1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #include "llvm/Bitcode/BitcodeReader.h"
11 #include "llvm/ADT/APFloat.h"
12 #include "llvm/ADT/APInt.h"
13 #include "llvm/ADT/ArrayRef.h"
14 #include "llvm/ADT/DenseMap.h"
15 #include "llvm/ADT/None.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SmallString.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/ADT/StringRef.h"
20 #include "llvm/ADT/Triple.h"
21 #include "llvm/ADT/Twine.h"
22 #include "llvm/Bitcode/BitstreamReader.h"
23 #include "llvm/Bitcode/LLVMBitCodes.h"
24 #include "llvm/IR/Argument.h"
25 #include "llvm/IR/Attributes.h"
26 #include "llvm/IR/AutoUpgrade.h"
27 #include "llvm/IR/BasicBlock.h"
28 #include "llvm/IR/CallingConv.h"
29 #include "llvm/IR/CallSite.h"
30 #include "llvm/IR/Comdat.h"
31 #include "llvm/IR/Constant.h"
32 #include "llvm/IR/Constants.h"
33 #include "llvm/IR/DebugInfo.h"
34 #include "llvm/IR/DebugInfoMetadata.h"
35 #include "llvm/IR/DebugLoc.h"
36 #include "llvm/IR/DerivedTypes.h"
37 #include "llvm/IR/DiagnosticInfo.h"
38 #include "llvm/IR/DiagnosticPrinter.h"
39 #include "llvm/IR/Function.h"
40 #include "llvm/IR/GlobalAlias.h"
41 #include "llvm/IR/GlobalIFunc.h"
42 #include "llvm/IR/GlobalIndirectSymbol.h"
43 #include "llvm/IR/GlobalObject.h"
44 #include "llvm/IR/GlobalValue.h"
45 #include "llvm/IR/GlobalVariable.h"
46 #include "llvm/IR/GVMaterializer.h"
47 #include "llvm/IR/InlineAsm.h"
48 #include "llvm/IR/InstrTypes.h"
49 #include "llvm/IR/Instruction.h"
50 #include "llvm/IR/Instructions.h"
51 #include "llvm/IR/Intrinsics.h"
52 #include "llvm/IR/LLVMContext.h"
53 #include "llvm/IR/Module.h"
54 #include "llvm/IR/ModuleSummaryIndex.h"
55 #include "llvm/IR/OperandTraits.h"
56 #include "llvm/IR/Operator.h"
57 #include "llvm/IR/TrackingMDRef.h"
58 #include "llvm/IR/Type.h"
59 #include "llvm/IR/ValueHandle.h"
60 #include "llvm/Support/AtomicOrdering.h"
61 #include "llvm/Support/Casting.h"
62 #include "llvm/Support/CommandLine.h"
63 #include "llvm/Support/Compiler.h"
64 #include "llvm/Support/Debug.h"
65 #include "llvm/Support/Error.h"
66 #include "llvm/Support/ErrorHandling.h"
67 #include "llvm/Support/ManagedStatic.h"
68 #include "llvm/Support/MemoryBuffer.h"
69 #include "llvm/Support/raw_ostream.h"
70 #include <algorithm>
71 #include <cassert>
72 #include <cstddef>
73 #include <cstdint>
74 #include <deque>
75 #include <limits>
76 #include <map>
77 #include <memory>
78 #include <string>
79 #include <system_error>
80 #include <tuple>
81 #include <utility>
82 #include <vector>
83 
84 using namespace llvm;
85 
86 static cl::opt<bool> PrintSummaryGUIDs(
87     "print-summary-global-ids", cl::init(false), cl::Hidden,
88     cl::desc(
89         "Print the global id for each value when reading the module summary"));
90 
91 namespace {
92 
93 enum {
94   SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex
95 };
96 
97 class BitcodeReaderValueList {
98   std::vector<WeakVH> ValuePtrs;
99 
100   /// As we resolve forward-referenced constants, we add information about them
101   /// to this vector.  This allows us to resolve them in bulk instead of
102   /// resolving each reference at a time.  See the code in
103   /// ResolveConstantForwardRefs for more information about this.
104   ///
105   /// The key of this vector is the placeholder constant, the value is the slot
106   /// number that holds the resolved value.
107   typedef std::vector<std::pair<Constant*, unsigned> > ResolveConstantsTy;
108   ResolveConstantsTy ResolveConstants;
109   LLVMContext &Context;
110 
111 public:
112   BitcodeReaderValueList(LLVMContext &C) : Context(C) {}
113   ~BitcodeReaderValueList() {
114     assert(ResolveConstants.empty() && "Constants not resolved?");
115   }
116 
117   // vector compatibility methods
118   unsigned size() const { return ValuePtrs.size(); }
119   void resize(unsigned N) { ValuePtrs.resize(N); }
120   void push_back(Value *V) { ValuePtrs.emplace_back(V); }
121 
122   void clear() {
123     assert(ResolveConstants.empty() && "Constants not resolved?");
124     ValuePtrs.clear();
125   }
126 
127   Value *operator[](unsigned i) const {
128     assert(i < ValuePtrs.size());
129     return ValuePtrs[i];
130   }
131 
132   Value *back() const { return ValuePtrs.back(); }
133   void pop_back() { ValuePtrs.pop_back(); }
134   bool empty() const { return ValuePtrs.empty(); }
135 
136   void shrinkTo(unsigned N) {
137     assert(N <= size() && "Invalid shrinkTo request!");
138     ValuePtrs.resize(N);
139   }
140 
141   Constant *getConstantFwdRef(unsigned Idx, Type *Ty);
142   Value *getValueFwdRef(unsigned Idx, Type *Ty);
143 
144   void assignValue(Value *V, unsigned Idx);
145 
146   /// Once all constants are read, this method bulk resolves any forward
147   /// references.
148   void resolveConstantForwardRefs();
149 };
150 
151 class BitcodeReaderMetadataList {
152   unsigned NumFwdRefs;
153   bool AnyFwdRefs;
154   unsigned MinFwdRef;
155   unsigned MaxFwdRef;
156 
157   /// Array of metadata references.
158   ///
159   /// Don't use std::vector here.  Some versions of libc++ copy (instead of
160   /// move) on resize, and TrackingMDRef is very expensive to copy.
161   SmallVector<TrackingMDRef, 1> MetadataPtrs;
162 
163   /// Structures for resolving old type refs.
164   struct {
165     SmallDenseMap<MDString *, TempMDTuple, 1> Unknown;
166     SmallDenseMap<MDString *, DICompositeType *, 1> Final;
167     SmallDenseMap<MDString *, DICompositeType *, 1> FwdDecls;
168     SmallVector<std::pair<TrackingMDRef, TempMDTuple>, 1> Arrays;
169   } OldTypeRefs;
170 
171   LLVMContext &Context;
172 
173 public:
174   BitcodeReaderMetadataList(LLVMContext &C)
175       : NumFwdRefs(0), AnyFwdRefs(false), Context(C) {}
176 
177   // vector compatibility methods
178   unsigned size() const { return MetadataPtrs.size(); }
179   void resize(unsigned N) { MetadataPtrs.resize(N); }
180   void push_back(Metadata *MD) { MetadataPtrs.emplace_back(MD); }
181   void clear() { MetadataPtrs.clear(); }
182   Metadata *back() const { return MetadataPtrs.back(); }
183   void pop_back() { MetadataPtrs.pop_back(); }
184   bool empty() const { return MetadataPtrs.empty(); }
185 
186   Metadata *operator[](unsigned i) const {
187     assert(i < MetadataPtrs.size());
188     return MetadataPtrs[i];
189   }
190 
191   Metadata *lookup(unsigned I) const {
192     if (I < MetadataPtrs.size())
193       return MetadataPtrs[I];
194     return nullptr;
195   }
196 
197   void shrinkTo(unsigned N) {
198     assert(N <= size() && "Invalid shrinkTo request!");
199     assert(!AnyFwdRefs && "Unexpected forward refs");
200     MetadataPtrs.resize(N);
201   }
202 
203   /// Return the given metadata, creating a replaceable forward reference if
204   /// necessary.
205   Metadata *getMetadataFwdRef(unsigned Idx);
206 
207   /// Return the the given metadata only if it is fully resolved.
208   ///
209   /// Gives the same result as \a lookup(), unless \a MDNode::isResolved()
210   /// would give \c false.
211   Metadata *getMetadataIfResolved(unsigned Idx);
212 
213   MDNode *getMDNodeFwdRefOrNull(unsigned Idx);
214   void assignValue(Metadata *MD, unsigned Idx);
215   void tryToResolveCycles();
216   bool hasFwdRefs() const { return AnyFwdRefs; }
217 
218   /// Upgrade a type that had an MDString reference.
219   void addTypeRef(MDString &UUID, DICompositeType &CT);
220 
221   /// Upgrade a type that had an MDString reference.
222   Metadata *upgradeTypeRef(Metadata *MaybeUUID);
223 
224   /// Upgrade a type ref array that may have MDString references.
225   Metadata *upgradeTypeRefArray(Metadata *MaybeTuple);
226 
227 private:
228   Metadata *resolveTypeRefArray(Metadata *MaybeTuple);
229 };
230 
231 Error error(const Twine &Message) {
232   return make_error<StringError>(
233       Message, make_error_code(BitcodeError::CorruptedBitcode));
234 }
235 
236 /// Helper to read the header common to all bitcode files.
237 bool hasValidBitcodeHeader(BitstreamCursor &Stream) {
238   // Sniff for the signature.
239   if (!Stream.canSkipToPos(4) ||
240       Stream.Read(8) != 'B' ||
241       Stream.Read(8) != 'C' ||
242       Stream.Read(4) != 0x0 ||
243       Stream.Read(4) != 0xC ||
244       Stream.Read(4) != 0xE ||
245       Stream.Read(4) != 0xD)
246     return false;
247   return true;
248 }
249 
250 Expected<BitstreamCursor> initStream(MemoryBufferRef Buffer) {
251   const unsigned char *BufPtr = (const unsigned char *)Buffer.getBufferStart();
252   const unsigned char *BufEnd = BufPtr + Buffer.getBufferSize();
253 
254   if (Buffer.getBufferSize() & 3)
255     return error("Invalid bitcode signature");
256 
257   // If we have a wrapper header, parse it and ignore the non-bc file contents.
258   // The magic number is 0x0B17C0DE stored in little endian.
259   if (isBitcodeWrapper(BufPtr, BufEnd))
260     if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true))
261       return error("Invalid bitcode wrapper header");
262 
263   BitstreamCursor Stream(ArrayRef<uint8_t>(BufPtr, BufEnd));
264   if (!hasValidBitcodeHeader(Stream))
265     return error("Invalid bitcode signature");
266 
267   return std::move(Stream);
268 }
269 
270 /// Convert a string from a record into an std::string, return true on failure.
271 template <typename StrTy>
272 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx,
273                             StrTy &Result) {
274   if (Idx > Record.size())
275     return true;
276 
277   for (unsigned i = Idx, e = Record.size(); i != e; ++i)
278     Result += (char)Record[i];
279   return false;
280 }
281 
282 /// Read the "IDENTIFICATION_BLOCK_ID" block, do some basic enforcement on the
283 /// "epoch" encoded in the bitcode, and return the producer name if any.
284 Expected<std::string> readIdentificationBlock(BitstreamCursor &Stream) {
285   if (Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID))
286     return error("Invalid record");
287 
288   // Read all the records.
289   SmallVector<uint64_t, 64> Record;
290 
291   std::string ProducerIdentification;
292 
293   while (true) {
294     BitstreamEntry Entry = Stream.advance();
295 
296     switch (Entry.Kind) {
297     default:
298     case BitstreamEntry::Error:
299       return error("Malformed block");
300     case BitstreamEntry::EndBlock:
301       return ProducerIdentification;
302     case BitstreamEntry::Record:
303       // The interesting case.
304       break;
305     }
306 
307     // Read a record.
308     Record.clear();
309     unsigned BitCode = Stream.readRecord(Entry.ID, Record);
310     switch (BitCode) {
311     default: // Default behavior: reject
312       return error("Invalid value");
313     case bitc::IDENTIFICATION_CODE_STRING: // IDENTIFICATION: [strchr x N]
314       convertToString(Record, 0, ProducerIdentification);
315       break;
316     case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#]
317       unsigned epoch = (unsigned)Record[0];
318       if (epoch != bitc::BITCODE_CURRENT_EPOCH) {
319         return error(
320           Twine("Incompatible epoch: Bitcode '") + Twine(epoch) +
321           "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'");
322       }
323     }
324     }
325   }
326 }
327 
328 Expected<std::string> readIdentificationCode(BitstreamCursor &Stream) {
329   // We expect a number of well-defined blocks, though we don't necessarily
330   // need to understand them all.
331   while (true) {
332     if (Stream.AtEndOfStream())
333       return "";
334 
335     BitstreamEntry Entry = Stream.advance();
336     switch (Entry.Kind) {
337     case BitstreamEntry::EndBlock:
338     case BitstreamEntry::Error:
339       return error("Malformed block");
340 
341     case BitstreamEntry::SubBlock:
342       if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID)
343         return readIdentificationBlock(Stream);
344 
345       // Ignore other sub-blocks.
346       if (Stream.SkipBlock())
347         return error("Malformed block");
348       continue;
349     case BitstreamEntry::Record:
350       Stream.skipRecord(Entry.ID);
351       continue;
352     }
353   }
354 }
355 
356 Expected<bool> hasObjCCategoryInModule(BitstreamCursor &Stream) {
357   if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
358     return error("Invalid record");
359 
360   SmallVector<uint64_t, 64> Record;
361   // Read all the records for this module.
362 
363   while (true) {
364     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
365 
366     switch (Entry.Kind) {
367     case BitstreamEntry::SubBlock: // Handled for us already.
368     case BitstreamEntry::Error:
369       return error("Malformed block");
370     case BitstreamEntry::EndBlock:
371       return false;
372     case BitstreamEntry::Record:
373       // The interesting case.
374       break;
375     }
376 
377     // Read a record.
378     switch (Stream.readRecord(Entry.ID, Record)) {
379     default:
380       break; // Default behavior, ignore unknown content.
381     case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N]
382       std::string S;
383       if (convertToString(Record, 0, S))
384         return error("Invalid record");
385       // Check for the i386 and other (x86_64, ARM) conventions
386       if (S.find("__DATA, __objc_catlist") != std::string::npos ||
387           S.find("__OBJC,__category") != std::string::npos)
388         return true;
389       break;
390     }
391     }
392     Record.clear();
393   }
394   llvm_unreachable("Exit infinite loop");
395 }
396 
397 Expected<bool> hasObjCCategory(BitstreamCursor &Stream) {
398   // We expect a number of well-defined blocks, though we don't necessarily
399   // need to understand them all.
400   while (true) {
401     BitstreamEntry Entry = Stream.advance();
402 
403     switch (Entry.Kind) {
404     case BitstreamEntry::Error:
405       return error("Malformed block");
406     case BitstreamEntry::EndBlock:
407       return false;
408 
409     case BitstreamEntry::SubBlock:
410       if (Entry.ID == bitc::MODULE_BLOCK_ID)
411         return hasObjCCategoryInModule(Stream);
412 
413       // Ignore other sub-blocks.
414       if (Stream.SkipBlock())
415         return error("Malformed block");
416       continue;
417 
418     case BitstreamEntry::Record:
419       Stream.skipRecord(Entry.ID);
420       continue;
421     }
422   }
423 }
424 
425 Expected<std::string> readModuleTriple(BitstreamCursor &Stream) {
426   if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
427     return error("Invalid record");
428 
429   SmallVector<uint64_t, 64> Record;
430 
431   std::string Triple;
432 
433   // Read all the records for this module.
434   while (true) {
435     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
436 
437     switch (Entry.Kind) {
438     case BitstreamEntry::SubBlock: // Handled for us already.
439     case BitstreamEntry::Error:
440       return error("Malformed block");
441     case BitstreamEntry::EndBlock:
442       return Triple;
443     case BitstreamEntry::Record:
444       // The interesting case.
445       break;
446     }
447 
448     // Read a record.
449     switch (Stream.readRecord(Entry.ID, Record)) {
450     default: break;  // Default behavior, ignore unknown content.
451     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
452       std::string S;
453       if (convertToString(Record, 0, S))
454         return error("Invalid record");
455       Triple = S;
456       break;
457     }
458     }
459     Record.clear();
460   }
461   llvm_unreachable("Exit infinite loop");
462 }
463 
464 Expected<std::string> readTriple(BitstreamCursor &Stream) {
465   // We expect a number of well-defined blocks, though we don't necessarily
466   // need to understand them all.
467   while (true) {
468     BitstreamEntry Entry = Stream.advance();
469 
470     switch (Entry.Kind) {
471     case BitstreamEntry::Error:
472       return error("Malformed block");
473     case BitstreamEntry::EndBlock:
474       return "";
475 
476     case BitstreamEntry::SubBlock:
477       if (Entry.ID == bitc::MODULE_BLOCK_ID)
478         return readModuleTriple(Stream);
479 
480       // Ignore other sub-blocks.
481       if (Stream.SkipBlock())
482         return error("Malformed block");
483       continue;
484 
485     case BitstreamEntry::Record:
486       Stream.skipRecord(Entry.ID);
487       continue;
488     }
489   }
490 }
491 
492 class BitcodeReaderBase {
493 protected:
494   BitcodeReaderBase(BitstreamCursor Stream) : Stream(std::move(Stream)) {
495     this->Stream.setBlockInfo(&BlockInfo);
496   }
497 
498   BitstreamBlockInfo BlockInfo;
499   BitstreamCursor Stream;
500 
501   bool readBlockInfo();
502 
503   // Contains an arbitrary and optional string identifying the bitcode producer
504   std::string ProducerIdentification;
505 
506   Error error(const Twine &Message);
507 };
508 
509 Error BitcodeReaderBase::error(const Twine &Message) {
510   std::string FullMsg = Message.str();
511   if (!ProducerIdentification.empty())
512     FullMsg += " (Producer: '" + ProducerIdentification + "' Reader: 'LLVM " +
513                LLVM_VERSION_STRING "')";
514   return ::error(FullMsg);
515 }
516 
517 class BitcodeReader : public BitcodeReaderBase, public GVMaterializer {
518   LLVMContext &Context;
519   Module *TheModule = nullptr;
520   // Next offset to start scanning for lazy parsing of function bodies.
521   uint64_t NextUnreadBit = 0;
522   // Last function offset found in the VST.
523   uint64_t LastFunctionBlockBit = 0;
524   bool SeenValueSymbolTable = false;
525   uint64_t VSTOffset = 0;
526 
527   std::vector<Type*> TypeList;
528   BitcodeReaderValueList ValueList;
529   BitcodeReaderMetadataList MetadataList;
530   std::vector<Comdat *> ComdatList;
531   SmallVector<Instruction *, 64> InstructionList;
532 
533   std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInits;
534   std::vector<std::pair<GlobalIndirectSymbol*, unsigned> > IndirectSymbolInits;
535   std::vector<std::pair<Function*, unsigned> > FunctionPrefixes;
536   std::vector<std::pair<Function*, unsigned> > FunctionPrologues;
537   std::vector<std::pair<Function*, unsigned> > FunctionPersonalityFns;
538 
539   bool HasSeenOldLoopTags = false;
540 
541   /// The set of attributes by index.  Index zero in the file is for null, and
542   /// is thus not represented here.  As such all indices are off by one.
543   std::vector<AttributeSet> MAttributes;
544 
545   /// The set of attribute groups.
546   std::map<unsigned, AttributeSet> MAttributeGroups;
547 
548   /// While parsing a function body, this is a list of the basic blocks for the
549   /// function.
550   std::vector<BasicBlock*> FunctionBBs;
551 
552   // When reading the module header, this list is populated with functions that
553   // have bodies later in the file.
554   std::vector<Function*> FunctionsWithBodies;
555 
556   // When intrinsic functions are encountered which require upgrading they are
557   // stored here with their replacement function.
558   typedef DenseMap<Function*, Function*> UpdatedIntrinsicMap;
559   UpdatedIntrinsicMap UpgradedIntrinsics;
560   // Intrinsics which were remangled because of types rename
561   UpdatedIntrinsicMap RemangledIntrinsics;
562 
563   // Map the bitcode's custom MDKind ID to the Module's MDKind ID.
564   DenseMap<unsigned, unsigned> MDKindMap;
565 
566   // Several operations happen after the module header has been read, but
567   // before function bodies are processed. This keeps track of whether
568   // we've done this yet.
569   bool SeenFirstFunctionBody = false;
570 
571   /// When function bodies are initially scanned, this map contains info about
572   /// where to find deferred function body in the stream.
573   DenseMap<Function*, uint64_t> DeferredFunctionInfo;
574 
575   /// When Metadata block is initially scanned when parsing the module, we may
576   /// choose to defer parsing of the metadata. This vector contains info about
577   /// which Metadata blocks are deferred.
578   std::vector<uint64_t> DeferredMetadataInfo;
579 
580   /// These are basic blocks forward-referenced by block addresses.  They are
581   /// inserted lazily into functions when they're loaded.  The basic block ID is
582   /// its index into the vector.
583   DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs;
584   std::deque<Function *> BasicBlockFwdRefQueue;
585 
586   /// Indicates that we are using a new encoding for instruction operands where
587   /// most operands in the current FUNCTION_BLOCK are encoded relative to the
588   /// instruction number, for a more compact encoding.  Some instruction
589   /// operands are not relative to the instruction ID: basic block numbers, and
590   /// types. Once the old style function blocks have been phased out, we would
591   /// not need this flag.
592   bool UseRelativeIDs = false;
593 
594   /// True if all functions will be materialized, negating the need to process
595   /// (e.g.) blockaddress forward references.
596   bool WillMaterializeAllForwardRefs = false;
597 
598   /// True if any Metadata block has been materialized.
599   bool IsMetadataMaterialized = false;
600 
601   bool StripDebugInfo = false;
602 
603   /// Functions that need to be matched with subprograms when upgrading old
604   /// metadata.
605   SmallDenseMap<Function *, DISubprogram *, 16> FunctionsWithSPs;
606 
607   std::vector<std::string> BundleTags;
608 
609 public:
610   BitcodeReader(BitstreamCursor Stream, StringRef ProducerIdentification,
611                 LLVMContext &Context);
612 
613   Error materializeForwardReferencedFunctions();
614 
615   Error materialize(GlobalValue *GV) override;
616   Error materializeModule() override;
617   std::vector<StructType *> getIdentifiedStructTypes() const override;
618 
619   /// \brief Main interface to parsing a bitcode buffer.
620   /// \returns true if an error occurred.
621   Error parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata = false);
622 
623   static uint64_t decodeSignRotatedValue(uint64_t V);
624 
625   /// Materialize any deferred Metadata block.
626   Error materializeMetadata() override;
627 
628   void setStripDebugInfo() override;
629 
630 private:
631   std::vector<StructType *> IdentifiedStructTypes;
632   StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name);
633   StructType *createIdentifiedStructType(LLVMContext &Context);
634 
635   Type *getTypeByID(unsigned ID);
636 
637   Value *getFnValueByID(unsigned ID, Type *Ty) {
638     if (Ty && Ty->isMetadataTy())
639       return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID));
640     return ValueList.getValueFwdRef(ID, Ty);
641   }
642 
643   Metadata *getFnMetadataByID(unsigned ID) {
644     return MetadataList.getMetadataFwdRef(ID);
645   }
646 
647   BasicBlock *getBasicBlock(unsigned ID) const {
648     if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID
649     return FunctionBBs[ID];
650   }
651 
652   AttributeSet getAttributes(unsigned i) const {
653     if (i-1 < MAttributes.size())
654       return MAttributes[i-1];
655     return AttributeSet();
656   }
657 
658   /// Read a value/type pair out of the specified record from slot 'Slot'.
659   /// Increment Slot past the number of slots used in the record. Return true on
660   /// failure.
661   bool getValueTypePair(SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
662                         unsigned InstNum, Value *&ResVal) {
663     if (Slot == Record.size()) return true;
664     unsigned ValNo = (unsigned)Record[Slot++];
665     // Adjust the ValNo, if it was encoded relative to the InstNum.
666     if (UseRelativeIDs)
667       ValNo = InstNum - ValNo;
668     if (ValNo < InstNum) {
669       // If this is not a forward reference, just return the value we already
670       // have.
671       ResVal = getFnValueByID(ValNo, nullptr);
672       return ResVal == nullptr;
673     }
674     if (Slot == Record.size())
675       return true;
676 
677     unsigned TypeNo = (unsigned)Record[Slot++];
678     ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo));
679     return ResVal == nullptr;
680   }
681 
682   /// Read a value out of the specified record from slot 'Slot'. Increment Slot
683   /// past the number of slots used by the value in the record. Return true if
684   /// there is an error.
685   bool popValue(SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
686                 unsigned InstNum, Type *Ty, Value *&ResVal) {
687     if (getValue(Record, Slot, InstNum, Ty, ResVal))
688       return true;
689     // All values currently take a single record slot.
690     ++Slot;
691     return false;
692   }
693 
694   /// Like popValue, but does not increment the Slot number.
695   bool getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot,
696                 unsigned InstNum, Type *Ty, Value *&ResVal) {
697     ResVal = getValue(Record, Slot, InstNum, Ty);
698     return ResVal == nullptr;
699   }
700 
701   /// Version of getValue that returns ResVal directly, or 0 if there is an
702   /// error.
703   Value *getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot,
704                   unsigned InstNum, Type *Ty) {
705     if (Slot == Record.size()) return nullptr;
706     unsigned ValNo = (unsigned)Record[Slot];
707     // Adjust the ValNo, if it was encoded relative to the InstNum.
708     if (UseRelativeIDs)
709       ValNo = InstNum - ValNo;
710     return getFnValueByID(ValNo, Ty);
711   }
712 
713   /// Like getValue, but decodes signed VBRs.
714   Value *getValueSigned(SmallVectorImpl<uint64_t> &Record, unsigned Slot,
715                         unsigned InstNum, Type *Ty) {
716     if (Slot == Record.size()) return nullptr;
717     unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]);
718     // Adjust the ValNo, if it was encoded relative to the InstNum.
719     if (UseRelativeIDs)
720       ValNo = InstNum - ValNo;
721     return getFnValueByID(ValNo, Ty);
722   }
723 
724   /// Converts alignment exponent (i.e. power of two (or zero)) to the
725   /// corresponding alignment to use. If alignment is too large, returns
726   /// a corresponding error code.
727   Error parseAlignmentValue(uint64_t Exponent, unsigned &Alignment);
728   Error parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind);
729   Error parseModule(uint64_t ResumeBit, bool ShouldLazyLoadMetadata = false);
730   Error parseAttributeBlock();
731   Error parseAttributeGroupBlock();
732   Error parseTypeTable();
733   Error parseTypeTableBody();
734   Error parseOperandBundleTags();
735 
736   Expected<Value *> recordValue(SmallVectorImpl<uint64_t> &Record,
737                                 unsigned NameIndex, Triple &TT);
738   Error parseValueSymbolTable(uint64_t Offset = 0);
739   Error parseConstants();
740   Error rememberAndSkipFunctionBodies();
741   Error rememberAndSkipFunctionBody();
742   /// Save the positions of the Metadata blocks and skip parsing the blocks.
743   Error rememberAndSkipMetadata();
744   Error typeCheckLoadStoreInst(Type *ValType, Type *PtrType);
745   Error parseFunctionBody(Function *F);
746   Error globalCleanup();
747   Error resolveGlobalAndIndirectSymbolInits();
748   Error parseMetadata(bool ModuleLevel = false);
749   Error parseMetadataStrings(ArrayRef<uint64_t> Record, StringRef Blob,
750                              unsigned &NextMetadataNo);
751   Error parseMetadataKinds();
752   Error parseMetadataKindRecord(SmallVectorImpl<uint64_t> &Record);
753   Error parseGlobalObjectAttachment(GlobalObject &GO,
754                                     ArrayRef<uint64_t> Record);
755   Error parseMetadataAttachment(Function &F);
756   Error parseUseLists();
757   Error findFunctionInStream(
758       Function *F,
759       DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator);
760 };
761 
762 /// Class to manage reading and parsing function summary index bitcode
763 /// files/sections.
764 class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase {
765   /// Eventually points to the module index built during parsing.
766   ModuleSummaryIndex *TheIndex = nullptr;
767 
768   /// Used to indicate whether caller only wants to check for the presence
769   /// of the global value summary bitcode section. All blocks are skipped,
770   /// but the SeenGlobalValSummary boolean is set.
771   bool CheckGlobalValSummaryPresenceOnly = false;
772 
773   /// Indicates whether we have encountered a global value summary section
774   /// yet during parsing, used when checking if file contains global value
775   /// summary section.
776   bool SeenGlobalValSummary = false;
777 
778   /// Indicates whether we have already parsed the VST, used for error checking.
779   bool SeenValueSymbolTable = false;
780 
781   /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record.
782   /// Used to enable on-demand parsing of the VST.
783   uint64_t VSTOffset = 0;
784 
785   // Map to save ValueId to GUID association that was recorded in the
786   // ValueSymbolTable. It is used after the VST is parsed to convert
787   // call graph edges read from the function summary from referencing
788   // callees by their ValueId to using the GUID instead, which is how
789   // they are recorded in the summary index being built.
790   // We save a second GUID which is the same as the first one, but ignoring the
791   // linkage, i.e. for value other than local linkage they are identical.
792   DenseMap<unsigned, std::pair<GlobalValue::GUID, GlobalValue::GUID>>
793       ValueIdToCallGraphGUIDMap;
794 
795   /// Map populated during module path string table parsing, from the
796   /// module ID to a string reference owned by the index's module
797   /// path string table, used to correlate with combined index
798   /// summary records.
799   DenseMap<uint64_t, StringRef> ModuleIdMap;
800 
801   /// Original source file name recorded in a bitcode record.
802   std::string SourceFileName;
803 
804 public:
805   ModuleSummaryIndexBitcodeReader(
806       BitstreamCursor Stream, bool CheckGlobalValSummaryPresenceOnly = false);
807 
808   /// Check if the parser has encountered a summary section.
809   bool foundGlobalValSummary() { return SeenGlobalValSummary; }
810 
811   /// \brief Main interface to parsing a bitcode buffer.
812   /// \returns true if an error occurred.
813   Error parseSummaryIndexInto(ModuleSummaryIndex *I, StringRef ModulePath);
814 
815 private:
816   Error parseModule(StringRef ModulePath);
817   Error parseValueSymbolTable(
818       uint64_t Offset,
819       DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap);
820   Error parseEntireSummary(StringRef ModulePath);
821   Error parseModuleStringTable();
822   std::pair<GlobalValue::GUID, GlobalValue::GUID>
823 
824   getGUIDFromValueId(unsigned ValueId);
825   std::pair<GlobalValue::GUID, CalleeInfo::HotnessType>
826   readCallGraphEdge(const SmallVector<uint64_t, 64> &Record, unsigned int &I,
827                     bool IsOldProfileFormat, bool HasProfile);
828 };
829 
830 } // end anonymous namespace
831 
832 std::error_code llvm::errorToErrorCodeAndEmitErrors(LLVMContext &Ctx,
833                                                     Error Err) {
834   if (Err) {
835     std::error_code EC;
836     handleAllErrors(std::move(Err), [&](ErrorInfoBase &EIB) {
837       EC = EIB.convertToErrorCode();
838       Ctx.emitError(EIB.message());
839     });
840     return EC;
841   }
842   return std::error_code();
843 }
844 
845 BitcodeReader::BitcodeReader(BitstreamCursor Stream,
846                              StringRef ProducerIdentification,
847                              LLVMContext &Context)
848     : BitcodeReaderBase(std::move(Stream)), Context(Context),
849       ValueList(Context), MetadataList(Context) {
850   this->ProducerIdentification = ProducerIdentification;
851 }
852 
853 Error BitcodeReader::materializeForwardReferencedFunctions() {
854   if (WillMaterializeAllForwardRefs)
855     return Error::success();
856 
857   // Prevent recursion.
858   WillMaterializeAllForwardRefs = true;
859 
860   while (!BasicBlockFwdRefQueue.empty()) {
861     Function *F = BasicBlockFwdRefQueue.front();
862     BasicBlockFwdRefQueue.pop_front();
863     assert(F && "Expected valid function");
864     if (!BasicBlockFwdRefs.count(F))
865       // Already materialized.
866       continue;
867 
868     // Check for a function that isn't materializable to prevent an infinite
869     // loop.  When parsing a blockaddress stored in a global variable, there
870     // isn't a trivial way to check if a function will have a body without a
871     // linear search through FunctionsWithBodies, so just check it here.
872     if (!F->isMaterializable())
873       return error("Never resolved function from blockaddress");
874 
875     // Try to materialize F.
876     if (Error Err = materialize(F))
877       return Err;
878   }
879   assert(BasicBlockFwdRefs.empty() && "Function missing from queue");
880 
881   // Reset state.
882   WillMaterializeAllForwardRefs = false;
883   return Error::success();
884 }
885 
886 //===----------------------------------------------------------------------===//
887 //  Helper functions to implement forward reference resolution, etc.
888 //===----------------------------------------------------------------------===//
889 
890 static bool hasImplicitComdat(size_t Val) {
891   switch (Val) {
892   default:
893     return false;
894   case 1:  // Old WeakAnyLinkage
895   case 4:  // Old LinkOnceAnyLinkage
896   case 10: // Old WeakODRLinkage
897   case 11: // Old LinkOnceODRLinkage
898     return true;
899   }
900 }
901 
902 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) {
903   switch (Val) {
904   default: // Map unknown/new linkages to external
905   case 0:
906     return GlobalValue::ExternalLinkage;
907   case 2:
908     return GlobalValue::AppendingLinkage;
909   case 3:
910     return GlobalValue::InternalLinkage;
911   case 5:
912     return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage
913   case 6:
914     return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage
915   case 7:
916     return GlobalValue::ExternalWeakLinkage;
917   case 8:
918     return GlobalValue::CommonLinkage;
919   case 9:
920     return GlobalValue::PrivateLinkage;
921   case 12:
922     return GlobalValue::AvailableExternallyLinkage;
923   case 13:
924     return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage
925   case 14:
926     return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage
927   case 15:
928     return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage
929   case 1: // Old value with implicit comdat.
930   case 16:
931     return GlobalValue::WeakAnyLinkage;
932   case 10: // Old value with implicit comdat.
933   case 17:
934     return GlobalValue::WeakODRLinkage;
935   case 4: // Old value with implicit comdat.
936   case 18:
937     return GlobalValue::LinkOnceAnyLinkage;
938   case 11: // Old value with implicit comdat.
939   case 19:
940     return GlobalValue::LinkOnceODRLinkage;
941   }
942 }
943 
944 /// Decode the flags for GlobalValue in the summary.
945 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags,
946                                                             uint64_t Version) {
947   // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage
948   // like getDecodedLinkage() above. Any future change to the linkage enum and
949   // to getDecodedLinkage() will need to be taken into account here as above.
950   auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits
951   RawFlags = RawFlags >> 4;
952   bool NoRename = RawFlags & 0x1;
953   bool IsNotViableToInline = RawFlags & 0x2;
954   bool HasInlineAsmMaybeReferencingInternal = RawFlags & 0x4;
955   return GlobalValueSummary::GVFlags(Linkage, NoRename,
956                                      HasInlineAsmMaybeReferencingInternal,
957                                      IsNotViableToInline);
958 }
959 
960 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) {
961   switch (Val) {
962   default: // Map unknown visibilities to default.
963   case 0: return GlobalValue::DefaultVisibility;
964   case 1: return GlobalValue::HiddenVisibility;
965   case 2: return GlobalValue::ProtectedVisibility;
966   }
967 }
968 
969 static GlobalValue::DLLStorageClassTypes
970 getDecodedDLLStorageClass(unsigned Val) {
971   switch (Val) {
972   default: // Map unknown values to default.
973   case 0: return GlobalValue::DefaultStorageClass;
974   case 1: return GlobalValue::DLLImportStorageClass;
975   case 2: return GlobalValue::DLLExportStorageClass;
976   }
977 }
978 
979 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) {
980   switch (Val) {
981     case 0: return GlobalVariable::NotThreadLocal;
982     default: // Map unknown non-zero value to general dynamic.
983     case 1: return GlobalVariable::GeneralDynamicTLSModel;
984     case 2: return GlobalVariable::LocalDynamicTLSModel;
985     case 3: return GlobalVariable::InitialExecTLSModel;
986     case 4: return GlobalVariable::LocalExecTLSModel;
987   }
988 }
989 
990 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) {
991   switch (Val) {
992     default: // Map unknown to UnnamedAddr::None.
993     case 0: return GlobalVariable::UnnamedAddr::None;
994     case 1: return GlobalVariable::UnnamedAddr::Global;
995     case 2: return GlobalVariable::UnnamedAddr::Local;
996   }
997 }
998 
999 static int getDecodedCastOpcode(unsigned Val) {
1000   switch (Val) {
1001   default: return -1;
1002   case bitc::CAST_TRUNC   : return Instruction::Trunc;
1003   case bitc::CAST_ZEXT    : return Instruction::ZExt;
1004   case bitc::CAST_SEXT    : return Instruction::SExt;
1005   case bitc::CAST_FPTOUI  : return Instruction::FPToUI;
1006   case bitc::CAST_FPTOSI  : return Instruction::FPToSI;
1007   case bitc::CAST_UITOFP  : return Instruction::UIToFP;
1008   case bitc::CAST_SITOFP  : return Instruction::SIToFP;
1009   case bitc::CAST_FPTRUNC : return Instruction::FPTrunc;
1010   case bitc::CAST_FPEXT   : return Instruction::FPExt;
1011   case bitc::CAST_PTRTOINT: return Instruction::PtrToInt;
1012   case bitc::CAST_INTTOPTR: return Instruction::IntToPtr;
1013   case bitc::CAST_BITCAST : return Instruction::BitCast;
1014   case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast;
1015   }
1016 }
1017 
1018 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) {
1019   bool IsFP = Ty->isFPOrFPVectorTy();
1020   // BinOps are only valid for int/fp or vector of int/fp types
1021   if (!IsFP && !Ty->isIntOrIntVectorTy())
1022     return -1;
1023 
1024   switch (Val) {
1025   default:
1026     return -1;
1027   case bitc::BINOP_ADD:
1028     return IsFP ? Instruction::FAdd : Instruction::Add;
1029   case bitc::BINOP_SUB:
1030     return IsFP ? Instruction::FSub : Instruction::Sub;
1031   case bitc::BINOP_MUL:
1032     return IsFP ? Instruction::FMul : Instruction::Mul;
1033   case bitc::BINOP_UDIV:
1034     return IsFP ? -1 : Instruction::UDiv;
1035   case bitc::BINOP_SDIV:
1036     return IsFP ? Instruction::FDiv : Instruction::SDiv;
1037   case bitc::BINOP_UREM:
1038     return IsFP ? -1 : Instruction::URem;
1039   case bitc::BINOP_SREM:
1040     return IsFP ? Instruction::FRem : Instruction::SRem;
1041   case bitc::BINOP_SHL:
1042     return IsFP ? -1 : Instruction::Shl;
1043   case bitc::BINOP_LSHR:
1044     return IsFP ? -1 : Instruction::LShr;
1045   case bitc::BINOP_ASHR:
1046     return IsFP ? -1 : Instruction::AShr;
1047   case bitc::BINOP_AND:
1048     return IsFP ? -1 : Instruction::And;
1049   case bitc::BINOP_OR:
1050     return IsFP ? -1 : Instruction::Or;
1051   case bitc::BINOP_XOR:
1052     return IsFP ? -1 : Instruction::Xor;
1053   }
1054 }
1055 
1056 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) {
1057   switch (Val) {
1058   default: return AtomicRMWInst::BAD_BINOP;
1059   case bitc::RMW_XCHG: return AtomicRMWInst::Xchg;
1060   case bitc::RMW_ADD: return AtomicRMWInst::Add;
1061   case bitc::RMW_SUB: return AtomicRMWInst::Sub;
1062   case bitc::RMW_AND: return AtomicRMWInst::And;
1063   case bitc::RMW_NAND: return AtomicRMWInst::Nand;
1064   case bitc::RMW_OR: return AtomicRMWInst::Or;
1065   case bitc::RMW_XOR: return AtomicRMWInst::Xor;
1066   case bitc::RMW_MAX: return AtomicRMWInst::Max;
1067   case bitc::RMW_MIN: return AtomicRMWInst::Min;
1068   case bitc::RMW_UMAX: return AtomicRMWInst::UMax;
1069   case bitc::RMW_UMIN: return AtomicRMWInst::UMin;
1070   }
1071 }
1072 
1073 static AtomicOrdering getDecodedOrdering(unsigned Val) {
1074   switch (Val) {
1075   case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic;
1076   case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered;
1077   case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic;
1078   case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire;
1079   case bitc::ORDERING_RELEASE: return AtomicOrdering::Release;
1080   case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease;
1081   default: // Map unknown orderings to sequentially-consistent.
1082   case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent;
1083   }
1084 }
1085 
1086 static SynchronizationScope getDecodedSynchScope(unsigned Val) {
1087   switch (Val) {
1088   case bitc::SYNCHSCOPE_SINGLETHREAD: return SingleThread;
1089   default: // Map unknown scopes to cross-thread.
1090   case bitc::SYNCHSCOPE_CROSSTHREAD: return CrossThread;
1091   }
1092 }
1093 
1094 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) {
1095   switch (Val) {
1096   default: // Map unknown selection kinds to any.
1097   case bitc::COMDAT_SELECTION_KIND_ANY:
1098     return Comdat::Any;
1099   case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH:
1100     return Comdat::ExactMatch;
1101   case bitc::COMDAT_SELECTION_KIND_LARGEST:
1102     return Comdat::Largest;
1103   case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES:
1104     return Comdat::NoDuplicates;
1105   case bitc::COMDAT_SELECTION_KIND_SAME_SIZE:
1106     return Comdat::SameSize;
1107   }
1108 }
1109 
1110 static FastMathFlags getDecodedFastMathFlags(unsigned Val) {
1111   FastMathFlags FMF;
1112   if (0 != (Val & FastMathFlags::UnsafeAlgebra))
1113     FMF.setUnsafeAlgebra();
1114   if (0 != (Val & FastMathFlags::NoNaNs))
1115     FMF.setNoNaNs();
1116   if (0 != (Val & FastMathFlags::NoInfs))
1117     FMF.setNoInfs();
1118   if (0 != (Val & FastMathFlags::NoSignedZeros))
1119     FMF.setNoSignedZeros();
1120   if (0 != (Val & FastMathFlags::AllowReciprocal))
1121     FMF.setAllowReciprocal();
1122   return FMF;
1123 }
1124 
1125 static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) {
1126   switch (Val) {
1127   case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break;
1128   case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break;
1129   }
1130 }
1131 
1132 namespace llvm {
1133 namespace {
1134 
1135 /// \brief A class for maintaining the slot number definition
1136 /// as a placeholder for the actual definition for forward constants defs.
1137 class ConstantPlaceHolder : public ConstantExpr {
1138   void operator=(const ConstantPlaceHolder &) = delete;
1139 
1140 public:
1141   // allocate space for exactly one operand
1142   void *operator new(size_t s) { return User::operator new(s, 1); }
1143   explicit ConstantPlaceHolder(Type *Ty, LLVMContext &Context)
1144       : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) {
1145     Op<0>() = UndefValue::get(Type::getInt32Ty(Context));
1146   }
1147 
1148   /// \brief Methods to support type inquiry through isa, cast, and dyn_cast.
1149   static bool classof(const Value *V) {
1150     return isa<ConstantExpr>(V) &&
1151            cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1;
1152   }
1153 
1154   /// Provide fast operand accessors
1155   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
1156 };
1157 
1158 } // end anonymous namespace
1159 
1160 // FIXME: can we inherit this from ConstantExpr?
1161 template <>
1162 struct OperandTraits<ConstantPlaceHolder> :
1163   public FixedNumOperandTraits<ConstantPlaceHolder, 1> {
1164 };
1165 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantPlaceHolder, Value)
1166 
1167 } // end namespace llvm
1168 
1169 void BitcodeReaderValueList::assignValue(Value *V, unsigned Idx) {
1170   if (Idx == size()) {
1171     push_back(V);
1172     return;
1173   }
1174 
1175   if (Idx >= size())
1176     resize(Idx+1);
1177 
1178   WeakVH &OldV = ValuePtrs[Idx];
1179   if (!OldV) {
1180     OldV = V;
1181     return;
1182   }
1183 
1184   // Handle constants and non-constants (e.g. instrs) differently for
1185   // efficiency.
1186   if (Constant *PHC = dyn_cast<Constant>(&*OldV)) {
1187     ResolveConstants.push_back(std::make_pair(PHC, Idx));
1188     OldV = V;
1189   } else {
1190     // If there was a forward reference to this value, replace it.
1191     Value *PrevVal = OldV;
1192     OldV->replaceAllUsesWith(V);
1193     delete PrevVal;
1194   }
1195 }
1196 
1197 Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx,
1198                                                     Type *Ty) {
1199   if (Idx >= size())
1200     resize(Idx + 1);
1201 
1202   if (Value *V = ValuePtrs[Idx]) {
1203     if (Ty != V->getType())
1204       report_fatal_error("Type mismatch in constant table!");
1205     return cast<Constant>(V);
1206   }
1207 
1208   // Create and return a placeholder, which will later be RAUW'd.
1209   Constant *C = new ConstantPlaceHolder(Ty, Context);
1210   ValuePtrs[Idx] = C;
1211   return C;
1212 }
1213 
1214 Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, Type *Ty) {
1215   // Bail out for a clearly invalid value. This would make us call resize(0)
1216   if (Idx == std::numeric_limits<unsigned>::max())
1217     return nullptr;
1218 
1219   if (Idx >= size())
1220     resize(Idx + 1);
1221 
1222   if (Value *V = ValuePtrs[Idx]) {
1223     // If the types don't match, it's invalid.
1224     if (Ty && Ty != V->getType())
1225       return nullptr;
1226     return V;
1227   }
1228 
1229   // No type specified, must be invalid reference.
1230   if (!Ty) return nullptr;
1231 
1232   // Create and return a placeholder, which will later be RAUW'd.
1233   Value *V = new Argument(Ty);
1234   ValuePtrs[Idx] = V;
1235   return V;
1236 }
1237 
1238 /// Once all constants are read, this method bulk resolves any forward
1239 /// references.  The idea behind this is that we sometimes get constants (such
1240 /// as large arrays) which reference *many* forward ref constants.  Replacing
1241 /// each of these causes a lot of thrashing when building/reuniquing the
1242 /// constant.  Instead of doing this, we look at all the uses and rewrite all
1243 /// the place holders at once for any constant that uses a placeholder.
1244 void BitcodeReaderValueList::resolveConstantForwardRefs() {
1245   // Sort the values by-pointer so that they are efficient to look up with a
1246   // binary search.
1247   std::sort(ResolveConstants.begin(), ResolveConstants.end());
1248 
1249   SmallVector<Constant*, 64> NewOps;
1250 
1251   while (!ResolveConstants.empty()) {
1252     Value *RealVal = operator[](ResolveConstants.back().second);
1253     Constant *Placeholder = ResolveConstants.back().first;
1254     ResolveConstants.pop_back();
1255 
1256     // Loop over all users of the placeholder, updating them to reference the
1257     // new value.  If they reference more than one placeholder, update them all
1258     // at once.
1259     while (!Placeholder->use_empty()) {
1260       auto UI = Placeholder->user_begin();
1261       User *U = *UI;
1262 
1263       // If the using object isn't uniqued, just update the operands.  This
1264       // handles instructions and initializers for global variables.
1265       if (!isa<Constant>(U) || isa<GlobalValue>(U)) {
1266         UI.getUse().set(RealVal);
1267         continue;
1268       }
1269 
1270       // Otherwise, we have a constant that uses the placeholder.  Replace that
1271       // constant with a new constant that has *all* placeholder uses updated.
1272       Constant *UserC = cast<Constant>(U);
1273       for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end();
1274            I != E; ++I) {
1275         Value *NewOp;
1276         if (!isa<ConstantPlaceHolder>(*I)) {
1277           // Not a placeholder reference.
1278           NewOp = *I;
1279         } else if (*I == Placeholder) {
1280           // Common case is that it just references this one placeholder.
1281           NewOp = RealVal;
1282         } else {
1283           // Otherwise, look up the placeholder in ResolveConstants.
1284           ResolveConstantsTy::iterator It =
1285             std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(),
1286                              std::pair<Constant*, unsigned>(cast<Constant>(*I),
1287                                                             0));
1288           assert(It != ResolveConstants.end() && It->first == *I);
1289           NewOp = operator[](It->second);
1290         }
1291 
1292         NewOps.push_back(cast<Constant>(NewOp));
1293       }
1294 
1295       // Make the new constant.
1296       Constant *NewC;
1297       if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) {
1298         NewC = ConstantArray::get(UserCA->getType(), NewOps);
1299       } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) {
1300         NewC = ConstantStruct::get(UserCS->getType(), NewOps);
1301       } else if (isa<ConstantVector>(UserC)) {
1302         NewC = ConstantVector::get(NewOps);
1303       } else {
1304         assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr.");
1305         NewC = cast<ConstantExpr>(UserC)->getWithOperands(NewOps);
1306       }
1307 
1308       UserC->replaceAllUsesWith(NewC);
1309       UserC->destroyConstant();
1310       NewOps.clear();
1311     }
1312 
1313     // Update all ValueHandles, they should be the only users at this point.
1314     Placeholder->replaceAllUsesWith(RealVal);
1315     delete Placeholder;
1316   }
1317 }
1318 
1319 void BitcodeReaderMetadataList::assignValue(Metadata *MD, unsigned Idx) {
1320   if (Idx == size()) {
1321     push_back(MD);
1322     return;
1323   }
1324 
1325   if (Idx >= size())
1326     resize(Idx+1);
1327 
1328   TrackingMDRef &OldMD = MetadataPtrs[Idx];
1329   if (!OldMD) {
1330     OldMD.reset(MD);
1331     return;
1332   }
1333 
1334   // If there was a forward reference to this value, replace it.
1335   TempMDTuple PrevMD(cast<MDTuple>(OldMD.get()));
1336   PrevMD->replaceAllUsesWith(MD);
1337   --NumFwdRefs;
1338 }
1339 
1340 Metadata *BitcodeReaderMetadataList::getMetadataFwdRef(unsigned Idx) {
1341   if (Idx >= size())
1342     resize(Idx + 1);
1343 
1344   if (Metadata *MD = MetadataPtrs[Idx])
1345     return MD;
1346 
1347   // Track forward refs to be resolved later.
1348   if (AnyFwdRefs) {
1349     MinFwdRef = std::min(MinFwdRef, Idx);
1350     MaxFwdRef = std::max(MaxFwdRef, Idx);
1351   } else {
1352     AnyFwdRefs = true;
1353     MinFwdRef = MaxFwdRef = Idx;
1354   }
1355   ++NumFwdRefs;
1356 
1357   // Create and return a placeholder, which will later be RAUW'd.
1358   Metadata *MD = MDNode::getTemporary(Context, None).release();
1359   MetadataPtrs[Idx].reset(MD);
1360   return MD;
1361 }
1362 
1363 Metadata *BitcodeReaderMetadataList::getMetadataIfResolved(unsigned Idx) {
1364   Metadata *MD = lookup(Idx);
1365   if (auto *N = dyn_cast_or_null<MDNode>(MD))
1366     if (!N->isResolved())
1367       return nullptr;
1368   return MD;
1369 }
1370 
1371 MDNode *BitcodeReaderMetadataList::getMDNodeFwdRefOrNull(unsigned Idx) {
1372   return dyn_cast_or_null<MDNode>(getMetadataFwdRef(Idx));
1373 }
1374 
1375 void BitcodeReaderMetadataList::tryToResolveCycles() {
1376   if (NumFwdRefs)
1377     // Still forward references... can't resolve cycles.
1378     return;
1379 
1380   bool DidReplaceTypeRefs = false;
1381 
1382   // Give up on finding a full definition for any forward decls that remain.
1383   for (const auto &Ref : OldTypeRefs.FwdDecls)
1384     OldTypeRefs.Final.insert(Ref);
1385   OldTypeRefs.FwdDecls.clear();
1386 
1387   // Upgrade from old type ref arrays.  In strange cases, this could add to
1388   // OldTypeRefs.Unknown.
1389   for (const auto &Array : OldTypeRefs.Arrays) {
1390     DidReplaceTypeRefs = true;
1391     Array.second->replaceAllUsesWith(resolveTypeRefArray(Array.first.get()));
1392   }
1393   OldTypeRefs.Arrays.clear();
1394 
1395   // Replace old string-based type refs with the resolved node, if possible.
1396   // If we haven't seen the node, leave it to the verifier to complain about
1397   // the invalid string reference.
1398   for (const auto &Ref : OldTypeRefs.Unknown) {
1399     DidReplaceTypeRefs = true;
1400     if (DICompositeType *CT = OldTypeRefs.Final.lookup(Ref.first))
1401       Ref.second->replaceAllUsesWith(CT);
1402     else
1403       Ref.second->replaceAllUsesWith(Ref.first);
1404   }
1405   OldTypeRefs.Unknown.clear();
1406 
1407   // Make sure all the upgraded types are resolved.
1408   if (DidReplaceTypeRefs) {
1409     AnyFwdRefs = true;
1410     MinFwdRef = 0;
1411     MaxFwdRef = MetadataPtrs.size() - 1;
1412   }
1413 
1414   if (!AnyFwdRefs)
1415     // Nothing to do.
1416     return;
1417 
1418   // Resolve any cycles.
1419   for (unsigned I = MinFwdRef, E = MaxFwdRef + 1; I != E; ++I) {
1420     auto &MD = MetadataPtrs[I];
1421     auto *N = dyn_cast_or_null<MDNode>(MD);
1422     if (!N)
1423       continue;
1424 
1425     assert(!N->isTemporary() && "Unexpected forward reference");
1426     N->resolveCycles();
1427   }
1428 
1429   // Make sure we return early again until there's another forward ref.
1430   AnyFwdRefs = false;
1431 }
1432 
1433 void BitcodeReaderMetadataList::addTypeRef(MDString &UUID,
1434                                            DICompositeType &CT) {
1435   assert(CT.getRawIdentifier() == &UUID && "Mismatched UUID");
1436   if (CT.isForwardDecl())
1437     OldTypeRefs.FwdDecls.insert(std::make_pair(&UUID, &CT));
1438   else
1439     OldTypeRefs.Final.insert(std::make_pair(&UUID, &CT));
1440 }
1441 
1442 Metadata *BitcodeReaderMetadataList::upgradeTypeRef(Metadata *MaybeUUID) {
1443   auto *UUID = dyn_cast_or_null<MDString>(MaybeUUID);
1444   if (LLVM_LIKELY(!UUID))
1445     return MaybeUUID;
1446 
1447   if (auto *CT = OldTypeRefs.Final.lookup(UUID))
1448     return CT;
1449 
1450   auto &Ref = OldTypeRefs.Unknown[UUID];
1451   if (!Ref)
1452     Ref = MDNode::getTemporary(Context, None);
1453   return Ref.get();
1454 }
1455 
1456 Metadata *BitcodeReaderMetadataList::upgradeTypeRefArray(Metadata *MaybeTuple) {
1457   auto *Tuple = dyn_cast_or_null<MDTuple>(MaybeTuple);
1458   if (!Tuple || Tuple->isDistinct())
1459     return MaybeTuple;
1460 
1461   // Look through the array immediately if possible.
1462   if (!Tuple->isTemporary())
1463     return resolveTypeRefArray(Tuple);
1464 
1465   // Create and return a placeholder to use for now.  Eventually
1466   // resolveTypeRefArrays() will be resolve this forward reference.
1467   OldTypeRefs.Arrays.emplace_back(
1468       std::piecewise_construct, std::forward_as_tuple(Tuple),
1469       std::forward_as_tuple(MDTuple::getTemporary(Context, None)));
1470   return OldTypeRefs.Arrays.back().second.get();
1471 }
1472 
1473 Metadata *BitcodeReaderMetadataList::resolveTypeRefArray(Metadata *MaybeTuple) {
1474   auto *Tuple = dyn_cast_or_null<MDTuple>(MaybeTuple);
1475   if (!Tuple || Tuple->isDistinct())
1476     return MaybeTuple;
1477 
1478   // Look through the DITypeRefArray, upgrading each DITypeRef.
1479   SmallVector<Metadata *, 32> Ops;
1480   Ops.reserve(Tuple->getNumOperands());
1481   for (Metadata *MD : Tuple->operands())
1482     Ops.push_back(upgradeTypeRef(MD));
1483 
1484   return MDTuple::get(Context, Ops);
1485 }
1486 
1487 Type *BitcodeReader::getTypeByID(unsigned ID) {
1488   // The type table size is always specified correctly.
1489   if (ID >= TypeList.size())
1490     return nullptr;
1491 
1492   if (Type *Ty = TypeList[ID])
1493     return Ty;
1494 
1495   // If we have a forward reference, the only possible case is when it is to a
1496   // named struct.  Just create a placeholder for now.
1497   return TypeList[ID] = createIdentifiedStructType(Context);
1498 }
1499 
1500 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context,
1501                                                       StringRef Name) {
1502   auto *Ret = StructType::create(Context, Name);
1503   IdentifiedStructTypes.push_back(Ret);
1504   return Ret;
1505 }
1506 
1507 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) {
1508   auto *Ret = StructType::create(Context);
1509   IdentifiedStructTypes.push_back(Ret);
1510   return Ret;
1511 }
1512 
1513 //===----------------------------------------------------------------------===//
1514 //  Functions for parsing blocks from the bitcode file
1515 //===----------------------------------------------------------------------===//
1516 
1517 static uint64_t getRawAttributeMask(Attribute::AttrKind Val) {
1518   switch (Val) {
1519   case Attribute::EndAttrKinds:
1520     llvm_unreachable("Synthetic enumerators which should never get here");
1521 
1522   case Attribute::None:            return 0;
1523   case Attribute::ZExt:            return 1 << 0;
1524   case Attribute::SExt:            return 1 << 1;
1525   case Attribute::NoReturn:        return 1 << 2;
1526   case Attribute::InReg:           return 1 << 3;
1527   case Attribute::StructRet:       return 1 << 4;
1528   case Attribute::NoUnwind:        return 1 << 5;
1529   case Attribute::NoAlias:         return 1 << 6;
1530   case Attribute::ByVal:           return 1 << 7;
1531   case Attribute::Nest:            return 1 << 8;
1532   case Attribute::ReadNone:        return 1 << 9;
1533   case Attribute::ReadOnly:        return 1 << 10;
1534   case Attribute::NoInline:        return 1 << 11;
1535   case Attribute::AlwaysInline:    return 1 << 12;
1536   case Attribute::OptimizeForSize: return 1 << 13;
1537   case Attribute::StackProtect:    return 1 << 14;
1538   case Attribute::StackProtectReq: return 1 << 15;
1539   case Attribute::Alignment:       return 31 << 16;
1540   case Attribute::NoCapture:       return 1 << 21;
1541   case Attribute::NoRedZone:       return 1 << 22;
1542   case Attribute::NoImplicitFloat: return 1 << 23;
1543   case Attribute::Naked:           return 1 << 24;
1544   case Attribute::InlineHint:      return 1 << 25;
1545   case Attribute::StackAlignment:  return 7 << 26;
1546   case Attribute::ReturnsTwice:    return 1 << 29;
1547   case Attribute::UWTable:         return 1 << 30;
1548   case Attribute::NonLazyBind:     return 1U << 31;
1549   case Attribute::SanitizeAddress: return 1ULL << 32;
1550   case Attribute::MinSize:         return 1ULL << 33;
1551   case Attribute::NoDuplicate:     return 1ULL << 34;
1552   case Attribute::StackProtectStrong: return 1ULL << 35;
1553   case Attribute::SanitizeThread:  return 1ULL << 36;
1554   case Attribute::SanitizeMemory:  return 1ULL << 37;
1555   case Attribute::NoBuiltin:       return 1ULL << 38;
1556   case Attribute::Returned:        return 1ULL << 39;
1557   case Attribute::Cold:            return 1ULL << 40;
1558   case Attribute::Builtin:         return 1ULL << 41;
1559   case Attribute::OptimizeNone:    return 1ULL << 42;
1560   case Attribute::InAlloca:        return 1ULL << 43;
1561   case Attribute::NonNull:         return 1ULL << 44;
1562   case Attribute::JumpTable:       return 1ULL << 45;
1563   case Attribute::Convergent:      return 1ULL << 46;
1564   case Attribute::SafeStack:       return 1ULL << 47;
1565   case Attribute::NoRecurse:       return 1ULL << 48;
1566   case Attribute::InaccessibleMemOnly:         return 1ULL << 49;
1567   case Attribute::InaccessibleMemOrArgMemOnly: return 1ULL << 50;
1568   case Attribute::SwiftSelf:       return 1ULL << 51;
1569   case Attribute::SwiftError:      return 1ULL << 52;
1570   case Attribute::WriteOnly:       return 1ULL << 53;
1571   case Attribute::Dereferenceable:
1572     llvm_unreachable("dereferenceable attribute not supported in raw format");
1573     break;
1574   case Attribute::DereferenceableOrNull:
1575     llvm_unreachable("dereferenceable_or_null attribute not supported in raw "
1576                      "format");
1577     break;
1578   case Attribute::ArgMemOnly:
1579     llvm_unreachable("argmemonly attribute not supported in raw format");
1580     break;
1581   case Attribute::AllocSize:
1582     llvm_unreachable("allocsize not supported in raw format");
1583     break;
1584   }
1585   llvm_unreachable("Unsupported attribute type");
1586 }
1587 
1588 static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) {
1589   if (!Val) return;
1590 
1591   for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds;
1592        I = Attribute::AttrKind(I + 1)) {
1593     if (I == Attribute::Dereferenceable ||
1594         I == Attribute::DereferenceableOrNull ||
1595         I == Attribute::ArgMemOnly ||
1596         I == Attribute::AllocSize)
1597       continue;
1598     if (uint64_t A = (Val & getRawAttributeMask(I))) {
1599       if (I == Attribute::Alignment)
1600         B.addAlignmentAttr(1ULL << ((A >> 16) - 1));
1601       else if (I == Attribute::StackAlignment)
1602         B.addStackAlignmentAttr(1ULL << ((A >> 26)-1));
1603       else
1604         B.addAttribute(I);
1605     }
1606   }
1607 }
1608 
1609 /// \brief This fills an AttrBuilder object with the LLVM attributes that have
1610 /// been decoded from the given integer. This function must stay in sync with
1611 /// 'encodeLLVMAttributesForBitcode'.
1612 static void decodeLLVMAttributesForBitcode(AttrBuilder &B,
1613                                            uint64_t EncodedAttrs) {
1614   // FIXME: Remove in 4.0.
1615 
1616   // The alignment is stored as a 16-bit raw value from bits 31--16.  We shift
1617   // the bits above 31 down by 11 bits.
1618   unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16;
1619   assert((!Alignment || isPowerOf2_32(Alignment)) &&
1620          "Alignment must be a power of two.");
1621 
1622   if (Alignment)
1623     B.addAlignmentAttr(Alignment);
1624   addRawAttributeValue(B, ((EncodedAttrs & (0xfffffULL << 32)) >> 11) |
1625                           (EncodedAttrs & 0xffff));
1626 }
1627 
1628 Error BitcodeReader::parseAttributeBlock() {
1629   if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID))
1630     return error("Invalid record");
1631 
1632   if (!MAttributes.empty())
1633     return error("Invalid multiple blocks");
1634 
1635   SmallVector<uint64_t, 64> Record;
1636 
1637   SmallVector<AttributeSet, 8> Attrs;
1638 
1639   // Read all the records.
1640   while (true) {
1641     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1642 
1643     switch (Entry.Kind) {
1644     case BitstreamEntry::SubBlock: // Handled for us already.
1645     case BitstreamEntry::Error:
1646       return error("Malformed block");
1647     case BitstreamEntry::EndBlock:
1648       return Error::success();
1649     case BitstreamEntry::Record:
1650       // The interesting case.
1651       break;
1652     }
1653 
1654     // Read a record.
1655     Record.clear();
1656     switch (Stream.readRecord(Entry.ID, Record)) {
1657     default:  // Default behavior: ignore.
1658       break;
1659     case bitc::PARAMATTR_CODE_ENTRY_OLD: { // ENTRY: [paramidx0, attr0, ...]
1660       // FIXME: Remove in 4.0.
1661       if (Record.size() & 1)
1662         return error("Invalid record");
1663 
1664       for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
1665         AttrBuilder B;
1666         decodeLLVMAttributesForBitcode(B, Record[i+1]);
1667         Attrs.push_back(AttributeSet::get(Context, Record[i], B));
1668       }
1669 
1670       MAttributes.push_back(AttributeSet::get(Context, Attrs));
1671       Attrs.clear();
1672       break;
1673     }
1674     case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [attrgrp0, attrgrp1, ...]
1675       for (unsigned i = 0, e = Record.size(); i != e; ++i)
1676         Attrs.push_back(MAttributeGroups[Record[i]]);
1677 
1678       MAttributes.push_back(AttributeSet::get(Context, Attrs));
1679       Attrs.clear();
1680       break;
1681     }
1682     }
1683   }
1684 }
1685 
1686 // Returns Attribute::None on unrecognized codes.
1687 static Attribute::AttrKind getAttrFromCode(uint64_t Code) {
1688   switch (Code) {
1689   default:
1690     return Attribute::None;
1691   case bitc::ATTR_KIND_ALIGNMENT:
1692     return Attribute::Alignment;
1693   case bitc::ATTR_KIND_ALWAYS_INLINE:
1694     return Attribute::AlwaysInline;
1695   case bitc::ATTR_KIND_ARGMEMONLY:
1696     return Attribute::ArgMemOnly;
1697   case bitc::ATTR_KIND_BUILTIN:
1698     return Attribute::Builtin;
1699   case bitc::ATTR_KIND_BY_VAL:
1700     return Attribute::ByVal;
1701   case bitc::ATTR_KIND_IN_ALLOCA:
1702     return Attribute::InAlloca;
1703   case bitc::ATTR_KIND_COLD:
1704     return Attribute::Cold;
1705   case bitc::ATTR_KIND_CONVERGENT:
1706     return Attribute::Convergent;
1707   case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY:
1708     return Attribute::InaccessibleMemOnly;
1709   case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY:
1710     return Attribute::InaccessibleMemOrArgMemOnly;
1711   case bitc::ATTR_KIND_INLINE_HINT:
1712     return Attribute::InlineHint;
1713   case bitc::ATTR_KIND_IN_REG:
1714     return Attribute::InReg;
1715   case bitc::ATTR_KIND_JUMP_TABLE:
1716     return Attribute::JumpTable;
1717   case bitc::ATTR_KIND_MIN_SIZE:
1718     return Attribute::MinSize;
1719   case bitc::ATTR_KIND_NAKED:
1720     return Attribute::Naked;
1721   case bitc::ATTR_KIND_NEST:
1722     return Attribute::Nest;
1723   case bitc::ATTR_KIND_NO_ALIAS:
1724     return Attribute::NoAlias;
1725   case bitc::ATTR_KIND_NO_BUILTIN:
1726     return Attribute::NoBuiltin;
1727   case bitc::ATTR_KIND_NO_CAPTURE:
1728     return Attribute::NoCapture;
1729   case bitc::ATTR_KIND_NO_DUPLICATE:
1730     return Attribute::NoDuplicate;
1731   case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT:
1732     return Attribute::NoImplicitFloat;
1733   case bitc::ATTR_KIND_NO_INLINE:
1734     return Attribute::NoInline;
1735   case bitc::ATTR_KIND_NO_RECURSE:
1736     return Attribute::NoRecurse;
1737   case bitc::ATTR_KIND_NON_LAZY_BIND:
1738     return Attribute::NonLazyBind;
1739   case bitc::ATTR_KIND_NON_NULL:
1740     return Attribute::NonNull;
1741   case bitc::ATTR_KIND_DEREFERENCEABLE:
1742     return Attribute::Dereferenceable;
1743   case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL:
1744     return Attribute::DereferenceableOrNull;
1745   case bitc::ATTR_KIND_ALLOC_SIZE:
1746     return Attribute::AllocSize;
1747   case bitc::ATTR_KIND_NO_RED_ZONE:
1748     return Attribute::NoRedZone;
1749   case bitc::ATTR_KIND_NO_RETURN:
1750     return Attribute::NoReturn;
1751   case bitc::ATTR_KIND_NO_UNWIND:
1752     return Attribute::NoUnwind;
1753   case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE:
1754     return Attribute::OptimizeForSize;
1755   case bitc::ATTR_KIND_OPTIMIZE_NONE:
1756     return Attribute::OptimizeNone;
1757   case bitc::ATTR_KIND_READ_NONE:
1758     return Attribute::ReadNone;
1759   case bitc::ATTR_KIND_READ_ONLY:
1760     return Attribute::ReadOnly;
1761   case bitc::ATTR_KIND_RETURNED:
1762     return Attribute::Returned;
1763   case bitc::ATTR_KIND_RETURNS_TWICE:
1764     return Attribute::ReturnsTwice;
1765   case bitc::ATTR_KIND_S_EXT:
1766     return Attribute::SExt;
1767   case bitc::ATTR_KIND_STACK_ALIGNMENT:
1768     return Attribute::StackAlignment;
1769   case bitc::ATTR_KIND_STACK_PROTECT:
1770     return Attribute::StackProtect;
1771   case bitc::ATTR_KIND_STACK_PROTECT_REQ:
1772     return Attribute::StackProtectReq;
1773   case bitc::ATTR_KIND_STACK_PROTECT_STRONG:
1774     return Attribute::StackProtectStrong;
1775   case bitc::ATTR_KIND_SAFESTACK:
1776     return Attribute::SafeStack;
1777   case bitc::ATTR_KIND_STRUCT_RET:
1778     return Attribute::StructRet;
1779   case bitc::ATTR_KIND_SANITIZE_ADDRESS:
1780     return Attribute::SanitizeAddress;
1781   case bitc::ATTR_KIND_SANITIZE_THREAD:
1782     return Attribute::SanitizeThread;
1783   case bitc::ATTR_KIND_SANITIZE_MEMORY:
1784     return Attribute::SanitizeMemory;
1785   case bitc::ATTR_KIND_SWIFT_ERROR:
1786     return Attribute::SwiftError;
1787   case bitc::ATTR_KIND_SWIFT_SELF:
1788     return Attribute::SwiftSelf;
1789   case bitc::ATTR_KIND_UW_TABLE:
1790     return Attribute::UWTable;
1791   case bitc::ATTR_KIND_WRITEONLY:
1792     return Attribute::WriteOnly;
1793   case bitc::ATTR_KIND_Z_EXT:
1794     return Attribute::ZExt;
1795   }
1796 }
1797 
1798 Error BitcodeReader::parseAlignmentValue(uint64_t Exponent,
1799                                          unsigned &Alignment) {
1800   // Note: Alignment in bitcode files is incremented by 1, so that zero
1801   // can be used for default alignment.
1802   if (Exponent > Value::MaxAlignmentExponent + 1)
1803     return error("Invalid alignment value");
1804   Alignment = (1 << static_cast<unsigned>(Exponent)) >> 1;
1805   return Error::success();
1806 }
1807 
1808 Error BitcodeReader::parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind) {
1809   *Kind = getAttrFromCode(Code);
1810   if (*Kind == Attribute::None)
1811     return error("Unknown attribute kind (" + Twine(Code) + ")");
1812   return Error::success();
1813 }
1814 
1815 Error BitcodeReader::parseAttributeGroupBlock() {
1816   if (Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID))
1817     return error("Invalid record");
1818 
1819   if (!MAttributeGroups.empty())
1820     return error("Invalid multiple blocks");
1821 
1822   SmallVector<uint64_t, 64> Record;
1823 
1824   // Read all the records.
1825   while (true) {
1826     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1827 
1828     switch (Entry.Kind) {
1829     case BitstreamEntry::SubBlock: // Handled for us already.
1830     case BitstreamEntry::Error:
1831       return error("Malformed block");
1832     case BitstreamEntry::EndBlock:
1833       return Error::success();
1834     case BitstreamEntry::Record:
1835       // The interesting case.
1836       break;
1837     }
1838 
1839     // Read a record.
1840     Record.clear();
1841     switch (Stream.readRecord(Entry.ID, Record)) {
1842     default:  // Default behavior: ignore.
1843       break;
1844     case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...]
1845       if (Record.size() < 3)
1846         return error("Invalid record");
1847 
1848       uint64_t GrpID = Record[0];
1849       uint64_t Idx = Record[1]; // Index of the object this attribute refers to.
1850 
1851       AttrBuilder B;
1852       for (unsigned i = 2, e = Record.size(); i != e; ++i) {
1853         if (Record[i] == 0) {        // Enum attribute
1854           Attribute::AttrKind Kind;
1855           if (Error Err = parseAttrKind(Record[++i], &Kind))
1856             return Err;
1857 
1858           B.addAttribute(Kind);
1859         } else if (Record[i] == 1) { // Integer attribute
1860           Attribute::AttrKind Kind;
1861           if (Error Err = parseAttrKind(Record[++i], &Kind))
1862             return Err;
1863           if (Kind == Attribute::Alignment)
1864             B.addAlignmentAttr(Record[++i]);
1865           else if (Kind == Attribute::StackAlignment)
1866             B.addStackAlignmentAttr(Record[++i]);
1867           else if (Kind == Attribute::Dereferenceable)
1868             B.addDereferenceableAttr(Record[++i]);
1869           else if (Kind == Attribute::DereferenceableOrNull)
1870             B.addDereferenceableOrNullAttr(Record[++i]);
1871           else if (Kind == Attribute::AllocSize)
1872             B.addAllocSizeAttrFromRawRepr(Record[++i]);
1873         } else {                     // String attribute
1874           assert((Record[i] == 3 || Record[i] == 4) &&
1875                  "Invalid attribute group entry");
1876           bool HasValue = (Record[i++] == 4);
1877           SmallString<64> KindStr;
1878           SmallString<64> ValStr;
1879 
1880           while (Record[i] != 0 && i != e)
1881             KindStr += Record[i++];
1882           assert(Record[i] == 0 && "Kind string not null terminated");
1883 
1884           if (HasValue) {
1885             // Has a value associated with it.
1886             ++i; // Skip the '0' that terminates the "kind" string.
1887             while (Record[i] != 0 && i != e)
1888               ValStr += Record[i++];
1889             assert(Record[i] == 0 && "Value string not null terminated");
1890           }
1891 
1892           B.addAttribute(KindStr.str(), ValStr.str());
1893         }
1894       }
1895 
1896       MAttributeGroups[GrpID] = AttributeSet::get(Context, Idx, B);
1897       break;
1898     }
1899     }
1900   }
1901 }
1902 
1903 Error BitcodeReader::parseTypeTable() {
1904   if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW))
1905     return error("Invalid record");
1906 
1907   return parseTypeTableBody();
1908 }
1909 
1910 Error BitcodeReader::parseTypeTableBody() {
1911   if (!TypeList.empty())
1912     return error("Invalid multiple blocks");
1913 
1914   SmallVector<uint64_t, 64> Record;
1915   unsigned NumRecords = 0;
1916 
1917   SmallString<64> TypeName;
1918 
1919   // Read all the records for this type table.
1920   while (true) {
1921     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1922 
1923     switch (Entry.Kind) {
1924     case BitstreamEntry::SubBlock: // Handled for us already.
1925     case BitstreamEntry::Error:
1926       return error("Malformed block");
1927     case BitstreamEntry::EndBlock:
1928       if (NumRecords != TypeList.size())
1929         return error("Malformed block");
1930       return Error::success();
1931     case BitstreamEntry::Record:
1932       // The interesting case.
1933       break;
1934     }
1935 
1936     // Read a record.
1937     Record.clear();
1938     Type *ResultTy = nullptr;
1939     switch (Stream.readRecord(Entry.ID, Record)) {
1940     default:
1941       return error("Invalid value");
1942     case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
1943       // TYPE_CODE_NUMENTRY contains a count of the number of types in the
1944       // type list.  This allows us to reserve space.
1945       if (Record.size() < 1)
1946         return error("Invalid record");
1947       TypeList.resize(Record[0]);
1948       continue;
1949     case bitc::TYPE_CODE_VOID:      // VOID
1950       ResultTy = Type::getVoidTy(Context);
1951       break;
1952     case bitc::TYPE_CODE_HALF:     // HALF
1953       ResultTy = Type::getHalfTy(Context);
1954       break;
1955     case bitc::TYPE_CODE_FLOAT:     // FLOAT
1956       ResultTy = Type::getFloatTy(Context);
1957       break;
1958     case bitc::TYPE_CODE_DOUBLE:    // DOUBLE
1959       ResultTy = Type::getDoubleTy(Context);
1960       break;
1961     case bitc::TYPE_CODE_X86_FP80:  // X86_FP80
1962       ResultTy = Type::getX86_FP80Ty(Context);
1963       break;
1964     case bitc::TYPE_CODE_FP128:     // FP128
1965       ResultTy = Type::getFP128Ty(Context);
1966       break;
1967     case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
1968       ResultTy = Type::getPPC_FP128Ty(Context);
1969       break;
1970     case bitc::TYPE_CODE_LABEL:     // LABEL
1971       ResultTy = Type::getLabelTy(Context);
1972       break;
1973     case bitc::TYPE_CODE_METADATA:  // METADATA
1974       ResultTy = Type::getMetadataTy(Context);
1975       break;
1976     case bitc::TYPE_CODE_X86_MMX:   // X86_MMX
1977       ResultTy = Type::getX86_MMXTy(Context);
1978       break;
1979     case bitc::TYPE_CODE_TOKEN:     // TOKEN
1980       ResultTy = Type::getTokenTy(Context);
1981       break;
1982     case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width]
1983       if (Record.size() < 1)
1984         return error("Invalid record");
1985 
1986       uint64_t NumBits = Record[0];
1987       if (NumBits < IntegerType::MIN_INT_BITS ||
1988           NumBits > IntegerType::MAX_INT_BITS)
1989         return error("Bitwidth for integer type out of range");
1990       ResultTy = IntegerType::get(Context, NumBits);
1991       break;
1992     }
1993     case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
1994                                     //          [pointee type, address space]
1995       if (Record.size() < 1)
1996         return error("Invalid record");
1997       unsigned AddressSpace = 0;
1998       if (Record.size() == 2)
1999         AddressSpace = Record[1];
2000       ResultTy = getTypeByID(Record[0]);
2001       if (!ResultTy ||
2002           !PointerType::isValidElementType(ResultTy))
2003         return error("Invalid type");
2004       ResultTy = PointerType::get(ResultTy, AddressSpace);
2005       break;
2006     }
2007     case bitc::TYPE_CODE_FUNCTION_OLD: {
2008       // FIXME: attrid is dead, remove it in LLVM 4.0
2009       // FUNCTION: [vararg, attrid, retty, paramty x N]
2010       if (Record.size() < 3)
2011         return error("Invalid record");
2012       SmallVector<Type*, 8> ArgTys;
2013       for (unsigned i = 3, e = Record.size(); i != e; ++i) {
2014         if (Type *T = getTypeByID(Record[i]))
2015           ArgTys.push_back(T);
2016         else
2017           break;
2018       }
2019 
2020       ResultTy = getTypeByID(Record[2]);
2021       if (!ResultTy || ArgTys.size() < Record.size()-3)
2022         return error("Invalid type");
2023 
2024       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
2025       break;
2026     }
2027     case bitc::TYPE_CODE_FUNCTION: {
2028       // FUNCTION: [vararg, retty, paramty x N]
2029       if (Record.size() < 2)
2030         return error("Invalid record");
2031       SmallVector<Type*, 8> ArgTys;
2032       for (unsigned i = 2, e = Record.size(); i != e; ++i) {
2033         if (Type *T = getTypeByID(Record[i])) {
2034           if (!FunctionType::isValidArgumentType(T))
2035             return error("Invalid function argument type");
2036           ArgTys.push_back(T);
2037         }
2038         else
2039           break;
2040       }
2041 
2042       ResultTy = getTypeByID(Record[1]);
2043       if (!ResultTy || ArgTys.size() < Record.size()-2)
2044         return error("Invalid type");
2045 
2046       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
2047       break;
2048     }
2049     case bitc::TYPE_CODE_STRUCT_ANON: {  // STRUCT: [ispacked, eltty x N]
2050       if (Record.size() < 1)
2051         return error("Invalid record");
2052       SmallVector<Type*, 8> EltTys;
2053       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
2054         if (Type *T = getTypeByID(Record[i]))
2055           EltTys.push_back(T);
2056         else
2057           break;
2058       }
2059       if (EltTys.size() != Record.size()-1)
2060         return error("Invalid type");
2061       ResultTy = StructType::get(Context, EltTys, Record[0]);
2062       break;
2063     }
2064     case bitc::TYPE_CODE_STRUCT_NAME:   // STRUCT_NAME: [strchr x N]
2065       if (convertToString(Record, 0, TypeName))
2066         return error("Invalid record");
2067       continue;
2068 
2069     case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N]
2070       if (Record.size() < 1)
2071         return error("Invalid record");
2072 
2073       if (NumRecords >= TypeList.size())
2074         return error("Invalid TYPE table");
2075 
2076       // Check to see if this was forward referenced, if so fill in the temp.
2077       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
2078       if (Res) {
2079         Res->setName(TypeName);
2080         TypeList[NumRecords] = nullptr;
2081       } else  // Otherwise, create a new struct.
2082         Res = createIdentifiedStructType(Context, TypeName);
2083       TypeName.clear();
2084 
2085       SmallVector<Type*, 8> EltTys;
2086       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
2087         if (Type *T = getTypeByID(Record[i]))
2088           EltTys.push_back(T);
2089         else
2090           break;
2091       }
2092       if (EltTys.size() != Record.size()-1)
2093         return error("Invalid record");
2094       Res->setBody(EltTys, Record[0]);
2095       ResultTy = Res;
2096       break;
2097     }
2098     case bitc::TYPE_CODE_OPAQUE: {       // OPAQUE: []
2099       if (Record.size() != 1)
2100         return error("Invalid record");
2101 
2102       if (NumRecords >= TypeList.size())
2103         return error("Invalid TYPE table");
2104 
2105       // Check to see if this was forward referenced, if so fill in the temp.
2106       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
2107       if (Res) {
2108         Res->setName(TypeName);
2109         TypeList[NumRecords] = nullptr;
2110       } else  // Otherwise, create a new struct with no body.
2111         Res = createIdentifiedStructType(Context, TypeName);
2112       TypeName.clear();
2113       ResultTy = Res;
2114       break;
2115     }
2116     case bitc::TYPE_CODE_ARRAY:     // ARRAY: [numelts, eltty]
2117       if (Record.size() < 2)
2118         return error("Invalid record");
2119       ResultTy = getTypeByID(Record[1]);
2120       if (!ResultTy || !ArrayType::isValidElementType(ResultTy))
2121         return error("Invalid type");
2122       ResultTy = ArrayType::get(ResultTy, Record[0]);
2123       break;
2124     case bitc::TYPE_CODE_VECTOR:    // VECTOR: [numelts, eltty]
2125       if (Record.size() < 2)
2126         return error("Invalid record");
2127       if (Record[0] == 0)
2128         return error("Invalid vector length");
2129       ResultTy = getTypeByID(Record[1]);
2130       if (!ResultTy || !StructType::isValidElementType(ResultTy))
2131         return error("Invalid type");
2132       ResultTy = VectorType::get(ResultTy, Record[0]);
2133       break;
2134     }
2135 
2136     if (NumRecords >= TypeList.size())
2137       return error("Invalid TYPE table");
2138     if (TypeList[NumRecords])
2139       return error(
2140           "Invalid TYPE table: Only named structs can be forward referenced");
2141     assert(ResultTy && "Didn't read a type?");
2142     TypeList[NumRecords++] = ResultTy;
2143   }
2144 }
2145 
2146 Error BitcodeReader::parseOperandBundleTags() {
2147   if (Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID))
2148     return error("Invalid record");
2149 
2150   if (!BundleTags.empty())
2151     return error("Invalid multiple blocks");
2152 
2153   SmallVector<uint64_t, 64> Record;
2154 
2155   while (true) {
2156     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
2157 
2158     switch (Entry.Kind) {
2159     case BitstreamEntry::SubBlock: // Handled for us already.
2160     case BitstreamEntry::Error:
2161       return error("Malformed block");
2162     case BitstreamEntry::EndBlock:
2163       return Error::success();
2164     case BitstreamEntry::Record:
2165       // The interesting case.
2166       break;
2167     }
2168 
2169     // Tags are implicitly mapped to integers by their order.
2170 
2171     if (Stream.readRecord(Entry.ID, Record) != bitc::OPERAND_BUNDLE_TAG)
2172       return error("Invalid record");
2173 
2174     // OPERAND_BUNDLE_TAG: [strchr x N]
2175     BundleTags.emplace_back();
2176     if (convertToString(Record, 0, BundleTags.back()))
2177       return error("Invalid record");
2178     Record.clear();
2179   }
2180 }
2181 
2182 /// Associate a value with its name from the given index in the provided record.
2183 Expected<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record,
2184                                              unsigned NameIndex, Triple &TT) {
2185   SmallString<128> ValueName;
2186   if (convertToString(Record, NameIndex, ValueName))
2187     return error("Invalid record");
2188   unsigned ValueID = Record[0];
2189   if (ValueID >= ValueList.size() || !ValueList[ValueID])
2190     return error("Invalid record");
2191   Value *V = ValueList[ValueID];
2192 
2193   StringRef NameStr(ValueName.data(), ValueName.size());
2194   if (NameStr.find_first_of(0) != StringRef::npos)
2195     return error("Invalid value name");
2196   V->setName(NameStr);
2197   auto *GO = dyn_cast<GlobalObject>(V);
2198   if (GO) {
2199     if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) {
2200       if (TT.isOSBinFormatMachO())
2201         GO->setComdat(nullptr);
2202       else
2203         GO->setComdat(TheModule->getOrInsertComdat(V->getName()));
2204     }
2205   }
2206   return V;
2207 }
2208 
2209 /// Helper to note and return the current location, and jump to the given
2210 /// offset.
2211 static uint64_t jumpToValueSymbolTable(uint64_t Offset,
2212                                        BitstreamCursor &Stream) {
2213   // Save the current parsing location so we can jump back at the end
2214   // of the VST read.
2215   uint64_t CurrentBit = Stream.GetCurrentBitNo();
2216   Stream.JumpToBit(Offset * 32);
2217 #ifndef NDEBUG
2218   // Do some checking if we are in debug mode.
2219   BitstreamEntry Entry = Stream.advance();
2220   assert(Entry.Kind == BitstreamEntry::SubBlock);
2221   assert(Entry.ID == bitc::VALUE_SYMTAB_BLOCK_ID);
2222 #else
2223   // In NDEBUG mode ignore the output so we don't get an unused variable
2224   // warning.
2225   Stream.advance();
2226 #endif
2227   return CurrentBit;
2228 }
2229 
2230 /// Parse the value symbol table at either the current parsing location or
2231 /// at the given bit offset if provided.
2232 Error BitcodeReader::parseValueSymbolTable(uint64_t Offset) {
2233   uint64_t CurrentBit;
2234   // Pass in the Offset to distinguish between calling for the module-level
2235   // VST (where we want to jump to the VST offset) and the function-level
2236   // VST (where we don't).
2237   if (Offset > 0)
2238     CurrentBit = jumpToValueSymbolTable(Offset, Stream);
2239 
2240   // Compute the delta between the bitcode indices in the VST (the word offset
2241   // to the word-aligned ENTER_SUBBLOCK for the function block, and that
2242   // expected by the lazy reader. The reader's EnterSubBlock expects to have
2243   // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID
2244   // (size BlockIDWidth). Note that we access the stream's AbbrevID width here
2245   // just before entering the VST subblock because: 1) the EnterSubBlock
2246   // changes the AbbrevID width; 2) the VST block is nested within the same
2247   // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same
2248   // AbbrevID width before calling EnterSubBlock; and 3) when we want to
2249   // jump to the FUNCTION_BLOCK using this offset later, we don't want
2250   // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK.
2251   unsigned FuncBitcodeOffsetDelta =
2252       Stream.getAbbrevIDWidth() + bitc::BlockIDWidth;
2253 
2254   if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
2255     return error("Invalid record");
2256 
2257   SmallVector<uint64_t, 64> Record;
2258 
2259   Triple TT(TheModule->getTargetTriple());
2260 
2261   // Read all the records for this value table.
2262   SmallString<128> ValueName;
2263 
2264   while (true) {
2265     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
2266 
2267     switch (Entry.Kind) {
2268     case BitstreamEntry::SubBlock: // Handled for us already.
2269     case BitstreamEntry::Error:
2270       return error("Malformed block");
2271     case BitstreamEntry::EndBlock:
2272       if (Offset > 0)
2273         Stream.JumpToBit(CurrentBit);
2274       return Error::success();
2275     case BitstreamEntry::Record:
2276       // The interesting case.
2277       break;
2278     }
2279 
2280     // Read a record.
2281     Record.clear();
2282     switch (Stream.readRecord(Entry.ID, Record)) {
2283     default:  // Default behavior: unknown type.
2284       break;
2285     case bitc::VST_CODE_ENTRY: {  // VST_CODE_ENTRY: [valueid, namechar x N]
2286       Expected<Value *> ValOrErr = recordValue(Record, 1, TT);
2287       if (Error Err = ValOrErr.takeError())
2288         return Err;
2289       ValOrErr.get();
2290       break;
2291     }
2292     case bitc::VST_CODE_FNENTRY: {
2293       // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
2294       Expected<Value *> ValOrErr = recordValue(Record, 2, TT);
2295       if (Error Err = ValOrErr.takeError())
2296         return Err;
2297       Value *V = ValOrErr.get();
2298 
2299       auto *GO = dyn_cast<GlobalObject>(V);
2300       if (!GO) {
2301         // If this is an alias, need to get the actual Function object
2302         // it aliases, in order to set up the DeferredFunctionInfo entry below.
2303         auto *GA = dyn_cast<GlobalAlias>(V);
2304         if (GA)
2305           GO = GA->getBaseObject();
2306         assert(GO);
2307       }
2308 
2309       uint64_t FuncWordOffset = Record[1];
2310       Function *F = dyn_cast<Function>(GO);
2311       assert(F);
2312       uint64_t FuncBitOffset = FuncWordOffset * 32;
2313       DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta;
2314       // Set the LastFunctionBlockBit to point to the last function block.
2315       // Later when parsing is resumed after function materialization,
2316       // we can simply skip that last function block.
2317       if (FuncBitOffset > LastFunctionBlockBit)
2318         LastFunctionBlockBit = FuncBitOffset;
2319       break;
2320     }
2321     case bitc::VST_CODE_BBENTRY: {
2322       if (convertToString(Record, 1, ValueName))
2323         return error("Invalid record");
2324       BasicBlock *BB = getBasicBlock(Record[0]);
2325       if (!BB)
2326         return error("Invalid record");
2327 
2328       BB->setName(StringRef(ValueName.data(), ValueName.size()));
2329       ValueName.clear();
2330       break;
2331     }
2332     }
2333   }
2334 }
2335 
2336 /// Parse a single METADATA_KIND record, inserting result in MDKindMap.
2337 Error BitcodeReader::parseMetadataKindRecord(
2338     SmallVectorImpl<uint64_t> &Record) {
2339   if (Record.size() < 2)
2340     return error("Invalid record");
2341 
2342   unsigned Kind = Record[0];
2343   SmallString<8> Name(Record.begin() + 1, Record.end());
2344 
2345   unsigned NewKind = TheModule->getMDKindID(Name.str());
2346   if (!MDKindMap.insert(std::make_pair(Kind, NewKind)).second)
2347     return error("Conflicting METADATA_KIND records");
2348   return Error::success();
2349 }
2350 
2351 static int64_t unrotateSign(uint64_t U) { return U & 1 ? ~(U >> 1) : U >> 1; }
2352 
2353 Error BitcodeReader::parseMetadataStrings(ArrayRef<uint64_t> Record,
2354                                           StringRef Blob,
2355                                           unsigned &NextMetadataNo) {
2356   // All the MDStrings in the block are emitted together in a single
2357   // record.  The strings are concatenated and stored in a blob along with
2358   // their sizes.
2359   if (Record.size() != 2)
2360     return error("Invalid record: metadata strings layout");
2361 
2362   unsigned NumStrings = Record[0];
2363   unsigned StringsOffset = Record[1];
2364   if (!NumStrings)
2365     return error("Invalid record: metadata strings with no strings");
2366   if (StringsOffset > Blob.size())
2367     return error("Invalid record: metadata strings corrupt offset");
2368 
2369   StringRef Lengths = Blob.slice(0, StringsOffset);
2370   SimpleBitstreamCursor R(Lengths);
2371 
2372   StringRef Strings = Blob.drop_front(StringsOffset);
2373   do {
2374     if (R.AtEndOfStream())
2375       return error("Invalid record: metadata strings bad length");
2376 
2377     unsigned Size = R.ReadVBR(6);
2378     if (Strings.size() < Size)
2379       return error("Invalid record: metadata strings truncated chars");
2380 
2381     MetadataList.assignValue(MDString::get(Context, Strings.slice(0, Size)),
2382                              NextMetadataNo++);
2383     Strings = Strings.drop_front(Size);
2384   } while (--NumStrings);
2385 
2386   return Error::success();
2387 }
2388 
2389 namespace {
2390 
2391 class PlaceholderQueue {
2392   // Placeholders would thrash around when moved, so store in a std::deque
2393   // instead of some sort of vector.
2394   std::deque<DistinctMDOperandPlaceholder> PHs;
2395 
2396 public:
2397   DistinctMDOperandPlaceholder &getPlaceholderOp(unsigned ID);
2398   void flush(BitcodeReaderMetadataList &MetadataList);
2399 };
2400 
2401 } // end anonymous namespace
2402 
2403 DistinctMDOperandPlaceholder &PlaceholderQueue::getPlaceholderOp(unsigned ID) {
2404   PHs.emplace_back(ID);
2405   return PHs.back();
2406 }
2407 
2408 void PlaceholderQueue::flush(BitcodeReaderMetadataList &MetadataList) {
2409   while (!PHs.empty()) {
2410     PHs.front().replaceUseWith(
2411         MetadataList.getMetadataFwdRef(PHs.front().getID()));
2412     PHs.pop_front();
2413   }
2414 }
2415 
2416 /// Parse a METADATA_BLOCK. If ModuleLevel is true then we are parsing
2417 /// module level metadata.
2418 Error BitcodeReader::parseMetadata(bool ModuleLevel) {
2419   assert((ModuleLevel || DeferredMetadataInfo.empty()) &&
2420          "Must read all module-level metadata before function-level");
2421 
2422   IsMetadataMaterialized = true;
2423   unsigned NextMetadataNo = MetadataList.size();
2424 
2425   if (!ModuleLevel && MetadataList.hasFwdRefs())
2426     return error("Invalid metadata: fwd refs into function blocks");
2427 
2428   if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID))
2429     return error("Invalid record");
2430 
2431   std::vector<std::pair<DICompileUnit *, Metadata *>> CUSubprograms;
2432   SmallVector<uint64_t, 64> Record;
2433 
2434   PlaceholderQueue Placeholders;
2435   bool IsDistinct;
2436   auto getMD = [&](unsigned ID) -> Metadata * {
2437     if (!IsDistinct)
2438       return MetadataList.getMetadataFwdRef(ID);
2439     if (auto *MD = MetadataList.getMetadataIfResolved(ID))
2440       return MD;
2441     return &Placeholders.getPlaceholderOp(ID);
2442   };
2443   auto getMDOrNull = [&](unsigned ID) -> Metadata * {
2444     if (ID)
2445       return getMD(ID - 1);
2446     return nullptr;
2447   };
2448   auto getMDOrNullWithoutPlaceholders = [&](unsigned ID) -> Metadata * {
2449     if (ID)
2450       return MetadataList.getMetadataFwdRef(ID - 1);
2451     return nullptr;
2452   };
2453   auto getMDString = [&](unsigned ID) -> MDString *{
2454     // This requires that the ID is not really a forward reference.  In
2455     // particular, the MDString must already have been resolved.
2456     return cast_or_null<MDString>(getMDOrNull(ID));
2457   };
2458 
2459   // Support for old type refs.
2460   auto getDITypeRefOrNull = [&](unsigned ID) {
2461     return MetadataList.upgradeTypeRef(getMDOrNull(ID));
2462   };
2463 
2464 #define GET_OR_DISTINCT(CLASS, ARGS)                                           \
2465   (IsDistinct ? CLASS::getDistinct ARGS : CLASS::get ARGS)
2466 
2467   // Read all the records.
2468   while (true) {
2469     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
2470 
2471     switch (Entry.Kind) {
2472     case BitstreamEntry::SubBlock: // Handled for us already.
2473     case BitstreamEntry::Error:
2474       return error("Malformed block");
2475     case BitstreamEntry::EndBlock:
2476       // Upgrade old-style CU <-> SP pointers to point from SP to CU.
2477       for (auto CU_SP : CUSubprograms)
2478         if (auto *SPs = dyn_cast_or_null<MDTuple>(CU_SP.second))
2479           for (auto &Op : SPs->operands())
2480             if (auto *SP = dyn_cast_or_null<MDNode>(Op))
2481               SP->replaceOperandWith(7, CU_SP.first);
2482 
2483       MetadataList.tryToResolveCycles();
2484       Placeholders.flush(MetadataList);
2485       return Error::success();
2486     case BitstreamEntry::Record:
2487       // The interesting case.
2488       break;
2489     }
2490 
2491     // Read a record.
2492     Record.clear();
2493     StringRef Blob;
2494     unsigned Code = Stream.readRecord(Entry.ID, Record, &Blob);
2495     IsDistinct = false;
2496     switch (Code) {
2497     default:  // Default behavior: ignore.
2498       break;
2499     case bitc::METADATA_NAME: {
2500       // Read name of the named metadata.
2501       SmallString<8> Name(Record.begin(), Record.end());
2502       Record.clear();
2503       Code = Stream.ReadCode();
2504 
2505       unsigned NextBitCode = Stream.readRecord(Code, Record);
2506       if (NextBitCode != bitc::METADATA_NAMED_NODE)
2507         return error("METADATA_NAME not followed by METADATA_NAMED_NODE");
2508 
2509       // Read named metadata elements.
2510       unsigned Size = Record.size();
2511       NamedMDNode *NMD = TheModule->getOrInsertNamedMetadata(Name);
2512       for (unsigned i = 0; i != Size; ++i) {
2513         MDNode *MD = MetadataList.getMDNodeFwdRefOrNull(Record[i]);
2514         if (!MD)
2515           return error("Invalid record");
2516         NMD->addOperand(MD);
2517       }
2518       break;
2519     }
2520     case bitc::METADATA_OLD_FN_NODE: {
2521       // FIXME: Remove in 4.0.
2522       // This is a LocalAsMetadata record, the only type of function-local
2523       // metadata.
2524       if (Record.size() % 2 == 1)
2525         return error("Invalid record");
2526 
2527       // If this isn't a LocalAsMetadata record, we're dropping it.  This used
2528       // to be legal, but there's no upgrade path.
2529       auto dropRecord = [&] {
2530         MetadataList.assignValue(MDNode::get(Context, None), NextMetadataNo++);
2531       };
2532       if (Record.size() != 2) {
2533         dropRecord();
2534         break;
2535       }
2536 
2537       Type *Ty = getTypeByID(Record[0]);
2538       if (Ty->isMetadataTy() || Ty->isVoidTy()) {
2539         dropRecord();
2540         break;
2541       }
2542 
2543       MetadataList.assignValue(
2544           LocalAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)),
2545           NextMetadataNo++);
2546       break;
2547     }
2548     case bitc::METADATA_OLD_NODE: {
2549       // FIXME: Remove in 4.0.
2550       if (Record.size() % 2 == 1)
2551         return error("Invalid record");
2552 
2553       unsigned Size = Record.size();
2554       SmallVector<Metadata *, 8> Elts;
2555       for (unsigned i = 0; i != Size; i += 2) {
2556         Type *Ty = getTypeByID(Record[i]);
2557         if (!Ty)
2558           return error("Invalid record");
2559         if (Ty->isMetadataTy())
2560           Elts.push_back(getMD(Record[i + 1]));
2561         else if (!Ty->isVoidTy()) {
2562           auto *MD =
2563               ValueAsMetadata::get(ValueList.getValueFwdRef(Record[i + 1], Ty));
2564           assert(isa<ConstantAsMetadata>(MD) &&
2565                  "Expected non-function-local metadata");
2566           Elts.push_back(MD);
2567         } else
2568           Elts.push_back(nullptr);
2569       }
2570       MetadataList.assignValue(MDNode::get(Context, Elts), NextMetadataNo++);
2571       break;
2572     }
2573     case bitc::METADATA_VALUE: {
2574       if (Record.size() != 2)
2575         return error("Invalid record");
2576 
2577       Type *Ty = getTypeByID(Record[0]);
2578       if (Ty->isMetadataTy() || Ty->isVoidTy())
2579         return error("Invalid record");
2580 
2581       MetadataList.assignValue(
2582           ValueAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)),
2583           NextMetadataNo++);
2584       break;
2585     }
2586     case bitc::METADATA_DISTINCT_NODE:
2587       IsDistinct = true;
2588       LLVM_FALLTHROUGH;
2589     case bitc::METADATA_NODE: {
2590       SmallVector<Metadata *, 8> Elts;
2591       Elts.reserve(Record.size());
2592       for (unsigned ID : Record)
2593         Elts.push_back(getMDOrNull(ID));
2594       MetadataList.assignValue(IsDistinct ? MDNode::getDistinct(Context, Elts)
2595                                           : MDNode::get(Context, Elts),
2596                                NextMetadataNo++);
2597       break;
2598     }
2599     case bitc::METADATA_LOCATION: {
2600       if (Record.size() != 5)
2601         return error("Invalid record");
2602 
2603       IsDistinct = Record[0];
2604       unsigned Line = Record[1];
2605       unsigned Column = Record[2];
2606       Metadata *Scope = getMD(Record[3]);
2607       Metadata *InlinedAt = getMDOrNull(Record[4]);
2608       MetadataList.assignValue(
2609           GET_OR_DISTINCT(DILocation,
2610                           (Context, Line, Column, Scope, InlinedAt)),
2611           NextMetadataNo++);
2612       break;
2613     }
2614     case bitc::METADATA_GENERIC_DEBUG: {
2615       if (Record.size() < 4)
2616         return error("Invalid record");
2617 
2618       IsDistinct = Record[0];
2619       unsigned Tag = Record[1];
2620       unsigned Version = Record[2];
2621 
2622       if (Tag >= 1u << 16 || Version != 0)
2623         return error("Invalid record");
2624 
2625       auto *Header = getMDString(Record[3]);
2626       SmallVector<Metadata *, 8> DwarfOps;
2627       for (unsigned I = 4, E = Record.size(); I != E; ++I)
2628         DwarfOps.push_back(getMDOrNull(Record[I]));
2629       MetadataList.assignValue(
2630           GET_OR_DISTINCT(GenericDINode, (Context, Tag, Header, DwarfOps)),
2631           NextMetadataNo++);
2632       break;
2633     }
2634     case bitc::METADATA_SUBRANGE: {
2635       if (Record.size() != 3)
2636         return error("Invalid record");
2637 
2638       IsDistinct = Record[0];
2639       MetadataList.assignValue(
2640           GET_OR_DISTINCT(DISubrange,
2641                           (Context, Record[1], unrotateSign(Record[2]))),
2642           NextMetadataNo++);
2643       break;
2644     }
2645     case bitc::METADATA_ENUMERATOR: {
2646       if (Record.size() != 3)
2647         return error("Invalid record");
2648 
2649       IsDistinct = Record[0];
2650       MetadataList.assignValue(
2651           GET_OR_DISTINCT(DIEnumerator, (Context, unrotateSign(Record[1]),
2652                                          getMDString(Record[2]))),
2653           NextMetadataNo++);
2654       break;
2655     }
2656     case bitc::METADATA_BASIC_TYPE: {
2657       if (Record.size() != 6)
2658         return error("Invalid record");
2659 
2660       IsDistinct = Record[0];
2661       MetadataList.assignValue(
2662           GET_OR_DISTINCT(DIBasicType,
2663                           (Context, Record[1], getMDString(Record[2]),
2664                            Record[3], Record[4], Record[5])),
2665           NextMetadataNo++);
2666       break;
2667     }
2668     case bitc::METADATA_DERIVED_TYPE: {
2669       if (Record.size() != 12)
2670         return error("Invalid record");
2671 
2672       IsDistinct = Record[0];
2673       DINode::DIFlags Flags = static_cast<DINode::DIFlags>(Record[10]);
2674       MetadataList.assignValue(
2675           GET_OR_DISTINCT(DIDerivedType,
2676                           (Context, Record[1], getMDString(Record[2]),
2677                            getMDOrNull(Record[3]), Record[4],
2678                            getDITypeRefOrNull(Record[5]),
2679                            getDITypeRefOrNull(Record[6]), Record[7], Record[8],
2680                            Record[9], Flags, getDITypeRefOrNull(Record[11]))),
2681           NextMetadataNo++);
2682       break;
2683     }
2684     case bitc::METADATA_COMPOSITE_TYPE: {
2685       if (Record.size() != 16)
2686         return error("Invalid record");
2687 
2688       // If we have a UUID and this is not a forward declaration, lookup the
2689       // mapping.
2690       IsDistinct = Record[0] & 0x1;
2691       bool IsNotUsedInTypeRef = Record[0] >= 2;
2692       unsigned Tag = Record[1];
2693       MDString *Name = getMDString(Record[2]);
2694       Metadata *File = getMDOrNull(Record[3]);
2695       unsigned Line = Record[4];
2696       Metadata *Scope = getDITypeRefOrNull(Record[5]);
2697       Metadata *BaseType = getDITypeRefOrNull(Record[6]);
2698       uint64_t SizeInBits = Record[7];
2699       if (Record[8] > (uint64_t)std::numeric_limits<uint32_t>::max())
2700         return error("Alignment value is too large");
2701       uint32_t AlignInBits = Record[8];
2702       uint64_t OffsetInBits = Record[9];
2703       DINode::DIFlags Flags = static_cast<DINode::DIFlags>(Record[10]);
2704       Metadata *Elements = getMDOrNull(Record[11]);
2705       unsigned RuntimeLang = Record[12];
2706       Metadata *VTableHolder = getDITypeRefOrNull(Record[13]);
2707       Metadata *TemplateParams = getMDOrNull(Record[14]);
2708       auto *Identifier = getMDString(Record[15]);
2709       DICompositeType *CT = nullptr;
2710       if (Identifier)
2711         CT = DICompositeType::buildODRType(
2712             Context, *Identifier, Tag, Name, File, Line, Scope, BaseType,
2713             SizeInBits, AlignInBits, OffsetInBits, Flags, Elements, RuntimeLang,
2714             VTableHolder, TemplateParams);
2715 
2716       // Create a node if we didn't get a lazy ODR type.
2717       if (!CT)
2718         CT = GET_OR_DISTINCT(DICompositeType,
2719                              (Context, Tag, Name, File, Line, Scope, BaseType,
2720                               SizeInBits, AlignInBits, OffsetInBits, Flags,
2721                               Elements, RuntimeLang, VTableHolder,
2722                               TemplateParams, Identifier));
2723       if (!IsNotUsedInTypeRef && Identifier)
2724         MetadataList.addTypeRef(*Identifier, *cast<DICompositeType>(CT));
2725 
2726       MetadataList.assignValue(CT, NextMetadataNo++);
2727       break;
2728     }
2729     case bitc::METADATA_SUBROUTINE_TYPE: {
2730       if (Record.size() < 3 || Record.size() > 4)
2731         return error("Invalid record");
2732       bool IsOldTypeRefArray = Record[0] < 2;
2733       unsigned CC = (Record.size() > 3) ? Record[3] : 0;
2734 
2735       IsDistinct = Record[0] & 0x1;
2736       DINode::DIFlags Flags = static_cast<DINode::DIFlags>(Record[1]);
2737       Metadata *Types = getMDOrNull(Record[2]);
2738       if (LLVM_UNLIKELY(IsOldTypeRefArray))
2739         Types = MetadataList.upgradeTypeRefArray(Types);
2740 
2741       MetadataList.assignValue(
2742           GET_OR_DISTINCT(DISubroutineType, (Context, Flags, CC, Types)),
2743           NextMetadataNo++);
2744       break;
2745     }
2746 
2747     case bitc::METADATA_MODULE: {
2748       if (Record.size() != 6)
2749         return error("Invalid record");
2750 
2751       IsDistinct = Record[0];
2752       MetadataList.assignValue(
2753           GET_OR_DISTINCT(DIModule,
2754                           (Context, getMDOrNull(Record[1]),
2755                            getMDString(Record[2]), getMDString(Record[3]),
2756                            getMDString(Record[4]), getMDString(Record[5]))),
2757           NextMetadataNo++);
2758       break;
2759     }
2760 
2761     case bitc::METADATA_FILE: {
2762       if (Record.size() != 3)
2763         return error("Invalid record");
2764 
2765       IsDistinct = Record[0];
2766       MetadataList.assignValue(
2767           GET_OR_DISTINCT(DIFile, (Context, getMDString(Record[1]),
2768                                    getMDString(Record[2]))),
2769           NextMetadataNo++);
2770       break;
2771     }
2772     case bitc::METADATA_COMPILE_UNIT: {
2773       if (Record.size() < 14 || Record.size() > 17)
2774         return error("Invalid record");
2775 
2776       // Ignore Record[0], which indicates whether this compile unit is
2777       // distinct.  It's always distinct.
2778       IsDistinct = true;
2779       auto *CU = DICompileUnit::getDistinct(
2780           Context, Record[1], getMDOrNull(Record[2]), getMDString(Record[3]),
2781           Record[4], getMDString(Record[5]), Record[6], getMDString(Record[7]),
2782           Record[8], getMDOrNull(Record[9]), getMDOrNull(Record[10]),
2783           getMDOrNull(Record[12]), getMDOrNull(Record[13]),
2784           Record.size() <= 15 ? nullptr : getMDOrNull(Record[15]),
2785           Record.size() <= 14 ? 0 : Record[14],
2786           Record.size() <= 16 ? true : Record[16]);
2787 
2788       MetadataList.assignValue(CU, NextMetadataNo++);
2789 
2790       // Move the Upgrade the list of subprograms.
2791       if (Metadata *SPs = getMDOrNullWithoutPlaceholders(Record[11]))
2792         CUSubprograms.push_back({CU, SPs});
2793       break;
2794     }
2795     case bitc::METADATA_SUBPROGRAM: {
2796       if (Record.size() < 18 || Record.size() > 20)
2797         return error("Invalid record");
2798 
2799       IsDistinct =
2800           (Record[0] & 1) || Record[8]; // All definitions should be distinct.
2801       // Version 1 has a Function as Record[15].
2802       // Version 2 has removed Record[15].
2803       // Version 3 has the Unit as Record[15].
2804       // Version 4 added thisAdjustment.
2805       bool HasUnit = Record[0] >= 2;
2806       if (HasUnit && Record.size() < 19)
2807         return error("Invalid record");
2808       Metadata *CUorFn = getMDOrNull(Record[15]);
2809       unsigned Offset = Record.size() >= 19 ? 1 : 0;
2810       bool HasFn = Offset && !HasUnit;
2811       bool HasThisAdj = Record.size() >= 20;
2812       DISubprogram *SP = GET_OR_DISTINCT(
2813           DISubprogram, (Context,
2814                          getDITypeRefOrNull(Record[1]),  // scope
2815                          getMDString(Record[2]),         // name
2816                          getMDString(Record[3]),         // linkageName
2817                          getMDOrNull(Record[4]),         // file
2818                          Record[5],                      // line
2819                          getMDOrNull(Record[6]),         // type
2820                          Record[7],                      // isLocal
2821                          Record[8],                      // isDefinition
2822                          Record[9],                      // scopeLine
2823                          getDITypeRefOrNull(Record[10]), // containingType
2824                          Record[11],                     // virtuality
2825                          Record[12],                     // virtualIndex
2826                          HasThisAdj ? Record[19] : 0,    // thisAdjustment
2827                          static_cast<DINode::DIFlags>(Record[13] // flags
2828                                                       ),
2829                          Record[14],                       // isOptimized
2830                          HasUnit ? CUorFn : nullptr,       // unit
2831                          getMDOrNull(Record[15 + Offset]), // templateParams
2832                          getMDOrNull(Record[16 + Offset]), // declaration
2833                          getMDOrNull(Record[17 + Offset])  // variables
2834                          ));
2835       MetadataList.assignValue(SP, NextMetadataNo++);
2836 
2837       // Upgrade sp->function mapping to function->sp mapping.
2838       if (HasFn) {
2839         if (auto *CMD = dyn_cast_or_null<ConstantAsMetadata>(CUorFn))
2840           if (auto *F = dyn_cast<Function>(CMD->getValue())) {
2841             if (F->isMaterializable())
2842               // Defer until materialized; unmaterialized functions may not have
2843               // metadata.
2844               FunctionsWithSPs[F] = SP;
2845             else if (!F->empty())
2846               F->setSubprogram(SP);
2847           }
2848       }
2849       break;
2850     }
2851     case bitc::METADATA_LEXICAL_BLOCK: {
2852       if (Record.size() != 5)
2853         return error("Invalid record");
2854 
2855       IsDistinct = Record[0];
2856       MetadataList.assignValue(
2857           GET_OR_DISTINCT(DILexicalBlock,
2858                           (Context, getMDOrNull(Record[1]),
2859                            getMDOrNull(Record[2]), Record[3], Record[4])),
2860           NextMetadataNo++);
2861       break;
2862     }
2863     case bitc::METADATA_LEXICAL_BLOCK_FILE: {
2864       if (Record.size() != 4)
2865         return error("Invalid record");
2866 
2867       IsDistinct = Record[0];
2868       MetadataList.assignValue(
2869           GET_OR_DISTINCT(DILexicalBlockFile,
2870                           (Context, getMDOrNull(Record[1]),
2871                            getMDOrNull(Record[2]), Record[3])),
2872           NextMetadataNo++);
2873       break;
2874     }
2875     case bitc::METADATA_NAMESPACE: {
2876       if (Record.size() != 5)
2877         return error("Invalid record");
2878 
2879       IsDistinct = Record[0] & 1;
2880       bool ExportSymbols = Record[0] & 2;
2881       MetadataList.assignValue(
2882           GET_OR_DISTINCT(DINamespace,
2883                           (Context, getMDOrNull(Record[1]),
2884                            getMDOrNull(Record[2]), getMDString(Record[3]),
2885                            Record[4], ExportSymbols)),
2886           NextMetadataNo++);
2887       break;
2888     }
2889     case bitc::METADATA_MACRO: {
2890       if (Record.size() != 5)
2891         return error("Invalid record");
2892 
2893       IsDistinct = Record[0];
2894       MetadataList.assignValue(
2895           GET_OR_DISTINCT(DIMacro,
2896                           (Context, Record[1], Record[2],
2897                            getMDString(Record[3]), getMDString(Record[4]))),
2898           NextMetadataNo++);
2899       break;
2900     }
2901     case bitc::METADATA_MACRO_FILE: {
2902       if (Record.size() != 5)
2903         return error("Invalid record");
2904 
2905       IsDistinct = Record[0];
2906       MetadataList.assignValue(
2907           GET_OR_DISTINCT(DIMacroFile,
2908                           (Context, Record[1], Record[2],
2909                            getMDOrNull(Record[3]), getMDOrNull(Record[4]))),
2910           NextMetadataNo++);
2911       break;
2912     }
2913     case bitc::METADATA_TEMPLATE_TYPE: {
2914       if (Record.size() != 3)
2915         return error("Invalid record");
2916 
2917       IsDistinct = Record[0];
2918       MetadataList.assignValue(GET_OR_DISTINCT(DITemplateTypeParameter,
2919                                                (Context, getMDString(Record[1]),
2920                                                 getDITypeRefOrNull(Record[2]))),
2921                                NextMetadataNo++);
2922       break;
2923     }
2924     case bitc::METADATA_TEMPLATE_VALUE: {
2925       if (Record.size() != 5)
2926         return error("Invalid record");
2927 
2928       IsDistinct = Record[0];
2929       MetadataList.assignValue(
2930           GET_OR_DISTINCT(DITemplateValueParameter,
2931                           (Context, Record[1], getMDString(Record[2]),
2932                            getDITypeRefOrNull(Record[3]),
2933                            getMDOrNull(Record[4]))),
2934           NextMetadataNo++);
2935       break;
2936     }
2937     case bitc::METADATA_GLOBAL_VAR: {
2938       if (Record.size() < 11 || Record.size() > 12)
2939         return error("Invalid record");
2940 
2941       IsDistinct = Record[0];
2942 
2943       // Upgrade old metadata, which stored a global variable reference or a
2944       // ConstantInt here.
2945       Metadata *Expr = getMDOrNull(Record[9]);
2946       uint32_t AlignInBits = 0;
2947       if (Record.size() > 11) {
2948         if (Record[11] > (uint64_t)std::numeric_limits<uint32_t>::max())
2949           return error("Alignment value is too large");
2950         AlignInBits = Record[11];
2951       }
2952       GlobalVariable *Attach = nullptr;
2953       if (auto *CMD = dyn_cast_or_null<ConstantAsMetadata>(Expr)) {
2954         if (auto *GV = dyn_cast<GlobalVariable>(CMD->getValue())) {
2955           Attach = GV;
2956           Expr = nullptr;
2957         } else if (auto *CI = dyn_cast<ConstantInt>(CMD->getValue())) {
2958           Expr = DIExpression::get(Context,
2959                                    {dwarf::DW_OP_constu, CI->getZExtValue(),
2960                                     dwarf::DW_OP_stack_value});
2961         } else {
2962           Expr = nullptr;
2963         }
2964       }
2965 
2966       DIGlobalVariable *DGV = GET_OR_DISTINCT(
2967           DIGlobalVariable,
2968           (Context, getMDOrNull(Record[1]), getMDString(Record[2]),
2969            getMDString(Record[3]), getMDOrNull(Record[4]), Record[5],
2970            getDITypeRefOrNull(Record[6]), Record[7], Record[8], Expr,
2971            getMDOrNull(Record[10]), AlignInBits));
2972       MetadataList.assignValue(DGV, NextMetadataNo++);
2973 
2974       if (Attach)
2975         Attach->addDebugInfo(DGV);
2976 
2977       break;
2978     }
2979     case bitc::METADATA_LOCAL_VAR: {
2980       // 10th field is for the obseleted 'inlinedAt:' field.
2981       if (Record.size() < 8 || Record.size() > 10)
2982         return error("Invalid record");
2983 
2984       IsDistinct = Record[0] & 1;
2985       bool HasAlignment = Record[0] & 2;
2986       // 2nd field used to be an artificial tag, either DW_TAG_auto_variable or
2987       // DW_TAG_arg_variable, if we have alignment flag encoded it means, that
2988       // this is newer version of record which doesn't have artifical tag.
2989       bool HasTag = !HasAlignment && Record.size() > 8;
2990       DINode::DIFlags Flags = static_cast<DINode::DIFlags>(Record[7 + HasTag]);
2991       uint32_t AlignInBits = 0;
2992       if (HasAlignment) {
2993         if (Record[8 + HasTag] >
2994             (uint64_t)std::numeric_limits<uint32_t>::max())
2995           return error("Alignment value is too large");
2996         AlignInBits = Record[8 + HasTag];
2997       }
2998       MetadataList.assignValue(
2999           GET_OR_DISTINCT(DILocalVariable,
3000                           (Context, getMDOrNull(Record[1 + HasTag]),
3001                            getMDString(Record[2 + HasTag]),
3002                            getMDOrNull(Record[3 + HasTag]), Record[4 + HasTag],
3003                            getDITypeRefOrNull(Record[5 + HasTag]),
3004                            Record[6 + HasTag], Flags, AlignInBits)),
3005           NextMetadataNo++);
3006       break;
3007     }
3008     case bitc::METADATA_EXPRESSION: {
3009       if (Record.size() < 1)
3010         return error("Invalid record");
3011 
3012       IsDistinct = Record[0];
3013       MetadataList.assignValue(
3014           GET_OR_DISTINCT(DIExpression,
3015                           (Context, makeArrayRef(Record).slice(1))),
3016           NextMetadataNo++);
3017       break;
3018     }
3019     case bitc::METADATA_OBJC_PROPERTY: {
3020       if (Record.size() != 8)
3021         return error("Invalid record");
3022 
3023       IsDistinct = Record[0];
3024       MetadataList.assignValue(
3025           GET_OR_DISTINCT(DIObjCProperty,
3026                           (Context, getMDString(Record[1]),
3027                            getMDOrNull(Record[2]), Record[3],
3028                            getMDString(Record[4]), getMDString(Record[5]),
3029                            Record[6], getDITypeRefOrNull(Record[7]))),
3030           NextMetadataNo++);
3031       break;
3032     }
3033     case bitc::METADATA_IMPORTED_ENTITY: {
3034       if (Record.size() != 6)
3035         return error("Invalid record");
3036 
3037       IsDistinct = Record[0];
3038       MetadataList.assignValue(
3039           GET_OR_DISTINCT(DIImportedEntity,
3040                           (Context, Record[1], getMDOrNull(Record[2]),
3041                            getDITypeRefOrNull(Record[3]), Record[4],
3042                            getMDString(Record[5]))),
3043           NextMetadataNo++);
3044       break;
3045     }
3046     case bitc::METADATA_STRING_OLD: {
3047       std::string String(Record.begin(), Record.end());
3048 
3049       // Test for upgrading !llvm.loop.
3050       HasSeenOldLoopTags |= mayBeOldLoopAttachmentTag(String);
3051 
3052       Metadata *MD = MDString::get(Context, String);
3053       MetadataList.assignValue(MD, NextMetadataNo++);
3054       break;
3055     }
3056     case bitc::METADATA_STRINGS:
3057       if (Error Err = parseMetadataStrings(Record, Blob, NextMetadataNo))
3058         return Err;
3059       break;
3060     case bitc::METADATA_GLOBAL_DECL_ATTACHMENT: {
3061       if (Record.size() % 2 == 0)
3062         return error("Invalid record");
3063       unsigned ValueID = Record[0];
3064       if (ValueID >= ValueList.size())
3065         return error("Invalid record");
3066       if (auto *GO = dyn_cast<GlobalObject>(ValueList[ValueID]))
3067         if (Error Err = parseGlobalObjectAttachment(
3068                 *GO, ArrayRef<uint64_t>(Record).slice(1)))
3069           return Err;
3070       break;
3071     }
3072     case bitc::METADATA_KIND: {
3073       // Support older bitcode files that had METADATA_KIND records in a
3074       // block with METADATA_BLOCK_ID.
3075       if (Error Err = parseMetadataKindRecord(Record))
3076         return Err;
3077       break;
3078     }
3079     }
3080   }
3081 
3082 #undef GET_OR_DISTINCT
3083 }
3084 
3085 /// Parse the metadata kinds out of the METADATA_KIND_BLOCK.
3086 Error BitcodeReader::parseMetadataKinds() {
3087   if (Stream.EnterSubBlock(bitc::METADATA_KIND_BLOCK_ID))
3088     return error("Invalid record");
3089 
3090   SmallVector<uint64_t, 64> Record;
3091 
3092   // Read all the records.
3093   while (true) {
3094     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
3095 
3096     switch (Entry.Kind) {
3097     case BitstreamEntry::SubBlock: // Handled for us already.
3098     case BitstreamEntry::Error:
3099       return error("Malformed block");
3100     case BitstreamEntry::EndBlock:
3101       return Error::success();
3102     case BitstreamEntry::Record:
3103       // The interesting case.
3104       break;
3105     }
3106 
3107     // Read a record.
3108     Record.clear();
3109     unsigned Code = Stream.readRecord(Entry.ID, Record);
3110     switch (Code) {
3111     default: // Default behavior: ignore.
3112       break;
3113     case bitc::METADATA_KIND: {
3114       if (Error Err = parseMetadataKindRecord(Record))
3115         return Err;
3116       break;
3117     }
3118     }
3119   }
3120 }
3121 
3122 /// Decode a signed value stored with the sign bit in the LSB for dense VBR
3123 /// encoding.
3124 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) {
3125   if ((V & 1) == 0)
3126     return V >> 1;
3127   if (V != 1)
3128     return -(V >> 1);
3129   // There is no such thing as -0 with integers.  "-0" really means MININT.
3130   return 1ULL << 63;
3131 }
3132 
3133 /// Resolve all of the initializers for global values and aliases that we can.
3134 Error BitcodeReader::resolveGlobalAndIndirectSymbolInits() {
3135   std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist;
3136   std::vector<std::pair<GlobalIndirectSymbol*, unsigned> >
3137       IndirectSymbolInitWorklist;
3138   std::vector<std::pair<Function*, unsigned> > FunctionPrefixWorklist;
3139   std::vector<std::pair<Function*, unsigned> > FunctionPrologueWorklist;
3140   std::vector<std::pair<Function*, unsigned> > FunctionPersonalityFnWorklist;
3141 
3142   GlobalInitWorklist.swap(GlobalInits);
3143   IndirectSymbolInitWorklist.swap(IndirectSymbolInits);
3144   FunctionPrefixWorklist.swap(FunctionPrefixes);
3145   FunctionPrologueWorklist.swap(FunctionPrologues);
3146   FunctionPersonalityFnWorklist.swap(FunctionPersonalityFns);
3147 
3148   while (!GlobalInitWorklist.empty()) {
3149     unsigned ValID = GlobalInitWorklist.back().second;
3150     if (ValID >= ValueList.size()) {
3151       // Not ready to resolve this yet, it requires something later in the file.
3152       GlobalInits.push_back(GlobalInitWorklist.back());
3153     } else {
3154       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
3155         GlobalInitWorklist.back().first->setInitializer(C);
3156       else
3157         return error("Expected a constant");
3158     }
3159     GlobalInitWorklist.pop_back();
3160   }
3161 
3162   while (!IndirectSymbolInitWorklist.empty()) {
3163     unsigned ValID = IndirectSymbolInitWorklist.back().second;
3164     if (ValID >= ValueList.size()) {
3165       IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back());
3166     } else {
3167       Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]);
3168       if (!C)
3169         return error("Expected a constant");
3170       GlobalIndirectSymbol *GIS = IndirectSymbolInitWorklist.back().first;
3171       if (isa<GlobalAlias>(GIS) && C->getType() != GIS->getType())
3172         return error("Alias and aliasee types don't match");
3173       GIS->setIndirectSymbol(C);
3174     }
3175     IndirectSymbolInitWorklist.pop_back();
3176   }
3177 
3178   while (!FunctionPrefixWorklist.empty()) {
3179     unsigned ValID = FunctionPrefixWorklist.back().second;
3180     if (ValID >= ValueList.size()) {
3181       FunctionPrefixes.push_back(FunctionPrefixWorklist.back());
3182     } else {
3183       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
3184         FunctionPrefixWorklist.back().first->setPrefixData(C);
3185       else
3186         return error("Expected a constant");
3187     }
3188     FunctionPrefixWorklist.pop_back();
3189   }
3190 
3191   while (!FunctionPrologueWorklist.empty()) {
3192     unsigned ValID = FunctionPrologueWorklist.back().second;
3193     if (ValID >= ValueList.size()) {
3194       FunctionPrologues.push_back(FunctionPrologueWorklist.back());
3195     } else {
3196       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
3197         FunctionPrologueWorklist.back().first->setPrologueData(C);
3198       else
3199         return error("Expected a constant");
3200     }
3201     FunctionPrologueWorklist.pop_back();
3202   }
3203 
3204   while (!FunctionPersonalityFnWorklist.empty()) {
3205     unsigned ValID = FunctionPersonalityFnWorklist.back().second;
3206     if (ValID >= ValueList.size()) {
3207       FunctionPersonalityFns.push_back(FunctionPersonalityFnWorklist.back());
3208     } else {
3209       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
3210         FunctionPersonalityFnWorklist.back().first->setPersonalityFn(C);
3211       else
3212         return error("Expected a constant");
3213     }
3214     FunctionPersonalityFnWorklist.pop_back();
3215   }
3216 
3217   return Error::success();
3218 }
3219 
3220 static APInt readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) {
3221   SmallVector<uint64_t, 8> Words(Vals.size());
3222   transform(Vals, Words.begin(),
3223                  BitcodeReader::decodeSignRotatedValue);
3224 
3225   return APInt(TypeBits, Words);
3226 }
3227 
3228 Error BitcodeReader::parseConstants() {
3229   if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID))
3230     return error("Invalid record");
3231 
3232   SmallVector<uint64_t, 64> Record;
3233 
3234   // Read all the records for this value table.
3235   Type *CurTy = Type::getInt32Ty(Context);
3236   unsigned NextCstNo = ValueList.size();
3237 
3238   while (true) {
3239     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
3240 
3241     switch (Entry.Kind) {
3242     case BitstreamEntry::SubBlock: // Handled for us already.
3243     case BitstreamEntry::Error:
3244       return error("Malformed block");
3245     case BitstreamEntry::EndBlock:
3246       if (NextCstNo != ValueList.size())
3247         return error("Invalid constant reference");
3248 
3249       // Once all the constants have been read, go through and resolve forward
3250       // references.
3251       ValueList.resolveConstantForwardRefs();
3252       return Error::success();
3253     case BitstreamEntry::Record:
3254       // The interesting case.
3255       break;
3256     }
3257 
3258     // Read a record.
3259     Record.clear();
3260     Type *VoidType = Type::getVoidTy(Context);
3261     Value *V = nullptr;
3262     unsigned BitCode = Stream.readRecord(Entry.ID, Record);
3263     switch (BitCode) {
3264     default:  // Default behavior: unknown constant
3265     case bitc::CST_CODE_UNDEF:     // UNDEF
3266       V = UndefValue::get(CurTy);
3267       break;
3268     case bitc::CST_CODE_SETTYPE:   // SETTYPE: [typeid]
3269       if (Record.empty())
3270         return error("Invalid record");
3271       if (Record[0] >= TypeList.size() || !TypeList[Record[0]])
3272         return error("Invalid record");
3273       if (TypeList[Record[0]] == VoidType)
3274         return error("Invalid constant type");
3275       CurTy = TypeList[Record[0]];
3276       continue;  // Skip the ValueList manipulation.
3277     case bitc::CST_CODE_NULL:      // NULL
3278       V = Constant::getNullValue(CurTy);
3279       break;
3280     case bitc::CST_CODE_INTEGER:   // INTEGER: [intval]
3281       if (!CurTy->isIntegerTy() || Record.empty())
3282         return error("Invalid record");
3283       V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0]));
3284       break;
3285     case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
3286       if (!CurTy->isIntegerTy() || Record.empty())
3287         return error("Invalid record");
3288 
3289       APInt VInt =
3290           readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth());
3291       V = ConstantInt::get(Context, VInt);
3292 
3293       break;
3294     }
3295     case bitc::CST_CODE_FLOAT: {    // FLOAT: [fpval]
3296       if (Record.empty())
3297         return error("Invalid record");
3298       if (CurTy->isHalfTy())
3299         V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf,
3300                                              APInt(16, (uint16_t)Record[0])));
3301       else if (CurTy->isFloatTy())
3302         V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle,
3303                                              APInt(32, (uint32_t)Record[0])));
3304       else if (CurTy->isDoubleTy())
3305         V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble,
3306                                              APInt(64, Record[0])));
3307       else if (CurTy->isX86_FP80Ty()) {
3308         // Bits are not stored the same way as a normal i80 APInt, compensate.
3309         uint64_t Rearrange[2];
3310         Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16);
3311         Rearrange[1] = Record[0] >> 48;
3312         V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended,
3313                                              APInt(80, Rearrange)));
3314       } else if (CurTy->isFP128Ty())
3315         V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad,
3316                                              APInt(128, Record)));
3317       else if (CurTy->isPPC_FP128Ty())
3318         V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble,
3319                                              APInt(128, Record)));
3320       else
3321         V = UndefValue::get(CurTy);
3322       break;
3323     }
3324 
3325     case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
3326       if (Record.empty())
3327         return error("Invalid record");
3328 
3329       unsigned Size = Record.size();
3330       SmallVector<Constant*, 16> Elts;
3331 
3332       if (StructType *STy = dyn_cast<StructType>(CurTy)) {
3333         for (unsigned i = 0; i != Size; ++i)
3334           Elts.push_back(ValueList.getConstantFwdRef(Record[i],
3335                                                      STy->getElementType(i)));
3336         V = ConstantStruct::get(STy, Elts);
3337       } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) {
3338         Type *EltTy = ATy->getElementType();
3339         for (unsigned i = 0; i != Size; ++i)
3340           Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
3341         V = ConstantArray::get(ATy, Elts);
3342       } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) {
3343         Type *EltTy = VTy->getElementType();
3344         for (unsigned i = 0; i != Size; ++i)
3345           Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
3346         V = ConstantVector::get(Elts);
3347       } else {
3348         V = UndefValue::get(CurTy);
3349       }
3350       break;
3351     }
3352     case bitc::CST_CODE_STRING:    // STRING: [values]
3353     case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
3354       if (Record.empty())
3355         return error("Invalid record");
3356 
3357       SmallString<16> Elts(Record.begin(), Record.end());
3358       V = ConstantDataArray::getString(Context, Elts,
3359                                        BitCode == bitc::CST_CODE_CSTRING);
3360       break;
3361     }
3362     case bitc::CST_CODE_DATA: {// DATA: [n x value]
3363       if (Record.empty())
3364         return error("Invalid record");
3365 
3366       Type *EltTy = cast<SequentialType>(CurTy)->getElementType();
3367       if (EltTy->isIntegerTy(8)) {
3368         SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end());
3369         if (isa<VectorType>(CurTy))
3370           V = ConstantDataVector::get(Context, Elts);
3371         else
3372           V = ConstantDataArray::get(Context, Elts);
3373       } else if (EltTy->isIntegerTy(16)) {
3374         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
3375         if (isa<VectorType>(CurTy))
3376           V = ConstantDataVector::get(Context, Elts);
3377         else
3378           V = ConstantDataArray::get(Context, Elts);
3379       } else if (EltTy->isIntegerTy(32)) {
3380         SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
3381         if (isa<VectorType>(CurTy))
3382           V = ConstantDataVector::get(Context, Elts);
3383         else
3384           V = ConstantDataArray::get(Context, Elts);
3385       } else if (EltTy->isIntegerTy(64)) {
3386         SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
3387         if (isa<VectorType>(CurTy))
3388           V = ConstantDataVector::get(Context, Elts);
3389         else
3390           V = ConstantDataArray::get(Context, Elts);
3391       } else if (EltTy->isHalfTy()) {
3392         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
3393         if (isa<VectorType>(CurTy))
3394           V = ConstantDataVector::getFP(Context, Elts);
3395         else
3396           V = ConstantDataArray::getFP(Context, Elts);
3397       } else if (EltTy->isFloatTy()) {
3398         SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
3399         if (isa<VectorType>(CurTy))
3400           V = ConstantDataVector::getFP(Context, Elts);
3401         else
3402           V = ConstantDataArray::getFP(Context, Elts);
3403       } else if (EltTy->isDoubleTy()) {
3404         SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
3405         if (isa<VectorType>(CurTy))
3406           V = ConstantDataVector::getFP(Context, Elts);
3407         else
3408           V = ConstantDataArray::getFP(Context, Elts);
3409       } else {
3410         return error("Invalid type for value");
3411       }
3412       break;
3413     }
3414     case bitc::CST_CODE_CE_BINOP: {  // CE_BINOP: [opcode, opval, opval]
3415       if (Record.size() < 3)
3416         return error("Invalid record");
3417       int Opc = getDecodedBinaryOpcode(Record[0], CurTy);
3418       if (Opc < 0) {
3419         V = UndefValue::get(CurTy);  // Unknown binop.
3420       } else {
3421         Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
3422         Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy);
3423         unsigned Flags = 0;
3424         if (Record.size() >= 4) {
3425           if (Opc == Instruction::Add ||
3426               Opc == Instruction::Sub ||
3427               Opc == Instruction::Mul ||
3428               Opc == Instruction::Shl) {
3429             if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP))
3430               Flags |= OverflowingBinaryOperator::NoSignedWrap;
3431             if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
3432               Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
3433           } else if (Opc == Instruction::SDiv ||
3434                      Opc == Instruction::UDiv ||
3435                      Opc == Instruction::LShr ||
3436                      Opc == Instruction::AShr) {
3437             if (Record[3] & (1 << bitc::PEO_EXACT))
3438               Flags |= SDivOperator::IsExact;
3439           }
3440         }
3441         V = ConstantExpr::get(Opc, LHS, RHS, Flags);
3442       }
3443       break;
3444     }
3445     case bitc::CST_CODE_CE_CAST: {  // CE_CAST: [opcode, opty, opval]
3446       if (Record.size() < 3)
3447         return error("Invalid record");
3448       int Opc = getDecodedCastOpcode(Record[0]);
3449       if (Opc < 0) {
3450         V = UndefValue::get(CurTy);  // Unknown cast.
3451       } else {
3452         Type *OpTy = getTypeByID(Record[1]);
3453         if (!OpTy)
3454           return error("Invalid record");
3455         Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy);
3456         V = UpgradeBitCastExpr(Opc, Op, CurTy);
3457         if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy);
3458       }
3459       break;
3460     }
3461     case bitc::CST_CODE_CE_INBOUNDS_GEP: // [ty, n x operands]
3462     case bitc::CST_CODE_CE_GEP: // [ty, n x operands]
3463     case bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX: { // [ty, flags, n x
3464                                                      // operands]
3465       unsigned OpNum = 0;
3466       Type *PointeeType = nullptr;
3467       if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX ||
3468           Record.size() % 2)
3469         PointeeType = getTypeByID(Record[OpNum++]);
3470 
3471       bool InBounds = false;
3472       Optional<unsigned> InRangeIndex;
3473       if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX) {
3474         uint64_t Op = Record[OpNum++];
3475         InBounds = Op & 1;
3476         InRangeIndex = Op >> 1;
3477       } else if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP)
3478         InBounds = true;
3479 
3480       SmallVector<Constant*, 16> Elts;
3481       while (OpNum != Record.size()) {
3482         Type *ElTy = getTypeByID(Record[OpNum++]);
3483         if (!ElTy)
3484           return error("Invalid record");
3485         Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy));
3486       }
3487 
3488       if (PointeeType &&
3489           PointeeType !=
3490               cast<PointerType>(Elts[0]->getType()->getScalarType())
3491                   ->getElementType())
3492         return error("Explicit gep operator type does not match pointee type "
3493                      "of pointer operand");
3494 
3495       if (Elts.size() < 1)
3496         return error("Invalid gep with no operands");
3497 
3498       ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
3499       V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices,
3500                                          InBounds, InRangeIndex);
3501       break;
3502     }
3503     case bitc::CST_CODE_CE_SELECT: {  // CE_SELECT: [opval#, opval#, opval#]
3504       if (Record.size() < 3)
3505         return error("Invalid record");
3506 
3507       Type *SelectorTy = Type::getInt1Ty(Context);
3508 
3509       // The selector might be an i1 or an <n x i1>
3510       // Get the type from the ValueList before getting a forward ref.
3511       if (VectorType *VTy = dyn_cast<VectorType>(CurTy))
3512         if (Value *V = ValueList[Record[0]])
3513           if (SelectorTy != V->getType())
3514             SelectorTy = VectorType::get(SelectorTy, VTy->getNumElements());
3515 
3516       V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0],
3517                                                               SelectorTy),
3518                                   ValueList.getConstantFwdRef(Record[1],CurTy),
3519                                   ValueList.getConstantFwdRef(Record[2],CurTy));
3520       break;
3521     }
3522     case bitc::CST_CODE_CE_EXTRACTELT
3523         : { // CE_EXTRACTELT: [opty, opval, opty, opval]
3524       if (Record.size() < 3)
3525         return error("Invalid record");
3526       VectorType *OpTy =
3527         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
3528       if (!OpTy)
3529         return error("Invalid record");
3530       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
3531       Constant *Op1 = nullptr;
3532       if (Record.size() == 4) {
3533         Type *IdxTy = getTypeByID(Record[2]);
3534         if (!IdxTy)
3535           return error("Invalid record");
3536         Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy);
3537       } else // TODO: Remove with llvm 4.0
3538         Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
3539       if (!Op1)
3540         return error("Invalid record");
3541       V = ConstantExpr::getExtractElement(Op0, Op1);
3542       break;
3543     }
3544     case bitc::CST_CODE_CE_INSERTELT
3545         : { // CE_INSERTELT: [opval, opval, opty, opval]
3546       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
3547       if (Record.size() < 3 || !OpTy)
3548         return error("Invalid record");
3549       Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
3550       Constant *Op1 = ValueList.getConstantFwdRef(Record[1],
3551                                                   OpTy->getElementType());
3552       Constant *Op2 = nullptr;
3553       if (Record.size() == 4) {
3554         Type *IdxTy = getTypeByID(Record[2]);
3555         if (!IdxTy)
3556           return error("Invalid record");
3557         Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy);
3558       } else // TODO: Remove with llvm 4.0
3559         Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
3560       if (!Op2)
3561         return error("Invalid record");
3562       V = ConstantExpr::getInsertElement(Op0, Op1, Op2);
3563       break;
3564     }
3565     case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
3566       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
3567       if (Record.size() < 3 || !OpTy)
3568         return error("Invalid record");
3569       Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
3570       Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy);
3571       Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
3572                                                  OpTy->getNumElements());
3573       Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy);
3574       V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
3575       break;
3576     }
3577     case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval]
3578       VectorType *RTy = dyn_cast<VectorType>(CurTy);
3579       VectorType *OpTy =
3580         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
3581       if (Record.size() < 4 || !RTy || !OpTy)
3582         return error("Invalid record");
3583       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
3584       Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
3585       Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
3586                                                  RTy->getNumElements());
3587       Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy);
3588       V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
3589       break;
3590     }
3591     case bitc::CST_CODE_CE_CMP: {     // CE_CMP: [opty, opval, opval, pred]
3592       if (Record.size() < 4)
3593         return error("Invalid record");
3594       Type *OpTy = getTypeByID(Record[0]);
3595       if (!OpTy)
3596         return error("Invalid record");
3597       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
3598       Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
3599 
3600       if (OpTy->isFPOrFPVectorTy())
3601         V = ConstantExpr::getFCmp(Record[3], Op0, Op1);
3602       else
3603         V = ConstantExpr::getICmp(Record[3], Op0, Op1);
3604       break;
3605     }
3606     // This maintains backward compatibility, pre-asm dialect keywords.
3607     // FIXME: Remove with the 4.0 release.
3608     case bitc::CST_CODE_INLINEASM_OLD: {
3609       if (Record.size() < 2)
3610         return error("Invalid record");
3611       std::string AsmStr, ConstrStr;
3612       bool HasSideEffects = Record[0] & 1;
3613       bool IsAlignStack = Record[0] >> 1;
3614       unsigned AsmStrSize = Record[1];
3615       if (2+AsmStrSize >= Record.size())
3616         return error("Invalid record");
3617       unsigned ConstStrSize = Record[2+AsmStrSize];
3618       if (3+AsmStrSize+ConstStrSize > Record.size())
3619         return error("Invalid record");
3620 
3621       for (unsigned i = 0; i != AsmStrSize; ++i)
3622         AsmStr += (char)Record[2+i];
3623       for (unsigned i = 0; i != ConstStrSize; ++i)
3624         ConstrStr += (char)Record[3+AsmStrSize+i];
3625       PointerType *PTy = cast<PointerType>(CurTy);
3626       V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()),
3627                          AsmStr, ConstrStr, HasSideEffects, IsAlignStack);
3628       break;
3629     }
3630     // This version adds support for the asm dialect keywords (e.g.,
3631     // inteldialect).
3632     case bitc::CST_CODE_INLINEASM: {
3633       if (Record.size() < 2)
3634         return error("Invalid record");
3635       std::string AsmStr, ConstrStr;
3636       bool HasSideEffects = Record[0] & 1;
3637       bool IsAlignStack = (Record[0] >> 1) & 1;
3638       unsigned AsmDialect = Record[0] >> 2;
3639       unsigned AsmStrSize = Record[1];
3640       if (2+AsmStrSize >= Record.size())
3641         return error("Invalid record");
3642       unsigned ConstStrSize = Record[2+AsmStrSize];
3643       if (3+AsmStrSize+ConstStrSize > Record.size())
3644         return error("Invalid record");
3645 
3646       for (unsigned i = 0; i != AsmStrSize; ++i)
3647         AsmStr += (char)Record[2+i];
3648       for (unsigned i = 0; i != ConstStrSize; ++i)
3649         ConstrStr += (char)Record[3+AsmStrSize+i];
3650       PointerType *PTy = cast<PointerType>(CurTy);
3651       V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()),
3652                          AsmStr, ConstrStr, HasSideEffects, IsAlignStack,
3653                          InlineAsm::AsmDialect(AsmDialect));
3654       break;
3655     }
3656     case bitc::CST_CODE_BLOCKADDRESS:{
3657       if (Record.size() < 3)
3658         return error("Invalid record");
3659       Type *FnTy = getTypeByID(Record[0]);
3660       if (!FnTy)
3661         return error("Invalid record");
3662       Function *Fn =
3663         dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy));
3664       if (!Fn)
3665         return error("Invalid record");
3666 
3667       // If the function is already parsed we can insert the block address right
3668       // away.
3669       BasicBlock *BB;
3670       unsigned BBID = Record[2];
3671       if (!BBID)
3672         // Invalid reference to entry block.
3673         return error("Invalid ID");
3674       if (!Fn->empty()) {
3675         Function::iterator BBI = Fn->begin(), BBE = Fn->end();
3676         for (size_t I = 0, E = BBID; I != E; ++I) {
3677           if (BBI == BBE)
3678             return error("Invalid ID");
3679           ++BBI;
3680         }
3681         BB = &*BBI;
3682       } else {
3683         // Otherwise insert a placeholder and remember it so it can be inserted
3684         // when the function is parsed.
3685         auto &FwdBBs = BasicBlockFwdRefs[Fn];
3686         if (FwdBBs.empty())
3687           BasicBlockFwdRefQueue.push_back(Fn);
3688         if (FwdBBs.size() < BBID + 1)
3689           FwdBBs.resize(BBID + 1);
3690         if (!FwdBBs[BBID])
3691           FwdBBs[BBID] = BasicBlock::Create(Context);
3692         BB = FwdBBs[BBID];
3693       }
3694       V = BlockAddress::get(Fn, BB);
3695       break;
3696     }
3697     }
3698 
3699     ValueList.assignValue(V, NextCstNo);
3700     ++NextCstNo;
3701   }
3702 }
3703 
3704 Error BitcodeReader::parseUseLists() {
3705   if (Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID))
3706     return error("Invalid record");
3707 
3708   // Read all the records.
3709   SmallVector<uint64_t, 64> Record;
3710 
3711   while (true) {
3712     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
3713 
3714     switch (Entry.Kind) {
3715     case BitstreamEntry::SubBlock: // Handled for us already.
3716     case BitstreamEntry::Error:
3717       return error("Malformed block");
3718     case BitstreamEntry::EndBlock:
3719       return Error::success();
3720     case BitstreamEntry::Record:
3721       // The interesting case.
3722       break;
3723     }
3724 
3725     // Read a use list record.
3726     Record.clear();
3727     bool IsBB = false;
3728     switch (Stream.readRecord(Entry.ID, Record)) {
3729     default:  // Default behavior: unknown type.
3730       break;
3731     case bitc::USELIST_CODE_BB:
3732       IsBB = true;
3733       LLVM_FALLTHROUGH;
3734     case bitc::USELIST_CODE_DEFAULT: {
3735       unsigned RecordLength = Record.size();
3736       if (RecordLength < 3)
3737         // Records should have at least an ID and two indexes.
3738         return error("Invalid record");
3739       unsigned ID = Record.back();
3740       Record.pop_back();
3741 
3742       Value *V;
3743       if (IsBB) {
3744         assert(ID < FunctionBBs.size() && "Basic block not found");
3745         V = FunctionBBs[ID];
3746       } else
3747         V = ValueList[ID];
3748       unsigned NumUses = 0;
3749       SmallDenseMap<const Use *, unsigned, 16> Order;
3750       for (const Use &U : V->materialized_uses()) {
3751         if (++NumUses > Record.size())
3752           break;
3753         Order[&U] = Record[NumUses - 1];
3754       }
3755       if (Order.size() != Record.size() || NumUses > Record.size())
3756         // Mismatches can happen if the functions are being materialized lazily
3757         // (out-of-order), or a value has been upgraded.
3758         break;
3759 
3760       V->sortUseList([&](const Use &L, const Use &R) {
3761         return Order.lookup(&L) < Order.lookup(&R);
3762       });
3763       break;
3764     }
3765     }
3766   }
3767 }
3768 
3769 /// When we see the block for metadata, remember where it is and then skip it.
3770 /// This lets us lazily deserialize the metadata.
3771 Error BitcodeReader::rememberAndSkipMetadata() {
3772   // Save the current stream state.
3773   uint64_t CurBit = Stream.GetCurrentBitNo();
3774   DeferredMetadataInfo.push_back(CurBit);
3775 
3776   // Skip over the block for now.
3777   if (Stream.SkipBlock())
3778     return error("Invalid record");
3779   return Error::success();
3780 }
3781 
3782 Error BitcodeReader::materializeMetadata() {
3783   for (uint64_t BitPos : DeferredMetadataInfo) {
3784     // Move the bit stream to the saved position.
3785     Stream.JumpToBit(BitPos);
3786     if (Error Err = parseMetadata(true))
3787       return Err;
3788   }
3789   DeferredMetadataInfo.clear();
3790   return Error::success();
3791 }
3792 
3793 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; }
3794 
3795 /// When we see the block for a function body, remember where it is and then
3796 /// skip it.  This lets us lazily deserialize the functions.
3797 Error BitcodeReader::rememberAndSkipFunctionBody() {
3798   // Get the function we are talking about.
3799   if (FunctionsWithBodies.empty())
3800     return error("Insufficient function protos");
3801 
3802   Function *Fn = FunctionsWithBodies.back();
3803   FunctionsWithBodies.pop_back();
3804 
3805   // Save the current stream state.
3806   uint64_t CurBit = Stream.GetCurrentBitNo();
3807   assert(
3808       (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) &&
3809       "Mismatch between VST and scanned function offsets");
3810   DeferredFunctionInfo[Fn] = CurBit;
3811 
3812   // Skip over the function block for now.
3813   if (Stream.SkipBlock())
3814     return error("Invalid record");
3815   return Error::success();
3816 }
3817 
3818 Error BitcodeReader::globalCleanup() {
3819   // Patch the initializers for globals and aliases up.
3820   if (Error Err = resolveGlobalAndIndirectSymbolInits())
3821     return Err;
3822   if (!GlobalInits.empty() || !IndirectSymbolInits.empty())
3823     return error("Malformed global initializer set");
3824 
3825   // Look for intrinsic functions which need to be upgraded at some point
3826   for (Function &F : *TheModule) {
3827     Function *NewFn;
3828     if (UpgradeIntrinsicFunction(&F, NewFn))
3829       UpgradedIntrinsics[&F] = NewFn;
3830     else if (auto Remangled = Intrinsic::remangleIntrinsicFunction(&F))
3831       // Some types could be renamed during loading if several modules are
3832       // loaded in the same LLVMContext (LTO scenario). In this case we should
3833       // remangle intrinsics names as well.
3834       RemangledIntrinsics[&F] = Remangled.getValue();
3835   }
3836 
3837   // Look for global variables which need to be renamed.
3838   for (GlobalVariable &GV : TheModule->globals())
3839     UpgradeGlobalVariable(&GV);
3840 
3841   // Force deallocation of memory for these vectors to favor the client that
3842   // want lazy deserialization.
3843   std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits);
3844   std::vector<std::pair<GlobalIndirectSymbol*, unsigned> >().swap(
3845       IndirectSymbolInits);
3846   return Error::success();
3847 }
3848 
3849 /// Support for lazy parsing of function bodies. This is required if we
3850 /// either have an old bitcode file without a VST forward declaration record,
3851 /// or if we have an anonymous function being materialized, since anonymous
3852 /// functions do not have a name and are therefore not in the VST.
3853 Error BitcodeReader::rememberAndSkipFunctionBodies() {
3854   Stream.JumpToBit(NextUnreadBit);
3855 
3856   if (Stream.AtEndOfStream())
3857     return error("Could not find function in stream");
3858 
3859   if (!SeenFirstFunctionBody)
3860     return error("Trying to materialize functions before seeing function blocks");
3861 
3862   // An old bitcode file with the symbol table at the end would have
3863   // finished the parse greedily.
3864   assert(SeenValueSymbolTable);
3865 
3866   SmallVector<uint64_t, 64> Record;
3867 
3868   while (true) {
3869     BitstreamEntry Entry = Stream.advance();
3870     switch (Entry.Kind) {
3871     default:
3872       return error("Expect SubBlock");
3873     case BitstreamEntry::SubBlock:
3874       switch (Entry.ID) {
3875       default:
3876         return error("Expect function block");
3877       case bitc::FUNCTION_BLOCK_ID:
3878         if (Error Err = rememberAndSkipFunctionBody())
3879           return Err;
3880         NextUnreadBit = Stream.GetCurrentBitNo();
3881         return Error::success();
3882       }
3883     }
3884   }
3885 }
3886 
3887 bool BitcodeReaderBase::readBlockInfo() {
3888   Optional<BitstreamBlockInfo> NewBlockInfo = Stream.ReadBlockInfoBlock();
3889   if (!NewBlockInfo)
3890     return true;
3891   BlockInfo = std::move(*NewBlockInfo);
3892   return false;
3893 }
3894 
3895 Error BitcodeReader::parseModule(uint64_t ResumeBit,
3896                                  bool ShouldLazyLoadMetadata) {
3897   if (ResumeBit)
3898     Stream.JumpToBit(ResumeBit);
3899   else if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
3900     return error("Invalid record");
3901 
3902   SmallVector<uint64_t, 64> Record;
3903   std::vector<std::string> SectionTable;
3904   std::vector<std::string> GCTable;
3905 
3906   // Read all the records for this module.
3907   while (true) {
3908     BitstreamEntry Entry = Stream.advance();
3909 
3910     switch (Entry.Kind) {
3911     case BitstreamEntry::Error:
3912       return error("Malformed block");
3913     case BitstreamEntry::EndBlock:
3914       return globalCleanup();
3915 
3916     case BitstreamEntry::SubBlock:
3917       switch (Entry.ID) {
3918       default:  // Skip unknown content.
3919         if (Stream.SkipBlock())
3920           return error("Invalid record");
3921         break;
3922       case bitc::BLOCKINFO_BLOCK_ID:
3923         if (readBlockInfo())
3924           return error("Malformed block");
3925         break;
3926       case bitc::PARAMATTR_BLOCK_ID:
3927         if (Error Err = parseAttributeBlock())
3928           return Err;
3929         break;
3930       case bitc::PARAMATTR_GROUP_BLOCK_ID:
3931         if (Error Err = parseAttributeGroupBlock())
3932           return Err;
3933         break;
3934       case bitc::TYPE_BLOCK_ID_NEW:
3935         if (Error Err = parseTypeTable())
3936           return Err;
3937         break;
3938       case bitc::VALUE_SYMTAB_BLOCK_ID:
3939         if (!SeenValueSymbolTable) {
3940           // Either this is an old form VST without function index and an
3941           // associated VST forward declaration record (which would have caused
3942           // the VST to be jumped to and parsed before it was encountered
3943           // normally in the stream), or there were no function blocks to
3944           // trigger an earlier parsing of the VST.
3945           assert(VSTOffset == 0 || FunctionsWithBodies.empty());
3946           if (Error Err = parseValueSymbolTable())
3947             return Err;
3948           SeenValueSymbolTable = true;
3949         } else {
3950           // We must have had a VST forward declaration record, which caused
3951           // the parser to jump to and parse the VST earlier.
3952           assert(VSTOffset > 0);
3953           if (Stream.SkipBlock())
3954             return error("Invalid record");
3955         }
3956         break;
3957       case bitc::CONSTANTS_BLOCK_ID:
3958         if (Error Err = parseConstants())
3959           return Err;
3960         if (Error Err = resolveGlobalAndIndirectSymbolInits())
3961           return Err;
3962         break;
3963       case bitc::METADATA_BLOCK_ID:
3964         if (ShouldLazyLoadMetadata && !IsMetadataMaterialized) {
3965           if (Error Err = rememberAndSkipMetadata())
3966             return Err;
3967           break;
3968         }
3969         assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata");
3970         if (Error Err = parseMetadata(true))
3971           return Err;
3972         break;
3973       case bitc::METADATA_KIND_BLOCK_ID:
3974         if (Error Err = parseMetadataKinds())
3975           return Err;
3976         break;
3977       case bitc::FUNCTION_BLOCK_ID:
3978         // If this is the first function body we've seen, reverse the
3979         // FunctionsWithBodies list.
3980         if (!SeenFirstFunctionBody) {
3981           std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end());
3982           if (Error Err = globalCleanup())
3983             return Err;
3984           SeenFirstFunctionBody = true;
3985         }
3986 
3987         if (VSTOffset > 0) {
3988           // If we have a VST forward declaration record, make sure we
3989           // parse the VST now if we haven't already. It is needed to
3990           // set up the DeferredFunctionInfo vector for lazy reading.
3991           if (!SeenValueSymbolTable) {
3992             if (Error Err = BitcodeReader::parseValueSymbolTable(VSTOffset))
3993               return Err;
3994             SeenValueSymbolTable = true;
3995             // Fall through so that we record the NextUnreadBit below.
3996             // This is necessary in case we have an anonymous function that
3997             // is later materialized. Since it will not have a VST entry we
3998             // need to fall back to the lazy parse to find its offset.
3999           } else {
4000             // If we have a VST forward declaration record, but have already
4001             // parsed the VST (just above, when the first function body was
4002             // encountered here), then we are resuming the parse after
4003             // materializing functions. The ResumeBit points to the
4004             // start of the last function block recorded in the
4005             // DeferredFunctionInfo map. Skip it.
4006             if (Stream.SkipBlock())
4007               return error("Invalid record");
4008             continue;
4009           }
4010         }
4011 
4012         // Support older bitcode files that did not have the function
4013         // index in the VST, nor a VST forward declaration record, as
4014         // well as anonymous functions that do not have VST entries.
4015         // Build the DeferredFunctionInfo vector on the fly.
4016         if (Error Err = rememberAndSkipFunctionBody())
4017           return Err;
4018 
4019         // Suspend parsing when we reach the function bodies. Subsequent
4020         // materialization calls will resume it when necessary. If the bitcode
4021         // file is old, the symbol table will be at the end instead and will not
4022         // have been seen yet. In this case, just finish the parse now.
4023         if (SeenValueSymbolTable) {
4024           NextUnreadBit = Stream.GetCurrentBitNo();
4025           // After the VST has been parsed, we need to make sure intrinsic name
4026           // are auto-upgraded.
4027           return globalCleanup();
4028         }
4029         break;
4030       case bitc::USELIST_BLOCK_ID:
4031         if (Error Err = parseUseLists())
4032           return Err;
4033         break;
4034       case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID:
4035         if (Error Err = parseOperandBundleTags())
4036           return Err;
4037         break;
4038       }
4039       continue;
4040 
4041     case BitstreamEntry::Record:
4042       // The interesting case.
4043       break;
4044     }
4045 
4046     // Read a record.
4047     auto BitCode = Stream.readRecord(Entry.ID, Record);
4048     switch (BitCode) {
4049     default: break;  // Default behavior, ignore unknown content.
4050     case bitc::MODULE_CODE_VERSION: {  // VERSION: [version#]
4051       if (Record.size() < 1)
4052         return error("Invalid record");
4053       // Only version #0 and #1 are supported so far.
4054       unsigned module_version = Record[0];
4055       switch (module_version) {
4056         default:
4057           return error("Invalid value");
4058         case 0:
4059           UseRelativeIDs = false;
4060           break;
4061         case 1:
4062           UseRelativeIDs = true;
4063           break;
4064       }
4065       break;
4066     }
4067     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
4068       std::string S;
4069       if (convertToString(Record, 0, S))
4070         return error("Invalid record");
4071       TheModule->setTargetTriple(S);
4072       break;
4073     }
4074     case bitc::MODULE_CODE_DATALAYOUT: {  // DATALAYOUT: [strchr x N]
4075       std::string S;
4076       if (convertToString(Record, 0, S))
4077         return error("Invalid record");
4078       TheModule->setDataLayout(S);
4079       break;
4080     }
4081     case bitc::MODULE_CODE_ASM: {  // ASM: [strchr x N]
4082       std::string S;
4083       if (convertToString(Record, 0, S))
4084         return error("Invalid record");
4085       TheModule->setModuleInlineAsm(S);
4086       break;
4087     }
4088     case bitc::MODULE_CODE_DEPLIB: {  // DEPLIB: [strchr x N]
4089       // FIXME: Remove in 4.0.
4090       std::string S;
4091       if (convertToString(Record, 0, S))
4092         return error("Invalid record");
4093       // Ignore value.
4094       break;
4095     }
4096     case bitc::MODULE_CODE_SECTIONNAME: {  // SECTIONNAME: [strchr x N]
4097       std::string S;
4098       if (convertToString(Record, 0, S))
4099         return error("Invalid record");
4100       SectionTable.push_back(S);
4101       break;
4102     }
4103     case bitc::MODULE_CODE_GCNAME: {  // SECTIONNAME: [strchr x N]
4104       std::string S;
4105       if (convertToString(Record, 0, S))
4106         return error("Invalid record");
4107       GCTable.push_back(S);
4108       break;
4109     }
4110     case bitc::MODULE_CODE_COMDAT: { // COMDAT: [selection_kind, name]
4111       if (Record.size() < 2)
4112         return error("Invalid record");
4113       Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]);
4114       unsigned ComdatNameSize = Record[1];
4115       std::string ComdatName;
4116       ComdatName.reserve(ComdatNameSize);
4117       for (unsigned i = 0; i != ComdatNameSize; ++i)
4118         ComdatName += (char)Record[2 + i];
4119       Comdat *C = TheModule->getOrInsertComdat(ComdatName);
4120       C->setSelectionKind(SK);
4121       ComdatList.push_back(C);
4122       break;
4123     }
4124     // GLOBALVAR: [pointer type, isconst, initid,
4125     //             linkage, alignment, section, visibility, threadlocal,
4126     //             unnamed_addr, externally_initialized, dllstorageclass,
4127     //             comdat]
4128     case bitc::MODULE_CODE_GLOBALVAR: {
4129       if (Record.size() < 6)
4130         return error("Invalid record");
4131       Type *Ty = getTypeByID(Record[0]);
4132       if (!Ty)
4133         return error("Invalid record");
4134       bool isConstant = Record[1] & 1;
4135       bool explicitType = Record[1] & 2;
4136       unsigned AddressSpace;
4137       if (explicitType) {
4138         AddressSpace = Record[1] >> 2;
4139       } else {
4140         if (!Ty->isPointerTy())
4141           return error("Invalid type for value");
4142         AddressSpace = cast<PointerType>(Ty)->getAddressSpace();
4143         Ty = cast<PointerType>(Ty)->getElementType();
4144       }
4145 
4146       uint64_t RawLinkage = Record[3];
4147       GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
4148       unsigned Alignment;
4149       if (Error Err = parseAlignmentValue(Record[4], Alignment))
4150         return Err;
4151       std::string Section;
4152       if (Record[5]) {
4153         if (Record[5]-1 >= SectionTable.size())
4154           return error("Invalid ID");
4155         Section = SectionTable[Record[5]-1];
4156       }
4157       GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility;
4158       // Local linkage must have default visibility.
4159       if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage))
4160         // FIXME: Change to an error if non-default in 4.0.
4161         Visibility = getDecodedVisibility(Record[6]);
4162 
4163       GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal;
4164       if (Record.size() > 7)
4165         TLM = getDecodedThreadLocalMode(Record[7]);
4166 
4167       GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
4168       if (Record.size() > 8)
4169         UnnamedAddr = getDecodedUnnamedAddrType(Record[8]);
4170 
4171       bool ExternallyInitialized = false;
4172       if (Record.size() > 9)
4173         ExternallyInitialized = Record[9];
4174 
4175       GlobalVariable *NewGV =
4176         new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, "", nullptr,
4177                            TLM, AddressSpace, ExternallyInitialized);
4178       NewGV->setAlignment(Alignment);
4179       if (!Section.empty())
4180         NewGV->setSection(Section);
4181       NewGV->setVisibility(Visibility);
4182       NewGV->setUnnamedAddr(UnnamedAddr);
4183 
4184       if (Record.size() > 10)
4185         NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10]));
4186       else
4187         upgradeDLLImportExportLinkage(NewGV, RawLinkage);
4188 
4189       ValueList.push_back(NewGV);
4190 
4191       // Remember which value to use for the global initializer.
4192       if (unsigned InitID = Record[2])
4193         GlobalInits.push_back(std::make_pair(NewGV, InitID-1));
4194 
4195       if (Record.size() > 11) {
4196         if (unsigned ComdatID = Record[11]) {
4197           if (ComdatID > ComdatList.size())
4198             return error("Invalid global variable comdat ID");
4199           NewGV->setComdat(ComdatList[ComdatID - 1]);
4200         }
4201       } else if (hasImplicitComdat(RawLinkage)) {
4202         NewGV->setComdat(reinterpret_cast<Comdat *>(1));
4203       }
4204 
4205       break;
4206     }
4207     // FUNCTION:  [type, callingconv, isproto, linkage, paramattr,
4208     //             alignment, section, visibility, gc, unnamed_addr,
4209     //             prologuedata, dllstorageclass, comdat, prefixdata]
4210     case bitc::MODULE_CODE_FUNCTION: {
4211       if (Record.size() < 8)
4212         return error("Invalid record");
4213       Type *Ty = getTypeByID(Record[0]);
4214       if (!Ty)
4215         return error("Invalid record");
4216       if (auto *PTy = dyn_cast<PointerType>(Ty))
4217         Ty = PTy->getElementType();
4218       auto *FTy = dyn_cast<FunctionType>(Ty);
4219       if (!FTy)
4220         return error("Invalid type for value");
4221       auto CC = static_cast<CallingConv::ID>(Record[1]);
4222       if (CC & ~CallingConv::MaxID)
4223         return error("Invalid calling convention ID");
4224 
4225       Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage,
4226                                         "", TheModule);
4227 
4228       Func->setCallingConv(CC);
4229       bool isProto = Record[2];
4230       uint64_t RawLinkage = Record[3];
4231       Func->setLinkage(getDecodedLinkage(RawLinkage));
4232       Func->setAttributes(getAttributes(Record[4]));
4233 
4234       unsigned Alignment;
4235       if (Error Err = parseAlignmentValue(Record[5], Alignment))
4236         return Err;
4237       Func->setAlignment(Alignment);
4238       if (Record[6]) {
4239         if (Record[6]-1 >= SectionTable.size())
4240           return error("Invalid ID");
4241         Func->setSection(SectionTable[Record[6]-1]);
4242       }
4243       // Local linkage must have default visibility.
4244       if (!Func->hasLocalLinkage())
4245         // FIXME: Change to an error if non-default in 4.0.
4246         Func->setVisibility(getDecodedVisibility(Record[7]));
4247       if (Record.size() > 8 && Record[8]) {
4248         if (Record[8]-1 >= GCTable.size())
4249           return error("Invalid ID");
4250         Func->setGC(GCTable[Record[8] - 1]);
4251       }
4252       GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
4253       if (Record.size() > 9)
4254         UnnamedAddr = getDecodedUnnamedAddrType(Record[9]);
4255       Func->setUnnamedAddr(UnnamedAddr);
4256       if (Record.size() > 10 && Record[10] != 0)
4257         FunctionPrologues.push_back(std::make_pair(Func, Record[10]-1));
4258 
4259       if (Record.size() > 11)
4260         Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11]));
4261       else
4262         upgradeDLLImportExportLinkage(Func, RawLinkage);
4263 
4264       if (Record.size() > 12) {
4265         if (unsigned ComdatID = Record[12]) {
4266           if (ComdatID > ComdatList.size())
4267             return error("Invalid function comdat ID");
4268           Func->setComdat(ComdatList[ComdatID - 1]);
4269         }
4270       } else if (hasImplicitComdat(RawLinkage)) {
4271         Func->setComdat(reinterpret_cast<Comdat *>(1));
4272       }
4273 
4274       if (Record.size() > 13 && Record[13] != 0)
4275         FunctionPrefixes.push_back(std::make_pair(Func, Record[13]-1));
4276 
4277       if (Record.size() > 14 && Record[14] != 0)
4278         FunctionPersonalityFns.push_back(std::make_pair(Func, Record[14] - 1));
4279 
4280       ValueList.push_back(Func);
4281 
4282       // If this is a function with a body, remember the prototype we are
4283       // creating now, so that we can match up the body with them later.
4284       if (!isProto) {
4285         Func->setIsMaterializable(true);
4286         FunctionsWithBodies.push_back(Func);
4287         DeferredFunctionInfo[Func] = 0;
4288       }
4289       break;
4290     }
4291     // ALIAS: [alias type, addrspace, aliasee val#, linkage]
4292     // ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, dllstorageclass]
4293     // IFUNC: [alias type, addrspace, aliasee val#, linkage, visibility, dllstorageclass]
4294     case bitc::MODULE_CODE_IFUNC:
4295     case bitc::MODULE_CODE_ALIAS:
4296     case bitc::MODULE_CODE_ALIAS_OLD: {
4297       bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD;
4298       if (Record.size() < (3 + (unsigned)NewRecord))
4299         return error("Invalid record");
4300       unsigned OpNum = 0;
4301       Type *Ty = getTypeByID(Record[OpNum++]);
4302       if (!Ty)
4303         return error("Invalid record");
4304 
4305       unsigned AddrSpace;
4306       if (!NewRecord) {
4307         auto *PTy = dyn_cast<PointerType>(Ty);
4308         if (!PTy)
4309           return error("Invalid type for value");
4310         Ty = PTy->getElementType();
4311         AddrSpace = PTy->getAddressSpace();
4312       } else {
4313         AddrSpace = Record[OpNum++];
4314       }
4315 
4316       auto Val = Record[OpNum++];
4317       auto Linkage = Record[OpNum++];
4318       GlobalIndirectSymbol *NewGA;
4319       if (BitCode == bitc::MODULE_CODE_ALIAS ||
4320           BitCode == bitc::MODULE_CODE_ALIAS_OLD)
4321         NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage),
4322                                     "", TheModule);
4323       else
4324         NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage),
4325                                     "", nullptr, TheModule);
4326       // Old bitcode files didn't have visibility field.
4327       // Local linkage must have default visibility.
4328       if (OpNum != Record.size()) {
4329         auto VisInd = OpNum++;
4330         if (!NewGA->hasLocalLinkage())
4331           // FIXME: Change to an error if non-default in 4.0.
4332           NewGA->setVisibility(getDecodedVisibility(Record[VisInd]));
4333       }
4334       if (OpNum != Record.size())
4335         NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++]));
4336       else
4337         upgradeDLLImportExportLinkage(NewGA, Linkage);
4338       if (OpNum != Record.size())
4339         NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++]));
4340       if (OpNum != Record.size())
4341         NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++]));
4342       ValueList.push_back(NewGA);
4343       IndirectSymbolInits.push_back(std::make_pair(NewGA, Val));
4344       break;
4345     }
4346     /// MODULE_CODE_PURGEVALS: [numvals]
4347     case bitc::MODULE_CODE_PURGEVALS:
4348       // Trim down the value list to the specified size.
4349       if (Record.size() < 1 || Record[0] > ValueList.size())
4350         return error("Invalid record");
4351       ValueList.shrinkTo(Record[0]);
4352       break;
4353     /// MODULE_CODE_VSTOFFSET: [offset]
4354     case bitc::MODULE_CODE_VSTOFFSET:
4355       if (Record.size() < 1)
4356         return error("Invalid record");
4357       VSTOffset = Record[0];
4358       break;
4359     /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
4360     case bitc::MODULE_CODE_SOURCE_FILENAME:
4361       SmallString<128> ValueName;
4362       if (convertToString(Record, 0, ValueName))
4363         return error("Invalid record");
4364       TheModule->setSourceFileName(ValueName);
4365       break;
4366     }
4367     Record.clear();
4368   }
4369 }
4370 
4371 Error BitcodeReader::parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata) {
4372   TheModule = M;
4373   return parseModule(0, ShouldLazyLoadMetadata);
4374 }
4375 
4376 Error BitcodeReader::parseGlobalObjectAttachment(GlobalObject &GO,
4377                                                  ArrayRef<uint64_t> Record) {
4378   assert(Record.size() % 2 == 0);
4379   for (unsigned I = 0, E = Record.size(); I != E; I += 2) {
4380     auto K = MDKindMap.find(Record[I]);
4381     if (K == MDKindMap.end())
4382       return error("Invalid ID");
4383     MDNode *MD = MetadataList.getMDNodeFwdRefOrNull(Record[I + 1]);
4384     if (!MD)
4385       return error("Invalid metadata attachment");
4386     GO.addMetadata(K->second, *MD);
4387   }
4388   return Error::success();
4389 }
4390 
4391 /// Parse metadata attachments.
4392 Error BitcodeReader::parseMetadataAttachment(Function &F) {
4393   if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID))
4394     return error("Invalid record");
4395 
4396   SmallVector<uint64_t, 64> Record;
4397 
4398   while (true) {
4399     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
4400 
4401     switch (Entry.Kind) {
4402     case BitstreamEntry::SubBlock: // Handled for us already.
4403     case BitstreamEntry::Error:
4404       return error("Malformed block");
4405     case BitstreamEntry::EndBlock:
4406       return Error::success();
4407     case BitstreamEntry::Record:
4408       // The interesting case.
4409       break;
4410     }
4411 
4412     // Read a metadata attachment record.
4413     Record.clear();
4414     switch (Stream.readRecord(Entry.ID, Record)) {
4415     default:  // Default behavior: ignore.
4416       break;
4417     case bitc::METADATA_ATTACHMENT: {
4418       unsigned RecordLength = Record.size();
4419       if (Record.empty())
4420         return error("Invalid record");
4421       if (RecordLength % 2 == 0) {
4422         // A function attachment.
4423         if (Error Err = parseGlobalObjectAttachment(F, Record))
4424           return Err;
4425         continue;
4426       }
4427 
4428       // An instruction attachment.
4429       Instruction *Inst = InstructionList[Record[0]];
4430       for (unsigned i = 1; i != RecordLength; i = i+2) {
4431         unsigned Kind = Record[i];
4432         DenseMap<unsigned, unsigned>::iterator I =
4433           MDKindMap.find(Kind);
4434         if (I == MDKindMap.end())
4435           return error("Invalid ID");
4436         Metadata *Node = MetadataList.getMetadataFwdRef(Record[i + 1]);
4437         if (isa<LocalAsMetadata>(Node))
4438           // Drop the attachment.  This used to be legal, but there's no
4439           // upgrade path.
4440           break;
4441         MDNode *MD = dyn_cast_or_null<MDNode>(Node);
4442         if (!MD)
4443           return error("Invalid metadata attachment");
4444 
4445         if (HasSeenOldLoopTags && I->second == LLVMContext::MD_loop)
4446           MD = upgradeInstructionLoopAttachment(*MD);
4447 
4448         if (I->second == LLVMContext::MD_tbaa) {
4449           assert(!MD->isTemporary() && "should load MDs before attachments");
4450           MD = UpgradeTBAANode(*MD);
4451         }
4452         Inst->setMetadata(I->second, MD);
4453       }
4454       break;
4455     }
4456     }
4457   }
4458 }
4459 
4460 Error BitcodeReader::typeCheckLoadStoreInst(Type *ValType, Type *PtrType) {
4461   if (!isa<PointerType>(PtrType))
4462     return error("Load/Store operand is not a pointer type");
4463   Type *ElemType = cast<PointerType>(PtrType)->getElementType();
4464 
4465   if (ValType && ValType != ElemType)
4466     return error("Explicit load/store type does not match pointee "
4467                  "type of pointer operand");
4468   if (!PointerType::isLoadableOrStorableType(ElemType))
4469     return error("Cannot load/store from pointer");
4470   return Error::success();
4471 }
4472 
4473 /// Lazily parse the specified function body block.
4474 Error BitcodeReader::parseFunctionBody(Function *F) {
4475   if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID))
4476     return error("Invalid record");
4477 
4478   // Unexpected unresolved metadata when parsing function.
4479   if (MetadataList.hasFwdRefs())
4480     return error("Invalid function metadata: incoming forward references");
4481 
4482   InstructionList.clear();
4483   unsigned ModuleValueListSize = ValueList.size();
4484   unsigned ModuleMetadataListSize = MetadataList.size();
4485 
4486   // Add all the function arguments to the value table.
4487   for (Argument &I : F->args())
4488     ValueList.push_back(&I);
4489 
4490   unsigned NextValueNo = ValueList.size();
4491   BasicBlock *CurBB = nullptr;
4492   unsigned CurBBNo = 0;
4493 
4494   DebugLoc LastLoc;
4495   auto getLastInstruction = [&]() -> Instruction * {
4496     if (CurBB && !CurBB->empty())
4497       return &CurBB->back();
4498     else if (CurBBNo && FunctionBBs[CurBBNo - 1] &&
4499              !FunctionBBs[CurBBNo - 1]->empty())
4500       return &FunctionBBs[CurBBNo - 1]->back();
4501     return nullptr;
4502   };
4503 
4504   std::vector<OperandBundleDef> OperandBundles;
4505 
4506   // Read all the records.
4507   SmallVector<uint64_t, 64> Record;
4508 
4509   while (true) {
4510     BitstreamEntry Entry = Stream.advance();
4511 
4512     switch (Entry.Kind) {
4513     case BitstreamEntry::Error:
4514       return error("Malformed block");
4515     case BitstreamEntry::EndBlock:
4516       goto OutOfRecordLoop;
4517 
4518     case BitstreamEntry::SubBlock:
4519       switch (Entry.ID) {
4520       default:  // Skip unknown content.
4521         if (Stream.SkipBlock())
4522           return error("Invalid record");
4523         break;
4524       case bitc::CONSTANTS_BLOCK_ID:
4525         if (Error Err = parseConstants())
4526           return Err;
4527         NextValueNo = ValueList.size();
4528         break;
4529       case bitc::VALUE_SYMTAB_BLOCK_ID:
4530         if (Error Err = parseValueSymbolTable())
4531           return Err;
4532         break;
4533       case bitc::METADATA_ATTACHMENT_ID:
4534         if (Error Err = parseMetadataAttachment(*F))
4535           return Err;
4536         break;
4537       case bitc::METADATA_BLOCK_ID:
4538         if (Error Err = parseMetadata())
4539           return Err;
4540         break;
4541       case bitc::USELIST_BLOCK_ID:
4542         if (Error Err = parseUseLists())
4543           return Err;
4544         break;
4545       }
4546       continue;
4547 
4548     case BitstreamEntry::Record:
4549       // The interesting case.
4550       break;
4551     }
4552 
4553     // Read a record.
4554     Record.clear();
4555     Instruction *I = nullptr;
4556     unsigned BitCode = Stream.readRecord(Entry.ID, Record);
4557     switch (BitCode) {
4558     default: // Default behavior: reject
4559       return error("Invalid value");
4560     case bitc::FUNC_CODE_DECLAREBLOCKS: {   // DECLAREBLOCKS: [nblocks]
4561       if (Record.size() < 1 || Record[0] == 0)
4562         return error("Invalid record");
4563       // Create all the basic blocks for the function.
4564       FunctionBBs.resize(Record[0]);
4565 
4566       // See if anything took the address of blocks in this function.
4567       auto BBFRI = BasicBlockFwdRefs.find(F);
4568       if (BBFRI == BasicBlockFwdRefs.end()) {
4569         for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i)
4570           FunctionBBs[i] = BasicBlock::Create(Context, "", F);
4571       } else {
4572         auto &BBRefs = BBFRI->second;
4573         // Check for invalid basic block references.
4574         if (BBRefs.size() > FunctionBBs.size())
4575           return error("Invalid ID");
4576         assert(!BBRefs.empty() && "Unexpected empty array");
4577         assert(!BBRefs.front() && "Invalid reference to entry block");
4578         for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E;
4579              ++I)
4580           if (I < RE && BBRefs[I]) {
4581             BBRefs[I]->insertInto(F);
4582             FunctionBBs[I] = BBRefs[I];
4583           } else {
4584             FunctionBBs[I] = BasicBlock::Create(Context, "", F);
4585           }
4586 
4587         // Erase from the table.
4588         BasicBlockFwdRefs.erase(BBFRI);
4589       }
4590 
4591       CurBB = FunctionBBs[0];
4592       continue;
4593     }
4594 
4595     case bitc::FUNC_CODE_DEBUG_LOC_AGAIN:  // DEBUG_LOC_AGAIN
4596       // This record indicates that the last instruction is at the same
4597       // location as the previous instruction with a location.
4598       I = getLastInstruction();
4599 
4600       if (!I)
4601         return error("Invalid record");
4602       I->setDebugLoc(LastLoc);
4603       I = nullptr;
4604       continue;
4605 
4606     case bitc::FUNC_CODE_DEBUG_LOC: {      // DEBUG_LOC: [line, col, scope, ia]
4607       I = getLastInstruction();
4608       if (!I || Record.size() < 4)
4609         return error("Invalid record");
4610 
4611       unsigned Line = Record[0], Col = Record[1];
4612       unsigned ScopeID = Record[2], IAID = Record[3];
4613 
4614       MDNode *Scope = nullptr, *IA = nullptr;
4615       if (ScopeID) {
4616         Scope = MetadataList.getMDNodeFwdRefOrNull(ScopeID - 1);
4617         if (!Scope)
4618           return error("Invalid record");
4619       }
4620       if (IAID) {
4621         IA = MetadataList.getMDNodeFwdRefOrNull(IAID - 1);
4622         if (!IA)
4623           return error("Invalid record");
4624       }
4625       LastLoc = DebugLoc::get(Line, Col, Scope, IA);
4626       I->setDebugLoc(LastLoc);
4627       I = nullptr;
4628       continue;
4629     }
4630 
4631     case bitc::FUNC_CODE_INST_BINOP: {    // BINOP: [opval, ty, opval, opcode]
4632       unsigned OpNum = 0;
4633       Value *LHS, *RHS;
4634       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
4635           popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) ||
4636           OpNum+1 > Record.size())
4637         return error("Invalid record");
4638 
4639       int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType());
4640       if (Opc == -1)
4641         return error("Invalid record");
4642       I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
4643       InstructionList.push_back(I);
4644       if (OpNum < Record.size()) {
4645         if (Opc == Instruction::Add ||
4646             Opc == Instruction::Sub ||
4647             Opc == Instruction::Mul ||
4648             Opc == Instruction::Shl) {
4649           if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP))
4650             cast<BinaryOperator>(I)->setHasNoSignedWrap(true);
4651           if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
4652             cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true);
4653         } else if (Opc == Instruction::SDiv ||
4654                    Opc == Instruction::UDiv ||
4655                    Opc == Instruction::LShr ||
4656                    Opc == Instruction::AShr) {
4657           if (Record[OpNum] & (1 << bitc::PEO_EXACT))
4658             cast<BinaryOperator>(I)->setIsExact(true);
4659         } else if (isa<FPMathOperator>(I)) {
4660           FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
4661           if (FMF.any())
4662             I->setFastMathFlags(FMF);
4663         }
4664 
4665       }
4666       break;
4667     }
4668     case bitc::FUNC_CODE_INST_CAST: {    // CAST: [opval, opty, destty, castopc]
4669       unsigned OpNum = 0;
4670       Value *Op;
4671       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
4672           OpNum+2 != Record.size())
4673         return error("Invalid record");
4674 
4675       Type *ResTy = getTypeByID(Record[OpNum]);
4676       int Opc = getDecodedCastOpcode(Record[OpNum + 1]);
4677       if (Opc == -1 || !ResTy)
4678         return error("Invalid record");
4679       Instruction *Temp = nullptr;
4680       if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) {
4681         if (Temp) {
4682           InstructionList.push_back(Temp);
4683           CurBB->getInstList().push_back(Temp);
4684         }
4685       } else {
4686         auto CastOp = (Instruction::CastOps)Opc;
4687         if (!CastInst::castIsValid(CastOp, Op, ResTy))
4688           return error("Invalid cast");
4689         I = CastInst::Create(CastOp, Op, ResTy);
4690       }
4691       InstructionList.push_back(I);
4692       break;
4693     }
4694     case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD:
4695     case bitc::FUNC_CODE_INST_GEP_OLD:
4696     case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands]
4697       unsigned OpNum = 0;
4698 
4699       Type *Ty;
4700       bool InBounds;
4701 
4702       if (BitCode == bitc::FUNC_CODE_INST_GEP) {
4703         InBounds = Record[OpNum++];
4704         Ty = getTypeByID(Record[OpNum++]);
4705       } else {
4706         InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD;
4707         Ty = nullptr;
4708       }
4709 
4710       Value *BasePtr;
4711       if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr))
4712         return error("Invalid record");
4713 
4714       if (!Ty)
4715         Ty = cast<PointerType>(BasePtr->getType()->getScalarType())
4716                  ->getElementType();
4717       else if (Ty !=
4718                cast<PointerType>(BasePtr->getType()->getScalarType())
4719                    ->getElementType())
4720         return error(
4721             "Explicit gep type does not match pointee type of pointer operand");
4722 
4723       SmallVector<Value*, 16> GEPIdx;
4724       while (OpNum != Record.size()) {
4725         Value *Op;
4726         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4727           return error("Invalid record");
4728         GEPIdx.push_back(Op);
4729       }
4730 
4731       I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx);
4732 
4733       InstructionList.push_back(I);
4734       if (InBounds)
4735         cast<GetElementPtrInst>(I)->setIsInBounds(true);
4736       break;
4737     }
4738 
4739     case bitc::FUNC_CODE_INST_EXTRACTVAL: {
4740                                        // EXTRACTVAL: [opty, opval, n x indices]
4741       unsigned OpNum = 0;
4742       Value *Agg;
4743       if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
4744         return error("Invalid record");
4745 
4746       unsigned RecSize = Record.size();
4747       if (OpNum == RecSize)
4748         return error("EXTRACTVAL: Invalid instruction with 0 indices");
4749 
4750       SmallVector<unsigned, 4> EXTRACTVALIdx;
4751       Type *CurTy = Agg->getType();
4752       for (; OpNum != RecSize; ++OpNum) {
4753         bool IsArray = CurTy->isArrayTy();
4754         bool IsStruct = CurTy->isStructTy();
4755         uint64_t Index = Record[OpNum];
4756 
4757         if (!IsStruct && !IsArray)
4758           return error("EXTRACTVAL: Invalid type");
4759         if ((unsigned)Index != Index)
4760           return error("Invalid value");
4761         if (IsStruct && Index >= CurTy->subtypes().size())
4762           return error("EXTRACTVAL: Invalid struct index");
4763         if (IsArray && Index >= CurTy->getArrayNumElements())
4764           return error("EXTRACTVAL: Invalid array index");
4765         EXTRACTVALIdx.push_back((unsigned)Index);
4766 
4767         if (IsStruct)
4768           CurTy = CurTy->subtypes()[Index];
4769         else
4770           CurTy = CurTy->subtypes()[0];
4771       }
4772 
4773       I = ExtractValueInst::Create(Agg, EXTRACTVALIdx);
4774       InstructionList.push_back(I);
4775       break;
4776     }
4777 
4778     case bitc::FUNC_CODE_INST_INSERTVAL: {
4779                            // INSERTVAL: [opty, opval, opty, opval, n x indices]
4780       unsigned OpNum = 0;
4781       Value *Agg;
4782       if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
4783         return error("Invalid record");
4784       Value *Val;
4785       if (getValueTypePair(Record, OpNum, NextValueNo, Val))
4786         return error("Invalid record");
4787 
4788       unsigned RecSize = Record.size();
4789       if (OpNum == RecSize)
4790         return error("INSERTVAL: Invalid instruction with 0 indices");
4791 
4792       SmallVector<unsigned, 4> INSERTVALIdx;
4793       Type *CurTy = Agg->getType();
4794       for (; OpNum != RecSize; ++OpNum) {
4795         bool IsArray = CurTy->isArrayTy();
4796         bool IsStruct = CurTy->isStructTy();
4797         uint64_t Index = Record[OpNum];
4798 
4799         if (!IsStruct && !IsArray)
4800           return error("INSERTVAL: Invalid type");
4801         if ((unsigned)Index != Index)
4802           return error("Invalid value");
4803         if (IsStruct && Index >= CurTy->subtypes().size())
4804           return error("INSERTVAL: Invalid struct index");
4805         if (IsArray && Index >= CurTy->getArrayNumElements())
4806           return error("INSERTVAL: Invalid array index");
4807 
4808         INSERTVALIdx.push_back((unsigned)Index);
4809         if (IsStruct)
4810           CurTy = CurTy->subtypes()[Index];
4811         else
4812           CurTy = CurTy->subtypes()[0];
4813       }
4814 
4815       if (CurTy != Val->getType())
4816         return error("Inserted value type doesn't match aggregate type");
4817 
4818       I = InsertValueInst::Create(Agg, Val, INSERTVALIdx);
4819       InstructionList.push_back(I);
4820       break;
4821     }
4822 
4823     case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval]
4824       // obsolete form of select
4825       // handles select i1 ... in old bitcode
4826       unsigned OpNum = 0;
4827       Value *TrueVal, *FalseVal, *Cond;
4828       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
4829           popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) ||
4830           popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond))
4831         return error("Invalid record");
4832 
4833       I = SelectInst::Create(Cond, TrueVal, FalseVal);
4834       InstructionList.push_back(I);
4835       break;
4836     }
4837 
4838     case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred]
4839       // new form of select
4840       // handles select i1 or select [N x i1]
4841       unsigned OpNum = 0;
4842       Value *TrueVal, *FalseVal, *Cond;
4843       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
4844           popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) ||
4845           getValueTypePair(Record, OpNum, NextValueNo, Cond))
4846         return error("Invalid record");
4847 
4848       // select condition can be either i1 or [N x i1]
4849       if (VectorType* vector_type =
4850           dyn_cast<VectorType>(Cond->getType())) {
4851         // expect <n x i1>
4852         if (vector_type->getElementType() != Type::getInt1Ty(Context))
4853           return error("Invalid type for value");
4854       } else {
4855         // expect i1
4856         if (Cond->getType() != Type::getInt1Ty(Context))
4857           return error("Invalid type for value");
4858       }
4859 
4860       I = SelectInst::Create(Cond, TrueVal, FalseVal);
4861       InstructionList.push_back(I);
4862       break;
4863     }
4864 
4865     case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval]
4866       unsigned OpNum = 0;
4867       Value *Vec, *Idx;
4868       if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
4869           getValueTypePair(Record, OpNum, NextValueNo, Idx))
4870         return error("Invalid record");
4871       if (!Vec->getType()->isVectorTy())
4872         return error("Invalid type for value");
4873       I = ExtractElementInst::Create(Vec, Idx);
4874       InstructionList.push_back(I);
4875       break;
4876     }
4877 
4878     case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval]
4879       unsigned OpNum = 0;
4880       Value *Vec, *Elt, *Idx;
4881       if (getValueTypePair(Record, OpNum, NextValueNo, Vec))
4882         return error("Invalid record");
4883       if (!Vec->getType()->isVectorTy())
4884         return error("Invalid type for value");
4885       if (popValue(Record, OpNum, NextValueNo,
4886                    cast<VectorType>(Vec->getType())->getElementType(), Elt) ||
4887           getValueTypePair(Record, OpNum, NextValueNo, Idx))
4888         return error("Invalid record");
4889       I = InsertElementInst::Create(Vec, Elt, Idx);
4890       InstructionList.push_back(I);
4891       break;
4892     }
4893 
4894     case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval]
4895       unsigned OpNum = 0;
4896       Value *Vec1, *Vec2, *Mask;
4897       if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) ||
4898           popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2))
4899         return error("Invalid record");
4900 
4901       if (getValueTypePair(Record, OpNum, NextValueNo, Mask))
4902         return error("Invalid record");
4903       if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy())
4904         return error("Invalid type for value");
4905       I = new ShuffleVectorInst(Vec1, Vec2, Mask);
4906       InstructionList.push_back(I);
4907       break;
4908     }
4909 
4910     case bitc::FUNC_CODE_INST_CMP:   // CMP: [opty, opval, opval, pred]
4911       // Old form of ICmp/FCmp returning bool
4912       // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were
4913       // both legal on vectors but had different behaviour.
4914     case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred]
4915       // FCmp/ICmp returning bool or vector of bool
4916 
4917       unsigned OpNum = 0;
4918       Value *LHS, *RHS;
4919       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
4920           popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS))
4921         return error("Invalid record");
4922 
4923       unsigned PredVal = Record[OpNum];
4924       bool IsFP = LHS->getType()->isFPOrFPVectorTy();
4925       FastMathFlags FMF;
4926       if (IsFP && Record.size() > OpNum+1)
4927         FMF = getDecodedFastMathFlags(Record[++OpNum]);
4928 
4929       if (OpNum+1 != Record.size())
4930         return error("Invalid record");
4931 
4932       if (LHS->getType()->isFPOrFPVectorTy())
4933         I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS);
4934       else
4935         I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS);
4936 
4937       if (FMF.any())
4938         I->setFastMathFlags(FMF);
4939       InstructionList.push_back(I);
4940       break;
4941     }
4942 
4943     case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>]
4944       {
4945         unsigned Size = Record.size();
4946         if (Size == 0) {
4947           I = ReturnInst::Create(Context);
4948           InstructionList.push_back(I);
4949           break;
4950         }
4951 
4952         unsigned OpNum = 0;
4953         Value *Op = nullptr;
4954         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4955           return error("Invalid record");
4956         if (OpNum != Record.size())
4957           return error("Invalid record");
4958 
4959         I = ReturnInst::Create(Context, Op);
4960         InstructionList.push_back(I);
4961         break;
4962       }
4963     case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#]
4964       if (Record.size() != 1 && Record.size() != 3)
4965         return error("Invalid record");
4966       BasicBlock *TrueDest = getBasicBlock(Record[0]);
4967       if (!TrueDest)
4968         return error("Invalid record");
4969 
4970       if (Record.size() == 1) {
4971         I = BranchInst::Create(TrueDest);
4972         InstructionList.push_back(I);
4973       }
4974       else {
4975         BasicBlock *FalseDest = getBasicBlock(Record[1]);
4976         Value *Cond = getValue(Record, 2, NextValueNo,
4977                                Type::getInt1Ty(Context));
4978         if (!FalseDest || !Cond)
4979           return error("Invalid record");
4980         I = BranchInst::Create(TrueDest, FalseDest, Cond);
4981         InstructionList.push_back(I);
4982       }
4983       break;
4984     }
4985     case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#]
4986       if (Record.size() != 1 && Record.size() != 2)
4987         return error("Invalid record");
4988       unsigned Idx = 0;
4989       Value *CleanupPad =
4990           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4991       if (!CleanupPad)
4992         return error("Invalid record");
4993       BasicBlock *UnwindDest = nullptr;
4994       if (Record.size() == 2) {
4995         UnwindDest = getBasicBlock(Record[Idx++]);
4996         if (!UnwindDest)
4997           return error("Invalid record");
4998       }
4999 
5000       I = CleanupReturnInst::Create(CleanupPad, UnwindDest);
5001       InstructionList.push_back(I);
5002       break;
5003     }
5004     case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#]
5005       if (Record.size() != 2)
5006         return error("Invalid record");
5007       unsigned Idx = 0;
5008       Value *CatchPad =
5009           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
5010       if (!CatchPad)
5011         return error("Invalid record");
5012       BasicBlock *BB = getBasicBlock(Record[Idx++]);
5013       if (!BB)
5014         return error("Invalid record");
5015 
5016       I = CatchReturnInst::Create(CatchPad, BB);
5017       InstructionList.push_back(I);
5018       break;
5019     }
5020     case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?]
5021       // We must have, at minimum, the outer scope and the number of arguments.
5022       if (Record.size() < 2)
5023         return error("Invalid record");
5024 
5025       unsigned Idx = 0;
5026 
5027       Value *ParentPad =
5028           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
5029 
5030       unsigned NumHandlers = Record[Idx++];
5031 
5032       SmallVector<BasicBlock *, 2> Handlers;
5033       for (unsigned Op = 0; Op != NumHandlers; ++Op) {
5034         BasicBlock *BB = getBasicBlock(Record[Idx++]);
5035         if (!BB)
5036           return error("Invalid record");
5037         Handlers.push_back(BB);
5038       }
5039 
5040       BasicBlock *UnwindDest = nullptr;
5041       if (Idx + 1 == Record.size()) {
5042         UnwindDest = getBasicBlock(Record[Idx++]);
5043         if (!UnwindDest)
5044           return error("Invalid record");
5045       }
5046 
5047       if (Record.size() != Idx)
5048         return error("Invalid record");
5049 
5050       auto *CatchSwitch =
5051           CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers);
5052       for (BasicBlock *Handler : Handlers)
5053         CatchSwitch->addHandler(Handler);
5054       I = CatchSwitch;
5055       InstructionList.push_back(I);
5056       break;
5057     }
5058     case bitc::FUNC_CODE_INST_CATCHPAD:
5059     case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*]
5060       // We must have, at minimum, the outer scope and the number of arguments.
5061       if (Record.size() < 2)
5062         return error("Invalid record");
5063 
5064       unsigned Idx = 0;
5065 
5066       Value *ParentPad =
5067           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
5068 
5069       unsigned NumArgOperands = Record[Idx++];
5070 
5071       SmallVector<Value *, 2> Args;
5072       for (unsigned Op = 0; Op != NumArgOperands; ++Op) {
5073         Value *Val;
5074         if (getValueTypePair(Record, Idx, NextValueNo, Val))
5075           return error("Invalid record");
5076         Args.push_back(Val);
5077       }
5078 
5079       if (Record.size() != Idx)
5080         return error("Invalid record");
5081 
5082       if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD)
5083         I = CleanupPadInst::Create(ParentPad, Args);
5084       else
5085         I = CatchPadInst::Create(ParentPad, Args);
5086       InstructionList.push_back(I);
5087       break;
5088     }
5089     case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...]
5090       // Check magic
5091       if ((Record[0] >> 16) == SWITCH_INST_MAGIC) {
5092         // "New" SwitchInst format with case ranges. The changes to write this
5093         // format were reverted but we still recognize bitcode that uses it.
5094         // Hopefully someday we will have support for case ranges and can use
5095         // this format again.
5096 
5097         Type *OpTy = getTypeByID(Record[1]);
5098         unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth();
5099 
5100         Value *Cond = getValue(Record, 2, NextValueNo, OpTy);
5101         BasicBlock *Default = getBasicBlock(Record[3]);
5102         if (!OpTy || !Cond || !Default)
5103           return error("Invalid record");
5104 
5105         unsigned NumCases = Record[4];
5106 
5107         SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
5108         InstructionList.push_back(SI);
5109 
5110         unsigned CurIdx = 5;
5111         for (unsigned i = 0; i != NumCases; ++i) {
5112           SmallVector<ConstantInt*, 1> CaseVals;
5113           unsigned NumItems = Record[CurIdx++];
5114           for (unsigned ci = 0; ci != NumItems; ++ci) {
5115             bool isSingleNumber = Record[CurIdx++];
5116 
5117             APInt Low;
5118             unsigned ActiveWords = 1;
5119             if (ValueBitWidth > 64)
5120               ActiveWords = Record[CurIdx++];
5121             Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords),
5122                                 ValueBitWidth);
5123             CurIdx += ActiveWords;
5124 
5125             if (!isSingleNumber) {
5126               ActiveWords = 1;
5127               if (ValueBitWidth > 64)
5128                 ActiveWords = Record[CurIdx++];
5129               APInt High = readWideAPInt(
5130                   makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth);
5131               CurIdx += ActiveWords;
5132 
5133               // FIXME: It is not clear whether values in the range should be
5134               // compared as signed or unsigned values. The partially
5135               // implemented changes that used this format in the past used
5136               // unsigned comparisons.
5137               for ( ; Low.ule(High); ++Low)
5138                 CaseVals.push_back(ConstantInt::get(Context, Low));
5139             } else
5140               CaseVals.push_back(ConstantInt::get(Context, Low));
5141           }
5142           BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]);
5143           for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(),
5144                  cve = CaseVals.end(); cvi != cve; ++cvi)
5145             SI->addCase(*cvi, DestBB);
5146         }
5147         I = SI;
5148         break;
5149       }
5150 
5151       // Old SwitchInst format without case ranges.
5152 
5153       if (Record.size() < 3 || (Record.size() & 1) == 0)
5154         return error("Invalid record");
5155       Type *OpTy = getTypeByID(Record[0]);
5156       Value *Cond = getValue(Record, 1, NextValueNo, OpTy);
5157       BasicBlock *Default = getBasicBlock(Record[2]);
5158       if (!OpTy || !Cond || !Default)
5159         return error("Invalid record");
5160       unsigned NumCases = (Record.size()-3)/2;
5161       SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
5162       InstructionList.push_back(SI);
5163       for (unsigned i = 0, e = NumCases; i != e; ++i) {
5164         ConstantInt *CaseVal =
5165           dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy));
5166         BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]);
5167         if (!CaseVal || !DestBB) {
5168           delete SI;
5169           return error("Invalid record");
5170         }
5171         SI->addCase(CaseVal, DestBB);
5172       }
5173       I = SI;
5174       break;
5175     }
5176     case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...]
5177       if (Record.size() < 2)
5178         return error("Invalid record");
5179       Type *OpTy = getTypeByID(Record[0]);
5180       Value *Address = getValue(Record, 1, NextValueNo, OpTy);
5181       if (!OpTy || !Address)
5182         return error("Invalid record");
5183       unsigned NumDests = Record.size()-2;
5184       IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests);
5185       InstructionList.push_back(IBI);
5186       for (unsigned i = 0, e = NumDests; i != e; ++i) {
5187         if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) {
5188           IBI->addDestination(DestBB);
5189         } else {
5190           delete IBI;
5191           return error("Invalid record");
5192         }
5193       }
5194       I = IBI;
5195       break;
5196     }
5197 
5198     case bitc::FUNC_CODE_INST_INVOKE: {
5199       // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...]
5200       if (Record.size() < 4)
5201         return error("Invalid record");
5202       unsigned OpNum = 0;
5203       AttributeSet PAL = getAttributes(Record[OpNum++]);
5204       unsigned CCInfo = Record[OpNum++];
5205       BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]);
5206       BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]);
5207 
5208       FunctionType *FTy = nullptr;
5209       if (CCInfo >> 13 & 1 &&
5210           !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++]))))
5211         return error("Explicit invoke type is not a function type");
5212 
5213       Value *Callee;
5214       if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
5215         return error("Invalid record");
5216 
5217       PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType());
5218       if (!CalleeTy)
5219         return error("Callee is not a pointer");
5220       if (!FTy) {
5221         FTy = dyn_cast<FunctionType>(CalleeTy->getElementType());
5222         if (!FTy)
5223           return error("Callee is not of pointer to function type");
5224       } else if (CalleeTy->getElementType() != FTy)
5225         return error("Explicit invoke type does not match pointee type of "
5226                      "callee operand");
5227       if (Record.size() < FTy->getNumParams() + OpNum)
5228         return error("Insufficient operands to call");
5229 
5230       SmallVector<Value*, 16> Ops;
5231       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
5232         Ops.push_back(getValue(Record, OpNum, NextValueNo,
5233                                FTy->getParamType(i)));
5234         if (!Ops.back())
5235           return error("Invalid record");
5236       }
5237 
5238       if (!FTy->isVarArg()) {
5239         if (Record.size() != OpNum)
5240           return error("Invalid record");
5241       } else {
5242         // Read type/value pairs for varargs params.
5243         while (OpNum != Record.size()) {
5244           Value *Op;
5245           if (getValueTypePair(Record, OpNum, NextValueNo, Op))
5246             return error("Invalid record");
5247           Ops.push_back(Op);
5248         }
5249       }
5250 
5251       I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops, OperandBundles);
5252       OperandBundles.clear();
5253       InstructionList.push_back(I);
5254       cast<InvokeInst>(I)->setCallingConv(
5255           static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo));
5256       cast<InvokeInst>(I)->setAttributes(PAL);
5257       break;
5258     }
5259     case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval]
5260       unsigned Idx = 0;
5261       Value *Val = nullptr;
5262       if (getValueTypePair(Record, Idx, NextValueNo, Val))
5263         return error("Invalid record");
5264       I = ResumeInst::Create(Val);
5265       InstructionList.push_back(I);
5266       break;
5267     }
5268     case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE
5269       I = new UnreachableInst(Context);
5270       InstructionList.push_back(I);
5271       break;
5272     case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...]
5273       if (Record.size() < 1 || ((Record.size()-1)&1))
5274         return error("Invalid record");
5275       Type *Ty = getTypeByID(Record[0]);
5276       if (!Ty)
5277         return error("Invalid record");
5278 
5279       PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2);
5280       InstructionList.push_back(PN);
5281 
5282       for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) {
5283         Value *V;
5284         // With the new function encoding, it is possible that operands have
5285         // negative IDs (for forward references).  Use a signed VBR
5286         // representation to keep the encoding small.
5287         if (UseRelativeIDs)
5288           V = getValueSigned(Record, 1+i, NextValueNo, Ty);
5289         else
5290           V = getValue(Record, 1+i, NextValueNo, Ty);
5291         BasicBlock *BB = getBasicBlock(Record[2+i]);
5292         if (!V || !BB)
5293           return error("Invalid record");
5294         PN->addIncoming(V, BB);
5295       }
5296       I = PN;
5297       break;
5298     }
5299 
5300     case bitc::FUNC_CODE_INST_LANDINGPAD:
5301     case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: {
5302       // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?]
5303       unsigned Idx = 0;
5304       if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) {
5305         if (Record.size() < 3)
5306           return error("Invalid record");
5307       } else {
5308         assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD);
5309         if (Record.size() < 4)
5310           return error("Invalid record");
5311       }
5312       Type *Ty = getTypeByID(Record[Idx++]);
5313       if (!Ty)
5314         return error("Invalid record");
5315       if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) {
5316         Value *PersFn = nullptr;
5317         if (getValueTypePair(Record, Idx, NextValueNo, PersFn))
5318           return error("Invalid record");
5319 
5320         if (!F->hasPersonalityFn())
5321           F->setPersonalityFn(cast<Constant>(PersFn));
5322         else if (F->getPersonalityFn() != cast<Constant>(PersFn))
5323           return error("Personality function mismatch");
5324       }
5325 
5326       bool IsCleanup = !!Record[Idx++];
5327       unsigned NumClauses = Record[Idx++];
5328       LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses);
5329       LP->setCleanup(IsCleanup);
5330       for (unsigned J = 0; J != NumClauses; ++J) {
5331         LandingPadInst::ClauseType CT =
5332           LandingPadInst::ClauseType(Record[Idx++]); (void)CT;
5333         Value *Val;
5334 
5335         if (getValueTypePair(Record, Idx, NextValueNo, Val)) {
5336           delete LP;
5337           return error("Invalid record");
5338         }
5339 
5340         assert((CT != LandingPadInst::Catch ||
5341                 !isa<ArrayType>(Val->getType())) &&
5342                "Catch clause has a invalid type!");
5343         assert((CT != LandingPadInst::Filter ||
5344                 isa<ArrayType>(Val->getType())) &&
5345                "Filter clause has invalid type!");
5346         LP->addClause(cast<Constant>(Val));
5347       }
5348 
5349       I = LP;
5350       InstructionList.push_back(I);
5351       break;
5352     }
5353 
5354     case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align]
5355       if (Record.size() != 4)
5356         return error("Invalid record");
5357       uint64_t AlignRecord = Record[3];
5358       const uint64_t InAllocaMask = uint64_t(1) << 5;
5359       const uint64_t ExplicitTypeMask = uint64_t(1) << 6;
5360       const uint64_t SwiftErrorMask = uint64_t(1) << 7;
5361       const uint64_t FlagMask = InAllocaMask | ExplicitTypeMask |
5362                                 SwiftErrorMask;
5363       bool InAlloca = AlignRecord & InAllocaMask;
5364       bool SwiftError = AlignRecord & SwiftErrorMask;
5365       Type *Ty = getTypeByID(Record[0]);
5366       if ((AlignRecord & ExplicitTypeMask) == 0) {
5367         auto *PTy = dyn_cast_or_null<PointerType>(Ty);
5368         if (!PTy)
5369           return error("Old-style alloca with a non-pointer type");
5370         Ty = PTy->getElementType();
5371       }
5372       Type *OpTy = getTypeByID(Record[1]);
5373       Value *Size = getFnValueByID(Record[2], OpTy);
5374       unsigned Align;
5375       if (Error Err = parseAlignmentValue(AlignRecord & ~FlagMask, Align)) {
5376         return Err;
5377       }
5378       if (!Ty || !Size)
5379         return error("Invalid record");
5380       AllocaInst *AI = new AllocaInst(Ty, Size, Align);
5381       AI->setUsedWithInAlloca(InAlloca);
5382       AI->setSwiftError(SwiftError);
5383       I = AI;
5384       InstructionList.push_back(I);
5385       break;
5386     }
5387     case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol]
5388       unsigned OpNum = 0;
5389       Value *Op;
5390       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
5391           (OpNum + 2 != Record.size() && OpNum + 3 != Record.size()))
5392         return error("Invalid record");
5393 
5394       Type *Ty = nullptr;
5395       if (OpNum + 3 == Record.size())
5396         Ty = getTypeByID(Record[OpNum++]);
5397       if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType()))
5398         return Err;
5399       if (!Ty)
5400         Ty = cast<PointerType>(Op->getType())->getElementType();
5401 
5402       unsigned Align;
5403       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
5404         return Err;
5405       I = new LoadInst(Ty, Op, "", Record[OpNum + 1], Align);
5406 
5407       InstructionList.push_back(I);
5408       break;
5409     }
5410     case bitc::FUNC_CODE_INST_LOADATOMIC: {
5411        // LOADATOMIC: [opty, op, align, vol, ordering, synchscope]
5412       unsigned OpNum = 0;
5413       Value *Op;
5414       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
5415           (OpNum + 4 != Record.size() && OpNum + 5 != Record.size()))
5416         return error("Invalid record");
5417 
5418       Type *Ty = nullptr;
5419       if (OpNum + 5 == Record.size())
5420         Ty = getTypeByID(Record[OpNum++]);
5421       if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType()))
5422         return Err;
5423       if (!Ty)
5424         Ty = cast<PointerType>(Op->getType())->getElementType();
5425 
5426       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
5427       if (Ordering == AtomicOrdering::NotAtomic ||
5428           Ordering == AtomicOrdering::Release ||
5429           Ordering == AtomicOrdering::AcquireRelease)
5430         return error("Invalid record");
5431       if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
5432         return error("Invalid record");
5433       SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]);
5434 
5435       unsigned Align;
5436       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
5437         return Err;
5438       I = new LoadInst(Op, "", Record[OpNum+1], Align, Ordering, SynchScope);
5439 
5440       InstructionList.push_back(I);
5441       break;
5442     }
5443     case bitc::FUNC_CODE_INST_STORE:
5444     case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol]
5445       unsigned OpNum = 0;
5446       Value *Val, *Ptr;
5447       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
5448           (BitCode == bitc::FUNC_CODE_INST_STORE
5449                ? getValueTypePair(Record, OpNum, NextValueNo, Val)
5450                : popValue(Record, OpNum, NextValueNo,
5451                           cast<PointerType>(Ptr->getType())->getElementType(),
5452                           Val)) ||
5453           OpNum + 2 != Record.size())
5454         return error("Invalid record");
5455 
5456       if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
5457         return Err;
5458       unsigned Align;
5459       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
5460         return Err;
5461       I = new StoreInst(Val, Ptr, Record[OpNum+1], Align);
5462       InstructionList.push_back(I);
5463       break;
5464     }
5465     case bitc::FUNC_CODE_INST_STOREATOMIC:
5466     case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: {
5467       // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, synchscope]
5468       unsigned OpNum = 0;
5469       Value *Val, *Ptr;
5470       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
5471           !isa<PointerType>(Ptr->getType()) ||
5472           (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC
5473                ? getValueTypePair(Record, OpNum, NextValueNo, Val)
5474                : popValue(Record, OpNum, NextValueNo,
5475                           cast<PointerType>(Ptr->getType())->getElementType(),
5476                           Val)) ||
5477           OpNum + 4 != Record.size())
5478         return error("Invalid record");
5479 
5480       if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
5481         return Err;
5482       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
5483       if (Ordering == AtomicOrdering::NotAtomic ||
5484           Ordering == AtomicOrdering::Acquire ||
5485           Ordering == AtomicOrdering::AcquireRelease)
5486         return error("Invalid record");
5487       SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]);
5488       if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
5489         return error("Invalid record");
5490 
5491       unsigned Align;
5492       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
5493         return Err;
5494       I = new StoreInst(Val, Ptr, Record[OpNum+1], Align, Ordering, SynchScope);
5495       InstructionList.push_back(I);
5496       break;
5497     }
5498     case bitc::FUNC_CODE_INST_CMPXCHG_OLD:
5499     case bitc::FUNC_CODE_INST_CMPXCHG: {
5500       // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, synchscope,
5501       //          failureordering?, isweak?]
5502       unsigned OpNum = 0;
5503       Value *Ptr, *Cmp, *New;
5504       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
5505           (BitCode == bitc::FUNC_CODE_INST_CMPXCHG
5506                ? getValueTypePair(Record, OpNum, NextValueNo, Cmp)
5507                : popValue(Record, OpNum, NextValueNo,
5508                           cast<PointerType>(Ptr->getType())->getElementType(),
5509                           Cmp)) ||
5510           popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) ||
5511           Record.size() < OpNum + 3 || Record.size() > OpNum + 5)
5512         return error("Invalid record");
5513       AtomicOrdering SuccessOrdering = getDecodedOrdering(Record[OpNum + 1]);
5514       if (SuccessOrdering == AtomicOrdering::NotAtomic ||
5515           SuccessOrdering == AtomicOrdering::Unordered)
5516         return error("Invalid record");
5517       SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 2]);
5518 
5519       if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType()))
5520         return Err;
5521       AtomicOrdering FailureOrdering;
5522       if (Record.size() < 7)
5523         FailureOrdering =
5524             AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering);
5525       else
5526         FailureOrdering = getDecodedOrdering(Record[OpNum + 3]);
5527 
5528       I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering,
5529                                 SynchScope);
5530       cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]);
5531 
5532       if (Record.size() < 8) {
5533         // Before weak cmpxchgs existed, the instruction simply returned the
5534         // value loaded from memory, so bitcode files from that era will be
5535         // expecting the first component of a modern cmpxchg.
5536         CurBB->getInstList().push_back(I);
5537         I = ExtractValueInst::Create(I, 0);
5538       } else {
5539         cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]);
5540       }
5541 
5542       InstructionList.push_back(I);
5543       break;
5544     }
5545     case bitc::FUNC_CODE_INST_ATOMICRMW: {
5546       // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, synchscope]
5547       unsigned OpNum = 0;
5548       Value *Ptr, *Val;
5549       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
5550           !isa<PointerType>(Ptr->getType()) ||
5551           popValue(Record, OpNum, NextValueNo,
5552                     cast<PointerType>(Ptr->getType())->getElementType(), Val) ||
5553           OpNum+4 != Record.size())
5554         return error("Invalid record");
5555       AtomicRMWInst::BinOp Operation = getDecodedRMWOperation(Record[OpNum]);
5556       if (Operation < AtomicRMWInst::FIRST_BINOP ||
5557           Operation > AtomicRMWInst::LAST_BINOP)
5558         return error("Invalid record");
5559       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
5560       if (Ordering == AtomicOrdering::NotAtomic ||
5561           Ordering == AtomicOrdering::Unordered)
5562         return error("Invalid record");
5563       SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]);
5564       I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SynchScope);
5565       cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]);
5566       InstructionList.push_back(I);
5567       break;
5568     }
5569     case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, synchscope]
5570       if (2 != Record.size())
5571         return error("Invalid record");
5572       AtomicOrdering Ordering = getDecodedOrdering(Record[0]);
5573       if (Ordering == AtomicOrdering::NotAtomic ||
5574           Ordering == AtomicOrdering::Unordered ||
5575           Ordering == AtomicOrdering::Monotonic)
5576         return error("Invalid record");
5577       SynchronizationScope SynchScope = getDecodedSynchScope(Record[1]);
5578       I = new FenceInst(Context, Ordering, SynchScope);
5579       InstructionList.push_back(I);
5580       break;
5581     }
5582     case bitc::FUNC_CODE_INST_CALL: {
5583       // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...]
5584       if (Record.size() < 3)
5585         return error("Invalid record");
5586 
5587       unsigned OpNum = 0;
5588       AttributeSet PAL = getAttributes(Record[OpNum++]);
5589       unsigned CCInfo = Record[OpNum++];
5590 
5591       FastMathFlags FMF;
5592       if ((CCInfo >> bitc::CALL_FMF) & 1) {
5593         FMF = getDecodedFastMathFlags(Record[OpNum++]);
5594         if (!FMF.any())
5595           return error("Fast math flags indicator set for call with no FMF");
5596       }
5597 
5598       FunctionType *FTy = nullptr;
5599       if (CCInfo >> bitc::CALL_EXPLICIT_TYPE & 1 &&
5600           !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++]))))
5601         return error("Explicit call type is not a function type");
5602 
5603       Value *Callee;
5604       if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
5605         return error("Invalid record");
5606 
5607       PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
5608       if (!OpTy)
5609         return error("Callee is not a pointer type");
5610       if (!FTy) {
5611         FTy = dyn_cast<FunctionType>(OpTy->getElementType());
5612         if (!FTy)
5613           return error("Callee is not of pointer to function type");
5614       } else if (OpTy->getElementType() != FTy)
5615         return error("Explicit call type does not match pointee type of "
5616                      "callee operand");
5617       if (Record.size() < FTy->getNumParams() + OpNum)
5618         return error("Insufficient operands to call");
5619 
5620       SmallVector<Value*, 16> Args;
5621       // Read the fixed params.
5622       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
5623         if (FTy->getParamType(i)->isLabelTy())
5624           Args.push_back(getBasicBlock(Record[OpNum]));
5625         else
5626           Args.push_back(getValue(Record, OpNum, NextValueNo,
5627                                   FTy->getParamType(i)));
5628         if (!Args.back())
5629           return error("Invalid record");
5630       }
5631 
5632       // Read type/value pairs for varargs params.
5633       if (!FTy->isVarArg()) {
5634         if (OpNum != Record.size())
5635           return error("Invalid record");
5636       } else {
5637         while (OpNum != Record.size()) {
5638           Value *Op;
5639           if (getValueTypePair(Record, OpNum, NextValueNo, Op))
5640             return error("Invalid record");
5641           Args.push_back(Op);
5642         }
5643       }
5644 
5645       I = CallInst::Create(FTy, Callee, Args, OperandBundles);
5646       OperandBundles.clear();
5647       InstructionList.push_back(I);
5648       cast<CallInst>(I)->setCallingConv(
5649           static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV));
5650       CallInst::TailCallKind TCK = CallInst::TCK_None;
5651       if (CCInfo & 1 << bitc::CALL_TAIL)
5652         TCK = CallInst::TCK_Tail;
5653       if (CCInfo & (1 << bitc::CALL_MUSTTAIL))
5654         TCK = CallInst::TCK_MustTail;
5655       if (CCInfo & (1 << bitc::CALL_NOTAIL))
5656         TCK = CallInst::TCK_NoTail;
5657       cast<CallInst>(I)->setTailCallKind(TCK);
5658       cast<CallInst>(I)->setAttributes(PAL);
5659       if (FMF.any()) {
5660         if (!isa<FPMathOperator>(I))
5661           return error("Fast-math-flags specified for call without "
5662                        "floating-point scalar or vector return type");
5663         I->setFastMathFlags(FMF);
5664       }
5665       break;
5666     }
5667     case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty]
5668       if (Record.size() < 3)
5669         return error("Invalid record");
5670       Type *OpTy = getTypeByID(Record[0]);
5671       Value *Op = getValue(Record, 1, NextValueNo, OpTy);
5672       Type *ResTy = getTypeByID(Record[2]);
5673       if (!OpTy || !Op || !ResTy)
5674         return error("Invalid record");
5675       I = new VAArgInst(Op, ResTy);
5676       InstructionList.push_back(I);
5677       break;
5678     }
5679 
5680     case bitc::FUNC_CODE_OPERAND_BUNDLE: {
5681       // A call or an invoke can be optionally prefixed with some variable
5682       // number of operand bundle blocks.  These blocks are read into
5683       // OperandBundles and consumed at the next call or invoke instruction.
5684 
5685       if (Record.size() < 1 || Record[0] >= BundleTags.size())
5686         return error("Invalid record");
5687 
5688       std::vector<Value *> Inputs;
5689 
5690       unsigned OpNum = 1;
5691       while (OpNum != Record.size()) {
5692         Value *Op;
5693         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
5694           return error("Invalid record");
5695         Inputs.push_back(Op);
5696       }
5697 
5698       OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs));
5699       continue;
5700     }
5701     }
5702 
5703     // Add instruction to end of current BB.  If there is no current BB, reject
5704     // this file.
5705     if (!CurBB) {
5706       delete I;
5707       return error("Invalid instruction with no BB");
5708     }
5709     if (!OperandBundles.empty()) {
5710       delete I;
5711       return error("Operand bundles found with no consumer");
5712     }
5713     CurBB->getInstList().push_back(I);
5714 
5715     // If this was a terminator instruction, move to the next block.
5716     if (isa<TerminatorInst>(I)) {
5717       ++CurBBNo;
5718       CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr;
5719     }
5720 
5721     // Non-void values get registered in the value table for future use.
5722     if (I && !I->getType()->isVoidTy())
5723       ValueList.assignValue(I, NextValueNo++);
5724   }
5725 
5726 OutOfRecordLoop:
5727 
5728   if (!OperandBundles.empty())
5729     return error("Operand bundles found with no consumer");
5730 
5731   // Check the function list for unresolved values.
5732   if (Argument *A = dyn_cast<Argument>(ValueList.back())) {
5733     if (!A->getParent()) {
5734       // We found at least one unresolved value.  Nuke them all to avoid leaks.
5735       for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){
5736         if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) {
5737           A->replaceAllUsesWith(UndefValue::get(A->getType()));
5738           delete A;
5739         }
5740       }
5741       return error("Never resolved value found in function");
5742     }
5743   }
5744 
5745   // Unexpected unresolved metadata about to be dropped.
5746   if (MetadataList.hasFwdRefs())
5747     return error("Invalid function metadata: outgoing forward refs");
5748 
5749   // Trim the value list down to the size it was before we parsed this function.
5750   ValueList.shrinkTo(ModuleValueListSize);
5751   MetadataList.shrinkTo(ModuleMetadataListSize);
5752   std::vector<BasicBlock*>().swap(FunctionBBs);
5753   return Error::success();
5754 }
5755 
5756 /// Find the function body in the bitcode stream
5757 Error BitcodeReader::findFunctionInStream(
5758     Function *F,
5759     DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) {
5760   while (DeferredFunctionInfoIterator->second == 0) {
5761     // This is the fallback handling for the old format bitcode that
5762     // didn't contain the function index in the VST, or when we have
5763     // an anonymous function which would not have a VST entry.
5764     // Assert that we have one of those two cases.
5765     assert(VSTOffset == 0 || !F->hasName());
5766     // Parse the next body in the stream and set its position in the
5767     // DeferredFunctionInfo map.
5768     if (Error Err = rememberAndSkipFunctionBodies())
5769       return Err;
5770   }
5771   return Error::success();
5772 }
5773 
5774 //===----------------------------------------------------------------------===//
5775 // GVMaterializer implementation
5776 //===----------------------------------------------------------------------===//
5777 
5778 Error BitcodeReader::materialize(GlobalValue *GV) {
5779   Function *F = dyn_cast<Function>(GV);
5780   // If it's not a function or is already material, ignore the request.
5781   if (!F || !F->isMaterializable())
5782     return Error::success();
5783 
5784   DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F);
5785   assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!");
5786   // If its position is recorded as 0, its body is somewhere in the stream
5787   // but we haven't seen it yet.
5788   if (DFII->second == 0)
5789     if (Error Err = findFunctionInStream(F, DFII))
5790       return Err;
5791 
5792   // Materialize metadata before parsing any function bodies.
5793   if (Error Err = materializeMetadata())
5794     return Err;
5795 
5796   // Move the bit stream to the saved position of the deferred function body.
5797   Stream.JumpToBit(DFII->second);
5798 
5799   if (Error Err = parseFunctionBody(F))
5800     return Err;
5801   F->setIsMaterializable(false);
5802 
5803   if (StripDebugInfo)
5804     stripDebugInfo(*F);
5805 
5806   // Upgrade any old intrinsic calls in the function.
5807   for (auto &I : UpgradedIntrinsics) {
5808     for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end();
5809          UI != UE;) {
5810       User *U = *UI;
5811       ++UI;
5812       if (CallInst *CI = dyn_cast<CallInst>(U))
5813         UpgradeIntrinsicCall(CI, I.second);
5814     }
5815   }
5816 
5817   // Update calls to the remangled intrinsics
5818   for (auto &I : RemangledIntrinsics)
5819     for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end();
5820          UI != UE;)
5821       // Don't expect any other users than call sites
5822       CallSite(*UI++).setCalledFunction(I.second);
5823 
5824   // Finish fn->subprogram upgrade for materialized functions.
5825   if (DISubprogram *SP = FunctionsWithSPs.lookup(F))
5826     F->setSubprogram(SP);
5827 
5828   // Bring in any functions that this function forward-referenced via
5829   // blockaddresses.
5830   return materializeForwardReferencedFunctions();
5831 }
5832 
5833 Error BitcodeReader::materializeModule() {
5834   if (Error Err = materializeMetadata())
5835     return Err;
5836 
5837   // Promise to materialize all forward references.
5838   WillMaterializeAllForwardRefs = true;
5839 
5840   // Iterate over the module, deserializing any functions that are still on
5841   // disk.
5842   for (Function &F : *TheModule) {
5843     if (Error Err = materialize(&F))
5844       return Err;
5845   }
5846   // At this point, if there are any function bodies, parse the rest of
5847   // the bits in the module past the last function block we have recorded
5848   // through either lazy scanning or the VST.
5849   if (LastFunctionBlockBit || NextUnreadBit)
5850     if (Error Err = parseModule(LastFunctionBlockBit > NextUnreadBit
5851                                     ? LastFunctionBlockBit
5852                                     : NextUnreadBit))
5853       return Err;
5854 
5855   // Check that all block address forward references got resolved (as we
5856   // promised above).
5857   if (!BasicBlockFwdRefs.empty())
5858     return error("Never resolved function from blockaddress");
5859 
5860   // Upgrade any intrinsic calls that slipped through (should not happen!) and
5861   // delete the old functions to clean up. We can't do this unless the entire
5862   // module is materialized because there could always be another function body
5863   // with calls to the old function.
5864   for (auto &I : UpgradedIntrinsics) {
5865     for (auto *U : I.first->users()) {
5866       if (CallInst *CI = dyn_cast<CallInst>(U))
5867         UpgradeIntrinsicCall(CI, I.second);
5868     }
5869     if (!I.first->use_empty())
5870       I.first->replaceAllUsesWith(I.second);
5871     I.first->eraseFromParent();
5872   }
5873   UpgradedIntrinsics.clear();
5874   // Do the same for remangled intrinsics
5875   for (auto &I : RemangledIntrinsics) {
5876     I.first->replaceAllUsesWith(I.second);
5877     I.first->eraseFromParent();
5878   }
5879   RemangledIntrinsics.clear();
5880 
5881   UpgradeDebugInfo(*TheModule);
5882 
5883   UpgradeModuleFlags(*TheModule);
5884   return Error::success();
5885 }
5886 
5887 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const {
5888   return IdentifiedStructTypes;
5889 }
5890 
5891 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader(
5892     BitstreamCursor Cursor, bool CheckGlobalValSummaryPresenceOnly)
5893     : BitcodeReaderBase(std::move(Cursor)),
5894       CheckGlobalValSummaryPresenceOnly(CheckGlobalValSummaryPresenceOnly) {}
5895 
5896 std::pair<GlobalValue::GUID, GlobalValue::GUID>
5897 ModuleSummaryIndexBitcodeReader::getGUIDFromValueId(unsigned ValueId) {
5898   auto VGI = ValueIdToCallGraphGUIDMap.find(ValueId);
5899   assert(VGI != ValueIdToCallGraphGUIDMap.end());
5900   return VGI->second;
5901 }
5902 
5903 // Specialized value symbol table parser used when reading module index
5904 // blocks where we don't actually create global values. The parsed information
5905 // is saved in the bitcode reader for use when later parsing summaries.
5906 Error ModuleSummaryIndexBitcodeReader::parseValueSymbolTable(
5907     uint64_t Offset,
5908     DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) {
5909   assert(Offset > 0 && "Expected non-zero VST offset");
5910   uint64_t CurrentBit = jumpToValueSymbolTable(Offset, Stream);
5911 
5912   if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
5913     return error("Invalid record");
5914 
5915   SmallVector<uint64_t, 64> Record;
5916 
5917   // Read all the records for this value table.
5918   SmallString<128> ValueName;
5919 
5920   while (true) {
5921     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
5922 
5923     switch (Entry.Kind) {
5924     case BitstreamEntry::SubBlock: // Handled for us already.
5925     case BitstreamEntry::Error:
5926       return error("Malformed block");
5927     case BitstreamEntry::EndBlock:
5928       // Done parsing VST, jump back to wherever we came from.
5929       Stream.JumpToBit(CurrentBit);
5930       return Error::success();
5931     case BitstreamEntry::Record:
5932       // The interesting case.
5933       break;
5934     }
5935 
5936     // Read a record.
5937     Record.clear();
5938     switch (Stream.readRecord(Entry.ID, Record)) {
5939     default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records).
5940       break;
5941     case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N]
5942       if (convertToString(Record, 1, ValueName))
5943         return error("Invalid record");
5944       unsigned ValueID = Record[0];
5945       assert(!SourceFileName.empty());
5946       auto VLI = ValueIdToLinkageMap.find(ValueID);
5947       assert(VLI != ValueIdToLinkageMap.end() &&
5948              "No linkage found for VST entry?");
5949       auto Linkage = VLI->second;
5950       std::string GlobalId =
5951           GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName);
5952       auto ValueGUID = GlobalValue::getGUID(GlobalId);
5953       auto OriginalNameID = ValueGUID;
5954       if (GlobalValue::isLocalLinkage(Linkage))
5955         OriginalNameID = GlobalValue::getGUID(ValueName);
5956       if (PrintSummaryGUIDs)
5957         dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is "
5958                << ValueName << "\n";
5959       ValueIdToCallGraphGUIDMap[ValueID] =
5960           std::make_pair(ValueGUID, OriginalNameID);
5961       ValueName.clear();
5962       break;
5963     }
5964     case bitc::VST_CODE_FNENTRY: {
5965       // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
5966       if (convertToString(Record, 2, ValueName))
5967         return error("Invalid record");
5968       unsigned ValueID = Record[0];
5969       assert(!SourceFileName.empty());
5970       auto VLI = ValueIdToLinkageMap.find(ValueID);
5971       assert(VLI != ValueIdToLinkageMap.end() &&
5972              "No linkage found for VST entry?");
5973       auto Linkage = VLI->second;
5974       std::string FunctionGlobalId = GlobalValue::getGlobalIdentifier(
5975           ValueName, VLI->second, SourceFileName);
5976       auto FunctionGUID = GlobalValue::getGUID(FunctionGlobalId);
5977       auto OriginalNameID = FunctionGUID;
5978       if (GlobalValue::isLocalLinkage(Linkage))
5979         OriginalNameID = GlobalValue::getGUID(ValueName);
5980       if (PrintSummaryGUIDs)
5981         dbgs() << "GUID " << FunctionGUID << "(" << OriginalNameID << ") is "
5982                << ValueName << "\n";
5983       ValueIdToCallGraphGUIDMap[ValueID] =
5984           std::make_pair(FunctionGUID, OriginalNameID);
5985 
5986       ValueName.clear();
5987       break;
5988     }
5989     case bitc::VST_CODE_COMBINED_ENTRY: {
5990       // VST_CODE_COMBINED_ENTRY: [valueid, refguid]
5991       unsigned ValueID = Record[0];
5992       GlobalValue::GUID RefGUID = Record[1];
5993       // The "original name", which is the second value of the pair will be
5994       // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index.
5995       ValueIdToCallGraphGUIDMap[ValueID] = std::make_pair(RefGUID, RefGUID);
5996       break;
5997     }
5998     }
5999   }
6000 }
6001 
6002 // Parse just the blocks needed for building the index out of the module.
6003 // At the end of this routine the module Index is populated with a map
6004 // from global value id to GlobalValueSummary objects.
6005 Error ModuleSummaryIndexBitcodeReader::parseModule(StringRef ModulePath) {
6006   if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
6007     return error("Invalid record");
6008 
6009   SmallVector<uint64_t, 64> Record;
6010   DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap;
6011   unsigned ValueId = 0;
6012 
6013   // Read the index for this module.
6014   while (true) {
6015     BitstreamEntry Entry = Stream.advance();
6016 
6017     switch (Entry.Kind) {
6018     case BitstreamEntry::Error:
6019       return error("Malformed block");
6020     case BitstreamEntry::EndBlock:
6021       return Error::success();
6022 
6023     case BitstreamEntry::SubBlock:
6024       if (CheckGlobalValSummaryPresenceOnly) {
6025         if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) {
6026           SeenGlobalValSummary = true;
6027           // No need to parse the rest since we found the summary.
6028           return Error::success();
6029         }
6030         if (Stream.SkipBlock())
6031           return error("Invalid record");
6032         continue;
6033       }
6034       switch (Entry.ID) {
6035       default: // Skip unknown content.
6036         if (Stream.SkipBlock())
6037           return error("Invalid record");
6038         break;
6039       case bitc::BLOCKINFO_BLOCK_ID:
6040         // Need to parse these to get abbrev ids (e.g. for VST)
6041         if (readBlockInfo())
6042           return error("Malformed block");
6043         break;
6044       case bitc::VALUE_SYMTAB_BLOCK_ID:
6045         // Should have been parsed earlier via VSTOffset, unless there
6046         // is no summary section.
6047         assert(((SeenValueSymbolTable && VSTOffset > 0) ||
6048                 !SeenGlobalValSummary) &&
6049                "Expected early VST parse via VSTOffset record");
6050         if (Stream.SkipBlock())
6051           return error("Invalid record");
6052         break;
6053       case bitc::GLOBALVAL_SUMMARY_BLOCK_ID:
6054         assert(!SeenValueSymbolTable &&
6055                "Already read VST when parsing summary block?");
6056         // We might not have a VST if there were no values in the
6057         // summary. An empty summary block generated when we are
6058         // performing ThinLTO compiles so we don't later invoke
6059         // the regular LTO process on them.
6060         if (VSTOffset > 0) {
6061           if (Error Err = parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap))
6062             return Err;
6063           SeenValueSymbolTable = true;
6064         }
6065         SeenGlobalValSummary = true;
6066         if (Error Err = parseEntireSummary(ModulePath))
6067           return Err;
6068         break;
6069       case bitc::MODULE_STRTAB_BLOCK_ID:
6070         if (Error Err = parseModuleStringTable())
6071           return Err;
6072         break;
6073       }
6074       continue;
6075 
6076     case BitstreamEntry::Record: {
6077         Record.clear();
6078         auto BitCode = Stream.readRecord(Entry.ID, Record);
6079         switch (BitCode) {
6080         default:
6081           break; // Default behavior, ignore unknown content.
6082         /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
6083         case bitc::MODULE_CODE_SOURCE_FILENAME: {
6084           SmallString<128> ValueName;
6085           if (convertToString(Record, 0, ValueName))
6086             return error("Invalid record");
6087           SourceFileName = ValueName.c_str();
6088           break;
6089         }
6090         /// MODULE_CODE_HASH: [5*i32]
6091         case bitc::MODULE_CODE_HASH: {
6092           if (Record.size() != 5)
6093             return error("Invalid hash length " + Twine(Record.size()).str());
6094           if (!TheIndex)
6095             break;
6096           if (TheIndex->modulePaths().empty())
6097             // We always seed the index with the module.
6098             TheIndex->addModulePath(ModulePath, 0);
6099           if (TheIndex->modulePaths().size() != 1)
6100             return error("Don't expect multiple modules defined?");
6101           auto &Hash = TheIndex->modulePaths().begin()->second.second;
6102           int Pos = 0;
6103           for (auto &Val : Record) {
6104             assert(!(Val >> 32) && "Unexpected high bits set");
6105             Hash[Pos++] = Val;
6106           }
6107           break;
6108         }
6109         /// MODULE_CODE_VSTOFFSET: [offset]
6110         case bitc::MODULE_CODE_VSTOFFSET:
6111           if (Record.size() < 1)
6112             return error("Invalid record");
6113           VSTOffset = Record[0];
6114           break;
6115         // GLOBALVAR: [pointer type, isconst, initid,
6116         //             linkage, alignment, section, visibility, threadlocal,
6117         //             unnamed_addr, externally_initialized, dllstorageclass,
6118         //             comdat]
6119         case bitc::MODULE_CODE_GLOBALVAR: {
6120           if (Record.size() < 6)
6121             return error("Invalid record");
6122           uint64_t RawLinkage = Record[3];
6123           GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
6124           ValueIdToLinkageMap[ValueId++] = Linkage;
6125           break;
6126         }
6127         // FUNCTION:  [type, callingconv, isproto, linkage, paramattr,
6128         //             alignment, section, visibility, gc, unnamed_addr,
6129         //             prologuedata, dllstorageclass, comdat, prefixdata]
6130         case bitc::MODULE_CODE_FUNCTION: {
6131           if (Record.size() < 8)
6132             return error("Invalid record");
6133           uint64_t RawLinkage = Record[3];
6134           GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
6135           ValueIdToLinkageMap[ValueId++] = Linkage;
6136           break;
6137         }
6138         // ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility,
6139         // dllstorageclass]
6140         case bitc::MODULE_CODE_ALIAS: {
6141           if (Record.size() < 6)
6142             return error("Invalid record");
6143           uint64_t RawLinkage = Record[3];
6144           GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
6145           ValueIdToLinkageMap[ValueId++] = Linkage;
6146           break;
6147         }
6148         }
6149       }
6150       continue;
6151     }
6152   }
6153 }
6154 
6155 // Eagerly parse the entire summary block. This populates the GlobalValueSummary
6156 // objects in the index.
6157 Error ModuleSummaryIndexBitcodeReader::parseEntireSummary(
6158     StringRef ModulePath) {
6159   if (Stream.EnterSubBlock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID))
6160     return error("Invalid record");
6161   SmallVector<uint64_t, 64> Record;
6162 
6163   // Parse version
6164   {
6165     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
6166     if (Entry.Kind != BitstreamEntry::Record)
6167       return error("Invalid Summary Block: record for version expected");
6168     if (Stream.readRecord(Entry.ID, Record) != bitc::FS_VERSION)
6169       return error("Invalid Summary Block: version expected");
6170   }
6171   const uint64_t Version = Record[0];
6172   const bool IsOldProfileFormat = Version == 1;
6173   if (!IsOldProfileFormat && Version != 2)
6174     return error("Invalid summary version " + Twine(Version) +
6175                  ", 1 or 2 expected");
6176   Record.clear();
6177 
6178   // Keep around the last seen summary to be used when we see an optional
6179   // "OriginalName" attachement.
6180   GlobalValueSummary *LastSeenSummary = nullptr;
6181   bool Combined = false;
6182 
6183   while (true) {
6184     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
6185 
6186     switch (Entry.Kind) {
6187     case BitstreamEntry::SubBlock: // Handled for us already.
6188     case BitstreamEntry::Error:
6189       return error("Malformed block");
6190     case BitstreamEntry::EndBlock:
6191       // For a per-module index, remove any entries that still have empty
6192       // summaries. The VST parsing creates entries eagerly for all symbols,
6193       // but not all have associated summaries (e.g. it doesn't know how to
6194       // distinguish between VST_CODE_ENTRY for function declarations vs global
6195       // variables with initializers that end up with a summary). Remove those
6196       // entries now so that we don't need to rely on the combined index merger
6197       // to clean them up (especially since that may not run for the first
6198       // module's index if we merge into that).
6199       if (!Combined)
6200         TheIndex->removeEmptySummaryEntries();
6201       return Error::success();
6202     case BitstreamEntry::Record:
6203       // The interesting case.
6204       break;
6205     }
6206 
6207     // Read a record. The record format depends on whether this
6208     // is a per-module index or a combined index file. In the per-module
6209     // case the records contain the associated value's ID for correlation
6210     // with VST entries. In the combined index the correlation is done
6211     // via the bitcode offset of the summary records (which were saved
6212     // in the combined index VST entries). The records also contain
6213     // information used for ThinLTO renaming and importing.
6214     Record.clear();
6215     auto BitCode = Stream.readRecord(Entry.ID, Record);
6216     switch (BitCode) {
6217     default: // Default behavior: ignore.
6218       break;
6219     // FS_PERMODULE: [valueid, flags, instcount, numrefs, numrefs x valueid,
6220     //                n x (valueid)]
6221     // FS_PERMODULE_PROFILE: [valueid, flags, instcount, numrefs,
6222     //                        numrefs x valueid,
6223     //                        n x (valueid, hotness)]
6224     case bitc::FS_PERMODULE:
6225     case bitc::FS_PERMODULE_PROFILE: {
6226       unsigned ValueID = Record[0];
6227       uint64_t RawFlags = Record[1];
6228       unsigned InstCount = Record[2];
6229       unsigned NumRefs = Record[3];
6230       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6231       std::unique_ptr<FunctionSummary> FS =
6232           llvm::make_unique<FunctionSummary>(Flags, InstCount);
6233       // The module path string ref set in the summary must be owned by the
6234       // index's module string table. Since we don't have a module path
6235       // string table section in the per-module index, we create a single
6236       // module path string table entry with an empty (0) ID to take
6237       // ownership.
6238       FS->setModulePath(TheIndex->addModulePath(ModulePath, 0)->first());
6239       static int RefListStartIndex = 4;
6240       int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
6241       assert(Record.size() >= RefListStartIndex + NumRefs &&
6242              "Record size inconsistent with number of references");
6243       for (unsigned I = 4, E = CallGraphEdgeStartIndex; I != E; ++I) {
6244         unsigned RefValueId = Record[I];
6245         GlobalValue::GUID RefGUID = getGUIDFromValueId(RefValueId).first;
6246         FS->addRefEdge(RefGUID);
6247       }
6248       bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE);
6249       for (unsigned I = CallGraphEdgeStartIndex, E = Record.size(); I != E;
6250            ++I) {
6251         CalleeInfo::HotnessType Hotness;
6252         GlobalValue::GUID CalleeGUID;
6253         std::tie(CalleeGUID, Hotness) =
6254             readCallGraphEdge(Record, I, IsOldProfileFormat, HasProfile);
6255         FS->addCallGraphEdge(CalleeGUID, CalleeInfo(Hotness));
6256       }
6257       auto GUID = getGUIDFromValueId(ValueID);
6258       FS->setOriginalName(GUID.second);
6259       TheIndex->addGlobalValueSummary(GUID.first, std::move(FS));
6260       break;
6261     }
6262     // FS_ALIAS: [valueid, flags, valueid]
6263     // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as
6264     // they expect all aliasee summaries to be available.
6265     case bitc::FS_ALIAS: {
6266       unsigned ValueID = Record[0];
6267       uint64_t RawFlags = Record[1];
6268       unsigned AliaseeID = Record[2];
6269       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6270       std::unique_ptr<AliasSummary> AS = llvm::make_unique<AliasSummary>(Flags);
6271       // The module path string ref set in the summary must be owned by the
6272       // index's module string table. Since we don't have a module path
6273       // string table section in the per-module index, we create a single
6274       // module path string table entry with an empty (0) ID to take
6275       // ownership.
6276       AS->setModulePath(TheIndex->addModulePath(ModulePath, 0)->first());
6277 
6278       GlobalValue::GUID AliaseeGUID = getGUIDFromValueId(AliaseeID).first;
6279       auto *AliaseeSummary = TheIndex->getGlobalValueSummary(AliaseeGUID);
6280       if (!AliaseeSummary)
6281         return error("Alias expects aliasee summary to be parsed");
6282       AS->setAliasee(AliaseeSummary);
6283 
6284       auto GUID = getGUIDFromValueId(ValueID);
6285       AS->setOriginalName(GUID.second);
6286       TheIndex->addGlobalValueSummary(GUID.first, std::move(AS));
6287       break;
6288     }
6289     // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, n x valueid]
6290     case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: {
6291       unsigned ValueID = Record[0];
6292       uint64_t RawFlags = Record[1];
6293       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6294       std::unique_ptr<GlobalVarSummary> FS =
6295           llvm::make_unique<GlobalVarSummary>(Flags);
6296       FS->setModulePath(TheIndex->addModulePath(ModulePath, 0)->first());
6297       for (unsigned I = 2, E = Record.size(); I != E; ++I) {
6298         unsigned RefValueId = Record[I];
6299         GlobalValue::GUID RefGUID = getGUIDFromValueId(RefValueId).first;
6300         FS->addRefEdge(RefGUID);
6301       }
6302       auto GUID = getGUIDFromValueId(ValueID);
6303       FS->setOriginalName(GUID.second);
6304       TheIndex->addGlobalValueSummary(GUID.first, std::move(FS));
6305       break;
6306     }
6307     // FS_COMBINED: [valueid, modid, flags, instcount, numrefs,
6308     //               numrefs x valueid, n x (valueid)]
6309     // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, numrefs,
6310     //                       numrefs x valueid, n x (valueid, hotness)]
6311     case bitc::FS_COMBINED:
6312     case bitc::FS_COMBINED_PROFILE: {
6313       unsigned ValueID = Record[0];
6314       uint64_t ModuleId = Record[1];
6315       uint64_t RawFlags = Record[2];
6316       unsigned InstCount = Record[3];
6317       unsigned NumRefs = Record[4];
6318       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6319       std::unique_ptr<FunctionSummary> FS =
6320           llvm::make_unique<FunctionSummary>(Flags, InstCount);
6321       LastSeenSummary = FS.get();
6322       FS->setModulePath(ModuleIdMap[ModuleId]);
6323       static int RefListStartIndex = 5;
6324       int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
6325       assert(Record.size() >= RefListStartIndex + NumRefs &&
6326              "Record size inconsistent with number of references");
6327       for (unsigned I = RefListStartIndex, E = CallGraphEdgeStartIndex; I != E;
6328            ++I) {
6329         unsigned RefValueId = Record[I];
6330         GlobalValue::GUID RefGUID = getGUIDFromValueId(RefValueId).first;
6331         FS->addRefEdge(RefGUID);
6332       }
6333       bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE);
6334       for (unsigned I = CallGraphEdgeStartIndex, E = Record.size(); I != E;
6335            ++I) {
6336         CalleeInfo::HotnessType Hotness;
6337         GlobalValue::GUID CalleeGUID;
6338         std::tie(CalleeGUID, Hotness) =
6339             readCallGraphEdge(Record, I, IsOldProfileFormat, HasProfile);
6340         FS->addCallGraphEdge(CalleeGUID, CalleeInfo(Hotness));
6341       }
6342       GlobalValue::GUID GUID = getGUIDFromValueId(ValueID).first;
6343       TheIndex->addGlobalValueSummary(GUID, std::move(FS));
6344       Combined = true;
6345       break;
6346     }
6347     // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid]
6348     // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as
6349     // they expect all aliasee summaries to be available.
6350     case bitc::FS_COMBINED_ALIAS: {
6351       unsigned ValueID = Record[0];
6352       uint64_t ModuleId = Record[1];
6353       uint64_t RawFlags = Record[2];
6354       unsigned AliaseeValueId = Record[3];
6355       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6356       std::unique_ptr<AliasSummary> AS = llvm::make_unique<AliasSummary>(Flags);
6357       LastSeenSummary = AS.get();
6358       AS->setModulePath(ModuleIdMap[ModuleId]);
6359 
6360       auto AliaseeGUID = getGUIDFromValueId(AliaseeValueId).first;
6361       auto AliaseeInModule =
6362           TheIndex->findSummaryInModule(AliaseeGUID, AS->modulePath());
6363       if (!AliaseeInModule)
6364         return error("Alias expects aliasee summary to be parsed");
6365       AS->setAliasee(AliaseeInModule);
6366 
6367       GlobalValue::GUID GUID = getGUIDFromValueId(ValueID).first;
6368       TheIndex->addGlobalValueSummary(GUID, std::move(AS));
6369       Combined = true;
6370       break;
6371     }
6372     // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid]
6373     case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: {
6374       unsigned ValueID = Record[0];
6375       uint64_t ModuleId = Record[1];
6376       uint64_t RawFlags = Record[2];
6377       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6378       std::unique_ptr<GlobalVarSummary> FS =
6379           llvm::make_unique<GlobalVarSummary>(Flags);
6380       LastSeenSummary = FS.get();
6381       FS->setModulePath(ModuleIdMap[ModuleId]);
6382       for (unsigned I = 3, E = Record.size(); I != E; ++I) {
6383         unsigned RefValueId = Record[I];
6384         GlobalValue::GUID RefGUID = getGUIDFromValueId(RefValueId).first;
6385         FS->addRefEdge(RefGUID);
6386       }
6387       GlobalValue::GUID GUID = getGUIDFromValueId(ValueID).first;
6388       TheIndex->addGlobalValueSummary(GUID, std::move(FS));
6389       Combined = true;
6390       break;
6391     }
6392     // FS_COMBINED_ORIGINAL_NAME: [original_name]
6393     case bitc::FS_COMBINED_ORIGINAL_NAME: {
6394       uint64_t OriginalName = Record[0];
6395       if (!LastSeenSummary)
6396         return error("Name attachment that does not follow a combined record");
6397       LastSeenSummary->setOriginalName(OriginalName);
6398       // Reset the LastSeenSummary
6399       LastSeenSummary = nullptr;
6400     }
6401     }
6402   }
6403   llvm_unreachable("Exit infinite loop");
6404 }
6405 
6406 std::pair<GlobalValue::GUID, CalleeInfo::HotnessType>
6407 ModuleSummaryIndexBitcodeReader::readCallGraphEdge(
6408     const SmallVector<uint64_t, 64> &Record, unsigned int &I,
6409     const bool IsOldProfileFormat, const bool HasProfile) {
6410 
6411   auto Hotness = CalleeInfo::HotnessType::Unknown;
6412   unsigned CalleeValueId = Record[I];
6413   GlobalValue::GUID CalleeGUID = getGUIDFromValueId(CalleeValueId).first;
6414   if (IsOldProfileFormat) {
6415     I += 1; // Skip old callsitecount field
6416     if (HasProfile)
6417       I += 1; // Skip old profilecount field
6418   } else if (HasProfile)
6419     Hotness = static_cast<CalleeInfo::HotnessType>(Record[++I]);
6420   return {CalleeGUID, Hotness};
6421 }
6422 
6423 // Parse the  module string table block into the Index.
6424 // This populates the ModulePathStringTable map in the index.
6425 Error ModuleSummaryIndexBitcodeReader::parseModuleStringTable() {
6426   if (Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID))
6427     return error("Invalid record");
6428 
6429   SmallVector<uint64_t, 64> Record;
6430 
6431   SmallString<128> ModulePath;
6432   ModulePathStringTableTy::iterator LastSeenModulePath;
6433 
6434   while (true) {
6435     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
6436 
6437     switch (Entry.Kind) {
6438     case BitstreamEntry::SubBlock: // Handled for us already.
6439     case BitstreamEntry::Error:
6440       return error("Malformed block");
6441     case BitstreamEntry::EndBlock:
6442       return Error::success();
6443     case BitstreamEntry::Record:
6444       // The interesting case.
6445       break;
6446     }
6447 
6448     Record.clear();
6449     switch (Stream.readRecord(Entry.ID, Record)) {
6450     default: // Default behavior: ignore.
6451       break;
6452     case bitc::MST_CODE_ENTRY: {
6453       // MST_ENTRY: [modid, namechar x N]
6454       uint64_t ModuleId = Record[0];
6455 
6456       if (convertToString(Record, 1, ModulePath))
6457         return error("Invalid record");
6458 
6459       LastSeenModulePath = TheIndex->addModulePath(ModulePath, ModuleId);
6460       ModuleIdMap[ModuleId] = LastSeenModulePath->first();
6461 
6462       ModulePath.clear();
6463       break;
6464     }
6465     /// MST_CODE_HASH: [5*i32]
6466     case bitc::MST_CODE_HASH: {
6467       if (Record.size() != 5)
6468         return error("Invalid hash length " + Twine(Record.size()).str());
6469       if (LastSeenModulePath == TheIndex->modulePaths().end())
6470         return error("Invalid hash that does not follow a module path");
6471       int Pos = 0;
6472       for (auto &Val : Record) {
6473         assert(!(Val >> 32) && "Unexpected high bits set");
6474         LastSeenModulePath->second.second[Pos++] = Val;
6475       }
6476       // Reset LastSeenModulePath to avoid overriding the hash unexpectedly.
6477       LastSeenModulePath = TheIndex->modulePaths().end();
6478       break;
6479     }
6480     }
6481   }
6482   llvm_unreachable("Exit infinite loop");
6483 }
6484 
6485 // Parse the function info index from the bitcode streamer into the given index.
6486 Error ModuleSummaryIndexBitcodeReader::parseSummaryIndexInto(
6487     ModuleSummaryIndex *I, StringRef ModulePath) {
6488   TheIndex = I;
6489 
6490   // We expect a number of well-defined blocks, though we don't necessarily
6491   // need to understand them all.
6492   while (true) {
6493     if (Stream.AtEndOfStream()) {
6494       // We didn't really read a proper Module block.
6495       return error("Malformed block");
6496     }
6497 
6498     BitstreamEntry Entry =
6499         Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs);
6500 
6501     if (Entry.Kind != BitstreamEntry::SubBlock)
6502       return error("Malformed block");
6503 
6504     // If we see a MODULE_BLOCK, parse it to find the blocks needed for
6505     // building the function summary index.
6506     if (Entry.ID == bitc::MODULE_BLOCK_ID)
6507       return parseModule(ModulePath);
6508 
6509     if (Stream.SkipBlock())
6510       return error("Invalid record");
6511   }
6512 }
6513 
6514 namespace {
6515 
6516 // FIXME: This class is only here to support the transition to llvm::Error. It
6517 // will be removed once this transition is complete. Clients should prefer to
6518 // deal with the Error value directly, rather than converting to error_code.
6519 class BitcodeErrorCategoryType : public std::error_category {
6520   const char *name() const noexcept override {
6521     return "llvm.bitcode";
6522   }
6523   std::string message(int IE) const override {
6524     BitcodeError E = static_cast<BitcodeError>(IE);
6525     switch (E) {
6526     case BitcodeError::CorruptedBitcode:
6527       return "Corrupted bitcode";
6528     }
6529     llvm_unreachable("Unknown error type!");
6530   }
6531 };
6532 
6533 } // end anonymous namespace
6534 
6535 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory;
6536 
6537 const std::error_category &llvm::BitcodeErrorCategory() {
6538   return *ErrorCategory;
6539 }
6540 
6541 //===----------------------------------------------------------------------===//
6542 // External interface
6543 //===----------------------------------------------------------------------===//
6544 
6545 Expected<std::vector<BitcodeModule>>
6546 llvm::getBitcodeModuleList(MemoryBufferRef Buffer) {
6547   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
6548   if (!StreamOrErr)
6549     return StreamOrErr.takeError();
6550   BitstreamCursor &Stream = *StreamOrErr;
6551 
6552   uint64_t IdentificationBit = -1ull;
6553   std::vector<BitcodeModule> Modules;
6554   while (true) {
6555     // We may be consuming bitcode from a client that leaves garbage at the end
6556     // of the bitcode stream (e.g. Apple's ar tool). If we are close enough to
6557     // the end that there cannot possibly be another module, stop looking.
6558     if (Stream.getCurrentByteNo() + 8 >= Stream.getBitcodeBytes().size())
6559       return Modules;
6560 
6561     BitstreamEntry Entry = Stream.advance();
6562     switch (Entry.Kind) {
6563     case BitstreamEntry::EndBlock:
6564     case BitstreamEntry::Error:
6565       return error("Malformed block");
6566 
6567     case BitstreamEntry::SubBlock:
6568       if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID)
6569         IdentificationBit = Stream.GetCurrentBitNo();
6570       else if (Entry.ID == bitc::MODULE_BLOCK_ID)
6571         Modules.push_back({Stream.getBitcodeBytes(),
6572                            Buffer.getBufferIdentifier(), IdentificationBit,
6573                            Stream.GetCurrentBitNo()});
6574 
6575       if (Stream.SkipBlock())
6576         return error("Malformed block");
6577       continue;
6578     case BitstreamEntry::Record:
6579       Stream.skipRecord(Entry.ID);
6580       continue;
6581     }
6582   }
6583 }
6584 
6585 /// \brief Get a lazy one-at-time loading module from bitcode.
6586 ///
6587 /// This isn't always used in a lazy context.  In particular, it's also used by
6588 /// \a parseModule().  If this is truly lazy, then we need to eagerly pull
6589 /// in forward-referenced functions from block address references.
6590 ///
6591 /// \param[in] MaterializeAll Set to \c true if we should materialize
6592 /// everything.
6593 Expected<std::unique_ptr<Module>>
6594 BitcodeModule::getModuleImpl(LLVMContext &Context, bool MaterializeAll,
6595                              bool ShouldLazyLoadMetadata) {
6596   BitstreamCursor Stream(Buffer);
6597 
6598   std::string ProducerIdentification;
6599   if (IdentificationBit != -1ull) {
6600     Stream.JumpToBit(IdentificationBit);
6601     Expected<std::string> ProducerIdentificationOrErr =
6602         readIdentificationBlock(Stream);
6603     if (!ProducerIdentificationOrErr)
6604       return ProducerIdentificationOrErr.takeError();
6605 
6606     ProducerIdentification = *ProducerIdentificationOrErr;
6607   }
6608 
6609   Stream.JumpToBit(ModuleBit);
6610   auto *R =
6611       new BitcodeReader(std::move(Stream), ProducerIdentification, Context);
6612 
6613   std::unique_ptr<Module> M =
6614       llvm::make_unique<Module>(ModuleIdentifier, Context);
6615   M->setMaterializer(R);
6616 
6617   // Delay parsing Metadata if ShouldLazyLoadMetadata is true.
6618   if (Error Err = R->parseBitcodeInto(M.get(), ShouldLazyLoadMetadata))
6619     return std::move(Err);
6620 
6621   if (MaterializeAll) {
6622     // Read in the entire module, and destroy the BitcodeReader.
6623     if (Error Err = M->materializeAll())
6624       return std::move(Err);
6625   } else {
6626     // Resolve forward references from blockaddresses.
6627     if (Error Err = R->materializeForwardReferencedFunctions())
6628       return std::move(Err);
6629   }
6630   return std::move(M);
6631 }
6632 
6633 Expected<std::unique_ptr<Module>>
6634 BitcodeModule::getLazyModule(LLVMContext &Context,
6635                              bool ShouldLazyLoadMetadata) {
6636   return getModuleImpl(Context, false, ShouldLazyLoadMetadata);
6637 }
6638 
6639 Expected<std::unique_ptr<Module>>
6640 llvm::getLazyBitcodeModule(MemoryBufferRef Buffer,
6641                            LLVMContext &Context, bool ShouldLazyLoadMetadata) {
6642   Expected<std::vector<BitcodeModule>> MsOrErr = getBitcodeModuleList(Buffer);
6643   if (!MsOrErr)
6644     return MsOrErr.takeError();
6645 
6646   if (MsOrErr->size() != 1)
6647     return error("Expected a single module");
6648 
6649   return (*MsOrErr)[0].getLazyModule(Context, ShouldLazyLoadMetadata);
6650 }
6651 
6652 Expected<std::unique_ptr<Module>>
6653 llvm::getOwningLazyBitcodeModule(std::unique_ptr<MemoryBuffer> &&Buffer,
6654                                  LLVMContext &Context,
6655                                  bool ShouldLazyLoadMetadata) {
6656   auto MOrErr = getLazyBitcodeModule(*Buffer, Context, ShouldLazyLoadMetadata);
6657   if (MOrErr)
6658     (*MOrErr)->setOwnedMemoryBuffer(std::move(Buffer));
6659   return MOrErr;
6660 }
6661 
6662 Expected<std::unique_ptr<Module>>
6663 BitcodeModule::parseModule(LLVMContext &Context) {
6664   return getModuleImpl(Context, true, false);
6665   // TODO: Restore the use-lists to the in-memory state when the bitcode was
6666   // written.  We must defer until the Module has been fully materialized.
6667 }
6668 
6669 Expected<std::unique_ptr<Module>> llvm::parseBitcodeFile(MemoryBufferRef Buffer,
6670                                                          LLVMContext &Context) {
6671   Expected<std::vector<BitcodeModule>> MsOrErr = getBitcodeModuleList(Buffer);
6672   if (!MsOrErr)
6673     return MsOrErr.takeError();
6674 
6675   if (MsOrErr->size() != 1)
6676     return error("Expected a single module");
6677 
6678   return (*MsOrErr)[0].parseModule(Context);
6679 }
6680 
6681 Expected<std::string> llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer) {
6682   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
6683   if (!StreamOrErr)
6684     return StreamOrErr.takeError();
6685 
6686   return readTriple(*StreamOrErr);
6687 }
6688 
6689 Expected<bool> llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer) {
6690   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
6691   if (!StreamOrErr)
6692     return StreamOrErr.takeError();
6693 
6694   return hasObjCCategory(*StreamOrErr);
6695 }
6696 
6697 Expected<std::string> llvm::getBitcodeProducerString(MemoryBufferRef Buffer) {
6698   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
6699   if (!StreamOrErr)
6700     return StreamOrErr.takeError();
6701 
6702   return readIdentificationCode(*StreamOrErr);
6703 }
6704 
6705 // Parse the specified bitcode buffer, returning the function info index.
6706 Expected<std::unique_ptr<ModuleSummaryIndex>>
6707 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer) {
6708   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
6709   if (!StreamOrErr)
6710     return StreamOrErr.takeError();
6711 
6712   ModuleSummaryIndexBitcodeReader R(std::move(*StreamOrErr));
6713 
6714   auto Index = llvm::make_unique<ModuleSummaryIndex>();
6715 
6716   if (Error Err =
6717           R.parseSummaryIndexInto(Index.get(), Buffer.getBufferIdentifier()))
6718     return std::move(Err);
6719 
6720   return std::move(Index);
6721 }
6722 
6723 // Check if the given bitcode buffer contains a global value summary block.
6724 Expected<bool> llvm::hasGlobalValueSummary(MemoryBufferRef Buffer) {
6725   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
6726   if (!StreamOrErr)
6727     return StreamOrErr.takeError();
6728 
6729   ModuleSummaryIndexBitcodeReader R(std::move(*StreamOrErr), true);
6730 
6731   if (Error Err =
6732           R.parseSummaryIndexInto(nullptr, Buffer.getBufferIdentifier()))
6733     return std::move(Err);
6734 
6735   return R.foundGlobalValSummary();
6736 }
6737