1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/Bitcode/BitcodeReader.h" 10 #include "MetadataLoader.h" 11 #include "ValueList.h" 12 #include "llvm/ADT/APFloat.h" 13 #include "llvm/ADT/APInt.h" 14 #include "llvm/ADT/ArrayRef.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/Optional.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallString.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/StringRef.h" 21 #include "llvm/ADT/Triple.h" 22 #include "llvm/ADT/Twine.h" 23 #include "llvm/Bitcode/BitcodeCommon.h" 24 #include "llvm/Bitcode/LLVMBitCodes.h" 25 #include "llvm/Bitstream/BitstreamReader.h" 26 #include "llvm/Config/llvm-config.h" 27 #include "llvm/IR/Argument.h" 28 #include "llvm/IR/Attributes.h" 29 #include "llvm/IR/AutoUpgrade.h" 30 #include "llvm/IR/BasicBlock.h" 31 #include "llvm/IR/CallingConv.h" 32 #include "llvm/IR/Comdat.h" 33 #include "llvm/IR/Constant.h" 34 #include "llvm/IR/Constants.h" 35 #include "llvm/IR/DataLayout.h" 36 #include "llvm/IR/DebugInfo.h" 37 #include "llvm/IR/DebugInfoMetadata.h" 38 #include "llvm/IR/DebugLoc.h" 39 #include "llvm/IR/DerivedTypes.h" 40 #include "llvm/IR/Function.h" 41 #include "llvm/IR/GVMaterializer.h" 42 #include "llvm/IR/GlobalAlias.h" 43 #include "llvm/IR/GlobalIFunc.h" 44 #include "llvm/IR/GlobalIndirectSymbol.h" 45 #include "llvm/IR/GlobalObject.h" 46 #include "llvm/IR/GlobalValue.h" 47 #include "llvm/IR/GlobalVariable.h" 48 #include "llvm/IR/InlineAsm.h" 49 #include "llvm/IR/InstIterator.h" 50 #include "llvm/IR/InstrTypes.h" 51 #include "llvm/IR/Instruction.h" 52 #include "llvm/IR/Instructions.h" 53 #include "llvm/IR/Intrinsics.h" 54 #include "llvm/IR/LLVMContext.h" 55 #include "llvm/IR/Metadata.h" 56 #include "llvm/IR/Module.h" 57 #include "llvm/IR/ModuleSummaryIndex.h" 58 #include "llvm/IR/Operator.h" 59 #include "llvm/IR/Type.h" 60 #include "llvm/IR/Value.h" 61 #include "llvm/IR/Verifier.h" 62 #include "llvm/Support/AtomicOrdering.h" 63 #include "llvm/Support/Casting.h" 64 #include "llvm/Support/CommandLine.h" 65 #include "llvm/Support/Compiler.h" 66 #include "llvm/Support/Debug.h" 67 #include "llvm/Support/Error.h" 68 #include "llvm/Support/ErrorHandling.h" 69 #include "llvm/Support/ErrorOr.h" 70 #include "llvm/Support/ManagedStatic.h" 71 #include "llvm/Support/MathExtras.h" 72 #include "llvm/Support/MemoryBuffer.h" 73 #include "llvm/Support/raw_ostream.h" 74 #include <algorithm> 75 #include <cassert> 76 #include <cstddef> 77 #include <cstdint> 78 #include <deque> 79 #include <map> 80 #include <memory> 81 #include <set> 82 #include <string> 83 #include <system_error> 84 #include <tuple> 85 #include <utility> 86 #include <vector> 87 88 using namespace llvm; 89 90 static cl::opt<bool> PrintSummaryGUIDs( 91 "print-summary-global-ids", cl::init(false), cl::Hidden, 92 cl::desc( 93 "Print the global id for each value when reading the module summary")); 94 95 namespace { 96 97 enum { 98 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 99 }; 100 101 } // end anonymous namespace 102 103 static Error error(const Twine &Message) { 104 return make_error<StringError>( 105 Message, make_error_code(BitcodeError::CorruptedBitcode)); 106 } 107 108 static Error hasInvalidBitcodeHeader(BitstreamCursor &Stream) { 109 if (!Stream.canSkipToPos(4)) 110 return createStringError(std::errc::illegal_byte_sequence, 111 "file too small to contain bitcode header"); 112 for (unsigned C : {'B', 'C'}) 113 if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(8)) { 114 if (Res.get() != C) 115 return createStringError(std::errc::illegal_byte_sequence, 116 "file doesn't start with bitcode header"); 117 } else 118 return Res.takeError(); 119 for (unsigned C : {0x0, 0xC, 0xE, 0xD}) 120 if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(4)) { 121 if (Res.get() != C) 122 return createStringError(std::errc::illegal_byte_sequence, 123 "file doesn't start with bitcode header"); 124 } else 125 return Res.takeError(); 126 return Error::success(); 127 } 128 129 static Expected<BitstreamCursor> initStream(MemoryBufferRef Buffer) { 130 const unsigned char *BufPtr = (const unsigned char *)Buffer.getBufferStart(); 131 const unsigned char *BufEnd = BufPtr + Buffer.getBufferSize(); 132 133 if (Buffer.getBufferSize() & 3) 134 return error("Invalid bitcode signature"); 135 136 // If we have a wrapper header, parse it and ignore the non-bc file contents. 137 // The magic number is 0x0B17C0DE stored in little endian. 138 if (isBitcodeWrapper(BufPtr, BufEnd)) 139 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 140 return error("Invalid bitcode wrapper header"); 141 142 BitstreamCursor Stream(ArrayRef<uint8_t>(BufPtr, BufEnd)); 143 if (Error Err = hasInvalidBitcodeHeader(Stream)) 144 return std::move(Err); 145 146 return std::move(Stream); 147 } 148 149 /// Convert a string from a record into an std::string, return true on failure. 150 template <typename StrTy> 151 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx, 152 StrTy &Result) { 153 if (Idx > Record.size()) 154 return true; 155 156 Result.append(Record.begin() + Idx, Record.end()); 157 return false; 158 } 159 160 // Strip all the TBAA attachment for the module. 161 static void stripTBAA(Module *M) { 162 for (auto &F : *M) { 163 if (F.isMaterializable()) 164 continue; 165 for (auto &I : instructions(F)) 166 I.setMetadata(LLVMContext::MD_tbaa, nullptr); 167 } 168 } 169 170 /// Read the "IDENTIFICATION_BLOCK_ID" block, do some basic enforcement on the 171 /// "epoch" encoded in the bitcode, and return the producer name if any. 172 static Expected<std::string> readIdentificationBlock(BitstreamCursor &Stream) { 173 if (Error Err = Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID)) 174 return std::move(Err); 175 176 // Read all the records. 177 SmallVector<uint64_t, 64> Record; 178 179 std::string ProducerIdentification; 180 181 while (true) { 182 BitstreamEntry Entry; 183 if (Expected<BitstreamEntry> Res = Stream.advance()) 184 Entry = Res.get(); 185 else 186 return Res.takeError(); 187 188 switch (Entry.Kind) { 189 default: 190 case BitstreamEntry::Error: 191 return error("Malformed block"); 192 case BitstreamEntry::EndBlock: 193 return ProducerIdentification; 194 case BitstreamEntry::Record: 195 // The interesting case. 196 break; 197 } 198 199 // Read a record. 200 Record.clear(); 201 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 202 if (!MaybeBitCode) 203 return MaybeBitCode.takeError(); 204 switch (MaybeBitCode.get()) { 205 default: // Default behavior: reject 206 return error("Invalid value"); 207 case bitc::IDENTIFICATION_CODE_STRING: // IDENTIFICATION: [strchr x N] 208 convertToString(Record, 0, ProducerIdentification); 209 break; 210 case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#] 211 unsigned epoch = (unsigned)Record[0]; 212 if (epoch != bitc::BITCODE_CURRENT_EPOCH) { 213 return error( 214 Twine("Incompatible epoch: Bitcode '") + Twine(epoch) + 215 "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'"); 216 } 217 } 218 } 219 } 220 } 221 222 static Expected<std::string> readIdentificationCode(BitstreamCursor &Stream) { 223 // We expect a number of well-defined blocks, though we don't necessarily 224 // need to understand them all. 225 while (true) { 226 if (Stream.AtEndOfStream()) 227 return ""; 228 229 BitstreamEntry Entry; 230 if (Expected<BitstreamEntry> Res = Stream.advance()) 231 Entry = std::move(Res.get()); 232 else 233 return Res.takeError(); 234 235 switch (Entry.Kind) { 236 case BitstreamEntry::EndBlock: 237 case BitstreamEntry::Error: 238 return error("Malformed block"); 239 240 case BitstreamEntry::SubBlock: 241 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) 242 return readIdentificationBlock(Stream); 243 244 // Ignore other sub-blocks. 245 if (Error Err = Stream.SkipBlock()) 246 return std::move(Err); 247 continue; 248 case BitstreamEntry::Record: 249 if (Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID)) 250 continue; 251 else 252 return Skipped.takeError(); 253 } 254 } 255 } 256 257 static Expected<bool> hasObjCCategoryInModule(BitstreamCursor &Stream) { 258 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 259 return std::move(Err); 260 261 SmallVector<uint64_t, 64> Record; 262 // Read all the records for this module. 263 264 while (true) { 265 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 266 if (!MaybeEntry) 267 return MaybeEntry.takeError(); 268 BitstreamEntry Entry = MaybeEntry.get(); 269 270 switch (Entry.Kind) { 271 case BitstreamEntry::SubBlock: // Handled for us already. 272 case BitstreamEntry::Error: 273 return error("Malformed block"); 274 case BitstreamEntry::EndBlock: 275 return false; 276 case BitstreamEntry::Record: 277 // The interesting case. 278 break; 279 } 280 281 // Read a record. 282 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 283 if (!MaybeRecord) 284 return MaybeRecord.takeError(); 285 switch (MaybeRecord.get()) { 286 default: 287 break; // Default behavior, ignore unknown content. 288 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 289 std::string S; 290 if (convertToString(Record, 0, S)) 291 return error("Invalid record"); 292 // Check for the i386 and other (x86_64, ARM) conventions 293 if (S.find("__DATA,__objc_catlist") != std::string::npos || 294 S.find("__OBJC,__category") != std::string::npos) 295 return true; 296 break; 297 } 298 } 299 Record.clear(); 300 } 301 llvm_unreachable("Exit infinite loop"); 302 } 303 304 static Expected<bool> hasObjCCategory(BitstreamCursor &Stream) { 305 // We expect a number of well-defined blocks, though we don't necessarily 306 // need to understand them all. 307 while (true) { 308 BitstreamEntry Entry; 309 if (Expected<BitstreamEntry> Res = Stream.advance()) 310 Entry = std::move(Res.get()); 311 else 312 return Res.takeError(); 313 314 switch (Entry.Kind) { 315 case BitstreamEntry::Error: 316 return error("Malformed block"); 317 case BitstreamEntry::EndBlock: 318 return false; 319 320 case BitstreamEntry::SubBlock: 321 if (Entry.ID == bitc::MODULE_BLOCK_ID) 322 return hasObjCCategoryInModule(Stream); 323 324 // Ignore other sub-blocks. 325 if (Error Err = Stream.SkipBlock()) 326 return std::move(Err); 327 continue; 328 329 case BitstreamEntry::Record: 330 if (Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID)) 331 continue; 332 else 333 return Skipped.takeError(); 334 } 335 } 336 } 337 338 static Expected<std::string> readModuleTriple(BitstreamCursor &Stream) { 339 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 340 return std::move(Err); 341 342 SmallVector<uint64_t, 64> Record; 343 344 std::string Triple; 345 346 // Read all the records for this module. 347 while (true) { 348 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 349 if (!MaybeEntry) 350 return MaybeEntry.takeError(); 351 BitstreamEntry Entry = MaybeEntry.get(); 352 353 switch (Entry.Kind) { 354 case BitstreamEntry::SubBlock: // Handled for us already. 355 case BitstreamEntry::Error: 356 return error("Malformed block"); 357 case BitstreamEntry::EndBlock: 358 return Triple; 359 case BitstreamEntry::Record: 360 // The interesting case. 361 break; 362 } 363 364 // Read a record. 365 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 366 if (!MaybeRecord) 367 return MaybeRecord.takeError(); 368 switch (MaybeRecord.get()) { 369 default: break; // Default behavior, ignore unknown content. 370 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 371 std::string S; 372 if (convertToString(Record, 0, S)) 373 return error("Invalid record"); 374 Triple = S; 375 break; 376 } 377 } 378 Record.clear(); 379 } 380 llvm_unreachable("Exit infinite loop"); 381 } 382 383 static Expected<std::string> readTriple(BitstreamCursor &Stream) { 384 // We expect a number of well-defined blocks, though we don't necessarily 385 // need to understand them all. 386 while (true) { 387 Expected<BitstreamEntry> MaybeEntry = Stream.advance(); 388 if (!MaybeEntry) 389 return MaybeEntry.takeError(); 390 BitstreamEntry Entry = MaybeEntry.get(); 391 392 switch (Entry.Kind) { 393 case BitstreamEntry::Error: 394 return error("Malformed block"); 395 case BitstreamEntry::EndBlock: 396 return ""; 397 398 case BitstreamEntry::SubBlock: 399 if (Entry.ID == bitc::MODULE_BLOCK_ID) 400 return readModuleTriple(Stream); 401 402 // Ignore other sub-blocks. 403 if (Error Err = Stream.SkipBlock()) 404 return std::move(Err); 405 continue; 406 407 case BitstreamEntry::Record: 408 if (llvm::Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID)) 409 continue; 410 else 411 return Skipped.takeError(); 412 } 413 } 414 } 415 416 namespace { 417 418 class BitcodeReaderBase { 419 protected: 420 BitcodeReaderBase(BitstreamCursor Stream, StringRef Strtab) 421 : Stream(std::move(Stream)), Strtab(Strtab) { 422 this->Stream.setBlockInfo(&BlockInfo); 423 } 424 425 BitstreamBlockInfo BlockInfo; 426 BitstreamCursor Stream; 427 StringRef Strtab; 428 429 /// In version 2 of the bitcode we store names of global values and comdats in 430 /// a string table rather than in the VST. 431 bool UseStrtab = false; 432 433 Expected<unsigned> parseVersionRecord(ArrayRef<uint64_t> Record); 434 435 /// If this module uses a string table, pop the reference to the string table 436 /// and return the referenced string and the rest of the record. Otherwise 437 /// just return the record itself. 438 std::pair<StringRef, ArrayRef<uint64_t>> 439 readNameFromStrtab(ArrayRef<uint64_t> Record); 440 441 bool readBlockInfo(); 442 443 // Contains an arbitrary and optional string identifying the bitcode producer 444 std::string ProducerIdentification; 445 446 Error error(const Twine &Message); 447 }; 448 449 } // end anonymous namespace 450 451 Error BitcodeReaderBase::error(const Twine &Message) { 452 std::string FullMsg = Message.str(); 453 if (!ProducerIdentification.empty()) 454 FullMsg += " (Producer: '" + ProducerIdentification + "' Reader: 'LLVM " + 455 LLVM_VERSION_STRING "')"; 456 return ::error(FullMsg); 457 } 458 459 Expected<unsigned> 460 BitcodeReaderBase::parseVersionRecord(ArrayRef<uint64_t> Record) { 461 if (Record.empty()) 462 return error("Invalid record"); 463 unsigned ModuleVersion = Record[0]; 464 if (ModuleVersion > 2) 465 return error("Invalid value"); 466 UseStrtab = ModuleVersion >= 2; 467 return ModuleVersion; 468 } 469 470 std::pair<StringRef, ArrayRef<uint64_t>> 471 BitcodeReaderBase::readNameFromStrtab(ArrayRef<uint64_t> Record) { 472 if (!UseStrtab) 473 return {"", Record}; 474 // Invalid reference. Let the caller complain about the record being empty. 475 if (Record[0] + Record[1] > Strtab.size()) 476 return {"", {}}; 477 return {StringRef(Strtab.data() + Record[0], Record[1]), Record.slice(2)}; 478 } 479 480 namespace { 481 482 class BitcodeReader : public BitcodeReaderBase, public GVMaterializer { 483 LLVMContext &Context; 484 Module *TheModule = nullptr; 485 // Next offset to start scanning for lazy parsing of function bodies. 486 uint64_t NextUnreadBit = 0; 487 // Last function offset found in the VST. 488 uint64_t LastFunctionBlockBit = 0; 489 bool SeenValueSymbolTable = false; 490 uint64_t VSTOffset = 0; 491 492 std::vector<std::string> SectionTable; 493 std::vector<std::string> GCTable; 494 495 std::vector<Type*> TypeList; 496 DenseMap<Function *, FunctionType *> FunctionTypes; 497 BitcodeReaderValueList ValueList; 498 Optional<MetadataLoader> MDLoader; 499 std::vector<Comdat *> ComdatList; 500 SmallVector<Instruction *, 64> InstructionList; 501 502 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInits; 503 std::vector<std::pair<GlobalIndirectSymbol *, unsigned>> IndirectSymbolInits; 504 std::vector<std::pair<Function *, unsigned>> FunctionPrefixes; 505 std::vector<std::pair<Function *, unsigned>> FunctionPrologues; 506 std::vector<std::pair<Function *, unsigned>> FunctionPersonalityFns; 507 508 /// The set of attributes by index. Index zero in the file is for null, and 509 /// is thus not represented here. As such all indices are off by one. 510 std::vector<AttributeList> MAttributes; 511 512 /// The set of attribute groups. 513 std::map<unsigned, AttributeList> MAttributeGroups; 514 515 /// While parsing a function body, this is a list of the basic blocks for the 516 /// function. 517 std::vector<BasicBlock*> FunctionBBs; 518 519 // When reading the module header, this list is populated with functions that 520 // have bodies later in the file. 521 std::vector<Function*> FunctionsWithBodies; 522 523 // When intrinsic functions are encountered which require upgrading they are 524 // stored here with their replacement function. 525 using UpdatedIntrinsicMap = DenseMap<Function *, Function *>; 526 UpdatedIntrinsicMap UpgradedIntrinsics; 527 // Intrinsics which were remangled because of types rename 528 UpdatedIntrinsicMap RemangledIntrinsics; 529 530 // Several operations happen after the module header has been read, but 531 // before function bodies are processed. This keeps track of whether 532 // we've done this yet. 533 bool SeenFirstFunctionBody = false; 534 535 /// When function bodies are initially scanned, this map contains info about 536 /// where to find deferred function body in the stream. 537 DenseMap<Function*, uint64_t> DeferredFunctionInfo; 538 539 /// When Metadata block is initially scanned when parsing the module, we may 540 /// choose to defer parsing of the metadata. This vector contains info about 541 /// which Metadata blocks are deferred. 542 std::vector<uint64_t> DeferredMetadataInfo; 543 544 /// These are basic blocks forward-referenced by block addresses. They are 545 /// inserted lazily into functions when they're loaded. The basic block ID is 546 /// its index into the vector. 547 DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs; 548 std::deque<Function *> BasicBlockFwdRefQueue; 549 550 /// Indicates that we are using a new encoding for instruction operands where 551 /// most operands in the current FUNCTION_BLOCK are encoded relative to the 552 /// instruction number, for a more compact encoding. Some instruction 553 /// operands are not relative to the instruction ID: basic block numbers, and 554 /// types. Once the old style function blocks have been phased out, we would 555 /// not need this flag. 556 bool UseRelativeIDs = false; 557 558 /// True if all functions will be materialized, negating the need to process 559 /// (e.g.) blockaddress forward references. 560 bool WillMaterializeAllForwardRefs = false; 561 562 bool StripDebugInfo = false; 563 TBAAVerifier TBAAVerifyHelper; 564 565 std::vector<std::string> BundleTags; 566 SmallVector<SyncScope::ID, 8> SSIDs; 567 568 public: 569 BitcodeReader(BitstreamCursor Stream, StringRef Strtab, 570 StringRef ProducerIdentification, LLVMContext &Context); 571 572 Error materializeForwardReferencedFunctions(); 573 574 Error materialize(GlobalValue *GV) override; 575 Error materializeModule() override; 576 std::vector<StructType *> getIdentifiedStructTypes() const override; 577 578 /// Main interface to parsing a bitcode buffer. 579 /// \returns true if an error occurred. 580 Error parseBitcodeInto( 581 Module *M, bool ShouldLazyLoadMetadata = false, bool IsImporting = false, 582 DataLayoutCallbackTy DataLayoutCallback = [](StringRef) { return None; }); 583 584 static uint64_t decodeSignRotatedValue(uint64_t V); 585 586 /// Materialize any deferred Metadata block. 587 Error materializeMetadata() override; 588 589 void setStripDebugInfo() override; 590 591 private: 592 std::vector<StructType *> IdentifiedStructTypes; 593 StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name); 594 StructType *createIdentifiedStructType(LLVMContext &Context); 595 596 Type *getTypeByID(unsigned ID); 597 598 Value *getFnValueByID(unsigned ID, Type *Ty) { 599 if (Ty && Ty->isMetadataTy()) 600 return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID)); 601 return ValueList.getValueFwdRef(ID, Ty); 602 } 603 604 Metadata *getFnMetadataByID(unsigned ID) { 605 return MDLoader->getMetadataFwdRefOrLoad(ID); 606 } 607 608 BasicBlock *getBasicBlock(unsigned ID) const { 609 if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID 610 return FunctionBBs[ID]; 611 } 612 613 AttributeList getAttributes(unsigned i) const { 614 if (i-1 < MAttributes.size()) 615 return MAttributes[i-1]; 616 return AttributeList(); 617 } 618 619 /// Read a value/type pair out of the specified record from slot 'Slot'. 620 /// Increment Slot past the number of slots used in the record. Return true on 621 /// failure. 622 bool getValueTypePair(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 623 unsigned InstNum, Value *&ResVal) { 624 if (Slot == Record.size()) return true; 625 unsigned ValNo = (unsigned)Record[Slot++]; 626 // Adjust the ValNo, if it was encoded relative to the InstNum. 627 if (UseRelativeIDs) 628 ValNo = InstNum - ValNo; 629 if (ValNo < InstNum) { 630 // If this is not a forward reference, just return the value we already 631 // have. 632 ResVal = getFnValueByID(ValNo, nullptr); 633 return ResVal == nullptr; 634 } 635 if (Slot == Record.size()) 636 return true; 637 638 unsigned TypeNo = (unsigned)Record[Slot++]; 639 ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo)); 640 return ResVal == nullptr; 641 } 642 643 /// Read a value out of the specified record from slot 'Slot'. Increment Slot 644 /// past the number of slots used by the value in the record. Return true if 645 /// there is an error. 646 bool popValue(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 647 unsigned InstNum, Type *Ty, Value *&ResVal) { 648 if (getValue(Record, Slot, InstNum, Ty, ResVal)) 649 return true; 650 // All values currently take a single record slot. 651 ++Slot; 652 return false; 653 } 654 655 /// Like popValue, but does not increment the Slot number. 656 bool getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot, 657 unsigned InstNum, Type *Ty, Value *&ResVal) { 658 ResVal = getValue(Record, Slot, InstNum, Ty); 659 return ResVal == nullptr; 660 } 661 662 /// Version of getValue that returns ResVal directly, or 0 if there is an 663 /// error. 664 Value *getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot, 665 unsigned InstNum, Type *Ty) { 666 if (Slot == Record.size()) return nullptr; 667 unsigned ValNo = (unsigned)Record[Slot]; 668 // Adjust the ValNo, if it was encoded relative to the InstNum. 669 if (UseRelativeIDs) 670 ValNo = InstNum - ValNo; 671 return getFnValueByID(ValNo, Ty); 672 } 673 674 /// Like getValue, but decodes signed VBRs. 675 Value *getValueSigned(const SmallVectorImpl<uint64_t> &Record, unsigned Slot, 676 unsigned InstNum, Type *Ty) { 677 if (Slot == Record.size()) return nullptr; 678 unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]); 679 // Adjust the ValNo, if it was encoded relative to the InstNum. 680 if (UseRelativeIDs) 681 ValNo = InstNum - ValNo; 682 return getFnValueByID(ValNo, Ty); 683 } 684 685 /// Upgrades old-style typeless byval or sret attributes by adding the 686 /// corresponding argument's pointee type. 687 void propagateByValSRetTypes(CallBase *CB, ArrayRef<Type *> ArgsTys); 688 689 /// Converts alignment exponent (i.e. power of two (or zero)) to the 690 /// corresponding alignment to use. If alignment is too large, returns 691 /// a corresponding error code. 692 Error parseAlignmentValue(uint64_t Exponent, MaybeAlign &Alignment); 693 Error parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind); 694 Error parseModule( 695 uint64_t ResumeBit, bool ShouldLazyLoadMetadata = false, 696 DataLayoutCallbackTy DataLayoutCallback = [](StringRef) { return None; }); 697 698 Error parseComdatRecord(ArrayRef<uint64_t> Record); 699 Error parseGlobalVarRecord(ArrayRef<uint64_t> Record); 700 Error parseFunctionRecord(ArrayRef<uint64_t> Record); 701 Error parseGlobalIndirectSymbolRecord(unsigned BitCode, 702 ArrayRef<uint64_t> Record); 703 704 Error parseAttributeBlock(); 705 Error parseAttributeGroupBlock(); 706 Error parseTypeTable(); 707 Error parseTypeTableBody(); 708 Error parseOperandBundleTags(); 709 Error parseSyncScopeNames(); 710 711 Expected<Value *> recordValue(SmallVectorImpl<uint64_t> &Record, 712 unsigned NameIndex, Triple &TT); 713 void setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, Function *F, 714 ArrayRef<uint64_t> Record); 715 Error parseValueSymbolTable(uint64_t Offset = 0); 716 Error parseGlobalValueSymbolTable(); 717 Error parseConstants(); 718 Error rememberAndSkipFunctionBodies(); 719 Error rememberAndSkipFunctionBody(); 720 /// Save the positions of the Metadata blocks and skip parsing the blocks. 721 Error rememberAndSkipMetadata(); 722 Error typeCheckLoadStoreInst(Type *ValType, Type *PtrType); 723 Error parseFunctionBody(Function *F); 724 Error globalCleanup(); 725 Error resolveGlobalAndIndirectSymbolInits(); 726 Error parseUseLists(); 727 Error findFunctionInStream( 728 Function *F, 729 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator); 730 731 SyncScope::ID getDecodedSyncScopeID(unsigned Val); 732 }; 733 734 /// Class to manage reading and parsing function summary index bitcode 735 /// files/sections. 736 class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase { 737 /// The module index built during parsing. 738 ModuleSummaryIndex &TheIndex; 739 740 /// Indicates whether we have encountered a global value summary section 741 /// yet during parsing. 742 bool SeenGlobalValSummary = false; 743 744 /// Indicates whether we have already parsed the VST, used for error checking. 745 bool SeenValueSymbolTable = false; 746 747 /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record. 748 /// Used to enable on-demand parsing of the VST. 749 uint64_t VSTOffset = 0; 750 751 // Map to save ValueId to ValueInfo association that was recorded in the 752 // ValueSymbolTable. It is used after the VST is parsed to convert 753 // call graph edges read from the function summary from referencing 754 // callees by their ValueId to using the ValueInfo instead, which is how 755 // they are recorded in the summary index being built. 756 // We save a GUID which refers to the same global as the ValueInfo, but 757 // ignoring the linkage, i.e. for values other than local linkage they are 758 // identical. 759 DenseMap<unsigned, std::pair<ValueInfo, GlobalValue::GUID>> 760 ValueIdToValueInfoMap; 761 762 /// Map populated during module path string table parsing, from the 763 /// module ID to a string reference owned by the index's module 764 /// path string table, used to correlate with combined index 765 /// summary records. 766 DenseMap<uint64_t, StringRef> ModuleIdMap; 767 768 /// Original source file name recorded in a bitcode record. 769 std::string SourceFileName; 770 771 /// The string identifier given to this module by the client, normally the 772 /// path to the bitcode file. 773 StringRef ModulePath; 774 775 /// For per-module summary indexes, the unique numerical identifier given to 776 /// this module by the client. 777 unsigned ModuleId; 778 779 public: 780 ModuleSummaryIndexBitcodeReader(BitstreamCursor Stream, StringRef Strtab, 781 ModuleSummaryIndex &TheIndex, 782 StringRef ModulePath, unsigned ModuleId); 783 784 Error parseModule(); 785 786 private: 787 void setValueGUID(uint64_t ValueID, StringRef ValueName, 788 GlobalValue::LinkageTypes Linkage, 789 StringRef SourceFileName); 790 Error parseValueSymbolTable( 791 uint64_t Offset, 792 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap); 793 std::vector<ValueInfo> makeRefList(ArrayRef<uint64_t> Record); 794 std::vector<FunctionSummary::EdgeTy> makeCallList(ArrayRef<uint64_t> Record, 795 bool IsOldProfileFormat, 796 bool HasProfile, 797 bool HasRelBF); 798 Error parseEntireSummary(unsigned ID); 799 Error parseModuleStringTable(); 800 void parseTypeIdCompatibleVtableSummaryRecord(ArrayRef<uint64_t> Record); 801 void parseTypeIdCompatibleVtableInfo(ArrayRef<uint64_t> Record, size_t &Slot, 802 TypeIdCompatibleVtableInfo &TypeId); 803 std::vector<FunctionSummary::ParamAccess> 804 parseParamAccesses(ArrayRef<uint64_t> Record); 805 806 std::pair<ValueInfo, GlobalValue::GUID> 807 getValueInfoFromValueId(unsigned ValueId); 808 809 void addThisModule(); 810 ModuleSummaryIndex::ModuleInfo *getThisModule(); 811 }; 812 813 } // end anonymous namespace 814 815 std::error_code llvm::errorToErrorCodeAndEmitErrors(LLVMContext &Ctx, 816 Error Err) { 817 if (Err) { 818 std::error_code EC; 819 handleAllErrors(std::move(Err), [&](ErrorInfoBase &EIB) { 820 EC = EIB.convertToErrorCode(); 821 Ctx.emitError(EIB.message()); 822 }); 823 return EC; 824 } 825 return std::error_code(); 826 } 827 828 BitcodeReader::BitcodeReader(BitstreamCursor Stream, StringRef Strtab, 829 StringRef ProducerIdentification, 830 LLVMContext &Context) 831 : BitcodeReaderBase(std::move(Stream), Strtab), Context(Context), 832 ValueList(Context, Stream.SizeInBytes()) { 833 this->ProducerIdentification = std::string(ProducerIdentification); 834 } 835 836 Error BitcodeReader::materializeForwardReferencedFunctions() { 837 if (WillMaterializeAllForwardRefs) 838 return Error::success(); 839 840 // Prevent recursion. 841 WillMaterializeAllForwardRefs = true; 842 843 while (!BasicBlockFwdRefQueue.empty()) { 844 Function *F = BasicBlockFwdRefQueue.front(); 845 BasicBlockFwdRefQueue.pop_front(); 846 assert(F && "Expected valid function"); 847 if (!BasicBlockFwdRefs.count(F)) 848 // Already materialized. 849 continue; 850 851 // Check for a function that isn't materializable to prevent an infinite 852 // loop. When parsing a blockaddress stored in a global variable, there 853 // isn't a trivial way to check if a function will have a body without a 854 // linear search through FunctionsWithBodies, so just check it here. 855 if (!F->isMaterializable()) 856 return error("Never resolved function from blockaddress"); 857 858 // Try to materialize F. 859 if (Error Err = materialize(F)) 860 return Err; 861 } 862 assert(BasicBlockFwdRefs.empty() && "Function missing from queue"); 863 864 // Reset state. 865 WillMaterializeAllForwardRefs = false; 866 return Error::success(); 867 } 868 869 //===----------------------------------------------------------------------===// 870 // Helper functions to implement forward reference resolution, etc. 871 //===----------------------------------------------------------------------===// 872 873 static bool hasImplicitComdat(size_t Val) { 874 switch (Val) { 875 default: 876 return false; 877 case 1: // Old WeakAnyLinkage 878 case 4: // Old LinkOnceAnyLinkage 879 case 10: // Old WeakODRLinkage 880 case 11: // Old LinkOnceODRLinkage 881 return true; 882 } 883 } 884 885 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) { 886 switch (Val) { 887 default: // Map unknown/new linkages to external 888 case 0: 889 return GlobalValue::ExternalLinkage; 890 case 2: 891 return GlobalValue::AppendingLinkage; 892 case 3: 893 return GlobalValue::InternalLinkage; 894 case 5: 895 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage 896 case 6: 897 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage 898 case 7: 899 return GlobalValue::ExternalWeakLinkage; 900 case 8: 901 return GlobalValue::CommonLinkage; 902 case 9: 903 return GlobalValue::PrivateLinkage; 904 case 12: 905 return GlobalValue::AvailableExternallyLinkage; 906 case 13: 907 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage 908 case 14: 909 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage 910 case 15: 911 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage 912 case 1: // Old value with implicit comdat. 913 case 16: 914 return GlobalValue::WeakAnyLinkage; 915 case 10: // Old value with implicit comdat. 916 case 17: 917 return GlobalValue::WeakODRLinkage; 918 case 4: // Old value with implicit comdat. 919 case 18: 920 return GlobalValue::LinkOnceAnyLinkage; 921 case 11: // Old value with implicit comdat. 922 case 19: 923 return GlobalValue::LinkOnceODRLinkage; 924 } 925 } 926 927 static FunctionSummary::FFlags getDecodedFFlags(uint64_t RawFlags) { 928 FunctionSummary::FFlags Flags; 929 Flags.ReadNone = RawFlags & 0x1; 930 Flags.ReadOnly = (RawFlags >> 1) & 0x1; 931 Flags.NoRecurse = (RawFlags >> 2) & 0x1; 932 Flags.ReturnDoesNotAlias = (RawFlags >> 3) & 0x1; 933 Flags.NoInline = (RawFlags >> 4) & 0x1; 934 Flags.AlwaysInline = (RawFlags >> 5) & 0x1; 935 return Flags; 936 } 937 938 // Decode the flags for GlobalValue in the summary. The bits for each attribute: 939 // 940 // linkage: [0,4), notEligibleToImport: 4, live: 5, local: 6, canAutoHide: 7, 941 // visibility: [8, 10). 942 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags, 943 uint64_t Version) { 944 // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage 945 // like getDecodedLinkage() above. Any future change to the linkage enum and 946 // to getDecodedLinkage() will need to be taken into account here as above. 947 auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits 948 auto Visibility = GlobalValue::VisibilityTypes((RawFlags >> 8) & 3); // 2 bits 949 RawFlags = RawFlags >> 4; 950 bool NotEligibleToImport = (RawFlags & 0x1) || Version < 3; 951 // The Live flag wasn't introduced until version 3. For dead stripping 952 // to work correctly on earlier versions, we must conservatively treat all 953 // values as live. 954 bool Live = (RawFlags & 0x2) || Version < 3; 955 bool Local = (RawFlags & 0x4); 956 bool AutoHide = (RawFlags & 0x8); 957 958 return GlobalValueSummary::GVFlags(Linkage, Visibility, NotEligibleToImport, 959 Live, Local, AutoHide); 960 } 961 962 // Decode the flags for GlobalVariable in the summary 963 static GlobalVarSummary::GVarFlags getDecodedGVarFlags(uint64_t RawFlags) { 964 return GlobalVarSummary::GVarFlags( 965 (RawFlags & 0x1) ? true : false, (RawFlags & 0x2) ? true : false, 966 (RawFlags & 0x4) ? true : false, 967 (GlobalObject::VCallVisibility)(RawFlags >> 3)); 968 } 969 970 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) { 971 switch (Val) { 972 default: // Map unknown visibilities to default. 973 case 0: return GlobalValue::DefaultVisibility; 974 case 1: return GlobalValue::HiddenVisibility; 975 case 2: return GlobalValue::ProtectedVisibility; 976 } 977 } 978 979 static GlobalValue::DLLStorageClassTypes 980 getDecodedDLLStorageClass(unsigned Val) { 981 switch (Val) { 982 default: // Map unknown values to default. 983 case 0: return GlobalValue::DefaultStorageClass; 984 case 1: return GlobalValue::DLLImportStorageClass; 985 case 2: return GlobalValue::DLLExportStorageClass; 986 } 987 } 988 989 static bool getDecodedDSOLocal(unsigned Val) { 990 switch(Val) { 991 default: // Map unknown values to preemptable. 992 case 0: return false; 993 case 1: return true; 994 } 995 } 996 997 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) { 998 switch (Val) { 999 case 0: return GlobalVariable::NotThreadLocal; 1000 default: // Map unknown non-zero value to general dynamic. 1001 case 1: return GlobalVariable::GeneralDynamicTLSModel; 1002 case 2: return GlobalVariable::LocalDynamicTLSModel; 1003 case 3: return GlobalVariable::InitialExecTLSModel; 1004 case 4: return GlobalVariable::LocalExecTLSModel; 1005 } 1006 } 1007 1008 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) { 1009 switch (Val) { 1010 default: // Map unknown to UnnamedAddr::None. 1011 case 0: return GlobalVariable::UnnamedAddr::None; 1012 case 1: return GlobalVariable::UnnamedAddr::Global; 1013 case 2: return GlobalVariable::UnnamedAddr::Local; 1014 } 1015 } 1016 1017 static int getDecodedCastOpcode(unsigned Val) { 1018 switch (Val) { 1019 default: return -1; 1020 case bitc::CAST_TRUNC : return Instruction::Trunc; 1021 case bitc::CAST_ZEXT : return Instruction::ZExt; 1022 case bitc::CAST_SEXT : return Instruction::SExt; 1023 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 1024 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 1025 case bitc::CAST_UITOFP : return Instruction::UIToFP; 1026 case bitc::CAST_SITOFP : return Instruction::SIToFP; 1027 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 1028 case bitc::CAST_FPEXT : return Instruction::FPExt; 1029 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 1030 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 1031 case bitc::CAST_BITCAST : return Instruction::BitCast; 1032 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast; 1033 } 1034 } 1035 1036 static int getDecodedUnaryOpcode(unsigned Val, Type *Ty) { 1037 bool IsFP = Ty->isFPOrFPVectorTy(); 1038 // UnOps are only valid for int/fp or vector of int/fp types 1039 if (!IsFP && !Ty->isIntOrIntVectorTy()) 1040 return -1; 1041 1042 switch (Val) { 1043 default: 1044 return -1; 1045 case bitc::UNOP_FNEG: 1046 return IsFP ? Instruction::FNeg : -1; 1047 } 1048 } 1049 1050 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) { 1051 bool IsFP = Ty->isFPOrFPVectorTy(); 1052 // BinOps are only valid for int/fp or vector of int/fp types 1053 if (!IsFP && !Ty->isIntOrIntVectorTy()) 1054 return -1; 1055 1056 switch (Val) { 1057 default: 1058 return -1; 1059 case bitc::BINOP_ADD: 1060 return IsFP ? Instruction::FAdd : Instruction::Add; 1061 case bitc::BINOP_SUB: 1062 return IsFP ? Instruction::FSub : Instruction::Sub; 1063 case bitc::BINOP_MUL: 1064 return IsFP ? Instruction::FMul : Instruction::Mul; 1065 case bitc::BINOP_UDIV: 1066 return IsFP ? -1 : Instruction::UDiv; 1067 case bitc::BINOP_SDIV: 1068 return IsFP ? Instruction::FDiv : Instruction::SDiv; 1069 case bitc::BINOP_UREM: 1070 return IsFP ? -1 : Instruction::URem; 1071 case bitc::BINOP_SREM: 1072 return IsFP ? Instruction::FRem : Instruction::SRem; 1073 case bitc::BINOP_SHL: 1074 return IsFP ? -1 : Instruction::Shl; 1075 case bitc::BINOP_LSHR: 1076 return IsFP ? -1 : Instruction::LShr; 1077 case bitc::BINOP_ASHR: 1078 return IsFP ? -1 : Instruction::AShr; 1079 case bitc::BINOP_AND: 1080 return IsFP ? -1 : Instruction::And; 1081 case bitc::BINOP_OR: 1082 return IsFP ? -1 : Instruction::Or; 1083 case bitc::BINOP_XOR: 1084 return IsFP ? -1 : Instruction::Xor; 1085 } 1086 } 1087 1088 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) { 1089 switch (Val) { 1090 default: return AtomicRMWInst::BAD_BINOP; 1091 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 1092 case bitc::RMW_ADD: return AtomicRMWInst::Add; 1093 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 1094 case bitc::RMW_AND: return AtomicRMWInst::And; 1095 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 1096 case bitc::RMW_OR: return AtomicRMWInst::Or; 1097 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 1098 case bitc::RMW_MAX: return AtomicRMWInst::Max; 1099 case bitc::RMW_MIN: return AtomicRMWInst::Min; 1100 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 1101 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 1102 case bitc::RMW_FADD: return AtomicRMWInst::FAdd; 1103 case bitc::RMW_FSUB: return AtomicRMWInst::FSub; 1104 } 1105 } 1106 1107 static AtomicOrdering getDecodedOrdering(unsigned Val) { 1108 switch (Val) { 1109 case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic; 1110 case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered; 1111 case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic; 1112 case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire; 1113 case bitc::ORDERING_RELEASE: return AtomicOrdering::Release; 1114 case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease; 1115 default: // Map unknown orderings to sequentially-consistent. 1116 case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent; 1117 } 1118 } 1119 1120 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) { 1121 switch (Val) { 1122 default: // Map unknown selection kinds to any. 1123 case bitc::COMDAT_SELECTION_KIND_ANY: 1124 return Comdat::Any; 1125 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH: 1126 return Comdat::ExactMatch; 1127 case bitc::COMDAT_SELECTION_KIND_LARGEST: 1128 return Comdat::Largest; 1129 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES: 1130 return Comdat::NoDuplicates; 1131 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE: 1132 return Comdat::SameSize; 1133 } 1134 } 1135 1136 static FastMathFlags getDecodedFastMathFlags(unsigned Val) { 1137 FastMathFlags FMF; 1138 if (0 != (Val & bitc::UnsafeAlgebra)) 1139 FMF.setFast(); 1140 if (0 != (Val & bitc::AllowReassoc)) 1141 FMF.setAllowReassoc(); 1142 if (0 != (Val & bitc::NoNaNs)) 1143 FMF.setNoNaNs(); 1144 if (0 != (Val & bitc::NoInfs)) 1145 FMF.setNoInfs(); 1146 if (0 != (Val & bitc::NoSignedZeros)) 1147 FMF.setNoSignedZeros(); 1148 if (0 != (Val & bitc::AllowReciprocal)) 1149 FMF.setAllowReciprocal(); 1150 if (0 != (Val & bitc::AllowContract)) 1151 FMF.setAllowContract(true); 1152 if (0 != (Val & bitc::ApproxFunc)) 1153 FMF.setApproxFunc(); 1154 return FMF; 1155 } 1156 1157 static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) { 1158 switch (Val) { 1159 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break; 1160 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break; 1161 } 1162 } 1163 1164 Type *BitcodeReader::getTypeByID(unsigned ID) { 1165 // The type table size is always specified correctly. 1166 if (ID >= TypeList.size()) 1167 return nullptr; 1168 1169 if (Type *Ty = TypeList[ID]) 1170 return Ty; 1171 1172 // If we have a forward reference, the only possible case is when it is to a 1173 // named struct. Just create a placeholder for now. 1174 return TypeList[ID] = createIdentifiedStructType(Context); 1175 } 1176 1177 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context, 1178 StringRef Name) { 1179 auto *Ret = StructType::create(Context, Name); 1180 IdentifiedStructTypes.push_back(Ret); 1181 return Ret; 1182 } 1183 1184 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) { 1185 auto *Ret = StructType::create(Context); 1186 IdentifiedStructTypes.push_back(Ret); 1187 return Ret; 1188 } 1189 1190 //===----------------------------------------------------------------------===// 1191 // Functions for parsing blocks from the bitcode file 1192 //===----------------------------------------------------------------------===// 1193 1194 static uint64_t getRawAttributeMask(Attribute::AttrKind Val) { 1195 switch (Val) { 1196 case Attribute::EndAttrKinds: 1197 case Attribute::EmptyKey: 1198 case Attribute::TombstoneKey: 1199 llvm_unreachable("Synthetic enumerators which should never get here"); 1200 1201 case Attribute::None: return 0; 1202 case Attribute::ZExt: return 1 << 0; 1203 case Attribute::SExt: return 1 << 1; 1204 case Attribute::NoReturn: return 1 << 2; 1205 case Attribute::InReg: return 1 << 3; 1206 case Attribute::StructRet: return 1 << 4; 1207 case Attribute::NoUnwind: return 1 << 5; 1208 case Attribute::NoAlias: return 1 << 6; 1209 case Attribute::ByVal: return 1 << 7; 1210 case Attribute::Nest: return 1 << 8; 1211 case Attribute::ReadNone: return 1 << 9; 1212 case Attribute::ReadOnly: return 1 << 10; 1213 case Attribute::NoInline: return 1 << 11; 1214 case Attribute::AlwaysInline: return 1 << 12; 1215 case Attribute::OptimizeForSize: return 1 << 13; 1216 case Attribute::StackProtect: return 1 << 14; 1217 case Attribute::StackProtectReq: return 1 << 15; 1218 case Attribute::Alignment: return 31 << 16; 1219 case Attribute::NoCapture: return 1 << 21; 1220 case Attribute::NoRedZone: return 1 << 22; 1221 case Attribute::NoImplicitFloat: return 1 << 23; 1222 case Attribute::Naked: return 1 << 24; 1223 case Attribute::InlineHint: return 1 << 25; 1224 case Attribute::StackAlignment: return 7 << 26; 1225 case Attribute::ReturnsTwice: return 1 << 29; 1226 case Attribute::UWTable: return 1 << 30; 1227 case Attribute::NonLazyBind: return 1U << 31; 1228 case Attribute::SanitizeAddress: return 1ULL << 32; 1229 case Attribute::MinSize: return 1ULL << 33; 1230 case Attribute::NoDuplicate: return 1ULL << 34; 1231 case Attribute::StackProtectStrong: return 1ULL << 35; 1232 case Attribute::SanitizeThread: return 1ULL << 36; 1233 case Attribute::SanitizeMemory: return 1ULL << 37; 1234 case Attribute::NoBuiltin: return 1ULL << 38; 1235 case Attribute::Returned: return 1ULL << 39; 1236 case Attribute::Cold: return 1ULL << 40; 1237 case Attribute::Builtin: return 1ULL << 41; 1238 case Attribute::OptimizeNone: return 1ULL << 42; 1239 case Attribute::InAlloca: return 1ULL << 43; 1240 case Attribute::NonNull: return 1ULL << 44; 1241 case Attribute::JumpTable: return 1ULL << 45; 1242 case Attribute::Convergent: return 1ULL << 46; 1243 case Attribute::SafeStack: return 1ULL << 47; 1244 case Attribute::NoRecurse: return 1ULL << 48; 1245 case Attribute::InaccessibleMemOnly: return 1ULL << 49; 1246 case Attribute::InaccessibleMemOrArgMemOnly: return 1ULL << 50; 1247 case Attribute::SwiftSelf: return 1ULL << 51; 1248 case Attribute::SwiftError: return 1ULL << 52; 1249 case Attribute::WriteOnly: return 1ULL << 53; 1250 case Attribute::Speculatable: return 1ULL << 54; 1251 case Attribute::StrictFP: return 1ULL << 55; 1252 case Attribute::SanitizeHWAddress: return 1ULL << 56; 1253 case Attribute::NoCfCheck: return 1ULL << 57; 1254 case Attribute::OptForFuzzing: return 1ULL << 58; 1255 case Attribute::ShadowCallStack: return 1ULL << 59; 1256 case Attribute::SpeculativeLoadHardening: 1257 return 1ULL << 60; 1258 case Attribute::ImmArg: 1259 return 1ULL << 61; 1260 case Attribute::WillReturn: 1261 return 1ULL << 62; 1262 case Attribute::NoFree: 1263 return 1ULL << 63; 1264 default: 1265 // Other attributes are not supported in the raw format, 1266 // as we ran out of space. 1267 return 0; 1268 } 1269 llvm_unreachable("Unsupported attribute type"); 1270 } 1271 1272 static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) { 1273 if (!Val) return; 1274 1275 for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds; 1276 I = Attribute::AttrKind(I + 1)) { 1277 if (uint64_t A = (Val & getRawAttributeMask(I))) { 1278 if (I == Attribute::Alignment) 1279 B.addAlignmentAttr(1ULL << ((A >> 16) - 1)); 1280 else if (I == Attribute::StackAlignment) 1281 B.addStackAlignmentAttr(1ULL << ((A >> 26)-1)); 1282 else 1283 B.addAttribute(I); 1284 } 1285 } 1286 } 1287 1288 /// This fills an AttrBuilder object with the LLVM attributes that have 1289 /// been decoded from the given integer. This function must stay in sync with 1290 /// 'encodeLLVMAttributesForBitcode'. 1291 static void decodeLLVMAttributesForBitcode(AttrBuilder &B, 1292 uint64_t EncodedAttrs) { 1293 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift 1294 // the bits above 31 down by 11 bits. 1295 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; 1296 assert((!Alignment || isPowerOf2_32(Alignment)) && 1297 "Alignment must be a power of two."); 1298 1299 if (Alignment) 1300 B.addAlignmentAttr(Alignment); 1301 addRawAttributeValue(B, ((EncodedAttrs & (0xfffffULL << 32)) >> 11) | 1302 (EncodedAttrs & 0xffff)); 1303 } 1304 1305 Error BitcodeReader::parseAttributeBlock() { 1306 if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 1307 return Err; 1308 1309 if (!MAttributes.empty()) 1310 return error("Invalid multiple blocks"); 1311 1312 SmallVector<uint64_t, 64> Record; 1313 1314 SmallVector<AttributeList, 8> Attrs; 1315 1316 // Read all the records. 1317 while (true) { 1318 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1319 if (!MaybeEntry) 1320 return MaybeEntry.takeError(); 1321 BitstreamEntry Entry = MaybeEntry.get(); 1322 1323 switch (Entry.Kind) { 1324 case BitstreamEntry::SubBlock: // Handled for us already. 1325 case BitstreamEntry::Error: 1326 return error("Malformed block"); 1327 case BitstreamEntry::EndBlock: 1328 return Error::success(); 1329 case BitstreamEntry::Record: 1330 // The interesting case. 1331 break; 1332 } 1333 1334 // Read a record. 1335 Record.clear(); 1336 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1337 if (!MaybeRecord) 1338 return MaybeRecord.takeError(); 1339 switch (MaybeRecord.get()) { 1340 default: // Default behavior: ignore. 1341 break; 1342 case bitc::PARAMATTR_CODE_ENTRY_OLD: // ENTRY: [paramidx0, attr0, ...] 1343 // Deprecated, but still needed to read old bitcode files. 1344 if (Record.size() & 1) 1345 return error("Invalid record"); 1346 1347 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1348 AttrBuilder B; 1349 decodeLLVMAttributesForBitcode(B, Record[i+1]); 1350 Attrs.push_back(AttributeList::get(Context, Record[i], B)); 1351 } 1352 1353 MAttributes.push_back(AttributeList::get(Context, Attrs)); 1354 Attrs.clear(); 1355 break; 1356 case bitc::PARAMATTR_CODE_ENTRY: // ENTRY: [attrgrp0, attrgrp1, ...] 1357 for (unsigned i = 0, e = Record.size(); i != e; ++i) 1358 Attrs.push_back(MAttributeGroups[Record[i]]); 1359 1360 MAttributes.push_back(AttributeList::get(Context, Attrs)); 1361 Attrs.clear(); 1362 break; 1363 } 1364 } 1365 } 1366 1367 // Returns Attribute::None on unrecognized codes. 1368 static Attribute::AttrKind getAttrFromCode(uint64_t Code) { 1369 switch (Code) { 1370 default: 1371 return Attribute::None; 1372 case bitc::ATTR_KIND_ALIGNMENT: 1373 return Attribute::Alignment; 1374 case bitc::ATTR_KIND_ALWAYS_INLINE: 1375 return Attribute::AlwaysInline; 1376 case bitc::ATTR_KIND_ARGMEMONLY: 1377 return Attribute::ArgMemOnly; 1378 case bitc::ATTR_KIND_BUILTIN: 1379 return Attribute::Builtin; 1380 case bitc::ATTR_KIND_BY_VAL: 1381 return Attribute::ByVal; 1382 case bitc::ATTR_KIND_IN_ALLOCA: 1383 return Attribute::InAlloca; 1384 case bitc::ATTR_KIND_COLD: 1385 return Attribute::Cold; 1386 case bitc::ATTR_KIND_CONVERGENT: 1387 return Attribute::Convergent; 1388 case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY: 1389 return Attribute::InaccessibleMemOnly; 1390 case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY: 1391 return Attribute::InaccessibleMemOrArgMemOnly; 1392 case bitc::ATTR_KIND_INLINE_HINT: 1393 return Attribute::InlineHint; 1394 case bitc::ATTR_KIND_IN_REG: 1395 return Attribute::InReg; 1396 case bitc::ATTR_KIND_JUMP_TABLE: 1397 return Attribute::JumpTable; 1398 case bitc::ATTR_KIND_MIN_SIZE: 1399 return Attribute::MinSize; 1400 case bitc::ATTR_KIND_NAKED: 1401 return Attribute::Naked; 1402 case bitc::ATTR_KIND_NEST: 1403 return Attribute::Nest; 1404 case bitc::ATTR_KIND_NO_ALIAS: 1405 return Attribute::NoAlias; 1406 case bitc::ATTR_KIND_NO_BUILTIN: 1407 return Attribute::NoBuiltin; 1408 case bitc::ATTR_KIND_NO_CALLBACK: 1409 return Attribute::NoCallback; 1410 case bitc::ATTR_KIND_NO_CAPTURE: 1411 return Attribute::NoCapture; 1412 case bitc::ATTR_KIND_NO_DUPLICATE: 1413 return Attribute::NoDuplicate; 1414 case bitc::ATTR_KIND_NOFREE: 1415 return Attribute::NoFree; 1416 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: 1417 return Attribute::NoImplicitFloat; 1418 case bitc::ATTR_KIND_NO_INLINE: 1419 return Attribute::NoInline; 1420 case bitc::ATTR_KIND_NO_RECURSE: 1421 return Attribute::NoRecurse; 1422 case bitc::ATTR_KIND_NO_MERGE: 1423 return Attribute::NoMerge; 1424 case bitc::ATTR_KIND_NON_LAZY_BIND: 1425 return Attribute::NonLazyBind; 1426 case bitc::ATTR_KIND_NON_NULL: 1427 return Attribute::NonNull; 1428 case bitc::ATTR_KIND_DEREFERENCEABLE: 1429 return Attribute::Dereferenceable; 1430 case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL: 1431 return Attribute::DereferenceableOrNull; 1432 case bitc::ATTR_KIND_ALLOC_SIZE: 1433 return Attribute::AllocSize; 1434 case bitc::ATTR_KIND_NO_RED_ZONE: 1435 return Attribute::NoRedZone; 1436 case bitc::ATTR_KIND_NO_RETURN: 1437 return Attribute::NoReturn; 1438 case bitc::ATTR_KIND_NOSYNC: 1439 return Attribute::NoSync; 1440 case bitc::ATTR_KIND_NOCF_CHECK: 1441 return Attribute::NoCfCheck; 1442 case bitc::ATTR_KIND_NO_UNWIND: 1443 return Attribute::NoUnwind; 1444 case bitc::ATTR_KIND_NO_SANITIZE_COVERAGE: 1445 return Attribute::NoSanitizeCoverage; 1446 case bitc::ATTR_KIND_NULL_POINTER_IS_VALID: 1447 return Attribute::NullPointerIsValid; 1448 case bitc::ATTR_KIND_OPT_FOR_FUZZING: 1449 return Attribute::OptForFuzzing; 1450 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: 1451 return Attribute::OptimizeForSize; 1452 case bitc::ATTR_KIND_OPTIMIZE_NONE: 1453 return Attribute::OptimizeNone; 1454 case bitc::ATTR_KIND_READ_NONE: 1455 return Attribute::ReadNone; 1456 case bitc::ATTR_KIND_READ_ONLY: 1457 return Attribute::ReadOnly; 1458 case bitc::ATTR_KIND_RETURNED: 1459 return Attribute::Returned; 1460 case bitc::ATTR_KIND_RETURNS_TWICE: 1461 return Attribute::ReturnsTwice; 1462 case bitc::ATTR_KIND_S_EXT: 1463 return Attribute::SExt; 1464 case bitc::ATTR_KIND_SPECULATABLE: 1465 return Attribute::Speculatable; 1466 case bitc::ATTR_KIND_STACK_ALIGNMENT: 1467 return Attribute::StackAlignment; 1468 case bitc::ATTR_KIND_STACK_PROTECT: 1469 return Attribute::StackProtect; 1470 case bitc::ATTR_KIND_STACK_PROTECT_REQ: 1471 return Attribute::StackProtectReq; 1472 case bitc::ATTR_KIND_STACK_PROTECT_STRONG: 1473 return Attribute::StackProtectStrong; 1474 case bitc::ATTR_KIND_SAFESTACK: 1475 return Attribute::SafeStack; 1476 case bitc::ATTR_KIND_SHADOWCALLSTACK: 1477 return Attribute::ShadowCallStack; 1478 case bitc::ATTR_KIND_STRICT_FP: 1479 return Attribute::StrictFP; 1480 case bitc::ATTR_KIND_STRUCT_RET: 1481 return Attribute::StructRet; 1482 case bitc::ATTR_KIND_SANITIZE_ADDRESS: 1483 return Attribute::SanitizeAddress; 1484 case bitc::ATTR_KIND_SANITIZE_HWADDRESS: 1485 return Attribute::SanitizeHWAddress; 1486 case bitc::ATTR_KIND_SANITIZE_THREAD: 1487 return Attribute::SanitizeThread; 1488 case bitc::ATTR_KIND_SANITIZE_MEMORY: 1489 return Attribute::SanitizeMemory; 1490 case bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING: 1491 return Attribute::SpeculativeLoadHardening; 1492 case bitc::ATTR_KIND_SWIFT_ERROR: 1493 return Attribute::SwiftError; 1494 case bitc::ATTR_KIND_SWIFT_SELF: 1495 return Attribute::SwiftSelf; 1496 case bitc::ATTR_KIND_SWIFT_ASYNC: 1497 return Attribute::SwiftAsync; 1498 case bitc::ATTR_KIND_UW_TABLE: 1499 return Attribute::UWTable; 1500 case bitc::ATTR_KIND_VSCALE_RANGE: 1501 return Attribute::VScaleRange; 1502 case bitc::ATTR_KIND_WILLRETURN: 1503 return Attribute::WillReturn; 1504 case bitc::ATTR_KIND_WRITEONLY: 1505 return Attribute::WriteOnly; 1506 case bitc::ATTR_KIND_Z_EXT: 1507 return Attribute::ZExt; 1508 case bitc::ATTR_KIND_IMMARG: 1509 return Attribute::ImmArg; 1510 case bitc::ATTR_KIND_SANITIZE_MEMTAG: 1511 return Attribute::SanitizeMemTag; 1512 case bitc::ATTR_KIND_PREALLOCATED: 1513 return Attribute::Preallocated; 1514 case bitc::ATTR_KIND_NOUNDEF: 1515 return Attribute::NoUndef; 1516 case bitc::ATTR_KIND_BYREF: 1517 return Attribute::ByRef; 1518 case bitc::ATTR_KIND_MUSTPROGRESS: 1519 return Attribute::MustProgress; 1520 case bitc::ATTR_KIND_HOT: 1521 return Attribute::Hot; 1522 } 1523 } 1524 1525 Error BitcodeReader::parseAlignmentValue(uint64_t Exponent, 1526 MaybeAlign &Alignment) { 1527 // Note: Alignment in bitcode files is incremented by 1, so that zero 1528 // can be used for default alignment. 1529 if (Exponent > Value::MaxAlignmentExponent + 1) 1530 return error("Invalid alignment value"); 1531 Alignment = decodeMaybeAlign(Exponent); 1532 return Error::success(); 1533 } 1534 1535 Error BitcodeReader::parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind) { 1536 *Kind = getAttrFromCode(Code); 1537 if (*Kind == Attribute::None) 1538 return error("Unknown attribute kind (" + Twine(Code) + ")"); 1539 return Error::success(); 1540 } 1541 1542 Error BitcodeReader::parseAttributeGroupBlock() { 1543 if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) 1544 return Err; 1545 1546 if (!MAttributeGroups.empty()) 1547 return error("Invalid multiple blocks"); 1548 1549 SmallVector<uint64_t, 64> Record; 1550 1551 // Read all the records. 1552 while (true) { 1553 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1554 if (!MaybeEntry) 1555 return MaybeEntry.takeError(); 1556 BitstreamEntry Entry = MaybeEntry.get(); 1557 1558 switch (Entry.Kind) { 1559 case BitstreamEntry::SubBlock: // Handled for us already. 1560 case BitstreamEntry::Error: 1561 return error("Malformed block"); 1562 case BitstreamEntry::EndBlock: 1563 return Error::success(); 1564 case BitstreamEntry::Record: 1565 // The interesting case. 1566 break; 1567 } 1568 1569 // Read a record. 1570 Record.clear(); 1571 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1572 if (!MaybeRecord) 1573 return MaybeRecord.takeError(); 1574 switch (MaybeRecord.get()) { 1575 default: // Default behavior: ignore. 1576 break; 1577 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] 1578 if (Record.size() < 3) 1579 return error("Invalid record"); 1580 1581 uint64_t GrpID = Record[0]; 1582 uint64_t Idx = Record[1]; // Index of the object this attribute refers to. 1583 1584 AttrBuilder B; 1585 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1586 if (Record[i] == 0) { // Enum attribute 1587 Attribute::AttrKind Kind; 1588 if (Error Err = parseAttrKind(Record[++i], &Kind)) 1589 return Err; 1590 1591 // Upgrade old-style byval attribute to one with a type, even if it's 1592 // nullptr. We will have to insert the real type when we associate 1593 // this AttributeList with a function. 1594 if (Kind == Attribute::ByVal) 1595 B.addByValAttr(nullptr); 1596 else if (Kind == Attribute::StructRet) 1597 B.addStructRetAttr(nullptr); 1598 else if (Kind == Attribute::InAlloca) 1599 B.addInAllocaAttr(nullptr); 1600 1601 B.addAttribute(Kind); 1602 } else if (Record[i] == 1) { // Integer attribute 1603 Attribute::AttrKind Kind; 1604 if (Error Err = parseAttrKind(Record[++i], &Kind)) 1605 return Err; 1606 if (Kind == Attribute::Alignment) 1607 B.addAlignmentAttr(Record[++i]); 1608 else if (Kind == Attribute::StackAlignment) 1609 B.addStackAlignmentAttr(Record[++i]); 1610 else if (Kind == Attribute::Dereferenceable) 1611 B.addDereferenceableAttr(Record[++i]); 1612 else if (Kind == Attribute::DereferenceableOrNull) 1613 B.addDereferenceableOrNullAttr(Record[++i]); 1614 else if (Kind == Attribute::AllocSize) 1615 B.addAllocSizeAttrFromRawRepr(Record[++i]); 1616 else if (Kind == Attribute::VScaleRange) 1617 B.addVScaleRangeAttrFromRawRepr(Record[++i]); 1618 } else if (Record[i] == 3 || Record[i] == 4) { // String attribute 1619 bool HasValue = (Record[i++] == 4); 1620 SmallString<64> KindStr; 1621 SmallString<64> ValStr; 1622 1623 while (Record[i] != 0 && i != e) 1624 KindStr += Record[i++]; 1625 assert(Record[i] == 0 && "Kind string not null terminated"); 1626 1627 if (HasValue) { 1628 // Has a value associated with it. 1629 ++i; // Skip the '0' that terminates the "kind" string. 1630 while (Record[i] != 0 && i != e) 1631 ValStr += Record[i++]; 1632 assert(Record[i] == 0 && "Value string not null terminated"); 1633 } 1634 1635 B.addAttribute(KindStr.str(), ValStr.str()); 1636 } else { 1637 assert((Record[i] == 5 || Record[i] == 6) && 1638 "Invalid attribute group entry"); 1639 bool HasType = Record[i] == 6; 1640 Attribute::AttrKind Kind; 1641 if (Error Err = parseAttrKind(Record[++i], &Kind)) 1642 return Err; 1643 if (Kind == Attribute::ByVal) { 1644 B.addByValAttr(HasType ? getTypeByID(Record[++i]) : nullptr); 1645 } else if (Kind == Attribute::StructRet) { 1646 B.addStructRetAttr(HasType ? getTypeByID(Record[++i]) : nullptr); 1647 } else if (Kind == Attribute::ByRef) { 1648 B.addByRefAttr(getTypeByID(Record[++i])); 1649 } else if (Kind == Attribute::Preallocated) { 1650 B.addPreallocatedAttr(getTypeByID(Record[++i])); 1651 } else if (Kind == Attribute::InAlloca) { 1652 B.addInAllocaAttr(HasType ? getTypeByID(Record[++i]) : nullptr); 1653 } 1654 } 1655 } 1656 1657 UpgradeAttributes(B); 1658 MAttributeGroups[GrpID] = AttributeList::get(Context, Idx, B); 1659 break; 1660 } 1661 } 1662 } 1663 } 1664 1665 Error BitcodeReader::parseTypeTable() { 1666 if (Error Err = Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 1667 return Err; 1668 1669 return parseTypeTableBody(); 1670 } 1671 1672 Error BitcodeReader::parseTypeTableBody() { 1673 if (!TypeList.empty()) 1674 return error("Invalid multiple blocks"); 1675 1676 SmallVector<uint64_t, 64> Record; 1677 unsigned NumRecords = 0; 1678 1679 SmallString<64> TypeName; 1680 1681 // Read all the records for this type table. 1682 while (true) { 1683 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1684 if (!MaybeEntry) 1685 return MaybeEntry.takeError(); 1686 BitstreamEntry Entry = MaybeEntry.get(); 1687 1688 switch (Entry.Kind) { 1689 case BitstreamEntry::SubBlock: // Handled for us already. 1690 case BitstreamEntry::Error: 1691 return error("Malformed block"); 1692 case BitstreamEntry::EndBlock: 1693 if (NumRecords != TypeList.size()) 1694 return error("Malformed block"); 1695 return Error::success(); 1696 case BitstreamEntry::Record: 1697 // The interesting case. 1698 break; 1699 } 1700 1701 // Read a record. 1702 Record.clear(); 1703 Type *ResultTy = nullptr; 1704 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1705 if (!MaybeRecord) 1706 return MaybeRecord.takeError(); 1707 switch (MaybeRecord.get()) { 1708 default: 1709 return error("Invalid value"); 1710 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 1711 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 1712 // type list. This allows us to reserve space. 1713 if (Record.empty()) 1714 return error("Invalid record"); 1715 TypeList.resize(Record[0]); 1716 continue; 1717 case bitc::TYPE_CODE_VOID: // VOID 1718 ResultTy = Type::getVoidTy(Context); 1719 break; 1720 case bitc::TYPE_CODE_HALF: // HALF 1721 ResultTy = Type::getHalfTy(Context); 1722 break; 1723 case bitc::TYPE_CODE_BFLOAT: // BFLOAT 1724 ResultTy = Type::getBFloatTy(Context); 1725 break; 1726 case bitc::TYPE_CODE_FLOAT: // FLOAT 1727 ResultTy = Type::getFloatTy(Context); 1728 break; 1729 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 1730 ResultTy = Type::getDoubleTy(Context); 1731 break; 1732 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 1733 ResultTy = Type::getX86_FP80Ty(Context); 1734 break; 1735 case bitc::TYPE_CODE_FP128: // FP128 1736 ResultTy = Type::getFP128Ty(Context); 1737 break; 1738 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 1739 ResultTy = Type::getPPC_FP128Ty(Context); 1740 break; 1741 case bitc::TYPE_CODE_LABEL: // LABEL 1742 ResultTy = Type::getLabelTy(Context); 1743 break; 1744 case bitc::TYPE_CODE_METADATA: // METADATA 1745 ResultTy = Type::getMetadataTy(Context); 1746 break; 1747 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 1748 ResultTy = Type::getX86_MMXTy(Context); 1749 break; 1750 case bitc::TYPE_CODE_X86_AMX: // X86_AMX 1751 ResultTy = Type::getX86_AMXTy(Context); 1752 break; 1753 case bitc::TYPE_CODE_TOKEN: // TOKEN 1754 ResultTy = Type::getTokenTy(Context); 1755 break; 1756 case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width] 1757 if (Record.empty()) 1758 return error("Invalid record"); 1759 1760 uint64_t NumBits = Record[0]; 1761 if (NumBits < IntegerType::MIN_INT_BITS || 1762 NumBits > IntegerType::MAX_INT_BITS) 1763 return error("Bitwidth for integer type out of range"); 1764 ResultTy = IntegerType::get(Context, NumBits); 1765 break; 1766 } 1767 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 1768 // [pointee type, address space] 1769 if (Record.empty()) 1770 return error("Invalid record"); 1771 unsigned AddressSpace = 0; 1772 if (Record.size() == 2) 1773 AddressSpace = Record[1]; 1774 ResultTy = getTypeByID(Record[0]); 1775 if (!ResultTy || 1776 !PointerType::isValidElementType(ResultTy)) 1777 return error("Invalid type"); 1778 ResultTy = PointerType::get(ResultTy, AddressSpace); 1779 break; 1780 } 1781 case bitc::TYPE_CODE_OPAQUE_POINTER: { // OPAQUE_POINTER: [addrspace] 1782 if (Record.size() != 1) 1783 return error("Invalid record"); 1784 unsigned AddressSpace = Record[0]; 1785 ResultTy = PointerType::get(Context, AddressSpace); 1786 break; 1787 } 1788 case bitc::TYPE_CODE_FUNCTION_OLD: { 1789 // Deprecated, but still needed to read old bitcode files. 1790 // FUNCTION: [vararg, attrid, retty, paramty x N] 1791 if (Record.size() < 3) 1792 return error("Invalid record"); 1793 SmallVector<Type*, 8> ArgTys; 1794 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 1795 if (Type *T = getTypeByID(Record[i])) 1796 ArgTys.push_back(T); 1797 else 1798 break; 1799 } 1800 1801 ResultTy = getTypeByID(Record[2]); 1802 if (!ResultTy || ArgTys.size() < Record.size()-3) 1803 return error("Invalid type"); 1804 1805 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1806 break; 1807 } 1808 case bitc::TYPE_CODE_FUNCTION: { 1809 // FUNCTION: [vararg, retty, paramty x N] 1810 if (Record.size() < 2) 1811 return error("Invalid record"); 1812 SmallVector<Type*, 8> ArgTys; 1813 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1814 if (Type *T = getTypeByID(Record[i])) { 1815 if (!FunctionType::isValidArgumentType(T)) 1816 return error("Invalid function argument type"); 1817 ArgTys.push_back(T); 1818 } 1819 else 1820 break; 1821 } 1822 1823 ResultTy = getTypeByID(Record[1]); 1824 if (!ResultTy || ArgTys.size() < Record.size()-2) 1825 return error("Invalid type"); 1826 1827 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1828 break; 1829 } 1830 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 1831 if (Record.empty()) 1832 return error("Invalid record"); 1833 SmallVector<Type*, 8> EltTys; 1834 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1835 if (Type *T = getTypeByID(Record[i])) 1836 EltTys.push_back(T); 1837 else 1838 break; 1839 } 1840 if (EltTys.size() != Record.size()-1) 1841 return error("Invalid type"); 1842 ResultTy = StructType::get(Context, EltTys, Record[0]); 1843 break; 1844 } 1845 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 1846 if (convertToString(Record, 0, TypeName)) 1847 return error("Invalid record"); 1848 continue; 1849 1850 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 1851 if (Record.empty()) 1852 return error("Invalid record"); 1853 1854 if (NumRecords >= TypeList.size()) 1855 return error("Invalid TYPE table"); 1856 1857 // Check to see if this was forward referenced, if so fill in the temp. 1858 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1859 if (Res) { 1860 Res->setName(TypeName); 1861 TypeList[NumRecords] = nullptr; 1862 } else // Otherwise, create a new struct. 1863 Res = createIdentifiedStructType(Context, TypeName); 1864 TypeName.clear(); 1865 1866 SmallVector<Type*, 8> EltTys; 1867 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1868 if (Type *T = getTypeByID(Record[i])) 1869 EltTys.push_back(T); 1870 else 1871 break; 1872 } 1873 if (EltTys.size() != Record.size()-1) 1874 return error("Invalid record"); 1875 Res->setBody(EltTys, Record[0]); 1876 ResultTy = Res; 1877 break; 1878 } 1879 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 1880 if (Record.size() != 1) 1881 return error("Invalid record"); 1882 1883 if (NumRecords >= TypeList.size()) 1884 return error("Invalid TYPE table"); 1885 1886 // Check to see if this was forward referenced, if so fill in the temp. 1887 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1888 if (Res) { 1889 Res->setName(TypeName); 1890 TypeList[NumRecords] = nullptr; 1891 } else // Otherwise, create a new struct with no body. 1892 Res = createIdentifiedStructType(Context, TypeName); 1893 TypeName.clear(); 1894 ResultTy = Res; 1895 break; 1896 } 1897 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 1898 if (Record.size() < 2) 1899 return error("Invalid record"); 1900 ResultTy = getTypeByID(Record[1]); 1901 if (!ResultTy || !ArrayType::isValidElementType(ResultTy)) 1902 return error("Invalid type"); 1903 ResultTy = ArrayType::get(ResultTy, Record[0]); 1904 break; 1905 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] or 1906 // [numelts, eltty, scalable] 1907 if (Record.size() < 2) 1908 return error("Invalid record"); 1909 if (Record[0] == 0) 1910 return error("Invalid vector length"); 1911 ResultTy = getTypeByID(Record[1]); 1912 if (!ResultTy || !StructType::isValidElementType(ResultTy)) 1913 return error("Invalid type"); 1914 bool Scalable = Record.size() > 2 ? Record[2] : false; 1915 ResultTy = VectorType::get(ResultTy, Record[0], Scalable); 1916 break; 1917 } 1918 1919 if (NumRecords >= TypeList.size()) 1920 return error("Invalid TYPE table"); 1921 if (TypeList[NumRecords]) 1922 return error( 1923 "Invalid TYPE table: Only named structs can be forward referenced"); 1924 assert(ResultTy && "Didn't read a type?"); 1925 TypeList[NumRecords++] = ResultTy; 1926 } 1927 } 1928 1929 Error BitcodeReader::parseOperandBundleTags() { 1930 if (Error Err = Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID)) 1931 return Err; 1932 1933 if (!BundleTags.empty()) 1934 return error("Invalid multiple blocks"); 1935 1936 SmallVector<uint64_t, 64> Record; 1937 1938 while (true) { 1939 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1940 if (!MaybeEntry) 1941 return MaybeEntry.takeError(); 1942 BitstreamEntry Entry = MaybeEntry.get(); 1943 1944 switch (Entry.Kind) { 1945 case BitstreamEntry::SubBlock: // Handled for us already. 1946 case BitstreamEntry::Error: 1947 return error("Malformed block"); 1948 case BitstreamEntry::EndBlock: 1949 return Error::success(); 1950 case BitstreamEntry::Record: 1951 // The interesting case. 1952 break; 1953 } 1954 1955 // Tags are implicitly mapped to integers by their order. 1956 1957 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1958 if (!MaybeRecord) 1959 return MaybeRecord.takeError(); 1960 if (MaybeRecord.get() != bitc::OPERAND_BUNDLE_TAG) 1961 return error("Invalid record"); 1962 1963 // OPERAND_BUNDLE_TAG: [strchr x N] 1964 BundleTags.emplace_back(); 1965 if (convertToString(Record, 0, BundleTags.back())) 1966 return error("Invalid record"); 1967 Record.clear(); 1968 } 1969 } 1970 1971 Error BitcodeReader::parseSyncScopeNames() { 1972 if (Error Err = Stream.EnterSubBlock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID)) 1973 return Err; 1974 1975 if (!SSIDs.empty()) 1976 return error("Invalid multiple synchronization scope names blocks"); 1977 1978 SmallVector<uint64_t, 64> Record; 1979 while (true) { 1980 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1981 if (!MaybeEntry) 1982 return MaybeEntry.takeError(); 1983 BitstreamEntry Entry = MaybeEntry.get(); 1984 1985 switch (Entry.Kind) { 1986 case BitstreamEntry::SubBlock: // Handled for us already. 1987 case BitstreamEntry::Error: 1988 return error("Malformed block"); 1989 case BitstreamEntry::EndBlock: 1990 if (SSIDs.empty()) 1991 return error("Invalid empty synchronization scope names block"); 1992 return Error::success(); 1993 case BitstreamEntry::Record: 1994 // The interesting case. 1995 break; 1996 } 1997 1998 // Synchronization scope names are implicitly mapped to synchronization 1999 // scope IDs by their order. 2000 2001 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2002 if (!MaybeRecord) 2003 return MaybeRecord.takeError(); 2004 if (MaybeRecord.get() != bitc::SYNC_SCOPE_NAME) 2005 return error("Invalid record"); 2006 2007 SmallString<16> SSN; 2008 if (convertToString(Record, 0, SSN)) 2009 return error("Invalid record"); 2010 2011 SSIDs.push_back(Context.getOrInsertSyncScopeID(SSN)); 2012 Record.clear(); 2013 } 2014 } 2015 2016 /// Associate a value with its name from the given index in the provided record. 2017 Expected<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record, 2018 unsigned NameIndex, Triple &TT) { 2019 SmallString<128> ValueName; 2020 if (convertToString(Record, NameIndex, ValueName)) 2021 return error("Invalid record"); 2022 unsigned ValueID = Record[0]; 2023 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 2024 return error("Invalid record"); 2025 Value *V = ValueList[ValueID]; 2026 2027 StringRef NameStr(ValueName.data(), ValueName.size()); 2028 if (NameStr.find_first_of(0) != StringRef::npos) 2029 return error("Invalid value name"); 2030 V->setName(NameStr); 2031 auto *GO = dyn_cast<GlobalObject>(V); 2032 if (GO) { 2033 if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) { 2034 if (TT.supportsCOMDAT()) 2035 GO->setComdat(TheModule->getOrInsertComdat(V->getName())); 2036 else 2037 GO->setComdat(nullptr); 2038 } 2039 } 2040 return V; 2041 } 2042 2043 /// Helper to note and return the current location, and jump to the given 2044 /// offset. 2045 static Expected<uint64_t> jumpToValueSymbolTable(uint64_t Offset, 2046 BitstreamCursor &Stream) { 2047 // Save the current parsing location so we can jump back at the end 2048 // of the VST read. 2049 uint64_t CurrentBit = Stream.GetCurrentBitNo(); 2050 if (Error JumpFailed = Stream.JumpToBit(Offset * 32)) 2051 return std::move(JumpFailed); 2052 Expected<BitstreamEntry> MaybeEntry = Stream.advance(); 2053 if (!MaybeEntry) 2054 return MaybeEntry.takeError(); 2055 assert(MaybeEntry.get().Kind == BitstreamEntry::SubBlock); 2056 assert(MaybeEntry.get().ID == bitc::VALUE_SYMTAB_BLOCK_ID); 2057 return CurrentBit; 2058 } 2059 2060 void BitcodeReader::setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, 2061 Function *F, 2062 ArrayRef<uint64_t> Record) { 2063 // Note that we subtract 1 here because the offset is relative to one word 2064 // before the start of the identification or module block, which was 2065 // historically always the start of the regular bitcode header. 2066 uint64_t FuncWordOffset = Record[1] - 1; 2067 uint64_t FuncBitOffset = FuncWordOffset * 32; 2068 DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta; 2069 // Set the LastFunctionBlockBit to point to the last function block. 2070 // Later when parsing is resumed after function materialization, 2071 // we can simply skip that last function block. 2072 if (FuncBitOffset > LastFunctionBlockBit) 2073 LastFunctionBlockBit = FuncBitOffset; 2074 } 2075 2076 /// Read a new-style GlobalValue symbol table. 2077 Error BitcodeReader::parseGlobalValueSymbolTable() { 2078 unsigned FuncBitcodeOffsetDelta = 2079 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 2080 2081 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 2082 return Err; 2083 2084 SmallVector<uint64_t, 64> Record; 2085 while (true) { 2086 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2087 if (!MaybeEntry) 2088 return MaybeEntry.takeError(); 2089 BitstreamEntry Entry = MaybeEntry.get(); 2090 2091 switch (Entry.Kind) { 2092 case BitstreamEntry::SubBlock: 2093 case BitstreamEntry::Error: 2094 return error("Malformed block"); 2095 case BitstreamEntry::EndBlock: 2096 return Error::success(); 2097 case BitstreamEntry::Record: 2098 break; 2099 } 2100 2101 Record.clear(); 2102 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2103 if (!MaybeRecord) 2104 return MaybeRecord.takeError(); 2105 switch (MaybeRecord.get()) { 2106 case bitc::VST_CODE_FNENTRY: // [valueid, offset] 2107 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, 2108 cast<Function>(ValueList[Record[0]]), Record); 2109 break; 2110 } 2111 } 2112 } 2113 2114 /// Parse the value symbol table at either the current parsing location or 2115 /// at the given bit offset if provided. 2116 Error BitcodeReader::parseValueSymbolTable(uint64_t Offset) { 2117 uint64_t CurrentBit; 2118 // Pass in the Offset to distinguish between calling for the module-level 2119 // VST (where we want to jump to the VST offset) and the function-level 2120 // VST (where we don't). 2121 if (Offset > 0) { 2122 Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream); 2123 if (!MaybeCurrentBit) 2124 return MaybeCurrentBit.takeError(); 2125 CurrentBit = MaybeCurrentBit.get(); 2126 // If this module uses a string table, read this as a module-level VST. 2127 if (UseStrtab) { 2128 if (Error Err = parseGlobalValueSymbolTable()) 2129 return Err; 2130 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 2131 return JumpFailed; 2132 return Error::success(); 2133 } 2134 // Otherwise, the VST will be in a similar format to a function-level VST, 2135 // and will contain symbol names. 2136 } 2137 2138 // Compute the delta between the bitcode indices in the VST (the word offset 2139 // to the word-aligned ENTER_SUBBLOCK for the function block, and that 2140 // expected by the lazy reader. The reader's EnterSubBlock expects to have 2141 // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID 2142 // (size BlockIDWidth). Note that we access the stream's AbbrevID width here 2143 // just before entering the VST subblock because: 1) the EnterSubBlock 2144 // changes the AbbrevID width; 2) the VST block is nested within the same 2145 // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same 2146 // AbbrevID width before calling EnterSubBlock; and 3) when we want to 2147 // jump to the FUNCTION_BLOCK using this offset later, we don't want 2148 // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK. 2149 unsigned FuncBitcodeOffsetDelta = 2150 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 2151 2152 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 2153 return Err; 2154 2155 SmallVector<uint64_t, 64> Record; 2156 2157 Triple TT(TheModule->getTargetTriple()); 2158 2159 // Read all the records for this value table. 2160 SmallString<128> ValueName; 2161 2162 while (true) { 2163 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2164 if (!MaybeEntry) 2165 return MaybeEntry.takeError(); 2166 BitstreamEntry Entry = MaybeEntry.get(); 2167 2168 switch (Entry.Kind) { 2169 case BitstreamEntry::SubBlock: // Handled for us already. 2170 case BitstreamEntry::Error: 2171 return error("Malformed block"); 2172 case BitstreamEntry::EndBlock: 2173 if (Offset > 0) 2174 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 2175 return JumpFailed; 2176 return Error::success(); 2177 case BitstreamEntry::Record: 2178 // The interesting case. 2179 break; 2180 } 2181 2182 // Read a record. 2183 Record.clear(); 2184 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2185 if (!MaybeRecord) 2186 return MaybeRecord.takeError(); 2187 switch (MaybeRecord.get()) { 2188 default: // Default behavior: unknown type. 2189 break; 2190 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 2191 Expected<Value *> ValOrErr = recordValue(Record, 1, TT); 2192 if (Error Err = ValOrErr.takeError()) 2193 return Err; 2194 ValOrErr.get(); 2195 break; 2196 } 2197 case bitc::VST_CODE_FNENTRY: { 2198 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 2199 Expected<Value *> ValOrErr = recordValue(Record, 2, TT); 2200 if (Error Err = ValOrErr.takeError()) 2201 return Err; 2202 Value *V = ValOrErr.get(); 2203 2204 // Ignore function offsets emitted for aliases of functions in older 2205 // versions of LLVM. 2206 if (auto *F = dyn_cast<Function>(V)) 2207 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, F, Record); 2208 break; 2209 } 2210 case bitc::VST_CODE_BBENTRY: { 2211 if (convertToString(Record, 1, ValueName)) 2212 return error("Invalid record"); 2213 BasicBlock *BB = getBasicBlock(Record[0]); 2214 if (!BB) 2215 return error("Invalid record"); 2216 2217 BB->setName(StringRef(ValueName.data(), ValueName.size())); 2218 ValueName.clear(); 2219 break; 2220 } 2221 } 2222 } 2223 } 2224 2225 /// Decode a signed value stored with the sign bit in the LSB for dense VBR 2226 /// encoding. 2227 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { 2228 if ((V & 1) == 0) 2229 return V >> 1; 2230 if (V != 1) 2231 return -(V >> 1); 2232 // There is no such thing as -0 with integers. "-0" really means MININT. 2233 return 1ULL << 63; 2234 } 2235 2236 /// Resolve all of the initializers for global values and aliases that we can. 2237 Error BitcodeReader::resolveGlobalAndIndirectSymbolInits() { 2238 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInitWorklist; 2239 std::vector<std::pair<GlobalIndirectSymbol *, unsigned>> 2240 IndirectSymbolInitWorklist; 2241 std::vector<std::pair<Function *, unsigned>> FunctionPrefixWorklist; 2242 std::vector<std::pair<Function *, unsigned>> FunctionPrologueWorklist; 2243 std::vector<std::pair<Function *, unsigned>> FunctionPersonalityFnWorklist; 2244 2245 GlobalInitWorklist.swap(GlobalInits); 2246 IndirectSymbolInitWorklist.swap(IndirectSymbolInits); 2247 FunctionPrefixWorklist.swap(FunctionPrefixes); 2248 FunctionPrologueWorklist.swap(FunctionPrologues); 2249 FunctionPersonalityFnWorklist.swap(FunctionPersonalityFns); 2250 2251 while (!GlobalInitWorklist.empty()) { 2252 unsigned ValID = GlobalInitWorklist.back().second; 2253 if (ValID >= ValueList.size()) { 2254 // Not ready to resolve this yet, it requires something later in the file. 2255 GlobalInits.push_back(GlobalInitWorklist.back()); 2256 } else { 2257 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2258 GlobalInitWorklist.back().first->setInitializer(C); 2259 else 2260 return error("Expected a constant"); 2261 } 2262 GlobalInitWorklist.pop_back(); 2263 } 2264 2265 while (!IndirectSymbolInitWorklist.empty()) { 2266 unsigned ValID = IndirectSymbolInitWorklist.back().second; 2267 if (ValID >= ValueList.size()) { 2268 IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back()); 2269 } else { 2270 Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]); 2271 if (!C) 2272 return error("Expected a constant"); 2273 GlobalIndirectSymbol *GIS = IndirectSymbolInitWorklist.back().first; 2274 if (isa<GlobalAlias>(GIS) && C->getType() != GIS->getType()) 2275 return error("Alias and aliasee types don't match"); 2276 GIS->setIndirectSymbol(C); 2277 } 2278 IndirectSymbolInitWorklist.pop_back(); 2279 } 2280 2281 while (!FunctionPrefixWorklist.empty()) { 2282 unsigned ValID = FunctionPrefixWorklist.back().second; 2283 if (ValID >= ValueList.size()) { 2284 FunctionPrefixes.push_back(FunctionPrefixWorklist.back()); 2285 } else { 2286 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2287 FunctionPrefixWorklist.back().first->setPrefixData(C); 2288 else 2289 return error("Expected a constant"); 2290 } 2291 FunctionPrefixWorklist.pop_back(); 2292 } 2293 2294 while (!FunctionPrologueWorklist.empty()) { 2295 unsigned ValID = FunctionPrologueWorklist.back().second; 2296 if (ValID >= ValueList.size()) { 2297 FunctionPrologues.push_back(FunctionPrologueWorklist.back()); 2298 } else { 2299 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2300 FunctionPrologueWorklist.back().first->setPrologueData(C); 2301 else 2302 return error("Expected a constant"); 2303 } 2304 FunctionPrologueWorklist.pop_back(); 2305 } 2306 2307 while (!FunctionPersonalityFnWorklist.empty()) { 2308 unsigned ValID = FunctionPersonalityFnWorklist.back().second; 2309 if (ValID >= ValueList.size()) { 2310 FunctionPersonalityFns.push_back(FunctionPersonalityFnWorklist.back()); 2311 } else { 2312 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2313 FunctionPersonalityFnWorklist.back().first->setPersonalityFn(C); 2314 else 2315 return error("Expected a constant"); 2316 } 2317 FunctionPersonalityFnWorklist.pop_back(); 2318 } 2319 2320 return Error::success(); 2321 } 2322 2323 APInt llvm::readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { 2324 SmallVector<uint64_t, 8> Words(Vals.size()); 2325 transform(Vals, Words.begin(), 2326 BitcodeReader::decodeSignRotatedValue); 2327 2328 return APInt(TypeBits, Words); 2329 } 2330 2331 Error BitcodeReader::parseConstants() { 2332 if (Error Err = Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 2333 return Err; 2334 2335 SmallVector<uint64_t, 64> Record; 2336 2337 // Read all the records for this value table. 2338 Type *CurTy = Type::getInt32Ty(Context); 2339 unsigned NextCstNo = ValueList.size(); 2340 2341 struct DelayedShufTy { 2342 VectorType *OpTy; 2343 VectorType *RTy; 2344 uint64_t Op0Idx; 2345 uint64_t Op1Idx; 2346 uint64_t Op2Idx; 2347 unsigned CstNo; 2348 }; 2349 std::vector<DelayedShufTy> DelayedShuffles; 2350 while (true) { 2351 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2352 if (!MaybeEntry) 2353 return MaybeEntry.takeError(); 2354 BitstreamEntry Entry = MaybeEntry.get(); 2355 2356 switch (Entry.Kind) { 2357 case BitstreamEntry::SubBlock: // Handled for us already. 2358 case BitstreamEntry::Error: 2359 return error("Malformed block"); 2360 case BitstreamEntry::EndBlock: 2361 // Once all the constants have been read, go through and resolve forward 2362 // references. 2363 // 2364 // We have to treat shuffles specially because they don't have three 2365 // operands anymore. We need to convert the shuffle mask into an array, 2366 // and we can't convert a forward reference. 2367 for (auto &DelayedShuffle : DelayedShuffles) { 2368 VectorType *OpTy = DelayedShuffle.OpTy; 2369 VectorType *RTy = DelayedShuffle.RTy; 2370 uint64_t Op0Idx = DelayedShuffle.Op0Idx; 2371 uint64_t Op1Idx = DelayedShuffle.Op1Idx; 2372 uint64_t Op2Idx = DelayedShuffle.Op2Idx; 2373 uint64_t CstNo = DelayedShuffle.CstNo; 2374 Constant *Op0 = ValueList.getConstantFwdRef(Op0Idx, OpTy); 2375 Constant *Op1 = ValueList.getConstantFwdRef(Op1Idx, OpTy); 2376 Type *ShufTy = 2377 VectorType::get(Type::getInt32Ty(Context), RTy->getElementCount()); 2378 Constant *Op2 = ValueList.getConstantFwdRef(Op2Idx, ShufTy); 2379 if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2)) 2380 return error("Invalid shufflevector operands"); 2381 SmallVector<int, 16> Mask; 2382 ShuffleVectorInst::getShuffleMask(Op2, Mask); 2383 Value *V = ConstantExpr::getShuffleVector(Op0, Op1, Mask); 2384 ValueList.assignValue(V, CstNo); 2385 } 2386 2387 if (NextCstNo != ValueList.size()) 2388 return error("Invalid constant reference"); 2389 2390 ValueList.resolveConstantForwardRefs(); 2391 return Error::success(); 2392 case BitstreamEntry::Record: 2393 // The interesting case. 2394 break; 2395 } 2396 2397 // Read a record. 2398 Record.clear(); 2399 Type *VoidType = Type::getVoidTy(Context); 2400 Value *V = nullptr; 2401 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 2402 if (!MaybeBitCode) 2403 return MaybeBitCode.takeError(); 2404 switch (unsigned BitCode = MaybeBitCode.get()) { 2405 default: // Default behavior: unknown constant 2406 case bitc::CST_CODE_UNDEF: // UNDEF 2407 V = UndefValue::get(CurTy); 2408 break; 2409 case bitc::CST_CODE_POISON: // POISON 2410 V = PoisonValue::get(CurTy); 2411 break; 2412 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 2413 if (Record.empty()) 2414 return error("Invalid record"); 2415 if (Record[0] >= TypeList.size() || !TypeList[Record[0]]) 2416 return error("Invalid record"); 2417 if (TypeList[Record[0]] == VoidType) 2418 return error("Invalid constant type"); 2419 CurTy = TypeList[Record[0]]; 2420 continue; // Skip the ValueList manipulation. 2421 case bitc::CST_CODE_NULL: // NULL 2422 if (CurTy->isVoidTy() || CurTy->isFunctionTy() || CurTy->isLabelTy()) 2423 return error("Invalid type for a constant null value"); 2424 V = Constant::getNullValue(CurTy); 2425 break; 2426 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 2427 if (!CurTy->isIntegerTy() || Record.empty()) 2428 return error("Invalid record"); 2429 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); 2430 break; 2431 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 2432 if (!CurTy->isIntegerTy() || Record.empty()) 2433 return error("Invalid record"); 2434 2435 APInt VInt = 2436 readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth()); 2437 V = ConstantInt::get(Context, VInt); 2438 2439 break; 2440 } 2441 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 2442 if (Record.empty()) 2443 return error("Invalid record"); 2444 if (CurTy->isHalfTy()) 2445 V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf(), 2446 APInt(16, (uint16_t)Record[0]))); 2447 else if (CurTy->isBFloatTy()) 2448 V = ConstantFP::get(Context, APFloat(APFloat::BFloat(), 2449 APInt(16, (uint32_t)Record[0]))); 2450 else if (CurTy->isFloatTy()) 2451 V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle(), 2452 APInt(32, (uint32_t)Record[0]))); 2453 else if (CurTy->isDoubleTy()) 2454 V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble(), 2455 APInt(64, Record[0]))); 2456 else if (CurTy->isX86_FP80Ty()) { 2457 // Bits are not stored the same way as a normal i80 APInt, compensate. 2458 uint64_t Rearrange[2]; 2459 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 2460 Rearrange[1] = Record[0] >> 48; 2461 V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended(), 2462 APInt(80, Rearrange))); 2463 } else if (CurTy->isFP128Ty()) 2464 V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad(), 2465 APInt(128, Record))); 2466 else if (CurTy->isPPC_FP128Ty()) 2467 V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble(), 2468 APInt(128, Record))); 2469 else 2470 V = UndefValue::get(CurTy); 2471 break; 2472 } 2473 2474 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 2475 if (Record.empty()) 2476 return error("Invalid record"); 2477 2478 unsigned Size = Record.size(); 2479 SmallVector<Constant*, 16> Elts; 2480 2481 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 2482 for (unsigned i = 0; i != Size; ++i) 2483 Elts.push_back(ValueList.getConstantFwdRef(Record[i], 2484 STy->getElementType(i))); 2485 V = ConstantStruct::get(STy, Elts); 2486 } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) { 2487 Type *EltTy = ATy->getElementType(); 2488 for (unsigned i = 0; i != Size; ++i) 2489 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2490 V = ConstantArray::get(ATy, Elts); 2491 } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) { 2492 Type *EltTy = VTy->getElementType(); 2493 for (unsigned i = 0; i != Size; ++i) 2494 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2495 V = ConstantVector::get(Elts); 2496 } else { 2497 V = UndefValue::get(CurTy); 2498 } 2499 break; 2500 } 2501 case bitc::CST_CODE_STRING: // STRING: [values] 2502 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 2503 if (Record.empty()) 2504 return error("Invalid record"); 2505 2506 SmallString<16> Elts(Record.begin(), Record.end()); 2507 V = ConstantDataArray::getString(Context, Elts, 2508 BitCode == bitc::CST_CODE_CSTRING); 2509 break; 2510 } 2511 case bitc::CST_CODE_DATA: {// DATA: [n x value] 2512 if (Record.empty()) 2513 return error("Invalid record"); 2514 2515 Type *EltTy; 2516 if (auto *Array = dyn_cast<ArrayType>(CurTy)) 2517 EltTy = Array->getElementType(); 2518 else 2519 EltTy = cast<VectorType>(CurTy)->getElementType(); 2520 if (EltTy->isIntegerTy(8)) { 2521 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); 2522 if (isa<VectorType>(CurTy)) 2523 V = ConstantDataVector::get(Context, Elts); 2524 else 2525 V = ConstantDataArray::get(Context, Elts); 2526 } else if (EltTy->isIntegerTy(16)) { 2527 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2528 if (isa<VectorType>(CurTy)) 2529 V = ConstantDataVector::get(Context, Elts); 2530 else 2531 V = ConstantDataArray::get(Context, Elts); 2532 } else if (EltTy->isIntegerTy(32)) { 2533 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2534 if (isa<VectorType>(CurTy)) 2535 V = ConstantDataVector::get(Context, Elts); 2536 else 2537 V = ConstantDataArray::get(Context, Elts); 2538 } else if (EltTy->isIntegerTy(64)) { 2539 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2540 if (isa<VectorType>(CurTy)) 2541 V = ConstantDataVector::get(Context, Elts); 2542 else 2543 V = ConstantDataArray::get(Context, Elts); 2544 } else if (EltTy->isHalfTy()) { 2545 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2546 if (isa<VectorType>(CurTy)) 2547 V = ConstantDataVector::getFP(EltTy, Elts); 2548 else 2549 V = ConstantDataArray::getFP(EltTy, Elts); 2550 } else if (EltTy->isBFloatTy()) { 2551 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2552 if (isa<VectorType>(CurTy)) 2553 V = ConstantDataVector::getFP(EltTy, Elts); 2554 else 2555 V = ConstantDataArray::getFP(EltTy, Elts); 2556 } else if (EltTy->isFloatTy()) { 2557 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2558 if (isa<VectorType>(CurTy)) 2559 V = ConstantDataVector::getFP(EltTy, Elts); 2560 else 2561 V = ConstantDataArray::getFP(EltTy, Elts); 2562 } else if (EltTy->isDoubleTy()) { 2563 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2564 if (isa<VectorType>(CurTy)) 2565 V = ConstantDataVector::getFP(EltTy, Elts); 2566 else 2567 V = ConstantDataArray::getFP(EltTy, Elts); 2568 } else { 2569 return error("Invalid type for value"); 2570 } 2571 break; 2572 } 2573 case bitc::CST_CODE_CE_UNOP: { // CE_UNOP: [opcode, opval] 2574 if (Record.size() < 2) 2575 return error("Invalid record"); 2576 int Opc = getDecodedUnaryOpcode(Record[0], CurTy); 2577 if (Opc < 0) { 2578 V = UndefValue::get(CurTy); // Unknown unop. 2579 } else { 2580 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 2581 unsigned Flags = 0; 2582 V = ConstantExpr::get(Opc, LHS, Flags); 2583 } 2584 break; 2585 } 2586 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 2587 if (Record.size() < 3) 2588 return error("Invalid record"); 2589 int Opc = getDecodedBinaryOpcode(Record[0], CurTy); 2590 if (Opc < 0) { 2591 V = UndefValue::get(CurTy); // Unknown binop. 2592 } else { 2593 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 2594 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy); 2595 unsigned Flags = 0; 2596 if (Record.size() >= 4) { 2597 if (Opc == Instruction::Add || 2598 Opc == Instruction::Sub || 2599 Opc == Instruction::Mul || 2600 Opc == Instruction::Shl) { 2601 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 2602 Flags |= OverflowingBinaryOperator::NoSignedWrap; 2603 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 2604 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 2605 } else if (Opc == Instruction::SDiv || 2606 Opc == Instruction::UDiv || 2607 Opc == Instruction::LShr || 2608 Opc == Instruction::AShr) { 2609 if (Record[3] & (1 << bitc::PEO_EXACT)) 2610 Flags |= SDivOperator::IsExact; 2611 } 2612 } 2613 V = ConstantExpr::get(Opc, LHS, RHS, Flags); 2614 } 2615 break; 2616 } 2617 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 2618 if (Record.size() < 3) 2619 return error("Invalid record"); 2620 int Opc = getDecodedCastOpcode(Record[0]); 2621 if (Opc < 0) { 2622 V = UndefValue::get(CurTy); // Unknown cast. 2623 } else { 2624 Type *OpTy = getTypeByID(Record[1]); 2625 if (!OpTy) 2626 return error("Invalid record"); 2627 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy); 2628 V = UpgradeBitCastExpr(Opc, Op, CurTy); 2629 if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy); 2630 } 2631 break; 2632 } 2633 case bitc::CST_CODE_CE_INBOUNDS_GEP: // [ty, n x operands] 2634 case bitc::CST_CODE_CE_GEP: // [ty, n x operands] 2635 case bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX: { // [ty, flags, n x 2636 // operands] 2637 unsigned OpNum = 0; 2638 Type *PointeeType = nullptr; 2639 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX || 2640 Record.size() % 2) 2641 PointeeType = getTypeByID(Record[OpNum++]); 2642 2643 bool InBounds = false; 2644 Optional<unsigned> InRangeIndex; 2645 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX) { 2646 uint64_t Op = Record[OpNum++]; 2647 InBounds = Op & 1; 2648 InRangeIndex = Op >> 1; 2649 } else if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP) 2650 InBounds = true; 2651 2652 SmallVector<Constant*, 16> Elts; 2653 Type *Elt0FullTy = nullptr; 2654 while (OpNum != Record.size()) { 2655 if (!Elt0FullTy) 2656 Elt0FullTy = getTypeByID(Record[OpNum]); 2657 Type *ElTy = getTypeByID(Record[OpNum++]); 2658 if (!ElTy) 2659 return error("Invalid record"); 2660 Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy)); 2661 } 2662 2663 if (Elts.size() < 1) 2664 return error("Invalid gep with no operands"); 2665 2666 PointerType *OrigPtrTy = cast<PointerType>(Elt0FullTy->getScalarType()); 2667 if (!PointeeType) 2668 PointeeType = OrigPtrTy->getElementType(); 2669 else if (!OrigPtrTy->isOpaqueOrPointeeTypeMatches(PointeeType)) 2670 return error("Explicit gep operator type does not match pointee type " 2671 "of pointer operand"); 2672 2673 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 2674 V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices, 2675 InBounds, InRangeIndex); 2676 break; 2677 } 2678 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] 2679 if (Record.size() < 3) 2680 return error("Invalid record"); 2681 2682 Type *SelectorTy = Type::getInt1Ty(Context); 2683 2684 // The selector might be an i1, an <n x i1>, or a <vscale x n x i1> 2685 // Get the type from the ValueList before getting a forward ref. 2686 if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) 2687 if (Value *V = ValueList[Record[0]]) 2688 if (SelectorTy != V->getType()) 2689 SelectorTy = VectorType::get(SelectorTy, 2690 VTy->getElementCount()); 2691 2692 V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0], 2693 SelectorTy), 2694 ValueList.getConstantFwdRef(Record[1],CurTy), 2695 ValueList.getConstantFwdRef(Record[2],CurTy)); 2696 break; 2697 } 2698 case bitc::CST_CODE_CE_EXTRACTELT 2699 : { // CE_EXTRACTELT: [opty, opval, opty, opval] 2700 if (Record.size() < 3) 2701 return error("Invalid record"); 2702 VectorType *OpTy = 2703 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2704 if (!OpTy) 2705 return error("Invalid record"); 2706 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2707 Constant *Op1 = nullptr; 2708 if (Record.size() == 4) { 2709 Type *IdxTy = getTypeByID(Record[2]); 2710 if (!IdxTy) 2711 return error("Invalid record"); 2712 Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2713 } else { 2714 // Deprecated, but still needed to read old bitcode files. 2715 Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2716 } 2717 if (!Op1) 2718 return error("Invalid record"); 2719 V = ConstantExpr::getExtractElement(Op0, Op1); 2720 break; 2721 } 2722 case bitc::CST_CODE_CE_INSERTELT 2723 : { // CE_INSERTELT: [opval, opval, opty, opval] 2724 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2725 if (Record.size() < 3 || !OpTy) 2726 return error("Invalid record"); 2727 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2728 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], 2729 OpTy->getElementType()); 2730 Constant *Op2 = nullptr; 2731 if (Record.size() == 4) { 2732 Type *IdxTy = getTypeByID(Record[2]); 2733 if (!IdxTy) 2734 return error("Invalid record"); 2735 Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2736 } else { 2737 // Deprecated, but still needed to read old bitcode files. 2738 Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2739 } 2740 if (!Op2) 2741 return error("Invalid record"); 2742 V = ConstantExpr::getInsertElement(Op0, Op1, Op2); 2743 break; 2744 } 2745 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 2746 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2747 if (Record.size() < 3 || !OpTy) 2748 return error("Invalid record"); 2749 DelayedShuffles.push_back( 2750 {OpTy, OpTy, Record[0], Record[1], Record[2], NextCstNo}); 2751 ++NextCstNo; 2752 continue; 2753 } 2754 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 2755 VectorType *RTy = dyn_cast<VectorType>(CurTy); 2756 VectorType *OpTy = 2757 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2758 if (Record.size() < 4 || !RTy || !OpTy) 2759 return error("Invalid record"); 2760 DelayedShuffles.push_back( 2761 {OpTy, RTy, Record[1], Record[2], Record[3], NextCstNo}); 2762 ++NextCstNo; 2763 continue; 2764 } 2765 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 2766 if (Record.size() < 4) 2767 return error("Invalid record"); 2768 Type *OpTy = getTypeByID(Record[0]); 2769 if (!OpTy) 2770 return error("Invalid record"); 2771 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2772 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2773 2774 if (OpTy->isFPOrFPVectorTy()) 2775 V = ConstantExpr::getFCmp(Record[3], Op0, Op1); 2776 else 2777 V = ConstantExpr::getICmp(Record[3], Op0, Op1); 2778 break; 2779 } 2780 // This maintains backward compatibility, pre-asm dialect keywords. 2781 // Deprecated, but still needed to read old bitcode files. 2782 case bitc::CST_CODE_INLINEASM_OLD: { 2783 if (Record.size() < 2) 2784 return error("Invalid record"); 2785 std::string AsmStr, ConstrStr; 2786 bool HasSideEffects = Record[0] & 1; 2787 bool IsAlignStack = Record[0] >> 1; 2788 unsigned AsmStrSize = Record[1]; 2789 if (2+AsmStrSize >= Record.size()) 2790 return error("Invalid record"); 2791 unsigned ConstStrSize = Record[2+AsmStrSize]; 2792 if (3+AsmStrSize+ConstStrSize > Record.size()) 2793 return error("Invalid record"); 2794 2795 for (unsigned i = 0; i != AsmStrSize; ++i) 2796 AsmStr += (char)Record[2+i]; 2797 for (unsigned i = 0; i != ConstStrSize; ++i) 2798 ConstrStr += (char)Record[3+AsmStrSize+i]; 2799 UpgradeInlineAsmString(&AsmStr); 2800 V = InlineAsm::get( 2801 cast<FunctionType>(cast<PointerType>(CurTy)->getElementType()), 2802 AsmStr, ConstrStr, HasSideEffects, IsAlignStack); 2803 break; 2804 } 2805 // This version adds support for the asm dialect keywords (e.g., 2806 // inteldialect). 2807 case bitc::CST_CODE_INLINEASM_OLD2: { 2808 if (Record.size() < 2) 2809 return error("Invalid record"); 2810 std::string AsmStr, ConstrStr; 2811 bool HasSideEffects = Record[0] & 1; 2812 bool IsAlignStack = (Record[0] >> 1) & 1; 2813 unsigned AsmDialect = Record[0] >> 2; 2814 unsigned AsmStrSize = Record[1]; 2815 if (2+AsmStrSize >= Record.size()) 2816 return error("Invalid record"); 2817 unsigned ConstStrSize = Record[2+AsmStrSize]; 2818 if (3+AsmStrSize+ConstStrSize > Record.size()) 2819 return error("Invalid record"); 2820 2821 for (unsigned i = 0; i != AsmStrSize; ++i) 2822 AsmStr += (char)Record[2+i]; 2823 for (unsigned i = 0; i != ConstStrSize; ++i) 2824 ConstrStr += (char)Record[3+AsmStrSize+i]; 2825 UpgradeInlineAsmString(&AsmStr); 2826 V = InlineAsm::get( 2827 cast<FunctionType>(cast<PointerType>(CurTy)->getElementType()), 2828 AsmStr, ConstrStr, HasSideEffects, IsAlignStack, 2829 InlineAsm::AsmDialect(AsmDialect)); 2830 break; 2831 } 2832 // This version adds support for the unwind keyword. 2833 case bitc::CST_CODE_INLINEASM: { 2834 if (Record.size() < 2) 2835 return error("Invalid record"); 2836 std::string AsmStr, ConstrStr; 2837 bool HasSideEffects = Record[0] & 1; 2838 bool IsAlignStack = (Record[0] >> 1) & 1; 2839 unsigned AsmDialect = (Record[0] >> 2) & 1; 2840 bool CanThrow = (Record[0] >> 3) & 1; 2841 unsigned AsmStrSize = Record[1]; 2842 if (2 + AsmStrSize >= Record.size()) 2843 return error("Invalid record"); 2844 unsigned ConstStrSize = Record[2 + AsmStrSize]; 2845 if (3 + AsmStrSize + ConstStrSize > Record.size()) 2846 return error("Invalid record"); 2847 2848 for (unsigned i = 0; i != AsmStrSize; ++i) 2849 AsmStr += (char)Record[2 + i]; 2850 for (unsigned i = 0; i != ConstStrSize; ++i) 2851 ConstrStr += (char)Record[3 + AsmStrSize + i]; 2852 UpgradeInlineAsmString(&AsmStr); 2853 V = InlineAsm::get( 2854 cast<FunctionType>(cast<PointerType>(CurTy)->getElementType()), 2855 AsmStr, ConstrStr, HasSideEffects, IsAlignStack, 2856 InlineAsm::AsmDialect(AsmDialect), CanThrow); 2857 break; 2858 } 2859 case bitc::CST_CODE_BLOCKADDRESS:{ 2860 if (Record.size() < 3) 2861 return error("Invalid record"); 2862 Type *FnTy = getTypeByID(Record[0]); 2863 if (!FnTy) 2864 return error("Invalid record"); 2865 Function *Fn = 2866 dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy)); 2867 if (!Fn) 2868 return error("Invalid record"); 2869 2870 // If the function is already parsed we can insert the block address right 2871 // away. 2872 BasicBlock *BB; 2873 unsigned BBID = Record[2]; 2874 if (!BBID) 2875 // Invalid reference to entry block. 2876 return error("Invalid ID"); 2877 if (!Fn->empty()) { 2878 Function::iterator BBI = Fn->begin(), BBE = Fn->end(); 2879 for (size_t I = 0, E = BBID; I != E; ++I) { 2880 if (BBI == BBE) 2881 return error("Invalid ID"); 2882 ++BBI; 2883 } 2884 BB = &*BBI; 2885 } else { 2886 // Otherwise insert a placeholder and remember it so it can be inserted 2887 // when the function is parsed. 2888 auto &FwdBBs = BasicBlockFwdRefs[Fn]; 2889 if (FwdBBs.empty()) 2890 BasicBlockFwdRefQueue.push_back(Fn); 2891 if (FwdBBs.size() < BBID + 1) 2892 FwdBBs.resize(BBID + 1); 2893 if (!FwdBBs[BBID]) 2894 FwdBBs[BBID] = BasicBlock::Create(Context); 2895 BB = FwdBBs[BBID]; 2896 } 2897 V = BlockAddress::get(Fn, BB); 2898 break; 2899 } 2900 case bitc::CST_CODE_DSO_LOCAL_EQUIVALENT: { 2901 if (Record.size() < 2) 2902 return error("Invalid record"); 2903 Type *GVTy = getTypeByID(Record[0]); 2904 if (!GVTy) 2905 return error("Invalid record"); 2906 GlobalValue *GV = dyn_cast_or_null<GlobalValue>( 2907 ValueList.getConstantFwdRef(Record[1], GVTy)); 2908 if (!GV) 2909 return error("Invalid record"); 2910 2911 V = DSOLocalEquivalent::get(GV); 2912 break; 2913 } 2914 } 2915 2916 ValueList.assignValue(V, NextCstNo); 2917 ++NextCstNo; 2918 } 2919 } 2920 2921 Error BitcodeReader::parseUseLists() { 2922 if (Error Err = Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 2923 return Err; 2924 2925 // Read all the records. 2926 SmallVector<uint64_t, 64> Record; 2927 2928 while (true) { 2929 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2930 if (!MaybeEntry) 2931 return MaybeEntry.takeError(); 2932 BitstreamEntry Entry = MaybeEntry.get(); 2933 2934 switch (Entry.Kind) { 2935 case BitstreamEntry::SubBlock: // Handled for us already. 2936 case BitstreamEntry::Error: 2937 return error("Malformed block"); 2938 case BitstreamEntry::EndBlock: 2939 return Error::success(); 2940 case BitstreamEntry::Record: 2941 // The interesting case. 2942 break; 2943 } 2944 2945 // Read a use list record. 2946 Record.clear(); 2947 bool IsBB = false; 2948 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2949 if (!MaybeRecord) 2950 return MaybeRecord.takeError(); 2951 switch (MaybeRecord.get()) { 2952 default: // Default behavior: unknown type. 2953 break; 2954 case bitc::USELIST_CODE_BB: 2955 IsBB = true; 2956 LLVM_FALLTHROUGH; 2957 case bitc::USELIST_CODE_DEFAULT: { 2958 unsigned RecordLength = Record.size(); 2959 if (RecordLength < 3) 2960 // Records should have at least an ID and two indexes. 2961 return error("Invalid record"); 2962 unsigned ID = Record.pop_back_val(); 2963 2964 Value *V; 2965 if (IsBB) { 2966 assert(ID < FunctionBBs.size() && "Basic block not found"); 2967 V = FunctionBBs[ID]; 2968 } else 2969 V = ValueList[ID]; 2970 unsigned NumUses = 0; 2971 SmallDenseMap<const Use *, unsigned, 16> Order; 2972 for (const Use &U : V->materialized_uses()) { 2973 if (++NumUses > Record.size()) 2974 break; 2975 Order[&U] = Record[NumUses - 1]; 2976 } 2977 if (Order.size() != Record.size() || NumUses > Record.size()) 2978 // Mismatches can happen if the functions are being materialized lazily 2979 // (out-of-order), or a value has been upgraded. 2980 break; 2981 2982 V->sortUseList([&](const Use &L, const Use &R) { 2983 return Order.lookup(&L) < Order.lookup(&R); 2984 }); 2985 break; 2986 } 2987 } 2988 } 2989 } 2990 2991 /// When we see the block for metadata, remember where it is and then skip it. 2992 /// This lets us lazily deserialize the metadata. 2993 Error BitcodeReader::rememberAndSkipMetadata() { 2994 // Save the current stream state. 2995 uint64_t CurBit = Stream.GetCurrentBitNo(); 2996 DeferredMetadataInfo.push_back(CurBit); 2997 2998 // Skip over the block for now. 2999 if (Error Err = Stream.SkipBlock()) 3000 return Err; 3001 return Error::success(); 3002 } 3003 3004 Error BitcodeReader::materializeMetadata() { 3005 for (uint64_t BitPos : DeferredMetadataInfo) { 3006 // Move the bit stream to the saved position. 3007 if (Error JumpFailed = Stream.JumpToBit(BitPos)) 3008 return JumpFailed; 3009 if (Error Err = MDLoader->parseModuleMetadata()) 3010 return Err; 3011 } 3012 3013 // Upgrade "Linker Options" module flag to "llvm.linker.options" module-level 3014 // metadata. Only upgrade if the new option doesn't exist to avoid upgrade 3015 // multiple times. 3016 if (!TheModule->getNamedMetadata("llvm.linker.options")) { 3017 if (Metadata *Val = TheModule->getModuleFlag("Linker Options")) { 3018 NamedMDNode *LinkerOpts = 3019 TheModule->getOrInsertNamedMetadata("llvm.linker.options"); 3020 for (const MDOperand &MDOptions : cast<MDNode>(Val)->operands()) 3021 LinkerOpts->addOperand(cast<MDNode>(MDOptions)); 3022 } 3023 } 3024 3025 DeferredMetadataInfo.clear(); 3026 return Error::success(); 3027 } 3028 3029 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; } 3030 3031 /// When we see the block for a function body, remember where it is and then 3032 /// skip it. This lets us lazily deserialize the functions. 3033 Error BitcodeReader::rememberAndSkipFunctionBody() { 3034 // Get the function we are talking about. 3035 if (FunctionsWithBodies.empty()) 3036 return error("Insufficient function protos"); 3037 3038 Function *Fn = FunctionsWithBodies.back(); 3039 FunctionsWithBodies.pop_back(); 3040 3041 // Save the current stream state. 3042 uint64_t CurBit = Stream.GetCurrentBitNo(); 3043 assert( 3044 (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) && 3045 "Mismatch between VST and scanned function offsets"); 3046 DeferredFunctionInfo[Fn] = CurBit; 3047 3048 // Skip over the function block for now. 3049 if (Error Err = Stream.SkipBlock()) 3050 return Err; 3051 return Error::success(); 3052 } 3053 3054 Error BitcodeReader::globalCleanup() { 3055 // Patch the initializers for globals and aliases up. 3056 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 3057 return Err; 3058 if (!GlobalInits.empty() || !IndirectSymbolInits.empty()) 3059 return error("Malformed global initializer set"); 3060 3061 // Look for intrinsic functions which need to be upgraded at some point 3062 // and functions that need to have their function attributes upgraded. 3063 for (Function &F : *TheModule) { 3064 MDLoader->upgradeDebugIntrinsics(F); 3065 Function *NewFn; 3066 if (UpgradeIntrinsicFunction(&F, NewFn)) 3067 UpgradedIntrinsics[&F] = NewFn; 3068 else if (auto Remangled = Intrinsic::remangleIntrinsicFunction(&F)) 3069 // Some types could be renamed during loading if several modules are 3070 // loaded in the same LLVMContext (LTO scenario). In this case we should 3071 // remangle intrinsics names as well. 3072 RemangledIntrinsics[&F] = Remangled.getValue(); 3073 // Look for functions that rely on old function attribute behavior. 3074 UpgradeFunctionAttributes(F); 3075 } 3076 3077 // Look for global variables which need to be renamed. 3078 std::vector<std::pair<GlobalVariable *, GlobalVariable *>> UpgradedVariables; 3079 for (GlobalVariable &GV : TheModule->globals()) 3080 if (GlobalVariable *Upgraded = UpgradeGlobalVariable(&GV)) 3081 UpgradedVariables.emplace_back(&GV, Upgraded); 3082 for (auto &Pair : UpgradedVariables) { 3083 Pair.first->eraseFromParent(); 3084 TheModule->getGlobalList().push_back(Pair.second); 3085 } 3086 3087 // Force deallocation of memory for these vectors to favor the client that 3088 // want lazy deserialization. 3089 std::vector<std::pair<GlobalVariable *, unsigned>>().swap(GlobalInits); 3090 std::vector<std::pair<GlobalIndirectSymbol *, unsigned>>().swap( 3091 IndirectSymbolInits); 3092 return Error::success(); 3093 } 3094 3095 /// Support for lazy parsing of function bodies. This is required if we 3096 /// either have an old bitcode file without a VST forward declaration record, 3097 /// or if we have an anonymous function being materialized, since anonymous 3098 /// functions do not have a name and are therefore not in the VST. 3099 Error BitcodeReader::rememberAndSkipFunctionBodies() { 3100 if (Error JumpFailed = Stream.JumpToBit(NextUnreadBit)) 3101 return JumpFailed; 3102 3103 if (Stream.AtEndOfStream()) 3104 return error("Could not find function in stream"); 3105 3106 if (!SeenFirstFunctionBody) 3107 return error("Trying to materialize functions before seeing function blocks"); 3108 3109 // An old bitcode file with the symbol table at the end would have 3110 // finished the parse greedily. 3111 assert(SeenValueSymbolTable); 3112 3113 SmallVector<uint64_t, 64> Record; 3114 3115 while (true) { 3116 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 3117 if (!MaybeEntry) 3118 return MaybeEntry.takeError(); 3119 llvm::BitstreamEntry Entry = MaybeEntry.get(); 3120 3121 switch (Entry.Kind) { 3122 default: 3123 return error("Expect SubBlock"); 3124 case BitstreamEntry::SubBlock: 3125 switch (Entry.ID) { 3126 default: 3127 return error("Expect function block"); 3128 case bitc::FUNCTION_BLOCK_ID: 3129 if (Error Err = rememberAndSkipFunctionBody()) 3130 return Err; 3131 NextUnreadBit = Stream.GetCurrentBitNo(); 3132 return Error::success(); 3133 } 3134 } 3135 } 3136 } 3137 3138 bool BitcodeReaderBase::readBlockInfo() { 3139 Expected<Optional<BitstreamBlockInfo>> MaybeNewBlockInfo = 3140 Stream.ReadBlockInfoBlock(); 3141 if (!MaybeNewBlockInfo) 3142 return true; // FIXME Handle the error. 3143 Optional<BitstreamBlockInfo> NewBlockInfo = 3144 std::move(MaybeNewBlockInfo.get()); 3145 if (!NewBlockInfo) 3146 return true; 3147 BlockInfo = std::move(*NewBlockInfo); 3148 return false; 3149 } 3150 3151 Error BitcodeReader::parseComdatRecord(ArrayRef<uint64_t> Record) { 3152 // v1: [selection_kind, name] 3153 // v2: [strtab_offset, strtab_size, selection_kind] 3154 StringRef Name; 3155 std::tie(Name, Record) = readNameFromStrtab(Record); 3156 3157 if (Record.empty()) 3158 return error("Invalid record"); 3159 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]); 3160 std::string OldFormatName; 3161 if (!UseStrtab) { 3162 if (Record.size() < 2) 3163 return error("Invalid record"); 3164 unsigned ComdatNameSize = Record[1]; 3165 OldFormatName.reserve(ComdatNameSize); 3166 for (unsigned i = 0; i != ComdatNameSize; ++i) 3167 OldFormatName += (char)Record[2 + i]; 3168 Name = OldFormatName; 3169 } 3170 Comdat *C = TheModule->getOrInsertComdat(Name); 3171 C->setSelectionKind(SK); 3172 ComdatList.push_back(C); 3173 return Error::success(); 3174 } 3175 3176 static void inferDSOLocal(GlobalValue *GV) { 3177 // infer dso_local from linkage and visibility if it is not encoded. 3178 if (GV->hasLocalLinkage() || 3179 (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())) 3180 GV->setDSOLocal(true); 3181 } 3182 3183 Error BitcodeReader::parseGlobalVarRecord(ArrayRef<uint64_t> Record) { 3184 // v1: [pointer type, isconst, initid, linkage, alignment, section, 3185 // visibility, threadlocal, unnamed_addr, externally_initialized, 3186 // dllstorageclass, comdat, attributes, preemption specifier, 3187 // partition strtab offset, partition strtab size] (name in VST) 3188 // v2: [strtab_offset, strtab_size, v1] 3189 StringRef Name; 3190 std::tie(Name, Record) = readNameFromStrtab(Record); 3191 3192 if (Record.size() < 6) 3193 return error("Invalid record"); 3194 Type *Ty = getTypeByID(Record[0]); 3195 if (!Ty) 3196 return error("Invalid record"); 3197 bool isConstant = Record[1] & 1; 3198 bool explicitType = Record[1] & 2; 3199 unsigned AddressSpace; 3200 if (explicitType) { 3201 AddressSpace = Record[1] >> 2; 3202 } else { 3203 if (!Ty->isPointerTy()) 3204 return error("Invalid type for value"); 3205 AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 3206 Ty = cast<PointerType>(Ty)->getElementType(); 3207 } 3208 3209 uint64_t RawLinkage = Record[3]; 3210 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 3211 MaybeAlign Alignment; 3212 if (Error Err = parseAlignmentValue(Record[4], Alignment)) 3213 return Err; 3214 std::string Section; 3215 if (Record[5]) { 3216 if (Record[5] - 1 >= SectionTable.size()) 3217 return error("Invalid ID"); 3218 Section = SectionTable[Record[5] - 1]; 3219 } 3220 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 3221 // Local linkage must have default visibility. 3222 // auto-upgrade `hidden` and `protected` for old bitcode. 3223 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage)) 3224 Visibility = getDecodedVisibility(Record[6]); 3225 3226 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; 3227 if (Record.size() > 7) 3228 TLM = getDecodedThreadLocalMode(Record[7]); 3229 3230 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 3231 if (Record.size() > 8) 3232 UnnamedAddr = getDecodedUnnamedAddrType(Record[8]); 3233 3234 bool ExternallyInitialized = false; 3235 if (Record.size() > 9) 3236 ExternallyInitialized = Record[9]; 3237 3238 GlobalVariable *NewGV = 3239 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, Name, 3240 nullptr, TLM, AddressSpace, ExternallyInitialized); 3241 NewGV->setAlignment(Alignment); 3242 if (!Section.empty()) 3243 NewGV->setSection(Section); 3244 NewGV->setVisibility(Visibility); 3245 NewGV->setUnnamedAddr(UnnamedAddr); 3246 3247 if (Record.size() > 10) 3248 NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10])); 3249 else 3250 upgradeDLLImportExportLinkage(NewGV, RawLinkage); 3251 3252 ValueList.push_back(NewGV); 3253 3254 // Remember which value to use for the global initializer. 3255 if (unsigned InitID = Record[2]) 3256 GlobalInits.push_back(std::make_pair(NewGV, InitID - 1)); 3257 3258 if (Record.size() > 11) { 3259 if (unsigned ComdatID = Record[11]) { 3260 if (ComdatID > ComdatList.size()) 3261 return error("Invalid global variable comdat ID"); 3262 NewGV->setComdat(ComdatList[ComdatID - 1]); 3263 } 3264 } else if (hasImplicitComdat(RawLinkage)) { 3265 NewGV->setComdat(reinterpret_cast<Comdat *>(1)); 3266 } 3267 3268 if (Record.size() > 12) { 3269 auto AS = getAttributes(Record[12]).getFnAttributes(); 3270 NewGV->setAttributes(AS); 3271 } 3272 3273 if (Record.size() > 13) { 3274 NewGV->setDSOLocal(getDecodedDSOLocal(Record[13])); 3275 } 3276 inferDSOLocal(NewGV); 3277 3278 // Check whether we have enough values to read a partition name. 3279 if (Record.size() > 15) 3280 NewGV->setPartition(StringRef(Strtab.data() + Record[14], Record[15])); 3281 3282 return Error::success(); 3283 } 3284 3285 Error BitcodeReader::parseFunctionRecord(ArrayRef<uint64_t> Record) { 3286 // v1: [type, callingconv, isproto, linkage, paramattr, alignment, section, 3287 // visibility, gc, unnamed_addr, prologuedata, dllstorageclass, comdat, 3288 // prefixdata, personalityfn, preemption specifier, addrspace] (name in VST) 3289 // v2: [strtab_offset, strtab_size, v1] 3290 StringRef Name; 3291 std::tie(Name, Record) = readNameFromStrtab(Record); 3292 3293 if (Record.size() < 8) 3294 return error("Invalid record"); 3295 Type *FTy = getTypeByID(Record[0]); 3296 if (!FTy) 3297 return error("Invalid record"); 3298 if (auto *PTy = dyn_cast<PointerType>(FTy)) 3299 FTy = PTy->getElementType(); 3300 3301 if (!isa<FunctionType>(FTy)) 3302 return error("Invalid type for value"); 3303 auto CC = static_cast<CallingConv::ID>(Record[1]); 3304 if (CC & ~CallingConv::MaxID) 3305 return error("Invalid calling convention ID"); 3306 3307 unsigned AddrSpace = TheModule->getDataLayout().getProgramAddressSpace(); 3308 if (Record.size() > 16) 3309 AddrSpace = Record[16]; 3310 3311 Function *Func = 3312 Function::Create(cast<FunctionType>(FTy), GlobalValue::ExternalLinkage, 3313 AddrSpace, Name, TheModule); 3314 3315 assert(Func->getFunctionType() == FTy && 3316 "Incorrect fully specified type provided for function"); 3317 FunctionTypes[Func] = cast<FunctionType>(FTy); 3318 3319 Func->setCallingConv(CC); 3320 bool isProto = Record[2]; 3321 uint64_t RawLinkage = Record[3]; 3322 Func->setLinkage(getDecodedLinkage(RawLinkage)); 3323 Func->setAttributes(getAttributes(Record[4])); 3324 3325 // Upgrade any old-style byval or sret without a type by propagating the 3326 // argument's pointee type. There should be no opaque pointers where the byval 3327 // type is implicit. 3328 for (unsigned i = 0; i != Func->arg_size(); ++i) { 3329 for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet, 3330 Attribute::InAlloca}) { 3331 if (!Func->hasParamAttribute(i, Kind)) 3332 continue; 3333 3334 Func->removeParamAttr(i, Kind); 3335 3336 Type *PTy = cast<FunctionType>(FTy)->getParamType(i); 3337 Type *PtrEltTy = cast<PointerType>(PTy)->getElementType(); 3338 Attribute NewAttr; 3339 switch (Kind) { 3340 case Attribute::ByVal: 3341 NewAttr = Attribute::getWithByValType(Context, PtrEltTy); 3342 break; 3343 case Attribute::StructRet: 3344 NewAttr = Attribute::getWithStructRetType(Context, PtrEltTy); 3345 break; 3346 case Attribute::InAlloca: 3347 NewAttr = Attribute::getWithInAllocaType(Context, PtrEltTy); 3348 break; 3349 default: 3350 llvm_unreachable("not an upgraded type attribute"); 3351 } 3352 3353 Func->addParamAttr(i, NewAttr); 3354 } 3355 } 3356 3357 MaybeAlign Alignment; 3358 if (Error Err = parseAlignmentValue(Record[5], Alignment)) 3359 return Err; 3360 Func->setAlignment(Alignment); 3361 if (Record[6]) { 3362 if (Record[6] - 1 >= SectionTable.size()) 3363 return error("Invalid ID"); 3364 Func->setSection(SectionTable[Record[6] - 1]); 3365 } 3366 // Local linkage must have default visibility. 3367 // auto-upgrade `hidden` and `protected` for old bitcode. 3368 if (!Func->hasLocalLinkage()) 3369 Func->setVisibility(getDecodedVisibility(Record[7])); 3370 if (Record.size() > 8 && Record[8]) { 3371 if (Record[8] - 1 >= GCTable.size()) 3372 return error("Invalid ID"); 3373 Func->setGC(GCTable[Record[8] - 1]); 3374 } 3375 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 3376 if (Record.size() > 9) 3377 UnnamedAddr = getDecodedUnnamedAddrType(Record[9]); 3378 Func->setUnnamedAddr(UnnamedAddr); 3379 if (Record.size() > 10 && Record[10] != 0) 3380 FunctionPrologues.push_back(std::make_pair(Func, Record[10] - 1)); 3381 3382 if (Record.size() > 11) 3383 Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11])); 3384 else 3385 upgradeDLLImportExportLinkage(Func, RawLinkage); 3386 3387 if (Record.size() > 12) { 3388 if (unsigned ComdatID = Record[12]) { 3389 if (ComdatID > ComdatList.size()) 3390 return error("Invalid function comdat ID"); 3391 Func->setComdat(ComdatList[ComdatID - 1]); 3392 } 3393 } else if (hasImplicitComdat(RawLinkage)) { 3394 Func->setComdat(reinterpret_cast<Comdat *>(1)); 3395 } 3396 3397 if (Record.size() > 13 && Record[13] != 0) 3398 FunctionPrefixes.push_back(std::make_pair(Func, Record[13] - 1)); 3399 3400 if (Record.size() > 14 && Record[14] != 0) 3401 FunctionPersonalityFns.push_back(std::make_pair(Func, Record[14] - 1)); 3402 3403 if (Record.size() > 15) { 3404 Func->setDSOLocal(getDecodedDSOLocal(Record[15])); 3405 } 3406 inferDSOLocal(Func); 3407 3408 // Record[16] is the address space number. 3409 3410 // Check whether we have enough values to read a partition name. Also make 3411 // sure Strtab has enough values. 3412 if (Record.size() > 18 && Strtab.data() && 3413 Record[17] + Record[18] <= Strtab.size()) { 3414 Func->setPartition(StringRef(Strtab.data() + Record[17], Record[18])); 3415 } 3416 3417 ValueList.push_back(Func); 3418 3419 // If this is a function with a body, remember the prototype we are 3420 // creating now, so that we can match up the body with them later. 3421 if (!isProto) { 3422 Func->setIsMaterializable(true); 3423 FunctionsWithBodies.push_back(Func); 3424 DeferredFunctionInfo[Func] = 0; 3425 } 3426 return Error::success(); 3427 } 3428 3429 Error BitcodeReader::parseGlobalIndirectSymbolRecord( 3430 unsigned BitCode, ArrayRef<uint64_t> Record) { 3431 // v1 ALIAS_OLD: [alias type, aliasee val#, linkage] (name in VST) 3432 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, 3433 // dllstorageclass, threadlocal, unnamed_addr, 3434 // preemption specifier] (name in VST) 3435 // v1 IFUNC: [alias type, addrspace, aliasee val#, linkage, 3436 // visibility, dllstorageclass, threadlocal, unnamed_addr, 3437 // preemption specifier] (name in VST) 3438 // v2: [strtab_offset, strtab_size, v1] 3439 StringRef Name; 3440 std::tie(Name, Record) = readNameFromStrtab(Record); 3441 3442 bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD; 3443 if (Record.size() < (3 + (unsigned)NewRecord)) 3444 return error("Invalid record"); 3445 unsigned OpNum = 0; 3446 Type *Ty = getTypeByID(Record[OpNum++]); 3447 if (!Ty) 3448 return error("Invalid record"); 3449 3450 unsigned AddrSpace; 3451 if (!NewRecord) { 3452 auto *PTy = dyn_cast<PointerType>(Ty); 3453 if (!PTy) 3454 return error("Invalid type for value"); 3455 Ty = PTy->getElementType(); 3456 AddrSpace = PTy->getAddressSpace(); 3457 } else { 3458 AddrSpace = Record[OpNum++]; 3459 } 3460 3461 auto Val = Record[OpNum++]; 3462 auto Linkage = Record[OpNum++]; 3463 GlobalIndirectSymbol *NewGA; 3464 if (BitCode == bitc::MODULE_CODE_ALIAS || 3465 BitCode == bitc::MODULE_CODE_ALIAS_OLD) 3466 NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name, 3467 TheModule); 3468 else 3469 NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name, 3470 nullptr, TheModule); 3471 3472 // Local linkage must have default visibility. 3473 // auto-upgrade `hidden` and `protected` for old bitcode. 3474 if (OpNum != Record.size()) { 3475 auto VisInd = OpNum++; 3476 if (!NewGA->hasLocalLinkage()) 3477 NewGA->setVisibility(getDecodedVisibility(Record[VisInd])); 3478 } 3479 if (BitCode == bitc::MODULE_CODE_ALIAS || 3480 BitCode == bitc::MODULE_CODE_ALIAS_OLD) { 3481 if (OpNum != Record.size()) 3482 NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++])); 3483 else 3484 upgradeDLLImportExportLinkage(NewGA, Linkage); 3485 if (OpNum != Record.size()) 3486 NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++])); 3487 if (OpNum != Record.size()) 3488 NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++])); 3489 } 3490 if (OpNum != Record.size()) 3491 NewGA->setDSOLocal(getDecodedDSOLocal(Record[OpNum++])); 3492 inferDSOLocal(NewGA); 3493 3494 // Check whether we have enough values to read a partition name. 3495 if (OpNum + 1 < Record.size()) { 3496 NewGA->setPartition( 3497 StringRef(Strtab.data() + Record[OpNum], Record[OpNum + 1])); 3498 OpNum += 2; 3499 } 3500 3501 ValueList.push_back(NewGA); 3502 IndirectSymbolInits.push_back(std::make_pair(NewGA, Val)); 3503 return Error::success(); 3504 } 3505 3506 Error BitcodeReader::parseModule(uint64_t ResumeBit, 3507 bool ShouldLazyLoadMetadata, 3508 DataLayoutCallbackTy DataLayoutCallback) { 3509 if (ResumeBit) { 3510 if (Error JumpFailed = Stream.JumpToBit(ResumeBit)) 3511 return JumpFailed; 3512 } else if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 3513 return Err; 3514 3515 SmallVector<uint64_t, 64> Record; 3516 3517 // Parts of bitcode parsing depend on the datalayout. Make sure we 3518 // finalize the datalayout before we run any of that code. 3519 bool ResolvedDataLayout = false; 3520 auto ResolveDataLayout = [&] { 3521 if (ResolvedDataLayout) 3522 return; 3523 3524 // datalayout and triple can't be parsed after this point. 3525 ResolvedDataLayout = true; 3526 3527 // Upgrade data layout string. 3528 std::string DL = llvm::UpgradeDataLayoutString( 3529 TheModule->getDataLayoutStr(), TheModule->getTargetTriple()); 3530 TheModule->setDataLayout(DL); 3531 3532 if (auto LayoutOverride = 3533 DataLayoutCallback(TheModule->getTargetTriple())) 3534 TheModule->setDataLayout(*LayoutOverride); 3535 }; 3536 3537 // Read all the records for this module. 3538 while (true) { 3539 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 3540 if (!MaybeEntry) 3541 return MaybeEntry.takeError(); 3542 llvm::BitstreamEntry Entry = MaybeEntry.get(); 3543 3544 switch (Entry.Kind) { 3545 case BitstreamEntry::Error: 3546 return error("Malformed block"); 3547 case BitstreamEntry::EndBlock: 3548 ResolveDataLayout(); 3549 return globalCleanup(); 3550 3551 case BitstreamEntry::SubBlock: 3552 switch (Entry.ID) { 3553 default: // Skip unknown content. 3554 if (Error Err = Stream.SkipBlock()) 3555 return Err; 3556 break; 3557 case bitc::BLOCKINFO_BLOCK_ID: 3558 if (readBlockInfo()) 3559 return error("Malformed block"); 3560 break; 3561 case bitc::PARAMATTR_BLOCK_ID: 3562 if (Error Err = parseAttributeBlock()) 3563 return Err; 3564 break; 3565 case bitc::PARAMATTR_GROUP_BLOCK_ID: 3566 if (Error Err = parseAttributeGroupBlock()) 3567 return Err; 3568 break; 3569 case bitc::TYPE_BLOCK_ID_NEW: 3570 if (Error Err = parseTypeTable()) 3571 return Err; 3572 break; 3573 case bitc::VALUE_SYMTAB_BLOCK_ID: 3574 if (!SeenValueSymbolTable) { 3575 // Either this is an old form VST without function index and an 3576 // associated VST forward declaration record (which would have caused 3577 // the VST to be jumped to and parsed before it was encountered 3578 // normally in the stream), or there were no function blocks to 3579 // trigger an earlier parsing of the VST. 3580 assert(VSTOffset == 0 || FunctionsWithBodies.empty()); 3581 if (Error Err = parseValueSymbolTable()) 3582 return Err; 3583 SeenValueSymbolTable = true; 3584 } else { 3585 // We must have had a VST forward declaration record, which caused 3586 // the parser to jump to and parse the VST earlier. 3587 assert(VSTOffset > 0); 3588 if (Error Err = Stream.SkipBlock()) 3589 return Err; 3590 } 3591 break; 3592 case bitc::CONSTANTS_BLOCK_ID: 3593 if (Error Err = parseConstants()) 3594 return Err; 3595 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 3596 return Err; 3597 break; 3598 case bitc::METADATA_BLOCK_ID: 3599 if (ShouldLazyLoadMetadata) { 3600 if (Error Err = rememberAndSkipMetadata()) 3601 return Err; 3602 break; 3603 } 3604 assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata"); 3605 if (Error Err = MDLoader->parseModuleMetadata()) 3606 return Err; 3607 break; 3608 case bitc::METADATA_KIND_BLOCK_ID: 3609 if (Error Err = MDLoader->parseMetadataKinds()) 3610 return Err; 3611 break; 3612 case bitc::FUNCTION_BLOCK_ID: 3613 ResolveDataLayout(); 3614 3615 // If this is the first function body we've seen, reverse the 3616 // FunctionsWithBodies list. 3617 if (!SeenFirstFunctionBody) { 3618 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 3619 if (Error Err = globalCleanup()) 3620 return Err; 3621 SeenFirstFunctionBody = true; 3622 } 3623 3624 if (VSTOffset > 0) { 3625 // If we have a VST forward declaration record, make sure we 3626 // parse the VST now if we haven't already. It is needed to 3627 // set up the DeferredFunctionInfo vector for lazy reading. 3628 if (!SeenValueSymbolTable) { 3629 if (Error Err = BitcodeReader::parseValueSymbolTable(VSTOffset)) 3630 return Err; 3631 SeenValueSymbolTable = true; 3632 // Fall through so that we record the NextUnreadBit below. 3633 // This is necessary in case we have an anonymous function that 3634 // is later materialized. Since it will not have a VST entry we 3635 // need to fall back to the lazy parse to find its offset. 3636 } else { 3637 // If we have a VST forward declaration record, but have already 3638 // parsed the VST (just above, when the first function body was 3639 // encountered here), then we are resuming the parse after 3640 // materializing functions. The ResumeBit points to the 3641 // start of the last function block recorded in the 3642 // DeferredFunctionInfo map. Skip it. 3643 if (Error Err = Stream.SkipBlock()) 3644 return Err; 3645 continue; 3646 } 3647 } 3648 3649 // Support older bitcode files that did not have the function 3650 // index in the VST, nor a VST forward declaration record, as 3651 // well as anonymous functions that do not have VST entries. 3652 // Build the DeferredFunctionInfo vector on the fly. 3653 if (Error Err = rememberAndSkipFunctionBody()) 3654 return Err; 3655 3656 // Suspend parsing when we reach the function bodies. Subsequent 3657 // materialization calls will resume it when necessary. If the bitcode 3658 // file is old, the symbol table will be at the end instead and will not 3659 // have been seen yet. In this case, just finish the parse now. 3660 if (SeenValueSymbolTable) { 3661 NextUnreadBit = Stream.GetCurrentBitNo(); 3662 // After the VST has been parsed, we need to make sure intrinsic name 3663 // are auto-upgraded. 3664 return globalCleanup(); 3665 } 3666 break; 3667 case bitc::USELIST_BLOCK_ID: 3668 if (Error Err = parseUseLists()) 3669 return Err; 3670 break; 3671 case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID: 3672 if (Error Err = parseOperandBundleTags()) 3673 return Err; 3674 break; 3675 case bitc::SYNC_SCOPE_NAMES_BLOCK_ID: 3676 if (Error Err = parseSyncScopeNames()) 3677 return Err; 3678 break; 3679 } 3680 continue; 3681 3682 case BitstreamEntry::Record: 3683 // The interesting case. 3684 break; 3685 } 3686 3687 // Read a record. 3688 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 3689 if (!MaybeBitCode) 3690 return MaybeBitCode.takeError(); 3691 switch (unsigned BitCode = MaybeBitCode.get()) { 3692 default: break; // Default behavior, ignore unknown content. 3693 case bitc::MODULE_CODE_VERSION: { 3694 Expected<unsigned> VersionOrErr = parseVersionRecord(Record); 3695 if (!VersionOrErr) 3696 return VersionOrErr.takeError(); 3697 UseRelativeIDs = *VersionOrErr >= 1; 3698 break; 3699 } 3700 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 3701 if (ResolvedDataLayout) 3702 return error("target triple too late in module"); 3703 std::string S; 3704 if (convertToString(Record, 0, S)) 3705 return error("Invalid record"); 3706 TheModule->setTargetTriple(S); 3707 break; 3708 } 3709 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 3710 if (ResolvedDataLayout) 3711 return error("datalayout too late in module"); 3712 std::string S; 3713 if (convertToString(Record, 0, S)) 3714 return error("Invalid record"); 3715 TheModule->setDataLayout(S); 3716 break; 3717 } 3718 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 3719 std::string S; 3720 if (convertToString(Record, 0, S)) 3721 return error("Invalid record"); 3722 TheModule->setModuleInlineAsm(S); 3723 break; 3724 } 3725 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 3726 // Deprecated, but still needed to read old bitcode files. 3727 std::string S; 3728 if (convertToString(Record, 0, S)) 3729 return error("Invalid record"); 3730 // Ignore value. 3731 break; 3732 } 3733 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 3734 std::string S; 3735 if (convertToString(Record, 0, S)) 3736 return error("Invalid record"); 3737 SectionTable.push_back(S); 3738 break; 3739 } 3740 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 3741 std::string S; 3742 if (convertToString(Record, 0, S)) 3743 return error("Invalid record"); 3744 GCTable.push_back(S); 3745 break; 3746 } 3747 case bitc::MODULE_CODE_COMDAT: 3748 if (Error Err = parseComdatRecord(Record)) 3749 return Err; 3750 break; 3751 case bitc::MODULE_CODE_GLOBALVAR: 3752 if (Error Err = parseGlobalVarRecord(Record)) 3753 return Err; 3754 break; 3755 case bitc::MODULE_CODE_FUNCTION: 3756 ResolveDataLayout(); 3757 if (Error Err = parseFunctionRecord(Record)) 3758 return Err; 3759 break; 3760 case bitc::MODULE_CODE_IFUNC: 3761 case bitc::MODULE_CODE_ALIAS: 3762 case bitc::MODULE_CODE_ALIAS_OLD: 3763 if (Error Err = parseGlobalIndirectSymbolRecord(BitCode, Record)) 3764 return Err; 3765 break; 3766 /// MODULE_CODE_VSTOFFSET: [offset] 3767 case bitc::MODULE_CODE_VSTOFFSET: 3768 if (Record.empty()) 3769 return error("Invalid record"); 3770 // Note that we subtract 1 here because the offset is relative to one word 3771 // before the start of the identification or module block, which was 3772 // historically always the start of the regular bitcode header. 3773 VSTOffset = Record[0] - 1; 3774 break; 3775 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 3776 case bitc::MODULE_CODE_SOURCE_FILENAME: 3777 SmallString<128> ValueName; 3778 if (convertToString(Record, 0, ValueName)) 3779 return error("Invalid record"); 3780 TheModule->setSourceFileName(ValueName); 3781 break; 3782 } 3783 Record.clear(); 3784 } 3785 } 3786 3787 Error BitcodeReader::parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata, 3788 bool IsImporting, 3789 DataLayoutCallbackTy DataLayoutCallback) { 3790 TheModule = M; 3791 MDLoader = MetadataLoader(Stream, *M, ValueList, IsImporting, 3792 [&](unsigned ID) { return getTypeByID(ID); }); 3793 return parseModule(0, ShouldLazyLoadMetadata, DataLayoutCallback); 3794 } 3795 3796 Error BitcodeReader::typeCheckLoadStoreInst(Type *ValType, Type *PtrType) { 3797 if (!isa<PointerType>(PtrType)) 3798 return error("Load/Store operand is not a pointer type"); 3799 3800 if (!cast<PointerType>(PtrType)->isOpaqueOrPointeeTypeMatches(ValType)) 3801 return error("Explicit load/store type does not match pointee " 3802 "type of pointer operand"); 3803 if (!PointerType::isLoadableOrStorableType(ValType)) 3804 return error("Cannot load/store from pointer"); 3805 return Error::success(); 3806 } 3807 3808 void BitcodeReader::propagateByValSRetTypes(CallBase *CB, 3809 ArrayRef<Type *> ArgsTys) { 3810 for (unsigned i = 0; i != CB->arg_size(); ++i) { 3811 for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet, 3812 Attribute::InAlloca}) { 3813 if (!CB->paramHasAttr(i, Kind)) 3814 continue; 3815 3816 CB->removeParamAttr(i, Kind); 3817 3818 Type *PtrEltTy = cast<PointerType>(ArgsTys[i])->getElementType(); 3819 Attribute NewAttr; 3820 switch (Kind) { 3821 case Attribute::ByVal: 3822 NewAttr = Attribute::getWithByValType(Context, PtrEltTy); 3823 break; 3824 case Attribute::StructRet: 3825 NewAttr = Attribute::getWithStructRetType(Context, PtrEltTy); 3826 break; 3827 case Attribute::InAlloca: 3828 NewAttr = Attribute::getWithInAllocaType(Context, PtrEltTy); 3829 break; 3830 default: 3831 llvm_unreachable("not an upgraded type attribute"); 3832 } 3833 3834 CB->addParamAttr(i, NewAttr); 3835 } 3836 } 3837 } 3838 3839 /// Lazily parse the specified function body block. 3840 Error BitcodeReader::parseFunctionBody(Function *F) { 3841 if (Error Err = Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 3842 return Err; 3843 3844 // Unexpected unresolved metadata when parsing function. 3845 if (MDLoader->hasFwdRefs()) 3846 return error("Invalid function metadata: incoming forward references"); 3847 3848 InstructionList.clear(); 3849 unsigned ModuleValueListSize = ValueList.size(); 3850 unsigned ModuleMDLoaderSize = MDLoader->size(); 3851 3852 // Add all the function arguments to the value table. 3853 #ifndef NDEBUG 3854 unsigned ArgNo = 0; 3855 FunctionType *FTy = FunctionTypes[F]; 3856 #endif 3857 for (Argument &I : F->args()) { 3858 assert(I.getType() == FTy->getParamType(ArgNo++) && 3859 "Incorrect fully specified type for Function Argument"); 3860 ValueList.push_back(&I); 3861 } 3862 unsigned NextValueNo = ValueList.size(); 3863 BasicBlock *CurBB = nullptr; 3864 unsigned CurBBNo = 0; 3865 3866 DebugLoc LastLoc; 3867 auto getLastInstruction = [&]() -> Instruction * { 3868 if (CurBB && !CurBB->empty()) 3869 return &CurBB->back(); 3870 else if (CurBBNo && FunctionBBs[CurBBNo - 1] && 3871 !FunctionBBs[CurBBNo - 1]->empty()) 3872 return &FunctionBBs[CurBBNo - 1]->back(); 3873 return nullptr; 3874 }; 3875 3876 std::vector<OperandBundleDef> OperandBundles; 3877 3878 // Read all the records. 3879 SmallVector<uint64_t, 64> Record; 3880 3881 while (true) { 3882 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 3883 if (!MaybeEntry) 3884 return MaybeEntry.takeError(); 3885 llvm::BitstreamEntry Entry = MaybeEntry.get(); 3886 3887 switch (Entry.Kind) { 3888 case BitstreamEntry::Error: 3889 return error("Malformed block"); 3890 case BitstreamEntry::EndBlock: 3891 goto OutOfRecordLoop; 3892 3893 case BitstreamEntry::SubBlock: 3894 switch (Entry.ID) { 3895 default: // Skip unknown content. 3896 if (Error Err = Stream.SkipBlock()) 3897 return Err; 3898 break; 3899 case bitc::CONSTANTS_BLOCK_ID: 3900 if (Error Err = parseConstants()) 3901 return Err; 3902 NextValueNo = ValueList.size(); 3903 break; 3904 case bitc::VALUE_SYMTAB_BLOCK_ID: 3905 if (Error Err = parseValueSymbolTable()) 3906 return Err; 3907 break; 3908 case bitc::METADATA_ATTACHMENT_ID: 3909 if (Error Err = MDLoader->parseMetadataAttachment(*F, InstructionList)) 3910 return Err; 3911 break; 3912 case bitc::METADATA_BLOCK_ID: 3913 assert(DeferredMetadataInfo.empty() && 3914 "Must read all module-level metadata before function-level"); 3915 if (Error Err = MDLoader->parseFunctionMetadata()) 3916 return Err; 3917 break; 3918 case bitc::USELIST_BLOCK_ID: 3919 if (Error Err = parseUseLists()) 3920 return Err; 3921 break; 3922 } 3923 continue; 3924 3925 case BitstreamEntry::Record: 3926 // The interesting case. 3927 break; 3928 } 3929 3930 // Read a record. 3931 Record.clear(); 3932 Instruction *I = nullptr; 3933 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 3934 if (!MaybeBitCode) 3935 return MaybeBitCode.takeError(); 3936 switch (unsigned BitCode = MaybeBitCode.get()) { 3937 default: // Default behavior: reject 3938 return error("Invalid value"); 3939 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks] 3940 if (Record.empty() || Record[0] == 0) 3941 return error("Invalid record"); 3942 // Create all the basic blocks for the function. 3943 FunctionBBs.resize(Record[0]); 3944 3945 // See if anything took the address of blocks in this function. 3946 auto BBFRI = BasicBlockFwdRefs.find(F); 3947 if (BBFRI == BasicBlockFwdRefs.end()) { 3948 for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i) 3949 FunctionBBs[i] = BasicBlock::Create(Context, "", F); 3950 } else { 3951 auto &BBRefs = BBFRI->second; 3952 // Check for invalid basic block references. 3953 if (BBRefs.size() > FunctionBBs.size()) 3954 return error("Invalid ID"); 3955 assert(!BBRefs.empty() && "Unexpected empty array"); 3956 assert(!BBRefs.front() && "Invalid reference to entry block"); 3957 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E; 3958 ++I) 3959 if (I < RE && BBRefs[I]) { 3960 BBRefs[I]->insertInto(F); 3961 FunctionBBs[I] = BBRefs[I]; 3962 } else { 3963 FunctionBBs[I] = BasicBlock::Create(Context, "", F); 3964 } 3965 3966 // Erase from the table. 3967 BasicBlockFwdRefs.erase(BBFRI); 3968 } 3969 3970 CurBB = FunctionBBs[0]; 3971 continue; 3972 } 3973 3974 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 3975 // This record indicates that the last instruction is at the same 3976 // location as the previous instruction with a location. 3977 I = getLastInstruction(); 3978 3979 if (!I) 3980 return error("Invalid record"); 3981 I->setDebugLoc(LastLoc); 3982 I = nullptr; 3983 continue; 3984 3985 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 3986 I = getLastInstruction(); 3987 if (!I || Record.size() < 4) 3988 return error("Invalid record"); 3989 3990 unsigned Line = Record[0], Col = Record[1]; 3991 unsigned ScopeID = Record[2], IAID = Record[3]; 3992 bool isImplicitCode = Record.size() == 5 && Record[4]; 3993 3994 MDNode *Scope = nullptr, *IA = nullptr; 3995 if (ScopeID) { 3996 Scope = dyn_cast_or_null<MDNode>( 3997 MDLoader->getMetadataFwdRefOrLoad(ScopeID - 1)); 3998 if (!Scope) 3999 return error("Invalid record"); 4000 } 4001 if (IAID) { 4002 IA = dyn_cast_or_null<MDNode>( 4003 MDLoader->getMetadataFwdRefOrLoad(IAID - 1)); 4004 if (!IA) 4005 return error("Invalid record"); 4006 } 4007 LastLoc = DILocation::get(Scope->getContext(), Line, Col, Scope, IA, 4008 isImplicitCode); 4009 I->setDebugLoc(LastLoc); 4010 I = nullptr; 4011 continue; 4012 } 4013 case bitc::FUNC_CODE_INST_UNOP: { // UNOP: [opval, ty, opcode] 4014 unsigned OpNum = 0; 4015 Value *LHS; 4016 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 4017 OpNum+1 > Record.size()) 4018 return error("Invalid record"); 4019 4020 int Opc = getDecodedUnaryOpcode(Record[OpNum++], LHS->getType()); 4021 if (Opc == -1) 4022 return error("Invalid record"); 4023 I = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS); 4024 InstructionList.push_back(I); 4025 if (OpNum < Record.size()) { 4026 if (isa<FPMathOperator>(I)) { 4027 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 4028 if (FMF.any()) 4029 I->setFastMathFlags(FMF); 4030 } 4031 } 4032 break; 4033 } 4034 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 4035 unsigned OpNum = 0; 4036 Value *LHS, *RHS; 4037 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 4038 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 4039 OpNum+1 > Record.size()) 4040 return error("Invalid record"); 4041 4042 int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 4043 if (Opc == -1) 4044 return error("Invalid record"); 4045 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 4046 InstructionList.push_back(I); 4047 if (OpNum < Record.size()) { 4048 if (Opc == Instruction::Add || 4049 Opc == Instruction::Sub || 4050 Opc == Instruction::Mul || 4051 Opc == Instruction::Shl) { 4052 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 4053 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 4054 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 4055 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 4056 } else if (Opc == Instruction::SDiv || 4057 Opc == Instruction::UDiv || 4058 Opc == Instruction::LShr || 4059 Opc == Instruction::AShr) { 4060 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 4061 cast<BinaryOperator>(I)->setIsExact(true); 4062 } else if (isa<FPMathOperator>(I)) { 4063 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 4064 if (FMF.any()) 4065 I->setFastMathFlags(FMF); 4066 } 4067 4068 } 4069 break; 4070 } 4071 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 4072 unsigned OpNum = 0; 4073 Value *Op; 4074 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4075 OpNum+2 != Record.size()) 4076 return error("Invalid record"); 4077 4078 Type *ResTy = getTypeByID(Record[OpNum]); 4079 int Opc = getDecodedCastOpcode(Record[OpNum + 1]); 4080 if (Opc == -1 || !ResTy) 4081 return error("Invalid record"); 4082 Instruction *Temp = nullptr; 4083 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) { 4084 if (Temp) { 4085 InstructionList.push_back(Temp); 4086 assert(CurBB && "No current BB?"); 4087 CurBB->getInstList().push_back(Temp); 4088 } 4089 } else { 4090 auto CastOp = (Instruction::CastOps)Opc; 4091 if (!CastInst::castIsValid(CastOp, Op, ResTy)) 4092 return error("Invalid cast"); 4093 I = CastInst::Create(CastOp, Op, ResTy); 4094 } 4095 InstructionList.push_back(I); 4096 break; 4097 } 4098 case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD: 4099 case bitc::FUNC_CODE_INST_GEP_OLD: 4100 case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands] 4101 unsigned OpNum = 0; 4102 4103 Type *Ty; 4104 bool InBounds; 4105 4106 if (BitCode == bitc::FUNC_CODE_INST_GEP) { 4107 InBounds = Record[OpNum++]; 4108 Ty = getTypeByID(Record[OpNum++]); 4109 } else { 4110 InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD; 4111 Ty = nullptr; 4112 } 4113 4114 Value *BasePtr; 4115 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr)) 4116 return error("Invalid record"); 4117 4118 if (!Ty) { 4119 Ty = cast<PointerType>(BasePtr->getType()->getScalarType()) 4120 ->getElementType(); 4121 } else if (!cast<PointerType>(BasePtr->getType()->getScalarType()) 4122 ->isOpaqueOrPointeeTypeMatches(Ty)) { 4123 return error( 4124 "Explicit gep type does not match pointee type of pointer operand"); 4125 } 4126 4127 SmallVector<Value*, 16> GEPIdx; 4128 while (OpNum != Record.size()) { 4129 Value *Op; 4130 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4131 return error("Invalid record"); 4132 GEPIdx.push_back(Op); 4133 } 4134 4135 I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx); 4136 4137 InstructionList.push_back(I); 4138 if (InBounds) 4139 cast<GetElementPtrInst>(I)->setIsInBounds(true); 4140 break; 4141 } 4142 4143 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 4144 // EXTRACTVAL: [opty, opval, n x indices] 4145 unsigned OpNum = 0; 4146 Value *Agg; 4147 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 4148 return error("Invalid record"); 4149 Type *Ty = Agg->getType(); 4150 4151 unsigned RecSize = Record.size(); 4152 if (OpNum == RecSize) 4153 return error("EXTRACTVAL: Invalid instruction with 0 indices"); 4154 4155 SmallVector<unsigned, 4> EXTRACTVALIdx; 4156 for (; OpNum != RecSize; ++OpNum) { 4157 bool IsArray = Ty->isArrayTy(); 4158 bool IsStruct = Ty->isStructTy(); 4159 uint64_t Index = Record[OpNum]; 4160 4161 if (!IsStruct && !IsArray) 4162 return error("EXTRACTVAL: Invalid type"); 4163 if ((unsigned)Index != Index) 4164 return error("Invalid value"); 4165 if (IsStruct && Index >= Ty->getStructNumElements()) 4166 return error("EXTRACTVAL: Invalid struct index"); 4167 if (IsArray && Index >= Ty->getArrayNumElements()) 4168 return error("EXTRACTVAL: Invalid array index"); 4169 EXTRACTVALIdx.push_back((unsigned)Index); 4170 4171 if (IsStruct) 4172 Ty = Ty->getStructElementType(Index); 4173 else 4174 Ty = Ty->getArrayElementType(); 4175 } 4176 4177 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 4178 InstructionList.push_back(I); 4179 break; 4180 } 4181 4182 case bitc::FUNC_CODE_INST_INSERTVAL: { 4183 // INSERTVAL: [opty, opval, opty, opval, n x indices] 4184 unsigned OpNum = 0; 4185 Value *Agg; 4186 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 4187 return error("Invalid record"); 4188 Value *Val; 4189 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 4190 return error("Invalid record"); 4191 4192 unsigned RecSize = Record.size(); 4193 if (OpNum == RecSize) 4194 return error("INSERTVAL: Invalid instruction with 0 indices"); 4195 4196 SmallVector<unsigned, 4> INSERTVALIdx; 4197 Type *CurTy = Agg->getType(); 4198 for (; OpNum != RecSize; ++OpNum) { 4199 bool IsArray = CurTy->isArrayTy(); 4200 bool IsStruct = CurTy->isStructTy(); 4201 uint64_t Index = Record[OpNum]; 4202 4203 if (!IsStruct && !IsArray) 4204 return error("INSERTVAL: Invalid type"); 4205 if ((unsigned)Index != Index) 4206 return error("Invalid value"); 4207 if (IsStruct && Index >= CurTy->getStructNumElements()) 4208 return error("INSERTVAL: Invalid struct index"); 4209 if (IsArray && Index >= CurTy->getArrayNumElements()) 4210 return error("INSERTVAL: Invalid array index"); 4211 4212 INSERTVALIdx.push_back((unsigned)Index); 4213 if (IsStruct) 4214 CurTy = CurTy->getStructElementType(Index); 4215 else 4216 CurTy = CurTy->getArrayElementType(); 4217 } 4218 4219 if (CurTy != Val->getType()) 4220 return error("Inserted value type doesn't match aggregate type"); 4221 4222 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 4223 InstructionList.push_back(I); 4224 break; 4225 } 4226 4227 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 4228 // obsolete form of select 4229 // handles select i1 ... in old bitcode 4230 unsigned OpNum = 0; 4231 Value *TrueVal, *FalseVal, *Cond; 4232 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 4233 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 4234 popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond)) 4235 return error("Invalid record"); 4236 4237 I = SelectInst::Create(Cond, TrueVal, FalseVal); 4238 InstructionList.push_back(I); 4239 break; 4240 } 4241 4242 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 4243 // new form of select 4244 // handles select i1 or select [N x i1] 4245 unsigned OpNum = 0; 4246 Value *TrueVal, *FalseVal, *Cond; 4247 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 4248 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 4249 getValueTypePair(Record, OpNum, NextValueNo, Cond)) 4250 return error("Invalid record"); 4251 4252 // select condition can be either i1 or [N x i1] 4253 if (VectorType* vector_type = 4254 dyn_cast<VectorType>(Cond->getType())) { 4255 // expect <n x i1> 4256 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 4257 return error("Invalid type for value"); 4258 } else { 4259 // expect i1 4260 if (Cond->getType() != Type::getInt1Ty(Context)) 4261 return error("Invalid type for value"); 4262 } 4263 4264 I = SelectInst::Create(Cond, TrueVal, FalseVal); 4265 InstructionList.push_back(I); 4266 if (OpNum < Record.size() && isa<FPMathOperator>(I)) { 4267 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 4268 if (FMF.any()) 4269 I->setFastMathFlags(FMF); 4270 } 4271 break; 4272 } 4273 4274 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 4275 unsigned OpNum = 0; 4276 Value *Vec, *Idx; 4277 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 4278 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 4279 return error("Invalid record"); 4280 if (!Vec->getType()->isVectorTy()) 4281 return error("Invalid type for value"); 4282 I = ExtractElementInst::Create(Vec, Idx); 4283 InstructionList.push_back(I); 4284 break; 4285 } 4286 4287 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 4288 unsigned OpNum = 0; 4289 Value *Vec, *Elt, *Idx; 4290 if (getValueTypePair(Record, OpNum, NextValueNo, Vec)) 4291 return error("Invalid record"); 4292 if (!Vec->getType()->isVectorTy()) 4293 return error("Invalid type for value"); 4294 if (popValue(Record, OpNum, NextValueNo, 4295 cast<VectorType>(Vec->getType())->getElementType(), Elt) || 4296 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 4297 return error("Invalid record"); 4298 I = InsertElementInst::Create(Vec, Elt, Idx); 4299 InstructionList.push_back(I); 4300 break; 4301 } 4302 4303 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 4304 unsigned OpNum = 0; 4305 Value *Vec1, *Vec2, *Mask; 4306 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) || 4307 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2)) 4308 return error("Invalid record"); 4309 4310 if (getValueTypePair(Record, OpNum, NextValueNo, Mask)) 4311 return error("Invalid record"); 4312 if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy()) 4313 return error("Invalid type for value"); 4314 4315 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 4316 InstructionList.push_back(I); 4317 break; 4318 } 4319 4320 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 4321 // Old form of ICmp/FCmp returning bool 4322 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 4323 // both legal on vectors but had different behaviour. 4324 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 4325 // FCmp/ICmp returning bool or vector of bool 4326 4327 unsigned OpNum = 0; 4328 Value *LHS, *RHS; 4329 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 4330 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS)) 4331 return error("Invalid record"); 4332 4333 if (OpNum >= Record.size()) 4334 return error( 4335 "Invalid record: operand number exceeded available operands"); 4336 4337 unsigned PredVal = Record[OpNum]; 4338 bool IsFP = LHS->getType()->isFPOrFPVectorTy(); 4339 FastMathFlags FMF; 4340 if (IsFP && Record.size() > OpNum+1) 4341 FMF = getDecodedFastMathFlags(Record[++OpNum]); 4342 4343 if (OpNum+1 != Record.size()) 4344 return error("Invalid record"); 4345 4346 if (LHS->getType()->isFPOrFPVectorTy()) 4347 I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS); 4348 else 4349 I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS); 4350 4351 if (FMF.any()) 4352 I->setFastMathFlags(FMF); 4353 InstructionList.push_back(I); 4354 break; 4355 } 4356 4357 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 4358 { 4359 unsigned Size = Record.size(); 4360 if (Size == 0) { 4361 I = ReturnInst::Create(Context); 4362 InstructionList.push_back(I); 4363 break; 4364 } 4365 4366 unsigned OpNum = 0; 4367 Value *Op = nullptr; 4368 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4369 return error("Invalid record"); 4370 if (OpNum != Record.size()) 4371 return error("Invalid record"); 4372 4373 I = ReturnInst::Create(Context, Op); 4374 InstructionList.push_back(I); 4375 break; 4376 } 4377 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 4378 if (Record.size() != 1 && Record.size() != 3) 4379 return error("Invalid record"); 4380 BasicBlock *TrueDest = getBasicBlock(Record[0]); 4381 if (!TrueDest) 4382 return error("Invalid record"); 4383 4384 if (Record.size() == 1) { 4385 I = BranchInst::Create(TrueDest); 4386 InstructionList.push_back(I); 4387 } 4388 else { 4389 BasicBlock *FalseDest = getBasicBlock(Record[1]); 4390 Value *Cond = getValue(Record, 2, NextValueNo, 4391 Type::getInt1Ty(Context)); 4392 if (!FalseDest || !Cond) 4393 return error("Invalid record"); 4394 I = BranchInst::Create(TrueDest, FalseDest, Cond); 4395 InstructionList.push_back(I); 4396 } 4397 break; 4398 } 4399 case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#] 4400 if (Record.size() != 1 && Record.size() != 2) 4401 return error("Invalid record"); 4402 unsigned Idx = 0; 4403 Value *CleanupPad = 4404 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4405 if (!CleanupPad) 4406 return error("Invalid record"); 4407 BasicBlock *UnwindDest = nullptr; 4408 if (Record.size() == 2) { 4409 UnwindDest = getBasicBlock(Record[Idx++]); 4410 if (!UnwindDest) 4411 return error("Invalid record"); 4412 } 4413 4414 I = CleanupReturnInst::Create(CleanupPad, UnwindDest); 4415 InstructionList.push_back(I); 4416 break; 4417 } 4418 case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#] 4419 if (Record.size() != 2) 4420 return error("Invalid record"); 4421 unsigned Idx = 0; 4422 Value *CatchPad = 4423 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4424 if (!CatchPad) 4425 return error("Invalid record"); 4426 BasicBlock *BB = getBasicBlock(Record[Idx++]); 4427 if (!BB) 4428 return error("Invalid record"); 4429 4430 I = CatchReturnInst::Create(CatchPad, BB); 4431 InstructionList.push_back(I); 4432 break; 4433 } 4434 case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?] 4435 // We must have, at minimum, the outer scope and the number of arguments. 4436 if (Record.size() < 2) 4437 return error("Invalid record"); 4438 4439 unsigned Idx = 0; 4440 4441 Value *ParentPad = 4442 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4443 4444 unsigned NumHandlers = Record[Idx++]; 4445 4446 SmallVector<BasicBlock *, 2> Handlers; 4447 for (unsigned Op = 0; Op != NumHandlers; ++Op) { 4448 BasicBlock *BB = getBasicBlock(Record[Idx++]); 4449 if (!BB) 4450 return error("Invalid record"); 4451 Handlers.push_back(BB); 4452 } 4453 4454 BasicBlock *UnwindDest = nullptr; 4455 if (Idx + 1 == Record.size()) { 4456 UnwindDest = getBasicBlock(Record[Idx++]); 4457 if (!UnwindDest) 4458 return error("Invalid record"); 4459 } 4460 4461 if (Record.size() != Idx) 4462 return error("Invalid record"); 4463 4464 auto *CatchSwitch = 4465 CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers); 4466 for (BasicBlock *Handler : Handlers) 4467 CatchSwitch->addHandler(Handler); 4468 I = CatchSwitch; 4469 InstructionList.push_back(I); 4470 break; 4471 } 4472 case bitc::FUNC_CODE_INST_CATCHPAD: 4473 case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*] 4474 // We must have, at minimum, the outer scope and the number of arguments. 4475 if (Record.size() < 2) 4476 return error("Invalid record"); 4477 4478 unsigned Idx = 0; 4479 4480 Value *ParentPad = 4481 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4482 4483 unsigned NumArgOperands = Record[Idx++]; 4484 4485 SmallVector<Value *, 2> Args; 4486 for (unsigned Op = 0; Op != NumArgOperands; ++Op) { 4487 Value *Val; 4488 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 4489 return error("Invalid record"); 4490 Args.push_back(Val); 4491 } 4492 4493 if (Record.size() != Idx) 4494 return error("Invalid record"); 4495 4496 if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD) 4497 I = CleanupPadInst::Create(ParentPad, Args); 4498 else 4499 I = CatchPadInst::Create(ParentPad, Args); 4500 InstructionList.push_back(I); 4501 break; 4502 } 4503 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 4504 // Check magic 4505 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { 4506 // "New" SwitchInst format with case ranges. The changes to write this 4507 // format were reverted but we still recognize bitcode that uses it. 4508 // Hopefully someday we will have support for case ranges and can use 4509 // this format again. 4510 4511 Type *OpTy = getTypeByID(Record[1]); 4512 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); 4513 4514 Value *Cond = getValue(Record, 2, NextValueNo, OpTy); 4515 BasicBlock *Default = getBasicBlock(Record[3]); 4516 if (!OpTy || !Cond || !Default) 4517 return error("Invalid record"); 4518 4519 unsigned NumCases = Record[4]; 4520 4521 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 4522 InstructionList.push_back(SI); 4523 4524 unsigned CurIdx = 5; 4525 for (unsigned i = 0; i != NumCases; ++i) { 4526 SmallVector<ConstantInt*, 1> CaseVals; 4527 unsigned NumItems = Record[CurIdx++]; 4528 for (unsigned ci = 0; ci != NumItems; ++ci) { 4529 bool isSingleNumber = Record[CurIdx++]; 4530 4531 APInt Low; 4532 unsigned ActiveWords = 1; 4533 if (ValueBitWidth > 64) 4534 ActiveWords = Record[CurIdx++]; 4535 Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 4536 ValueBitWidth); 4537 CurIdx += ActiveWords; 4538 4539 if (!isSingleNumber) { 4540 ActiveWords = 1; 4541 if (ValueBitWidth > 64) 4542 ActiveWords = Record[CurIdx++]; 4543 APInt High = readWideAPInt( 4544 makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth); 4545 CurIdx += ActiveWords; 4546 4547 // FIXME: It is not clear whether values in the range should be 4548 // compared as signed or unsigned values. The partially 4549 // implemented changes that used this format in the past used 4550 // unsigned comparisons. 4551 for ( ; Low.ule(High); ++Low) 4552 CaseVals.push_back(ConstantInt::get(Context, Low)); 4553 } else 4554 CaseVals.push_back(ConstantInt::get(Context, Low)); 4555 } 4556 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); 4557 for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(), 4558 cve = CaseVals.end(); cvi != cve; ++cvi) 4559 SI->addCase(*cvi, DestBB); 4560 } 4561 I = SI; 4562 break; 4563 } 4564 4565 // Old SwitchInst format without case ranges. 4566 4567 if (Record.size() < 3 || (Record.size() & 1) == 0) 4568 return error("Invalid record"); 4569 Type *OpTy = getTypeByID(Record[0]); 4570 Value *Cond = getValue(Record, 1, NextValueNo, OpTy); 4571 BasicBlock *Default = getBasicBlock(Record[2]); 4572 if (!OpTy || !Cond || !Default) 4573 return error("Invalid record"); 4574 unsigned NumCases = (Record.size()-3)/2; 4575 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 4576 InstructionList.push_back(SI); 4577 for (unsigned i = 0, e = NumCases; i != e; ++i) { 4578 ConstantInt *CaseVal = 4579 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy)); 4580 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 4581 if (!CaseVal || !DestBB) { 4582 delete SI; 4583 return error("Invalid record"); 4584 } 4585 SI->addCase(CaseVal, DestBB); 4586 } 4587 I = SI; 4588 break; 4589 } 4590 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 4591 if (Record.size() < 2) 4592 return error("Invalid record"); 4593 Type *OpTy = getTypeByID(Record[0]); 4594 Value *Address = getValue(Record, 1, NextValueNo, OpTy); 4595 if (!OpTy || !Address) 4596 return error("Invalid record"); 4597 unsigned NumDests = Record.size()-2; 4598 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 4599 InstructionList.push_back(IBI); 4600 for (unsigned i = 0, e = NumDests; i != e; ++i) { 4601 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 4602 IBI->addDestination(DestBB); 4603 } else { 4604 delete IBI; 4605 return error("Invalid record"); 4606 } 4607 } 4608 I = IBI; 4609 break; 4610 } 4611 4612 case bitc::FUNC_CODE_INST_INVOKE: { 4613 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 4614 if (Record.size() < 4) 4615 return error("Invalid record"); 4616 unsigned OpNum = 0; 4617 AttributeList PAL = getAttributes(Record[OpNum++]); 4618 unsigned CCInfo = Record[OpNum++]; 4619 BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]); 4620 BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]); 4621 4622 FunctionType *FTy = nullptr; 4623 if ((CCInfo >> 13) & 1) { 4624 FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])); 4625 if (!FTy) 4626 return error("Explicit invoke type is not a function type"); 4627 } 4628 4629 Value *Callee; 4630 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 4631 return error("Invalid record"); 4632 4633 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 4634 if (!CalleeTy) 4635 return error("Callee is not a pointer"); 4636 if (!FTy) { 4637 FTy = dyn_cast<FunctionType>( 4638 cast<PointerType>(Callee->getType())->getElementType()); 4639 if (!FTy) 4640 return error("Callee is not of pointer to function type"); 4641 } else if (!CalleeTy->isOpaqueOrPointeeTypeMatches(FTy)) 4642 return error("Explicit invoke type does not match pointee type of " 4643 "callee operand"); 4644 if (Record.size() < FTy->getNumParams() + OpNum) 4645 return error("Insufficient operands to call"); 4646 4647 SmallVector<Value*, 16> Ops; 4648 SmallVector<Type *, 16> ArgsTys; 4649 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 4650 Ops.push_back(getValue(Record, OpNum, NextValueNo, 4651 FTy->getParamType(i))); 4652 ArgsTys.push_back(FTy->getParamType(i)); 4653 if (!Ops.back()) 4654 return error("Invalid record"); 4655 } 4656 4657 if (!FTy->isVarArg()) { 4658 if (Record.size() != OpNum) 4659 return error("Invalid record"); 4660 } else { 4661 // Read type/value pairs for varargs params. 4662 while (OpNum != Record.size()) { 4663 Value *Op; 4664 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4665 return error("Invalid record"); 4666 Ops.push_back(Op); 4667 ArgsTys.push_back(Op->getType()); 4668 } 4669 } 4670 4671 I = InvokeInst::Create(FTy, Callee, NormalBB, UnwindBB, Ops, 4672 OperandBundles); 4673 OperandBundles.clear(); 4674 InstructionList.push_back(I); 4675 cast<InvokeInst>(I)->setCallingConv( 4676 static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo)); 4677 cast<InvokeInst>(I)->setAttributes(PAL); 4678 propagateByValSRetTypes(cast<CallBase>(I), ArgsTys); 4679 4680 break; 4681 } 4682 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 4683 unsigned Idx = 0; 4684 Value *Val = nullptr; 4685 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 4686 return error("Invalid record"); 4687 I = ResumeInst::Create(Val); 4688 InstructionList.push_back(I); 4689 break; 4690 } 4691 case bitc::FUNC_CODE_INST_CALLBR: { 4692 // CALLBR: [attr, cc, norm, transfs, fty, fnid, args] 4693 unsigned OpNum = 0; 4694 AttributeList PAL = getAttributes(Record[OpNum++]); 4695 unsigned CCInfo = Record[OpNum++]; 4696 4697 BasicBlock *DefaultDest = getBasicBlock(Record[OpNum++]); 4698 unsigned NumIndirectDests = Record[OpNum++]; 4699 SmallVector<BasicBlock *, 16> IndirectDests; 4700 for (unsigned i = 0, e = NumIndirectDests; i != e; ++i) 4701 IndirectDests.push_back(getBasicBlock(Record[OpNum++])); 4702 4703 FunctionType *FTy = nullptr; 4704 if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) { 4705 FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])); 4706 if (!FTy) 4707 return error("Explicit call type is not a function type"); 4708 } 4709 4710 Value *Callee; 4711 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 4712 return error("Invalid record"); 4713 4714 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 4715 if (!OpTy) 4716 return error("Callee is not a pointer type"); 4717 if (!FTy) { 4718 FTy = dyn_cast<FunctionType>( 4719 cast<PointerType>(Callee->getType())->getElementType()); 4720 if (!FTy) 4721 return error("Callee is not of pointer to function type"); 4722 } else if (cast<PointerType>(Callee->getType())->getElementType() != FTy) 4723 return error("Explicit call type does not match pointee type of " 4724 "callee operand"); 4725 if (Record.size() < FTy->getNumParams() + OpNum) 4726 return error("Insufficient operands to call"); 4727 4728 SmallVector<Value*, 16> Args; 4729 // Read the fixed params. 4730 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 4731 if (FTy->getParamType(i)->isLabelTy()) 4732 Args.push_back(getBasicBlock(Record[OpNum])); 4733 else 4734 Args.push_back(getValue(Record, OpNum, NextValueNo, 4735 FTy->getParamType(i))); 4736 if (!Args.back()) 4737 return error("Invalid record"); 4738 } 4739 4740 // Read type/value pairs for varargs params. 4741 if (!FTy->isVarArg()) { 4742 if (OpNum != Record.size()) 4743 return error("Invalid record"); 4744 } else { 4745 while (OpNum != Record.size()) { 4746 Value *Op; 4747 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4748 return error("Invalid record"); 4749 Args.push_back(Op); 4750 } 4751 } 4752 4753 I = CallBrInst::Create(FTy, Callee, DefaultDest, IndirectDests, Args, 4754 OperandBundles); 4755 OperandBundles.clear(); 4756 InstructionList.push_back(I); 4757 cast<CallBrInst>(I)->setCallingConv( 4758 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 4759 cast<CallBrInst>(I)->setAttributes(PAL); 4760 break; 4761 } 4762 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 4763 I = new UnreachableInst(Context); 4764 InstructionList.push_back(I); 4765 break; 4766 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 4767 if (Record.empty()) 4768 return error("Invalid record"); 4769 // The first record specifies the type. 4770 Type *Ty = getTypeByID(Record[0]); 4771 if (!Ty) 4772 return error("Invalid record"); 4773 4774 // Phi arguments are pairs of records of [value, basic block]. 4775 // There is an optional final record for fast-math-flags if this phi has a 4776 // floating-point type. 4777 size_t NumArgs = (Record.size() - 1) / 2; 4778 PHINode *PN = PHINode::Create(Ty, NumArgs); 4779 if ((Record.size() - 1) % 2 == 1 && !isa<FPMathOperator>(PN)) 4780 return error("Invalid record"); 4781 InstructionList.push_back(PN); 4782 4783 for (unsigned i = 0; i != NumArgs; i++) { 4784 Value *V; 4785 // With the new function encoding, it is possible that operands have 4786 // negative IDs (for forward references). Use a signed VBR 4787 // representation to keep the encoding small. 4788 if (UseRelativeIDs) 4789 V = getValueSigned(Record, i * 2 + 1, NextValueNo, Ty); 4790 else 4791 V = getValue(Record, i * 2 + 1, NextValueNo, Ty); 4792 BasicBlock *BB = getBasicBlock(Record[i * 2 + 2]); 4793 if (!V || !BB) 4794 return error("Invalid record"); 4795 PN->addIncoming(V, BB); 4796 } 4797 I = PN; 4798 4799 // If there are an even number of records, the final record must be FMF. 4800 if (Record.size() % 2 == 0) { 4801 assert(isa<FPMathOperator>(I) && "Unexpected phi type"); 4802 FastMathFlags FMF = getDecodedFastMathFlags(Record[Record.size() - 1]); 4803 if (FMF.any()) 4804 I->setFastMathFlags(FMF); 4805 } 4806 4807 break; 4808 } 4809 4810 case bitc::FUNC_CODE_INST_LANDINGPAD: 4811 case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: { 4812 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 4813 unsigned Idx = 0; 4814 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) { 4815 if (Record.size() < 3) 4816 return error("Invalid record"); 4817 } else { 4818 assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD); 4819 if (Record.size() < 4) 4820 return error("Invalid record"); 4821 } 4822 Type *Ty = getTypeByID(Record[Idx++]); 4823 if (!Ty) 4824 return error("Invalid record"); 4825 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) { 4826 Value *PersFn = nullptr; 4827 if (getValueTypePair(Record, Idx, NextValueNo, PersFn)) 4828 return error("Invalid record"); 4829 4830 if (!F->hasPersonalityFn()) 4831 F->setPersonalityFn(cast<Constant>(PersFn)); 4832 else if (F->getPersonalityFn() != cast<Constant>(PersFn)) 4833 return error("Personality function mismatch"); 4834 } 4835 4836 bool IsCleanup = !!Record[Idx++]; 4837 unsigned NumClauses = Record[Idx++]; 4838 LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses); 4839 LP->setCleanup(IsCleanup); 4840 for (unsigned J = 0; J != NumClauses; ++J) { 4841 LandingPadInst::ClauseType CT = 4842 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 4843 Value *Val; 4844 4845 if (getValueTypePair(Record, Idx, NextValueNo, Val)) { 4846 delete LP; 4847 return error("Invalid record"); 4848 } 4849 4850 assert((CT != LandingPadInst::Catch || 4851 !isa<ArrayType>(Val->getType())) && 4852 "Catch clause has a invalid type!"); 4853 assert((CT != LandingPadInst::Filter || 4854 isa<ArrayType>(Val->getType())) && 4855 "Filter clause has invalid type!"); 4856 LP->addClause(cast<Constant>(Val)); 4857 } 4858 4859 I = LP; 4860 InstructionList.push_back(I); 4861 break; 4862 } 4863 4864 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 4865 if (Record.size() != 4) 4866 return error("Invalid record"); 4867 using APV = AllocaPackedValues; 4868 const uint64_t Rec = Record[3]; 4869 const bool InAlloca = Bitfield::get<APV::UsedWithInAlloca>(Rec); 4870 const bool SwiftError = Bitfield::get<APV::SwiftError>(Rec); 4871 Type *Ty = getTypeByID(Record[0]); 4872 if (!Bitfield::get<APV::ExplicitType>(Rec)) { 4873 auto *PTy = dyn_cast_or_null<PointerType>(Ty); 4874 if (!PTy) 4875 return error("Old-style alloca with a non-pointer type"); 4876 Ty = PTy->getElementType(); 4877 } 4878 Type *OpTy = getTypeByID(Record[1]); 4879 Value *Size = getFnValueByID(Record[2], OpTy); 4880 MaybeAlign Align; 4881 if (Error Err = 4882 parseAlignmentValue(Bitfield::get<APV::Align>(Rec), Align)) { 4883 return Err; 4884 } 4885 if (!Ty || !Size) 4886 return error("Invalid record"); 4887 4888 // FIXME: Make this an optional field. 4889 const DataLayout &DL = TheModule->getDataLayout(); 4890 unsigned AS = DL.getAllocaAddrSpace(); 4891 4892 SmallPtrSet<Type *, 4> Visited; 4893 if (!Align && !Ty->isSized(&Visited)) 4894 return error("alloca of unsized type"); 4895 if (!Align) 4896 Align = DL.getPrefTypeAlign(Ty); 4897 4898 AllocaInst *AI = new AllocaInst(Ty, AS, Size, *Align); 4899 AI->setUsedWithInAlloca(InAlloca); 4900 AI->setSwiftError(SwiftError); 4901 I = AI; 4902 InstructionList.push_back(I); 4903 break; 4904 } 4905 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 4906 unsigned OpNum = 0; 4907 Value *Op; 4908 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4909 (OpNum + 2 != Record.size() && OpNum + 3 != Record.size())) 4910 return error("Invalid record"); 4911 4912 if (!isa<PointerType>(Op->getType())) 4913 return error("Load operand is not a pointer type"); 4914 4915 Type *Ty = nullptr; 4916 if (OpNum + 3 == Record.size()) { 4917 Ty = getTypeByID(Record[OpNum++]); 4918 } else { 4919 Ty = cast<PointerType>(Op->getType())->getElementType(); 4920 } 4921 4922 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 4923 return Err; 4924 4925 MaybeAlign Align; 4926 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4927 return Err; 4928 SmallPtrSet<Type *, 4> Visited; 4929 if (!Align && !Ty->isSized(&Visited)) 4930 return error("load of unsized type"); 4931 if (!Align) 4932 Align = TheModule->getDataLayout().getABITypeAlign(Ty); 4933 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align); 4934 InstructionList.push_back(I); 4935 break; 4936 } 4937 case bitc::FUNC_CODE_INST_LOADATOMIC: { 4938 // LOADATOMIC: [opty, op, align, vol, ordering, ssid] 4939 unsigned OpNum = 0; 4940 Value *Op; 4941 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4942 (OpNum + 4 != Record.size() && OpNum + 5 != Record.size())) 4943 return error("Invalid record"); 4944 4945 if (!isa<PointerType>(Op->getType())) 4946 return error("Load operand is not a pointer type"); 4947 4948 Type *Ty = nullptr; 4949 if (OpNum + 5 == Record.size()) { 4950 Ty = getTypeByID(Record[OpNum++]); 4951 } else { 4952 Ty = cast<PointerType>(Op->getType())->getElementType(); 4953 } 4954 4955 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 4956 return Err; 4957 4958 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4959 if (Ordering == AtomicOrdering::NotAtomic || 4960 Ordering == AtomicOrdering::Release || 4961 Ordering == AtomicOrdering::AcquireRelease) 4962 return error("Invalid record"); 4963 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 4964 return error("Invalid record"); 4965 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 4966 4967 MaybeAlign Align; 4968 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4969 return Err; 4970 if (!Align) 4971 return error("Alignment missing from atomic load"); 4972 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align, Ordering, SSID); 4973 InstructionList.push_back(I); 4974 break; 4975 } 4976 case bitc::FUNC_CODE_INST_STORE: 4977 case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol] 4978 unsigned OpNum = 0; 4979 Value *Val, *Ptr; 4980 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4981 (BitCode == bitc::FUNC_CODE_INST_STORE 4982 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 4983 : popValue(Record, OpNum, NextValueNo, 4984 cast<PointerType>(Ptr->getType())->getElementType(), 4985 Val)) || 4986 OpNum + 2 != Record.size()) 4987 return error("Invalid record"); 4988 4989 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 4990 return Err; 4991 MaybeAlign Align; 4992 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4993 return Err; 4994 SmallPtrSet<Type *, 4> Visited; 4995 if (!Align && !Val->getType()->isSized(&Visited)) 4996 return error("store of unsized type"); 4997 if (!Align) 4998 Align = TheModule->getDataLayout().getABITypeAlign(Val->getType()); 4999 I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align); 5000 InstructionList.push_back(I); 5001 break; 5002 } 5003 case bitc::FUNC_CODE_INST_STOREATOMIC: 5004 case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: { 5005 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, ssid] 5006 unsigned OpNum = 0; 5007 Value *Val, *Ptr; 5008 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 5009 !isa<PointerType>(Ptr->getType()) || 5010 (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC 5011 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 5012 : popValue(Record, OpNum, NextValueNo, 5013 cast<PointerType>(Ptr->getType())->getElementType(), 5014 Val)) || 5015 OpNum + 4 != Record.size()) 5016 return error("Invalid record"); 5017 5018 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 5019 return Err; 5020 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 5021 if (Ordering == AtomicOrdering::NotAtomic || 5022 Ordering == AtomicOrdering::Acquire || 5023 Ordering == AtomicOrdering::AcquireRelease) 5024 return error("Invalid record"); 5025 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 5026 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 5027 return error("Invalid record"); 5028 5029 MaybeAlign Align; 5030 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 5031 return Err; 5032 if (!Align) 5033 return error("Alignment missing from atomic store"); 5034 I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align, Ordering, SSID); 5035 InstructionList.push_back(I); 5036 break; 5037 } 5038 case bitc::FUNC_CODE_INST_CMPXCHG_OLD: { 5039 // CMPXCHG_OLD: [ptrty, ptr, cmp, val, vol, ordering, synchscope, 5040 // failure_ordering?, weak?] 5041 const size_t NumRecords = Record.size(); 5042 unsigned OpNum = 0; 5043 Value *Ptr = nullptr; 5044 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr)) 5045 return error("Invalid record"); 5046 5047 if (!isa<PointerType>(Ptr->getType())) 5048 return error("Cmpxchg operand is not a pointer type"); 5049 5050 Value *Cmp = nullptr; 5051 if (popValue(Record, OpNum, NextValueNo, 5052 cast<PointerType>(Ptr->getType())->getPointerElementType(), 5053 Cmp)) 5054 return error("Invalid record"); 5055 5056 Value *New = nullptr; 5057 if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) || 5058 NumRecords < OpNum + 3 || NumRecords > OpNum + 5) 5059 return error("Invalid record"); 5060 5061 const AtomicOrdering SuccessOrdering = 5062 getDecodedOrdering(Record[OpNum + 1]); 5063 if (SuccessOrdering == AtomicOrdering::NotAtomic || 5064 SuccessOrdering == AtomicOrdering::Unordered) 5065 return error("Invalid record"); 5066 5067 const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]); 5068 5069 if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType())) 5070 return Err; 5071 5072 const AtomicOrdering FailureOrdering = 5073 NumRecords < 7 5074 ? AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering) 5075 : getDecodedOrdering(Record[OpNum + 3]); 5076 5077 if (FailureOrdering == AtomicOrdering::NotAtomic || 5078 FailureOrdering == AtomicOrdering::Unordered) 5079 return error("Invalid record"); 5080 5081 const Align Alignment( 5082 TheModule->getDataLayout().getTypeStoreSize(Cmp->getType())); 5083 5084 I = new AtomicCmpXchgInst(Ptr, Cmp, New, Alignment, SuccessOrdering, 5085 FailureOrdering, SSID); 5086 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 5087 5088 if (NumRecords < 8) { 5089 // Before weak cmpxchgs existed, the instruction simply returned the 5090 // value loaded from memory, so bitcode files from that era will be 5091 // expecting the first component of a modern cmpxchg. 5092 CurBB->getInstList().push_back(I); 5093 I = ExtractValueInst::Create(I, 0); 5094 } else { 5095 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum + 4]); 5096 } 5097 5098 InstructionList.push_back(I); 5099 break; 5100 } 5101 case bitc::FUNC_CODE_INST_CMPXCHG: { 5102 // CMPXCHG: [ptrty, ptr, cmp, val, vol, success_ordering, synchscope, 5103 // failure_ordering, weak, align?] 5104 const size_t NumRecords = Record.size(); 5105 unsigned OpNum = 0; 5106 Value *Ptr = nullptr; 5107 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr)) 5108 return error("Invalid record"); 5109 5110 if (!isa<PointerType>(Ptr->getType())) 5111 return error("Cmpxchg operand is not a pointer type"); 5112 5113 Value *Cmp = nullptr; 5114 if (getValueTypePair(Record, OpNum, NextValueNo, Cmp)) 5115 return error("Invalid record"); 5116 5117 Value *Val = nullptr; 5118 if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), Val)) 5119 return error("Invalid record"); 5120 5121 if (NumRecords < OpNum + 3 || NumRecords > OpNum + 6) 5122 return error("Invalid record"); 5123 5124 const bool IsVol = Record[OpNum]; 5125 5126 const AtomicOrdering SuccessOrdering = 5127 getDecodedOrdering(Record[OpNum + 1]); 5128 if (!AtomicCmpXchgInst::isValidSuccessOrdering(SuccessOrdering)) 5129 return error("Invalid cmpxchg success ordering"); 5130 5131 const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]); 5132 5133 if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType())) 5134 return Err; 5135 5136 const AtomicOrdering FailureOrdering = 5137 getDecodedOrdering(Record[OpNum + 3]); 5138 if (!AtomicCmpXchgInst::isValidFailureOrdering(FailureOrdering)) 5139 return error("Invalid cmpxchg failure ordering"); 5140 5141 const bool IsWeak = Record[OpNum + 4]; 5142 5143 MaybeAlign Alignment; 5144 5145 if (NumRecords == (OpNum + 6)) { 5146 if (Error Err = parseAlignmentValue(Record[OpNum + 5], Alignment)) 5147 return Err; 5148 } 5149 if (!Alignment) 5150 Alignment = 5151 Align(TheModule->getDataLayout().getTypeStoreSize(Cmp->getType())); 5152 5153 I = new AtomicCmpXchgInst(Ptr, Cmp, Val, *Alignment, SuccessOrdering, 5154 FailureOrdering, SSID); 5155 cast<AtomicCmpXchgInst>(I)->setVolatile(IsVol); 5156 cast<AtomicCmpXchgInst>(I)->setWeak(IsWeak); 5157 5158 InstructionList.push_back(I); 5159 break; 5160 } 5161 case bitc::FUNC_CODE_INST_ATOMICRMW_OLD: 5162 case bitc::FUNC_CODE_INST_ATOMICRMW: { 5163 // ATOMICRMW_OLD: [ptrty, ptr, val, op, vol, ordering, ssid, align?] 5164 // ATOMICRMW: [ptrty, ptr, valty, val, op, vol, ordering, ssid, align?] 5165 const size_t NumRecords = Record.size(); 5166 unsigned OpNum = 0; 5167 5168 Value *Ptr = nullptr; 5169 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr)) 5170 return error("Invalid record"); 5171 5172 if (!isa<PointerType>(Ptr->getType())) 5173 return error("Invalid record"); 5174 5175 Value *Val = nullptr; 5176 if (BitCode == bitc::FUNC_CODE_INST_ATOMICRMW_OLD) { 5177 if (popValue(Record, OpNum, NextValueNo, 5178 cast<PointerType>(Ptr->getType())->getPointerElementType(), 5179 Val)) 5180 return error("Invalid record"); 5181 } else { 5182 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 5183 return error("Invalid record"); 5184 } 5185 5186 if (!(NumRecords == (OpNum + 4) || NumRecords == (OpNum + 5))) 5187 return error("Invalid record"); 5188 5189 const AtomicRMWInst::BinOp Operation = 5190 getDecodedRMWOperation(Record[OpNum]); 5191 if (Operation < AtomicRMWInst::FIRST_BINOP || 5192 Operation > AtomicRMWInst::LAST_BINOP) 5193 return error("Invalid record"); 5194 5195 const bool IsVol = Record[OpNum + 1]; 5196 5197 const AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 5198 if (Ordering == AtomicOrdering::NotAtomic || 5199 Ordering == AtomicOrdering::Unordered) 5200 return error("Invalid record"); 5201 5202 const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 5203 5204 MaybeAlign Alignment; 5205 5206 if (NumRecords == (OpNum + 5)) { 5207 if (Error Err = parseAlignmentValue(Record[OpNum + 4], Alignment)) 5208 return Err; 5209 } 5210 5211 if (!Alignment) 5212 Alignment = 5213 Align(TheModule->getDataLayout().getTypeStoreSize(Val->getType())); 5214 5215 I = new AtomicRMWInst(Operation, Ptr, Val, *Alignment, Ordering, SSID); 5216 cast<AtomicRMWInst>(I)->setVolatile(IsVol); 5217 5218 InstructionList.push_back(I); 5219 break; 5220 } 5221 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, ssid] 5222 if (2 != Record.size()) 5223 return error("Invalid record"); 5224 AtomicOrdering Ordering = getDecodedOrdering(Record[0]); 5225 if (Ordering == AtomicOrdering::NotAtomic || 5226 Ordering == AtomicOrdering::Unordered || 5227 Ordering == AtomicOrdering::Monotonic) 5228 return error("Invalid record"); 5229 SyncScope::ID SSID = getDecodedSyncScopeID(Record[1]); 5230 I = new FenceInst(Context, Ordering, SSID); 5231 InstructionList.push_back(I); 5232 break; 5233 } 5234 case bitc::FUNC_CODE_INST_CALL: { 5235 // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...] 5236 if (Record.size() < 3) 5237 return error("Invalid record"); 5238 5239 unsigned OpNum = 0; 5240 AttributeList PAL = getAttributes(Record[OpNum++]); 5241 unsigned CCInfo = Record[OpNum++]; 5242 5243 FastMathFlags FMF; 5244 if ((CCInfo >> bitc::CALL_FMF) & 1) { 5245 FMF = getDecodedFastMathFlags(Record[OpNum++]); 5246 if (!FMF.any()) 5247 return error("Fast math flags indicator set for call with no FMF"); 5248 } 5249 5250 FunctionType *FTy = nullptr; 5251 if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) { 5252 FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])); 5253 if (!FTy) 5254 return error("Explicit call type is not a function type"); 5255 } 5256 5257 Value *Callee; 5258 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 5259 return error("Invalid record"); 5260 5261 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 5262 if (!OpTy) 5263 return error("Callee is not a pointer type"); 5264 if (!FTy) { 5265 FTy = dyn_cast<FunctionType>( 5266 cast<PointerType>(Callee->getType())->getElementType()); 5267 if (!FTy) 5268 return error("Callee is not of pointer to function type"); 5269 } else if (!OpTy->isOpaqueOrPointeeTypeMatches(FTy)) 5270 return error("Explicit call type does not match pointee type of " 5271 "callee operand"); 5272 if (Record.size() < FTy->getNumParams() + OpNum) 5273 return error("Insufficient operands to call"); 5274 5275 SmallVector<Value*, 16> Args; 5276 SmallVector<Type *, 16> ArgsTys; 5277 // Read the fixed params. 5278 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 5279 if (FTy->getParamType(i)->isLabelTy()) 5280 Args.push_back(getBasicBlock(Record[OpNum])); 5281 else 5282 Args.push_back(getValue(Record, OpNum, NextValueNo, 5283 FTy->getParamType(i))); 5284 ArgsTys.push_back(FTy->getParamType(i)); 5285 if (!Args.back()) 5286 return error("Invalid record"); 5287 } 5288 5289 // Read type/value pairs for varargs params. 5290 if (!FTy->isVarArg()) { 5291 if (OpNum != Record.size()) 5292 return error("Invalid record"); 5293 } else { 5294 while (OpNum != Record.size()) { 5295 Value *Op; 5296 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 5297 return error("Invalid record"); 5298 Args.push_back(Op); 5299 ArgsTys.push_back(Op->getType()); 5300 } 5301 } 5302 5303 I = CallInst::Create(FTy, Callee, Args, OperandBundles); 5304 OperandBundles.clear(); 5305 InstructionList.push_back(I); 5306 cast<CallInst>(I)->setCallingConv( 5307 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 5308 CallInst::TailCallKind TCK = CallInst::TCK_None; 5309 if (CCInfo & 1 << bitc::CALL_TAIL) 5310 TCK = CallInst::TCK_Tail; 5311 if (CCInfo & (1 << bitc::CALL_MUSTTAIL)) 5312 TCK = CallInst::TCK_MustTail; 5313 if (CCInfo & (1 << bitc::CALL_NOTAIL)) 5314 TCK = CallInst::TCK_NoTail; 5315 cast<CallInst>(I)->setTailCallKind(TCK); 5316 cast<CallInst>(I)->setAttributes(PAL); 5317 propagateByValSRetTypes(cast<CallBase>(I), ArgsTys); 5318 if (FMF.any()) { 5319 if (!isa<FPMathOperator>(I)) 5320 return error("Fast-math-flags specified for call without " 5321 "floating-point scalar or vector return type"); 5322 I->setFastMathFlags(FMF); 5323 } 5324 break; 5325 } 5326 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 5327 if (Record.size() < 3) 5328 return error("Invalid record"); 5329 Type *OpTy = getTypeByID(Record[0]); 5330 Value *Op = getValue(Record, 1, NextValueNo, OpTy); 5331 Type *ResTy = getTypeByID(Record[2]); 5332 if (!OpTy || !Op || !ResTy) 5333 return error("Invalid record"); 5334 I = new VAArgInst(Op, ResTy); 5335 InstructionList.push_back(I); 5336 break; 5337 } 5338 5339 case bitc::FUNC_CODE_OPERAND_BUNDLE: { 5340 // A call or an invoke can be optionally prefixed with some variable 5341 // number of operand bundle blocks. These blocks are read into 5342 // OperandBundles and consumed at the next call or invoke instruction. 5343 5344 if (Record.empty() || Record[0] >= BundleTags.size()) 5345 return error("Invalid record"); 5346 5347 std::vector<Value *> Inputs; 5348 5349 unsigned OpNum = 1; 5350 while (OpNum != Record.size()) { 5351 Value *Op; 5352 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 5353 return error("Invalid record"); 5354 Inputs.push_back(Op); 5355 } 5356 5357 OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs)); 5358 continue; 5359 } 5360 5361 case bitc::FUNC_CODE_INST_FREEZE: { // FREEZE: [opty,opval] 5362 unsigned OpNum = 0; 5363 Value *Op = nullptr; 5364 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 5365 return error("Invalid record"); 5366 if (OpNum != Record.size()) 5367 return error("Invalid record"); 5368 5369 I = new FreezeInst(Op); 5370 InstructionList.push_back(I); 5371 break; 5372 } 5373 } 5374 5375 // Add instruction to end of current BB. If there is no current BB, reject 5376 // this file. 5377 if (!CurBB) { 5378 I->deleteValue(); 5379 return error("Invalid instruction with no BB"); 5380 } 5381 if (!OperandBundles.empty()) { 5382 I->deleteValue(); 5383 return error("Operand bundles found with no consumer"); 5384 } 5385 CurBB->getInstList().push_back(I); 5386 5387 // If this was a terminator instruction, move to the next block. 5388 if (I->isTerminator()) { 5389 ++CurBBNo; 5390 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr; 5391 } 5392 5393 // Non-void values get registered in the value table for future use. 5394 if (!I->getType()->isVoidTy()) 5395 ValueList.assignValue(I, NextValueNo++); 5396 } 5397 5398 OutOfRecordLoop: 5399 5400 if (!OperandBundles.empty()) 5401 return error("Operand bundles found with no consumer"); 5402 5403 // Check the function list for unresolved values. 5404 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 5405 if (!A->getParent()) { 5406 // We found at least one unresolved value. Nuke them all to avoid leaks. 5407 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 5408 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) { 5409 A->replaceAllUsesWith(UndefValue::get(A->getType())); 5410 delete A; 5411 } 5412 } 5413 return error("Never resolved value found in function"); 5414 } 5415 } 5416 5417 // Unexpected unresolved metadata about to be dropped. 5418 if (MDLoader->hasFwdRefs()) 5419 return error("Invalid function metadata: outgoing forward refs"); 5420 5421 // Trim the value list down to the size it was before we parsed this function. 5422 ValueList.shrinkTo(ModuleValueListSize); 5423 MDLoader->shrinkTo(ModuleMDLoaderSize); 5424 std::vector<BasicBlock*>().swap(FunctionBBs); 5425 return Error::success(); 5426 } 5427 5428 /// Find the function body in the bitcode stream 5429 Error BitcodeReader::findFunctionInStream( 5430 Function *F, 5431 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) { 5432 while (DeferredFunctionInfoIterator->second == 0) { 5433 // This is the fallback handling for the old format bitcode that 5434 // didn't contain the function index in the VST, or when we have 5435 // an anonymous function which would not have a VST entry. 5436 // Assert that we have one of those two cases. 5437 assert(VSTOffset == 0 || !F->hasName()); 5438 // Parse the next body in the stream and set its position in the 5439 // DeferredFunctionInfo map. 5440 if (Error Err = rememberAndSkipFunctionBodies()) 5441 return Err; 5442 } 5443 return Error::success(); 5444 } 5445 5446 SyncScope::ID BitcodeReader::getDecodedSyncScopeID(unsigned Val) { 5447 if (Val == SyncScope::SingleThread || Val == SyncScope::System) 5448 return SyncScope::ID(Val); 5449 if (Val >= SSIDs.size()) 5450 return SyncScope::System; // Map unknown synchronization scopes to system. 5451 return SSIDs[Val]; 5452 } 5453 5454 //===----------------------------------------------------------------------===// 5455 // GVMaterializer implementation 5456 //===----------------------------------------------------------------------===// 5457 5458 Error BitcodeReader::materialize(GlobalValue *GV) { 5459 Function *F = dyn_cast<Function>(GV); 5460 // If it's not a function or is already material, ignore the request. 5461 if (!F || !F->isMaterializable()) 5462 return Error::success(); 5463 5464 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 5465 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 5466 // If its position is recorded as 0, its body is somewhere in the stream 5467 // but we haven't seen it yet. 5468 if (DFII->second == 0) 5469 if (Error Err = findFunctionInStream(F, DFII)) 5470 return Err; 5471 5472 // Materialize metadata before parsing any function bodies. 5473 if (Error Err = materializeMetadata()) 5474 return Err; 5475 5476 // Move the bit stream to the saved position of the deferred function body. 5477 if (Error JumpFailed = Stream.JumpToBit(DFII->second)) 5478 return JumpFailed; 5479 if (Error Err = parseFunctionBody(F)) 5480 return Err; 5481 F->setIsMaterializable(false); 5482 5483 if (StripDebugInfo) 5484 stripDebugInfo(*F); 5485 5486 // Upgrade any old intrinsic calls in the function. 5487 for (auto &I : UpgradedIntrinsics) { 5488 for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end(); 5489 UI != UE;) { 5490 User *U = *UI; 5491 ++UI; 5492 if (CallInst *CI = dyn_cast<CallInst>(U)) 5493 UpgradeIntrinsicCall(CI, I.second); 5494 } 5495 } 5496 5497 // Update calls to the remangled intrinsics 5498 for (auto &I : RemangledIntrinsics) 5499 for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end(); 5500 UI != UE;) 5501 // Don't expect any other users than call sites 5502 cast<CallBase>(*UI++)->setCalledFunction(I.second); 5503 5504 // Finish fn->subprogram upgrade for materialized functions. 5505 if (DISubprogram *SP = MDLoader->lookupSubprogramForFunction(F)) 5506 F->setSubprogram(SP); 5507 5508 // Check if the TBAA Metadata are valid, otherwise we will need to strip them. 5509 if (!MDLoader->isStrippingTBAA()) { 5510 for (auto &I : instructions(F)) { 5511 MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa); 5512 if (!TBAA || TBAAVerifyHelper.visitTBAAMetadata(I, TBAA)) 5513 continue; 5514 MDLoader->setStripTBAA(true); 5515 stripTBAA(F->getParent()); 5516 } 5517 } 5518 5519 for (auto &I : instructions(F)) { 5520 // "Upgrade" older incorrect branch weights by dropping them. 5521 if (auto *MD = I.getMetadata(LLVMContext::MD_prof)) { 5522 if (MD->getOperand(0) != nullptr && isa<MDString>(MD->getOperand(0))) { 5523 MDString *MDS = cast<MDString>(MD->getOperand(0)); 5524 StringRef ProfName = MDS->getString(); 5525 // Check consistency of !prof branch_weights metadata. 5526 if (!ProfName.equals("branch_weights")) 5527 continue; 5528 unsigned ExpectedNumOperands = 0; 5529 if (BranchInst *BI = dyn_cast<BranchInst>(&I)) 5530 ExpectedNumOperands = BI->getNumSuccessors(); 5531 else if (SwitchInst *SI = dyn_cast<SwitchInst>(&I)) 5532 ExpectedNumOperands = SI->getNumSuccessors(); 5533 else if (isa<CallInst>(&I)) 5534 ExpectedNumOperands = 1; 5535 else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(&I)) 5536 ExpectedNumOperands = IBI->getNumDestinations(); 5537 else if (isa<SelectInst>(&I)) 5538 ExpectedNumOperands = 2; 5539 else 5540 continue; // ignore and continue. 5541 5542 // If branch weight doesn't match, just strip branch weight. 5543 if (MD->getNumOperands() != 1 + ExpectedNumOperands) 5544 I.setMetadata(LLVMContext::MD_prof, nullptr); 5545 } 5546 } 5547 5548 // Remove incompatible attributes on function calls. 5549 if (auto *CI = dyn_cast<CallBase>(&I)) { 5550 CI->removeAttributes(AttributeList::ReturnIndex, 5551 AttributeFuncs::typeIncompatible( 5552 CI->getFunctionType()->getReturnType())); 5553 5554 for (unsigned ArgNo = 0; ArgNo < CI->arg_size(); ++ArgNo) 5555 CI->removeParamAttrs(ArgNo, AttributeFuncs::typeIncompatible( 5556 CI->getArgOperand(ArgNo)->getType())); 5557 } 5558 } 5559 5560 // Look for functions that rely on old function attribute behavior. 5561 UpgradeFunctionAttributes(*F); 5562 5563 // Bring in any functions that this function forward-referenced via 5564 // blockaddresses. 5565 return materializeForwardReferencedFunctions(); 5566 } 5567 5568 Error BitcodeReader::materializeModule() { 5569 if (Error Err = materializeMetadata()) 5570 return Err; 5571 5572 // Promise to materialize all forward references. 5573 WillMaterializeAllForwardRefs = true; 5574 5575 // Iterate over the module, deserializing any functions that are still on 5576 // disk. 5577 for (Function &F : *TheModule) { 5578 if (Error Err = materialize(&F)) 5579 return Err; 5580 } 5581 // At this point, if there are any function bodies, parse the rest of 5582 // the bits in the module past the last function block we have recorded 5583 // through either lazy scanning or the VST. 5584 if (LastFunctionBlockBit || NextUnreadBit) 5585 if (Error Err = parseModule(LastFunctionBlockBit > NextUnreadBit 5586 ? LastFunctionBlockBit 5587 : NextUnreadBit)) 5588 return Err; 5589 5590 // Check that all block address forward references got resolved (as we 5591 // promised above). 5592 if (!BasicBlockFwdRefs.empty()) 5593 return error("Never resolved function from blockaddress"); 5594 5595 // Upgrade any intrinsic calls that slipped through (should not happen!) and 5596 // delete the old functions to clean up. We can't do this unless the entire 5597 // module is materialized because there could always be another function body 5598 // with calls to the old function. 5599 for (auto &I : UpgradedIntrinsics) { 5600 for (auto *U : I.first->users()) { 5601 if (CallInst *CI = dyn_cast<CallInst>(U)) 5602 UpgradeIntrinsicCall(CI, I.second); 5603 } 5604 if (!I.first->use_empty()) 5605 I.first->replaceAllUsesWith(I.second); 5606 I.first->eraseFromParent(); 5607 } 5608 UpgradedIntrinsics.clear(); 5609 // Do the same for remangled intrinsics 5610 for (auto &I : RemangledIntrinsics) { 5611 I.first->replaceAllUsesWith(I.second); 5612 I.first->eraseFromParent(); 5613 } 5614 RemangledIntrinsics.clear(); 5615 5616 UpgradeDebugInfo(*TheModule); 5617 5618 UpgradeModuleFlags(*TheModule); 5619 5620 UpgradeARCRuntime(*TheModule); 5621 5622 return Error::success(); 5623 } 5624 5625 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const { 5626 return IdentifiedStructTypes; 5627 } 5628 5629 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader( 5630 BitstreamCursor Cursor, StringRef Strtab, ModuleSummaryIndex &TheIndex, 5631 StringRef ModulePath, unsigned ModuleId) 5632 : BitcodeReaderBase(std::move(Cursor), Strtab), TheIndex(TheIndex), 5633 ModulePath(ModulePath), ModuleId(ModuleId) {} 5634 5635 void ModuleSummaryIndexBitcodeReader::addThisModule() { 5636 TheIndex.addModule(ModulePath, ModuleId); 5637 } 5638 5639 ModuleSummaryIndex::ModuleInfo * 5640 ModuleSummaryIndexBitcodeReader::getThisModule() { 5641 return TheIndex.getModule(ModulePath); 5642 } 5643 5644 std::pair<ValueInfo, GlobalValue::GUID> 5645 ModuleSummaryIndexBitcodeReader::getValueInfoFromValueId(unsigned ValueId) { 5646 auto VGI = ValueIdToValueInfoMap[ValueId]; 5647 assert(VGI.first); 5648 return VGI; 5649 } 5650 5651 void ModuleSummaryIndexBitcodeReader::setValueGUID( 5652 uint64_t ValueID, StringRef ValueName, GlobalValue::LinkageTypes Linkage, 5653 StringRef SourceFileName) { 5654 std::string GlobalId = 5655 GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName); 5656 auto ValueGUID = GlobalValue::getGUID(GlobalId); 5657 auto OriginalNameID = ValueGUID; 5658 if (GlobalValue::isLocalLinkage(Linkage)) 5659 OriginalNameID = GlobalValue::getGUID(ValueName); 5660 if (PrintSummaryGUIDs) 5661 dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is " 5662 << ValueName << "\n"; 5663 5664 // UseStrtab is false for legacy summary formats and value names are 5665 // created on stack. In that case we save the name in a string saver in 5666 // the index so that the value name can be recorded. 5667 ValueIdToValueInfoMap[ValueID] = std::make_pair( 5668 TheIndex.getOrInsertValueInfo( 5669 ValueGUID, 5670 UseStrtab ? ValueName : TheIndex.saveString(ValueName)), 5671 OriginalNameID); 5672 } 5673 5674 // Specialized value symbol table parser used when reading module index 5675 // blocks where we don't actually create global values. The parsed information 5676 // is saved in the bitcode reader for use when later parsing summaries. 5677 Error ModuleSummaryIndexBitcodeReader::parseValueSymbolTable( 5678 uint64_t Offset, 5679 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) { 5680 // With a strtab the VST is not required to parse the summary. 5681 if (UseStrtab) 5682 return Error::success(); 5683 5684 assert(Offset > 0 && "Expected non-zero VST offset"); 5685 Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream); 5686 if (!MaybeCurrentBit) 5687 return MaybeCurrentBit.takeError(); 5688 uint64_t CurrentBit = MaybeCurrentBit.get(); 5689 5690 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 5691 return Err; 5692 5693 SmallVector<uint64_t, 64> Record; 5694 5695 // Read all the records for this value table. 5696 SmallString<128> ValueName; 5697 5698 while (true) { 5699 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 5700 if (!MaybeEntry) 5701 return MaybeEntry.takeError(); 5702 BitstreamEntry Entry = MaybeEntry.get(); 5703 5704 switch (Entry.Kind) { 5705 case BitstreamEntry::SubBlock: // Handled for us already. 5706 case BitstreamEntry::Error: 5707 return error("Malformed block"); 5708 case BitstreamEntry::EndBlock: 5709 // Done parsing VST, jump back to wherever we came from. 5710 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 5711 return JumpFailed; 5712 return Error::success(); 5713 case BitstreamEntry::Record: 5714 // The interesting case. 5715 break; 5716 } 5717 5718 // Read a record. 5719 Record.clear(); 5720 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 5721 if (!MaybeRecord) 5722 return MaybeRecord.takeError(); 5723 switch (MaybeRecord.get()) { 5724 default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records). 5725 break; 5726 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 5727 if (convertToString(Record, 1, ValueName)) 5728 return error("Invalid record"); 5729 unsigned ValueID = Record[0]; 5730 assert(!SourceFileName.empty()); 5731 auto VLI = ValueIdToLinkageMap.find(ValueID); 5732 assert(VLI != ValueIdToLinkageMap.end() && 5733 "No linkage found for VST entry?"); 5734 auto Linkage = VLI->second; 5735 setValueGUID(ValueID, ValueName, Linkage, SourceFileName); 5736 ValueName.clear(); 5737 break; 5738 } 5739 case bitc::VST_CODE_FNENTRY: { 5740 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 5741 if (convertToString(Record, 2, ValueName)) 5742 return error("Invalid record"); 5743 unsigned ValueID = Record[0]; 5744 assert(!SourceFileName.empty()); 5745 auto VLI = ValueIdToLinkageMap.find(ValueID); 5746 assert(VLI != ValueIdToLinkageMap.end() && 5747 "No linkage found for VST entry?"); 5748 auto Linkage = VLI->second; 5749 setValueGUID(ValueID, ValueName, Linkage, SourceFileName); 5750 ValueName.clear(); 5751 break; 5752 } 5753 case bitc::VST_CODE_COMBINED_ENTRY: { 5754 // VST_CODE_COMBINED_ENTRY: [valueid, refguid] 5755 unsigned ValueID = Record[0]; 5756 GlobalValue::GUID RefGUID = Record[1]; 5757 // The "original name", which is the second value of the pair will be 5758 // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index. 5759 ValueIdToValueInfoMap[ValueID] = 5760 std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID); 5761 break; 5762 } 5763 } 5764 } 5765 } 5766 5767 // Parse just the blocks needed for building the index out of the module. 5768 // At the end of this routine the module Index is populated with a map 5769 // from global value id to GlobalValueSummary objects. 5770 Error ModuleSummaryIndexBitcodeReader::parseModule() { 5771 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 5772 return Err; 5773 5774 SmallVector<uint64_t, 64> Record; 5775 DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap; 5776 unsigned ValueId = 0; 5777 5778 // Read the index for this module. 5779 while (true) { 5780 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 5781 if (!MaybeEntry) 5782 return MaybeEntry.takeError(); 5783 llvm::BitstreamEntry Entry = MaybeEntry.get(); 5784 5785 switch (Entry.Kind) { 5786 case BitstreamEntry::Error: 5787 return error("Malformed block"); 5788 case BitstreamEntry::EndBlock: 5789 return Error::success(); 5790 5791 case BitstreamEntry::SubBlock: 5792 switch (Entry.ID) { 5793 default: // Skip unknown content. 5794 if (Error Err = Stream.SkipBlock()) 5795 return Err; 5796 break; 5797 case bitc::BLOCKINFO_BLOCK_ID: 5798 // Need to parse these to get abbrev ids (e.g. for VST) 5799 if (readBlockInfo()) 5800 return error("Malformed block"); 5801 break; 5802 case bitc::VALUE_SYMTAB_BLOCK_ID: 5803 // Should have been parsed earlier via VSTOffset, unless there 5804 // is no summary section. 5805 assert(((SeenValueSymbolTable && VSTOffset > 0) || 5806 !SeenGlobalValSummary) && 5807 "Expected early VST parse via VSTOffset record"); 5808 if (Error Err = Stream.SkipBlock()) 5809 return Err; 5810 break; 5811 case bitc::GLOBALVAL_SUMMARY_BLOCK_ID: 5812 case bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID: 5813 // Add the module if it is a per-module index (has a source file name). 5814 if (!SourceFileName.empty()) 5815 addThisModule(); 5816 assert(!SeenValueSymbolTable && 5817 "Already read VST when parsing summary block?"); 5818 // We might not have a VST if there were no values in the 5819 // summary. An empty summary block generated when we are 5820 // performing ThinLTO compiles so we don't later invoke 5821 // the regular LTO process on them. 5822 if (VSTOffset > 0) { 5823 if (Error Err = parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap)) 5824 return Err; 5825 SeenValueSymbolTable = true; 5826 } 5827 SeenGlobalValSummary = true; 5828 if (Error Err = parseEntireSummary(Entry.ID)) 5829 return Err; 5830 break; 5831 case bitc::MODULE_STRTAB_BLOCK_ID: 5832 if (Error Err = parseModuleStringTable()) 5833 return Err; 5834 break; 5835 } 5836 continue; 5837 5838 case BitstreamEntry::Record: { 5839 Record.clear(); 5840 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 5841 if (!MaybeBitCode) 5842 return MaybeBitCode.takeError(); 5843 switch (MaybeBitCode.get()) { 5844 default: 5845 break; // Default behavior, ignore unknown content. 5846 case bitc::MODULE_CODE_VERSION: { 5847 if (Error Err = parseVersionRecord(Record).takeError()) 5848 return Err; 5849 break; 5850 } 5851 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 5852 case bitc::MODULE_CODE_SOURCE_FILENAME: { 5853 SmallString<128> ValueName; 5854 if (convertToString(Record, 0, ValueName)) 5855 return error("Invalid record"); 5856 SourceFileName = ValueName.c_str(); 5857 break; 5858 } 5859 /// MODULE_CODE_HASH: [5*i32] 5860 case bitc::MODULE_CODE_HASH: { 5861 if (Record.size() != 5) 5862 return error("Invalid hash length " + Twine(Record.size()).str()); 5863 auto &Hash = getThisModule()->second.second; 5864 int Pos = 0; 5865 for (auto &Val : Record) { 5866 assert(!(Val >> 32) && "Unexpected high bits set"); 5867 Hash[Pos++] = Val; 5868 } 5869 break; 5870 } 5871 /// MODULE_CODE_VSTOFFSET: [offset] 5872 case bitc::MODULE_CODE_VSTOFFSET: 5873 if (Record.empty()) 5874 return error("Invalid record"); 5875 // Note that we subtract 1 here because the offset is relative to one 5876 // word before the start of the identification or module block, which 5877 // was historically always the start of the regular bitcode header. 5878 VSTOffset = Record[0] - 1; 5879 break; 5880 // v1 GLOBALVAR: [pointer type, isconst, initid, linkage, ...] 5881 // v1 FUNCTION: [type, callingconv, isproto, linkage, ...] 5882 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, ...] 5883 // v2: [strtab offset, strtab size, v1] 5884 case bitc::MODULE_CODE_GLOBALVAR: 5885 case bitc::MODULE_CODE_FUNCTION: 5886 case bitc::MODULE_CODE_ALIAS: { 5887 StringRef Name; 5888 ArrayRef<uint64_t> GVRecord; 5889 std::tie(Name, GVRecord) = readNameFromStrtab(Record); 5890 if (GVRecord.size() <= 3) 5891 return error("Invalid record"); 5892 uint64_t RawLinkage = GVRecord[3]; 5893 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 5894 if (!UseStrtab) { 5895 ValueIdToLinkageMap[ValueId++] = Linkage; 5896 break; 5897 } 5898 5899 setValueGUID(ValueId++, Name, Linkage, SourceFileName); 5900 break; 5901 } 5902 } 5903 } 5904 continue; 5905 } 5906 } 5907 } 5908 5909 std::vector<ValueInfo> 5910 ModuleSummaryIndexBitcodeReader::makeRefList(ArrayRef<uint64_t> Record) { 5911 std::vector<ValueInfo> Ret; 5912 Ret.reserve(Record.size()); 5913 for (uint64_t RefValueId : Record) 5914 Ret.push_back(getValueInfoFromValueId(RefValueId).first); 5915 return Ret; 5916 } 5917 5918 std::vector<FunctionSummary::EdgeTy> 5919 ModuleSummaryIndexBitcodeReader::makeCallList(ArrayRef<uint64_t> Record, 5920 bool IsOldProfileFormat, 5921 bool HasProfile, bool HasRelBF) { 5922 std::vector<FunctionSummary::EdgeTy> Ret; 5923 Ret.reserve(Record.size()); 5924 for (unsigned I = 0, E = Record.size(); I != E; ++I) { 5925 CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown; 5926 uint64_t RelBF = 0; 5927 ValueInfo Callee = getValueInfoFromValueId(Record[I]).first; 5928 if (IsOldProfileFormat) { 5929 I += 1; // Skip old callsitecount field 5930 if (HasProfile) 5931 I += 1; // Skip old profilecount field 5932 } else if (HasProfile) 5933 Hotness = static_cast<CalleeInfo::HotnessType>(Record[++I]); 5934 else if (HasRelBF) 5935 RelBF = Record[++I]; 5936 Ret.push_back(FunctionSummary::EdgeTy{Callee, CalleeInfo(Hotness, RelBF)}); 5937 } 5938 return Ret; 5939 } 5940 5941 static void 5942 parseWholeProgramDevirtResolutionByArg(ArrayRef<uint64_t> Record, size_t &Slot, 5943 WholeProgramDevirtResolution &Wpd) { 5944 uint64_t ArgNum = Record[Slot++]; 5945 WholeProgramDevirtResolution::ByArg &B = 5946 Wpd.ResByArg[{Record.begin() + Slot, Record.begin() + Slot + ArgNum}]; 5947 Slot += ArgNum; 5948 5949 B.TheKind = 5950 static_cast<WholeProgramDevirtResolution::ByArg::Kind>(Record[Slot++]); 5951 B.Info = Record[Slot++]; 5952 B.Byte = Record[Slot++]; 5953 B.Bit = Record[Slot++]; 5954 } 5955 5956 static void parseWholeProgramDevirtResolution(ArrayRef<uint64_t> Record, 5957 StringRef Strtab, size_t &Slot, 5958 TypeIdSummary &TypeId) { 5959 uint64_t Id = Record[Slot++]; 5960 WholeProgramDevirtResolution &Wpd = TypeId.WPDRes[Id]; 5961 5962 Wpd.TheKind = static_cast<WholeProgramDevirtResolution::Kind>(Record[Slot++]); 5963 Wpd.SingleImplName = {Strtab.data() + Record[Slot], 5964 static_cast<size_t>(Record[Slot + 1])}; 5965 Slot += 2; 5966 5967 uint64_t ResByArgNum = Record[Slot++]; 5968 for (uint64_t I = 0; I != ResByArgNum; ++I) 5969 parseWholeProgramDevirtResolutionByArg(Record, Slot, Wpd); 5970 } 5971 5972 static void parseTypeIdSummaryRecord(ArrayRef<uint64_t> Record, 5973 StringRef Strtab, 5974 ModuleSummaryIndex &TheIndex) { 5975 size_t Slot = 0; 5976 TypeIdSummary &TypeId = TheIndex.getOrInsertTypeIdSummary( 5977 {Strtab.data() + Record[Slot], static_cast<size_t>(Record[Slot + 1])}); 5978 Slot += 2; 5979 5980 TypeId.TTRes.TheKind = static_cast<TypeTestResolution::Kind>(Record[Slot++]); 5981 TypeId.TTRes.SizeM1BitWidth = Record[Slot++]; 5982 TypeId.TTRes.AlignLog2 = Record[Slot++]; 5983 TypeId.TTRes.SizeM1 = Record[Slot++]; 5984 TypeId.TTRes.BitMask = Record[Slot++]; 5985 TypeId.TTRes.InlineBits = Record[Slot++]; 5986 5987 while (Slot < Record.size()) 5988 parseWholeProgramDevirtResolution(Record, Strtab, Slot, TypeId); 5989 } 5990 5991 std::vector<FunctionSummary::ParamAccess> 5992 ModuleSummaryIndexBitcodeReader::parseParamAccesses(ArrayRef<uint64_t> Record) { 5993 auto ReadRange = [&]() { 5994 APInt Lower(FunctionSummary::ParamAccess::RangeWidth, 5995 BitcodeReader::decodeSignRotatedValue(Record.front())); 5996 Record = Record.drop_front(); 5997 APInt Upper(FunctionSummary::ParamAccess::RangeWidth, 5998 BitcodeReader::decodeSignRotatedValue(Record.front())); 5999 Record = Record.drop_front(); 6000 ConstantRange Range{Lower, Upper}; 6001 assert(!Range.isFullSet()); 6002 assert(!Range.isUpperSignWrapped()); 6003 return Range; 6004 }; 6005 6006 std::vector<FunctionSummary::ParamAccess> PendingParamAccesses; 6007 while (!Record.empty()) { 6008 PendingParamAccesses.emplace_back(); 6009 FunctionSummary::ParamAccess &ParamAccess = PendingParamAccesses.back(); 6010 ParamAccess.ParamNo = Record.front(); 6011 Record = Record.drop_front(); 6012 ParamAccess.Use = ReadRange(); 6013 ParamAccess.Calls.resize(Record.front()); 6014 Record = Record.drop_front(); 6015 for (auto &Call : ParamAccess.Calls) { 6016 Call.ParamNo = Record.front(); 6017 Record = Record.drop_front(); 6018 Call.Callee = getValueInfoFromValueId(Record.front()).first; 6019 Record = Record.drop_front(); 6020 Call.Offsets = ReadRange(); 6021 } 6022 } 6023 return PendingParamAccesses; 6024 } 6025 6026 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableInfo( 6027 ArrayRef<uint64_t> Record, size_t &Slot, 6028 TypeIdCompatibleVtableInfo &TypeId) { 6029 uint64_t Offset = Record[Slot++]; 6030 ValueInfo Callee = getValueInfoFromValueId(Record[Slot++]).first; 6031 TypeId.push_back({Offset, Callee}); 6032 } 6033 6034 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableSummaryRecord( 6035 ArrayRef<uint64_t> Record) { 6036 size_t Slot = 0; 6037 TypeIdCompatibleVtableInfo &TypeId = 6038 TheIndex.getOrInsertTypeIdCompatibleVtableSummary( 6039 {Strtab.data() + Record[Slot], 6040 static_cast<size_t>(Record[Slot + 1])}); 6041 Slot += 2; 6042 6043 while (Slot < Record.size()) 6044 parseTypeIdCompatibleVtableInfo(Record, Slot, TypeId); 6045 } 6046 6047 static void setSpecialRefs(std::vector<ValueInfo> &Refs, unsigned ROCnt, 6048 unsigned WOCnt) { 6049 // Readonly and writeonly refs are in the end of the refs list. 6050 assert(ROCnt + WOCnt <= Refs.size()); 6051 unsigned FirstWORef = Refs.size() - WOCnt; 6052 unsigned RefNo = FirstWORef - ROCnt; 6053 for (; RefNo < FirstWORef; ++RefNo) 6054 Refs[RefNo].setReadOnly(); 6055 for (; RefNo < Refs.size(); ++RefNo) 6056 Refs[RefNo].setWriteOnly(); 6057 } 6058 6059 // Eagerly parse the entire summary block. This populates the GlobalValueSummary 6060 // objects in the index. 6061 Error ModuleSummaryIndexBitcodeReader::parseEntireSummary(unsigned ID) { 6062 if (Error Err = Stream.EnterSubBlock(ID)) 6063 return Err; 6064 SmallVector<uint64_t, 64> Record; 6065 6066 // Parse version 6067 { 6068 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 6069 if (!MaybeEntry) 6070 return MaybeEntry.takeError(); 6071 BitstreamEntry Entry = MaybeEntry.get(); 6072 6073 if (Entry.Kind != BitstreamEntry::Record) 6074 return error("Invalid Summary Block: record for version expected"); 6075 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 6076 if (!MaybeRecord) 6077 return MaybeRecord.takeError(); 6078 if (MaybeRecord.get() != bitc::FS_VERSION) 6079 return error("Invalid Summary Block: version expected"); 6080 } 6081 const uint64_t Version = Record[0]; 6082 const bool IsOldProfileFormat = Version == 1; 6083 if (Version < 1 || Version > ModuleSummaryIndex::BitcodeSummaryVersion) 6084 return error("Invalid summary version " + Twine(Version) + 6085 ". Version should be in the range [1-" + 6086 Twine(ModuleSummaryIndex::BitcodeSummaryVersion) + 6087 "]."); 6088 Record.clear(); 6089 6090 // Keep around the last seen summary to be used when we see an optional 6091 // "OriginalName" attachement. 6092 GlobalValueSummary *LastSeenSummary = nullptr; 6093 GlobalValue::GUID LastSeenGUID = 0; 6094 6095 // We can expect to see any number of type ID information records before 6096 // each function summary records; these variables store the information 6097 // collected so far so that it can be used to create the summary object. 6098 std::vector<GlobalValue::GUID> PendingTypeTests; 6099 std::vector<FunctionSummary::VFuncId> PendingTypeTestAssumeVCalls, 6100 PendingTypeCheckedLoadVCalls; 6101 std::vector<FunctionSummary::ConstVCall> PendingTypeTestAssumeConstVCalls, 6102 PendingTypeCheckedLoadConstVCalls; 6103 std::vector<FunctionSummary::ParamAccess> PendingParamAccesses; 6104 6105 while (true) { 6106 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 6107 if (!MaybeEntry) 6108 return MaybeEntry.takeError(); 6109 BitstreamEntry Entry = MaybeEntry.get(); 6110 6111 switch (Entry.Kind) { 6112 case BitstreamEntry::SubBlock: // Handled for us already. 6113 case BitstreamEntry::Error: 6114 return error("Malformed block"); 6115 case BitstreamEntry::EndBlock: 6116 return Error::success(); 6117 case BitstreamEntry::Record: 6118 // The interesting case. 6119 break; 6120 } 6121 6122 // Read a record. The record format depends on whether this 6123 // is a per-module index or a combined index file. In the per-module 6124 // case the records contain the associated value's ID for correlation 6125 // with VST entries. In the combined index the correlation is done 6126 // via the bitcode offset of the summary records (which were saved 6127 // in the combined index VST entries). The records also contain 6128 // information used for ThinLTO renaming and importing. 6129 Record.clear(); 6130 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 6131 if (!MaybeBitCode) 6132 return MaybeBitCode.takeError(); 6133 switch (unsigned BitCode = MaybeBitCode.get()) { 6134 default: // Default behavior: ignore. 6135 break; 6136 case bitc::FS_FLAGS: { // [flags] 6137 TheIndex.setFlags(Record[0]); 6138 break; 6139 } 6140 case bitc::FS_VALUE_GUID: { // [valueid, refguid] 6141 uint64_t ValueID = Record[0]; 6142 GlobalValue::GUID RefGUID = Record[1]; 6143 ValueIdToValueInfoMap[ValueID] = 6144 std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID); 6145 break; 6146 } 6147 // FS_PERMODULE: [valueid, flags, instcount, fflags, numrefs, 6148 // numrefs x valueid, n x (valueid)] 6149 // FS_PERMODULE_PROFILE: [valueid, flags, instcount, fflags, numrefs, 6150 // numrefs x valueid, 6151 // n x (valueid, hotness)] 6152 // FS_PERMODULE_RELBF: [valueid, flags, instcount, fflags, numrefs, 6153 // numrefs x valueid, 6154 // n x (valueid, relblockfreq)] 6155 case bitc::FS_PERMODULE: 6156 case bitc::FS_PERMODULE_RELBF: 6157 case bitc::FS_PERMODULE_PROFILE: { 6158 unsigned ValueID = Record[0]; 6159 uint64_t RawFlags = Record[1]; 6160 unsigned InstCount = Record[2]; 6161 uint64_t RawFunFlags = 0; 6162 unsigned NumRefs = Record[3]; 6163 unsigned NumRORefs = 0, NumWORefs = 0; 6164 int RefListStartIndex = 4; 6165 if (Version >= 4) { 6166 RawFunFlags = Record[3]; 6167 NumRefs = Record[4]; 6168 RefListStartIndex = 5; 6169 if (Version >= 5) { 6170 NumRORefs = Record[5]; 6171 RefListStartIndex = 6; 6172 if (Version >= 7) { 6173 NumWORefs = Record[6]; 6174 RefListStartIndex = 7; 6175 } 6176 } 6177 } 6178 6179 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6180 // The module path string ref set in the summary must be owned by the 6181 // index's module string table. Since we don't have a module path 6182 // string table section in the per-module index, we create a single 6183 // module path string table entry with an empty (0) ID to take 6184 // ownership. 6185 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 6186 assert(Record.size() >= RefListStartIndex + NumRefs && 6187 "Record size inconsistent with number of references"); 6188 std::vector<ValueInfo> Refs = makeRefList( 6189 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 6190 bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE); 6191 bool HasRelBF = (BitCode == bitc::FS_PERMODULE_RELBF); 6192 std::vector<FunctionSummary::EdgeTy> Calls = makeCallList( 6193 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex), 6194 IsOldProfileFormat, HasProfile, HasRelBF); 6195 setSpecialRefs(Refs, NumRORefs, NumWORefs); 6196 auto FS = std::make_unique<FunctionSummary>( 6197 Flags, InstCount, getDecodedFFlags(RawFunFlags), /*EntryCount=*/0, 6198 std::move(Refs), std::move(Calls), std::move(PendingTypeTests), 6199 std::move(PendingTypeTestAssumeVCalls), 6200 std::move(PendingTypeCheckedLoadVCalls), 6201 std::move(PendingTypeTestAssumeConstVCalls), 6202 std::move(PendingTypeCheckedLoadConstVCalls), 6203 std::move(PendingParamAccesses)); 6204 auto VIAndOriginalGUID = getValueInfoFromValueId(ValueID); 6205 FS->setModulePath(getThisModule()->first()); 6206 FS->setOriginalName(VIAndOriginalGUID.second); 6207 TheIndex.addGlobalValueSummary(VIAndOriginalGUID.first, std::move(FS)); 6208 break; 6209 } 6210 // FS_ALIAS: [valueid, flags, valueid] 6211 // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as 6212 // they expect all aliasee summaries to be available. 6213 case bitc::FS_ALIAS: { 6214 unsigned ValueID = Record[0]; 6215 uint64_t RawFlags = Record[1]; 6216 unsigned AliaseeID = Record[2]; 6217 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6218 auto AS = std::make_unique<AliasSummary>(Flags); 6219 // The module path string ref set in the summary must be owned by the 6220 // index's module string table. Since we don't have a module path 6221 // string table section in the per-module index, we create a single 6222 // module path string table entry with an empty (0) ID to take 6223 // ownership. 6224 AS->setModulePath(getThisModule()->first()); 6225 6226 auto AliaseeVI = getValueInfoFromValueId(AliaseeID).first; 6227 auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, ModulePath); 6228 if (!AliaseeInModule) 6229 return error("Alias expects aliasee summary to be parsed"); 6230 AS->setAliasee(AliaseeVI, AliaseeInModule); 6231 6232 auto GUID = getValueInfoFromValueId(ValueID); 6233 AS->setOriginalName(GUID.second); 6234 TheIndex.addGlobalValueSummary(GUID.first, std::move(AS)); 6235 break; 6236 } 6237 // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, n x valueid] 6238 case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: { 6239 unsigned ValueID = Record[0]; 6240 uint64_t RawFlags = Record[1]; 6241 unsigned RefArrayStart = 2; 6242 GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false, 6243 /* WriteOnly */ false, 6244 /* Constant */ false, 6245 GlobalObject::VCallVisibilityPublic); 6246 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6247 if (Version >= 5) { 6248 GVF = getDecodedGVarFlags(Record[2]); 6249 RefArrayStart = 3; 6250 } 6251 std::vector<ValueInfo> Refs = 6252 makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart)); 6253 auto FS = 6254 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 6255 FS->setModulePath(getThisModule()->first()); 6256 auto GUID = getValueInfoFromValueId(ValueID); 6257 FS->setOriginalName(GUID.second); 6258 TheIndex.addGlobalValueSummary(GUID.first, std::move(FS)); 6259 break; 6260 } 6261 // FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, 6262 // numrefs, numrefs x valueid, 6263 // n x (valueid, offset)] 6264 case bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: { 6265 unsigned ValueID = Record[0]; 6266 uint64_t RawFlags = Record[1]; 6267 GlobalVarSummary::GVarFlags GVF = getDecodedGVarFlags(Record[2]); 6268 unsigned NumRefs = Record[3]; 6269 unsigned RefListStartIndex = 4; 6270 unsigned VTableListStartIndex = RefListStartIndex + NumRefs; 6271 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6272 std::vector<ValueInfo> Refs = makeRefList( 6273 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 6274 VTableFuncList VTableFuncs; 6275 for (unsigned I = VTableListStartIndex, E = Record.size(); I != E; ++I) { 6276 ValueInfo Callee = getValueInfoFromValueId(Record[I]).first; 6277 uint64_t Offset = Record[++I]; 6278 VTableFuncs.push_back({Callee, Offset}); 6279 } 6280 auto VS = 6281 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 6282 VS->setModulePath(getThisModule()->first()); 6283 VS->setVTableFuncs(VTableFuncs); 6284 auto GUID = getValueInfoFromValueId(ValueID); 6285 VS->setOriginalName(GUID.second); 6286 TheIndex.addGlobalValueSummary(GUID.first, std::move(VS)); 6287 break; 6288 } 6289 // FS_COMBINED: [valueid, modid, flags, instcount, fflags, numrefs, 6290 // numrefs x valueid, n x (valueid)] 6291 // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, fflags, numrefs, 6292 // numrefs x valueid, n x (valueid, hotness)] 6293 case bitc::FS_COMBINED: 6294 case bitc::FS_COMBINED_PROFILE: { 6295 unsigned ValueID = Record[0]; 6296 uint64_t ModuleId = Record[1]; 6297 uint64_t RawFlags = Record[2]; 6298 unsigned InstCount = Record[3]; 6299 uint64_t RawFunFlags = 0; 6300 uint64_t EntryCount = 0; 6301 unsigned NumRefs = Record[4]; 6302 unsigned NumRORefs = 0, NumWORefs = 0; 6303 int RefListStartIndex = 5; 6304 6305 if (Version >= 4) { 6306 RawFunFlags = Record[4]; 6307 RefListStartIndex = 6; 6308 size_t NumRefsIndex = 5; 6309 if (Version >= 5) { 6310 unsigned NumRORefsOffset = 1; 6311 RefListStartIndex = 7; 6312 if (Version >= 6) { 6313 NumRefsIndex = 6; 6314 EntryCount = Record[5]; 6315 RefListStartIndex = 8; 6316 if (Version >= 7) { 6317 RefListStartIndex = 9; 6318 NumWORefs = Record[8]; 6319 NumRORefsOffset = 2; 6320 } 6321 } 6322 NumRORefs = Record[RefListStartIndex - NumRORefsOffset]; 6323 } 6324 NumRefs = Record[NumRefsIndex]; 6325 } 6326 6327 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6328 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 6329 assert(Record.size() >= RefListStartIndex + NumRefs && 6330 "Record size inconsistent with number of references"); 6331 std::vector<ValueInfo> Refs = makeRefList( 6332 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 6333 bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE); 6334 std::vector<FunctionSummary::EdgeTy> Edges = makeCallList( 6335 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex), 6336 IsOldProfileFormat, HasProfile, false); 6337 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 6338 setSpecialRefs(Refs, NumRORefs, NumWORefs); 6339 auto FS = std::make_unique<FunctionSummary>( 6340 Flags, InstCount, getDecodedFFlags(RawFunFlags), EntryCount, 6341 std::move(Refs), std::move(Edges), std::move(PendingTypeTests), 6342 std::move(PendingTypeTestAssumeVCalls), 6343 std::move(PendingTypeCheckedLoadVCalls), 6344 std::move(PendingTypeTestAssumeConstVCalls), 6345 std::move(PendingTypeCheckedLoadConstVCalls), 6346 std::move(PendingParamAccesses)); 6347 LastSeenSummary = FS.get(); 6348 LastSeenGUID = VI.getGUID(); 6349 FS->setModulePath(ModuleIdMap[ModuleId]); 6350 TheIndex.addGlobalValueSummary(VI, std::move(FS)); 6351 break; 6352 } 6353 // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid] 6354 // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as 6355 // they expect all aliasee summaries to be available. 6356 case bitc::FS_COMBINED_ALIAS: { 6357 unsigned ValueID = Record[0]; 6358 uint64_t ModuleId = Record[1]; 6359 uint64_t RawFlags = Record[2]; 6360 unsigned AliaseeValueId = Record[3]; 6361 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6362 auto AS = std::make_unique<AliasSummary>(Flags); 6363 LastSeenSummary = AS.get(); 6364 AS->setModulePath(ModuleIdMap[ModuleId]); 6365 6366 auto AliaseeVI = getValueInfoFromValueId(AliaseeValueId).first; 6367 auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, AS->modulePath()); 6368 AS->setAliasee(AliaseeVI, AliaseeInModule); 6369 6370 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 6371 LastSeenGUID = VI.getGUID(); 6372 TheIndex.addGlobalValueSummary(VI, std::move(AS)); 6373 break; 6374 } 6375 // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid] 6376 case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: { 6377 unsigned ValueID = Record[0]; 6378 uint64_t ModuleId = Record[1]; 6379 uint64_t RawFlags = Record[2]; 6380 unsigned RefArrayStart = 3; 6381 GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false, 6382 /* WriteOnly */ false, 6383 /* Constant */ false, 6384 GlobalObject::VCallVisibilityPublic); 6385 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6386 if (Version >= 5) { 6387 GVF = getDecodedGVarFlags(Record[3]); 6388 RefArrayStart = 4; 6389 } 6390 std::vector<ValueInfo> Refs = 6391 makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart)); 6392 auto FS = 6393 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 6394 LastSeenSummary = FS.get(); 6395 FS->setModulePath(ModuleIdMap[ModuleId]); 6396 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 6397 LastSeenGUID = VI.getGUID(); 6398 TheIndex.addGlobalValueSummary(VI, std::move(FS)); 6399 break; 6400 } 6401 // FS_COMBINED_ORIGINAL_NAME: [original_name] 6402 case bitc::FS_COMBINED_ORIGINAL_NAME: { 6403 uint64_t OriginalName = Record[0]; 6404 if (!LastSeenSummary) 6405 return error("Name attachment that does not follow a combined record"); 6406 LastSeenSummary->setOriginalName(OriginalName); 6407 TheIndex.addOriginalName(LastSeenGUID, OriginalName); 6408 // Reset the LastSeenSummary 6409 LastSeenSummary = nullptr; 6410 LastSeenGUID = 0; 6411 break; 6412 } 6413 case bitc::FS_TYPE_TESTS: 6414 assert(PendingTypeTests.empty()); 6415 llvm::append_range(PendingTypeTests, Record); 6416 break; 6417 6418 case bitc::FS_TYPE_TEST_ASSUME_VCALLS: 6419 assert(PendingTypeTestAssumeVCalls.empty()); 6420 for (unsigned I = 0; I != Record.size(); I += 2) 6421 PendingTypeTestAssumeVCalls.push_back({Record[I], Record[I+1]}); 6422 break; 6423 6424 case bitc::FS_TYPE_CHECKED_LOAD_VCALLS: 6425 assert(PendingTypeCheckedLoadVCalls.empty()); 6426 for (unsigned I = 0; I != Record.size(); I += 2) 6427 PendingTypeCheckedLoadVCalls.push_back({Record[I], Record[I+1]}); 6428 break; 6429 6430 case bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL: 6431 PendingTypeTestAssumeConstVCalls.push_back( 6432 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}}); 6433 break; 6434 6435 case bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL: 6436 PendingTypeCheckedLoadConstVCalls.push_back( 6437 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}}); 6438 break; 6439 6440 case bitc::FS_CFI_FUNCTION_DEFS: { 6441 std::set<std::string> &CfiFunctionDefs = TheIndex.cfiFunctionDefs(); 6442 for (unsigned I = 0; I != Record.size(); I += 2) 6443 CfiFunctionDefs.insert( 6444 {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])}); 6445 break; 6446 } 6447 6448 case bitc::FS_CFI_FUNCTION_DECLS: { 6449 std::set<std::string> &CfiFunctionDecls = TheIndex.cfiFunctionDecls(); 6450 for (unsigned I = 0; I != Record.size(); I += 2) 6451 CfiFunctionDecls.insert( 6452 {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])}); 6453 break; 6454 } 6455 6456 case bitc::FS_TYPE_ID: 6457 parseTypeIdSummaryRecord(Record, Strtab, TheIndex); 6458 break; 6459 6460 case bitc::FS_TYPE_ID_METADATA: 6461 parseTypeIdCompatibleVtableSummaryRecord(Record); 6462 break; 6463 6464 case bitc::FS_BLOCK_COUNT: 6465 TheIndex.addBlockCount(Record[0]); 6466 break; 6467 6468 case bitc::FS_PARAM_ACCESS: { 6469 PendingParamAccesses = parseParamAccesses(Record); 6470 break; 6471 } 6472 } 6473 } 6474 llvm_unreachable("Exit infinite loop"); 6475 } 6476 6477 // Parse the module string table block into the Index. 6478 // This populates the ModulePathStringTable map in the index. 6479 Error ModuleSummaryIndexBitcodeReader::parseModuleStringTable() { 6480 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID)) 6481 return Err; 6482 6483 SmallVector<uint64_t, 64> Record; 6484 6485 SmallString<128> ModulePath; 6486 ModuleSummaryIndex::ModuleInfo *LastSeenModule = nullptr; 6487 6488 while (true) { 6489 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 6490 if (!MaybeEntry) 6491 return MaybeEntry.takeError(); 6492 BitstreamEntry Entry = MaybeEntry.get(); 6493 6494 switch (Entry.Kind) { 6495 case BitstreamEntry::SubBlock: // Handled for us already. 6496 case BitstreamEntry::Error: 6497 return error("Malformed block"); 6498 case BitstreamEntry::EndBlock: 6499 return Error::success(); 6500 case BitstreamEntry::Record: 6501 // The interesting case. 6502 break; 6503 } 6504 6505 Record.clear(); 6506 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 6507 if (!MaybeRecord) 6508 return MaybeRecord.takeError(); 6509 switch (MaybeRecord.get()) { 6510 default: // Default behavior: ignore. 6511 break; 6512 case bitc::MST_CODE_ENTRY: { 6513 // MST_ENTRY: [modid, namechar x N] 6514 uint64_t ModuleId = Record[0]; 6515 6516 if (convertToString(Record, 1, ModulePath)) 6517 return error("Invalid record"); 6518 6519 LastSeenModule = TheIndex.addModule(ModulePath, ModuleId); 6520 ModuleIdMap[ModuleId] = LastSeenModule->first(); 6521 6522 ModulePath.clear(); 6523 break; 6524 } 6525 /// MST_CODE_HASH: [5*i32] 6526 case bitc::MST_CODE_HASH: { 6527 if (Record.size() != 5) 6528 return error("Invalid hash length " + Twine(Record.size()).str()); 6529 if (!LastSeenModule) 6530 return error("Invalid hash that does not follow a module path"); 6531 int Pos = 0; 6532 for (auto &Val : Record) { 6533 assert(!(Val >> 32) && "Unexpected high bits set"); 6534 LastSeenModule->second.second[Pos++] = Val; 6535 } 6536 // Reset LastSeenModule to avoid overriding the hash unexpectedly. 6537 LastSeenModule = nullptr; 6538 break; 6539 } 6540 } 6541 } 6542 llvm_unreachable("Exit infinite loop"); 6543 } 6544 6545 namespace { 6546 6547 // FIXME: This class is only here to support the transition to llvm::Error. It 6548 // will be removed once this transition is complete. Clients should prefer to 6549 // deal with the Error value directly, rather than converting to error_code. 6550 class BitcodeErrorCategoryType : public std::error_category { 6551 const char *name() const noexcept override { 6552 return "llvm.bitcode"; 6553 } 6554 6555 std::string message(int IE) const override { 6556 BitcodeError E = static_cast<BitcodeError>(IE); 6557 switch (E) { 6558 case BitcodeError::CorruptedBitcode: 6559 return "Corrupted bitcode"; 6560 } 6561 llvm_unreachable("Unknown error type!"); 6562 } 6563 }; 6564 6565 } // end anonymous namespace 6566 6567 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory; 6568 6569 const std::error_category &llvm::BitcodeErrorCategory() { 6570 return *ErrorCategory; 6571 } 6572 6573 static Expected<StringRef> readBlobInRecord(BitstreamCursor &Stream, 6574 unsigned Block, unsigned RecordID) { 6575 if (Error Err = Stream.EnterSubBlock(Block)) 6576 return std::move(Err); 6577 6578 StringRef Strtab; 6579 while (true) { 6580 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 6581 if (!MaybeEntry) 6582 return MaybeEntry.takeError(); 6583 llvm::BitstreamEntry Entry = MaybeEntry.get(); 6584 6585 switch (Entry.Kind) { 6586 case BitstreamEntry::EndBlock: 6587 return Strtab; 6588 6589 case BitstreamEntry::Error: 6590 return error("Malformed block"); 6591 6592 case BitstreamEntry::SubBlock: 6593 if (Error Err = Stream.SkipBlock()) 6594 return std::move(Err); 6595 break; 6596 6597 case BitstreamEntry::Record: 6598 StringRef Blob; 6599 SmallVector<uint64_t, 1> Record; 6600 Expected<unsigned> MaybeRecord = 6601 Stream.readRecord(Entry.ID, Record, &Blob); 6602 if (!MaybeRecord) 6603 return MaybeRecord.takeError(); 6604 if (MaybeRecord.get() == RecordID) 6605 Strtab = Blob; 6606 break; 6607 } 6608 } 6609 } 6610 6611 //===----------------------------------------------------------------------===// 6612 // External interface 6613 //===----------------------------------------------------------------------===// 6614 6615 Expected<std::vector<BitcodeModule>> 6616 llvm::getBitcodeModuleList(MemoryBufferRef Buffer) { 6617 auto FOrErr = getBitcodeFileContents(Buffer); 6618 if (!FOrErr) 6619 return FOrErr.takeError(); 6620 return std::move(FOrErr->Mods); 6621 } 6622 6623 Expected<BitcodeFileContents> 6624 llvm::getBitcodeFileContents(MemoryBufferRef Buffer) { 6625 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 6626 if (!StreamOrErr) 6627 return StreamOrErr.takeError(); 6628 BitstreamCursor &Stream = *StreamOrErr; 6629 6630 BitcodeFileContents F; 6631 while (true) { 6632 uint64_t BCBegin = Stream.getCurrentByteNo(); 6633 6634 // We may be consuming bitcode from a client that leaves garbage at the end 6635 // of the bitcode stream (e.g. Apple's ar tool). If we are close enough to 6636 // the end that there cannot possibly be another module, stop looking. 6637 if (BCBegin + 8 >= Stream.getBitcodeBytes().size()) 6638 return F; 6639 6640 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 6641 if (!MaybeEntry) 6642 return MaybeEntry.takeError(); 6643 llvm::BitstreamEntry Entry = MaybeEntry.get(); 6644 6645 switch (Entry.Kind) { 6646 case BitstreamEntry::EndBlock: 6647 case BitstreamEntry::Error: 6648 return error("Malformed block"); 6649 6650 case BitstreamEntry::SubBlock: { 6651 uint64_t IdentificationBit = -1ull; 6652 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) { 6653 IdentificationBit = Stream.GetCurrentBitNo() - BCBegin * 8; 6654 if (Error Err = Stream.SkipBlock()) 6655 return std::move(Err); 6656 6657 { 6658 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 6659 if (!MaybeEntry) 6660 return MaybeEntry.takeError(); 6661 Entry = MaybeEntry.get(); 6662 } 6663 6664 if (Entry.Kind != BitstreamEntry::SubBlock || 6665 Entry.ID != bitc::MODULE_BLOCK_ID) 6666 return error("Malformed block"); 6667 } 6668 6669 if (Entry.ID == bitc::MODULE_BLOCK_ID) { 6670 uint64_t ModuleBit = Stream.GetCurrentBitNo() - BCBegin * 8; 6671 if (Error Err = Stream.SkipBlock()) 6672 return std::move(Err); 6673 6674 F.Mods.push_back({Stream.getBitcodeBytes().slice( 6675 BCBegin, Stream.getCurrentByteNo() - BCBegin), 6676 Buffer.getBufferIdentifier(), IdentificationBit, 6677 ModuleBit}); 6678 continue; 6679 } 6680 6681 if (Entry.ID == bitc::STRTAB_BLOCK_ID) { 6682 Expected<StringRef> Strtab = 6683 readBlobInRecord(Stream, bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB); 6684 if (!Strtab) 6685 return Strtab.takeError(); 6686 // This string table is used by every preceding bitcode module that does 6687 // not have its own string table. A bitcode file may have multiple 6688 // string tables if it was created by binary concatenation, for example 6689 // with "llvm-cat -b". 6690 for (auto I = F.Mods.rbegin(), E = F.Mods.rend(); I != E; ++I) { 6691 if (!I->Strtab.empty()) 6692 break; 6693 I->Strtab = *Strtab; 6694 } 6695 // Similarly, the string table is used by every preceding symbol table; 6696 // normally there will be just one unless the bitcode file was created 6697 // by binary concatenation. 6698 if (!F.Symtab.empty() && F.StrtabForSymtab.empty()) 6699 F.StrtabForSymtab = *Strtab; 6700 continue; 6701 } 6702 6703 if (Entry.ID == bitc::SYMTAB_BLOCK_ID) { 6704 Expected<StringRef> SymtabOrErr = 6705 readBlobInRecord(Stream, bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB); 6706 if (!SymtabOrErr) 6707 return SymtabOrErr.takeError(); 6708 6709 // We can expect the bitcode file to have multiple symbol tables if it 6710 // was created by binary concatenation. In that case we silently 6711 // ignore any subsequent symbol tables, which is fine because this is a 6712 // low level function. The client is expected to notice that the number 6713 // of modules in the symbol table does not match the number of modules 6714 // in the input file and regenerate the symbol table. 6715 if (F.Symtab.empty()) 6716 F.Symtab = *SymtabOrErr; 6717 continue; 6718 } 6719 6720 if (Error Err = Stream.SkipBlock()) 6721 return std::move(Err); 6722 continue; 6723 } 6724 case BitstreamEntry::Record: 6725 if (Expected<unsigned> StreamFailed = Stream.skipRecord(Entry.ID)) 6726 continue; 6727 else 6728 return StreamFailed.takeError(); 6729 } 6730 } 6731 } 6732 6733 /// Get a lazy one-at-time loading module from bitcode. 6734 /// 6735 /// This isn't always used in a lazy context. In particular, it's also used by 6736 /// \a parseModule(). If this is truly lazy, then we need to eagerly pull 6737 /// in forward-referenced functions from block address references. 6738 /// 6739 /// \param[in] MaterializeAll Set to \c true if we should materialize 6740 /// everything. 6741 Expected<std::unique_ptr<Module>> 6742 BitcodeModule::getModuleImpl(LLVMContext &Context, bool MaterializeAll, 6743 bool ShouldLazyLoadMetadata, bool IsImporting, 6744 DataLayoutCallbackTy DataLayoutCallback) { 6745 BitstreamCursor Stream(Buffer); 6746 6747 std::string ProducerIdentification; 6748 if (IdentificationBit != -1ull) { 6749 if (Error JumpFailed = Stream.JumpToBit(IdentificationBit)) 6750 return std::move(JumpFailed); 6751 Expected<std::string> ProducerIdentificationOrErr = 6752 readIdentificationBlock(Stream); 6753 if (!ProducerIdentificationOrErr) 6754 return ProducerIdentificationOrErr.takeError(); 6755 6756 ProducerIdentification = *ProducerIdentificationOrErr; 6757 } 6758 6759 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 6760 return std::move(JumpFailed); 6761 auto *R = new BitcodeReader(std::move(Stream), Strtab, ProducerIdentification, 6762 Context); 6763 6764 std::unique_ptr<Module> M = 6765 std::make_unique<Module>(ModuleIdentifier, Context); 6766 M->setMaterializer(R); 6767 6768 // Delay parsing Metadata if ShouldLazyLoadMetadata is true. 6769 if (Error Err = R->parseBitcodeInto(M.get(), ShouldLazyLoadMetadata, 6770 IsImporting, DataLayoutCallback)) 6771 return std::move(Err); 6772 6773 if (MaterializeAll) { 6774 // Read in the entire module, and destroy the BitcodeReader. 6775 if (Error Err = M->materializeAll()) 6776 return std::move(Err); 6777 } else { 6778 // Resolve forward references from blockaddresses. 6779 if (Error Err = R->materializeForwardReferencedFunctions()) 6780 return std::move(Err); 6781 } 6782 return std::move(M); 6783 } 6784 6785 Expected<std::unique_ptr<Module>> 6786 BitcodeModule::getLazyModule(LLVMContext &Context, bool ShouldLazyLoadMetadata, 6787 bool IsImporting) { 6788 return getModuleImpl(Context, false, ShouldLazyLoadMetadata, IsImporting, 6789 [](StringRef) { return None; }); 6790 } 6791 6792 // Parse the specified bitcode buffer and merge the index into CombinedIndex. 6793 // We don't use ModuleIdentifier here because the client may need to control the 6794 // module path used in the combined summary (e.g. when reading summaries for 6795 // regular LTO modules). 6796 Error BitcodeModule::readSummary(ModuleSummaryIndex &CombinedIndex, 6797 StringRef ModulePath, uint64_t ModuleId) { 6798 BitstreamCursor Stream(Buffer); 6799 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 6800 return JumpFailed; 6801 6802 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, CombinedIndex, 6803 ModulePath, ModuleId); 6804 return R.parseModule(); 6805 } 6806 6807 // Parse the specified bitcode buffer, returning the function info index. 6808 Expected<std::unique_ptr<ModuleSummaryIndex>> BitcodeModule::getSummary() { 6809 BitstreamCursor Stream(Buffer); 6810 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 6811 return std::move(JumpFailed); 6812 6813 auto Index = std::make_unique<ModuleSummaryIndex>(/*HaveGVs=*/false); 6814 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, *Index, 6815 ModuleIdentifier, 0); 6816 6817 if (Error Err = R.parseModule()) 6818 return std::move(Err); 6819 6820 return std::move(Index); 6821 } 6822 6823 static Expected<bool> getEnableSplitLTOUnitFlag(BitstreamCursor &Stream, 6824 unsigned ID) { 6825 if (Error Err = Stream.EnterSubBlock(ID)) 6826 return std::move(Err); 6827 SmallVector<uint64_t, 64> Record; 6828 6829 while (true) { 6830 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 6831 if (!MaybeEntry) 6832 return MaybeEntry.takeError(); 6833 BitstreamEntry Entry = MaybeEntry.get(); 6834 6835 switch (Entry.Kind) { 6836 case BitstreamEntry::SubBlock: // Handled for us already. 6837 case BitstreamEntry::Error: 6838 return error("Malformed block"); 6839 case BitstreamEntry::EndBlock: 6840 // If no flags record found, conservatively return true to mimic 6841 // behavior before this flag was added. 6842 return true; 6843 case BitstreamEntry::Record: 6844 // The interesting case. 6845 break; 6846 } 6847 6848 // Look for the FS_FLAGS record. 6849 Record.clear(); 6850 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 6851 if (!MaybeBitCode) 6852 return MaybeBitCode.takeError(); 6853 switch (MaybeBitCode.get()) { 6854 default: // Default behavior: ignore. 6855 break; 6856 case bitc::FS_FLAGS: { // [flags] 6857 uint64_t Flags = Record[0]; 6858 // Scan flags. 6859 assert(Flags <= 0x7f && "Unexpected bits in flag"); 6860 6861 return Flags & 0x8; 6862 } 6863 } 6864 } 6865 llvm_unreachable("Exit infinite loop"); 6866 } 6867 6868 // Check if the given bitcode buffer contains a global value summary block. 6869 Expected<BitcodeLTOInfo> BitcodeModule::getLTOInfo() { 6870 BitstreamCursor Stream(Buffer); 6871 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 6872 return std::move(JumpFailed); 6873 6874 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 6875 return std::move(Err); 6876 6877 while (true) { 6878 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 6879 if (!MaybeEntry) 6880 return MaybeEntry.takeError(); 6881 llvm::BitstreamEntry Entry = MaybeEntry.get(); 6882 6883 switch (Entry.Kind) { 6884 case BitstreamEntry::Error: 6885 return error("Malformed block"); 6886 case BitstreamEntry::EndBlock: 6887 return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/false, 6888 /*EnableSplitLTOUnit=*/false}; 6889 6890 case BitstreamEntry::SubBlock: 6891 if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) { 6892 Expected<bool> EnableSplitLTOUnit = 6893 getEnableSplitLTOUnitFlag(Stream, Entry.ID); 6894 if (!EnableSplitLTOUnit) 6895 return EnableSplitLTOUnit.takeError(); 6896 return BitcodeLTOInfo{/*IsThinLTO=*/true, /*HasSummary=*/true, 6897 *EnableSplitLTOUnit}; 6898 } 6899 6900 if (Entry.ID == bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID) { 6901 Expected<bool> EnableSplitLTOUnit = 6902 getEnableSplitLTOUnitFlag(Stream, Entry.ID); 6903 if (!EnableSplitLTOUnit) 6904 return EnableSplitLTOUnit.takeError(); 6905 return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/true, 6906 *EnableSplitLTOUnit}; 6907 } 6908 6909 // Ignore other sub-blocks. 6910 if (Error Err = Stream.SkipBlock()) 6911 return std::move(Err); 6912 continue; 6913 6914 case BitstreamEntry::Record: 6915 if (Expected<unsigned> StreamFailed = Stream.skipRecord(Entry.ID)) 6916 continue; 6917 else 6918 return StreamFailed.takeError(); 6919 } 6920 } 6921 } 6922 6923 static Expected<BitcodeModule> getSingleModule(MemoryBufferRef Buffer) { 6924 Expected<std::vector<BitcodeModule>> MsOrErr = getBitcodeModuleList(Buffer); 6925 if (!MsOrErr) 6926 return MsOrErr.takeError(); 6927 6928 if (MsOrErr->size() != 1) 6929 return error("Expected a single module"); 6930 6931 return (*MsOrErr)[0]; 6932 } 6933 6934 Expected<std::unique_ptr<Module>> 6935 llvm::getLazyBitcodeModule(MemoryBufferRef Buffer, LLVMContext &Context, 6936 bool ShouldLazyLoadMetadata, bool IsImporting) { 6937 Expected<BitcodeModule> BM = getSingleModule(Buffer); 6938 if (!BM) 6939 return BM.takeError(); 6940 6941 return BM->getLazyModule(Context, ShouldLazyLoadMetadata, IsImporting); 6942 } 6943 6944 Expected<std::unique_ptr<Module>> llvm::getOwningLazyBitcodeModule( 6945 std::unique_ptr<MemoryBuffer> &&Buffer, LLVMContext &Context, 6946 bool ShouldLazyLoadMetadata, bool IsImporting) { 6947 auto MOrErr = getLazyBitcodeModule(*Buffer, Context, ShouldLazyLoadMetadata, 6948 IsImporting); 6949 if (MOrErr) 6950 (*MOrErr)->setOwnedMemoryBuffer(std::move(Buffer)); 6951 return MOrErr; 6952 } 6953 6954 Expected<std::unique_ptr<Module>> 6955 BitcodeModule::parseModule(LLVMContext &Context, 6956 DataLayoutCallbackTy DataLayoutCallback) { 6957 return getModuleImpl(Context, true, false, false, DataLayoutCallback); 6958 // TODO: Restore the use-lists to the in-memory state when the bitcode was 6959 // written. We must defer until the Module has been fully materialized. 6960 } 6961 6962 Expected<std::unique_ptr<Module>> 6963 llvm::parseBitcodeFile(MemoryBufferRef Buffer, LLVMContext &Context, 6964 DataLayoutCallbackTy DataLayoutCallback) { 6965 Expected<BitcodeModule> BM = getSingleModule(Buffer); 6966 if (!BM) 6967 return BM.takeError(); 6968 6969 return BM->parseModule(Context, DataLayoutCallback); 6970 } 6971 6972 Expected<std::string> llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer) { 6973 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 6974 if (!StreamOrErr) 6975 return StreamOrErr.takeError(); 6976 6977 return readTriple(*StreamOrErr); 6978 } 6979 6980 Expected<bool> llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer) { 6981 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 6982 if (!StreamOrErr) 6983 return StreamOrErr.takeError(); 6984 6985 return hasObjCCategory(*StreamOrErr); 6986 } 6987 6988 Expected<std::string> llvm::getBitcodeProducerString(MemoryBufferRef Buffer) { 6989 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 6990 if (!StreamOrErr) 6991 return StreamOrErr.takeError(); 6992 6993 return readIdentificationCode(*StreamOrErr); 6994 } 6995 6996 Error llvm::readModuleSummaryIndex(MemoryBufferRef Buffer, 6997 ModuleSummaryIndex &CombinedIndex, 6998 uint64_t ModuleId) { 6999 Expected<BitcodeModule> BM = getSingleModule(Buffer); 7000 if (!BM) 7001 return BM.takeError(); 7002 7003 return BM->readSummary(CombinedIndex, BM->getModuleIdentifier(), ModuleId); 7004 } 7005 7006 Expected<std::unique_ptr<ModuleSummaryIndex>> 7007 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer) { 7008 Expected<BitcodeModule> BM = getSingleModule(Buffer); 7009 if (!BM) 7010 return BM.takeError(); 7011 7012 return BM->getSummary(); 7013 } 7014 7015 Expected<BitcodeLTOInfo> llvm::getBitcodeLTOInfo(MemoryBufferRef Buffer) { 7016 Expected<BitcodeModule> BM = getSingleModule(Buffer); 7017 if (!BM) 7018 return BM.takeError(); 7019 7020 return BM->getLTOInfo(); 7021 } 7022 7023 Expected<std::unique_ptr<ModuleSummaryIndex>> 7024 llvm::getModuleSummaryIndexForFile(StringRef Path, 7025 bool IgnoreEmptyThinLTOIndexFile) { 7026 ErrorOr<std::unique_ptr<MemoryBuffer>> FileOrErr = 7027 MemoryBuffer::getFileOrSTDIN(Path); 7028 if (!FileOrErr) 7029 return errorCodeToError(FileOrErr.getError()); 7030 if (IgnoreEmptyThinLTOIndexFile && !(*FileOrErr)->getBufferSize()) 7031 return nullptr; 7032 return getModuleSummaryIndex(**FileOrErr); 7033 } 7034