1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "llvm/ADT/STLExtras.h" 11 #include "llvm/ADT/SmallString.h" 12 #include "llvm/ADT/SmallVector.h" 13 #include "llvm/ADT/Triple.h" 14 #include "llvm/Bitcode/BitstreamReader.h" 15 #include "llvm/Bitcode/LLVMBitCodes.h" 16 #include "llvm/Bitcode/ReaderWriter.h" 17 #include "llvm/IR/AutoUpgrade.h" 18 #include "llvm/IR/Constants.h" 19 #include "llvm/IR/DebugInfo.h" 20 #include "llvm/IR/DebugInfoMetadata.h" 21 #include "llvm/IR/DerivedTypes.h" 22 #include "llvm/IR/DiagnosticPrinter.h" 23 #include "llvm/IR/GVMaterializer.h" 24 #include "llvm/IR/InlineAsm.h" 25 #include "llvm/IR/IntrinsicInst.h" 26 #include "llvm/IR/LLVMContext.h" 27 #include "llvm/IR/Module.h" 28 #include "llvm/IR/ModuleSummaryIndex.h" 29 #include "llvm/IR/OperandTraits.h" 30 #include "llvm/IR/Operator.h" 31 #include "llvm/IR/ValueHandle.h" 32 #include "llvm/Support/DataStream.h" 33 #include "llvm/Support/ManagedStatic.h" 34 #include "llvm/Support/MathExtras.h" 35 #include "llvm/Support/MemoryBuffer.h" 36 #include "llvm/Support/raw_ostream.h" 37 #include <deque> 38 39 using namespace llvm; 40 41 namespace { 42 enum { 43 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 44 }; 45 46 class BitcodeReaderValueList { 47 std::vector<WeakVH> ValuePtrs; 48 49 /// As we resolve forward-referenced constants, we add information about them 50 /// to this vector. This allows us to resolve them in bulk instead of 51 /// resolving each reference at a time. See the code in 52 /// ResolveConstantForwardRefs for more information about this. 53 /// 54 /// The key of this vector is the placeholder constant, the value is the slot 55 /// number that holds the resolved value. 56 typedef std::vector<std::pair<Constant*, unsigned> > ResolveConstantsTy; 57 ResolveConstantsTy ResolveConstants; 58 LLVMContext &Context; 59 public: 60 BitcodeReaderValueList(LLVMContext &C) : Context(C) {} 61 ~BitcodeReaderValueList() { 62 assert(ResolveConstants.empty() && "Constants not resolved?"); 63 } 64 65 // vector compatibility methods 66 unsigned size() const { return ValuePtrs.size(); } 67 void resize(unsigned N) { ValuePtrs.resize(N); } 68 void push_back(Value *V) { ValuePtrs.emplace_back(V); } 69 70 void clear() { 71 assert(ResolveConstants.empty() && "Constants not resolved?"); 72 ValuePtrs.clear(); 73 } 74 75 Value *operator[](unsigned i) const { 76 assert(i < ValuePtrs.size()); 77 return ValuePtrs[i]; 78 } 79 80 Value *back() const { return ValuePtrs.back(); } 81 void pop_back() { ValuePtrs.pop_back(); } 82 bool empty() const { return ValuePtrs.empty(); } 83 void shrinkTo(unsigned N) { 84 assert(N <= size() && "Invalid shrinkTo request!"); 85 ValuePtrs.resize(N); 86 } 87 88 Constant *getConstantFwdRef(unsigned Idx, Type *Ty); 89 Value *getValueFwdRef(unsigned Idx, Type *Ty); 90 91 void assignValue(Value *V, unsigned Idx); 92 93 /// Once all constants are read, this method bulk resolves any forward 94 /// references. 95 void resolveConstantForwardRefs(); 96 }; 97 98 class BitcodeReaderMetadataList { 99 unsigned NumFwdRefs; 100 bool AnyFwdRefs; 101 unsigned MinFwdRef; 102 unsigned MaxFwdRef; 103 std::vector<TrackingMDRef> MetadataPtrs; 104 105 LLVMContext &Context; 106 public: 107 BitcodeReaderMetadataList(LLVMContext &C) 108 : NumFwdRefs(0), AnyFwdRefs(false), Context(C) {} 109 110 // vector compatibility methods 111 unsigned size() const { return MetadataPtrs.size(); } 112 void resize(unsigned N) { MetadataPtrs.resize(N); } 113 void push_back(Metadata *MD) { MetadataPtrs.emplace_back(MD); } 114 void clear() { MetadataPtrs.clear(); } 115 Metadata *back() const { return MetadataPtrs.back(); } 116 void pop_back() { MetadataPtrs.pop_back(); } 117 bool empty() const { return MetadataPtrs.empty(); } 118 119 Metadata *operator[](unsigned i) const { 120 assert(i < MetadataPtrs.size()); 121 return MetadataPtrs[i]; 122 } 123 124 void shrinkTo(unsigned N) { 125 assert(N <= size() && "Invalid shrinkTo request!"); 126 MetadataPtrs.resize(N); 127 } 128 129 Metadata *getMetadataFwdRef(unsigned Idx); 130 MDNode *getMDNodeFwdRefOrNull(unsigned Idx); 131 void assignValue(Metadata *MD, unsigned Idx); 132 void tryToResolveCycles(); 133 }; 134 135 class BitcodeReader : public GVMaterializer { 136 LLVMContext &Context; 137 Module *TheModule = nullptr; 138 std::unique_ptr<MemoryBuffer> Buffer; 139 std::unique_ptr<BitstreamReader> StreamFile; 140 BitstreamCursor Stream; 141 // Next offset to start scanning for lazy parsing of function bodies. 142 uint64_t NextUnreadBit = 0; 143 // Last function offset found in the VST. 144 uint64_t LastFunctionBlockBit = 0; 145 bool SeenValueSymbolTable = false; 146 uint64_t VSTOffset = 0; 147 // Contains an arbitrary and optional string identifying the bitcode producer 148 std::string ProducerIdentification; 149 // Number of module level metadata records specified by the 150 // MODULE_CODE_METADATA_VALUES record. 151 unsigned NumModuleMDs = 0; 152 // Support older bitcode without the MODULE_CODE_METADATA_VALUES record. 153 bool SeenModuleValuesRecord = false; 154 155 std::vector<Type*> TypeList; 156 BitcodeReaderValueList ValueList; 157 BitcodeReaderMetadataList MetadataList; 158 std::vector<Comdat *> ComdatList; 159 SmallVector<Instruction *, 64> InstructionList; 160 161 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInits; 162 std::vector<std::pair<GlobalAlias*, unsigned> > AliasInits; 163 std::vector<std::pair<Function*, unsigned> > FunctionPrefixes; 164 std::vector<std::pair<Function*, unsigned> > FunctionPrologues; 165 std::vector<std::pair<Function*, unsigned> > FunctionPersonalityFns; 166 167 SmallVector<Instruction*, 64> InstsWithTBAATag; 168 169 bool HasSeenOldLoopTags = false; 170 171 /// The set of attributes by index. Index zero in the file is for null, and 172 /// is thus not represented here. As such all indices are off by one. 173 std::vector<AttributeSet> MAttributes; 174 175 /// The set of attribute groups. 176 std::map<unsigned, AttributeSet> MAttributeGroups; 177 178 /// While parsing a function body, this is a list of the basic blocks for the 179 /// function. 180 std::vector<BasicBlock*> FunctionBBs; 181 182 // When reading the module header, this list is populated with functions that 183 // have bodies later in the file. 184 std::vector<Function*> FunctionsWithBodies; 185 186 // When intrinsic functions are encountered which require upgrading they are 187 // stored here with their replacement function. 188 typedef DenseMap<Function*, Function*> UpgradedIntrinsicMap; 189 UpgradedIntrinsicMap UpgradedIntrinsics; 190 191 // Map the bitcode's custom MDKind ID to the Module's MDKind ID. 192 DenseMap<unsigned, unsigned> MDKindMap; 193 194 // Several operations happen after the module header has been read, but 195 // before function bodies are processed. This keeps track of whether 196 // we've done this yet. 197 bool SeenFirstFunctionBody = false; 198 199 /// When function bodies are initially scanned, this map contains info about 200 /// where to find deferred function body in the stream. 201 DenseMap<Function*, uint64_t> DeferredFunctionInfo; 202 203 /// When Metadata block is initially scanned when parsing the module, we may 204 /// choose to defer parsing of the metadata. This vector contains info about 205 /// which Metadata blocks are deferred. 206 std::vector<uint64_t> DeferredMetadataInfo; 207 208 /// These are basic blocks forward-referenced by block addresses. They are 209 /// inserted lazily into functions when they're loaded. The basic block ID is 210 /// its index into the vector. 211 DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs; 212 std::deque<Function *> BasicBlockFwdRefQueue; 213 214 /// Indicates that we are using a new encoding for instruction operands where 215 /// most operands in the current FUNCTION_BLOCK are encoded relative to the 216 /// instruction number, for a more compact encoding. Some instruction 217 /// operands are not relative to the instruction ID: basic block numbers, and 218 /// types. Once the old style function blocks have been phased out, we would 219 /// not need this flag. 220 bool UseRelativeIDs = false; 221 222 /// True if all functions will be materialized, negating the need to process 223 /// (e.g.) blockaddress forward references. 224 bool WillMaterializeAllForwardRefs = false; 225 226 /// True if any Metadata block has been materialized. 227 bool IsMetadataMaterialized = false; 228 229 bool StripDebugInfo = false; 230 231 /// Functions that need to be matched with subprograms when upgrading old 232 /// metadata. 233 SmallDenseMap<Function *, DISubprogram *, 16> FunctionsWithSPs; 234 235 std::vector<std::string> BundleTags; 236 237 public: 238 std::error_code error(BitcodeError E, const Twine &Message); 239 std::error_code error(BitcodeError E); 240 std::error_code error(const Twine &Message); 241 242 BitcodeReader(MemoryBuffer *Buffer, LLVMContext &Context); 243 BitcodeReader(LLVMContext &Context); 244 ~BitcodeReader() override { freeState(); } 245 246 std::error_code materializeForwardReferencedFunctions(); 247 248 void freeState(); 249 250 void releaseBuffer(); 251 252 std::error_code materialize(GlobalValue *GV) override; 253 std::error_code materializeModule() override; 254 std::vector<StructType *> getIdentifiedStructTypes() const override; 255 256 /// \brief Main interface to parsing a bitcode buffer. 257 /// \returns true if an error occurred. 258 std::error_code parseBitcodeInto(std::unique_ptr<DataStreamer> Streamer, 259 Module *M, 260 bool ShouldLazyLoadMetadata = false); 261 262 /// \brief Cheap mechanism to just extract module triple 263 /// \returns true if an error occurred. 264 ErrorOr<std::string> parseTriple(); 265 266 /// Cheap mechanism to just extract the identification block out of bitcode. 267 ErrorOr<std::string> parseIdentificationBlock(); 268 269 static uint64_t decodeSignRotatedValue(uint64_t V); 270 271 /// Materialize any deferred Metadata block. 272 std::error_code materializeMetadata() override; 273 274 void setStripDebugInfo() override; 275 276 /// Save the mapping between the metadata values and the corresponding 277 /// value id that were recorded in the MetadataList during parsing. If 278 /// OnlyTempMD is true, then only record those entries that are still 279 /// temporary metadata. This interface is used when metadata linking is 280 /// performed as a postpass, such as during function importing. 281 void saveMetadataList(DenseMap<const Metadata *, unsigned> &MetadataToIDs, 282 bool OnlyTempMD) override; 283 284 private: 285 /// Parse the "IDENTIFICATION_BLOCK_ID" block, populate the 286 // ProducerIdentification data member, and do some basic enforcement on the 287 // "epoch" encoded in the bitcode. 288 std::error_code parseBitcodeVersion(); 289 290 std::vector<StructType *> IdentifiedStructTypes; 291 StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name); 292 StructType *createIdentifiedStructType(LLVMContext &Context); 293 294 Type *getTypeByID(unsigned ID); 295 Value *getFnValueByID(unsigned ID, Type *Ty) { 296 if (Ty && Ty->isMetadataTy()) 297 return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID)); 298 return ValueList.getValueFwdRef(ID, Ty); 299 } 300 Metadata *getFnMetadataByID(unsigned ID) { 301 return MetadataList.getMetadataFwdRef(ID); 302 } 303 BasicBlock *getBasicBlock(unsigned ID) const { 304 if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID 305 return FunctionBBs[ID]; 306 } 307 AttributeSet getAttributes(unsigned i) const { 308 if (i-1 < MAttributes.size()) 309 return MAttributes[i-1]; 310 return AttributeSet(); 311 } 312 313 /// Read a value/type pair out of the specified record from slot 'Slot'. 314 /// Increment Slot past the number of slots used in the record. Return true on 315 /// failure. 316 bool getValueTypePair(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 317 unsigned InstNum, Value *&ResVal) { 318 if (Slot == Record.size()) return true; 319 unsigned ValNo = (unsigned)Record[Slot++]; 320 // Adjust the ValNo, if it was encoded relative to the InstNum. 321 if (UseRelativeIDs) 322 ValNo = InstNum - ValNo; 323 if (ValNo < InstNum) { 324 // If this is not a forward reference, just return the value we already 325 // have. 326 ResVal = getFnValueByID(ValNo, nullptr); 327 return ResVal == nullptr; 328 } 329 if (Slot == Record.size()) 330 return true; 331 332 unsigned TypeNo = (unsigned)Record[Slot++]; 333 ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo)); 334 return ResVal == nullptr; 335 } 336 337 /// Read a value out of the specified record from slot 'Slot'. Increment Slot 338 /// past the number of slots used by the value in the record. Return true if 339 /// there is an error. 340 bool popValue(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 341 unsigned InstNum, Type *Ty, Value *&ResVal) { 342 if (getValue(Record, Slot, InstNum, Ty, ResVal)) 343 return true; 344 // All values currently take a single record slot. 345 ++Slot; 346 return false; 347 } 348 349 /// Like popValue, but does not increment the Slot number. 350 bool getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 351 unsigned InstNum, Type *Ty, Value *&ResVal) { 352 ResVal = getValue(Record, Slot, InstNum, Ty); 353 return ResVal == nullptr; 354 } 355 356 /// Version of getValue that returns ResVal directly, or 0 if there is an 357 /// error. 358 Value *getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 359 unsigned InstNum, Type *Ty) { 360 if (Slot == Record.size()) return nullptr; 361 unsigned ValNo = (unsigned)Record[Slot]; 362 // Adjust the ValNo, if it was encoded relative to the InstNum. 363 if (UseRelativeIDs) 364 ValNo = InstNum - ValNo; 365 return getFnValueByID(ValNo, Ty); 366 } 367 368 /// Like getValue, but decodes signed VBRs. 369 Value *getValueSigned(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 370 unsigned InstNum, Type *Ty) { 371 if (Slot == Record.size()) return nullptr; 372 unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]); 373 // Adjust the ValNo, if it was encoded relative to the InstNum. 374 if (UseRelativeIDs) 375 ValNo = InstNum - ValNo; 376 return getFnValueByID(ValNo, Ty); 377 } 378 379 /// Converts alignment exponent (i.e. power of two (or zero)) to the 380 /// corresponding alignment to use. If alignment is too large, returns 381 /// a corresponding error code. 382 std::error_code parseAlignmentValue(uint64_t Exponent, unsigned &Alignment); 383 std::error_code parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind); 384 std::error_code parseModule(uint64_t ResumeBit, 385 bool ShouldLazyLoadMetadata = false); 386 std::error_code parseAttributeBlock(); 387 std::error_code parseAttributeGroupBlock(); 388 std::error_code parseTypeTable(); 389 std::error_code parseTypeTableBody(); 390 std::error_code parseOperandBundleTags(); 391 392 ErrorOr<Value *> recordValue(SmallVectorImpl<uint64_t> &Record, 393 unsigned NameIndex, Triple &TT); 394 std::error_code parseValueSymbolTable(uint64_t Offset = 0); 395 std::error_code parseConstants(); 396 std::error_code rememberAndSkipFunctionBodies(); 397 std::error_code rememberAndSkipFunctionBody(); 398 /// Save the positions of the Metadata blocks and skip parsing the blocks. 399 std::error_code rememberAndSkipMetadata(); 400 std::error_code parseFunctionBody(Function *F); 401 std::error_code globalCleanup(); 402 std::error_code resolveGlobalAndAliasInits(); 403 std::error_code parseMetadata(bool ModuleLevel = false); 404 std::error_code parseMetadataKinds(); 405 std::error_code parseMetadataKindRecord(SmallVectorImpl<uint64_t> &Record); 406 std::error_code parseMetadataAttachment(Function &F); 407 ErrorOr<std::string> parseModuleTriple(); 408 std::error_code parseUseLists(); 409 std::error_code initStream(std::unique_ptr<DataStreamer> Streamer); 410 std::error_code initStreamFromBuffer(); 411 std::error_code initLazyStream(std::unique_ptr<DataStreamer> Streamer); 412 std::error_code findFunctionInStream( 413 Function *F, 414 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator); 415 }; 416 417 /// Class to manage reading and parsing function summary index bitcode 418 /// files/sections. 419 class ModuleSummaryIndexBitcodeReader { 420 DiagnosticHandlerFunction DiagnosticHandler; 421 422 /// Eventually points to the module index built during parsing. 423 ModuleSummaryIndex *TheIndex = nullptr; 424 425 std::unique_ptr<MemoryBuffer> Buffer; 426 std::unique_ptr<BitstreamReader> StreamFile; 427 BitstreamCursor Stream; 428 429 /// \brief Used to indicate whether we are doing lazy parsing of summary data. 430 /// 431 /// If false, the summary section is fully parsed into the index during 432 /// the initial parse. Otherwise, if true, the caller is expected to 433 /// invoke \a readGlobalValueSummary for each summary needed, and the summary 434 /// section is thus parsed lazily. 435 bool IsLazy = false; 436 437 /// Used to indicate whether caller only wants to check for the presence 438 /// of the global value summary bitcode section. All blocks are skipped, 439 /// but the SeenGlobalValSummary boolean is set. 440 bool CheckGlobalValSummaryPresenceOnly = false; 441 442 /// Indicates whether we have encountered a global value summary section 443 /// yet during parsing, used when checking if file contains global value 444 /// summary section. 445 bool SeenGlobalValSummary = false; 446 447 /// Indicates whether we have already parsed the VST, used for error checking. 448 bool SeenValueSymbolTable = false; 449 450 /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record. 451 /// Used to enable on-demand parsing of the VST. 452 uint64_t VSTOffset = 0; 453 454 // Map to save ValueId to GUID association that was recorded in the 455 // ValueSymbolTable. It is used after the VST is parsed to convert 456 // call graph edges read from the function summary from referencing 457 // callees by their ValueId to using the GUID instead, which is how 458 // they are recorded in the summary index being built. 459 DenseMap<unsigned, uint64_t> ValueIdToCallGraphGUIDMap; 460 461 /// Map to save the association between summary offset in the VST to the 462 /// GlobalValueInfo object created when parsing it. Used to access the 463 /// info object when parsing the summary section. 464 DenseMap<uint64_t, GlobalValueInfo *> SummaryOffsetToInfoMap; 465 466 /// Map populated during module path string table parsing, from the 467 /// module ID to a string reference owned by the index's module 468 /// path string table, used to correlate with combined index 469 /// summary records. 470 DenseMap<uint64_t, StringRef> ModuleIdMap; 471 472 /// Original source file name recorded in a bitcode record. 473 std::string SourceFileName; 474 475 public: 476 std::error_code error(BitcodeError E, const Twine &Message); 477 std::error_code error(BitcodeError E); 478 std::error_code error(const Twine &Message); 479 480 ModuleSummaryIndexBitcodeReader( 481 MemoryBuffer *Buffer, DiagnosticHandlerFunction DiagnosticHandler, 482 bool IsLazy = false, bool CheckGlobalValSummaryPresenceOnly = false); 483 ModuleSummaryIndexBitcodeReader( 484 DiagnosticHandlerFunction DiagnosticHandler, bool IsLazy = false, 485 bool CheckGlobalValSummaryPresenceOnly = false); 486 ~ModuleSummaryIndexBitcodeReader() { freeState(); } 487 488 void freeState(); 489 490 void releaseBuffer(); 491 492 /// Check if the parser has encountered a summary section. 493 bool foundGlobalValSummary() { return SeenGlobalValSummary; } 494 495 /// \brief Main interface to parsing a bitcode buffer. 496 /// \returns true if an error occurred. 497 std::error_code parseSummaryIndexInto(std::unique_ptr<DataStreamer> Streamer, 498 ModuleSummaryIndex *I); 499 500 /// \brief Interface for parsing a summary lazily. 501 std::error_code 502 parseGlobalValueSummary(std::unique_ptr<DataStreamer> Streamer, 503 ModuleSummaryIndex *I, size_t SummaryOffset); 504 505 private: 506 std::error_code parseModule(); 507 std::error_code parseValueSymbolTable( 508 uint64_t Offset, 509 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap); 510 std::error_code parseEntireSummary(); 511 std::error_code parseModuleStringTable(); 512 std::error_code initStream(std::unique_ptr<DataStreamer> Streamer); 513 std::error_code initStreamFromBuffer(); 514 std::error_code initLazyStream(std::unique_ptr<DataStreamer> Streamer); 515 uint64_t getGUIDFromValueId(unsigned ValueId); 516 GlobalValueInfo *getInfoFromSummaryOffset(uint64_t Offset); 517 }; 518 } // end anonymous namespace 519 520 BitcodeDiagnosticInfo::BitcodeDiagnosticInfo(std::error_code EC, 521 DiagnosticSeverity Severity, 522 const Twine &Msg) 523 : DiagnosticInfo(DK_Bitcode, Severity), Msg(Msg), EC(EC) {} 524 525 void BitcodeDiagnosticInfo::print(DiagnosticPrinter &DP) const { DP << Msg; } 526 527 static std::error_code error(DiagnosticHandlerFunction DiagnosticHandler, 528 std::error_code EC, const Twine &Message) { 529 BitcodeDiagnosticInfo DI(EC, DS_Error, Message); 530 DiagnosticHandler(DI); 531 return EC; 532 } 533 534 static std::error_code error(DiagnosticHandlerFunction DiagnosticHandler, 535 std::error_code EC) { 536 return error(DiagnosticHandler, EC, EC.message()); 537 } 538 539 static std::error_code error(LLVMContext &Context, std::error_code EC, 540 const Twine &Message) { 541 return error([&](const DiagnosticInfo &DI) { Context.diagnose(DI); }, EC, 542 Message); 543 } 544 545 static std::error_code error(LLVMContext &Context, std::error_code EC) { 546 return error(Context, EC, EC.message()); 547 } 548 549 static std::error_code error(LLVMContext &Context, const Twine &Message) { 550 return error(Context, make_error_code(BitcodeError::CorruptedBitcode), 551 Message); 552 } 553 554 std::error_code BitcodeReader::error(BitcodeError E, const Twine &Message) { 555 if (!ProducerIdentification.empty()) { 556 return ::error(Context, make_error_code(E), 557 Message + " (Producer: '" + ProducerIdentification + 558 "' Reader: 'LLVM " + LLVM_VERSION_STRING "')"); 559 } 560 return ::error(Context, make_error_code(E), Message); 561 } 562 563 std::error_code BitcodeReader::error(const Twine &Message) { 564 if (!ProducerIdentification.empty()) { 565 return ::error(Context, make_error_code(BitcodeError::CorruptedBitcode), 566 Message + " (Producer: '" + ProducerIdentification + 567 "' Reader: 'LLVM " + LLVM_VERSION_STRING "')"); 568 } 569 return ::error(Context, make_error_code(BitcodeError::CorruptedBitcode), 570 Message); 571 } 572 573 std::error_code BitcodeReader::error(BitcodeError E) { 574 return ::error(Context, make_error_code(E)); 575 } 576 577 BitcodeReader::BitcodeReader(MemoryBuffer *Buffer, LLVMContext &Context) 578 : Context(Context), Buffer(Buffer), ValueList(Context), 579 MetadataList(Context) {} 580 581 BitcodeReader::BitcodeReader(LLVMContext &Context) 582 : Context(Context), Buffer(nullptr), ValueList(Context), 583 MetadataList(Context) {} 584 585 std::error_code BitcodeReader::materializeForwardReferencedFunctions() { 586 if (WillMaterializeAllForwardRefs) 587 return std::error_code(); 588 589 // Prevent recursion. 590 WillMaterializeAllForwardRefs = true; 591 592 while (!BasicBlockFwdRefQueue.empty()) { 593 Function *F = BasicBlockFwdRefQueue.front(); 594 BasicBlockFwdRefQueue.pop_front(); 595 assert(F && "Expected valid function"); 596 if (!BasicBlockFwdRefs.count(F)) 597 // Already materialized. 598 continue; 599 600 // Check for a function that isn't materializable to prevent an infinite 601 // loop. When parsing a blockaddress stored in a global variable, there 602 // isn't a trivial way to check if a function will have a body without a 603 // linear search through FunctionsWithBodies, so just check it here. 604 if (!F->isMaterializable()) 605 return error("Never resolved function from blockaddress"); 606 607 // Try to materialize F. 608 if (std::error_code EC = materialize(F)) 609 return EC; 610 } 611 assert(BasicBlockFwdRefs.empty() && "Function missing from queue"); 612 613 // Reset state. 614 WillMaterializeAllForwardRefs = false; 615 return std::error_code(); 616 } 617 618 void BitcodeReader::freeState() { 619 Buffer = nullptr; 620 std::vector<Type*>().swap(TypeList); 621 ValueList.clear(); 622 MetadataList.clear(); 623 std::vector<Comdat *>().swap(ComdatList); 624 625 std::vector<AttributeSet>().swap(MAttributes); 626 std::vector<BasicBlock*>().swap(FunctionBBs); 627 std::vector<Function*>().swap(FunctionsWithBodies); 628 DeferredFunctionInfo.clear(); 629 DeferredMetadataInfo.clear(); 630 MDKindMap.clear(); 631 632 assert(BasicBlockFwdRefs.empty() && "Unresolved blockaddress fwd references"); 633 BasicBlockFwdRefQueue.clear(); 634 } 635 636 //===----------------------------------------------------------------------===// 637 // Helper functions to implement forward reference resolution, etc. 638 //===----------------------------------------------------------------------===// 639 640 /// Convert a string from a record into an std::string, return true on failure. 641 template <typename StrTy> 642 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx, 643 StrTy &Result) { 644 if (Idx > Record.size()) 645 return true; 646 647 for (unsigned i = Idx, e = Record.size(); i != e; ++i) 648 Result += (char)Record[i]; 649 return false; 650 } 651 652 static bool hasImplicitComdat(size_t Val) { 653 switch (Val) { 654 default: 655 return false; 656 case 1: // Old WeakAnyLinkage 657 case 4: // Old LinkOnceAnyLinkage 658 case 10: // Old WeakODRLinkage 659 case 11: // Old LinkOnceODRLinkage 660 return true; 661 } 662 } 663 664 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) { 665 switch (Val) { 666 default: // Map unknown/new linkages to external 667 case 0: 668 return GlobalValue::ExternalLinkage; 669 case 2: 670 return GlobalValue::AppendingLinkage; 671 case 3: 672 return GlobalValue::InternalLinkage; 673 case 5: 674 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage 675 case 6: 676 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage 677 case 7: 678 return GlobalValue::ExternalWeakLinkage; 679 case 8: 680 return GlobalValue::CommonLinkage; 681 case 9: 682 return GlobalValue::PrivateLinkage; 683 case 12: 684 return GlobalValue::AvailableExternallyLinkage; 685 case 13: 686 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage 687 case 14: 688 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage 689 case 15: 690 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage 691 case 1: // Old value with implicit comdat. 692 case 16: 693 return GlobalValue::WeakAnyLinkage; 694 case 10: // Old value with implicit comdat. 695 case 17: 696 return GlobalValue::WeakODRLinkage; 697 case 4: // Old value with implicit comdat. 698 case 18: 699 return GlobalValue::LinkOnceAnyLinkage; 700 case 11: // Old value with implicit comdat. 701 case 19: 702 return GlobalValue::LinkOnceODRLinkage; 703 } 704 } 705 706 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) { 707 switch (Val) { 708 default: // Map unknown visibilities to default. 709 case 0: return GlobalValue::DefaultVisibility; 710 case 1: return GlobalValue::HiddenVisibility; 711 case 2: return GlobalValue::ProtectedVisibility; 712 } 713 } 714 715 static GlobalValue::DLLStorageClassTypes 716 getDecodedDLLStorageClass(unsigned Val) { 717 switch (Val) { 718 default: // Map unknown values to default. 719 case 0: return GlobalValue::DefaultStorageClass; 720 case 1: return GlobalValue::DLLImportStorageClass; 721 case 2: return GlobalValue::DLLExportStorageClass; 722 } 723 } 724 725 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) { 726 switch (Val) { 727 case 0: return GlobalVariable::NotThreadLocal; 728 default: // Map unknown non-zero value to general dynamic. 729 case 1: return GlobalVariable::GeneralDynamicTLSModel; 730 case 2: return GlobalVariable::LocalDynamicTLSModel; 731 case 3: return GlobalVariable::InitialExecTLSModel; 732 case 4: return GlobalVariable::LocalExecTLSModel; 733 } 734 } 735 736 static int getDecodedCastOpcode(unsigned Val) { 737 switch (Val) { 738 default: return -1; 739 case bitc::CAST_TRUNC : return Instruction::Trunc; 740 case bitc::CAST_ZEXT : return Instruction::ZExt; 741 case bitc::CAST_SEXT : return Instruction::SExt; 742 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 743 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 744 case bitc::CAST_UITOFP : return Instruction::UIToFP; 745 case bitc::CAST_SITOFP : return Instruction::SIToFP; 746 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 747 case bitc::CAST_FPEXT : return Instruction::FPExt; 748 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 749 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 750 case bitc::CAST_BITCAST : return Instruction::BitCast; 751 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast; 752 } 753 } 754 755 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) { 756 bool IsFP = Ty->isFPOrFPVectorTy(); 757 // BinOps are only valid for int/fp or vector of int/fp types 758 if (!IsFP && !Ty->isIntOrIntVectorTy()) 759 return -1; 760 761 switch (Val) { 762 default: 763 return -1; 764 case bitc::BINOP_ADD: 765 return IsFP ? Instruction::FAdd : Instruction::Add; 766 case bitc::BINOP_SUB: 767 return IsFP ? Instruction::FSub : Instruction::Sub; 768 case bitc::BINOP_MUL: 769 return IsFP ? Instruction::FMul : Instruction::Mul; 770 case bitc::BINOP_UDIV: 771 return IsFP ? -1 : Instruction::UDiv; 772 case bitc::BINOP_SDIV: 773 return IsFP ? Instruction::FDiv : Instruction::SDiv; 774 case bitc::BINOP_UREM: 775 return IsFP ? -1 : Instruction::URem; 776 case bitc::BINOP_SREM: 777 return IsFP ? Instruction::FRem : Instruction::SRem; 778 case bitc::BINOP_SHL: 779 return IsFP ? -1 : Instruction::Shl; 780 case bitc::BINOP_LSHR: 781 return IsFP ? -1 : Instruction::LShr; 782 case bitc::BINOP_ASHR: 783 return IsFP ? -1 : Instruction::AShr; 784 case bitc::BINOP_AND: 785 return IsFP ? -1 : Instruction::And; 786 case bitc::BINOP_OR: 787 return IsFP ? -1 : Instruction::Or; 788 case bitc::BINOP_XOR: 789 return IsFP ? -1 : Instruction::Xor; 790 } 791 } 792 793 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) { 794 switch (Val) { 795 default: return AtomicRMWInst::BAD_BINOP; 796 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 797 case bitc::RMW_ADD: return AtomicRMWInst::Add; 798 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 799 case bitc::RMW_AND: return AtomicRMWInst::And; 800 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 801 case bitc::RMW_OR: return AtomicRMWInst::Or; 802 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 803 case bitc::RMW_MAX: return AtomicRMWInst::Max; 804 case bitc::RMW_MIN: return AtomicRMWInst::Min; 805 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 806 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 807 } 808 } 809 810 static AtomicOrdering getDecodedOrdering(unsigned Val) { 811 switch (Val) { 812 case bitc::ORDERING_NOTATOMIC: return NotAtomic; 813 case bitc::ORDERING_UNORDERED: return Unordered; 814 case bitc::ORDERING_MONOTONIC: return Monotonic; 815 case bitc::ORDERING_ACQUIRE: return Acquire; 816 case bitc::ORDERING_RELEASE: return Release; 817 case bitc::ORDERING_ACQREL: return AcquireRelease; 818 default: // Map unknown orderings to sequentially-consistent. 819 case bitc::ORDERING_SEQCST: return SequentiallyConsistent; 820 } 821 } 822 823 static SynchronizationScope getDecodedSynchScope(unsigned Val) { 824 switch (Val) { 825 case bitc::SYNCHSCOPE_SINGLETHREAD: return SingleThread; 826 default: // Map unknown scopes to cross-thread. 827 case bitc::SYNCHSCOPE_CROSSTHREAD: return CrossThread; 828 } 829 } 830 831 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) { 832 switch (Val) { 833 default: // Map unknown selection kinds to any. 834 case bitc::COMDAT_SELECTION_KIND_ANY: 835 return Comdat::Any; 836 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH: 837 return Comdat::ExactMatch; 838 case bitc::COMDAT_SELECTION_KIND_LARGEST: 839 return Comdat::Largest; 840 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES: 841 return Comdat::NoDuplicates; 842 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE: 843 return Comdat::SameSize; 844 } 845 } 846 847 static FastMathFlags getDecodedFastMathFlags(unsigned Val) { 848 FastMathFlags FMF; 849 if (0 != (Val & FastMathFlags::UnsafeAlgebra)) 850 FMF.setUnsafeAlgebra(); 851 if (0 != (Val & FastMathFlags::NoNaNs)) 852 FMF.setNoNaNs(); 853 if (0 != (Val & FastMathFlags::NoInfs)) 854 FMF.setNoInfs(); 855 if (0 != (Val & FastMathFlags::NoSignedZeros)) 856 FMF.setNoSignedZeros(); 857 if (0 != (Val & FastMathFlags::AllowReciprocal)) 858 FMF.setAllowReciprocal(); 859 return FMF; 860 } 861 862 static void upgradeDLLImportExportLinkage(llvm::GlobalValue *GV, unsigned Val) { 863 switch (Val) { 864 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break; 865 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break; 866 } 867 } 868 869 namespace llvm { 870 namespace { 871 /// \brief A class for maintaining the slot number definition 872 /// as a placeholder for the actual definition for forward constants defs. 873 class ConstantPlaceHolder : public ConstantExpr { 874 void operator=(const ConstantPlaceHolder &) = delete; 875 876 public: 877 // allocate space for exactly one operand 878 void *operator new(size_t s) { return User::operator new(s, 1); } 879 explicit ConstantPlaceHolder(Type *Ty, LLVMContext &Context) 880 : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) { 881 Op<0>() = UndefValue::get(Type::getInt32Ty(Context)); 882 } 883 884 /// \brief Methods to support type inquiry through isa, cast, and dyn_cast. 885 static bool classof(const Value *V) { 886 return isa<ConstantExpr>(V) && 887 cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1; 888 } 889 890 /// Provide fast operand accessors 891 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); 892 }; 893 } // end anonymous namespace 894 895 // FIXME: can we inherit this from ConstantExpr? 896 template <> 897 struct OperandTraits<ConstantPlaceHolder> : 898 public FixedNumOperandTraits<ConstantPlaceHolder, 1> { 899 }; 900 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantPlaceHolder, Value) 901 } // end namespace llvm 902 903 void BitcodeReaderValueList::assignValue(Value *V, unsigned Idx) { 904 if (Idx == size()) { 905 push_back(V); 906 return; 907 } 908 909 if (Idx >= size()) 910 resize(Idx+1); 911 912 WeakVH &OldV = ValuePtrs[Idx]; 913 if (!OldV) { 914 OldV = V; 915 return; 916 } 917 918 // Handle constants and non-constants (e.g. instrs) differently for 919 // efficiency. 920 if (Constant *PHC = dyn_cast<Constant>(&*OldV)) { 921 ResolveConstants.push_back(std::make_pair(PHC, Idx)); 922 OldV = V; 923 } else { 924 // If there was a forward reference to this value, replace it. 925 Value *PrevVal = OldV; 926 OldV->replaceAllUsesWith(V); 927 delete PrevVal; 928 } 929 } 930 931 Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx, 932 Type *Ty) { 933 if (Idx >= size()) 934 resize(Idx + 1); 935 936 if (Value *V = ValuePtrs[Idx]) { 937 if (Ty != V->getType()) 938 report_fatal_error("Type mismatch in constant table!"); 939 return cast<Constant>(V); 940 } 941 942 // Create and return a placeholder, which will later be RAUW'd. 943 Constant *C = new ConstantPlaceHolder(Ty, Context); 944 ValuePtrs[Idx] = C; 945 return C; 946 } 947 948 Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, Type *Ty) { 949 // Bail out for a clearly invalid value. This would make us call resize(0) 950 if (Idx == UINT_MAX) 951 return nullptr; 952 953 if (Idx >= size()) 954 resize(Idx + 1); 955 956 if (Value *V = ValuePtrs[Idx]) { 957 // If the types don't match, it's invalid. 958 if (Ty && Ty != V->getType()) 959 return nullptr; 960 return V; 961 } 962 963 // No type specified, must be invalid reference. 964 if (!Ty) return nullptr; 965 966 // Create and return a placeholder, which will later be RAUW'd. 967 Value *V = new Argument(Ty); 968 ValuePtrs[Idx] = V; 969 return V; 970 } 971 972 /// Once all constants are read, this method bulk resolves any forward 973 /// references. The idea behind this is that we sometimes get constants (such 974 /// as large arrays) which reference *many* forward ref constants. Replacing 975 /// each of these causes a lot of thrashing when building/reuniquing the 976 /// constant. Instead of doing this, we look at all the uses and rewrite all 977 /// the place holders at once for any constant that uses a placeholder. 978 void BitcodeReaderValueList::resolveConstantForwardRefs() { 979 // Sort the values by-pointer so that they are efficient to look up with a 980 // binary search. 981 std::sort(ResolveConstants.begin(), ResolveConstants.end()); 982 983 SmallVector<Constant*, 64> NewOps; 984 985 while (!ResolveConstants.empty()) { 986 Value *RealVal = operator[](ResolveConstants.back().second); 987 Constant *Placeholder = ResolveConstants.back().first; 988 ResolveConstants.pop_back(); 989 990 // Loop over all users of the placeholder, updating them to reference the 991 // new value. If they reference more than one placeholder, update them all 992 // at once. 993 while (!Placeholder->use_empty()) { 994 auto UI = Placeholder->user_begin(); 995 User *U = *UI; 996 997 // If the using object isn't uniqued, just update the operands. This 998 // handles instructions and initializers for global variables. 999 if (!isa<Constant>(U) || isa<GlobalValue>(U)) { 1000 UI.getUse().set(RealVal); 1001 continue; 1002 } 1003 1004 // Otherwise, we have a constant that uses the placeholder. Replace that 1005 // constant with a new constant that has *all* placeholder uses updated. 1006 Constant *UserC = cast<Constant>(U); 1007 for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end(); 1008 I != E; ++I) { 1009 Value *NewOp; 1010 if (!isa<ConstantPlaceHolder>(*I)) { 1011 // Not a placeholder reference. 1012 NewOp = *I; 1013 } else if (*I == Placeholder) { 1014 // Common case is that it just references this one placeholder. 1015 NewOp = RealVal; 1016 } else { 1017 // Otherwise, look up the placeholder in ResolveConstants. 1018 ResolveConstantsTy::iterator It = 1019 std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(), 1020 std::pair<Constant*, unsigned>(cast<Constant>(*I), 1021 0)); 1022 assert(It != ResolveConstants.end() && It->first == *I); 1023 NewOp = operator[](It->second); 1024 } 1025 1026 NewOps.push_back(cast<Constant>(NewOp)); 1027 } 1028 1029 // Make the new constant. 1030 Constant *NewC; 1031 if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) { 1032 NewC = ConstantArray::get(UserCA->getType(), NewOps); 1033 } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) { 1034 NewC = ConstantStruct::get(UserCS->getType(), NewOps); 1035 } else if (isa<ConstantVector>(UserC)) { 1036 NewC = ConstantVector::get(NewOps); 1037 } else { 1038 assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr."); 1039 NewC = cast<ConstantExpr>(UserC)->getWithOperands(NewOps); 1040 } 1041 1042 UserC->replaceAllUsesWith(NewC); 1043 UserC->destroyConstant(); 1044 NewOps.clear(); 1045 } 1046 1047 // Update all ValueHandles, they should be the only users at this point. 1048 Placeholder->replaceAllUsesWith(RealVal); 1049 delete Placeholder; 1050 } 1051 } 1052 1053 void BitcodeReaderMetadataList::assignValue(Metadata *MD, unsigned Idx) { 1054 if (Idx == size()) { 1055 push_back(MD); 1056 return; 1057 } 1058 1059 if (Idx >= size()) 1060 resize(Idx+1); 1061 1062 TrackingMDRef &OldMD = MetadataPtrs[Idx]; 1063 if (!OldMD) { 1064 OldMD.reset(MD); 1065 return; 1066 } 1067 1068 // If there was a forward reference to this value, replace it. 1069 TempMDTuple PrevMD(cast<MDTuple>(OldMD.get())); 1070 PrevMD->replaceAllUsesWith(MD); 1071 --NumFwdRefs; 1072 } 1073 1074 Metadata *BitcodeReaderMetadataList::getMetadataFwdRef(unsigned Idx) { 1075 if (Idx >= size()) 1076 resize(Idx + 1); 1077 1078 if (Metadata *MD = MetadataPtrs[Idx]) 1079 return MD; 1080 1081 // Track forward refs to be resolved later. 1082 if (AnyFwdRefs) { 1083 MinFwdRef = std::min(MinFwdRef, Idx); 1084 MaxFwdRef = std::max(MaxFwdRef, Idx); 1085 } else { 1086 AnyFwdRefs = true; 1087 MinFwdRef = MaxFwdRef = Idx; 1088 } 1089 ++NumFwdRefs; 1090 1091 // Create and return a placeholder, which will later be RAUW'd. 1092 Metadata *MD = MDNode::getTemporary(Context, None).release(); 1093 MetadataPtrs[Idx].reset(MD); 1094 return MD; 1095 } 1096 1097 MDNode *BitcodeReaderMetadataList::getMDNodeFwdRefOrNull(unsigned Idx) { 1098 return dyn_cast_or_null<MDNode>(getMetadataFwdRef(Idx)); 1099 } 1100 1101 void BitcodeReaderMetadataList::tryToResolveCycles() { 1102 if (!AnyFwdRefs) 1103 // Nothing to do. 1104 return; 1105 1106 if (NumFwdRefs) 1107 // Still forward references... can't resolve cycles. 1108 return; 1109 1110 // Resolve any cycles. 1111 for (unsigned I = MinFwdRef, E = MaxFwdRef + 1; I != E; ++I) { 1112 auto &MD = MetadataPtrs[I]; 1113 auto *N = dyn_cast_or_null<MDNode>(MD); 1114 if (!N) 1115 continue; 1116 1117 assert(!N->isTemporary() && "Unexpected forward reference"); 1118 N->resolveCycles(); 1119 } 1120 1121 // Make sure we return early again until there's another forward ref. 1122 AnyFwdRefs = false; 1123 } 1124 1125 Type *BitcodeReader::getTypeByID(unsigned ID) { 1126 // The type table size is always specified correctly. 1127 if (ID >= TypeList.size()) 1128 return nullptr; 1129 1130 if (Type *Ty = TypeList[ID]) 1131 return Ty; 1132 1133 // If we have a forward reference, the only possible case is when it is to a 1134 // named struct. Just create a placeholder for now. 1135 return TypeList[ID] = createIdentifiedStructType(Context); 1136 } 1137 1138 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context, 1139 StringRef Name) { 1140 auto *Ret = StructType::create(Context, Name); 1141 IdentifiedStructTypes.push_back(Ret); 1142 return Ret; 1143 } 1144 1145 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) { 1146 auto *Ret = StructType::create(Context); 1147 IdentifiedStructTypes.push_back(Ret); 1148 return Ret; 1149 } 1150 1151 //===----------------------------------------------------------------------===// 1152 // Functions for parsing blocks from the bitcode file 1153 //===----------------------------------------------------------------------===// 1154 1155 1156 /// \brief This fills an AttrBuilder object with the LLVM attributes that have 1157 /// been decoded from the given integer. This function must stay in sync with 1158 /// 'encodeLLVMAttributesForBitcode'. 1159 static void decodeLLVMAttributesForBitcode(AttrBuilder &B, 1160 uint64_t EncodedAttrs) { 1161 // FIXME: Remove in 4.0. 1162 1163 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift 1164 // the bits above 31 down by 11 bits. 1165 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; 1166 assert((!Alignment || isPowerOf2_32(Alignment)) && 1167 "Alignment must be a power of two."); 1168 1169 if (Alignment) 1170 B.addAlignmentAttr(Alignment); 1171 B.addRawValue(((EncodedAttrs & (0xfffffULL << 32)) >> 11) | 1172 (EncodedAttrs & 0xffff)); 1173 } 1174 1175 std::error_code BitcodeReader::parseAttributeBlock() { 1176 if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 1177 return error("Invalid record"); 1178 1179 if (!MAttributes.empty()) 1180 return error("Invalid multiple blocks"); 1181 1182 SmallVector<uint64_t, 64> Record; 1183 1184 SmallVector<AttributeSet, 8> Attrs; 1185 1186 // Read all the records. 1187 while (1) { 1188 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1189 1190 switch (Entry.Kind) { 1191 case BitstreamEntry::SubBlock: // Handled for us already. 1192 case BitstreamEntry::Error: 1193 return error("Malformed block"); 1194 case BitstreamEntry::EndBlock: 1195 return std::error_code(); 1196 case BitstreamEntry::Record: 1197 // The interesting case. 1198 break; 1199 } 1200 1201 // Read a record. 1202 Record.clear(); 1203 switch (Stream.readRecord(Entry.ID, Record)) { 1204 default: // Default behavior: ignore. 1205 break; 1206 case bitc::PARAMATTR_CODE_ENTRY_OLD: { // ENTRY: [paramidx0, attr0, ...] 1207 // FIXME: Remove in 4.0. 1208 if (Record.size() & 1) 1209 return error("Invalid record"); 1210 1211 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1212 AttrBuilder B; 1213 decodeLLVMAttributesForBitcode(B, Record[i+1]); 1214 Attrs.push_back(AttributeSet::get(Context, Record[i], B)); 1215 } 1216 1217 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 1218 Attrs.clear(); 1219 break; 1220 } 1221 case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [attrgrp0, attrgrp1, ...] 1222 for (unsigned i = 0, e = Record.size(); i != e; ++i) 1223 Attrs.push_back(MAttributeGroups[Record[i]]); 1224 1225 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 1226 Attrs.clear(); 1227 break; 1228 } 1229 } 1230 } 1231 } 1232 1233 // Returns Attribute::None on unrecognized codes. 1234 static Attribute::AttrKind getAttrFromCode(uint64_t Code) { 1235 switch (Code) { 1236 default: 1237 return Attribute::None; 1238 case bitc::ATTR_KIND_ALIGNMENT: 1239 return Attribute::Alignment; 1240 case bitc::ATTR_KIND_ALWAYS_INLINE: 1241 return Attribute::AlwaysInline; 1242 case bitc::ATTR_KIND_ARGMEMONLY: 1243 return Attribute::ArgMemOnly; 1244 case bitc::ATTR_KIND_BUILTIN: 1245 return Attribute::Builtin; 1246 case bitc::ATTR_KIND_BY_VAL: 1247 return Attribute::ByVal; 1248 case bitc::ATTR_KIND_IN_ALLOCA: 1249 return Attribute::InAlloca; 1250 case bitc::ATTR_KIND_COLD: 1251 return Attribute::Cold; 1252 case bitc::ATTR_KIND_CONVERGENT: 1253 return Attribute::Convergent; 1254 case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY: 1255 return Attribute::InaccessibleMemOnly; 1256 case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY: 1257 return Attribute::InaccessibleMemOrArgMemOnly; 1258 case bitc::ATTR_KIND_INLINE_HINT: 1259 return Attribute::InlineHint; 1260 case bitc::ATTR_KIND_IN_REG: 1261 return Attribute::InReg; 1262 case bitc::ATTR_KIND_JUMP_TABLE: 1263 return Attribute::JumpTable; 1264 case bitc::ATTR_KIND_MIN_SIZE: 1265 return Attribute::MinSize; 1266 case bitc::ATTR_KIND_NAKED: 1267 return Attribute::Naked; 1268 case bitc::ATTR_KIND_NEST: 1269 return Attribute::Nest; 1270 case bitc::ATTR_KIND_NO_ALIAS: 1271 return Attribute::NoAlias; 1272 case bitc::ATTR_KIND_NO_BUILTIN: 1273 return Attribute::NoBuiltin; 1274 case bitc::ATTR_KIND_NO_CAPTURE: 1275 return Attribute::NoCapture; 1276 case bitc::ATTR_KIND_NO_DUPLICATE: 1277 return Attribute::NoDuplicate; 1278 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: 1279 return Attribute::NoImplicitFloat; 1280 case bitc::ATTR_KIND_NO_INLINE: 1281 return Attribute::NoInline; 1282 case bitc::ATTR_KIND_NO_RECURSE: 1283 return Attribute::NoRecurse; 1284 case bitc::ATTR_KIND_NON_LAZY_BIND: 1285 return Attribute::NonLazyBind; 1286 case bitc::ATTR_KIND_NON_NULL: 1287 return Attribute::NonNull; 1288 case bitc::ATTR_KIND_DEREFERENCEABLE: 1289 return Attribute::Dereferenceable; 1290 case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL: 1291 return Attribute::DereferenceableOrNull; 1292 case bitc::ATTR_KIND_NO_RED_ZONE: 1293 return Attribute::NoRedZone; 1294 case bitc::ATTR_KIND_NO_RETURN: 1295 return Attribute::NoReturn; 1296 case bitc::ATTR_KIND_NO_UNWIND: 1297 return Attribute::NoUnwind; 1298 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: 1299 return Attribute::OptimizeForSize; 1300 case bitc::ATTR_KIND_OPTIMIZE_NONE: 1301 return Attribute::OptimizeNone; 1302 case bitc::ATTR_KIND_READ_NONE: 1303 return Attribute::ReadNone; 1304 case bitc::ATTR_KIND_READ_ONLY: 1305 return Attribute::ReadOnly; 1306 case bitc::ATTR_KIND_RETURNED: 1307 return Attribute::Returned; 1308 case bitc::ATTR_KIND_RETURNS_TWICE: 1309 return Attribute::ReturnsTwice; 1310 case bitc::ATTR_KIND_S_EXT: 1311 return Attribute::SExt; 1312 case bitc::ATTR_KIND_STACK_ALIGNMENT: 1313 return Attribute::StackAlignment; 1314 case bitc::ATTR_KIND_STACK_PROTECT: 1315 return Attribute::StackProtect; 1316 case bitc::ATTR_KIND_STACK_PROTECT_REQ: 1317 return Attribute::StackProtectReq; 1318 case bitc::ATTR_KIND_STACK_PROTECT_STRONG: 1319 return Attribute::StackProtectStrong; 1320 case bitc::ATTR_KIND_SAFESTACK: 1321 return Attribute::SafeStack; 1322 case bitc::ATTR_KIND_STRUCT_RET: 1323 return Attribute::StructRet; 1324 case bitc::ATTR_KIND_SANITIZE_ADDRESS: 1325 return Attribute::SanitizeAddress; 1326 case bitc::ATTR_KIND_SANITIZE_THREAD: 1327 return Attribute::SanitizeThread; 1328 case bitc::ATTR_KIND_SANITIZE_MEMORY: 1329 return Attribute::SanitizeMemory; 1330 case bitc::ATTR_KIND_UW_TABLE: 1331 return Attribute::UWTable; 1332 case bitc::ATTR_KIND_Z_EXT: 1333 return Attribute::ZExt; 1334 } 1335 } 1336 1337 std::error_code BitcodeReader::parseAlignmentValue(uint64_t Exponent, 1338 unsigned &Alignment) { 1339 // Note: Alignment in bitcode files is incremented by 1, so that zero 1340 // can be used for default alignment. 1341 if (Exponent > Value::MaxAlignmentExponent + 1) 1342 return error("Invalid alignment value"); 1343 Alignment = (1 << static_cast<unsigned>(Exponent)) >> 1; 1344 return std::error_code(); 1345 } 1346 1347 std::error_code BitcodeReader::parseAttrKind(uint64_t Code, 1348 Attribute::AttrKind *Kind) { 1349 *Kind = getAttrFromCode(Code); 1350 if (*Kind == Attribute::None) 1351 return error(BitcodeError::CorruptedBitcode, 1352 "Unknown attribute kind (" + Twine(Code) + ")"); 1353 return std::error_code(); 1354 } 1355 1356 std::error_code BitcodeReader::parseAttributeGroupBlock() { 1357 if (Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) 1358 return error("Invalid record"); 1359 1360 if (!MAttributeGroups.empty()) 1361 return error("Invalid multiple blocks"); 1362 1363 SmallVector<uint64_t, 64> Record; 1364 1365 // Read all the records. 1366 while (1) { 1367 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1368 1369 switch (Entry.Kind) { 1370 case BitstreamEntry::SubBlock: // Handled for us already. 1371 case BitstreamEntry::Error: 1372 return error("Malformed block"); 1373 case BitstreamEntry::EndBlock: 1374 return std::error_code(); 1375 case BitstreamEntry::Record: 1376 // The interesting case. 1377 break; 1378 } 1379 1380 // Read a record. 1381 Record.clear(); 1382 switch (Stream.readRecord(Entry.ID, Record)) { 1383 default: // Default behavior: ignore. 1384 break; 1385 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] 1386 if (Record.size() < 3) 1387 return error("Invalid record"); 1388 1389 uint64_t GrpID = Record[0]; 1390 uint64_t Idx = Record[1]; // Index of the object this attribute refers to. 1391 1392 AttrBuilder B; 1393 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1394 if (Record[i] == 0) { // Enum attribute 1395 Attribute::AttrKind Kind; 1396 if (std::error_code EC = parseAttrKind(Record[++i], &Kind)) 1397 return EC; 1398 1399 B.addAttribute(Kind); 1400 } else if (Record[i] == 1) { // Integer attribute 1401 Attribute::AttrKind Kind; 1402 if (std::error_code EC = parseAttrKind(Record[++i], &Kind)) 1403 return EC; 1404 if (Kind == Attribute::Alignment) 1405 B.addAlignmentAttr(Record[++i]); 1406 else if (Kind == Attribute::StackAlignment) 1407 B.addStackAlignmentAttr(Record[++i]); 1408 else if (Kind == Attribute::Dereferenceable) 1409 B.addDereferenceableAttr(Record[++i]); 1410 else if (Kind == Attribute::DereferenceableOrNull) 1411 B.addDereferenceableOrNullAttr(Record[++i]); 1412 } else { // String attribute 1413 assert((Record[i] == 3 || Record[i] == 4) && 1414 "Invalid attribute group entry"); 1415 bool HasValue = (Record[i++] == 4); 1416 SmallString<64> KindStr; 1417 SmallString<64> ValStr; 1418 1419 while (Record[i] != 0 && i != e) 1420 KindStr += Record[i++]; 1421 assert(Record[i] == 0 && "Kind string not null terminated"); 1422 1423 if (HasValue) { 1424 // Has a value associated with it. 1425 ++i; // Skip the '0' that terminates the "kind" string. 1426 while (Record[i] != 0 && i != e) 1427 ValStr += Record[i++]; 1428 assert(Record[i] == 0 && "Value string not null terminated"); 1429 } 1430 1431 B.addAttribute(KindStr.str(), ValStr.str()); 1432 } 1433 } 1434 1435 MAttributeGroups[GrpID] = AttributeSet::get(Context, Idx, B); 1436 break; 1437 } 1438 } 1439 } 1440 } 1441 1442 std::error_code BitcodeReader::parseTypeTable() { 1443 if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 1444 return error("Invalid record"); 1445 1446 return parseTypeTableBody(); 1447 } 1448 1449 std::error_code BitcodeReader::parseTypeTableBody() { 1450 if (!TypeList.empty()) 1451 return error("Invalid multiple blocks"); 1452 1453 SmallVector<uint64_t, 64> Record; 1454 unsigned NumRecords = 0; 1455 1456 SmallString<64> TypeName; 1457 1458 // Read all the records for this type table. 1459 while (1) { 1460 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1461 1462 switch (Entry.Kind) { 1463 case BitstreamEntry::SubBlock: // Handled for us already. 1464 case BitstreamEntry::Error: 1465 return error("Malformed block"); 1466 case BitstreamEntry::EndBlock: 1467 if (NumRecords != TypeList.size()) 1468 return error("Malformed block"); 1469 return std::error_code(); 1470 case BitstreamEntry::Record: 1471 // The interesting case. 1472 break; 1473 } 1474 1475 // Read a record. 1476 Record.clear(); 1477 Type *ResultTy = nullptr; 1478 switch (Stream.readRecord(Entry.ID, Record)) { 1479 default: 1480 return error("Invalid value"); 1481 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 1482 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 1483 // type list. This allows us to reserve space. 1484 if (Record.size() < 1) 1485 return error("Invalid record"); 1486 TypeList.resize(Record[0]); 1487 continue; 1488 case bitc::TYPE_CODE_VOID: // VOID 1489 ResultTy = Type::getVoidTy(Context); 1490 break; 1491 case bitc::TYPE_CODE_HALF: // HALF 1492 ResultTy = Type::getHalfTy(Context); 1493 break; 1494 case bitc::TYPE_CODE_FLOAT: // FLOAT 1495 ResultTy = Type::getFloatTy(Context); 1496 break; 1497 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 1498 ResultTy = Type::getDoubleTy(Context); 1499 break; 1500 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 1501 ResultTy = Type::getX86_FP80Ty(Context); 1502 break; 1503 case bitc::TYPE_CODE_FP128: // FP128 1504 ResultTy = Type::getFP128Ty(Context); 1505 break; 1506 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 1507 ResultTy = Type::getPPC_FP128Ty(Context); 1508 break; 1509 case bitc::TYPE_CODE_LABEL: // LABEL 1510 ResultTy = Type::getLabelTy(Context); 1511 break; 1512 case bitc::TYPE_CODE_METADATA: // METADATA 1513 ResultTy = Type::getMetadataTy(Context); 1514 break; 1515 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 1516 ResultTy = Type::getX86_MMXTy(Context); 1517 break; 1518 case bitc::TYPE_CODE_TOKEN: // TOKEN 1519 ResultTy = Type::getTokenTy(Context); 1520 break; 1521 case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width] 1522 if (Record.size() < 1) 1523 return error("Invalid record"); 1524 1525 uint64_t NumBits = Record[0]; 1526 if (NumBits < IntegerType::MIN_INT_BITS || 1527 NumBits > IntegerType::MAX_INT_BITS) 1528 return error("Bitwidth for integer type out of range"); 1529 ResultTy = IntegerType::get(Context, NumBits); 1530 break; 1531 } 1532 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 1533 // [pointee type, address space] 1534 if (Record.size() < 1) 1535 return error("Invalid record"); 1536 unsigned AddressSpace = 0; 1537 if (Record.size() == 2) 1538 AddressSpace = Record[1]; 1539 ResultTy = getTypeByID(Record[0]); 1540 if (!ResultTy || 1541 !PointerType::isValidElementType(ResultTy)) 1542 return error("Invalid type"); 1543 ResultTy = PointerType::get(ResultTy, AddressSpace); 1544 break; 1545 } 1546 case bitc::TYPE_CODE_FUNCTION_OLD: { 1547 // FIXME: attrid is dead, remove it in LLVM 4.0 1548 // FUNCTION: [vararg, attrid, retty, paramty x N] 1549 if (Record.size() < 3) 1550 return error("Invalid record"); 1551 SmallVector<Type*, 8> ArgTys; 1552 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 1553 if (Type *T = getTypeByID(Record[i])) 1554 ArgTys.push_back(T); 1555 else 1556 break; 1557 } 1558 1559 ResultTy = getTypeByID(Record[2]); 1560 if (!ResultTy || ArgTys.size() < Record.size()-3) 1561 return error("Invalid type"); 1562 1563 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1564 break; 1565 } 1566 case bitc::TYPE_CODE_FUNCTION: { 1567 // FUNCTION: [vararg, retty, paramty x N] 1568 if (Record.size() < 2) 1569 return error("Invalid record"); 1570 SmallVector<Type*, 8> ArgTys; 1571 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1572 if (Type *T = getTypeByID(Record[i])) { 1573 if (!FunctionType::isValidArgumentType(T)) 1574 return error("Invalid function argument type"); 1575 ArgTys.push_back(T); 1576 } 1577 else 1578 break; 1579 } 1580 1581 ResultTy = getTypeByID(Record[1]); 1582 if (!ResultTy || ArgTys.size() < Record.size()-2) 1583 return error("Invalid type"); 1584 1585 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1586 break; 1587 } 1588 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 1589 if (Record.size() < 1) 1590 return error("Invalid record"); 1591 SmallVector<Type*, 8> EltTys; 1592 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1593 if (Type *T = getTypeByID(Record[i])) 1594 EltTys.push_back(T); 1595 else 1596 break; 1597 } 1598 if (EltTys.size() != Record.size()-1) 1599 return error("Invalid type"); 1600 ResultTy = StructType::get(Context, EltTys, Record[0]); 1601 break; 1602 } 1603 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 1604 if (convertToString(Record, 0, TypeName)) 1605 return error("Invalid record"); 1606 continue; 1607 1608 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 1609 if (Record.size() < 1) 1610 return error("Invalid record"); 1611 1612 if (NumRecords >= TypeList.size()) 1613 return error("Invalid TYPE table"); 1614 1615 // Check to see if this was forward referenced, if so fill in the temp. 1616 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1617 if (Res) { 1618 Res->setName(TypeName); 1619 TypeList[NumRecords] = nullptr; 1620 } else // Otherwise, create a new struct. 1621 Res = createIdentifiedStructType(Context, TypeName); 1622 TypeName.clear(); 1623 1624 SmallVector<Type*, 8> EltTys; 1625 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1626 if (Type *T = getTypeByID(Record[i])) 1627 EltTys.push_back(T); 1628 else 1629 break; 1630 } 1631 if (EltTys.size() != Record.size()-1) 1632 return error("Invalid record"); 1633 Res->setBody(EltTys, Record[0]); 1634 ResultTy = Res; 1635 break; 1636 } 1637 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 1638 if (Record.size() != 1) 1639 return error("Invalid record"); 1640 1641 if (NumRecords >= TypeList.size()) 1642 return error("Invalid TYPE table"); 1643 1644 // Check to see if this was forward referenced, if so fill in the temp. 1645 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1646 if (Res) { 1647 Res->setName(TypeName); 1648 TypeList[NumRecords] = nullptr; 1649 } else // Otherwise, create a new struct with no body. 1650 Res = createIdentifiedStructType(Context, TypeName); 1651 TypeName.clear(); 1652 ResultTy = Res; 1653 break; 1654 } 1655 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 1656 if (Record.size() < 2) 1657 return error("Invalid record"); 1658 ResultTy = getTypeByID(Record[1]); 1659 if (!ResultTy || !ArrayType::isValidElementType(ResultTy)) 1660 return error("Invalid type"); 1661 ResultTy = ArrayType::get(ResultTy, Record[0]); 1662 break; 1663 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] 1664 if (Record.size() < 2) 1665 return error("Invalid record"); 1666 if (Record[0] == 0) 1667 return error("Invalid vector length"); 1668 ResultTy = getTypeByID(Record[1]); 1669 if (!ResultTy || !StructType::isValidElementType(ResultTy)) 1670 return error("Invalid type"); 1671 ResultTy = VectorType::get(ResultTy, Record[0]); 1672 break; 1673 } 1674 1675 if (NumRecords >= TypeList.size()) 1676 return error("Invalid TYPE table"); 1677 if (TypeList[NumRecords]) 1678 return error( 1679 "Invalid TYPE table: Only named structs can be forward referenced"); 1680 assert(ResultTy && "Didn't read a type?"); 1681 TypeList[NumRecords++] = ResultTy; 1682 } 1683 } 1684 1685 std::error_code BitcodeReader::parseOperandBundleTags() { 1686 if (Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID)) 1687 return error("Invalid record"); 1688 1689 if (!BundleTags.empty()) 1690 return error("Invalid multiple blocks"); 1691 1692 SmallVector<uint64_t, 64> Record; 1693 1694 while (1) { 1695 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1696 1697 switch (Entry.Kind) { 1698 case BitstreamEntry::SubBlock: // Handled for us already. 1699 case BitstreamEntry::Error: 1700 return error("Malformed block"); 1701 case BitstreamEntry::EndBlock: 1702 return std::error_code(); 1703 case BitstreamEntry::Record: 1704 // The interesting case. 1705 break; 1706 } 1707 1708 // Tags are implicitly mapped to integers by their order. 1709 1710 if (Stream.readRecord(Entry.ID, Record) != bitc::OPERAND_BUNDLE_TAG) 1711 return error("Invalid record"); 1712 1713 // OPERAND_BUNDLE_TAG: [strchr x N] 1714 BundleTags.emplace_back(); 1715 if (convertToString(Record, 0, BundleTags.back())) 1716 return error("Invalid record"); 1717 Record.clear(); 1718 } 1719 } 1720 1721 /// Associate a value with its name from the given index in the provided record. 1722 ErrorOr<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record, 1723 unsigned NameIndex, Triple &TT) { 1724 SmallString<128> ValueName; 1725 if (convertToString(Record, NameIndex, ValueName)) 1726 return error("Invalid record"); 1727 unsigned ValueID = Record[0]; 1728 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 1729 return error("Invalid record"); 1730 Value *V = ValueList[ValueID]; 1731 1732 StringRef NameStr(ValueName.data(), ValueName.size()); 1733 if (NameStr.find_first_of(0) != StringRef::npos) 1734 return error("Invalid value name"); 1735 V->setName(NameStr); 1736 auto *GO = dyn_cast<GlobalObject>(V); 1737 if (GO) { 1738 if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) { 1739 if (TT.isOSBinFormatMachO()) 1740 GO->setComdat(nullptr); 1741 else 1742 GO->setComdat(TheModule->getOrInsertComdat(V->getName())); 1743 } 1744 } 1745 return V; 1746 } 1747 1748 /// Helper to note and return the current location, and jump to the given 1749 /// offset. 1750 static uint64_t jumpToValueSymbolTable(uint64_t Offset, 1751 BitstreamCursor &Stream) { 1752 // Save the current parsing location so we can jump back at the end 1753 // of the VST read. 1754 uint64_t CurrentBit = Stream.GetCurrentBitNo(); 1755 Stream.JumpToBit(Offset * 32); 1756 #ifndef NDEBUG 1757 // Do some checking if we are in debug mode. 1758 BitstreamEntry Entry = Stream.advance(); 1759 assert(Entry.Kind == BitstreamEntry::SubBlock); 1760 assert(Entry.ID == bitc::VALUE_SYMTAB_BLOCK_ID); 1761 #else 1762 // In NDEBUG mode ignore the output so we don't get an unused variable 1763 // warning. 1764 Stream.advance(); 1765 #endif 1766 return CurrentBit; 1767 } 1768 1769 /// Parse the value symbol table at either the current parsing location or 1770 /// at the given bit offset if provided. 1771 std::error_code BitcodeReader::parseValueSymbolTable(uint64_t Offset) { 1772 uint64_t CurrentBit; 1773 // Pass in the Offset to distinguish between calling for the module-level 1774 // VST (where we want to jump to the VST offset) and the function-level 1775 // VST (where we don't). 1776 if (Offset > 0) 1777 CurrentBit = jumpToValueSymbolTable(Offset, Stream); 1778 1779 // Compute the delta between the bitcode indices in the VST (the word offset 1780 // to the word-aligned ENTER_SUBBLOCK for the function block, and that 1781 // expected by the lazy reader. The reader's EnterSubBlock expects to have 1782 // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID 1783 // (size BlockIDWidth). Note that we access the stream's AbbrevID width here 1784 // just before entering the VST subblock because: 1) the EnterSubBlock 1785 // changes the AbbrevID width; 2) the VST block is nested within the same 1786 // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same 1787 // AbbrevID width before calling EnterSubBlock; and 3) when we want to 1788 // jump to the FUNCTION_BLOCK using this offset later, we don't want 1789 // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK. 1790 unsigned FuncBitcodeOffsetDelta = 1791 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 1792 1793 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 1794 return error("Invalid record"); 1795 1796 SmallVector<uint64_t, 64> Record; 1797 1798 Triple TT(TheModule->getTargetTriple()); 1799 1800 // Read all the records for this value table. 1801 SmallString<128> ValueName; 1802 while (1) { 1803 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1804 1805 switch (Entry.Kind) { 1806 case BitstreamEntry::SubBlock: // Handled for us already. 1807 case BitstreamEntry::Error: 1808 return error("Malformed block"); 1809 case BitstreamEntry::EndBlock: 1810 if (Offset > 0) 1811 Stream.JumpToBit(CurrentBit); 1812 return std::error_code(); 1813 case BitstreamEntry::Record: 1814 // The interesting case. 1815 break; 1816 } 1817 1818 // Read a record. 1819 Record.clear(); 1820 switch (Stream.readRecord(Entry.ID, Record)) { 1821 default: // Default behavior: unknown type. 1822 break; 1823 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 1824 ErrorOr<Value *> ValOrErr = recordValue(Record, 1, TT); 1825 if (std::error_code EC = ValOrErr.getError()) 1826 return EC; 1827 ValOrErr.get(); 1828 break; 1829 } 1830 case bitc::VST_CODE_FNENTRY: { 1831 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 1832 ErrorOr<Value *> ValOrErr = recordValue(Record, 2, TT); 1833 if (std::error_code EC = ValOrErr.getError()) 1834 return EC; 1835 Value *V = ValOrErr.get(); 1836 1837 auto *GO = dyn_cast<GlobalObject>(V); 1838 if (!GO) { 1839 // If this is an alias, need to get the actual Function object 1840 // it aliases, in order to set up the DeferredFunctionInfo entry below. 1841 auto *GA = dyn_cast<GlobalAlias>(V); 1842 if (GA) 1843 GO = GA->getBaseObject(); 1844 assert(GO); 1845 } 1846 1847 uint64_t FuncWordOffset = Record[1]; 1848 Function *F = dyn_cast<Function>(GO); 1849 assert(F); 1850 uint64_t FuncBitOffset = FuncWordOffset * 32; 1851 DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta; 1852 // Set the LastFunctionBlockBit to point to the last function block. 1853 // Later when parsing is resumed after function materialization, 1854 // we can simply skip that last function block. 1855 if (FuncBitOffset > LastFunctionBlockBit) 1856 LastFunctionBlockBit = FuncBitOffset; 1857 break; 1858 } 1859 case bitc::VST_CODE_BBENTRY: { 1860 if (convertToString(Record, 1, ValueName)) 1861 return error("Invalid record"); 1862 BasicBlock *BB = getBasicBlock(Record[0]); 1863 if (!BB) 1864 return error("Invalid record"); 1865 1866 BB->setName(StringRef(ValueName.data(), ValueName.size())); 1867 ValueName.clear(); 1868 break; 1869 } 1870 } 1871 } 1872 } 1873 1874 /// Parse a single METADATA_KIND record, inserting result in MDKindMap. 1875 std::error_code 1876 BitcodeReader::parseMetadataKindRecord(SmallVectorImpl<uint64_t> &Record) { 1877 if (Record.size() < 2) 1878 return error("Invalid record"); 1879 1880 unsigned Kind = Record[0]; 1881 SmallString<8> Name(Record.begin() + 1, Record.end()); 1882 1883 unsigned NewKind = TheModule->getMDKindID(Name.str()); 1884 if (!MDKindMap.insert(std::make_pair(Kind, NewKind)).second) 1885 return error("Conflicting METADATA_KIND records"); 1886 return std::error_code(); 1887 } 1888 1889 static int64_t unrotateSign(uint64_t U) { return U & 1 ? ~(U >> 1) : U >> 1; } 1890 1891 /// Parse a METADATA_BLOCK. If ModuleLevel is true then we are parsing 1892 /// module level metadata. 1893 std::error_code BitcodeReader::parseMetadata(bool ModuleLevel) { 1894 IsMetadataMaterialized = true; 1895 unsigned NextMetadataNo = MetadataList.size(); 1896 if (ModuleLevel && SeenModuleValuesRecord) { 1897 // Now that we are parsing the module level metadata, we want to restart 1898 // the numbering of the MD values, and replace temp MD created earlier 1899 // with their real values. If we saw a METADATA_VALUE record then we 1900 // would have set the MetadataList size to the number specified in that 1901 // record, to support parsing function-level metadata first, and we need 1902 // to reset back to 0 to fill the MetadataList in with the parsed module 1903 // The function-level metadata parsing should have reset the MetadataList 1904 // size back to the value reported by the METADATA_VALUE record, saved in 1905 // NumModuleMDs. 1906 assert(NumModuleMDs == MetadataList.size() && 1907 "Expected MetadataList to only contain module level values"); 1908 NextMetadataNo = 0; 1909 } 1910 1911 if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID)) 1912 return error("Invalid record"); 1913 1914 SmallVector<uint64_t, 64> Record; 1915 1916 auto getMD = [&](unsigned ID) -> Metadata * { 1917 return MetadataList.getMetadataFwdRef(ID); 1918 }; 1919 auto getMDOrNull = [&](unsigned ID) -> Metadata *{ 1920 if (ID) 1921 return getMD(ID - 1); 1922 return nullptr; 1923 }; 1924 auto getMDString = [&](unsigned ID) -> MDString *{ 1925 // This requires that the ID is not really a forward reference. In 1926 // particular, the MDString must already have been resolved. 1927 return cast_or_null<MDString>(getMDOrNull(ID)); 1928 }; 1929 1930 #define GET_OR_DISTINCT(CLASS, DISTINCT, ARGS) \ 1931 (DISTINCT ? CLASS::getDistinct ARGS : CLASS::get ARGS) 1932 1933 // Read all the records. 1934 while (1) { 1935 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1936 1937 switch (Entry.Kind) { 1938 case BitstreamEntry::SubBlock: // Handled for us already. 1939 case BitstreamEntry::Error: 1940 return error("Malformed block"); 1941 case BitstreamEntry::EndBlock: 1942 MetadataList.tryToResolveCycles(); 1943 assert((!(ModuleLevel && SeenModuleValuesRecord) || 1944 NumModuleMDs == MetadataList.size()) && 1945 "Inconsistent bitcode: METADATA_VALUES mismatch"); 1946 return std::error_code(); 1947 case BitstreamEntry::Record: 1948 // The interesting case. 1949 break; 1950 } 1951 1952 // Read a record. 1953 Record.clear(); 1954 unsigned Code = Stream.readRecord(Entry.ID, Record); 1955 bool IsDistinct = false; 1956 switch (Code) { 1957 default: // Default behavior: ignore. 1958 break; 1959 case bitc::METADATA_NAME: { 1960 // Read name of the named metadata. 1961 SmallString<8> Name(Record.begin(), Record.end()); 1962 Record.clear(); 1963 Code = Stream.ReadCode(); 1964 1965 unsigned NextBitCode = Stream.readRecord(Code, Record); 1966 if (NextBitCode != bitc::METADATA_NAMED_NODE) 1967 return error("METADATA_NAME not followed by METADATA_NAMED_NODE"); 1968 1969 // Read named metadata elements. 1970 unsigned Size = Record.size(); 1971 NamedMDNode *NMD = TheModule->getOrInsertNamedMetadata(Name); 1972 for (unsigned i = 0; i != Size; ++i) { 1973 MDNode *MD = MetadataList.getMDNodeFwdRefOrNull(Record[i]); 1974 if (!MD) 1975 return error("Invalid record"); 1976 NMD->addOperand(MD); 1977 } 1978 break; 1979 } 1980 case bitc::METADATA_OLD_FN_NODE: { 1981 // FIXME: Remove in 4.0. 1982 // This is a LocalAsMetadata record, the only type of function-local 1983 // metadata. 1984 if (Record.size() % 2 == 1) 1985 return error("Invalid record"); 1986 1987 // If this isn't a LocalAsMetadata record, we're dropping it. This used 1988 // to be legal, but there's no upgrade path. 1989 auto dropRecord = [&] { 1990 MetadataList.assignValue(MDNode::get(Context, None), NextMetadataNo++); 1991 }; 1992 if (Record.size() != 2) { 1993 dropRecord(); 1994 break; 1995 } 1996 1997 Type *Ty = getTypeByID(Record[0]); 1998 if (Ty->isMetadataTy() || Ty->isVoidTy()) { 1999 dropRecord(); 2000 break; 2001 } 2002 2003 MetadataList.assignValue( 2004 LocalAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)), 2005 NextMetadataNo++); 2006 break; 2007 } 2008 case bitc::METADATA_OLD_NODE: { 2009 // FIXME: Remove in 4.0. 2010 if (Record.size() % 2 == 1) 2011 return error("Invalid record"); 2012 2013 unsigned Size = Record.size(); 2014 SmallVector<Metadata *, 8> Elts; 2015 for (unsigned i = 0; i != Size; i += 2) { 2016 Type *Ty = getTypeByID(Record[i]); 2017 if (!Ty) 2018 return error("Invalid record"); 2019 if (Ty->isMetadataTy()) 2020 Elts.push_back(MetadataList.getMetadataFwdRef(Record[i + 1])); 2021 else if (!Ty->isVoidTy()) { 2022 auto *MD = 2023 ValueAsMetadata::get(ValueList.getValueFwdRef(Record[i + 1], Ty)); 2024 assert(isa<ConstantAsMetadata>(MD) && 2025 "Expected non-function-local metadata"); 2026 Elts.push_back(MD); 2027 } else 2028 Elts.push_back(nullptr); 2029 } 2030 MetadataList.assignValue(MDNode::get(Context, Elts), NextMetadataNo++); 2031 break; 2032 } 2033 case bitc::METADATA_VALUE: { 2034 if (Record.size() != 2) 2035 return error("Invalid record"); 2036 2037 Type *Ty = getTypeByID(Record[0]); 2038 if (Ty->isMetadataTy() || Ty->isVoidTy()) 2039 return error("Invalid record"); 2040 2041 MetadataList.assignValue( 2042 ValueAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)), 2043 NextMetadataNo++); 2044 break; 2045 } 2046 case bitc::METADATA_DISTINCT_NODE: 2047 IsDistinct = true; 2048 // fallthrough... 2049 case bitc::METADATA_NODE: { 2050 SmallVector<Metadata *, 8> Elts; 2051 Elts.reserve(Record.size()); 2052 for (unsigned ID : Record) 2053 Elts.push_back(ID ? MetadataList.getMetadataFwdRef(ID - 1) : nullptr); 2054 MetadataList.assignValue(IsDistinct ? MDNode::getDistinct(Context, Elts) 2055 : MDNode::get(Context, Elts), 2056 NextMetadataNo++); 2057 break; 2058 } 2059 case bitc::METADATA_LOCATION: { 2060 if (Record.size() != 5) 2061 return error("Invalid record"); 2062 2063 unsigned Line = Record[1]; 2064 unsigned Column = Record[2]; 2065 MDNode *Scope = MetadataList.getMDNodeFwdRefOrNull(Record[3]); 2066 if (!Scope) 2067 return error("Invalid record"); 2068 Metadata *InlinedAt = 2069 Record[4] ? MetadataList.getMetadataFwdRef(Record[4] - 1) : nullptr; 2070 MetadataList.assignValue( 2071 GET_OR_DISTINCT(DILocation, Record[0], 2072 (Context, Line, Column, Scope, InlinedAt)), 2073 NextMetadataNo++); 2074 break; 2075 } 2076 case bitc::METADATA_GENERIC_DEBUG: { 2077 if (Record.size() < 4) 2078 return error("Invalid record"); 2079 2080 unsigned Tag = Record[1]; 2081 unsigned Version = Record[2]; 2082 2083 if (Tag >= 1u << 16 || Version != 0) 2084 return error("Invalid record"); 2085 2086 auto *Header = getMDString(Record[3]); 2087 SmallVector<Metadata *, 8> DwarfOps; 2088 for (unsigned I = 4, E = Record.size(); I != E; ++I) 2089 DwarfOps.push_back(Record[I] 2090 ? MetadataList.getMetadataFwdRef(Record[I] - 1) 2091 : nullptr); 2092 MetadataList.assignValue( 2093 GET_OR_DISTINCT(GenericDINode, Record[0], 2094 (Context, Tag, Header, DwarfOps)), 2095 NextMetadataNo++); 2096 break; 2097 } 2098 case bitc::METADATA_SUBRANGE: { 2099 if (Record.size() != 3) 2100 return error("Invalid record"); 2101 2102 MetadataList.assignValue( 2103 GET_OR_DISTINCT(DISubrange, Record[0], 2104 (Context, Record[1], unrotateSign(Record[2]))), 2105 NextMetadataNo++); 2106 break; 2107 } 2108 case bitc::METADATA_ENUMERATOR: { 2109 if (Record.size() != 3) 2110 return error("Invalid record"); 2111 2112 MetadataList.assignValue( 2113 GET_OR_DISTINCT( 2114 DIEnumerator, Record[0], 2115 (Context, unrotateSign(Record[1]), getMDString(Record[2]))), 2116 NextMetadataNo++); 2117 break; 2118 } 2119 case bitc::METADATA_BASIC_TYPE: { 2120 if (Record.size() != 6) 2121 return error("Invalid record"); 2122 2123 MetadataList.assignValue( 2124 GET_OR_DISTINCT(DIBasicType, Record[0], 2125 (Context, Record[1], getMDString(Record[2]), 2126 Record[3], Record[4], Record[5])), 2127 NextMetadataNo++); 2128 break; 2129 } 2130 case bitc::METADATA_DERIVED_TYPE: { 2131 if (Record.size() != 12) 2132 return error("Invalid record"); 2133 2134 MetadataList.assignValue( 2135 GET_OR_DISTINCT(DIDerivedType, Record[0], 2136 (Context, Record[1], getMDString(Record[2]), 2137 getMDOrNull(Record[3]), Record[4], 2138 getMDOrNull(Record[5]), getMDOrNull(Record[6]), 2139 Record[7], Record[8], Record[9], Record[10], 2140 getMDOrNull(Record[11]))), 2141 NextMetadataNo++); 2142 break; 2143 } 2144 case bitc::METADATA_COMPOSITE_TYPE: { 2145 if (Record.size() != 16) 2146 return error("Invalid record"); 2147 2148 MetadataList.assignValue( 2149 GET_OR_DISTINCT(DICompositeType, Record[0], 2150 (Context, Record[1], getMDString(Record[2]), 2151 getMDOrNull(Record[3]), Record[4], 2152 getMDOrNull(Record[5]), getMDOrNull(Record[6]), 2153 Record[7], Record[8], Record[9], Record[10], 2154 getMDOrNull(Record[11]), Record[12], 2155 getMDOrNull(Record[13]), getMDOrNull(Record[14]), 2156 getMDString(Record[15]))), 2157 NextMetadataNo++); 2158 break; 2159 } 2160 case bitc::METADATA_SUBROUTINE_TYPE: { 2161 if (Record.size() != 3) 2162 return error("Invalid record"); 2163 2164 MetadataList.assignValue( 2165 GET_OR_DISTINCT(DISubroutineType, Record[0], 2166 (Context, Record[1], getMDOrNull(Record[2]))), 2167 NextMetadataNo++); 2168 break; 2169 } 2170 2171 case bitc::METADATA_MODULE: { 2172 if (Record.size() != 6) 2173 return error("Invalid record"); 2174 2175 MetadataList.assignValue( 2176 GET_OR_DISTINCT(DIModule, Record[0], 2177 (Context, getMDOrNull(Record[1]), 2178 getMDString(Record[2]), getMDString(Record[3]), 2179 getMDString(Record[4]), getMDString(Record[5]))), 2180 NextMetadataNo++); 2181 break; 2182 } 2183 2184 case bitc::METADATA_FILE: { 2185 if (Record.size() != 3) 2186 return error("Invalid record"); 2187 2188 MetadataList.assignValue( 2189 GET_OR_DISTINCT(DIFile, Record[0], (Context, getMDString(Record[1]), 2190 getMDString(Record[2]))), 2191 NextMetadataNo++); 2192 break; 2193 } 2194 case bitc::METADATA_COMPILE_UNIT: { 2195 if (Record.size() < 14 || Record.size() > 16) 2196 return error("Invalid record"); 2197 2198 // Ignore Record[0], which indicates whether this compile unit is 2199 // distinct. It's always distinct. 2200 MetadataList.assignValue( 2201 DICompileUnit::getDistinct( 2202 Context, Record[1], getMDOrNull(Record[2]), 2203 getMDString(Record[3]), Record[4], getMDString(Record[5]), 2204 Record[6], getMDString(Record[7]), Record[8], 2205 getMDOrNull(Record[9]), getMDOrNull(Record[10]), 2206 getMDOrNull(Record[11]), getMDOrNull(Record[12]), 2207 getMDOrNull(Record[13]), 2208 Record.size() <= 15 ? nullptr : getMDOrNull(Record[15]), 2209 Record.size() <= 14 ? 0 : Record[14]), 2210 NextMetadataNo++); 2211 break; 2212 } 2213 case bitc::METADATA_SUBPROGRAM: { 2214 if (Record.size() != 18 && Record.size() != 19) 2215 return error("Invalid record"); 2216 2217 bool HasFn = Record.size() == 19; 2218 DISubprogram *SP = GET_OR_DISTINCT( 2219 DISubprogram, 2220 Record[0] || Record[8], // All definitions should be distinct. 2221 (Context, getMDOrNull(Record[1]), getMDString(Record[2]), 2222 getMDString(Record[3]), getMDOrNull(Record[4]), Record[5], 2223 getMDOrNull(Record[6]), Record[7], Record[8], Record[9], 2224 getMDOrNull(Record[10]), Record[11], Record[12], Record[13], 2225 Record[14], getMDOrNull(Record[15 + HasFn]), 2226 getMDOrNull(Record[16 + HasFn]), getMDOrNull(Record[17 + HasFn]))); 2227 MetadataList.assignValue(SP, NextMetadataNo++); 2228 2229 // Upgrade sp->function mapping to function->sp mapping. 2230 if (HasFn && Record[15]) { 2231 if (auto *CMD = dyn_cast<ConstantAsMetadata>(getMDOrNull(Record[15]))) 2232 if (auto *F = dyn_cast<Function>(CMD->getValue())) { 2233 if (F->isMaterializable()) 2234 // Defer until materialized; unmaterialized functions may not have 2235 // metadata. 2236 FunctionsWithSPs[F] = SP; 2237 else if (!F->empty()) 2238 F->setSubprogram(SP); 2239 } 2240 } 2241 break; 2242 } 2243 case bitc::METADATA_LEXICAL_BLOCK: { 2244 if (Record.size() != 5) 2245 return error("Invalid record"); 2246 2247 MetadataList.assignValue( 2248 GET_OR_DISTINCT(DILexicalBlock, Record[0], 2249 (Context, getMDOrNull(Record[1]), 2250 getMDOrNull(Record[2]), Record[3], Record[4])), 2251 NextMetadataNo++); 2252 break; 2253 } 2254 case bitc::METADATA_LEXICAL_BLOCK_FILE: { 2255 if (Record.size() != 4) 2256 return error("Invalid record"); 2257 2258 MetadataList.assignValue( 2259 GET_OR_DISTINCT(DILexicalBlockFile, Record[0], 2260 (Context, getMDOrNull(Record[1]), 2261 getMDOrNull(Record[2]), Record[3])), 2262 NextMetadataNo++); 2263 break; 2264 } 2265 case bitc::METADATA_NAMESPACE: { 2266 if (Record.size() != 5) 2267 return error("Invalid record"); 2268 2269 MetadataList.assignValue( 2270 GET_OR_DISTINCT(DINamespace, Record[0], 2271 (Context, getMDOrNull(Record[1]), 2272 getMDOrNull(Record[2]), getMDString(Record[3]), 2273 Record[4])), 2274 NextMetadataNo++); 2275 break; 2276 } 2277 case bitc::METADATA_MACRO: { 2278 if (Record.size() != 5) 2279 return error("Invalid record"); 2280 2281 MetadataList.assignValue( 2282 GET_OR_DISTINCT(DIMacro, Record[0], 2283 (Context, Record[1], Record[2], 2284 getMDString(Record[3]), getMDString(Record[4]))), 2285 NextMetadataNo++); 2286 break; 2287 } 2288 case bitc::METADATA_MACRO_FILE: { 2289 if (Record.size() != 5) 2290 return error("Invalid record"); 2291 2292 MetadataList.assignValue( 2293 GET_OR_DISTINCT(DIMacroFile, Record[0], 2294 (Context, Record[1], Record[2], 2295 getMDOrNull(Record[3]), getMDOrNull(Record[4]))), 2296 NextMetadataNo++); 2297 break; 2298 } 2299 case bitc::METADATA_TEMPLATE_TYPE: { 2300 if (Record.size() != 3) 2301 return error("Invalid record"); 2302 2303 MetadataList.assignValue(GET_OR_DISTINCT(DITemplateTypeParameter, 2304 Record[0], 2305 (Context, getMDString(Record[1]), 2306 getMDOrNull(Record[2]))), 2307 NextMetadataNo++); 2308 break; 2309 } 2310 case bitc::METADATA_TEMPLATE_VALUE: { 2311 if (Record.size() != 5) 2312 return error("Invalid record"); 2313 2314 MetadataList.assignValue( 2315 GET_OR_DISTINCT(DITemplateValueParameter, Record[0], 2316 (Context, Record[1], getMDString(Record[2]), 2317 getMDOrNull(Record[3]), getMDOrNull(Record[4]))), 2318 NextMetadataNo++); 2319 break; 2320 } 2321 case bitc::METADATA_GLOBAL_VAR: { 2322 if (Record.size() != 11) 2323 return error("Invalid record"); 2324 2325 MetadataList.assignValue( 2326 GET_OR_DISTINCT(DIGlobalVariable, Record[0], 2327 (Context, getMDOrNull(Record[1]), 2328 getMDString(Record[2]), getMDString(Record[3]), 2329 getMDOrNull(Record[4]), Record[5], 2330 getMDOrNull(Record[6]), Record[7], Record[8], 2331 getMDOrNull(Record[9]), getMDOrNull(Record[10]))), 2332 NextMetadataNo++); 2333 break; 2334 } 2335 case bitc::METADATA_LOCAL_VAR: { 2336 // 10th field is for the obseleted 'inlinedAt:' field. 2337 if (Record.size() < 8 || Record.size() > 10) 2338 return error("Invalid record"); 2339 2340 // 2nd field used to be an artificial tag, either DW_TAG_auto_variable or 2341 // DW_TAG_arg_variable. 2342 bool HasTag = Record.size() > 8; 2343 MetadataList.assignValue( 2344 GET_OR_DISTINCT(DILocalVariable, Record[0], 2345 (Context, getMDOrNull(Record[1 + HasTag]), 2346 getMDString(Record[2 + HasTag]), 2347 getMDOrNull(Record[3 + HasTag]), Record[4 + HasTag], 2348 getMDOrNull(Record[5 + HasTag]), Record[6 + HasTag], 2349 Record[7 + HasTag])), 2350 NextMetadataNo++); 2351 break; 2352 } 2353 case bitc::METADATA_EXPRESSION: { 2354 if (Record.size() < 1) 2355 return error("Invalid record"); 2356 2357 MetadataList.assignValue( 2358 GET_OR_DISTINCT(DIExpression, Record[0], 2359 (Context, makeArrayRef(Record).slice(1))), 2360 NextMetadataNo++); 2361 break; 2362 } 2363 case bitc::METADATA_OBJC_PROPERTY: { 2364 if (Record.size() != 8) 2365 return error("Invalid record"); 2366 2367 MetadataList.assignValue( 2368 GET_OR_DISTINCT(DIObjCProperty, Record[0], 2369 (Context, getMDString(Record[1]), 2370 getMDOrNull(Record[2]), Record[3], 2371 getMDString(Record[4]), getMDString(Record[5]), 2372 Record[6], getMDOrNull(Record[7]))), 2373 NextMetadataNo++); 2374 break; 2375 } 2376 case bitc::METADATA_IMPORTED_ENTITY: { 2377 if (Record.size() != 6) 2378 return error("Invalid record"); 2379 2380 MetadataList.assignValue( 2381 GET_OR_DISTINCT(DIImportedEntity, Record[0], 2382 (Context, Record[1], getMDOrNull(Record[2]), 2383 getMDOrNull(Record[3]), Record[4], 2384 getMDString(Record[5]))), 2385 NextMetadataNo++); 2386 break; 2387 } 2388 case bitc::METADATA_STRING: { 2389 std::string String(Record.begin(), Record.end()); 2390 2391 // Test for upgrading !llvm.loop. 2392 HasSeenOldLoopTags |= mayBeOldLoopAttachmentTag(String); 2393 2394 Metadata *MD = MDString::get(Context, String); 2395 MetadataList.assignValue(MD, NextMetadataNo++); 2396 break; 2397 } 2398 case bitc::METADATA_KIND: { 2399 // Support older bitcode files that had METADATA_KIND records in a 2400 // block with METADATA_BLOCK_ID. 2401 if (std::error_code EC = parseMetadataKindRecord(Record)) 2402 return EC; 2403 break; 2404 } 2405 } 2406 } 2407 #undef GET_OR_DISTINCT 2408 } 2409 2410 /// Parse the metadata kinds out of the METADATA_KIND_BLOCK. 2411 std::error_code BitcodeReader::parseMetadataKinds() { 2412 if (Stream.EnterSubBlock(bitc::METADATA_KIND_BLOCK_ID)) 2413 return error("Invalid record"); 2414 2415 SmallVector<uint64_t, 64> Record; 2416 2417 // Read all the records. 2418 while (1) { 2419 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2420 2421 switch (Entry.Kind) { 2422 case BitstreamEntry::SubBlock: // Handled for us already. 2423 case BitstreamEntry::Error: 2424 return error("Malformed block"); 2425 case BitstreamEntry::EndBlock: 2426 return std::error_code(); 2427 case BitstreamEntry::Record: 2428 // The interesting case. 2429 break; 2430 } 2431 2432 // Read a record. 2433 Record.clear(); 2434 unsigned Code = Stream.readRecord(Entry.ID, Record); 2435 switch (Code) { 2436 default: // Default behavior: ignore. 2437 break; 2438 case bitc::METADATA_KIND: { 2439 if (std::error_code EC = parseMetadataKindRecord(Record)) 2440 return EC; 2441 break; 2442 } 2443 } 2444 } 2445 } 2446 2447 /// Decode a signed value stored with the sign bit in the LSB for dense VBR 2448 /// encoding. 2449 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { 2450 if ((V & 1) == 0) 2451 return V >> 1; 2452 if (V != 1) 2453 return -(V >> 1); 2454 // There is no such thing as -0 with integers. "-0" really means MININT. 2455 return 1ULL << 63; 2456 } 2457 2458 /// Resolve all of the initializers for global values and aliases that we can. 2459 std::error_code BitcodeReader::resolveGlobalAndAliasInits() { 2460 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist; 2461 std::vector<std::pair<GlobalAlias*, unsigned> > AliasInitWorklist; 2462 std::vector<std::pair<Function*, unsigned> > FunctionPrefixWorklist; 2463 std::vector<std::pair<Function*, unsigned> > FunctionPrologueWorklist; 2464 std::vector<std::pair<Function*, unsigned> > FunctionPersonalityFnWorklist; 2465 2466 GlobalInitWorklist.swap(GlobalInits); 2467 AliasInitWorklist.swap(AliasInits); 2468 FunctionPrefixWorklist.swap(FunctionPrefixes); 2469 FunctionPrologueWorklist.swap(FunctionPrologues); 2470 FunctionPersonalityFnWorklist.swap(FunctionPersonalityFns); 2471 2472 while (!GlobalInitWorklist.empty()) { 2473 unsigned ValID = GlobalInitWorklist.back().second; 2474 if (ValID >= ValueList.size()) { 2475 // Not ready to resolve this yet, it requires something later in the file. 2476 GlobalInits.push_back(GlobalInitWorklist.back()); 2477 } else { 2478 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2479 GlobalInitWorklist.back().first->setInitializer(C); 2480 else 2481 return error("Expected a constant"); 2482 } 2483 GlobalInitWorklist.pop_back(); 2484 } 2485 2486 while (!AliasInitWorklist.empty()) { 2487 unsigned ValID = AliasInitWorklist.back().second; 2488 if (ValID >= ValueList.size()) { 2489 AliasInits.push_back(AliasInitWorklist.back()); 2490 } else { 2491 Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]); 2492 if (!C) 2493 return error("Expected a constant"); 2494 GlobalAlias *Alias = AliasInitWorklist.back().first; 2495 if (C->getType() != Alias->getType()) 2496 return error("Alias and aliasee types don't match"); 2497 Alias->setAliasee(C); 2498 } 2499 AliasInitWorklist.pop_back(); 2500 } 2501 2502 while (!FunctionPrefixWorklist.empty()) { 2503 unsigned ValID = FunctionPrefixWorklist.back().second; 2504 if (ValID >= ValueList.size()) { 2505 FunctionPrefixes.push_back(FunctionPrefixWorklist.back()); 2506 } else { 2507 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2508 FunctionPrefixWorklist.back().first->setPrefixData(C); 2509 else 2510 return error("Expected a constant"); 2511 } 2512 FunctionPrefixWorklist.pop_back(); 2513 } 2514 2515 while (!FunctionPrologueWorklist.empty()) { 2516 unsigned ValID = FunctionPrologueWorklist.back().second; 2517 if (ValID >= ValueList.size()) { 2518 FunctionPrologues.push_back(FunctionPrologueWorklist.back()); 2519 } else { 2520 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2521 FunctionPrologueWorklist.back().first->setPrologueData(C); 2522 else 2523 return error("Expected a constant"); 2524 } 2525 FunctionPrologueWorklist.pop_back(); 2526 } 2527 2528 while (!FunctionPersonalityFnWorklist.empty()) { 2529 unsigned ValID = FunctionPersonalityFnWorklist.back().second; 2530 if (ValID >= ValueList.size()) { 2531 FunctionPersonalityFns.push_back(FunctionPersonalityFnWorklist.back()); 2532 } else { 2533 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2534 FunctionPersonalityFnWorklist.back().first->setPersonalityFn(C); 2535 else 2536 return error("Expected a constant"); 2537 } 2538 FunctionPersonalityFnWorklist.pop_back(); 2539 } 2540 2541 return std::error_code(); 2542 } 2543 2544 static APInt readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { 2545 SmallVector<uint64_t, 8> Words(Vals.size()); 2546 std::transform(Vals.begin(), Vals.end(), Words.begin(), 2547 BitcodeReader::decodeSignRotatedValue); 2548 2549 return APInt(TypeBits, Words); 2550 } 2551 2552 std::error_code BitcodeReader::parseConstants() { 2553 if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 2554 return error("Invalid record"); 2555 2556 SmallVector<uint64_t, 64> Record; 2557 2558 // Read all the records for this value table. 2559 Type *CurTy = Type::getInt32Ty(Context); 2560 unsigned NextCstNo = ValueList.size(); 2561 while (1) { 2562 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2563 2564 switch (Entry.Kind) { 2565 case BitstreamEntry::SubBlock: // Handled for us already. 2566 case BitstreamEntry::Error: 2567 return error("Malformed block"); 2568 case BitstreamEntry::EndBlock: 2569 if (NextCstNo != ValueList.size()) 2570 return error("Invalid constant reference"); 2571 2572 // Once all the constants have been read, go through and resolve forward 2573 // references. 2574 ValueList.resolveConstantForwardRefs(); 2575 return std::error_code(); 2576 case BitstreamEntry::Record: 2577 // The interesting case. 2578 break; 2579 } 2580 2581 // Read a record. 2582 Record.clear(); 2583 Value *V = nullptr; 2584 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 2585 switch (BitCode) { 2586 default: // Default behavior: unknown constant 2587 case bitc::CST_CODE_UNDEF: // UNDEF 2588 V = UndefValue::get(CurTy); 2589 break; 2590 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 2591 if (Record.empty()) 2592 return error("Invalid record"); 2593 if (Record[0] >= TypeList.size() || !TypeList[Record[0]]) 2594 return error("Invalid record"); 2595 CurTy = TypeList[Record[0]]; 2596 continue; // Skip the ValueList manipulation. 2597 case bitc::CST_CODE_NULL: // NULL 2598 V = Constant::getNullValue(CurTy); 2599 break; 2600 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 2601 if (!CurTy->isIntegerTy() || Record.empty()) 2602 return error("Invalid record"); 2603 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); 2604 break; 2605 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 2606 if (!CurTy->isIntegerTy() || Record.empty()) 2607 return error("Invalid record"); 2608 2609 APInt VInt = 2610 readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth()); 2611 V = ConstantInt::get(Context, VInt); 2612 2613 break; 2614 } 2615 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 2616 if (Record.empty()) 2617 return error("Invalid record"); 2618 if (CurTy->isHalfTy()) 2619 V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf, 2620 APInt(16, (uint16_t)Record[0]))); 2621 else if (CurTy->isFloatTy()) 2622 V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle, 2623 APInt(32, (uint32_t)Record[0]))); 2624 else if (CurTy->isDoubleTy()) 2625 V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble, 2626 APInt(64, Record[0]))); 2627 else if (CurTy->isX86_FP80Ty()) { 2628 // Bits are not stored the same way as a normal i80 APInt, compensate. 2629 uint64_t Rearrange[2]; 2630 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 2631 Rearrange[1] = Record[0] >> 48; 2632 V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended, 2633 APInt(80, Rearrange))); 2634 } else if (CurTy->isFP128Ty()) 2635 V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad, 2636 APInt(128, Record))); 2637 else if (CurTy->isPPC_FP128Ty()) 2638 V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble, 2639 APInt(128, Record))); 2640 else 2641 V = UndefValue::get(CurTy); 2642 break; 2643 } 2644 2645 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 2646 if (Record.empty()) 2647 return error("Invalid record"); 2648 2649 unsigned Size = Record.size(); 2650 SmallVector<Constant*, 16> Elts; 2651 2652 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 2653 for (unsigned i = 0; i != Size; ++i) 2654 Elts.push_back(ValueList.getConstantFwdRef(Record[i], 2655 STy->getElementType(i))); 2656 V = ConstantStruct::get(STy, Elts); 2657 } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) { 2658 Type *EltTy = ATy->getElementType(); 2659 for (unsigned i = 0; i != Size; ++i) 2660 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2661 V = ConstantArray::get(ATy, Elts); 2662 } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) { 2663 Type *EltTy = VTy->getElementType(); 2664 for (unsigned i = 0; i != Size; ++i) 2665 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2666 V = ConstantVector::get(Elts); 2667 } else { 2668 V = UndefValue::get(CurTy); 2669 } 2670 break; 2671 } 2672 case bitc::CST_CODE_STRING: // STRING: [values] 2673 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 2674 if (Record.empty()) 2675 return error("Invalid record"); 2676 2677 SmallString<16> Elts(Record.begin(), Record.end()); 2678 V = ConstantDataArray::getString(Context, Elts, 2679 BitCode == bitc::CST_CODE_CSTRING); 2680 break; 2681 } 2682 case bitc::CST_CODE_DATA: {// DATA: [n x value] 2683 if (Record.empty()) 2684 return error("Invalid record"); 2685 2686 Type *EltTy = cast<SequentialType>(CurTy)->getElementType(); 2687 if (EltTy->isIntegerTy(8)) { 2688 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); 2689 if (isa<VectorType>(CurTy)) 2690 V = ConstantDataVector::get(Context, Elts); 2691 else 2692 V = ConstantDataArray::get(Context, Elts); 2693 } else if (EltTy->isIntegerTy(16)) { 2694 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2695 if (isa<VectorType>(CurTy)) 2696 V = ConstantDataVector::get(Context, Elts); 2697 else 2698 V = ConstantDataArray::get(Context, Elts); 2699 } else if (EltTy->isIntegerTy(32)) { 2700 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2701 if (isa<VectorType>(CurTy)) 2702 V = ConstantDataVector::get(Context, Elts); 2703 else 2704 V = ConstantDataArray::get(Context, Elts); 2705 } else if (EltTy->isIntegerTy(64)) { 2706 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2707 if (isa<VectorType>(CurTy)) 2708 V = ConstantDataVector::get(Context, Elts); 2709 else 2710 V = ConstantDataArray::get(Context, Elts); 2711 } else if (EltTy->isHalfTy()) { 2712 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2713 if (isa<VectorType>(CurTy)) 2714 V = ConstantDataVector::getFP(Context, Elts); 2715 else 2716 V = ConstantDataArray::getFP(Context, Elts); 2717 } else if (EltTy->isFloatTy()) { 2718 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2719 if (isa<VectorType>(CurTy)) 2720 V = ConstantDataVector::getFP(Context, Elts); 2721 else 2722 V = ConstantDataArray::getFP(Context, Elts); 2723 } else if (EltTy->isDoubleTy()) { 2724 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2725 if (isa<VectorType>(CurTy)) 2726 V = ConstantDataVector::getFP(Context, Elts); 2727 else 2728 V = ConstantDataArray::getFP(Context, Elts); 2729 } else { 2730 return error("Invalid type for value"); 2731 } 2732 break; 2733 } 2734 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 2735 if (Record.size() < 3) 2736 return error("Invalid record"); 2737 int Opc = getDecodedBinaryOpcode(Record[0], CurTy); 2738 if (Opc < 0) { 2739 V = UndefValue::get(CurTy); // Unknown binop. 2740 } else { 2741 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 2742 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy); 2743 unsigned Flags = 0; 2744 if (Record.size() >= 4) { 2745 if (Opc == Instruction::Add || 2746 Opc == Instruction::Sub || 2747 Opc == Instruction::Mul || 2748 Opc == Instruction::Shl) { 2749 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 2750 Flags |= OverflowingBinaryOperator::NoSignedWrap; 2751 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 2752 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 2753 } else if (Opc == Instruction::SDiv || 2754 Opc == Instruction::UDiv || 2755 Opc == Instruction::LShr || 2756 Opc == Instruction::AShr) { 2757 if (Record[3] & (1 << bitc::PEO_EXACT)) 2758 Flags |= SDivOperator::IsExact; 2759 } 2760 } 2761 V = ConstantExpr::get(Opc, LHS, RHS, Flags); 2762 } 2763 break; 2764 } 2765 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 2766 if (Record.size() < 3) 2767 return error("Invalid record"); 2768 int Opc = getDecodedCastOpcode(Record[0]); 2769 if (Opc < 0) { 2770 V = UndefValue::get(CurTy); // Unknown cast. 2771 } else { 2772 Type *OpTy = getTypeByID(Record[1]); 2773 if (!OpTy) 2774 return error("Invalid record"); 2775 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy); 2776 V = UpgradeBitCastExpr(Opc, Op, CurTy); 2777 if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy); 2778 } 2779 break; 2780 } 2781 case bitc::CST_CODE_CE_INBOUNDS_GEP: 2782 case bitc::CST_CODE_CE_GEP: { // CE_GEP: [n x operands] 2783 unsigned OpNum = 0; 2784 Type *PointeeType = nullptr; 2785 if (Record.size() % 2) 2786 PointeeType = getTypeByID(Record[OpNum++]); 2787 SmallVector<Constant*, 16> Elts; 2788 while (OpNum != Record.size()) { 2789 Type *ElTy = getTypeByID(Record[OpNum++]); 2790 if (!ElTy) 2791 return error("Invalid record"); 2792 Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy)); 2793 } 2794 2795 if (PointeeType && 2796 PointeeType != 2797 cast<SequentialType>(Elts[0]->getType()->getScalarType()) 2798 ->getElementType()) 2799 return error("Explicit gep operator type does not match pointee type " 2800 "of pointer operand"); 2801 2802 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 2803 V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices, 2804 BitCode == 2805 bitc::CST_CODE_CE_INBOUNDS_GEP); 2806 break; 2807 } 2808 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] 2809 if (Record.size() < 3) 2810 return error("Invalid record"); 2811 2812 Type *SelectorTy = Type::getInt1Ty(Context); 2813 2814 // The selector might be an i1 or an <n x i1> 2815 // Get the type from the ValueList before getting a forward ref. 2816 if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) 2817 if (Value *V = ValueList[Record[0]]) 2818 if (SelectorTy != V->getType()) 2819 SelectorTy = VectorType::get(SelectorTy, VTy->getNumElements()); 2820 2821 V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0], 2822 SelectorTy), 2823 ValueList.getConstantFwdRef(Record[1],CurTy), 2824 ValueList.getConstantFwdRef(Record[2],CurTy)); 2825 break; 2826 } 2827 case bitc::CST_CODE_CE_EXTRACTELT 2828 : { // CE_EXTRACTELT: [opty, opval, opty, opval] 2829 if (Record.size() < 3) 2830 return error("Invalid record"); 2831 VectorType *OpTy = 2832 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2833 if (!OpTy) 2834 return error("Invalid record"); 2835 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2836 Constant *Op1 = nullptr; 2837 if (Record.size() == 4) { 2838 Type *IdxTy = getTypeByID(Record[2]); 2839 if (!IdxTy) 2840 return error("Invalid record"); 2841 Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2842 } else // TODO: Remove with llvm 4.0 2843 Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2844 if (!Op1) 2845 return error("Invalid record"); 2846 V = ConstantExpr::getExtractElement(Op0, Op1); 2847 break; 2848 } 2849 case bitc::CST_CODE_CE_INSERTELT 2850 : { // CE_INSERTELT: [opval, opval, opty, opval] 2851 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2852 if (Record.size() < 3 || !OpTy) 2853 return error("Invalid record"); 2854 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2855 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], 2856 OpTy->getElementType()); 2857 Constant *Op2 = nullptr; 2858 if (Record.size() == 4) { 2859 Type *IdxTy = getTypeByID(Record[2]); 2860 if (!IdxTy) 2861 return error("Invalid record"); 2862 Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2863 } else // TODO: Remove with llvm 4.0 2864 Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2865 if (!Op2) 2866 return error("Invalid record"); 2867 V = ConstantExpr::getInsertElement(Op0, Op1, Op2); 2868 break; 2869 } 2870 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 2871 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2872 if (Record.size() < 3 || !OpTy) 2873 return error("Invalid record"); 2874 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2875 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy); 2876 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 2877 OpTy->getNumElements()); 2878 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy); 2879 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 2880 break; 2881 } 2882 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 2883 VectorType *RTy = dyn_cast<VectorType>(CurTy); 2884 VectorType *OpTy = 2885 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2886 if (Record.size() < 4 || !RTy || !OpTy) 2887 return error("Invalid record"); 2888 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2889 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2890 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 2891 RTy->getNumElements()); 2892 Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy); 2893 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 2894 break; 2895 } 2896 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 2897 if (Record.size() < 4) 2898 return error("Invalid record"); 2899 Type *OpTy = getTypeByID(Record[0]); 2900 if (!OpTy) 2901 return error("Invalid record"); 2902 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2903 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2904 2905 if (OpTy->isFPOrFPVectorTy()) 2906 V = ConstantExpr::getFCmp(Record[3], Op0, Op1); 2907 else 2908 V = ConstantExpr::getICmp(Record[3], Op0, Op1); 2909 break; 2910 } 2911 // This maintains backward compatibility, pre-asm dialect keywords. 2912 // FIXME: Remove with the 4.0 release. 2913 case bitc::CST_CODE_INLINEASM_OLD: { 2914 if (Record.size() < 2) 2915 return error("Invalid record"); 2916 std::string AsmStr, ConstrStr; 2917 bool HasSideEffects = Record[0] & 1; 2918 bool IsAlignStack = Record[0] >> 1; 2919 unsigned AsmStrSize = Record[1]; 2920 if (2+AsmStrSize >= Record.size()) 2921 return error("Invalid record"); 2922 unsigned ConstStrSize = Record[2+AsmStrSize]; 2923 if (3+AsmStrSize+ConstStrSize > Record.size()) 2924 return error("Invalid record"); 2925 2926 for (unsigned i = 0; i != AsmStrSize; ++i) 2927 AsmStr += (char)Record[2+i]; 2928 for (unsigned i = 0; i != ConstStrSize; ++i) 2929 ConstrStr += (char)Record[3+AsmStrSize+i]; 2930 PointerType *PTy = cast<PointerType>(CurTy); 2931 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 2932 AsmStr, ConstrStr, HasSideEffects, IsAlignStack); 2933 break; 2934 } 2935 // This version adds support for the asm dialect keywords (e.g., 2936 // inteldialect). 2937 case bitc::CST_CODE_INLINEASM: { 2938 if (Record.size() < 2) 2939 return error("Invalid record"); 2940 std::string AsmStr, ConstrStr; 2941 bool HasSideEffects = Record[0] & 1; 2942 bool IsAlignStack = (Record[0] >> 1) & 1; 2943 unsigned AsmDialect = Record[0] >> 2; 2944 unsigned AsmStrSize = Record[1]; 2945 if (2+AsmStrSize >= Record.size()) 2946 return error("Invalid record"); 2947 unsigned ConstStrSize = Record[2+AsmStrSize]; 2948 if (3+AsmStrSize+ConstStrSize > Record.size()) 2949 return error("Invalid record"); 2950 2951 for (unsigned i = 0; i != AsmStrSize; ++i) 2952 AsmStr += (char)Record[2+i]; 2953 for (unsigned i = 0; i != ConstStrSize; ++i) 2954 ConstrStr += (char)Record[3+AsmStrSize+i]; 2955 PointerType *PTy = cast<PointerType>(CurTy); 2956 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 2957 AsmStr, ConstrStr, HasSideEffects, IsAlignStack, 2958 InlineAsm::AsmDialect(AsmDialect)); 2959 break; 2960 } 2961 case bitc::CST_CODE_BLOCKADDRESS:{ 2962 if (Record.size() < 3) 2963 return error("Invalid record"); 2964 Type *FnTy = getTypeByID(Record[0]); 2965 if (!FnTy) 2966 return error("Invalid record"); 2967 Function *Fn = 2968 dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy)); 2969 if (!Fn) 2970 return error("Invalid record"); 2971 2972 // If the function is already parsed we can insert the block address right 2973 // away. 2974 BasicBlock *BB; 2975 unsigned BBID = Record[2]; 2976 if (!BBID) 2977 // Invalid reference to entry block. 2978 return error("Invalid ID"); 2979 if (!Fn->empty()) { 2980 Function::iterator BBI = Fn->begin(), BBE = Fn->end(); 2981 for (size_t I = 0, E = BBID; I != E; ++I) { 2982 if (BBI == BBE) 2983 return error("Invalid ID"); 2984 ++BBI; 2985 } 2986 BB = &*BBI; 2987 } else { 2988 // Otherwise insert a placeholder and remember it so it can be inserted 2989 // when the function is parsed. 2990 auto &FwdBBs = BasicBlockFwdRefs[Fn]; 2991 if (FwdBBs.empty()) 2992 BasicBlockFwdRefQueue.push_back(Fn); 2993 if (FwdBBs.size() < BBID + 1) 2994 FwdBBs.resize(BBID + 1); 2995 if (!FwdBBs[BBID]) 2996 FwdBBs[BBID] = BasicBlock::Create(Context); 2997 BB = FwdBBs[BBID]; 2998 } 2999 V = BlockAddress::get(Fn, BB); 3000 break; 3001 } 3002 } 3003 3004 ValueList.assignValue(V, NextCstNo); 3005 ++NextCstNo; 3006 } 3007 } 3008 3009 std::error_code BitcodeReader::parseUseLists() { 3010 if (Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 3011 return error("Invalid record"); 3012 3013 // Read all the records. 3014 SmallVector<uint64_t, 64> Record; 3015 while (1) { 3016 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 3017 3018 switch (Entry.Kind) { 3019 case BitstreamEntry::SubBlock: // Handled for us already. 3020 case BitstreamEntry::Error: 3021 return error("Malformed block"); 3022 case BitstreamEntry::EndBlock: 3023 return std::error_code(); 3024 case BitstreamEntry::Record: 3025 // The interesting case. 3026 break; 3027 } 3028 3029 // Read a use list record. 3030 Record.clear(); 3031 bool IsBB = false; 3032 switch (Stream.readRecord(Entry.ID, Record)) { 3033 default: // Default behavior: unknown type. 3034 break; 3035 case bitc::USELIST_CODE_BB: 3036 IsBB = true; 3037 // fallthrough 3038 case bitc::USELIST_CODE_DEFAULT: { 3039 unsigned RecordLength = Record.size(); 3040 if (RecordLength < 3) 3041 // Records should have at least an ID and two indexes. 3042 return error("Invalid record"); 3043 unsigned ID = Record.back(); 3044 Record.pop_back(); 3045 3046 Value *V; 3047 if (IsBB) { 3048 assert(ID < FunctionBBs.size() && "Basic block not found"); 3049 V = FunctionBBs[ID]; 3050 } else 3051 V = ValueList[ID]; 3052 unsigned NumUses = 0; 3053 SmallDenseMap<const Use *, unsigned, 16> Order; 3054 for (const Use &U : V->materialized_uses()) { 3055 if (++NumUses > Record.size()) 3056 break; 3057 Order[&U] = Record[NumUses - 1]; 3058 } 3059 if (Order.size() != Record.size() || NumUses > Record.size()) 3060 // Mismatches can happen if the functions are being materialized lazily 3061 // (out-of-order), or a value has been upgraded. 3062 break; 3063 3064 V->sortUseList([&](const Use &L, const Use &R) { 3065 return Order.lookup(&L) < Order.lookup(&R); 3066 }); 3067 break; 3068 } 3069 } 3070 } 3071 } 3072 3073 /// When we see the block for metadata, remember where it is and then skip it. 3074 /// This lets us lazily deserialize the metadata. 3075 std::error_code BitcodeReader::rememberAndSkipMetadata() { 3076 // Save the current stream state. 3077 uint64_t CurBit = Stream.GetCurrentBitNo(); 3078 DeferredMetadataInfo.push_back(CurBit); 3079 3080 // Skip over the block for now. 3081 if (Stream.SkipBlock()) 3082 return error("Invalid record"); 3083 return std::error_code(); 3084 } 3085 3086 std::error_code BitcodeReader::materializeMetadata() { 3087 for (uint64_t BitPos : DeferredMetadataInfo) { 3088 // Move the bit stream to the saved position. 3089 Stream.JumpToBit(BitPos); 3090 if (std::error_code EC = parseMetadata(true)) 3091 return EC; 3092 } 3093 DeferredMetadataInfo.clear(); 3094 return std::error_code(); 3095 } 3096 3097 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; } 3098 3099 void BitcodeReader::saveMetadataList( 3100 DenseMap<const Metadata *, unsigned> &MetadataToIDs, bool OnlyTempMD) { 3101 for (unsigned ID = 0; ID < MetadataList.size(); ++ID) { 3102 Metadata *MD = MetadataList[ID]; 3103 auto *N = dyn_cast_or_null<MDNode>(MD); 3104 assert((!N || (N->isResolved() || N->isTemporary())) && 3105 "Found non-resolved non-temp MDNode while saving metadata"); 3106 // Save all values if !OnlyTempMD, otherwise just the temporary metadata. 3107 // Note that in the !OnlyTempMD case we need to save all Metadata, not 3108 // just MDNode, as we may have references to other types of module-level 3109 // metadata (e.g. ValueAsMetadata) from instructions. 3110 if (!OnlyTempMD || (N && N->isTemporary())) { 3111 // Will call this after materializing each function, in order to 3112 // handle remapping of the function's instructions/metadata. 3113 auto IterBool = MetadataToIDs.insert(std::make_pair(MD, ID)); 3114 // See if we already have an entry in that case. 3115 if (OnlyTempMD && !IterBool.second) { 3116 assert(IterBool.first->second == ID && 3117 "Inconsistent metadata value id"); 3118 continue; 3119 } 3120 if (N && N->isTemporary()) 3121 // Ensure that we assert if someone tries to RAUW this temporary 3122 // metadata while it is the key of a map. The flag will be set back 3123 // to true when the saved metadata list is destroyed. 3124 N->setCanReplace(false); 3125 } 3126 } 3127 } 3128 3129 /// When we see the block for a function body, remember where it is and then 3130 /// skip it. This lets us lazily deserialize the functions. 3131 std::error_code BitcodeReader::rememberAndSkipFunctionBody() { 3132 // Get the function we are talking about. 3133 if (FunctionsWithBodies.empty()) 3134 return error("Insufficient function protos"); 3135 3136 Function *Fn = FunctionsWithBodies.back(); 3137 FunctionsWithBodies.pop_back(); 3138 3139 // Save the current stream state. 3140 uint64_t CurBit = Stream.GetCurrentBitNo(); 3141 assert( 3142 (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) && 3143 "Mismatch between VST and scanned function offsets"); 3144 DeferredFunctionInfo[Fn] = CurBit; 3145 3146 // Skip over the function block for now. 3147 if (Stream.SkipBlock()) 3148 return error("Invalid record"); 3149 return std::error_code(); 3150 } 3151 3152 std::error_code BitcodeReader::globalCleanup() { 3153 // Patch the initializers for globals and aliases up. 3154 resolveGlobalAndAliasInits(); 3155 if (!GlobalInits.empty() || !AliasInits.empty()) 3156 return error("Malformed global initializer set"); 3157 3158 // Look for intrinsic functions which need to be upgraded at some point 3159 for (Function &F : *TheModule) { 3160 Function *NewFn; 3161 if (UpgradeIntrinsicFunction(&F, NewFn)) 3162 UpgradedIntrinsics[&F] = NewFn; 3163 } 3164 3165 // Look for global variables which need to be renamed. 3166 for (GlobalVariable &GV : TheModule->globals()) 3167 UpgradeGlobalVariable(&GV); 3168 3169 // Force deallocation of memory for these vectors to favor the client that 3170 // want lazy deserialization. 3171 std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits); 3172 std::vector<std::pair<GlobalAlias*, unsigned> >().swap(AliasInits); 3173 return std::error_code(); 3174 } 3175 3176 /// Support for lazy parsing of function bodies. This is required if we 3177 /// either have an old bitcode file without a VST forward declaration record, 3178 /// or if we have an anonymous function being materialized, since anonymous 3179 /// functions do not have a name and are therefore not in the VST. 3180 std::error_code BitcodeReader::rememberAndSkipFunctionBodies() { 3181 Stream.JumpToBit(NextUnreadBit); 3182 3183 if (Stream.AtEndOfStream()) 3184 return error("Could not find function in stream"); 3185 3186 if (!SeenFirstFunctionBody) 3187 return error("Trying to materialize functions before seeing function blocks"); 3188 3189 // An old bitcode file with the symbol table at the end would have 3190 // finished the parse greedily. 3191 assert(SeenValueSymbolTable); 3192 3193 SmallVector<uint64_t, 64> Record; 3194 3195 while (1) { 3196 BitstreamEntry Entry = Stream.advance(); 3197 switch (Entry.Kind) { 3198 default: 3199 return error("Expect SubBlock"); 3200 case BitstreamEntry::SubBlock: 3201 switch (Entry.ID) { 3202 default: 3203 return error("Expect function block"); 3204 case bitc::FUNCTION_BLOCK_ID: 3205 if (std::error_code EC = rememberAndSkipFunctionBody()) 3206 return EC; 3207 NextUnreadBit = Stream.GetCurrentBitNo(); 3208 return std::error_code(); 3209 } 3210 } 3211 } 3212 } 3213 3214 std::error_code BitcodeReader::parseBitcodeVersion() { 3215 if (Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID)) 3216 return error("Invalid record"); 3217 3218 // Read all the records. 3219 SmallVector<uint64_t, 64> Record; 3220 while (1) { 3221 BitstreamEntry Entry = Stream.advance(); 3222 3223 switch (Entry.Kind) { 3224 default: 3225 case BitstreamEntry::Error: 3226 return error("Malformed block"); 3227 case BitstreamEntry::EndBlock: 3228 return std::error_code(); 3229 case BitstreamEntry::Record: 3230 // The interesting case. 3231 break; 3232 } 3233 3234 // Read a record. 3235 Record.clear(); 3236 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 3237 switch (BitCode) { 3238 default: // Default behavior: reject 3239 return error("Invalid value"); 3240 case bitc::IDENTIFICATION_CODE_STRING: { // IDENTIFICATION: [strchr x 3241 // N] 3242 convertToString(Record, 0, ProducerIdentification); 3243 break; 3244 } 3245 case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#] 3246 unsigned epoch = (unsigned)Record[0]; 3247 if (epoch != bitc::BITCODE_CURRENT_EPOCH) { 3248 return error( 3249 Twine("Incompatible epoch: Bitcode '") + Twine(epoch) + 3250 "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'"); 3251 } 3252 } 3253 } 3254 } 3255 } 3256 3257 std::error_code BitcodeReader::parseModule(uint64_t ResumeBit, 3258 bool ShouldLazyLoadMetadata) { 3259 if (ResumeBit) 3260 Stream.JumpToBit(ResumeBit); 3261 else if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 3262 return error("Invalid record"); 3263 3264 SmallVector<uint64_t, 64> Record; 3265 std::vector<std::string> SectionTable; 3266 std::vector<std::string> GCTable; 3267 3268 // Read all the records for this module. 3269 while (1) { 3270 BitstreamEntry Entry = Stream.advance(); 3271 3272 switch (Entry.Kind) { 3273 case BitstreamEntry::Error: 3274 return error("Malformed block"); 3275 case BitstreamEntry::EndBlock: 3276 return globalCleanup(); 3277 3278 case BitstreamEntry::SubBlock: 3279 switch (Entry.ID) { 3280 default: // Skip unknown content. 3281 if (Stream.SkipBlock()) 3282 return error("Invalid record"); 3283 break; 3284 case bitc::BLOCKINFO_BLOCK_ID: 3285 if (Stream.ReadBlockInfoBlock()) 3286 return error("Malformed block"); 3287 break; 3288 case bitc::PARAMATTR_BLOCK_ID: 3289 if (std::error_code EC = parseAttributeBlock()) 3290 return EC; 3291 break; 3292 case bitc::PARAMATTR_GROUP_BLOCK_ID: 3293 if (std::error_code EC = parseAttributeGroupBlock()) 3294 return EC; 3295 break; 3296 case bitc::TYPE_BLOCK_ID_NEW: 3297 if (std::error_code EC = parseTypeTable()) 3298 return EC; 3299 break; 3300 case bitc::VALUE_SYMTAB_BLOCK_ID: 3301 if (!SeenValueSymbolTable) { 3302 // Either this is an old form VST without function index and an 3303 // associated VST forward declaration record (which would have caused 3304 // the VST to be jumped to and parsed before it was encountered 3305 // normally in the stream), or there were no function blocks to 3306 // trigger an earlier parsing of the VST. 3307 assert(VSTOffset == 0 || FunctionsWithBodies.empty()); 3308 if (std::error_code EC = parseValueSymbolTable()) 3309 return EC; 3310 SeenValueSymbolTable = true; 3311 } else { 3312 // We must have had a VST forward declaration record, which caused 3313 // the parser to jump to and parse the VST earlier. 3314 assert(VSTOffset > 0); 3315 if (Stream.SkipBlock()) 3316 return error("Invalid record"); 3317 } 3318 break; 3319 case bitc::CONSTANTS_BLOCK_ID: 3320 if (std::error_code EC = parseConstants()) 3321 return EC; 3322 if (std::error_code EC = resolveGlobalAndAliasInits()) 3323 return EC; 3324 break; 3325 case bitc::METADATA_BLOCK_ID: 3326 if (ShouldLazyLoadMetadata && !IsMetadataMaterialized) { 3327 if (std::error_code EC = rememberAndSkipMetadata()) 3328 return EC; 3329 break; 3330 } 3331 assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata"); 3332 if (std::error_code EC = parseMetadata(true)) 3333 return EC; 3334 break; 3335 case bitc::METADATA_KIND_BLOCK_ID: 3336 if (std::error_code EC = parseMetadataKinds()) 3337 return EC; 3338 break; 3339 case bitc::FUNCTION_BLOCK_ID: 3340 // If this is the first function body we've seen, reverse the 3341 // FunctionsWithBodies list. 3342 if (!SeenFirstFunctionBody) { 3343 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 3344 if (std::error_code EC = globalCleanup()) 3345 return EC; 3346 SeenFirstFunctionBody = true; 3347 } 3348 3349 if (VSTOffset > 0) { 3350 // If we have a VST forward declaration record, make sure we 3351 // parse the VST now if we haven't already. It is needed to 3352 // set up the DeferredFunctionInfo vector for lazy reading. 3353 if (!SeenValueSymbolTable) { 3354 if (std::error_code EC = 3355 BitcodeReader::parseValueSymbolTable(VSTOffset)) 3356 return EC; 3357 SeenValueSymbolTable = true; 3358 // Fall through so that we record the NextUnreadBit below. 3359 // This is necessary in case we have an anonymous function that 3360 // is later materialized. Since it will not have a VST entry we 3361 // need to fall back to the lazy parse to find its offset. 3362 } else { 3363 // If we have a VST forward declaration record, but have already 3364 // parsed the VST (just above, when the first function body was 3365 // encountered here), then we are resuming the parse after 3366 // materializing functions. The ResumeBit points to the 3367 // start of the last function block recorded in the 3368 // DeferredFunctionInfo map. Skip it. 3369 if (Stream.SkipBlock()) 3370 return error("Invalid record"); 3371 continue; 3372 } 3373 } 3374 3375 // Support older bitcode files that did not have the function 3376 // index in the VST, nor a VST forward declaration record, as 3377 // well as anonymous functions that do not have VST entries. 3378 // Build the DeferredFunctionInfo vector on the fly. 3379 if (std::error_code EC = rememberAndSkipFunctionBody()) 3380 return EC; 3381 3382 // Suspend parsing when we reach the function bodies. Subsequent 3383 // materialization calls will resume it when necessary. If the bitcode 3384 // file is old, the symbol table will be at the end instead and will not 3385 // have been seen yet. In this case, just finish the parse now. 3386 if (SeenValueSymbolTable) { 3387 NextUnreadBit = Stream.GetCurrentBitNo(); 3388 return std::error_code(); 3389 } 3390 break; 3391 case bitc::USELIST_BLOCK_ID: 3392 if (std::error_code EC = parseUseLists()) 3393 return EC; 3394 break; 3395 case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID: 3396 if (std::error_code EC = parseOperandBundleTags()) 3397 return EC; 3398 break; 3399 } 3400 continue; 3401 3402 case BitstreamEntry::Record: 3403 // The interesting case. 3404 break; 3405 } 3406 3407 // Read a record. 3408 auto BitCode = Stream.readRecord(Entry.ID, Record); 3409 switch (BitCode) { 3410 default: break; // Default behavior, ignore unknown content. 3411 case bitc::MODULE_CODE_VERSION: { // VERSION: [version#] 3412 if (Record.size() < 1) 3413 return error("Invalid record"); 3414 // Only version #0 and #1 are supported so far. 3415 unsigned module_version = Record[0]; 3416 switch (module_version) { 3417 default: 3418 return error("Invalid value"); 3419 case 0: 3420 UseRelativeIDs = false; 3421 break; 3422 case 1: 3423 UseRelativeIDs = true; 3424 break; 3425 } 3426 break; 3427 } 3428 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 3429 std::string S; 3430 if (convertToString(Record, 0, S)) 3431 return error("Invalid record"); 3432 TheModule->setTargetTriple(S); 3433 break; 3434 } 3435 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 3436 std::string S; 3437 if (convertToString(Record, 0, S)) 3438 return error("Invalid record"); 3439 TheModule->setDataLayout(S); 3440 break; 3441 } 3442 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 3443 std::string S; 3444 if (convertToString(Record, 0, S)) 3445 return error("Invalid record"); 3446 TheModule->setModuleInlineAsm(S); 3447 break; 3448 } 3449 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 3450 // FIXME: Remove in 4.0. 3451 std::string S; 3452 if (convertToString(Record, 0, S)) 3453 return error("Invalid record"); 3454 // Ignore value. 3455 break; 3456 } 3457 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 3458 std::string S; 3459 if (convertToString(Record, 0, S)) 3460 return error("Invalid record"); 3461 SectionTable.push_back(S); 3462 break; 3463 } 3464 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 3465 std::string S; 3466 if (convertToString(Record, 0, S)) 3467 return error("Invalid record"); 3468 GCTable.push_back(S); 3469 break; 3470 } 3471 case bitc::MODULE_CODE_COMDAT: { // COMDAT: [selection_kind, name] 3472 if (Record.size() < 2) 3473 return error("Invalid record"); 3474 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]); 3475 unsigned ComdatNameSize = Record[1]; 3476 std::string ComdatName; 3477 ComdatName.reserve(ComdatNameSize); 3478 for (unsigned i = 0; i != ComdatNameSize; ++i) 3479 ComdatName += (char)Record[2 + i]; 3480 Comdat *C = TheModule->getOrInsertComdat(ComdatName); 3481 C->setSelectionKind(SK); 3482 ComdatList.push_back(C); 3483 break; 3484 } 3485 // GLOBALVAR: [pointer type, isconst, initid, 3486 // linkage, alignment, section, visibility, threadlocal, 3487 // unnamed_addr, externally_initialized, dllstorageclass, 3488 // comdat] 3489 case bitc::MODULE_CODE_GLOBALVAR: { 3490 if (Record.size() < 6) 3491 return error("Invalid record"); 3492 Type *Ty = getTypeByID(Record[0]); 3493 if (!Ty) 3494 return error("Invalid record"); 3495 bool isConstant = Record[1] & 1; 3496 bool explicitType = Record[1] & 2; 3497 unsigned AddressSpace; 3498 if (explicitType) { 3499 AddressSpace = Record[1] >> 2; 3500 } else { 3501 if (!Ty->isPointerTy()) 3502 return error("Invalid type for value"); 3503 AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 3504 Ty = cast<PointerType>(Ty)->getElementType(); 3505 } 3506 3507 uint64_t RawLinkage = Record[3]; 3508 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 3509 unsigned Alignment; 3510 if (std::error_code EC = parseAlignmentValue(Record[4], Alignment)) 3511 return EC; 3512 std::string Section; 3513 if (Record[5]) { 3514 if (Record[5]-1 >= SectionTable.size()) 3515 return error("Invalid ID"); 3516 Section = SectionTable[Record[5]-1]; 3517 } 3518 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 3519 // Local linkage must have default visibility. 3520 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage)) 3521 // FIXME: Change to an error if non-default in 4.0. 3522 Visibility = getDecodedVisibility(Record[6]); 3523 3524 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; 3525 if (Record.size() > 7) 3526 TLM = getDecodedThreadLocalMode(Record[7]); 3527 3528 bool UnnamedAddr = false; 3529 if (Record.size() > 8) 3530 UnnamedAddr = Record[8]; 3531 3532 bool ExternallyInitialized = false; 3533 if (Record.size() > 9) 3534 ExternallyInitialized = Record[9]; 3535 3536 GlobalVariable *NewGV = 3537 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, "", nullptr, 3538 TLM, AddressSpace, ExternallyInitialized); 3539 NewGV->setAlignment(Alignment); 3540 if (!Section.empty()) 3541 NewGV->setSection(Section); 3542 NewGV->setVisibility(Visibility); 3543 NewGV->setUnnamedAddr(UnnamedAddr); 3544 3545 if (Record.size() > 10) 3546 NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10])); 3547 else 3548 upgradeDLLImportExportLinkage(NewGV, RawLinkage); 3549 3550 ValueList.push_back(NewGV); 3551 3552 // Remember which value to use for the global initializer. 3553 if (unsigned InitID = Record[2]) 3554 GlobalInits.push_back(std::make_pair(NewGV, InitID-1)); 3555 3556 if (Record.size() > 11) { 3557 if (unsigned ComdatID = Record[11]) { 3558 if (ComdatID > ComdatList.size()) 3559 return error("Invalid global variable comdat ID"); 3560 NewGV->setComdat(ComdatList[ComdatID - 1]); 3561 } 3562 } else if (hasImplicitComdat(RawLinkage)) { 3563 NewGV->setComdat(reinterpret_cast<Comdat *>(1)); 3564 } 3565 break; 3566 } 3567 // FUNCTION: [type, callingconv, isproto, linkage, paramattr, 3568 // alignment, section, visibility, gc, unnamed_addr, 3569 // prologuedata, dllstorageclass, comdat, prefixdata] 3570 case bitc::MODULE_CODE_FUNCTION: { 3571 if (Record.size() < 8) 3572 return error("Invalid record"); 3573 Type *Ty = getTypeByID(Record[0]); 3574 if (!Ty) 3575 return error("Invalid record"); 3576 if (auto *PTy = dyn_cast<PointerType>(Ty)) 3577 Ty = PTy->getElementType(); 3578 auto *FTy = dyn_cast<FunctionType>(Ty); 3579 if (!FTy) 3580 return error("Invalid type for value"); 3581 auto CC = static_cast<CallingConv::ID>(Record[1]); 3582 if (CC & ~CallingConv::MaxID) 3583 return error("Invalid calling convention ID"); 3584 3585 Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage, 3586 "", TheModule); 3587 3588 Func->setCallingConv(CC); 3589 bool isProto = Record[2]; 3590 uint64_t RawLinkage = Record[3]; 3591 Func->setLinkage(getDecodedLinkage(RawLinkage)); 3592 Func->setAttributes(getAttributes(Record[4])); 3593 3594 unsigned Alignment; 3595 if (std::error_code EC = parseAlignmentValue(Record[5], Alignment)) 3596 return EC; 3597 Func->setAlignment(Alignment); 3598 if (Record[6]) { 3599 if (Record[6]-1 >= SectionTable.size()) 3600 return error("Invalid ID"); 3601 Func->setSection(SectionTable[Record[6]-1]); 3602 } 3603 // Local linkage must have default visibility. 3604 if (!Func->hasLocalLinkage()) 3605 // FIXME: Change to an error if non-default in 4.0. 3606 Func->setVisibility(getDecodedVisibility(Record[7])); 3607 if (Record.size() > 8 && Record[8]) { 3608 if (Record[8]-1 >= GCTable.size()) 3609 return error("Invalid ID"); 3610 Func->setGC(GCTable[Record[8]-1].c_str()); 3611 } 3612 bool UnnamedAddr = false; 3613 if (Record.size() > 9) 3614 UnnamedAddr = Record[9]; 3615 Func->setUnnamedAddr(UnnamedAddr); 3616 if (Record.size() > 10 && Record[10] != 0) 3617 FunctionPrologues.push_back(std::make_pair(Func, Record[10]-1)); 3618 3619 if (Record.size() > 11) 3620 Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11])); 3621 else 3622 upgradeDLLImportExportLinkage(Func, RawLinkage); 3623 3624 if (Record.size() > 12) { 3625 if (unsigned ComdatID = Record[12]) { 3626 if (ComdatID > ComdatList.size()) 3627 return error("Invalid function comdat ID"); 3628 Func->setComdat(ComdatList[ComdatID - 1]); 3629 } 3630 } else if (hasImplicitComdat(RawLinkage)) { 3631 Func->setComdat(reinterpret_cast<Comdat *>(1)); 3632 } 3633 3634 if (Record.size() > 13 && Record[13] != 0) 3635 FunctionPrefixes.push_back(std::make_pair(Func, Record[13]-1)); 3636 3637 if (Record.size() > 14 && Record[14] != 0) 3638 FunctionPersonalityFns.push_back(std::make_pair(Func, Record[14] - 1)); 3639 3640 ValueList.push_back(Func); 3641 3642 // If this is a function with a body, remember the prototype we are 3643 // creating now, so that we can match up the body with them later. 3644 if (!isProto) { 3645 Func->setIsMaterializable(true); 3646 FunctionsWithBodies.push_back(Func); 3647 DeferredFunctionInfo[Func] = 0; 3648 } 3649 break; 3650 } 3651 // ALIAS: [alias type, addrspace, aliasee val#, linkage] 3652 // ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, dllstorageclass] 3653 case bitc::MODULE_CODE_ALIAS: 3654 case bitc::MODULE_CODE_ALIAS_OLD: { 3655 bool NewRecord = BitCode == bitc::MODULE_CODE_ALIAS; 3656 if (Record.size() < (3 + (unsigned)NewRecord)) 3657 return error("Invalid record"); 3658 unsigned OpNum = 0; 3659 Type *Ty = getTypeByID(Record[OpNum++]); 3660 if (!Ty) 3661 return error("Invalid record"); 3662 3663 unsigned AddrSpace; 3664 if (!NewRecord) { 3665 auto *PTy = dyn_cast<PointerType>(Ty); 3666 if (!PTy) 3667 return error("Invalid type for value"); 3668 Ty = PTy->getElementType(); 3669 AddrSpace = PTy->getAddressSpace(); 3670 } else { 3671 AddrSpace = Record[OpNum++]; 3672 } 3673 3674 auto Val = Record[OpNum++]; 3675 auto Linkage = Record[OpNum++]; 3676 auto *NewGA = GlobalAlias::create( 3677 Ty, AddrSpace, getDecodedLinkage(Linkage), "", TheModule); 3678 // Old bitcode files didn't have visibility field. 3679 // Local linkage must have default visibility. 3680 if (OpNum != Record.size()) { 3681 auto VisInd = OpNum++; 3682 if (!NewGA->hasLocalLinkage()) 3683 // FIXME: Change to an error if non-default in 4.0. 3684 NewGA->setVisibility(getDecodedVisibility(Record[VisInd])); 3685 } 3686 if (OpNum != Record.size()) 3687 NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++])); 3688 else 3689 upgradeDLLImportExportLinkage(NewGA, Linkage); 3690 if (OpNum != Record.size()) 3691 NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++])); 3692 if (OpNum != Record.size()) 3693 NewGA->setUnnamedAddr(Record[OpNum++]); 3694 ValueList.push_back(NewGA); 3695 AliasInits.push_back(std::make_pair(NewGA, Val)); 3696 break; 3697 } 3698 /// MODULE_CODE_PURGEVALS: [numvals] 3699 case bitc::MODULE_CODE_PURGEVALS: 3700 // Trim down the value list to the specified size. 3701 if (Record.size() < 1 || Record[0] > ValueList.size()) 3702 return error("Invalid record"); 3703 ValueList.shrinkTo(Record[0]); 3704 break; 3705 /// MODULE_CODE_VSTOFFSET: [offset] 3706 case bitc::MODULE_CODE_VSTOFFSET: 3707 if (Record.size() < 1) 3708 return error("Invalid record"); 3709 VSTOffset = Record[0]; 3710 break; 3711 /// MODULE_CODE_METADATA_VALUES: [numvals] 3712 case bitc::MODULE_CODE_METADATA_VALUES: 3713 if (Record.size() < 1) 3714 return error("Invalid record"); 3715 assert(!IsMetadataMaterialized); 3716 // This record contains the number of metadata values in the module-level 3717 // METADATA_BLOCK. It is used to support lazy parsing of metadata as 3718 // a postpass, where we will parse function-level metadata first. 3719 // This is needed because the ids of metadata are assigned implicitly 3720 // based on their ordering in the bitcode, with the function-level 3721 // metadata ids starting after the module-level metadata ids. Otherwise, 3722 // we would have to parse the module-level metadata block to prime the 3723 // MetadataList when we are lazy loading metadata during function 3724 // importing. Initialize the MetadataList size here based on the 3725 // record value, regardless of whether we are doing lazy metadata 3726 // loading, so that we have consistent handling and assertion 3727 // checking in parseMetadata for module-level metadata. 3728 NumModuleMDs = Record[0]; 3729 SeenModuleValuesRecord = true; 3730 assert(MetadataList.size() == 0); 3731 MetadataList.resize(NumModuleMDs); 3732 break; 3733 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 3734 case bitc::MODULE_CODE_SOURCE_FILENAME: 3735 SmallString<128> ValueName; 3736 if (convertToString(Record, 0, ValueName)) 3737 return error("Invalid record"); 3738 TheModule->setSourceFileName(ValueName); 3739 break; 3740 } 3741 Record.clear(); 3742 } 3743 } 3744 3745 /// Helper to read the header common to all bitcode files. 3746 static bool hasValidBitcodeHeader(BitstreamCursor &Stream) { 3747 // Sniff for the signature. 3748 if (Stream.Read(8) != 'B' || 3749 Stream.Read(8) != 'C' || 3750 Stream.Read(4) != 0x0 || 3751 Stream.Read(4) != 0xC || 3752 Stream.Read(4) != 0xE || 3753 Stream.Read(4) != 0xD) 3754 return false; 3755 return true; 3756 } 3757 3758 std::error_code 3759 BitcodeReader::parseBitcodeInto(std::unique_ptr<DataStreamer> Streamer, 3760 Module *M, bool ShouldLazyLoadMetadata) { 3761 TheModule = M; 3762 3763 if (std::error_code EC = initStream(std::move(Streamer))) 3764 return EC; 3765 3766 // Sniff for the signature. 3767 if (!hasValidBitcodeHeader(Stream)) 3768 return error("Invalid bitcode signature"); 3769 3770 // We expect a number of well-defined blocks, though we don't necessarily 3771 // need to understand them all. 3772 while (1) { 3773 if (Stream.AtEndOfStream()) { 3774 // We didn't really read a proper Module. 3775 return error("Malformed IR file"); 3776 } 3777 3778 BitstreamEntry Entry = 3779 Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs); 3780 3781 if (Entry.Kind != BitstreamEntry::SubBlock) 3782 return error("Malformed block"); 3783 3784 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) { 3785 parseBitcodeVersion(); 3786 continue; 3787 } 3788 3789 if (Entry.ID == bitc::MODULE_BLOCK_ID) 3790 return parseModule(0, ShouldLazyLoadMetadata); 3791 3792 if (Stream.SkipBlock()) 3793 return error("Invalid record"); 3794 } 3795 } 3796 3797 ErrorOr<std::string> BitcodeReader::parseModuleTriple() { 3798 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 3799 return error("Invalid record"); 3800 3801 SmallVector<uint64_t, 64> Record; 3802 3803 std::string Triple; 3804 // Read all the records for this module. 3805 while (1) { 3806 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 3807 3808 switch (Entry.Kind) { 3809 case BitstreamEntry::SubBlock: // Handled for us already. 3810 case BitstreamEntry::Error: 3811 return error("Malformed block"); 3812 case BitstreamEntry::EndBlock: 3813 return Triple; 3814 case BitstreamEntry::Record: 3815 // The interesting case. 3816 break; 3817 } 3818 3819 // Read a record. 3820 switch (Stream.readRecord(Entry.ID, Record)) { 3821 default: break; // Default behavior, ignore unknown content. 3822 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 3823 std::string S; 3824 if (convertToString(Record, 0, S)) 3825 return error("Invalid record"); 3826 Triple = S; 3827 break; 3828 } 3829 } 3830 Record.clear(); 3831 } 3832 llvm_unreachable("Exit infinite loop"); 3833 } 3834 3835 ErrorOr<std::string> BitcodeReader::parseTriple() { 3836 if (std::error_code EC = initStream(nullptr)) 3837 return EC; 3838 3839 // Sniff for the signature. 3840 if (!hasValidBitcodeHeader(Stream)) 3841 return error("Invalid bitcode signature"); 3842 3843 // We expect a number of well-defined blocks, though we don't necessarily 3844 // need to understand them all. 3845 while (1) { 3846 BitstreamEntry Entry = Stream.advance(); 3847 3848 switch (Entry.Kind) { 3849 case BitstreamEntry::Error: 3850 return error("Malformed block"); 3851 case BitstreamEntry::EndBlock: 3852 return std::error_code(); 3853 3854 case BitstreamEntry::SubBlock: 3855 if (Entry.ID == bitc::MODULE_BLOCK_ID) 3856 return parseModuleTriple(); 3857 3858 // Ignore other sub-blocks. 3859 if (Stream.SkipBlock()) 3860 return error("Malformed block"); 3861 continue; 3862 3863 case BitstreamEntry::Record: 3864 Stream.skipRecord(Entry.ID); 3865 continue; 3866 } 3867 } 3868 } 3869 3870 ErrorOr<std::string> BitcodeReader::parseIdentificationBlock() { 3871 if (std::error_code EC = initStream(nullptr)) 3872 return EC; 3873 3874 // Sniff for the signature. 3875 if (!hasValidBitcodeHeader(Stream)) 3876 return error("Invalid bitcode signature"); 3877 3878 // We expect a number of well-defined blocks, though we don't necessarily 3879 // need to understand them all. 3880 while (1) { 3881 BitstreamEntry Entry = Stream.advance(); 3882 switch (Entry.Kind) { 3883 case BitstreamEntry::Error: 3884 return error("Malformed block"); 3885 case BitstreamEntry::EndBlock: 3886 return std::error_code(); 3887 3888 case BitstreamEntry::SubBlock: 3889 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) { 3890 if (std::error_code EC = parseBitcodeVersion()) 3891 return EC; 3892 return ProducerIdentification; 3893 } 3894 // Ignore other sub-blocks. 3895 if (Stream.SkipBlock()) 3896 return error("Malformed block"); 3897 continue; 3898 case BitstreamEntry::Record: 3899 Stream.skipRecord(Entry.ID); 3900 continue; 3901 } 3902 } 3903 } 3904 3905 /// Parse metadata attachments. 3906 std::error_code BitcodeReader::parseMetadataAttachment(Function &F) { 3907 if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID)) 3908 return error("Invalid record"); 3909 3910 SmallVector<uint64_t, 64> Record; 3911 while (1) { 3912 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 3913 3914 switch (Entry.Kind) { 3915 case BitstreamEntry::SubBlock: // Handled for us already. 3916 case BitstreamEntry::Error: 3917 return error("Malformed block"); 3918 case BitstreamEntry::EndBlock: 3919 return std::error_code(); 3920 case BitstreamEntry::Record: 3921 // The interesting case. 3922 break; 3923 } 3924 3925 // Read a metadata attachment record. 3926 Record.clear(); 3927 switch (Stream.readRecord(Entry.ID, Record)) { 3928 default: // Default behavior: ignore. 3929 break; 3930 case bitc::METADATA_ATTACHMENT: { 3931 unsigned RecordLength = Record.size(); 3932 if (Record.empty()) 3933 return error("Invalid record"); 3934 if (RecordLength % 2 == 0) { 3935 // A function attachment. 3936 for (unsigned I = 0; I != RecordLength; I += 2) { 3937 auto K = MDKindMap.find(Record[I]); 3938 if (K == MDKindMap.end()) 3939 return error("Invalid ID"); 3940 MDNode *MD = MetadataList.getMDNodeFwdRefOrNull(Record[I + 1]); 3941 if (!MD) 3942 return error("Invalid metadata attachment"); 3943 F.setMetadata(K->second, MD); 3944 } 3945 continue; 3946 } 3947 3948 // An instruction attachment. 3949 Instruction *Inst = InstructionList[Record[0]]; 3950 for (unsigned i = 1; i != RecordLength; i = i+2) { 3951 unsigned Kind = Record[i]; 3952 DenseMap<unsigned, unsigned>::iterator I = 3953 MDKindMap.find(Kind); 3954 if (I == MDKindMap.end()) 3955 return error("Invalid ID"); 3956 Metadata *Node = MetadataList.getMetadataFwdRef(Record[i + 1]); 3957 if (isa<LocalAsMetadata>(Node)) 3958 // Drop the attachment. This used to be legal, but there's no 3959 // upgrade path. 3960 break; 3961 MDNode *MD = dyn_cast_or_null<MDNode>(Node); 3962 if (!MD) 3963 return error("Invalid metadata attachment"); 3964 3965 if (HasSeenOldLoopTags && I->second == LLVMContext::MD_loop) 3966 MD = upgradeInstructionLoopAttachment(*MD); 3967 3968 Inst->setMetadata(I->second, MD); 3969 if (I->second == LLVMContext::MD_tbaa) { 3970 InstsWithTBAATag.push_back(Inst); 3971 continue; 3972 } 3973 } 3974 break; 3975 } 3976 } 3977 } 3978 } 3979 3980 static std::error_code typeCheckLoadStoreInst(Type *ValType, Type *PtrType) { 3981 LLVMContext &Context = PtrType->getContext(); 3982 if (!isa<PointerType>(PtrType)) 3983 return error(Context, "Load/Store operand is not a pointer type"); 3984 Type *ElemType = cast<PointerType>(PtrType)->getElementType(); 3985 3986 if (ValType && ValType != ElemType) 3987 return error(Context, "Explicit load/store type does not match pointee " 3988 "type of pointer operand"); 3989 if (!PointerType::isLoadableOrStorableType(ElemType)) 3990 return error(Context, "Cannot load/store from pointer"); 3991 return std::error_code(); 3992 } 3993 3994 /// Lazily parse the specified function body block. 3995 std::error_code BitcodeReader::parseFunctionBody(Function *F) { 3996 if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 3997 return error("Invalid record"); 3998 3999 InstructionList.clear(); 4000 unsigned ModuleValueListSize = ValueList.size(); 4001 unsigned ModuleMetadataListSize = MetadataList.size(); 4002 4003 // Add all the function arguments to the value table. 4004 for (Argument &I : F->args()) 4005 ValueList.push_back(&I); 4006 4007 unsigned NextValueNo = ValueList.size(); 4008 BasicBlock *CurBB = nullptr; 4009 unsigned CurBBNo = 0; 4010 4011 DebugLoc LastLoc; 4012 auto getLastInstruction = [&]() -> Instruction * { 4013 if (CurBB && !CurBB->empty()) 4014 return &CurBB->back(); 4015 else if (CurBBNo && FunctionBBs[CurBBNo - 1] && 4016 !FunctionBBs[CurBBNo - 1]->empty()) 4017 return &FunctionBBs[CurBBNo - 1]->back(); 4018 return nullptr; 4019 }; 4020 4021 std::vector<OperandBundleDef> OperandBundles; 4022 4023 // Read all the records. 4024 SmallVector<uint64_t, 64> Record; 4025 while (1) { 4026 BitstreamEntry Entry = Stream.advance(); 4027 4028 switch (Entry.Kind) { 4029 case BitstreamEntry::Error: 4030 return error("Malformed block"); 4031 case BitstreamEntry::EndBlock: 4032 goto OutOfRecordLoop; 4033 4034 case BitstreamEntry::SubBlock: 4035 switch (Entry.ID) { 4036 default: // Skip unknown content. 4037 if (Stream.SkipBlock()) 4038 return error("Invalid record"); 4039 break; 4040 case bitc::CONSTANTS_BLOCK_ID: 4041 if (std::error_code EC = parseConstants()) 4042 return EC; 4043 NextValueNo = ValueList.size(); 4044 break; 4045 case bitc::VALUE_SYMTAB_BLOCK_ID: 4046 if (std::error_code EC = parseValueSymbolTable()) 4047 return EC; 4048 break; 4049 case bitc::METADATA_ATTACHMENT_ID: 4050 if (std::error_code EC = parseMetadataAttachment(*F)) 4051 return EC; 4052 break; 4053 case bitc::METADATA_BLOCK_ID: 4054 if (std::error_code EC = parseMetadata()) 4055 return EC; 4056 break; 4057 case bitc::USELIST_BLOCK_ID: 4058 if (std::error_code EC = parseUseLists()) 4059 return EC; 4060 break; 4061 } 4062 continue; 4063 4064 case BitstreamEntry::Record: 4065 // The interesting case. 4066 break; 4067 } 4068 4069 // Read a record. 4070 Record.clear(); 4071 Instruction *I = nullptr; 4072 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 4073 switch (BitCode) { 4074 default: // Default behavior: reject 4075 return error("Invalid value"); 4076 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks] 4077 if (Record.size() < 1 || Record[0] == 0) 4078 return error("Invalid record"); 4079 // Create all the basic blocks for the function. 4080 FunctionBBs.resize(Record[0]); 4081 4082 // See if anything took the address of blocks in this function. 4083 auto BBFRI = BasicBlockFwdRefs.find(F); 4084 if (BBFRI == BasicBlockFwdRefs.end()) { 4085 for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i) 4086 FunctionBBs[i] = BasicBlock::Create(Context, "", F); 4087 } else { 4088 auto &BBRefs = BBFRI->second; 4089 // Check for invalid basic block references. 4090 if (BBRefs.size() > FunctionBBs.size()) 4091 return error("Invalid ID"); 4092 assert(!BBRefs.empty() && "Unexpected empty array"); 4093 assert(!BBRefs.front() && "Invalid reference to entry block"); 4094 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E; 4095 ++I) 4096 if (I < RE && BBRefs[I]) { 4097 BBRefs[I]->insertInto(F); 4098 FunctionBBs[I] = BBRefs[I]; 4099 } else { 4100 FunctionBBs[I] = BasicBlock::Create(Context, "", F); 4101 } 4102 4103 // Erase from the table. 4104 BasicBlockFwdRefs.erase(BBFRI); 4105 } 4106 4107 CurBB = FunctionBBs[0]; 4108 continue; 4109 } 4110 4111 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 4112 // This record indicates that the last instruction is at the same 4113 // location as the previous instruction with a location. 4114 I = getLastInstruction(); 4115 4116 if (!I) 4117 return error("Invalid record"); 4118 I->setDebugLoc(LastLoc); 4119 I = nullptr; 4120 continue; 4121 4122 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 4123 I = getLastInstruction(); 4124 if (!I || Record.size() < 4) 4125 return error("Invalid record"); 4126 4127 unsigned Line = Record[0], Col = Record[1]; 4128 unsigned ScopeID = Record[2], IAID = Record[3]; 4129 4130 MDNode *Scope = nullptr, *IA = nullptr; 4131 if (ScopeID) { 4132 Scope = MetadataList.getMDNodeFwdRefOrNull(ScopeID - 1); 4133 if (!Scope) 4134 return error("Invalid record"); 4135 } 4136 if (IAID) { 4137 IA = MetadataList.getMDNodeFwdRefOrNull(IAID - 1); 4138 if (!IA) 4139 return error("Invalid record"); 4140 } 4141 LastLoc = DebugLoc::get(Line, Col, Scope, IA); 4142 I->setDebugLoc(LastLoc); 4143 I = nullptr; 4144 continue; 4145 } 4146 4147 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 4148 unsigned OpNum = 0; 4149 Value *LHS, *RHS; 4150 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 4151 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 4152 OpNum+1 > Record.size()) 4153 return error("Invalid record"); 4154 4155 int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 4156 if (Opc == -1) 4157 return error("Invalid record"); 4158 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 4159 InstructionList.push_back(I); 4160 if (OpNum < Record.size()) { 4161 if (Opc == Instruction::Add || 4162 Opc == Instruction::Sub || 4163 Opc == Instruction::Mul || 4164 Opc == Instruction::Shl) { 4165 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 4166 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 4167 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 4168 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 4169 } else if (Opc == Instruction::SDiv || 4170 Opc == Instruction::UDiv || 4171 Opc == Instruction::LShr || 4172 Opc == Instruction::AShr) { 4173 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 4174 cast<BinaryOperator>(I)->setIsExact(true); 4175 } else if (isa<FPMathOperator>(I)) { 4176 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 4177 if (FMF.any()) 4178 I->setFastMathFlags(FMF); 4179 } 4180 4181 } 4182 break; 4183 } 4184 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 4185 unsigned OpNum = 0; 4186 Value *Op; 4187 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4188 OpNum+2 != Record.size()) 4189 return error("Invalid record"); 4190 4191 Type *ResTy = getTypeByID(Record[OpNum]); 4192 int Opc = getDecodedCastOpcode(Record[OpNum + 1]); 4193 if (Opc == -1 || !ResTy) 4194 return error("Invalid record"); 4195 Instruction *Temp = nullptr; 4196 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) { 4197 if (Temp) { 4198 InstructionList.push_back(Temp); 4199 CurBB->getInstList().push_back(Temp); 4200 } 4201 } else { 4202 auto CastOp = (Instruction::CastOps)Opc; 4203 if (!CastInst::castIsValid(CastOp, Op, ResTy)) 4204 return error("Invalid cast"); 4205 I = CastInst::Create(CastOp, Op, ResTy); 4206 } 4207 InstructionList.push_back(I); 4208 break; 4209 } 4210 case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD: 4211 case bitc::FUNC_CODE_INST_GEP_OLD: 4212 case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands] 4213 unsigned OpNum = 0; 4214 4215 Type *Ty; 4216 bool InBounds; 4217 4218 if (BitCode == bitc::FUNC_CODE_INST_GEP) { 4219 InBounds = Record[OpNum++]; 4220 Ty = getTypeByID(Record[OpNum++]); 4221 } else { 4222 InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD; 4223 Ty = nullptr; 4224 } 4225 4226 Value *BasePtr; 4227 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr)) 4228 return error("Invalid record"); 4229 4230 if (!Ty) 4231 Ty = cast<SequentialType>(BasePtr->getType()->getScalarType()) 4232 ->getElementType(); 4233 else if (Ty != 4234 cast<SequentialType>(BasePtr->getType()->getScalarType()) 4235 ->getElementType()) 4236 return error( 4237 "Explicit gep type does not match pointee type of pointer operand"); 4238 4239 SmallVector<Value*, 16> GEPIdx; 4240 while (OpNum != Record.size()) { 4241 Value *Op; 4242 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4243 return error("Invalid record"); 4244 GEPIdx.push_back(Op); 4245 } 4246 4247 I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx); 4248 4249 InstructionList.push_back(I); 4250 if (InBounds) 4251 cast<GetElementPtrInst>(I)->setIsInBounds(true); 4252 break; 4253 } 4254 4255 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 4256 // EXTRACTVAL: [opty, opval, n x indices] 4257 unsigned OpNum = 0; 4258 Value *Agg; 4259 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 4260 return error("Invalid record"); 4261 4262 unsigned RecSize = Record.size(); 4263 if (OpNum == RecSize) 4264 return error("EXTRACTVAL: Invalid instruction with 0 indices"); 4265 4266 SmallVector<unsigned, 4> EXTRACTVALIdx; 4267 Type *CurTy = Agg->getType(); 4268 for (; OpNum != RecSize; ++OpNum) { 4269 bool IsArray = CurTy->isArrayTy(); 4270 bool IsStruct = CurTy->isStructTy(); 4271 uint64_t Index = Record[OpNum]; 4272 4273 if (!IsStruct && !IsArray) 4274 return error("EXTRACTVAL: Invalid type"); 4275 if ((unsigned)Index != Index) 4276 return error("Invalid value"); 4277 if (IsStruct && Index >= CurTy->subtypes().size()) 4278 return error("EXTRACTVAL: Invalid struct index"); 4279 if (IsArray && Index >= CurTy->getArrayNumElements()) 4280 return error("EXTRACTVAL: Invalid array index"); 4281 EXTRACTVALIdx.push_back((unsigned)Index); 4282 4283 if (IsStruct) 4284 CurTy = CurTy->subtypes()[Index]; 4285 else 4286 CurTy = CurTy->subtypes()[0]; 4287 } 4288 4289 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 4290 InstructionList.push_back(I); 4291 break; 4292 } 4293 4294 case bitc::FUNC_CODE_INST_INSERTVAL: { 4295 // INSERTVAL: [opty, opval, opty, opval, n x indices] 4296 unsigned OpNum = 0; 4297 Value *Agg; 4298 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 4299 return error("Invalid record"); 4300 Value *Val; 4301 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 4302 return error("Invalid record"); 4303 4304 unsigned RecSize = Record.size(); 4305 if (OpNum == RecSize) 4306 return error("INSERTVAL: Invalid instruction with 0 indices"); 4307 4308 SmallVector<unsigned, 4> INSERTVALIdx; 4309 Type *CurTy = Agg->getType(); 4310 for (; OpNum != RecSize; ++OpNum) { 4311 bool IsArray = CurTy->isArrayTy(); 4312 bool IsStruct = CurTy->isStructTy(); 4313 uint64_t Index = Record[OpNum]; 4314 4315 if (!IsStruct && !IsArray) 4316 return error("INSERTVAL: Invalid type"); 4317 if ((unsigned)Index != Index) 4318 return error("Invalid value"); 4319 if (IsStruct && Index >= CurTy->subtypes().size()) 4320 return error("INSERTVAL: Invalid struct index"); 4321 if (IsArray && Index >= CurTy->getArrayNumElements()) 4322 return error("INSERTVAL: Invalid array index"); 4323 4324 INSERTVALIdx.push_back((unsigned)Index); 4325 if (IsStruct) 4326 CurTy = CurTy->subtypes()[Index]; 4327 else 4328 CurTy = CurTy->subtypes()[0]; 4329 } 4330 4331 if (CurTy != Val->getType()) 4332 return error("Inserted value type doesn't match aggregate type"); 4333 4334 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 4335 InstructionList.push_back(I); 4336 break; 4337 } 4338 4339 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 4340 // obsolete form of select 4341 // handles select i1 ... in old bitcode 4342 unsigned OpNum = 0; 4343 Value *TrueVal, *FalseVal, *Cond; 4344 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 4345 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 4346 popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond)) 4347 return error("Invalid record"); 4348 4349 I = SelectInst::Create(Cond, TrueVal, FalseVal); 4350 InstructionList.push_back(I); 4351 break; 4352 } 4353 4354 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 4355 // new form of select 4356 // handles select i1 or select [N x i1] 4357 unsigned OpNum = 0; 4358 Value *TrueVal, *FalseVal, *Cond; 4359 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 4360 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 4361 getValueTypePair(Record, OpNum, NextValueNo, Cond)) 4362 return error("Invalid record"); 4363 4364 // select condition can be either i1 or [N x i1] 4365 if (VectorType* vector_type = 4366 dyn_cast<VectorType>(Cond->getType())) { 4367 // expect <n x i1> 4368 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 4369 return error("Invalid type for value"); 4370 } else { 4371 // expect i1 4372 if (Cond->getType() != Type::getInt1Ty(Context)) 4373 return error("Invalid type for value"); 4374 } 4375 4376 I = SelectInst::Create(Cond, TrueVal, FalseVal); 4377 InstructionList.push_back(I); 4378 break; 4379 } 4380 4381 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 4382 unsigned OpNum = 0; 4383 Value *Vec, *Idx; 4384 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 4385 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 4386 return error("Invalid record"); 4387 if (!Vec->getType()->isVectorTy()) 4388 return error("Invalid type for value"); 4389 I = ExtractElementInst::Create(Vec, Idx); 4390 InstructionList.push_back(I); 4391 break; 4392 } 4393 4394 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 4395 unsigned OpNum = 0; 4396 Value *Vec, *Elt, *Idx; 4397 if (getValueTypePair(Record, OpNum, NextValueNo, Vec)) 4398 return error("Invalid record"); 4399 if (!Vec->getType()->isVectorTy()) 4400 return error("Invalid type for value"); 4401 if (popValue(Record, OpNum, NextValueNo, 4402 cast<VectorType>(Vec->getType())->getElementType(), Elt) || 4403 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 4404 return error("Invalid record"); 4405 I = InsertElementInst::Create(Vec, Elt, Idx); 4406 InstructionList.push_back(I); 4407 break; 4408 } 4409 4410 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 4411 unsigned OpNum = 0; 4412 Value *Vec1, *Vec2, *Mask; 4413 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) || 4414 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2)) 4415 return error("Invalid record"); 4416 4417 if (getValueTypePair(Record, OpNum, NextValueNo, Mask)) 4418 return error("Invalid record"); 4419 if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy()) 4420 return error("Invalid type for value"); 4421 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 4422 InstructionList.push_back(I); 4423 break; 4424 } 4425 4426 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 4427 // Old form of ICmp/FCmp returning bool 4428 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 4429 // both legal on vectors but had different behaviour. 4430 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 4431 // FCmp/ICmp returning bool or vector of bool 4432 4433 unsigned OpNum = 0; 4434 Value *LHS, *RHS; 4435 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 4436 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS)) 4437 return error("Invalid record"); 4438 4439 unsigned PredVal = Record[OpNum]; 4440 bool IsFP = LHS->getType()->isFPOrFPVectorTy(); 4441 FastMathFlags FMF; 4442 if (IsFP && Record.size() > OpNum+1) 4443 FMF = getDecodedFastMathFlags(Record[++OpNum]); 4444 4445 if (OpNum+1 != Record.size()) 4446 return error("Invalid record"); 4447 4448 if (LHS->getType()->isFPOrFPVectorTy()) 4449 I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS); 4450 else 4451 I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS); 4452 4453 if (FMF.any()) 4454 I->setFastMathFlags(FMF); 4455 InstructionList.push_back(I); 4456 break; 4457 } 4458 4459 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 4460 { 4461 unsigned Size = Record.size(); 4462 if (Size == 0) { 4463 I = ReturnInst::Create(Context); 4464 InstructionList.push_back(I); 4465 break; 4466 } 4467 4468 unsigned OpNum = 0; 4469 Value *Op = nullptr; 4470 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4471 return error("Invalid record"); 4472 if (OpNum != Record.size()) 4473 return error("Invalid record"); 4474 4475 I = ReturnInst::Create(Context, Op); 4476 InstructionList.push_back(I); 4477 break; 4478 } 4479 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 4480 if (Record.size() != 1 && Record.size() != 3) 4481 return error("Invalid record"); 4482 BasicBlock *TrueDest = getBasicBlock(Record[0]); 4483 if (!TrueDest) 4484 return error("Invalid record"); 4485 4486 if (Record.size() == 1) { 4487 I = BranchInst::Create(TrueDest); 4488 InstructionList.push_back(I); 4489 } 4490 else { 4491 BasicBlock *FalseDest = getBasicBlock(Record[1]); 4492 Value *Cond = getValue(Record, 2, NextValueNo, 4493 Type::getInt1Ty(Context)); 4494 if (!FalseDest || !Cond) 4495 return error("Invalid record"); 4496 I = BranchInst::Create(TrueDest, FalseDest, Cond); 4497 InstructionList.push_back(I); 4498 } 4499 break; 4500 } 4501 case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#] 4502 if (Record.size() != 1 && Record.size() != 2) 4503 return error("Invalid record"); 4504 unsigned Idx = 0; 4505 Value *CleanupPad = 4506 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4507 if (!CleanupPad) 4508 return error("Invalid record"); 4509 BasicBlock *UnwindDest = nullptr; 4510 if (Record.size() == 2) { 4511 UnwindDest = getBasicBlock(Record[Idx++]); 4512 if (!UnwindDest) 4513 return error("Invalid record"); 4514 } 4515 4516 I = CleanupReturnInst::Create(CleanupPad, UnwindDest); 4517 InstructionList.push_back(I); 4518 break; 4519 } 4520 case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#] 4521 if (Record.size() != 2) 4522 return error("Invalid record"); 4523 unsigned Idx = 0; 4524 Value *CatchPad = 4525 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4526 if (!CatchPad) 4527 return error("Invalid record"); 4528 BasicBlock *BB = getBasicBlock(Record[Idx++]); 4529 if (!BB) 4530 return error("Invalid record"); 4531 4532 I = CatchReturnInst::Create(CatchPad, BB); 4533 InstructionList.push_back(I); 4534 break; 4535 } 4536 case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?] 4537 // We must have, at minimum, the outer scope and the number of arguments. 4538 if (Record.size() < 2) 4539 return error("Invalid record"); 4540 4541 unsigned Idx = 0; 4542 4543 Value *ParentPad = 4544 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4545 4546 unsigned NumHandlers = Record[Idx++]; 4547 4548 SmallVector<BasicBlock *, 2> Handlers; 4549 for (unsigned Op = 0; Op != NumHandlers; ++Op) { 4550 BasicBlock *BB = getBasicBlock(Record[Idx++]); 4551 if (!BB) 4552 return error("Invalid record"); 4553 Handlers.push_back(BB); 4554 } 4555 4556 BasicBlock *UnwindDest = nullptr; 4557 if (Idx + 1 == Record.size()) { 4558 UnwindDest = getBasicBlock(Record[Idx++]); 4559 if (!UnwindDest) 4560 return error("Invalid record"); 4561 } 4562 4563 if (Record.size() != Idx) 4564 return error("Invalid record"); 4565 4566 auto *CatchSwitch = 4567 CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers); 4568 for (BasicBlock *Handler : Handlers) 4569 CatchSwitch->addHandler(Handler); 4570 I = CatchSwitch; 4571 InstructionList.push_back(I); 4572 break; 4573 } 4574 case bitc::FUNC_CODE_INST_CATCHPAD: 4575 case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*] 4576 // We must have, at minimum, the outer scope and the number of arguments. 4577 if (Record.size() < 2) 4578 return error("Invalid record"); 4579 4580 unsigned Idx = 0; 4581 4582 Value *ParentPad = 4583 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4584 4585 unsigned NumArgOperands = Record[Idx++]; 4586 4587 SmallVector<Value *, 2> Args; 4588 for (unsigned Op = 0; Op != NumArgOperands; ++Op) { 4589 Value *Val; 4590 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 4591 return error("Invalid record"); 4592 Args.push_back(Val); 4593 } 4594 4595 if (Record.size() != Idx) 4596 return error("Invalid record"); 4597 4598 if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD) 4599 I = CleanupPadInst::Create(ParentPad, Args); 4600 else 4601 I = CatchPadInst::Create(ParentPad, Args); 4602 InstructionList.push_back(I); 4603 break; 4604 } 4605 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 4606 // Check magic 4607 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { 4608 // "New" SwitchInst format with case ranges. The changes to write this 4609 // format were reverted but we still recognize bitcode that uses it. 4610 // Hopefully someday we will have support for case ranges and can use 4611 // this format again. 4612 4613 Type *OpTy = getTypeByID(Record[1]); 4614 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); 4615 4616 Value *Cond = getValue(Record, 2, NextValueNo, OpTy); 4617 BasicBlock *Default = getBasicBlock(Record[3]); 4618 if (!OpTy || !Cond || !Default) 4619 return error("Invalid record"); 4620 4621 unsigned NumCases = Record[4]; 4622 4623 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 4624 InstructionList.push_back(SI); 4625 4626 unsigned CurIdx = 5; 4627 for (unsigned i = 0; i != NumCases; ++i) { 4628 SmallVector<ConstantInt*, 1> CaseVals; 4629 unsigned NumItems = Record[CurIdx++]; 4630 for (unsigned ci = 0; ci != NumItems; ++ci) { 4631 bool isSingleNumber = Record[CurIdx++]; 4632 4633 APInt Low; 4634 unsigned ActiveWords = 1; 4635 if (ValueBitWidth > 64) 4636 ActiveWords = Record[CurIdx++]; 4637 Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 4638 ValueBitWidth); 4639 CurIdx += ActiveWords; 4640 4641 if (!isSingleNumber) { 4642 ActiveWords = 1; 4643 if (ValueBitWidth > 64) 4644 ActiveWords = Record[CurIdx++]; 4645 APInt High = readWideAPInt( 4646 makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth); 4647 CurIdx += ActiveWords; 4648 4649 // FIXME: It is not clear whether values in the range should be 4650 // compared as signed or unsigned values. The partially 4651 // implemented changes that used this format in the past used 4652 // unsigned comparisons. 4653 for ( ; Low.ule(High); ++Low) 4654 CaseVals.push_back(ConstantInt::get(Context, Low)); 4655 } else 4656 CaseVals.push_back(ConstantInt::get(Context, Low)); 4657 } 4658 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); 4659 for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(), 4660 cve = CaseVals.end(); cvi != cve; ++cvi) 4661 SI->addCase(*cvi, DestBB); 4662 } 4663 I = SI; 4664 break; 4665 } 4666 4667 // Old SwitchInst format without case ranges. 4668 4669 if (Record.size() < 3 || (Record.size() & 1) == 0) 4670 return error("Invalid record"); 4671 Type *OpTy = getTypeByID(Record[0]); 4672 Value *Cond = getValue(Record, 1, NextValueNo, OpTy); 4673 BasicBlock *Default = getBasicBlock(Record[2]); 4674 if (!OpTy || !Cond || !Default) 4675 return error("Invalid record"); 4676 unsigned NumCases = (Record.size()-3)/2; 4677 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 4678 InstructionList.push_back(SI); 4679 for (unsigned i = 0, e = NumCases; i != e; ++i) { 4680 ConstantInt *CaseVal = 4681 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy)); 4682 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 4683 if (!CaseVal || !DestBB) { 4684 delete SI; 4685 return error("Invalid record"); 4686 } 4687 SI->addCase(CaseVal, DestBB); 4688 } 4689 I = SI; 4690 break; 4691 } 4692 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 4693 if (Record.size() < 2) 4694 return error("Invalid record"); 4695 Type *OpTy = getTypeByID(Record[0]); 4696 Value *Address = getValue(Record, 1, NextValueNo, OpTy); 4697 if (!OpTy || !Address) 4698 return error("Invalid record"); 4699 unsigned NumDests = Record.size()-2; 4700 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 4701 InstructionList.push_back(IBI); 4702 for (unsigned i = 0, e = NumDests; i != e; ++i) { 4703 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 4704 IBI->addDestination(DestBB); 4705 } else { 4706 delete IBI; 4707 return error("Invalid record"); 4708 } 4709 } 4710 I = IBI; 4711 break; 4712 } 4713 4714 case bitc::FUNC_CODE_INST_INVOKE: { 4715 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 4716 if (Record.size() < 4) 4717 return error("Invalid record"); 4718 unsigned OpNum = 0; 4719 AttributeSet PAL = getAttributes(Record[OpNum++]); 4720 unsigned CCInfo = Record[OpNum++]; 4721 BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]); 4722 BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]); 4723 4724 FunctionType *FTy = nullptr; 4725 if (CCInfo >> 13 & 1 && 4726 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])))) 4727 return error("Explicit invoke type is not a function type"); 4728 4729 Value *Callee; 4730 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 4731 return error("Invalid record"); 4732 4733 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 4734 if (!CalleeTy) 4735 return error("Callee is not a pointer"); 4736 if (!FTy) { 4737 FTy = dyn_cast<FunctionType>(CalleeTy->getElementType()); 4738 if (!FTy) 4739 return error("Callee is not of pointer to function type"); 4740 } else if (CalleeTy->getElementType() != FTy) 4741 return error("Explicit invoke type does not match pointee type of " 4742 "callee operand"); 4743 if (Record.size() < FTy->getNumParams() + OpNum) 4744 return error("Insufficient operands to call"); 4745 4746 SmallVector<Value*, 16> Ops; 4747 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 4748 Ops.push_back(getValue(Record, OpNum, NextValueNo, 4749 FTy->getParamType(i))); 4750 if (!Ops.back()) 4751 return error("Invalid record"); 4752 } 4753 4754 if (!FTy->isVarArg()) { 4755 if (Record.size() != OpNum) 4756 return error("Invalid record"); 4757 } else { 4758 // Read type/value pairs for varargs params. 4759 while (OpNum != Record.size()) { 4760 Value *Op; 4761 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4762 return error("Invalid record"); 4763 Ops.push_back(Op); 4764 } 4765 } 4766 4767 I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops, OperandBundles); 4768 OperandBundles.clear(); 4769 InstructionList.push_back(I); 4770 cast<InvokeInst>(I)->setCallingConv( 4771 static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo)); 4772 cast<InvokeInst>(I)->setAttributes(PAL); 4773 break; 4774 } 4775 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 4776 unsigned Idx = 0; 4777 Value *Val = nullptr; 4778 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 4779 return error("Invalid record"); 4780 I = ResumeInst::Create(Val); 4781 InstructionList.push_back(I); 4782 break; 4783 } 4784 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 4785 I = new UnreachableInst(Context); 4786 InstructionList.push_back(I); 4787 break; 4788 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 4789 if (Record.size() < 1 || ((Record.size()-1)&1)) 4790 return error("Invalid record"); 4791 Type *Ty = getTypeByID(Record[0]); 4792 if (!Ty) 4793 return error("Invalid record"); 4794 4795 PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2); 4796 InstructionList.push_back(PN); 4797 4798 for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) { 4799 Value *V; 4800 // With the new function encoding, it is possible that operands have 4801 // negative IDs (for forward references). Use a signed VBR 4802 // representation to keep the encoding small. 4803 if (UseRelativeIDs) 4804 V = getValueSigned(Record, 1+i, NextValueNo, Ty); 4805 else 4806 V = getValue(Record, 1+i, NextValueNo, Ty); 4807 BasicBlock *BB = getBasicBlock(Record[2+i]); 4808 if (!V || !BB) 4809 return error("Invalid record"); 4810 PN->addIncoming(V, BB); 4811 } 4812 I = PN; 4813 break; 4814 } 4815 4816 case bitc::FUNC_CODE_INST_LANDINGPAD: 4817 case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: { 4818 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 4819 unsigned Idx = 0; 4820 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) { 4821 if (Record.size() < 3) 4822 return error("Invalid record"); 4823 } else { 4824 assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD); 4825 if (Record.size() < 4) 4826 return error("Invalid record"); 4827 } 4828 Type *Ty = getTypeByID(Record[Idx++]); 4829 if (!Ty) 4830 return error("Invalid record"); 4831 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) { 4832 Value *PersFn = nullptr; 4833 if (getValueTypePair(Record, Idx, NextValueNo, PersFn)) 4834 return error("Invalid record"); 4835 4836 if (!F->hasPersonalityFn()) 4837 F->setPersonalityFn(cast<Constant>(PersFn)); 4838 else if (F->getPersonalityFn() != cast<Constant>(PersFn)) 4839 return error("Personality function mismatch"); 4840 } 4841 4842 bool IsCleanup = !!Record[Idx++]; 4843 unsigned NumClauses = Record[Idx++]; 4844 LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses); 4845 LP->setCleanup(IsCleanup); 4846 for (unsigned J = 0; J != NumClauses; ++J) { 4847 LandingPadInst::ClauseType CT = 4848 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 4849 Value *Val; 4850 4851 if (getValueTypePair(Record, Idx, NextValueNo, Val)) { 4852 delete LP; 4853 return error("Invalid record"); 4854 } 4855 4856 assert((CT != LandingPadInst::Catch || 4857 !isa<ArrayType>(Val->getType())) && 4858 "Catch clause has a invalid type!"); 4859 assert((CT != LandingPadInst::Filter || 4860 isa<ArrayType>(Val->getType())) && 4861 "Filter clause has invalid type!"); 4862 LP->addClause(cast<Constant>(Val)); 4863 } 4864 4865 I = LP; 4866 InstructionList.push_back(I); 4867 break; 4868 } 4869 4870 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 4871 if (Record.size() != 4) 4872 return error("Invalid record"); 4873 uint64_t AlignRecord = Record[3]; 4874 const uint64_t InAllocaMask = uint64_t(1) << 5; 4875 const uint64_t ExplicitTypeMask = uint64_t(1) << 6; 4876 // Reserve bit 7 for SwiftError flag. 4877 // const uint64_t SwiftErrorMask = uint64_t(1) << 7; 4878 const uint64_t FlagMask = InAllocaMask | ExplicitTypeMask; 4879 bool InAlloca = AlignRecord & InAllocaMask; 4880 Type *Ty = getTypeByID(Record[0]); 4881 if ((AlignRecord & ExplicitTypeMask) == 0) { 4882 auto *PTy = dyn_cast_or_null<PointerType>(Ty); 4883 if (!PTy) 4884 return error("Old-style alloca with a non-pointer type"); 4885 Ty = PTy->getElementType(); 4886 } 4887 Type *OpTy = getTypeByID(Record[1]); 4888 Value *Size = getFnValueByID(Record[2], OpTy); 4889 unsigned Align; 4890 if (std::error_code EC = 4891 parseAlignmentValue(AlignRecord & ~FlagMask, Align)) { 4892 return EC; 4893 } 4894 if (!Ty || !Size) 4895 return error("Invalid record"); 4896 AllocaInst *AI = new AllocaInst(Ty, Size, Align); 4897 AI->setUsedWithInAlloca(InAlloca); 4898 I = AI; 4899 InstructionList.push_back(I); 4900 break; 4901 } 4902 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 4903 unsigned OpNum = 0; 4904 Value *Op; 4905 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4906 (OpNum + 2 != Record.size() && OpNum + 3 != Record.size())) 4907 return error("Invalid record"); 4908 4909 Type *Ty = nullptr; 4910 if (OpNum + 3 == Record.size()) 4911 Ty = getTypeByID(Record[OpNum++]); 4912 if (std::error_code EC = typeCheckLoadStoreInst(Ty, Op->getType())) 4913 return EC; 4914 if (!Ty) 4915 Ty = cast<PointerType>(Op->getType())->getElementType(); 4916 4917 unsigned Align; 4918 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 4919 return EC; 4920 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], Align); 4921 4922 InstructionList.push_back(I); 4923 break; 4924 } 4925 case bitc::FUNC_CODE_INST_LOADATOMIC: { 4926 // LOADATOMIC: [opty, op, align, vol, ordering, synchscope] 4927 unsigned OpNum = 0; 4928 Value *Op; 4929 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4930 (OpNum + 4 != Record.size() && OpNum + 5 != Record.size())) 4931 return error("Invalid record"); 4932 4933 Type *Ty = nullptr; 4934 if (OpNum + 5 == Record.size()) 4935 Ty = getTypeByID(Record[OpNum++]); 4936 if (std::error_code EC = typeCheckLoadStoreInst(Ty, Op->getType())) 4937 return EC; 4938 if (!Ty) 4939 Ty = cast<PointerType>(Op->getType())->getElementType(); 4940 4941 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4942 if (Ordering == NotAtomic || Ordering == Release || 4943 Ordering == AcquireRelease) 4944 return error("Invalid record"); 4945 if (Ordering != NotAtomic && Record[OpNum] == 0) 4946 return error("Invalid record"); 4947 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]); 4948 4949 unsigned Align; 4950 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 4951 return EC; 4952 I = new LoadInst(Op, "", Record[OpNum+1], Align, Ordering, SynchScope); 4953 4954 InstructionList.push_back(I); 4955 break; 4956 } 4957 case bitc::FUNC_CODE_INST_STORE: 4958 case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol] 4959 unsigned OpNum = 0; 4960 Value *Val, *Ptr; 4961 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4962 (BitCode == bitc::FUNC_CODE_INST_STORE 4963 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 4964 : popValue(Record, OpNum, NextValueNo, 4965 cast<PointerType>(Ptr->getType())->getElementType(), 4966 Val)) || 4967 OpNum + 2 != Record.size()) 4968 return error("Invalid record"); 4969 4970 if (std::error_code EC = 4971 typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 4972 return EC; 4973 unsigned Align; 4974 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 4975 return EC; 4976 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align); 4977 InstructionList.push_back(I); 4978 break; 4979 } 4980 case bitc::FUNC_CODE_INST_STOREATOMIC: 4981 case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: { 4982 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, synchscope] 4983 unsigned OpNum = 0; 4984 Value *Val, *Ptr; 4985 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4986 (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC 4987 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 4988 : popValue(Record, OpNum, NextValueNo, 4989 cast<PointerType>(Ptr->getType())->getElementType(), 4990 Val)) || 4991 OpNum + 4 != Record.size()) 4992 return error("Invalid record"); 4993 4994 if (std::error_code EC = 4995 typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 4996 return EC; 4997 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4998 if (Ordering == NotAtomic || Ordering == Acquire || 4999 Ordering == AcquireRelease) 5000 return error("Invalid record"); 5001 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]); 5002 if (Ordering != NotAtomic && Record[OpNum] == 0) 5003 return error("Invalid record"); 5004 5005 unsigned Align; 5006 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 5007 return EC; 5008 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align, Ordering, SynchScope); 5009 InstructionList.push_back(I); 5010 break; 5011 } 5012 case bitc::FUNC_CODE_INST_CMPXCHG_OLD: 5013 case bitc::FUNC_CODE_INST_CMPXCHG: { 5014 // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, synchscope, 5015 // failureordering?, isweak?] 5016 unsigned OpNum = 0; 5017 Value *Ptr, *Cmp, *New; 5018 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 5019 (BitCode == bitc::FUNC_CODE_INST_CMPXCHG 5020 ? getValueTypePair(Record, OpNum, NextValueNo, Cmp) 5021 : popValue(Record, OpNum, NextValueNo, 5022 cast<PointerType>(Ptr->getType())->getElementType(), 5023 Cmp)) || 5024 popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) || 5025 Record.size() < OpNum + 3 || Record.size() > OpNum + 5) 5026 return error("Invalid record"); 5027 AtomicOrdering SuccessOrdering = getDecodedOrdering(Record[OpNum + 1]); 5028 if (SuccessOrdering == NotAtomic || SuccessOrdering == Unordered) 5029 return error("Invalid record"); 5030 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 2]); 5031 5032 if (std::error_code EC = 5033 typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType())) 5034 return EC; 5035 AtomicOrdering FailureOrdering; 5036 if (Record.size() < 7) 5037 FailureOrdering = 5038 AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering); 5039 else 5040 FailureOrdering = getDecodedOrdering(Record[OpNum + 3]); 5041 5042 I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering, 5043 SynchScope); 5044 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 5045 5046 if (Record.size() < 8) { 5047 // Before weak cmpxchgs existed, the instruction simply returned the 5048 // value loaded from memory, so bitcode files from that era will be 5049 // expecting the first component of a modern cmpxchg. 5050 CurBB->getInstList().push_back(I); 5051 I = ExtractValueInst::Create(I, 0); 5052 } else { 5053 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]); 5054 } 5055 5056 InstructionList.push_back(I); 5057 break; 5058 } 5059 case bitc::FUNC_CODE_INST_ATOMICRMW: { 5060 // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, synchscope] 5061 unsigned OpNum = 0; 5062 Value *Ptr, *Val; 5063 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 5064 popValue(Record, OpNum, NextValueNo, 5065 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 5066 OpNum+4 != Record.size()) 5067 return error("Invalid record"); 5068 AtomicRMWInst::BinOp Operation = getDecodedRMWOperation(Record[OpNum]); 5069 if (Operation < AtomicRMWInst::FIRST_BINOP || 5070 Operation > AtomicRMWInst::LAST_BINOP) 5071 return error("Invalid record"); 5072 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 5073 if (Ordering == NotAtomic || Ordering == Unordered) 5074 return error("Invalid record"); 5075 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]); 5076 I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SynchScope); 5077 cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]); 5078 InstructionList.push_back(I); 5079 break; 5080 } 5081 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, synchscope] 5082 if (2 != Record.size()) 5083 return error("Invalid record"); 5084 AtomicOrdering Ordering = getDecodedOrdering(Record[0]); 5085 if (Ordering == NotAtomic || Ordering == Unordered || 5086 Ordering == Monotonic) 5087 return error("Invalid record"); 5088 SynchronizationScope SynchScope = getDecodedSynchScope(Record[1]); 5089 I = new FenceInst(Context, Ordering, SynchScope); 5090 InstructionList.push_back(I); 5091 break; 5092 } 5093 case bitc::FUNC_CODE_INST_CALL: { 5094 // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...] 5095 if (Record.size() < 3) 5096 return error("Invalid record"); 5097 5098 unsigned OpNum = 0; 5099 AttributeSet PAL = getAttributes(Record[OpNum++]); 5100 unsigned CCInfo = Record[OpNum++]; 5101 5102 FastMathFlags FMF; 5103 if ((CCInfo >> bitc::CALL_FMF) & 1) { 5104 FMF = getDecodedFastMathFlags(Record[OpNum++]); 5105 if (!FMF.any()) 5106 return error("Fast math flags indicator set for call with no FMF"); 5107 } 5108 5109 FunctionType *FTy = nullptr; 5110 if (CCInfo >> bitc::CALL_EXPLICIT_TYPE & 1 && 5111 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])))) 5112 return error("Explicit call type is not a function type"); 5113 5114 Value *Callee; 5115 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 5116 return error("Invalid record"); 5117 5118 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 5119 if (!OpTy) 5120 return error("Callee is not a pointer type"); 5121 if (!FTy) { 5122 FTy = dyn_cast<FunctionType>(OpTy->getElementType()); 5123 if (!FTy) 5124 return error("Callee is not of pointer to function type"); 5125 } else if (OpTy->getElementType() != FTy) 5126 return error("Explicit call type does not match pointee type of " 5127 "callee operand"); 5128 if (Record.size() < FTy->getNumParams() + OpNum) 5129 return error("Insufficient operands to call"); 5130 5131 SmallVector<Value*, 16> Args; 5132 // Read the fixed params. 5133 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 5134 if (FTy->getParamType(i)->isLabelTy()) 5135 Args.push_back(getBasicBlock(Record[OpNum])); 5136 else 5137 Args.push_back(getValue(Record, OpNum, NextValueNo, 5138 FTy->getParamType(i))); 5139 if (!Args.back()) 5140 return error("Invalid record"); 5141 } 5142 5143 // Read type/value pairs for varargs params. 5144 if (!FTy->isVarArg()) { 5145 if (OpNum != Record.size()) 5146 return error("Invalid record"); 5147 } else { 5148 while (OpNum != Record.size()) { 5149 Value *Op; 5150 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 5151 return error("Invalid record"); 5152 Args.push_back(Op); 5153 } 5154 } 5155 5156 I = CallInst::Create(FTy, Callee, Args, OperandBundles); 5157 OperandBundles.clear(); 5158 InstructionList.push_back(I); 5159 cast<CallInst>(I)->setCallingConv( 5160 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 5161 CallInst::TailCallKind TCK = CallInst::TCK_None; 5162 if (CCInfo & 1 << bitc::CALL_TAIL) 5163 TCK = CallInst::TCK_Tail; 5164 if (CCInfo & (1 << bitc::CALL_MUSTTAIL)) 5165 TCK = CallInst::TCK_MustTail; 5166 if (CCInfo & (1 << bitc::CALL_NOTAIL)) 5167 TCK = CallInst::TCK_NoTail; 5168 cast<CallInst>(I)->setTailCallKind(TCK); 5169 cast<CallInst>(I)->setAttributes(PAL); 5170 if (FMF.any()) { 5171 if (!isa<FPMathOperator>(I)) 5172 return error("Fast-math-flags specified for call without " 5173 "floating-point scalar or vector return type"); 5174 I->setFastMathFlags(FMF); 5175 } 5176 break; 5177 } 5178 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 5179 if (Record.size() < 3) 5180 return error("Invalid record"); 5181 Type *OpTy = getTypeByID(Record[0]); 5182 Value *Op = getValue(Record, 1, NextValueNo, OpTy); 5183 Type *ResTy = getTypeByID(Record[2]); 5184 if (!OpTy || !Op || !ResTy) 5185 return error("Invalid record"); 5186 I = new VAArgInst(Op, ResTy); 5187 InstructionList.push_back(I); 5188 break; 5189 } 5190 5191 case bitc::FUNC_CODE_OPERAND_BUNDLE: { 5192 // A call or an invoke can be optionally prefixed with some variable 5193 // number of operand bundle blocks. These blocks are read into 5194 // OperandBundles and consumed at the next call or invoke instruction. 5195 5196 if (Record.size() < 1 || Record[0] >= BundleTags.size()) 5197 return error("Invalid record"); 5198 5199 std::vector<Value *> Inputs; 5200 5201 unsigned OpNum = 1; 5202 while (OpNum != Record.size()) { 5203 Value *Op; 5204 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 5205 return error("Invalid record"); 5206 Inputs.push_back(Op); 5207 } 5208 5209 OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs)); 5210 continue; 5211 } 5212 } 5213 5214 // Add instruction to end of current BB. If there is no current BB, reject 5215 // this file. 5216 if (!CurBB) { 5217 delete I; 5218 return error("Invalid instruction with no BB"); 5219 } 5220 if (!OperandBundles.empty()) { 5221 delete I; 5222 return error("Operand bundles found with no consumer"); 5223 } 5224 CurBB->getInstList().push_back(I); 5225 5226 // If this was a terminator instruction, move to the next block. 5227 if (isa<TerminatorInst>(I)) { 5228 ++CurBBNo; 5229 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr; 5230 } 5231 5232 // Non-void values get registered in the value table for future use. 5233 if (I && !I->getType()->isVoidTy()) 5234 ValueList.assignValue(I, NextValueNo++); 5235 } 5236 5237 OutOfRecordLoop: 5238 5239 if (!OperandBundles.empty()) 5240 return error("Operand bundles found with no consumer"); 5241 5242 // Check the function list for unresolved values. 5243 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 5244 if (!A->getParent()) { 5245 // We found at least one unresolved value. Nuke them all to avoid leaks. 5246 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 5247 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) { 5248 A->replaceAllUsesWith(UndefValue::get(A->getType())); 5249 delete A; 5250 } 5251 } 5252 return error("Never resolved value found in function"); 5253 } 5254 } 5255 5256 // FIXME: Check for unresolved forward-declared metadata references 5257 // and clean up leaks. 5258 5259 // Trim the value list down to the size it was before we parsed this function. 5260 ValueList.shrinkTo(ModuleValueListSize); 5261 MetadataList.shrinkTo(ModuleMetadataListSize); 5262 std::vector<BasicBlock*>().swap(FunctionBBs); 5263 return std::error_code(); 5264 } 5265 5266 /// Find the function body in the bitcode stream 5267 std::error_code BitcodeReader::findFunctionInStream( 5268 Function *F, 5269 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) { 5270 while (DeferredFunctionInfoIterator->second == 0) { 5271 // This is the fallback handling for the old format bitcode that 5272 // didn't contain the function index in the VST, or when we have 5273 // an anonymous function which would not have a VST entry. 5274 // Assert that we have one of those two cases. 5275 assert(VSTOffset == 0 || !F->hasName()); 5276 // Parse the next body in the stream and set its position in the 5277 // DeferredFunctionInfo map. 5278 if (std::error_code EC = rememberAndSkipFunctionBodies()) 5279 return EC; 5280 } 5281 return std::error_code(); 5282 } 5283 5284 //===----------------------------------------------------------------------===// 5285 // GVMaterializer implementation 5286 //===----------------------------------------------------------------------===// 5287 5288 void BitcodeReader::releaseBuffer() { Buffer.release(); } 5289 5290 std::error_code BitcodeReader::materialize(GlobalValue *GV) { 5291 // In older bitcode we must materialize the metadata before parsing 5292 // any functions, in order to set up the MetadataList properly. 5293 if (!SeenModuleValuesRecord) { 5294 if (std::error_code EC = materializeMetadata()) 5295 return EC; 5296 } 5297 5298 Function *F = dyn_cast<Function>(GV); 5299 // If it's not a function or is already material, ignore the request. 5300 if (!F || !F->isMaterializable()) 5301 return std::error_code(); 5302 5303 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 5304 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 5305 // If its position is recorded as 0, its body is somewhere in the stream 5306 // but we haven't seen it yet. 5307 if (DFII->second == 0) 5308 if (std::error_code EC = findFunctionInStream(F, DFII)) 5309 return EC; 5310 5311 // Move the bit stream to the saved position of the deferred function body. 5312 Stream.JumpToBit(DFII->second); 5313 5314 if (std::error_code EC = parseFunctionBody(F)) 5315 return EC; 5316 F->setIsMaterializable(false); 5317 5318 if (StripDebugInfo) 5319 stripDebugInfo(*F); 5320 5321 // Upgrade any old intrinsic calls in the function. 5322 for (auto &I : UpgradedIntrinsics) { 5323 for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end(); 5324 UI != UE;) { 5325 User *U = *UI; 5326 ++UI; 5327 if (CallInst *CI = dyn_cast<CallInst>(U)) 5328 UpgradeIntrinsicCall(CI, I.second); 5329 } 5330 } 5331 5332 // Finish fn->subprogram upgrade for materialized functions. 5333 if (DISubprogram *SP = FunctionsWithSPs.lookup(F)) 5334 F->setSubprogram(SP); 5335 5336 // Bring in any functions that this function forward-referenced via 5337 // blockaddresses. 5338 return materializeForwardReferencedFunctions(); 5339 } 5340 5341 std::error_code BitcodeReader::materializeModule() { 5342 if (std::error_code EC = materializeMetadata()) 5343 return EC; 5344 5345 // Promise to materialize all forward references. 5346 WillMaterializeAllForwardRefs = true; 5347 5348 // Iterate over the module, deserializing any functions that are still on 5349 // disk. 5350 for (Function &F : *TheModule) { 5351 if (std::error_code EC = materialize(&F)) 5352 return EC; 5353 } 5354 // At this point, if there are any function bodies, parse the rest of 5355 // the bits in the module past the last function block we have recorded 5356 // through either lazy scanning or the VST. 5357 if (LastFunctionBlockBit || NextUnreadBit) 5358 parseModule(LastFunctionBlockBit > NextUnreadBit ? LastFunctionBlockBit 5359 : NextUnreadBit); 5360 5361 // Check that all block address forward references got resolved (as we 5362 // promised above). 5363 if (!BasicBlockFwdRefs.empty()) 5364 return error("Never resolved function from blockaddress"); 5365 5366 // Upgrading intrinsic calls before TBAA can cause TBAA metadata to be lost, 5367 // to prevent this instructions with TBAA tags should be upgraded first. 5368 for (unsigned I = 0, E = InstsWithTBAATag.size(); I < E; I++) 5369 UpgradeInstWithTBAATag(InstsWithTBAATag[I]); 5370 5371 // Upgrade any intrinsic calls that slipped through (should not happen!) and 5372 // delete the old functions to clean up. We can't do this unless the entire 5373 // module is materialized because there could always be another function body 5374 // with calls to the old function. 5375 for (auto &I : UpgradedIntrinsics) { 5376 for (auto *U : I.first->users()) { 5377 if (CallInst *CI = dyn_cast<CallInst>(U)) 5378 UpgradeIntrinsicCall(CI, I.second); 5379 } 5380 if (!I.first->use_empty()) 5381 I.first->replaceAllUsesWith(I.second); 5382 I.first->eraseFromParent(); 5383 } 5384 UpgradedIntrinsics.clear(); 5385 5386 UpgradeDebugInfo(*TheModule); 5387 return std::error_code(); 5388 } 5389 5390 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const { 5391 return IdentifiedStructTypes; 5392 } 5393 5394 std::error_code 5395 BitcodeReader::initStream(std::unique_ptr<DataStreamer> Streamer) { 5396 if (Streamer) 5397 return initLazyStream(std::move(Streamer)); 5398 return initStreamFromBuffer(); 5399 } 5400 5401 std::error_code BitcodeReader::initStreamFromBuffer() { 5402 const unsigned char *BufPtr = (const unsigned char*)Buffer->getBufferStart(); 5403 const unsigned char *BufEnd = BufPtr+Buffer->getBufferSize(); 5404 5405 if (Buffer->getBufferSize() & 3) 5406 return error("Invalid bitcode signature"); 5407 5408 // If we have a wrapper header, parse it and ignore the non-bc file contents. 5409 // The magic number is 0x0B17C0DE stored in little endian. 5410 if (isBitcodeWrapper(BufPtr, BufEnd)) 5411 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 5412 return error("Invalid bitcode wrapper header"); 5413 5414 StreamFile.reset(new BitstreamReader(BufPtr, BufEnd)); 5415 Stream.init(&*StreamFile); 5416 5417 return std::error_code(); 5418 } 5419 5420 std::error_code 5421 BitcodeReader::initLazyStream(std::unique_ptr<DataStreamer> Streamer) { 5422 // Check and strip off the bitcode wrapper; BitstreamReader expects never to 5423 // see it. 5424 auto OwnedBytes = 5425 llvm::make_unique<StreamingMemoryObject>(std::move(Streamer)); 5426 StreamingMemoryObject &Bytes = *OwnedBytes; 5427 StreamFile = llvm::make_unique<BitstreamReader>(std::move(OwnedBytes)); 5428 Stream.init(&*StreamFile); 5429 5430 unsigned char buf[16]; 5431 if (Bytes.readBytes(buf, 16, 0) != 16) 5432 return error("Invalid bitcode signature"); 5433 5434 if (!isBitcode(buf, buf + 16)) 5435 return error("Invalid bitcode signature"); 5436 5437 if (isBitcodeWrapper(buf, buf + 4)) { 5438 const unsigned char *bitcodeStart = buf; 5439 const unsigned char *bitcodeEnd = buf + 16; 5440 SkipBitcodeWrapperHeader(bitcodeStart, bitcodeEnd, false); 5441 Bytes.dropLeadingBytes(bitcodeStart - buf); 5442 Bytes.setKnownObjectSize(bitcodeEnd - bitcodeStart); 5443 } 5444 return std::error_code(); 5445 } 5446 5447 std::error_code ModuleSummaryIndexBitcodeReader::error(BitcodeError E, 5448 const Twine &Message) { 5449 return ::error(DiagnosticHandler, make_error_code(E), Message); 5450 } 5451 5452 std::error_code ModuleSummaryIndexBitcodeReader::error(const Twine &Message) { 5453 return ::error(DiagnosticHandler, 5454 make_error_code(BitcodeError::CorruptedBitcode), Message); 5455 } 5456 5457 std::error_code ModuleSummaryIndexBitcodeReader::error(BitcodeError E) { 5458 return ::error(DiagnosticHandler, make_error_code(E)); 5459 } 5460 5461 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader( 5462 MemoryBuffer *Buffer, DiagnosticHandlerFunction DiagnosticHandler, 5463 bool IsLazy, bool CheckGlobalValSummaryPresenceOnly) 5464 : DiagnosticHandler(DiagnosticHandler), Buffer(Buffer), IsLazy(IsLazy), 5465 CheckGlobalValSummaryPresenceOnly(CheckGlobalValSummaryPresenceOnly) {} 5466 5467 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader( 5468 DiagnosticHandlerFunction DiagnosticHandler, bool IsLazy, 5469 bool CheckGlobalValSummaryPresenceOnly) 5470 : DiagnosticHandler(DiagnosticHandler), Buffer(nullptr), IsLazy(IsLazy), 5471 CheckGlobalValSummaryPresenceOnly(CheckGlobalValSummaryPresenceOnly) {} 5472 5473 void ModuleSummaryIndexBitcodeReader::freeState() { Buffer = nullptr; } 5474 5475 void ModuleSummaryIndexBitcodeReader::releaseBuffer() { Buffer.release(); } 5476 5477 uint64_t ModuleSummaryIndexBitcodeReader::getGUIDFromValueId(unsigned ValueId) { 5478 auto VGI = ValueIdToCallGraphGUIDMap.find(ValueId); 5479 assert(VGI != ValueIdToCallGraphGUIDMap.end()); 5480 return VGI->second; 5481 } 5482 5483 GlobalValueInfo * 5484 ModuleSummaryIndexBitcodeReader::getInfoFromSummaryOffset(uint64_t Offset) { 5485 auto I = SummaryOffsetToInfoMap.find(Offset); 5486 assert(I != SummaryOffsetToInfoMap.end()); 5487 return I->second; 5488 } 5489 5490 // Specialized value symbol table parser used when reading module index 5491 // blocks where we don't actually create global values. 5492 // At the end of this routine the module index is populated with a map 5493 // from global value name to GlobalValueInfo. The global value info contains 5494 // the function block's bitcode offset (if applicable), or the offset into the 5495 // summary section for the combined index. 5496 std::error_code ModuleSummaryIndexBitcodeReader::parseValueSymbolTable( 5497 uint64_t Offset, 5498 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) { 5499 assert(Offset > 0 && "Expected non-zero VST offset"); 5500 uint64_t CurrentBit = jumpToValueSymbolTable(Offset, Stream); 5501 5502 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 5503 return error("Invalid record"); 5504 5505 SmallVector<uint64_t, 64> Record; 5506 5507 // Read all the records for this value table. 5508 SmallString<128> ValueName; 5509 while (1) { 5510 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5511 5512 switch (Entry.Kind) { 5513 case BitstreamEntry::SubBlock: // Handled for us already. 5514 case BitstreamEntry::Error: 5515 return error("Malformed block"); 5516 case BitstreamEntry::EndBlock: 5517 // Done parsing VST, jump back to wherever we came from. 5518 Stream.JumpToBit(CurrentBit); 5519 return std::error_code(); 5520 case BitstreamEntry::Record: 5521 // The interesting case. 5522 break; 5523 } 5524 5525 // Read a record. 5526 Record.clear(); 5527 switch (Stream.readRecord(Entry.ID, Record)) { 5528 default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records). 5529 break; 5530 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 5531 if (convertToString(Record, 1, ValueName)) 5532 return error("Invalid record"); 5533 unsigned ValueID = Record[0]; 5534 std::unique_ptr<GlobalValueInfo> GlobalValInfo = 5535 llvm::make_unique<GlobalValueInfo>(); 5536 assert(!SourceFileName.empty()); 5537 auto VLI = ValueIdToLinkageMap.find(ValueID); 5538 assert(VLI != ValueIdToLinkageMap.end() && 5539 "No linkage found for VST entry?"); 5540 std::string GlobalId = GlobalValue::getGlobalIdentifier( 5541 ValueName, VLI->second, SourceFileName); 5542 TheIndex->addGlobalValueInfo(GlobalId, std::move(GlobalValInfo)); 5543 ValueIdToCallGraphGUIDMap[ValueID] = GlobalValue::getGUID(GlobalId); 5544 ValueName.clear(); 5545 break; 5546 } 5547 case bitc::VST_CODE_FNENTRY: { 5548 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 5549 if (convertToString(Record, 2, ValueName)) 5550 return error("Invalid record"); 5551 unsigned ValueID = Record[0]; 5552 uint64_t FuncOffset = Record[1]; 5553 assert(!IsLazy && "Lazy summary read only supported for combined index"); 5554 std::unique_ptr<GlobalValueInfo> FuncInfo = 5555 llvm::make_unique<GlobalValueInfo>(FuncOffset); 5556 assert(!SourceFileName.empty()); 5557 auto VLI = ValueIdToLinkageMap.find(ValueID); 5558 assert(VLI != ValueIdToLinkageMap.end() && 5559 "No linkage found for VST entry?"); 5560 std::string FunctionGlobalId = GlobalValue::getGlobalIdentifier( 5561 ValueName, VLI->second, SourceFileName); 5562 TheIndex->addGlobalValueInfo(FunctionGlobalId, std::move(FuncInfo)); 5563 ValueIdToCallGraphGUIDMap[ValueID] = 5564 GlobalValue::getGUID(FunctionGlobalId); 5565 5566 ValueName.clear(); 5567 break; 5568 } 5569 case bitc::VST_CODE_COMBINED_GVDEFENTRY: { 5570 // VST_CODE_COMBINED_GVDEFENTRY: [valueid, offset, guid] 5571 unsigned ValueID = Record[0]; 5572 uint64_t GlobalValSummaryOffset = Record[1]; 5573 uint64_t GlobalValGUID = Record[2]; 5574 std::unique_ptr<GlobalValueInfo> GlobalValInfo = 5575 llvm::make_unique<GlobalValueInfo>(GlobalValSummaryOffset); 5576 SummaryOffsetToInfoMap[GlobalValSummaryOffset] = GlobalValInfo.get(); 5577 TheIndex->addGlobalValueInfo(GlobalValGUID, std::move(GlobalValInfo)); 5578 ValueIdToCallGraphGUIDMap[ValueID] = GlobalValGUID; 5579 break; 5580 } 5581 case bitc::VST_CODE_COMBINED_ENTRY: { 5582 // VST_CODE_COMBINED_ENTRY: [valueid, refguid] 5583 unsigned ValueID = Record[0]; 5584 uint64_t RefGUID = Record[1]; 5585 ValueIdToCallGraphGUIDMap[ValueID] = RefGUID; 5586 break; 5587 } 5588 } 5589 } 5590 } 5591 5592 // Parse just the blocks needed for building the index out of the module. 5593 // At the end of this routine the module Index is populated with a map 5594 // from global value name to GlobalValueInfo. The global value info contains 5595 // either the parsed summary information (when parsing summaries 5596 // eagerly), or just to the summary record's offset 5597 // if parsing lazily (IsLazy). 5598 std::error_code ModuleSummaryIndexBitcodeReader::parseModule() { 5599 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 5600 return error("Invalid record"); 5601 5602 SmallVector<uint64_t, 64> Record; 5603 DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap; 5604 unsigned ValueId = 0; 5605 5606 // Read the index for this module. 5607 while (1) { 5608 BitstreamEntry Entry = Stream.advance(); 5609 5610 switch (Entry.Kind) { 5611 case BitstreamEntry::Error: 5612 return error("Malformed block"); 5613 case BitstreamEntry::EndBlock: 5614 return std::error_code(); 5615 5616 case BitstreamEntry::SubBlock: 5617 if (CheckGlobalValSummaryPresenceOnly) { 5618 if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) { 5619 SeenGlobalValSummary = true; 5620 // No need to parse the rest since we found the summary. 5621 return std::error_code(); 5622 } 5623 if (Stream.SkipBlock()) 5624 return error("Invalid record"); 5625 continue; 5626 } 5627 switch (Entry.ID) { 5628 default: // Skip unknown content. 5629 if (Stream.SkipBlock()) 5630 return error("Invalid record"); 5631 break; 5632 case bitc::BLOCKINFO_BLOCK_ID: 5633 // Need to parse these to get abbrev ids (e.g. for VST) 5634 if (Stream.ReadBlockInfoBlock()) 5635 return error("Malformed block"); 5636 break; 5637 case bitc::VALUE_SYMTAB_BLOCK_ID: 5638 // Should have been parsed earlier via VSTOffset, unless there 5639 // is no summary section. 5640 assert(((SeenValueSymbolTable && VSTOffset > 0) || 5641 !SeenGlobalValSummary) && 5642 "Expected early VST parse via VSTOffset record"); 5643 if (Stream.SkipBlock()) 5644 return error("Invalid record"); 5645 break; 5646 case bitc::GLOBALVAL_SUMMARY_BLOCK_ID: 5647 assert(VSTOffset > 0 && "Expected non-zero VST offset"); 5648 assert(!SeenValueSymbolTable && 5649 "Already read VST when parsing summary block?"); 5650 if (std::error_code EC = 5651 parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap)) 5652 return EC; 5653 SeenValueSymbolTable = true; 5654 SeenGlobalValSummary = true; 5655 if (IsLazy) { 5656 // Lazy parsing of summary info, skip it. 5657 if (Stream.SkipBlock()) 5658 return error("Invalid record"); 5659 } else if (std::error_code EC = parseEntireSummary()) 5660 return EC; 5661 break; 5662 case bitc::MODULE_STRTAB_BLOCK_ID: 5663 if (std::error_code EC = parseModuleStringTable()) 5664 return EC; 5665 break; 5666 } 5667 continue; 5668 5669 case BitstreamEntry::Record: 5670 // Once we find the last record of interest, skip the rest. 5671 if (VSTOffset > 0) 5672 Stream.skipRecord(Entry.ID); 5673 else { 5674 Record.clear(); 5675 auto BitCode = Stream.readRecord(Entry.ID, Record); 5676 switch (BitCode) { 5677 default: 5678 break; // Default behavior, ignore unknown content. 5679 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 5680 case bitc::MODULE_CODE_SOURCE_FILENAME: { 5681 SmallString<128> ValueName; 5682 if (convertToString(Record, 0, ValueName)) 5683 return error("Invalid record"); 5684 SourceFileName = ValueName.c_str(); 5685 break; 5686 } 5687 /// MODULE_CODE_VSTOFFSET: [offset] 5688 case bitc::MODULE_CODE_VSTOFFSET: 5689 if (Record.size() < 1) 5690 return error("Invalid record"); 5691 VSTOffset = Record[0]; 5692 break; 5693 // GLOBALVAR: [pointer type, isconst, initid, 5694 // linkage, alignment, section, visibility, threadlocal, 5695 // unnamed_addr, externally_initialized, dllstorageclass, 5696 // comdat] 5697 case bitc::MODULE_CODE_GLOBALVAR: { 5698 if (Record.size() < 6) 5699 return error("Invalid record"); 5700 uint64_t RawLinkage = Record[3]; 5701 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 5702 ValueIdToLinkageMap[ValueId++] = Linkage; 5703 break; 5704 } 5705 // FUNCTION: [type, callingconv, isproto, linkage, paramattr, 5706 // alignment, section, visibility, gc, unnamed_addr, 5707 // prologuedata, dllstorageclass, comdat, prefixdata] 5708 case bitc::MODULE_CODE_FUNCTION: { 5709 if (Record.size() < 8) 5710 return error("Invalid record"); 5711 uint64_t RawLinkage = Record[3]; 5712 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 5713 ValueIdToLinkageMap[ValueId++] = Linkage; 5714 break; 5715 } 5716 // ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, 5717 // dllstorageclass] 5718 case bitc::MODULE_CODE_ALIAS: { 5719 if (Record.size() < 6) 5720 return error("Invalid record"); 5721 uint64_t RawLinkage = Record[3]; 5722 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 5723 ValueIdToLinkageMap[ValueId++] = Linkage; 5724 break; 5725 } 5726 } 5727 } 5728 continue; 5729 } 5730 } 5731 } 5732 5733 // Eagerly parse the entire summary block. This populates the GlobalValueSummary 5734 // objects in the index. 5735 std::error_code ModuleSummaryIndexBitcodeReader::parseEntireSummary() { 5736 if (Stream.EnterSubBlock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID)) 5737 return error("Invalid record"); 5738 5739 SmallVector<uint64_t, 64> Record; 5740 5741 bool Combined = false; 5742 while (1) { 5743 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5744 5745 switch (Entry.Kind) { 5746 case BitstreamEntry::SubBlock: // Handled for us already. 5747 case BitstreamEntry::Error: 5748 return error("Malformed block"); 5749 case BitstreamEntry::EndBlock: 5750 // For a per-module index, remove any entries that still have empty 5751 // summaries. The VST parsing creates entries eagerly for all symbols, 5752 // but not all have associated summaries (e.g. it doesn't know how to 5753 // distinguish between VST_CODE_ENTRY for function declarations vs global 5754 // variables with initializers that end up with a summary). Remove those 5755 // entries now so that we don't need to rely on the combined index merger 5756 // to clean them up (especially since that may not run for the first 5757 // module's index if we merge into that). 5758 if (!Combined) 5759 TheIndex->removeEmptySummaryEntries(); 5760 return std::error_code(); 5761 case BitstreamEntry::Record: 5762 // The interesting case. 5763 break; 5764 } 5765 5766 // Read a record. The record format depends on whether this 5767 // is a per-module index or a combined index file. In the per-module 5768 // case the records contain the associated value's ID for correlation 5769 // with VST entries. In the combined index the correlation is done 5770 // via the bitcode offset of the summary records (which were saved 5771 // in the combined index VST entries). The records also contain 5772 // information used for ThinLTO renaming and importing. 5773 Record.clear(); 5774 uint64_t CurRecordBit = Stream.GetCurrentBitNo(); 5775 auto BitCode = Stream.readRecord(Entry.ID, Record); 5776 switch (BitCode) { 5777 default: // Default behavior: ignore. 5778 break; 5779 // FS_PERMODULE: [valueid, linkage, instcount, numrefs, numrefs x valueid, 5780 // n x (valueid, callsitecount)] 5781 // FS_PERMODULE_PROFILE: [valueid, linkage, instcount, numrefs, 5782 // numrefs x valueid, 5783 // n x (valueid, callsitecount, profilecount)] 5784 case bitc::FS_PERMODULE: 5785 case bitc::FS_PERMODULE_PROFILE: { 5786 unsigned ValueID = Record[0]; 5787 uint64_t RawLinkage = Record[1]; 5788 unsigned InstCount = Record[2]; 5789 unsigned NumRefs = Record[3]; 5790 std::unique_ptr<FunctionSummary> FS = llvm::make_unique<FunctionSummary>( 5791 getDecodedLinkage(RawLinkage), InstCount); 5792 // The module path string ref set in the summary must be owned by the 5793 // index's module string table. Since we don't have a module path 5794 // string table section in the per-module index, we create a single 5795 // module path string table entry with an empty (0) ID to take 5796 // ownership. 5797 FS->setModulePath( 5798 TheIndex->addModulePath(Buffer->getBufferIdentifier(), 0)); 5799 static int RefListStartIndex = 4; 5800 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 5801 assert(Record.size() >= RefListStartIndex + NumRefs && 5802 "Record size inconsistent with number of references"); 5803 for (unsigned I = 4, E = CallGraphEdgeStartIndex; I != E; ++I) { 5804 unsigned RefValueId = Record[I]; 5805 uint64_t RefGUID = getGUIDFromValueId(RefValueId); 5806 FS->addRefEdge(RefGUID); 5807 } 5808 bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE); 5809 for (unsigned I = CallGraphEdgeStartIndex, E = Record.size(); I != E; 5810 ++I) { 5811 unsigned CalleeValueId = Record[I]; 5812 unsigned CallsiteCount = Record[++I]; 5813 uint64_t ProfileCount = HasProfile ? Record[++I] : 0; 5814 uint64_t CalleeGUID = getGUIDFromValueId(CalleeValueId); 5815 FS->addCallGraphEdge(CalleeGUID, 5816 CalleeInfo(CallsiteCount, ProfileCount)); 5817 } 5818 uint64_t GUID = getGUIDFromValueId(ValueID); 5819 auto InfoList = TheIndex->findGlobalValueInfoList(GUID); 5820 assert(InfoList != TheIndex->end() && 5821 "Expected VST parse to create GlobalValueInfo entry"); 5822 assert(InfoList->second.size() == 1 && 5823 "Expected a single GlobalValueInfo per GUID in module"); 5824 auto &Info = InfoList->second[0]; 5825 assert(!Info->summary() && "Expected a single summary per VST entry"); 5826 Info->setSummary(std::move(FS)); 5827 break; 5828 } 5829 // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, linkage, n x valueid] 5830 case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: { 5831 unsigned ValueID = Record[0]; 5832 uint64_t RawLinkage = Record[1]; 5833 std::unique_ptr<GlobalVarSummary> FS = 5834 llvm::make_unique<GlobalVarSummary>(getDecodedLinkage(RawLinkage)); 5835 FS->setModulePath( 5836 TheIndex->addModulePath(Buffer->getBufferIdentifier(), 0)); 5837 for (unsigned I = 2, E = Record.size(); I != E; ++I) { 5838 unsigned RefValueId = Record[I]; 5839 uint64_t RefGUID = getGUIDFromValueId(RefValueId); 5840 FS->addRefEdge(RefGUID); 5841 } 5842 uint64_t GUID = getGUIDFromValueId(ValueID); 5843 auto InfoList = TheIndex->findGlobalValueInfoList(GUID); 5844 assert(InfoList != TheIndex->end() && 5845 "Expected VST parse to create GlobalValueInfo entry"); 5846 assert(InfoList->second.size() == 1 && 5847 "Expected a single GlobalValueInfo per GUID in module"); 5848 auto &Info = InfoList->second[0]; 5849 assert(!Info->summary() && "Expected a single summary per VST entry"); 5850 Info->setSummary(std::move(FS)); 5851 break; 5852 } 5853 // FS_COMBINED: [modid, linkage, instcount, numrefs, numrefs x valueid, 5854 // n x (valueid, callsitecount)] 5855 // FS_COMBINED_PROFILE: [modid, linkage, instcount, numrefs, 5856 // numrefs x valueid, 5857 // n x (valueid, callsitecount, profilecount)] 5858 case bitc::FS_COMBINED: 5859 case bitc::FS_COMBINED_PROFILE: { 5860 uint64_t ModuleId = Record[0]; 5861 uint64_t RawLinkage = Record[1]; 5862 unsigned InstCount = Record[2]; 5863 unsigned NumRefs = Record[3]; 5864 std::unique_ptr<FunctionSummary> FS = llvm::make_unique<FunctionSummary>( 5865 getDecodedLinkage(RawLinkage), InstCount); 5866 FS->setModulePath(ModuleIdMap[ModuleId]); 5867 static int RefListStartIndex = 4; 5868 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 5869 assert(Record.size() >= RefListStartIndex + NumRefs && 5870 "Record size inconsistent with number of references"); 5871 for (unsigned I = 4, E = CallGraphEdgeStartIndex; I != E; ++I) { 5872 unsigned RefValueId = Record[I]; 5873 uint64_t RefGUID = getGUIDFromValueId(RefValueId); 5874 FS->addRefEdge(RefGUID); 5875 } 5876 bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE); 5877 for (unsigned I = CallGraphEdgeStartIndex, E = Record.size(); I != E; 5878 ++I) { 5879 unsigned CalleeValueId = Record[I]; 5880 unsigned CallsiteCount = Record[++I]; 5881 uint64_t ProfileCount = HasProfile ? Record[++I] : 0; 5882 uint64_t CalleeGUID = getGUIDFromValueId(CalleeValueId); 5883 FS->addCallGraphEdge(CalleeGUID, 5884 CalleeInfo(CallsiteCount, ProfileCount)); 5885 } 5886 auto *Info = getInfoFromSummaryOffset(CurRecordBit); 5887 assert(!Info->summary() && "Expected a single summary per VST entry"); 5888 Info->setSummary(std::move(FS)); 5889 Combined = true; 5890 break; 5891 } 5892 // FS_COMBINED_GLOBALVAR_INIT_REFS: [modid, linkage, n x valueid] 5893 case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: { 5894 uint64_t ModuleId = Record[0]; 5895 uint64_t RawLinkage = Record[1]; 5896 std::unique_ptr<GlobalVarSummary> FS = 5897 llvm::make_unique<GlobalVarSummary>(getDecodedLinkage(RawLinkage)); 5898 FS->setModulePath(ModuleIdMap[ModuleId]); 5899 for (unsigned I = 2, E = Record.size(); I != E; ++I) { 5900 unsigned RefValueId = Record[I]; 5901 uint64_t RefGUID = getGUIDFromValueId(RefValueId); 5902 FS->addRefEdge(RefGUID); 5903 } 5904 auto *Info = getInfoFromSummaryOffset(CurRecordBit); 5905 assert(!Info->summary() && "Expected a single summary per VST entry"); 5906 Info->setSummary(std::move(FS)); 5907 Combined = true; 5908 break; 5909 } 5910 } 5911 } 5912 llvm_unreachable("Exit infinite loop"); 5913 } 5914 5915 // Parse the module string table block into the Index. 5916 // This populates the ModulePathStringTable map in the index. 5917 std::error_code ModuleSummaryIndexBitcodeReader::parseModuleStringTable() { 5918 if (Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID)) 5919 return error("Invalid record"); 5920 5921 SmallVector<uint64_t, 64> Record; 5922 5923 SmallString<128> ModulePath; 5924 while (1) { 5925 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5926 5927 switch (Entry.Kind) { 5928 case BitstreamEntry::SubBlock: // Handled for us already. 5929 case BitstreamEntry::Error: 5930 return error("Malformed block"); 5931 case BitstreamEntry::EndBlock: 5932 return std::error_code(); 5933 case BitstreamEntry::Record: 5934 // The interesting case. 5935 break; 5936 } 5937 5938 Record.clear(); 5939 switch (Stream.readRecord(Entry.ID, Record)) { 5940 default: // Default behavior: ignore. 5941 break; 5942 case bitc::MST_CODE_ENTRY: { 5943 // MST_ENTRY: [modid, namechar x N] 5944 if (convertToString(Record, 1, ModulePath)) 5945 return error("Invalid record"); 5946 uint64_t ModuleId = Record[0]; 5947 StringRef ModulePathInMap = TheIndex->addModulePath(ModulePath, ModuleId); 5948 ModuleIdMap[ModuleId] = ModulePathInMap; 5949 ModulePath.clear(); 5950 break; 5951 } 5952 } 5953 } 5954 llvm_unreachable("Exit infinite loop"); 5955 } 5956 5957 // Parse the function info index from the bitcode streamer into the given index. 5958 std::error_code ModuleSummaryIndexBitcodeReader::parseSummaryIndexInto( 5959 std::unique_ptr<DataStreamer> Streamer, ModuleSummaryIndex *I) { 5960 TheIndex = I; 5961 5962 if (std::error_code EC = initStream(std::move(Streamer))) 5963 return EC; 5964 5965 // Sniff for the signature. 5966 if (!hasValidBitcodeHeader(Stream)) 5967 return error("Invalid bitcode signature"); 5968 5969 // We expect a number of well-defined blocks, though we don't necessarily 5970 // need to understand them all. 5971 while (1) { 5972 if (Stream.AtEndOfStream()) { 5973 // We didn't really read a proper Module block. 5974 return error("Malformed block"); 5975 } 5976 5977 BitstreamEntry Entry = 5978 Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs); 5979 5980 if (Entry.Kind != BitstreamEntry::SubBlock) 5981 return error("Malformed block"); 5982 5983 // If we see a MODULE_BLOCK, parse it to find the blocks needed for 5984 // building the function summary index. 5985 if (Entry.ID == bitc::MODULE_BLOCK_ID) 5986 return parseModule(); 5987 5988 if (Stream.SkipBlock()) 5989 return error("Invalid record"); 5990 } 5991 } 5992 5993 // Parse the summary information at the given offset in the buffer into 5994 // the index. Used to support lazy parsing of summaries from the 5995 // combined index during importing. 5996 // TODO: This function is not yet complete as it won't have a consumer 5997 // until ThinLTO function importing is added. 5998 std::error_code ModuleSummaryIndexBitcodeReader::parseGlobalValueSummary( 5999 std::unique_ptr<DataStreamer> Streamer, ModuleSummaryIndex *I, 6000 size_t SummaryOffset) { 6001 TheIndex = I; 6002 6003 if (std::error_code EC = initStream(std::move(Streamer))) 6004 return EC; 6005 6006 // Sniff for the signature. 6007 if (!hasValidBitcodeHeader(Stream)) 6008 return error("Invalid bitcode signature"); 6009 6010 Stream.JumpToBit(SummaryOffset); 6011 6012 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 6013 6014 switch (Entry.Kind) { 6015 default: 6016 return error("Malformed block"); 6017 case BitstreamEntry::Record: 6018 // The expected case. 6019 break; 6020 } 6021 6022 // TODO: Read a record. This interface will be completed when ThinLTO 6023 // importing is added so that it can be tested. 6024 SmallVector<uint64_t, 64> Record; 6025 switch (Stream.readRecord(Entry.ID, Record)) { 6026 case bitc::FS_COMBINED: 6027 case bitc::FS_COMBINED_PROFILE: 6028 case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: 6029 default: 6030 return error("Invalid record"); 6031 } 6032 6033 return std::error_code(); 6034 } 6035 6036 std::error_code ModuleSummaryIndexBitcodeReader::initStream( 6037 std::unique_ptr<DataStreamer> Streamer) { 6038 if (Streamer) 6039 return initLazyStream(std::move(Streamer)); 6040 return initStreamFromBuffer(); 6041 } 6042 6043 std::error_code ModuleSummaryIndexBitcodeReader::initStreamFromBuffer() { 6044 const unsigned char *BufPtr = (const unsigned char *)Buffer->getBufferStart(); 6045 const unsigned char *BufEnd = BufPtr + Buffer->getBufferSize(); 6046 6047 if (Buffer->getBufferSize() & 3) 6048 return error("Invalid bitcode signature"); 6049 6050 // If we have a wrapper header, parse it and ignore the non-bc file contents. 6051 // The magic number is 0x0B17C0DE stored in little endian. 6052 if (isBitcodeWrapper(BufPtr, BufEnd)) 6053 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 6054 return error("Invalid bitcode wrapper header"); 6055 6056 StreamFile.reset(new BitstreamReader(BufPtr, BufEnd)); 6057 Stream.init(&*StreamFile); 6058 6059 return std::error_code(); 6060 } 6061 6062 std::error_code ModuleSummaryIndexBitcodeReader::initLazyStream( 6063 std::unique_ptr<DataStreamer> Streamer) { 6064 // Check and strip off the bitcode wrapper; BitstreamReader expects never to 6065 // see it. 6066 auto OwnedBytes = 6067 llvm::make_unique<StreamingMemoryObject>(std::move(Streamer)); 6068 StreamingMemoryObject &Bytes = *OwnedBytes; 6069 StreamFile = llvm::make_unique<BitstreamReader>(std::move(OwnedBytes)); 6070 Stream.init(&*StreamFile); 6071 6072 unsigned char buf[16]; 6073 if (Bytes.readBytes(buf, 16, 0) != 16) 6074 return error("Invalid bitcode signature"); 6075 6076 if (!isBitcode(buf, buf + 16)) 6077 return error("Invalid bitcode signature"); 6078 6079 if (isBitcodeWrapper(buf, buf + 4)) { 6080 const unsigned char *bitcodeStart = buf; 6081 const unsigned char *bitcodeEnd = buf + 16; 6082 SkipBitcodeWrapperHeader(bitcodeStart, bitcodeEnd, false); 6083 Bytes.dropLeadingBytes(bitcodeStart - buf); 6084 Bytes.setKnownObjectSize(bitcodeEnd - bitcodeStart); 6085 } 6086 return std::error_code(); 6087 } 6088 6089 namespace { 6090 class BitcodeErrorCategoryType : public std::error_category { 6091 const char *name() const LLVM_NOEXCEPT override { 6092 return "llvm.bitcode"; 6093 } 6094 std::string message(int IE) const override { 6095 BitcodeError E = static_cast<BitcodeError>(IE); 6096 switch (E) { 6097 case BitcodeError::InvalidBitcodeSignature: 6098 return "Invalid bitcode signature"; 6099 case BitcodeError::CorruptedBitcode: 6100 return "Corrupted bitcode"; 6101 } 6102 llvm_unreachable("Unknown error type!"); 6103 } 6104 }; 6105 } // end anonymous namespace 6106 6107 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory; 6108 6109 const std::error_category &llvm::BitcodeErrorCategory() { 6110 return *ErrorCategory; 6111 } 6112 6113 //===----------------------------------------------------------------------===// 6114 // External interface 6115 //===----------------------------------------------------------------------===// 6116 6117 static ErrorOr<std::unique_ptr<Module>> 6118 getBitcodeModuleImpl(std::unique_ptr<DataStreamer> Streamer, StringRef Name, 6119 BitcodeReader *R, LLVMContext &Context, 6120 bool MaterializeAll, bool ShouldLazyLoadMetadata) { 6121 std::unique_ptr<Module> M = make_unique<Module>(Name, Context); 6122 M->setMaterializer(R); 6123 6124 auto cleanupOnError = [&](std::error_code EC) { 6125 R->releaseBuffer(); // Never take ownership on error. 6126 return EC; 6127 }; 6128 6129 // Delay parsing Metadata if ShouldLazyLoadMetadata is true. 6130 if (std::error_code EC = R->parseBitcodeInto(std::move(Streamer), M.get(), 6131 ShouldLazyLoadMetadata)) 6132 return cleanupOnError(EC); 6133 6134 if (MaterializeAll) { 6135 // Read in the entire module, and destroy the BitcodeReader. 6136 if (std::error_code EC = M->materializeAll()) 6137 return cleanupOnError(EC); 6138 } else { 6139 // Resolve forward references from blockaddresses. 6140 if (std::error_code EC = R->materializeForwardReferencedFunctions()) 6141 return cleanupOnError(EC); 6142 } 6143 return std::move(M); 6144 } 6145 6146 /// \brief Get a lazy one-at-time loading module from bitcode. 6147 /// 6148 /// This isn't always used in a lazy context. In particular, it's also used by 6149 /// \a parseBitcodeFile(). If this is truly lazy, then we need to eagerly pull 6150 /// in forward-referenced functions from block address references. 6151 /// 6152 /// \param[in] MaterializeAll Set to \c true if we should materialize 6153 /// everything. 6154 static ErrorOr<std::unique_ptr<Module>> 6155 getLazyBitcodeModuleImpl(std::unique_ptr<MemoryBuffer> &&Buffer, 6156 LLVMContext &Context, bool MaterializeAll, 6157 bool ShouldLazyLoadMetadata = false) { 6158 BitcodeReader *R = new BitcodeReader(Buffer.get(), Context); 6159 6160 ErrorOr<std::unique_ptr<Module>> Ret = 6161 getBitcodeModuleImpl(nullptr, Buffer->getBufferIdentifier(), R, Context, 6162 MaterializeAll, ShouldLazyLoadMetadata); 6163 if (!Ret) 6164 return Ret; 6165 6166 Buffer.release(); // The BitcodeReader owns it now. 6167 return Ret; 6168 } 6169 6170 ErrorOr<std::unique_ptr<Module>> 6171 llvm::getLazyBitcodeModule(std::unique_ptr<MemoryBuffer> &&Buffer, 6172 LLVMContext &Context, bool ShouldLazyLoadMetadata) { 6173 return getLazyBitcodeModuleImpl(std::move(Buffer), Context, false, 6174 ShouldLazyLoadMetadata); 6175 } 6176 6177 ErrorOr<std::unique_ptr<Module>> 6178 llvm::getStreamedBitcodeModule(StringRef Name, 6179 std::unique_ptr<DataStreamer> Streamer, 6180 LLVMContext &Context) { 6181 std::unique_ptr<Module> M = make_unique<Module>(Name, Context); 6182 BitcodeReader *R = new BitcodeReader(Context); 6183 6184 return getBitcodeModuleImpl(std::move(Streamer), Name, R, Context, false, 6185 false); 6186 } 6187 6188 ErrorOr<std::unique_ptr<Module>> llvm::parseBitcodeFile(MemoryBufferRef Buffer, 6189 LLVMContext &Context) { 6190 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 6191 return getLazyBitcodeModuleImpl(std::move(Buf), Context, true); 6192 // TODO: Restore the use-lists to the in-memory state when the bitcode was 6193 // written. We must defer until the Module has been fully materialized. 6194 } 6195 6196 std::string llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer, 6197 LLVMContext &Context) { 6198 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 6199 auto R = llvm::make_unique<BitcodeReader>(Buf.release(), Context); 6200 ErrorOr<std::string> Triple = R->parseTriple(); 6201 if (Triple.getError()) 6202 return ""; 6203 return Triple.get(); 6204 } 6205 6206 std::string llvm::getBitcodeProducerString(MemoryBufferRef Buffer, 6207 LLVMContext &Context) { 6208 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 6209 BitcodeReader R(Buf.release(), Context); 6210 ErrorOr<std::string> ProducerString = R.parseIdentificationBlock(); 6211 if (ProducerString.getError()) 6212 return ""; 6213 return ProducerString.get(); 6214 } 6215 6216 // Parse the specified bitcode buffer, returning the function info index. 6217 // If IsLazy is false, parse the entire function summary into 6218 // the index. Otherwise skip the function summary section, and only create 6219 // an index object with a map from function name to function summary offset. 6220 // The index is used to perform lazy function summary reading later. 6221 ErrorOr<std::unique_ptr<ModuleSummaryIndex>> 6222 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer, 6223 DiagnosticHandlerFunction DiagnosticHandler, 6224 bool IsLazy) { 6225 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 6226 ModuleSummaryIndexBitcodeReader R(Buf.get(), DiagnosticHandler, IsLazy); 6227 6228 auto Index = llvm::make_unique<ModuleSummaryIndex>(); 6229 6230 auto cleanupOnError = [&](std::error_code EC) { 6231 R.releaseBuffer(); // Never take ownership on error. 6232 return EC; 6233 }; 6234 6235 if (std::error_code EC = R.parseSummaryIndexInto(nullptr, Index.get())) 6236 return cleanupOnError(EC); 6237 6238 Buf.release(); // The ModuleSummaryIndexBitcodeReader owns it now. 6239 return std::move(Index); 6240 } 6241 6242 // Check if the given bitcode buffer contains a global value summary block. 6243 bool llvm::hasGlobalValueSummary(MemoryBufferRef Buffer, 6244 DiagnosticHandlerFunction DiagnosticHandler) { 6245 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 6246 ModuleSummaryIndexBitcodeReader R(Buf.get(), DiagnosticHandler, false, true); 6247 6248 auto cleanupOnError = [&](std::error_code EC) { 6249 R.releaseBuffer(); // Never take ownership on error. 6250 return false; 6251 }; 6252 6253 if (std::error_code EC = R.parseSummaryIndexInto(nullptr, nullptr)) 6254 return cleanupOnError(EC); 6255 6256 Buf.release(); // The ModuleSummaryIndexBitcodeReader owns it now. 6257 return R.foundGlobalValSummary(); 6258 } 6259 6260 // This method supports lazy reading of summary data from the combined 6261 // index during ThinLTO function importing. When reading the combined index 6262 // file, getModuleSummaryIndex is first invoked with IsLazy=true. 6263 // Then this method is called for each value considered for importing, 6264 // to parse the summary information for the given value name into 6265 // the index. 6266 std::error_code llvm::readGlobalValueSummary( 6267 MemoryBufferRef Buffer, DiagnosticHandlerFunction DiagnosticHandler, 6268 StringRef ValueName, std::unique_ptr<ModuleSummaryIndex> Index) { 6269 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 6270 ModuleSummaryIndexBitcodeReader R(Buf.get(), DiagnosticHandler); 6271 6272 auto cleanupOnError = [&](std::error_code EC) { 6273 R.releaseBuffer(); // Never take ownership on error. 6274 return EC; 6275 }; 6276 6277 // Lookup the given value name in the GlobalValueMap, which may 6278 // contain a list of global value infos in the case of a COMDAT. Walk through 6279 // and parse each summary info at the summary offset 6280 // recorded when parsing the value symbol table. 6281 for (const auto &FI : Index->getGlobalValueInfoList(ValueName)) { 6282 size_t SummaryOffset = FI->bitcodeIndex(); 6283 if (std::error_code EC = 6284 R.parseGlobalValueSummary(nullptr, Index.get(), SummaryOffset)) 6285 return cleanupOnError(EC); 6286 } 6287 6288 Buf.release(); // The ModuleSummaryIndexBitcodeReader owns it now. 6289 return std::error_code(); 6290 } 6291