1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/Bitcode/BitcodeReader.h" 10 #include "MetadataLoader.h" 11 #include "ValueList.h" 12 #include "llvm/ADT/APFloat.h" 13 #include "llvm/ADT/APInt.h" 14 #include "llvm/ADT/ArrayRef.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/Optional.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallString.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/StringRef.h" 21 #include "llvm/ADT/Triple.h" 22 #include "llvm/ADT/Twine.h" 23 #include "llvm/Bitstream/BitstreamReader.h" 24 #include "llvm/Bitcode/LLVMBitCodes.h" 25 #include "llvm/Config/llvm-config.h" 26 #include "llvm/IR/Argument.h" 27 #include "llvm/IR/Attributes.h" 28 #include "llvm/IR/AutoUpgrade.h" 29 #include "llvm/IR/BasicBlock.h" 30 #include "llvm/IR/CallSite.h" 31 #include "llvm/IR/CallingConv.h" 32 #include "llvm/IR/Comdat.h" 33 #include "llvm/IR/Constant.h" 34 #include "llvm/IR/Constants.h" 35 #include "llvm/IR/DataLayout.h" 36 #include "llvm/IR/DebugInfo.h" 37 #include "llvm/IR/DebugInfoMetadata.h" 38 #include "llvm/IR/DebugLoc.h" 39 #include "llvm/IR/DerivedTypes.h" 40 #include "llvm/IR/Function.h" 41 #include "llvm/IR/GVMaterializer.h" 42 #include "llvm/IR/GlobalAlias.h" 43 #include "llvm/IR/GlobalIFunc.h" 44 #include "llvm/IR/GlobalIndirectSymbol.h" 45 #include "llvm/IR/GlobalObject.h" 46 #include "llvm/IR/GlobalValue.h" 47 #include "llvm/IR/GlobalVariable.h" 48 #include "llvm/IR/InlineAsm.h" 49 #include "llvm/IR/InstIterator.h" 50 #include "llvm/IR/InstrTypes.h" 51 #include "llvm/IR/Instruction.h" 52 #include "llvm/IR/Instructions.h" 53 #include "llvm/IR/Intrinsics.h" 54 #include "llvm/IR/LLVMContext.h" 55 #include "llvm/IR/Metadata.h" 56 #include "llvm/IR/Module.h" 57 #include "llvm/IR/ModuleSummaryIndex.h" 58 #include "llvm/IR/Operator.h" 59 #include "llvm/IR/Type.h" 60 #include "llvm/IR/Value.h" 61 #include "llvm/IR/Verifier.h" 62 #include "llvm/Support/AtomicOrdering.h" 63 #include "llvm/Support/Casting.h" 64 #include "llvm/Support/CommandLine.h" 65 #include "llvm/Support/Compiler.h" 66 #include "llvm/Support/Debug.h" 67 #include "llvm/Support/Error.h" 68 #include "llvm/Support/ErrorHandling.h" 69 #include "llvm/Support/ErrorOr.h" 70 #include "llvm/Support/ManagedStatic.h" 71 #include "llvm/Support/MathExtras.h" 72 #include "llvm/Support/MemoryBuffer.h" 73 #include "llvm/Support/raw_ostream.h" 74 #include <algorithm> 75 #include <cassert> 76 #include <cstddef> 77 #include <cstdint> 78 #include <deque> 79 #include <map> 80 #include <memory> 81 #include <set> 82 #include <string> 83 #include <system_error> 84 #include <tuple> 85 #include <utility> 86 #include <vector> 87 88 using namespace llvm; 89 90 static cl::opt<bool> PrintSummaryGUIDs( 91 "print-summary-global-ids", cl::init(false), cl::Hidden, 92 cl::desc( 93 "Print the global id for each value when reading the module summary")); 94 95 namespace { 96 97 enum { 98 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 99 }; 100 101 } // end anonymous namespace 102 103 static Error error(const Twine &Message) { 104 return make_error<StringError>( 105 Message, make_error_code(BitcodeError::CorruptedBitcode)); 106 } 107 108 static Error hasInvalidBitcodeHeader(BitstreamCursor &Stream) { 109 if (!Stream.canSkipToPos(4)) 110 return createStringError(std::errc::illegal_byte_sequence, 111 "file too small to contain bitcode header"); 112 for (unsigned C : {'B', 'C'}) 113 if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(8)) { 114 if (Res.get() != C) 115 return createStringError(std::errc::illegal_byte_sequence, 116 "file doesn't start with bitcode header"); 117 } else 118 return Res.takeError(); 119 for (unsigned C : {0x0, 0xC, 0xE, 0xD}) 120 if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(4)) { 121 if (Res.get() != C) 122 return createStringError(std::errc::illegal_byte_sequence, 123 "file doesn't start with bitcode header"); 124 } else 125 return Res.takeError(); 126 return Error::success(); 127 } 128 129 static Expected<BitstreamCursor> initStream(MemoryBufferRef Buffer) { 130 const unsigned char *BufPtr = (const unsigned char *)Buffer.getBufferStart(); 131 const unsigned char *BufEnd = BufPtr + Buffer.getBufferSize(); 132 133 if (Buffer.getBufferSize() & 3) 134 return error("Invalid bitcode signature"); 135 136 // If we have a wrapper header, parse it and ignore the non-bc file contents. 137 // The magic number is 0x0B17C0DE stored in little endian. 138 if (isBitcodeWrapper(BufPtr, BufEnd)) 139 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 140 return error("Invalid bitcode wrapper header"); 141 142 BitstreamCursor Stream(ArrayRef<uint8_t>(BufPtr, BufEnd)); 143 if (Error Err = hasInvalidBitcodeHeader(Stream)) 144 return std::move(Err); 145 146 return std::move(Stream); 147 } 148 149 /// Convert a string from a record into an std::string, return true on failure. 150 template <typename StrTy> 151 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx, 152 StrTy &Result) { 153 if (Idx > Record.size()) 154 return true; 155 156 for (unsigned i = Idx, e = Record.size(); i != e; ++i) 157 Result += (char)Record[i]; 158 return false; 159 } 160 161 // Strip all the TBAA attachment for the module. 162 static void stripTBAA(Module *M) { 163 for (auto &F : *M) { 164 if (F.isMaterializable()) 165 continue; 166 for (auto &I : instructions(F)) 167 I.setMetadata(LLVMContext::MD_tbaa, nullptr); 168 } 169 } 170 171 /// Read the "IDENTIFICATION_BLOCK_ID" block, do some basic enforcement on the 172 /// "epoch" encoded in the bitcode, and return the producer name if any. 173 static Expected<std::string> readIdentificationBlock(BitstreamCursor &Stream) { 174 if (Error Err = Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID)) 175 return std::move(Err); 176 177 // Read all the records. 178 SmallVector<uint64_t, 64> Record; 179 180 std::string ProducerIdentification; 181 182 while (true) { 183 BitstreamEntry Entry; 184 if (Expected<BitstreamEntry> Res = Stream.advance()) 185 Entry = Res.get(); 186 else 187 return Res.takeError(); 188 189 switch (Entry.Kind) { 190 default: 191 case BitstreamEntry::Error: 192 return error("Malformed block"); 193 case BitstreamEntry::EndBlock: 194 return ProducerIdentification; 195 case BitstreamEntry::Record: 196 // The interesting case. 197 break; 198 } 199 200 // Read a record. 201 Record.clear(); 202 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 203 if (!MaybeBitCode) 204 return MaybeBitCode.takeError(); 205 switch (MaybeBitCode.get()) { 206 default: // Default behavior: reject 207 return error("Invalid value"); 208 case bitc::IDENTIFICATION_CODE_STRING: // IDENTIFICATION: [strchr x N] 209 convertToString(Record, 0, ProducerIdentification); 210 break; 211 case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#] 212 unsigned epoch = (unsigned)Record[0]; 213 if (epoch != bitc::BITCODE_CURRENT_EPOCH) { 214 return error( 215 Twine("Incompatible epoch: Bitcode '") + Twine(epoch) + 216 "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'"); 217 } 218 } 219 } 220 } 221 } 222 223 static Expected<std::string> readIdentificationCode(BitstreamCursor &Stream) { 224 // We expect a number of well-defined blocks, though we don't necessarily 225 // need to understand them all. 226 while (true) { 227 if (Stream.AtEndOfStream()) 228 return ""; 229 230 BitstreamEntry Entry; 231 if (Expected<BitstreamEntry> Res = Stream.advance()) 232 Entry = std::move(Res.get()); 233 else 234 return Res.takeError(); 235 236 switch (Entry.Kind) { 237 case BitstreamEntry::EndBlock: 238 case BitstreamEntry::Error: 239 return error("Malformed block"); 240 241 case BitstreamEntry::SubBlock: 242 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) 243 return readIdentificationBlock(Stream); 244 245 // Ignore other sub-blocks. 246 if (Error Err = Stream.SkipBlock()) 247 return std::move(Err); 248 continue; 249 case BitstreamEntry::Record: 250 if (Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID)) 251 continue; 252 else 253 return Skipped.takeError(); 254 } 255 } 256 } 257 258 static Expected<bool> hasObjCCategoryInModule(BitstreamCursor &Stream) { 259 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 260 return std::move(Err); 261 262 SmallVector<uint64_t, 64> Record; 263 // Read all the records for this module. 264 265 while (true) { 266 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 267 if (!MaybeEntry) 268 return MaybeEntry.takeError(); 269 BitstreamEntry Entry = MaybeEntry.get(); 270 271 switch (Entry.Kind) { 272 case BitstreamEntry::SubBlock: // Handled for us already. 273 case BitstreamEntry::Error: 274 return error("Malformed block"); 275 case BitstreamEntry::EndBlock: 276 return false; 277 case BitstreamEntry::Record: 278 // The interesting case. 279 break; 280 } 281 282 // Read a record. 283 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 284 if (!MaybeRecord) 285 return MaybeRecord.takeError(); 286 switch (MaybeRecord.get()) { 287 default: 288 break; // Default behavior, ignore unknown content. 289 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 290 std::string S; 291 if (convertToString(Record, 0, S)) 292 return error("Invalid record"); 293 // Check for the i386 and other (x86_64, ARM) conventions 294 if (S.find("__DATA,__objc_catlist") != std::string::npos || 295 S.find("__OBJC,__category") != std::string::npos) 296 return true; 297 break; 298 } 299 } 300 Record.clear(); 301 } 302 llvm_unreachable("Exit infinite loop"); 303 } 304 305 static Expected<bool> hasObjCCategory(BitstreamCursor &Stream) { 306 // We expect a number of well-defined blocks, though we don't necessarily 307 // need to understand them all. 308 while (true) { 309 BitstreamEntry Entry; 310 if (Expected<BitstreamEntry> Res = Stream.advance()) 311 Entry = std::move(Res.get()); 312 else 313 return Res.takeError(); 314 315 switch (Entry.Kind) { 316 case BitstreamEntry::Error: 317 return error("Malformed block"); 318 case BitstreamEntry::EndBlock: 319 return false; 320 321 case BitstreamEntry::SubBlock: 322 if (Entry.ID == bitc::MODULE_BLOCK_ID) 323 return hasObjCCategoryInModule(Stream); 324 325 // Ignore other sub-blocks. 326 if (Error Err = Stream.SkipBlock()) 327 return std::move(Err); 328 continue; 329 330 case BitstreamEntry::Record: 331 if (Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID)) 332 continue; 333 else 334 return Skipped.takeError(); 335 } 336 } 337 } 338 339 static Expected<std::string> readModuleTriple(BitstreamCursor &Stream) { 340 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 341 return std::move(Err); 342 343 SmallVector<uint64_t, 64> Record; 344 345 std::string Triple; 346 347 // Read all the records for this module. 348 while (true) { 349 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 350 if (!MaybeEntry) 351 return MaybeEntry.takeError(); 352 BitstreamEntry Entry = MaybeEntry.get(); 353 354 switch (Entry.Kind) { 355 case BitstreamEntry::SubBlock: // Handled for us already. 356 case BitstreamEntry::Error: 357 return error("Malformed block"); 358 case BitstreamEntry::EndBlock: 359 return Triple; 360 case BitstreamEntry::Record: 361 // The interesting case. 362 break; 363 } 364 365 // Read a record. 366 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 367 if (!MaybeRecord) 368 return MaybeRecord.takeError(); 369 switch (MaybeRecord.get()) { 370 default: break; // Default behavior, ignore unknown content. 371 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 372 std::string S; 373 if (convertToString(Record, 0, S)) 374 return error("Invalid record"); 375 Triple = S; 376 break; 377 } 378 } 379 Record.clear(); 380 } 381 llvm_unreachable("Exit infinite loop"); 382 } 383 384 static Expected<std::string> readTriple(BitstreamCursor &Stream) { 385 // We expect a number of well-defined blocks, though we don't necessarily 386 // need to understand them all. 387 while (true) { 388 Expected<BitstreamEntry> MaybeEntry = Stream.advance(); 389 if (!MaybeEntry) 390 return MaybeEntry.takeError(); 391 BitstreamEntry Entry = MaybeEntry.get(); 392 393 switch (Entry.Kind) { 394 case BitstreamEntry::Error: 395 return error("Malformed block"); 396 case BitstreamEntry::EndBlock: 397 return ""; 398 399 case BitstreamEntry::SubBlock: 400 if (Entry.ID == bitc::MODULE_BLOCK_ID) 401 return readModuleTriple(Stream); 402 403 // Ignore other sub-blocks. 404 if (Error Err = Stream.SkipBlock()) 405 return std::move(Err); 406 continue; 407 408 case BitstreamEntry::Record: 409 if (llvm::Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID)) 410 continue; 411 else 412 return Skipped.takeError(); 413 } 414 } 415 } 416 417 namespace { 418 419 class BitcodeReaderBase { 420 protected: 421 BitcodeReaderBase(BitstreamCursor Stream, StringRef Strtab) 422 : Stream(std::move(Stream)), Strtab(Strtab) { 423 this->Stream.setBlockInfo(&BlockInfo); 424 } 425 426 BitstreamBlockInfo BlockInfo; 427 BitstreamCursor Stream; 428 StringRef Strtab; 429 430 /// In version 2 of the bitcode we store names of global values and comdats in 431 /// a string table rather than in the VST. 432 bool UseStrtab = false; 433 434 Expected<unsigned> parseVersionRecord(ArrayRef<uint64_t> Record); 435 436 /// If this module uses a string table, pop the reference to the string table 437 /// and return the referenced string and the rest of the record. Otherwise 438 /// just return the record itself. 439 std::pair<StringRef, ArrayRef<uint64_t>> 440 readNameFromStrtab(ArrayRef<uint64_t> Record); 441 442 bool readBlockInfo(); 443 444 // Contains an arbitrary and optional string identifying the bitcode producer 445 std::string ProducerIdentification; 446 447 Error error(const Twine &Message); 448 }; 449 450 } // end anonymous namespace 451 452 Error BitcodeReaderBase::error(const Twine &Message) { 453 std::string FullMsg = Message.str(); 454 if (!ProducerIdentification.empty()) 455 FullMsg += " (Producer: '" + ProducerIdentification + "' Reader: 'LLVM " + 456 LLVM_VERSION_STRING "')"; 457 return ::error(FullMsg); 458 } 459 460 Expected<unsigned> 461 BitcodeReaderBase::parseVersionRecord(ArrayRef<uint64_t> Record) { 462 if (Record.empty()) 463 return error("Invalid record"); 464 unsigned ModuleVersion = Record[0]; 465 if (ModuleVersion > 2) 466 return error("Invalid value"); 467 UseStrtab = ModuleVersion >= 2; 468 return ModuleVersion; 469 } 470 471 std::pair<StringRef, ArrayRef<uint64_t>> 472 BitcodeReaderBase::readNameFromStrtab(ArrayRef<uint64_t> Record) { 473 if (!UseStrtab) 474 return {"", Record}; 475 // Invalid reference. Let the caller complain about the record being empty. 476 if (Record[0] + Record[1] > Strtab.size()) 477 return {"", {}}; 478 return {StringRef(Strtab.data() + Record[0], Record[1]), Record.slice(2)}; 479 } 480 481 namespace { 482 483 class BitcodeReader : public BitcodeReaderBase, public GVMaterializer { 484 LLVMContext &Context; 485 Module *TheModule = nullptr; 486 // Next offset to start scanning for lazy parsing of function bodies. 487 uint64_t NextUnreadBit = 0; 488 // Last function offset found in the VST. 489 uint64_t LastFunctionBlockBit = 0; 490 bool SeenValueSymbolTable = false; 491 uint64_t VSTOffset = 0; 492 493 std::vector<std::string> SectionTable; 494 std::vector<std::string> GCTable; 495 496 std::vector<Type*> TypeList; 497 DenseMap<Function *, FunctionType *> FunctionTypes; 498 BitcodeReaderValueList ValueList; 499 Optional<MetadataLoader> MDLoader; 500 std::vector<Comdat *> ComdatList; 501 SmallVector<Instruction *, 64> InstructionList; 502 503 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInits; 504 std::vector<std::pair<GlobalIndirectSymbol *, unsigned>> IndirectSymbolInits; 505 std::vector<std::pair<Function *, unsigned>> FunctionPrefixes; 506 std::vector<std::pair<Function *, unsigned>> FunctionPrologues; 507 std::vector<std::pair<Function *, unsigned>> FunctionPersonalityFns; 508 509 /// The set of attributes by index. Index zero in the file is for null, and 510 /// is thus not represented here. As such all indices are off by one. 511 std::vector<AttributeList> MAttributes; 512 513 /// The set of attribute groups. 514 std::map<unsigned, AttributeList> MAttributeGroups; 515 516 /// While parsing a function body, this is a list of the basic blocks for the 517 /// function. 518 std::vector<BasicBlock*> FunctionBBs; 519 520 // When reading the module header, this list is populated with functions that 521 // have bodies later in the file. 522 std::vector<Function*> FunctionsWithBodies; 523 524 // When intrinsic functions are encountered which require upgrading they are 525 // stored here with their replacement function. 526 using UpdatedIntrinsicMap = DenseMap<Function *, Function *>; 527 UpdatedIntrinsicMap UpgradedIntrinsics; 528 // Intrinsics which were remangled because of types rename 529 UpdatedIntrinsicMap RemangledIntrinsics; 530 531 // Several operations happen after the module header has been read, but 532 // before function bodies are processed. This keeps track of whether 533 // we've done this yet. 534 bool SeenFirstFunctionBody = false; 535 536 /// When function bodies are initially scanned, this map contains info about 537 /// where to find deferred function body in the stream. 538 DenseMap<Function*, uint64_t> DeferredFunctionInfo; 539 540 /// When Metadata block is initially scanned when parsing the module, we may 541 /// choose to defer parsing of the metadata. This vector contains info about 542 /// which Metadata blocks are deferred. 543 std::vector<uint64_t> DeferredMetadataInfo; 544 545 /// These are basic blocks forward-referenced by block addresses. They are 546 /// inserted lazily into functions when they're loaded. The basic block ID is 547 /// its index into the vector. 548 DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs; 549 std::deque<Function *> BasicBlockFwdRefQueue; 550 551 /// Indicates that we are using a new encoding for instruction operands where 552 /// most operands in the current FUNCTION_BLOCK are encoded relative to the 553 /// instruction number, for a more compact encoding. Some instruction 554 /// operands are not relative to the instruction ID: basic block numbers, and 555 /// types. Once the old style function blocks have been phased out, we would 556 /// not need this flag. 557 bool UseRelativeIDs = false; 558 559 /// True if all functions will be materialized, negating the need to process 560 /// (e.g.) blockaddress forward references. 561 bool WillMaterializeAllForwardRefs = false; 562 563 bool StripDebugInfo = false; 564 TBAAVerifier TBAAVerifyHelper; 565 566 std::vector<std::string> BundleTags; 567 SmallVector<SyncScope::ID, 8> SSIDs; 568 569 public: 570 BitcodeReader(BitstreamCursor Stream, StringRef Strtab, 571 StringRef ProducerIdentification, LLVMContext &Context); 572 573 Error materializeForwardReferencedFunctions(); 574 575 Error materialize(GlobalValue *GV) override; 576 Error materializeModule() override; 577 std::vector<StructType *> getIdentifiedStructTypes() const override; 578 579 /// Main interface to parsing a bitcode buffer. 580 /// \returns true if an error occurred. 581 Error parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata = false, 582 bool IsImporting = false); 583 584 static uint64_t decodeSignRotatedValue(uint64_t V); 585 586 /// Materialize any deferred Metadata block. 587 Error materializeMetadata() override; 588 589 void setStripDebugInfo() override; 590 591 private: 592 std::vector<StructType *> IdentifiedStructTypes; 593 StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name); 594 StructType *createIdentifiedStructType(LLVMContext &Context); 595 596 /// Map all pointer types within \param Ty to the opaque pointer 597 /// type in the same address space if opaque pointers are being 598 /// used, otherwise nop. This converts a bitcode-reader internal 599 /// type into one suitable for use in a Value. 600 Type *flattenPointerTypes(Type *Ty) { 601 return Ty; 602 } 603 604 /// Given a fully structured pointer type (i.e. not opaque), return 605 /// the flattened form of its element, suitable for use in a Value. 606 Type *getPointerElementFlatType(Type *Ty) { 607 return flattenPointerTypes(cast<PointerType>(Ty)->getElementType()); 608 } 609 610 /// Given a fully structured pointer type, get its element type in 611 /// both fully structured form, and flattened form suitable for use 612 /// in a Value. 613 std::pair<Type *, Type *> getPointerElementTypes(Type *FullTy) { 614 Type *ElTy = cast<PointerType>(FullTy)->getElementType(); 615 return std::make_pair(ElTy, flattenPointerTypes(ElTy)); 616 } 617 618 /// Return the flattened type (suitable for use in a Value) 619 /// specified by the given \param ID . 620 Type *getTypeByID(unsigned ID) { 621 return flattenPointerTypes(getFullyStructuredTypeByID(ID)); 622 } 623 624 /// Return the fully structured (bitcode-reader internal) type 625 /// corresponding to the given \param ID . 626 Type *getFullyStructuredTypeByID(unsigned ID); 627 628 Value *getFnValueByID(unsigned ID, Type *Ty, Type **FullTy = nullptr) { 629 if (Ty && Ty->isMetadataTy()) 630 return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID)); 631 return ValueList.getValueFwdRef(ID, Ty, FullTy); 632 } 633 634 Metadata *getFnMetadataByID(unsigned ID) { 635 return MDLoader->getMetadataFwdRefOrLoad(ID); 636 } 637 638 BasicBlock *getBasicBlock(unsigned ID) const { 639 if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID 640 return FunctionBBs[ID]; 641 } 642 643 AttributeList getAttributes(unsigned i) const { 644 if (i-1 < MAttributes.size()) 645 return MAttributes[i-1]; 646 return AttributeList(); 647 } 648 649 /// Read a value/type pair out of the specified record from slot 'Slot'. 650 /// Increment Slot past the number of slots used in the record. Return true on 651 /// failure. 652 bool getValueTypePair(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 653 unsigned InstNum, Value *&ResVal, 654 Type **FullTy = nullptr) { 655 if (Slot == Record.size()) return true; 656 unsigned ValNo = (unsigned)Record[Slot++]; 657 // Adjust the ValNo, if it was encoded relative to the InstNum. 658 if (UseRelativeIDs) 659 ValNo = InstNum - ValNo; 660 if (ValNo < InstNum) { 661 // If this is not a forward reference, just return the value we already 662 // have. 663 ResVal = getFnValueByID(ValNo, nullptr, FullTy); 664 return ResVal == nullptr; 665 } 666 if (Slot == Record.size()) 667 return true; 668 669 unsigned TypeNo = (unsigned)Record[Slot++]; 670 ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo)); 671 if (FullTy) 672 *FullTy = getFullyStructuredTypeByID(TypeNo); 673 return ResVal == nullptr; 674 } 675 676 /// Read a value out of the specified record from slot 'Slot'. Increment Slot 677 /// past the number of slots used by the value in the record. Return true if 678 /// there is an error. 679 bool popValue(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 680 unsigned InstNum, Type *Ty, Value *&ResVal) { 681 if (getValue(Record, Slot, InstNum, Ty, ResVal)) 682 return true; 683 // All values currently take a single record slot. 684 ++Slot; 685 return false; 686 } 687 688 /// Like popValue, but does not increment the Slot number. 689 bool getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 690 unsigned InstNum, Type *Ty, Value *&ResVal) { 691 ResVal = getValue(Record, Slot, InstNum, Ty); 692 return ResVal == nullptr; 693 } 694 695 /// Version of getValue that returns ResVal directly, or 0 if there is an 696 /// error. 697 Value *getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 698 unsigned InstNum, Type *Ty) { 699 if (Slot == Record.size()) return nullptr; 700 unsigned ValNo = (unsigned)Record[Slot]; 701 // Adjust the ValNo, if it was encoded relative to the InstNum. 702 if (UseRelativeIDs) 703 ValNo = InstNum - ValNo; 704 return getFnValueByID(ValNo, Ty); 705 } 706 707 /// Like getValue, but decodes signed VBRs. 708 Value *getValueSigned(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 709 unsigned InstNum, Type *Ty) { 710 if (Slot == Record.size()) return nullptr; 711 unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]); 712 // Adjust the ValNo, if it was encoded relative to the InstNum. 713 if (UseRelativeIDs) 714 ValNo = InstNum - ValNo; 715 return getFnValueByID(ValNo, Ty); 716 } 717 718 /// Upgrades old-style typeless byval attributes by adding the corresponding 719 /// argument's pointee type. 720 void propagateByValTypes(CallBase *CB, ArrayRef<Type *> ArgsFullTys); 721 722 /// Converts alignment exponent (i.e. power of two (or zero)) to the 723 /// corresponding alignment to use. If alignment is too large, returns 724 /// a corresponding error code. 725 Error parseAlignmentValue(uint64_t Exponent, unsigned &Alignment); 726 Error parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind); 727 Error parseModule(uint64_t ResumeBit, bool ShouldLazyLoadMetadata = false); 728 729 Error parseComdatRecord(ArrayRef<uint64_t> Record); 730 Error parseGlobalVarRecord(ArrayRef<uint64_t> Record); 731 Error parseFunctionRecord(ArrayRef<uint64_t> Record); 732 Error parseGlobalIndirectSymbolRecord(unsigned BitCode, 733 ArrayRef<uint64_t> Record); 734 735 Error parseAttributeBlock(); 736 Error parseAttributeGroupBlock(); 737 Error parseTypeTable(); 738 Error parseTypeTableBody(); 739 Error parseOperandBundleTags(); 740 Error parseSyncScopeNames(); 741 742 Expected<Value *> recordValue(SmallVectorImpl<uint64_t> &Record, 743 unsigned NameIndex, Triple &TT); 744 void setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, Function *F, 745 ArrayRef<uint64_t> Record); 746 Error parseValueSymbolTable(uint64_t Offset = 0); 747 Error parseGlobalValueSymbolTable(); 748 Error parseConstants(); 749 Error rememberAndSkipFunctionBodies(); 750 Error rememberAndSkipFunctionBody(); 751 /// Save the positions of the Metadata blocks and skip parsing the blocks. 752 Error rememberAndSkipMetadata(); 753 Error typeCheckLoadStoreInst(Type *ValType, Type *PtrType); 754 Error parseFunctionBody(Function *F); 755 Error globalCleanup(); 756 Error resolveGlobalAndIndirectSymbolInits(); 757 Error parseUseLists(); 758 Error findFunctionInStream( 759 Function *F, 760 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator); 761 762 SyncScope::ID getDecodedSyncScopeID(unsigned Val); 763 }; 764 765 /// Class to manage reading and parsing function summary index bitcode 766 /// files/sections. 767 class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase { 768 /// The module index built during parsing. 769 ModuleSummaryIndex &TheIndex; 770 771 /// Indicates whether we have encountered a global value summary section 772 /// yet during parsing. 773 bool SeenGlobalValSummary = false; 774 775 /// Indicates whether we have already parsed the VST, used for error checking. 776 bool SeenValueSymbolTable = false; 777 778 /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record. 779 /// Used to enable on-demand parsing of the VST. 780 uint64_t VSTOffset = 0; 781 782 // Map to save ValueId to ValueInfo association that was recorded in the 783 // ValueSymbolTable. It is used after the VST is parsed to convert 784 // call graph edges read from the function summary from referencing 785 // callees by their ValueId to using the ValueInfo instead, which is how 786 // they are recorded in the summary index being built. 787 // We save a GUID which refers to the same global as the ValueInfo, but 788 // ignoring the linkage, i.e. for values other than local linkage they are 789 // identical. 790 DenseMap<unsigned, std::pair<ValueInfo, GlobalValue::GUID>> 791 ValueIdToValueInfoMap; 792 793 /// Map populated during module path string table parsing, from the 794 /// module ID to a string reference owned by the index's module 795 /// path string table, used to correlate with combined index 796 /// summary records. 797 DenseMap<uint64_t, StringRef> ModuleIdMap; 798 799 /// Original source file name recorded in a bitcode record. 800 std::string SourceFileName; 801 802 /// The string identifier given to this module by the client, normally the 803 /// path to the bitcode file. 804 StringRef ModulePath; 805 806 /// For per-module summary indexes, the unique numerical identifier given to 807 /// this module by the client. 808 unsigned ModuleId; 809 810 public: 811 ModuleSummaryIndexBitcodeReader(BitstreamCursor Stream, StringRef Strtab, 812 ModuleSummaryIndex &TheIndex, 813 StringRef ModulePath, unsigned ModuleId); 814 815 Error parseModule(); 816 817 private: 818 void setValueGUID(uint64_t ValueID, StringRef ValueName, 819 GlobalValue::LinkageTypes Linkage, 820 StringRef SourceFileName); 821 Error parseValueSymbolTable( 822 uint64_t Offset, 823 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap); 824 std::vector<ValueInfo> makeRefList(ArrayRef<uint64_t> Record); 825 std::vector<FunctionSummary::EdgeTy> makeCallList(ArrayRef<uint64_t> Record, 826 bool IsOldProfileFormat, 827 bool HasProfile, 828 bool HasRelBF); 829 Error parseEntireSummary(unsigned ID); 830 Error parseModuleStringTable(); 831 void parseTypeIdCompatibleVtableSummaryRecord(ArrayRef<uint64_t> Record); 832 void parseTypeIdCompatibleVtableInfo(ArrayRef<uint64_t> Record, size_t &Slot, 833 TypeIdCompatibleVtableInfo &TypeId); 834 835 std::pair<ValueInfo, GlobalValue::GUID> 836 getValueInfoFromValueId(unsigned ValueId); 837 838 void addThisModule(); 839 ModuleSummaryIndex::ModuleInfo *getThisModule(); 840 }; 841 842 } // end anonymous namespace 843 844 std::error_code llvm::errorToErrorCodeAndEmitErrors(LLVMContext &Ctx, 845 Error Err) { 846 if (Err) { 847 std::error_code EC; 848 handleAllErrors(std::move(Err), [&](ErrorInfoBase &EIB) { 849 EC = EIB.convertToErrorCode(); 850 Ctx.emitError(EIB.message()); 851 }); 852 return EC; 853 } 854 return std::error_code(); 855 } 856 857 BitcodeReader::BitcodeReader(BitstreamCursor Stream, StringRef Strtab, 858 StringRef ProducerIdentification, 859 LLVMContext &Context) 860 : BitcodeReaderBase(std::move(Stream), Strtab), Context(Context), 861 ValueList(Context) { 862 this->ProducerIdentification = ProducerIdentification; 863 } 864 865 Error BitcodeReader::materializeForwardReferencedFunctions() { 866 if (WillMaterializeAllForwardRefs) 867 return Error::success(); 868 869 // Prevent recursion. 870 WillMaterializeAllForwardRefs = true; 871 872 while (!BasicBlockFwdRefQueue.empty()) { 873 Function *F = BasicBlockFwdRefQueue.front(); 874 BasicBlockFwdRefQueue.pop_front(); 875 assert(F && "Expected valid function"); 876 if (!BasicBlockFwdRefs.count(F)) 877 // Already materialized. 878 continue; 879 880 // Check for a function that isn't materializable to prevent an infinite 881 // loop. When parsing a blockaddress stored in a global variable, there 882 // isn't a trivial way to check if a function will have a body without a 883 // linear search through FunctionsWithBodies, so just check it here. 884 if (!F->isMaterializable()) 885 return error("Never resolved function from blockaddress"); 886 887 // Try to materialize F. 888 if (Error Err = materialize(F)) 889 return Err; 890 } 891 assert(BasicBlockFwdRefs.empty() && "Function missing from queue"); 892 893 // Reset state. 894 WillMaterializeAllForwardRefs = false; 895 return Error::success(); 896 } 897 898 //===----------------------------------------------------------------------===// 899 // Helper functions to implement forward reference resolution, etc. 900 //===----------------------------------------------------------------------===// 901 902 static bool hasImplicitComdat(size_t Val) { 903 switch (Val) { 904 default: 905 return false; 906 case 1: // Old WeakAnyLinkage 907 case 4: // Old LinkOnceAnyLinkage 908 case 10: // Old WeakODRLinkage 909 case 11: // Old LinkOnceODRLinkage 910 return true; 911 } 912 } 913 914 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) { 915 switch (Val) { 916 default: // Map unknown/new linkages to external 917 case 0: 918 return GlobalValue::ExternalLinkage; 919 case 2: 920 return GlobalValue::AppendingLinkage; 921 case 3: 922 return GlobalValue::InternalLinkage; 923 case 5: 924 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage 925 case 6: 926 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage 927 case 7: 928 return GlobalValue::ExternalWeakLinkage; 929 case 8: 930 return GlobalValue::CommonLinkage; 931 case 9: 932 return GlobalValue::PrivateLinkage; 933 case 12: 934 return GlobalValue::AvailableExternallyLinkage; 935 case 13: 936 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage 937 case 14: 938 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage 939 case 15: 940 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage 941 case 1: // Old value with implicit comdat. 942 case 16: 943 return GlobalValue::WeakAnyLinkage; 944 case 10: // Old value with implicit comdat. 945 case 17: 946 return GlobalValue::WeakODRLinkage; 947 case 4: // Old value with implicit comdat. 948 case 18: 949 return GlobalValue::LinkOnceAnyLinkage; 950 case 11: // Old value with implicit comdat. 951 case 19: 952 return GlobalValue::LinkOnceODRLinkage; 953 } 954 } 955 956 static FunctionSummary::FFlags getDecodedFFlags(uint64_t RawFlags) { 957 FunctionSummary::FFlags Flags; 958 Flags.ReadNone = RawFlags & 0x1; 959 Flags.ReadOnly = (RawFlags >> 1) & 0x1; 960 Flags.NoRecurse = (RawFlags >> 2) & 0x1; 961 Flags.ReturnDoesNotAlias = (RawFlags >> 3) & 0x1; 962 Flags.NoInline = (RawFlags >> 4) & 0x1; 963 return Flags; 964 } 965 966 /// Decode the flags for GlobalValue in the summary. 967 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags, 968 uint64_t Version) { 969 // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage 970 // like getDecodedLinkage() above. Any future change to the linkage enum and 971 // to getDecodedLinkage() will need to be taken into account here as above. 972 auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits 973 RawFlags = RawFlags >> 4; 974 bool NotEligibleToImport = (RawFlags & 0x1) || Version < 3; 975 // The Live flag wasn't introduced until version 3. For dead stripping 976 // to work correctly on earlier versions, we must conservatively treat all 977 // values as live. 978 bool Live = (RawFlags & 0x2) || Version < 3; 979 bool Local = (RawFlags & 0x4); 980 bool AutoHide = (RawFlags & 0x8); 981 982 return GlobalValueSummary::GVFlags(Linkage, NotEligibleToImport, Live, Local, AutoHide); 983 } 984 985 // Decode the flags for GlobalVariable in the summary 986 static GlobalVarSummary::GVarFlags getDecodedGVarFlags(uint64_t RawFlags) { 987 return GlobalVarSummary::GVarFlags((RawFlags & 0x1) ? true : false); 988 } 989 990 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) { 991 switch (Val) { 992 default: // Map unknown visibilities to default. 993 case 0: return GlobalValue::DefaultVisibility; 994 case 1: return GlobalValue::HiddenVisibility; 995 case 2: return GlobalValue::ProtectedVisibility; 996 } 997 } 998 999 static GlobalValue::DLLStorageClassTypes 1000 getDecodedDLLStorageClass(unsigned Val) { 1001 switch (Val) { 1002 default: // Map unknown values to default. 1003 case 0: return GlobalValue::DefaultStorageClass; 1004 case 1: return GlobalValue::DLLImportStorageClass; 1005 case 2: return GlobalValue::DLLExportStorageClass; 1006 } 1007 } 1008 1009 static bool getDecodedDSOLocal(unsigned Val) { 1010 switch(Val) { 1011 default: // Map unknown values to preemptable. 1012 case 0: return false; 1013 case 1: return true; 1014 } 1015 } 1016 1017 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) { 1018 switch (Val) { 1019 case 0: return GlobalVariable::NotThreadLocal; 1020 default: // Map unknown non-zero value to general dynamic. 1021 case 1: return GlobalVariable::GeneralDynamicTLSModel; 1022 case 2: return GlobalVariable::LocalDynamicTLSModel; 1023 case 3: return GlobalVariable::InitialExecTLSModel; 1024 case 4: return GlobalVariable::LocalExecTLSModel; 1025 } 1026 } 1027 1028 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) { 1029 switch (Val) { 1030 default: // Map unknown to UnnamedAddr::None. 1031 case 0: return GlobalVariable::UnnamedAddr::None; 1032 case 1: return GlobalVariable::UnnamedAddr::Global; 1033 case 2: return GlobalVariable::UnnamedAddr::Local; 1034 } 1035 } 1036 1037 static int getDecodedCastOpcode(unsigned Val) { 1038 switch (Val) { 1039 default: return -1; 1040 case bitc::CAST_TRUNC : return Instruction::Trunc; 1041 case bitc::CAST_ZEXT : return Instruction::ZExt; 1042 case bitc::CAST_SEXT : return Instruction::SExt; 1043 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 1044 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 1045 case bitc::CAST_UITOFP : return Instruction::UIToFP; 1046 case bitc::CAST_SITOFP : return Instruction::SIToFP; 1047 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 1048 case bitc::CAST_FPEXT : return Instruction::FPExt; 1049 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 1050 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 1051 case bitc::CAST_BITCAST : return Instruction::BitCast; 1052 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast; 1053 } 1054 } 1055 1056 static int getDecodedUnaryOpcode(unsigned Val, Type *Ty) { 1057 bool IsFP = Ty->isFPOrFPVectorTy(); 1058 // UnOps are only valid for int/fp or vector of int/fp types 1059 if (!IsFP && !Ty->isIntOrIntVectorTy()) 1060 return -1; 1061 1062 switch (Val) { 1063 default: 1064 return -1; 1065 case bitc::UNOP_NEG: 1066 return IsFP ? Instruction::FNeg : -1; 1067 } 1068 } 1069 1070 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) { 1071 bool IsFP = Ty->isFPOrFPVectorTy(); 1072 // BinOps are only valid for int/fp or vector of int/fp types 1073 if (!IsFP && !Ty->isIntOrIntVectorTy()) 1074 return -1; 1075 1076 switch (Val) { 1077 default: 1078 return -1; 1079 case bitc::BINOP_ADD: 1080 return IsFP ? Instruction::FAdd : Instruction::Add; 1081 case bitc::BINOP_SUB: 1082 return IsFP ? Instruction::FSub : Instruction::Sub; 1083 case bitc::BINOP_MUL: 1084 return IsFP ? Instruction::FMul : Instruction::Mul; 1085 case bitc::BINOP_UDIV: 1086 return IsFP ? -1 : Instruction::UDiv; 1087 case bitc::BINOP_SDIV: 1088 return IsFP ? Instruction::FDiv : Instruction::SDiv; 1089 case bitc::BINOP_UREM: 1090 return IsFP ? -1 : Instruction::URem; 1091 case bitc::BINOP_SREM: 1092 return IsFP ? Instruction::FRem : Instruction::SRem; 1093 case bitc::BINOP_SHL: 1094 return IsFP ? -1 : Instruction::Shl; 1095 case bitc::BINOP_LSHR: 1096 return IsFP ? -1 : Instruction::LShr; 1097 case bitc::BINOP_ASHR: 1098 return IsFP ? -1 : Instruction::AShr; 1099 case bitc::BINOP_AND: 1100 return IsFP ? -1 : Instruction::And; 1101 case bitc::BINOP_OR: 1102 return IsFP ? -1 : Instruction::Or; 1103 case bitc::BINOP_XOR: 1104 return IsFP ? -1 : Instruction::Xor; 1105 } 1106 } 1107 1108 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) { 1109 switch (Val) { 1110 default: return AtomicRMWInst::BAD_BINOP; 1111 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 1112 case bitc::RMW_ADD: return AtomicRMWInst::Add; 1113 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 1114 case bitc::RMW_AND: return AtomicRMWInst::And; 1115 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 1116 case bitc::RMW_OR: return AtomicRMWInst::Or; 1117 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 1118 case bitc::RMW_MAX: return AtomicRMWInst::Max; 1119 case bitc::RMW_MIN: return AtomicRMWInst::Min; 1120 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 1121 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 1122 case bitc::RMW_FADD: return AtomicRMWInst::FAdd; 1123 case bitc::RMW_FSUB: return AtomicRMWInst::FSub; 1124 } 1125 } 1126 1127 static AtomicOrdering getDecodedOrdering(unsigned Val) { 1128 switch (Val) { 1129 case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic; 1130 case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered; 1131 case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic; 1132 case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire; 1133 case bitc::ORDERING_RELEASE: return AtomicOrdering::Release; 1134 case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease; 1135 default: // Map unknown orderings to sequentially-consistent. 1136 case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent; 1137 } 1138 } 1139 1140 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) { 1141 switch (Val) { 1142 default: // Map unknown selection kinds to any. 1143 case bitc::COMDAT_SELECTION_KIND_ANY: 1144 return Comdat::Any; 1145 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH: 1146 return Comdat::ExactMatch; 1147 case bitc::COMDAT_SELECTION_KIND_LARGEST: 1148 return Comdat::Largest; 1149 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES: 1150 return Comdat::NoDuplicates; 1151 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE: 1152 return Comdat::SameSize; 1153 } 1154 } 1155 1156 static FastMathFlags getDecodedFastMathFlags(unsigned Val) { 1157 FastMathFlags FMF; 1158 if (0 != (Val & bitc::UnsafeAlgebra)) 1159 FMF.setFast(); 1160 if (0 != (Val & bitc::AllowReassoc)) 1161 FMF.setAllowReassoc(); 1162 if (0 != (Val & bitc::NoNaNs)) 1163 FMF.setNoNaNs(); 1164 if (0 != (Val & bitc::NoInfs)) 1165 FMF.setNoInfs(); 1166 if (0 != (Val & bitc::NoSignedZeros)) 1167 FMF.setNoSignedZeros(); 1168 if (0 != (Val & bitc::AllowReciprocal)) 1169 FMF.setAllowReciprocal(); 1170 if (0 != (Val & bitc::AllowContract)) 1171 FMF.setAllowContract(true); 1172 if (0 != (Val & bitc::ApproxFunc)) 1173 FMF.setApproxFunc(); 1174 return FMF; 1175 } 1176 1177 static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) { 1178 switch (Val) { 1179 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break; 1180 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break; 1181 } 1182 } 1183 1184 Type *BitcodeReader::getFullyStructuredTypeByID(unsigned ID) { 1185 // The type table size is always specified correctly. 1186 if (ID >= TypeList.size()) 1187 return nullptr; 1188 1189 if (Type *Ty = TypeList[ID]) 1190 return Ty; 1191 1192 // If we have a forward reference, the only possible case is when it is to a 1193 // named struct. Just create a placeholder for now. 1194 return TypeList[ID] = createIdentifiedStructType(Context); 1195 } 1196 1197 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context, 1198 StringRef Name) { 1199 auto *Ret = StructType::create(Context, Name); 1200 IdentifiedStructTypes.push_back(Ret); 1201 return Ret; 1202 } 1203 1204 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) { 1205 auto *Ret = StructType::create(Context); 1206 IdentifiedStructTypes.push_back(Ret); 1207 return Ret; 1208 } 1209 1210 //===----------------------------------------------------------------------===// 1211 // Functions for parsing blocks from the bitcode file 1212 //===----------------------------------------------------------------------===// 1213 1214 static uint64_t getRawAttributeMask(Attribute::AttrKind Val) { 1215 switch (Val) { 1216 case Attribute::EndAttrKinds: 1217 llvm_unreachable("Synthetic enumerators which should never get here"); 1218 1219 case Attribute::None: return 0; 1220 case Attribute::ZExt: return 1 << 0; 1221 case Attribute::SExt: return 1 << 1; 1222 case Attribute::NoReturn: return 1 << 2; 1223 case Attribute::InReg: return 1 << 3; 1224 case Attribute::StructRet: return 1 << 4; 1225 case Attribute::NoUnwind: return 1 << 5; 1226 case Attribute::NoAlias: return 1 << 6; 1227 case Attribute::ByVal: return 1 << 7; 1228 case Attribute::Nest: return 1 << 8; 1229 case Attribute::ReadNone: return 1 << 9; 1230 case Attribute::ReadOnly: return 1 << 10; 1231 case Attribute::NoInline: return 1 << 11; 1232 case Attribute::AlwaysInline: return 1 << 12; 1233 case Attribute::OptimizeForSize: return 1 << 13; 1234 case Attribute::StackProtect: return 1 << 14; 1235 case Attribute::StackProtectReq: return 1 << 15; 1236 case Attribute::Alignment: return 31 << 16; 1237 case Attribute::NoCapture: return 1 << 21; 1238 case Attribute::NoRedZone: return 1 << 22; 1239 case Attribute::NoImplicitFloat: return 1 << 23; 1240 case Attribute::Naked: return 1 << 24; 1241 case Attribute::InlineHint: return 1 << 25; 1242 case Attribute::StackAlignment: return 7 << 26; 1243 case Attribute::ReturnsTwice: return 1 << 29; 1244 case Attribute::UWTable: return 1 << 30; 1245 case Attribute::NonLazyBind: return 1U << 31; 1246 case Attribute::SanitizeAddress: return 1ULL << 32; 1247 case Attribute::MinSize: return 1ULL << 33; 1248 case Attribute::NoDuplicate: return 1ULL << 34; 1249 case Attribute::StackProtectStrong: return 1ULL << 35; 1250 case Attribute::SanitizeThread: return 1ULL << 36; 1251 case Attribute::SanitizeMemory: return 1ULL << 37; 1252 case Attribute::NoBuiltin: return 1ULL << 38; 1253 case Attribute::Returned: return 1ULL << 39; 1254 case Attribute::Cold: return 1ULL << 40; 1255 case Attribute::Builtin: return 1ULL << 41; 1256 case Attribute::OptimizeNone: return 1ULL << 42; 1257 case Attribute::InAlloca: return 1ULL << 43; 1258 case Attribute::NonNull: return 1ULL << 44; 1259 case Attribute::JumpTable: return 1ULL << 45; 1260 case Attribute::Convergent: return 1ULL << 46; 1261 case Attribute::SafeStack: return 1ULL << 47; 1262 case Attribute::NoRecurse: return 1ULL << 48; 1263 case Attribute::InaccessibleMemOnly: return 1ULL << 49; 1264 case Attribute::InaccessibleMemOrArgMemOnly: return 1ULL << 50; 1265 case Attribute::SwiftSelf: return 1ULL << 51; 1266 case Attribute::SwiftError: return 1ULL << 52; 1267 case Attribute::WriteOnly: return 1ULL << 53; 1268 case Attribute::Speculatable: return 1ULL << 54; 1269 case Attribute::StrictFP: return 1ULL << 55; 1270 case Attribute::SanitizeHWAddress: return 1ULL << 56; 1271 case Attribute::NoCfCheck: return 1ULL << 57; 1272 case Attribute::OptForFuzzing: return 1ULL << 58; 1273 case Attribute::ShadowCallStack: return 1ULL << 59; 1274 case Attribute::SpeculativeLoadHardening: 1275 return 1ULL << 60; 1276 case Attribute::ImmArg: 1277 return 1ULL << 61; 1278 case Attribute::WillReturn: 1279 return 1ULL << 62; 1280 case Attribute::Dereferenceable: 1281 llvm_unreachable("dereferenceable attribute not supported in raw format"); 1282 break; 1283 case Attribute::DereferenceableOrNull: 1284 llvm_unreachable("dereferenceable_or_null attribute not supported in raw " 1285 "format"); 1286 break; 1287 case Attribute::ArgMemOnly: 1288 llvm_unreachable("argmemonly attribute not supported in raw format"); 1289 break; 1290 case Attribute::AllocSize: 1291 llvm_unreachable("allocsize not supported in raw format"); 1292 break; 1293 } 1294 llvm_unreachable("Unsupported attribute type"); 1295 } 1296 1297 static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) { 1298 if (!Val) return; 1299 1300 for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds; 1301 I = Attribute::AttrKind(I + 1)) { 1302 if (I == Attribute::Dereferenceable || 1303 I == Attribute::DereferenceableOrNull || 1304 I == Attribute::ArgMemOnly || 1305 I == Attribute::AllocSize) 1306 continue; 1307 if (uint64_t A = (Val & getRawAttributeMask(I))) { 1308 if (I == Attribute::Alignment) 1309 B.addAlignmentAttr(1ULL << ((A >> 16) - 1)); 1310 else if (I == Attribute::StackAlignment) 1311 B.addStackAlignmentAttr(1ULL << ((A >> 26)-1)); 1312 else 1313 B.addAttribute(I); 1314 } 1315 } 1316 } 1317 1318 /// This fills an AttrBuilder object with the LLVM attributes that have 1319 /// been decoded from the given integer. This function must stay in sync with 1320 /// 'encodeLLVMAttributesForBitcode'. 1321 static void decodeLLVMAttributesForBitcode(AttrBuilder &B, 1322 uint64_t EncodedAttrs) { 1323 // FIXME: Remove in 4.0. 1324 1325 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift 1326 // the bits above 31 down by 11 bits. 1327 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; 1328 assert((!Alignment || isPowerOf2_32(Alignment)) && 1329 "Alignment must be a power of two."); 1330 1331 if (Alignment) 1332 B.addAlignmentAttr(Alignment); 1333 addRawAttributeValue(B, ((EncodedAttrs & (0xfffffULL << 32)) >> 11) | 1334 (EncodedAttrs & 0xffff)); 1335 } 1336 1337 Error BitcodeReader::parseAttributeBlock() { 1338 if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 1339 return Err; 1340 1341 if (!MAttributes.empty()) 1342 return error("Invalid multiple blocks"); 1343 1344 SmallVector<uint64_t, 64> Record; 1345 1346 SmallVector<AttributeList, 8> Attrs; 1347 1348 // Read all the records. 1349 while (true) { 1350 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1351 if (!MaybeEntry) 1352 return MaybeEntry.takeError(); 1353 BitstreamEntry Entry = MaybeEntry.get(); 1354 1355 switch (Entry.Kind) { 1356 case BitstreamEntry::SubBlock: // Handled for us already. 1357 case BitstreamEntry::Error: 1358 return error("Malformed block"); 1359 case BitstreamEntry::EndBlock: 1360 return Error::success(); 1361 case BitstreamEntry::Record: 1362 // The interesting case. 1363 break; 1364 } 1365 1366 // Read a record. 1367 Record.clear(); 1368 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1369 if (!MaybeRecord) 1370 return MaybeRecord.takeError(); 1371 switch (MaybeRecord.get()) { 1372 default: // Default behavior: ignore. 1373 break; 1374 case bitc::PARAMATTR_CODE_ENTRY_OLD: // ENTRY: [paramidx0, attr0, ...] 1375 // FIXME: Remove in 4.0. 1376 if (Record.size() & 1) 1377 return error("Invalid record"); 1378 1379 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1380 AttrBuilder B; 1381 decodeLLVMAttributesForBitcode(B, Record[i+1]); 1382 Attrs.push_back(AttributeList::get(Context, Record[i], B)); 1383 } 1384 1385 MAttributes.push_back(AttributeList::get(Context, Attrs)); 1386 Attrs.clear(); 1387 break; 1388 case bitc::PARAMATTR_CODE_ENTRY: // ENTRY: [attrgrp0, attrgrp1, ...] 1389 for (unsigned i = 0, e = Record.size(); i != e; ++i) 1390 Attrs.push_back(MAttributeGroups[Record[i]]); 1391 1392 MAttributes.push_back(AttributeList::get(Context, Attrs)); 1393 Attrs.clear(); 1394 break; 1395 } 1396 } 1397 } 1398 1399 // Returns Attribute::None on unrecognized codes. 1400 static Attribute::AttrKind getAttrFromCode(uint64_t Code) { 1401 switch (Code) { 1402 default: 1403 return Attribute::None; 1404 case bitc::ATTR_KIND_ALIGNMENT: 1405 return Attribute::Alignment; 1406 case bitc::ATTR_KIND_ALWAYS_INLINE: 1407 return Attribute::AlwaysInline; 1408 case bitc::ATTR_KIND_ARGMEMONLY: 1409 return Attribute::ArgMemOnly; 1410 case bitc::ATTR_KIND_BUILTIN: 1411 return Attribute::Builtin; 1412 case bitc::ATTR_KIND_BY_VAL: 1413 return Attribute::ByVal; 1414 case bitc::ATTR_KIND_IN_ALLOCA: 1415 return Attribute::InAlloca; 1416 case bitc::ATTR_KIND_COLD: 1417 return Attribute::Cold; 1418 case bitc::ATTR_KIND_CONVERGENT: 1419 return Attribute::Convergent; 1420 case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY: 1421 return Attribute::InaccessibleMemOnly; 1422 case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY: 1423 return Attribute::InaccessibleMemOrArgMemOnly; 1424 case bitc::ATTR_KIND_INLINE_HINT: 1425 return Attribute::InlineHint; 1426 case bitc::ATTR_KIND_IN_REG: 1427 return Attribute::InReg; 1428 case bitc::ATTR_KIND_JUMP_TABLE: 1429 return Attribute::JumpTable; 1430 case bitc::ATTR_KIND_MIN_SIZE: 1431 return Attribute::MinSize; 1432 case bitc::ATTR_KIND_NAKED: 1433 return Attribute::Naked; 1434 case bitc::ATTR_KIND_NEST: 1435 return Attribute::Nest; 1436 case bitc::ATTR_KIND_NO_ALIAS: 1437 return Attribute::NoAlias; 1438 case bitc::ATTR_KIND_NO_BUILTIN: 1439 return Attribute::NoBuiltin; 1440 case bitc::ATTR_KIND_NO_CAPTURE: 1441 return Attribute::NoCapture; 1442 case bitc::ATTR_KIND_NO_DUPLICATE: 1443 return Attribute::NoDuplicate; 1444 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: 1445 return Attribute::NoImplicitFloat; 1446 case bitc::ATTR_KIND_NO_INLINE: 1447 return Attribute::NoInline; 1448 case bitc::ATTR_KIND_NO_RECURSE: 1449 return Attribute::NoRecurse; 1450 case bitc::ATTR_KIND_NON_LAZY_BIND: 1451 return Attribute::NonLazyBind; 1452 case bitc::ATTR_KIND_NON_NULL: 1453 return Attribute::NonNull; 1454 case bitc::ATTR_KIND_DEREFERENCEABLE: 1455 return Attribute::Dereferenceable; 1456 case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL: 1457 return Attribute::DereferenceableOrNull; 1458 case bitc::ATTR_KIND_ALLOC_SIZE: 1459 return Attribute::AllocSize; 1460 case bitc::ATTR_KIND_NO_RED_ZONE: 1461 return Attribute::NoRedZone; 1462 case bitc::ATTR_KIND_NO_RETURN: 1463 return Attribute::NoReturn; 1464 case bitc::ATTR_KIND_NOCF_CHECK: 1465 return Attribute::NoCfCheck; 1466 case bitc::ATTR_KIND_NO_UNWIND: 1467 return Attribute::NoUnwind; 1468 case bitc::ATTR_KIND_OPT_FOR_FUZZING: 1469 return Attribute::OptForFuzzing; 1470 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: 1471 return Attribute::OptimizeForSize; 1472 case bitc::ATTR_KIND_OPTIMIZE_NONE: 1473 return Attribute::OptimizeNone; 1474 case bitc::ATTR_KIND_READ_NONE: 1475 return Attribute::ReadNone; 1476 case bitc::ATTR_KIND_READ_ONLY: 1477 return Attribute::ReadOnly; 1478 case bitc::ATTR_KIND_RETURNED: 1479 return Attribute::Returned; 1480 case bitc::ATTR_KIND_RETURNS_TWICE: 1481 return Attribute::ReturnsTwice; 1482 case bitc::ATTR_KIND_S_EXT: 1483 return Attribute::SExt; 1484 case bitc::ATTR_KIND_SPECULATABLE: 1485 return Attribute::Speculatable; 1486 case bitc::ATTR_KIND_STACK_ALIGNMENT: 1487 return Attribute::StackAlignment; 1488 case bitc::ATTR_KIND_STACK_PROTECT: 1489 return Attribute::StackProtect; 1490 case bitc::ATTR_KIND_STACK_PROTECT_REQ: 1491 return Attribute::StackProtectReq; 1492 case bitc::ATTR_KIND_STACK_PROTECT_STRONG: 1493 return Attribute::StackProtectStrong; 1494 case bitc::ATTR_KIND_SAFESTACK: 1495 return Attribute::SafeStack; 1496 case bitc::ATTR_KIND_SHADOWCALLSTACK: 1497 return Attribute::ShadowCallStack; 1498 case bitc::ATTR_KIND_STRICT_FP: 1499 return Attribute::StrictFP; 1500 case bitc::ATTR_KIND_STRUCT_RET: 1501 return Attribute::StructRet; 1502 case bitc::ATTR_KIND_SANITIZE_ADDRESS: 1503 return Attribute::SanitizeAddress; 1504 case bitc::ATTR_KIND_SANITIZE_HWADDRESS: 1505 return Attribute::SanitizeHWAddress; 1506 case bitc::ATTR_KIND_SANITIZE_THREAD: 1507 return Attribute::SanitizeThread; 1508 case bitc::ATTR_KIND_SANITIZE_MEMORY: 1509 return Attribute::SanitizeMemory; 1510 case bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING: 1511 return Attribute::SpeculativeLoadHardening; 1512 case bitc::ATTR_KIND_SWIFT_ERROR: 1513 return Attribute::SwiftError; 1514 case bitc::ATTR_KIND_SWIFT_SELF: 1515 return Attribute::SwiftSelf; 1516 case bitc::ATTR_KIND_UW_TABLE: 1517 return Attribute::UWTable; 1518 case bitc::ATTR_KIND_WILLRETURN: 1519 return Attribute::WillReturn; 1520 case bitc::ATTR_KIND_WRITEONLY: 1521 return Attribute::WriteOnly; 1522 case bitc::ATTR_KIND_Z_EXT: 1523 return Attribute::ZExt; 1524 case bitc::ATTR_KIND_IMMARG: 1525 return Attribute::ImmArg; 1526 } 1527 } 1528 1529 Error BitcodeReader::parseAlignmentValue(uint64_t Exponent, 1530 unsigned &Alignment) { 1531 // Note: Alignment in bitcode files is incremented by 1, so that zero 1532 // can be used for default alignment. 1533 if (Exponent > Value::MaxAlignmentExponent + 1) 1534 return error("Invalid alignment value"); 1535 Alignment = (1 << static_cast<unsigned>(Exponent)) >> 1; 1536 return Error::success(); 1537 } 1538 1539 Error BitcodeReader::parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind) { 1540 *Kind = getAttrFromCode(Code); 1541 if (*Kind == Attribute::None) 1542 return error("Unknown attribute kind (" + Twine(Code) + ")"); 1543 return Error::success(); 1544 } 1545 1546 Error BitcodeReader::parseAttributeGroupBlock() { 1547 if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) 1548 return Err; 1549 1550 if (!MAttributeGroups.empty()) 1551 return error("Invalid multiple blocks"); 1552 1553 SmallVector<uint64_t, 64> Record; 1554 1555 // Read all the records. 1556 while (true) { 1557 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1558 if (!MaybeEntry) 1559 return MaybeEntry.takeError(); 1560 BitstreamEntry Entry = MaybeEntry.get(); 1561 1562 switch (Entry.Kind) { 1563 case BitstreamEntry::SubBlock: // Handled for us already. 1564 case BitstreamEntry::Error: 1565 return error("Malformed block"); 1566 case BitstreamEntry::EndBlock: 1567 return Error::success(); 1568 case BitstreamEntry::Record: 1569 // The interesting case. 1570 break; 1571 } 1572 1573 // Read a record. 1574 Record.clear(); 1575 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1576 if (!MaybeRecord) 1577 return MaybeRecord.takeError(); 1578 switch (MaybeRecord.get()) { 1579 default: // Default behavior: ignore. 1580 break; 1581 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] 1582 if (Record.size() < 3) 1583 return error("Invalid record"); 1584 1585 uint64_t GrpID = Record[0]; 1586 uint64_t Idx = Record[1]; // Index of the object this attribute refers to. 1587 1588 AttrBuilder B; 1589 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1590 if (Record[i] == 0) { // Enum attribute 1591 Attribute::AttrKind Kind; 1592 if (Error Err = parseAttrKind(Record[++i], &Kind)) 1593 return Err; 1594 1595 // Upgrade old-style byval attribute to one with a type, even if it's 1596 // nullptr. We will have to insert the real type when we associate 1597 // this AttributeList with a function. 1598 if (Kind == Attribute::ByVal) 1599 B.addByValAttr(nullptr); 1600 1601 B.addAttribute(Kind); 1602 } else if (Record[i] == 1) { // Integer attribute 1603 Attribute::AttrKind Kind; 1604 if (Error Err = parseAttrKind(Record[++i], &Kind)) 1605 return Err; 1606 if (Kind == Attribute::Alignment) 1607 B.addAlignmentAttr(Record[++i]); 1608 else if (Kind == Attribute::StackAlignment) 1609 B.addStackAlignmentAttr(Record[++i]); 1610 else if (Kind == Attribute::Dereferenceable) 1611 B.addDereferenceableAttr(Record[++i]); 1612 else if (Kind == Attribute::DereferenceableOrNull) 1613 B.addDereferenceableOrNullAttr(Record[++i]); 1614 else if (Kind == Attribute::AllocSize) 1615 B.addAllocSizeAttrFromRawRepr(Record[++i]); 1616 } else if (Record[i] == 3 || Record[i] == 4) { // String attribute 1617 bool HasValue = (Record[i++] == 4); 1618 SmallString<64> KindStr; 1619 SmallString<64> ValStr; 1620 1621 while (Record[i] != 0 && i != e) 1622 KindStr += Record[i++]; 1623 assert(Record[i] == 0 && "Kind string not null terminated"); 1624 1625 if (HasValue) { 1626 // Has a value associated with it. 1627 ++i; // Skip the '0' that terminates the "kind" string. 1628 while (Record[i] != 0 && i != e) 1629 ValStr += Record[i++]; 1630 assert(Record[i] == 0 && "Value string not null terminated"); 1631 } 1632 1633 B.addAttribute(KindStr.str(), ValStr.str()); 1634 } else { 1635 assert((Record[i] == 5 || Record[i] == 6) && 1636 "Invalid attribute group entry"); 1637 bool HasType = Record[i] == 6; 1638 Attribute::AttrKind Kind; 1639 if (Error Err = parseAttrKind(Record[++i], &Kind)) 1640 return Err; 1641 if (Kind == Attribute::ByVal) 1642 B.addByValAttr(HasType ? getTypeByID(Record[++i]) : nullptr); 1643 } 1644 } 1645 1646 MAttributeGroups[GrpID] = AttributeList::get(Context, Idx, B); 1647 break; 1648 } 1649 } 1650 } 1651 } 1652 1653 Error BitcodeReader::parseTypeTable() { 1654 if (Error Err = Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 1655 return Err; 1656 1657 return parseTypeTableBody(); 1658 } 1659 1660 Error BitcodeReader::parseTypeTableBody() { 1661 if (!TypeList.empty()) 1662 return error("Invalid multiple blocks"); 1663 1664 SmallVector<uint64_t, 64> Record; 1665 unsigned NumRecords = 0; 1666 1667 SmallString<64> TypeName; 1668 1669 // Read all the records for this type table. 1670 while (true) { 1671 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1672 if (!MaybeEntry) 1673 return MaybeEntry.takeError(); 1674 BitstreamEntry Entry = MaybeEntry.get(); 1675 1676 switch (Entry.Kind) { 1677 case BitstreamEntry::SubBlock: // Handled for us already. 1678 case BitstreamEntry::Error: 1679 return error("Malformed block"); 1680 case BitstreamEntry::EndBlock: 1681 if (NumRecords != TypeList.size()) 1682 return error("Malformed block"); 1683 return Error::success(); 1684 case BitstreamEntry::Record: 1685 // The interesting case. 1686 break; 1687 } 1688 1689 // Read a record. 1690 Record.clear(); 1691 Type *ResultTy = nullptr; 1692 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1693 if (!MaybeRecord) 1694 return MaybeRecord.takeError(); 1695 switch (MaybeRecord.get()) { 1696 default: 1697 return error("Invalid value"); 1698 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 1699 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 1700 // type list. This allows us to reserve space. 1701 if (Record.size() < 1) 1702 return error("Invalid record"); 1703 TypeList.resize(Record[0]); 1704 continue; 1705 case bitc::TYPE_CODE_VOID: // VOID 1706 ResultTy = Type::getVoidTy(Context); 1707 break; 1708 case bitc::TYPE_CODE_HALF: // HALF 1709 ResultTy = Type::getHalfTy(Context); 1710 break; 1711 case bitc::TYPE_CODE_FLOAT: // FLOAT 1712 ResultTy = Type::getFloatTy(Context); 1713 break; 1714 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 1715 ResultTy = Type::getDoubleTy(Context); 1716 break; 1717 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 1718 ResultTy = Type::getX86_FP80Ty(Context); 1719 break; 1720 case bitc::TYPE_CODE_FP128: // FP128 1721 ResultTy = Type::getFP128Ty(Context); 1722 break; 1723 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 1724 ResultTy = Type::getPPC_FP128Ty(Context); 1725 break; 1726 case bitc::TYPE_CODE_LABEL: // LABEL 1727 ResultTy = Type::getLabelTy(Context); 1728 break; 1729 case bitc::TYPE_CODE_METADATA: // METADATA 1730 ResultTy = Type::getMetadataTy(Context); 1731 break; 1732 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 1733 ResultTy = Type::getX86_MMXTy(Context); 1734 break; 1735 case bitc::TYPE_CODE_TOKEN: // TOKEN 1736 ResultTy = Type::getTokenTy(Context); 1737 break; 1738 case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width] 1739 if (Record.size() < 1) 1740 return error("Invalid record"); 1741 1742 uint64_t NumBits = Record[0]; 1743 if (NumBits < IntegerType::MIN_INT_BITS || 1744 NumBits > IntegerType::MAX_INT_BITS) 1745 return error("Bitwidth for integer type out of range"); 1746 ResultTy = IntegerType::get(Context, NumBits); 1747 break; 1748 } 1749 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 1750 // [pointee type, address space] 1751 if (Record.size() < 1) 1752 return error("Invalid record"); 1753 unsigned AddressSpace = 0; 1754 if (Record.size() == 2) 1755 AddressSpace = Record[1]; 1756 ResultTy = getTypeByID(Record[0]); 1757 if (!ResultTy || 1758 !PointerType::isValidElementType(ResultTy)) 1759 return error("Invalid type"); 1760 ResultTy = PointerType::get(ResultTy, AddressSpace); 1761 break; 1762 } 1763 case bitc::TYPE_CODE_FUNCTION_OLD: { 1764 // FIXME: attrid is dead, remove it in LLVM 4.0 1765 // FUNCTION: [vararg, attrid, retty, paramty x N] 1766 if (Record.size() < 3) 1767 return error("Invalid record"); 1768 SmallVector<Type*, 8> ArgTys; 1769 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 1770 if (Type *T = getTypeByID(Record[i])) 1771 ArgTys.push_back(T); 1772 else 1773 break; 1774 } 1775 1776 ResultTy = getTypeByID(Record[2]); 1777 if (!ResultTy || ArgTys.size() < Record.size()-3) 1778 return error("Invalid type"); 1779 1780 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1781 break; 1782 } 1783 case bitc::TYPE_CODE_FUNCTION: { 1784 // FUNCTION: [vararg, retty, paramty x N] 1785 if (Record.size() < 2) 1786 return error("Invalid record"); 1787 SmallVector<Type*, 8> ArgTys; 1788 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1789 if (Type *T = getTypeByID(Record[i])) { 1790 if (!FunctionType::isValidArgumentType(T)) 1791 return error("Invalid function argument type"); 1792 ArgTys.push_back(T); 1793 } 1794 else 1795 break; 1796 } 1797 1798 ResultTy = getTypeByID(Record[1]); 1799 if (!ResultTy || ArgTys.size() < Record.size()-2) 1800 return error("Invalid type"); 1801 1802 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1803 break; 1804 } 1805 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 1806 if (Record.size() < 1) 1807 return error("Invalid record"); 1808 SmallVector<Type*, 8> EltTys; 1809 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1810 if (Type *T = getTypeByID(Record[i])) 1811 EltTys.push_back(T); 1812 else 1813 break; 1814 } 1815 if (EltTys.size() != Record.size()-1) 1816 return error("Invalid type"); 1817 ResultTy = StructType::get(Context, EltTys, Record[0]); 1818 break; 1819 } 1820 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 1821 if (convertToString(Record, 0, TypeName)) 1822 return error("Invalid record"); 1823 continue; 1824 1825 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 1826 if (Record.size() < 1) 1827 return error("Invalid record"); 1828 1829 if (NumRecords >= TypeList.size()) 1830 return error("Invalid TYPE table"); 1831 1832 // Check to see if this was forward referenced, if so fill in the temp. 1833 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1834 if (Res) { 1835 Res->setName(TypeName); 1836 TypeList[NumRecords] = nullptr; 1837 } else // Otherwise, create a new struct. 1838 Res = createIdentifiedStructType(Context, TypeName); 1839 TypeName.clear(); 1840 1841 SmallVector<Type*, 8> EltTys; 1842 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1843 if (Type *T = getTypeByID(Record[i])) 1844 EltTys.push_back(T); 1845 else 1846 break; 1847 } 1848 if (EltTys.size() != Record.size()-1) 1849 return error("Invalid record"); 1850 Res->setBody(EltTys, Record[0]); 1851 ResultTy = Res; 1852 break; 1853 } 1854 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 1855 if (Record.size() != 1) 1856 return error("Invalid record"); 1857 1858 if (NumRecords >= TypeList.size()) 1859 return error("Invalid TYPE table"); 1860 1861 // Check to see if this was forward referenced, if so fill in the temp. 1862 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1863 if (Res) { 1864 Res->setName(TypeName); 1865 TypeList[NumRecords] = nullptr; 1866 } else // Otherwise, create a new struct with no body. 1867 Res = createIdentifiedStructType(Context, TypeName); 1868 TypeName.clear(); 1869 ResultTy = Res; 1870 break; 1871 } 1872 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 1873 if (Record.size() < 2) 1874 return error("Invalid record"); 1875 ResultTy = getTypeByID(Record[1]); 1876 if (!ResultTy || !ArrayType::isValidElementType(ResultTy)) 1877 return error("Invalid type"); 1878 ResultTy = ArrayType::get(ResultTy, Record[0]); 1879 break; 1880 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] or 1881 // [numelts, eltty, scalable] 1882 if (Record.size() < 2) 1883 return error("Invalid record"); 1884 if (Record[0] == 0) 1885 return error("Invalid vector length"); 1886 ResultTy = getTypeByID(Record[1]); 1887 if (!ResultTy || !StructType::isValidElementType(ResultTy)) 1888 return error("Invalid type"); 1889 bool Scalable = Record.size() > 2 ? Record[2] : false; 1890 ResultTy = VectorType::get(ResultTy, Record[0], Scalable); 1891 break; 1892 } 1893 1894 if (NumRecords >= TypeList.size()) 1895 return error("Invalid TYPE table"); 1896 if (TypeList[NumRecords]) 1897 return error( 1898 "Invalid TYPE table: Only named structs can be forward referenced"); 1899 assert(ResultTy && "Didn't read a type?"); 1900 TypeList[NumRecords++] = ResultTy; 1901 } 1902 } 1903 1904 Error BitcodeReader::parseOperandBundleTags() { 1905 if (Error Err = Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID)) 1906 return Err; 1907 1908 if (!BundleTags.empty()) 1909 return error("Invalid multiple blocks"); 1910 1911 SmallVector<uint64_t, 64> Record; 1912 1913 while (true) { 1914 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1915 if (!MaybeEntry) 1916 return MaybeEntry.takeError(); 1917 BitstreamEntry Entry = MaybeEntry.get(); 1918 1919 switch (Entry.Kind) { 1920 case BitstreamEntry::SubBlock: // Handled for us already. 1921 case BitstreamEntry::Error: 1922 return error("Malformed block"); 1923 case BitstreamEntry::EndBlock: 1924 return Error::success(); 1925 case BitstreamEntry::Record: 1926 // The interesting case. 1927 break; 1928 } 1929 1930 // Tags are implicitly mapped to integers by their order. 1931 1932 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1933 if (!MaybeRecord) 1934 return MaybeRecord.takeError(); 1935 if (MaybeRecord.get() != bitc::OPERAND_BUNDLE_TAG) 1936 return error("Invalid record"); 1937 1938 // OPERAND_BUNDLE_TAG: [strchr x N] 1939 BundleTags.emplace_back(); 1940 if (convertToString(Record, 0, BundleTags.back())) 1941 return error("Invalid record"); 1942 Record.clear(); 1943 } 1944 } 1945 1946 Error BitcodeReader::parseSyncScopeNames() { 1947 if (Error Err = Stream.EnterSubBlock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID)) 1948 return Err; 1949 1950 if (!SSIDs.empty()) 1951 return error("Invalid multiple synchronization scope names blocks"); 1952 1953 SmallVector<uint64_t, 64> Record; 1954 while (true) { 1955 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1956 if (!MaybeEntry) 1957 return MaybeEntry.takeError(); 1958 BitstreamEntry Entry = MaybeEntry.get(); 1959 1960 switch (Entry.Kind) { 1961 case BitstreamEntry::SubBlock: // Handled for us already. 1962 case BitstreamEntry::Error: 1963 return error("Malformed block"); 1964 case BitstreamEntry::EndBlock: 1965 if (SSIDs.empty()) 1966 return error("Invalid empty synchronization scope names block"); 1967 return Error::success(); 1968 case BitstreamEntry::Record: 1969 // The interesting case. 1970 break; 1971 } 1972 1973 // Synchronization scope names are implicitly mapped to synchronization 1974 // scope IDs by their order. 1975 1976 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1977 if (!MaybeRecord) 1978 return MaybeRecord.takeError(); 1979 if (MaybeRecord.get() != bitc::SYNC_SCOPE_NAME) 1980 return error("Invalid record"); 1981 1982 SmallString<16> SSN; 1983 if (convertToString(Record, 0, SSN)) 1984 return error("Invalid record"); 1985 1986 SSIDs.push_back(Context.getOrInsertSyncScopeID(SSN)); 1987 Record.clear(); 1988 } 1989 } 1990 1991 /// Associate a value with its name from the given index in the provided record. 1992 Expected<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record, 1993 unsigned NameIndex, Triple &TT) { 1994 SmallString<128> ValueName; 1995 if (convertToString(Record, NameIndex, ValueName)) 1996 return error("Invalid record"); 1997 unsigned ValueID = Record[0]; 1998 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 1999 return error("Invalid record"); 2000 Value *V = ValueList[ValueID]; 2001 2002 StringRef NameStr(ValueName.data(), ValueName.size()); 2003 if (NameStr.find_first_of(0) != StringRef::npos) 2004 return error("Invalid value name"); 2005 V->setName(NameStr); 2006 auto *GO = dyn_cast<GlobalObject>(V); 2007 if (GO) { 2008 if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) { 2009 if (TT.supportsCOMDAT()) 2010 GO->setComdat(TheModule->getOrInsertComdat(V->getName())); 2011 else 2012 GO->setComdat(nullptr); 2013 } 2014 } 2015 return V; 2016 } 2017 2018 /// Helper to note and return the current location, and jump to the given 2019 /// offset. 2020 static Expected<uint64_t> jumpToValueSymbolTable(uint64_t Offset, 2021 BitstreamCursor &Stream) { 2022 // Save the current parsing location so we can jump back at the end 2023 // of the VST read. 2024 uint64_t CurrentBit = Stream.GetCurrentBitNo(); 2025 if (Error JumpFailed = Stream.JumpToBit(Offset * 32)) 2026 return std::move(JumpFailed); 2027 Expected<BitstreamEntry> MaybeEntry = Stream.advance(); 2028 if (!MaybeEntry) 2029 return MaybeEntry.takeError(); 2030 assert(MaybeEntry.get().Kind == BitstreamEntry::SubBlock); 2031 assert(MaybeEntry.get().ID == bitc::VALUE_SYMTAB_BLOCK_ID); 2032 return CurrentBit; 2033 } 2034 2035 void BitcodeReader::setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, 2036 Function *F, 2037 ArrayRef<uint64_t> Record) { 2038 // Note that we subtract 1 here because the offset is relative to one word 2039 // before the start of the identification or module block, which was 2040 // historically always the start of the regular bitcode header. 2041 uint64_t FuncWordOffset = Record[1] - 1; 2042 uint64_t FuncBitOffset = FuncWordOffset * 32; 2043 DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta; 2044 // Set the LastFunctionBlockBit to point to the last function block. 2045 // Later when parsing is resumed after function materialization, 2046 // we can simply skip that last function block. 2047 if (FuncBitOffset > LastFunctionBlockBit) 2048 LastFunctionBlockBit = FuncBitOffset; 2049 } 2050 2051 /// Read a new-style GlobalValue symbol table. 2052 Error BitcodeReader::parseGlobalValueSymbolTable() { 2053 unsigned FuncBitcodeOffsetDelta = 2054 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 2055 2056 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 2057 return Err; 2058 2059 SmallVector<uint64_t, 64> Record; 2060 while (true) { 2061 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2062 if (!MaybeEntry) 2063 return MaybeEntry.takeError(); 2064 BitstreamEntry Entry = MaybeEntry.get(); 2065 2066 switch (Entry.Kind) { 2067 case BitstreamEntry::SubBlock: 2068 case BitstreamEntry::Error: 2069 return error("Malformed block"); 2070 case BitstreamEntry::EndBlock: 2071 return Error::success(); 2072 case BitstreamEntry::Record: 2073 break; 2074 } 2075 2076 Record.clear(); 2077 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2078 if (!MaybeRecord) 2079 return MaybeRecord.takeError(); 2080 switch (MaybeRecord.get()) { 2081 case bitc::VST_CODE_FNENTRY: // [valueid, offset] 2082 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, 2083 cast<Function>(ValueList[Record[0]]), Record); 2084 break; 2085 } 2086 } 2087 } 2088 2089 /// Parse the value symbol table at either the current parsing location or 2090 /// at the given bit offset if provided. 2091 Error BitcodeReader::parseValueSymbolTable(uint64_t Offset) { 2092 uint64_t CurrentBit; 2093 // Pass in the Offset to distinguish between calling for the module-level 2094 // VST (where we want to jump to the VST offset) and the function-level 2095 // VST (where we don't). 2096 if (Offset > 0) { 2097 Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream); 2098 if (!MaybeCurrentBit) 2099 return MaybeCurrentBit.takeError(); 2100 CurrentBit = MaybeCurrentBit.get(); 2101 // If this module uses a string table, read this as a module-level VST. 2102 if (UseStrtab) { 2103 if (Error Err = parseGlobalValueSymbolTable()) 2104 return Err; 2105 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 2106 return JumpFailed; 2107 return Error::success(); 2108 } 2109 // Otherwise, the VST will be in a similar format to a function-level VST, 2110 // and will contain symbol names. 2111 } 2112 2113 // Compute the delta between the bitcode indices in the VST (the word offset 2114 // to the word-aligned ENTER_SUBBLOCK for the function block, and that 2115 // expected by the lazy reader. The reader's EnterSubBlock expects to have 2116 // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID 2117 // (size BlockIDWidth). Note that we access the stream's AbbrevID width here 2118 // just before entering the VST subblock because: 1) the EnterSubBlock 2119 // changes the AbbrevID width; 2) the VST block is nested within the same 2120 // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same 2121 // AbbrevID width before calling EnterSubBlock; and 3) when we want to 2122 // jump to the FUNCTION_BLOCK using this offset later, we don't want 2123 // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK. 2124 unsigned FuncBitcodeOffsetDelta = 2125 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 2126 2127 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 2128 return Err; 2129 2130 SmallVector<uint64_t, 64> Record; 2131 2132 Triple TT(TheModule->getTargetTriple()); 2133 2134 // Read all the records for this value table. 2135 SmallString<128> ValueName; 2136 2137 while (true) { 2138 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2139 if (!MaybeEntry) 2140 return MaybeEntry.takeError(); 2141 BitstreamEntry Entry = MaybeEntry.get(); 2142 2143 switch (Entry.Kind) { 2144 case BitstreamEntry::SubBlock: // Handled for us already. 2145 case BitstreamEntry::Error: 2146 return error("Malformed block"); 2147 case BitstreamEntry::EndBlock: 2148 if (Offset > 0) 2149 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 2150 return JumpFailed; 2151 return Error::success(); 2152 case BitstreamEntry::Record: 2153 // The interesting case. 2154 break; 2155 } 2156 2157 // Read a record. 2158 Record.clear(); 2159 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2160 if (!MaybeRecord) 2161 return MaybeRecord.takeError(); 2162 switch (MaybeRecord.get()) { 2163 default: // Default behavior: unknown type. 2164 break; 2165 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 2166 Expected<Value *> ValOrErr = recordValue(Record, 1, TT); 2167 if (Error Err = ValOrErr.takeError()) 2168 return Err; 2169 ValOrErr.get(); 2170 break; 2171 } 2172 case bitc::VST_CODE_FNENTRY: { 2173 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 2174 Expected<Value *> ValOrErr = recordValue(Record, 2, TT); 2175 if (Error Err = ValOrErr.takeError()) 2176 return Err; 2177 Value *V = ValOrErr.get(); 2178 2179 // Ignore function offsets emitted for aliases of functions in older 2180 // versions of LLVM. 2181 if (auto *F = dyn_cast<Function>(V)) 2182 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, F, Record); 2183 break; 2184 } 2185 case bitc::VST_CODE_BBENTRY: { 2186 if (convertToString(Record, 1, ValueName)) 2187 return error("Invalid record"); 2188 BasicBlock *BB = getBasicBlock(Record[0]); 2189 if (!BB) 2190 return error("Invalid record"); 2191 2192 BB->setName(StringRef(ValueName.data(), ValueName.size())); 2193 ValueName.clear(); 2194 break; 2195 } 2196 } 2197 } 2198 } 2199 2200 /// Decode a signed value stored with the sign bit in the LSB for dense VBR 2201 /// encoding. 2202 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { 2203 if ((V & 1) == 0) 2204 return V >> 1; 2205 if (V != 1) 2206 return -(V >> 1); 2207 // There is no such thing as -0 with integers. "-0" really means MININT. 2208 return 1ULL << 63; 2209 } 2210 2211 /// Resolve all of the initializers for global values and aliases that we can. 2212 Error BitcodeReader::resolveGlobalAndIndirectSymbolInits() { 2213 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInitWorklist; 2214 std::vector<std::pair<GlobalIndirectSymbol *, unsigned>> 2215 IndirectSymbolInitWorklist; 2216 std::vector<std::pair<Function *, unsigned>> FunctionPrefixWorklist; 2217 std::vector<std::pair<Function *, unsigned>> FunctionPrologueWorklist; 2218 std::vector<std::pair<Function *, unsigned>> FunctionPersonalityFnWorklist; 2219 2220 GlobalInitWorklist.swap(GlobalInits); 2221 IndirectSymbolInitWorklist.swap(IndirectSymbolInits); 2222 FunctionPrefixWorklist.swap(FunctionPrefixes); 2223 FunctionPrologueWorklist.swap(FunctionPrologues); 2224 FunctionPersonalityFnWorklist.swap(FunctionPersonalityFns); 2225 2226 while (!GlobalInitWorklist.empty()) { 2227 unsigned ValID = GlobalInitWorklist.back().second; 2228 if (ValID >= ValueList.size()) { 2229 // Not ready to resolve this yet, it requires something later in the file. 2230 GlobalInits.push_back(GlobalInitWorklist.back()); 2231 } else { 2232 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2233 GlobalInitWorklist.back().first->setInitializer(C); 2234 else 2235 return error("Expected a constant"); 2236 } 2237 GlobalInitWorklist.pop_back(); 2238 } 2239 2240 while (!IndirectSymbolInitWorklist.empty()) { 2241 unsigned ValID = IndirectSymbolInitWorklist.back().second; 2242 if (ValID >= ValueList.size()) { 2243 IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back()); 2244 } else { 2245 Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]); 2246 if (!C) 2247 return error("Expected a constant"); 2248 GlobalIndirectSymbol *GIS = IndirectSymbolInitWorklist.back().first; 2249 if (isa<GlobalAlias>(GIS) && C->getType() != GIS->getType()) 2250 return error("Alias and aliasee types don't match"); 2251 GIS->setIndirectSymbol(C); 2252 } 2253 IndirectSymbolInitWorklist.pop_back(); 2254 } 2255 2256 while (!FunctionPrefixWorklist.empty()) { 2257 unsigned ValID = FunctionPrefixWorklist.back().second; 2258 if (ValID >= ValueList.size()) { 2259 FunctionPrefixes.push_back(FunctionPrefixWorklist.back()); 2260 } else { 2261 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2262 FunctionPrefixWorklist.back().first->setPrefixData(C); 2263 else 2264 return error("Expected a constant"); 2265 } 2266 FunctionPrefixWorklist.pop_back(); 2267 } 2268 2269 while (!FunctionPrologueWorklist.empty()) { 2270 unsigned ValID = FunctionPrologueWorklist.back().second; 2271 if (ValID >= ValueList.size()) { 2272 FunctionPrologues.push_back(FunctionPrologueWorklist.back()); 2273 } else { 2274 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2275 FunctionPrologueWorklist.back().first->setPrologueData(C); 2276 else 2277 return error("Expected a constant"); 2278 } 2279 FunctionPrologueWorklist.pop_back(); 2280 } 2281 2282 while (!FunctionPersonalityFnWorklist.empty()) { 2283 unsigned ValID = FunctionPersonalityFnWorklist.back().second; 2284 if (ValID >= ValueList.size()) { 2285 FunctionPersonalityFns.push_back(FunctionPersonalityFnWorklist.back()); 2286 } else { 2287 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2288 FunctionPersonalityFnWorklist.back().first->setPersonalityFn(C); 2289 else 2290 return error("Expected a constant"); 2291 } 2292 FunctionPersonalityFnWorklist.pop_back(); 2293 } 2294 2295 return Error::success(); 2296 } 2297 2298 static APInt readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { 2299 SmallVector<uint64_t, 8> Words(Vals.size()); 2300 transform(Vals, Words.begin(), 2301 BitcodeReader::decodeSignRotatedValue); 2302 2303 return APInt(TypeBits, Words); 2304 } 2305 2306 Error BitcodeReader::parseConstants() { 2307 if (Error Err = Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 2308 return Err; 2309 2310 SmallVector<uint64_t, 64> Record; 2311 2312 // Read all the records for this value table. 2313 Type *CurTy = Type::getInt32Ty(Context); 2314 Type *CurFullTy = Type::getInt32Ty(Context); 2315 unsigned NextCstNo = ValueList.size(); 2316 2317 while (true) { 2318 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2319 if (!MaybeEntry) 2320 return MaybeEntry.takeError(); 2321 BitstreamEntry Entry = MaybeEntry.get(); 2322 2323 switch (Entry.Kind) { 2324 case BitstreamEntry::SubBlock: // Handled for us already. 2325 case BitstreamEntry::Error: 2326 return error("Malformed block"); 2327 case BitstreamEntry::EndBlock: 2328 if (NextCstNo != ValueList.size()) 2329 return error("Invalid constant reference"); 2330 2331 // Once all the constants have been read, go through and resolve forward 2332 // references. 2333 ValueList.resolveConstantForwardRefs(); 2334 return Error::success(); 2335 case BitstreamEntry::Record: 2336 // The interesting case. 2337 break; 2338 } 2339 2340 // Read a record. 2341 Record.clear(); 2342 Type *VoidType = Type::getVoidTy(Context); 2343 Value *V = nullptr; 2344 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 2345 if (!MaybeBitCode) 2346 return MaybeBitCode.takeError(); 2347 switch (unsigned BitCode = MaybeBitCode.get()) { 2348 default: // Default behavior: unknown constant 2349 case bitc::CST_CODE_UNDEF: // UNDEF 2350 V = UndefValue::get(CurTy); 2351 break; 2352 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 2353 if (Record.empty()) 2354 return error("Invalid record"); 2355 if (Record[0] >= TypeList.size() || !TypeList[Record[0]]) 2356 return error("Invalid record"); 2357 if (TypeList[Record[0]] == VoidType) 2358 return error("Invalid constant type"); 2359 CurFullTy = TypeList[Record[0]]; 2360 CurTy = flattenPointerTypes(CurFullTy); 2361 continue; // Skip the ValueList manipulation. 2362 case bitc::CST_CODE_NULL: // NULL 2363 V = Constant::getNullValue(CurTy); 2364 break; 2365 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 2366 if (!CurTy->isIntegerTy() || Record.empty()) 2367 return error("Invalid record"); 2368 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); 2369 break; 2370 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 2371 if (!CurTy->isIntegerTy() || Record.empty()) 2372 return error("Invalid record"); 2373 2374 APInt VInt = 2375 readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth()); 2376 V = ConstantInt::get(Context, VInt); 2377 2378 break; 2379 } 2380 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 2381 if (Record.empty()) 2382 return error("Invalid record"); 2383 if (CurTy->isHalfTy()) 2384 V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf(), 2385 APInt(16, (uint16_t)Record[0]))); 2386 else if (CurTy->isFloatTy()) 2387 V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle(), 2388 APInt(32, (uint32_t)Record[0]))); 2389 else if (CurTy->isDoubleTy()) 2390 V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble(), 2391 APInt(64, Record[0]))); 2392 else if (CurTy->isX86_FP80Ty()) { 2393 // Bits are not stored the same way as a normal i80 APInt, compensate. 2394 uint64_t Rearrange[2]; 2395 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 2396 Rearrange[1] = Record[0] >> 48; 2397 V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended(), 2398 APInt(80, Rearrange))); 2399 } else if (CurTy->isFP128Ty()) 2400 V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad(), 2401 APInt(128, Record))); 2402 else if (CurTy->isPPC_FP128Ty()) 2403 V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble(), 2404 APInt(128, Record))); 2405 else 2406 V = UndefValue::get(CurTy); 2407 break; 2408 } 2409 2410 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 2411 if (Record.empty()) 2412 return error("Invalid record"); 2413 2414 unsigned Size = Record.size(); 2415 SmallVector<Constant*, 16> Elts; 2416 2417 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 2418 for (unsigned i = 0; i != Size; ++i) 2419 Elts.push_back(ValueList.getConstantFwdRef(Record[i], 2420 STy->getElementType(i))); 2421 V = ConstantStruct::get(STy, Elts); 2422 } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) { 2423 Type *EltTy = ATy->getElementType(); 2424 for (unsigned i = 0; i != Size; ++i) 2425 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2426 V = ConstantArray::get(ATy, Elts); 2427 } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) { 2428 Type *EltTy = VTy->getElementType(); 2429 for (unsigned i = 0; i != Size; ++i) 2430 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2431 V = ConstantVector::get(Elts); 2432 } else { 2433 V = UndefValue::get(CurTy); 2434 } 2435 break; 2436 } 2437 case bitc::CST_CODE_STRING: // STRING: [values] 2438 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 2439 if (Record.empty()) 2440 return error("Invalid record"); 2441 2442 SmallString<16> Elts(Record.begin(), Record.end()); 2443 V = ConstantDataArray::getString(Context, Elts, 2444 BitCode == bitc::CST_CODE_CSTRING); 2445 break; 2446 } 2447 case bitc::CST_CODE_DATA: {// DATA: [n x value] 2448 if (Record.empty()) 2449 return error("Invalid record"); 2450 2451 Type *EltTy = cast<SequentialType>(CurTy)->getElementType(); 2452 if (EltTy->isIntegerTy(8)) { 2453 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); 2454 if (isa<VectorType>(CurTy)) 2455 V = ConstantDataVector::get(Context, Elts); 2456 else 2457 V = ConstantDataArray::get(Context, Elts); 2458 } else if (EltTy->isIntegerTy(16)) { 2459 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2460 if (isa<VectorType>(CurTy)) 2461 V = ConstantDataVector::get(Context, Elts); 2462 else 2463 V = ConstantDataArray::get(Context, Elts); 2464 } else if (EltTy->isIntegerTy(32)) { 2465 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2466 if (isa<VectorType>(CurTy)) 2467 V = ConstantDataVector::get(Context, Elts); 2468 else 2469 V = ConstantDataArray::get(Context, Elts); 2470 } else if (EltTy->isIntegerTy(64)) { 2471 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2472 if (isa<VectorType>(CurTy)) 2473 V = ConstantDataVector::get(Context, Elts); 2474 else 2475 V = ConstantDataArray::get(Context, Elts); 2476 } else if (EltTy->isHalfTy()) { 2477 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2478 if (isa<VectorType>(CurTy)) 2479 V = ConstantDataVector::getFP(Context, Elts); 2480 else 2481 V = ConstantDataArray::getFP(Context, Elts); 2482 } else if (EltTy->isFloatTy()) { 2483 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2484 if (isa<VectorType>(CurTy)) 2485 V = ConstantDataVector::getFP(Context, Elts); 2486 else 2487 V = ConstantDataArray::getFP(Context, Elts); 2488 } else if (EltTy->isDoubleTy()) { 2489 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2490 if (isa<VectorType>(CurTy)) 2491 V = ConstantDataVector::getFP(Context, Elts); 2492 else 2493 V = ConstantDataArray::getFP(Context, Elts); 2494 } else { 2495 return error("Invalid type for value"); 2496 } 2497 break; 2498 } 2499 case bitc::CST_CODE_CE_UNOP: { // CE_UNOP: [opcode, opval] 2500 if (Record.size() < 2) 2501 return error("Invalid record"); 2502 int Opc = getDecodedUnaryOpcode(Record[0], CurTy); 2503 if (Opc < 0) { 2504 V = UndefValue::get(CurTy); // Unknown unop. 2505 } else { 2506 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 2507 unsigned Flags = 0; 2508 V = ConstantExpr::get(Opc, LHS, Flags); 2509 } 2510 break; 2511 } 2512 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 2513 if (Record.size() < 3) 2514 return error("Invalid record"); 2515 int Opc = getDecodedBinaryOpcode(Record[0], CurTy); 2516 if (Opc < 0) { 2517 V = UndefValue::get(CurTy); // Unknown binop. 2518 } else { 2519 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 2520 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy); 2521 unsigned Flags = 0; 2522 if (Record.size() >= 4) { 2523 if (Opc == Instruction::Add || 2524 Opc == Instruction::Sub || 2525 Opc == Instruction::Mul || 2526 Opc == Instruction::Shl) { 2527 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 2528 Flags |= OverflowingBinaryOperator::NoSignedWrap; 2529 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 2530 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 2531 } else if (Opc == Instruction::SDiv || 2532 Opc == Instruction::UDiv || 2533 Opc == Instruction::LShr || 2534 Opc == Instruction::AShr) { 2535 if (Record[3] & (1 << bitc::PEO_EXACT)) 2536 Flags |= SDivOperator::IsExact; 2537 } 2538 } 2539 V = ConstantExpr::get(Opc, LHS, RHS, Flags); 2540 } 2541 break; 2542 } 2543 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 2544 if (Record.size() < 3) 2545 return error("Invalid record"); 2546 int Opc = getDecodedCastOpcode(Record[0]); 2547 if (Opc < 0) { 2548 V = UndefValue::get(CurTy); // Unknown cast. 2549 } else { 2550 Type *OpTy = getTypeByID(Record[1]); 2551 if (!OpTy) 2552 return error("Invalid record"); 2553 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy); 2554 V = UpgradeBitCastExpr(Opc, Op, CurTy); 2555 if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy); 2556 } 2557 break; 2558 } 2559 case bitc::CST_CODE_CE_INBOUNDS_GEP: // [ty, n x operands] 2560 case bitc::CST_CODE_CE_GEP: // [ty, n x operands] 2561 case bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX: { // [ty, flags, n x 2562 // operands] 2563 unsigned OpNum = 0; 2564 Type *PointeeType = nullptr; 2565 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX || 2566 Record.size() % 2) 2567 PointeeType = getTypeByID(Record[OpNum++]); 2568 2569 bool InBounds = false; 2570 Optional<unsigned> InRangeIndex; 2571 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX) { 2572 uint64_t Op = Record[OpNum++]; 2573 InBounds = Op & 1; 2574 InRangeIndex = Op >> 1; 2575 } else if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP) 2576 InBounds = true; 2577 2578 SmallVector<Constant*, 16> Elts; 2579 Type *Elt0FullTy = nullptr; 2580 while (OpNum != Record.size()) { 2581 if (!Elt0FullTy) 2582 Elt0FullTy = getFullyStructuredTypeByID(Record[OpNum]); 2583 Type *ElTy = getTypeByID(Record[OpNum++]); 2584 if (!ElTy) 2585 return error("Invalid record"); 2586 Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy)); 2587 } 2588 2589 if (Elts.size() < 1) 2590 return error("Invalid gep with no operands"); 2591 2592 Type *ImplicitPointeeType = 2593 getPointerElementFlatType(Elt0FullTy->getScalarType()); 2594 if (!PointeeType) 2595 PointeeType = ImplicitPointeeType; 2596 else if (PointeeType != ImplicitPointeeType) 2597 return error("Explicit gep operator type does not match pointee type " 2598 "of pointer operand"); 2599 2600 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 2601 V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices, 2602 InBounds, InRangeIndex); 2603 break; 2604 } 2605 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] 2606 if (Record.size() < 3) 2607 return error("Invalid record"); 2608 2609 Type *SelectorTy = Type::getInt1Ty(Context); 2610 2611 // The selector might be an i1 or an <n x i1> 2612 // Get the type from the ValueList before getting a forward ref. 2613 if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) 2614 if (Value *V = ValueList[Record[0]]) 2615 if (SelectorTy != V->getType()) 2616 SelectorTy = VectorType::get(SelectorTy, VTy->getNumElements()); 2617 2618 V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0], 2619 SelectorTy), 2620 ValueList.getConstantFwdRef(Record[1],CurTy), 2621 ValueList.getConstantFwdRef(Record[2],CurTy)); 2622 break; 2623 } 2624 case bitc::CST_CODE_CE_EXTRACTELT 2625 : { // CE_EXTRACTELT: [opty, opval, opty, opval] 2626 if (Record.size() < 3) 2627 return error("Invalid record"); 2628 VectorType *OpTy = 2629 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2630 if (!OpTy) 2631 return error("Invalid record"); 2632 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2633 Constant *Op1 = nullptr; 2634 if (Record.size() == 4) { 2635 Type *IdxTy = getTypeByID(Record[2]); 2636 if (!IdxTy) 2637 return error("Invalid record"); 2638 Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2639 } else // TODO: Remove with llvm 4.0 2640 Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2641 if (!Op1) 2642 return error("Invalid record"); 2643 V = ConstantExpr::getExtractElement(Op0, Op1); 2644 break; 2645 } 2646 case bitc::CST_CODE_CE_INSERTELT 2647 : { // CE_INSERTELT: [opval, opval, opty, opval] 2648 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2649 if (Record.size() < 3 || !OpTy) 2650 return error("Invalid record"); 2651 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2652 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], 2653 OpTy->getElementType()); 2654 Constant *Op2 = nullptr; 2655 if (Record.size() == 4) { 2656 Type *IdxTy = getTypeByID(Record[2]); 2657 if (!IdxTy) 2658 return error("Invalid record"); 2659 Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2660 } else // TODO: Remove with llvm 4.0 2661 Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2662 if (!Op2) 2663 return error("Invalid record"); 2664 V = ConstantExpr::getInsertElement(Op0, Op1, Op2); 2665 break; 2666 } 2667 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 2668 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2669 if (Record.size() < 3 || !OpTy) 2670 return error("Invalid record"); 2671 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2672 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy); 2673 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 2674 OpTy->getNumElements()); 2675 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy); 2676 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 2677 break; 2678 } 2679 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 2680 VectorType *RTy = dyn_cast<VectorType>(CurTy); 2681 VectorType *OpTy = 2682 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2683 if (Record.size() < 4 || !RTy || !OpTy) 2684 return error("Invalid record"); 2685 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2686 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2687 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 2688 RTy->getNumElements()); 2689 Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy); 2690 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 2691 break; 2692 } 2693 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 2694 if (Record.size() < 4) 2695 return error("Invalid record"); 2696 Type *OpTy = getTypeByID(Record[0]); 2697 if (!OpTy) 2698 return error("Invalid record"); 2699 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2700 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2701 2702 if (OpTy->isFPOrFPVectorTy()) 2703 V = ConstantExpr::getFCmp(Record[3], Op0, Op1); 2704 else 2705 V = ConstantExpr::getICmp(Record[3], Op0, Op1); 2706 break; 2707 } 2708 // This maintains backward compatibility, pre-asm dialect keywords. 2709 // FIXME: Remove with the 4.0 release. 2710 case bitc::CST_CODE_INLINEASM_OLD: { 2711 if (Record.size() < 2) 2712 return error("Invalid record"); 2713 std::string AsmStr, ConstrStr; 2714 bool HasSideEffects = Record[0] & 1; 2715 bool IsAlignStack = Record[0] >> 1; 2716 unsigned AsmStrSize = Record[1]; 2717 if (2+AsmStrSize >= Record.size()) 2718 return error("Invalid record"); 2719 unsigned ConstStrSize = Record[2+AsmStrSize]; 2720 if (3+AsmStrSize+ConstStrSize > Record.size()) 2721 return error("Invalid record"); 2722 2723 for (unsigned i = 0; i != AsmStrSize; ++i) 2724 AsmStr += (char)Record[2+i]; 2725 for (unsigned i = 0; i != ConstStrSize; ++i) 2726 ConstrStr += (char)Record[3+AsmStrSize+i]; 2727 UpgradeInlineAsmString(&AsmStr); 2728 V = InlineAsm::get( 2729 cast<FunctionType>(getPointerElementFlatType(CurFullTy)), AsmStr, 2730 ConstrStr, HasSideEffects, IsAlignStack); 2731 break; 2732 } 2733 // This version adds support for the asm dialect keywords (e.g., 2734 // inteldialect). 2735 case bitc::CST_CODE_INLINEASM: { 2736 if (Record.size() < 2) 2737 return error("Invalid record"); 2738 std::string AsmStr, ConstrStr; 2739 bool HasSideEffects = Record[0] & 1; 2740 bool IsAlignStack = (Record[0] >> 1) & 1; 2741 unsigned AsmDialect = Record[0] >> 2; 2742 unsigned AsmStrSize = Record[1]; 2743 if (2+AsmStrSize >= Record.size()) 2744 return error("Invalid record"); 2745 unsigned ConstStrSize = Record[2+AsmStrSize]; 2746 if (3+AsmStrSize+ConstStrSize > Record.size()) 2747 return error("Invalid record"); 2748 2749 for (unsigned i = 0; i != AsmStrSize; ++i) 2750 AsmStr += (char)Record[2+i]; 2751 for (unsigned i = 0; i != ConstStrSize; ++i) 2752 ConstrStr += (char)Record[3+AsmStrSize+i]; 2753 UpgradeInlineAsmString(&AsmStr); 2754 V = InlineAsm::get( 2755 cast<FunctionType>(getPointerElementFlatType(CurFullTy)), AsmStr, 2756 ConstrStr, HasSideEffects, IsAlignStack, 2757 InlineAsm::AsmDialect(AsmDialect)); 2758 break; 2759 } 2760 case bitc::CST_CODE_BLOCKADDRESS:{ 2761 if (Record.size() < 3) 2762 return error("Invalid record"); 2763 Type *FnTy = getTypeByID(Record[0]); 2764 if (!FnTy) 2765 return error("Invalid record"); 2766 Function *Fn = 2767 dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy)); 2768 if (!Fn) 2769 return error("Invalid record"); 2770 2771 // If the function is already parsed we can insert the block address right 2772 // away. 2773 BasicBlock *BB; 2774 unsigned BBID = Record[2]; 2775 if (!BBID) 2776 // Invalid reference to entry block. 2777 return error("Invalid ID"); 2778 if (!Fn->empty()) { 2779 Function::iterator BBI = Fn->begin(), BBE = Fn->end(); 2780 for (size_t I = 0, E = BBID; I != E; ++I) { 2781 if (BBI == BBE) 2782 return error("Invalid ID"); 2783 ++BBI; 2784 } 2785 BB = &*BBI; 2786 } else { 2787 // Otherwise insert a placeholder and remember it so it can be inserted 2788 // when the function is parsed. 2789 auto &FwdBBs = BasicBlockFwdRefs[Fn]; 2790 if (FwdBBs.empty()) 2791 BasicBlockFwdRefQueue.push_back(Fn); 2792 if (FwdBBs.size() < BBID + 1) 2793 FwdBBs.resize(BBID + 1); 2794 if (!FwdBBs[BBID]) 2795 FwdBBs[BBID] = BasicBlock::Create(Context); 2796 BB = FwdBBs[BBID]; 2797 } 2798 V = BlockAddress::get(Fn, BB); 2799 break; 2800 } 2801 } 2802 2803 assert(V->getType() == flattenPointerTypes(CurFullTy) && 2804 "Incorrect fully structured type provided for Constant"); 2805 ValueList.assignValue(V, NextCstNo, CurFullTy); 2806 ++NextCstNo; 2807 } 2808 } 2809 2810 Error BitcodeReader::parseUseLists() { 2811 if (Error Err = Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 2812 return Err; 2813 2814 // Read all the records. 2815 SmallVector<uint64_t, 64> Record; 2816 2817 while (true) { 2818 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2819 if (!MaybeEntry) 2820 return MaybeEntry.takeError(); 2821 BitstreamEntry Entry = MaybeEntry.get(); 2822 2823 switch (Entry.Kind) { 2824 case BitstreamEntry::SubBlock: // Handled for us already. 2825 case BitstreamEntry::Error: 2826 return error("Malformed block"); 2827 case BitstreamEntry::EndBlock: 2828 return Error::success(); 2829 case BitstreamEntry::Record: 2830 // The interesting case. 2831 break; 2832 } 2833 2834 // Read a use list record. 2835 Record.clear(); 2836 bool IsBB = false; 2837 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2838 if (!MaybeRecord) 2839 return MaybeRecord.takeError(); 2840 switch (MaybeRecord.get()) { 2841 default: // Default behavior: unknown type. 2842 break; 2843 case bitc::USELIST_CODE_BB: 2844 IsBB = true; 2845 LLVM_FALLTHROUGH; 2846 case bitc::USELIST_CODE_DEFAULT: { 2847 unsigned RecordLength = Record.size(); 2848 if (RecordLength < 3) 2849 // Records should have at least an ID and two indexes. 2850 return error("Invalid record"); 2851 unsigned ID = Record.back(); 2852 Record.pop_back(); 2853 2854 Value *V; 2855 if (IsBB) { 2856 assert(ID < FunctionBBs.size() && "Basic block not found"); 2857 V = FunctionBBs[ID]; 2858 } else 2859 V = ValueList[ID]; 2860 unsigned NumUses = 0; 2861 SmallDenseMap<const Use *, unsigned, 16> Order; 2862 for (const Use &U : V->materialized_uses()) { 2863 if (++NumUses > Record.size()) 2864 break; 2865 Order[&U] = Record[NumUses - 1]; 2866 } 2867 if (Order.size() != Record.size() || NumUses > Record.size()) 2868 // Mismatches can happen if the functions are being materialized lazily 2869 // (out-of-order), or a value has been upgraded. 2870 break; 2871 2872 V->sortUseList([&](const Use &L, const Use &R) { 2873 return Order.lookup(&L) < Order.lookup(&R); 2874 }); 2875 break; 2876 } 2877 } 2878 } 2879 } 2880 2881 /// When we see the block for metadata, remember where it is and then skip it. 2882 /// This lets us lazily deserialize the metadata. 2883 Error BitcodeReader::rememberAndSkipMetadata() { 2884 // Save the current stream state. 2885 uint64_t CurBit = Stream.GetCurrentBitNo(); 2886 DeferredMetadataInfo.push_back(CurBit); 2887 2888 // Skip over the block for now. 2889 if (Error Err = Stream.SkipBlock()) 2890 return Err; 2891 return Error::success(); 2892 } 2893 2894 Error BitcodeReader::materializeMetadata() { 2895 for (uint64_t BitPos : DeferredMetadataInfo) { 2896 // Move the bit stream to the saved position. 2897 if (Error JumpFailed = Stream.JumpToBit(BitPos)) 2898 return JumpFailed; 2899 if (Error Err = MDLoader->parseModuleMetadata()) 2900 return Err; 2901 } 2902 2903 // Upgrade "Linker Options" module flag to "llvm.linker.options" module-level 2904 // metadata. 2905 if (Metadata *Val = TheModule->getModuleFlag("Linker Options")) { 2906 NamedMDNode *LinkerOpts = 2907 TheModule->getOrInsertNamedMetadata("llvm.linker.options"); 2908 for (const MDOperand &MDOptions : cast<MDNode>(Val)->operands()) 2909 LinkerOpts->addOperand(cast<MDNode>(MDOptions)); 2910 } 2911 2912 DeferredMetadataInfo.clear(); 2913 return Error::success(); 2914 } 2915 2916 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; } 2917 2918 /// When we see the block for a function body, remember where it is and then 2919 /// skip it. This lets us lazily deserialize the functions. 2920 Error BitcodeReader::rememberAndSkipFunctionBody() { 2921 // Get the function we are talking about. 2922 if (FunctionsWithBodies.empty()) 2923 return error("Insufficient function protos"); 2924 2925 Function *Fn = FunctionsWithBodies.back(); 2926 FunctionsWithBodies.pop_back(); 2927 2928 // Save the current stream state. 2929 uint64_t CurBit = Stream.GetCurrentBitNo(); 2930 assert( 2931 (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) && 2932 "Mismatch between VST and scanned function offsets"); 2933 DeferredFunctionInfo[Fn] = CurBit; 2934 2935 // Skip over the function block for now. 2936 if (Error Err = Stream.SkipBlock()) 2937 return Err; 2938 return Error::success(); 2939 } 2940 2941 Error BitcodeReader::globalCleanup() { 2942 // Patch the initializers for globals and aliases up. 2943 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 2944 return Err; 2945 if (!GlobalInits.empty() || !IndirectSymbolInits.empty()) 2946 return error("Malformed global initializer set"); 2947 2948 // Look for intrinsic functions which need to be upgraded at some point 2949 for (Function &F : *TheModule) { 2950 MDLoader->upgradeDebugIntrinsics(F); 2951 Function *NewFn; 2952 if (UpgradeIntrinsicFunction(&F, NewFn)) 2953 UpgradedIntrinsics[&F] = NewFn; 2954 else if (auto Remangled = Intrinsic::remangleIntrinsicFunction(&F)) 2955 // Some types could be renamed during loading if several modules are 2956 // loaded in the same LLVMContext (LTO scenario). In this case we should 2957 // remangle intrinsics names as well. 2958 RemangledIntrinsics[&F] = Remangled.getValue(); 2959 } 2960 2961 // Look for global variables which need to be renamed. 2962 std::vector<std::pair<GlobalVariable *, GlobalVariable *>> UpgradedVariables; 2963 for (GlobalVariable &GV : TheModule->globals()) 2964 if (GlobalVariable *Upgraded = UpgradeGlobalVariable(&GV)) 2965 UpgradedVariables.emplace_back(&GV, Upgraded); 2966 for (auto &Pair : UpgradedVariables) { 2967 Pair.first->eraseFromParent(); 2968 TheModule->getGlobalList().push_back(Pair.second); 2969 } 2970 2971 // Force deallocation of memory for these vectors to favor the client that 2972 // want lazy deserialization. 2973 std::vector<std::pair<GlobalVariable *, unsigned>>().swap(GlobalInits); 2974 std::vector<std::pair<GlobalIndirectSymbol *, unsigned>>().swap( 2975 IndirectSymbolInits); 2976 return Error::success(); 2977 } 2978 2979 /// Support for lazy parsing of function bodies. This is required if we 2980 /// either have an old bitcode file without a VST forward declaration record, 2981 /// or if we have an anonymous function being materialized, since anonymous 2982 /// functions do not have a name and are therefore not in the VST. 2983 Error BitcodeReader::rememberAndSkipFunctionBodies() { 2984 if (Error JumpFailed = Stream.JumpToBit(NextUnreadBit)) 2985 return JumpFailed; 2986 2987 if (Stream.AtEndOfStream()) 2988 return error("Could not find function in stream"); 2989 2990 if (!SeenFirstFunctionBody) 2991 return error("Trying to materialize functions before seeing function blocks"); 2992 2993 // An old bitcode file with the symbol table at the end would have 2994 // finished the parse greedily. 2995 assert(SeenValueSymbolTable); 2996 2997 SmallVector<uint64_t, 64> Record; 2998 2999 while (true) { 3000 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 3001 if (!MaybeEntry) 3002 return MaybeEntry.takeError(); 3003 llvm::BitstreamEntry Entry = MaybeEntry.get(); 3004 3005 switch (Entry.Kind) { 3006 default: 3007 return error("Expect SubBlock"); 3008 case BitstreamEntry::SubBlock: 3009 switch (Entry.ID) { 3010 default: 3011 return error("Expect function block"); 3012 case bitc::FUNCTION_BLOCK_ID: 3013 if (Error Err = rememberAndSkipFunctionBody()) 3014 return Err; 3015 NextUnreadBit = Stream.GetCurrentBitNo(); 3016 return Error::success(); 3017 } 3018 } 3019 } 3020 } 3021 3022 bool BitcodeReaderBase::readBlockInfo() { 3023 Expected<Optional<BitstreamBlockInfo>> MaybeNewBlockInfo = 3024 Stream.ReadBlockInfoBlock(); 3025 if (!MaybeNewBlockInfo) 3026 return true; // FIXME Handle the error. 3027 Optional<BitstreamBlockInfo> NewBlockInfo = 3028 std::move(MaybeNewBlockInfo.get()); 3029 if (!NewBlockInfo) 3030 return true; 3031 BlockInfo = std::move(*NewBlockInfo); 3032 return false; 3033 } 3034 3035 Error BitcodeReader::parseComdatRecord(ArrayRef<uint64_t> Record) { 3036 // v1: [selection_kind, name] 3037 // v2: [strtab_offset, strtab_size, selection_kind] 3038 StringRef Name; 3039 std::tie(Name, Record) = readNameFromStrtab(Record); 3040 3041 if (Record.empty()) 3042 return error("Invalid record"); 3043 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]); 3044 std::string OldFormatName; 3045 if (!UseStrtab) { 3046 if (Record.size() < 2) 3047 return error("Invalid record"); 3048 unsigned ComdatNameSize = Record[1]; 3049 OldFormatName.reserve(ComdatNameSize); 3050 for (unsigned i = 0; i != ComdatNameSize; ++i) 3051 OldFormatName += (char)Record[2 + i]; 3052 Name = OldFormatName; 3053 } 3054 Comdat *C = TheModule->getOrInsertComdat(Name); 3055 C->setSelectionKind(SK); 3056 ComdatList.push_back(C); 3057 return Error::success(); 3058 } 3059 3060 static void inferDSOLocal(GlobalValue *GV) { 3061 // infer dso_local from linkage and visibility if it is not encoded. 3062 if (GV->hasLocalLinkage() || 3063 (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())) 3064 GV->setDSOLocal(true); 3065 } 3066 3067 Error BitcodeReader::parseGlobalVarRecord(ArrayRef<uint64_t> Record) { 3068 // v1: [pointer type, isconst, initid, linkage, alignment, section, 3069 // visibility, threadlocal, unnamed_addr, externally_initialized, 3070 // dllstorageclass, comdat, attributes, preemption specifier, 3071 // partition strtab offset, partition strtab size] (name in VST) 3072 // v2: [strtab_offset, strtab_size, v1] 3073 StringRef Name; 3074 std::tie(Name, Record) = readNameFromStrtab(Record); 3075 3076 if (Record.size() < 6) 3077 return error("Invalid record"); 3078 Type *FullTy = getFullyStructuredTypeByID(Record[0]); 3079 Type *Ty = flattenPointerTypes(FullTy); 3080 if (!Ty) 3081 return error("Invalid record"); 3082 bool isConstant = Record[1] & 1; 3083 bool explicitType = Record[1] & 2; 3084 unsigned AddressSpace; 3085 if (explicitType) { 3086 AddressSpace = Record[1] >> 2; 3087 } else { 3088 if (!Ty->isPointerTy()) 3089 return error("Invalid type for value"); 3090 AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 3091 std::tie(FullTy, Ty) = getPointerElementTypes(FullTy); 3092 } 3093 3094 uint64_t RawLinkage = Record[3]; 3095 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 3096 unsigned Alignment; 3097 if (Error Err = parseAlignmentValue(Record[4], Alignment)) 3098 return Err; 3099 std::string Section; 3100 if (Record[5]) { 3101 if (Record[5] - 1 >= SectionTable.size()) 3102 return error("Invalid ID"); 3103 Section = SectionTable[Record[5] - 1]; 3104 } 3105 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 3106 // Local linkage must have default visibility. 3107 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage)) 3108 // FIXME: Change to an error if non-default in 4.0. 3109 Visibility = getDecodedVisibility(Record[6]); 3110 3111 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; 3112 if (Record.size() > 7) 3113 TLM = getDecodedThreadLocalMode(Record[7]); 3114 3115 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 3116 if (Record.size() > 8) 3117 UnnamedAddr = getDecodedUnnamedAddrType(Record[8]); 3118 3119 bool ExternallyInitialized = false; 3120 if (Record.size() > 9) 3121 ExternallyInitialized = Record[9]; 3122 3123 GlobalVariable *NewGV = 3124 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, Name, 3125 nullptr, TLM, AddressSpace, ExternallyInitialized); 3126 NewGV->setAlignment(Alignment); 3127 if (!Section.empty()) 3128 NewGV->setSection(Section); 3129 NewGV->setVisibility(Visibility); 3130 NewGV->setUnnamedAddr(UnnamedAddr); 3131 3132 if (Record.size() > 10) 3133 NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10])); 3134 else 3135 upgradeDLLImportExportLinkage(NewGV, RawLinkage); 3136 3137 FullTy = PointerType::get(FullTy, AddressSpace); 3138 assert(NewGV->getType() == flattenPointerTypes(FullTy) && 3139 "Incorrect fully specified type for GlobalVariable"); 3140 ValueList.push_back(NewGV, FullTy); 3141 3142 // Remember which value to use for the global initializer. 3143 if (unsigned InitID = Record[2]) 3144 GlobalInits.push_back(std::make_pair(NewGV, InitID - 1)); 3145 3146 if (Record.size() > 11) { 3147 if (unsigned ComdatID = Record[11]) { 3148 if (ComdatID > ComdatList.size()) 3149 return error("Invalid global variable comdat ID"); 3150 NewGV->setComdat(ComdatList[ComdatID - 1]); 3151 } 3152 } else if (hasImplicitComdat(RawLinkage)) { 3153 NewGV->setComdat(reinterpret_cast<Comdat *>(1)); 3154 } 3155 3156 if (Record.size() > 12) { 3157 auto AS = getAttributes(Record[12]).getFnAttributes(); 3158 NewGV->setAttributes(AS); 3159 } 3160 3161 if (Record.size() > 13) { 3162 NewGV->setDSOLocal(getDecodedDSOLocal(Record[13])); 3163 } 3164 inferDSOLocal(NewGV); 3165 3166 // Check whether we have enough values to read a partition name. 3167 if (Record.size() > 15) 3168 NewGV->setPartition(StringRef(Strtab.data() + Record[14], Record[15])); 3169 3170 return Error::success(); 3171 } 3172 3173 Error BitcodeReader::parseFunctionRecord(ArrayRef<uint64_t> Record) { 3174 // v1: [type, callingconv, isproto, linkage, paramattr, alignment, section, 3175 // visibility, gc, unnamed_addr, prologuedata, dllstorageclass, comdat, 3176 // prefixdata, personalityfn, preemption specifier, addrspace] (name in VST) 3177 // v2: [strtab_offset, strtab_size, v1] 3178 StringRef Name; 3179 std::tie(Name, Record) = readNameFromStrtab(Record); 3180 3181 if (Record.size() < 8) 3182 return error("Invalid record"); 3183 Type *FullFTy = getFullyStructuredTypeByID(Record[0]); 3184 Type *FTy = flattenPointerTypes(FullFTy); 3185 if (!FTy) 3186 return error("Invalid record"); 3187 if (isa<PointerType>(FTy)) 3188 std::tie(FullFTy, FTy) = getPointerElementTypes(FullFTy); 3189 3190 if (!isa<FunctionType>(FTy)) 3191 return error("Invalid type for value"); 3192 auto CC = static_cast<CallingConv::ID>(Record[1]); 3193 if (CC & ~CallingConv::MaxID) 3194 return error("Invalid calling convention ID"); 3195 3196 unsigned AddrSpace = TheModule->getDataLayout().getProgramAddressSpace(); 3197 if (Record.size() > 16) 3198 AddrSpace = Record[16]; 3199 3200 Function *Func = 3201 Function::Create(cast<FunctionType>(FTy), GlobalValue::ExternalLinkage, 3202 AddrSpace, Name, TheModule); 3203 3204 assert(Func->getFunctionType() == flattenPointerTypes(FullFTy) && 3205 "Incorrect fully specified type provided for function"); 3206 FunctionTypes[Func] = cast<FunctionType>(FullFTy); 3207 3208 Func->setCallingConv(CC); 3209 bool isProto = Record[2]; 3210 uint64_t RawLinkage = Record[3]; 3211 Func->setLinkage(getDecodedLinkage(RawLinkage)); 3212 Func->setAttributes(getAttributes(Record[4])); 3213 3214 // Upgrade any old-style byval without a type by propagating the argument's 3215 // pointee type. There should be no opaque pointers where the byval type is 3216 // implicit. 3217 for (unsigned i = 0; i != Func->arg_size(); ++i) { 3218 if (!Func->hasParamAttribute(i, Attribute::ByVal)) 3219 continue; 3220 3221 Type *PTy = cast<FunctionType>(FullFTy)->getParamType(i); 3222 Func->removeParamAttr(i, Attribute::ByVal); 3223 Func->addParamAttr(i, Attribute::getWithByValType( 3224 Context, getPointerElementFlatType(PTy))); 3225 } 3226 3227 unsigned Alignment; 3228 if (Error Err = parseAlignmentValue(Record[5], Alignment)) 3229 return Err; 3230 Func->setAlignment(Alignment); 3231 if (Record[6]) { 3232 if (Record[6] - 1 >= SectionTable.size()) 3233 return error("Invalid ID"); 3234 Func->setSection(SectionTable[Record[6] - 1]); 3235 } 3236 // Local linkage must have default visibility. 3237 if (!Func->hasLocalLinkage()) 3238 // FIXME: Change to an error if non-default in 4.0. 3239 Func->setVisibility(getDecodedVisibility(Record[7])); 3240 if (Record.size() > 8 && Record[8]) { 3241 if (Record[8] - 1 >= GCTable.size()) 3242 return error("Invalid ID"); 3243 Func->setGC(GCTable[Record[8] - 1]); 3244 } 3245 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 3246 if (Record.size() > 9) 3247 UnnamedAddr = getDecodedUnnamedAddrType(Record[9]); 3248 Func->setUnnamedAddr(UnnamedAddr); 3249 if (Record.size() > 10 && Record[10] != 0) 3250 FunctionPrologues.push_back(std::make_pair(Func, Record[10] - 1)); 3251 3252 if (Record.size() > 11) 3253 Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11])); 3254 else 3255 upgradeDLLImportExportLinkage(Func, RawLinkage); 3256 3257 if (Record.size() > 12) { 3258 if (unsigned ComdatID = Record[12]) { 3259 if (ComdatID > ComdatList.size()) 3260 return error("Invalid function comdat ID"); 3261 Func->setComdat(ComdatList[ComdatID - 1]); 3262 } 3263 } else if (hasImplicitComdat(RawLinkage)) { 3264 Func->setComdat(reinterpret_cast<Comdat *>(1)); 3265 } 3266 3267 if (Record.size() > 13 && Record[13] != 0) 3268 FunctionPrefixes.push_back(std::make_pair(Func, Record[13] - 1)); 3269 3270 if (Record.size() > 14 && Record[14] != 0) 3271 FunctionPersonalityFns.push_back(std::make_pair(Func, Record[14] - 1)); 3272 3273 if (Record.size() > 15) { 3274 Func->setDSOLocal(getDecodedDSOLocal(Record[15])); 3275 } 3276 inferDSOLocal(Func); 3277 3278 // Record[16] is the address space number. 3279 3280 // Check whether we have enough values to read a partition name. 3281 if (Record.size() > 18) 3282 Func->setPartition(StringRef(Strtab.data() + Record[17], Record[18])); 3283 3284 Type *FullTy = PointerType::get(FullFTy, AddrSpace); 3285 assert(Func->getType() == flattenPointerTypes(FullTy) && 3286 "Incorrect fully specified type provided for Function"); 3287 ValueList.push_back(Func, FullTy); 3288 3289 // If this is a function with a body, remember the prototype we are 3290 // creating now, so that we can match up the body with them later. 3291 if (!isProto) { 3292 Func->setIsMaterializable(true); 3293 FunctionsWithBodies.push_back(Func); 3294 DeferredFunctionInfo[Func] = 0; 3295 } 3296 return Error::success(); 3297 } 3298 3299 Error BitcodeReader::parseGlobalIndirectSymbolRecord( 3300 unsigned BitCode, ArrayRef<uint64_t> Record) { 3301 // v1 ALIAS_OLD: [alias type, aliasee val#, linkage] (name in VST) 3302 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, 3303 // dllstorageclass, threadlocal, unnamed_addr, 3304 // preemption specifier] (name in VST) 3305 // v1 IFUNC: [alias type, addrspace, aliasee val#, linkage, 3306 // visibility, dllstorageclass, threadlocal, unnamed_addr, 3307 // preemption specifier] (name in VST) 3308 // v2: [strtab_offset, strtab_size, v1] 3309 StringRef Name; 3310 std::tie(Name, Record) = readNameFromStrtab(Record); 3311 3312 bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD; 3313 if (Record.size() < (3 + (unsigned)NewRecord)) 3314 return error("Invalid record"); 3315 unsigned OpNum = 0; 3316 Type *FullTy = getFullyStructuredTypeByID(Record[OpNum++]); 3317 Type *Ty = flattenPointerTypes(FullTy); 3318 if (!Ty) 3319 return error("Invalid record"); 3320 3321 unsigned AddrSpace; 3322 if (!NewRecord) { 3323 auto *PTy = dyn_cast<PointerType>(Ty); 3324 if (!PTy) 3325 return error("Invalid type for value"); 3326 std::tie(FullTy, Ty) = getPointerElementTypes(FullTy); 3327 AddrSpace = PTy->getAddressSpace(); 3328 } else { 3329 AddrSpace = Record[OpNum++]; 3330 } 3331 3332 auto Val = Record[OpNum++]; 3333 auto Linkage = Record[OpNum++]; 3334 GlobalIndirectSymbol *NewGA; 3335 if (BitCode == bitc::MODULE_CODE_ALIAS || 3336 BitCode == bitc::MODULE_CODE_ALIAS_OLD) 3337 NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name, 3338 TheModule); 3339 else 3340 NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name, 3341 nullptr, TheModule); 3342 3343 assert(NewGA->getValueType() == flattenPointerTypes(FullTy) && 3344 "Incorrect fully structured type provided for GlobalIndirectSymbol"); 3345 // Old bitcode files didn't have visibility field. 3346 // Local linkage must have default visibility. 3347 if (OpNum != Record.size()) { 3348 auto VisInd = OpNum++; 3349 if (!NewGA->hasLocalLinkage()) 3350 // FIXME: Change to an error if non-default in 4.0. 3351 NewGA->setVisibility(getDecodedVisibility(Record[VisInd])); 3352 } 3353 if (BitCode == bitc::MODULE_CODE_ALIAS || 3354 BitCode == bitc::MODULE_CODE_ALIAS_OLD) { 3355 if (OpNum != Record.size()) 3356 NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++])); 3357 else 3358 upgradeDLLImportExportLinkage(NewGA, Linkage); 3359 if (OpNum != Record.size()) 3360 NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++])); 3361 if (OpNum != Record.size()) 3362 NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++])); 3363 } 3364 if (OpNum != Record.size()) 3365 NewGA->setDSOLocal(getDecodedDSOLocal(Record[OpNum++])); 3366 inferDSOLocal(NewGA); 3367 3368 // Check whether we have enough values to read a partition name. 3369 if (OpNum + 1 < Record.size()) { 3370 NewGA->setPartition( 3371 StringRef(Strtab.data() + Record[OpNum], Record[OpNum + 1])); 3372 OpNum += 2; 3373 } 3374 3375 FullTy = PointerType::get(FullTy, AddrSpace); 3376 assert(NewGA->getType() == flattenPointerTypes(FullTy) && 3377 "Incorrect fully structured type provided for GlobalIndirectSymbol"); 3378 ValueList.push_back(NewGA, FullTy); 3379 IndirectSymbolInits.push_back(std::make_pair(NewGA, Val)); 3380 return Error::success(); 3381 } 3382 3383 Error BitcodeReader::parseModule(uint64_t ResumeBit, 3384 bool ShouldLazyLoadMetadata) { 3385 if (ResumeBit) { 3386 if (Error JumpFailed = Stream.JumpToBit(ResumeBit)) 3387 return JumpFailed; 3388 } else if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 3389 return Err; 3390 3391 SmallVector<uint64_t, 64> Record; 3392 3393 // Read all the records for this module. 3394 while (true) { 3395 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 3396 if (!MaybeEntry) 3397 return MaybeEntry.takeError(); 3398 llvm::BitstreamEntry Entry = MaybeEntry.get(); 3399 3400 switch (Entry.Kind) { 3401 case BitstreamEntry::Error: 3402 return error("Malformed block"); 3403 case BitstreamEntry::EndBlock: 3404 return globalCleanup(); 3405 3406 case BitstreamEntry::SubBlock: 3407 switch (Entry.ID) { 3408 default: // Skip unknown content. 3409 if (Error Err = Stream.SkipBlock()) 3410 return Err; 3411 break; 3412 case bitc::BLOCKINFO_BLOCK_ID: 3413 if (readBlockInfo()) 3414 return error("Malformed block"); 3415 break; 3416 case bitc::PARAMATTR_BLOCK_ID: 3417 if (Error Err = parseAttributeBlock()) 3418 return Err; 3419 break; 3420 case bitc::PARAMATTR_GROUP_BLOCK_ID: 3421 if (Error Err = parseAttributeGroupBlock()) 3422 return Err; 3423 break; 3424 case bitc::TYPE_BLOCK_ID_NEW: 3425 if (Error Err = parseTypeTable()) 3426 return Err; 3427 break; 3428 case bitc::VALUE_SYMTAB_BLOCK_ID: 3429 if (!SeenValueSymbolTable) { 3430 // Either this is an old form VST without function index and an 3431 // associated VST forward declaration record (which would have caused 3432 // the VST to be jumped to and parsed before it was encountered 3433 // normally in the stream), or there were no function blocks to 3434 // trigger an earlier parsing of the VST. 3435 assert(VSTOffset == 0 || FunctionsWithBodies.empty()); 3436 if (Error Err = parseValueSymbolTable()) 3437 return Err; 3438 SeenValueSymbolTable = true; 3439 } else { 3440 // We must have had a VST forward declaration record, which caused 3441 // the parser to jump to and parse the VST earlier. 3442 assert(VSTOffset > 0); 3443 if (Error Err = Stream.SkipBlock()) 3444 return Err; 3445 } 3446 break; 3447 case bitc::CONSTANTS_BLOCK_ID: 3448 if (Error Err = parseConstants()) 3449 return Err; 3450 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 3451 return Err; 3452 break; 3453 case bitc::METADATA_BLOCK_ID: 3454 if (ShouldLazyLoadMetadata) { 3455 if (Error Err = rememberAndSkipMetadata()) 3456 return Err; 3457 break; 3458 } 3459 assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata"); 3460 if (Error Err = MDLoader->parseModuleMetadata()) 3461 return Err; 3462 break; 3463 case bitc::METADATA_KIND_BLOCK_ID: 3464 if (Error Err = MDLoader->parseMetadataKinds()) 3465 return Err; 3466 break; 3467 case bitc::FUNCTION_BLOCK_ID: 3468 // If this is the first function body we've seen, reverse the 3469 // FunctionsWithBodies list. 3470 if (!SeenFirstFunctionBody) { 3471 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 3472 if (Error Err = globalCleanup()) 3473 return Err; 3474 SeenFirstFunctionBody = true; 3475 } 3476 3477 if (VSTOffset > 0) { 3478 // If we have a VST forward declaration record, make sure we 3479 // parse the VST now if we haven't already. It is needed to 3480 // set up the DeferredFunctionInfo vector for lazy reading. 3481 if (!SeenValueSymbolTable) { 3482 if (Error Err = BitcodeReader::parseValueSymbolTable(VSTOffset)) 3483 return Err; 3484 SeenValueSymbolTable = true; 3485 // Fall through so that we record the NextUnreadBit below. 3486 // This is necessary in case we have an anonymous function that 3487 // is later materialized. Since it will not have a VST entry we 3488 // need to fall back to the lazy parse to find its offset. 3489 } else { 3490 // If we have a VST forward declaration record, but have already 3491 // parsed the VST (just above, when the first function body was 3492 // encountered here), then we are resuming the parse after 3493 // materializing functions. The ResumeBit points to the 3494 // start of the last function block recorded in the 3495 // DeferredFunctionInfo map. Skip it. 3496 if (Error Err = Stream.SkipBlock()) 3497 return Err; 3498 continue; 3499 } 3500 } 3501 3502 // Support older bitcode files that did not have the function 3503 // index in the VST, nor a VST forward declaration record, as 3504 // well as anonymous functions that do not have VST entries. 3505 // Build the DeferredFunctionInfo vector on the fly. 3506 if (Error Err = rememberAndSkipFunctionBody()) 3507 return Err; 3508 3509 // Suspend parsing when we reach the function bodies. Subsequent 3510 // materialization calls will resume it when necessary. If the bitcode 3511 // file is old, the symbol table will be at the end instead and will not 3512 // have been seen yet. In this case, just finish the parse now. 3513 if (SeenValueSymbolTable) { 3514 NextUnreadBit = Stream.GetCurrentBitNo(); 3515 // After the VST has been parsed, we need to make sure intrinsic name 3516 // are auto-upgraded. 3517 return globalCleanup(); 3518 } 3519 break; 3520 case bitc::USELIST_BLOCK_ID: 3521 if (Error Err = parseUseLists()) 3522 return Err; 3523 break; 3524 case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID: 3525 if (Error Err = parseOperandBundleTags()) 3526 return Err; 3527 break; 3528 case bitc::SYNC_SCOPE_NAMES_BLOCK_ID: 3529 if (Error Err = parseSyncScopeNames()) 3530 return Err; 3531 break; 3532 } 3533 continue; 3534 3535 case BitstreamEntry::Record: 3536 // The interesting case. 3537 break; 3538 } 3539 3540 // Read a record. 3541 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 3542 if (!MaybeBitCode) 3543 return MaybeBitCode.takeError(); 3544 switch (unsigned BitCode = MaybeBitCode.get()) { 3545 default: break; // Default behavior, ignore unknown content. 3546 case bitc::MODULE_CODE_VERSION: { 3547 Expected<unsigned> VersionOrErr = parseVersionRecord(Record); 3548 if (!VersionOrErr) 3549 return VersionOrErr.takeError(); 3550 UseRelativeIDs = *VersionOrErr >= 1; 3551 break; 3552 } 3553 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 3554 std::string S; 3555 if (convertToString(Record, 0, S)) 3556 return error("Invalid record"); 3557 TheModule->setTargetTriple(S); 3558 break; 3559 } 3560 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 3561 std::string S; 3562 if (convertToString(Record, 0, S)) 3563 return error("Invalid record"); 3564 TheModule->setDataLayout(S); 3565 break; 3566 } 3567 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 3568 std::string S; 3569 if (convertToString(Record, 0, S)) 3570 return error("Invalid record"); 3571 TheModule->setModuleInlineAsm(S); 3572 break; 3573 } 3574 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 3575 // FIXME: Remove in 4.0. 3576 std::string S; 3577 if (convertToString(Record, 0, S)) 3578 return error("Invalid record"); 3579 // Ignore value. 3580 break; 3581 } 3582 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 3583 std::string S; 3584 if (convertToString(Record, 0, S)) 3585 return error("Invalid record"); 3586 SectionTable.push_back(S); 3587 break; 3588 } 3589 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 3590 std::string S; 3591 if (convertToString(Record, 0, S)) 3592 return error("Invalid record"); 3593 GCTable.push_back(S); 3594 break; 3595 } 3596 case bitc::MODULE_CODE_COMDAT: 3597 if (Error Err = parseComdatRecord(Record)) 3598 return Err; 3599 break; 3600 case bitc::MODULE_CODE_GLOBALVAR: 3601 if (Error Err = parseGlobalVarRecord(Record)) 3602 return Err; 3603 break; 3604 case bitc::MODULE_CODE_FUNCTION: 3605 if (Error Err = parseFunctionRecord(Record)) 3606 return Err; 3607 break; 3608 case bitc::MODULE_CODE_IFUNC: 3609 case bitc::MODULE_CODE_ALIAS: 3610 case bitc::MODULE_CODE_ALIAS_OLD: 3611 if (Error Err = parseGlobalIndirectSymbolRecord(BitCode, Record)) 3612 return Err; 3613 break; 3614 /// MODULE_CODE_VSTOFFSET: [offset] 3615 case bitc::MODULE_CODE_VSTOFFSET: 3616 if (Record.size() < 1) 3617 return error("Invalid record"); 3618 // Note that we subtract 1 here because the offset is relative to one word 3619 // before the start of the identification or module block, which was 3620 // historically always the start of the regular bitcode header. 3621 VSTOffset = Record[0] - 1; 3622 break; 3623 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 3624 case bitc::MODULE_CODE_SOURCE_FILENAME: 3625 SmallString<128> ValueName; 3626 if (convertToString(Record, 0, ValueName)) 3627 return error("Invalid record"); 3628 TheModule->setSourceFileName(ValueName); 3629 break; 3630 } 3631 Record.clear(); 3632 } 3633 } 3634 3635 Error BitcodeReader::parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata, 3636 bool IsImporting) { 3637 TheModule = M; 3638 MDLoader = MetadataLoader(Stream, *M, ValueList, IsImporting, 3639 [&](unsigned ID) { return getTypeByID(ID); }); 3640 return parseModule(0, ShouldLazyLoadMetadata); 3641 } 3642 3643 Error BitcodeReader::typeCheckLoadStoreInst(Type *ValType, Type *PtrType) { 3644 if (!isa<PointerType>(PtrType)) 3645 return error("Load/Store operand is not a pointer type"); 3646 Type *ElemType = cast<PointerType>(PtrType)->getElementType(); 3647 3648 if (ValType && ValType != ElemType) 3649 return error("Explicit load/store type does not match pointee " 3650 "type of pointer operand"); 3651 if (!PointerType::isLoadableOrStorableType(ElemType)) 3652 return error("Cannot load/store from pointer"); 3653 return Error::success(); 3654 } 3655 3656 void BitcodeReader::propagateByValTypes(CallBase *CB, 3657 ArrayRef<Type *> ArgsFullTys) { 3658 for (unsigned i = 0; i != CB->arg_size(); ++i) { 3659 if (!CB->paramHasAttr(i, Attribute::ByVal)) 3660 continue; 3661 3662 CB->removeParamAttr(i, Attribute::ByVal); 3663 CB->addParamAttr( 3664 i, Attribute::getWithByValType( 3665 Context, getPointerElementFlatType(ArgsFullTys[i]))); 3666 } 3667 } 3668 3669 /// Lazily parse the specified function body block. 3670 Error BitcodeReader::parseFunctionBody(Function *F) { 3671 if (Error Err = Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 3672 return Err; 3673 3674 // Unexpected unresolved metadata when parsing function. 3675 if (MDLoader->hasFwdRefs()) 3676 return error("Invalid function metadata: incoming forward references"); 3677 3678 InstructionList.clear(); 3679 unsigned ModuleValueListSize = ValueList.size(); 3680 unsigned ModuleMDLoaderSize = MDLoader->size(); 3681 3682 // Add all the function arguments to the value table. 3683 unsigned ArgNo = 0; 3684 FunctionType *FullFTy = FunctionTypes[F]; 3685 for (Argument &I : F->args()) { 3686 assert(I.getType() == flattenPointerTypes(FullFTy->getParamType(ArgNo)) && 3687 "Incorrect fully specified type for Function Argument"); 3688 ValueList.push_back(&I, FullFTy->getParamType(ArgNo++)); 3689 } 3690 unsigned NextValueNo = ValueList.size(); 3691 BasicBlock *CurBB = nullptr; 3692 unsigned CurBBNo = 0; 3693 3694 DebugLoc LastLoc; 3695 auto getLastInstruction = [&]() -> Instruction * { 3696 if (CurBB && !CurBB->empty()) 3697 return &CurBB->back(); 3698 else if (CurBBNo && FunctionBBs[CurBBNo - 1] && 3699 !FunctionBBs[CurBBNo - 1]->empty()) 3700 return &FunctionBBs[CurBBNo - 1]->back(); 3701 return nullptr; 3702 }; 3703 3704 std::vector<OperandBundleDef> OperandBundles; 3705 3706 // Read all the records. 3707 SmallVector<uint64_t, 64> Record; 3708 3709 while (true) { 3710 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 3711 if (!MaybeEntry) 3712 return MaybeEntry.takeError(); 3713 llvm::BitstreamEntry Entry = MaybeEntry.get(); 3714 3715 switch (Entry.Kind) { 3716 case BitstreamEntry::Error: 3717 return error("Malformed block"); 3718 case BitstreamEntry::EndBlock: 3719 goto OutOfRecordLoop; 3720 3721 case BitstreamEntry::SubBlock: 3722 switch (Entry.ID) { 3723 default: // Skip unknown content. 3724 if (Error Err = Stream.SkipBlock()) 3725 return Err; 3726 break; 3727 case bitc::CONSTANTS_BLOCK_ID: 3728 if (Error Err = parseConstants()) 3729 return Err; 3730 NextValueNo = ValueList.size(); 3731 break; 3732 case bitc::VALUE_SYMTAB_BLOCK_ID: 3733 if (Error Err = parseValueSymbolTable()) 3734 return Err; 3735 break; 3736 case bitc::METADATA_ATTACHMENT_ID: 3737 if (Error Err = MDLoader->parseMetadataAttachment(*F, InstructionList)) 3738 return Err; 3739 break; 3740 case bitc::METADATA_BLOCK_ID: 3741 assert(DeferredMetadataInfo.empty() && 3742 "Must read all module-level metadata before function-level"); 3743 if (Error Err = MDLoader->parseFunctionMetadata()) 3744 return Err; 3745 break; 3746 case bitc::USELIST_BLOCK_ID: 3747 if (Error Err = parseUseLists()) 3748 return Err; 3749 break; 3750 } 3751 continue; 3752 3753 case BitstreamEntry::Record: 3754 // The interesting case. 3755 break; 3756 } 3757 3758 // Read a record. 3759 Record.clear(); 3760 Instruction *I = nullptr; 3761 Type *FullTy = nullptr; 3762 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 3763 if (!MaybeBitCode) 3764 return MaybeBitCode.takeError(); 3765 switch (unsigned BitCode = MaybeBitCode.get()) { 3766 default: // Default behavior: reject 3767 return error("Invalid value"); 3768 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks] 3769 if (Record.size() < 1 || Record[0] == 0) 3770 return error("Invalid record"); 3771 // Create all the basic blocks for the function. 3772 FunctionBBs.resize(Record[0]); 3773 3774 // See if anything took the address of blocks in this function. 3775 auto BBFRI = BasicBlockFwdRefs.find(F); 3776 if (BBFRI == BasicBlockFwdRefs.end()) { 3777 for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i) 3778 FunctionBBs[i] = BasicBlock::Create(Context, "", F); 3779 } else { 3780 auto &BBRefs = BBFRI->second; 3781 // Check for invalid basic block references. 3782 if (BBRefs.size() > FunctionBBs.size()) 3783 return error("Invalid ID"); 3784 assert(!BBRefs.empty() && "Unexpected empty array"); 3785 assert(!BBRefs.front() && "Invalid reference to entry block"); 3786 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E; 3787 ++I) 3788 if (I < RE && BBRefs[I]) { 3789 BBRefs[I]->insertInto(F); 3790 FunctionBBs[I] = BBRefs[I]; 3791 } else { 3792 FunctionBBs[I] = BasicBlock::Create(Context, "", F); 3793 } 3794 3795 // Erase from the table. 3796 BasicBlockFwdRefs.erase(BBFRI); 3797 } 3798 3799 CurBB = FunctionBBs[0]; 3800 continue; 3801 } 3802 3803 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 3804 // This record indicates that the last instruction is at the same 3805 // location as the previous instruction with a location. 3806 I = getLastInstruction(); 3807 3808 if (!I) 3809 return error("Invalid record"); 3810 I->setDebugLoc(LastLoc); 3811 I = nullptr; 3812 continue; 3813 3814 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 3815 I = getLastInstruction(); 3816 if (!I || Record.size() < 4) 3817 return error("Invalid record"); 3818 3819 unsigned Line = Record[0], Col = Record[1]; 3820 unsigned ScopeID = Record[2], IAID = Record[3]; 3821 bool isImplicitCode = Record.size() == 5 && Record[4]; 3822 3823 MDNode *Scope = nullptr, *IA = nullptr; 3824 if (ScopeID) { 3825 Scope = dyn_cast_or_null<MDNode>( 3826 MDLoader->getMetadataFwdRefOrLoad(ScopeID - 1)); 3827 if (!Scope) 3828 return error("Invalid record"); 3829 } 3830 if (IAID) { 3831 IA = dyn_cast_or_null<MDNode>( 3832 MDLoader->getMetadataFwdRefOrLoad(IAID - 1)); 3833 if (!IA) 3834 return error("Invalid record"); 3835 } 3836 LastLoc = DebugLoc::get(Line, Col, Scope, IA, isImplicitCode); 3837 I->setDebugLoc(LastLoc); 3838 I = nullptr; 3839 continue; 3840 } 3841 case bitc::FUNC_CODE_INST_UNOP: { // UNOP: [opval, ty, opcode] 3842 unsigned OpNum = 0; 3843 Value *LHS; 3844 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 3845 OpNum+1 > Record.size()) 3846 return error("Invalid record"); 3847 3848 int Opc = getDecodedUnaryOpcode(Record[OpNum++], LHS->getType()); 3849 if (Opc == -1) 3850 return error("Invalid record"); 3851 I = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS); 3852 InstructionList.push_back(I); 3853 if (OpNum < Record.size()) { 3854 if (isa<FPMathOperator>(I)) { 3855 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 3856 if (FMF.any()) 3857 I->setFastMathFlags(FMF); 3858 } 3859 } 3860 break; 3861 } 3862 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 3863 unsigned OpNum = 0; 3864 Value *LHS, *RHS; 3865 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 3866 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 3867 OpNum+1 > Record.size()) 3868 return error("Invalid record"); 3869 3870 int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 3871 if (Opc == -1) 3872 return error("Invalid record"); 3873 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 3874 InstructionList.push_back(I); 3875 if (OpNum < Record.size()) { 3876 if (Opc == Instruction::Add || 3877 Opc == Instruction::Sub || 3878 Opc == Instruction::Mul || 3879 Opc == Instruction::Shl) { 3880 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 3881 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 3882 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 3883 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 3884 } else if (Opc == Instruction::SDiv || 3885 Opc == Instruction::UDiv || 3886 Opc == Instruction::LShr || 3887 Opc == Instruction::AShr) { 3888 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 3889 cast<BinaryOperator>(I)->setIsExact(true); 3890 } else if (isa<FPMathOperator>(I)) { 3891 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 3892 if (FMF.any()) 3893 I->setFastMathFlags(FMF); 3894 } 3895 3896 } 3897 break; 3898 } 3899 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 3900 unsigned OpNum = 0; 3901 Value *Op; 3902 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 3903 OpNum+2 != Record.size()) 3904 return error("Invalid record"); 3905 3906 FullTy = getFullyStructuredTypeByID(Record[OpNum]); 3907 Type *ResTy = flattenPointerTypes(FullTy); 3908 int Opc = getDecodedCastOpcode(Record[OpNum + 1]); 3909 if (Opc == -1 || !ResTy) 3910 return error("Invalid record"); 3911 Instruction *Temp = nullptr; 3912 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) { 3913 if (Temp) { 3914 InstructionList.push_back(Temp); 3915 CurBB->getInstList().push_back(Temp); 3916 } 3917 } else { 3918 auto CastOp = (Instruction::CastOps)Opc; 3919 if (!CastInst::castIsValid(CastOp, Op, ResTy)) 3920 return error("Invalid cast"); 3921 I = CastInst::Create(CastOp, Op, ResTy); 3922 } 3923 InstructionList.push_back(I); 3924 break; 3925 } 3926 case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD: 3927 case bitc::FUNC_CODE_INST_GEP_OLD: 3928 case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands] 3929 unsigned OpNum = 0; 3930 3931 Type *Ty; 3932 bool InBounds; 3933 3934 if (BitCode == bitc::FUNC_CODE_INST_GEP) { 3935 InBounds = Record[OpNum++]; 3936 FullTy = getFullyStructuredTypeByID(Record[OpNum++]); 3937 Ty = flattenPointerTypes(FullTy); 3938 } else { 3939 InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD; 3940 Ty = nullptr; 3941 } 3942 3943 Value *BasePtr; 3944 Type *FullBaseTy = nullptr; 3945 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr, &FullBaseTy)) 3946 return error("Invalid record"); 3947 3948 if (!Ty) { 3949 std::tie(FullTy, Ty) = 3950 getPointerElementTypes(FullBaseTy->getScalarType()); 3951 } else if (Ty != getPointerElementFlatType(FullBaseTy->getScalarType())) 3952 return error( 3953 "Explicit gep type does not match pointee type of pointer operand"); 3954 3955 SmallVector<Value*, 16> GEPIdx; 3956 while (OpNum != Record.size()) { 3957 Value *Op; 3958 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3959 return error("Invalid record"); 3960 GEPIdx.push_back(Op); 3961 } 3962 3963 I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx); 3964 FullTy = GetElementPtrInst::getGEPReturnType(FullTy, I, GEPIdx); 3965 3966 InstructionList.push_back(I); 3967 if (InBounds) 3968 cast<GetElementPtrInst>(I)->setIsInBounds(true); 3969 break; 3970 } 3971 3972 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 3973 // EXTRACTVAL: [opty, opval, n x indices] 3974 unsigned OpNum = 0; 3975 Value *Agg; 3976 if (getValueTypePair(Record, OpNum, NextValueNo, Agg, &FullTy)) 3977 return error("Invalid record"); 3978 3979 unsigned RecSize = Record.size(); 3980 if (OpNum == RecSize) 3981 return error("EXTRACTVAL: Invalid instruction with 0 indices"); 3982 3983 SmallVector<unsigned, 4> EXTRACTVALIdx; 3984 for (; OpNum != RecSize; ++OpNum) { 3985 bool IsArray = FullTy->isArrayTy(); 3986 bool IsStruct = FullTy->isStructTy(); 3987 uint64_t Index = Record[OpNum]; 3988 3989 if (!IsStruct && !IsArray) 3990 return error("EXTRACTVAL: Invalid type"); 3991 if ((unsigned)Index != Index) 3992 return error("Invalid value"); 3993 if (IsStruct && Index >= FullTy->getStructNumElements()) 3994 return error("EXTRACTVAL: Invalid struct index"); 3995 if (IsArray && Index >= FullTy->getArrayNumElements()) 3996 return error("EXTRACTVAL: Invalid array index"); 3997 EXTRACTVALIdx.push_back((unsigned)Index); 3998 3999 if (IsStruct) 4000 FullTy = FullTy->getStructElementType(Index); 4001 else 4002 FullTy = FullTy->getArrayElementType(); 4003 } 4004 4005 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 4006 InstructionList.push_back(I); 4007 break; 4008 } 4009 4010 case bitc::FUNC_CODE_INST_INSERTVAL: { 4011 // INSERTVAL: [opty, opval, opty, opval, n x indices] 4012 unsigned OpNum = 0; 4013 Value *Agg; 4014 if (getValueTypePair(Record, OpNum, NextValueNo, Agg, &FullTy)) 4015 return error("Invalid record"); 4016 Value *Val; 4017 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 4018 return error("Invalid record"); 4019 4020 unsigned RecSize = Record.size(); 4021 if (OpNum == RecSize) 4022 return error("INSERTVAL: Invalid instruction with 0 indices"); 4023 4024 SmallVector<unsigned, 4> INSERTVALIdx; 4025 Type *CurTy = Agg->getType(); 4026 for (; OpNum != RecSize; ++OpNum) { 4027 bool IsArray = CurTy->isArrayTy(); 4028 bool IsStruct = CurTy->isStructTy(); 4029 uint64_t Index = Record[OpNum]; 4030 4031 if (!IsStruct && !IsArray) 4032 return error("INSERTVAL: Invalid type"); 4033 if ((unsigned)Index != Index) 4034 return error("Invalid value"); 4035 if (IsStruct && Index >= CurTy->getStructNumElements()) 4036 return error("INSERTVAL: Invalid struct index"); 4037 if (IsArray && Index >= CurTy->getArrayNumElements()) 4038 return error("INSERTVAL: Invalid array index"); 4039 4040 INSERTVALIdx.push_back((unsigned)Index); 4041 if (IsStruct) 4042 CurTy = CurTy->getStructElementType(Index); 4043 else 4044 CurTy = CurTy->getArrayElementType(); 4045 } 4046 4047 if (CurTy != Val->getType()) 4048 return error("Inserted value type doesn't match aggregate type"); 4049 4050 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 4051 InstructionList.push_back(I); 4052 break; 4053 } 4054 4055 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 4056 // obsolete form of select 4057 // handles select i1 ... in old bitcode 4058 unsigned OpNum = 0; 4059 Value *TrueVal, *FalseVal, *Cond; 4060 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, &FullTy) || 4061 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 4062 popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond)) 4063 return error("Invalid record"); 4064 4065 I = SelectInst::Create(Cond, TrueVal, FalseVal); 4066 InstructionList.push_back(I); 4067 break; 4068 } 4069 4070 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 4071 // new form of select 4072 // handles select i1 or select [N x i1] 4073 unsigned OpNum = 0; 4074 Value *TrueVal, *FalseVal, *Cond; 4075 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, &FullTy) || 4076 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 4077 getValueTypePair(Record, OpNum, NextValueNo, Cond)) 4078 return error("Invalid record"); 4079 4080 // select condition can be either i1 or [N x i1] 4081 if (VectorType* vector_type = 4082 dyn_cast<VectorType>(Cond->getType())) { 4083 // expect <n x i1> 4084 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 4085 return error("Invalid type for value"); 4086 } else { 4087 // expect i1 4088 if (Cond->getType() != Type::getInt1Ty(Context)) 4089 return error("Invalid type for value"); 4090 } 4091 4092 I = SelectInst::Create(Cond, TrueVal, FalseVal); 4093 InstructionList.push_back(I); 4094 if (OpNum < Record.size() && isa<FPMathOperator>(I)) { 4095 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 4096 if (FMF.any()) 4097 I->setFastMathFlags(FMF); 4098 } 4099 break; 4100 } 4101 4102 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 4103 unsigned OpNum = 0; 4104 Value *Vec, *Idx; 4105 if (getValueTypePair(Record, OpNum, NextValueNo, Vec, &FullTy) || 4106 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 4107 return error("Invalid record"); 4108 if (!Vec->getType()->isVectorTy()) 4109 return error("Invalid type for value"); 4110 I = ExtractElementInst::Create(Vec, Idx); 4111 FullTy = FullTy->getVectorElementType(); 4112 InstructionList.push_back(I); 4113 break; 4114 } 4115 4116 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 4117 unsigned OpNum = 0; 4118 Value *Vec, *Elt, *Idx; 4119 if (getValueTypePair(Record, OpNum, NextValueNo, Vec, &FullTy)) 4120 return error("Invalid record"); 4121 if (!Vec->getType()->isVectorTy()) 4122 return error("Invalid type for value"); 4123 if (popValue(Record, OpNum, NextValueNo, 4124 cast<VectorType>(Vec->getType())->getElementType(), Elt) || 4125 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 4126 return error("Invalid record"); 4127 I = InsertElementInst::Create(Vec, Elt, Idx); 4128 InstructionList.push_back(I); 4129 break; 4130 } 4131 4132 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 4133 unsigned OpNum = 0; 4134 Value *Vec1, *Vec2, *Mask; 4135 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1, &FullTy) || 4136 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2)) 4137 return error("Invalid record"); 4138 4139 if (getValueTypePair(Record, OpNum, NextValueNo, Mask)) 4140 return error("Invalid record"); 4141 if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy()) 4142 return error("Invalid type for value"); 4143 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 4144 FullTy = VectorType::get(FullTy->getVectorElementType(), 4145 Mask->getType()->getVectorNumElements()); 4146 InstructionList.push_back(I); 4147 break; 4148 } 4149 4150 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 4151 // Old form of ICmp/FCmp returning bool 4152 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 4153 // both legal on vectors but had different behaviour. 4154 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 4155 // FCmp/ICmp returning bool or vector of bool 4156 4157 unsigned OpNum = 0; 4158 Value *LHS, *RHS; 4159 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 4160 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS)) 4161 return error("Invalid record"); 4162 4163 unsigned PredVal = Record[OpNum]; 4164 bool IsFP = LHS->getType()->isFPOrFPVectorTy(); 4165 FastMathFlags FMF; 4166 if (IsFP && Record.size() > OpNum+1) 4167 FMF = getDecodedFastMathFlags(Record[++OpNum]); 4168 4169 if (OpNum+1 != Record.size()) 4170 return error("Invalid record"); 4171 4172 if (LHS->getType()->isFPOrFPVectorTy()) 4173 I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS); 4174 else 4175 I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS); 4176 4177 if (FMF.any()) 4178 I->setFastMathFlags(FMF); 4179 InstructionList.push_back(I); 4180 break; 4181 } 4182 4183 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 4184 { 4185 unsigned Size = Record.size(); 4186 if (Size == 0) { 4187 I = ReturnInst::Create(Context); 4188 InstructionList.push_back(I); 4189 break; 4190 } 4191 4192 unsigned OpNum = 0; 4193 Value *Op = nullptr; 4194 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4195 return error("Invalid record"); 4196 if (OpNum != Record.size()) 4197 return error("Invalid record"); 4198 4199 I = ReturnInst::Create(Context, Op); 4200 InstructionList.push_back(I); 4201 break; 4202 } 4203 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 4204 if (Record.size() != 1 && Record.size() != 3) 4205 return error("Invalid record"); 4206 BasicBlock *TrueDest = getBasicBlock(Record[0]); 4207 if (!TrueDest) 4208 return error("Invalid record"); 4209 4210 if (Record.size() == 1) { 4211 I = BranchInst::Create(TrueDest); 4212 InstructionList.push_back(I); 4213 } 4214 else { 4215 BasicBlock *FalseDest = getBasicBlock(Record[1]); 4216 Value *Cond = getValue(Record, 2, NextValueNo, 4217 Type::getInt1Ty(Context)); 4218 if (!FalseDest || !Cond) 4219 return error("Invalid record"); 4220 I = BranchInst::Create(TrueDest, FalseDest, Cond); 4221 InstructionList.push_back(I); 4222 } 4223 break; 4224 } 4225 case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#] 4226 if (Record.size() != 1 && Record.size() != 2) 4227 return error("Invalid record"); 4228 unsigned Idx = 0; 4229 Value *CleanupPad = 4230 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4231 if (!CleanupPad) 4232 return error("Invalid record"); 4233 BasicBlock *UnwindDest = nullptr; 4234 if (Record.size() == 2) { 4235 UnwindDest = getBasicBlock(Record[Idx++]); 4236 if (!UnwindDest) 4237 return error("Invalid record"); 4238 } 4239 4240 I = CleanupReturnInst::Create(CleanupPad, UnwindDest); 4241 InstructionList.push_back(I); 4242 break; 4243 } 4244 case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#] 4245 if (Record.size() != 2) 4246 return error("Invalid record"); 4247 unsigned Idx = 0; 4248 Value *CatchPad = 4249 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4250 if (!CatchPad) 4251 return error("Invalid record"); 4252 BasicBlock *BB = getBasicBlock(Record[Idx++]); 4253 if (!BB) 4254 return error("Invalid record"); 4255 4256 I = CatchReturnInst::Create(CatchPad, BB); 4257 InstructionList.push_back(I); 4258 break; 4259 } 4260 case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?] 4261 // We must have, at minimum, the outer scope and the number of arguments. 4262 if (Record.size() < 2) 4263 return error("Invalid record"); 4264 4265 unsigned Idx = 0; 4266 4267 Value *ParentPad = 4268 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4269 4270 unsigned NumHandlers = Record[Idx++]; 4271 4272 SmallVector<BasicBlock *, 2> Handlers; 4273 for (unsigned Op = 0; Op != NumHandlers; ++Op) { 4274 BasicBlock *BB = getBasicBlock(Record[Idx++]); 4275 if (!BB) 4276 return error("Invalid record"); 4277 Handlers.push_back(BB); 4278 } 4279 4280 BasicBlock *UnwindDest = nullptr; 4281 if (Idx + 1 == Record.size()) { 4282 UnwindDest = getBasicBlock(Record[Idx++]); 4283 if (!UnwindDest) 4284 return error("Invalid record"); 4285 } 4286 4287 if (Record.size() != Idx) 4288 return error("Invalid record"); 4289 4290 auto *CatchSwitch = 4291 CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers); 4292 for (BasicBlock *Handler : Handlers) 4293 CatchSwitch->addHandler(Handler); 4294 I = CatchSwitch; 4295 InstructionList.push_back(I); 4296 break; 4297 } 4298 case bitc::FUNC_CODE_INST_CATCHPAD: 4299 case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*] 4300 // We must have, at minimum, the outer scope and the number of arguments. 4301 if (Record.size() < 2) 4302 return error("Invalid record"); 4303 4304 unsigned Idx = 0; 4305 4306 Value *ParentPad = 4307 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4308 4309 unsigned NumArgOperands = Record[Idx++]; 4310 4311 SmallVector<Value *, 2> Args; 4312 for (unsigned Op = 0; Op != NumArgOperands; ++Op) { 4313 Value *Val; 4314 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 4315 return error("Invalid record"); 4316 Args.push_back(Val); 4317 } 4318 4319 if (Record.size() != Idx) 4320 return error("Invalid record"); 4321 4322 if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD) 4323 I = CleanupPadInst::Create(ParentPad, Args); 4324 else 4325 I = CatchPadInst::Create(ParentPad, Args); 4326 InstructionList.push_back(I); 4327 break; 4328 } 4329 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 4330 // Check magic 4331 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { 4332 // "New" SwitchInst format with case ranges. The changes to write this 4333 // format were reverted but we still recognize bitcode that uses it. 4334 // Hopefully someday we will have support for case ranges and can use 4335 // this format again. 4336 4337 Type *OpTy = getTypeByID(Record[1]); 4338 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); 4339 4340 Value *Cond = getValue(Record, 2, NextValueNo, OpTy); 4341 BasicBlock *Default = getBasicBlock(Record[3]); 4342 if (!OpTy || !Cond || !Default) 4343 return error("Invalid record"); 4344 4345 unsigned NumCases = Record[4]; 4346 4347 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 4348 InstructionList.push_back(SI); 4349 4350 unsigned CurIdx = 5; 4351 for (unsigned i = 0; i != NumCases; ++i) { 4352 SmallVector<ConstantInt*, 1> CaseVals; 4353 unsigned NumItems = Record[CurIdx++]; 4354 for (unsigned ci = 0; ci != NumItems; ++ci) { 4355 bool isSingleNumber = Record[CurIdx++]; 4356 4357 APInt Low; 4358 unsigned ActiveWords = 1; 4359 if (ValueBitWidth > 64) 4360 ActiveWords = Record[CurIdx++]; 4361 Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 4362 ValueBitWidth); 4363 CurIdx += ActiveWords; 4364 4365 if (!isSingleNumber) { 4366 ActiveWords = 1; 4367 if (ValueBitWidth > 64) 4368 ActiveWords = Record[CurIdx++]; 4369 APInt High = readWideAPInt( 4370 makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth); 4371 CurIdx += ActiveWords; 4372 4373 // FIXME: It is not clear whether values in the range should be 4374 // compared as signed or unsigned values. The partially 4375 // implemented changes that used this format in the past used 4376 // unsigned comparisons. 4377 for ( ; Low.ule(High); ++Low) 4378 CaseVals.push_back(ConstantInt::get(Context, Low)); 4379 } else 4380 CaseVals.push_back(ConstantInt::get(Context, Low)); 4381 } 4382 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); 4383 for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(), 4384 cve = CaseVals.end(); cvi != cve; ++cvi) 4385 SI->addCase(*cvi, DestBB); 4386 } 4387 I = SI; 4388 break; 4389 } 4390 4391 // Old SwitchInst format without case ranges. 4392 4393 if (Record.size() < 3 || (Record.size() & 1) == 0) 4394 return error("Invalid record"); 4395 Type *OpTy = getTypeByID(Record[0]); 4396 Value *Cond = getValue(Record, 1, NextValueNo, OpTy); 4397 BasicBlock *Default = getBasicBlock(Record[2]); 4398 if (!OpTy || !Cond || !Default) 4399 return error("Invalid record"); 4400 unsigned NumCases = (Record.size()-3)/2; 4401 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 4402 InstructionList.push_back(SI); 4403 for (unsigned i = 0, e = NumCases; i != e; ++i) { 4404 ConstantInt *CaseVal = 4405 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy)); 4406 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 4407 if (!CaseVal || !DestBB) { 4408 delete SI; 4409 return error("Invalid record"); 4410 } 4411 SI->addCase(CaseVal, DestBB); 4412 } 4413 I = SI; 4414 break; 4415 } 4416 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 4417 if (Record.size() < 2) 4418 return error("Invalid record"); 4419 Type *OpTy = getTypeByID(Record[0]); 4420 Value *Address = getValue(Record, 1, NextValueNo, OpTy); 4421 if (!OpTy || !Address) 4422 return error("Invalid record"); 4423 unsigned NumDests = Record.size()-2; 4424 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 4425 InstructionList.push_back(IBI); 4426 for (unsigned i = 0, e = NumDests; i != e; ++i) { 4427 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 4428 IBI->addDestination(DestBB); 4429 } else { 4430 delete IBI; 4431 return error("Invalid record"); 4432 } 4433 } 4434 I = IBI; 4435 break; 4436 } 4437 4438 case bitc::FUNC_CODE_INST_INVOKE: { 4439 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 4440 if (Record.size() < 4) 4441 return error("Invalid record"); 4442 unsigned OpNum = 0; 4443 AttributeList PAL = getAttributes(Record[OpNum++]); 4444 unsigned CCInfo = Record[OpNum++]; 4445 BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]); 4446 BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]); 4447 4448 FunctionType *FTy = nullptr; 4449 FunctionType *FullFTy = nullptr; 4450 if ((CCInfo >> 13) & 1) { 4451 FullFTy = 4452 dyn_cast<FunctionType>(getFullyStructuredTypeByID(Record[OpNum++])); 4453 if (!FullFTy) 4454 return error("Explicit invoke type is not a function type"); 4455 FTy = cast<FunctionType>(flattenPointerTypes(FullFTy)); 4456 } 4457 4458 Value *Callee; 4459 if (getValueTypePair(Record, OpNum, NextValueNo, Callee, &FullTy)) 4460 return error("Invalid record"); 4461 4462 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 4463 if (!CalleeTy) 4464 return error("Callee is not a pointer"); 4465 if (!FTy) { 4466 FullFTy = 4467 dyn_cast<FunctionType>(cast<PointerType>(FullTy)->getElementType()); 4468 if (!FullFTy) 4469 return error("Callee is not of pointer to function type"); 4470 FTy = cast<FunctionType>(flattenPointerTypes(FullFTy)); 4471 } else if (getPointerElementFlatType(FullTy) != FTy) 4472 return error("Explicit invoke type does not match pointee type of " 4473 "callee operand"); 4474 if (Record.size() < FTy->getNumParams() + OpNum) 4475 return error("Insufficient operands to call"); 4476 4477 SmallVector<Value*, 16> Ops; 4478 SmallVector<Type *, 16> ArgsFullTys; 4479 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 4480 Ops.push_back(getValue(Record, OpNum, NextValueNo, 4481 FTy->getParamType(i))); 4482 ArgsFullTys.push_back(FullFTy->getParamType(i)); 4483 if (!Ops.back()) 4484 return error("Invalid record"); 4485 } 4486 4487 if (!FTy->isVarArg()) { 4488 if (Record.size() != OpNum) 4489 return error("Invalid record"); 4490 } else { 4491 // Read type/value pairs for varargs params. 4492 while (OpNum != Record.size()) { 4493 Value *Op; 4494 Type *FullTy; 4495 if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy)) 4496 return error("Invalid record"); 4497 Ops.push_back(Op); 4498 ArgsFullTys.push_back(FullTy); 4499 } 4500 } 4501 4502 I = InvokeInst::Create(FTy, Callee, NormalBB, UnwindBB, Ops, 4503 OperandBundles); 4504 FullTy = FullFTy->getReturnType(); 4505 OperandBundles.clear(); 4506 InstructionList.push_back(I); 4507 cast<InvokeInst>(I)->setCallingConv( 4508 static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo)); 4509 cast<InvokeInst>(I)->setAttributes(PAL); 4510 propagateByValTypes(cast<CallBase>(I), ArgsFullTys); 4511 4512 break; 4513 } 4514 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 4515 unsigned Idx = 0; 4516 Value *Val = nullptr; 4517 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 4518 return error("Invalid record"); 4519 I = ResumeInst::Create(Val); 4520 InstructionList.push_back(I); 4521 break; 4522 } 4523 case bitc::FUNC_CODE_INST_CALLBR: { 4524 // CALLBR: [attr, cc, norm, transfs, fty, fnid, args] 4525 unsigned OpNum = 0; 4526 AttributeList PAL = getAttributes(Record[OpNum++]); 4527 unsigned CCInfo = Record[OpNum++]; 4528 4529 BasicBlock *DefaultDest = getBasicBlock(Record[OpNum++]); 4530 unsigned NumIndirectDests = Record[OpNum++]; 4531 SmallVector<BasicBlock *, 16> IndirectDests; 4532 for (unsigned i = 0, e = NumIndirectDests; i != e; ++i) 4533 IndirectDests.push_back(getBasicBlock(Record[OpNum++])); 4534 4535 FunctionType *FTy = nullptr; 4536 FunctionType *FullFTy = nullptr; 4537 if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) { 4538 FullFTy = 4539 dyn_cast<FunctionType>(getFullyStructuredTypeByID(Record[OpNum++])); 4540 if (!FullFTy) 4541 return error("Explicit call type is not a function type"); 4542 FTy = cast<FunctionType>(flattenPointerTypes(FullFTy)); 4543 } 4544 4545 Value *Callee; 4546 if (getValueTypePair(Record, OpNum, NextValueNo, Callee, &FullTy)) 4547 return error("Invalid record"); 4548 4549 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 4550 if (!OpTy) 4551 return error("Callee is not a pointer type"); 4552 if (!FTy) { 4553 FullFTy = 4554 dyn_cast<FunctionType>(cast<PointerType>(FullTy)->getElementType()); 4555 if (!FullFTy) 4556 return error("Callee is not of pointer to function type"); 4557 FTy = cast<FunctionType>(flattenPointerTypes(FullFTy)); 4558 } else if (getPointerElementFlatType(FullTy) != FTy) 4559 return error("Explicit call type does not match pointee type of " 4560 "callee operand"); 4561 if (Record.size() < FTy->getNumParams() + OpNum) 4562 return error("Insufficient operands to call"); 4563 4564 SmallVector<Value*, 16> Args; 4565 // Read the fixed params. 4566 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 4567 if (FTy->getParamType(i)->isLabelTy()) 4568 Args.push_back(getBasicBlock(Record[OpNum])); 4569 else 4570 Args.push_back(getValue(Record, OpNum, NextValueNo, 4571 FTy->getParamType(i))); 4572 if (!Args.back()) 4573 return error("Invalid record"); 4574 } 4575 4576 // Read type/value pairs for varargs params. 4577 if (!FTy->isVarArg()) { 4578 if (OpNum != Record.size()) 4579 return error("Invalid record"); 4580 } else { 4581 while (OpNum != Record.size()) { 4582 Value *Op; 4583 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4584 return error("Invalid record"); 4585 Args.push_back(Op); 4586 } 4587 } 4588 4589 I = CallBrInst::Create(FTy, Callee, DefaultDest, IndirectDests, Args, 4590 OperandBundles); 4591 FullTy = FullFTy->getReturnType(); 4592 OperandBundles.clear(); 4593 InstructionList.push_back(I); 4594 cast<CallBrInst>(I)->setCallingConv( 4595 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 4596 cast<CallBrInst>(I)->setAttributes(PAL); 4597 break; 4598 } 4599 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 4600 I = new UnreachableInst(Context); 4601 InstructionList.push_back(I); 4602 break; 4603 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 4604 if (Record.size() < 1 || ((Record.size()-1)&1)) 4605 return error("Invalid record"); 4606 FullTy = getFullyStructuredTypeByID(Record[0]); 4607 Type *Ty = flattenPointerTypes(FullTy); 4608 if (!Ty) 4609 return error("Invalid record"); 4610 4611 PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2); 4612 InstructionList.push_back(PN); 4613 4614 for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) { 4615 Value *V; 4616 // With the new function encoding, it is possible that operands have 4617 // negative IDs (for forward references). Use a signed VBR 4618 // representation to keep the encoding small. 4619 if (UseRelativeIDs) 4620 V = getValueSigned(Record, 1+i, NextValueNo, Ty); 4621 else 4622 V = getValue(Record, 1+i, NextValueNo, Ty); 4623 BasicBlock *BB = getBasicBlock(Record[2+i]); 4624 if (!V || !BB) 4625 return error("Invalid record"); 4626 PN->addIncoming(V, BB); 4627 } 4628 I = PN; 4629 break; 4630 } 4631 4632 case bitc::FUNC_CODE_INST_LANDINGPAD: 4633 case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: { 4634 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 4635 unsigned Idx = 0; 4636 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) { 4637 if (Record.size() < 3) 4638 return error("Invalid record"); 4639 } else { 4640 assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD); 4641 if (Record.size() < 4) 4642 return error("Invalid record"); 4643 } 4644 FullTy = getFullyStructuredTypeByID(Record[Idx++]); 4645 Type *Ty = flattenPointerTypes(FullTy); 4646 if (!Ty) 4647 return error("Invalid record"); 4648 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) { 4649 Value *PersFn = nullptr; 4650 if (getValueTypePair(Record, Idx, NextValueNo, PersFn)) 4651 return error("Invalid record"); 4652 4653 if (!F->hasPersonalityFn()) 4654 F->setPersonalityFn(cast<Constant>(PersFn)); 4655 else if (F->getPersonalityFn() != cast<Constant>(PersFn)) 4656 return error("Personality function mismatch"); 4657 } 4658 4659 bool IsCleanup = !!Record[Idx++]; 4660 unsigned NumClauses = Record[Idx++]; 4661 LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses); 4662 LP->setCleanup(IsCleanup); 4663 for (unsigned J = 0; J != NumClauses; ++J) { 4664 LandingPadInst::ClauseType CT = 4665 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 4666 Value *Val; 4667 4668 if (getValueTypePair(Record, Idx, NextValueNo, Val)) { 4669 delete LP; 4670 return error("Invalid record"); 4671 } 4672 4673 assert((CT != LandingPadInst::Catch || 4674 !isa<ArrayType>(Val->getType())) && 4675 "Catch clause has a invalid type!"); 4676 assert((CT != LandingPadInst::Filter || 4677 isa<ArrayType>(Val->getType())) && 4678 "Filter clause has invalid type!"); 4679 LP->addClause(cast<Constant>(Val)); 4680 } 4681 4682 I = LP; 4683 InstructionList.push_back(I); 4684 break; 4685 } 4686 4687 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 4688 if (Record.size() != 4) 4689 return error("Invalid record"); 4690 uint64_t AlignRecord = Record[3]; 4691 const uint64_t InAllocaMask = uint64_t(1) << 5; 4692 const uint64_t ExplicitTypeMask = uint64_t(1) << 6; 4693 const uint64_t SwiftErrorMask = uint64_t(1) << 7; 4694 const uint64_t FlagMask = InAllocaMask | ExplicitTypeMask | 4695 SwiftErrorMask; 4696 bool InAlloca = AlignRecord & InAllocaMask; 4697 bool SwiftError = AlignRecord & SwiftErrorMask; 4698 FullTy = getFullyStructuredTypeByID(Record[0]); 4699 Type *Ty = flattenPointerTypes(FullTy); 4700 if ((AlignRecord & ExplicitTypeMask) == 0) { 4701 auto *PTy = dyn_cast_or_null<PointerType>(Ty); 4702 if (!PTy) 4703 return error("Old-style alloca with a non-pointer type"); 4704 std::tie(FullTy, Ty) = getPointerElementTypes(FullTy); 4705 } 4706 Type *OpTy = getTypeByID(Record[1]); 4707 Value *Size = getFnValueByID(Record[2], OpTy); 4708 unsigned Align; 4709 if (Error Err = parseAlignmentValue(AlignRecord & ~FlagMask, Align)) { 4710 return Err; 4711 } 4712 if (!Ty || !Size) 4713 return error("Invalid record"); 4714 4715 // FIXME: Make this an optional field. 4716 const DataLayout &DL = TheModule->getDataLayout(); 4717 unsigned AS = DL.getAllocaAddrSpace(); 4718 4719 AllocaInst *AI = new AllocaInst(Ty, AS, Size, Align); 4720 AI->setUsedWithInAlloca(InAlloca); 4721 AI->setSwiftError(SwiftError); 4722 I = AI; 4723 FullTy = PointerType::get(FullTy, AS); 4724 InstructionList.push_back(I); 4725 break; 4726 } 4727 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 4728 unsigned OpNum = 0; 4729 Value *Op; 4730 if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy) || 4731 (OpNum + 2 != Record.size() && OpNum + 3 != Record.size())) 4732 return error("Invalid record"); 4733 4734 if (!isa<PointerType>(Op->getType())) 4735 return error("Load operand is not a pointer type"); 4736 4737 Type *Ty = nullptr; 4738 if (OpNum + 3 == Record.size()) { 4739 FullTy = getFullyStructuredTypeByID(Record[OpNum++]); 4740 Ty = flattenPointerTypes(FullTy); 4741 } else 4742 std::tie(FullTy, Ty) = getPointerElementTypes(FullTy); 4743 4744 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 4745 return Err; 4746 4747 unsigned Align; 4748 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4749 return Err; 4750 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], Align); 4751 InstructionList.push_back(I); 4752 break; 4753 } 4754 case bitc::FUNC_CODE_INST_LOADATOMIC: { 4755 // LOADATOMIC: [opty, op, align, vol, ordering, ssid] 4756 unsigned OpNum = 0; 4757 Value *Op; 4758 if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy) || 4759 (OpNum + 4 != Record.size() && OpNum + 5 != Record.size())) 4760 return error("Invalid record"); 4761 4762 if (!isa<PointerType>(Op->getType())) 4763 return error("Load operand is not a pointer type"); 4764 4765 Type *Ty = nullptr; 4766 if (OpNum + 5 == Record.size()) { 4767 FullTy = getFullyStructuredTypeByID(Record[OpNum++]); 4768 Ty = flattenPointerTypes(FullTy); 4769 } else 4770 std::tie(FullTy, Ty) = getPointerElementTypes(FullTy); 4771 4772 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 4773 return Err; 4774 4775 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4776 if (Ordering == AtomicOrdering::NotAtomic || 4777 Ordering == AtomicOrdering::Release || 4778 Ordering == AtomicOrdering::AcquireRelease) 4779 return error("Invalid record"); 4780 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 4781 return error("Invalid record"); 4782 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 4783 4784 unsigned Align; 4785 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4786 return Err; 4787 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], Align, Ordering, SSID); 4788 InstructionList.push_back(I); 4789 break; 4790 } 4791 case bitc::FUNC_CODE_INST_STORE: 4792 case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol] 4793 unsigned OpNum = 0; 4794 Value *Val, *Ptr; 4795 Type *FullTy; 4796 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, &FullTy) || 4797 (BitCode == bitc::FUNC_CODE_INST_STORE 4798 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 4799 : popValue(Record, OpNum, NextValueNo, 4800 getPointerElementFlatType(FullTy), Val)) || 4801 OpNum + 2 != Record.size()) 4802 return error("Invalid record"); 4803 4804 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 4805 return Err; 4806 unsigned Align; 4807 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4808 return Err; 4809 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align); 4810 InstructionList.push_back(I); 4811 break; 4812 } 4813 case bitc::FUNC_CODE_INST_STOREATOMIC: 4814 case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: { 4815 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, ssid] 4816 unsigned OpNum = 0; 4817 Value *Val, *Ptr; 4818 Type *FullTy; 4819 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, &FullTy) || 4820 !isa<PointerType>(Ptr->getType()) || 4821 (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC 4822 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 4823 : popValue(Record, OpNum, NextValueNo, 4824 getPointerElementFlatType(FullTy), Val)) || 4825 OpNum + 4 != Record.size()) 4826 return error("Invalid record"); 4827 4828 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 4829 return Err; 4830 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4831 if (Ordering == AtomicOrdering::NotAtomic || 4832 Ordering == AtomicOrdering::Acquire || 4833 Ordering == AtomicOrdering::AcquireRelease) 4834 return error("Invalid record"); 4835 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 4836 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 4837 return error("Invalid record"); 4838 4839 unsigned Align; 4840 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4841 return Err; 4842 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align, Ordering, SSID); 4843 InstructionList.push_back(I); 4844 break; 4845 } 4846 case bitc::FUNC_CODE_INST_CMPXCHG_OLD: 4847 case bitc::FUNC_CODE_INST_CMPXCHG: { 4848 // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, ssid, 4849 // failureordering?, isweak?] 4850 unsigned OpNum = 0; 4851 Value *Ptr, *Cmp, *New; 4852 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, &FullTy)) 4853 return error("Invalid record"); 4854 4855 if (!isa<PointerType>(Ptr->getType())) 4856 return error("Cmpxchg operand is not a pointer type"); 4857 4858 if (BitCode == bitc::FUNC_CODE_INST_CMPXCHG) { 4859 if (getValueTypePair(Record, OpNum, NextValueNo, Cmp, &FullTy)) 4860 return error("Invalid record"); 4861 } else if (popValue(Record, OpNum, NextValueNo, 4862 getPointerElementFlatType(FullTy), Cmp)) 4863 return error("Invalid record"); 4864 else 4865 FullTy = cast<PointerType>(FullTy)->getElementType(); 4866 4867 if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) || 4868 Record.size() < OpNum + 3 || Record.size() > OpNum + 5) 4869 return error("Invalid record"); 4870 4871 AtomicOrdering SuccessOrdering = getDecodedOrdering(Record[OpNum + 1]); 4872 if (SuccessOrdering == AtomicOrdering::NotAtomic || 4873 SuccessOrdering == AtomicOrdering::Unordered) 4874 return error("Invalid record"); 4875 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]); 4876 4877 if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType())) 4878 return Err; 4879 AtomicOrdering FailureOrdering; 4880 if (Record.size() < 7) 4881 FailureOrdering = 4882 AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering); 4883 else 4884 FailureOrdering = getDecodedOrdering(Record[OpNum + 3]); 4885 4886 I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering, 4887 SSID); 4888 FullTy = StructType::get(Context, {FullTy, Type::getInt1Ty(Context)}); 4889 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 4890 4891 if (Record.size() < 8) { 4892 // Before weak cmpxchgs existed, the instruction simply returned the 4893 // value loaded from memory, so bitcode files from that era will be 4894 // expecting the first component of a modern cmpxchg. 4895 CurBB->getInstList().push_back(I); 4896 I = ExtractValueInst::Create(I, 0); 4897 FullTy = cast<StructType>(FullTy)->getElementType(0); 4898 } else { 4899 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]); 4900 } 4901 4902 InstructionList.push_back(I); 4903 break; 4904 } 4905 case bitc::FUNC_CODE_INST_ATOMICRMW: { 4906 // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, ssid] 4907 unsigned OpNum = 0; 4908 Value *Ptr, *Val; 4909 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, &FullTy) || 4910 !isa<PointerType>(Ptr->getType()) || 4911 popValue(Record, OpNum, NextValueNo, 4912 getPointerElementFlatType(FullTy), Val) || 4913 OpNum + 4 != Record.size()) 4914 return error("Invalid record"); 4915 AtomicRMWInst::BinOp Operation = getDecodedRMWOperation(Record[OpNum]); 4916 if (Operation < AtomicRMWInst::FIRST_BINOP || 4917 Operation > AtomicRMWInst::LAST_BINOP) 4918 return error("Invalid record"); 4919 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4920 if (Ordering == AtomicOrdering::NotAtomic || 4921 Ordering == AtomicOrdering::Unordered) 4922 return error("Invalid record"); 4923 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 4924 I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SSID); 4925 FullTy = getPointerElementFlatType(FullTy); 4926 cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]); 4927 InstructionList.push_back(I); 4928 break; 4929 } 4930 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, ssid] 4931 if (2 != Record.size()) 4932 return error("Invalid record"); 4933 AtomicOrdering Ordering = getDecodedOrdering(Record[0]); 4934 if (Ordering == AtomicOrdering::NotAtomic || 4935 Ordering == AtomicOrdering::Unordered || 4936 Ordering == AtomicOrdering::Monotonic) 4937 return error("Invalid record"); 4938 SyncScope::ID SSID = getDecodedSyncScopeID(Record[1]); 4939 I = new FenceInst(Context, Ordering, SSID); 4940 InstructionList.push_back(I); 4941 break; 4942 } 4943 case bitc::FUNC_CODE_INST_CALL: { 4944 // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...] 4945 if (Record.size() < 3) 4946 return error("Invalid record"); 4947 4948 unsigned OpNum = 0; 4949 AttributeList PAL = getAttributes(Record[OpNum++]); 4950 unsigned CCInfo = Record[OpNum++]; 4951 4952 FastMathFlags FMF; 4953 if ((CCInfo >> bitc::CALL_FMF) & 1) { 4954 FMF = getDecodedFastMathFlags(Record[OpNum++]); 4955 if (!FMF.any()) 4956 return error("Fast math flags indicator set for call with no FMF"); 4957 } 4958 4959 FunctionType *FTy = nullptr; 4960 FunctionType *FullFTy = nullptr; 4961 if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) { 4962 FullFTy = 4963 dyn_cast<FunctionType>(getFullyStructuredTypeByID(Record[OpNum++])); 4964 if (!FullFTy) 4965 return error("Explicit call type is not a function type"); 4966 FTy = cast<FunctionType>(flattenPointerTypes(FullFTy)); 4967 } 4968 4969 Value *Callee; 4970 if (getValueTypePair(Record, OpNum, NextValueNo, Callee, &FullTy)) 4971 return error("Invalid record"); 4972 4973 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 4974 if (!OpTy) 4975 return error("Callee is not a pointer type"); 4976 if (!FTy) { 4977 FullFTy = 4978 dyn_cast<FunctionType>(cast<PointerType>(FullTy)->getElementType()); 4979 if (!FullFTy) 4980 return error("Callee is not of pointer to function type"); 4981 FTy = cast<FunctionType>(flattenPointerTypes(FullFTy)); 4982 } else if (getPointerElementFlatType(FullTy) != FTy) 4983 return error("Explicit call type does not match pointee type of " 4984 "callee operand"); 4985 if (Record.size() < FTy->getNumParams() + OpNum) 4986 return error("Insufficient operands to call"); 4987 4988 SmallVector<Value*, 16> Args; 4989 SmallVector<Type*, 16> ArgsFullTys; 4990 // Read the fixed params. 4991 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 4992 if (FTy->getParamType(i)->isLabelTy()) 4993 Args.push_back(getBasicBlock(Record[OpNum])); 4994 else 4995 Args.push_back(getValue(Record, OpNum, NextValueNo, 4996 FTy->getParamType(i))); 4997 ArgsFullTys.push_back(FullFTy->getParamType(i)); 4998 if (!Args.back()) 4999 return error("Invalid record"); 5000 } 5001 5002 // Read type/value pairs for varargs params. 5003 if (!FTy->isVarArg()) { 5004 if (OpNum != Record.size()) 5005 return error("Invalid record"); 5006 } else { 5007 while (OpNum != Record.size()) { 5008 Value *Op; 5009 Type *FullTy; 5010 if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy)) 5011 return error("Invalid record"); 5012 Args.push_back(Op); 5013 ArgsFullTys.push_back(FullTy); 5014 } 5015 } 5016 5017 I = CallInst::Create(FTy, Callee, Args, OperandBundles); 5018 FullTy = FullFTy->getReturnType(); 5019 OperandBundles.clear(); 5020 InstructionList.push_back(I); 5021 cast<CallInst>(I)->setCallingConv( 5022 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 5023 CallInst::TailCallKind TCK = CallInst::TCK_None; 5024 if (CCInfo & 1 << bitc::CALL_TAIL) 5025 TCK = CallInst::TCK_Tail; 5026 if (CCInfo & (1 << bitc::CALL_MUSTTAIL)) 5027 TCK = CallInst::TCK_MustTail; 5028 if (CCInfo & (1 << bitc::CALL_NOTAIL)) 5029 TCK = CallInst::TCK_NoTail; 5030 cast<CallInst>(I)->setTailCallKind(TCK); 5031 cast<CallInst>(I)->setAttributes(PAL); 5032 propagateByValTypes(cast<CallBase>(I), ArgsFullTys); 5033 if (FMF.any()) { 5034 if (!isa<FPMathOperator>(I)) 5035 return error("Fast-math-flags specified for call without " 5036 "floating-point scalar or vector return type"); 5037 I->setFastMathFlags(FMF); 5038 } 5039 break; 5040 } 5041 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 5042 if (Record.size() < 3) 5043 return error("Invalid record"); 5044 Type *OpTy = getTypeByID(Record[0]); 5045 Value *Op = getValue(Record, 1, NextValueNo, OpTy); 5046 FullTy = getFullyStructuredTypeByID(Record[2]); 5047 Type *ResTy = flattenPointerTypes(FullTy); 5048 if (!OpTy || !Op || !ResTy) 5049 return error("Invalid record"); 5050 I = new VAArgInst(Op, ResTy); 5051 InstructionList.push_back(I); 5052 break; 5053 } 5054 5055 case bitc::FUNC_CODE_OPERAND_BUNDLE: { 5056 // A call or an invoke can be optionally prefixed with some variable 5057 // number of operand bundle blocks. These blocks are read into 5058 // OperandBundles and consumed at the next call or invoke instruction. 5059 5060 if (Record.size() < 1 || Record[0] >= BundleTags.size()) 5061 return error("Invalid record"); 5062 5063 std::vector<Value *> Inputs; 5064 5065 unsigned OpNum = 1; 5066 while (OpNum != Record.size()) { 5067 Value *Op; 5068 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 5069 return error("Invalid record"); 5070 Inputs.push_back(Op); 5071 } 5072 5073 OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs)); 5074 continue; 5075 } 5076 } 5077 5078 // Add instruction to end of current BB. If there is no current BB, reject 5079 // this file. 5080 if (!CurBB) { 5081 I->deleteValue(); 5082 return error("Invalid instruction with no BB"); 5083 } 5084 if (!OperandBundles.empty()) { 5085 I->deleteValue(); 5086 return error("Operand bundles found with no consumer"); 5087 } 5088 CurBB->getInstList().push_back(I); 5089 5090 // If this was a terminator instruction, move to the next block. 5091 if (I->isTerminator()) { 5092 ++CurBBNo; 5093 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr; 5094 } 5095 5096 // Non-void values get registered in the value table for future use. 5097 if (I && !I->getType()->isVoidTy()) { 5098 if (!FullTy) { 5099 FullTy = I->getType(); 5100 assert( 5101 !FullTy->isPointerTy() && !isa<StructType>(FullTy) && 5102 !isa<ArrayType>(FullTy) && 5103 (!isa<VectorType>(FullTy) || 5104 FullTy->getVectorElementType()->isFloatingPointTy() || 5105 FullTy->getVectorElementType()->isIntegerTy()) && 5106 "Structured types must be assigned with corresponding non-opaque " 5107 "pointer type"); 5108 } 5109 5110 assert(I->getType() == flattenPointerTypes(FullTy) && 5111 "Incorrect fully structured type provided for Instruction"); 5112 ValueList.assignValue(I, NextValueNo++, FullTy); 5113 } 5114 } 5115 5116 OutOfRecordLoop: 5117 5118 if (!OperandBundles.empty()) 5119 return error("Operand bundles found with no consumer"); 5120 5121 // Check the function list for unresolved values. 5122 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 5123 if (!A->getParent()) { 5124 // We found at least one unresolved value. Nuke them all to avoid leaks. 5125 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 5126 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) { 5127 A->replaceAllUsesWith(UndefValue::get(A->getType())); 5128 delete A; 5129 } 5130 } 5131 return error("Never resolved value found in function"); 5132 } 5133 } 5134 5135 // Unexpected unresolved metadata about to be dropped. 5136 if (MDLoader->hasFwdRefs()) 5137 return error("Invalid function metadata: outgoing forward refs"); 5138 5139 // Trim the value list down to the size it was before we parsed this function. 5140 ValueList.shrinkTo(ModuleValueListSize); 5141 MDLoader->shrinkTo(ModuleMDLoaderSize); 5142 std::vector<BasicBlock*>().swap(FunctionBBs); 5143 return Error::success(); 5144 } 5145 5146 /// Find the function body in the bitcode stream 5147 Error BitcodeReader::findFunctionInStream( 5148 Function *F, 5149 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) { 5150 while (DeferredFunctionInfoIterator->second == 0) { 5151 // This is the fallback handling for the old format bitcode that 5152 // didn't contain the function index in the VST, or when we have 5153 // an anonymous function which would not have a VST entry. 5154 // Assert that we have one of those two cases. 5155 assert(VSTOffset == 0 || !F->hasName()); 5156 // Parse the next body in the stream and set its position in the 5157 // DeferredFunctionInfo map. 5158 if (Error Err = rememberAndSkipFunctionBodies()) 5159 return Err; 5160 } 5161 return Error::success(); 5162 } 5163 5164 SyncScope::ID BitcodeReader::getDecodedSyncScopeID(unsigned Val) { 5165 if (Val == SyncScope::SingleThread || Val == SyncScope::System) 5166 return SyncScope::ID(Val); 5167 if (Val >= SSIDs.size()) 5168 return SyncScope::System; // Map unknown synchronization scopes to system. 5169 return SSIDs[Val]; 5170 } 5171 5172 //===----------------------------------------------------------------------===// 5173 // GVMaterializer implementation 5174 //===----------------------------------------------------------------------===// 5175 5176 Error BitcodeReader::materialize(GlobalValue *GV) { 5177 Function *F = dyn_cast<Function>(GV); 5178 // If it's not a function or is already material, ignore the request. 5179 if (!F || !F->isMaterializable()) 5180 return Error::success(); 5181 5182 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 5183 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 5184 // If its position is recorded as 0, its body is somewhere in the stream 5185 // but we haven't seen it yet. 5186 if (DFII->second == 0) 5187 if (Error Err = findFunctionInStream(F, DFII)) 5188 return Err; 5189 5190 // Materialize metadata before parsing any function bodies. 5191 if (Error Err = materializeMetadata()) 5192 return Err; 5193 5194 // Move the bit stream to the saved position of the deferred function body. 5195 if (Error JumpFailed = Stream.JumpToBit(DFII->second)) 5196 return JumpFailed; 5197 if (Error Err = parseFunctionBody(F)) 5198 return Err; 5199 F->setIsMaterializable(false); 5200 5201 if (StripDebugInfo) 5202 stripDebugInfo(*F); 5203 5204 // Upgrade any old intrinsic calls in the function. 5205 for (auto &I : UpgradedIntrinsics) { 5206 for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end(); 5207 UI != UE;) { 5208 User *U = *UI; 5209 ++UI; 5210 if (CallInst *CI = dyn_cast<CallInst>(U)) 5211 UpgradeIntrinsicCall(CI, I.second); 5212 } 5213 } 5214 5215 // Update calls to the remangled intrinsics 5216 for (auto &I : RemangledIntrinsics) 5217 for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end(); 5218 UI != UE;) 5219 // Don't expect any other users than call sites 5220 CallSite(*UI++).setCalledFunction(I.second); 5221 5222 // Finish fn->subprogram upgrade for materialized functions. 5223 if (DISubprogram *SP = MDLoader->lookupSubprogramForFunction(F)) 5224 F->setSubprogram(SP); 5225 5226 // Check if the TBAA Metadata are valid, otherwise we will need to strip them. 5227 if (!MDLoader->isStrippingTBAA()) { 5228 for (auto &I : instructions(F)) { 5229 MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa); 5230 if (!TBAA || TBAAVerifyHelper.visitTBAAMetadata(I, TBAA)) 5231 continue; 5232 MDLoader->setStripTBAA(true); 5233 stripTBAA(F->getParent()); 5234 } 5235 } 5236 5237 // Bring in any functions that this function forward-referenced via 5238 // blockaddresses. 5239 return materializeForwardReferencedFunctions(); 5240 } 5241 5242 Error BitcodeReader::materializeModule() { 5243 if (Error Err = materializeMetadata()) 5244 return Err; 5245 5246 // Promise to materialize all forward references. 5247 WillMaterializeAllForwardRefs = true; 5248 5249 // Iterate over the module, deserializing any functions that are still on 5250 // disk. 5251 for (Function &F : *TheModule) { 5252 if (Error Err = materialize(&F)) 5253 return Err; 5254 } 5255 // At this point, if there are any function bodies, parse the rest of 5256 // the bits in the module past the last function block we have recorded 5257 // through either lazy scanning or the VST. 5258 if (LastFunctionBlockBit || NextUnreadBit) 5259 if (Error Err = parseModule(LastFunctionBlockBit > NextUnreadBit 5260 ? LastFunctionBlockBit 5261 : NextUnreadBit)) 5262 return Err; 5263 5264 // Check that all block address forward references got resolved (as we 5265 // promised above). 5266 if (!BasicBlockFwdRefs.empty()) 5267 return error("Never resolved function from blockaddress"); 5268 5269 // Upgrade any intrinsic calls that slipped through (should not happen!) and 5270 // delete the old functions to clean up. We can't do this unless the entire 5271 // module is materialized because there could always be another function body 5272 // with calls to the old function. 5273 for (auto &I : UpgradedIntrinsics) { 5274 for (auto *U : I.first->users()) { 5275 if (CallInst *CI = dyn_cast<CallInst>(U)) 5276 UpgradeIntrinsicCall(CI, I.second); 5277 } 5278 if (!I.first->use_empty()) 5279 I.first->replaceAllUsesWith(I.second); 5280 I.first->eraseFromParent(); 5281 } 5282 UpgradedIntrinsics.clear(); 5283 // Do the same for remangled intrinsics 5284 for (auto &I : RemangledIntrinsics) { 5285 I.first->replaceAllUsesWith(I.second); 5286 I.first->eraseFromParent(); 5287 } 5288 RemangledIntrinsics.clear(); 5289 5290 UpgradeDebugInfo(*TheModule); 5291 5292 UpgradeModuleFlags(*TheModule); 5293 5294 UpgradeRetainReleaseMarker(*TheModule); 5295 5296 return Error::success(); 5297 } 5298 5299 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const { 5300 return IdentifiedStructTypes; 5301 } 5302 5303 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader( 5304 BitstreamCursor Cursor, StringRef Strtab, ModuleSummaryIndex &TheIndex, 5305 StringRef ModulePath, unsigned ModuleId) 5306 : BitcodeReaderBase(std::move(Cursor), Strtab), TheIndex(TheIndex), 5307 ModulePath(ModulePath), ModuleId(ModuleId) {} 5308 5309 void ModuleSummaryIndexBitcodeReader::addThisModule() { 5310 TheIndex.addModule(ModulePath, ModuleId); 5311 } 5312 5313 ModuleSummaryIndex::ModuleInfo * 5314 ModuleSummaryIndexBitcodeReader::getThisModule() { 5315 return TheIndex.getModule(ModulePath); 5316 } 5317 5318 std::pair<ValueInfo, GlobalValue::GUID> 5319 ModuleSummaryIndexBitcodeReader::getValueInfoFromValueId(unsigned ValueId) { 5320 auto VGI = ValueIdToValueInfoMap[ValueId]; 5321 assert(VGI.first); 5322 return VGI; 5323 } 5324 5325 void ModuleSummaryIndexBitcodeReader::setValueGUID( 5326 uint64_t ValueID, StringRef ValueName, GlobalValue::LinkageTypes Linkage, 5327 StringRef SourceFileName) { 5328 std::string GlobalId = 5329 GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName); 5330 auto ValueGUID = GlobalValue::getGUID(GlobalId); 5331 auto OriginalNameID = ValueGUID; 5332 if (GlobalValue::isLocalLinkage(Linkage)) 5333 OriginalNameID = GlobalValue::getGUID(ValueName); 5334 if (PrintSummaryGUIDs) 5335 dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is " 5336 << ValueName << "\n"; 5337 5338 // UseStrtab is false for legacy summary formats and value names are 5339 // created on stack. In that case we save the name in a string saver in 5340 // the index so that the value name can be recorded. 5341 ValueIdToValueInfoMap[ValueID] = std::make_pair( 5342 TheIndex.getOrInsertValueInfo( 5343 ValueGUID, 5344 UseStrtab ? ValueName : TheIndex.saveString(ValueName)), 5345 OriginalNameID); 5346 } 5347 5348 // Specialized value symbol table parser used when reading module index 5349 // blocks where we don't actually create global values. The parsed information 5350 // is saved in the bitcode reader for use when later parsing summaries. 5351 Error ModuleSummaryIndexBitcodeReader::parseValueSymbolTable( 5352 uint64_t Offset, 5353 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) { 5354 // With a strtab the VST is not required to parse the summary. 5355 if (UseStrtab) 5356 return Error::success(); 5357 5358 assert(Offset > 0 && "Expected non-zero VST offset"); 5359 Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream); 5360 if (!MaybeCurrentBit) 5361 return MaybeCurrentBit.takeError(); 5362 uint64_t CurrentBit = MaybeCurrentBit.get(); 5363 5364 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 5365 return Err; 5366 5367 SmallVector<uint64_t, 64> Record; 5368 5369 // Read all the records for this value table. 5370 SmallString<128> ValueName; 5371 5372 while (true) { 5373 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 5374 if (!MaybeEntry) 5375 return MaybeEntry.takeError(); 5376 BitstreamEntry Entry = MaybeEntry.get(); 5377 5378 switch (Entry.Kind) { 5379 case BitstreamEntry::SubBlock: // Handled for us already. 5380 case BitstreamEntry::Error: 5381 return error("Malformed block"); 5382 case BitstreamEntry::EndBlock: 5383 // Done parsing VST, jump back to wherever we came from. 5384 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 5385 return JumpFailed; 5386 return Error::success(); 5387 case BitstreamEntry::Record: 5388 // The interesting case. 5389 break; 5390 } 5391 5392 // Read a record. 5393 Record.clear(); 5394 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 5395 if (!MaybeRecord) 5396 return MaybeRecord.takeError(); 5397 switch (MaybeRecord.get()) { 5398 default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records). 5399 break; 5400 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 5401 if (convertToString(Record, 1, ValueName)) 5402 return error("Invalid record"); 5403 unsigned ValueID = Record[0]; 5404 assert(!SourceFileName.empty()); 5405 auto VLI = ValueIdToLinkageMap.find(ValueID); 5406 assert(VLI != ValueIdToLinkageMap.end() && 5407 "No linkage found for VST entry?"); 5408 auto Linkage = VLI->second; 5409 setValueGUID(ValueID, ValueName, Linkage, SourceFileName); 5410 ValueName.clear(); 5411 break; 5412 } 5413 case bitc::VST_CODE_FNENTRY: { 5414 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 5415 if (convertToString(Record, 2, ValueName)) 5416 return error("Invalid record"); 5417 unsigned ValueID = Record[0]; 5418 assert(!SourceFileName.empty()); 5419 auto VLI = ValueIdToLinkageMap.find(ValueID); 5420 assert(VLI != ValueIdToLinkageMap.end() && 5421 "No linkage found for VST entry?"); 5422 auto Linkage = VLI->second; 5423 setValueGUID(ValueID, ValueName, Linkage, SourceFileName); 5424 ValueName.clear(); 5425 break; 5426 } 5427 case bitc::VST_CODE_COMBINED_ENTRY: { 5428 // VST_CODE_COMBINED_ENTRY: [valueid, refguid] 5429 unsigned ValueID = Record[0]; 5430 GlobalValue::GUID RefGUID = Record[1]; 5431 // The "original name", which is the second value of the pair will be 5432 // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index. 5433 ValueIdToValueInfoMap[ValueID] = 5434 std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID); 5435 break; 5436 } 5437 } 5438 } 5439 } 5440 5441 // Parse just the blocks needed for building the index out of the module. 5442 // At the end of this routine the module Index is populated with a map 5443 // from global value id to GlobalValueSummary objects. 5444 Error ModuleSummaryIndexBitcodeReader::parseModule() { 5445 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 5446 return Err; 5447 5448 SmallVector<uint64_t, 64> Record; 5449 DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap; 5450 unsigned ValueId = 0; 5451 5452 // Read the index for this module. 5453 while (true) { 5454 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 5455 if (!MaybeEntry) 5456 return MaybeEntry.takeError(); 5457 llvm::BitstreamEntry Entry = MaybeEntry.get(); 5458 5459 switch (Entry.Kind) { 5460 case BitstreamEntry::Error: 5461 return error("Malformed block"); 5462 case BitstreamEntry::EndBlock: 5463 return Error::success(); 5464 5465 case BitstreamEntry::SubBlock: 5466 switch (Entry.ID) { 5467 default: // Skip unknown content. 5468 if (Error Err = Stream.SkipBlock()) 5469 return Err; 5470 break; 5471 case bitc::BLOCKINFO_BLOCK_ID: 5472 // Need to parse these to get abbrev ids (e.g. for VST) 5473 if (readBlockInfo()) 5474 return error("Malformed block"); 5475 break; 5476 case bitc::VALUE_SYMTAB_BLOCK_ID: 5477 // Should have been parsed earlier via VSTOffset, unless there 5478 // is no summary section. 5479 assert(((SeenValueSymbolTable && VSTOffset > 0) || 5480 !SeenGlobalValSummary) && 5481 "Expected early VST parse via VSTOffset record"); 5482 if (Error Err = Stream.SkipBlock()) 5483 return Err; 5484 break; 5485 case bitc::GLOBALVAL_SUMMARY_BLOCK_ID: 5486 case bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID: 5487 // Add the module if it is a per-module index (has a source file name). 5488 if (!SourceFileName.empty()) 5489 addThisModule(); 5490 assert(!SeenValueSymbolTable && 5491 "Already read VST when parsing summary block?"); 5492 // We might not have a VST if there were no values in the 5493 // summary. An empty summary block generated when we are 5494 // performing ThinLTO compiles so we don't later invoke 5495 // the regular LTO process on them. 5496 if (VSTOffset > 0) { 5497 if (Error Err = parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap)) 5498 return Err; 5499 SeenValueSymbolTable = true; 5500 } 5501 SeenGlobalValSummary = true; 5502 if (Error Err = parseEntireSummary(Entry.ID)) 5503 return Err; 5504 break; 5505 case bitc::MODULE_STRTAB_BLOCK_ID: 5506 if (Error Err = parseModuleStringTable()) 5507 return Err; 5508 break; 5509 } 5510 continue; 5511 5512 case BitstreamEntry::Record: { 5513 Record.clear(); 5514 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 5515 if (!MaybeBitCode) 5516 return MaybeBitCode.takeError(); 5517 switch (MaybeBitCode.get()) { 5518 default: 5519 break; // Default behavior, ignore unknown content. 5520 case bitc::MODULE_CODE_VERSION: { 5521 if (Error Err = parseVersionRecord(Record).takeError()) 5522 return Err; 5523 break; 5524 } 5525 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 5526 case bitc::MODULE_CODE_SOURCE_FILENAME: { 5527 SmallString<128> ValueName; 5528 if (convertToString(Record, 0, ValueName)) 5529 return error("Invalid record"); 5530 SourceFileName = ValueName.c_str(); 5531 break; 5532 } 5533 /// MODULE_CODE_HASH: [5*i32] 5534 case bitc::MODULE_CODE_HASH: { 5535 if (Record.size() != 5) 5536 return error("Invalid hash length " + Twine(Record.size()).str()); 5537 auto &Hash = getThisModule()->second.second; 5538 int Pos = 0; 5539 for (auto &Val : Record) { 5540 assert(!(Val >> 32) && "Unexpected high bits set"); 5541 Hash[Pos++] = Val; 5542 } 5543 break; 5544 } 5545 /// MODULE_CODE_VSTOFFSET: [offset] 5546 case bitc::MODULE_CODE_VSTOFFSET: 5547 if (Record.size() < 1) 5548 return error("Invalid record"); 5549 // Note that we subtract 1 here because the offset is relative to one 5550 // word before the start of the identification or module block, which 5551 // was historically always the start of the regular bitcode header. 5552 VSTOffset = Record[0] - 1; 5553 break; 5554 // v1 GLOBALVAR: [pointer type, isconst, initid, linkage, ...] 5555 // v1 FUNCTION: [type, callingconv, isproto, linkage, ...] 5556 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, ...] 5557 // v2: [strtab offset, strtab size, v1] 5558 case bitc::MODULE_CODE_GLOBALVAR: 5559 case bitc::MODULE_CODE_FUNCTION: 5560 case bitc::MODULE_CODE_ALIAS: { 5561 StringRef Name; 5562 ArrayRef<uint64_t> GVRecord; 5563 std::tie(Name, GVRecord) = readNameFromStrtab(Record); 5564 if (GVRecord.size() <= 3) 5565 return error("Invalid record"); 5566 uint64_t RawLinkage = GVRecord[3]; 5567 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 5568 if (!UseStrtab) { 5569 ValueIdToLinkageMap[ValueId++] = Linkage; 5570 break; 5571 } 5572 5573 setValueGUID(ValueId++, Name, Linkage, SourceFileName); 5574 break; 5575 } 5576 } 5577 } 5578 continue; 5579 } 5580 } 5581 } 5582 5583 std::vector<ValueInfo> 5584 ModuleSummaryIndexBitcodeReader::makeRefList(ArrayRef<uint64_t> Record) { 5585 std::vector<ValueInfo> Ret; 5586 Ret.reserve(Record.size()); 5587 for (uint64_t RefValueId : Record) 5588 Ret.push_back(getValueInfoFromValueId(RefValueId).first); 5589 return Ret; 5590 } 5591 5592 std::vector<FunctionSummary::EdgeTy> 5593 ModuleSummaryIndexBitcodeReader::makeCallList(ArrayRef<uint64_t> Record, 5594 bool IsOldProfileFormat, 5595 bool HasProfile, bool HasRelBF) { 5596 std::vector<FunctionSummary::EdgeTy> Ret; 5597 Ret.reserve(Record.size()); 5598 for (unsigned I = 0, E = Record.size(); I != E; ++I) { 5599 CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown; 5600 uint64_t RelBF = 0; 5601 ValueInfo Callee = getValueInfoFromValueId(Record[I]).first; 5602 if (IsOldProfileFormat) { 5603 I += 1; // Skip old callsitecount field 5604 if (HasProfile) 5605 I += 1; // Skip old profilecount field 5606 } else if (HasProfile) 5607 Hotness = static_cast<CalleeInfo::HotnessType>(Record[++I]); 5608 else if (HasRelBF) 5609 RelBF = Record[++I]; 5610 Ret.push_back(FunctionSummary::EdgeTy{Callee, CalleeInfo(Hotness, RelBF)}); 5611 } 5612 return Ret; 5613 } 5614 5615 static void 5616 parseWholeProgramDevirtResolutionByArg(ArrayRef<uint64_t> Record, size_t &Slot, 5617 WholeProgramDevirtResolution &Wpd) { 5618 uint64_t ArgNum = Record[Slot++]; 5619 WholeProgramDevirtResolution::ByArg &B = 5620 Wpd.ResByArg[{Record.begin() + Slot, Record.begin() + Slot + ArgNum}]; 5621 Slot += ArgNum; 5622 5623 B.TheKind = 5624 static_cast<WholeProgramDevirtResolution::ByArg::Kind>(Record[Slot++]); 5625 B.Info = Record[Slot++]; 5626 B.Byte = Record[Slot++]; 5627 B.Bit = Record[Slot++]; 5628 } 5629 5630 static void parseWholeProgramDevirtResolution(ArrayRef<uint64_t> Record, 5631 StringRef Strtab, size_t &Slot, 5632 TypeIdSummary &TypeId) { 5633 uint64_t Id = Record[Slot++]; 5634 WholeProgramDevirtResolution &Wpd = TypeId.WPDRes[Id]; 5635 5636 Wpd.TheKind = static_cast<WholeProgramDevirtResolution::Kind>(Record[Slot++]); 5637 Wpd.SingleImplName = {Strtab.data() + Record[Slot], 5638 static_cast<size_t>(Record[Slot + 1])}; 5639 Slot += 2; 5640 5641 uint64_t ResByArgNum = Record[Slot++]; 5642 for (uint64_t I = 0; I != ResByArgNum; ++I) 5643 parseWholeProgramDevirtResolutionByArg(Record, Slot, Wpd); 5644 } 5645 5646 static void parseTypeIdSummaryRecord(ArrayRef<uint64_t> Record, 5647 StringRef Strtab, 5648 ModuleSummaryIndex &TheIndex) { 5649 size_t Slot = 0; 5650 TypeIdSummary &TypeId = TheIndex.getOrInsertTypeIdSummary( 5651 {Strtab.data() + Record[Slot], static_cast<size_t>(Record[Slot + 1])}); 5652 Slot += 2; 5653 5654 TypeId.TTRes.TheKind = static_cast<TypeTestResolution::Kind>(Record[Slot++]); 5655 TypeId.TTRes.SizeM1BitWidth = Record[Slot++]; 5656 TypeId.TTRes.AlignLog2 = Record[Slot++]; 5657 TypeId.TTRes.SizeM1 = Record[Slot++]; 5658 TypeId.TTRes.BitMask = Record[Slot++]; 5659 TypeId.TTRes.InlineBits = Record[Slot++]; 5660 5661 while (Slot < Record.size()) 5662 parseWholeProgramDevirtResolution(Record, Strtab, Slot, TypeId); 5663 } 5664 5665 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableInfo( 5666 ArrayRef<uint64_t> Record, size_t &Slot, 5667 TypeIdCompatibleVtableInfo &TypeId) { 5668 uint64_t Offset = Record[Slot++]; 5669 ValueInfo Callee = getValueInfoFromValueId(Record[Slot++]).first; 5670 TypeId.push_back({Offset, Callee}); 5671 } 5672 5673 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableSummaryRecord( 5674 ArrayRef<uint64_t> Record) { 5675 size_t Slot = 0; 5676 TypeIdCompatibleVtableInfo &TypeId = 5677 TheIndex.getOrInsertTypeIdCompatibleVtableSummary( 5678 {Strtab.data() + Record[Slot], 5679 static_cast<size_t>(Record[Slot + 1])}); 5680 Slot += 2; 5681 5682 while (Slot < Record.size()) 5683 parseTypeIdCompatibleVtableInfo(Record, Slot, TypeId); 5684 } 5685 5686 static void setImmutableRefs(std::vector<ValueInfo> &Refs, unsigned Count) { 5687 // Read-only refs are in the end of the refs list. 5688 for (unsigned RefNo = Refs.size() - Count; RefNo < Refs.size(); ++RefNo) 5689 Refs[RefNo].setReadOnly(); 5690 } 5691 5692 // Eagerly parse the entire summary block. This populates the GlobalValueSummary 5693 // objects in the index. 5694 Error ModuleSummaryIndexBitcodeReader::parseEntireSummary(unsigned ID) { 5695 if (Error Err = Stream.EnterSubBlock(ID)) 5696 return Err; 5697 SmallVector<uint64_t, 64> Record; 5698 5699 // Parse version 5700 { 5701 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 5702 if (!MaybeEntry) 5703 return MaybeEntry.takeError(); 5704 BitstreamEntry Entry = MaybeEntry.get(); 5705 5706 if (Entry.Kind != BitstreamEntry::Record) 5707 return error("Invalid Summary Block: record for version expected"); 5708 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 5709 if (!MaybeRecord) 5710 return MaybeRecord.takeError(); 5711 if (MaybeRecord.get() != bitc::FS_VERSION) 5712 return error("Invalid Summary Block: version expected"); 5713 } 5714 const uint64_t Version = Record[0]; 5715 const bool IsOldProfileFormat = Version == 1; 5716 if (Version < 1 || Version > 6) 5717 return error("Invalid summary version " + Twine(Version) + 5718 ". Version should be in the range [1-6]."); 5719 Record.clear(); 5720 5721 // Keep around the last seen summary to be used when we see an optional 5722 // "OriginalName" attachement. 5723 GlobalValueSummary *LastSeenSummary = nullptr; 5724 GlobalValue::GUID LastSeenGUID = 0; 5725 5726 // We can expect to see any number of type ID information records before 5727 // each function summary records; these variables store the information 5728 // collected so far so that it can be used to create the summary object. 5729 std::vector<GlobalValue::GUID> PendingTypeTests; 5730 std::vector<FunctionSummary::VFuncId> PendingTypeTestAssumeVCalls, 5731 PendingTypeCheckedLoadVCalls; 5732 std::vector<FunctionSummary::ConstVCall> PendingTypeTestAssumeConstVCalls, 5733 PendingTypeCheckedLoadConstVCalls; 5734 5735 while (true) { 5736 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 5737 if (!MaybeEntry) 5738 return MaybeEntry.takeError(); 5739 BitstreamEntry Entry = MaybeEntry.get(); 5740 5741 switch (Entry.Kind) { 5742 case BitstreamEntry::SubBlock: // Handled for us already. 5743 case BitstreamEntry::Error: 5744 return error("Malformed block"); 5745 case BitstreamEntry::EndBlock: 5746 return Error::success(); 5747 case BitstreamEntry::Record: 5748 // The interesting case. 5749 break; 5750 } 5751 5752 // Read a record. The record format depends on whether this 5753 // is a per-module index or a combined index file. In the per-module 5754 // case the records contain the associated value's ID for correlation 5755 // with VST entries. In the combined index the correlation is done 5756 // via the bitcode offset of the summary records (which were saved 5757 // in the combined index VST entries). The records also contain 5758 // information used for ThinLTO renaming and importing. 5759 Record.clear(); 5760 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 5761 if (!MaybeBitCode) 5762 return MaybeBitCode.takeError(); 5763 switch (unsigned BitCode = MaybeBitCode.get()) { 5764 default: // Default behavior: ignore. 5765 break; 5766 case bitc::FS_FLAGS: { // [flags] 5767 uint64_t Flags = Record[0]; 5768 // Scan flags. 5769 assert(Flags <= 0x1f && "Unexpected bits in flag"); 5770 5771 // 1 bit: WithGlobalValueDeadStripping flag. 5772 // Set on combined index only. 5773 if (Flags & 0x1) 5774 TheIndex.setWithGlobalValueDeadStripping(); 5775 // 1 bit: SkipModuleByDistributedBackend flag. 5776 // Set on combined index only. 5777 if (Flags & 0x2) 5778 TheIndex.setSkipModuleByDistributedBackend(); 5779 // 1 bit: HasSyntheticEntryCounts flag. 5780 // Set on combined index only. 5781 if (Flags & 0x4) 5782 TheIndex.setHasSyntheticEntryCounts(); 5783 // 1 bit: DisableSplitLTOUnit flag. 5784 // Set on per module indexes. It is up to the client to validate 5785 // the consistency of this flag across modules being linked. 5786 if (Flags & 0x8) 5787 TheIndex.setEnableSplitLTOUnit(); 5788 // 1 bit: PartiallySplitLTOUnits flag. 5789 // Set on combined index only. 5790 if (Flags & 0x10) 5791 TheIndex.setPartiallySplitLTOUnits(); 5792 break; 5793 } 5794 case bitc::FS_VALUE_GUID: { // [valueid, refguid] 5795 uint64_t ValueID = Record[0]; 5796 GlobalValue::GUID RefGUID = Record[1]; 5797 ValueIdToValueInfoMap[ValueID] = 5798 std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID); 5799 break; 5800 } 5801 // FS_PERMODULE: [valueid, flags, instcount, fflags, numrefs, 5802 // numrefs x valueid, n x (valueid)] 5803 // FS_PERMODULE_PROFILE: [valueid, flags, instcount, fflags, numrefs, 5804 // numrefs x valueid, 5805 // n x (valueid, hotness)] 5806 // FS_PERMODULE_RELBF: [valueid, flags, instcount, fflags, numrefs, 5807 // numrefs x valueid, 5808 // n x (valueid, relblockfreq)] 5809 case bitc::FS_PERMODULE: 5810 case bitc::FS_PERMODULE_RELBF: 5811 case bitc::FS_PERMODULE_PROFILE: { 5812 unsigned ValueID = Record[0]; 5813 uint64_t RawFlags = Record[1]; 5814 unsigned InstCount = Record[2]; 5815 uint64_t RawFunFlags = 0; 5816 unsigned NumRefs = Record[3]; 5817 unsigned NumImmutableRefs = 0; 5818 int RefListStartIndex = 4; 5819 if (Version >= 4) { 5820 RawFunFlags = Record[3]; 5821 NumRefs = Record[4]; 5822 RefListStartIndex = 5; 5823 if (Version >= 5) { 5824 NumImmutableRefs = Record[5]; 5825 RefListStartIndex = 6; 5826 } 5827 } 5828 5829 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5830 // The module path string ref set in the summary must be owned by the 5831 // index's module string table. Since we don't have a module path 5832 // string table section in the per-module index, we create a single 5833 // module path string table entry with an empty (0) ID to take 5834 // ownership. 5835 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 5836 assert(Record.size() >= RefListStartIndex + NumRefs && 5837 "Record size inconsistent with number of references"); 5838 std::vector<ValueInfo> Refs = makeRefList( 5839 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 5840 bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE); 5841 bool HasRelBF = (BitCode == bitc::FS_PERMODULE_RELBF); 5842 std::vector<FunctionSummary::EdgeTy> Calls = makeCallList( 5843 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex), 5844 IsOldProfileFormat, HasProfile, HasRelBF); 5845 setImmutableRefs(Refs, NumImmutableRefs); 5846 auto FS = llvm::make_unique<FunctionSummary>( 5847 Flags, InstCount, getDecodedFFlags(RawFunFlags), /*EntryCount=*/0, 5848 std::move(Refs), std::move(Calls), std::move(PendingTypeTests), 5849 std::move(PendingTypeTestAssumeVCalls), 5850 std::move(PendingTypeCheckedLoadVCalls), 5851 std::move(PendingTypeTestAssumeConstVCalls), 5852 std::move(PendingTypeCheckedLoadConstVCalls)); 5853 PendingTypeTests.clear(); 5854 PendingTypeTestAssumeVCalls.clear(); 5855 PendingTypeCheckedLoadVCalls.clear(); 5856 PendingTypeTestAssumeConstVCalls.clear(); 5857 PendingTypeCheckedLoadConstVCalls.clear(); 5858 auto VIAndOriginalGUID = getValueInfoFromValueId(ValueID); 5859 FS->setModulePath(getThisModule()->first()); 5860 FS->setOriginalName(VIAndOriginalGUID.second); 5861 TheIndex.addGlobalValueSummary(VIAndOriginalGUID.first, std::move(FS)); 5862 break; 5863 } 5864 // FS_ALIAS: [valueid, flags, valueid] 5865 // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as 5866 // they expect all aliasee summaries to be available. 5867 case bitc::FS_ALIAS: { 5868 unsigned ValueID = Record[0]; 5869 uint64_t RawFlags = Record[1]; 5870 unsigned AliaseeID = Record[2]; 5871 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5872 auto AS = llvm::make_unique<AliasSummary>(Flags); 5873 // The module path string ref set in the summary must be owned by the 5874 // index's module string table. Since we don't have a module path 5875 // string table section in the per-module index, we create a single 5876 // module path string table entry with an empty (0) ID to take 5877 // ownership. 5878 AS->setModulePath(getThisModule()->first()); 5879 5880 auto AliaseeVI = getValueInfoFromValueId(AliaseeID).first; 5881 auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, ModulePath); 5882 if (!AliaseeInModule) 5883 return error("Alias expects aliasee summary to be parsed"); 5884 AS->setAliasee(AliaseeVI, AliaseeInModule); 5885 5886 auto GUID = getValueInfoFromValueId(ValueID); 5887 AS->setOriginalName(GUID.second); 5888 TheIndex.addGlobalValueSummary(GUID.first, std::move(AS)); 5889 break; 5890 } 5891 // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, n x valueid] 5892 case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: { 5893 unsigned ValueID = Record[0]; 5894 uint64_t RawFlags = Record[1]; 5895 unsigned RefArrayStart = 2; 5896 GlobalVarSummary::GVarFlags GVF; 5897 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5898 if (Version >= 5) { 5899 GVF = getDecodedGVarFlags(Record[2]); 5900 RefArrayStart = 3; 5901 } 5902 std::vector<ValueInfo> Refs = 5903 makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart)); 5904 auto FS = 5905 llvm::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 5906 FS->setModulePath(getThisModule()->first()); 5907 auto GUID = getValueInfoFromValueId(ValueID); 5908 FS->setOriginalName(GUID.second); 5909 TheIndex.addGlobalValueSummary(GUID.first, std::move(FS)); 5910 break; 5911 } 5912 // FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, 5913 // numrefs, numrefs x valueid, 5914 // n x (valueid, offset)] 5915 case bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: { 5916 unsigned ValueID = Record[0]; 5917 uint64_t RawFlags = Record[1]; 5918 GlobalVarSummary::GVarFlags GVF = getDecodedGVarFlags(Record[2]); 5919 unsigned NumRefs = Record[3]; 5920 unsigned RefListStartIndex = 4; 5921 unsigned VTableListStartIndex = RefListStartIndex + NumRefs; 5922 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5923 std::vector<ValueInfo> Refs = makeRefList( 5924 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 5925 VTableFuncList VTableFuncs; 5926 for (unsigned I = VTableListStartIndex, E = Record.size(); I != E; ++I) { 5927 ValueInfo Callee = getValueInfoFromValueId(Record[I]).first; 5928 uint64_t Offset = Record[++I]; 5929 VTableFuncs.push_back({Callee, Offset}); 5930 } 5931 auto VS = 5932 llvm::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 5933 VS->setModulePath(getThisModule()->first()); 5934 VS->setVTableFuncs(VTableFuncs); 5935 auto GUID = getValueInfoFromValueId(ValueID); 5936 VS->setOriginalName(GUID.second); 5937 TheIndex.addGlobalValueSummary(GUID.first, std::move(VS)); 5938 break; 5939 } 5940 // FS_COMBINED: [valueid, modid, flags, instcount, fflags, numrefs, 5941 // numrefs x valueid, n x (valueid)] 5942 // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, fflags, numrefs, 5943 // numrefs x valueid, n x (valueid, hotness)] 5944 case bitc::FS_COMBINED: 5945 case bitc::FS_COMBINED_PROFILE: { 5946 unsigned ValueID = Record[0]; 5947 uint64_t ModuleId = Record[1]; 5948 uint64_t RawFlags = Record[2]; 5949 unsigned InstCount = Record[3]; 5950 uint64_t RawFunFlags = 0; 5951 uint64_t EntryCount = 0; 5952 unsigned NumRefs = Record[4]; 5953 unsigned NumImmutableRefs = 0; 5954 int RefListStartIndex = 5; 5955 5956 if (Version >= 4) { 5957 RawFunFlags = Record[4]; 5958 RefListStartIndex = 6; 5959 size_t NumRefsIndex = 5; 5960 if (Version >= 5) { 5961 RefListStartIndex = 7; 5962 if (Version >= 6) { 5963 NumRefsIndex = 6; 5964 EntryCount = Record[5]; 5965 RefListStartIndex = 8; 5966 } 5967 NumImmutableRefs = Record[RefListStartIndex - 1]; 5968 } 5969 NumRefs = Record[NumRefsIndex]; 5970 } 5971 5972 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5973 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 5974 assert(Record.size() >= RefListStartIndex + NumRefs && 5975 "Record size inconsistent with number of references"); 5976 std::vector<ValueInfo> Refs = makeRefList( 5977 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 5978 bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE); 5979 std::vector<FunctionSummary::EdgeTy> Edges = makeCallList( 5980 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex), 5981 IsOldProfileFormat, HasProfile, false); 5982 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 5983 setImmutableRefs(Refs, NumImmutableRefs); 5984 auto FS = llvm::make_unique<FunctionSummary>( 5985 Flags, InstCount, getDecodedFFlags(RawFunFlags), EntryCount, 5986 std::move(Refs), std::move(Edges), std::move(PendingTypeTests), 5987 std::move(PendingTypeTestAssumeVCalls), 5988 std::move(PendingTypeCheckedLoadVCalls), 5989 std::move(PendingTypeTestAssumeConstVCalls), 5990 std::move(PendingTypeCheckedLoadConstVCalls)); 5991 PendingTypeTests.clear(); 5992 PendingTypeTestAssumeVCalls.clear(); 5993 PendingTypeCheckedLoadVCalls.clear(); 5994 PendingTypeTestAssumeConstVCalls.clear(); 5995 PendingTypeCheckedLoadConstVCalls.clear(); 5996 LastSeenSummary = FS.get(); 5997 LastSeenGUID = VI.getGUID(); 5998 FS->setModulePath(ModuleIdMap[ModuleId]); 5999 TheIndex.addGlobalValueSummary(VI, std::move(FS)); 6000 break; 6001 } 6002 // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid] 6003 // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as 6004 // they expect all aliasee summaries to be available. 6005 case bitc::FS_COMBINED_ALIAS: { 6006 unsigned ValueID = Record[0]; 6007 uint64_t ModuleId = Record[1]; 6008 uint64_t RawFlags = Record[2]; 6009 unsigned AliaseeValueId = Record[3]; 6010 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6011 auto AS = llvm::make_unique<AliasSummary>(Flags); 6012 LastSeenSummary = AS.get(); 6013 AS->setModulePath(ModuleIdMap[ModuleId]); 6014 6015 auto AliaseeVI = getValueInfoFromValueId(AliaseeValueId).first; 6016 auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, AS->modulePath()); 6017 AS->setAliasee(AliaseeVI, AliaseeInModule); 6018 6019 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 6020 LastSeenGUID = VI.getGUID(); 6021 TheIndex.addGlobalValueSummary(VI, std::move(AS)); 6022 break; 6023 } 6024 // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid] 6025 case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: { 6026 unsigned ValueID = Record[0]; 6027 uint64_t ModuleId = Record[1]; 6028 uint64_t RawFlags = Record[2]; 6029 unsigned RefArrayStart = 3; 6030 GlobalVarSummary::GVarFlags GVF; 6031 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6032 if (Version >= 5) { 6033 GVF = getDecodedGVarFlags(Record[3]); 6034 RefArrayStart = 4; 6035 } 6036 std::vector<ValueInfo> Refs = 6037 makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart)); 6038 auto FS = 6039 llvm::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 6040 LastSeenSummary = FS.get(); 6041 FS->setModulePath(ModuleIdMap[ModuleId]); 6042 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 6043 LastSeenGUID = VI.getGUID(); 6044 TheIndex.addGlobalValueSummary(VI, std::move(FS)); 6045 break; 6046 } 6047 // FS_COMBINED_ORIGINAL_NAME: [original_name] 6048 case bitc::FS_COMBINED_ORIGINAL_NAME: { 6049 uint64_t OriginalName = Record[0]; 6050 if (!LastSeenSummary) 6051 return error("Name attachment that does not follow a combined record"); 6052 LastSeenSummary->setOriginalName(OriginalName); 6053 TheIndex.addOriginalName(LastSeenGUID, OriginalName); 6054 // Reset the LastSeenSummary 6055 LastSeenSummary = nullptr; 6056 LastSeenGUID = 0; 6057 break; 6058 } 6059 case bitc::FS_TYPE_TESTS: 6060 assert(PendingTypeTests.empty()); 6061 PendingTypeTests.insert(PendingTypeTests.end(), Record.begin(), 6062 Record.end()); 6063 break; 6064 6065 case bitc::FS_TYPE_TEST_ASSUME_VCALLS: 6066 assert(PendingTypeTestAssumeVCalls.empty()); 6067 for (unsigned I = 0; I != Record.size(); I += 2) 6068 PendingTypeTestAssumeVCalls.push_back({Record[I], Record[I+1]}); 6069 break; 6070 6071 case bitc::FS_TYPE_CHECKED_LOAD_VCALLS: 6072 assert(PendingTypeCheckedLoadVCalls.empty()); 6073 for (unsigned I = 0; I != Record.size(); I += 2) 6074 PendingTypeCheckedLoadVCalls.push_back({Record[I], Record[I+1]}); 6075 break; 6076 6077 case bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL: 6078 PendingTypeTestAssumeConstVCalls.push_back( 6079 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}}); 6080 break; 6081 6082 case bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL: 6083 PendingTypeCheckedLoadConstVCalls.push_back( 6084 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}}); 6085 break; 6086 6087 case bitc::FS_CFI_FUNCTION_DEFS: { 6088 std::set<std::string> &CfiFunctionDefs = TheIndex.cfiFunctionDefs(); 6089 for (unsigned I = 0; I != Record.size(); I += 2) 6090 CfiFunctionDefs.insert( 6091 {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])}); 6092 break; 6093 } 6094 6095 case bitc::FS_CFI_FUNCTION_DECLS: { 6096 std::set<std::string> &CfiFunctionDecls = TheIndex.cfiFunctionDecls(); 6097 for (unsigned I = 0; I != Record.size(); I += 2) 6098 CfiFunctionDecls.insert( 6099 {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])}); 6100 break; 6101 } 6102 6103 case bitc::FS_TYPE_ID: 6104 parseTypeIdSummaryRecord(Record, Strtab, TheIndex); 6105 break; 6106 6107 case bitc::FS_TYPE_ID_METADATA: 6108 parseTypeIdCompatibleVtableSummaryRecord(Record); 6109 break; 6110 } 6111 } 6112 llvm_unreachable("Exit infinite loop"); 6113 } 6114 6115 // Parse the module string table block into the Index. 6116 // This populates the ModulePathStringTable map in the index. 6117 Error ModuleSummaryIndexBitcodeReader::parseModuleStringTable() { 6118 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID)) 6119 return Err; 6120 6121 SmallVector<uint64_t, 64> Record; 6122 6123 SmallString<128> ModulePath; 6124 ModuleSummaryIndex::ModuleInfo *LastSeenModule = nullptr; 6125 6126 while (true) { 6127 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 6128 if (!MaybeEntry) 6129 return MaybeEntry.takeError(); 6130 BitstreamEntry Entry = MaybeEntry.get(); 6131 6132 switch (Entry.Kind) { 6133 case BitstreamEntry::SubBlock: // Handled for us already. 6134 case BitstreamEntry::Error: 6135 return error("Malformed block"); 6136 case BitstreamEntry::EndBlock: 6137 return Error::success(); 6138 case BitstreamEntry::Record: 6139 // The interesting case. 6140 break; 6141 } 6142 6143 Record.clear(); 6144 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 6145 if (!MaybeRecord) 6146 return MaybeRecord.takeError(); 6147 switch (MaybeRecord.get()) { 6148 default: // Default behavior: ignore. 6149 break; 6150 case bitc::MST_CODE_ENTRY: { 6151 // MST_ENTRY: [modid, namechar x N] 6152 uint64_t ModuleId = Record[0]; 6153 6154 if (convertToString(Record, 1, ModulePath)) 6155 return error("Invalid record"); 6156 6157 LastSeenModule = TheIndex.addModule(ModulePath, ModuleId); 6158 ModuleIdMap[ModuleId] = LastSeenModule->first(); 6159 6160 ModulePath.clear(); 6161 break; 6162 } 6163 /// MST_CODE_HASH: [5*i32] 6164 case bitc::MST_CODE_HASH: { 6165 if (Record.size() != 5) 6166 return error("Invalid hash length " + Twine(Record.size()).str()); 6167 if (!LastSeenModule) 6168 return error("Invalid hash that does not follow a module path"); 6169 int Pos = 0; 6170 for (auto &Val : Record) { 6171 assert(!(Val >> 32) && "Unexpected high bits set"); 6172 LastSeenModule->second.second[Pos++] = Val; 6173 } 6174 // Reset LastSeenModule to avoid overriding the hash unexpectedly. 6175 LastSeenModule = nullptr; 6176 break; 6177 } 6178 } 6179 } 6180 llvm_unreachable("Exit infinite loop"); 6181 } 6182 6183 namespace { 6184 6185 // FIXME: This class is only here to support the transition to llvm::Error. It 6186 // will be removed once this transition is complete. Clients should prefer to 6187 // deal with the Error value directly, rather than converting to error_code. 6188 class BitcodeErrorCategoryType : public std::error_category { 6189 const char *name() const noexcept override { 6190 return "llvm.bitcode"; 6191 } 6192 6193 std::string message(int IE) const override { 6194 BitcodeError E = static_cast<BitcodeError>(IE); 6195 switch (E) { 6196 case BitcodeError::CorruptedBitcode: 6197 return "Corrupted bitcode"; 6198 } 6199 llvm_unreachable("Unknown error type!"); 6200 } 6201 }; 6202 6203 } // end anonymous namespace 6204 6205 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory; 6206 6207 const std::error_category &llvm::BitcodeErrorCategory() { 6208 return *ErrorCategory; 6209 } 6210 6211 static Expected<StringRef> readBlobInRecord(BitstreamCursor &Stream, 6212 unsigned Block, unsigned RecordID) { 6213 if (Error Err = Stream.EnterSubBlock(Block)) 6214 return std::move(Err); 6215 6216 StringRef Strtab; 6217 while (true) { 6218 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 6219 if (!MaybeEntry) 6220 return MaybeEntry.takeError(); 6221 llvm::BitstreamEntry Entry = MaybeEntry.get(); 6222 6223 switch (Entry.Kind) { 6224 case BitstreamEntry::EndBlock: 6225 return Strtab; 6226 6227 case BitstreamEntry::Error: 6228 return error("Malformed block"); 6229 6230 case BitstreamEntry::SubBlock: 6231 if (Error Err = Stream.SkipBlock()) 6232 return std::move(Err); 6233 break; 6234 6235 case BitstreamEntry::Record: 6236 StringRef Blob; 6237 SmallVector<uint64_t, 1> Record; 6238 Expected<unsigned> MaybeRecord = 6239 Stream.readRecord(Entry.ID, Record, &Blob); 6240 if (!MaybeRecord) 6241 return MaybeRecord.takeError(); 6242 if (MaybeRecord.get() == RecordID) 6243 Strtab = Blob; 6244 break; 6245 } 6246 } 6247 } 6248 6249 //===----------------------------------------------------------------------===// 6250 // External interface 6251 //===----------------------------------------------------------------------===// 6252 6253 Expected<std::vector<BitcodeModule>> 6254 llvm::getBitcodeModuleList(MemoryBufferRef Buffer) { 6255 auto FOrErr = getBitcodeFileContents(Buffer); 6256 if (!FOrErr) 6257 return FOrErr.takeError(); 6258 return std::move(FOrErr->Mods); 6259 } 6260 6261 Expected<BitcodeFileContents> 6262 llvm::getBitcodeFileContents(MemoryBufferRef Buffer) { 6263 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 6264 if (!StreamOrErr) 6265 return StreamOrErr.takeError(); 6266 BitstreamCursor &Stream = *StreamOrErr; 6267 6268 BitcodeFileContents F; 6269 while (true) { 6270 uint64_t BCBegin = Stream.getCurrentByteNo(); 6271 6272 // We may be consuming bitcode from a client that leaves garbage at the end 6273 // of the bitcode stream (e.g. Apple's ar tool). If we are close enough to 6274 // the end that there cannot possibly be another module, stop looking. 6275 if (BCBegin + 8 >= Stream.getBitcodeBytes().size()) 6276 return F; 6277 6278 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 6279 if (!MaybeEntry) 6280 return MaybeEntry.takeError(); 6281 llvm::BitstreamEntry Entry = MaybeEntry.get(); 6282 6283 switch (Entry.Kind) { 6284 case BitstreamEntry::EndBlock: 6285 case BitstreamEntry::Error: 6286 return error("Malformed block"); 6287 6288 case BitstreamEntry::SubBlock: { 6289 uint64_t IdentificationBit = -1ull; 6290 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) { 6291 IdentificationBit = Stream.GetCurrentBitNo() - BCBegin * 8; 6292 if (Error Err = Stream.SkipBlock()) 6293 return std::move(Err); 6294 6295 { 6296 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 6297 if (!MaybeEntry) 6298 return MaybeEntry.takeError(); 6299 Entry = MaybeEntry.get(); 6300 } 6301 6302 if (Entry.Kind != BitstreamEntry::SubBlock || 6303 Entry.ID != bitc::MODULE_BLOCK_ID) 6304 return error("Malformed block"); 6305 } 6306 6307 if (Entry.ID == bitc::MODULE_BLOCK_ID) { 6308 uint64_t ModuleBit = Stream.GetCurrentBitNo() - BCBegin * 8; 6309 if (Error Err = Stream.SkipBlock()) 6310 return std::move(Err); 6311 6312 F.Mods.push_back({Stream.getBitcodeBytes().slice( 6313 BCBegin, Stream.getCurrentByteNo() - BCBegin), 6314 Buffer.getBufferIdentifier(), IdentificationBit, 6315 ModuleBit}); 6316 continue; 6317 } 6318 6319 if (Entry.ID == bitc::STRTAB_BLOCK_ID) { 6320 Expected<StringRef> Strtab = 6321 readBlobInRecord(Stream, bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB); 6322 if (!Strtab) 6323 return Strtab.takeError(); 6324 // This string table is used by every preceding bitcode module that does 6325 // not have its own string table. A bitcode file may have multiple 6326 // string tables if it was created by binary concatenation, for example 6327 // with "llvm-cat -b". 6328 for (auto I = F.Mods.rbegin(), E = F.Mods.rend(); I != E; ++I) { 6329 if (!I->Strtab.empty()) 6330 break; 6331 I->Strtab = *Strtab; 6332 } 6333 // Similarly, the string table is used by every preceding symbol table; 6334 // normally there will be just one unless the bitcode file was created 6335 // by binary concatenation. 6336 if (!F.Symtab.empty() && F.StrtabForSymtab.empty()) 6337 F.StrtabForSymtab = *Strtab; 6338 continue; 6339 } 6340 6341 if (Entry.ID == bitc::SYMTAB_BLOCK_ID) { 6342 Expected<StringRef> SymtabOrErr = 6343 readBlobInRecord(Stream, bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB); 6344 if (!SymtabOrErr) 6345 return SymtabOrErr.takeError(); 6346 6347 // We can expect the bitcode file to have multiple symbol tables if it 6348 // was created by binary concatenation. In that case we silently 6349 // ignore any subsequent symbol tables, which is fine because this is a 6350 // low level function. The client is expected to notice that the number 6351 // of modules in the symbol table does not match the number of modules 6352 // in the input file and regenerate the symbol table. 6353 if (F.Symtab.empty()) 6354 F.Symtab = *SymtabOrErr; 6355 continue; 6356 } 6357 6358 if (Error Err = Stream.SkipBlock()) 6359 return std::move(Err); 6360 continue; 6361 } 6362 case BitstreamEntry::Record: 6363 if (Expected<unsigned> StreamFailed = Stream.skipRecord(Entry.ID)) 6364 continue; 6365 else 6366 return StreamFailed.takeError(); 6367 } 6368 } 6369 } 6370 6371 /// Get a lazy one-at-time loading module from bitcode. 6372 /// 6373 /// This isn't always used in a lazy context. In particular, it's also used by 6374 /// \a parseModule(). If this is truly lazy, then we need to eagerly pull 6375 /// in forward-referenced functions from block address references. 6376 /// 6377 /// \param[in] MaterializeAll Set to \c true if we should materialize 6378 /// everything. 6379 Expected<std::unique_ptr<Module>> 6380 BitcodeModule::getModuleImpl(LLVMContext &Context, bool MaterializeAll, 6381 bool ShouldLazyLoadMetadata, bool IsImporting) { 6382 BitstreamCursor Stream(Buffer); 6383 6384 std::string ProducerIdentification; 6385 if (IdentificationBit != -1ull) { 6386 if (Error JumpFailed = Stream.JumpToBit(IdentificationBit)) 6387 return std::move(JumpFailed); 6388 Expected<std::string> ProducerIdentificationOrErr = 6389 readIdentificationBlock(Stream); 6390 if (!ProducerIdentificationOrErr) 6391 return ProducerIdentificationOrErr.takeError(); 6392 6393 ProducerIdentification = *ProducerIdentificationOrErr; 6394 } 6395 6396 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 6397 return std::move(JumpFailed); 6398 auto *R = new BitcodeReader(std::move(Stream), Strtab, ProducerIdentification, 6399 Context); 6400 6401 std::unique_ptr<Module> M = 6402 llvm::make_unique<Module>(ModuleIdentifier, Context); 6403 M->setMaterializer(R); 6404 6405 // Delay parsing Metadata if ShouldLazyLoadMetadata is true. 6406 if (Error Err = 6407 R->parseBitcodeInto(M.get(), ShouldLazyLoadMetadata, IsImporting)) 6408 return std::move(Err); 6409 6410 if (MaterializeAll) { 6411 // Read in the entire module, and destroy the BitcodeReader. 6412 if (Error Err = M->materializeAll()) 6413 return std::move(Err); 6414 } else { 6415 // Resolve forward references from blockaddresses. 6416 if (Error Err = R->materializeForwardReferencedFunctions()) 6417 return std::move(Err); 6418 } 6419 return std::move(M); 6420 } 6421 6422 Expected<std::unique_ptr<Module>> 6423 BitcodeModule::getLazyModule(LLVMContext &Context, bool ShouldLazyLoadMetadata, 6424 bool IsImporting) { 6425 return getModuleImpl(Context, false, ShouldLazyLoadMetadata, IsImporting); 6426 } 6427 6428 // Parse the specified bitcode buffer and merge the index into CombinedIndex. 6429 // We don't use ModuleIdentifier here because the client may need to control the 6430 // module path used in the combined summary (e.g. when reading summaries for 6431 // regular LTO modules). 6432 Error BitcodeModule::readSummary(ModuleSummaryIndex &CombinedIndex, 6433 StringRef ModulePath, uint64_t ModuleId) { 6434 BitstreamCursor Stream(Buffer); 6435 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 6436 return JumpFailed; 6437 6438 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, CombinedIndex, 6439 ModulePath, ModuleId); 6440 return R.parseModule(); 6441 } 6442 6443 // Parse the specified bitcode buffer, returning the function info index. 6444 Expected<std::unique_ptr<ModuleSummaryIndex>> BitcodeModule::getSummary() { 6445 BitstreamCursor Stream(Buffer); 6446 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 6447 return std::move(JumpFailed); 6448 6449 auto Index = llvm::make_unique<ModuleSummaryIndex>(/*HaveGVs=*/false); 6450 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, *Index, 6451 ModuleIdentifier, 0); 6452 6453 if (Error Err = R.parseModule()) 6454 return std::move(Err); 6455 6456 return std::move(Index); 6457 } 6458 6459 static Expected<bool> getEnableSplitLTOUnitFlag(BitstreamCursor &Stream, 6460 unsigned ID) { 6461 if (Error Err = Stream.EnterSubBlock(ID)) 6462 return std::move(Err); 6463 SmallVector<uint64_t, 64> Record; 6464 6465 while (true) { 6466 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 6467 if (!MaybeEntry) 6468 return MaybeEntry.takeError(); 6469 BitstreamEntry Entry = MaybeEntry.get(); 6470 6471 switch (Entry.Kind) { 6472 case BitstreamEntry::SubBlock: // Handled for us already. 6473 case BitstreamEntry::Error: 6474 return error("Malformed block"); 6475 case BitstreamEntry::EndBlock: 6476 // If no flags record found, conservatively return true to mimic 6477 // behavior before this flag was added. 6478 return true; 6479 case BitstreamEntry::Record: 6480 // The interesting case. 6481 break; 6482 } 6483 6484 // Look for the FS_FLAGS record. 6485 Record.clear(); 6486 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 6487 if (!MaybeBitCode) 6488 return MaybeBitCode.takeError(); 6489 switch (MaybeBitCode.get()) { 6490 default: // Default behavior: ignore. 6491 break; 6492 case bitc::FS_FLAGS: { // [flags] 6493 uint64_t Flags = Record[0]; 6494 // Scan flags. 6495 assert(Flags <= 0x1f && "Unexpected bits in flag"); 6496 6497 return Flags & 0x8; 6498 } 6499 } 6500 } 6501 llvm_unreachable("Exit infinite loop"); 6502 } 6503 6504 // Check if the given bitcode buffer contains a global value summary block. 6505 Expected<BitcodeLTOInfo> BitcodeModule::getLTOInfo() { 6506 BitstreamCursor Stream(Buffer); 6507 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 6508 return std::move(JumpFailed); 6509 6510 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 6511 return std::move(Err); 6512 6513 while (true) { 6514 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 6515 if (!MaybeEntry) 6516 return MaybeEntry.takeError(); 6517 llvm::BitstreamEntry Entry = MaybeEntry.get(); 6518 6519 switch (Entry.Kind) { 6520 case BitstreamEntry::Error: 6521 return error("Malformed block"); 6522 case BitstreamEntry::EndBlock: 6523 return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/false, 6524 /*EnableSplitLTOUnit=*/false}; 6525 6526 case BitstreamEntry::SubBlock: 6527 if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) { 6528 Expected<bool> EnableSplitLTOUnit = 6529 getEnableSplitLTOUnitFlag(Stream, Entry.ID); 6530 if (!EnableSplitLTOUnit) 6531 return EnableSplitLTOUnit.takeError(); 6532 return BitcodeLTOInfo{/*IsThinLTO=*/true, /*HasSummary=*/true, 6533 *EnableSplitLTOUnit}; 6534 } 6535 6536 if (Entry.ID == bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID) { 6537 Expected<bool> EnableSplitLTOUnit = 6538 getEnableSplitLTOUnitFlag(Stream, Entry.ID); 6539 if (!EnableSplitLTOUnit) 6540 return EnableSplitLTOUnit.takeError(); 6541 return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/true, 6542 *EnableSplitLTOUnit}; 6543 } 6544 6545 // Ignore other sub-blocks. 6546 if (Error Err = Stream.SkipBlock()) 6547 return std::move(Err); 6548 continue; 6549 6550 case BitstreamEntry::Record: 6551 if (Expected<unsigned> StreamFailed = Stream.skipRecord(Entry.ID)) 6552 continue; 6553 else 6554 return StreamFailed.takeError(); 6555 } 6556 } 6557 } 6558 6559 static Expected<BitcodeModule> getSingleModule(MemoryBufferRef Buffer) { 6560 Expected<std::vector<BitcodeModule>> MsOrErr = getBitcodeModuleList(Buffer); 6561 if (!MsOrErr) 6562 return MsOrErr.takeError(); 6563 6564 if (MsOrErr->size() != 1) 6565 return error("Expected a single module"); 6566 6567 return (*MsOrErr)[0]; 6568 } 6569 6570 Expected<std::unique_ptr<Module>> 6571 llvm::getLazyBitcodeModule(MemoryBufferRef Buffer, LLVMContext &Context, 6572 bool ShouldLazyLoadMetadata, bool IsImporting) { 6573 Expected<BitcodeModule> BM = getSingleModule(Buffer); 6574 if (!BM) 6575 return BM.takeError(); 6576 6577 return BM->getLazyModule(Context, ShouldLazyLoadMetadata, IsImporting); 6578 } 6579 6580 Expected<std::unique_ptr<Module>> llvm::getOwningLazyBitcodeModule( 6581 std::unique_ptr<MemoryBuffer> &&Buffer, LLVMContext &Context, 6582 bool ShouldLazyLoadMetadata, bool IsImporting) { 6583 auto MOrErr = getLazyBitcodeModule(*Buffer, Context, ShouldLazyLoadMetadata, 6584 IsImporting); 6585 if (MOrErr) 6586 (*MOrErr)->setOwnedMemoryBuffer(std::move(Buffer)); 6587 return MOrErr; 6588 } 6589 6590 Expected<std::unique_ptr<Module>> 6591 BitcodeModule::parseModule(LLVMContext &Context) { 6592 return getModuleImpl(Context, true, false, false); 6593 // TODO: Restore the use-lists to the in-memory state when the bitcode was 6594 // written. We must defer until the Module has been fully materialized. 6595 } 6596 6597 Expected<std::unique_ptr<Module>> llvm::parseBitcodeFile(MemoryBufferRef Buffer, 6598 LLVMContext &Context) { 6599 Expected<BitcodeModule> BM = getSingleModule(Buffer); 6600 if (!BM) 6601 return BM.takeError(); 6602 6603 return BM->parseModule(Context); 6604 } 6605 6606 Expected<std::string> llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer) { 6607 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 6608 if (!StreamOrErr) 6609 return StreamOrErr.takeError(); 6610 6611 return readTriple(*StreamOrErr); 6612 } 6613 6614 Expected<bool> llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer) { 6615 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 6616 if (!StreamOrErr) 6617 return StreamOrErr.takeError(); 6618 6619 return hasObjCCategory(*StreamOrErr); 6620 } 6621 6622 Expected<std::string> llvm::getBitcodeProducerString(MemoryBufferRef Buffer) { 6623 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 6624 if (!StreamOrErr) 6625 return StreamOrErr.takeError(); 6626 6627 return readIdentificationCode(*StreamOrErr); 6628 } 6629 6630 Error llvm::readModuleSummaryIndex(MemoryBufferRef Buffer, 6631 ModuleSummaryIndex &CombinedIndex, 6632 uint64_t ModuleId) { 6633 Expected<BitcodeModule> BM = getSingleModule(Buffer); 6634 if (!BM) 6635 return BM.takeError(); 6636 6637 return BM->readSummary(CombinedIndex, BM->getModuleIdentifier(), ModuleId); 6638 } 6639 6640 Expected<std::unique_ptr<ModuleSummaryIndex>> 6641 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer) { 6642 Expected<BitcodeModule> BM = getSingleModule(Buffer); 6643 if (!BM) 6644 return BM.takeError(); 6645 6646 return BM->getSummary(); 6647 } 6648 6649 Expected<BitcodeLTOInfo> llvm::getBitcodeLTOInfo(MemoryBufferRef Buffer) { 6650 Expected<BitcodeModule> BM = getSingleModule(Buffer); 6651 if (!BM) 6652 return BM.takeError(); 6653 6654 return BM->getLTOInfo(); 6655 } 6656 6657 Expected<std::unique_ptr<ModuleSummaryIndex>> 6658 llvm::getModuleSummaryIndexForFile(StringRef Path, 6659 bool IgnoreEmptyThinLTOIndexFile) { 6660 ErrorOr<std::unique_ptr<MemoryBuffer>> FileOrErr = 6661 MemoryBuffer::getFileOrSTDIN(Path); 6662 if (!FileOrErr) 6663 return errorCodeToError(FileOrErr.getError()); 6664 if (IgnoreEmptyThinLTOIndexFile && !(*FileOrErr)->getBufferSize()) 6665 return nullptr; 6666 return getModuleSummaryIndex(**FileOrErr); 6667 } 6668