1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "llvm/Bitcode/ReaderWriter.h" 11 #include "BitcodeReader.h" 12 #include "llvm/ADT/SmallString.h" 13 #include "llvm/ADT/SmallVector.h" 14 #include "llvm/ADT/Triple.h" 15 #include "llvm/Bitcode/LLVMBitCodes.h" 16 #include "llvm/IR/AutoUpgrade.h" 17 #include "llvm/IR/Constants.h" 18 #include "llvm/IR/DebugInfoMetadata.h" 19 #include "llvm/IR/DerivedTypes.h" 20 #include "llvm/IR/DiagnosticPrinter.h" 21 #include "llvm/IR/InlineAsm.h" 22 #include "llvm/IR/IntrinsicInst.h" 23 #include "llvm/IR/LLVMContext.h" 24 #include "llvm/IR/Module.h" 25 #include "llvm/IR/OperandTraits.h" 26 #include "llvm/IR/Operator.h" 27 #include "llvm/Support/DataStream.h" 28 #include "llvm/Support/ManagedStatic.h" 29 #include "llvm/Support/MathExtras.h" 30 #include "llvm/Support/MemoryBuffer.h" 31 #include "llvm/Support/raw_ostream.h" 32 33 using namespace llvm; 34 35 enum { 36 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 37 }; 38 39 BitcodeDiagnosticInfo::BitcodeDiagnosticInfo(std::error_code EC, 40 DiagnosticSeverity Severity, 41 const Twine &Msg) 42 : DiagnosticInfo(DK_Bitcode, Severity), Msg(Msg), EC(EC) {} 43 44 void BitcodeDiagnosticInfo::print(DiagnosticPrinter &DP) const { DP << Msg; } 45 46 static std::error_code Error(DiagnosticHandlerFunction DiagnosticHandler, 47 std::error_code EC, const Twine &Message) { 48 BitcodeDiagnosticInfo DI(EC, DS_Error, Message); 49 DiagnosticHandler(DI); 50 return EC; 51 } 52 53 static std::error_code Error(DiagnosticHandlerFunction DiagnosticHandler, 54 std::error_code EC) { 55 return Error(DiagnosticHandler, EC, EC.message()); 56 } 57 58 std::error_code BitcodeReader::Error(BitcodeError E, const Twine &Message) { 59 return ::Error(DiagnosticHandler, make_error_code(E), Message); 60 } 61 62 std::error_code BitcodeReader::Error(const Twine &Message) { 63 return ::Error(DiagnosticHandler, 64 make_error_code(BitcodeError::CorruptedBitcode), Message); 65 } 66 67 std::error_code BitcodeReader::Error(BitcodeError E) { 68 return ::Error(DiagnosticHandler, make_error_code(E)); 69 } 70 71 static DiagnosticHandlerFunction getDiagHandler(DiagnosticHandlerFunction F, 72 LLVMContext &C) { 73 if (F) 74 return F; 75 return [&C](const DiagnosticInfo &DI) { C.diagnose(DI); }; 76 } 77 78 BitcodeReader::BitcodeReader(MemoryBuffer *buffer, LLVMContext &C, 79 DiagnosticHandlerFunction DiagnosticHandler) 80 : Context(C), DiagnosticHandler(getDiagHandler(DiagnosticHandler, C)), 81 TheModule(nullptr), Buffer(buffer), LazyStreamer(nullptr), 82 NextUnreadBit(0), SeenValueSymbolTable(false), ValueList(C), 83 MDValueList(C), SeenFirstFunctionBody(false), UseRelativeIDs(false), 84 WillMaterializeAllForwardRefs(false) {} 85 86 BitcodeReader::BitcodeReader(DataStreamer *streamer, LLVMContext &C, 87 DiagnosticHandlerFunction DiagnosticHandler) 88 : Context(C), DiagnosticHandler(getDiagHandler(DiagnosticHandler, C)), 89 TheModule(nullptr), Buffer(nullptr), LazyStreamer(streamer), 90 NextUnreadBit(0), SeenValueSymbolTable(false), ValueList(C), 91 MDValueList(C), SeenFirstFunctionBody(false), UseRelativeIDs(false), 92 WillMaterializeAllForwardRefs(false) {} 93 94 std::error_code BitcodeReader::materializeForwardReferencedFunctions() { 95 if (WillMaterializeAllForwardRefs) 96 return std::error_code(); 97 98 // Prevent recursion. 99 WillMaterializeAllForwardRefs = true; 100 101 while (!BasicBlockFwdRefQueue.empty()) { 102 Function *F = BasicBlockFwdRefQueue.front(); 103 BasicBlockFwdRefQueue.pop_front(); 104 assert(F && "Expected valid function"); 105 if (!BasicBlockFwdRefs.count(F)) 106 // Already materialized. 107 continue; 108 109 // Check for a function that isn't materializable to prevent an infinite 110 // loop. When parsing a blockaddress stored in a global variable, there 111 // isn't a trivial way to check if a function will have a body without a 112 // linear search through FunctionsWithBodies, so just check it here. 113 if (!F->isMaterializable()) 114 return Error("Never resolved function from blockaddress"); 115 116 // Try to materialize F. 117 if (std::error_code EC = materialize(F)) 118 return EC; 119 } 120 assert(BasicBlockFwdRefs.empty() && "Function missing from queue"); 121 122 // Reset state. 123 WillMaterializeAllForwardRefs = false; 124 return std::error_code(); 125 } 126 127 void BitcodeReader::FreeState() { 128 Buffer = nullptr; 129 std::vector<Type*>().swap(TypeList); 130 ValueList.clear(); 131 MDValueList.clear(); 132 std::vector<Comdat *>().swap(ComdatList); 133 134 std::vector<AttributeSet>().swap(MAttributes); 135 std::vector<BasicBlock*>().swap(FunctionBBs); 136 std::vector<Function*>().swap(FunctionsWithBodies); 137 DeferredFunctionInfo.clear(); 138 MDKindMap.clear(); 139 140 assert(BasicBlockFwdRefs.empty() && "Unresolved blockaddress fwd references"); 141 BasicBlockFwdRefQueue.clear(); 142 } 143 144 //===----------------------------------------------------------------------===// 145 // Helper functions to implement forward reference resolution, etc. 146 //===----------------------------------------------------------------------===// 147 148 /// ConvertToString - Convert a string from a record into an std::string, return 149 /// true on failure. 150 template<typename StrTy> 151 static bool ConvertToString(ArrayRef<uint64_t> Record, unsigned Idx, 152 StrTy &Result) { 153 if (Idx > Record.size()) 154 return true; 155 156 for (unsigned i = Idx, e = Record.size(); i != e; ++i) 157 Result += (char)Record[i]; 158 return false; 159 } 160 161 static bool hasImplicitComdat(size_t Val) { 162 switch (Val) { 163 default: 164 return false; 165 case 1: // Old WeakAnyLinkage 166 case 4: // Old LinkOnceAnyLinkage 167 case 10: // Old WeakODRLinkage 168 case 11: // Old LinkOnceODRLinkage 169 return true; 170 } 171 } 172 173 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) { 174 switch (Val) { 175 default: // Map unknown/new linkages to external 176 case 0: 177 return GlobalValue::ExternalLinkage; 178 case 2: 179 return GlobalValue::AppendingLinkage; 180 case 3: 181 return GlobalValue::InternalLinkage; 182 case 5: 183 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage 184 case 6: 185 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage 186 case 7: 187 return GlobalValue::ExternalWeakLinkage; 188 case 8: 189 return GlobalValue::CommonLinkage; 190 case 9: 191 return GlobalValue::PrivateLinkage; 192 case 12: 193 return GlobalValue::AvailableExternallyLinkage; 194 case 13: 195 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage 196 case 14: 197 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage 198 case 15: 199 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage 200 case 1: // Old value with implicit comdat. 201 case 16: 202 return GlobalValue::WeakAnyLinkage; 203 case 10: // Old value with implicit comdat. 204 case 17: 205 return GlobalValue::WeakODRLinkage; 206 case 4: // Old value with implicit comdat. 207 case 18: 208 return GlobalValue::LinkOnceAnyLinkage; 209 case 11: // Old value with implicit comdat. 210 case 19: 211 return GlobalValue::LinkOnceODRLinkage; 212 } 213 } 214 215 static GlobalValue::VisibilityTypes GetDecodedVisibility(unsigned Val) { 216 switch (Val) { 217 default: // Map unknown visibilities to default. 218 case 0: return GlobalValue::DefaultVisibility; 219 case 1: return GlobalValue::HiddenVisibility; 220 case 2: return GlobalValue::ProtectedVisibility; 221 } 222 } 223 224 static GlobalValue::DLLStorageClassTypes 225 GetDecodedDLLStorageClass(unsigned Val) { 226 switch (Val) { 227 default: // Map unknown values to default. 228 case 0: return GlobalValue::DefaultStorageClass; 229 case 1: return GlobalValue::DLLImportStorageClass; 230 case 2: return GlobalValue::DLLExportStorageClass; 231 } 232 } 233 234 static GlobalVariable::ThreadLocalMode GetDecodedThreadLocalMode(unsigned Val) { 235 switch (Val) { 236 case 0: return GlobalVariable::NotThreadLocal; 237 default: // Map unknown non-zero value to general dynamic. 238 case 1: return GlobalVariable::GeneralDynamicTLSModel; 239 case 2: return GlobalVariable::LocalDynamicTLSModel; 240 case 3: return GlobalVariable::InitialExecTLSModel; 241 case 4: return GlobalVariable::LocalExecTLSModel; 242 } 243 } 244 245 static int GetDecodedCastOpcode(unsigned Val) { 246 switch (Val) { 247 default: return -1; 248 case bitc::CAST_TRUNC : return Instruction::Trunc; 249 case bitc::CAST_ZEXT : return Instruction::ZExt; 250 case bitc::CAST_SEXT : return Instruction::SExt; 251 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 252 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 253 case bitc::CAST_UITOFP : return Instruction::UIToFP; 254 case bitc::CAST_SITOFP : return Instruction::SIToFP; 255 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 256 case bitc::CAST_FPEXT : return Instruction::FPExt; 257 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 258 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 259 case bitc::CAST_BITCAST : return Instruction::BitCast; 260 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast; 261 } 262 } 263 static int GetDecodedBinaryOpcode(unsigned Val, Type *Ty) { 264 switch (Val) { 265 default: return -1; 266 case bitc::BINOP_ADD: 267 return Ty->isFPOrFPVectorTy() ? Instruction::FAdd : Instruction::Add; 268 case bitc::BINOP_SUB: 269 return Ty->isFPOrFPVectorTy() ? Instruction::FSub : Instruction::Sub; 270 case bitc::BINOP_MUL: 271 return Ty->isFPOrFPVectorTy() ? Instruction::FMul : Instruction::Mul; 272 case bitc::BINOP_UDIV: return Instruction::UDiv; 273 case bitc::BINOP_SDIV: 274 return Ty->isFPOrFPVectorTy() ? Instruction::FDiv : Instruction::SDiv; 275 case bitc::BINOP_UREM: return Instruction::URem; 276 case bitc::BINOP_SREM: 277 return Ty->isFPOrFPVectorTy() ? Instruction::FRem : Instruction::SRem; 278 case bitc::BINOP_SHL: return Instruction::Shl; 279 case bitc::BINOP_LSHR: return Instruction::LShr; 280 case bitc::BINOP_ASHR: return Instruction::AShr; 281 case bitc::BINOP_AND: return Instruction::And; 282 case bitc::BINOP_OR: return Instruction::Or; 283 case bitc::BINOP_XOR: return Instruction::Xor; 284 } 285 } 286 287 static AtomicRMWInst::BinOp GetDecodedRMWOperation(unsigned Val) { 288 switch (Val) { 289 default: return AtomicRMWInst::BAD_BINOP; 290 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 291 case bitc::RMW_ADD: return AtomicRMWInst::Add; 292 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 293 case bitc::RMW_AND: return AtomicRMWInst::And; 294 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 295 case bitc::RMW_OR: return AtomicRMWInst::Or; 296 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 297 case bitc::RMW_MAX: return AtomicRMWInst::Max; 298 case bitc::RMW_MIN: return AtomicRMWInst::Min; 299 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 300 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 301 } 302 } 303 304 static AtomicOrdering GetDecodedOrdering(unsigned Val) { 305 switch (Val) { 306 case bitc::ORDERING_NOTATOMIC: return NotAtomic; 307 case bitc::ORDERING_UNORDERED: return Unordered; 308 case bitc::ORDERING_MONOTONIC: return Monotonic; 309 case bitc::ORDERING_ACQUIRE: return Acquire; 310 case bitc::ORDERING_RELEASE: return Release; 311 case bitc::ORDERING_ACQREL: return AcquireRelease; 312 default: // Map unknown orderings to sequentially-consistent. 313 case bitc::ORDERING_SEQCST: return SequentiallyConsistent; 314 } 315 } 316 317 static SynchronizationScope GetDecodedSynchScope(unsigned Val) { 318 switch (Val) { 319 case bitc::SYNCHSCOPE_SINGLETHREAD: return SingleThread; 320 default: // Map unknown scopes to cross-thread. 321 case bitc::SYNCHSCOPE_CROSSTHREAD: return CrossThread; 322 } 323 } 324 325 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) { 326 switch (Val) { 327 default: // Map unknown selection kinds to any. 328 case bitc::COMDAT_SELECTION_KIND_ANY: 329 return Comdat::Any; 330 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH: 331 return Comdat::ExactMatch; 332 case bitc::COMDAT_SELECTION_KIND_LARGEST: 333 return Comdat::Largest; 334 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES: 335 return Comdat::NoDuplicates; 336 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE: 337 return Comdat::SameSize; 338 } 339 } 340 341 static void UpgradeDLLImportExportLinkage(llvm::GlobalValue *GV, unsigned Val) { 342 switch (Val) { 343 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break; 344 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break; 345 } 346 } 347 348 namespace llvm { 349 namespace { 350 /// @brief A class for maintaining the slot number definition 351 /// as a placeholder for the actual definition for forward constants defs. 352 class ConstantPlaceHolder : public ConstantExpr { 353 void operator=(const ConstantPlaceHolder &) LLVM_DELETED_FUNCTION; 354 public: 355 // allocate space for exactly one operand 356 void *operator new(size_t s) { 357 return User::operator new(s, 1); 358 } 359 explicit ConstantPlaceHolder(Type *Ty, LLVMContext& Context) 360 : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) { 361 Op<0>() = UndefValue::get(Type::getInt32Ty(Context)); 362 } 363 364 /// @brief Methods to support type inquiry through isa, cast, and dyn_cast. 365 static bool classof(const Value *V) { 366 return isa<ConstantExpr>(V) && 367 cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1; 368 } 369 370 371 /// Provide fast operand accessors 372 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); 373 }; 374 } 375 376 // FIXME: can we inherit this from ConstantExpr? 377 template <> 378 struct OperandTraits<ConstantPlaceHolder> : 379 public FixedNumOperandTraits<ConstantPlaceHolder, 1> { 380 }; 381 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantPlaceHolder, Value) 382 } 383 384 385 void BitcodeReaderValueList::AssignValue(Value *V, unsigned Idx) { 386 if (Idx == size()) { 387 push_back(V); 388 return; 389 } 390 391 if (Idx >= size()) 392 resize(Idx+1); 393 394 WeakVH &OldV = ValuePtrs[Idx]; 395 if (!OldV) { 396 OldV = V; 397 return; 398 } 399 400 // Handle constants and non-constants (e.g. instrs) differently for 401 // efficiency. 402 if (Constant *PHC = dyn_cast<Constant>(&*OldV)) { 403 ResolveConstants.push_back(std::make_pair(PHC, Idx)); 404 OldV = V; 405 } else { 406 // If there was a forward reference to this value, replace it. 407 Value *PrevVal = OldV; 408 OldV->replaceAllUsesWith(V); 409 delete PrevVal; 410 } 411 } 412 413 414 Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx, 415 Type *Ty) { 416 if (Idx >= size()) 417 resize(Idx + 1); 418 419 if (Value *V = ValuePtrs[Idx]) { 420 assert(Ty == V->getType() && "Type mismatch in constant table!"); 421 return cast<Constant>(V); 422 } 423 424 // Create and return a placeholder, which will later be RAUW'd. 425 Constant *C = new ConstantPlaceHolder(Ty, Context); 426 ValuePtrs[Idx] = C; 427 return C; 428 } 429 430 Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, Type *Ty) { 431 if (Idx >= size()) 432 resize(Idx + 1); 433 434 if (Value *V = ValuePtrs[Idx]) { 435 assert((!Ty || Ty == V->getType()) && "Type mismatch in value table!"); 436 return V; 437 } 438 439 // No type specified, must be invalid reference. 440 if (!Ty) return nullptr; 441 442 // Create and return a placeholder, which will later be RAUW'd. 443 Value *V = new Argument(Ty); 444 ValuePtrs[Idx] = V; 445 return V; 446 } 447 448 /// ResolveConstantForwardRefs - Once all constants are read, this method bulk 449 /// resolves any forward references. The idea behind this is that we sometimes 450 /// get constants (such as large arrays) which reference *many* forward ref 451 /// constants. Replacing each of these causes a lot of thrashing when 452 /// building/reuniquing the constant. Instead of doing this, we look at all the 453 /// uses and rewrite all the place holders at once for any constant that uses 454 /// a placeholder. 455 void BitcodeReaderValueList::ResolveConstantForwardRefs() { 456 // Sort the values by-pointer so that they are efficient to look up with a 457 // binary search. 458 std::sort(ResolveConstants.begin(), ResolveConstants.end()); 459 460 SmallVector<Constant*, 64> NewOps; 461 462 while (!ResolveConstants.empty()) { 463 Value *RealVal = operator[](ResolveConstants.back().second); 464 Constant *Placeholder = ResolveConstants.back().first; 465 ResolveConstants.pop_back(); 466 467 // Loop over all users of the placeholder, updating them to reference the 468 // new value. If they reference more than one placeholder, update them all 469 // at once. 470 while (!Placeholder->use_empty()) { 471 auto UI = Placeholder->user_begin(); 472 User *U = *UI; 473 474 // If the using object isn't uniqued, just update the operands. This 475 // handles instructions and initializers for global variables. 476 if (!isa<Constant>(U) || isa<GlobalValue>(U)) { 477 UI.getUse().set(RealVal); 478 continue; 479 } 480 481 // Otherwise, we have a constant that uses the placeholder. Replace that 482 // constant with a new constant that has *all* placeholder uses updated. 483 Constant *UserC = cast<Constant>(U); 484 for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end(); 485 I != E; ++I) { 486 Value *NewOp; 487 if (!isa<ConstantPlaceHolder>(*I)) { 488 // Not a placeholder reference. 489 NewOp = *I; 490 } else if (*I == Placeholder) { 491 // Common case is that it just references this one placeholder. 492 NewOp = RealVal; 493 } else { 494 // Otherwise, look up the placeholder in ResolveConstants. 495 ResolveConstantsTy::iterator It = 496 std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(), 497 std::pair<Constant*, unsigned>(cast<Constant>(*I), 498 0)); 499 assert(It != ResolveConstants.end() && It->first == *I); 500 NewOp = operator[](It->second); 501 } 502 503 NewOps.push_back(cast<Constant>(NewOp)); 504 } 505 506 // Make the new constant. 507 Constant *NewC; 508 if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) { 509 NewC = ConstantArray::get(UserCA->getType(), NewOps); 510 } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) { 511 NewC = ConstantStruct::get(UserCS->getType(), NewOps); 512 } else if (isa<ConstantVector>(UserC)) { 513 NewC = ConstantVector::get(NewOps); 514 } else { 515 assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr."); 516 NewC = cast<ConstantExpr>(UserC)->getWithOperands(NewOps); 517 } 518 519 UserC->replaceAllUsesWith(NewC); 520 UserC->destroyConstant(); 521 NewOps.clear(); 522 } 523 524 // Update all ValueHandles, they should be the only users at this point. 525 Placeholder->replaceAllUsesWith(RealVal); 526 delete Placeholder; 527 } 528 } 529 530 void BitcodeReaderMDValueList::AssignValue(Metadata *MD, unsigned Idx) { 531 if (Idx == size()) { 532 push_back(MD); 533 return; 534 } 535 536 if (Idx >= size()) 537 resize(Idx+1); 538 539 TrackingMDRef &OldMD = MDValuePtrs[Idx]; 540 if (!OldMD) { 541 OldMD.reset(MD); 542 return; 543 } 544 545 // If there was a forward reference to this value, replace it. 546 TempMDTuple PrevMD(cast<MDTuple>(OldMD.get())); 547 PrevMD->replaceAllUsesWith(MD); 548 --NumFwdRefs; 549 } 550 551 Metadata *BitcodeReaderMDValueList::getValueFwdRef(unsigned Idx) { 552 if (Idx >= size()) 553 resize(Idx + 1); 554 555 if (Metadata *MD = MDValuePtrs[Idx]) 556 return MD; 557 558 // Create and return a placeholder, which will later be RAUW'd. 559 AnyFwdRefs = true; 560 ++NumFwdRefs; 561 Metadata *MD = MDNode::getTemporary(Context, None).release(); 562 MDValuePtrs[Idx].reset(MD); 563 return MD; 564 } 565 566 void BitcodeReaderMDValueList::tryToResolveCycles() { 567 if (!AnyFwdRefs) 568 // Nothing to do. 569 return; 570 571 if (NumFwdRefs) 572 // Still forward references... can't resolve cycles. 573 return; 574 575 // Resolve any cycles. 576 for (auto &MD : MDValuePtrs) { 577 auto *N = dyn_cast_or_null<MDNode>(MD); 578 if (!N) 579 continue; 580 581 assert(!N->isTemporary() && "Unexpected forward reference"); 582 N->resolveCycles(); 583 } 584 } 585 586 Type *BitcodeReader::getTypeByID(unsigned ID) { 587 // The type table size is always specified correctly. 588 if (ID >= TypeList.size()) 589 return nullptr; 590 591 if (Type *Ty = TypeList[ID]) 592 return Ty; 593 594 // If we have a forward reference, the only possible case is when it is to a 595 // named struct. Just create a placeholder for now. 596 return TypeList[ID] = createIdentifiedStructType(Context); 597 } 598 599 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context, 600 StringRef Name) { 601 auto *Ret = StructType::create(Context, Name); 602 IdentifiedStructTypes.push_back(Ret); 603 return Ret; 604 } 605 606 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) { 607 auto *Ret = StructType::create(Context); 608 IdentifiedStructTypes.push_back(Ret); 609 return Ret; 610 } 611 612 613 //===----------------------------------------------------------------------===// 614 // Functions for parsing blocks from the bitcode file 615 //===----------------------------------------------------------------------===// 616 617 618 /// \brief This fills an AttrBuilder object with the LLVM attributes that have 619 /// been decoded from the given integer. This function must stay in sync with 620 /// 'encodeLLVMAttributesForBitcode'. 621 static void decodeLLVMAttributesForBitcode(AttrBuilder &B, 622 uint64_t EncodedAttrs) { 623 // FIXME: Remove in 4.0. 624 625 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift 626 // the bits above 31 down by 11 bits. 627 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; 628 assert((!Alignment || isPowerOf2_32(Alignment)) && 629 "Alignment must be a power of two."); 630 631 if (Alignment) 632 B.addAlignmentAttr(Alignment); 633 B.addRawValue(((EncodedAttrs & (0xfffffULL << 32)) >> 11) | 634 (EncodedAttrs & 0xffff)); 635 } 636 637 std::error_code BitcodeReader::ParseAttributeBlock() { 638 if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 639 return Error("Invalid record"); 640 641 if (!MAttributes.empty()) 642 return Error("Invalid multiple blocks"); 643 644 SmallVector<uint64_t, 64> Record; 645 646 SmallVector<AttributeSet, 8> Attrs; 647 648 // Read all the records. 649 while (1) { 650 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 651 652 switch (Entry.Kind) { 653 case BitstreamEntry::SubBlock: // Handled for us already. 654 case BitstreamEntry::Error: 655 return Error("Malformed block"); 656 case BitstreamEntry::EndBlock: 657 return std::error_code(); 658 case BitstreamEntry::Record: 659 // The interesting case. 660 break; 661 } 662 663 // Read a record. 664 Record.clear(); 665 switch (Stream.readRecord(Entry.ID, Record)) { 666 default: // Default behavior: ignore. 667 break; 668 case bitc::PARAMATTR_CODE_ENTRY_OLD: { // ENTRY: [paramidx0, attr0, ...] 669 // FIXME: Remove in 4.0. 670 if (Record.size() & 1) 671 return Error("Invalid record"); 672 673 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 674 AttrBuilder B; 675 decodeLLVMAttributesForBitcode(B, Record[i+1]); 676 Attrs.push_back(AttributeSet::get(Context, Record[i], B)); 677 } 678 679 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 680 Attrs.clear(); 681 break; 682 } 683 case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [attrgrp0, attrgrp1, ...] 684 for (unsigned i = 0, e = Record.size(); i != e; ++i) 685 Attrs.push_back(MAttributeGroups[Record[i]]); 686 687 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 688 Attrs.clear(); 689 break; 690 } 691 } 692 } 693 } 694 695 // Returns Attribute::None on unrecognized codes. 696 static Attribute::AttrKind GetAttrFromCode(uint64_t Code) { 697 switch (Code) { 698 default: 699 return Attribute::None; 700 case bitc::ATTR_KIND_ALIGNMENT: 701 return Attribute::Alignment; 702 case bitc::ATTR_KIND_ALWAYS_INLINE: 703 return Attribute::AlwaysInline; 704 case bitc::ATTR_KIND_BUILTIN: 705 return Attribute::Builtin; 706 case bitc::ATTR_KIND_BY_VAL: 707 return Attribute::ByVal; 708 case bitc::ATTR_KIND_IN_ALLOCA: 709 return Attribute::InAlloca; 710 case bitc::ATTR_KIND_COLD: 711 return Attribute::Cold; 712 case bitc::ATTR_KIND_INLINE_HINT: 713 return Attribute::InlineHint; 714 case bitc::ATTR_KIND_IN_REG: 715 return Attribute::InReg; 716 case bitc::ATTR_KIND_JUMP_TABLE: 717 return Attribute::JumpTable; 718 case bitc::ATTR_KIND_MIN_SIZE: 719 return Attribute::MinSize; 720 case bitc::ATTR_KIND_NAKED: 721 return Attribute::Naked; 722 case bitc::ATTR_KIND_NEST: 723 return Attribute::Nest; 724 case bitc::ATTR_KIND_NO_ALIAS: 725 return Attribute::NoAlias; 726 case bitc::ATTR_KIND_NO_BUILTIN: 727 return Attribute::NoBuiltin; 728 case bitc::ATTR_KIND_NO_CAPTURE: 729 return Attribute::NoCapture; 730 case bitc::ATTR_KIND_NO_DUPLICATE: 731 return Attribute::NoDuplicate; 732 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: 733 return Attribute::NoImplicitFloat; 734 case bitc::ATTR_KIND_NO_INLINE: 735 return Attribute::NoInline; 736 case bitc::ATTR_KIND_NON_LAZY_BIND: 737 return Attribute::NonLazyBind; 738 case bitc::ATTR_KIND_NON_NULL: 739 return Attribute::NonNull; 740 case bitc::ATTR_KIND_DEREFERENCEABLE: 741 return Attribute::Dereferenceable; 742 case bitc::ATTR_KIND_NO_RED_ZONE: 743 return Attribute::NoRedZone; 744 case bitc::ATTR_KIND_NO_RETURN: 745 return Attribute::NoReturn; 746 case bitc::ATTR_KIND_NO_UNWIND: 747 return Attribute::NoUnwind; 748 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: 749 return Attribute::OptimizeForSize; 750 case bitc::ATTR_KIND_OPTIMIZE_NONE: 751 return Attribute::OptimizeNone; 752 case bitc::ATTR_KIND_READ_NONE: 753 return Attribute::ReadNone; 754 case bitc::ATTR_KIND_READ_ONLY: 755 return Attribute::ReadOnly; 756 case bitc::ATTR_KIND_RETURNED: 757 return Attribute::Returned; 758 case bitc::ATTR_KIND_RETURNS_TWICE: 759 return Attribute::ReturnsTwice; 760 case bitc::ATTR_KIND_S_EXT: 761 return Attribute::SExt; 762 case bitc::ATTR_KIND_STACK_ALIGNMENT: 763 return Attribute::StackAlignment; 764 case bitc::ATTR_KIND_STACK_PROTECT: 765 return Attribute::StackProtect; 766 case bitc::ATTR_KIND_STACK_PROTECT_REQ: 767 return Attribute::StackProtectReq; 768 case bitc::ATTR_KIND_STACK_PROTECT_STRONG: 769 return Attribute::StackProtectStrong; 770 case bitc::ATTR_KIND_STRUCT_RET: 771 return Attribute::StructRet; 772 case bitc::ATTR_KIND_SANITIZE_ADDRESS: 773 return Attribute::SanitizeAddress; 774 case bitc::ATTR_KIND_SANITIZE_THREAD: 775 return Attribute::SanitizeThread; 776 case bitc::ATTR_KIND_SANITIZE_MEMORY: 777 return Attribute::SanitizeMemory; 778 case bitc::ATTR_KIND_UW_TABLE: 779 return Attribute::UWTable; 780 case bitc::ATTR_KIND_Z_EXT: 781 return Attribute::ZExt; 782 } 783 } 784 785 std::error_code BitcodeReader::ParseAttrKind(uint64_t Code, 786 Attribute::AttrKind *Kind) { 787 *Kind = GetAttrFromCode(Code); 788 if (*Kind == Attribute::None) 789 return Error(BitcodeError::CorruptedBitcode, 790 "Unknown attribute kind (" + Twine(Code) + ")"); 791 return std::error_code(); 792 } 793 794 std::error_code BitcodeReader::ParseAttributeGroupBlock() { 795 if (Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) 796 return Error("Invalid record"); 797 798 if (!MAttributeGroups.empty()) 799 return Error("Invalid multiple blocks"); 800 801 SmallVector<uint64_t, 64> Record; 802 803 // Read all the records. 804 while (1) { 805 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 806 807 switch (Entry.Kind) { 808 case BitstreamEntry::SubBlock: // Handled for us already. 809 case BitstreamEntry::Error: 810 return Error("Malformed block"); 811 case BitstreamEntry::EndBlock: 812 return std::error_code(); 813 case BitstreamEntry::Record: 814 // The interesting case. 815 break; 816 } 817 818 // Read a record. 819 Record.clear(); 820 switch (Stream.readRecord(Entry.ID, Record)) { 821 default: // Default behavior: ignore. 822 break; 823 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] 824 if (Record.size() < 3) 825 return Error("Invalid record"); 826 827 uint64_t GrpID = Record[0]; 828 uint64_t Idx = Record[1]; // Index of the object this attribute refers to. 829 830 AttrBuilder B; 831 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 832 if (Record[i] == 0) { // Enum attribute 833 Attribute::AttrKind Kind; 834 if (std::error_code EC = ParseAttrKind(Record[++i], &Kind)) 835 return EC; 836 837 B.addAttribute(Kind); 838 } else if (Record[i] == 1) { // Integer attribute 839 Attribute::AttrKind Kind; 840 if (std::error_code EC = ParseAttrKind(Record[++i], &Kind)) 841 return EC; 842 if (Kind == Attribute::Alignment) 843 B.addAlignmentAttr(Record[++i]); 844 else if (Kind == Attribute::StackAlignment) 845 B.addStackAlignmentAttr(Record[++i]); 846 else if (Kind == Attribute::Dereferenceable) 847 B.addDereferenceableAttr(Record[++i]); 848 } else { // String attribute 849 assert((Record[i] == 3 || Record[i] == 4) && 850 "Invalid attribute group entry"); 851 bool HasValue = (Record[i++] == 4); 852 SmallString<64> KindStr; 853 SmallString<64> ValStr; 854 855 while (Record[i] != 0 && i != e) 856 KindStr += Record[i++]; 857 assert(Record[i] == 0 && "Kind string not null terminated"); 858 859 if (HasValue) { 860 // Has a value associated with it. 861 ++i; // Skip the '0' that terminates the "kind" string. 862 while (Record[i] != 0 && i != e) 863 ValStr += Record[i++]; 864 assert(Record[i] == 0 && "Value string not null terminated"); 865 } 866 867 B.addAttribute(KindStr.str(), ValStr.str()); 868 } 869 } 870 871 MAttributeGroups[GrpID] = AttributeSet::get(Context, Idx, B); 872 break; 873 } 874 } 875 } 876 } 877 878 std::error_code BitcodeReader::ParseTypeTable() { 879 if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 880 return Error("Invalid record"); 881 882 return ParseTypeTableBody(); 883 } 884 885 std::error_code BitcodeReader::ParseTypeTableBody() { 886 if (!TypeList.empty()) 887 return Error("Invalid multiple blocks"); 888 889 SmallVector<uint64_t, 64> Record; 890 unsigned NumRecords = 0; 891 892 SmallString<64> TypeName; 893 894 // Read all the records for this type table. 895 while (1) { 896 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 897 898 switch (Entry.Kind) { 899 case BitstreamEntry::SubBlock: // Handled for us already. 900 case BitstreamEntry::Error: 901 return Error("Malformed block"); 902 case BitstreamEntry::EndBlock: 903 if (NumRecords != TypeList.size()) 904 return Error("Malformed block"); 905 return std::error_code(); 906 case BitstreamEntry::Record: 907 // The interesting case. 908 break; 909 } 910 911 // Read a record. 912 Record.clear(); 913 Type *ResultTy = nullptr; 914 switch (Stream.readRecord(Entry.ID, Record)) { 915 default: 916 return Error("Invalid value"); 917 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 918 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 919 // type list. This allows us to reserve space. 920 if (Record.size() < 1) 921 return Error("Invalid record"); 922 TypeList.resize(Record[0]); 923 continue; 924 case bitc::TYPE_CODE_VOID: // VOID 925 ResultTy = Type::getVoidTy(Context); 926 break; 927 case bitc::TYPE_CODE_HALF: // HALF 928 ResultTy = Type::getHalfTy(Context); 929 break; 930 case bitc::TYPE_CODE_FLOAT: // FLOAT 931 ResultTy = Type::getFloatTy(Context); 932 break; 933 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 934 ResultTy = Type::getDoubleTy(Context); 935 break; 936 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 937 ResultTy = Type::getX86_FP80Ty(Context); 938 break; 939 case bitc::TYPE_CODE_FP128: // FP128 940 ResultTy = Type::getFP128Ty(Context); 941 break; 942 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 943 ResultTy = Type::getPPC_FP128Ty(Context); 944 break; 945 case bitc::TYPE_CODE_LABEL: // LABEL 946 ResultTy = Type::getLabelTy(Context); 947 break; 948 case bitc::TYPE_CODE_METADATA: // METADATA 949 ResultTy = Type::getMetadataTy(Context); 950 break; 951 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 952 ResultTy = Type::getX86_MMXTy(Context); 953 break; 954 case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width] 955 if (Record.size() < 1) 956 return Error("Invalid record"); 957 958 uint64_t NumBits = Record[0]; 959 if (NumBits < IntegerType::MIN_INT_BITS || 960 NumBits > IntegerType::MAX_INT_BITS) 961 return Error("Bitwidth for integer type out of range"); 962 ResultTy = IntegerType::get(Context, NumBits); 963 break; 964 } 965 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 966 // [pointee type, address space] 967 if (Record.size() < 1) 968 return Error("Invalid record"); 969 unsigned AddressSpace = 0; 970 if (Record.size() == 2) 971 AddressSpace = Record[1]; 972 ResultTy = getTypeByID(Record[0]); 973 if (!ResultTy) 974 return Error("Invalid type"); 975 ResultTy = PointerType::get(ResultTy, AddressSpace); 976 break; 977 } 978 case bitc::TYPE_CODE_FUNCTION_OLD: { 979 // FIXME: attrid is dead, remove it in LLVM 4.0 980 // FUNCTION: [vararg, attrid, retty, paramty x N] 981 if (Record.size() < 3) 982 return Error("Invalid record"); 983 SmallVector<Type*, 8> ArgTys; 984 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 985 if (Type *T = getTypeByID(Record[i])) 986 ArgTys.push_back(T); 987 else 988 break; 989 } 990 991 ResultTy = getTypeByID(Record[2]); 992 if (!ResultTy || ArgTys.size() < Record.size()-3) 993 return Error("Invalid type"); 994 995 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 996 break; 997 } 998 case bitc::TYPE_CODE_FUNCTION: { 999 // FUNCTION: [vararg, retty, paramty x N] 1000 if (Record.size() < 2) 1001 return Error("Invalid record"); 1002 SmallVector<Type*, 8> ArgTys; 1003 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1004 if (Type *T = getTypeByID(Record[i])) 1005 ArgTys.push_back(T); 1006 else 1007 break; 1008 } 1009 1010 ResultTy = getTypeByID(Record[1]); 1011 if (!ResultTy || ArgTys.size() < Record.size()-2) 1012 return Error("Invalid type"); 1013 1014 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1015 break; 1016 } 1017 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 1018 if (Record.size() < 1) 1019 return Error("Invalid record"); 1020 SmallVector<Type*, 8> EltTys; 1021 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1022 if (Type *T = getTypeByID(Record[i])) 1023 EltTys.push_back(T); 1024 else 1025 break; 1026 } 1027 if (EltTys.size() != Record.size()-1) 1028 return Error("Invalid type"); 1029 ResultTy = StructType::get(Context, EltTys, Record[0]); 1030 break; 1031 } 1032 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 1033 if (ConvertToString(Record, 0, TypeName)) 1034 return Error("Invalid record"); 1035 continue; 1036 1037 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 1038 if (Record.size() < 1) 1039 return Error("Invalid record"); 1040 1041 if (NumRecords >= TypeList.size()) 1042 return Error("Invalid TYPE table"); 1043 1044 // Check to see if this was forward referenced, if so fill in the temp. 1045 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1046 if (Res) { 1047 Res->setName(TypeName); 1048 TypeList[NumRecords] = nullptr; 1049 } else // Otherwise, create a new struct. 1050 Res = createIdentifiedStructType(Context, TypeName); 1051 TypeName.clear(); 1052 1053 SmallVector<Type*, 8> EltTys; 1054 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1055 if (Type *T = getTypeByID(Record[i])) 1056 EltTys.push_back(T); 1057 else 1058 break; 1059 } 1060 if (EltTys.size() != Record.size()-1) 1061 return Error("Invalid record"); 1062 Res->setBody(EltTys, Record[0]); 1063 ResultTy = Res; 1064 break; 1065 } 1066 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 1067 if (Record.size() != 1) 1068 return Error("Invalid record"); 1069 1070 if (NumRecords >= TypeList.size()) 1071 return Error("Invalid TYPE table"); 1072 1073 // Check to see if this was forward referenced, if so fill in the temp. 1074 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1075 if (Res) { 1076 Res->setName(TypeName); 1077 TypeList[NumRecords] = nullptr; 1078 } else // Otherwise, create a new struct with no body. 1079 Res = createIdentifiedStructType(Context, TypeName); 1080 TypeName.clear(); 1081 ResultTy = Res; 1082 break; 1083 } 1084 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 1085 if (Record.size() < 2) 1086 return Error("Invalid record"); 1087 if ((ResultTy = getTypeByID(Record[1]))) 1088 ResultTy = ArrayType::get(ResultTy, Record[0]); 1089 else 1090 return Error("Invalid type"); 1091 break; 1092 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] 1093 if (Record.size() < 2) 1094 return Error("Invalid record"); 1095 if ((ResultTy = getTypeByID(Record[1]))) 1096 ResultTy = VectorType::get(ResultTy, Record[0]); 1097 else 1098 return Error("Invalid type"); 1099 break; 1100 } 1101 1102 if (NumRecords >= TypeList.size()) 1103 return Error("Invalid TYPE table"); 1104 if (TypeList[NumRecords]) 1105 return Error( 1106 "Invalid TYPE table: Only named structs can be forward referenced"); 1107 assert(ResultTy && "Didn't read a type?"); 1108 TypeList[NumRecords++] = ResultTy; 1109 } 1110 } 1111 1112 std::error_code BitcodeReader::ParseValueSymbolTable() { 1113 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 1114 return Error("Invalid record"); 1115 1116 SmallVector<uint64_t, 64> Record; 1117 1118 Triple TT(TheModule->getTargetTriple()); 1119 1120 // Read all the records for this value table. 1121 SmallString<128> ValueName; 1122 while (1) { 1123 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1124 1125 switch (Entry.Kind) { 1126 case BitstreamEntry::SubBlock: // Handled for us already. 1127 case BitstreamEntry::Error: 1128 return Error("Malformed block"); 1129 case BitstreamEntry::EndBlock: 1130 return std::error_code(); 1131 case BitstreamEntry::Record: 1132 // The interesting case. 1133 break; 1134 } 1135 1136 // Read a record. 1137 Record.clear(); 1138 switch (Stream.readRecord(Entry.ID, Record)) { 1139 default: // Default behavior: unknown type. 1140 break; 1141 case bitc::VST_CODE_ENTRY: { // VST_ENTRY: [valueid, namechar x N] 1142 if (ConvertToString(Record, 1, ValueName)) 1143 return Error("Invalid record"); 1144 unsigned ValueID = Record[0]; 1145 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 1146 return Error("Invalid record"); 1147 Value *V = ValueList[ValueID]; 1148 1149 V->setName(StringRef(ValueName.data(), ValueName.size())); 1150 if (auto *GO = dyn_cast<GlobalObject>(V)) { 1151 if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) { 1152 if (TT.isOSBinFormatMachO()) 1153 GO->setComdat(nullptr); 1154 else 1155 GO->setComdat(TheModule->getOrInsertComdat(V->getName())); 1156 } 1157 } 1158 ValueName.clear(); 1159 break; 1160 } 1161 case bitc::VST_CODE_BBENTRY: { 1162 if (ConvertToString(Record, 1, ValueName)) 1163 return Error("Invalid record"); 1164 BasicBlock *BB = getBasicBlock(Record[0]); 1165 if (!BB) 1166 return Error("Invalid record"); 1167 1168 BB->setName(StringRef(ValueName.data(), ValueName.size())); 1169 ValueName.clear(); 1170 break; 1171 } 1172 } 1173 } 1174 } 1175 1176 static int64_t unrotateSign(uint64_t U) { return U & 1 ? ~(U >> 1) : U >> 1; } 1177 1178 std::error_code BitcodeReader::ParseMetadata() { 1179 unsigned NextMDValueNo = MDValueList.size(); 1180 1181 if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID)) 1182 return Error("Invalid record"); 1183 1184 SmallVector<uint64_t, 64> Record; 1185 1186 auto getMDString = [&](unsigned ID) -> MDString *{ 1187 // This requires that the ID is not really a forward reference. In 1188 // particular, the MDString must already have been resolved. 1189 if (ID) 1190 return cast<MDString>(MDValueList.getValueFwdRef(ID - 1)); 1191 return nullptr; 1192 }; 1193 1194 #define GET_OR_DISTINCT(CLASS, DISTINCT, ARGS) \ 1195 (DISTINCT ? CLASS::getDistinct ARGS : CLASS::get ARGS) 1196 1197 // Read all the records. 1198 while (1) { 1199 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1200 1201 switch (Entry.Kind) { 1202 case BitstreamEntry::SubBlock: // Handled for us already. 1203 case BitstreamEntry::Error: 1204 return Error("Malformed block"); 1205 case BitstreamEntry::EndBlock: 1206 MDValueList.tryToResolveCycles(); 1207 return std::error_code(); 1208 case BitstreamEntry::Record: 1209 // The interesting case. 1210 break; 1211 } 1212 1213 // Read a record. 1214 Record.clear(); 1215 unsigned Code = Stream.readRecord(Entry.ID, Record); 1216 bool IsDistinct = false; 1217 switch (Code) { 1218 default: // Default behavior: ignore. 1219 break; 1220 case bitc::METADATA_NAME: { 1221 // Read name of the named metadata. 1222 SmallString<8> Name(Record.begin(), Record.end()); 1223 Record.clear(); 1224 Code = Stream.ReadCode(); 1225 1226 // METADATA_NAME is always followed by METADATA_NAMED_NODE. 1227 unsigned NextBitCode = Stream.readRecord(Code, Record); 1228 assert(NextBitCode == bitc::METADATA_NAMED_NODE); (void)NextBitCode; 1229 1230 // Read named metadata elements. 1231 unsigned Size = Record.size(); 1232 NamedMDNode *NMD = TheModule->getOrInsertNamedMetadata(Name); 1233 for (unsigned i = 0; i != Size; ++i) { 1234 MDNode *MD = dyn_cast_or_null<MDNode>(MDValueList.getValueFwdRef(Record[i])); 1235 if (!MD) 1236 return Error("Invalid record"); 1237 NMD->addOperand(MD); 1238 } 1239 break; 1240 } 1241 case bitc::METADATA_OLD_FN_NODE: { 1242 // FIXME: Remove in 4.0. 1243 // This is a LocalAsMetadata record, the only type of function-local 1244 // metadata. 1245 if (Record.size() % 2 == 1) 1246 return Error("Invalid record"); 1247 1248 // If this isn't a LocalAsMetadata record, we're dropping it. This used 1249 // to be legal, but there's no upgrade path. 1250 auto dropRecord = [&] { 1251 MDValueList.AssignValue(MDNode::get(Context, None), NextMDValueNo++); 1252 }; 1253 if (Record.size() != 2) { 1254 dropRecord(); 1255 break; 1256 } 1257 1258 Type *Ty = getTypeByID(Record[0]); 1259 if (Ty->isMetadataTy() || Ty->isVoidTy()) { 1260 dropRecord(); 1261 break; 1262 } 1263 1264 MDValueList.AssignValue( 1265 LocalAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)), 1266 NextMDValueNo++); 1267 break; 1268 } 1269 case bitc::METADATA_OLD_NODE: { 1270 // FIXME: Remove in 4.0. 1271 if (Record.size() % 2 == 1) 1272 return Error("Invalid record"); 1273 1274 unsigned Size = Record.size(); 1275 SmallVector<Metadata *, 8> Elts; 1276 for (unsigned i = 0; i != Size; i += 2) { 1277 Type *Ty = getTypeByID(Record[i]); 1278 if (!Ty) 1279 return Error("Invalid record"); 1280 if (Ty->isMetadataTy()) 1281 Elts.push_back(MDValueList.getValueFwdRef(Record[i+1])); 1282 else if (!Ty->isVoidTy()) { 1283 auto *MD = 1284 ValueAsMetadata::get(ValueList.getValueFwdRef(Record[i + 1], Ty)); 1285 assert(isa<ConstantAsMetadata>(MD) && 1286 "Expected non-function-local metadata"); 1287 Elts.push_back(MD); 1288 } else 1289 Elts.push_back(nullptr); 1290 } 1291 MDValueList.AssignValue(MDNode::get(Context, Elts), NextMDValueNo++); 1292 break; 1293 } 1294 case bitc::METADATA_VALUE: { 1295 if (Record.size() != 2) 1296 return Error("Invalid record"); 1297 1298 Type *Ty = getTypeByID(Record[0]); 1299 if (Ty->isMetadataTy() || Ty->isVoidTy()) 1300 return Error("Invalid record"); 1301 1302 MDValueList.AssignValue( 1303 ValueAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)), 1304 NextMDValueNo++); 1305 break; 1306 } 1307 case bitc::METADATA_DISTINCT_NODE: 1308 IsDistinct = true; 1309 // fallthrough... 1310 case bitc::METADATA_NODE: { 1311 SmallVector<Metadata *, 8> Elts; 1312 Elts.reserve(Record.size()); 1313 for (unsigned ID : Record) 1314 Elts.push_back(ID ? MDValueList.getValueFwdRef(ID - 1) : nullptr); 1315 MDValueList.AssignValue(IsDistinct ? MDNode::getDistinct(Context, Elts) 1316 : MDNode::get(Context, Elts), 1317 NextMDValueNo++); 1318 break; 1319 } 1320 case bitc::METADATA_LOCATION: { 1321 if (Record.size() != 5) 1322 return Error("Invalid record"); 1323 1324 auto get = Record[0] ? MDLocation::getDistinct : MDLocation::get; 1325 unsigned Line = Record[1]; 1326 unsigned Column = Record[2]; 1327 MDNode *Scope = cast<MDNode>(MDValueList.getValueFwdRef(Record[3])); 1328 Metadata *InlinedAt = 1329 Record[4] ? MDValueList.getValueFwdRef(Record[4] - 1) : nullptr; 1330 MDValueList.AssignValue(get(Context, Line, Column, Scope, InlinedAt), 1331 NextMDValueNo++); 1332 break; 1333 } 1334 case bitc::METADATA_GENERIC_DEBUG: { 1335 if (Record.size() < 4) 1336 return Error("Invalid record"); 1337 1338 unsigned Tag = Record[1]; 1339 unsigned Version = Record[2]; 1340 1341 if (Tag >= 1u << 16 || Version != 0) 1342 return Error("Invalid record"); 1343 1344 auto *Header = getMDString(Record[3]); 1345 SmallVector<Metadata *, 8> DwarfOps; 1346 for (unsigned I = 4, E = Record.size(); I != E; ++I) 1347 DwarfOps.push_back(Record[I] ? MDValueList.getValueFwdRef(Record[I] - 1) 1348 : nullptr); 1349 MDValueList.AssignValue(GET_OR_DISTINCT(GenericDebugNode, Record[0], 1350 (Context, Tag, Header, DwarfOps)), 1351 NextMDValueNo++); 1352 break; 1353 } 1354 case bitc::METADATA_SUBRANGE: { 1355 if (Record.size() != 3) 1356 return Error("Invalid record"); 1357 1358 MDValueList.AssignValue( 1359 GET_OR_DISTINCT(MDSubrange, Record[0], 1360 (Context, Record[1], unrotateSign(Record[2]))), 1361 NextMDValueNo++); 1362 break; 1363 } 1364 case bitc::METADATA_ENUMERATOR: { 1365 if (Record.size() != 3) 1366 return Error("Invalid record"); 1367 1368 MDValueList.AssignValue(GET_OR_DISTINCT(MDEnumerator, Record[0], 1369 (Context, unrotateSign(Record[1]), 1370 getMDString(Record[2]))), 1371 NextMDValueNo++); 1372 break; 1373 } 1374 case bitc::METADATA_BASIC_TYPE: { 1375 if (Record.size() != 6) 1376 return Error("Invalid record"); 1377 1378 MDValueList.AssignValue( 1379 GET_OR_DISTINCT(MDBasicType, Record[0], 1380 (Context, Record[1], getMDString(Record[2]), 1381 Record[3], Record[4], Record[5])), 1382 NextMDValueNo++); 1383 break; 1384 } 1385 case bitc::METADATA_FILE: { 1386 if (Record.size() != 3) 1387 return Error("Invalid record"); 1388 1389 MDValueList.AssignValue( 1390 GET_OR_DISTINCT(MDFile, Record[0], (Context, getMDString(Record[1]), 1391 getMDString(Record[2]))), 1392 NextMDValueNo++); 1393 break; 1394 } 1395 case bitc::METADATA_STRING: { 1396 std::string String(Record.begin(), Record.end()); 1397 llvm::UpgradeMDStringConstant(String); 1398 Metadata *MD = MDString::get(Context, String); 1399 MDValueList.AssignValue(MD, NextMDValueNo++); 1400 break; 1401 } 1402 case bitc::METADATA_KIND: { 1403 if (Record.size() < 2) 1404 return Error("Invalid record"); 1405 1406 unsigned Kind = Record[0]; 1407 SmallString<8> Name(Record.begin()+1, Record.end()); 1408 1409 unsigned NewKind = TheModule->getMDKindID(Name.str()); 1410 if (!MDKindMap.insert(std::make_pair(Kind, NewKind)).second) 1411 return Error("Conflicting METADATA_KIND records"); 1412 break; 1413 } 1414 } 1415 } 1416 #undef GET_OR_DISTINCT 1417 } 1418 1419 /// decodeSignRotatedValue - Decode a signed value stored with the sign bit in 1420 /// the LSB for dense VBR encoding. 1421 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { 1422 if ((V & 1) == 0) 1423 return V >> 1; 1424 if (V != 1) 1425 return -(V >> 1); 1426 // There is no such thing as -0 with integers. "-0" really means MININT. 1427 return 1ULL << 63; 1428 } 1429 1430 /// ResolveGlobalAndAliasInits - Resolve all of the initializers for global 1431 /// values and aliases that we can. 1432 std::error_code BitcodeReader::ResolveGlobalAndAliasInits() { 1433 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist; 1434 std::vector<std::pair<GlobalAlias*, unsigned> > AliasInitWorklist; 1435 std::vector<std::pair<Function*, unsigned> > FunctionPrefixWorklist; 1436 std::vector<std::pair<Function*, unsigned> > FunctionPrologueWorklist; 1437 1438 GlobalInitWorklist.swap(GlobalInits); 1439 AliasInitWorklist.swap(AliasInits); 1440 FunctionPrefixWorklist.swap(FunctionPrefixes); 1441 FunctionPrologueWorklist.swap(FunctionPrologues); 1442 1443 while (!GlobalInitWorklist.empty()) { 1444 unsigned ValID = GlobalInitWorklist.back().second; 1445 if (ValID >= ValueList.size()) { 1446 // Not ready to resolve this yet, it requires something later in the file. 1447 GlobalInits.push_back(GlobalInitWorklist.back()); 1448 } else { 1449 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 1450 GlobalInitWorklist.back().first->setInitializer(C); 1451 else 1452 return Error("Expected a constant"); 1453 } 1454 GlobalInitWorklist.pop_back(); 1455 } 1456 1457 while (!AliasInitWorklist.empty()) { 1458 unsigned ValID = AliasInitWorklist.back().second; 1459 if (ValID >= ValueList.size()) { 1460 AliasInits.push_back(AliasInitWorklist.back()); 1461 } else { 1462 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 1463 AliasInitWorklist.back().first->setAliasee(C); 1464 else 1465 return Error("Expected a constant"); 1466 } 1467 AliasInitWorklist.pop_back(); 1468 } 1469 1470 while (!FunctionPrefixWorklist.empty()) { 1471 unsigned ValID = FunctionPrefixWorklist.back().second; 1472 if (ValID >= ValueList.size()) { 1473 FunctionPrefixes.push_back(FunctionPrefixWorklist.back()); 1474 } else { 1475 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 1476 FunctionPrefixWorklist.back().first->setPrefixData(C); 1477 else 1478 return Error("Expected a constant"); 1479 } 1480 FunctionPrefixWorklist.pop_back(); 1481 } 1482 1483 while (!FunctionPrologueWorklist.empty()) { 1484 unsigned ValID = FunctionPrologueWorklist.back().second; 1485 if (ValID >= ValueList.size()) { 1486 FunctionPrologues.push_back(FunctionPrologueWorklist.back()); 1487 } else { 1488 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 1489 FunctionPrologueWorklist.back().first->setPrologueData(C); 1490 else 1491 return Error("Expected a constant"); 1492 } 1493 FunctionPrologueWorklist.pop_back(); 1494 } 1495 1496 return std::error_code(); 1497 } 1498 1499 static APInt ReadWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { 1500 SmallVector<uint64_t, 8> Words(Vals.size()); 1501 std::transform(Vals.begin(), Vals.end(), Words.begin(), 1502 BitcodeReader::decodeSignRotatedValue); 1503 1504 return APInt(TypeBits, Words); 1505 } 1506 1507 std::error_code BitcodeReader::ParseConstants() { 1508 if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 1509 return Error("Invalid record"); 1510 1511 SmallVector<uint64_t, 64> Record; 1512 1513 // Read all the records for this value table. 1514 Type *CurTy = Type::getInt32Ty(Context); 1515 unsigned NextCstNo = ValueList.size(); 1516 while (1) { 1517 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1518 1519 switch (Entry.Kind) { 1520 case BitstreamEntry::SubBlock: // Handled for us already. 1521 case BitstreamEntry::Error: 1522 return Error("Malformed block"); 1523 case BitstreamEntry::EndBlock: 1524 if (NextCstNo != ValueList.size()) 1525 return Error("Invalid ronstant reference"); 1526 1527 // Once all the constants have been read, go through and resolve forward 1528 // references. 1529 ValueList.ResolveConstantForwardRefs(); 1530 return std::error_code(); 1531 case BitstreamEntry::Record: 1532 // The interesting case. 1533 break; 1534 } 1535 1536 // Read a record. 1537 Record.clear(); 1538 Value *V = nullptr; 1539 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 1540 switch (BitCode) { 1541 default: // Default behavior: unknown constant 1542 case bitc::CST_CODE_UNDEF: // UNDEF 1543 V = UndefValue::get(CurTy); 1544 break; 1545 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 1546 if (Record.empty()) 1547 return Error("Invalid record"); 1548 if (Record[0] >= TypeList.size() || !TypeList[Record[0]]) 1549 return Error("Invalid record"); 1550 CurTy = TypeList[Record[0]]; 1551 continue; // Skip the ValueList manipulation. 1552 case bitc::CST_CODE_NULL: // NULL 1553 V = Constant::getNullValue(CurTy); 1554 break; 1555 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 1556 if (!CurTy->isIntegerTy() || Record.empty()) 1557 return Error("Invalid record"); 1558 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); 1559 break; 1560 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 1561 if (!CurTy->isIntegerTy() || Record.empty()) 1562 return Error("Invalid record"); 1563 1564 APInt VInt = ReadWideAPInt(Record, 1565 cast<IntegerType>(CurTy)->getBitWidth()); 1566 V = ConstantInt::get(Context, VInt); 1567 1568 break; 1569 } 1570 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 1571 if (Record.empty()) 1572 return Error("Invalid record"); 1573 if (CurTy->isHalfTy()) 1574 V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf, 1575 APInt(16, (uint16_t)Record[0]))); 1576 else if (CurTy->isFloatTy()) 1577 V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle, 1578 APInt(32, (uint32_t)Record[0]))); 1579 else if (CurTy->isDoubleTy()) 1580 V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble, 1581 APInt(64, Record[0]))); 1582 else if (CurTy->isX86_FP80Ty()) { 1583 // Bits are not stored the same way as a normal i80 APInt, compensate. 1584 uint64_t Rearrange[2]; 1585 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 1586 Rearrange[1] = Record[0] >> 48; 1587 V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended, 1588 APInt(80, Rearrange))); 1589 } else if (CurTy->isFP128Ty()) 1590 V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad, 1591 APInt(128, Record))); 1592 else if (CurTy->isPPC_FP128Ty()) 1593 V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble, 1594 APInt(128, Record))); 1595 else 1596 V = UndefValue::get(CurTy); 1597 break; 1598 } 1599 1600 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 1601 if (Record.empty()) 1602 return Error("Invalid record"); 1603 1604 unsigned Size = Record.size(); 1605 SmallVector<Constant*, 16> Elts; 1606 1607 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 1608 for (unsigned i = 0; i != Size; ++i) 1609 Elts.push_back(ValueList.getConstantFwdRef(Record[i], 1610 STy->getElementType(i))); 1611 V = ConstantStruct::get(STy, Elts); 1612 } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) { 1613 Type *EltTy = ATy->getElementType(); 1614 for (unsigned i = 0; i != Size; ++i) 1615 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 1616 V = ConstantArray::get(ATy, Elts); 1617 } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) { 1618 Type *EltTy = VTy->getElementType(); 1619 for (unsigned i = 0; i != Size; ++i) 1620 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 1621 V = ConstantVector::get(Elts); 1622 } else { 1623 V = UndefValue::get(CurTy); 1624 } 1625 break; 1626 } 1627 case bitc::CST_CODE_STRING: // STRING: [values] 1628 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 1629 if (Record.empty()) 1630 return Error("Invalid record"); 1631 1632 SmallString<16> Elts(Record.begin(), Record.end()); 1633 V = ConstantDataArray::getString(Context, Elts, 1634 BitCode == bitc::CST_CODE_CSTRING); 1635 break; 1636 } 1637 case bitc::CST_CODE_DATA: {// DATA: [n x value] 1638 if (Record.empty()) 1639 return Error("Invalid record"); 1640 1641 Type *EltTy = cast<SequentialType>(CurTy)->getElementType(); 1642 unsigned Size = Record.size(); 1643 1644 if (EltTy->isIntegerTy(8)) { 1645 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); 1646 if (isa<VectorType>(CurTy)) 1647 V = ConstantDataVector::get(Context, Elts); 1648 else 1649 V = ConstantDataArray::get(Context, Elts); 1650 } else if (EltTy->isIntegerTy(16)) { 1651 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 1652 if (isa<VectorType>(CurTy)) 1653 V = ConstantDataVector::get(Context, Elts); 1654 else 1655 V = ConstantDataArray::get(Context, Elts); 1656 } else if (EltTy->isIntegerTy(32)) { 1657 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 1658 if (isa<VectorType>(CurTy)) 1659 V = ConstantDataVector::get(Context, Elts); 1660 else 1661 V = ConstantDataArray::get(Context, Elts); 1662 } else if (EltTy->isIntegerTy(64)) { 1663 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 1664 if (isa<VectorType>(CurTy)) 1665 V = ConstantDataVector::get(Context, Elts); 1666 else 1667 V = ConstantDataArray::get(Context, Elts); 1668 } else if (EltTy->isFloatTy()) { 1669 SmallVector<float, 16> Elts(Size); 1670 std::transform(Record.begin(), Record.end(), Elts.begin(), BitsToFloat); 1671 if (isa<VectorType>(CurTy)) 1672 V = ConstantDataVector::get(Context, Elts); 1673 else 1674 V = ConstantDataArray::get(Context, Elts); 1675 } else if (EltTy->isDoubleTy()) { 1676 SmallVector<double, 16> Elts(Size); 1677 std::transform(Record.begin(), Record.end(), Elts.begin(), 1678 BitsToDouble); 1679 if (isa<VectorType>(CurTy)) 1680 V = ConstantDataVector::get(Context, Elts); 1681 else 1682 V = ConstantDataArray::get(Context, Elts); 1683 } else { 1684 return Error("Invalid type for value"); 1685 } 1686 break; 1687 } 1688 1689 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 1690 if (Record.size() < 3) 1691 return Error("Invalid record"); 1692 int Opc = GetDecodedBinaryOpcode(Record[0], CurTy); 1693 if (Opc < 0) { 1694 V = UndefValue::get(CurTy); // Unknown binop. 1695 } else { 1696 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 1697 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy); 1698 unsigned Flags = 0; 1699 if (Record.size() >= 4) { 1700 if (Opc == Instruction::Add || 1701 Opc == Instruction::Sub || 1702 Opc == Instruction::Mul || 1703 Opc == Instruction::Shl) { 1704 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 1705 Flags |= OverflowingBinaryOperator::NoSignedWrap; 1706 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 1707 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 1708 } else if (Opc == Instruction::SDiv || 1709 Opc == Instruction::UDiv || 1710 Opc == Instruction::LShr || 1711 Opc == Instruction::AShr) { 1712 if (Record[3] & (1 << bitc::PEO_EXACT)) 1713 Flags |= SDivOperator::IsExact; 1714 } 1715 } 1716 V = ConstantExpr::get(Opc, LHS, RHS, Flags); 1717 } 1718 break; 1719 } 1720 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 1721 if (Record.size() < 3) 1722 return Error("Invalid record"); 1723 int Opc = GetDecodedCastOpcode(Record[0]); 1724 if (Opc < 0) { 1725 V = UndefValue::get(CurTy); // Unknown cast. 1726 } else { 1727 Type *OpTy = getTypeByID(Record[1]); 1728 if (!OpTy) 1729 return Error("Invalid record"); 1730 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy); 1731 V = UpgradeBitCastExpr(Opc, Op, CurTy); 1732 if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy); 1733 } 1734 break; 1735 } 1736 case bitc::CST_CODE_CE_INBOUNDS_GEP: 1737 case bitc::CST_CODE_CE_GEP: { // CE_GEP: [n x operands] 1738 if (Record.size() & 1) 1739 return Error("Invalid record"); 1740 SmallVector<Constant*, 16> Elts; 1741 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1742 Type *ElTy = getTypeByID(Record[i]); 1743 if (!ElTy) 1744 return Error("Invalid record"); 1745 Elts.push_back(ValueList.getConstantFwdRef(Record[i+1], ElTy)); 1746 } 1747 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 1748 V = ConstantExpr::getGetElementPtr(Elts[0], Indices, 1749 BitCode == 1750 bitc::CST_CODE_CE_INBOUNDS_GEP); 1751 break; 1752 } 1753 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] 1754 if (Record.size() < 3) 1755 return Error("Invalid record"); 1756 1757 Type *SelectorTy = Type::getInt1Ty(Context); 1758 1759 // If CurTy is a vector of length n, then Record[0] must be a <n x i1> 1760 // vector. Otherwise, it must be a single bit. 1761 if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) 1762 SelectorTy = VectorType::get(Type::getInt1Ty(Context), 1763 VTy->getNumElements()); 1764 1765 V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0], 1766 SelectorTy), 1767 ValueList.getConstantFwdRef(Record[1],CurTy), 1768 ValueList.getConstantFwdRef(Record[2],CurTy)); 1769 break; 1770 } 1771 case bitc::CST_CODE_CE_EXTRACTELT 1772 : { // CE_EXTRACTELT: [opty, opval, opty, opval] 1773 if (Record.size() < 3) 1774 return Error("Invalid record"); 1775 VectorType *OpTy = 1776 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 1777 if (!OpTy) 1778 return Error("Invalid record"); 1779 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 1780 Constant *Op1 = nullptr; 1781 if (Record.size() == 4) { 1782 Type *IdxTy = getTypeByID(Record[2]); 1783 if (!IdxTy) 1784 return Error("Invalid record"); 1785 Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy); 1786 } else // TODO: Remove with llvm 4.0 1787 Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 1788 if (!Op1) 1789 return Error("Invalid record"); 1790 V = ConstantExpr::getExtractElement(Op0, Op1); 1791 break; 1792 } 1793 case bitc::CST_CODE_CE_INSERTELT 1794 : { // CE_INSERTELT: [opval, opval, opty, opval] 1795 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 1796 if (Record.size() < 3 || !OpTy) 1797 return Error("Invalid record"); 1798 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 1799 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], 1800 OpTy->getElementType()); 1801 Constant *Op2 = nullptr; 1802 if (Record.size() == 4) { 1803 Type *IdxTy = getTypeByID(Record[2]); 1804 if (!IdxTy) 1805 return Error("Invalid record"); 1806 Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy); 1807 } else // TODO: Remove with llvm 4.0 1808 Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 1809 if (!Op2) 1810 return Error("Invalid record"); 1811 V = ConstantExpr::getInsertElement(Op0, Op1, Op2); 1812 break; 1813 } 1814 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 1815 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 1816 if (Record.size() < 3 || !OpTy) 1817 return Error("Invalid record"); 1818 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 1819 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy); 1820 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 1821 OpTy->getNumElements()); 1822 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy); 1823 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 1824 break; 1825 } 1826 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 1827 VectorType *RTy = dyn_cast<VectorType>(CurTy); 1828 VectorType *OpTy = 1829 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 1830 if (Record.size() < 4 || !RTy || !OpTy) 1831 return Error("Invalid record"); 1832 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 1833 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 1834 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 1835 RTy->getNumElements()); 1836 Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy); 1837 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 1838 break; 1839 } 1840 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 1841 if (Record.size() < 4) 1842 return Error("Invalid record"); 1843 Type *OpTy = getTypeByID(Record[0]); 1844 if (!OpTy) 1845 return Error("Invalid record"); 1846 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 1847 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 1848 1849 if (OpTy->isFPOrFPVectorTy()) 1850 V = ConstantExpr::getFCmp(Record[3], Op0, Op1); 1851 else 1852 V = ConstantExpr::getICmp(Record[3], Op0, Op1); 1853 break; 1854 } 1855 // This maintains backward compatibility, pre-asm dialect keywords. 1856 // FIXME: Remove with the 4.0 release. 1857 case bitc::CST_CODE_INLINEASM_OLD: { 1858 if (Record.size() < 2) 1859 return Error("Invalid record"); 1860 std::string AsmStr, ConstrStr; 1861 bool HasSideEffects = Record[0] & 1; 1862 bool IsAlignStack = Record[0] >> 1; 1863 unsigned AsmStrSize = Record[1]; 1864 if (2+AsmStrSize >= Record.size()) 1865 return Error("Invalid record"); 1866 unsigned ConstStrSize = Record[2+AsmStrSize]; 1867 if (3+AsmStrSize+ConstStrSize > Record.size()) 1868 return Error("Invalid record"); 1869 1870 for (unsigned i = 0; i != AsmStrSize; ++i) 1871 AsmStr += (char)Record[2+i]; 1872 for (unsigned i = 0; i != ConstStrSize; ++i) 1873 ConstrStr += (char)Record[3+AsmStrSize+i]; 1874 PointerType *PTy = cast<PointerType>(CurTy); 1875 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 1876 AsmStr, ConstrStr, HasSideEffects, IsAlignStack); 1877 break; 1878 } 1879 // This version adds support for the asm dialect keywords (e.g., 1880 // inteldialect). 1881 case bitc::CST_CODE_INLINEASM: { 1882 if (Record.size() < 2) 1883 return Error("Invalid record"); 1884 std::string AsmStr, ConstrStr; 1885 bool HasSideEffects = Record[0] & 1; 1886 bool IsAlignStack = (Record[0] >> 1) & 1; 1887 unsigned AsmDialect = Record[0] >> 2; 1888 unsigned AsmStrSize = Record[1]; 1889 if (2+AsmStrSize >= Record.size()) 1890 return Error("Invalid record"); 1891 unsigned ConstStrSize = Record[2+AsmStrSize]; 1892 if (3+AsmStrSize+ConstStrSize > Record.size()) 1893 return Error("Invalid record"); 1894 1895 for (unsigned i = 0; i != AsmStrSize; ++i) 1896 AsmStr += (char)Record[2+i]; 1897 for (unsigned i = 0; i != ConstStrSize; ++i) 1898 ConstrStr += (char)Record[3+AsmStrSize+i]; 1899 PointerType *PTy = cast<PointerType>(CurTy); 1900 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 1901 AsmStr, ConstrStr, HasSideEffects, IsAlignStack, 1902 InlineAsm::AsmDialect(AsmDialect)); 1903 break; 1904 } 1905 case bitc::CST_CODE_BLOCKADDRESS:{ 1906 if (Record.size() < 3) 1907 return Error("Invalid record"); 1908 Type *FnTy = getTypeByID(Record[0]); 1909 if (!FnTy) 1910 return Error("Invalid record"); 1911 Function *Fn = 1912 dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy)); 1913 if (!Fn) 1914 return Error("Invalid record"); 1915 1916 // Don't let Fn get dematerialized. 1917 BlockAddressesTaken.insert(Fn); 1918 1919 // If the function is already parsed we can insert the block address right 1920 // away. 1921 BasicBlock *BB; 1922 unsigned BBID = Record[2]; 1923 if (!BBID) 1924 // Invalid reference to entry block. 1925 return Error("Invalid ID"); 1926 if (!Fn->empty()) { 1927 Function::iterator BBI = Fn->begin(), BBE = Fn->end(); 1928 for (size_t I = 0, E = BBID; I != E; ++I) { 1929 if (BBI == BBE) 1930 return Error("Invalid ID"); 1931 ++BBI; 1932 } 1933 BB = BBI; 1934 } else { 1935 // Otherwise insert a placeholder and remember it so it can be inserted 1936 // when the function is parsed. 1937 auto &FwdBBs = BasicBlockFwdRefs[Fn]; 1938 if (FwdBBs.empty()) 1939 BasicBlockFwdRefQueue.push_back(Fn); 1940 if (FwdBBs.size() < BBID + 1) 1941 FwdBBs.resize(BBID + 1); 1942 if (!FwdBBs[BBID]) 1943 FwdBBs[BBID] = BasicBlock::Create(Context); 1944 BB = FwdBBs[BBID]; 1945 } 1946 V = BlockAddress::get(Fn, BB); 1947 break; 1948 } 1949 } 1950 1951 ValueList.AssignValue(V, NextCstNo); 1952 ++NextCstNo; 1953 } 1954 } 1955 1956 std::error_code BitcodeReader::ParseUseLists() { 1957 if (Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 1958 return Error("Invalid record"); 1959 1960 // Read all the records. 1961 SmallVector<uint64_t, 64> Record; 1962 while (1) { 1963 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1964 1965 switch (Entry.Kind) { 1966 case BitstreamEntry::SubBlock: // Handled for us already. 1967 case BitstreamEntry::Error: 1968 return Error("Malformed block"); 1969 case BitstreamEntry::EndBlock: 1970 return std::error_code(); 1971 case BitstreamEntry::Record: 1972 // The interesting case. 1973 break; 1974 } 1975 1976 // Read a use list record. 1977 Record.clear(); 1978 bool IsBB = false; 1979 switch (Stream.readRecord(Entry.ID, Record)) { 1980 default: // Default behavior: unknown type. 1981 break; 1982 case bitc::USELIST_CODE_BB: 1983 IsBB = true; 1984 // fallthrough 1985 case bitc::USELIST_CODE_DEFAULT: { 1986 unsigned RecordLength = Record.size(); 1987 if (RecordLength < 3) 1988 // Records should have at least an ID and two indexes. 1989 return Error("Invalid record"); 1990 unsigned ID = Record.back(); 1991 Record.pop_back(); 1992 1993 Value *V; 1994 if (IsBB) { 1995 assert(ID < FunctionBBs.size() && "Basic block not found"); 1996 V = FunctionBBs[ID]; 1997 } else 1998 V = ValueList[ID]; 1999 unsigned NumUses = 0; 2000 SmallDenseMap<const Use *, unsigned, 16> Order; 2001 for (const Use &U : V->uses()) { 2002 if (++NumUses > Record.size()) 2003 break; 2004 Order[&U] = Record[NumUses - 1]; 2005 } 2006 if (Order.size() != Record.size() || NumUses > Record.size()) 2007 // Mismatches can happen if the functions are being materialized lazily 2008 // (out-of-order), or a value has been upgraded. 2009 break; 2010 2011 V->sortUseList([&](const Use &L, const Use &R) { 2012 return Order.lookup(&L) < Order.lookup(&R); 2013 }); 2014 break; 2015 } 2016 } 2017 } 2018 } 2019 2020 /// RememberAndSkipFunctionBody - When we see the block for a function body, 2021 /// remember where it is and then skip it. This lets us lazily deserialize the 2022 /// functions. 2023 std::error_code BitcodeReader::RememberAndSkipFunctionBody() { 2024 // Get the function we are talking about. 2025 if (FunctionsWithBodies.empty()) 2026 return Error("Insufficient function protos"); 2027 2028 Function *Fn = FunctionsWithBodies.back(); 2029 FunctionsWithBodies.pop_back(); 2030 2031 // Save the current stream state. 2032 uint64_t CurBit = Stream.GetCurrentBitNo(); 2033 DeferredFunctionInfo[Fn] = CurBit; 2034 2035 // Skip over the function block for now. 2036 if (Stream.SkipBlock()) 2037 return Error("Invalid record"); 2038 return std::error_code(); 2039 } 2040 2041 std::error_code BitcodeReader::GlobalCleanup() { 2042 // Patch the initializers for globals and aliases up. 2043 ResolveGlobalAndAliasInits(); 2044 if (!GlobalInits.empty() || !AliasInits.empty()) 2045 return Error("Malformed global initializer set"); 2046 2047 // Look for intrinsic functions which need to be upgraded at some point 2048 for (Module::iterator FI = TheModule->begin(), FE = TheModule->end(); 2049 FI != FE; ++FI) { 2050 Function *NewFn; 2051 if (UpgradeIntrinsicFunction(FI, NewFn)) 2052 UpgradedIntrinsics.push_back(std::make_pair(FI, NewFn)); 2053 } 2054 2055 // Look for global variables which need to be renamed. 2056 for (Module::global_iterator 2057 GI = TheModule->global_begin(), GE = TheModule->global_end(); 2058 GI != GE;) { 2059 GlobalVariable *GV = GI++; 2060 UpgradeGlobalVariable(GV); 2061 } 2062 2063 // Force deallocation of memory for these vectors to favor the client that 2064 // want lazy deserialization. 2065 std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits); 2066 std::vector<std::pair<GlobalAlias*, unsigned> >().swap(AliasInits); 2067 return std::error_code(); 2068 } 2069 2070 std::error_code BitcodeReader::ParseModule(bool Resume) { 2071 if (Resume) 2072 Stream.JumpToBit(NextUnreadBit); 2073 else if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 2074 return Error("Invalid record"); 2075 2076 SmallVector<uint64_t, 64> Record; 2077 std::vector<std::string> SectionTable; 2078 std::vector<std::string> GCTable; 2079 2080 // Read all the records for this module. 2081 while (1) { 2082 BitstreamEntry Entry = Stream.advance(); 2083 2084 switch (Entry.Kind) { 2085 case BitstreamEntry::Error: 2086 return Error("Malformed block"); 2087 case BitstreamEntry::EndBlock: 2088 return GlobalCleanup(); 2089 2090 case BitstreamEntry::SubBlock: 2091 switch (Entry.ID) { 2092 default: // Skip unknown content. 2093 if (Stream.SkipBlock()) 2094 return Error("Invalid record"); 2095 break; 2096 case bitc::BLOCKINFO_BLOCK_ID: 2097 if (Stream.ReadBlockInfoBlock()) 2098 return Error("Malformed block"); 2099 break; 2100 case bitc::PARAMATTR_BLOCK_ID: 2101 if (std::error_code EC = ParseAttributeBlock()) 2102 return EC; 2103 break; 2104 case bitc::PARAMATTR_GROUP_BLOCK_ID: 2105 if (std::error_code EC = ParseAttributeGroupBlock()) 2106 return EC; 2107 break; 2108 case bitc::TYPE_BLOCK_ID_NEW: 2109 if (std::error_code EC = ParseTypeTable()) 2110 return EC; 2111 break; 2112 case bitc::VALUE_SYMTAB_BLOCK_ID: 2113 if (std::error_code EC = ParseValueSymbolTable()) 2114 return EC; 2115 SeenValueSymbolTable = true; 2116 break; 2117 case bitc::CONSTANTS_BLOCK_ID: 2118 if (std::error_code EC = ParseConstants()) 2119 return EC; 2120 if (std::error_code EC = ResolveGlobalAndAliasInits()) 2121 return EC; 2122 break; 2123 case bitc::METADATA_BLOCK_ID: 2124 if (std::error_code EC = ParseMetadata()) 2125 return EC; 2126 break; 2127 case bitc::FUNCTION_BLOCK_ID: 2128 // If this is the first function body we've seen, reverse the 2129 // FunctionsWithBodies list. 2130 if (!SeenFirstFunctionBody) { 2131 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 2132 if (std::error_code EC = GlobalCleanup()) 2133 return EC; 2134 SeenFirstFunctionBody = true; 2135 } 2136 2137 if (std::error_code EC = RememberAndSkipFunctionBody()) 2138 return EC; 2139 // For streaming bitcode, suspend parsing when we reach the function 2140 // bodies. Subsequent materialization calls will resume it when 2141 // necessary. For streaming, the function bodies must be at the end of 2142 // the bitcode. If the bitcode file is old, the symbol table will be 2143 // at the end instead and will not have been seen yet. In this case, 2144 // just finish the parse now. 2145 if (LazyStreamer && SeenValueSymbolTable) { 2146 NextUnreadBit = Stream.GetCurrentBitNo(); 2147 return std::error_code(); 2148 } 2149 break; 2150 case bitc::USELIST_BLOCK_ID: 2151 if (std::error_code EC = ParseUseLists()) 2152 return EC; 2153 break; 2154 } 2155 continue; 2156 2157 case BitstreamEntry::Record: 2158 // The interesting case. 2159 break; 2160 } 2161 2162 2163 // Read a record. 2164 switch (Stream.readRecord(Entry.ID, Record)) { 2165 default: break; // Default behavior, ignore unknown content. 2166 case bitc::MODULE_CODE_VERSION: { // VERSION: [version#] 2167 if (Record.size() < 1) 2168 return Error("Invalid record"); 2169 // Only version #0 and #1 are supported so far. 2170 unsigned module_version = Record[0]; 2171 switch (module_version) { 2172 default: 2173 return Error("Invalid value"); 2174 case 0: 2175 UseRelativeIDs = false; 2176 break; 2177 case 1: 2178 UseRelativeIDs = true; 2179 break; 2180 } 2181 break; 2182 } 2183 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 2184 std::string S; 2185 if (ConvertToString(Record, 0, S)) 2186 return Error("Invalid record"); 2187 TheModule->setTargetTriple(S); 2188 break; 2189 } 2190 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 2191 std::string S; 2192 if (ConvertToString(Record, 0, S)) 2193 return Error("Invalid record"); 2194 TheModule->setDataLayout(S); 2195 break; 2196 } 2197 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 2198 std::string S; 2199 if (ConvertToString(Record, 0, S)) 2200 return Error("Invalid record"); 2201 TheModule->setModuleInlineAsm(S); 2202 break; 2203 } 2204 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 2205 // FIXME: Remove in 4.0. 2206 std::string S; 2207 if (ConvertToString(Record, 0, S)) 2208 return Error("Invalid record"); 2209 // Ignore value. 2210 break; 2211 } 2212 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 2213 std::string S; 2214 if (ConvertToString(Record, 0, S)) 2215 return Error("Invalid record"); 2216 SectionTable.push_back(S); 2217 break; 2218 } 2219 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 2220 std::string S; 2221 if (ConvertToString(Record, 0, S)) 2222 return Error("Invalid record"); 2223 GCTable.push_back(S); 2224 break; 2225 } 2226 case bitc::MODULE_CODE_COMDAT: { // COMDAT: [selection_kind, name] 2227 if (Record.size() < 2) 2228 return Error("Invalid record"); 2229 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]); 2230 unsigned ComdatNameSize = Record[1]; 2231 std::string ComdatName; 2232 ComdatName.reserve(ComdatNameSize); 2233 for (unsigned i = 0; i != ComdatNameSize; ++i) 2234 ComdatName += (char)Record[2 + i]; 2235 Comdat *C = TheModule->getOrInsertComdat(ComdatName); 2236 C->setSelectionKind(SK); 2237 ComdatList.push_back(C); 2238 break; 2239 } 2240 // GLOBALVAR: [pointer type, isconst, initid, 2241 // linkage, alignment, section, visibility, threadlocal, 2242 // unnamed_addr, externally_initialized, dllstorageclass, 2243 // comdat] 2244 case bitc::MODULE_CODE_GLOBALVAR: { 2245 if (Record.size() < 6) 2246 return Error("Invalid record"); 2247 Type *Ty = getTypeByID(Record[0]); 2248 if (!Ty) 2249 return Error("Invalid record"); 2250 if (!Ty->isPointerTy()) 2251 return Error("Invalid type for value"); 2252 unsigned AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 2253 Ty = cast<PointerType>(Ty)->getElementType(); 2254 2255 bool isConstant = Record[1]; 2256 uint64_t RawLinkage = Record[3]; 2257 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 2258 unsigned Alignment = (1 << Record[4]) >> 1; 2259 std::string Section; 2260 if (Record[5]) { 2261 if (Record[5]-1 >= SectionTable.size()) 2262 return Error("Invalid ID"); 2263 Section = SectionTable[Record[5]-1]; 2264 } 2265 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 2266 // Local linkage must have default visibility. 2267 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage)) 2268 // FIXME: Change to an error if non-default in 4.0. 2269 Visibility = GetDecodedVisibility(Record[6]); 2270 2271 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; 2272 if (Record.size() > 7) 2273 TLM = GetDecodedThreadLocalMode(Record[7]); 2274 2275 bool UnnamedAddr = false; 2276 if (Record.size() > 8) 2277 UnnamedAddr = Record[8]; 2278 2279 bool ExternallyInitialized = false; 2280 if (Record.size() > 9) 2281 ExternallyInitialized = Record[9]; 2282 2283 GlobalVariable *NewGV = 2284 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, "", nullptr, 2285 TLM, AddressSpace, ExternallyInitialized); 2286 NewGV->setAlignment(Alignment); 2287 if (!Section.empty()) 2288 NewGV->setSection(Section); 2289 NewGV->setVisibility(Visibility); 2290 NewGV->setUnnamedAddr(UnnamedAddr); 2291 2292 if (Record.size() > 10) 2293 NewGV->setDLLStorageClass(GetDecodedDLLStorageClass(Record[10])); 2294 else 2295 UpgradeDLLImportExportLinkage(NewGV, RawLinkage); 2296 2297 ValueList.push_back(NewGV); 2298 2299 // Remember which value to use for the global initializer. 2300 if (unsigned InitID = Record[2]) 2301 GlobalInits.push_back(std::make_pair(NewGV, InitID-1)); 2302 2303 if (Record.size() > 11) { 2304 if (unsigned ComdatID = Record[11]) { 2305 assert(ComdatID <= ComdatList.size()); 2306 NewGV->setComdat(ComdatList[ComdatID - 1]); 2307 } 2308 } else if (hasImplicitComdat(RawLinkage)) { 2309 NewGV->setComdat(reinterpret_cast<Comdat *>(1)); 2310 } 2311 break; 2312 } 2313 // FUNCTION: [type, callingconv, isproto, linkage, paramattr, 2314 // alignment, section, visibility, gc, unnamed_addr, 2315 // prologuedata, dllstorageclass, comdat, prefixdata] 2316 case bitc::MODULE_CODE_FUNCTION: { 2317 if (Record.size() < 8) 2318 return Error("Invalid record"); 2319 Type *Ty = getTypeByID(Record[0]); 2320 if (!Ty) 2321 return Error("Invalid record"); 2322 if (!Ty->isPointerTy()) 2323 return Error("Invalid type for value"); 2324 FunctionType *FTy = 2325 dyn_cast<FunctionType>(cast<PointerType>(Ty)->getElementType()); 2326 if (!FTy) 2327 return Error("Invalid type for value"); 2328 2329 Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage, 2330 "", TheModule); 2331 2332 Func->setCallingConv(static_cast<CallingConv::ID>(Record[1])); 2333 bool isProto = Record[2]; 2334 uint64_t RawLinkage = Record[3]; 2335 Func->setLinkage(getDecodedLinkage(RawLinkage)); 2336 Func->setAttributes(getAttributes(Record[4])); 2337 2338 Func->setAlignment((1 << Record[5]) >> 1); 2339 if (Record[6]) { 2340 if (Record[6]-1 >= SectionTable.size()) 2341 return Error("Invalid ID"); 2342 Func->setSection(SectionTable[Record[6]-1]); 2343 } 2344 // Local linkage must have default visibility. 2345 if (!Func->hasLocalLinkage()) 2346 // FIXME: Change to an error if non-default in 4.0. 2347 Func->setVisibility(GetDecodedVisibility(Record[7])); 2348 if (Record.size() > 8 && Record[8]) { 2349 if (Record[8]-1 > GCTable.size()) 2350 return Error("Invalid ID"); 2351 Func->setGC(GCTable[Record[8]-1].c_str()); 2352 } 2353 bool UnnamedAddr = false; 2354 if (Record.size() > 9) 2355 UnnamedAddr = Record[9]; 2356 Func->setUnnamedAddr(UnnamedAddr); 2357 if (Record.size() > 10 && Record[10] != 0) 2358 FunctionPrologues.push_back(std::make_pair(Func, Record[10]-1)); 2359 2360 if (Record.size() > 11) 2361 Func->setDLLStorageClass(GetDecodedDLLStorageClass(Record[11])); 2362 else 2363 UpgradeDLLImportExportLinkage(Func, RawLinkage); 2364 2365 if (Record.size() > 12) { 2366 if (unsigned ComdatID = Record[12]) { 2367 assert(ComdatID <= ComdatList.size()); 2368 Func->setComdat(ComdatList[ComdatID - 1]); 2369 } 2370 } else if (hasImplicitComdat(RawLinkage)) { 2371 Func->setComdat(reinterpret_cast<Comdat *>(1)); 2372 } 2373 2374 if (Record.size() > 13 && Record[13] != 0) 2375 FunctionPrefixes.push_back(std::make_pair(Func, Record[13]-1)); 2376 2377 ValueList.push_back(Func); 2378 2379 // If this is a function with a body, remember the prototype we are 2380 // creating now, so that we can match up the body with them later. 2381 if (!isProto) { 2382 Func->setIsMaterializable(true); 2383 FunctionsWithBodies.push_back(Func); 2384 if (LazyStreamer) 2385 DeferredFunctionInfo[Func] = 0; 2386 } 2387 break; 2388 } 2389 // ALIAS: [alias type, aliasee val#, linkage] 2390 // ALIAS: [alias type, aliasee val#, linkage, visibility, dllstorageclass] 2391 case bitc::MODULE_CODE_ALIAS: { 2392 if (Record.size() < 3) 2393 return Error("Invalid record"); 2394 Type *Ty = getTypeByID(Record[0]); 2395 if (!Ty) 2396 return Error("Invalid record"); 2397 auto *PTy = dyn_cast<PointerType>(Ty); 2398 if (!PTy) 2399 return Error("Invalid type for value"); 2400 2401 auto *NewGA = 2402 GlobalAlias::create(PTy->getElementType(), PTy->getAddressSpace(), 2403 getDecodedLinkage(Record[2]), "", TheModule); 2404 // Old bitcode files didn't have visibility field. 2405 // Local linkage must have default visibility. 2406 if (Record.size() > 3 && !NewGA->hasLocalLinkage()) 2407 // FIXME: Change to an error if non-default in 4.0. 2408 NewGA->setVisibility(GetDecodedVisibility(Record[3])); 2409 if (Record.size() > 4) 2410 NewGA->setDLLStorageClass(GetDecodedDLLStorageClass(Record[4])); 2411 else 2412 UpgradeDLLImportExportLinkage(NewGA, Record[2]); 2413 if (Record.size() > 5) 2414 NewGA->setThreadLocalMode(GetDecodedThreadLocalMode(Record[5])); 2415 if (Record.size() > 6) 2416 NewGA->setUnnamedAddr(Record[6]); 2417 ValueList.push_back(NewGA); 2418 AliasInits.push_back(std::make_pair(NewGA, Record[1])); 2419 break; 2420 } 2421 /// MODULE_CODE_PURGEVALS: [numvals] 2422 case bitc::MODULE_CODE_PURGEVALS: 2423 // Trim down the value list to the specified size. 2424 if (Record.size() < 1 || Record[0] > ValueList.size()) 2425 return Error("Invalid record"); 2426 ValueList.shrinkTo(Record[0]); 2427 break; 2428 } 2429 Record.clear(); 2430 } 2431 } 2432 2433 std::error_code BitcodeReader::ParseBitcodeInto(Module *M) { 2434 TheModule = nullptr; 2435 2436 if (std::error_code EC = InitStream()) 2437 return EC; 2438 2439 // Sniff for the signature. 2440 if (Stream.Read(8) != 'B' || 2441 Stream.Read(8) != 'C' || 2442 Stream.Read(4) != 0x0 || 2443 Stream.Read(4) != 0xC || 2444 Stream.Read(4) != 0xE || 2445 Stream.Read(4) != 0xD) 2446 return Error("Invalid bitcode signature"); 2447 2448 // We expect a number of well-defined blocks, though we don't necessarily 2449 // need to understand them all. 2450 while (1) { 2451 if (Stream.AtEndOfStream()) 2452 return std::error_code(); 2453 2454 BitstreamEntry Entry = 2455 Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs); 2456 2457 switch (Entry.Kind) { 2458 case BitstreamEntry::Error: 2459 return Error("Malformed block"); 2460 case BitstreamEntry::EndBlock: 2461 return std::error_code(); 2462 2463 case BitstreamEntry::SubBlock: 2464 switch (Entry.ID) { 2465 case bitc::BLOCKINFO_BLOCK_ID: 2466 if (Stream.ReadBlockInfoBlock()) 2467 return Error("Malformed block"); 2468 break; 2469 case bitc::MODULE_BLOCK_ID: 2470 // Reject multiple MODULE_BLOCK's in a single bitstream. 2471 if (TheModule) 2472 return Error("Invalid multiple blocks"); 2473 TheModule = M; 2474 if (std::error_code EC = ParseModule(false)) 2475 return EC; 2476 if (LazyStreamer) 2477 return std::error_code(); 2478 break; 2479 default: 2480 if (Stream.SkipBlock()) 2481 return Error("Invalid record"); 2482 break; 2483 } 2484 continue; 2485 case BitstreamEntry::Record: 2486 // There should be no records in the top-level of blocks. 2487 2488 // The ranlib in Xcode 4 will align archive members by appending newlines 2489 // to the end of them. If this file size is a multiple of 4 but not 8, we 2490 // have to read and ignore these final 4 bytes :-( 2491 if (Stream.getAbbrevIDWidth() == 2 && Entry.ID == 2 && 2492 Stream.Read(6) == 2 && Stream.Read(24) == 0xa0a0a && 2493 Stream.AtEndOfStream()) 2494 return std::error_code(); 2495 2496 return Error("Invalid record"); 2497 } 2498 } 2499 } 2500 2501 ErrorOr<std::string> BitcodeReader::parseModuleTriple() { 2502 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 2503 return Error("Invalid record"); 2504 2505 SmallVector<uint64_t, 64> Record; 2506 2507 std::string Triple; 2508 // Read all the records for this module. 2509 while (1) { 2510 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2511 2512 switch (Entry.Kind) { 2513 case BitstreamEntry::SubBlock: // Handled for us already. 2514 case BitstreamEntry::Error: 2515 return Error("Malformed block"); 2516 case BitstreamEntry::EndBlock: 2517 return Triple; 2518 case BitstreamEntry::Record: 2519 // The interesting case. 2520 break; 2521 } 2522 2523 // Read a record. 2524 switch (Stream.readRecord(Entry.ID, Record)) { 2525 default: break; // Default behavior, ignore unknown content. 2526 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 2527 std::string S; 2528 if (ConvertToString(Record, 0, S)) 2529 return Error("Invalid record"); 2530 Triple = S; 2531 break; 2532 } 2533 } 2534 Record.clear(); 2535 } 2536 llvm_unreachable("Exit infinite loop"); 2537 } 2538 2539 ErrorOr<std::string> BitcodeReader::parseTriple() { 2540 if (std::error_code EC = InitStream()) 2541 return EC; 2542 2543 // Sniff for the signature. 2544 if (Stream.Read(8) != 'B' || 2545 Stream.Read(8) != 'C' || 2546 Stream.Read(4) != 0x0 || 2547 Stream.Read(4) != 0xC || 2548 Stream.Read(4) != 0xE || 2549 Stream.Read(4) != 0xD) 2550 return Error("Invalid bitcode signature"); 2551 2552 // We expect a number of well-defined blocks, though we don't necessarily 2553 // need to understand them all. 2554 while (1) { 2555 BitstreamEntry Entry = Stream.advance(); 2556 2557 switch (Entry.Kind) { 2558 case BitstreamEntry::Error: 2559 return Error("Malformed block"); 2560 case BitstreamEntry::EndBlock: 2561 return std::error_code(); 2562 2563 case BitstreamEntry::SubBlock: 2564 if (Entry.ID == bitc::MODULE_BLOCK_ID) 2565 return parseModuleTriple(); 2566 2567 // Ignore other sub-blocks. 2568 if (Stream.SkipBlock()) 2569 return Error("Malformed block"); 2570 continue; 2571 2572 case BitstreamEntry::Record: 2573 Stream.skipRecord(Entry.ID); 2574 continue; 2575 } 2576 } 2577 } 2578 2579 /// ParseMetadataAttachment - Parse metadata attachments. 2580 std::error_code BitcodeReader::ParseMetadataAttachment() { 2581 if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID)) 2582 return Error("Invalid record"); 2583 2584 SmallVector<uint64_t, 64> Record; 2585 while (1) { 2586 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2587 2588 switch (Entry.Kind) { 2589 case BitstreamEntry::SubBlock: // Handled for us already. 2590 case BitstreamEntry::Error: 2591 return Error("Malformed block"); 2592 case BitstreamEntry::EndBlock: 2593 return std::error_code(); 2594 case BitstreamEntry::Record: 2595 // The interesting case. 2596 break; 2597 } 2598 2599 // Read a metadata attachment record. 2600 Record.clear(); 2601 switch (Stream.readRecord(Entry.ID, Record)) { 2602 default: // Default behavior: ignore. 2603 break; 2604 case bitc::METADATA_ATTACHMENT: { 2605 unsigned RecordLength = Record.size(); 2606 if (Record.empty() || (RecordLength - 1) % 2 == 1) 2607 return Error("Invalid record"); 2608 Instruction *Inst = InstructionList[Record[0]]; 2609 for (unsigned i = 1; i != RecordLength; i = i+2) { 2610 unsigned Kind = Record[i]; 2611 DenseMap<unsigned, unsigned>::iterator I = 2612 MDKindMap.find(Kind); 2613 if (I == MDKindMap.end()) 2614 return Error("Invalid ID"); 2615 Metadata *Node = MDValueList.getValueFwdRef(Record[i + 1]); 2616 if (isa<LocalAsMetadata>(Node)) 2617 // Drop the attachment. This used to be legal, but there's no 2618 // upgrade path. 2619 break; 2620 Inst->setMetadata(I->second, cast<MDNode>(Node)); 2621 if (I->second == LLVMContext::MD_tbaa) 2622 InstsWithTBAATag.push_back(Inst); 2623 } 2624 break; 2625 } 2626 } 2627 } 2628 } 2629 2630 /// ParseFunctionBody - Lazily parse the specified function body block. 2631 std::error_code BitcodeReader::ParseFunctionBody(Function *F) { 2632 if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 2633 return Error("Invalid record"); 2634 2635 InstructionList.clear(); 2636 unsigned ModuleValueListSize = ValueList.size(); 2637 unsigned ModuleMDValueListSize = MDValueList.size(); 2638 2639 // Add all the function arguments to the value table. 2640 for(Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I) 2641 ValueList.push_back(I); 2642 2643 unsigned NextValueNo = ValueList.size(); 2644 BasicBlock *CurBB = nullptr; 2645 unsigned CurBBNo = 0; 2646 2647 DebugLoc LastLoc; 2648 auto getLastInstruction = [&]() -> Instruction * { 2649 if (CurBB && !CurBB->empty()) 2650 return &CurBB->back(); 2651 else if (CurBBNo && FunctionBBs[CurBBNo - 1] && 2652 !FunctionBBs[CurBBNo - 1]->empty()) 2653 return &FunctionBBs[CurBBNo - 1]->back(); 2654 return nullptr; 2655 }; 2656 2657 // Read all the records. 2658 SmallVector<uint64_t, 64> Record; 2659 while (1) { 2660 BitstreamEntry Entry = Stream.advance(); 2661 2662 switch (Entry.Kind) { 2663 case BitstreamEntry::Error: 2664 return Error("Malformed block"); 2665 case BitstreamEntry::EndBlock: 2666 goto OutOfRecordLoop; 2667 2668 case BitstreamEntry::SubBlock: 2669 switch (Entry.ID) { 2670 default: // Skip unknown content. 2671 if (Stream.SkipBlock()) 2672 return Error("Invalid record"); 2673 break; 2674 case bitc::CONSTANTS_BLOCK_ID: 2675 if (std::error_code EC = ParseConstants()) 2676 return EC; 2677 NextValueNo = ValueList.size(); 2678 break; 2679 case bitc::VALUE_SYMTAB_BLOCK_ID: 2680 if (std::error_code EC = ParseValueSymbolTable()) 2681 return EC; 2682 break; 2683 case bitc::METADATA_ATTACHMENT_ID: 2684 if (std::error_code EC = ParseMetadataAttachment()) 2685 return EC; 2686 break; 2687 case bitc::METADATA_BLOCK_ID: 2688 if (std::error_code EC = ParseMetadata()) 2689 return EC; 2690 break; 2691 case bitc::USELIST_BLOCK_ID: 2692 if (std::error_code EC = ParseUseLists()) 2693 return EC; 2694 break; 2695 } 2696 continue; 2697 2698 case BitstreamEntry::Record: 2699 // The interesting case. 2700 break; 2701 } 2702 2703 // Read a record. 2704 Record.clear(); 2705 Instruction *I = nullptr; 2706 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 2707 switch (BitCode) { 2708 default: // Default behavior: reject 2709 return Error("Invalid value"); 2710 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks] 2711 if (Record.size() < 1 || Record[0] == 0) 2712 return Error("Invalid record"); 2713 // Create all the basic blocks for the function. 2714 FunctionBBs.resize(Record[0]); 2715 2716 // See if anything took the address of blocks in this function. 2717 auto BBFRI = BasicBlockFwdRefs.find(F); 2718 if (BBFRI == BasicBlockFwdRefs.end()) { 2719 for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i) 2720 FunctionBBs[i] = BasicBlock::Create(Context, "", F); 2721 } else { 2722 auto &BBRefs = BBFRI->second; 2723 // Check for invalid basic block references. 2724 if (BBRefs.size() > FunctionBBs.size()) 2725 return Error("Invalid ID"); 2726 assert(!BBRefs.empty() && "Unexpected empty array"); 2727 assert(!BBRefs.front() && "Invalid reference to entry block"); 2728 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E; 2729 ++I) 2730 if (I < RE && BBRefs[I]) { 2731 BBRefs[I]->insertInto(F); 2732 FunctionBBs[I] = BBRefs[I]; 2733 } else { 2734 FunctionBBs[I] = BasicBlock::Create(Context, "", F); 2735 } 2736 2737 // Erase from the table. 2738 BasicBlockFwdRefs.erase(BBFRI); 2739 } 2740 2741 CurBB = FunctionBBs[0]; 2742 continue; 2743 } 2744 2745 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 2746 // This record indicates that the last instruction is at the same 2747 // location as the previous instruction with a location. 2748 I = getLastInstruction(); 2749 2750 if (!I) 2751 return Error("Invalid record"); 2752 I->setDebugLoc(LastLoc); 2753 I = nullptr; 2754 continue; 2755 2756 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 2757 I = getLastInstruction(); 2758 if (!I || Record.size() < 4) 2759 return Error("Invalid record"); 2760 2761 unsigned Line = Record[0], Col = Record[1]; 2762 unsigned ScopeID = Record[2], IAID = Record[3]; 2763 2764 MDNode *Scope = nullptr, *IA = nullptr; 2765 if (ScopeID) Scope = cast<MDNode>(MDValueList.getValueFwdRef(ScopeID-1)); 2766 if (IAID) IA = cast<MDNode>(MDValueList.getValueFwdRef(IAID-1)); 2767 LastLoc = DebugLoc::get(Line, Col, Scope, IA); 2768 I->setDebugLoc(LastLoc); 2769 I = nullptr; 2770 continue; 2771 } 2772 2773 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 2774 unsigned OpNum = 0; 2775 Value *LHS, *RHS; 2776 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 2777 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 2778 OpNum+1 > Record.size()) 2779 return Error("Invalid record"); 2780 2781 int Opc = GetDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 2782 if (Opc == -1) 2783 return Error("Invalid record"); 2784 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 2785 InstructionList.push_back(I); 2786 if (OpNum < Record.size()) { 2787 if (Opc == Instruction::Add || 2788 Opc == Instruction::Sub || 2789 Opc == Instruction::Mul || 2790 Opc == Instruction::Shl) { 2791 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 2792 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 2793 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 2794 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 2795 } else if (Opc == Instruction::SDiv || 2796 Opc == Instruction::UDiv || 2797 Opc == Instruction::LShr || 2798 Opc == Instruction::AShr) { 2799 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 2800 cast<BinaryOperator>(I)->setIsExact(true); 2801 } else if (isa<FPMathOperator>(I)) { 2802 FastMathFlags FMF; 2803 if (0 != (Record[OpNum] & FastMathFlags::UnsafeAlgebra)) 2804 FMF.setUnsafeAlgebra(); 2805 if (0 != (Record[OpNum] & FastMathFlags::NoNaNs)) 2806 FMF.setNoNaNs(); 2807 if (0 != (Record[OpNum] & FastMathFlags::NoInfs)) 2808 FMF.setNoInfs(); 2809 if (0 != (Record[OpNum] & FastMathFlags::NoSignedZeros)) 2810 FMF.setNoSignedZeros(); 2811 if (0 != (Record[OpNum] & FastMathFlags::AllowReciprocal)) 2812 FMF.setAllowReciprocal(); 2813 if (FMF.any()) 2814 I->setFastMathFlags(FMF); 2815 } 2816 2817 } 2818 break; 2819 } 2820 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 2821 unsigned OpNum = 0; 2822 Value *Op; 2823 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 2824 OpNum+2 != Record.size()) 2825 return Error("Invalid record"); 2826 2827 Type *ResTy = getTypeByID(Record[OpNum]); 2828 int Opc = GetDecodedCastOpcode(Record[OpNum+1]); 2829 if (Opc == -1 || !ResTy) 2830 return Error("Invalid record"); 2831 Instruction *Temp = nullptr; 2832 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) { 2833 if (Temp) { 2834 InstructionList.push_back(Temp); 2835 CurBB->getInstList().push_back(Temp); 2836 } 2837 } else { 2838 I = CastInst::Create((Instruction::CastOps)Opc, Op, ResTy); 2839 } 2840 InstructionList.push_back(I); 2841 break; 2842 } 2843 case bitc::FUNC_CODE_INST_INBOUNDS_GEP: 2844 case bitc::FUNC_CODE_INST_GEP: { // GEP: [n x operands] 2845 unsigned OpNum = 0; 2846 Value *BasePtr; 2847 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr)) 2848 return Error("Invalid record"); 2849 2850 SmallVector<Value*, 16> GEPIdx; 2851 while (OpNum != Record.size()) { 2852 Value *Op; 2853 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 2854 return Error("Invalid record"); 2855 GEPIdx.push_back(Op); 2856 } 2857 2858 I = GetElementPtrInst::Create(BasePtr, GEPIdx); 2859 InstructionList.push_back(I); 2860 if (BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP) 2861 cast<GetElementPtrInst>(I)->setIsInBounds(true); 2862 break; 2863 } 2864 2865 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 2866 // EXTRACTVAL: [opty, opval, n x indices] 2867 unsigned OpNum = 0; 2868 Value *Agg; 2869 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 2870 return Error("Invalid record"); 2871 2872 SmallVector<unsigned, 4> EXTRACTVALIdx; 2873 for (unsigned RecSize = Record.size(); 2874 OpNum != RecSize; ++OpNum) { 2875 uint64_t Index = Record[OpNum]; 2876 if ((unsigned)Index != Index) 2877 return Error("Invalid value"); 2878 EXTRACTVALIdx.push_back((unsigned)Index); 2879 } 2880 2881 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 2882 InstructionList.push_back(I); 2883 break; 2884 } 2885 2886 case bitc::FUNC_CODE_INST_INSERTVAL: { 2887 // INSERTVAL: [opty, opval, opty, opval, n x indices] 2888 unsigned OpNum = 0; 2889 Value *Agg; 2890 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 2891 return Error("Invalid record"); 2892 Value *Val; 2893 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 2894 return Error("Invalid record"); 2895 2896 SmallVector<unsigned, 4> INSERTVALIdx; 2897 for (unsigned RecSize = Record.size(); 2898 OpNum != RecSize; ++OpNum) { 2899 uint64_t Index = Record[OpNum]; 2900 if ((unsigned)Index != Index) 2901 return Error("Invalid value"); 2902 INSERTVALIdx.push_back((unsigned)Index); 2903 } 2904 2905 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 2906 InstructionList.push_back(I); 2907 break; 2908 } 2909 2910 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 2911 // obsolete form of select 2912 // handles select i1 ... in old bitcode 2913 unsigned OpNum = 0; 2914 Value *TrueVal, *FalseVal, *Cond; 2915 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 2916 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 2917 popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond)) 2918 return Error("Invalid record"); 2919 2920 I = SelectInst::Create(Cond, TrueVal, FalseVal); 2921 InstructionList.push_back(I); 2922 break; 2923 } 2924 2925 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 2926 // new form of select 2927 // handles select i1 or select [N x i1] 2928 unsigned OpNum = 0; 2929 Value *TrueVal, *FalseVal, *Cond; 2930 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 2931 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 2932 getValueTypePair(Record, OpNum, NextValueNo, Cond)) 2933 return Error("Invalid record"); 2934 2935 // select condition can be either i1 or [N x i1] 2936 if (VectorType* vector_type = 2937 dyn_cast<VectorType>(Cond->getType())) { 2938 // expect <n x i1> 2939 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 2940 return Error("Invalid type for value"); 2941 } else { 2942 // expect i1 2943 if (Cond->getType() != Type::getInt1Ty(Context)) 2944 return Error("Invalid type for value"); 2945 } 2946 2947 I = SelectInst::Create(Cond, TrueVal, FalseVal); 2948 InstructionList.push_back(I); 2949 break; 2950 } 2951 2952 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 2953 unsigned OpNum = 0; 2954 Value *Vec, *Idx; 2955 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 2956 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 2957 return Error("Invalid record"); 2958 I = ExtractElementInst::Create(Vec, Idx); 2959 InstructionList.push_back(I); 2960 break; 2961 } 2962 2963 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 2964 unsigned OpNum = 0; 2965 Value *Vec, *Elt, *Idx; 2966 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 2967 popValue(Record, OpNum, NextValueNo, 2968 cast<VectorType>(Vec->getType())->getElementType(), Elt) || 2969 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 2970 return Error("Invalid record"); 2971 I = InsertElementInst::Create(Vec, Elt, Idx); 2972 InstructionList.push_back(I); 2973 break; 2974 } 2975 2976 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 2977 unsigned OpNum = 0; 2978 Value *Vec1, *Vec2, *Mask; 2979 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) || 2980 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2)) 2981 return Error("Invalid record"); 2982 2983 if (getValueTypePair(Record, OpNum, NextValueNo, Mask)) 2984 return Error("Invalid record"); 2985 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 2986 InstructionList.push_back(I); 2987 break; 2988 } 2989 2990 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 2991 // Old form of ICmp/FCmp returning bool 2992 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 2993 // both legal on vectors but had different behaviour. 2994 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 2995 // FCmp/ICmp returning bool or vector of bool 2996 2997 unsigned OpNum = 0; 2998 Value *LHS, *RHS; 2999 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 3000 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 3001 OpNum+1 != Record.size()) 3002 return Error("Invalid record"); 3003 3004 if (LHS->getType()->isFPOrFPVectorTy()) 3005 I = new FCmpInst((FCmpInst::Predicate)Record[OpNum], LHS, RHS); 3006 else 3007 I = new ICmpInst((ICmpInst::Predicate)Record[OpNum], LHS, RHS); 3008 InstructionList.push_back(I); 3009 break; 3010 } 3011 3012 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 3013 { 3014 unsigned Size = Record.size(); 3015 if (Size == 0) { 3016 I = ReturnInst::Create(Context); 3017 InstructionList.push_back(I); 3018 break; 3019 } 3020 3021 unsigned OpNum = 0; 3022 Value *Op = nullptr; 3023 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3024 return Error("Invalid record"); 3025 if (OpNum != Record.size()) 3026 return Error("Invalid record"); 3027 3028 I = ReturnInst::Create(Context, Op); 3029 InstructionList.push_back(I); 3030 break; 3031 } 3032 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 3033 if (Record.size() != 1 && Record.size() != 3) 3034 return Error("Invalid record"); 3035 BasicBlock *TrueDest = getBasicBlock(Record[0]); 3036 if (!TrueDest) 3037 return Error("Invalid record"); 3038 3039 if (Record.size() == 1) { 3040 I = BranchInst::Create(TrueDest); 3041 InstructionList.push_back(I); 3042 } 3043 else { 3044 BasicBlock *FalseDest = getBasicBlock(Record[1]); 3045 Value *Cond = getValue(Record, 2, NextValueNo, 3046 Type::getInt1Ty(Context)); 3047 if (!FalseDest || !Cond) 3048 return Error("Invalid record"); 3049 I = BranchInst::Create(TrueDest, FalseDest, Cond); 3050 InstructionList.push_back(I); 3051 } 3052 break; 3053 } 3054 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 3055 // Check magic 3056 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { 3057 // "New" SwitchInst format with case ranges. The changes to write this 3058 // format were reverted but we still recognize bitcode that uses it. 3059 // Hopefully someday we will have support for case ranges and can use 3060 // this format again. 3061 3062 Type *OpTy = getTypeByID(Record[1]); 3063 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); 3064 3065 Value *Cond = getValue(Record, 2, NextValueNo, OpTy); 3066 BasicBlock *Default = getBasicBlock(Record[3]); 3067 if (!OpTy || !Cond || !Default) 3068 return Error("Invalid record"); 3069 3070 unsigned NumCases = Record[4]; 3071 3072 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 3073 InstructionList.push_back(SI); 3074 3075 unsigned CurIdx = 5; 3076 for (unsigned i = 0; i != NumCases; ++i) { 3077 SmallVector<ConstantInt*, 1> CaseVals; 3078 unsigned NumItems = Record[CurIdx++]; 3079 for (unsigned ci = 0; ci != NumItems; ++ci) { 3080 bool isSingleNumber = Record[CurIdx++]; 3081 3082 APInt Low; 3083 unsigned ActiveWords = 1; 3084 if (ValueBitWidth > 64) 3085 ActiveWords = Record[CurIdx++]; 3086 Low = ReadWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 3087 ValueBitWidth); 3088 CurIdx += ActiveWords; 3089 3090 if (!isSingleNumber) { 3091 ActiveWords = 1; 3092 if (ValueBitWidth > 64) 3093 ActiveWords = Record[CurIdx++]; 3094 APInt High = 3095 ReadWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 3096 ValueBitWidth); 3097 CurIdx += ActiveWords; 3098 3099 // FIXME: It is not clear whether values in the range should be 3100 // compared as signed or unsigned values. The partially 3101 // implemented changes that used this format in the past used 3102 // unsigned comparisons. 3103 for ( ; Low.ule(High); ++Low) 3104 CaseVals.push_back(ConstantInt::get(Context, Low)); 3105 } else 3106 CaseVals.push_back(ConstantInt::get(Context, Low)); 3107 } 3108 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); 3109 for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(), 3110 cve = CaseVals.end(); cvi != cve; ++cvi) 3111 SI->addCase(*cvi, DestBB); 3112 } 3113 I = SI; 3114 break; 3115 } 3116 3117 // Old SwitchInst format without case ranges. 3118 3119 if (Record.size() < 3 || (Record.size() & 1) == 0) 3120 return Error("Invalid record"); 3121 Type *OpTy = getTypeByID(Record[0]); 3122 Value *Cond = getValue(Record, 1, NextValueNo, OpTy); 3123 BasicBlock *Default = getBasicBlock(Record[2]); 3124 if (!OpTy || !Cond || !Default) 3125 return Error("Invalid record"); 3126 unsigned NumCases = (Record.size()-3)/2; 3127 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 3128 InstructionList.push_back(SI); 3129 for (unsigned i = 0, e = NumCases; i != e; ++i) { 3130 ConstantInt *CaseVal = 3131 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy)); 3132 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 3133 if (!CaseVal || !DestBB) { 3134 delete SI; 3135 return Error("Invalid record"); 3136 } 3137 SI->addCase(CaseVal, DestBB); 3138 } 3139 I = SI; 3140 break; 3141 } 3142 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 3143 if (Record.size() < 2) 3144 return Error("Invalid record"); 3145 Type *OpTy = getTypeByID(Record[0]); 3146 Value *Address = getValue(Record, 1, NextValueNo, OpTy); 3147 if (!OpTy || !Address) 3148 return Error("Invalid record"); 3149 unsigned NumDests = Record.size()-2; 3150 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 3151 InstructionList.push_back(IBI); 3152 for (unsigned i = 0, e = NumDests; i != e; ++i) { 3153 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 3154 IBI->addDestination(DestBB); 3155 } else { 3156 delete IBI; 3157 return Error("Invalid record"); 3158 } 3159 } 3160 I = IBI; 3161 break; 3162 } 3163 3164 case bitc::FUNC_CODE_INST_INVOKE: { 3165 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 3166 if (Record.size() < 4) 3167 return Error("Invalid record"); 3168 AttributeSet PAL = getAttributes(Record[0]); 3169 unsigned CCInfo = Record[1]; 3170 BasicBlock *NormalBB = getBasicBlock(Record[2]); 3171 BasicBlock *UnwindBB = getBasicBlock(Record[3]); 3172 3173 unsigned OpNum = 4; 3174 Value *Callee; 3175 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 3176 return Error("Invalid record"); 3177 3178 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 3179 FunctionType *FTy = !CalleeTy ? nullptr : 3180 dyn_cast<FunctionType>(CalleeTy->getElementType()); 3181 3182 // Check that the right number of fixed parameters are here. 3183 if (!FTy || !NormalBB || !UnwindBB || 3184 Record.size() < OpNum+FTy->getNumParams()) 3185 return Error("Invalid record"); 3186 3187 SmallVector<Value*, 16> Ops; 3188 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 3189 Ops.push_back(getValue(Record, OpNum, NextValueNo, 3190 FTy->getParamType(i))); 3191 if (!Ops.back()) 3192 return Error("Invalid record"); 3193 } 3194 3195 if (!FTy->isVarArg()) { 3196 if (Record.size() != OpNum) 3197 return Error("Invalid record"); 3198 } else { 3199 // Read type/value pairs for varargs params. 3200 while (OpNum != Record.size()) { 3201 Value *Op; 3202 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3203 return Error("Invalid record"); 3204 Ops.push_back(Op); 3205 } 3206 } 3207 3208 I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops); 3209 InstructionList.push_back(I); 3210 cast<InvokeInst>(I)->setCallingConv( 3211 static_cast<CallingConv::ID>(CCInfo)); 3212 cast<InvokeInst>(I)->setAttributes(PAL); 3213 break; 3214 } 3215 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 3216 unsigned Idx = 0; 3217 Value *Val = nullptr; 3218 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 3219 return Error("Invalid record"); 3220 I = ResumeInst::Create(Val); 3221 InstructionList.push_back(I); 3222 break; 3223 } 3224 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 3225 I = new UnreachableInst(Context); 3226 InstructionList.push_back(I); 3227 break; 3228 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 3229 if (Record.size() < 1 || ((Record.size()-1)&1)) 3230 return Error("Invalid record"); 3231 Type *Ty = getTypeByID(Record[0]); 3232 if (!Ty) 3233 return Error("Invalid record"); 3234 3235 PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2); 3236 InstructionList.push_back(PN); 3237 3238 for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) { 3239 Value *V; 3240 // With the new function encoding, it is possible that operands have 3241 // negative IDs (for forward references). Use a signed VBR 3242 // representation to keep the encoding small. 3243 if (UseRelativeIDs) 3244 V = getValueSigned(Record, 1+i, NextValueNo, Ty); 3245 else 3246 V = getValue(Record, 1+i, NextValueNo, Ty); 3247 BasicBlock *BB = getBasicBlock(Record[2+i]); 3248 if (!V || !BB) 3249 return Error("Invalid record"); 3250 PN->addIncoming(V, BB); 3251 } 3252 I = PN; 3253 break; 3254 } 3255 3256 case bitc::FUNC_CODE_INST_LANDINGPAD: { 3257 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 3258 unsigned Idx = 0; 3259 if (Record.size() < 4) 3260 return Error("Invalid record"); 3261 Type *Ty = getTypeByID(Record[Idx++]); 3262 if (!Ty) 3263 return Error("Invalid record"); 3264 Value *PersFn = nullptr; 3265 if (getValueTypePair(Record, Idx, NextValueNo, PersFn)) 3266 return Error("Invalid record"); 3267 3268 bool IsCleanup = !!Record[Idx++]; 3269 unsigned NumClauses = Record[Idx++]; 3270 LandingPadInst *LP = LandingPadInst::Create(Ty, PersFn, NumClauses); 3271 LP->setCleanup(IsCleanup); 3272 for (unsigned J = 0; J != NumClauses; ++J) { 3273 LandingPadInst::ClauseType CT = 3274 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 3275 Value *Val; 3276 3277 if (getValueTypePair(Record, Idx, NextValueNo, Val)) { 3278 delete LP; 3279 return Error("Invalid record"); 3280 } 3281 3282 assert((CT != LandingPadInst::Catch || 3283 !isa<ArrayType>(Val->getType())) && 3284 "Catch clause has a invalid type!"); 3285 assert((CT != LandingPadInst::Filter || 3286 isa<ArrayType>(Val->getType())) && 3287 "Filter clause has invalid type!"); 3288 LP->addClause(cast<Constant>(Val)); 3289 } 3290 3291 I = LP; 3292 InstructionList.push_back(I); 3293 break; 3294 } 3295 3296 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 3297 if (Record.size() != 4) 3298 return Error("Invalid record"); 3299 PointerType *Ty = 3300 dyn_cast_or_null<PointerType>(getTypeByID(Record[0])); 3301 Type *OpTy = getTypeByID(Record[1]); 3302 Value *Size = getFnValueByID(Record[2], OpTy); 3303 unsigned AlignRecord = Record[3]; 3304 bool InAlloca = AlignRecord & (1 << 5); 3305 unsigned Align = AlignRecord & ((1 << 5) - 1); 3306 if (!Ty || !Size) 3307 return Error("Invalid record"); 3308 AllocaInst *AI = new AllocaInst(Ty->getElementType(), Size, (1 << Align) >> 1); 3309 AI->setUsedWithInAlloca(InAlloca); 3310 I = AI; 3311 InstructionList.push_back(I); 3312 break; 3313 } 3314 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 3315 unsigned OpNum = 0; 3316 Value *Op; 3317 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 3318 OpNum+2 != Record.size()) 3319 return Error("Invalid record"); 3320 3321 I = new LoadInst(Op, "", Record[OpNum+1], (1 << Record[OpNum]) >> 1); 3322 InstructionList.push_back(I); 3323 break; 3324 } 3325 case bitc::FUNC_CODE_INST_LOADATOMIC: { 3326 // LOADATOMIC: [opty, op, align, vol, ordering, synchscope] 3327 unsigned OpNum = 0; 3328 Value *Op; 3329 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 3330 OpNum+4 != Record.size()) 3331 return Error("Invalid record"); 3332 3333 AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]); 3334 if (Ordering == NotAtomic || Ordering == Release || 3335 Ordering == AcquireRelease) 3336 return Error("Invalid record"); 3337 if (Ordering != NotAtomic && Record[OpNum] == 0) 3338 return Error("Invalid record"); 3339 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]); 3340 3341 I = new LoadInst(Op, "", Record[OpNum+1], (1 << Record[OpNum]) >> 1, 3342 Ordering, SynchScope); 3343 InstructionList.push_back(I); 3344 break; 3345 } 3346 case bitc::FUNC_CODE_INST_STORE: { // STORE2:[ptrty, ptr, val, align, vol] 3347 unsigned OpNum = 0; 3348 Value *Val, *Ptr; 3349 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 3350 popValue(Record, OpNum, NextValueNo, 3351 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 3352 OpNum+2 != Record.size()) 3353 return Error("Invalid record"); 3354 3355 I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1); 3356 InstructionList.push_back(I); 3357 break; 3358 } 3359 case bitc::FUNC_CODE_INST_STOREATOMIC: { 3360 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, synchscope] 3361 unsigned OpNum = 0; 3362 Value *Val, *Ptr; 3363 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 3364 popValue(Record, OpNum, NextValueNo, 3365 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 3366 OpNum+4 != Record.size()) 3367 return Error("Invalid record"); 3368 3369 AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]); 3370 if (Ordering == NotAtomic || Ordering == Acquire || 3371 Ordering == AcquireRelease) 3372 return Error("Invalid record"); 3373 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]); 3374 if (Ordering != NotAtomic && Record[OpNum] == 0) 3375 return Error("Invalid record"); 3376 3377 I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1, 3378 Ordering, SynchScope); 3379 InstructionList.push_back(I); 3380 break; 3381 } 3382 case bitc::FUNC_CODE_INST_CMPXCHG: { 3383 // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, synchscope, 3384 // failureordering?, isweak?] 3385 unsigned OpNum = 0; 3386 Value *Ptr, *Cmp, *New; 3387 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 3388 popValue(Record, OpNum, NextValueNo, 3389 cast<PointerType>(Ptr->getType())->getElementType(), Cmp) || 3390 popValue(Record, OpNum, NextValueNo, 3391 cast<PointerType>(Ptr->getType())->getElementType(), New) || 3392 (Record.size() < OpNum + 3 || Record.size() > OpNum + 5)) 3393 return Error("Invalid record"); 3394 AtomicOrdering SuccessOrdering = GetDecodedOrdering(Record[OpNum+1]); 3395 if (SuccessOrdering == NotAtomic || SuccessOrdering == Unordered) 3396 return Error("Invalid record"); 3397 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+2]); 3398 3399 AtomicOrdering FailureOrdering; 3400 if (Record.size() < 7) 3401 FailureOrdering = 3402 AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering); 3403 else 3404 FailureOrdering = GetDecodedOrdering(Record[OpNum+3]); 3405 3406 I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering, 3407 SynchScope); 3408 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 3409 3410 if (Record.size() < 8) { 3411 // Before weak cmpxchgs existed, the instruction simply returned the 3412 // value loaded from memory, so bitcode files from that era will be 3413 // expecting the first component of a modern cmpxchg. 3414 CurBB->getInstList().push_back(I); 3415 I = ExtractValueInst::Create(I, 0); 3416 } else { 3417 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]); 3418 } 3419 3420 InstructionList.push_back(I); 3421 break; 3422 } 3423 case bitc::FUNC_CODE_INST_ATOMICRMW: { 3424 // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, synchscope] 3425 unsigned OpNum = 0; 3426 Value *Ptr, *Val; 3427 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 3428 popValue(Record, OpNum, NextValueNo, 3429 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 3430 OpNum+4 != Record.size()) 3431 return Error("Invalid record"); 3432 AtomicRMWInst::BinOp Operation = GetDecodedRMWOperation(Record[OpNum]); 3433 if (Operation < AtomicRMWInst::FIRST_BINOP || 3434 Operation > AtomicRMWInst::LAST_BINOP) 3435 return Error("Invalid record"); 3436 AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]); 3437 if (Ordering == NotAtomic || Ordering == Unordered) 3438 return Error("Invalid record"); 3439 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]); 3440 I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SynchScope); 3441 cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]); 3442 InstructionList.push_back(I); 3443 break; 3444 } 3445 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, synchscope] 3446 if (2 != Record.size()) 3447 return Error("Invalid record"); 3448 AtomicOrdering Ordering = GetDecodedOrdering(Record[0]); 3449 if (Ordering == NotAtomic || Ordering == Unordered || 3450 Ordering == Monotonic) 3451 return Error("Invalid record"); 3452 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[1]); 3453 I = new FenceInst(Context, Ordering, SynchScope); 3454 InstructionList.push_back(I); 3455 break; 3456 } 3457 case bitc::FUNC_CODE_INST_CALL: { 3458 // CALL: [paramattrs, cc, fnty, fnid, arg0, arg1...] 3459 if (Record.size() < 3) 3460 return Error("Invalid record"); 3461 3462 AttributeSet PAL = getAttributes(Record[0]); 3463 unsigned CCInfo = Record[1]; 3464 3465 unsigned OpNum = 2; 3466 Value *Callee; 3467 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 3468 return Error("Invalid record"); 3469 3470 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 3471 FunctionType *FTy = nullptr; 3472 if (OpTy) FTy = dyn_cast<FunctionType>(OpTy->getElementType()); 3473 if (!FTy || Record.size() < FTy->getNumParams()+OpNum) 3474 return Error("Invalid record"); 3475 3476 SmallVector<Value*, 16> Args; 3477 // Read the fixed params. 3478 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 3479 if (FTy->getParamType(i)->isLabelTy()) 3480 Args.push_back(getBasicBlock(Record[OpNum])); 3481 else 3482 Args.push_back(getValue(Record, OpNum, NextValueNo, 3483 FTy->getParamType(i))); 3484 if (!Args.back()) 3485 return Error("Invalid record"); 3486 } 3487 3488 // Read type/value pairs for varargs params. 3489 if (!FTy->isVarArg()) { 3490 if (OpNum != Record.size()) 3491 return Error("Invalid record"); 3492 } else { 3493 while (OpNum != Record.size()) { 3494 Value *Op; 3495 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3496 return Error("Invalid record"); 3497 Args.push_back(Op); 3498 } 3499 } 3500 3501 I = CallInst::Create(Callee, Args); 3502 InstructionList.push_back(I); 3503 cast<CallInst>(I)->setCallingConv( 3504 static_cast<CallingConv::ID>((~(1U << 14) & CCInfo) >> 1)); 3505 CallInst::TailCallKind TCK = CallInst::TCK_None; 3506 if (CCInfo & 1) 3507 TCK = CallInst::TCK_Tail; 3508 if (CCInfo & (1 << 14)) 3509 TCK = CallInst::TCK_MustTail; 3510 cast<CallInst>(I)->setTailCallKind(TCK); 3511 cast<CallInst>(I)->setAttributes(PAL); 3512 break; 3513 } 3514 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 3515 if (Record.size() < 3) 3516 return Error("Invalid record"); 3517 Type *OpTy = getTypeByID(Record[0]); 3518 Value *Op = getValue(Record, 1, NextValueNo, OpTy); 3519 Type *ResTy = getTypeByID(Record[2]); 3520 if (!OpTy || !Op || !ResTy) 3521 return Error("Invalid record"); 3522 I = new VAArgInst(Op, ResTy); 3523 InstructionList.push_back(I); 3524 break; 3525 } 3526 } 3527 3528 // Add instruction to end of current BB. If there is no current BB, reject 3529 // this file. 3530 if (!CurBB) { 3531 delete I; 3532 return Error("Invalid instruction with no BB"); 3533 } 3534 CurBB->getInstList().push_back(I); 3535 3536 // If this was a terminator instruction, move to the next block. 3537 if (isa<TerminatorInst>(I)) { 3538 ++CurBBNo; 3539 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr; 3540 } 3541 3542 // Non-void values get registered in the value table for future use. 3543 if (I && !I->getType()->isVoidTy()) 3544 ValueList.AssignValue(I, NextValueNo++); 3545 } 3546 3547 OutOfRecordLoop: 3548 3549 // Check the function list for unresolved values. 3550 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 3551 if (!A->getParent()) { 3552 // We found at least one unresolved value. Nuke them all to avoid leaks. 3553 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 3554 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) { 3555 A->replaceAllUsesWith(UndefValue::get(A->getType())); 3556 delete A; 3557 } 3558 } 3559 return Error("Never resolved value found in function"); 3560 } 3561 } 3562 3563 // FIXME: Check for unresolved forward-declared metadata references 3564 // and clean up leaks. 3565 3566 // Trim the value list down to the size it was before we parsed this function. 3567 ValueList.shrinkTo(ModuleValueListSize); 3568 MDValueList.shrinkTo(ModuleMDValueListSize); 3569 std::vector<BasicBlock*>().swap(FunctionBBs); 3570 return std::error_code(); 3571 } 3572 3573 /// Find the function body in the bitcode stream 3574 std::error_code BitcodeReader::FindFunctionInStream( 3575 Function *F, 3576 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) { 3577 while (DeferredFunctionInfoIterator->second == 0) { 3578 if (Stream.AtEndOfStream()) 3579 return Error("Could not find function in stream"); 3580 // ParseModule will parse the next body in the stream and set its 3581 // position in the DeferredFunctionInfo map. 3582 if (std::error_code EC = ParseModule(true)) 3583 return EC; 3584 } 3585 return std::error_code(); 3586 } 3587 3588 //===----------------------------------------------------------------------===// 3589 // GVMaterializer implementation 3590 //===----------------------------------------------------------------------===// 3591 3592 void BitcodeReader::releaseBuffer() { Buffer.release(); } 3593 3594 std::error_code BitcodeReader::materialize(GlobalValue *GV) { 3595 Function *F = dyn_cast<Function>(GV); 3596 // If it's not a function or is already material, ignore the request. 3597 if (!F || !F->isMaterializable()) 3598 return std::error_code(); 3599 3600 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 3601 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 3602 // If its position is recorded as 0, its body is somewhere in the stream 3603 // but we haven't seen it yet. 3604 if (DFII->second == 0 && LazyStreamer) 3605 if (std::error_code EC = FindFunctionInStream(F, DFII)) 3606 return EC; 3607 3608 // Move the bit stream to the saved position of the deferred function body. 3609 Stream.JumpToBit(DFII->second); 3610 3611 if (std::error_code EC = ParseFunctionBody(F)) 3612 return EC; 3613 F->setIsMaterializable(false); 3614 3615 // Upgrade any old intrinsic calls in the function. 3616 for (UpgradedIntrinsicMap::iterator I = UpgradedIntrinsics.begin(), 3617 E = UpgradedIntrinsics.end(); I != E; ++I) { 3618 if (I->first != I->second) { 3619 for (auto UI = I->first->user_begin(), UE = I->first->user_end(); 3620 UI != UE;) { 3621 if (CallInst* CI = dyn_cast<CallInst>(*UI++)) 3622 UpgradeIntrinsicCall(CI, I->second); 3623 } 3624 } 3625 } 3626 3627 // Bring in any functions that this function forward-referenced via 3628 // blockaddresses. 3629 return materializeForwardReferencedFunctions(); 3630 } 3631 3632 bool BitcodeReader::isDematerializable(const GlobalValue *GV) const { 3633 const Function *F = dyn_cast<Function>(GV); 3634 if (!F || F->isDeclaration()) 3635 return false; 3636 3637 // Dematerializing F would leave dangling references that wouldn't be 3638 // reconnected on re-materialization. 3639 if (BlockAddressesTaken.count(F)) 3640 return false; 3641 3642 return DeferredFunctionInfo.count(const_cast<Function*>(F)); 3643 } 3644 3645 void BitcodeReader::Dematerialize(GlobalValue *GV) { 3646 Function *F = dyn_cast<Function>(GV); 3647 // If this function isn't dematerializable, this is a noop. 3648 if (!F || !isDematerializable(F)) 3649 return; 3650 3651 assert(DeferredFunctionInfo.count(F) && "No info to read function later?"); 3652 3653 // Just forget the function body, we can remat it later. 3654 F->dropAllReferences(); 3655 F->setIsMaterializable(true); 3656 } 3657 3658 std::error_code BitcodeReader::MaterializeModule(Module *M) { 3659 assert(M == TheModule && 3660 "Can only Materialize the Module this BitcodeReader is attached to."); 3661 3662 // Promise to materialize all forward references. 3663 WillMaterializeAllForwardRefs = true; 3664 3665 // Iterate over the module, deserializing any functions that are still on 3666 // disk. 3667 for (Module::iterator F = TheModule->begin(), E = TheModule->end(); 3668 F != E; ++F) { 3669 if (std::error_code EC = materialize(F)) 3670 return EC; 3671 } 3672 // At this point, if there are any function bodies, the current bit is 3673 // pointing to the END_BLOCK record after them. Now make sure the rest 3674 // of the bits in the module have been read. 3675 if (NextUnreadBit) 3676 ParseModule(true); 3677 3678 // Check that all block address forward references got resolved (as we 3679 // promised above). 3680 if (!BasicBlockFwdRefs.empty()) 3681 return Error("Never resolved function from blockaddress"); 3682 3683 // Upgrade any intrinsic calls that slipped through (should not happen!) and 3684 // delete the old functions to clean up. We can't do this unless the entire 3685 // module is materialized because there could always be another function body 3686 // with calls to the old function. 3687 for (std::vector<std::pair<Function*, Function*> >::iterator I = 3688 UpgradedIntrinsics.begin(), E = UpgradedIntrinsics.end(); I != E; ++I) { 3689 if (I->first != I->second) { 3690 for (auto UI = I->first->user_begin(), UE = I->first->user_end(); 3691 UI != UE;) { 3692 if (CallInst* CI = dyn_cast<CallInst>(*UI++)) 3693 UpgradeIntrinsicCall(CI, I->second); 3694 } 3695 if (!I->first->use_empty()) 3696 I->first->replaceAllUsesWith(I->second); 3697 I->first->eraseFromParent(); 3698 } 3699 } 3700 std::vector<std::pair<Function*, Function*> >().swap(UpgradedIntrinsics); 3701 3702 for (unsigned I = 0, E = InstsWithTBAATag.size(); I < E; I++) 3703 UpgradeInstWithTBAATag(InstsWithTBAATag[I]); 3704 3705 UpgradeDebugInfo(*M); 3706 return std::error_code(); 3707 } 3708 3709 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const { 3710 return IdentifiedStructTypes; 3711 } 3712 3713 std::error_code BitcodeReader::InitStream() { 3714 if (LazyStreamer) 3715 return InitLazyStream(); 3716 return InitStreamFromBuffer(); 3717 } 3718 3719 std::error_code BitcodeReader::InitStreamFromBuffer() { 3720 const unsigned char *BufPtr = (const unsigned char*)Buffer->getBufferStart(); 3721 const unsigned char *BufEnd = BufPtr+Buffer->getBufferSize(); 3722 3723 if (Buffer->getBufferSize() & 3) 3724 return Error("Invalid bitcode signature"); 3725 3726 // If we have a wrapper header, parse it and ignore the non-bc file contents. 3727 // The magic number is 0x0B17C0DE stored in little endian. 3728 if (isBitcodeWrapper(BufPtr, BufEnd)) 3729 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 3730 return Error("Invalid bitcode wrapper header"); 3731 3732 StreamFile.reset(new BitstreamReader(BufPtr, BufEnd)); 3733 Stream.init(&*StreamFile); 3734 3735 return std::error_code(); 3736 } 3737 3738 std::error_code BitcodeReader::InitLazyStream() { 3739 // Check and strip off the bitcode wrapper; BitstreamReader expects never to 3740 // see it. 3741 auto OwnedBytes = llvm::make_unique<StreamingMemoryObject>(LazyStreamer); 3742 StreamingMemoryObject &Bytes = *OwnedBytes; 3743 StreamFile = llvm::make_unique<BitstreamReader>(std::move(OwnedBytes)); 3744 Stream.init(&*StreamFile); 3745 3746 unsigned char buf[16]; 3747 if (Bytes.readBytes(buf, 16, 0) != 16) 3748 return Error("Invalid bitcode signature"); 3749 3750 if (!isBitcode(buf, buf + 16)) 3751 return Error("Invalid bitcode signature"); 3752 3753 if (isBitcodeWrapper(buf, buf + 4)) { 3754 const unsigned char *bitcodeStart = buf; 3755 const unsigned char *bitcodeEnd = buf + 16; 3756 SkipBitcodeWrapperHeader(bitcodeStart, bitcodeEnd, false); 3757 Bytes.dropLeadingBytes(bitcodeStart - buf); 3758 Bytes.setKnownObjectSize(bitcodeEnd - bitcodeStart); 3759 } 3760 return std::error_code(); 3761 } 3762 3763 namespace { 3764 class BitcodeErrorCategoryType : public std::error_category { 3765 const char *name() const LLVM_NOEXCEPT override { 3766 return "llvm.bitcode"; 3767 } 3768 std::string message(int IE) const override { 3769 BitcodeError E = static_cast<BitcodeError>(IE); 3770 switch (E) { 3771 case BitcodeError::InvalidBitcodeSignature: 3772 return "Invalid bitcode signature"; 3773 case BitcodeError::CorruptedBitcode: 3774 return "Corrupted bitcode"; 3775 } 3776 llvm_unreachable("Unknown error type!"); 3777 } 3778 }; 3779 } 3780 3781 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory; 3782 3783 const std::error_category &llvm::BitcodeErrorCategory() { 3784 return *ErrorCategory; 3785 } 3786 3787 //===----------------------------------------------------------------------===// 3788 // External interface 3789 //===----------------------------------------------------------------------===// 3790 3791 /// \brief Get a lazy one-at-time loading module from bitcode. 3792 /// 3793 /// This isn't always used in a lazy context. In particular, it's also used by 3794 /// \a parseBitcodeFile(). If this is truly lazy, then we need to eagerly pull 3795 /// in forward-referenced functions from block address references. 3796 /// 3797 /// \param[in] WillMaterializeAll Set to \c true if the caller promises to 3798 /// materialize everything -- in particular, if this isn't truly lazy. 3799 static ErrorOr<Module *> 3800 getLazyBitcodeModuleImpl(std::unique_ptr<MemoryBuffer> &&Buffer, 3801 LLVMContext &Context, bool WillMaterializeAll, 3802 DiagnosticHandlerFunction DiagnosticHandler) { 3803 Module *M = new Module(Buffer->getBufferIdentifier(), Context); 3804 BitcodeReader *R = 3805 new BitcodeReader(Buffer.get(), Context, DiagnosticHandler); 3806 M->setMaterializer(R); 3807 3808 auto cleanupOnError = [&](std::error_code EC) { 3809 R->releaseBuffer(); // Never take ownership on error. 3810 delete M; // Also deletes R. 3811 return EC; 3812 }; 3813 3814 if (std::error_code EC = R->ParseBitcodeInto(M)) 3815 return cleanupOnError(EC); 3816 3817 if (!WillMaterializeAll) 3818 // Resolve forward references from blockaddresses. 3819 if (std::error_code EC = R->materializeForwardReferencedFunctions()) 3820 return cleanupOnError(EC); 3821 3822 Buffer.release(); // The BitcodeReader owns it now. 3823 return M; 3824 } 3825 3826 ErrorOr<Module *> 3827 llvm::getLazyBitcodeModule(std::unique_ptr<MemoryBuffer> &&Buffer, 3828 LLVMContext &Context, 3829 DiagnosticHandlerFunction DiagnosticHandler) { 3830 return getLazyBitcodeModuleImpl(std::move(Buffer), Context, false, 3831 DiagnosticHandler); 3832 } 3833 3834 ErrorOr<std::unique_ptr<Module>> 3835 llvm::getStreamedBitcodeModule(StringRef Name, DataStreamer *Streamer, 3836 LLVMContext &Context, 3837 DiagnosticHandlerFunction DiagnosticHandler) { 3838 std::unique_ptr<Module> M = make_unique<Module>(Name, Context); 3839 BitcodeReader *R = new BitcodeReader(Streamer, Context, DiagnosticHandler); 3840 M->setMaterializer(R); 3841 if (std::error_code EC = R->ParseBitcodeInto(M.get())) 3842 return EC; 3843 return std::move(M); 3844 } 3845 3846 ErrorOr<Module *> 3847 llvm::parseBitcodeFile(MemoryBufferRef Buffer, LLVMContext &Context, 3848 DiagnosticHandlerFunction DiagnosticHandler) { 3849 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 3850 ErrorOr<Module *> ModuleOrErr = getLazyBitcodeModuleImpl( 3851 std::move(Buf), Context, true, DiagnosticHandler); 3852 if (!ModuleOrErr) 3853 return ModuleOrErr; 3854 Module *M = ModuleOrErr.get(); 3855 // Read in the entire module, and destroy the BitcodeReader. 3856 if (std::error_code EC = M->materializeAllPermanently()) { 3857 delete M; 3858 return EC; 3859 } 3860 3861 // TODO: Restore the use-lists to the in-memory state when the bitcode was 3862 // written. We must defer until the Module has been fully materialized. 3863 3864 return M; 3865 } 3866 3867 std::string 3868 llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer, LLVMContext &Context, 3869 DiagnosticHandlerFunction DiagnosticHandler) { 3870 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 3871 auto R = llvm::make_unique<BitcodeReader>(Buf.release(), Context, 3872 DiagnosticHandler); 3873 ErrorOr<std::string> Triple = R->parseTriple(); 3874 if (Triple.getError()) 3875 return ""; 3876 return Triple.get(); 3877 } 3878