1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "llvm/Bitcode/ReaderWriter.h" 11 #include "llvm/ADT/STLExtras.h" 12 #include "llvm/ADT/SmallString.h" 13 #include "llvm/ADT/SmallVector.h" 14 #include "llvm/ADT/Triple.h" 15 #include "llvm/Bitcode/BitstreamReader.h" 16 #include "llvm/Bitcode/LLVMBitCodes.h" 17 #include "llvm/IR/AutoUpgrade.h" 18 #include "llvm/IR/Constants.h" 19 #include "llvm/IR/DebugInfo.h" 20 #include "llvm/IR/DebugInfoMetadata.h" 21 #include "llvm/IR/DerivedTypes.h" 22 #include "llvm/IR/DiagnosticPrinter.h" 23 #include "llvm/IR/GVMaterializer.h" 24 #include "llvm/IR/InlineAsm.h" 25 #include "llvm/IR/IntrinsicInst.h" 26 #include "llvm/IR/LLVMContext.h" 27 #include "llvm/IR/Module.h" 28 #include "llvm/IR/OperandTraits.h" 29 #include "llvm/IR/Operator.h" 30 #include "llvm/IR/FunctionInfo.h" 31 #include "llvm/IR/ValueHandle.h" 32 #include "llvm/Support/DataStream.h" 33 #include "llvm/Support/ManagedStatic.h" 34 #include "llvm/Support/MathExtras.h" 35 #include "llvm/Support/MemoryBuffer.h" 36 #include "llvm/Support/raw_ostream.h" 37 #include <deque> 38 using namespace llvm; 39 40 namespace { 41 enum { 42 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 43 }; 44 45 class BitcodeReaderValueList { 46 std::vector<WeakVH> ValuePtrs; 47 48 /// As we resolve forward-referenced constants, we add information about them 49 /// to this vector. This allows us to resolve them in bulk instead of 50 /// resolving each reference at a time. See the code in 51 /// ResolveConstantForwardRefs for more information about this. 52 /// 53 /// The key of this vector is the placeholder constant, the value is the slot 54 /// number that holds the resolved value. 55 typedef std::vector<std::pair<Constant*, unsigned> > ResolveConstantsTy; 56 ResolveConstantsTy ResolveConstants; 57 LLVMContext &Context; 58 public: 59 BitcodeReaderValueList(LLVMContext &C) : Context(C) {} 60 ~BitcodeReaderValueList() { 61 assert(ResolveConstants.empty() && "Constants not resolved?"); 62 } 63 64 // vector compatibility methods 65 unsigned size() const { return ValuePtrs.size(); } 66 void resize(unsigned N) { ValuePtrs.resize(N); } 67 void push_back(Value *V) { ValuePtrs.emplace_back(V); } 68 69 void clear() { 70 assert(ResolveConstants.empty() && "Constants not resolved?"); 71 ValuePtrs.clear(); 72 } 73 74 Value *operator[](unsigned i) const { 75 assert(i < ValuePtrs.size()); 76 return ValuePtrs[i]; 77 } 78 79 Value *back() const { return ValuePtrs.back(); } 80 void pop_back() { ValuePtrs.pop_back(); } 81 bool empty() const { return ValuePtrs.empty(); } 82 void shrinkTo(unsigned N) { 83 assert(N <= size() && "Invalid shrinkTo request!"); 84 ValuePtrs.resize(N); 85 } 86 87 Constant *getConstantFwdRef(unsigned Idx, Type *Ty); 88 Value *getValueFwdRef(unsigned Idx, Type *Ty); 89 90 void assignValue(Value *V, unsigned Idx); 91 92 /// Once all constants are read, this method bulk resolves any forward 93 /// references. 94 void resolveConstantForwardRefs(); 95 }; 96 97 class BitcodeReaderMDValueList { 98 unsigned NumFwdRefs; 99 bool AnyFwdRefs; 100 bool SavedFwdRefs; 101 unsigned MinFwdRef; 102 unsigned MaxFwdRef; 103 std::vector<TrackingMDRef> MDValuePtrs; 104 105 LLVMContext &Context; 106 public: 107 BitcodeReaderMDValueList(LLVMContext &C) 108 : NumFwdRefs(0), AnyFwdRefs(false), SavedFwdRefs(false), Context(C) {} 109 ~BitcodeReaderMDValueList() { 110 // Assert that we either replaced all forward references, or saved 111 // them for later replacement. 112 assert(!NumFwdRefs || SavedFwdRefs); 113 } 114 115 // vector compatibility methods 116 unsigned size() const { return MDValuePtrs.size(); } 117 void resize(unsigned N) { MDValuePtrs.resize(N); } 118 void push_back(Metadata *MD) { MDValuePtrs.emplace_back(MD); } 119 void clear() { MDValuePtrs.clear(); } 120 Metadata *back() const { return MDValuePtrs.back(); } 121 void pop_back() { MDValuePtrs.pop_back(); } 122 bool empty() const { return MDValuePtrs.empty(); } 123 124 void savedFwdRefs() { SavedFwdRefs = true; } 125 126 Metadata *operator[](unsigned i) const { 127 assert(i < MDValuePtrs.size()); 128 return MDValuePtrs[i]; 129 } 130 131 void shrinkTo(unsigned N) { 132 assert(N <= size() && "Invalid shrinkTo request!"); 133 MDValuePtrs.resize(N); 134 } 135 136 Metadata *getValueFwdRef(unsigned Idx); 137 void assignValue(Metadata *MD, unsigned Idx); 138 void tryToResolveCycles(); 139 }; 140 141 class BitcodeReader : public GVMaterializer { 142 LLVMContext &Context; 143 Module *TheModule = nullptr; 144 std::unique_ptr<MemoryBuffer> Buffer; 145 std::unique_ptr<BitstreamReader> StreamFile; 146 BitstreamCursor Stream; 147 // Next offset to start scanning for lazy parsing of function bodies. 148 uint64_t NextUnreadBit = 0; 149 // Last function offset found in the VST. 150 uint64_t LastFunctionBlockBit = 0; 151 bool SeenValueSymbolTable = false; 152 uint64_t VSTOffset = 0; 153 // Contains an arbitrary and optional string identifying the bitcode producer 154 std::string ProducerIdentification; 155 // Number of module level metadata records specified by the 156 // MODULE_CODE_METADATA_VALUES record. 157 unsigned NumModuleMDs = 0; 158 // Support older bitcode without the MODULE_CODE_METADATA_VALUES record. 159 bool SeenModuleValuesRecord = false; 160 161 std::vector<Type*> TypeList; 162 BitcodeReaderValueList ValueList; 163 BitcodeReaderMDValueList MDValueList; 164 std::vector<Comdat *> ComdatList; 165 SmallVector<Instruction *, 64> InstructionList; 166 167 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInits; 168 std::vector<std::pair<GlobalAlias*, unsigned> > AliasInits; 169 std::vector<std::pair<Function*, unsigned> > FunctionPrefixes; 170 std::vector<std::pair<Function*, unsigned> > FunctionPrologues; 171 std::vector<std::pair<Function*, unsigned> > FunctionPersonalityFns; 172 173 SmallVector<Instruction*, 64> InstsWithTBAATag; 174 175 /// The set of attributes by index. Index zero in the file is for null, and 176 /// is thus not represented here. As such all indices are off by one. 177 std::vector<AttributeSet> MAttributes; 178 179 /// The set of attribute groups. 180 std::map<unsigned, AttributeSet> MAttributeGroups; 181 182 /// While parsing a function body, this is a list of the basic blocks for the 183 /// function. 184 std::vector<BasicBlock*> FunctionBBs; 185 186 // When reading the module header, this list is populated with functions that 187 // have bodies later in the file. 188 std::vector<Function*> FunctionsWithBodies; 189 190 // When intrinsic functions are encountered which require upgrading they are 191 // stored here with their replacement function. 192 typedef DenseMap<Function*, Function*> UpgradedIntrinsicMap; 193 UpgradedIntrinsicMap UpgradedIntrinsics; 194 195 // Map the bitcode's custom MDKind ID to the Module's MDKind ID. 196 DenseMap<unsigned, unsigned> MDKindMap; 197 198 // Several operations happen after the module header has been read, but 199 // before function bodies are processed. This keeps track of whether 200 // we've done this yet. 201 bool SeenFirstFunctionBody = false; 202 203 /// When function bodies are initially scanned, this map contains info about 204 /// where to find deferred function body in the stream. 205 DenseMap<Function*, uint64_t> DeferredFunctionInfo; 206 207 /// When Metadata block is initially scanned when parsing the module, we may 208 /// choose to defer parsing of the metadata. This vector contains info about 209 /// which Metadata blocks are deferred. 210 std::vector<uint64_t> DeferredMetadataInfo; 211 212 /// These are basic blocks forward-referenced by block addresses. They are 213 /// inserted lazily into functions when they're loaded. The basic block ID is 214 /// its index into the vector. 215 DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs; 216 std::deque<Function *> BasicBlockFwdRefQueue; 217 218 /// Indicates that we are using a new encoding for instruction operands where 219 /// most operands in the current FUNCTION_BLOCK are encoded relative to the 220 /// instruction number, for a more compact encoding. Some instruction 221 /// operands are not relative to the instruction ID: basic block numbers, and 222 /// types. Once the old style function blocks have been phased out, we would 223 /// not need this flag. 224 bool UseRelativeIDs = false; 225 226 /// True if all functions will be materialized, negating the need to process 227 /// (e.g.) blockaddress forward references. 228 bool WillMaterializeAllForwardRefs = false; 229 230 /// Functions that have block addresses taken. This is usually empty. 231 SmallPtrSet<const Function *, 4> BlockAddressesTaken; 232 233 /// True if any Metadata block has been materialized. 234 bool IsMetadataMaterialized = false; 235 236 bool StripDebugInfo = false; 237 238 /// Functions that need to be matched with subprograms when upgrading old 239 /// metadata. 240 SmallDenseMap<Function *, DISubprogram *, 16> FunctionsWithSPs; 241 242 std::vector<std::string> BundleTags; 243 244 public: 245 std::error_code error(BitcodeError E, const Twine &Message); 246 std::error_code error(BitcodeError E); 247 std::error_code error(const Twine &Message); 248 249 BitcodeReader(MemoryBuffer *Buffer, LLVMContext &Context); 250 BitcodeReader(LLVMContext &Context); 251 ~BitcodeReader() override { freeState(); } 252 253 std::error_code materializeForwardReferencedFunctions(); 254 255 void freeState(); 256 257 void releaseBuffer(); 258 259 bool isDematerializable(const GlobalValue *GV) const override; 260 std::error_code materialize(GlobalValue *GV) override; 261 std::error_code materializeModule(Module *M) override; 262 std::vector<StructType *> getIdentifiedStructTypes() const override; 263 void dematerialize(GlobalValue *GV) override; 264 265 /// \brief Main interface to parsing a bitcode buffer. 266 /// \returns true if an error occurred. 267 std::error_code parseBitcodeInto(std::unique_ptr<DataStreamer> Streamer, 268 Module *M, 269 bool ShouldLazyLoadMetadata = false); 270 271 /// \brief Cheap mechanism to just extract module triple 272 /// \returns true if an error occurred. 273 ErrorOr<std::string> parseTriple(); 274 275 /// Cheap mechanism to just extract the identification block out of bitcode. 276 ErrorOr<std::string> parseIdentificationBlock(); 277 278 static uint64_t decodeSignRotatedValue(uint64_t V); 279 280 /// Materialize any deferred Metadata block. 281 std::error_code materializeMetadata() override; 282 283 void setStripDebugInfo() override; 284 285 /// Save the mapping between the metadata values and the corresponding 286 /// value id that were recorded in the MDValueList during parsing. If 287 /// OnlyTempMD is true, then only record those entries that are still 288 /// temporary metadata. This interface is used when metadata linking is 289 /// performed as a postpass, such as during function importing. 290 void saveMDValueList(DenseMap<const Metadata *, unsigned> &MDValueToValIDMap, 291 bool OnlyTempMD) override; 292 293 private: 294 /// Parse the "IDENTIFICATION_BLOCK_ID" block, populate the 295 // ProducerIdentification data member, and do some basic enforcement on the 296 // "epoch" encoded in the bitcode. 297 std::error_code parseBitcodeVersion(); 298 299 std::vector<StructType *> IdentifiedStructTypes; 300 StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name); 301 StructType *createIdentifiedStructType(LLVMContext &Context); 302 303 Type *getTypeByID(unsigned ID); 304 Value *getFnValueByID(unsigned ID, Type *Ty) { 305 if (Ty && Ty->isMetadataTy()) 306 return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID)); 307 return ValueList.getValueFwdRef(ID, Ty); 308 } 309 Metadata *getFnMetadataByID(unsigned ID) { 310 return MDValueList.getValueFwdRef(ID); 311 } 312 BasicBlock *getBasicBlock(unsigned ID) const { 313 if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID 314 return FunctionBBs[ID]; 315 } 316 AttributeSet getAttributes(unsigned i) const { 317 if (i-1 < MAttributes.size()) 318 return MAttributes[i-1]; 319 return AttributeSet(); 320 } 321 322 /// Read a value/type pair out of the specified record from slot 'Slot'. 323 /// Increment Slot past the number of slots used in the record. Return true on 324 /// failure. 325 bool getValueTypePair(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 326 unsigned InstNum, Value *&ResVal) { 327 if (Slot == Record.size()) return true; 328 unsigned ValNo = (unsigned)Record[Slot++]; 329 // Adjust the ValNo, if it was encoded relative to the InstNum. 330 if (UseRelativeIDs) 331 ValNo = InstNum - ValNo; 332 if (ValNo < InstNum) { 333 // If this is not a forward reference, just return the value we already 334 // have. 335 ResVal = getFnValueByID(ValNo, nullptr); 336 return ResVal == nullptr; 337 } 338 if (Slot == Record.size()) 339 return true; 340 341 unsigned TypeNo = (unsigned)Record[Slot++]; 342 ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo)); 343 return ResVal == nullptr; 344 } 345 346 /// Read a value out of the specified record from slot 'Slot'. Increment Slot 347 /// past the number of slots used by the value in the record. Return true if 348 /// there is an error. 349 bool popValue(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 350 unsigned InstNum, Type *Ty, Value *&ResVal) { 351 if (getValue(Record, Slot, InstNum, Ty, ResVal)) 352 return true; 353 // All values currently take a single record slot. 354 ++Slot; 355 return false; 356 } 357 358 /// Like popValue, but does not increment the Slot number. 359 bool getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 360 unsigned InstNum, Type *Ty, Value *&ResVal) { 361 ResVal = getValue(Record, Slot, InstNum, Ty); 362 return ResVal == nullptr; 363 } 364 365 /// Version of getValue that returns ResVal directly, or 0 if there is an 366 /// error. 367 Value *getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 368 unsigned InstNum, Type *Ty) { 369 if (Slot == Record.size()) return nullptr; 370 unsigned ValNo = (unsigned)Record[Slot]; 371 // Adjust the ValNo, if it was encoded relative to the InstNum. 372 if (UseRelativeIDs) 373 ValNo = InstNum - ValNo; 374 return getFnValueByID(ValNo, Ty); 375 } 376 377 /// Like getValue, but decodes signed VBRs. 378 Value *getValueSigned(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 379 unsigned InstNum, Type *Ty) { 380 if (Slot == Record.size()) return nullptr; 381 unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]); 382 // Adjust the ValNo, if it was encoded relative to the InstNum. 383 if (UseRelativeIDs) 384 ValNo = InstNum - ValNo; 385 return getFnValueByID(ValNo, Ty); 386 } 387 388 /// Converts alignment exponent (i.e. power of two (or zero)) to the 389 /// corresponding alignment to use. If alignment is too large, returns 390 /// a corresponding error code. 391 std::error_code parseAlignmentValue(uint64_t Exponent, unsigned &Alignment); 392 std::error_code parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind); 393 std::error_code parseModule(uint64_t ResumeBit, 394 bool ShouldLazyLoadMetadata = false); 395 std::error_code parseAttributeBlock(); 396 std::error_code parseAttributeGroupBlock(); 397 std::error_code parseTypeTable(); 398 std::error_code parseTypeTableBody(); 399 std::error_code parseOperandBundleTags(); 400 401 ErrorOr<Value *> recordValue(SmallVectorImpl<uint64_t> &Record, 402 unsigned NameIndex, Triple &TT); 403 std::error_code parseValueSymbolTable(uint64_t Offset = 0); 404 std::error_code parseConstants(); 405 std::error_code rememberAndSkipFunctionBodies(); 406 std::error_code rememberAndSkipFunctionBody(); 407 /// Save the positions of the Metadata blocks and skip parsing the blocks. 408 std::error_code rememberAndSkipMetadata(); 409 std::error_code parseFunctionBody(Function *F); 410 std::error_code globalCleanup(); 411 std::error_code resolveGlobalAndAliasInits(); 412 std::error_code parseMetadata(bool ModuleLevel = false); 413 std::error_code parseMetadataKinds(); 414 std::error_code parseMetadataKindRecord(SmallVectorImpl<uint64_t> &Record); 415 std::error_code parseMetadataAttachment(Function &F); 416 ErrorOr<std::string> parseModuleTriple(); 417 std::error_code parseUseLists(); 418 std::error_code initStream(std::unique_ptr<DataStreamer> Streamer); 419 std::error_code initStreamFromBuffer(); 420 std::error_code initLazyStream(std::unique_ptr<DataStreamer> Streamer); 421 std::error_code findFunctionInStream( 422 Function *F, 423 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator); 424 }; 425 426 /// Class to manage reading and parsing function summary index bitcode 427 /// files/sections. 428 class FunctionIndexBitcodeReader { 429 DiagnosticHandlerFunction DiagnosticHandler; 430 431 /// Eventually points to the function index built during parsing. 432 FunctionInfoIndex *TheIndex = nullptr; 433 434 std::unique_ptr<MemoryBuffer> Buffer; 435 std::unique_ptr<BitstreamReader> StreamFile; 436 BitstreamCursor Stream; 437 438 /// \brief Used to indicate whether we are doing lazy parsing of summary data. 439 /// 440 /// If false, the summary section is fully parsed into the index during 441 /// the initial parse. Otherwise, if true, the caller is expected to 442 /// invoke \a readFunctionSummary for each summary needed, and the summary 443 /// section is thus parsed lazily. 444 bool IsLazy = false; 445 446 /// Used to indicate whether caller only wants to check for the presence 447 /// of the function summary bitcode section. All blocks are skipped, 448 /// but the SeenFuncSummary boolean is set. 449 bool CheckFuncSummaryPresenceOnly = false; 450 451 /// Indicates whether we have encountered a function summary section 452 /// yet during parsing, used when checking if file contains function 453 /// summary section. 454 bool SeenFuncSummary = false; 455 456 /// \brief Map populated during function summary section parsing, and 457 /// consumed during ValueSymbolTable parsing. 458 /// 459 /// Used to correlate summary records with VST entries. For the per-module 460 /// index this maps the ValueID to the parsed function summary, and 461 /// for the combined index this maps the summary record's bitcode 462 /// offset to the function summary (since in the combined index the 463 /// VST records do not hold value IDs but rather hold the function 464 /// summary record offset). 465 DenseMap<uint64_t, std::unique_ptr<FunctionSummary>> SummaryMap; 466 467 /// Map populated during module path string table parsing, from the 468 /// module ID to a string reference owned by the index's module 469 /// path string table, used to correlate with combined index function 470 /// summary records. 471 DenseMap<uint64_t, StringRef> ModuleIdMap; 472 473 public: 474 std::error_code error(BitcodeError E, const Twine &Message); 475 std::error_code error(BitcodeError E); 476 std::error_code error(const Twine &Message); 477 478 FunctionIndexBitcodeReader(MemoryBuffer *Buffer, 479 DiagnosticHandlerFunction DiagnosticHandler, 480 bool IsLazy = false, 481 bool CheckFuncSummaryPresenceOnly = false); 482 FunctionIndexBitcodeReader(DiagnosticHandlerFunction DiagnosticHandler, 483 bool IsLazy = false, 484 bool CheckFuncSummaryPresenceOnly = false); 485 ~FunctionIndexBitcodeReader() { freeState(); } 486 487 void freeState(); 488 489 void releaseBuffer(); 490 491 /// Check if the parser has encountered a function summary section. 492 bool foundFuncSummary() { return SeenFuncSummary; } 493 494 /// \brief Main interface to parsing a bitcode buffer. 495 /// \returns true if an error occurred. 496 std::error_code parseSummaryIndexInto(std::unique_ptr<DataStreamer> Streamer, 497 FunctionInfoIndex *I); 498 499 /// \brief Interface for parsing a function summary lazily. 500 std::error_code parseFunctionSummary(std::unique_ptr<DataStreamer> Streamer, 501 FunctionInfoIndex *I, 502 size_t FunctionSummaryOffset); 503 504 private: 505 std::error_code parseModule(); 506 std::error_code parseValueSymbolTable(); 507 std::error_code parseEntireSummary(); 508 std::error_code parseModuleStringTable(); 509 std::error_code initStream(std::unique_ptr<DataStreamer> Streamer); 510 std::error_code initStreamFromBuffer(); 511 std::error_code initLazyStream(std::unique_ptr<DataStreamer> Streamer); 512 }; 513 } // namespace 514 515 BitcodeDiagnosticInfo::BitcodeDiagnosticInfo(std::error_code EC, 516 DiagnosticSeverity Severity, 517 const Twine &Msg) 518 : DiagnosticInfo(DK_Bitcode, Severity), Msg(Msg), EC(EC) {} 519 520 void BitcodeDiagnosticInfo::print(DiagnosticPrinter &DP) const { DP << Msg; } 521 522 static std::error_code error(DiagnosticHandlerFunction DiagnosticHandler, 523 std::error_code EC, const Twine &Message) { 524 BitcodeDiagnosticInfo DI(EC, DS_Error, Message); 525 DiagnosticHandler(DI); 526 return EC; 527 } 528 529 static std::error_code error(DiagnosticHandlerFunction DiagnosticHandler, 530 std::error_code EC) { 531 return error(DiagnosticHandler, EC, EC.message()); 532 } 533 534 static std::error_code error(LLVMContext &Context, std::error_code EC, 535 const Twine &Message) { 536 return error([&](const DiagnosticInfo &DI) { Context.diagnose(DI); }, EC, 537 Message); 538 } 539 540 static std::error_code error(LLVMContext &Context, std::error_code EC) { 541 return error(Context, EC, EC.message()); 542 } 543 544 static std::error_code error(LLVMContext &Context, const Twine &Message) { 545 return error(Context, make_error_code(BitcodeError::CorruptedBitcode), 546 Message); 547 } 548 549 std::error_code BitcodeReader::error(BitcodeError E, const Twine &Message) { 550 if (!ProducerIdentification.empty()) { 551 return ::error(Context, make_error_code(E), 552 Message + " (Producer: '" + ProducerIdentification + 553 "' Reader: 'LLVM " + LLVM_VERSION_STRING "')"); 554 } 555 return ::error(Context, make_error_code(E), Message); 556 } 557 558 std::error_code BitcodeReader::error(const Twine &Message) { 559 if (!ProducerIdentification.empty()) { 560 return ::error(Context, make_error_code(BitcodeError::CorruptedBitcode), 561 Message + " (Producer: '" + ProducerIdentification + 562 "' Reader: 'LLVM " + LLVM_VERSION_STRING "')"); 563 } 564 return ::error(Context, make_error_code(BitcodeError::CorruptedBitcode), 565 Message); 566 } 567 568 std::error_code BitcodeReader::error(BitcodeError E) { 569 return ::error(Context, make_error_code(E)); 570 } 571 572 BitcodeReader::BitcodeReader(MemoryBuffer *Buffer, LLVMContext &Context) 573 : Context(Context), Buffer(Buffer), ValueList(Context), 574 MDValueList(Context) {} 575 576 BitcodeReader::BitcodeReader(LLVMContext &Context) 577 : Context(Context), Buffer(nullptr), ValueList(Context), 578 MDValueList(Context) {} 579 580 std::error_code BitcodeReader::materializeForwardReferencedFunctions() { 581 if (WillMaterializeAllForwardRefs) 582 return std::error_code(); 583 584 // Prevent recursion. 585 WillMaterializeAllForwardRefs = true; 586 587 while (!BasicBlockFwdRefQueue.empty()) { 588 Function *F = BasicBlockFwdRefQueue.front(); 589 BasicBlockFwdRefQueue.pop_front(); 590 assert(F && "Expected valid function"); 591 if (!BasicBlockFwdRefs.count(F)) 592 // Already materialized. 593 continue; 594 595 // Check for a function that isn't materializable to prevent an infinite 596 // loop. When parsing a blockaddress stored in a global variable, there 597 // isn't a trivial way to check if a function will have a body without a 598 // linear search through FunctionsWithBodies, so just check it here. 599 if (!F->isMaterializable()) 600 return error("Never resolved function from blockaddress"); 601 602 // Try to materialize F. 603 if (std::error_code EC = materialize(F)) 604 return EC; 605 } 606 assert(BasicBlockFwdRefs.empty() && "Function missing from queue"); 607 608 // Reset state. 609 WillMaterializeAllForwardRefs = false; 610 return std::error_code(); 611 } 612 613 void BitcodeReader::freeState() { 614 Buffer = nullptr; 615 std::vector<Type*>().swap(TypeList); 616 ValueList.clear(); 617 MDValueList.clear(); 618 std::vector<Comdat *>().swap(ComdatList); 619 620 std::vector<AttributeSet>().swap(MAttributes); 621 std::vector<BasicBlock*>().swap(FunctionBBs); 622 std::vector<Function*>().swap(FunctionsWithBodies); 623 DeferredFunctionInfo.clear(); 624 DeferredMetadataInfo.clear(); 625 MDKindMap.clear(); 626 627 assert(BasicBlockFwdRefs.empty() && "Unresolved blockaddress fwd references"); 628 BasicBlockFwdRefQueue.clear(); 629 } 630 631 //===----------------------------------------------------------------------===// 632 // Helper functions to implement forward reference resolution, etc. 633 //===----------------------------------------------------------------------===// 634 635 /// Convert a string from a record into an std::string, return true on failure. 636 template <typename StrTy> 637 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx, 638 StrTy &Result) { 639 if (Idx > Record.size()) 640 return true; 641 642 for (unsigned i = Idx, e = Record.size(); i != e; ++i) 643 Result += (char)Record[i]; 644 return false; 645 } 646 647 static bool hasImplicitComdat(size_t Val) { 648 switch (Val) { 649 default: 650 return false; 651 case 1: // Old WeakAnyLinkage 652 case 4: // Old LinkOnceAnyLinkage 653 case 10: // Old WeakODRLinkage 654 case 11: // Old LinkOnceODRLinkage 655 return true; 656 } 657 } 658 659 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) { 660 switch (Val) { 661 default: // Map unknown/new linkages to external 662 case 0: 663 return GlobalValue::ExternalLinkage; 664 case 2: 665 return GlobalValue::AppendingLinkage; 666 case 3: 667 return GlobalValue::InternalLinkage; 668 case 5: 669 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage 670 case 6: 671 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage 672 case 7: 673 return GlobalValue::ExternalWeakLinkage; 674 case 8: 675 return GlobalValue::CommonLinkage; 676 case 9: 677 return GlobalValue::PrivateLinkage; 678 case 12: 679 return GlobalValue::AvailableExternallyLinkage; 680 case 13: 681 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage 682 case 14: 683 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage 684 case 15: 685 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage 686 case 1: // Old value with implicit comdat. 687 case 16: 688 return GlobalValue::WeakAnyLinkage; 689 case 10: // Old value with implicit comdat. 690 case 17: 691 return GlobalValue::WeakODRLinkage; 692 case 4: // Old value with implicit comdat. 693 case 18: 694 return GlobalValue::LinkOnceAnyLinkage; 695 case 11: // Old value with implicit comdat. 696 case 19: 697 return GlobalValue::LinkOnceODRLinkage; 698 } 699 } 700 701 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) { 702 switch (Val) { 703 default: // Map unknown visibilities to default. 704 case 0: return GlobalValue::DefaultVisibility; 705 case 1: return GlobalValue::HiddenVisibility; 706 case 2: return GlobalValue::ProtectedVisibility; 707 } 708 } 709 710 static GlobalValue::DLLStorageClassTypes 711 getDecodedDLLStorageClass(unsigned Val) { 712 switch (Val) { 713 default: // Map unknown values to default. 714 case 0: return GlobalValue::DefaultStorageClass; 715 case 1: return GlobalValue::DLLImportStorageClass; 716 case 2: return GlobalValue::DLLExportStorageClass; 717 } 718 } 719 720 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) { 721 switch (Val) { 722 case 0: return GlobalVariable::NotThreadLocal; 723 default: // Map unknown non-zero value to general dynamic. 724 case 1: return GlobalVariable::GeneralDynamicTLSModel; 725 case 2: return GlobalVariable::LocalDynamicTLSModel; 726 case 3: return GlobalVariable::InitialExecTLSModel; 727 case 4: return GlobalVariable::LocalExecTLSModel; 728 } 729 } 730 731 static int getDecodedCastOpcode(unsigned Val) { 732 switch (Val) { 733 default: return -1; 734 case bitc::CAST_TRUNC : return Instruction::Trunc; 735 case bitc::CAST_ZEXT : return Instruction::ZExt; 736 case bitc::CAST_SEXT : return Instruction::SExt; 737 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 738 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 739 case bitc::CAST_UITOFP : return Instruction::UIToFP; 740 case bitc::CAST_SITOFP : return Instruction::SIToFP; 741 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 742 case bitc::CAST_FPEXT : return Instruction::FPExt; 743 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 744 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 745 case bitc::CAST_BITCAST : return Instruction::BitCast; 746 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast; 747 } 748 } 749 750 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) { 751 bool IsFP = Ty->isFPOrFPVectorTy(); 752 // BinOps are only valid for int/fp or vector of int/fp types 753 if (!IsFP && !Ty->isIntOrIntVectorTy()) 754 return -1; 755 756 switch (Val) { 757 default: 758 return -1; 759 case bitc::BINOP_ADD: 760 return IsFP ? Instruction::FAdd : Instruction::Add; 761 case bitc::BINOP_SUB: 762 return IsFP ? Instruction::FSub : Instruction::Sub; 763 case bitc::BINOP_MUL: 764 return IsFP ? Instruction::FMul : Instruction::Mul; 765 case bitc::BINOP_UDIV: 766 return IsFP ? -1 : Instruction::UDiv; 767 case bitc::BINOP_SDIV: 768 return IsFP ? Instruction::FDiv : Instruction::SDiv; 769 case bitc::BINOP_UREM: 770 return IsFP ? -1 : Instruction::URem; 771 case bitc::BINOP_SREM: 772 return IsFP ? Instruction::FRem : Instruction::SRem; 773 case bitc::BINOP_SHL: 774 return IsFP ? -1 : Instruction::Shl; 775 case bitc::BINOP_LSHR: 776 return IsFP ? -1 : Instruction::LShr; 777 case bitc::BINOP_ASHR: 778 return IsFP ? -1 : Instruction::AShr; 779 case bitc::BINOP_AND: 780 return IsFP ? -1 : Instruction::And; 781 case bitc::BINOP_OR: 782 return IsFP ? -1 : Instruction::Or; 783 case bitc::BINOP_XOR: 784 return IsFP ? -1 : Instruction::Xor; 785 } 786 } 787 788 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) { 789 switch (Val) { 790 default: return AtomicRMWInst::BAD_BINOP; 791 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 792 case bitc::RMW_ADD: return AtomicRMWInst::Add; 793 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 794 case bitc::RMW_AND: return AtomicRMWInst::And; 795 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 796 case bitc::RMW_OR: return AtomicRMWInst::Or; 797 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 798 case bitc::RMW_MAX: return AtomicRMWInst::Max; 799 case bitc::RMW_MIN: return AtomicRMWInst::Min; 800 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 801 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 802 } 803 } 804 805 static AtomicOrdering getDecodedOrdering(unsigned Val) { 806 switch (Val) { 807 case bitc::ORDERING_NOTATOMIC: return NotAtomic; 808 case bitc::ORDERING_UNORDERED: return Unordered; 809 case bitc::ORDERING_MONOTONIC: return Monotonic; 810 case bitc::ORDERING_ACQUIRE: return Acquire; 811 case bitc::ORDERING_RELEASE: return Release; 812 case bitc::ORDERING_ACQREL: return AcquireRelease; 813 default: // Map unknown orderings to sequentially-consistent. 814 case bitc::ORDERING_SEQCST: return SequentiallyConsistent; 815 } 816 } 817 818 static SynchronizationScope getDecodedSynchScope(unsigned Val) { 819 switch (Val) { 820 case bitc::SYNCHSCOPE_SINGLETHREAD: return SingleThread; 821 default: // Map unknown scopes to cross-thread. 822 case bitc::SYNCHSCOPE_CROSSTHREAD: return CrossThread; 823 } 824 } 825 826 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) { 827 switch (Val) { 828 default: // Map unknown selection kinds to any. 829 case bitc::COMDAT_SELECTION_KIND_ANY: 830 return Comdat::Any; 831 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH: 832 return Comdat::ExactMatch; 833 case bitc::COMDAT_SELECTION_KIND_LARGEST: 834 return Comdat::Largest; 835 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES: 836 return Comdat::NoDuplicates; 837 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE: 838 return Comdat::SameSize; 839 } 840 } 841 842 static FastMathFlags getDecodedFastMathFlags(unsigned Val) { 843 FastMathFlags FMF; 844 if (0 != (Val & FastMathFlags::UnsafeAlgebra)) 845 FMF.setUnsafeAlgebra(); 846 if (0 != (Val & FastMathFlags::NoNaNs)) 847 FMF.setNoNaNs(); 848 if (0 != (Val & FastMathFlags::NoInfs)) 849 FMF.setNoInfs(); 850 if (0 != (Val & FastMathFlags::NoSignedZeros)) 851 FMF.setNoSignedZeros(); 852 if (0 != (Val & FastMathFlags::AllowReciprocal)) 853 FMF.setAllowReciprocal(); 854 return FMF; 855 } 856 857 static void upgradeDLLImportExportLinkage(llvm::GlobalValue *GV, unsigned Val) { 858 switch (Val) { 859 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break; 860 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break; 861 } 862 } 863 864 namespace llvm { 865 namespace { 866 /// \brief A class for maintaining the slot number definition 867 /// as a placeholder for the actual definition for forward constants defs. 868 class ConstantPlaceHolder : public ConstantExpr { 869 void operator=(const ConstantPlaceHolder &) = delete; 870 871 public: 872 // allocate space for exactly one operand 873 void *operator new(size_t s) { return User::operator new(s, 1); } 874 explicit ConstantPlaceHolder(Type *Ty, LLVMContext &Context) 875 : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) { 876 Op<0>() = UndefValue::get(Type::getInt32Ty(Context)); 877 } 878 879 /// \brief Methods to support type inquiry through isa, cast, and dyn_cast. 880 static bool classof(const Value *V) { 881 return isa<ConstantExpr>(V) && 882 cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1; 883 } 884 885 /// Provide fast operand accessors 886 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); 887 }; 888 } 889 890 // FIXME: can we inherit this from ConstantExpr? 891 template <> 892 struct OperandTraits<ConstantPlaceHolder> : 893 public FixedNumOperandTraits<ConstantPlaceHolder, 1> { 894 }; 895 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantPlaceHolder, Value) 896 } 897 898 void BitcodeReaderValueList::assignValue(Value *V, unsigned Idx) { 899 if (Idx == size()) { 900 push_back(V); 901 return; 902 } 903 904 if (Idx >= size()) 905 resize(Idx+1); 906 907 WeakVH &OldV = ValuePtrs[Idx]; 908 if (!OldV) { 909 OldV = V; 910 return; 911 } 912 913 // Handle constants and non-constants (e.g. instrs) differently for 914 // efficiency. 915 if (Constant *PHC = dyn_cast<Constant>(&*OldV)) { 916 ResolveConstants.push_back(std::make_pair(PHC, Idx)); 917 OldV = V; 918 } else { 919 // If there was a forward reference to this value, replace it. 920 Value *PrevVal = OldV; 921 OldV->replaceAllUsesWith(V); 922 delete PrevVal; 923 } 924 925 return; 926 } 927 928 929 Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx, 930 Type *Ty) { 931 if (Idx >= size()) 932 resize(Idx + 1); 933 934 if (Value *V = ValuePtrs[Idx]) { 935 if (Ty != V->getType()) 936 report_fatal_error("Type mismatch in constant table!"); 937 return cast<Constant>(V); 938 } 939 940 // Create and return a placeholder, which will later be RAUW'd. 941 Constant *C = new ConstantPlaceHolder(Ty, Context); 942 ValuePtrs[Idx] = C; 943 return C; 944 } 945 946 Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, Type *Ty) { 947 // Bail out for a clearly invalid value. This would make us call resize(0) 948 if (Idx == UINT_MAX) 949 return nullptr; 950 951 if (Idx >= size()) 952 resize(Idx + 1); 953 954 if (Value *V = ValuePtrs[Idx]) { 955 // If the types don't match, it's invalid. 956 if (Ty && Ty != V->getType()) 957 return nullptr; 958 return V; 959 } 960 961 // No type specified, must be invalid reference. 962 if (!Ty) return nullptr; 963 964 // Create and return a placeholder, which will later be RAUW'd. 965 Value *V = new Argument(Ty); 966 ValuePtrs[Idx] = V; 967 return V; 968 } 969 970 /// Once all constants are read, this method bulk resolves any forward 971 /// references. The idea behind this is that we sometimes get constants (such 972 /// as large arrays) which reference *many* forward ref constants. Replacing 973 /// each of these causes a lot of thrashing when building/reuniquing the 974 /// constant. Instead of doing this, we look at all the uses and rewrite all 975 /// the place holders at once for any constant that uses a placeholder. 976 void BitcodeReaderValueList::resolveConstantForwardRefs() { 977 // Sort the values by-pointer so that they are efficient to look up with a 978 // binary search. 979 std::sort(ResolveConstants.begin(), ResolveConstants.end()); 980 981 SmallVector<Constant*, 64> NewOps; 982 983 while (!ResolveConstants.empty()) { 984 Value *RealVal = operator[](ResolveConstants.back().second); 985 Constant *Placeholder = ResolveConstants.back().first; 986 ResolveConstants.pop_back(); 987 988 // Loop over all users of the placeholder, updating them to reference the 989 // new value. If they reference more than one placeholder, update them all 990 // at once. 991 while (!Placeholder->use_empty()) { 992 auto UI = Placeholder->user_begin(); 993 User *U = *UI; 994 995 // If the using object isn't uniqued, just update the operands. This 996 // handles instructions and initializers for global variables. 997 if (!isa<Constant>(U) || isa<GlobalValue>(U)) { 998 UI.getUse().set(RealVal); 999 continue; 1000 } 1001 1002 // Otherwise, we have a constant that uses the placeholder. Replace that 1003 // constant with a new constant that has *all* placeholder uses updated. 1004 Constant *UserC = cast<Constant>(U); 1005 for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end(); 1006 I != E; ++I) { 1007 Value *NewOp; 1008 if (!isa<ConstantPlaceHolder>(*I)) { 1009 // Not a placeholder reference. 1010 NewOp = *I; 1011 } else if (*I == Placeholder) { 1012 // Common case is that it just references this one placeholder. 1013 NewOp = RealVal; 1014 } else { 1015 // Otherwise, look up the placeholder in ResolveConstants. 1016 ResolveConstantsTy::iterator It = 1017 std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(), 1018 std::pair<Constant*, unsigned>(cast<Constant>(*I), 1019 0)); 1020 assert(It != ResolveConstants.end() && It->first == *I); 1021 NewOp = operator[](It->second); 1022 } 1023 1024 NewOps.push_back(cast<Constant>(NewOp)); 1025 } 1026 1027 // Make the new constant. 1028 Constant *NewC; 1029 if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) { 1030 NewC = ConstantArray::get(UserCA->getType(), NewOps); 1031 } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) { 1032 NewC = ConstantStruct::get(UserCS->getType(), NewOps); 1033 } else if (isa<ConstantVector>(UserC)) { 1034 NewC = ConstantVector::get(NewOps); 1035 } else { 1036 assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr."); 1037 NewC = cast<ConstantExpr>(UserC)->getWithOperands(NewOps); 1038 } 1039 1040 UserC->replaceAllUsesWith(NewC); 1041 UserC->destroyConstant(); 1042 NewOps.clear(); 1043 } 1044 1045 // Update all ValueHandles, they should be the only users at this point. 1046 Placeholder->replaceAllUsesWith(RealVal); 1047 delete Placeholder; 1048 } 1049 } 1050 1051 void BitcodeReaderMDValueList::assignValue(Metadata *MD, unsigned Idx) { 1052 if (Idx == size()) { 1053 push_back(MD); 1054 return; 1055 } 1056 1057 if (Idx >= size()) 1058 resize(Idx+1); 1059 1060 TrackingMDRef &OldMD = MDValuePtrs[Idx]; 1061 if (!OldMD) { 1062 OldMD.reset(MD); 1063 return; 1064 } 1065 1066 // If there was a forward reference to this value, replace it. 1067 TempMDTuple PrevMD(cast<MDTuple>(OldMD.get())); 1068 PrevMD->replaceAllUsesWith(MD); 1069 --NumFwdRefs; 1070 } 1071 1072 Metadata *BitcodeReaderMDValueList::getValueFwdRef(unsigned Idx) { 1073 if (Idx >= size()) 1074 resize(Idx + 1); 1075 1076 if (Metadata *MD = MDValuePtrs[Idx]) 1077 return MD; 1078 1079 // Track forward refs to be resolved later. 1080 if (AnyFwdRefs) { 1081 MinFwdRef = std::min(MinFwdRef, Idx); 1082 MaxFwdRef = std::max(MaxFwdRef, Idx); 1083 } else { 1084 AnyFwdRefs = true; 1085 MinFwdRef = MaxFwdRef = Idx; 1086 } 1087 ++NumFwdRefs; 1088 // Reset flag to ensure that we save this forward reference if we 1089 // are delaying metadata mapping (e.g. for function importing). 1090 SavedFwdRefs = false; 1091 1092 // Create and return a placeholder, which will later be RAUW'd. 1093 Metadata *MD = MDNode::getTemporary(Context, None).release(); 1094 MDValuePtrs[Idx].reset(MD); 1095 return MD; 1096 } 1097 1098 void BitcodeReaderMDValueList::tryToResolveCycles() { 1099 if (!AnyFwdRefs) 1100 // Nothing to do. 1101 return; 1102 1103 if (NumFwdRefs) 1104 // Still forward references... can't resolve cycles. 1105 return; 1106 1107 // Resolve any cycles. 1108 for (unsigned I = MinFwdRef, E = MaxFwdRef + 1; I != E; ++I) { 1109 auto &MD = MDValuePtrs[I]; 1110 auto *N = dyn_cast_or_null<MDNode>(MD); 1111 if (!N) 1112 continue; 1113 1114 assert(!N->isTemporary() && "Unexpected forward reference"); 1115 N->resolveCycles(); 1116 } 1117 1118 // Make sure we return early again until there's another forward ref. 1119 AnyFwdRefs = false; 1120 } 1121 1122 Type *BitcodeReader::getTypeByID(unsigned ID) { 1123 // The type table size is always specified correctly. 1124 if (ID >= TypeList.size()) 1125 return nullptr; 1126 1127 if (Type *Ty = TypeList[ID]) 1128 return Ty; 1129 1130 // If we have a forward reference, the only possible case is when it is to a 1131 // named struct. Just create a placeholder for now. 1132 return TypeList[ID] = createIdentifiedStructType(Context); 1133 } 1134 1135 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context, 1136 StringRef Name) { 1137 auto *Ret = StructType::create(Context, Name); 1138 IdentifiedStructTypes.push_back(Ret); 1139 return Ret; 1140 } 1141 1142 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) { 1143 auto *Ret = StructType::create(Context); 1144 IdentifiedStructTypes.push_back(Ret); 1145 return Ret; 1146 } 1147 1148 1149 //===----------------------------------------------------------------------===// 1150 // Functions for parsing blocks from the bitcode file 1151 //===----------------------------------------------------------------------===// 1152 1153 1154 /// \brief This fills an AttrBuilder object with the LLVM attributes that have 1155 /// been decoded from the given integer. This function must stay in sync with 1156 /// 'encodeLLVMAttributesForBitcode'. 1157 static void decodeLLVMAttributesForBitcode(AttrBuilder &B, 1158 uint64_t EncodedAttrs) { 1159 // FIXME: Remove in 4.0. 1160 1161 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift 1162 // the bits above 31 down by 11 bits. 1163 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; 1164 assert((!Alignment || isPowerOf2_32(Alignment)) && 1165 "Alignment must be a power of two."); 1166 1167 if (Alignment) 1168 B.addAlignmentAttr(Alignment); 1169 B.addRawValue(((EncodedAttrs & (0xfffffULL << 32)) >> 11) | 1170 (EncodedAttrs & 0xffff)); 1171 } 1172 1173 std::error_code BitcodeReader::parseAttributeBlock() { 1174 if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 1175 return error("Invalid record"); 1176 1177 if (!MAttributes.empty()) 1178 return error("Invalid multiple blocks"); 1179 1180 SmallVector<uint64_t, 64> Record; 1181 1182 SmallVector<AttributeSet, 8> Attrs; 1183 1184 // Read all the records. 1185 while (1) { 1186 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1187 1188 switch (Entry.Kind) { 1189 case BitstreamEntry::SubBlock: // Handled for us already. 1190 case BitstreamEntry::Error: 1191 return error("Malformed block"); 1192 case BitstreamEntry::EndBlock: 1193 return std::error_code(); 1194 case BitstreamEntry::Record: 1195 // The interesting case. 1196 break; 1197 } 1198 1199 // Read a record. 1200 Record.clear(); 1201 switch (Stream.readRecord(Entry.ID, Record)) { 1202 default: // Default behavior: ignore. 1203 break; 1204 case bitc::PARAMATTR_CODE_ENTRY_OLD: { // ENTRY: [paramidx0, attr0, ...] 1205 // FIXME: Remove in 4.0. 1206 if (Record.size() & 1) 1207 return error("Invalid record"); 1208 1209 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1210 AttrBuilder B; 1211 decodeLLVMAttributesForBitcode(B, Record[i+1]); 1212 Attrs.push_back(AttributeSet::get(Context, Record[i], B)); 1213 } 1214 1215 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 1216 Attrs.clear(); 1217 break; 1218 } 1219 case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [attrgrp0, attrgrp1, ...] 1220 for (unsigned i = 0, e = Record.size(); i != e; ++i) 1221 Attrs.push_back(MAttributeGroups[Record[i]]); 1222 1223 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 1224 Attrs.clear(); 1225 break; 1226 } 1227 } 1228 } 1229 } 1230 1231 // Returns Attribute::None on unrecognized codes. 1232 static Attribute::AttrKind getAttrFromCode(uint64_t Code) { 1233 switch (Code) { 1234 default: 1235 return Attribute::None; 1236 case bitc::ATTR_KIND_ALIGNMENT: 1237 return Attribute::Alignment; 1238 case bitc::ATTR_KIND_ALWAYS_INLINE: 1239 return Attribute::AlwaysInline; 1240 case bitc::ATTR_KIND_ARGMEMONLY: 1241 return Attribute::ArgMemOnly; 1242 case bitc::ATTR_KIND_BUILTIN: 1243 return Attribute::Builtin; 1244 case bitc::ATTR_KIND_BY_VAL: 1245 return Attribute::ByVal; 1246 case bitc::ATTR_KIND_IN_ALLOCA: 1247 return Attribute::InAlloca; 1248 case bitc::ATTR_KIND_COLD: 1249 return Attribute::Cold; 1250 case bitc::ATTR_KIND_CONVERGENT: 1251 return Attribute::Convergent; 1252 case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY: 1253 return Attribute::InaccessibleMemOnly; 1254 case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY: 1255 return Attribute::InaccessibleMemOrArgMemOnly; 1256 case bitc::ATTR_KIND_INLINE_HINT: 1257 return Attribute::InlineHint; 1258 case bitc::ATTR_KIND_IN_REG: 1259 return Attribute::InReg; 1260 case bitc::ATTR_KIND_JUMP_TABLE: 1261 return Attribute::JumpTable; 1262 case bitc::ATTR_KIND_MIN_SIZE: 1263 return Attribute::MinSize; 1264 case bitc::ATTR_KIND_NAKED: 1265 return Attribute::Naked; 1266 case bitc::ATTR_KIND_NEST: 1267 return Attribute::Nest; 1268 case bitc::ATTR_KIND_NO_ALIAS: 1269 return Attribute::NoAlias; 1270 case bitc::ATTR_KIND_NO_BUILTIN: 1271 return Attribute::NoBuiltin; 1272 case bitc::ATTR_KIND_NO_CAPTURE: 1273 return Attribute::NoCapture; 1274 case bitc::ATTR_KIND_NO_DUPLICATE: 1275 return Attribute::NoDuplicate; 1276 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: 1277 return Attribute::NoImplicitFloat; 1278 case bitc::ATTR_KIND_NO_INLINE: 1279 return Attribute::NoInline; 1280 case bitc::ATTR_KIND_NO_RECURSE: 1281 return Attribute::NoRecurse; 1282 case bitc::ATTR_KIND_NON_LAZY_BIND: 1283 return Attribute::NonLazyBind; 1284 case bitc::ATTR_KIND_NON_NULL: 1285 return Attribute::NonNull; 1286 case bitc::ATTR_KIND_DEREFERENCEABLE: 1287 return Attribute::Dereferenceable; 1288 case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL: 1289 return Attribute::DereferenceableOrNull; 1290 case bitc::ATTR_KIND_NO_RED_ZONE: 1291 return Attribute::NoRedZone; 1292 case bitc::ATTR_KIND_NO_RETURN: 1293 return Attribute::NoReturn; 1294 case bitc::ATTR_KIND_NO_UNWIND: 1295 return Attribute::NoUnwind; 1296 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: 1297 return Attribute::OptimizeForSize; 1298 case bitc::ATTR_KIND_OPTIMIZE_NONE: 1299 return Attribute::OptimizeNone; 1300 case bitc::ATTR_KIND_READ_NONE: 1301 return Attribute::ReadNone; 1302 case bitc::ATTR_KIND_READ_ONLY: 1303 return Attribute::ReadOnly; 1304 case bitc::ATTR_KIND_RETURNED: 1305 return Attribute::Returned; 1306 case bitc::ATTR_KIND_RETURNS_TWICE: 1307 return Attribute::ReturnsTwice; 1308 case bitc::ATTR_KIND_S_EXT: 1309 return Attribute::SExt; 1310 case bitc::ATTR_KIND_STACK_ALIGNMENT: 1311 return Attribute::StackAlignment; 1312 case bitc::ATTR_KIND_STACK_PROTECT: 1313 return Attribute::StackProtect; 1314 case bitc::ATTR_KIND_STACK_PROTECT_REQ: 1315 return Attribute::StackProtectReq; 1316 case bitc::ATTR_KIND_STACK_PROTECT_STRONG: 1317 return Attribute::StackProtectStrong; 1318 case bitc::ATTR_KIND_SAFESTACK: 1319 return Attribute::SafeStack; 1320 case bitc::ATTR_KIND_STRUCT_RET: 1321 return Attribute::StructRet; 1322 case bitc::ATTR_KIND_SANITIZE_ADDRESS: 1323 return Attribute::SanitizeAddress; 1324 case bitc::ATTR_KIND_SANITIZE_THREAD: 1325 return Attribute::SanitizeThread; 1326 case bitc::ATTR_KIND_SANITIZE_MEMORY: 1327 return Attribute::SanitizeMemory; 1328 case bitc::ATTR_KIND_UW_TABLE: 1329 return Attribute::UWTable; 1330 case bitc::ATTR_KIND_Z_EXT: 1331 return Attribute::ZExt; 1332 } 1333 } 1334 1335 std::error_code BitcodeReader::parseAlignmentValue(uint64_t Exponent, 1336 unsigned &Alignment) { 1337 // Note: Alignment in bitcode files is incremented by 1, so that zero 1338 // can be used for default alignment. 1339 if (Exponent > Value::MaxAlignmentExponent + 1) 1340 return error("Invalid alignment value"); 1341 Alignment = (1 << static_cast<unsigned>(Exponent)) >> 1; 1342 return std::error_code(); 1343 } 1344 1345 std::error_code BitcodeReader::parseAttrKind(uint64_t Code, 1346 Attribute::AttrKind *Kind) { 1347 *Kind = getAttrFromCode(Code); 1348 if (*Kind == Attribute::None) 1349 return error(BitcodeError::CorruptedBitcode, 1350 "Unknown attribute kind (" + Twine(Code) + ")"); 1351 return std::error_code(); 1352 } 1353 1354 std::error_code BitcodeReader::parseAttributeGroupBlock() { 1355 if (Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) 1356 return error("Invalid record"); 1357 1358 if (!MAttributeGroups.empty()) 1359 return error("Invalid multiple blocks"); 1360 1361 SmallVector<uint64_t, 64> Record; 1362 1363 // Read all the records. 1364 while (1) { 1365 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1366 1367 switch (Entry.Kind) { 1368 case BitstreamEntry::SubBlock: // Handled for us already. 1369 case BitstreamEntry::Error: 1370 return error("Malformed block"); 1371 case BitstreamEntry::EndBlock: 1372 return std::error_code(); 1373 case BitstreamEntry::Record: 1374 // The interesting case. 1375 break; 1376 } 1377 1378 // Read a record. 1379 Record.clear(); 1380 switch (Stream.readRecord(Entry.ID, Record)) { 1381 default: // Default behavior: ignore. 1382 break; 1383 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] 1384 if (Record.size() < 3) 1385 return error("Invalid record"); 1386 1387 uint64_t GrpID = Record[0]; 1388 uint64_t Idx = Record[1]; // Index of the object this attribute refers to. 1389 1390 AttrBuilder B; 1391 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1392 if (Record[i] == 0) { // Enum attribute 1393 Attribute::AttrKind Kind; 1394 if (std::error_code EC = parseAttrKind(Record[++i], &Kind)) 1395 return EC; 1396 1397 B.addAttribute(Kind); 1398 } else if (Record[i] == 1) { // Integer attribute 1399 Attribute::AttrKind Kind; 1400 if (std::error_code EC = parseAttrKind(Record[++i], &Kind)) 1401 return EC; 1402 if (Kind == Attribute::Alignment) 1403 B.addAlignmentAttr(Record[++i]); 1404 else if (Kind == Attribute::StackAlignment) 1405 B.addStackAlignmentAttr(Record[++i]); 1406 else if (Kind == Attribute::Dereferenceable) 1407 B.addDereferenceableAttr(Record[++i]); 1408 else if (Kind == Attribute::DereferenceableOrNull) 1409 B.addDereferenceableOrNullAttr(Record[++i]); 1410 } else { // String attribute 1411 assert((Record[i] == 3 || Record[i] == 4) && 1412 "Invalid attribute group entry"); 1413 bool HasValue = (Record[i++] == 4); 1414 SmallString<64> KindStr; 1415 SmallString<64> ValStr; 1416 1417 while (Record[i] != 0 && i != e) 1418 KindStr += Record[i++]; 1419 assert(Record[i] == 0 && "Kind string not null terminated"); 1420 1421 if (HasValue) { 1422 // Has a value associated with it. 1423 ++i; // Skip the '0' that terminates the "kind" string. 1424 while (Record[i] != 0 && i != e) 1425 ValStr += Record[i++]; 1426 assert(Record[i] == 0 && "Value string not null terminated"); 1427 } 1428 1429 B.addAttribute(KindStr.str(), ValStr.str()); 1430 } 1431 } 1432 1433 MAttributeGroups[GrpID] = AttributeSet::get(Context, Idx, B); 1434 break; 1435 } 1436 } 1437 } 1438 } 1439 1440 std::error_code BitcodeReader::parseTypeTable() { 1441 if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 1442 return error("Invalid record"); 1443 1444 return parseTypeTableBody(); 1445 } 1446 1447 std::error_code BitcodeReader::parseTypeTableBody() { 1448 if (!TypeList.empty()) 1449 return error("Invalid multiple blocks"); 1450 1451 SmallVector<uint64_t, 64> Record; 1452 unsigned NumRecords = 0; 1453 1454 SmallString<64> TypeName; 1455 1456 // Read all the records for this type table. 1457 while (1) { 1458 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1459 1460 switch (Entry.Kind) { 1461 case BitstreamEntry::SubBlock: // Handled for us already. 1462 case BitstreamEntry::Error: 1463 return error("Malformed block"); 1464 case BitstreamEntry::EndBlock: 1465 if (NumRecords != TypeList.size()) 1466 return error("Malformed block"); 1467 return std::error_code(); 1468 case BitstreamEntry::Record: 1469 // The interesting case. 1470 break; 1471 } 1472 1473 // Read a record. 1474 Record.clear(); 1475 Type *ResultTy = nullptr; 1476 switch (Stream.readRecord(Entry.ID, Record)) { 1477 default: 1478 return error("Invalid value"); 1479 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 1480 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 1481 // type list. This allows us to reserve space. 1482 if (Record.size() < 1) 1483 return error("Invalid record"); 1484 TypeList.resize(Record[0]); 1485 continue; 1486 case bitc::TYPE_CODE_VOID: // VOID 1487 ResultTy = Type::getVoidTy(Context); 1488 break; 1489 case bitc::TYPE_CODE_HALF: // HALF 1490 ResultTy = Type::getHalfTy(Context); 1491 break; 1492 case bitc::TYPE_CODE_FLOAT: // FLOAT 1493 ResultTy = Type::getFloatTy(Context); 1494 break; 1495 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 1496 ResultTy = Type::getDoubleTy(Context); 1497 break; 1498 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 1499 ResultTy = Type::getX86_FP80Ty(Context); 1500 break; 1501 case bitc::TYPE_CODE_FP128: // FP128 1502 ResultTy = Type::getFP128Ty(Context); 1503 break; 1504 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 1505 ResultTy = Type::getPPC_FP128Ty(Context); 1506 break; 1507 case bitc::TYPE_CODE_LABEL: // LABEL 1508 ResultTy = Type::getLabelTy(Context); 1509 break; 1510 case bitc::TYPE_CODE_METADATA: // METADATA 1511 ResultTy = Type::getMetadataTy(Context); 1512 break; 1513 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 1514 ResultTy = Type::getX86_MMXTy(Context); 1515 break; 1516 case bitc::TYPE_CODE_TOKEN: // TOKEN 1517 ResultTy = Type::getTokenTy(Context); 1518 break; 1519 case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width] 1520 if (Record.size() < 1) 1521 return error("Invalid record"); 1522 1523 uint64_t NumBits = Record[0]; 1524 if (NumBits < IntegerType::MIN_INT_BITS || 1525 NumBits > IntegerType::MAX_INT_BITS) 1526 return error("Bitwidth for integer type out of range"); 1527 ResultTy = IntegerType::get(Context, NumBits); 1528 break; 1529 } 1530 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 1531 // [pointee type, address space] 1532 if (Record.size() < 1) 1533 return error("Invalid record"); 1534 unsigned AddressSpace = 0; 1535 if (Record.size() == 2) 1536 AddressSpace = Record[1]; 1537 ResultTy = getTypeByID(Record[0]); 1538 if (!ResultTy || 1539 !PointerType::isValidElementType(ResultTy)) 1540 return error("Invalid type"); 1541 ResultTy = PointerType::get(ResultTy, AddressSpace); 1542 break; 1543 } 1544 case bitc::TYPE_CODE_FUNCTION_OLD: { 1545 // FIXME: attrid is dead, remove it in LLVM 4.0 1546 // FUNCTION: [vararg, attrid, retty, paramty x N] 1547 if (Record.size() < 3) 1548 return error("Invalid record"); 1549 SmallVector<Type*, 8> ArgTys; 1550 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 1551 if (Type *T = getTypeByID(Record[i])) 1552 ArgTys.push_back(T); 1553 else 1554 break; 1555 } 1556 1557 ResultTy = getTypeByID(Record[2]); 1558 if (!ResultTy || ArgTys.size() < Record.size()-3) 1559 return error("Invalid type"); 1560 1561 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1562 break; 1563 } 1564 case bitc::TYPE_CODE_FUNCTION: { 1565 // FUNCTION: [vararg, retty, paramty x N] 1566 if (Record.size() < 2) 1567 return error("Invalid record"); 1568 SmallVector<Type*, 8> ArgTys; 1569 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1570 if (Type *T = getTypeByID(Record[i])) { 1571 if (!FunctionType::isValidArgumentType(T)) 1572 return error("Invalid function argument type"); 1573 ArgTys.push_back(T); 1574 } 1575 else 1576 break; 1577 } 1578 1579 ResultTy = getTypeByID(Record[1]); 1580 if (!ResultTy || ArgTys.size() < Record.size()-2) 1581 return error("Invalid type"); 1582 1583 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1584 break; 1585 } 1586 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 1587 if (Record.size() < 1) 1588 return error("Invalid record"); 1589 SmallVector<Type*, 8> EltTys; 1590 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1591 if (Type *T = getTypeByID(Record[i])) 1592 EltTys.push_back(T); 1593 else 1594 break; 1595 } 1596 if (EltTys.size() != Record.size()-1) 1597 return error("Invalid type"); 1598 ResultTy = StructType::get(Context, EltTys, Record[0]); 1599 break; 1600 } 1601 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 1602 if (convertToString(Record, 0, TypeName)) 1603 return error("Invalid record"); 1604 continue; 1605 1606 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 1607 if (Record.size() < 1) 1608 return error("Invalid record"); 1609 1610 if (NumRecords >= TypeList.size()) 1611 return error("Invalid TYPE table"); 1612 1613 // Check to see if this was forward referenced, if so fill in the temp. 1614 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1615 if (Res) { 1616 Res->setName(TypeName); 1617 TypeList[NumRecords] = nullptr; 1618 } else // Otherwise, create a new struct. 1619 Res = createIdentifiedStructType(Context, TypeName); 1620 TypeName.clear(); 1621 1622 SmallVector<Type*, 8> EltTys; 1623 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1624 if (Type *T = getTypeByID(Record[i])) 1625 EltTys.push_back(T); 1626 else 1627 break; 1628 } 1629 if (EltTys.size() != Record.size()-1) 1630 return error("Invalid record"); 1631 Res->setBody(EltTys, Record[0]); 1632 ResultTy = Res; 1633 break; 1634 } 1635 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 1636 if (Record.size() != 1) 1637 return error("Invalid record"); 1638 1639 if (NumRecords >= TypeList.size()) 1640 return error("Invalid TYPE table"); 1641 1642 // Check to see if this was forward referenced, if so fill in the temp. 1643 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1644 if (Res) { 1645 Res->setName(TypeName); 1646 TypeList[NumRecords] = nullptr; 1647 } else // Otherwise, create a new struct with no body. 1648 Res = createIdentifiedStructType(Context, TypeName); 1649 TypeName.clear(); 1650 ResultTy = Res; 1651 break; 1652 } 1653 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 1654 if (Record.size() < 2) 1655 return error("Invalid record"); 1656 ResultTy = getTypeByID(Record[1]); 1657 if (!ResultTy || !ArrayType::isValidElementType(ResultTy)) 1658 return error("Invalid type"); 1659 ResultTy = ArrayType::get(ResultTy, Record[0]); 1660 break; 1661 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] 1662 if (Record.size() < 2) 1663 return error("Invalid record"); 1664 if (Record[0] == 0) 1665 return error("Invalid vector length"); 1666 ResultTy = getTypeByID(Record[1]); 1667 if (!ResultTy || !StructType::isValidElementType(ResultTy)) 1668 return error("Invalid type"); 1669 ResultTy = VectorType::get(ResultTy, Record[0]); 1670 break; 1671 } 1672 1673 if (NumRecords >= TypeList.size()) 1674 return error("Invalid TYPE table"); 1675 if (TypeList[NumRecords]) 1676 return error( 1677 "Invalid TYPE table: Only named structs can be forward referenced"); 1678 assert(ResultTy && "Didn't read a type?"); 1679 TypeList[NumRecords++] = ResultTy; 1680 } 1681 } 1682 1683 std::error_code BitcodeReader::parseOperandBundleTags() { 1684 if (Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID)) 1685 return error("Invalid record"); 1686 1687 if (!BundleTags.empty()) 1688 return error("Invalid multiple blocks"); 1689 1690 SmallVector<uint64_t, 64> Record; 1691 1692 while (1) { 1693 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1694 1695 switch (Entry.Kind) { 1696 case BitstreamEntry::SubBlock: // Handled for us already. 1697 case BitstreamEntry::Error: 1698 return error("Malformed block"); 1699 case BitstreamEntry::EndBlock: 1700 return std::error_code(); 1701 case BitstreamEntry::Record: 1702 // The interesting case. 1703 break; 1704 } 1705 1706 // Tags are implicitly mapped to integers by their order. 1707 1708 if (Stream.readRecord(Entry.ID, Record) != bitc::OPERAND_BUNDLE_TAG) 1709 return error("Invalid record"); 1710 1711 // OPERAND_BUNDLE_TAG: [strchr x N] 1712 BundleTags.emplace_back(); 1713 if (convertToString(Record, 0, BundleTags.back())) 1714 return error("Invalid record"); 1715 Record.clear(); 1716 } 1717 } 1718 1719 /// Associate a value with its name from the given index in the provided record. 1720 ErrorOr<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record, 1721 unsigned NameIndex, Triple &TT) { 1722 SmallString<128> ValueName; 1723 if (convertToString(Record, NameIndex, ValueName)) 1724 return error("Invalid record"); 1725 unsigned ValueID = Record[0]; 1726 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 1727 return error("Invalid record"); 1728 Value *V = ValueList[ValueID]; 1729 1730 StringRef NameStr(ValueName.data(), ValueName.size()); 1731 if (NameStr.find_first_of(0) != StringRef::npos) 1732 return error("Invalid value name"); 1733 V->setName(NameStr); 1734 auto *GO = dyn_cast<GlobalObject>(V); 1735 if (GO) { 1736 if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) { 1737 if (TT.isOSBinFormatMachO()) 1738 GO->setComdat(nullptr); 1739 else 1740 GO->setComdat(TheModule->getOrInsertComdat(V->getName())); 1741 } 1742 } 1743 return V; 1744 } 1745 1746 /// Parse the value symbol table at either the current parsing location or 1747 /// at the given bit offset if provided. 1748 std::error_code BitcodeReader::parseValueSymbolTable(uint64_t Offset) { 1749 uint64_t CurrentBit; 1750 // Pass in the Offset to distinguish between calling for the module-level 1751 // VST (where we want to jump to the VST offset) and the function-level 1752 // VST (where we don't). 1753 if (Offset > 0) { 1754 // Save the current parsing location so we can jump back at the end 1755 // of the VST read. 1756 CurrentBit = Stream.GetCurrentBitNo(); 1757 Stream.JumpToBit(Offset * 32); 1758 #ifndef NDEBUG 1759 // Do some checking if we are in debug mode. 1760 BitstreamEntry Entry = Stream.advance(); 1761 assert(Entry.Kind == BitstreamEntry::SubBlock); 1762 assert(Entry.ID == bitc::VALUE_SYMTAB_BLOCK_ID); 1763 #else 1764 // In NDEBUG mode ignore the output so we don't get an unused variable 1765 // warning. 1766 Stream.advance(); 1767 #endif 1768 } 1769 1770 // Compute the delta between the bitcode indices in the VST (the word offset 1771 // to the word-aligned ENTER_SUBBLOCK for the function block, and that 1772 // expected by the lazy reader. The reader's EnterSubBlock expects to have 1773 // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID 1774 // (size BlockIDWidth). Note that we access the stream's AbbrevID width here 1775 // just before entering the VST subblock because: 1) the EnterSubBlock 1776 // changes the AbbrevID width; 2) the VST block is nested within the same 1777 // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same 1778 // AbbrevID width before calling EnterSubBlock; and 3) when we want to 1779 // jump to the FUNCTION_BLOCK using this offset later, we don't want 1780 // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK. 1781 unsigned FuncBitcodeOffsetDelta = 1782 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 1783 1784 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 1785 return error("Invalid record"); 1786 1787 SmallVector<uint64_t, 64> Record; 1788 1789 Triple TT(TheModule->getTargetTriple()); 1790 1791 // Read all the records for this value table. 1792 SmallString<128> ValueName; 1793 while (1) { 1794 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1795 1796 switch (Entry.Kind) { 1797 case BitstreamEntry::SubBlock: // Handled for us already. 1798 case BitstreamEntry::Error: 1799 return error("Malformed block"); 1800 case BitstreamEntry::EndBlock: 1801 if (Offset > 0) 1802 Stream.JumpToBit(CurrentBit); 1803 return std::error_code(); 1804 case BitstreamEntry::Record: 1805 // The interesting case. 1806 break; 1807 } 1808 1809 // Read a record. 1810 Record.clear(); 1811 switch (Stream.readRecord(Entry.ID, Record)) { 1812 default: // Default behavior: unknown type. 1813 break; 1814 case bitc::VST_CODE_ENTRY: { // VST_ENTRY: [valueid, namechar x N] 1815 ErrorOr<Value *> ValOrErr = recordValue(Record, 1, TT); 1816 if (std::error_code EC = ValOrErr.getError()) 1817 return EC; 1818 ValOrErr.get(); 1819 break; 1820 } 1821 case bitc::VST_CODE_FNENTRY: { 1822 // VST_FNENTRY: [valueid, offset, namechar x N] 1823 ErrorOr<Value *> ValOrErr = recordValue(Record, 2, TT); 1824 if (std::error_code EC = ValOrErr.getError()) 1825 return EC; 1826 Value *V = ValOrErr.get(); 1827 1828 auto *GO = dyn_cast<GlobalObject>(V); 1829 if (!GO) { 1830 // If this is an alias, need to get the actual Function object 1831 // it aliases, in order to set up the DeferredFunctionInfo entry below. 1832 auto *GA = dyn_cast<GlobalAlias>(V); 1833 if (GA) 1834 GO = GA->getBaseObject(); 1835 assert(GO); 1836 } 1837 1838 uint64_t FuncWordOffset = Record[1]; 1839 Function *F = dyn_cast<Function>(GO); 1840 assert(F); 1841 uint64_t FuncBitOffset = FuncWordOffset * 32; 1842 DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta; 1843 // Set the LastFunctionBlockBit to point to the last function block. 1844 // Later when parsing is resumed after function materialization, 1845 // we can simply skip that last function block. 1846 if (FuncBitOffset > LastFunctionBlockBit) 1847 LastFunctionBlockBit = FuncBitOffset; 1848 break; 1849 } 1850 case bitc::VST_CODE_BBENTRY: { 1851 if (convertToString(Record, 1, ValueName)) 1852 return error("Invalid record"); 1853 BasicBlock *BB = getBasicBlock(Record[0]); 1854 if (!BB) 1855 return error("Invalid record"); 1856 1857 BB->setName(StringRef(ValueName.data(), ValueName.size())); 1858 ValueName.clear(); 1859 break; 1860 } 1861 } 1862 } 1863 } 1864 1865 /// Parse a single METADATA_KIND record, inserting result in MDKindMap. 1866 std::error_code 1867 BitcodeReader::parseMetadataKindRecord(SmallVectorImpl<uint64_t> &Record) { 1868 if (Record.size() < 2) 1869 return error("Invalid record"); 1870 1871 unsigned Kind = Record[0]; 1872 SmallString<8> Name(Record.begin() + 1, Record.end()); 1873 1874 unsigned NewKind = TheModule->getMDKindID(Name.str()); 1875 if (!MDKindMap.insert(std::make_pair(Kind, NewKind)).second) 1876 return error("Conflicting METADATA_KIND records"); 1877 return std::error_code(); 1878 } 1879 1880 static int64_t unrotateSign(uint64_t U) { return U & 1 ? ~(U >> 1) : U >> 1; } 1881 1882 /// Parse a METADATA_BLOCK. If ModuleLevel is true then we are parsing 1883 /// module level metadata. 1884 std::error_code BitcodeReader::parseMetadata(bool ModuleLevel) { 1885 IsMetadataMaterialized = true; 1886 unsigned NextMDValueNo = MDValueList.size(); 1887 if (ModuleLevel && SeenModuleValuesRecord) { 1888 // Now that we are parsing the module level metadata, we want to restart 1889 // the numbering of the MD values, and replace temp MD created earlier 1890 // with their real values. If we saw a METADATA_VALUE record then we 1891 // would have set the MDValueList size to the number specified in that 1892 // record, to support parsing function-level metadata first, and we need 1893 // to reset back to 0 to fill the MDValueList in with the parsed module 1894 // The function-level metadata parsing should have reset the MDValueList 1895 // size back to the value reported by the METADATA_VALUE record, saved in 1896 // NumModuleMDs. 1897 assert(NumModuleMDs == MDValueList.size() && 1898 "Expected MDValueList to only contain module level values"); 1899 NextMDValueNo = 0; 1900 } 1901 1902 if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID)) 1903 return error("Invalid record"); 1904 1905 SmallVector<uint64_t, 64> Record; 1906 1907 auto getMD = 1908 [&](unsigned ID) -> Metadata *{ return MDValueList.getValueFwdRef(ID); }; 1909 auto getMDOrNull = [&](unsigned ID) -> Metadata *{ 1910 if (ID) 1911 return getMD(ID - 1); 1912 return nullptr; 1913 }; 1914 auto getMDString = [&](unsigned ID) -> MDString *{ 1915 // This requires that the ID is not really a forward reference. In 1916 // particular, the MDString must already have been resolved. 1917 return cast_or_null<MDString>(getMDOrNull(ID)); 1918 }; 1919 1920 #define GET_OR_DISTINCT(CLASS, DISTINCT, ARGS) \ 1921 (DISTINCT ? CLASS::getDistinct ARGS : CLASS::get ARGS) 1922 1923 // Read all the records. 1924 while (1) { 1925 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1926 1927 switch (Entry.Kind) { 1928 case BitstreamEntry::SubBlock: // Handled for us already. 1929 case BitstreamEntry::Error: 1930 return error("Malformed block"); 1931 case BitstreamEntry::EndBlock: 1932 MDValueList.tryToResolveCycles(); 1933 assert((!(ModuleLevel && SeenModuleValuesRecord) || 1934 NumModuleMDs == MDValueList.size()) && 1935 "Inconsistent bitcode: METADATA_VALUES mismatch"); 1936 return std::error_code(); 1937 case BitstreamEntry::Record: 1938 // The interesting case. 1939 break; 1940 } 1941 1942 // Read a record. 1943 Record.clear(); 1944 unsigned Code = Stream.readRecord(Entry.ID, Record); 1945 bool IsDistinct = false; 1946 switch (Code) { 1947 default: // Default behavior: ignore. 1948 break; 1949 case bitc::METADATA_NAME: { 1950 // Read name of the named metadata. 1951 SmallString<8> Name(Record.begin(), Record.end()); 1952 Record.clear(); 1953 Code = Stream.ReadCode(); 1954 1955 unsigned NextBitCode = Stream.readRecord(Code, Record); 1956 if (NextBitCode != bitc::METADATA_NAMED_NODE) 1957 return error("METADATA_NAME not followed by METADATA_NAMED_NODE"); 1958 1959 // Read named metadata elements. 1960 unsigned Size = Record.size(); 1961 NamedMDNode *NMD = TheModule->getOrInsertNamedMetadata(Name); 1962 for (unsigned i = 0; i != Size; ++i) { 1963 MDNode *MD = dyn_cast_or_null<MDNode>(MDValueList.getValueFwdRef(Record[i])); 1964 if (!MD) 1965 return error("Invalid record"); 1966 NMD->addOperand(MD); 1967 } 1968 break; 1969 } 1970 case bitc::METADATA_OLD_FN_NODE: { 1971 // FIXME: Remove in 4.0. 1972 // This is a LocalAsMetadata record, the only type of function-local 1973 // metadata. 1974 if (Record.size() % 2 == 1) 1975 return error("Invalid record"); 1976 1977 // If this isn't a LocalAsMetadata record, we're dropping it. This used 1978 // to be legal, but there's no upgrade path. 1979 auto dropRecord = [&] { 1980 MDValueList.assignValue(MDNode::get(Context, None), NextMDValueNo++); 1981 }; 1982 if (Record.size() != 2) { 1983 dropRecord(); 1984 break; 1985 } 1986 1987 Type *Ty = getTypeByID(Record[0]); 1988 if (Ty->isMetadataTy() || Ty->isVoidTy()) { 1989 dropRecord(); 1990 break; 1991 } 1992 1993 MDValueList.assignValue( 1994 LocalAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)), 1995 NextMDValueNo++); 1996 break; 1997 } 1998 case bitc::METADATA_OLD_NODE: { 1999 // FIXME: Remove in 4.0. 2000 if (Record.size() % 2 == 1) 2001 return error("Invalid record"); 2002 2003 unsigned Size = Record.size(); 2004 SmallVector<Metadata *, 8> Elts; 2005 for (unsigned i = 0; i != Size; i += 2) { 2006 Type *Ty = getTypeByID(Record[i]); 2007 if (!Ty) 2008 return error("Invalid record"); 2009 if (Ty->isMetadataTy()) 2010 Elts.push_back(MDValueList.getValueFwdRef(Record[i+1])); 2011 else if (!Ty->isVoidTy()) { 2012 auto *MD = 2013 ValueAsMetadata::get(ValueList.getValueFwdRef(Record[i + 1], Ty)); 2014 assert(isa<ConstantAsMetadata>(MD) && 2015 "Expected non-function-local metadata"); 2016 Elts.push_back(MD); 2017 } else 2018 Elts.push_back(nullptr); 2019 } 2020 MDValueList.assignValue(MDNode::get(Context, Elts), NextMDValueNo++); 2021 break; 2022 } 2023 case bitc::METADATA_VALUE: { 2024 if (Record.size() != 2) 2025 return error("Invalid record"); 2026 2027 Type *Ty = getTypeByID(Record[0]); 2028 if (Ty->isMetadataTy() || Ty->isVoidTy()) 2029 return error("Invalid record"); 2030 2031 MDValueList.assignValue( 2032 ValueAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)), 2033 NextMDValueNo++); 2034 break; 2035 } 2036 case bitc::METADATA_DISTINCT_NODE: 2037 IsDistinct = true; 2038 // fallthrough... 2039 case bitc::METADATA_NODE: { 2040 SmallVector<Metadata *, 8> Elts; 2041 Elts.reserve(Record.size()); 2042 for (unsigned ID : Record) 2043 Elts.push_back(ID ? MDValueList.getValueFwdRef(ID - 1) : nullptr); 2044 MDValueList.assignValue(IsDistinct ? MDNode::getDistinct(Context, Elts) 2045 : MDNode::get(Context, Elts), 2046 NextMDValueNo++); 2047 break; 2048 } 2049 case bitc::METADATA_LOCATION: { 2050 if (Record.size() != 5) 2051 return error("Invalid record"); 2052 2053 unsigned Line = Record[1]; 2054 unsigned Column = Record[2]; 2055 MDNode *Scope = cast<MDNode>(MDValueList.getValueFwdRef(Record[3])); 2056 Metadata *InlinedAt = 2057 Record[4] ? MDValueList.getValueFwdRef(Record[4] - 1) : nullptr; 2058 MDValueList.assignValue( 2059 GET_OR_DISTINCT(DILocation, Record[0], 2060 (Context, Line, Column, Scope, InlinedAt)), 2061 NextMDValueNo++); 2062 break; 2063 } 2064 case bitc::METADATA_GENERIC_DEBUG: { 2065 if (Record.size() < 4) 2066 return error("Invalid record"); 2067 2068 unsigned Tag = Record[1]; 2069 unsigned Version = Record[2]; 2070 2071 if (Tag >= 1u << 16 || Version != 0) 2072 return error("Invalid record"); 2073 2074 auto *Header = getMDString(Record[3]); 2075 SmallVector<Metadata *, 8> DwarfOps; 2076 for (unsigned I = 4, E = Record.size(); I != E; ++I) 2077 DwarfOps.push_back(Record[I] ? MDValueList.getValueFwdRef(Record[I] - 1) 2078 : nullptr); 2079 MDValueList.assignValue(GET_OR_DISTINCT(GenericDINode, Record[0], 2080 (Context, Tag, Header, DwarfOps)), 2081 NextMDValueNo++); 2082 break; 2083 } 2084 case bitc::METADATA_SUBRANGE: { 2085 if (Record.size() != 3) 2086 return error("Invalid record"); 2087 2088 MDValueList.assignValue( 2089 GET_OR_DISTINCT(DISubrange, Record[0], 2090 (Context, Record[1], unrotateSign(Record[2]))), 2091 NextMDValueNo++); 2092 break; 2093 } 2094 case bitc::METADATA_ENUMERATOR: { 2095 if (Record.size() != 3) 2096 return error("Invalid record"); 2097 2098 MDValueList.assignValue(GET_OR_DISTINCT(DIEnumerator, Record[0], 2099 (Context, unrotateSign(Record[1]), 2100 getMDString(Record[2]))), 2101 NextMDValueNo++); 2102 break; 2103 } 2104 case bitc::METADATA_BASIC_TYPE: { 2105 if (Record.size() != 6) 2106 return error("Invalid record"); 2107 2108 MDValueList.assignValue( 2109 GET_OR_DISTINCT(DIBasicType, Record[0], 2110 (Context, Record[1], getMDString(Record[2]), 2111 Record[3], Record[4], Record[5])), 2112 NextMDValueNo++); 2113 break; 2114 } 2115 case bitc::METADATA_DERIVED_TYPE: { 2116 if (Record.size() != 12) 2117 return error("Invalid record"); 2118 2119 MDValueList.assignValue( 2120 GET_OR_DISTINCT(DIDerivedType, Record[0], 2121 (Context, Record[1], getMDString(Record[2]), 2122 getMDOrNull(Record[3]), Record[4], 2123 getMDOrNull(Record[5]), getMDOrNull(Record[6]), 2124 Record[7], Record[8], Record[9], Record[10], 2125 getMDOrNull(Record[11]))), 2126 NextMDValueNo++); 2127 break; 2128 } 2129 case bitc::METADATA_COMPOSITE_TYPE: { 2130 if (Record.size() != 16) 2131 return error("Invalid record"); 2132 2133 MDValueList.assignValue( 2134 GET_OR_DISTINCT(DICompositeType, Record[0], 2135 (Context, Record[1], getMDString(Record[2]), 2136 getMDOrNull(Record[3]), Record[4], 2137 getMDOrNull(Record[5]), getMDOrNull(Record[6]), 2138 Record[7], Record[8], Record[9], Record[10], 2139 getMDOrNull(Record[11]), Record[12], 2140 getMDOrNull(Record[13]), getMDOrNull(Record[14]), 2141 getMDString(Record[15]))), 2142 NextMDValueNo++); 2143 break; 2144 } 2145 case bitc::METADATA_SUBROUTINE_TYPE: { 2146 if (Record.size() != 3) 2147 return error("Invalid record"); 2148 2149 MDValueList.assignValue( 2150 GET_OR_DISTINCT(DISubroutineType, Record[0], 2151 (Context, Record[1], getMDOrNull(Record[2]))), 2152 NextMDValueNo++); 2153 break; 2154 } 2155 2156 case bitc::METADATA_MODULE: { 2157 if (Record.size() != 6) 2158 return error("Invalid record"); 2159 2160 MDValueList.assignValue( 2161 GET_OR_DISTINCT(DIModule, Record[0], 2162 (Context, getMDOrNull(Record[1]), 2163 getMDString(Record[2]), getMDString(Record[3]), 2164 getMDString(Record[4]), getMDString(Record[5]))), 2165 NextMDValueNo++); 2166 break; 2167 } 2168 2169 case bitc::METADATA_FILE: { 2170 if (Record.size() != 3) 2171 return error("Invalid record"); 2172 2173 MDValueList.assignValue( 2174 GET_OR_DISTINCT(DIFile, Record[0], (Context, getMDString(Record[1]), 2175 getMDString(Record[2]))), 2176 NextMDValueNo++); 2177 break; 2178 } 2179 case bitc::METADATA_COMPILE_UNIT: { 2180 if (Record.size() < 14 || Record.size() > 16) 2181 return error("Invalid record"); 2182 2183 // Ignore Record[0], which indicates whether this compile unit is 2184 // distinct. It's always distinct. 2185 MDValueList.assignValue( 2186 DICompileUnit::getDistinct( 2187 Context, Record[1], getMDOrNull(Record[2]), 2188 getMDString(Record[3]), Record[4], getMDString(Record[5]), 2189 Record[6], getMDString(Record[7]), Record[8], 2190 getMDOrNull(Record[9]), getMDOrNull(Record[10]), 2191 getMDOrNull(Record[11]), getMDOrNull(Record[12]), 2192 getMDOrNull(Record[13]), 2193 Record.size() <= 15 ? 0 : getMDOrNull(Record[15]), 2194 Record.size() <= 14 ? 0 : Record[14]), 2195 NextMDValueNo++); 2196 break; 2197 } 2198 case bitc::METADATA_SUBPROGRAM: { 2199 if (Record.size() != 18 && Record.size() != 19) 2200 return error("Invalid record"); 2201 2202 bool HasFn = Record.size() == 19; 2203 DISubprogram *SP = GET_OR_DISTINCT( 2204 DISubprogram, 2205 Record[0] || Record[8], // All definitions should be distinct. 2206 (Context, getMDOrNull(Record[1]), getMDString(Record[2]), 2207 getMDString(Record[3]), getMDOrNull(Record[4]), Record[5], 2208 getMDOrNull(Record[6]), Record[7], Record[8], Record[9], 2209 getMDOrNull(Record[10]), Record[11], Record[12], Record[13], 2210 Record[14], getMDOrNull(Record[15 + HasFn]), 2211 getMDOrNull(Record[16 + HasFn]), getMDOrNull(Record[17 + HasFn]))); 2212 MDValueList.assignValue(SP, NextMDValueNo++); 2213 2214 // Upgrade sp->function mapping to function->sp mapping. 2215 if (HasFn && Record[15]) { 2216 if (auto *CMD = dyn_cast<ConstantAsMetadata>(getMDOrNull(Record[15]))) 2217 if (auto *F = dyn_cast<Function>(CMD->getValue())) { 2218 if (F->isMaterializable()) 2219 // Defer until materialized; unmaterialized functions may not have 2220 // metadata. 2221 FunctionsWithSPs[F] = SP; 2222 else if (!F->empty()) 2223 F->setSubprogram(SP); 2224 } 2225 } 2226 break; 2227 } 2228 case bitc::METADATA_LEXICAL_BLOCK: { 2229 if (Record.size() != 5) 2230 return error("Invalid record"); 2231 2232 MDValueList.assignValue( 2233 GET_OR_DISTINCT(DILexicalBlock, Record[0], 2234 (Context, getMDOrNull(Record[1]), 2235 getMDOrNull(Record[2]), Record[3], Record[4])), 2236 NextMDValueNo++); 2237 break; 2238 } 2239 case bitc::METADATA_LEXICAL_BLOCK_FILE: { 2240 if (Record.size() != 4) 2241 return error("Invalid record"); 2242 2243 MDValueList.assignValue( 2244 GET_OR_DISTINCT(DILexicalBlockFile, Record[0], 2245 (Context, getMDOrNull(Record[1]), 2246 getMDOrNull(Record[2]), Record[3])), 2247 NextMDValueNo++); 2248 break; 2249 } 2250 case bitc::METADATA_NAMESPACE: { 2251 if (Record.size() != 5) 2252 return error("Invalid record"); 2253 2254 MDValueList.assignValue( 2255 GET_OR_DISTINCT(DINamespace, Record[0], 2256 (Context, getMDOrNull(Record[1]), 2257 getMDOrNull(Record[2]), getMDString(Record[3]), 2258 Record[4])), 2259 NextMDValueNo++); 2260 break; 2261 } 2262 case bitc::METADATA_MACRO: { 2263 if (Record.size() != 5) 2264 return error("Invalid record"); 2265 2266 MDValueList.assignValue( 2267 GET_OR_DISTINCT(DIMacro, Record[0], 2268 (Context, Record[1], Record[2], 2269 getMDString(Record[3]), getMDString(Record[4]))), 2270 NextMDValueNo++); 2271 break; 2272 } 2273 case bitc::METADATA_MACRO_FILE: { 2274 if (Record.size() != 5) 2275 return error("Invalid record"); 2276 2277 MDValueList.assignValue( 2278 GET_OR_DISTINCT(DIMacroFile, Record[0], 2279 (Context, Record[1], Record[2], 2280 getMDOrNull(Record[3]), getMDOrNull(Record[4]))), 2281 NextMDValueNo++); 2282 break; 2283 } 2284 case bitc::METADATA_TEMPLATE_TYPE: { 2285 if (Record.size() != 3) 2286 return error("Invalid record"); 2287 2288 MDValueList.assignValue(GET_OR_DISTINCT(DITemplateTypeParameter, 2289 Record[0], 2290 (Context, getMDString(Record[1]), 2291 getMDOrNull(Record[2]))), 2292 NextMDValueNo++); 2293 break; 2294 } 2295 case bitc::METADATA_TEMPLATE_VALUE: { 2296 if (Record.size() != 5) 2297 return error("Invalid record"); 2298 2299 MDValueList.assignValue( 2300 GET_OR_DISTINCT(DITemplateValueParameter, Record[0], 2301 (Context, Record[1], getMDString(Record[2]), 2302 getMDOrNull(Record[3]), getMDOrNull(Record[4]))), 2303 NextMDValueNo++); 2304 break; 2305 } 2306 case bitc::METADATA_GLOBAL_VAR: { 2307 if (Record.size() != 11) 2308 return error("Invalid record"); 2309 2310 MDValueList.assignValue( 2311 GET_OR_DISTINCT(DIGlobalVariable, Record[0], 2312 (Context, getMDOrNull(Record[1]), 2313 getMDString(Record[2]), getMDString(Record[3]), 2314 getMDOrNull(Record[4]), Record[5], 2315 getMDOrNull(Record[6]), Record[7], Record[8], 2316 getMDOrNull(Record[9]), getMDOrNull(Record[10]))), 2317 NextMDValueNo++); 2318 break; 2319 } 2320 case bitc::METADATA_LOCAL_VAR: { 2321 // 10th field is for the obseleted 'inlinedAt:' field. 2322 if (Record.size() < 8 || Record.size() > 10) 2323 return error("Invalid record"); 2324 2325 // 2nd field used to be an artificial tag, either DW_TAG_auto_variable or 2326 // DW_TAG_arg_variable. 2327 bool HasTag = Record.size() > 8; 2328 MDValueList.assignValue( 2329 GET_OR_DISTINCT(DILocalVariable, Record[0], 2330 (Context, getMDOrNull(Record[1 + HasTag]), 2331 getMDString(Record[2 + HasTag]), 2332 getMDOrNull(Record[3 + HasTag]), Record[4 + HasTag], 2333 getMDOrNull(Record[5 + HasTag]), Record[6 + HasTag], 2334 Record[7 + HasTag])), 2335 NextMDValueNo++); 2336 break; 2337 } 2338 case bitc::METADATA_EXPRESSION: { 2339 if (Record.size() < 1) 2340 return error("Invalid record"); 2341 2342 MDValueList.assignValue( 2343 GET_OR_DISTINCT(DIExpression, Record[0], 2344 (Context, makeArrayRef(Record).slice(1))), 2345 NextMDValueNo++); 2346 break; 2347 } 2348 case bitc::METADATA_OBJC_PROPERTY: { 2349 if (Record.size() != 8) 2350 return error("Invalid record"); 2351 2352 MDValueList.assignValue( 2353 GET_OR_DISTINCT(DIObjCProperty, Record[0], 2354 (Context, getMDString(Record[1]), 2355 getMDOrNull(Record[2]), Record[3], 2356 getMDString(Record[4]), getMDString(Record[5]), 2357 Record[6], getMDOrNull(Record[7]))), 2358 NextMDValueNo++); 2359 break; 2360 } 2361 case bitc::METADATA_IMPORTED_ENTITY: { 2362 if (Record.size() != 6) 2363 return error("Invalid record"); 2364 2365 MDValueList.assignValue( 2366 GET_OR_DISTINCT(DIImportedEntity, Record[0], 2367 (Context, Record[1], getMDOrNull(Record[2]), 2368 getMDOrNull(Record[3]), Record[4], 2369 getMDString(Record[5]))), 2370 NextMDValueNo++); 2371 break; 2372 } 2373 case bitc::METADATA_STRING: { 2374 std::string String(Record.begin(), Record.end()); 2375 llvm::UpgradeMDStringConstant(String); 2376 Metadata *MD = MDString::get(Context, String); 2377 MDValueList.assignValue(MD, NextMDValueNo++); 2378 break; 2379 } 2380 case bitc::METADATA_KIND: { 2381 // Support older bitcode files that had METADATA_KIND records in a 2382 // block with METADATA_BLOCK_ID. 2383 if (std::error_code EC = parseMetadataKindRecord(Record)) 2384 return EC; 2385 break; 2386 } 2387 } 2388 } 2389 #undef GET_OR_DISTINCT 2390 } 2391 2392 /// Parse the metadata kinds out of the METADATA_KIND_BLOCK. 2393 std::error_code BitcodeReader::parseMetadataKinds() { 2394 if (Stream.EnterSubBlock(bitc::METADATA_KIND_BLOCK_ID)) 2395 return error("Invalid record"); 2396 2397 SmallVector<uint64_t, 64> Record; 2398 2399 // Read all the records. 2400 while (1) { 2401 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2402 2403 switch (Entry.Kind) { 2404 case BitstreamEntry::SubBlock: // Handled for us already. 2405 case BitstreamEntry::Error: 2406 return error("Malformed block"); 2407 case BitstreamEntry::EndBlock: 2408 return std::error_code(); 2409 case BitstreamEntry::Record: 2410 // The interesting case. 2411 break; 2412 } 2413 2414 // Read a record. 2415 Record.clear(); 2416 unsigned Code = Stream.readRecord(Entry.ID, Record); 2417 switch (Code) { 2418 default: // Default behavior: ignore. 2419 break; 2420 case bitc::METADATA_KIND: { 2421 if (std::error_code EC = parseMetadataKindRecord(Record)) 2422 return EC; 2423 break; 2424 } 2425 } 2426 } 2427 } 2428 2429 /// Decode a signed value stored with the sign bit in the LSB for dense VBR 2430 /// encoding. 2431 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { 2432 if ((V & 1) == 0) 2433 return V >> 1; 2434 if (V != 1) 2435 return -(V >> 1); 2436 // There is no such thing as -0 with integers. "-0" really means MININT. 2437 return 1ULL << 63; 2438 } 2439 2440 /// Resolve all of the initializers for global values and aliases that we can. 2441 std::error_code BitcodeReader::resolveGlobalAndAliasInits() { 2442 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist; 2443 std::vector<std::pair<GlobalAlias*, unsigned> > AliasInitWorklist; 2444 std::vector<std::pair<Function*, unsigned> > FunctionPrefixWorklist; 2445 std::vector<std::pair<Function*, unsigned> > FunctionPrologueWorklist; 2446 std::vector<std::pair<Function*, unsigned> > FunctionPersonalityFnWorklist; 2447 2448 GlobalInitWorklist.swap(GlobalInits); 2449 AliasInitWorklist.swap(AliasInits); 2450 FunctionPrefixWorklist.swap(FunctionPrefixes); 2451 FunctionPrologueWorklist.swap(FunctionPrologues); 2452 FunctionPersonalityFnWorklist.swap(FunctionPersonalityFns); 2453 2454 while (!GlobalInitWorklist.empty()) { 2455 unsigned ValID = GlobalInitWorklist.back().second; 2456 if (ValID >= ValueList.size()) { 2457 // Not ready to resolve this yet, it requires something later in the file. 2458 GlobalInits.push_back(GlobalInitWorklist.back()); 2459 } else { 2460 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2461 GlobalInitWorklist.back().first->setInitializer(C); 2462 else 2463 return error("Expected a constant"); 2464 } 2465 GlobalInitWorklist.pop_back(); 2466 } 2467 2468 while (!AliasInitWorklist.empty()) { 2469 unsigned ValID = AliasInitWorklist.back().second; 2470 if (ValID >= ValueList.size()) { 2471 AliasInits.push_back(AliasInitWorklist.back()); 2472 } else { 2473 Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]); 2474 if (!C) 2475 return error("Expected a constant"); 2476 GlobalAlias *Alias = AliasInitWorklist.back().first; 2477 if (C->getType() != Alias->getType()) 2478 return error("Alias and aliasee types don't match"); 2479 Alias->setAliasee(C); 2480 } 2481 AliasInitWorklist.pop_back(); 2482 } 2483 2484 while (!FunctionPrefixWorklist.empty()) { 2485 unsigned ValID = FunctionPrefixWorklist.back().second; 2486 if (ValID >= ValueList.size()) { 2487 FunctionPrefixes.push_back(FunctionPrefixWorklist.back()); 2488 } else { 2489 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2490 FunctionPrefixWorklist.back().first->setPrefixData(C); 2491 else 2492 return error("Expected a constant"); 2493 } 2494 FunctionPrefixWorklist.pop_back(); 2495 } 2496 2497 while (!FunctionPrologueWorklist.empty()) { 2498 unsigned ValID = FunctionPrologueWorklist.back().second; 2499 if (ValID >= ValueList.size()) { 2500 FunctionPrologues.push_back(FunctionPrologueWorklist.back()); 2501 } else { 2502 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2503 FunctionPrologueWorklist.back().first->setPrologueData(C); 2504 else 2505 return error("Expected a constant"); 2506 } 2507 FunctionPrologueWorklist.pop_back(); 2508 } 2509 2510 while (!FunctionPersonalityFnWorklist.empty()) { 2511 unsigned ValID = FunctionPersonalityFnWorklist.back().second; 2512 if (ValID >= ValueList.size()) { 2513 FunctionPersonalityFns.push_back(FunctionPersonalityFnWorklist.back()); 2514 } else { 2515 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2516 FunctionPersonalityFnWorklist.back().first->setPersonalityFn(C); 2517 else 2518 return error("Expected a constant"); 2519 } 2520 FunctionPersonalityFnWorklist.pop_back(); 2521 } 2522 2523 return std::error_code(); 2524 } 2525 2526 static APInt readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { 2527 SmallVector<uint64_t, 8> Words(Vals.size()); 2528 std::transform(Vals.begin(), Vals.end(), Words.begin(), 2529 BitcodeReader::decodeSignRotatedValue); 2530 2531 return APInt(TypeBits, Words); 2532 } 2533 2534 std::error_code BitcodeReader::parseConstants() { 2535 if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 2536 return error("Invalid record"); 2537 2538 SmallVector<uint64_t, 64> Record; 2539 2540 // Read all the records for this value table. 2541 Type *CurTy = Type::getInt32Ty(Context); 2542 unsigned NextCstNo = ValueList.size(); 2543 while (1) { 2544 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2545 2546 switch (Entry.Kind) { 2547 case BitstreamEntry::SubBlock: // Handled for us already. 2548 case BitstreamEntry::Error: 2549 return error("Malformed block"); 2550 case BitstreamEntry::EndBlock: 2551 if (NextCstNo != ValueList.size()) 2552 return error("Invalid ronstant reference"); 2553 2554 // Once all the constants have been read, go through and resolve forward 2555 // references. 2556 ValueList.resolveConstantForwardRefs(); 2557 return std::error_code(); 2558 case BitstreamEntry::Record: 2559 // The interesting case. 2560 break; 2561 } 2562 2563 // Read a record. 2564 Record.clear(); 2565 Value *V = nullptr; 2566 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 2567 switch (BitCode) { 2568 default: // Default behavior: unknown constant 2569 case bitc::CST_CODE_UNDEF: // UNDEF 2570 V = UndefValue::get(CurTy); 2571 break; 2572 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 2573 if (Record.empty()) 2574 return error("Invalid record"); 2575 if (Record[0] >= TypeList.size() || !TypeList[Record[0]]) 2576 return error("Invalid record"); 2577 CurTy = TypeList[Record[0]]; 2578 continue; // Skip the ValueList manipulation. 2579 case bitc::CST_CODE_NULL: // NULL 2580 V = Constant::getNullValue(CurTy); 2581 break; 2582 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 2583 if (!CurTy->isIntegerTy() || Record.empty()) 2584 return error("Invalid record"); 2585 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); 2586 break; 2587 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 2588 if (!CurTy->isIntegerTy() || Record.empty()) 2589 return error("Invalid record"); 2590 2591 APInt VInt = 2592 readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth()); 2593 V = ConstantInt::get(Context, VInt); 2594 2595 break; 2596 } 2597 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 2598 if (Record.empty()) 2599 return error("Invalid record"); 2600 if (CurTy->isHalfTy()) 2601 V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf, 2602 APInt(16, (uint16_t)Record[0]))); 2603 else if (CurTy->isFloatTy()) 2604 V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle, 2605 APInt(32, (uint32_t)Record[0]))); 2606 else if (CurTy->isDoubleTy()) 2607 V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble, 2608 APInt(64, Record[0]))); 2609 else if (CurTy->isX86_FP80Ty()) { 2610 // Bits are not stored the same way as a normal i80 APInt, compensate. 2611 uint64_t Rearrange[2]; 2612 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 2613 Rearrange[1] = Record[0] >> 48; 2614 V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended, 2615 APInt(80, Rearrange))); 2616 } else if (CurTy->isFP128Ty()) 2617 V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad, 2618 APInt(128, Record))); 2619 else if (CurTy->isPPC_FP128Ty()) 2620 V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble, 2621 APInt(128, Record))); 2622 else 2623 V = UndefValue::get(CurTy); 2624 break; 2625 } 2626 2627 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 2628 if (Record.empty()) 2629 return error("Invalid record"); 2630 2631 unsigned Size = Record.size(); 2632 SmallVector<Constant*, 16> Elts; 2633 2634 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 2635 for (unsigned i = 0; i != Size; ++i) 2636 Elts.push_back(ValueList.getConstantFwdRef(Record[i], 2637 STy->getElementType(i))); 2638 V = ConstantStruct::get(STy, Elts); 2639 } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) { 2640 Type *EltTy = ATy->getElementType(); 2641 for (unsigned i = 0; i != Size; ++i) 2642 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2643 V = ConstantArray::get(ATy, Elts); 2644 } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) { 2645 Type *EltTy = VTy->getElementType(); 2646 for (unsigned i = 0; i != Size; ++i) 2647 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2648 V = ConstantVector::get(Elts); 2649 } else { 2650 V = UndefValue::get(CurTy); 2651 } 2652 break; 2653 } 2654 case bitc::CST_CODE_STRING: // STRING: [values] 2655 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 2656 if (Record.empty()) 2657 return error("Invalid record"); 2658 2659 SmallString<16> Elts(Record.begin(), Record.end()); 2660 V = ConstantDataArray::getString(Context, Elts, 2661 BitCode == bitc::CST_CODE_CSTRING); 2662 break; 2663 } 2664 case bitc::CST_CODE_DATA: {// DATA: [n x value] 2665 if (Record.empty()) 2666 return error("Invalid record"); 2667 2668 Type *EltTy = cast<SequentialType>(CurTy)->getElementType(); 2669 unsigned Size = Record.size(); 2670 2671 if (EltTy->isIntegerTy(8)) { 2672 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); 2673 if (isa<VectorType>(CurTy)) 2674 V = ConstantDataVector::get(Context, Elts); 2675 else 2676 V = ConstantDataArray::get(Context, Elts); 2677 } else if (EltTy->isIntegerTy(16)) { 2678 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2679 if (isa<VectorType>(CurTy)) 2680 V = ConstantDataVector::get(Context, Elts); 2681 else 2682 V = ConstantDataArray::get(Context, Elts); 2683 } else if (EltTy->isIntegerTy(32)) { 2684 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2685 if (isa<VectorType>(CurTy)) 2686 V = ConstantDataVector::get(Context, Elts); 2687 else 2688 V = ConstantDataArray::get(Context, Elts); 2689 } else if (EltTy->isIntegerTy(64)) { 2690 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2691 if (isa<VectorType>(CurTy)) 2692 V = ConstantDataVector::get(Context, Elts); 2693 else 2694 V = ConstantDataArray::get(Context, Elts); 2695 } else if (EltTy->isFloatTy()) { 2696 SmallVector<float, 16> Elts(Size); 2697 std::transform(Record.begin(), Record.end(), Elts.begin(), BitsToFloat); 2698 if (isa<VectorType>(CurTy)) 2699 V = ConstantDataVector::get(Context, Elts); 2700 else 2701 V = ConstantDataArray::get(Context, Elts); 2702 } else if (EltTy->isDoubleTy()) { 2703 SmallVector<double, 16> Elts(Size); 2704 std::transform(Record.begin(), Record.end(), Elts.begin(), 2705 BitsToDouble); 2706 if (isa<VectorType>(CurTy)) 2707 V = ConstantDataVector::get(Context, Elts); 2708 else 2709 V = ConstantDataArray::get(Context, Elts); 2710 } else { 2711 return error("Invalid type for value"); 2712 } 2713 break; 2714 } 2715 2716 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 2717 if (Record.size() < 3) 2718 return error("Invalid record"); 2719 int Opc = getDecodedBinaryOpcode(Record[0], CurTy); 2720 if (Opc < 0) { 2721 V = UndefValue::get(CurTy); // Unknown binop. 2722 } else { 2723 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 2724 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy); 2725 unsigned Flags = 0; 2726 if (Record.size() >= 4) { 2727 if (Opc == Instruction::Add || 2728 Opc == Instruction::Sub || 2729 Opc == Instruction::Mul || 2730 Opc == Instruction::Shl) { 2731 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 2732 Flags |= OverflowingBinaryOperator::NoSignedWrap; 2733 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 2734 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 2735 } else if (Opc == Instruction::SDiv || 2736 Opc == Instruction::UDiv || 2737 Opc == Instruction::LShr || 2738 Opc == Instruction::AShr) { 2739 if (Record[3] & (1 << bitc::PEO_EXACT)) 2740 Flags |= SDivOperator::IsExact; 2741 } 2742 } 2743 V = ConstantExpr::get(Opc, LHS, RHS, Flags); 2744 } 2745 break; 2746 } 2747 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 2748 if (Record.size() < 3) 2749 return error("Invalid record"); 2750 int Opc = getDecodedCastOpcode(Record[0]); 2751 if (Opc < 0) { 2752 V = UndefValue::get(CurTy); // Unknown cast. 2753 } else { 2754 Type *OpTy = getTypeByID(Record[1]); 2755 if (!OpTy) 2756 return error("Invalid record"); 2757 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy); 2758 V = UpgradeBitCastExpr(Opc, Op, CurTy); 2759 if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy); 2760 } 2761 break; 2762 } 2763 case bitc::CST_CODE_CE_INBOUNDS_GEP: 2764 case bitc::CST_CODE_CE_GEP: { // CE_GEP: [n x operands] 2765 unsigned OpNum = 0; 2766 Type *PointeeType = nullptr; 2767 if (Record.size() % 2) 2768 PointeeType = getTypeByID(Record[OpNum++]); 2769 SmallVector<Constant*, 16> Elts; 2770 while (OpNum != Record.size()) { 2771 Type *ElTy = getTypeByID(Record[OpNum++]); 2772 if (!ElTy) 2773 return error("Invalid record"); 2774 Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy)); 2775 } 2776 2777 if (PointeeType && 2778 PointeeType != 2779 cast<SequentialType>(Elts[0]->getType()->getScalarType()) 2780 ->getElementType()) 2781 return error("Explicit gep operator type does not match pointee type " 2782 "of pointer operand"); 2783 2784 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 2785 V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices, 2786 BitCode == 2787 bitc::CST_CODE_CE_INBOUNDS_GEP); 2788 break; 2789 } 2790 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] 2791 if (Record.size() < 3) 2792 return error("Invalid record"); 2793 2794 Type *SelectorTy = Type::getInt1Ty(Context); 2795 2796 // The selector might be an i1 or an <n x i1> 2797 // Get the type from the ValueList before getting a forward ref. 2798 if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) 2799 if (Value *V = ValueList[Record[0]]) 2800 if (SelectorTy != V->getType()) 2801 SelectorTy = VectorType::get(SelectorTy, VTy->getNumElements()); 2802 2803 V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0], 2804 SelectorTy), 2805 ValueList.getConstantFwdRef(Record[1],CurTy), 2806 ValueList.getConstantFwdRef(Record[2],CurTy)); 2807 break; 2808 } 2809 case bitc::CST_CODE_CE_EXTRACTELT 2810 : { // CE_EXTRACTELT: [opty, opval, opty, opval] 2811 if (Record.size() < 3) 2812 return error("Invalid record"); 2813 VectorType *OpTy = 2814 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2815 if (!OpTy) 2816 return error("Invalid record"); 2817 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2818 Constant *Op1 = nullptr; 2819 if (Record.size() == 4) { 2820 Type *IdxTy = getTypeByID(Record[2]); 2821 if (!IdxTy) 2822 return error("Invalid record"); 2823 Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2824 } else // TODO: Remove with llvm 4.0 2825 Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2826 if (!Op1) 2827 return error("Invalid record"); 2828 V = ConstantExpr::getExtractElement(Op0, Op1); 2829 break; 2830 } 2831 case bitc::CST_CODE_CE_INSERTELT 2832 : { // CE_INSERTELT: [opval, opval, opty, opval] 2833 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2834 if (Record.size() < 3 || !OpTy) 2835 return error("Invalid record"); 2836 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2837 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], 2838 OpTy->getElementType()); 2839 Constant *Op2 = nullptr; 2840 if (Record.size() == 4) { 2841 Type *IdxTy = getTypeByID(Record[2]); 2842 if (!IdxTy) 2843 return error("Invalid record"); 2844 Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2845 } else // TODO: Remove with llvm 4.0 2846 Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2847 if (!Op2) 2848 return error("Invalid record"); 2849 V = ConstantExpr::getInsertElement(Op0, Op1, Op2); 2850 break; 2851 } 2852 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 2853 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2854 if (Record.size() < 3 || !OpTy) 2855 return error("Invalid record"); 2856 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2857 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy); 2858 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 2859 OpTy->getNumElements()); 2860 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy); 2861 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 2862 break; 2863 } 2864 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 2865 VectorType *RTy = dyn_cast<VectorType>(CurTy); 2866 VectorType *OpTy = 2867 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2868 if (Record.size() < 4 || !RTy || !OpTy) 2869 return error("Invalid record"); 2870 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2871 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2872 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 2873 RTy->getNumElements()); 2874 Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy); 2875 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 2876 break; 2877 } 2878 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 2879 if (Record.size() < 4) 2880 return error("Invalid record"); 2881 Type *OpTy = getTypeByID(Record[0]); 2882 if (!OpTy) 2883 return error("Invalid record"); 2884 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2885 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2886 2887 if (OpTy->isFPOrFPVectorTy()) 2888 V = ConstantExpr::getFCmp(Record[3], Op0, Op1); 2889 else 2890 V = ConstantExpr::getICmp(Record[3], Op0, Op1); 2891 break; 2892 } 2893 // This maintains backward compatibility, pre-asm dialect keywords. 2894 // FIXME: Remove with the 4.0 release. 2895 case bitc::CST_CODE_INLINEASM_OLD: { 2896 if (Record.size() < 2) 2897 return error("Invalid record"); 2898 std::string AsmStr, ConstrStr; 2899 bool HasSideEffects = Record[0] & 1; 2900 bool IsAlignStack = Record[0] >> 1; 2901 unsigned AsmStrSize = Record[1]; 2902 if (2+AsmStrSize >= Record.size()) 2903 return error("Invalid record"); 2904 unsigned ConstStrSize = Record[2+AsmStrSize]; 2905 if (3+AsmStrSize+ConstStrSize > Record.size()) 2906 return error("Invalid record"); 2907 2908 for (unsigned i = 0; i != AsmStrSize; ++i) 2909 AsmStr += (char)Record[2+i]; 2910 for (unsigned i = 0; i != ConstStrSize; ++i) 2911 ConstrStr += (char)Record[3+AsmStrSize+i]; 2912 PointerType *PTy = cast<PointerType>(CurTy); 2913 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 2914 AsmStr, ConstrStr, HasSideEffects, IsAlignStack); 2915 break; 2916 } 2917 // This version adds support for the asm dialect keywords (e.g., 2918 // inteldialect). 2919 case bitc::CST_CODE_INLINEASM: { 2920 if (Record.size() < 2) 2921 return error("Invalid record"); 2922 std::string AsmStr, ConstrStr; 2923 bool HasSideEffects = Record[0] & 1; 2924 bool IsAlignStack = (Record[0] >> 1) & 1; 2925 unsigned AsmDialect = Record[0] >> 2; 2926 unsigned AsmStrSize = Record[1]; 2927 if (2+AsmStrSize >= Record.size()) 2928 return error("Invalid record"); 2929 unsigned ConstStrSize = Record[2+AsmStrSize]; 2930 if (3+AsmStrSize+ConstStrSize > Record.size()) 2931 return error("Invalid record"); 2932 2933 for (unsigned i = 0; i != AsmStrSize; ++i) 2934 AsmStr += (char)Record[2+i]; 2935 for (unsigned i = 0; i != ConstStrSize; ++i) 2936 ConstrStr += (char)Record[3+AsmStrSize+i]; 2937 PointerType *PTy = cast<PointerType>(CurTy); 2938 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 2939 AsmStr, ConstrStr, HasSideEffects, IsAlignStack, 2940 InlineAsm::AsmDialect(AsmDialect)); 2941 break; 2942 } 2943 case bitc::CST_CODE_BLOCKADDRESS:{ 2944 if (Record.size() < 3) 2945 return error("Invalid record"); 2946 Type *FnTy = getTypeByID(Record[0]); 2947 if (!FnTy) 2948 return error("Invalid record"); 2949 Function *Fn = 2950 dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy)); 2951 if (!Fn) 2952 return error("Invalid record"); 2953 2954 // Don't let Fn get dematerialized. 2955 BlockAddressesTaken.insert(Fn); 2956 2957 // If the function is already parsed we can insert the block address right 2958 // away. 2959 BasicBlock *BB; 2960 unsigned BBID = Record[2]; 2961 if (!BBID) 2962 // Invalid reference to entry block. 2963 return error("Invalid ID"); 2964 if (!Fn->empty()) { 2965 Function::iterator BBI = Fn->begin(), BBE = Fn->end(); 2966 for (size_t I = 0, E = BBID; I != E; ++I) { 2967 if (BBI == BBE) 2968 return error("Invalid ID"); 2969 ++BBI; 2970 } 2971 BB = &*BBI; 2972 } else { 2973 // Otherwise insert a placeholder and remember it so it can be inserted 2974 // when the function is parsed. 2975 auto &FwdBBs = BasicBlockFwdRefs[Fn]; 2976 if (FwdBBs.empty()) 2977 BasicBlockFwdRefQueue.push_back(Fn); 2978 if (FwdBBs.size() < BBID + 1) 2979 FwdBBs.resize(BBID + 1); 2980 if (!FwdBBs[BBID]) 2981 FwdBBs[BBID] = BasicBlock::Create(Context); 2982 BB = FwdBBs[BBID]; 2983 } 2984 V = BlockAddress::get(Fn, BB); 2985 break; 2986 } 2987 } 2988 2989 ValueList.assignValue(V, NextCstNo); 2990 ++NextCstNo; 2991 } 2992 } 2993 2994 std::error_code BitcodeReader::parseUseLists() { 2995 if (Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 2996 return error("Invalid record"); 2997 2998 // Read all the records. 2999 SmallVector<uint64_t, 64> Record; 3000 while (1) { 3001 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 3002 3003 switch (Entry.Kind) { 3004 case BitstreamEntry::SubBlock: // Handled for us already. 3005 case BitstreamEntry::Error: 3006 return error("Malformed block"); 3007 case BitstreamEntry::EndBlock: 3008 return std::error_code(); 3009 case BitstreamEntry::Record: 3010 // The interesting case. 3011 break; 3012 } 3013 3014 // Read a use list record. 3015 Record.clear(); 3016 bool IsBB = false; 3017 switch (Stream.readRecord(Entry.ID, Record)) { 3018 default: // Default behavior: unknown type. 3019 break; 3020 case bitc::USELIST_CODE_BB: 3021 IsBB = true; 3022 // fallthrough 3023 case bitc::USELIST_CODE_DEFAULT: { 3024 unsigned RecordLength = Record.size(); 3025 if (RecordLength < 3) 3026 // Records should have at least an ID and two indexes. 3027 return error("Invalid record"); 3028 unsigned ID = Record.back(); 3029 Record.pop_back(); 3030 3031 Value *V; 3032 if (IsBB) { 3033 assert(ID < FunctionBBs.size() && "Basic block not found"); 3034 V = FunctionBBs[ID]; 3035 } else 3036 V = ValueList[ID]; 3037 unsigned NumUses = 0; 3038 SmallDenseMap<const Use *, unsigned, 16> Order; 3039 for (const Use &U : V->uses()) { 3040 if (++NumUses > Record.size()) 3041 break; 3042 Order[&U] = Record[NumUses - 1]; 3043 } 3044 if (Order.size() != Record.size() || NumUses > Record.size()) 3045 // Mismatches can happen if the functions are being materialized lazily 3046 // (out-of-order), or a value has been upgraded. 3047 break; 3048 3049 V->sortUseList([&](const Use &L, const Use &R) { 3050 return Order.lookup(&L) < Order.lookup(&R); 3051 }); 3052 break; 3053 } 3054 } 3055 } 3056 } 3057 3058 /// When we see the block for metadata, remember where it is and then skip it. 3059 /// This lets us lazily deserialize the metadata. 3060 std::error_code BitcodeReader::rememberAndSkipMetadata() { 3061 // Save the current stream state. 3062 uint64_t CurBit = Stream.GetCurrentBitNo(); 3063 DeferredMetadataInfo.push_back(CurBit); 3064 3065 // Skip over the block for now. 3066 if (Stream.SkipBlock()) 3067 return error("Invalid record"); 3068 return std::error_code(); 3069 } 3070 3071 std::error_code BitcodeReader::materializeMetadata() { 3072 for (uint64_t BitPos : DeferredMetadataInfo) { 3073 // Move the bit stream to the saved position. 3074 Stream.JumpToBit(BitPos); 3075 if (std::error_code EC = parseMetadata(true)) 3076 return EC; 3077 } 3078 DeferredMetadataInfo.clear(); 3079 return std::error_code(); 3080 } 3081 3082 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; } 3083 3084 void BitcodeReader::saveMDValueList( 3085 DenseMap<const Metadata *, unsigned> &MDValueToValIDMap, bool OnlyTempMD) { 3086 for (unsigned ValID = 0; ValID < MDValueList.size(); ++ValID) { 3087 Metadata *MD = MDValueList[ValID]; 3088 auto *N = dyn_cast_or_null<MDNode>(MD); 3089 // Save all values if !OnlyTempMD, otherwise just the temporary metadata. 3090 if (!OnlyTempMD || (N && N->isTemporary())) { 3091 // Will call this after materializing each function, in order to 3092 // handle remapping of the function's instructions/metadata. 3093 // See if we already have an entry in that case. 3094 if (OnlyTempMD && MDValueToValIDMap.count(MD)) { 3095 assert(MDValueToValIDMap[MD] == ValID && 3096 "Inconsistent metadata value id"); 3097 continue; 3098 } 3099 MDValueToValIDMap[MD] = ValID; 3100 // Flag that we saved the forward refs (temporary metadata) for error 3101 // checking during MDValueList destruction. 3102 if (OnlyTempMD) 3103 MDValueList.savedFwdRefs(); 3104 } 3105 } 3106 } 3107 3108 /// When we see the block for a function body, remember where it is and then 3109 /// skip it. This lets us lazily deserialize the functions. 3110 std::error_code BitcodeReader::rememberAndSkipFunctionBody() { 3111 // Get the function we are talking about. 3112 if (FunctionsWithBodies.empty()) 3113 return error("Insufficient function protos"); 3114 3115 Function *Fn = FunctionsWithBodies.back(); 3116 FunctionsWithBodies.pop_back(); 3117 3118 // Save the current stream state. 3119 uint64_t CurBit = Stream.GetCurrentBitNo(); 3120 assert( 3121 (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) && 3122 "Mismatch between VST and scanned function offsets"); 3123 DeferredFunctionInfo[Fn] = CurBit; 3124 3125 // Skip over the function block for now. 3126 if (Stream.SkipBlock()) 3127 return error("Invalid record"); 3128 return std::error_code(); 3129 } 3130 3131 std::error_code BitcodeReader::globalCleanup() { 3132 // Patch the initializers for globals and aliases up. 3133 resolveGlobalAndAliasInits(); 3134 if (!GlobalInits.empty() || !AliasInits.empty()) 3135 return error("Malformed global initializer set"); 3136 3137 // Look for intrinsic functions which need to be upgraded at some point 3138 for (Function &F : *TheModule) { 3139 Function *NewFn; 3140 if (UpgradeIntrinsicFunction(&F, NewFn)) 3141 UpgradedIntrinsics[&F] = NewFn; 3142 } 3143 3144 // Look for global variables which need to be renamed. 3145 for (GlobalVariable &GV : TheModule->globals()) 3146 UpgradeGlobalVariable(&GV); 3147 3148 // Force deallocation of memory for these vectors to favor the client that 3149 // want lazy deserialization. 3150 std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits); 3151 std::vector<std::pair<GlobalAlias*, unsigned> >().swap(AliasInits); 3152 return std::error_code(); 3153 } 3154 3155 /// Support for lazy parsing of function bodies. This is required if we 3156 /// either have an old bitcode file without a VST forward declaration record, 3157 /// or if we have an anonymous function being materialized, since anonymous 3158 /// functions do not have a name and are therefore not in the VST. 3159 std::error_code BitcodeReader::rememberAndSkipFunctionBodies() { 3160 Stream.JumpToBit(NextUnreadBit); 3161 3162 if (Stream.AtEndOfStream()) 3163 return error("Could not find function in stream"); 3164 3165 if (!SeenFirstFunctionBody) 3166 return error("Trying to materialize functions before seeing function blocks"); 3167 3168 // An old bitcode file with the symbol table at the end would have 3169 // finished the parse greedily. 3170 assert(SeenValueSymbolTable); 3171 3172 SmallVector<uint64_t, 64> Record; 3173 3174 while (1) { 3175 BitstreamEntry Entry = Stream.advance(); 3176 switch (Entry.Kind) { 3177 default: 3178 return error("Expect SubBlock"); 3179 case BitstreamEntry::SubBlock: 3180 switch (Entry.ID) { 3181 default: 3182 return error("Expect function block"); 3183 case bitc::FUNCTION_BLOCK_ID: 3184 if (std::error_code EC = rememberAndSkipFunctionBody()) 3185 return EC; 3186 NextUnreadBit = Stream.GetCurrentBitNo(); 3187 return std::error_code(); 3188 } 3189 } 3190 } 3191 } 3192 3193 std::error_code BitcodeReader::parseBitcodeVersion() { 3194 if (Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID)) 3195 return error("Invalid record"); 3196 3197 // Read all the records. 3198 SmallVector<uint64_t, 64> Record; 3199 while (1) { 3200 BitstreamEntry Entry = Stream.advance(); 3201 3202 switch (Entry.Kind) { 3203 default: 3204 case BitstreamEntry::Error: 3205 return error("Malformed block"); 3206 case BitstreamEntry::EndBlock: 3207 return std::error_code(); 3208 case BitstreamEntry::Record: 3209 // The interesting case. 3210 break; 3211 } 3212 3213 // Read a record. 3214 Record.clear(); 3215 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 3216 switch (BitCode) { 3217 default: // Default behavior: reject 3218 return error("Invalid value"); 3219 case bitc::IDENTIFICATION_CODE_STRING: { // IDENTIFICATION: [strchr x 3220 // N] 3221 convertToString(Record, 0, ProducerIdentification); 3222 break; 3223 } 3224 case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#] 3225 unsigned epoch = (unsigned)Record[0]; 3226 if (epoch != bitc::BITCODE_CURRENT_EPOCH) { 3227 return error( 3228 Twine("Incompatible epoch: Bitcode '") + Twine(epoch) + 3229 "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'"); 3230 } 3231 } 3232 } 3233 } 3234 } 3235 3236 std::error_code BitcodeReader::parseModule(uint64_t ResumeBit, 3237 bool ShouldLazyLoadMetadata) { 3238 if (ResumeBit) 3239 Stream.JumpToBit(ResumeBit); 3240 else if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 3241 return error("Invalid record"); 3242 3243 SmallVector<uint64_t, 64> Record; 3244 std::vector<std::string> SectionTable; 3245 std::vector<std::string> GCTable; 3246 3247 // Read all the records for this module. 3248 while (1) { 3249 BitstreamEntry Entry = Stream.advance(); 3250 3251 switch (Entry.Kind) { 3252 case BitstreamEntry::Error: 3253 return error("Malformed block"); 3254 case BitstreamEntry::EndBlock: 3255 return globalCleanup(); 3256 3257 case BitstreamEntry::SubBlock: 3258 switch (Entry.ID) { 3259 default: // Skip unknown content. 3260 if (Stream.SkipBlock()) 3261 return error("Invalid record"); 3262 break; 3263 case bitc::BLOCKINFO_BLOCK_ID: 3264 if (Stream.ReadBlockInfoBlock()) 3265 return error("Malformed block"); 3266 break; 3267 case bitc::PARAMATTR_BLOCK_ID: 3268 if (std::error_code EC = parseAttributeBlock()) 3269 return EC; 3270 break; 3271 case bitc::PARAMATTR_GROUP_BLOCK_ID: 3272 if (std::error_code EC = parseAttributeGroupBlock()) 3273 return EC; 3274 break; 3275 case bitc::TYPE_BLOCK_ID_NEW: 3276 if (std::error_code EC = parseTypeTable()) 3277 return EC; 3278 break; 3279 case bitc::VALUE_SYMTAB_BLOCK_ID: 3280 if (!SeenValueSymbolTable) { 3281 // Either this is an old form VST without function index and an 3282 // associated VST forward declaration record (which would have caused 3283 // the VST to be jumped to and parsed before it was encountered 3284 // normally in the stream), or there were no function blocks to 3285 // trigger an earlier parsing of the VST. 3286 assert(VSTOffset == 0 || FunctionsWithBodies.empty()); 3287 if (std::error_code EC = parseValueSymbolTable()) 3288 return EC; 3289 SeenValueSymbolTable = true; 3290 } else { 3291 // We must have had a VST forward declaration record, which caused 3292 // the parser to jump to and parse the VST earlier. 3293 assert(VSTOffset > 0); 3294 if (Stream.SkipBlock()) 3295 return error("Invalid record"); 3296 } 3297 break; 3298 case bitc::CONSTANTS_BLOCK_ID: 3299 if (std::error_code EC = parseConstants()) 3300 return EC; 3301 if (std::error_code EC = resolveGlobalAndAliasInits()) 3302 return EC; 3303 break; 3304 case bitc::METADATA_BLOCK_ID: 3305 if (ShouldLazyLoadMetadata && !IsMetadataMaterialized) { 3306 if (std::error_code EC = rememberAndSkipMetadata()) 3307 return EC; 3308 break; 3309 } 3310 assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata"); 3311 if (std::error_code EC = parseMetadata(true)) 3312 return EC; 3313 break; 3314 case bitc::METADATA_KIND_BLOCK_ID: 3315 if (std::error_code EC = parseMetadataKinds()) 3316 return EC; 3317 break; 3318 case bitc::FUNCTION_BLOCK_ID: 3319 // If this is the first function body we've seen, reverse the 3320 // FunctionsWithBodies list. 3321 if (!SeenFirstFunctionBody) { 3322 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 3323 if (std::error_code EC = globalCleanup()) 3324 return EC; 3325 SeenFirstFunctionBody = true; 3326 } 3327 3328 if (VSTOffset > 0) { 3329 // If we have a VST forward declaration record, make sure we 3330 // parse the VST now if we haven't already. It is needed to 3331 // set up the DeferredFunctionInfo vector for lazy reading. 3332 if (!SeenValueSymbolTable) { 3333 if (std::error_code EC = 3334 BitcodeReader::parseValueSymbolTable(VSTOffset)) 3335 return EC; 3336 SeenValueSymbolTable = true; 3337 // Fall through so that we record the NextUnreadBit below. 3338 // This is necessary in case we have an anonymous function that 3339 // is later materialized. Since it will not have a VST entry we 3340 // need to fall back to the lazy parse to find its offset. 3341 } else { 3342 // If we have a VST forward declaration record, but have already 3343 // parsed the VST (just above, when the first function body was 3344 // encountered here), then we are resuming the parse after 3345 // materializing functions. The ResumeBit points to the 3346 // start of the last function block recorded in the 3347 // DeferredFunctionInfo map. Skip it. 3348 if (Stream.SkipBlock()) 3349 return error("Invalid record"); 3350 continue; 3351 } 3352 } 3353 3354 // Support older bitcode files that did not have the function 3355 // index in the VST, nor a VST forward declaration record, as 3356 // well as anonymous functions that do not have VST entries. 3357 // Build the DeferredFunctionInfo vector on the fly. 3358 if (std::error_code EC = rememberAndSkipFunctionBody()) 3359 return EC; 3360 3361 // Suspend parsing when we reach the function bodies. Subsequent 3362 // materialization calls will resume it when necessary. If the bitcode 3363 // file is old, the symbol table will be at the end instead and will not 3364 // have been seen yet. In this case, just finish the parse now. 3365 if (SeenValueSymbolTable) { 3366 NextUnreadBit = Stream.GetCurrentBitNo(); 3367 return std::error_code(); 3368 } 3369 break; 3370 case bitc::USELIST_BLOCK_ID: 3371 if (std::error_code EC = parseUseLists()) 3372 return EC; 3373 break; 3374 case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID: 3375 if (std::error_code EC = parseOperandBundleTags()) 3376 return EC; 3377 break; 3378 } 3379 continue; 3380 3381 case BitstreamEntry::Record: 3382 // The interesting case. 3383 break; 3384 } 3385 3386 3387 // Read a record. 3388 auto BitCode = Stream.readRecord(Entry.ID, Record); 3389 switch (BitCode) { 3390 default: break; // Default behavior, ignore unknown content. 3391 case bitc::MODULE_CODE_VERSION: { // VERSION: [version#] 3392 if (Record.size() < 1) 3393 return error("Invalid record"); 3394 // Only version #0 and #1 are supported so far. 3395 unsigned module_version = Record[0]; 3396 switch (module_version) { 3397 default: 3398 return error("Invalid value"); 3399 case 0: 3400 UseRelativeIDs = false; 3401 break; 3402 case 1: 3403 UseRelativeIDs = true; 3404 break; 3405 } 3406 break; 3407 } 3408 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 3409 std::string S; 3410 if (convertToString(Record, 0, S)) 3411 return error("Invalid record"); 3412 TheModule->setTargetTriple(S); 3413 break; 3414 } 3415 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 3416 std::string S; 3417 if (convertToString(Record, 0, S)) 3418 return error("Invalid record"); 3419 TheModule->setDataLayout(S); 3420 break; 3421 } 3422 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 3423 std::string S; 3424 if (convertToString(Record, 0, S)) 3425 return error("Invalid record"); 3426 TheModule->setModuleInlineAsm(S); 3427 break; 3428 } 3429 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 3430 // FIXME: Remove in 4.0. 3431 std::string S; 3432 if (convertToString(Record, 0, S)) 3433 return error("Invalid record"); 3434 // Ignore value. 3435 break; 3436 } 3437 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 3438 std::string S; 3439 if (convertToString(Record, 0, S)) 3440 return error("Invalid record"); 3441 SectionTable.push_back(S); 3442 break; 3443 } 3444 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 3445 std::string S; 3446 if (convertToString(Record, 0, S)) 3447 return error("Invalid record"); 3448 GCTable.push_back(S); 3449 break; 3450 } 3451 case bitc::MODULE_CODE_COMDAT: { // COMDAT: [selection_kind, name] 3452 if (Record.size() < 2) 3453 return error("Invalid record"); 3454 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]); 3455 unsigned ComdatNameSize = Record[1]; 3456 std::string ComdatName; 3457 ComdatName.reserve(ComdatNameSize); 3458 for (unsigned i = 0; i != ComdatNameSize; ++i) 3459 ComdatName += (char)Record[2 + i]; 3460 Comdat *C = TheModule->getOrInsertComdat(ComdatName); 3461 C->setSelectionKind(SK); 3462 ComdatList.push_back(C); 3463 break; 3464 } 3465 // GLOBALVAR: [pointer type, isconst, initid, 3466 // linkage, alignment, section, visibility, threadlocal, 3467 // unnamed_addr, externally_initialized, dllstorageclass, 3468 // comdat] 3469 case bitc::MODULE_CODE_GLOBALVAR: { 3470 if (Record.size() < 6) 3471 return error("Invalid record"); 3472 Type *Ty = getTypeByID(Record[0]); 3473 if (!Ty) 3474 return error("Invalid record"); 3475 bool isConstant = Record[1] & 1; 3476 bool explicitType = Record[1] & 2; 3477 unsigned AddressSpace; 3478 if (explicitType) { 3479 AddressSpace = Record[1] >> 2; 3480 } else { 3481 if (!Ty->isPointerTy()) 3482 return error("Invalid type for value"); 3483 AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 3484 Ty = cast<PointerType>(Ty)->getElementType(); 3485 } 3486 3487 uint64_t RawLinkage = Record[3]; 3488 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 3489 unsigned Alignment; 3490 if (std::error_code EC = parseAlignmentValue(Record[4], Alignment)) 3491 return EC; 3492 std::string Section; 3493 if (Record[5]) { 3494 if (Record[5]-1 >= SectionTable.size()) 3495 return error("Invalid ID"); 3496 Section = SectionTable[Record[5]-1]; 3497 } 3498 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 3499 // Local linkage must have default visibility. 3500 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage)) 3501 // FIXME: Change to an error if non-default in 4.0. 3502 Visibility = getDecodedVisibility(Record[6]); 3503 3504 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; 3505 if (Record.size() > 7) 3506 TLM = getDecodedThreadLocalMode(Record[7]); 3507 3508 bool UnnamedAddr = false; 3509 if (Record.size() > 8) 3510 UnnamedAddr = Record[8]; 3511 3512 bool ExternallyInitialized = false; 3513 if (Record.size() > 9) 3514 ExternallyInitialized = Record[9]; 3515 3516 GlobalVariable *NewGV = 3517 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, "", nullptr, 3518 TLM, AddressSpace, ExternallyInitialized); 3519 NewGV->setAlignment(Alignment); 3520 if (!Section.empty()) 3521 NewGV->setSection(Section); 3522 NewGV->setVisibility(Visibility); 3523 NewGV->setUnnamedAddr(UnnamedAddr); 3524 3525 if (Record.size() > 10) 3526 NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10])); 3527 else 3528 upgradeDLLImportExportLinkage(NewGV, RawLinkage); 3529 3530 ValueList.push_back(NewGV); 3531 3532 // Remember which value to use for the global initializer. 3533 if (unsigned InitID = Record[2]) 3534 GlobalInits.push_back(std::make_pair(NewGV, InitID-1)); 3535 3536 if (Record.size() > 11) { 3537 if (unsigned ComdatID = Record[11]) { 3538 if (ComdatID > ComdatList.size()) 3539 return error("Invalid global variable comdat ID"); 3540 NewGV->setComdat(ComdatList[ComdatID - 1]); 3541 } 3542 } else if (hasImplicitComdat(RawLinkage)) { 3543 NewGV->setComdat(reinterpret_cast<Comdat *>(1)); 3544 } 3545 break; 3546 } 3547 // FUNCTION: [type, callingconv, isproto, linkage, paramattr, 3548 // alignment, section, visibility, gc, unnamed_addr, 3549 // prologuedata, dllstorageclass, comdat, prefixdata] 3550 case bitc::MODULE_CODE_FUNCTION: { 3551 if (Record.size() < 8) 3552 return error("Invalid record"); 3553 Type *Ty = getTypeByID(Record[0]); 3554 if (!Ty) 3555 return error("Invalid record"); 3556 if (auto *PTy = dyn_cast<PointerType>(Ty)) 3557 Ty = PTy->getElementType(); 3558 auto *FTy = dyn_cast<FunctionType>(Ty); 3559 if (!FTy) 3560 return error("Invalid type for value"); 3561 auto CC = static_cast<CallingConv::ID>(Record[1]); 3562 if (CC & ~CallingConv::MaxID) 3563 return error("Invalid calling convention ID"); 3564 3565 Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage, 3566 "", TheModule); 3567 3568 Func->setCallingConv(CC); 3569 bool isProto = Record[2]; 3570 uint64_t RawLinkage = Record[3]; 3571 Func->setLinkage(getDecodedLinkage(RawLinkage)); 3572 Func->setAttributes(getAttributes(Record[4])); 3573 3574 unsigned Alignment; 3575 if (std::error_code EC = parseAlignmentValue(Record[5], Alignment)) 3576 return EC; 3577 Func->setAlignment(Alignment); 3578 if (Record[6]) { 3579 if (Record[6]-1 >= SectionTable.size()) 3580 return error("Invalid ID"); 3581 Func->setSection(SectionTable[Record[6]-1]); 3582 } 3583 // Local linkage must have default visibility. 3584 if (!Func->hasLocalLinkage()) 3585 // FIXME: Change to an error if non-default in 4.0. 3586 Func->setVisibility(getDecodedVisibility(Record[7])); 3587 if (Record.size() > 8 && Record[8]) { 3588 if (Record[8]-1 >= GCTable.size()) 3589 return error("Invalid ID"); 3590 Func->setGC(GCTable[Record[8]-1].c_str()); 3591 } 3592 bool UnnamedAddr = false; 3593 if (Record.size() > 9) 3594 UnnamedAddr = Record[9]; 3595 Func->setUnnamedAddr(UnnamedAddr); 3596 if (Record.size() > 10 && Record[10] != 0) 3597 FunctionPrologues.push_back(std::make_pair(Func, Record[10]-1)); 3598 3599 if (Record.size() > 11) 3600 Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11])); 3601 else 3602 upgradeDLLImportExportLinkage(Func, RawLinkage); 3603 3604 if (Record.size() > 12) { 3605 if (unsigned ComdatID = Record[12]) { 3606 if (ComdatID > ComdatList.size()) 3607 return error("Invalid function comdat ID"); 3608 Func->setComdat(ComdatList[ComdatID - 1]); 3609 } 3610 } else if (hasImplicitComdat(RawLinkage)) { 3611 Func->setComdat(reinterpret_cast<Comdat *>(1)); 3612 } 3613 3614 if (Record.size() > 13 && Record[13] != 0) 3615 FunctionPrefixes.push_back(std::make_pair(Func, Record[13]-1)); 3616 3617 if (Record.size() > 14 && Record[14] != 0) 3618 FunctionPersonalityFns.push_back(std::make_pair(Func, Record[14] - 1)); 3619 3620 ValueList.push_back(Func); 3621 3622 // If this is a function with a body, remember the prototype we are 3623 // creating now, so that we can match up the body with them later. 3624 if (!isProto) { 3625 Func->setIsMaterializable(true); 3626 FunctionsWithBodies.push_back(Func); 3627 DeferredFunctionInfo[Func] = 0; 3628 } 3629 break; 3630 } 3631 // ALIAS: [alias type, addrspace, aliasee val#, linkage] 3632 // ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, dllstorageclass] 3633 case bitc::MODULE_CODE_ALIAS: 3634 case bitc::MODULE_CODE_ALIAS_OLD: { 3635 bool NewRecord = BitCode == bitc::MODULE_CODE_ALIAS; 3636 if (Record.size() < (3 + (unsigned)NewRecord)) 3637 return error("Invalid record"); 3638 unsigned OpNum = 0; 3639 Type *Ty = getTypeByID(Record[OpNum++]); 3640 if (!Ty) 3641 return error("Invalid record"); 3642 3643 unsigned AddrSpace; 3644 if (!NewRecord) { 3645 auto *PTy = dyn_cast<PointerType>(Ty); 3646 if (!PTy) 3647 return error("Invalid type for value"); 3648 Ty = PTy->getElementType(); 3649 AddrSpace = PTy->getAddressSpace(); 3650 } else { 3651 AddrSpace = Record[OpNum++]; 3652 } 3653 3654 auto Val = Record[OpNum++]; 3655 auto Linkage = Record[OpNum++]; 3656 auto *NewGA = GlobalAlias::create( 3657 Ty, AddrSpace, getDecodedLinkage(Linkage), "", TheModule); 3658 // Old bitcode files didn't have visibility field. 3659 // Local linkage must have default visibility. 3660 if (OpNum != Record.size()) { 3661 auto VisInd = OpNum++; 3662 if (!NewGA->hasLocalLinkage()) 3663 // FIXME: Change to an error if non-default in 4.0. 3664 NewGA->setVisibility(getDecodedVisibility(Record[VisInd])); 3665 } 3666 if (OpNum != Record.size()) 3667 NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++])); 3668 else 3669 upgradeDLLImportExportLinkage(NewGA, Linkage); 3670 if (OpNum != Record.size()) 3671 NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++])); 3672 if (OpNum != Record.size()) 3673 NewGA->setUnnamedAddr(Record[OpNum++]); 3674 ValueList.push_back(NewGA); 3675 AliasInits.push_back(std::make_pair(NewGA, Val)); 3676 break; 3677 } 3678 /// MODULE_CODE_PURGEVALS: [numvals] 3679 case bitc::MODULE_CODE_PURGEVALS: 3680 // Trim down the value list to the specified size. 3681 if (Record.size() < 1 || Record[0] > ValueList.size()) 3682 return error("Invalid record"); 3683 ValueList.shrinkTo(Record[0]); 3684 break; 3685 /// MODULE_CODE_VSTOFFSET: [offset] 3686 case bitc::MODULE_CODE_VSTOFFSET: 3687 if (Record.size() < 1) 3688 return error("Invalid record"); 3689 VSTOffset = Record[0]; 3690 break; 3691 /// MODULE_CODE_METADATA_VALUES: [numvals] 3692 case bitc::MODULE_CODE_METADATA_VALUES: 3693 if (Record.size() < 1) 3694 return error("Invalid record"); 3695 assert(!IsMetadataMaterialized); 3696 // This record contains the number of metadata values in the module-level 3697 // METADATA_BLOCK. It is used to support lazy parsing of metadata as 3698 // a postpass, where we will parse function-level metadata first. 3699 // This is needed because the ids of metadata are assigned implicitly 3700 // based on their ordering in the bitcode, with the function-level 3701 // metadata ids starting after the module-level metadata ids. Otherwise, 3702 // we would have to parse the module-level metadata block to prime the 3703 // MDValueList when we are lazy loading metadata during function 3704 // importing. Initialize the MDValueList size here based on the 3705 // record value, regardless of whether we are doing lazy metadata 3706 // loading, so that we have consistent handling and assertion 3707 // checking in parseMetadata for module-level metadata. 3708 NumModuleMDs = Record[0]; 3709 SeenModuleValuesRecord = true; 3710 assert(MDValueList.size() == 0); 3711 MDValueList.resize(NumModuleMDs); 3712 break; 3713 } 3714 Record.clear(); 3715 } 3716 } 3717 3718 /// Helper to read the header common to all bitcode files. 3719 static bool hasValidBitcodeHeader(BitstreamCursor &Stream) { 3720 // Sniff for the signature. 3721 if (Stream.Read(8) != 'B' || 3722 Stream.Read(8) != 'C' || 3723 Stream.Read(4) != 0x0 || 3724 Stream.Read(4) != 0xC || 3725 Stream.Read(4) != 0xE || 3726 Stream.Read(4) != 0xD) 3727 return false; 3728 return true; 3729 } 3730 3731 std::error_code 3732 BitcodeReader::parseBitcodeInto(std::unique_ptr<DataStreamer> Streamer, 3733 Module *M, bool ShouldLazyLoadMetadata) { 3734 TheModule = M; 3735 3736 if (std::error_code EC = initStream(std::move(Streamer))) 3737 return EC; 3738 3739 // Sniff for the signature. 3740 if (!hasValidBitcodeHeader(Stream)) 3741 return error("Invalid bitcode signature"); 3742 3743 // We expect a number of well-defined blocks, though we don't necessarily 3744 // need to understand them all. 3745 while (1) { 3746 if (Stream.AtEndOfStream()) { 3747 // We didn't really read a proper Module. 3748 return error("Malformed IR file"); 3749 } 3750 3751 BitstreamEntry Entry = 3752 Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs); 3753 3754 if (Entry.Kind != BitstreamEntry::SubBlock) 3755 return error("Malformed block"); 3756 3757 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) { 3758 parseBitcodeVersion(); 3759 continue; 3760 } 3761 3762 if (Entry.ID == bitc::MODULE_BLOCK_ID) 3763 return parseModule(0, ShouldLazyLoadMetadata); 3764 3765 if (Stream.SkipBlock()) 3766 return error("Invalid record"); 3767 } 3768 } 3769 3770 ErrorOr<std::string> BitcodeReader::parseModuleTriple() { 3771 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 3772 return error("Invalid record"); 3773 3774 SmallVector<uint64_t, 64> Record; 3775 3776 std::string Triple; 3777 // Read all the records for this module. 3778 while (1) { 3779 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 3780 3781 switch (Entry.Kind) { 3782 case BitstreamEntry::SubBlock: // Handled for us already. 3783 case BitstreamEntry::Error: 3784 return error("Malformed block"); 3785 case BitstreamEntry::EndBlock: 3786 return Triple; 3787 case BitstreamEntry::Record: 3788 // The interesting case. 3789 break; 3790 } 3791 3792 // Read a record. 3793 switch (Stream.readRecord(Entry.ID, Record)) { 3794 default: break; // Default behavior, ignore unknown content. 3795 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 3796 std::string S; 3797 if (convertToString(Record, 0, S)) 3798 return error("Invalid record"); 3799 Triple = S; 3800 break; 3801 } 3802 } 3803 Record.clear(); 3804 } 3805 llvm_unreachable("Exit infinite loop"); 3806 } 3807 3808 ErrorOr<std::string> BitcodeReader::parseTriple() { 3809 if (std::error_code EC = initStream(nullptr)) 3810 return EC; 3811 3812 // Sniff for the signature. 3813 if (!hasValidBitcodeHeader(Stream)) 3814 return error("Invalid bitcode signature"); 3815 3816 // We expect a number of well-defined blocks, though we don't necessarily 3817 // need to understand them all. 3818 while (1) { 3819 BitstreamEntry Entry = Stream.advance(); 3820 3821 switch (Entry.Kind) { 3822 case BitstreamEntry::Error: 3823 return error("Malformed block"); 3824 case BitstreamEntry::EndBlock: 3825 return std::error_code(); 3826 3827 case BitstreamEntry::SubBlock: 3828 if (Entry.ID == bitc::MODULE_BLOCK_ID) 3829 return parseModuleTriple(); 3830 3831 // Ignore other sub-blocks. 3832 if (Stream.SkipBlock()) 3833 return error("Malformed block"); 3834 continue; 3835 3836 case BitstreamEntry::Record: 3837 Stream.skipRecord(Entry.ID); 3838 continue; 3839 } 3840 } 3841 } 3842 3843 ErrorOr<std::string> BitcodeReader::parseIdentificationBlock() { 3844 if (std::error_code EC = initStream(nullptr)) 3845 return EC; 3846 3847 // Sniff for the signature. 3848 if (!hasValidBitcodeHeader(Stream)) 3849 return error("Invalid bitcode signature"); 3850 3851 // We expect a number of well-defined blocks, though we don't necessarily 3852 // need to understand them all. 3853 while (1) { 3854 BitstreamEntry Entry = Stream.advance(); 3855 switch (Entry.Kind) { 3856 case BitstreamEntry::Error: 3857 return error("Malformed block"); 3858 case BitstreamEntry::EndBlock: 3859 return std::error_code(); 3860 3861 case BitstreamEntry::SubBlock: 3862 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) { 3863 if (std::error_code EC = parseBitcodeVersion()) 3864 return EC; 3865 return ProducerIdentification; 3866 } 3867 // Ignore other sub-blocks. 3868 if (Stream.SkipBlock()) 3869 return error("Malformed block"); 3870 continue; 3871 case BitstreamEntry::Record: 3872 Stream.skipRecord(Entry.ID); 3873 continue; 3874 } 3875 } 3876 } 3877 3878 /// Parse metadata attachments. 3879 std::error_code BitcodeReader::parseMetadataAttachment(Function &F) { 3880 if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID)) 3881 return error("Invalid record"); 3882 3883 SmallVector<uint64_t, 64> Record; 3884 while (1) { 3885 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 3886 3887 switch (Entry.Kind) { 3888 case BitstreamEntry::SubBlock: // Handled for us already. 3889 case BitstreamEntry::Error: 3890 return error("Malformed block"); 3891 case BitstreamEntry::EndBlock: 3892 return std::error_code(); 3893 case BitstreamEntry::Record: 3894 // The interesting case. 3895 break; 3896 } 3897 3898 // Read a metadata attachment record. 3899 Record.clear(); 3900 switch (Stream.readRecord(Entry.ID, Record)) { 3901 default: // Default behavior: ignore. 3902 break; 3903 case bitc::METADATA_ATTACHMENT: { 3904 unsigned RecordLength = Record.size(); 3905 if (Record.empty()) 3906 return error("Invalid record"); 3907 if (RecordLength % 2 == 0) { 3908 // A function attachment. 3909 for (unsigned I = 0; I != RecordLength; I += 2) { 3910 auto K = MDKindMap.find(Record[I]); 3911 if (K == MDKindMap.end()) 3912 return error("Invalid ID"); 3913 Metadata *MD = MDValueList.getValueFwdRef(Record[I + 1]); 3914 F.setMetadata(K->second, cast<MDNode>(MD)); 3915 } 3916 continue; 3917 } 3918 3919 // An instruction attachment. 3920 Instruction *Inst = InstructionList[Record[0]]; 3921 for (unsigned i = 1; i != RecordLength; i = i+2) { 3922 unsigned Kind = Record[i]; 3923 DenseMap<unsigned, unsigned>::iterator I = 3924 MDKindMap.find(Kind); 3925 if (I == MDKindMap.end()) 3926 return error("Invalid ID"); 3927 Metadata *Node = MDValueList.getValueFwdRef(Record[i + 1]); 3928 if (isa<LocalAsMetadata>(Node)) 3929 // Drop the attachment. This used to be legal, but there's no 3930 // upgrade path. 3931 break; 3932 Inst->setMetadata(I->second, cast<MDNode>(Node)); 3933 if (I->second == LLVMContext::MD_tbaa) 3934 InstsWithTBAATag.push_back(Inst); 3935 } 3936 break; 3937 } 3938 } 3939 } 3940 } 3941 3942 static std::error_code typeCheckLoadStoreInst(Type *ValType, Type *PtrType) { 3943 LLVMContext &Context = PtrType->getContext(); 3944 if (!isa<PointerType>(PtrType)) 3945 return error(Context, "Load/Store operand is not a pointer type"); 3946 Type *ElemType = cast<PointerType>(PtrType)->getElementType(); 3947 3948 if (ValType && ValType != ElemType) 3949 return error(Context, "Explicit load/store type does not match pointee " 3950 "type of pointer operand"); 3951 if (!PointerType::isLoadableOrStorableType(ElemType)) 3952 return error(Context, "Cannot load/store from pointer"); 3953 return std::error_code(); 3954 } 3955 3956 /// Lazily parse the specified function body block. 3957 std::error_code BitcodeReader::parseFunctionBody(Function *F) { 3958 if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 3959 return error("Invalid record"); 3960 3961 InstructionList.clear(); 3962 unsigned ModuleValueListSize = ValueList.size(); 3963 unsigned ModuleMDValueListSize = MDValueList.size(); 3964 3965 // Add all the function arguments to the value table. 3966 for (Argument &I : F->args()) 3967 ValueList.push_back(&I); 3968 3969 unsigned NextValueNo = ValueList.size(); 3970 BasicBlock *CurBB = nullptr; 3971 unsigned CurBBNo = 0; 3972 3973 DebugLoc LastLoc; 3974 auto getLastInstruction = [&]() -> Instruction * { 3975 if (CurBB && !CurBB->empty()) 3976 return &CurBB->back(); 3977 else if (CurBBNo && FunctionBBs[CurBBNo - 1] && 3978 !FunctionBBs[CurBBNo - 1]->empty()) 3979 return &FunctionBBs[CurBBNo - 1]->back(); 3980 return nullptr; 3981 }; 3982 3983 std::vector<OperandBundleDef> OperandBundles; 3984 3985 // Read all the records. 3986 SmallVector<uint64_t, 64> Record; 3987 while (1) { 3988 BitstreamEntry Entry = Stream.advance(); 3989 3990 switch (Entry.Kind) { 3991 case BitstreamEntry::Error: 3992 return error("Malformed block"); 3993 case BitstreamEntry::EndBlock: 3994 goto OutOfRecordLoop; 3995 3996 case BitstreamEntry::SubBlock: 3997 switch (Entry.ID) { 3998 default: // Skip unknown content. 3999 if (Stream.SkipBlock()) 4000 return error("Invalid record"); 4001 break; 4002 case bitc::CONSTANTS_BLOCK_ID: 4003 if (std::error_code EC = parseConstants()) 4004 return EC; 4005 NextValueNo = ValueList.size(); 4006 break; 4007 case bitc::VALUE_SYMTAB_BLOCK_ID: 4008 if (std::error_code EC = parseValueSymbolTable()) 4009 return EC; 4010 break; 4011 case bitc::METADATA_ATTACHMENT_ID: 4012 if (std::error_code EC = parseMetadataAttachment(*F)) 4013 return EC; 4014 break; 4015 case bitc::METADATA_BLOCK_ID: 4016 if (std::error_code EC = parseMetadata()) 4017 return EC; 4018 break; 4019 case bitc::USELIST_BLOCK_ID: 4020 if (std::error_code EC = parseUseLists()) 4021 return EC; 4022 break; 4023 } 4024 continue; 4025 4026 case BitstreamEntry::Record: 4027 // The interesting case. 4028 break; 4029 } 4030 4031 // Read a record. 4032 Record.clear(); 4033 Instruction *I = nullptr; 4034 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 4035 switch (BitCode) { 4036 default: // Default behavior: reject 4037 return error("Invalid value"); 4038 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks] 4039 if (Record.size() < 1 || Record[0] == 0) 4040 return error("Invalid record"); 4041 // Create all the basic blocks for the function. 4042 FunctionBBs.resize(Record[0]); 4043 4044 // See if anything took the address of blocks in this function. 4045 auto BBFRI = BasicBlockFwdRefs.find(F); 4046 if (BBFRI == BasicBlockFwdRefs.end()) { 4047 for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i) 4048 FunctionBBs[i] = BasicBlock::Create(Context, "", F); 4049 } else { 4050 auto &BBRefs = BBFRI->second; 4051 // Check for invalid basic block references. 4052 if (BBRefs.size() > FunctionBBs.size()) 4053 return error("Invalid ID"); 4054 assert(!BBRefs.empty() && "Unexpected empty array"); 4055 assert(!BBRefs.front() && "Invalid reference to entry block"); 4056 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E; 4057 ++I) 4058 if (I < RE && BBRefs[I]) { 4059 BBRefs[I]->insertInto(F); 4060 FunctionBBs[I] = BBRefs[I]; 4061 } else { 4062 FunctionBBs[I] = BasicBlock::Create(Context, "", F); 4063 } 4064 4065 // Erase from the table. 4066 BasicBlockFwdRefs.erase(BBFRI); 4067 } 4068 4069 CurBB = FunctionBBs[0]; 4070 continue; 4071 } 4072 4073 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 4074 // This record indicates that the last instruction is at the same 4075 // location as the previous instruction with a location. 4076 I = getLastInstruction(); 4077 4078 if (!I) 4079 return error("Invalid record"); 4080 I->setDebugLoc(LastLoc); 4081 I = nullptr; 4082 continue; 4083 4084 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 4085 I = getLastInstruction(); 4086 if (!I || Record.size() < 4) 4087 return error("Invalid record"); 4088 4089 unsigned Line = Record[0], Col = Record[1]; 4090 unsigned ScopeID = Record[2], IAID = Record[3]; 4091 4092 MDNode *Scope = nullptr, *IA = nullptr; 4093 if (ScopeID) Scope = cast<MDNode>(MDValueList.getValueFwdRef(ScopeID-1)); 4094 if (IAID) IA = cast<MDNode>(MDValueList.getValueFwdRef(IAID-1)); 4095 LastLoc = DebugLoc::get(Line, Col, Scope, IA); 4096 I->setDebugLoc(LastLoc); 4097 I = nullptr; 4098 continue; 4099 } 4100 4101 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 4102 unsigned OpNum = 0; 4103 Value *LHS, *RHS; 4104 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 4105 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 4106 OpNum+1 > Record.size()) 4107 return error("Invalid record"); 4108 4109 int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 4110 if (Opc == -1) 4111 return error("Invalid record"); 4112 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 4113 InstructionList.push_back(I); 4114 if (OpNum < Record.size()) { 4115 if (Opc == Instruction::Add || 4116 Opc == Instruction::Sub || 4117 Opc == Instruction::Mul || 4118 Opc == Instruction::Shl) { 4119 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 4120 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 4121 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 4122 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 4123 } else if (Opc == Instruction::SDiv || 4124 Opc == Instruction::UDiv || 4125 Opc == Instruction::LShr || 4126 Opc == Instruction::AShr) { 4127 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 4128 cast<BinaryOperator>(I)->setIsExact(true); 4129 } else if (isa<FPMathOperator>(I)) { 4130 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 4131 if (FMF.any()) 4132 I->setFastMathFlags(FMF); 4133 } 4134 4135 } 4136 break; 4137 } 4138 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 4139 unsigned OpNum = 0; 4140 Value *Op; 4141 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4142 OpNum+2 != Record.size()) 4143 return error("Invalid record"); 4144 4145 Type *ResTy = getTypeByID(Record[OpNum]); 4146 int Opc = getDecodedCastOpcode(Record[OpNum + 1]); 4147 if (Opc == -1 || !ResTy) 4148 return error("Invalid record"); 4149 Instruction *Temp = nullptr; 4150 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) { 4151 if (Temp) { 4152 InstructionList.push_back(Temp); 4153 CurBB->getInstList().push_back(Temp); 4154 } 4155 } else { 4156 auto CastOp = (Instruction::CastOps)Opc; 4157 if (!CastInst::castIsValid(CastOp, Op, ResTy)) 4158 return error("Invalid cast"); 4159 I = CastInst::Create(CastOp, Op, ResTy); 4160 } 4161 InstructionList.push_back(I); 4162 break; 4163 } 4164 case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD: 4165 case bitc::FUNC_CODE_INST_GEP_OLD: 4166 case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands] 4167 unsigned OpNum = 0; 4168 4169 Type *Ty; 4170 bool InBounds; 4171 4172 if (BitCode == bitc::FUNC_CODE_INST_GEP) { 4173 InBounds = Record[OpNum++]; 4174 Ty = getTypeByID(Record[OpNum++]); 4175 } else { 4176 InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD; 4177 Ty = nullptr; 4178 } 4179 4180 Value *BasePtr; 4181 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr)) 4182 return error("Invalid record"); 4183 4184 if (!Ty) 4185 Ty = cast<SequentialType>(BasePtr->getType()->getScalarType()) 4186 ->getElementType(); 4187 else if (Ty != 4188 cast<SequentialType>(BasePtr->getType()->getScalarType()) 4189 ->getElementType()) 4190 return error( 4191 "Explicit gep type does not match pointee type of pointer operand"); 4192 4193 SmallVector<Value*, 16> GEPIdx; 4194 while (OpNum != Record.size()) { 4195 Value *Op; 4196 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4197 return error("Invalid record"); 4198 GEPIdx.push_back(Op); 4199 } 4200 4201 I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx); 4202 4203 InstructionList.push_back(I); 4204 if (InBounds) 4205 cast<GetElementPtrInst>(I)->setIsInBounds(true); 4206 break; 4207 } 4208 4209 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 4210 // EXTRACTVAL: [opty, opval, n x indices] 4211 unsigned OpNum = 0; 4212 Value *Agg; 4213 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 4214 return error("Invalid record"); 4215 4216 unsigned RecSize = Record.size(); 4217 if (OpNum == RecSize) 4218 return error("EXTRACTVAL: Invalid instruction with 0 indices"); 4219 4220 SmallVector<unsigned, 4> EXTRACTVALIdx; 4221 Type *CurTy = Agg->getType(); 4222 for (; OpNum != RecSize; ++OpNum) { 4223 bool IsArray = CurTy->isArrayTy(); 4224 bool IsStruct = CurTy->isStructTy(); 4225 uint64_t Index = Record[OpNum]; 4226 4227 if (!IsStruct && !IsArray) 4228 return error("EXTRACTVAL: Invalid type"); 4229 if ((unsigned)Index != Index) 4230 return error("Invalid value"); 4231 if (IsStruct && Index >= CurTy->subtypes().size()) 4232 return error("EXTRACTVAL: Invalid struct index"); 4233 if (IsArray && Index >= CurTy->getArrayNumElements()) 4234 return error("EXTRACTVAL: Invalid array index"); 4235 EXTRACTVALIdx.push_back((unsigned)Index); 4236 4237 if (IsStruct) 4238 CurTy = CurTy->subtypes()[Index]; 4239 else 4240 CurTy = CurTy->subtypes()[0]; 4241 } 4242 4243 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 4244 InstructionList.push_back(I); 4245 break; 4246 } 4247 4248 case bitc::FUNC_CODE_INST_INSERTVAL: { 4249 // INSERTVAL: [opty, opval, opty, opval, n x indices] 4250 unsigned OpNum = 0; 4251 Value *Agg; 4252 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 4253 return error("Invalid record"); 4254 Value *Val; 4255 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 4256 return error("Invalid record"); 4257 4258 unsigned RecSize = Record.size(); 4259 if (OpNum == RecSize) 4260 return error("INSERTVAL: Invalid instruction with 0 indices"); 4261 4262 SmallVector<unsigned, 4> INSERTVALIdx; 4263 Type *CurTy = Agg->getType(); 4264 for (; OpNum != RecSize; ++OpNum) { 4265 bool IsArray = CurTy->isArrayTy(); 4266 bool IsStruct = CurTy->isStructTy(); 4267 uint64_t Index = Record[OpNum]; 4268 4269 if (!IsStruct && !IsArray) 4270 return error("INSERTVAL: Invalid type"); 4271 if ((unsigned)Index != Index) 4272 return error("Invalid value"); 4273 if (IsStruct && Index >= CurTy->subtypes().size()) 4274 return error("INSERTVAL: Invalid struct index"); 4275 if (IsArray && Index >= CurTy->getArrayNumElements()) 4276 return error("INSERTVAL: Invalid array index"); 4277 4278 INSERTVALIdx.push_back((unsigned)Index); 4279 if (IsStruct) 4280 CurTy = CurTy->subtypes()[Index]; 4281 else 4282 CurTy = CurTy->subtypes()[0]; 4283 } 4284 4285 if (CurTy != Val->getType()) 4286 return error("Inserted value type doesn't match aggregate type"); 4287 4288 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 4289 InstructionList.push_back(I); 4290 break; 4291 } 4292 4293 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 4294 // obsolete form of select 4295 // handles select i1 ... in old bitcode 4296 unsigned OpNum = 0; 4297 Value *TrueVal, *FalseVal, *Cond; 4298 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 4299 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 4300 popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond)) 4301 return error("Invalid record"); 4302 4303 I = SelectInst::Create(Cond, TrueVal, FalseVal); 4304 InstructionList.push_back(I); 4305 break; 4306 } 4307 4308 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 4309 // new form of select 4310 // handles select i1 or select [N x i1] 4311 unsigned OpNum = 0; 4312 Value *TrueVal, *FalseVal, *Cond; 4313 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 4314 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 4315 getValueTypePair(Record, OpNum, NextValueNo, Cond)) 4316 return error("Invalid record"); 4317 4318 // select condition can be either i1 or [N x i1] 4319 if (VectorType* vector_type = 4320 dyn_cast<VectorType>(Cond->getType())) { 4321 // expect <n x i1> 4322 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 4323 return error("Invalid type for value"); 4324 } else { 4325 // expect i1 4326 if (Cond->getType() != Type::getInt1Ty(Context)) 4327 return error("Invalid type for value"); 4328 } 4329 4330 I = SelectInst::Create(Cond, TrueVal, FalseVal); 4331 InstructionList.push_back(I); 4332 break; 4333 } 4334 4335 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 4336 unsigned OpNum = 0; 4337 Value *Vec, *Idx; 4338 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 4339 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 4340 return error("Invalid record"); 4341 if (!Vec->getType()->isVectorTy()) 4342 return error("Invalid type for value"); 4343 I = ExtractElementInst::Create(Vec, Idx); 4344 InstructionList.push_back(I); 4345 break; 4346 } 4347 4348 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 4349 unsigned OpNum = 0; 4350 Value *Vec, *Elt, *Idx; 4351 if (getValueTypePair(Record, OpNum, NextValueNo, Vec)) 4352 return error("Invalid record"); 4353 if (!Vec->getType()->isVectorTy()) 4354 return error("Invalid type for value"); 4355 if (popValue(Record, OpNum, NextValueNo, 4356 cast<VectorType>(Vec->getType())->getElementType(), Elt) || 4357 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 4358 return error("Invalid record"); 4359 I = InsertElementInst::Create(Vec, Elt, Idx); 4360 InstructionList.push_back(I); 4361 break; 4362 } 4363 4364 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 4365 unsigned OpNum = 0; 4366 Value *Vec1, *Vec2, *Mask; 4367 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) || 4368 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2)) 4369 return error("Invalid record"); 4370 4371 if (getValueTypePair(Record, OpNum, NextValueNo, Mask)) 4372 return error("Invalid record"); 4373 if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy()) 4374 return error("Invalid type for value"); 4375 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 4376 InstructionList.push_back(I); 4377 break; 4378 } 4379 4380 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 4381 // Old form of ICmp/FCmp returning bool 4382 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 4383 // both legal on vectors but had different behaviour. 4384 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 4385 // FCmp/ICmp returning bool or vector of bool 4386 4387 unsigned OpNum = 0; 4388 Value *LHS, *RHS; 4389 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 4390 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS)) 4391 return error("Invalid record"); 4392 4393 unsigned PredVal = Record[OpNum]; 4394 bool IsFP = LHS->getType()->isFPOrFPVectorTy(); 4395 FastMathFlags FMF; 4396 if (IsFP && Record.size() > OpNum+1) 4397 FMF = getDecodedFastMathFlags(Record[++OpNum]); 4398 4399 if (OpNum+1 != Record.size()) 4400 return error("Invalid record"); 4401 4402 if (LHS->getType()->isFPOrFPVectorTy()) 4403 I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS); 4404 else 4405 I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS); 4406 4407 if (FMF.any()) 4408 I->setFastMathFlags(FMF); 4409 InstructionList.push_back(I); 4410 break; 4411 } 4412 4413 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 4414 { 4415 unsigned Size = Record.size(); 4416 if (Size == 0) { 4417 I = ReturnInst::Create(Context); 4418 InstructionList.push_back(I); 4419 break; 4420 } 4421 4422 unsigned OpNum = 0; 4423 Value *Op = nullptr; 4424 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4425 return error("Invalid record"); 4426 if (OpNum != Record.size()) 4427 return error("Invalid record"); 4428 4429 I = ReturnInst::Create(Context, Op); 4430 InstructionList.push_back(I); 4431 break; 4432 } 4433 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 4434 if (Record.size() != 1 && Record.size() != 3) 4435 return error("Invalid record"); 4436 BasicBlock *TrueDest = getBasicBlock(Record[0]); 4437 if (!TrueDest) 4438 return error("Invalid record"); 4439 4440 if (Record.size() == 1) { 4441 I = BranchInst::Create(TrueDest); 4442 InstructionList.push_back(I); 4443 } 4444 else { 4445 BasicBlock *FalseDest = getBasicBlock(Record[1]); 4446 Value *Cond = getValue(Record, 2, NextValueNo, 4447 Type::getInt1Ty(Context)); 4448 if (!FalseDest || !Cond) 4449 return error("Invalid record"); 4450 I = BranchInst::Create(TrueDest, FalseDest, Cond); 4451 InstructionList.push_back(I); 4452 } 4453 break; 4454 } 4455 case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#] 4456 if (Record.size() != 1 && Record.size() != 2) 4457 return error("Invalid record"); 4458 unsigned Idx = 0; 4459 Value *CleanupPad = 4460 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4461 if (!CleanupPad) 4462 return error("Invalid record"); 4463 BasicBlock *UnwindDest = nullptr; 4464 if (Record.size() == 2) { 4465 UnwindDest = getBasicBlock(Record[Idx++]); 4466 if (!UnwindDest) 4467 return error("Invalid record"); 4468 } 4469 4470 I = CleanupReturnInst::Create(CleanupPad, UnwindDest); 4471 InstructionList.push_back(I); 4472 break; 4473 } 4474 case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#] 4475 if (Record.size() != 2) 4476 return error("Invalid record"); 4477 unsigned Idx = 0; 4478 Value *CatchPad = 4479 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4480 if (!CatchPad) 4481 return error("Invalid record"); 4482 BasicBlock *BB = getBasicBlock(Record[Idx++]); 4483 if (!BB) 4484 return error("Invalid record"); 4485 4486 I = CatchReturnInst::Create(CatchPad, BB); 4487 InstructionList.push_back(I); 4488 break; 4489 } 4490 case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?] 4491 // We must have, at minimum, the outer scope and the number of arguments. 4492 if (Record.size() < 2) 4493 return error("Invalid record"); 4494 4495 unsigned Idx = 0; 4496 4497 Value *ParentPad = 4498 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4499 4500 unsigned NumHandlers = Record[Idx++]; 4501 4502 SmallVector<BasicBlock *, 2> Handlers; 4503 for (unsigned Op = 0; Op != NumHandlers; ++Op) { 4504 BasicBlock *BB = getBasicBlock(Record[Idx++]); 4505 if (!BB) 4506 return error("Invalid record"); 4507 Handlers.push_back(BB); 4508 } 4509 4510 BasicBlock *UnwindDest = nullptr; 4511 if (Idx + 1 == Record.size()) { 4512 UnwindDest = getBasicBlock(Record[Idx++]); 4513 if (!UnwindDest) 4514 return error("Invalid record"); 4515 } 4516 4517 if (Record.size() != Idx) 4518 return error("Invalid record"); 4519 4520 auto *CatchSwitch = 4521 CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers); 4522 for (BasicBlock *Handler : Handlers) 4523 CatchSwitch->addHandler(Handler); 4524 I = CatchSwitch; 4525 InstructionList.push_back(I); 4526 break; 4527 } 4528 case bitc::FUNC_CODE_INST_CATCHPAD: 4529 case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*] 4530 // We must have, at minimum, the outer scope and the number of arguments. 4531 if (Record.size() < 2) 4532 return error("Invalid record"); 4533 4534 unsigned Idx = 0; 4535 4536 Value *ParentPad = 4537 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4538 4539 unsigned NumArgOperands = Record[Idx++]; 4540 4541 SmallVector<Value *, 2> Args; 4542 for (unsigned Op = 0; Op != NumArgOperands; ++Op) { 4543 Value *Val; 4544 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 4545 return error("Invalid record"); 4546 Args.push_back(Val); 4547 } 4548 4549 if (Record.size() != Idx) 4550 return error("Invalid record"); 4551 4552 if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD) 4553 I = CleanupPadInst::Create(ParentPad, Args); 4554 else 4555 I = CatchPadInst::Create(ParentPad, Args); 4556 InstructionList.push_back(I); 4557 break; 4558 } 4559 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 4560 // Check magic 4561 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { 4562 // "New" SwitchInst format with case ranges. The changes to write this 4563 // format were reverted but we still recognize bitcode that uses it. 4564 // Hopefully someday we will have support for case ranges and can use 4565 // this format again. 4566 4567 Type *OpTy = getTypeByID(Record[1]); 4568 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); 4569 4570 Value *Cond = getValue(Record, 2, NextValueNo, OpTy); 4571 BasicBlock *Default = getBasicBlock(Record[3]); 4572 if (!OpTy || !Cond || !Default) 4573 return error("Invalid record"); 4574 4575 unsigned NumCases = Record[4]; 4576 4577 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 4578 InstructionList.push_back(SI); 4579 4580 unsigned CurIdx = 5; 4581 for (unsigned i = 0; i != NumCases; ++i) { 4582 SmallVector<ConstantInt*, 1> CaseVals; 4583 unsigned NumItems = Record[CurIdx++]; 4584 for (unsigned ci = 0; ci != NumItems; ++ci) { 4585 bool isSingleNumber = Record[CurIdx++]; 4586 4587 APInt Low; 4588 unsigned ActiveWords = 1; 4589 if (ValueBitWidth > 64) 4590 ActiveWords = Record[CurIdx++]; 4591 Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 4592 ValueBitWidth); 4593 CurIdx += ActiveWords; 4594 4595 if (!isSingleNumber) { 4596 ActiveWords = 1; 4597 if (ValueBitWidth > 64) 4598 ActiveWords = Record[CurIdx++]; 4599 APInt High = readWideAPInt( 4600 makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth); 4601 CurIdx += ActiveWords; 4602 4603 // FIXME: It is not clear whether values in the range should be 4604 // compared as signed or unsigned values. The partially 4605 // implemented changes that used this format in the past used 4606 // unsigned comparisons. 4607 for ( ; Low.ule(High); ++Low) 4608 CaseVals.push_back(ConstantInt::get(Context, Low)); 4609 } else 4610 CaseVals.push_back(ConstantInt::get(Context, Low)); 4611 } 4612 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); 4613 for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(), 4614 cve = CaseVals.end(); cvi != cve; ++cvi) 4615 SI->addCase(*cvi, DestBB); 4616 } 4617 I = SI; 4618 break; 4619 } 4620 4621 // Old SwitchInst format without case ranges. 4622 4623 if (Record.size() < 3 || (Record.size() & 1) == 0) 4624 return error("Invalid record"); 4625 Type *OpTy = getTypeByID(Record[0]); 4626 Value *Cond = getValue(Record, 1, NextValueNo, OpTy); 4627 BasicBlock *Default = getBasicBlock(Record[2]); 4628 if (!OpTy || !Cond || !Default) 4629 return error("Invalid record"); 4630 unsigned NumCases = (Record.size()-3)/2; 4631 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 4632 InstructionList.push_back(SI); 4633 for (unsigned i = 0, e = NumCases; i != e; ++i) { 4634 ConstantInt *CaseVal = 4635 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy)); 4636 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 4637 if (!CaseVal || !DestBB) { 4638 delete SI; 4639 return error("Invalid record"); 4640 } 4641 SI->addCase(CaseVal, DestBB); 4642 } 4643 I = SI; 4644 break; 4645 } 4646 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 4647 if (Record.size() < 2) 4648 return error("Invalid record"); 4649 Type *OpTy = getTypeByID(Record[0]); 4650 Value *Address = getValue(Record, 1, NextValueNo, OpTy); 4651 if (!OpTy || !Address) 4652 return error("Invalid record"); 4653 unsigned NumDests = Record.size()-2; 4654 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 4655 InstructionList.push_back(IBI); 4656 for (unsigned i = 0, e = NumDests; i != e; ++i) { 4657 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 4658 IBI->addDestination(DestBB); 4659 } else { 4660 delete IBI; 4661 return error("Invalid record"); 4662 } 4663 } 4664 I = IBI; 4665 break; 4666 } 4667 4668 case bitc::FUNC_CODE_INST_INVOKE: { 4669 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 4670 if (Record.size() < 4) 4671 return error("Invalid record"); 4672 unsigned OpNum = 0; 4673 AttributeSet PAL = getAttributes(Record[OpNum++]); 4674 unsigned CCInfo = Record[OpNum++]; 4675 BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]); 4676 BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]); 4677 4678 FunctionType *FTy = nullptr; 4679 if (CCInfo >> 13 & 1 && 4680 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])))) 4681 return error("Explicit invoke type is not a function type"); 4682 4683 Value *Callee; 4684 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 4685 return error("Invalid record"); 4686 4687 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 4688 if (!CalleeTy) 4689 return error("Callee is not a pointer"); 4690 if (!FTy) { 4691 FTy = dyn_cast<FunctionType>(CalleeTy->getElementType()); 4692 if (!FTy) 4693 return error("Callee is not of pointer to function type"); 4694 } else if (CalleeTy->getElementType() != FTy) 4695 return error("Explicit invoke type does not match pointee type of " 4696 "callee operand"); 4697 if (Record.size() < FTy->getNumParams() + OpNum) 4698 return error("Insufficient operands to call"); 4699 4700 SmallVector<Value*, 16> Ops; 4701 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 4702 Ops.push_back(getValue(Record, OpNum, NextValueNo, 4703 FTy->getParamType(i))); 4704 if (!Ops.back()) 4705 return error("Invalid record"); 4706 } 4707 4708 if (!FTy->isVarArg()) { 4709 if (Record.size() != OpNum) 4710 return error("Invalid record"); 4711 } else { 4712 // Read type/value pairs for varargs params. 4713 while (OpNum != Record.size()) { 4714 Value *Op; 4715 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4716 return error("Invalid record"); 4717 Ops.push_back(Op); 4718 } 4719 } 4720 4721 I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops, OperandBundles); 4722 OperandBundles.clear(); 4723 InstructionList.push_back(I); 4724 cast<InvokeInst>(I)->setCallingConv( 4725 static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo)); 4726 cast<InvokeInst>(I)->setAttributes(PAL); 4727 break; 4728 } 4729 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 4730 unsigned Idx = 0; 4731 Value *Val = nullptr; 4732 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 4733 return error("Invalid record"); 4734 I = ResumeInst::Create(Val); 4735 InstructionList.push_back(I); 4736 break; 4737 } 4738 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 4739 I = new UnreachableInst(Context); 4740 InstructionList.push_back(I); 4741 break; 4742 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 4743 if (Record.size() < 1 || ((Record.size()-1)&1)) 4744 return error("Invalid record"); 4745 Type *Ty = getTypeByID(Record[0]); 4746 if (!Ty) 4747 return error("Invalid record"); 4748 4749 PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2); 4750 InstructionList.push_back(PN); 4751 4752 for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) { 4753 Value *V; 4754 // With the new function encoding, it is possible that operands have 4755 // negative IDs (for forward references). Use a signed VBR 4756 // representation to keep the encoding small. 4757 if (UseRelativeIDs) 4758 V = getValueSigned(Record, 1+i, NextValueNo, Ty); 4759 else 4760 V = getValue(Record, 1+i, NextValueNo, Ty); 4761 BasicBlock *BB = getBasicBlock(Record[2+i]); 4762 if (!V || !BB) 4763 return error("Invalid record"); 4764 PN->addIncoming(V, BB); 4765 } 4766 I = PN; 4767 break; 4768 } 4769 4770 case bitc::FUNC_CODE_INST_LANDINGPAD: 4771 case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: { 4772 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 4773 unsigned Idx = 0; 4774 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) { 4775 if (Record.size() < 3) 4776 return error("Invalid record"); 4777 } else { 4778 assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD); 4779 if (Record.size() < 4) 4780 return error("Invalid record"); 4781 } 4782 Type *Ty = getTypeByID(Record[Idx++]); 4783 if (!Ty) 4784 return error("Invalid record"); 4785 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) { 4786 Value *PersFn = nullptr; 4787 if (getValueTypePair(Record, Idx, NextValueNo, PersFn)) 4788 return error("Invalid record"); 4789 4790 if (!F->hasPersonalityFn()) 4791 F->setPersonalityFn(cast<Constant>(PersFn)); 4792 else if (F->getPersonalityFn() != cast<Constant>(PersFn)) 4793 return error("Personality function mismatch"); 4794 } 4795 4796 bool IsCleanup = !!Record[Idx++]; 4797 unsigned NumClauses = Record[Idx++]; 4798 LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses); 4799 LP->setCleanup(IsCleanup); 4800 for (unsigned J = 0; J != NumClauses; ++J) { 4801 LandingPadInst::ClauseType CT = 4802 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 4803 Value *Val; 4804 4805 if (getValueTypePair(Record, Idx, NextValueNo, Val)) { 4806 delete LP; 4807 return error("Invalid record"); 4808 } 4809 4810 assert((CT != LandingPadInst::Catch || 4811 !isa<ArrayType>(Val->getType())) && 4812 "Catch clause has a invalid type!"); 4813 assert((CT != LandingPadInst::Filter || 4814 isa<ArrayType>(Val->getType())) && 4815 "Filter clause has invalid type!"); 4816 LP->addClause(cast<Constant>(Val)); 4817 } 4818 4819 I = LP; 4820 InstructionList.push_back(I); 4821 break; 4822 } 4823 4824 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 4825 if (Record.size() != 4) 4826 return error("Invalid record"); 4827 uint64_t AlignRecord = Record[3]; 4828 const uint64_t InAllocaMask = uint64_t(1) << 5; 4829 const uint64_t ExplicitTypeMask = uint64_t(1) << 6; 4830 // Reserve bit 7 for SwiftError flag. 4831 // const uint64_t SwiftErrorMask = uint64_t(1) << 7; 4832 const uint64_t FlagMask = InAllocaMask | ExplicitTypeMask; 4833 bool InAlloca = AlignRecord & InAllocaMask; 4834 Type *Ty = getTypeByID(Record[0]); 4835 if ((AlignRecord & ExplicitTypeMask) == 0) { 4836 auto *PTy = dyn_cast_or_null<PointerType>(Ty); 4837 if (!PTy) 4838 return error("Old-style alloca with a non-pointer type"); 4839 Ty = PTy->getElementType(); 4840 } 4841 Type *OpTy = getTypeByID(Record[1]); 4842 Value *Size = getFnValueByID(Record[2], OpTy); 4843 unsigned Align; 4844 if (std::error_code EC = 4845 parseAlignmentValue(AlignRecord & ~FlagMask, Align)) { 4846 return EC; 4847 } 4848 if (!Ty || !Size) 4849 return error("Invalid record"); 4850 AllocaInst *AI = new AllocaInst(Ty, Size, Align); 4851 AI->setUsedWithInAlloca(InAlloca); 4852 I = AI; 4853 InstructionList.push_back(I); 4854 break; 4855 } 4856 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 4857 unsigned OpNum = 0; 4858 Value *Op; 4859 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4860 (OpNum + 2 != Record.size() && OpNum + 3 != Record.size())) 4861 return error("Invalid record"); 4862 4863 Type *Ty = nullptr; 4864 if (OpNum + 3 == Record.size()) 4865 Ty = getTypeByID(Record[OpNum++]); 4866 if (std::error_code EC = typeCheckLoadStoreInst(Ty, Op->getType())) 4867 return EC; 4868 if (!Ty) 4869 Ty = cast<PointerType>(Op->getType())->getElementType(); 4870 4871 unsigned Align; 4872 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 4873 return EC; 4874 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], Align); 4875 4876 InstructionList.push_back(I); 4877 break; 4878 } 4879 case bitc::FUNC_CODE_INST_LOADATOMIC: { 4880 // LOADATOMIC: [opty, op, align, vol, ordering, synchscope] 4881 unsigned OpNum = 0; 4882 Value *Op; 4883 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4884 (OpNum + 4 != Record.size() && OpNum + 5 != Record.size())) 4885 return error("Invalid record"); 4886 4887 Type *Ty = nullptr; 4888 if (OpNum + 5 == Record.size()) 4889 Ty = getTypeByID(Record[OpNum++]); 4890 if (std::error_code EC = typeCheckLoadStoreInst(Ty, Op->getType())) 4891 return EC; 4892 if (!Ty) 4893 Ty = cast<PointerType>(Op->getType())->getElementType(); 4894 4895 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4896 if (Ordering == NotAtomic || Ordering == Release || 4897 Ordering == AcquireRelease) 4898 return error("Invalid record"); 4899 if (Ordering != NotAtomic && Record[OpNum] == 0) 4900 return error("Invalid record"); 4901 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]); 4902 4903 unsigned Align; 4904 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 4905 return EC; 4906 I = new LoadInst(Op, "", Record[OpNum+1], Align, Ordering, SynchScope); 4907 4908 InstructionList.push_back(I); 4909 break; 4910 } 4911 case bitc::FUNC_CODE_INST_STORE: 4912 case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol] 4913 unsigned OpNum = 0; 4914 Value *Val, *Ptr; 4915 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4916 (BitCode == bitc::FUNC_CODE_INST_STORE 4917 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 4918 : popValue(Record, OpNum, NextValueNo, 4919 cast<PointerType>(Ptr->getType())->getElementType(), 4920 Val)) || 4921 OpNum + 2 != Record.size()) 4922 return error("Invalid record"); 4923 4924 if (std::error_code EC = 4925 typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 4926 return EC; 4927 unsigned Align; 4928 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 4929 return EC; 4930 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align); 4931 InstructionList.push_back(I); 4932 break; 4933 } 4934 case bitc::FUNC_CODE_INST_STOREATOMIC: 4935 case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: { 4936 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, synchscope] 4937 unsigned OpNum = 0; 4938 Value *Val, *Ptr; 4939 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4940 (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC 4941 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 4942 : popValue(Record, OpNum, NextValueNo, 4943 cast<PointerType>(Ptr->getType())->getElementType(), 4944 Val)) || 4945 OpNum + 4 != Record.size()) 4946 return error("Invalid record"); 4947 4948 if (std::error_code EC = 4949 typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 4950 return EC; 4951 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4952 if (Ordering == NotAtomic || Ordering == Acquire || 4953 Ordering == AcquireRelease) 4954 return error("Invalid record"); 4955 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]); 4956 if (Ordering != NotAtomic && Record[OpNum] == 0) 4957 return error("Invalid record"); 4958 4959 unsigned Align; 4960 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 4961 return EC; 4962 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align, Ordering, SynchScope); 4963 InstructionList.push_back(I); 4964 break; 4965 } 4966 case bitc::FUNC_CODE_INST_CMPXCHG_OLD: 4967 case bitc::FUNC_CODE_INST_CMPXCHG: { 4968 // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, synchscope, 4969 // failureordering?, isweak?] 4970 unsigned OpNum = 0; 4971 Value *Ptr, *Cmp, *New; 4972 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4973 (BitCode == bitc::FUNC_CODE_INST_CMPXCHG 4974 ? getValueTypePair(Record, OpNum, NextValueNo, Cmp) 4975 : popValue(Record, OpNum, NextValueNo, 4976 cast<PointerType>(Ptr->getType())->getElementType(), 4977 Cmp)) || 4978 popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) || 4979 Record.size() < OpNum + 3 || Record.size() > OpNum + 5) 4980 return error("Invalid record"); 4981 AtomicOrdering SuccessOrdering = getDecodedOrdering(Record[OpNum + 1]); 4982 if (SuccessOrdering == NotAtomic || SuccessOrdering == Unordered) 4983 return error("Invalid record"); 4984 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 2]); 4985 4986 if (std::error_code EC = 4987 typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType())) 4988 return EC; 4989 AtomicOrdering FailureOrdering; 4990 if (Record.size() < 7) 4991 FailureOrdering = 4992 AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering); 4993 else 4994 FailureOrdering = getDecodedOrdering(Record[OpNum + 3]); 4995 4996 I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering, 4997 SynchScope); 4998 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 4999 5000 if (Record.size() < 8) { 5001 // Before weak cmpxchgs existed, the instruction simply returned the 5002 // value loaded from memory, so bitcode files from that era will be 5003 // expecting the first component of a modern cmpxchg. 5004 CurBB->getInstList().push_back(I); 5005 I = ExtractValueInst::Create(I, 0); 5006 } else { 5007 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]); 5008 } 5009 5010 InstructionList.push_back(I); 5011 break; 5012 } 5013 case bitc::FUNC_CODE_INST_ATOMICRMW: { 5014 // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, synchscope] 5015 unsigned OpNum = 0; 5016 Value *Ptr, *Val; 5017 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 5018 popValue(Record, OpNum, NextValueNo, 5019 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 5020 OpNum+4 != Record.size()) 5021 return error("Invalid record"); 5022 AtomicRMWInst::BinOp Operation = getDecodedRMWOperation(Record[OpNum]); 5023 if (Operation < AtomicRMWInst::FIRST_BINOP || 5024 Operation > AtomicRMWInst::LAST_BINOP) 5025 return error("Invalid record"); 5026 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 5027 if (Ordering == NotAtomic || Ordering == Unordered) 5028 return error("Invalid record"); 5029 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]); 5030 I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SynchScope); 5031 cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]); 5032 InstructionList.push_back(I); 5033 break; 5034 } 5035 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, synchscope] 5036 if (2 != Record.size()) 5037 return error("Invalid record"); 5038 AtomicOrdering Ordering = getDecodedOrdering(Record[0]); 5039 if (Ordering == NotAtomic || Ordering == Unordered || 5040 Ordering == Monotonic) 5041 return error("Invalid record"); 5042 SynchronizationScope SynchScope = getDecodedSynchScope(Record[1]); 5043 I = new FenceInst(Context, Ordering, SynchScope); 5044 InstructionList.push_back(I); 5045 break; 5046 } 5047 case bitc::FUNC_CODE_INST_CALL: { 5048 // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...] 5049 if (Record.size() < 3) 5050 return error("Invalid record"); 5051 5052 unsigned OpNum = 0; 5053 AttributeSet PAL = getAttributes(Record[OpNum++]); 5054 unsigned CCInfo = Record[OpNum++]; 5055 5056 FastMathFlags FMF; 5057 if ((CCInfo >> bitc::CALL_FMF) & 1) { 5058 FMF = getDecodedFastMathFlags(Record[OpNum++]); 5059 if (!FMF.any()) 5060 return error("Fast math flags indicator set for call with no FMF"); 5061 } 5062 5063 FunctionType *FTy = nullptr; 5064 if (CCInfo >> bitc::CALL_EXPLICIT_TYPE & 1 && 5065 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])))) 5066 return error("Explicit call type is not a function type"); 5067 5068 Value *Callee; 5069 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 5070 return error("Invalid record"); 5071 5072 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 5073 if (!OpTy) 5074 return error("Callee is not a pointer type"); 5075 if (!FTy) { 5076 FTy = dyn_cast<FunctionType>(OpTy->getElementType()); 5077 if (!FTy) 5078 return error("Callee is not of pointer to function type"); 5079 } else if (OpTy->getElementType() != FTy) 5080 return error("Explicit call type does not match pointee type of " 5081 "callee operand"); 5082 if (Record.size() < FTy->getNumParams() + OpNum) 5083 return error("Insufficient operands to call"); 5084 5085 SmallVector<Value*, 16> Args; 5086 // Read the fixed params. 5087 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 5088 if (FTy->getParamType(i)->isLabelTy()) 5089 Args.push_back(getBasicBlock(Record[OpNum])); 5090 else 5091 Args.push_back(getValue(Record, OpNum, NextValueNo, 5092 FTy->getParamType(i))); 5093 if (!Args.back()) 5094 return error("Invalid record"); 5095 } 5096 5097 // Read type/value pairs for varargs params. 5098 if (!FTy->isVarArg()) { 5099 if (OpNum != Record.size()) 5100 return error("Invalid record"); 5101 } else { 5102 while (OpNum != Record.size()) { 5103 Value *Op; 5104 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 5105 return error("Invalid record"); 5106 Args.push_back(Op); 5107 } 5108 } 5109 5110 I = CallInst::Create(FTy, Callee, Args, OperandBundles); 5111 OperandBundles.clear(); 5112 InstructionList.push_back(I); 5113 cast<CallInst>(I)->setCallingConv( 5114 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 5115 CallInst::TailCallKind TCK = CallInst::TCK_None; 5116 if (CCInfo & 1 << bitc::CALL_TAIL) 5117 TCK = CallInst::TCK_Tail; 5118 if (CCInfo & (1 << bitc::CALL_MUSTTAIL)) 5119 TCK = CallInst::TCK_MustTail; 5120 if (CCInfo & (1 << bitc::CALL_NOTAIL)) 5121 TCK = CallInst::TCK_NoTail; 5122 cast<CallInst>(I)->setTailCallKind(TCK); 5123 cast<CallInst>(I)->setAttributes(PAL); 5124 if (FMF.any()) { 5125 if (!isa<FPMathOperator>(I)) 5126 return error("Fast-math-flags specified for call without " 5127 "floating-point scalar or vector return type"); 5128 I->setFastMathFlags(FMF); 5129 } 5130 break; 5131 } 5132 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 5133 if (Record.size() < 3) 5134 return error("Invalid record"); 5135 Type *OpTy = getTypeByID(Record[0]); 5136 Value *Op = getValue(Record, 1, NextValueNo, OpTy); 5137 Type *ResTy = getTypeByID(Record[2]); 5138 if (!OpTy || !Op || !ResTy) 5139 return error("Invalid record"); 5140 I = new VAArgInst(Op, ResTy); 5141 InstructionList.push_back(I); 5142 break; 5143 } 5144 5145 case bitc::FUNC_CODE_OPERAND_BUNDLE: { 5146 // A call or an invoke can be optionally prefixed with some variable 5147 // number of operand bundle blocks. These blocks are read into 5148 // OperandBundles and consumed at the next call or invoke instruction. 5149 5150 if (Record.size() < 1 || Record[0] >= BundleTags.size()) 5151 return error("Invalid record"); 5152 5153 std::vector<Value *> Inputs; 5154 5155 unsigned OpNum = 1; 5156 while (OpNum != Record.size()) { 5157 Value *Op; 5158 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 5159 return error("Invalid record"); 5160 Inputs.push_back(Op); 5161 } 5162 5163 OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs)); 5164 continue; 5165 } 5166 } 5167 5168 // Add instruction to end of current BB. If there is no current BB, reject 5169 // this file. 5170 if (!CurBB) { 5171 delete I; 5172 return error("Invalid instruction with no BB"); 5173 } 5174 if (!OperandBundles.empty()) { 5175 delete I; 5176 return error("Operand bundles found with no consumer"); 5177 } 5178 CurBB->getInstList().push_back(I); 5179 5180 // If this was a terminator instruction, move to the next block. 5181 if (isa<TerminatorInst>(I)) { 5182 ++CurBBNo; 5183 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr; 5184 } 5185 5186 // Non-void values get registered in the value table for future use. 5187 if (I && !I->getType()->isVoidTy()) 5188 ValueList.assignValue(I, NextValueNo++); 5189 } 5190 5191 OutOfRecordLoop: 5192 5193 if (!OperandBundles.empty()) 5194 return error("Operand bundles found with no consumer"); 5195 5196 // Check the function list for unresolved values. 5197 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 5198 if (!A->getParent()) { 5199 // We found at least one unresolved value. Nuke them all to avoid leaks. 5200 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 5201 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) { 5202 A->replaceAllUsesWith(UndefValue::get(A->getType())); 5203 delete A; 5204 } 5205 } 5206 return error("Never resolved value found in function"); 5207 } 5208 } 5209 5210 // FIXME: Check for unresolved forward-declared metadata references 5211 // and clean up leaks. 5212 5213 // Trim the value list down to the size it was before we parsed this function. 5214 ValueList.shrinkTo(ModuleValueListSize); 5215 MDValueList.shrinkTo(ModuleMDValueListSize); 5216 std::vector<BasicBlock*>().swap(FunctionBBs); 5217 return std::error_code(); 5218 } 5219 5220 /// Find the function body in the bitcode stream 5221 std::error_code BitcodeReader::findFunctionInStream( 5222 Function *F, 5223 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) { 5224 while (DeferredFunctionInfoIterator->second == 0) { 5225 // This is the fallback handling for the old format bitcode that 5226 // didn't contain the function index in the VST, or when we have 5227 // an anonymous function which would not have a VST entry. 5228 // Assert that we have one of those two cases. 5229 assert(VSTOffset == 0 || !F->hasName()); 5230 // Parse the next body in the stream and set its position in the 5231 // DeferredFunctionInfo map. 5232 if (std::error_code EC = rememberAndSkipFunctionBodies()) 5233 return EC; 5234 } 5235 return std::error_code(); 5236 } 5237 5238 //===----------------------------------------------------------------------===// 5239 // GVMaterializer implementation 5240 //===----------------------------------------------------------------------===// 5241 5242 void BitcodeReader::releaseBuffer() { Buffer.release(); } 5243 5244 std::error_code BitcodeReader::materialize(GlobalValue *GV) { 5245 // In older bitcode we must materialize the metadata before parsing 5246 // any functions, in order to set up the MDValueList properly. 5247 if (!SeenModuleValuesRecord) { 5248 if (std::error_code EC = materializeMetadata()) 5249 return EC; 5250 } 5251 5252 Function *F = dyn_cast<Function>(GV); 5253 // If it's not a function or is already material, ignore the request. 5254 if (!F || !F->isMaterializable()) 5255 return std::error_code(); 5256 5257 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 5258 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 5259 // If its position is recorded as 0, its body is somewhere in the stream 5260 // but we haven't seen it yet. 5261 if (DFII->second == 0) 5262 if (std::error_code EC = findFunctionInStream(F, DFII)) 5263 return EC; 5264 5265 // Move the bit stream to the saved position of the deferred function body. 5266 Stream.JumpToBit(DFII->second); 5267 5268 if (std::error_code EC = parseFunctionBody(F)) 5269 return EC; 5270 F->setIsMaterializable(false); 5271 5272 if (StripDebugInfo) 5273 stripDebugInfo(*F); 5274 5275 // Upgrade any old intrinsic calls in the function. 5276 for (auto &I : UpgradedIntrinsics) { 5277 for (auto UI = I.first->user_begin(), UE = I.first->user_end(); UI != UE;) { 5278 User *U = *UI; 5279 ++UI; 5280 if (CallInst *CI = dyn_cast<CallInst>(U)) 5281 UpgradeIntrinsicCall(CI, I.second); 5282 } 5283 } 5284 5285 // Finish fn->subprogram upgrade for materialized functions. 5286 if (DISubprogram *SP = FunctionsWithSPs.lookup(F)) 5287 F->setSubprogram(SP); 5288 5289 // Bring in any functions that this function forward-referenced via 5290 // blockaddresses. 5291 return materializeForwardReferencedFunctions(); 5292 } 5293 5294 bool BitcodeReader::isDematerializable(const GlobalValue *GV) const { 5295 const Function *F = dyn_cast<Function>(GV); 5296 if (!F || F->isDeclaration()) 5297 return false; 5298 5299 // Dematerializing F would leave dangling references that wouldn't be 5300 // reconnected on re-materialization. 5301 if (BlockAddressesTaken.count(F)) 5302 return false; 5303 5304 return DeferredFunctionInfo.count(const_cast<Function*>(F)); 5305 } 5306 5307 void BitcodeReader::dematerialize(GlobalValue *GV) { 5308 Function *F = dyn_cast<Function>(GV); 5309 // If this function isn't dematerializable, this is a noop. 5310 if (!F || !isDematerializable(F)) 5311 return; 5312 5313 assert(DeferredFunctionInfo.count(F) && "No info to read function later?"); 5314 5315 // Just forget the function body, we can remat it later. 5316 F->dropAllReferences(); 5317 F->setIsMaterializable(true); 5318 } 5319 5320 std::error_code BitcodeReader::materializeModule(Module *M) { 5321 assert(M == TheModule && 5322 "Can only Materialize the Module this BitcodeReader is attached to."); 5323 5324 if (std::error_code EC = materializeMetadata()) 5325 return EC; 5326 5327 // Promise to materialize all forward references. 5328 WillMaterializeAllForwardRefs = true; 5329 5330 // Iterate over the module, deserializing any functions that are still on 5331 // disk. 5332 for (Function &F : *TheModule) { 5333 if (std::error_code EC = materialize(&F)) 5334 return EC; 5335 } 5336 // At this point, if there are any function bodies, parse the rest of 5337 // the bits in the module past the last function block we have recorded 5338 // through either lazy scanning or the VST. 5339 if (LastFunctionBlockBit || NextUnreadBit) 5340 parseModule(LastFunctionBlockBit > NextUnreadBit ? LastFunctionBlockBit 5341 : NextUnreadBit); 5342 5343 // Check that all block address forward references got resolved (as we 5344 // promised above). 5345 if (!BasicBlockFwdRefs.empty()) 5346 return error("Never resolved function from blockaddress"); 5347 5348 // Upgrade any intrinsic calls that slipped through (should not happen!) and 5349 // delete the old functions to clean up. We can't do this unless the entire 5350 // module is materialized because there could always be another function body 5351 // with calls to the old function. 5352 for (auto &I : UpgradedIntrinsics) { 5353 for (auto *U : I.first->users()) { 5354 if (CallInst *CI = dyn_cast<CallInst>(U)) 5355 UpgradeIntrinsicCall(CI, I.second); 5356 } 5357 if (!I.first->use_empty()) 5358 I.first->replaceAllUsesWith(I.second); 5359 I.first->eraseFromParent(); 5360 } 5361 UpgradedIntrinsics.clear(); 5362 5363 for (unsigned I = 0, E = InstsWithTBAATag.size(); I < E; I++) 5364 UpgradeInstWithTBAATag(InstsWithTBAATag[I]); 5365 5366 UpgradeDebugInfo(*M); 5367 return std::error_code(); 5368 } 5369 5370 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const { 5371 return IdentifiedStructTypes; 5372 } 5373 5374 std::error_code 5375 BitcodeReader::initStream(std::unique_ptr<DataStreamer> Streamer) { 5376 if (Streamer) 5377 return initLazyStream(std::move(Streamer)); 5378 return initStreamFromBuffer(); 5379 } 5380 5381 std::error_code BitcodeReader::initStreamFromBuffer() { 5382 const unsigned char *BufPtr = (const unsigned char*)Buffer->getBufferStart(); 5383 const unsigned char *BufEnd = BufPtr+Buffer->getBufferSize(); 5384 5385 if (Buffer->getBufferSize() & 3) 5386 return error("Invalid bitcode signature"); 5387 5388 // If we have a wrapper header, parse it and ignore the non-bc file contents. 5389 // The magic number is 0x0B17C0DE stored in little endian. 5390 if (isBitcodeWrapper(BufPtr, BufEnd)) 5391 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 5392 return error("Invalid bitcode wrapper header"); 5393 5394 StreamFile.reset(new BitstreamReader(BufPtr, BufEnd)); 5395 Stream.init(&*StreamFile); 5396 5397 return std::error_code(); 5398 } 5399 5400 std::error_code 5401 BitcodeReader::initLazyStream(std::unique_ptr<DataStreamer> Streamer) { 5402 // Check and strip off the bitcode wrapper; BitstreamReader expects never to 5403 // see it. 5404 auto OwnedBytes = 5405 llvm::make_unique<StreamingMemoryObject>(std::move(Streamer)); 5406 StreamingMemoryObject &Bytes = *OwnedBytes; 5407 StreamFile = llvm::make_unique<BitstreamReader>(std::move(OwnedBytes)); 5408 Stream.init(&*StreamFile); 5409 5410 unsigned char buf[16]; 5411 if (Bytes.readBytes(buf, 16, 0) != 16) 5412 return error("Invalid bitcode signature"); 5413 5414 if (!isBitcode(buf, buf + 16)) 5415 return error("Invalid bitcode signature"); 5416 5417 if (isBitcodeWrapper(buf, buf + 4)) { 5418 const unsigned char *bitcodeStart = buf; 5419 const unsigned char *bitcodeEnd = buf + 16; 5420 SkipBitcodeWrapperHeader(bitcodeStart, bitcodeEnd, false); 5421 Bytes.dropLeadingBytes(bitcodeStart - buf); 5422 Bytes.setKnownObjectSize(bitcodeEnd - bitcodeStart); 5423 } 5424 return std::error_code(); 5425 } 5426 5427 std::error_code FunctionIndexBitcodeReader::error(BitcodeError E, 5428 const Twine &Message) { 5429 return ::error(DiagnosticHandler, make_error_code(E), Message); 5430 } 5431 5432 std::error_code FunctionIndexBitcodeReader::error(const Twine &Message) { 5433 return ::error(DiagnosticHandler, 5434 make_error_code(BitcodeError::CorruptedBitcode), Message); 5435 } 5436 5437 std::error_code FunctionIndexBitcodeReader::error(BitcodeError E) { 5438 return ::error(DiagnosticHandler, make_error_code(E)); 5439 } 5440 5441 FunctionIndexBitcodeReader::FunctionIndexBitcodeReader( 5442 MemoryBuffer *Buffer, DiagnosticHandlerFunction DiagnosticHandler, 5443 bool IsLazy, bool CheckFuncSummaryPresenceOnly) 5444 : DiagnosticHandler(DiagnosticHandler), Buffer(Buffer), IsLazy(IsLazy), 5445 CheckFuncSummaryPresenceOnly(CheckFuncSummaryPresenceOnly) {} 5446 5447 FunctionIndexBitcodeReader::FunctionIndexBitcodeReader( 5448 DiagnosticHandlerFunction DiagnosticHandler, bool IsLazy, 5449 bool CheckFuncSummaryPresenceOnly) 5450 : DiagnosticHandler(DiagnosticHandler), Buffer(nullptr), IsLazy(IsLazy), 5451 CheckFuncSummaryPresenceOnly(CheckFuncSummaryPresenceOnly) {} 5452 5453 void FunctionIndexBitcodeReader::freeState() { Buffer = nullptr; } 5454 5455 void FunctionIndexBitcodeReader::releaseBuffer() { Buffer.release(); } 5456 5457 // Specialized value symbol table parser used when reading function index 5458 // blocks where we don't actually create global values. 5459 // At the end of this routine the function index is populated with a map 5460 // from function name to FunctionInfo. The function info contains 5461 // the function block's bitcode offset as well as the offset into the 5462 // function summary section. 5463 std::error_code FunctionIndexBitcodeReader::parseValueSymbolTable() { 5464 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 5465 return error("Invalid record"); 5466 5467 SmallVector<uint64_t, 64> Record; 5468 5469 // Read all the records for this value table. 5470 SmallString<128> ValueName; 5471 while (1) { 5472 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5473 5474 switch (Entry.Kind) { 5475 case BitstreamEntry::SubBlock: // Handled for us already. 5476 case BitstreamEntry::Error: 5477 return error("Malformed block"); 5478 case BitstreamEntry::EndBlock: 5479 return std::error_code(); 5480 case BitstreamEntry::Record: 5481 // The interesting case. 5482 break; 5483 } 5484 5485 // Read a record. 5486 Record.clear(); 5487 switch (Stream.readRecord(Entry.ID, Record)) { 5488 default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records). 5489 break; 5490 case bitc::VST_CODE_FNENTRY: { 5491 // VST_FNENTRY: [valueid, offset, namechar x N] 5492 if (convertToString(Record, 2, ValueName)) 5493 return error("Invalid record"); 5494 unsigned ValueID = Record[0]; 5495 uint64_t FuncOffset = Record[1]; 5496 std::unique_ptr<FunctionInfo> FuncInfo = 5497 llvm::make_unique<FunctionInfo>(FuncOffset); 5498 if (foundFuncSummary() && !IsLazy) { 5499 DenseMap<uint64_t, std::unique_ptr<FunctionSummary>>::iterator SMI = 5500 SummaryMap.find(ValueID); 5501 assert(SMI != SummaryMap.end() && "Summary info not found"); 5502 FuncInfo->setFunctionSummary(std::move(SMI->second)); 5503 } 5504 TheIndex->addFunctionInfo(ValueName, std::move(FuncInfo)); 5505 5506 ValueName.clear(); 5507 break; 5508 } 5509 case bitc::VST_CODE_COMBINED_FNENTRY: { 5510 // VST_FNENTRY: [offset, namechar x N] 5511 if (convertToString(Record, 1, ValueName)) 5512 return error("Invalid record"); 5513 uint64_t FuncSummaryOffset = Record[0]; 5514 std::unique_ptr<FunctionInfo> FuncInfo = 5515 llvm::make_unique<FunctionInfo>(FuncSummaryOffset); 5516 if (foundFuncSummary() && !IsLazy) { 5517 DenseMap<uint64_t, std::unique_ptr<FunctionSummary>>::iterator SMI = 5518 SummaryMap.find(FuncSummaryOffset); 5519 assert(SMI != SummaryMap.end() && "Summary info not found"); 5520 FuncInfo->setFunctionSummary(std::move(SMI->second)); 5521 } 5522 TheIndex->addFunctionInfo(ValueName, std::move(FuncInfo)); 5523 5524 ValueName.clear(); 5525 break; 5526 } 5527 } 5528 } 5529 } 5530 5531 // Parse just the blocks needed for function index building out of the module. 5532 // At the end of this routine the function Index is populated with a map 5533 // from function name to FunctionInfo. The function info contains 5534 // either the parsed function summary information (when parsing summaries 5535 // eagerly), or just to the function summary record's offset 5536 // if parsing lazily (IsLazy). 5537 std::error_code FunctionIndexBitcodeReader::parseModule() { 5538 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 5539 return error("Invalid record"); 5540 5541 // Read the function index for this module. 5542 while (1) { 5543 BitstreamEntry Entry = Stream.advance(); 5544 5545 switch (Entry.Kind) { 5546 case BitstreamEntry::Error: 5547 return error("Malformed block"); 5548 case BitstreamEntry::EndBlock: 5549 return std::error_code(); 5550 5551 case BitstreamEntry::SubBlock: 5552 if (CheckFuncSummaryPresenceOnly) { 5553 if (Entry.ID == bitc::FUNCTION_SUMMARY_BLOCK_ID) { 5554 SeenFuncSummary = true; 5555 // No need to parse the rest since we found the summary. 5556 return std::error_code(); 5557 } 5558 if (Stream.SkipBlock()) 5559 return error("Invalid record"); 5560 continue; 5561 } 5562 switch (Entry.ID) { 5563 default: // Skip unknown content. 5564 if (Stream.SkipBlock()) 5565 return error("Invalid record"); 5566 break; 5567 case bitc::BLOCKINFO_BLOCK_ID: 5568 // Need to parse these to get abbrev ids (e.g. for VST) 5569 if (Stream.ReadBlockInfoBlock()) 5570 return error("Malformed block"); 5571 break; 5572 case bitc::VALUE_SYMTAB_BLOCK_ID: 5573 if (std::error_code EC = parseValueSymbolTable()) 5574 return EC; 5575 break; 5576 case bitc::FUNCTION_SUMMARY_BLOCK_ID: 5577 SeenFuncSummary = true; 5578 if (IsLazy) { 5579 // Lazy parsing of summary info, skip it. 5580 if (Stream.SkipBlock()) 5581 return error("Invalid record"); 5582 } else if (std::error_code EC = parseEntireSummary()) 5583 return EC; 5584 break; 5585 case bitc::MODULE_STRTAB_BLOCK_ID: 5586 if (std::error_code EC = parseModuleStringTable()) 5587 return EC; 5588 break; 5589 } 5590 continue; 5591 5592 case BitstreamEntry::Record: 5593 Stream.skipRecord(Entry.ID); 5594 continue; 5595 } 5596 } 5597 } 5598 5599 // Eagerly parse the entire function summary block (i.e. for all functions 5600 // in the index). This populates the FunctionSummary objects in 5601 // the index. 5602 std::error_code FunctionIndexBitcodeReader::parseEntireSummary() { 5603 if (Stream.EnterSubBlock(bitc::FUNCTION_SUMMARY_BLOCK_ID)) 5604 return error("Invalid record"); 5605 5606 SmallVector<uint64_t, 64> Record; 5607 5608 while (1) { 5609 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5610 5611 switch (Entry.Kind) { 5612 case BitstreamEntry::SubBlock: // Handled for us already. 5613 case BitstreamEntry::Error: 5614 return error("Malformed block"); 5615 case BitstreamEntry::EndBlock: 5616 return std::error_code(); 5617 case BitstreamEntry::Record: 5618 // The interesting case. 5619 break; 5620 } 5621 5622 // Read a record. The record format depends on whether this 5623 // is a per-module index or a combined index file. In the per-module 5624 // case the records contain the associated value's ID for correlation 5625 // with VST entries. In the combined index the correlation is done 5626 // via the bitcode offset of the summary records (which were saved 5627 // in the combined index VST entries). The records also contain 5628 // information used for ThinLTO renaming and importing. 5629 Record.clear(); 5630 uint64_t CurRecordBit = Stream.GetCurrentBitNo(); 5631 switch (Stream.readRecord(Entry.ID, Record)) { 5632 default: // Default behavior: ignore. 5633 break; 5634 // FS_PERMODULE_ENTRY: [valueid, islocal, instcount] 5635 case bitc::FS_CODE_PERMODULE_ENTRY: { 5636 unsigned ValueID = Record[0]; 5637 bool IsLocal = Record[1]; 5638 unsigned InstCount = Record[2]; 5639 std::unique_ptr<FunctionSummary> FS = 5640 llvm::make_unique<FunctionSummary>(InstCount); 5641 FS->setLocalFunction(IsLocal); 5642 // The module path string ref set in the summary must be owned by the 5643 // index's module string table. Since we don't have a module path 5644 // string table section in the per-module index, we create a single 5645 // module path string table entry with an empty (0) ID to take 5646 // ownership. 5647 FS->setModulePath( 5648 TheIndex->addModulePath(Buffer->getBufferIdentifier(), 0)); 5649 SummaryMap[ValueID] = std::move(FS); 5650 } 5651 // FS_COMBINED_ENTRY: [modid, instcount] 5652 case bitc::FS_CODE_COMBINED_ENTRY: { 5653 uint64_t ModuleId = Record[0]; 5654 unsigned InstCount = Record[1]; 5655 std::unique_ptr<FunctionSummary> FS = 5656 llvm::make_unique<FunctionSummary>(InstCount); 5657 FS->setModulePath(ModuleIdMap[ModuleId]); 5658 SummaryMap[CurRecordBit] = std::move(FS); 5659 } 5660 } 5661 } 5662 llvm_unreachable("Exit infinite loop"); 5663 } 5664 5665 // Parse the module string table block into the Index. 5666 // This populates the ModulePathStringTable map in the index. 5667 std::error_code FunctionIndexBitcodeReader::parseModuleStringTable() { 5668 if (Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID)) 5669 return error("Invalid record"); 5670 5671 SmallVector<uint64_t, 64> Record; 5672 5673 SmallString<128> ModulePath; 5674 while (1) { 5675 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5676 5677 switch (Entry.Kind) { 5678 case BitstreamEntry::SubBlock: // Handled for us already. 5679 case BitstreamEntry::Error: 5680 return error("Malformed block"); 5681 case BitstreamEntry::EndBlock: 5682 return std::error_code(); 5683 case BitstreamEntry::Record: 5684 // The interesting case. 5685 break; 5686 } 5687 5688 Record.clear(); 5689 switch (Stream.readRecord(Entry.ID, Record)) { 5690 default: // Default behavior: ignore. 5691 break; 5692 case bitc::MST_CODE_ENTRY: { 5693 // MST_ENTRY: [modid, namechar x N] 5694 if (convertToString(Record, 1, ModulePath)) 5695 return error("Invalid record"); 5696 uint64_t ModuleId = Record[0]; 5697 StringRef ModulePathInMap = TheIndex->addModulePath(ModulePath, ModuleId); 5698 ModuleIdMap[ModuleId] = ModulePathInMap; 5699 ModulePath.clear(); 5700 break; 5701 } 5702 } 5703 } 5704 llvm_unreachable("Exit infinite loop"); 5705 } 5706 5707 // Parse the function info index from the bitcode streamer into the given index. 5708 std::error_code FunctionIndexBitcodeReader::parseSummaryIndexInto( 5709 std::unique_ptr<DataStreamer> Streamer, FunctionInfoIndex *I) { 5710 TheIndex = I; 5711 5712 if (std::error_code EC = initStream(std::move(Streamer))) 5713 return EC; 5714 5715 // Sniff for the signature. 5716 if (!hasValidBitcodeHeader(Stream)) 5717 return error("Invalid bitcode signature"); 5718 5719 // We expect a number of well-defined blocks, though we don't necessarily 5720 // need to understand them all. 5721 while (1) { 5722 if (Stream.AtEndOfStream()) { 5723 // We didn't really read a proper Module block. 5724 return error("Malformed block"); 5725 } 5726 5727 BitstreamEntry Entry = 5728 Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs); 5729 5730 if (Entry.Kind != BitstreamEntry::SubBlock) 5731 return error("Malformed block"); 5732 5733 // If we see a MODULE_BLOCK, parse it to find the blocks needed for 5734 // building the function summary index. 5735 if (Entry.ID == bitc::MODULE_BLOCK_ID) 5736 return parseModule(); 5737 5738 if (Stream.SkipBlock()) 5739 return error("Invalid record"); 5740 } 5741 } 5742 5743 // Parse the function information at the given offset in the buffer into 5744 // the index. Used to support lazy parsing of function summaries from the 5745 // combined index during importing. 5746 // TODO: This function is not yet complete as it won't have a consumer 5747 // until ThinLTO function importing is added. 5748 std::error_code FunctionIndexBitcodeReader::parseFunctionSummary( 5749 std::unique_ptr<DataStreamer> Streamer, FunctionInfoIndex *I, 5750 size_t FunctionSummaryOffset) { 5751 TheIndex = I; 5752 5753 if (std::error_code EC = initStream(std::move(Streamer))) 5754 return EC; 5755 5756 // Sniff for the signature. 5757 if (!hasValidBitcodeHeader(Stream)) 5758 return error("Invalid bitcode signature"); 5759 5760 Stream.JumpToBit(FunctionSummaryOffset); 5761 5762 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5763 5764 switch (Entry.Kind) { 5765 default: 5766 return error("Malformed block"); 5767 case BitstreamEntry::Record: 5768 // The expected case. 5769 break; 5770 } 5771 5772 // TODO: Read a record. This interface will be completed when ThinLTO 5773 // importing is added so that it can be tested. 5774 SmallVector<uint64_t, 64> Record; 5775 switch (Stream.readRecord(Entry.ID, Record)) { 5776 case bitc::FS_CODE_COMBINED_ENTRY: 5777 default: 5778 return error("Invalid record"); 5779 } 5780 5781 return std::error_code(); 5782 } 5783 5784 std::error_code 5785 FunctionIndexBitcodeReader::initStream(std::unique_ptr<DataStreamer> Streamer) { 5786 if (Streamer) 5787 return initLazyStream(std::move(Streamer)); 5788 return initStreamFromBuffer(); 5789 } 5790 5791 std::error_code FunctionIndexBitcodeReader::initStreamFromBuffer() { 5792 const unsigned char *BufPtr = (const unsigned char *)Buffer->getBufferStart(); 5793 const unsigned char *BufEnd = BufPtr + Buffer->getBufferSize(); 5794 5795 if (Buffer->getBufferSize() & 3) 5796 return error("Invalid bitcode signature"); 5797 5798 // If we have a wrapper header, parse it and ignore the non-bc file contents. 5799 // The magic number is 0x0B17C0DE stored in little endian. 5800 if (isBitcodeWrapper(BufPtr, BufEnd)) 5801 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 5802 return error("Invalid bitcode wrapper header"); 5803 5804 StreamFile.reset(new BitstreamReader(BufPtr, BufEnd)); 5805 Stream.init(&*StreamFile); 5806 5807 return std::error_code(); 5808 } 5809 5810 std::error_code FunctionIndexBitcodeReader::initLazyStream( 5811 std::unique_ptr<DataStreamer> Streamer) { 5812 // Check and strip off the bitcode wrapper; BitstreamReader expects never to 5813 // see it. 5814 auto OwnedBytes = 5815 llvm::make_unique<StreamingMemoryObject>(std::move(Streamer)); 5816 StreamingMemoryObject &Bytes = *OwnedBytes; 5817 StreamFile = llvm::make_unique<BitstreamReader>(std::move(OwnedBytes)); 5818 Stream.init(&*StreamFile); 5819 5820 unsigned char buf[16]; 5821 if (Bytes.readBytes(buf, 16, 0) != 16) 5822 return error("Invalid bitcode signature"); 5823 5824 if (!isBitcode(buf, buf + 16)) 5825 return error("Invalid bitcode signature"); 5826 5827 if (isBitcodeWrapper(buf, buf + 4)) { 5828 const unsigned char *bitcodeStart = buf; 5829 const unsigned char *bitcodeEnd = buf + 16; 5830 SkipBitcodeWrapperHeader(bitcodeStart, bitcodeEnd, false); 5831 Bytes.dropLeadingBytes(bitcodeStart - buf); 5832 Bytes.setKnownObjectSize(bitcodeEnd - bitcodeStart); 5833 } 5834 return std::error_code(); 5835 } 5836 5837 namespace { 5838 class BitcodeErrorCategoryType : public std::error_category { 5839 const char *name() const LLVM_NOEXCEPT override { 5840 return "llvm.bitcode"; 5841 } 5842 std::string message(int IE) const override { 5843 BitcodeError E = static_cast<BitcodeError>(IE); 5844 switch (E) { 5845 case BitcodeError::InvalidBitcodeSignature: 5846 return "Invalid bitcode signature"; 5847 case BitcodeError::CorruptedBitcode: 5848 return "Corrupted bitcode"; 5849 } 5850 llvm_unreachable("Unknown error type!"); 5851 } 5852 }; 5853 } 5854 5855 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory; 5856 5857 const std::error_category &llvm::BitcodeErrorCategory() { 5858 return *ErrorCategory; 5859 } 5860 5861 //===----------------------------------------------------------------------===// 5862 // External interface 5863 //===----------------------------------------------------------------------===// 5864 5865 static ErrorOr<std::unique_ptr<Module>> 5866 getBitcodeModuleImpl(std::unique_ptr<DataStreamer> Streamer, StringRef Name, 5867 BitcodeReader *R, LLVMContext &Context, 5868 bool MaterializeAll, bool ShouldLazyLoadMetadata) { 5869 std::unique_ptr<Module> M = make_unique<Module>(Name, Context); 5870 M->setMaterializer(R); 5871 5872 auto cleanupOnError = [&](std::error_code EC) { 5873 R->releaseBuffer(); // Never take ownership on error. 5874 return EC; 5875 }; 5876 5877 // Delay parsing Metadata if ShouldLazyLoadMetadata is true. 5878 if (std::error_code EC = R->parseBitcodeInto(std::move(Streamer), M.get(), 5879 ShouldLazyLoadMetadata)) 5880 return cleanupOnError(EC); 5881 5882 if (MaterializeAll) { 5883 // Read in the entire module, and destroy the BitcodeReader. 5884 if (std::error_code EC = M->materializeAllPermanently()) 5885 return cleanupOnError(EC); 5886 } else { 5887 // Resolve forward references from blockaddresses. 5888 if (std::error_code EC = R->materializeForwardReferencedFunctions()) 5889 return cleanupOnError(EC); 5890 } 5891 return std::move(M); 5892 } 5893 5894 /// \brief Get a lazy one-at-time loading module from bitcode. 5895 /// 5896 /// This isn't always used in a lazy context. In particular, it's also used by 5897 /// \a parseBitcodeFile(). If this is truly lazy, then we need to eagerly pull 5898 /// in forward-referenced functions from block address references. 5899 /// 5900 /// \param[in] MaterializeAll Set to \c true if we should materialize 5901 /// everything. 5902 static ErrorOr<std::unique_ptr<Module>> 5903 getLazyBitcodeModuleImpl(std::unique_ptr<MemoryBuffer> &&Buffer, 5904 LLVMContext &Context, bool MaterializeAll, 5905 bool ShouldLazyLoadMetadata = false) { 5906 BitcodeReader *R = new BitcodeReader(Buffer.get(), Context); 5907 5908 ErrorOr<std::unique_ptr<Module>> Ret = 5909 getBitcodeModuleImpl(nullptr, Buffer->getBufferIdentifier(), R, Context, 5910 MaterializeAll, ShouldLazyLoadMetadata); 5911 if (!Ret) 5912 return Ret; 5913 5914 Buffer.release(); // The BitcodeReader owns it now. 5915 return Ret; 5916 } 5917 5918 ErrorOr<std::unique_ptr<Module>> 5919 llvm::getLazyBitcodeModule(std::unique_ptr<MemoryBuffer> &&Buffer, 5920 LLVMContext &Context, bool ShouldLazyLoadMetadata) { 5921 return getLazyBitcodeModuleImpl(std::move(Buffer), Context, false, 5922 ShouldLazyLoadMetadata); 5923 } 5924 5925 ErrorOr<std::unique_ptr<Module>> 5926 llvm::getStreamedBitcodeModule(StringRef Name, 5927 std::unique_ptr<DataStreamer> Streamer, 5928 LLVMContext &Context) { 5929 std::unique_ptr<Module> M = make_unique<Module>(Name, Context); 5930 BitcodeReader *R = new BitcodeReader(Context); 5931 5932 return getBitcodeModuleImpl(std::move(Streamer), Name, R, Context, false, 5933 false); 5934 } 5935 5936 ErrorOr<std::unique_ptr<Module>> llvm::parseBitcodeFile(MemoryBufferRef Buffer, 5937 LLVMContext &Context) { 5938 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 5939 return getLazyBitcodeModuleImpl(std::move(Buf), Context, true); 5940 // TODO: Restore the use-lists to the in-memory state when the bitcode was 5941 // written. We must defer until the Module has been fully materialized. 5942 } 5943 5944 std::string llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer, 5945 LLVMContext &Context) { 5946 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 5947 auto R = llvm::make_unique<BitcodeReader>(Buf.release(), Context); 5948 ErrorOr<std::string> Triple = R->parseTriple(); 5949 if (Triple.getError()) 5950 return ""; 5951 return Triple.get(); 5952 } 5953 5954 std::string llvm::getBitcodeProducerString(MemoryBufferRef Buffer, 5955 LLVMContext &Context) { 5956 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 5957 BitcodeReader R(Buf.release(), Context); 5958 ErrorOr<std::string> ProducerString = R.parseIdentificationBlock(); 5959 if (ProducerString.getError()) 5960 return ""; 5961 return ProducerString.get(); 5962 } 5963 5964 // Parse the specified bitcode buffer, returning the function info index. 5965 // If IsLazy is false, parse the entire function summary into 5966 // the index. Otherwise skip the function summary section, and only create 5967 // an index object with a map from function name to function summary offset. 5968 // The index is used to perform lazy function summary reading later. 5969 ErrorOr<std::unique_ptr<FunctionInfoIndex>> 5970 llvm::getFunctionInfoIndex(MemoryBufferRef Buffer, 5971 DiagnosticHandlerFunction DiagnosticHandler, 5972 bool IsLazy) { 5973 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 5974 FunctionIndexBitcodeReader R(Buf.get(), DiagnosticHandler, IsLazy); 5975 5976 auto Index = llvm::make_unique<FunctionInfoIndex>(); 5977 5978 auto cleanupOnError = [&](std::error_code EC) { 5979 R.releaseBuffer(); // Never take ownership on error. 5980 return EC; 5981 }; 5982 5983 if (std::error_code EC = R.parseSummaryIndexInto(nullptr, Index.get())) 5984 return cleanupOnError(EC); 5985 5986 Buf.release(); // The FunctionIndexBitcodeReader owns it now. 5987 return std::move(Index); 5988 } 5989 5990 // Check if the given bitcode buffer contains a function summary block. 5991 bool llvm::hasFunctionSummary(MemoryBufferRef Buffer, 5992 DiagnosticHandlerFunction DiagnosticHandler) { 5993 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 5994 FunctionIndexBitcodeReader R(Buf.get(), DiagnosticHandler, false, true); 5995 5996 auto cleanupOnError = [&](std::error_code EC) { 5997 R.releaseBuffer(); // Never take ownership on error. 5998 return false; 5999 }; 6000 6001 if (std::error_code EC = R.parseSummaryIndexInto(nullptr, nullptr)) 6002 return cleanupOnError(EC); 6003 6004 Buf.release(); // The FunctionIndexBitcodeReader owns it now. 6005 return R.foundFuncSummary(); 6006 } 6007 6008 // This method supports lazy reading of function summary data from the combined 6009 // index during ThinLTO function importing. When reading the combined index 6010 // file, getFunctionInfoIndex is first invoked with IsLazy=true. 6011 // Then this method is called for each function considered for importing, 6012 // to parse the summary information for the given function name into 6013 // the index. 6014 std::error_code llvm::readFunctionSummary( 6015 MemoryBufferRef Buffer, DiagnosticHandlerFunction DiagnosticHandler, 6016 StringRef FunctionName, std::unique_ptr<FunctionInfoIndex> Index) { 6017 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 6018 FunctionIndexBitcodeReader R(Buf.get(), DiagnosticHandler); 6019 6020 auto cleanupOnError = [&](std::error_code EC) { 6021 R.releaseBuffer(); // Never take ownership on error. 6022 return EC; 6023 }; 6024 6025 // Lookup the given function name in the FunctionMap, which may 6026 // contain a list of function infos in the case of a COMDAT. Walk through 6027 // and parse each function summary info at the function summary offset 6028 // recorded when parsing the value symbol table. 6029 for (const auto &FI : Index->getFunctionInfoList(FunctionName)) { 6030 size_t FunctionSummaryOffset = FI->bitcodeIndex(); 6031 if (std::error_code EC = 6032 R.parseFunctionSummary(nullptr, Index.get(), FunctionSummaryOffset)) 6033 return cleanupOnError(EC); 6034 } 6035 6036 Buf.release(); // The FunctionIndexBitcodeReader owns it now. 6037 return std::error_code(); 6038 } 6039