1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This header defines the BitcodeReader class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Bitcode/ReaderWriter.h" 15 #include "BitcodeReader.h" 16 #include "llvm/Constants.h" 17 #include "llvm/DerivedTypes.h" 18 #include "llvm/InlineAsm.h" 19 #include "llvm/IntrinsicInst.h" 20 #include "llvm/Module.h" 21 #include "llvm/Operator.h" 22 #include "llvm/AutoUpgrade.h" 23 #include "llvm/ADT/SmallString.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/Support/MathExtras.h" 26 #include "llvm/Support/MemoryBuffer.h" 27 #include "llvm/OperandTraits.h" 28 using namespace llvm; 29 30 void BitcodeReader::FreeState() { 31 if (BufferOwned) 32 delete Buffer; 33 Buffer = 0; 34 std::vector<PATypeHolder>().swap(TypeList); 35 ValueList.clear(); 36 MDValueList.clear(); 37 38 std::vector<AttrListPtr>().swap(MAttributes); 39 std::vector<BasicBlock*>().swap(FunctionBBs); 40 std::vector<Function*>().swap(FunctionsWithBodies); 41 DeferredFunctionInfo.clear(); 42 MDKindMap.clear(); 43 } 44 45 //===----------------------------------------------------------------------===// 46 // Helper functions to implement forward reference resolution, etc. 47 //===----------------------------------------------------------------------===// 48 49 /// ConvertToString - Convert a string from a record into an std::string, return 50 /// true on failure. 51 template<typename StrTy> 52 static bool ConvertToString(SmallVector<uint64_t, 64> &Record, unsigned Idx, 53 StrTy &Result) { 54 if (Idx > Record.size()) 55 return true; 56 57 for (unsigned i = Idx, e = Record.size(); i != e; ++i) 58 Result += (char)Record[i]; 59 return false; 60 } 61 62 static GlobalValue::LinkageTypes GetDecodedLinkage(unsigned Val) { 63 switch (Val) { 64 default: // Map unknown/new linkages to external 65 case 0: return GlobalValue::ExternalLinkage; 66 case 1: return GlobalValue::WeakAnyLinkage; 67 case 2: return GlobalValue::AppendingLinkage; 68 case 3: return GlobalValue::InternalLinkage; 69 case 4: return GlobalValue::LinkOnceAnyLinkage; 70 case 5: return GlobalValue::DLLImportLinkage; 71 case 6: return GlobalValue::DLLExportLinkage; 72 case 7: return GlobalValue::ExternalWeakLinkage; 73 case 8: return GlobalValue::CommonLinkage; 74 case 9: return GlobalValue::PrivateLinkage; 75 case 10: return GlobalValue::WeakODRLinkage; 76 case 11: return GlobalValue::LinkOnceODRLinkage; 77 case 12: return GlobalValue::AvailableExternallyLinkage; 78 case 13: return GlobalValue::LinkerPrivateLinkage; 79 case 14: return GlobalValue::LinkerPrivateWeakLinkage; 80 case 15: return GlobalValue::LinkerPrivateWeakDefAutoLinkage; 81 } 82 } 83 84 static GlobalValue::VisibilityTypes GetDecodedVisibility(unsigned Val) { 85 switch (Val) { 86 default: // Map unknown visibilities to default. 87 case 0: return GlobalValue::DefaultVisibility; 88 case 1: return GlobalValue::HiddenVisibility; 89 case 2: return GlobalValue::ProtectedVisibility; 90 } 91 } 92 93 static int GetDecodedCastOpcode(unsigned Val) { 94 switch (Val) { 95 default: return -1; 96 case bitc::CAST_TRUNC : return Instruction::Trunc; 97 case bitc::CAST_ZEXT : return Instruction::ZExt; 98 case bitc::CAST_SEXT : return Instruction::SExt; 99 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 100 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 101 case bitc::CAST_UITOFP : return Instruction::UIToFP; 102 case bitc::CAST_SITOFP : return Instruction::SIToFP; 103 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 104 case bitc::CAST_FPEXT : return Instruction::FPExt; 105 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 106 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 107 case bitc::CAST_BITCAST : return Instruction::BitCast; 108 } 109 } 110 static int GetDecodedBinaryOpcode(unsigned Val, const Type *Ty) { 111 switch (Val) { 112 default: return -1; 113 case bitc::BINOP_ADD: 114 return Ty->isFPOrFPVectorTy() ? Instruction::FAdd : Instruction::Add; 115 case bitc::BINOP_SUB: 116 return Ty->isFPOrFPVectorTy() ? Instruction::FSub : Instruction::Sub; 117 case bitc::BINOP_MUL: 118 return Ty->isFPOrFPVectorTy() ? Instruction::FMul : Instruction::Mul; 119 case bitc::BINOP_UDIV: return Instruction::UDiv; 120 case bitc::BINOP_SDIV: 121 return Ty->isFPOrFPVectorTy() ? Instruction::FDiv : Instruction::SDiv; 122 case bitc::BINOP_UREM: return Instruction::URem; 123 case bitc::BINOP_SREM: 124 return Ty->isFPOrFPVectorTy() ? Instruction::FRem : Instruction::SRem; 125 case bitc::BINOP_SHL: return Instruction::Shl; 126 case bitc::BINOP_LSHR: return Instruction::LShr; 127 case bitc::BINOP_ASHR: return Instruction::AShr; 128 case bitc::BINOP_AND: return Instruction::And; 129 case bitc::BINOP_OR: return Instruction::Or; 130 case bitc::BINOP_XOR: return Instruction::Xor; 131 } 132 } 133 134 namespace llvm { 135 namespace { 136 /// @brief A class for maintaining the slot number definition 137 /// as a placeholder for the actual definition for forward constants defs. 138 class ConstantPlaceHolder : public ConstantExpr { 139 void operator=(const ConstantPlaceHolder &); // DO NOT IMPLEMENT 140 public: 141 // allocate space for exactly one operand 142 void *operator new(size_t s) { 143 return User::operator new(s, 1); 144 } 145 explicit ConstantPlaceHolder(const Type *Ty, LLVMContext& Context) 146 : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) { 147 Op<0>() = UndefValue::get(Type::getInt32Ty(Context)); 148 } 149 150 /// @brief Methods to support type inquiry through isa, cast, and dyn_cast. 151 //static inline bool classof(const ConstantPlaceHolder *) { return true; } 152 static bool classof(const Value *V) { 153 return isa<ConstantExpr>(V) && 154 cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1; 155 } 156 157 158 /// Provide fast operand accessors 159 //DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); 160 }; 161 } 162 163 // FIXME: can we inherit this from ConstantExpr? 164 template <> 165 struct OperandTraits<ConstantPlaceHolder> : public FixedNumOperandTraits<1> { 166 }; 167 } 168 169 170 void BitcodeReaderValueList::AssignValue(Value *V, unsigned Idx) { 171 if (Idx == size()) { 172 push_back(V); 173 return; 174 } 175 176 if (Idx >= size()) 177 resize(Idx+1); 178 179 WeakVH &OldV = ValuePtrs[Idx]; 180 if (OldV == 0) { 181 OldV = V; 182 return; 183 } 184 185 // Handle constants and non-constants (e.g. instrs) differently for 186 // efficiency. 187 if (Constant *PHC = dyn_cast<Constant>(&*OldV)) { 188 ResolveConstants.push_back(std::make_pair(PHC, Idx)); 189 OldV = V; 190 } else { 191 // If there was a forward reference to this value, replace it. 192 Value *PrevVal = OldV; 193 OldV->replaceAllUsesWith(V); 194 delete PrevVal; 195 } 196 } 197 198 199 Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx, 200 const Type *Ty) { 201 if (Idx >= size()) 202 resize(Idx + 1); 203 204 if (Value *V = ValuePtrs[Idx]) { 205 assert(Ty == V->getType() && "Type mismatch in constant table!"); 206 return cast<Constant>(V); 207 } 208 209 // Create and return a placeholder, which will later be RAUW'd. 210 Constant *C = new ConstantPlaceHolder(Ty, Context); 211 ValuePtrs[Idx] = C; 212 return C; 213 } 214 215 Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, const Type *Ty) { 216 if (Idx >= size()) 217 resize(Idx + 1); 218 219 if (Value *V = ValuePtrs[Idx]) { 220 assert((Ty == 0 || Ty == V->getType()) && "Type mismatch in value table!"); 221 return V; 222 } 223 224 // No type specified, must be invalid reference. 225 if (Ty == 0) return 0; 226 227 // Create and return a placeholder, which will later be RAUW'd. 228 Value *V = new Argument(Ty); 229 ValuePtrs[Idx] = V; 230 return V; 231 } 232 233 /// ResolveConstantForwardRefs - Once all constants are read, this method bulk 234 /// resolves any forward references. The idea behind this is that we sometimes 235 /// get constants (such as large arrays) which reference *many* forward ref 236 /// constants. Replacing each of these causes a lot of thrashing when 237 /// building/reuniquing the constant. Instead of doing this, we look at all the 238 /// uses and rewrite all the place holders at once for any constant that uses 239 /// a placeholder. 240 void BitcodeReaderValueList::ResolveConstantForwardRefs() { 241 // Sort the values by-pointer so that they are efficient to look up with a 242 // binary search. 243 std::sort(ResolveConstants.begin(), ResolveConstants.end()); 244 245 SmallVector<Constant*, 64> NewOps; 246 247 while (!ResolveConstants.empty()) { 248 Value *RealVal = operator[](ResolveConstants.back().second); 249 Constant *Placeholder = ResolveConstants.back().first; 250 ResolveConstants.pop_back(); 251 252 // Loop over all users of the placeholder, updating them to reference the 253 // new value. If they reference more than one placeholder, update them all 254 // at once. 255 while (!Placeholder->use_empty()) { 256 Value::use_iterator UI = Placeholder->use_begin(); 257 User *U = *UI; 258 259 // If the using object isn't uniqued, just update the operands. This 260 // handles instructions and initializers for global variables. 261 if (!isa<Constant>(U) || isa<GlobalValue>(U)) { 262 UI.getUse().set(RealVal); 263 continue; 264 } 265 266 // Otherwise, we have a constant that uses the placeholder. Replace that 267 // constant with a new constant that has *all* placeholder uses updated. 268 Constant *UserC = cast<Constant>(U); 269 for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end(); 270 I != E; ++I) { 271 Value *NewOp; 272 if (!isa<ConstantPlaceHolder>(*I)) { 273 // Not a placeholder reference. 274 NewOp = *I; 275 } else if (*I == Placeholder) { 276 // Common case is that it just references this one placeholder. 277 NewOp = RealVal; 278 } else { 279 // Otherwise, look up the placeholder in ResolveConstants. 280 ResolveConstantsTy::iterator It = 281 std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(), 282 std::pair<Constant*, unsigned>(cast<Constant>(*I), 283 0)); 284 assert(It != ResolveConstants.end() && It->first == *I); 285 NewOp = operator[](It->second); 286 } 287 288 NewOps.push_back(cast<Constant>(NewOp)); 289 } 290 291 // Make the new constant. 292 Constant *NewC; 293 if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) { 294 NewC = ConstantArray::get(UserCA->getType(), &NewOps[0], 295 NewOps.size()); 296 } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) { 297 NewC = ConstantStruct::get(Context, &NewOps[0], NewOps.size(), 298 UserCS->getType()->isPacked()); 299 } else if (isa<ConstantVector>(UserC)) { 300 NewC = ConstantVector::get(&NewOps[0], NewOps.size()); 301 } else { 302 assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr."); 303 NewC = cast<ConstantExpr>(UserC)->getWithOperands(&NewOps[0], 304 NewOps.size()); 305 } 306 307 UserC->replaceAllUsesWith(NewC); 308 UserC->destroyConstant(); 309 NewOps.clear(); 310 } 311 312 // Update all ValueHandles, they should be the only users at this point. 313 Placeholder->replaceAllUsesWith(RealVal); 314 delete Placeholder; 315 } 316 } 317 318 void BitcodeReaderMDValueList::AssignValue(Value *V, unsigned Idx) { 319 if (Idx == size()) { 320 push_back(V); 321 return; 322 } 323 324 if (Idx >= size()) 325 resize(Idx+1); 326 327 WeakVH &OldV = MDValuePtrs[Idx]; 328 if (OldV == 0) { 329 OldV = V; 330 return; 331 } 332 333 // If there was a forward reference to this value, replace it. 334 MDNode *PrevVal = cast<MDNode>(OldV); 335 OldV->replaceAllUsesWith(V); 336 MDNode::deleteTemporary(PrevVal); 337 // Deleting PrevVal sets Idx value in MDValuePtrs to null. Set new 338 // value for Idx. 339 MDValuePtrs[Idx] = V; 340 } 341 342 Value *BitcodeReaderMDValueList::getValueFwdRef(unsigned Idx) { 343 if (Idx >= size()) 344 resize(Idx + 1); 345 346 if (Value *V = MDValuePtrs[Idx]) { 347 assert(V->getType()->isMetadataTy() && "Type mismatch in value table!"); 348 return V; 349 } 350 351 // Create and return a placeholder, which will later be RAUW'd. 352 Value *V = MDNode::getTemporary(Context, 0, 0); 353 MDValuePtrs[Idx] = V; 354 return V; 355 } 356 357 const Type *BitcodeReader::getTypeByID(unsigned ID, bool isTypeTable) { 358 // If the TypeID is in range, return it. 359 if (ID < TypeList.size()) 360 return TypeList[ID].get(); 361 if (!isTypeTable) return 0; 362 363 // The type table allows forward references. Push as many Opaque types as 364 // needed to get up to ID. 365 while (TypeList.size() <= ID) 366 TypeList.push_back(OpaqueType::get(Context)); 367 return TypeList.back().get(); 368 } 369 370 //===----------------------------------------------------------------------===// 371 // Functions for parsing blocks from the bitcode file 372 //===----------------------------------------------------------------------===// 373 374 bool BitcodeReader::ParseAttributeBlock() { 375 if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 376 return Error("Malformed block record"); 377 378 if (!MAttributes.empty()) 379 return Error("Multiple PARAMATTR blocks found!"); 380 381 SmallVector<uint64_t, 64> Record; 382 383 SmallVector<AttributeWithIndex, 8> Attrs; 384 385 // Read all the records. 386 while (1) { 387 unsigned Code = Stream.ReadCode(); 388 if (Code == bitc::END_BLOCK) { 389 if (Stream.ReadBlockEnd()) 390 return Error("Error at end of PARAMATTR block"); 391 return false; 392 } 393 394 if (Code == bitc::ENTER_SUBBLOCK) { 395 // No known subblocks, always skip them. 396 Stream.ReadSubBlockID(); 397 if (Stream.SkipBlock()) 398 return Error("Malformed block record"); 399 continue; 400 } 401 402 if (Code == bitc::DEFINE_ABBREV) { 403 Stream.ReadAbbrevRecord(); 404 continue; 405 } 406 407 // Read a record. 408 Record.clear(); 409 switch (Stream.ReadRecord(Code, Record)) { 410 default: // Default behavior: ignore. 411 break; 412 case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [paramidx0, attr0, ...] 413 if (Record.size() & 1) 414 return Error("Invalid ENTRY record"); 415 416 // FIXME : Remove this autoupgrade code in LLVM 3.0. 417 // If Function attributes are using index 0 then transfer them 418 // to index ~0. Index 0 is used for return value attributes but used to be 419 // used for function attributes. 420 Attributes RetAttribute = Attribute::None; 421 Attributes FnAttribute = Attribute::None; 422 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 423 // FIXME: remove in LLVM 3.0 424 // The alignment is stored as a 16-bit raw value from bits 31--16. 425 // We shift the bits above 31 down by 11 bits. 426 427 unsigned Alignment = (Record[i+1] & (0xffffull << 16)) >> 16; 428 if (Alignment && !isPowerOf2_32(Alignment)) 429 return Error("Alignment is not a power of two."); 430 431 Attributes ReconstitutedAttr = Record[i+1] & 0xffff; 432 if (Alignment) 433 ReconstitutedAttr |= Attribute::constructAlignmentFromInt(Alignment); 434 ReconstitutedAttr |= (Record[i+1] & (0xffffull << 32)) >> 11; 435 Record[i+1] = ReconstitutedAttr; 436 437 if (Record[i] == 0) 438 RetAttribute = Record[i+1]; 439 else if (Record[i] == ~0U) 440 FnAttribute = Record[i+1]; 441 } 442 443 unsigned OldRetAttrs = (Attribute::NoUnwind|Attribute::NoReturn| 444 Attribute::ReadOnly|Attribute::ReadNone); 445 446 if (FnAttribute == Attribute::None && RetAttribute != Attribute::None && 447 (RetAttribute & OldRetAttrs) != 0) { 448 if (FnAttribute == Attribute::None) { // add a slot so they get added. 449 Record.push_back(~0U); 450 Record.push_back(0); 451 } 452 453 FnAttribute |= RetAttribute & OldRetAttrs; 454 RetAttribute &= ~OldRetAttrs; 455 } 456 457 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 458 if (Record[i] == 0) { 459 if (RetAttribute != Attribute::None) 460 Attrs.push_back(AttributeWithIndex::get(0, RetAttribute)); 461 } else if (Record[i] == ~0U) { 462 if (FnAttribute != Attribute::None) 463 Attrs.push_back(AttributeWithIndex::get(~0U, FnAttribute)); 464 } else if (Record[i+1] != Attribute::None) 465 Attrs.push_back(AttributeWithIndex::get(Record[i], Record[i+1])); 466 } 467 468 MAttributes.push_back(AttrListPtr::get(Attrs.begin(), Attrs.end())); 469 Attrs.clear(); 470 break; 471 } 472 } 473 } 474 } 475 476 477 bool BitcodeReader::ParseTypeTable() { 478 if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID)) 479 return Error("Malformed block record"); 480 481 if (!TypeList.empty()) 482 return Error("Multiple TYPE_BLOCKs found!"); 483 484 SmallVector<uint64_t, 64> Record; 485 unsigned NumRecords = 0; 486 487 // Read all the records for this type table. 488 while (1) { 489 unsigned Code = Stream.ReadCode(); 490 if (Code == bitc::END_BLOCK) { 491 if (NumRecords != TypeList.size()) 492 return Error("Invalid type forward reference in TYPE_BLOCK"); 493 if (Stream.ReadBlockEnd()) 494 return Error("Error at end of type table block"); 495 return false; 496 } 497 498 if (Code == bitc::ENTER_SUBBLOCK) { 499 // No known subblocks, always skip them. 500 Stream.ReadSubBlockID(); 501 if (Stream.SkipBlock()) 502 return Error("Malformed block record"); 503 continue; 504 } 505 506 if (Code == bitc::DEFINE_ABBREV) { 507 Stream.ReadAbbrevRecord(); 508 continue; 509 } 510 511 // Read a record. 512 Record.clear(); 513 const Type *ResultTy = 0; 514 switch (Stream.ReadRecord(Code, Record)) { 515 default: // Default behavior: unknown type. 516 ResultTy = 0; 517 break; 518 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 519 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 520 // type list. This allows us to reserve space. 521 if (Record.size() < 1) 522 return Error("Invalid TYPE_CODE_NUMENTRY record"); 523 TypeList.reserve(Record[0]); 524 continue; 525 case bitc::TYPE_CODE_VOID: // VOID 526 ResultTy = Type::getVoidTy(Context); 527 break; 528 case bitc::TYPE_CODE_FLOAT: // FLOAT 529 ResultTy = Type::getFloatTy(Context); 530 break; 531 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 532 ResultTy = Type::getDoubleTy(Context); 533 break; 534 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 535 ResultTy = Type::getX86_FP80Ty(Context); 536 break; 537 case bitc::TYPE_CODE_FP128: // FP128 538 ResultTy = Type::getFP128Ty(Context); 539 break; 540 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 541 ResultTy = Type::getPPC_FP128Ty(Context); 542 break; 543 case bitc::TYPE_CODE_LABEL: // LABEL 544 ResultTy = Type::getLabelTy(Context); 545 break; 546 case bitc::TYPE_CODE_OPAQUE: // OPAQUE 547 ResultTy = 0; 548 break; 549 case bitc::TYPE_CODE_METADATA: // METADATA 550 ResultTy = Type::getMetadataTy(Context); 551 break; 552 case bitc::TYPE_CODE_INTEGER: // INTEGER: [width] 553 if (Record.size() < 1) 554 return Error("Invalid Integer type record"); 555 556 ResultTy = IntegerType::get(Context, Record[0]); 557 break; 558 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 559 // [pointee type, address space] 560 if (Record.size() < 1) 561 return Error("Invalid POINTER type record"); 562 unsigned AddressSpace = 0; 563 if (Record.size() == 2) 564 AddressSpace = Record[1]; 565 ResultTy = PointerType::get(getTypeByID(Record[0], true), 566 AddressSpace); 567 break; 568 } 569 case bitc::TYPE_CODE_FUNCTION: { 570 // FIXME: attrid is dead, remove it in LLVM 3.0 571 // FUNCTION: [vararg, attrid, retty, paramty x N] 572 if (Record.size() < 3) 573 return Error("Invalid FUNCTION type record"); 574 std::vector<const Type*> ArgTys; 575 for (unsigned i = 3, e = Record.size(); i != e; ++i) 576 ArgTys.push_back(getTypeByID(Record[i], true)); 577 578 ResultTy = FunctionType::get(getTypeByID(Record[2], true), ArgTys, 579 Record[0]); 580 break; 581 } 582 case bitc::TYPE_CODE_STRUCT: { // STRUCT: [ispacked, eltty x N] 583 if (Record.size() < 1) 584 return Error("Invalid STRUCT type record"); 585 std::vector<const Type*> EltTys; 586 for (unsigned i = 1, e = Record.size(); i != e; ++i) 587 EltTys.push_back(getTypeByID(Record[i], true)); 588 ResultTy = StructType::get(Context, EltTys, Record[0]); 589 break; 590 } 591 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 592 if (Record.size() < 2) 593 return Error("Invalid ARRAY type record"); 594 ResultTy = ArrayType::get(getTypeByID(Record[1], true), Record[0]); 595 break; 596 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] 597 if (Record.size() < 2) 598 return Error("Invalid VECTOR type record"); 599 ResultTy = VectorType::get(getTypeByID(Record[1], true), Record[0]); 600 break; 601 } 602 603 if (NumRecords == TypeList.size()) { 604 // If this is a new type slot, just append it. 605 TypeList.push_back(ResultTy ? ResultTy : OpaqueType::get(Context)); 606 ++NumRecords; 607 } else if (ResultTy == 0) { 608 // Otherwise, this was forward referenced, so an opaque type was created, 609 // but the result type is actually just an opaque. Leave the one we 610 // created previously. 611 ++NumRecords; 612 } else { 613 // Otherwise, this was forward referenced, so an opaque type was created. 614 // Resolve the opaque type to the real type now. 615 assert(NumRecords < TypeList.size() && "Typelist imbalance"); 616 const OpaqueType *OldTy = cast<OpaqueType>(TypeList[NumRecords++].get()); 617 618 // Don't directly push the new type on the Tab. Instead we want to replace 619 // the opaque type we previously inserted with the new concrete value. The 620 // refinement from the abstract (opaque) type to the new type causes all 621 // uses of the abstract type to use the concrete type (NewTy). This will 622 // also cause the opaque type to be deleted. 623 const_cast<OpaqueType*>(OldTy)->refineAbstractTypeTo(ResultTy); 624 625 // This should have replaced the old opaque type with the new type in the 626 // value table... or with a preexisting type that was already in the 627 // system. Let's just make sure it did. 628 assert(TypeList[NumRecords-1].get() != OldTy && 629 "refineAbstractType didn't work!"); 630 } 631 } 632 } 633 634 635 bool BitcodeReader::ParseTypeSymbolTable() { 636 if (Stream.EnterSubBlock(bitc::TYPE_SYMTAB_BLOCK_ID)) 637 return Error("Malformed block record"); 638 639 SmallVector<uint64_t, 64> Record; 640 641 // Read all the records for this type table. 642 std::string TypeName; 643 while (1) { 644 unsigned Code = Stream.ReadCode(); 645 if (Code == bitc::END_BLOCK) { 646 if (Stream.ReadBlockEnd()) 647 return Error("Error at end of type symbol table block"); 648 return false; 649 } 650 651 if (Code == bitc::ENTER_SUBBLOCK) { 652 // No known subblocks, always skip them. 653 Stream.ReadSubBlockID(); 654 if (Stream.SkipBlock()) 655 return Error("Malformed block record"); 656 continue; 657 } 658 659 if (Code == bitc::DEFINE_ABBREV) { 660 Stream.ReadAbbrevRecord(); 661 continue; 662 } 663 664 // Read a record. 665 Record.clear(); 666 switch (Stream.ReadRecord(Code, Record)) { 667 default: // Default behavior: unknown type. 668 break; 669 case bitc::TST_CODE_ENTRY: // TST_ENTRY: [typeid, namechar x N] 670 if (ConvertToString(Record, 1, TypeName)) 671 return Error("Invalid TST_ENTRY record"); 672 unsigned TypeID = Record[0]; 673 if (TypeID >= TypeList.size()) 674 return Error("Invalid Type ID in TST_ENTRY record"); 675 676 TheModule->addTypeName(TypeName, TypeList[TypeID].get()); 677 TypeName.clear(); 678 break; 679 } 680 } 681 } 682 683 bool BitcodeReader::ParseValueSymbolTable() { 684 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 685 return Error("Malformed block record"); 686 687 SmallVector<uint64_t, 64> Record; 688 689 // Read all the records for this value table. 690 SmallString<128> ValueName; 691 while (1) { 692 unsigned Code = Stream.ReadCode(); 693 if (Code == bitc::END_BLOCK) { 694 if (Stream.ReadBlockEnd()) 695 return Error("Error at end of value symbol table block"); 696 return false; 697 } 698 if (Code == bitc::ENTER_SUBBLOCK) { 699 // No known subblocks, always skip them. 700 Stream.ReadSubBlockID(); 701 if (Stream.SkipBlock()) 702 return Error("Malformed block record"); 703 continue; 704 } 705 706 if (Code == bitc::DEFINE_ABBREV) { 707 Stream.ReadAbbrevRecord(); 708 continue; 709 } 710 711 // Read a record. 712 Record.clear(); 713 switch (Stream.ReadRecord(Code, Record)) { 714 default: // Default behavior: unknown type. 715 break; 716 case bitc::VST_CODE_ENTRY: { // VST_ENTRY: [valueid, namechar x N] 717 if (ConvertToString(Record, 1, ValueName)) 718 return Error("Invalid VST_ENTRY record"); 719 unsigned ValueID = Record[0]; 720 if (ValueID >= ValueList.size()) 721 return Error("Invalid Value ID in VST_ENTRY record"); 722 Value *V = ValueList[ValueID]; 723 724 V->setName(StringRef(ValueName.data(), ValueName.size())); 725 ValueName.clear(); 726 break; 727 } 728 case bitc::VST_CODE_BBENTRY: { 729 if (ConvertToString(Record, 1, ValueName)) 730 return Error("Invalid VST_BBENTRY record"); 731 BasicBlock *BB = getBasicBlock(Record[0]); 732 if (BB == 0) 733 return Error("Invalid BB ID in VST_BBENTRY record"); 734 735 BB->setName(StringRef(ValueName.data(), ValueName.size())); 736 ValueName.clear(); 737 break; 738 } 739 } 740 } 741 } 742 743 bool BitcodeReader::ParseMetadata() { 744 unsigned NextMDValueNo = MDValueList.size(); 745 746 if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID)) 747 return Error("Malformed block record"); 748 749 SmallVector<uint64_t, 64> Record; 750 751 // Read all the records. 752 while (1) { 753 unsigned Code = Stream.ReadCode(); 754 if (Code == bitc::END_BLOCK) { 755 if (Stream.ReadBlockEnd()) 756 return Error("Error at end of PARAMATTR block"); 757 return false; 758 } 759 760 if (Code == bitc::ENTER_SUBBLOCK) { 761 // No known subblocks, always skip them. 762 Stream.ReadSubBlockID(); 763 if (Stream.SkipBlock()) 764 return Error("Malformed block record"); 765 continue; 766 } 767 768 if (Code == bitc::DEFINE_ABBREV) { 769 Stream.ReadAbbrevRecord(); 770 continue; 771 } 772 773 bool IsFunctionLocal = false; 774 // Read a record. 775 Record.clear(); 776 switch (Stream.ReadRecord(Code, Record)) { 777 default: // Default behavior: ignore. 778 break; 779 case bitc::METADATA_NAME: { 780 // Read named of the named metadata. 781 unsigned NameLength = Record.size(); 782 SmallString<8> Name; 783 Name.resize(NameLength); 784 for (unsigned i = 0; i != NameLength; ++i) 785 Name[i] = Record[i]; 786 Record.clear(); 787 Code = Stream.ReadCode(); 788 789 // METADATA_NAME is always followed by METADATA_NAMED_NODE2. 790 unsigned NextBitCode = Stream.ReadRecord(Code, Record); 791 // FIXME: LLVM 3.0: Remove this. 792 if (NextBitCode == bitc::METADATA_NAMED_NODE) 793 break; 794 if (NextBitCode != bitc::METADATA_NAMED_NODE2) 795 assert ( 0 && "Inavlid Named Metadata record"); 796 797 // Read named metadata elements. 798 unsigned Size = Record.size(); 799 NamedMDNode *NMD = TheModule->getOrInsertNamedMetadata(Name); 800 for (unsigned i = 0; i != Size; ++i) { 801 MDNode *MD = dyn_cast<MDNode>(MDValueList.getValueFwdRef(Record[i])); 802 if (MD == 0) 803 return Error("Malformed metadata record"); 804 NMD->addOperand(MD); 805 } 806 break; 807 } 808 case bitc::METADATA_FN_NODE: 809 // FIXME: Legacy support for the old fn_node, where function-local 810 // metadata operands were bogus. Remove in LLVM 3.0. 811 break; 812 case bitc::METADATA_NODE: 813 // FIXME: Legacy support for the old node, where function-local 814 // metadata operands were bogus. Remove in LLVM 3.0. 815 break; 816 case bitc::METADATA_FN_NODE2: 817 IsFunctionLocal = true; 818 // fall-through 819 case bitc::METADATA_NODE2: { 820 if (Record.size() % 2 == 1) 821 return Error("Invalid METADATA_NODE2 record"); 822 823 unsigned Size = Record.size(); 824 SmallVector<Value*, 8> Elts; 825 for (unsigned i = 0; i != Size; i += 2) { 826 const Type *Ty = getTypeByID(Record[i], false); 827 if (Ty->isMetadataTy()) 828 Elts.push_back(MDValueList.getValueFwdRef(Record[i+1])); 829 else if (!Ty->isVoidTy()) 830 Elts.push_back(ValueList.getValueFwdRef(Record[i+1], Ty)); 831 else 832 Elts.push_back(NULL); 833 } 834 Value *V = MDNode::getWhenValsUnresolved(Context, 835 Elts.data(), Elts.size(), 836 IsFunctionLocal); 837 IsFunctionLocal = false; 838 MDValueList.AssignValue(V, NextMDValueNo++); 839 break; 840 } 841 case bitc::METADATA_STRING: { 842 unsigned MDStringLength = Record.size(); 843 SmallString<8> String; 844 String.resize(MDStringLength); 845 for (unsigned i = 0; i != MDStringLength; ++i) 846 String[i] = Record[i]; 847 Value *V = MDString::get(Context, 848 StringRef(String.data(), String.size())); 849 MDValueList.AssignValue(V, NextMDValueNo++); 850 break; 851 } 852 case bitc::METADATA_KIND: { 853 unsigned RecordLength = Record.size(); 854 if (Record.empty() || RecordLength < 2) 855 return Error("Invalid METADATA_KIND record"); 856 SmallString<8> Name; 857 Name.resize(RecordLength-1); 858 unsigned Kind = Record[0]; 859 for (unsigned i = 1; i != RecordLength; ++i) 860 Name[i-1] = Record[i]; 861 862 unsigned NewKind = TheModule->getMDKindID(Name.str()); 863 if (!MDKindMap.insert(std::make_pair(Kind, NewKind)).second) 864 return Error("Conflicting METADATA_KIND records"); 865 break; 866 } 867 } 868 } 869 } 870 871 /// DecodeSignRotatedValue - Decode a signed value stored with the sign bit in 872 /// the LSB for dense VBR encoding. 873 static uint64_t DecodeSignRotatedValue(uint64_t V) { 874 if ((V & 1) == 0) 875 return V >> 1; 876 if (V != 1) 877 return -(V >> 1); 878 // There is no such thing as -0 with integers. "-0" really means MININT. 879 return 1ULL << 63; 880 } 881 882 /// ResolveGlobalAndAliasInits - Resolve all of the initializers for global 883 /// values and aliases that we can. 884 bool BitcodeReader::ResolveGlobalAndAliasInits() { 885 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist; 886 std::vector<std::pair<GlobalAlias*, unsigned> > AliasInitWorklist; 887 888 GlobalInitWorklist.swap(GlobalInits); 889 AliasInitWorklist.swap(AliasInits); 890 891 while (!GlobalInitWorklist.empty()) { 892 unsigned ValID = GlobalInitWorklist.back().second; 893 if (ValID >= ValueList.size()) { 894 // Not ready to resolve this yet, it requires something later in the file. 895 GlobalInits.push_back(GlobalInitWorklist.back()); 896 } else { 897 if (Constant *C = dyn_cast<Constant>(ValueList[ValID])) 898 GlobalInitWorklist.back().first->setInitializer(C); 899 else 900 return Error("Global variable initializer is not a constant!"); 901 } 902 GlobalInitWorklist.pop_back(); 903 } 904 905 while (!AliasInitWorklist.empty()) { 906 unsigned ValID = AliasInitWorklist.back().second; 907 if (ValID >= ValueList.size()) { 908 AliasInits.push_back(AliasInitWorklist.back()); 909 } else { 910 if (Constant *C = dyn_cast<Constant>(ValueList[ValID])) 911 AliasInitWorklist.back().first->setAliasee(C); 912 else 913 return Error("Alias initializer is not a constant!"); 914 } 915 AliasInitWorklist.pop_back(); 916 } 917 return false; 918 } 919 920 bool BitcodeReader::ParseConstants() { 921 if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 922 return Error("Malformed block record"); 923 924 SmallVector<uint64_t, 64> Record; 925 926 // Read all the records for this value table. 927 const Type *CurTy = Type::getInt32Ty(Context); 928 unsigned NextCstNo = ValueList.size(); 929 while (1) { 930 unsigned Code = Stream.ReadCode(); 931 if (Code == bitc::END_BLOCK) 932 break; 933 934 if (Code == bitc::ENTER_SUBBLOCK) { 935 // No known subblocks, always skip them. 936 Stream.ReadSubBlockID(); 937 if (Stream.SkipBlock()) 938 return Error("Malformed block record"); 939 continue; 940 } 941 942 if (Code == bitc::DEFINE_ABBREV) { 943 Stream.ReadAbbrevRecord(); 944 continue; 945 } 946 947 // Read a record. 948 Record.clear(); 949 Value *V = 0; 950 unsigned BitCode = Stream.ReadRecord(Code, Record); 951 switch (BitCode) { 952 default: // Default behavior: unknown constant 953 case bitc::CST_CODE_UNDEF: // UNDEF 954 V = UndefValue::get(CurTy); 955 break; 956 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 957 if (Record.empty()) 958 return Error("Malformed CST_SETTYPE record"); 959 if (Record[0] >= TypeList.size()) 960 return Error("Invalid Type ID in CST_SETTYPE record"); 961 CurTy = TypeList[Record[0]]; 962 continue; // Skip the ValueList manipulation. 963 case bitc::CST_CODE_NULL: // NULL 964 V = Constant::getNullValue(CurTy); 965 break; 966 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 967 if (!CurTy->isIntegerTy() || Record.empty()) 968 return Error("Invalid CST_INTEGER record"); 969 V = ConstantInt::get(CurTy, DecodeSignRotatedValue(Record[0])); 970 break; 971 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 972 if (!CurTy->isIntegerTy() || Record.empty()) 973 return Error("Invalid WIDE_INTEGER record"); 974 975 unsigned NumWords = Record.size(); 976 SmallVector<uint64_t, 8> Words; 977 Words.resize(NumWords); 978 for (unsigned i = 0; i != NumWords; ++i) 979 Words[i] = DecodeSignRotatedValue(Record[i]); 980 V = ConstantInt::get(Context, 981 APInt(cast<IntegerType>(CurTy)->getBitWidth(), 982 NumWords, &Words[0])); 983 break; 984 } 985 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 986 if (Record.empty()) 987 return Error("Invalid FLOAT record"); 988 if (CurTy->isFloatTy()) 989 V = ConstantFP::get(Context, APFloat(APInt(32, (uint32_t)Record[0]))); 990 else if (CurTy->isDoubleTy()) 991 V = ConstantFP::get(Context, APFloat(APInt(64, Record[0]))); 992 else if (CurTy->isX86_FP80Ty()) { 993 // Bits are not stored the same way as a normal i80 APInt, compensate. 994 uint64_t Rearrange[2]; 995 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 996 Rearrange[1] = Record[0] >> 48; 997 V = ConstantFP::get(Context, APFloat(APInt(80, 2, Rearrange))); 998 } else if (CurTy->isFP128Ty()) 999 V = ConstantFP::get(Context, APFloat(APInt(128, 2, &Record[0]), true)); 1000 else if (CurTy->isPPC_FP128Ty()) 1001 V = ConstantFP::get(Context, APFloat(APInt(128, 2, &Record[0]))); 1002 else 1003 V = UndefValue::get(CurTy); 1004 break; 1005 } 1006 1007 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 1008 if (Record.empty()) 1009 return Error("Invalid CST_AGGREGATE record"); 1010 1011 unsigned Size = Record.size(); 1012 std::vector<Constant*> Elts; 1013 1014 if (const StructType *STy = dyn_cast<StructType>(CurTy)) { 1015 for (unsigned i = 0; i != Size; ++i) 1016 Elts.push_back(ValueList.getConstantFwdRef(Record[i], 1017 STy->getElementType(i))); 1018 V = ConstantStruct::get(STy, Elts); 1019 } else if (const ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) { 1020 const Type *EltTy = ATy->getElementType(); 1021 for (unsigned i = 0; i != Size; ++i) 1022 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 1023 V = ConstantArray::get(ATy, Elts); 1024 } else if (const VectorType *VTy = dyn_cast<VectorType>(CurTy)) { 1025 const Type *EltTy = VTy->getElementType(); 1026 for (unsigned i = 0; i != Size; ++i) 1027 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 1028 V = ConstantVector::get(Elts); 1029 } else { 1030 V = UndefValue::get(CurTy); 1031 } 1032 break; 1033 } 1034 case bitc::CST_CODE_STRING: { // STRING: [values] 1035 if (Record.empty()) 1036 return Error("Invalid CST_AGGREGATE record"); 1037 1038 const ArrayType *ATy = cast<ArrayType>(CurTy); 1039 const Type *EltTy = ATy->getElementType(); 1040 1041 unsigned Size = Record.size(); 1042 std::vector<Constant*> Elts; 1043 for (unsigned i = 0; i != Size; ++i) 1044 Elts.push_back(ConstantInt::get(EltTy, Record[i])); 1045 V = ConstantArray::get(ATy, Elts); 1046 break; 1047 } 1048 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 1049 if (Record.empty()) 1050 return Error("Invalid CST_AGGREGATE record"); 1051 1052 const ArrayType *ATy = cast<ArrayType>(CurTy); 1053 const Type *EltTy = ATy->getElementType(); 1054 1055 unsigned Size = Record.size(); 1056 std::vector<Constant*> Elts; 1057 for (unsigned i = 0; i != Size; ++i) 1058 Elts.push_back(ConstantInt::get(EltTy, Record[i])); 1059 Elts.push_back(Constant::getNullValue(EltTy)); 1060 V = ConstantArray::get(ATy, Elts); 1061 break; 1062 } 1063 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 1064 if (Record.size() < 3) return Error("Invalid CE_BINOP record"); 1065 int Opc = GetDecodedBinaryOpcode(Record[0], CurTy); 1066 if (Opc < 0) { 1067 V = UndefValue::get(CurTy); // Unknown binop. 1068 } else { 1069 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 1070 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy); 1071 unsigned Flags = 0; 1072 if (Record.size() >= 4) { 1073 if (Opc == Instruction::Add || 1074 Opc == Instruction::Sub || 1075 Opc == Instruction::Mul) { 1076 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 1077 Flags |= OverflowingBinaryOperator::NoSignedWrap; 1078 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 1079 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 1080 } else if (Opc == Instruction::SDiv) { 1081 if (Record[3] & (1 << bitc::SDIV_EXACT)) 1082 Flags |= SDivOperator::IsExact; 1083 } 1084 } 1085 V = ConstantExpr::get(Opc, LHS, RHS, Flags); 1086 } 1087 break; 1088 } 1089 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 1090 if (Record.size() < 3) return Error("Invalid CE_CAST record"); 1091 int Opc = GetDecodedCastOpcode(Record[0]); 1092 if (Opc < 0) { 1093 V = UndefValue::get(CurTy); // Unknown cast. 1094 } else { 1095 const Type *OpTy = getTypeByID(Record[1]); 1096 if (!OpTy) return Error("Invalid CE_CAST record"); 1097 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy); 1098 V = ConstantExpr::getCast(Opc, Op, CurTy); 1099 } 1100 break; 1101 } 1102 case bitc::CST_CODE_CE_INBOUNDS_GEP: 1103 case bitc::CST_CODE_CE_GEP: { // CE_GEP: [n x operands] 1104 if (Record.size() & 1) return Error("Invalid CE_GEP record"); 1105 SmallVector<Constant*, 16> Elts; 1106 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1107 const Type *ElTy = getTypeByID(Record[i]); 1108 if (!ElTy) return Error("Invalid CE_GEP record"); 1109 Elts.push_back(ValueList.getConstantFwdRef(Record[i+1], ElTy)); 1110 } 1111 if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP) 1112 V = ConstantExpr::getInBoundsGetElementPtr(Elts[0], &Elts[1], 1113 Elts.size()-1); 1114 else 1115 V = ConstantExpr::getGetElementPtr(Elts[0], &Elts[1], 1116 Elts.size()-1); 1117 break; 1118 } 1119 case bitc::CST_CODE_CE_SELECT: // CE_SELECT: [opval#, opval#, opval#] 1120 if (Record.size() < 3) return Error("Invalid CE_SELECT record"); 1121 V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0], 1122 Type::getInt1Ty(Context)), 1123 ValueList.getConstantFwdRef(Record[1],CurTy), 1124 ValueList.getConstantFwdRef(Record[2],CurTy)); 1125 break; 1126 case bitc::CST_CODE_CE_EXTRACTELT: { // CE_EXTRACTELT: [opty, opval, opval] 1127 if (Record.size() < 3) return Error("Invalid CE_EXTRACTELT record"); 1128 const VectorType *OpTy = 1129 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 1130 if (OpTy == 0) return Error("Invalid CE_EXTRACTELT record"); 1131 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 1132 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 1133 V = ConstantExpr::getExtractElement(Op0, Op1); 1134 break; 1135 } 1136 case bitc::CST_CODE_CE_INSERTELT: { // CE_INSERTELT: [opval, opval, opval] 1137 const VectorType *OpTy = dyn_cast<VectorType>(CurTy); 1138 if (Record.size() < 3 || OpTy == 0) 1139 return Error("Invalid CE_INSERTELT record"); 1140 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 1141 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], 1142 OpTy->getElementType()); 1143 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 1144 V = ConstantExpr::getInsertElement(Op0, Op1, Op2); 1145 break; 1146 } 1147 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 1148 const VectorType *OpTy = dyn_cast<VectorType>(CurTy); 1149 if (Record.size() < 3 || OpTy == 0) 1150 return Error("Invalid CE_SHUFFLEVEC record"); 1151 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 1152 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy); 1153 const Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 1154 OpTy->getNumElements()); 1155 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy); 1156 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 1157 break; 1158 } 1159 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 1160 const VectorType *RTy = dyn_cast<VectorType>(CurTy); 1161 const VectorType *OpTy = dyn_cast<VectorType>(getTypeByID(Record[0])); 1162 if (Record.size() < 4 || RTy == 0 || OpTy == 0) 1163 return Error("Invalid CE_SHUFVEC_EX record"); 1164 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 1165 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 1166 const Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 1167 RTy->getNumElements()); 1168 Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy); 1169 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 1170 break; 1171 } 1172 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 1173 if (Record.size() < 4) return Error("Invalid CE_CMP record"); 1174 const Type *OpTy = getTypeByID(Record[0]); 1175 if (OpTy == 0) return Error("Invalid CE_CMP record"); 1176 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 1177 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 1178 1179 if (OpTy->isFPOrFPVectorTy()) 1180 V = ConstantExpr::getFCmp(Record[3], Op0, Op1); 1181 else 1182 V = ConstantExpr::getICmp(Record[3], Op0, Op1); 1183 break; 1184 } 1185 case bitc::CST_CODE_INLINEASM: { 1186 if (Record.size() < 2) return Error("Invalid INLINEASM record"); 1187 std::string AsmStr, ConstrStr; 1188 bool HasSideEffects = Record[0] & 1; 1189 bool IsAlignStack = Record[0] >> 1; 1190 unsigned AsmStrSize = Record[1]; 1191 if (2+AsmStrSize >= Record.size()) 1192 return Error("Invalid INLINEASM record"); 1193 unsigned ConstStrSize = Record[2+AsmStrSize]; 1194 if (3+AsmStrSize+ConstStrSize > Record.size()) 1195 return Error("Invalid INLINEASM record"); 1196 1197 for (unsigned i = 0; i != AsmStrSize; ++i) 1198 AsmStr += (char)Record[2+i]; 1199 for (unsigned i = 0; i != ConstStrSize; ++i) 1200 ConstrStr += (char)Record[3+AsmStrSize+i]; 1201 const PointerType *PTy = cast<PointerType>(CurTy); 1202 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 1203 AsmStr, ConstrStr, HasSideEffects, IsAlignStack); 1204 break; 1205 } 1206 case bitc::CST_CODE_BLOCKADDRESS:{ 1207 if (Record.size() < 3) return Error("Invalid CE_BLOCKADDRESS record"); 1208 const Type *FnTy = getTypeByID(Record[0]); 1209 if (FnTy == 0) return Error("Invalid CE_BLOCKADDRESS record"); 1210 Function *Fn = 1211 dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy)); 1212 if (Fn == 0) return Error("Invalid CE_BLOCKADDRESS record"); 1213 1214 GlobalVariable *FwdRef = new GlobalVariable(*Fn->getParent(), 1215 Type::getInt8Ty(Context), 1216 false, GlobalValue::InternalLinkage, 1217 0, ""); 1218 BlockAddrFwdRefs[Fn].push_back(std::make_pair(Record[2], FwdRef)); 1219 V = FwdRef; 1220 break; 1221 } 1222 } 1223 1224 ValueList.AssignValue(V, NextCstNo); 1225 ++NextCstNo; 1226 } 1227 1228 if (NextCstNo != ValueList.size()) 1229 return Error("Invalid constant reference!"); 1230 1231 if (Stream.ReadBlockEnd()) 1232 return Error("Error at end of constants block"); 1233 1234 // Once all the constants have been read, go through and resolve forward 1235 // references. 1236 ValueList.ResolveConstantForwardRefs(); 1237 return false; 1238 } 1239 1240 /// RememberAndSkipFunctionBody - When we see the block for a function body, 1241 /// remember where it is and then skip it. This lets us lazily deserialize the 1242 /// functions. 1243 bool BitcodeReader::RememberAndSkipFunctionBody() { 1244 // Get the function we are talking about. 1245 if (FunctionsWithBodies.empty()) 1246 return Error("Insufficient function protos"); 1247 1248 Function *Fn = FunctionsWithBodies.back(); 1249 FunctionsWithBodies.pop_back(); 1250 1251 // Save the current stream state. 1252 uint64_t CurBit = Stream.GetCurrentBitNo(); 1253 DeferredFunctionInfo[Fn] = CurBit; 1254 1255 // Skip over the function block for now. 1256 if (Stream.SkipBlock()) 1257 return Error("Malformed block record"); 1258 return false; 1259 } 1260 1261 bool BitcodeReader::ParseModule() { 1262 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 1263 return Error("Malformed block record"); 1264 1265 SmallVector<uint64_t, 64> Record; 1266 std::vector<std::string> SectionTable; 1267 std::vector<std::string> GCTable; 1268 1269 // Read all the records for this module. 1270 while (!Stream.AtEndOfStream()) { 1271 unsigned Code = Stream.ReadCode(); 1272 if (Code == bitc::END_BLOCK) { 1273 if (Stream.ReadBlockEnd()) 1274 return Error("Error at end of module block"); 1275 1276 // Patch the initializers for globals and aliases up. 1277 ResolveGlobalAndAliasInits(); 1278 if (!GlobalInits.empty() || !AliasInits.empty()) 1279 return Error("Malformed global initializer set"); 1280 if (!FunctionsWithBodies.empty()) 1281 return Error("Too few function bodies found"); 1282 1283 // Look for intrinsic functions which need to be upgraded at some point 1284 for (Module::iterator FI = TheModule->begin(), FE = TheModule->end(); 1285 FI != FE; ++FI) { 1286 Function* NewFn; 1287 if (UpgradeIntrinsicFunction(FI, NewFn)) 1288 UpgradedIntrinsics.push_back(std::make_pair(FI, NewFn)); 1289 } 1290 1291 // Look for global variables which need to be renamed. 1292 for (Module::global_iterator 1293 GI = TheModule->global_begin(), GE = TheModule->global_end(); 1294 GI != GE; ++GI) 1295 UpgradeGlobalVariable(GI); 1296 1297 // Force deallocation of memory for these vectors to favor the client that 1298 // want lazy deserialization. 1299 std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits); 1300 std::vector<std::pair<GlobalAlias*, unsigned> >().swap(AliasInits); 1301 std::vector<Function*>().swap(FunctionsWithBodies); 1302 return false; 1303 } 1304 1305 if (Code == bitc::ENTER_SUBBLOCK) { 1306 switch (Stream.ReadSubBlockID()) { 1307 default: // Skip unknown content. 1308 if (Stream.SkipBlock()) 1309 return Error("Malformed block record"); 1310 break; 1311 case bitc::BLOCKINFO_BLOCK_ID: 1312 if (Stream.ReadBlockInfoBlock()) 1313 return Error("Malformed BlockInfoBlock"); 1314 break; 1315 case bitc::PARAMATTR_BLOCK_ID: 1316 if (ParseAttributeBlock()) 1317 return true; 1318 break; 1319 case bitc::TYPE_BLOCK_ID: 1320 if (ParseTypeTable()) 1321 return true; 1322 break; 1323 case bitc::TYPE_SYMTAB_BLOCK_ID: 1324 if (ParseTypeSymbolTable()) 1325 return true; 1326 break; 1327 case bitc::VALUE_SYMTAB_BLOCK_ID: 1328 if (ParseValueSymbolTable()) 1329 return true; 1330 break; 1331 case bitc::CONSTANTS_BLOCK_ID: 1332 if (ParseConstants() || ResolveGlobalAndAliasInits()) 1333 return true; 1334 break; 1335 case bitc::METADATA_BLOCK_ID: 1336 if (ParseMetadata()) 1337 return true; 1338 break; 1339 case bitc::FUNCTION_BLOCK_ID: 1340 // If this is the first function body we've seen, reverse the 1341 // FunctionsWithBodies list. 1342 if (!HasReversedFunctionsWithBodies) { 1343 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 1344 HasReversedFunctionsWithBodies = true; 1345 } 1346 1347 if (RememberAndSkipFunctionBody()) 1348 return true; 1349 break; 1350 } 1351 continue; 1352 } 1353 1354 if (Code == bitc::DEFINE_ABBREV) { 1355 Stream.ReadAbbrevRecord(); 1356 continue; 1357 } 1358 1359 // Read a record. 1360 switch (Stream.ReadRecord(Code, Record)) { 1361 default: break; // Default behavior, ignore unknown content. 1362 case bitc::MODULE_CODE_VERSION: // VERSION: [version#] 1363 if (Record.size() < 1) 1364 return Error("Malformed MODULE_CODE_VERSION"); 1365 // Only version #0 is supported so far. 1366 if (Record[0] != 0) 1367 return Error("Unknown bitstream version!"); 1368 break; 1369 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 1370 std::string S; 1371 if (ConvertToString(Record, 0, S)) 1372 return Error("Invalid MODULE_CODE_TRIPLE record"); 1373 TheModule->setTargetTriple(S); 1374 break; 1375 } 1376 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 1377 std::string S; 1378 if (ConvertToString(Record, 0, S)) 1379 return Error("Invalid MODULE_CODE_DATALAYOUT record"); 1380 TheModule->setDataLayout(S); 1381 break; 1382 } 1383 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 1384 std::string S; 1385 if (ConvertToString(Record, 0, S)) 1386 return Error("Invalid MODULE_CODE_ASM record"); 1387 TheModule->setModuleInlineAsm(S); 1388 break; 1389 } 1390 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 1391 std::string S; 1392 if (ConvertToString(Record, 0, S)) 1393 return Error("Invalid MODULE_CODE_DEPLIB record"); 1394 TheModule->addLibrary(S); 1395 break; 1396 } 1397 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 1398 std::string S; 1399 if (ConvertToString(Record, 0, S)) 1400 return Error("Invalid MODULE_CODE_SECTIONNAME record"); 1401 SectionTable.push_back(S); 1402 break; 1403 } 1404 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 1405 std::string S; 1406 if (ConvertToString(Record, 0, S)) 1407 return Error("Invalid MODULE_CODE_GCNAME record"); 1408 GCTable.push_back(S); 1409 break; 1410 } 1411 // GLOBALVAR: [pointer type, isconst, initid, 1412 // linkage, alignment, section, visibility, threadlocal] 1413 case bitc::MODULE_CODE_GLOBALVAR: { 1414 if (Record.size() < 6) 1415 return Error("Invalid MODULE_CODE_GLOBALVAR record"); 1416 const Type *Ty = getTypeByID(Record[0]); 1417 if (!Ty->isPointerTy()) 1418 return Error("Global not a pointer type!"); 1419 unsigned AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 1420 Ty = cast<PointerType>(Ty)->getElementType(); 1421 1422 bool isConstant = Record[1]; 1423 GlobalValue::LinkageTypes Linkage = GetDecodedLinkage(Record[3]); 1424 unsigned Alignment = (1 << Record[4]) >> 1; 1425 std::string Section; 1426 if (Record[5]) { 1427 if (Record[5]-1 >= SectionTable.size()) 1428 return Error("Invalid section ID"); 1429 Section = SectionTable[Record[5]-1]; 1430 } 1431 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 1432 if (Record.size() > 6) 1433 Visibility = GetDecodedVisibility(Record[6]); 1434 bool isThreadLocal = false; 1435 if (Record.size() > 7) 1436 isThreadLocal = Record[7]; 1437 1438 GlobalVariable *NewGV = 1439 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, 0, "", 0, 1440 isThreadLocal, AddressSpace); 1441 NewGV->setAlignment(Alignment); 1442 if (!Section.empty()) 1443 NewGV->setSection(Section); 1444 NewGV->setVisibility(Visibility); 1445 NewGV->setThreadLocal(isThreadLocal); 1446 1447 ValueList.push_back(NewGV); 1448 1449 // Remember which value to use for the global initializer. 1450 if (unsigned InitID = Record[2]) 1451 GlobalInits.push_back(std::make_pair(NewGV, InitID-1)); 1452 break; 1453 } 1454 // FUNCTION: [type, callingconv, isproto, linkage, paramattr, 1455 // alignment, section, visibility, gc] 1456 case bitc::MODULE_CODE_FUNCTION: { 1457 if (Record.size() < 8) 1458 return Error("Invalid MODULE_CODE_FUNCTION record"); 1459 const Type *Ty = getTypeByID(Record[0]); 1460 if (!Ty->isPointerTy()) 1461 return Error("Function not a pointer type!"); 1462 const FunctionType *FTy = 1463 dyn_cast<FunctionType>(cast<PointerType>(Ty)->getElementType()); 1464 if (!FTy) 1465 return Error("Function not a pointer to function type!"); 1466 1467 Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage, 1468 "", TheModule); 1469 1470 Func->setCallingConv(static_cast<CallingConv::ID>(Record[1])); 1471 bool isProto = Record[2]; 1472 Func->setLinkage(GetDecodedLinkage(Record[3])); 1473 Func->setAttributes(getAttributes(Record[4])); 1474 1475 Func->setAlignment((1 << Record[5]) >> 1); 1476 if (Record[6]) { 1477 if (Record[6]-1 >= SectionTable.size()) 1478 return Error("Invalid section ID"); 1479 Func->setSection(SectionTable[Record[6]-1]); 1480 } 1481 Func->setVisibility(GetDecodedVisibility(Record[7])); 1482 if (Record.size() > 8 && Record[8]) { 1483 if (Record[8]-1 > GCTable.size()) 1484 return Error("Invalid GC ID"); 1485 Func->setGC(GCTable[Record[8]-1].c_str()); 1486 } 1487 ValueList.push_back(Func); 1488 1489 // If this is a function with a body, remember the prototype we are 1490 // creating now, so that we can match up the body with them later. 1491 if (!isProto) 1492 FunctionsWithBodies.push_back(Func); 1493 break; 1494 } 1495 // ALIAS: [alias type, aliasee val#, linkage] 1496 // ALIAS: [alias type, aliasee val#, linkage, visibility] 1497 case bitc::MODULE_CODE_ALIAS: { 1498 if (Record.size() < 3) 1499 return Error("Invalid MODULE_ALIAS record"); 1500 const Type *Ty = getTypeByID(Record[0]); 1501 if (!Ty->isPointerTy()) 1502 return Error("Function not a pointer type!"); 1503 1504 GlobalAlias *NewGA = new GlobalAlias(Ty, GetDecodedLinkage(Record[2]), 1505 "", 0, TheModule); 1506 // Old bitcode files didn't have visibility field. 1507 if (Record.size() > 3) 1508 NewGA->setVisibility(GetDecodedVisibility(Record[3])); 1509 ValueList.push_back(NewGA); 1510 AliasInits.push_back(std::make_pair(NewGA, Record[1])); 1511 break; 1512 } 1513 /// MODULE_CODE_PURGEVALS: [numvals] 1514 case bitc::MODULE_CODE_PURGEVALS: 1515 // Trim down the value list to the specified size. 1516 if (Record.size() < 1 || Record[0] > ValueList.size()) 1517 return Error("Invalid MODULE_PURGEVALS record"); 1518 ValueList.shrinkTo(Record[0]); 1519 break; 1520 } 1521 Record.clear(); 1522 } 1523 1524 return Error("Premature end of bitstream"); 1525 } 1526 1527 bool BitcodeReader::ParseBitcodeInto(Module *M) { 1528 TheModule = 0; 1529 1530 unsigned char *BufPtr = (unsigned char *)Buffer->getBufferStart(); 1531 unsigned char *BufEnd = BufPtr+Buffer->getBufferSize(); 1532 1533 if (Buffer->getBufferSize() & 3) { 1534 if (!isRawBitcode(BufPtr, BufEnd) && !isBitcodeWrapper(BufPtr, BufEnd)) 1535 return Error("Invalid bitcode signature"); 1536 else 1537 return Error("Bitcode stream should be a multiple of 4 bytes in length"); 1538 } 1539 1540 // If we have a wrapper header, parse it and ignore the non-bc file contents. 1541 // The magic number is 0x0B17C0DE stored in little endian. 1542 if (isBitcodeWrapper(BufPtr, BufEnd)) 1543 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd)) 1544 return Error("Invalid bitcode wrapper header"); 1545 1546 StreamFile.init(BufPtr, BufEnd); 1547 Stream.init(StreamFile); 1548 1549 // Sniff for the signature. 1550 if (Stream.Read(8) != 'B' || 1551 Stream.Read(8) != 'C' || 1552 Stream.Read(4) != 0x0 || 1553 Stream.Read(4) != 0xC || 1554 Stream.Read(4) != 0xE || 1555 Stream.Read(4) != 0xD) 1556 return Error("Invalid bitcode signature"); 1557 1558 // We expect a number of well-defined blocks, though we don't necessarily 1559 // need to understand them all. 1560 while (!Stream.AtEndOfStream()) { 1561 unsigned Code = Stream.ReadCode(); 1562 1563 if (Code != bitc::ENTER_SUBBLOCK) 1564 return Error("Invalid record at top-level"); 1565 1566 unsigned BlockID = Stream.ReadSubBlockID(); 1567 1568 // We only know the MODULE subblock ID. 1569 switch (BlockID) { 1570 case bitc::BLOCKINFO_BLOCK_ID: 1571 if (Stream.ReadBlockInfoBlock()) 1572 return Error("Malformed BlockInfoBlock"); 1573 break; 1574 case bitc::MODULE_BLOCK_ID: 1575 // Reject multiple MODULE_BLOCK's in a single bitstream. 1576 if (TheModule) 1577 return Error("Multiple MODULE_BLOCKs in same stream"); 1578 TheModule = M; 1579 if (ParseModule()) 1580 return true; 1581 break; 1582 default: 1583 if (Stream.SkipBlock()) 1584 return Error("Malformed block record"); 1585 break; 1586 } 1587 } 1588 1589 return false; 1590 } 1591 1592 /// ParseMetadataAttachment - Parse metadata attachments. 1593 bool BitcodeReader::ParseMetadataAttachment() { 1594 if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID)) 1595 return Error("Malformed block record"); 1596 1597 SmallVector<uint64_t, 64> Record; 1598 while(1) { 1599 unsigned Code = Stream.ReadCode(); 1600 if (Code == bitc::END_BLOCK) { 1601 if (Stream.ReadBlockEnd()) 1602 return Error("Error at end of PARAMATTR block"); 1603 break; 1604 } 1605 if (Code == bitc::DEFINE_ABBREV) { 1606 Stream.ReadAbbrevRecord(); 1607 continue; 1608 } 1609 // Read a metadata attachment record. 1610 Record.clear(); 1611 switch (Stream.ReadRecord(Code, Record)) { 1612 default: // Default behavior: ignore. 1613 break; 1614 case bitc::METADATA_ATTACHMENT: 1615 // LLVM 3.0: Remove this. 1616 break; 1617 case bitc::METADATA_ATTACHMENT2: { 1618 unsigned RecordLength = Record.size(); 1619 if (Record.empty() || (RecordLength - 1) % 2 == 1) 1620 return Error ("Invalid METADATA_ATTACHMENT reader!"); 1621 Instruction *Inst = InstructionList[Record[0]]; 1622 for (unsigned i = 1; i != RecordLength; i = i+2) { 1623 unsigned Kind = Record[i]; 1624 DenseMap<unsigned, unsigned>::iterator I = 1625 MDKindMap.find(Kind); 1626 if (I == MDKindMap.end()) 1627 return Error("Invalid metadata kind ID"); 1628 Value *Node = MDValueList.getValueFwdRef(Record[i+1]); 1629 Inst->setMetadata(I->second, cast<MDNode>(Node)); 1630 } 1631 break; 1632 } 1633 } 1634 } 1635 return false; 1636 } 1637 1638 /// ParseFunctionBody - Lazily parse the specified function body block. 1639 bool BitcodeReader::ParseFunctionBody(Function *F) { 1640 if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 1641 return Error("Malformed block record"); 1642 1643 InstructionList.clear(); 1644 unsigned ModuleValueListSize = ValueList.size(); 1645 unsigned ModuleMDValueListSize = MDValueList.size(); 1646 1647 // Add all the function arguments to the value table. 1648 for(Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I) 1649 ValueList.push_back(I); 1650 1651 unsigned NextValueNo = ValueList.size(); 1652 BasicBlock *CurBB = 0; 1653 unsigned CurBBNo = 0; 1654 1655 DebugLoc LastLoc; 1656 1657 // Read all the records. 1658 SmallVector<uint64_t, 64> Record; 1659 while (1) { 1660 unsigned Code = Stream.ReadCode(); 1661 if (Code == bitc::END_BLOCK) { 1662 if (Stream.ReadBlockEnd()) 1663 return Error("Error at end of function block"); 1664 break; 1665 } 1666 1667 if (Code == bitc::ENTER_SUBBLOCK) { 1668 switch (Stream.ReadSubBlockID()) { 1669 default: // Skip unknown content. 1670 if (Stream.SkipBlock()) 1671 return Error("Malformed block record"); 1672 break; 1673 case bitc::CONSTANTS_BLOCK_ID: 1674 if (ParseConstants()) return true; 1675 NextValueNo = ValueList.size(); 1676 break; 1677 case bitc::VALUE_SYMTAB_BLOCK_ID: 1678 if (ParseValueSymbolTable()) return true; 1679 break; 1680 case bitc::METADATA_ATTACHMENT_ID: 1681 if (ParseMetadataAttachment()) return true; 1682 break; 1683 case bitc::METADATA_BLOCK_ID: 1684 if (ParseMetadata()) return true; 1685 break; 1686 } 1687 continue; 1688 } 1689 1690 if (Code == bitc::DEFINE_ABBREV) { 1691 Stream.ReadAbbrevRecord(); 1692 continue; 1693 } 1694 1695 // Read a record. 1696 Record.clear(); 1697 Instruction *I = 0; 1698 unsigned BitCode = Stream.ReadRecord(Code, Record); 1699 switch (BitCode) { 1700 default: // Default behavior: reject 1701 return Error("Unknown instruction"); 1702 case bitc::FUNC_CODE_DECLAREBLOCKS: // DECLAREBLOCKS: [nblocks] 1703 if (Record.size() < 1 || Record[0] == 0) 1704 return Error("Invalid DECLAREBLOCKS record"); 1705 // Create all the basic blocks for the function. 1706 FunctionBBs.resize(Record[0]); 1707 for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i) 1708 FunctionBBs[i] = BasicBlock::Create(Context, "", F); 1709 CurBB = FunctionBBs[0]; 1710 continue; 1711 1712 1713 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 1714 // This record indicates that the last instruction is at the same 1715 // location as the previous instruction with a location. 1716 I = 0; 1717 1718 // Get the last instruction emitted. 1719 if (CurBB && !CurBB->empty()) 1720 I = &CurBB->back(); 1721 else if (CurBBNo && FunctionBBs[CurBBNo-1] && 1722 !FunctionBBs[CurBBNo-1]->empty()) 1723 I = &FunctionBBs[CurBBNo-1]->back(); 1724 1725 if (I == 0) return Error("Invalid DEBUG_LOC_AGAIN record"); 1726 I->setDebugLoc(LastLoc); 1727 I = 0; 1728 continue; 1729 1730 case bitc::FUNC_CODE_DEBUG_LOC: 1731 // FIXME: Ignore. Remove this in LLVM 3.0. 1732 continue; 1733 1734 case bitc::FUNC_CODE_DEBUG_LOC2: { // DEBUG_LOC: [line, col, scope, ia] 1735 I = 0; // Get the last instruction emitted. 1736 if (CurBB && !CurBB->empty()) 1737 I = &CurBB->back(); 1738 else if (CurBBNo && FunctionBBs[CurBBNo-1] && 1739 !FunctionBBs[CurBBNo-1]->empty()) 1740 I = &FunctionBBs[CurBBNo-1]->back(); 1741 if (I == 0 || Record.size() < 4) 1742 return Error("Invalid FUNC_CODE_DEBUG_LOC record"); 1743 1744 unsigned Line = Record[0], Col = Record[1]; 1745 unsigned ScopeID = Record[2], IAID = Record[3]; 1746 1747 MDNode *Scope = 0, *IA = 0; 1748 if (ScopeID) Scope = cast<MDNode>(MDValueList.getValueFwdRef(ScopeID-1)); 1749 if (IAID) IA = cast<MDNode>(MDValueList.getValueFwdRef(IAID-1)); 1750 LastLoc = DebugLoc::get(Line, Col, Scope, IA); 1751 I->setDebugLoc(LastLoc); 1752 I = 0; 1753 continue; 1754 } 1755 1756 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 1757 unsigned OpNum = 0; 1758 Value *LHS, *RHS; 1759 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 1760 getValue(Record, OpNum, LHS->getType(), RHS) || 1761 OpNum+1 > Record.size()) 1762 return Error("Invalid BINOP record"); 1763 1764 int Opc = GetDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 1765 if (Opc == -1) return Error("Invalid BINOP record"); 1766 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 1767 InstructionList.push_back(I); 1768 if (OpNum < Record.size()) { 1769 if (Opc == Instruction::Add || 1770 Opc == Instruction::Sub || 1771 Opc == Instruction::Mul) { 1772 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 1773 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 1774 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 1775 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 1776 } else if (Opc == Instruction::SDiv) { 1777 if (Record[OpNum] & (1 << bitc::SDIV_EXACT)) 1778 cast<BinaryOperator>(I)->setIsExact(true); 1779 } 1780 } 1781 break; 1782 } 1783 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 1784 unsigned OpNum = 0; 1785 Value *Op; 1786 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 1787 OpNum+2 != Record.size()) 1788 return Error("Invalid CAST record"); 1789 1790 const Type *ResTy = getTypeByID(Record[OpNum]); 1791 int Opc = GetDecodedCastOpcode(Record[OpNum+1]); 1792 if (Opc == -1 || ResTy == 0) 1793 return Error("Invalid CAST record"); 1794 I = CastInst::Create((Instruction::CastOps)Opc, Op, ResTy); 1795 InstructionList.push_back(I); 1796 break; 1797 } 1798 case bitc::FUNC_CODE_INST_INBOUNDS_GEP: 1799 case bitc::FUNC_CODE_INST_GEP: { // GEP: [n x operands] 1800 unsigned OpNum = 0; 1801 Value *BasePtr; 1802 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr)) 1803 return Error("Invalid GEP record"); 1804 1805 SmallVector<Value*, 16> GEPIdx; 1806 while (OpNum != Record.size()) { 1807 Value *Op; 1808 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 1809 return Error("Invalid GEP record"); 1810 GEPIdx.push_back(Op); 1811 } 1812 1813 I = GetElementPtrInst::Create(BasePtr, GEPIdx.begin(), GEPIdx.end()); 1814 InstructionList.push_back(I); 1815 if (BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP) 1816 cast<GetElementPtrInst>(I)->setIsInBounds(true); 1817 break; 1818 } 1819 1820 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 1821 // EXTRACTVAL: [opty, opval, n x indices] 1822 unsigned OpNum = 0; 1823 Value *Agg; 1824 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 1825 return Error("Invalid EXTRACTVAL record"); 1826 1827 SmallVector<unsigned, 4> EXTRACTVALIdx; 1828 for (unsigned RecSize = Record.size(); 1829 OpNum != RecSize; ++OpNum) { 1830 uint64_t Index = Record[OpNum]; 1831 if ((unsigned)Index != Index) 1832 return Error("Invalid EXTRACTVAL index"); 1833 EXTRACTVALIdx.push_back((unsigned)Index); 1834 } 1835 1836 I = ExtractValueInst::Create(Agg, 1837 EXTRACTVALIdx.begin(), EXTRACTVALIdx.end()); 1838 InstructionList.push_back(I); 1839 break; 1840 } 1841 1842 case bitc::FUNC_CODE_INST_INSERTVAL: { 1843 // INSERTVAL: [opty, opval, opty, opval, n x indices] 1844 unsigned OpNum = 0; 1845 Value *Agg; 1846 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 1847 return Error("Invalid INSERTVAL record"); 1848 Value *Val; 1849 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 1850 return Error("Invalid INSERTVAL record"); 1851 1852 SmallVector<unsigned, 4> INSERTVALIdx; 1853 for (unsigned RecSize = Record.size(); 1854 OpNum != RecSize; ++OpNum) { 1855 uint64_t Index = Record[OpNum]; 1856 if ((unsigned)Index != Index) 1857 return Error("Invalid INSERTVAL index"); 1858 INSERTVALIdx.push_back((unsigned)Index); 1859 } 1860 1861 I = InsertValueInst::Create(Agg, Val, 1862 INSERTVALIdx.begin(), INSERTVALIdx.end()); 1863 InstructionList.push_back(I); 1864 break; 1865 } 1866 1867 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 1868 // obsolete form of select 1869 // handles select i1 ... in old bitcode 1870 unsigned OpNum = 0; 1871 Value *TrueVal, *FalseVal, *Cond; 1872 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 1873 getValue(Record, OpNum, TrueVal->getType(), FalseVal) || 1874 getValue(Record, OpNum, Type::getInt1Ty(Context), Cond)) 1875 return Error("Invalid SELECT record"); 1876 1877 I = SelectInst::Create(Cond, TrueVal, FalseVal); 1878 InstructionList.push_back(I); 1879 break; 1880 } 1881 1882 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 1883 // new form of select 1884 // handles select i1 or select [N x i1] 1885 unsigned OpNum = 0; 1886 Value *TrueVal, *FalseVal, *Cond; 1887 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 1888 getValue(Record, OpNum, TrueVal->getType(), FalseVal) || 1889 getValueTypePair(Record, OpNum, NextValueNo, Cond)) 1890 return Error("Invalid SELECT record"); 1891 1892 // select condition can be either i1 or [N x i1] 1893 if (const VectorType* vector_type = 1894 dyn_cast<const VectorType>(Cond->getType())) { 1895 // expect <n x i1> 1896 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 1897 return Error("Invalid SELECT condition type"); 1898 } else { 1899 // expect i1 1900 if (Cond->getType() != Type::getInt1Ty(Context)) 1901 return Error("Invalid SELECT condition type"); 1902 } 1903 1904 I = SelectInst::Create(Cond, TrueVal, FalseVal); 1905 InstructionList.push_back(I); 1906 break; 1907 } 1908 1909 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 1910 unsigned OpNum = 0; 1911 Value *Vec, *Idx; 1912 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 1913 getValue(Record, OpNum, Type::getInt32Ty(Context), Idx)) 1914 return Error("Invalid EXTRACTELT record"); 1915 I = ExtractElementInst::Create(Vec, Idx); 1916 InstructionList.push_back(I); 1917 break; 1918 } 1919 1920 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 1921 unsigned OpNum = 0; 1922 Value *Vec, *Elt, *Idx; 1923 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 1924 getValue(Record, OpNum, 1925 cast<VectorType>(Vec->getType())->getElementType(), Elt) || 1926 getValue(Record, OpNum, Type::getInt32Ty(Context), Idx)) 1927 return Error("Invalid INSERTELT record"); 1928 I = InsertElementInst::Create(Vec, Elt, Idx); 1929 InstructionList.push_back(I); 1930 break; 1931 } 1932 1933 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 1934 unsigned OpNum = 0; 1935 Value *Vec1, *Vec2, *Mask; 1936 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) || 1937 getValue(Record, OpNum, Vec1->getType(), Vec2)) 1938 return Error("Invalid SHUFFLEVEC record"); 1939 1940 if (getValueTypePair(Record, OpNum, NextValueNo, Mask)) 1941 return Error("Invalid SHUFFLEVEC record"); 1942 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 1943 InstructionList.push_back(I); 1944 break; 1945 } 1946 1947 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 1948 // Old form of ICmp/FCmp returning bool 1949 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 1950 // both legal on vectors but had different behaviour. 1951 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 1952 // FCmp/ICmp returning bool or vector of bool 1953 1954 unsigned OpNum = 0; 1955 Value *LHS, *RHS; 1956 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 1957 getValue(Record, OpNum, LHS->getType(), RHS) || 1958 OpNum+1 != Record.size()) 1959 return Error("Invalid CMP record"); 1960 1961 if (LHS->getType()->isFPOrFPVectorTy()) 1962 I = new FCmpInst((FCmpInst::Predicate)Record[OpNum], LHS, RHS); 1963 else 1964 I = new ICmpInst((ICmpInst::Predicate)Record[OpNum], LHS, RHS); 1965 InstructionList.push_back(I); 1966 break; 1967 } 1968 1969 case bitc::FUNC_CODE_INST_GETRESULT: { // GETRESULT: [ty, val, n] 1970 if (Record.size() != 2) 1971 return Error("Invalid GETRESULT record"); 1972 unsigned OpNum = 0; 1973 Value *Op; 1974 getValueTypePair(Record, OpNum, NextValueNo, Op); 1975 unsigned Index = Record[1]; 1976 I = ExtractValueInst::Create(Op, Index); 1977 InstructionList.push_back(I); 1978 break; 1979 } 1980 1981 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 1982 { 1983 unsigned Size = Record.size(); 1984 if (Size == 0) { 1985 I = ReturnInst::Create(Context); 1986 InstructionList.push_back(I); 1987 break; 1988 } 1989 1990 unsigned OpNum = 0; 1991 SmallVector<Value *,4> Vs; 1992 do { 1993 Value *Op = NULL; 1994 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 1995 return Error("Invalid RET record"); 1996 Vs.push_back(Op); 1997 } while(OpNum != Record.size()); 1998 1999 const Type *ReturnType = F->getReturnType(); 2000 // Handle multiple return values. FIXME: Remove in LLVM 3.0. 2001 if (Vs.size() > 1 || 2002 (ReturnType->isStructTy() && 2003 (Vs.empty() || Vs[0]->getType() != ReturnType))) { 2004 Value *RV = UndefValue::get(ReturnType); 2005 for (unsigned i = 0, e = Vs.size(); i != e; ++i) { 2006 I = InsertValueInst::Create(RV, Vs[i], i, "mrv"); 2007 InstructionList.push_back(I); 2008 CurBB->getInstList().push_back(I); 2009 ValueList.AssignValue(I, NextValueNo++); 2010 RV = I; 2011 } 2012 I = ReturnInst::Create(Context, RV); 2013 InstructionList.push_back(I); 2014 break; 2015 } 2016 2017 I = ReturnInst::Create(Context, Vs[0]); 2018 InstructionList.push_back(I); 2019 break; 2020 } 2021 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 2022 if (Record.size() != 1 && Record.size() != 3) 2023 return Error("Invalid BR record"); 2024 BasicBlock *TrueDest = getBasicBlock(Record[0]); 2025 if (TrueDest == 0) 2026 return Error("Invalid BR record"); 2027 2028 if (Record.size() == 1) { 2029 I = BranchInst::Create(TrueDest); 2030 InstructionList.push_back(I); 2031 } 2032 else { 2033 BasicBlock *FalseDest = getBasicBlock(Record[1]); 2034 Value *Cond = getFnValueByID(Record[2], Type::getInt1Ty(Context)); 2035 if (FalseDest == 0 || Cond == 0) 2036 return Error("Invalid BR record"); 2037 I = BranchInst::Create(TrueDest, FalseDest, Cond); 2038 InstructionList.push_back(I); 2039 } 2040 break; 2041 } 2042 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 2043 if (Record.size() < 3 || (Record.size() & 1) == 0) 2044 return Error("Invalid SWITCH record"); 2045 const Type *OpTy = getTypeByID(Record[0]); 2046 Value *Cond = getFnValueByID(Record[1], OpTy); 2047 BasicBlock *Default = getBasicBlock(Record[2]); 2048 if (OpTy == 0 || Cond == 0 || Default == 0) 2049 return Error("Invalid SWITCH record"); 2050 unsigned NumCases = (Record.size()-3)/2; 2051 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 2052 InstructionList.push_back(SI); 2053 for (unsigned i = 0, e = NumCases; i != e; ++i) { 2054 ConstantInt *CaseVal = 2055 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy)); 2056 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 2057 if (CaseVal == 0 || DestBB == 0) { 2058 delete SI; 2059 return Error("Invalid SWITCH record!"); 2060 } 2061 SI->addCase(CaseVal, DestBB); 2062 } 2063 I = SI; 2064 break; 2065 } 2066 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 2067 if (Record.size() < 2) 2068 return Error("Invalid INDIRECTBR record"); 2069 const Type *OpTy = getTypeByID(Record[0]); 2070 Value *Address = getFnValueByID(Record[1], OpTy); 2071 if (OpTy == 0 || Address == 0) 2072 return Error("Invalid INDIRECTBR record"); 2073 unsigned NumDests = Record.size()-2; 2074 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 2075 InstructionList.push_back(IBI); 2076 for (unsigned i = 0, e = NumDests; i != e; ++i) { 2077 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 2078 IBI->addDestination(DestBB); 2079 } else { 2080 delete IBI; 2081 return Error("Invalid INDIRECTBR record!"); 2082 } 2083 } 2084 I = IBI; 2085 break; 2086 } 2087 2088 case bitc::FUNC_CODE_INST_INVOKE: { 2089 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 2090 if (Record.size() < 4) return Error("Invalid INVOKE record"); 2091 AttrListPtr PAL = getAttributes(Record[0]); 2092 unsigned CCInfo = Record[1]; 2093 BasicBlock *NormalBB = getBasicBlock(Record[2]); 2094 BasicBlock *UnwindBB = getBasicBlock(Record[3]); 2095 2096 unsigned OpNum = 4; 2097 Value *Callee; 2098 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 2099 return Error("Invalid INVOKE record"); 2100 2101 const PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 2102 const FunctionType *FTy = !CalleeTy ? 0 : 2103 dyn_cast<FunctionType>(CalleeTy->getElementType()); 2104 2105 // Check that the right number of fixed parameters are here. 2106 if (FTy == 0 || NormalBB == 0 || UnwindBB == 0 || 2107 Record.size() < OpNum+FTy->getNumParams()) 2108 return Error("Invalid INVOKE record"); 2109 2110 SmallVector<Value*, 16> Ops; 2111 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 2112 Ops.push_back(getFnValueByID(Record[OpNum], FTy->getParamType(i))); 2113 if (Ops.back() == 0) return Error("Invalid INVOKE record"); 2114 } 2115 2116 if (!FTy->isVarArg()) { 2117 if (Record.size() != OpNum) 2118 return Error("Invalid INVOKE record"); 2119 } else { 2120 // Read type/value pairs for varargs params. 2121 while (OpNum != Record.size()) { 2122 Value *Op; 2123 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 2124 return Error("Invalid INVOKE record"); 2125 Ops.push_back(Op); 2126 } 2127 } 2128 2129 I = InvokeInst::Create(Callee, NormalBB, UnwindBB, 2130 Ops.begin(), Ops.end()); 2131 InstructionList.push_back(I); 2132 cast<InvokeInst>(I)->setCallingConv( 2133 static_cast<CallingConv::ID>(CCInfo)); 2134 cast<InvokeInst>(I)->setAttributes(PAL); 2135 break; 2136 } 2137 case bitc::FUNC_CODE_INST_UNWIND: // UNWIND 2138 I = new UnwindInst(Context); 2139 InstructionList.push_back(I); 2140 break; 2141 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 2142 I = new UnreachableInst(Context); 2143 InstructionList.push_back(I); 2144 break; 2145 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 2146 if (Record.size() < 1 || ((Record.size()-1)&1)) 2147 return Error("Invalid PHI record"); 2148 const Type *Ty = getTypeByID(Record[0]); 2149 if (!Ty) return Error("Invalid PHI record"); 2150 2151 PHINode *PN = PHINode::Create(Ty); 2152 InstructionList.push_back(PN); 2153 PN->reserveOperandSpace((Record.size()-1)/2); 2154 2155 for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) { 2156 Value *V = getFnValueByID(Record[1+i], Ty); 2157 BasicBlock *BB = getBasicBlock(Record[2+i]); 2158 if (!V || !BB) return Error("Invalid PHI record"); 2159 PN->addIncoming(V, BB); 2160 } 2161 I = PN; 2162 break; 2163 } 2164 2165 case bitc::FUNC_CODE_INST_MALLOC: { // MALLOC: [instty, op, align] 2166 // Autoupgrade malloc instruction to malloc call. 2167 // FIXME: Remove in LLVM 3.0. 2168 if (Record.size() < 3) 2169 return Error("Invalid MALLOC record"); 2170 const PointerType *Ty = 2171 dyn_cast_or_null<PointerType>(getTypeByID(Record[0])); 2172 Value *Size = getFnValueByID(Record[1], Type::getInt32Ty(Context)); 2173 if (!Ty || !Size) return Error("Invalid MALLOC record"); 2174 if (!CurBB) return Error("Invalid malloc instruction with no BB"); 2175 const Type *Int32Ty = IntegerType::getInt32Ty(CurBB->getContext()); 2176 Constant *AllocSize = ConstantExpr::getSizeOf(Ty->getElementType()); 2177 AllocSize = ConstantExpr::getTruncOrBitCast(AllocSize, Int32Ty); 2178 I = CallInst::CreateMalloc(CurBB, Int32Ty, Ty->getElementType(), 2179 AllocSize, Size, NULL); 2180 InstructionList.push_back(I); 2181 break; 2182 } 2183 case bitc::FUNC_CODE_INST_FREE: { // FREE: [op, opty] 2184 unsigned OpNum = 0; 2185 Value *Op; 2186 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 2187 OpNum != Record.size()) 2188 return Error("Invalid FREE record"); 2189 if (!CurBB) return Error("Invalid free instruction with no BB"); 2190 I = CallInst::CreateFree(Op, CurBB); 2191 InstructionList.push_back(I); 2192 break; 2193 } 2194 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 2195 // For backward compatibility, tolerate a lack of an opty, and use i32. 2196 // LLVM 3.0: Remove this. 2197 if (Record.size() < 3 || Record.size() > 4) 2198 return Error("Invalid ALLOCA record"); 2199 unsigned OpNum = 0; 2200 const PointerType *Ty = 2201 dyn_cast_or_null<PointerType>(getTypeByID(Record[OpNum++])); 2202 const Type *OpTy = Record.size() == 4 ? getTypeByID(Record[OpNum++]) : 2203 Type::getInt32Ty(Context); 2204 Value *Size = getFnValueByID(Record[OpNum++], OpTy); 2205 unsigned Align = Record[OpNum++]; 2206 if (!Ty || !Size) return Error("Invalid ALLOCA record"); 2207 I = new AllocaInst(Ty->getElementType(), Size, (1 << Align) >> 1); 2208 InstructionList.push_back(I); 2209 break; 2210 } 2211 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 2212 unsigned OpNum = 0; 2213 Value *Op; 2214 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 2215 OpNum+2 != Record.size()) 2216 return Error("Invalid LOAD record"); 2217 2218 I = new LoadInst(Op, "", Record[OpNum+1], (1 << Record[OpNum]) >> 1); 2219 InstructionList.push_back(I); 2220 break; 2221 } 2222 case bitc::FUNC_CODE_INST_STORE2: { // STORE2:[ptrty, ptr, val, align, vol] 2223 unsigned OpNum = 0; 2224 Value *Val, *Ptr; 2225 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 2226 getValue(Record, OpNum, 2227 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 2228 OpNum+2 != Record.size()) 2229 return Error("Invalid STORE record"); 2230 2231 I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1); 2232 InstructionList.push_back(I); 2233 break; 2234 } 2235 case bitc::FUNC_CODE_INST_STORE: { // STORE:[val, valty, ptr, align, vol] 2236 // FIXME: Legacy form of store instruction. Should be removed in LLVM 3.0. 2237 unsigned OpNum = 0; 2238 Value *Val, *Ptr; 2239 if (getValueTypePair(Record, OpNum, NextValueNo, Val) || 2240 getValue(Record, OpNum, 2241 PointerType::getUnqual(Val->getType()), Ptr)|| 2242 OpNum+2 != Record.size()) 2243 return Error("Invalid STORE record"); 2244 2245 I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1); 2246 InstructionList.push_back(I); 2247 break; 2248 } 2249 case bitc::FUNC_CODE_INST_CALL: 2250 case bitc::FUNC_CODE_INST_CALL2: { 2251 // FIXME: Legacy support for the old call instruction, where function-local 2252 // metadata operands were bogus. Remove in LLVM 3.0. 2253 bool DropMetadata = BitCode == bitc::FUNC_CODE_INST_CALL; 2254 2255 // CALL: [paramattrs, cc, fnty, fnid, arg0, arg1...] 2256 if (Record.size() < 3) 2257 return Error("Invalid CALL record"); 2258 2259 AttrListPtr PAL = getAttributes(Record[0]); 2260 unsigned CCInfo = Record[1]; 2261 2262 unsigned OpNum = 2; 2263 Value *Callee; 2264 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 2265 return Error("Invalid CALL record"); 2266 2267 const PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 2268 const FunctionType *FTy = 0; 2269 if (OpTy) FTy = dyn_cast<FunctionType>(OpTy->getElementType()); 2270 if (!FTy || Record.size() < FTy->getNumParams()+OpNum) 2271 return Error("Invalid CALL record"); 2272 2273 SmallVector<Value*, 16> Args; 2274 // Read the fixed params. 2275 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 2276 if (FTy->getParamType(i)->getTypeID()==Type::LabelTyID) 2277 Args.push_back(getBasicBlock(Record[OpNum])); 2278 else if (DropMetadata && 2279 FTy->getParamType(i)->getTypeID()==Type::MetadataTyID) { 2280 // LLVM 2.7 compatibility: drop metadata arguments to null. 2281 Value *Ops = 0; 2282 Args.push_back(MDNode::get(Context, &Ops, 1)); 2283 continue; 2284 } else 2285 Args.push_back(getFnValueByID(Record[OpNum], FTy->getParamType(i))); 2286 if (Args.back() == 0) return Error("Invalid CALL record"); 2287 } 2288 2289 // Read type/value pairs for varargs params. 2290 if (!FTy->isVarArg()) { 2291 if (OpNum != Record.size()) 2292 return Error("Invalid CALL record"); 2293 } else { 2294 while (OpNum != Record.size()) { 2295 Value *Op; 2296 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 2297 return Error("Invalid CALL record"); 2298 Args.push_back(Op); 2299 } 2300 } 2301 2302 I = CallInst::Create(Callee, Args.begin(), Args.end()); 2303 InstructionList.push_back(I); 2304 cast<CallInst>(I)->setCallingConv( 2305 static_cast<CallingConv::ID>(CCInfo>>1)); 2306 cast<CallInst>(I)->setTailCall(CCInfo & 1); 2307 cast<CallInst>(I)->setAttributes(PAL); 2308 break; 2309 } 2310 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 2311 if (Record.size() < 3) 2312 return Error("Invalid VAARG record"); 2313 const Type *OpTy = getTypeByID(Record[0]); 2314 Value *Op = getFnValueByID(Record[1], OpTy); 2315 const Type *ResTy = getTypeByID(Record[2]); 2316 if (!OpTy || !Op || !ResTy) 2317 return Error("Invalid VAARG record"); 2318 I = new VAArgInst(Op, ResTy); 2319 InstructionList.push_back(I); 2320 break; 2321 } 2322 } 2323 2324 // Add instruction to end of current BB. If there is no current BB, reject 2325 // this file. 2326 if (CurBB == 0) { 2327 delete I; 2328 return Error("Invalid instruction with no BB"); 2329 } 2330 CurBB->getInstList().push_back(I); 2331 2332 // If this was a terminator instruction, move to the next block. 2333 if (isa<TerminatorInst>(I)) { 2334 ++CurBBNo; 2335 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : 0; 2336 } 2337 2338 // Non-void values get registered in the value table for future use. 2339 if (I && !I->getType()->isVoidTy()) 2340 ValueList.AssignValue(I, NextValueNo++); 2341 } 2342 2343 // Check the function list for unresolved values. 2344 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 2345 if (A->getParent() == 0) { 2346 // We found at least one unresolved value. Nuke them all to avoid leaks. 2347 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 2348 if ((A = dyn_cast<Argument>(ValueList[i])) && A->getParent() == 0) { 2349 A->replaceAllUsesWith(UndefValue::get(A->getType())); 2350 delete A; 2351 } 2352 } 2353 return Error("Never resolved value found in function!"); 2354 } 2355 } 2356 2357 // FIXME: Check for unresolved forward-declared metadata references 2358 // and clean up leaks. 2359 2360 // See if anything took the address of blocks in this function. If so, 2361 // resolve them now. 2362 DenseMap<Function*, std::vector<BlockAddrRefTy> >::iterator BAFRI = 2363 BlockAddrFwdRefs.find(F); 2364 if (BAFRI != BlockAddrFwdRefs.end()) { 2365 std::vector<BlockAddrRefTy> &RefList = BAFRI->second; 2366 for (unsigned i = 0, e = RefList.size(); i != e; ++i) { 2367 unsigned BlockIdx = RefList[i].first; 2368 if (BlockIdx >= FunctionBBs.size()) 2369 return Error("Invalid blockaddress block #"); 2370 2371 GlobalVariable *FwdRef = RefList[i].second; 2372 FwdRef->replaceAllUsesWith(BlockAddress::get(F, FunctionBBs[BlockIdx])); 2373 FwdRef->eraseFromParent(); 2374 } 2375 2376 BlockAddrFwdRefs.erase(BAFRI); 2377 } 2378 2379 // Trim the value list down to the size it was before we parsed this function. 2380 ValueList.shrinkTo(ModuleValueListSize); 2381 MDValueList.shrinkTo(ModuleMDValueListSize); 2382 std::vector<BasicBlock*>().swap(FunctionBBs); 2383 2384 return false; 2385 } 2386 2387 //===----------------------------------------------------------------------===// 2388 // GVMaterializer implementation 2389 //===----------------------------------------------------------------------===// 2390 2391 2392 bool BitcodeReader::isMaterializable(const GlobalValue *GV) const { 2393 if (const Function *F = dyn_cast<Function>(GV)) { 2394 return F->isDeclaration() && 2395 DeferredFunctionInfo.count(const_cast<Function*>(F)); 2396 } 2397 return false; 2398 } 2399 2400 bool BitcodeReader::Materialize(GlobalValue *GV, std::string *ErrInfo) { 2401 Function *F = dyn_cast<Function>(GV); 2402 // If it's not a function or is already material, ignore the request. 2403 if (!F || !F->isMaterializable()) return false; 2404 2405 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 2406 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 2407 2408 // Move the bit stream to the saved position of the deferred function body. 2409 Stream.JumpToBit(DFII->second); 2410 2411 if (ParseFunctionBody(F)) { 2412 if (ErrInfo) *ErrInfo = ErrorString; 2413 return true; 2414 } 2415 2416 // Upgrade any old intrinsic calls in the function. 2417 for (UpgradedIntrinsicMap::iterator I = UpgradedIntrinsics.begin(), 2418 E = UpgradedIntrinsics.end(); I != E; ++I) { 2419 if (I->first != I->second) { 2420 for (Value::use_iterator UI = I->first->use_begin(), 2421 UE = I->first->use_end(); UI != UE; ) { 2422 if (CallInst* CI = dyn_cast<CallInst>(*UI++)) 2423 UpgradeIntrinsicCall(CI, I->second); 2424 } 2425 } 2426 } 2427 2428 return false; 2429 } 2430 2431 bool BitcodeReader::isDematerializable(const GlobalValue *GV) const { 2432 const Function *F = dyn_cast<Function>(GV); 2433 if (!F || F->isDeclaration()) 2434 return false; 2435 return DeferredFunctionInfo.count(const_cast<Function*>(F)); 2436 } 2437 2438 void BitcodeReader::Dematerialize(GlobalValue *GV) { 2439 Function *F = dyn_cast<Function>(GV); 2440 // If this function isn't dematerializable, this is a noop. 2441 if (!F || !isDematerializable(F)) 2442 return; 2443 2444 assert(DeferredFunctionInfo.count(F) && "No info to read function later?"); 2445 2446 // Just forget the function body, we can remat it later. 2447 F->deleteBody(); 2448 } 2449 2450 2451 bool BitcodeReader::MaterializeModule(Module *M, std::string *ErrInfo) { 2452 assert(M == TheModule && 2453 "Can only Materialize the Module this BitcodeReader is attached to."); 2454 // Iterate over the module, deserializing any functions that are still on 2455 // disk. 2456 for (Module::iterator F = TheModule->begin(), E = TheModule->end(); 2457 F != E; ++F) 2458 if (F->isMaterializable() && 2459 Materialize(F, ErrInfo)) 2460 return true; 2461 2462 // Upgrade any intrinsic calls that slipped through (should not happen!) and 2463 // delete the old functions to clean up. We can't do this unless the entire 2464 // module is materialized because there could always be another function body 2465 // with calls to the old function. 2466 for (std::vector<std::pair<Function*, Function*> >::iterator I = 2467 UpgradedIntrinsics.begin(), E = UpgradedIntrinsics.end(); I != E; ++I) { 2468 if (I->first != I->second) { 2469 for (Value::use_iterator UI = I->first->use_begin(), 2470 UE = I->first->use_end(); UI != UE; ) { 2471 if (CallInst* CI = dyn_cast<CallInst>(*UI++)) 2472 UpgradeIntrinsicCall(CI, I->second); 2473 } 2474 if (!I->first->use_empty()) 2475 I->first->replaceAllUsesWith(I->second); 2476 I->first->eraseFromParent(); 2477 } 2478 } 2479 std::vector<std::pair<Function*, Function*> >().swap(UpgradedIntrinsics); 2480 2481 // Check debug info intrinsics. 2482 CheckDebugInfoIntrinsics(TheModule); 2483 2484 return false; 2485 } 2486 2487 2488 //===----------------------------------------------------------------------===// 2489 // External interface 2490 //===----------------------------------------------------------------------===// 2491 2492 /// getLazyBitcodeModule - lazy function-at-a-time loading from a file. 2493 /// 2494 Module *llvm::getLazyBitcodeModule(MemoryBuffer *Buffer, 2495 LLVMContext& Context, 2496 std::string *ErrMsg) { 2497 Module *M = new Module(Buffer->getBufferIdentifier(), Context); 2498 BitcodeReader *R = new BitcodeReader(Buffer, Context); 2499 M->setMaterializer(R); 2500 if (R->ParseBitcodeInto(M)) { 2501 if (ErrMsg) 2502 *ErrMsg = R->getErrorString(); 2503 2504 delete M; // Also deletes R. 2505 return 0; 2506 } 2507 // Have the BitcodeReader dtor delete 'Buffer'. 2508 R->setBufferOwned(true); 2509 return M; 2510 } 2511 2512 /// ParseBitcodeFile - Read the specified bitcode file, returning the module. 2513 /// If an error occurs, return null and fill in *ErrMsg if non-null. 2514 Module *llvm::ParseBitcodeFile(MemoryBuffer *Buffer, LLVMContext& Context, 2515 std::string *ErrMsg){ 2516 Module *M = getLazyBitcodeModule(Buffer, Context, ErrMsg); 2517 if (!M) return 0; 2518 2519 // Don't let the BitcodeReader dtor delete 'Buffer', regardless of whether 2520 // there was an error. 2521 static_cast<BitcodeReader*>(M->getMaterializer())->setBufferOwned(false); 2522 2523 // Read in the entire module, and destroy the BitcodeReader. 2524 if (M->MaterializeAllPermanently(ErrMsg)) { 2525 delete M; 2526 return NULL; 2527 } 2528 return M; 2529 } 2530