1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "llvm/ADT/APFloat.h" 11 #include "llvm/ADT/APInt.h" 12 #include "llvm/ADT/ArrayRef.h" 13 #include "llvm/ADT/DenseMap.h" 14 #include "llvm/ADT/None.h" 15 #include "llvm/ADT/STLExtras.h" 16 #include "llvm/ADT/SmallString.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/ADT/StringRef.h" 19 #include "llvm/ADT/Triple.h" 20 #include "llvm/ADT/Twine.h" 21 #include "llvm/Bitcode/BitstreamReader.h" 22 #include "llvm/Bitcode/LLVMBitCodes.h" 23 #include "llvm/Bitcode/ReaderWriter.h" 24 #include "llvm/IR/Argument.h" 25 #include "llvm/IR/Attributes.h" 26 #include "llvm/IR/AutoUpgrade.h" 27 #include "llvm/IR/BasicBlock.h" 28 #include "llvm/IR/CallingConv.h" 29 #include "llvm/IR/CallSite.h" 30 #include "llvm/IR/Comdat.h" 31 #include "llvm/IR/Constant.h" 32 #include "llvm/IR/Constants.h" 33 #include "llvm/IR/DebugInfo.h" 34 #include "llvm/IR/DebugInfoMetadata.h" 35 #include "llvm/IR/DebugLoc.h" 36 #include "llvm/IR/DerivedTypes.h" 37 #include "llvm/IR/DiagnosticInfo.h" 38 #include "llvm/IR/DiagnosticPrinter.h" 39 #include "llvm/IR/Function.h" 40 #include "llvm/IR/GlobalAlias.h" 41 #include "llvm/IR/GlobalIFunc.h" 42 #include "llvm/IR/GlobalIndirectSymbol.h" 43 #include "llvm/IR/GlobalObject.h" 44 #include "llvm/IR/GlobalValue.h" 45 #include "llvm/IR/GlobalVariable.h" 46 #include "llvm/IR/GVMaterializer.h" 47 #include "llvm/IR/InlineAsm.h" 48 #include "llvm/IR/InstrTypes.h" 49 #include "llvm/IR/Instruction.h" 50 #include "llvm/IR/Instructions.h" 51 #include "llvm/IR/Intrinsics.h" 52 #include "llvm/IR/LLVMContext.h" 53 #include "llvm/IR/Module.h" 54 #include "llvm/IR/ModuleSummaryIndex.h" 55 #include "llvm/IR/OperandTraits.h" 56 #include "llvm/IR/Operator.h" 57 #include "llvm/IR/TrackingMDRef.h" 58 #include "llvm/IR/Type.h" 59 #include "llvm/IR/ValueHandle.h" 60 #include "llvm/Support/AtomicOrdering.h" 61 #include "llvm/Support/Casting.h" 62 #include "llvm/Support/CommandLine.h" 63 #include "llvm/Support/Compiler.h" 64 #include "llvm/Support/Debug.h" 65 #include "llvm/Support/ErrorHandling.h" 66 #include "llvm/Support/ErrorOr.h" 67 #include "llvm/Support/ManagedStatic.h" 68 #include "llvm/Support/MemoryBuffer.h" 69 #include "llvm/Support/raw_ostream.h" 70 #include <algorithm> 71 #include <cassert> 72 #include <cstddef> 73 #include <cstdint> 74 #include <deque> 75 #include <limits> 76 #include <map> 77 #include <memory> 78 #include <string> 79 #include <system_error> 80 #include <tuple> 81 #include <utility> 82 #include <vector> 83 84 using namespace llvm; 85 86 static cl::opt<bool> PrintSummaryGUIDs( 87 "print-summary-global-ids", cl::init(false), cl::Hidden, 88 cl::desc( 89 "Print the global id for each value when reading the module summary")); 90 91 namespace { 92 93 enum { 94 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 95 }; 96 97 class BitcodeReaderValueList { 98 std::vector<WeakVH> ValuePtrs; 99 100 /// As we resolve forward-referenced constants, we add information about them 101 /// to this vector. This allows us to resolve them in bulk instead of 102 /// resolving each reference at a time. See the code in 103 /// ResolveConstantForwardRefs for more information about this. 104 /// 105 /// The key of this vector is the placeholder constant, the value is the slot 106 /// number that holds the resolved value. 107 typedef std::vector<std::pair<Constant*, unsigned> > ResolveConstantsTy; 108 ResolveConstantsTy ResolveConstants; 109 LLVMContext &Context; 110 111 public: 112 BitcodeReaderValueList(LLVMContext &C) : Context(C) {} 113 ~BitcodeReaderValueList() { 114 assert(ResolveConstants.empty() && "Constants not resolved?"); 115 } 116 117 // vector compatibility methods 118 unsigned size() const { return ValuePtrs.size(); } 119 void resize(unsigned N) { ValuePtrs.resize(N); } 120 void push_back(Value *V) { ValuePtrs.emplace_back(V); } 121 122 void clear() { 123 assert(ResolveConstants.empty() && "Constants not resolved?"); 124 ValuePtrs.clear(); 125 } 126 127 Value *operator[](unsigned i) const { 128 assert(i < ValuePtrs.size()); 129 return ValuePtrs[i]; 130 } 131 132 Value *back() const { return ValuePtrs.back(); } 133 void pop_back() { ValuePtrs.pop_back(); } 134 bool empty() const { return ValuePtrs.empty(); } 135 136 void shrinkTo(unsigned N) { 137 assert(N <= size() && "Invalid shrinkTo request!"); 138 ValuePtrs.resize(N); 139 } 140 141 Constant *getConstantFwdRef(unsigned Idx, Type *Ty); 142 Value *getValueFwdRef(unsigned Idx, Type *Ty); 143 144 void assignValue(Value *V, unsigned Idx); 145 146 /// Once all constants are read, this method bulk resolves any forward 147 /// references. 148 void resolveConstantForwardRefs(); 149 }; 150 151 class BitcodeReaderMetadataList { 152 unsigned NumFwdRefs; 153 bool AnyFwdRefs; 154 unsigned MinFwdRef; 155 unsigned MaxFwdRef; 156 157 /// Array of metadata references. 158 /// 159 /// Don't use std::vector here. Some versions of libc++ copy (instead of 160 /// move) on resize, and TrackingMDRef is very expensive to copy. 161 SmallVector<TrackingMDRef, 1> MetadataPtrs; 162 163 /// Structures for resolving old type refs. 164 struct { 165 SmallDenseMap<MDString *, TempMDTuple, 1> Unknown; 166 SmallDenseMap<MDString *, DICompositeType *, 1> Final; 167 SmallDenseMap<MDString *, DICompositeType *, 1> FwdDecls; 168 SmallVector<std::pair<TrackingMDRef, TempMDTuple>, 1> Arrays; 169 } OldTypeRefs; 170 171 LLVMContext &Context; 172 173 public: 174 BitcodeReaderMetadataList(LLVMContext &C) 175 : NumFwdRefs(0), AnyFwdRefs(false), Context(C) {} 176 177 // vector compatibility methods 178 unsigned size() const { return MetadataPtrs.size(); } 179 void resize(unsigned N) { MetadataPtrs.resize(N); } 180 void push_back(Metadata *MD) { MetadataPtrs.emplace_back(MD); } 181 void clear() { MetadataPtrs.clear(); } 182 Metadata *back() const { return MetadataPtrs.back(); } 183 void pop_back() { MetadataPtrs.pop_back(); } 184 bool empty() const { return MetadataPtrs.empty(); } 185 186 Metadata *operator[](unsigned i) const { 187 assert(i < MetadataPtrs.size()); 188 return MetadataPtrs[i]; 189 } 190 191 Metadata *lookup(unsigned I) const { 192 if (I < MetadataPtrs.size()) 193 return MetadataPtrs[I]; 194 return nullptr; 195 } 196 197 void shrinkTo(unsigned N) { 198 assert(N <= size() && "Invalid shrinkTo request!"); 199 assert(!AnyFwdRefs && "Unexpected forward refs"); 200 MetadataPtrs.resize(N); 201 } 202 203 /// Return the given metadata, creating a replaceable forward reference if 204 /// necessary. 205 Metadata *getMetadataFwdRef(unsigned Idx); 206 207 /// Return the the given metadata only if it is fully resolved. 208 /// 209 /// Gives the same result as \a lookup(), unless \a MDNode::isResolved() 210 /// would give \c false. 211 Metadata *getMetadataIfResolved(unsigned Idx); 212 213 MDNode *getMDNodeFwdRefOrNull(unsigned Idx); 214 void assignValue(Metadata *MD, unsigned Idx); 215 void tryToResolveCycles(); 216 bool hasFwdRefs() const { return AnyFwdRefs; } 217 218 /// Upgrade a type that had an MDString reference. 219 void addTypeRef(MDString &UUID, DICompositeType &CT); 220 221 /// Upgrade a type that had an MDString reference. 222 Metadata *upgradeTypeRef(Metadata *MaybeUUID); 223 224 /// Upgrade a type ref array that may have MDString references. 225 Metadata *upgradeTypeRefArray(Metadata *MaybeTuple); 226 227 private: 228 Metadata *resolveTypeRefArray(Metadata *MaybeTuple); 229 }; 230 231 class BitcodeReaderBase { 232 protected: 233 BitcodeReaderBase(MemoryBufferRef Buffer) : Buffer(Buffer) {} 234 235 MemoryBufferRef Buffer; 236 BitstreamBlockInfo BlockInfo; 237 BitstreamCursor Stream; 238 239 std::error_code initStream(); 240 bool readBlockInfo(); 241 242 virtual std::error_code error(const Twine &Message) = 0; 243 virtual ~BitcodeReaderBase() = default; 244 }; 245 246 std::error_code BitcodeReaderBase::initStream() { 247 const unsigned char *BufPtr = (const unsigned char*)Buffer.getBufferStart(); 248 const unsigned char *BufEnd = BufPtr+Buffer.getBufferSize(); 249 250 if (Buffer.getBufferSize() & 3) 251 return error("Invalid bitcode signature"); 252 253 // If we have a wrapper header, parse it and ignore the non-bc file contents. 254 // The magic number is 0x0B17C0DE stored in little endian. 255 if (isBitcodeWrapper(BufPtr, BufEnd)) 256 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 257 return error("Invalid bitcode wrapper header"); 258 259 Stream = BitstreamCursor(ArrayRef<uint8_t>(BufPtr, BufEnd)); 260 Stream.setBlockInfo(&BlockInfo); 261 262 return std::error_code(); 263 } 264 265 class BitcodeReader : public BitcodeReaderBase, public GVMaterializer { 266 LLVMContext &Context; 267 Module *TheModule = nullptr; 268 // Next offset to start scanning for lazy parsing of function bodies. 269 uint64_t NextUnreadBit = 0; 270 // Last function offset found in the VST. 271 uint64_t LastFunctionBlockBit = 0; 272 bool SeenValueSymbolTable = false; 273 uint64_t VSTOffset = 0; 274 // Contains an arbitrary and optional string identifying the bitcode producer 275 std::string ProducerIdentification; 276 277 std::vector<Type*> TypeList; 278 BitcodeReaderValueList ValueList; 279 BitcodeReaderMetadataList MetadataList; 280 std::vector<Comdat *> ComdatList; 281 SmallVector<Instruction *, 64> InstructionList; 282 283 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInits; 284 std::vector<std::pair<GlobalIndirectSymbol*, unsigned> > IndirectSymbolInits; 285 std::vector<std::pair<Function*, unsigned> > FunctionPrefixes; 286 std::vector<std::pair<Function*, unsigned> > FunctionPrologues; 287 std::vector<std::pair<Function*, unsigned> > FunctionPersonalityFns; 288 289 bool HasSeenOldLoopTags = false; 290 291 /// The set of attributes by index. Index zero in the file is for null, and 292 /// is thus not represented here. As such all indices are off by one. 293 std::vector<AttributeSet> MAttributes; 294 295 /// The set of attribute groups. 296 std::map<unsigned, AttributeSet> MAttributeGroups; 297 298 /// While parsing a function body, this is a list of the basic blocks for the 299 /// function. 300 std::vector<BasicBlock*> FunctionBBs; 301 302 // When reading the module header, this list is populated with functions that 303 // have bodies later in the file. 304 std::vector<Function*> FunctionsWithBodies; 305 306 // When intrinsic functions are encountered which require upgrading they are 307 // stored here with their replacement function. 308 typedef DenseMap<Function*, Function*> UpdatedIntrinsicMap; 309 UpdatedIntrinsicMap UpgradedIntrinsics; 310 // Intrinsics which were remangled because of types rename 311 UpdatedIntrinsicMap RemangledIntrinsics; 312 313 // Map the bitcode's custom MDKind ID to the Module's MDKind ID. 314 DenseMap<unsigned, unsigned> MDKindMap; 315 316 // Several operations happen after the module header has been read, but 317 // before function bodies are processed. This keeps track of whether 318 // we've done this yet. 319 bool SeenFirstFunctionBody = false; 320 321 /// When function bodies are initially scanned, this map contains info about 322 /// where to find deferred function body in the stream. 323 DenseMap<Function*, uint64_t> DeferredFunctionInfo; 324 325 /// When Metadata block is initially scanned when parsing the module, we may 326 /// choose to defer parsing of the metadata. This vector contains info about 327 /// which Metadata blocks are deferred. 328 std::vector<uint64_t> DeferredMetadataInfo; 329 330 /// These are basic blocks forward-referenced by block addresses. They are 331 /// inserted lazily into functions when they're loaded. The basic block ID is 332 /// its index into the vector. 333 DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs; 334 std::deque<Function *> BasicBlockFwdRefQueue; 335 336 /// Indicates that we are using a new encoding for instruction operands where 337 /// most operands in the current FUNCTION_BLOCK are encoded relative to the 338 /// instruction number, for a more compact encoding. Some instruction 339 /// operands are not relative to the instruction ID: basic block numbers, and 340 /// types. Once the old style function blocks have been phased out, we would 341 /// not need this flag. 342 bool UseRelativeIDs = false; 343 344 /// True if all functions will be materialized, negating the need to process 345 /// (e.g.) blockaddress forward references. 346 bool WillMaterializeAllForwardRefs = false; 347 348 /// True if any Metadata block has been materialized. 349 bool IsMetadataMaterialized = false; 350 351 bool StripDebugInfo = false; 352 353 /// Functions that need to be matched with subprograms when upgrading old 354 /// metadata. 355 SmallDenseMap<Function *, DISubprogram *, 16> FunctionsWithSPs; 356 357 std::vector<std::string> BundleTags; 358 359 public: 360 std::error_code error(BitcodeError E, const Twine &Message); 361 std::error_code error(const Twine &Message) override; 362 363 BitcodeReader(MemoryBufferRef Buffer, LLVMContext &Context); 364 365 std::error_code materializeForwardReferencedFunctions(); 366 367 std::error_code materialize(GlobalValue *GV) override; 368 std::error_code materializeModule() override; 369 std::vector<StructType *> getIdentifiedStructTypes() const override; 370 371 /// \brief Main interface to parsing a bitcode buffer. 372 /// \returns true if an error occurred. 373 std::error_code parseBitcodeInto(Module *M, 374 bool ShouldLazyLoadMetadata = false); 375 376 /// \brief Cheap mechanism to just extract module triple 377 /// \returns true if an error occurred. 378 ErrorOr<std::string> parseTriple(); 379 380 /// Cheap mechanism to just extract the identification block out of bitcode. 381 ErrorOr<std::string> parseIdentificationBlock(); 382 383 /// Peak at the module content and return true if any ObjC category or class 384 /// is found. 385 ErrorOr<bool> hasObjCCategory(); 386 387 static uint64_t decodeSignRotatedValue(uint64_t V); 388 389 /// Materialize any deferred Metadata block. 390 std::error_code materializeMetadata() override; 391 392 void setStripDebugInfo() override; 393 394 private: 395 /// Parse the "IDENTIFICATION_BLOCK_ID" block, populate the 396 // ProducerIdentification data member, and do some basic enforcement on the 397 // "epoch" encoded in the bitcode. 398 std::error_code parseBitcodeVersion(); 399 400 std::vector<StructType *> IdentifiedStructTypes; 401 StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name); 402 StructType *createIdentifiedStructType(LLVMContext &Context); 403 404 Type *getTypeByID(unsigned ID); 405 406 Value *getFnValueByID(unsigned ID, Type *Ty) { 407 if (Ty && Ty->isMetadataTy()) 408 return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID)); 409 return ValueList.getValueFwdRef(ID, Ty); 410 } 411 412 Metadata *getFnMetadataByID(unsigned ID) { 413 return MetadataList.getMetadataFwdRef(ID); 414 } 415 416 BasicBlock *getBasicBlock(unsigned ID) const { 417 if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID 418 return FunctionBBs[ID]; 419 } 420 421 AttributeSet getAttributes(unsigned i) const { 422 if (i-1 < MAttributes.size()) 423 return MAttributes[i-1]; 424 return AttributeSet(); 425 } 426 427 /// Read a value/type pair out of the specified record from slot 'Slot'. 428 /// Increment Slot past the number of slots used in the record. Return true on 429 /// failure. 430 bool getValueTypePair(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 431 unsigned InstNum, Value *&ResVal) { 432 if (Slot == Record.size()) return true; 433 unsigned ValNo = (unsigned)Record[Slot++]; 434 // Adjust the ValNo, if it was encoded relative to the InstNum. 435 if (UseRelativeIDs) 436 ValNo = InstNum - ValNo; 437 if (ValNo < InstNum) { 438 // If this is not a forward reference, just return the value we already 439 // have. 440 ResVal = getFnValueByID(ValNo, nullptr); 441 return ResVal == nullptr; 442 } 443 if (Slot == Record.size()) 444 return true; 445 446 unsigned TypeNo = (unsigned)Record[Slot++]; 447 ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo)); 448 return ResVal == nullptr; 449 } 450 451 /// Read a value out of the specified record from slot 'Slot'. Increment Slot 452 /// past the number of slots used by the value in the record. Return true if 453 /// there is an error. 454 bool popValue(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 455 unsigned InstNum, Type *Ty, Value *&ResVal) { 456 if (getValue(Record, Slot, InstNum, Ty, ResVal)) 457 return true; 458 // All values currently take a single record slot. 459 ++Slot; 460 return false; 461 } 462 463 /// Like popValue, but does not increment the Slot number. 464 bool getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 465 unsigned InstNum, Type *Ty, Value *&ResVal) { 466 ResVal = getValue(Record, Slot, InstNum, Ty); 467 return ResVal == nullptr; 468 } 469 470 /// Version of getValue that returns ResVal directly, or 0 if there is an 471 /// error. 472 Value *getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 473 unsigned InstNum, Type *Ty) { 474 if (Slot == Record.size()) return nullptr; 475 unsigned ValNo = (unsigned)Record[Slot]; 476 // Adjust the ValNo, if it was encoded relative to the InstNum. 477 if (UseRelativeIDs) 478 ValNo = InstNum - ValNo; 479 return getFnValueByID(ValNo, Ty); 480 } 481 482 /// Like getValue, but decodes signed VBRs. 483 Value *getValueSigned(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 484 unsigned InstNum, Type *Ty) { 485 if (Slot == Record.size()) return nullptr; 486 unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]); 487 // Adjust the ValNo, if it was encoded relative to the InstNum. 488 if (UseRelativeIDs) 489 ValNo = InstNum - ValNo; 490 return getFnValueByID(ValNo, Ty); 491 } 492 493 /// Converts alignment exponent (i.e. power of two (or zero)) to the 494 /// corresponding alignment to use. If alignment is too large, returns 495 /// a corresponding error code. 496 std::error_code parseAlignmentValue(uint64_t Exponent, unsigned &Alignment); 497 std::error_code parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind); 498 std::error_code parseModule(uint64_t ResumeBit, 499 bool ShouldLazyLoadMetadata = false); 500 std::error_code parseAttributeBlock(); 501 std::error_code parseAttributeGroupBlock(); 502 std::error_code parseTypeTable(); 503 std::error_code parseTypeTableBody(); 504 std::error_code parseOperandBundleTags(); 505 506 ErrorOr<Value *> recordValue(SmallVectorImpl<uint64_t> &Record, 507 unsigned NameIndex, Triple &TT); 508 std::error_code parseValueSymbolTable(uint64_t Offset = 0); 509 std::error_code parseConstants(); 510 std::error_code rememberAndSkipFunctionBodies(); 511 std::error_code rememberAndSkipFunctionBody(); 512 /// Save the positions of the Metadata blocks and skip parsing the blocks. 513 std::error_code rememberAndSkipMetadata(); 514 std::error_code parseFunctionBody(Function *F); 515 std::error_code globalCleanup(); 516 std::error_code resolveGlobalAndIndirectSymbolInits(); 517 std::error_code parseMetadata(bool ModuleLevel = false); 518 std::error_code parseMetadataStrings(ArrayRef<uint64_t> Record, 519 StringRef Blob, 520 unsigned &NextMetadataNo); 521 std::error_code parseMetadataKinds(); 522 std::error_code parseMetadataKindRecord(SmallVectorImpl<uint64_t> &Record); 523 std::error_code 524 parseGlobalObjectAttachment(GlobalObject &GO, 525 ArrayRef<uint64_t> Record); 526 std::error_code parseMetadataAttachment(Function &F); 527 ErrorOr<std::string> parseModuleTriple(); 528 ErrorOr<bool> hasObjCCategoryInModule(); 529 std::error_code parseUseLists(); 530 std::error_code findFunctionInStream( 531 Function *F, 532 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator); 533 }; 534 535 /// Class to manage reading and parsing function summary index bitcode 536 /// files/sections. 537 class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase { 538 DiagnosticHandlerFunction DiagnosticHandler; 539 540 /// Eventually points to the module index built during parsing. 541 ModuleSummaryIndex *TheIndex = nullptr; 542 543 /// Used to indicate whether caller only wants to check for the presence 544 /// of the global value summary bitcode section. All blocks are skipped, 545 /// but the SeenGlobalValSummary boolean is set. 546 bool CheckGlobalValSummaryPresenceOnly = false; 547 548 /// Indicates whether we have encountered a global value summary section 549 /// yet during parsing, used when checking if file contains global value 550 /// summary section. 551 bool SeenGlobalValSummary = false; 552 553 /// Indicates whether we have already parsed the VST, used for error checking. 554 bool SeenValueSymbolTable = false; 555 556 /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record. 557 /// Used to enable on-demand parsing of the VST. 558 uint64_t VSTOffset = 0; 559 560 // Map to save ValueId to GUID association that was recorded in the 561 // ValueSymbolTable. It is used after the VST is parsed to convert 562 // call graph edges read from the function summary from referencing 563 // callees by their ValueId to using the GUID instead, which is how 564 // they are recorded in the summary index being built. 565 // We save a second GUID which is the same as the first one, but ignoring the 566 // linkage, i.e. for value other than local linkage they are identical. 567 DenseMap<unsigned, std::pair<GlobalValue::GUID, GlobalValue::GUID>> 568 ValueIdToCallGraphGUIDMap; 569 570 /// Map populated during module path string table parsing, from the 571 /// module ID to a string reference owned by the index's module 572 /// path string table, used to correlate with combined index 573 /// summary records. 574 DenseMap<uint64_t, StringRef> ModuleIdMap; 575 576 /// Original source file name recorded in a bitcode record. 577 std::string SourceFileName; 578 579 public: 580 std::error_code error(const Twine &Message); 581 582 ModuleSummaryIndexBitcodeReader( 583 MemoryBufferRef Buffer, DiagnosticHandlerFunction DiagnosticHandler, 584 bool CheckGlobalValSummaryPresenceOnly = false); 585 586 /// Check if the parser has encountered a summary section. 587 bool foundGlobalValSummary() { return SeenGlobalValSummary; } 588 589 /// \brief Main interface to parsing a bitcode buffer. 590 /// \returns true if an error occurred. 591 std::error_code parseSummaryIndexInto(ModuleSummaryIndex *I); 592 593 private: 594 std::error_code parseModule(); 595 std::error_code parseValueSymbolTable( 596 uint64_t Offset, 597 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap); 598 std::error_code parseEntireSummary(); 599 std::error_code parseModuleStringTable(); 600 std::pair<GlobalValue::GUID, GlobalValue::GUID> 601 602 getGUIDFromValueId(unsigned ValueId); 603 std::pair<GlobalValue::GUID, CalleeInfo::HotnessType> 604 readCallGraphEdge(const SmallVector<uint64_t, 64> &Record, unsigned int &I, 605 bool IsOldProfileFormat, bool HasProfile); 606 }; 607 608 } // end anonymous namespace 609 610 BitcodeDiagnosticInfo::BitcodeDiagnosticInfo(std::error_code EC, 611 DiagnosticSeverity Severity, 612 const Twine &Msg) 613 : DiagnosticInfo(DK_Bitcode, Severity), Msg(Msg), EC(EC) {} 614 615 void BitcodeDiagnosticInfo::print(DiagnosticPrinter &DP) const { DP << Msg; } 616 617 static std::error_code error(const DiagnosticHandlerFunction &DiagnosticHandler, 618 std::error_code EC, const Twine &Message) { 619 BitcodeDiagnosticInfo DI(EC, DS_Error, Message); 620 DiagnosticHandler(DI); 621 return EC; 622 } 623 624 static std::error_code error(LLVMContext &Context, std::error_code EC, 625 const Twine &Message) { 626 return error([&](const DiagnosticInfo &DI) { Context.diagnose(DI); }, EC, 627 Message); 628 } 629 630 static std::error_code error(LLVMContext &Context, const Twine &Message) { 631 return error(Context, make_error_code(BitcodeError::CorruptedBitcode), 632 Message); 633 } 634 635 std::error_code BitcodeReader::error(BitcodeError E, const Twine &Message) { 636 if (!ProducerIdentification.empty()) { 637 return ::error(Context, make_error_code(E), 638 Message + " (Producer: '" + ProducerIdentification + 639 "' Reader: 'LLVM " + LLVM_VERSION_STRING "')"); 640 } 641 return ::error(Context, make_error_code(E), Message); 642 } 643 644 std::error_code BitcodeReader::error(const Twine &Message) { 645 if (!ProducerIdentification.empty()) { 646 return ::error(Context, make_error_code(BitcodeError::CorruptedBitcode), 647 Message + " (Producer: '" + ProducerIdentification + 648 "' Reader: 'LLVM " + LLVM_VERSION_STRING "')"); 649 } 650 return ::error(Context, make_error_code(BitcodeError::CorruptedBitcode), 651 Message); 652 } 653 654 BitcodeReader::BitcodeReader(MemoryBufferRef Buffer, LLVMContext &Context) 655 : BitcodeReaderBase(Buffer), Context(Context), ValueList(Context), 656 MetadataList(Context) {} 657 658 std::error_code BitcodeReader::materializeForwardReferencedFunctions() { 659 if (WillMaterializeAllForwardRefs) 660 return std::error_code(); 661 662 // Prevent recursion. 663 WillMaterializeAllForwardRefs = true; 664 665 while (!BasicBlockFwdRefQueue.empty()) { 666 Function *F = BasicBlockFwdRefQueue.front(); 667 BasicBlockFwdRefQueue.pop_front(); 668 assert(F && "Expected valid function"); 669 if (!BasicBlockFwdRefs.count(F)) 670 // Already materialized. 671 continue; 672 673 // Check for a function that isn't materializable to prevent an infinite 674 // loop. When parsing a blockaddress stored in a global variable, there 675 // isn't a trivial way to check if a function will have a body without a 676 // linear search through FunctionsWithBodies, so just check it here. 677 if (!F->isMaterializable()) 678 return error("Never resolved function from blockaddress"); 679 680 // Try to materialize F. 681 if (std::error_code EC = materialize(F)) 682 return EC; 683 } 684 assert(BasicBlockFwdRefs.empty() && "Function missing from queue"); 685 686 // Reset state. 687 WillMaterializeAllForwardRefs = false; 688 return std::error_code(); 689 } 690 691 //===----------------------------------------------------------------------===// 692 // Helper functions to implement forward reference resolution, etc. 693 //===----------------------------------------------------------------------===// 694 695 /// Convert a string from a record into an std::string, return true on failure. 696 template <typename StrTy> 697 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx, 698 StrTy &Result) { 699 if (Idx > Record.size()) 700 return true; 701 702 for (unsigned i = Idx, e = Record.size(); i != e; ++i) 703 Result += (char)Record[i]; 704 return false; 705 } 706 707 static bool hasImplicitComdat(size_t Val) { 708 switch (Val) { 709 default: 710 return false; 711 case 1: // Old WeakAnyLinkage 712 case 4: // Old LinkOnceAnyLinkage 713 case 10: // Old WeakODRLinkage 714 case 11: // Old LinkOnceODRLinkage 715 return true; 716 } 717 } 718 719 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) { 720 switch (Val) { 721 default: // Map unknown/new linkages to external 722 case 0: 723 return GlobalValue::ExternalLinkage; 724 case 2: 725 return GlobalValue::AppendingLinkage; 726 case 3: 727 return GlobalValue::InternalLinkage; 728 case 5: 729 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage 730 case 6: 731 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage 732 case 7: 733 return GlobalValue::ExternalWeakLinkage; 734 case 8: 735 return GlobalValue::CommonLinkage; 736 case 9: 737 return GlobalValue::PrivateLinkage; 738 case 12: 739 return GlobalValue::AvailableExternallyLinkage; 740 case 13: 741 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage 742 case 14: 743 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage 744 case 15: 745 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage 746 case 1: // Old value with implicit comdat. 747 case 16: 748 return GlobalValue::WeakAnyLinkage; 749 case 10: // Old value with implicit comdat. 750 case 17: 751 return GlobalValue::WeakODRLinkage; 752 case 4: // Old value with implicit comdat. 753 case 18: 754 return GlobalValue::LinkOnceAnyLinkage; 755 case 11: // Old value with implicit comdat. 756 case 19: 757 return GlobalValue::LinkOnceODRLinkage; 758 } 759 } 760 761 /// Decode the flags for GlobalValue in the summary. 762 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags, 763 uint64_t Version) { 764 // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage 765 // like getDecodedLinkage() above. Any future change to the linkage enum and 766 // to getDecodedLinkage() will need to be taken into account here as above. 767 auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits 768 RawFlags = RawFlags >> 4; 769 bool NoRename = RawFlags & 0x1; 770 bool IsNotViableToInline = RawFlags & 0x2; 771 return GlobalValueSummary::GVFlags(Linkage, NoRename, IsNotViableToInline); 772 } 773 774 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) { 775 switch (Val) { 776 default: // Map unknown visibilities to default. 777 case 0: return GlobalValue::DefaultVisibility; 778 case 1: return GlobalValue::HiddenVisibility; 779 case 2: return GlobalValue::ProtectedVisibility; 780 } 781 } 782 783 static GlobalValue::DLLStorageClassTypes 784 getDecodedDLLStorageClass(unsigned Val) { 785 switch (Val) { 786 default: // Map unknown values to default. 787 case 0: return GlobalValue::DefaultStorageClass; 788 case 1: return GlobalValue::DLLImportStorageClass; 789 case 2: return GlobalValue::DLLExportStorageClass; 790 } 791 } 792 793 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) { 794 switch (Val) { 795 case 0: return GlobalVariable::NotThreadLocal; 796 default: // Map unknown non-zero value to general dynamic. 797 case 1: return GlobalVariable::GeneralDynamicTLSModel; 798 case 2: return GlobalVariable::LocalDynamicTLSModel; 799 case 3: return GlobalVariable::InitialExecTLSModel; 800 case 4: return GlobalVariable::LocalExecTLSModel; 801 } 802 } 803 804 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) { 805 switch (Val) { 806 default: // Map unknown to UnnamedAddr::None. 807 case 0: return GlobalVariable::UnnamedAddr::None; 808 case 1: return GlobalVariable::UnnamedAddr::Global; 809 case 2: return GlobalVariable::UnnamedAddr::Local; 810 } 811 } 812 813 static int getDecodedCastOpcode(unsigned Val) { 814 switch (Val) { 815 default: return -1; 816 case bitc::CAST_TRUNC : return Instruction::Trunc; 817 case bitc::CAST_ZEXT : return Instruction::ZExt; 818 case bitc::CAST_SEXT : return Instruction::SExt; 819 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 820 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 821 case bitc::CAST_UITOFP : return Instruction::UIToFP; 822 case bitc::CAST_SITOFP : return Instruction::SIToFP; 823 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 824 case bitc::CAST_FPEXT : return Instruction::FPExt; 825 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 826 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 827 case bitc::CAST_BITCAST : return Instruction::BitCast; 828 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast; 829 } 830 } 831 832 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) { 833 bool IsFP = Ty->isFPOrFPVectorTy(); 834 // BinOps are only valid for int/fp or vector of int/fp types 835 if (!IsFP && !Ty->isIntOrIntVectorTy()) 836 return -1; 837 838 switch (Val) { 839 default: 840 return -1; 841 case bitc::BINOP_ADD: 842 return IsFP ? Instruction::FAdd : Instruction::Add; 843 case bitc::BINOP_SUB: 844 return IsFP ? Instruction::FSub : Instruction::Sub; 845 case bitc::BINOP_MUL: 846 return IsFP ? Instruction::FMul : Instruction::Mul; 847 case bitc::BINOP_UDIV: 848 return IsFP ? -1 : Instruction::UDiv; 849 case bitc::BINOP_SDIV: 850 return IsFP ? Instruction::FDiv : Instruction::SDiv; 851 case bitc::BINOP_UREM: 852 return IsFP ? -1 : Instruction::URem; 853 case bitc::BINOP_SREM: 854 return IsFP ? Instruction::FRem : Instruction::SRem; 855 case bitc::BINOP_SHL: 856 return IsFP ? -1 : Instruction::Shl; 857 case bitc::BINOP_LSHR: 858 return IsFP ? -1 : Instruction::LShr; 859 case bitc::BINOP_ASHR: 860 return IsFP ? -1 : Instruction::AShr; 861 case bitc::BINOP_AND: 862 return IsFP ? -1 : Instruction::And; 863 case bitc::BINOP_OR: 864 return IsFP ? -1 : Instruction::Or; 865 case bitc::BINOP_XOR: 866 return IsFP ? -1 : Instruction::Xor; 867 } 868 } 869 870 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) { 871 switch (Val) { 872 default: return AtomicRMWInst::BAD_BINOP; 873 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 874 case bitc::RMW_ADD: return AtomicRMWInst::Add; 875 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 876 case bitc::RMW_AND: return AtomicRMWInst::And; 877 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 878 case bitc::RMW_OR: return AtomicRMWInst::Or; 879 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 880 case bitc::RMW_MAX: return AtomicRMWInst::Max; 881 case bitc::RMW_MIN: return AtomicRMWInst::Min; 882 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 883 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 884 } 885 } 886 887 static AtomicOrdering getDecodedOrdering(unsigned Val) { 888 switch (Val) { 889 case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic; 890 case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered; 891 case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic; 892 case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire; 893 case bitc::ORDERING_RELEASE: return AtomicOrdering::Release; 894 case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease; 895 default: // Map unknown orderings to sequentially-consistent. 896 case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent; 897 } 898 } 899 900 static SynchronizationScope getDecodedSynchScope(unsigned Val) { 901 switch (Val) { 902 case bitc::SYNCHSCOPE_SINGLETHREAD: return SingleThread; 903 default: // Map unknown scopes to cross-thread. 904 case bitc::SYNCHSCOPE_CROSSTHREAD: return CrossThread; 905 } 906 } 907 908 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) { 909 switch (Val) { 910 default: // Map unknown selection kinds to any. 911 case bitc::COMDAT_SELECTION_KIND_ANY: 912 return Comdat::Any; 913 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH: 914 return Comdat::ExactMatch; 915 case bitc::COMDAT_SELECTION_KIND_LARGEST: 916 return Comdat::Largest; 917 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES: 918 return Comdat::NoDuplicates; 919 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE: 920 return Comdat::SameSize; 921 } 922 } 923 924 static FastMathFlags getDecodedFastMathFlags(unsigned Val) { 925 FastMathFlags FMF; 926 if (0 != (Val & FastMathFlags::UnsafeAlgebra)) 927 FMF.setUnsafeAlgebra(); 928 if (0 != (Val & FastMathFlags::NoNaNs)) 929 FMF.setNoNaNs(); 930 if (0 != (Val & FastMathFlags::NoInfs)) 931 FMF.setNoInfs(); 932 if (0 != (Val & FastMathFlags::NoSignedZeros)) 933 FMF.setNoSignedZeros(); 934 if (0 != (Val & FastMathFlags::AllowReciprocal)) 935 FMF.setAllowReciprocal(); 936 return FMF; 937 } 938 939 static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) { 940 switch (Val) { 941 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break; 942 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break; 943 } 944 } 945 946 namespace llvm { 947 namespace { 948 949 /// \brief A class for maintaining the slot number definition 950 /// as a placeholder for the actual definition for forward constants defs. 951 class ConstantPlaceHolder : public ConstantExpr { 952 void operator=(const ConstantPlaceHolder &) = delete; 953 954 public: 955 // allocate space for exactly one operand 956 void *operator new(size_t s) { return User::operator new(s, 1); } 957 explicit ConstantPlaceHolder(Type *Ty, LLVMContext &Context) 958 : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) { 959 Op<0>() = UndefValue::get(Type::getInt32Ty(Context)); 960 } 961 962 /// \brief Methods to support type inquiry through isa, cast, and dyn_cast. 963 static bool classof(const Value *V) { 964 return isa<ConstantExpr>(V) && 965 cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1; 966 } 967 968 /// Provide fast operand accessors 969 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); 970 }; 971 972 } // end anonymous namespace 973 974 // FIXME: can we inherit this from ConstantExpr? 975 template <> 976 struct OperandTraits<ConstantPlaceHolder> : 977 public FixedNumOperandTraits<ConstantPlaceHolder, 1> { 978 }; 979 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantPlaceHolder, Value) 980 981 } // end namespace llvm 982 983 void BitcodeReaderValueList::assignValue(Value *V, unsigned Idx) { 984 if (Idx == size()) { 985 push_back(V); 986 return; 987 } 988 989 if (Idx >= size()) 990 resize(Idx+1); 991 992 WeakVH &OldV = ValuePtrs[Idx]; 993 if (!OldV) { 994 OldV = V; 995 return; 996 } 997 998 // Handle constants and non-constants (e.g. instrs) differently for 999 // efficiency. 1000 if (Constant *PHC = dyn_cast<Constant>(&*OldV)) { 1001 ResolveConstants.push_back(std::make_pair(PHC, Idx)); 1002 OldV = V; 1003 } else { 1004 // If there was a forward reference to this value, replace it. 1005 Value *PrevVal = OldV; 1006 OldV->replaceAllUsesWith(V); 1007 delete PrevVal; 1008 } 1009 } 1010 1011 Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx, 1012 Type *Ty) { 1013 if (Idx >= size()) 1014 resize(Idx + 1); 1015 1016 if (Value *V = ValuePtrs[Idx]) { 1017 if (Ty != V->getType()) 1018 report_fatal_error("Type mismatch in constant table!"); 1019 return cast<Constant>(V); 1020 } 1021 1022 // Create and return a placeholder, which will later be RAUW'd. 1023 Constant *C = new ConstantPlaceHolder(Ty, Context); 1024 ValuePtrs[Idx] = C; 1025 return C; 1026 } 1027 1028 Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, Type *Ty) { 1029 // Bail out for a clearly invalid value. This would make us call resize(0) 1030 if (Idx == std::numeric_limits<unsigned>::max()) 1031 return nullptr; 1032 1033 if (Idx >= size()) 1034 resize(Idx + 1); 1035 1036 if (Value *V = ValuePtrs[Idx]) { 1037 // If the types don't match, it's invalid. 1038 if (Ty && Ty != V->getType()) 1039 return nullptr; 1040 return V; 1041 } 1042 1043 // No type specified, must be invalid reference. 1044 if (!Ty) return nullptr; 1045 1046 // Create and return a placeholder, which will later be RAUW'd. 1047 Value *V = new Argument(Ty); 1048 ValuePtrs[Idx] = V; 1049 return V; 1050 } 1051 1052 /// Once all constants are read, this method bulk resolves any forward 1053 /// references. The idea behind this is that we sometimes get constants (such 1054 /// as large arrays) which reference *many* forward ref constants. Replacing 1055 /// each of these causes a lot of thrashing when building/reuniquing the 1056 /// constant. Instead of doing this, we look at all the uses and rewrite all 1057 /// the place holders at once for any constant that uses a placeholder. 1058 void BitcodeReaderValueList::resolveConstantForwardRefs() { 1059 // Sort the values by-pointer so that they are efficient to look up with a 1060 // binary search. 1061 std::sort(ResolveConstants.begin(), ResolveConstants.end()); 1062 1063 SmallVector<Constant*, 64> NewOps; 1064 1065 while (!ResolveConstants.empty()) { 1066 Value *RealVal = operator[](ResolveConstants.back().second); 1067 Constant *Placeholder = ResolveConstants.back().first; 1068 ResolveConstants.pop_back(); 1069 1070 // Loop over all users of the placeholder, updating them to reference the 1071 // new value. If they reference more than one placeholder, update them all 1072 // at once. 1073 while (!Placeholder->use_empty()) { 1074 auto UI = Placeholder->user_begin(); 1075 User *U = *UI; 1076 1077 // If the using object isn't uniqued, just update the operands. This 1078 // handles instructions and initializers for global variables. 1079 if (!isa<Constant>(U) || isa<GlobalValue>(U)) { 1080 UI.getUse().set(RealVal); 1081 continue; 1082 } 1083 1084 // Otherwise, we have a constant that uses the placeholder. Replace that 1085 // constant with a new constant that has *all* placeholder uses updated. 1086 Constant *UserC = cast<Constant>(U); 1087 for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end(); 1088 I != E; ++I) { 1089 Value *NewOp; 1090 if (!isa<ConstantPlaceHolder>(*I)) { 1091 // Not a placeholder reference. 1092 NewOp = *I; 1093 } else if (*I == Placeholder) { 1094 // Common case is that it just references this one placeholder. 1095 NewOp = RealVal; 1096 } else { 1097 // Otherwise, look up the placeholder in ResolveConstants. 1098 ResolveConstantsTy::iterator It = 1099 std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(), 1100 std::pair<Constant*, unsigned>(cast<Constant>(*I), 1101 0)); 1102 assert(It != ResolveConstants.end() && It->first == *I); 1103 NewOp = operator[](It->second); 1104 } 1105 1106 NewOps.push_back(cast<Constant>(NewOp)); 1107 } 1108 1109 // Make the new constant. 1110 Constant *NewC; 1111 if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) { 1112 NewC = ConstantArray::get(UserCA->getType(), NewOps); 1113 } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) { 1114 NewC = ConstantStruct::get(UserCS->getType(), NewOps); 1115 } else if (isa<ConstantVector>(UserC)) { 1116 NewC = ConstantVector::get(NewOps); 1117 } else { 1118 assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr."); 1119 NewC = cast<ConstantExpr>(UserC)->getWithOperands(NewOps); 1120 } 1121 1122 UserC->replaceAllUsesWith(NewC); 1123 UserC->destroyConstant(); 1124 NewOps.clear(); 1125 } 1126 1127 // Update all ValueHandles, they should be the only users at this point. 1128 Placeholder->replaceAllUsesWith(RealVal); 1129 delete Placeholder; 1130 } 1131 } 1132 1133 void BitcodeReaderMetadataList::assignValue(Metadata *MD, unsigned Idx) { 1134 if (Idx == size()) { 1135 push_back(MD); 1136 return; 1137 } 1138 1139 if (Idx >= size()) 1140 resize(Idx+1); 1141 1142 TrackingMDRef &OldMD = MetadataPtrs[Idx]; 1143 if (!OldMD) { 1144 OldMD.reset(MD); 1145 return; 1146 } 1147 1148 // If there was a forward reference to this value, replace it. 1149 TempMDTuple PrevMD(cast<MDTuple>(OldMD.get())); 1150 PrevMD->replaceAllUsesWith(MD); 1151 --NumFwdRefs; 1152 } 1153 1154 Metadata *BitcodeReaderMetadataList::getMetadataFwdRef(unsigned Idx) { 1155 if (Idx >= size()) 1156 resize(Idx + 1); 1157 1158 if (Metadata *MD = MetadataPtrs[Idx]) 1159 return MD; 1160 1161 // Track forward refs to be resolved later. 1162 if (AnyFwdRefs) { 1163 MinFwdRef = std::min(MinFwdRef, Idx); 1164 MaxFwdRef = std::max(MaxFwdRef, Idx); 1165 } else { 1166 AnyFwdRefs = true; 1167 MinFwdRef = MaxFwdRef = Idx; 1168 } 1169 ++NumFwdRefs; 1170 1171 // Create and return a placeholder, which will later be RAUW'd. 1172 Metadata *MD = MDNode::getTemporary(Context, None).release(); 1173 MetadataPtrs[Idx].reset(MD); 1174 return MD; 1175 } 1176 1177 Metadata *BitcodeReaderMetadataList::getMetadataIfResolved(unsigned Idx) { 1178 Metadata *MD = lookup(Idx); 1179 if (auto *N = dyn_cast_or_null<MDNode>(MD)) 1180 if (!N->isResolved()) 1181 return nullptr; 1182 return MD; 1183 } 1184 1185 MDNode *BitcodeReaderMetadataList::getMDNodeFwdRefOrNull(unsigned Idx) { 1186 return dyn_cast_or_null<MDNode>(getMetadataFwdRef(Idx)); 1187 } 1188 1189 void BitcodeReaderMetadataList::tryToResolveCycles() { 1190 if (NumFwdRefs) 1191 // Still forward references... can't resolve cycles. 1192 return; 1193 1194 bool DidReplaceTypeRefs = false; 1195 1196 // Give up on finding a full definition for any forward decls that remain. 1197 for (const auto &Ref : OldTypeRefs.FwdDecls) 1198 OldTypeRefs.Final.insert(Ref); 1199 OldTypeRefs.FwdDecls.clear(); 1200 1201 // Upgrade from old type ref arrays. In strange cases, this could add to 1202 // OldTypeRefs.Unknown. 1203 for (const auto &Array : OldTypeRefs.Arrays) { 1204 DidReplaceTypeRefs = true; 1205 Array.second->replaceAllUsesWith(resolveTypeRefArray(Array.first.get())); 1206 } 1207 OldTypeRefs.Arrays.clear(); 1208 1209 // Replace old string-based type refs with the resolved node, if possible. 1210 // If we haven't seen the node, leave it to the verifier to complain about 1211 // the invalid string reference. 1212 for (const auto &Ref : OldTypeRefs.Unknown) { 1213 DidReplaceTypeRefs = true; 1214 if (DICompositeType *CT = OldTypeRefs.Final.lookup(Ref.first)) 1215 Ref.second->replaceAllUsesWith(CT); 1216 else 1217 Ref.second->replaceAllUsesWith(Ref.first); 1218 } 1219 OldTypeRefs.Unknown.clear(); 1220 1221 // Make sure all the upgraded types are resolved. 1222 if (DidReplaceTypeRefs) { 1223 AnyFwdRefs = true; 1224 MinFwdRef = 0; 1225 MaxFwdRef = MetadataPtrs.size() - 1; 1226 } 1227 1228 if (!AnyFwdRefs) 1229 // Nothing to do. 1230 return; 1231 1232 // Resolve any cycles. 1233 for (unsigned I = MinFwdRef, E = MaxFwdRef + 1; I != E; ++I) { 1234 auto &MD = MetadataPtrs[I]; 1235 auto *N = dyn_cast_or_null<MDNode>(MD); 1236 if (!N) 1237 continue; 1238 1239 assert(!N->isTemporary() && "Unexpected forward reference"); 1240 N->resolveCycles(); 1241 } 1242 1243 // Make sure we return early again until there's another forward ref. 1244 AnyFwdRefs = false; 1245 } 1246 1247 void BitcodeReaderMetadataList::addTypeRef(MDString &UUID, 1248 DICompositeType &CT) { 1249 assert(CT.getRawIdentifier() == &UUID && "Mismatched UUID"); 1250 if (CT.isForwardDecl()) 1251 OldTypeRefs.FwdDecls.insert(std::make_pair(&UUID, &CT)); 1252 else 1253 OldTypeRefs.Final.insert(std::make_pair(&UUID, &CT)); 1254 } 1255 1256 Metadata *BitcodeReaderMetadataList::upgradeTypeRef(Metadata *MaybeUUID) { 1257 auto *UUID = dyn_cast_or_null<MDString>(MaybeUUID); 1258 if (LLVM_LIKELY(!UUID)) 1259 return MaybeUUID; 1260 1261 if (auto *CT = OldTypeRefs.Final.lookup(UUID)) 1262 return CT; 1263 1264 auto &Ref = OldTypeRefs.Unknown[UUID]; 1265 if (!Ref) 1266 Ref = MDNode::getTemporary(Context, None); 1267 return Ref.get(); 1268 } 1269 1270 Metadata *BitcodeReaderMetadataList::upgradeTypeRefArray(Metadata *MaybeTuple) { 1271 auto *Tuple = dyn_cast_or_null<MDTuple>(MaybeTuple); 1272 if (!Tuple || Tuple->isDistinct()) 1273 return MaybeTuple; 1274 1275 // Look through the array immediately if possible. 1276 if (!Tuple->isTemporary()) 1277 return resolveTypeRefArray(Tuple); 1278 1279 // Create and return a placeholder to use for now. Eventually 1280 // resolveTypeRefArrays() will be resolve this forward reference. 1281 OldTypeRefs.Arrays.emplace_back( 1282 std::piecewise_construct, std::forward_as_tuple(Tuple), 1283 std::forward_as_tuple(MDTuple::getTemporary(Context, None))); 1284 return OldTypeRefs.Arrays.back().second.get(); 1285 } 1286 1287 Metadata *BitcodeReaderMetadataList::resolveTypeRefArray(Metadata *MaybeTuple) { 1288 auto *Tuple = dyn_cast_or_null<MDTuple>(MaybeTuple); 1289 if (!Tuple || Tuple->isDistinct()) 1290 return MaybeTuple; 1291 1292 // Look through the DITypeRefArray, upgrading each DITypeRef. 1293 SmallVector<Metadata *, 32> Ops; 1294 Ops.reserve(Tuple->getNumOperands()); 1295 for (Metadata *MD : Tuple->operands()) 1296 Ops.push_back(upgradeTypeRef(MD)); 1297 1298 return MDTuple::get(Context, Ops); 1299 } 1300 1301 Type *BitcodeReader::getTypeByID(unsigned ID) { 1302 // The type table size is always specified correctly. 1303 if (ID >= TypeList.size()) 1304 return nullptr; 1305 1306 if (Type *Ty = TypeList[ID]) 1307 return Ty; 1308 1309 // If we have a forward reference, the only possible case is when it is to a 1310 // named struct. Just create a placeholder for now. 1311 return TypeList[ID] = createIdentifiedStructType(Context); 1312 } 1313 1314 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context, 1315 StringRef Name) { 1316 auto *Ret = StructType::create(Context, Name); 1317 IdentifiedStructTypes.push_back(Ret); 1318 return Ret; 1319 } 1320 1321 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) { 1322 auto *Ret = StructType::create(Context); 1323 IdentifiedStructTypes.push_back(Ret); 1324 return Ret; 1325 } 1326 1327 //===----------------------------------------------------------------------===// 1328 // Functions for parsing blocks from the bitcode file 1329 //===----------------------------------------------------------------------===// 1330 1331 static uint64_t getRawAttributeMask(Attribute::AttrKind Val) { 1332 switch (Val) { 1333 case Attribute::EndAttrKinds: 1334 llvm_unreachable("Synthetic enumerators which should never get here"); 1335 1336 case Attribute::None: return 0; 1337 case Attribute::ZExt: return 1 << 0; 1338 case Attribute::SExt: return 1 << 1; 1339 case Attribute::NoReturn: return 1 << 2; 1340 case Attribute::InReg: return 1 << 3; 1341 case Attribute::StructRet: return 1 << 4; 1342 case Attribute::NoUnwind: return 1 << 5; 1343 case Attribute::NoAlias: return 1 << 6; 1344 case Attribute::ByVal: return 1 << 7; 1345 case Attribute::Nest: return 1 << 8; 1346 case Attribute::ReadNone: return 1 << 9; 1347 case Attribute::ReadOnly: return 1 << 10; 1348 case Attribute::NoInline: return 1 << 11; 1349 case Attribute::AlwaysInline: return 1 << 12; 1350 case Attribute::OptimizeForSize: return 1 << 13; 1351 case Attribute::StackProtect: return 1 << 14; 1352 case Attribute::StackProtectReq: return 1 << 15; 1353 case Attribute::Alignment: return 31 << 16; 1354 case Attribute::NoCapture: return 1 << 21; 1355 case Attribute::NoRedZone: return 1 << 22; 1356 case Attribute::NoImplicitFloat: return 1 << 23; 1357 case Attribute::Naked: return 1 << 24; 1358 case Attribute::InlineHint: return 1 << 25; 1359 case Attribute::StackAlignment: return 7 << 26; 1360 case Attribute::ReturnsTwice: return 1 << 29; 1361 case Attribute::UWTable: return 1 << 30; 1362 case Attribute::NonLazyBind: return 1U << 31; 1363 case Attribute::SanitizeAddress: return 1ULL << 32; 1364 case Attribute::MinSize: return 1ULL << 33; 1365 case Attribute::NoDuplicate: return 1ULL << 34; 1366 case Attribute::StackProtectStrong: return 1ULL << 35; 1367 case Attribute::SanitizeThread: return 1ULL << 36; 1368 case Attribute::SanitizeMemory: return 1ULL << 37; 1369 case Attribute::NoBuiltin: return 1ULL << 38; 1370 case Attribute::Returned: return 1ULL << 39; 1371 case Attribute::Cold: return 1ULL << 40; 1372 case Attribute::Builtin: return 1ULL << 41; 1373 case Attribute::OptimizeNone: return 1ULL << 42; 1374 case Attribute::InAlloca: return 1ULL << 43; 1375 case Attribute::NonNull: return 1ULL << 44; 1376 case Attribute::JumpTable: return 1ULL << 45; 1377 case Attribute::Convergent: return 1ULL << 46; 1378 case Attribute::SafeStack: return 1ULL << 47; 1379 case Attribute::NoRecurse: return 1ULL << 48; 1380 case Attribute::InaccessibleMemOnly: return 1ULL << 49; 1381 case Attribute::InaccessibleMemOrArgMemOnly: return 1ULL << 50; 1382 case Attribute::SwiftSelf: return 1ULL << 51; 1383 case Attribute::SwiftError: return 1ULL << 52; 1384 case Attribute::WriteOnly: return 1ULL << 53; 1385 case Attribute::Dereferenceable: 1386 llvm_unreachable("dereferenceable attribute not supported in raw format"); 1387 break; 1388 case Attribute::DereferenceableOrNull: 1389 llvm_unreachable("dereferenceable_or_null attribute not supported in raw " 1390 "format"); 1391 break; 1392 case Attribute::ArgMemOnly: 1393 llvm_unreachable("argmemonly attribute not supported in raw format"); 1394 break; 1395 case Attribute::AllocSize: 1396 llvm_unreachable("allocsize not supported in raw format"); 1397 break; 1398 } 1399 llvm_unreachable("Unsupported attribute type"); 1400 } 1401 1402 static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) { 1403 if (!Val) return; 1404 1405 for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds; 1406 I = Attribute::AttrKind(I + 1)) { 1407 if (I == Attribute::Dereferenceable || 1408 I == Attribute::DereferenceableOrNull || 1409 I == Attribute::ArgMemOnly || 1410 I == Attribute::AllocSize) 1411 continue; 1412 if (uint64_t A = (Val & getRawAttributeMask(I))) { 1413 if (I == Attribute::Alignment) 1414 B.addAlignmentAttr(1ULL << ((A >> 16) - 1)); 1415 else if (I == Attribute::StackAlignment) 1416 B.addStackAlignmentAttr(1ULL << ((A >> 26)-1)); 1417 else 1418 B.addAttribute(I); 1419 } 1420 } 1421 } 1422 1423 /// \brief This fills an AttrBuilder object with the LLVM attributes that have 1424 /// been decoded from the given integer. This function must stay in sync with 1425 /// 'encodeLLVMAttributesForBitcode'. 1426 static void decodeLLVMAttributesForBitcode(AttrBuilder &B, 1427 uint64_t EncodedAttrs) { 1428 // FIXME: Remove in 4.0. 1429 1430 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift 1431 // the bits above 31 down by 11 bits. 1432 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; 1433 assert((!Alignment || isPowerOf2_32(Alignment)) && 1434 "Alignment must be a power of two."); 1435 1436 if (Alignment) 1437 B.addAlignmentAttr(Alignment); 1438 addRawAttributeValue(B, ((EncodedAttrs & (0xfffffULL << 32)) >> 11) | 1439 (EncodedAttrs & 0xffff)); 1440 } 1441 1442 std::error_code BitcodeReader::parseAttributeBlock() { 1443 if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 1444 return error("Invalid record"); 1445 1446 if (!MAttributes.empty()) 1447 return error("Invalid multiple blocks"); 1448 1449 SmallVector<uint64_t, 64> Record; 1450 1451 SmallVector<AttributeSet, 8> Attrs; 1452 1453 // Read all the records. 1454 while (true) { 1455 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1456 1457 switch (Entry.Kind) { 1458 case BitstreamEntry::SubBlock: // Handled for us already. 1459 case BitstreamEntry::Error: 1460 return error("Malformed block"); 1461 case BitstreamEntry::EndBlock: 1462 return std::error_code(); 1463 case BitstreamEntry::Record: 1464 // The interesting case. 1465 break; 1466 } 1467 1468 // Read a record. 1469 Record.clear(); 1470 switch (Stream.readRecord(Entry.ID, Record)) { 1471 default: // Default behavior: ignore. 1472 break; 1473 case bitc::PARAMATTR_CODE_ENTRY_OLD: { // ENTRY: [paramidx0, attr0, ...] 1474 // FIXME: Remove in 4.0. 1475 if (Record.size() & 1) 1476 return error("Invalid record"); 1477 1478 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1479 AttrBuilder B; 1480 decodeLLVMAttributesForBitcode(B, Record[i+1]); 1481 Attrs.push_back(AttributeSet::get(Context, Record[i], B)); 1482 } 1483 1484 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 1485 Attrs.clear(); 1486 break; 1487 } 1488 case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [attrgrp0, attrgrp1, ...] 1489 for (unsigned i = 0, e = Record.size(); i != e; ++i) 1490 Attrs.push_back(MAttributeGroups[Record[i]]); 1491 1492 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 1493 Attrs.clear(); 1494 break; 1495 } 1496 } 1497 } 1498 } 1499 1500 // Returns Attribute::None on unrecognized codes. 1501 static Attribute::AttrKind getAttrFromCode(uint64_t Code) { 1502 switch (Code) { 1503 default: 1504 return Attribute::None; 1505 case bitc::ATTR_KIND_ALIGNMENT: 1506 return Attribute::Alignment; 1507 case bitc::ATTR_KIND_ALWAYS_INLINE: 1508 return Attribute::AlwaysInline; 1509 case bitc::ATTR_KIND_ARGMEMONLY: 1510 return Attribute::ArgMemOnly; 1511 case bitc::ATTR_KIND_BUILTIN: 1512 return Attribute::Builtin; 1513 case bitc::ATTR_KIND_BY_VAL: 1514 return Attribute::ByVal; 1515 case bitc::ATTR_KIND_IN_ALLOCA: 1516 return Attribute::InAlloca; 1517 case bitc::ATTR_KIND_COLD: 1518 return Attribute::Cold; 1519 case bitc::ATTR_KIND_CONVERGENT: 1520 return Attribute::Convergent; 1521 case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY: 1522 return Attribute::InaccessibleMemOnly; 1523 case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY: 1524 return Attribute::InaccessibleMemOrArgMemOnly; 1525 case bitc::ATTR_KIND_INLINE_HINT: 1526 return Attribute::InlineHint; 1527 case bitc::ATTR_KIND_IN_REG: 1528 return Attribute::InReg; 1529 case bitc::ATTR_KIND_JUMP_TABLE: 1530 return Attribute::JumpTable; 1531 case bitc::ATTR_KIND_MIN_SIZE: 1532 return Attribute::MinSize; 1533 case bitc::ATTR_KIND_NAKED: 1534 return Attribute::Naked; 1535 case bitc::ATTR_KIND_NEST: 1536 return Attribute::Nest; 1537 case bitc::ATTR_KIND_NO_ALIAS: 1538 return Attribute::NoAlias; 1539 case bitc::ATTR_KIND_NO_BUILTIN: 1540 return Attribute::NoBuiltin; 1541 case bitc::ATTR_KIND_NO_CAPTURE: 1542 return Attribute::NoCapture; 1543 case bitc::ATTR_KIND_NO_DUPLICATE: 1544 return Attribute::NoDuplicate; 1545 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: 1546 return Attribute::NoImplicitFloat; 1547 case bitc::ATTR_KIND_NO_INLINE: 1548 return Attribute::NoInline; 1549 case bitc::ATTR_KIND_NO_RECURSE: 1550 return Attribute::NoRecurse; 1551 case bitc::ATTR_KIND_NON_LAZY_BIND: 1552 return Attribute::NonLazyBind; 1553 case bitc::ATTR_KIND_NON_NULL: 1554 return Attribute::NonNull; 1555 case bitc::ATTR_KIND_DEREFERENCEABLE: 1556 return Attribute::Dereferenceable; 1557 case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL: 1558 return Attribute::DereferenceableOrNull; 1559 case bitc::ATTR_KIND_ALLOC_SIZE: 1560 return Attribute::AllocSize; 1561 case bitc::ATTR_KIND_NO_RED_ZONE: 1562 return Attribute::NoRedZone; 1563 case bitc::ATTR_KIND_NO_RETURN: 1564 return Attribute::NoReturn; 1565 case bitc::ATTR_KIND_NO_UNWIND: 1566 return Attribute::NoUnwind; 1567 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: 1568 return Attribute::OptimizeForSize; 1569 case bitc::ATTR_KIND_OPTIMIZE_NONE: 1570 return Attribute::OptimizeNone; 1571 case bitc::ATTR_KIND_READ_NONE: 1572 return Attribute::ReadNone; 1573 case bitc::ATTR_KIND_READ_ONLY: 1574 return Attribute::ReadOnly; 1575 case bitc::ATTR_KIND_RETURNED: 1576 return Attribute::Returned; 1577 case bitc::ATTR_KIND_RETURNS_TWICE: 1578 return Attribute::ReturnsTwice; 1579 case bitc::ATTR_KIND_S_EXT: 1580 return Attribute::SExt; 1581 case bitc::ATTR_KIND_STACK_ALIGNMENT: 1582 return Attribute::StackAlignment; 1583 case bitc::ATTR_KIND_STACK_PROTECT: 1584 return Attribute::StackProtect; 1585 case bitc::ATTR_KIND_STACK_PROTECT_REQ: 1586 return Attribute::StackProtectReq; 1587 case bitc::ATTR_KIND_STACK_PROTECT_STRONG: 1588 return Attribute::StackProtectStrong; 1589 case bitc::ATTR_KIND_SAFESTACK: 1590 return Attribute::SafeStack; 1591 case bitc::ATTR_KIND_STRUCT_RET: 1592 return Attribute::StructRet; 1593 case bitc::ATTR_KIND_SANITIZE_ADDRESS: 1594 return Attribute::SanitizeAddress; 1595 case bitc::ATTR_KIND_SANITIZE_THREAD: 1596 return Attribute::SanitizeThread; 1597 case bitc::ATTR_KIND_SANITIZE_MEMORY: 1598 return Attribute::SanitizeMemory; 1599 case bitc::ATTR_KIND_SWIFT_ERROR: 1600 return Attribute::SwiftError; 1601 case bitc::ATTR_KIND_SWIFT_SELF: 1602 return Attribute::SwiftSelf; 1603 case bitc::ATTR_KIND_UW_TABLE: 1604 return Attribute::UWTable; 1605 case bitc::ATTR_KIND_WRITEONLY: 1606 return Attribute::WriteOnly; 1607 case bitc::ATTR_KIND_Z_EXT: 1608 return Attribute::ZExt; 1609 } 1610 } 1611 1612 std::error_code BitcodeReader::parseAlignmentValue(uint64_t Exponent, 1613 unsigned &Alignment) { 1614 // Note: Alignment in bitcode files is incremented by 1, so that zero 1615 // can be used for default alignment. 1616 if (Exponent > Value::MaxAlignmentExponent + 1) 1617 return error("Invalid alignment value"); 1618 Alignment = (1 << static_cast<unsigned>(Exponent)) >> 1; 1619 return std::error_code(); 1620 } 1621 1622 std::error_code BitcodeReader::parseAttrKind(uint64_t Code, 1623 Attribute::AttrKind *Kind) { 1624 *Kind = getAttrFromCode(Code); 1625 if (*Kind == Attribute::None) 1626 return error(BitcodeError::CorruptedBitcode, 1627 "Unknown attribute kind (" + Twine(Code) + ")"); 1628 return std::error_code(); 1629 } 1630 1631 std::error_code BitcodeReader::parseAttributeGroupBlock() { 1632 if (Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) 1633 return error("Invalid record"); 1634 1635 if (!MAttributeGroups.empty()) 1636 return error("Invalid multiple blocks"); 1637 1638 SmallVector<uint64_t, 64> Record; 1639 1640 // Read all the records. 1641 while (true) { 1642 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1643 1644 switch (Entry.Kind) { 1645 case BitstreamEntry::SubBlock: // Handled for us already. 1646 case BitstreamEntry::Error: 1647 return error("Malformed block"); 1648 case BitstreamEntry::EndBlock: 1649 return std::error_code(); 1650 case BitstreamEntry::Record: 1651 // The interesting case. 1652 break; 1653 } 1654 1655 // Read a record. 1656 Record.clear(); 1657 switch (Stream.readRecord(Entry.ID, Record)) { 1658 default: // Default behavior: ignore. 1659 break; 1660 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] 1661 if (Record.size() < 3) 1662 return error("Invalid record"); 1663 1664 uint64_t GrpID = Record[0]; 1665 uint64_t Idx = Record[1]; // Index of the object this attribute refers to. 1666 1667 AttrBuilder B; 1668 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1669 if (Record[i] == 0) { // Enum attribute 1670 Attribute::AttrKind Kind; 1671 if (std::error_code EC = parseAttrKind(Record[++i], &Kind)) 1672 return EC; 1673 1674 B.addAttribute(Kind); 1675 } else if (Record[i] == 1) { // Integer attribute 1676 Attribute::AttrKind Kind; 1677 if (std::error_code EC = parseAttrKind(Record[++i], &Kind)) 1678 return EC; 1679 if (Kind == Attribute::Alignment) 1680 B.addAlignmentAttr(Record[++i]); 1681 else if (Kind == Attribute::StackAlignment) 1682 B.addStackAlignmentAttr(Record[++i]); 1683 else if (Kind == Attribute::Dereferenceable) 1684 B.addDereferenceableAttr(Record[++i]); 1685 else if (Kind == Attribute::DereferenceableOrNull) 1686 B.addDereferenceableOrNullAttr(Record[++i]); 1687 else if (Kind == Attribute::AllocSize) 1688 B.addAllocSizeAttrFromRawRepr(Record[++i]); 1689 } else { // String attribute 1690 assert((Record[i] == 3 || Record[i] == 4) && 1691 "Invalid attribute group entry"); 1692 bool HasValue = (Record[i++] == 4); 1693 SmallString<64> KindStr; 1694 SmallString<64> ValStr; 1695 1696 while (Record[i] != 0 && i != e) 1697 KindStr += Record[i++]; 1698 assert(Record[i] == 0 && "Kind string not null terminated"); 1699 1700 if (HasValue) { 1701 // Has a value associated with it. 1702 ++i; // Skip the '0' that terminates the "kind" string. 1703 while (Record[i] != 0 && i != e) 1704 ValStr += Record[i++]; 1705 assert(Record[i] == 0 && "Value string not null terminated"); 1706 } 1707 1708 B.addAttribute(KindStr.str(), ValStr.str()); 1709 } 1710 } 1711 1712 MAttributeGroups[GrpID] = AttributeSet::get(Context, Idx, B); 1713 break; 1714 } 1715 } 1716 } 1717 } 1718 1719 std::error_code BitcodeReader::parseTypeTable() { 1720 if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 1721 return error("Invalid record"); 1722 1723 return parseTypeTableBody(); 1724 } 1725 1726 std::error_code BitcodeReader::parseTypeTableBody() { 1727 if (!TypeList.empty()) 1728 return error("Invalid multiple blocks"); 1729 1730 SmallVector<uint64_t, 64> Record; 1731 unsigned NumRecords = 0; 1732 1733 SmallString<64> TypeName; 1734 1735 // Read all the records for this type table. 1736 while (true) { 1737 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1738 1739 switch (Entry.Kind) { 1740 case BitstreamEntry::SubBlock: // Handled for us already. 1741 case BitstreamEntry::Error: 1742 return error("Malformed block"); 1743 case BitstreamEntry::EndBlock: 1744 if (NumRecords != TypeList.size()) 1745 return error("Malformed block"); 1746 return std::error_code(); 1747 case BitstreamEntry::Record: 1748 // The interesting case. 1749 break; 1750 } 1751 1752 // Read a record. 1753 Record.clear(); 1754 Type *ResultTy = nullptr; 1755 switch (Stream.readRecord(Entry.ID, Record)) { 1756 default: 1757 return error("Invalid value"); 1758 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 1759 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 1760 // type list. This allows us to reserve space. 1761 if (Record.size() < 1) 1762 return error("Invalid record"); 1763 TypeList.resize(Record[0]); 1764 continue; 1765 case bitc::TYPE_CODE_VOID: // VOID 1766 ResultTy = Type::getVoidTy(Context); 1767 break; 1768 case bitc::TYPE_CODE_HALF: // HALF 1769 ResultTy = Type::getHalfTy(Context); 1770 break; 1771 case bitc::TYPE_CODE_FLOAT: // FLOAT 1772 ResultTy = Type::getFloatTy(Context); 1773 break; 1774 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 1775 ResultTy = Type::getDoubleTy(Context); 1776 break; 1777 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 1778 ResultTy = Type::getX86_FP80Ty(Context); 1779 break; 1780 case bitc::TYPE_CODE_FP128: // FP128 1781 ResultTy = Type::getFP128Ty(Context); 1782 break; 1783 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 1784 ResultTy = Type::getPPC_FP128Ty(Context); 1785 break; 1786 case bitc::TYPE_CODE_LABEL: // LABEL 1787 ResultTy = Type::getLabelTy(Context); 1788 break; 1789 case bitc::TYPE_CODE_METADATA: // METADATA 1790 ResultTy = Type::getMetadataTy(Context); 1791 break; 1792 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 1793 ResultTy = Type::getX86_MMXTy(Context); 1794 break; 1795 case bitc::TYPE_CODE_TOKEN: // TOKEN 1796 ResultTy = Type::getTokenTy(Context); 1797 break; 1798 case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width] 1799 if (Record.size() < 1) 1800 return error("Invalid record"); 1801 1802 uint64_t NumBits = Record[0]; 1803 if (NumBits < IntegerType::MIN_INT_BITS || 1804 NumBits > IntegerType::MAX_INT_BITS) 1805 return error("Bitwidth for integer type out of range"); 1806 ResultTy = IntegerType::get(Context, NumBits); 1807 break; 1808 } 1809 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 1810 // [pointee type, address space] 1811 if (Record.size() < 1) 1812 return error("Invalid record"); 1813 unsigned AddressSpace = 0; 1814 if (Record.size() == 2) 1815 AddressSpace = Record[1]; 1816 ResultTy = getTypeByID(Record[0]); 1817 if (!ResultTy || 1818 !PointerType::isValidElementType(ResultTy)) 1819 return error("Invalid type"); 1820 ResultTy = PointerType::get(ResultTy, AddressSpace); 1821 break; 1822 } 1823 case bitc::TYPE_CODE_FUNCTION_OLD: { 1824 // FIXME: attrid is dead, remove it in LLVM 4.0 1825 // FUNCTION: [vararg, attrid, retty, paramty x N] 1826 if (Record.size() < 3) 1827 return error("Invalid record"); 1828 SmallVector<Type*, 8> ArgTys; 1829 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 1830 if (Type *T = getTypeByID(Record[i])) 1831 ArgTys.push_back(T); 1832 else 1833 break; 1834 } 1835 1836 ResultTy = getTypeByID(Record[2]); 1837 if (!ResultTy || ArgTys.size() < Record.size()-3) 1838 return error("Invalid type"); 1839 1840 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1841 break; 1842 } 1843 case bitc::TYPE_CODE_FUNCTION: { 1844 // FUNCTION: [vararg, retty, paramty x N] 1845 if (Record.size() < 2) 1846 return error("Invalid record"); 1847 SmallVector<Type*, 8> ArgTys; 1848 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1849 if (Type *T = getTypeByID(Record[i])) { 1850 if (!FunctionType::isValidArgumentType(T)) 1851 return error("Invalid function argument type"); 1852 ArgTys.push_back(T); 1853 } 1854 else 1855 break; 1856 } 1857 1858 ResultTy = getTypeByID(Record[1]); 1859 if (!ResultTy || ArgTys.size() < Record.size()-2) 1860 return error("Invalid type"); 1861 1862 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1863 break; 1864 } 1865 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 1866 if (Record.size() < 1) 1867 return error("Invalid record"); 1868 SmallVector<Type*, 8> EltTys; 1869 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1870 if (Type *T = getTypeByID(Record[i])) 1871 EltTys.push_back(T); 1872 else 1873 break; 1874 } 1875 if (EltTys.size() != Record.size()-1) 1876 return error("Invalid type"); 1877 ResultTy = StructType::get(Context, EltTys, Record[0]); 1878 break; 1879 } 1880 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 1881 if (convertToString(Record, 0, TypeName)) 1882 return error("Invalid record"); 1883 continue; 1884 1885 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 1886 if (Record.size() < 1) 1887 return error("Invalid record"); 1888 1889 if (NumRecords >= TypeList.size()) 1890 return error("Invalid TYPE table"); 1891 1892 // Check to see if this was forward referenced, if so fill in the temp. 1893 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1894 if (Res) { 1895 Res->setName(TypeName); 1896 TypeList[NumRecords] = nullptr; 1897 } else // Otherwise, create a new struct. 1898 Res = createIdentifiedStructType(Context, TypeName); 1899 TypeName.clear(); 1900 1901 SmallVector<Type*, 8> EltTys; 1902 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1903 if (Type *T = getTypeByID(Record[i])) 1904 EltTys.push_back(T); 1905 else 1906 break; 1907 } 1908 if (EltTys.size() != Record.size()-1) 1909 return error("Invalid record"); 1910 Res->setBody(EltTys, Record[0]); 1911 ResultTy = Res; 1912 break; 1913 } 1914 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 1915 if (Record.size() != 1) 1916 return error("Invalid record"); 1917 1918 if (NumRecords >= TypeList.size()) 1919 return error("Invalid TYPE table"); 1920 1921 // Check to see if this was forward referenced, if so fill in the temp. 1922 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1923 if (Res) { 1924 Res->setName(TypeName); 1925 TypeList[NumRecords] = nullptr; 1926 } else // Otherwise, create a new struct with no body. 1927 Res = createIdentifiedStructType(Context, TypeName); 1928 TypeName.clear(); 1929 ResultTy = Res; 1930 break; 1931 } 1932 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 1933 if (Record.size() < 2) 1934 return error("Invalid record"); 1935 ResultTy = getTypeByID(Record[1]); 1936 if (!ResultTy || !ArrayType::isValidElementType(ResultTy)) 1937 return error("Invalid type"); 1938 ResultTy = ArrayType::get(ResultTy, Record[0]); 1939 break; 1940 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] 1941 if (Record.size() < 2) 1942 return error("Invalid record"); 1943 if (Record[0] == 0) 1944 return error("Invalid vector length"); 1945 ResultTy = getTypeByID(Record[1]); 1946 if (!ResultTy || !StructType::isValidElementType(ResultTy)) 1947 return error("Invalid type"); 1948 ResultTy = VectorType::get(ResultTy, Record[0]); 1949 break; 1950 } 1951 1952 if (NumRecords >= TypeList.size()) 1953 return error("Invalid TYPE table"); 1954 if (TypeList[NumRecords]) 1955 return error( 1956 "Invalid TYPE table: Only named structs can be forward referenced"); 1957 assert(ResultTy && "Didn't read a type?"); 1958 TypeList[NumRecords++] = ResultTy; 1959 } 1960 } 1961 1962 std::error_code BitcodeReader::parseOperandBundleTags() { 1963 if (Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID)) 1964 return error("Invalid record"); 1965 1966 if (!BundleTags.empty()) 1967 return error("Invalid multiple blocks"); 1968 1969 SmallVector<uint64_t, 64> Record; 1970 1971 while (true) { 1972 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1973 1974 switch (Entry.Kind) { 1975 case BitstreamEntry::SubBlock: // Handled for us already. 1976 case BitstreamEntry::Error: 1977 return error("Malformed block"); 1978 case BitstreamEntry::EndBlock: 1979 return std::error_code(); 1980 case BitstreamEntry::Record: 1981 // The interesting case. 1982 break; 1983 } 1984 1985 // Tags are implicitly mapped to integers by their order. 1986 1987 if (Stream.readRecord(Entry.ID, Record) != bitc::OPERAND_BUNDLE_TAG) 1988 return error("Invalid record"); 1989 1990 // OPERAND_BUNDLE_TAG: [strchr x N] 1991 BundleTags.emplace_back(); 1992 if (convertToString(Record, 0, BundleTags.back())) 1993 return error("Invalid record"); 1994 Record.clear(); 1995 } 1996 } 1997 1998 /// Associate a value with its name from the given index in the provided record. 1999 ErrorOr<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record, 2000 unsigned NameIndex, Triple &TT) { 2001 SmallString<128> ValueName; 2002 if (convertToString(Record, NameIndex, ValueName)) 2003 return error("Invalid record"); 2004 unsigned ValueID = Record[0]; 2005 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 2006 return error("Invalid record"); 2007 Value *V = ValueList[ValueID]; 2008 2009 StringRef NameStr(ValueName.data(), ValueName.size()); 2010 if (NameStr.find_first_of(0) != StringRef::npos) 2011 return error("Invalid value name"); 2012 V->setName(NameStr); 2013 auto *GO = dyn_cast<GlobalObject>(V); 2014 if (GO) { 2015 if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) { 2016 if (TT.isOSBinFormatMachO()) 2017 GO->setComdat(nullptr); 2018 else 2019 GO->setComdat(TheModule->getOrInsertComdat(V->getName())); 2020 } 2021 } 2022 return V; 2023 } 2024 2025 /// Helper to note and return the current location, and jump to the given 2026 /// offset. 2027 static uint64_t jumpToValueSymbolTable(uint64_t Offset, 2028 BitstreamCursor &Stream) { 2029 // Save the current parsing location so we can jump back at the end 2030 // of the VST read. 2031 uint64_t CurrentBit = Stream.GetCurrentBitNo(); 2032 Stream.JumpToBit(Offset * 32); 2033 #ifndef NDEBUG 2034 // Do some checking if we are in debug mode. 2035 BitstreamEntry Entry = Stream.advance(); 2036 assert(Entry.Kind == BitstreamEntry::SubBlock); 2037 assert(Entry.ID == bitc::VALUE_SYMTAB_BLOCK_ID); 2038 #else 2039 // In NDEBUG mode ignore the output so we don't get an unused variable 2040 // warning. 2041 Stream.advance(); 2042 #endif 2043 return CurrentBit; 2044 } 2045 2046 /// Parse the value symbol table at either the current parsing location or 2047 /// at the given bit offset if provided. 2048 std::error_code BitcodeReader::parseValueSymbolTable(uint64_t Offset) { 2049 uint64_t CurrentBit; 2050 // Pass in the Offset to distinguish between calling for the module-level 2051 // VST (where we want to jump to the VST offset) and the function-level 2052 // VST (where we don't). 2053 if (Offset > 0) 2054 CurrentBit = jumpToValueSymbolTable(Offset, Stream); 2055 2056 // Compute the delta between the bitcode indices in the VST (the word offset 2057 // to the word-aligned ENTER_SUBBLOCK for the function block, and that 2058 // expected by the lazy reader. The reader's EnterSubBlock expects to have 2059 // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID 2060 // (size BlockIDWidth). Note that we access the stream's AbbrevID width here 2061 // just before entering the VST subblock because: 1) the EnterSubBlock 2062 // changes the AbbrevID width; 2) the VST block is nested within the same 2063 // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same 2064 // AbbrevID width before calling EnterSubBlock; and 3) when we want to 2065 // jump to the FUNCTION_BLOCK using this offset later, we don't want 2066 // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK. 2067 unsigned FuncBitcodeOffsetDelta = 2068 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 2069 2070 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 2071 return error("Invalid record"); 2072 2073 SmallVector<uint64_t, 64> Record; 2074 2075 Triple TT(TheModule->getTargetTriple()); 2076 2077 // Read all the records for this value table. 2078 SmallString<128> ValueName; 2079 2080 while (true) { 2081 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2082 2083 switch (Entry.Kind) { 2084 case BitstreamEntry::SubBlock: // Handled for us already. 2085 case BitstreamEntry::Error: 2086 return error("Malformed block"); 2087 case BitstreamEntry::EndBlock: 2088 if (Offset > 0) 2089 Stream.JumpToBit(CurrentBit); 2090 return std::error_code(); 2091 case BitstreamEntry::Record: 2092 // The interesting case. 2093 break; 2094 } 2095 2096 // Read a record. 2097 Record.clear(); 2098 switch (Stream.readRecord(Entry.ID, Record)) { 2099 default: // Default behavior: unknown type. 2100 break; 2101 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 2102 ErrorOr<Value *> ValOrErr = recordValue(Record, 1, TT); 2103 if (std::error_code EC = ValOrErr.getError()) 2104 return EC; 2105 ValOrErr.get(); 2106 break; 2107 } 2108 case bitc::VST_CODE_FNENTRY: { 2109 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 2110 ErrorOr<Value *> ValOrErr = recordValue(Record, 2, TT); 2111 if (std::error_code EC = ValOrErr.getError()) 2112 return EC; 2113 Value *V = ValOrErr.get(); 2114 2115 auto *GO = dyn_cast<GlobalObject>(V); 2116 if (!GO) { 2117 // If this is an alias, need to get the actual Function object 2118 // it aliases, in order to set up the DeferredFunctionInfo entry below. 2119 auto *GA = dyn_cast<GlobalAlias>(V); 2120 if (GA) 2121 GO = GA->getBaseObject(); 2122 assert(GO); 2123 } 2124 2125 uint64_t FuncWordOffset = Record[1]; 2126 Function *F = dyn_cast<Function>(GO); 2127 assert(F); 2128 uint64_t FuncBitOffset = FuncWordOffset * 32; 2129 DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta; 2130 // Set the LastFunctionBlockBit to point to the last function block. 2131 // Later when parsing is resumed after function materialization, 2132 // we can simply skip that last function block. 2133 if (FuncBitOffset > LastFunctionBlockBit) 2134 LastFunctionBlockBit = FuncBitOffset; 2135 break; 2136 } 2137 case bitc::VST_CODE_BBENTRY: { 2138 if (convertToString(Record, 1, ValueName)) 2139 return error("Invalid record"); 2140 BasicBlock *BB = getBasicBlock(Record[0]); 2141 if (!BB) 2142 return error("Invalid record"); 2143 2144 BB->setName(StringRef(ValueName.data(), ValueName.size())); 2145 ValueName.clear(); 2146 break; 2147 } 2148 } 2149 } 2150 } 2151 2152 /// Parse a single METADATA_KIND record, inserting result in MDKindMap. 2153 std::error_code 2154 BitcodeReader::parseMetadataKindRecord(SmallVectorImpl<uint64_t> &Record) { 2155 if (Record.size() < 2) 2156 return error("Invalid record"); 2157 2158 unsigned Kind = Record[0]; 2159 SmallString<8> Name(Record.begin() + 1, Record.end()); 2160 2161 unsigned NewKind = TheModule->getMDKindID(Name.str()); 2162 if (!MDKindMap.insert(std::make_pair(Kind, NewKind)).second) 2163 return error("Conflicting METADATA_KIND records"); 2164 return std::error_code(); 2165 } 2166 2167 static int64_t unrotateSign(uint64_t U) { return U & 1 ? ~(U >> 1) : U >> 1; } 2168 2169 std::error_code BitcodeReader::parseMetadataStrings(ArrayRef<uint64_t> Record, 2170 StringRef Blob, 2171 unsigned &NextMetadataNo) { 2172 // All the MDStrings in the block are emitted together in a single 2173 // record. The strings are concatenated and stored in a blob along with 2174 // their sizes. 2175 if (Record.size() != 2) 2176 return error("Invalid record: metadata strings layout"); 2177 2178 unsigned NumStrings = Record[0]; 2179 unsigned StringsOffset = Record[1]; 2180 if (!NumStrings) 2181 return error("Invalid record: metadata strings with no strings"); 2182 if (StringsOffset > Blob.size()) 2183 return error("Invalid record: metadata strings corrupt offset"); 2184 2185 StringRef Lengths = Blob.slice(0, StringsOffset); 2186 SimpleBitstreamCursor R(Lengths); 2187 2188 StringRef Strings = Blob.drop_front(StringsOffset); 2189 do { 2190 if (R.AtEndOfStream()) 2191 return error("Invalid record: metadata strings bad length"); 2192 2193 unsigned Size = R.ReadVBR(6); 2194 if (Strings.size() < Size) 2195 return error("Invalid record: metadata strings truncated chars"); 2196 2197 MetadataList.assignValue(MDString::get(Context, Strings.slice(0, Size)), 2198 NextMetadataNo++); 2199 Strings = Strings.drop_front(Size); 2200 } while (--NumStrings); 2201 2202 return std::error_code(); 2203 } 2204 2205 namespace { 2206 2207 class PlaceholderQueue { 2208 // Placeholders would thrash around when moved, so store in a std::deque 2209 // instead of some sort of vector. 2210 std::deque<DistinctMDOperandPlaceholder> PHs; 2211 2212 public: 2213 DistinctMDOperandPlaceholder &getPlaceholderOp(unsigned ID); 2214 void flush(BitcodeReaderMetadataList &MetadataList); 2215 }; 2216 2217 } // end anonymous namespace 2218 2219 DistinctMDOperandPlaceholder &PlaceholderQueue::getPlaceholderOp(unsigned ID) { 2220 PHs.emplace_back(ID); 2221 return PHs.back(); 2222 } 2223 2224 void PlaceholderQueue::flush(BitcodeReaderMetadataList &MetadataList) { 2225 while (!PHs.empty()) { 2226 PHs.front().replaceUseWith( 2227 MetadataList.getMetadataFwdRef(PHs.front().getID())); 2228 PHs.pop_front(); 2229 } 2230 } 2231 2232 /// Parse a METADATA_BLOCK. If ModuleLevel is true then we are parsing 2233 /// module level metadata. 2234 std::error_code BitcodeReader::parseMetadata(bool ModuleLevel) { 2235 assert((ModuleLevel || DeferredMetadataInfo.empty()) && 2236 "Must read all module-level metadata before function-level"); 2237 2238 IsMetadataMaterialized = true; 2239 unsigned NextMetadataNo = MetadataList.size(); 2240 2241 if (!ModuleLevel && MetadataList.hasFwdRefs()) 2242 return error("Invalid metadata: fwd refs into function blocks"); 2243 2244 if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID)) 2245 return error("Invalid record"); 2246 2247 std::vector<std::pair<DICompileUnit *, Metadata *>> CUSubprograms; 2248 SmallVector<uint64_t, 64> Record; 2249 2250 PlaceholderQueue Placeholders; 2251 bool IsDistinct; 2252 auto getMD = [&](unsigned ID) -> Metadata * { 2253 if (!IsDistinct) 2254 return MetadataList.getMetadataFwdRef(ID); 2255 if (auto *MD = MetadataList.getMetadataIfResolved(ID)) 2256 return MD; 2257 return &Placeholders.getPlaceholderOp(ID); 2258 }; 2259 auto getMDOrNull = [&](unsigned ID) -> Metadata * { 2260 if (ID) 2261 return getMD(ID - 1); 2262 return nullptr; 2263 }; 2264 auto getMDOrNullWithoutPlaceholders = [&](unsigned ID) -> Metadata * { 2265 if (ID) 2266 return MetadataList.getMetadataFwdRef(ID - 1); 2267 return nullptr; 2268 }; 2269 auto getMDString = [&](unsigned ID) -> MDString *{ 2270 // This requires that the ID is not really a forward reference. In 2271 // particular, the MDString must already have been resolved. 2272 return cast_or_null<MDString>(getMDOrNull(ID)); 2273 }; 2274 2275 // Support for old type refs. 2276 auto getDITypeRefOrNull = [&](unsigned ID) { 2277 return MetadataList.upgradeTypeRef(getMDOrNull(ID)); 2278 }; 2279 2280 #define GET_OR_DISTINCT(CLASS, ARGS) \ 2281 (IsDistinct ? CLASS::getDistinct ARGS : CLASS::get ARGS) 2282 2283 // Read all the records. 2284 while (true) { 2285 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2286 2287 switch (Entry.Kind) { 2288 case BitstreamEntry::SubBlock: // Handled for us already. 2289 case BitstreamEntry::Error: 2290 return error("Malformed block"); 2291 case BitstreamEntry::EndBlock: 2292 // Upgrade old-style CU <-> SP pointers to point from SP to CU. 2293 for (auto CU_SP : CUSubprograms) 2294 if (auto *SPs = dyn_cast_or_null<MDTuple>(CU_SP.second)) 2295 for (auto &Op : SPs->operands()) 2296 if (auto *SP = dyn_cast_or_null<MDNode>(Op)) 2297 SP->replaceOperandWith(7, CU_SP.first); 2298 2299 MetadataList.tryToResolveCycles(); 2300 Placeholders.flush(MetadataList); 2301 return std::error_code(); 2302 case BitstreamEntry::Record: 2303 // The interesting case. 2304 break; 2305 } 2306 2307 // Read a record. 2308 Record.clear(); 2309 StringRef Blob; 2310 unsigned Code = Stream.readRecord(Entry.ID, Record, &Blob); 2311 IsDistinct = false; 2312 switch (Code) { 2313 default: // Default behavior: ignore. 2314 break; 2315 case bitc::METADATA_NAME: { 2316 // Read name of the named metadata. 2317 SmallString<8> Name(Record.begin(), Record.end()); 2318 Record.clear(); 2319 Code = Stream.ReadCode(); 2320 2321 unsigned NextBitCode = Stream.readRecord(Code, Record); 2322 if (NextBitCode != bitc::METADATA_NAMED_NODE) 2323 return error("METADATA_NAME not followed by METADATA_NAMED_NODE"); 2324 2325 // Read named metadata elements. 2326 unsigned Size = Record.size(); 2327 NamedMDNode *NMD = TheModule->getOrInsertNamedMetadata(Name); 2328 for (unsigned i = 0; i != Size; ++i) { 2329 MDNode *MD = MetadataList.getMDNodeFwdRefOrNull(Record[i]); 2330 if (!MD) 2331 return error("Invalid record"); 2332 NMD->addOperand(MD); 2333 } 2334 break; 2335 } 2336 case bitc::METADATA_OLD_FN_NODE: { 2337 // FIXME: Remove in 4.0. 2338 // This is a LocalAsMetadata record, the only type of function-local 2339 // metadata. 2340 if (Record.size() % 2 == 1) 2341 return error("Invalid record"); 2342 2343 // If this isn't a LocalAsMetadata record, we're dropping it. This used 2344 // to be legal, but there's no upgrade path. 2345 auto dropRecord = [&] { 2346 MetadataList.assignValue(MDNode::get(Context, None), NextMetadataNo++); 2347 }; 2348 if (Record.size() != 2) { 2349 dropRecord(); 2350 break; 2351 } 2352 2353 Type *Ty = getTypeByID(Record[0]); 2354 if (Ty->isMetadataTy() || Ty->isVoidTy()) { 2355 dropRecord(); 2356 break; 2357 } 2358 2359 MetadataList.assignValue( 2360 LocalAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)), 2361 NextMetadataNo++); 2362 break; 2363 } 2364 case bitc::METADATA_OLD_NODE: { 2365 // FIXME: Remove in 4.0. 2366 if (Record.size() % 2 == 1) 2367 return error("Invalid record"); 2368 2369 unsigned Size = Record.size(); 2370 SmallVector<Metadata *, 8> Elts; 2371 for (unsigned i = 0; i != Size; i += 2) { 2372 Type *Ty = getTypeByID(Record[i]); 2373 if (!Ty) 2374 return error("Invalid record"); 2375 if (Ty->isMetadataTy()) 2376 Elts.push_back(getMD(Record[i + 1])); 2377 else if (!Ty->isVoidTy()) { 2378 auto *MD = 2379 ValueAsMetadata::get(ValueList.getValueFwdRef(Record[i + 1], Ty)); 2380 assert(isa<ConstantAsMetadata>(MD) && 2381 "Expected non-function-local metadata"); 2382 Elts.push_back(MD); 2383 } else 2384 Elts.push_back(nullptr); 2385 } 2386 MetadataList.assignValue(MDNode::get(Context, Elts), NextMetadataNo++); 2387 break; 2388 } 2389 case bitc::METADATA_VALUE: { 2390 if (Record.size() != 2) 2391 return error("Invalid record"); 2392 2393 Type *Ty = getTypeByID(Record[0]); 2394 if (Ty->isMetadataTy() || Ty->isVoidTy()) 2395 return error("Invalid record"); 2396 2397 MetadataList.assignValue( 2398 ValueAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)), 2399 NextMetadataNo++); 2400 break; 2401 } 2402 case bitc::METADATA_DISTINCT_NODE: 2403 IsDistinct = true; 2404 LLVM_FALLTHROUGH; 2405 case bitc::METADATA_NODE: { 2406 SmallVector<Metadata *, 8> Elts; 2407 Elts.reserve(Record.size()); 2408 for (unsigned ID : Record) 2409 Elts.push_back(getMDOrNull(ID)); 2410 MetadataList.assignValue(IsDistinct ? MDNode::getDistinct(Context, Elts) 2411 : MDNode::get(Context, Elts), 2412 NextMetadataNo++); 2413 break; 2414 } 2415 case bitc::METADATA_LOCATION: { 2416 if (Record.size() != 5) 2417 return error("Invalid record"); 2418 2419 IsDistinct = Record[0]; 2420 unsigned Line = Record[1]; 2421 unsigned Column = Record[2]; 2422 Metadata *Scope = getMD(Record[3]); 2423 Metadata *InlinedAt = getMDOrNull(Record[4]); 2424 MetadataList.assignValue( 2425 GET_OR_DISTINCT(DILocation, 2426 (Context, Line, Column, Scope, InlinedAt)), 2427 NextMetadataNo++); 2428 break; 2429 } 2430 case bitc::METADATA_GENERIC_DEBUG: { 2431 if (Record.size() < 4) 2432 return error("Invalid record"); 2433 2434 IsDistinct = Record[0]; 2435 unsigned Tag = Record[1]; 2436 unsigned Version = Record[2]; 2437 2438 if (Tag >= 1u << 16 || Version != 0) 2439 return error("Invalid record"); 2440 2441 auto *Header = getMDString(Record[3]); 2442 SmallVector<Metadata *, 8> DwarfOps; 2443 for (unsigned I = 4, E = Record.size(); I != E; ++I) 2444 DwarfOps.push_back(getMDOrNull(Record[I])); 2445 MetadataList.assignValue( 2446 GET_OR_DISTINCT(GenericDINode, (Context, Tag, Header, DwarfOps)), 2447 NextMetadataNo++); 2448 break; 2449 } 2450 case bitc::METADATA_SUBRANGE: { 2451 if (Record.size() != 3) 2452 return error("Invalid record"); 2453 2454 IsDistinct = Record[0]; 2455 MetadataList.assignValue( 2456 GET_OR_DISTINCT(DISubrange, 2457 (Context, Record[1], unrotateSign(Record[2]))), 2458 NextMetadataNo++); 2459 break; 2460 } 2461 case bitc::METADATA_ENUMERATOR: { 2462 if (Record.size() != 3) 2463 return error("Invalid record"); 2464 2465 IsDistinct = Record[0]; 2466 MetadataList.assignValue( 2467 GET_OR_DISTINCT(DIEnumerator, (Context, unrotateSign(Record[1]), 2468 getMDString(Record[2]))), 2469 NextMetadataNo++); 2470 break; 2471 } 2472 case bitc::METADATA_BASIC_TYPE: { 2473 if (Record.size() != 6) 2474 return error("Invalid record"); 2475 2476 IsDistinct = Record[0]; 2477 MetadataList.assignValue( 2478 GET_OR_DISTINCT(DIBasicType, 2479 (Context, Record[1], getMDString(Record[2]), 2480 Record[3], Record[4], Record[5])), 2481 NextMetadataNo++); 2482 break; 2483 } 2484 case bitc::METADATA_DERIVED_TYPE: { 2485 if (Record.size() != 12) 2486 return error("Invalid record"); 2487 2488 IsDistinct = Record[0]; 2489 DINode::DIFlags Flags = static_cast<DINode::DIFlags>(Record[10]); 2490 MetadataList.assignValue( 2491 GET_OR_DISTINCT(DIDerivedType, 2492 (Context, Record[1], getMDString(Record[2]), 2493 getMDOrNull(Record[3]), Record[4], 2494 getDITypeRefOrNull(Record[5]), 2495 getDITypeRefOrNull(Record[6]), Record[7], Record[8], 2496 Record[9], Flags, getDITypeRefOrNull(Record[11]))), 2497 NextMetadataNo++); 2498 break; 2499 } 2500 case bitc::METADATA_COMPOSITE_TYPE: { 2501 if (Record.size() != 16) 2502 return error("Invalid record"); 2503 2504 // If we have a UUID and this is not a forward declaration, lookup the 2505 // mapping. 2506 IsDistinct = Record[0] & 0x1; 2507 bool IsNotUsedInTypeRef = Record[0] >= 2; 2508 unsigned Tag = Record[1]; 2509 MDString *Name = getMDString(Record[2]); 2510 Metadata *File = getMDOrNull(Record[3]); 2511 unsigned Line = Record[4]; 2512 Metadata *Scope = getDITypeRefOrNull(Record[5]); 2513 Metadata *BaseType = getDITypeRefOrNull(Record[6]); 2514 uint64_t SizeInBits = Record[7]; 2515 if (Record[8] > (uint64_t)std::numeric_limits<uint32_t>::max()) 2516 return error("Alignment value is too large"); 2517 uint32_t AlignInBits = Record[8]; 2518 uint64_t OffsetInBits = Record[9]; 2519 DINode::DIFlags Flags = static_cast<DINode::DIFlags>(Record[10]); 2520 Metadata *Elements = getMDOrNull(Record[11]); 2521 unsigned RuntimeLang = Record[12]; 2522 Metadata *VTableHolder = getDITypeRefOrNull(Record[13]); 2523 Metadata *TemplateParams = getMDOrNull(Record[14]); 2524 auto *Identifier = getMDString(Record[15]); 2525 DICompositeType *CT = nullptr; 2526 if (Identifier) 2527 CT = DICompositeType::buildODRType( 2528 Context, *Identifier, Tag, Name, File, Line, Scope, BaseType, 2529 SizeInBits, AlignInBits, OffsetInBits, Flags, Elements, RuntimeLang, 2530 VTableHolder, TemplateParams); 2531 2532 // Create a node if we didn't get a lazy ODR type. 2533 if (!CT) 2534 CT = GET_OR_DISTINCT(DICompositeType, 2535 (Context, Tag, Name, File, Line, Scope, BaseType, 2536 SizeInBits, AlignInBits, OffsetInBits, Flags, 2537 Elements, RuntimeLang, VTableHolder, 2538 TemplateParams, Identifier)); 2539 if (!IsNotUsedInTypeRef && Identifier) 2540 MetadataList.addTypeRef(*Identifier, *cast<DICompositeType>(CT)); 2541 2542 MetadataList.assignValue(CT, NextMetadataNo++); 2543 break; 2544 } 2545 case bitc::METADATA_SUBROUTINE_TYPE: { 2546 if (Record.size() < 3 || Record.size() > 4) 2547 return error("Invalid record"); 2548 bool IsOldTypeRefArray = Record[0] < 2; 2549 unsigned CC = (Record.size() > 3) ? Record[3] : 0; 2550 2551 IsDistinct = Record[0] & 0x1; 2552 DINode::DIFlags Flags = static_cast<DINode::DIFlags>(Record[1]); 2553 Metadata *Types = getMDOrNull(Record[2]); 2554 if (LLVM_UNLIKELY(IsOldTypeRefArray)) 2555 Types = MetadataList.upgradeTypeRefArray(Types); 2556 2557 MetadataList.assignValue( 2558 GET_OR_DISTINCT(DISubroutineType, (Context, Flags, CC, Types)), 2559 NextMetadataNo++); 2560 break; 2561 } 2562 2563 case bitc::METADATA_MODULE: { 2564 if (Record.size() != 6) 2565 return error("Invalid record"); 2566 2567 IsDistinct = Record[0]; 2568 MetadataList.assignValue( 2569 GET_OR_DISTINCT(DIModule, 2570 (Context, getMDOrNull(Record[1]), 2571 getMDString(Record[2]), getMDString(Record[3]), 2572 getMDString(Record[4]), getMDString(Record[5]))), 2573 NextMetadataNo++); 2574 break; 2575 } 2576 2577 case bitc::METADATA_FILE: { 2578 if (Record.size() != 3) 2579 return error("Invalid record"); 2580 2581 IsDistinct = Record[0]; 2582 MetadataList.assignValue( 2583 GET_OR_DISTINCT(DIFile, (Context, getMDString(Record[1]), 2584 getMDString(Record[2]))), 2585 NextMetadataNo++); 2586 break; 2587 } 2588 case bitc::METADATA_COMPILE_UNIT: { 2589 if (Record.size() < 14 || Record.size() > 17) 2590 return error("Invalid record"); 2591 2592 // Ignore Record[0], which indicates whether this compile unit is 2593 // distinct. It's always distinct. 2594 IsDistinct = true; 2595 auto *CU = DICompileUnit::getDistinct( 2596 Context, Record[1], getMDOrNull(Record[2]), getMDString(Record[3]), 2597 Record[4], getMDString(Record[5]), Record[6], getMDString(Record[7]), 2598 Record[8], getMDOrNull(Record[9]), getMDOrNull(Record[10]), 2599 getMDOrNull(Record[12]), getMDOrNull(Record[13]), 2600 Record.size() <= 15 ? nullptr : getMDOrNull(Record[15]), 2601 Record.size() <= 14 ? 0 : Record[14], 2602 Record.size() <= 16 ? true : Record[16]); 2603 2604 MetadataList.assignValue(CU, NextMetadataNo++); 2605 2606 // Move the Upgrade the list of subprograms. 2607 if (Metadata *SPs = getMDOrNullWithoutPlaceholders(Record[11])) 2608 CUSubprograms.push_back({CU, SPs}); 2609 break; 2610 } 2611 case bitc::METADATA_SUBPROGRAM: { 2612 if (Record.size() < 18 || Record.size() > 20) 2613 return error("Invalid record"); 2614 2615 IsDistinct = 2616 (Record[0] & 1) || Record[8]; // All definitions should be distinct. 2617 // Version 1 has a Function as Record[15]. 2618 // Version 2 has removed Record[15]. 2619 // Version 3 has the Unit as Record[15]. 2620 // Version 4 added thisAdjustment. 2621 bool HasUnit = Record[0] >= 2; 2622 if (HasUnit && Record.size() < 19) 2623 return error("Invalid record"); 2624 Metadata *CUorFn = getMDOrNull(Record[15]); 2625 unsigned Offset = Record.size() >= 19 ? 1 : 0; 2626 bool HasFn = Offset && !HasUnit; 2627 bool HasThisAdj = Record.size() >= 20; 2628 DISubprogram *SP = GET_OR_DISTINCT( 2629 DISubprogram, (Context, 2630 getDITypeRefOrNull(Record[1]), // scope 2631 getMDString(Record[2]), // name 2632 getMDString(Record[3]), // linkageName 2633 getMDOrNull(Record[4]), // file 2634 Record[5], // line 2635 getMDOrNull(Record[6]), // type 2636 Record[7], // isLocal 2637 Record[8], // isDefinition 2638 Record[9], // scopeLine 2639 getDITypeRefOrNull(Record[10]), // containingType 2640 Record[11], // virtuality 2641 Record[12], // virtualIndex 2642 HasThisAdj ? Record[19] : 0, // thisAdjustment 2643 static_cast<DINode::DIFlags>(Record[13] // flags 2644 ), 2645 Record[14], // isOptimized 2646 HasUnit ? CUorFn : nullptr, // unit 2647 getMDOrNull(Record[15 + Offset]), // templateParams 2648 getMDOrNull(Record[16 + Offset]), // declaration 2649 getMDOrNull(Record[17 + Offset]) // variables 2650 )); 2651 MetadataList.assignValue(SP, NextMetadataNo++); 2652 2653 // Upgrade sp->function mapping to function->sp mapping. 2654 if (HasFn) { 2655 if (auto *CMD = dyn_cast_or_null<ConstantAsMetadata>(CUorFn)) 2656 if (auto *F = dyn_cast<Function>(CMD->getValue())) { 2657 if (F->isMaterializable()) 2658 // Defer until materialized; unmaterialized functions may not have 2659 // metadata. 2660 FunctionsWithSPs[F] = SP; 2661 else if (!F->empty()) 2662 F->setSubprogram(SP); 2663 } 2664 } 2665 break; 2666 } 2667 case bitc::METADATA_LEXICAL_BLOCK: { 2668 if (Record.size() != 5) 2669 return error("Invalid record"); 2670 2671 IsDistinct = Record[0]; 2672 MetadataList.assignValue( 2673 GET_OR_DISTINCT(DILexicalBlock, 2674 (Context, getMDOrNull(Record[1]), 2675 getMDOrNull(Record[2]), Record[3], Record[4])), 2676 NextMetadataNo++); 2677 break; 2678 } 2679 case bitc::METADATA_LEXICAL_BLOCK_FILE: { 2680 if (Record.size() != 4) 2681 return error("Invalid record"); 2682 2683 IsDistinct = Record[0]; 2684 MetadataList.assignValue( 2685 GET_OR_DISTINCT(DILexicalBlockFile, 2686 (Context, getMDOrNull(Record[1]), 2687 getMDOrNull(Record[2]), Record[3])), 2688 NextMetadataNo++); 2689 break; 2690 } 2691 case bitc::METADATA_NAMESPACE: { 2692 if (Record.size() != 5) 2693 return error("Invalid record"); 2694 2695 IsDistinct = Record[0] & 1; 2696 bool ExportSymbols = Record[0] & 2; 2697 MetadataList.assignValue( 2698 GET_OR_DISTINCT(DINamespace, 2699 (Context, getMDOrNull(Record[1]), 2700 getMDOrNull(Record[2]), getMDString(Record[3]), 2701 Record[4], ExportSymbols)), 2702 NextMetadataNo++); 2703 break; 2704 } 2705 case bitc::METADATA_MACRO: { 2706 if (Record.size() != 5) 2707 return error("Invalid record"); 2708 2709 IsDistinct = Record[0]; 2710 MetadataList.assignValue( 2711 GET_OR_DISTINCT(DIMacro, 2712 (Context, Record[1], Record[2], 2713 getMDString(Record[3]), getMDString(Record[4]))), 2714 NextMetadataNo++); 2715 break; 2716 } 2717 case bitc::METADATA_MACRO_FILE: { 2718 if (Record.size() != 5) 2719 return error("Invalid record"); 2720 2721 IsDistinct = Record[0]; 2722 MetadataList.assignValue( 2723 GET_OR_DISTINCT(DIMacroFile, 2724 (Context, Record[1], Record[2], 2725 getMDOrNull(Record[3]), getMDOrNull(Record[4]))), 2726 NextMetadataNo++); 2727 break; 2728 } 2729 case bitc::METADATA_TEMPLATE_TYPE: { 2730 if (Record.size() != 3) 2731 return error("Invalid record"); 2732 2733 IsDistinct = Record[0]; 2734 MetadataList.assignValue(GET_OR_DISTINCT(DITemplateTypeParameter, 2735 (Context, getMDString(Record[1]), 2736 getDITypeRefOrNull(Record[2]))), 2737 NextMetadataNo++); 2738 break; 2739 } 2740 case bitc::METADATA_TEMPLATE_VALUE: { 2741 if (Record.size() != 5) 2742 return error("Invalid record"); 2743 2744 IsDistinct = Record[0]; 2745 MetadataList.assignValue( 2746 GET_OR_DISTINCT(DITemplateValueParameter, 2747 (Context, Record[1], getMDString(Record[2]), 2748 getDITypeRefOrNull(Record[3]), 2749 getMDOrNull(Record[4]))), 2750 NextMetadataNo++); 2751 break; 2752 } 2753 case bitc::METADATA_GLOBAL_VAR: { 2754 if (Record.size() < 11 || Record.size() > 12) 2755 return error("Invalid record"); 2756 2757 IsDistinct = Record[0]; 2758 2759 // Upgrade old metadata, which stored a global variable reference or a 2760 // ConstantInt here. 2761 Metadata *Expr = getMDOrNull(Record[9]); 2762 uint32_t AlignInBits = 0; 2763 if (Record.size() > 11) { 2764 if (Record[11] > (uint64_t)std::numeric_limits<uint32_t>::max()) 2765 return error("Alignment value is too large"); 2766 AlignInBits = Record[11]; 2767 } 2768 GlobalVariable *Attach = nullptr; 2769 if (auto *CMD = dyn_cast_or_null<ConstantAsMetadata>(Expr)) { 2770 if (auto *GV = dyn_cast<GlobalVariable>(CMD->getValue())) { 2771 Attach = GV; 2772 Expr = nullptr; 2773 } else if (auto *CI = dyn_cast<ConstantInt>(CMD->getValue())) { 2774 Expr = DIExpression::get(Context, 2775 {dwarf::DW_OP_constu, CI->getZExtValue(), 2776 dwarf::DW_OP_stack_value}); 2777 } else { 2778 Expr = nullptr; 2779 } 2780 } 2781 2782 DIGlobalVariable *DGV = GET_OR_DISTINCT( 2783 DIGlobalVariable, 2784 (Context, getMDOrNull(Record[1]), getMDString(Record[2]), 2785 getMDString(Record[3]), getMDOrNull(Record[4]), Record[5], 2786 getDITypeRefOrNull(Record[6]), Record[7], Record[8], Expr, 2787 getMDOrNull(Record[10]), AlignInBits)); 2788 MetadataList.assignValue(DGV, NextMetadataNo++); 2789 2790 if (Attach) 2791 Attach->addDebugInfo(DGV); 2792 2793 break; 2794 } 2795 case bitc::METADATA_LOCAL_VAR: { 2796 // 10th field is for the obseleted 'inlinedAt:' field. 2797 if (Record.size() < 8 || Record.size() > 10) 2798 return error("Invalid record"); 2799 2800 IsDistinct = Record[0] & 1; 2801 bool HasAlignment = Record[0] & 2; 2802 // 2nd field used to be an artificial tag, either DW_TAG_auto_variable or 2803 // DW_TAG_arg_variable, if we have alignment flag encoded it means, that 2804 // this is newer version of record which doesn't have artifical tag. 2805 bool HasTag = !HasAlignment && Record.size() > 8; 2806 DINode::DIFlags Flags = static_cast<DINode::DIFlags>(Record[7 + HasTag]); 2807 uint32_t AlignInBits = 0; 2808 if (HasAlignment) { 2809 if (Record[8 + HasTag] > 2810 (uint64_t)std::numeric_limits<uint32_t>::max()) 2811 return error("Alignment value is too large"); 2812 AlignInBits = Record[8 + HasTag]; 2813 } 2814 MetadataList.assignValue( 2815 GET_OR_DISTINCT(DILocalVariable, 2816 (Context, getMDOrNull(Record[1 + HasTag]), 2817 getMDString(Record[2 + HasTag]), 2818 getMDOrNull(Record[3 + HasTag]), Record[4 + HasTag], 2819 getDITypeRefOrNull(Record[5 + HasTag]), 2820 Record[6 + HasTag], Flags, AlignInBits)), 2821 NextMetadataNo++); 2822 break; 2823 } 2824 case bitc::METADATA_EXPRESSION: { 2825 if (Record.size() < 1) 2826 return error("Invalid record"); 2827 2828 IsDistinct = Record[0]; 2829 MetadataList.assignValue( 2830 GET_OR_DISTINCT(DIExpression, 2831 (Context, makeArrayRef(Record).slice(1))), 2832 NextMetadataNo++); 2833 break; 2834 } 2835 case bitc::METADATA_OBJC_PROPERTY: { 2836 if (Record.size() != 8) 2837 return error("Invalid record"); 2838 2839 IsDistinct = Record[0]; 2840 MetadataList.assignValue( 2841 GET_OR_DISTINCT(DIObjCProperty, 2842 (Context, getMDString(Record[1]), 2843 getMDOrNull(Record[2]), Record[3], 2844 getMDString(Record[4]), getMDString(Record[5]), 2845 Record[6], getDITypeRefOrNull(Record[7]))), 2846 NextMetadataNo++); 2847 break; 2848 } 2849 case bitc::METADATA_IMPORTED_ENTITY: { 2850 if (Record.size() != 6) 2851 return error("Invalid record"); 2852 2853 IsDistinct = Record[0]; 2854 MetadataList.assignValue( 2855 GET_OR_DISTINCT(DIImportedEntity, 2856 (Context, Record[1], getMDOrNull(Record[2]), 2857 getDITypeRefOrNull(Record[3]), Record[4], 2858 getMDString(Record[5]))), 2859 NextMetadataNo++); 2860 break; 2861 } 2862 case bitc::METADATA_STRING_OLD: { 2863 std::string String(Record.begin(), Record.end()); 2864 2865 // Test for upgrading !llvm.loop. 2866 HasSeenOldLoopTags |= mayBeOldLoopAttachmentTag(String); 2867 2868 Metadata *MD = MDString::get(Context, String); 2869 MetadataList.assignValue(MD, NextMetadataNo++); 2870 break; 2871 } 2872 case bitc::METADATA_STRINGS: 2873 if (std::error_code EC = 2874 parseMetadataStrings(Record, Blob, NextMetadataNo)) 2875 return EC; 2876 break; 2877 case bitc::METADATA_GLOBAL_DECL_ATTACHMENT: { 2878 if (Record.size() % 2 == 0) 2879 return error("Invalid record"); 2880 unsigned ValueID = Record[0]; 2881 if (ValueID >= ValueList.size()) 2882 return error("Invalid record"); 2883 if (auto *GO = dyn_cast<GlobalObject>(ValueList[ValueID])) 2884 parseGlobalObjectAttachment(*GO, ArrayRef<uint64_t>(Record).slice(1)); 2885 break; 2886 } 2887 case bitc::METADATA_KIND: { 2888 // Support older bitcode files that had METADATA_KIND records in a 2889 // block with METADATA_BLOCK_ID. 2890 if (std::error_code EC = parseMetadataKindRecord(Record)) 2891 return EC; 2892 break; 2893 } 2894 } 2895 } 2896 2897 #undef GET_OR_DISTINCT 2898 } 2899 2900 /// Parse the metadata kinds out of the METADATA_KIND_BLOCK. 2901 std::error_code BitcodeReader::parseMetadataKinds() { 2902 if (Stream.EnterSubBlock(bitc::METADATA_KIND_BLOCK_ID)) 2903 return error("Invalid record"); 2904 2905 SmallVector<uint64_t, 64> Record; 2906 2907 // Read all the records. 2908 while (true) { 2909 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2910 2911 switch (Entry.Kind) { 2912 case BitstreamEntry::SubBlock: // Handled for us already. 2913 case BitstreamEntry::Error: 2914 return error("Malformed block"); 2915 case BitstreamEntry::EndBlock: 2916 return std::error_code(); 2917 case BitstreamEntry::Record: 2918 // The interesting case. 2919 break; 2920 } 2921 2922 // Read a record. 2923 Record.clear(); 2924 unsigned Code = Stream.readRecord(Entry.ID, Record); 2925 switch (Code) { 2926 default: // Default behavior: ignore. 2927 break; 2928 case bitc::METADATA_KIND: { 2929 if (std::error_code EC = parseMetadataKindRecord(Record)) 2930 return EC; 2931 break; 2932 } 2933 } 2934 } 2935 } 2936 2937 /// Decode a signed value stored with the sign bit in the LSB for dense VBR 2938 /// encoding. 2939 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { 2940 if ((V & 1) == 0) 2941 return V >> 1; 2942 if (V != 1) 2943 return -(V >> 1); 2944 // There is no such thing as -0 with integers. "-0" really means MININT. 2945 return 1ULL << 63; 2946 } 2947 2948 /// Resolve all of the initializers for global values and aliases that we can. 2949 std::error_code BitcodeReader::resolveGlobalAndIndirectSymbolInits() { 2950 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist; 2951 std::vector<std::pair<GlobalIndirectSymbol*, unsigned> > 2952 IndirectSymbolInitWorklist; 2953 std::vector<std::pair<Function*, unsigned> > FunctionPrefixWorklist; 2954 std::vector<std::pair<Function*, unsigned> > FunctionPrologueWorklist; 2955 std::vector<std::pair<Function*, unsigned> > FunctionPersonalityFnWorklist; 2956 2957 GlobalInitWorklist.swap(GlobalInits); 2958 IndirectSymbolInitWorklist.swap(IndirectSymbolInits); 2959 FunctionPrefixWorklist.swap(FunctionPrefixes); 2960 FunctionPrologueWorklist.swap(FunctionPrologues); 2961 FunctionPersonalityFnWorklist.swap(FunctionPersonalityFns); 2962 2963 while (!GlobalInitWorklist.empty()) { 2964 unsigned ValID = GlobalInitWorklist.back().second; 2965 if (ValID >= ValueList.size()) { 2966 // Not ready to resolve this yet, it requires something later in the file. 2967 GlobalInits.push_back(GlobalInitWorklist.back()); 2968 } else { 2969 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2970 GlobalInitWorklist.back().first->setInitializer(C); 2971 else 2972 return error("Expected a constant"); 2973 } 2974 GlobalInitWorklist.pop_back(); 2975 } 2976 2977 while (!IndirectSymbolInitWorklist.empty()) { 2978 unsigned ValID = IndirectSymbolInitWorklist.back().second; 2979 if (ValID >= ValueList.size()) { 2980 IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back()); 2981 } else { 2982 Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]); 2983 if (!C) 2984 return error("Expected a constant"); 2985 GlobalIndirectSymbol *GIS = IndirectSymbolInitWorklist.back().first; 2986 if (isa<GlobalAlias>(GIS) && C->getType() != GIS->getType()) 2987 return error("Alias and aliasee types don't match"); 2988 GIS->setIndirectSymbol(C); 2989 } 2990 IndirectSymbolInitWorklist.pop_back(); 2991 } 2992 2993 while (!FunctionPrefixWorklist.empty()) { 2994 unsigned ValID = FunctionPrefixWorklist.back().second; 2995 if (ValID >= ValueList.size()) { 2996 FunctionPrefixes.push_back(FunctionPrefixWorklist.back()); 2997 } else { 2998 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2999 FunctionPrefixWorklist.back().first->setPrefixData(C); 3000 else 3001 return error("Expected a constant"); 3002 } 3003 FunctionPrefixWorklist.pop_back(); 3004 } 3005 3006 while (!FunctionPrologueWorklist.empty()) { 3007 unsigned ValID = FunctionPrologueWorklist.back().second; 3008 if (ValID >= ValueList.size()) { 3009 FunctionPrologues.push_back(FunctionPrologueWorklist.back()); 3010 } else { 3011 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 3012 FunctionPrologueWorklist.back().first->setPrologueData(C); 3013 else 3014 return error("Expected a constant"); 3015 } 3016 FunctionPrologueWorklist.pop_back(); 3017 } 3018 3019 while (!FunctionPersonalityFnWorklist.empty()) { 3020 unsigned ValID = FunctionPersonalityFnWorklist.back().second; 3021 if (ValID >= ValueList.size()) { 3022 FunctionPersonalityFns.push_back(FunctionPersonalityFnWorklist.back()); 3023 } else { 3024 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 3025 FunctionPersonalityFnWorklist.back().first->setPersonalityFn(C); 3026 else 3027 return error("Expected a constant"); 3028 } 3029 FunctionPersonalityFnWorklist.pop_back(); 3030 } 3031 3032 return std::error_code(); 3033 } 3034 3035 static APInt readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { 3036 SmallVector<uint64_t, 8> Words(Vals.size()); 3037 transform(Vals, Words.begin(), 3038 BitcodeReader::decodeSignRotatedValue); 3039 3040 return APInt(TypeBits, Words); 3041 } 3042 3043 std::error_code BitcodeReader::parseConstants() { 3044 if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 3045 return error("Invalid record"); 3046 3047 SmallVector<uint64_t, 64> Record; 3048 3049 // Read all the records for this value table. 3050 Type *CurTy = Type::getInt32Ty(Context); 3051 unsigned NextCstNo = ValueList.size(); 3052 3053 while (true) { 3054 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 3055 3056 switch (Entry.Kind) { 3057 case BitstreamEntry::SubBlock: // Handled for us already. 3058 case BitstreamEntry::Error: 3059 return error("Malformed block"); 3060 case BitstreamEntry::EndBlock: 3061 if (NextCstNo != ValueList.size()) 3062 return error("Invalid constant reference"); 3063 3064 // Once all the constants have been read, go through and resolve forward 3065 // references. 3066 ValueList.resolveConstantForwardRefs(); 3067 return std::error_code(); 3068 case BitstreamEntry::Record: 3069 // The interesting case. 3070 break; 3071 } 3072 3073 // Read a record. 3074 Record.clear(); 3075 Type *VoidType = Type::getVoidTy(Context); 3076 Value *V = nullptr; 3077 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 3078 switch (BitCode) { 3079 default: // Default behavior: unknown constant 3080 case bitc::CST_CODE_UNDEF: // UNDEF 3081 V = UndefValue::get(CurTy); 3082 break; 3083 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 3084 if (Record.empty()) 3085 return error("Invalid record"); 3086 if (Record[0] >= TypeList.size() || !TypeList[Record[0]]) 3087 return error("Invalid record"); 3088 if (TypeList[Record[0]] == VoidType) 3089 return error("Invalid constant type"); 3090 CurTy = TypeList[Record[0]]; 3091 continue; // Skip the ValueList manipulation. 3092 case bitc::CST_CODE_NULL: // NULL 3093 V = Constant::getNullValue(CurTy); 3094 break; 3095 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 3096 if (!CurTy->isIntegerTy() || Record.empty()) 3097 return error("Invalid record"); 3098 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); 3099 break; 3100 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 3101 if (!CurTy->isIntegerTy() || Record.empty()) 3102 return error("Invalid record"); 3103 3104 APInt VInt = 3105 readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth()); 3106 V = ConstantInt::get(Context, VInt); 3107 3108 break; 3109 } 3110 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 3111 if (Record.empty()) 3112 return error("Invalid record"); 3113 if (CurTy->isHalfTy()) 3114 V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf, 3115 APInt(16, (uint16_t)Record[0]))); 3116 else if (CurTy->isFloatTy()) 3117 V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle, 3118 APInt(32, (uint32_t)Record[0]))); 3119 else if (CurTy->isDoubleTy()) 3120 V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble, 3121 APInt(64, Record[0]))); 3122 else if (CurTy->isX86_FP80Ty()) { 3123 // Bits are not stored the same way as a normal i80 APInt, compensate. 3124 uint64_t Rearrange[2]; 3125 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 3126 Rearrange[1] = Record[0] >> 48; 3127 V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended, 3128 APInt(80, Rearrange))); 3129 } else if (CurTy->isFP128Ty()) 3130 V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad, 3131 APInt(128, Record))); 3132 else if (CurTy->isPPC_FP128Ty()) 3133 V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble, 3134 APInt(128, Record))); 3135 else 3136 V = UndefValue::get(CurTy); 3137 break; 3138 } 3139 3140 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 3141 if (Record.empty()) 3142 return error("Invalid record"); 3143 3144 unsigned Size = Record.size(); 3145 SmallVector<Constant*, 16> Elts; 3146 3147 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 3148 for (unsigned i = 0; i != Size; ++i) 3149 Elts.push_back(ValueList.getConstantFwdRef(Record[i], 3150 STy->getElementType(i))); 3151 V = ConstantStruct::get(STy, Elts); 3152 } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) { 3153 Type *EltTy = ATy->getElementType(); 3154 for (unsigned i = 0; i != Size; ++i) 3155 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 3156 V = ConstantArray::get(ATy, Elts); 3157 } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) { 3158 Type *EltTy = VTy->getElementType(); 3159 for (unsigned i = 0; i != Size; ++i) 3160 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 3161 V = ConstantVector::get(Elts); 3162 } else { 3163 V = UndefValue::get(CurTy); 3164 } 3165 break; 3166 } 3167 case bitc::CST_CODE_STRING: // STRING: [values] 3168 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 3169 if (Record.empty()) 3170 return error("Invalid record"); 3171 3172 SmallString<16> Elts(Record.begin(), Record.end()); 3173 V = ConstantDataArray::getString(Context, Elts, 3174 BitCode == bitc::CST_CODE_CSTRING); 3175 break; 3176 } 3177 case bitc::CST_CODE_DATA: {// DATA: [n x value] 3178 if (Record.empty()) 3179 return error("Invalid record"); 3180 3181 Type *EltTy = cast<SequentialType>(CurTy)->getElementType(); 3182 if (EltTy->isIntegerTy(8)) { 3183 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); 3184 if (isa<VectorType>(CurTy)) 3185 V = ConstantDataVector::get(Context, Elts); 3186 else 3187 V = ConstantDataArray::get(Context, Elts); 3188 } else if (EltTy->isIntegerTy(16)) { 3189 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 3190 if (isa<VectorType>(CurTy)) 3191 V = ConstantDataVector::get(Context, Elts); 3192 else 3193 V = ConstantDataArray::get(Context, Elts); 3194 } else if (EltTy->isIntegerTy(32)) { 3195 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 3196 if (isa<VectorType>(CurTy)) 3197 V = ConstantDataVector::get(Context, Elts); 3198 else 3199 V = ConstantDataArray::get(Context, Elts); 3200 } else if (EltTy->isIntegerTy(64)) { 3201 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 3202 if (isa<VectorType>(CurTy)) 3203 V = ConstantDataVector::get(Context, Elts); 3204 else 3205 V = ConstantDataArray::get(Context, Elts); 3206 } else if (EltTy->isHalfTy()) { 3207 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 3208 if (isa<VectorType>(CurTy)) 3209 V = ConstantDataVector::getFP(Context, Elts); 3210 else 3211 V = ConstantDataArray::getFP(Context, Elts); 3212 } else if (EltTy->isFloatTy()) { 3213 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 3214 if (isa<VectorType>(CurTy)) 3215 V = ConstantDataVector::getFP(Context, Elts); 3216 else 3217 V = ConstantDataArray::getFP(Context, Elts); 3218 } else if (EltTy->isDoubleTy()) { 3219 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 3220 if (isa<VectorType>(CurTy)) 3221 V = ConstantDataVector::getFP(Context, Elts); 3222 else 3223 V = ConstantDataArray::getFP(Context, Elts); 3224 } else { 3225 return error("Invalid type for value"); 3226 } 3227 break; 3228 } 3229 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 3230 if (Record.size() < 3) 3231 return error("Invalid record"); 3232 int Opc = getDecodedBinaryOpcode(Record[0], CurTy); 3233 if (Opc < 0) { 3234 V = UndefValue::get(CurTy); // Unknown binop. 3235 } else { 3236 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 3237 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy); 3238 unsigned Flags = 0; 3239 if (Record.size() >= 4) { 3240 if (Opc == Instruction::Add || 3241 Opc == Instruction::Sub || 3242 Opc == Instruction::Mul || 3243 Opc == Instruction::Shl) { 3244 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 3245 Flags |= OverflowingBinaryOperator::NoSignedWrap; 3246 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 3247 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 3248 } else if (Opc == Instruction::SDiv || 3249 Opc == Instruction::UDiv || 3250 Opc == Instruction::LShr || 3251 Opc == Instruction::AShr) { 3252 if (Record[3] & (1 << bitc::PEO_EXACT)) 3253 Flags |= SDivOperator::IsExact; 3254 } 3255 } 3256 V = ConstantExpr::get(Opc, LHS, RHS, Flags); 3257 } 3258 break; 3259 } 3260 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 3261 if (Record.size() < 3) 3262 return error("Invalid record"); 3263 int Opc = getDecodedCastOpcode(Record[0]); 3264 if (Opc < 0) { 3265 V = UndefValue::get(CurTy); // Unknown cast. 3266 } else { 3267 Type *OpTy = getTypeByID(Record[1]); 3268 if (!OpTy) 3269 return error("Invalid record"); 3270 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy); 3271 V = UpgradeBitCastExpr(Opc, Op, CurTy); 3272 if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy); 3273 } 3274 break; 3275 } 3276 case bitc::CST_CODE_CE_INBOUNDS_GEP: 3277 case bitc::CST_CODE_CE_GEP: { // CE_GEP: [n x operands] 3278 unsigned OpNum = 0; 3279 Type *PointeeType = nullptr; 3280 if (Record.size() % 2) 3281 PointeeType = getTypeByID(Record[OpNum++]); 3282 SmallVector<Constant*, 16> Elts; 3283 while (OpNum != Record.size()) { 3284 Type *ElTy = getTypeByID(Record[OpNum++]); 3285 if (!ElTy) 3286 return error("Invalid record"); 3287 Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy)); 3288 } 3289 3290 if (PointeeType && 3291 PointeeType != 3292 cast<SequentialType>(Elts[0]->getType()->getScalarType()) 3293 ->getElementType()) 3294 return error("Explicit gep operator type does not match pointee type " 3295 "of pointer operand"); 3296 3297 if (Elts.size() < 1) 3298 return error("Invalid gep with no operands"); 3299 3300 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 3301 V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices, 3302 BitCode == 3303 bitc::CST_CODE_CE_INBOUNDS_GEP); 3304 break; 3305 } 3306 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] 3307 if (Record.size() < 3) 3308 return error("Invalid record"); 3309 3310 Type *SelectorTy = Type::getInt1Ty(Context); 3311 3312 // The selector might be an i1 or an <n x i1> 3313 // Get the type from the ValueList before getting a forward ref. 3314 if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) 3315 if (Value *V = ValueList[Record[0]]) 3316 if (SelectorTy != V->getType()) 3317 SelectorTy = VectorType::get(SelectorTy, VTy->getNumElements()); 3318 3319 V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0], 3320 SelectorTy), 3321 ValueList.getConstantFwdRef(Record[1],CurTy), 3322 ValueList.getConstantFwdRef(Record[2],CurTy)); 3323 break; 3324 } 3325 case bitc::CST_CODE_CE_EXTRACTELT 3326 : { // CE_EXTRACTELT: [opty, opval, opty, opval] 3327 if (Record.size() < 3) 3328 return error("Invalid record"); 3329 VectorType *OpTy = 3330 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 3331 if (!OpTy) 3332 return error("Invalid record"); 3333 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 3334 Constant *Op1 = nullptr; 3335 if (Record.size() == 4) { 3336 Type *IdxTy = getTypeByID(Record[2]); 3337 if (!IdxTy) 3338 return error("Invalid record"); 3339 Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy); 3340 } else // TODO: Remove with llvm 4.0 3341 Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 3342 if (!Op1) 3343 return error("Invalid record"); 3344 V = ConstantExpr::getExtractElement(Op0, Op1); 3345 break; 3346 } 3347 case bitc::CST_CODE_CE_INSERTELT 3348 : { // CE_INSERTELT: [opval, opval, opty, opval] 3349 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 3350 if (Record.size() < 3 || !OpTy) 3351 return error("Invalid record"); 3352 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 3353 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], 3354 OpTy->getElementType()); 3355 Constant *Op2 = nullptr; 3356 if (Record.size() == 4) { 3357 Type *IdxTy = getTypeByID(Record[2]); 3358 if (!IdxTy) 3359 return error("Invalid record"); 3360 Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy); 3361 } else // TODO: Remove with llvm 4.0 3362 Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 3363 if (!Op2) 3364 return error("Invalid record"); 3365 V = ConstantExpr::getInsertElement(Op0, Op1, Op2); 3366 break; 3367 } 3368 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 3369 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 3370 if (Record.size() < 3 || !OpTy) 3371 return error("Invalid record"); 3372 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 3373 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy); 3374 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 3375 OpTy->getNumElements()); 3376 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy); 3377 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 3378 break; 3379 } 3380 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 3381 VectorType *RTy = dyn_cast<VectorType>(CurTy); 3382 VectorType *OpTy = 3383 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 3384 if (Record.size() < 4 || !RTy || !OpTy) 3385 return error("Invalid record"); 3386 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 3387 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 3388 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 3389 RTy->getNumElements()); 3390 Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy); 3391 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 3392 break; 3393 } 3394 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 3395 if (Record.size() < 4) 3396 return error("Invalid record"); 3397 Type *OpTy = getTypeByID(Record[0]); 3398 if (!OpTy) 3399 return error("Invalid record"); 3400 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 3401 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 3402 3403 if (OpTy->isFPOrFPVectorTy()) 3404 V = ConstantExpr::getFCmp(Record[3], Op0, Op1); 3405 else 3406 V = ConstantExpr::getICmp(Record[3], Op0, Op1); 3407 break; 3408 } 3409 // This maintains backward compatibility, pre-asm dialect keywords. 3410 // FIXME: Remove with the 4.0 release. 3411 case bitc::CST_CODE_INLINEASM_OLD: { 3412 if (Record.size() < 2) 3413 return error("Invalid record"); 3414 std::string AsmStr, ConstrStr; 3415 bool HasSideEffects = Record[0] & 1; 3416 bool IsAlignStack = Record[0] >> 1; 3417 unsigned AsmStrSize = Record[1]; 3418 if (2+AsmStrSize >= Record.size()) 3419 return error("Invalid record"); 3420 unsigned ConstStrSize = Record[2+AsmStrSize]; 3421 if (3+AsmStrSize+ConstStrSize > Record.size()) 3422 return error("Invalid record"); 3423 3424 for (unsigned i = 0; i != AsmStrSize; ++i) 3425 AsmStr += (char)Record[2+i]; 3426 for (unsigned i = 0; i != ConstStrSize; ++i) 3427 ConstrStr += (char)Record[3+AsmStrSize+i]; 3428 PointerType *PTy = cast<PointerType>(CurTy); 3429 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 3430 AsmStr, ConstrStr, HasSideEffects, IsAlignStack); 3431 break; 3432 } 3433 // This version adds support for the asm dialect keywords (e.g., 3434 // inteldialect). 3435 case bitc::CST_CODE_INLINEASM: { 3436 if (Record.size() < 2) 3437 return error("Invalid record"); 3438 std::string AsmStr, ConstrStr; 3439 bool HasSideEffects = Record[0] & 1; 3440 bool IsAlignStack = (Record[0] >> 1) & 1; 3441 unsigned AsmDialect = Record[0] >> 2; 3442 unsigned AsmStrSize = Record[1]; 3443 if (2+AsmStrSize >= Record.size()) 3444 return error("Invalid record"); 3445 unsigned ConstStrSize = Record[2+AsmStrSize]; 3446 if (3+AsmStrSize+ConstStrSize > Record.size()) 3447 return error("Invalid record"); 3448 3449 for (unsigned i = 0; i != AsmStrSize; ++i) 3450 AsmStr += (char)Record[2+i]; 3451 for (unsigned i = 0; i != ConstStrSize; ++i) 3452 ConstrStr += (char)Record[3+AsmStrSize+i]; 3453 PointerType *PTy = cast<PointerType>(CurTy); 3454 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 3455 AsmStr, ConstrStr, HasSideEffects, IsAlignStack, 3456 InlineAsm::AsmDialect(AsmDialect)); 3457 break; 3458 } 3459 case bitc::CST_CODE_BLOCKADDRESS:{ 3460 if (Record.size() < 3) 3461 return error("Invalid record"); 3462 Type *FnTy = getTypeByID(Record[0]); 3463 if (!FnTy) 3464 return error("Invalid record"); 3465 Function *Fn = 3466 dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy)); 3467 if (!Fn) 3468 return error("Invalid record"); 3469 3470 // If the function is already parsed we can insert the block address right 3471 // away. 3472 BasicBlock *BB; 3473 unsigned BBID = Record[2]; 3474 if (!BBID) 3475 // Invalid reference to entry block. 3476 return error("Invalid ID"); 3477 if (!Fn->empty()) { 3478 Function::iterator BBI = Fn->begin(), BBE = Fn->end(); 3479 for (size_t I = 0, E = BBID; I != E; ++I) { 3480 if (BBI == BBE) 3481 return error("Invalid ID"); 3482 ++BBI; 3483 } 3484 BB = &*BBI; 3485 } else { 3486 // Otherwise insert a placeholder and remember it so it can be inserted 3487 // when the function is parsed. 3488 auto &FwdBBs = BasicBlockFwdRefs[Fn]; 3489 if (FwdBBs.empty()) 3490 BasicBlockFwdRefQueue.push_back(Fn); 3491 if (FwdBBs.size() < BBID + 1) 3492 FwdBBs.resize(BBID + 1); 3493 if (!FwdBBs[BBID]) 3494 FwdBBs[BBID] = BasicBlock::Create(Context); 3495 BB = FwdBBs[BBID]; 3496 } 3497 V = BlockAddress::get(Fn, BB); 3498 break; 3499 } 3500 } 3501 3502 ValueList.assignValue(V, NextCstNo); 3503 ++NextCstNo; 3504 } 3505 } 3506 3507 std::error_code BitcodeReader::parseUseLists() { 3508 if (Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 3509 return error("Invalid record"); 3510 3511 // Read all the records. 3512 SmallVector<uint64_t, 64> Record; 3513 3514 while (true) { 3515 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 3516 3517 switch (Entry.Kind) { 3518 case BitstreamEntry::SubBlock: // Handled for us already. 3519 case BitstreamEntry::Error: 3520 return error("Malformed block"); 3521 case BitstreamEntry::EndBlock: 3522 return std::error_code(); 3523 case BitstreamEntry::Record: 3524 // The interesting case. 3525 break; 3526 } 3527 3528 // Read a use list record. 3529 Record.clear(); 3530 bool IsBB = false; 3531 switch (Stream.readRecord(Entry.ID, Record)) { 3532 default: // Default behavior: unknown type. 3533 break; 3534 case bitc::USELIST_CODE_BB: 3535 IsBB = true; 3536 LLVM_FALLTHROUGH; 3537 case bitc::USELIST_CODE_DEFAULT: { 3538 unsigned RecordLength = Record.size(); 3539 if (RecordLength < 3) 3540 // Records should have at least an ID and two indexes. 3541 return error("Invalid record"); 3542 unsigned ID = Record.back(); 3543 Record.pop_back(); 3544 3545 Value *V; 3546 if (IsBB) { 3547 assert(ID < FunctionBBs.size() && "Basic block not found"); 3548 V = FunctionBBs[ID]; 3549 } else 3550 V = ValueList[ID]; 3551 unsigned NumUses = 0; 3552 SmallDenseMap<const Use *, unsigned, 16> Order; 3553 for (const Use &U : V->materialized_uses()) { 3554 if (++NumUses > Record.size()) 3555 break; 3556 Order[&U] = Record[NumUses - 1]; 3557 } 3558 if (Order.size() != Record.size() || NumUses > Record.size()) 3559 // Mismatches can happen if the functions are being materialized lazily 3560 // (out-of-order), or a value has been upgraded. 3561 break; 3562 3563 V->sortUseList([&](const Use &L, const Use &R) { 3564 return Order.lookup(&L) < Order.lookup(&R); 3565 }); 3566 break; 3567 } 3568 } 3569 } 3570 } 3571 3572 /// When we see the block for metadata, remember where it is and then skip it. 3573 /// This lets us lazily deserialize the metadata. 3574 std::error_code BitcodeReader::rememberAndSkipMetadata() { 3575 // Save the current stream state. 3576 uint64_t CurBit = Stream.GetCurrentBitNo(); 3577 DeferredMetadataInfo.push_back(CurBit); 3578 3579 // Skip over the block for now. 3580 if (Stream.SkipBlock()) 3581 return error("Invalid record"); 3582 return std::error_code(); 3583 } 3584 3585 std::error_code BitcodeReader::materializeMetadata() { 3586 for (uint64_t BitPos : DeferredMetadataInfo) { 3587 // Move the bit stream to the saved position. 3588 Stream.JumpToBit(BitPos); 3589 if (std::error_code EC = parseMetadata(true)) 3590 return EC; 3591 } 3592 DeferredMetadataInfo.clear(); 3593 return std::error_code(); 3594 } 3595 3596 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; } 3597 3598 /// When we see the block for a function body, remember where it is and then 3599 /// skip it. This lets us lazily deserialize the functions. 3600 std::error_code BitcodeReader::rememberAndSkipFunctionBody() { 3601 // Get the function we are talking about. 3602 if (FunctionsWithBodies.empty()) 3603 return error("Insufficient function protos"); 3604 3605 Function *Fn = FunctionsWithBodies.back(); 3606 FunctionsWithBodies.pop_back(); 3607 3608 // Save the current stream state. 3609 uint64_t CurBit = Stream.GetCurrentBitNo(); 3610 assert( 3611 (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) && 3612 "Mismatch between VST and scanned function offsets"); 3613 DeferredFunctionInfo[Fn] = CurBit; 3614 3615 // Skip over the function block for now. 3616 if (Stream.SkipBlock()) 3617 return error("Invalid record"); 3618 return std::error_code(); 3619 } 3620 3621 std::error_code BitcodeReader::globalCleanup() { 3622 // Patch the initializers for globals and aliases up. 3623 resolveGlobalAndIndirectSymbolInits(); 3624 if (!GlobalInits.empty() || !IndirectSymbolInits.empty()) 3625 return error("Malformed global initializer set"); 3626 3627 // Look for intrinsic functions which need to be upgraded at some point 3628 for (Function &F : *TheModule) { 3629 Function *NewFn; 3630 if (UpgradeIntrinsicFunction(&F, NewFn)) 3631 UpgradedIntrinsics[&F] = NewFn; 3632 else if (auto Remangled = Intrinsic::remangleIntrinsicFunction(&F)) 3633 // Some types could be renamed during loading if several modules are 3634 // loaded in the same LLVMContext (LTO scenario). In this case we should 3635 // remangle intrinsics names as well. 3636 RemangledIntrinsics[&F] = Remangled.getValue(); 3637 } 3638 3639 // Look for global variables which need to be renamed. 3640 for (GlobalVariable &GV : TheModule->globals()) 3641 UpgradeGlobalVariable(&GV); 3642 3643 // Force deallocation of memory for these vectors to favor the client that 3644 // want lazy deserialization. 3645 std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits); 3646 std::vector<std::pair<GlobalIndirectSymbol*, unsigned> >().swap( 3647 IndirectSymbolInits); 3648 return std::error_code(); 3649 } 3650 3651 /// Support for lazy parsing of function bodies. This is required if we 3652 /// either have an old bitcode file without a VST forward declaration record, 3653 /// or if we have an anonymous function being materialized, since anonymous 3654 /// functions do not have a name and are therefore not in the VST. 3655 std::error_code BitcodeReader::rememberAndSkipFunctionBodies() { 3656 Stream.JumpToBit(NextUnreadBit); 3657 3658 if (Stream.AtEndOfStream()) 3659 return error("Could not find function in stream"); 3660 3661 if (!SeenFirstFunctionBody) 3662 return error("Trying to materialize functions before seeing function blocks"); 3663 3664 // An old bitcode file with the symbol table at the end would have 3665 // finished the parse greedily. 3666 assert(SeenValueSymbolTable); 3667 3668 SmallVector<uint64_t, 64> Record; 3669 3670 while (true) { 3671 BitstreamEntry Entry = Stream.advance(); 3672 switch (Entry.Kind) { 3673 default: 3674 return error("Expect SubBlock"); 3675 case BitstreamEntry::SubBlock: 3676 switch (Entry.ID) { 3677 default: 3678 return error("Expect function block"); 3679 case bitc::FUNCTION_BLOCK_ID: 3680 if (std::error_code EC = rememberAndSkipFunctionBody()) 3681 return EC; 3682 NextUnreadBit = Stream.GetCurrentBitNo(); 3683 return std::error_code(); 3684 } 3685 } 3686 } 3687 } 3688 3689 std::error_code BitcodeReader::parseBitcodeVersion() { 3690 if (Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID)) 3691 return error("Invalid record"); 3692 3693 // Read all the records. 3694 SmallVector<uint64_t, 64> Record; 3695 3696 while (true) { 3697 BitstreamEntry Entry = Stream.advance(); 3698 3699 switch (Entry.Kind) { 3700 default: 3701 case BitstreamEntry::Error: 3702 return error("Malformed block"); 3703 case BitstreamEntry::EndBlock: 3704 return std::error_code(); 3705 case BitstreamEntry::Record: 3706 // The interesting case. 3707 break; 3708 } 3709 3710 // Read a record. 3711 Record.clear(); 3712 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 3713 switch (BitCode) { 3714 default: // Default behavior: reject 3715 return error("Invalid value"); 3716 case bitc::IDENTIFICATION_CODE_STRING: { // IDENTIFICATION: [strchr x 3717 // N] 3718 convertToString(Record, 0, ProducerIdentification); 3719 break; 3720 } 3721 case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#] 3722 unsigned epoch = (unsigned)Record[0]; 3723 if (epoch != bitc::BITCODE_CURRENT_EPOCH) { 3724 return error( 3725 Twine("Incompatible epoch: Bitcode '") + Twine(epoch) + 3726 "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'"); 3727 } 3728 } 3729 } 3730 } 3731 } 3732 3733 bool BitcodeReaderBase::readBlockInfo() { 3734 Optional<BitstreamBlockInfo> NewBlockInfo = Stream.ReadBlockInfoBlock(); 3735 if (!NewBlockInfo) 3736 return true; 3737 BlockInfo = std::move(*NewBlockInfo); 3738 return false; 3739 } 3740 3741 std::error_code BitcodeReader::parseModule(uint64_t ResumeBit, 3742 bool ShouldLazyLoadMetadata) { 3743 if (ResumeBit) 3744 Stream.JumpToBit(ResumeBit); 3745 else if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 3746 return error("Invalid record"); 3747 3748 SmallVector<uint64_t, 64> Record; 3749 std::vector<std::string> SectionTable; 3750 std::vector<std::string> GCTable; 3751 3752 // Read all the records for this module. 3753 while (true) { 3754 BitstreamEntry Entry = Stream.advance(); 3755 3756 switch (Entry.Kind) { 3757 case BitstreamEntry::Error: 3758 return error("Malformed block"); 3759 case BitstreamEntry::EndBlock: 3760 return globalCleanup(); 3761 3762 case BitstreamEntry::SubBlock: 3763 switch (Entry.ID) { 3764 default: // Skip unknown content. 3765 if (Stream.SkipBlock()) 3766 return error("Invalid record"); 3767 break; 3768 case bitc::BLOCKINFO_BLOCK_ID: 3769 if (readBlockInfo()) 3770 return error("Malformed block"); 3771 break; 3772 case bitc::PARAMATTR_BLOCK_ID: 3773 if (std::error_code EC = parseAttributeBlock()) 3774 return EC; 3775 break; 3776 case bitc::PARAMATTR_GROUP_BLOCK_ID: 3777 if (std::error_code EC = parseAttributeGroupBlock()) 3778 return EC; 3779 break; 3780 case bitc::TYPE_BLOCK_ID_NEW: 3781 if (std::error_code EC = parseTypeTable()) 3782 return EC; 3783 break; 3784 case bitc::VALUE_SYMTAB_BLOCK_ID: 3785 if (!SeenValueSymbolTable) { 3786 // Either this is an old form VST without function index and an 3787 // associated VST forward declaration record (which would have caused 3788 // the VST to be jumped to and parsed before it was encountered 3789 // normally in the stream), or there were no function blocks to 3790 // trigger an earlier parsing of the VST. 3791 assert(VSTOffset == 0 || FunctionsWithBodies.empty()); 3792 if (std::error_code EC = parseValueSymbolTable()) 3793 return EC; 3794 SeenValueSymbolTable = true; 3795 } else { 3796 // We must have had a VST forward declaration record, which caused 3797 // the parser to jump to and parse the VST earlier. 3798 assert(VSTOffset > 0); 3799 if (Stream.SkipBlock()) 3800 return error("Invalid record"); 3801 } 3802 break; 3803 case bitc::CONSTANTS_BLOCK_ID: 3804 if (std::error_code EC = parseConstants()) 3805 return EC; 3806 if (std::error_code EC = resolveGlobalAndIndirectSymbolInits()) 3807 return EC; 3808 break; 3809 case bitc::METADATA_BLOCK_ID: 3810 if (ShouldLazyLoadMetadata && !IsMetadataMaterialized) { 3811 if (std::error_code EC = rememberAndSkipMetadata()) 3812 return EC; 3813 break; 3814 } 3815 assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata"); 3816 if (std::error_code EC = parseMetadata(true)) 3817 return EC; 3818 break; 3819 case bitc::METADATA_KIND_BLOCK_ID: 3820 if (std::error_code EC = parseMetadataKinds()) 3821 return EC; 3822 break; 3823 case bitc::FUNCTION_BLOCK_ID: 3824 // If this is the first function body we've seen, reverse the 3825 // FunctionsWithBodies list. 3826 if (!SeenFirstFunctionBody) { 3827 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 3828 if (std::error_code EC = globalCleanup()) 3829 return EC; 3830 SeenFirstFunctionBody = true; 3831 } 3832 3833 if (VSTOffset > 0) { 3834 // If we have a VST forward declaration record, make sure we 3835 // parse the VST now if we haven't already. It is needed to 3836 // set up the DeferredFunctionInfo vector for lazy reading. 3837 if (!SeenValueSymbolTable) { 3838 if (std::error_code EC = 3839 BitcodeReader::parseValueSymbolTable(VSTOffset)) 3840 return EC; 3841 SeenValueSymbolTable = true; 3842 // Fall through so that we record the NextUnreadBit below. 3843 // This is necessary in case we have an anonymous function that 3844 // is later materialized. Since it will not have a VST entry we 3845 // need to fall back to the lazy parse to find its offset. 3846 } else { 3847 // If we have a VST forward declaration record, but have already 3848 // parsed the VST (just above, when the first function body was 3849 // encountered here), then we are resuming the parse after 3850 // materializing functions. The ResumeBit points to the 3851 // start of the last function block recorded in the 3852 // DeferredFunctionInfo map. Skip it. 3853 if (Stream.SkipBlock()) 3854 return error("Invalid record"); 3855 continue; 3856 } 3857 } 3858 3859 // Support older bitcode files that did not have the function 3860 // index in the VST, nor a VST forward declaration record, as 3861 // well as anonymous functions that do not have VST entries. 3862 // Build the DeferredFunctionInfo vector on the fly. 3863 if (std::error_code EC = rememberAndSkipFunctionBody()) 3864 return EC; 3865 3866 // Suspend parsing when we reach the function bodies. Subsequent 3867 // materialization calls will resume it when necessary. If the bitcode 3868 // file is old, the symbol table will be at the end instead and will not 3869 // have been seen yet. In this case, just finish the parse now. 3870 if (SeenValueSymbolTable) { 3871 NextUnreadBit = Stream.GetCurrentBitNo(); 3872 // After the VST has been parsed, we need to make sure intrinsic name 3873 // are auto-upgraded. 3874 return globalCleanup(); 3875 } 3876 break; 3877 case bitc::USELIST_BLOCK_ID: 3878 if (std::error_code EC = parseUseLists()) 3879 return EC; 3880 break; 3881 case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID: 3882 if (std::error_code EC = parseOperandBundleTags()) 3883 return EC; 3884 break; 3885 } 3886 continue; 3887 3888 case BitstreamEntry::Record: 3889 // The interesting case. 3890 break; 3891 } 3892 3893 // Read a record. 3894 auto BitCode = Stream.readRecord(Entry.ID, Record); 3895 switch (BitCode) { 3896 default: break; // Default behavior, ignore unknown content. 3897 case bitc::MODULE_CODE_VERSION: { // VERSION: [version#] 3898 if (Record.size() < 1) 3899 return error("Invalid record"); 3900 // Only version #0 and #1 are supported so far. 3901 unsigned module_version = Record[0]; 3902 switch (module_version) { 3903 default: 3904 return error("Invalid value"); 3905 case 0: 3906 UseRelativeIDs = false; 3907 break; 3908 case 1: 3909 UseRelativeIDs = true; 3910 break; 3911 } 3912 break; 3913 } 3914 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 3915 std::string S; 3916 if (convertToString(Record, 0, S)) 3917 return error("Invalid record"); 3918 TheModule->setTargetTriple(S); 3919 break; 3920 } 3921 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 3922 std::string S; 3923 if (convertToString(Record, 0, S)) 3924 return error("Invalid record"); 3925 TheModule->setDataLayout(S); 3926 break; 3927 } 3928 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 3929 std::string S; 3930 if (convertToString(Record, 0, S)) 3931 return error("Invalid record"); 3932 TheModule->setModuleInlineAsm(S); 3933 break; 3934 } 3935 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 3936 // FIXME: Remove in 4.0. 3937 std::string S; 3938 if (convertToString(Record, 0, S)) 3939 return error("Invalid record"); 3940 // Ignore value. 3941 break; 3942 } 3943 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 3944 std::string S; 3945 if (convertToString(Record, 0, S)) 3946 return error("Invalid record"); 3947 SectionTable.push_back(S); 3948 break; 3949 } 3950 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 3951 std::string S; 3952 if (convertToString(Record, 0, S)) 3953 return error("Invalid record"); 3954 GCTable.push_back(S); 3955 break; 3956 } 3957 case bitc::MODULE_CODE_COMDAT: { // COMDAT: [selection_kind, name] 3958 if (Record.size() < 2) 3959 return error("Invalid record"); 3960 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]); 3961 unsigned ComdatNameSize = Record[1]; 3962 std::string ComdatName; 3963 ComdatName.reserve(ComdatNameSize); 3964 for (unsigned i = 0; i != ComdatNameSize; ++i) 3965 ComdatName += (char)Record[2 + i]; 3966 Comdat *C = TheModule->getOrInsertComdat(ComdatName); 3967 C->setSelectionKind(SK); 3968 ComdatList.push_back(C); 3969 break; 3970 } 3971 // GLOBALVAR: [pointer type, isconst, initid, 3972 // linkage, alignment, section, visibility, threadlocal, 3973 // unnamed_addr, externally_initialized, dllstorageclass, 3974 // comdat] 3975 case bitc::MODULE_CODE_GLOBALVAR: { 3976 if (Record.size() < 6) 3977 return error("Invalid record"); 3978 Type *Ty = getTypeByID(Record[0]); 3979 if (!Ty) 3980 return error("Invalid record"); 3981 bool isConstant = Record[1] & 1; 3982 bool explicitType = Record[1] & 2; 3983 unsigned AddressSpace; 3984 if (explicitType) { 3985 AddressSpace = Record[1] >> 2; 3986 } else { 3987 if (!Ty->isPointerTy()) 3988 return error("Invalid type for value"); 3989 AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 3990 Ty = cast<PointerType>(Ty)->getElementType(); 3991 } 3992 3993 uint64_t RawLinkage = Record[3]; 3994 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 3995 unsigned Alignment; 3996 if (std::error_code EC = parseAlignmentValue(Record[4], Alignment)) 3997 return EC; 3998 std::string Section; 3999 if (Record[5]) { 4000 if (Record[5]-1 >= SectionTable.size()) 4001 return error("Invalid ID"); 4002 Section = SectionTable[Record[5]-1]; 4003 } 4004 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 4005 // Local linkage must have default visibility. 4006 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage)) 4007 // FIXME: Change to an error if non-default in 4.0. 4008 Visibility = getDecodedVisibility(Record[6]); 4009 4010 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; 4011 if (Record.size() > 7) 4012 TLM = getDecodedThreadLocalMode(Record[7]); 4013 4014 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 4015 if (Record.size() > 8) 4016 UnnamedAddr = getDecodedUnnamedAddrType(Record[8]); 4017 4018 bool ExternallyInitialized = false; 4019 if (Record.size() > 9) 4020 ExternallyInitialized = Record[9]; 4021 4022 GlobalVariable *NewGV = 4023 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, "", nullptr, 4024 TLM, AddressSpace, ExternallyInitialized); 4025 NewGV->setAlignment(Alignment); 4026 if (!Section.empty()) 4027 NewGV->setSection(Section); 4028 NewGV->setVisibility(Visibility); 4029 NewGV->setUnnamedAddr(UnnamedAddr); 4030 4031 if (Record.size() > 10) 4032 NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10])); 4033 else 4034 upgradeDLLImportExportLinkage(NewGV, RawLinkage); 4035 4036 ValueList.push_back(NewGV); 4037 4038 // Remember which value to use for the global initializer. 4039 if (unsigned InitID = Record[2]) 4040 GlobalInits.push_back(std::make_pair(NewGV, InitID-1)); 4041 4042 if (Record.size() > 11) { 4043 if (unsigned ComdatID = Record[11]) { 4044 if (ComdatID > ComdatList.size()) 4045 return error("Invalid global variable comdat ID"); 4046 NewGV->setComdat(ComdatList[ComdatID - 1]); 4047 } 4048 } else if (hasImplicitComdat(RawLinkage)) { 4049 NewGV->setComdat(reinterpret_cast<Comdat *>(1)); 4050 } 4051 4052 break; 4053 } 4054 // FUNCTION: [type, callingconv, isproto, linkage, paramattr, 4055 // alignment, section, visibility, gc, unnamed_addr, 4056 // prologuedata, dllstorageclass, comdat, prefixdata] 4057 case bitc::MODULE_CODE_FUNCTION: { 4058 if (Record.size() < 8) 4059 return error("Invalid record"); 4060 Type *Ty = getTypeByID(Record[0]); 4061 if (!Ty) 4062 return error("Invalid record"); 4063 if (auto *PTy = dyn_cast<PointerType>(Ty)) 4064 Ty = PTy->getElementType(); 4065 auto *FTy = dyn_cast<FunctionType>(Ty); 4066 if (!FTy) 4067 return error("Invalid type for value"); 4068 auto CC = static_cast<CallingConv::ID>(Record[1]); 4069 if (CC & ~CallingConv::MaxID) 4070 return error("Invalid calling convention ID"); 4071 4072 Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage, 4073 "", TheModule); 4074 4075 Func->setCallingConv(CC); 4076 bool isProto = Record[2]; 4077 uint64_t RawLinkage = Record[3]; 4078 Func->setLinkage(getDecodedLinkage(RawLinkage)); 4079 Func->setAttributes(getAttributes(Record[4])); 4080 4081 unsigned Alignment; 4082 if (std::error_code EC = parseAlignmentValue(Record[5], Alignment)) 4083 return EC; 4084 Func->setAlignment(Alignment); 4085 if (Record[6]) { 4086 if (Record[6]-1 >= SectionTable.size()) 4087 return error("Invalid ID"); 4088 Func->setSection(SectionTable[Record[6]-1]); 4089 } 4090 // Local linkage must have default visibility. 4091 if (!Func->hasLocalLinkage()) 4092 // FIXME: Change to an error if non-default in 4.0. 4093 Func->setVisibility(getDecodedVisibility(Record[7])); 4094 if (Record.size() > 8 && Record[8]) { 4095 if (Record[8]-1 >= GCTable.size()) 4096 return error("Invalid ID"); 4097 Func->setGC(GCTable[Record[8] - 1]); 4098 } 4099 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 4100 if (Record.size() > 9) 4101 UnnamedAddr = getDecodedUnnamedAddrType(Record[9]); 4102 Func->setUnnamedAddr(UnnamedAddr); 4103 if (Record.size() > 10 && Record[10] != 0) 4104 FunctionPrologues.push_back(std::make_pair(Func, Record[10]-1)); 4105 4106 if (Record.size() > 11) 4107 Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11])); 4108 else 4109 upgradeDLLImportExportLinkage(Func, RawLinkage); 4110 4111 if (Record.size() > 12) { 4112 if (unsigned ComdatID = Record[12]) { 4113 if (ComdatID > ComdatList.size()) 4114 return error("Invalid function comdat ID"); 4115 Func->setComdat(ComdatList[ComdatID - 1]); 4116 } 4117 } else if (hasImplicitComdat(RawLinkage)) { 4118 Func->setComdat(reinterpret_cast<Comdat *>(1)); 4119 } 4120 4121 if (Record.size() > 13 && Record[13] != 0) 4122 FunctionPrefixes.push_back(std::make_pair(Func, Record[13]-1)); 4123 4124 if (Record.size() > 14 && Record[14] != 0) 4125 FunctionPersonalityFns.push_back(std::make_pair(Func, Record[14] - 1)); 4126 4127 ValueList.push_back(Func); 4128 4129 // If this is a function with a body, remember the prototype we are 4130 // creating now, so that we can match up the body with them later. 4131 if (!isProto) { 4132 Func->setIsMaterializable(true); 4133 FunctionsWithBodies.push_back(Func); 4134 DeferredFunctionInfo[Func] = 0; 4135 } 4136 break; 4137 } 4138 // ALIAS: [alias type, addrspace, aliasee val#, linkage] 4139 // ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, dllstorageclass] 4140 // IFUNC: [alias type, addrspace, aliasee val#, linkage, visibility, dllstorageclass] 4141 case bitc::MODULE_CODE_IFUNC: 4142 case bitc::MODULE_CODE_ALIAS: 4143 case bitc::MODULE_CODE_ALIAS_OLD: { 4144 bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD; 4145 if (Record.size() < (3 + (unsigned)NewRecord)) 4146 return error("Invalid record"); 4147 unsigned OpNum = 0; 4148 Type *Ty = getTypeByID(Record[OpNum++]); 4149 if (!Ty) 4150 return error("Invalid record"); 4151 4152 unsigned AddrSpace; 4153 if (!NewRecord) { 4154 auto *PTy = dyn_cast<PointerType>(Ty); 4155 if (!PTy) 4156 return error("Invalid type for value"); 4157 Ty = PTy->getElementType(); 4158 AddrSpace = PTy->getAddressSpace(); 4159 } else { 4160 AddrSpace = Record[OpNum++]; 4161 } 4162 4163 auto Val = Record[OpNum++]; 4164 auto Linkage = Record[OpNum++]; 4165 GlobalIndirectSymbol *NewGA; 4166 if (BitCode == bitc::MODULE_CODE_ALIAS || 4167 BitCode == bitc::MODULE_CODE_ALIAS_OLD) 4168 NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), 4169 "", TheModule); 4170 else 4171 NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), 4172 "", nullptr, TheModule); 4173 // Old bitcode files didn't have visibility field. 4174 // Local linkage must have default visibility. 4175 if (OpNum != Record.size()) { 4176 auto VisInd = OpNum++; 4177 if (!NewGA->hasLocalLinkage()) 4178 // FIXME: Change to an error if non-default in 4.0. 4179 NewGA->setVisibility(getDecodedVisibility(Record[VisInd])); 4180 } 4181 if (OpNum != Record.size()) 4182 NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++])); 4183 else 4184 upgradeDLLImportExportLinkage(NewGA, Linkage); 4185 if (OpNum != Record.size()) 4186 NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++])); 4187 if (OpNum != Record.size()) 4188 NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++])); 4189 ValueList.push_back(NewGA); 4190 IndirectSymbolInits.push_back(std::make_pair(NewGA, Val)); 4191 break; 4192 } 4193 /// MODULE_CODE_PURGEVALS: [numvals] 4194 case bitc::MODULE_CODE_PURGEVALS: 4195 // Trim down the value list to the specified size. 4196 if (Record.size() < 1 || Record[0] > ValueList.size()) 4197 return error("Invalid record"); 4198 ValueList.shrinkTo(Record[0]); 4199 break; 4200 /// MODULE_CODE_VSTOFFSET: [offset] 4201 case bitc::MODULE_CODE_VSTOFFSET: 4202 if (Record.size() < 1) 4203 return error("Invalid record"); 4204 VSTOffset = Record[0]; 4205 break; 4206 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 4207 case bitc::MODULE_CODE_SOURCE_FILENAME: 4208 SmallString<128> ValueName; 4209 if (convertToString(Record, 0, ValueName)) 4210 return error("Invalid record"); 4211 TheModule->setSourceFileName(ValueName); 4212 break; 4213 } 4214 Record.clear(); 4215 } 4216 } 4217 4218 /// Helper to read the header common to all bitcode files. 4219 static bool hasValidBitcodeHeader(BitstreamCursor &Stream) { 4220 // Sniff for the signature. 4221 if (!Stream.canSkipToPos(4) || 4222 Stream.Read(8) != 'B' || 4223 Stream.Read(8) != 'C' || 4224 Stream.Read(4) != 0x0 || 4225 Stream.Read(4) != 0xC || 4226 Stream.Read(4) != 0xE || 4227 Stream.Read(4) != 0xD) 4228 return false; 4229 return true; 4230 } 4231 4232 std::error_code BitcodeReader::parseBitcodeInto(Module *M, 4233 bool ShouldLazyLoadMetadata) { 4234 TheModule = M; 4235 4236 if (std::error_code EC = initStream()) 4237 return EC; 4238 4239 // Sniff for the signature. 4240 if (!hasValidBitcodeHeader(Stream)) 4241 return error("Invalid bitcode signature"); 4242 4243 // We expect a number of well-defined blocks, though we don't necessarily 4244 // need to understand them all. 4245 while (true) { 4246 if (Stream.AtEndOfStream()) { 4247 // We didn't really read a proper Module. 4248 return error("Malformed IR file"); 4249 } 4250 4251 BitstreamEntry Entry = 4252 Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs); 4253 4254 if (Entry.Kind != BitstreamEntry::SubBlock) 4255 return error("Malformed block"); 4256 4257 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) { 4258 parseBitcodeVersion(); 4259 continue; 4260 } 4261 4262 if (Entry.ID == bitc::MODULE_BLOCK_ID) 4263 return parseModule(0, ShouldLazyLoadMetadata); 4264 4265 if (Stream.SkipBlock()) 4266 return error("Invalid record"); 4267 } 4268 } 4269 4270 ErrorOr<std::string> BitcodeReader::parseModuleTriple() { 4271 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 4272 return error("Invalid record"); 4273 4274 SmallVector<uint64_t, 64> Record; 4275 4276 std::string Triple; 4277 4278 // Read all the records for this module. 4279 while (true) { 4280 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 4281 4282 switch (Entry.Kind) { 4283 case BitstreamEntry::SubBlock: // Handled for us already. 4284 case BitstreamEntry::Error: 4285 return error("Malformed block"); 4286 case BitstreamEntry::EndBlock: 4287 return Triple; 4288 case BitstreamEntry::Record: 4289 // The interesting case. 4290 break; 4291 } 4292 4293 // Read a record. 4294 switch (Stream.readRecord(Entry.ID, Record)) { 4295 default: break; // Default behavior, ignore unknown content. 4296 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 4297 std::string S; 4298 if (convertToString(Record, 0, S)) 4299 return error("Invalid record"); 4300 Triple = S; 4301 break; 4302 } 4303 } 4304 Record.clear(); 4305 } 4306 llvm_unreachable("Exit infinite loop"); 4307 } 4308 4309 ErrorOr<std::string> BitcodeReader::parseTriple() { 4310 if (std::error_code EC = initStream()) 4311 return EC; 4312 4313 // Sniff for the signature. 4314 if (!hasValidBitcodeHeader(Stream)) 4315 return error("Invalid bitcode signature"); 4316 4317 // We expect a number of well-defined blocks, though we don't necessarily 4318 // need to understand them all. 4319 while (true) { 4320 BitstreamEntry Entry = Stream.advance(); 4321 4322 switch (Entry.Kind) { 4323 case BitstreamEntry::Error: 4324 return error("Malformed block"); 4325 case BitstreamEntry::EndBlock: 4326 return std::error_code(); 4327 4328 case BitstreamEntry::SubBlock: 4329 if (Entry.ID == bitc::MODULE_BLOCK_ID) 4330 return parseModuleTriple(); 4331 4332 // Ignore other sub-blocks. 4333 if (Stream.SkipBlock()) 4334 return error("Malformed block"); 4335 continue; 4336 4337 case BitstreamEntry::Record: 4338 Stream.skipRecord(Entry.ID); 4339 continue; 4340 } 4341 } 4342 } 4343 4344 ErrorOr<std::string> BitcodeReader::parseIdentificationBlock() { 4345 if (std::error_code EC = initStream()) 4346 return EC; 4347 4348 // Sniff for the signature. 4349 if (!hasValidBitcodeHeader(Stream)) 4350 return error("Invalid bitcode signature"); 4351 4352 // We expect a number of well-defined blocks, though we don't necessarily 4353 // need to understand them all. 4354 while (true) { 4355 BitstreamEntry Entry = Stream.advance(); 4356 switch (Entry.Kind) { 4357 case BitstreamEntry::Error: 4358 return error("Malformed block"); 4359 case BitstreamEntry::EndBlock: 4360 return std::error_code(); 4361 4362 case BitstreamEntry::SubBlock: 4363 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) { 4364 if (std::error_code EC = parseBitcodeVersion()) 4365 return EC; 4366 return ProducerIdentification; 4367 } 4368 // Ignore other sub-blocks. 4369 if (Stream.SkipBlock()) 4370 return error("Malformed block"); 4371 continue; 4372 case BitstreamEntry::Record: 4373 Stream.skipRecord(Entry.ID); 4374 continue; 4375 } 4376 } 4377 } 4378 4379 std::error_code BitcodeReader::parseGlobalObjectAttachment( 4380 GlobalObject &GO, ArrayRef<uint64_t> Record) { 4381 assert(Record.size() % 2 == 0); 4382 for (unsigned I = 0, E = Record.size(); I != E; I += 2) { 4383 auto K = MDKindMap.find(Record[I]); 4384 if (K == MDKindMap.end()) 4385 return error("Invalid ID"); 4386 MDNode *MD = MetadataList.getMDNodeFwdRefOrNull(Record[I + 1]); 4387 if (!MD) 4388 return error("Invalid metadata attachment"); 4389 GO.addMetadata(K->second, *MD); 4390 } 4391 return std::error_code(); 4392 } 4393 4394 ErrorOr<bool> BitcodeReader::hasObjCCategory() { 4395 if (std::error_code EC = initStream()) 4396 return EC; 4397 4398 // Sniff for the signature. 4399 if (!hasValidBitcodeHeader(Stream)) 4400 return error("Invalid bitcode signature"); 4401 4402 // We expect a number of well-defined blocks, though we don't necessarily 4403 // need to understand them all. 4404 while (true) { 4405 BitstreamEntry Entry = Stream.advance(); 4406 4407 switch (Entry.Kind) { 4408 case BitstreamEntry::Error: 4409 return error("Malformed block"); 4410 case BitstreamEntry::EndBlock: 4411 return std::error_code(); 4412 4413 case BitstreamEntry::SubBlock: 4414 if (Entry.ID == bitc::MODULE_BLOCK_ID) 4415 return hasObjCCategoryInModule(); 4416 4417 // Ignore other sub-blocks. 4418 if (Stream.SkipBlock()) 4419 return error("Malformed block"); 4420 continue; 4421 4422 case BitstreamEntry::Record: 4423 Stream.skipRecord(Entry.ID); 4424 continue; 4425 } 4426 } 4427 } 4428 4429 ErrorOr<bool> BitcodeReader::hasObjCCategoryInModule() { 4430 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 4431 return error("Invalid record"); 4432 4433 SmallVector<uint64_t, 64> Record; 4434 // Read all the records for this module. 4435 4436 while (true) { 4437 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 4438 4439 switch (Entry.Kind) { 4440 case BitstreamEntry::SubBlock: // Handled for us already. 4441 case BitstreamEntry::Error: 4442 return error("Malformed block"); 4443 case BitstreamEntry::EndBlock: 4444 return false; 4445 case BitstreamEntry::Record: 4446 // The interesting case. 4447 break; 4448 } 4449 4450 // Read a record. 4451 switch (Stream.readRecord(Entry.ID, Record)) { 4452 default: 4453 break; // Default behavior, ignore unknown content. 4454 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 4455 std::string S; 4456 if (convertToString(Record, 0, S)) 4457 return error("Invalid record"); 4458 // Check for the i386 and other (x86_64, ARM) conventions 4459 if (S.find("__DATA, __objc_catlist") != std::string::npos || 4460 S.find("__OBJC,__category") != std::string::npos) 4461 return true; 4462 break; 4463 } 4464 } 4465 Record.clear(); 4466 } 4467 llvm_unreachable("Exit infinite loop"); 4468 } 4469 4470 /// Parse metadata attachments. 4471 std::error_code BitcodeReader::parseMetadataAttachment(Function &F) { 4472 if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID)) 4473 return error("Invalid record"); 4474 4475 SmallVector<uint64_t, 64> Record; 4476 4477 while (true) { 4478 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 4479 4480 switch (Entry.Kind) { 4481 case BitstreamEntry::SubBlock: // Handled for us already. 4482 case BitstreamEntry::Error: 4483 return error("Malformed block"); 4484 case BitstreamEntry::EndBlock: 4485 return std::error_code(); 4486 case BitstreamEntry::Record: 4487 // The interesting case. 4488 break; 4489 } 4490 4491 // Read a metadata attachment record. 4492 Record.clear(); 4493 switch (Stream.readRecord(Entry.ID, Record)) { 4494 default: // Default behavior: ignore. 4495 break; 4496 case bitc::METADATA_ATTACHMENT: { 4497 unsigned RecordLength = Record.size(); 4498 if (Record.empty()) 4499 return error("Invalid record"); 4500 if (RecordLength % 2 == 0) { 4501 // A function attachment. 4502 if (std::error_code EC = parseGlobalObjectAttachment(F, Record)) 4503 return EC; 4504 continue; 4505 } 4506 4507 // An instruction attachment. 4508 Instruction *Inst = InstructionList[Record[0]]; 4509 for (unsigned i = 1; i != RecordLength; i = i+2) { 4510 unsigned Kind = Record[i]; 4511 DenseMap<unsigned, unsigned>::iterator I = 4512 MDKindMap.find(Kind); 4513 if (I == MDKindMap.end()) 4514 return error("Invalid ID"); 4515 Metadata *Node = MetadataList.getMetadataFwdRef(Record[i + 1]); 4516 if (isa<LocalAsMetadata>(Node)) 4517 // Drop the attachment. This used to be legal, but there's no 4518 // upgrade path. 4519 break; 4520 MDNode *MD = dyn_cast_or_null<MDNode>(Node); 4521 if (!MD) 4522 return error("Invalid metadata attachment"); 4523 4524 if (HasSeenOldLoopTags && I->second == LLVMContext::MD_loop) 4525 MD = upgradeInstructionLoopAttachment(*MD); 4526 4527 if (I->second == LLVMContext::MD_tbaa) { 4528 assert(!MD->isTemporary() && "should load MDs before attachments"); 4529 MD = UpgradeTBAANode(*MD); 4530 } 4531 Inst->setMetadata(I->second, MD); 4532 } 4533 break; 4534 } 4535 } 4536 } 4537 } 4538 4539 static std::error_code typeCheckLoadStoreInst(Type *ValType, Type *PtrType) { 4540 LLVMContext &Context = PtrType->getContext(); 4541 if (!isa<PointerType>(PtrType)) 4542 return error(Context, "Load/Store operand is not a pointer type"); 4543 Type *ElemType = cast<PointerType>(PtrType)->getElementType(); 4544 4545 if (ValType && ValType != ElemType) 4546 return error(Context, "Explicit load/store type does not match pointee " 4547 "type of pointer operand"); 4548 if (!PointerType::isLoadableOrStorableType(ElemType)) 4549 return error(Context, "Cannot load/store from pointer"); 4550 return std::error_code(); 4551 } 4552 4553 /// Lazily parse the specified function body block. 4554 std::error_code BitcodeReader::parseFunctionBody(Function *F) { 4555 if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 4556 return error("Invalid record"); 4557 4558 // Unexpected unresolved metadata when parsing function. 4559 if (MetadataList.hasFwdRefs()) 4560 return error("Invalid function metadata: incoming forward references"); 4561 4562 InstructionList.clear(); 4563 unsigned ModuleValueListSize = ValueList.size(); 4564 unsigned ModuleMetadataListSize = MetadataList.size(); 4565 4566 // Add all the function arguments to the value table. 4567 for (Argument &I : F->args()) 4568 ValueList.push_back(&I); 4569 4570 unsigned NextValueNo = ValueList.size(); 4571 BasicBlock *CurBB = nullptr; 4572 unsigned CurBBNo = 0; 4573 4574 DebugLoc LastLoc; 4575 auto getLastInstruction = [&]() -> Instruction * { 4576 if (CurBB && !CurBB->empty()) 4577 return &CurBB->back(); 4578 else if (CurBBNo && FunctionBBs[CurBBNo - 1] && 4579 !FunctionBBs[CurBBNo - 1]->empty()) 4580 return &FunctionBBs[CurBBNo - 1]->back(); 4581 return nullptr; 4582 }; 4583 4584 std::vector<OperandBundleDef> OperandBundles; 4585 4586 // Read all the records. 4587 SmallVector<uint64_t, 64> Record; 4588 4589 while (true) { 4590 BitstreamEntry Entry = Stream.advance(); 4591 4592 switch (Entry.Kind) { 4593 case BitstreamEntry::Error: 4594 return error("Malformed block"); 4595 case BitstreamEntry::EndBlock: 4596 goto OutOfRecordLoop; 4597 4598 case BitstreamEntry::SubBlock: 4599 switch (Entry.ID) { 4600 default: // Skip unknown content. 4601 if (Stream.SkipBlock()) 4602 return error("Invalid record"); 4603 break; 4604 case bitc::CONSTANTS_BLOCK_ID: 4605 if (std::error_code EC = parseConstants()) 4606 return EC; 4607 NextValueNo = ValueList.size(); 4608 break; 4609 case bitc::VALUE_SYMTAB_BLOCK_ID: 4610 if (std::error_code EC = parseValueSymbolTable()) 4611 return EC; 4612 break; 4613 case bitc::METADATA_ATTACHMENT_ID: 4614 if (std::error_code EC = parseMetadataAttachment(*F)) 4615 return EC; 4616 break; 4617 case bitc::METADATA_BLOCK_ID: 4618 if (std::error_code EC = parseMetadata()) 4619 return EC; 4620 break; 4621 case bitc::USELIST_BLOCK_ID: 4622 if (std::error_code EC = parseUseLists()) 4623 return EC; 4624 break; 4625 } 4626 continue; 4627 4628 case BitstreamEntry::Record: 4629 // The interesting case. 4630 break; 4631 } 4632 4633 // Read a record. 4634 Record.clear(); 4635 Instruction *I = nullptr; 4636 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 4637 switch (BitCode) { 4638 default: // Default behavior: reject 4639 return error("Invalid value"); 4640 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks] 4641 if (Record.size() < 1 || Record[0] == 0) 4642 return error("Invalid record"); 4643 // Create all the basic blocks for the function. 4644 FunctionBBs.resize(Record[0]); 4645 4646 // See if anything took the address of blocks in this function. 4647 auto BBFRI = BasicBlockFwdRefs.find(F); 4648 if (BBFRI == BasicBlockFwdRefs.end()) { 4649 for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i) 4650 FunctionBBs[i] = BasicBlock::Create(Context, "", F); 4651 } else { 4652 auto &BBRefs = BBFRI->second; 4653 // Check for invalid basic block references. 4654 if (BBRefs.size() > FunctionBBs.size()) 4655 return error("Invalid ID"); 4656 assert(!BBRefs.empty() && "Unexpected empty array"); 4657 assert(!BBRefs.front() && "Invalid reference to entry block"); 4658 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E; 4659 ++I) 4660 if (I < RE && BBRefs[I]) { 4661 BBRefs[I]->insertInto(F); 4662 FunctionBBs[I] = BBRefs[I]; 4663 } else { 4664 FunctionBBs[I] = BasicBlock::Create(Context, "", F); 4665 } 4666 4667 // Erase from the table. 4668 BasicBlockFwdRefs.erase(BBFRI); 4669 } 4670 4671 CurBB = FunctionBBs[0]; 4672 continue; 4673 } 4674 4675 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 4676 // This record indicates that the last instruction is at the same 4677 // location as the previous instruction with a location. 4678 I = getLastInstruction(); 4679 4680 if (!I) 4681 return error("Invalid record"); 4682 I->setDebugLoc(LastLoc); 4683 I = nullptr; 4684 continue; 4685 4686 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 4687 I = getLastInstruction(); 4688 if (!I || Record.size() < 4) 4689 return error("Invalid record"); 4690 4691 unsigned Line = Record[0], Col = Record[1]; 4692 unsigned ScopeID = Record[2], IAID = Record[3]; 4693 4694 MDNode *Scope = nullptr, *IA = nullptr; 4695 if (ScopeID) { 4696 Scope = MetadataList.getMDNodeFwdRefOrNull(ScopeID - 1); 4697 if (!Scope) 4698 return error("Invalid record"); 4699 } 4700 if (IAID) { 4701 IA = MetadataList.getMDNodeFwdRefOrNull(IAID - 1); 4702 if (!IA) 4703 return error("Invalid record"); 4704 } 4705 LastLoc = DebugLoc::get(Line, Col, Scope, IA); 4706 I->setDebugLoc(LastLoc); 4707 I = nullptr; 4708 continue; 4709 } 4710 4711 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 4712 unsigned OpNum = 0; 4713 Value *LHS, *RHS; 4714 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 4715 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 4716 OpNum+1 > Record.size()) 4717 return error("Invalid record"); 4718 4719 int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 4720 if (Opc == -1) 4721 return error("Invalid record"); 4722 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 4723 InstructionList.push_back(I); 4724 if (OpNum < Record.size()) { 4725 if (Opc == Instruction::Add || 4726 Opc == Instruction::Sub || 4727 Opc == Instruction::Mul || 4728 Opc == Instruction::Shl) { 4729 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 4730 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 4731 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 4732 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 4733 } else if (Opc == Instruction::SDiv || 4734 Opc == Instruction::UDiv || 4735 Opc == Instruction::LShr || 4736 Opc == Instruction::AShr) { 4737 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 4738 cast<BinaryOperator>(I)->setIsExact(true); 4739 } else if (isa<FPMathOperator>(I)) { 4740 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 4741 if (FMF.any()) 4742 I->setFastMathFlags(FMF); 4743 } 4744 4745 } 4746 break; 4747 } 4748 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 4749 unsigned OpNum = 0; 4750 Value *Op; 4751 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4752 OpNum+2 != Record.size()) 4753 return error("Invalid record"); 4754 4755 Type *ResTy = getTypeByID(Record[OpNum]); 4756 int Opc = getDecodedCastOpcode(Record[OpNum + 1]); 4757 if (Opc == -1 || !ResTy) 4758 return error("Invalid record"); 4759 Instruction *Temp = nullptr; 4760 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) { 4761 if (Temp) { 4762 InstructionList.push_back(Temp); 4763 CurBB->getInstList().push_back(Temp); 4764 } 4765 } else { 4766 auto CastOp = (Instruction::CastOps)Opc; 4767 if (!CastInst::castIsValid(CastOp, Op, ResTy)) 4768 return error("Invalid cast"); 4769 I = CastInst::Create(CastOp, Op, ResTy); 4770 } 4771 InstructionList.push_back(I); 4772 break; 4773 } 4774 case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD: 4775 case bitc::FUNC_CODE_INST_GEP_OLD: 4776 case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands] 4777 unsigned OpNum = 0; 4778 4779 Type *Ty; 4780 bool InBounds; 4781 4782 if (BitCode == bitc::FUNC_CODE_INST_GEP) { 4783 InBounds = Record[OpNum++]; 4784 Ty = getTypeByID(Record[OpNum++]); 4785 } else { 4786 InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD; 4787 Ty = nullptr; 4788 } 4789 4790 Value *BasePtr; 4791 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr)) 4792 return error("Invalid record"); 4793 4794 if (!Ty) 4795 Ty = cast<SequentialType>(BasePtr->getType()->getScalarType()) 4796 ->getElementType(); 4797 else if (Ty != 4798 cast<SequentialType>(BasePtr->getType()->getScalarType()) 4799 ->getElementType()) 4800 return error( 4801 "Explicit gep type does not match pointee type of pointer operand"); 4802 4803 SmallVector<Value*, 16> GEPIdx; 4804 while (OpNum != Record.size()) { 4805 Value *Op; 4806 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4807 return error("Invalid record"); 4808 GEPIdx.push_back(Op); 4809 } 4810 4811 I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx); 4812 4813 InstructionList.push_back(I); 4814 if (InBounds) 4815 cast<GetElementPtrInst>(I)->setIsInBounds(true); 4816 break; 4817 } 4818 4819 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 4820 // EXTRACTVAL: [opty, opval, n x indices] 4821 unsigned OpNum = 0; 4822 Value *Agg; 4823 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 4824 return error("Invalid record"); 4825 4826 unsigned RecSize = Record.size(); 4827 if (OpNum == RecSize) 4828 return error("EXTRACTVAL: Invalid instruction with 0 indices"); 4829 4830 SmallVector<unsigned, 4> EXTRACTVALIdx; 4831 Type *CurTy = Agg->getType(); 4832 for (; OpNum != RecSize; ++OpNum) { 4833 bool IsArray = CurTy->isArrayTy(); 4834 bool IsStruct = CurTy->isStructTy(); 4835 uint64_t Index = Record[OpNum]; 4836 4837 if (!IsStruct && !IsArray) 4838 return error("EXTRACTVAL: Invalid type"); 4839 if ((unsigned)Index != Index) 4840 return error("Invalid value"); 4841 if (IsStruct && Index >= CurTy->subtypes().size()) 4842 return error("EXTRACTVAL: Invalid struct index"); 4843 if (IsArray && Index >= CurTy->getArrayNumElements()) 4844 return error("EXTRACTVAL: Invalid array index"); 4845 EXTRACTVALIdx.push_back((unsigned)Index); 4846 4847 if (IsStruct) 4848 CurTy = CurTy->subtypes()[Index]; 4849 else 4850 CurTy = CurTy->subtypes()[0]; 4851 } 4852 4853 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 4854 InstructionList.push_back(I); 4855 break; 4856 } 4857 4858 case bitc::FUNC_CODE_INST_INSERTVAL: { 4859 // INSERTVAL: [opty, opval, opty, opval, n x indices] 4860 unsigned OpNum = 0; 4861 Value *Agg; 4862 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 4863 return error("Invalid record"); 4864 Value *Val; 4865 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 4866 return error("Invalid record"); 4867 4868 unsigned RecSize = Record.size(); 4869 if (OpNum == RecSize) 4870 return error("INSERTVAL: Invalid instruction with 0 indices"); 4871 4872 SmallVector<unsigned, 4> INSERTVALIdx; 4873 Type *CurTy = Agg->getType(); 4874 for (; OpNum != RecSize; ++OpNum) { 4875 bool IsArray = CurTy->isArrayTy(); 4876 bool IsStruct = CurTy->isStructTy(); 4877 uint64_t Index = Record[OpNum]; 4878 4879 if (!IsStruct && !IsArray) 4880 return error("INSERTVAL: Invalid type"); 4881 if ((unsigned)Index != Index) 4882 return error("Invalid value"); 4883 if (IsStruct && Index >= CurTy->subtypes().size()) 4884 return error("INSERTVAL: Invalid struct index"); 4885 if (IsArray && Index >= CurTy->getArrayNumElements()) 4886 return error("INSERTVAL: Invalid array index"); 4887 4888 INSERTVALIdx.push_back((unsigned)Index); 4889 if (IsStruct) 4890 CurTy = CurTy->subtypes()[Index]; 4891 else 4892 CurTy = CurTy->subtypes()[0]; 4893 } 4894 4895 if (CurTy != Val->getType()) 4896 return error("Inserted value type doesn't match aggregate type"); 4897 4898 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 4899 InstructionList.push_back(I); 4900 break; 4901 } 4902 4903 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 4904 // obsolete form of select 4905 // handles select i1 ... in old bitcode 4906 unsigned OpNum = 0; 4907 Value *TrueVal, *FalseVal, *Cond; 4908 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 4909 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 4910 popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond)) 4911 return error("Invalid record"); 4912 4913 I = SelectInst::Create(Cond, TrueVal, FalseVal); 4914 InstructionList.push_back(I); 4915 break; 4916 } 4917 4918 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 4919 // new form of select 4920 // handles select i1 or select [N x i1] 4921 unsigned OpNum = 0; 4922 Value *TrueVal, *FalseVal, *Cond; 4923 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 4924 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 4925 getValueTypePair(Record, OpNum, NextValueNo, Cond)) 4926 return error("Invalid record"); 4927 4928 // select condition can be either i1 or [N x i1] 4929 if (VectorType* vector_type = 4930 dyn_cast<VectorType>(Cond->getType())) { 4931 // expect <n x i1> 4932 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 4933 return error("Invalid type for value"); 4934 } else { 4935 // expect i1 4936 if (Cond->getType() != Type::getInt1Ty(Context)) 4937 return error("Invalid type for value"); 4938 } 4939 4940 I = SelectInst::Create(Cond, TrueVal, FalseVal); 4941 InstructionList.push_back(I); 4942 break; 4943 } 4944 4945 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 4946 unsigned OpNum = 0; 4947 Value *Vec, *Idx; 4948 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 4949 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 4950 return error("Invalid record"); 4951 if (!Vec->getType()->isVectorTy()) 4952 return error("Invalid type for value"); 4953 I = ExtractElementInst::Create(Vec, Idx); 4954 InstructionList.push_back(I); 4955 break; 4956 } 4957 4958 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 4959 unsigned OpNum = 0; 4960 Value *Vec, *Elt, *Idx; 4961 if (getValueTypePair(Record, OpNum, NextValueNo, Vec)) 4962 return error("Invalid record"); 4963 if (!Vec->getType()->isVectorTy()) 4964 return error("Invalid type for value"); 4965 if (popValue(Record, OpNum, NextValueNo, 4966 cast<VectorType>(Vec->getType())->getElementType(), Elt) || 4967 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 4968 return error("Invalid record"); 4969 I = InsertElementInst::Create(Vec, Elt, Idx); 4970 InstructionList.push_back(I); 4971 break; 4972 } 4973 4974 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 4975 unsigned OpNum = 0; 4976 Value *Vec1, *Vec2, *Mask; 4977 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) || 4978 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2)) 4979 return error("Invalid record"); 4980 4981 if (getValueTypePair(Record, OpNum, NextValueNo, Mask)) 4982 return error("Invalid record"); 4983 if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy()) 4984 return error("Invalid type for value"); 4985 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 4986 InstructionList.push_back(I); 4987 break; 4988 } 4989 4990 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 4991 // Old form of ICmp/FCmp returning bool 4992 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 4993 // both legal on vectors but had different behaviour. 4994 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 4995 // FCmp/ICmp returning bool or vector of bool 4996 4997 unsigned OpNum = 0; 4998 Value *LHS, *RHS; 4999 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 5000 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS)) 5001 return error("Invalid record"); 5002 5003 unsigned PredVal = Record[OpNum]; 5004 bool IsFP = LHS->getType()->isFPOrFPVectorTy(); 5005 FastMathFlags FMF; 5006 if (IsFP && Record.size() > OpNum+1) 5007 FMF = getDecodedFastMathFlags(Record[++OpNum]); 5008 5009 if (OpNum+1 != Record.size()) 5010 return error("Invalid record"); 5011 5012 if (LHS->getType()->isFPOrFPVectorTy()) 5013 I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS); 5014 else 5015 I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS); 5016 5017 if (FMF.any()) 5018 I->setFastMathFlags(FMF); 5019 InstructionList.push_back(I); 5020 break; 5021 } 5022 5023 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 5024 { 5025 unsigned Size = Record.size(); 5026 if (Size == 0) { 5027 I = ReturnInst::Create(Context); 5028 InstructionList.push_back(I); 5029 break; 5030 } 5031 5032 unsigned OpNum = 0; 5033 Value *Op = nullptr; 5034 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 5035 return error("Invalid record"); 5036 if (OpNum != Record.size()) 5037 return error("Invalid record"); 5038 5039 I = ReturnInst::Create(Context, Op); 5040 InstructionList.push_back(I); 5041 break; 5042 } 5043 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 5044 if (Record.size() != 1 && Record.size() != 3) 5045 return error("Invalid record"); 5046 BasicBlock *TrueDest = getBasicBlock(Record[0]); 5047 if (!TrueDest) 5048 return error("Invalid record"); 5049 5050 if (Record.size() == 1) { 5051 I = BranchInst::Create(TrueDest); 5052 InstructionList.push_back(I); 5053 } 5054 else { 5055 BasicBlock *FalseDest = getBasicBlock(Record[1]); 5056 Value *Cond = getValue(Record, 2, NextValueNo, 5057 Type::getInt1Ty(Context)); 5058 if (!FalseDest || !Cond) 5059 return error("Invalid record"); 5060 I = BranchInst::Create(TrueDest, FalseDest, Cond); 5061 InstructionList.push_back(I); 5062 } 5063 break; 5064 } 5065 case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#] 5066 if (Record.size() != 1 && Record.size() != 2) 5067 return error("Invalid record"); 5068 unsigned Idx = 0; 5069 Value *CleanupPad = 5070 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 5071 if (!CleanupPad) 5072 return error("Invalid record"); 5073 BasicBlock *UnwindDest = nullptr; 5074 if (Record.size() == 2) { 5075 UnwindDest = getBasicBlock(Record[Idx++]); 5076 if (!UnwindDest) 5077 return error("Invalid record"); 5078 } 5079 5080 I = CleanupReturnInst::Create(CleanupPad, UnwindDest); 5081 InstructionList.push_back(I); 5082 break; 5083 } 5084 case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#] 5085 if (Record.size() != 2) 5086 return error("Invalid record"); 5087 unsigned Idx = 0; 5088 Value *CatchPad = 5089 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 5090 if (!CatchPad) 5091 return error("Invalid record"); 5092 BasicBlock *BB = getBasicBlock(Record[Idx++]); 5093 if (!BB) 5094 return error("Invalid record"); 5095 5096 I = CatchReturnInst::Create(CatchPad, BB); 5097 InstructionList.push_back(I); 5098 break; 5099 } 5100 case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?] 5101 // We must have, at minimum, the outer scope and the number of arguments. 5102 if (Record.size() < 2) 5103 return error("Invalid record"); 5104 5105 unsigned Idx = 0; 5106 5107 Value *ParentPad = 5108 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 5109 5110 unsigned NumHandlers = Record[Idx++]; 5111 5112 SmallVector<BasicBlock *, 2> Handlers; 5113 for (unsigned Op = 0; Op != NumHandlers; ++Op) { 5114 BasicBlock *BB = getBasicBlock(Record[Idx++]); 5115 if (!BB) 5116 return error("Invalid record"); 5117 Handlers.push_back(BB); 5118 } 5119 5120 BasicBlock *UnwindDest = nullptr; 5121 if (Idx + 1 == Record.size()) { 5122 UnwindDest = getBasicBlock(Record[Idx++]); 5123 if (!UnwindDest) 5124 return error("Invalid record"); 5125 } 5126 5127 if (Record.size() != Idx) 5128 return error("Invalid record"); 5129 5130 auto *CatchSwitch = 5131 CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers); 5132 for (BasicBlock *Handler : Handlers) 5133 CatchSwitch->addHandler(Handler); 5134 I = CatchSwitch; 5135 InstructionList.push_back(I); 5136 break; 5137 } 5138 case bitc::FUNC_CODE_INST_CATCHPAD: 5139 case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*] 5140 // We must have, at minimum, the outer scope and the number of arguments. 5141 if (Record.size() < 2) 5142 return error("Invalid record"); 5143 5144 unsigned Idx = 0; 5145 5146 Value *ParentPad = 5147 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 5148 5149 unsigned NumArgOperands = Record[Idx++]; 5150 5151 SmallVector<Value *, 2> Args; 5152 for (unsigned Op = 0; Op != NumArgOperands; ++Op) { 5153 Value *Val; 5154 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 5155 return error("Invalid record"); 5156 Args.push_back(Val); 5157 } 5158 5159 if (Record.size() != Idx) 5160 return error("Invalid record"); 5161 5162 if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD) 5163 I = CleanupPadInst::Create(ParentPad, Args); 5164 else 5165 I = CatchPadInst::Create(ParentPad, Args); 5166 InstructionList.push_back(I); 5167 break; 5168 } 5169 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 5170 // Check magic 5171 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { 5172 // "New" SwitchInst format with case ranges. The changes to write this 5173 // format were reverted but we still recognize bitcode that uses it. 5174 // Hopefully someday we will have support for case ranges and can use 5175 // this format again. 5176 5177 Type *OpTy = getTypeByID(Record[1]); 5178 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); 5179 5180 Value *Cond = getValue(Record, 2, NextValueNo, OpTy); 5181 BasicBlock *Default = getBasicBlock(Record[3]); 5182 if (!OpTy || !Cond || !Default) 5183 return error("Invalid record"); 5184 5185 unsigned NumCases = Record[4]; 5186 5187 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 5188 InstructionList.push_back(SI); 5189 5190 unsigned CurIdx = 5; 5191 for (unsigned i = 0; i != NumCases; ++i) { 5192 SmallVector<ConstantInt*, 1> CaseVals; 5193 unsigned NumItems = Record[CurIdx++]; 5194 for (unsigned ci = 0; ci != NumItems; ++ci) { 5195 bool isSingleNumber = Record[CurIdx++]; 5196 5197 APInt Low; 5198 unsigned ActiveWords = 1; 5199 if (ValueBitWidth > 64) 5200 ActiveWords = Record[CurIdx++]; 5201 Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 5202 ValueBitWidth); 5203 CurIdx += ActiveWords; 5204 5205 if (!isSingleNumber) { 5206 ActiveWords = 1; 5207 if (ValueBitWidth > 64) 5208 ActiveWords = Record[CurIdx++]; 5209 APInt High = readWideAPInt( 5210 makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth); 5211 CurIdx += ActiveWords; 5212 5213 // FIXME: It is not clear whether values in the range should be 5214 // compared as signed or unsigned values. The partially 5215 // implemented changes that used this format in the past used 5216 // unsigned comparisons. 5217 for ( ; Low.ule(High); ++Low) 5218 CaseVals.push_back(ConstantInt::get(Context, Low)); 5219 } else 5220 CaseVals.push_back(ConstantInt::get(Context, Low)); 5221 } 5222 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); 5223 for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(), 5224 cve = CaseVals.end(); cvi != cve; ++cvi) 5225 SI->addCase(*cvi, DestBB); 5226 } 5227 I = SI; 5228 break; 5229 } 5230 5231 // Old SwitchInst format without case ranges. 5232 5233 if (Record.size() < 3 || (Record.size() & 1) == 0) 5234 return error("Invalid record"); 5235 Type *OpTy = getTypeByID(Record[0]); 5236 Value *Cond = getValue(Record, 1, NextValueNo, OpTy); 5237 BasicBlock *Default = getBasicBlock(Record[2]); 5238 if (!OpTy || !Cond || !Default) 5239 return error("Invalid record"); 5240 unsigned NumCases = (Record.size()-3)/2; 5241 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 5242 InstructionList.push_back(SI); 5243 for (unsigned i = 0, e = NumCases; i != e; ++i) { 5244 ConstantInt *CaseVal = 5245 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy)); 5246 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 5247 if (!CaseVal || !DestBB) { 5248 delete SI; 5249 return error("Invalid record"); 5250 } 5251 SI->addCase(CaseVal, DestBB); 5252 } 5253 I = SI; 5254 break; 5255 } 5256 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 5257 if (Record.size() < 2) 5258 return error("Invalid record"); 5259 Type *OpTy = getTypeByID(Record[0]); 5260 Value *Address = getValue(Record, 1, NextValueNo, OpTy); 5261 if (!OpTy || !Address) 5262 return error("Invalid record"); 5263 unsigned NumDests = Record.size()-2; 5264 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 5265 InstructionList.push_back(IBI); 5266 for (unsigned i = 0, e = NumDests; i != e; ++i) { 5267 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 5268 IBI->addDestination(DestBB); 5269 } else { 5270 delete IBI; 5271 return error("Invalid record"); 5272 } 5273 } 5274 I = IBI; 5275 break; 5276 } 5277 5278 case bitc::FUNC_CODE_INST_INVOKE: { 5279 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 5280 if (Record.size() < 4) 5281 return error("Invalid record"); 5282 unsigned OpNum = 0; 5283 AttributeSet PAL = getAttributes(Record[OpNum++]); 5284 unsigned CCInfo = Record[OpNum++]; 5285 BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]); 5286 BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]); 5287 5288 FunctionType *FTy = nullptr; 5289 if (CCInfo >> 13 & 1 && 5290 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])))) 5291 return error("Explicit invoke type is not a function type"); 5292 5293 Value *Callee; 5294 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 5295 return error("Invalid record"); 5296 5297 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 5298 if (!CalleeTy) 5299 return error("Callee is not a pointer"); 5300 if (!FTy) { 5301 FTy = dyn_cast<FunctionType>(CalleeTy->getElementType()); 5302 if (!FTy) 5303 return error("Callee is not of pointer to function type"); 5304 } else if (CalleeTy->getElementType() != FTy) 5305 return error("Explicit invoke type does not match pointee type of " 5306 "callee operand"); 5307 if (Record.size() < FTy->getNumParams() + OpNum) 5308 return error("Insufficient operands to call"); 5309 5310 SmallVector<Value*, 16> Ops; 5311 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 5312 Ops.push_back(getValue(Record, OpNum, NextValueNo, 5313 FTy->getParamType(i))); 5314 if (!Ops.back()) 5315 return error("Invalid record"); 5316 } 5317 5318 if (!FTy->isVarArg()) { 5319 if (Record.size() != OpNum) 5320 return error("Invalid record"); 5321 } else { 5322 // Read type/value pairs for varargs params. 5323 while (OpNum != Record.size()) { 5324 Value *Op; 5325 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 5326 return error("Invalid record"); 5327 Ops.push_back(Op); 5328 } 5329 } 5330 5331 I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops, OperandBundles); 5332 OperandBundles.clear(); 5333 InstructionList.push_back(I); 5334 cast<InvokeInst>(I)->setCallingConv( 5335 static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo)); 5336 cast<InvokeInst>(I)->setAttributes(PAL); 5337 break; 5338 } 5339 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 5340 unsigned Idx = 0; 5341 Value *Val = nullptr; 5342 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 5343 return error("Invalid record"); 5344 I = ResumeInst::Create(Val); 5345 InstructionList.push_back(I); 5346 break; 5347 } 5348 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 5349 I = new UnreachableInst(Context); 5350 InstructionList.push_back(I); 5351 break; 5352 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 5353 if (Record.size() < 1 || ((Record.size()-1)&1)) 5354 return error("Invalid record"); 5355 Type *Ty = getTypeByID(Record[0]); 5356 if (!Ty) 5357 return error("Invalid record"); 5358 5359 PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2); 5360 InstructionList.push_back(PN); 5361 5362 for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) { 5363 Value *V; 5364 // With the new function encoding, it is possible that operands have 5365 // negative IDs (for forward references). Use a signed VBR 5366 // representation to keep the encoding small. 5367 if (UseRelativeIDs) 5368 V = getValueSigned(Record, 1+i, NextValueNo, Ty); 5369 else 5370 V = getValue(Record, 1+i, NextValueNo, Ty); 5371 BasicBlock *BB = getBasicBlock(Record[2+i]); 5372 if (!V || !BB) 5373 return error("Invalid record"); 5374 PN->addIncoming(V, BB); 5375 } 5376 I = PN; 5377 break; 5378 } 5379 5380 case bitc::FUNC_CODE_INST_LANDINGPAD: 5381 case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: { 5382 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 5383 unsigned Idx = 0; 5384 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) { 5385 if (Record.size() < 3) 5386 return error("Invalid record"); 5387 } else { 5388 assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD); 5389 if (Record.size() < 4) 5390 return error("Invalid record"); 5391 } 5392 Type *Ty = getTypeByID(Record[Idx++]); 5393 if (!Ty) 5394 return error("Invalid record"); 5395 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) { 5396 Value *PersFn = nullptr; 5397 if (getValueTypePair(Record, Idx, NextValueNo, PersFn)) 5398 return error("Invalid record"); 5399 5400 if (!F->hasPersonalityFn()) 5401 F->setPersonalityFn(cast<Constant>(PersFn)); 5402 else if (F->getPersonalityFn() != cast<Constant>(PersFn)) 5403 return error("Personality function mismatch"); 5404 } 5405 5406 bool IsCleanup = !!Record[Idx++]; 5407 unsigned NumClauses = Record[Idx++]; 5408 LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses); 5409 LP->setCleanup(IsCleanup); 5410 for (unsigned J = 0; J != NumClauses; ++J) { 5411 LandingPadInst::ClauseType CT = 5412 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 5413 Value *Val; 5414 5415 if (getValueTypePair(Record, Idx, NextValueNo, Val)) { 5416 delete LP; 5417 return error("Invalid record"); 5418 } 5419 5420 assert((CT != LandingPadInst::Catch || 5421 !isa<ArrayType>(Val->getType())) && 5422 "Catch clause has a invalid type!"); 5423 assert((CT != LandingPadInst::Filter || 5424 isa<ArrayType>(Val->getType())) && 5425 "Filter clause has invalid type!"); 5426 LP->addClause(cast<Constant>(Val)); 5427 } 5428 5429 I = LP; 5430 InstructionList.push_back(I); 5431 break; 5432 } 5433 5434 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 5435 if (Record.size() != 4) 5436 return error("Invalid record"); 5437 uint64_t AlignRecord = Record[3]; 5438 const uint64_t InAllocaMask = uint64_t(1) << 5; 5439 const uint64_t ExplicitTypeMask = uint64_t(1) << 6; 5440 const uint64_t SwiftErrorMask = uint64_t(1) << 7; 5441 const uint64_t FlagMask = InAllocaMask | ExplicitTypeMask | 5442 SwiftErrorMask; 5443 bool InAlloca = AlignRecord & InAllocaMask; 5444 bool SwiftError = AlignRecord & SwiftErrorMask; 5445 Type *Ty = getTypeByID(Record[0]); 5446 if ((AlignRecord & ExplicitTypeMask) == 0) { 5447 auto *PTy = dyn_cast_or_null<PointerType>(Ty); 5448 if (!PTy) 5449 return error("Old-style alloca with a non-pointer type"); 5450 Ty = PTy->getElementType(); 5451 } 5452 Type *OpTy = getTypeByID(Record[1]); 5453 Value *Size = getFnValueByID(Record[2], OpTy); 5454 unsigned Align; 5455 if (std::error_code EC = 5456 parseAlignmentValue(AlignRecord & ~FlagMask, Align)) { 5457 return EC; 5458 } 5459 if (!Ty || !Size) 5460 return error("Invalid record"); 5461 AllocaInst *AI = new AllocaInst(Ty, Size, Align); 5462 AI->setUsedWithInAlloca(InAlloca); 5463 AI->setSwiftError(SwiftError); 5464 I = AI; 5465 InstructionList.push_back(I); 5466 break; 5467 } 5468 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 5469 unsigned OpNum = 0; 5470 Value *Op; 5471 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 5472 (OpNum + 2 != Record.size() && OpNum + 3 != Record.size())) 5473 return error("Invalid record"); 5474 5475 Type *Ty = nullptr; 5476 if (OpNum + 3 == Record.size()) 5477 Ty = getTypeByID(Record[OpNum++]); 5478 if (std::error_code EC = typeCheckLoadStoreInst(Ty, Op->getType())) 5479 return EC; 5480 if (!Ty) 5481 Ty = cast<PointerType>(Op->getType())->getElementType(); 5482 5483 unsigned Align; 5484 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 5485 return EC; 5486 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], Align); 5487 5488 InstructionList.push_back(I); 5489 break; 5490 } 5491 case bitc::FUNC_CODE_INST_LOADATOMIC: { 5492 // LOADATOMIC: [opty, op, align, vol, ordering, synchscope] 5493 unsigned OpNum = 0; 5494 Value *Op; 5495 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 5496 (OpNum + 4 != Record.size() && OpNum + 5 != Record.size())) 5497 return error("Invalid record"); 5498 5499 Type *Ty = nullptr; 5500 if (OpNum + 5 == Record.size()) 5501 Ty = getTypeByID(Record[OpNum++]); 5502 if (std::error_code EC = typeCheckLoadStoreInst(Ty, Op->getType())) 5503 return EC; 5504 if (!Ty) 5505 Ty = cast<PointerType>(Op->getType())->getElementType(); 5506 5507 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 5508 if (Ordering == AtomicOrdering::NotAtomic || 5509 Ordering == AtomicOrdering::Release || 5510 Ordering == AtomicOrdering::AcquireRelease) 5511 return error("Invalid record"); 5512 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 5513 return error("Invalid record"); 5514 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]); 5515 5516 unsigned Align; 5517 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 5518 return EC; 5519 I = new LoadInst(Op, "", Record[OpNum+1], Align, Ordering, SynchScope); 5520 5521 InstructionList.push_back(I); 5522 break; 5523 } 5524 case bitc::FUNC_CODE_INST_STORE: 5525 case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol] 5526 unsigned OpNum = 0; 5527 Value *Val, *Ptr; 5528 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 5529 (BitCode == bitc::FUNC_CODE_INST_STORE 5530 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 5531 : popValue(Record, OpNum, NextValueNo, 5532 cast<PointerType>(Ptr->getType())->getElementType(), 5533 Val)) || 5534 OpNum + 2 != Record.size()) 5535 return error("Invalid record"); 5536 5537 if (std::error_code EC = 5538 typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 5539 return EC; 5540 unsigned Align; 5541 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 5542 return EC; 5543 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align); 5544 InstructionList.push_back(I); 5545 break; 5546 } 5547 case bitc::FUNC_CODE_INST_STOREATOMIC: 5548 case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: { 5549 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, synchscope] 5550 unsigned OpNum = 0; 5551 Value *Val, *Ptr; 5552 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 5553 !isa<PointerType>(Ptr->getType()) || 5554 (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC 5555 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 5556 : popValue(Record, OpNum, NextValueNo, 5557 cast<PointerType>(Ptr->getType())->getElementType(), 5558 Val)) || 5559 OpNum + 4 != Record.size()) 5560 return error("Invalid record"); 5561 5562 if (std::error_code EC = 5563 typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 5564 return EC; 5565 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 5566 if (Ordering == AtomicOrdering::NotAtomic || 5567 Ordering == AtomicOrdering::Acquire || 5568 Ordering == AtomicOrdering::AcquireRelease) 5569 return error("Invalid record"); 5570 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]); 5571 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 5572 return error("Invalid record"); 5573 5574 unsigned Align; 5575 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 5576 return EC; 5577 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align, Ordering, SynchScope); 5578 InstructionList.push_back(I); 5579 break; 5580 } 5581 case bitc::FUNC_CODE_INST_CMPXCHG_OLD: 5582 case bitc::FUNC_CODE_INST_CMPXCHG: { 5583 // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, synchscope, 5584 // failureordering?, isweak?] 5585 unsigned OpNum = 0; 5586 Value *Ptr, *Cmp, *New; 5587 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 5588 (BitCode == bitc::FUNC_CODE_INST_CMPXCHG 5589 ? getValueTypePair(Record, OpNum, NextValueNo, Cmp) 5590 : popValue(Record, OpNum, NextValueNo, 5591 cast<PointerType>(Ptr->getType())->getElementType(), 5592 Cmp)) || 5593 popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) || 5594 Record.size() < OpNum + 3 || Record.size() > OpNum + 5) 5595 return error("Invalid record"); 5596 AtomicOrdering SuccessOrdering = getDecodedOrdering(Record[OpNum + 1]); 5597 if (SuccessOrdering == AtomicOrdering::NotAtomic || 5598 SuccessOrdering == AtomicOrdering::Unordered) 5599 return error("Invalid record"); 5600 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 2]); 5601 5602 if (std::error_code EC = 5603 typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType())) 5604 return EC; 5605 AtomicOrdering FailureOrdering; 5606 if (Record.size() < 7) 5607 FailureOrdering = 5608 AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering); 5609 else 5610 FailureOrdering = getDecodedOrdering(Record[OpNum + 3]); 5611 5612 I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering, 5613 SynchScope); 5614 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 5615 5616 if (Record.size() < 8) { 5617 // Before weak cmpxchgs existed, the instruction simply returned the 5618 // value loaded from memory, so bitcode files from that era will be 5619 // expecting the first component of a modern cmpxchg. 5620 CurBB->getInstList().push_back(I); 5621 I = ExtractValueInst::Create(I, 0); 5622 } else { 5623 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]); 5624 } 5625 5626 InstructionList.push_back(I); 5627 break; 5628 } 5629 case bitc::FUNC_CODE_INST_ATOMICRMW: { 5630 // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, synchscope] 5631 unsigned OpNum = 0; 5632 Value *Ptr, *Val; 5633 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 5634 !isa<PointerType>(Ptr->getType()) || 5635 popValue(Record, OpNum, NextValueNo, 5636 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 5637 OpNum+4 != Record.size()) 5638 return error("Invalid record"); 5639 AtomicRMWInst::BinOp Operation = getDecodedRMWOperation(Record[OpNum]); 5640 if (Operation < AtomicRMWInst::FIRST_BINOP || 5641 Operation > AtomicRMWInst::LAST_BINOP) 5642 return error("Invalid record"); 5643 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 5644 if (Ordering == AtomicOrdering::NotAtomic || 5645 Ordering == AtomicOrdering::Unordered) 5646 return error("Invalid record"); 5647 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]); 5648 I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SynchScope); 5649 cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]); 5650 InstructionList.push_back(I); 5651 break; 5652 } 5653 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, synchscope] 5654 if (2 != Record.size()) 5655 return error("Invalid record"); 5656 AtomicOrdering Ordering = getDecodedOrdering(Record[0]); 5657 if (Ordering == AtomicOrdering::NotAtomic || 5658 Ordering == AtomicOrdering::Unordered || 5659 Ordering == AtomicOrdering::Monotonic) 5660 return error("Invalid record"); 5661 SynchronizationScope SynchScope = getDecodedSynchScope(Record[1]); 5662 I = new FenceInst(Context, Ordering, SynchScope); 5663 InstructionList.push_back(I); 5664 break; 5665 } 5666 case bitc::FUNC_CODE_INST_CALL: { 5667 // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...] 5668 if (Record.size() < 3) 5669 return error("Invalid record"); 5670 5671 unsigned OpNum = 0; 5672 AttributeSet PAL = getAttributes(Record[OpNum++]); 5673 unsigned CCInfo = Record[OpNum++]; 5674 5675 FastMathFlags FMF; 5676 if ((CCInfo >> bitc::CALL_FMF) & 1) { 5677 FMF = getDecodedFastMathFlags(Record[OpNum++]); 5678 if (!FMF.any()) 5679 return error("Fast math flags indicator set for call with no FMF"); 5680 } 5681 5682 FunctionType *FTy = nullptr; 5683 if (CCInfo >> bitc::CALL_EXPLICIT_TYPE & 1 && 5684 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])))) 5685 return error("Explicit call type is not a function type"); 5686 5687 Value *Callee; 5688 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 5689 return error("Invalid record"); 5690 5691 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 5692 if (!OpTy) 5693 return error("Callee is not a pointer type"); 5694 if (!FTy) { 5695 FTy = dyn_cast<FunctionType>(OpTy->getElementType()); 5696 if (!FTy) 5697 return error("Callee is not of pointer to function type"); 5698 } else if (OpTy->getElementType() != FTy) 5699 return error("Explicit call type does not match pointee type of " 5700 "callee operand"); 5701 if (Record.size() < FTy->getNumParams() + OpNum) 5702 return error("Insufficient operands to call"); 5703 5704 SmallVector<Value*, 16> Args; 5705 // Read the fixed params. 5706 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 5707 if (FTy->getParamType(i)->isLabelTy()) 5708 Args.push_back(getBasicBlock(Record[OpNum])); 5709 else 5710 Args.push_back(getValue(Record, OpNum, NextValueNo, 5711 FTy->getParamType(i))); 5712 if (!Args.back()) 5713 return error("Invalid record"); 5714 } 5715 5716 // Read type/value pairs for varargs params. 5717 if (!FTy->isVarArg()) { 5718 if (OpNum != Record.size()) 5719 return error("Invalid record"); 5720 } else { 5721 while (OpNum != Record.size()) { 5722 Value *Op; 5723 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 5724 return error("Invalid record"); 5725 Args.push_back(Op); 5726 } 5727 } 5728 5729 I = CallInst::Create(FTy, Callee, Args, OperandBundles); 5730 OperandBundles.clear(); 5731 InstructionList.push_back(I); 5732 cast<CallInst>(I)->setCallingConv( 5733 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 5734 CallInst::TailCallKind TCK = CallInst::TCK_None; 5735 if (CCInfo & 1 << bitc::CALL_TAIL) 5736 TCK = CallInst::TCK_Tail; 5737 if (CCInfo & (1 << bitc::CALL_MUSTTAIL)) 5738 TCK = CallInst::TCK_MustTail; 5739 if (CCInfo & (1 << bitc::CALL_NOTAIL)) 5740 TCK = CallInst::TCK_NoTail; 5741 cast<CallInst>(I)->setTailCallKind(TCK); 5742 cast<CallInst>(I)->setAttributes(PAL); 5743 if (FMF.any()) { 5744 if (!isa<FPMathOperator>(I)) 5745 return error("Fast-math-flags specified for call without " 5746 "floating-point scalar or vector return type"); 5747 I->setFastMathFlags(FMF); 5748 } 5749 break; 5750 } 5751 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 5752 if (Record.size() < 3) 5753 return error("Invalid record"); 5754 Type *OpTy = getTypeByID(Record[0]); 5755 Value *Op = getValue(Record, 1, NextValueNo, OpTy); 5756 Type *ResTy = getTypeByID(Record[2]); 5757 if (!OpTy || !Op || !ResTy) 5758 return error("Invalid record"); 5759 I = new VAArgInst(Op, ResTy); 5760 InstructionList.push_back(I); 5761 break; 5762 } 5763 5764 case bitc::FUNC_CODE_OPERAND_BUNDLE: { 5765 // A call or an invoke can be optionally prefixed with some variable 5766 // number of operand bundle blocks. These blocks are read into 5767 // OperandBundles and consumed at the next call or invoke instruction. 5768 5769 if (Record.size() < 1 || Record[0] >= BundleTags.size()) 5770 return error("Invalid record"); 5771 5772 std::vector<Value *> Inputs; 5773 5774 unsigned OpNum = 1; 5775 while (OpNum != Record.size()) { 5776 Value *Op; 5777 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 5778 return error("Invalid record"); 5779 Inputs.push_back(Op); 5780 } 5781 5782 OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs)); 5783 continue; 5784 } 5785 } 5786 5787 // Add instruction to end of current BB. If there is no current BB, reject 5788 // this file. 5789 if (!CurBB) { 5790 delete I; 5791 return error("Invalid instruction with no BB"); 5792 } 5793 if (!OperandBundles.empty()) { 5794 delete I; 5795 return error("Operand bundles found with no consumer"); 5796 } 5797 CurBB->getInstList().push_back(I); 5798 5799 // If this was a terminator instruction, move to the next block. 5800 if (isa<TerminatorInst>(I)) { 5801 ++CurBBNo; 5802 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr; 5803 } 5804 5805 // Non-void values get registered in the value table for future use. 5806 if (I && !I->getType()->isVoidTy()) 5807 ValueList.assignValue(I, NextValueNo++); 5808 } 5809 5810 OutOfRecordLoop: 5811 5812 if (!OperandBundles.empty()) 5813 return error("Operand bundles found with no consumer"); 5814 5815 // Check the function list for unresolved values. 5816 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 5817 if (!A->getParent()) { 5818 // We found at least one unresolved value. Nuke them all to avoid leaks. 5819 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 5820 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) { 5821 A->replaceAllUsesWith(UndefValue::get(A->getType())); 5822 delete A; 5823 } 5824 } 5825 return error("Never resolved value found in function"); 5826 } 5827 } 5828 5829 // Unexpected unresolved metadata about to be dropped. 5830 if (MetadataList.hasFwdRefs()) 5831 return error("Invalid function metadata: outgoing forward refs"); 5832 5833 // Trim the value list down to the size it was before we parsed this function. 5834 ValueList.shrinkTo(ModuleValueListSize); 5835 MetadataList.shrinkTo(ModuleMetadataListSize); 5836 std::vector<BasicBlock*>().swap(FunctionBBs); 5837 return std::error_code(); 5838 } 5839 5840 /// Find the function body in the bitcode stream 5841 std::error_code BitcodeReader::findFunctionInStream( 5842 Function *F, 5843 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) { 5844 while (DeferredFunctionInfoIterator->second == 0) { 5845 // This is the fallback handling for the old format bitcode that 5846 // didn't contain the function index in the VST, or when we have 5847 // an anonymous function which would not have a VST entry. 5848 // Assert that we have one of those two cases. 5849 assert(VSTOffset == 0 || !F->hasName()); 5850 // Parse the next body in the stream and set its position in the 5851 // DeferredFunctionInfo map. 5852 if (std::error_code EC = rememberAndSkipFunctionBodies()) 5853 return EC; 5854 } 5855 return std::error_code(); 5856 } 5857 5858 //===----------------------------------------------------------------------===// 5859 // GVMaterializer implementation 5860 //===----------------------------------------------------------------------===// 5861 5862 std::error_code BitcodeReader::materialize(GlobalValue *GV) { 5863 Function *F = dyn_cast<Function>(GV); 5864 // If it's not a function or is already material, ignore the request. 5865 if (!F || !F->isMaterializable()) 5866 return std::error_code(); 5867 5868 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 5869 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 5870 // If its position is recorded as 0, its body is somewhere in the stream 5871 // but we haven't seen it yet. 5872 if (DFII->second == 0) 5873 if (std::error_code EC = findFunctionInStream(F, DFII)) 5874 return EC; 5875 5876 // Materialize metadata before parsing any function bodies. 5877 if (std::error_code EC = materializeMetadata()) 5878 return EC; 5879 5880 // Move the bit stream to the saved position of the deferred function body. 5881 Stream.JumpToBit(DFII->second); 5882 5883 if (std::error_code EC = parseFunctionBody(F)) 5884 return EC; 5885 F->setIsMaterializable(false); 5886 5887 if (StripDebugInfo) 5888 stripDebugInfo(*F); 5889 5890 // Upgrade any old intrinsic calls in the function. 5891 for (auto &I : UpgradedIntrinsics) { 5892 for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end(); 5893 UI != UE;) { 5894 User *U = *UI; 5895 ++UI; 5896 if (CallInst *CI = dyn_cast<CallInst>(U)) 5897 UpgradeIntrinsicCall(CI, I.second); 5898 } 5899 } 5900 5901 // Update calls to the remangled intrinsics 5902 for (auto &I : RemangledIntrinsics) 5903 for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end(); 5904 UI != UE;) 5905 // Don't expect any other users than call sites 5906 CallSite(*UI++).setCalledFunction(I.second); 5907 5908 // Finish fn->subprogram upgrade for materialized functions. 5909 if (DISubprogram *SP = FunctionsWithSPs.lookup(F)) 5910 F->setSubprogram(SP); 5911 5912 // Bring in any functions that this function forward-referenced via 5913 // blockaddresses. 5914 return materializeForwardReferencedFunctions(); 5915 } 5916 5917 std::error_code BitcodeReader::materializeModule() { 5918 if (std::error_code EC = materializeMetadata()) 5919 return EC; 5920 5921 // Promise to materialize all forward references. 5922 WillMaterializeAllForwardRefs = true; 5923 5924 // Iterate over the module, deserializing any functions that are still on 5925 // disk. 5926 for (Function &F : *TheModule) { 5927 if (std::error_code EC = materialize(&F)) 5928 return EC; 5929 } 5930 // At this point, if there are any function bodies, parse the rest of 5931 // the bits in the module past the last function block we have recorded 5932 // through either lazy scanning or the VST. 5933 if (LastFunctionBlockBit || NextUnreadBit) 5934 parseModule(LastFunctionBlockBit > NextUnreadBit ? LastFunctionBlockBit 5935 : NextUnreadBit); 5936 5937 // Check that all block address forward references got resolved (as we 5938 // promised above). 5939 if (!BasicBlockFwdRefs.empty()) 5940 return error("Never resolved function from blockaddress"); 5941 5942 // Upgrade any intrinsic calls that slipped through (should not happen!) and 5943 // delete the old functions to clean up. We can't do this unless the entire 5944 // module is materialized because there could always be another function body 5945 // with calls to the old function. 5946 for (auto &I : UpgradedIntrinsics) { 5947 for (auto *U : I.first->users()) { 5948 if (CallInst *CI = dyn_cast<CallInst>(U)) 5949 UpgradeIntrinsicCall(CI, I.second); 5950 } 5951 if (!I.first->use_empty()) 5952 I.first->replaceAllUsesWith(I.second); 5953 I.first->eraseFromParent(); 5954 } 5955 UpgradedIntrinsics.clear(); 5956 // Do the same for remangled intrinsics 5957 for (auto &I : RemangledIntrinsics) { 5958 I.first->replaceAllUsesWith(I.second); 5959 I.first->eraseFromParent(); 5960 } 5961 RemangledIntrinsics.clear(); 5962 5963 UpgradeDebugInfo(*TheModule); 5964 5965 UpgradeModuleFlags(*TheModule); 5966 return std::error_code(); 5967 } 5968 5969 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const { 5970 return IdentifiedStructTypes; 5971 } 5972 5973 std::error_code ModuleSummaryIndexBitcodeReader::error(const Twine &Message) { 5974 return ::error(DiagnosticHandler, 5975 make_error_code(BitcodeError::CorruptedBitcode), Message); 5976 } 5977 5978 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader( 5979 MemoryBufferRef Buffer, DiagnosticHandlerFunction DiagnosticHandler, 5980 bool CheckGlobalValSummaryPresenceOnly) 5981 : BitcodeReaderBase(Buffer), 5982 DiagnosticHandler(std::move(DiagnosticHandler)), 5983 CheckGlobalValSummaryPresenceOnly(CheckGlobalValSummaryPresenceOnly) {} 5984 5985 std::pair<GlobalValue::GUID, GlobalValue::GUID> 5986 ModuleSummaryIndexBitcodeReader::getGUIDFromValueId(unsigned ValueId) { 5987 auto VGI = ValueIdToCallGraphGUIDMap.find(ValueId); 5988 assert(VGI != ValueIdToCallGraphGUIDMap.end()); 5989 return VGI->second; 5990 } 5991 5992 // Specialized value symbol table parser used when reading module index 5993 // blocks where we don't actually create global values. The parsed information 5994 // is saved in the bitcode reader for use when later parsing summaries. 5995 std::error_code ModuleSummaryIndexBitcodeReader::parseValueSymbolTable( 5996 uint64_t Offset, 5997 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) { 5998 assert(Offset > 0 && "Expected non-zero VST offset"); 5999 uint64_t CurrentBit = jumpToValueSymbolTable(Offset, Stream); 6000 6001 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 6002 return error("Invalid record"); 6003 6004 SmallVector<uint64_t, 64> Record; 6005 6006 // Read all the records for this value table. 6007 SmallString<128> ValueName; 6008 6009 while (true) { 6010 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 6011 6012 switch (Entry.Kind) { 6013 case BitstreamEntry::SubBlock: // Handled for us already. 6014 case BitstreamEntry::Error: 6015 return error("Malformed block"); 6016 case BitstreamEntry::EndBlock: 6017 // Done parsing VST, jump back to wherever we came from. 6018 Stream.JumpToBit(CurrentBit); 6019 return std::error_code(); 6020 case BitstreamEntry::Record: 6021 // The interesting case. 6022 break; 6023 } 6024 6025 // Read a record. 6026 Record.clear(); 6027 switch (Stream.readRecord(Entry.ID, Record)) { 6028 default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records). 6029 break; 6030 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 6031 if (convertToString(Record, 1, ValueName)) 6032 return error("Invalid record"); 6033 unsigned ValueID = Record[0]; 6034 assert(!SourceFileName.empty()); 6035 auto VLI = ValueIdToLinkageMap.find(ValueID); 6036 assert(VLI != ValueIdToLinkageMap.end() && 6037 "No linkage found for VST entry?"); 6038 auto Linkage = VLI->second; 6039 std::string GlobalId = 6040 GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName); 6041 auto ValueGUID = GlobalValue::getGUID(GlobalId); 6042 auto OriginalNameID = ValueGUID; 6043 if (GlobalValue::isLocalLinkage(Linkage)) 6044 OriginalNameID = GlobalValue::getGUID(ValueName); 6045 if (PrintSummaryGUIDs) 6046 dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is " 6047 << ValueName << "\n"; 6048 ValueIdToCallGraphGUIDMap[ValueID] = 6049 std::make_pair(ValueGUID, OriginalNameID); 6050 ValueName.clear(); 6051 break; 6052 } 6053 case bitc::VST_CODE_FNENTRY: { 6054 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 6055 if (convertToString(Record, 2, ValueName)) 6056 return error("Invalid record"); 6057 unsigned ValueID = Record[0]; 6058 assert(!SourceFileName.empty()); 6059 auto VLI = ValueIdToLinkageMap.find(ValueID); 6060 assert(VLI != ValueIdToLinkageMap.end() && 6061 "No linkage found for VST entry?"); 6062 auto Linkage = VLI->second; 6063 std::string FunctionGlobalId = GlobalValue::getGlobalIdentifier( 6064 ValueName, VLI->second, SourceFileName); 6065 auto FunctionGUID = GlobalValue::getGUID(FunctionGlobalId); 6066 auto OriginalNameID = FunctionGUID; 6067 if (GlobalValue::isLocalLinkage(Linkage)) 6068 OriginalNameID = GlobalValue::getGUID(ValueName); 6069 if (PrintSummaryGUIDs) 6070 dbgs() << "GUID " << FunctionGUID << "(" << OriginalNameID << ") is " 6071 << ValueName << "\n"; 6072 ValueIdToCallGraphGUIDMap[ValueID] = 6073 std::make_pair(FunctionGUID, OriginalNameID); 6074 6075 ValueName.clear(); 6076 break; 6077 } 6078 case bitc::VST_CODE_COMBINED_ENTRY: { 6079 // VST_CODE_COMBINED_ENTRY: [valueid, refguid] 6080 unsigned ValueID = Record[0]; 6081 GlobalValue::GUID RefGUID = Record[1]; 6082 // The "original name", which is the second value of the pair will be 6083 // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index. 6084 ValueIdToCallGraphGUIDMap[ValueID] = std::make_pair(RefGUID, RefGUID); 6085 break; 6086 } 6087 } 6088 } 6089 } 6090 6091 // Parse just the blocks needed for building the index out of the module. 6092 // At the end of this routine the module Index is populated with a map 6093 // from global value id to GlobalValueSummary objects. 6094 std::error_code ModuleSummaryIndexBitcodeReader::parseModule() { 6095 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 6096 return error("Invalid record"); 6097 6098 SmallVector<uint64_t, 64> Record; 6099 DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap; 6100 unsigned ValueId = 0; 6101 6102 // Read the index for this module. 6103 while (true) { 6104 BitstreamEntry Entry = Stream.advance(); 6105 6106 switch (Entry.Kind) { 6107 case BitstreamEntry::Error: 6108 return error("Malformed block"); 6109 case BitstreamEntry::EndBlock: 6110 return std::error_code(); 6111 6112 case BitstreamEntry::SubBlock: 6113 if (CheckGlobalValSummaryPresenceOnly) { 6114 if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) { 6115 SeenGlobalValSummary = true; 6116 // No need to parse the rest since we found the summary. 6117 return std::error_code(); 6118 } 6119 if (Stream.SkipBlock()) 6120 return error("Invalid record"); 6121 continue; 6122 } 6123 switch (Entry.ID) { 6124 default: // Skip unknown content. 6125 if (Stream.SkipBlock()) 6126 return error("Invalid record"); 6127 break; 6128 case bitc::BLOCKINFO_BLOCK_ID: 6129 // Need to parse these to get abbrev ids (e.g. for VST) 6130 if (readBlockInfo()) 6131 return error("Malformed block"); 6132 break; 6133 case bitc::VALUE_SYMTAB_BLOCK_ID: 6134 // Should have been parsed earlier via VSTOffset, unless there 6135 // is no summary section. 6136 assert(((SeenValueSymbolTable && VSTOffset > 0) || 6137 !SeenGlobalValSummary) && 6138 "Expected early VST parse via VSTOffset record"); 6139 if (Stream.SkipBlock()) 6140 return error("Invalid record"); 6141 break; 6142 case bitc::GLOBALVAL_SUMMARY_BLOCK_ID: 6143 assert(!SeenValueSymbolTable && 6144 "Already read VST when parsing summary block?"); 6145 // We might not have a VST if there were no values in the 6146 // summary. An empty summary block generated when we are 6147 // performing ThinLTO compiles so we don't later invoke 6148 // the regular LTO process on them. 6149 if (VSTOffset > 0) { 6150 if (std::error_code EC = 6151 parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap)) 6152 return EC; 6153 SeenValueSymbolTable = true; 6154 } 6155 SeenGlobalValSummary = true; 6156 if (std::error_code EC = parseEntireSummary()) 6157 return EC; 6158 break; 6159 case bitc::MODULE_STRTAB_BLOCK_ID: 6160 if (std::error_code EC = parseModuleStringTable()) 6161 return EC; 6162 break; 6163 } 6164 continue; 6165 6166 case BitstreamEntry::Record: { 6167 Record.clear(); 6168 auto BitCode = Stream.readRecord(Entry.ID, Record); 6169 switch (BitCode) { 6170 default: 6171 break; // Default behavior, ignore unknown content. 6172 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 6173 case bitc::MODULE_CODE_SOURCE_FILENAME: { 6174 SmallString<128> ValueName; 6175 if (convertToString(Record, 0, ValueName)) 6176 return error("Invalid record"); 6177 SourceFileName = ValueName.c_str(); 6178 break; 6179 } 6180 /// MODULE_CODE_HASH: [5*i32] 6181 case bitc::MODULE_CODE_HASH: { 6182 if (Record.size() != 5) 6183 return error("Invalid hash length " + Twine(Record.size()).str()); 6184 if (!TheIndex) 6185 break; 6186 if (TheIndex->modulePaths().empty()) 6187 // We always seed the index with the module. 6188 TheIndex->addModulePath(Buffer.getBufferIdentifier(), 0); 6189 if (TheIndex->modulePaths().size() != 1) 6190 return error("Don't expect multiple modules defined?"); 6191 auto &Hash = TheIndex->modulePaths().begin()->second.second; 6192 int Pos = 0; 6193 for (auto &Val : Record) { 6194 assert(!(Val >> 32) && "Unexpected high bits set"); 6195 Hash[Pos++] = Val; 6196 } 6197 break; 6198 } 6199 /// MODULE_CODE_VSTOFFSET: [offset] 6200 case bitc::MODULE_CODE_VSTOFFSET: 6201 if (Record.size() < 1) 6202 return error("Invalid record"); 6203 VSTOffset = Record[0]; 6204 break; 6205 // GLOBALVAR: [pointer type, isconst, initid, 6206 // linkage, alignment, section, visibility, threadlocal, 6207 // unnamed_addr, externally_initialized, dllstorageclass, 6208 // comdat] 6209 case bitc::MODULE_CODE_GLOBALVAR: { 6210 if (Record.size() < 6) 6211 return error("Invalid record"); 6212 uint64_t RawLinkage = Record[3]; 6213 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 6214 ValueIdToLinkageMap[ValueId++] = Linkage; 6215 break; 6216 } 6217 // FUNCTION: [type, callingconv, isproto, linkage, paramattr, 6218 // alignment, section, visibility, gc, unnamed_addr, 6219 // prologuedata, dllstorageclass, comdat, prefixdata] 6220 case bitc::MODULE_CODE_FUNCTION: { 6221 if (Record.size() < 8) 6222 return error("Invalid record"); 6223 uint64_t RawLinkage = Record[3]; 6224 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 6225 ValueIdToLinkageMap[ValueId++] = Linkage; 6226 break; 6227 } 6228 // ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, 6229 // dllstorageclass] 6230 case bitc::MODULE_CODE_ALIAS: { 6231 if (Record.size() < 6) 6232 return error("Invalid record"); 6233 uint64_t RawLinkage = Record[3]; 6234 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 6235 ValueIdToLinkageMap[ValueId++] = Linkage; 6236 break; 6237 } 6238 } 6239 } 6240 continue; 6241 } 6242 } 6243 } 6244 6245 // Eagerly parse the entire summary block. This populates the GlobalValueSummary 6246 // objects in the index. 6247 std::error_code ModuleSummaryIndexBitcodeReader::parseEntireSummary() { 6248 if (Stream.EnterSubBlock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID)) 6249 return error("Invalid record"); 6250 SmallVector<uint64_t, 64> Record; 6251 6252 // Parse version 6253 { 6254 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 6255 if (Entry.Kind != BitstreamEntry::Record) 6256 return error("Invalid Summary Block: record for version expected"); 6257 if (Stream.readRecord(Entry.ID, Record) != bitc::FS_VERSION) 6258 return error("Invalid Summary Block: version expected"); 6259 } 6260 const uint64_t Version = Record[0]; 6261 const bool IsOldProfileFormat = Version == 1; 6262 if (!IsOldProfileFormat && Version != 2) 6263 return error("Invalid summary version " + Twine(Version) + 6264 ", 1 or 2 expected"); 6265 Record.clear(); 6266 6267 // Keep around the last seen summary to be used when we see an optional 6268 // "OriginalName" attachement. 6269 GlobalValueSummary *LastSeenSummary = nullptr; 6270 bool Combined = false; 6271 6272 while (true) { 6273 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 6274 6275 switch (Entry.Kind) { 6276 case BitstreamEntry::SubBlock: // Handled for us already. 6277 case BitstreamEntry::Error: 6278 return error("Malformed block"); 6279 case BitstreamEntry::EndBlock: 6280 // For a per-module index, remove any entries that still have empty 6281 // summaries. The VST parsing creates entries eagerly for all symbols, 6282 // but not all have associated summaries (e.g. it doesn't know how to 6283 // distinguish between VST_CODE_ENTRY for function declarations vs global 6284 // variables with initializers that end up with a summary). Remove those 6285 // entries now so that we don't need to rely on the combined index merger 6286 // to clean them up (especially since that may not run for the first 6287 // module's index if we merge into that). 6288 if (!Combined) 6289 TheIndex->removeEmptySummaryEntries(); 6290 return std::error_code(); 6291 case BitstreamEntry::Record: 6292 // The interesting case. 6293 break; 6294 } 6295 6296 // Read a record. The record format depends on whether this 6297 // is a per-module index or a combined index file. In the per-module 6298 // case the records contain the associated value's ID for correlation 6299 // with VST entries. In the combined index the correlation is done 6300 // via the bitcode offset of the summary records (which were saved 6301 // in the combined index VST entries). The records also contain 6302 // information used for ThinLTO renaming and importing. 6303 Record.clear(); 6304 auto BitCode = Stream.readRecord(Entry.ID, Record); 6305 switch (BitCode) { 6306 default: // Default behavior: ignore. 6307 break; 6308 // FS_PERMODULE: [valueid, flags, instcount, numrefs, numrefs x valueid, 6309 // n x (valueid)] 6310 // FS_PERMODULE_PROFILE: [valueid, flags, instcount, numrefs, 6311 // numrefs x valueid, 6312 // n x (valueid, hotness)] 6313 case bitc::FS_PERMODULE: 6314 case bitc::FS_PERMODULE_PROFILE: { 6315 unsigned ValueID = Record[0]; 6316 uint64_t RawFlags = Record[1]; 6317 unsigned InstCount = Record[2]; 6318 unsigned NumRefs = Record[3]; 6319 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6320 std::unique_ptr<FunctionSummary> FS = 6321 llvm::make_unique<FunctionSummary>(Flags, InstCount); 6322 // The module path string ref set in the summary must be owned by the 6323 // index's module string table. Since we don't have a module path 6324 // string table section in the per-module index, we create a single 6325 // module path string table entry with an empty (0) ID to take 6326 // ownership. 6327 FS->setModulePath( 6328 TheIndex->addModulePath(Buffer.getBufferIdentifier(), 0)->first()); 6329 static int RefListStartIndex = 4; 6330 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 6331 assert(Record.size() >= RefListStartIndex + NumRefs && 6332 "Record size inconsistent with number of references"); 6333 for (unsigned I = 4, E = CallGraphEdgeStartIndex; I != E; ++I) { 6334 unsigned RefValueId = Record[I]; 6335 GlobalValue::GUID RefGUID = getGUIDFromValueId(RefValueId).first; 6336 FS->addRefEdge(RefGUID); 6337 } 6338 bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE); 6339 for (unsigned I = CallGraphEdgeStartIndex, E = Record.size(); I != E; 6340 ++I) { 6341 CalleeInfo::HotnessType Hotness; 6342 GlobalValue::GUID CalleeGUID; 6343 std::tie(CalleeGUID, Hotness) = 6344 readCallGraphEdge(Record, I, IsOldProfileFormat, HasProfile); 6345 FS->addCallGraphEdge(CalleeGUID, CalleeInfo(Hotness)); 6346 } 6347 auto GUID = getGUIDFromValueId(ValueID); 6348 FS->setOriginalName(GUID.second); 6349 TheIndex->addGlobalValueSummary(GUID.first, std::move(FS)); 6350 break; 6351 } 6352 // FS_ALIAS: [valueid, flags, valueid] 6353 // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as 6354 // they expect all aliasee summaries to be available. 6355 case bitc::FS_ALIAS: { 6356 unsigned ValueID = Record[0]; 6357 uint64_t RawFlags = Record[1]; 6358 unsigned AliaseeID = Record[2]; 6359 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6360 std::unique_ptr<AliasSummary> AS = llvm::make_unique<AliasSummary>(Flags); 6361 // The module path string ref set in the summary must be owned by the 6362 // index's module string table. Since we don't have a module path 6363 // string table section in the per-module index, we create a single 6364 // module path string table entry with an empty (0) ID to take 6365 // ownership. 6366 AS->setModulePath( 6367 TheIndex->addModulePath(Buffer.getBufferIdentifier(), 0)->first()); 6368 6369 GlobalValue::GUID AliaseeGUID = getGUIDFromValueId(AliaseeID).first; 6370 auto *AliaseeSummary = TheIndex->getGlobalValueSummary(AliaseeGUID); 6371 if (!AliaseeSummary) 6372 return error("Alias expects aliasee summary to be parsed"); 6373 AS->setAliasee(AliaseeSummary); 6374 6375 auto GUID = getGUIDFromValueId(ValueID); 6376 AS->setOriginalName(GUID.second); 6377 TheIndex->addGlobalValueSummary(GUID.first, std::move(AS)); 6378 break; 6379 } 6380 // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, n x valueid] 6381 case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: { 6382 unsigned ValueID = Record[0]; 6383 uint64_t RawFlags = Record[1]; 6384 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6385 std::unique_ptr<GlobalVarSummary> FS = 6386 llvm::make_unique<GlobalVarSummary>(Flags); 6387 FS->setModulePath( 6388 TheIndex->addModulePath(Buffer.getBufferIdentifier(), 0)->first()); 6389 for (unsigned I = 2, E = Record.size(); I != E; ++I) { 6390 unsigned RefValueId = Record[I]; 6391 GlobalValue::GUID RefGUID = getGUIDFromValueId(RefValueId).first; 6392 FS->addRefEdge(RefGUID); 6393 } 6394 auto GUID = getGUIDFromValueId(ValueID); 6395 FS->setOriginalName(GUID.second); 6396 TheIndex->addGlobalValueSummary(GUID.first, std::move(FS)); 6397 break; 6398 } 6399 // FS_COMBINED: [valueid, modid, flags, instcount, numrefs, 6400 // numrefs x valueid, n x (valueid)] 6401 // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, numrefs, 6402 // numrefs x valueid, n x (valueid, hotness)] 6403 case bitc::FS_COMBINED: 6404 case bitc::FS_COMBINED_PROFILE: { 6405 unsigned ValueID = Record[0]; 6406 uint64_t ModuleId = Record[1]; 6407 uint64_t RawFlags = Record[2]; 6408 unsigned InstCount = Record[3]; 6409 unsigned NumRefs = Record[4]; 6410 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6411 std::unique_ptr<FunctionSummary> FS = 6412 llvm::make_unique<FunctionSummary>(Flags, InstCount); 6413 LastSeenSummary = FS.get(); 6414 FS->setModulePath(ModuleIdMap[ModuleId]); 6415 static int RefListStartIndex = 5; 6416 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 6417 assert(Record.size() >= RefListStartIndex + NumRefs && 6418 "Record size inconsistent with number of references"); 6419 for (unsigned I = RefListStartIndex, E = CallGraphEdgeStartIndex; I != E; 6420 ++I) { 6421 unsigned RefValueId = Record[I]; 6422 GlobalValue::GUID RefGUID = getGUIDFromValueId(RefValueId).first; 6423 FS->addRefEdge(RefGUID); 6424 } 6425 bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE); 6426 for (unsigned I = CallGraphEdgeStartIndex, E = Record.size(); I != E; 6427 ++I) { 6428 CalleeInfo::HotnessType Hotness; 6429 GlobalValue::GUID CalleeGUID; 6430 std::tie(CalleeGUID, Hotness) = 6431 readCallGraphEdge(Record, I, IsOldProfileFormat, HasProfile); 6432 FS->addCallGraphEdge(CalleeGUID, CalleeInfo(Hotness)); 6433 } 6434 GlobalValue::GUID GUID = getGUIDFromValueId(ValueID).first; 6435 TheIndex->addGlobalValueSummary(GUID, std::move(FS)); 6436 Combined = true; 6437 break; 6438 } 6439 // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid] 6440 // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as 6441 // they expect all aliasee summaries to be available. 6442 case bitc::FS_COMBINED_ALIAS: { 6443 unsigned ValueID = Record[0]; 6444 uint64_t ModuleId = Record[1]; 6445 uint64_t RawFlags = Record[2]; 6446 unsigned AliaseeValueId = Record[3]; 6447 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6448 std::unique_ptr<AliasSummary> AS = llvm::make_unique<AliasSummary>(Flags); 6449 LastSeenSummary = AS.get(); 6450 AS->setModulePath(ModuleIdMap[ModuleId]); 6451 6452 auto AliaseeGUID = getGUIDFromValueId(AliaseeValueId).first; 6453 auto AliaseeInModule = 6454 TheIndex->findSummaryInModule(AliaseeGUID, AS->modulePath()); 6455 if (!AliaseeInModule) 6456 return error("Alias expects aliasee summary to be parsed"); 6457 AS->setAliasee(AliaseeInModule); 6458 6459 GlobalValue::GUID GUID = getGUIDFromValueId(ValueID).first; 6460 TheIndex->addGlobalValueSummary(GUID, std::move(AS)); 6461 Combined = true; 6462 break; 6463 } 6464 // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid] 6465 case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: { 6466 unsigned ValueID = Record[0]; 6467 uint64_t ModuleId = Record[1]; 6468 uint64_t RawFlags = Record[2]; 6469 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6470 std::unique_ptr<GlobalVarSummary> FS = 6471 llvm::make_unique<GlobalVarSummary>(Flags); 6472 LastSeenSummary = FS.get(); 6473 FS->setModulePath(ModuleIdMap[ModuleId]); 6474 for (unsigned I = 3, E = Record.size(); I != E; ++I) { 6475 unsigned RefValueId = Record[I]; 6476 GlobalValue::GUID RefGUID = getGUIDFromValueId(RefValueId).first; 6477 FS->addRefEdge(RefGUID); 6478 } 6479 GlobalValue::GUID GUID = getGUIDFromValueId(ValueID).first; 6480 TheIndex->addGlobalValueSummary(GUID, std::move(FS)); 6481 Combined = true; 6482 break; 6483 } 6484 // FS_COMBINED_ORIGINAL_NAME: [original_name] 6485 case bitc::FS_COMBINED_ORIGINAL_NAME: { 6486 uint64_t OriginalName = Record[0]; 6487 if (!LastSeenSummary) 6488 return error("Name attachment that does not follow a combined record"); 6489 LastSeenSummary->setOriginalName(OriginalName); 6490 // Reset the LastSeenSummary 6491 LastSeenSummary = nullptr; 6492 } 6493 } 6494 } 6495 llvm_unreachable("Exit infinite loop"); 6496 } 6497 6498 std::pair<GlobalValue::GUID, CalleeInfo::HotnessType> 6499 ModuleSummaryIndexBitcodeReader::readCallGraphEdge( 6500 const SmallVector<uint64_t, 64> &Record, unsigned int &I, 6501 const bool IsOldProfileFormat, const bool HasProfile) { 6502 6503 auto Hotness = CalleeInfo::HotnessType::Unknown; 6504 unsigned CalleeValueId = Record[I]; 6505 GlobalValue::GUID CalleeGUID = getGUIDFromValueId(CalleeValueId).first; 6506 if (IsOldProfileFormat) { 6507 I += 1; // Skip old callsitecount field 6508 if (HasProfile) 6509 I += 1; // Skip old profilecount field 6510 } else if (HasProfile) 6511 Hotness = static_cast<CalleeInfo::HotnessType>(Record[++I]); 6512 return {CalleeGUID, Hotness}; 6513 } 6514 6515 // Parse the module string table block into the Index. 6516 // This populates the ModulePathStringTable map in the index. 6517 std::error_code ModuleSummaryIndexBitcodeReader::parseModuleStringTable() { 6518 if (Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID)) 6519 return error("Invalid record"); 6520 6521 SmallVector<uint64_t, 64> Record; 6522 6523 SmallString<128> ModulePath; 6524 ModulePathStringTableTy::iterator LastSeenModulePath; 6525 6526 while (true) { 6527 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 6528 6529 switch (Entry.Kind) { 6530 case BitstreamEntry::SubBlock: // Handled for us already. 6531 case BitstreamEntry::Error: 6532 return error("Malformed block"); 6533 case BitstreamEntry::EndBlock: 6534 return std::error_code(); 6535 case BitstreamEntry::Record: 6536 // The interesting case. 6537 break; 6538 } 6539 6540 Record.clear(); 6541 switch (Stream.readRecord(Entry.ID, Record)) { 6542 default: // Default behavior: ignore. 6543 break; 6544 case bitc::MST_CODE_ENTRY: { 6545 // MST_ENTRY: [modid, namechar x N] 6546 uint64_t ModuleId = Record[0]; 6547 6548 if (convertToString(Record, 1, ModulePath)) 6549 return error("Invalid record"); 6550 6551 LastSeenModulePath = TheIndex->addModulePath(ModulePath, ModuleId); 6552 ModuleIdMap[ModuleId] = LastSeenModulePath->first(); 6553 6554 ModulePath.clear(); 6555 break; 6556 } 6557 /// MST_CODE_HASH: [5*i32] 6558 case bitc::MST_CODE_HASH: { 6559 if (Record.size() != 5) 6560 return error("Invalid hash length " + Twine(Record.size()).str()); 6561 if (LastSeenModulePath == TheIndex->modulePaths().end()) 6562 return error("Invalid hash that does not follow a module path"); 6563 int Pos = 0; 6564 for (auto &Val : Record) { 6565 assert(!(Val >> 32) && "Unexpected high bits set"); 6566 LastSeenModulePath->second.second[Pos++] = Val; 6567 } 6568 // Reset LastSeenModulePath to avoid overriding the hash unexpectedly. 6569 LastSeenModulePath = TheIndex->modulePaths().end(); 6570 break; 6571 } 6572 } 6573 } 6574 llvm_unreachable("Exit infinite loop"); 6575 } 6576 6577 // Parse the function info index from the bitcode streamer into the given index. 6578 std::error_code 6579 ModuleSummaryIndexBitcodeReader::parseSummaryIndexInto(ModuleSummaryIndex *I) { 6580 TheIndex = I; 6581 6582 if (std::error_code EC = initStream()) 6583 return EC; 6584 6585 // Sniff for the signature. 6586 if (!hasValidBitcodeHeader(Stream)) 6587 return error("Invalid bitcode signature"); 6588 6589 // We expect a number of well-defined blocks, though we don't necessarily 6590 // need to understand them all. 6591 while (true) { 6592 if (Stream.AtEndOfStream()) { 6593 // We didn't really read a proper Module block. 6594 return error("Malformed block"); 6595 } 6596 6597 BitstreamEntry Entry = 6598 Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs); 6599 6600 if (Entry.Kind != BitstreamEntry::SubBlock) 6601 return error("Malformed block"); 6602 6603 // If we see a MODULE_BLOCK, parse it to find the blocks needed for 6604 // building the function summary index. 6605 if (Entry.ID == bitc::MODULE_BLOCK_ID) 6606 return parseModule(); 6607 6608 if (Stream.SkipBlock()) 6609 return error("Invalid record"); 6610 } 6611 } 6612 6613 namespace { 6614 6615 // FIXME: This class is only here to support the transition to llvm::Error. It 6616 // will be removed once this transition is complete. Clients should prefer to 6617 // deal with the Error value directly, rather than converting to error_code. 6618 class BitcodeErrorCategoryType : public std::error_category { 6619 const char *name() const noexcept override { 6620 return "llvm.bitcode"; 6621 } 6622 std::string message(int IE) const override { 6623 BitcodeError E = static_cast<BitcodeError>(IE); 6624 switch (E) { 6625 case BitcodeError::InvalidBitcodeSignature: 6626 return "Invalid bitcode signature"; 6627 case BitcodeError::CorruptedBitcode: 6628 return "Corrupted bitcode"; 6629 } 6630 llvm_unreachable("Unknown error type!"); 6631 } 6632 }; 6633 6634 } // end anonymous namespace 6635 6636 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory; 6637 6638 const std::error_category &llvm::BitcodeErrorCategory() { 6639 return *ErrorCategory; 6640 } 6641 6642 //===----------------------------------------------------------------------===// 6643 // External interface 6644 //===----------------------------------------------------------------------===// 6645 6646 /// \brief Get a lazy one-at-time loading module from bitcode. 6647 /// 6648 /// This isn't always used in a lazy context. In particular, it's also used by 6649 /// \a parseBitcodeFile(). If this is truly lazy, then we need to eagerly pull 6650 /// in forward-referenced functions from block address references. 6651 /// 6652 /// \param[in] MaterializeAll Set to \c true if we should materialize 6653 /// everything. 6654 static ErrorOr<std::unique_ptr<Module>> 6655 getLazyBitcodeModuleImpl(MemoryBufferRef Buffer, LLVMContext &Context, 6656 bool MaterializeAll, 6657 bool ShouldLazyLoadMetadata = false) { 6658 BitcodeReader *R = new BitcodeReader(Buffer, Context); 6659 6660 std::unique_ptr<Module> M = 6661 llvm::make_unique<Module>(Buffer.getBufferIdentifier(), Context); 6662 M->setMaterializer(R); 6663 6664 // Delay parsing Metadata if ShouldLazyLoadMetadata is true. 6665 if (std::error_code EC = R->parseBitcodeInto(M.get(), ShouldLazyLoadMetadata)) 6666 return EC; 6667 6668 if (MaterializeAll) { 6669 // Read in the entire module, and destroy the BitcodeReader. 6670 if (std::error_code EC = M->materializeAll()) 6671 return EC; 6672 } else { 6673 // Resolve forward references from blockaddresses. 6674 if (std::error_code EC = R->materializeForwardReferencedFunctions()) 6675 return EC; 6676 } 6677 return std::move(M); 6678 } 6679 6680 ErrorOr<std::unique_ptr<Module>> 6681 llvm::getLazyBitcodeModule(MemoryBufferRef Buffer, 6682 LLVMContext &Context, bool ShouldLazyLoadMetadata) { 6683 return getLazyBitcodeModuleImpl(Buffer, Context, false, 6684 ShouldLazyLoadMetadata); 6685 } 6686 6687 ErrorOr<std::unique_ptr<Module>> 6688 llvm::getOwningLazyBitcodeModule(std::unique_ptr<MemoryBuffer> &&Buffer, 6689 LLVMContext &Context, 6690 bool ShouldLazyLoadMetadata) { 6691 auto MOrErr = getLazyBitcodeModule(*Buffer, Context, ShouldLazyLoadMetadata); 6692 if (MOrErr) 6693 (*MOrErr)->setOwnedMemoryBuffer(std::move(Buffer)); 6694 return MOrErr; 6695 } 6696 6697 ErrorOr<std::unique_ptr<Module>> llvm::parseBitcodeFile(MemoryBufferRef Buffer, 6698 LLVMContext &Context) { 6699 return getLazyBitcodeModuleImpl(Buffer, Context, true); 6700 // TODO: Restore the use-lists to the in-memory state when the bitcode was 6701 // written. We must defer until the Module has been fully materialized. 6702 } 6703 6704 std::string llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer, 6705 LLVMContext &Context) { 6706 BitcodeReader R(Buffer, Context); 6707 ErrorOr<std::string> Triple = R.parseTriple(); 6708 if (Triple.getError()) 6709 return ""; 6710 return Triple.get(); 6711 } 6712 6713 bool llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer, 6714 LLVMContext &Context) { 6715 BitcodeReader R(Buffer, Context); 6716 ErrorOr<bool> hasObjCCategory = R.hasObjCCategory(); 6717 if (hasObjCCategory.getError()) 6718 return false; 6719 return hasObjCCategory.get(); 6720 } 6721 6722 std::string llvm::getBitcodeProducerString(MemoryBufferRef Buffer, 6723 LLVMContext &Context) { 6724 BitcodeReader R(Buffer, Context); 6725 ErrorOr<std::string> ProducerString = R.parseIdentificationBlock(); 6726 if (ProducerString.getError()) 6727 return ""; 6728 return ProducerString.get(); 6729 } 6730 6731 // Parse the specified bitcode buffer, returning the function info index. 6732 ErrorOr<std::unique_ptr<ModuleSummaryIndex>> llvm::getModuleSummaryIndex( 6733 MemoryBufferRef Buffer, 6734 const DiagnosticHandlerFunction &DiagnosticHandler) { 6735 ModuleSummaryIndexBitcodeReader R(Buffer, DiagnosticHandler); 6736 6737 auto Index = llvm::make_unique<ModuleSummaryIndex>(); 6738 6739 if (std::error_code EC = R.parseSummaryIndexInto(Index.get())) 6740 return EC; 6741 6742 return std::move(Index); 6743 } 6744 6745 // Check if the given bitcode buffer contains a global value summary block. 6746 bool llvm::hasGlobalValueSummary( 6747 MemoryBufferRef Buffer, 6748 const DiagnosticHandlerFunction &DiagnosticHandler) { 6749 ModuleSummaryIndexBitcodeReader R(Buffer, DiagnosticHandler, true); 6750 6751 if (R.parseSummaryIndexInto(nullptr)) 6752 return false; 6753 6754 return R.foundGlobalValSummary(); 6755 } 6756