1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "llvm/ADT/STLExtras.h" 11 #include "llvm/ADT/SmallString.h" 12 #include "llvm/ADT/SmallVector.h" 13 #include "llvm/ADT/Triple.h" 14 #include "llvm/Bitcode/BitstreamReader.h" 15 #include "llvm/Bitcode/LLVMBitCodes.h" 16 #include "llvm/Bitcode/ReaderWriter.h" 17 #include "llvm/IR/AutoUpgrade.h" 18 #include "llvm/IR/Constants.h" 19 #include "llvm/IR/DebugInfo.h" 20 #include "llvm/IR/DebugInfoMetadata.h" 21 #include "llvm/IR/DerivedTypes.h" 22 #include "llvm/IR/DiagnosticPrinter.h" 23 #include "llvm/IR/GVMaterializer.h" 24 #include "llvm/IR/InlineAsm.h" 25 #include "llvm/IR/IntrinsicInst.h" 26 #include "llvm/IR/LLVMContext.h" 27 #include "llvm/IR/Module.h" 28 #include "llvm/IR/ModuleSummaryIndex.h" 29 #include "llvm/IR/OperandTraits.h" 30 #include "llvm/IR/Operator.h" 31 #include "llvm/IR/ValueHandle.h" 32 #include "llvm/Support/CommandLine.h" 33 #include "llvm/Support/DataStream.h" 34 #include "llvm/Support/Debug.h" 35 #include "llvm/Support/ManagedStatic.h" 36 #include "llvm/Support/MathExtras.h" 37 #include "llvm/Support/MemoryBuffer.h" 38 #include "llvm/Support/raw_ostream.h" 39 #include <deque> 40 41 using namespace llvm; 42 43 static cl::opt<bool> PrintSummaryGUIDs( 44 "print-summary-global-ids", cl::init(false), cl::Hidden, 45 cl::desc( 46 "Print the global id for each value when reading the module summary")); 47 48 namespace { 49 enum { 50 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 51 }; 52 53 class BitcodeReaderValueList { 54 std::vector<WeakVH> ValuePtrs; 55 56 /// As we resolve forward-referenced constants, we add information about them 57 /// to this vector. This allows us to resolve them in bulk instead of 58 /// resolving each reference at a time. See the code in 59 /// ResolveConstantForwardRefs for more information about this. 60 /// 61 /// The key of this vector is the placeholder constant, the value is the slot 62 /// number that holds the resolved value. 63 typedef std::vector<std::pair<Constant*, unsigned> > ResolveConstantsTy; 64 ResolveConstantsTy ResolveConstants; 65 LLVMContext &Context; 66 public: 67 BitcodeReaderValueList(LLVMContext &C) : Context(C) {} 68 ~BitcodeReaderValueList() { 69 assert(ResolveConstants.empty() && "Constants not resolved?"); 70 } 71 72 // vector compatibility methods 73 unsigned size() const { return ValuePtrs.size(); } 74 void resize(unsigned N) { ValuePtrs.resize(N); } 75 void push_back(Value *V) { ValuePtrs.emplace_back(V); } 76 77 void clear() { 78 assert(ResolveConstants.empty() && "Constants not resolved?"); 79 ValuePtrs.clear(); 80 } 81 82 Value *operator[](unsigned i) const { 83 assert(i < ValuePtrs.size()); 84 return ValuePtrs[i]; 85 } 86 87 Value *back() const { return ValuePtrs.back(); } 88 void pop_back() { ValuePtrs.pop_back(); } 89 bool empty() const { return ValuePtrs.empty(); } 90 void shrinkTo(unsigned N) { 91 assert(N <= size() && "Invalid shrinkTo request!"); 92 ValuePtrs.resize(N); 93 } 94 95 Constant *getConstantFwdRef(unsigned Idx, Type *Ty); 96 Value *getValueFwdRef(unsigned Idx, Type *Ty); 97 98 void assignValue(Value *V, unsigned Idx); 99 100 /// Once all constants are read, this method bulk resolves any forward 101 /// references. 102 void resolveConstantForwardRefs(); 103 }; 104 105 class BitcodeReaderMetadataList { 106 unsigned NumFwdRefs; 107 bool AnyFwdRefs; 108 unsigned MinFwdRef; 109 unsigned MaxFwdRef; 110 111 /// Array of metadata references. 112 /// 113 /// Don't use std::vector here. Some versions of libc++ copy (instead of 114 /// move) on resize, and TrackingMDRef is very expensive to copy. 115 SmallVector<TrackingMDRef, 1> MetadataPtrs; 116 117 LLVMContext &Context; 118 public: 119 BitcodeReaderMetadataList(LLVMContext &C) 120 : NumFwdRefs(0), AnyFwdRefs(false), Context(C) {} 121 122 // vector compatibility methods 123 unsigned size() const { return MetadataPtrs.size(); } 124 void resize(unsigned N) { MetadataPtrs.resize(N); } 125 void push_back(Metadata *MD) { MetadataPtrs.emplace_back(MD); } 126 void clear() { MetadataPtrs.clear(); } 127 Metadata *back() const { return MetadataPtrs.back(); } 128 void pop_back() { MetadataPtrs.pop_back(); } 129 bool empty() const { return MetadataPtrs.empty(); } 130 131 Metadata *operator[](unsigned i) const { 132 assert(i < MetadataPtrs.size()); 133 return MetadataPtrs[i]; 134 } 135 136 Metadata *lookup(unsigned I) const { 137 if (I < MetadataPtrs.size()) 138 return MetadataPtrs[I]; 139 return nullptr; 140 } 141 142 void shrinkTo(unsigned N) { 143 assert(N <= size() && "Invalid shrinkTo request!"); 144 assert(!AnyFwdRefs && "Unexpected forward refs"); 145 MetadataPtrs.resize(N); 146 } 147 148 /// Return the given metadata, creating a replaceable forward reference if 149 /// necessary. 150 Metadata *getMetadataFwdRef(unsigned Idx); 151 152 /// Return the the given metadata only if it is fully resolved. 153 /// 154 /// Gives the same result as \a lookup(), unless \a MDNode::isResolved() 155 /// would give \c false. 156 Metadata *getMetadataIfResolved(unsigned Idx); 157 158 MDNode *getMDNodeFwdRefOrNull(unsigned Idx); 159 void assignValue(Metadata *MD, unsigned Idx); 160 void tryToResolveCycles(); 161 bool hasFwdRefs() const { return AnyFwdRefs; } 162 }; 163 164 class BitcodeReader : public GVMaterializer { 165 LLVMContext &Context; 166 Module *TheModule = nullptr; 167 std::unique_ptr<MemoryBuffer> Buffer; 168 std::unique_ptr<BitstreamReader> StreamFile; 169 BitstreamCursor Stream; 170 // Next offset to start scanning for lazy parsing of function bodies. 171 uint64_t NextUnreadBit = 0; 172 // Last function offset found in the VST. 173 uint64_t LastFunctionBlockBit = 0; 174 bool SeenValueSymbolTable = false; 175 uint64_t VSTOffset = 0; 176 // Contains an arbitrary and optional string identifying the bitcode producer 177 std::string ProducerIdentification; 178 179 std::vector<Type*> TypeList; 180 BitcodeReaderValueList ValueList; 181 BitcodeReaderMetadataList MetadataList; 182 std::vector<Comdat *> ComdatList; 183 SmallVector<Instruction *, 64> InstructionList; 184 185 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInits; 186 std::vector<std::pair<GlobalIndirectSymbol*, unsigned> > IndirectSymbolInits; 187 std::vector<std::pair<Function*, unsigned> > FunctionPrefixes; 188 std::vector<std::pair<Function*, unsigned> > FunctionPrologues; 189 std::vector<std::pair<Function*, unsigned> > FunctionPersonalityFns; 190 191 SmallVector<Instruction*, 64> InstsWithTBAATag; 192 193 bool HasSeenOldLoopTags = false; 194 195 /// The set of attributes by index. Index zero in the file is for null, and 196 /// is thus not represented here. As such all indices are off by one. 197 std::vector<AttributeSet> MAttributes; 198 199 /// The set of attribute groups. 200 std::map<unsigned, AttributeSet> MAttributeGroups; 201 202 /// While parsing a function body, this is a list of the basic blocks for the 203 /// function. 204 std::vector<BasicBlock*> FunctionBBs; 205 206 // When reading the module header, this list is populated with functions that 207 // have bodies later in the file. 208 std::vector<Function*> FunctionsWithBodies; 209 210 // When intrinsic functions are encountered which require upgrading they are 211 // stored here with their replacement function. 212 typedef DenseMap<Function*, Function*> UpgradedIntrinsicMap; 213 UpgradedIntrinsicMap UpgradedIntrinsics; 214 215 // Map the bitcode's custom MDKind ID to the Module's MDKind ID. 216 DenseMap<unsigned, unsigned> MDKindMap; 217 218 // Several operations happen after the module header has been read, but 219 // before function bodies are processed. This keeps track of whether 220 // we've done this yet. 221 bool SeenFirstFunctionBody = false; 222 223 /// When function bodies are initially scanned, this map contains info about 224 /// where to find deferred function body in the stream. 225 DenseMap<Function*, uint64_t> DeferredFunctionInfo; 226 227 /// When Metadata block is initially scanned when parsing the module, we may 228 /// choose to defer parsing of the metadata. This vector contains info about 229 /// which Metadata blocks are deferred. 230 std::vector<uint64_t> DeferredMetadataInfo; 231 232 /// These are basic blocks forward-referenced by block addresses. They are 233 /// inserted lazily into functions when they're loaded. The basic block ID is 234 /// its index into the vector. 235 DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs; 236 std::deque<Function *> BasicBlockFwdRefQueue; 237 238 /// Indicates that we are using a new encoding for instruction operands where 239 /// most operands in the current FUNCTION_BLOCK are encoded relative to the 240 /// instruction number, for a more compact encoding. Some instruction 241 /// operands are not relative to the instruction ID: basic block numbers, and 242 /// types. Once the old style function blocks have been phased out, we would 243 /// not need this flag. 244 bool UseRelativeIDs = false; 245 246 /// True if all functions will be materialized, negating the need to process 247 /// (e.g.) blockaddress forward references. 248 bool WillMaterializeAllForwardRefs = false; 249 250 /// True if any Metadata block has been materialized. 251 bool IsMetadataMaterialized = false; 252 253 bool StripDebugInfo = false; 254 255 /// Functions that need to be matched with subprograms when upgrading old 256 /// metadata. 257 SmallDenseMap<Function *, DISubprogram *, 16> FunctionsWithSPs; 258 259 std::vector<std::string> BundleTags; 260 261 public: 262 std::error_code error(BitcodeError E, const Twine &Message); 263 std::error_code error(BitcodeError E); 264 std::error_code error(const Twine &Message); 265 266 BitcodeReader(MemoryBuffer *Buffer, LLVMContext &Context); 267 BitcodeReader(LLVMContext &Context); 268 ~BitcodeReader() override { freeState(); } 269 270 std::error_code materializeForwardReferencedFunctions(); 271 272 void freeState(); 273 274 void releaseBuffer(); 275 276 std::error_code materialize(GlobalValue *GV) override; 277 std::error_code materializeModule() override; 278 std::vector<StructType *> getIdentifiedStructTypes() const override; 279 280 /// \brief Main interface to parsing a bitcode buffer. 281 /// \returns true if an error occurred. 282 std::error_code parseBitcodeInto(std::unique_ptr<DataStreamer> Streamer, 283 Module *M, 284 bool ShouldLazyLoadMetadata = false); 285 286 /// \brief Cheap mechanism to just extract module triple 287 /// \returns true if an error occurred. 288 ErrorOr<std::string> parseTriple(); 289 290 /// Cheap mechanism to just extract the identification block out of bitcode. 291 ErrorOr<std::string> parseIdentificationBlock(); 292 293 static uint64_t decodeSignRotatedValue(uint64_t V); 294 295 /// Materialize any deferred Metadata block. 296 std::error_code materializeMetadata() override; 297 298 void setStripDebugInfo() override; 299 300 private: 301 /// Parse the "IDENTIFICATION_BLOCK_ID" block, populate the 302 // ProducerIdentification data member, and do some basic enforcement on the 303 // "epoch" encoded in the bitcode. 304 std::error_code parseBitcodeVersion(); 305 306 std::vector<StructType *> IdentifiedStructTypes; 307 StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name); 308 StructType *createIdentifiedStructType(LLVMContext &Context); 309 310 Type *getTypeByID(unsigned ID); 311 Value *getFnValueByID(unsigned ID, Type *Ty) { 312 if (Ty && Ty->isMetadataTy()) 313 return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID)); 314 return ValueList.getValueFwdRef(ID, Ty); 315 } 316 Metadata *getFnMetadataByID(unsigned ID) { 317 return MetadataList.getMetadataFwdRef(ID); 318 } 319 BasicBlock *getBasicBlock(unsigned ID) const { 320 if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID 321 return FunctionBBs[ID]; 322 } 323 AttributeSet getAttributes(unsigned i) const { 324 if (i-1 < MAttributes.size()) 325 return MAttributes[i-1]; 326 return AttributeSet(); 327 } 328 329 /// Read a value/type pair out of the specified record from slot 'Slot'. 330 /// Increment Slot past the number of slots used in the record. Return true on 331 /// failure. 332 bool getValueTypePair(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 333 unsigned InstNum, Value *&ResVal) { 334 if (Slot == Record.size()) return true; 335 unsigned ValNo = (unsigned)Record[Slot++]; 336 // Adjust the ValNo, if it was encoded relative to the InstNum. 337 if (UseRelativeIDs) 338 ValNo = InstNum - ValNo; 339 if (ValNo < InstNum) { 340 // If this is not a forward reference, just return the value we already 341 // have. 342 ResVal = getFnValueByID(ValNo, nullptr); 343 return ResVal == nullptr; 344 } 345 if (Slot == Record.size()) 346 return true; 347 348 unsigned TypeNo = (unsigned)Record[Slot++]; 349 ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo)); 350 return ResVal == nullptr; 351 } 352 353 /// Read a value out of the specified record from slot 'Slot'. Increment Slot 354 /// past the number of slots used by the value in the record. Return true if 355 /// there is an error. 356 bool popValue(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 357 unsigned InstNum, Type *Ty, Value *&ResVal) { 358 if (getValue(Record, Slot, InstNum, Ty, ResVal)) 359 return true; 360 // All values currently take a single record slot. 361 ++Slot; 362 return false; 363 } 364 365 /// Like popValue, but does not increment the Slot number. 366 bool getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 367 unsigned InstNum, Type *Ty, Value *&ResVal) { 368 ResVal = getValue(Record, Slot, InstNum, Ty); 369 return ResVal == nullptr; 370 } 371 372 /// Version of getValue that returns ResVal directly, or 0 if there is an 373 /// error. 374 Value *getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 375 unsigned InstNum, Type *Ty) { 376 if (Slot == Record.size()) return nullptr; 377 unsigned ValNo = (unsigned)Record[Slot]; 378 // Adjust the ValNo, if it was encoded relative to the InstNum. 379 if (UseRelativeIDs) 380 ValNo = InstNum - ValNo; 381 return getFnValueByID(ValNo, Ty); 382 } 383 384 /// Like getValue, but decodes signed VBRs. 385 Value *getValueSigned(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 386 unsigned InstNum, Type *Ty) { 387 if (Slot == Record.size()) return nullptr; 388 unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]); 389 // Adjust the ValNo, if it was encoded relative to the InstNum. 390 if (UseRelativeIDs) 391 ValNo = InstNum - ValNo; 392 return getFnValueByID(ValNo, Ty); 393 } 394 395 /// Converts alignment exponent (i.e. power of two (or zero)) to the 396 /// corresponding alignment to use. If alignment is too large, returns 397 /// a corresponding error code. 398 std::error_code parseAlignmentValue(uint64_t Exponent, unsigned &Alignment); 399 std::error_code parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind); 400 std::error_code parseModule(uint64_t ResumeBit, 401 bool ShouldLazyLoadMetadata = false); 402 std::error_code parseAttributeBlock(); 403 std::error_code parseAttributeGroupBlock(); 404 std::error_code parseTypeTable(); 405 std::error_code parseTypeTableBody(); 406 std::error_code parseOperandBundleTags(); 407 408 ErrorOr<Value *> recordValue(SmallVectorImpl<uint64_t> &Record, 409 unsigned NameIndex, Triple &TT); 410 std::error_code parseValueSymbolTable(uint64_t Offset = 0); 411 std::error_code parseConstants(); 412 std::error_code rememberAndSkipFunctionBodies(); 413 std::error_code rememberAndSkipFunctionBody(); 414 /// Save the positions of the Metadata blocks and skip parsing the blocks. 415 std::error_code rememberAndSkipMetadata(); 416 std::error_code parseFunctionBody(Function *F); 417 std::error_code globalCleanup(); 418 std::error_code resolveGlobalAndIndirectSymbolInits(); 419 std::error_code parseMetadata(bool ModuleLevel = false); 420 std::error_code parseMetadataStrings(ArrayRef<uint64_t> Record, 421 StringRef Blob, 422 unsigned &NextMetadataNo); 423 std::error_code parseMetadataKinds(); 424 std::error_code parseMetadataKindRecord(SmallVectorImpl<uint64_t> &Record); 425 std::error_code parseMetadataAttachment(Function &F); 426 ErrorOr<std::string> parseModuleTriple(); 427 std::error_code parseUseLists(); 428 std::error_code initStream(std::unique_ptr<DataStreamer> Streamer); 429 std::error_code initStreamFromBuffer(); 430 std::error_code initLazyStream(std::unique_ptr<DataStreamer> Streamer); 431 std::error_code findFunctionInStream( 432 Function *F, 433 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator); 434 }; 435 436 /// Class to manage reading and parsing function summary index bitcode 437 /// files/sections. 438 class ModuleSummaryIndexBitcodeReader { 439 DiagnosticHandlerFunction DiagnosticHandler; 440 441 /// Eventually points to the module index built during parsing. 442 ModuleSummaryIndex *TheIndex = nullptr; 443 444 std::unique_ptr<MemoryBuffer> Buffer; 445 std::unique_ptr<BitstreamReader> StreamFile; 446 BitstreamCursor Stream; 447 448 /// Used to indicate whether caller only wants to check for the presence 449 /// of the global value summary bitcode section. All blocks are skipped, 450 /// but the SeenGlobalValSummary boolean is set. 451 bool CheckGlobalValSummaryPresenceOnly = false; 452 453 /// Indicates whether we have encountered a global value summary section 454 /// yet during parsing, used when checking if file contains global value 455 /// summary section. 456 bool SeenGlobalValSummary = false; 457 458 /// Indicates whether we have already parsed the VST, used for error checking. 459 bool SeenValueSymbolTable = false; 460 461 /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record. 462 /// Used to enable on-demand parsing of the VST. 463 uint64_t VSTOffset = 0; 464 465 // Map to save ValueId to GUID association that was recorded in the 466 // ValueSymbolTable. It is used after the VST is parsed to convert 467 // call graph edges read from the function summary from referencing 468 // callees by their ValueId to using the GUID instead, which is how 469 // they are recorded in the summary index being built. 470 DenseMap<unsigned, GlobalValue::GUID> ValueIdToCallGraphGUIDMap; 471 472 /// Map to save the association between summary offset in the VST to the 473 /// GlobalValueInfo object created when parsing it. Used to access the 474 /// info object when parsing the summary section. 475 DenseMap<uint64_t, GlobalValueInfo *> SummaryOffsetToInfoMap; 476 477 /// Map populated during module path string table parsing, from the 478 /// module ID to a string reference owned by the index's module 479 /// path string table, used to correlate with combined index 480 /// summary records. 481 DenseMap<uint64_t, StringRef> ModuleIdMap; 482 483 /// Original source file name recorded in a bitcode record. 484 std::string SourceFileName; 485 486 public: 487 std::error_code error(BitcodeError E, const Twine &Message); 488 std::error_code error(BitcodeError E); 489 std::error_code error(const Twine &Message); 490 491 ModuleSummaryIndexBitcodeReader( 492 MemoryBuffer *Buffer, DiagnosticHandlerFunction DiagnosticHandler, 493 bool CheckGlobalValSummaryPresenceOnly = false); 494 ModuleSummaryIndexBitcodeReader( 495 DiagnosticHandlerFunction DiagnosticHandler, 496 bool CheckGlobalValSummaryPresenceOnly = false); 497 ~ModuleSummaryIndexBitcodeReader() { freeState(); } 498 499 void freeState(); 500 501 void releaseBuffer(); 502 503 /// Check if the parser has encountered a summary section. 504 bool foundGlobalValSummary() { return SeenGlobalValSummary; } 505 506 /// \brief Main interface to parsing a bitcode buffer. 507 /// \returns true if an error occurred. 508 std::error_code parseSummaryIndexInto(std::unique_ptr<DataStreamer> Streamer, 509 ModuleSummaryIndex *I); 510 511 /// \brief Interface for parsing a summary lazily. 512 std::error_code 513 parseGlobalValueSummary(std::unique_ptr<DataStreamer> Streamer, 514 ModuleSummaryIndex *I, size_t SummaryOffset); 515 516 private: 517 std::error_code parseModule(); 518 std::error_code parseValueSymbolTable( 519 uint64_t Offset, 520 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap); 521 std::error_code parseEntireSummary(); 522 std::error_code parseModuleStringTable(); 523 std::error_code initStream(std::unique_ptr<DataStreamer> Streamer); 524 std::error_code initStreamFromBuffer(); 525 std::error_code initLazyStream(std::unique_ptr<DataStreamer> Streamer); 526 GlobalValue::GUID getGUIDFromValueId(unsigned ValueId); 527 GlobalValueInfo *getInfoFromSummaryOffset(uint64_t Offset); 528 }; 529 } // end anonymous namespace 530 531 BitcodeDiagnosticInfo::BitcodeDiagnosticInfo(std::error_code EC, 532 DiagnosticSeverity Severity, 533 const Twine &Msg) 534 : DiagnosticInfo(DK_Bitcode, Severity), Msg(Msg), EC(EC) {} 535 536 void BitcodeDiagnosticInfo::print(DiagnosticPrinter &DP) const { DP << Msg; } 537 538 static std::error_code error(DiagnosticHandlerFunction DiagnosticHandler, 539 std::error_code EC, const Twine &Message) { 540 BitcodeDiagnosticInfo DI(EC, DS_Error, Message); 541 DiagnosticHandler(DI); 542 return EC; 543 } 544 545 static std::error_code error(DiagnosticHandlerFunction DiagnosticHandler, 546 std::error_code EC) { 547 return error(DiagnosticHandler, EC, EC.message()); 548 } 549 550 static std::error_code error(LLVMContext &Context, std::error_code EC, 551 const Twine &Message) { 552 return error([&](const DiagnosticInfo &DI) { Context.diagnose(DI); }, EC, 553 Message); 554 } 555 556 static std::error_code error(LLVMContext &Context, std::error_code EC) { 557 return error(Context, EC, EC.message()); 558 } 559 560 static std::error_code error(LLVMContext &Context, const Twine &Message) { 561 return error(Context, make_error_code(BitcodeError::CorruptedBitcode), 562 Message); 563 } 564 565 std::error_code BitcodeReader::error(BitcodeError E, const Twine &Message) { 566 if (!ProducerIdentification.empty()) { 567 return ::error(Context, make_error_code(E), 568 Message + " (Producer: '" + ProducerIdentification + 569 "' Reader: 'LLVM " + LLVM_VERSION_STRING "')"); 570 } 571 return ::error(Context, make_error_code(E), Message); 572 } 573 574 std::error_code BitcodeReader::error(const Twine &Message) { 575 if (!ProducerIdentification.empty()) { 576 return ::error(Context, make_error_code(BitcodeError::CorruptedBitcode), 577 Message + " (Producer: '" + ProducerIdentification + 578 "' Reader: 'LLVM " + LLVM_VERSION_STRING "')"); 579 } 580 return ::error(Context, make_error_code(BitcodeError::CorruptedBitcode), 581 Message); 582 } 583 584 std::error_code BitcodeReader::error(BitcodeError E) { 585 return ::error(Context, make_error_code(E)); 586 } 587 588 BitcodeReader::BitcodeReader(MemoryBuffer *Buffer, LLVMContext &Context) 589 : Context(Context), Buffer(Buffer), ValueList(Context), 590 MetadataList(Context) {} 591 592 BitcodeReader::BitcodeReader(LLVMContext &Context) 593 : Context(Context), Buffer(nullptr), ValueList(Context), 594 MetadataList(Context) {} 595 596 std::error_code BitcodeReader::materializeForwardReferencedFunctions() { 597 if (WillMaterializeAllForwardRefs) 598 return std::error_code(); 599 600 // Prevent recursion. 601 WillMaterializeAllForwardRefs = true; 602 603 while (!BasicBlockFwdRefQueue.empty()) { 604 Function *F = BasicBlockFwdRefQueue.front(); 605 BasicBlockFwdRefQueue.pop_front(); 606 assert(F && "Expected valid function"); 607 if (!BasicBlockFwdRefs.count(F)) 608 // Already materialized. 609 continue; 610 611 // Check for a function that isn't materializable to prevent an infinite 612 // loop. When parsing a blockaddress stored in a global variable, there 613 // isn't a trivial way to check if a function will have a body without a 614 // linear search through FunctionsWithBodies, so just check it here. 615 if (!F->isMaterializable()) 616 return error("Never resolved function from blockaddress"); 617 618 // Try to materialize F. 619 if (std::error_code EC = materialize(F)) 620 return EC; 621 } 622 assert(BasicBlockFwdRefs.empty() && "Function missing from queue"); 623 624 // Reset state. 625 WillMaterializeAllForwardRefs = false; 626 return std::error_code(); 627 } 628 629 void BitcodeReader::freeState() { 630 Buffer = nullptr; 631 std::vector<Type*>().swap(TypeList); 632 ValueList.clear(); 633 MetadataList.clear(); 634 std::vector<Comdat *>().swap(ComdatList); 635 636 std::vector<AttributeSet>().swap(MAttributes); 637 std::vector<BasicBlock*>().swap(FunctionBBs); 638 std::vector<Function*>().swap(FunctionsWithBodies); 639 DeferredFunctionInfo.clear(); 640 DeferredMetadataInfo.clear(); 641 MDKindMap.clear(); 642 643 assert(BasicBlockFwdRefs.empty() && "Unresolved blockaddress fwd references"); 644 BasicBlockFwdRefQueue.clear(); 645 } 646 647 //===----------------------------------------------------------------------===// 648 // Helper functions to implement forward reference resolution, etc. 649 //===----------------------------------------------------------------------===// 650 651 /// Convert a string from a record into an std::string, return true on failure. 652 template <typename StrTy> 653 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx, 654 StrTy &Result) { 655 if (Idx > Record.size()) 656 return true; 657 658 for (unsigned i = Idx, e = Record.size(); i != e; ++i) 659 Result += (char)Record[i]; 660 return false; 661 } 662 663 static bool hasImplicitComdat(size_t Val) { 664 switch (Val) { 665 default: 666 return false; 667 case 1: // Old WeakAnyLinkage 668 case 4: // Old LinkOnceAnyLinkage 669 case 10: // Old WeakODRLinkage 670 case 11: // Old LinkOnceODRLinkage 671 return true; 672 } 673 } 674 675 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) { 676 switch (Val) { 677 default: // Map unknown/new linkages to external 678 case 0: 679 return GlobalValue::ExternalLinkage; 680 case 2: 681 return GlobalValue::AppendingLinkage; 682 case 3: 683 return GlobalValue::InternalLinkage; 684 case 5: 685 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage 686 case 6: 687 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage 688 case 7: 689 return GlobalValue::ExternalWeakLinkage; 690 case 8: 691 return GlobalValue::CommonLinkage; 692 case 9: 693 return GlobalValue::PrivateLinkage; 694 case 12: 695 return GlobalValue::AvailableExternallyLinkage; 696 case 13: 697 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage 698 case 14: 699 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage 700 case 15: 701 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage 702 case 1: // Old value with implicit comdat. 703 case 16: 704 return GlobalValue::WeakAnyLinkage; 705 case 10: // Old value with implicit comdat. 706 case 17: 707 return GlobalValue::WeakODRLinkage; 708 case 4: // Old value with implicit comdat. 709 case 18: 710 return GlobalValue::LinkOnceAnyLinkage; 711 case 11: // Old value with implicit comdat. 712 case 19: 713 return GlobalValue::LinkOnceODRLinkage; 714 } 715 } 716 717 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) { 718 switch (Val) { 719 default: // Map unknown visibilities to default. 720 case 0: return GlobalValue::DefaultVisibility; 721 case 1: return GlobalValue::HiddenVisibility; 722 case 2: return GlobalValue::ProtectedVisibility; 723 } 724 } 725 726 static GlobalValue::DLLStorageClassTypes 727 getDecodedDLLStorageClass(unsigned Val) { 728 switch (Val) { 729 default: // Map unknown values to default. 730 case 0: return GlobalValue::DefaultStorageClass; 731 case 1: return GlobalValue::DLLImportStorageClass; 732 case 2: return GlobalValue::DLLExportStorageClass; 733 } 734 } 735 736 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) { 737 switch (Val) { 738 case 0: return GlobalVariable::NotThreadLocal; 739 default: // Map unknown non-zero value to general dynamic. 740 case 1: return GlobalVariable::GeneralDynamicTLSModel; 741 case 2: return GlobalVariable::LocalDynamicTLSModel; 742 case 3: return GlobalVariable::InitialExecTLSModel; 743 case 4: return GlobalVariable::LocalExecTLSModel; 744 } 745 } 746 747 static int getDecodedCastOpcode(unsigned Val) { 748 switch (Val) { 749 default: return -1; 750 case bitc::CAST_TRUNC : return Instruction::Trunc; 751 case bitc::CAST_ZEXT : return Instruction::ZExt; 752 case bitc::CAST_SEXT : return Instruction::SExt; 753 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 754 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 755 case bitc::CAST_UITOFP : return Instruction::UIToFP; 756 case bitc::CAST_SITOFP : return Instruction::SIToFP; 757 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 758 case bitc::CAST_FPEXT : return Instruction::FPExt; 759 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 760 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 761 case bitc::CAST_BITCAST : return Instruction::BitCast; 762 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast; 763 } 764 } 765 766 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) { 767 bool IsFP = Ty->isFPOrFPVectorTy(); 768 // BinOps are only valid for int/fp or vector of int/fp types 769 if (!IsFP && !Ty->isIntOrIntVectorTy()) 770 return -1; 771 772 switch (Val) { 773 default: 774 return -1; 775 case bitc::BINOP_ADD: 776 return IsFP ? Instruction::FAdd : Instruction::Add; 777 case bitc::BINOP_SUB: 778 return IsFP ? Instruction::FSub : Instruction::Sub; 779 case bitc::BINOP_MUL: 780 return IsFP ? Instruction::FMul : Instruction::Mul; 781 case bitc::BINOP_UDIV: 782 return IsFP ? -1 : Instruction::UDiv; 783 case bitc::BINOP_SDIV: 784 return IsFP ? Instruction::FDiv : Instruction::SDiv; 785 case bitc::BINOP_UREM: 786 return IsFP ? -1 : Instruction::URem; 787 case bitc::BINOP_SREM: 788 return IsFP ? Instruction::FRem : Instruction::SRem; 789 case bitc::BINOP_SHL: 790 return IsFP ? -1 : Instruction::Shl; 791 case bitc::BINOP_LSHR: 792 return IsFP ? -1 : Instruction::LShr; 793 case bitc::BINOP_ASHR: 794 return IsFP ? -1 : Instruction::AShr; 795 case bitc::BINOP_AND: 796 return IsFP ? -1 : Instruction::And; 797 case bitc::BINOP_OR: 798 return IsFP ? -1 : Instruction::Or; 799 case bitc::BINOP_XOR: 800 return IsFP ? -1 : Instruction::Xor; 801 } 802 } 803 804 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) { 805 switch (Val) { 806 default: return AtomicRMWInst::BAD_BINOP; 807 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 808 case bitc::RMW_ADD: return AtomicRMWInst::Add; 809 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 810 case bitc::RMW_AND: return AtomicRMWInst::And; 811 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 812 case bitc::RMW_OR: return AtomicRMWInst::Or; 813 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 814 case bitc::RMW_MAX: return AtomicRMWInst::Max; 815 case bitc::RMW_MIN: return AtomicRMWInst::Min; 816 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 817 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 818 } 819 } 820 821 static AtomicOrdering getDecodedOrdering(unsigned Val) { 822 switch (Val) { 823 case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic; 824 case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered; 825 case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic; 826 case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire; 827 case bitc::ORDERING_RELEASE: return AtomicOrdering::Release; 828 case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease; 829 default: // Map unknown orderings to sequentially-consistent. 830 case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent; 831 } 832 } 833 834 static SynchronizationScope getDecodedSynchScope(unsigned Val) { 835 switch (Val) { 836 case bitc::SYNCHSCOPE_SINGLETHREAD: return SingleThread; 837 default: // Map unknown scopes to cross-thread. 838 case bitc::SYNCHSCOPE_CROSSTHREAD: return CrossThread; 839 } 840 } 841 842 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) { 843 switch (Val) { 844 default: // Map unknown selection kinds to any. 845 case bitc::COMDAT_SELECTION_KIND_ANY: 846 return Comdat::Any; 847 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH: 848 return Comdat::ExactMatch; 849 case bitc::COMDAT_SELECTION_KIND_LARGEST: 850 return Comdat::Largest; 851 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES: 852 return Comdat::NoDuplicates; 853 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE: 854 return Comdat::SameSize; 855 } 856 } 857 858 static FastMathFlags getDecodedFastMathFlags(unsigned Val) { 859 FastMathFlags FMF; 860 if (0 != (Val & FastMathFlags::UnsafeAlgebra)) 861 FMF.setUnsafeAlgebra(); 862 if (0 != (Val & FastMathFlags::NoNaNs)) 863 FMF.setNoNaNs(); 864 if (0 != (Val & FastMathFlags::NoInfs)) 865 FMF.setNoInfs(); 866 if (0 != (Val & FastMathFlags::NoSignedZeros)) 867 FMF.setNoSignedZeros(); 868 if (0 != (Val & FastMathFlags::AllowReciprocal)) 869 FMF.setAllowReciprocal(); 870 return FMF; 871 } 872 873 static void upgradeDLLImportExportLinkage(llvm::GlobalValue *GV, unsigned Val) { 874 switch (Val) { 875 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break; 876 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break; 877 } 878 } 879 880 namespace llvm { 881 namespace { 882 /// \brief A class for maintaining the slot number definition 883 /// as a placeholder for the actual definition for forward constants defs. 884 class ConstantPlaceHolder : public ConstantExpr { 885 void operator=(const ConstantPlaceHolder &) = delete; 886 887 public: 888 // allocate space for exactly one operand 889 void *operator new(size_t s) { return User::operator new(s, 1); } 890 explicit ConstantPlaceHolder(Type *Ty, LLVMContext &Context) 891 : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) { 892 Op<0>() = UndefValue::get(Type::getInt32Ty(Context)); 893 } 894 895 /// \brief Methods to support type inquiry through isa, cast, and dyn_cast. 896 static bool classof(const Value *V) { 897 return isa<ConstantExpr>(V) && 898 cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1; 899 } 900 901 /// Provide fast operand accessors 902 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); 903 }; 904 } // end anonymous namespace 905 906 // FIXME: can we inherit this from ConstantExpr? 907 template <> 908 struct OperandTraits<ConstantPlaceHolder> : 909 public FixedNumOperandTraits<ConstantPlaceHolder, 1> { 910 }; 911 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantPlaceHolder, Value) 912 } // end namespace llvm 913 914 void BitcodeReaderValueList::assignValue(Value *V, unsigned Idx) { 915 if (Idx == size()) { 916 push_back(V); 917 return; 918 } 919 920 if (Idx >= size()) 921 resize(Idx+1); 922 923 WeakVH &OldV = ValuePtrs[Idx]; 924 if (!OldV) { 925 OldV = V; 926 return; 927 } 928 929 // Handle constants and non-constants (e.g. instrs) differently for 930 // efficiency. 931 if (Constant *PHC = dyn_cast<Constant>(&*OldV)) { 932 ResolveConstants.push_back(std::make_pair(PHC, Idx)); 933 OldV = V; 934 } else { 935 // If there was a forward reference to this value, replace it. 936 Value *PrevVal = OldV; 937 OldV->replaceAllUsesWith(V); 938 delete PrevVal; 939 } 940 } 941 942 Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx, 943 Type *Ty) { 944 if (Idx >= size()) 945 resize(Idx + 1); 946 947 if (Value *V = ValuePtrs[Idx]) { 948 if (Ty != V->getType()) 949 report_fatal_error("Type mismatch in constant table!"); 950 return cast<Constant>(V); 951 } 952 953 // Create and return a placeholder, which will later be RAUW'd. 954 Constant *C = new ConstantPlaceHolder(Ty, Context); 955 ValuePtrs[Idx] = C; 956 return C; 957 } 958 959 Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, Type *Ty) { 960 // Bail out for a clearly invalid value. This would make us call resize(0) 961 if (Idx == UINT_MAX) 962 return nullptr; 963 964 if (Idx >= size()) 965 resize(Idx + 1); 966 967 if (Value *V = ValuePtrs[Idx]) { 968 // If the types don't match, it's invalid. 969 if (Ty && Ty != V->getType()) 970 return nullptr; 971 return V; 972 } 973 974 // No type specified, must be invalid reference. 975 if (!Ty) return nullptr; 976 977 // Create and return a placeholder, which will later be RAUW'd. 978 Value *V = new Argument(Ty); 979 ValuePtrs[Idx] = V; 980 return V; 981 } 982 983 /// Once all constants are read, this method bulk resolves any forward 984 /// references. The idea behind this is that we sometimes get constants (such 985 /// as large arrays) which reference *many* forward ref constants. Replacing 986 /// each of these causes a lot of thrashing when building/reuniquing the 987 /// constant. Instead of doing this, we look at all the uses and rewrite all 988 /// the place holders at once for any constant that uses a placeholder. 989 void BitcodeReaderValueList::resolveConstantForwardRefs() { 990 // Sort the values by-pointer so that they are efficient to look up with a 991 // binary search. 992 std::sort(ResolveConstants.begin(), ResolveConstants.end()); 993 994 SmallVector<Constant*, 64> NewOps; 995 996 while (!ResolveConstants.empty()) { 997 Value *RealVal = operator[](ResolveConstants.back().second); 998 Constant *Placeholder = ResolveConstants.back().first; 999 ResolveConstants.pop_back(); 1000 1001 // Loop over all users of the placeholder, updating them to reference the 1002 // new value. If they reference more than one placeholder, update them all 1003 // at once. 1004 while (!Placeholder->use_empty()) { 1005 auto UI = Placeholder->user_begin(); 1006 User *U = *UI; 1007 1008 // If the using object isn't uniqued, just update the operands. This 1009 // handles instructions and initializers for global variables. 1010 if (!isa<Constant>(U) || isa<GlobalValue>(U)) { 1011 UI.getUse().set(RealVal); 1012 continue; 1013 } 1014 1015 // Otherwise, we have a constant that uses the placeholder. Replace that 1016 // constant with a new constant that has *all* placeholder uses updated. 1017 Constant *UserC = cast<Constant>(U); 1018 for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end(); 1019 I != E; ++I) { 1020 Value *NewOp; 1021 if (!isa<ConstantPlaceHolder>(*I)) { 1022 // Not a placeholder reference. 1023 NewOp = *I; 1024 } else if (*I == Placeholder) { 1025 // Common case is that it just references this one placeholder. 1026 NewOp = RealVal; 1027 } else { 1028 // Otherwise, look up the placeholder in ResolveConstants. 1029 ResolveConstantsTy::iterator It = 1030 std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(), 1031 std::pair<Constant*, unsigned>(cast<Constant>(*I), 1032 0)); 1033 assert(It != ResolveConstants.end() && It->first == *I); 1034 NewOp = operator[](It->second); 1035 } 1036 1037 NewOps.push_back(cast<Constant>(NewOp)); 1038 } 1039 1040 // Make the new constant. 1041 Constant *NewC; 1042 if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) { 1043 NewC = ConstantArray::get(UserCA->getType(), NewOps); 1044 } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) { 1045 NewC = ConstantStruct::get(UserCS->getType(), NewOps); 1046 } else if (isa<ConstantVector>(UserC)) { 1047 NewC = ConstantVector::get(NewOps); 1048 } else { 1049 assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr."); 1050 NewC = cast<ConstantExpr>(UserC)->getWithOperands(NewOps); 1051 } 1052 1053 UserC->replaceAllUsesWith(NewC); 1054 UserC->destroyConstant(); 1055 NewOps.clear(); 1056 } 1057 1058 // Update all ValueHandles, they should be the only users at this point. 1059 Placeholder->replaceAllUsesWith(RealVal); 1060 delete Placeholder; 1061 } 1062 } 1063 1064 void BitcodeReaderMetadataList::assignValue(Metadata *MD, unsigned Idx) { 1065 if (Idx == size()) { 1066 push_back(MD); 1067 return; 1068 } 1069 1070 if (Idx >= size()) 1071 resize(Idx+1); 1072 1073 TrackingMDRef &OldMD = MetadataPtrs[Idx]; 1074 if (!OldMD) { 1075 OldMD.reset(MD); 1076 return; 1077 } 1078 1079 // If there was a forward reference to this value, replace it. 1080 TempMDTuple PrevMD(cast<MDTuple>(OldMD.get())); 1081 PrevMD->replaceAllUsesWith(MD); 1082 --NumFwdRefs; 1083 } 1084 1085 Metadata *BitcodeReaderMetadataList::getMetadataFwdRef(unsigned Idx) { 1086 if (Idx >= size()) 1087 resize(Idx + 1); 1088 1089 if (Metadata *MD = MetadataPtrs[Idx]) 1090 return MD; 1091 1092 // Track forward refs to be resolved later. 1093 if (AnyFwdRefs) { 1094 MinFwdRef = std::min(MinFwdRef, Idx); 1095 MaxFwdRef = std::max(MaxFwdRef, Idx); 1096 } else { 1097 AnyFwdRefs = true; 1098 MinFwdRef = MaxFwdRef = Idx; 1099 } 1100 ++NumFwdRefs; 1101 1102 // Create and return a placeholder, which will later be RAUW'd. 1103 Metadata *MD = MDNode::getTemporary(Context, None).release(); 1104 MetadataPtrs[Idx].reset(MD); 1105 return MD; 1106 } 1107 1108 Metadata *BitcodeReaderMetadataList::getMetadataIfResolved(unsigned Idx) { 1109 Metadata *MD = lookup(Idx); 1110 if (auto *N = dyn_cast_or_null<MDNode>(MD)) 1111 if (!N->isResolved()) 1112 return nullptr; 1113 return MD; 1114 } 1115 1116 MDNode *BitcodeReaderMetadataList::getMDNodeFwdRefOrNull(unsigned Idx) { 1117 return dyn_cast_or_null<MDNode>(getMetadataFwdRef(Idx)); 1118 } 1119 1120 void BitcodeReaderMetadataList::tryToResolveCycles() { 1121 if (!AnyFwdRefs) 1122 // Nothing to do. 1123 return; 1124 1125 if (NumFwdRefs) 1126 // Still forward references... can't resolve cycles. 1127 return; 1128 1129 // Resolve any cycles. 1130 for (unsigned I = MinFwdRef, E = MaxFwdRef + 1; I != E; ++I) { 1131 auto &MD = MetadataPtrs[I]; 1132 auto *N = dyn_cast_or_null<MDNode>(MD); 1133 if (!N) 1134 continue; 1135 1136 assert(!N->isTemporary() && "Unexpected forward reference"); 1137 N->resolveCycles(); 1138 } 1139 1140 // Make sure we return early again until there's another forward ref. 1141 AnyFwdRefs = false; 1142 } 1143 1144 Type *BitcodeReader::getTypeByID(unsigned ID) { 1145 // The type table size is always specified correctly. 1146 if (ID >= TypeList.size()) 1147 return nullptr; 1148 1149 if (Type *Ty = TypeList[ID]) 1150 return Ty; 1151 1152 // If we have a forward reference, the only possible case is when it is to a 1153 // named struct. Just create a placeholder for now. 1154 return TypeList[ID] = createIdentifiedStructType(Context); 1155 } 1156 1157 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context, 1158 StringRef Name) { 1159 auto *Ret = StructType::create(Context, Name); 1160 IdentifiedStructTypes.push_back(Ret); 1161 return Ret; 1162 } 1163 1164 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) { 1165 auto *Ret = StructType::create(Context); 1166 IdentifiedStructTypes.push_back(Ret); 1167 return Ret; 1168 } 1169 1170 //===----------------------------------------------------------------------===// 1171 // Functions for parsing blocks from the bitcode file 1172 //===----------------------------------------------------------------------===// 1173 1174 1175 /// \brief This fills an AttrBuilder object with the LLVM attributes that have 1176 /// been decoded from the given integer. This function must stay in sync with 1177 /// 'encodeLLVMAttributesForBitcode'. 1178 static void decodeLLVMAttributesForBitcode(AttrBuilder &B, 1179 uint64_t EncodedAttrs) { 1180 // FIXME: Remove in 4.0. 1181 1182 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift 1183 // the bits above 31 down by 11 bits. 1184 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; 1185 assert((!Alignment || isPowerOf2_32(Alignment)) && 1186 "Alignment must be a power of two."); 1187 1188 if (Alignment) 1189 B.addAlignmentAttr(Alignment); 1190 B.addRawValue(((EncodedAttrs & (0xfffffULL << 32)) >> 11) | 1191 (EncodedAttrs & 0xffff)); 1192 } 1193 1194 std::error_code BitcodeReader::parseAttributeBlock() { 1195 if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 1196 return error("Invalid record"); 1197 1198 if (!MAttributes.empty()) 1199 return error("Invalid multiple blocks"); 1200 1201 SmallVector<uint64_t, 64> Record; 1202 1203 SmallVector<AttributeSet, 8> Attrs; 1204 1205 // Read all the records. 1206 while (1) { 1207 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1208 1209 switch (Entry.Kind) { 1210 case BitstreamEntry::SubBlock: // Handled for us already. 1211 case BitstreamEntry::Error: 1212 return error("Malformed block"); 1213 case BitstreamEntry::EndBlock: 1214 return std::error_code(); 1215 case BitstreamEntry::Record: 1216 // The interesting case. 1217 break; 1218 } 1219 1220 // Read a record. 1221 Record.clear(); 1222 switch (Stream.readRecord(Entry.ID, Record)) { 1223 default: // Default behavior: ignore. 1224 break; 1225 case bitc::PARAMATTR_CODE_ENTRY_OLD: { // ENTRY: [paramidx0, attr0, ...] 1226 // FIXME: Remove in 4.0. 1227 if (Record.size() & 1) 1228 return error("Invalid record"); 1229 1230 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1231 AttrBuilder B; 1232 decodeLLVMAttributesForBitcode(B, Record[i+1]); 1233 Attrs.push_back(AttributeSet::get(Context, Record[i], B)); 1234 } 1235 1236 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 1237 Attrs.clear(); 1238 break; 1239 } 1240 case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [attrgrp0, attrgrp1, ...] 1241 for (unsigned i = 0, e = Record.size(); i != e; ++i) 1242 Attrs.push_back(MAttributeGroups[Record[i]]); 1243 1244 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 1245 Attrs.clear(); 1246 break; 1247 } 1248 } 1249 } 1250 } 1251 1252 // Returns Attribute::None on unrecognized codes. 1253 static Attribute::AttrKind getAttrFromCode(uint64_t Code) { 1254 switch (Code) { 1255 default: 1256 return Attribute::None; 1257 case bitc::ATTR_KIND_ALIGNMENT: 1258 return Attribute::Alignment; 1259 case bitc::ATTR_KIND_ALWAYS_INLINE: 1260 return Attribute::AlwaysInline; 1261 case bitc::ATTR_KIND_ARGMEMONLY: 1262 return Attribute::ArgMemOnly; 1263 case bitc::ATTR_KIND_BUILTIN: 1264 return Attribute::Builtin; 1265 case bitc::ATTR_KIND_BY_VAL: 1266 return Attribute::ByVal; 1267 case bitc::ATTR_KIND_IN_ALLOCA: 1268 return Attribute::InAlloca; 1269 case bitc::ATTR_KIND_COLD: 1270 return Attribute::Cold; 1271 case bitc::ATTR_KIND_CONVERGENT: 1272 return Attribute::Convergent; 1273 case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY: 1274 return Attribute::InaccessibleMemOnly; 1275 case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY: 1276 return Attribute::InaccessibleMemOrArgMemOnly; 1277 case bitc::ATTR_KIND_INLINE_HINT: 1278 return Attribute::InlineHint; 1279 case bitc::ATTR_KIND_IN_REG: 1280 return Attribute::InReg; 1281 case bitc::ATTR_KIND_JUMP_TABLE: 1282 return Attribute::JumpTable; 1283 case bitc::ATTR_KIND_MIN_SIZE: 1284 return Attribute::MinSize; 1285 case bitc::ATTR_KIND_NAKED: 1286 return Attribute::Naked; 1287 case bitc::ATTR_KIND_NEST: 1288 return Attribute::Nest; 1289 case bitc::ATTR_KIND_NO_ALIAS: 1290 return Attribute::NoAlias; 1291 case bitc::ATTR_KIND_NO_BUILTIN: 1292 return Attribute::NoBuiltin; 1293 case bitc::ATTR_KIND_NO_CAPTURE: 1294 return Attribute::NoCapture; 1295 case bitc::ATTR_KIND_NO_DUPLICATE: 1296 return Attribute::NoDuplicate; 1297 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: 1298 return Attribute::NoImplicitFloat; 1299 case bitc::ATTR_KIND_NO_INLINE: 1300 return Attribute::NoInline; 1301 case bitc::ATTR_KIND_NO_RECURSE: 1302 return Attribute::NoRecurse; 1303 case bitc::ATTR_KIND_NON_LAZY_BIND: 1304 return Attribute::NonLazyBind; 1305 case bitc::ATTR_KIND_NON_NULL: 1306 return Attribute::NonNull; 1307 case bitc::ATTR_KIND_DEREFERENCEABLE: 1308 return Attribute::Dereferenceable; 1309 case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL: 1310 return Attribute::DereferenceableOrNull; 1311 case bitc::ATTR_KIND_ALLOC_SIZE: 1312 return Attribute::AllocSize; 1313 case bitc::ATTR_KIND_NO_RED_ZONE: 1314 return Attribute::NoRedZone; 1315 case bitc::ATTR_KIND_NO_RETURN: 1316 return Attribute::NoReturn; 1317 case bitc::ATTR_KIND_NO_UNWIND: 1318 return Attribute::NoUnwind; 1319 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: 1320 return Attribute::OptimizeForSize; 1321 case bitc::ATTR_KIND_OPTIMIZE_NONE: 1322 return Attribute::OptimizeNone; 1323 case bitc::ATTR_KIND_READ_NONE: 1324 return Attribute::ReadNone; 1325 case bitc::ATTR_KIND_READ_ONLY: 1326 return Attribute::ReadOnly; 1327 case bitc::ATTR_KIND_RETURNED: 1328 return Attribute::Returned; 1329 case bitc::ATTR_KIND_RETURNS_TWICE: 1330 return Attribute::ReturnsTwice; 1331 case bitc::ATTR_KIND_S_EXT: 1332 return Attribute::SExt; 1333 case bitc::ATTR_KIND_STACK_ALIGNMENT: 1334 return Attribute::StackAlignment; 1335 case bitc::ATTR_KIND_STACK_PROTECT: 1336 return Attribute::StackProtect; 1337 case bitc::ATTR_KIND_STACK_PROTECT_REQ: 1338 return Attribute::StackProtectReq; 1339 case bitc::ATTR_KIND_STACK_PROTECT_STRONG: 1340 return Attribute::StackProtectStrong; 1341 case bitc::ATTR_KIND_SAFESTACK: 1342 return Attribute::SafeStack; 1343 case bitc::ATTR_KIND_STRUCT_RET: 1344 return Attribute::StructRet; 1345 case bitc::ATTR_KIND_SANITIZE_ADDRESS: 1346 return Attribute::SanitizeAddress; 1347 case bitc::ATTR_KIND_SANITIZE_THREAD: 1348 return Attribute::SanitizeThread; 1349 case bitc::ATTR_KIND_SANITIZE_MEMORY: 1350 return Attribute::SanitizeMemory; 1351 case bitc::ATTR_KIND_SWIFT_ERROR: 1352 return Attribute::SwiftError; 1353 case bitc::ATTR_KIND_SWIFT_SELF: 1354 return Attribute::SwiftSelf; 1355 case bitc::ATTR_KIND_UW_TABLE: 1356 return Attribute::UWTable; 1357 case bitc::ATTR_KIND_Z_EXT: 1358 return Attribute::ZExt; 1359 } 1360 } 1361 1362 std::error_code BitcodeReader::parseAlignmentValue(uint64_t Exponent, 1363 unsigned &Alignment) { 1364 // Note: Alignment in bitcode files is incremented by 1, so that zero 1365 // can be used for default alignment. 1366 if (Exponent > Value::MaxAlignmentExponent + 1) 1367 return error("Invalid alignment value"); 1368 Alignment = (1 << static_cast<unsigned>(Exponent)) >> 1; 1369 return std::error_code(); 1370 } 1371 1372 std::error_code BitcodeReader::parseAttrKind(uint64_t Code, 1373 Attribute::AttrKind *Kind) { 1374 *Kind = getAttrFromCode(Code); 1375 if (*Kind == Attribute::None) 1376 return error(BitcodeError::CorruptedBitcode, 1377 "Unknown attribute kind (" + Twine(Code) + ")"); 1378 return std::error_code(); 1379 } 1380 1381 std::error_code BitcodeReader::parseAttributeGroupBlock() { 1382 if (Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) 1383 return error("Invalid record"); 1384 1385 if (!MAttributeGroups.empty()) 1386 return error("Invalid multiple blocks"); 1387 1388 SmallVector<uint64_t, 64> Record; 1389 1390 // Read all the records. 1391 while (1) { 1392 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1393 1394 switch (Entry.Kind) { 1395 case BitstreamEntry::SubBlock: // Handled for us already. 1396 case BitstreamEntry::Error: 1397 return error("Malformed block"); 1398 case BitstreamEntry::EndBlock: 1399 return std::error_code(); 1400 case BitstreamEntry::Record: 1401 // The interesting case. 1402 break; 1403 } 1404 1405 // Read a record. 1406 Record.clear(); 1407 switch (Stream.readRecord(Entry.ID, Record)) { 1408 default: // Default behavior: ignore. 1409 break; 1410 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] 1411 if (Record.size() < 3) 1412 return error("Invalid record"); 1413 1414 uint64_t GrpID = Record[0]; 1415 uint64_t Idx = Record[1]; // Index of the object this attribute refers to. 1416 1417 AttrBuilder B; 1418 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1419 if (Record[i] == 0) { // Enum attribute 1420 Attribute::AttrKind Kind; 1421 if (std::error_code EC = parseAttrKind(Record[++i], &Kind)) 1422 return EC; 1423 1424 B.addAttribute(Kind); 1425 } else if (Record[i] == 1) { // Integer attribute 1426 Attribute::AttrKind Kind; 1427 if (std::error_code EC = parseAttrKind(Record[++i], &Kind)) 1428 return EC; 1429 if (Kind == Attribute::Alignment) 1430 B.addAlignmentAttr(Record[++i]); 1431 else if (Kind == Attribute::StackAlignment) 1432 B.addStackAlignmentAttr(Record[++i]); 1433 else if (Kind == Attribute::Dereferenceable) 1434 B.addDereferenceableAttr(Record[++i]); 1435 else if (Kind == Attribute::DereferenceableOrNull) 1436 B.addDereferenceableOrNullAttr(Record[++i]); 1437 else if (Kind == Attribute::AllocSize) 1438 B.addAllocSizeAttrFromRawRepr(Record[++i]); 1439 } else { // String attribute 1440 assert((Record[i] == 3 || Record[i] == 4) && 1441 "Invalid attribute group entry"); 1442 bool HasValue = (Record[i++] == 4); 1443 SmallString<64> KindStr; 1444 SmallString<64> ValStr; 1445 1446 while (Record[i] != 0 && i != e) 1447 KindStr += Record[i++]; 1448 assert(Record[i] == 0 && "Kind string not null terminated"); 1449 1450 if (HasValue) { 1451 // Has a value associated with it. 1452 ++i; // Skip the '0' that terminates the "kind" string. 1453 while (Record[i] != 0 && i != e) 1454 ValStr += Record[i++]; 1455 assert(Record[i] == 0 && "Value string not null terminated"); 1456 } 1457 1458 B.addAttribute(KindStr.str(), ValStr.str()); 1459 } 1460 } 1461 1462 MAttributeGroups[GrpID] = AttributeSet::get(Context, Idx, B); 1463 break; 1464 } 1465 } 1466 } 1467 } 1468 1469 std::error_code BitcodeReader::parseTypeTable() { 1470 if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 1471 return error("Invalid record"); 1472 1473 return parseTypeTableBody(); 1474 } 1475 1476 std::error_code BitcodeReader::parseTypeTableBody() { 1477 if (!TypeList.empty()) 1478 return error("Invalid multiple blocks"); 1479 1480 SmallVector<uint64_t, 64> Record; 1481 unsigned NumRecords = 0; 1482 1483 SmallString<64> TypeName; 1484 1485 // Read all the records for this type table. 1486 while (1) { 1487 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1488 1489 switch (Entry.Kind) { 1490 case BitstreamEntry::SubBlock: // Handled for us already. 1491 case BitstreamEntry::Error: 1492 return error("Malformed block"); 1493 case BitstreamEntry::EndBlock: 1494 if (NumRecords != TypeList.size()) 1495 return error("Malformed block"); 1496 return std::error_code(); 1497 case BitstreamEntry::Record: 1498 // The interesting case. 1499 break; 1500 } 1501 1502 // Read a record. 1503 Record.clear(); 1504 Type *ResultTy = nullptr; 1505 switch (Stream.readRecord(Entry.ID, Record)) { 1506 default: 1507 return error("Invalid value"); 1508 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 1509 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 1510 // type list. This allows us to reserve space. 1511 if (Record.size() < 1) 1512 return error("Invalid record"); 1513 TypeList.resize(Record[0]); 1514 continue; 1515 case bitc::TYPE_CODE_VOID: // VOID 1516 ResultTy = Type::getVoidTy(Context); 1517 break; 1518 case bitc::TYPE_CODE_HALF: // HALF 1519 ResultTy = Type::getHalfTy(Context); 1520 break; 1521 case bitc::TYPE_CODE_FLOAT: // FLOAT 1522 ResultTy = Type::getFloatTy(Context); 1523 break; 1524 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 1525 ResultTy = Type::getDoubleTy(Context); 1526 break; 1527 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 1528 ResultTy = Type::getX86_FP80Ty(Context); 1529 break; 1530 case bitc::TYPE_CODE_FP128: // FP128 1531 ResultTy = Type::getFP128Ty(Context); 1532 break; 1533 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 1534 ResultTy = Type::getPPC_FP128Ty(Context); 1535 break; 1536 case bitc::TYPE_CODE_LABEL: // LABEL 1537 ResultTy = Type::getLabelTy(Context); 1538 break; 1539 case bitc::TYPE_CODE_METADATA: // METADATA 1540 ResultTy = Type::getMetadataTy(Context); 1541 break; 1542 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 1543 ResultTy = Type::getX86_MMXTy(Context); 1544 break; 1545 case bitc::TYPE_CODE_TOKEN: // TOKEN 1546 ResultTy = Type::getTokenTy(Context); 1547 break; 1548 case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width] 1549 if (Record.size() < 1) 1550 return error("Invalid record"); 1551 1552 uint64_t NumBits = Record[0]; 1553 if (NumBits < IntegerType::MIN_INT_BITS || 1554 NumBits > IntegerType::MAX_INT_BITS) 1555 return error("Bitwidth for integer type out of range"); 1556 ResultTy = IntegerType::get(Context, NumBits); 1557 break; 1558 } 1559 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 1560 // [pointee type, address space] 1561 if (Record.size() < 1) 1562 return error("Invalid record"); 1563 unsigned AddressSpace = 0; 1564 if (Record.size() == 2) 1565 AddressSpace = Record[1]; 1566 ResultTy = getTypeByID(Record[0]); 1567 if (!ResultTy || 1568 !PointerType::isValidElementType(ResultTy)) 1569 return error("Invalid type"); 1570 ResultTy = PointerType::get(ResultTy, AddressSpace); 1571 break; 1572 } 1573 case bitc::TYPE_CODE_FUNCTION_OLD: { 1574 // FIXME: attrid is dead, remove it in LLVM 4.0 1575 // FUNCTION: [vararg, attrid, retty, paramty x N] 1576 if (Record.size() < 3) 1577 return error("Invalid record"); 1578 SmallVector<Type*, 8> ArgTys; 1579 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 1580 if (Type *T = getTypeByID(Record[i])) 1581 ArgTys.push_back(T); 1582 else 1583 break; 1584 } 1585 1586 ResultTy = getTypeByID(Record[2]); 1587 if (!ResultTy || ArgTys.size() < Record.size()-3) 1588 return error("Invalid type"); 1589 1590 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1591 break; 1592 } 1593 case bitc::TYPE_CODE_FUNCTION: { 1594 // FUNCTION: [vararg, retty, paramty x N] 1595 if (Record.size() < 2) 1596 return error("Invalid record"); 1597 SmallVector<Type*, 8> ArgTys; 1598 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1599 if (Type *T = getTypeByID(Record[i])) { 1600 if (!FunctionType::isValidArgumentType(T)) 1601 return error("Invalid function argument type"); 1602 ArgTys.push_back(T); 1603 } 1604 else 1605 break; 1606 } 1607 1608 ResultTy = getTypeByID(Record[1]); 1609 if (!ResultTy || ArgTys.size() < Record.size()-2) 1610 return error("Invalid type"); 1611 1612 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1613 break; 1614 } 1615 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 1616 if (Record.size() < 1) 1617 return error("Invalid record"); 1618 SmallVector<Type*, 8> EltTys; 1619 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1620 if (Type *T = getTypeByID(Record[i])) 1621 EltTys.push_back(T); 1622 else 1623 break; 1624 } 1625 if (EltTys.size() != Record.size()-1) 1626 return error("Invalid type"); 1627 ResultTy = StructType::get(Context, EltTys, Record[0]); 1628 break; 1629 } 1630 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 1631 if (convertToString(Record, 0, TypeName)) 1632 return error("Invalid record"); 1633 continue; 1634 1635 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 1636 if (Record.size() < 1) 1637 return error("Invalid record"); 1638 1639 if (NumRecords >= TypeList.size()) 1640 return error("Invalid TYPE table"); 1641 1642 // Check to see if this was forward referenced, if so fill in the temp. 1643 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1644 if (Res) { 1645 Res->setName(TypeName); 1646 TypeList[NumRecords] = nullptr; 1647 } else // Otherwise, create a new struct. 1648 Res = createIdentifiedStructType(Context, TypeName); 1649 TypeName.clear(); 1650 1651 SmallVector<Type*, 8> EltTys; 1652 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1653 if (Type *T = getTypeByID(Record[i])) 1654 EltTys.push_back(T); 1655 else 1656 break; 1657 } 1658 if (EltTys.size() != Record.size()-1) 1659 return error("Invalid record"); 1660 Res->setBody(EltTys, Record[0]); 1661 ResultTy = Res; 1662 break; 1663 } 1664 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 1665 if (Record.size() != 1) 1666 return error("Invalid record"); 1667 1668 if (NumRecords >= TypeList.size()) 1669 return error("Invalid TYPE table"); 1670 1671 // Check to see if this was forward referenced, if so fill in the temp. 1672 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1673 if (Res) { 1674 Res->setName(TypeName); 1675 TypeList[NumRecords] = nullptr; 1676 } else // Otherwise, create a new struct with no body. 1677 Res = createIdentifiedStructType(Context, TypeName); 1678 TypeName.clear(); 1679 ResultTy = Res; 1680 break; 1681 } 1682 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 1683 if (Record.size() < 2) 1684 return error("Invalid record"); 1685 ResultTy = getTypeByID(Record[1]); 1686 if (!ResultTy || !ArrayType::isValidElementType(ResultTy)) 1687 return error("Invalid type"); 1688 ResultTy = ArrayType::get(ResultTy, Record[0]); 1689 break; 1690 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] 1691 if (Record.size() < 2) 1692 return error("Invalid record"); 1693 if (Record[0] == 0) 1694 return error("Invalid vector length"); 1695 ResultTy = getTypeByID(Record[1]); 1696 if (!ResultTy || !StructType::isValidElementType(ResultTy)) 1697 return error("Invalid type"); 1698 ResultTy = VectorType::get(ResultTy, Record[0]); 1699 break; 1700 } 1701 1702 if (NumRecords >= TypeList.size()) 1703 return error("Invalid TYPE table"); 1704 if (TypeList[NumRecords]) 1705 return error( 1706 "Invalid TYPE table: Only named structs can be forward referenced"); 1707 assert(ResultTy && "Didn't read a type?"); 1708 TypeList[NumRecords++] = ResultTy; 1709 } 1710 } 1711 1712 std::error_code BitcodeReader::parseOperandBundleTags() { 1713 if (Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID)) 1714 return error("Invalid record"); 1715 1716 if (!BundleTags.empty()) 1717 return error("Invalid multiple blocks"); 1718 1719 SmallVector<uint64_t, 64> Record; 1720 1721 while (1) { 1722 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1723 1724 switch (Entry.Kind) { 1725 case BitstreamEntry::SubBlock: // Handled for us already. 1726 case BitstreamEntry::Error: 1727 return error("Malformed block"); 1728 case BitstreamEntry::EndBlock: 1729 return std::error_code(); 1730 case BitstreamEntry::Record: 1731 // The interesting case. 1732 break; 1733 } 1734 1735 // Tags are implicitly mapped to integers by their order. 1736 1737 if (Stream.readRecord(Entry.ID, Record) != bitc::OPERAND_BUNDLE_TAG) 1738 return error("Invalid record"); 1739 1740 // OPERAND_BUNDLE_TAG: [strchr x N] 1741 BundleTags.emplace_back(); 1742 if (convertToString(Record, 0, BundleTags.back())) 1743 return error("Invalid record"); 1744 Record.clear(); 1745 } 1746 } 1747 1748 /// Associate a value with its name from the given index in the provided record. 1749 ErrorOr<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record, 1750 unsigned NameIndex, Triple &TT) { 1751 SmallString<128> ValueName; 1752 if (convertToString(Record, NameIndex, ValueName)) 1753 return error("Invalid record"); 1754 unsigned ValueID = Record[0]; 1755 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 1756 return error("Invalid record"); 1757 Value *V = ValueList[ValueID]; 1758 1759 StringRef NameStr(ValueName.data(), ValueName.size()); 1760 if (NameStr.find_first_of(0) != StringRef::npos) 1761 return error("Invalid value name"); 1762 V->setName(NameStr); 1763 auto *GO = dyn_cast<GlobalObject>(V); 1764 if (GO) { 1765 if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) { 1766 if (TT.isOSBinFormatMachO()) 1767 GO->setComdat(nullptr); 1768 else 1769 GO->setComdat(TheModule->getOrInsertComdat(V->getName())); 1770 } 1771 } 1772 return V; 1773 } 1774 1775 /// Helper to note and return the current location, and jump to the given 1776 /// offset. 1777 static uint64_t jumpToValueSymbolTable(uint64_t Offset, 1778 BitstreamCursor &Stream) { 1779 // Save the current parsing location so we can jump back at the end 1780 // of the VST read. 1781 uint64_t CurrentBit = Stream.GetCurrentBitNo(); 1782 Stream.JumpToBit(Offset * 32); 1783 #ifndef NDEBUG 1784 // Do some checking if we are in debug mode. 1785 BitstreamEntry Entry = Stream.advance(); 1786 assert(Entry.Kind == BitstreamEntry::SubBlock); 1787 assert(Entry.ID == bitc::VALUE_SYMTAB_BLOCK_ID); 1788 #else 1789 // In NDEBUG mode ignore the output so we don't get an unused variable 1790 // warning. 1791 Stream.advance(); 1792 #endif 1793 return CurrentBit; 1794 } 1795 1796 /// Parse the value symbol table at either the current parsing location or 1797 /// at the given bit offset if provided. 1798 std::error_code BitcodeReader::parseValueSymbolTable(uint64_t Offset) { 1799 uint64_t CurrentBit; 1800 // Pass in the Offset to distinguish between calling for the module-level 1801 // VST (where we want to jump to the VST offset) and the function-level 1802 // VST (where we don't). 1803 if (Offset > 0) 1804 CurrentBit = jumpToValueSymbolTable(Offset, Stream); 1805 1806 // Compute the delta between the bitcode indices in the VST (the word offset 1807 // to the word-aligned ENTER_SUBBLOCK for the function block, and that 1808 // expected by the lazy reader. The reader's EnterSubBlock expects to have 1809 // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID 1810 // (size BlockIDWidth). Note that we access the stream's AbbrevID width here 1811 // just before entering the VST subblock because: 1) the EnterSubBlock 1812 // changes the AbbrevID width; 2) the VST block is nested within the same 1813 // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same 1814 // AbbrevID width before calling EnterSubBlock; and 3) when we want to 1815 // jump to the FUNCTION_BLOCK using this offset later, we don't want 1816 // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK. 1817 unsigned FuncBitcodeOffsetDelta = 1818 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 1819 1820 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 1821 return error("Invalid record"); 1822 1823 SmallVector<uint64_t, 64> Record; 1824 1825 Triple TT(TheModule->getTargetTriple()); 1826 1827 // Read all the records for this value table. 1828 SmallString<128> ValueName; 1829 while (1) { 1830 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1831 1832 switch (Entry.Kind) { 1833 case BitstreamEntry::SubBlock: // Handled for us already. 1834 case BitstreamEntry::Error: 1835 return error("Malformed block"); 1836 case BitstreamEntry::EndBlock: 1837 if (Offset > 0) 1838 Stream.JumpToBit(CurrentBit); 1839 return std::error_code(); 1840 case BitstreamEntry::Record: 1841 // The interesting case. 1842 break; 1843 } 1844 1845 // Read a record. 1846 Record.clear(); 1847 switch (Stream.readRecord(Entry.ID, Record)) { 1848 default: // Default behavior: unknown type. 1849 break; 1850 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 1851 ErrorOr<Value *> ValOrErr = recordValue(Record, 1, TT); 1852 if (std::error_code EC = ValOrErr.getError()) 1853 return EC; 1854 ValOrErr.get(); 1855 break; 1856 } 1857 case bitc::VST_CODE_FNENTRY: { 1858 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 1859 ErrorOr<Value *> ValOrErr = recordValue(Record, 2, TT); 1860 if (std::error_code EC = ValOrErr.getError()) 1861 return EC; 1862 Value *V = ValOrErr.get(); 1863 1864 auto *GO = dyn_cast<GlobalObject>(V); 1865 if (!GO) { 1866 // If this is an alias, need to get the actual Function object 1867 // it aliases, in order to set up the DeferredFunctionInfo entry below. 1868 auto *GA = dyn_cast<GlobalAlias>(V); 1869 if (GA) 1870 GO = GA->getBaseObject(); 1871 assert(GO); 1872 } 1873 1874 uint64_t FuncWordOffset = Record[1]; 1875 Function *F = dyn_cast<Function>(GO); 1876 assert(F); 1877 uint64_t FuncBitOffset = FuncWordOffset * 32; 1878 DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta; 1879 // Set the LastFunctionBlockBit to point to the last function block. 1880 // Later when parsing is resumed after function materialization, 1881 // we can simply skip that last function block. 1882 if (FuncBitOffset > LastFunctionBlockBit) 1883 LastFunctionBlockBit = FuncBitOffset; 1884 break; 1885 } 1886 case bitc::VST_CODE_BBENTRY: { 1887 if (convertToString(Record, 1, ValueName)) 1888 return error("Invalid record"); 1889 BasicBlock *BB = getBasicBlock(Record[0]); 1890 if (!BB) 1891 return error("Invalid record"); 1892 1893 BB->setName(StringRef(ValueName.data(), ValueName.size())); 1894 ValueName.clear(); 1895 break; 1896 } 1897 } 1898 } 1899 } 1900 1901 /// Parse a single METADATA_KIND record, inserting result in MDKindMap. 1902 std::error_code 1903 BitcodeReader::parseMetadataKindRecord(SmallVectorImpl<uint64_t> &Record) { 1904 if (Record.size() < 2) 1905 return error("Invalid record"); 1906 1907 unsigned Kind = Record[0]; 1908 SmallString<8> Name(Record.begin() + 1, Record.end()); 1909 1910 unsigned NewKind = TheModule->getMDKindID(Name.str()); 1911 if (!MDKindMap.insert(std::make_pair(Kind, NewKind)).second) 1912 return error("Conflicting METADATA_KIND records"); 1913 return std::error_code(); 1914 } 1915 1916 static int64_t unrotateSign(uint64_t U) { return U & 1 ? ~(U >> 1) : U >> 1; } 1917 1918 std::error_code BitcodeReader::parseMetadataStrings(ArrayRef<uint64_t> Record, 1919 StringRef Blob, 1920 unsigned &NextMetadataNo) { 1921 // All the MDStrings in the block are emitted together in a single 1922 // record. The strings are concatenated and stored in a blob along with 1923 // their sizes. 1924 if (Record.size() != 2) 1925 return error("Invalid record: metadata strings layout"); 1926 1927 unsigned NumStrings = Record[0]; 1928 unsigned StringsOffset = Record[1]; 1929 if (!NumStrings) 1930 return error("Invalid record: metadata strings with no strings"); 1931 if (StringsOffset > Blob.size()) 1932 return error("Invalid record: metadata strings corrupt offset"); 1933 1934 StringRef Lengths = Blob.slice(0, StringsOffset); 1935 SimpleBitstreamCursor R(*StreamFile); 1936 R.jumpToPointer(Lengths.begin()); 1937 1938 // Ensure that Blob doesn't get invalidated, even if this is reading from 1939 // a StreamingMemoryObject with corrupt data. 1940 R.setArtificialByteLimit(R.getCurrentByteNo() + StringsOffset); 1941 1942 StringRef Strings = Blob.drop_front(StringsOffset); 1943 do { 1944 if (R.AtEndOfStream()) 1945 return error("Invalid record: metadata strings bad length"); 1946 1947 unsigned Size = R.ReadVBR(6); 1948 if (Strings.size() < Size) 1949 return error("Invalid record: metadata strings truncated chars"); 1950 1951 MetadataList.assignValue(MDString::get(Context, Strings.slice(0, Size)), 1952 NextMetadataNo++); 1953 Strings = Strings.drop_front(Size); 1954 } while (--NumStrings); 1955 1956 return std::error_code(); 1957 } 1958 1959 namespace { 1960 class PlaceholderQueue { 1961 // Placeholders would thrash around when moved, so store in a std::deque 1962 // instead of some sort of vector. 1963 std::deque<DistinctMDOperandPlaceholder> PHs; 1964 1965 public: 1966 DistinctMDOperandPlaceholder &getPlaceholderOp(unsigned ID); 1967 void flush(BitcodeReaderMetadataList &MetadataList); 1968 }; 1969 } // end namespace 1970 1971 DistinctMDOperandPlaceholder &PlaceholderQueue::getPlaceholderOp(unsigned ID) { 1972 PHs.emplace_back(ID); 1973 return PHs.back(); 1974 } 1975 1976 void PlaceholderQueue::flush(BitcodeReaderMetadataList &MetadataList) { 1977 while (!PHs.empty()) { 1978 PHs.front().replaceUseWith( 1979 MetadataList.getMetadataFwdRef(PHs.front().getID())); 1980 PHs.pop_front(); 1981 } 1982 } 1983 1984 /// Parse a METADATA_BLOCK. If ModuleLevel is true then we are parsing 1985 /// module level metadata. 1986 std::error_code BitcodeReader::parseMetadata(bool ModuleLevel) { 1987 IsMetadataMaterialized = true; 1988 unsigned NextMetadataNo = MetadataList.size(); 1989 1990 if (!ModuleLevel && MetadataList.hasFwdRefs()) 1991 return error("Invalid metadata: fwd refs into function blocks"); 1992 1993 if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID)) 1994 return error("Invalid record"); 1995 1996 std::vector<std::pair<DICompileUnit *, Metadata *>> CUSubprograms; 1997 SmallVector<uint64_t, 64> Record; 1998 1999 PlaceholderQueue Placeholders; 2000 bool IsDistinct; 2001 auto getMD = [&](unsigned ID, bool AllowPlaceholders = true) -> Metadata * { 2002 if (!IsDistinct || !AllowPlaceholders) 2003 return MetadataList.getMetadataFwdRef(ID); 2004 if (auto *MD = MetadataList.getMetadataIfResolved(ID)) 2005 return MD; 2006 return &Placeholders.getPlaceholderOp(ID); 2007 }; 2008 auto getMDOrNull = [&](unsigned ID, 2009 bool AllowPlaceholders = true) -> Metadata * { 2010 if (ID) 2011 return getMD(ID - 1, AllowPlaceholders); 2012 return nullptr; 2013 }; 2014 auto getMDString = [&](unsigned ID) -> MDString *{ 2015 // This requires that the ID is not really a forward reference. In 2016 // particular, the MDString must already have been resolved. 2017 return cast_or_null<MDString>(getMDOrNull(ID)); 2018 }; 2019 2020 #define GET_OR_DISTINCT(CLASS, ARGS) \ 2021 (IsDistinct ? CLASS::getDistinct ARGS : CLASS::get ARGS) 2022 2023 // Read all the records. 2024 while (1) { 2025 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2026 2027 switch (Entry.Kind) { 2028 case BitstreamEntry::SubBlock: // Handled for us already. 2029 case BitstreamEntry::Error: 2030 return error("Malformed block"); 2031 case BitstreamEntry::EndBlock: 2032 // Upgrade old-style CU <-> SP pointers to point from SP to CU. 2033 for (auto CU_SP : CUSubprograms) 2034 if (auto *SPs = dyn_cast_or_null<MDTuple>(CU_SP.second)) 2035 for (auto &Op : SPs->operands()) 2036 if (auto *SP = dyn_cast_or_null<MDNode>(Op)) 2037 SP->replaceOperandWith(7, CU_SP.first); 2038 2039 MetadataList.tryToResolveCycles(); 2040 Placeholders.flush(MetadataList); 2041 return std::error_code(); 2042 case BitstreamEntry::Record: 2043 // The interesting case. 2044 break; 2045 } 2046 2047 // Read a record. 2048 Record.clear(); 2049 StringRef Blob; 2050 unsigned Code = Stream.readRecord(Entry.ID, Record, &Blob); 2051 IsDistinct = false; 2052 switch (Code) { 2053 default: // Default behavior: ignore. 2054 break; 2055 case bitc::METADATA_NAME: { 2056 // Read name of the named metadata. 2057 SmallString<8> Name(Record.begin(), Record.end()); 2058 Record.clear(); 2059 Code = Stream.ReadCode(); 2060 2061 unsigned NextBitCode = Stream.readRecord(Code, Record); 2062 if (NextBitCode != bitc::METADATA_NAMED_NODE) 2063 return error("METADATA_NAME not followed by METADATA_NAMED_NODE"); 2064 2065 // Read named metadata elements. 2066 unsigned Size = Record.size(); 2067 NamedMDNode *NMD = TheModule->getOrInsertNamedMetadata(Name); 2068 for (unsigned i = 0; i != Size; ++i) { 2069 MDNode *MD = MetadataList.getMDNodeFwdRefOrNull(Record[i]); 2070 if (!MD) 2071 return error("Invalid record"); 2072 NMD->addOperand(MD); 2073 } 2074 break; 2075 } 2076 case bitc::METADATA_OLD_FN_NODE: { 2077 // FIXME: Remove in 4.0. 2078 // This is a LocalAsMetadata record, the only type of function-local 2079 // metadata. 2080 if (Record.size() % 2 == 1) 2081 return error("Invalid record"); 2082 2083 // If this isn't a LocalAsMetadata record, we're dropping it. This used 2084 // to be legal, but there's no upgrade path. 2085 auto dropRecord = [&] { 2086 MetadataList.assignValue(MDNode::get(Context, None), NextMetadataNo++); 2087 }; 2088 if (Record.size() != 2) { 2089 dropRecord(); 2090 break; 2091 } 2092 2093 Type *Ty = getTypeByID(Record[0]); 2094 if (Ty->isMetadataTy() || Ty->isVoidTy()) { 2095 dropRecord(); 2096 break; 2097 } 2098 2099 MetadataList.assignValue( 2100 LocalAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)), 2101 NextMetadataNo++); 2102 break; 2103 } 2104 case bitc::METADATA_OLD_NODE: { 2105 // FIXME: Remove in 4.0. 2106 if (Record.size() % 2 == 1) 2107 return error("Invalid record"); 2108 2109 unsigned Size = Record.size(); 2110 SmallVector<Metadata *, 8> Elts; 2111 for (unsigned i = 0; i != Size; i += 2) { 2112 Type *Ty = getTypeByID(Record[i]); 2113 if (!Ty) 2114 return error("Invalid record"); 2115 if (Ty->isMetadataTy()) 2116 Elts.push_back(getMD(Record[i + 1])); 2117 else if (!Ty->isVoidTy()) { 2118 auto *MD = 2119 ValueAsMetadata::get(ValueList.getValueFwdRef(Record[i + 1], Ty)); 2120 assert(isa<ConstantAsMetadata>(MD) && 2121 "Expected non-function-local metadata"); 2122 Elts.push_back(MD); 2123 } else 2124 Elts.push_back(nullptr); 2125 } 2126 MetadataList.assignValue(MDNode::get(Context, Elts), NextMetadataNo++); 2127 break; 2128 } 2129 case bitc::METADATA_VALUE: { 2130 if (Record.size() != 2) 2131 return error("Invalid record"); 2132 2133 Type *Ty = getTypeByID(Record[0]); 2134 if (Ty->isMetadataTy() || Ty->isVoidTy()) 2135 return error("Invalid record"); 2136 2137 MetadataList.assignValue( 2138 ValueAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)), 2139 NextMetadataNo++); 2140 break; 2141 } 2142 case bitc::METADATA_DISTINCT_NODE: 2143 IsDistinct = true; 2144 // fallthrough... 2145 case bitc::METADATA_NODE: { 2146 SmallVector<Metadata *, 8> Elts; 2147 Elts.reserve(Record.size()); 2148 for (unsigned ID : Record) 2149 Elts.push_back(getMDOrNull(ID)); 2150 MetadataList.assignValue(IsDistinct ? MDNode::getDistinct(Context, Elts) 2151 : MDNode::get(Context, Elts), 2152 NextMetadataNo++); 2153 break; 2154 } 2155 case bitc::METADATA_LOCATION: { 2156 if (Record.size() != 5) 2157 return error("Invalid record"); 2158 2159 IsDistinct = Record[0]; 2160 unsigned Line = Record[1]; 2161 unsigned Column = Record[2]; 2162 Metadata *Scope = getMD(Record[3]); 2163 Metadata *InlinedAt = getMDOrNull(Record[4]); 2164 MetadataList.assignValue( 2165 GET_OR_DISTINCT(DILocation, 2166 (Context, Line, Column, Scope, InlinedAt)), 2167 NextMetadataNo++); 2168 break; 2169 } 2170 case bitc::METADATA_GENERIC_DEBUG: { 2171 if (Record.size() < 4) 2172 return error("Invalid record"); 2173 2174 IsDistinct = Record[0]; 2175 unsigned Tag = Record[1]; 2176 unsigned Version = Record[2]; 2177 2178 if (Tag >= 1u << 16 || Version != 0) 2179 return error("Invalid record"); 2180 2181 auto *Header = getMDString(Record[3]); 2182 SmallVector<Metadata *, 8> DwarfOps; 2183 for (unsigned I = 4, E = Record.size(); I != E; ++I) 2184 DwarfOps.push_back(getMDOrNull(Record[I])); 2185 MetadataList.assignValue( 2186 GET_OR_DISTINCT(GenericDINode, (Context, Tag, Header, DwarfOps)), 2187 NextMetadataNo++); 2188 break; 2189 } 2190 case bitc::METADATA_SUBRANGE: { 2191 if (Record.size() != 3) 2192 return error("Invalid record"); 2193 2194 IsDistinct = Record[0]; 2195 MetadataList.assignValue( 2196 GET_OR_DISTINCT(DISubrange, 2197 (Context, Record[1], unrotateSign(Record[2]))), 2198 NextMetadataNo++); 2199 break; 2200 } 2201 case bitc::METADATA_ENUMERATOR: { 2202 if (Record.size() != 3) 2203 return error("Invalid record"); 2204 2205 IsDistinct = Record[0]; 2206 MetadataList.assignValue( 2207 GET_OR_DISTINCT(DIEnumerator, (Context, unrotateSign(Record[1]), 2208 getMDString(Record[2]))), 2209 NextMetadataNo++); 2210 break; 2211 } 2212 case bitc::METADATA_BASIC_TYPE: { 2213 if (Record.size() != 6) 2214 return error("Invalid record"); 2215 2216 IsDistinct = Record[0]; 2217 MetadataList.assignValue( 2218 GET_OR_DISTINCT(DIBasicType, 2219 (Context, Record[1], getMDString(Record[2]), 2220 Record[3], Record[4], Record[5])), 2221 NextMetadataNo++); 2222 break; 2223 } 2224 case bitc::METADATA_DERIVED_TYPE: { 2225 if (Record.size() != 12) 2226 return error("Invalid record"); 2227 2228 IsDistinct = Record[0]; 2229 MetadataList.assignValue( 2230 GET_OR_DISTINCT(DIDerivedType, 2231 (Context, Record[1], getMDString(Record[2]), 2232 getMDOrNull(Record[3]), Record[4], 2233 getMDOrNull(Record[5]), getMDOrNull(Record[6]), 2234 Record[7], Record[8], Record[9], Record[10], 2235 getMDOrNull(Record[11]))), 2236 NextMetadataNo++); 2237 break; 2238 } 2239 case bitc::METADATA_COMPOSITE_TYPE: { 2240 if (Record.size() != 16) 2241 return error("Invalid record"); 2242 2243 // If we have a UUID and this is not a forward declaration, lookup the 2244 // mapping. 2245 IsDistinct = Record[0]; 2246 unsigned Tag = Record[1]; 2247 MDString *Name = getMDString(Record[2]); 2248 Metadata *File = getMDOrNull(Record[3]); 2249 unsigned Line = Record[4]; 2250 Metadata *Scope = getMDOrNull(Record[5]); 2251 Metadata *BaseType = getMDOrNull(Record[6]); 2252 uint64_t SizeInBits = Record[7]; 2253 uint64_t AlignInBits = Record[8]; 2254 uint64_t OffsetInBits = Record[9]; 2255 unsigned Flags = Record[10]; 2256 Metadata *Elements = getMDOrNull(Record[11]); 2257 unsigned RuntimeLang = Record[12]; 2258 Metadata *VTableHolder = getMDOrNull(Record[13]); 2259 Metadata *TemplateParams = getMDOrNull(Record[14]); 2260 auto *Identifier = getMDString(Record[15]); 2261 DICompositeType *CT = nullptr; 2262 if (Identifier) 2263 CT = DICompositeType::buildODRType( 2264 Context, *Identifier, Tag, Name, File, Line, Scope, BaseType, 2265 SizeInBits, AlignInBits, OffsetInBits, Flags, Elements, RuntimeLang, 2266 VTableHolder, TemplateParams); 2267 2268 // Create a node if we didn't get a lazy ODR type. 2269 if (!CT) 2270 CT = GET_OR_DISTINCT(DICompositeType, 2271 (Context, Tag, Name, File, Line, Scope, BaseType, 2272 SizeInBits, AlignInBits, OffsetInBits, Flags, 2273 Elements, RuntimeLang, VTableHolder, 2274 TemplateParams, Identifier)); 2275 2276 MetadataList.assignValue(CT, NextMetadataNo++); 2277 break; 2278 } 2279 case bitc::METADATA_SUBROUTINE_TYPE: { 2280 if (Record.size() != 3) 2281 return error("Invalid record"); 2282 2283 IsDistinct = Record[0]; 2284 MetadataList.assignValue( 2285 GET_OR_DISTINCT(DISubroutineType, 2286 (Context, Record[1], getMDOrNull(Record[2]))), 2287 NextMetadataNo++); 2288 break; 2289 } 2290 2291 case bitc::METADATA_MODULE: { 2292 if (Record.size() != 6) 2293 return error("Invalid record"); 2294 2295 IsDistinct = Record[0]; 2296 MetadataList.assignValue( 2297 GET_OR_DISTINCT(DIModule, 2298 (Context, getMDOrNull(Record[1]), 2299 getMDString(Record[2]), getMDString(Record[3]), 2300 getMDString(Record[4]), getMDString(Record[5]))), 2301 NextMetadataNo++); 2302 break; 2303 } 2304 2305 case bitc::METADATA_FILE: { 2306 if (Record.size() != 3) 2307 return error("Invalid record"); 2308 2309 IsDistinct = Record[0]; 2310 MetadataList.assignValue( 2311 GET_OR_DISTINCT(DIFile, (Context, getMDString(Record[1]), 2312 getMDString(Record[2]))), 2313 NextMetadataNo++); 2314 break; 2315 } 2316 case bitc::METADATA_COMPILE_UNIT: { 2317 if (Record.size() < 14 || Record.size() > 16) 2318 return error("Invalid record"); 2319 2320 // Ignore Record[0], which indicates whether this compile unit is 2321 // distinct. It's always distinct. 2322 IsDistinct = true; 2323 auto *CU = DICompileUnit::getDistinct( 2324 Context, Record[1], getMDOrNull(Record[2]), getMDString(Record[3]), 2325 Record[4], getMDString(Record[5]), Record[6], getMDString(Record[7]), 2326 Record[8], getMDOrNull(Record[9]), getMDOrNull(Record[10]), 2327 getMDOrNull(Record[12]), getMDOrNull(Record[13]), 2328 Record.size() <= 15 ? nullptr : getMDOrNull(Record[15]), 2329 Record.size() <= 14 ? 0 : Record[14]); 2330 2331 MetadataList.assignValue(CU, NextMetadataNo++); 2332 2333 // Move the Upgrade the list of subprograms. 2334 if (Metadata *SPs = 2335 getMDOrNull(Record[11], /* AllowPlaceholders = */ false)) 2336 CUSubprograms.push_back({CU, SPs}); 2337 break; 2338 } 2339 case bitc::METADATA_SUBPROGRAM: { 2340 if (Record.size() != 18 && Record.size() != 19) 2341 return error("Invalid record"); 2342 2343 IsDistinct = 2344 Record[0] || Record[8]; // All definitions should be distinct. 2345 // Version 1 has a Function as Record[15]. 2346 // Version 2 has removed Record[15]. 2347 // Version 3 has the Unit as Record[15]. 2348 Metadata *CUorFn = getMDOrNull(Record[15]); 2349 unsigned Offset = Record.size() == 19 ? 1 : 0; 2350 bool HasFn = Offset && dyn_cast_or_null<ConstantAsMetadata>(CUorFn); 2351 bool HasCU = Offset && !HasFn; 2352 DISubprogram *SP = GET_OR_DISTINCT( 2353 DISubprogram, 2354 (Context, getMDOrNull(Record[1]), getMDString(Record[2]), 2355 getMDString(Record[3]), getMDOrNull(Record[4]), Record[5], 2356 getMDOrNull(Record[6]), Record[7], Record[8], Record[9], 2357 getMDOrNull(Record[10]), Record[11], Record[12], Record[13], 2358 Record[14], HasCU ? CUorFn : nullptr, 2359 getMDOrNull(Record[15 + Offset]), getMDOrNull(Record[16 + Offset]), 2360 getMDOrNull(Record[17 + Offset]))); 2361 MetadataList.assignValue(SP, NextMetadataNo++); 2362 2363 // Upgrade sp->function mapping to function->sp mapping. 2364 if (HasFn) { 2365 if (auto *CMD = dyn_cast<ConstantAsMetadata>(CUorFn)) 2366 if (auto *F = dyn_cast<Function>(CMD->getValue())) { 2367 if (F->isMaterializable()) 2368 // Defer until materialized; unmaterialized functions may not have 2369 // metadata. 2370 FunctionsWithSPs[F] = SP; 2371 else if (!F->empty()) 2372 F->setSubprogram(SP); 2373 } 2374 } 2375 break; 2376 } 2377 case bitc::METADATA_LEXICAL_BLOCK: { 2378 if (Record.size() != 5) 2379 return error("Invalid record"); 2380 2381 IsDistinct = Record[0]; 2382 MetadataList.assignValue( 2383 GET_OR_DISTINCT(DILexicalBlock, 2384 (Context, getMDOrNull(Record[1]), 2385 getMDOrNull(Record[2]), Record[3], Record[4])), 2386 NextMetadataNo++); 2387 break; 2388 } 2389 case bitc::METADATA_LEXICAL_BLOCK_FILE: { 2390 if (Record.size() != 4) 2391 return error("Invalid record"); 2392 2393 IsDistinct = Record[0]; 2394 MetadataList.assignValue( 2395 GET_OR_DISTINCT(DILexicalBlockFile, 2396 (Context, getMDOrNull(Record[1]), 2397 getMDOrNull(Record[2]), Record[3])), 2398 NextMetadataNo++); 2399 break; 2400 } 2401 case bitc::METADATA_NAMESPACE: { 2402 if (Record.size() != 5) 2403 return error("Invalid record"); 2404 2405 IsDistinct = Record[0]; 2406 MetadataList.assignValue( 2407 GET_OR_DISTINCT(DINamespace, (Context, getMDOrNull(Record[1]), 2408 getMDOrNull(Record[2]), 2409 getMDString(Record[3]), Record[4])), 2410 NextMetadataNo++); 2411 break; 2412 } 2413 case bitc::METADATA_MACRO: { 2414 if (Record.size() != 5) 2415 return error("Invalid record"); 2416 2417 IsDistinct = Record[0]; 2418 MetadataList.assignValue( 2419 GET_OR_DISTINCT(DIMacro, 2420 (Context, Record[1], Record[2], 2421 getMDString(Record[3]), getMDString(Record[4]))), 2422 NextMetadataNo++); 2423 break; 2424 } 2425 case bitc::METADATA_MACRO_FILE: { 2426 if (Record.size() != 5) 2427 return error("Invalid record"); 2428 2429 IsDistinct = Record[0]; 2430 MetadataList.assignValue( 2431 GET_OR_DISTINCT(DIMacroFile, 2432 (Context, Record[1], Record[2], 2433 getMDOrNull(Record[3]), getMDOrNull(Record[4]))), 2434 NextMetadataNo++); 2435 break; 2436 } 2437 case bitc::METADATA_TEMPLATE_TYPE: { 2438 if (Record.size() != 3) 2439 return error("Invalid record"); 2440 2441 IsDistinct = Record[0]; 2442 MetadataList.assignValue(GET_OR_DISTINCT(DITemplateTypeParameter, 2443 (Context, getMDString(Record[1]), 2444 getMDOrNull(Record[2]))), 2445 NextMetadataNo++); 2446 break; 2447 } 2448 case bitc::METADATA_TEMPLATE_VALUE: { 2449 if (Record.size() != 5) 2450 return error("Invalid record"); 2451 2452 IsDistinct = Record[0]; 2453 MetadataList.assignValue( 2454 GET_OR_DISTINCT(DITemplateValueParameter, 2455 (Context, Record[1], getMDString(Record[2]), 2456 getMDOrNull(Record[3]), getMDOrNull(Record[4]))), 2457 NextMetadataNo++); 2458 break; 2459 } 2460 case bitc::METADATA_GLOBAL_VAR: { 2461 if (Record.size() != 11) 2462 return error("Invalid record"); 2463 2464 IsDistinct = Record[0]; 2465 MetadataList.assignValue( 2466 GET_OR_DISTINCT(DIGlobalVariable, 2467 (Context, getMDOrNull(Record[1]), 2468 getMDString(Record[2]), getMDString(Record[3]), 2469 getMDOrNull(Record[4]), Record[5], 2470 getMDOrNull(Record[6]), Record[7], Record[8], 2471 getMDOrNull(Record[9]), getMDOrNull(Record[10]))), 2472 NextMetadataNo++); 2473 break; 2474 } 2475 case bitc::METADATA_LOCAL_VAR: { 2476 // 10th field is for the obseleted 'inlinedAt:' field. 2477 if (Record.size() < 8 || Record.size() > 10) 2478 return error("Invalid record"); 2479 2480 // 2nd field used to be an artificial tag, either DW_TAG_auto_variable or 2481 // DW_TAG_arg_variable. 2482 IsDistinct = Record[0]; 2483 bool HasTag = Record.size() > 8; 2484 MetadataList.assignValue( 2485 GET_OR_DISTINCT(DILocalVariable, 2486 (Context, getMDOrNull(Record[1 + HasTag]), 2487 getMDString(Record[2 + HasTag]), 2488 getMDOrNull(Record[3 + HasTag]), Record[4 + HasTag], 2489 getMDOrNull(Record[5 + HasTag]), Record[6 + HasTag], 2490 Record[7 + HasTag])), 2491 NextMetadataNo++); 2492 break; 2493 } 2494 case bitc::METADATA_EXPRESSION: { 2495 if (Record.size() < 1) 2496 return error("Invalid record"); 2497 2498 IsDistinct = Record[0]; 2499 MetadataList.assignValue( 2500 GET_OR_DISTINCT(DIExpression, 2501 (Context, makeArrayRef(Record).slice(1))), 2502 NextMetadataNo++); 2503 break; 2504 } 2505 case bitc::METADATA_OBJC_PROPERTY: { 2506 if (Record.size() != 8) 2507 return error("Invalid record"); 2508 2509 IsDistinct = Record[0]; 2510 MetadataList.assignValue( 2511 GET_OR_DISTINCT(DIObjCProperty, 2512 (Context, getMDString(Record[1]), 2513 getMDOrNull(Record[2]), Record[3], 2514 getMDString(Record[4]), getMDString(Record[5]), 2515 Record[6], getMDOrNull(Record[7]))), 2516 NextMetadataNo++); 2517 break; 2518 } 2519 case bitc::METADATA_IMPORTED_ENTITY: { 2520 if (Record.size() != 6) 2521 return error("Invalid record"); 2522 2523 IsDistinct = Record[0]; 2524 MetadataList.assignValue( 2525 GET_OR_DISTINCT(DIImportedEntity, 2526 (Context, Record[1], getMDOrNull(Record[2]), 2527 getMDOrNull(Record[3]), Record[4], 2528 getMDString(Record[5]))), 2529 NextMetadataNo++); 2530 break; 2531 } 2532 case bitc::METADATA_STRING_OLD: { 2533 std::string String(Record.begin(), Record.end()); 2534 2535 // Test for upgrading !llvm.loop. 2536 HasSeenOldLoopTags |= mayBeOldLoopAttachmentTag(String); 2537 2538 Metadata *MD = MDString::get(Context, String); 2539 MetadataList.assignValue(MD, NextMetadataNo++); 2540 break; 2541 } 2542 case bitc::METADATA_STRINGS: 2543 if (std::error_code EC = 2544 parseMetadataStrings(Record, Blob, NextMetadataNo)) 2545 return EC; 2546 break; 2547 case bitc::METADATA_KIND: { 2548 // Support older bitcode files that had METADATA_KIND records in a 2549 // block with METADATA_BLOCK_ID. 2550 if (std::error_code EC = parseMetadataKindRecord(Record)) 2551 return EC; 2552 break; 2553 } 2554 } 2555 } 2556 #undef GET_OR_DISTINCT 2557 } 2558 2559 /// Parse the metadata kinds out of the METADATA_KIND_BLOCK. 2560 std::error_code BitcodeReader::parseMetadataKinds() { 2561 if (Stream.EnterSubBlock(bitc::METADATA_KIND_BLOCK_ID)) 2562 return error("Invalid record"); 2563 2564 SmallVector<uint64_t, 64> Record; 2565 2566 // Read all the records. 2567 while (1) { 2568 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2569 2570 switch (Entry.Kind) { 2571 case BitstreamEntry::SubBlock: // Handled for us already. 2572 case BitstreamEntry::Error: 2573 return error("Malformed block"); 2574 case BitstreamEntry::EndBlock: 2575 return std::error_code(); 2576 case BitstreamEntry::Record: 2577 // The interesting case. 2578 break; 2579 } 2580 2581 // Read a record. 2582 Record.clear(); 2583 unsigned Code = Stream.readRecord(Entry.ID, Record); 2584 switch (Code) { 2585 default: // Default behavior: ignore. 2586 break; 2587 case bitc::METADATA_KIND: { 2588 if (std::error_code EC = parseMetadataKindRecord(Record)) 2589 return EC; 2590 break; 2591 } 2592 } 2593 } 2594 } 2595 2596 /// Decode a signed value stored with the sign bit in the LSB for dense VBR 2597 /// encoding. 2598 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { 2599 if ((V & 1) == 0) 2600 return V >> 1; 2601 if (V != 1) 2602 return -(V >> 1); 2603 // There is no such thing as -0 with integers. "-0" really means MININT. 2604 return 1ULL << 63; 2605 } 2606 2607 /// Resolve all of the initializers for global values and aliases that we can. 2608 std::error_code BitcodeReader::resolveGlobalAndIndirectSymbolInits() { 2609 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist; 2610 std::vector<std::pair<GlobalIndirectSymbol*, unsigned> > 2611 IndirectSymbolInitWorklist; 2612 std::vector<std::pair<Function*, unsigned> > FunctionPrefixWorklist; 2613 std::vector<std::pair<Function*, unsigned> > FunctionPrologueWorklist; 2614 std::vector<std::pair<Function*, unsigned> > FunctionPersonalityFnWorklist; 2615 2616 GlobalInitWorklist.swap(GlobalInits); 2617 IndirectSymbolInitWorklist.swap(IndirectSymbolInits); 2618 FunctionPrefixWorklist.swap(FunctionPrefixes); 2619 FunctionPrologueWorklist.swap(FunctionPrologues); 2620 FunctionPersonalityFnWorklist.swap(FunctionPersonalityFns); 2621 2622 while (!GlobalInitWorklist.empty()) { 2623 unsigned ValID = GlobalInitWorklist.back().second; 2624 if (ValID >= ValueList.size()) { 2625 // Not ready to resolve this yet, it requires something later in the file. 2626 GlobalInits.push_back(GlobalInitWorklist.back()); 2627 } else { 2628 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2629 GlobalInitWorklist.back().first->setInitializer(C); 2630 else 2631 return error("Expected a constant"); 2632 } 2633 GlobalInitWorklist.pop_back(); 2634 } 2635 2636 while (!IndirectSymbolInitWorklist.empty()) { 2637 unsigned ValID = IndirectSymbolInitWorklist.back().second; 2638 if (ValID >= ValueList.size()) { 2639 IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back()); 2640 } else { 2641 Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]); 2642 if (!C) 2643 return error("Expected a constant"); 2644 GlobalIndirectSymbol *GIS = IndirectSymbolInitWorklist.back().first; 2645 if (isa<GlobalAlias>(GIS) && C->getType() != GIS->getType()) 2646 return error("Alias and aliasee types don't match"); 2647 GIS->setIndirectSymbol(C); 2648 } 2649 IndirectSymbolInitWorklist.pop_back(); 2650 } 2651 2652 while (!FunctionPrefixWorklist.empty()) { 2653 unsigned ValID = FunctionPrefixWorklist.back().second; 2654 if (ValID >= ValueList.size()) { 2655 FunctionPrefixes.push_back(FunctionPrefixWorklist.back()); 2656 } else { 2657 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2658 FunctionPrefixWorklist.back().first->setPrefixData(C); 2659 else 2660 return error("Expected a constant"); 2661 } 2662 FunctionPrefixWorklist.pop_back(); 2663 } 2664 2665 while (!FunctionPrologueWorklist.empty()) { 2666 unsigned ValID = FunctionPrologueWorklist.back().second; 2667 if (ValID >= ValueList.size()) { 2668 FunctionPrologues.push_back(FunctionPrologueWorklist.back()); 2669 } else { 2670 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2671 FunctionPrologueWorklist.back().first->setPrologueData(C); 2672 else 2673 return error("Expected a constant"); 2674 } 2675 FunctionPrologueWorklist.pop_back(); 2676 } 2677 2678 while (!FunctionPersonalityFnWorklist.empty()) { 2679 unsigned ValID = FunctionPersonalityFnWorklist.back().second; 2680 if (ValID >= ValueList.size()) { 2681 FunctionPersonalityFns.push_back(FunctionPersonalityFnWorklist.back()); 2682 } else { 2683 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2684 FunctionPersonalityFnWorklist.back().first->setPersonalityFn(C); 2685 else 2686 return error("Expected a constant"); 2687 } 2688 FunctionPersonalityFnWorklist.pop_back(); 2689 } 2690 2691 return std::error_code(); 2692 } 2693 2694 static APInt readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { 2695 SmallVector<uint64_t, 8> Words(Vals.size()); 2696 std::transform(Vals.begin(), Vals.end(), Words.begin(), 2697 BitcodeReader::decodeSignRotatedValue); 2698 2699 return APInt(TypeBits, Words); 2700 } 2701 2702 std::error_code BitcodeReader::parseConstants() { 2703 if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 2704 return error("Invalid record"); 2705 2706 SmallVector<uint64_t, 64> Record; 2707 2708 // Read all the records for this value table. 2709 Type *CurTy = Type::getInt32Ty(Context); 2710 unsigned NextCstNo = ValueList.size(); 2711 while (1) { 2712 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2713 2714 switch (Entry.Kind) { 2715 case BitstreamEntry::SubBlock: // Handled for us already. 2716 case BitstreamEntry::Error: 2717 return error("Malformed block"); 2718 case BitstreamEntry::EndBlock: 2719 if (NextCstNo != ValueList.size()) 2720 return error("Invalid constant reference"); 2721 2722 // Once all the constants have been read, go through and resolve forward 2723 // references. 2724 ValueList.resolveConstantForwardRefs(); 2725 return std::error_code(); 2726 case BitstreamEntry::Record: 2727 // The interesting case. 2728 break; 2729 } 2730 2731 // Read a record. 2732 Record.clear(); 2733 Value *V = nullptr; 2734 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 2735 switch (BitCode) { 2736 default: // Default behavior: unknown constant 2737 case bitc::CST_CODE_UNDEF: // UNDEF 2738 V = UndefValue::get(CurTy); 2739 break; 2740 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 2741 if (Record.empty()) 2742 return error("Invalid record"); 2743 if (Record[0] >= TypeList.size() || !TypeList[Record[0]]) 2744 return error("Invalid record"); 2745 CurTy = TypeList[Record[0]]; 2746 continue; // Skip the ValueList manipulation. 2747 case bitc::CST_CODE_NULL: // NULL 2748 V = Constant::getNullValue(CurTy); 2749 break; 2750 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 2751 if (!CurTy->isIntegerTy() || Record.empty()) 2752 return error("Invalid record"); 2753 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); 2754 break; 2755 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 2756 if (!CurTy->isIntegerTy() || Record.empty()) 2757 return error("Invalid record"); 2758 2759 APInt VInt = 2760 readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth()); 2761 V = ConstantInt::get(Context, VInt); 2762 2763 break; 2764 } 2765 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 2766 if (Record.empty()) 2767 return error("Invalid record"); 2768 if (CurTy->isHalfTy()) 2769 V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf, 2770 APInt(16, (uint16_t)Record[0]))); 2771 else if (CurTy->isFloatTy()) 2772 V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle, 2773 APInt(32, (uint32_t)Record[0]))); 2774 else if (CurTy->isDoubleTy()) 2775 V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble, 2776 APInt(64, Record[0]))); 2777 else if (CurTy->isX86_FP80Ty()) { 2778 // Bits are not stored the same way as a normal i80 APInt, compensate. 2779 uint64_t Rearrange[2]; 2780 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 2781 Rearrange[1] = Record[0] >> 48; 2782 V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended, 2783 APInt(80, Rearrange))); 2784 } else if (CurTy->isFP128Ty()) 2785 V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad, 2786 APInt(128, Record))); 2787 else if (CurTy->isPPC_FP128Ty()) 2788 V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble, 2789 APInt(128, Record))); 2790 else 2791 V = UndefValue::get(CurTy); 2792 break; 2793 } 2794 2795 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 2796 if (Record.empty()) 2797 return error("Invalid record"); 2798 2799 unsigned Size = Record.size(); 2800 SmallVector<Constant*, 16> Elts; 2801 2802 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 2803 for (unsigned i = 0; i != Size; ++i) 2804 Elts.push_back(ValueList.getConstantFwdRef(Record[i], 2805 STy->getElementType(i))); 2806 V = ConstantStruct::get(STy, Elts); 2807 } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) { 2808 Type *EltTy = ATy->getElementType(); 2809 for (unsigned i = 0; i != Size; ++i) 2810 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2811 V = ConstantArray::get(ATy, Elts); 2812 } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) { 2813 Type *EltTy = VTy->getElementType(); 2814 for (unsigned i = 0; i != Size; ++i) 2815 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2816 V = ConstantVector::get(Elts); 2817 } else { 2818 V = UndefValue::get(CurTy); 2819 } 2820 break; 2821 } 2822 case bitc::CST_CODE_STRING: // STRING: [values] 2823 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 2824 if (Record.empty()) 2825 return error("Invalid record"); 2826 2827 SmallString<16> Elts(Record.begin(), Record.end()); 2828 V = ConstantDataArray::getString(Context, Elts, 2829 BitCode == bitc::CST_CODE_CSTRING); 2830 break; 2831 } 2832 case bitc::CST_CODE_DATA: {// DATA: [n x value] 2833 if (Record.empty()) 2834 return error("Invalid record"); 2835 2836 Type *EltTy = cast<SequentialType>(CurTy)->getElementType(); 2837 if (EltTy->isIntegerTy(8)) { 2838 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); 2839 if (isa<VectorType>(CurTy)) 2840 V = ConstantDataVector::get(Context, Elts); 2841 else 2842 V = ConstantDataArray::get(Context, Elts); 2843 } else if (EltTy->isIntegerTy(16)) { 2844 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2845 if (isa<VectorType>(CurTy)) 2846 V = ConstantDataVector::get(Context, Elts); 2847 else 2848 V = ConstantDataArray::get(Context, Elts); 2849 } else if (EltTy->isIntegerTy(32)) { 2850 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2851 if (isa<VectorType>(CurTy)) 2852 V = ConstantDataVector::get(Context, Elts); 2853 else 2854 V = ConstantDataArray::get(Context, Elts); 2855 } else if (EltTy->isIntegerTy(64)) { 2856 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2857 if (isa<VectorType>(CurTy)) 2858 V = ConstantDataVector::get(Context, Elts); 2859 else 2860 V = ConstantDataArray::get(Context, Elts); 2861 } else if (EltTy->isHalfTy()) { 2862 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2863 if (isa<VectorType>(CurTy)) 2864 V = ConstantDataVector::getFP(Context, Elts); 2865 else 2866 V = ConstantDataArray::getFP(Context, Elts); 2867 } else if (EltTy->isFloatTy()) { 2868 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2869 if (isa<VectorType>(CurTy)) 2870 V = ConstantDataVector::getFP(Context, Elts); 2871 else 2872 V = ConstantDataArray::getFP(Context, Elts); 2873 } else if (EltTy->isDoubleTy()) { 2874 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2875 if (isa<VectorType>(CurTy)) 2876 V = ConstantDataVector::getFP(Context, Elts); 2877 else 2878 V = ConstantDataArray::getFP(Context, Elts); 2879 } else { 2880 return error("Invalid type for value"); 2881 } 2882 break; 2883 } 2884 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 2885 if (Record.size() < 3) 2886 return error("Invalid record"); 2887 int Opc = getDecodedBinaryOpcode(Record[0], CurTy); 2888 if (Opc < 0) { 2889 V = UndefValue::get(CurTy); // Unknown binop. 2890 } else { 2891 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 2892 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy); 2893 unsigned Flags = 0; 2894 if (Record.size() >= 4) { 2895 if (Opc == Instruction::Add || 2896 Opc == Instruction::Sub || 2897 Opc == Instruction::Mul || 2898 Opc == Instruction::Shl) { 2899 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 2900 Flags |= OverflowingBinaryOperator::NoSignedWrap; 2901 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 2902 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 2903 } else if (Opc == Instruction::SDiv || 2904 Opc == Instruction::UDiv || 2905 Opc == Instruction::LShr || 2906 Opc == Instruction::AShr) { 2907 if (Record[3] & (1 << bitc::PEO_EXACT)) 2908 Flags |= SDivOperator::IsExact; 2909 } 2910 } 2911 V = ConstantExpr::get(Opc, LHS, RHS, Flags); 2912 } 2913 break; 2914 } 2915 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 2916 if (Record.size() < 3) 2917 return error("Invalid record"); 2918 int Opc = getDecodedCastOpcode(Record[0]); 2919 if (Opc < 0) { 2920 V = UndefValue::get(CurTy); // Unknown cast. 2921 } else { 2922 Type *OpTy = getTypeByID(Record[1]); 2923 if (!OpTy) 2924 return error("Invalid record"); 2925 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy); 2926 V = UpgradeBitCastExpr(Opc, Op, CurTy); 2927 if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy); 2928 } 2929 break; 2930 } 2931 case bitc::CST_CODE_CE_INBOUNDS_GEP: 2932 case bitc::CST_CODE_CE_GEP: { // CE_GEP: [n x operands] 2933 unsigned OpNum = 0; 2934 Type *PointeeType = nullptr; 2935 if (Record.size() % 2) 2936 PointeeType = getTypeByID(Record[OpNum++]); 2937 SmallVector<Constant*, 16> Elts; 2938 while (OpNum != Record.size()) { 2939 Type *ElTy = getTypeByID(Record[OpNum++]); 2940 if (!ElTy) 2941 return error("Invalid record"); 2942 Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy)); 2943 } 2944 2945 if (PointeeType && 2946 PointeeType != 2947 cast<SequentialType>(Elts[0]->getType()->getScalarType()) 2948 ->getElementType()) 2949 return error("Explicit gep operator type does not match pointee type " 2950 "of pointer operand"); 2951 2952 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 2953 V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices, 2954 BitCode == 2955 bitc::CST_CODE_CE_INBOUNDS_GEP); 2956 break; 2957 } 2958 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] 2959 if (Record.size() < 3) 2960 return error("Invalid record"); 2961 2962 Type *SelectorTy = Type::getInt1Ty(Context); 2963 2964 // The selector might be an i1 or an <n x i1> 2965 // Get the type from the ValueList before getting a forward ref. 2966 if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) 2967 if (Value *V = ValueList[Record[0]]) 2968 if (SelectorTy != V->getType()) 2969 SelectorTy = VectorType::get(SelectorTy, VTy->getNumElements()); 2970 2971 V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0], 2972 SelectorTy), 2973 ValueList.getConstantFwdRef(Record[1],CurTy), 2974 ValueList.getConstantFwdRef(Record[2],CurTy)); 2975 break; 2976 } 2977 case bitc::CST_CODE_CE_EXTRACTELT 2978 : { // CE_EXTRACTELT: [opty, opval, opty, opval] 2979 if (Record.size() < 3) 2980 return error("Invalid record"); 2981 VectorType *OpTy = 2982 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2983 if (!OpTy) 2984 return error("Invalid record"); 2985 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2986 Constant *Op1 = nullptr; 2987 if (Record.size() == 4) { 2988 Type *IdxTy = getTypeByID(Record[2]); 2989 if (!IdxTy) 2990 return error("Invalid record"); 2991 Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2992 } else // TODO: Remove with llvm 4.0 2993 Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2994 if (!Op1) 2995 return error("Invalid record"); 2996 V = ConstantExpr::getExtractElement(Op0, Op1); 2997 break; 2998 } 2999 case bitc::CST_CODE_CE_INSERTELT 3000 : { // CE_INSERTELT: [opval, opval, opty, opval] 3001 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 3002 if (Record.size() < 3 || !OpTy) 3003 return error("Invalid record"); 3004 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 3005 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], 3006 OpTy->getElementType()); 3007 Constant *Op2 = nullptr; 3008 if (Record.size() == 4) { 3009 Type *IdxTy = getTypeByID(Record[2]); 3010 if (!IdxTy) 3011 return error("Invalid record"); 3012 Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy); 3013 } else // TODO: Remove with llvm 4.0 3014 Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 3015 if (!Op2) 3016 return error("Invalid record"); 3017 V = ConstantExpr::getInsertElement(Op0, Op1, Op2); 3018 break; 3019 } 3020 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 3021 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 3022 if (Record.size() < 3 || !OpTy) 3023 return error("Invalid record"); 3024 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 3025 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy); 3026 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 3027 OpTy->getNumElements()); 3028 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy); 3029 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 3030 break; 3031 } 3032 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 3033 VectorType *RTy = dyn_cast<VectorType>(CurTy); 3034 VectorType *OpTy = 3035 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 3036 if (Record.size() < 4 || !RTy || !OpTy) 3037 return error("Invalid record"); 3038 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 3039 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 3040 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 3041 RTy->getNumElements()); 3042 Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy); 3043 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 3044 break; 3045 } 3046 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 3047 if (Record.size() < 4) 3048 return error("Invalid record"); 3049 Type *OpTy = getTypeByID(Record[0]); 3050 if (!OpTy) 3051 return error("Invalid record"); 3052 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 3053 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 3054 3055 if (OpTy->isFPOrFPVectorTy()) 3056 V = ConstantExpr::getFCmp(Record[3], Op0, Op1); 3057 else 3058 V = ConstantExpr::getICmp(Record[3], Op0, Op1); 3059 break; 3060 } 3061 // This maintains backward compatibility, pre-asm dialect keywords. 3062 // FIXME: Remove with the 4.0 release. 3063 case bitc::CST_CODE_INLINEASM_OLD: { 3064 if (Record.size() < 2) 3065 return error("Invalid record"); 3066 std::string AsmStr, ConstrStr; 3067 bool HasSideEffects = Record[0] & 1; 3068 bool IsAlignStack = Record[0] >> 1; 3069 unsigned AsmStrSize = Record[1]; 3070 if (2+AsmStrSize >= Record.size()) 3071 return error("Invalid record"); 3072 unsigned ConstStrSize = Record[2+AsmStrSize]; 3073 if (3+AsmStrSize+ConstStrSize > Record.size()) 3074 return error("Invalid record"); 3075 3076 for (unsigned i = 0; i != AsmStrSize; ++i) 3077 AsmStr += (char)Record[2+i]; 3078 for (unsigned i = 0; i != ConstStrSize; ++i) 3079 ConstrStr += (char)Record[3+AsmStrSize+i]; 3080 PointerType *PTy = cast<PointerType>(CurTy); 3081 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 3082 AsmStr, ConstrStr, HasSideEffects, IsAlignStack); 3083 break; 3084 } 3085 // This version adds support for the asm dialect keywords (e.g., 3086 // inteldialect). 3087 case bitc::CST_CODE_INLINEASM: { 3088 if (Record.size() < 2) 3089 return error("Invalid record"); 3090 std::string AsmStr, ConstrStr; 3091 bool HasSideEffects = Record[0] & 1; 3092 bool IsAlignStack = (Record[0] >> 1) & 1; 3093 unsigned AsmDialect = Record[0] >> 2; 3094 unsigned AsmStrSize = Record[1]; 3095 if (2+AsmStrSize >= Record.size()) 3096 return error("Invalid record"); 3097 unsigned ConstStrSize = Record[2+AsmStrSize]; 3098 if (3+AsmStrSize+ConstStrSize > Record.size()) 3099 return error("Invalid record"); 3100 3101 for (unsigned i = 0; i != AsmStrSize; ++i) 3102 AsmStr += (char)Record[2+i]; 3103 for (unsigned i = 0; i != ConstStrSize; ++i) 3104 ConstrStr += (char)Record[3+AsmStrSize+i]; 3105 PointerType *PTy = cast<PointerType>(CurTy); 3106 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 3107 AsmStr, ConstrStr, HasSideEffects, IsAlignStack, 3108 InlineAsm::AsmDialect(AsmDialect)); 3109 break; 3110 } 3111 case bitc::CST_CODE_BLOCKADDRESS:{ 3112 if (Record.size() < 3) 3113 return error("Invalid record"); 3114 Type *FnTy = getTypeByID(Record[0]); 3115 if (!FnTy) 3116 return error("Invalid record"); 3117 Function *Fn = 3118 dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy)); 3119 if (!Fn) 3120 return error("Invalid record"); 3121 3122 // If the function is already parsed we can insert the block address right 3123 // away. 3124 BasicBlock *BB; 3125 unsigned BBID = Record[2]; 3126 if (!BBID) 3127 // Invalid reference to entry block. 3128 return error("Invalid ID"); 3129 if (!Fn->empty()) { 3130 Function::iterator BBI = Fn->begin(), BBE = Fn->end(); 3131 for (size_t I = 0, E = BBID; I != E; ++I) { 3132 if (BBI == BBE) 3133 return error("Invalid ID"); 3134 ++BBI; 3135 } 3136 BB = &*BBI; 3137 } else { 3138 // Otherwise insert a placeholder and remember it so it can be inserted 3139 // when the function is parsed. 3140 auto &FwdBBs = BasicBlockFwdRefs[Fn]; 3141 if (FwdBBs.empty()) 3142 BasicBlockFwdRefQueue.push_back(Fn); 3143 if (FwdBBs.size() < BBID + 1) 3144 FwdBBs.resize(BBID + 1); 3145 if (!FwdBBs[BBID]) 3146 FwdBBs[BBID] = BasicBlock::Create(Context); 3147 BB = FwdBBs[BBID]; 3148 } 3149 V = BlockAddress::get(Fn, BB); 3150 break; 3151 } 3152 } 3153 3154 ValueList.assignValue(V, NextCstNo); 3155 ++NextCstNo; 3156 } 3157 } 3158 3159 std::error_code BitcodeReader::parseUseLists() { 3160 if (Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 3161 return error("Invalid record"); 3162 3163 // Read all the records. 3164 SmallVector<uint64_t, 64> Record; 3165 while (1) { 3166 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 3167 3168 switch (Entry.Kind) { 3169 case BitstreamEntry::SubBlock: // Handled for us already. 3170 case BitstreamEntry::Error: 3171 return error("Malformed block"); 3172 case BitstreamEntry::EndBlock: 3173 return std::error_code(); 3174 case BitstreamEntry::Record: 3175 // The interesting case. 3176 break; 3177 } 3178 3179 // Read a use list record. 3180 Record.clear(); 3181 bool IsBB = false; 3182 switch (Stream.readRecord(Entry.ID, Record)) { 3183 default: // Default behavior: unknown type. 3184 break; 3185 case bitc::USELIST_CODE_BB: 3186 IsBB = true; 3187 // fallthrough 3188 case bitc::USELIST_CODE_DEFAULT: { 3189 unsigned RecordLength = Record.size(); 3190 if (RecordLength < 3) 3191 // Records should have at least an ID and two indexes. 3192 return error("Invalid record"); 3193 unsigned ID = Record.back(); 3194 Record.pop_back(); 3195 3196 Value *V; 3197 if (IsBB) { 3198 assert(ID < FunctionBBs.size() && "Basic block not found"); 3199 V = FunctionBBs[ID]; 3200 } else 3201 V = ValueList[ID]; 3202 unsigned NumUses = 0; 3203 SmallDenseMap<const Use *, unsigned, 16> Order; 3204 for (const Use &U : V->materialized_uses()) { 3205 if (++NumUses > Record.size()) 3206 break; 3207 Order[&U] = Record[NumUses - 1]; 3208 } 3209 if (Order.size() != Record.size() || NumUses > Record.size()) 3210 // Mismatches can happen if the functions are being materialized lazily 3211 // (out-of-order), or a value has been upgraded. 3212 break; 3213 3214 V->sortUseList([&](const Use &L, const Use &R) { 3215 return Order.lookup(&L) < Order.lookup(&R); 3216 }); 3217 break; 3218 } 3219 } 3220 } 3221 } 3222 3223 /// When we see the block for metadata, remember where it is and then skip it. 3224 /// This lets us lazily deserialize the metadata. 3225 std::error_code BitcodeReader::rememberAndSkipMetadata() { 3226 // Save the current stream state. 3227 uint64_t CurBit = Stream.GetCurrentBitNo(); 3228 DeferredMetadataInfo.push_back(CurBit); 3229 3230 // Skip over the block for now. 3231 if (Stream.SkipBlock()) 3232 return error("Invalid record"); 3233 return std::error_code(); 3234 } 3235 3236 std::error_code BitcodeReader::materializeMetadata() { 3237 for (uint64_t BitPos : DeferredMetadataInfo) { 3238 // Move the bit stream to the saved position. 3239 Stream.JumpToBit(BitPos); 3240 if (std::error_code EC = parseMetadata(true)) 3241 return EC; 3242 } 3243 DeferredMetadataInfo.clear(); 3244 return std::error_code(); 3245 } 3246 3247 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; } 3248 3249 /// When we see the block for a function body, remember where it is and then 3250 /// skip it. This lets us lazily deserialize the functions. 3251 std::error_code BitcodeReader::rememberAndSkipFunctionBody() { 3252 // Get the function we are talking about. 3253 if (FunctionsWithBodies.empty()) 3254 return error("Insufficient function protos"); 3255 3256 Function *Fn = FunctionsWithBodies.back(); 3257 FunctionsWithBodies.pop_back(); 3258 3259 // Save the current stream state. 3260 uint64_t CurBit = Stream.GetCurrentBitNo(); 3261 assert( 3262 (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) && 3263 "Mismatch between VST and scanned function offsets"); 3264 DeferredFunctionInfo[Fn] = CurBit; 3265 3266 // Skip over the function block for now. 3267 if (Stream.SkipBlock()) 3268 return error("Invalid record"); 3269 return std::error_code(); 3270 } 3271 3272 std::error_code BitcodeReader::globalCleanup() { 3273 // Patch the initializers for globals and aliases up. 3274 resolveGlobalAndIndirectSymbolInits(); 3275 if (!GlobalInits.empty() || !IndirectSymbolInits.empty()) 3276 return error("Malformed global initializer set"); 3277 3278 // Look for intrinsic functions which need to be upgraded at some point 3279 for (Function &F : *TheModule) { 3280 Function *NewFn; 3281 if (UpgradeIntrinsicFunction(&F, NewFn)) 3282 UpgradedIntrinsics[&F] = NewFn; 3283 } 3284 3285 // Look for global variables which need to be renamed. 3286 for (GlobalVariable &GV : TheModule->globals()) 3287 UpgradeGlobalVariable(&GV); 3288 3289 // Force deallocation of memory for these vectors to favor the client that 3290 // want lazy deserialization. 3291 std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits); 3292 std::vector<std::pair<GlobalIndirectSymbol*, unsigned> >().swap( 3293 IndirectSymbolInits); 3294 return std::error_code(); 3295 } 3296 3297 /// Support for lazy parsing of function bodies. This is required if we 3298 /// either have an old bitcode file without a VST forward declaration record, 3299 /// or if we have an anonymous function being materialized, since anonymous 3300 /// functions do not have a name and are therefore not in the VST. 3301 std::error_code BitcodeReader::rememberAndSkipFunctionBodies() { 3302 Stream.JumpToBit(NextUnreadBit); 3303 3304 if (Stream.AtEndOfStream()) 3305 return error("Could not find function in stream"); 3306 3307 if (!SeenFirstFunctionBody) 3308 return error("Trying to materialize functions before seeing function blocks"); 3309 3310 // An old bitcode file with the symbol table at the end would have 3311 // finished the parse greedily. 3312 assert(SeenValueSymbolTable); 3313 3314 SmallVector<uint64_t, 64> Record; 3315 3316 while (1) { 3317 BitstreamEntry Entry = Stream.advance(); 3318 switch (Entry.Kind) { 3319 default: 3320 return error("Expect SubBlock"); 3321 case BitstreamEntry::SubBlock: 3322 switch (Entry.ID) { 3323 default: 3324 return error("Expect function block"); 3325 case bitc::FUNCTION_BLOCK_ID: 3326 if (std::error_code EC = rememberAndSkipFunctionBody()) 3327 return EC; 3328 NextUnreadBit = Stream.GetCurrentBitNo(); 3329 return std::error_code(); 3330 } 3331 } 3332 } 3333 } 3334 3335 std::error_code BitcodeReader::parseBitcodeVersion() { 3336 if (Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID)) 3337 return error("Invalid record"); 3338 3339 // Read all the records. 3340 SmallVector<uint64_t, 64> Record; 3341 while (1) { 3342 BitstreamEntry Entry = Stream.advance(); 3343 3344 switch (Entry.Kind) { 3345 default: 3346 case BitstreamEntry::Error: 3347 return error("Malformed block"); 3348 case BitstreamEntry::EndBlock: 3349 return std::error_code(); 3350 case BitstreamEntry::Record: 3351 // The interesting case. 3352 break; 3353 } 3354 3355 // Read a record. 3356 Record.clear(); 3357 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 3358 switch (BitCode) { 3359 default: // Default behavior: reject 3360 return error("Invalid value"); 3361 case bitc::IDENTIFICATION_CODE_STRING: { // IDENTIFICATION: [strchr x 3362 // N] 3363 convertToString(Record, 0, ProducerIdentification); 3364 break; 3365 } 3366 case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#] 3367 unsigned epoch = (unsigned)Record[0]; 3368 if (epoch != bitc::BITCODE_CURRENT_EPOCH) { 3369 return error( 3370 Twine("Incompatible epoch: Bitcode '") + Twine(epoch) + 3371 "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'"); 3372 } 3373 } 3374 } 3375 } 3376 } 3377 3378 std::error_code BitcodeReader::parseModule(uint64_t ResumeBit, 3379 bool ShouldLazyLoadMetadata) { 3380 if (ResumeBit) 3381 Stream.JumpToBit(ResumeBit); 3382 else if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 3383 return error("Invalid record"); 3384 3385 SmallVector<uint64_t, 64> Record; 3386 std::vector<std::string> SectionTable; 3387 std::vector<std::string> GCTable; 3388 3389 // Read all the records for this module. 3390 while (1) { 3391 BitstreamEntry Entry = Stream.advance(); 3392 3393 switch (Entry.Kind) { 3394 case BitstreamEntry::Error: 3395 return error("Malformed block"); 3396 case BitstreamEntry::EndBlock: 3397 return globalCleanup(); 3398 3399 case BitstreamEntry::SubBlock: 3400 switch (Entry.ID) { 3401 default: // Skip unknown content. 3402 if (Stream.SkipBlock()) 3403 return error("Invalid record"); 3404 break; 3405 case bitc::BLOCKINFO_BLOCK_ID: 3406 if (Stream.ReadBlockInfoBlock()) 3407 return error("Malformed block"); 3408 break; 3409 case bitc::PARAMATTR_BLOCK_ID: 3410 if (std::error_code EC = parseAttributeBlock()) 3411 return EC; 3412 break; 3413 case bitc::PARAMATTR_GROUP_BLOCK_ID: 3414 if (std::error_code EC = parseAttributeGroupBlock()) 3415 return EC; 3416 break; 3417 case bitc::TYPE_BLOCK_ID_NEW: 3418 if (std::error_code EC = parseTypeTable()) 3419 return EC; 3420 break; 3421 case bitc::VALUE_SYMTAB_BLOCK_ID: 3422 if (!SeenValueSymbolTable) { 3423 // Either this is an old form VST without function index and an 3424 // associated VST forward declaration record (which would have caused 3425 // the VST to be jumped to and parsed before it was encountered 3426 // normally in the stream), or there were no function blocks to 3427 // trigger an earlier parsing of the VST. 3428 assert(VSTOffset == 0 || FunctionsWithBodies.empty()); 3429 if (std::error_code EC = parseValueSymbolTable()) 3430 return EC; 3431 SeenValueSymbolTable = true; 3432 } else { 3433 // We must have had a VST forward declaration record, which caused 3434 // the parser to jump to and parse the VST earlier. 3435 assert(VSTOffset > 0); 3436 if (Stream.SkipBlock()) 3437 return error("Invalid record"); 3438 } 3439 break; 3440 case bitc::CONSTANTS_BLOCK_ID: 3441 if (std::error_code EC = parseConstants()) 3442 return EC; 3443 if (std::error_code EC = resolveGlobalAndIndirectSymbolInits()) 3444 return EC; 3445 break; 3446 case bitc::METADATA_BLOCK_ID: 3447 if (ShouldLazyLoadMetadata && !IsMetadataMaterialized) { 3448 if (std::error_code EC = rememberAndSkipMetadata()) 3449 return EC; 3450 break; 3451 } 3452 assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata"); 3453 if (std::error_code EC = parseMetadata(true)) 3454 return EC; 3455 break; 3456 case bitc::METADATA_KIND_BLOCK_ID: 3457 if (std::error_code EC = parseMetadataKinds()) 3458 return EC; 3459 break; 3460 case bitc::FUNCTION_BLOCK_ID: 3461 // If this is the first function body we've seen, reverse the 3462 // FunctionsWithBodies list. 3463 if (!SeenFirstFunctionBody) { 3464 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 3465 if (std::error_code EC = globalCleanup()) 3466 return EC; 3467 SeenFirstFunctionBody = true; 3468 } 3469 3470 if (VSTOffset > 0) { 3471 // If we have a VST forward declaration record, make sure we 3472 // parse the VST now if we haven't already. It is needed to 3473 // set up the DeferredFunctionInfo vector for lazy reading. 3474 if (!SeenValueSymbolTable) { 3475 if (std::error_code EC = 3476 BitcodeReader::parseValueSymbolTable(VSTOffset)) 3477 return EC; 3478 SeenValueSymbolTable = true; 3479 // Fall through so that we record the NextUnreadBit below. 3480 // This is necessary in case we have an anonymous function that 3481 // is later materialized. Since it will not have a VST entry we 3482 // need to fall back to the lazy parse to find its offset. 3483 } else { 3484 // If we have a VST forward declaration record, but have already 3485 // parsed the VST (just above, when the first function body was 3486 // encountered here), then we are resuming the parse after 3487 // materializing functions. The ResumeBit points to the 3488 // start of the last function block recorded in the 3489 // DeferredFunctionInfo map. Skip it. 3490 if (Stream.SkipBlock()) 3491 return error("Invalid record"); 3492 continue; 3493 } 3494 } 3495 3496 // Support older bitcode files that did not have the function 3497 // index in the VST, nor a VST forward declaration record, as 3498 // well as anonymous functions that do not have VST entries. 3499 // Build the DeferredFunctionInfo vector on the fly. 3500 if (std::error_code EC = rememberAndSkipFunctionBody()) 3501 return EC; 3502 3503 // Suspend parsing when we reach the function bodies. Subsequent 3504 // materialization calls will resume it when necessary. If the bitcode 3505 // file is old, the symbol table will be at the end instead and will not 3506 // have been seen yet. In this case, just finish the parse now. 3507 if (SeenValueSymbolTable) { 3508 NextUnreadBit = Stream.GetCurrentBitNo(); 3509 return std::error_code(); 3510 } 3511 break; 3512 case bitc::USELIST_BLOCK_ID: 3513 if (std::error_code EC = parseUseLists()) 3514 return EC; 3515 break; 3516 case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID: 3517 if (std::error_code EC = parseOperandBundleTags()) 3518 return EC; 3519 break; 3520 } 3521 continue; 3522 3523 case BitstreamEntry::Record: 3524 // The interesting case. 3525 break; 3526 } 3527 3528 // Read a record. 3529 auto BitCode = Stream.readRecord(Entry.ID, Record); 3530 switch (BitCode) { 3531 default: break; // Default behavior, ignore unknown content. 3532 case bitc::MODULE_CODE_VERSION: { // VERSION: [version#] 3533 if (Record.size() < 1) 3534 return error("Invalid record"); 3535 // Only version #0 and #1 are supported so far. 3536 unsigned module_version = Record[0]; 3537 switch (module_version) { 3538 default: 3539 return error("Invalid value"); 3540 case 0: 3541 UseRelativeIDs = false; 3542 break; 3543 case 1: 3544 UseRelativeIDs = true; 3545 break; 3546 } 3547 break; 3548 } 3549 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 3550 std::string S; 3551 if (convertToString(Record, 0, S)) 3552 return error("Invalid record"); 3553 TheModule->setTargetTriple(S); 3554 break; 3555 } 3556 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 3557 std::string S; 3558 if (convertToString(Record, 0, S)) 3559 return error("Invalid record"); 3560 TheModule->setDataLayout(S); 3561 break; 3562 } 3563 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 3564 std::string S; 3565 if (convertToString(Record, 0, S)) 3566 return error("Invalid record"); 3567 TheModule->setModuleInlineAsm(S); 3568 break; 3569 } 3570 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 3571 // FIXME: Remove in 4.0. 3572 std::string S; 3573 if (convertToString(Record, 0, S)) 3574 return error("Invalid record"); 3575 // Ignore value. 3576 break; 3577 } 3578 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 3579 std::string S; 3580 if (convertToString(Record, 0, S)) 3581 return error("Invalid record"); 3582 SectionTable.push_back(S); 3583 break; 3584 } 3585 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 3586 std::string S; 3587 if (convertToString(Record, 0, S)) 3588 return error("Invalid record"); 3589 GCTable.push_back(S); 3590 break; 3591 } 3592 case bitc::MODULE_CODE_COMDAT: { // COMDAT: [selection_kind, name] 3593 if (Record.size() < 2) 3594 return error("Invalid record"); 3595 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]); 3596 unsigned ComdatNameSize = Record[1]; 3597 std::string ComdatName; 3598 ComdatName.reserve(ComdatNameSize); 3599 for (unsigned i = 0; i != ComdatNameSize; ++i) 3600 ComdatName += (char)Record[2 + i]; 3601 Comdat *C = TheModule->getOrInsertComdat(ComdatName); 3602 C->setSelectionKind(SK); 3603 ComdatList.push_back(C); 3604 break; 3605 } 3606 // GLOBALVAR: [pointer type, isconst, initid, 3607 // linkage, alignment, section, visibility, threadlocal, 3608 // unnamed_addr, externally_initialized, dllstorageclass, 3609 // comdat] 3610 case bitc::MODULE_CODE_GLOBALVAR: { 3611 if (Record.size() < 6) 3612 return error("Invalid record"); 3613 Type *Ty = getTypeByID(Record[0]); 3614 if (!Ty) 3615 return error("Invalid record"); 3616 bool isConstant = Record[1] & 1; 3617 bool explicitType = Record[1] & 2; 3618 unsigned AddressSpace; 3619 if (explicitType) { 3620 AddressSpace = Record[1] >> 2; 3621 } else { 3622 if (!Ty->isPointerTy()) 3623 return error("Invalid type for value"); 3624 AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 3625 Ty = cast<PointerType>(Ty)->getElementType(); 3626 } 3627 3628 uint64_t RawLinkage = Record[3]; 3629 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 3630 unsigned Alignment; 3631 if (std::error_code EC = parseAlignmentValue(Record[4], Alignment)) 3632 return EC; 3633 std::string Section; 3634 if (Record[5]) { 3635 if (Record[5]-1 >= SectionTable.size()) 3636 return error("Invalid ID"); 3637 Section = SectionTable[Record[5]-1]; 3638 } 3639 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 3640 // Local linkage must have default visibility. 3641 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage)) 3642 // FIXME: Change to an error if non-default in 4.0. 3643 Visibility = getDecodedVisibility(Record[6]); 3644 3645 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; 3646 if (Record.size() > 7) 3647 TLM = getDecodedThreadLocalMode(Record[7]); 3648 3649 bool UnnamedAddr = false; 3650 if (Record.size() > 8) 3651 UnnamedAddr = Record[8]; 3652 3653 bool ExternallyInitialized = false; 3654 if (Record.size() > 9) 3655 ExternallyInitialized = Record[9]; 3656 3657 GlobalVariable *NewGV = 3658 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, "", nullptr, 3659 TLM, AddressSpace, ExternallyInitialized); 3660 NewGV->setAlignment(Alignment); 3661 if (!Section.empty()) 3662 NewGV->setSection(Section); 3663 NewGV->setVisibility(Visibility); 3664 NewGV->setUnnamedAddr(UnnamedAddr); 3665 3666 if (Record.size() > 10) 3667 NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10])); 3668 else 3669 upgradeDLLImportExportLinkage(NewGV, RawLinkage); 3670 3671 ValueList.push_back(NewGV); 3672 3673 // Remember which value to use for the global initializer. 3674 if (unsigned InitID = Record[2]) 3675 GlobalInits.push_back(std::make_pair(NewGV, InitID-1)); 3676 3677 if (Record.size() > 11) { 3678 if (unsigned ComdatID = Record[11]) { 3679 if (ComdatID > ComdatList.size()) 3680 return error("Invalid global variable comdat ID"); 3681 NewGV->setComdat(ComdatList[ComdatID - 1]); 3682 } 3683 } else if (hasImplicitComdat(RawLinkage)) { 3684 NewGV->setComdat(reinterpret_cast<Comdat *>(1)); 3685 } 3686 break; 3687 } 3688 // FUNCTION: [type, callingconv, isproto, linkage, paramattr, 3689 // alignment, section, visibility, gc, unnamed_addr, 3690 // prologuedata, dllstorageclass, comdat, prefixdata] 3691 case bitc::MODULE_CODE_FUNCTION: { 3692 if (Record.size() < 8) 3693 return error("Invalid record"); 3694 Type *Ty = getTypeByID(Record[0]); 3695 if (!Ty) 3696 return error("Invalid record"); 3697 if (auto *PTy = dyn_cast<PointerType>(Ty)) 3698 Ty = PTy->getElementType(); 3699 auto *FTy = dyn_cast<FunctionType>(Ty); 3700 if (!FTy) 3701 return error("Invalid type for value"); 3702 auto CC = static_cast<CallingConv::ID>(Record[1]); 3703 if (CC & ~CallingConv::MaxID) 3704 return error("Invalid calling convention ID"); 3705 3706 Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage, 3707 "", TheModule); 3708 3709 Func->setCallingConv(CC); 3710 bool isProto = Record[2]; 3711 uint64_t RawLinkage = Record[3]; 3712 Func->setLinkage(getDecodedLinkage(RawLinkage)); 3713 Func->setAttributes(getAttributes(Record[4])); 3714 3715 unsigned Alignment; 3716 if (std::error_code EC = parseAlignmentValue(Record[5], Alignment)) 3717 return EC; 3718 Func->setAlignment(Alignment); 3719 if (Record[6]) { 3720 if (Record[6]-1 >= SectionTable.size()) 3721 return error("Invalid ID"); 3722 Func->setSection(SectionTable[Record[6]-1]); 3723 } 3724 // Local linkage must have default visibility. 3725 if (!Func->hasLocalLinkage()) 3726 // FIXME: Change to an error if non-default in 4.0. 3727 Func->setVisibility(getDecodedVisibility(Record[7])); 3728 if (Record.size() > 8 && Record[8]) { 3729 if (Record[8]-1 >= GCTable.size()) 3730 return error("Invalid ID"); 3731 Func->setGC(GCTable[Record[8]-1].c_str()); 3732 } 3733 bool UnnamedAddr = false; 3734 if (Record.size() > 9) 3735 UnnamedAddr = Record[9]; 3736 Func->setUnnamedAddr(UnnamedAddr); 3737 if (Record.size() > 10 && Record[10] != 0) 3738 FunctionPrologues.push_back(std::make_pair(Func, Record[10]-1)); 3739 3740 if (Record.size() > 11) 3741 Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11])); 3742 else 3743 upgradeDLLImportExportLinkage(Func, RawLinkage); 3744 3745 if (Record.size() > 12) { 3746 if (unsigned ComdatID = Record[12]) { 3747 if (ComdatID > ComdatList.size()) 3748 return error("Invalid function comdat ID"); 3749 Func->setComdat(ComdatList[ComdatID - 1]); 3750 } 3751 } else if (hasImplicitComdat(RawLinkage)) { 3752 Func->setComdat(reinterpret_cast<Comdat *>(1)); 3753 } 3754 3755 if (Record.size() > 13 && Record[13] != 0) 3756 FunctionPrefixes.push_back(std::make_pair(Func, Record[13]-1)); 3757 3758 if (Record.size() > 14 && Record[14] != 0) 3759 FunctionPersonalityFns.push_back(std::make_pair(Func, Record[14] - 1)); 3760 3761 ValueList.push_back(Func); 3762 3763 // If this is a function with a body, remember the prototype we are 3764 // creating now, so that we can match up the body with them later. 3765 if (!isProto) { 3766 Func->setIsMaterializable(true); 3767 FunctionsWithBodies.push_back(Func); 3768 DeferredFunctionInfo[Func] = 0; 3769 } 3770 break; 3771 } 3772 // ALIAS: [alias type, addrspace, aliasee val#, linkage] 3773 // ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, dllstorageclass] 3774 // IFUNC: [alias type, addrspace, aliasee val#, linkage, visibility, dllstorageclass] 3775 case bitc::MODULE_CODE_IFUNC: 3776 case bitc::MODULE_CODE_ALIAS: 3777 case bitc::MODULE_CODE_ALIAS_OLD: { 3778 bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD; 3779 if (Record.size() < (3 + (unsigned)NewRecord)) 3780 return error("Invalid record"); 3781 unsigned OpNum = 0; 3782 Type *Ty = getTypeByID(Record[OpNum++]); 3783 if (!Ty) 3784 return error("Invalid record"); 3785 3786 unsigned AddrSpace; 3787 if (!NewRecord) { 3788 auto *PTy = dyn_cast<PointerType>(Ty); 3789 if (!PTy) 3790 return error("Invalid type for value"); 3791 Ty = PTy->getElementType(); 3792 AddrSpace = PTy->getAddressSpace(); 3793 } else { 3794 AddrSpace = Record[OpNum++]; 3795 } 3796 3797 auto Val = Record[OpNum++]; 3798 auto Linkage = Record[OpNum++]; 3799 GlobalIndirectSymbol *NewGA; 3800 if (BitCode == bitc::MODULE_CODE_ALIAS || 3801 BitCode == bitc::MODULE_CODE_ALIAS_OLD) 3802 NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), 3803 "", TheModule); 3804 else 3805 NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), 3806 "", nullptr, TheModule); 3807 // Old bitcode files didn't have visibility field. 3808 // Local linkage must have default visibility. 3809 if (OpNum != Record.size()) { 3810 auto VisInd = OpNum++; 3811 if (!NewGA->hasLocalLinkage()) 3812 // FIXME: Change to an error if non-default in 4.0. 3813 NewGA->setVisibility(getDecodedVisibility(Record[VisInd])); 3814 } 3815 if (OpNum != Record.size()) 3816 NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++])); 3817 else 3818 upgradeDLLImportExportLinkage(NewGA, Linkage); 3819 if (OpNum != Record.size()) 3820 NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++])); 3821 if (OpNum != Record.size()) 3822 NewGA->setUnnamedAddr(Record[OpNum++]); 3823 ValueList.push_back(NewGA); 3824 IndirectSymbolInits.push_back(std::make_pair(NewGA, Val)); 3825 break; 3826 } 3827 /// MODULE_CODE_PURGEVALS: [numvals] 3828 case bitc::MODULE_CODE_PURGEVALS: 3829 // Trim down the value list to the specified size. 3830 if (Record.size() < 1 || Record[0] > ValueList.size()) 3831 return error("Invalid record"); 3832 ValueList.shrinkTo(Record[0]); 3833 break; 3834 /// MODULE_CODE_VSTOFFSET: [offset] 3835 case bitc::MODULE_CODE_VSTOFFSET: 3836 if (Record.size() < 1) 3837 return error("Invalid record"); 3838 VSTOffset = Record[0]; 3839 break; 3840 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 3841 case bitc::MODULE_CODE_SOURCE_FILENAME: 3842 SmallString<128> ValueName; 3843 if (convertToString(Record, 0, ValueName)) 3844 return error("Invalid record"); 3845 TheModule->setSourceFileName(ValueName); 3846 break; 3847 } 3848 Record.clear(); 3849 } 3850 } 3851 3852 /// Helper to read the header common to all bitcode files. 3853 static bool hasValidBitcodeHeader(BitstreamCursor &Stream) { 3854 // Sniff for the signature. 3855 if (Stream.Read(8) != 'B' || 3856 Stream.Read(8) != 'C' || 3857 Stream.Read(4) != 0x0 || 3858 Stream.Read(4) != 0xC || 3859 Stream.Read(4) != 0xE || 3860 Stream.Read(4) != 0xD) 3861 return false; 3862 return true; 3863 } 3864 3865 std::error_code 3866 BitcodeReader::parseBitcodeInto(std::unique_ptr<DataStreamer> Streamer, 3867 Module *M, bool ShouldLazyLoadMetadata) { 3868 TheModule = M; 3869 3870 if (std::error_code EC = initStream(std::move(Streamer))) 3871 return EC; 3872 3873 // Sniff for the signature. 3874 if (!hasValidBitcodeHeader(Stream)) 3875 return error("Invalid bitcode signature"); 3876 3877 // We expect a number of well-defined blocks, though we don't necessarily 3878 // need to understand them all. 3879 while (1) { 3880 if (Stream.AtEndOfStream()) { 3881 // We didn't really read a proper Module. 3882 return error("Malformed IR file"); 3883 } 3884 3885 BitstreamEntry Entry = 3886 Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs); 3887 3888 if (Entry.Kind != BitstreamEntry::SubBlock) 3889 return error("Malformed block"); 3890 3891 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) { 3892 parseBitcodeVersion(); 3893 continue; 3894 } 3895 3896 if (Entry.ID == bitc::MODULE_BLOCK_ID) 3897 return parseModule(0, ShouldLazyLoadMetadata); 3898 3899 if (Stream.SkipBlock()) 3900 return error("Invalid record"); 3901 } 3902 } 3903 3904 ErrorOr<std::string> BitcodeReader::parseModuleTriple() { 3905 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 3906 return error("Invalid record"); 3907 3908 SmallVector<uint64_t, 64> Record; 3909 3910 std::string Triple; 3911 // Read all the records for this module. 3912 while (1) { 3913 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 3914 3915 switch (Entry.Kind) { 3916 case BitstreamEntry::SubBlock: // Handled for us already. 3917 case BitstreamEntry::Error: 3918 return error("Malformed block"); 3919 case BitstreamEntry::EndBlock: 3920 return Triple; 3921 case BitstreamEntry::Record: 3922 // The interesting case. 3923 break; 3924 } 3925 3926 // Read a record. 3927 switch (Stream.readRecord(Entry.ID, Record)) { 3928 default: break; // Default behavior, ignore unknown content. 3929 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 3930 std::string S; 3931 if (convertToString(Record, 0, S)) 3932 return error("Invalid record"); 3933 Triple = S; 3934 break; 3935 } 3936 } 3937 Record.clear(); 3938 } 3939 llvm_unreachable("Exit infinite loop"); 3940 } 3941 3942 ErrorOr<std::string> BitcodeReader::parseTriple() { 3943 if (std::error_code EC = initStream(nullptr)) 3944 return EC; 3945 3946 // Sniff for the signature. 3947 if (!hasValidBitcodeHeader(Stream)) 3948 return error("Invalid bitcode signature"); 3949 3950 // We expect a number of well-defined blocks, though we don't necessarily 3951 // need to understand them all. 3952 while (1) { 3953 BitstreamEntry Entry = Stream.advance(); 3954 3955 switch (Entry.Kind) { 3956 case BitstreamEntry::Error: 3957 return error("Malformed block"); 3958 case BitstreamEntry::EndBlock: 3959 return std::error_code(); 3960 3961 case BitstreamEntry::SubBlock: 3962 if (Entry.ID == bitc::MODULE_BLOCK_ID) 3963 return parseModuleTriple(); 3964 3965 // Ignore other sub-blocks. 3966 if (Stream.SkipBlock()) 3967 return error("Malformed block"); 3968 continue; 3969 3970 case BitstreamEntry::Record: 3971 Stream.skipRecord(Entry.ID); 3972 continue; 3973 } 3974 } 3975 } 3976 3977 ErrorOr<std::string> BitcodeReader::parseIdentificationBlock() { 3978 if (std::error_code EC = initStream(nullptr)) 3979 return EC; 3980 3981 // Sniff for the signature. 3982 if (!hasValidBitcodeHeader(Stream)) 3983 return error("Invalid bitcode signature"); 3984 3985 // We expect a number of well-defined blocks, though we don't necessarily 3986 // need to understand them all. 3987 while (1) { 3988 BitstreamEntry Entry = Stream.advance(); 3989 switch (Entry.Kind) { 3990 case BitstreamEntry::Error: 3991 return error("Malformed block"); 3992 case BitstreamEntry::EndBlock: 3993 return std::error_code(); 3994 3995 case BitstreamEntry::SubBlock: 3996 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) { 3997 if (std::error_code EC = parseBitcodeVersion()) 3998 return EC; 3999 return ProducerIdentification; 4000 } 4001 // Ignore other sub-blocks. 4002 if (Stream.SkipBlock()) 4003 return error("Malformed block"); 4004 continue; 4005 case BitstreamEntry::Record: 4006 Stream.skipRecord(Entry.ID); 4007 continue; 4008 } 4009 } 4010 } 4011 4012 /// Parse metadata attachments. 4013 std::error_code BitcodeReader::parseMetadataAttachment(Function &F) { 4014 if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID)) 4015 return error("Invalid record"); 4016 4017 SmallVector<uint64_t, 64> Record; 4018 while (1) { 4019 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 4020 4021 switch (Entry.Kind) { 4022 case BitstreamEntry::SubBlock: // Handled for us already. 4023 case BitstreamEntry::Error: 4024 return error("Malformed block"); 4025 case BitstreamEntry::EndBlock: 4026 return std::error_code(); 4027 case BitstreamEntry::Record: 4028 // The interesting case. 4029 break; 4030 } 4031 4032 // Read a metadata attachment record. 4033 Record.clear(); 4034 switch (Stream.readRecord(Entry.ID, Record)) { 4035 default: // Default behavior: ignore. 4036 break; 4037 case bitc::METADATA_ATTACHMENT: { 4038 unsigned RecordLength = Record.size(); 4039 if (Record.empty()) 4040 return error("Invalid record"); 4041 if (RecordLength % 2 == 0) { 4042 // A function attachment. 4043 for (unsigned I = 0; I != RecordLength; I += 2) { 4044 auto K = MDKindMap.find(Record[I]); 4045 if (K == MDKindMap.end()) 4046 return error("Invalid ID"); 4047 MDNode *MD = MetadataList.getMDNodeFwdRefOrNull(Record[I + 1]); 4048 if (!MD) 4049 return error("Invalid metadata attachment"); 4050 F.setMetadata(K->second, MD); 4051 } 4052 continue; 4053 } 4054 4055 // An instruction attachment. 4056 Instruction *Inst = InstructionList[Record[0]]; 4057 for (unsigned i = 1; i != RecordLength; i = i+2) { 4058 unsigned Kind = Record[i]; 4059 DenseMap<unsigned, unsigned>::iterator I = 4060 MDKindMap.find(Kind); 4061 if (I == MDKindMap.end()) 4062 return error("Invalid ID"); 4063 Metadata *Node = MetadataList.getMetadataFwdRef(Record[i + 1]); 4064 if (isa<LocalAsMetadata>(Node)) 4065 // Drop the attachment. This used to be legal, but there's no 4066 // upgrade path. 4067 break; 4068 MDNode *MD = dyn_cast_or_null<MDNode>(Node); 4069 if (!MD) 4070 return error("Invalid metadata attachment"); 4071 4072 if (HasSeenOldLoopTags && I->second == LLVMContext::MD_loop) 4073 MD = upgradeInstructionLoopAttachment(*MD); 4074 4075 Inst->setMetadata(I->second, MD); 4076 if (I->second == LLVMContext::MD_tbaa) { 4077 InstsWithTBAATag.push_back(Inst); 4078 continue; 4079 } 4080 } 4081 break; 4082 } 4083 } 4084 } 4085 } 4086 4087 static std::error_code typeCheckLoadStoreInst(Type *ValType, Type *PtrType) { 4088 LLVMContext &Context = PtrType->getContext(); 4089 if (!isa<PointerType>(PtrType)) 4090 return error(Context, "Load/Store operand is not a pointer type"); 4091 Type *ElemType = cast<PointerType>(PtrType)->getElementType(); 4092 4093 if (ValType && ValType != ElemType) 4094 return error(Context, "Explicit load/store type does not match pointee " 4095 "type of pointer operand"); 4096 if (!PointerType::isLoadableOrStorableType(ElemType)) 4097 return error(Context, "Cannot load/store from pointer"); 4098 return std::error_code(); 4099 } 4100 4101 /// Lazily parse the specified function body block. 4102 std::error_code BitcodeReader::parseFunctionBody(Function *F) { 4103 if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 4104 return error("Invalid record"); 4105 4106 // Unexpected unresolved metadata when parsing function. 4107 if (MetadataList.hasFwdRefs()) 4108 return error("Invalid function metadata: incoming forward references"); 4109 4110 InstructionList.clear(); 4111 unsigned ModuleValueListSize = ValueList.size(); 4112 unsigned ModuleMetadataListSize = MetadataList.size(); 4113 4114 // Add all the function arguments to the value table. 4115 for (Argument &I : F->args()) 4116 ValueList.push_back(&I); 4117 4118 unsigned NextValueNo = ValueList.size(); 4119 BasicBlock *CurBB = nullptr; 4120 unsigned CurBBNo = 0; 4121 4122 DebugLoc LastLoc; 4123 auto getLastInstruction = [&]() -> Instruction * { 4124 if (CurBB && !CurBB->empty()) 4125 return &CurBB->back(); 4126 else if (CurBBNo && FunctionBBs[CurBBNo - 1] && 4127 !FunctionBBs[CurBBNo - 1]->empty()) 4128 return &FunctionBBs[CurBBNo - 1]->back(); 4129 return nullptr; 4130 }; 4131 4132 std::vector<OperandBundleDef> OperandBundles; 4133 4134 // Read all the records. 4135 SmallVector<uint64_t, 64> Record; 4136 while (1) { 4137 BitstreamEntry Entry = Stream.advance(); 4138 4139 switch (Entry.Kind) { 4140 case BitstreamEntry::Error: 4141 return error("Malformed block"); 4142 case BitstreamEntry::EndBlock: 4143 goto OutOfRecordLoop; 4144 4145 case BitstreamEntry::SubBlock: 4146 switch (Entry.ID) { 4147 default: // Skip unknown content. 4148 if (Stream.SkipBlock()) 4149 return error("Invalid record"); 4150 break; 4151 case bitc::CONSTANTS_BLOCK_ID: 4152 if (std::error_code EC = parseConstants()) 4153 return EC; 4154 NextValueNo = ValueList.size(); 4155 break; 4156 case bitc::VALUE_SYMTAB_BLOCK_ID: 4157 if (std::error_code EC = parseValueSymbolTable()) 4158 return EC; 4159 break; 4160 case bitc::METADATA_ATTACHMENT_ID: 4161 if (std::error_code EC = parseMetadataAttachment(*F)) 4162 return EC; 4163 break; 4164 case bitc::METADATA_BLOCK_ID: 4165 if (std::error_code EC = parseMetadata()) 4166 return EC; 4167 break; 4168 case bitc::USELIST_BLOCK_ID: 4169 if (std::error_code EC = parseUseLists()) 4170 return EC; 4171 break; 4172 } 4173 continue; 4174 4175 case BitstreamEntry::Record: 4176 // The interesting case. 4177 break; 4178 } 4179 4180 // Read a record. 4181 Record.clear(); 4182 Instruction *I = nullptr; 4183 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 4184 switch (BitCode) { 4185 default: // Default behavior: reject 4186 return error("Invalid value"); 4187 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks] 4188 if (Record.size() < 1 || Record[0] == 0) 4189 return error("Invalid record"); 4190 // Create all the basic blocks for the function. 4191 FunctionBBs.resize(Record[0]); 4192 4193 // See if anything took the address of blocks in this function. 4194 auto BBFRI = BasicBlockFwdRefs.find(F); 4195 if (BBFRI == BasicBlockFwdRefs.end()) { 4196 for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i) 4197 FunctionBBs[i] = BasicBlock::Create(Context, "", F); 4198 } else { 4199 auto &BBRefs = BBFRI->second; 4200 // Check for invalid basic block references. 4201 if (BBRefs.size() > FunctionBBs.size()) 4202 return error("Invalid ID"); 4203 assert(!BBRefs.empty() && "Unexpected empty array"); 4204 assert(!BBRefs.front() && "Invalid reference to entry block"); 4205 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E; 4206 ++I) 4207 if (I < RE && BBRefs[I]) { 4208 BBRefs[I]->insertInto(F); 4209 FunctionBBs[I] = BBRefs[I]; 4210 } else { 4211 FunctionBBs[I] = BasicBlock::Create(Context, "", F); 4212 } 4213 4214 // Erase from the table. 4215 BasicBlockFwdRefs.erase(BBFRI); 4216 } 4217 4218 CurBB = FunctionBBs[0]; 4219 continue; 4220 } 4221 4222 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 4223 // This record indicates that the last instruction is at the same 4224 // location as the previous instruction with a location. 4225 I = getLastInstruction(); 4226 4227 if (!I) 4228 return error("Invalid record"); 4229 I->setDebugLoc(LastLoc); 4230 I = nullptr; 4231 continue; 4232 4233 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 4234 I = getLastInstruction(); 4235 if (!I || Record.size() < 4) 4236 return error("Invalid record"); 4237 4238 unsigned Line = Record[0], Col = Record[1]; 4239 unsigned ScopeID = Record[2], IAID = Record[3]; 4240 4241 MDNode *Scope = nullptr, *IA = nullptr; 4242 if (ScopeID) { 4243 Scope = MetadataList.getMDNodeFwdRefOrNull(ScopeID - 1); 4244 if (!Scope) 4245 return error("Invalid record"); 4246 } 4247 if (IAID) { 4248 IA = MetadataList.getMDNodeFwdRefOrNull(IAID - 1); 4249 if (!IA) 4250 return error("Invalid record"); 4251 } 4252 LastLoc = DebugLoc::get(Line, Col, Scope, IA); 4253 I->setDebugLoc(LastLoc); 4254 I = nullptr; 4255 continue; 4256 } 4257 4258 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 4259 unsigned OpNum = 0; 4260 Value *LHS, *RHS; 4261 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 4262 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 4263 OpNum+1 > Record.size()) 4264 return error("Invalid record"); 4265 4266 int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 4267 if (Opc == -1) 4268 return error("Invalid record"); 4269 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 4270 InstructionList.push_back(I); 4271 if (OpNum < Record.size()) { 4272 if (Opc == Instruction::Add || 4273 Opc == Instruction::Sub || 4274 Opc == Instruction::Mul || 4275 Opc == Instruction::Shl) { 4276 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 4277 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 4278 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 4279 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 4280 } else if (Opc == Instruction::SDiv || 4281 Opc == Instruction::UDiv || 4282 Opc == Instruction::LShr || 4283 Opc == Instruction::AShr) { 4284 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 4285 cast<BinaryOperator>(I)->setIsExact(true); 4286 } else if (isa<FPMathOperator>(I)) { 4287 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 4288 if (FMF.any()) 4289 I->setFastMathFlags(FMF); 4290 } 4291 4292 } 4293 break; 4294 } 4295 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 4296 unsigned OpNum = 0; 4297 Value *Op; 4298 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4299 OpNum+2 != Record.size()) 4300 return error("Invalid record"); 4301 4302 Type *ResTy = getTypeByID(Record[OpNum]); 4303 int Opc = getDecodedCastOpcode(Record[OpNum + 1]); 4304 if (Opc == -1 || !ResTy) 4305 return error("Invalid record"); 4306 Instruction *Temp = nullptr; 4307 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) { 4308 if (Temp) { 4309 InstructionList.push_back(Temp); 4310 CurBB->getInstList().push_back(Temp); 4311 } 4312 } else { 4313 auto CastOp = (Instruction::CastOps)Opc; 4314 if (!CastInst::castIsValid(CastOp, Op, ResTy)) 4315 return error("Invalid cast"); 4316 I = CastInst::Create(CastOp, Op, ResTy); 4317 } 4318 InstructionList.push_back(I); 4319 break; 4320 } 4321 case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD: 4322 case bitc::FUNC_CODE_INST_GEP_OLD: 4323 case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands] 4324 unsigned OpNum = 0; 4325 4326 Type *Ty; 4327 bool InBounds; 4328 4329 if (BitCode == bitc::FUNC_CODE_INST_GEP) { 4330 InBounds = Record[OpNum++]; 4331 Ty = getTypeByID(Record[OpNum++]); 4332 } else { 4333 InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD; 4334 Ty = nullptr; 4335 } 4336 4337 Value *BasePtr; 4338 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr)) 4339 return error("Invalid record"); 4340 4341 if (!Ty) 4342 Ty = cast<SequentialType>(BasePtr->getType()->getScalarType()) 4343 ->getElementType(); 4344 else if (Ty != 4345 cast<SequentialType>(BasePtr->getType()->getScalarType()) 4346 ->getElementType()) 4347 return error( 4348 "Explicit gep type does not match pointee type of pointer operand"); 4349 4350 SmallVector<Value*, 16> GEPIdx; 4351 while (OpNum != Record.size()) { 4352 Value *Op; 4353 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4354 return error("Invalid record"); 4355 GEPIdx.push_back(Op); 4356 } 4357 4358 I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx); 4359 4360 InstructionList.push_back(I); 4361 if (InBounds) 4362 cast<GetElementPtrInst>(I)->setIsInBounds(true); 4363 break; 4364 } 4365 4366 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 4367 // EXTRACTVAL: [opty, opval, n x indices] 4368 unsigned OpNum = 0; 4369 Value *Agg; 4370 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 4371 return error("Invalid record"); 4372 4373 unsigned RecSize = Record.size(); 4374 if (OpNum == RecSize) 4375 return error("EXTRACTVAL: Invalid instruction with 0 indices"); 4376 4377 SmallVector<unsigned, 4> EXTRACTVALIdx; 4378 Type *CurTy = Agg->getType(); 4379 for (; OpNum != RecSize; ++OpNum) { 4380 bool IsArray = CurTy->isArrayTy(); 4381 bool IsStruct = CurTy->isStructTy(); 4382 uint64_t Index = Record[OpNum]; 4383 4384 if (!IsStruct && !IsArray) 4385 return error("EXTRACTVAL: Invalid type"); 4386 if ((unsigned)Index != Index) 4387 return error("Invalid value"); 4388 if (IsStruct && Index >= CurTy->subtypes().size()) 4389 return error("EXTRACTVAL: Invalid struct index"); 4390 if (IsArray && Index >= CurTy->getArrayNumElements()) 4391 return error("EXTRACTVAL: Invalid array index"); 4392 EXTRACTVALIdx.push_back((unsigned)Index); 4393 4394 if (IsStruct) 4395 CurTy = CurTy->subtypes()[Index]; 4396 else 4397 CurTy = CurTy->subtypes()[0]; 4398 } 4399 4400 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 4401 InstructionList.push_back(I); 4402 break; 4403 } 4404 4405 case bitc::FUNC_CODE_INST_INSERTVAL: { 4406 // INSERTVAL: [opty, opval, opty, opval, n x indices] 4407 unsigned OpNum = 0; 4408 Value *Agg; 4409 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 4410 return error("Invalid record"); 4411 Value *Val; 4412 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 4413 return error("Invalid record"); 4414 4415 unsigned RecSize = Record.size(); 4416 if (OpNum == RecSize) 4417 return error("INSERTVAL: Invalid instruction with 0 indices"); 4418 4419 SmallVector<unsigned, 4> INSERTVALIdx; 4420 Type *CurTy = Agg->getType(); 4421 for (; OpNum != RecSize; ++OpNum) { 4422 bool IsArray = CurTy->isArrayTy(); 4423 bool IsStruct = CurTy->isStructTy(); 4424 uint64_t Index = Record[OpNum]; 4425 4426 if (!IsStruct && !IsArray) 4427 return error("INSERTVAL: Invalid type"); 4428 if ((unsigned)Index != Index) 4429 return error("Invalid value"); 4430 if (IsStruct && Index >= CurTy->subtypes().size()) 4431 return error("INSERTVAL: Invalid struct index"); 4432 if (IsArray && Index >= CurTy->getArrayNumElements()) 4433 return error("INSERTVAL: Invalid array index"); 4434 4435 INSERTVALIdx.push_back((unsigned)Index); 4436 if (IsStruct) 4437 CurTy = CurTy->subtypes()[Index]; 4438 else 4439 CurTy = CurTy->subtypes()[0]; 4440 } 4441 4442 if (CurTy != Val->getType()) 4443 return error("Inserted value type doesn't match aggregate type"); 4444 4445 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 4446 InstructionList.push_back(I); 4447 break; 4448 } 4449 4450 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 4451 // obsolete form of select 4452 // handles select i1 ... in old bitcode 4453 unsigned OpNum = 0; 4454 Value *TrueVal, *FalseVal, *Cond; 4455 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 4456 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 4457 popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond)) 4458 return error("Invalid record"); 4459 4460 I = SelectInst::Create(Cond, TrueVal, FalseVal); 4461 InstructionList.push_back(I); 4462 break; 4463 } 4464 4465 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 4466 // new form of select 4467 // handles select i1 or select [N x i1] 4468 unsigned OpNum = 0; 4469 Value *TrueVal, *FalseVal, *Cond; 4470 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 4471 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 4472 getValueTypePair(Record, OpNum, NextValueNo, Cond)) 4473 return error("Invalid record"); 4474 4475 // select condition can be either i1 or [N x i1] 4476 if (VectorType* vector_type = 4477 dyn_cast<VectorType>(Cond->getType())) { 4478 // expect <n x i1> 4479 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 4480 return error("Invalid type for value"); 4481 } else { 4482 // expect i1 4483 if (Cond->getType() != Type::getInt1Ty(Context)) 4484 return error("Invalid type for value"); 4485 } 4486 4487 I = SelectInst::Create(Cond, TrueVal, FalseVal); 4488 InstructionList.push_back(I); 4489 break; 4490 } 4491 4492 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 4493 unsigned OpNum = 0; 4494 Value *Vec, *Idx; 4495 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 4496 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 4497 return error("Invalid record"); 4498 if (!Vec->getType()->isVectorTy()) 4499 return error("Invalid type for value"); 4500 I = ExtractElementInst::Create(Vec, Idx); 4501 InstructionList.push_back(I); 4502 break; 4503 } 4504 4505 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 4506 unsigned OpNum = 0; 4507 Value *Vec, *Elt, *Idx; 4508 if (getValueTypePair(Record, OpNum, NextValueNo, Vec)) 4509 return error("Invalid record"); 4510 if (!Vec->getType()->isVectorTy()) 4511 return error("Invalid type for value"); 4512 if (popValue(Record, OpNum, NextValueNo, 4513 cast<VectorType>(Vec->getType())->getElementType(), Elt) || 4514 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 4515 return error("Invalid record"); 4516 I = InsertElementInst::Create(Vec, Elt, Idx); 4517 InstructionList.push_back(I); 4518 break; 4519 } 4520 4521 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 4522 unsigned OpNum = 0; 4523 Value *Vec1, *Vec2, *Mask; 4524 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) || 4525 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2)) 4526 return error("Invalid record"); 4527 4528 if (getValueTypePair(Record, OpNum, NextValueNo, Mask)) 4529 return error("Invalid record"); 4530 if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy()) 4531 return error("Invalid type for value"); 4532 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 4533 InstructionList.push_back(I); 4534 break; 4535 } 4536 4537 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 4538 // Old form of ICmp/FCmp returning bool 4539 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 4540 // both legal on vectors but had different behaviour. 4541 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 4542 // FCmp/ICmp returning bool or vector of bool 4543 4544 unsigned OpNum = 0; 4545 Value *LHS, *RHS; 4546 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 4547 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS)) 4548 return error("Invalid record"); 4549 4550 unsigned PredVal = Record[OpNum]; 4551 bool IsFP = LHS->getType()->isFPOrFPVectorTy(); 4552 FastMathFlags FMF; 4553 if (IsFP && Record.size() > OpNum+1) 4554 FMF = getDecodedFastMathFlags(Record[++OpNum]); 4555 4556 if (OpNum+1 != Record.size()) 4557 return error("Invalid record"); 4558 4559 if (LHS->getType()->isFPOrFPVectorTy()) 4560 I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS); 4561 else 4562 I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS); 4563 4564 if (FMF.any()) 4565 I->setFastMathFlags(FMF); 4566 InstructionList.push_back(I); 4567 break; 4568 } 4569 4570 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 4571 { 4572 unsigned Size = Record.size(); 4573 if (Size == 0) { 4574 I = ReturnInst::Create(Context); 4575 InstructionList.push_back(I); 4576 break; 4577 } 4578 4579 unsigned OpNum = 0; 4580 Value *Op = nullptr; 4581 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4582 return error("Invalid record"); 4583 if (OpNum != Record.size()) 4584 return error("Invalid record"); 4585 4586 I = ReturnInst::Create(Context, Op); 4587 InstructionList.push_back(I); 4588 break; 4589 } 4590 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 4591 if (Record.size() != 1 && Record.size() != 3) 4592 return error("Invalid record"); 4593 BasicBlock *TrueDest = getBasicBlock(Record[0]); 4594 if (!TrueDest) 4595 return error("Invalid record"); 4596 4597 if (Record.size() == 1) { 4598 I = BranchInst::Create(TrueDest); 4599 InstructionList.push_back(I); 4600 } 4601 else { 4602 BasicBlock *FalseDest = getBasicBlock(Record[1]); 4603 Value *Cond = getValue(Record, 2, NextValueNo, 4604 Type::getInt1Ty(Context)); 4605 if (!FalseDest || !Cond) 4606 return error("Invalid record"); 4607 I = BranchInst::Create(TrueDest, FalseDest, Cond); 4608 InstructionList.push_back(I); 4609 } 4610 break; 4611 } 4612 case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#] 4613 if (Record.size() != 1 && Record.size() != 2) 4614 return error("Invalid record"); 4615 unsigned Idx = 0; 4616 Value *CleanupPad = 4617 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4618 if (!CleanupPad) 4619 return error("Invalid record"); 4620 BasicBlock *UnwindDest = nullptr; 4621 if (Record.size() == 2) { 4622 UnwindDest = getBasicBlock(Record[Idx++]); 4623 if (!UnwindDest) 4624 return error("Invalid record"); 4625 } 4626 4627 I = CleanupReturnInst::Create(CleanupPad, UnwindDest); 4628 InstructionList.push_back(I); 4629 break; 4630 } 4631 case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#] 4632 if (Record.size() != 2) 4633 return error("Invalid record"); 4634 unsigned Idx = 0; 4635 Value *CatchPad = 4636 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4637 if (!CatchPad) 4638 return error("Invalid record"); 4639 BasicBlock *BB = getBasicBlock(Record[Idx++]); 4640 if (!BB) 4641 return error("Invalid record"); 4642 4643 I = CatchReturnInst::Create(CatchPad, BB); 4644 InstructionList.push_back(I); 4645 break; 4646 } 4647 case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?] 4648 // We must have, at minimum, the outer scope and the number of arguments. 4649 if (Record.size() < 2) 4650 return error("Invalid record"); 4651 4652 unsigned Idx = 0; 4653 4654 Value *ParentPad = 4655 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4656 4657 unsigned NumHandlers = Record[Idx++]; 4658 4659 SmallVector<BasicBlock *, 2> Handlers; 4660 for (unsigned Op = 0; Op != NumHandlers; ++Op) { 4661 BasicBlock *BB = getBasicBlock(Record[Idx++]); 4662 if (!BB) 4663 return error("Invalid record"); 4664 Handlers.push_back(BB); 4665 } 4666 4667 BasicBlock *UnwindDest = nullptr; 4668 if (Idx + 1 == Record.size()) { 4669 UnwindDest = getBasicBlock(Record[Idx++]); 4670 if (!UnwindDest) 4671 return error("Invalid record"); 4672 } 4673 4674 if (Record.size() != Idx) 4675 return error("Invalid record"); 4676 4677 auto *CatchSwitch = 4678 CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers); 4679 for (BasicBlock *Handler : Handlers) 4680 CatchSwitch->addHandler(Handler); 4681 I = CatchSwitch; 4682 InstructionList.push_back(I); 4683 break; 4684 } 4685 case bitc::FUNC_CODE_INST_CATCHPAD: 4686 case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*] 4687 // We must have, at minimum, the outer scope and the number of arguments. 4688 if (Record.size() < 2) 4689 return error("Invalid record"); 4690 4691 unsigned Idx = 0; 4692 4693 Value *ParentPad = 4694 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4695 4696 unsigned NumArgOperands = Record[Idx++]; 4697 4698 SmallVector<Value *, 2> Args; 4699 for (unsigned Op = 0; Op != NumArgOperands; ++Op) { 4700 Value *Val; 4701 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 4702 return error("Invalid record"); 4703 Args.push_back(Val); 4704 } 4705 4706 if (Record.size() != Idx) 4707 return error("Invalid record"); 4708 4709 if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD) 4710 I = CleanupPadInst::Create(ParentPad, Args); 4711 else 4712 I = CatchPadInst::Create(ParentPad, Args); 4713 InstructionList.push_back(I); 4714 break; 4715 } 4716 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 4717 // Check magic 4718 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { 4719 // "New" SwitchInst format with case ranges. The changes to write this 4720 // format were reverted but we still recognize bitcode that uses it. 4721 // Hopefully someday we will have support for case ranges and can use 4722 // this format again. 4723 4724 Type *OpTy = getTypeByID(Record[1]); 4725 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); 4726 4727 Value *Cond = getValue(Record, 2, NextValueNo, OpTy); 4728 BasicBlock *Default = getBasicBlock(Record[3]); 4729 if (!OpTy || !Cond || !Default) 4730 return error("Invalid record"); 4731 4732 unsigned NumCases = Record[4]; 4733 4734 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 4735 InstructionList.push_back(SI); 4736 4737 unsigned CurIdx = 5; 4738 for (unsigned i = 0; i != NumCases; ++i) { 4739 SmallVector<ConstantInt*, 1> CaseVals; 4740 unsigned NumItems = Record[CurIdx++]; 4741 for (unsigned ci = 0; ci != NumItems; ++ci) { 4742 bool isSingleNumber = Record[CurIdx++]; 4743 4744 APInt Low; 4745 unsigned ActiveWords = 1; 4746 if (ValueBitWidth > 64) 4747 ActiveWords = Record[CurIdx++]; 4748 Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 4749 ValueBitWidth); 4750 CurIdx += ActiveWords; 4751 4752 if (!isSingleNumber) { 4753 ActiveWords = 1; 4754 if (ValueBitWidth > 64) 4755 ActiveWords = Record[CurIdx++]; 4756 APInt High = readWideAPInt( 4757 makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth); 4758 CurIdx += ActiveWords; 4759 4760 // FIXME: It is not clear whether values in the range should be 4761 // compared as signed or unsigned values. The partially 4762 // implemented changes that used this format in the past used 4763 // unsigned comparisons. 4764 for ( ; Low.ule(High); ++Low) 4765 CaseVals.push_back(ConstantInt::get(Context, Low)); 4766 } else 4767 CaseVals.push_back(ConstantInt::get(Context, Low)); 4768 } 4769 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); 4770 for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(), 4771 cve = CaseVals.end(); cvi != cve; ++cvi) 4772 SI->addCase(*cvi, DestBB); 4773 } 4774 I = SI; 4775 break; 4776 } 4777 4778 // Old SwitchInst format without case ranges. 4779 4780 if (Record.size() < 3 || (Record.size() & 1) == 0) 4781 return error("Invalid record"); 4782 Type *OpTy = getTypeByID(Record[0]); 4783 Value *Cond = getValue(Record, 1, NextValueNo, OpTy); 4784 BasicBlock *Default = getBasicBlock(Record[2]); 4785 if (!OpTy || !Cond || !Default) 4786 return error("Invalid record"); 4787 unsigned NumCases = (Record.size()-3)/2; 4788 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 4789 InstructionList.push_back(SI); 4790 for (unsigned i = 0, e = NumCases; i != e; ++i) { 4791 ConstantInt *CaseVal = 4792 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy)); 4793 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 4794 if (!CaseVal || !DestBB) { 4795 delete SI; 4796 return error("Invalid record"); 4797 } 4798 SI->addCase(CaseVal, DestBB); 4799 } 4800 I = SI; 4801 break; 4802 } 4803 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 4804 if (Record.size() < 2) 4805 return error("Invalid record"); 4806 Type *OpTy = getTypeByID(Record[0]); 4807 Value *Address = getValue(Record, 1, NextValueNo, OpTy); 4808 if (!OpTy || !Address) 4809 return error("Invalid record"); 4810 unsigned NumDests = Record.size()-2; 4811 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 4812 InstructionList.push_back(IBI); 4813 for (unsigned i = 0, e = NumDests; i != e; ++i) { 4814 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 4815 IBI->addDestination(DestBB); 4816 } else { 4817 delete IBI; 4818 return error("Invalid record"); 4819 } 4820 } 4821 I = IBI; 4822 break; 4823 } 4824 4825 case bitc::FUNC_CODE_INST_INVOKE: { 4826 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 4827 if (Record.size() < 4) 4828 return error("Invalid record"); 4829 unsigned OpNum = 0; 4830 AttributeSet PAL = getAttributes(Record[OpNum++]); 4831 unsigned CCInfo = Record[OpNum++]; 4832 BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]); 4833 BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]); 4834 4835 FunctionType *FTy = nullptr; 4836 if (CCInfo >> 13 & 1 && 4837 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])))) 4838 return error("Explicit invoke type is not a function type"); 4839 4840 Value *Callee; 4841 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 4842 return error("Invalid record"); 4843 4844 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 4845 if (!CalleeTy) 4846 return error("Callee is not a pointer"); 4847 if (!FTy) { 4848 FTy = dyn_cast<FunctionType>(CalleeTy->getElementType()); 4849 if (!FTy) 4850 return error("Callee is not of pointer to function type"); 4851 } else if (CalleeTy->getElementType() != FTy) 4852 return error("Explicit invoke type does not match pointee type of " 4853 "callee operand"); 4854 if (Record.size() < FTy->getNumParams() + OpNum) 4855 return error("Insufficient operands to call"); 4856 4857 SmallVector<Value*, 16> Ops; 4858 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 4859 Ops.push_back(getValue(Record, OpNum, NextValueNo, 4860 FTy->getParamType(i))); 4861 if (!Ops.back()) 4862 return error("Invalid record"); 4863 } 4864 4865 if (!FTy->isVarArg()) { 4866 if (Record.size() != OpNum) 4867 return error("Invalid record"); 4868 } else { 4869 // Read type/value pairs for varargs params. 4870 while (OpNum != Record.size()) { 4871 Value *Op; 4872 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4873 return error("Invalid record"); 4874 Ops.push_back(Op); 4875 } 4876 } 4877 4878 I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops, OperandBundles); 4879 OperandBundles.clear(); 4880 InstructionList.push_back(I); 4881 cast<InvokeInst>(I)->setCallingConv( 4882 static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo)); 4883 cast<InvokeInst>(I)->setAttributes(PAL); 4884 break; 4885 } 4886 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 4887 unsigned Idx = 0; 4888 Value *Val = nullptr; 4889 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 4890 return error("Invalid record"); 4891 I = ResumeInst::Create(Val); 4892 InstructionList.push_back(I); 4893 break; 4894 } 4895 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 4896 I = new UnreachableInst(Context); 4897 InstructionList.push_back(I); 4898 break; 4899 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 4900 if (Record.size() < 1 || ((Record.size()-1)&1)) 4901 return error("Invalid record"); 4902 Type *Ty = getTypeByID(Record[0]); 4903 if (!Ty) 4904 return error("Invalid record"); 4905 4906 PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2); 4907 InstructionList.push_back(PN); 4908 4909 for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) { 4910 Value *V; 4911 // With the new function encoding, it is possible that operands have 4912 // negative IDs (for forward references). Use a signed VBR 4913 // representation to keep the encoding small. 4914 if (UseRelativeIDs) 4915 V = getValueSigned(Record, 1+i, NextValueNo, Ty); 4916 else 4917 V = getValue(Record, 1+i, NextValueNo, Ty); 4918 BasicBlock *BB = getBasicBlock(Record[2+i]); 4919 if (!V || !BB) 4920 return error("Invalid record"); 4921 PN->addIncoming(V, BB); 4922 } 4923 I = PN; 4924 break; 4925 } 4926 4927 case bitc::FUNC_CODE_INST_LANDINGPAD: 4928 case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: { 4929 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 4930 unsigned Idx = 0; 4931 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) { 4932 if (Record.size() < 3) 4933 return error("Invalid record"); 4934 } else { 4935 assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD); 4936 if (Record.size() < 4) 4937 return error("Invalid record"); 4938 } 4939 Type *Ty = getTypeByID(Record[Idx++]); 4940 if (!Ty) 4941 return error("Invalid record"); 4942 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) { 4943 Value *PersFn = nullptr; 4944 if (getValueTypePair(Record, Idx, NextValueNo, PersFn)) 4945 return error("Invalid record"); 4946 4947 if (!F->hasPersonalityFn()) 4948 F->setPersonalityFn(cast<Constant>(PersFn)); 4949 else if (F->getPersonalityFn() != cast<Constant>(PersFn)) 4950 return error("Personality function mismatch"); 4951 } 4952 4953 bool IsCleanup = !!Record[Idx++]; 4954 unsigned NumClauses = Record[Idx++]; 4955 LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses); 4956 LP->setCleanup(IsCleanup); 4957 for (unsigned J = 0; J != NumClauses; ++J) { 4958 LandingPadInst::ClauseType CT = 4959 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 4960 Value *Val; 4961 4962 if (getValueTypePair(Record, Idx, NextValueNo, Val)) { 4963 delete LP; 4964 return error("Invalid record"); 4965 } 4966 4967 assert((CT != LandingPadInst::Catch || 4968 !isa<ArrayType>(Val->getType())) && 4969 "Catch clause has a invalid type!"); 4970 assert((CT != LandingPadInst::Filter || 4971 isa<ArrayType>(Val->getType())) && 4972 "Filter clause has invalid type!"); 4973 LP->addClause(cast<Constant>(Val)); 4974 } 4975 4976 I = LP; 4977 InstructionList.push_back(I); 4978 break; 4979 } 4980 4981 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 4982 if (Record.size() != 4) 4983 return error("Invalid record"); 4984 uint64_t AlignRecord = Record[3]; 4985 const uint64_t InAllocaMask = uint64_t(1) << 5; 4986 const uint64_t ExplicitTypeMask = uint64_t(1) << 6; 4987 const uint64_t SwiftErrorMask = uint64_t(1) << 7; 4988 const uint64_t FlagMask = InAllocaMask | ExplicitTypeMask | 4989 SwiftErrorMask; 4990 bool InAlloca = AlignRecord & InAllocaMask; 4991 bool SwiftError = AlignRecord & SwiftErrorMask; 4992 Type *Ty = getTypeByID(Record[0]); 4993 if ((AlignRecord & ExplicitTypeMask) == 0) { 4994 auto *PTy = dyn_cast_or_null<PointerType>(Ty); 4995 if (!PTy) 4996 return error("Old-style alloca with a non-pointer type"); 4997 Ty = PTy->getElementType(); 4998 } 4999 Type *OpTy = getTypeByID(Record[1]); 5000 Value *Size = getFnValueByID(Record[2], OpTy); 5001 unsigned Align; 5002 if (std::error_code EC = 5003 parseAlignmentValue(AlignRecord & ~FlagMask, Align)) { 5004 return EC; 5005 } 5006 if (!Ty || !Size) 5007 return error("Invalid record"); 5008 AllocaInst *AI = new AllocaInst(Ty, Size, Align); 5009 AI->setUsedWithInAlloca(InAlloca); 5010 AI->setSwiftError(SwiftError); 5011 I = AI; 5012 InstructionList.push_back(I); 5013 break; 5014 } 5015 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 5016 unsigned OpNum = 0; 5017 Value *Op; 5018 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 5019 (OpNum + 2 != Record.size() && OpNum + 3 != Record.size())) 5020 return error("Invalid record"); 5021 5022 Type *Ty = nullptr; 5023 if (OpNum + 3 == Record.size()) 5024 Ty = getTypeByID(Record[OpNum++]); 5025 if (std::error_code EC = typeCheckLoadStoreInst(Ty, Op->getType())) 5026 return EC; 5027 if (!Ty) 5028 Ty = cast<PointerType>(Op->getType())->getElementType(); 5029 5030 unsigned Align; 5031 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 5032 return EC; 5033 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], Align); 5034 5035 InstructionList.push_back(I); 5036 break; 5037 } 5038 case bitc::FUNC_CODE_INST_LOADATOMIC: { 5039 // LOADATOMIC: [opty, op, align, vol, ordering, synchscope] 5040 unsigned OpNum = 0; 5041 Value *Op; 5042 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 5043 (OpNum + 4 != Record.size() && OpNum + 5 != Record.size())) 5044 return error("Invalid record"); 5045 5046 Type *Ty = nullptr; 5047 if (OpNum + 5 == Record.size()) 5048 Ty = getTypeByID(Record[OpNum++]); 5049 if (std::error_code EC = typeCheckLoadStoreInst(Ty, Op->getType())) 5050 return EC; 5051 if (!Ty) 5052 Ty = cast<PointerType>(Op->getType())->getElementType(); 5053 5054 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 5055 if (Ordering == AtomicOrdering::NotAtomic || 5056 Ordering == AtomicOrdering::Release || 5057 Ordering == AtomicOrdering::AcquireRelease) 5058 return error("Invalid record"); 5059 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 5060 return error("Invalid record"); 5061 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]); 5062 5063 unsigned Align; 5064 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 5065 return EC; 5066 I = new LoadInst(Op, "", Record[OpNum+1], Align, Ordering, SynchScope); 5067 5068 InstructionList.push_back(I); 5069 break; 5070 } 5071 case bitc::FUNC_CODE_INST_STORE: 5072 case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol] 5073 unsigned OpNum = 0; 5074 Value *Val, *Ptr; 5075 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 5076 (BitCode == bitc::FUNC_CODE_INST_STORE 5077 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 5078 : popValue(Record, OpNum, NextValueNo, 5079 cast<PointerType>(Ptr->getType())->getElementType(), 5080 Val)) || 5081 OpNum + 2 != Record.size()) 5082 return error("Invalid record"); 5083 5084 if (std::error_code EC = 5085 typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 5086 return EC; 5087 unsigned Align; 5088 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 5089 return EC; 5090 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align); 5091 InstructionList.push_back(I); 5092 break; 5093 } 5094 case bitc::FUNC_CODE_INST_STOREATOMIC: 5095 case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: { 5096 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, synchscope] 5097 unsigned OpNum = 0; 5098 Value *Val, *Ptr; 5099 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 5100 (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC 5101 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 5102 : popValue(Record, OpNum, NextValueNo, 5103 cast<PointerType>(Ptr->getType())->getElementType(), 5104 Val)) || 5105 OpNum + 4 != Record.size()) 5106 return error("Invalid record"); 5107 5108 if (std::error_code EC = 5109 typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 5110 return EC; 5111 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 5112 if (Ordering == AtomicOrdering::NotAtomic || 5113 Ordering == AtomicOrdering::Acquire || 5114 Ordering == AtomicOrdering::AcquireRelease) 5115 return error("Invalid record"); 5116 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]); 5117 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 5118 return error("Invalid record"); 5119 5120 unsigned Align; 5121 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 5122 return EC; 5123 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align, Ordering, SynchScope); 5124 InstructionList.push_back(I); 5125 break; 5126 } 5127 case bitc::FUNC_CODE_INST_CMPXCHG_OLD: 5128 case bitc::FUNC_CODE_INST_CMPXCHG: { 5129 // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, synchscope, 5130 // failureordering?, isweak?] 5131 unsigned OpNum = 0; 5132 Value *Ptr, *Cmp, *New; 5133 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 5134 (BitCode == bitc::FUNC_CODE_INST_CMPXCHG 5135 ? getValueTypePair(Record, OpNum, NextValueNo, Cmp) 5136 : popValue(Record, OpNum, NextValueNo, 5137 cast<PointerType>(Ptr->getType())->getElementType(), 5138 Cmp)) || 5139 popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) || 5140 Record.size() < OpNum + 3 || Record.size() > OpNum + 5) 5141 return error("Invalid record"); 5142 AtomicOrdering SuccessOrdering = getDecodedOrdering(Record[OpNum + 1]); 5143 if (SuccessOrdering == AtomicOrdering::NotAtomic || 5144 SuccessOrdering == AtomicOrdering::Unordered) 5145 return error("Invalid record"); 5146 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 2]); 5147 5148 if (std::error_code EC = 5149 typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType())) 5150 return EC; 5151 AtomicOrdering FailureOrdering; 5152 if (Record.size() < 7) 5153 FailureOrdering = 5154 AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering); 5155 else 5156 FailureOrdering = getDecodedOrdering(Record[OpNum + 3]); 5157 5158 I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering, 5159 SynchScope); 5160 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 5161 5162 if (Record.size() < 8) { 5163 // Before weak cmpxchgs existed, the instruction simply returned the 5164 // value loaded from memory, so bitcode files from that era will be 5165 // expecting the first component of a modern cmpxchg. 5166 CurBB->getInstList().push_back(I); 5167 I = ExtractValueInst::Create(I, 0); 5168 } else { 5169 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]); 5170 } 5171 5172 InstructionList.push_back(I); 5173 break; 5174 } 5175 case bitc::FUNC_CODE_INST_ATOMICRMW: { 5176 // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, synchscope] 5177 unsigned OpNum = 0; 5178 Value *Ptr, *Val; 5179 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 5180 popValue(Record, OpNum, NextValueNo, 5181 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 5182 OpNum+4 != Record.size()) 5183 return error("Invalid record"); 5184 AtomicRMWInst::BinOp Operation = getDecodedRMWOperation(Record[OpNum]); 5185 if (Operation < AtomicRMWInst::FIRST_BINOP || 5186 Operation > AtomicRMWInst::LAST_BINOP) 5187 return error("Invalid record"); 5188 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 5189 if (Ordering == AtomicOrdering::NotAtomic || 5190 Ordering == AtomicOrdering::Unordered) 5191 return error("Invalid record"); 5192 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]); 5193 I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SynchScope); 5194 cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]); 5195 InstructionList.push_back(I); 5196 break; 5197 } 5198 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, synchscope] 5199 if (2 != Record.size()) 5200 return error("Invalid record"); 5201 AtomicOrdering Ordering = getDecodedOrdering(Record[0]); 5202 if (Ordering == AtomicOrdering::NotAtomic || 5203 Ordering == AtomicOrdering::Unordered || 5204 Ordering == AtomicOrdering::Monotonic) 5205 return error("Invalid record"); 5206 SynchronizationScope SynchScope = getDecodedSynchScope(Record[1]); 5207 I = new FenceInst(Context, Ordering, SynchScope); 5208 InstructionList.push_back(I); 5209 break; 5210 } 5211 case bitc::FUNC_CODE_INST_CALL: { 5212 // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...] 5213 if (Record.size() < 3) 5214 return error("Invalid record"); 5215 5216 unsigned OpNum = 0; 5217 AttributeSet PAL = getAttributes(Record[OpNum++]); 5218 unsigned CCInfo = Record[OpNum++]; 5219 5220 FastMathFlags FMF; 5221 if ((CCInfo >> bitc::CALL_FMF) & 1) { 5222 FMF = getDecodedFastMathFlags(Record[OpNum++]); 5223 if (!FMF.any()) 5224 return error("Fast math flags indicator set for call with no FMF"); 5225 } 5226 5227 FunctionType *FTy = nullptr; 5228 if (CCInfo >> bitc::CALL_EXPLICIT_TYPE & 1 && 5229 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])))) 5230 return error("Explicit call type is not a function type"); 5231 5232 Value *Callee; 5233 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 5234 return error("Invalid record"); 5235 5236 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 5237 if (!OpTy) 5238 return error("Callee is not a pointer type"); 5239 if (!FTy) { 5240 FTy = dyn_cast<FunctionType>(OpTy->getElementType()); 5241 if (!FTy) 5242 return error("Callee is not of pointer to function type"); 5243 } else if (OpTy->getElementType() != FTy) 5244 return error("Explicit call type does not match pointee type of " 5245 "callee operand"); 5246 if (Record.size() < FTy->getNumParams() + OpNum) 5247 return error("Insufficient operands to call"); 5248 5249 SmallVector<Value*, 16> Args; 5250 // Read the fixed params. 5251 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 5252 if (FTy->getParamType(i)->isLabelTy()) 5253 Args.push_back(getBasicBlock(Record[OpNum])); 5254 else 5255 Args.push_back(getValue(Record, OpNum, NextValueNo, 5256 FTy->getParamType(i))); 5257 if (!Args.back()) 5258 return error("Invalid record"); 5259 } 5260 5261 // Read type/value pairs for varargs params. 5262 if (!FTy->isVarArg()) { 5263 if (OpNum != Record.size()) 5264 return error("Invalid record"); 5265 } else { 5266 while (OpNum != Record.size()) { 5267 Value *Op; 5268 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 5269 return error("Invalid record"); 5270 Args.push_back(Op); 5271 } 5272 } 5273 5274 I = CallInst::Create(FTy, Callee, Args, OperandBundles); 5275 OperandBundles.clear(); 5276 InstructionList.push_back(I); 5277 cast<CallInst>(I)->setCallingConv( 5278 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 5279 CallInst::TailCallKind TCK = CallInst::TCK_None; 5280 if (CCInfo & 1 << bitc::CALL_TAIL) 5281 TCK = CallInst::TCK_Tail; 5282 if (CCInfo & (1 << bitc::CALL_MUSTTAIL)) 5283 TCK = CallInst::TCK_MustTail; 5284 if (CCInfo & (1 << bitc::CALL_NOTAIL)) 5285 TCK = CallInst::TCK_NoTail; 5286 cast<CallInst>(I)->setTailCallKind(TCK); 5287 cast<CallInst>(I)->setAttributes(PAL); 5288 if (FMF.any()) { 5289 if (!isa<FPMathOperator>(I)) 5290 return error("Fast-math-flags specified for call without " 5291 "floating-point scalar or vector return type"); 5292 I->setFastMathFlags(FMF); 5293 } 5294 break; 5295 } 5296 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 5297 if (Record.size() < 3) 5298 return error("Invalid record"); 5299 Type *OpTy = getTypeByID(Record[0]); 5300 Value *Op = getValue(Record, 1, NextValueNo, OpTy); 5301 Type *ResTy = getTypeByID(Record[2]); 5302 if (!OpTy || !Op || !ResTy) 5303 return error("Invalid record"); 5304 I = new VAArgInst(Op, ResTy); 5305 InstructionList.push_back(I); 5306 break; 5307 } 5308 5309 case bitc::FUNC_CODE_OPERAND_BUNDLE: { 5310 // A call or an invoke can be optionally prefixed with some variable 5311 // number of operand bundle blocks. These blocks are read into 5312 // OperandBundles and consumed at the next call or invoke instruction. 5313 5314 if (Record.size() < 1 || Record[0] >= BundleTags.size()) 5315 return error("Invalid record"); 5316 5317 std::vector<Value *> Inputs; 5318 5319 unsigned OpNum = 1; 5320 while (OpNum != Record.size()) { 5321 Value *Op; 5322 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 5323 return error("Invalid record"); 5324 Inputs.push_back(Op); 5325 } 5326 5327 OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs)); 5328 continue; 5329 } 5330 } 5331 5332 // Add instruction to end of current BB. If there is no current BB, reject 5333 // this file. 5334 if (!CurBB) { 5335 delete I; 5336 return error("Invalid instruction with no BB"); 5337 } 5338 if (!OperandBundles.empty()) { 5339 delete I; 5340 return error("Operand bundles found with no consumer"); 5341 } 5342 CurBB->getInstList().push_back(I); 5343 5344 // If this was a terminator instruction, move to the next block. 5345 if (isa<TerminatorInst>(I)) { 5346 ++CurBBNo; 5347 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr; 5348 } 5349 5350 // Non-void values get registered in the value table for future use. 5351 if (I && !I->getType()->isVoidTy()) 5352 ValueList.assignValue(I, NextValueNo++); 5353 } 5354 5355 OutOfRecordLoop: 5356 5357 if (!OperandBundles.empty()) 5358 return error("Operand bundles found with no consumer"); 5359 5360 // Check the function list for unresolved values. 5361 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 5362 if (!A->getParent()) { 5363 // We found at least one unresolved value. Nuke them all to avoid leaks. 5364 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 5365 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) { 5366 A->replaceAllUsesWith(UndefValue::get(A->getType())); 5367 delete A; 5368 } 5369 } 5370 return error("Never resolved value found in function"); 5371 } 5372 } 5373 5374 // Unexpected unresolved metadata about to be dropped. 5375 if (MetadataList.hasFwdRefs()) 5376 return error("Invalid function metadata: outgoing forward refs"); 5377 5378 // Trim the value list down to the size it was before we parsed this function. 5379 ValueList.shrinkTo(ModuleValueListSize); 5380 MetadataList.shrinkTo(ModuleMetadataListSize); 5381 std::vector<BasicBlock*>().swap(FunctionBBs); 5382 return std::error_code(); 5383 } 5384 5385 /// Find the function body in the bitcode stream 5386 std::error_code BitcodeReader::findFunctionInStream( 5387 Function *F, 5388 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) { 5389 while (DeferredFunctionInfoIterator->second == 0) { 5390 // This is the fallback handling for the old format bitcode that 5391 // didn't contain the function index in the VST, or when we have 5392 // an anonymous function which would not have a VST entry. 5393 // Assert that we have one of those two cases. 5394 assert(VSTOffset == 0 || !F->hasName()); 5395 // Parse the next body in the stream and set its position in the 5396 // DeferredFunctionInfo map. 5397 if (std::error_code EC = rememberAndSkipFunctionBodies()) 5398 return EC; 5399 } 5400 return std::error_code(); 5401 } 5402 5403 //===----------------------------------------------------------------------===// 5404 // GVMaterializer implementation 5405 //===----------------------------------------------------------------------===// 5406 5407 void BitcodeReader::releaseBuffer() { Buffer.release(); } 5408 5409 std::error_code BitcodeReader::materialize(GlobalValue *GV) { 5410 if (std::error_code EC = materializeMetadata()) 5411 return EC; 5412 5413 Function *F = dyn_cast<Function>(GV); 5414 // If it's not a function or is already material, ignore the request. 5415 if (!F || !F->isMaterializable()) 5416 return std::error_code(); 5417 5418 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 5419 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 5420 // If its position is recorded as 0, its body is somewhere in the stream 5421 // but we haven't seen it yet. 5422 if (DFII->second == 0) 5423 if (std::error_code EC = findFunctionInStream(F, DFII)) 5424 return EC; 5425 5426 // Move the bit stream to the saved position of the deferred function body. 5427 Stream.JumpToBit(DFII->second); 5428 5429 if (std::error_code EC = parseFunctionBody(F)) 5430 return EC; 5431 F->setIsMaterializable(false); 5432 5433 if (StripDebugInfo) 5434 stripDebugInfo(*F); 5435 5436 // Upgrade any old intrinsic calls in the function. 5437 for (auto &I : UpgradedIntrinsics) { 5438 for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end(); 5439 UI != UE;) { 5440 User *U = *UI; 5441 ++UI; 5442 if (CallInst *CI = dyn_cast<CallInst>(U)) 5443 UpgradeIntrinsicCall(CI, I.second); 5444 } 5445 } 5446 5447 // Finish fn->subprogram upgrade for materialized functions. 5448 if (DISubprogram *SP = FunctionsWithSPs.lookup(F)) 5449 F->setSubprogram(SP); 5450 5451 // Bring in any functions that this function forward-referenced via 5452 // blockaddresses. 5453 return materializeForwardReferencedFunctions(); 5454 } 5455 5456 std::error_code BitcodeReader::materializeModule() { 5457 if (std::error_code EC = materializeMetadata()) 5458 return EC; 5459 5460 // Promise to materialize all forward references. 5461 WillMaterializeAllForwardRefs = true; 5462 5463 // Iterate over the module, deserializing any functions that are still on 5464 // disk. 5465 for (Function &F : *TheModule) { 5466 if (std::error_code EC = materialize(&F)) 5467 return EC; 5468 } 5469 // At this point, if there are any function bodies, parse the rest of 5470 // the bits in the module past the last function block we have recorded 5471 // through either lazy scanning or the VST. 5472 if (LastFunctionBlockBit || NextUnreadBit) 5473 parseModule(LastFunctionBlockBit > NextUnreadBit ? LastFunctionBlockBit 5474 : NextUnreadBit); 5475 5476 // Check that all block address forward references got resolved (as we 5477 // promised above). 5478 if (!BasicBlockFwdRefs.empty()) 5479 return error("Never resolved function from blockaddress"); 5480 5481 // Upgrading intrinsic calls before TBAA can cause TBAA metadata to be lost, 5482 // to prevent this instructions with TBAA tags should be upgraded first. 5483 for (unsigned I = 0, E = InstsWithTBAATag.size(); I < E; I++) 5484 UpgradeInstWithTBAATag(InstsWithTBAATag[I]); 5485 5486 // Upgrade any intrinsic calls that slipped through (should not happen!) and 5487 // delete the old functions to clean up. We can't do this unless the entire 5488 // module is materialized because there could always be another function body 5489 // with calls to the old function. 5490 for (auto &I : UpgradedIntrinsics) { 5491 for (auto *U : I.first->users()) { 5492 if (CallInst *CI = dyn_cast<CallInst>(U)) 5493 UpgradeIntrinsicCall(CI, I.second); 5494 } 5495 if (!I.first->use_empty()) 5496 I.first->replaceAllUsesWith(I.second); 5497 I.first->eraseFromParent(); 5498 } 5499 UpgradedIntrinsics.clear(); 5500 5501 UpgradeDebugInfo(*TheModule); 5502 return std::error_code(); 5503 } 5504 5505 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const { 5506 return IdentifiedStructTypes; 5507 } 5508 5509 std::error_code 5510 BitcodeReader::initStream(std::unique_ptr<DataStreamer> Streamer) { 5511 if (Streamer) 5512 return initLazyStream(std::move(Streamer)); 5513 return initStreamFromBuffer(); 5514 } 5515 5516 std::error_code BitcodeReader::initStreamFromBuffer() { 5517 const unsigned char *BufPtr = (const unsigned char*)Buffer->getBufferStart(); 5518 const unsigned char *BufEnd = BufPtr+Buffer->getBufferSize(); 5519 5520 if (Buffer->getBufferSize() & 3) 5521 return error("Invalid bitcode signature"); 5522 5523 // If we have a wrapper header, parse it and ignore the non-bc file contents. 5524 // The magic number is 0x0B17C0DE stored in little endian. 5525 if (isBitcodeWrapper(BufPtr, BufEnd)) 5526 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 5527 return error("Invalid bitcode wrapper header"); 5528 5529 StreamFile.reset(new BitstreamReader(BufPtr, BufEnd)); 5530 Stream.init(&*StreamFile); 5531 5532 return std::error_code(); 5533 } 5534 5535 std::error_code 5536 BitcodeReader::initLazyStream(std::unique_ptr<DataStreamer> Streamer) { 5537 // Check and strip off the bitcode wrapper; BitstreamReader expects never to 5538 // see it. 5539 auto OwnedBytes = 5540 llvm::make_unique<StreamingMemoryObject>(std::move(Streamer)); 5541 StreamingMemoryObject &Bytes = *OwnedBytes; 5542 StreamFile = llvm::make_unique<BitstreamReader>(std::move(OwnedBytes)); 5543 Stream.init(&*StreamFile); 5544 5545 unsigned char buf[16]; 5546 if (Bytes.readBytes(buf, 16, 0) != 16) 5547 return error("Invalid bitcode signature"); 5548 5549 if (!isBitcode(buf, buf + 16)) 5550 return error("Invalid bitcode signature"); 5551 5552 if (isBitcodeWrapper(buf, buf + 4)) { 5553 const unsigned char *bitcodeStart = buf; 5554 const unsigned char *bitcodeEnd = buf + 16; 5555 SkipBitcodeWrapperHeader(bitcodeStart, bitcodeEnd, false); 5556 Bytes.dropLeadingBytes(bitcodeStart - buf); 5557 Bytes.setKnownObjectSize(bitcodeEnd - bitcodeStart); 5558 } 5559 return std::error_code(); 5560 } 5561 5562 std::error_code ModuleSummaryIndexBitcodeReader::error(BitcodeError E, 5563 const Twine &Message) { 5564 return ::error(DiagnosticHandler, make_error_code(E), Message); 5565 } 5566 5567 std::error_code ModuleSummaryIndexBitcodeReader::error(const Twine &Message) { 5568 return ::error(DiagnosticHandler, 5569 make_error_code(BitcodeError::CorruptedBitcode), Message); 5570 } 5571 5572 std::error_code ModuleSummaryIndexBitcodeReader::error(BitcodeError E) { 5573 return ::error(DiagnosticHandler, make_error_code(E)); 5574 } 5575 5576 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader( 5577 MemoryBuffer *Buffer, DiagnosticHandlerFunction DiagnosticHandler, 5578 bool CheckGlobalValSummaryPresenceOnly) 5579 : DiagnosticHandler(DiagnosticHandler), Buffer(Buffer), 5580 CheckGlobalValSummaryPresenceOnly(CheckGlobalValSummaryPresenceOnly) {} 5581 5582 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader( 5583 DiagnosticHandlerFunction DiagnosticHandler, 5584 bool CheckGlobalValSummaryPresenceOnly) 5585 : DiagnosticHandler(DiagnosticHandler), Buffer(nullptr), 5586 CheckGlobalValSummaryPresenceOnly(CheckGlobalValSummaryPresenceOnly) {} 5587 5588 void ModuleSummaryIndexBitcodeReader::freeState() { Buffer = nullptr; } 5589 5590 void ModuleSummaryIndexBitcodeReader::releaseBuffer() { Buffer.release(); } 5591 5592 GlobalValue::GUID 5593 ModuleSummaryIndexBitcodeReader::getGUIDFromValueId(unsigned ValueId) { 5594 auto VGI = ValueIdToCallGraphGUIDMap.find(ValueId); 5595 assert(VGI != ValueIdToCallGraphGUIDMap.end()); 5596 return VGI->second; 5597 } 5598 5599 GlobalValueInfo * 5600 ModuleSummaryIndexBitcodeReader::getInfoFromSummaryOffset(uint64_t Offset) { 5601 auto I = SummaryOffsetToInfoMap.find(Offset); 5602 assert(I != SummaryOffsetToInfoMap.end()); 5603 return I->second; 5604 } 5605 5606 // Specialized value symbol table parser used when reading module index 5607 // blocks where we don't actually create global values. 5608 // At the end of this routine the module index is populated with a map 5609 // from global value name to GlobalValueInfo. The global value info contains 5610 // the function block's bitcode offset (if applicable), or the offset into the 5611 // summary section for the combined index. 5612 std::error_code ModuleSummaryIndexBitcodeReader::parseValueSymbolTable( 5613 uint64_t Offset, 5614 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) { 5615 assert(Offset > 0 && "Expected non-zero VST offset"); 5616 uint64_t CurrentBit = jumpToValueSymbolTable(Offset, Stream); 5617 5618 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 5619 return error("Invalid record"); 5620 5621 SmallVector<uint64_t, 64> Record; 5622 5623 // Read all the records for this value table. 5624 SmallString<128> ValueName; 5625 while (1) { 5626 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5627 5628 switch (Entry.Kind) { 5629 case BitstreamEntry::SubBlock: // Handled for us already. 5630 case BitstreamEntry::Error: 5631 return error("Malformed block"); 5632 case BitstreamEntry::EndBlock: 5633 // Done parsing VST, jump back to wherever we came from. 5634 Stream.JumpToBit(CurrentBit); 5635 return std::error_code(); 5636 case BitstreamEntry::Record: 5637 // The interesting case. 5638 break; 5639 } 5640 5641 // Read a record. 5642 Record.clear(); 5643 switch (Stream.readRecord(Entry.ID, Record)) { 5644 default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records). 5645 break; 5646 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 5647 if (convertToString(Record, 1, ValueName)) 5648 return error("Invalid record"); 5649 unsigned ValueID = Record[0]; 5650 std::unique_ptr<GlobalValueInfo> GlobalValInfo = 5651 llvm::make_unique<GlobalValueInfo>(); 5652 assert(!SourceFileName.empty()); 5653 auto VLI = ValueIdToLinkageMap.find(ValueID); 5654 assert(VLI != ValueIdToLinkageMap.end() && 5655 "No linkage found for VST entry?"); 5656 std::string GlobalId = GlobalValue::getGlobalIdentifier( 5657 ValueName, VLI->second, SourceFileName); 5658 auto ValueGUID = GlobalValue::getGUID(GlobalId); 5659 if (PrintSummaryGUIDs) 5660 dbgs() << "GUID " << ValueGUID << " is " << ValueName << "\n"; 5661 TheIndex->addGlobalValueInfo(ValueGUID, std::move(GlobalValInfo)); 5662 ValueIdToCallGraphGUIDMap[ValueID] = ValueGUID; 5663 ValueName.clear(); 5664 break; 5665 } 5666 case bitc::VST_CODE_FNENTRY: { 5667 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 5668 if (convertToString(Record, 2, ValueName)) 5669 return error("Invalid record"); 5670 unsigned ValueID = Record[0]; 5671 uint64_t FuncOffset = Record[1]; 5672 std::unique_ptr<GlobalValueInfo> FuncInfo = 5673 llvm::make_unique<GlobalValueInfo>(FuncOffset); 5674 assert(!SourceFileName.empty()); 5675 auto VLI = ValueIdToLinkageMap.find(ValueID); 5676 assert(VLI != ValueIdToLinkageMap.end() && 5677 "No linkage found for VST entry?"); 5678 std::string FunctionGlobalId = GlobalValue::getGlobalIdentifier( 5679 ValueName, VLI->second, SourceFileName); 5680 auto FunctionGUID = GlobalValue::getGUID(FunctionGlobalId); 5681 if (PrintSummaryGUIDs) 5682 dbgs() << "GUID " << FunctionGUID << " is " << ValueName << "\n"; 5683 TheIndex->addGlobalValueInfo(FunctionGUID, std::move(FuncInfo)); 5684 ValueIdToCallGraphGUIDMap[ValueID] = FunctionGUID; 5685 5686 ValueName.clear(); 5687 break; 5688 } 5689 case bitc::VST_CODE_COMBINED_GVDEFENTRY: { 5690 // VST_CODE_COMBINED_GVDEFENTRY: [valueid, offset, guid] 5691 unsigned ValueID = Record[0]; 5692 uint64_t GlobalValSummaryOffset = Record[1]; 5693 GlobalValue::GUID GlobalValGUID = Record[2]; 5694 std::unique_ptr<GlobalValueInfo> GlobalValInfo = 5695 llvm::make_unique<GlobalValueInfo>(GlobalValSummaryOffset); 5696 SummaryOffsetToInfoMap[GlobalValSummaryOffset] = GlobalValInfo.get(); 5697 TheIndex->addGlobalValueInfo(GlobalValGUID, std::move(GlobalValInfo)); 5698 ValueIdToCallGraphGUIDMap[ValueID] = GlobalValGUID; 5699 break; 5700 } 5701 case bitc::VST_CODE_COMBINED_ENTRY: { 5702 // VST_CODE_COMBINED_ENTRY: [valueid, refguid] 5703 unsigned ValueID = Record[0]; 5704 GlobalValue::GUID RefGUID = Record[1]; 5705 ValueIdToCallGraphGUIDMap[ValueID] = RefGUID; 5706 break; 5707 } 5708 } 5709 } 5710 } 5711 5712 // Parse just the blocks needed for building the index out of the module. 5713 // At the end of this routine the module Index is populated with a map 5714 // from global value name to GlobalValueInfo. The global value info contains 5715 // the parsed summary information (when parsing summaries eagerly). 5716 std::error_code ModuleSummaryIndexBitcodeReader::parseModule() { 5717 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 5718 return error("Invalid record"); 5719 5720 SmallVector<uint64_t, 64> Record; 5721 DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap; 5722 unsigned ValueId = 0; 5723 5724 // Read the index for this module. 5725 while (1) { 5726 BitstreamEntry Entry = Stream.advance(); 5727 5728 switch (Entry.Kind) { 5729 case BitstreamEntry::Error: 5730 return error("Malformed block"); 5731 case BitstreamEntry::EndBlock: 5732 return std::error_code(); 5733 5734 case BitstreamEntry::SubBlock: 5735 if (CheckGlobalValSummaryPresenceOnly) { 5736 if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) { 5737 SeenGlobalValSummary = true; 5738 // No need to parse the rest since we found the summary. 5739 return std::error_code(); 5740 } 5741 if (Stream.SkipBlock()) 5742 return error("Invalid record"); 5743 continue; 5744 } 5745 switch (Entry.ID) { 5746 default: // Skip unknown content. 5747 if (Stream.SkipBlock()) 5748 return error("Invalid record"); 5749 break; 5750 case bitc::BLOCKINFO_BLOCK_ID: 5751 // Need to parse these to get abbrev ids (e.g. for VST) 5752 if (Stream.ReadBlockInfoBlock()) 5753 return error("Malformed block"); 5754 break; 5755 case bitc::VALUE_SYMTAB_BLOCK_ID: 5756 // Should have been parsed earlier via VSTOffset, unless there 5757 // is no summary section. 5758 assert(((SeenValueSymbolTable && VSTOffset > 0) || 5759 !SeenGlobalValSummary) && 5760 "Expected early VST parse via VSTOffset record"); 5761 if (Stream.SkipBlock()) 5762 return error("Invalid record"); 5763 break; 5764 case bitc::GLOBALVAL_SUMMARY_BLOCK_ID: 5765 assert(VSTOffset > 0 && "Expected non-zero VST offset"); 5766 assert(!SeenValueSymbolTable && 5767 "Already read VST when parsing summary block?"); 5768 if (std::error_code EC = 5769 parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap)) 5770 return EC; 5771 SeenValueSymbolTable = true; 5772 SeenGlobalValSummary = true; 5773 if (std::error_code EC = parseEntireSummary()) 5774 return EC; 5775 break; 5776 case bitc::MODULE_STRTAB_BLOCK_ID: 5777 if (std::error_code EC = parseModuleStringTable()) 5778 return EC; 5779 break; 5780 } 5781 continue; 5782 5783 case BitstreamEntry::Record: { 5784 Record.clear(); 5785 auto BitCode = Stream.readRecord(Entry.ID, Record); 5786 switch (BitCode) { 5787 default: 5788 break; // Default behavior, ignore unknown content. 5789 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 5790 case bitc::MODULE_CODE_SOURCE_FILENAME: { 5791 SmallString<128> ValueName; 5792 if (convertToString(Record, 0, ValueName)) 5793 return error("Invalid record"); 5794 SourceFileName = ValueName.c_str(); 5795 break; 5796 } 5797 /// MODULE_CODE_HASH: [5*i32] 5798 case bitc::MODULE_CODE_HASH: { 5799 if (Record.size() != 5) 5800 return error("Invalid hash length " + Twine(Record.size()).str()); 5801 if (!TheIndex) 5802 break; 5803 if (TheIndex->modulePaths().empty()) 5804 // Does not have any summary emitted. 5805 break; 5806 if (TheIndex->modulePaths().size() != 1) 5807 return error("Don't expect multiple modules defined?"); 5808 auto &Hash = TheIndex->modulePaths().begin()->second.second; 5809 int Pos = 0; 5810 for (auto &Val : Record) { 5811 assert(!(Val >> 32) && "Unexpected high bits set"); 5812 Hash[Pos++] = Val; 5813 } 5814 break; 5815 } 5816 /// MODULE_CODE_VSTOFFSET: [offset] 5817 case bitc::MODULE_CODE_VSTOFFSET: 5818 if (Record.size() < 1) 5819 return error("Invalid record"); 5820 VSTOffset = Record[0]; 5821 break; 5822 // GLOBALVAR: [pointer type, isconst, initid, 5823 // linkage, alignment, section, visibility, threadlocal, 5824 // unnamed_addr, externally_initialized, dllstorageclass, 5825 // comdat] 5826 case bitc::MODULE_CODE_GLOBALVAR: { 5827 if (Record.size() < 6) 5828 return error("Invalid record"); 5829 uint64_t RawLinkage = Record[3]; 5830 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 5831 ValueIdToLinkageMap[ValueId++] = Linkage; 5832 break; 5833 } 5834 // FUNCTION: [type, callingconv, isproto, linkage, paramattr, 5835 // alignment, section, visibility, gc, unnamed_addr, 5836 // prologuedata, dllstorageclass, comdat, prefixdata] 5837 case bitc::MODULE_CODE_FUNCTION: { 5838 if (Record.size() < 8) 5839 return error("Invalid record"); 5840 uint64_t RawLinkage = Record[3]; 5841 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 5842 ValueIdToLinkageMap[ValueId++] = Linkage; 5843 break; 5844 } 5845 // ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, 5846 // dllstorageclass] 5847 case bitc::MODULE_CODE_ALIAS: { 5848 if (Record.size() < 6) 5849 return error("Invalid record"); 5850 uint64_t RawLinkage = Record[3]; 5851 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 5852 ValueIdToLinkageMap[ValueId++] = Linkage; 5853 break; 5854 } 5855 } 5856 } 5857 continue; 5858 } 5859 } 5860 } 5861 5862 // Eagerly parse the entire summary block. This populates the GlobalValueSummary 5863 // objects in the index. 5864 std::error_code ModuleSummaryIndexBitcodeReader::parseEntireSummary() { 5865 if (Stream.EnterSubBlock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID)) 5866 return error("Invalid record"); 5867 5868 SmallVector<uint64_t, 64> Record; 5869 5870 bool Combined = false; 5871 while (1) { 5872 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5873 5874 switch (Entry.Kind) { 5875 case BitstreamEntry::SubBlock: // Handled for us already. 5876 case BitstreamEntry::Error: 5877 return error("Malformed block"); 5878 case BitstreamEntry::EndBlock: 5879 // For a per-module index, remove any entries that still have empty 5880 // summaries. The VST parsing creates entries eagerly for all symbols, 5881 // but not all have associated summaries (e.g. it doesn't know how to 5882 // distinguish between VST_CODE_ENTRY for function declarations vs global 5883 // variables with initializers that end up with a summary). Remove those 5884 // entries now so that we don't need to rely on the combined index merger 5885 // to clean them up (especially since that may not run for the first 5886 // module's index if we merge into that). 5887 if (!Combined) 5888 TheIndex->removeEmptySummaryEntries(); 5889 return std::error_code(); 5890 case BitstreamEntry::Record: 5891 // The interesting case. 5892 break; 5893 } 5894 5895 // Read a record. The record format depends on whether this 5896 // is a per-module index or a combined index file. In the per-module 5897 // case the records contain the associated value's ID for correlation 5898 // with VST entries. In the combined index the correlation is done 5899 // via the bitcode offset of the summary records (which were saved 5900 // in the combined index VST entries). The records also contain 5901 // information used for ThinLTO renaming and importing. 5902 Record.clear(); 5903 uint64_t CurRecordBit = Stream.GetCurrentBitNo(); 5904 auto BitCode = Stream.readRecord(Entry.ID, Record); 5905 switch (BitCode) { 5906 default: // Default behavior: ignore. 5907 break; 5908 // FS_PERMODULE: [valueid, linkage, instcount, numrefs, numrefs x valueid, 5909 // n x (valueid, callsitecount)] 5910 // FS_PERMODULE_PROFILE: [valueid, linkage, instcount, numrefs, 5911 // numrefs x valueid, 5912 // n x (valueid, callsitecount, profilecount)] 5913 case bitc::FS_PERMODULE: 5914 case bitc::FS_PERMODULE_PROFILE: { 5915 unsigned ValueID = Record[0]; 5916 uint64_t RawLinkage = Record[1]; 5917 unsigned InstCount = Record[2]; 5918 unsigned NumRefs = Record[3]; 5919 std::unique_ptr<FunctionSummary> FS = llvm::make_unique<FunctionSummary>( 5920 getDecodedLinkage(RawLinkage), InstCount); 5921 // The module path string ref set in the summary must be owned by the 5922 // index's module string table. Since we don't have a module path 5923 // string table section in the per-module index, we create a single 5924 // module path string table entry with an empty (0) ID to take 5925 // ownership. 5926 FS->setModulePath( 5927 TheIndex->addModulePath(Buffer->getBufferIdentifier(), 0)->first()); 5928 static int RefListStartIndex = 4; 5929 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 5930 assert(Record.size() >= RefListStartIndex + NumRefs && 5931 "Record size inconsistent with number of references"); 5932 for (unsigned I = 4, E = CallGraphEdgeStartIndex; I != E; ++I) { 5933 unsigned RefValueId = Record[I]; 5934 GlobalValue::GUID RefGUID = getGUIDFromValueId(RefValueId); 5935 FS->addRefEdge(RefGUID); 5936 } 5937 bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE); 5938 for (unsigned I = CallGraphEdgeStartIndex, E = Record.size(); I != E; 5939 ++I) { 5940 unsigned CalleeValueId = Record[I]; 5941 unsigned CallsiteCount = Record[++I]; 5942 uint64_t ProfileCount = HasProfile ? Record[++I] : 0; 5943 GlobalValue::GUID CalleeGUID = getGUIDFromValueId(CalleeValueId); 5944 FS->addCallGraphEdge(CalleeGUID, 5945 CalleeInfo(CallsiteCount, ProfileCount)); 5946 } 5947 GlobalValue::GUID GUID = getGUIDFromValueId(ValueID); 5948 auto *Info = TheIndex->getGlobalValueInfo(GUID); 5949 assert(!Info->summary() && "Expected a single summary per VST entry"); 5950 Info->setSummary(std::move(FS)); 5951 break; 5952 } 5953 // FS_ALIAS: [valueid, linkage, valueid] 5954 // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as 5955 // they expect all aliasee summaries to be available. 5956 case bitc::FS_ALIAS: { 5957 unsigned ValueID = Record[0]; 5958 uint64_t RawLinkage = Record[1]; 5959 unsigned AliaseeID = Record[2]; 5960 std::unique_ptr<AliasSummary> AS = 5961 llvm::make_unique<AliasSummary>(getDecodedLinkage(RawLinkage)); 5962 // The module path string ref set in the summary must be owned by the 5963 // index's module string table. Since we don't have a module path 5964 // string table section in the per-module index, we create a single 5965 // module path string table entry with an empty (0) ID to take 5966 // ownership. 5967 AS->setModulePath( 5968 TheIndex->addModulePath(Buffer->getBufferIdentifier(), 0)->first()); 5969 5970 GlobalValue::GUID AliaseeGUID = getGUIDFromValueId(AliaseeID); 5971 auto *AliaseeInfo = TheIndex->getGlobalValueInfo(AliaseeGUID); 5972 if (!AliaseeInfo->summary()) 5973 return error("Alias expects aliasee summary to be parsed"); 5974 AS->setAliasee(AliaseeInfo->summary()); 5975 5976 GlobalValue::GUID GUID = getGUIDFromValueId(ValueID); 5977 auto *Info = TheIndex->getGlobalValueInfo(GUID); 5978 assert(!Info->summary() && "Expected a single summary per VST entry"); 5979 Info->setSummary(std::move(AS)); 5980 break; 5981 } 5982 // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, linkage, n x valueid] 5983 case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: { 5984 unsigned ValueID = Record[0]; 5985 uint64_t RawLinkage = Record[1]; 5986 std::unique_ptr<GlobalVarSummary> FS = 5987 llvm::make_unique<GlobalVarSummary>(getDecodedLinkage(RawLinkage)); 5988 FS->setModulePath( 5989 TheIndex->addModulePath(Buffer->getBufferIdentifier(), 0)->first()); 5990 for (unsigned I = 2, E = Record.size(); I != E; ++I) { 5991 unsigned RefValueId = Record[I]; 5992 GlobalValue::GUID RefGUID = getGUIDFromValueId(RefValueId); 5993 FS->addRefEdge(RefGUID); 5994 } 5995 GlobalValue::GUID GUID = getGUIDFromValueId(ValueID); 5996 auto *Info = TheIndex->getGlobalValueInfo(GUID); 5997 assert(!Info->summary() && "Expected a single summary per VST entry"); 5998 Info->setSummary(std::move(FS)); 5999 break; 6000 } 6001 // FS_COMBINED: [modid, linkage, instcount, numrefs, numrefs x valueid, 6002 // n x (valueid, callsitecount)] 6003 // FS_COMBINED_PROFILE: [modid, linkage, instcount, numrefs, 6004 // numrefs x valueid, 6005 // n x (valueid, callsitecount, profilecount)] 6006 case bitc::FS_COMBINED: 6007 case bitc::FS_COMBINED_PROFILE: { 6008 uint64_t ModuleId = Record[0]; 6009 uint64_t RawLinkage = Record[1]; 6010 unsigned InstCount = Record[2]; 6011 unsigned NumRefs = Record[3]; 6012 std::unique_ptr<FunctionSummary> FS = llvm::make_unique<FunctionSummary>( 6013 getDecodedLinkage(RawLinkage), InstCount); 6014 FS->setModulePath(ModuleIdMap[ModuleId]); 6015 static int RefListStartIndex = 4; 6016 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 6017 assert(Record.size() >= RefListStartIndex + NumRefs && 6018 "Record size inconsistent with number of references"); 6019 for (unsigned I = 4, E = CallGraphEdgeStartIndex; I != E; ++I) { 6020 unsigned RefValueId = Record[I]; 6021 GlobalValue::GUID RefGUID = getGUIDFromValueId(RefValueId); 6022 FS->addRefEdge(RefGUID); 6023 } 6024 bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE); 6025 for (unsigned I = CallGraphEdgeStartIndex, E = Record.size(); I != E; 6026 ++I) { 6027 unsigned CalleeValueId = Record[I]; 6028 unsigned CallsiteCount = Record[++I]; 6029 uint64_t ProfileCount = HasProfile ? Record[++I] : 0; 6030 GlobalValue::GUID CalleeGUID = getGUIDFromValueId(CalleeValueId); 6031 FS->addCallGraphEdge(CalleeGUID, 6032 CalleeInfo(CallsiteCount, ProfileCount)); 6033 } 6034 auto *Info = getInfoFromSummaryOffset(CurRecordBit); 6035 assert(!Info->summary() && "Expected a single summary per VST entry"); 6036 Info->setSummary(std::move(FS)); 6037 Combined = true; 6038 break; 6039 } 6040 // FS_COMBINED_ALIAS: [modid, linkage, offset] 6041 // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as 6042 // they expect all aliasee summaries to be available. 6043 case bitc::FS_COMBINED_ALIAS: { 6044 uint64_t ModuleId = Record[0]; 6045 uint64_t RawLinkage = Record[1]; 6046 uint64_t AliaseeSummaryOffset = Record[2]; 6047 std::unique_ptr<AliasSummary> AS = 6048 llvm::make_unique<AliasSummary>(getDecodedLinkage(RawLinkage)); 6049 AS->setModulePath(ModuleIdMap[ModuleId]); 6050 6051 auto *AliaseeInfo = getInfoFromSummaryOffset(AliaseeSummaryOffset); 6052 if (!AliaseeInfo->summary()) 6053 return error("Alias expects aliasee summary to be parsed"); 6054 AS->setAliasee(AliaseeInfo->summary()); 6055 6056 auto *Info = getInfoFromSummaryOffset(CurRecordBit); 6057 assert(!Info->summary() && "Expected a single summary per VST entry"); 6058 Info->setSummary(std::move(AS)); 6059 Combined = true; 6060 break; 6061 } 6062 // FS_COMBINED_GLOBALVAR_INIT_REFS: [modid, linkage, n x valueid] 6063 case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: { 6064 uint64_t ModuleId = Record[0]; 6065 uint64_t RawLinkage = Record[1]; 6066 std::unique_ptr<GlobalVarSummary> FS = 6067 llvm::make_unique<GlobalVarSummary>(getDecodedLinkage(RawLinkage)); 6068 FS->setModulePath(ModuleIdMap[ModuleId]); 6069 for (unsigned I = 2, E = Record.size(); I != E; ++I) { 6070 unsigned RefValueId = Record[I]; 6071 GlobalValue::GUID RefGUID = getGUIDFromValueId(RefValueId); 6072 FS->addRefEdge(RefGUID); 6073 } 6074 auto *Info = getInfoFromSummaryOffset(CurRecordBit); 6075 assert(!Info->summary() && "Expected a single summary per VST entry"); 6076 Info->setSummary(std::move(FS)); 6077 Combined = true; 6078 break; 6079 } 6080 } 6081 } 6082 llvm_unreachable("Exit infinite loop"); 6083 } 6084 6085 // Parse the module string table block into the Index. 6086 // This populates the ModulePathStringTable map in the index. 6087 std::error_code ModuleSummaryIndexBitcodeReader::parseModuleStringTable() { 6088 if (Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID)) 6089 return error("Invalid record"); 6090 6091 SmallVector<uint64_t, 64> Record; 6092 6093 SmallString<128> ModulePath; 6094 ModulePathStringTableTy::iterator LastSeenModulePath; 6095 while (1) { 6096 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 6097 6098 switch (Entry.Kind) { 6099 case BitstreamEntry::SubBlock: // Handled for us already. 6100 case BitstreamEntry::Error: 6101 return error("Malformed block"); 6102 case BitstreamEntry::EndBlock: 6103 return std::error_code(); 6104 case BitstreamEntry::Record: 6105 // The interesting case. 6106 break; 6107 } 6108 6109 Record.clear(); 6110 switch (Stream.readRecord(Entry.ID, Record)) { 6111 default: // Default behavior: ignore. 6112 break; 6113 case bitc::MST_CODE_ENTRY: { 6114 // MST_ENTRY: [modid, namechar x N] 6115 uint64_t ModuleId = Record[0]; 6116 6117 if (convertToString(Record, 1, ModulePath)) 6118 return error("Invalid record"); 6119 6120 LastSeenModulePath = TheIndex->addModulePath(ModulePath, ModuleId); 6121 ModuleIdMap[ModuleId] = LastSeenModulePath->first(); 6122 6123 ModulePath.clear(); 6124 break; 6125 } 6126 /// MST_CODE_HASH: [5*i32] 6127 case bitc::MST_CODE_HASH: { 6128 if (Record.size() != 5) 6129 return error("Invalid hash length " + Twine(Record.size()).str()); 6130 if (LastSeenModulePath == TheIndex->modulePaths().end()) 6131 return error("Invalid hash that does not follow a module path"); 6132 int Pos = 0; 6133 for (auto &Val : Record) { 6134 assert(!(Val >> 32) && "Unexpected high bits set"); 6135 LastSeenModulePath->second.second[Pos++] = Val; 6136 } 6137 // Reset LastSeenModulePath to avoid overriding the hash unexpectedly. 6138 LastSeenModulePath = TheIndex->modulePaths().end(); 6139 break; 6140 } 6141 } 6142 } 6143 llvm_unreachable("Exit infinite loop"); 6144 } 6145 6146 // Parse the function info index from the bitcode streamer into the given index. 6147 std::error_code ModuleSummaryIndexBitcodeReader::parseSummaryIndexInto( 6148 std::unique_ptr<DataStreamer> Streamer, ModuleSummaryIndex *I) { 6149 TheIndex = I; 6150 6151 if (std::error_code EC = initStream(std::move(Streamer))) 6152 return EC; 6153 6154 // Sniff for the signature. 6155 if (!hasValidBitcodeHeader(Stream)) 6156 return error("Invalid bitcode signature"); 6157 6158 // We expect a number of well-defined blocks, though we don't necessarily 6159 // need to understand them all. 6160 while (1) { 6161 if (Stream.AtEndOfStream()) { 6162 // We didn't really read a proper Module block. 6163 return error("Malformed block"); 6164 } 6165 6166 BitstreamEntry Entry = 6167 Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs); 6168 6169 if (Entry.Kind != BitstreamEntry::SubBlock) 6170 return error("Malformed block"); 6171 6172 // If we see a MODULE_BLOCK, parse it to find the blocks needed for 6173 // building the function summary index. 6174 if (Entry.ID == bitc::MODULE_BLOCK_ID) 6175 return parseModule(); 6176 6177 if (Stream.SkipBlock()) 6178 return error("Invalid record"); 6179 } 6180 } 6181 6182 // Parse the summary information at the given offset in the buffer into 6183 // the index. Used to support lazy parsing of summaries from the 6184 // combined index during importing. 6185 // TODO: This function is not yet complete as it won't have a consumer 6186 // until ThinLTO function importing is added. 6187 std::error_code ModuleSummaryIndexBitcodeReader::parseGlobalValueSummary( 6188 std::unique_ptr<DataStreamer> Streamer, ModuleSummaryIndex *I, 6189 size_t SummaryOffset) { 6190 TheIndex = I; 6191 6192 if (std::error_code EC = initStream(std::move(Streamer))) 6193 return EC; 6194 6195 // Sniff for the signature. 6196 if (!hasValidBitcodeHeader(Stream)) 6197 return error("Invalid bitcode signature"); 6198 6199 Stream.JumpToBit(SummaryOffset); 6200 6201 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 6202 6203 switch (Entry.Kind) { 6204 default: 6205 return error("Malformed block"); 6206 case BitstreamEntry::Record: 6207 // The expected case. 6208 break; 6209 } 6210 6211 // TODO: Read a record. This interface will be completed when ThinLTO 6212 // importing is added so that it can be tested. 6213 SmallVector<uint64_t, 64> Record; 6214 switch (Stream.readRecord(Entry.ID, Record)) { 6215 case bitc::FS_COMBINED: 6216 case bitc::FS_COMBINED_PROFILE: 6217 case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: 6218 default: 6219 return error("Invalid record"); 6220 } 6221 6222 return std::error_code(); 6223 } 6224 6225 std::error_code ModuleSummaryIndexBitcodeReader::initStream( 6226 std::unique_ptr<DataStreamer> Streamer) { 6227 if (Streamer) 6228 return initLazyStream(std::move(Streamer)); 6229 return initStreamFromBuffer(); 6230 } 6231 6232 std::error_code ModuleSummaryIndexBitcodeReader::initStreamFromBuffer() { 6233 const unsigned char *BufPtr = (const unsigned char *)Buffer->getBufferStart(); 6234 const unsigned char *BufEnd = BufPtr + Buffer->getBufferSize(); 6235 6236 if (Buffer->getBufferSize() & 3) 6237 return error("Invalid bitcode signature"); 6238 6239 // If we have a wrapper header, parse it and ignore the non-bc file contents. 6240 // The magic number is 0x0B17C0DE stored in little endian. 6241 if (isBitcodeWrapper(BufPtr, BufEnd)) 6242 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 6243 return error("Invalid bitcode wrapper header"); 6244 6245 StreamFile.reset(new BitstreamReader(BufPtr, BufEnd)); 6246 Stream.init(&*StreamFile); 6247 6248 return std::error_code(); 6249 } 6250 6251 std::error_code ModuleSummaryIndexBitcodeReader::initLazyStream( 6252 std::unique_ptr<DataStreamer> Streamer) { 6253 // Check and strip off the bitcode wrapper; BitstreamReader expects never to 6254 // see it. 6255 auto OwnedBytes = 6256 llvm::make_unique<StreamingMemoryObject>(std::move(Streamer)); 6257 StreamingMemoryObject &Bytes = *OwnedBytes; 6258 StreamFile = llvm::make_unique<BitstreamReader>(std::move(OwnedBytes)); 6259 Stream.init(&*StreamFile); 6260 6261 unsigned char buf[16]; 6262 if (Bytes.readBytes(buf, 16, 0) != 16) 6263 return error("Invalid bitcode signature"); 6264 6265 if (!isBitcode(buf, buf + 16)) 6266 return error("Invalid bitcode signature"); 6267 6268 if (isBitcodeWrapper(buf, buf + 4)) { 6269 const unsigned char *bitcodeStart = buf; 6270 const unsigned char *bitcodeEnd = buf + 16; 6271 SkipBitcodeWrapperHeader(bitcodeStart, bitcodeEnd, false); 6272 Bytes.dropLeadingBytes(bitcodeStart - buf); 6273 Bytes.setKnownObjectSize(bitcodeEnd - bitcodeStart); 6274 } 6275 return std::error_code(); 6276 } 6277 6278 namespace { 6279 class BitcodeErrorCategoryType : public std::error_category { 6280 const char *name() const LLVM_NOEXCEPT override { 6281 return "llvm.bitcode"; 6282 } 6283 std::string message(int IE) const override { 6284 BitcodeError E = static_cast<BitcodeError>(IE); 6285 switch (E) { 6286 case BitcodeError::InvalidBitcodeSignature: 6287 return "Invalid bitcode signature"; 6288 case BitcodeError::CorruptedBitcode: 6289 return "Corrupted bitcode"; 6290 } 6291 llvm_unreachable("Unknown error type!"); 6292 } 6293 }; 6294 } // end anonymous namespace 6295 6296 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory; 6297 6298 const std::error_category &llvm::BitcodeErrorCategory() { 6299 return *ErrorCategory; 6300 } 6301 6302 //===----------------------------------------------------------------------===// 6303 // External interface 6304 //===----------------------------------------------------------------------===// 6305 6306 static ErrorOr<std::unique_ptr<Module>> 6307 getBitcodeModuleImpl(std::unique_ptr<DataStreamer> Streamer, StringRef Name, 6308 BitcodeReader *R, LLVMContext &Context, 6309 bool MaterializeAll, bool ShouldLazyLoadMetadata) { 6310 std::unique_ptr<Module> M = make_unique<Module>(Name, Context); 6311 M->setMaterializer(R); 6312 6313 auto cleanupOnError = [&](std::error_code EC) { 6314 R->releaseBuffer(); // Never take ownership on error. 6315 return EC; 6316 }; 6317 6318 // Delay parsing Metadata if ShouldLazyLoadMetadata is true. 6319 if (std::error_code EC = R->parseBitcodeInto(std::move(Streamer), M.get(), 6320 ShouldLazyLoadMetadata)) 6321 return cleanupOnError(EC); 6322 6323 if (MaterializeAll) { 6324 // Read in the entire module, and destroy the BitcodeReader. 6325 if (std::error_code EC = M->materializeAll()) 6326 return cleanupOnError(EC); 6327 } else { 6328 // Resolve forward references from blockaddresses. 6329 if (std::error_code EC = R->materializeForwardReferencedFunctions()) 6330 return cleanupOnError(EC); 6331 } 6332 return std::move(M); 6333 } 6334 6335 /// \brief Get a lazy one-at-time loading module from bitcode. 6336 /// 6337 /// This isn't always used in a lazy context. In particular, it's also used by 6338 /// \a parseBitcodeFile(). If this is truly lazy, then we need to eagerly pull 6339 /// in forward-referenced functions from block address references. 6340 /// 6341 /// \param[in] MaterializeAll Set to \c true if we should materialize 6342 /// everything. 6343 static ErrorOr<std::unique_ptr<Module>> 6344 getLazyBitcodeModuleImpl(std::unique_ptr<MemoryBuffer> &&Buffer, 6345 LLVMContext &Context, bool MaterializeAll, 6346 bool ShouldLazyLoadMetadata = false) { 6347 BitcodeReader *R = new BitcodeReader(Buffer.get(), Context); 6348 6349 ErrorOr<std::unique_ptr<Module>> Ret = 6350 getBitcodeModuleImpl(nullptr, Buffer->getBufferIdentifier(), R, Context, 6351 MaterializeAll, ShouldLazyLoadMetadata); 6352 if (!Ret) 6353 return Ret; 6354 6355 Buffer.release(); // The BitcodeReader owns it now. 6356 return Ret; 6357 } 6358 6359 ErrorOr<std::unique_ptr<Module>> 6360 llvm::getLazyBitcodeModule(std::unique_ptr<MemoryBuffer> &&Buffer, 6361 LLVMContext &Context, bool ShouldLazyLoadMetadata) { 6362 return getLazyBitcodeModuleImpl(std::move(Buffer), Context, false, 6363 ShouldLazyLoadMetadata); 6364 } 6365 6366 ErrorOr<std::unique_ptr<Module>> 6367 llvm::getStreamedBitcodeModule(StringRef Name, 6368 std::unique_ptr<DataStreamer> Streamer, 6369 LLVMContext &Context) { 6370 std::unique_ptr<Module> M = make_unique<Module>(Name, Context); 6371 BitcodeReader *R = new BitcodeReader(Context); 6372 6373 return getBitcodeModuleImpl(std::move(Streamer), Name, R, Context, false, 6374 false); 6375 } 6376 6377 ErrorOr<std::unique_ptr<Module>> llvm::parseBitcodeFile(MemoryBufferRef Buffer, 6378 LLVMContext &Context) { 6379 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 6380 return getLazyBitcodeModuleImpl(std::move(Buf), Context, true); 6381 // TODO: Restore the use-lists to the in-memory state when the bitcode was 6382 // written. We must defer until the Module has been fully materialized. 6383 } 6384 6385 std::string llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer, 6386 LLVMContext &Context) { 6387 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 6388 auto R = llvm::make_unique<BitcodeReader>(Buf.release(), Context); 6389 ErrorOr<std::string> Triple = R->parseTriple(); 6390 if (Triple.getError()) 6391 return ""; 6392 return Triple.get(); 6393 } 6394 6395 std::string llvm::getBitcodeProducerString(MemoryBufferRef Buffer, 6396 LLVMContext &Context) { 6397 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 6398 BitcodeReader R(Buf.release(), Context); 6399 ErrorOr<std::string> ProducerString = R.parseIdentificationBlock(); 6400 if (ProducerString.getError()) 6401 return ""; 6402 return ProducerString.get(); 6403 } 6404 6405 // Parse the specified bitcode buffer, returning the function info index. 6406 ErrorOr<std::unique_ptr<ModuleSummaryIndex>> 6407 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer, 6408 DiagnosticHandlerFunction DiagnosticHandler) { 6409 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 6410 ModuleSummaryIndexBitcodeReader R(Buf.get(), DiagnosticHandler); 6411 6412 auto Index = llvm::make_unique<ModuleSummaryIndex>(); 6413 6414 auto cleanupOnError = [&](std::error_code EC) { 6415 R.releaseBuffer(); // Never take ownership on error. 6416 return EC; 6417 }; 6418 6419 if (std::error_code EC = R.parseSummaryIndexInto(nullptr, Index.get())) 6420 return cleanupOnError(EC); 6421 6422 Buf.release(); // The ModuleSummaryIndexBitcodeReader owns it now. 6423 return std::move(Index); 6424 } 6425 6426 // Check if the given bitcode buffer contains a global value summary block. 6427 bool llvm::hasGlobalValueSummary(MemoryBufferRef Buffer, 6428 DiagnosticHandlerFunction DiagnosticHandler) { 6429 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 6430 ModuleSummaryIndexBitcodeReader R(Buf.get(), DiagnosticHandler, true); 6431 6432 auto cleanupOnError = [&](std::error_code EC) { 6433 R.releaseBuffer(); // Never take ownership on error. 6434 return false; 6435 }; 6436 6437 if (std::error_code EC = R.parseSummaryIndexInto(nullptr, nullptr)) 6438 return cleanupOnError(EC); 6439 6440 Buf.release(); // The ModuleSummaryIndexBitcodeReader owns it now. 6441 return R.foundGlobalValSummary(); 6442 } 6443