1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "llvm/Bitcode/ReaderWriter.h" 11 #include "BitcodeReader.h" 12 #include "llvm/ADT/SmallString.h" 13 #include "llvm/ADT/SmallVector.h" 14 #include "llvm/ADT/Triple.h" 15 #include "llvm/Bitcode/LLVMBitCodes.h" 16 #include "llvm/IR/AutoUpgrade.h" 17 #include "llvm/IR/Constants.h" 18 #include "llvm/IR/DebugInfoMetadata.h" 19 #include "llvm/IR/DerivedTypes.h" 20 #include "llvm/IR/DiagnosticPrinter.h" 21 #include "llvm/IR/InlineAsm.h" 22 #include "llvm/IR/IntrinsicInst.h" 23 #include "llvm/IR/LLVMContext.h" 24 #include "llvm/IR/Module.h" 25 #include "llvm/IR/OperandTraits.h" 26 #include "llvm/IR/Operator.h" 27 #include "llvm/Support/DataStream.h" 28 #include "llvm/Support/ManagedStatic.h" 29 #include "llvm/Support/MathExtras.h" 30 #include "llvm/Support/MemoryBuffer.h" 31 #include "llvm/Support/raw_ostream.h" 32 33 using namespace llvm; 34 35 enum { 36 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 37 }; 38 39 BitcodeDiagnosticInfo::BitcodeDiagnosticInfo(std::error_code EC, 40 DiagnosticSeverity Severity, 41 const Twine &Msg) 42 : DiagnosticInfo(DK_Bitcode, Severity), Msg(Msg), EC(EC) {} 43 44 void BitcodeDiagnosticInfo::print(DiagnosticPrinter &DP) const { DP << Msg; } 45 46 static std::error_code Error(DiagnosticHandlerFunction DiagnosticHandler, 47 std::error_code EC, const Twine &Message) { 48 BitcodeDiagnosticInfo DI(EC, DS_Error, Message); 49 DiagnosticHandler(DI); 50 return EC; 51 } 52 53 static std::error_code Error(DiagnosticHandlerFunction DiagnosticHandler, 54 std::error_code EC) { 55 return Error(DiagnosticHandler, EC, EC.message()); 56 } 57 58 std::error_code BitcodeReader::Error(BitcodeError E, const Twine &Message) { 59 return ::Error(DiagnosticHandler, make_error_code(E), Message); 60 } 61 62 std::error_code BitcodeReader::Error(const Twine &Message) { 63 return ::Error(DiagnosticHandler, 64 make_error_code(BitcodeError::CorruptedBitcode), Message); 65 } 66 67 std::error_code BitcodeReader::Error(BitcodeError E) { 68 return ::Error(DiagnosticHandler, make_error_code(E)); 69 } 70 71 static DiagnosticHandlerFunction getDiagHandler(DiagnosticHandlerFunction F, 72 LLVMContext &C) { 73 if (F) 74 return F; 75 return [&C](const DiagnosticInfo &DI) { C.diagnose(DI); }; 76 } 77 78 BitcodeReader::BitcodeReader(MemoryBuffer *buffer, LLVMContext &C, 79 DiagnosticHandlerFunction DiagnosticHandler) 80 : Context(C), DiagnosticHandler(getDiagHandler(DiagnosticHandler, C)), 81 TheModule(nullptr), Buffer(buffer), LazyStreamer(nullptr), 82 NextUnreadBit(0), SeenValueSymbolTable(false), ValueList(C), 83 MDValueList(C), SeenFirstFunctionBody(false), UseRelativeIDs(false), 84 WillMaterializeAllForwardRefs(false) {} 85 86 BitcodeReader::BitcodeReader(DataStreamer *streamer, LLVMContext &C, 87 DiagnosticHandlerFunction DiagnosticHandler) 88 : Context(C), DiagnosticHandler(getDiagHandler(DiagnosticHandler, C)), 89 TheModule(nullptr), Buffer(nullptr), LazyStreamer(streamer), 90 NextUnreadBit(0), SeenValueSymbolTable(false), ValueList(C), 91 MDValueList(C), SeenFirstFunctionBody(false), UseRelativeIDs(false), 92 WillMaterializeAllForwardRefs(false) {} 93 94 std::error_code BitcodeReader::materializeForwardReferencedFunctions() { 95 if (WillMaterializeAllForwardRefs) 96 return std::error_code(); 97 98 // Prevent recursion. 99 WillMaterializeAllForwardRefs = true; 100 101 while (!BasicBlockFwdRefQueue.empty()) { 102 Function *F = BasicBlockFwdRefQueue.front(); 103 BasicBlockFwdRefQueue.pop_front(); 104 assert(F && "Expected valid function"); 105 if (!BasicBlockFwdRefs.count(F)) 106 // Already materialized. 107 continue; 108 109 // Check for a function that isn't materializable to prevent an infinite 110 // loop. When parsing a blockaddress stored in a global variable, there 111 // isn't a trivial way to check if a function will have a body without a 112 // linear search through FunctionsWithBodies, so just check it here. 113 if (!F->isMaterializable()) 114 return Error("Never resolved function from blockaddress"); 115 116 // Try to materialize F. 117 if (std::error_code EC = materialize(F)) 118 return EC; 119 } 120 assert(BasicBlockFwdRefs.empty() && "Function missing from queue"); 121 122 // Reset state. 123 WillMaterializeAllForwardRefs = false; 124 return std::error_code(); 125 } 126 127 void BitcodeReader::FreeState() { 128 Buffer = nullptr; 129 std::vector<Type*>().swap(TypeList); 130 ValueList.clear(); 131 MDValueList.clear(); 132 std::vector<Comdat *>().swap(ComdatList); 133 134 std::vector<AttributeSet>().swap(MAttributes); 135 std::vector<BasicBlock*>().swap(FunctionBBs); 136 std::vector<Function*>().swap(FunctionsWithBodies); 137 DeferredFunctionInfo.clear(); 138 MDKindMap.clear(); 139 140 assert(BasicBlockFwdRefs.empty() && "Unresolved blockaddress fwd references"); 141 BasicBlockFwdRefQueue.clear(); 142 } 143 144 //===----------------------------------------------------------------------===// 145 // Helper functions to implement forward reference resolution, etc. 146 //===----------------------------------------------------------------------===// 147 148 /// ConvertToString - Convert a string from a record into an std::string, return 149 /// true on failure. 150 template<typename StrTy> 151 static bool ConvertToString(ArrayRef<uint64_t> Record, unsigned Idx, 152 StrTy &Result) { 153 if (Idx > Record.size()) 154 return true; 155 156 for (unsigned i = Idx, e = Record.size(); i != e; ++i) 157 Result += (char)Record[i]; 158 return false; 159 } 160 161 static bool hasImplicitComdat(size_t Val) { 162 switch (Val) { 163 default: 164 return false; 165 case 1: // Old WeakAnyLinkage 166 case 4: // Old LinkOnceAnyLinkage 167 case 10: // Old WeakODRLinkage 168 case 11: // Old LinkOnceODRLinkage 169 return true; 170 } 171 } 172 173 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) { 174 switch (Val) { 175 default: // Map unknown/new linkages to external 176 case 0: 177 return GlobalValue::ExternalLinkage; 178 case 2: 179 return GlobalValue::AppendingLinkage; 180 case 3: 181 return GlobalValue::InternalLinkage; 182 case 5: 183 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage 184 case 6: 185 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage 186 case 7: 187 return GlobalValue::ExternalWeakLinkage; 188 case 8: 189 return GlobalValue::CommonLinkage; 190 case 9: 191 return GlobalValue::PrivateLinkage; 192 case 12: 193 return GlobalValue::AvailableExternallyLinkage; 194 case 13: 195 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage 196 case 14: 197 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage 198 case 15: 199 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage 200 case 1: // Old value with implicit comdat. 201 case 16: 202 return GlobalValue::WeakAnyLinkage; 203 case 10: // Old value with implicit comdat. 204 case 17: 205 return GlobalValue::WeakODRLinkage; 206 case 4: // Old value with implicit comdat. 207 case 18: 208 return GlobalValue::LinkOnceAnyLinkage; 209 case 11: // Old value with implicit comdat. 210 case 19: 211 return GlobalValue::LinkOnceODRLinkage; 212 } 213 } 214 215 static GlobalValue::VisibilityTypes GetDecodedVisibility(unsigned Val) { 216 switch (Val) { 217 default: // Map unknown visibilities to default. 218 case 0: return GlobalValue::DefaultVisibility; 219 case 1: return GlobalValue::HiddenVisibility; 220 case 2: return GlobalValue::ProtectedVisibility; 221 } 222 } 223 224 static GlobalValue::DLLStorageClassTypes 225 GetDecodedDLLStorageClass(unsigned Val) { 226 switch (Val) { 227 default: // Map unknown values to default. 228 case 0: return GlobalValue::DefaultStorageClass; 229 case 1: return GlobalValue::DLLImportStorageClass; 230 case 2: return GlobalValue::DLLExportStorageClass; 231 } 232 } 233 234 static GlobalVariable::ThreadLocalMode GetDecodedThreadLocalMode(unsigned Val) { 235 switch (Val) { 236 case 0: return GlobalVariable::NotThreadLocal; 237 default: // Map unknown non-zero value to general dynamic. 238 case 1: return GlobalVariable::GeneralDynamicTLSModel; 239 case 2: return GlobalVariable::LocalDynamicTLSModel; 240 case 3: return GlobalVariable::InitialExecTLSModel; 241 case 4: return GlobalVariable::LocalExecTLSModel; 242 } 243 } 244 245 static int GetDecodedCastOpcode(unsigned Val) { 246 switch (Val) { 247 default: return -1; 248 case bitc::CAST_TRUNC : return Instruction::Trunc; 249 case bitc::CAST_ZEXT : return Instruction::ZExt; 250 case bitc::CAST_SEXT : return Instruction::SExt; 251 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 252 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 253 case bitc::CAST_UITOFP : return Instruction::UIToFP; 254 case bitc::CAST_SITOFP : return Instruction::SIToFP; 255 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 256 case bitc::CAST_FPEXT : return Instruction::FPExt; 257 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 258 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 259 case bitc::CAST_BITCAST : return Instruction::BitCast; 260 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast; 261 } 262 } 263 static int GetDecodedBinaryOpcode(unsigned Val, Type *Ty) { 264 switch (Val) { 265 default: return -1; 266 case bitc::BINOP_ADD: 267 return Ty->isFPOrFPVectorTy() ? Instruction::FAdd : Instruction::Add; 268 case bitc::BINOP_SUB: 269 return Ty->isFPOrFPVectorTy() ? Instruction::FSub : Instruction::Sub; 270 case bitc::BINOP_MUL: 271 return Ty->isFPOrFPVectorTy() ? Instruction::FMul : Instruction::Mul; 272 case bitc::BINOP_UDIV: return Instruction::UDiv; 273 case bitc::BINOP_SDIV: 274 return Ty->isFPOrFPVectorTy() ? Instruction::FDiv : Instruction::SDiv; 275 case bitc::BINOP_UREM: return Instruction::URem; 276 case bitc::BINOP_SREM: 277 return Ty->isFPOrFPVectorTy() ? Instruction::FRem : Instruction::SRem; 278 case bitc::BINOP_SHL: return Instruction::Shl; 279 case bitc::BINOP_LSHR: return Instruction::LShr; 280 case bitc::BINOP_ASHR: return Instruction::AShr; 281 case bitc::BINOP_AND: return Instruction::And; 282 case bitc::BINOP_OR: return Instruction::Or; 283 case bitc::BINOP_XOR: return Instruction::Xor; 284 } 285 } 286 287 static AtomicRMWInst::BinOp GetDecodedRMWOperation(unsigned Val) { 288 switch (Val) { 289 default: return AtomicRMWInst::BAD_BINOP; 290 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 291 case bitc::RMW_ADD: return AtomicRMWInst::Add; 292 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 293 case bitc::RMW_AND: return AtomicRMWInst::And; 294 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 295 case bitc::RMW_OR: return AtomicRMWInst::Or; 296 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 297 case bitc::RMW_MAX: return AtomicRMWInst::Max; 298 case bitc::RMW_MIN: return AtomicRMWInst::Min; 299 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 300 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 301 } 302 } 303 304 static AtomicOrdering GetDecodedOrdering(unsigned Val) { 305 switch (Val) { 306 case bitc::ORDERING_NOTATOMIC: return NotAtomic; 307 case bitc::ORDERING_UNORDERED: return Unordered; 308 case bitc::ORDERING_MONOTONIC: return Monotonic; 309 case bitc::ORDERING_ACQUIRE: return Acquire; 310 case bitc::ORDERING_RELEASE: return Release; 311 case bitc::ORDERING_ACQREL: return AcquireRelease; 312 default: // Map unknown orderings to sequentially-consistent. 313 case bitc::ORDERING_SEQCST: return SequentiallyConsistent; 314 } 315 } 316 317 static SynchronizationScope GetDecodedSynchScope(unsigned Val) { 318 switch (Val) { 319 case bitc::SYNCHSCOPE_SINGLETHREAD: return SingleThread; 320 default: // Map unknown scopes to cross-thread. 321 case bitc::SYNCHSCOPE_CROSSTHREAD: return CrossThread; 322 } 323 } 324 325 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) { 326 switch (Val) { 327 default: // Map unknown selection kinds to any. 328 case bitc::COMDAT_SELECTION_KIND_ANY: 329 return Comdat::Any; 330 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH: 331 return Comdat::ExactMatch; 332 case bitc::COMDAT_SELECTION_KIND_LARGEST: 333 return Comdat::Largest; 334 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES: 335 return Comdat::NoDuplicates; 336 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE: 337 return Comdat::SameSize; 338 } 339 } 340 341 static void UpgradeDLLImportExportLinkage(llvm::GlobalValue *GV, unsigned Val) { 342 switch (Val) { 343 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break; 344 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break; 345 } 346 } 347 348 namespace llvm { 349 namespace { 350 /// @brief A class for maintaining the slot number definition 351 /// as a placeholder for the actual definition for forward constants defs. 352 class ConstantPlaceHolder : public ConstantExpr { 353 void operator=(const ConstantPlaceHolder &) LLVM_DELETED_FUNCTION; 354 public: 355 // allocate space for exactly one operand 356 void *operator new(size_t s) { 357 return User::operator new(s, 1); 358 } 359 explicit ConstantPlaceHolder(Type *Ty, LLVMContext& Context) 360 : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) { 361 Op<0>() = UndefValue::get(Type::getInt32Ty(Context)); 362 } 363 364 /// @brief Methods to support type inquiry through isa, cast, and dyn_cast. 365 static bool classof(const Value *V) { 366 return isa<ConstantExpr>(V) && 367 cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1; 368 } 369 370 371 /// Provide fast operand accessors 372 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); 373 }; 374 } 375 376 // FIXME: can we inherit this from ConstantExpr? 377 template <> 378 struct OperandTraits<ConstantPlaceHolder> : 379 public FixedNumOperandTraits<ConstantPlaceHolder, 1> { 380 }; 381 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantPlaceHolder, Value) 382 } 383 384 385 void BitcodeReaderValueList::AssignValue(Value *V, unsigned Idx) { 386 if (Idx == size()) { 387 push_back(V); 388 return; 389 } 390 391 if (Idx >= size()) 392 resize(Idx+1); 393 394 WeakVH &OldV = ValuePtrs[Idx]; 395 if (!OldV) { 396 OldV = V; 397 return; 398 } 399 400 // Handle constants and non-constants (e.g. instrs) differently for 401 // efficiency. 402 if (Constant *PHC = dyn_cast<Constant>(&*OldV)) { 403 ResolveConstants.push_back(std::make_pair(PHC, Idx)); 404 OldV = V; 405 } else { 406 // If there was a forward reference to this value, replace it. 407 Value *PrevVal = OldV; 408 OldV->replaceAllUsesWith(V); 409 delete PrevVal; 410 } 411 } 412 413 414 Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx, 415 Type *Ty) { 416 if (Idx >= size()) 417 resize(Idx + 1); 418 419 if (Value *V = ValuePtrs[Idx]) { 420 assert(Ty == V->getType() && "Type mismatch in constant table!"); 421 return cast<Constant>(V); 422 } 423 424 // Create and return a placeholder, which will later be RAUW'd. 425 Constant *C = new ConstantPlaceHolder(Ty, Context); 426 ValuePtrs[Idx] = C; 427 return C; 428 } 429 430 Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, Type *Ty) { 431 if (Idx >= size()) 432 resize(Idx + 1); 433 434 if (Value *V = ValuePtrs[Idx]) { 435 assert((!Ty || Ty == V->getType()) && "Type mismatch in value table!"); 436 return V; 437 } 438 439 // No type specified, must be invalid reference. 440 if (!Ty) return nullptr; 441 442 // Create and return a placeholder, which will later be RAUW'd. 443 Value *V = new Argument(Ty); 444 ValuePtrs[Idx] = V; 445 return V; 446 } 447 448 /// ResolveConstantForwardRefs - Once all constants are read, this method bulk 449 /// resolves any forward references. The idea behind this is that we sometimes 450 /// get constants (such as large arrays) which reference *many* forward ref 451 /// constants. Replacing each of these causes a lot of thrashing when 452 /// building/reuniquing the constant. Instead of doing this, we look at all the 453 /// uses and rewrite all the place holders at once for any constant that uses 454 /// a placeholder. 455 void BitcodeReaderValueList::ResolveConstantForwardRefs() { 456 // Sort the values by-pointer so that they are efficient to look up with a 457 // binary search. 458 std::sort(ResolveConstants.begin(), ResolveConstants.end()); 459 460 SmallVector<Constant*, 64> NewOps; 461 462 while (!ResolveConstants.empty()) { 463 Value *RealVal = operator[](ResolveConstants.back().second); 464 Constant *Placeholder = ResolveConstants.back().first; 465 ResolveConstants.pop_back(); 466 467 // Loop over all users of the placeholder, updating them to reference the 468 // new value. If they reference more than one placeholder, update them all 469 // at once. 470 while (!Placeholder->use_empty()) { 471 auto UI = Placeholder->user_begin(); 472 User *U = *UI; 473 474 // If the using object isn't uniqued, just update the operands. This 475 // handles instructions and initializers for global variables. 476 if (!isa<Constant>(U) || isa<GlobalValue>(U)) { 477 UI.getUse().set(RealVal); 478 continue; 479 } 480 481 // Otherwise, we have a constant that uses the placeholder. Replace that 482 // constant with a new constant that has *all* placeholder uses updated. 483 Constant *UserC = cast<Constant>(U); 484 for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end(); 485 I != E; ++I) { 486 Value *NewOp; 487 if (!isa<ConstantPlaceHolder>(*I)) { 488 // Not a placeholder reference. 489 NewOp = *I; 490 } else if (*I == Placeholder) { 491 // Common case is that it just references this one placeholder. 492 NewOp = RealVal; 493 } else { 494 // Otherwise, look up the placeholder in ResolveConstants. 495 ResolveConstantsTy::iterator It = 496 std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(), 497 std::pair<Constant*, unsigned>(cast<Constant>(*I), 498 0)); 499 assert(It != ResolveConstants.end() && It->first == *I); 500 NewOp = operator[](It->second); 501 } 502 503 NewOps.push_back(cast<Constant>(NewOp)); 504 } 505 506 // Make the new constant. 507 Constant *NewC; 508 if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) { 509 NewC = ConstantArray::get(UserCA->getType(), NewOps); 510 } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) { 511 NewC = ConstantStruct::get(UserCS->getType(), NewOps); 512 } else if (isa<ConstantVector>(UserC)) { 513 NewC = ConstantVector::get(NewOps); 514 } else { 515 assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr."); 516 NewC = cast<ConstantExpr>(UserC)->getWithOperands(NewOps); 517 } 518 519 UserC->replaceAllUsesWith(NewC); 520 UserC->destroyConstant(); 521 NewOps.clear(); 522 } 523 524 // Update all ValueHandles, they should be the only users at this point. 525 Placeholder->replaceAllUsesWith(RealVal); 526 delete Placeholder; 527 } 528 } 529 530 void BitcodeReaderMDValueList::AssignValue(Metadata *MD, unsigned Idx) { 531 if (Idx == size()) { 532 push_back(MD); 533 return; 534 } 535 536 if (Idx >= size()) 537 resize(Idx+1); 538 539 TrackingMDRef &OldMD = MDValuePtrs[Idx]; 540 if (!OldMD) { 541 OldMD.reset(MD); 542 return; 543 } 544 545 // If there was a forward reference to this value, replace it. 546 TempMDTuple PrevMD(cast<MDTuple>(OldMD.get())); 547 PrevMD->replaceAllUsesWith(MD); 548 --NumFwdRefs; 549 } 550 551 Metadata *BitcodeReaderMDValueList::getValueFwdRef(unsigned Idx) { 552 if (Idx >= size()) 553 resize(Idx + 1); 554 555 if (Metadata *MD = MDValuePtrs[Idx]) 556 return MD; 557 558 // Create and return a placeholder, which will later be RAUW'd. 559 AnyFwdRefs = true; 560 ++NumFwdRefs; 561 Metadata *MD = MDNode::getTemporary(Context, None).release(); 562 MDValuePtrs[Idx].reset(MD); 563 return MD; 564 } 565 566 void BitcodeReaderMDValueList::tryToResolveCycles() { 567 if (!AnyFwdRefs) 568 // Nothing to do. 569 return; 570 571 if (NumFwdRefs) 572 // Still forward references... can't resolve cycles. 573 return; 574 575 // Resolve any cycles. 576 for (auto &MD : MDValuePtrs) { 577 auto *N = dyn_cast_or_null<MDNode>(MD); 578 if (!N) 579 continue; 580 581 assert(!N->isTemporary() && "Unexpected forward reference"); 582 N->resolveCycles(); 583 } 584 } 585 586 Type *BitcodeReader::getTypeByID(unsigned ID) { 587 // The type table size is always specified correctly. 588 if (ID >= TypeList.size()) 589 return nullptr; 590 591 if (Type *Ty = TypeList[ID]) 592 return Ty; 593 594 // If we have a forward reference, the only possible case is when it is to a 595 // named struct. Just create a placeholder for now. 596 return TypeList[ID] = createIdentifiedStructType(Context); 597 } 598 599 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context, 600 StringRef Name) { 601 auto *Ret = StructType::create(Context, Name); 602 IdentifiedStructTypes.push_back(Ret); 603 return Ret; 604 } 605 606 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) { 607 auto *Ret = StructType::create(Context); 608 IdentifiedStructTypes.push_back(Ret); 609 return Ret; 610 } 611 612 613 //===----------------------------------------------------------------------===// 614 // Functions for parsing blocks from the bitcode file 615 //===----------------------------------------------------------------------===// 616 617 618 /// \brief This fills an AttrBuilder object with the LLVM attributes that have 619 /// been decoded from the given integer. This function must stay in sync with 620 /// 'encodeLLVMAttributesForBitcode'. 621 static void decodeLLVMAttributesForBitcode(AttrBuilder &B, 622 uint64_t EncodedAttrs) { 623 // FIXME: Remove in 4.0. 624 625 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift 626 // the bits above 31 down by 11 bits. 627 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; 628 assert((!Alignment || isPowerOf2_32(Alignment)) && 629 "Alignment must be a power of two."); 630 631 if (Alignment) 632 B.addAlignmentAttr(Alignment); 633 B.addRawValue(((EncodedAttrs & (0xfffffULL << 32)) >> 11) | 634 (EncodedAttrs & 0xffff)); 635 } 636 637 std::error_code BitcodeReader::ParseAttributeBlock() { 638 if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 639 return Error("Invalid record"); 640 641 if (!MAttributes.empty()) 642 return Error("Invalid multiple blocks"); 643 644 SmallVector<uint64_t, 64> Record; 645 646 SmallVector<AttributeSet, 8> Attrs; 647 648 // Read all the records. 649 while (1) { 650 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 651 652 switch (Entry.Kind) { 653 case BitstreamEntry::SubBlock: // Handled for us already. 654 case BitstreamEntry::Error: 655 return Error("Malformed block"); 656 case BitstreamEntry::EndBlock: 657 return std::error_code(); 658 case BitstreamEntry::Record: 659 // The interesting case. 660 break; 661 } 662 663 // Read a record. 664 Record.clear(); 665 switch (Stream.readRecord(Entry.ID, Record)) { 666 default: // Default behavior: ignore. 667 break; 668 case bitc::PARAMATTR_CODE_ENTRY_OLD: { // ENTRY: [paramidx0, attr0, ...] 669 // FIXME: Remove in 4.0. 670 if (Record.size() & 1) 671 return Error("Invalid record"); 672 673 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 674 AttrBuilder B; 675 decodeLLVMAttributesForBitcode(B, Record[i+1]); 676 Attrs.push_back(AttributeSet::get(Context, Record[i], B)); 677 } 678 679 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 680 Attrs.clear(); 681 break; 682 } 683 case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [attrgrp0, attrgrp1, ...] 684 for (unsigned i = 0, e = Record.size(); i != e; ++i) 685 Attrs.push_back(MAttributeGroups[Record[i]]); 686 687 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 688 Attrs.clear(); 689 break; 690 } 691 } 692 } 693 } 694 695 // Returns Attribute::None on unrecognized codes. 696 static Attribute::AttrKind GetAttrFromCode(uint64_t Code) { 697 switch (Code) { 698 default: 699 return Attribute::None; 700 case bitc::ATTR_KIND_ALIGNMENT: 701 return Attribute::Alignment; 702 case bitc::ATTR_KIND_ALWAYS_INLINE: 703 return Attribute::AlwaysInline; 704 case bitc::ATTR_KIND_BUILTIN: 705 return Attribute::Builtin; 706 case bitc::ATTR_KIND_BY_VAL: 707 return Attribute::ByVal; 708 case bitc::ATTR_KIND_IN_ALLOCA: 709 return Attribute::InAlloca; 710 case bitc::ATTR_KIND_COLD: 711 return Attribute::Cold; 712 case bitc::ATTR_KIND_INLINE_HINT: 713 return Attribute::InlineHint; 714 case bitc::ATTR_KIND_IN_REG: 715 return Attribute::InReg; 716 case bitc::ATTR_KIND_JUMP_TABLE: 717 return Attribute::JumpTable; 718 case bitc::ATTR_KIND_MIN_SIZE: 719 return Attribute::MinSize; 720 case bitc::ATTR_KIND_NAKED: 721 return Attribute::Naked; 722 case bitc::ATTR_KIND_NEST: 723 return Attribute::Nest; 724 case bitc::ATTR_KIND_NO_ALIAS: 725 return Attribute::NoAlias; 726 case bitc::ATTR_KIND_NO_BUILTIN: 727 return Attribute::NoBuiltin; 728 case bitc::ATTR_KIND_NO_CAPTURE: 729 return Attribute::NoCapture; 730 case bitc::ATTR_KIND_NO_DUPLICATE: 731 return Attribute::NoDuplicate; 732 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: 733 return Attribute::NoImplicitFloat; 734 case bitc::ATTR_KIND_NO_INLINE: 735 return Attribute::NoInline; 736 case bitc::ATTR_KIND_NON_LAZY_BIND: 737 return Attribute::NonLazyBind; 738 case bitc::ATTR_KIND_NON_NULL: 739 return Attribute::NonNull; 740 case bitc::ATTR_KIND_DEREFERENCEABLE: 741 return Attribute::Dereferenceable; 742 case bitc::ATTR_KIND_NO_RED_ZONE: 743 return Attribute::NoRedZone; 744 case bitc::ATTR_KIND_NO_RETURN: 745 return Attribute::NoReturn; 746 case bitc::ATTR_KIND_NO_UNWIND: 747 return Attribute::NoUnwind; 748 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: 749 return Attribute::OptimizeForSize; 750 case bitc::ATTR_KIND_OPTIMIZE_NONE: 751 return Attribute::OptimizeNone; 752 case bitc::ATTR_KIND_READ_NONE: 753 return Attribute::ReadNone; 754 case bitc::ATTR_KIND_READ_ONLY: 755 return Attribute::ReadOnly; 756 case bitc::ATTR_KIND_RETURNED: 757 return Attribute::Returned; 758 case bitc::ATTR_KIND_RETURNS_TWICE: 759 return Attribute::ReturnsTwice; 760 case bitc::ATTR_KIND_S_EXT: 761 return Attribute::SExt; 762 case bitc::ATTR_KIND_STACK_ALIGNMENT: 763 return Attribute::StackAlignment; 764 case bitc::ATTR_KIND_STACK_PROTECT: 765 return Attribute::StackProtect; 766 case bitc::ATTR_KIND_STACK_PROTECT_REQ: 767 return Attribute::StackProtectReq; 768 case bitc::ATTR_KIND_STACK_PROTECT_STRONG: 769 return Attribute::StackProtectStrong; 770 case bitc::ATTR_KIND_STRUCT_RET: 771 return Attribute::StructRet; 772 case bitc::ATTR_KIND_SANITIZE_ADDRESS: 773 return Attribute::SanitizeAddress; 774 case bitc::ATTR_KIND_SANITIZE_THREAD: 775 return Attribute::SanitizeThread; 776 case bitc::ATTR_KIND_SANITIZE_MEMORY: 777 return Attribute::SanitizeMemory; 778 case bitc::ATTR_KIND_UW_TABLE: 779 return Attribute::UWTable; 780 case bitc::ATTR_KIND_Z_EXT: 781 return Attribute::ZExt; 782 } 783 } 784 785 std::error_code BitcodeReader::ParseAttrKind(uint64_t Code, 786 Attribute::AttrKind *Kind) { 787 *Kind = GetAttrFromCode(Code); 788 if (*Kind == Attribute::None) 789 return Error(BitcodeError::CorruptedBitcode, 790 "Unknown attribute kind (" + Twine(Code) + ")"); 791 return std::error_code(); 792 } 793 794 std::error_code BitcodeReader::ParseAttributeGroupBlock() { 795 if (Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) 796 return Error("Invalid record"); 797 798 if (!MAttributeGroups.empty()) 799 return Error("Invalid multiple blocks"); 800 801 SmallVector<uint64_t, 64> Record; 802 803 // Read all the records. 804 while (1) { 805 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 806 807 switch (Entry.Kind) { 808 case BitstreamEntry::SubBlock: // Handled for us already. 809 case BitstreamEntry::Error: 810 return Error("Malformed block"); 811 case BitstreamEntry::EndBlock: 812 return std::error_code(); 813 case BitstreamEntry::Record: 814 // The interesting case. 815 break; 816 } 817 818 // Read a record. 819 Record.clear(); 820 switch (Stream.readRecord(Entry.ID, Record)) { 821 default: // Default behavior: ignore. 822 break; 823 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] 824 if (Record.size() < 3) 825 return Error("Invalid record"); 826 827 uint64_t GrpID = Record[0]; 828 uint64_t Idx = Record[1]; // Index of the object this attribute refers to. 829 830 AttrBuilder B; 831 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 832 if (Record[i] == 0) { // Enum attribute 833 Attribute::AttrKind Kind; 834 if (std::error_code EC = ParseAttrKind(Record[++i], &Kind)) 835 return EC; 836 837 B.addAttribute(Kind); 838 } else if (Record[i] == 1) { // Integer attribute 839 Attribute::AttrKind Kind; 840 if (std::error_code EC = ParseAttrKind(Record[++i], &Kind)) 841 return EC; 842 if (Kind == Attribute::Alignment) 843 B.addAlignmentAttr(Record[++i]); 844 else if (Kind == Attribute::StackAlignment) 845 B.addStackAlignmentAttr(Record[++i]); 846 else if (Kind == Attribute::Dereferenceable) 847 B.addDereferenceableAttr(Record[++i]); 848 } else { // String attribute 849 assert((Record[i] == 3 || Record[i] == 4) && 850 "Invalid attribute group entry"); 851 bool HasValue = (Record[i++] == 4); 852 SmallString<64> KindStr; 853 SmallString<64> ValStr; 854 855 while (Record[i] != 0 && i != e) 856 KindStr += Record[i++]; 857 assert(Record[i] == 0 && "Kind string not null terminated"); 858 859 if (HasValue) { 860 // Has a value associated with it. 861 ++i; // Skip the '0' that terminates the "kind" string. 862 while (Record[i] != 0 && i != e) 863 ValStr += Record[i++]; 864 assert(Record[i] == 0 && "Value string not null terminated"); 865 } 866 867 B.addAttribute(KindStr.str(), ValStr.str()); 868 } 869 } 870 871 MAttributeGroups[GrpID] = AttributeSet::get(Context, Idx, B); 872 break; 873 } 874 } 875 } 876 } 877 878 std::error_code BitcodeReader::ParseTypeTable() { 879 if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 880 return Error("Invalid record"); 881 882 return ParseTypeTableBody(); 883 } 884 885 std::error_code BitcodeReader::ParseTypeTableBody() { 886 if (!TypeList.empty()) 887 return Error("Invalid multiple blocks"); 888 889 SmallVector<uint64_t, 64> Record; 890 unsigned NumRecords = 0; 891 892 SmallString<64> TypeName; 893 894 // Read all the records for this type table. 895 while (1) { 896 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 897 898 switch (Entry.Kind) { 899 case BitstreamEntry::SubBlock: // Handled for us already. 900 case BitstreamEntry::Error: 901 return Error("Malformed block"); 902 case BitstreamEntry::EndBlock: 903 if (NumRecords != TypeList.size()) 904 return Error("Malformed block"); 905 return std::error_code(); 906 case BitstreamEntry::Record: 907 // The interesting case. 908 break; 909 } 910 911 // Read a record. 912 Record.clear(); 913 Type *ResultTy = nullptr; 914 switch (Stream.readRecord(Entry.ID, Record)) { 915 default: 916 return Error("Invalid value"); 917 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 918 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 919 // type list. This allows us to reserve space. 920 if (Record.size() < 1) 921 return Error("Invalid record"); 922 TypeList.resize(Record[0]); 923 continue; 924 case bitc::TYPE_CODE_VOID: // VOID 925 ResultTy = Type::getVoidTy(Context); 926 break; 927 case bitc::TYPE_CODE_HALF: // HALF 928 ResultTy = Type::getHalfTy(Context); 929 break; 930 case bitc::TYPE_CODE_FLOAT: // FLOAT 931 ResultTy = Type::getFloatTy(Context); 932 break; 933 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 934 ResultTy = Type::getDoubleTy(Context); 935 break; 936 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 937 ResultTy = Type::getX86_FP80Ty(Context); 938 break; 939 case bitc::TYPE_CODE_FP128: // FP128 940 ResultTy = Type::getFP128Ty(Context); 941 break; 942 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 943 ResultTy = Type::getPPC_FP128Ty(Context); 944 break; 945 case bitc::TYPE_CODE_LABEL: // LABEL 946 ResultTy = Type::getLabelTy(Context); 947 break; 948 case bitc::TYPE_CODE_METADATA: // METADATA 949 ResultTy = Type::getMetadataTy(Context); 950 break; 951 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 952 ResultTy = Type::getX86_MMXTy(Context); 953 break; 954 case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width] 955 if (Record.size() < 1) 956 return Error("Invalid record"); 957 958 uint64_t NumBits = Record[0]; 959 if (NumBits < IntegerType::MIN_INT_BITS || 960 NumBits > IntegerType::MAX_INT_BITS) 961 return Error("Bitwidth for integer type out of range"); 962 ResultTy = IntegerType::get(Context, NumBits); 963 break; 964 } 965 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 966 // [pointee type, address space] 967 if (Record.size() < 1) 968 return Error("Invalid record"); 969 unsigned AddressSpace = 0; 970 if (Record.size() == 2) 971 AddressSpace = Record[1]; 972 ResultTy = getTypeByID(Record[0]); 973 if (!ResultTy) 974 return Error("Invalid type"); 975 ResultTy = PointerType::get(ResultTy, AddressSpace); 976 break; 977 } 978 case bitc::TYPE_CODE_FUNCTION_OLD: { 979 // FIXME: attrid is dead, remove it in LLVM 4.0 980 // FUNCTION: [vararg, attrid, retty, paramty x N] 981 if (Record.size() < 3) 982 return Error("Invalid record"); 983 SmallVector<Type*, 8> ArgTys; 984 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 985 if (Type *T = getTypeByID(Record[i])) 986 ArgTys.push_back(T); 987 else 988 break; 989 } 990 991 ResultTy = getTypeByID(Record[2]); 992 if (!ResultTy || ArgTys.size() < Record.size()-3) 993 return Error("Invalid type"); 994 995 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 996 break; 997 } 998 case bitc::TYPE_CODE_FUNCTION: { 999 // FUNCTION: [vararg, retty, paramty x N] 1000 if (Record.size() < 2) 1001 return Error("Invalid record"); 1002 SmallVector<Type*, 8> ArgTys; 1003 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1004 if (Type *T = getTypeByID(Record[i])) 1005 ArgTys.push_back(T); 1006 else 1007 break; 1008 } 1009 1010 ResultTy = getTypeByID(Record[1]); 1011 if (!ResultTy || ArgTys.size() < Record.size()-2) 1012 return Error("Invalid type"); 1013 1014 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1015 break; 1016 } 1017 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 1018 if (Record.size() < 1) 1019 return Error("Invalid record"); 1020 SmallVector<Type*, 8> EltTys; 1021 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1022 if (Type *T = getTypeByID(Record[i])) 1023 EltTys.push_back(T); 1024 else 1025 break; 1026 } 1027 if (EltTys.size() != Record.size()-1) 1028 return Error("Invalid type"); 1029 ResultTy = StructType::get(Context, EltTys, Record[0]); 1030 break; 1031 } 1032 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 1033 if (ConvertToString(Record, 0, TypeName)) 1034 return Error("Invalid record"); 1035 continue; 1036 1037 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 1038 if (Record.size() < 1) 1039 return Error("Invalid record"); 1040 1041 if (NumRecords >= TypeList.size()) 1042 return Error("Invalid TYPE table"); 1043 1044 // Check to see if this was forward referenced, if so fill in the temp. 1045 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1046 if (Res) { 1047 Res->setName(TypeName); 1048 TypeList[NumRecords] = nullptr; 1049 } else // Otherwise, create a new struct. 1050 Res = createIdentifiedStructType(Context, TypeName); 1051 TypeName.clear(); 1052 1053 SmallVector<Type*, 8> EltTys; 1054 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1055 if (Type *T = getTypeByID(Record[i])) 1056 EltTys.push_back(T); 1057 else 1058 break; 1059 } 1060 if (EltTys.size() != Record.size()-1) 1061 return Error("Invalid record"); 1062 Res->setBody(EltTys, Record[0]); 1063 ResultTy = Res; 1064 break; 1065 } 1066 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 1067 if (Record.size() != 1) 1068 return Error("Invalid record"); 1069 1070 if (NumRecords >= TypeList.size()) 1071 return Error("Invalid TYPE table"); 1072 1073 // Check to see if this was forward referenced, if so fill in the temp. 1074 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1075 if (Res) { 1076 Res->setName(TypeName); 1077 TypeList[NumRecords] = nullptr; 1078 } else // Otherwise, create a new struct with no body. 1079 Res = createIdentifiedStructType(Context, TypeName); 1080 TypeName.clear(); 1081 ResultTy = Res; 1082 break; 1083 } 1084 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 1085 if (Record.size() < 2) 1086 return Error("Invalid record"); 1087 if ((ResultTy = getTypeByID(Record[1]))) 1088 ResultTy = ArrayType::get(ResultTy, Record[0]); 1089 else 1090 return Error("Invalid type"); 1091 break; 1092 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] 1093 if (Record.size() < 2) 1094 return Error("Invalid record"); 1095 if ((ResultTy = getTypeByID(Record[1]))) 1096 ResultTy = VectorType::get(ResultTy, Record[0]); 1097 else 1098 return Error("Invalid type"); 1099 break; 1100 } 1101 1102 if (NumRecords >= TypeList.size()) 1103 return Error("Invalid TYPE table"); 1104 if (TypeList[NumRecords]) 1105 return Error( 1106 "Invalid TYPE table: Only named structs can be forward referenced"); 1107 assert(ResultTy && "Didn't read a type?"); 1108 TypeList[NumRecords++] = ResultTy; 1109 } 1110 } 1111 1112 std::error_code BitcodeReader::ParseValueSymbolTable() { 1113 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 1114 return Error("Invalid record"); 1115 1116 SmallVector<uint64_t, 64> Record; 1117 1118 Triple TT(TheModule->getTargetTriple()); 1119 1120 // Read all the records for this value table. 1121 SmallString<128> ValueName; 1122 while (1) { 1123 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1124 1125 switch (Entry.Kind) { 1126 case BitstreamEntry::SubBlock: // Handled for us already. 1127 case BitstreamEntry::Error: 1128 return Error("Malformed block"); 1129 case BitstreamEntry::EndBlock: 1130 return std::error_code(); 1131 case BitstreamEntry::Record: 1132 // The interesting case. 1133 break; 1134 } 1135 1136 // Read a record. 1137 Record.clear(); 1138 switch (Stream.readRecord(Entry.ID, Record)) { 1139 default: // Default behavior: unknown type. 1140 break; 1141 case bitc::VST_CODE_ENTRY: { // VST_ENTRY: [valueid, namechar x N] 1142 if (ConvertToString(Record, 1, ValueName)) 1143 return Error("Invalid record"); 1144 unsigned ValueID = Record[0]; 1145 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 1146 return Error("Invalid record"); 1147 Value *V = ValueList[ValueID]; 1148 1149 V->setName(StringRef(ValueName.data(), ValueName.size())); 1150 if (auto *GO = dyn_cast<GlobalObject>(V)) { 1151 if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) { 1152 if (TT.isOSBinFormatMachO()) 1153 GO->setComdat(nullptr); 1154 else 1155 GO->setComdat(TheModule->getOrInsertComdat(V->getName())); 1156 } 1157 } 1158 ValueName.clear(); 1159 break; 1160 } 1161 case bitc::VST_CODE_BBENTRY: { 1162 if (ConvertToString(Record, 1, ValueName)) 1163 return Error("Invalid record"); 1164 BasicBlock *BB = getBasicBlock(Record[0]); 1165 if (!BB) 1166 return Error("Invalid record"); 1167 1168 BB->setName(StringRef(ValueName.data(), ValueName.size())); 1169 ValueName.clear(); 1170 break; 1171 } 1172 } 1173 } 1174 } 1175 1176 static int64_t unrotateSign(uint64_t U) { return U & 1 ? ~(U >> 1) : U >> 1; } 1177 1178 std::error_code BitcodeReader::ParseMetadata() { 1179 unsigned NextMDValueNo = MDValueList.size(); 1180 1181 if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID)) 1182 return Error("Invalid record"); 1183 1184 SmallVector<uint64_t, 64> Record; 1185 1186 auto getMD = 1187 [&](unsigned ID) -> Metadata *{ return MDValueList.getValueFwdRef(ID); }; 1188 auto getMDOrNull = [&](unsigned ID) -> Metadata *{ 1189 if (ID) 1190 return getMD(ID - 1); 1191 return nullptr; 1192 }; 1193 auto getMDString = [&](unsigned ID) -> MDString *{ 1194 // This requires that the ID is not really a forward reference. In 1195 // particular, the MDString must already have been resolved. 1196 return cast_or_null<MDString>(getMDOrNull(ID)); 1197 }; 1198 1199 #define GET_OR_DISTINCT(CLASS, DISTINCT, ARGS) \ 1200 (DISTINCT ? CLASS::getDistinct ARGS : CLASS::get ARGS) 1201 1202 // Read all the records. 1203 while (1) { 1204 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1205 1206 switch (Entry.Kind) { 1207 case BitstreamEntry::SubBlock: // Handled for us already. 1208 case BitstreamEntry::Error: 1209 return Error("Malformed block"); 1210 case BitstreamEntry::EndBlock: 1211 MDValueList.tryToResolveCycles(); 1212 return std::error_code(); 1213 case BitstreamEntry::Record: 1214 // The interesting case. 1215 break; 1216 } 1217 1218 // Read a record. 1219 Record.clear(); 1220 unsigned Code = Stream.readRecord(Entry.ID, Record); 1221 bool IsDistinct = false; 1222 switch (Code) { 1223 default: // Default behavior: ignore. 1224 break; 1225 case bitc::METADATA_NAME: { 1226 // Read name of the named metadata. 1227 SmallString<8> Name(Record.begin(), Record.end()); 1228 Record.clear(); 1229 Code = Stream.ReadCode(); 1230 1231 // METADATA_NAME is always followed by METADATA_NAMED_NODE. 1232 unsigned NextBitCode = Stream.readRecord(Code, Record); 1233 assert(NextBitCode == bitc::METADATA_NAMED_NODE); (void)NextBitCode; 1234 1235 // Read named metadata elements. 1236 unsigned Size = Record.size(); 1237 NamedMDNode *NMD = TheModule->getOrInsertNamedMetadata(Name); 1238 for (unsigned i = 0; i != Size; ++i) { 1239 MDNode *MD = dyn_cast_or_null<MDNode>(MDValueList.getValueFwdRef(Record[i])); 1240 if (!MD) 1241 return Error("Invalid record"); 1242 NMD->addOperand(MD); 1243 } 1244 break; 1245 } 1246 case bitc::METADATA_OLD_FN_NODE: { 1247 // FIXME: Remove in 4.0. 1248 // This is a LocalAsMetadata record, the only type of function-local 1249 // metadata. 1250 if (Record.size() % 2 == 1) 1251 return Error("Invalid record"); 1252 1253 // If this isn't a LocalAsMetadata record, we're dropping it. This used 1254 // to be legal, but there's no upgrade path. 1255 auto dropRecord = [&] { 1256 MDValueList.AssignValue(MDNode::get(Context, None), NextMDValueNo++); 1257 }; 1258 if (Record.size() != 2) { 1259 dropRecord(); 1260 break; 1261 } 1262 1263 Type *Ty = getTypeByID(Record[0]); 1264 if (Ty->isMetadataTy() || Ty->isVoidTy()) { 1265 dropRecord(); 1266 break; 1267 } 1268 1269 MDValueList.AssignValue( 1270 LocalAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)), 1271 NextMDValueNo++); 1272 break; 1273 } 1274 case bitc::METADATA_OLD_NODE: { 1275 // FIXME: Remove in 4.0. 1276 if (Record.size() % 2 == 1) 1277 return Error("Invalid record"); 1278 1279 unsigned Size = Record.size(); 1280 SmallVector<Metadata *, 8> Elts; 1281 for (unsigned i = 0; i != Size; i += 2) { 1282 Type *Ty = getTypeByID(Record[i]); 1283 if (!Ty) 1284 return Error("Invalid record"); 1285 if (Ty->isMetadataTy()) 1286 Elts.push_back(MDValueList.getValueFwdRef(Record[i+1])); 1287 else if (!Ty->isVoidTy()) { 1288 auto *MD = 1289 ValueAsMetadata::get(ValueList.getValueFwdRef(Record[i + 1], Ty)); 1290 assert(isa<ConstantAsMetadata>(MD) && 1291 "Expected non-function-local metadata"); 1292 Elts.push_back(MD); 1293 } else 1294 Elts.push_back(nullptr); 1295 } 1296 MDValueList.AssignValue(MDNode::get(Context, Elts), NextMDValueNo++); 1297 break; 1298 } 1299 case bitc::METADATA_VALUE: { 1300 if (Record.size() != 2) 1301 return Error("Invalid record"); 1302 1303 Type *Ty = getTypeByID(Record[0]); 1304 if (Ty->isMetadataTy() || Ty->isVoidTy()) 1305 return Error("Invalid record"); 1306 1307 MDValueList.AssignValue( 1308 ValueAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)), 1309 NextMDValueNo++); 1310 break; 1311 } 1312 case bitc::METADATA_DISTINCT_NODE: 1313 IsDistinct = true; 1314 // fallthrough... 1315 case bitc::METADATA_NODE: { 1316 SmallVector<Metadata *, 8> Elts; 1317 Elts.reserve(Record.size()); 1318 for (unsigned ID : Record) 1319 Elts.push_back(ID ? MDValueList.getValueFwdRef(ID - 1) : nullptr); 1320 MDValueList.AssignValue(IsDistinct ? MDNode::getDistinct(Context, Elts) 1321 : MDNode::get(Context, Elts), 1322 NextMDValueNo++); 1323 break; 1324 } 1325 case bitc::METADATA_LOCATION: { 1326 if (Record.size() != 5) 1327 return Error("Invalid record"); 1328 1329 auto get = Record[0] ? MDLocation::getDistinct : MDLocation::get; 1330 unsigned Line = Record[1]; 1331 unsigned Column = Record[2]; 1332 MDNode *Scope = cast<MDNode>(MDValueList.getValueFwdRef(Record[3])); 1333 Metadata *InlinedAt = 1334 Record[4] ? MDValueList.getValueFwdRef(Record[4] - 1) : nullptr; 1335 MDValueList.AssignValue(get(Context, Line, Column, Scope, InlinedAt), 1336 NextMDValueNo++); 1337 break; 1338 } 1339 case bitc::METADATA_GENERIC_DEBUG: { 1340 if (Record.size() < 4) 1341 return Error("Invalid record"); 1342 1343 unsigned Tag = Record[1]; 1344 unsigned Version = Record[2]; 1345 1346 if (Tag >= 1u << 16 || Version != 0) 1347 return Error("Invalid record"); 1348 1349 auto *Header = getMDString(Record[3]); 1350 SmallVector<Metadata *, 8> DwarfOps; 1351 for (unsigned I = 4, E = Record.size(); I != E; ++I) 1352 DwarfOps.push_back(Record[I] ? MDValueList.getValueFwdRef(Record[I] - 1) 1353 : nullptr); 1354 MDValueList.AssignValue(GET_OR_DISTINCT(GenericDebugNode, Record[0], 1355 (Context, Tag, Header, DwarfOps)), 1356 NextMDValueNo++); 1357 break; 1358 } 1359 case bitc::METADATA_SUBRANGE: { 1360 if (Record.size() != 3) 1361 return Error("Invalid record"); 1362 1363 MDValueList.AssignValue( 1364 GET_OR_DISTINCT(MDSubrange, Record[0], 1365 (Context, Record[1], unrotateSign(Record[2]))), 1366 NextMDValueNo++); 1367 break; 1368 } 1369 case bitc::METADATA_ENUMERATOR: { 1370 if (Record.size() != 3) 1371 return Error("Invalid record"); 1372 1373 MDValueList.AssignValue(GET_OR_DISTINCT(MDEnumerator, Record[0], 1374 (Context, unrotateSign(Record[1]), 1375 getMDString(Record[2]))), 1376 NextMDValueNo++); 1377 break; 1378 } 1379 case bitc::METADATA_BASIC_TYPE: { 1380 if (Record.size() != 6) 1381 return Error("Invalid record"); 1382 1383 MDValueList.AssignValue( 1384 GET_OR_DISTINCT(MDBasicType, Record[0], 1385 (Context, Record[1], getMDString(Record[2]), 1386 Record[3], Record[4], Record[5])), 1387 NextMDValueNo++); 1388 break; 1389 } 1390 case bitc::METADATA_DERIVED_TYPE: { 1391 if (Record.size() != 12) 1392 return Error("Invalid record"); 1393 1394 MDValueList.AssignValue( 1395 GET_OR_DISTINCT(MDDerivedType, Record[0], 1396 (Context, Record[1], getMDString(Record[2]), 1397 getMDOrNull(Record[3]), Record[4], 1398 getMDOrNull(Record[5]), getMD(Record[6]), Record[7], 1399 Record[8], Record[9], Record[10], 1400 getMDOrNull(Record[11]))), 1401 NextMDValueNo++); 1402 break; 1403 } 1404 case bitc::METADATA_COMPOSITE_TYPE: { 1405 if (Record.size() != 16) 1406 return Error("Invalid record"); 1407 1408 MDValueList.AssignValue( 1409 GET_OR_DISTINCT(MDCompositeType, Record[0], 1410 (Context, Record[1], getMDString(Record[2]), 1411 getMDOrNull(Record[3]), Record[4], 1412 getMDOrNull(Record[5]), getMDOrNull(Record[6]), 1413 Record[7], Record[8], Record[9], Record[10], 1414 getMDOrNull(Record[11]), Record[12], 1415 getMDOrNull(Record[13]), getMDOrNull(Record[14]), 1416 getMDString(Record[15]))), 1417 NextMDValueNo++); 1418 break; 1419 } 1420 case bitc::METADATA_SUBROUTINE_TYPE: { 1421 if (Record.size() != 3) 1422 return Error("Invalid record"); 1423 1424 MDValueList.AssignValue( 1425 GET_OR_DISTINCT(MDSubroutineType, Record[0], 1426 (Context, Record[1], getMDOrNull(Record[2]))), 1427 NextMDValueNo++); 1428 break; 1429 } 1430 case bitc::METADATA_FILE: { 1431 if (Record.size() != 3) 1432 return Error("Invalid record"); 1433 1434 MDValueList.AssignValue( 1435 GET_OR_DISTINCT(MDFile, Record[0], (Context, getMDString(Record[1]), 1436 getMDString(Record[2]))), 1437 NextMDValueNo++); 1438 break; 1439 } 1440 case bitc::METADATA_COMPILE_UNIT: { 1441 if (Record.size() != 14) 1442 return Error("Invalid record"); 1443 1444 MDValueList.AssignValue( 1445 GET_OR_DISTINCT( 1446 MDCompileUnit, Record[0], 1447 (Context, Record[1], getMD(Record[2]), getMDString(Record[3]), 1448 Record[4], getMDString(Record[5]), Record[6], 1449 getMDString(Record[7]), Record[8], getMDOrNull(Record[9]), 1450 getMDOrNull(Record[10]), getMDOrNull(Record[11]), 1451 getMDOrNull(Record[12]), getMDOrNull(Record[13]))), 1452 NextMDValueNo++); 1453 break; 1454 } 1455 case bitc::METADATA_SUBPROGRAM: { 1456 if (Record.size() != 19) 1457 return Error("Invalid record"); 1458 1459 MDValueList.AssignValue( 1460 GET_OR_DISTINCT( 1461 MDSubprogram, Record[0], 1462 (Context, getMDOrNull(Record[1]), getMDString(Record[2]), 1463 getMDString(Record[3]), getMDOrNull(Record[4]), Record[5], 1464 getMDOrNull(Record[6]), Record[7], Record[8], Record[9], 1465 getMDOrNull(Record[10]), Record[11], Record[12], Record[13], 1466 Record[14], getMDOrNull(Record[15]), getMDOrNull(Record[16]), 1467 getMDOrNull(Record[17]), getMDOrNull(Record[18]))), 1468 NextMDValueNo++); 1469 break; 1470 } 1471 case bitc::METADATA_LEXICAL_BLOCK: { 1472 if (Record.size() != 5) 1473 return Error("Invalid record"); 1474 1475 MDValueList.AssignValue( 1476 GET_OR_DISTINCT(MDLexicalBlock, Record[0], 1477 (Context, getMDOrNull(Record[1]), 1478 getMDOrNull(Record[2]), Record[3], Record[4])), 1479 NextMDValueNo++); 1480 break; 1481 } 1482 case bitc::METADATA_LEXICAL_BLOCK_FILE: { 1483 if (Record.size() != 4) 1484 return Error("Invalid record"); 1485 1486 MDValueList.AssignValue( 1487 GET_OR_DISTINCT(MDLexicalBlockFile, Record[0], 1488 (Context, getMDOrNull(Record[1]), 1489 getMDOrNull(Record[2]), Record[3])), 1490 NextMDValueNo++); 1491 break; 1492 } 1493 case bitc::METADATA_NAMESPACE: { 1494 if (Record.size() != 5) 1495 return Error("Invalid record"); 1496 1497 MDValueList.AssignValue( 1498 GET_OR_DISTINCT(MDNamespace, Record[0], 1499 (Context, getMDOrNull(Record[1]), 1500 getMDOrNull(Record[2]), getMDString(Record[3]), 1501 Record[4])), 1502 NextMDValueNo++); 1503 break; 1504 } 1505 case bitc::METADATA_STRING: { 1506 std::string String(Record.begin(), Record.end()); 1507 llvm::UpgradeMDStringConstant(String); 1508 Metadata *MD = MDString::get(Context, String); 1509 MDValueList.AssignValue(MD, NextMDValueNo++); 1510 break; 1511 } 1512 case bitc::METADATA_KIND: { 1513 if (Record.size() < 2) 1514 return Error("Invalid record"); 1515 1516 unsigned Kind = Record[0]; 1517 SmallString<8> Name(Record.begin()+1, Record.end()); 1518 1519 unsigned NewKind = TheModule->getMDKindID(Name.str()); 1520 if (!MDKindMap.insert(std::make_pair(Kind, NewKind)).second) 1521 return Error("Conflicting METADATA_KIND records"); 1522 break; 1523 } 1524 } 1525 } 1526 #undef GET_OR_DISTINCT 1527 } 1528 1529 /// decodeSignRotatedValue - Decode a signed value stored with the sign bit in 1530 /// the LSB for dense VBR encoding. 1531 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { 1532 if ((V & 1) == 0) 1533 return V >> 1; 1534 if (V != 1) 1535 return -(V >> 1); 1536 // There is no such thing as -0 with integers. "-0" really means MININT. 1537 return 1ULL << 63; 1538 } 1539 1540 /// ResolveGlobalAndAliasInits - Resolve all of the initializers for global 1541 /// values and aliases that we can. 1542 std::error_code BitcodeReader::ResolveGlobalAndAliasInits() { 1543 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist; 1544 std::vector<std::pair<GlobalAlias*, unsigned> > AliasInitWorklist; 1545 std::vector<std::pair<Function*, unsigned> > FunctionPrefixWorklist; 1546 std::vector<std::pair<Function*, unsigned> > FunctionPrologueWorklist; 1547 1548 GlobalInitWorklist.swap(GlobalInits); 1549 AliasInitWorklist.swap(AliasInits); 1550 FunctionPrefixWorklist.swap(FunctionPrefixes); 1551 FunctionPrologueWorklist.swap(FunctionPrologues); 1552 1553 while (!GlobalInitWorklist.empty()) { 1554 unsigned ValID = GlobalInitWorklist.back().second; 1555 if (ValID >= ValueList.size()) { 1556 // Not ready to resolve this yet, it requires something later in the file. 1557 GlobalInits.push_back(GlobalInitWorklist.back()); 1558 } else { 1559 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 1560 GlobalInitWorklist.back().first->setInitializer(C); 1561 else 1562 return Error("Expected a constant"); 1563 } 1564 GlobalInitWorklist.pop_back(); 1565 } 1566 1567 while (!AliasInitWorklist.empty()) { 1568 unsigned ValID = AliasInitWorklist.back().second; 1569 if (ValID >= ValueList.size()) { 1570 AliasInits.push_back(AliasInitWorklist.back()); 1571 } else { 1572 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 1573 AliasInitWorklist.back().first->setAliasee(C); 1574 else 1575 return Error("Expected a constant"); 1576 } 1577 AliasInitWorklist.pop_back(); 1578 } 1579 1580 while (!FunctionPrefixWorklist.empty()) { 1581 unsigned ValID = FunctionPrefixWorklist.back().second; 1582 if (ValID >= ValueList.size()) { 1583 FunctionPrefixes.push_back(FunctionPrefixWorklist.back()); 1584 } else { 1585 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 1586 FunctionPrefixWorklist.back().first->setPrefixData(C); 1587 else 1588 return Error("Expected a constant"); 1589 } 1590 FunctionPrefixWorklist.pop_back(); 1591 } 1592 1593 while (!FunctionPrologueWorklist.empty()) { 1594 unsigned ValID = FunctionPrologueWorklist.back().second; 1595 if (ValID >= ValueList.size()) { 1596 FunctionPrologues.push_back(FunctionPrologueWorklist.back()); 1597 } else { 1598 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 1599 FunctionPrologueWorklist.back().first->setPrologueData(C); 1600 else 1601 return Error("Expected a constant"); 1602 } 1603 FunctionPrologueWorklist.pop_back(); 1604 } 1605 1606 return std::error_code(); 1607 } 1608 1609 static APInt ReadWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { 1610 SmallVector<uint64_t, 8> Words(Vals.size()); 1611 std::transform(Vals.begin(), Vals.end(), Words.begin(), 1612 BitcodeReader::decodeSignRotatedValue); 1613 1614 return APInt(TypeBits, Words); 1615 } 1616 1617 std::error_code BitcodeReader::ParseConstants() { 1618 if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 1619 return Error("Invalid record"); 1620 1621 SmallVector<uint64_t, 64> Record; 1622 1623 // Read all the records for this value table. 1624 Type *CurTy = Type::getInt32Ty(Context); 1625 unsigned NextCstNo = ValueList.size(); 1626 while (1) { 1627 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1628 1629 switch (Entry.Kind) { 1630 case BitstreamEntry::SubBlock: // Handled for us already. 1631 case BitstreamEntry::Error: 1632 return Error("Malformed block"); 1633 case BitstreamEntry::EndBlock: 1634 if (NextCstNo != ValueList.size()) 1635 return Error("Invalid ronstant reference"); 1636 1637 // Once all the constants have been read, go through and resolve forward 1638 // references. 1639 ValueList.ResolveConstantForwardRefs(); 1640 return std::error_code(); 1641 case BitstreamEntry::Record: 1642 // The interesting case. 1643 break; 1644 } 1645 1646 // Read a record. 1647 Record.clear(); 1648 Value *V = nullptr; 1649 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 1650 switch (BitCode) { 1651 default: // Default behavior: unknown constant 1652 case bitc::CST_CODE_UNDEF: // UNDEF 1653 V = UndefValue::get(CurTy); 1654 break; 1655 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 1656 if (Record.empty()) 1657 return Error("Invalid record"); 1658 if (Record[0] >= TypeList.size() || !TypeList[Record[0]]) 1659 return Error("Invalid record"); 1660 CurTy = TypeList[Record[0]]; 1661 continue; // Skip the ValueList manipulation. 1662 case bitc::CST_CODE_NULL: // NULL 1663 V = Constant::getNullValue(CurTy); 1664 break; 1665 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 1666 if (!CurTy->isIntegerTy() || Record.empty()) 1667 return Error("Invalid record"); 1668 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); 1669 break; 1670 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 1671 if (!CurTy->isIntegerTy() || Record.empty()) 1672 return Error("Invalid record"); 1673 1674 APInt VInt = ReadWideAPInt(Record, 1675 cast<IntegerType>(CurTy)->getBitWidth()); 1676 V = ConstantInt::get(Context, VInt); 1677 1678 break; 1679 } 1680 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 1681 if (Record.empty()) 1682 return Error("Invalid record"); 1683 if (CurTy->isHalfTy()) 1684 V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf, 1685 APInt(16, (uint16_t)Record[0]))); 1686 else if (CurTy->isFloatTy()) 1687 V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle, 1688 APInt(32, (uint32_t)Record[0]))); 1689 else if (CurTy->isDoubleTy()) 1690 V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble, 1691 APInt(64, Record[0]))); 1692 else if (CurTy->isX86_FP80Ty()) { 1693 // Bits are not stored the same way as a normal i80 APInt, compensate. 1694 uint64_t Rearrange[2]; 1695 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 1696 Rearrange[1] = Record[0] >> 48; 1697 V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended, 1698 APInt(80, Rearrange))); 1699 } else if (CurTy->isFP128Ty()) 1700 V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad, 1701 APInt(128, Record))); 1702 else if (CurTy->isPPC_FP128Ty()) 1703 V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble, 1704 APInt(128, Record))); 1705 else 1706 V = UndefValue::get(CurTy); 1707 break; 1708 } 1709 1710 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 1711 if (Record.empty()) 1712 return Error("Invalid record"); 1713 1714 unsigned Size = Record.size(); 1715 SmallVector<Constant*, 16> Elts; 1716 1717 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 1718 for (unsigned i = 0; i != Size; ++i) 1719 Elts.push_back(ValueList.getConstantFwdRef(Record[i], 1720 STy->getElementType(i))); 1721 V = ConstantStruct::get(STy, Elts); 1722 } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) { 1723 Type *EltTy = ATy->getElementType(); 1724 for (unsigned i = 0; i != Size; ++i) 1725 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 1726 V = ConstantArray::get(ATy, Elts); 1727 } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) { 1728 Type *EltTy = VTy->getElementType(); 1729 for (unsigned i = 0; i != Size; ++i) 1730 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 1731 V = ConstantVector::get(Elts); 1732 } else { 1733 V = UndefValue::get(CurTy); 1734 } 1735 break; 1736 } 1737 case bitc::CST_CODE_STRING: // STRING: [values] 1738 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 1739 if (Record.empty()) 1740 return Error("Invalid record"); 1741 1742 SmallString<16> Elts(Record.begin(), Record.end()); 1743 V = ConstantDataArray::getString(Context, Elts, 1744 BitCode == bitc::CST_CODE_CSTRING); 1745 break; 1746 } 1747 case bitc::CST_CODE_DATA: {// DATA: [n x value] 1748 if (Record.empty()) 1749 return Error("Invalid record"); 1750 1751 Type *EltTy = cast<SequentialType>(CurTy)->getElementType(); 1752 unsigned Size = Record.size(); 1753 1754 if (EltTy->isIntegerTy(8)) { 1755 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); 1756 if (isa<VectorType>(CurTy)) 1757 V = ConstantDataVector::get(Context, Elts); 1758 else 1759 V = ConstantDataArray::get(Context, Elts); 1760 } else if (EltTy->isIntegerTy(16)) { 1761 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 1762 if (isa<VectorType>(CurTy)) 1763 V = ConstantDataVector::get(Context, Elts); 1764 else 1765 V = ConstantDataArray::get(Context, Elts); 1766 } else if (EltTy->isIntegerTy(32)) { 1767 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 1768 if (isa<VectorType>(CurTy)) 1769 V = ConstantDataVector::get(Context, Elts); 1770 else 1771 V = ConstantDataArray::get(Context, Elts); 1772 } else if (EltTy->isIntegerTy(64)) { 1773 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 1774 if (isa<VectorType>(CurTy)) 1775 V = ConstantDataVector::get(Context, Elts); 1776 else 1777 V = ConstantDataArray::get(Context, Elts); 1778 } else if (EltTy->isFloatTy()) { 1779 SmallVector<float, 16> Elts(Size); 1780 std::transform(Record.begin(), Record.end(), Elts.begin(), BitsToFloat); 1781 if (isa<VectorType>(CurTy)) 1782 V = ConstantDataVector::get(Context, Elts); 1783 else 1784 V = ConstantDataArray::get(Context, Elts); 1785 } else if (EltTy->isDoubleTy()) { 1786 SmallVector<double, 16> Elts(Size); 1787 std::transform(Record.begin(), Record.end(), Elts.begin(), 1788 BitsToDouble); 1789 if (isa<VectorType>(CurTy)) 1790 V = ConstantDataVector::get(Context, Elts); 1791 else 1792 V = ConstantDataArray::get(Context, Elts); 1793 } else { 1794 return Error("Invalid type for value"); 1795 } 1796 break; 1797 } 1798 1799 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 1800 if (Record.size() < 3) 1801 return Error("Invalid record"); 1802 int Opc = GetDecodedBinaryOpcode(Record[0], CurTy); 1803 if (Opc < 0) { 1804 V = UndefValue::get(CurTy); // Unknown binop. 1805 } else { 1806 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 1807 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy); 1808 unsigned Flags = 0; 1809 if (Record.size() >= 4) { 1810 if (Opc == Instruction::Add || 1811 Opc == Instruction::Sub || 1812 Opc == Instruction::Mul || 1813 Opc == Instruction::Shl) { 1814 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 1815 Flags |= OverflowingBinaryOperator::NoSignedWrap; 1816 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 1817 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 1818 } else if (Opc == Instruction::SDiv || 1819 Opc == Instruction::UDiv || 1820 Opc == Instruction::LShr || 1821 Opc == Instruction::AShr) { 1822 if (Record[3] & (1 << bitc::PEO_EXACT)) 1823 Flags |= SDivOperator::IsExact; 1824 } 1825 } 1826 V = ConstantExpr::get(Opc, LHS, RHS, Flags); 1827 } 1828 break; 1829 } 1830 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 1831 if (Record.size() < 3) 1832 return Error("Invalid record"); 1833 int Opc = GetDecodedCastOpcode(Record[0]); 1834 if (Opc < 0) { 1835 V = UndefValue::get(CurTy); // Unknown cast. 1836 } else { 1837 Type *OpTy = getTypeByID(Record[1]); 1838 if (!OpTy) 1839 return Error("Invalid record"); 1840 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy); 1841 V = UpgradeBitCastExpr(Opc, Op, CurTy); 1842 if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy); 1843 } 1844 break; 1845 } 1846 case bitc::CST_CODE_CE_INBOUNDS_GEP: 1847 case bitc::CST_CODE_CE_GEP: { // CE_GEP: [n x operands] 1848 if (Record.size() & 1) 1849 return Error("Invalid record"); 1850 SmallVector<Constant*, 16> Elts; 1851 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1852 Type *ElTy = getTypeByID(Record[i]); 1853 if (!ElTy) 1854 return Error("Invalid record"); 1855 Elts.push_back(ValueList.getConstantFwdRef(Record[i+1], ElTy)); 1856 } 1857 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 1858 V = ConstantExpr::getGetElementPtr(Elts[0], Indices, 1859 BitCode == 1860 bitc::CST_CODE_CE_INBOUNDS_GEP); 1861 break; 1862 } 1863 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] 1864 if (Record.size() < 3) 1865 return Error("Invalid record"); 1866 1867 Type *SelectorTy = Type::getInt1Ty(Context); 1868 1869 // If CurTy is a vector of length n, then Record[0] must be a <n x i1> 1870 // vector. Otherwise, it must be a single bit. 1871 if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) 1872 SelectorTy = VectorType::get(Type::getInt1Ty(Context), 1873 VTy->getNumElements()); 1874 1875 V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0], 1876 SelectorTy), 1877 ValueList.getConstantFwdRef(Record[1],CurTy), 1878 ValueList.getConstantFwdRef(Record[2],CurTy)); 1879 break; 1880 } 1881 case bitc::CST_CODE_CE_EXTRACTELT 1882 : { // CE_EXTRACTELT: [opty, opval, opty, opval] 1883 if (Record.size() < 3) 1884 return Error("Invalid record"); 1885 VectorType *OpTy = 1886 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 1887 if (!OpTy) 1888 return Error("Invalid record"); 1889 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 1890 Constant *Op1 = nullptr; 1891 if (Record.size() == 4) { 1892 Type *IdxTy = getTypeByID(Record[2]); 1893 if (!IdxTy) 1894 return Error("Invalid record"); 1895 Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy); 1896 } else // TODO: Remove with llvm 4.0 1897 Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 1898 if (!Op1) 1899 return Error("Invalid record"); 1900 V = ConstantExpr::getExtractElement(Op0, Op1); 1901 break; 1902 } 1903 case bitc::CST_CODE_CE_INSERTELT 1904 : { // CE_INSERTELT: [opval, opval, opty, opval] 1905 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 1906 if (Record.size() < 3 || !OpTy) 1907 return Error("Invalid record"); 1908 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 1909 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], 1910 OpTy->getElementType()); 1911 Constant *Op2 = nullptr; 1912 if (Record.size() == 4) { 1913 Type *IdxTy = getTypeByID(Record[2]); 1914 if (!IdxTy) 1915 return Error("Invalid record"); 1916 Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy); 1917 } else // TODO: Remove with llvm 4.0 1918 Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 1919 if (!Op2) 1920 return Error("Invalid record"); 1921 V = ConstantExpr::getInsertElement(Op0, Op1, Op2); 1922 break; 1923 } 1924 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 1925 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 1926 if (Record.size() < 3 || !OpTy) 1927 return Error("Invalid record"); 1928 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 1929 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy); 1930 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 1931 OpTy->getNumElements()); 1932 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy); 1933 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 1934 break; 1935 } 1936 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 1937 VectorType *RTy = dyn_cast<VectorType>(CurTy); 1938 VectorType *OpTy = 1939 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 1940 if (Record.size() < 4 || !RTy || !OpTy) 1941 return Error("Invalid record"); 1942 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 1943 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 1944 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 1945 RTy->getNumElements()); 1946 Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy); 1947 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 1948 break; 1949 } 1950 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 1951 if (Record.size() < 4) 1952 return Error("Invalid record"); 1953 Type *OpTy = getTypeByID(Record[0]); 1954 if (!OpTy) 1955 return Error("Invalid record"); 1956 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 1957 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 1958 1959 if (OpTy->isFPOrFPVectorTy()) 1960 V = ConstantExpr::getFCmp(Record[3], Op0, Op1); 1961 else 1962 V = ConstantExpr::getICmp(Record[3], Op0, Op1); 1963 break; 1964 } 1965 // This maintains backward compatibility, pre-asm dialect keywords. 1966 // FIXME: Remove with the 4.0 release. 1967 case bitc::CST_CODE_INLINEASM_OLD: { 1968 if (Record.size() < 2) 1969 return Error("Invalid record"); 1970 std::string AsmStr, ConstrStr; 1971 bool HasSideEffects = Record[0] & 1; 1972 bool IsAlignStack = Record[0] >> 1; 1973 unsigned AsmStrSize = Record[1]; 1974 if (2+AsmStrSize >= Record.size()) 1975 return Error("Invalid record"); 1976 unsigned ConstStrSize = Record[2+AsmStrSize]; 1977 if (3+AsmStrSize+ConstStrSize > Record.size()) 1978 return Error("Invalid record"); 1979 1980 for (unsigned i = 0; i != AsmStrSize; ++i) 1981 AsmStr += (char)Record[2+i]; 1982 for (unsigned i = 0; i != ConstStrSize; ++i) 1983 ConstrStr += (char)Record[3+AsmStrSize+i]; 1984 PointerType *PTy = cast<PointerType>(CurTy); 1985 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 1986 AsmStr, ConstrStr, HasSideEffects, IsAlignStack); 1987 break; 1988 } 1989 // This version adds support for the asm dialect keywords (e.g., 1990 // inteldialect). 1991 case bitc::CST_CODE_INLINEASM: { 1992 if (Record.size() < 2) 1993 return Error("Invalid record"); 1994 std::string AsmStr, ConstrStr; 1995 bool HasSideEffects = Record[0] & 1; 1996 bool IsAlignStack = (Record[0] >> 1) & 1; 1997 unsigned AsmDialect = Record[0] >> 2; 1998 unsigned AsmStrSize = Record[1]; 1999 if (2+AsmStrSize >= Record.size()) 2000 return Error("Invalid record"); 2001 unsigned ConstStrSize = Record[2+AsmStrSize]; 2002 if (3+AsmStrSize+ConstStrSize > Record.size()) 2003 return Error("Invalid record"); 2004 2005 for (unsigned i = 0; i != AsmStrSize; ++i) 2006 AsmStr += (char)Record[2+i]; 2007 for (unsigned i = 0; i != ConstStrSize; ++i) 2008 ConstrStr += (char)Record[3+AsmStrSize+i]; 2009 PointerType *PTy = cast<PointerType>(CurTy); 2010 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 2011 AsmStr, ConstrStr, HasSideEffects, IsAlignStack, 2012 InlineAsm::AsmDialect(AsmDialect)); 2013 break; 2014 } 2015 case bitc::CST_CODE_BLOCKADDRESS:{ 2016 if (Record.size() < 3) 2017 return Error("Invalid record"); 2018 Type *FnTy = getTypeByID(Record[0]); 2019 if (!FnTy) 2020 return Error("Invalid record"); 2021 Function *Fn = 2022 dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy)); 2023 if (!Fn) 2024 return Error("Invalid record"); 2025 2026 // Don't let Fn get dematerialized. 2027 BlockAddressesTaken.insert(Fn); 2028 2029 // If the function is already parsed we can insert the block address right 2030 // away. 2031 BasicBlock *BB; 2032 unsigned BBID = Record[2]; 2033 if (!BBID) 2034 // Invalid reference to entry block. 2035 return Error("Invalid ID"); 2036 if (!Fn->empty()) { 2037 Function::iterator BBI = Fn->begin(), BBE = Fn->end(); 2038 for (size_t I = 0, E = BBID; I != E; ++I) { 2039 if (BBI == BBE) 2040 return Error("Invalid ID"); 2041 ++BBI; 2042 } 2043 BB = BBI; 2044 } else { 2045 // Otherwise insert a placeholder and remember it so it can be inserted 2046 // when the function is parsed. 2047 auto &FwdBBs = BasicBlockFwdRefs[Fn]; 2048 if (FwdBBs.empty()) 2049 BasicBlockFwdRefQueue.push_back(Fn); 2050 if (FwdBBs.size() < BBID + 1) 2051 FwdBBs.resize(BBID + 1); 2052 if (!FwdBBs[BBID]) 2053 FwdBBs[BBID] = BasicBlock::Create(Context); 2054 BB = FwdBBs[BBID]; 2055 } 2056 V = BlockAddress::get(Fn, BB); 2057 break; 2058 } 2059 } 2060 2061 ValueList.AssignValue(V, NextCstNo); 2062 ++NextCstNo; 2063 } 2064 } 2065 2066 std::error_code BitcodeReader::ParseUseLists() { 2067 if (Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 2068 return Error("Invalid record"); 2069 2070 // Read all the records. 2071 SmallVector<uint64_t, 64> Record; 2072 while (1) { 2073 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2074 2075 switch (Entry.Kind) { 2076 case BitstreamEntry::SubBlock: // Handled for us already. 2077 case BitstreamEntry::Error: 2078 return Error("Malformed block"); 2079 case BitstreamEntry::EndBlock: 2080 return std::error_code(); 2081 case BitstreamEntry::Record: 2082 // The interesting case. 2083 break; 2084 } 2085 2086 // Read a use list record. 2087 Record.clear(); 2088 bool IsBB = false; 2089 switch (Stream.readRecord(Entry.ID, Record)) { 2090 default: // Default behavior: unknown type. 2091 break; 2092 case bitc::USELIST_CODE_BB: 2093 IsBB = true; 2094 // fallthrough 2095 case bitc::USELIST_CODE_DEFAULT: { 2096 unsigned RecordLength = Record.size(); 2097 if (RecordLength < 3) 2098 // Records should have at least an ID and two indexes. 2099 return Error("Invalid record"); 2100 unsigned ID = Record.back(); 2101 Record.pop_back(); 2102 2103 Value *V; 2104 if (IsBB) { 2105 assert(ID < FunctionBBs.size() && "Basic block not found"); 2106 V = FunctionBBs[ID]; 2107 } else 2108 V = ValueList[ID]; 2109 unsigned NumUses = 0; 2110 SmallDenseMap<const Use *, unsigned, 16> Order; 2111 for (const Use &U : V->uses()) { 2112 if (++NumUses > Record.size()) 2113 break; 2114 Order[&U] = Record[NumUses - 1]; 2115 } 2116 if (Order.size() != Record.size() || NumUses > Record.size()) 2117 // Mismatches can happen if the functions are being materialized lazily 2118 // (out-of-order), or a value has been upgraded. 2119 break; 2120 2121 V->sortUseList([&](const Use &L, const Use &R) { 2122 return Order.lookup(&L) < Order.lookup(&R); 2123 }); 2124 break; 2125 } 2126 } 2127 } 2128 } 2129 2130 /// RememberAndSkipFunctionBody - When we see the block for a function body, 2131 /// remember where it is and then skip it. This lets us lazily deserialize the 2132 /// functions. 2133 std::error_code BitcodeReader::RememberAndSkipFunctionBody() { 2134 // Get the function we are talking about. 2135 if (FunctionsWithBodies.empty()) 2136 return Error("Insufficient function protos"); 2137 2138 Function *Fn = FunctionsWithBodies.back(); 2139 FunctionsWithBodies.pop_back(); 2140 2141 // Save the current stream state. 2142 uint64_t CurBit = Stream.GetCurrentBitNo(); 2143 DeferredFunctionInfo[Fn] = CurBit; 2144 2145 // Skip over the function block for now. 2146 if (Stream.SkipBlock()) 2147 return Error("Invalid record"); 2148 return std::error_code(); 2149 } 2150 2151 std::error_code BitcodeReader::GlobalCleanup() { 2152 // Patch the initializers for globals and aliases up. 2153 ResolveGlobalAndAliasInits(); 2154 if (!GlobalInits.empty() || !AliasInits.empty()) 2155 return Error("Malformed global initializer set"); 2156 2157 // Look for intrinsic functions which need to be upgraded at some point 2158 for (Module::iterator FI = TheModule->begin(), FE = TheModule->end(); 2159 FI != FE; ++FI) { 2160 Function *NewFn; 2161 if (UpgradeIntrinsicFunction(FI, NewFn)) 2162 UpgradedIntrinsics.push_back(std::make_pair(FI, NewFn)); 2163 } 2164 2165 // Look for global variables which need to be renamed. 2166 for (Module::global_iterator 2167 GI = TheModule->global_begin(), GE = TheModule->global_end(); 2168 GI != GE;) { 2169 GlobalVariable *GV = GI++; 2170 UpgradeGlobalVariable(GV); 2171 } 2172 2173 // Force deallocation of memory for these vectors to favor the client that 2174 // want lazy deserialization. 2175 std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits); 2176 std::vector<std::pair<GlobalAlias*, unsigned> >().swap(AliasInits); 2177 return std::error_code(); 2178 } 2179 2180 std::error_code BitcodeReader::ParseModule(bool Resume) { 2181 if (Resume) 2182 Stream.JumpToBit(NextUnreadBit); 2183 else if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 2184 return Error("Invalid record"); 2185 2186 SmallVector<uint64_t, 64> Record; 2187 std::vector<std::string> SectionTable; 2188 std::vector<std::string> GCTable; 2189 2190 // Read all the records for this module. 2191 while (1) { 2192 BitstreamEntry Entry = Stream.advance(); 2193 2194 switch (Entry.Kind) { 2195 case BitstreamEntry::Error: 2196 return Error("Malformed block"); 2197 case BitstreamEntry::EndBlock: 2198 return GlobalCleanup(); 2199 2200 case BitstreamEntry::SubBlock: 2201 switch (Entry.ID) { 2202 default: // Skip unknown content. 2203 if (Stream.SkipBlock()) 2204 return Error("Invalid record"); 2205 break; 2206 case bitc::BLOCKINFO_BLOCK_ID: 2207 if (Stream.ReadBlockInfoBlock()) 2208 return Error("Malformed block"); 2209 break; 2210 case bitc::PARAMATTR_BLOCK_ID: 2211 if (std::error_code EC = ParseAttributeBlock()) 2212 return EC; 2213 break; 2214 case bitc::PARAMATTR_GROUP_BLOCK_ID: 2215 if (std::error_code EC = ParseAttributeGroupBlock()) 2216 return EC; 2217 break; 2218 case bitc::TYPE_BLOCK_ID_NEW: 2219 if (std::error_code EC = ParseTypeTable()) 2220 return EC; 2221 break; 2222 case bitc::VALUE_SYMTAB_BLOCK_ID: 2223 if (std::error_code EC = ParseValueSymbolTable()) 2224 return EC; 2225 SeenValueSymbolTable = true; 2226 break; 2227 case bitc::CONSTANTS_BLOCK_ID: 2228 if (std::error_code EC = ParseConstants()) 2229 return EC; 2230 if (std::error_code EC = ResolveGlobalAndAliasInits()) 2231 return EC; 2232 break; 2233 case bitc::METADATA_BLOCK_ID: 2234 if (std::error_code EC = ParseMetadata()) 2235 return EC; 2236 break; 2237 case bitc::FUNCTION_BLOCK_ID: 2238 // If this is the first function body we've seen, reverse the 2239 // FunctionsWithBodies list. 2240 if (!SeenFirstFunctionBody) { 2241 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 2242 if (std::error_code EC = GlobalCleanup()) 2243 return EC; 2244 SeenFirstFunctionBody = true; 2245 } 2246 2247 if (std::error_code EC = RememberAndSkipFunctionBody()) 2248 return EC; 2249 // For streaming bitcode, suspend parsing when we reach the function 2250 // bodies. Subsequent materialization calls will resume it when 2251 // necessary. For streaming, the function bodies must be at the end of 2252 // the bitcode. If the bitcode file is old, the symbol table will be 2253 // at the end instead and will not have been seen yet. In this case, 2254 // just finish the parse now. 2255 if (LazyStreamer && SeenValueSymbolTable) { 2256 NextUnreadBit = Stream.GetCurrentBitNo(); 2257 return std::error_code(); 2258 } 2259 break; 2260 case bitc::USELIST_BLOCK_ID: 2261 if (std::error_code EC = ParseUseLists()) 2262 return EC; 2263 break; 2264 } 2265 continue; 2266 2267 case BitstreamEntry::Record: 2268 // The interesting case. 2269 break; 2270 } 2271 2272 2273 // Read a record. 2274 switch (Stream.readRecord(Entry.ID, Record)) { 2275 default: break; // Default behavior, ignore unknown content. 2276 case bitc::MODULE_CODE_VERSION: { // VERSION: [version#] 2277 if (Record.size() < 1) 2278 return Error("Invalid record"); 2279 // Only version #0 and #1 are supported so far. 2280 unsigned module_version = Record[0]; 2281 switch (module_version) { 2282 default: 2283 return Error("Invalid value"); 2284 case 0: 2285 UseRelativeIDs = false; 2286 break; 2287 case 1: 2288 UseRelativeIDs = true; 2289 break; 2290 } 2291 break; 2292 } 2293 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 2294 std::string S; 2295 if (ConvertToString(Record, 0, S)) 2296 return Error("Invalid record"); 2297 TheModule->setTargetTriple(S); 2298 break; 2299 } 2300 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 2301 std::string S; 2302 if (ConvertToString(Record, 0, S)) 2303 return Error("Invalid record"); 2304 TheModule->setDataLayout(S); 2305 break; 2306 } 2307 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 2308 std::string S; 2309 if (ConvertToString(Record, 0, S)) 2310 return Error("Invalid record"); 2311 TheModule->setModuleInlineAsm(S); 2312 break; 2313 } 2314 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 2315 // FIXME: Remove in 4.0. 2316 std::string S; 2317 if (ConvertToString(Record, 0, S)) 2318 return Error("Invalid record"); 2319 // Ignore value. 2320 break; 2321 } 2322 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 2323 std::string S; 2324 if (ConvertToString(Record, 0, S)) 2325 return Error("Invalid record"); 2326 SectionTable.push_back(S); 2327 break; 2328 } 2329 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 2330 std::string S; 2331 if (ConvertToString(Record, 0, S)) 2332 return Error("Invalid record"); 2333 GCTable.push_back(S); 2334 break; 2335 } 2336 case bitc::MODULE_CODE_COMDAT: { // COMDAT: [selection_kind, name] 2337 if (Record.size() < 2) 2338 return Error("Invalid record"); 2339 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]); 2340 unsigned ComdatNameSize = Record[1]; 2341 std::string ComdatName; 2342 ComdatName.reserve(ComdatNameSize); 2343 for (unsigned i = 0; i != ComdatNameSize; ++i) 2344 ComdatName += (char)Record[2 + i]; 2345 Comdat *C = TheModule->getOrInsertComdat(ComdatName); 2346 C->setSelectionKind(SK); 2347 ComdatList.push_back(C); 2348 break; 2349 } 2350 // GLOBALVAR: [pointer type, isconst, initid, 2351 // linkage, alignment, section, visibility, threadlocal, 2352 // unnamed_addr, externally_initialized, dllstorageclass, 2353 // comdat] 2354 case bitc::MODULE_CODE_GLOBALVAR: { 2355 if (Record.size() < 6) 2356 return Error("Invalid record"); 2357 Type *Ty = getTypeByID(Record[0]); 2358 if (!Ty) 2359 return Error("Invalid record"); 2360 if (!Ty->isPointerTy()) 2361 return Error("Invalid type for value"); 2362 unsigned AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 2363 Ty = cast<PointerType>(Ty)->getElementType(); 2364 2365 bool isConstant = Record[1]; 2366 uint64_t RawLinkage = Record[3]; 2367 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 2368 unsigned Alignment = (1 << Record[4]) >> 1; 2369 std::string Section; 2370 if (Record[5]) { 2371 if (Record[5]-1 >= SectionTable.size()) 2372 return Error("Invalid ID"); 2373 Section = SectionTable[Record[5]-1]; 2374 } 2375 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 2376 // Local linkage must have default visibility. 2377 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage)) 2378 // FIXME: Change to an error if non-default in 4.0. 2379 Visibility = GetDecodedVisibility(Record[6]); 2380 2381 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; 2382 if (Record.size() > 7) 2383 TLM = GetDecodedThreadLocalMode(Record[7]); 2384 2385 bool UnnamedAddr = false; 2386 if (Record.size() > 8) 2387 UnnamedAddr = Record[8]; 2388 2389 bool ExternallyInitialized = false; 2390 if (Record.size() > 9) 2391 ExternallyInitialized = Record[9]; 2392 2393 GlobalVariable *NewGV = 2394 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, "", nullptr, 2395 TLM, AddressSpace, ExternallyInitialized); 2396 NewGV->setAlignment(Alignment); 2397 if (!Section.empty()) 2398 NewGV->setSection(Section); 2399 NewGV->setVisibility(Visibility); 2400 NewGV->setUnnamedAddr(UnnamedAddr); 2401 2402 if (Record.size() > 10) 2403 NewGV->setDLLStorageClass(GetDecodedDLLStorageClass(Record[10])); 2404 else 2405 UpgradeDLLImportExportLinkage(NewGV, RawLinkage); 2406 2407 ValueList.push_back(NewGV); 2408 2409 // Remember which value to use for the global initializer. 2410 if (unsigned InitID = Record[2]) 2411 GlobalInits.push_back(std::make_pair(NewGV, InitID-1)); 2412 2413 if (Record.size() > 11) { 2414 if (unsigned ComdatID = Record[11]) { 2415 assert(ComdatID <= ComdatList.size()); 2416 NewGV->setComdat(ComdatList[ComdatID - 1]); 2417 } 2418 } else if (hasImplicitComdat(RawLinkage)) { 2419 NewGV->setComdat(reinterpret_cast<Comdat *>(1)); 2420 } 2421 break; 2422 } 2423 // FUNCTION: [type, callingconv, isproto, linkage, paramattr, 2424 // alignment, section, visibility, gc, unnamed_addr, 2425 // prologuedata, dllstorageclass, comdat, prefixdata] 2426 case bitc::MODULE_CODE_FUNCTION: { 2427 if (Record.size() < 8) 2428 return Error("Invalid record"); 2429 Type *Ty = getTypeByID(Record[0]); 2430 if (!Ty) 2431 return Error("Invalid record"); 2432 if (!Ty->isPointerTy()) 2433 return Error("Invalid type for value"); 2434 FunctionType *FTy = 2435 dyn_cast<FunctionType>(cast<PointerType>(Ty)->getElementType()); 2436 if (!FTy) 2437 return Error("Invalid type for value"); 2438 2439 Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage, 2440 "", TheModule); 2441 2442 Func->setCallingConv(static_cast<CallingConv::ID>(Record[1])); 2443 bool isProto = Record[2]; 2444 uint64_t RawLinkage = Record[3]; 2445 Func->setLinkage(getDecodedLinkage(RawLinkage)); 2446 Func->setAttributes(getAttributes(Record[4])); 2447 2448 Func->setAlignment((1 << Record[5]) >> 1); 2449 if (Record[6]) { 2450 if (Record[6]-1 >= SectionTable.size()) 2451 return Error("Invalid ID"); 2452 Func->setSection(SectionTable[Record[6]-1]); 2453 } 2454 // Local linkage must have default visibility. 2455 if (!Func->hasLocalLinkage()) 2456 // FIXME: Change to an error if non-default in 4.0. 2457 Func->setVisibility(GetDecodedVisibility(Record[7])); 2458 if (Record.size() > 8 && Record[8]) { 2459 if (Record[8]-1 > GCTable.size()) 2460 return Error("Invalid ID"); 2461 Func->setGC(GCTable[Record[8]-1].c_str()); 2462 } 2463 bool UnnamedAddr = false; 2464 if (Record.size() > 9) 2465 UnnamedAddr = Record[9]; 2466 Func->setUnnamedAddr(UnnamedAddr); 2467 if (Record.size() > 10 && Record[10] != 0) 2468 FunctionPrologues.push_back(std::make_pair(Func, Record[10]-1)); 2469 2470 if (Record.size() > 11) 2471 Func->setDLLStorageClass(GetDecodedDLLStorageClass(Record[11])); 2472 else 2473 UpgradeDLLImportExportLinkage(Func, RawLinkage); 2474 2475 if (Record.size() > 12) { 2476 if (unsigned ComdatID = Record[12]) { 2477 assert(ComdatID <= ComdatList.size()); 2478 Func->setComdat(ComdatList[ComdatID - 1]); 2479 } 2480 } else if (hasImplicitComdat(RawLinkage)) { 2481 Func->setComdat(reinterpret_cast<Comdat *>(1)); 2482 } 2483 2484 if (Record.size() > 13 && Record[13] != 0) 2485 FunctionPrefixes.push_back(std::make_pair(Func, Record[13]-1)); 2486 2487 ValueList.push_back(Func); 2488 2489 // If this is a function with a body, remember the prototype we are 2490 // creating now, so that we can match up the body with them later. 2491 if (!isProto) { 2492 Func->setIsMaterializable(true); 2493 FunctionsWithBodies.push_back(Func); 2494 if (LazyStreamer) 2495 DeferredFunctionInfo[Func] = 0; 2496 } 2497 break; 2498 } 2499 // ALIAS: [alias type, aliasee val#, linkage] 2500 // ALIAS: [alias type, aliasee val#, linkage, visibility, dllstorageclass] 2501 case bitc::MODULE_CODE_ALIAS: { 2502 if (Record.size() < 3) 2503 return Error("Invalid record"); 2504 Type *Ty = getTypeByID(Record[0]); 2505 if (!Ty) 2506 return Error("Invalid record"); 2507 auto *PTy = dyn_cast<PointerType>(Ty); 2508 if (!PTy) 2509 return Error("Invalid type for value"); 2510 2511 auto *NewGA = 2512 GlobalAlias::create(PTy->getElementType(), PTy->getAddressSpace(), 2513 getDecodedLinkage(Record[2]), "", TheModule); 2514 // Old bitcode files didn't have visibility field. 2515 // Local linkage must have default visibility. 2516 if (Record.size() > 3 && !NewGA->hasLocalLinkage()) 2517 // FIXME: Change to an error if non-default in 4.0. 2518 NewGA->setVisibility(GetDecodedVisibility(Record[3])); 2519 if (Record.size() > 4) 2520 NewGA->setDLLStorageClass(GetDecodedDLLStorageClass(Record[4])); 2521 else 2522 UpgradeDLLImportExportLinkage(NewGA, Record[2]); 2523 if (Record.size() > 5) 2524 NewGA->setThreadLocalMode(GetDecodedThreadLocalMode(Record[5])); 2525 if (Record.size() > 6) 2526 NewGA->setUnnamedAddr(Record[6]); 2527 ValueList.push_back(NewGA); 2528 AliasInits.push_back(std::make_pair(NewGA, Record[1])); 2529 break; 2530 } 2531 /// MODULE_CODE_PURGEVALS: [numvals] 2532 case bitc::MODULE_CODE_PURGEVALS: 2533 // Trim down the value list to the specified size. 2534 if (Record.size() < 1 || Record[0] > ValueList.size()) 2535 return Error("Invalid record"); 2536 ValueList.shrinkTo(Record[0]); 2537 break; 2538 } 2539 Record.clear(); 2540 } 2541 } 2542 2543 std::error_code BitcodeReader::ParseBitcodeInto(Module *M) { 2544 TheModule = nullptr; 2545 2546 if (std::error_code EC = InitStream()) 2547 return EC; 2548 2549 // Sniff for the signature. 2550 if (Stream.Read(8) != 'B' || 2551 Stream.Read(8) != 'C' || 2552 Stream.Read(4) != 0x0 || 2553 Stream.Read(4) != 0xC || 2554 Stream.Read(4) != 0xE || 2555 Stream.Read(4) != 0xD) 2556 return Error("Invalid bitcode signature"); 2557 2558 // We expect a number of well-defined blocks, though we don't necessarily 2559 // need to understand them all. 2560 while (1) { 2561 if (Stream.AtEndOfStream()) 2562 return std::error_code(); 2563 2564 BitstreamEntry Entry = 2565 Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs); 2566 2567 switch (Entry.Kind) { 2568 case BitstreamEntry::Error: 2569 return Error("Malformed block"); 2570 case BitstreamEntry::EndBlock: 2571 return std::error_code(); 2572 2573 case BitstreamEntry::SubBlock: 2574 switch (Entry.ID) { 2575 case bitc::BLOCKINFO_BLOCK_ID: 2576 if (Stream.ReadBlockInfoBlock()) 2577 return Error("Malformed block"); 2578 break; 2579 case bitc::MODULE_BLOCK_ID: 2580 // Reject multiple MODULE_BLOCK's in a single bitstream. 2581 if (TheModule) 2582 return Error("Invalid multiple blocks"); 2583 TheModule = M; 2584 if (std::error_code EC = ParseModule(false)) 2585 return EC; 2586 if (LazyStreamer) 2587 return std::error_code(); 2588 break; 2589 default: 2590 if (Stream.SkipBlock()) 2591 return Error("Invalid record"); 2592 break; 2593 } 2594 continue; 2595 case BitstreamEntry::Record: 2596 // There should be no records in the top-level of blocks. 2597 2598 // The ranlib in Xcode 4 will align archive members by appending newlines 2599 // to the end of them. If this file size is a multiple of 4 but not 8, we 2600 // have to read and ignore these final 4 bytes :-( 2601 if (Stream.getAbbrevIDWidth() == 2 && Entry.ID == 2 && 2602 Stream.Read(6) == 2 && Stream.Read(24) == 0xa0a0a && 2603 Stream.AtEndOfStream()) 2604 return std::error_code(); 2605 2606 return Error("Invalid record"); 2607 } 2608 } 2609 } 2610 2611 ErrorOr<std::string> BitcodeReader::parseModuleTriple() { 2612 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 2613 return Error("Invalid record"); 2614 2615 SmallVector<uint64_t, 64> Record; 2616 2617 std::string Triple; 2618 // Read all the records for this module. 2619 while (1) { 2620 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2621 2622 switch (Entry.Kind) { 2623 case BitstreamEntry::SubBlock: // Handled for us already. 2624 case BitstreamEntry::Error: 2625 return Error("Malformed block"); 2626 case BitstreamEntry::EndBlock: 2627 return Triple; 2628 case BitstreamEntry::Record: 2629 // The interesting case. 2630 break; 2631 } 2632 2633 // Read a record. 2634 switch (Stream.readRecord(Entry.ID, Record)) { 2635 default: break; // Default behavior, ignore unknown content. 2636 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 2637 std::string S; 2638 if (ConvertToString(Record, 0, S)) 2639 return Error("Invalid record"); 2640 Triple = S; 2641 break; 2642 } 2643 } 2644 Record.clear(); 2645 } 2646 llvm_unreachable("Exit infinite loop"); 2647 } 2648 2649 ErrorOr<std::string> BitcodeReader::parseTriple() { 2650 if (std::error_code EC = InitStream()) 2651 return EC; 2652 2653 // Sniff for the signature. 2654 if (Stream.Read(8) != 'B' || 2655 Stream.Read(8) != 'C' || 2656 Stream.Read(4) != 0x0 || 2657 Stream.Read(4) != 0xC || 2658 Stream.Read(4) != 0xE || 2659 Stream.Read(4) != 0xD) 2660 return Error("Invalid bitcode signature"); 2661 2662 // We expect a number of well-defined blocks, though we don't necessarily 2663 // need to understand them all. 2664 while (1) { 2665 BitstreamEntry Entry = Stream.advance(); 2666 2667 switch (Entry.Kind) { 2668 case BitstreamEntry::Error: 2669 return Error("Malformed block"); 2670 case BitstreamEntry::EndBlock: 2671 return std::error_code(); 2672 2673 case BitstreamEntry::SubBlock: 2674 if (Entry.ID == bitc::MODULE_BLOCK_ID) 2675 return parseModuleTriple(); 2676 2677 // Ignore other sub-blocks. 2678 if (Stream.SkipBlock()) 2679 return Error("Malformed block"); 2680 continue; 2681 2682 case BitstreamEntry::Record: 2683 Stream.skipRecord(Entry.ID); 2684 continue; 2685 } 2686 } 2687 } 2688 2689 /// ParseMetadataAttachment - Parse metadata attachments. 2690 std::error_code BitcodeReader::ParseMetadataAttachment() { 2691 if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID)) 2692 return Error("Invalid record"); 2693 2694 SmallVector<uint64_t, 64> Record; 2695 while (1) { 2696 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2697 2698 switch (Entry.Kind) { 2699 case BitstreamEntry::SubBlock: // Handled for us already. 2700 case BitstreamEntry::Error: 2701 return Error("Malformed block"); 2702 case BitstreamEntry::EndBlock: 2703 return std::error_code(); 2704 case BitstreamEntry::Record: 2705 // The interesting case. 2706 break; 2707 } 2708 2709 // Read a metadata attachment record. 2710 Record.clear(); 2711 switch (Stream.readRecord(Entry.ID, Record)) { 2712 default: // Default behavior: ignore. 2713 break; 2714 case bitc::METADATA_ATTACHMENT: { 2715 unsigned RecordLength = Record.size(); 2716 if (Record.empty() || (RecordLength - 1) % 2 == 1) 2717 return Error("Invalid record"); 2718 Instruction *Inst = InstructionList[Record[0]]; 2719 for (unsigned i = 1; i != RecordLength; i = i+2) { 2720 unsigned Kind = Record[i]; 2721 DenseMap<unsigned, unsigned>::iterator I = 2722 MDKindMap.find(Kind); 2723 if (I == MDKindMap.end()) 2724 return Error("Invalid ID"); 2725 Metadata *Node = MDValueList.getValueFwdRef(Record[i + 1]); 2726 if (isa<LocalAsMetadata>(Node)) 2727 // Drop the attachment. This used to be legal, but there's no 2728 // upgrade path. 2729 break; 2730 Inst->setMetadata(I->second, cast<MDNode>(Node)); 2731 if (I->second == LLVMContext::MD_tbaa) 2732 InstsWithTBAATag.push_back(Inst); 2733 } 2734 break; 2735 } 2736 } 2737 } 2738 } 2739 2740 /// ParseFunctionBody - Lazily parse the specified function body block. 2741 std::error_code BitcodeReader::ParseFunctionBody(Function *F) { 2742 if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 2743 return Error("Invalid record"); 2744 2745 InstructionList.clear(); 2746 unsigned ModuleValueListSize = ValueList.size(); 2747 unsigned ModuleMDValueListSize = MDValueList.size(); 2748 2749 // Add all the function arguments to the value table. 2750 for(Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I) 2751 ValueList.push_back(I); 2752 2753 unsigned NextValueNo = ValueList.size(); 2754 BasicBlock *CurBB = nullptr; 2755 unsigned CurBBNo = 0; 2756 2757 DebugLoc LastLoc; 2758 auto getLastInstruction = [&]() -> Instruction * { 2759 if (CurBB && !CurBB->empty()) 2760 return &CurBB->back(); 2761 else if (CurBBNo && FunctionBBs[CurBBNo - 1] && 2762 !FunctionBBs[CurBBNo - 1]->empty()) 2763 return &FunctionBBs[CurBBNo - 1]->back(); 2764 return nullptr; 2765 }; 2766 2767 // Read all the records. 2768 SmallVector<uint64_t, 64> Record; 2769 while (1) { 2770 BitstreamEntry Entry = Stream.advance(); 2771 2772 switch (Entry.Kind) { 2773 case BitstreamEntry::Error: 2774 return Error("Malformed block"); 2775 case BitstreamEntry::EndBlock: 2776 goto OutOfRecordLoop; 2777 2778 case BitstreamEntry::SubBlock: 2779 switch (Entry.ID) { 2780 default: // Skip unknown content. 2781 if (Stream.SkipBlock()) 2782 return Error("Invalid record"); 2783 break; 2784 case bitc::CONSTANTS_BLOCK_ID: 2785 if (std::error_code EC = ParseConstants()) 2786 return EC; 2787 NextValueNo = ValueList.size(); 2788 break; 2789 case bitc::VALUE_SYMTAB_BLOCK_ID: 2790 if (std::error_code EC = ParseValueSymbolTable()) 2791 return EC; 2792 break; 2793 case bitc::METADATA_ATTACHMENT_ID: 2794 if (std::error_code EC = ParseMetadataAttachment()) 2795 return EC; 2796 break; 2797 case bitc::METADATA_BLOCK_ID: 2798 if (std::error_code EC = ParseMetadata()) 2799 return EC; 2800 break; 2801 case bitc::USELIST_BLOCK_ID: 2802 if (std::error_code EC = ParseUseLists()) 2803 return EC; 2804 break; 2805 } 2806 continue; 2807 2808 case BitstreamEntry::Record: 2809 // The interesting case. 2810 break; 2811 } 2812 2813 // Read a record. 2814 Record.clear(); 2815 Instruction *I = nullptr; 2816 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 2817 switch (BitCode) { 2818 default: // Default behavior: reject 2819 return Error("Invalid value"); 2820 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks] 2821 if (Record.size() < 1 || Record[0] == 0) 2822 return Error("Invalid record"); 2823 // Create all the basic blocks for the function. 2824 FunctionBBs.resize(Record[0]); 2825 2826 // See if anything took the address of blocks in this function. 2827 auto BBFRI = BasicBlockFwdRefs.find(F); 2828 if (BBFRI == BasicBlockFwdRefs.end()) { 2829 for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i) 2830 FunctionBBs[i] = BasicBlock::Create(Context, "", F); 2831 } else { 2832 auto &BBRefs = BBFRI->second; 2833 // Check for invalid basic block references. 2834 if (BBRefs.size() > FunctionBBs.size()) 2835 return Error("Invalid ID"); 2836 assert(!BBRefs.empty() && "Unexpected empty array"); 2837 assert(!BBRefs.front() && "Invalid reference to entry block"); 2838 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E; 2839 ++I) 2840 if (I < RE && BBRefs[I]) { 2841 BBRefs[I]->insertInto(F); 2842 FunctionBBs[I] = BBRefs[I]; 2843 } else { 2844 FunctionBBs[I] = BasicBlock::Create(Context, "", F); 2845 } 2846 2847 // Erase from the table. 2848 BasicBlockFwdRefs.erase(BBFRI); 2849 } 2850 2851 CurBB = FunctionBBs[0]; 2852 continue; 2853 } 2854 2855 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 2856 // This record indicates that the last instruction is at the same 2857 // location as the previous instruction with a location. 2858 I = getLastInstruction(); 2859 2860 if (!I) 2861 return Error("Invalid record"); 2862 I->setDebugLoc(LastLoc); 2863 I = nullptr; 2864 continue; 2865 2866 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 2867 I = getLastInstruction(); 2868 if (!I || Record.size() < 4) 2869 return Error("Invalid record"); 2870 2871 unsigned Line = Record[0], Col = Record[1]; 2872 unsigned ScopeID = Record[2], IAID = Record[3]; 2873 2874 MDNode *Scope = nullptr, *IA = nullptr; 2875 if (ScopeID) Scope = cast<MDNode>(MDValueList.getValueFwdRef(ScopeID-1)); 2876 if (IAID) IA = cast<MDNode>(MDValueList.getValueFwdRef(IAID-1)); 2877 LastLoc = DebugLoc::get(Line, Col, Scope, IA); 2878 I->setDebugLoc(LastLoc); 2879 I = nullptr; 2880 continue; 2881 } 2882 2883 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 2884 unsigned OpNum = 0; 2885 Value *LHS, *RHS; 2886 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 2887 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 2888 OpNum+1 > Record.size()) 2889 return Error("Invalid record"); 2890 2891 int Opc = GetDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 2892 if (Opc == -1) 2893 return Error("Invalid record"); 2894 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 2895 InstructionList.push_back(I); 2896 if (OpNum < Record.size()) { 2897 if (Opc == Instruction::Add || 2898 Opc == Instruction::Sub || 2899 Opc == Instruction::Mul || 2900 Opc == Instruction::Shl) { 2901 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 2902 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 2903 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 2904 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 2905 } else if (Opc == Instruction::SDiv || 2906 Opc == Instruction::UDiv || 2907 Opc == Instruction::LShr || 2908 Opc == Instruction::AShr) { 2909 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 2910 cast<BinaryOperator>(I)->setIsExact(true); 2911 } else if (isa<FPMathOperator>(I)) { 2912 FastMathFlags FMF; 2913 if (0 != (Record[OpNum] & FastMathFlags::UnsafeAlgebra)) 2914 FMF.setUnsafeAlgebra(); 2915 if (0 != (Record[OpNum] & FastMathFlags::NoNaNs)) 2916 FMF.setNoNaNs(); 2917 if (0 != (Record[OpNum] & FastMathFlags::NoInfs)) 2918 FMF.setNoInfs(); 2919 if (0 != (Record[OpNum] & FastMathFlags::NoSignedZeros)) 2920 FMF.setNoSignedZeros(); 2921 if (0 != (Record[OpNum] & FastMathFlags::AllowReciprocal)) 2922 FMF.setAllowReciprocal(); 2923 if (FMF.any()) 2924 I->setFastMathFlags(FMF); 2925 } 2926 2927 } 2928 break; 2929 } 2930 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 2931 unsigned OpNum = 0; 2932 Value *Op; 2933 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 2934 OpNum+2 != Record.size()) 2935 return Error("Invalid record"); 2936 2937 Type *ResTy = getTypeByID(Record[OpNum]); 2938 int Opc = GetDecodedCastOpcode(Record[OpNum+1]); 2939 if (Opc == -1 || !ResTy) 2940 return Error("Invalid record"); 2941 Instruction *Temp = nullptr; 2942 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) { 2943 if (Temp) { 2944 InstructionList.push_back(Temp); 2945 CurBB->getInstList().push_back(Temp); 2946 } 2947 } else { 2948 I = CastInst::Create((Instruction::CastOps)Opc, Op, ResTy); 2949 } 2950 InstructionList.push_back(I); 2951 break; 2952 } 2953 case bitc::FUNC_CODE_INST_INBOUNDS_GEP: 2954 case bitc::FUNC_CODE_INST_GEP: { // GEP: [n x operands] 2955 unsigned OpNum = 0; 2956 Value *BasePtr; 2957 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr)) 2958 return Error("Invalid record"); 2959 2960 SmallVector<Value*, 16> GEPIdx; 2961 while (OpNum != Record.size()) { 2962 Value *Op; 2963 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 2964 return Error("Invalid record"); 2965 GEPIdx.push_back(Op); 2966 } 2967 2968 I = GetElementPtrInst::Create(BasePtr, GEPIdx); 2969 InstructionList.push_back(I); 2970 if (BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP) 2971 cast<GetElementPtrInst>(I)->setIsInBounds(true); 2972 break; 2973 } 2974 2975 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 2976 // EXTRACTVAL: [opty, opval, n x indices] 2977 unsigned OpNum = 0; 2978 Value *Agg; 2979 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 2980 return Error("Invalid record"); 2981 2982 SmallVector<unsigned, 4> EXTRACTVALIdx; 2983 for (unsigned RecSize = Record.size(); 2984 OpNum != RecSize; ++OpNum) { 2985 uint64_t Index = Record[OpNum]; 2986 if ((unsigned)Index != Index) 2987 return Error("Invalid value"); 2988 EXTRACTVALIdx.push_back((unsigned)Index); 2989 } 2990 2991 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 2992 InstructionList.push_back(I); 2993 break; 2994 } 2995 2996 case bitc::FUNC_CODE_INST_INSERTVAL: { 2997 // INSERTVAL: [opty, opval, opty, opval, n x indices] 2998 unsigned OpNum = 0; 2999 Value *Agg; 3000 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 3001 return Error("Invalid record"); 3002 Value *Val; 3003 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 3004 return Error("Invalid record"); 3005 3006 SmallVector<unsigned, 4> INSERTVALIdx; 3007 for (unsigned RecSize = Record.size(); 3008 OpNum != RecSize; ++OpNum) { 3009 uint64_t Index = Record[OpNum]; 3010 if ((unsigned)Index != Index) 3011 return Error("Invalid value"); 3012 INSERTVALIdx.push_back((unsigned)Index); 3013 } 3014 3015 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 3016 InstructionList.push_back(I); 3017 break; 3018 } 3019 3020 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 3021 // obsolete form of select 3022 // handles select i1 ... in old bitcode 3023 unsigned OpNum = 0; 3024 Value *TrueVal, *FalseVal, *Cond; 3025 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 3026 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 3027 popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond)) 3028 return Error("Invalid record"); 3029 3030 I = SelectInst::Create(Cond, TrueVal, FalseVal); 3031 InstructionList.push_back(I); 3032 break; 3033 } 3034 3035 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 3036 // new form of select 3037 // handles select i1 or select [N x i1] 3038 unsigned OpNum = 0; 3039 Value *TrueVal, *FalseVal, *Cond; 3040 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 3041 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 3042 getValueTypePair(Record, OpNum, NextValueNo, Cond)) 3043 return Error("Invalid record"); 3044 3045 // select condition can be either i1 or [N x i1] 3046 if (VectorType* vector_type = 3047 dyn_cast<VectorType>(Cond->getType())) { 3048 // expect <n x i1> 3049 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 3050 return Error("Invalid type for value"); 3051 } else { 3052 // expect i1 3053 if (Cond->getType() != Type::getInt1Ty(Context)) 3054 return Error("Invalid type for value"); 3055 } 3056 3057 I = SelectInst::Create(Cond, TrueVal, FalseVal); 3058 InstructionList.push_back(I); 3059 break; 3060 } 3061 3062 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 3063 unsigned OpNum = 0; 3064 Value *Vec, *Idx; 3065 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 3066 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 3067 return Error("Invalid record"); 3068 I = ExtractElementInst::Create(Vec, Idx); 3069 InstructionList.push_back(I); 3070 break; 3071 } 3072 3073 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 3074 unsigned OpNum = 0; 3075 Value *Vec, *Elt, *Idx; 3076 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 3077 popValue(Record, OpNum, NextValueNo, 3078 cast<VectorType>(Vec->getType())->getElementType(), Elt) || 3079 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 3080 return Error("Invalid record"); 3081 I = InsertElementInst::Create(Vec, Elt, Idx); 3082 InstructionList.push_back(I); 3083 break; 3084 } 3085 3086 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 3087 unsigned OpNum = 0; 3088 Value *Vec1, *Vec2, *Mask; 3089 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) || 3090 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2)) 3091 return Error("Invalid record"); 3092 3093 if (getValueTypePair(Record, OpNum, NextValueNo, Mask)) 3094 return Error("Invalid record"); 3095 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 3096 InstructionList.push_back(I); 3097 break; 3098 } 3099 3100 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 3101 // Old form of ICmp/FCmp returning bool 3102 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 3103 // both legal on vectors but had different behaviour. 3104 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 3105 // FCmp/ICmp returning bool or vector of bool 3106 3107 unsigned OpNum = 0; 3108 Value *LHS, *RHS; 3109 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 3110 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 3111 OpNum+1 != Record.size()) 3112 return Error("Invalid record"); 3113 3114 if (LHS->getType()->isFPOrFPVectorTy()) 3115 I = new FCmpInst((FCmpInst::Predicate)Record[OpNum], LHS, RHS); 3116 else 3117 I = new ICmpInst((ICmpInst::Predicate)Record[OpNum], LHS, RHS); 3118 InstructionList.push_back(I); 3119 break; 3120 } 3121 3122 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 3123 { 3124 unsigned Size = Record.size(); 3125 if (Size == 0) { 3126 I = ReturnInst::Create(Context); 3127 InstructionList.push_back(I); 3128 break; 3129 } 3130 3131 unsigned OpNum = 0; 3132 Value *Op = nullptr; 3133 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3134 return Error("Invalid record"); 3135 if (OpNum != Record.size()) 3136 return Error("Invalid record"); 3137 3138 I = ReturnInst::Create(Context, Op); 3139 InstructionList.push_back(I); 3140 break; 3141 } 3142 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 3143 if (Record.size() != 1 && Record.size() != 3) 3144 return Error("Invalid record"); 3145 BasicBlock *TrueDest = getBasicBlock(Record[0]); 3146 if (!TrueDest) 3147 return Error("Invalid record"); 3148 3149 if (Record.size() == 1) { 3150 I = BranchInst::Create(TrueDest); 3151 InstructionList.push_back(I); 3152 } 3153 else { 3154 BasicBlock *FalseDest = getBasicBlock(Record[1]); 3155 Value *Cond = getValue(Record, 2, NextValueNo, 3156 Type::getInt1Ty(Context)); 3157 if (!FalseDest || !Cond) 3158 return Error("Invalid record"); 3159 I = BranchInst::Create(TrueDest, FalseDest, Cond); 3160 InstructionList.push_back(I); 3161 } 3162 break; 3163 } 3164 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 3165 // Check magic 3166 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { 3167 // "New" SwitchInst format with case ranges. The changes to write this 3168 // format were reverted but we still recognize bitcode that uses it. 3169 // Hopefully someday we will have support for case ranges and can use 3170 // this format again. 3171 3172 Type *OpTy = getTypeByID(Record[1]); 3173 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); 3174 3175 Value *Cond = getValue(Record, 2, NextValueNo, OpTy); 3176 BasicBlock *Default = getBasicBlock(Record[3]); 3177 if (!OpTy || !Cond || !Default) 3178 return Error("Invalid record"); 3179 3180 unsigned NumCases = Record[4]; 3181 3182 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 3183 InstructionList.push_back(SI); 3184 3185 unsigned CurIdx = 5; 3186 for (unsigned i = 0; i != NumCases; ++i) { 3187 SmallVector<ConstantInt*, 1> CaseVals; 3188 unsigned NumItems = Record[CurIdx++]; 3189 for (unsigned ci = 0; ci != NumItems; ++ci) { 3190 bool isSingleNumber = Record[CurIdx++]; 3191 3192 APInt Low; 3193 unsigned ActiveWords = 1; 3194 if (ValueBitWidth > 64) 3195 ActiveWords = Record[CurIdx++]; 3196 Low = ReadWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 3197 ValueBitWidth); 3198 CurIdx += ActiveWords; 3199 3200 if (!isSingleNumber) { 3201 ActiveWords = 1; 3202 if (ValueBitWidth > 64) 3203 ActiveWords = Record[CurIdx++]; 3204 APInt High = 3205 ReadWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 3206 ValueBitWidth); 3207 CurIdx += ActiveWords; 3208 3209 // FIXME: It is not clear whether values in the range should be 3210 // compared as signed or unsigned values. The partially 3211 // implemented changes that used this format in the past used 3212 // unsigned comparisons. 3213 for ( ; Low.ule(High); ++Low) 3214 CaseVals.push_back(ConstantInt::get(Context, Low)); 3215 } else 3216 CaseVals.push_back(ConstantInt::get(Context, Low)); 3217 } 3218 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); 3219 for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(), 3220 cve = CaseVals.end(); cvi != cve; ++cvi) 3221 SI->addCase(*cvi, DestBB); 3222 } 3223 I = SI; 3224 break; 3225 } 3226 3227 // Old SwitchInst format without case ranges. 3228 3229 if (Record.size() < 3 || (Record.size() & 1) == 0) 3230 return Error("Invalid record"); 3231 Type *OpTy = getTypeByID(Record[0]); 3232 Value *Cond = getValue(Record, 1, NextValueNo, OpTy); 3233 BasicBlock *Default = getBasicBlock(Record[2]); 3234 if (!OpTy || !Cond || !Default) 3235 return Error("Invalid record"); 3236 unsigned NumCases = (Record.size()-3)/2; 3237 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 3238 InstructionList.push_back(SI); 3239 for (unsigned i = 0, e = NumCases; i != e; ++i) { 3240 ConstantInt *CaseVal = 3241 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy)); 3242 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 3243 if (!CaseVal || !DestBB) { 3244 delete SI; 3245 return Error("Invalid record"); 3246 } 3247 SI->addCase(CaseVal, DestBB); 3248 } 3249 I = SI; 3250 break; 3251 } 3252 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 3253 if (Record.size() < 2) 3254 return Error("Invalid record"); 3255 Type *OpTy = getTypeByID(Record[0]); 3256 Value *Address = getValue(Record, 1, NextValueNo, OpTy); 3257 if (!OpTy || !Address) 3258 return Error("Invalid record"); 3259 unsigned NumDests = Record.size()-2; 3260 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 3261 InstructionList.push_back(IBI); 3262 for (unsigned i = 0, e = NumDests; i != e; ++i) { 3263 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 3264 IBI->addDestination(DestBB); 3265 } else { 3266 delete IBI; 3267 return Error("Invalid record"); 3268 } 3269 } 3270 I = IBI; 3271 break; 3272 } 3273 3274 case bitc::FUNC_CODE_INST_INVOKE: { 3275 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 3276 if (Record.size() < 4) 3277 return Error("Invalid record"); 3278 AttributeSet PAL = getAttributes(Record[0]); 3279 unsigned CCInfo = Record[1]; 3280 BasicBlock *NormalBB = getBasicBlock(Record[2]); 3281 BasicBlock *UnwindBB = getBasicBlock(Record[3]); 3282 3283 unsigned OpNum = 4; 3284 Value *Callee; 3285 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 3286 return Error("Invalid record"); 3287 3288 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 3289 FunctionType *FTy = !CalleeTy ? nullptr : 3290 dyn_cast<FunctionType>(CalleeTy->getElementType()); 3291 3292 // Check that the right number of fixed parameters are here. 3293 if (!FTy || !NormalBB || !UnwindBB || 3294 Record.size() < OpNum+FTy->getNumParams()) 3295 return Error("Invalid record"); 3296 3297 SmallVector<Value*, 16> Ops; 3298 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 3299 Ops.push_back(getValue(Record, OpNum, NextValueNo, 3300 FTy->getParamType(i))); 3301 if (!Ops.back()) 3302 return Error("Invalid record"); 3303 } 3304 3305 if (!FTy->isVarArg()) { 3306 if (Record.size() != OpNum) 3307 return Error("Invalid record"); 3308 } else { 3309 // Read type/value pairs for varargs params. 3310 while (OpNum != Record.size()) { 3311 Value *Op; 3312 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3313 return Error("Invalid record"); 3314 Ops.push_back(Op); 3315 } 3316 } 3317 3318 I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops); 3319 InstructionList.push_back(I); 3320 cast<InvokeInst>(I)->setCallingConv( 3321 static_cast<CallingConv::ID>(CCInfo)); 3322 cast<InvokeInst>(I)->setAttributes(PAL); 3323 break; 3324 } 3325 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 3326 unsigned Idx = 0; 3327 Value *Val = nullptr; 3328 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 3329 return Error("Invalid record"); 3330 I = ResumeInst::Create(Val); 3331 InstructionList.push_back(I); 3332 break; 3333 } 3334 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 3335 I = new UnreachableInst(Context); 3336 InstructionList.push_back(I); 3337 break; 3338 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 3339 if (Record.size() < 1 || ((Record.size()-1)&1)) 3340 return Error("Invalid record"); 3341 Type *Ty = getTypeByID(Record[0]); 3342 if (!Ty) 3343 return Error("Invalid record"); 3344 3345 PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2); 3346 InstructionList.push_back(PN); 3347 3348 for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) { 3349 Value *V; 3350 // With the new function encoding, it is possible that operands have 3351 // negative IDs (for forward references). Use a signed VBR 3352 // representation to keep the encoding small. 3353 if (UseRelativeIDs) 3354 V = getValueSigned(Record, 1+i, NextValueNo, Ty); 3355 else 3356 V = getValue(Record, 1+i, NextValueNo, Ty); 3357 BasicBlock *BB = getBasicBlock(Record[2+i]); 3358 if (!V || !BB) 3359 return Error("Invalid record"); 3360 PN->addIncoming(V, BB); 3361 } 3362 I = PN; 3363 break; 3364 } 3365 3366 case bitc::FUNC_CODE_INST_LANDINGPAD: { 3367 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 3368 unsigned Idx = 0; 3369 if (Record.size() < 4) 3370 return Error("Invalid record"); 3371 Type *Ty = getTypeByID(Record[Idx++]); 3372 if (!Ty) 3373 return Error("Invalid record"); 3374 Value *PersFn = nullptr; 3375 if (getValueTypePair(Record, Idx, NextValueNo, PersFn)) 3376 return Error("Invalid record"); 3377 3378 bool IsCleanup = !!Record[Idx++]; 3379 unsigned NumClauses = Record[Idx++]; 3380 LandingPadInst *LP = LandingPadInst::Create(Ty, PersFn, NumClauses); 3381 LP->setCleanup(IsCleanup); 3382 for (unsigned J = 0; J != NumClauses; ++J) { 3383 LandingPadInst::ClauseType CT = 3384 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 3385 Value *Val; 3386 3387 if (getValueTypePair(Record, Idx, NextValueNo, Val)) { 3388 delete LP; 3389 return Error("Invalid record"); 3390 } 3391 3392 assert((CT != LandingPadInst::Catch || 3393 !isa<ArrayType>(Val->getType())) && 3394 "Catch clause has a invalid type!"); 3395 assert((CT != LandingPadInst::Filter || 3396 isa<ArrayType>(Val->getType())) && 3397 "Filter clause has invalid type!"); 3398 LP->addClause(cast<Constant>(Val)); 3399 } 3400 3401 I = LP; 3402 InstructionList.push_back(I); 3403 break; 3404 } 3405 3406 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 3407 if (Record.size() != 4) 3408 return Error("Invalid record"); 3409 PointerType *Ty = 3410 dyn_cast_or_null<PointerType>(getTypeByID(Record[0])); 3411 Type *OpTy = getTypeByID(Record[1]); 3412 Value *Size = getFnValueByID(Record[2], OpTy); 3413 unsigned AlignRecord = Record[3]; 3414 bool InAlloca = AlignRecord & (1 << 5); 3415 unsigned Align = AlignRecord & ((1 << 5) - 1); 3416 if (!Ty || !Size) 3417 return Error("Invalid record"); 3418 AllocaInst *AI = new AllocaInst(Ty->getElementType(), Size, (1 << Align) >> 1); 3419 AI->setUsedWithInAlloca(InAlloca); 3420 I = AI; 3421 InstructionList.push_back(I); 3422 break; 3423 } 3424 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 3425 unsigned OpNum = 0; 3426 Value *Op; 3427 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 3428 OpNum+2 != Record.size()) 3429 return Error("Invalid record"); 3430 3431 I = new LoadInst(Op, "", Record[OpNum+1], (1 << Record[OpNum]) >> 1); 3432 InstructionList.push_back(I); 3433 break; 3434 } 3435 case bitc::FUNC_CODE_INST_LOADATOMIC: { 3436 // LOADATOMIC: [opty, op, align, vol, ordering, synchscope] 3437 unsigned OpNum = 0; 3438 Value *Op; 3439 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 3440 OpNum+4 != Record.size()) 3441 return Error("Invalid record"); 3442 3443 AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]); 3444 if (Ordering == NotAtomic || Ordering == Release || 3445 Ordering == AcquireRelease) 3446 return Error("Invalid record"); 3447 if (Ordering != NotAtomic && Record[OpNum] == 0) 3448 return Error("Invalid record"); 3449 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]); 3450 3451 I = new LoadInst(Op, "", Record[OpNum+1], (1 << Record[OpNum]) >> 1, 3452 Ordering, SynchScope); 3453 InstructionList.push_back(I); 3454 break; 3455 } 3456 case bitc::FUNC_CODE_INST_STORE: { // STORE2:[ptrty, ptr, val, align, vol] 3457 unsigned OpNum = 0; 3458 Value *Val, *Ptr; 3459 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 3460 popValue(Record, OpNum, NextValueNo, 3461 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 3462 OpNum+2 != Record.size()) 3463 return Error("Invalid record"); 3464 3465 I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1); 3466 InstructionList.push_back(I); 3467 break; 3468 } 3469 case bitc::FUNC_CODE_INST_STOREATOMIC: { 3470 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, synchscope] 3471 unsigned OpNum = 0; 3472 Value *Val, *Ptr; 3473 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 3474 popValue(Record, OpNum, NextValueNo, 3475 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 3476 OpNum+4 != Record.size()) 3477 return Error("Invalid record"); 3478 3479 AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]); 3480 if (Ordering == NotAtomic || Ordering == Acquire || 3481 Ordering == AcquireRelease) 3482 return Error("Invalid record"); 3483 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]); 3484 if (Ordering != NotAtomic && Record[OpNum] == 0) 3485 return Error("Invalid record"); 3486 3487 I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1, 3488 Ordering, SynchScope); 3489 InstructionList.push_back(I); 3490 break; 3491 } 3492 case bitc::FUNC_CODE_INST_CMPXCHG: { 3493 // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, synchscope, 3494 // failureordering?, isweak?] 3495 unsigned OpNum = 0; 3496 Value *Ptr, *Cmp, *New; 3497 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 3498 popValue(Record, OpNum, NextValueNo, 3499 cast<PointerType>(Ptr->getType())->getElementType(), Cmp) || 3500 popValue(Record, OpNum, NextValueNo, 3501 cast<PointerType>(Ptr->getType())->getElementType(), New) || 3502 (Record.size() < OpNum + 3 || Record.size() > OpNum + 5)) 3503 return Error("Invalid record"); 3504 AtomicOrdering SuccessOrdering = GetDecodedOrdering(Record[OpNum+1]); 3505 if (SuccessOrdering == NotAtomic || SuccessOrdering == Unordered) 3506 return Error("Invalid record"); 3507 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+2]); 3508 3509 AtomicOrdering FailureOrdering; 3510 if (Record.size() < 7) 3511 FailureOrdering = 3512 AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering); 3513 else 3514 FailureOrdering = GetDecodedOrdering(Record[OpNum+3]); 3515 3516 I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering, 3517 SynchScope); 3518 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 3519 3520 if (Record.size() < 8) { 3521 // Before weak cmpxchgs existed, the instruction simply returned the 3522 // value loaded from memory, so bitcode files from that era will be 3523 // expecting the first component of a modern cmpxchg. 3524 CurBB->getInstList().push_back(I); 3525 I = ExtractValueInst::Create(I, 0); 3526 } else { 3527 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]); 3528 } 3529 3530 InstructionList.push_back(I); 3531 break; 3532 } 3533 case bitc::FUNC_CODE_INST_ATOMICRMW: { 3534 // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, synchscope] 3535 unsigned OpNum = 0; 3536 Value *Ptr, *Val; 3537 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 3538 popValue(Record, OpNum, NextValueNo, 3539 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 3540 OpNum+4 != Record.size()) 3541 return Error("Invalid record"); 3542 AtomicRMWInst::BinOp Operation = GetDecodedRMWOperation(Record[OpNum]); 3543 if (Operation < AtomicRMWInst::FIRST_BINOP || 3544 Operation > AtomicRMWInst::LAST_BINOP) 3545 return Error("Invalid record"); 3546 AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]); 3547 if (Ordering == NotAtomic || Ordering == Unordered) 3548 return Error("Invalid record"); 3549 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]); 3550 I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SynchScope); 3551 cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]); 3552 InstructionList.push_back(I); 3553 break; 3554 } 3555 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, synchscope] 3556 if (2 != Record.size()) 3557 return Error("Invalid record"); 3558 AtomicOrdering Ordering = GetDecodedOrdering(Record[0]); 3559 if (Ordering == NotAtomic || Ordering == Unordered || 3560 Ordering == Monotonic) 3561 return Error("Invalid record"); 3562 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[1]); 3563 I = new FenceInst(Context, Ordering, SynchScope); 3564 InstructionList.push_back(I); 3565 break; 3566 } 3567 case bitc::FUNC_CODE_INST_CALL: { 3568 // CALL: [paramattrs, cc, fnty, fnid, arg0, arg1...] 3569 if (Record.size() < 3) 3570 return Error("Invalid record"); 3571 3572 AttributeSet PAL = getAttributes(Record[0]); 3573 unsigned CCInfo = Record[1]; 3574 3575 unsigned OpNum = 2; 3576 Value *Callee; 3577 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 3578 return Error("Invalid record"); 3579 3580 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 3581 FunctionType *FTy = nullptr; 3582 if (OpTy) FTy = dyn_cast<FunctionType>(OpTy->getElementType()); 3583 if (!FTy || Record.size() < FTy->getNumParams()+OpNum) 3584 return Error("Invalid record"); 3585 3586 SmallVector<Value*, 16> Args; 3587 // Read the fixed params. 3588 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 3589 if (FTy->getParamType(i)->isLabelTy()) 3590 Args.push_back(getBasicBlock(Record[OpNum])); 3591 else 3592 Args.push_back(getValue(Record, OpNum, NextValueNo, 3593 FTy->getParamType(i))); 3594 if (!Args.back()) 3595 return Error("Invalid record"); 3596 } 3597 3598 // Read type/value pairs for varargs params. 3599 if (!FTy->isVarArg()) { 3600 if (OpNum != Record.size()) 3601 return Error("Invalid record"); 3602 } else { 3603 while (OpNum != Record.size()) { 3604 Value *Op; 3605 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3606 return Error("Invalid record"); 3607 Args.push_back(Op); 3608 } 3609 } 3610 3611 I = CallInst::Create(Callee, Args); 3612 InstructionList.push_back(I); 3613 cast<CallInst>(I)->setCallingConv( 3614 static_cast<CallingConv::ID>((~(1U << 14) & CCInfo) >> 1)); 3615 CallInst::TailCallKind TCK = CallInst::TCK_None; 3616 if (CCInfo & 1) 3617 TCK = CallInst::TCK_Tail; 3618 if (CCInfo & (1 << 14)) 3619 TCK = CallInst::TCK_MustTail; 3620 cast<CallInst>(I)->setTailCallKind(TCK); 3621 cast<CallInst>(I)->setAttributes(PAL); 3622 break; 3623 } 3624 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 3625 if (Record.size() < 3) 3626 return Error("Invalid record"); 3627 Type *OpTy = getTypeByID(Record[0]); 3628 Value *Op = getValue(Record, 1, NextValueNo, OpTy); 3629 Type *ResTy = getTypeByID(Record[2]); 3630 if (!OpTy || !Op || !ResTy) 3631 return Error("Invalid record"); 3632 I = new VAArgInst(Op, ResTy); 3633 InstructionList.push_back(I); 3634 break; 3635 } 3636 } 3637 3638 // Add instruction to end of current BB. If there is no current BB, reject 3639 // this file. 3640 if (!CurBB) { 3641 delete I; 3642 return Error("Invalid instruction with no BB"); 3643 } 3644 CurBB->getInstList().push_back(I); 3645 3646 // If this was a terminator instruction, move to the next block. 3647 if (isa<TerminatorInst>(I)) { 3648 ++CurBBNo; 3649 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr; 3650 } 3651 3652 // Non-void values get registered in the value table for future use. 3653 if (I && !I->getType()->isVoidTy()) 3654 ValueList.AssignValue(I, NextValueNo++); 3655 } 3656 3657 OutOfRecordLoop: 3658 3659 // Check the function list for unresolved values. 3660 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 3661 if (!A->getParent()) { 3662 // We found at least one unresolved value. Nuke them all to avoid leaks. 3663 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 3664 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) { 3665 A->replaceAllUsesWith(UndefValue::get(A->getType())); 3666 delete A; 3667 } 3668 } 3669 return Error("Never resolved value found in function"); 3670 } 3671 } 3672 3673 // FIXME: Check for unresolved forward-declared metadata references 3674 // and clean up leaks. 3675 3676 // Trim the value list down to the size it was before we parsed this function. 3677 ValueList.shrinkTo(ModuleValueListSize); 3678 MDValueList.shrinkTo(ModuleMDValueListSize); 3679 std::vector<BasicBlock*>().swap(FunctionBBs); 3680 return std::error_code(); 3681 } 3682 3683 /// Find the function body in the bitcode stream 3684 std::error_code BitcodeReader::FindFunctionInStream( 3685 Function *F, 3686 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) { 3687 while (DeferredFunctionInfoIterator->second == 0) { 3688 if (Stream.AtEndOfStream()) 3689 return Error("Could not find function in stream"); 3690 // ParseModule will parse the next body in the stream and set its 3691 // position in the DeferredFunctionInfo map. 3692 if (std::error_code EC = ParseModule(true)) 3693 return EC; 3694 } 3695 return std::error_code(); 3696 } 3697 3698 //===----------------------------------------------------------------------===// 3699 // GVMaterializer implementation 3700 //===----------------------------------------------------------------------===// 3701 3702 void BitcodeReader::releaseBuffer() { Buffer.release(); } 3703 3704 std::error_code BitcodeReader::materialize(GlobalValue *GV) { 3705 Function *F = dyn_cast<Function>(GV); 3706 // If it's not a function or is already material, ignore the request. 3707 if (!F || !F->isMaterializable()) 3708 return std::error_code(); 3709 3710 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 3711 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 3712 // If its position is recorded as 0, its body is somewhere in the stream 3713 // but we haven't seen it yet. 3714 if (DFII->second == 0 && LazyStreamer) 3715 if (std::error_code EC = FindFunctionInStream(F, DFII)) 3716 return EC; 3717 3718 // Move the bit stream to the saved position of the deferred function body. 3719 Stream.JumpToBit(DFII->second); 3720 3721 if (std::error_code EC = ParseFunctionBody(F)) 3722 return EC; 3723 F->setIsMaterializable(false); 3724 3725 // Upgrade any old intrinsic calls in the function. 3726 for (UpgradedIntrinsicMap::iterator I = UpgradedIntrinsics.begin(), 3727 E = UpgradedIntrinsics.end(); I != E; ++I) { 3728 if (I->first != I->second) { 3729 for (auto UI = I->first->user_begin(), UE = I->first->user_end(); 3730 UI != UE;) { 3731 if (CallInst* CI = dyn_cast<CallInst>(*UI++)) 3732 UpgradeIntrinsicCall(CI, I->second); 3733 } 3734 } 3735 } 3736 3737 // Bring in any functions that this function forward-referenced via 3738 // blockaddresses. 3739 return materializeForwardReferencedFunctions(); 3740 } 3741 3742 bool BitcodeReader::isDematerializable(const GlobalValue *GV) const { 3743 const Function *F = dyn_cast<Function>(GV); 3744 if (!F || F->isDeclaration()) 3745 return false; 3746 3747 // Dematerializing F would leave dangling references that wouldn't be 3748 // reconnected on re-materialization. 3749 if (BlockAddressesTaken.count(F)) 3750 return false; 3751 3752 return DeferredFunctionInfo.count(const_cast<Function*>(F)); 3753 } 3754 3755 void BitcodeReader::Dematerialize(GlobalValue *GV) { 3756 Function *F = dyn_cast<Function>(GV); 3757 // If this function isn't dematerializable, this is a noop. 3758 if (!F || !isDematerializable(F)) 3759 return; 3760 3761 assert(DeferredFunctionInfo.count(F) && "No info to read function later?"); 3762 3763 // Just forget the function body, we can remat it later. 3764 F->dropAllReferences(); 3765 F->setIsMaterializable(true); 3766 } 3767 3768 std::error_code BitcodeReader::MaterializeModule(Module *M) { 3769 assert(M == TheModule && 3770 "Can only Materialize the Module this BitcodeReader is attached to."); 3771 3772 // Promise to materialize all forward references. 3773 WillMaterializeAllForwardRefs = true; 3774 3775 // Iterate over the module, deserializing any functions that are still on 3776 // disk. 3777 for (Module::iterator F = TheModule->begin(), E = TheModule->end(); 3778 F != E; ++F) { 3779 if (std::error_code EC = materialize(F)) 3780 return EC; 3781 } 3782 // At this point, if there are any function bodies, the current bit is 3783 // pointing to the END_BLOCK record after them. Now make sure the rest 3784 // of the bits in the module have been read. 3785 if (NextUnreadBit) 3786 ParseModule(true); 3787 3788 // Check that all block address forward references got resolved (as we 3789 // promised above). 3790 if (!BasicBlockFwdRefs.empty()) 3791 return Error("Never resolved function from blockaddress"); 3792 3793 // Upgrade any intrinsic calls that slipped through (should not happen!) and 3794 // delete the old functions to clean up. We can't do this unless the entire 3795 // module is materialized because there could always be another function body 3796 // with calls to the old function. 3797 for (std::vector<std::pair<Function*, Function*> >::iterator I = 3798 UpgradedIntrinsics.begin(), E = UpgradedIntrinsics.end(); I != E; ++I) { 3799 if (I->first != I->second) { 3800 for (auto UI = I->first->user_begin(), UE = I->first->user_end(); 3801 UI != UE;) { 3802 if (CallInst* CI = dyn_cast<CallInst>(*UI++)) 3803 UpgradeIntrinsicCall(CI, I->second); 3804 } 3805 if (!I->first->use_empty()) 3806 I->first->replaceAllUsesWith(I->second); 3807 I->first->eraseFromParent(); 3808 } 3809 } 3810 std::vector<std::pair<Function*, Function*> >().swap(UpgradedIntrinsics); 3811 3812 for (unsigned I = 0, E = InstsWithTBAATag.size(); I < E; I++) 3813 UpgradeInstWithTBAATag(InstsWithTBAATag[I]); 3814 3815 UpgradeDebugInfo(*M); 3816 return std::error_code(); 3817 } 3818 3819 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const { 3820 return IdentifiedStructTypes; 3821 } 3822 3823 std::error_code BitcodeReader::InitStream() { 3824 if (LazyStreamer) 3825 return InitLazyStream(); 3826 return InitStreamFromBuffer(); 3827 } 3828 3829 std::error_code BitcodeReader::InitStreamFromBuffer() { 3830 const unsigned char *BufPtr = (const unsigned char*)Buffer->getBufferStart(); 3831 const unsigned char *BufEnd = BufPtr+Buffer->getBufferSize(); 3832 3833 if (Buffer->getBufferSize() & 3) 3834 return Error("Invalid bitcode signature"); 3835 3836 // If we have a wrapper header, parse it and ignore the non-bc file contents. 3837 // The magic number is 0x0B17C0DE stored in little endian. 3838 if (isBitcodeWrapper(BufPtr, BufEnd)) 3839 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 3840 return Error("Invalid bitcode wrapper header"); 3841 3842 StreamFile.reset(new BitstreamReader(BufPtr, BufEnd)); 3843 Stream.init(&*StreamFile); 3844 3845 return std::error_code(); 3846 } 3847 3848 std::error_code BitcodeReader::InitLazyStream() { 3849 // Check and strip off the bitcode wrapper; BitstreamReader expects never to 3850 // see it. 3851 auto OwnedBytes = llvm::make_unique<StreamingMemoryObject>(LazyStreamer); 3852 StreamingMemoryObject &Bytes = *OwnedBytes; 3853 StreamFile = llvm::make_unique<BitstreamReader>(std::move(OwnedBytes)); 3854 Stream.init(&*StreamFile); 3855 3856 unsigned char buf[16]; 3857 if (Bytes.readBytes(buf, 16, 0) != 16) 3858 return Error("Invalid bitcode signature"); 3859 3860 if (!isBitcode(buf, buf + 16)) 3861 return Error("Invalid bitcode signature"); 3862 3863 if (isBitcodeWrapper(buf, buf + 4)) { 3864 const unsigned char *bitcodeStart = buf; 3865 const unsigned char *bitcodeEnd = buf + 16; 3866 SkipBitcodeWrapperHeader(bitcodeStart, bitcodeEnd, false); 3867 Bytes.dropLeadingBytes(bitcodeStart - buf); 3868 Bytes.setKnownObjectSize(bitcodeEnd - bitcodeStart); 3869 } 3870 return std::error_code(); 3871 } 3872 3873 namespace { 3874 class BitcodeErrorCategoryType : public std::error_category { 3875 const char *name() const LLVM_NOEXCEPT override { 3876 return "llvm.bitcode"; 3877 } 3878 std::string message(int IE) const override { 3879 BitcodeError E = static_cast<BitcodeError>(IE); 3880 switch (E) { 3881 case BitcodeError::InvalidBitcodeSignature: 3882 return "Invalid bitcode signature"; 3883 case BitcodeError::CorruptedBitcode: 3884 return "Corrupted bitcode"; 3885 } 3886 llvm_unreachable("Unknown error type!"); 3887 } 3888 }; 3889 } 3890 3891 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory; 3892 3893 const std::error_category &llvm::BitcodeErrorCategory() { 3894 return *ErrorCategory; 3895 } 3896 3897 //===----------------------------------------------------------------------===// 3898 // External interface 3899 //===----------------------------------------------------------------------===// 3900 3901 /// \brief Get a lazy one-at-time loading module from bitcode. 3902 /// 3903 /// This isn't always used in a lazy context. In particular, it's also used by 3904 /// \a parseBitcodeFile(). If this is truly lazy, then we need to eagerly pull 3905 /// in forward-referenced functions from block address references. 3906 /// 3907 /// \param[in] WillMaterializeAll Set to \c true if the caller promises to 3908 /// materialize everything -- in particular, if this isn't truly lazy. 3909 static ErrorOr<Module *> 3910 getLazyBitcodeModuleImpl(std::unique_ptr<MemoryBuffer> &&Buffer, 3911 LLVMContext &Context, bool WillMaterializeAll, 3912 DiagnosticHandlerFunction DiagnosticHandler) { 3913 Module *M = new Module(Buffer->getBufferIdentifier(), Context); 3914 BitcodeReader *R = 3915 new BitcodeReader(Buffer.get(), Context, DiagnosticHandler); 3916 M->setMaterializer(R); 3917 3918 auto cleanupOnError = [&](std::error_code EC) { 3919 R->releaseBuffer(); // Never take ownership on error. 3920 delete M; // Also deletes R. 3921 return EC; 3922 }; 3923 3924 if (std::error_code EC = R->ParseBitcodeInto(M)) 3925 return cleanupOnError(EC); 3926 3927 if (!WillMaterializeAll) 3928 // Resolve forward references from blockaddresses. 3929 if (std::error_code EC = R->materializeForwardReferencedFunctions()) 3930 return cleanupOnError(EC); 3931 3932 Buffer.release(); // The BitcodeReader owns it now. 3933 return M; 3934 } 3935 3936 ErrorOr<Module *> 3937 llvm::getLazyBitcodeModule(std::unique_ptr<MemoryBuffer> &&Buffer, 3938 LLVMContext &Context, 3939 DiagnosticHandlerFunction DiagnosticHandler) { 3940 return getLazyBitcodeModuleImpl(std::move(Buffer), Context, false, 3941 DiagnosticHandler); 3942 } 3943 3944 ErrorOr<std::unique_ptr<Module>> 3945 llvm::getStreamedBitcodeModule(StringRef Name, DataStreamer *Streamer, 3946 LLVMContext &Context, 3947 DiagnosticHandlerFunction DiagnosticHandler) { 3948 std::unique_ptr<Module> M = make_unique<Module>(Name, Context); 3949 BitcodeReader *R = new BitcodeReader(Streamer, Context, DiagnosticHandler); 3950 M->setMaterializer(R); 3951 if (std::error_code EC = R->ParseBitcodeInto(M.get())) 3952 return EC; 3953 return std::move(M); 3954 } 3955 3956 ErrorOr<Module *> 3957 llvm::parseBitcodeFile(MemoryBufferRef Buffer, LLVMContext &Context, 3958 DiagnosticHandlerFunction DiagnosticHandler) { 3959 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 3960 ErrorOr<Module *> ModuleOrErr = getLazyBitcodeModuleImpl( 3961 std::move(Buf), Context, true, DiagnosticHandler); 3962 if (!ModuleOrErr) 3963 return ModuleOrErr; 3964 Module *M = ModuleOrErr.get(); 3965 // Read in the entire module, and destroy the BitcodeReader. 3966 if (std::error_code EC = M->materializeAllPermanently()) { 3967 delete M; 3968 return EC; 3969 } 3970 3971 // TODO: Restore the use-lists to the in-memory state when the bitcode was 3972 // written. We must defer until the Module has been fully materialized. 3973 3974 return M; 3975 } 3976 3977 std::string 3978 llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer, LLVMContext &Context, 3979 DiagnosticHandlerFunction DiagnosticHandler) { 3980 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 3981 auto R = llvm::make_unique<BitcodeReader>(Buf.release(), Context, 3982 DiagnosticHandler); 3983 ErrorOr<std::string> Triple = R->parseTriple(); 3984 if (Triple.getError()) 3985 return ""; 3986 return Triple.get(); 3987 } 3988