1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "llvm/Bitcode/ReaderWriter.h" 11 #include "BitcodeReader.h" 12 #include "llvm/ADT/SmallString.h" 13 #include "llvm/ADT/SmallVector.h" 14 #include "llvm/Bitcode/LLVMBitCodes.h" 15 #include "llvm/IR/AutoUpgrade.h" 16 #include "llvm/IR/Constants.h" 17 #include "llvm/IR/DerivedTypes.h" 18 #include "llvm/IR/InlineAsm.h" 19 #include "llvm/IR/IntrinsicInst.h" 20 #include "llvm/IR/LLVMContext.h" 21 #include "llvm/IR/Module.h" 22 #include "llvm/IR/OperandTraits.h" 23 #include "llvm/IR/Operator.h" 24 #include "llvm/Support/DataStream.h" 25 #include "llvm/Support/MathExtras.h" 26 #include "llvm/Support/MemoryBuffer.h" 27 #include "llvm/Support/raw_ostream.h" 28 #include "llvm/Support/ManagedStatic.h" 29 30 using namespace llvm; 31 32 enum { 33 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 34 }; 35 36 std::error_code BitcodeReader::materializeForwardReferencedFunctions() { 37 if (WillMaterializeAllForwardRefs) 38 return std::error_code(); 39 40 // Prevent recursion. 41 WillMaterializeAllForwardRefs = true; 42 43 while (!BasicBlockFwdRefQueue.empty()) { 44 Function *F = BasicBlockFwdRefQueue.front(); 45 BasicBlockFwdRefQueue.pop_front(); 46 assert(F && "Expected valid function"); 47 if (!BasicBlockFwdRefs.count(F)) 48 // Already materialized. 49 continue; 50 51 // Check for a function that isn't materializable to prevent an infinite 52 // loop. When parsing a blockaddress stored in a global variable, there 53 // isn't a trivial way to check if a function will have a body without a 54 // linear search through FunctionsWithBodies, so just check it here. 55 if (!F->isMaterializable()) 56 return Error(BitcodeError::NeverResolvedFunctionFromBlockAddress); 57 58 // Try to materialize F. 59 if (std::error_code EC = materialize(F)) 60 return EC; 61 } 62 assert(BasicBlockFwdRefs.empty() && "Function missing from queue"); 63 64 // Reset state. 65 WillMaterializeAllForwardRefs = false; 66 return std::error_code(); 67 } 68 69 void BitcodeReader::FreeState() { 70 Buffer = nullptr; 71 std::vector<Type*>().swap(TypeList); 72 ValueList.clear(); 73 MDValueList.clear(); 74 std::vector<Comdat *>().swap(ComdatList); 75 76 std::vector<AttributeSet>().swap(MAttributes); 77 std::vector<BasicBlock*>().swap(FunctionBBs); 78 std::vector<Function*>().swap(FunctionsWithBodies); 79 DeferredFunctionInfo.clear(); 80 MDKindMap.clear(); 81 82 assert(BasicBlockFwdRefs.empty() && "Unresolved blockaddress fwd references"); 83 BasicBlockFwdRefQueue.clear(); 84 } 85 86 //===----------------------------------------------------------------------===// 87 // Helper functions to implement forward reference resolution, etc. 88 //===----------------------------------------------------------------------===// 89 90 /// ConvertToString - Convert a string from a record into an std::string, return 91 /// true on failure. 92 template<typename StrTy> 93 static bool ConvertToString(ArrayRef<uint64_t> Record, unsigned Idx, 94 StrTy &Result) { 95 if (Idx > Record.size()) 96 return true; 97 98 for (unsigned i = Idx, e = Record.size(); i != e; ++i) 99 Result += (char)Record[i]; 100 return false; 101 } 102 103 static GlobalValue::LinkageTypes GetDecodedLinkage(unsigned Val) { 104 switch (Val) { 105 default: // Map unknown/new linkages to external 106 case 0: return GlobalValue::ExternalLinkage; 107 case 1: return GlobalValue::WeakAnyLinkage; 108 case 2: return GlobalValue::AppendingLinkage; 109 case 3: return GlobalValue::InternalLinkage; 110 case 4: return GlobalValue::LinkOnceAnyLinkage; 111 case 5: return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage 112 case 6: return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage 113 case 7: return GlobalValue::ExternalWeakLinkage; 114 case 8: return GlobalValue::CommonLinkage; 115 case 9: return GlobalValue::PrivateLinkage; 116 case 10: return GlobalValue::WeakODRLinkage; 117 case 11: return GlobalValue::LinkOnceODRLinkage; 118 case 12: return GlobalValue::AvailableExternallyLinkage; 119 case 13: 120 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage 121 case 14: 122 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage 123 } 124 } 125 126 static GlobalValue::VisibilityTypes GetDecodedVisibility(unsigned Val) { 127 switch (Val) { 128 default: // Map unknown visibilities to default. 129 case 0: return GlobalValue::DefaultVisibility; 130 case 1: return GlobalValue::HiddenVisibility; 131 case 2: return GlobalValue::ProtectedVisibility; 132 } 133 } 134 135 static GlobalValue::DLLStorageClassTypes 136 GetDecodedDLLStorageClass(unsigned Val) { 137 switch (Val) { 138 default: // Map unknown values to default. 139 case 0: return GlobalValue::DefaultStorageClass; 140 case 1: return GlobalValue::DLLImportStorageClass; 141 case 2: return GlobalValue::DLLExportStorageClass; 142 } 143 } 144 145 static GlobalVariable::ThreadLocalMode GetDecodedThreadLocalMode(unsigned Val) { 146 switch (Val) { 147 case 0: return GlobalVariable::NotThreadLocal; 148 default: // Map unknown non-zero value to general dynamic. 149 case 1: return GlobalVariable::GeneralDynamicTLSModel; 150 case 2: return GlobalVariable::LocalDynamicTLSModel; 151 case 3: return GlobalVariable::InitialExecTLSModel; 152 case 4: return GlobalVariable::LocalExecTLSModel; 153 } 154 } 155 156 static int GetDecodedCastOpcode(unsigned Val) { 157 switch (Val) { 158 default: return -1; 159 case bitc::CAST_TRUNC : return Instruction::Trunc; 160 case bitc::CAST_ZEXT : return Instruction::ZExt; 161 case bitc::CAST_SEXT : return Instruction::SExt; 162 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 163 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 164 case bitc::CAST_UITOFP : return Instruction::UIToFP; 165 case bitc::CAST_SITOFP : return Instruction::SIToFP; 166 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 167 case bitc::CAST_FPEXT : return Instruction::FPExt; 168 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 169 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 170 case bitc::CAST_BITCAST : return Instruction::BitCast; 171 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast; 172 } 173 } 174 static int GetDecodedBinaryOpcode(unsigned Val, Type *Ty) { 175 switch (Val) { 176 default: return -1; 177 case bitc::BINOP_ADD: 178 return Ty->isFPOrFPVectorTy() ? Instruction::FAdd : Instruction::Add; 179 case bitc::BINOP_SUB: 180 return Ty->isFPOrFPVectorTy() ? Instruction::FSub : Instruction::Sub; 181 case bitc::BINOP_MUL: 182 return Ty->isFPOrFPVectorTy() ? Instruction::FMul : Instruction::Mul; 183 case bitc::BINOP_UDIV: return Instruction::UDiv; 184 case bitc::BINOP_SDIV: 185 return Ty->isFPOrFPVectorTy() ? Instruction::FDiv : Instruction::SDiv; 186 case bitc::BINOP_UREM: return Instruction::URem; 187 case bitc::BINOP_SREM: 188 return Ty->isFPOrFPVectorTy() ? Instruction::FRem : Instruction::SRem; 189 case bitc::BINOP_SHL: return Instruction::Shl; 190 case bitc::BINOP_LSHR: return Instruction::LShr; 191 case bitc::BINOP_ASHR: return Instruction::AShr; 192 case bitc::BINOP_AND: return Instruction::And; 193 case bitc::BINOP_OR: return Instruction::Or; 194 case bitc::BINOP_XOR: return Instruction::Xor; 195 } 196 } 197 198 static AtomicRMWInst::BinOp GetDecodedRMWOperation(unsigned Val) { 199 switch (Val) { 200 default: return AtomicRMWInst::BAD_BINOP; 201 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 202 case bitc::RMW_ADD: return AtomicRMWInst::Add; 203 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 204 case bitc::RMW_AND: return AtomicRMWInst::And; 205 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 206 case bitc::RMW_OR: return AtomicRMWInst::Or; 207 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 208 case bitc::RMW_MAX: return AtomicRMWInst::Max; 209 case bitc::RMW_MIN: return AtomicRMWInst::Min; 210 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 211 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 212 } 213 } 214 215 static AtomicOrdering GetDecodedOrdering(unsigned Val) { 216 switch (Val) { 217 case bitc::ORDERING_NOTATOMIC: return NotAtomic; 218 case bitc::ORDERING_UNORDERED: return Unordered; 219 case bitc::ORDERING_MONOTONIC: return Monotonic; 220 case bitc::ORDERING_ACQUIRE: return Acquire; 221 case bitc::ORDERING_RELEASE: return Release; 222 case bitc::ORDERING_ACQREL: return AcquireRelease; 223 default: // Map unknown orderings to sequentially-consistent. 224 case bitc::ORDERING_SEQCST: return SequentiallyConsistent; 225 } 226 } 227 228 static SynchronizationScope GetDecodedSynchScope(unsigned Val) { 229 switch (Val) { 230 case bitc::SYNCHSCOPE_SINGLETHREAD: return SingleThread; 231 default: // Map unknown scopes to cross-thread. 232 case bitc::SYNCHSCOPE_CROSSTHREAD: return CrossThread; 233 } 234 } 235 236 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) { 237 switch (Val) { 238 default: // Map unknown selection kinds to any. 239 case bitc::COMDAT_SELECTION_KIND_ANY: 240 return Comdat::Any; 241 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH: 242 return Comdat::ExactMatch; 243 case bitc::COMDAT_SELECTION_KIND_LARGEST: 244 return Comdat::Largest; 245 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES: 246 return Comdat::NoDuplicates; 247 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE: 248 return Comdat::SameSize; 249 } 250 } 251 252 static void UpgradeDLLImportExportLinkage(llvm::GlobalValue *GV, unsigned Val) { 253 switch (Val) { 254 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break; 255 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break; 256 } 257 } 258 259 namespace llvm { 260 namespace { 261 /// @brief A class for maintaining the slot number definition 262 /// as a placeholder for the actual definition for forward constants defs. 263 class ConstantPlaceHolder : public ConstantExpr { 264 void operator=(const ConstantPlaceHolder &) LLVM_DELETED_FUNCTION; 265 public: 266 // allocate space for exactly one operand 267 void *operator new(size_t s) { 268 return User::operator new(s, 1); 269 } 270 explicit ConstantPlaceHolder(Type *Ty, LLVMContext& Context) 271 : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) { 272 Op<0>() = UndefValue::get(Type::getInt32Ty(Context)); 273 } 274 275 /// @brief Methods to support type inquiry through isa, cast, and dyn_cast. 276 static bool classof(const Value *V) { 277 return isa<ConstantExpr>(V) && 278 cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1; 279 } 280 281 282 /// Provide fast operand accessors 283 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); 284 }; 285 } 286 287 // FIXME: can we inherit this from ConstantExpr? 288 template <> 289 struct OperandTraits<ConstantPlaceHolder> : 290 public FixedNumOperandTraits<ConstantPlaceHolder, 1> { 291 }; 292 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantPlaceHolder, Value) 293 } 294 295 296 void BitcodeReaderValueList::AssignValue(Value *V, unsigned Idx) { 297 if (Idx == size()) { 298 push_back(V); 299 return; 300 } 301 302 if (Idx >= size()) 303 resize(Idx+1); 304 305 WeakVH &OldV = ValuePtrs[Idx]; 306 if (!OldV) { 307 OldV = V; 308 return; 309 } 310 311 // Handle constants and non-constants (e.g. instrs) differently for 312 // efficiency. 313 if (Constant *PHC = dyn_cast<Constant>(&*OldV)) { 314 ResolveConstants.push_back(std::make_pair(PHC, Idx)); 315 OldV = V; 316 } else { 317 // If there was a forward reference to this value, replace it. 318 Value *PrevVal = OldV; 319 OldV->replaceAllUsesWith(V); 320 delete PrevVal; 321 } 322 } 323 324 325 Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx, 326 Type *Ty) { 327 if (Idx >= size()) 328 resize(Idx + 1); 329 330 if (Value *V = ValuePtrs[Idx]) { 331 assert(Ty == V->getType() && "Type mismatch in constant table!"); 332 return cast<Constant>(V); 333 } 334 335 // Create and return a placeholder, which will later be RAUW'd. 336 Constant *C = new ConstantPlaceHolder(Ty, Context); 337 ValuePtrs[Idx] = C; 338 return C; 339 } 340 341 Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, Type *Ty) { 342 if (Idx >= size()) 343 resize(Idx + 1); 344 345 if (Value *V = ValuePtrs[Idx]) { 346 assert((!Ty || Ty == V->getType()) && "Type mismatch in value table!"); 347 return V; 348 } 349 350 // No type specified, must be invalid reference. 351 if (!Ty) return nullptr; 352 353 // Create and return a placeholder, which will later be RAUW'd. 354 Value *V = new Argument(Ty); 355 ValuePtrs[Idx] = V; 356 return V; 357 } 358 359 /// ResolveConstantForwardRefs - Once all constants are read, this method bulk 360 /// resolves any forward references. The idea behind this is that we sometimes 361 /// get constants (such as large arrays) which reference *many* forward ref 362 /// constants. Replacing each of these causes a lot of thrashing when 363 /// building/reuniquing the constant. Instead of doing this, we look at all the 364 /// uses and rewrite all the place holders at once for any constant that uses 365 /// a placeholder. 366 void BitcodeReaderValueList::ResolveConstantForwardRefs() { 367 // Sort the values by-pointer so that they are efficient to look up with a 368 // binary search. 369 std::sort(ResolveConstants.begin(), ResolveConstants.end()); 370 371 SmallVector<Constant*, 64> NewOps; 372 373 while (!ResolveConstants.empty()) { 374 Value *RealVal = operator[](ResolveConstants.back().second); 375 Constant *Placeholder = ResolveConstants.back().first; 376 ResolveConstants.pop_back(); 377 378 // Loop over all users of the placeholder, updating them to reference the 379 // new value. If they reference more than one placeholder, update them all 380 // at once. 381 while (!Placeholder->use_empty()) { 382 auto UI = Placeholder->user_begin(); 383 User *U = *UI; 384 385 // If the using object isn't uniqued, just update the operands. This 386 // handles instructions and initializers for global variables. 387 if (!isa<Constant>(U) || isa<GlobalValue>(U)) { 388 UI.getUse().set(RealVal); 389 continue; 390 } 391 392 // Otherwise, we have a constant that uses the placeholder. Replace that 393 // constant with a new constant that has *all* placeholder uses updated. 394 Constant *UserC = cast<Constant>(U); 395 for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end(); 396 I != E; ++I) { 397 Value *NewOp; 398 if (!isa<ConstantPlaceHolder>(*I)) { 399 // Not a placeholder reference. 400 NewOp = *I; 401 } else if (*I == Placeholder) { 402 // Common case is that it just references this one placeholder. 403 NewOp = RealVal; 404 } else { 405 // Otherwise, look up the placeholder in ResolveConstants. 406 ResolveConstantsTy::iterator It = 407 std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(), 408 std::pair<Constant*, unsigned>(cast<Constant>(*I), 409 0)); 410 assert(It != ResolveConstants.end() && It->first == *I); 411 NewOp = operator[](It->second); 412 } 413 414 NewOps.push_back(cast<Constant>(NewOp)); 415 } 416 417 // Make the new constant. 418 Constant *NewC; 419 if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) { 420 NewC = ConstantArray::get(UserCA->getType(), NewOps); 421 } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) { 422 NewC = ConstantStruct::get(UserCS->getType(), NewOps); 423 } else if (isa<ConstantVector>(UserC)) { 424 NewC = ConstantVector::get(NewOps); 425 } else { 426 assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr."); 427 NewC = cast<ConstantExpr>(UserC)->getWithOperands(NewOps); 428 } 429 430 UserC->replaceAllUsesWith(NewC); 431 UserC->destroyConstant(); 432 NewOps.clear(); 433 } 434 435 // Update all ValueHandles, they should be the only users at this point. 436 Placeholder->replaceAllUsesWith(RealVal); 437 delete Placeholder; 438 } 439 } 440 441 void BitcodeReaderMDValueList::AssignValue(Value *V, unsigned Idx) { 442 if (Idx == size()) { 443 push_back(V); 444 return; 445 } 446 447 if (Idx >= size()) 448 resize(Idx+1); 449 450 WeakVH &OldV = MDValuePtrs[Idx]; 451 if (!OldV) { 452 OldV = V; 453 return; 454 } 455 456 // If there was a forward reference to this value, replace it. 457 MDNode *PrevVal = cast<MDNode>(OldV); 458 OldV->replaceAllUsesWith(V); 459 MDNode::deleteTemporary(PrevVal); 460 // Deleting PrevVal sets Idx value in MDValuePtrs to null. Set new 461 // value for Idx. 462 MDValuePtrs[Idx] = V; 463 } 464 465 Value *BitcodeReaderMDValueList::getValueFwdRef(unsigned Idx) { 466 if (Idx >= size()) 467 resize(Idx + 1); 468 469 if (Value *V = MDValuePtrs[Idx]) { 470 assert(V->getType()->isMetadataTy() && "Type mismatch in value table!"); 471 return V; 472 } 473 474 // Create and return a placeholder, which will later be RAUW'd. 475 Value *V = MDNode::getTemporary(Context, None); 476 MDValuePtrs[Idx] = V; 477 return V; 478 } 479 480 Type *BitcodeReader::getTypeByID(unsigned ID) { 481 // The type table size is always specified correctly. 482 if (ID >= TypeList.size()) 483 return nullptr; 484 485 if (Type *Ty = TypeList[ID]) 486 return Ty; 487 488 // If we have a forward reference, the only possible case is when it is to a 489 // named struct. Just create a placeholder for now. 490 return TypeList[ID] = StructType::create(Context); 491 } 492 493 494 //===----------------------------------------------------------------------===// 495 // Functions for parsing blocks from the bitcode file 496 //===----------------------------------------------------------------------===// 497 498 499 /// \brief This fills an AttrBuilder object with the LLVM attributes that have 500 /// been decoded from the given integer. This function must stay in sync with 501 /// 'encodeLLVMAttributesForBitcode'. 502 static void decodeLLVMAttributesForBitcode(AttrBuilder &B, 503 uint64_t EncodedAttrs) { 504 // FIXME: Remove in 4.0. 505 506 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift 507 // the bits above 31 down by 11 bits. 508 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; 509 assert((!Alignment || isPowerOf2_32(Alignment)) && 510 "Alignment must be a power of two."); 511 512 if (Alignment) 513 B.addAlignmentAttr(Alignment); 514 B.addRawValue(((EncodedAttrs & (0xfffffULL << 32)) >> 11) | 515 (EncodedAttrs & 0xffff)); 516 } 517 518 std::error_code BitcodeReader::ParseAttributeBlock() { 519 if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 520 return Error(BitcodeError::InvalidRecord); 521 522 if (!MAttributes.empty()) 523 return Error(BitcodeError::InvalidMultipleBlocks); 524 525 SmallVector<uint64_t, 64> Record; 526 527 SmallVector<AttributeSet, 8> Attrs; 528 529 // Read all the records. 530 while (1) { 531 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 532 533 switch (Entry.Kind) { 534 case BitstreamEntry::SubBlock: // Handled for us already. 535 case BitstreamEntry::Error: 536 return Error(BitcodeError::MalformedBlock); 537 case BitstreamEntry::EndBlock: 538 return std::error_code(); 539 case BitstreamEntry::Record: 540 // The interesting case. 541 break; 542 } 543 544 // Read a record. 545 Record.clear(); 546 switch (Stream.readRecord(Entry.ID, Record)) { 547 default: // Default behavior: ignore. 548 break; 549 case bitc::PARAMATTR_CODE_ENTRY_OLD: { // ENTRY: [paramidx0, attr0, ...] 550 // FIXME: Remove in 4.0. 551 if (Record.size() & 1) 552 return Error(BitcodeError::InvalidRecord); 553 554 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 555 AttrBuilder B; 556 decodeLLVMAttributesForBitcode(B, Record[i+1]); 557 Attrs.push_back(AttributeSet::get(Context, Record[i], B)); 558 } 559 560 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 561 Attrs.clear(); 562 break; 563 } 564 case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [attrgrp0, attrgrp1, ...] 565 for (unsigned i = 0, e = Record.size(); i != e; ++i) 566 Attrs.push_back(MAttributeGroups[Record[i]]); 567 568 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 569 Attrs.clear(); 570 break; 571 } 572 } 573 } 574 } 575 576 // Returns Attribute::None on unrecognized codes. 577 static Attribute::AttrKind GetAttrFromCode(uint64_t Code) { 578 switch (Code) { 579 default: 580 return Attribute::None; 581 case bitc::ATTR_KIND_ALIGNMENT: 582 return Attribute::Alignment; 583 case bitc::ATTR_KIND_ALWAYS_INLINE: 584 return Attribute::AlwaysInline; 585 case bitc::ATTR_KIND_BUILTIN: 586 return Attribute::Builtin; 587 case bitc::ATTR_KIND_BY_VAL: 588 return Attribute::ByVal; 589 case bitc::ATTR_KIND_IN_ALLOCA: 590 return Attribute::InAlloca; 591 case bitc::ATTR_KIND_COLD: 592 return Attribute::Cold; 593 case bitc::ATTR_KIND_INLINE_HINT: 594 return Attribute::InlineHint; 595 case bitc::ATTR_KIND_IN_REG: 596 return Attribute::InReg; 597 case bitc::ATTR_KIND_JUMP_TABLE: 598 return Attribute::JumpTable; 599 case bitc::ATTR_KIND_MIN_SIZE: 600 return Attribute::MinSize; 601 case bitc::ATTR_KIND_NAKED: 602 return Attribute::Naked; 603 case bitc::ATTR_KIND_NEST: 604 return Attribute::Nest; 605 case bitc::ATTR_KIND_NO_ALIAS: 606 return Attribute::NoAlias; 607 case bitc::ATTR_KIND_NO_BUILTIN: 608 return Attribute::NoBuiltin; 609 case bitc::ATTR_KIND_NO_CAPTURE: 610 return Attribute::NoCapture; 611 case bitc::ATTR_KIND_NO_DUPLICATE: 612 return Attribute::NoDuplicate; 613 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: 614 return Attribute::NoImplicitFloat; 615 case bitc::ATTR_KIND_NO_INLINE: 616 return Attribute::NoInline; 617 case bitc::ATTR_KIND_NON_LAZY_BIND: 618 return Attribute::NonLazyBind; 619 case bitc::ATTR_KIND_NON_NULL: 620 return Attribute::NonNull; 621 case bitc::ATTR_KIND_DEREFERENCEABLE: 622 return Attribute::Dereferenceable; 623 case bitc::ATTR_KIND_NO_RED_ZONE: 624 return Attribute::NoRedZone; 625 case bitc::ATTR_KIND_NO_RETURN: 626 return Attribute::NoReturn; 627 case bitc::ATTR_KIND_NO_UNWIND: 628 return Attribute::NoUnwind; 629 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: 630 return Attribute::OptimizeForSize; 631 case bitc::ATTR_KIND_OPTIMIZE_NONE: 632 return Attribute::OptimizeNone; 633 case bitc::ATTR_KIND_READ_NONE: 634 return Attribute::ReadNone; 635 case bitc::ATTR_KIND_READ_ONLY: 636 return Attribute::ReadOnly; 637 case bitc::ATTR_KIND_RETURNED: 638 return Attribute::Returned; 639 case bitc::ATTR_KIND_RETURNS_TWICE: 640 return Attribute::ReturnsTwice; 641 case bitc::ATTR_KIND_S_EXT: 642 return Attribute::SExt; 643 case bitc::ATTR_KIND_STACK_ALIGNMENT: 644 return Attribute::StackAlignment; 645 case bitc::ATTR_KIND_STACK_PROTECT: 646 return Attribute::StackProtect; 647 case bitc::ATTR_KIND_STACK_PROTECT_REQ: 648 return Attribute::StackProtectReq; 649 case bitc::ATTR_KIND_STACK_PROTECT_STRONG: 650 return Attribute::StackProtectStrong; 651 case bitc::ATTR_KIND_STRUCT_RET: 652 return Attribute::StructRet; 653 case bitc::ATTR_KIND_SANITIZE_ADDRESS: 654 return Attribute::SanitizeAddress; 655 case bitc::ATTR_KIND_SANITIZE_THREAD: 656 return Attribute::SanitizeThread; 657 case bitc::ATTR_KIND_SANITIZE_MEMORY: 658 return Attribute::SanitizeMemory; 659 case bitc::ATTR_KIND_UW_TABLE: 660 return Attribute::UWTable; 661 case bitc::ATTR_KIND_Z_EXT: 662 return Attribute::ZExt; 663 } 664 } 665 666 std::error_code BitcodeReader::ParseAttrKind(uint64_t Code, 667 Attribute::AttrKind *Kind) { 668 *Kind = GetAttrFromCode(Code); 669 if (*Kind == Attribute::None) 670 return Error(BitcodeError::InvalidValue); 671 return std::error_code(); 672 } 673 674 std::error_code BitcodeReader::ParseAttributeGroupBlock() { 675 if (Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) 676 return Error(BitcodeError::InvalidRecord); 677 678 if (!MAttributeGroups.empty()) 679 return Error(BitcodeError::InvalidMultipleBlocks); 680 681 SmallVector<uint64_t, 64> Record; 682 683 // Read all the records. 684 while (1) { 685 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 686 687 switch (Entry.Kind) { 688 case BitstreamEntry::SubBlock: // Handled for us already. 689 case BitstreamEntry::Error: 690 return Error(BitcodeError::MalformedBlock); 691 case BitstreamEntry::EndBlock: 692 return std::error_code(); 693 case BitstreamEntry::Record: 694 // The interesting case. 695 break; 696 } 697 698 // Read a record. 699 Record.clear(); 700 switch (Stream.readRecord(Entry.ID, Record)) { 701 default: // Default behavior: ignore. 702 break; 703 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] 704 if (Record.size() < 3) 705 return Error(BitcodeError::InvalidRecord); 706 707 uint64_t GrpID = Record[0]; 708 uint64_t Idx = Record[1]; // Index of the object this attribute refers to. 709 710 AttrBuilder B; 711 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 712 if (Record[i] == 0) { // Enum attribute 713 Attribute::AttrKind Kind; 714 if (std::error_code EC = ParseAttrKind(Record[++i], &Kind)) 715 return EC; 716 717 B.addAttribute(Kind); 718 } else if (Record[i] == 1) { // Integer attribute 719 Attribute::AttrKind Kind; 720 if (std::error_code EC = ParseAttrKind(Record[++i], &Kind)) 721 return EC; 722 if (Kind == Attribute::Alignment) 723 B.addAlignmentAttr(Record[++i]); 724 else if (Kind == Attribute::StackAlignment) 725 B.addStackAlignmentAttr(Record[++i]); 726 else if (Kind == Attribute::Dereferenceable) 727 B.addDereferenceableAttr(Record[++i]); 728 } else { // String attribute 729 assert((Record[i] == 3 || Record[i] == 4) && 730 "Invalid attribute group entry"); 731 bool HasValue = (Record[i++] == 4); 732 SmallString<64> KindStr; 733 SmallString<64> ValStr; 734 735 while (Record[i] != 0 && i != e) 736 KindStr += Record[i++]; 737 assert(Record[i] == 0 && "Kind string not null terminated"); 738 739 if (HasValue) { 740 // Has a value associated with it. 741 ++i; // Skip the '0' that terminates the "kind" string. 742 while (Record[i] != 0 && i != e) 743 ValStr += Record[i++]; 744 assert(Record[i] == 0 && "Value string not null terminated"); 745 } 746 747 B.addAttribute(KindStr.str(), ValStr.str()); 748 } 749 } 750 751 MAttributeGroups[GrpID] = AttributeSet::get(Context, Idx, B); 752 break; 753 } 754 } 755 } 756 } 757 758 std::error_code BitcodeReader::ParseTypeTable() { 759 if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 760 return Error(BitcodeError::InvalidRecord); 761 762 return ParseTypeTableBody(); 763 } 764 765 std::error_code BitcodeReader::ParseTypeTableBody() { 766 if (!TypeList.empty()) 767 return Error(BitcodeError::InvalidMultipleBlocks); 768 769 SmallVector<uint64_t, 64> Record; 770 unsigned NumRecords = 0; 771 772 SmallString<64> TypeName; 773 774 // Read all the records for this type table. 775 while (1) { 776 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 777 778 switch (Entry.Kind) { 779 case BitstreamEntry::SubBlock: // Handled for us already. 780 case BitstreamEntry::Error: 781 return Error(BitcodeError::MalformedBlock); 782 case BitstreamEntry::EndBlock: 783 if (NumRecords != TypeList.size()) 784 return Error(BitcodeError::MalformedBlock); 785 return std::error_code(); 786 case BitstreamEntry::Record: 787 // The interesting case. 788 break; 789 } 790 791 // Read a record. 792 Record.clear(); 793 Type *ResultTy = nullptr; 794 switch (Stream.readRecord(Entry.ID, Record)) { 795 default: 796 return Error(BitcodeError::InvalidValue); 797 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 798 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 799 // type list. This allows us to reserve space. 800 if (Record.size() < 1) 801 return Error(BitcodeError::InvalidRecord); 802 TypeList.resize(Record[0]); 803 continue; 804 case bitc::TYPE_CODE_VOID: // VOID 805 ResultTy = Type::getVoidTy(Context); 806 break; 807 case bitc::TYPE_CODE_HALF: // HALF 808 ResultTy = Type::getHalfTy(Context); 809 break; 810 case bitc::TYPE_CODE_FLOAT: // FLOAT 811 ResultTy = Type::getFloatTy(Context); 812 break; 813 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 814 ResultTy = Type::getDoubleTy(Context); 815 break; 816 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 817 ResultTy = Type::getX86_FP80Ty(Context); 818 break; 819 case bitc::TYPE_CODE_FP128: // FP128 820 ResultTy = Type::getFP128Ty(Context); 821 break; 822 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 823 ResultTy = Type::getPPC_FP128Ty(Context); 824 break; 825 case bitc::TYPE_CODE_LABEL: // LABEL 826 ResultTy = Type::getLabelTy(Context); 827 break; 828 case bitc::TYPE_CODE_METADATA: // METADATA 829 ResultTy = Type::getMetadataTy(Context); 830 break; 831 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 832 ResultTy = Type::getX86_MMXTy(Context); 833 break; 834 case bitc::TYPE_CODE_INTEGER: // INTEGER: [width] 835 if (Record.size() < 1) 836 return Error(BitcodeError::InvalidRecord); 837 838 ResultTy = IntegerType::get(Context, Record[0]); 839 break; 840 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 841 // [pointee type, address space] 842 if (Record.size() < 1) 843 return Error(BitcodeError::InvalidRecord); 844 unsigned AddressSpace = 0; 845 if (Record.size() == 2) 846 AddressSpace = Record[1]; 847 ResultTy = getTypeByID(Record[0]); 848 if (!ResultTy) 849 return Error(BitcodeError::InvalidType); 850 ResultTy = PointerType::get(ResultTy, AddressSpace); 851 break; 852 } 853 case bitc::TYPE_CODE_FUNCTION_OLD: { 854 // FIXME: attrid is dead, remove it in LLVM 4.0 855 // FUNCTION: [vararg, attrid, retty, paramty x N] 856 if (Record.size() < 3) 857 return Error(BitcodeError::InvalidRecord); 858 SmallVector<Type*, 8> ArgTys; 859 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 860 if (Type *T = getTypeByID(Record[i])) 861 ArgTys.push_back(T); 862 else 863 break; 864 } 865 866 ResultTy = getTypeByID(Record[2]); 867 if (!ResultTy || ArgTys.size() < Record.size()-3) 868 return Error(BitcodeError::InvalidType); 869 870 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 871 break; 872 } 873 case bitc::TYPE_CODE_FUNCTION: { 874 // FUNCTION: [vararg, retty, paramty x N] 875 if (Record.size() < 2) 876 return Error(BitcodeError::InvalidRecord); 877 SmallVector<Type*, 8> ArgTys; 878 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 879 if (Type *T = getTypeByID(Record[i])) 880 ArgTys.push_back(T); 881 else 882 break; 883 } 884 885 ResultTy = getTypeByID(Record[1]); 886 if (!ResultTy || ArgTys.size() < Record.size()-2) 887 return Error(BitcodeError::InvalidType); 888 889 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 890 break; 891 } 892 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 893 if (Record.size() < 1) 894 return Error(BitcodeError::InvalidRecord); 895 SmallVector<Type*, 8> EltTys; 896 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 897 if (Type *T = getTypeByID(Record[i])) 898 EltTys.push_back(T); 899 else 900 break; 901 } 902 if (EltTys.size() != Record.size()-1) 903 return Error(BitcodeError::InvalidType); 904 ResultTy = StructType::get(Context, EltTys, Record[0]); 905 break; 906 } 907 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 908 if (ConvertToString(Record, 0, TypeName)) 909 return Error(BitcodeError::InvalidRecord); 910 continue; 911 912 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 913 if (Record.size() < 1) 914 return Error(BitcodeError::InvalidRecord); 915 916 if (NumRecords >= TypeList.size()) 917 return Error(BitcodeError::InvalidTYPETable); 918 919 // Check to see if this was forward referenced, if so fill in the temp. 920 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 921 if (Res) { 922 Res->setName(TypeName); 923 TypeList[NumRecords] = nullptr; 924 } else // Otherwise, create a new struct. 925 Res = StructType::create(Context, TypeName); 926 TypeName.clear(); 927 928 SmallVector<Type*, 8> EltTys; 929 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 930 if (Type *T = getTypeByID(Record[i])) 931 EltTys.push_back(T); 932 else 933 break; 934 } 935 if (EltTys.size() != Record.size()-1) 936 return Error(BitcodeError::InvalidRecord); 937 Res->setBody(EltTys, Record[0]); 938 ResultTy = Res; 939 break; 940 } 941 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 942 if (Record.size() != 1) 943 return Error(BitcodeError::InvalidRecord); 944 945 if (NumRecords >= TypeList.size()) 946 return Error(BitcodeError::InvalidTYPETable); 947 948 // Check to see if this was forward referenced, if so fill in the temp. 949 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 950 if (Res) { 951 Res->setName(TypeName); 952 TypeList[NumRecords] = nullptr; 953 } else // Otherwise, create a new struct with no body. 954 Res = StructType::create(Context, TypeName); 955 TypeName.clear(); 956 ResultTy = Res; 957 break; 958 } 959 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 960 if (Record.size() < 2) 961 return Error(BitcodeError::InvalidRecord); 962 if ((ResultTy = getTypeByID(Record[1]))) 963 ResultTy = ArrayType::get(ResultTy, Record[0]); 964 else 965 return Error(BitcodeError::InvalidType); 966 break; 967 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] 968 if (Record.size() < 2) 969 return Error(BitcodeError::InvalidRecord); 970 if ((ResultTy = getTypeByID(Record[1]))) 971 ResultTy = VectorType::get(ResultTy, Record[0]); 972 else 973 return Error(BitcodeError::InvalidType); 974 break; 975 } 976 977 if (NumRecords >= TypeList.size()) 978 return Error(BitcodeError::InvalidTYPETable); 979 assert(ResultTy && "Didn't read a type?"); 980 assert(!TypeList[NumRecords] && "Already read type?"); 981 TypeList[NumRecords++] = ResultTy; 982 } 983 } 984 985 std::error_code BitcodeReader::ParseValueSymbolTable() { 986 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 987 return Error(BitcodeError::InvalidRecord); 988 989 SmallVector<uint64_t, 64> Record; 990 991 // Read all the records for this value table. 992 SmallString<128> ValueName; 993 while (1) { 994 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 995 996 switch (Entry.Kind) { 997 case BitstreamEntry::SubBlock: // Handled for us already. 998 case BitstreamEntry::Error: 999 return Error(BitcodeError::MalformedBlock); 1000 case BitstreamEntry::EndBlock: 1001 return std::error_code(); 1002 case BitstreamEntry::Record: 1003 // The interesting case. 1004 break; 1005 } 1006 1007 // Read a record. 1008 Record.clear(); 1009 switch (Stream.readRecord(Entry.ID, Record)) { 1010 default: // Default behavior: unknown type. 1011 break; 1012 case bitc::VST_CODE_ENTRY: { // VST_ENTRY: [valueid, namechar x N] 1013 if (ConvertToString(Record, 1, ValueName)) 1014 return Error(BitcodeError::InvalidRecord); 1015 unsigned ValueID = Record[0]; 1016 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 1017 return Error(BitcodeError::InvalidRecord); 1018 Value *V = ValueList[ValueID]; 1019 1020 V->setName(StringRef(ValueName.data(), ValueName.size())); 1021 ValueName.clear(); 1022 break; 1023 } 1024 case bitc::VST_CODE_BBENTRY: { 1025 if (ConvertToString(Record, 1, ValueName)) 1026 return Error(BitcodeError::InvalidRecord); 1027 BasicBlock *BB = getBasicBlock(Record[0]); 1028 if (!BB) 1029 return Error(BitcodeError::InvalidRecord); 1030 1031 BB->setName(StringRef(ValueName.data(), ValueName.size())); 1032 ValueName.clear(); 1033 break; 1034 } 1035 } 1036 } 1037 } 1038 1039 std::error_code BitcodeReader::ParseMetadata() { 1040 unsigned NextMDValueNo = MDValueList.size(); 1041 1042 if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID)) 1043 return Error(BitcodeError::InvalidRecord); 1044 1045 SmallVector<uint64_t, 64> Record; 1046 1047 // Read all the records. 1048 while (1) { 1049 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1050 1051 switch (Entry.Kind) { 1052 case BitstreamEntry::SubBlock: // Handled for us already. 1053 case BitstreamEntry::Error: 1054 return Error(BitcodeError::MalformedBlock); 1055 case BitstreamEntry::EndBlock: 1056 return std::error_code(); 1057 case BitstreamEntry::Record: 1058 // The interesting case. 1059 break; 1060 } 1061 1062 bool IsFunctionLocal = false; 1063 // Read a record. 1064 Record.clear(); 1065 unsigned Code = Stream.readRecord(Entry.ID, Record); 1066 switch (Code) { 1067 default: // Default behavior: ignore. 1068 break; 1069 case bitc::METADATA_NAME: { 1070 // Read name of the named metadata. 1071 SmallString<8> Name(Record.begin(), Record.end()); 1072 Record.clear(); 1073 Code = Stream.ReadCode(); 1074 1075 // METADATA_NAME is always followed by METADATA_NAMED_NODE. 1076 unsigned NextBitCode = Stream.readRecord(Code, Record); 1077 assert(NextBitCode == bitc::METADATA_NAMED_NODE); (void)NextBitCode; 1078 1079 // Read named metadata elements. 1080 unsigned Size = Record.size(); 1081 NamedMDNode *NMD = TheModule->getOrInsertNamedMetadata(Name); 1082 for (unsigned i = 0; i != Size; ++i) { 1083 MDNode *MD = dyn_cast_or_null<MDNode>(MDValueList.getValueFwdRef(Record[i])); 1084 if (!MD) 1085 return Error(BitcodeError::InvalidRecord); 1086 NMD->addOperand(MD); 1087 } 1088 break; 1089 } 1090 case bitc::METADATA_FN_NODE: 1091 IsFunctionLocal = true; 1092 // fall-through 1093 case bitc::METADATA_NODE: { 1094 if (Record.size() % 2 == 1) 1095 return Error(BitcodeError::InvalidRecord); 1096 1097 unsigned Size = Record.size(); 1098 SmallVector<Value*, 8> Elts; 1099 for (unsigned i = 0; i != Size; i += 2) { 1100 Type *Ty = getTypeByID(Record[i]); 1101 if (!Ty) 1102 return Error(BitcodeError::InvalidRecord); 1103 if (Ty->isMetadataTy()) 1104 Elts.push_back(MDValueList.getValueFwdRef(Record[i+1])); 1105 else if (!Ty->isVoidTy()) 1106 Elts.push_back(ValueList.getValueFwdRef(Record[i+1], Ty)); 1107 else 1108 Elts.push_back(nullptr); 1109 } 1110 Value *V = MDNode::getWhenValsUnresolved(Context, Elts, IsFunctionLocal); 1111 IsFunctionLocal = false; 1112 MDValueList.AssignValue(V, NextMDValueNo++); 1113 break; 1114 } 1115 case bitc::METADATA_STRING: { 1116 std::string String(Record.begin(), Record.end()); 1117 llvm::UpgradeMDStringConstant(String); 1118 Value *V = MDString::get(Context, String); 1119 MDValueList.AssignValue(V, NextMDValueNo++); 1120 break; 1121 } 1122 case bitc::METADATA_KIND: { 1123 if (Record.size() < 2) 1124 return Error(BitcodeError::InvalidRecord); 1125 1126 unsigned Kind = Record[0]; 1127 SmallString<8> Name(Record.begin()+1, Record.end()); 1128 1129 unsigned NewKind = TheModule->getMDKindID(Name.str()); 1130 if (!MDKindMap.insert(std::make_pair(Kind, NewKind)).second) 1131 return Error(BitcodeError::ConflictingMETADATA_KINDRecords); 1132 break; 1133 } 1134 } 1135 } 1136 } 1137 1138 /// decodeSignRotatedValue - Decode a signed value stored with the sign bit in 1139 /// the LSB for dense VBR encoding. 1140 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { 1141 if ((V & 1) == 0) 1142 return V >> 1; 1143 if (V != 1) 1144 return -(V >> 1); 1145 // There is no such thing as -0 with integers. "-0" really means MININT. 1146 return 1ULL << 63; 1147 } 1148 1149 /// ResolveGlobalAndAliasInits - Resolve all of the initializers for global 1150 /// values and aliases that we can. 1151 std::error_code BitcodeReader::ResolveGlobalAndAliasInits() { 1152 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist; 1153 std::vector<std::pair<GlobalAlias*, unsigned> > AliasInitWorklist; 1154 std::vector<std::pair<Function*, unsigned> > FunctionPrefixWorklist; 1155 1156 GlobalInitWorklist.swap(GlobalInits); 1157 AliasInitWorklist.swap(AliasInits); 1158 FunctionPrefixWorklist.swap(FunctionPrefixes); 1159 1160 while (!GlobalInitWorklist.empty()) { 1161 unsigned ValID = GlobalInitWorklist.back().second; 1162 if (ValID >= ValueList.size()) { 1163 // Not ready to resolve this yet, it requires something later in the file. 1164 GlobalInits.push_back(GlobalInitWorklist.back()); 1165 } else { 1166 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 1167 GlobalInitWorklist.back().first->setInitializer(C); 1168 else 1169 return Error(BitcodeError::ExpectedConstant); 1170 } 1171 GlobalInitWorklist.pop_back(); 1172 } 1173 1174 while (!AliasInitWorklist.empty()) { 1175 unsigned ValID = AliasInitWorklist.back().second; 1176 if (ValID >= ValueList.size()) { 1177 AliasInits.push_back(AliasInitWorklist.back()); 1178 } else { 1179 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 1180 AliasInitWorklist.back().first->setAliasee(C); 1181 else 1182 return Error(BitcodeError::ExpectedConstant); 1183 } 1184 AliasInitWorklist.pop_back(); 1185 } 1186 1187 while (!FunctionPrefixWorklist.empty()) { 1188 unsigned ValID = FunctionPrefixWorklist.back().second; 1189 if (ValID >= ValueList.size()) { 1190 FunctionPrefixes.push_back(FunctionPrefixWorklist.back()); 1191 } else { 1192 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 1193 FunctionPrefixWorklist.back().first->setPrefixData(C); 1194 else 1195 return Error(BitcodeError::ExpectedConstant); 1196 } 1197 FunctionPrefixWorklist.pop_back(); 1198 } 1199 1200 return std::error_code(); 1201 } 1202 1203 static APInt ReadWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { 1204 SmallVector<uint64_t, 8> Words(Vals.size()); 1205 std::transform(Vals.begin(), Vals.end(), Words.begin(), 1206 BitcodeReader::decodeSignRotatedValue); 1207 1208 return APInt(TypeBits, Words); 1209 } 1210 1211 std::error_code BitcodeReader::ParseConstants() { 1212 if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 1213 return Error(BitcodeError::InvalidRecord); 1214 1215 SmallVector<uint64_t, 64> Record; 1216 1217 // Read all the records for this value table. 1218 Type *CurTy = Type::getInt32Ty(Context); 1219 unsigned NextCstNo = ValueList.size(); 1220 while (1) { 1221 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1222 1223 switch (Entry.Kind) { 1224 case BitstreamEntry::SubBlock: // Handled for us already. 1225 case BitstreamEntry::Error: 1226 return Error(BitcodeError::MalformedBlock); 1227 case BitstreamEntry::EndBlock: 1228 if (NextCstNo != ValueList.size()) 1229 return Error(BitcodeError::InvalidConstantReference); 1230 1231 // Once all the constants have been read, go through and resolve forward 1232 // references. 1233 ValueList.ResolveConstantForwardRefs(); 1234 return std::error_code(); 1235 case BitstreamEntry::Record: 1236 // The interesting case. 1237 break; 1238 } 1239 1240 // Read a record. 1241 Record.clear(); 1242 Value *V = nullptr; 1243 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 1244 switch (BitCode) { 1245 default: // Default behavior: unknown constant 1246 case bitc::CST_CODE_UNDEF: // UNDEF 1247 V = UndefValue::get(CurTy); 1248 break; 1249 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 1250 if (Record.empty()) 1251 return Error(BitcodeError::InvalidRecord); 1252 if (Record[0] >= TypeList.size() || !TypeList[Record[0]]) 1253 return Error(BitcodeError::InvalidRecord); 1254 CurTy = TypeList[Record[0]]; 1255 continue; // Skip the ValueList manipulation. 1256 case bitc::CST_CODE_NULL: // NULL 1257 V = Constant::getNullValue(CurTy); 1258 break; 1259 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 1260 if (!CurTy->isIntegerTy() || Record.empty()) 1261 return Error(BitcodeError::InvalidRecord); 1262 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); 1263 break; 1264 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 1265 if (!CurTy->isIntegerTy() || Record.empty()) 1266 return Error(BitcodeError::InvalidRecord); 1267 1268 APInt VInt = ReadWideAPInt(Record, 1269 cast<IntegerType>(CurTy)->getBitWidth()); 1270 V = ConstantInt::get(Context, VInt); 1271 1272 break; 1273 } 1274 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 1275 if (Record.empty()) 1276 return Error(BitcodeError::InvalidRecord); 1277 if (CurTy->isHalfTy()) 1278 V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf, 1279 APInt(16, (uint16_t)Record[0]))); 1280 else if (CurTy->isFloatTy()) 1281 V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle, 1282 APInt(32, (uint32_t)Record[0]))); 1283 else if (CurTy->isDoubleTy()) 1284 V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble, 1285 APInt(64, Record[0]))); 1286 else if (CurTy->isX86_FP80Ty()) { 1287 // Bits are not stored the same way as a normal i80 APInt, compensate. 1288 uint64_t Rearrange[2]; 1289 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 1290 Rearrange[1] = Record[0] >> 48; 1291 V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended, 1292 APInt(80, Rearrange))); 1293 } else if (CurTy->isFP128Ty()) 1294 V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad, 1295 APInt(128, Record))); 1296 else if (CurTy->isPPC_FP128Ty()) 1297 V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble, 1298 APInt(128, Record))); 1299 else 1300 V = UndefValue::get(CurTy); 1301 break; 1302 } 1303 1304 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 1305 if (Record.empty()) 1306 return Error(BitcodeError::InvalidRecord); 1307 1308 unsigned Size = Record.size(); 1309 SmallVector<Constant*, 16> Elts; 1310 1311 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 1312 for (unsigned i = 0; i != Size; ++i) 1313 Elts.push_back(ValueList.getConstantFwdRef(Record[i], 1314 STy->getElementType(i))); 1315 V = ConstantStruct::get(STy, Elts); 1316 } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) { 1317 Type *EltTy = ATy->getElementType(); 1318 for (unsigned i = 0; i != Size; ++i) 1319 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 1320 V = ConstantArray::get(ATy, Elts); 1321 } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) { 1322 Type *EltTy = VTy->getElementType(); 1323 for (unsigned i = 0; i != Size; ++i) 1324 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 1325 V = ConstantVector::get(Elts); 1326 } else { 1327 V = UndefValue::get(CurTy); 1328 } 1329 break; 1330 } 1331 case bitc::CST_CODE_STRING: // STRING: [values] 1332 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 1333 if (Record.empty()) 1334 return Error(BitcodeError::InvalidRecord); 1335 1336 SmallString<16> Elts(Record.begin(), Record.end()); 1337 V = ConstantDataArray::getString(Context, Elts, 1338 BitCode == bitc::CST_CODE_CSTRING); 1339 break; 1340 } 1341 case bitc::CST_CODE_DATA: {// DATA: [n x value] 1342 if (Record.empty()) 1343 return Error(BitcodeError::InvalidRecord); 1344 1345 Type *EltTy = cast<SequentialType>(CurTy)->getElementType(); 1346 unsigned Size = Record.size(); 1347 1348 if (EltTy->isIntegerTy(8)) { 1349 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); 1350 if (isa<VectorType>(CurTy)) 1351 V = ConstantDataVector::get(Context, Elts); 1352 else 1353 V = ConstantDataArray::get(Context, Elts); 1354 } else if (EltTy->isIntegerTy(16)) { 1355 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 1356 if (isa<VectorType>(CurTy)) 1357 V = ConstantDataVector::get(Context, Elts); 1358 else 1359 V = ConstantDataArray::get(Context, Elts); 1360 } else if (EltTy->isIntegerTy(32)) { 1361 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 1362 if (isa<VectorType>(CurTy)) 1363 V = ConstantDataVector::get(Context, Elts); 1364 else 1365 V = ConstantDataArray::get(Context, Elts); 1366 } else if (EltTy->isIntegerTy(64)) { 1367 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 1368 if (isa<VectorType>(CurTy)) 1369 V = ConstantDataVector::get(Context, Elts); 1370 else 1371 V = ConstantDataArray::get(Context, Elts); 1372 } else if (EltTy->isFloatTy()) { 1373 SmallVector<float, 16> Elts(Size); 1374 std::transform(Record.begin(), Record.end(), Elts.begin(), BitsToFloat); 1375 if (isa<VectorType>(CurTy)) 1376 V = ConstantDataVector::get(Context, Elts); 1377 else 1378 V = ConstantDataArray::get(Context, Elts); 1379 } else if (EltTy->isDoubleTy()) { 1380 SmallVector<double, 16> Elts(Size); 1381 std::transform(Record.begin(), Record.end(), Elts.begin(), 1382 BitsToDouble); 1383 if (isa<VectorType>(CurTy)) 1384 V = ConstantDataVector::get(Context, Elts); 1385 else 1386 V = ConstantDataArray::get(Context, Elts); 1387 } else { 1388 return Error(BitcodeError::InvalidTypeForValue); 1389 } 1390 break; 1391 } 1392 1393 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 1394 if (Record.size() < 3) 1395 return Error(BitcodeError::InvalidRecord); 1396 int Opc = GetDecodedBinaryOpcode(Record[0], CurTy); 1397 if (Opc < 0) { 1398 V = UndefValue::get(CurTy); // Unknown binop. 1399 } else { 1400 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 1401 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy); 1402 unsigned Flags = 0; 1403 if (Record.size() >= 4) { 1404 if (Opc == Instruction::Add || 1405 Opc == Instruction::Sub || 1406 Opc == Instruction::Mul || 1407 Opc == Instruction::Shl) { 1408 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 1409 Flags |= OverflowingBinaryOperator::NoSignedWrap; 1410 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 1411 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 1412 } else if (Opc == Instruction::SDiv || 1413 Opc == Instruction::UDiv || 1414 Opc == Instruction::LShr || 1415 Opc == Instruction::AShr) { 1416 if (Record[3] & (1 << bitc::PEO_EXACT)) 1417 Flags |= SDivOperator::IsExact; 1418 } 1419 } 1420 V = ConstantExpr::get(Opc, LHS, RHS, Flags); 1421 } 1422 break; 1423 } 1424 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 1425 if (Record.size() < 3) 1426 return Error(BitcodeError::InvalidRecord); 1427 int Opc = GetDecodedCastOpcode(Record[0]); 1428 if (Opc < 0) { 1429 V = UndefValue::get(CurTy); // Unknown cast. 1430 } else { 1431 Type *OpTy = getTypeByID(Record[1]); 1432 if (!OpTy) 1433 return Error(BitcodeError::InvalidRecord); 1434 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy); 1435 V = UpgradeBitCastExpr(Opc, Op, CurTy); 1436 if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy); 1437 } 1438 break; 1439 } 1440 case bitc::CST_CODE_CE_INBOUNDS_GEP: 1441 case bitc::CST_CODE_CE_GEP: { // CE_GEP: [n x operands] 1442 if (Record.size() & 1) 1443 return Error(BitcodeError::InvalidRecord); 1444 SmallVector<Constant*, 16> Elts; 1445 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1446 Type *ElTy = getTypeByID(Record[i]); 1447 if (!ElTy) 1448 return Error(BitcodeError::InvalidRecord); 1449 Elts.push_back(ValueList.getConstantFwdRef(Record[i+1], ElTy)); 1450 } 1451 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 1452 V = ConstantExpr::getGetElementPtr(Elts[0], Indices, 1453 BitCode == 1454 bitc::CST_CODE_CE_INBOUNDS_GEP); 1455 break; 1456 } 1457 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] 1458 if (Record.size() < 3) 1459 return Error(BitcodeError::InvalidRecord); 1460 1461 Type *SelectorTy = Type::getInt1Ty(Context); 1462 1463 // If CurTy is a vector of length n, then Record[0] must be a <n x i1> 1464 // vector. Otherwise, it must be a single bit. 1465 if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) 1466 SelectorTy = VectorType::get(Type::getInt1Ty(Context), 1467 VTy->getNumElements()); 1468 1469 V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0], 1470 SelectorTy), 1471 ValueList.getConstantFwdRef(Record[1],CurTy), 1472 ValueList.getConstantFwdRef(Record[2],CurTy)); 1473 break; 1474 } 1475 case bitc::CST_CODE_CE_EXTRACTELT 1476 : { // CE_EXTRACTELT: [opty, opval, opty, opval] 1477 if (Record.size() < 3) 1478 return Error(BitcodeError::InvalidRecord); 1479 VectorType *OpTy = 1480 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 1481 if (!OpTy) 1482 return Error(BitcodeError::InvalidRecord); 1483 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 1484 Constant *Op1 = nullptr; 1485 if (Record.size() == 4) { 1486 Type *IdxTy = getTypeByID(Record[2]); 1487 if (!IdxTy) 1488 return Error(BitcodeError::InvalidRecord); 1489 Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy); 1490 } else // TODO: Remove with llvm 4.0 1491 Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 1492 if (!Op1) 1493 return Error(BitcodeError::InvalidRecord); 1494 V = ConstantExpr::getExtractElement(Op0, Op1); 1495 break; 1496 } 1497 case bitc::CST_CODE_CE_INSERTELT 1498 : { // CE_INSERTELT: [opval, opval, opty, opval] 1499 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 1500 if (Record.size() < 3 || !OpTy) 1501 return Error(BitcodeError::InvalidRecord); 1502 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 1503 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], 1504 OpTy->getElementType()); 1505 Constant *Op2 = nullptr; 1506 if (Record.size() == 4) { 1507 Type *IdxTy = getTypeByID(Record[2]); 1508 if (!IdxTy) 1509 return Error(BitcodeError::InvalidRecord); 1510 Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy); 1511 } else // TODO: Remove with llvm 4.0 1512 Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 1513 if (!Op2) 1514 return Error(BitcodeError::InvalidRecord); 1515 V = ConstantExpr::getInsertElement(Op0, Op1, Op2); 1516 break; 1517 } 1518 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 1519 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 1520 if (Record.size() < 3 || !OpTy) 1521 return Error(BitcodeError::InvalidRecord); 1522 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 1523 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy); 1524 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 1525 OpTy->getNumElements()); 1526 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy); 1527 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 1528 break; 1529 } 1530 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 1531 VectorType *RTy = dyn_cast<VectorType>(CurTy); 1532 VectorType *OpTy = 1533 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 1534 if (Record.size() < 4 || !RTy || !OpTy) 1535 return Error(BitcodeError::InvalidRecord); 1536 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 1537 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 1538 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 1539 RTy->getNumElements()); 1540 Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy); 1541 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 1542 break; 1543 } 1544 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 1545 if (Record.size() < 4) 1546 return Error(BitcodeError::InvalidRecord); 1547 Type *OpTy = getTypeByID(Record[0]); 1548 if (!OpTy) 1549 return Error(BitcodeError::InvalidRecord); 1550 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 1551 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 1552 1553 if (OpTy->isFPOrFPVectorTy()) 1554 V = ConstantExpr::getFCmp(Record[3], Op0, Op1); 1555 else 1556 V = ConstantExpr::getICmp(Record[3], Op0, Op1); 1557 break; 1558 } 1559 // This maintains backward compatibility, pre-asm dialect keywords. 1560 // FIXME: Remove with the 4.0 release. 1561 case bitc::CST_CODE_INLINEASM_OLD: { 1562 if (Record.size() < 2) 1563 return Error(BitcodeError::InvalidRecord); 1564 std::string AsmStr, ConstrStr; 1565 bool HasSideEffects = Record[0] & 1; 1566 bool IsAlignStack = Record[0] >> 1; 1567 unsigned AsmStrSize = Record[1]; 1568 if (2+AsmStrSize >= Record.size()) 1569 return Error(BitcodeError::InvalidRecord); 1570 unsigned ConstStrSize = Record[2+AsmStrSize]; 1571 if (3+AsmStrSize+ConstStrSize > Record.size()) 1572 return Error(BitcodeError::InvalidRecord); 1573 1574 for (unsigned i = 0; i != AsmStrSize; ++i) 1575 AsmStr += (char)Record[2+i]; 1576 for (unsigned i = 0; i != ConstStrSize; ++i) 1577 ConstrStr += (char)Record[3+AsmStrSize+i]; 1578 PointerType *PTy = cast<PointerType>(CurTy); 1579 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 1580 AsmStr, ConstrStr, HasSideEffects, IsAlignStack); 1581 break; 1582 } 1583 // This version adds support for the asm dialect keywords (e.g., 1584 // inteldialect). 1585 case bitc::CST_CODE_INLINEASM: { 1586 if (Record.size() < 2) 1587 return Error(BitcodeError::InvalidRecord); 1588 std::string AsmStr, ConstrStr; 1589 bool HasSideEffects = Record[0] & 1; 1590 bool IsAlignStack = (Record[0] >> 1) & 1; 1591 unsigned AsmDialect = Record[0] >> 2; 1592 unsigned AsmStrSize = Record[1]; 1593 if (2+AsmStrSize >= Record.size()) 1594 return Error(BitcodeError::InvalidRecord); 1595 unsigned ConstStrSize = Record[2+AsmStrSize]; 1596 if (3+AsmStrSize+ConstStrSize > Record.size()) 1597 return Error(BitcodeError::InvalidRecord); 1598 1599 for (unsigned i = 0; i != AsmStrSize; ++i) 1600 AsmStr += (char)Record[2+i]; 1601 for (unsigned i = 0; i != ConstStrSize; ++i) 1602 ConstrStr += (char)Record[3+AsmStrSize+i]; 1603 PointerType *PTy = cast<PointerType>(CurTy); 1604 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 1605 AsmStr, ConstrStr, HasSideEffects, IsAlignStack, 1606 InlineAsm::AsmDialect(AsmDialect)); 1607 break; 1608 } 1609 case bitc::CST_CODE_BLOCKADDRESS:{ 1610 if (Record.size() < 3) 1611 return Error(BitcodeError::InvalidRecord); 1612 Type *FnTy = getTypeByID(Record[0]); 1613 if (!FnTy) 1614 return Error(BitcodeError::InvalidRecord); 1615 Function *Fn = 1616 dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy)); 1617 if (!Fn) 1618 return Error(BitcodeError::InvalidRecord); 1619 1620 // Don't let Fn get dematerialized. 1621 BlockAddressesTaken.insert(Fn); 1622 1623 // If the function is already parsed we can insert the block address right 1624 // away. 1625 BasicBlock *BB; 1626 unsigned BBID = Record[2]; 1627 if (!BBID) 1628 // Invalid reference to entry block. 1629 return Error(BitcodeError::InvalidID); 1630 if (!Fn->empty()) { 1631 Function::iterator BBI = Fn->begin(), BBE = Fn->end(); 1632 for (size_t I = 0, E = BBID; I != E; ++I) { 1633 if (BBI == BBE) 1634 return Error(BitcodeError::InvalidID); 1635 ++BBI; 1636 } 1637 BB = BBI; 1638 } else { 1639 // Otherwise insert a placeholder and remember it so it can be inserted 1640 // when the function is parsed. 1641 auto &FwdBBs = BasicBlockFwdRefs[Fn]; 1642 if (FwdBBs.empty()) 1643 BasicBlockFwdRefQueue.push_back(Fn); 1644 if (FwdBBs.size() < BBID + 1) 1645 FwdBBs.resize(BBID + 1); 1646 if (!FwdBBs[BBID]) 1647 FwdBBs[BBID] = BasicBlock::Create(Context); 1648 BB = FwdBBs[BBID]; 1649 } 1650 V = BlockAddress::get(Fn, BB); 1651 break; 1652 } 1653 } 1654 1655 ValueList.AssignValue(V, NextCstNo); 1656 ++NextCstNo; 1657 } 1658 } 1659 1660 std::error_code BitcodeReader::ParseUseLists() { 1661 if (Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 1662 return Error(BitcodeError::InvalidRecord); 1663 1664 // Read all the records. 1665 SmallVector<uint64_t, 64> Record; 1666 while (1) { 1667 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1668 1669 switch (Entry.Kind) { 1670 case BitstreamEntry::SubBlock: // Handled for us already. 1671 case BitstreamEntry::Error: 1672 return Error(BitcodeError::MalformedBlock); 1673 case BitstreamEntry::EndBlock: 1674 return std::error_code(); 1675 case BitstreamEntry::Record: 1676 // The interesting case. 1677 break; 1678 } 1679 1680 // Read a use list record. 1681 Record.clear(); 1682 bool IsBB = false; 1683 switch (Stream.readRecord(Entry.ID, Record)) { 1684 default: // Default behavior: unknown type. 1685 break; 1686 case bitc::USELIST_CODE_BB: 1687 IsBB = true; 1688 // fallthrough 1689 case bitc::USELIST_CODE_DEFAULT: { 1690 unsigned RecordLength = Record.size(); 1691 if (RecordLength < 3) 1692 // Records should have at least an ID and two indexes. 1693 return Error(BitcodeError::InvalidRecord); 1694 unsigned ID = Record.back(); 1695 Record.pop_back(); 1696 1697 Value *V; 1698 if (IsBB) { 1699 assert(ID < FunctionBBs.size() && "Basic block not found"); 1700 V = FunctionBBs[ID]; 1701 } else 1702 V = ValueList[ID]; 1703 unsigned NumUses = 0; 1704 SmallDenseMap<const Use *, unsigned, 16> Order; 1705 for (const Use &U : V->uses()) { 1706 if (++NumUses > Record.size()) 1707 break; 1708 Order[&U] = Record[NumUses - 1]; 1709 } 1710 if (Order.size() != Record.size() || NumUses > Record.size()) 1711 // Mismatches can happen if the functions are being materialized lazily 1712 // (out-of-order), or a value has been upgraded. 1713 break; 1714 1715 V->sortUseList([&](const Use &L, const Use &R) { 1716 return Order.lookup(&L) < Order.lookup(&R); 1717 }); 1718 break; 1719 } 1720 } 1721 } 1722 } 1723 1724 /// RememberAndSkipFunctionBody - When we see the block for a function body, 1725 /// remember where it is and then skip it. This lets us lazily deserialize the 1726 /// functions. 1727 std::error_code BitcodeReader::RememberAndSkipFunctionBody() { 1728 // Get the function we are talking about. 1729 if (FunctionsWithBodies.empty()) 1730 return Error(BitcodeError::InsufficientFunctionProtos); 1731 1732 Function *Fn = FunctionsWithBodies.back(); 1733 FunctionsWithBodies.pop_back(); 1734 1735 // Save the current stream state. 1736 uint64_t CurBit = Stream.GetCurrentBitNo(); 1737 DeferredFunctionInfo[Fn] = CurBit; 1738 1739 // Skip over the function block for now. 1740 if (Stream.SkipBlock()) 1741 return Error(BitcodeError::InvalidRecord); 1742 return std::error_code(); 1743 } 1744 1745 std::error_code BitcodeReader::GlobalCleanup() { 1746 // Patch the initializers for globals and aliases up. 1747 ResolveGlobalAndAliasInits(); 1748 if (!GlobalInits.empty() || !AliasInits.empty()) 1749 return Error(BitcodeError::MalformedGlobalInitializerSet); 1750 1751 // Look for intrinsic functions which need to be upgraded at some point 1752 for (Module::iterator FI = TheModule->begin(), FE = TheModule->end(); 1753 FI != FE; ++FI) { 1754 Function *NewFn; 1755 if (UpgradeIntrinsicFunction(FI, NewFn)) 1756 UpgradedIntrinsics.push_back(std::make_pair(FI, NewFn)); 1757 } 1758 1759 // Look for global variables which need to be renamed. 1760 for (Module::global_iterator 1761 GI = TheModule->global_begin(), GE = TheModule->global_end(); 1762 GI != GE;) { 1763 GlobalVariable *GV = GI++; 1764 UpgradeGlobalVariable(GV); 1765 } 1766 1767 // Force deallocation of memory for these vectors to favor the client that 1768 // want lazy deserialization. 1769 std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits); 1770 std::vector<std::pair<GlobalAlias*, unsigned> >().swap(AliasInits); 1771 return std::error_code(); 1772 } 1773 1774 std::error_code BitcodeReader::ParseModule(bool Resume) { 1775 if (Resume) 1776 Stream.JumpToBit(NextUnreadBit); 1777 else if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 1778 return Error(BitcodeError::InvalidRecord); 1779 1780 SmallVector<uint64_t, 64> Record; 1781 std::vector<std::string> SectionTable; 1782 std::vector<std::string> GCTable; 1783 1784 // Read all the records for this module. 1785 while (1) { 1786 BitstreamEntry Entry = Stream.advance(); 1787 1788 switch (Entry.Kind) { 1789 case BitstreamEntry::Error: 1790 return Error(BitcodeError::MalformedBlock); 1791 case BitstreamEntry::EndBlock: 1792 return GlobalCleanup(); 1793 1794 case BitstreamEntry::SubBlock: 1795 switch (Entry.ID) { 1796 default: // Skip unknown content. 1797 if (Stream.SkipBlock()) 1798 return Error(BitcodeError::InvalidRecord); 1799 break; 1800 case bitc::BLOCKINFO_BLOCK_ID: 1801 if (Stream.ReadBlockInfoBlock()) 1802 return Error(BitcodeError::MalformedBlock); 1803 break; 1804 case bitc::PARAMATTR_BLOCK_ID: 1805 if (std::error_code EC = ParseAttributeBlock()) 1806 return EC; 1807 break; 1808 case bitc::PARAMATTR_GROUP_BLOCK_ID: 1809 if (std::error_code EC = ParseAttributeGroupBlock()) 1810 return EC; 1811 break; 1812 case bitc::TYPE_BLOCK_ID_NEW: 1813 if (std::error_code EC = ParseTypeTable()) 1814 return EC; 1815 break; 1816 case bitc::VALUE_SYMTAB_BLOCK_ID: 1817 if (std::error_code EC = ParseValueSymbolTable()) 1818 return EC; 1819 SeenValueSymbolTable = true; 1820 break; 1821 case bitc::CONSTANTS_BLOCK_ID: 1822 if (std::error_code EC = ParseConstants()) 1823 return EC; 1824 if (std::error_code EC = ResolveGlobalAndAliasInits()) 1825 return EC; 1826 break; 1827 case bitc::METADATA_BLOCK_ID: 1828 if (std::error_code EC = ParseMetadata()) 1829 return EC; 1830 break; 1831 case bitc::FUNCTION_BLOCK_ID: 1832 // If this is the first function body we've seen, reverse the 1833 // FunctionsWithBodies list. 1834 if (!SeenFirstFunctionBody) { 1835 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 1836 if (std::error_code EC = GlobalCleanup()) 1837 return EC; 1838 SeenFirstFunctionBody = true; 1839 } 1840 1841 if (std::error_code EC = RememberAndSkipFunctionBody()) 1842 return EC; 1843 // For streaming bitcode, suspend parsing when we reach the function 1844 // bodies. Subsequent materialization calls will resume it when 1845 // necessary. For streaming, the function bodies must be at the end of 1846 // the bitcode. If the bitcode file is old, the symbol table will be 1847 // at the end instead and will not have been seen yet. In this case, 1848 // just finish the parse now. 1849 if (LazyStreamer && SeenValueSymbolTable) { 1850 NextUnreadBit = Stream.GetCurrentBitNo(); 1851 return std::error_code(); 1852 } 1853 break; 1854 case bitc::USELIST_BLOCK_ID: 1855 if (std::error_code EC = ParseUseLists()) 1856 return EC; 1857 break; 1858 } 1859 continue; 1860 1861 case BitstreamEntry::Record: 1862 // The interesting case. 1863 break; 1864 } 1865 1866 1867 // Read a record. 1868 switch (Stream.readRecord(Entry.ID, Record)) { 1869 default: break; // Default behavior, ignore unknown content. 1870 case bitc::MODULE_CODE_VERSION: { // VERSION: [version#] 1871 if (Record.size() < 1) 1872 return Error(BitcodeError::InvalidRecord); 1873 // Only version #0 and #1 are supported so far. 1874 unsigned module_version = Record[0]; 1875 switch (module_version) { 1876 default: 1877 return Error(BitcodeError::InvalidValue); 1878 case 0: 1879 UseRelativeIDs = false; 1880 break; 1881 case 1: 1882 UseRelativeIDs = true; 1883 break; 1884 } 1885 break; 1886 } 1887 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 1888 std::string S; 1889 if (ConvertToString(Record, 0, S)) 1890 return Error(BitcodeError::InvalidRecord); 1891 TheModule->setTargetTriple(S); 1892 break; 1893 } 1894 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 1895 std::string S; 1896 if (ConvertToString(Record, 0, S)) 1897 return Error(BitcodeError::InvalidRecord); 1898 TheModule->setDataLayout(S); 1899 break; 1900 } 1901 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 1902 std::string S; 1903 if (ConvertToString(Record, 0, S)) 1904 return Error(BitcodeError::InvalidRecord); 1905 TheModule->setModuleInlineAsm(S); 1906 break; 1907 } 1908 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 1909 // FIXME: Remove in 4.0. 1910 std::string S; 1911 if (ConvertToString(Record, 0, S)) 1912 return Error(BitcodeError::InvalidRecord); 1913 // Ignore value. 1914 break; 1915 } 1916 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 1917 std::string S; 1918 if (ConvertToString(Record, 0, S)) 1919 return Error(BitcodeError::InvalidRecord); 1920 SectionTable.push_back(S); 1921 break; 1922 } 1923 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 1924 std::string S; 1925 if (ConvertToString(Record, 0, S)) 1926 return Error(BitcodeError::InvalidRecord); 1927 GCTable.push_back(S); 1928 break; 1929 } 1930 case bitc::MODULE_CODE_COMDAT: { // COMDAT: [selection_kind, name] 1931 if (Record.size() < 2) 1932 return Error(BitcodeError::InvalidRecord); 1933 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]); 1934 unsigned ComdatNameSize = Record[1]; 1935 std::string ComdatName; 1936 ComdatName.reserve(ComdatNameSize); 1937 for (unsigned i = 0; i != ComdatNameSize; ++i) 1938 ComdatName += (char)Record[2 + i]; 1939 Comdat *C = TheModule->getOrInsertComdat(ComdatName); 1940 C->setSelectionKind(SK); 1941 ComdatList.push_back(C); 1942 break; 1943 } 1944 // GLOBALVAR: [pointer type, isconst, initid, 1945 // linkage, alignment, section, visibility, threadlocal, 1946 // unnamed_addr, dllstorageclass] 1947 case bitc::MODULE_CODE_GLOBALVAR: { 1948 if (Record.size() < 6) 1949 return Error(BitcodeError::InvalidRecord); 1950 Type *Ty = getTypeByID(Record[0]); 1951 if (!Ty) 1952 return Error(BitcodeError::InvalidRecord); 1953 if (!Ty->isPointerTy()) 1954 return Error(BitcodeError::InvalidTypeForValue); 1955 unsigned AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 1956 Ty = cast<PointerType>(Ty)->getElementType(); 1957 1958 bool isConstant = Record[1]; 1959 GlobalValue::LinkageTypes Linkage = GetDecodedLinkage(Record[3]); 1960 unsigned Alignment = (1 << Record[4]) >> 1; 1961 std::string Section; 1962 if (Record[5]) { 1963 if (Record[5]-1 >= SectionTable.size()) 1964 return Error(BitcodeError::InvalidID); 1965 Section = SectionTable[Record[5]-1]; 1966 } 1967 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 1968 // Local linkage must have default visibility. 1969 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage)) 1970 // FIXME: Change to an error if non-default in 4.0. 1971 Visibility = GetDecodedVisibility(Record[6]); 1972 1973 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; 1974 if (Record.size() > 7) 1975 TLM = GetDecodedThreadLocalMode(Record[7]); 1976 1977 bool UnnamedAddr = false; 1978 if (Record.size() > 8) 1979 UnnamedAddr = Record[8]; 1980 1981 bool ExternallyInitialized = false; 1982 if (Record.size() > 9) 1983 ExternallyInitialized = Record[9]; 1984 1985 GlobalVariable *NewGV = 1986 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, "", nullptr, 1987 TLM, AddressSpace, ExternallyInitialized); 1988 NewGV->setAlignment(Alignment); 1989 if (!Section.empty()) 1990 NewGV->setSection(Section); 1991 NewGV->setVisibility(Visibility); 1992 NewGV->setUnnamedAddr(UnnamedAddr); 1993 1994 if (Record.size() > 10) 1995 NewGV->setDLLStorageClass(GetDecodedDLLStorageClass(Record[10])); 1996 else 1997 UpgradeDLLImportExportLinkage(NewGV, Record[3]); 1998 1999 ValueList.push_back(NewGV); 2000 2001 // Remember which value to use for the global initializer. 2002 if (unsigned InitID = Record[2]) 2003 GlobalInits.push_back(std::make_pair(NewGV, InitID-1)); 2004 2005 if (Record.size() > 11) 2006 if (unsigned ComdatID = Record[11]) { 2007 assert(ComdatID <= ComdatList.size()); 2008 NewGV->setComdat(ComdatList[ComdatID - 1]); 2009 } 2010 break; 2011 } 2012 // FUNCTION: [type, callingconv, isproto, linkage, paramattr, 2013 // alignment, section, visibility, gc, unnamed_addr, 2014 // dllstorageclass] 2015 case bitc::MODULE_CODE_FUNCTION: { 2016 if (Record.size() < 8) 2017 return Error(BitcodeError::InvalidRecord); 2018 Type *Ty = getTypeByID(Record[0]); 2019 if (!Ty) 2020 return Error(BitcodeError::InvalidRecord); 2021 if (!Ty->isPointerTy()) 2022 return Error(BitcodeError::InvalidTypeForValue); 2023 FunctionType *FTy = 2024 dyn_cast<FunctionType>(cast<PointerType>(Ty)->getElementType()); 2025 if (!FTy) 2026 return Error(BitcodeError::InvalidTypeForValue); 2027 2028 Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage, 2029 "", TheModule); 2030 2031 Func->setCallingConv(static_cast<CallingConv::ID>(Record[1])); 2032 bool isProto = Record[2]; 2033 Func->setLinkage(GetDecodedLinkage(Record[3])); 2034 Func->setAttributes(getAttributes(Record[4])); 2035 2036 Func->setAlignment((1 << Record[5]) >> 1); 2037 if (Record[6]) { 2038 if (Record[6]-1 >= SectionTable.size()) 2039 return Error(BitcodeError::InvalidID); 2040 Func->setSection(SectionTable[Record[6]-1]); 2041 } 2042 // Local linkage must have default visibility. 2043 if (!Func->hasLocalLinkage()) 2044 // FIXME: Change to an error if non-default in 4.0. 2045 Func->setVisibility(GetDecodedVisibility(Record[7])); 2046 if (Record.size() > 8 && Record[8]) { 2047 if (Record[8]-1 > GCTable.size()) 2048 return Error(BitcodeError::InvalidID); 2049 Func->setGC(GCTable[Record[8]-1].c_str()); 2050 } 2051 bool UnnamedAddr = false; 2052 if (Record.size() > 9) 2053 UnnamedAddr = Record[9]; 2054 Func->setUnnamedAddr(UnnamedAddr); 2055 if (Record.size() > 10 && Record[10] != 0) 2056 FunctionPrefixes.push_back(std::make_pair(Func, Record[10]-1)); 2057 2058 if (Record.size() > 11) 2059 Func->setDLLStorageClass(GetDecodedDLLStorageClass(Record[11])); 2060 else 2061 UpgradeDLLImportExportLinkage(Func, Record[3]); 2062 2063 if (Record.size() > 12) 2064 if (unsigned ComdatID = Record[12]) { 2065 assert(ComdatID <= ComdatList.size()); 2066 Func->setComdat(ComdatList[ComdatID - 1]); 2067 } 2068 2069 ValueList.push_back(Func); 2070 2071 // If this is a function with a body, remember the prototype we are 2072 // creating now, so that we can match up the body with them later. 2073 if (!isProto) { 2074 Func->setIsMaterializable(true); 2075 FunctionsWithBodies.push_back(Func); 2076 if (LazyStreamer) 2077 DeferredFunctionInfo[Func] = 0; 2078 } 2079 break; 2080 } 2081 // ALIAS: [alias type, aliasee val#, linkage] 2082 // ALIAS: [alias type, aliasee val#, linkage, visibility, dllstorageclass] 2083 case bitc::MODULE_CODE_ALIAS: { 2084 if (Record.size() < 3) 2085 return Error(BitcodeError::InvalidRecord); 2086 Type *Ty = getTypeByID(Record[0]); 2087 if (!Ty) 2088 return Error(BitcodeError::InvalidRecord); 2089 auto *PTy = dyn_cast<PointerType>(Ty); 2090 if (!PTy) 2091 return Error(BitcodeError::InvalidTypeForValue); 2092 2093 auto *NewGA = 2094 GlobalAlias::create(PTy->getElementType(), PTy->getAddressSpace(), 2095 GetDecodedLinkage(Record[2]), "", TheModule); 2096 // Old bitcode files didn't have visibility field. 2097 // Local linkage must have default visibility. 2098 if (Record.size() > 3 && !NewGA->hasLocalLinkage()) 2099 // FIXME: Change to an error if non-default in 4.0. 2100 NewGA->setVisibility(GetDecodedVisibility(Record[3])); 2101 if (Record.size() > 4) 2102 NewGA->setDLLStorageClass(GetDecodedDLLStorageClass(Record[4])); 2103 else 2104 UpgradeDLLImportExportLinkage(NewGA, Record[2]); 2105 if (Record.size() > 5) 2106 NewGA->setThreadLocalMode(GetDecodedThreadLocalMode(Record[5])); 2107 if (Record.size() > 6) 2108 NewGA->setUnnamedAddr(Record[6]); 2109 ValueList.push_back(NewGA); 2110 AliasInits.push_back(std::make_pair(NewGA, Record[1])); 2111 break; 2112 } 2113 /// MODULE_CODE_PURGEVALS: [numvals] 2114 case bitc::MODULE_CODE_PURGEVALS: 2115 // Trim down the value list to the specified size. 2116 if (Record.size() < 1 || Record[0] > ValueList.size()) 2117 return Error(BitcodeError::InvalidRecord); 2118 ValueList.shrinkTo(Record[0]); 2119 break; 2120 } 2121 Record.clear(); 2122 } 2123 } 2124 2125 std::error_code BitcodeReader::ParseBitcodeInto(Module *M) { 2126 TheModule = nullptr; 2127 2128 if (std::error_code EC = InitStream()) 2129 return EC; 2130 2131 // Sniff for the signature. 2132 if (Stream.Read(8) != 'B' || 2133 Stream.Read(8) != 'C' || 2134 Stream.Read(4) != 0x0 || 2135 Stream.Read(4) != 0xC || 2136 Stream.Read(4) != 0xE || 2137 Stream.Read(4) != 0xD) 2138 return Error(BitcodeError::InvalidBitcodeSignature); 2139 2140 // We expect a number of well-defined blocks, though we don't necessarily 2141 // need to understand them all. 2142 while (1) { 2143 if (Stream.AtEndOfStream()) 2144 return std::error_code(); 2145 2146 BitstreamEntry Entry = 2147 Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs); 2148 2149 switch (Entry.Kind) { 2150 case BitstreamEntry::Error: 2151 return Error(BitcodeError::MalformedBlock); 2152 case BitstreamEntry::EndBlock: 2153 return std::error_code(); 2154 2155 case BitstreamEntry::SubBlock: 2156 switch (Entry.ID) { 2157 case bitc::BLOCKINFO_BLOCK_ID: 2158 if (Stream.ReadBlockInfoBlock()) 2159 return Error(BitcodeError::MalformedBlock); 2160 break; 2161 case bitc::MODULE_BLOCK_ID: 2162 // Reject multiple MODULE_BLOCK's in a single bitstream. 2163 if (TheModule) 2164 return Error(BitcodeError::InvalidMultipleBlocks); 2165 TheModule = M; 2166 if (std::error_code EC = ParseModule(false)) 2167 return EC; 2168 if (LazyStreamer) 2169 return std::error_code(); 2170 break; 2171 default: 2172 if (Stream.SkipBlock()) 2173 return Error(BitcodeError::InvalidRecord); 2174 break; 2175 } 2176 continue; 2177 case BitstreamEntry::Record: 2178 // There should be no records in the top-level of blocks. 2179 2180 // The ranlib in Xcode 4 will align archive members by appending newlines 2181 // to the end of them. If this file size is a multiple of 4 but not 8, we 2182 // have to read and ignore these final 4 bytes :-( 2183 if (Stream.getAbbrevIDWidth() == 2 && Entry.ID == 2 && 2184 Stream.Read(6) == 2 && Stream.Read(24) == 0xa0a0a && 2185 Stream.AtEndOfStream()) 2186 return std::error_code(); 2187 2188 return Error(BitcodeError::InvalidRecord); 2189 } 2190 } 2191 } 2192 2193 ErrorOr<std::string> BitcodeReader::parseModuleTriple() { 2194 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 2195 return Error(BitcodeError::InvalidRecord); 2196 2197 SmallVector<uint64_t, 64> Record; 2198 2199 std::string Triple; 2200 // Read all the records for this module. 2201 while (1) { 2202 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2203 2204 switch (Entry.Kind) { 2205 case BitstreamEntry::SubBlock: // Handled for us already. 2206 case BitstreamEntry::Error: 2207 return Error(BitcodeError::MalformedBlock); 2208 case BitstreamEntry::EndBlock: 2209 return Triple; 2210 case BitstreamEntry::Record: 2211 // The interesting case. 2212 break; 2213 } 2214 2215 // Read a record. 2216 switch (Stream.readRecord(Entry.ID, Record)) { 2217 default: break; // Default behavior, ignore unknown content. 2218 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 2219 std::string S; 2220 if (ConvertToString(Record, 0, S)) 2221 return Error(BitcodeError::InvalidRecord); 2222 Triple = S; 2223 break; 2224 } 2225 } 2226 Record.clear(); 2227 } 2228 llvm_unreachable("Exit infinite loop"); 2229 } 2230 2231 ErrorOr<std::string> BitcodeReader::parseTriple() { 2232 if (std::error_code EC = InitStream()) 2233 return EC; 2234 2235 // Sniff for the signature. 2236 if (Stream.Read(8) != 'B' || 2237 Stream.Read(8) != 'C' || 2238 Stream.Read(4) != 0x0 || 2239 Stream.Read(4) != 0xC || 2240 Stream.Read(4) != 0xE || 2241 Stream.Read(4) != 0xD) 2242 return Error(BitcodeError::InvalidBitcodeSignature); 2243 2244 // We expect a number of well-defined blocks, though we don't necessarily 2245 // need to understand them all. 2246 while (1) { 2247 BitstreamEntry Entry = Stream.advance(); 2248 2249 switch (Entry.Kind) { 2250 case BitstreamEntry::Error: 2251 return Error(BitcodeError::MalformedBlock); 2252 case BitstreamEntry::EndBlock: 2253 return std::error_code(); 2254 2255 case BitstreamEntry::SubBlock: 2256 if (Entry.ID == bitc::MODULE_BLOCK_ID) 2257 return parseModuleTriple(); 2258 2259 // Ignore other sub-blocks. 2260 if (Stream.SkipBlock()) 2261 return Error(BitcodeError::MalformedBlock); 2262 continue; 2263 2264 case BitstreamEntry::Record: 2265 Stream.skipRecord(Entry.ID); 2266 continue; 2267 } 2268 } 2269 } 2270 2271 /// ParseMetadataAttachment - Parse metadata attachments. 2272 std::error_code BitcodeReader::ParseMetadataAttachment() { 2273 if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID)) 2274 return Error(BitcodeError::InvalidRecord); 2275 2276 SmallVector<uint64_t, 64> Record; 2277 while (1) { 2278 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2279 2280 switch (Entry.Kind) { 2281 case BitstreamEntry::SubBlock: // Handled for us already. 2282 case BitstreamEntry::Error: 2283 return Error(BitcodeError::MalformedBlock); 2284 case BitstreamEntry::EndBlock: 2285 return std::error_code(); 2286 case BitstreamEntry::Record: 2287 // The interesting case. 2288 break; 2289 } 2290 2291 // Read a metadata attachment record. 2292 Record.clear(); 2293 switch (Stream.readRecord(Entry.ID, Record)) { 2294 default: // Default behavior: ignore. 2295 break; 2296 case bitc::METADATA_ATTACHMENT: { 2297 unsigned RecordLength = Record.size(); 2298 if (Record.empty() || (RecordLength - 1) % 2 == 1) 2299 return Error(BitcodeError::InvalidRecord); 2300 Instruction *Inst = InstructionList[Record[0]]; 2301 for (unsigned i = 1; i != RecordLength; i = i+2) { 2302 unsigned Kind = Record[i]; 2303 DenseMap<unsigned, unsigned>::iterator I = 2304 MDKindMap.find(Kind); 2305 if (I == MDKindMap.end()) 2306 return Error(BitcodeError::InvalidID); 2307 Value *Node = MDValueList.getValueFwdRef(Record[i+1]); 2308 Inst->setMetadata(I->second, cast<MDNode>(Node)); 2309 if (I->second == LLVMContext::MD_tbaa) 2310 InstsWithTBAATag.push_back(Inst); 2311 } 2312 break; 2313 } 2314 } 2315 } 2316 } 2317 2318 /// ParseFunctionBody - Lazily parse the specified function body block. 2319 std::error_code BitcodeReader::ParseFunctionBody(Function *F) { 2320 if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 2321 return Error(BitcodeError::InvalidRecord); 2322 2323 InstructionList.clear(); 2324 unsigned ModuleValueListSize = ValueList.size(); 2325 unsigned ModuleMDValueListSize = MDValueList.size(); 2326 2327 // Add all the function arguments to the value table. 2328 for(Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I) 2329 ValueList.push_back(I); 2330 2331 unsigned NextValueNo = ValueList.size(); 2332 BasicBlock *CurBB = nullptr; 2333 unsigned CurBBNo = 0; 2334 2335 DebugLoc LastLoc; 2336 2337 // Read all the records. 2338 SmallVector<uint64_t, 64> Record; 2339 while (1) { 2340 BitstreamEntry Entry = Stream.advance(); 2341 2342 switch (Entry.Kind) { 2343 case BitstreamEntry::Error: 2344 return Error(BitcodeError::MalformedBlock); 2345 case BitstreamEntry::EndBlock: 2346 goto OutOfRecordLoop; 2347 2348 case BitstreamEntry::SubBlock: 2349 switch (Entry.ID) { 2350 default: // Skip unknown content. 2351 if (Stream.SkipBlock()) 2352 return Error(BitcodeError::InvalidRecord); 2353 break; 2354 case bitc::CONSTANTS_BLOCK_ID: 2355 if (std::error_code EC = ParseConstants()) 2356 return EC; 2357 NextValueNo = ValueList.size(); 2358 break; 2359 case bitc::VALUE_SYMTAB_BLOCK_ID: 2360 if (std::error_code EC = ParseValueSymbolTable()) 2361 return EC; 2362 break; 2363 case bitc::METADATA_ATTACHMENT_ID: 2364 if (std::error_code EC = ParseMetadataAttachment()) 2365 return EC; 2366 break; 2367 case bitc::METADATA_BLOCK_ID: 2368 if (std::error_code EC = ParseMetadata()) 2369 return EC; 2370 break; 2371 case bitc::USELIST_BLOCK_ID: 2372 if (std::error_code EC = ParseUseLists()) 2373 return EC; 2374 break; 2375 } 2376 continue; 2377 2378 case BitstreamEntry::Record: 2379 // The interesting case. 2380 break; 2381 } 2382 2383 // Read a record. 2384 Record.clear(); 2385 Instruction *I = nullptr; 2386 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 2387 switch (BitCode) { 2388 default: // Default behavior: reject 2389 return Error(BitcodeError::InvalidValue); 2390 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks] 2391 if (Record.size() < 1 || Record[0] == 0) 2392 return Error(BitcodeError::InvalidRecord); 2393 // Create all the basic blocks for the function. 2394 FunctionBBs.resize(Record[0]); 2395 2396 // See if anything took the address of blocks in this function. 2397 auto BBFRI = BasicBlockFwdRefs.find(F); 2398 if (BBFRI == BasicBlockFwdRefs.end()) { 2399 for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i) 2400 FunctionBBs[i] = BasicBlock::Create(Context, "", F); 2401 } else { 2402 auto &BBRefs = BBFRI->second; 2403 // Check for invalid basic block references. 2404 if (BBRefs.size() > FunctionBBs.size()) 2405 return Error(BitcodeError::InvalidID); 2406 assert(!BBRefs.empty() && "Unexpected empty array"); 2407 assert(!BBRefs.front() && "Invalid reference to entry block"); 2408 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E; 2409 ++I) 2410 if (I < RE && BBRefs[I]) { 2411 BBRefs[I]->insertInto(F); 2412 FunctionBBs[I] = BBRefs[I]; 2413 } else { 2414 FunctionBBs[I] = BasicBlock::Create(Context, "", F); 2415 } 2416 2417 // Erase from the table. 2418 BasicBlockFwdRefs.erase(BBFRI); 2419 } 2420 2421 CurBB = FunctionBBs[0]; 2422 continue; 2423 } 2424 2425 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 2426 // This record indicates that the last instruction is at the same 2427 // location as the previous instruction with a location. 2428 I = nullptr; 2429 2430 // Get the last instruction emitted. 2431 if (CurBB && !CurBB->empty()) 2432 I = &CurBB->back(); 2433 else if (CurBBNo && FunctionBBs[CurBBNo-1] && 2434 !FunctionBBs[CurBBNo-1]->empty()) 2435 I = &FunctionBBs[CurBBNo-1]->back(); 2436 2437 if (!I) 2438 return Error(BitcodeError::InvalidRecord); 2439 I->setDebugLoc(LastLoc); 2440 I = nullptr; 2441 continue; 2442 2443 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 2444 I = nullptr; // Get the last instruction emitted. 2445 if (CurBB && !CurBB->empty()) 2446 I = &CurBB->back(); 2447 else if (CurBBNo && FunctionBBs[CurBBNo-1] && 2448 !FunctionBBs[CurBBNo-1]->empty()) 2449 I = &FunctionBBs[CurBBNo-1]->back(); 2450 if (!I || Record.size() < 4) 2451 return Error(BitcodeError::InvalidRecord); 2452 2453 unsigned Line = Record[0], Col = Record[1]; 2454 unsigned ScopeID = Record[2], IAID = Record[3]; 2455 2456 MDNode *Scope = nullptr, *IA = nullptr; 2457 if (ScopeID) Scope = cast<MDNode>(MDValueList.getValueFwdRef(ScopeID-1)); 2458 if (IAID) IA = cast<MDNode>(MDValueList.getValueFwdRef(IAID-1)); 2459 LastLoc = DebugLoc::get(Line, Col, Scope, IA); 2460 I->setDebugLoc(LastLoc); 2461 I = nullptr; 2462 continue; 2463 } 2464 2465 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 2466 unsigned OpNum = 0; 2467 Value *LHS, *RHS; 2468 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 2469 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 2470 OpNum+1 > Record.size()) 2471 return Error(BitcodeError::InvalidRecord); 2472 2473 int Opc = GetDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 2474 if (Opc == -1) 2475 return Error(BitcodeError::InvalidRecord); 2476 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 2477 InstructionList.push_back(I); 2478 if (OpNum < Record.size()) { 2479 if (Opc == Instruction::Add || 2480 Opc == Instruction::Sub || 2481 Opc == Instruction::Mul || 2482 Opc == Instruction::Shl) { 2483 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 2484 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 2485 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 2486 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 2487 } else if (Opc == Instruction::SDiv || 2488 Opc == Instruction::UDiv || 2489 Opc == Instruction::LShr || 2490 Opc == Instruction::AShr) { 2491 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 2492 cast<BinaryOperator>(I)->setIsExact(true); 2493 } else if (isa<FPMathOperator>(I)) { 2494 FastMathFlags FMF; 2495 if (0 != (Record[OpNum] & FastMathFlags::UnsafeAlgebra)) 2496 FMF.setUnsafeAlgebra(); 2497 if (0 != (Record[OpNum] & FastMathFlags::NoNaNs)) 2498 FMF.setNoNaNs(); 2499 if (0 != (Record[OpNum] & FastMathFlags::NoInfs)) 2500 FMF.setNoInfs(); 2501 if (0 != (Record[OpNum] & FastMathFlags::NoSignedZeros)) 2502 FMF.setNoSignedZeros(); 2503 if (0 != (Record[OpNum] & FastMathFlags::AllowReciprocal)) 2504 FMF.setAllowReciprocal(); 2505 if (FMF.any()) 2506 I->setFastMathFlags(FMF); 2507 } 2508 2509 } 2510 break; 2511 } 2512 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 2513 unsigned OpNum = 0; 2514 Value *Op; 2515 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 2516 OpNum+2 != Record.size()) 2517 return Error(BitcodeError::InvalidRecord); 2518 2519 Type *ResTy = getTypeByID(Record[OpNum]); 2520 int Opc = GetDecodedCastOpcode(Record[OpNum+1]); 2521 if (Opc == -1 || !ResTy) 2522 return Error(BitcodeError::InvalidRecord); 2523 Instruction *Temp = nullptr; 2524 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) { 2525 if (Temp) { 2526 InstructionList.push_back(Temp); 2527 CurBB->getInstList().push_back(Temp); 2528 } 2529 } else { 2530 I = CastInst::Create((Instruction::CastOps)Opc, Op, ResTy); 2531 } 2532 InstructionList.push_back(I); 2533 break; 2534 } 2535 case bitc::FUNC_CODE_INST_INBOUNDS_GEP: 2536 case bitc::FUNC_CODE_INST_GEP: { // GEP: [n x operands] 2537 unsigned OpNum = 0; 2538 Value *BasePtr; 2539 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr)) 2540 return Error(BitcodeError::InvalidRecord); 2541 2542 SmallVector<Value*, 16> GEPIdx; 2543 while (OpNum != Record.size()) { 2544 Value *Op; 2545 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 2546 return Error(BitcodeError::InvalidRecord); 2547 GEPIdx.push_back(Op); 2548 } 2549 2550 I = GetElementPtrInst::Create(BasePtr, GEPIdx); 2551 InstructionList.push_back(I); 2552 if (BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP) 2553 cast<GetElementPtrInst>(I)->setIsInBounds(true); 2554 break; 2555 } 2556 2557 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 2558 // EXTRACTVAL: [opty, opval, n x indices] 2559 unsigned OpNum = 0; 2560 Value *Agg; 2561 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 2562 return Error(BitcodeError::InvalidRecord); 2563 2564 SmallVector<unsigned, 4> EXTRACTVALIdx; 2565 for (unsigned RecSize = Record.size(); 2566 OpNum != RecSize; ++OpNum) { 2567 uint64_t Index = Record[OpNum]; 2568 if ((unsigned)Index != Index) 2569 return Error(BitcodeError::InvalidValue); 2570 EXTRACTVALIdx.push_back((unsigned)Index); 2571 } 2572 2573 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 2574 InstructionList.push_back(I); 2575 break; 2576 } 2577 2578 case bitc::FUNC_CODE_INST_INSERTVAL: { 2579 // INSERTVAL: [opty, opval, opty, opval, n x indices] 2580 unsigned OpNum = 0; 2581 Value *Agg; 2582 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 2583 return Error(BitcodeError::InvalidRecord); 2584 Value *Val; 2585 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 2586 return Error(BitcodeError::InvalidRecord); 2587 2588 SmallVector<unsigned, 4> INSERTVALIdx; 2589 for (unsigned RecSize = Record.size(); 2590 OpNum != RecSize; ++OpNum) { 2591 uint64_t Index = Record[OpNum]; 2592 if ((unsigned)Index != Index) 2593 return Error(BitcodeError::InvalidValue); 2594 INSERTVALIdx.push_back((unsigned)Index); 2595 } 2596 2597 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 2598 InstructionList.push_back(I); 2599 break; 2600 } 2601 2602 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 2603 // obsolete form of select 2604 // handles select i1 ... in old bitcode 2605 unsigned OpNum = 0; 2606 Value *TrueVal, *FalseVal, *Cond; 2607 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 2608 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 2609 popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond)) 2610 return Error(BitcodeError::InvalidRecord); 2611 2612 I = SelectInst::Create(Cond, TrueVal, FalseVal); 2613 InstructionList.push_back(I); 2614 break; 2615 } 2616 2617 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 2618 // new form of select 2619 // handles select i1 or select [N x i1] 2620 unsigned OpNum = 0; 2621 Value *TrueVal, *FalseVal, *Cond; 2622 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 2623 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 2624 getValueTypePair(Record, OpNum, NextValueNo, Cond)) 2625 return Error(BitcodeError::InvalidRecord); 2626 2627 // select condition can be either i1 or [N x i1] 2628 if (VectorType* vector_type = 2629 dyn_cast<VectorType>(Cond->getType())) { 2630 // expect <n x i1> 2631 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 2632 return Error(BitcodeError::InvalidTypeForValue); 2633 } else { 2634 // expect i1 2635 if (Cond->getType() != Type::getInt1Ty(Context)) 2636 return Error(BitcodeError::InvalidTypeForValue); 2637 } 2638 2639 I = SelectInst::Create(Cond, TrueVal, FalseVal); 2640 InstructionList.push_back(I); 2641 break; 2642 } 2643 2644 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 2645 unsigned OpNum = 0; 2646 Value *Vec, *Idx; 2647 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 2648 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 2649 return Error(BitcodeError::InvalidRecord); 2650 I = ExtractElementInst::Create(Vec, Idx); 2651 InstructionList.push_back(I); 2652 break; 2653 } 2654 2655 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 2656 unsigned OpNum = 0; 2657 Value *Vec, *Elt, *Idx; 2658 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 2659 popValue(Record, OpNum, NextValueNo, 2660 cast<VectorType>(Vec->getType())->getElementType(), Elt) || 2661 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 2662 return Error(BitcodeError::InvalidRecord); 2663 I = InsertElementInst::Create(Vec, Elt, Idx); 2664 InstructionList.push_back(I); 2665 break; 2666 } 2667 2668 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 2669 unsigned OpNum = 0; 2670 Value *Vec1, *Vec2, *Mask; 2671 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) || 2672 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2)) 2673 return Error(BitcodeError::InvalidRecord); 2674 2675 if (getValueTypePair(Record, OpNum, NextValueNo, Mask)) 2676 return Error(BitcodeError::InvalidRecord); 2677 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 2678 InstructionList.push_back(I); 2679 break; 2680 } 2681 2682 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 2683 // Old form of ICmp/FCmp returning bool 2684 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 2685 // both legal on vectors but had different behaviour. 2686 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 2687 // FCmp/ICmp returning bool or vector of bool 2688 2689 unsigned OpNum = 0; 2690 Value *LHS, *RHS; 2691 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 2692 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 2693 OpNum+1 != Record.size()) 2694 return Error(BitcodeError::InvalidRecord); 2695 2696 if (LHS->getType()->isFPOrFPVectorTy()) 2697 I = new FCmpInst((FCmpInst::Predicate)Record[OpNum], LHS, RHS); 2698 else 2699 I = new ICmpInst((ICmpInst::Predicate)Record[OpNum], LHS, RHS); 2700 InstructionList.push_back(I); 2701 break; 2702 } 2703 2704 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 2705 { 2706 unsigned Size = Record.size(); 2707 if (Size == 0) { 2708 I = ReturnInst::Create(Context); 2709 InstructionList.push_back(I); 2710 break; 2711 } 2712 2713 unsigned OpNum = 0; 2714 Value *Op = nullptr; 2715 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 2716 return Error(BitcodeError::InvalidRecord); 2717 if (OpNum != Record.size()) 2718 return Error(BitcodeError::InvalidRecord); 2719 2720 I = ReturnInst::Create(Context, Op); 2721 InstructionList.push_back(I); 2722 break; 2723 } 2724 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 2725 if (Record.size() != 1 && Record.size() != 3) 2726 return Error(BitcodeError::InvalidRecord); 2727 BasicBlock *TrueDest = getBasicBlock(Record[0]); 2728 if (!TrueDest) 2729 return Error(BitcodeError::InvalidRecord); 2730 2731 if (Record.size() == 1) { 2732 I = BranchInst::Create(TrueDest); 2733 InstructionList.push_back(I); 2734 } 2735 else { 2736 BasicBlock *FalseDest = getBasicBlock(Record[1]); 2737 Value *Cond = getValue(Record, 2, NextValueNo, 2738 Type::getInt1Ty(Context)); 2739 if (!FalseDest || !Cond) 2740 return Error(BitcodeError::InvalidRecord); 2741 I = BranchInst::Create(TrueDest, FalseDest, Cond); 2742 InstructionList.push_back(I); 2743 } 2744 break; 2745 } 2746 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 2747 // Check magic 2748 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { 2749 // "New" SwitchInst format with case ranges. The changes to write this 2750 // format were reverted but we still recognize bitcode that uses it. 2751 // Hopefully someday we will have support for case ranges and can use 2752 // this format again. 2753 2754 Type *OpTy = getTypeByID(Record[1]); 2755 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); 2756 2757 Value *Cond = getValue(Record, 2, NextValueNo, OpTy); 2758 BasicBlock *Default = getBasicBlock(Record[3]); 2759 if (!OpTy || !Cond || !Default) 2760 return Error(BitcodeError::InvalidRecord); 2761 2762 unsigned NumCases = Record[4]; 2763 2764 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 2765 InstructionList.push_back(SI); 2766 2767 unsigned CurIdx = 5; 2768 for (unsigned i = 0; i != NumCases; ++i) { 2769 SmallVector<ConstantInt*, 1> CaseVals; 2770 unsigned NumItems = Record[CurIdx++]; 2771 for (unsigned ci = 0; ci != NumItems; ++ci) { 2772 bool isSingleNumber = Record[CurIdx++]; 2773 2774 APInt Low; 2775 unsigned ActiveWords = 1; 2776 if (ValueBitWidth > 64) 2777 ActiveWords = Record[CurIdx++]; 2778 Low = ReadWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 2779 ValueBitWidth); 2780 CurIdx += ActiveWords; 2781 2782 if (!isSingleNumber) { 2783 ActiveWords = 1; 2784 if (ValueBitWidth > 64) 2785 ActiveWords = Record[CurIdx++]; 2786 APInt High = 2787 ReadWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 2788 ValueBitWidth); 2789 CurIdx += ActiveWords; 2790 2791 // FIXME: It is not clear whether values in the range should be 2792 // compared as signed or unsigned values. The partially 2793 // implemented changes that used this format in the past used 2794 // unsigned comparisons. 2795 for ( ; Low.ule(High); ++Low) 2796 CaseVals.push_back(ConstantInt::get(Context, Low)); 2797 } else 2798 CaseVals.push_back(ConstantInt::get(Context, Low)); 2799 } 2800 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); 2801 for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(), 2802 cve = CaseVals.end(); cvi != cve; ++cvi) 2803 SI->addCase(*cvi, DestBB); 2804 } 2805 I = SI; 2806 break; 2807 } 2808 2809 // Old SwitchInst format without case ranges. 2810 2811 if (Record.size() < 3 || (Record.size() & 1) == 0) 2812 return Error(BitcodeError::InvalidRecord); 2813 Type *OpTy = getTypeByID(Record[0]); 2814 Value *Cond = getValue(Record, 1, NextValueNo, OpTy); 2815 BasicBlock *Default = getBasicBlock(Record[2]); 2816 if (!OpTy || !Cond || !Default) 2817 return Error(BitcodeError::InvalidRecord); 2818 unsigned NumCases = (Record.size()-3)/2; 2819 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 2820 InstructionList.push_back(SI); 2821 for (unsigned i = 0, e = NumCases; i != e; ++i) { 2822 ConstantInt *CaseVal = 2823 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy)); 2824 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 2825 if (!CaseVal || !DestBB) { 2826 delete SI; 2827 return Error(BitcodeError::InvalidRecord); 2828 } 2829 SI->addCase(CaseVal, DestBB); 2830 } 2831 I = SI; 2832 break; 2833 } 2834 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 2835 if (Record.size() < 2) 2836 return Error(BitcodeError::InvalidRecord); 2837 Type *OpTy = getTypeByID(Record[0]); 2838 Value *Address = getValue(Record, 1, NextValueNo, OpTy); 2839 if (!OpTy || !Address) 2840 return Error(BitcodeError::InvalidRecord); 2841 unsigned NumDests = Record.size()-2; 2842 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 2843 InstructionList.push_back(IBI); 2844 for (unsigned i = 0, e = NumDests; i != e; ++i) { 2845 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 2846 IBI->addDestination(DestBB); 2847 } else { 2848 delete IBI; 2849 return Error(BitcodeError::InvalidRecord); 2850 } 2851 } 2852 I = IBI; 2853 break; 2854 } 2855 2856 case bitc::FUNC_CODE_INST_INVOKE: { 2857 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 2858 if (Record.size() < 4) 2859 return Error(BitcodeError::InvalidRecord); 2860 AttributeSet PAL = getAttributes(Record[0]); 2861 unsigned CCInfo = Record[1]; 2862 BasicBlock *NormalBB = getBasicBlock(Record[2]); 2863 BasicBlock *UnwindBB = getBasicBlock(Record[3]); 2864 2865 unsigned OpNum = 4; 2866 Value *Callee; 2867 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 2868 return Error(BitcodeError::InvalidRecord); 2869 2870 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 2871 FunctionType *FTy = !CalleeTy ? nullptr : 2872 dyn_cast<FunctionType>(CalleeTy->getElementType()); 2873 2874 // Check that the right number of fixed parameters are here. 2875 if (!FTy || !NormalBB || !UnwindBB || 2876 Record.size() < OpNum+FTy->getNumParams()) 2877 return Error(BitcodeError::InvalidRecord); 2878 2879 SmallVector<Value*, 16> Ops; 2880 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 2881 Ops.push_back(getValue(Record, OpNum, NextValueNo, 2882 FTy->getParamType(i))); 2883 if (!Ops.back()) 2884 return Error(BitcodeError::InvalidRecord); 2885 } 2886 2887 if (!FTy->isVarArg()) { 2888 if (Record.size() != OpNum) 2889 return Error(BitcodeError::InvalidRecord); 2890 } else { 2891 // Read type/value pairs for varargs params. 2892 while (OpNum != Record.size()) { 2893 Value *Op; 2894 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 2895 return Error(BitcodeError::InvalidRecord); 2896 Ops.push_back(Op); 2897 } 2898 } 2899 2900 I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops); 2901 InstructionList.push_back(I); 2902 cast<InvokeInst>(I)->setCallingConv( 2903 static_cast<CallingConv::ID>(CCInfo)); 2904 cast<InvokeInst>(I)->setAttributes(PAL); 2905 break; 2906 } 2907 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 2908 unsigned Idx = 0; 2909 Value *Val = nullptr; 2910 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 2911 return Error(BitcodeError::InvalidRecord); 2912 I = ResumeInst::Create(Val); 2913 InstructionList.push_back(I); 2914 break; 2915 } 2916 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 2917 I = new UnreachableInst(Context); 2918 InstructionList.push_back(I); 2919 break; 2920 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 2921 if (Record.size() < 1 || ((Record.size()-1)&1)) 2922 return Error(BitcodeError::InvalidRecord); 2923 Type *Ty = getTypeByID(Record[0]); 2924 if (!Ty) 2925 return Error(BitcodeError::InvalidRecord); 2926 2927 PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2); 2928 InstructionList.push_back(PN); 2929 2930 for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) { 2931 Value *V; 2932 // With the new function encoding, it is possible that operands have 2933 // negative IDs (for forward references). Use a signed VBR 2934 // representation to keep the encoding small. 2935 if (UseRelativeIDs) 2936 V = getValueSigned(Record, 1+i, NextValueNo, Ty); 2937 else 2938 V = getValue(Record, 1+i, NextValueNo, Ty); 2939 BasicBlock *BB = getBasicBlock(Record[2+i]); 2940 if (!V || !BB) 2941 return Error(BitcodeError::InvalidRecord); 2942 PN->addIncoming(V, BB); 2943 } 2944 I = PN; 2945 break; 2946 } 2947 2948 case bitc::FUNC_CODE_INST_LANDINGPAD: { 2949 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 2950 unsigned Idx = 0; 2951 if (Record.size() < 4) 2952 return Error(BitcodeError::InvalidRecord); 2953 Type *Ty = getTypeByID(Record[Idx++]); 2954 if (!Ty) 2955 return Error(BitcodeError::InvalidRecord); 2956 Value *PersFn = nullptr; 2957 if (getValueTypePair(Record, Idx, NextValueNo, PersFn)) 2958 return Error(BitcodeError::InvalidRecord); 2959 2960 bool IsCleanup = !!Record[Idx++]; 2961 unsigned NumClauses = Record[Idx++]; 2962 LandingPadInst *LP = LandingPadInst::Create(Ty, PersFn, NumClauses); 2963 LP->setCleanup(IsCleanup); 2964 for (unsigned J = 0; J != NumClauses; ++J) { 2965 LandingPadInst::ClauseType CT = 2966 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 2967 Value *Val; 2968 2969 if (getValueTypePair(Record, Idx, NextValueNo, Val)) { 2970 delete LP; 2971 return Error(BitcodeError::InvalidRecord); 2972 } 2973 2974 assert((CT != LandingPadInst::Catch || 2975 !isa<ArrayType>(Val->getType())) && 2976 "Catch clause has a invalid type!"); 2977 assert((CT != LandingPadInst::Filter || 2978 isa<ArrayType>(Val->getType())) && 2979 "Filter clause has invalid type!"); 2980 LP->addClause(cast<Constant>(Val)); 2981 } 2982 2983 I = LP; 2984 InstructionList.push_back(I); 2985 break; 2986 } 2987 2988 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 2989 if (Record.size() != 4) 2990 return Error(BitcodeError::InvalidRecord); 2991 PointerType *Ty = 2992 dyn_cast_or_null<PointerType>(getTypeByID(Record[0])); 2993 Type *OpTy = getTypeByID(Record[1]); 2994 Value *Size = getFnValueByID(Record[2], OpTy); 2995 unsigned AlignRecord = Record[3]; 2996 bool InAlloca = AlignRecord & (1 << 5); 2997 unsigned Align = AlignRecord & ((1 << 5) - 1); 2998 if (!Ty || !Size) 2999 return Error(BitcodeError::InvalidRecord); 3000 AllocaInst *AI = new AllocaInst(Ty->getElementType(), Size, (1 << Align) >> 1); 3001 AI->setUsedWithInAlloca(InAlloca); 3002 I = AI; 3003 InstructionList.push_back(I); 3004 break; 3005 } 3006 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 3007 unsigned OpNum = 0; 3008 Value *Op; 3009 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 3010 OpNum+2 != Record.size()) 3011 return Error(BitcodeError::InvalidRecord); 3012 3013 I = new LoadInst(Op, "", Record[OpNum+1], (1 << Record[OpNum]) >> 1); 3014 InstructionList.push_back(I); 3015 break; 3016 } 3017 case bitc::FUNC_CODE_INST_LOADATOMIC: { 3018 // LOADATOMIC: [opty, op, align, vol, ordering, synchscope] 3019 unsigned OpNum = 0; 3020 Value *Op; 3021 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 3022 OpNum+4 != Record.size()) 3023 return Error(BitcodeError::InvalidRecord); 3024 3025 AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]); 3026 if (Ordering == NotAtomic || Ordering == Release || 3027 Ordering == AcquireRelease) 3028 return Error(BitcodeError::InvalidRecord); 3029 if (Ordering != NotAtomic && Record[OpNum] == 0) 3030 return Error(BitcodeError::InvalidRecord); 3031 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]); 3032 3033 I = new LoadInst(Op, "", Record[OpNum+1], (1 << Record[OpNum]) >> 1, 3034 Ordering, SynchScope); 3035 InstructionList.push_back(I); 3036 break; 3037 } 3038 case bitc::FUNC_CODE_INST_STORE: { // STORE2:[ptrty, ptr, val, align, vol] 3039 unsigned OpNum = 0; 3040 Value *Val, *Ptr; 3041 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 3042 popValue(Record, OpNum, NextValueNo, 3043 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 3044 OpNum+2 != Record.size()) 3045 return Error(BitcodeError::InvalidRecord); 3046 3047 I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1); 3048 InstructionList.push_back(I); 3049 break; 3050 } 3051 case bitc::FUNC_CODE_INST_STOREATOMIC: { 3052 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, synchscope] 3053 unsigned OpNum = 0; 3054 Value *Val, *Ptr; 3055 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 3056 popValue(Record, OpNum, NextValueNo, 3057 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 3058 OpNum+4 != Record.size()) 3059 return Error(BitcodeError::InvalidRecord); 3060 3061 AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]); 3062 if (Ordering == NotAtomic || Ordering == Acquire || 3063 Ordering == AcquireRelease) 3064 return Error(BitcodeError::InvalidRecord); 3065 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]); 3066 if (Ordering != NotAtomic && Record[OpNum] == 0) 3067 return Error(BitcodeError::InvalidRecord); 3068 3069 I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1, 3070 Ordering, SynchScope); 3071 InstructionList.push_back(I); 3072 break; 3073 } 3074 case bitc::FUNC_CODE_INST_CMPXCHG: { 3075 // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, synchscope, 3076 // failureordering?, isweak?] 3077 unsigned OpNum = 0; 3078 Value *Ptr, *Cmp, *New; 3079 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 3080 popValue(Record, OpNum, NextValueNo, 3081 cast<PointerType>(Ptr->getType())->getElementType(), Cmp) || 3082 popValue(Record, OpNum, NextValueNo, 3083 cast<PointerType>(Ptr->getType())->getElementType(), New) || 3084 (Record.size() < OpNum + 3 || Record.size() > OpNum + 5)) 3085 return Error(BitcodeError::InvalidRecord); 3086 AtomicOrdering SuccessOrdering = GetDecodedOrdering(Record[OpNum+1]); 3087 if (SuccessOrdering == NotAtomic || SuccessOrdering == Unordered) 3088 return Error(BitcodeError::InvalidRecord); 3089 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+2]); 3090 3091 AtomicOrdering FailureOrdering; 3092 if (Record.size() < 7) 3093 FailureOrdering = 3094 AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering); 3095 else 3096 FailureOrdering = GetDecodedOrdering(Record[OpNum+3]); 3097 3098 I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering, 3099 SynchScope); 3100 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 3101 3102 if (Record.size() < 8) { 3103 // Before weak cmpxchgs existed, the instruction simply returned the 3104 // value loaded from memory, so bitcode files from that era will be 3105 // expecting the first component of a modern cmpxchg. 3106 CurBB->getInstList().push_back(I); 3107 I = ExtractValueInst::Create(I, 0); 3108 } else { 3109 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]); 3110 } 3111 3112 InstructionList.push_back(I); 3113 break; 3114 } 3115 case bitc::FUNC_CODE_INST_ATOMICRMW: { 3116 // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, synchscope] 3117 unsigned OpNum = 0; 3118 Value *Ptr, *Val; 3119 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 3120 popValue(Record, OpNum, NextValueNo, 3121 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 3122 OpNum+4 != Record.size()) 3123 return Error(BitcodeError::InvalidRecord); 3124 AtomicRMWInst::BinOp Operation = GetDecodedRMWOperation(Record[OpNum]); 3125 if (Operation < AtomicRMWInst::FIRST_BINOP || 3126 Operation > AtomicRMWInst::LAST_BINOP) 3127 return Error(BitcodeError::InvalidRecord); 3128 AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]); 3129 if (Ordering == NotAtomic || Ordering == Unordered) 3130 return Error(BitcodeError::InvalidRecord); 3131 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]); 3132 I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SynchScope); 3133 cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]); 3134 InstructionList.push_back(I); 3135 break; 3136 } 3137 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, synchscope] 3138 if (2 != Record.size()) 3139 return Error(BitcodeError::InvalidRecord); 3140 AtomicOrdering Ordering = GetDecodedOrdering(Record[0]); 3141 if (Ordering == NotAtomic || Ordering == Unordered || 3142 Ordering == Monotonic) 3143 return Error(BitcodeError::InvalidRecord); 3144 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[1]); 3145 I = new FenceInst(Context, Ordering, SynchScope); 3146 InstructionList.push_back(I); 3147 break; 3148 } 3149 case bitc::FUNC_CODE_INST_CALL: { 3150 // CALL: [paramattrs, cc, fnty, fnid, arg0, arg1...] 3151 if (Record.size() < 3) 3152 return Error(BitcodeError::InvalidRecord); 3153 3154 AttributeSet PAL = getAttributes(Record[0]); 3155 unsigned CCInfo = Record[1]; 3156 3157 unsigned OpNum = 2; 3158 Value *Callee; 3159 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 3160 return Error(BitcodeError::InvalidRecord); 3161 3162 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 3163 FunctionType *FTy = nullptr; 3164 if (OpTy) FTy = dyn_cast<FunctionType>(OpTy->getElementType()); 3165 if (!FTy || Record.size() < FTy->getNumParams()+OpNum) 3166 return Error(BitcodeError::InvalidRecord); 3167 3168 SmallVector<Value*, 16> Args; 3169 // Read the fixed params. 3170 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 3171 if (FTy->getParamType(i)->isLabelTy()) 3172 Args.push_back(getBasicBlock(Record[OpNum])); 3173 else 3174 Args.push_back(getValue(Record, OpNum, NextValueNo, 3175 FTy->getParamType(i))); 3176 if (!Args.back()) 3177 return Error(BitcodeError::InvalidRecord); 3178 } 3179 3180 // Read type/value pairs for varargs params. 3181 if (!FTy->isVarArg()) { 3182 if (OpNum != Record.size()) 3183 return Error(BitcodeError::InvalidRecord); 3184 } else { 3185 while (OpNum != Record.size()) { 3186 Value *Op; 3187 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3188 return Error(BitcodeError::InvalidRecord); 3189 Args.push_back(Op); 3190 } 3191 } 3192 3193 I = CallInst::Create(Callee, Args); 3194 InstructionList.push_back(I); 3195 cast<CallInst>(I)->setCallingConv( 3196 static_cast<CallingConv::ID>((~(1U << 14) & CCInfo) >> 1)); 3197 CallInst::TailCallKind TCK = CallInst::TCK_None; 3198 if (CCInfo & 1) 3199 TCK = CallInst::TCK_Tail; 3200 if (CCInfo & (1 << 14)) 3201 TCK = CallInst::TCK_MustTail; 3202 cast<CallInst>(I)->setTailCallKind(TCK); 3203 cast<CallInst>(I)->setAttributes(PAL); 3204 break; 3205 } 3206 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 3207 if (Record.size() < 3) 3208 return Error(BitcodeError::InvalidRecord); 3209 Type *OpTy = getTypeByID(Record[0]); 3210 Value *Op = getValue(Record, 1, NextValueNo, OpTy); 3211 Type *ResTy = getTypeByID(Record[2]); 3212 if (!OpTy || !Op || !ResTy) 3213 return Error(BitcodeError::InvalidRecord); 3214 I = new VAArgInst(Op, ResTy); 3215 InstructionList.push_back(I); 3216 break; 3217 } 3218 } 3219 3220 // Add instruction to end of current BB. If there is no current BB, reject 3221 // this file. 3222 if (!CurBB) { 3223 delete I; 3224 return Error(BitcodeError::InvalidInstructionWithNoBB); 3225 } 3226 CurBB->getInstList().push_back(I); 3227 3228 // If this was a terminator instruction, move to the next block. 3229 if (isa<TerminatorInst>(I)) { 3230 ++CurBBNo; 3231 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr; 3232 } 3233 3234 // Non-void values get registered in the value table for future use. 3235 if (I && !I->getType()->isVoidTy()) 3236 ValueList.AssignValue(I, NextValueNo++); 3237 } 3238 3239 OutOfRecordLoop: 3240 3241 // Check the function list for unresolved values. 3242 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 3243 if (!A->getParent()) { 3244 // We found at least one unresolved value. Nuke them all to avoid leaks. 3245 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 3246 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) { 3247 A->replaceAllUsesWith(UndefValue::get(A->getType())); 3248 delete A; 3249 } 3250 } 3251 return Error(BitcodeError::NeverResolvedValueFoundInFunction); 3252 } 3253 } 3254 3255 // FIXME: Check for unresolved forward-declared metadata references 3256 // and clean up leaks. 3257 3258 // Trim the value list down to the size it was before we parsed this function. 3259 ValueList.shrinkTo(ModuleValueListSize); 3260 MDValueList.shrinkTo(ModuleMDValueListSize); 3261 std::vector<BasicBlock*>().swap(FunctionBBs); 3262 return std::error_code(); 3263 } 3264 3265 /// Find the function body in the bitcode stream 3266 std::error_code BitcodeReader::FindFunctionInStream( 3267 Function *F, 3268 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) { 3269 while (DeferredFunctionInfoIterator->second == 0) { 3270 if (Stream.AtEndOfStream()) 3271 return Error(BitcodeError::CouldNotFindFunctionInStream); 3272 // ParseModule will parse the next body in the stream and set its 3273 // position in the DeferredFunctionInfo map. 3274 if (std::error_code EC = ParseModule(true)) 3275 return EC; 3276 } 3277 return std::error_code(); 3278 } 3279 3280 //===----------------------------------------------------------------------===// 3281 // GVMaterializer implementation 3282 //===----------------------------------------------------------------------===// 3283 3284 void BitcodeReader::releaseBuffer() { Buffer.release(); } 3285 3286 std::error_code BitcodeReader::materialize(GlobalValue *GV) { 3287 Function *F = dyn_cast<Function>(GV); 3288 // If it's not a function or is already material, ignore the request. 3289 if (!F || !F->isMaterializable()) 3290 return std::error_code(); 3291 3292 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 3293 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 3294 // If its position is recorded as 0, its body is somewhere in the stream 3295 // but we haven't seen it yet. 3296 if (DFII->second == 0 && LazyStreamer) 3297 if (std::error_code EC = FindFunctionInStream(F, DFII)) 3298 return EC; 3299 3300 // Move the bit stream to the saved position of the deferred function body. 3301 Stream.JumpToBit(DFII->second); 3302 3303 if (std::error_code EC = ParseFunctionBody(F)) 3304 return EC; 3305 F->setIsMaterializable(false); 3306 3307 // Upgrade any old intrinsic calls in the function. 3308 for (UpgradedIntrinsicMap::iterator I = UpgradedIntrinsics.begin(), 3309 E = UpgradedIntrinsics.end(); I != E; ++I) { 3310 if (I->first != I->second) { 3311 for (auto UI = I->first->user_begin(), UE = I->first->user_end(); 3312 UI != UE;) { 3313 if (CallInst* CI = dyn_cast<CallInst>(*UI++)) 3314 UpgradeIntrinsicCall(CI, I->second); 3315 } 3316 } 3317 } 3318 3319 // Bring in any functions that this function forward-referenced via 3320 // blockaddresses. 3321 return materializeForwardReferencedFunctions(); 3322 } 3323 3324 bool BitcodeReader::isDematerializable(const GlobalValue *GV) const { 3325 const Function *F = dyn_cast<Function>(GV); 3326 if (!F || F->isDeclaration()) 3327 return false; 3328 3329 // Dematerializing F would leave dangling references that wouldn't be 3330 // reconnected on re-materialization. 3331 if (BlockAddressesTaken.count(F)) 3332 return false; 3333 3334 return DeferredFunctionInfo.count(const_cast<Function*>(F)); 3335 } 3336 3337 void BitcodeReader::Dematerialize(GlobalValue *GV) { 3338 Function *F = dyn_cast<Function>(GV); 3339 // If this function isn't dematerializable, this is a noop. 3340 if (!F || !isDematerializable(F)) 3341 return; 3342 3343 assert(DeferredFunctionInfo.count(F) && "No info to read function later?"); 3344 3345 // Just forget the function body, we can remat it later. 3346 F->dropAllReferences(); 3347 F->setIsMaterializable(true); 3348 } 3349 3350 std::error_code BitcodeReader::MaterializeModule(Module *M) { 3351 assert(M == TheModule && 3352 "Can only Materialize the Module this BitcodeReader is attached to."); 3353 3354 // Promise to materialize all forward references. 3355 WillMaterializeAllForwardRefs = true; 3356 3357 // Iterate over the module, deserializing any functions that are still on 3358 // disk. 3359 for (Module::iterator F = TheModule->begin(), E = TheModule->end(); 3360 F != E; ++F) { 3361 if (std::error_code EC = materialize(F)) 3362 return EC; 3363 } 3364 // At this point, if there are any function bodies, the current bit is 3365 // pointing to the END_BLOCK record after them. Now make sure the rest 3366 // of the bits in the module have been read. 3367 if (NextUnreadBit) 3368 ParseModule(true); 3369 3370 // Check that all block address forward references got resolved (as we 3371 // promised above). 3372 if (!BasicBlockFwdRefs.empty()) 3373 return Error(BitcodeError::NeverResolvedFunctionFromBlockAddress); 3374 3375 // Upgrade any intrinsic calls that slipped through (should not happen!) and 3376 // delete the old functions to clean up. We can't do this unless the entire 3377 // module is materialized because there could always be another function body 3378 // with calls to the old function. 3379 for (std::vector<std::pair<Function*, Function*> >::iterator I = 3380 UpgradedIntrinsics.begin(), E = UpgradedIntrinsics.end(); I != E; ++I) { 3381 if (I->first != I->second) { 3382 for (auto UI = I->first->user_begin(), UE = I->first->user_end(); 3383 UI != UE;) { 3384 if (CallInst* CI = dyn_cast<CallInst>(*UI++)) 3385 UpgradeIntrinsicCall(CI, I->second); 3386 } 3387 if (!I->first->use_empty()) 3388 I->first->replaceAllUsesWith(I->second); 3389 I->first->eraseFromParent(); 3390 } 3391 } 3392 std::vector<std::pair<Function*, Function*> >().swap(UpgradedIntrinsics); 3393 3394 for (unsigned I = 0, E = InstsWithTBAATag.size(); I < E; I++) 3395 UpgradeInstWithTBAATag(InstsWithTBAATag[I]); 3396 3397 UpgradeDebugInfo(*M); 3398 return std::error_code(); 3399 } 3400 3401 std::error_code BitcodeReader::InitStream() { 3402 if (LazyStreamer) 3403 return InitLazyStream(); 3404 return InitStreamFromBuffer(); 3405 } 3406 3407 std::error_code BitcodeReader::InitStreamFromBuffer() { 3408 const unsigned char *BufPtr = (const unsigned char*)Buffer->getBufferStart(); 3409 const unsigned char *BufEnd = BufPtr+Buffer->getBufferSize(); 3410 3411 if (Buffer->getBufferSize() & 3) 3412 return Error(BitcodeError::InvalidBitcodeSignature); 3413 3414 // If we have a wrapper header, parse it and ignore the non-bc file contents. 3415 // The magic number is 0x0B17C0DE stored in little endian. 3416 if (isBitcodeWrapper(BufPtr, BufEnd)) 3417 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 3418 return Error(BitcodeError::InvalidBitcodeWrapperHeader); 3419 3420 StreamFile.reset(new BitstreamReader(BufPtr, BufEnd)); 3421 Stream.init(&*StreamFile); 3422 3423 return std::error_code(); 3424 } 3425 3426 std::error_code BitcodeReader::InitLazyStream() { 3427 // Check and strip off the bitcode wrapper; BitstreamReader expects never to 3428 // see it. 3429 StreamingMemoryObject *Bytes = new StreamingMemoryObject(LazyStreamer); 3430 StreamFile.reset(new BitstreamReader(Bytes)); 3431 Stream.init(&*StreamFile); 3432 3433 unsigned char buf[16]; 3434 if (Bytes->readBytes(buf, 16, 0) != 16) 3435 return Error(BitcodeError::InvalidBitcodeSignature); 3436 3437 if (!isBitcode(buf, buf + 16)) 3438 return Error(BitcodeError::InvalidBitcodeSignature); 3439 3440 if (isBitcodeWrapper(buf, buf + 4)) { 3441 const unsigned char *bitcodeStart = buf; 3442 const unsigned char *bitcodeEnd = buf + 16; 3443 SkipBitcodeWrapperHeader(bitcodeStart, bitcodeEnd, false); 3444 Bytes->dropLeadingBytes(bitcodeStart - buf); 3445 Bytes->setKnownObjectSize(bitcodeEnd - bitcodeStart); 3446 } 3447 return std::error_code(); 3448 } 3449 3450 namespace { 3451 class BitcodeErrorCategoryType : public std::error_category { 3452 const char *name() const LLVM_NOEXCEPT override { 3453 return "llvm.bitcode"; 3454 } 3455 std::string message(int IE) const override { 3456 BitcodeError E = static_cast<BitcodeError>(IE); 3457 switch (E) { 3458 case BitcodeError::ConflictingMETADATA_KINDRecords: 3459 return "Conflicting METADATA_KIND records"; 3460 case BitcodeError::CouldNotFindFunctionInStream: 3461 return "Could not find function in stream"; 3462 case BitcodeError::ExpectedConstant: 3463 return "Expected a constant"; 3464 case BitcodeError::InsufficientFunctionProtos: 3465 return "Insufficient function protos"; 3466 case BitcodeError::InvalidBitcodeSignature: 3467 return "Invalid bitcode signature"; 3468 case BitcodeError::InvalidBitcodeWrapperHeader: 3469 return "Invalid bitcode wrapper header"; 3470 case BitcodeError::InvalidConstantReference: 3471 return "Invalid ronstant reference"; 3472 case BitcodeError::InvalidID: 3473 return "Invalid ID"; 3474 case BitcodeError::InvalidInstructionWithNoBB: 3475 return "Invalid instruction with no BB"; 3476 case BitcodeError::InvalidRecord: 3477 return "Invalid record"; 3478 case BitcodeError::InvalidTypeForValue: 3479 return "Invalid type for value"; 3480 case BitcodeError::InvalidTYPETable: 3481 return "Invalid TYPE table"; 3482 case BitcodeError::InvalidType: 3483 return "Invalid type"; 3484 case BitcodeError::MalformedBlock: 3485 return "Malformed block"; 3486 case BitcodeError::MalformedGlobalInitializerSet: 3487 return "Malformed global initializer set"; 3488 case BitcodeError::InvalidMultipleBlocks: 3489 return "Invalid multiple blocks"; 3490 case BitcodeError::NeverResolvedValueFoundInFunction: 3491 return "Never resolved value found in function"; 3492 case BitcodeError::NeverResolvedFunctionFromBlockAddress: 3493 return "Never resolved function from blockaddress"; 3494 case BitcodeError::InvalidValue: 3495 return "Invalid value"; 3496 } 3497 llvm_unreachable("Unknown error type!"); 3498 } 3499 }; 3500 } 3501 3502 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory; 3503 3504 const std::error_category &llvm::BitcodeErrorCategory() { 3505 return *ErrorCategory; 3506 } 3507 3508 //===----------------------------------------------------------------------===// 3509 // External interface 3510 //===----------------------------------------------------------------------===// 3511 3512 /// \brief Get a lazy one-at-time loading module from bitcode. 3513 /// 3514 /// This isn't always used in a lazy context. In particular, it's also used by 3515 /// \a parseBitcodeFile(). If this is truly lazy, then we need to eagerly pull 3516 /// in forward-referenced functions from block address references. 3517 /// 3518 /// \param[in] WillMaterializeAll Set to \c true if the caller promises to 3519 /// materialize everything -- in particular, if this isn't truly lazy. 3520 static ErrorOr<Module *> 3521 getLazyBitcodeModuleImpl(std::unique_ptr<MemoryBuffer> &&Buffer, 3522 LLVMContext &Context, bool WillMaterializeAll) { 3523 Module *M = new Module(Buffer->getBufferIdentifier(), Context); 3524 BitcodeReader *R = new BitcodeReader(Buffer.get(), Context); 3525 M->setMaterializer(R); 3526 3527 auto cleanupOnError = [&](std::error_code EC) { 3528 R->releaseBuffer(); // Never take ownership on error. 3529 delete M; // Also deletes R. 3530 return EC; 3531 }; 3532 3533 if (std::error_code EC = R->ParseBitcodeInto(M)) 3534 return cleanupOnError(EC); 3535 3536 if (!WillMaterializeAll) 3537 // Resolve forward references from blockaddresses. 3538 if (std::error_code EC = R->materializeForwardReferencedFunctions()) 3539 return cleanupOnError(EC); 3540 3541 Buffer.release(); // The BitcodeReader owns it now. 3542 return M; 3543 } 3544 3545 ErrorOr<Module *> 3546 llvm::getLazyBitcodeModule(std::unique_ptr<MemoryBuffer> &&Buffer, 3547 LLVMContext &Context) { 3548 return getLazyBitcodeModuleImpl(std::move(Buffer), Context, false); 3549 } 3550 3551 Module *llvm::getStreamedBitcodeModule(const std::string &name, 3552 DataStreamer *streamer, 3553 LLVMContext &Context, 3554 std::string *ErrMsg) { 3555 Module *M = new Module(name, Context); 3556 BitcodeReader *R = new BitcodeReader(streamer, Context); 3557 M->setMaterializer(R); 3558 if (std::error_code EC = R->ParseBitcodeInto(M)) { 3559 if (ErrMsg) 3560 *ErrMsg = EC.message(); 3561 delete M; // Also deletes R. 3562 return nullptr; 3563 } 3564 return M; 3565 } 3566 3567 ErrorOr<Module *> llvm::parseBitcodeFile(MemoryBufferRef Buffer, 3568 LLVMContext &Context) { 3569 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 3570 ErrorOr<Module *> ModuleOrErr = 3571 getLazyBitcodeModuleImpl(std::move(Buf), Context, true); 3572 if (!ModuleOrErr) 3573 return ModuleOrErr; 3574 Module *M = ModuleOrErr.get(); 3575 // Read in the entire module, and destroy the BitcodeReader. 3576 if (std::error_code EC = M->materializeAllPermanently()) { 3577 delete M; 3578 return EC; 3579 } 3580 3581 // TODO: Restore the use-lists to the in-memory state when the bitcode was 3582 // written. We must defer until the Module has been fully materialized. 3583 3584 return M; 3585 } 3586 3587 std::string llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer, 3588 LLVMContext &Context) { 3589 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 3590 auto R = llvm::make_unique<BitcodeReader>(Buf.release(), Context); 3591 ErrorOr<std::string> Triple = R->parseTriple(); 3592 if (Triple.getError()) 3593 return ""; 3594 return Triple.get(); 3595 } 3596