1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #include "llvm/Bitcode/ReaderWriter.h"
11 #include "BitcodeReader.h"
12 #include "llvm/ADT/SmallString.h"
13 #include "llvm/ADT/SmallVector.h"
14 #include "llvm/AutoUpgrade.h"
15 #include "llvm/Bitcode/LLVMBitCodes.h"
16 #include "llvm/IR/Constants.h"
17 #include "llvm/IR/DerivedTypes.h"
18 #include "llvm/IR/InlineAsm.h"
19 #include "llvm/IR/IntrinsicInst.h"
20 #include "llvm/IR/LLVMContext.h"
21 #include "llvm/IR/Module.h"
22 #include "llvm/IR/OperandTraits.h"
23 #include "llvm/IR/Operator.h"
24 #include "llvm/Support/DataStream.h"
25 #include "llvm/Support/MathExtras.h"
26 #include "llvm/Support/MemoryBuffer.h"
27 #include "llvm/Support/raw_ostream.h"
28 using namespace llvm;
29 
30 enum {
31   SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex
32 };
33 
34 void BitcodeReader::materializeForwardReferencedFunctions() {
35   while (!BlockAddrFwdRefs.empty()) {
36     Function *F = BlockAddrFwdRefs.begin()->first;
37     F->Materialize();
38   }
39 }
40 
41 void BitcodeReader::FreeState() {
42   if (BufferOwned)
43     delete Buffer;
44   Buffer = 0;
45   std::vector<Type*>().swap(TypeList);
46   ValueList.clear();
47   MDValueList.clear();
48 
49   std::vector<AttributeSet>().swap(MAttributes);
50   std::vector<BasicBlock*>().swap(FunctionBBs);
51   std::vector<Function*>().swap(FunctionsWithBodies);
52   DeferredFunctionInfo.clear();
53   MDKindMap.clear();
54 
55   assert(BlockAddrFwdRefs.empty() && "Unresolved blockaddress fwd references");
56 }
57 
58 //===----------------------------------------------------------------------===//
59 //  Helper functions to implement forward reference resolution, etc.
60 //===----------------------------------------------------------------------===//
61 
62 /// ConvertToString - Convert a string from a record into an std::string, return
63 /// true on failure.
64 template<typename StrTy>
65 static bool ConvertToString(ArrayRef<uint64_t> Record, unsigned Idx,
66                             StrTy &Result) {
67   if (Idx > Record.size())
68     return true;
69 
70   for (unsigned i = Idx, e = Record.size(); i != e; ++i)
71     Result += (char)Record[i];
72   return false;
73 }
74 
75 static GlobalValue::LinkageTypes GetDecodedLinkage(unsigned Val) {
76   switch (Val) {
77   default: // Map unknown/new linkages to external
78   case 0:  return GlobalValue::ExternalLinkage;
79   case 1:  return GlobalValue::WeakAnyLinkage;
80   case 2:  return GlobalValue::AppendingLinkage;
81   case 3:  return GlobalValue::InternalLinkage;
82   case 4:  return GlobalValue::LinkOnceAnyLinkage;
83   case 5:  return GlobalValue::DLLImportLinkage;
84   case 6:  return GlobalValue::DLLExportLinkage;
85   case 7:  return GlobalValue::ExternalWeakLinkage;
86   case 8:  return GlobalValue::CommonLinkage;
87   case 9:  return GlobalValue::PrivateLinkage;
88   case 10: return GlobalValue::WeakODRLinkage;
89   case 11: return GlobalValue::LinkOnceODRLinkage;
90   case 12: return GlobalValue::AvailableExternallyLinkage;
91   case 13: return GlobalValue::LinkerPrivateLinkage;
92   case 14: return GlobalValue::LinkerPrivateWeakLinkage;
93   }
94 }
95 
96 static GlobalValue::VisibilityTypes GetDecodedVisibility(unsigned Val) {
97   switch (Val) {
98   default: // Map unknown visibilities to default.
99   case 0: return GlobalValue::DefaultVisibility;
100   case 1: return GlobalValue::HiddenVisibility;
101   case 2: return GlobalValue::ProtectedVisibility;
102   }
103 }
104 
105 static GlobalVariable::ThreadLocalMode GetDecodedThreadLocalMode(unsigned Val) {
106   switch (Val) {
107     case 0: return GlobalVariable::NotThreadLocal;
108     default: // Map unknown non-zero value to general dynamic.
109     case 1: return GlobalVariable::GeneralDynamicTLSModel;
110     case 2: return GlobalVariable::LocalDynamicTLSModel;
111     case 3: return GlobalVariable::InitialExecTLSModel;
112     case 4: return GlobalVariable::LocalExecTLSModel;
113   }
114 }
115 
116 static int GetDecodedCastOpcode(unsigned Val) {
117   switch (Val) {
118   default: return -1;
119   case bitc::CAST_TRUNC   : return Instruction::Trunc;
120   case bitc::CAST_ZEXT    : return Instruction::ZExt;
121   case bitc::CAST_SEXT    : return Instruction::SExt;
122   case bitc::CAST_FPTOUI  : return Instruction::FPToUI;
123   case bitc::CAST_FPTOSI  : return Instruction::FPToSI;
124   case bitc::CAST_UITOFP  : return Instruction::UIToFP;
125   case bitc::CAST_SITOFP  : return Instruction::SIToFP;
126   case bitc::CAST_FPTRUNC : return Instruction::FPTrunc;
127   case bitc::CAST_FPEXT   : return Instruction::FPExt;
128   case bitc::CAST_PTRTOINT: return Instruction::PtrToInt;
129   case bitc::CAST_INTTOPTR: return Instruction::IntToPtr;
130   case bitc::CAST_BITCAST : return Instruction::BitCast;
131   }
132 }
133 static int GetDecodedBinaryOpcode(unsigned Val, Type *Ty) {
134   switch (Val) {
135   default: return -1;
136   case bitc::BINOP_ADD:
137     return Ty->isFPOrFPVectorTy() ? Instruction::FAdd : Instruction::Add;
138   case bitc::BINOP_SUB:
139     return Ty->isFPOrFPVectorTy() ? Instruction::FSub : Instruction::Sub;
140   case bitc::BINOP_MUL:
141     return Ty->isFPOrFPVectorTy() ? Instruction::FMul : Instruction::Mul;
142   case bitc::BINOP_UDIV: return Instruction::UDiv;
143   case bitc::BINOP_SDIV:
144     return Ty->isFPOrFPVectorTy() ? Instruction::FDiv : Instruction::SDiv;
145   case bitc::BINOP_UREM: return Instruction::URem;
146   case bitc::BINOP_SREM:
147     return Ty->isFPOrFPVectorTy() ? Instruction::FRem : Instruction::SRem;
148   case bitc::BINOP_SHL:  return Instruction::Shl;
149   case bitc::BINOP_LSHR: return Instruction::LShr;
150   case bitc::BINOP_ASHR: return Instruction::AShr;
151   case bitc::BINOP_AND:  return Instruction::And;
152   case bitc::BINOP_OR:   return Instruction::Or;
153   case bitc::BINOP_XOR:  return Instruction::Xor;
154   }
155 }
156 
157 static AtomicRMWInst::BinOp GetDecodedRMWOperation(unsigned Val) {
158   switch (Val) {
159   default: return AtomicRMWInst::BAD_BINOP;
160   case bitc::RMW_XCHG: return AtomicRMWInst::Xchg;
161   case bitc::RMW_ADD: return AtomicRMWInst::Add;
162   case bitc::RMW_SUB: return AtomicRMWInst::Sub;
163   case bitc::RMW_AND: return AtomicRMWInst::And;
164   case bitc::RMW_NAND: return AtomicRMWInst::Nand;
165   case bitc::RMW_OR: return AtomicRMWInst::Or;
166   case bitc::RMW_XOR: return AtomicRMWInst::Xor;
167   case bitc::RMW_MAX: return AtomicRMWInst::Max;
168   case bitc::RMW_MIN: return AtomicRMWInst::Min;
169   case bitc::RMW_UMAX: return AtomicRMWInst::UMax;
170   case bitc::RMW_UMIN: return AtomicRMWInst::UMin;
171   }
172 }
173 
174 static AtomicOrdering GetDecodedOrdering(unsigned Val) {
175   switch (Val) {
176   case bitc::ORDERING_NOTATOMIC: return NotAtomic;
177   case bitc::ORDERING_UNORDERED: return Unordered;
178   case bitc::ORDERING_MONOTONIC: return Monotonic;
179   case bitc::ORDERING_ACQUIRE: return Acquire;
180   case bitc::ORDERING_RELEASE: return Release;
181   case bitc::ORDERING_ACQREL: return AcquireRelease;
182   default: // Map unknown orderings to sequentially-consistent.
183   case bitc::ORDERING_SEQCST: return SequentiallyConsistent;
184   }
185 }
186 
187 static SynchronizationScope GetDecodedSynchScope(unsigned Val) {
188   switch (Val) {
189   case bitc::SYNCHSCOPE_SINGLETHREAD: return SingleThread;
190   default: // Map unknown scopes to cross-thread.
191   case bitc::SYNCHSCOPE_CROSSTHREAD: return CrossThread;
192   }
193 }
194 
195 namespace llvm {
196 namespace {
197   /// @brief A class for maintaining the slot number definition
198   /// as a placeholder for the actual definition for forward constants defs.
199   class ConstantPlaceHolder : public ConstantExpr {
200     void operator=(const ConstantPlaceHolder &) LLVM_DELETED_FUNCTION;
201   public:
202     // allocate space for exactly one operand
203     void *operator new(size_t s) {
204       return User::operator new(s, 1);
205     }
206     explicit ConstantPlaceHolder(Type *Ty, LLVMContext& Context)
207       : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) {
208       Op<0>() = UndefValue::get(Type::getInt32Ty(Context));
209     }
210 
211     /// @brief Methods to support type inquiry through isa, cast, and dyn_cast.
212     static bool classof(const Value *V) {
213       return isa<ConstantExpr>(V) &&
214              cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1;
215     }
216 
217 
218     /// Provide fast operand accessors
219     //DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
220   };
221 }
222 
223 // FIXME: can we inherit this from ConstantExpr?
224 template <>
225 struct OperandTraits<ConstantPlaceHolder> :
226   public FixedNumOperandTraits<ConstantPlaceHolder, 1> {
227 };
228 }
229 
230 
231 void BitcodeReaderValueList::AssignValue(Value *V, unsigned Idx) {
232   if (Idx == size()) {
233     push_back(V);
234     return;
235   }
236 
237   if (Idx >= size())
238     resize(Idx+1);
239 
240   WeakVH &OldV = ValuePtrs[Idx];
241   if (OldV == 0) {
242     OldV = V;
243     return;
244   }
245 
246   // Handle constants and non-constants (e.g. instrs) differently for
247   // efficiency.
248   if (Constant *PHC = dyn_cast<Constant>(&*OldV)) {
249     ResolveConstants.push_back(std::make_pair(PHC, Idx));
250     OldV = V;
251   } else {
252     // If there was a forward reference to this value, replace it.
253     Value *PrevVal = OldV;
254     OldV->replaceAllUsesWith(V);
255     delete PrevVal;
256   }
257 }
258 
259 
260 Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx,
261                                                     Type *Ty) {
262   if (Idx >= size())
263     resize(Idx + 1);
264 
265   if (Value *V = ValuePtrs[Idx]) {
266     assert(Ty == V->getType() && "Type mismatch in constant table!");
267     return cast<Constant>(V);
268   }
269 
270   // Create and return a placeholder, which will later be RAUW'd.
271   Constant *C = new ConstantPlaceHolder(Ty, Context);
272   ValuePtrs[Idx] = C;
273   return C;
274 }
275 
276 Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, Type *Ty) {
277   if (Idx >= size())
278     resize(Idx + 1);
279 
280   if (Value *V = ValuePtrs[Idx]) {
281     assert((Ty == 0 || Ty == V->getType()) && "Type mismatch in value table!");
282     return V;
283   }
284 
285   // No type specified, must be invalid reference.
286   if (Ty == 0) return 0;
287 
288   // Create and return a placeholder, which will later be RAUW'd.
289   Value *V = new Argument(Ty);
290   ValuePtrs[Idx] = V;
291   return V;
292 }
293 
294 /// ResolveConstantForwardRefs - Once all constants are read, this method bulk
295 /// resolves any forward references.  The idea behind this is that we sometimes
296 /// get constants (such as large arrays) which reference *many* forward ref
297 /// constants.  Replacing each of these causes a lot of thrashing when
298 /// building/reuniquing the constant.  Instead of doing this, we look at all the
299 /// uses and rewrite all the place holders at once for any constant that uses
300 /// a placeholder.
301 void BitcodeReaderValueList::ResolveConstantForwardRefs() {
302   // Sort the values by-pointer so that they are efficient to look up with a
303   // binary search.
304   std::sort(ResolveConstants.begin(), ResolveConstants.end());
305 
306   SmallVector<Constant*, 64> NewOps;
307 
308   while (!ResolveConstants.empty()) {
309     Value *RealVal = operator[](ResolveConstants.back().second);
310     Constant *Placeholder = ResolveConstants.back().first;
311     ResolveConstants.pop_back();
312 
313     // Loop over all users of the placeholder, updating them to reference the
314     // new value.  If they reference more than one placeholder, update them all
315     // at once.
316     while (!Placeholder->use_empty()) {
317       Value::use_iterator UI = Placeholder->use_begin();
318       User *U = *UI;
319 
320       // If the using object isn't uniqued, just update the operands.  This
321       // handles instructions and initializers for global variables.
322       if (!isa<Constant>(U) || isa<GlobalValue>(U)) {
323         UI.getUse().set(RealVal);
324         continue;
325       }
326 
327       // Otherwise, we have a constant that uses the placeholder.  Replace that
328       // constant with a new constant that has *all* placeholder uses updated.
329       Constant *UserC = cast<Constant>(U);
330       for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end();
331            I != E; ++I) {
332         Value *NewOp;
333         if (!isa<ConstantPlaceHolder>(*I)) {
334           // Not a placeholder reference.
335           NewOp = *I;
336         } else if (*I == Placeholder) {
337           // Common case is that it just references this one placeholder.
338           NewOp = RealVal;
339         } else {
340           // Otherwise, look up the placeholder in ResolveConstants.
341           ResolveConstantsTy::iterator It =
342             std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(),
343                              std::pair<Constant*, unsigned>(cast<Constant>(*I),
344                                                             0));
345           assert(It != ResolveConstants.end() && It->first == *I);
346           NewOp = operator[](It->second);
347         }
348 
349         NewOps.push_back(cast<Constant>(NewOp));
350       }
351 
352       // Make the new constant.
353       Constant *NewC;
354       if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) {
355         NewC = ConstantArray::get(UserCA->getType(), NewOps);
356       } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) {
357         NewC = ConstantStruct::get(UserCS->getType(), NewOps);
358       } else if (isa<ConstantVector>(UserC)) {
359         NewC = ConstantVector::get(NewOps);
360       } else {
361         assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr.");
362         NewC = cast<ConstantExpr>(UserC)->getWithOperands(NewOps);
363       }
364 
365       UserC->replaceAllUsesWith(NewC);
366       UserC->destroyConstant();
367       NewOps.clear();
368     }
369 
370     // Update all ValueHandles, they should be the only users at this point.
371     Placeholder->replaceAllUsesWith(RealVal);
372     delete Placeholder;
373   }
374 }
375 
376 void BitcodeReaderMDValueList::AssignValue(Value *V, unsigned Idx) {
377   if (Idx == size()) {
378     push_back(V);
379     return;
380   }
381 
382   if (Idx >= size())
383     resize(Idx+1);
384 
385   WeakVH &OldV = MDValuePtrs[Idx];
386   if (OldV == 0) {
387     OldV = V;
388     return;
389   }
390 
391   // If there was a forward reference to this value, replace it.
392   MDNode *PrevVal = cast<MDNode>(OldV);
393   OldV->replaceAllUsesWith(V);
394   MDNode::deleteTemporary(PrevVal);
395   // Deleting PrevVal sets Idx value in MDValuePtrs to null. Set new
396   // value for Idx.
397   MDValuePtrs[Idx] = V;
398 }
399 
400 Value *BitcodeReaderMDValueList::getValueFwdRef(unsigned Idx) {
401   if (Idx >= size())
402     resize(Idx + 1);
403 
404   if (Value *V = MDValuePtrs[Idx]) {
405     assert(V->getType()->isMetadataTy() && "Type mismatch in value table!");
406     return V;
407   }
408 
409   // Create and return a placeholder, which will later be RAUW'd.
410   Value *V = MDNode::getTemporary(Context, None);
411   MDValuePtrs[Idx] = V;
412   return V;
413 }
414 
415 Type *BitcodeReader::getTypeByID(unsigned ID) {
416   // The type table size is always specified correctly.
417   if (ID >= TypeList.size())
418     return 0;
419 
420   if (Type *Ty = TypeList[ID])
421     return Ty;
422 
423   // If we have a forward reference, the only possible case is when it is to a
424   // named struct.  Just create a placeholder for now.
425   return TypeList[ID] = StructType::create(Context);
426 }
427 
428 
429 //===----------------------------------------------------------------------===//
430 //  Functions for parsing blocks from the bitcode file
431 //===----------------------------------------------------------------------===//
432 
433 
434 /// \brief This fills an AttrBuilder object with the LLVM attributes that have
435 /// been decoded from the given integer. This function must stay in sync with
436 /// 'encodeLLVMAttributesForBitcode'.
437 static void decodeLLVMAttributesForBitcode(AttrBuilder &B,
438                                            uint64_t EncodedAttrs) {
439   // FIXME: Remove in 4.0.
440 
441   // The alignment is stored as a 16-bit raw value from bits 31--16.  We shift
442   // the bits above 31 down by 11 bits.
443   unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16;
444   assert((!Alignment || isPowerOf2_32(Alignment)) &&
445          "Alignment must be a power of two.");
446 
447   if (Alignment)
448     B.addAlignmentAttr(Alignment);
449   B.addRawValue(((EncodedAttrs & (0xfffffULL << 32)) >> 11) |
450                 (EncodedAttrs & 0xffff));
451 }
452 
453 error_code BitcodeReader::ParseAttributeBlock() {
454   if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID))
455     return Error(InvalidRecord);
456 
457   if (!MAttributes.empty())
458     return Error(InvalidMultipleBlocks);
459 
460   SmallVector<uint64_t, 64> Record;
461 
462   SmallVector<AttributeSet, 8> Attrs;
463 
464   // Read all the records.
465   while (1) {
466     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
467 
468     switch (Entry.Kind) {
469     case BitstreamEntry::SubBlock: // Handled for us already.
470     case BitstreamEntry::Error:
471       return Error(MalformedBlock);
472     case BitstreamEntry::EndBlock:
473       return error_code::success();
474     case BitstreamEntry::Record:
475       // The interesting case.
476       break;
477     }
478 
479     // Read a record.
480     Record.clear();
481     switch (Stream.readRecord(Entry.ID, Record)) {
482     default:  // Default behavior: ignore.
483       break;
484     case bitc::PARAMATTR_CODE_ENTRY_OLD: { // ENTRY: [paramidx0, attr0, ...]
485       // FIXME: Remove in 4.0.
486       if (Record.size() & 1)
487         return Error(InvalidRecord);
488 
489       for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
490         AttrBuilder B;
491         decodeLLVMAttributesForBitcode(B, Record[i+1]);
492         Attrs.push_back(AttributeSet::get(Context, Record[i], B));
493       }
494 
495       MAttributes.push_back(AttributeSet::get(Context, Attrs));
496       Attrs.clear();
497       break;
498     }
499     case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [attrgrp0, attrgrp1, ...]
500       for (unsigned i = 0, e = Record.size(); i != e; ++i)
501         Attrs.push_back(MAttributeGroups[Record[i]]);
502 
503       MAttributes.push_back(AttributeSet::get(Context, Attrs));
504       Attrs.clear();
505       break;
506     }
507     }
508   }
509 }
510 
511 // Returns Attribute::None on unrecognized codes.
512 static Attribute::AttrKind GetAttrFromCode(uint64_t Code) {
513   switch (Code) {
514   default:
515     return Attribute::None;
516   case bitc::ATTR_KIND_ALIGNMENT:
517     return Attribute::Alignment;
518   case bitc::ATTR_KIND_ALWAYS_INLINE:
519     return Attribute::AlwaysInline;
520   case bitc::ATTR_KIND_BUILTIN:
521     return Attribute::Builtin;
522   case bitc::ATTR_KIND_BY_VAL:
523     return Attribute::ByVal;
524   case bitc::ATTR_KIND_COLD:
525     return Attribute::Cold;
526   case bitc::ATTR_KIND_INLINE_HINT:
527     return Attribute::InlineHint;
528   case bitc::ATTR_KIND_IN_REG:
529     return Attribute::InReg;
530   case bitc::ATTR_KIND_MIN_SIZE:
531     return Attribute::MinSize;
532   case bitc::ATTR_KIND_NAKED:
533     return Attribute::Naked;
534   case bitc::ATTR_KIND_NEST:
535     return Attribute::Nest;
536   case bitc::ATTR_KIND_NO_ALIAS:
537     return Attribute::NoAlias;
538   case bitc::ATTR_KIND_NO_BUILTIN:
539     return Attribute::NoBuiltin;
540   case bitc::ATTR_KIND_NO_CAPTURE:
541     return Attribute::NoCapture;
542   case bitc::ATTR_KIND_NO_DUPLICATE:
543     return Attribute::NoDuplicate;
544   case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT:
545     return Attribute::NoImplicitFloat;
546   case bitc::ATTR_KIND_NO_INLINE:
547     return Attribute::NoInline;
548   case bitc::ATTR_KIND_NON_LAZY_BIND:
549     return Attribute::NonLazyBind;
550   case bitc::ATTR_KIND_NO_RED_ZONE:
551     return Attribute::NoRedZone;
552   case bitc::ATTR_KIND_NO_RETURN:
553     return Attribute::NoReturn;
554   case bitc::ATTR_KIND_NO_UNWIND:
555     return Attribute::NoUnwind;
556   case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE:
557     return Attribute::OptimizeForSize;
558   case bitc::ATTR_KIND_OPTIMIZE_NONE:
559     return Attribute::OptimizeNone;
560   case bitc::ATTR_KIND_READ_NONE:
561     return Attribute::ReadNone;
562   case bitc::ATTR_KIND_READ_ONLY:
563     return Attribute::ReadOnly;
564   case bitc::ATTR_KIND_RETURNED:
565     return Attribute::Returned;
566   case bitc::ATTR_KIND_RETURNS_TWICE:
567     return Attribute::ReturnsTwice;
568   case bitc::ATTR_KIND_S_EXT:
569     return Attribute::SExt;
570   case bitc::ATTR_KIND_STACK_ALIGNMENT:
571     return Attribute::StackAlignment;
572   case bitc::ATTR_KIND_STACK_PROTECT:
573     return Attribute::StackProtect;
574   case bitc::ATTR_KIND_STACK_PROTECT_REQ:
575     return Attribute::StackProtectReq;
576   case bitc::ATTR_KIND_STACK_PROTECT_STRONG:
577     return Attribute::StackProtectStrong;
578   case bitc::ATTR_KIND_STRUCT_RET:
579     return Attribute::StructRet;
580   case bitc::ATTR_KIND_SANITIZE_ADDRESS:
581     return Attribute::SanitizeAddress;
582   case bitc::ATTR_KIND_SANITIZE_THREAD:
583     return Attribute::SanitizeThread;
584   case bitc::ATTR_KIND_SANITIZE_MEMORY:
585     return Attribute::SanitizeMemory;
586   case bitc::ATTR_KIND_UW_TABLE:
587     return Attribute::UWTable;
588   case bitc::ATTR_KIND_Z_EXT:
589     return Attribute::ZExt;
590   }
591 }
592 
593 error_code BitcodeReader::ParseAttrKind(uint64_t Code,
594                                         Attribute::AttrKind *Kind) {
595   *Kind = GetAttrFromCode(Code);
596   if (*Kind == Attribute::None)
597     return Error(InvalidValue);
598   return error_code::success();
599 }
600 
601 error_code BitcodeReader::ParseAttributeGroupBlock() {
602   if (Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID))
603     return Error(InvalidRecord);
604 
605   if (!MAttributeGroups.empty())
606     return Error(InvalidMultipleBlocks);
607 
608   SmallVector<uint64_t, 64> Record;
609 
610   // Read all the records.
611   while (1) {
612     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
613 
614     switch (Entry.Kind) {
615     case BitstreamEntry::SubBlock: // Handled for us already.
616     case BitstreamEntry::Error:
617       return Error(MalformedBlock);
618     case BitstreamEntry::EndBlock:
619       return error_code::success();
620     case BitstreamEntry::Record:
621       // The interesting case.
622       break;
623     }
624 
625     // Read a record.
626     Record.clear();
627     switch (Stream.readRecord(Entry.ID, Record)) {
628     default:  // Default behavior: ignore.
629       break;
630     case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...]
631       if (Record.size() < 3)
632         return Error(InvalidRecord);
633 
634       uint64_t GrpID = Record[0];
635       uint64_t Idx = Record[1]; // Index of the object this attribute refers to.
636 
637       AttrBuilder B;
638       for (unsigned i = 2, e = Record.size(); i != e; ++i) {
639         if (Record[i] == 0) {        // Enum attribute
640           Attribute::AttrKind Kind;
641           if (error_code EC = ParseAttrKind(Record[++i], &Kind))
642             return EC;
643 
644           B.addAttribute(Kind);
645         } else if (Record[i] == 1) { // Align attribute
646           Attribute::AttrKind Kind;
647           if (error_code EC = ParseAttrKind(Record[++i], &Kind))
648             return EC;
649           if (Kind == Attribute::Alignment)
650             B.addAlignmentAttr(Record[++i]);
651           else
652             B.addStackAlignmentAttr(Record[++i]);
653         } else {                     // String attribute
654           assert((Record[i] == 3 || Record[i] == 4) &&
655                  "Invalid attribute group entry");
656           bool HasValue = (Record[i++] == 4);
657           SmallString<64> KindStr;
658           SmallString<64> ValStr;
659 
660           while (Record[i] != 0 && i != e)
661             KindStr += Record[i++];
662           assert(Record[i] == 0 && "Kind string not null terminated");
663 
664           if (HasValue) {
665             // Has a value associated with it.
666             ++i; // Skip the '0' that terminates the "kind" string.
667             while (Record[i] != 0 && i != e)
668               ValStr += Record[i++];
669             assert(Record[i] == 0 && "Value string not null terminated");
670           }
671 
672           B.addAttribute(KindStr.str(), ValStr.str());
673         }
674       }
675 
676       MAttributeGroups[GrpID] = AttributeSet::get(Context, Idx, B);
677       break;
678     }
679     }
680   }
681 }
682 
683 error_code BitcodeReader::ParseTypeTable() {
684   if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW))
685     return Error(InvalidRecord);
686 
687   return ParseTypeTableBody();
688 }
689 
690 error_code BitcodeReader::ParseTypeTableBody() {
691   if (!TypeList.empty())
692     return Error(InvalidMultipleBlocks);
693 
694   SmallVector<uint64_t, 64> Record;
695   unsigned NumRecords = 0;
696 
697   SmallString<64> TypeName;
698 
699   // Read all the records for this type table.
700   while (1) {
701     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
702 
703     switch (Entry.Kind) {
704     case BitstreamEntry::SubBlock: // Handled for us already.
705     case BitstreamEntry::Error:
706       return Error(MalformedBlock);
707     case BitstreamEntry::EndBlock:
708       if (NumRecords != TypeList.size())
709         return Error(MalformedBlock);
710       return error_code::success();
711     case BitstreamEntry::Record:
712       // The interesting case.
713       break;
714     }
715 
716     // Read a record.
717     Record.clear();
718     Type *ResultTy = 0;
719     switch (Stream.readRecord(Entry.ID, Record)) {
720     default:
721       return Error(InvalidValue);
722     case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
723       // TYPE_CODE_NUMENTRY contains a count of the number of types in the
724       // type list.  This allows us to reserve space.
725       if (Record.size() < 1)
726         return Error(InvalidRecord);
727       TypeList.resize(Record[0]);
728       continue;
729     case bitc::TYPE_CODE_VOID:      // VOID
730       ResultTy = Type::getVoidTy(Context);
731       break;
732     case bitc::TYPE_CODE_HALF:     // HALF
733       ResultTy = Type::getHalfTy(Context);
734       break;
735     case bitc::TYPE_CODE_FLOAT:     // FLOAT
736       ResultTy = Type::getFloatTy(Context);
737       break;
738     case bitc::TYPE_CODE_DOUBLE:    // DOUBLE
739       ResultTy = Type::getDoubleTy(Context);
740       break;
741     case bitc::TYPE_CODE_X86_FP80:  // X86_FP80
742       ResultTy = Type::getX86_FP80Ty(Context);
743       break;
744     case bitc::TYPE_CODE_FP128:     // FP128
745       ResultTy = Type::getFP128Ty(Context);
746       break;
747     case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
748       ResultTy = Type::getPPC_FP128Ty(Context);
749       break;
750     case bitc::TYPE_CODE_LABEL:     // LABEL
751       ResultTy = Type::getLabelTy(Context);
752       break;
753     case bitc::TYPE_CODE_METADATA:  // METADATA
754       ResultTy = Type::getMetadataTy(Context);
755       break;
756     case bitc::TYPE_CODE_X86_MMX:   // X86_MMX
757       ResultTy = Type::getX86_MMXTy(Context);
758       break;
759     case bitc::TYPE_CODE_INTEGER:   // INTEGER: [width]
760       if (Record.size() < 1)
761         return Error(InvalidRecord);
762 
763       ResultTy = IntegerType::get(Context, Record[0]);
764       break;
765     case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
766                                     //          [pointee type, address space]
767       if (Record.size() < 1)
768         return Error(InvalidRecord);
769       unsigned AddressSpace = 0;
770       if (Record.size() == 2)
771         AddressSpace = Record[1];
772       ResultTy = getTypeByID(Record[0]);
773       if (ResultTy == 0)
774         return Error(InvalidType);
775       ResultTy = PointerType::get(ResultTy, AddressSpace);
776       break;
777     }
778     case bitc::TYPE_CODE_FUNCTION_OLD: {
779       // FIXME: attrid is dead, remove it in LLVM 4.0
780       // FUNCTION: [vararg, attrid, retty, paramty x N]
781       if (Record.size() < 3)
782         return Error(InvalidRecord);
783       SmallVector<Type*, 8> ArgTys;
784       for (unsigned i = 3, e = Record.size(); i != e; ++i) {
785         if (Type *T = getTypeByID(Record[i]))
786           ArgTys.push_back(T);
787         else
788           break;
789       }
790 
791       ResultTy = getTypeByID(Record[2]);
792       if (ResultTy == 0 || ArgTys.size() < Record.size()-3)
793         return Error(InvalidType);
794 
795       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
796       break;
797     }
798     case bitc::TYPE_CODE_FUNCTION: {
799       // FUNCTION: [vararg, retty, paramty x N]
800       if (Record.size() < 2)
801         return Error(InvalidRecord);
802       SmallVector<Type*, 8> ArgTys;
803       for (unsigned i = 2, e = Record.size(); i != e; ++i) {
804         if (Type *T = getTypeByID(Record[i]))
805           ArgTys.push_back(T);
806         else
807           break;
808       }
809 
810       ResultTy = getTypeByID(Record[1]);
811       if (ResultTy == 0 || ArgTys.size() < Record.size()-2)
812         return Error(InvalidType);
813 
814       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
815       break;
816     }
817     case bitc::TYPE_CODE_STRUCT_ANON: {  // STRUCT: [ispacked, eltty x N]
818       if (Record.size() < 1)
819         return Error(InvalidRecord);
820       SmallVector<Type*, 8> EltTys;
821       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
822         if (Type *T = getTypeByID(Record[i]))
823           EltTys.push_back(T);
824         else
825           break;
826       }
827       if (EltTys.size() != Record.size()-1)
828         return Error(InvalidType);
829       ResultTy = StructType::get(Context, EltTys, Record[0]);
830       break;
831     }
832     case bitc::TYPE_CODE_STRUCT_NAME:   // STRUCT_NAME: [strchr x N]
833       if (ConvertToString(Record, 0, TypeName))
834         return Error(InvalidRecord);
835       continue;
836 
837     case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N]
838       if (Record.size() < 1)
839         return Error(InvalidRecord);
840 
841       if (NumRecords >= TypeList.size())
842         return Error(InvalidTYPETable);
843 
844       // Check to see if this was forward referenced, if so fill in the temp.
845       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
846       if (Res) {
847         Res->setName(TypeName);
848         TypeList[NumRecords] = 0;
849       } else  // Otherwise, create a new struct.
850         Res = StructType::create(Context, TypeName);
851       TypeName.clear();
852 
853       SmallVector<Type*, 8> EltTys;
854       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
855         if (Type *T = getTypeByID(Record[i]))
856           EltTys.push_back(T);
857         else
858           break;
859       }
860       if (EltTys.size() != Record.size()-1)
861         return Error(InvalidRecord);
862       Res->setBody(EltTys, Record[0]);
863       ResultTy = Res;
864       break;
865     }
866     case bitc::TYPE_CODE_OPAQUE: {       // OPAQUE: []
867       if (Record.size() != 1)
868         return Error(InvalidRecord);
869 
870       if (NumRecords >= TypeList.size())
871         return Error(InvalidTYPETable);
872 
873       // Check to see if this was forward referenced, if so fill in the temp.
874       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
875       if (Res) {
876         Res->setName(TypeName);
877         TypeList[NumRecords] = 0;
878       } else  // Otherwise, create a new struct with no body.
879         Res = StructType::create(Context, TypeName);
880       TypeName.clear();
881       ResultTy = Res;
882       break;
883     }
884     case bitc::TYPE_CODE_ARRAY:     // ARRAY: [numelts, eltty]
885       if (Record.size() < 2)
886         return Error(InvalidRecord);
887       if ((ResultTy = getTypeByID(Record[1])))
888         ResultTy = ArrayType::get(ResultTy, Record[0]);
889       else
890         return Error(InvalidType);
891       break;
892     case bitc::TYPE_CODE_VECTOR:    // VECTOR: [numelts, eltty]
893       if (Record.size() < 2)
894         return Error(InvalidRecord);
895       if ((ResultTy = getTypeByID(Record[1])))
896         ResultTy = VectorType::get(ResultTy, Record[0]);
897       else
898         return Error(InvalidType);
899       break;
900     }
901 
902     if (NumRecords >= TypeList.size())
903       return Error(InvalidTYPETable);
904     assert(ResultTy && "Didn't read a type?");
905     assert(TypeList[NumRecords] == 0 && "Already read type?");
906     TypeList[NumRecords++] = ResultTy;
907   }
908 }
909 
910 error_code BitcodeReader::ParseValueSymbolTable() {
911   if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
912     return Error(InvalidRecord);
913 
914   SmallVector<uint64_t, 64> Record;
915 
916   // Read all the records for this value table.
917   SmallString<128> ValueName;
918   while (1) {
919     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
920 
921     switch (Entry.Kind) {
922     case BitstreamEntry::SubBlock: // Handled for us already.
923     case BitstreamEntry::Error:
924       return Error(MalformedBlock);
925     case BitstreamEntry::EndBlock:
926       return error_code::success();
927     case BitstreamEntry::Record:
928       // The interesting case.
929       break;
930     }
931 
932     // Read a record.
933     Record.clear();
934     switch (Stream.readRecord(Entry.ID, Record)) {
935     default:  // Default behavior: unknown type.
936       break;
937     case bitc::VST_CODE_ENTRY: {  // VST_ENTRY: [valueid, namechar x N]
938       if (ConvertToString(Record, 1, ValueName))
939         return Error(InvalidRecord);
940       unsigned ValueID = Record[0];
941       if (ValueID >= ValueList.size())
942         return Error(InvalidRecord);
943       Value *V = ValueList[ValueID];
944 
945       V->setName(StringRef(ValueName.data(), ValueName.size()));
946       ValueName.clear();
947       break;
948     }
949     case bitc::VST_CODE_BBENTRY: {
950       if (ConvertToString(Record, 1, ValueName))
951         return Error(InvalidRecord);
952       BasicBlock *BB = getBasicBlock(Record[0]);
953       if (BB == 0)
954         return Error(InvalidRecord);
955 
956       BB->setName(StringRef(ValueName.data(), ValueName.size()));
957       ValueName.clear();
958       break;
959     }
960     }
961   }
962 }
963 
964 error_code BitcodeReader::ParseMetadata() {
965   unsigned NextMDValueNo = MDValueList.size();
966 
967   if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID))
968     return Error(InvalidRecord);
969 
970   SmallVector<uint64_t, 64> Record;
971 
972   // Read all the records.
973   while (1) {
974     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
975 
976     switch (Entry.Kind) {
977     case BitstreamEntry::SubBlock: // Handled for us already.
978     case BitstreamEntry::Error:
979       return Error(MalformedBlock);
980     case BitstreamEntry::EndBlock:
981       return error_code::success();
982     case BitstreamEntry::Record:
983       // The interesting case.
984       break;
985     }
986 
987     bool IsFunctionLocal = false;
988     // Read a record.
989     Record.clear();
990     unsigned Code = Stream.readRecord(Entry.ID, Record);
991     switch (Code) {
992     default:  // Default behavior: ignore.
993       break;
994     case bitc::METADATA_NAME: {
995       // Read name of the named metadata.
996       SmallString<8> Name(Record.begin(), Record.end());
997       Record.clear();
998       Code = Stream.ReadCode();
999 
1000       // METADATA_NAME is always followed by METADATA_NAMED_NODE.
1001       unsigned NextBitCode = Stream.readRecord(Code, Record);
1002       assert(NextBitCode == bitc::METADATA_NAMED_NODE); (void)NextBitCode;
1003 
1004       // Read named metadata elements.
1005       unsigned Size = Record.size();
1006       NamedMDNode *NMD = TheModule->getOrInsertNamedMetadata(Name);
1007       for (unsigned i = 0; i != Size; ++i) {
1008         MDNode *MD = dyn_cast<MDNode>(MDValueList.getValueFwdRef(Record[i]));
1009         if (MD == 0)
1010           return Error(InvalidRecord);
1011         NMD->addOperand(MD);
1012       }
1013       break;
1014     }
1015     case bitc::METADATA_FN_NODE:
1016       IsFunctionLocal = true;
1017       // fall-through
1018     case bitc::METADATA_NODE: {
1019       if (Record.size() % 2 == 1)
1020         return Error(InvalidRecord);
1021 
1022       unsigned Size = Record.size();
1023       SmallVector<Value*, 8> Elts;
1024       for (unsigned i = 0; i != Size; i += 2) {
1025         Type *Ty = getTypeByID(Record[i]);
1026         if (!Ty)
1027           return Error(InvalidRecord);
1028         if (Ty->isMetadataTy())
1029           Elts.push_back(MDValueList.getValueFwdRef(Record[i+1]));
1030         else if (!Ty->isVoidTy())
1031           Elts.push_back(ValueList.getValueFwdRef(Record[i+1], Ty));
1032         else
1033           Elts.push_back(NULL);
1034       }
1035       Value *V = MDNode::getWhenValsUnresolved(Context, Elts, IsFunctionLocal);
1036       IsFunctionLocal = false;
1037       MDValueList.AssignValue(V, NextMDValueNo++);
1038       break;
1039     }
1040     case bitc::METADATA_STRING: {
1041       SmallString<8> String(Record.begin(), Record.end());
1042       Value *V = MDString::get(Context, String);
1043       MDValueList.AssignValue(V, NextMDValueNo++);
1044       break;
1045     }
1046     case bitc::METADATA_KIND: {
1047       if (Record.size() < 2)
1048         return Error(InvalidRecord);
1049 
1050       unsigned Kind = Record[0];
1051       SmallString<8> Name(Record.begin()+1, Record.end());
1052 
1053       unsigned NewKind = TheModule->getMDKindID(Name.str());
1054       if (!MDKindMap.insert(std::make_pair(Kind, NewKind)).second)
1055         return Error(ConflictingMETADATA_KINDRecords);
1056       break;
1057     }
1058     }
1059   }
1060 }
1061 
1062 /// decodeSignRotatedValue - Decode a signed value stored with the sign bit in
1063 /// the LSB for dense VBR encoding.
1064 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) {
1065   if ((V & 1) == 0)
1066     return V >> 1;
1067   if (V != 1)
1068     return -(V >> 1);
1069   // There is no such thing as -0 with integers.  "-0" really means MININT.
1070   return 1ULL << 63;
1071 }
1072 
1073 /// ResolveGlobalAndAliasInits - Resolve all of the initializers for global
1074 /// values and aliases that we can.
1075 error_code BitcodeReader::ResolveGlobalAndAliasInits() {
1076   std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist;
1077   std::vector<std::pair<GlobalAlias*, unsigned> > AliasInitWorklist;
1078   std::vector<std::pair<Function*, unsigned> > FunctionPrefixWorklist;
1079 
1080   GlobalInitWorklist.swap(GlobalInits);
1081   AliasInitWorklist.swap(AliasInits);
1082   FunctionPrefixWorklist.swap(FunctionPrefixes);
1083 
1084   while (!GlobalInitWorklist.empty()) {
1085     unsigned ValID = GlobalInitWorklist.back().second;
1086     if (ValID >= ValueList.size()) {
1087       // Not ready to resolve this yet, it requires something later in the file.
1088       GlobalInits.push_back(GlobalInitWorklist.back());
1089     } else {
1090       if (Constant *C = dyn_cast<Constant>(ValueList[ValID]))
1091         GlobalInitWorklist.back().first->setInitializer(C);
1092       else
1093         return Error(ExpectedConstant);
1094     }
1095     GlobalInitWorklist.pop_back();
1096   }
1097 
1098   while (!AliasInitWorklist.empty()) {
1099     unsigned ValID = AliasInitWorklist.back().second;
1100     if (ValID >= ValueList.size()) {
1101       AliasInits.push_back(AliasInitWorklist.back());
1102     } else {
1103       if (Constant *C = dyn_cast<Constant>(ValueList[ValID]))
1104         AliasInitWorklist.back().first->setAliasee(C);
1105       else
1106         return Error(ExpectedConstant);
1107     }
1108     AliasInitWorklist.pop_back();
1109   }
1110 
1111   while (!FunctionPrefixWorklist.empty()) {
1112     unsigned ValID = FunctionPrefixWorklist.back().second;
1113     if (ValID >= ValueList.size()) {
1114       FunctionPrefixes.push_back(FunctionPrefixWorklist.back());
1115     } else {
1116       if (Constant *C = dyn_cast<Constant>(ValueList[ValID]))
1117         FunctionPrefixWorklist.back().first->setPrefixData(C);
1118       else
1119         return Error(ExpectedConstant);
1120     }
1121     FunctionPrefixWorklist.pop_back();
1122   }
1123 
1124   return error_code::success();
1125 }
1126 
1127 static APInt ReadWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) {
1128   SmallVector<uint64_t, 8> Words(Vals.size());
1129   std::transform(Vals.begin(), Vals.end(), Words.begin(),
1130                  BitcodeReader::decodeSignRotatedValue);
1131 
1132   return APInt(TypeBits, Words);
1133 }
1134 
1135 error_code BitcodeReader::ParseConstants() {
1136   if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID))
1137     return Error(InvalidRecord);
1138 
1139   SmallVector<uint64_t, 64> Record;
1140 
1141   // Read all the records for this value table.
1142   Type *CurTy = Type::getInt32Ty(Context);
1143   unsigned NextCstNo = ValueList.size();
1144   while (1) {
1145     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1146 
1147     switch (Entry.Kind) {
1148     case BitstreamEntry::SubBlock: // Handled for us already.
1149     case BitstreamEntry::Error:
1150       return Error(MalformedBlock);
1151     case BitstreamEntry::EndBlock:
1152       if (NextCstNo != ValueList.size())
1153         return Error(InvalidConstantReference);
1154 
1155       // Once all the constants have been read, go through and resolve forward
1156       // references.
1157       ValueList.ResolveConstantForwardRefs();
1158       return error_code::success();
1159     case BitstreamEntry::Record:
1160       // The interesting case.
1161       break;
1162     }
1163 
1164     // Read a record.
1165     Record.clear();
1166     Value *V = 0;
1167     unsigned BitCode = Stream.readRecord(Entry.ID, Record);
1168     switch (BitCode) {
1169     default:  // Default behavior: unknown constant
1170     case bitc::CST_CODE_UNDEF:     // UNDEF
1171       V = UndefValue::get(CurTy);
1172       break;
1173     case bitc::CST_CODE_SETTYPE:   // SETTYPE: [typeid]
1174       if (Record.empty())
1175         return Error(InvalidRecord);
1176       if (Record[0] >= TypeList.size())
1177         return Error(InvalidRecord);
1178       CurTy = TypeList[Record[0]];
1179       continue;  // Skip the ValueList manipulation.
1180     case bitc::CST_CODE_NULL:      // NULL
1181       V = Constant::getNullValue(CurTy);
1182       break;
1183     case bitc::CST_CODE_INTEGER:   // INTEGER: [intval]
1184       if (!CurTy->isIntegerTy() || Record.empty())
1185         return Error(InvalidRecord);
1186       V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0]));
1187       break;
1188     case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
1189       if (!CurTy->isIntegerTy() || Record.empty())
1190         return Error(InvalidRecord);
1191 
1192       APInt VInt = ReadWideAPInt(Record,
1193                                  cast<IntegerType>(CurTy)->getBitWidth());
1194       V = ConstantInt::get(Context, VInt);
1195 
1196       break;
1197     }
1198     case bitc::CST_CODE_FLOAT: {    // FLOAT: [fpval]
1199       if (Record.empty())
1200         return Error(InvalidRecord);
1201       if (CurTy->isHalfTy())
1202         V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf,
1203                                              APInt(16, (uint16_t)Record[0])));
1204       else if (CurTy->isFloatTy())
1205         V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle,
1206                                              APInt(32, (uint32_t)Record[0])));
1207       else if (CurTy->isDoubleTy())
1208         V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble,
1209                                              APInt(64, Record[0])));
1210       else if (CurTy->isX86_FP80Ty()) {
1211         // Bits are not stored the same way as a normal i80 APInt, compensate.
1212         uint64_t Rearrange[2];
1213         Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16);
1214         Rearrange[1] = Record[0] >> 48;
1215         V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended,
1216                                              APInt(80, Rearrange)));
1217       } else if (CurTy->isFP128Ty())
1218         V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad,
1219                                              APInt(128, Record)));
1220       else if (CurTy->isPPC_FP128Ty())
1221         V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble,
1222                                              APInt(128, Record)));
1223       else
1224         V = UndefValue::get(CurTy);
1225       break;
1226     }
1227 
1228     case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
1229       if (Record.empty())
1230         return Error(InvalidRecord);
1231 
1232       unsigned Size = Record.size();
1233       SmallVector<Constant*, 16> Elts;
1234 
1235       if (StructType *STy = dyn_cast<StructType>(CurTy)) {
1236         for (unsigned i = 0; i != Size; ++i)
1237           Elts.push_back(ValueList.getConstantFwdRef(Record[i],
1238                                                      STy->getElementType(i)));
1239         V = ConstantStruct::get(STy, Elts);
1240       } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) {
1241         Type *EltTy = ATy->getElementType();
1242         for (unsigned i = 0; i != Size; ++i)
1243           Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
1244         V = ConstantArray::get(ATy, Elts);
1245       } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) {
1246         Type *EltTy = VTy->getElementType();
1247         for (unsigned i = 0; i != Size; ++i)
1248           Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
1249         V = ConstantVector::get(Elts);
1250       } else {
1251         V = UndefValue::get(CurTy);
1252       }
1253       break;
1254     }
1255     case bitc::CST_CODE_STRING:    // STRING: [values]
1256     case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
1257       if (Record.empty())
1258         return Error(InvalidRecord);
1259 
1260       SmallString<16> Elts(Record.begin(), Record.end());
1261       V = ConstantDataArray::getString(Context, Elts,
1262                                        BitCode == bitc::CST_CODE_CSTRING);
1263       break;
1264     }
1265     case bitc::CST_CODE_DATA: {// DATA: [n x value]
1266       if (Record.empty())
1267         return Error(InvalidRecord);
1268 
1269       Type *EltTy = cast<SequentialType>(CurTy)->getElementType();
1270       unsigned Size = Record.size();
1271 
1272       if (EltTy->isIntegerTy(8)) {
1273         SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end());
1274         if (isa<VectorType>(CurTy))
1275           V = ConstantDataVector::get(Context, Elts);
1276         else
1277           V = ConstantDataArray::get(Context, Elts);
1278       } else if (EltTy->isIntegerTy(16)) {
1279         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
1280         if (isa<VectorType>(CurTy))
1281           V = ConstantDataVector::get(Context, Elts);
1282         else
1283           V = ConstantDataArray::get(Context, Elts);
1284       } else if (EltTy->isIntegerTy(32)) {
1285         SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
1286         if (isa<VectorType>(CurTy))
1287           V = ConstantDataVector::get(Context, Elts);
1288         else
1289           V = ConstantDataArray::get(Context, Elts);
1290       } else if (EltTy->isIntegerTy(64)) {
1291         SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
1292         if (isa<VectorType>(CurTy))
1293           V = ConstantDataVector::get(Context, Elts);
1294         else
1295           V = ConstantDataArray::get(Context, Elts);
1296       } else if (EltTy->isFloatTy()) {
1297         SmallVector<float, 16> Elts(Size);
1298         std::transform(Record.begin(), Record.end(), Elts.begin(), BitsToFloat);
1299         if (isa<VectorType>(CurTy))
1300           V = ConstantDataVector::get(Context, Elts);
1301         else
1302           V = ConstantDataArray::get(Context, Elts);
1303       } else if (EltTy->isDoubleTy()) {
1304         SmallVector<double, 16> Elts(Size);
1305         std::transform(Record.begin(), Record.end(), Elts.begin(),
1306                        BitsToDouble);
1307         if (isa<VectorType>(CurTy))
1308           V = ConstantDataVector::get(Context, Elts);
1309         else
1310           V = ConstantDataArray::get(Context, Elts);
1311       } else {
1312         return Error(InvalidTypeForValue);
1313       }
1314       break;
1315     }
1316 
1317     case bitc::CST_CODE_CE_BINOP: {  // CE_BINOP: [opcode, opval, opval]
1318       if (Record.size() < 3)
1319         return Error(InvalidRecord);
1320       int Opc = GetDecodedBinaryOpcode(Record[0], CurTy);
1321       if (Opc < 0) {
1322         V = UndefValue::get(CurTy);  // Unknown binop.
1323       } else {
1324         Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
1325         Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy);
1326         unsigned Flags = 0;
1327         if (Record.size() >= 4) {
1328           if (Opc == Instruction::Add ||
1329               Opc == Instruction::Sub ||
1330               Opc == Instruction::Mul ||
1331               Opc == Instruction::Shl) {
1332             if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP))
1333               Flags |= OverflowingBinaryOperator::NoSignedWrap;
1334             if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
1335               Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
1336           } else if (Opc == Instruction::SDiv ||
1337                      Opc == Instruction::UDiv ||
1338                      Opc == Instruction::LShr ||
1339                      Opc == Instruction::AShr) {
1340             if (Record[3] & (1 << bitc::PEO_EXACT))
1341               Flags |= SDivOperator::IsExact;
1342           }
1343         }
1344         V = ConstantExpr::get(Opc, LHS, RHS, Flags);
1345       }
1346       break;
1347     }
1348     case bitc::CST_CODE_CE_CAST: {  // CE_CAST: [opcode, opty, opval]
1349       if (Record.size() < 3)
1350         return Error(InvalidRecord);
1351       int Opc = GetDecodedCastOpcode(Record[0]);
1352       if (Opc < 0) {
1353         V = UndefValue::get(CurTy);  // Unknown cast.
1354       } else {
1355         Type *OpTy = getTypeByID(Record[1]);
1356         if (!OpTy)
1357           return Error(InvalidRecord);
1358         Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy);
1359         V = ConstantExpr::getCast(Opc, Op, CurTy);
1360       }
1361       break;
1362     }
1363     case bitc::CST_CODE_CE_INBOUNDS_GEP:
1364     case bitc::CST_CODE_CE_GEP: {  // CE_GEP:        [n x operands]
1365       if (Record.size() & 1)
1366         return Error(InvalidRecord);
1367       SmallVector<Constant*, 16> Elts;
1368       for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
1369         Type *ElTy = getTypeByID(Record[i]);
1370         if (!ElTy)
1371           return Error(InvalidRecord);
1372         Elts.push_back(ValueList.getConstantFwdRef(Record[i+1], ElTy));
1373       }
1374       ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
1375       V = ConstantExpr::getGetElementPtr(Elts[0], Indices,
1376                                          BitCode ==
1377                                            bitc::CST_CODE_CE_INBOUNDS_GEP);
1378       break;
1379     }
1380     case bitc::CST_CODE_CE_SELECT: {  // CE_SELECT: [opval#, opval#, opval#]
1381       if (Record.size() < 3)
1382         return Error(InvalidRecord);
1383 
1384       Type *SelectorTy = Type::getInt1Ty(Context);
1385 
1386       // If CurTy is a vector of length n, then Record[0] must be a <n x i1>
1387       // vector. Otherwise, it must be a single bit.
1388       if (VectorType *VTy = dyn_cast<VectorType>(CurTy))
1389         SelectorTy = VectorType::get(Type::getInt1Ty(Context),
1390                                      VTy->getNumElements());
1391 
1392       V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0],
1393                                                               SelectorTy),
1394                                   ValueList.getConstantFwdRef(Record[1],CurTy),
1395                                   ValueList.getConstantFwdRef(Record[2],CurTy));
1396       break;
1397     }
1398     case bitc::CST_CODE_CE_EXTRACTELT: { // CE_EXTRACTELT: [opty, opval, opval]
1399       if (Record.size() < 3)
1400         return Error(InvalidRecord);
1401       VectorType *OpTy =
1402         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
1403       if (OpTy == 0)
1404         return Error(InvalidRecord);
1405       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
1406       Constant *Op1 = ValueList.getConstantFwdRef(Record[2],
1407                                                   Type::getInt32Ty(Context));
1408       V = ConstantExpr::getExtractElement(Op0, Op1);
1409       break;
1410     }
1411     case bitc::CST_CODE_CE_INSERTELT: { // CE_INSERTELT: [opval, opval, opval]
1412       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
1413       if (Record.size() < 3 || OpTy == 0)
1414         return Error(InvalidRecord);
1415       Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
1416       Constant *Op1 = ValueList.getConstantFwdRef(Record[1],
1417                                                   OpTy->getElementType());
1418       Constant *Op2 = ValueList.getConstantFwdRef(Record[2],
1419                                                   Type::getInt32Ty(Context));
1420       V = ConstantExpr::getInsertElement(Op0, Op1, Op2);
1421       break;
1422     }
1423     case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
1424       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
1425       if (Record.size() < 3 || OpTy == 0)
1426         return Error(InvalidRecord);
1427       Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
1428       Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy);
1429       Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
1430                                                  OpTy->getNumElements());
1431       Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy);
1432       V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
1433       break;
1434     }
1435     case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval]
1436       VectorType *RTy = dyn_cast<VectorType>(CurTy);
1437       VectorType *OpTy =
1438         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
1439       if (Record.size() < 4 || RTy == 0 || OpTy == 0)
1440         return Error(InvalidRecord);
1441       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
1442       Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
1443       Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
1444                                                  RTy->getNumElements());
1445       Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy);
1446       V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
1447       break;
1448     }
1449     case bitc::CST_CODE_CE_CMP: {     // CE_CMP: [opty, opval, opval, pred]
1450       if (Record.size() < 4)
1451         return Error(InvalidRecord);
1452       Type *OpTy = getTypeByID(Record[0]);
1453       if (OpTy == 0)
1454         return Error(InvalidRecord);
1455       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
1456       Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
1457 
1458       if (OpTy->isFPOrFPVectorTy())
1459         V = ConstantExpr::getFCmp(Record[3], Op0, Op1);
1460       else
1461         V = ConstantExpr::getICmp(Record[3], Op0, Op1);
1462       break;
1463     }
1464     // This maintains backward compatibility, pre-asm dialect keywords.
1465     // FIXME: Remove with the 4.0 release.
1466     case bitc::CST_CODE_INLINEASM_OLD: {
1467       if (Record.size() < 2)
1468         return Error(InvalidRecord);
1469       std::string AsmStr, ConstrStr;
1470       bool HasSideEffects = Record[0] & 1;
1471       bool IsAlignStack = Record[0] >> 1;
1472       unsigned AsmStrSize = Record[1];
1473       if (2+AsmStrSize >= Record.size())
1474         return Error(InvalidRecord);
1475       unsigned ConstStrSize = Record[2+AsmStrSize];
1476       if (3+AsmStrSize+ConstStrSize > Record.size())
1477         return Error(InvalidRecord);
1478 
1479       for (unsigned i = 0; i != AsmStrSize; ++i)
1480         AsmStr += (char)Record[2+i];
1481       for (unsigned i = 0; i != ConstStrSize; ++i)
1482         ConstrStr += (char)Record[3+AsmStrSize+i];
1483       PointerType *PTy = cast<PointerType>(CurTy);
1484       V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()),
1485                          AsmStr, ConstrStr, HasSideEffects, IsAlignStack);
1486       break;
1487     }
1488     // This version adds support for the asm dialect keywords (e.g.,
1489     // inteldialect).
1490     case bitc::CST_CODE_INLINEASM: {
1491       if (Record.size() < 2)
1492         return Error(InvalidRecord);
1493       std::string AsmStr, ConstrStr;
1494       bool HasSideEffects = Record[0] & 1;
1495       bool IsAlignStack = (Record[0] >> 1) & 1;
1496       unsigned AsmDialect = Record[0] >> 2;
1497       unsigned AsmStrSize = Record[1];
1498       if (2+AsmStrSize >= Record.size())
1499         return Error(InvalidRecord);
1500       unsigned ConstStrSize = Record[2+AsmStrSize];
1501       if (3+AsmStrSize+ConstStrSize > Record.size())
1502         return Error(InvalidRecord);
1503 
1504       for (unsigned i = 0; i != AsmStrSize; ++i)
1505         AsmStr += (char)Record[2+i];
1506       for (unsigned i = 0; i != ConstStrSize; ++i)
1507         ConstrStr += (char)Record[3+AsmStrSize+i];
1508       PointerType *PTy = cast<PointerType>(CurTy);
1509       V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()),
1510                          AsmStr, ConstrStr, HasSideEffects, IsAlignStack,
1511                          InlineAsm::AsmDialect(AsmDialect));
1512       break;
1513     }
1514     case bitc::CST_CODE_BLOCKADDRESS:{
1515       if (Record.size() < 3)
1516         return Error(InvalidRecord);
1517       Type *FnTy = getTypeByID(Record[0]);
1518       if (FnTy == 0)
1519         return Error(InvalidRecord);
1520       Function *Fn =
1521         dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy));
1522       if (Fn == 0)
1523         return Error(InvalidRecord);
1524 
1525       // If the function is already parsed we can insert the block address right
1526       // away.
1527       if (!Fn->empty()) {
1528         Function::iterator BBI = Fn->begin(), BBE = Fn->end();
1529         for (size_t I = 0, E = Record[2]; I != E; ++I) {
1530           if (BBI == BBE)
1531             return Error(InvalidID);
1532           ++BBI;
1533         }
1534         V = BlockAddress::get(Fn, BBI);
1535       } else {
1536         // Otherwise insert a placeholder and remember it so it can be inserted
1537         // when the function is parsed.
1538         GlobalVariable *FwdRef = new GlobalVariable(*Fn->getParent(),
1539                                                     Type::getInt8Ty(Context),
1540                                             false, GlobalValue::InternalLinkage,
1541                                                     0, "");
1542         BlockAddrFwdRefs[Fn].push_back(std::make_pair(Record[2], FwdRef));
1543         V = FwdRef;
1544       }
1545       break;
1546     }
1547     }
1548 
1549     ValueList.AssignValue(V, NextCstNo);
1550     ++NextCstNo;
1551   }
1552 }
1553 
1554 error_code BitcodeReader::ParseUseLists() {
1555   if (Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID))
1556     return Error(InvalidRecord);
1557 
1558   SmallVector<uint64_t, 64> Record;
1559 
1560   // Read all the records.
1561   while (1) {
1562     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1563 
1564     switch (Entry.Kind) {
1565     case BitstreamEntry::SubBlock: // Handled for us already.
1566     case BitstreamEntry::Error:
1567       return Error(MalformedBlock);
1568     case BitstreamEntry::EndBlock:
1569       return error_code::success();
1570     case BitstreamEntry::Record:
1571       // The interesting case.
1572       break;
1573     }
1574 
1575     // Read a use list record.
1576     Record.clear();
1577     switch (Stream.readRecord(Entry.ID, Record)) {
1578     default:  // Default behavior: unknown type.
1579       break;
1580     case bitc::USELIST_CODE_ENTRY: { // USELIST_CODE_ENTRY: TBD.
1581       unsigned RecordLength = Record.size();
1582       if (RecordLength < 1)
1583         return Error(InvalidRecord);
1584       UseListRecords.push_back(Record);
1585       break;
1586     }
1587     }
1588   }
1589 }
1590 
1591 /// RememberAndSkipFunctionBody - When we see the block for a function body,
1592 /// remember where it is and then skip it.  This lets us lazily deserialize the
1593 /// functions.
1594 error_code BitcodeReader::RememberAndSkipFunctionBody() {
1595   // Get the function we are talking about.
1596   if (FunctionsWithBodies.empty())
1597     return Error(InsufficientFunctionProtos);
1598 
1599   Function *Fn = FunctionsWithBodies.back();
1600   FunctionsWithBodies.pop_back();
1601 
1602   // Save the current stream state.
1603   uint64_t CurBit = Stream.GetCurrentBitNo();
1604   DeferredFunctionInfo[Fn] = CurBit;
1605 
1606   // Skip over the function block for now.
1607   if (Stream.SkipBlock())
1608     return Error(InvalidRecord);
1609   return error_code::success();
1610 }
1611 
1612 error_code BitcodeReader::GlobalCleanup() {
1613   // Patch the initializers for globals and aliases up.
1614   ResolveGlobalAndAliasInits();
1615   if (!GlobalInits.empty() || !AliasInits.empty())
1616     return Error(MalformedGlobalInitializerSet);
1617 
1618   // Look for intrinsic functions which need to be upgraded at some point
1619   for (Module::iterator FI = TheModule->begin(), FE = TheModule->end();
1620        FI != FE; ++FI) {
1621     Function *NewFn;
1622     if (UpgradeIntrinsicFunction(FI, NewFn))
1623       UpgradedIntrinsics.push_back(std::make_pair(FI, NewFn));
1624   }
1625 
1626   // Look for global variables which need to be renamed.
1627   for (Module::global_iterator
1628          GI = TheModule->global_begin(), GE = TheModule->global_end();
1629        GI != GE; ++GI)
1630     UpgradeGlobalVariable(GI);
1631   // Force deallocation of memory for these vectors to favor the client that
1632   // want lazy deserialization.
1633   std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits);
1634   std::vector<std::pair<GlobalAlias*, unsigned> >().swap(AliasInits);
1635   return error_code::success();
1636 }
1637 
1638 error_code BitcodeReader::ParseModule(bool Resume) {
1639   if (Resume)
1640     Stream.JumpToBit(NextUnreadBit);
1641   else if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
1642     return Error(InvalidRecord);
1643 
1644   SmallVector<uint64_t, 64> Record;
1645   std::vector<std::string> SectionTable;
1646   std::vector<std::string> GCTable;
1647 
1648   // Read all the records for this module.
1649   while (1) {
1650     BitstreamEntry Entry = Stream.advance();
1651 
1652     switch (Entry.Kind) {
1653     case BitstreamEntry::Error:
1654       return Error(MalformedBlock);
1655     case BitstreamEntry::EndBlock:
1656       return GlobalCleanup();
1657 
1658     case BitstreamEntry::SubBlock:
1659       switch (Entry.ID) {
1660       default:  // Skip unknown content.
1661         if (Stream.SkipBlock())
1662           return Error(InvalidRecord);
1663         break;
1664       case bitc::BLOCKINFO_BLOCK_ID:
1665         if (Stream.ReadBlockInfoBlock())
1666           return Error(MalformedBlock);
1667         break;
1668       case bitc::PARAMATTR_BLOCK_ID:
1669         if (error_code EC = ParseAttributeBlock())
1670           return EC;
1671         break;
1672       case bitc::PARAMATTR_GROUP_BLOCK_ID:
1673         if (error_code EC = ParseAttributeGroupBlock())
1674           return EC;
1675         break;
1676       case bitc::TYPE_BLOCK_ID_NEW:
1677         if (error_code EC = ParseTypeTable())
1678           return EC;
1679         break;
1680       case bitc::VALUE_SYMTAB_BLOCK_ID:
1681         if (error_code EC = ParseValueSymbolTable())
1682           return EC;
1683         SeenValueSymbolTable = true;
1684         break;
1685       case bitc::CONSTANTS_BLOCK_ID:
1686         if (error_code EC = ParseConstants())
1687           return EC;
1688         if (error_code EC = ResolveGlobalAndAliasInits())
1689           return EC;
1690         break;
1691       case bitc::METADATA_BLOCK_ID:
1692         if (error_code EC = ParseMetadata())
1693           return EC;
1694         break;
1695       case bitc::FUNCTION_BLOCK_ID:
1696         // If this is the first function body we've seen, reverse the
1697         // FunctionsWithBodies list.
1698         if (!SeenFirstFunctionBody) {
1699           std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end());
1700           if (error_code EC = GlobalCleanup())
1701             return EC;
1702           SeenFirstFunctionBody = true;
1703         }
1704 
1705         if (error_code EC = RememberAndSkipFunctionBody())
1706           return EC;
1707         // For streaming bitcode, suspend parsing when we reach the function
1708         // bodies. Subsequent materialization calls will resume it when
1709         // necessary. For streaming, the function bodies must be at the end of
1710         // the bitcode. If the bitcode file is old, the symbol table will be
1711         // at the end instead and will not have been seen yet. In this case,
1712         // just finish the parse now.
1713         if (LazyStreamer && SeenValueSymbolTable) {
1714           NextUnreadBit = Stream.GetCurrentBitNo();
1715           return error_code::success();
1716         }
1717         break;
1718       case bitc::USELIST_BLOCK_ID:
1719         if (error_code EC = ParseUseLists())
1720           return EC;
1721         break;
1722       }
1723       continue;
1724 
1725     case BitstreamEntry::Record:
1726       // The interesting case.
1727       break;
1728     }
1729 
1730 
1731     // Read a record.
1732     switch (Stream.readRecord(Entry.ID, Record)) {
1733     default: break;  // Default behavior, ignore unknown content.
1734     case bitc::MODULE_CODE_VERSION: {  // VERSION: [version#]
1735       if (Record.size() < 1)
1736         return Error(InvalidRecord);
1737       // Only version #0 and #1 are supported so far.
1738       unsigned module_version = Record[0];
1739       switch (module_version) {
1740         default:
1741           return Error(InvalidValue);
1742         case 0:
1743           UseRelativeIDs = false;
1744           break;
1745         case 1:
1746           UseRelativeIDs = true;
1747           break;
1748       }
1749       break;
1750     }
1751     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
1752       std::string S;
1753       if (ConvertToString(Record, 0, S))
1754         return Error(InvalidRecord);
1755       TheModule->setTargetTriple(S);
1756       break;
1757     }
1758     case bitc::MODULE_CODE_DATALAYOUT: {  // DATALAYOUT: [strchr x N]
1759       std::string S;
1760       if (ConvertToString(Record, 0, S))
1761         return Error(InvalidRecord);
1762       TheModule->setDataLayout(S);
1763       break;
1764     }
1765     case bitc::MODULE_CODE_ASM: {  // ASM: [strchr x N]
1766       std::string S;
1767       if (ConvertToString(Record, 0, S))
1768         return Error(InvalidRecord);
1769       TheModule->setModuleInlineAsm(S);
1770       break;
1771     }
1772     case bitc::MODULE_CODE_DEPLIB: {  // DEPLIB: [strchr x N]
1773       // FIXME: Remove in 4.0.
1774       std::string S;
1775       if (ConvertToString(Record, 0, S))
1776         return Error(InvalidRecord);
1777       // Ignore value.
1778       break;
1779     }
1780     case bitc::MODULE_CODE_SECTIONNAME: {  // SECTIONNAME: [strchr x N]
1781       std::string S;
1782       if (ConvertToString(Record, 0, S))
1783         return Error(InvalidRecord);
1784       SectionTable.push_back(S);
1785       break;
1786     }
1787     case bitc::MODULE_CODE_GCNAME: {  // SECTIONNAME: [strchr x N]
1788       std::string S;
1789       if (ConvertToString(Record, 0, S))
1790         return Error(InvalidRecord);
1791       GCTable.push_back(S);
1792       break;
1793     }
1794     // GLOBALVAR: [pointer type, isconst, initid,
1795     //             linkage, alignment, section, visibility, threadlocal,
1796     //             unnamed_addr]
1797     case bitc::MODULE_CODE_GLOBALVAR: {
1798       if (Record.size() < 6)
1799         return Error(InvalidRecord);
1800       Type *Ty = getTypeByID(Record[0]);
1801       if (!Ty)
1802         return Error(InvalidRecord);
1803       if (!Ty->isPointerTy())
1804         return Error(InvalidTypeForValue);
1805       unsigned AddressSpace = cast<PointerType>(Ty)->getAddressSpace();
1806       Ty = cast<PointerType>(Ty)->getElementType();
1807 
1808       bool isConstant = Record[1];
1809       GlobalValue::LinkageTypes Linkage = GetDecodedLinkage(Record[3]);
1810       unsigned Alignment = (1 << Record[4]) >> 1;
1811       std::string Section;
1812       if (Record[5]) {
1813         if (Record[5]-1 >= SectionTable.size())
1814           return Error(InvalidID);
1815         Section = SectionTable[Record[5]-1];
1816       }
1817       GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility;
1818       if (Record.size() > 6)
1819         Visibility = GetDecodedVisibility(Record[6]);
1820 
1821       GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal;
1822       if (Record.size() > 7)
1823         TLM = GetDecodedThreadLocalMode(Record[7]);
1824 
1825       bool UnnamedAddr = false;
1826       if (Record.size() > 8)
1827         UnnamedAddr = Record[8];
1828 
1829       bool ExternallyInitialized = false;
1830       if (Record.size() > 9)
1831         ExternallyInitialized = Record[9];
1832 
1833       GlobalVariable *NewGV =
1834         new GlobalVariable(*TheModule, Ty, isConstant, Linkage, 0, "", 0,
1835                            TLM, AddressSpace, ExternallyInitialized);
1836       NewGV->setAlignment(Alignment);
1837       if (!Section.empty())
1838         NewGV->setSection(Section);
1839       NewGV->setVisibility(Visibility);
1840       NewGV->setUnnamedAddr(UnnamedAddr);
1841 
1842       ValueList.push_back(NewGV);
1843 
1844       // Remember which value to use for the global initializer.
1845       if (unsigned InitID = Record[2])
1846         GlobalInits.push_back(std::make_pair(NewGV, InitID-1));
1847       break;
1848     }
1849     // FUNCTION:  [type, callingconv, isproto, linkage, paramattr,
1850     //             alignment, section, visibility, gc, unnamed_addr]
1851     case bitc::MODULE_CODE_FUNCTION: {
1852       if (Record.size() < 8)
1853         return Error(InvalidRecord);
1854       Type *Ty = getTypeByID(Record[0]);
1855       if (!Ty)
1856         return Error(InvalidRecord);
1857       if (!Ty->isPointerTy())
1858         return Error(InvalidTypeForValue);
1859       FunctionType *FTy =
1860         dyn_cast<FunctionType>(cast<PointerType>(Ty)->getElementType());
1861       if (!FTy)
1862         return Error(InvalidTypeForValue);
1863 
1864       Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage,
1865                                         "", TheModule);
1866 
1867       Func->setCallingConv(static_cast<CallingConv::ID>(Record[1]));
1868       bool isProto = Record[2];
1869       Func->setLinkage(GetDecodedLinkage(Record[3]));
1870       Func->setAttributes(getAttributes(Record[4]));
1871 
1872       Func->setAlignment((1 << Record[5]) >> 1);
1873       if (Record[6]) {
1874         if (Record[6]-1 >= SectionTable.size())
1875           return Error(InvalidID);
1876         Func->setSection(SectionTable[Record[6]-1]);
1877       }
1878       Func->setVisibility(GetDecodedVisibility(Record[7]));
1879       if (Record.size() > 8 && Record[8]) {
1880         if (Record[8]-1 > GCTable.size())
1881           return Error(InvalidID);
1882         Func->setGC(GCTable[Record[8]-1].c_str());
1883       }
1884       bool UnnamedAddr = false;
1885       if (Record.size() > 9)
1886         UnnamedAddr = Record[9];
1887       Func->setUnnamedAddr(UnnamedAddr);
1888       if (Record.size() > 10 && Record[10] != 0)
1889         FunctionPrefixes.push_back(std::make_pair(Func, Record[10]-1));
1890       ValueList.push_back(Func);
1891 
1892       // If this is a function with a body, remember the prototype we are
1893       // creating now, so that we can match up the body with them later.
1894       if (!isProto) {
1895         FunctionsWithBodies.push_back(Func);
1896         if (LazyStreamer) DeferredFunctionInfo[Func] = 0;
1897       }
1898       break;
1899     }
1900     // ALIAS: [alias type, aliasee val#, linkage]
1901     // ALIAS: [alias type, aliasee val#, linkage, visibility]
1902     case bitc::MODULE_CODE_ALIAS: {
1903       if (Record.size() < 3)
1904         return Error(InvalidRecord);
1905       Type *Ty = getTypeByID(Record[0]);
1906       if (!Ty)
1907         return Error(InvalidRecord);
1908       if (!Ty->isPointerTy())
1909         return Error(InvalidTypeForValue);
1910 
1911       GlobalAlias *NewGA = new GlobalAlias(Ty, GetDecodedLinkage(Record[2]),
1912                                            "", 0, TheModule);
1913       // Old bitcode files didn't have visibility field.
1914       if (Record.size() > 3)
1915         NewGA->setVisibility(GetDecodedVisibility(Record[3]));
1916       ValueList.push_back(NewGA);
1917       AliasInits.push_back(std::make_pair(NewGA, Record[1]));
1918       break;
1919     }
1920     /// MODULE_CODE_PURGEVALS: [numvals]
1921     case bitc::MODULE_CODE_PURGEVALS:
1922       // Trim down the value list to the specified size.
1923       if (Record.size() < 1 || Record[0] > ValueList.size())
1924         return Error(InvalidRecord);
1925       ValueList.shrinkTo(Record[0]);
1926       break;
1927     }
1928     Record.clear();
1929   }
1930 }
1931 
1932 error_code BitcodeReader::ParseBitcodeInto(Module *M) {
1933   TheModule = 0;
1934 
1935   if (error_code EC = InitStream())
1936     return EC;
1937 
1938   // Sniff for the signature.
1939   if (Stream.Read(8) != 'B' ||
1940       Stream.Read(8) != 'C' ||
1941       Stream.Read(4) != 0x0 ||
1942       Stream.Read(4) != 0xC ||
1943       Stream.Read(4) != 0xE ||
1944       Stream.Read(4) != 0xD)
1945     return Error(InvalidBitcodeSignature);
1946 
1947   // We expect a number of well-defined blocks, though we don't necessarily
1948   // need to understand them all.
1949   while (1) {
1950     if (Stream.AtEndOfStream())
1951       return error_code::success();
1952 
1953     BitstreamEntry Entry =
1954       Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs);
1955 
1956     switch (Entry.Kind) {
1957     case BitstreamEntry::Error:
1958       return Error(MalformedBlock);
1959     case BitstreamEntry::EndBlock:
1960       return error_code::success();
1961 
1962     case BitstreamEntry::SubBlock:
1963       switch (Entry.ID) {
1964       case bitc::BLOCKINFO_BLOCK_ID:
1965         if (Stream.ReadBlockInfoBlock())
1966           return Error(MalformedBlock);
1967         break;
1968       case bitc::MODULE_BLOCK_ID:
1969         // Reject multiple MODULE_BLOCK's in a single bitstream.
1970         if (TheModule)
1971           return Error(InvalidMultipleBlocks);
1972         TheModule = M;
1973         if (error_code EC = ParseModule(false))
1974           return EC;
1975         if (LazyStreamer)
1976           return error_code::success();
1977         break;
1978       default:
1979         if (Stream.SkipBlock())
1980           return Error(InvalidRecord);
1981         break;
1982       }
1983       continue;
1984     case BitstreamEntry::Record:
1985       // There should be no records in the top-level of blocks.
1986 
1987       // The ranlib in Xcode 4 will align archive members by appending newlines
1988       // to the end of them. If this file size is a multiple of 4 but not 8, we
1989       // have to read and ignore these final 4 bytes :-(
1990       if (Stream.getAbbrevIDWidth() == 2 && Entry.ID == 2 &&
1991           Stream.Read(6) == 2 && Stream.Read(24) == 0xa0a0a &&
1992           Stream.AtEndOfStream())
1993         return error_code::success();
1994 
1995       return Error(InvalidRecord);
1996     }
1997   }
1998 }
1999 
2000 error_code BitcodeReader::ParseModuleTriple(std::string &Triple) {
2001   if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
2002     return Error(InvalidRecord);
2003 
2004   SmallVector<uint64_t, 64> Record;
2005 
2006   // Read all the records for this module.
2007   while (1) {
2008     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
2009 
2010     switch (Entry.Kind) {
2011     case BitstreamEntry::SubBlock: // Handled for us already.
2012     case BitstreamEntry::Error:
2013       return Error(MalformedBlock);
2014     case BitstreamEntry::EndBlock:
2015       return error_code::success();
2016     case BitstreamEntry::Record:
2017       // The interesting case.
2018       break;
2019     }
2020 
2021     // Read a record.
2022     switch (Stream.readRecord(Entry.ID, Record)) {
2023     default: break;  // Default behavior, ignore unknown content.
2024     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
2025       std::string S;
2026       if (ConvertToString(Record, 0, S))
2027         return Error(InvalidRecord);
2028       Triple = S;
2029       break;
2030     }
2031     }
2032     Record.clear();
2033   }
2034 }
2035 
2036 error_code BitcodeReader::ParseTriple(std::string &Triple) {
2037   if (error_code EC = InitStream())
2038     return EC;
2039 
2040   // Sniff for the signature.
2041   if (Stream.Read(8) != 'B' ||
2042       Stream.Read(8) != 'C' ||
2043       Stream.Read(4) != 0x0 ||
2044       Stream.Read(4) != 0xC ||
2045       Stream.Read(4) != 0xE ||
2046       Stream.Read(4) != 0xD)
2047     return Error(InvalidBitcodeSignature);
2048 
2049   // We expect a number of well-defined blocks, though we don't necessarily
2050   // need to understand them all.
2051   while (1) {
2052     BitstreamEntry Entry = Stream.advance();
2053 
2054     switch (Entry.Kind) {
2055     case BitstreamEntry::Error:
2056       return Error(MalformedBlock);
2057     case BitstreamEntry::EndBlock:
2058       return error_code::success();
2059 
2060     case BitstreamEntry::SubBlock:
2061       if (Entry.ID == bitc::MODULE_BLOCK_ID)
2062         return ParseModuleTriple(Triple);
2063 
2064       // Ignore other sub-blocks.
2065       if (Stream.SkipBlock())
2066         return Error(MalformedBlock);
2067       continue;
2068 
2069     case BitstreamEntry::Record:
2070       Stream.skipRecord(Entry.ID);
2071       continue;
2072     }
2073   }
2074 }
2075 
2076 /// ParseMetadataAttachment - Parse metadata attachments.
2077 error_code BitcodeReader::ParseMetadataAttachment() {
2078   if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID))
2079     return Error(InvalidRecord);
2080 
2081   SmallVector<uint64_t, 64> Record;
2082   while (1) {
2083     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
2084 
2085     switch (Entry.Kind) {
2086     case BitstreamEntry::SubBlock: // Handled for us already.
2087     case BitstreamEntry::Error:
2088       return Error(MalformedBlock);
2089     case BitstreamEntry::EndBlock:
2090       return error_code::success();
2091     case BitstreamEntry::Record:
2092       // The interesting case.
2093       break;
2094     }
2095 
2096     // Read a metadata attachment record.
2097     Record.clear();
2098     switch (Stream.readRecord(Entry.ID, Record)) {
2099     default:  // Default behavior: ignore.
2100       break;
2101     case bitc::METADATA_ATTACHMENT: {
2102       unsigned RecordLength = Record.size();
2103       if (Record.empty() || (RecordLength - 1) % 2 == 1)
2104         return Error(InvalidRecord);
2105       Instruction *Inst = InstructionList[Record[0]];
2106       for (unsigned i = 1; i != RecordLength; i = i+2) {
2107         unsigned Kind = Record[i];
2108         DenseMap<unsigned, unsigned>::iterator I =
2109           MDKindMap.find(Kind);
2110         if (I == MDKindMap.end())
2111           return Error(InvalidID);
2112         Value *Node = MDValueList.getValueFwdRef(Record[i+1]);
2113         Inst->setMetadata(I->second, cast<MDNode>(Node));
2114         if (I->second == LLVMContext::MD_tbaa)
2115           InstsWithTBAATag.push_back(Inst);
2116       }
2117       break;
2118     }
2119     }
2120   }
2121 }
2122 
2123 /// ParseFunctionBody - Lazily parse the specified function body block.
2124 error_code BitcodeReader::ParseFunctionBody(Function *F) {
2125   if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID))
2126     return Error(InvalidRecord);
2127 
2128   InstructionList.clear();
2129   unsigned ModuleValueListSize = ValueList.size();
2130   unsigned ModuleMDValueListSize = MDValueList.size();
2131 
2132   // Add all the function arguments to the value table.
2133   for(Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I)
2134     ValueList.push_back(I);
2135 
2136   unsigned NextValueNo = ValueList.size();
2137   BasicBlock *CurBB = 0;
2138   unsigned CurBBNo = 0;
2139 
2140   DebugLoc LastLoc;
2141 
2142   // Read all the records.
2143   SmallVector<uint64_t, 64> Record;
2144   while (1) {
2145     BitstreamEntry Entry = Stream.advance();
2146 
2147     switch (Entry.Kind) {
2148     case BitstreamEntry::Error:
2149       return Error(MalformedBlock);
2150     case BitstreamEntry::EndBlock:
2151       goto OutOfRecordLoop;
2152 
2153     case BitstreamEntry::SubBlock:
2154       switch (Entry.ID) {
2155       default:  // Skip unknown content.
2156         if (Stream.SkipBlock())
2157           return Error(InvalidRecord);
2158         break;
2159       case bitc::CONSTANTS_BLOCK_ID:
2160         if (error_code EC = ParseConstants())
2161           return EC;
2162         NextValueNo = ValueList.size();
2163         break;
2164       case bitc::VALUE_SYMTAB_BLOCK_ID:
2165         if (error_code EC = ParseValueSymbolTable())
2166           return EC;
2167         break;
2168       case bitc::METADATA_ATTACHMENT_ID:
2169         if (error_code EC = ParseMetadataAttachment())
2170           return EC;
2171         break;
2172       case bitc::METADATA_BLOCK_ID:
2173         if (error_code EC = ParseMetadata())
2174           return EC;
2175         break;
2176       }
2177       continue;
2178 
2179     case BitstreamEntry::Record:
2180       // The interesting case.
2181       break;
2182     }
2183 
2184     // Read a record.
2185     Record.clear();
2186     Instruction *I = 0;
2187     unsigned BitCode = Stream.readRecord(Entry.ID, Record);
2188     switch (BitCode) {
2189     default: // Default behavior: reject
2190       return Error(InvalidValue);
2191     case bitc::FUNC_CODE_DECLAREBLOCKS:     // DECLAREBLOCKS: [nblocks]
2192       if (Record.size() < 1 || Record[0] == 0)
2193         return Error(InvalidRecord);
2194       // Create all the basic blocks for the function.
2195       FunctionBBs.resize(Record[0]);
2196       for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i)
2197         FunctionBBs[i] = BasicBlock::Create(Context, "", F);
2198       CurBB = FunctionBBs[0];
2199       continue;
2200 
2201     case bitc::FUNC_CODE_DEBUG_LOC_AGAIN:  // DEBUG_LOC_AGAIN
2202       // This record indicates that the last instruction is at the same
2203       // location as the previous instruction with a location.
2204       I = 0;
2205 
2206       // Get the last instruction emitted.
2207       if (CurBB && !CurBB->empty())
2208         I = &CurBB->back();
2209       else if (CurBBNo && FunctionBBs[CurBBNo-1] &&
2210                !FunctionBBs[CurBBNo-1]->empty())
2211         I = &FunctionBBs[CurBBNo-1]->back();
2212 
2213       if (I == 0)
2214         return Error(InvalidRecord);
2215       I->setDebugLoc(LastLoc);
2216       I = 0;
2217       continue;
2218 
2219     case bitc::FUNC_CODE_DEBUG_LOC: {      // DEBUG_LOC: [line, col, scope, ia]
2220       I = 0;     // Get the last instruction emitted.
2221       if (CurBB && !CurBB->empty())
2222         I = &CurBB->back();
2223       else if (CurBBNo && FunctionBBs[CurBBNo-1] &&
2224                !FunctionBBs[CurBBNo-1]->empty())
2225         I = &FunctionBBs[CurBBNo-1]->back();
2226       if (I == 0 || Record.size() < 4)
2227         return Error(InvalidRecord);
2228 
2229       unsigned Line = Record[0], Col = Record[1];
2230       unsigned ScopeID = Record[2], IAID = Record[3];
2231 
2232       MDNode *Scope = 0, *IA = 0;
2233       if (ScopeID) Scope = cast<MDNode>(MDValueList.getValueFwdRef(ScopeID-1));
2234       if (IAID)    IA = cast<MDNode>(MDValueList.getValueFwdRef(IAID-1));
2235       LastLoc = DebugLoc::get(Line, Col, Scope, IA);
2236       I->setDebugLoc(LastLoc);
2237       I = 0;
2238       continue;
2239     }
2240 
2241     case bitc::FUNC_CODE_INST_BINOP: {    // BINOP: [opval, ty, opval, opcode]
2242       unsigned OpNum = 0;
2243       Value *LHS, *RHS;
2244       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
2245           popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) ||
2246           OpNum+1 > Record.size())
2247         return Error(InvalidRecord);
2248 
2249       int Opc = GetDecodedBinaryOpcode(Record[OpNum++], LHS->getType());
2250       if (Opc == -1)
2251         return Error(InvalidRecord);
2252       I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
2253       InstructionList.push_back(I);
2254       if (OpNum < Record.size()) {
2255         if (Opc == Instruction::Add ||
2256             Opc == Instruction::Sub ||
2257             Opc == Instruction::Mul ||
2258             Opc == Instruction::Shl) {
2259           if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP))
2260             cast<BinaryOperator>(I)->setHasNoSignedWrap(true);
2261           if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
2262             cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true);
2263         } else if (Opc == Instruction::SDiv ||
2264                    Opc == Instruction::UDiv ||
2265                    Opc == Instruction::LShr ||
2266                    Opc == Instruction::AShr) {
2267           if (Record[OpNum] & (1 << bitc::PEO_EXACT))
2268             cast<BinaryOperator>(I)->setIsExact(true);
2269         } else if (isa<FPMathOperator>(I)) {
2270           FastMathFlags FMF;
2271           if (0 != (Record[OpNum] & FastMathFlags::UnsafeAlgebra))
2272             FMF.setUnsafeAlgebra();
2273           if (0 != (Record[OpNum] & FastMathFlags::NoNaNs))
2274             FMF.setNoNaNs();
2275           if (0 != (Record[OpNum] & FastMathFlags::NoInfs))
2276             FMF.setNoInfs();
2277           if (0 != (Record[OpNum] & FastMathFlags::NoSignedZeros))
2278             FMF.setNoSignedZeros();
2279           if (0 != (Record[OpNum] & FastMathFlags::AllowReciprocal))
2280             FMF.setAllowReciprocal();
2281           if (FMF.any())
2282             I->setFastMathFlags(FMF);
2283         }
2284 
2285       }
2286       break;
2287     }
2288     case bitc::FUNC_CODE_INST_CAST: {    // CAST: [opval, opty, destty, castopc]
2289       unsigned OpNum = 0;
2290       Value *Op;
2291       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
2292           OpNum+2 != Record.size())
2293         return Error(InvalidRecord);
2294 
2295       Type *ResTy = getTypeByID(Record[OpNum]);
2296       int Opc = GetDecodedCastOpcode(Record[OpNum+1]);
2297       if (Opc == -1 || ResTy == 0)
2298         return Error(InvalidRecord);
2299       I = CastInst::Create((Instruction::CastOps)Opc, Op, ResTy);
2300       InstructionList.push_back(I);
2301       break;
2302     }
2303     case bitc::FUNC_CODE_INST_INBOUNDS_GEP:
2304     case bitc::FUNC_CODE_INST_GEP: { // GEP: [n x operands]
2305       unsigned OpNum = 0;
2306       Value *BasePtr;
2307       if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr))
2308         return Error(InvalidRecord);
2309 
2310       SmallVector<Value*, 16> GEPIdx;
2311       while (OpNum != Record.size()) {
2312         Value *Op;
2313         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
2314           return Error(InvalidRecord);
2315         GEPIdx.push_back(Op);
2316       }
2317 
2318       I = GetElementPtrInst::Create(BasePtr, GEPIdx);
2319       InstructionList.push_back(I);
2320       if (BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP)
2321         cast<GetElementPtrInst>(I)->setIsInBounds(true);
2322       break;
2323     }
2324 
2325     case bitc::FUNC_CODE_INST_EXTRACTVAL: {
2326                                        // EXTRACTVAL: [opty, opval, n x indices]
2327       unsigned OpNum = 0;
2328       Value *Agg;
2329       if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
2330         return Error(InvalidRecord);
2331 
2332       SmallVector<unsigned, 4> EXTRACTVALIdx;
2333       for (unsigned RecSize = Record.size();
2334            OpNum != RecSize; ++OpNum) {
2335         uint64_t Index = Record[OpNum];
2336         if ((unsigned)Index != Index)
2337           return Error(InvalidValue);
2338         EXTRACTVALIdx.push_back((unsigned)Index);
2339       }
2340 
2341       I = ExtractValueInst::Create(Agg, EXTRACTVALIdx);
2342       InstructionList.push_back(I);
2343       break;
2344     }
2345 
2346     case bitc::FUNC_CODE_INST_INSERTVAL: {
2347                            // INSERTVAL: [opty, opval, opty, opval, n x indices]
2348       unsigned OpNum = 0;
2349       Value *Agg;
2350       if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
2351         return Error(InvalidRecord);
2352       Value *Val;
2353       if (getValueTypePair(Record, OpNum, NextValueNo, Val))
2354         return Error(InvalidRecord);
2355 
2356       SmallVector<unsigned, 4> INSERTVALIdx;
2357       for (unsigned RecSize = Record.size();
2358            OpNum != RecSize; ++OpNum) {
2359         uint64_t Index = Record[OpNum];
2360         if ((unsigned)Index != Index)
2361           return Error(InvalidValue);
2362         INSERTVALIdx.push_back((unsigned)Index);
2363       }
2364 
2365       I = InsertValueInst::Create(Agg, Val, INSERTVALIdx);
2366       InstructionList.push_back(I);
2367       break;
2368     }
2369 
2370     case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval]
2371       // obsolete form of select
2372       // handles select i1 ... in old bitcode
2373       unsigned OpNum = 0;
2374       Value *TrueVal, *FalseVal, *Cond;
2375       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
2376           popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) ||
2377           popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond))
2378         return Error(InvalidRecord);
2379 
2380       I = SelectInst::Create(Cond, TrueVal, FalseVal);
2381       InstructionList.push_back(I);
2382       break;
2383     }
2384 
2385     case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred]
2386       // new form of select
2387       // handles select i1 or select [N x i1]
2388       unsigned OpNum = 0;
2389       Value *TrueVal, *FalseVal, *Cond;
2390       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
2391           popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) ||
2392           getValueTypePair(Record, OpNum, NextValueNo, Cond))
2393         return Error(InvalidRecord);
2394 
2395       // select condition can be either i1 or [N x i1]
2396       if (VectorType* vector_type =
2397           dyn_cast<VectorType>(Cond->getType())) {
2398         // expect <n x i1>
2399         if (vector_type->getElementType() != Type::getInt1Ty(Context))
2400           return Error(InvalidTypeForValue);
2401       } else {
2402         // expect i1
2403         if (Cond->getType() != Type::getInt1Ty(Context))
2404           return Error(InvalidTypeForValue);
2405       }
2406 
2407       I = SelectInst::Create(Cond, TrueVal, FalseVal);
2408       InstructionList.push_back(I);
2409       break;
2410     }
2411 
2412     case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval]
2413       unsigned OpNum = 0;
2414       Value *Vec, *Idx;
2415       if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
2416           popValue(Record, OpNum, NextValueNo, Type::getInt32Ty(Context), Idx))
2417         return Error(InvalidRecord);
2418       I = ExtractElementInst::Create(Vec, Idx);
2419       InstructionList.push_back(I);
2420       break;
2421     }
2422 
2423     case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval]
2424       unsigned OpNum = 0;
2425       Value *Vec, *Elt, *Idx;
2426       if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
2427           popValue(Record, OpNum, NextValueNo,
2428                    cast<VectorType>(Vec->getType())->getElementType(), Elt) ||
2429           popValue(Record, OpNum, NextValueNo, Type::getInt32Ty(Context), Idx))
2430         return Error(InvalidRecord);
2431       I = InsertElementInst::Create(Vec, Elt, Idx);
2432       InstructionList.push_back(I);
2433       break;
2434     }
2435 
2436     case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval]
2437       unsigned OpNum = 0;
2438       Value *Vec1, *Vec2, *Mask;
2439       if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) ||
2440           popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2))
2441         return Error(InvalidRecord);
2442 
2443       if (getValueTypePair(Record, OpNum, NextValueNo, Mask))
2444         return Error(InvalidRecord);
2445       I = new ShuffleVectorInst(Vec1, Vec2, Mask);
2446       InstructionList.push_back(I);
2447       break;
2448     }
2449 
2450     case bitc::FUNC_CODE_INST_CMP:   // CMP: [opty, opval, opval, pred]
2451       // Old form of ICmp/FCmp returning bool
2452       // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were
2453       // both legal on vectors but had different behaviour.
2454     case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred]
2455       // FCmp/ICmp returning bool or vector of bool
2456 
2457       unsigned OpNum = 0;
2458       Value *LHS, *RHS;
2459       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
2460           popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) ||
2461           OpNum+1 != Record.size())
2462         return Error(InvalidRecord);
2463 
2464       if (LHS->getType()->isFPOrFPVectorTy())
2465         I = new FCmpInst((FCmpInst::Predicate)Record[OpNum], LHS, RHS);
2466       else
2467         I = new ICmpInst((ICmpInst::Predicate)Record[OpNum], LHS, RHS);
2468       InstructionList.push_back(I);
2469       break;
2470     }
2471 
2472     case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>]
2473       {
2474         unsigned Size = Record.size();
2475         if (Size == 0) {
2476           I = ReturnInst::Create(Context);
2477           InstructionList.push_back(I);
2478           break;
2479         }
2480 
2481         unsigned OpNum = 0;
2482         Value *Op = NULL;
2483         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
2484           return Error(InvalidRecord);
2485         if (OpNum != Record.size())
2486           return Error(InvalidRecord);
2487 
2488         I = ReturnInst::Create(Context, Op);
2489         InstructionList.push_back(I);
2490         break;
2491       }
2492     case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#]
2493       if (Record.size() != 1 && Record.size() != 3)
2494         return Error(InvalidRecord);
2495       BasicBlock *TrueDest = getBasicBlock(Record[0]);
2496       if (TrueDest == 0)
2497         return Error(InvalidRecord);
2498 
2499       if (Record.size() == 1) {
2500         I = BranchInst::Create(TrueDest);
2501         InstructionList.push_back(I);
2502       }
2503       else {
2504         BasicBlock *FalseDest = getBasicBlock(Record[1]);
2505         Value *Cond = getValue(Record, 2, NextValueNo,
2506                                Type::getInt1Ty(Context));
2507         if (FalseDest == 0 || Cond == 0)
2508           return Error(InvalidRecord);
2509         I = BranchInst::Create(TrueDest, FalseDest, Cond);
2510         InstructionList.push_back(I);
2511       }
2512       break;
2513     }
2514     case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...]
2515       // Check magic
2516       if ((Record[0] >> 16) == SWITCH_INST_MAGIC) {
2517         // "New" SwitchInst format with case ranges. The changes to write this
2518         // format were reverted but we still recognize bitcode that uses it.
2519         // Hopefully someday we will have support for case ranges and can use
2520         // this format again.
2521 
2522         Type *OpTy = getTypeByID(Record[1]);
2523         unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth();
2524 
2525         Value *Cond = getValue(Record, 2, NextValueNo, OpTy);
2526         BasicBlock *Default = getBasicBlock(Record[3]);
2527         if (OpTy == 0 || Cond == 0 || Default == 0)
2528           return Error(InvalidRecord);
2529 
2530         unsigned NumCases = Record[4];
2531 
2532         SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
2533         InstructionList.push_back(SI);
2534 
2535         unsigned CurIdx = 5;
2536         for (unsigned i = 0; i != NumCases; ++i) {
2537           SmallVector<ConstantInt*, 1> CaseVals;
2538           unsigned NumItems = Record[CurIdx++];
2539           for (unsigned ci = 0; ci != NumItems; ++ci) {
2540             bool isSingleNumber = Record[CurIdx++];
2541 
2542             APInt Low;
2543             unsigned ActiveWords = 1;
2544             if (ValueBitWidth > 64)
2545               ActiveWords = Record[CurIdx++];
2546             Low = ReadWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords),
2547                                 ValueBitWidth);
2548             CurIdx += ActiveWords;
2549 
2550             if (!isSingleNumber) {
2551               ActiveWords = 1;
2552               if (ValueBitWidth > 64)
2553                 ActiveWords = Record[CurIdx++];
2554               APInt High =
2555                   ReadWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords),
2556                                 ValueBitWidth);
2557               CurIdx += ActiveWords;
2558 
2559               // FIXME: It is not clear whether values in the range should be
2560               // compared as signed or unsigned values. The partially
2561               // implemented changes that used this format in the past used
2562               // unsigned comparisons.
2563               for ( ; Low.ule(High); ++Low)
2564                 CaseVals.push_back(ConstantInt::get(Context, Low));
2565             } else
2566               CaseVals.push_back(ConstantInt::get(Context, Low));
2567           }
2568           BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]);
2569           for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(),
2570                  cve = CaseVals.end(); cvi != cve; ++cvi)
2571             SI->addCase(*cvi, DestBB);
2572         }
2573         I = SI;
2574         break;
2575       }
2576 
2577       // Old SwitchInst format without case ranges.
2578 
2579       if (Record.size() < 3 || (Record.size() & 1) == 0)
2580         return Error(InvalidRecord);
2581       Type *OpTy = getTypeByID(Record[0]);
2582       Value *Cond = getValue(Record, 1, NextValueNo, OpTy);
2583       BasicBlock *Default = getBasicBlock(Record[2]);
2584       if (OpTy == 0 || Cond == 0 || Default == 0)
2585         return Error(InvalidRecord);
2586       unsigned NumCases = (Record.size()-3)/2;
2587       SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
2588       InstructionList.push_back(SI);
2589       for (unsigned i = 0, e = NumCases; i != e; ++i) {
2590         ConstantInt *CaseVal =
2591           dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy));
2592         BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]);
2593         if (CaseVal == 0 || DestBB == 0) {
2594           delete SI;
2595           return Error(InvalidRecord);
2596         }
2597         SI->addCase(CaseVal, DestBB);
2598       }
2599       I = SI;
2600       break;
2601     }
2602     case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...]
2603       if (Record.size() < 2)
2604         return Error(InvalidRecord);
2605       Type *OpTy = getTypeByID(Record[0]);
2606       Value *Address = getValue(Record, 1, NextValueNo, OpTy);
2607       if (OpTy == 0 || Address == 0)
2608         return Error(InvalidRecord);
2609       unsigned NumDests = Record.size()-2;
2610       IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests);
2611       InstructionList.push_back(IBI);
2612       for (unsigned i = 0, e = NumDests; i != e; ++i) {
2613         if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) {
2614           IBI->addDestination(DestBB);
2615         } else {
2616           delete IBI;
2617           return Error(InvalidRecord);
2618         }
2619       }
2620       I = IBI;
2621       break;
2622     }
2623 
2624     case bitc::FUNC_CODE_INST_INVOKE: {
2625       // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...]
2626       if (Record.size() < 4)
2627         return Error(InvalidRecord);
2628       AttributeSet PAL = getAttributes(Record[0]);
2629       unsigned CCInfo = Record[1];
2630       BasicBlock *NormalBB = getBasicBlock(Record[2]);
2631       BasicBlock *UnwindBB = getBasicBlock(Record[3]);
2632 
2633       unsigned OpNum = 4;
2634       Value *Callee;
2635       if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
2636         return Error(InvalidRecord);
2637 
2638       PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType());
2639       FunctionType *FTy = !CalleeTy ? 0 :
2640         dyn_cast<FunctionType>(CalleeTy->getElementType());
2641 
2642       // Check that the right number of fixed parameters are here.
2643       if (FTy == 0 || NormalBB == 0 || UnwindBB == 0 ||
2644           Record.size() < OpNum+FTy->getNumParams())
2645         return Error(InvalidRecord);
2646 
2647       SmallVector<Value*, 16> Ops;
2648       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
2649         Ops.push_back(getValue(Record, OpNum, NextValueNo,
2650                                FTy->getParamType(i)));
2651         if (Ops.back() == 0)
2652           return Error(InvalidRecord);
2653       }
2654 
2655       if (!FTy->isVarArg()) {
2656         if (Record.size() != OpNum)
2657           return Error(InvalidRecord);
2658       } else {
2659         // Read type/value pairs for varargs params.
2660         while (OpNum != Record.size()) {
2661           Value *Op;
2662           if (getValueTypePair(Record, OpNum, NextValueNo, Op))
2663             return Error(InvalidRecord);
2664           Ops.push_back(Op);
2665         }
2666       }
2667 
2668       I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops);
2669       InstructionList.push_back(I);
2670       cast<InvokeInst>(I)->setCallingConv(
2671         static_cast<CallingConv::ID>(CCInfo));
2672       cast<InvokeInst>(I)->setAttributes(PAL);
2673       break;
2674     }
2675     case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval]
2676       unsigned Idx = 0;
2677       Value *Val = 0;
2678       if (getValueTypePair(Record, Idx, NextValueNo, Val))
2679         return Error(InvalidRecord);
2680       I = ResumeInst::Create(Val);
2681       InstructionList.push_back(I);
2682       break;
2683     }
2684     case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE
2685       I = new UnreachableInst(Context);
2686       InstructionList.push_back(I);
2687       break;
2688     case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...]
2689       if (Record.size() < 1 || ((Record.size()-1)&1))
2690         return Error(InvalidRecord);
2691       Type *Ty = getTypeByID(Record[0]);
2692       if (!Ty)
2693         return Error(InvalidRecord);
2694 
2695       PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2);
2696       InstructionList.push_back(PN);
2697 
2698       for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) {
2699         Value *V;
2700         // With the new function encoding, it is possible that operands have
2701         // negative IDs (for forward references).  Use a signed VBR
2702         // representation to keep the encoding small.
2703         if (UseRelativeIDs)
2704           V = getValueSigned(Record, 1+i, NextValueNo, Ty);
2705         else
2706           V = getValue(Record, 1+i, NextValueNo, Ty);
2707         BasicBlock *BB = getBasicBlock(Record[2+i]);
2708         if (!V || !BB)
2709           return Error(InvalidRecord);
2710         PN->addIncoming(V, BB);
2711       }
2712       I = PN;
2713       break;
2714     }
2715 
2716     case bitc::FUNC_CODE_INST_LANDINGPAD: {
2717       // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?]
2718       unsigned Idx = 0;
2719       if (Record.size() < 4)
2720         return Error(InvalidRecord);
2721       Type *Ty = getTypeByID(Record[Idx++]);
2722       if (!Ty)
2723         return Error(InvalidRecord);
2724       Value *PersFn = 0;
2725       if (getValueTypePair(Record, Idx, NextValueNo, PersFn))
2726         return Error(InvalidRecord);
2727 
2728       bool IsCleanup = !!Record[Idx++];
2729       unsigned NumClauses = Record[Idx++];
2730       LandingPadInst *LP = LandingPadInst::Create(Ty, PersFn, NumClauses);
2731       LP->setCleanup(IsCleanup);
2732       for (unsigned J = 0; J != NumClauses; ++J) {
2733         LandingPadInst::ClauseType CT =
2734           LandingPadInst::ClauseType(Record[Idx++]); (void)CT;
2735         Value *Val;
2736 
2737         if (getValueTypePair(Record, Idx, NextValueNo, Val)) {
2738           delete LP;
2739           return Error(InvalidRecord);
2740         }
2741 
2742         assert((CT != LandingPadInst::Catch ||
2743                 !isa<ArrayType>(Val->getType())) &&
2744                "Catch clause has a invalid type!");
2745         assert((CT != LandingPadInst::Filter ||
2746                 isa<ArrayType>(Val->getType())) &&
2747                "Filter clause has invalid type!");
2748         LP->addClause(Val);
2749       }
2750 
2751       I = LP;
2752       InstructionList.push_back(I);
2753       break;
2754     }
2755 
2756     case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align]
2757       if (Record.size() != 4)
2758         return Error(InvalidRecord);
2759       PointerType *Ty =
2760         dyn_cast_or_null<PointerType>(getTypeByID(Record[0]));
2761       Type *OpTy = getTypeByID(Record[1]);
2762       Value *Size = getFnValueByID(Record[2], OpTy);
2763       unsigned Align = Record[3];
2764       if (!Ty || !Size)
2765         return Error(InvalidRecord);
2766       I = new AllocaInst(Ty->getElementType(), Size, (1 << Align) >> 1);
2767       InstructionList.push_back(I);
2768       break;
2769     }
2770     case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol]
2771       unsigned OpNum = 0;
2772       Value *Op;
2773       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
2774           OpNum+2 != Record.size())
2775         return Error(InvalidRecord);
2776 
2777       I = new LoadInst(Op, "", Record[OpNum+1], (1 << Record[OpNum]) >> 1);
2778       InstructionList.push_back(I);
2779       break;
2780     }
2781     case bitc::FUNC_CODE_INST_LOADATOMIC: {
2782        // LOADATOMIC: [opty, op, align, vol, ordering, synchscope]
2783       unsigned OpNum = 0;
2784       Value *Op;
2785       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
2786           OpNum+4 != Record.size())
2787         return Error(InvalidRecord);
2788 
2789 
2790       AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]);
2791       if (Ordering == NotAtomic || Ordering == Release ||
2792           Ordering == AcquireRelease)
2793         return Error(InvalidRecord);
2794       if (Ordering != NotAtomic && Record[OpNum] == 0)
2795         return Error(InvalidRecord);
2796       SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]);
2797 
2798       I = new LoadInst(Op, "", Record[OpNum+1], (1 << Record[OpNum]) >> 1,
2799                        Ordering, SynchScope);
2800       InstructionList.push_back(I);
2801       break;
2802     }
2803     case bitc::FUNC_CODE_INST_STORE: { // STORE2:[ptrty, ptr, val, align, vol]
2804       unsigned OpNum = 0;
2805       Value *Val, *Ptr;
2806       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
2807           popValue(Record, OpNum, NextValueNo,
2808                     cast<PointerType>(Ptr->getType())->getElementType(), Val) ||
2809           OpNum+2 != Record.size())
2810         return Error(InvalidRecord);
2811 
2812       I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1);
2813       InstructionList.push_back(I);
2814       break;
2815     }
2816     case bitc::FUNC_CODE_INST_STOREATOMIC: {
2817       // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, synchscope]
2818       unsigned OpNum = 0;
2819       Value *Val, *Ptr;
2820       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
2821           popValue(Record, OpNum, NextValueNo,
2822                     cast<PointerType>(Ptr->getType())->getElementType(), Val) ||
2823           OpNum+4 != Record.size())
2824         return Error(InvalidRecord);
2825 
2826       AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]);
2827       if (Ordering == NotAtomic || Ordering == Acquire ||
2828           Ordering == AcquireRelease)
2829         return Error(InvalidRecord);
2830       SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]);
2831       if (Ordering != NotAtomic && Record[OpNum] == 0)
2832         return Error(InvalidRecord);
2833 
2834       I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1,
2835                         Ordering, SynchScope);
2836       InstructionList.push_back(I);
2837       break;
2838     }
2839     case bitc::FUNC_CODE_INST_CMPXCHG: {
2840       // CMPXCHG:[ptrty, ptr, cmp, new, vol, ordering, synchscope]
2841       unsigned OpNum = 0;
2842       Value *Ptr, *Cmp, *New;
2843       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
2844           popValue(Record, OpNum, NextValueNo,
2845                     cast<PointerType>(Ptr->getType())->getElementType(), Cmp) ||
2846           popValue(Record, OpNum, NextValueNo,
2847                     cast<PointerType>(Ptr->getType())->getElementType(), New) ||
2848           OpNum+3 != Record.size())
2849         return Error(InvalidRecord);
2850       AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+1]);
2851       if (Ordering == NotAtomic || Ordering == Unordered)
2852         return Error(InvalidRecord);
2853       SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+2]);
2854       I = new AtomicCmpXchgInst(Ptr, Cmp, New, Ordering, SynchScope);
2855       cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]);
2856       InstructionList.push_back(I);
2857       break;
2858     }
2859     case bitc::FUNC_CODE_INST_ATOMICRMW: {
2860       // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, synchscope]
2861       unsigned OpNum = 0;
2862       Value *Ptr, *Val;
2863       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
2864           popValue(Record, OpNum, NextValueNo,
2865                     cast<PointerType>(Ptr->getType())->getElementType(), Val) ||
2866           OpNum+4 != Record.size())
2867         return Error(InvalidRecord);
2868       AtomicRMWInst::BinOp Operation = GetDecodedRMWOperation(Record[OpNum]);
2869       if (Operation < AtomicRMWInst::FIRST_BINOP ||
2870           Operation > AtomicRMWInst::LAST_BINOP)
2871         return Error(InvalidRecord);
2872       AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]);
2873       if (Ordering == NotAtomic || Ordering == Unordered)
2874         return Error(InvalidRecord);
2875       SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]);
2876       I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SynchScope);
2877       cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]);
2878       InstructionList.push_back(I);
2879       break;
2880     }
2881     case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, synchscope]
2882       if (2 != Record.size())
2883         return Error(InvalidRecord);
2884       AtomicOrdering Ordering = GetDecodedOrdering(Record[0]);
2885       if (Ordering == NotAtomic || Ordering == Unordered ||
2886           Ordering == Monotonic)
2887         return Error(InvalidRecord);
2888       SynchronizationScope SynchScope = GetDecodedSynchScope(Record[1]);
2889       I = new FenceInst(Context, Ordering, SynchScope);
2890       InstructionList.push_back(I);
2891       break;
2892     }
2893     case bitc::FUNC_CODE_INST_CALL: {
2894       // CALL: [paramattrs, cc, fnty, fnid, arg0, arg1...]
2895       if (Record.size() < 3)
2896         return Error(InvalidRecord);
2897 
2898       AttributeSet PAL = getAttributes(Record[0]);
2899       unsigned CCInfo = Record[1];
2900 
2901       unsigned OpNum = 2;
2902       Value *Callee;
2903       if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
2904         return Error(InvalidRecord);
2905 
2906       PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
2907       FunctionType *FTy = 0;
2908       if (OpTy) FTy = dyn_cast<FunctionType>(OpTy->getElementType());
2909       if (!FTy || Record.size() < FTy->getNumParams()+OpNum)
2910         return Error(InvalidRecord);
2911 
2912       SmallVector<Value*, 16> Args;
2913       // Read the fixed params.
2914       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
2915         if (FTy->getParamType(i)->isLabelTy())
2916           Args.push_back(getBasicBlock(Record[OpNum]));
2917         else
2918           Args.push_back(getValue(Record, OpNum, NextValueNo,
2919                                   FTy->getParamType(i)));
2920         if (Args.back() == 0)
2921           return Error(InvalidRecord);
2922       }
2923 
2924       // Read type/value pairs for varargs params.
2925       if (!FTy->isVarArg()) {
2926         if (OpNum != Record.size())
2927           return Error(InvalidRecord);
2928       } else {
2929         while (OpNum != Record.size()) {
2930           Value *Op;
2931           if (getValueTypePair(Record, OpNum, NextValueNo, Op))
2932             return Error(InvalidRecord);
2933           Args.push_back(Op);
2934         }
2935       }
2936 
2937       I = CallInst::Create(Callee, Args);
2938       InstructionList.push_back(I);
2939       cast<CallInst>(I)->setCallingConv(
2940         static_cast<CallingConv::ID>(CCInfo>>1));
2941       cast<CallInst>(I)->setTailCall(CCInfo & 1);
2942       cast<CallInst>(I)->setAttributes(PAL);
2943       break;
2944     }
2945     case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty]
2946       if (Record.size() < 3)
2947         return Error(InvalidRecord);
2948       Type *OpTy = getTypeByID(Record[0]);
2949       Value *Op = getValue(Record, 1, NextValueNo, OpTy);
2950       Type *ResTy = getTypeByID(Record[2]);
2951       if (!OpTy || !Op || !ResTy)
2952         return Error(InvalidRecord);
2953       I = new VAArgInst(Op, ResTy);
2954       InstructionList.push_back(I);
2955       break;
2956     }
2957     }
2958 
2959     // Add instruction to end of current BB.  If there is no current BB, reject
2960     // this file.
2961     if (CurBB == 0) {
2962       delete I;
2963       return Error(InvalidInstructionWithNoBB);
2964     }
2965     CurBB->getInstList().push_back(I);
2966 
2967     // If this was a terminator instruction, move to the next block.
2968     if (isa<TerminatorInst>(I)) {
2969       ++CurBBNo;
2970       CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : 0;
2971     }
2972 
2973     // Non-void values get registered in the value table for future use.
2974     if (I && !I->getType()->isVoidTy())
2975       ValueList.AssignValue(I, NextValueNo++);
2976   }
2977 
2978 OutOfRecordLoop:
2979 
2980   // Check the function list for unresolved values.
2981   if (Argument *A = dyn_cast<Argument>(ValueList.back())) {
2982     if (A->getParent() == 0) {
2983       // We found at least one unresolved value.  Nuke them all to avoid leaks.
2984       for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){
2985         if ((A = dyn_cast<Argument>(ValueList[i])) && A->getParent() == 0) {
2986           A->replaceAllUsesWith(UndefValue::get(A->getType()));
2987           delete A;
2988         }
2989       }
2990       return Error(NeverResolvedValueFoundInFunction);
2991     }
2992   }
2993 
2994   // FIXME: Check for unresolved forward-declared metadata references
2995   // and clean up leaks.
2996 
2997   // See if anything took the address of blocks in this function.  If so,
2998   // resolve them now.
2999   DenseMap<Function*, std::vector<BlockAddrRefTy> >::iterator BAFRI =
3000     BlockAddrFwdRefs.find(F);
3001   if (BAFRI != BlockAddrFwdRefs.end()) {
3002     std::vector<BlockAddrRefTy> &RefList = BAFRI->second;
3003     for (unsigned i = 0, e = RefList.size(); i != e; ++i) {
3004       unsigned BlockIdx = RefList[i].first;
3005       if (BlockIdx >= FunctionBBs.size())
3006         return Error(InvalidID);
3007 
3008       GlobalVariable *FwdRef = RefList[i].second;
3009       FwdRef->replaceAllUsesWith(BlockAddress::get(F, FunctionBBs[BlockIdx]));
3010       FwdRef->eraseFromParent();
3011     }
3012 
3013     BlockAddrFwdRefs.erase(BAFRI);
3014   }
3015 
3016   // Trim the value list down to the size it was before we parsed this function.
3017   ValueList.shrinkTo(ModuleValueListSize);
3018   MDValueList.shrinkTo(ModuleMDValueListSize);
3019   std::vector<BasicBlock*>().swap(FunctionBBs);
3020   return error_code::success();
3021 }
3022 
3023 /// Find the function body in the bitcode stream
3024 error_code BitcodeReader::FindFunctionInStream(Function *F,
3025        DenseMap<Function*, uint64_t>::iterator DeferredFunctionInfoIterator) {
3026   while (DeferredFunctionInfoIterator->second == 0) {
3027     if (Stream.AtEndOfStream())
3028       return Error(CouldNotFindFunctionInStream);
3029     // ParseModule will parse the next body in the stream and set its
3030     // position in the DeferredFunctionInfo map.
3031     if (error_code EC = ParseModule(true))
3032       return EC;
3033   }
3034   return error_code::success();
3035 }
3036 
3037 //===----------------------------------------------------------------------===//
3038 // GVMaterializer implementation
3039 //===----------------------------------------------------------------------===//
3040 
3041 
3042 bool BitcodeReader::isMaterializable(const GlobalValue *GV) const {
3043   if (const Function *F = dyn_cast<Function>(GV)) {
3044     return F->isDeclaration() &&
3045       DeferredFunctionInfo.count(const_cast<Function*>(F));
3046   }
3047   return false;
3048 }
3049 
3050 error_code BitcodeReader::Materialize(GlobalValue *GV) {
3051   Function *F = dyn_cast<Function>(GV);
3052   // If it's not a function or is already material, ignore the request.
3053   if (!F || !F->isMaterializable())
3054     return error_code::success();
3055 
3056   DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F);
3057   assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!");
3058   // If its position is recorded as 0, its body is somewhere in the stream
3059   // but we haven't seen it yet.
3060   if (DFII->second == 0 && LazyStreamer)
3061     if (error_code EC = FindFunctionInStream(F, DFII))
3062       return EC;
3063 
3064   // Move the bit stream to the saved position of the deferred function body.
3065   Stream.JumpToBit(DFII->second);
3066 
3067   if (error_code EC = ParseFunctionBody(F))
3068     return EC;
3069 
3070   // Upgrade any old intrinsic calls in the function.
3071   for (UpgradedIntrinsicMap::iterator I = UpgradedIntrinsics.begin(),
3072        E = UpgradedIntrinsics.end(); I != E; ++I) {
3073     if (I->first != I->second) {
3074       for (Value::use_iterator UI = I->first->use_begin(),
3075            UE = I->first->use_end(); UI != UE; ) {
3076         if (CallInst* CI = dyn_cast<CallInst>(*UI++))
3077           UpgradeIntrinsicCall(CI, I->second);
3078       }
3079     }
3080   }
3081 
3082   return error_code::success();
3083 }
3084 
3085 bool BitcodeReader::isDematerializable(const GlobalValue *GV) const {
3086   const Function *F = dyn_cast<Function>(GV);
3087   if (!F || F->isDeclaration())
3088     return false;
3089   return DeferredFunctionInfo.count(const_cast<Function*>(F));
3090 }
3091 
3092 void BitcodeReader::Dematerialize(GlobalValue *GV) {
3093   Function *F = dyn_cast<Function>(GV);
3094   // If this function isn't dematerializable, this is a noop.
3095   if (!F || !isDematerializable(F))
3096     return;
3097 
3098   assert(DeferredFunctionInfo.count(F) && "No info to read function later?");
3099 
3100   // Just forget the function body, we can remat it later.
3101   F->deleteBody();
3102 }
3103 
3104 
3105 error_code BitcodeReader::MaterializeModule(Module *M) {
3106   assert(M == TheModule &&
3107          "Can only Materialize the Module this BitcodeReader is attached to.");
3108   // Iterate over the module, deserializing any functions that are still on
3109   // disk.
3110   for (Module::iterator F = TheModule->begin(), E = TheModule->end();
3111        F != E; ++F) {
3112     if (F->isMaterializable()) {
3113       if (error_code EC = Materialize(F))
3114         return EC;
3115     }
3116   }
3117   // At this point, if there are any function bodies, the current bit is
3118   // pointing to the END_BLOCK record after them. Now make sure the rest
3119   // of the bits in the module have been read.
3120   if (NextUnreadBit)
3121     ParseModule(true);
3122 
3123   // Upgrade any intrinsic calls that slipped through (should not happen!) and
3124   // delete the old functions to clean up. We can't do this unless the entire
3125   // module is materialized because there could always be another function body
3126   // with calls to the old function.
3127   for (std::vector<std::pair<Function*, Function*> >::iterator I =
3128        UpgradedIntrinsics.begin(), E = UpgradedIntrinsics.end(); I != E; ++I) {
3129     if (I->first != I->second) {
3130       for (Value::use_iterator UI = I->first->use_begin(),
3131            UE = I->first->use_end(); UI != UE; ) {
3132         if (CallInst* CI = dyn_cast<CallInst>(*UI++))
3133           UpgradeIntrinsicCall(CI, I->second);
3134       }
3135       if (!I->first->use_empty())
3136         I->first->replaceAllUsesWith(I->second);
3137       I->first->eraseFromParent();
3138     }
3139   }
3140   std::vector<std::pair<Function*, Function*> >().swap(UpgradedIntrinsics);
3141 
3142   for (unsigned I = 0, E = InstsWithTBAATag.size(); I < E; I++)
3143     UpgradeInstWithTBAATag(InstsWithTBAATag[I]);
3144 
3145   return error_code::success();
3146 }
3147 
3148 error_code BitcodeReader::InitStream() {
3149   if (LazyStreamer)
3150     return InitLazyStream();
3151   return InitStreamFromBuffer();
3152 }
3153 
3154 error_code BitcodeReader::InitStreamFromBuffer() {
3155   const unsigned char *BufPtr = (const unsigned char*)Buffer->getBufferStart();
3156   const unsigned char *BufEnd = BufPtr+Buffer->getBufferSize();
3157 
3158   if (Buffer->getBufferSize() & 3) {
3159     if (!isRawBitcode(BufPtr, BufEnd) && !isBitcodeWrapper(BufPtr, BufEnd))
3160       return Error(InvalidBitcodeSignature);
3161     else
3162       return Error(BitcodeStreamInvalidSize);
3163   }
3164 
3165   // If we have a wrapper header, parse it and ignore the non-bc file contents.
3166   // The magic number is 0x0B17C0DE stored in little endian.
3167   if (isBitcodeWrapper(BufPtr, BufEnd))
3168     if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true))
3169       return Error(InvalidBitcodeWrapperHeader);
3170 
3171   StreamFile.reset(new BitstreamReader(BufPtr, BufEnd));
3172   Stream.init(*StreamFile);
3173 
3174   return error_code::success();
3175 }
3176 
3177 error_code BitcodeReader::InitLazyStream() {
3178   // Check and strip off the bitcode wrapper; BitstreamReader expects never to
3179   // see it.
3180   StreamingMemoryObject *Bytes = new StreamingMemoryObject(LazyStreamer);
3181   StreamFile.reset(new BitstreamReader(Bytes));
3182   Stream.init(*StreamFile);
3183 
3184   unsigned char buf[16];
3185   if (Bytes->readBytes(0, 16, buf) == -1)
3186     return Error(BitcodeStreamInvalidSize);
3187 
3188   if (!isBitcode(buf, buf + 16))
3189     return Error(InvalidBitcodeSignature);
3190 
3191   if (isBitcodeWrapper(buf, buf + 4)) {
3192     const unsigned char *bitcodeStart = buf;
3193     const unsigned char *bitcodeEnd = buf + 16;
3194     SkipBitcodeWrapperHeader(bitcodeStart, bitcodeEnd, false);
3195     Bytes->dropLeadingBytes(bitcodeStart - buf);
3196     Bytes->setKnownObjectSize(bitcodeEnd - bitcodeStart);
3197   }
3198   return error_code::success();
3199 }
3200 
3201 namespace {
3202 class BitcodeErrorCategoryType : public _do_message {
3203   const char *name() const LLVM_OVERRIDE {
3204     return "llvm.bitcode";
3205   }
3206   std::string message(int IE) const LLVM_OVERRIDE {
3207     BitcodeReader::ErrorType E = static_cast<BitcodeReader::ErrorType>(IE);
3208     switch (E) {
3209     case BitcodeReader::BitcodeStreamInvalidSize:
3210       return "Bitcode stream length should be >= 16 bytes and a multiple of 4";
3211     case BitcodeReader::ConflictingMETADATA_KINDRecords:
3212       return "Conflicting METADATA_KIND records";
3213     case BitcodeReader::CouldNotFindFunctionInStream:
3214       return "Could not find function in stream";
3215     case BitcodeReader::ExpectedConstant:
3216       return "Expected a constant";
3217     case BitcodeReader::InsufficientFunctionProtos:
3218       return "Insufficient function protos";
3219     case BitcodeReader::InvalidBitcodeSignature:
3220       return "Invalid bitcode signature";
3221     case BitcodeReader::InvalidBitcodeWrapperHeader:
3222       return "Invalid bitcode wrapper header";
3223     case BitcodeReader::InvalidConstantReference:
3224       return "Invalid ronstant reference";
3225     case BitcodeReader::InvalidID:
3226       return "Invalid ID";
3227     case BitcodeReader::InvalidInstructionWithNoBB:
3228       return "Invalid instruction with no BB";
3229     case BitcodeReader::InvalidRecord:
3230       return "Invalid record";
3231     case BitcodeReader::InvalidTypeForValue:
3232       return "Invalid type for value";
3233     case BitcodeReader::InvalidTYPETable:
3234       return "Invalid TYPE table";
3235     case BitcodeReader::InvalidType:
3236       return "Invalid type";
3237     case BitcodeReader::MalformedBlock:
3238       return "Malformed block";
3239     case BitcodeReader::MalformedGlobalInitializerSet:
3240       return "Malformed global initializer set";
3241     case BitcodeReader::InvalidMultipleBlocks:
3242       return "Invalid multiple blocks";
3243     case BitcodeReader::NeverResolvedValueFoundInFunction:
3244       return "Never resolved value found in function";
3245     case BitcodeReader::InvalidValue:
3246       return "Invalid value";
3247     }
3248     llvm_unreachable("Unknown error type!");
3249   }
3250 };
3251 }
3252 
3253 const error_category &BitcodeReader::BitcodeErrorCategory() {
3254   static BitcodeErrorCategoryType O;
3255   return O;
3256 }
3257 
3258 //===----------------------------------------------------------------------===//
3259 // External interface
3260 //===----------------------------------------------------------------------===//
3261 
3262 /// getLazyBitcodeModule - lazy function-at-a-time loading from a file.
3263 ///
3264 Module *llvm::getLazyBitcodeModule(MemoryBuffer *Buffer,
3265                                    LLVMContext& Context,
3266                                    std::string *ErrMsg) {
3267   Module *M = new Module(Buffer->getBufferIdentifier(), Context);
3268   BitcodeReader *R = new BitcodeReader(Buffer, Context);
3269   M->setMaterializer(R);
3270   if (error_code EC = R->ParseBitcodeInto(M)) {
3271     if (ErrMsg)
3272       *ErrMsg = EC.message();
3273 
3274     delete M;  // Also deletes R.
3275     return 0;
3276   }
3277   // Have the BitcodeReader dtor delete 'Buffer'.
3278   R->setBufferOwned(true);
3279 
3280   R->materializeForwardReferencedFunctions();
3281 
3282   return M;
3283 }
3284 
3285 
3286 Module *llvm::getStreamedBitcodeModule(const std::string &name,
3287                                        DataStreamer *streamer,
3288                                        LLVMContext &Context,
3289                                        std::string *ErrMsg) {
3290   Module *M = new Module(name, Context);
3291   BitcodeReader *R = new BitcodeReader(streamer, Context);
3292   M->setMaterializer(R);
3293   if (error_code EC = R->ParseBitcodeInto(M)) {
3294     if (ErrMsg)
3295       *ErrMsg = EC.message();
3296     delete M;  // Also deletes R.
3297     return 0;
3298   }
3299   R->setBufferOwned(false); // no buffer to delete
3300   return M;
3301 }
3302 
3303 /// ParseBitcodeFile - Read the specified bitcode file, returning the module.
3304 /// If an error occurs, return null and fill in *ErrMsg if non-null.
3305 Module *llvm::ParseBitcodeFile(MemoryBuffer *Buffer, LLVMContext& Context,
3306                                std::string *ErrMsg){
3307   Module *M = getLazyBitcodeModule(Buffer, Context, ErrMsg);
3308   if (!M) return 0;
3309 
3310   // Don't let the BitcodeReader dtor delete 'Buffer', regardless of whether
3311   // there was an error.
3312   static_cast<BitcodeReader*>(M->getMaterializer())->setBufferOwned(false);
3313 
3314   // Read in the entire module, and destroy the BitcodeReader.
3315   if (M->MaterializeAllPermanently(ErrMsg)) {
3316     delete M;
3317     return 0;
3318   }
3319 
3320   // TODO: Restore the use-lists to the in-memory state when the bitcode was
3321   // written.  We must defer until the Module has been fully materialized.
3322 
3323   return M;
3324 }
3325 
3326 std::string llvm::getBitcodeTargetTriple(MemoryBuffer *Buffer,
3327                                          LLVMContext& Context,
3328                                          std::string *ErrMsg) {
3329   BitcodeReader *R = new BitcodeReader(Buffer, Context);
3330   // Don't let the BitcodeReader dtor delete 'Buffer'.
3331   R->setBufferOwned(false);
3332 
3333   std::string Triple("");
3334   if (error_code EC = R->ParseTriple(Triple))
3335     if (ErrMsg)
3336       *ErrMsg = EC.message();
3337 
3338   delete R;
3339   return Triple;
3340 }
3341