeenFirstFunctionBody) { 3171 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 3172 if (Error Err = globalCleanup()) 3173 return Err; 3174 SeenFirstFunctionBody = true; 3175 } 3176 3177 if (VSTOffset > 0) { 3178 // If we have a VST forward declaration record, make sure we 3179 // parse the VST now if we haven't already. It is needed to 3180 // set up the DeferredFunctionInfo vector for lazy reading. 3181 if (!SeenValueSymbolTable) { 3182 if (Error Err = BitcodeReader::parseValueSymbolTable(VSTOffset)) 3183 return Err; 3184 SeenValueSymbolTable = true; 3185 // Fall through so that we record the NextUnreadBit below. 3186 // This is necessary in case we have an anonymous function that 3187 // is later materialized. Since it will not have a VST entry we 3188 // need to fall back to the lazy parse to find its offset. 3189 } else { 3190 // If we have a VST forward declaration record, but have already 3191 // parsed the VST (just above, when the first function body was 3192 // encountered here), then we are resuming the parse after 3193 // materializing functions. The ResumeBit points to the 3194 // start of the last function block recorded in the 3195 // DeferredFunctionInfo map. Skip it. 3196 if (Stream.SkipBlock()) 3197 return error("Invalid record"); 3198 continue; 3199 } 3200 } 3201 3202 // Support older bitcode files that did not have the function 3203 // index in the VST, nor a VST forward declaration record, as 3204 // well as anonymous functions that do not have VST entries. 3205 // Build the DeferredFunctionInfo vector on the fly. 3206 if (Error Err = rememberAndSkipFunctionBody()) 3207 return Err; 3208 3209 // Suspend parsing when we reach the function bodies. Subsequent 3210 // materialization calls will resume it when necessary. If the bitcode 3211 // file is old, the symbol table will be at the end instead and will not 3212 // have been seen yet. In this case, just finish the parse now. 3213 if (SeenValueSymbolTable) { 3214 NextUnreadBit = Stream.GetCurrentBitNo(); 3215 // After the VST has been parsed, we need to make sure intrinsic name 3216 // are auto-upgraded. 3217 return globalCleanup(); 3218 } 3219 break; 3220 case bitc::USELIST_BLOCK_ID: 3221 if (Error Err = parseUseLists()) 3222 return Err; 3223 break; 3224 case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID: 3225 if (Error Err = parseOperandBundleTags()) 3226 return Err; 3227 break; 3228 case bitc::SYNC_SCOPE_NAMES_BLOCK_ID: 3229 if (Error Err = parseSyncScopeNames()) 3230 return Err; 3231 break; 3232 } 3233 continue; 3234 3235 case BitstreamEntry::Record: 3236 // The interesting case. 3237 break; 3238 } 3239 3240 // Read a record. 3241 auto BitCode = Stream.readRecord(Entry.ID, Record); 3242 switch (BitCode) { 3243 default: break; // Default behavior, ignore unknown content. 3244 case bitc::MODULE_CODE_VERSION: { 3245 Expected<unsigned> VersionOrErr = parseVersionRecord(Record); 3246 if (!VersionOrErr) 3247 return VersionOrErr.takeError(); 3248 UseRelativeIDs = *VersionOrErr >= 1; 3249 break; 3250 } 3251 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 3252 std::string S; 3253 if (convertToString(Record, 0, S)) 3254 return error("Invalid record"); 3255 TheModule->setTargetTriple(S); 3256 break; 3257 } 3258 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 3259 std::string S; 3260 if (convertToString(Record, 0, S)) 3261 return error("Invalid record"); 3262 TheModule->setDataLayout(S); 3263 break; 3264 } 3265 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 3266 std::string S; 3267 if (convertToString(Record, 0, S)) 3268 return error("Invalid record"); 3269 TheModule->setModuleInlineAsm(S); 3270 break; 3271 } 3272 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 3273 // FIXME: Remove in 4.0. 3274 std::string S; 3275 if (convertToString(Record, 0, S)) 3276 return error("Invalid record"); 3277 // Ignore value. 3278 break; 3279 } 3280 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 3281 std::string S; 3282 if (convertToString(Record, 0, S)) 3283 return error("Invalid record"); 3284 SectionTable.push_back(S); 3285 break; 3286 } 3287 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 3288 std::string S; 3289 if (convertToString(Record, 0, S)) 3290 return error("Invalid record"); 3291 GCTable.push_back(S); 3292 break; 3293 } 3294 case bitc::MODULE_CODE_COMDAT: 3295 if (Error Err = parseComdatRecord(Record)) 3296 return Err; 3297 break; 3298 case bitc::MODULE_CODE_GLOBALVAR: 3299 if (Error Err = parseGlobalVarRecord(Record)) 3300 return Err; 3301 break; 3302 case bitc::MODULE_CODE_FUNCTION: 3303 if (Error Err = parseFunctionRecord(Record)) 3304 return Err; 3305 break; 3306 case bitc::MODULE_CODE_IFUNC: 3307 case bitc::MODULE_CODE_ALIAS: 3308 case bitc::MODULE_CODE_ALIAS_OLD: 3309 if (Error Err = parseGlobalIndirectSymbolRecord(BitCode, Record)) 3310 return Err; 3311 break; 3312 /// MODULE_CODE_VSTOFFSET: [offset] 3313 case bitc::MODULE_CODE_VSTOFFSET: 3314 if (Record.size() < 1) 3315 return error("Invalid record"); 3316 // Note that we subtract 1 here because the offset is relative to one word 3317 // before the start of the identification or module block, which was 3318 // historically always the start of the regular bitcode header. 3319 VSTOffset = Record[0] - 1; 3320 break; 3321 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 3322 case bitc::MODULE_CODE_SOURCE_FILENAME: 3323 SmallString<128> ValueName; 3324 if (convertToString(Record, 0, ValueName)) 3325 return error("Invalid record"); 3326 TheModule->setSourceFileName(ValueName); 3327 break; 3328 } 3329 Record.clear(); 3330 } 3331 } 3332 3333 Error BitcodeReader::parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata, 3334 bool IsImporting) { 3335 TheModule = M; 3336 MDLoader = MetadataLoader(Stream, *M, ValueList, IsImporting, 3337 [&](unsigned ID) { return getTypeByID(ID); }); 3338 return parseModule(0, ShouldLazyLoadMetadata); 3339 } 3340 3341 Error BitcodeReader::typeCheckLoadStoreInst(Type *ValType, Type *PtrType) { 3342 if (!isa<PointerType>(PtrType)) 3343 return error("Load/Store operand is not a pointer type"); 3344 Type *ElemType = cast<PointerType>(PtrType)->getElementType(); 3345 3346 if (ValType && ValType != ElemType) 3347 return error("Explicit load/store type does not match pointee " 3348 "type of pointer operand"); 3349 if (!PointerType::isLoadableOrStorableType(ElemType)) 3350 return error("Cannot load/store from pointer"); 3351 return Error::success(); 3352 } 3353 3354 /// Lazily parse the specified function body block. 3355 Error BitcodeReader::parseFunctionBody(Function *F) { 3356 if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 3357 return error("Invalid record"); 3358 3359 // Unexpected unresolved metadata when parsing function. 3360 if (MDLoader->hasFwdRefs()) 3361 return error("Invalid function metadata: incoming forward references"); 3362 3363 InstructionList.clear(); 3364 unsigned ModuleValueListSize = ValueList.size(); 3365 unsigned ModuleMDLoaderSize = MDLoader->size(); 3366 3367 // Add all the function arguments to the value table. 3368 for (Argument &I : F->args()) 3369 ValueList.push_back(&I); 3370 3371 unsigned NextValueNo = ValueList.size(); 3372 BasicBlock *CurBB = nullptr; 3373 unsigned CurBBNo = 0; 3374 3375 DebugLoc LastLoc; 3376 auto getLastInstruction = [&]() -> Instruction * { 3377 if (CurBB && !CurBB->empty()) 3378 return &CurBB->back(); 3379 else if (CurBBNo && FunctionBBs[CurBBNo - 1] && 3380 !FunctionBBs[CurBBNo - 1]->empty()) 3381 return &FunctionBBs[CurBBNo - 1]->back(); 3382 return nullptr; 3383 }; 3384 3385 std::vector<OperandBundleDef> OperandBundles; 3386 3387 // Read all the records. 3388 SmallVector<uint64_t, 64> Record; 3389 3390 while (true) { 3391 BitstreamEntry Entry = Stream.advance(); 3392 3393 switch (Entry.Kind) { 3394 case BitstreamEntry::Error: 3395 return error("Malformed block"); 3396 case BitstreamEntry::EndBlock: 3397 goto OutOfRecordLoop; 3398 3399 case BitstreamEntry::SubBlock: 3400 switch (Entry.ID) { 3401 default: // Skip unknown content. 3402 if (Stream.SkipBlock()) 3403 return error("Invalid record"); 3404 break; 3405 case bitc::CONSTANTS_BLOCK_ID: 3406 if (Error Err = parseConstants()) 3407 return Err; 3408 NextValueNo = ValueList.size(); 3409 break; 3410 case bitc::VALUE_SYMTAB_BLOCK_ID: 3411 if (Error Err = parseValueSymbolTable()) 3412 return Err; 3413 break; 3414 case bitc::METADATA_ATTACHMENT_ID: 3415 if (Error Err = MDLoader->parseMetadataAttachment(*F, InstructionList)) 3416 return Err; 3417 break; 3418 case bitc::METADATA_BLOCK_ID: 3419 assert(DeferredMetadataInfo.empty() && 3420 "Must read all module-level metadata before function-level"); 3421 if (Error Err = MDLoader->parseFunctionMetadata()) 3422 return Err; 3423 break; 3424 case bitc::USELIST_BLOCK_ID: 3425 if (Error Err = parseUseLists()) 3426 return Err; 3427 break; 3428 } 3429 continue; 3430 3431 case BitstreamEntry::Record: 3432 // The interesting case. 3433 break; 3434 } 3435 3436 // Read a record. 3437 Record.clear(); 3438 Instruction *I = nullptr; 3439 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 3440 switch (BitCode) { 3441 default: // Default behavior: reject 3442 return error("Invalid value"); 3443 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks] 3444 if (Record.size() < 1 || Record[0] == 0) 3445 return error("Invalid record"); 3446 // Create all the basic blocks for the function. 3447 FunctionBBs.resize(Record[0]); 3448 3449 // See if anything took the address of blocks in this function. 3450 auto BBFRI = BasicBlockFwdRefs.find(F); 3451 if (BBFRI == BasicBlockFwdRefs.end()) { 3452 for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i) 3453 FunctionBBs[i] = BasicBlock::Create(Context, "", F); 3454 } else { 3455 auto &BBRefs = BBFRI->second; 3456 // Check for invalid basic block references. 3457 if (BBRefs.size() > FunctionBBs.size()) 3458 return error("Invalid ID"); 3459 assert(!BBRefs.empty() && "Unexpected empty array"); 3460 assert(!BBRefs.front() && "Invalid reference to entry block"); 3461 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E; 3462 ++I) 3463 if (I < RE && BBRefs[I]) { 3464 BBRefs[I]->insertInto(F); 3465 FunctionBBs[I] = BBRefs[I]; 3466 } else { 3467 FunctionBBs[I] = BasicBlock::Create(Context, "", F); 3468 } 3469 3470 // Erase from the table. 3471 BasicBlockFwdRefs.erase(BBFRI); 3472 } 3473 3474 CurBB = FunctionBBs[0]; 3475 continue; 3476 } 3477 3478 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 3479 // This record indicates that the last instruction is at the same 3480 // location as the previous instruction with a location. 3481 I = getLastInstruction(); 3482 3483 if (!I) 3484 return error("Invalid record"); 3485 I->setDebugLoc(LastLoc); 3486 I = nullptr; 3487 continue; 3488 3489 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 3490 I = getLastInstruction(); 3491 if (!I || Record.size() < 4) 3492 return error("Invalid record"); 3493 3494 unsigned Line = Record[0], Col = Record[1]; 3495 unsigned ScopeID = Record[2], IAID = Record[3]; 3496 3497 MDNode *Scope = nullptr, *IA = nullptr; 3498 if (ScopeID) { 3499 Scope = MDLoader->getMDNodeFwdRefOrNull(ScopeID - 1); 3500 if (!Scope) 3501 return error("Invalid record"); 3502 } 3503 if (IAID) { 3504 IA = MDLoader->getMDNodeFwdRefOrNull(IAID - 1); 3505 if (!IA) 3506 return error("Invalid record"); 3507 } 3508 LastLoc = DebugLoc::get(Line, Col, Scope, IA); 3509 I->setDebugLoc(LastLoc); 3510 I = nullptr; 3511 continue; 3512 } 3513 3514 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 3515 unsigned OpNum = 0; 3516 Value *LHS, *RHS; 3517 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 3518 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 3519 OpNum+1 > Record.size()) 3520 return error("Invalid record"); 3521 3522 int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 3523 if (Opc == -1) 3524 return error("Invalid record"); 3525 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 3526 InstructionList.push_back(I); 3527 if (OpNum < Record.size()) { 3528 if (Opc == Instruction::Add || 3529 Opc == Instruction::Sub || 3530 Opc == Instruction::Mul || 3531 Opc == Instruction::Shl) { 3532 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 3533 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 3534 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 3535 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 3536 } else if (Opc == Instruction::SDiv || 3537 Opc == Instruction::UDiv || 3538 Opc == Instruction::LShr || 3539 Opc == Instruction::AShr) { 3540 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 3541 cast<BinaryOperator>(I)->setIsExact(true); 3542 } else if (isa<FPMathOperator>(I)) { 3543 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 3544 if (FMF.any()) 3545 I->setFastMathFlags(FMF); 3546 } 3547 3548 } 3549 break; 3550 } 3551 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 3552 unsigned OpNum = 0; 3553 Value *Op; 3554 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 3555 OpNum+2 != Record.size()) 3556 return error("Invalid record"); 3557 3558 Type *ResTy = getTypeByID(Record[OpNum]); 3559 int Opc = getDecodedCastOpcode(Record[OpNum + 1]); 3560 if (Opc == -1 || !ResTy) 3561 return error("Invalid record"); 3562 Instruction *Temp = nullptr; 3563 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) { 3564 if (Temp) { 3565 InstructionList.push_back(Temp); 3566 CurBB->getInstList().push_back(Temp); 3567 } 3568 } else { 3569 auto CastOp = (Instruction::CastOps)Opc; 3570 if (!CastInst::castIsValid(CastOp, Op, ResTy)) 3571 return error("Invalid cast"); 3572 I = CastInst::Create(CastOp, Op, ResTy); 3573 } 3574 InstructionList.push_back(I); 3575 break; 3576 } 3577 case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD: 3578 case bitc::FUNC_CODE_INST_GEP_OLD: 3579 case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands] 3580 unsigned OpNum = 0; 3581 3582 Type *Ty; 3583 bool InBounds; 3584 3585 if (BitCode == bitc::FUNC_CODE_INST_GEP) { 3586 InBounds = Record[OpNum++]; 3587 Ty = getTypeByID(Record[OpNum++]); 3588 } else { 3589 InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD; 3590 Ty = nullptr; 3591 } 3592 3593 Value *BasePtr; 3594 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr)) 3595 return error("Invalid record"); 3596 3597 if (!Ty) 3598 Ty = cast<PointerType>(BasePtr->getType()->getScalarType()) 3599 ->getElementType(); 3600 else if (Ty != 3601 cast<PointerType>(BasePtr->getType()->getScalarType()) 3602 ->getElementType()) 3603 return error( 3604 "Explicit gep type does not match pointee type of pointer operand"); 3605 3606 SmallVector<Value*, 16> GEPIdx; 3607 while (OpNum != Record.size()) { 3608 Value *Op; 3609 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3610 return error("Invalid record"); 3611 GEPIdx.push_back(Op); 3612 } 3613 3614 I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx); 3615 3616 InstructionList.push_back(I); 3617 if (InBounds) 3618 cast<GetElementPtrInst>(I)->setIsInBounds(true); 3619 break; 3620 } 3621 3622 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 3623 // EXTRACTVAL: [opty, opval, n x indices] 3624 unsigned OpNum = 0; 3625 Value *Agg; 3626 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 3627 return error("Invalid record"); 3628 3629 unsigned RecSize = Record.size(); 3630 if (OpNum == RecSize) 3631 return error("EXTRACTVAL: Invalid instruction with 0 indices"); 3632 3633 SmallVector<unsigned, 4> EXTRACTVALIdx; 3634 Type *CurTy = Agg->getType(); 3635 for (; OpNum != RecSize; ++OpNum) { 3636 bool IsArray = CurTy->isArrayTy(); 3637 bool IsStruct = CurTy->isStructTy(); 3638 uint64_t Index = Record[OpNum]; 3639 3640 if (!IsStruct && !IsArray) 3641 return error("EXTRACTVAL: Invalid type"); 3642 if ((unsigned)Index != Index) 3643 return error("Invalid value"); 3644 if (IsStruct && Index >= CurTy->subtypes().size()) 3645 return error("EXTRACTVAL: Invalid struct index"); 3646 if (IsArray && Index >= CurTy->getArrayNumElements()) 3647 return error("EXTRACTVAL: Invalid array index"); 3648 EXTRACTVALIdx.push_back((unsigned)Index); 3649 3650 if (IsStruct) 3651 CurTy = CurTy->subtypes()[Index]; 3652 else 3653 CurTy = CurTy->subtypes()[0]; 3654 } 3655 3656 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 3657 InstructionList.push_back(I); 3658 break; 3659 } 3660 3661 case bitc::FUNC_CODE_INST_INSERTVAL: { 3662 // INSERTVAL: [opty, opval, opty, opval, n x indices] 3663 unsigned OpNum = 0; 3664 Value *Agg; 3665 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 3666 return error("Invalid record"); 3667 Value *Val; 3668 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 3669 return error("Invalid record"); 3670 3671 unsigned RecSize = Record.size(); 3672 if (OpNum == RecSize) 3673 return error("INSERTVAL: Invalid instruction with 0 indices"); 3674 3675 SmallVector<unsigned, 4> INSERTVALIdx; 3676 Type *CurTy = Agg->getType(); 3677 for (; OpNum != RecSize; ++OpNum) { 3678 bool IsArray = CurTy->isArrayTy(); 3679 bool IsStruct = CurTy->isStructTy(); 3680 uint64_t Index = Record[OpNum]; 3681 3682 if (!IsStruct && !IsArray) 3683 return error("INSERTVAL: Invalid type"); 3684 if ((unsigned)Index != Index) 3685 return error("Invalid value"); 3686 if (IsStruct && Index >= CurTy->subtypes().size()) 3687 return error("INSERTVAL: Invalid struct index"); 3688 if (IsArray && Index >= CurTy->getArrayNumElements()) 3689 return error("INSERTVAL: Invalid array index"); 3690 3691 INSERTVALIdx.push_back((unsigned)Index); 3692 if (IsStruct) 3693 CurTy = CurTy->subtypes()[Index]; 3694 else 3695 CurTy = CurTy->subtypes()[0]; 3696 } 3697 3698 if (CurTy != Val->getType()) 3699 return error("Inserted value type doesn't match aggregate type"); 3700 3701 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 3702 InstructionList.push_back(I); 3703 break; 3704 } 3705 3706 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 3707 // obsolete form of select 3708 // handles select i1 ... in old bitcode 3709 unsigned OpNum = 0; 3710 Value *TrueVal, *FalseVal, *Cond; 3711 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 3712 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 3713 popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond)) 3714 return error("Invalid record"); 3715 3716 I = SelectInst::Create(Cond, TrueVal, FalseVal); 3717 InstructionList.push_back(I); 3718 break; 3719 } 3720 3721 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 3722 // new form of select 3723 // handles select i1 or select [N x i1] 3724 unsigned OpNum = 0; 3725 Value *TrueVal, *FalseVal, *Cond; 3726 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 3727 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 3728 getValueTypePair(Record, OpNum, NextValueNo, Cond)) 3729 return error("Invalid record"); 3730 3731 // select condition can be either i1 or [N x i1] 3732 if (VectorType* vector_type = 3733 dyn_cast<VectorType>(Cond->getType())) { 3734 // expect <n x i1> 3735 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 3736 return error("Invalid type for value"); 3737 } else { 3738 // expect i1 3739 if (Cond->getType() != Type::getInt1Ty(Context)) 3740 return error("Invalid type for value"); 3741 } 3742 3743 I = SelectInst::Create(Cond, TrueVal, FalseVal); 3744 InstructionList.push_back(I); 3745 break; 3746 } 3747 3748 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 3749 unsigned OpNum = 0; 3750 Value *Vec, *Idx; 3751 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 3752 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 3753 return error("Invalid record"); 3754 if (!Vec->getType()->isVectorTy()) 3755 return error("Invalid type for value"); 3756 I = ExtractElementInst::Create(Vec, Idx); 3757 InstructionList.push_back(I); 3758 break; 3759 } 3760 3761 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 3762 unsigned OpNum = 0; 3763 Value *Vec, *Elt, *Idx; 3764 if (getValueTypePair(Record, OpNum, NextValueNo, Vec)) 3765 return error("Invalid record"); 3766 if (!Vec->getType()->isVectorTy()) 3767 return error("Invalid type for value"); 3768 if (popValue(Record, OpNum, NextValueNo, 3769 cast<VectorType>(Vec->getType())->getElementType(), Elt) || 3770 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 3771 return error("Invalid record"); 3772 I = InsertElementInst::Create(Vec, Elt, Idx); 3773 InstructionList.push_back(I); 3774 break; 3775 } 3776 3777 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 3778 unsigned OpNum = 0; 3779 Value *Vec1, *Vec2, *Mask; 3780 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) || 3781 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2)) 3782 return error("Invalid record"); 3783 3784 if (getValueTypePair(Record, OpNum, NextValueNo, Mask)) 3785 return error("Invalid record"); 3786 if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy()) 3787 return error("Invalid type for value"); 3788 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 3789 InstructionList.push_back(I); 3790 break; 3791 } 3792 3793 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 3794 // Old form of ICmp/FCmp returning bool 3795 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 3796 // both legal on vectors but had different behaviour. 3797 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 3798 // FCmp/ICmp returning bool or vector of bool 3799 3800 unsigned OpNum = 0; 3801 Value *LHS, *RHS; 3802 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 3803 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS)) 3804 return error("Invalid record"); 3805 3806 unsigned PredVal = Record[OpNum]; 3807 bool IsFP = LHS->getType()->isFPOrFPVectorTy(); 3808 FastMathFlags FMF; 3809 if (IsFP && Record.size() > OpNum+1) 3810 FMF = getDecodedFastMathFlags(Record[++OpNum]); 3811 3812 if (OpNum+1 != Record.size()) 3813 return error("Invalid record"); 3814 3815 if (LHS->getType()->isFPOrFPVectorTy()) 3816 I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS); 3817 else 3818 I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS); 3819 3820 if (FMF.any()) 3821 I->setFastMathFlags(FMF); 3822 InstructionList.push_back(I); 3823 break; 3824 } 3825 3826 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 3827 { 3828 unsigned Size = Record.size(); 3829 if (Size == 0) { 3830 I = ReturnInst::Create(Context); 3831 InstructionList.push_back(I); 3832 break; 3833 } 3834 3835 unsigned OpNum = 0; 3836 Value *Op = nullptr; 3837 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3838 return error("Invalid record"); 3839 if (OpNum != Record.size()) 3840 return error("Invalid record"); 3841 3842 I = ReturnInst::Create(Context, Op); 3843 InstructionList.push_back(I); 3844 break; 3845 } 3846 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 3847 if (Record.size() != 1 && Record.size() != 3) 3848 return error("Invalid record"); 3849 BasicBlock *TrueDest = getBasicBlock(Record[0]); 3850 if (!TrueDest) 3851 return error("Invalid record"); 3852 3853 if (Record.size() == 1) { 3854 I = BranchInst::Create(TrueDest); 3855 InstructionList.push_back(I); 3856 } 3857 else { 3858 BasicBlock *FalseDest = getBasicBlock(Record[1]); 3859 Value *Cond = getValue(Record, 2, NextValueNo, 3860 Type::getInt1Ty(Context)); 3861 if (!FalseDest || !Cond) 3862 return error("Invalid record"); 3863 I = BranchInst::Create(TrueDest, FalseDest, Cond); 3864 InstructionList.push_back(I); 3865 } 3866 break; 3867 } 3868 case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#] 3869 if (Record.size() != 1 && Record.size() != 2) 3870 return error("Invalid record"); 3871 unsigned Idx = 0; 3872 Value *CleanupPad = 3873 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 3874 if (!CleanupPad) 3875 return error("Invalid record"); 3876 BasicBlock *UnwindDest = nullptr; 3877 if (Record.size() == 2) { 3878 UnwindDest = getBasicBlock(Record[Idx++]); 3879 if (!UnwindDest) 3880 return error("Invalid record"); 3881 } 3882 3883 I = CleanupReturnInst::Create(CleanupPad, UnwindDest); 3884 InstructionList.push_back(I); 3885 break; 3886 } 3887 case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#] 3888 if (Record.size() != 2) 3889 return error("Invalid record"); 3890 unsigned Idx = 0; 3891 Value *CatchPad = 3892 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 3893 if (!CatchPad) 3894 return error("Invalid record"); 3895 BasicBlock *BB = getBasicBlock(Record[Idx++]); 3896 if (!BB) 3897 return error("Invalid record"); 3898 3899 I = CatchReturnInst::Create(CatchPad, BB); 3900 InstructionList.push_back(I); 3901 break; 3902 } 3903 case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?] 3904 // We must have, at minimum, the outer scope and the number of arguments. 3905 if (Record.size() < 2) 3906 return error("Invalid record"); 3907 3908 unsigned Idx = 0; 3909 3910 Value *ParentPad = 3911 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 3912 3913 unsigned NumHandlers = Record[Idx++]; 3914 3915 SmallVector<BasicBlock *, 2> Handlers; 3916 for (unsigned Op = 0; Op != NumHandlers; ++Op) { 3917 BasicBlock *BB = getBasicBlock(Record[Idx++]); 3918 if (!BB) 3919 return error("Invalid record"); 3920 Handlers.push_back(BB); 3921 } 3922 3923 BasicBlock *UnwindDest = nullptr; 3924 if (Idx + 1 == Record.size()) { 3925 UnwindDest = getBasicBlock(Record[Idx++]); 3926 if (!UnwindDest) 3927 return error("Invalid record"); 3928 } 3929 3930 if (Record.size() != Idx) 3931 return error("Invalid record"); 3932 3933 auto *CatchSwitch = 3934 CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers); 3935 for (BasicBlock *Handler : Handlers) 3936 CatchSwitch->addHandler(Handler); 3937 I = CatchSwitch; 3938 InstructionList.push_back(I); 3939 break; 3940 } 3941 case bitc::FUNC_CODE_INST_CATCHPAD: 3942 case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*] 3943 // We must have, at minimum, the outer scope and the number of arguments. 3944 if (Record.size() < 2) 3945 return error("Invalid record"); 3946 3947 unsigned Idx = 0; 3948 3949 Value *ParentPad = 3950 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 3951 3952 unsigned NumArgOperands = Record[Idx++]; 3953 3954 SmallVector<Value *, 2> Args; 3955 for (unsigned Op = 0; Op != NumArgOperands; ++Op) { 3956 Value *Val; 3957 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 3958 return error("Invalid record"); 3959 Args.push_back(Val); 3960 } 3961 3962 if (Record.size() != Idx) 3963 return error("Invalid record"); 3964 3965 if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD) 3966 I = CleanupPadInst::Create(ParentPad, Args); 3967 else 3968 I = CatchPadInst::Create(ParentPad, Args); 3969 InstructionList.push_back(I); 3970 break; 3971 } 3972 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 3973 // Check magic 3974 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { 3975 // "New" SwitchInst format with case ranges. The changes to write this 3976 // format were reverted but we still recognize bitcode that uses it. 3977 // Hopefully someday we will have support for case ranges and can use 3978 // this format again. 3979 3980 Type *OpTy = getTypeByID(Record[1]); 3981 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); 3982 3983 Value *Cond = getValue(Record, 2, NextValueNo, OpTy); 3984 BasicBlock *Default = getBasicBlock(Record[3]); 3985 if (!OpTy || !Cond || !Default) 3986 return error("Invalid record"); 3987 3988 unsigned NumCases = Record[4]; 3989 3990 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 3991 InstructionList.push_back(SI); 3992 3993 unsigned CurIdx = 5; 3994 for (unsigned i = 0; i != NumCases; ++i) { 3995 SmallVector<ConstantInt*, 1> CaseVals; 3996 unsigned NumItems = Record[CurIdx++]; 3997 for (unsigned ci = 0; ci != NumItems; ++ci) { 3998 bool isSingleNumber = Record[CurIdx++]; 3999 4000 APInt Low; 4001 unsigned ActiveWords = 1; 4002 if (ValueBitWidth > 64) 4003 ActiveWords = Record[CurIdx++]; 4004 Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 4005 ValueBitWidth); 4006 CurIdx += ActiveWords; 4007 4008 if (!isSingleNumber) { 4009 ActiveWords = 1; 4010 if (ValueBitWidth > 64) 4011 ActiveWords = Record[CurIdx++]; 4012 APInt High = readWideAPInt( 4013 makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth); 4014 CurIdx += ActiveWords; 4015 4016 // FIXME: It is not clear whether values in the range should be 4017 // compared as signed or unsigned values. The partially 4018 // implemented changes that used this format in the past used 4019 // unsigned comparisons. 4020 for ( ; Low.ule(High); ++Low) 4021 CaseVals.push_back(ConstantInt::get(Context, Low)); 4022 } else 4023 CaseVals.push_back(ConstantInt::get(Context, Low)); 4024 } 4025 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); 4026 for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(), 4027 cve = CaseVals.end(); cvi != cve; ++cvi) 4028 SI->addCase(*cvi, DestBB); 4029 } 4030 I = SI; 4031 break; 4032 } 4033 4034 // Old SwitchInst format without case ranges. 4035 4036 if (Record.size() < 3 || (Record.size() & 1) == 0) 4037 return error("Invalid record"); 4038 Type *OpTy = getTypeByID(Record[0]); 4039 Value *Cond = getValue(Record, 1, NextValueNo, OpTy); 4040 BasicBlock *Default = getBasicBlock(Record[2]); 4041 if (!OpTy || !Cond || !Default) 4042 return error("Invalid record"); 4043 unsigned NumCases = (Record.size()-3)/2; 4044 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 4045 InstructionList.push_back(SI); 4046 for (unsigned i = 0, e = NumCases; i != e; ++i) { 4047 ConstantInt *CaseVal = 4048 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy)); 4049 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 4050 if (!CaseVal || !DestBB) { 4051 delete SI; 4052 return error("Invalid record"); 4053 } 4054 SI->addCase(CaseVal, DestBB); 4055 } 4056 I = SI; 4057 break; 4058 } 4059 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 4060 if (Record.size() < 2) 4061 return error("Invalid record"); 4062 Type *OpTy = getTypeByID(Record[0]); 4063 Value *Address = getValue(Record, 1, NextValueNo, OpTy); 4064 if (!OpTy || !Address) 4065 return error("Invalid record"); 4066 unsigned NumDests = Record.size()-2; 4067 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 4068 InstructionList.push_back(IBI); 4069 for (unsigned i = 0, e = NumDests; i != e; ++i) { 4070 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 4071 IBI->addDestination(DestBB); 4072 } else { 4073 delete IBI; 4074 return error("Invalid record"); 4075 } 4076 } 4077 I = IBI; 4078 break; 4079 } 4080 4081 case bitc::FUNC_CODE_INST_INVOKE: { 4082 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 4083 if (Record.size() < 4) 4084 return error("Invalid record"); 4085 unsigned OpNum = 0; 4086 AttributeList PAL = getAttributes(Record[OpNum++]); 4087 unsigned CCInfo = Record[OpNum++]; 4088 BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]); 4089 BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]); 4090 4091 FunctionType *FTy = nullptr; 4092 if (CCInfo >> 13 & 1 && 4093 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])))) 4094 return error("Explicit invoke type is not a function type"); 4095 4096 Value *Callee; 4097 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 4098 return error("Invalid record"); 4099 4100 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 4101 if (!CalleeTy) 4102 return error("Callee is not a pointer"); 4103 if (!FTy) { 4104 FTy = dyn_cast<FunctionType>(CalleeTy->getElementType()); 4105 if (!FTy) 4106 return error("Callee is not of pointer to function type"); 4107 } else if (CalleeTy->getElementType() != FTy) 4108 return error("Explicit invoke type does not match pointee type of " 4109 "callee operand"); 4110 if (Record.size() < FTy->getNumParams() + OpNum) 4111 return error("Insufficient operands to call"); 4112 4113 SmallVector<Value*, 16> Ops; 4114 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 4115 Ops.push_back(getValue(Record, OpNum, NextValueNo, 4116 FTy->getParamType(i))); 4117 if (!Ops.back()) 4118 return error("Invalid record"); 4119 } 4120 4121 if (!FTy->isVarArg()) { 4122 if (Record.size() != OpNum) 4123 return error("Invalid record"); 4124 } else { 4125 // Read type/value pairs for varargs params. 4126 while (OpNum != Record.size()) { 4127 Value *Op; 4128 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4129 return error("Invalid record"); 4130 Ops.push_back(Op); 4131 } 4132 } 4133 4134 I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops, OperandBundles); 4135 OperandBundles.clear(); 4136 InstructionList.push_back(I); 4137 cast<InvokeInst>(I)->setCallingConv( 4138 static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo)); 4139 cast<InvokeInst>(I)->setAttributes(PAL); 4140 break; 4141 } 4142 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 4143 unsigned Idx = 0; 4144 Value *Val = nullptr; 4145 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 4146 return error("Invalid record"); 4147 I = ResumeInst::Create(Val); 4148 InstructionList.push_back(I); 4149 break; 4150 } 4151 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 4152 I = new UnreachableInst(Context); 4153 InstructionList.push_back(I); 4154 break; 4155 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 4156 if (Record.size() < 1 || ((Record.size()-1)&1)) 4157 return error("Invalid record"); 4158 Type *Ty = getTypeByID(Record[0]); 4159 if (!Ty) 4160 return error("Invalid record"); 4161 4162 PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2); 4163 InstructionList.push_back(PN); 4164 4165 for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) { 4166 Value *V; 4167 // With the new function encoding, it is possible that operands have 4168 // negative IDs (for forward references). Use a signed VBR 4169 // representation to keep the encoding small. 4170 if (UseRelativeIDs) 4171 V = getValueSigned(Record, 1+i, NextValueNo, Ty); 4172 else 4173 V = getValue(Record, 1+i, NextValueNo, Ty); 4174 BasicBlock *BB = getBasicBlock(Record[2+i]); 4175 if (!V || !BB) 4176 return error("Invalid record"); 4177 PN->addIncoming(V, BB); 4178 } 4179 I = PN; 4180 break; 4181 } 4182 4183 case bitc::FUNC_CODE_INST_LANDINGPAD: 4184 case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: { 4185 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 4186 unsigned Idx = 0; 4187 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) { 4188 if (Record.size() < 3) 4189 return error("Invalid record"); 4190 } else { 4191 assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD); 4192 if (Record.size() < 4) 4193 return error("Invalid record"); 4194 } 4195 Type *Ty = getTypeByID(Record[Idx++]); 4196 if (!Ty) 4197 return error("Invalid record"); 4198 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) { 4199 Value *PersFn = nullptr; 4200 if (getValueTypePair(Record, Idx, NextValueNo, PersFn)) 4201 return error("Invalid record"); 4202 4203 if (!F->hasPersonalityFn()) 4204 F->setPersonalityFn(cast<Constant>(PersFn)); 4205 else if (F->getPersonalityFn() != cast<Constant>(PersFn)) 4206 return error("Personality function mismatch"); 4207 } 4208 4209 bool IsCleanup = !!Record[Idx++]; 4210 unsigned NumClauses = Record[Idx++]; 4211 LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses); 4212 LP->setCleanup(IsCleanup); 4213 for (unsigned J = 0; J != NumClauses; ++J) { 4214 LandingPadInst::ClauseType CT = 4215 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 4216 Value *Val; 4217 4218 if (getValueTypePair(Record, Idx, NextValueNo, Val)) { 4219 delete LP; 4220 return error("Invalid record"); 4221 } 4222 4223 assert((CT != LandingPadInst::Catch || 4224 !isa<ArrayType>(Val->getType())) && 4225 "Catch clause has a invalid type!"); 4226 assert((CT != LandingPadInst::Filter || 4227 isa<ArrayType>(Val->getType())) && 4228 "Filter clause has invalid type!"); 4229 LP->addClause(cast<Constant>(Val)); 4230 } 4231 4232 I = LP; 4233 InstructionList.push_back(I); 4234 break; 4235 } 4236 4237 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 4238 if (Record.size() != 4) 4239 return error("Invalid record"); 4240 uint64_t AlignRecord = Record[3]; 4241 const uint64_t InAllocaMask = uint64_t(1) << 5; 4242 const uint64_t ExplicitTypeMask = uint64_t(1) << 6; 4243 const uint64_t SwiftErrorMask = uint64_t(1) << 7; 4244 const uint64_t FlagMask = InAllocaMask | ExplicitTypeMask | 4245 SwiftErrorMask; 4246 bool InAlloca = AlignRecord & InAllocaMask; 4247 bool SwiftError = AlignRecord & SwiftErrorMask; 4248 Type *Ty = getTypeByID(Record[0]); 4249 if ((AlignRecord & ExplicitTypeMask) == 0) { 4250 auto *PTy = dyn_cast_or_null<PointerType>(Ty); 4251 if (!PTy) 4252 return error("Old-style alloca with a non-pointer type"); 4253 Ty = PTy->getElementType(); 4254 } 4255 Type *OpTy = getTypeByID(Record[1]); 4256 Value *Size = getFnValueByID(Record[2], OpTy); 4257 unsigned Align; 4258 if (Error Err = parseAlignmentValue(AlignRecord & ~FlagMask, Align)) { 4259 return Err; 4260 } 4261 if (!Ty || !Size) 4262 return error("Invalid record"); 4263 4264 // FIXME: Make this an optional field. 4265 const DataLayout &DL = TheModule->getDataLayout(); 4266 unsigned AS = DL.getAllocaAddrSpace(); 4267 4268 AllocaInst *AI = new AllocaInst(Ty, AS, Size, Align); 4269 AI->setUsedWithInAlloca(InAlloca); 4270 AI->setSwiftError(SwiftError); 4271 I = AI; 4272 InstructionList.push_back(I); 4273 break; 4274 } 4275 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 4276 unsigned OpNum = 0; 4277 Value *Op; 4278 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4279 (OpNum + 2 != Record.size() && OpNum + 3 != Record.size())) 4280 return error("Invalid record"); 4281 4282 Type *Ty = nullptr; 4283 if (OpNum + 3 == Record.size()) 4284 Ty = getTypeByID(Record[OpNum++]); 4285 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 4286 return Err; 4287 if (!Ty) 4288 Ty = cast<PointerType>(Op->getType())->getElementType(); 4289 4290 unsigned Align; 4291 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4292 return Err; 4293 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], Align); 4294 4295 InstructionList.push_back(I); 4296 break; 4297 } 4298 case bitc::FUNC_CODE_INST_LOADATOMIC: { 4299 // LOADATOMIC: [opty, op, align, vol, ordering, ssid] 4300 unsigned OpNum = 0; 4301 Value *Op; 4302 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4303 (OpNum + 4 != Record.size() && OpNum + 5 != Record.size())) 4304 return error("Invalid record"); 4305 4306 Type *Ty = nullptr; 4307 if (OpNum + 5 == Record.size()) 4308 Ty = getTypeByID(Record[OpNum++]); 4309 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 4310 return Err; 4311 if (!Ty) 4312 Ty = cast<PointerType>(Op->getType())->getElementType(); 4313 4314 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4315 if (Ordering == AtomicOrdering::NotAtomic || 4316 Ordering == AtomicOrdering::Release || 4317 Ordering == AtomicOrdering::AcquireRelease) 4318 return error("Invalid record"); 4319 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 4320 return error("Invalid record"); 4321 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 4322 4323 unsigned Align; 4324 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4325 return Err; 4326 I = new LoadInst(Op, "", Record[OpNum+1], Align, Ordering, SSID); 4327 4328 InstructionList.push_back(I); 4329 break; 4330 } 4331 case bitc::FUNC_CODE_INST_STORE: 4332 case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol] 4333 unsigned OpNum = 0; 4334 Value *Val, *Ptr; 4335 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4336 (BitCode == bitc::FUNC_CODE_INST_STORE 4337 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 4338 : popValue(Record, OpNum, NextValueNo, 4339 cast<PointerType>(Ptr->getType())->getElementType(), 4340 Val)) || 4341 OpNum + 2 != Record.size()) 4342 return error("Invalid record"); 4343 4344 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 4345 return Err; 4346 unsigned Align; 4347 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4348 return Err; 4349 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align); 4350 InstructionList.push_back(I); 4351 break; 4352 } 4353 case bitc::FUNC_CODE_INST_STOREATOMIC: 4354 case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: { 4355 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, ssid] 4356 unsigned OpNum = 0; 4357 Value *Val, *Ptr; 4358 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4359 !isa<PointerType>(Ptr->getType()) || 4360 (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC 4361 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 4362 : popValue(Record, OpNum, NextValueNo, 4363 cast<PointerType>(Ptr->getType())->getElementType(), 4364 Val)) || 4365 OpNum + 4 != Record.size()) 4366 return error("Invalid record"); 4367 4368 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 4369 return Err; 4370 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4371 if (Ordering == AtomicOrdering::NotAtomic || 4372 Ordering == AtomicOrdering::Acquire || 4373 Ordering == AtomicOrdering::AcquireRelease) 4374 return error("Invalid record"); 4375 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 4376 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 4377 return error("Invalid record"); 4378 4379 unsigned Align; 4380 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4381 return Err; 4382 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align, Ordering, SSID); 4383 InstructionList.push_back(I); 4384 break; 4385 } 4386 case bitc::FUNC_CODE_INST_CMPXCHG_OLD: 4387 case bitc::FUNC_CODE_INST_CMPXCHG: { 4388 // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, ssid, 4389 // failureordering?, isweak?] 4390 unsigned OpNum = 0; 4391 Value *Ptr, *Cmp, *New; 4392 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4393 (BitCode == bitc::FUNC_CODE_INST_CMPXCHG 4394 ? getValueTypePair(Record, OpNum, NextValueNo, Cmp) 4395 : popValue(Record, OpNum, NextValueNo, 4396 cast<PointerType>(Ptr->getType())->getElementType(), 4397 Cmp)) || 4398 popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) || 4399 Record.size() < OpNum + 3 || Record.size() > OpNum + 5) 4400 return error("Invalid record"); 4401 AtomicOrdering SuccessOrdering = getDecodedOrdering(Record[OpNum + 1]); 4402 if (SuccessOrdering == AtomicOrdering::NotAtomic || 4403 SuccessOrdering == AtomicOrdering::Unordered) 4404 return error("Invalid record"); 4405 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]); 4406 4407 if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType())) 4408 return Err; 4409 AtomicOrdering FailureOrdering; 4410 if (Record.size() < 7) 4411 FailureOrdering = 4412 AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering); 4413 else 4414 FailureOrdering = getDecodedOrdering(Record[OpNum + 3]); 4415 4416 I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering, 4417 SSID); 4418 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 4419 4420 if (Record.size() < 8) { 4421 // Before weak cmpxchgs existed, the instruction simply returned the 4422 // value loaded from memory, so bitcode files from that era will be 4423 // expecting the first component of a modern cmpxchg. 4424 CurBB->getInstList().push_back(I); 4425 I = ExtractValueInst::Create(I, 0); 4426 } else { 4427 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]); 4428 } 4429 4430 InstructionList.push_back(I); 4431 break; 4432 } 4433 case bitc::FUNC_CODE_INST_ATOMICRMW: { 4434 // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, ssid] 4435 unsigned OpNum = 0; 4436 Value *Ptr, *Val; 4437 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4438 !isa<PointerType>(Ptr->getType()) || 4439 popValue(Record, OpNum, NextValueNo, 4440 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 4441 OpNum+4 != Record.size()) 4442 return error("Invalid record"); 4443 AtomicRMWInst::BinOp Operation = getDecodedRMWOperation(Record[OpNum]); 4444 if (Operation < AtomicRMWInst::FIRST_BINOP || 4445 Operation > AtomicRMWInst::LAST_BINOP) 4446 return error("Invalid record"); 4447 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4448 if (Ordering == AtomicOrdering::NotAtomic || 4449 Ordering == AtomicOrdering::Unordered) 4450 return error("Invalid record"); 4451 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 4452 I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SSID); 4453 cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]); 4454 InstructionList.push_back(I); 4455 break; 4456 } 4457 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, ssid] 4458 if (2 != Record.size()) 4459 return error("Invalid record"); 4460 AtomicOrdering Ordering = getDecodedOrdering(Record[0]); 4461 if (Ordering == AtomicOrdering::NotAtomic || 4462 Ordering == AtomicOrdering::Unordered || 4463 Ordering == AtomicOrdering::Monotonic) 4464 return error("Invalid record"); 4465 SyncScope::ID SSID = getDecodedSyncScopeID(Record[1]); 4466 I = new FenceInst(Context, Ordering, SSID); 4467 InstructionList.push_back(I); 4468 break; 4469 } 4470 case bitc::FUNC_CODE_INST_CALL: { 4471 // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...] 4472 if (Record.size() < 3) 4473 return error("Invalid record"); 4474 4475 unsigned OpNum = 0; 4476 AttributeList PAL = getAttributes(Record[OpNum++]); 4477 unsigned CCInfo = Record[OpNum++]; 4478 4479 FastMathFlags FMF; 4480 if ((CCInfo >> bitc::CALL_FMF) & 1) { 4481 FMF = getDecodedFastMathFlags(Record[OpNum++]); 4482 if (!FMF.any()) 4483 return error("Fast math flags indicator set for call with no FMF"); 4484 } 4485 4486 FunctionType *FTy = nullptr; 4487 if (CCInfo >> bitc::CALL_EXPLICIT_TYPE & 1 && 4488 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])))) 4489 return error("Explicit call type is not a function type"); 4490 4491 Value *Callee; 4492 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 4493 return error("Invalid record"); 4494 4495 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 4496 if (!OpTy) 4497 return error("Callee is not a pointer type"); 4498 if (!FTy) { 4499 FTy = dyn_cast<FunctionType>(OpTy->getElementType()); 4500 if (!FTy) 4501 return error("Callee is not of pointer to function type"); 4502 } else if (OpTy->getElementType() != FTy) 4503 return error("Explicit call type does not match pointee type of " 4504 "callee operand"); 4505 if (Record.size() < FTy->getNumParams() + OpNum) 4506 return error("Insufficient operands to call"); 4507 4508 SmallVector<Value*, 16> Args; 4509 // Read the fixed params. 4510 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 4511 if (FTy->getParamType(i)->isLabelTy()) 4512 Args.push_back(getBasicBlock(Record[OpNum])); 4513 else 4514 Args.push_back(getValue(Record, OpNum, NextValueNo, 4515 FTy->getParamType(i))); 4516 if (!Args.back()) 4517 return error("Invalid record"); 4518 } 4519 4520 // Read type/value pairs for varargs params. 4521 if (!FTy->isVarArg()) { 4522 if (OpNum != Record.size()) 4523 return error("Invalid record"); 4524 } else { 4525 while (OpNum != Record.size()) { 4526 Value *Op; 4527 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4528 return error("Invalid record"); 4529 Args.push_back(Op); 4530 } 4531 } 4532 4533 I = CallInst::Create(FTy, Callee, Args, OperandBundles); 4534 OperandBundles.clear(); 4535 InstructionList.push_back(I); 4536 cast<CallInst>(I)->setCallingConv( 4537 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 4538 CallInst::TailCallKind TCK = CallInst::TCK_None; 4539 if (CCInfo & 1 << bitc::CALL_TAIL) 4540 TCK = CallInst::TCK_Tail; 4541 if (CCInfo & (1 << bitc::CALL_MUSTTAIL)) 4542 TCK = CallInst::TCK_MustTail; 4543 if (CCInfo & (1 << bitc::CALL_NOTAIL)) 4544 TCK = CallInst::TCK_NoTail; 4545 cast<CallInst>(I)->setTailCallKind(TCK); 4546 cast<CallInst>(I)->setAttributes(PAL); 4547 if (FMF.any()) { 4548 if (!isa<FPMathOperator>(I)) 4549 return error("Fast-math-flags specified for call without " 4550 "floating-point scalar or vector return type"); 4551 I->setFastMathFlags(FMF); 4552 } 4553 break; 4554 } 4555 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 4556 if (Record.size() < 3) 4557 return error("Invalid record"); 4558 Type *OpTy = getTypeByID(Record[0]); 4559 Value *Op = getValue(Record, 1, NextValueNo, OpTy); 4560 Type *ResTy = getTypeByID(Record[2]); 4561 if (!OpTy || !Op || !ResTy) 4562 return error("Invalid record"); 4563 I = new VAArgInst(Op, ResTy); 4564 InstructionList.push_back(I); 4565 break; 4566 } 4567 4568 case bitc::FUNC_CODE_OPERAND_BUNDLE: { 4569 // A call or an invoke can be optionally prefixed with some variable 4570 // number of operand bundle blocks. These blocks are read into 4571 // OperandBundles and consumed at the next call or invoke instruction. 4572 4573 if (Record.size() < 1 || Record[0] >= BundleTags.size()) 4574 return error("Invalid record"); 4575 4576 std::vector<Value *> Inputs; 4577 4578 unsigned OpNum = 1; 4579 while (OpNum != Record.size()) { 4580 Value *Op; 4581 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4582 return error("Invalid record"); 4583 Inputs.push_back(Op); 4584 } 4585 4586 OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs)); 4587 continue; 4588 } 4589 } 4590 4591 // Add instruction to end of current BB. If there is no current BB, reject 4592 // this file. 4593 if (!CurBB) { 4594 I->deleteValue(); 4595 return error("Invalid instruction with no BB"); 4596 } 4597 if (!OperandBundles.empty()) { 4598 I->deleteValue(); 4599 return error("Operand bundles found with no consumer"); 4600 } 4601 CurBB->getInstList().push_back(I); 4602 4603 // If this was a terminator instruction, move to the next block. 4604 if (isa<TerminatorInst>(I)) { 4605 ++CurBBNo; 4606 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr; 4607 } 4608 4609 // Non-void values get registered in the value table for future use. 4610 if (I && !I->getType()->isVoidTy()) 4611 ValueList.assignValue(I, NextValueNo++); 4612 } 4613 4614 OutOfRecordLoop: 4615 4616 if (!OperandBundles.empty()) 4617 return error("Operand bundles found with no consumer"); 4618 4619 // Check the function list for unresolved values. 4620 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 4621 if (!A->getParent()) { 4622 // We found at least one unresolved value. Nuke them all to avoid leaks. 4623 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 4624 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) { 4625 A->replaceAllUsesWith(UndefValue::get(A->getType())); 4626 delete A; 4627 } 4628 } 4629 return error("Never resolved value found in function"); 4630 } 4631 } 4632 4633 // Unexpected unresolved metadata about to be dropped. 4634 if (MDLoader->hasFwdRefs()) 4635 return error("Invalid function metadata: outgoing forward refs"); 4636 4637 // Trim the value list down to the size it was before we parsed this function. 4638 ValueList.shrinkTo(ModuleValueListSize); 4639 MDLoader->shrinkTo(ModuleMDLoaderSize); 4640 std::vector<BasicBlock*>().swap(FunctionBBs); 4641 return Error::success(); 4642 } 4643 4644 /// Find the function body in the bitcode stream 4645 Error BitcodeReader::findFunctionInStream( 4646 Function *F, 4647 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) { 4648 while (DeferredFunctionInfoIterator->second == 0) { 4649 // This is the fallback handling for the old format bitcode that 4650 // didn't contain the function index in the VST, or when we have 4651 // an anonymous function which would not have a VST entry. 4652 // Assert that we have one of those two cases. 4653 assert(VSTOffset == 0 || !F->hasName()); 4654 // Parse the next body in the stream and set its position in the 4655 // DeferredFunctionInfo map. 4656 if (Error Err = rememberAndSkipFunctionBodies()) 4657 return Err; 4658 } 4659 return Error::success(); 4660 } 4661 4662 SyncScope::ID BitcodeReader::getDecodedSyncScopeID(unsigned Val) { 4663 if (Val == SyncScope::SingleThread || Val == SyncScope::System) 4664 return SyncScope::ID(Val); 4665 if (Val >= SSIDs.size()) 4666 return SyncScope::System; // Map unknown synchronization scopes to system. 4667 return SSIDs[Val]; 4668 } 4669 4670 //===----------------------------------------------------------------------===// 4671 // GVMaterializer implementation 4672 //===----------------------------------------------------------------------===// 4673 4674 Error BitcodeReader::materialize(GlobalValue *GV) { 4675 Function *F = dyn_cast<Function>(GV); 4676 // If it's not a function or is already material, ignore the request. 4677 if (!F || !F->isMaterializable()) 4678 return Error::success(); 4679 4680 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 4681 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 4682 // If its position is recorded as 0, its body is somewhere in the stream 4683 // but we haven't seen it yet. 4684 if (DFII->second == 0) 4685 if (Error Err = findFunctionInStream(F, DFII)) 4686 return Err; 4687 4688 // Materialize metadata before parsing any function bodies. 4689 if (Error Err = materializeMetadata()) 4690 return Err; 4691 4692 // Move the bit stream to the saved position of the deferred function body. 4693 Stream.JumpToBit(DFII->second); 4694 4695 if (Error Err = parseFunctionBody(F)) 4696 return Err; 4697 F->setIsMaterializable(false); 4698 4699 if (StripDebugInfo) 4700 stripDebugInfo(*F); 4701 4702 // Upgrade any old intrinsic calls in the function. 4703 for (auto &I : UpgradedIntrinsics) { 4704 for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end(); 4705 UI != UE;) { 4706 User *U = *UI; 4707 ++UI; 4708 if (CallInst *CI = dyn_cast<CallInst>(U)) 4709 UpgradeIntrinsicCall(CI, I.second); 4710 } 4711 } 4712 4713 // Update calls to the remangled intrinsics 4714 for (auto &I : RemangledIntrinsics) 4715 for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end(); 4716 UI != UE;) 4717 // Don't expect any other users than call sites 4718 CallSite(*UI++).setCalledFunction(I.second); 4719 4720 // Finish fn->subprogram upgrade for materialized functions. 4721 if (DISubprogram *SP = MDLoader->lookupSubprogramForFunction(F)) 4722 F->setSubprogram(SP); 4723 4724 // Check if the TBAA Metadata are valid, otherwise we will need to strip them. 4725 if (!MDLoader->isStrippingTBAA()) { 4726 for (auto &I : instructions(F)) { 4727 MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa); 4728 if (!TBAA || TBAAVerifyHelper.visitTBAAMetadata(I, TBAA)) 4729 continue; 4730 MDLoader->setStripTBAA(true); 4731 stripTBAA(F->getParent()); 4732 } 4733 } 4734 4735 // Bring in any functions that this function forward-referenced via 4736 // blockaddresses. 4737 return materializeForwardReferencedFunctions(); 4738 } 4739 4740 Error BitcodeReader::materializeModule() { 4741 if (Error Err = materializeMetadata()) 4742 return Err; 4743 4744 // Promise to materialize all forward references. 4745 WillMaterializeAllForwardRefs = true; 4746 4747 // Iterate over the module, deserializing any functions that are still on 4748 // disk. 4749 for (Function &F : *TheModule) { 4750 if (Error Err = materialize(&F)) 4751 return Err; 4752 } 4753 // At this point, if there are any function bodies, parse the rest of 4754 // the bits in the module past the last function block we have recorded 4755 // through either lazy scanning or the VST. 4756 if (LastFunctionBlockBit || NextUnreadBit) 4757 if (Error Err = parseModule(LastFunctionBlockBit > NextUnreadBit 4758 ? LastFunctionBlockBit 4759 : NextUnreadBit)) 4760 return Err; 4761 4762 // Check that all block address forward references got resolved (as we 4763 // promised above). 4764 if (!BasicBlockFwdRefs.empty()) 4765 return error("Never resolved function from blockaddress"); 4766 4767 // Upgrade any intrinsic calls that slipped through (should not happen!) and 4768 // delete the old functions to clean up. We can't do this unless the entire 4769 // module is materialized because there could always be another function body 4770 // with calls to the old function. 4771 for (auto &I : UpgradedIntrinsics) { 4772 for (auto *U : I.first->users()) { 4773 if (CallInst *CI = dyn_cast<CallInst>(U)) 4774 UpgradeIntrinsicCall(CI, I.second); 4775 } 4776 if (!I.first->use_empty()) 4777 I.first->replaceAllUsesWith(I.second); 4778 I.first->eraseFromParent(); 4779 } 4780 UpgradedIntrinsics.clear(); 4781 // Do the same for remangled intrinsics 4782 for (auto &I : RemangledIntrinsics) { 4783 I.first->replaceAllUsesWith(I.second); 4784 I.first->eraseFromParent(); 4785 } 4786 RemangledIntrinsics.clear(); 4787 4788 UpgradeDebugInfo(*TheModule); 4789 4790 UpgradeModuleFlags(*TheModule); 4791 4792 UpgradeRetainReleaseMarker(*TheModule); 4793 4794 return Error::success(); 4795 } 4796 4797 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const { 4798 return IdentifiedStructTypes; 4799 } 4800 4801 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader( 4802 BitstreamCursor Cursor, StringRef Strtab, ModuleSummaryIndex &TheIndex, 4803 StringRef ModulePath, unsigned ModuleId) 4804 : BitcodeReaderBase(std::move(Cursor), Strtab), TheIndex(TheIndex), 4805 ModulePath(ModulePath), ModuleId(ModuleId) {} 4806 4807 ModuleSummaryIndex::ModuleInfo * 4808 ModuleSummaryIndexBitcodeReader::addThisModule() { 4809 return TheIndex.addModule(ModulePath, ModuleId); 4810 } 4811 4812 std::pair<ValueInfo, GlobalValue::GUID> 4813 ModuleSummaryIndexBitcodeReader::getValueInfoFromValueId(unsigned ValueId) { 4814 auto VGI = ValueIdToValueInfoMap[ValueId]; 4815 assert(VGI.first); 4816 return VGI; 4817 } 4818 4819 void ModuleSummaryIndexBitcodeReader::setValueGUID( 4820 uint64_t ValueID, StringRef ValueName, GlobalValue::LinkageTypes Linkage, 4821 StringRef SourceFileName) { 4822 std::string GlobalId = 4823 GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName); 4824 auto ValueGUID = GlobalValue::getGUID(GlobalId); 4825 auto OriginalNameID = ValueGUID; 4826 if (GlobalValue::isLocalLinkage(Linkage)) 4827 OriginalNameID = GlobalValue::getGUID(ValueName); 4828 if (PrintSummaryGUIDs) 4829 dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is " 4830 << ValueName << "\n"; 4831 4832 // UseStrtab is false for legacy summary formats and value names are 4833 // created on stack. We can't use them outside of parseValueSymbolTable. 4834 ValueIdToValueInfoMap[ValueID] = std::make_pair( 4835 TheIndex.getOrInsertValueInfo(ValueGUID, UseStrtab ? ValueName : ""), 4836 OriginalNameID); 4837 } 4838 4839 // Specialized value symbol table parser used when reading module index 4840 // blocks where we don't actually create global values. The parsed information 4841 // is saved in the bitcode reader for use when later parsing summaries. 4842 Error ModuleSummaryIndexBitcodeReader::parseValueSymbolTable( 4843 uint64_t Offset, 4844 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) { 4845 // With a strtab the VST is not required to parse the summary. 4846 if (UseStrtab) 4847 return Error::success(); 4848 4849 assert(Offset > 0 && "Expected non-zero VST offset"); 4850 uint64_t CurrentBit = jumpToValueSymbolTable(Offset, Stream); 4851 4852 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 4853 return error("Invalid record"); 4854 4855 SmallVector<uint64_t, 64> Record; 4856 4857 // Read all the records for this value table. 4858 SmallString<128> ValueName; 4859 4860 while (true) { 4861 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 4862 4863 switch (Entry.Kind) { 4864 case BitstreamEntry::SubBlock: // Handled for us already. 4865 case BitstreamEntry::Error: 4866 return error("Malformed block"); 4867 case BitstreamEntry::EndBlock: 4868 // Done parsing VST, jump back to wherever we came from. 4869 Stream.JumpToBit(CurrentBit); 4870 return Error::success(); 4871 case BitstreamEntry::Record: 4872 // The interesting case. 4873 break; 4874 } 4875 4876 // Read a record. 4877 Record.clear(); 4878 switch (Stream.readRecord(Entry.ID, Record)) { 4879 default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records). 4880 break; 4881 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 4882 if (convertToString(Record, 1, ValueName)) 4883 return error("Invalid record"); 4884 unsigned ValueID = Record[0]; 4885 assert(!SourceFileName.empty()); 4886 auto VLI = ValueIdToLinkageMap.find(ValueID); 4887 assert(VLI != ValueIdToLinkageMap.end() && 4888 "No linkage found for VST entry?"); 4889 auto Linkage = VLI->second; 4890 setValueGUID(ValueID, ValueName, Linkage, SourceFileName); 4891 ValueName.clear(); 4892 break; 4893 } 4894 case bitc::VST_CODE_FNENTRY: { 4895 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 4896 if (convertToString(Record, 2, ValueName)) 4897 return error("Invalid record"); 4898 unsigned ValueID = Record[0]; 4899 assert(!SourceFileName.empty()); 4900 auto VLI = ValueIdToLinkageMap.find(ValueID); 4901 assert(VLI != ValueIdToLinkageMap.end() && 4902 "No linkage found for VST entry?"); 4903 auto Linkage = VLI->second; 4904 setValueGUID(ValueID, ValueName, Linkage, SourceFileName); 4905 ValueName.clear(); 4906 break; 4907 } 4908 case bitc::VST_CODE_COMBINED_ENTRY: { 4909 // VST_CODE_COMBINED_ENTRY: [valueid, refguid] 4910 unsigned ValueID = Record[0]; 4911 GlobalValue::GUID RefGUID = Record[1]; 4912 // The "original name", which is the second value of the pair will be 4913 // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index. 4914 ValueIdToValueInfoMap[ValueID] = 4915 std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID); 4916 break; 4917 } 4918 } 4919 } 4920 } 4921 4922 // Parse just the blocks needed for building the index out of the module. 4923 // At the end of this routine the module Index is populated with a map 4924 // from global value id to GlobalValueSummary objects. 4925 Error ModuleSummaryIndexBitcodeReader::parseModule() { 4926 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 4927 return error("Invalid record"); 4928 4929 SmallVector<uint64_t, 64> Record; 4930 DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap; 4931 unsigned ValueId = 0; 4932 4933 // Read the index for this module. 4934 while (true) { 4935 BitstreamEntry Entry = Stream.advance(); 4936 4937 switch (Entry.Kind) { 4938 case BitstreamEntry::Error: 4939 return error("Malformed block"); 4940 case BitstreamEntry::EndBlock: 4941 return Error::success(); 4942 4943 case BitstreamEntry::SubBlock: 4944 switch (Entry.ID) { 4945 default: // Skip unknown content. 4946 if (Stream.SkipBlock()) 4947 return error("Invalid record"); 4948 break; 4949 case bitc::BLOCKINFO_BLOCK_ID: 4950 // Need to parse these to get abbrev ids (e.g. for VST) 4951 if (readBlockInfo()) 4952 return error("Malformed block"); 4953 break; 4954 case bitc::VALUE_SYMTAB_BLOCK_ID: 4955 // Should have been parsed earlier via VSTOffset, unless there 4956 // is no summary section. 4957 assert(((SeenValueSymbolTable && VSTOffset > 0) || 4958 !SeenGlobalValSummary) && 4959 "Expected early VST parse via VSTOffset record"); 4960 if (Stream.SkipBlock()) 4961 return error("Invalid record"); 4962 break; 4963 case bitc::GLOBALVAL_SUMMARY_BLOCK_ID: 4964 case bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID: 4965 assert(!SeenValueSymbolTable && 4966 "Already read VST when parsing summary block?"); 4967 // We might not have a VST if there were no values in the 4968 // summary. An empty summary block generated when we are 4969 // performing ThinLTO compiles so we don't later invoke 4970 // the regular LTO process on them. 4971 if (VSTOffset > 0) { 4972 if (Error Err = parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap)) 4973 return Err; 4974 SeenValueSymbolTable = true; 4975 } 4976 SeenGlobalValSummary = true; 4977 if (Error Err = parseEntireSummary(Entry.ID)) 4978 return Err; 4979 break; 4980 case bitc::MODULE_STRTAB_BLOCK_ID: 4981 if (Error Err = parseModuleStringTable()) 4982 return Err; 4983 break; 4984 } 4985 continue; 4986 4987 case BitstreamEntry::Record: { 4988 Record.clear(); 4989 auto BitCode = Stream.readRecord(Entry.ID, Record); 4990 switch (BitCode) { 4991 default: 4992 break; // Default behavior, ignore unknown content. 4993 case bitc::MODULE_CODE_VERSION: { 4994 if (Error Err = parseVersionRecord(Record).takeError()) 4995 return Err; 4996 break; 4997 } 4998 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 4999 case bitc::MODULE_CODE_SOURCE_FILENAME: { 5000 SmallString<128> ValueName; 5001 if (convertToString(Record, 0, ValueName)) 5002 return error("Invalid record"); 5003 SourceFileName = ValueName.c_str(); 5004 break; 5005 } 5006 /// MODULE_CODE_HASH: [5*i32] 5007 case bitc::MODULE_CODE_HASH: { 5008 if (Record.size() != 5) 5009 return error("Invalid hash length " + Twine(Record.size()).str()); 5010 auto &Hash = addThisModule()->second.second; 5011 int Pos = 0; 5012 for (auto &Val : Record) { 5013 assert(!(Val >> 32) && "Unexpected high bits set"); 5014 Hash[Pos++] = Val; 5015 } 5016 break; 5017 } 5018 /// MODULE_CODE_VSTOFFSET: [offset] 5019 case bitc::MODULE_CODE_VSTOFFSET: 5020 if (Record.size() < 1) 5021 return error("Invalid record"); 5022 // Note that we subtract 1 here because the offset is relative to one 5023 // word before the start of the identification or module block, which 5024 // was historically always the start of the regular bitcode header. 5025 VSTOffset = Record[0] - 1; 5026 break; 5027 // v1 GLOBALVAR: [pointer type, isconst, initid, linkage, ...] 5028 // v1 FUNCTION: [type, callingconv, isproto, linkage, ...] 5029 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, ...] 5030 // v2: [strtab offset, strtab size, v1] 5031 case bitc::MODULE_CODE_GLOBALVAR: 5032 case bitc::MODULE_CODE_FUNCTION: 5033 case bitc::MODULE_CODE_ALIAS: { 5034 StringRef Name; 5035 ArrayRef<uint64_t> GVRecord; 5036 std::tie(Name, GVRecord) = readNameFromStrtab(Record); 5037 if (GVRecord.size() <= 3) 5038 return error("Invalid record"); 5039 uint64_t RawLinkage = GVRecord[3]; 5040 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 5041 if (!UseStrtab) { 5042 ValueIdToLinkageMap[ValueId++] = Linkage; 5043 break; 5044 } 5045 5046 setValueGUID(ValueId++, Name, Linkage, SourceFileName); 5047 break; 5048 } 5049 } 5050 } 5051 continue; 5052 } 5053 } 5054 } 5055 5056 std::vector<ValueInfo> 5057 ModuleSummaryIndexBitcodeReader::makeRefList(ArrayRef<uint64_t> Record) { 5058 std::vector<ValueInfo> Ret; 5059 Ret.reserve(Record.size()); 5060 for (uint64_t RefValueId : Record) 5061 Ret.push_back(getValueInfoFromValueId(RefValueId).first); 5062 return Ret; 5063 } 5064 5065 std::vector<FunctionSummary::EdgeTy> 5066 ModuleSummaryIndexBitcodeReader::makeCallList(ArrayRef<uint64_t> Record, 5067 bool IsOldProfileFormat, 5068 bool HasProfile, bool HasRelBF) { 5069 std::vector<FunctionSummary::EdgeTy> Ret; 5070 Ret.reserve(Record.size()); 5071 for (unsigned I = 0, E = Record.size(); I != E; ++I) { 5072 CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown; 5073 uint64_t RelBF = 0; 5074 ValueInfo Callee = getValueInfoFromValueId(Record[I]).first; 5075 if (IsOldProfileFormat) { 5076 I += 1; // Skip old callsitecount field 5077 if (HasProfile) 5078 I += 1; // Skip old profilecount field 5079 } else if (HasProfile) 5080 Hotness = static_cast<CalleeInfo::HotnessType>(Record[++I]); 5081 else if (HasRelBF) 5082 RelBF = Record[++I]; 5083 Ret.push_back(FunctionSummary::EdgeTy{Callee, CalleeInfo(Hotness, RelBF)}); 5084 } 5085 return Ret; 5086 } 5087 5088 static void 5089 parseWholeProgramDevirtResolutionByArg(ArrayRef<uint64_t> Record, size_t &Slot, 5090 WholeProgramDevirtResolution &Wpd) { 5091 uint64_t ArgNum = Record[Slot++]; 5092 WholeProgramDevirtResolution::ByArg &B = 5093 Wpd.ResByArg[{Record.begin() + Slot, Record.begin() + Slot + ArgNum}]; 5094 Slot += ArgNum; 5095 5096 B.TheKind = 5097 static_cast<WholeProgramDevirtResolution::ByArg::Kind>(Record[Slot++]); 5098 B.Info = Record[Slot++]; 5099 B.Byte = Record[Slot++]; 5100 B.Bit = Record[Slot++]; 5101 } 5102 5103 static void parseWholeProgramDevirtResolution(ArrayRef<uint64_t> Record, 5104 StringRef Strtab, size_t &Slot, 5105 TypeIdSummary &TypeId) { 5106 uint64_t Id = Record[Slot++]; 5107 WholeProgramDevirtResolution &Wpd = TypeId.WPDRes[Id]; 5108 5109 Wpd.TheKind = static_cast<WholeProgramDevirtResolution::Kind>(Record[Slot++]); 5110 Wpd.SingleImplName = {Strtab.data() + Record[Slot], 5111 static_cast<size_t>(Record[Slot + 1])}; 5112 Slot += 2; 5113 5114 uint64_t ResByArgNum = Record[Slot++]; 5115 for (uint64_t I = 0; I != ResByArgNum; ++I) 5116 parseWholeProgramDevirtResolutionByArg(Record, Slot, Wpd); 5117 } 5118 5119 static void parseTypeIdSummaryRecord(ArrayRef<uint64_t> Record, 5120 StringRef Strtab, 5121 ModuleSummaryIndex &TheIndex) { 5122 size_t Slot = 0; 5123 TypeIdSummary &TypeId = TheIndex.getOrInsertTypeIdSummary( 5124 {Strtab.data() + Record[Slot], static_cast<size_t>(Record[Slot + 1])}); 5125 Slot += 2; 5126 5127 TypeId.TTRes.TheKind = static_cast<TypeTestResolution::Kind>(Record[Slot++]); 5128 TypeId.TTRes.SizeM1BitWidth = Record[Slot++]; 5129 TypeId.TTRes.AlignLog2 = Record[Slot++]; 5130 TypeId.TTRes.SizeM1 = Record[Slot++]; 5131 TypeId.TTRes.BitMask = Record[Slot++]; 5132 TypeId.TTRes.InlineBits = Record[Slot++]; 5133 5134 while (Slot < Record.size()) 5135 parseWholeProgramDevirtResolution(Record, Strtab, Slot, TypeId); 5136 } 5137 5138 // Eagerly parse the entire summary block. This populates the GlobalValueSummary 5139 // objects in the index. 5140 Error ModuleSummaryIndexBitcodeReader::parseEntireSummary(unsigned ID) { 5141 if (Stream.EnterSubBlock(ID)) 5142 return error("Invalid record"); 5143 SmallVector<uint64_t, 64> Record; 5144 5145 // Parse version 5146 { 5147 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5148 if (Entry.Kind != BitstreamEntry::Record) 5149 return error("Invalid Summary Block: record for version expected"); 5150 if (Stream.readRecord(Entry.ID, Record) != bitc::FS_VERSION) 5151 return error("Invalid Summary Block: version expected"); 5152 } 5153 const uint64_t Version = Record[0]; 5154 const bool IsOldProfileFormat = Version == 1; 5155 if (Version < 1 || Version > 4) 5156 return error("Invalid summary version " + Twine(Version) + 5157 ", 1, 2, 3 or 4 expected"); 5158 Record.clear(); 5159 5160 // Keep around the last seen summary to be used when we see an optional 5161 // "OriginalName" attachement. 5162 GlobalValueSummary *LastSeenSummary = nullptr; 5163 GlobalValue::GUID LastSeenGUID = 0; 5164 5165 // We can expect to see any number of type ID information records before 5166 // each function summary records; these variables store the information 5167 // collected so far so that it can be used to create the summary object. 5168 std::vector<GlobalValue::GUID> PendingTypeTests; 5169 std::vector<FunctionSummary::VFuncId> PendingTypeTestAssumeVCalls, 5170 PendingTypeCheckedLoadVCalls; 5171 std::vector<FunctionSummary::ConstVCall> PendingTypeTestAssumeConstVCalls, 5172 PendingTypeCheckedLoadConstVCalls; 5173 5174 while (true) { 5175 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5176 5177 switch (Entry.Kind) { 5178 case BitstreamEntry::SubBlock: // Handled for us already. 5179 case BitstreamEntry::Error: 5180 return error("Malformed block"); 5181 case BitstreamEntry::EndBlock: 5182 return Error::success(); 5183 case BitstreamEntry::Record: 5184 // The interesting case. 5185 break; 5186 } 5187 5188 // Read a record. The record format depends on whether this 5189 // is a per-module index or a combined index file. In the per-module 5190 // case the records contain the associated value's ID for correlation 5191 // with VST entries. In the combined index the correlation is done 5192 // via the bitcode offset of the summary records (which were saved 5193 // in the combined index VST entries). The records also contain 5194 // information used for ThinLTO renaming and importing. 5195 Record.clear(); 5196 auto BitCode = Stream.readRecord(Entry.ID, Record); 5197 switch (BitCode) { 5198 default: // Default behavior: ignore. 5199 break; 5200 case bitc::FS_FLAGS: { // [flags] 5201 uint64_t Flags = Record[0]; 5202 // Scan flags (set only on the combined index). 5203 assert(Flags <= 0x3 && "Unexpected bits in flag"); 5204 5205 // 1 bit: WithGlobalValueDeadStripping flag. 5206 if (Flags & 0x1) 5207 TheIndex.setWithGlobalValueDeadStripping(); 5208 // 1 bit: SkipModuleByDistributedBackend flag. 5209 if (Flags & 0x2) 5210 TheIndex.setSkipModuleByDistributedBackend(); 5211 break; 5212 } 5213 case bitc::FS_VALUE_GUID: { // [valueid, refguid] 5214 uint64_t ValueID = Record[0]; 5215 GlobalValue::GUID RefGUID = Record[1]; 5216 ValueIdToValueInfoMap[ValueID] = 5217 std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID); 5218 break; 5219 } 5220 // FS_PERMODULE: [valueid, flags, instcount, fflags, numrefs, 5221 // numrefs x valueid, n x (valueid)] 5222 // FS_PERMODULE_PROFILE: [valueid, flags, instcount, fflags, numrefs, 5223 // numrefs x valueid, 5224 // n x (valueid, hotness)] 5225 // FS_PERMODULE_RELBF: [valueid, flags, instcount, fflags, numrefs, 5226 // numrefs x valueid, 5227 // n x (valueid, relblockfreq)] 5228 case bitc::FS_PERMODULE: 5229 case bitc::FS_PERMODULE_RELBF: 5230 case bitc::FS_PERMODULE_PROFILE: { 5231 unsigned ValueID = Record[0]; 5232 uint64_t RawFlags = Record[1]; 5233 unsigned InstCount = Record[2]; 5234 uint64_t RawFunFlags = 0; 5235 unsigned NumRefs = Record[3]; 5236 int RefListStartIndex = 4; 5237 if (Version >= 4) { 5238 RawFunFlags = Record[3]; 5239 NumRefs = Record[4]; 5240 RefListStartIndex = 5; 5241 } 5242 5243 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5244 // The module path string ref set in the summary must be owned by the 5245 // index's module string table. Since we don't have a module path 5246 // string table section in the per-module index, we create a single 5247 // module path string table entry with an empty (0) ID to take 5248 // ownership. 5249 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 5250 assert(Record.size() >= RefListStartIndex + NumRefs && 5251 "Record size inconsistent with number of references"); 5252 std::vector<ValueInfo> Refs = makeRefList( 5253 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 5254 bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE); 5255 bool HasRelBF = (BitCode == bitc::FS_PERMODULE_RELBF); 5256 std::vector<FunctionSummary::EdgeTy> Calls = makeCallList( 5257 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex), 5258 IsOldProfileFormat, HasProfile, HasRelBF); 5259 auto FS = llvm::make_unique<FunctionSummary>( 5260 Flags, InstCount, getDecodedFFlags(RawFunFlags), std::move(Refs), 5261 std::move(Calls), std::move(PendingTypeTests), 5262 std::move(PendingTypeTestAssumeVCalls), 5263 std::move(PendingTypeCheckedLoadVCalls), 5264 std::move(PendingTypeTestAssumeConstVCalls), 5265 std::move(PendingTypeCheckedLoadConstVCalls)); 5266 PendingTypeTests.clear(); 5267 PendingTypeTestAssumeVCalls.clear(); 5268 PendingTypeCheckedLoadVCalls.clear(); 5269 PendingTypeTestAssumeConstVCalls.clear(); 5270 PendingTypeCheckedLoadConstVCalls.clear(); 5271 auto VIAndOriginalGUID = getValueInfoFromValueId(ValueID); 5272 FS->setModulePath(addThisModule()->first()); 5273 FS->setOriginalName(VIAndOriginalGUID.second); 5274 TheIndex.addGlobalValueSummary(VIAndOriginalGUID.first, std::move(FS)); 5275 break; 5276 } 5277 // FS_ALIAS: [valueid, flags, valueid] 5278 // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as 5279 // they expect all aliasee summaries to be available. 5280 case bitc::FS_ALIAS: { 5281 unsigned ValueID = Record[0]; 5282 uint64_t RawFlags = Record[1]; 5283 unsigned AliaseeID = Record[2]; 5284 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5285 auto AS = llvm::make_unique<AliasSummary>(Flags); 5286 // The module path string ref set in the summary must be owned by the 5287 // index's module string table. Since we don't have a module path 5288 // string table section in the per-module index, we create a single 5289 // module path string table entry with an empty (0) ID to take 5290 // ownership. 5291 AS->setModulePath(addThisModule()->first()); 5292 5293 GlobalValue::GUID AliaseeGUID = 5294 getValueInfoFromValueId(AliaseeID).first.getGUID(); 5295 auto AliaseeInModule = 5296 TheIndex.findSummaryInModule(AliaseeGUID, ModulePath); 5297 if (!AliaseeInModule) 5298 return error("Alias expects aliasee summary to be parsed"); 5299 AS->setAliasee(AliaseeInModule); 5300 AS->setAliaseeGUID(AliaseeGUID); 5301 5302 auto GUID = getValueInfoFromValueId(ValueID); 5303 AS->setOriginalName(GUID.second); 5304 TheIndex.addGlobalValueSummary(GUID.first, std::move(AS)); 5305 break; 5306 } 5307 // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, n x valueid] 5308 case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: { 5309 unsigned ValueID = Record[0]; 5310 uint64_t RawFlags = Record[1]; 5311 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5312 std::vector<ValueInfo> Refs = 5313 makeRefList(ArrayRef<uint64_t>(Record).slice(2)); 5314 auto FS = llvm::make_unique<GlobalVarSummary>(Flags, std::move(Refs)); 5315 FS->setModulePath(addThisModule()->first()); 5316 auto GUID = getValueInfoFromValueId(ValueID); 5317 FS->setOriginalName(GUID.second); 5318 TheIndex.addGlobalValueSummary(GUID.first, std::move(FS)); 5319 break; 5320 } 5321 // FS_COMBINED: [valueid, modid, flags, instcount, fflags, numrefs, 5322 // numrefs x valueid, n x (valueid)] 5323 // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, fflags, numrefs, 5324 // numrefs x valueid, n x (valueid, hotness)] 5325 case bitc::FS_COMBINED: 5326 case bitc::FS_COMBINED_PROFILE: { 5327 unsigned ValueID = Record[0]; 5328 uint64_t ModuleId = Record[1]; 5329 uint64_t RawFlags = Record[2]; 5330 unsigned InstCount = Record[3]; 5331 uint64_t RawFunFlags = 0; 5332 unsigned NumRefs = Record[4]; 5333 int RefListStartIndex = 5; 5334 5335 if (Version >= 4) { 5336 RawFunFlags = Record[4]; 5337 NumRefs = Record[5]; 5338 RefListStartIndex = 6; 5339 } 5340 5341 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5342 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 5343 assert(Record.size() >= RefListStartIndex + NumRefs && 5344 "Record size inconsistent with number of references"); 5345 std::vector<ValueInfo> Refs = makeRefList( 5346 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 5347 bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE); 5348 std::vector<FunctionSummary::EdgeTy> Edges = makeCallList( 5349 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex), 5350 IsOldProfileFormat, HasProfile, false); 5351 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 5352 auto FS = llvm::make_unique<FunctionSummary>( 5353 Flags, InstCount, getDecodedFFlags(RawFunFlags), std::move(Refs), 5354 std::move(Edges), std::move(PendingTypeTests), 5355 std::move(PendingTypeTestAssumeVCalls), 5356 std::move(PendingTypeCheckedLoadVCalls), 5357 std::move(PendingTypeTestAssumeConstVCalls), 5358 std::move(PendingTypeCheckedLoadConstVCalls)); 5359 PendingTypeTests.clear(); 5360 PendingTypeTestAssumeVCalls.clear(); 5361 PendingTypeCheckedLoadVCalls.clear(); 5362 PendingTypeTestAssumeConstVCalls.clear(); 5363 PendingTypeCheckedLoadConstVCalls.clear(); 5364 LastSeenSummary = FS.get(); 5365 LastSeenGUID = VI.getGUID(); 5366 FS->setModulePath(ModuleIdMap[ModuleId]); 5367 TheIndex.addGlobalValueSummary(VI, std::move(FS)); 5368 break; 5369 } 5370 // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid] 5371 // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as 5372 // they expect all aliasee summaries to be available. 5373 case bitc::FS_COMBINED_ALIAS: { 5374 unsigned ValueID = Record[0]; 5375 uint64_t ModuleId = Record[1]; 5376 uint64_t RawFlags = Record[2]; 5377 unsigned AliaseeValueId = Record[3]; 5378 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5379 auto AS = llvm::make_unique<AliasSummary>(Flags); 5380 LastSeenSummary = AS.get(); 5381 AS->setModulePath(ModuleIdMap[ModuleId]); 5382 5383 auto AliaseeGUID = 5384 getValueInfoFromValueId(AliaseeValueId).first.getGUID(); 5385 auto AliaseeInModule = 5386 TheIndex.findSummaryInModule(AliaseeGUID, AS->modulePath()); 5387 AS->setAliasee(AliaseeInModule); 5388 AS->setAliaseeGUID(AliaseeGUID); 5389 5390 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 5391 LastSeenGUID = VI.getGUID(); 5392 TheIndex.addGlobalValueSummary(VI, std::move(AS)); 5393 break; 5394 } 5395 // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid] 5396 case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: { 5397 unsigned ValueID = Record[0]; 5398 uint64_t ModuleId = Record[1]; 5399 uint64_t RawFlags = Record[2]; 5400 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5401 std::vector<ValueInfo> Refs = 5402 makeRefList(ArrayRef<uint64_t>(Record).slice(3)); 5403 auto FS = llvm::make_unique<GlobalVarSummary>(Flags, std::move(Refs)); 5404 LastSeenSummary = FS.get(); 5405 FS->setModulePath(ModuleIdMap[ModuleId]); 5406 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 5407 LastSeenGUID = VI.getGUID(); 5408 TheIndex.addGlobalValueSummary(VI, std::move(FS)); 5409 break; 5410 } 5411 // FS_COMBINED_ORIGINAL_NAME: [original_name] 5412 case bitc::FS_COMBINED_ORIGINAL_NAME: { 5413 uint64_t OriginalName = Record[0]; 5414 if (!LastSeenSummary) 5415 return error("Name attachment that does not follow a combined record"); 5416 LastSeenSummary->setOriginalName(OriginalName); 5417 TheIndex.addOriginalName(LastSeenGUID, OriginalName); 5418 // Reset the LastSeenSummary 5419 LastSeenSummary = nullptr; 5420 LastSeenGUID = 0; 5421 break; 5422 } 5423 case bitc::FS_TYPE_TESTS: 5424 assert(PendingTypeTests.empty()); 5425 PendingTypeTests.insert(PendingTypeTests.end(), Record.begin(), 5426 Record.end()); 5427 break; 5428 5429 case bitc::FS_TYPE_TEST_ASSUME_VCALLS: 5430 assert(PendingTypeTestAssumeVCalls.empty()); 5431 for (unsigned I = 0; I != Record.size(); I += 2) 5432 PendingTypeTestAssumeVCalls.push_back({Record[I], Record[I+1]}); 5433 break; 5434 5435 case bitc::FS_TYPE_CHECKED_LOAD_VCALLS: 5436 assert(PendingTypeCheckedLoadVCalls.empty()); 5437 for (unsigned I = 0; I != Record.size(); I += 2) 5438 PendingTypeCheckedLoadVCalls.push_back({Record[I], Record[I+1]}); 5439 break; 5440 5441 case bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL: 5442 PendingTypeTestAssumeConstVCalls.push_back( 5443 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}}); 5444 break; 5445 5446 case bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL: 5447 PendingTypeCheckedLoadConstVCalls.push_back( 5448 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}}); 5449 break; 5450 5451 case bitc::FS_CFI_FUNCTION_DEFS: { 5452 std::set<std::string> &CfiFunctionDefs = TheIndex.cfiFunctionDefs(); 5453 for (unsigned I = 0; I != Record.size(); I += 2) 5454 CfiFunctionDefs.insert( 5455 {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])}); 5456 break; 5457 } 5458 5459 case bitc::FS_CFI_FUNCTION_DECLS: { 5460 std::set<std::string> &CfiFunctionDecls = TheIndex.cfiFunctionDecls(); 5461 for (unsigned I = 0; I != Record.size(); I += 2) 5462 CfiFunctionDecls.insert( 5463 {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])}); 5464 break; 5465 } 5466 5467 case bitc::FS_TYPE_ID: 5468 parseTypeIdSummaryRecord(Record, Strtab, TheIndex); 5469 break; 5470 } 5471 } 5472 llvm_unreachable("Exit infinite loop"); 5473 } 5474 5475 // Parse the module string table block into the Index. 5476 // This populates the ModulePathStringTable map in the index. 5477 Error ModuleSummaryIndexBitcodeReader::parseModuleStringTable() { 5478 if (Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID)) 5479 return error("Invalid record"); 5480 5481 SmallVector<uint64_t, 64> Record; 5482 5483 SmallString<128> ModulePath; 5484 ModuleSummaryIndex::ModuleInfo *LastSeenModule = nullptr; 5485 5486 while (true) { 5487 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5488 5489 switch (Entry.Kind) { 5490 case BitstreamEntry::SubBlock: // Handled for us already. 5491 case BitstreamEntry::Error: 5492 return error("Malformed block"); 5493 case BitstreamEntry::EndBlock: 5494 return Error::success(); 5495 case BitstreamEntry::Record: 5496 // The interesting case. 5497 break; 5498 } 5499 5500 Record.clear(); 5501 switch (Stream.readRecord(Entry.ID, Record)) { 5502 default: // Default behavior: ignore. 5503 break; 5504 case bitc::MST_CODE_ENTRY: { 5505 // MST_ENTRY: [modid, namechar x N] 5506 uint64_t ModuleId = Record[0]; 5507 5508 if (convertToString(Record, 1, ModulePath)) 5509 return error("Invalid record"); 5510 5511 LastSeenModule = TheIndex.addModule(ModulePath, ModuleId); 5512 ModuleIdMap[ModuleId] = LastSeenModule->first(); 5513 5514 ModulePath.clear(); 5515 break; 5516 } 5517 /// MST_CODE_HASH: [5*i32] 5518 case bitc::MST_CODE_HASH: { 5519 if (Record.size() != 5) 5520 return error("Invalid hash length " + Twine(Record.size()).str()); 5521 if (!LastSeenModule) 5522 return error("Invalid hash that does not follow a module path"); 5523 int Pos = 0; 5524 for (auto &Val : Record) { 5525 assert(!(Val >> 32) && "Unexpected high bits set"); 5526 LastSeenModule->second.second[Pos++] = Val; 5527 } 5528 // Reset LastSeenModule to avoid overriding the hash unexpectedly. 5529 LastSeenModule = nullptr; 5530 break; 5531 } 5532 } 5533 } 5534 llvm_unreachable("Exit infinite loop"); 5535 } 5536 5537 namespace { 5538 5539 // FIXME: This class is only here to support the transition to llvm::Error. It 5540 // will be removed once this transition is complete. Clients should prefer to 5541 // deal with the Error value directly, rather than converting to error_code. 5542 class BitcodeErrorCategoryType : public std::error_category { 5543 const char *name() const noexcept override { 5544 return "llvm.bitcode"; 5545 } 5546 5547 std::string message(int IE) const override { 5548 BitcodeError E = static_cast<BitcodeError>(IE); 5549 switch (E) { 5550 case BitcodeError::CorruptedBitcode: 5551 return "Corrupted bitcode"; 5552 } 5553 llvm_unreachable("Unknown error type!"); 5554 } 5555 }; 5556 5557 } // end anonymous namespace 5558 5559 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory; 5560 5561 const std::error_category &llvm::BitcodeErrorCategory() { 5562 return *ErrorCategory; 5563 } 5564 5565 static Expected<StringRef> readBlobInRecord(BitstreamCursor &Stream, 5566 unsigned Block, unsigned RecordID) { 5567 if (Stream.EnterSubBlock(Block)) 5568 return error("Invalid record"); 5569 5570 StringRef Strtab; 5571 while (true) { 5572 BitstreamEntry Entry = Stream.advance(); 5573 switch (Entry.Kind) { 5574 case BitstreamEntry::EndBlock: 5575 return Strtab; 5576 5577 case BitstreamEntry::Error: 5578 return error("Malformed block"); 5579 5580 case BitstreamEntry::SubBlock: 5581 if (Stream.SkipBlock()) 5582 return error("Malformed block"); 5583 break; 5584 5585 case BitstreamEntry::Record: 5586 StringRef Blob; 5587 SmallVector<uint64_t, 1> Record; 5588 if (Stream.readRecord(Entry.ID, Record, &Blob) == RecordID) 5589 Strtab = Blob; 5590 break; 5591 } 5592 } 5593 } 5594 5595 //===----------------------------------------------------------------------===// 5596 // External interface 5597 //===----------------------------------------------------------------------===// 5598 5599 Expected<std::vector<BitcodeModule>> 5600 llvm::getBitcodeModuleList(MemoryBufferRef Buffer) { 5601 auto FOrErr = getBitcodeFileContents(Buffer); 5602 if (!FOrErr) 5603 return FOrErr.takeError(); 5604 return std::move(FOrErr->Mods); 5605 } 5606 5607 Expected<BitcodeFileContents> 5608 llvm::getBitcodeFileContents(MemoryBufferRef Buffer) { 5609 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 5610 if (!StreamOrErr) 5611 return StreamOrErr.takeError(); 5612 BitstreamCursor &Stream = *StreamOrErr; 5613 5614 BitcodeFileContents F; 5615 while (true) { 5616 uint64_t BCBegin = Stream.getCurrentByteNo(); 5617 5618 // We may be consuming bitcode from a client that leaves garbage at the end 5619 // of the bitcode stream (e.g. Apple's ar tool). If we are close enough to 5620 // the end that there cannot possibly be another module, stop looking. 5621 if (BCBegin + 8 >= Stream.getBitcodeBytes().size()) 5622 return F; 5623 5624 BitstreamEntry Entry = Stream.advance(); 5625 switch (Entry.Kind) { 5626 case BitstreamEntry::EndBlock: 5627 case BitstreamEntry::Error: 5628 return error("Malformed block"); 5629 5630 case BitstreamEntry::SubBlock: { 5631 uint64_t IdentificationBit = -1ull; 5632 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) { 5633 IdentificationBit = Stream.GetCurrentBitNo() - BCBegin * 8; 5634 if (Stream.SkipBlock()) 5635 return error("Malformed block"); 5636 5637 Entry = Stream.advance(); 5638 if (Entry.Kind != BitstreamEntry::SubBlock || 5639 Entry.ID != bitc::MODULE_BLOCK_ID) 5640 return error("Malformed block"); 5641 } 5642 5643 if (Entry.ID == bitc::MODULE_BLOCK_ID) { 5644 uint64_t ModuleBit = Stream.GetCurrentBitNo() - BCBegin * 8; 5645 if (Stream.SkipBlock()) 5646 return error("Malformed block"); 5647 5648 F.Mods.push_back({Stream.getBitcodeBytes().slice( 5649 BCBegin, Stream.getCurrentByteNo() - BCBegin), 5650 Buffer.getBufferIdentifier(), IdentificationBit, 5651 ModuleBit}); 5652 continue; 5653 } 5654 5655 if (Entry.ID == bitc::STRTAB_BLOCK_ID) { 5656 Expected<StringRef> Strtab = 5657 readBlobInRecord(Stream, bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB); 5658 if (!Strtab) 5659 return Strtab.takeError(); 5660 // This string table is used by every preceding bitcode module that does 5661 // not have its own string table. A bitcode file may have multiple 5662 // string tables if it was created by binary concatenation, for example 5663 // with "llvm-cat -b". 5664 for (auto I = F.Mods.rbegin(), E = F.Mods.rend(); I != E; ++I) { 5665 if (!I->Strtab.empty()) 5666 break; 5667 I->Strtab = *Strtab; 5668 } 5669 // Similarly, the string table is used by every preceding symbol table; 5670 // normally there will be just one unless the bitcode file was created 5671 // by binary concatenation. 5672 if (!F.Symtab.empty() && F.StrtabForSymtab.empty()) 5673 F.StrtabForSymtab = *Strtab; 5674 continue; 5675 } 5676 5677 if (Entry.ID == bitc::SYMTAB_BLOCK_ID) { 5678 Expected<StringRef> SymtabOrErr = 5679 readBlobInRecord(Stream, bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB); 5680 if (!SymtabOrErr) 5681 return SymtabOrErr.takeError(); 5682 5683 // We can expect the bitcode file to have multiple symbol tables if it 5684 // was created by binary concatenation. In that case we silently 5685 // ignore any subsequent symbol tables, which is fine because this is a 5686 // low level function. The client is expected to notice that the number 5687 // of modules in the symbol table does not match the number of modules 5688 // in the input file and regenerate the symbol table. 5689 if (F.Symtab.empty()) 5690 F.Symtab = *SymtabOrErr; 5691 continue; 5692 } 5693 5694 if (Stream.SkipBlock()) 5695 return error("Malformed block"); 5696 continue; 5697 } 5698 case BitstreamEntry::Record: 5699 Stream.skipRecord(Entry.ID); 5700 continue; 5701 } 5702 } 5703 } 5704 5705 /// \brief Get a lazy one-at-time loading module from bitcode. 5706 /// 5707 /// This isn't always used in a lazy context. In particular, it's also used by 5708 /// \a parseModule(). If this is truly lazy, then we need to eagerly pull 5709 /// in forward-referenced functions from block address references. 5710 /// 5711 /// \param[in] MaterializeAll Set to \c true if we should materialize 5712 /// everything. 5713 Expected<std::unique_ptr<Module>> 5714 BitcodeModule::getModuleImpl(LLVMContext &Context, bool MaterializeAll, 5715 bool ShouldLazyLoadMetadata, bool IsImporting) { 5716 BitstreamCursor Stream(Buffer); 5717 5718 std::string ProducerIdentification; 5719 if (IdentificationBit != -1ull) { 5720 Stream.JumpToBit(IdentificationBit); 5721 Expected<std::string> ProducerIdentificationOrErr = 5722 readIdentificationBlock(Stream); 5723 if (!ProducerIdentificationOrErr) 5724 return ProducerIdentificationOrErr.takeError(); 5725 5726 ProducerIdentification = *ProducerIdentificationOrErr; 5727 } 5728 5729 Stream.JumpToBit(ModuleBit); 5730 auto *R = new BitcodeReader(std::move(Stream), Strtab, ProducerIdentification, 5731 Context); 5732 5733 std::unique_ptr<Module> M = 5734 llvm::make_unique<Module>(ModuleIdentifier, Context); 5735 M->setMaterializer(R); 5736 5737 // Delay parsing Metadata if ShouldLazyLoadMetadata is true. 5738 if (Error Err = 5739 R->parseBitcodeInto(M.get(), ShouldLazyLoadMetadata, IsImporting)) 5740 return std::move(Err); 5741 5742 if (MaterializeAll) { 5743 // Read in the entire module, and destroy the BitcodeReader. 5744 if (Error Err = M->materializeAll()) 5745 return std::move(Err); 5746 } else { 5747 // Resolve forward references from blockaddresses. 5748 if (Error Err = R->materializeForwardReferencedFunctions()) 5749 return std::move(Err); 5750 } 5751 return std::move(M); 5752 } 5753 5754 Expected<std::unique_ptr<Module>> 5755 BitcodeModule::getLazyModule(LLVMContext &Context, bool ShouldLazyLoadMetadata, 5756 bool IsImporting) { 5757 return getModuleImpl(Context, false, ShouldLazyLoadMetadata, IsImporting); 5758 } 5759 5760 // Parse the specified bitcode buffer and merge the index into CombinedIndex. 5761 // We don't use ModuleIdentifier here because the client may need to control the 5762 // module path used in the combined summary (e.g. when reading summaries for 5763 // regular LTO modules). 5764 Error BitcodeModule::readSummary(ModuleSummaryIndex &CombinedIndex, 5765 StringRef ModulePath, uint64_t ModuleId) { 5766 BitstreamCursor Stream(Buffer); 5767 Stream.JumpToBit(ModuleBit); 5768 5769 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, CombinedIndex, 5770 ModulePath, ModuleId); 5771 return R.parseModule(); 5772 } 5773 5774 // Parse the specified bitcode buffer, returning the function info index. 5775 Expected<std::unique_ptr<ModuleSummaryIndex>> BitcodeModule::getSummary() { 5776 BitstreamCursor Stream(Buffer); 5777 Stream.JumpToBit(ModuleBit); 5778 5779 auto Index = 5780 llvm::make_unique<ModuleSummaryIndex>(/*IsPerformingAnalysis=*/false); 5781 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, *Index, 5782 ModuleIdentifier, 0); 5783 5784 if (Error Err = R.parseModule()) 5785 return std::move(Err); 5786 5787 return std::move(Index); 5788 } 5789 5790 // Check if the given bitcode buffer contains a global value summary block. 5791 Expected<BitcodeLTOInfo> BitcodeModule::getLTOInfo() { 5792 BitstreamCursor Stream(Buffer); 5793 Stream.JumpToBit(ModuleBit); 5794 5795 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 5796 return error("Invalid record"); 5797 5798 while (true) { 5799 BitstreamEntry Entry = Stream.advance(); 5800 5801 switch (Entry.Kind) { 5802 case BitstreamEntry::Error: 5803 return error("Malformed block"); 5804 case BitstreamEntry::EndBlock: 5805 return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/false}; 5806 5807 case BitstreamEntry::SubBlock: 5808 if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) 5809 return BitcodeLTOInfo{/*IsThinLTO=*/true, /*HasSummary=*/true}; 5810 5811 if (Entry.ID == bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID) 5812 return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/true}; 5813 5814 // Ignore other sub-blocks. 5815 if (Stream.SkipBlock()) 5816 return error("Malformed block"); 5817 continue; 5818 5819 case BitstreamEntry::Record: 5820 Stream.skipRecord(Entry.ID); 5821 continue; 5822 } 5823 } 5824 } 5825 5826 static Expected<BitcodeModule> getSingleModule(MemoryBufferRef Buffer) { 5827 Expected<std::vector<BitcodeModule>> MsOrErr = getBitcodeModuleList(Buffer); 5828 if (!MsOrErr) 5829 return MsOrErr.takeError(); 5830 5831 if (MsOrErr->size() != 1) 5832 return error("Expected a single module"); 5833 5834 return (*MsOrErr)[0]; 5835 } 5836 5837 Expected<std::unique_ptr<Module>> 5838 llvm::getLazyBitcodeModule(MemoryBufferRef Buffer, LLVMContext &Context, 5839 bool ShouldLazyLoadMetadata, bool IsImporting) { 5840 Expected<BitcodeModule> BM = getSingleModule(Buffer); 5841 if (!BM) 5842 return BM.takeError(); 5843 5844 return BM->getLazyModule(Context, ShouldLazyLoadMetadata, IsImporting); 5845 } 5846 5847 Expected<std::unique_ptr<Module>> llvm::getOwningLazyBitcodeModule( 5848 std::unique_ptr<MemoryBuffer> &&Buffer, LLVMContext &Context, 5849 bool ShouldLazyLoadMetadata, bool IsImporting) { 5850 auto MOrErr = getLazyBitcodeModule(*Buffer, Context, ShouldLazyLoadMetadata, 5851 IsImporting); 5852 if (MOrErr) 5853 (*MOrErr)->setOwnedMemoryBuffer(std::move(Buffer)); 5854 return MOrErr; 5855 } 5856 5857 Expected<std::unique_ptr<Module>> 5858 BitcodeModule::parseModule(LLVMContext &Context) { 5859 return getModuleImpl(Context, true, false, false); 5860 // TODO: Restore the use-lists to the in-memory state when the bitcode was 5861 // written. We must defer until the Module has been fully materialized. 5862 } 5863 5864 Expected<std::unique_ptr<Module>> llvm::parseBitcodeFile(MemoryBufferRef Buffer, 5865 LLVMContext &Context) { 5866 Expected<BitcodeModule> BM = getSingleModule(Buffer); 5867 if (!BM) 5868 return BM.takeError(); 5869 5870 return BM->parseModule(Context); 5871 } 5872 5873 Expected<std::string> llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer) { 5874 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 5875 if (!StreamOrErr) 5876 return StreamOrErr.takeError(); 5877 5878 return readTriple(*StreamOrErr); 5879 } 5880 5881 Expected<bool> llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer) { 5882 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 5883 if (!StreamOrErr) 5884 return StreamOrErr.takeError(); 5885 5886 return hasObjCCategory(*StreamOrErr); 5887 } 5888 5889 Expected<std::string> llvm::getBitcodeProducerString(MemoryBufferRef Buffer) { 5890 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 5891 if (!StreamOrErr) 5892 return StreamOrErr.takeError(); 5893 5894 return readIdentificationCode(*StreamOrErr); 5895 } 5896 5897 Error llvm::readModuleSummaryIndex(MemoryBufferRef Buffer, 5898 ModuleSummaryIndex &CombinedIndex, 5899 uint64_t ModuleId) { 5900 Expected<BitcodeModule> BM = getSingleModule(Buffer); 5901 if (!BM) 5902 return BM.takeError(); 5903 5904 return BM->readSummary(CombinedIndex, BM->getModuleIdentifier(), ModuleId); 5905 } 5906 5907 Expected<std::unique_ptr<ModuleSummaryIndex>> 5908 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer) { 5909 Expected<BitcodeModule> BM = getSingleModule(Buffer); 5910 if (!BM) 5911 return BM.takeError(); 5912 5913 return BM->getSummary(); 5914 } 5915 5916 Expected<BitcodeLTOInfo> llvm::getBitcodeLTOInfo(MemoryBufferRef Buffer) { 5917 Expected<BitcodeModule> BM = getSingleModule(Buffer); 5918 if (!BM) 5919 return BM.takeError(); 5920 5921 return BM->getLTOInfo(); 5922 } 5923 5924 Expected<std::unique_ptr<ModuleSummaryIndex>> 5925 llvm::getModuleSummaryIndexForFile(StringRef Path, 5926 bool IgnoreEmptyThinLTOIndexFile) { 5927 ErrorOr<std::unique_ptr<MemoryBuffer>> FileOrErr = 5928 MemoryBuffer::getFileOrSTDIN(Path); 5929 if (!FileOrErr) 5930 return errorCodeToError(FileOrErr.getError()); 5931 if (IgnoreEmptyThinLTOIndexFile && !(*FileOrErr)->getBufferSize()) 5932 return nullptr; 5933 return getModuleSummaryIndex(**FileOrErr); 5934 } 5935