1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #include "llvm/Bitcode/ReaderWriter.h"
11 #include "BitcodeReader.h"
12 #include "llvm/ADT/SmallString.h"
13 #include "llvm/ADT/SmallVector.h"
14 #include "llvm/AutoUpgrade.h"
15 #include "llvm/Bitcode/LLVMBitCodes.h"
16 #include "llvm/IR/Constants.h"
17 #include "llvm/IR/DerivedTypes.h"
18 #include "llvm/IR/InlineAsm.h"
19 #include "llvm/IR/IntrinsicInst.h"
20 #include "llvm/IR/LLVMContext.h"
21 #include "llvm/IR/Module.h"
22 #include "llvm/IR/OperandTraits.h"
23 #include "llvm/IR/Operator.h"
24 #include "llvm/Support/DataStream.h"
25 #include "llvm/Support/MathExtras.h"
26 #include "llvm/Support/MemoryBuffer.h"
27 #include "llvm/Support/raw_ostream.h"
28 using namespace llvm;
29 
30 enum {
31   SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex
32 };
33 
34 void BitcodeReader::materializeForwardReferencedFunctions() {
35   while (!BlockAddrFwdRefs.empty()) {
36     Function *F = BlockAddrFwdRefs.begin()->first;
37     F->Materialize();
38   }
39 }
40 
41 void BitcodeReader::FreeState() {
42   if (BufferOwned)
43     delete Buffer;
44   Buffer = 0;
45   std::vector<Type*>().swap(TypeList);
46   ValueList.clear();
47   MDValueList.clear();
48 
49   std::vector<AttributeSet>().swap(MAttributes);
50   std::vector<BasicBlock*>().swap(FunctionBBs);
51   std::vector<Function*>().swap(FunctionsWithBodies);
52   DeferredFunctionInfo.clear();
53   MDKindMap.clear();
54 
55   assert(BlockAddrFwdRefs.empty() && "Unresolved blockaddress fwd references");
56 }
57 
58 //===----------------------------------------------------------------------===//
59 //  Helper functions to implement forward reference resolution, etc.
60 //===----------------------------------------------------------------------===//
61 
62 /// ConvertToString - Convert a string from a record into an std::string, return
63 /// true on failure.
64 template<typename StrTy>
65 static bool ConvertToString(ArrayRef<uint64_t> Record, unsigned Idx,
66                             StrTy &Result) {
67   if (Idx > Record.size())
68     return true;
69 
70   for (unsigned i = Idx, e = Record.size(); i != e; ++i)
71     Result += (char)Record[i];
72   return false;
73 }
74 
75 static GlobalValue::LinkageTypes GetDecodedLinkage(unsigned Val) {
76   switch (Val) {
77   default: // Map unknown/new linkages to external
78   case 0:  return GlobalValue::ExternalLinkage;
79   case 1:  return GlobalValue::WeakAnyLinkage;
80   case 2:  return GlobalValue::AppendingLinkage;
81   case 3:  return GlobalValue::InternalLinkage;
82   case 4:  return GlobalValue::LinkOnceAnyLinkage;
83   case 5:  return GlobalValue::DLLImportLinkage;
84   case 6:  return GlobalValue::DLLExportLinkage;
85   case 7:  return GlobalValue::ExternalWeakLinkage;
86   case 8:  return GlobalValue::CommonLinkage;
87   case 9:  return GlobalValue::PrivateLinkage;
88   case 10: return GlobalValue::WeakODRLinkage;
89   case 11: return GlobalValue::LinkOnceODRLinkage;
90   case 12: return GlobalValue::AvailableExternallyLinkage;
91   case 13: return GlobalValue::LinkerPrivateLinkage;
92   case 14: return GlobalValue::LinkerPrivateWeakLinkage;
93   case 15: return GlobalValue::LinkOnceODRAutoHideLinkage;
94   }
95 }
96 
97 static GlobalValue::VisibilityTypes GetDecodedVisibility(unsigned Val) {
98   switch (Val) {
99   default: // Map unknown visibilities to default.
100   case 0: return GlobalValue::DefaultVisibility;
101   case 1: return GlobalValue::HiddenVisibility;
102   case 2: return GlobalValue::ProtectedVisibility;
103   }
104 }
105 
106 static GlobalVariable::ThreadLocalMode GetDecodedThreadLocalMode(unsigned Val) {
107   switch (Val) {
108     case 0: return GlobalVariable::NotThreadLocal;
109     default: // Map unknown non-zero value to general dynamic.
110     case 1: return GlobalVariable::GeneralDynamicTLSModel;
111     case 2: return GlobalVariable::LocalDynamicTLSModel;
112     case 3: return GlobalVariable::InitialExecTLSModel;
113     case 4: return GlobalVariable::LocalExecTLSModel;
114   }
115 }
116 
117 static int GetDecodedCastOpcode(unsigned Val) {
118   switch (Val) {
119   default: return -1;
120   case bitc::CAST_TRUNC   : return Instruction::Trunc;
121   case bitc::CAST_ZEXT    : return Instruction::ZExt;
122   case bitc::CAST_SEXT    : return Instruction::SExt;
123   case bitc::CAST_FPTOUI  : return Instruction::FPToUI;
124   case bitc::CAST_FPTOSI  : return Instruction::FPToSI;
125   case bitc::CAST_UITOFP  : return Instruction::UIToFP;
126   case bitc::CAST_SITOFP  : return Instruction::SIToFP;
127   case bitc::CAST_FPTRUNC : return Instruction::FPTrunc;
128   case bitc::CAST_FPEXT   : return Instruction::FPExt;
129   case bitc::CAST_PTRTOINT: return Instruction::PtrToInt;
130   case bitc::CAST_INTTOPTR: return Instruction::IntToPtr;
131   case bitc::CAST_BITCAST : return Instruction::BitCast;
132   }
133 }
134 static int GetDecodedBinaryOpcode(unsigned Val, Type *Ty) {
135   switch (Val) {
136   default: return -1;
137   case bitc::BINOP_ADD:
138     return Ty->isFPOrFPVectorTy() ? Instruction::FAdd : Instruction::Add;
139   case bitc::BINOP_SUB:
140     return Ty->isFPOrFPVectorTy() ? Instruction::FSub : Instruction::Sub;
141   case bitc::BINOP_MUL:
142     return Ty->isFPOrFPVectorTy() ? Instruction::FMul : Instruction::Mul;
143   case bitc::BINOP_UDIV: return Instruction::UDiv;
144   case bitc::BINOP_SDIV:
145     return Ty->isFPOrFPVectorTy() ? Instruction::FDiv : Instruction::SDiv;
146   case bitc::BINOP_UREM: return Instruction::URem;
147   case bitc::BINOP_SREM:
148     return Ty->isFPOrFPVectorTy() ? Instruction::FRem : Instruction::SRem;
149   case bitc::BINOP_SHL:  return Instruction::Shl;
150   case bitc::BINOP_LSHR: return Instruction::LShr;
151   case bitc::BINOP_ASHR: return Instruction::AShr;
152   case bitc::BINOP_AND:  return Instruction::And;
153   case bitc::BINOP_OR:   return Instruction::Or;
154   case bitc::BINOP_XOR:  return Instruction::Xor;
155   }
156 }
157 
158 static AtomicRMWInst::BinOp GetDecodedRMWOperation(unsigned Val) {
159   switch (Val) {
160   default: return AtomicRMWInst::BAD_BINOP;
161   case bitc::RMW_XCHG: return AtomicRMWInst::Xchg;
162   case bitc::RMW_ADD: return AtomicRMWInst::Add;
163   case bitc::RMW_SUB: return AtomicRMWInst::Sub;
164   case bitc::RMW_AND: return AtomicRMWInst::And;
165   case bitc::RMW_NAND: return AtomicRMWInst::Nand;
166   case bitc::RMW_OR: return AtomicRMWInst::Or;
167   case bitc::RMW_XOR: return AtomicRMWInst::Xor;
168   case bitc::RMW_MAX: return AtomicRMWInst::Max;
169   case bitc::RMW_MIN: return AtomicRMWInst::Min;
170   case bitc::RMW_UMAX: return AtomicRMWInst::UMax;
171   case bitc::RMW_UMIN: return AtomicRMWInst::UMin;
172   }
173 }
174 
175 static AtomicOrdering GetDecodedOrdering(unsigned Val) {
176   switch (Val) {
177   case bitc::ORDERING_NOTATOMIC: return NotAtomic;
178   case bitc::ORDERING_UNORDERED: return Unordered;
179   case bitc::ORDERING_MONOTONIC: return Monotonic;
180   case bitc::ORDERING_ACQUIRE: return Acquire;
181   case bitc::ORDERING_RELEASE: return Release;
182   case bitc::ORDERING_ACQREL: return AcquireRelease;
183   default: // Map unknown orderings to sequentially-consistent.
184   case bitc::ORDERING_SEQCST: return SequentiallyConsistent;
185   }
186 }
187 
188 static SynchronizationScope GetDecodedSynchScope(unsigned Val) {
189   switch (Val) {
190   case bitc::SYNCHSCOPE_SINGLETHREAD: return SingleThread;
191   default: // Map unknown scopes to cross-thread.
192   case bitc::SYNCHSCOPE_CROSSTHREAD: return CrossThread;
193   }
194 }
195 
196 namespace llvm {
197 namespace {
198   /// @brief A class for maintaining the slot number definition
199   /// as a placeholder for the actual definition for forward constants defs.
200   class ConstantPlaceHolder : public ConstantExpr {
201     void operator=(const ConstantPlaceHolder &) LLVM_DELETED_FUNCTION;
202   public:
203     // allocate space for exactly one operand
204     void *operator new(size_t s) {
205       return User::operator new(s, 1);
206     }
207     explicit ConstantPlaceHolder(Type *Ty, LLVMContext& Context)
208       : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) {
209       Op<0>() = UndefValue::get(Type::getInt32Ty(Context));
210     }
211 
212     /// @brief Methods to support type inquiry through isa, cast, and dyn_cast.
213     static bool classof(const Value *V) {
214       return isa<ConstantExpr>(V) &&
215              cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1;
216     }
217 
218 
219     /// Provide fast operand accessors
220     //DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
221   };
222 }
223 
224 // FIXME: can we inherit this from ConstantExpr?
225 template <>
226 struct OperandTraits<ConstantPlaceHolder> :
227   public FixedNumOperandTraits<ConstantPlaceHolder, 1> {
228 };
229 }
230 
231 
232 void BitcodeReaderValueList::AssignValue(Value *V, unsigned Idx) {
233   if (Idx == size()) {
234     push_back(V);
235     return;
236   }
237 
238   if (Idx >= size())
239     resize(Idx+1);
240 
241   WeakVH &OldV = ValuePtrs[Idx];
242   if (OldV == 0) {
243     OldV = V;
244     return;
245   }
246 
247   // Handle constants and non-constants (e.g. instrs) differently for
248   // efficiency.
249   if (Constant *PHC = dyn_cast<Constant>(&*OldV)) {
250     ResolveConstants.push_back(std::make_pair(PHC, Idx));
251     OldV = V;
252   } else {
253     // If there was a forward reference to this value, replace it.
254     Value *PrevVal = OldV;
255     OldV->replaceAllUsesWith(V);
256     delete PrevVal;
257   }
258 }
259 
260 
261 Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx,
262                                                     Type *Ty) {
263   if (Idx >= size())
264     resize(Idx + 1);
265 
266   if (Value *V = ValuePtrs[Idx]) {
267     assert(Ty == V->getType() && "Type mismatch in constant table!");
268     return cast<Constant>(V);
269   }
270 
271   // Create and return a placeholder, which will later be RAUW'd.
272   Constant *C = new ConstantPlaceHolder(Ty, Context);
273   ValuePtrs[Idx] = C;
274   return C;
275 }
276 
277 Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, Type *Ty) {
278   if (Idx >= size())
279     resize(Idx + 1);
280 
281   if (Value *V = ValuePtrs[Idx]) {
282     assert((Ty == 0 || Ty == V->getType()) && "Type mismatch in value table!");
283     return V;
284   }
285 
286   // No type specified, must be invalid reference.
287   if (Ty == 0) return 0;
288 
289   // Create and return a placeholder, which will later be RAUW'd.
290   Value *V = new Argument(Ty);
291   ValuePtrs[Idx] = V;
292   return V;
293 }
294 
295 /// ResolveConstantForwardRefs - Once all constants are read, this method bulk
296 /// resolves any forward references.  The idea behind this is that we sometimes
297 /// get constants (such as large arrays) which reference *many* forward ref
298 /// constants.  Replacing each of these causes a lot of thrashing when
299 /// building/reuniquing the constant.  Instead of doing this, we look at all the
300 /// uses and rewrite all the place holders at once for any constant that uses
301 /// a placeholder.
302 void BitcodeReaderValueList::ResolveConstantForwardRefs() {
303   // Sort the values by-pointer so that they are efficient to look up with a
304   // binary search.
305   std::sort(ResolveConstants.begin(), ResolveConstants.end());
306 
307   SmallVector<Constant*, 64> NewOps;
308 
309   while (!ResolveConstants.empty()) {
310     Value *RealVal = operator[](ResolveConstants.back().second);
311     Constant *Placeholder = ResolveConstants.back().first;
312     ResolveConstants.pop_back();
313 
314     // Loop over all users of the placeholder, updating them to reference the
315     // new value.  If they reference more than one placeholder, update them all
316     // at once.
317     while (!Placeholder->use_empty()) {
318       Value::use_iterator UI = Placeholder->use_begin();
319       User *U = *UI;
320 
321       // If the using object isn't uniqued, just update the operands.  This
322       // handles instructions and initializers for global variables.
323       if (!isa<Constant>(U) || isa<GlobalValue>(U)) {
324         UI.getUse().set(RealVal);
325         continue;
326       }
327 
328       // Otherwise, we have a constant that uses the placeholder.  Replace that
329       // constant with a new constant that has *all* placeholder uses updated.
330       Constant *UserC = cast<Constant>(U);
331       for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end();
332            I != E; ++I) {
333         Value *NewOp;
334         if (!isa<ConstantPlaceHolder>(*I)) {
335           // Not a placeholder reference.
336           NewOp = *I;
337         } else if (*I == Placeholder) {
338           // Common case is that it just references this one placeholder.
339           NewOp = RealVal;
340         } else {
341           // Otherwise, look up the placeholder in ResolveConstants.
342           ResolveConstantsTy::iterator It =
343             std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(),
344                              std::pair<Constant*, unsigned>(cast<Constant>(*I),
345                                                             0));
346           assert(It != ResolveConstants.end() && It->first == *I);
347           NewOp = operator[](It->second);
348         }
349 
350         NewOps.push_back(cast<Constant>(NewOp));
351       }
352 
353       // Make the new constant.
354       Constant *NewC;
355       if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) {
356         NewC = ConstantArray::get(UserCA->getType(), NewOps);
357       } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) {
358         NewC = ConstantStruct::get(UserCS->getType(), NewOps);
359       } else if (isa<ConstantVector>(UserC)) {
360         NewC = ConstantVector::get(NewOps);
361       } else {
362         assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr.");
363         NewC = cast<ConstantExpr>(UserC)->getWithOperands(NewOps);
364       }
365 
366       UserC->replaceAllUsesWith(NewC);
367       UserC->destroyConstant();
368       NewOps.clear();
369     }
370 
371     // Update all ValueHandles, they should be the only users at this point.
372     Placeholder->replaceAllUsesWith(RealVal);
373     delete Placeholder;
374   }
375 }
376 
377 void BitcodeReaderMDValueList::AssignValue(Value *V, unsigned Idx) {
378   if (Idx == size()) {
379     push_back(V);
380     return;
381   }
382 
383   if (Idx >= size())
384     resize(Idx+1);
385 
386   WeakVH &OldV = MDValuePtrs[Idx];
387   if (OldV == 0) {
388     OldV = V;
389     return;
390   }
391 
392   // If there was a forward reference to this value, replace it.
393   MDNode *PrevVal = cast<MDNode>(OldV);
394   OldV->replaceAllUsesWith(V);
395   MDNode::deleteTemporary(PrevVal);
396   // Deleting PrevVal sets Idx value in MDValuePtrs to null. Set new
397   // value for Idx.
398   MDValuePtrs[Idx] = V;
399 }
400 
401 Value *BitcodeReaderMDValueList::getValueFwdRef(unsigned Idx) {
402   if (Idx >= size())
403     resize(Idx + 1);
404 
405   if (Value *V = MDValuePtrs[Idx]) {
406     assert(V->getType()->isMetadataTy() && "Type mismatch in value table!");
407     return V;
408   }
409 
410   // Create and return a placeholder, which will later be RAUW'd.
411   Value *V = MDNode::getTemporary(Context, None);
412   MDValuePtrs[Idx] = V;
413   return V;
414 }
415 
416 Type *BitcodeReader::getTypeByID(unsigned ID) {
417   // The type table size is always specified correctly.
418   if (ID >= TypeList.size())
419     return 0;
420 
421   if (Type *Ty = TypeList[ID])
422     return Ty;
423 
424   // If we have a forward reference, the only possible case is when it is to a
425   // named struct.  Just create a placeholder for now.
426   return TypeList[ID] = StructType::create(Context);
427 }
428 
429 
430 //===----------------------------------------------------------------------===//
431 //  Functions for parsing blocks from the bitcode file
432 //===----------------------------------------------------------------------===//
433 
434 
435 /// \brief This fills an AttrBuilder object with the LLVM attributes that have
436 /// been decoded from the given integer. This function must stay in sync with
437 /// 'encodeLLVMAttributesForBitcode'.
438 static void decodeLLVMAttributesForBitcode(AttrBuilder &B,
439                                            uint64_t EncodedAttrs) {
440   // FIXME: Remove in 4.0.
441 
442   // The alignment is stored as a 16-bit raw value from bits 31--16.  We shift
443   // the bits above 31 down by 11 bits.
444   unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16;
445   assert((!Alignment || isPowerOf2_32(Alignment)) &&
446          "Alignment must be a power of two.");
447 
448   if (Alignment)
449     B.addAlignmentAttr(Alignment);
450   B.addRawValue(((EncodedAttrs & (0xfffffULL << 32)) >> 11) |
451                 (EncodedAttrs & 0xffff));
452 }
453 
454 bool BitcodeReader::ParseAttributeBlock() {
455   if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID))
456     return Error("Malformed block record");
457 
458   if (!MAttributes.empty())
459     return Error("Multiple PARAMATTR blocks found!");
460 
461   SmallVector<uint64_t, 64> Record;
462 
463   SmallVector<AttributeSet, 8> Attrs;
464 
465   // Read all the records.
466   while (1) {
467     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
468 
469     switch (Entry.Kind) {
470     case BitstreamEntry::SubBlock: // Handled for us already.
471     case BitstreamEntry::Error:
472       return Error("Error at end of PARAMATTR block");
473     case BitstreamEntry::EndBlock:
474       return false;
475     case BitstreamEntry::Record:
476       // The interesting case.
477       break;
478     }
479 
480     // Read a record.
481     Record.clear();
482     switch (Stream.readRecord(Entry.ID, Record)) {
483     default:  // Default behavior: ignore.
484       break;
485     case bitc::PARAMATTR_CODE_ENTRY_OLD: { // ENTRY: [paramidx0, attr0, ...]
486       // FIXME: Remove in 4.0.
487       if (Record.size() & 1)
488         return Error("Invalid ENTRY record");
489 
490       for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
491         AttrBuilder B;
492         decodeLLVMAttributesForBitcode(B, Record[i+1]);
493         Attrs.push_back(AttributeSet::get(Context, Record[i], B));
494       }
495 
496       MAttributes.push_back(AttributeSet::get(Context, Attrs));
497       Attrs.clear();
498       break;
499     }
500     case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [attrgrp0, attrgrp1, ...]
501       for (unsigned i = 0, e = Record.size(); i != e; ++i)
502         Attrs.push_back(MAttributeGroups[Record[i]]);
503 
504       MAttributes.push_back(AttributeSet::get(Context, Attrs));
505       Attrs.clear();
506       break;
507     }
508     }
509   }
510 }
511 
512 bool BitcodeReader::ParseAttrKind(uint64_t Code, Attribute::AttrKind *Kind) {
513   switch (Code) {
514   case bitc::ATTR_KIND_ALIGNMENT:
515     *Kind = Attribute::Alignment;
516     return false;
517   case bitc::ATTR_KIND_ALWAYS_INLINE:
518     *Kind = Attribute::AlwaysInline;
519     return false;
520   case bitc::ATTR_KIND_BUILTIN:
521     *Kind = Attribute::Builtin;
522     return false;
523   case bitc::ATTR_KIND_BY_VAL:
524     *Kind = Attribute::ByVal;
525     return false;
526   case bitc::ATTR_KIND_COLD:
527     *Kind = Attribute::Cold;
528     return false;
529   case bitc::ATTR_KIND_INLINE_HINT:
530     *Kind = Attribute::InlineHint;
531     return false;
532   case bitc::ATTR_KIND_IN_REG:
533     *Kind = Attribute::InReg;
534     return false;
535   case bitc::ATTR_KIND_MIN_SIZE:
536     *Kind = Attribute::MinSize;
537     return false;
538   case bitc::ATTR_KIND_NAKED:
539     *Kind = Attribute::Naked;
540     return false;
541   case bitc::ATTR_KIND_NEST:
542     *Kind = Attribute::Nest;
543     return false;
544   case bitc::ATTR_KIND_NO_ALIAS:
545     *Kind = Attribute::NoAlias;
546     return false;
547   case bitc::ATTR_KIND_NO_BUILTIN:
548     *Kind = Attribute::NoBuiltin;
549     return false;
550   case bitc::ATTR_KIND_NO_CAPTURE:
551     *Kind = Attribute::NoCapture;
552     return false;
553   case bitc::ATTR_KIND_NO_DUPLICATE:
554     *Kind = Attribute::NoDuplicate;
555     return false;
556   case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT:
557     *Kind = Attribute::NoImplicitFloat;
558     return false;
559   case bitc::ATTR_KIND_NO_INLINE:
560     *Kind = Attribute::NoInline;
561     return false;
562   case bitc::ATTR_KIND_NON_LAZY_BIND:
563     *Kind = Attribute::NonLazyBind;
564     return false;
565   case bitc::ATTR_KIND_NO_RED_ZONE:
566     *Kind = Attribute::NoRedZone;
567     return false;
568   case bitc::ATTR_KIND_NO_RETURN:
569     *Kind = Attribute::NoReturn;
570     return false;
571   case bitc::ATTR_KIND_NO_UNWIND:
572     *Kind = Attribute::NoUnwind;
573     return false;
574   case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE:
575     *Kind = Attribute::OptimizeForSize;
576     return false;
577   case bitc::ATTR_KIND_OPTIMIZE_NONE:
578     *Kind = Attribute::OptimizeNone;
579     return false;
580   case bitc::ATTR_KIND_READ_NONE:
581     *Kind = Attribute::ReadNone;
582     return false;
583   case bitc::ATTR_KIND_READ_ONLY:
584     *Kind = Attribute::ReadOnly;
585     return false;
586   case bitc::ATTR_KIND_RETURNED:
587     *Kind = Attribute::Returned;
588     return false;
589   case bitc::ATTR_KIND_RETURNS_TWICE:
590     *Kind = Attribute::ReturnsTwice;
591     return false;
592   case bitc::ATTR_KIND_S_EXT:
593     *Kind = Attribute::SExt;
594     return false;
595   case bitc::ATTR_KIND_STACK_ALIGNMENT:
596     *Kind = Attribute::StackAlignment;
597     return false;
598   case bitc::ATTR_KIND_STACK_PROTECT:
599     *Kind = Attribute::StackProtect;
600     return false;
601   case bitc::ATTR_KIND_STACK_PROTECT_REQ:
602     *Kind = Attribute::StackProtectReq;
603     return false;
604   case bitc::ATTR_KIND_STACK_PROTECT_STRONG:
605     *Kind = Attribute::StackProtectStrong;
606     return false;
607   case bitc::ATTR_KIND_STRUCT_RET:
608     *Kind = Attribute::StructRet;
609     return false;
610   case bitc::ATTR_KIND_SANITIZE_ADDRESS:
611     *Kind = Attribute::SanitizeAddress;
612     return false;
613   case bitc::ATTR_KIND_SANITIZE_THREAD:
614     *Kind = Attribute::SanitizeThread;
615     return false;
616   case bitc::ATTR_KIND_SANITIZE_MEMORY:
617     *Kind = Attribute::SanitizeMemory;
618     return false;
619   case bitc::ATTR_KIND_UW_TABLE:
620     *Kind = Attribute::UWTable;
621     return false;
622   case bitc::ATTR_KIND_Z_EXT:
623     *Kind = Attribute::ZExt;
624     return false;
625   default:
626     std::string Buf;
627     raw_string_ostream fmt(Buf);
628     fmt << "Unknown attribute kind (" << Code << ")";
629     fmt.flush();
630     return Error(Buf.c_str());
631   }
632 }
633 
634 bool BitcodeReader::ParseAttributeGroupBlock() {
635   if (Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID))
636     return Error("Malformed block record");
637 
638   if (!MAttributeGroups.empty())
639     return Error("Multiple PARAMATTR_GROUP blocks found!");
640 
641   SmallVector<uint64_t, 64> Record;
642 
643   // Read all the records.
644   while (1) {
645     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
646 
647     switch (Entry.Kind) {
648     case BitstreamEntry::SubBlock: // Handled for us already.
649     case BitstreamEntry::Error:
650       return Error("Error at end of PARAMATTR_GROUP block");
651     case BitstreamEntry::EndBlock:
652       return false;
653     case BitstreamEntry::Record:
654       // The interesting case.
655       break;
656     }
657 
658     // Read a record.
659     Record.clear();
660     switch (Stream.readRecord(Entry.ID, Record)) {
661     default:  // Default behavior: ignore.
662       break;
663     case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...]
664       if (Record.size() < 3)
665         return Error("Invalid ENTRY record");
666 
667       uint64_t GrpID = Record[0];
668       uint64_t Idx = Record[1]; // Index of the object this attribute refers to.
669 
670       AttrBuilder B;
671       for (unsigned i = 2, e = Record.size(); i != e; ++i) {
672         if (Record[i] == 0) {        // Enum attribute
673           Attribute::AttrKind Kind;
674           if (ParseAttrKind(Record[++i], &Kind))
675             return true;
676 
677           B.addAttribute(Kind);
678         } else if (Record[i] == 1) { // Align attribute
679           Attribute::AttrKind Kind;
680           if (ParseAttrKind(Record[++i], &Kind))
681             return true;
682           if (Kind == Attribute::Alignment)
683             B.addAlignmentAttr(Record[++i]);
684           else
685             B.addStackAlignmentAttr(Record[++i]);
686         } else {                     // String attribute
687           assert((Record[i] == 3 || Record[i] == 4) &&
688                  "Invalid attribute group entry");
689           bool HasValue = (Record[i++] == 4);
690           SmallString<64> KindStr;
691           SmallString<64> ValStr;
692 
693           while (Record[i] != 0 && i != e)
694             KindStr += Record[i++];
695           assert(Record[i] == 0 && "Kind string not null terminated");
696 
697           if (HasValue) {
698             // Has a value associated with it.
699             ++i; // Skip the '0' that terminates the "kind" string.
700             while (Record[i] != 0 && i != e)
701               ValStr += Record[i++];
702             assert(Record[i] == 0 && "Value string not null terminated");
703           }
704 
705           B.addAttribute(KindStr.str(), ValStr.str());
706         }
707       }
708 
709       MAttributeGroups[GrpID] = AttributeSet::get(Context, Idx, B);
710       break;
711     }
712     }
713   }
714 }
715 
716 bool BitcodeReader::ParseTypeTable() {
717   if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW))
718     return Error("Malformed block record");
719 
720   return ParseTypeTableBody();
721 }
722 
723 bool BitcodeReader::ParseTypeTableBody() {
724   if (!TypeList.empty())
725     return Error("Multiple TYPE_BLOCKs found!");
726 
727   SmallVector<uint64_t, 64> Record;
728   unsigned NumRecords = 0;
729 
730   SmallString<64> TypeName;
731 
732   // Read all the records for this type table.
733   while (1) {
734     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
735 
736     switch (Entry.Kind) {
737     case BitstreamEntry::SubBlock: // Handled for us already.
738     case BitstreamEntry::Error:
739       Error("Error in the type table block");
740       return true;
741     case BitstreamEntry::EndBlock:
742       if (NumRecords != TypeList.size())
743         return Error("Invalid type forward reference in TYPE_BLOCK");
744       return false;
745     case BitstreamEntry::Record:
746       // The interesting case.
747       break;
748     }
749 
750     // Read a record.
751     Record.clear();
752     Type *ResultTy = 0;
753     switch (Stream.readRecord(Entry.ID, Record)) {
754     default: return Error("unknown type in type table");
755     case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
756       // TYPE_CODE_NUMENTRY contains a count of the number of types in the
757       // type list.  This allows us to reserve space.
758       if (Record.size() < 1)
759         return Error("Invalid TYPE_CODE_NUMENTRY record");
760       TypeList.resize(Record[0]);
761       continue;
762     case bitc::TYPE_CODE_VOID:      // VOID
763       ResultTy = Type::getVoidTy(Context);
764       break;
765     case bitc::TYPE_CODE_HALF:     // HALF
766       ResultTy = Type::getHalfTy(Context);
767       break;
768     case bitc::TYPE_CODE_FLOAT:     // FLOAT
769       ResultTy = Type::getFloatTy(Context);
770       break;
771     case bitc::TYPE_CODE_DOUBLE:    // DOUBLE
772       ResultTy = Type::getDoubleTy(Context);
773       break;
774     case bitc::TYPE_CODE_X86_FP80:  // X86_FP80
775       ResultTy = Type::getX86_FP80Ty(Context);
776       break;
777     case bitc::TYPE_CODE_FP128:     // FP128
778       ResultTy = Type::getFP128Ty(Context);
779       break;
780     case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
781       ResultTy = Type::getPPC_FP128Ty(Context);
782       break;
783     case bitc::TYPE_CODE_LABEL:     // LABEL
784       ResultTy = Type::getLabelTy(Context);
785       break;
786     case bitc::TYPE_CODE_METADATA:  // METADATA
787       ResultTy = Type::getMetadataTy(Context);
788       break;
789     case bitc::TYPE_CODE_X86_MMX:   // X86_MMX
790       ResultTy = Type::getX86_MMXTy(Context);
791       break;
792     case bitc::TYPE_CODE_INTEGER:   // INTEGER: [width]
793       if (Record.size() < 1)
794         return Error("Invalid Integer type record");
795 
796       ResultTy = IntegerType::get(Context, Record[0]);
797       break;
798     case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
799                                     //          [pointee type, address space]
800       if (Record.size() < 1)
801         return Error("Invalid POINTER type record");
802       unsigned AddressSpace = 0;
803       if (Record.size() == 2)
804         AddressSpace = Record[1];
805       ResultTy = getTypeByID(Record[0]);
806       if (ResultTy == 0) return Error("invalid element type in pointer type");
807       ResultTy = PointerType::get(ResultTy, AddressSpace);
808       break;
809     }
810     case bitc::TYPE_CODE_FUNCTION_OLD: {
811       // FIXME: attrid is dead, remove it in LLVM 4.0
812       // FUNCTION: [vararg, attrid, retty, paramty x N]
813       if (Record.size() < 3)
814         return Error("Invalid FUNCTION type record");
815       SmallVector<Type*, 8> ArgTys;
816       for (unsigned i = 3, e = Record.size(); i != e; ++i) {
817         if (Type *T = getTypeByID(Record[i]))
818           ArgTys.push_back(T);
819         else
820           break;
821       }
822 
823       ResultTy = getTypeByID(Record[2]);
824       if (ResultTy == 0 || ArgTys.size() < Record.size()-3)
825         return Error("invalid type in function type");
826 
827       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
828       break;
829     }
830     case bitc::TYPE_CODE_FUNCTION: {
831       // FUNCTION: [vararg, retty, paramty x N]
832       if (Record.size() < 2)
833         return Error("Invalid FUNCTION type record");
834       SmallVector<Type*, 8> ArgTys;
835       for (unsigned i = 2, e = Record.size(); i != e; ++i) {
836         if (Type *T = getTypeByID(Record[i]))
837           ArgTys.push_back(T);
838         else
839           break;
840       }
841 
842       ResultTy = getTypeByID(Record[1]);
843       if (ResultTy == 0 || ArgTys.size() < Record.size()-2)
844         return Error("invalid type in function type");
845 
846       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
847       break;
848     }
849     case bitc::TYPE_CODE_STRUCT_ANON: {  // STRUCT: [ispacked, eltty x N]
850       if (Record.size() < 1)
851         return Error("Invalid STRUCT type record");
852       SmallVector<Type*, 8> EltTys;
853       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
854         if (Type *T = getTypeByID(Record[i]))
855           EltTys.push_back(T);
856         else
857           break;
858       }
859       if (EltTys.size() != Record.size()-1)
860         return Error("invalid type in struct type");
861       ResultTy = StructType::get(Context, EltTys, Record[0]);
862       break;
863     }
864     case bitc::TYPE_CODE_STRUCT_NAME:   // STRUCT_NAME: [strchr x N]
865       if (ConvertToString(Record, 0, TypeName))
866         return Error("Invalid STRUCT_NAME record");
867       continue;
868 
869     case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N]
870       if (Record.size() < 1)
871         return Error("Invalid STRUCT type record");
872 
873       if (NumRecords >= TypeList.size())
874         return Error("invalid TYPE table");
875 
876       // Check to see if this was forward referenced, if so fill in the temp.
877       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
878       if (Res) {
879         Res->setName(TypeName);
880         TypeList[NumRecords] = 0;
881       } else  // Otherwise, create a new struct.
882         Res = StructType::create(Context, TypeName);
883       TypeName.clear();
884 
885       SmallVector<Type*, 8> EltTys;
886       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
887         if (Type *T = getTypeByID(Record[i]))
888           EltTys.push_back(T);
889         else
890           break;
891       }
892       if (EltTys.size() != Record.size()-1)
893         return Error("invalid STRUCT type record");
894       Res->setBody(EltTys, Record[0]);
895       ResultTy = Res;
896       break;
897     }
898     case bitc::TYPE_CODE_OPAQUE: {       // OPAQUE: []
899       if (Record.size() != 1)
900         return Error("Invalid OPAQUE type record");
901 
902       if (NumRecords >= TypeList.size())
903         return Error("invalid TYPE table");
904 
905       // Check to see if this was forward referenced, if so fill in the temp.
906       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
907       if (Res) {
908         Res->setName(TypeName);
909         TypeList[NumRecords] = 0;
910       } else  // Otherwise, create a new struct with no body.
911         Res = StructType::create(Context, TypeName);
912       TypeName.clear();
913       ResultTy = Res;
914       break;
915     }
916     case bitc::TYPE_CODE_ARRAY:     // ARRAY: [numelts, eltty]
917       if (Record.size() < 2)
918         return Error("Invalid ARRAY type record");
919       if ((ResultTy = getTypeByID(Record[1])))
920         ResultTy = ArrayType::get(ResultTy, Record[0]);
921       else
922         return Error("Invalid ARRAY type element");
923       break;
924     case bitc::TYPE_CODE_VECTOR:    // VECTOR: [numelts, eltty]
925       if (Record.size() < 2)
926         return Error("Invalid VECTOR type record");
927       if ((ResultTy = getTypeByID(Record[1])))
928         ResultTy = VectorType::get(ResultTy, Record[0]);
929       else
930         return Error("Invalid ARRAY type element");
931       break;
932     }
933 
934     if (NumRecords >= TypeList.size())
935       return Error("invalid TYPE table");
936     assert(ResultTy && "Didn't read a type?");
937     assert(TypeList[NumRecords] == 0 && "Already read type?");
938     TypeList[NumRecords++] = ResultTy;
939   }
940 }
941 
942 bool BitcodeReader::ParseValueSymbolTable() {
943   if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
944     return Error("Malformed block record");
945 
946   SmallVector<uint64_t, 64> Record;
947 
948   // Read all the records for this value table.
949   SmallString<128> ValueName;
950   while (1) {
951     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
952 
953     switch (Entry.Kind) {
954     case BitstreamEntry::SubBlock: // Handled for us already.
955     case BitstreamEntry::Error:
956       return Error("malformed value symbol table block");
957     case BitstreamEntry::EndBlock:
958       return false;
959     case BitstreamEntry::Record:
960       // The interesting case.
961       break;
962     }
963 
964     // Read a record.
965     Record.clear();
966     switch (Stream.readRecord(Entry.ID, Record)) {
967     default:  // Default behavior: unknown type.
968       break;
969     case bitc::VST_CODE_ENTRY: {  // VST_ENTRY: [valueid, namechar x N]
970       if (ConvertToString(Record, 1, ValueName))
971         return Error("Invalid VST_ENTRY record");
972       unsigned ValueID = Record[0];
973       if (ValueID >= ValueList.size())
974         return Error("Invalid Value ID in VST_ENTRY record");
975       Value *V = ValueList[ValueID];
976 
977       V->setName(StringRef(ValueName.data(), ValueName.size()));
978       ValueName.clear();
979       break;
980     }
981     case bitc::VST_CODE_BBENTRY: {
982       if (ConvertToString(Record, 1, ValueName))
983         return Error("Invalid VST_BBENTRY record");
984       BasicBlock *BB = getBasicBlock(Record[0]);
985       if (BB == 0)
986         return Error("Invalid BB ID in VST_BBENTRY record");
987 
988       BB->setName(StringRef(ValueName.data(), ValueName.size()));
989       ValueName.clear();
990       break;
991     }
992     }
993   }
994 }
995 
996 bool BitcodeReader::ParseMetadata() {
997   unsigned NextMDValueNo = MDValueList.size();
998 
999   if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID))
1000     return Error("Malformed block record");
1001 
1002   SmallVector<uint64_t, 64> Record;
1003 
1004   // Read all the records.
1005   while (1) {
1006     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1007 
1008     switch (Entry.Kind) {
1009     case BitstreamEntry::SubBlock: // Handled for us already.
1010     case BitstreamEntry::Error:
1011       Error("malformed metadata block");
1012       return true;
1013     case BitstreamEntry::EndBlock:
1014       return false;
1015     case BitstreamEntry::Record:
1016       // The interesting case.
1017       break;
1018     }
1019 
1020     bool IsFunctionLocal = false;
1021     // Read a record.
1022     Record.clear();
1023     unsigned Code = Stream.readRecord(Entry.ID, Record);
1024     switch (Code) {
1025     default:  // Default behavior: ignore.
1026       break;
1027     case bitc::METADATA_NAME: {
1028       // Read name of the named metadata.
1029       SmallString<8> Name(Record.begin(), Record.end());
1030       Record.clear();
1031       Code = Stream.ReadCode();
1032 
1033       // METADATA_NAME is always followed by METADATA_NAMED_NODE.
1034       unsigned NextBitCode = Stream.readRecord(Code, Record);
1035       assert(NextBitCode == bitc::METADATA_NAMED_NODE); (void)NextBitCode;
1036 
1037       // Read named metadata elements.
1038       unsigned Size = Record.size();
1039       NamedMDNode *NMD = TheModule->getOrInsertNamedMetadata(Name);
1040       for (unsigned i = 0; i != Size; ++i) {
1041         MDNode *MD = dyn_cast<MDNode>(MDValueList.getValueFwdRef(Record[i]));
1042         if (MD == 0)
1043           return Error("Malformed metadata record");
1044         NMD->addOperand(MD);
1045       }
1046       break;
1047     }
1048     case bitc::METADATA_FN_NODE:
1049       IsFunctionLocal = true;
1050       // fall-through
1051     case bitc::METADATA_NODE: {
1052       if (Record.size() % 2 == 1)
1053         return Error("Invalid METADATA_NODE record");
1054 
1055       unsigned Size = Record.size();
1056       SmallVector<Value*, 8> Elts;
1057       for (unsigned i = 0; i != Size; i += 2) {
1058         Type *Ty = getTypeByID(Record[i]);
1059         if (!Ty) return Error("Invalid METADATA_NODE record");
1060         if (Ty->isMetadataTy())
1061           Elts.push_back(MDValueList.getValueFwdRef(Record[i+1]));
1062         else if (!Ty->isVoidTy())
1063           Elts.push_back(ValueList.getValueFwdRef(Record[i+1], Ty));
1064         else
1065           Elts.push_back(NULL);
1066       }
1067       Value *V = MDNode::getWhenValsUnresolved(Context, Elts, IsFunctionLocal);
1068       IsFunctionLocal = false;
1069       MDValueList.AssignValue(V, NextMDValueNo++);
1070       break;
1071     }
1072     case bitc::METADATA_STRING: {
1073       SmallString<8> String(Record.begin(), Record.end());
1074       Value *V = MDString::get(Context, String);
1075       MDValueList.AssignValue(V, NextMDValueNo++);
1076       break;
1077     }
1078     case bitc::METADATA_KIND: {
1079       if (Record.size() < 2)
1080         return Error("Invalid METADATA_KIND record");
1081 
1082       unsigned Kind = Record[0];
1083       SmallString<8> Name(Record.begin()+1, Record.end());
1084 
1085       unsigned NewKind = TheModule->getMDKindID(Name.str());
1086       if (!MDKindMap.insert(std::make_pair(Kind, NewKind)).second)
1087         return Error("Conflicting METADATA_KIND records");
1088       break;
1089     }
1090     }
1091   }
1092 }
1093 
1094 /// decodeSignRotatedValue - Decode a signed value stored with the sign bit in
1095 /// the LSB for dense VBR encoding.
1096 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) {
1097   if ((V & 1) == 0)
1098     return V >> 1;
1099   if (V != 1)
1100     return -(V >> 1);
1101   // There is no such thing as -0 with integers.  "-0" really means MININT.
1102   return 1ULL << 63;
1103 }
1104 
1105 /// ResolveGlobalAndAliasInits - Resolve all of the initializers for global
1106 /// values and aliases that we can.
1107 bool BitcodeReader::ResolveGlobalAndAliasInits() {
1108   std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist;
1109   std::vector<std::pair<GlobalAlias*, unsigned> > AliasInitWorklist;
1110   std::vector<std::pair<Function*, unsigned> > FunctionPrefixWorklist;
1111 
1112   GlobalInitWorklist.swap(GlobalInits);
1113   AliasInitWorklist.swap(AliasInits);
1114   FunctionPrefixWorklist.swap(FunctionPrefixes);
1115 
1116   while (!GlobalInitWorklist.empty()) {
1117     unsigned ValID = GlobalInitWorklist.back().second;
1118     if (ValID >= ValueList.size()) {
1119       // Not ready to resolve this yet, it requires something later in the file.
1120       GlobalInits.push_back(GlobalInitWorklist.back());
1121     } else {
1122       if (Constant *C = dyn_cast<Constant>(ValueList[ValID]))
1123         GlobalInitWorklist.back().first->setInitializer(C);
1124       else
1125         return Error("Global variable initializer is not a constant!");
1126     }
1127     GlobalInitWorklist.pop_back();
1128   }
1129 
1130   while (!AliasInitWorklist.empty()) {
1131     unsigned ValID = AliasInitWorklist.back().second;
1132     if (ValID >= ValueList.size()) {
1133       AliasInits.push_back(AliasInitWorklist.back());
1134     } else {
1135       if (Constant *C = dyn_cast<Constant>(ValueList[ValID]))
1136         AliasInitWorklist.back().first->setAliasee(C);
1137       else
1138         return Error("Alias initializer is not a constant!");
1139     }
1140     AliasInitWorklist.pop_back();
1141   }
1142 
1143   while (!FunctionPrefixWorklist.empty()) {
1144     unsigned ValID = FunctionPrefixWorklist.back().second;
1145     if (ValID >= ValueList.size()) {
1146       FunctionPrefixes.push_back(FunctionPrefixWorklist.back());
1147     } else {
1148       if (Constant *C = dyn_cast<Constant>(ValueList[ValID]))
1149         FunctionPrefixWorklist.back().first->setPrefixData(C);
1150       else
1151         return Error("Function prefix is not a constant!");
1152     }
1153     FunctionPrefixWorklist.pop_back();
1154   }
1155 
1156   return false;
1157 }
1158 
1159 static APInt ReadWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) {
1160   SmallVector<uint64_t, 8> Words(Vals.size());
1161   std::transform(Vals.begin(), Vals.end(), Words.begin(),
1162                  BitcodeReader::decodeSignRotatedValue);
1163 
1164   return APInt(TypeBits, Words);
1165 }
1166 
1167 bool BitcodeReader::ParseConstants() {
1168   if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID))
1169     return Error("Malformed block record");
1170 
1171   SmallVector<uint64_t, 64> Record;
1172 
1173   // Read all the records for this value table.
1174   Type *CurTy = Type::getInt32Ty(Context);
1175   unsigned NextCstNo = ValueList.size();
1176   while (1) {
1177     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1178 
1179     switch (Entry.Kind) {
1180     case BitstreamEntry::SubBlock: // Handled for us already.
1181     case BitstreamEntry::Error:
1182       return Error("malformed block record in AST file");
1183     case BitstreamEntry::EndBlock:
1184       if (NextCstNo != ValueList.size())
1185         return Error("Invalid constant reference!");
1186 
1187       // Once all the constants have been read, go through and resolve forward
1188       // references.
1189       ValueList.ResolveConstantForwardRefs();
1190       return false;
1191     case BitstreamEntry::Record:
1192       // The interesting case.
1193       break;
1194     }
1195 
1196     // Read a record.
1197     Record.clear();
1198     Value *V = 0;
1199     unsigned BitCode = Stream.readRecord(Entry.ID, Record);
1200     switch (BitCode) {
1201     default:  // Default behavior: unknown constant
1202     case bitc::CST_CODE_UNDEF:     // UNDEF
1203       V = UndefValue::get(CurTy);
1204       break;
1205     case bitc::CST_CODE_SETTYPE:   // SETTYPE: [typeid]
1206       if (Record.empty())
1207         return Error("Malformed CST_SETTYPE record");
1208       if (Record[0] >= TypeList.size())
1209         return Error("Invalid Type ID in CST_SETTYPE record");
1210       CurTy = TypeList[Record[0]];
1211       continue;  // Skip the ValueList manipulation.
1212     case bitc::CST_CODE_NULL:      // NULL
1213       V = Constant::getNullValue(CurTy);
1214       break;
1215     case bitc::CST_CODE_INTEGER:   // INTEGER: [intval]
1216       if (!CurTy->isIntegerTy() || Record.empty())
1217         return Error("Invalid CST_INTEGER record");
1218       V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0]));
1219       break;
1220     case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
1221       if (!CurTy->isIntegerTy() || Record.empty())
1222         return Error("Invalid WIDE_INTEGER record");
1223 
1224       APInt VInt = ReadWideAPInt(Record,
1225                                  cast<IntegerType>(CurTy)->getBitWidth());
1226       V = ConstantInt::get(Context, VInt);
1227 
1228       break;
1229     }
1230     case bitc::CST_CODE_FLOAT: {    // FLOAT: [fpval]
1231       if (Record.empty())
1232         return Error("Invalid FLOAT record");
1233       if (CurTy->isHalfTy())
1234         V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf,
1235                                              APInt(16, (uint16_t)Record[0])));
1236       else if (CurTy->isFloatTy())
1237         V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle,
1238                                              APInt(32, (uint32_t)Record[0])));
1239       else if (CurTy->isDoubleTy())
1240         V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble,
1241                                              APInt(64, Record[0])));
1242       else if (CurTy->isX86_FP80Ty()) {
1243         // Bits are not stored the same way as a normal i80 APInt, compensate.
1244         uint64_t Rearrange[2];
1245         Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16);
1246         Rearrange[1] = Record[0] >> 48;
1247         V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended,
1248                                              APInt(80, Rearrange)));
1249       } else if (CurTy->isFP128Ty())
1250         V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad,
1251                                              APInt(128, Record)));
1252       else if (CurTy->isPPC_FP128Ty())
1253         V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble,
1254                                              APInt(128, Record)));
1255       else
1256         V = UndefValue::get(CurTy);
1257       break;
1258     }
1259 
1260     case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
1261       if (Record.empty())
1262         return Error("Invalid CST_AGGREGATE record");
1263 
1264       unsigned Size = Record.size();
1265       SmallVector<Constant*, 16> Elts;
1266 
1267       if (StructType *STy = dyn_cast<StructType>(CurTy)) {
1268         for (unsigned i = 0; i != Size; ++i)
1269           Elts.push_back(ValueList.getConstantFwdRef(Record[i],
1270                                                      STy->getElementType(i)));
1271         V = ConstantStruct::get(STy, Elts);
1272       } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) {
1273         Type *EltTy = ATy->getElementType();
1274         for (unsigned i = 0; i != Size; ++i)
1275           Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
1276         V = ConstantArray::get(ATy, Elts);
1277       } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) {
1278         Type *EltTy = VTy->getElementType();
1279         for (unsigned i = 0; i != Size; ++i)
1280           Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
1281         V = ConstantVector::get(Elts);
1282       } else {
1283         V = UndefValue::get(CurTy);
1284       }
1285       break;
1286     }
1287     case bitc::CST_CODE_STRING:    // STRING: [values]
1288     case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
1289       if (Record.empty())
1290         return Error("Invalid CST_STRING record");
1291 
1292       SmallString<16> Elts(Record.begin(), Record.end());
1293       V = ConstantDataArray::getString(Context, Elts,
1294                                        BitCode == bitc::CST_CODE_CSTRING);
1295       break;
1296     }
1297     case bitc::CST_CODE_DATA: {// DATA: [n x value]
1298       if (Record.empty())
1299         return Error("Invalid CST_DATA record");
1300 
1301       Type *EltTy = cast<SequentialType>(CurTy)->getElementType();
1302       unsigned Size = Record.size();
1303 
1304       if (EltTy->isIntegerTy(8)) {
1305         SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end());
1306         if (isa<VectorType>(CurTy))
1307           V = ConstantDataVector::get(Context, Elts);
1308         else
1309           V = ConstantDataArray::get(Context, Elts);
1310       } else if (EltTy->isIntegerTy(16)) {
1311         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
1312         if (isa<VectorType>(CurTy))
1313           V = ConstantDataVector::get(Context, Elts);
1314         else
1315           V = ConstantDataArray::get(Context, Elts);
1316       } else if (EltTy->isIntegerTy(32)) {
1317         SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
1318         if (isa<VectorType>(CurTy))
1319           V = ConstantDataVector::get(Context, Elts);
1320         else
1321           V = ConstantDataArray::get(Context, Elts);
1322       } else if (EltTy->isIntegerTy(64)) {
1323         SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
1324         if (isa<VectorType>(CurTy))
1325           V = ConstantDataVector::get(Context, Elts);
1326         else
1327           V = ConstantDataArray::get(Context, Elts);
1328       } else if (EltTy->isFloatTy()) {
1329         SmallVector<float, 16> Elts(Size);
1330         std::transform(Record.begin(), Record.end(), Elts.begin(), BitsToFloat);
1331         if (isa<VectorType>(CurTy))
1332           V = ConstantDataVector::get(Context, Elts);
1333         else
1334           V = ConstantDataArray::get(Context, Elts);
1335       } else if (EltTy->isDoubleTy()) {
1336         SmallVector<double, 16> Elts(Size);
1337         std::transform(Record.begin(), Record.end(), Elts.begin(),
1338                        BitsToDouble);
1339         if (isa<VectorType>(CurTy))
1340           V = ConstantDataVector::get(Context, Elts);
1341         else
1342           V = ConstantDataArray::get(Context, Elts);
1343       } else {
1344         return Error("Unknown element type in CE_DATA");
1345       }
1346       break;
1347     }
1348 
1349     case bitc::CST_CODE_CE_BINOP: {  // CE_BINOP: [opcode, opval, opval]
1350       if (Record.size() < 3) return Error("Invalid CE_BINOP record");
1351       int Opc = GetDecodedBinaryOpcode(Record[0], CurTy);
1352       if (Opc < 0) {
1353         V = UndefValue::get(CurTy);  // Unknown binop.
1354       } else {
1355         Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
1356         Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy);
1357         unsigned Flags = 0;
1358         if (Record.size() >= 4) {
1359           if (Opc == Instruction::Add ||
1360               Opc == Instruction::Sub ||
1361               Opc == Instruction::Mul ||
1362               Opc == Instruction::Shl) {
1363             if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP))
1364               Flags |= OverflowingBinaryOperator::NoSignedWrap;
1365             if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
1366               Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
1367           } else if (Opc == Instruction::SDiv ||
1368                      Opc == Instruction::UDiv ||
1369                      Opc == Instruction::LShr ||
1370                      Opc == Instruction::AShr) {
1371             if (Record[3] & (1 << bitc::PEO_EXACT))
1372               Flags |= SDivOperator::IsExact;
1373           }
1374         }
1375         V = ConstantExpr::get(Opc, LHS, RHS, Flags);
1376       }
1377       break;
1378     }
1379     case bitc::CST_CODE_CE_CAST: {  // CE_CAST: [opcode, opty, opval]
1380       if (Record.size() < 3) return Error("Invalid CE_CAST record");
1381       int Opc = GetDecodedCastOpcode(Record[0]);
1382       if (Opc < 0) {
1383         V = UndefValue::get(CurTy);  // Unknown cast.
1384       } else {
1385         Type *OpTy = getTypeByID(Record[1]);
1386         if (!OpTy) return Error("Invalid CE_CAST record");
1387         Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy);
1388         V = ConstantExpr::getCast(Opc, Op, CurTy);
1389       }
1390       break;
1391     }
1392     case bitc::CST_CODE_CE_INBOUNDS_GEP:
1393     case bitc::CST_CODE_CE_GEP: {  // CE_GEP:        [n x operands]
1394       if (Record.size() & 1) return Error("Invalid CE_GEP record");
1395       SmallVector<Constant*, 16> Elts;
1396       for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
1397         Type *ElTy = getTypeByID(Record[i]);
1398         if (!ElTy) return Error("Invalid CE_GEP record");
1399         Elts.push_back(ValueList.getConstantFwdRef(Record[i+1], ElTy));
1400       }
1401       ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
1402       V = ConstantExpr::getGetElementPtr(Elts[0], Indices,
1403                                          BitCode ==
1404                                            bitc::CST_CODE_CE_INBOUNDS_GEP);
1405       break;
1406     }
1407     case bitc::CST_CODE_CE_SELECT: {  // CE_SELECT: [opval#, opval#, opval#]
1408       if (Record.size() < 3) return Error("Invalid CE_SELECT record");
1409 
1410       Type *SelectorTy = Type::getInt1Ty(Context);
1411 
1412       // If CurTy is a vector of length n, then Record[0] must be a <n x i1>
1413       // vector. Otherwise, it must be a single bit.
1414       if (VectorType *VTy = dyn_cast<VectorType>(CurTy))
1415         SelectorTy = VectorType::get(Type::getInt1Ty(Context),
1416                                      VTy->getNumElements());
1417 
1418       V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0],
1419                                                               SelectorTy),
1420                                   ValueList.getConstantFwdRef(Record[1],CurTy),
1421                                   ValueList.getConstantFwdRef(Record[2],CurTy));
1422       break;
1423     }
1424     case bitc::CST_CODE_CE_EXTRACTELT: { // CE_EXTRACTELT: [opty, opval, opval]
1425       if (Record.size() < 3) return Error("Invalid CE_EXTRACTELT record");
1426       VectorType *OpTy =
1427         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
1428       if (OpTy == 0) return Error("Invalid CE_EXTRACTELT record");
1429       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
1430       Constant *Op1 = ValueList.getConstantFwdRef(Record[2],
1431                                                   Type::getInt32Ty(Context));
1432       V = ConstantExpr::getExtractElement(Op0, Op1);
1433       break;
1434     }
1435     case bitc::CST_CODE_CE_INSERTELT: { // CE_INSERTELT: [opval, opval, opval]
1436       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
1437       if (Record.size() < 3 || OpTy == 0)
1438         return Error("Invalid CE_INSERTELT record");
1439       Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
1440       Constant *Op1 = ValueList.getConstantFwdRef(Record[1],
1441                                                   OpTy->getElementType());
1442       Constant *Op2 = ValueList.getConstantFwdRef(Record[2],
1443                                                   Type::getInt32Ty(Context));
1444       V = ConstantExpr::getInsertElement(Op0, Op1, Op2);
1445       break;
1446     }
1447     case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
1448       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
1449       if (Record.size() < 3 || OpTy == 0)
1450         return Error("Invalid CE_SHUFFLEVEC record");
1451       Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
1452       Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy);
1453       Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
1454                                                  OpTy->getNumElements());
1455       Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy);
1456       V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
1457       break;
1458     }
1459     case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval]
1460       VectorType *RTy = dyn_cast<VectorType>(CurTy);
1461       VectorType *OpTy =
1462         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
1463       if (Record.size() < 4 || RTy == 0 || OpTy == 0)
1464         return Error("Invalid CE_SHUFVEC_EX record");
1465       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
1466       Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
1467       Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
1468                                                  RTy->getNumElements());
1469       Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy);
1470       V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
1471       break;
1472     }
1473     case bitc::CST_CODE_CE_CMP: {     // CE_CMP: [opty, opval, opval, pred]
1474       if (Record.size() < 4) return Error("Invalid CE_CMP record");
1475       Type *OpTy = getTypeByID(Record[0]);
1476       if (OpTy == 0) return Error("Invalid CE_CMP record");
1477       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
1478       Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
1479 
1480       if (OpTy->isFPOrFPVectorTy())
1481         V = ConstantExpr::getFCmp(Record[3], Op0, Op1);
1482       else
1483         V = ConstantExpr::getICmp(Record[3], Op0, Op1);
1484       break;
1485     }
1486     // This maintains backward compatibility, pre-asm dialect keywords.
1487     // FIXME: Remove with the 4.0 release.
1488     case bitc::CST_CODE_INLINEASM_OLD: {
1489       if (Record.size() < 2) return Error("Invalid INLINEASM record");
1490       std::string AsmStr, ConstrStr;
1491       bool HasSideEffects = Record[0] & 1;
1492       bool IsAlignStack = Record[0] >> 1;
1493       unsigned AsmStrSize = Record[1];
1494       if (2+AsmStrSize >= Record.size())
1495         return Error("Invalid INLINEASM record");
1496       unsigned ConstStrSize = Record[2+AsmStrSize];
1497       if (3+AsmStrSize+ConstStrSize > Record.size())
1498         return Error("Invalid INLINEASM record");
1499 
1500       for (unsigned i = 0; i != AsmStrSize; ++i)
1501         AsmStr += (char)Record[2+i];
1502       for (unsigned i = 0; i != ConstStrSize; ++i)
1503         ConstrStr += (char)Record[3+AsmStrSize+i];
1504       PointerType *PTy = cast<PointerType>(CurTy);
1505       V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()),
1506                          AsmStr, ConstrStr, HasSideEffects, IsAlignStack);
1507       break;
1508     }
1509     // This version adds support for the asm dialect keywords (e.g.,
1510     // inteldialect).
1511     case bitc::CST_CODE_INLINEASM: {
1512       if (Record.size() < 2) return Error("Invalid INLINEASM record");
1513       std::string AsmStr, ConstrStr;
1514       bool HasSideEffects = Record[0] & 1;
1515       bool IsAlignStack = (Record[0] >> 1) & 1;
1516       unsigned AsmDialect = Record[0] >> 2;
1517       unsigned AsmStrSize = Record[1];
1518       if (2+AsmStrSize >= Record.size())
1519         return Error("Invalid INLINEASM record");
1520       unsigned ConstStrSize = Record[2+AsmStrSize];
1521       if (3+AsmStrSize+ConstStrSize > Record.size())
1522         return Error("Invalid INLINEASM record");
1523 
1524       for (unsigned i = 0; i != AsmStrSize; ++i)
1525         AsmStr += (char)Record[2+i];
1526       for (unsigned i = 0; i != ConstStrSize; ++i)
1527         ConstrStr += (char)Record[3+AsmStrSize+i];
1528       PointerType *PTy = cast<PointerType>(CurTy);
1529       V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()),
1530                          AsmStr, ConstrStr, HasSideEffects, IsAlignStack,
1531                          InlineAsm::AsmDialect(AsmDialect));
1532       break;
1533     }
1534     case bitc::CST_CODE_BLOCKADDRESS:{
1535       if (Record.size() < 3) return Error("Invalid CE_BLOCKADDRESS record");
1536       Type *FnTy = getTypeByID(Record[0]);
1537       if (FnTy == 0) return Error("Invalid CE_BLOCKADDRESS record");
1538       Function *Fn =
1539         dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy));
1540       if (Fn == 0) return Error("Invalid CE_BLOCKADDRESS record");
1541 
1542       // If the function is already parsed we can insert the block address right
1543       // away.
1544       if (!Fn->empty()) {
1545         Function::iterator BBI = Fn->begin(), BBE = Fn->end();
1546         for (size_t I = 0, E = Record[2]; I != E; ++I) {
1547           if (BBI == BBE)
1548             return Error("Invalid blockaddress block #");
1549           ++BBI;
1550         }
1551         V = BlockAddress::get(Fn, BBI);
1552       } else {
1553         // Otherwise insert a placeholder and remember it so it can be inserted
1554         // when the function is parsed.
1555         GlobalVariable *FwdRef = new GlobalVariable(*Fn->getParent(),
1556                                                     Type::getInt8Ty(Context),
1557                                             false, GlobalValue::InternalLinkage,
1558                                                     0, "");
1559         BlockAddrFwdRefs[Fn].push_back(std::make_pair(Record[2], FwdRef));
1560         V = FwdRef;
1561       }
1562       break;
1563     }
1564     }
1565 
1566     ValueList.AssignValue(V, NextCstNo);
1567     ++NextCstNo;
1568   }
1569 }
1570 
1571 bool BitcodeReader::ParseUseLists() {
1572   if (Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID))
1573     return Error("Malformed block record");
1574 
1575   SmallVector<uint64_t, 64> Record;
1576 
1577   // Read all the records.
1578   while (1) {
1579     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1580 
1581     switch (Entry.Kind) {
1582     case BitstreamEntry::SubBlock: // Handled for us already.
1583     case BitstreamEntry::Error:
1584       return Error("malformed use list block");
1585     case BitstreamEntry::EndBlock:
1586       return false;
1587     case BitstreamEntry::Record:
1588       // The interesting case.
1589       break;
1590     }
1591 
1592     // Read a use list record.
1593     Record.clear();
1594     switch (Stream.readRecord(Entry.ID, Record)) {
1595     default:  // Default behavior: unknown type.
1596       break;
1597     case bitc::USELIST_CODE_ENTRY: { // USELIST_CODE_ENTRY: TBD.
1598       unsigned RecordLength = Record.size();
1599       if (RecordLength < 1)
1600         return Error ("Invalid UseList reader!");
1601       UseListRecords.push_back(Record);
1602       break;
1603     }
1604     }
1605   }
1606 }
1607 
1608 /// RememberAndSkipFunctionBody - When we see the block for a function body,
1609 /// remember where it is and then skip it.  This lets us lazily deserialize the
1610 /// functions.
1611 bool BitcodeReader::RememberAndSkipFunctionBody() {
1612   // Get the function we are talking about.
1613   if (FunctionsWithBodies.empty())
1614     return Error("Insufficient function protos");
1615 
1616   Function *Fn = FunctionsWithBodies.back();
1617   FunctionsWithBodies.pop_back();
1618 
1619   // Save the current stream state.
1620   uint64_t CurBit = Stream.GetCurrentBitNo();
1621   DeferredFunctionInfo[Fn] = CurBit;
1622 
1623   // Skip over the function block for now.
1624   if (Stream.SkipBlock())
1625     return Error("Malformed block record");
1626   return false;
1627 }
1628 
1629 bool BitcodeReader::GlobalCleanup() {
1630   // Patch the initializers for globals and aliases up.
1631   ResolveGlobalAndAliasInits();
1632   if (!GlobalInits.empty() || !AliasInits.empty())
1633     return Error("Malformed global initializer set");
1634 
1635   // Look for intrinsic functions which need to be upgraded at some point
1636   for (Module::iterator FI = TheModule->begin(), FE = TheModule->end();
1637        FI != FE; ++FI) {
1638     Function *NewFn;
1639     if (UpgradeIntrinsicFunction(FI, NewFn))
1640       UpgradedIntrinsics.push_back(std::make_pair(FI, NewFn));
1641   }
1642 
1643   // Look for global variables which need to be renamed.
1644   for (Module::global_iterator
1645          GI = TheModule->global_begin(), GE = TheModule->global_end();
1646        GI != GE; ++GI)
1647     UpgradeGlobalVariable(GI);
1648   // Force deallocation of memory for these vectors to favor the client that
1649   // want lazy deserialization.
1650   std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits);
1651   std::vector<std::pair<GlobalAlias*, unsigned> >().swap(AliasInits);
1652   return false;
1653 }
1654 
1655 bool BitcodeReader::ParseModule(bool Resume) {
1656   if (Resume)
1657     Stream.JumpToBit(NextUnreadBit);
1658   else if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
1659     return Error("Malformed block record");
1660 
1661   SmallVector<uint64_t, 64> Record;
1662   std::vector<std::string> SectionTable;
1663   std::vector<std::string> GCTable;
1664 
1665   // Read all the records for this module.
1666   while (1) {
1667     BitstreamEntry Entry = Stream.advance();
1668 
1669     switch (Entry.Kind) {
1670     case BitstreamEntry::Error:
1671       Error("malformed module block");
1672       return true;
1673     case BitstreamEntry::EndBlock:
1674       return GlobalCleanup();
1675 
1676     case BitstreamEntry::SubBlock:
1677       switch (Entry.ID) {
1678       default:  // Skip unknown content.
1679         if (Stream.SkipBlock())
1680           return Error("Malformed block record");
1681         break;
1682       case bitc::BLOCKINFO_BLOCK_ID:
1683         if (Stream.ReadBlockInfoBlock())
1684           return Error("Malformed BlockInfoBlock");
1685         break;
1686       case bitc::PARAMATTR_BLOCK_ID:
1687         if (ParseAttributeBlock())
1688           return true;
1689         break;
1690       case bitc::PARAMATTR_GROUP_BLOCK_ID:
1691         if (ParseAttributeGroupBlock())
1692           return true;
1693         break;
1694       case bitc::TYPE_BLOCK_ID_NEW:
1695         if (ParseTypeTable())
1696           return true;
1697         break;
1698       case bitc::VALUE_SYMTAB_BLOCK_ID:
1699         if (ParseValueSymbolTable())
1700           return true;
1701         SeenValueSymbolTable = true;
1702         break;
1703       case bitc::CONSTANTS_BLOCK_ID:
1704         if (ParseConstants() || ResolveGlobalAndAliasInits())
1705           return true;
1706         break;
1707       case bitc::METADATA_BLOCK_ID:
1708         if (ParseMetadata())
1709           return true;
1710         break;
1711       case bitc::FUNCTION_BLOCK_ID:
1712         // If this is the first function body we've seen, reverse the
1713         // FunctionsWithBodies list.
1714         if (!SeenFirstFunctionBody) {
1715           std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end());
1716           if (GlobalCleanup())
1717             return true;
1718           SeenFirstFunctionBody = true;
1719         }
1720 
1721         if (RememberAndSkipFunctionBody())
1722           return true;
1723         // For streaming bitcode, suspend parsing when we reach the function
1724         // bodies. Subsequent materialization calls will resume it when
1725         // necessary. For streaming, the function bodies must be at the end of
1726         // the bitcode. If the bitcode file is old, the symbol table will be
1727         // at the end instead and will not have been seen yet. In this case,
1728         // just finish the parse now.
1729         if (LazyStreamer && SeenValueSymbolTable) {
1730           NextUnreadBit = Stream.GetCurrentBitNo();
1731           return false;
1732         }
1733         break;
1734       case bitc::USELIST_BLOCK_ID:
1735         if (ParseUseLists())
1736           return true;
1737         break;
1738       }
1739       continue;
1740 
1741     case BitstreamEntry::Record:
1742       // The interesting case.
1743       break;
1744     }
1745 
1746 
1747     // Read a record.
1748     switch (Stream.readRecord(Entry.ID, Record)) {
1749     default: break;  // Default behavior, ignore unknown content.
1750     case bitc::MODULE_CODE_VERSION: {  // VERSION: [version#]
1751       if (Record.size() < 1)
1752         return Error("Malformed MODULE_CODE_VERSION");
1753       // Only version #0 and #1 are supported so far.
1754       unsigned module_version = Record[0];
1755       switch (module_version) {
1756         default: return Error("Unknown bitstream version!");
1757         case 0:
1758           UseRelativeIDs = false;
1759           break;
1760         case 1:
1761           UseRelativeIDs = true;
1762           break;
1763       }
1764       break;
1765     }
1766     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
1767       std::string S;
1768       if (ConvertToString(Record, 0, S))
1769         return Error("Invalid MODULE_CODE_TRIPLE record");
1770       TheModule->setTargetTriple(S);
1771       break;
1772     }
1773     case bitc::MODULE_CODE_DATALAYOUT: {  // DATALAYOUT: [strchr x N]
1774       std::string S;
1775       if (ConvertToString(Record, 0, S))
1776         return Error("Invalid MODULE_CODE_DATALAYOUT record");
1777       TheModule->setDataLayout(S);
1778       break;
1779     }
1780     case bitc::MODULE_CODE_ASM: {  // ASM: [strchr x N]
1781       std::string S;
1782       if (ConvertToString(Record, 0, S))
1783         return Error("Invalid MODULE_CODE_ASM record");
1784       TheModule->setModuleInlineAsm(S);
1785       break;
1786     }
1787     case bitc::MODULE_CODE_DEPLIB: {  // DEPLIB: [strchr x N]
1788       // FIXME: Remove in 4.0.
1789       std::string S;
1790       if (ConvertToString(Record, 0, S))
1791         return Error("Invalid MODULE_CODE_DEPLIB record");
1792       // Ignore value.
1793       break;
1794     }
1795     case bitc::MODULE_CODE_SECTIONNAME: {  // SECTIONNAME: [strchr x N]
1796       std::string S;
1797       if (ConvertToString(Record, 0, S))
1798         return Error("Invalid MODULE_CODE_SECTIONNAME record");
1799       SectionTable.push_back(S);
1800       break;
1801     }
1802     case bitc::MODULE_CODE_GCNAME: {  // SECTIONNAME: [strchr x N]
1803       std::string S;
1804       if (ConvertToString(Record, 0, S))
1805         return Error("Invalid MODULE_CODE_GCNAME record");
1806       GCTable.push_back(S);
1807       break;
1808     }
1809     // GLOBALVAR: [pointer type, isconst, initid,
1810     //             linkage, alignment, section, visibility, threadlocal,
1811     //             unnamed_addr]
1812     case bitc::MODULE_CODE_GLOBALVAR: {
1813       if (Record.size() < 6)
1814         return Error("Invalid MODULE_CODE_GLOBALVAR record");
1815       Type *Ty = getTypeByID(Record[0]);
1816       if (!Ty) return Error("Invalid MODULE_CODE_GLOBALVAR record");
1817       if (!Ty->isPointerTy())
1818         return Error("Global not a pointer type!");
1819       unsigned AddressSpace = cast<PointerType>(Ty)->getAddressSpace();
1820       Ty = cast<PointerType>(Ty)->getElementType();
1821 
1822       bool isConstant = Record[1];
1823       GlobalValue::LinkageTypes Linkage = GetDecodedLinkage(Record[3]);
1824       unsigned Alignment = (1 << Record[4]) >> 1;
1825       std::string Section;
1826       if (Record[5]) {
1827         if (Record[5]-1 >= SectionTable.size())
1828           return Error("Invalid section ID");
1829         Section = SectionTable[Record[5]-1];
1830       }
1831       GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility;
1832       if (Record.size() > 6)
1833         Visibility = GetDecodedVisibility(Record[6]);
1834 
1835       GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal;
1836       if (Record.size() > 7)
1837         TLM = GetDecodedThreadLocalMode(Record[7]);
1838 
1839       bool UnnamedAddr = false;
1840       if (Record.size() > 8)
1841         UnnamedAddr = Record[8];
1842 
1843       bool ExternallyInitialized = false;
1844       if (Record.size() > 9)
1845         ExternallyInitialized = Record[9];
1846 
1847       GlobalVariable *NewGV =
1848         new GlobalVariable(*TheModule, Ty, isConstant, Linkage, 0, "", 0,
1849                            TLM, AddressSpace, ExternallyInitialized);
1850       NewGV->setAlignment(Alignment);
1851       if (Record.size() > 10)
1852         NewGV->setAddressMaybeTaken(Record[10]);
1853 
1854       if (!Section.empty())
1855         NewGV->setSection(Section);
1856       NewGV->setVisibility(Visibility);
1857       NewGV->setUnnamedAddr(UnnamedAddr);
1858 
1859       ValueList.push_back(NewGV);
1860 
1861       // Remember which value to use for the global initializer.
1862       if (unsigned InitID = Record[2])
1863         GlobalInits.push_back(std::make_pair(NewGV, InitID-1));
1864       break;
1865     }
1866     // FUNCTION:  [type, callingconv, isproto, linkage, paramattr,
1867     //             alignment, section, visibility, gc, unnamed_addr]
1868     case bitc::MODULE_CODE_FUNCTION: {
1869       if (Record.size() < 8)
1870         return Error("Invalid MODULE_CODE_FUNCTION record");
1871       Type *Ty = getTypeByID(Record[0]);
1872       if (!Ty) return Error("Invalid MODULE_CODE_FUNCTION record");
1873       if (!Ty->isPointerTy())
1874         return Error("Function not a pointer type!");
1875       FunctionType *FTy =
1876         dyn_cast<FunctionType>(cast<PointerType>(Ty)->getElementType());
1877       if (!FTy)
1878         return Error("Function not a pointer to function type!");
1879 
1880       Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage,
1881                                         "", TheModule);
1882 
1883       Func->setCallingConv(static_cast<CallingConv::ID>(Record[1]));
1884       bool isProto = Record[2];
1885       Func->setLinkage(GetDecodedLinkage(Record[3]));
1886       Func->setAttributes(getAttributes(Record[4]));
1887 
1888       Func->setAlignment((1 << Record[5]) >> 1);
1889       if (Record[6]) {
1890         if (Record[6]-1 >= SectionTable.size())
1891           return Error("Invalid section ID");
1892         Func->setSection(SectionTable[Record[6]-1]);
1893       }
1894       Func->setVisibility(GetDecodedVisibility(Record[7]));
1895       if (Record.size() > 8 && Record[8]) {
1896         if (Record[8]-1 > GCTable.size())
1897           return Error("Invalid GC ID");
1898         Func->setGC(GCTable[Record[8]-1].c_str());
1899       }
1900       bool UnnamedAddr = false;
1901       if (Record.size() > 9)
1902         UnnamedAddr = Record[9];
1903       Func->setUnnamedAddr(UnnamedAddr);
1904       if (Record.size() > 10 && Record[10] != 0)
1905         FunctionPrefixes.push_back(std::make_pair(Func, Record[10]-1));
1906       ValueList.push_back(Func);
1907 
1908       // If this is a function with a body, remember the prototype we are
1909       // creating now, so that we can match up the body with them later.
1910       if (!isProto) {
1911         FunctionsWithBodies.push_back(Func);
1912         if (LazyStreamer) DeferredFunctionInfo[Func] = 0;
1913       }
1914       break;
1915     }
1916     // ALIAS: [alias type, aliasee val#, linkage]
1917     // ALIAS: [alias type, aliasee val#, linkage, visibility]
1918     case bitc::MODULE_CODE_ALIAS: {
1919       if (Record.size() < 3)
1920         return Error("Invalid MODULE_ALIAS record");
1921       Type *Ty = getTypeByID(Record[0]);
1922       if (!Ty) return Error("Invalid MODULE_ALIAS record");
1923       if (!Ty->isPointerTy())
1924         return Error("Function not a pointer type!");
1925 
1926       GlobalAlias *NewGA = new GlobalAlias(Ty, GetDecodedLinkage(Record[2]),
1927                                            "", 0, TheModule);
1928       // Old bitcode files didn't have visibility field.
1929       if (Record.size() > 3)
1930         NewGA->setVisibility(GetDecodedVisibility(Record[3]));
1931       ValueList.push_back(NewGA);
1932       AliasInits.push_back(std::make_pair(NewGA, Record[1]));
1933       break;
1934     }
1935     /// MODULE_CODE_PURGEVALS: [numvals]
1936     case bitc::MODULE_CODE_PURGEVALS:
1937       // Trim down the value list to the specified size.
1938       if (Record.size() < 1 || Record[0] > ValueList.size())
1939         return Error("Invalid MODULE_PURGEVALS record");
1940       ValueList.shrinkTo(Record[0]);
1941       break;
1942     }
1943     Record.clear();
1944   }
1945 }
1946 
1947 bool BitcodeReader::ParseBitcodeInto(Module *M) {
1948   TheModule = 0;
1949 
1950   if (InitStream()) return true;
1951 
1952   // Sniff for the signature.
1953   if (Stream.Read(8) != 'B' ||
1954       Stream.Read(8) != 'C' ||
1955       Stream.Read(4) != 0x0 ||
1956       Stream.Read(4) != 0xC ||
1957       Stream.Read(4) != 0xE ||
1958       Stream.Read(4) != 0xD)
1959     return Error("Invalid bitcode signature");
1960 
1961   // We expect a number of well-defined blocks, though we don't necessarily
1962   // need to understand them all.
1963   while (1) {
1964     if (Stream.AtEndOfStream())
1965       return false;
1966 
1967     BitstreamEntry Entry =
1968       Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs);
1969 
1970     switch (Entry.Kind) {
1971     case BitstreamEntry::Error:
1972       Error("malformed module file");
1973       return true;
1974     case BitstreamEntry::EndBlock:
1975       return false;
1976 
1977     case BitstreamEntry::SubBlock:
1978       switch (Entry.ID) {
1979       case bitc::BLOCKINFO_BLOCK_ID:
1980         if (Stream.ReadBlockInfoBlock())
1981           return Error("Malformed BlockInfoBlock");
1982         break;
1983       case bitc::MODULE_BLOCK_ID:
1984         // Reject multiple MODULE_BLOCK's in a single bitstream.
1985         if (TheModule)
1986           return Error("Multiple MODULE_BLOCKs in same stream");
1987         TheModule = M;
1988         if (ParseModule(false))
1989           return true;
1990         if (LazyStreamer) return false;
1991         break;
1992       default:
1993         if (Stream.SkipBlock())
1994           return Error("Malformed block record");
1995         break;
1996       }
1997       continue;
1998     case BitstreamEntry::Record:
1999       // There should be no records in the top-level of blocks.
2000 
2001       // The ranlib in Xcode 4 will align archive members by appending newlines
2002       // to the end of them. If this file size is a multiple of 4 but not 8, we
2003       // have to read and ignore these final 4 bytes :-(
2004       if (Stream.getAbbrevIDWidth() == 2 && Entry.ID == 2 &&
2005           Stream.Read(6) == 2 && Stream.Read(24) == 0xa0a0a &&
2006           Stream.AtEndOfStream())
2007         return false;
2008 
2009       return Error("Invalid record at top-level");
2010     }
2011   }
2012 }
2013 
2014 bool BitcodeReader::ParseModuleTriple(std::string &Triple) {
2015   if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
2016     return Error("Malformed block record");
2017 
2018   SmallVector<uint64_t, 64> Record;
2019 
2020   // Read all the records for this module.
2021   while (1) {
2022     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
2023 
2024     switch (Entry.Kind) {
2025     case BitstreamEntry::SubBlock: // Handled for us already.
2026     case BitstreamEntry::Error:
2027       return Error("malformed module block");
2028     case BitstreamEntry::EndBlock:
2029       return false;
2030     case BitstreamEntry::Record:
2031       // The interesting case.
2032       break;
2033     }
2034 
2035     // Read a record.
2036     switch (Stream.readRecord(Entry.ID, Record)) {
2037     default: break;  // Default behavior, ignore unknown content.
2038     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
2039       std::string S;
2040       if (ConvertToString(Record, 0, S))
2041         return Error("Invalid MODULE_CODE_TRIPLE record");
2042       Triple = S;
2043       break;
2044     }
2045     }
2046     Record.clear();
2047   }
2048 }
2049 
2050 bool BitcodeReader::ParseTriple(std::string &Triple) {
2051   if (InitStream()) return true;
2052 
2053   // Sniff for the signature.
2054   if (Stream.Read(8) != 'B' ||
2055       Stream.Read(8) != 'C' ||
2056       Stream.Read(4) != 0x0 ||
2057       Stream.Read(4) != 0xC ||
2058       Stream.Read(4) != 0xE ||
2059       Stream.Read(4) != 0xD)
2060     return Error("Invalid bitcode signature");
2061 
2062   // We expect a number of well-defined blocks, though we don't necessarily
2063   // need to understand them all.
2064   while (1) {
2065     BitstreamEntry Entry = Stream.advance();
2066 
2067     switch (Entry.Kind) {
2068     case BitstreamEntry::Error:
2069       Error("malformed module file");
2070       return true;
2071     case BitstreamEntry::EndBlock:
2072       return false;
2073 
2074     case BitstreamEntry::SubBlock:
2075       if (Entry.ID == bitc::MODULE_BLOCK_ID)
2076         return ParseModuleTriple(Triple);
2077 
2078       // Ignore other sub-blocks.
2079       if (Stream.SkipBlock()) {
2080         Error("malformed block record in AST file");
2081         return true;
2082       }
2083       continue;
2084 
2085     case BitstreamEntry::Record:
2086       Stream.skipRecord(Entry.ID);
2087       continue;
2088     }
2089   }
2090 }
2091 
2092 /// ParseMetadataAttachment - Parse metadata attachments.
2093 bool BitcodeReader::ParseMetadataAttachment() {
2094   if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID))
2095     return Error("Malformed block record");
2096 
2097   SmallVector<uint64_t, 64> Record;
2098   while (1) {
2099     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
2100 
2101     switch (Entry.Kind) {
2102     case BitstreamEntry::SubBlock: // Handled for us already.
2103     case BitstreamEntry::Error:
2104       return Error("malformed metadata block");
2105     case BitstreamEntry::EndBlock:
2106       return false;
2107     case BitstreamEntry::Record:
2108       // The interesting case.
2109       break;
2110     }
2111 
2112     // Read a metadata attachment record.
2113     Record.clear();
2114     switch (Stream.readRecord(Entry.ID, Record)) {
2115     default:  // Default behavior: ignore.
2116       break;
2117     case bitc::METADATA_ATTACHMENT: {
2118       unsigned RecordLength = Record.size();
2119       if (Record.empty() || (RecordLength - 1) % 2 == 1)
2120         return Error ("Invalid METADATA_ATTACHMENT reader!");
2121       Instruction *Inst = InstructionList[Record[0]];
2122       for (unsigned i = 1; i != RecordLength; i = i+2) {
2123         unsigned Kind = Record[i];
2124         DenseMap<unsigned, unsigned>::iterator I =
2125           MDKindMap.find(Kind);
2126         if (I == MDKindMap.end())
2127           return Error("Invalid metadata kind ID");
2128         Value *Node = MDValueList.getValueFwdRef(Record[i+1]);
2129         Inst->setMetadata(I->second, cast<MDNode>(Node));
2130         if (I->second == LLVMContext::MD_tbaa)
2131           InstsWithTBAATag.push_back(Inst);
2132       }
2133       break;
2134     }
2135     }
2136   }
2137 }
2138 
2139 /// ParseFunctionBody - Lazily parse the specified function body block.
2140 bool BitcodeReader::ParseFunctionBody(Function *F) {
2141   if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID))
2142     return Error("Malformed block record");
2143 
2144   InstructionList.clear();
2145   unsigned ModuleValueListSize = ValueList.size();
2146   unsigned ModuleMDValueListSize = MDValueList.size();
2147 
2148   // Add all the function arguments to the value table.
2149   for(Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I)
2150     ValueList.push_back(I);
2151 
2152   unsigned NextValueNo = ValueList.size();
2153   BasicBlock *CurBB = 0;
2154   unsigned CurBBNo = 0;
2155 
2156   DebugLoc LastLoc;
2157 
2158   // Read all the records.
2159   SmallVector<uint64_t, 64> Record;
2160   while (1) {
2161     BitstreamEntry Entry = Stream.advance();
2162 
2163     switch (Entry.Kind) {
2164     case BitstreamEntry::Error:
2165       return Error("Bitcode error in function block");
2166     case BitstreamEntry::EndBlock:
2167       goto OutOfRecordLoop;
2168 
2169     case BitstreamEntry::SubBlock:
2170       switch (Entry.ID) {
2171       default:  // Skip unknown content.
2172         if (Stream.SkipBlock())
2173           return Error("Malformed block record");
2174         break;
2175       case bitc::CONSTANTS_BLOCK_ID:
2176         if (ParseConstants()) return true;
2177         NextValueNo = ValueList.size();
2178         break;
2179       case bitc::VALUE_SYMTAB_BLOCK_ID:
2180         if (ParseValueSymbolTable()) return true;
2181         break;
2182       case bitc::METADATA_ATTACHMENT_ID:
2183         if (ParseMetadataAttachment()) return true;
2184         break;
2185       case bitc::METADATA_BLOCK_ID:
2186         if (ParseMetadata()) return true;
2187         break;
2188       }
2189       continue;
2190 
2191     case BitstreamEntry::Record:
2192       // The interesting case.
2193       break;
2194     }
2195 
2196     // Read a record.
2197     Record.clear();
2198     Instruction *I = 0;
2199     unsigned BitCode = Stream.readRecord(Entry.ID, Record);
2200     switch (BitCode) {
2201     default: // Default behavior: reject
2202       return Error("Unknown instruction");
2203     case bitc::FUNC_CODE_DECLAREBLOCKS:     // DECLAREBLOCKS: [nblocks]
2204       if (Record.size() < 1 || Record[0] == 0)
2205         return Error("Invalid DECLAREBLOCKS record");
2206       // Create all the basic blocks for the function.
2207       FunctionBBs.resize(Record[0]);
2208       for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i)
2209         FunctionBBs[i] = BasicBlock::Create(Context, "", F);
2210       CurBB = FunctionBBs[0];
2211       continue;
2212 
2213     case bitc::FUNC_CODE_DEBUG_LOC_AGAIN:  // DEBUG_LOC_AGAIN
2214       // This record indicates that the last instruction is at the same
2215       // location as the previous instruction with a location.
2216       I = 0;
2217 
2218       // Get the last instruction emitted.
2219       if (CurBB && !CurBB->empty())
2220         I = &CurBB->back();
2221       else if (CurBBNo && FunctionBBs[CurBBNo-1] &&
2222                !FunctionBBs[CurBBNo-1]->empty())
2223         I = &FunctionBBs[CurBBNo-1]->back();
2224 
2225       if (I == 0) return Error("Invalid DEBUG_LOC_AGAIN record");
2226       I->setDebugLoc(LastLoc);
2227       I = 0;
2228       continue;
2229 
2230     case bitc::FUNC_CODE_DEBUG_LOC: {      // DEBUG_LOC: [line, col, scope, ia]
2231       I = 0;     // Get the last instruction emitted.
2232       if (CurBB && !CurBB->empty())
2233         I = &CurBB->back();
2234       else if (CurBBNo && FunctionBBs[CurBBNo-1] &&
2235                !FunctionBBs[CurBBNo-1]->empty())
2236         I = &FunctionBBs[CurBBNo-1]->back();
2237       if (I == 0 || Record.size() < 4)
2238         return Error("Invalid FUNC_CODE_DEBUG_LOC record");
2239 
2240       unsigned Line = Record[0], Col = Record[1];
2241       unsigned ScopeID = Record[2], IAID = Record[3];
2242 
2243       MDNode *Scope = 0, *IA = 0;
2244       if (ScopeID) Scope = cast<MDNode>(MDValueList.getValueFwdRef(ScopeID-1));
2245       if (IAID)    IA = cast<MDNode>(MDValueList.getValueFwdRef(IAID-1));
2246       LastLoc = DebugLoc::get(Line, Col, Scope, IA);
2247       I->setDebugLoc(LastLoc);
2248       I = 0;
2249       continue;
2250     }
2251 
2252     case bitc::FUNC_CODE_INST_BINOP: {    // BINOP: [opval, ty, opval, opcode]
2253       unsigned OpNum = 0;
2254       Value *LHS, *RHS;
2255       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
2256           popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) ||
2257           OpNum+1 > Record.size())
2258         return Error("Invalid BINOP record");
2259 
2260       int Opc = GetDecodedBinaryOpcode(Record[OpNum++], LHS->getType());
2261       if (Opc == -1) return Error("Invalid BINOP record");
2262       I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
2263       InstructionList.push_back(I);
2264       if (OpNum < Record.size()) {
2265         if (Opc == Instruction::Add ||
2266             Opc == Instruction::Sub ||
2267             Opc == Instruction::Mul ||
2268             Opc == Instruction::Shl) {
2269           if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP))
2270             cast<BinaryOperator>(I)->setHasNoSignedWrap(true);
2271           if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
2272             cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true);
2273         } else if (Opc == Instruction::SDiv ||
2274                    Opc == Instruction::UDiv ||
2275                    Opc == Instruction::LShr ||
2276                    Opc == Instruction::AShr) {
2277           if (Record[OpNum] & (1 << bitc::PEO_EXACT))
2278             cast<BinaryOperator>(I)->setIsExact(true);
2279         } else if (isa<FPMathOperator>(I)) {
2280           FastMathFlags FMF;
2281           if (0 != (Record[OpNum] & FastMathFlags::UnsafeAlgebra))
2282             FMF.setUnsafeAlgebra();
2283           if (0 != (Record[OpNum] & FastMathFlags::NoNaNs))
2284             FMF.setNoNaNs();
2285           if (0 != (Record[OpNum] & FastMathFlags::NoInfs))
2286             FMF.setNoInfs();
2287           if (0 != (Record[OpNum] & FastMathFlags::NoSignedZeros))
2288             FMF.setNoSignedZeros();
2289           if (0 != (Record[OpNum] & FastMathFlags::AllowReciprocal))
2290             FMF.setAllowReciprocal();
2291           if (FMF.any())
2292             I->setFastMathFlags(FMF);
2293         }
2294 
2295       }
2296       break;
2297     }
2298     case bitc::FUNC_CODE_INST_CAST: {    // CAST: [opval, opty, destty, castopc]
2299       unsigned OpNum = 0;
2300       Value *Op;
2301       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
2302           OpNum+2 != Record.size())
2303         return Error("Invalid CAST record");
2304 
2305       Type *ResTy = getTypeByID(Record[OpNum]);
2306       int Opc = GetDecodedCastOpcode(Record[OpNum+1]);
2307       if (Opc == -1 || ResTy == 0)
2308         return Error("Invalid CAST record");
2309       I = CastInst::Create((Instruction::CastOps)Opc, Op, ResTy);
2310       InstructionList.push_back(I);
2311       break;
2312     }
2313     case bitc::FUNC_CODE_INST_INBOUNDS_GEP:
2314     case bitc::FUNC_CODE_INST_GEP: { // GEP: [n x operands]
2315       unsigned OpNum = 0;
2316       Value *BasePtr;
2317       if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr))
2318         return Error("Invalid GEP record");
2319 
2320       SmallVector<Value*, 16> GEPIdx;
2321       while (OpNum != Record.size()) {
2322         Value *Op;
2323         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
2324           return Error("Invalid GEP record");
2325         GEPIdx.push_back(Op);
2326       }
2327 
2328       I = GetElementPtrInst::Create(BasePtr, GEPIdx);
2329       InstructionList.push_back(I);
2330       if (BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP)
2331         cast<GetElementPtrInst>(I)->setIsInBounds(true);
2332       break;
2333     }
2334 
2335     case bitc::FUNC_CODE_INST_EXTRACTVAL: {
2336                                        // EXTRACTVAL: [opty, opval, n x indices]
2337       unsigned OpNum = 0;
2338       Value *Agg;
2339       if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
2340         return Error("Invalid EXTRACTVAL record");
2341 
2342       SmallVector<unsigned, 4> EXTRACTVALIdx;
2343       for (unsigned RecSize = Record.size();
2344            OpNum != RecSize; ++OpNum) {
2345         uint64_t Index = Record[OpNum];
2346         if ((unsigned)Index != Index)
2347           return Error("Invalid EXTRACTVAL index");
2348         EXTRACTVALIdx.push_back((unsigned)Index);
2349       }
2350 
2351       I = ExtractValueInst::Create(Agg, EXTRACTVALIdx);
2352       InstructionList.push_back(I);
2353       break;
2354     }
2355 
2356     case bitc::FUNC_CODE_INST_INSERTVAL: {
2357                            // INSERTVAL: [opty, opval, opty, opval, n x indices]
2358       unsigned OpNum = 0;
2359       Value *Agg;
2360       if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
2361         return Error("Invalid INSERTVAL record");
2362       Value *Val;
2363       if (getValueTypePair(Record, OpNum, NextValueNo, Val))
2364         return Error("Invalid INSERTVAL record");
2365 
2366       SmallVector<unsigned, 4> INSERTVALIdx;
2367       for (unsigned RecSize = Record.size();
2368            OpNum != RecSize; ++OpNum) {
2369         uint64_t Index = Record[OpNum];
2370         if ((unsigned)Index != Index)
2371           return Error("Invalid INSERTVAL index");
2372         INSERTVALIdx.push_back((unsigned)Index);
2373       }
2374 
2375       I = InsertValueInst::Create(Agg, Val, INSERTVALIdx);
2376       InstructionList.push_back(I);
2377       break;
2378     }
2379 
2380     case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval]
2381       // obsolete form of select
2382       // handles select i1 ... in old bitcode
2383       unsigned OpNum = 0;
2384       Value *TrueVal, *FalseVal, *Cond;
2385       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
2386           popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) ||
2387           popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond))
2388         return Error("Invalid SELECT record");
2389 
2390       I = SelectInst::Create(Cond, TrueVal, FalseVal);
2391       InstructionList.push_back(I);
2392       break;
2393     }
2394 
2395     case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred]
2396       // new form of select
2397       // handles select i1 or select [N x i1]
2398       unsigned OpNum = 0;
2399       Value *TrueVal, *FalseVal, *Cond;
2400       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
2401           popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) ||
2402           getValueTypePair(Record, OpNum, NextValueNo, Cond))
2403         return Error("Invalid SELECT record");
2404 
2405       // select condition can be either i1 or [N x i1]
2406       if (VectorType* vector_type =
2407           dyn_cast<VectorType>(Cond->getType())) {
2408         // expect <n x i1>
2409         if (vector_type->getElementType() != Type::getInt1Ty(Context))
2410           return Error("Invalid SELECT condition type");
2411       } else {
2412         // expect i1
2413         if (Cond->getType() != Type::getInt1Ty(Context))
2414           return Error("Invalid SELECT condition type");
2415       }
2416 
2417       I = SelectInst::Create(Cond, TrueVal, FalseVal);
2418       InstructionList.push_back(I);
2419       break;
2420     }
2421 
2422     case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval]
2423       unsigned OpNum = 0;
2424       Value *Vec, *Idx;
2425       if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
2426           popValue(Record, OpNum, NextValueNo, Type::getInt32Ty(Context), Idx))
2427         return Error("Invalid EXTRACTELT record");
2428       I = ExtractElementInst::Create(Vec, Idx);
2429       InstructionList.push_back(I);
2430       break;
2431     }
2432 
2433     case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval]
2434       unsigned OpNum = 0;
2435       Value *Vec, *Elt, *Idx;
2436       if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
2437           popValue(Record, OpNum, NextValueNo,
2438                    cast<VectorType>(Vec->getType())->getElementType(), Elt) ||
2439           popValue(Record, OpNum, NextValueNo, Type::getInt32Ty(Context), Idx))
2440         return Error("Invalid INSERTELT record");
2441       I = InsertElementInst::Create(Vec, Elt, Idx);
2442       InstructionList.push_back(I);
2443       break;
2444     }
2445 
2446     case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval]
2447       unsigned OpNum = 0;
2448       Value *Vec1, *Vec2, *Mask;
2449       if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) ||
2450           popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2))
2451         return Error("Invalid SHUFFLEVEC record");
2452 
2453       if (getValueTypePair(Record, OpNum, NextValueNo, Mask))
2454         return Error("Invalid SHUFFLEVEC record");
2455       I = new ShuffleVectorInst(Vec1, Vec2, Mask);
2456       InstructionList.push_back(I);
2457       break;
2458     }
2459 
2460     case bitc::FUNC_CODE_INST_CMP:   // CMP: [opty, opval, opval, pred]
2461       // Old form of ICmp/FCmp returning bool
2462       // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were
2463       // both legal on vectors but had different behaviour.
2464     case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred]
2465       // FCmp/ICmp returning bool or vector of bool
2466 
2467       unsigned OpNum = 0;
2468       Value *LHS, *RHS;
2469       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
2470           popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) ||
2471           OpNum+1 != Record.size())
2472         return Error("Invalid CMP record");
2473 
2474       if (LHS->getType()->isFPOrFPVectorTy())
2475         I = new FCmpInst((FCmpInst::Predicate)Record[OpNum], LHS, RHS);
2476       else
2477         I = new ICmpInst((ICmpInst::Predicate)Record[OpNum], LHS, RHS);
2478       InstructionList.push_back(I);
2479       break;
2480     }
2481 
2482     case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>]
2483       {
2484         unsigned Size = Record.size();
2485         if (Size == 0) {
2486           I = ReturnInst::Create(Context);
2487           InstructionList.push_back(I);
2488           break;
2489         }
2490 
2491         unsigned OpNum = 0;
2492         Value *Op = NULL;
2493         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
2494           return Error("Invalid RET record");
2495         if (OpNum != Record.size())
2496           return Error("Invalid RET record");
2497 
2498         I = ReturnInst::Create(Context, Op);
2499         InstructionList.push_back(I);
2500         break;
2501       }
2502     case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#]
2503       if (Record.size() != 1 && Record.size() != 3)
2504         return Error("Invalid BR record");
2505       BasicBlock *TrueDest = getBasicBlock(Record[0]);
2506       if (TrueDest == 0)
2507         return Error("Invalid BR record");
2508 
2509       if (Record.size() == 1) {
2510         I = BranchInst::Create(TrueDest);
2511         InstructionList.push_back(I);
2512       }
2513       else {
2514         BasicBlock *FalseDest = getBasicBlock(Record[1]);
2515         Value *Cond = getValue(Record, 2, NextValueNo,
2516                                Type::getInt1Ty(Context));
2517         if (FalseDest == 0 || Cond == 0)
2518           return Error("Invalid BR record");
2519         I = BranchInst::Create(TrueDest, FalseDest, Cond);
2520         InstructionList.push_back(I);
2521       }
2522       break;
2523     }
2524     case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...]
2525       // Check magic
2526       if ((Record[0] >> 16) == SWITCH_INST_MAGIC) {
2527         // "New" SwitchInst format with case ranges. The changes to write this
2528         // format were reverted but we still recognize bitcode that uses it.
2529         // Hopefully someday we will have support for case ranges and can use
2530         // this format again.
2531 
2532         Type *OpTy = getTypeByID(Record[1]);
2533         unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth();
2534 
2535         Value *Cond = getValue(Record, 2, NextValueNo, OpTy);
2536         BasicBlock *Default = getBasicBlock(Record[3]);
2537         if (OpTy == 0 || Cond == 0 || Default == 0)
2538           return Error("Invalid SWITCH record");
2539 
2540         unsigned NumCases = Record[4];
2541 
2542         SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
2543         InstructionList.push_back(SI);
2544 
2545         unsigned CurIdx = 5;
2546         for (unsigned i = 0; i != NumCases; ++i) {
2547           SmallVector<ConstantInt*, 1> CaseVals;
2548           unsigned NumItems = Record[CurIdx++];
2549           for (unsigned ci = 0; ci != NumItems; ++ci) {
2550             bool isSingleNumber = Record[CurIdx++];
2551 
2552             APInt Low;
2553             unsigned ActiveWords = 1;
2554             if (ValueBitWidth > 64)
2555               ActiveWords = Record[CurIdx++];
2556             Low = ReadWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords),
2557                                 ValueBitWidth);
2558             CurIdx += ActiveWords;
2559 
2560             if (!isSingleNumber) {
2561               ActiveWords = 1;
2562               if (ValueBitWidth > 64)
2563                 ActiveWords = Record[CurIdx++];
2564               APInt High =
2565                   ReadWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords),
2566                                 ValueBitWidth);
2567               CurIdx += ActiveWords;
2568 
2569               // FIXME: It is not clear whether values in the range should be
2570               // compared as signed or unsigned values. The partially
2571               // implemented changes that used this format in the past used
2572               // unsigned comparisons.
2573               for ( ; Low.ule(High); ++Low)
2574                 CaseVals.push_back(ConstantInt::get(Context, Low));
2575             } else
2576               CaseVals.push_back(ConstantInt::get(Context, Low));
2577           }
2578           BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]);
2579           for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(),
2580                  cve = CaseVals.end(); cvi != cve; ++cvi)
2581             SI->addCase(*cvi, DestBB);
2582         }
2583         I = SI;
2584         break;
2585       }
2586 
2587       // Old SwitchInst format without case ranges.
2588 
2589       if (Record.size() < 3 || (Record.size() & 1) == 0)
2590         return Error("Invalid SWITCH record");
2591       Type *OpTy = getTypeByID(Record[0]);
2592       Value *Cond = getValue(Record, 1, NextValueNo, OpTy);
2593       BasicBlock *Default = getBasicBlock(Record[2]);
2594       if (OpTy == 0 || Cond == 0 || Default == 0)
2595         return Error("Invalid SWITCH record");
2596       unsigned NumCases = (Record.size()-3)/2;
2597       SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
2598       InstructionList.push_back(SI);
2599       for (unsigned i = 0, e = NumCases; i != e; ++i) {
2600         ConstantInt *CaseVal =
2601           dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy));
2602         BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]);
2603         if (CaseVal == 0 || DestBB == 0) {
2604           delete SI;
2605           return Error("Invalid SWITCH record!");
2606         }
2607         SI->addCase(CaseVal, DestBB);
2608       }
2609       I = SI;
2610       break;
2611     }
2612     case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...]
2613       if (Record.size() < 2)
2614         return Error("Invalid INDIRECTBR record");
2615       Type *OpTy = getTypeByID(Record[0]);
2616       Value *Address = getValue(Record, 1, NextValueNo, OpTy);
2617       if (OpTy == 0 || Address == 0)
2618         return Error("Invalid INDIRECTBR record");
2619       unsigned NumDests = Record.size()-2;
2620       IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests);
2621       InstructionList.push_back(IBI);
2622       for (unsigned i = 0, e = NumDests; i != e; ++i) {
2623         if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) {
2624           IBI->addDestination(DestBB);
2625         } else {
2626           delete IBI;
2627           return Error("Invalid INDIRECTBR record!");
2628         }
2629       }
2630       I = IBI;
2631       break;
2632     }
2633 
2634     case bitc::FUNC_CODE_INST_INVOKE: {
2635       // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...]
2636       if (Record.size() < 4) return Error("Invalid INVOKE record");
2637       AttributeSet PAL = getAttributes(Record[0]);
2638       unsigned CCInfo = Record[1];
2639       BasicBlock *NormalBB = getBasicBlock(Record[2]);
2640       BasicBlock *UnwindBB = getBasicBlock(Record[3]);
2641 
2642       unsigned OpNum = 4;
2643       Value *Callee;
2644       if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
2645         return Error("Invalid INVOKE record");
2646 
2647       PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType());
2648       FunctionType *FTy = !CalleeTy ? 0 :
2649         dyn_cast<FunctionType>(CalleeTy->getElementType());
2650 
2651       // Check that the right number of fixed parameters are here.
2652       if (FTy == 0 || NormalBB == 0 || UnwindBB == 0 ||
2653           Record.size() < OpNum+FTy->getNumParams())
2654         return Error("Invalid INVOKE record");
2655 
2656       SmallVector<Value*, 16> Ops;
2657       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
2658         Ops.push_back(getValue(Record, OpNum, NextValueNo,
2659                                FTy->getParamType(i)));
2660         if (Ops.back() == 0) return Error("Invalid INVOKE record");
2661       }
2662 
2663       if (!FTy->isVarArg()) {
2664         if (Record.size() != OpNum)
2665           return Error("Invalid INVOKE record");
2666       } else {
2667         // Read type/value pairs for varargs params.
2668         while (OpNum != Record.size()) {
2669           Value *Op;
2670           if (getValueTypePair(Record, OpNum, NextValueNo, Op))
2671             return Error("Invalid INVOKE record");
2672           Ops.push_back(Op);
2673         }
2674       }
2675 
2676       I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops);
2677       InstructionList.push_back(I);
2678       cast<InvokeInst>(I)->setCallingConv(
2679         static_cast<CallingConv::ID>(CCInfo));
2680       cast<InvokeInst>(I)->setAttributes(PAL);
2681       break;
2682     }
2683     case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval]
2684       unsigned Idx = 0;
2685       Value *Val = 0;
2686       if (getValueTypePair(Record, Idx, NextValueNo, Val))
2687         return Error("Invalid RESUME record");
2688       I = ResumeInst::Create(Val);
2689       InstructionList.push_back(I);
2690       break;
2691     }
2692     case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE
2693       I = new UnreachableInst(Context);
2694       InstructionList.push_back(I);
2695       break;
2696     case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...]
2697       if (Record.size() < 1 || ((Record.size()-1)&1))
2698         return Error("Invalid PHI record");
2699       Type *Ty = getTypeByID(Record[0]);
2700       if (!Ty) return Error("Invalid PHI record");
2701 
2702       PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2);
2703       InstructionList.push_back(PN);
2704 
2705       for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) {
2706         Value *V;
2707         // With the new function encoding, it is possible that operands have
2708         // negative IDs (for forward references).  Use a signed VBR
2709         // representation to keep the encoding small.
2710         if (UseRelativeIDs)
2711           V = getValueSigned(Record, 1+i, NextValueNo, Ty);
2712         else
2713           V = getValue(Record, 1+i, NextValueNo, Ty);
2714         BasicBlock *BB = getBasicBlock(Record[2+i]);
2715         if (!V || !BB) return Error("Invalid PHI record");
2716         PN->addIncoming(V, BB);
2717       }
2718       I = PN;
2719       break;
2720     }
2721 
2722     case bitc::FUNC_CODE_INST_LANDINGPAD: {
2723       // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?]
2724       unsigned Idx = 0;
2725       if (Record.size() < 4)
2726         return Error("Invalid LANDINGPAD record");
2727       Type *Ty = getTypeByID(Record[Idx++]);
2728       if (!Ty) return Error("Invalid LANDINGPAD record");
2729       Value *PersFn = 0;
2730       if (getValueTypePair(Record, Idx, NextValueNo, PersFn))
2731         return Error("Invalid LANDINGPAD record");
2732 
2733       bool IsCleanup = !!Record[Idx++];
2734       unsigned NumClauses = Record[Idx++];
2735       LandingPadInst *LP = LandingPadInst::Create(Ty, PersFn, NumClauses);
2736       LP->setCleanup(IsCleanup);
2737       for (unsigned J = 0; J != NumClauses; ++J) {
2738         LandingPadInst::ClauseType CT =
2739           LandingPadInst::ClauseType(Record[Idx++]); (void)CT;
2740         Value *Val;
2741 
2742         if (getValueTypePair(Record, Idx, NextValueNo, Val)) {
2743           delete LP;
2744           return Error("Invalid LANDINGPAD record");
2745         }
2746 
2747         assert((CT != LandingPadInst::Catch ||
2748                 !isa<ArrayType>(Val->getType())) &&
2749                "Catch clause has a invalid type!");
2750         assert((CT != LandingPadInst::Filter ||
2751                 isa<ArrayType>(Val->getType())) &&
2752                "Filter clause has invalid type!");
2753         LP->addClause(Val);
2754       }
2755 
2756       I = LP;
2757       InstructionList.push_back(I);
2758       break;
2759     }
2760 
2761     case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align]
2762       if (Record.size() != 4)
2763         return Error("Invalid ALLOCA record");
2764       PointerType *Ty =
2765         dyn_cast_or_null<PointerType>(getTypeByID(Record[0]));
2766       Type *OpTy = getTypeByID(Record[1]);
2767       Value *Size = getFnValueByID(Record[2], OpTy);
2768       unsigned Align = Record[3];
2769       if (!Ty || !Size) return Error("Invalid ALLOCA record");
2770       I = new AllocaInst(Ty->getElementType(), Size, (1 << Align) >> 1);
2771       InstructionList.push_back(I);
2772       break;
2773     }
2774     case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol]
2775       unsigned OpNum = 0;
2776       Value *Op;
2777       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
2778           OpNum+2 != Record.size())
2779         return Error("Invalid LOAD record");
2780 
2781       I = new LoadInst(Op, "", Record[OpNum+1], (1 << Record[OpNum]) >> 1);
2782       InstructionList.push_back(I);
2783       break;
2784     }
2785     case bitc::FUNC_CODE_INST_LOADATOMIC: {
2786        // LOADATOMIC: [opty, op, align, vol, ordering, synchscope]
2787       unsigned OpNum = 0;
2788       Value *Op;
2789       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
2790           OpNum+4 != Record.size())
2791         return Error("Invalid LOADATOMIC record");
2792 
2793 
2794       AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]);
2795       if (Ordering == NotAtomic || Ordering == Release ||
2796           Ordering == AcquireRelease)
2797         return Error("Invalid LOADATOMIC record");
2798       if (Ordering != NotAtomic && Record[OpNum] == 0)
2799         return Error("Invalid LOADATOMIC record");
2800       SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]);
2801 
2802       I = new LoadInst(Op, "", Record[OpNum+1], (1 << Record[OpNum]) >> 1,
2803                        Ordering, SynchScope);
2804       InstructionList.push_back(I);
2805       break;
2806     }
2807     case bitc::FUNC_CODE_INST_STORE: { // STORE2:[ptrty, ptr, val, align, vol]
2808       unsigned OpNum = 0;
2809       Value *Val, *Ptr;
2810       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
2811           popValue(Record, OpNum, NextValueNo,
2812                     cast<PointerType>(Ptr->getType())->getElementType(), Val) ||
2813           OpNum+2 != Record.size())
2814         return Error("Invalid STORE record");
2815 
2816       I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1);
2817       InstructionList.push_back(I);
2818       break;
2819     }
2820     case bitc::FUNC_CODE_INST_STOREATOMIC: {
2821       // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, synchscope]
2822       unsigned OpNum = 0;
2823       Value *Val, *Ptr;
2824       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
2825           popValue(Record, OpNum, NextValueNo,
2826                     cast<PointerType>(Ptr->getType())->getElementType(), Val) ||
2827           OpNum+4 != Record.size())
2828         return Error("Invalid STOREATOMIC record");
2829 
2830       AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]);
2831       if (Ordering == NotAtomic || Ordering == Acquire ||
2832           Ordering == AcquireRelease)
2833         return Error("Invalid STOREATOMIC record");
2834       SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]);
2835       if (Ordering != NotAtomic && Record[OpNum] == 0)
2836         return Error("Invalid STOREATOMIC record");
2837 
2838       I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1,
2839                         Ordering, SynchScope);
2840       InstructionList.push_back(I);
2841       break;
2842     }
2843     case bitc::FUNC_CODE_INST_CMPXCHG: {
2844       // CMPXCHG:[ptrty, ptr, cmp, new, vol, ordering, synchscope]
2845       unsigned OpNum = 0;
2846       Value *Ptr, *Cmp, *New;
2847       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
2848           popValue(Record, OpNum, NextValueNo,
2849                     cast<PointerType>(Ptr->getType())->getElementType(), Cmp) ||
2850           popValue(Record, OpNum, NextValueNo,
2851                     cast<PointerType>(Ptr->getType())->getElementType(), New) ||
2852           OpNum+3 != Record.size())
2853         return Error("Invalid CMPXCHG record");
2854       AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+1]);
2855       if (Ordering == NotAtomic || Ordering == Unordered)
2856         return Error("Invalid CMPXCHG record");
2857       SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+2]);
2858       I = new AtomicCmpXchgInst(Ptr, Cmp, New, Ordering, SynchScope);
2859       cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]);
2860       InstructionList.push_back(I);
2861       break;
2862     }
2863     case bitc::FUNC_CODE_INST_ATOMICRMW: {
2864       // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, synchscope]
2865       unsigned OpNum = 0;
2866       Value *Ptr, *Val;
2867       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
2868           popValue(Record, OpNum, NextValueNo,
2869                     cast<PointerType>(Ptr->getType())->getElementType(), Val) ||
2870           OpNum+4 != Record.size())
2871         return Error("Invalid ATOMICRMW record");
2872       AtomicRMWInst::BinOp Operation = GetDecodedRMWOperation(Record[OpNum]);
2873       if (Operation < AtomicRMWInst::FIRST_BINOP ||
2874           Operation > AtomicRMWInst::LAST_BINOP)
2875         return Error("Invalid ATOMICRMW record");
2876       AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]);
2877       if (Ordering == NotAtomic || Ordering == Unordered)
2878         return Error("Invalid ATOMICRMW record");
2879       SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]);
2880       I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SynchScope);
2881       cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]);
2882       InstructionList.push_back(I);
2883       break;
2884     }
2885     case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, synchscope]
2886       if (2 != Record.size())
2887         return Error("Invalid FENCE record");
2888       AtomicOrdering Ordering = GetDecodedOrdering(Record[0]);
2889       if (Ordering == NotAtomic || Ordering == Unordered ||
2890           Ordering == Monotonic)
2891         return Error("Invalid FENCE record");
2892       SynchronizationScope SynchScope = GetDecodedSynchScope(Record[1]);
2893       I = new FenceInst(Context, Ordering, SynchScope);
2894       InstructionList.push_back(I);
2895       break;
2896     }
2897     case bitc::FUNC_CODE_INST_CALL: {
2898       // CALL: [paramattrs, cc, fnty, fnid, arg0, arg1...]
2899       if (Record.size() < 3)
2900         return Error("Invalid CALL record");
2901 
2902       AttributeSet PAL = getAttributes(Record[0]);
2903       unsigned CCInfo = Record[1];
2904 
2905       unsigned OpNum = 2;
2906       Value *Callee;
2907       if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
2908         return Error("Invalid CALL record");
2909 
2910       PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
2911       FunctionType *FTy = 0;
2912       if (OpTy) FTy = dyn_cast<FunctionType>(OpTy->getElementType());
2913       if (!FTy || Record.size() < FTy->getNumParams()+OpNum)
2914         return Error("Invalid CALL record");
2915 
2916       SmallVector<Value*, 16> Args;
2917       // Read the fixed params.
2918       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
2919         if (FTy->getParamType(i)->isLabelTy())
2920           Args.push_back(getBasicBlock(Record[OpNum]));
2921         else
2922           Args.push_back(getValue(Record, OpNum, NextValueNo,
2923                                   FTy->getParamType(i)));
2924         if (Args.back() == 0) return Error("Invalid CALL record");
2925       }
2926 
2927       // Read type/value pairs for varargs params.
2928       if (!FTy->isVarArg()) {
2929         if (OpNum != Record.size())
2930           return Error("Invalid CALL record");
2931       } else {
2932         while (OpNum != Record.size()) {
2933           Value *Op;
2934           if (getValueTypePair(Record, OpNum, NextValueNo, Op))
2935             return Error("Invalid CALL record");
2936           Args.push_back(Op);
2937         }
2938       }
2939 
2940       I = CallInst::Create(Callee, Args);
2941       InstructionList.push_back(I);
2942       cast<CallInst>(I)->setCallingConv(
2943         static_cast<CallingConv::ID>(CCInfo>>1));
2944       cast<CallInst>(I)->setTailCall(CCInfo & 1);
2945       cast<CallInst>(I)->setAttributes(PAL);
2946       break;
2947     }
2948     case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty]
2949       if (Record.size() < 3)
2950         return Error("Invalid VAARG record");
2951       Type *OpTy = getTypeByID(Record[0]);
2952       Value *Op = getValue(Record, 1, NextValueNo, OpTy);
2953       Type *ResTy = getTypeByID(Record[2]);
2954       if (!OpTy || !Op || !ResTy)
2955         return Error("Invalid VAARG record");
2956       I = new VAArgInst(Op, ResTy);
2957       InstructionList.push_back(I);
2958       break;
2959     }
2960     }
2961 
2962     // Add instruction to end of current BB.  If there is no current BB, reject
2963     // this file.
2964     if (CurBB == 0) {
2965       delete I;
2966       return Error("Invalid instruction with no BB");
2967     }
2968     CurBB->getInstList().push_back(I);
2969 
2970     // If this was a terminator instruction, move to the next block.
2971     if (isa<TerminatorInst>(I)) {
2972       ++CurBBNo;
2973       CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : 0;
2974     }
2975 
2976     // Non-void values get registered in the value table for future use.
2977     if (I && !I->getType()->isVoidTy())
2978       ValueList.AssignValue(I, NextValueNo++);
2979   }
2980 
2981 OutOfRecordLoop:
2982 
2983   // Check the function list for unresolved values.
2984   if (Argument *A = dyn_cast<Argument>(ValueList.back())) {
2985     if (A->getParent() == 0) {
2986       // We found at least one unresolved value.  Nuke them all to avoid leaks.
2987       for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){
2988         if ((A = dyn_cast<Argument>(ValueList[i])) && A->getParent() == 0) {
2989           A->replaceAllUsesWith(UndefValue::get(A->getType()));
2990           delete A;
2991         }
2992       }
2993       return Error("Never resolved value found in function!");
2994     }
2995   }
2996 
2997   // FIXME: Check for unresolved forward-declared metadata references
2998   // and clean up leaks.
2999 
3000   // See if anything took the address of blocks in this function.  If so,
3001   // resolve them now.
3002   DenseMap<Function*, std::vector<BlockAddrRefTy> >::iterator BAFRI =
3003     BlockAddrFwdRefs.find(F);
3004   if (BAFRI != BlockAddrFwdRefs.end()) {
3005     std::vector<BlockAddrRefTy> &RefList = BAFRI->second;
3006     for (unsigned i = 0, e = RefList.size(); i != e; ++i) {
3007       unsigned BlockIdx = RefList[i].first;
3008       if (BlockIdx >= FunctionBBs.size())
3009         return Error("Invalid blockaddress block #");
3010 
3011       GlobalVariable *FwdRef = RefList[i].second;
3012       FwdRef->replaceAllUsesWith(BlockAddress::get(F, FunctionBBs[BlockIdx]));
3013       FwdRef->eraseFromParent();
3014     }
3015 
3016     BlockAddrFwdRefs.erase(BAFRI);
3017   }
3018 
3019   // Trim the value list down to the size it was before we parsed this function.
3020   ValueList.shrinkTo(ModuleValueListSize);
3021   MDValueList.shrinkTo(ModuleMDValueListSize);
3022   std::vector<BasicBlock*>().swap(FunctionBBs);
3023   return false;
3024 }
3025 
3026 /// FindFunctionInStream - Find the function body in the bitcode stream
3027 bool BitcodeReader::FindFunctionInStream(Function *F,
3028        DenseMap<Function*, uint64_t>::iterator DeferredFunctionInfoIterator) {
3029   while (DeferredFunctionInfoIterator->second == 0) {
3030     if (Stream.AtEndOfStream())
3031       return Error("Could not find Function in stream");
3032     // ParseModule will parse the next body in the stream and set its
3033     // position in the DeferredFunctionInfo map.
3034     if (ParseModule(true)) return true;
3035   }
3036   return false;
3037 }
3038 
3039 //===----------------------------------------------------------------------===//
3040 // GVMaterializer implementation
3041 //===----------------------------------------------------------------------===//
3042 
3043 
3044 bool BitcodeReader::isMaterializable(const GlobalValue *GV) const {
3045   if (const Function *F = dyn_cast<Function>(GV)) {
3046     return F->isDeclaration() &&
3047       DeferredFunctionInfo.count(const_cast<Function*>(F));
3048   }
3049   return false;
3050 }
3051 
3052 bool BitcodeReader::Materialize(GlobalValue *GV, std::string *ErrInfo) {
3053   Function *F = dyn_cast<Function>(GV);
3054   // If it's not a function or is already material, ignore the request.
3055   if (!F || !F->isMaterializable()) return false;
3056 
3057   DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F);
3058   assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!");
3059   // If its position is recorded as 0, its body is somewhere in the stream
3060   // but we haven't seen it yet.
3061   if (DFII->second == 0)
3062     if (LazyStreamer && FindFunctionInStream(F, DFII)) return true;
3063 
3064   // Move the bit stream to the saved position of the deferred function body.
3065   Stream.JumpToBit(DFII->second);
3066 
3067   if (ParseFunctionBody(F)) {
3068     if (ErrInfo) *ErrInfo = ErrorString;
3069     return true;
3070   }
3071 
3072   // Upgrade any old intrinsic calls in the function.
3073   for (UpgradedIntrinsicMap::iterator I = UpgradedIntrinsics.begin(),
3074        E = UpgradedIntrinsics.end(); I != E; ++I) {
3075     if (I->first != I->second) {
3076       for (Value::use_iterator UI = I->first->use_begin(),
3077            UE = I->first->use_end(); UI != UE; ) {
3078         if (CallInst* CI = dyn_cast<CallInst>(*UI++))
3079           UpgradeIntrinsicCall(CI, I->second);
3080       }
3081     }
3082   }
3083 
3084   return false;
3085 }
3086 
3087 bool BitcodeReader::isDematerializable(const GlobalValue *GV) const {
3088   const Function *F = dyn_cast<Function>(GV);
3089   if (!F || F->isDeclaration())
3090     return false;
3091   return DeferredFunctionInfo.count(const_cast<Function*>(F));
3092 }
3093 
3094 void BitcodeReader::Dematerialize(GlobalValue *GV) {
3095   Function *F = dyn_cast<Function>(GV);
3096   // If this function isn't dematerializable, this is a noop.
3097   if (!F || !isDematerializable(F))
3098     return;
3099 
3100   assert(DeferredFunctionInfo.count(F) && "No info to read function later?");
3101 
3102   // Just forget the function body, we can remat it later.
3103   F->deleteBody();
3104 }
3105 
3106 
3107 bool BitcodeReader::MaterializeModule(Module *M, std::string *ErrInfo) {
3108   assert(M == TheModule &&
3109          "Can only Materialize the Module this BitcodeReader is attached to.");
3110   // Iterate over the module, deserializing any functions that are still on
3111   // disk.
3112   for (Module::iterator F = TheModule->begin(), E = TheModule->end();
3113        F != E; ++F)
3114     if (F->isMaterializable() &&
3115         Materialize(F, ErrInfo))
3116       return true;
3117 
3118   // At this point, if there are any function bodies, the current bit is
3119   // pointing to the END_BLOCK record after them. Now make sure the rest
3120   // of the bits in the module have been read.
3121   if (NextUnreadBit)
3122     ParseModule(true);
3123 
3124   // Upgrade any intrinsic calls that slipped through (should not happen!) and
3125   // delete the old functions to clean up. We can't do this unless the entire
3126   // module is materialized because there could always be another function body
3127   // with calls to the old function.
3128   for (std::vector<std::pair<Function*, Function*> >::iterator I =
3129        UpgradedIntrinsics.begin(), E = UpgradedIntrinsics.end(); I != E; ++I) {
3130     if (I->first != I->second) {
3131       for (Value::use_iterator UI = I->first->use_begin(),
3132            UE = I->first->use_end(); UI != UE; ) {
3133         if (CallInst* CI = dyn_cast<CallInst>(*UI++))
3134           UpgradeIntrinsicCall(CI, I->second);
3135       }
3136       if (!I->first->use_empty())
3137         I->first->replaceAllUsesWith(I->second);
3138       I->first->eraseFromParent();
3139     }
3140   }
3141   std::vector<std::pair<Function*, Function*> >().swap(UpgradedIntrinsics);
3142 
3143   for (unsigned I = 0, E = InstsWithTBAATag.size(); I < E; I++)
3144     UpgradeInstWithTBAATag(InstsWithTBAATag[I]);
3145 
3146   return false;
3147 }
3148 
3149 bool BitcodeReader::InitStream() {
3150   if (LazyStreamer) return InitLazyStream();
3151   return InitStreamFromBuffer();
3152 }
3153 
3154 bool BitcodeReader::InitStreamFromBuffer() {
3155   const unsigned char *BufPtr = (const unsigned char*)Buffer->getBufferStart();
3156   const unsigned char *BufEnd = BufPtr+Buffer->getBufferSize();
3157 
3158   if (Buffer->getBufferSize() & 3) {
3159     if (!isRawBitcode(BufPtr, BufEnd) && !isBitcodeWrapper(BufPtr, BufEnd))
3160       return Error("Invalid bitcode signature");
3161     else
3162       return Error("Bitcode stream should be a multiple of 4 bytes in length");
3163   }
3164 
3165   // If we have a wrapper header, parse it and ignore the non-bc file contents.
3166   // The magic number is 0x0B17C0DE stored in little endian.
3167   if (isBitcodeWrapper(BufPtr, BufEnd))
3168     if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true))
3169       return Error("Invalid bitcode wrapper header");
3170 
3171   StreamFile.reset(new BitstreamReader(BufPtr, BufEnd));
3172   Stream.init(*StreamFile);
3173 
3174   return false;
3175 }
3176 
3177 bool BitcodeReader::InitLazyStream() {
3178   // Check and strip off the bitcode wrapper; BitstreamReader expects never to
3179   // see it.
3180   StreamingMemoryObject *Bytes = new StreamingMemoryObject(LazyStreamer);
3181   StreamFile.reset(new BitstreamReader(Bytes));
3182   Stream.init(*StreamFile);
3183 
3184   unsigned char buf[16];
3185   if (Bytes->readBytes(0, 16, buf) == -1)
3186     return Error("Bitcode stream must be at least 16 bytes in length");
3187 
3188   if (!isBitcode(buf, buf + 16))
3189     return Error("Invalid bitcode signature");
3190 
3191   if (isBitcodeWrapper(buf, buf + 4)) {
3192     const unsigned char *bitcodeStart = buf;
3193     const unsigned char *bitcodeEnd = buf + 16;
3194     SkipBitcodeWrapperHeader(bitcodeStart, bitcodeEnd, false);
3195     Bytes->dropLeadingBytes(bitcodeStart - buf);
3196     Bytes->setKnownObjectSize(bitcodeEnd - bitcodeStart);
3197   }
3198   return false;
3199 }
3200 
3201 //===----------------------------------------------------------------------===//
3202 // External interface
3203 //===----------------------------------------------------------------------===//
3204 
3205 /// getLazyBitcodeModule - lazy function-at-a-time loading from a file.
3206 ///
3207 Module *llvm::getLazyBitcodeModule(MemoryBuffer *Buffer,
3208                                    LLVMContext& Context,
3209                                    std::string *ErrMsg) {
3210   Module *M = new Module(Buffer->getBufferIdentifier(), Context);
3211   BitcodeReader *R = new BitcodeReader(Buffer, Context);
3212   M->setMaterializer(R);
3213   if (R->ParseBitcodeInto(M)) {
3214     if (ErrMsg)
3215       *ErrMsg = R->getErrorString();
3216 
3217     delete M;  // Also deletes R.
3218     return 0;
3219   }
3220   // Have the BitcodeReader dtor delete 'Buffer'.
3221   R->setBufferOwned(true);
3222 
3223   R->materializeForwardReferencedFunctions();
3224 
3225   return M;
3226 }
3227 
3228 
3229 Module *llvm::getStreamedBitcodeModule(const std::string &name,
3230                                        DataStreamer *streamer,
3231                                        LLVMContext &Context,
3232                                        std::string *ErrMsg) {
3233   Module *M = new Module(name, Context);
3234   BitcodeReader *R = new BitcodeReader(streamer, Context);
3235   M->setMaterializer(R);
3236   if (R->ParseBitcodeInto(M)) {
3237     if (ErrMsg)
3238       *ErrMsg = R->getErrorString();
3239     delete M;  // Also deletes R.
3240     return 0;
3241   }
3242   R->setBufferOwned(false); // no buffer to delete
3243   return M;
3244 }
3245 
3246 /// ParseBitcodeFile - Read the specified bitcode file, returning the module.
3247 /// If an error occurs, return null and fill in *ErrMsg if non-null.
3248 Module *llvm::ParseBitcodeFile(MemoryBuffer *Buffer, LLVMContext& Context,
3249                                std::string *ErrMsg){
3250   Module *M = getLazyBitcodeModule(Buffer, Context, ErrMsg);
3251   if (!M) return 0;
3252 
3253   // Don't let the BitcodeReader dtor delete 'Buffer', regardless of whether
3254   // there was an error.
3255   static_cast<BitcodeReader*>(M->getMaterializer())->setBufferOwned(false);
3256 
3257   // Read in the entire module, and destroy the BitcodeReader.
3258   if (M->MaterializeAllPermanently(ErrMsg)) {
3259     delete M;
3260     return 0;
3261   }
3262 
3263   // TODO: Restore the use-lists to the in-memory state when the bitcode was
3264   // written.  We must defer until the Module has been fully materialized.
3265 
3266   return M;
3267 }
3268 
3269 std::string llvm::getBitcodeTargetTriple(MemoryBuffer *Buffer,
3270                                          LLVMContext& Context,
3271                                          std::string *ErrMsg) {
3272   BitcodeReader *R = new BitcodeReader(Buffer, Context);
3273   // Don't let the BitcodeReader dtor delete 'Buffer'.
3274   R->setBufferOwned(false);
3275 
3276   std::string Triple("");
3277   if (R->ParseTriple(Triple))
3278     if (ErrMsg)
3279       *ErrMsg = R->getErrorString();
3280 
3281   delete R;
3282   return Triple;
3283 }
3284