1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/Bitcode/BitcodeReader.h" 10 #include "MetadataLoader.h" 11 #include "ValueList.h" 12 #include "llvm/ADT/APFloat.h" 13 #include "llvm/ADT/APInt.h" 14 #include "llvm/ADT/ArrayRef.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/Optional.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallString.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/StringRef.h" 21 #include "llvm/ADT/Triple.h" 22 #include "llvm/ADT/Twine.h" 23 #include "llvm/Bitstream/BitstreamReader.h" 24 #include "llvm/Bitcode/LLVMBitCodes.h" 25 #include "llvm/Config/llvm-config.h" 26 #include "llvm/IR/Argument.h" 27 #include "llvm/IR/Attributes.h" 28 #include "llvm/IR/AutoUpgrade.h" 29 #include "llvm/IR/BasicBlock.h" 30 #include "llvm/IR/CallSite.h" 31 #include "llvm/IR/CallingConv.h" 32 #include "llvm/IR/Comdat.h" 33 #include "llvm/IR/Constant.h" 34 #include "llvm/IR/Constants.h" 35 #include "llvm/IR/DataLayout.h" 36 #include "llvm/IR/DebugInfo.h" 37 #include "llvm/IR/DebugInfoMetadata.h" 38 #include "llvm/IR/DebugLoc.h" 39 #include "llvm/IR/DerivedTypes.h" 40 #include "llvm/IR/Function.h" 41 #include "llvm/IR/GVMaterializer.h" 42 #include "llvm/IR/GlobalAlias.h" 43 #include "llvm/IR/GlobalIFunc.h" 44 #include "llvm/IR/GlobalIndirectSymbol.h" 45 #include "llvm/IR/GlobalObject.h" 46 #include "llvm/IR/GlobalValue.h" 47 #include "llvm/IR/GlobalVariable.h" 48 #include "llvm/IR/InlineAsm.h" 49 #include "llvm/IR/InstIterator.h" 50 #include "llvm/IR/InstrTypes.h" 51 #include "llvm/IR/Instruction.h" 52 #include "llvm/IR/Instructions.h" 53 #include "llvm/IR/Intrinsics.h" 54 #include "llvm/IR/LLVMContext.h" 55 #include "llvm/IR/Metadata.h" 56 #include "llvm/IR/Module.h" 57 #include "llvm/IR/ModuleSummaryIndex.h" 58 #include "llvm/IR/Operator.h" 59 #include "llvm/IR/Type.h" 60 #include "llvm/IR/Value.h" 61 #include "llvm/IR/Verifier.h" 62 #include "llvm/Support/AtomicOrdering.h" 63 #include "llvm/Support/Casting.h" 64 #include "llvm/Support/CommandLine.h" 65 #include "llvm/Support/Compiler.h" 66 #include "llvm/Support/Debug.h" 67 #include "llvm/Support/Error.h" 68 #include "llvm/Support/ErrorHandling.h" 69 #include "llvm/Support/ErrorOr.h" 70 #include "llvm/Support/ManagedStatic.h" 71 #include "llvm/Support/MathExtras.h" 72 #include "llvm/Support/MemoryBuffer.h" 73 #include "llvm/Support/raw_ostream.h" 74 #include <algorithm> 75 #include <cassert> 76 #include <cstddef> 77 #include <cstdint> 78 #include <deque> 79 #include <map> 80 #include <memory> 81 #include <set> 82 #include <string> 83 #include <system_error> 84 #include <tuple> 85 #include <utility> 86 #include <vector> 87 88 using namespace llvm; 89 90 static cl::opt<bool> PrintSummaryGUIDs( 91 "print-summary-global-ids", cl::init(false), cl::Hidden, 92 cl::desc( 93 "Print the global id for each value when reading the module summary")); 94 95 namespace { 96 97 enum { 98 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 99 }; 100 101 } // end anonymous namespace 102 103 static Error error(const Twine &Message) { 104 return make_error<StringError>( 105 Message, make_error_code(BitcodeError::CorruptedBitcode)); 106 } 107 108 static Error hasInvalidBitcodeHeader(BitstreamCursor &Stream) { 109 if (!Stream.canSkipToPos(4)) 110 return createStringError(std::errc::illegal_byte_sequence, 111 "file too small to contain bitcode header"); 112 for (unsigned C : {'B', 'C'}) 113 if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(8)) { 114 if (Res.get() != C) 115 return createStringError(std::errc::illegal_byte_sequence, 116 "file doesn't start with bitcode header"); 117 } else 118 return Res.takeError(); 119 for (unsigned C : {0x0, 0xC, 0xE, 0xD}) 120 if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(4)) { 121 if (Res.get() != C) 122 return createStringError(std::errc::illegal_byte_sequence, 123 "file doesn't start with bitcode header"); 124 } else 125 return Res.takeError(); 126 return Error::success(); 127 } 128 129 static Expected<BitstreamCursor> initStream(MemoryBufferRef Buffer) { 130 const unsigned char *BufPtr = (const unsigned char *)Buffer.getBufferStart(); 131 const unsigned char *BufEnd = BufPtr + Buffer.getBufferSize(); 132 133 if (Buffer.getBufferSize() & 3) 134 return error("Invalid bitcode signature"); 135 136 // If we have a wrapper header, parse it and ignore the non-bc file contents. 137 // The magic number is 0x0B17C0DE stored in little endian. 138 if (isBitcodeWrapper(BufPtr, BufEnd)) 139 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 140 return error("Invalid bitcode wrapper header"); 141 142 BitstreamCursor Stream(ArrayRef<uint8_t>(BufPtr, BufEnd)); 143 if (Error Err = hasInvalidBitcodeHeader(Stream)) 144 return std::move(Err); 145 146 return std::move(Stream); 147 } 148 149 /// Convert a string from a record into an std::string, return true on failure. 150 template <typename StrTy> 151 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx, 152 StrTy &Result) { 153 if (Idx > Record.size()) 154 return true; 155 156 for (unsigned i = Idx, e = Record.size(); i != e; ++i) 157 Result += (char)Record[i]; 158 return false; 159 } 160 161 // Strip all the TBAA attachment for the module. 162 static void stripTBAA(Module *M) { 163 for (auto &F : *M) { 164 if (F.isMaterializable()) 165 continue; 166 for (auto &I : instructions(F)) 167 I.setMetadata(LLVMContext::MD_tbaa, nullptr); 168 } 169 } 170 171 /// Read the "IDENTIFICATION_BLOCK_ID" block, do some basic enforcement on the 172 /// "epoch" encoded in the bitcode, and return the producer name if any. 173 static Expected<std::string> readIdentificationBlock(BitstreamCursor &Stream) { 174 if (Error Err = Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID)) 175 return std::move(Err); 176 177 // Read all the records. 178 SmallVector<uint64_t, 64> Record; 179 180 std::string ProducerIdentification; 181 182 while (true) { 183 BitstreamEntry Entry; 184 if (Expected<BitstreamEntry> Res = Stream.advance()) 185 Entry = Res.get(); 186 else 187 return Res.takeError(); 188 189 switch (Entry.Kind) { 190 default: 191 case BitstreamEntry::Error: 192 return error("Malformed block"); 193 case BitstreamEntry::EndBlock: 194 return ProducerIdentification; 195 case BitstreamEntry::Record: 196 // The interesting case. 197 break; 198 } 199 200 // Read a record. 201 Record.clear(); 202 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 203 if (!MaybeBitCode) 204 return MaybeBitCode.takeError(); 205 switch (MaybeBitCode.get()) { 206 default: // Default behavior: reject 207 return error("Invalid value"); 208 case bitc::IDENTIFICATION_CODE_STRING: // IDENTIFICATION: [strchr x N] 209 convertToString(Record, 0, ProducerIdentification); 210 break; 211 case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#] 212 unsigned epoch = (unsigned)Record[0]; 213 if (epoch != bitc::BITCODE_CURRENT_EPOCH) { 214 return error( 215 Twine("Incompatible epoch: Bitcode '") + Twine(epoch) + 216 "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'"); 217 } 218 } 219 } 220 } 221 } 222 223 static Expected<std::string> readIdentificationCode(BitstreamCursor &Stream) { 224 // We expect a number of well-defined blocks, though we don't necessarily 225 // need to understand them all. 226 while (true) { 227 if (Stream.AtEndOfStream()) 228 return ""; 229 230 BitstreamEntry Entry; 231 if (Expected<BitstreamEntry> Res = Stream.advance()) 232 Entry = std::move(Res.get()); 233 else 234 return Res.takeError(); 235 236 switch (Entry.Kind) { 237 case BitstreamEntry::EndBlock: 238 case BitstreamEntry::Error: 239 return error("Malformed block"); 240 241 case BitstreamEntry::SubBlock: 242 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) 243 return readIdentificationBlock(Stream); 244 245 // Ignore other sub-blocks. 246 if (Error Err = Stream.SkipBlock()) 247 return std::move(Err); 248 continue; 249 case BitstreamEntry::Record: 250 if (Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID)) 251 continue; 252 else 253 return Skipped.takeError(); 254 } 255 } 256 } 257 258 static Expected<bool> hasObjCCategoryInModule(BitstreamCursor &Stream) { 259 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 260 return std::move(Err); 261 262 SmallVector<uint64_t, 64> Record; 263 // Read all the records for this module. 264 265 while (true) { 266 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 267 if (!MaybeEntry) 268 return MaybeEntry.takeError(); 269 BitstreamEntry Entry = MaybeEntry.get(); 270 271 switch (Entry.Kind) { 272 case BitstreamEntry::SubBlock: // Handled for us already. 273 case BitstreamEntry::Error: 274 return error("Malformed block"); 275 case BitstreamEntry::EndBlock: 276 return false; 277 case BitstreamEntry::Record: 278 // The interesting case. 279 break; 280 } 281 282 // Read a record. 283 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 284 if (!MaybeRecord) 285 return MaybeRecord.takeError(); 286 switch (MaybeRecord.get()) { 287 default: 288 break; // Default behavior, ignore unknown content. 289 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 290 std::string S; 291 if (convertToString(Record, 0, S)) 292 return error("Invalid record"); 293 // Check for the i386 and other (x86_64, ARM) conventions 294 if (S.find("__DATA,__objc_catlist") != std::string::npos || 295 S.find("__OBJC,__category") != std::string::npos) 296 return true; 297 break; 298 } 299 } 300 Record.clear(); 301 } 302 llvm_unreachable("Exit infinite loop"); 303 } 304 305 static Expected<bool> hasObjCCategory(BitstreamCursor &Stream) { 306 // We expect a number of well-defined blocks, though we don't necessarily 307 // need to understand them all. 308 while (true) { 309 BitstreamEntry Entry; 310 if (Expected<BitstreamEntry> Res = Stream.advance()) 311 Entry = std::move(Res.get()); 312 else 313 return Res.takeError(); 314 315 switch (Entry.Kind) { 316 case BitstreamEntry::Error: 317 return error("Malformed block"); 318 case BitstreamEntry::EndBlock: 319 return false; 320 321 case BitstreamEntry::SubBlock: 322 if (Entry.ID == bitc::MODULE_BLOCK_ID) 323 return hasObjCCategoryInModule(Stream); 324 325 // Ignore other sub-blocks. 326 if (Error Err = Stream.SkipBlock()) 327 return std::move(Err); 328 continue; 329 330 case BitstreamEntry::Record: 331 if (Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID)) 332 continue; 333 else 334 return Skipped.takeError(); 335 } 336 } 337 } 338 339 static Expected<std::string> readModuleTriple(BitstreamCursor &Stream) { 340 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 341 return std::move(Err); 342 343 SmallVector<uint64_t, 64> Record; 344 345 std::string Triple; 346 347 // Read all the records for this module. 348 while (true) { 349 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 350 if (!MaybeEntry) 351 return MaybeEntry.takeError(); 352 BitstreamEntry Entry = MaybeEntry.get(); 353 354 switch (Entry.Kind) { 355 case BitstreamEntry::SubBlock: // Handled for us already. 356 case BitstreamEntry::Error: 357 return error("Malformed block"); 358 case BitstreamEntry::EndBlock: 359 return Triple; 360 case BitstreamEntry::Record: 361 // The interesting case. 362 break; 363 } 364 365 // Read a record. 366 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 367 if (!MaybeRecord) 368 return MaybeRecord.takeError(); 369 switch (MaybeRecord.get()) { 370 default: break; // Default behavior, ignore unknown content. 371 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 372 std::string S; 373 if (convertToString(Record, 0, S)) 374 return error("Invalid record"); 375 Triple = S; 376 break; 377 } 378 } 379 Record.clear(); 380 } 381 llvm_unreachable("Exit infinite loop"); 382 } 383 384 static Expected<std::string> readTriple(BitstreamCursor &Stream) { 385 // We expect a number of well-defined blocks, though we don't necessarily 386 // need to understand them all. 387 while (true) { 388 Expected<BitstreamEntry> MaybeEntry = Stream.advance(); 389 if (!MaybeEntry) 390 return MaybeEntry.takeError(); 391 BitstreamEntry Entry = MaybeEntry.get(); 392 393 switch (Entry.Kind) { 394 case BitstreamEntry::Error: 395 return error("Malformed block"); 396 case BitstreamEntry::EndBlock: 397 return ""; 398 399 case BitstreamEntry::SubBlock: 400 if (Entry.ID == bitc::MODULE_BLOCK_ID) 401 return readModuleTriple(Stream); 402 403 // Ignore other sub-blocks. 404 if (Error Err = Stream.SkipBlock()) 405 return std::move(Err); 406 continue; 407 408 case BitstreamEntry::Record: 409 if (llvm::Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID)) 410 continue; 411 else 412 return Skipped.takeError(); 413 } 414 } 415 } 416 417 namespace { 418 419 class BitcodeReaderBase { 420 protected: 421 BitcodeReaderBase(BitstreamCursor Stream, StringRef Strtab) 422 : Stream(std::move(Stream)), Strtab(Strtab) { 423 this->Stream.setBlockInfo(&BlockInfo); 424 } 425 426 BitstreamBlockInfo BlockInfo; 427 BitstreamCursor Stream; 428 StringRef Strtab; 429 430 /// In version 2 of the bitcode we store names of global values and comdats in 431 /// a string table rather than in the VST. 432 bool UseStrtab = false; 433 434 Expected<unsigned> parseVersionRecord(ArrayRef<uint64_t> Record); 435 436 /// If this module uses a string table, pop the reference to the string table 437 /// and return the referenced string and the rest of the record. Otherwise 438 /// just return the record itself. 439 std::pair<StringRef, ArrayRef<uint64_t>> 440 readNameFromStrtab(ArrayRef<uint64_t> Record); 441 442 bool readBlockInfo(); 443 444 // Contains an arbitrary and optional string identifying the bitcode producer 445 std::string ProducerIdentification; 446 447 Error error(const Twine &Message); 448 }; 449 450 } // end anonymous namespace 451 452 Error BitcodeReaderBase::error(const Twine &Message) { 453 std::string FullMsg = Message.str(); 454 if (!ProducerIdentification.empty()) 455 FullMsg += " (Producer: '" + ProducerIdentification + "' Reader: 'LLVM " + 456 LLVM_VERSION_STRING "')"; 457 return ::error(FullMsg); 458 } 459 460 Expected<unsigned> 461 BitcodeReaderBase::parseVersionRecord(ArrayRef<uint64_t> Record) { 462 if (Record.empty()) 463 return error("Invalid record"); 464 unsigned ModuleVersion = Record[0]; 465 if (ModuleVersion > 2) 466 return error("Invalid value"); 467 UseStrtab = ModuleVersion >= 2; 468 return ModuleVersion; 469 } 470 471 std::pair<StringRef, ArrayRef<uint64_t>> 472 BitcodeReaderBase::readNameFromStrtab(ArrayRef<uint64_t> Record) { 473 if (!UseStrtab) 474 return {"", Record}; 475 // Invalid reference. Let the caller complain about the record being empty. 476 if (Record[0] + Record[1] > Strtab.size()) 477 return {"", {}}; 478 return {StringRef(Strtab.data() + Record[0], Record[1]), Record.slice(2)}; 479 } 480 481 namespace { 482 483 class BitcodeReader : public BitcodeReaderBase, public GVMaterializer { 484 LLVMContext &Context; 485 Module *TheModule = nullptr; 486 // Next offset to start scanning for lazy parsing of function bodies. 487 uint64_t NextUnreadBit = 0; 488 // Last function offset found in the VST. 489 uint64_t LastFunctionBlockBit = 0; 490 bool SeenValueSymbolTable = false; 491 uint64_t VSTOffset = 0; 492 493 std::vector<std::string> SectionTable; 494 std::vector<std::string> GCTable; 495 496 std::vector<Type*> TypeList; 497 DenseMap<Function *, FunctionType *> FunctionTypes; 498 BitcodeReaderValueList ValueList; 499 Optional<MetadataLoader> MDLoader; 500 std::vector<Comdat *> ComdatList; 501 SmallVector<Instruction *, 64> InstructionList; 502 503 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInits; 504 std::vector<std::pair<GlobalIndirectSymbol *, unsigned>> IndirectSymbolInits; 505 std::vector<std::pair<Function *, unsigned>> FunctionPrefixes; 506 std::vector<std::pair<Function *, unsigned>> FunctionPrologues; 507 std::vector<std::pair<Function *, unsigned>> FunctionPersonalityFns; 508 509 /// The set of attributes by index. Index zero in the file is for null, and 510 /// is thus not represented here. As such all indices are off by one. 511 std::vector<AttributeList> MAttributes; 512 513 /// The set of attribute groups. 514 std::map<unsigned, AttributeList> MAttributeGroups; 515 516 /// While parsing a function body, this is a list of the basic blocks for the 517 /// function. 518 std::vector<BasicBlock*> FunctionBBs; 519 520 // When reading the module header, this list is populated with functions that 521 // have bodies later in the file. 522 std::vector<Function*> FunctionsWithBodies; 523 524 // When intrinsic functions are encountered which require upgrading they are 525 // stored here with their replacement function. 526 using UpdatedIntrinsicMap = DenseMap<Function *, Function *>; 527 UpdatedIntrinsicMap UpgradedIntrinsics; 528 // Intrinsics which were remangled because of types rename 529 UpdatedIntrinsicMap RemangledIntrinsics; 530 531 // Several operations happen after the module header has been read, but 532 // before function bodies are processed. This keeps track of whether 533 // we've done this yet. 534 bool SeenFirstFunctionBody = false; 535 536 /// When function bodies are initially scanned, this map contains info about 537 /// where to find deferred function body in the stream. 538 DenseMap<Function*, uint64_t> DeferredFunctionInfo; 539 540 /// When Metadata block is initially scanned when parsing the module, we may 541 /// choose to defer parsing of the metadata. This vector contains info about 542 /// which Metadata blocks are deferred. 543 std::vector<uint64_t> DeferredMetadataInfo; 544 545 /// These are basic blocks forward-referenced by block addresses. They are 546 /// inserted lazily into functions when they're loaded. The basic block ID is 547 /// its index into the vector. 548 DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs; 549 std::deque<Function *> BasicBlockFwdRefQueue; 550 551 /// Indicates that we are using a new encoding for instruction operands where 552 /// most operands in the current FUNCTION_BLOCK are encoded relative to the 553 /// instruction number, for a more compact encoding. Some instruction 554 /// operands are not relative to the instruction ID: basic block numbers, and 555 /// types. Once the old style function blocks have been phased out, we would 556 /// not need this flag. 557 bool UseRelativeIDs = false; 558 559 /// True if all functions will be materialized, negating the need to process 560 /// (e.g.) blockaddress forward references. 561 bool WillMaterializeAllForwardRefs = false; 562 563 bool StripDebugInfo = false; 564 TBAAVerifier TBAAVerifyHelper; 565 566 std::vector<std::string> BundleTags; 567 SmallVector<SyncScope::ID, 8> SSIDs; 568 569 public: 570 BitcodeReader(BitstreamCursor Stream, StringRef Strtab, 571 StringRef ProducerIdentification, LLVMContext &Context); 572 573 Error materializeForwardReferencedFunctions(); 574 575 Error materialize(GlobalValue *GV) override; 576 Error materializeModule() override; 577 std::vector<StructType *> getIdentifiedStructTypes() const override; 578 579 /// Main interface to parsing a bitcode buffer. 580 /// \returns true if an error occurred. 581 Error parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata = false, 582 bool IsImporting = false); 583 584 static uint64_t decodeSignRotatedValue(uint64_t V); 585 586 /// Materialize any deferred Metadata block. 587 Error materializeMetadata() override; 588 589 void setStripDebugInfo() override; 590 591 private: 592 std::vector<StructType *> IdentifiedStructTypes; 593 StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name); 594 StructType *createIdentifiedStructType(LLVMContext &Context); 595 596 /// Map all pointer types within \param Ty to the opaque pointer 597 /// type in the same address space if opaque pointers are being 598 /// used, otherwise nop. This converts a bitcode-reader internal 599 /// type into one suitable for use in a Value. 600 Type *flattenPointerTypes(Type *Ty) { 601 return Ty; 602 } 603 604 /// Given a fully structured pointer type (i.e. not opaque), return 605 /// the flattened form of its element, suitable for use in a Value. 606 Type *getPointerElementFlatType(Type *Ty) { 607 return flattenPointerTypes(cast<PointerType>(Ty)->getElementType()); 608 } 609 610 /// Given a fully structured pointer type, get its element type in 611 /// both fully structured form, and flattened form suitable for use 612 /// in a Value. 613 std::pair<Type *, Type *> getPointerElementTypes(Type *FullTy) { 614 Type *ElTy = cast<PointerType>(FullTy)->getElementType(); 615 return std::make_pair(ElTy, flattenPointerTypes(ElTy)); 616 } 617 618 /// Return the flattened type (suitable for use in a Value) 619 /// specified by the given \param ID . 620 Type *getTypeByID(unsigned ID) { 621 return flattenPointerTypes(getFullyStructuredTypeByID(ID)); 622 } 623 624 /// Return the fully structured (bitcode-reader internal) type 625 /// corresponding to the given \param ID . 626 Type *getFullyStructuredTypeByID(unsigned ID); 627 628 Value *getFnValueByID(unsigned ID, Type *Ty, Type **FullTy = nullptr) { 629 if (Ty && Ty->isMetadataTy()) 630 return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID)); 631 return ValueList.getValueFwdRef(ID, Ty, FullTy); 632 } 633 634 Metadata *getFnMetadataByID(unsigned ID) { 635 return MDLoader->getMetadataFwdRefOrLoad(ID); 636 } 637 638 BasicBlock *getBasicBlock(unsigned ID) const { 639 if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID 640 return FunctionBBs[ID]; 641 } 642 643 AttributeList getAttributes(unsigned i) const { 644 if (i-1 < MAttributes.size()) 645 return MAttributes[i-1]; 646 return AttributeList(); 647 } 648 649 /// Read a value/type pair out of the specified record from slot 'Slot'. 650 /// Increment Slot past the number of slots used in the record. Return true on 651 /// failure. 652 bool getValueTypePair(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 653 unsigned InstNum, Value *&ResVal, 654 Type **FullTy = nullptr) { 655 if (Slot == Record.size()) return true; 656 unsigned ValNo = (unsigned)Record[Slot++]; 657 // Adjust the ValNo, if it was encoded relative to the InstNum. 658 if (UseRelativeIDs) 659 ValNo = InstNum - ValNo; 660 if (ValNo < InstNum) { 661 // If this is not a forward reference, just return the value we already 662 // have. 663 ResVal = getFnValueByID(ValNo, nullptr, FullTy); 664 return ResVal == nullptr; 665 } 666 if (Slot == Record.size()) 667 return true; 668 669 unsigned TypeNo = (unsigned)Record[Slot++]; 670 ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo)); 671 if (FullTy) 672 *FullTy = getFullyStructuredTypeByID(TypeNo); 673 return ResVal == nullptr; 674 } 675 676 /// Read a value out of the specified record from slot 'Slot'. Increment Slot 677 /// past the number of slots used by the value in the record. Return true if 678 /// there is an error. 679 bool popValue(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 680 unsigned InstNum, Type *Ty, Value *&ResVal) { 681 if (getValue(Record, Slot, InstNum, Ty, ResVal)) 682 return true; 683 // All values currently take a single record slot. 684 ++Slot; 685 return false; 686 } 687 688 /// Like popValue, but does not increment the Slot number. 689 bool getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 690 unsigned InstNum, Type *Ty, Value *&ResVal) { 691 ResVal = getValue(Record, Slot, InstNum, Ty); 692 return ResVal == nullptr; 693 } 694 695 /// Version of getValue that returns ResVal directly, or 0 if there is an 696 /// error. 697 Value *getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 698 unsigned InstNum, Type *Ty) { 699 if (Slot == Record.size()) return nullptr; 700 unsigned ValNo = (unsigned)Record[Slot]; 701 // Adjust the ValNo, if it was encoded relative to the InstNum. 702 if (UseRelativeIDs) 703 ValNo = InstNum - ValNo; 704 return getFnValueByID(ValNo, Ty); 705 } 706 707 /// Like getValue, but decodes signed VBRs. 708 Value *getValueSigned(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 709 unsigned InstNum, Type *Ty) { 710 if (Slot == Record.size()) return nullptr; 711 unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]); 712 // Adjust the ValNo, if it was encoded relative to the InstNum. 713 if (UseRelativeIDs) 714 ValNo = InstNum - ValNo; 715 return getFnValueByID(ValNo, Ty); 716 } 717 718 /// Upgrades old-style typeless byval attributes by adding the corresponding 719 /// argument's pointee type. 720 void propagateByValTypes(CallBase *CB, ArrayRef<Type *> ArgsFullTys); 721 722 /// Converts alignment exponent (i.e. power of two (or zero)) to the 723 /// corresponding alignment to use. If alignment is too large, returns 724 /// a corresponding error code. 725 Error parseAlignmentValue(uint64_t Exponent, MaybeAlign &Alignment); 726 Error parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind); 727 Error parseModule(uint64_t ResumeBit, bool ShouldLazyLoadMetadata = false); 728 729 Error parseComdatRecord(ArrayRef<uint64_t> Record); 730 Error parseGlobalVarRecord(ArrayRef<uint64_t> Record); 731 Error parseFunctionRecord(ArrayRef<uint64_t> Record); 732 Error parseGlobalIndirectSymbolRecord(unsigned BitCode, 733 ArrayRef<uint64_t> Record); 734 735 Error parseAttributeBlock(); 736 Error parseAttributeGroupBlock(); 737 Error parseTypeTable(); 738 Error parseTypeTableBody(); 739 Error parseOperandBundleTags(); 740 Error parseSyncScopeNames(); 741 742 Expected<Value *> recordValue(SmallVectorImpl<uint64_t> &Record, 743 unsigned NameIndex, Triple &TT); 744 void setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, Function *F, 745 ArrayRef<uint64_t> Record); 746 Error parseValueSymbolTable(uint64_t Offset = 0); 747 Error parseGlobalValueSymbolTable(); 748 Error parseConstants(); 749 Error rememberAndSkipFunctionBodies(); 750 Error rememberAndSkipFunctionBody(); 751 /// Save the positions of the Metadata blocks and skip parsing the blocks. 752 Error rememberAndSkipMetadata(); 753 Error typeCheckLoadStoreInst(Type *ValType, Type *PtrType); 754 Error parseFunctionBody(Function *F); 755 Error globalCleanup(); 756 Error resolveGlobalAndIndirectSymbolInits(); 757 Error parseUseLists(); 758 Error findFunctionInStream( 759 Function *F, 760 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator); 761 762 SyncScope::ID getDecodedSyncScopeID(unsigned Val); 763 }; 764 765 /// Class to manage reading and parsing function summary index bitcode 766 /// files/sections. 767 class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase { 768 /// The module index built during parsing. 769 ModuleSummaryIndex &TheIndex; 770 771 /// Indicates whether we have encountered a global value summary section 772 /// yet during parsing. 773 bool SeenGlobalValSummary = false; 774 775 /// Indicates whether we have already parsed the VST, used for error checking. 776 bool SeenValueSymbolTable = false; 777 778 /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record. 779 /// Used to enable on-demand parsing of the VST. 780 uint64_t VSTOffset = 0; 781 782 // Map to save ValueId to ValueInfo association that was recorded in the 783 // ValueSymbolTable. It is used after the VST is parsed to convert 784 // call graph edges read from the function summary from referencing 785 // callees by their ValueId to using the ValueInfo instead, which is how 786 // they are recorded in the summary index being built. 787 // We save a GUID which refers to the same global as the ValueInfo, but 788 // ignoring the linkage, i.e. for values other than local linkage they are 789 // identical. 790 DenseMap<unsigned, std::pair<ValueInfo, GlobalValue::GUID>> 791 ValueIdToValueInfoMap; 792 793 /// Map populated during module path string table parsing, from the 794 /// module ID to a string reference owned by the index's module 795 /// path string table, used to correlate with combined index 796 /// summary records. 797 DenseMap<uint64_t, StringRef> ModuleIdMap; 798 799 /// Original source file name recorded in a bitcode record. 800 std::string SourceFileName; 801 802 /// The string identifier given to this module by the client, normally the 803 /// path to the bitcode file. 804 StringRef ModulePath; 805 806 /// For per-module summary indexes, the unique numerical identifier given to 807 /// this module by the client. 808 unsigned ModuleId; 809 810 public: 811 ModuleSummaryIndexBitcodeReader(BitstreamCursor Stream, StringRef Strtab, 812 ModuleSummaryIndex &TheIndex, 813 StringRef ModulePath, unsigned ModuleId); 814 815 Error parseModule(); 816 817 private: 818 void setValueGUID(uint64_t ValueID, StringRef ValueName, 819 GlobalValue::LinkageTypes Linkage, 820 StringRef SourceFileName); 821 Error parseValueSymbolTable( 822 uint64_t Offset, 823 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap); 824 std::vector<ValueInfo> makeRefList(ArrayRef<uint64_t> Record); 825 std::vector<FunctionSummary::EdgeTy> makeCallList(ArrayRef<uint64_t> Record, 826 bool IsOldProfileFormat, 827 bool HasProfile, 828 bool HasRelBF); 829 Error parseEntireSummary(unsigned ID); 830 Error parseModuleStringTable(); 831 void parseTypeIdCompatibleVtableSummaryRecord(ArrayRef<uint64_t> Record); 832 void parseTypeIdCompatibleVtableInfo(ArrayRef<uint64_t> Record, size_t &Slot, 833 TypeIdCompatibleVtableInfo &TypeId); 834 835 std::pair<ValueInfo, GlobalValue::GUID> 836 getValueInfoFromValueId(unsigned ValueId); 837 838 void addThisModule(); 839 ModuleSummaryIndex::ModuleInfo *getThisModule(); 840 }; 841 842 } // end anonymous namespace 843 844 std::error_code llvm::errorToErrorCodeAndEmitErrors(LLVMContext &Ctx, 845 Error Err) { 846 if (Err) { 847 std::error_code EC; 848 handleAllErrors(std::move(Err), [&](ErrorInfoBase &EIB) { 849 EC = EIB.convertToErrorCode(); 850 Ctx.emitError(EIB.message()); 851 }); 852 return EC; 853 } 854 return std::error_code(); 855 } 856 857 BitcodeReader::BitcodeReader(BitstreamCursor Stream, StringRef Strtab, 858 StringRef ProducerIdentification, 859 LLVMContext &Context) 860 : BitcodeReaderBase(std::move(Stream), Strtab), Context(Context), 861 ValueList(Context, Stream.SizeInBytes()) { 862 this->ProducerIdentification = ProducerIdentification; 863 } 864 865 Error BitcodeReader::materializeForwardReferencedFunctions() { 866 if (WillMaterializeAllForwardRefs) 867 return Error::success(); 868 869 // Prevent recursion. 870 WillMaterializeAllForwardRefs = true; 871 872 while (!BasicBlockFwdRefQueue.empty()) { 873 Function *F = BasicBlockFwdRefQueue.front(); 874 BasicBlockFwdRefQueue.pop_front(); 875 assert(F && "Expected valid function"); 876 if (!BasicBlockFwdRefs.count(F)) 877 // Already materialized. 878 continue; 879 880 // Check for a function that isn't materializable to prevent an infinite 881 // loop. When parsing a blockaddress stored in a global variable, there 882 // isn't a trivial way to check if a function will have a body without a 883 // linear search through FunctionsWithBodies, so just check it here. 884 if (!F->isMaterializable()) 885 return error("Never resolved function from blockaddress"); 886 887 // Try to materialize F. 888 if (Error Err = materialize(F)) 889 return Err; 890 } 891 assert(BasicBlockFwdRefs.empty() && "Function missing from queue"); 892 893 // Reset state. 894 WillMaterializeAllForwardRefs = false; 895 return Error::success(); 896 } 897 898 //===----------------------------------------------------------------------===// 899 // Helper functions to implement forward reference resolution, etc. 900 //===----------------------------------------------------------------------===// 901 902 static bool hasImplicitComdat(size_t Val) { 903 switch (Val) { 904 default: 905 return false; 906 case 1: // Old WeakAnyLinkage 907 case 4: // Old LinkOnceAnyLinkage 908 case 10: // Old WeakODRLinkage 909 case 11: // Old LinkOnceODRLinkage 910 return true; 911 } 912 } 913 914 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) { 915 switch (Val) { 916 default: // Map unknown/new linkages to external 917 case 0: 918 return GlobalValue::ExternalLinkage; 919 case 2: 920 return GlobalValue::AppendingLinkage; 921 case 3: 922 return GlobalValue::InternalLinkage; 923 case 5: 924 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage 925 case 6: 926 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage 927 case 7: 928 return GlobalValue::ExternalWeakLinkage; 929 case 8: 930 return GlobalValue::CommonLinkage; 931 case 9: 932 return GlobalValue::PrivateLinkage; 933 case 12: 934 return GlobalValue::AvailableExternallyLinkage; 935 case 13: 936 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage 937 case 14: 938 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage 939 case 15: 940 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage 941 case 1: // Old value with implicit comdat. 942 case 16: 943 return GlobalValue::WeakAnyLinkage; 944 case 10: // Old value with implicit comdat. 945 case 17: 946 return GlobalValue::WeakODRLinkage; 947 case 4: // Old value with implicit comdat. 948 case 18: 949 return GlobalValue::LinkOnceAnyLinkage; 950 case 11: // Old value with implicit comdat. 951 case 19: 952 return GlobalValue::LinkOnceODRLinkage; 953 } 954 } 955 956 static FunctionSummary::FFlags getDecodedFFlags(uint64_t RawFlags) { 957 FunctionSummary::FFlags Flags; 958 Flags.ReadNone = RawFlags & 0x1; 959 Flags.ReadOnly = (RawFlags >> 1) & 0x1; 960 Flags.NoRecurse = (RawFlags >> 2) & 0x1; 961 Flags.ReturnDoesNotAlias = (RawFlags >> 3) & 0x1; 962 Flags.NoInline = (RawFlags >> 4) & 0x1; 963 Flags.AlwaysInline = (RawFlags >> 5) & 0x1; 964 return Flags; 965 } 966 967 /// Decode the flags for GlobalValue in the summary. 968 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags, 969 uint64_t Version) { 970 // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage 971 // like getDecodedLinkage() above. Any future change to the linkage enum and 972 // to getDecodedLinkage() will need to be taken into account here as above. 973 auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits 974 RawFlags = RawFlags >> 4; 975 bool NotEligibleToImport = (RawFlags & 0x1) || Version < 3; 976 // The Live flag wasn't introduced until version 3. For dead stripping 977 // to work correctly on earlier versions, we must conservatively treat all 978 // values as live. 979 bool Live = (RawFlags & 0x2) || Version < 3; 980 bool Local = (RawFlags & 0x4); 981 bool AutoHide = (RawFlags & 0x8); 982 983 return GlobalValueSummary::GVFlags(Linkage, NotEligibleToImport, Live, Local, AutoHide); 984 } 985 986 // Decode the flags for GlobalVariable in the summary 987 static GlobalVarSummary::GVarFlags getDecodedGVarFlags(uint64_t RawFlags) { 988 return GlobalVarSummary::GVarFlags((RawFlags & 0x1) ? true : false, 989 (RawFlags & 0x2) ? true : false, 990 (RawFlags & 0x4) ? true : false); 991 } 992 993 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) { 994 switch (Val) { 995 default: // Map unknown visibilities to default. 996 case 0: return GlobalValue::DefaultVisibility; 997 case 1: return GlobalValue::HiddenVisibility; 998 case 2: return GlobalValue::ProtectedVisibility; 999 } 1000 } 1001 1002 static GlobalValue::DLLStorageClassTypes 1003 getDecodedDLLStorageClass(unsigned Val) { 1004 switch (Val) { 1005 default: // Map unknown values to default. 1006 case 0: return GlobalValue::DefaultStorageClass; 1007 case 1: return GlobalValue::DLLImportStorageClass; 1008 case 2: return GlobalValue::DLLExportStorageClass; 1009 } 1010 } 1011 1012 static bool getDecodedDSOLocal(unsigned Val) { 1013 switch(Val) { 1014 default: // Map unknown values to preemptable. 1015 case 0: return false; 1016 case 1: return true; 1017 } 1018 } 1019 1020 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) { 1021 switch (Val) { 1022 case 0: return GlobalVariable::NotThreadLocal; 1023 default: // Map unknown non-zero value to general dynamic. 1024 case 1: return GlobalVariable::GeneralDynamicTLSModel; 1025 case 2: return GlobalVariable::LocalDynamicTLSModel; 1026 case 3: return GlobalVariable::InitialExecTLSModel; 1027 case 4: return GlobalVariable::LocalExecTLSModel; 1028 } 1029 } 1030 1031 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) { 1032 switch (Val) { 1033 default: // Map unknown to UnnamedAddr::None. 1034 case 0: return GlobalVariable::UnnamedAddr::None; 1035 case 1: return GlobalVariable::UnnamedAddr::Global; 1036 case 2: return GlobalVariable::UnnamedAddr::Local; 1037 } 1038 } 1039 1040 static int getDecodedCastOpcode(unsigned Val) { 1041 switch (Val) { 1042 default: return -1; 1043 case bitc::CAST_TRUNC : return Instruction::Trunc; 1044 case bitc::CAST_ZEXT : return Instruction::ZExt; 1045 case bitc::CAST_SEXT : return Instruction::SExt; 1046 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 1047 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 1048 case bitc::CAST_UITOFP : return Instruction::UIToFP; 1049 case bitc::CAST_SITOFP : return Instruction::SIToFP; 1050 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 1051 case bitc::CAST_FPEXT : return Instruction::FPExt; 1052 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 1053 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 1054 case bitc::CAST_BITCAST : return Instruction::BitCast; 1055 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast; 1056 } 1057 } 1058 1059 static int getDecodedUnaryOpcode(unsigned Val, Type *Ty) { 1060 bool IsFP = Ty->isFPOrFPVectorTy(); 1061 // UnOps are only valid for int/fp or vector of int/fp types 1062 if (!IsFP && !Ty->isIntOrIntVectorTy()) 1063 return -1; 1064 1065 switch (Val) { 1066 default: 1067 return -1; 1068 case bitc::UNOP_FNEG: 1069 return IsFP ? Instruction::FNeg : -1; 1070 } 1071 } 1072 1073 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) { 1074 bool IsFP = Ty->isFPOrFPVectorTy(); 1075 // BinOps are only valid for int/fp or vector of int/fp types 1076 if (!IsFP && !Ty->isIntOrIntVectorTy()) 1077 return -1; 1078 1079 switch (Val) { 1080 default: 1081 return -1; 1082 case bitc::BINOP_ADD: 1083 return IsFP ? Instruction::FAdd : Instruction::Add; 1084 case bitc::BINOP_SUB: 1085 return IsFP ? Instruction::FSub : Instruction::Sub; 1086 case bitc::BINOP_MUL: 1087 return IsFP ? Instruction::FMul : Instruction::Mul; 1088 case bitc::BINOP_UDIV: 1089 return IsFP ? -1 : Instruction::UDiv; 1090 case bitc::BINOP_SDIV: 1091 return IsFP ? Instruction::FDiv : Instruction::SDiv; 1092 case bitc::BINOP_UREM: 1093 return IsFP ? -1 : Instruction::URem; 1094 case bitc::BINOP_SREM: 1095 return IsFP ? Instruction::FRem : Instruction::SRem; 1096 case bitc::BINOP_SHL: 1097 return IsFP ? -1 : Instruction::Shl; 1098 case bitc::BINOP_LSHR: 1099 return IsFP ? -1 : Instruction::LShr; 1100 case bitc::BINOP_ASHR: 1101 return IsFP ? -1 : Instruction::AShr; 1102 case bitc::BINOP_AND: 1103 return IsFP ? -1 : Instruction::And; 1104 case bitc::BINOP_OR: 1105 return IsFP ? -1 : Instruction::Or; 1106 case bitc::BINOP_XOR: 1107 return IsFP ? -1 : Instruction::Xor; 1108 } 1109 } 1110 1111 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) { 1112 switch (Val) { 1113 default: return AtomicRMWInst::BAD_BINOP; 1114 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 1115 case bitc::RMW_ADD: return AtomicRMWInst::Add; 1116 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 1117 case bitc::RMW_AND: return AtomicRMWInst::And; 1118 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 1119 case bitc::RMW_OR: return AtomicRMWInst::Or; 1120 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 1121 case bitc::RMW_MAX: return AtomicRMWInst::Max; 1122 case bitc::RMW_MIN: return AtomicRMWInst::Min; 1123 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 1124 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 1125 case bitc::RMW_FADD: return AtomicRMWInst::FAdd; 1126 case bitc::RMW_FSUB: return AtomicRMWInst::FSub; 1127 } 1128 } 1129 1130 static AtomicOrdering getDecodedOrdering(unsigned Val) { 1131 switch (Val) { 1132 case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic; 1133 case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered; 1134 case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic; 1135 case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire; 1136 case bitc::ORDERING_RELEASE: return AtomicOrdering::Release; 1137 case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease; 1138 default: // Map unknown orderings to sequentially-consistent. 1139 case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent; 1140 } 1141 } 1142 1143 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) { 1144 switch (Val) { 1145 default: // Map unknown selection kinds to any. 1146 case bitc::COMDAT_SELECTION_KIND_ANY: 1147 return Comdat::Any; 1148 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH: 1149 return Comdat::ExactMatch; 1150 case bitc::COMDAT_SELECTION_KIND_LARGEST: 1151 return Comdat::Largest; 1152 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES: 1153 return Comdat::NoDuplicates; 1154 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE: 1155 return Comdat::SameSize; 1156 } 1157 } 1158 1159 static FastMathFlags getDecodedFastMathFlags(unsigned Val) { 1160 FastMathFlags FMF; 1161 if (0 != (Val & bitc::UnsafeAlgebra)) 1162 FMF.setFast(); 1163 if (0 != (Val & bitc::AllowReassoc)) 1164 FMF.setAllowReassoc(); 1165 if (0 != (Val & bitc::NoNaNs)) 1166 FMF.setNoNaNs(); 1167 if (0 != (Val & bitc::NoInfs)) 1168 FMF.setNoInfs(); 1169 if (0 != (Val & bitc::NoSignedZeros)) 1170 FMF.setNoSignedZeros(); 1171 if (0 != (Val & bitc::AllowReciprocal)) 1172 FMF.setAllowReciprocal(); 1173 if (0 != (Val & bitc::AllowContract)) 1174 FMF.setAllowContract(true); 1175 if (0 != (Val & bitc::ApproxFunc)) 1176 FMF.setApproxFunc(); 1177 return FMF; 1178 } 1179 1180 static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) { 1181 switch (Val) { 1182 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break; 1183 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break; 1184 } 1185 } 1186 1187 Type *BitcodeReader::getFullyStructuredTypeByID(unsigned ID) { 1188 // The type table size is always specified correctly. 1189 if (ID >= TypeList.size()) 1190 return nullptr; 1191 1192 if (Type *Ty = TypeList[ID]) 1193 return Ty; 1194 1195 // If we have a forward reference, the only possible case is when it is to a 1196 // named struct. Just create a placeholder for now. 1197 return TypeList[ID] = createIdentifiedStructType(Context); 1198 } 1199 1200 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context, 1201 StringRef Name) { 1202 auto *Ret = StructType::create(Context, Name); 1203 IdentifiedStructTypes.push_back(Ret); 1204 return Ret; 1205 } 1206 1207 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) { 1208 auto *Ret = StructType::create(Context); 1209 IdentifiedStructTypes.push_back(Ret); 1210 return Ret; 1211 } 1212 1213 //===----------------------------------------------------------------------===// 1214 // Functions for parsing blocks from the bitcode file 1215 //===----------------------------------------------------------------------===// 1216 1217 static uint64_t getRawAttributeMask(Attribute::AttrKind Val) { 1218 switch (Val) { 1219 case Attribute::EndAttrKinds: 1220 llvm_unreachable("Synthetic enumerators which should never get here"); 1221 1222 case Attribute::None: return 0; 1223 case Attribute::ZExt: return 1 << 0; 1224 case Attribute::SExt: return 1 << 1; 1225 case Attribute::NoReturn: return 1 << 2; 1226 case Attribute::InReg: return 1 << 3; 1227 case Attribute::StructRet: return 1 << 4; 1228 case Attribute::NoUnwind: return 1 << 5; 1229 case Attribute::NoAlias: return 1 << 6; 1230 case Attribute::ByVal: return 1 << 7; 1231 case Attribute::Nest: return 1 << 8; 1232 case Attribute::ReadNone: return 1 << 9; 1233 case Attribute::ReadOnly: return 1 << 10; 1234 case Attribute::NoInline: return 1 << 11; 1235 case Attribute::AlwaysInline: return 1 << 12; 1236 case Attribute::OptimizeForSize: return 1 << 13; 1237 case Attribute::StackProtect: return 1 << 14; 1238 case Attribute::StackProtectReq: return 1 << 15; 1239 case Attribute::Alignment: return 31 << 16; 1240 case Attribute::NoCapture: return 1 << 21; 1241 case Attribute::NoRedZone: return 1 << 22; 1242 case Attribute::NoImplicitFloat: return 1 << 23; 1243 case Attribute::Naked: return 1 << 24; 1244 case Attribute::InlineHint: return 1 << 25; 1245 case Attribute::StackAlignment: return 7 << 26; 1246 case Attribute::ReturnsTwice: return 1 << 29; 1247 case Attribute::UWTable: return 1 << 30; 1248 case Attribute::NonLazyBind: return 1U << 31; 1249 case Attribute::SanitizeAddress: return 1ULL << 32; 1250 case Attribute::MinSize: return 1ULL << 33; 1251 case Attribute::NoDuplicate: return 1ULL << 34; 1252 case Attribute::StackProtectStrong: return 1ULL << 35; 1253 case Attribute::SanitizeThread: return 1ULL << 36; 1254 case Attribute::SanitizeMemory: return 1ULL << 37; 1255 case Attribute::NoBuiltin: return 1ULL << 38; 1256 case Attribute::Returned: return 1ULL << 39; 1257 case Attribute::Cold: return 1ULL << 40; 1258 case Attribute::Builtin: return 1ULL << 41; 1259 case Attribute::OptimizeNone: return 1ULL << 42; 1260 case Attribute::InAlloca: return 1ULL << 43; 1261 case Attribute::NonNull: return 1ULL << 44; 1262 case Attribute::JumpTable: return 1ULL << 45; 1263 case Attribute::Convergent: return 1ULL << 46; 1264 case Attribute::SafeStack: return 1ULL << 47; 1265 case Attribute::NoRecurse: return 1ULL << 48; 1266 case Attribute::InaccessibleMemOnly: return 1ULL << 49; 1267 case Attribute::InaccessibleMemOrArgMemOnly: return 1ULL << 50; 1268 case Attribute::SwiftSelf: return 1ULL << 51; 1269 case Attribute::SwiftError: return 1ULL << 52; 1270 case Attribute::WriteOnly: return 1ULL << 53; 1271 case Attribute::Speculatable: return 1ULL << 54; 1272 case Attribute::StrictFP: return 1ULL << 55; 1273 case Attribute::SanitizeHWAddress: return 1ULL << 56; 1274 case Attribute::NoCfCheck: return 1ULL << 57; 1275 case Attribute::OptForFuzzing: return 1ULL << 58; 1276 case Attribute::ShadowCallStack: return 1ULL << 59; 1277 case Attribute::SpeculativeLoadHardening: 1278 return 1ULL << 60; 1279 case Attribute::ImmArg: 1280 return 1ULL << 61; 1281 case Attribute::WillReturn: 1282 return 1ULL << 62; 1283 case Attribute::NoFree: 1284 return 1ULL << 63; 1285 case Attribute::NoSync: 1286 llvm_unreachable("nosync attribute not supported in raw format"); 1287 break; 1288 case Attribute::Dereferenceable: 1289 llvm_unreachable("dereferenceable attribute not supported in raw format"); 1290 break; 1291 case Attribute::DereferenceableOrNull: 1292 llvm_unreachable("dereferenceable_or_null attribute not supported in raw " 1293 "format"); 1294 break; 1295 case Attribute::ArgMemOnly: 1296 llvm_unreachable("argmemonly attribute not supported in raw format"); 1297 break; 1298 case Attribute::AllocSize: 1299 llvm_unreachable("allocsize not supported in raw format"); 1300 break; 1301 case Attribute::SanitizeMemTag: 1302 llvm_unreachable("sanitize_memtag attribute not supported in raw format"); 1303 break; 1304 } 1305 llvm_unreachable("Unsupported attribute type"); 1306 } 1307 1308 static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) { 1309 if (!Val) return; 1310 1311 for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds; 1312 I = Attribute::AttrKind(I + 1)) { 1313 if (I == Attribute::SanitizeMemTag || 1314 I == Attribute::Dereferenceable || 1315 I == Attribute::DereferenceableOrNull || 1316 I == Attribute::ArgMemOnly || 1317 I == Attribute::AllocSize || 1318 I == Attribute::NoSync) 1319 continue; 1320 if (uint64_t A = (Val & getRawAttributeMask(I))) { 1321 if (I == Attribute::Alignment) 1322 B.addAlignmentAttr(1ULL << ((A >> 16) - 1)); 1323 else if (I == Attribute::StackAlignment) 1324 B.addStackAlignmentAttr(1ULL << ((A >> 26)-1)); 1325 else 1326 B.addAttribute(I); 1327 } 1328 } 1329 } 1330 1331 /// This fills an AttrBuilder object with the LLVM attributes that have 1332 /// been decoded from the given integer. This function must stay in sync with 1333 /// 'encodeLLVMAttributesForBitcode'. 1334 static void decodeLLVMAttributesForBitcode(AttrBuilder &B, 1335 uint64_t EncodedAttrs) { 1336 // FIXME: Remove in 4.0. 1337 1338 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift 1339 // the bits above 31 down by 11 bits. 1340 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; 1341 assert((!Alignment || isPowerOf2_32(Alignment)) && 1342 "Alignment must be a power of two."); 1343 1344 if (Alignment) 1345 B.addAlignmentAttr(Alignment); 1346 addRawAttributeValue(B, ((EncodedAttrs & (0xfffffULL << 32)) >> 11) | 1347 (EncodedAttrs & 0xffff)); 1348 } 1349 1350 Error BitcodeReader::parseAttributeBlock() { 1351 if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 1352 return Err; 1353 1354 if (!MAttributes.empty()) 1355 return error("Invalid multiple blocks"); 1356 1357 SmallVector<uint64_t, 64> Record; 1358 1359 SmallVector<AttributeList, 8> Attrs; 1360 1361 // Read all the records. 1362 while (true) { 1363 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1364 if (!MaybeEntry) 1365 return MaybeEntry.takeError(); 1366 BitstreamEntry Entry = MaybeEntry.get(); 1367 1368 switch (Entry.Kind) { 1369 case BitstreamEntry::SubBlock: // Handled for us already. 1370 case BitstreamEntry::Error: 1371 return error("Malformed block"); 1372 case BitstreamEntry::EndBlock: 1373 return Error::success(); 1374 case BitstreamEntry::Record: 1375 // The interesting case. 1376 break; 1377 } 1378 1379 // Read a record. 1380 Record.clear(); 1381 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1382 if (!MaybeRecord) 1383 return MaybeRecord.takeError(); 1384 switch (MaybeRecord.get()) { 1385 default: // Default behavior: ignore. 1386 break; 1387 case bitc::PARAMATTR_CODE_ENTRY_OLD: // ENTRY: [paramidx0, attr0, ...] 1388 // FIXME: Remove in 4.0. 1389 if (Record.size() & 1) 1390 return error("Invalid record"); 1391 1392 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1393 AttrBuilder B; 1394 decodeLLVMAttributesForBitcode(B, Record[i+1]); 1395 Attrs.push_back(AttributeList::get(Context, Record[i], B)); 1396 } 1397 1398 MAttributes.push_back(AttributeList::get(Context, Attrs)); 1399 Attrs.clear(); 1400 break; 1401 case bitc::PARAMATTR_CODE_ENTRY: // ENTRY: [attrgrp0, attrgrp1, ...] 1402 for (unsigned i = 0, e = Record.size(); i != e; ++i) 1403 Attrs.push_back(MAttributeGroups[Record[i]]); 1404 1405 MAttributes.push_back(AttributeList::get(Context, Attrs)); 1406 Attrs.clear(); 1407 break; 1408 } 1409 } 1410 } 1411 1412 // Returns Attribute::None on unrecognized codes. 1413 static Attribute::AttrKind getAttrFromCode(uint64_t Code) { 1414 switch (Code) { 1415 default: 1416 return Attribute::None; 1417 case bitc::ATTR_KIND_ALIGNMENT: 1418 return Attribute::Alignment; 1419 case bitc::ATTR_KIND_ALWAYS_INLINE: 1420 return Attribute::AlwaysInline; 1421 case bitc::ATTR_KIND_ARGMEMONLY: 1422 return Attribute::ArgMemOnly; 1423 case bitc::ATTR_KIND_BUILTIN: 1424 return Attribute::Builtin; 1425 case bitc::ATTR_KIND_BY_VAL: 1426 return Attribute::ByVal; 1427 case bitc::ATTR_KIND_IN_ALLOCA: 1428 return Attribute::InAlloca; 1429 case bitc::ATTR_KIND_COLD: 1430 return Attribute::Cold; 1431 case bitc::ATTR_KIND_CONVERGENT: 1432 return Attribute::Convergent; 1433 case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY: 1434 return Attribute::InaccessibleMemOnly; 1435 case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY: 1436 return Attribute::InaccessibleMemOrArgMemOnly; 1437 case bitc::ATTR_KIND_INLINE_HINT: 1438 return Attribute::InlineHint; 1439 case bitc::ATTR_KIND_IN_REG: 1440 return Attribute::InReg; 1441 case bitc::ATTR_KIND_JUMP_TABLE: 1442 return Attribute::JumpTable; 1443 case bitc::ATTR_KIND_MIN_SIZE: 1444 return Attribute::MinSize; 1445 case bitc::ATTR_KIND_NAKED: 1446 return Attribute::Naked; 1447 case bitc::ATTR_KIND_NEST: 1448 return Attribute::Nest; 1449 case bitc::ATTR_KIND_NO_ALIAS: 1450 return Attribute::NoAlias; 1451 case bitc::ATTR_KIND_NO_BUILTIN: 1452 return Attribute::NoBuiltin; 1453 case bitc::ATTR_KIND_NO_CAPTURE: 1454 return Attribute::NoCapture; 1455 case bitc::ATTR_KIND_NO_DUPLICATE: 1456 return Attribute::NoDuplicate; 1457 case bitc::ATTR_KIND_NOFREE: 1458 return Attribute::NoFree; 1459 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: 1460 return Attribute::NoImplicitFloat; 1461 case bitc::ATTR_KIND_NO_INLINE: 1462 return Attribute::NoInline; 1463 case bitc::ATTR_KIND_NO_RECURSE: 1464 return Attribute::NoRecurse; 1465 case bitc::ATTR_KIND_NON_LAZY_BIND: 1466 return Attribute::NonLazyBind; 1467 case bitc::ATTR_KIND_NON_NULL: 1468 return Attribute::NonNull; 1469 case bitc::ATTR_KIND_DEREFERENCEABLE: 1470 return Attribute::Dereferenceable; 1471 case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL: 1472 return Attribute::DereferenceableOrNull; 1473 case bitc::ATTR_KIND_ALLOC_SIZE: 1474 return Attribute::AllocSize; 1475 case bitc::ATTR_KIND_NO_RED_ZONE: 1476 return Attribute::NoRedZone; 1477 case bitc::ATTR_KIND_NO_RETURN: 1478 return Attribute::NoReturn; 1479 case bitc::ATTR_KIND_NOSYNC: 1480 return Attribute::NoSync; 1481 case bitc::ATTR_KIND_NOCF_CHECK: 1482 return Attribute::NoCfCheck; 1483 case bitc::ATTR_KIND_NO_UNWIND: 1484 return Attribute::NoUnwind; 1485 case bitc::ATTR_KIND_OPT_FOR_FUZZING: 1486 return Attribute::OptForFuzzing; 1487 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: 1488 return Attribute::OptimizeForSize; 1489 case bitc::ATTR_KIND_OPTIMIZE_NONE: 1490 return Attribute::OptimizeNone; 1491 case bitc::ATTR_KIND_READ_NONE: 1492 return Attribute::ReadNone; 1493 case bitc::ATTR_KIND_READ_ONLY: 1494 return Attribute::ReadOnly; 1495 case bitc::ATTR_KIND_RETURNED: 1496 return Attribute::Returned; 1497 case bitc::ATTR_KIND_RETURNS_TWICE: 1498 return Attribute::ReturnsTwice; 1499 case bitc::ATTR_KIND_S_EXT: 1500 return Attribute::SExt; 1501 case bitc::ATTR_KIND_SPECULATABLE: 1502 return Attribute::Speculatable; 1503 case bitc::ATTR_KIND_STACK_ALIGNMENT: 1504 return Attribute::StackAlignment; 1505 case bitc::ATTR_KIND_STACK_PROTECT: 1506 return Attribute::StackProtect; 1507 case bitc::ATTR_KIND_STACK_PROTECT_REQ: 1508 return Attribute::StackProtectReq; 1509 case bitc::ATTR_KIND_STACK_PROTECT_STRONG: 1510 return Attribute::StackProtectStrong; 1511 case bitc::ATTR_KIND_SAFESTACK: 1512 return Attribute::SafeStack; 1513 case bitc::ATTR_KIND_SHADOWCALLSTACK: 1514 return Attribute::ShadowCallStack; 1515 case bitc::ATTR_KIND_STRICT_FP: 1516 return Attribute::StrictFP; 1517 case bitc::ATTR_KIND_STRUCT_RET: 1518 return Attribute::StructRet; 1519 case bitc::ATTR_KIND_SANITIZE_ADDRESS: 1520 return Attribute::SanitizeAddress; 1521 case bitc::ATTR_KIND_SANITIZE_HWADDRESS: 1522 return Attribute::SanitizeHWAddress; 1523 case bitc::ATTR_KIND_SANITIZE_THREAD: 1524 return Attribute::SanitizeThread; 1525 case bitc::ATTR_KIND_SANITIZE_MEMORY: 1526 return Attribute::SanitizeMemory; 1527 case bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING: 1528 return Attribute::SpeculativeLoadHardening; 1529 case bitc::ATTR_KIND_SWIFT_ERROR: 1530 return Attribute::SwiftError; 1531 case bitc::ATTR_KIND_SWIFT_SELF: 1532 return Attribute::SwiftSelf; 1533 case bitc::ATTR_KIND_UW_TABLE: 1534 return Attribute::UWTable; 1535 case bitc::ATTR_KIND_WILLRETURN: 1536 return Attribute::WillReturn; 1537 case bitc::ATTR_KIND_WRITEONLY: 1538 return Attribute::WriteOnly; 1539 case bitc::ATTR_KIND_Z_EXT: 1540 return Attribute::ZExt; 1541 case bitc::ATTR_KIND_IMMARG: 1542 return Attribute::ImmArg; 1543 case bitc::ATTR_KIND_SANITIZE_MEMTAG: 1544 return Attribute::SanitizeMemTag; 1545 } 1546 } 1547 1548 Error BitcodeReader::parseAlignmentValue(uint64_t Exponent, 1549 MaybeAlign &Alignment) { 1550 // Note: Alignment in bitcode files is incremented by 1, so that zero 1551 // can be used for default alignment. 1552 if (Exponent > Value::MaxAlignmentExponent + 1) 1553 return error("Invalid alignment value"); 1554 Alignment = decodeMaybeAlign(Exponent); 1555 return Error::success(); 1556 } 1557 1558 Error BitcodeReader::parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind) { 1559 *Kind = getAttrFromCode(Code); 1560 if (*Kind == Attribute::None) 1561 return error("Unknown attribute kind (" + Twine(Code) + ")"); 1562 return Error::success(); 1563 } 1564 1565 Error BitcodeReader::parseAttributeGroupBlock() { 1566 if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) 1567 return Err; 1568 1569 if (!MAttributeGroups.empty()) 1570 return error("Invalid multiple blocks"); 1571 1572 SmallVector<uint64_t, 64> Record; 1573 1574 // Read all the records. 1575 while (true) { 1576 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1577 if (!MaybeEntry) 1578 return MaybeEntry.takeError(); 1579 BitstreamEntry Entry = MaybeEntry.get(); 1580 1581 switch (Entry.Kind) { 1582 case BitstreamEntry::SubBlock: // Handled for us already. 1583 case BitstreamEntry::Error: 1584 return error("Malformed block"); 1585 case BitstreamEntry::EndBlock: 1586 return Error::success(); 1587 case BitstreamEntry::Record: 1588 // The interesting case. 1589 break; 1590 } 1591 1592 // Read a record. 1593 Record.clear(); 1594 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1595 if (!MaybeRecord) 1596 return MaybeRecord.takeError(); 1597 switch (MaybeRecord.get()) { 1598 default: // Default behavior: ignore. 1599 break; 1600 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] 1601 if (Record.size() < 3) 1602 return error("Invalid record"); 1603 1604 uint64_t GrpID = Record[0]; 1605 uint64_t Idx = Record[1]; // Index of the object this attribute refers to. 1606 1607 AttrBuilder B; 1608 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1609 if (Record[i] == 0) { // Enum attribute 1610 Attribute::AttrKind Kind; 1611 if (Error Err = parseAttrKind(Record[++i], &Kind)) 1612 return Err; 1613 1614 // Upgrade old-style byval attribute to one with a type, even if it's 1615 // nullptr. We will have to insert the real type when we associate 1616 // this AttributeList with a function. 1617 if (Kind == Attribute::ByVal) 1618 B.addByValAttr(nullptr); 1619 1620 B.addAttribute(Kind); 1621 } else if (Record[i] == 1) { // Integer attribute 1622 Attribute::AttrKind Kind; 1623 if (Error Err = parseAttrKind(Record[++i], &Kind)) 1624 return Err; 1625 if (Kind == Attribute::Alignment) 1626 B.addAlignmentAttr(Record[++i]); 1627 else if (Kind == Attribute::StackAlignment) 1628 B.addStackAlignmentAttr(Record[++i]); 1629 else if (Kind == Attribute::Dereferenceable) 1630 B.addDereferenceableAttr(Record[++i]); 1631 else if (Kind == Attribute::DereferenceableOrNull) 1632 B.addDereferenceableOrNullAttr(Record[++i]); 1633 else if (Kind == Attribute::AllocSize) 1634 B.addAllocSizeAttrFromRawRepr(Record[++i]); 1635 } else if (Record[i] == 3 || Record[i] == 4) { // String attribute 1636 bool HasValue = (Record[i++] == 4); 1637 SmallString<64> KindStr; 1638 SmallString<64> ValStr; 1639 1640 while (Record[i] != 0 && i != e) 1641 KindStr += Record[i++]; 1642 assert(Record[i] == 0 && "Kind string not null terminated"); 1643 1644 if (HasValue) { 1645 // Has a value associated with it. 1646 ++i; // Skip the '0' that terminates the "kind" string. 1647 while (Record[i] != 0 && i != e) 1648 ValStr += Record[i++]; 1649 assert(Record[i] == 0 && "Value string not null terminated"); 1650 } 1651 1652 B.addAttribute(KindStr.str(), ValStr.str()); 1653 } else { 1654 assert((Record[i] == 5 || Record[i] == 6) && 1655 "Invalid attribute group entry"); 1656 bool HasType = Record[i] == 6; 1657 Attribute::AttrKind Kind; 1658 if (Error Err = parseAttrKind(Record[++i], &Kind)) 1659 return Err; 1660 if (Kind == Attribute::ByVal) 1661 B.addByValAttr(HasType ? getTypeByID(Record[++i]) : nullptr); 1662 } 1663 } 1664 1665 UpgradeFramePointerAttributes(B); 1666 MAttributeGroups[GrpID] = AttributeList::get(Context, Idx, B); 1667 break; 1668 } 1669 } 1670 } 1671 } 1672 1673 Error BitcodeReader::parseTypeTable() { 1674 if (Error Err = Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 1675 return Err; 1676 1677 return parseTypeTableBody(); 1678 } 1679 1680 Error BitcodeReader::parseTypeTableBody() { 1681 if (!TypeList.empty()) 1682 return error("Invalid multiple blocks"); 1683 1684 SmallVector<uint64_t, 64> Record; 1685 unsigned NumRecords = 0; 1686 1687 SmallString<64> TypeName; 1688 1689 // Read all the records for this type table. 1690 while (true) { 1691 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1692 if (!MaybeEntry) 1693 return MaybeEntry.takeError(); 1694 BitstreamEntry Entry = MaybeEntry.get(); 1695 1696 switch (Entry.Kind) { 1697 case BitstreamEntry::SubBlock: // Handled for us already. 1698 case BitstreamEntry::Error: 1699 return error("Malformed block"); 1700 case BitstreamEntry::EndBlock: 1701 if (NumRecords != TypeList.size()) 1702 return error("Malformed block"); 1703 return Error::success(); 1704 case BitstreamEntry::Record: 1705 // The interesting case. 1706 break; 1707 } 1708 1709 // Read a record. 1710 Record.clear(); 1711 Type *ResultTy = nullptr; 1712 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1713 if (!MaybeRecord) 1714 return MaybeRecord.takeError(); 1715 switch (MaybeRecord.get()) { 1716 default: 1717 return error("Invalid value"); 1718 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 1719 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 1720 // type list. This allows us to reserve space. 1721 if (Record.size() < 1) 1722 return error("Invalid record"); 1723 TypeList.resize(Record[0]); 1724 continue; 1725 case bitc::TYPE_CODE_VOID: // VOID 1726 ResultTy = Type::getVoidTy(Context); 1727 break; 1728 case bitc::TYPE_CODE_HALF: // HALF 1729 ResultTy = Type::getHalfTy(Context); 1730 break; 1731 case bitc::TYPE_CODE_FLOAT: // FLOAT 1732 ResultTy = Type::getFloatTy(Context); 1733 break; 1734 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 1735 ResultTy = Type::getDoubleTy(Context); 1736 break; 1737 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 1738 ResultTy = Type::getX86_FP80Ty(Context); 1739 break; 1740 case bitc::TYPE_CODE_FP128: // FP128 1741 ResultTy = Type::getFP128Ty(Context); 1742 break; 1743 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 1744 ResultTy = Type::getPPC_FP128Ty(Context); 1745 break; 1746 case bitc::TYPE_CODE_LABEL: // LABEL 1747 ResultTy = Type::getLabelTy(Context); 1748 break; 1749 case bitc::TYPE_CODE_METADATA: // METADATA 1750 ResultTy = Type::getMetadataTy(Context); 1751 break; 1752 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 1753 ResultTy = Type::getX86_MMXTy(Context); 1754 break; 1755 case bitc::TYPE_CODE_TOKEN: // TOKEN 1756 ResultTy = Type::getTokenTy(Context); 1757 break; 1758 case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width] 1759 if (Record.size() < 1) 1760 return error("Invalid record"); 1761 1762 uint64_t NumBits = Record[0]; 1763 if (NumBits < IntegerType::MIN_INT_BITS || 1764 NumBits > IntegerType::MAX_INT_BITS) 1765 return error("Bitwidth for integer type out of range"); 1766 ResultTy = IntegerType::get(Context, NumBits); 1767 break; 1768 } 1769 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 1770 // [pointee type, address space] 1771 if (Record.size() < 1) 1772 return error("Invalid record"); 1773 unsigned AddressSpace = 0; 1774 if (Record.size() == 2) 1775 AddressSpace = Record[1]; 1776 ResultTy = getTypeByID(Record[0]); 1777 if (!ResultTy || 1778 !PointerType::isValidElementType(ResultTy)) 1779 return error("Invalid type"); 1780 ResultTy = PointerType::get(ResultTy, AddressSpace); 1781 break; 1782 } 1783 case bitc::TYPE_CODE_FUNCTION_OLD: { 1784 // FIXME: attrid is dead, remove it in LLVM 4.0 1785 // FUNCTION: [vararg, attrid, retty, paramty x N] 1786 if (Record.size() < 3) 1787 return error("Invalid record"); 1788 SmallVector<Type*, 8> ArgTys; 1789 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 1790 if (Type *T = getTypeByID(Record[i])) 1791 ArgTys.push_back(T); 1792 else 1793 break; 1794 } 1795 1796 ResultTy = getTypeByID(Record[2]); 1797 if (!ResultTy || ArgTys.size() < Record.size()-3) 1798 return error("Invalid type"); 1799 1800 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1801 break; 1802 } 1803 case bitc::TYPE_CODE_FUNCTION: { 1804 // FUNCTION: [vararg, retty, paramty x N] 1805 if (Record.size() < 2) 1806 return error("Invalid record"); 1807 SmallVector<Type*, 8> ArgTys; 1808 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1809 if (Type *T = getTypeByID(Record[i])) { 1810 if (!FunctionType::isValidArgumentType(T)) 1811 return error("Invalid function argument type"); 1812 ArgTys.push_back(T); 1813 } 1814 else 1815 break; 1816 } 1817 1818 ResultTy = getTypeByID(Record[1]); 1819 if (!ResultTy || ArgTys.size() < Record.size()-2) 1820 return error("Invalid type"); 1821 1822 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1823 break; 1824 } 1825 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 1826 if (Record.size() < 1) 1827 return error("Invalid record"); 1828 SmallVector<Type*, 8> EltTys; 1829 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1830 if (Type *T = getTypeByID(Record[i])) 1831 EltTys.push_back(T); 1832 else 1833 break; 1834 } 1835 if (EltTys.size() != Record.size()-1) 1836 return error("Invalid type"); 1837 ResultTy = StructType::get(Context, EltTys, Record[0]); 1838 break; 1839 } 1840 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 1841 if (convertToString(Record, 0, TypeName)) 1842 return error("Invalid record"); 1843 continue; 1844 1845 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 1846 if (Record.size() < 1) 1847 return error("Invalid record"); 1848 1849 if (NumRecords >= TypeList.size()) 1850 return error("Invalid TYPE table"); 1851 1852 // Check to see if this was forward referenced, if so fill in the temp. 1853 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1854 if (Res) { 1855 Res->setName(TypeName); 1856 TypeList[NumRecords] = nullptr; 1857 } else // Otherwise, create a new struct. 1858 Res = createIdentifiedStructType(Context, TypeName); 1859 TypeName.clear(); 1860 1861 SmallVector<Type*, 8> EltTys; 1862 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1863 if (Type *T = getTypeByID(Record[i])) 1864 EltTys.push_back(T); 1865 else 1866 break; 1867 } 1868 if (EltTys.size() != Record.size()-1) 1869 return error("Invalid record"); 1870 Res->setBody(EltTys, Record[0]); 1871 ResultTy = Res; 1872 break; 1873 } 1874 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 1875 if (Record.size() != 1) 1876 return error("Invalid record"); 1877 1878 if (NumRecords >= TypeList.size()) 1879 return error("Invalid TYPE table"); 1880 1881 // Check to see if this was forward referenced, if so fill in the temp. 1882 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1883 if (Res) { 1884 Res->setName(TypeName); 1885 TypeList[NumRecords] = nullptr; 1886 } else // Otherwise, create a new struct with no body. 1887 Res = createIdentifiedStructType(Context, TypeName); 1888 TypeName.clear(); 1889 ResultTy = Res; 1890 break; 1891 } 1892 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 1893 if (Record.size() < 2) 1894 return error("Invalid record"); 1895 ResultTy = getTypeByID(Record[1]); 1896 if (!ResultTy || !ArrayType::isValidElementType(ResultTy)) 1897 return error("Invalid type"); 1898 ResultTy = ArrayType::get(ResultTy, Record[0]); 1899 break; 1900 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] or 1901 // [numelts, eltty, scalable] 1902 if (Record.size() < 2) 1903 return error("Invalid record"); 1904 if (Record[0] == 0) 1905 return error("Invalid vector length"); 1906 ResultTy = getTypeByID(Record[1]); 1907 if (!ResultTy || !StructType::isValidElementType(ResultTy)) 1908 return error("Invalid type"); 1909 bool Scalable = Record.size() > 2 ? Record[2] : false; 1910 ResultTy = VectorType::get(ResultTy, Record[0], Scalable); 1911 break; 1912 } 1913 1914 if (NumRecords >= TypeList.size()) 1915 return error("Invalid TYPE table"); 1916 if (TypeList[NumRecords]) 1917 return error( 1918 "Invalid TYPE table: Only named structs can be forward referenced"); 1919 assert(ResultTy && "Didn't read a type?"); 1920 TypeList[NumRecords++] = ResultTy; 1921 } 1922 } 1923 1924 Error BitcodeReader::parseOperandBundleTags() { 1925 if (Error Err = Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID)) 1926 return Err; 1927 1928 if (!BundleTags.empty()) 1929 return error("Invalid multiple blocks"); 1930 1931 SmallVector<uint64_t, 64> Record; 1932 1933 while (true) { 1934 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1935 if (!MaybeEntry) 1936 return MaybeEntry.takeError(); 1937 BitstreamEntry Entry = MaybeEntry.get(); 1938 1939 switch (Entry.Kind) { 1940 case BitstreamEntry::SubBlock: // Handled for us already. 1941 case BitstreamEntry::Error: 1942 return error("Malformed block"); 1943 case BitstreamEntry::EndBlock: 1944 return Error::success(); 1945 case BitstreamEntry::Record: 1946 // The interesting case. 1947 break; 1948 } 1949 1950 // Tags are implicitly mapped to integers by their order. 1951 1952 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1953 if (!MaybeRecord) 1954 return MaybeRecord.takeError(); 1955 if (MaybeRecord.get() != bitc::OPERAND_BUNDLE_TAG) 1956 return error("Invalid record"); 1957 1958 // OPERAND_BUNDLE_TAG: [strchr x N] 1959 BundleTags.emplace_back(); 1960 if (convertToString(Record, 0, BundleTags.back())) 1961 return error("Invalid record"); 1962 Record.clear(); 1963 } 1964 } 1965 1966 Error BitcodeReader::parseSyncScopeNames() { 1967 if (Error Err = Stream.EnterSubBlock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID)) 1968 return Err; 1969 1970 if (!SSIDs.empty()) 1971 return error("Invalid multiple synchronization scope names blocks"); 1972 1973 SmallVector<uint64_t, 64> Record; 1974 while (true) { 1975 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1976 if (!MaybeEntry) 1977 return MaybeEntry.takeError(); 1978 BitstreamEntry Entry = MaybeEntry.get(); 1979 1980 switch (Entry.Kind) { 1981 case BitstreamEntry::SubBlock: // Handled for us already. 1982 case BitstreamEntry::Error: 1983 return error("Malformed block"); 1984 case BitstreamEntry::EndBlock: 1985 if (SSIDs.empty()) 1986 return error("Invalid empty synchronization scope names block"); 1987 return Error::success(); 1988 case BitstreamEntry::Record: 1989 // The interesting case. 1990 break; 1991 } 1992 1993 // Synchronization scope names are implicitly mapped to synchronization 1994 // scope IDs by their order. 1995 1996 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1997 if (!MaybeRecord) 1998 return MaybeRecord.takeError(); 1999 if (MaybeRecord.get() != bitc::SYNC_SCOPE_NAME) 2000 return error("Invalid record"); 2001 2002 SmallString<16> SSN; 2003 if (convertToString(Record, 0, SSN)) 2004 return error("Invalid record"); 2005 2006 SSIDs.push_back(Context.getOrInsertSyncScopeID(SSN)); 2007 Record.clear(); 2008 } 2009 } 2010 2011 /// Associate a value with its name from the given index in the provided record. 2012 Expected<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record, 2013 unsigned NameIndex, Triple &TT) { 2014 SmallString<128> ValueName; 2015 if (convertToString(Record, NameIndex, ValueName)) 2016 return error("Invalid record"); 2017 unsigned ValueID = Record[0]; 2018 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 2019 return error("Invalid record"); 2020 Value *V = ValueList[ValueID]; 2021 2022 StringRef NameStr(ValueName.data(), ValueName.size()); 2023 if (NameStr.find_first_of(0) != StringRef::npos) 2024 return error("Invalid value name"); 2025 V->setName(NameStr); 2026 auto *GO = dyn_cast<GlobalObject>(V); 2027 if (GO) { 2028 if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) { 2029 if (TT.supportsCOMDAT()) 2030 GO->setComdat(TheModule->getOrInsertComdat(V->getName())); 2031 else 2032 GO->setComdat(nullptr); 2033 } 2034 } 2035 return V; 2036 } 2037 2038 /// Helper to note and return the current location, and jump to the given 2039 /// offset. 2040 static Expected<uint64_t> jumpToValueSymbolTable(uint64_t Offset, 2041 BitstreamCursor &Stream) { 2042 // Save the current parsing location so we can jump back at the end 2043 // of the VST read. 2044 uint64_t CurrentBit = Stream.GetCurrentBitNo(); 2045 if (Error JumpFailed = Stream.JumpToBit(Offset * 32)) 2046 return std::move(JumpFailed); 2047 Expected<BitstreamEntry> MaybeEntry = Stream.advance(); 2048 if (!MaybeEntry) 2049 return MaybeEntry.takeError(); 2050 assert(MaybeEntry.get().Kind == BitstreamEntry::SubBlock); 2051 assert(MaybeEntry.get().ID == bitc::VALUE_SYMTAB_BLOCK_ID); 2052 return CurrentBit; 2053 } 2054 2055 void BitcodeReader::setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, 2056 Function *F, 2057 ArrayRef<uint64_t> Record) { 2058 // Note that we subtract 1 here because the offset is relative to one word 2059 // before the start of the identification or module block, which was 2060 // historically always the start of the regular bitcode header. 2061 uint64_t FuncWordOffset = Record[1] - 1; 2062 uint64_t FuncBitOffset = FuncWordOffset * 32; 2063 DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta; 2064 // Set the LastFunctionBlockBit to point to the last function block. 2065 // Later when parsing is resumed after function materialization, 2066 // we can simply skip that last function block. 2067 if (FuncBitOffset > LastFunctionBlockBit) 2068 LastFunctionBlockBit = FuncBitOffset; 2069 } 2070 2071 /// Read a new-style GlobalValue symbol table. 2072 Error BitcodeReader::parseGlobalValueSymbolTable() { 2073 unsigned FuncBitcodeOffsetDelta = 2074 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 2075 2076 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 2077 return Err; 2078 2079 SmallVector<uint64_t, 64> Record; 2080 while (true) { 2081 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2082 if (!MaybeEntry) 2083 return MaybeEntry.takeError(); 2084 BitstreamEntry Entry = MaybeEntry.get(); 2085 2086 switch (Entry.Kind) { 2087 case BitstreamEntry::SubBlock: 2088 case BitstreamEntry::Error: 2089 return error("Malformed block"); 2090 case BitstreamEntry::EndBlock: 2091 return Error::success(); 2092 case BitstreamEntry::Record: 2093 break; 2094 } 2095 2096 Record.clear(); 2097 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2098 if (!MaybeRecord) 2099 return MaybeRecord.takeError(); 2100 switch (MaybeRecord.get()) { 2101 case bitc::VST_CODE_FNENTRY: // [valueid, offset] 2102 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, 2103 cast<Function>(ValueList[Record[0]]), Record); 2104 break; 2105 } 2106 } 2107 } 2108 2109 /// Parse the value symbol table at either the current parsing location or 2110 /// at the given bit offset if provided. 2111 Error BitcodeReader::parseValueSymbolTable(uint64_t Offset) { 2112 uint64_t CurrentBit; 2113 // Pass in the Offset to distinguish between calling for the module-level 2114 // VST (where we want to jump to the VST offset) and the function-level 2115 // VST (where we don't). 2116 if (Offset > 0) { 2117 Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream); 2118 if (!MaybeCurrentBit) 2119 return MaybeCurrentBit.takeError(); 2120 CurrentBit = MaybeCurrentBit.get(); 2121 // If this module uses a string table, read this as a module-level VST. 2122 if (UseStrtab) { 2123 if (Error Err = parseGlobalValueSymbolTable()) 2124 return Err; 2125 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 2126 return JumpFailed; 2127 return Error::success(); 2128 } 2129 // Otherwise, the VST will be in a similar format to a function-level VST, 2130 // and will contain symbol names. 2131 } 2132 2133 // Compute the delta between the bitcode indices in the VST (the word offset 2134 // to the word-aligned ENTER_SUBBLOCK for the function block, and that 2135 // expected by the lazy reader. The reader's EnterSubBlock expects to have 2136 // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID 2137 // (size BlockIDWidth). Note that we access the stream's AbbrevID width here 2138 // just before entering the VST subblock because: 1) the EnterSubBlock 2139 // changes the AbbrevID width; 2) the VST block is nested within the same 2140 // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same 2141 // AbbrevID width before calling EnterSubBlock; and 3) when we want to 2142 // jump to the FUNCTION_BLOCK using this offset later, we don't want 2143 // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK. 2144 unsigned FuncBitcodeOffsetDelta = 2145 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 2146 2147 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 2148 return Err; 2149 2150 SmallVector<uint64_t, 64> Record; 2151 2152 Triple TT(TheModule->getTargetTriple()); 2153 2154 // Read all the records for this value table. 2155 SmallString<128> ValueName; 2156 2157 while (true) { 2158 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2159 if (!MaybeEntry) 2160 return MaybeEntry.takeError(); 2161 BitstreamEntry Entry = MaybeEntry.get(); 2162 2163 switch (Entry.Kind) { 2164 case BitstreamEntry::SubBlock: // Handled for us already. 2165 case BitstreamEntry::Error: 2166 return error("Malformed block"); 2167 case BitstreamEntry::EndBlock: 2168 if (Offset > 0) 2169 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 2170 return JumpFailed; 2171 return Error::success(); 2172 case BitstreamEntry::Record: 2173 // The interesting case. 2174 break; 2175 } 2176 2177 // Read a record. 2178 Record.clear(); 2179 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2180 if (!MaybeRecord) 2181 return MaybeRecord.takeError(); 2182 switch (MaybeRecord.get()) { 2183 default: // Default behavior: unknown type. 2184 break; 2185 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 2186 Expected<Value *> ValOrErr = recordValue(Record, 1, TT); 2187 if (Error Err = ValOrErr.takeError()) 2188 return Err; 2189 ValOrErr.get(); 2190 break; 2191 } 2192 case bitc::VST_CODE_FNENTRY: { 2193 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 2194 Expected<Value *> ValOrErr = recordValue(Record, 2, TT); 2195 if (Error Err = ValOrErr.takeError()) 2196 return Err; 2197 Value *V = ValOrErr.get(); 2198 2199 // Ignore function offsets emitted for aliases of functions in older 2200 // versions of LLVM. 2201 if (auto *F = dyn_cast<Function>(V)) 2202 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, F, Record); 2203 break; 2204 } 2205 case bitc::VST_CODE_BBENTRY: { 2206 if (convertToString(Record, 1, ValueName)) 2207 return error("Invalid record"); 2208 BasicBlock *BB = getBasicBlock(Record[0]); 2209 if (!BB) 2210 return error("Invalid record"); 2211 2212 BB->setName(StringRef(ValueName.data(), ValueName.size())); 2213 ValueName.clear(); 2214 break; 2215 } 2216 } 2217 } 2218 } 2219 2220 /// Decode a signed value stored with the sign bit in the LSB for dense VBR 2221 /// encoding. 2222 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { 2223 if ((V & 1) == 0) 2224 return V >> 1; 2225 if (V != 1) 2226 return -(V >> 1); 2227 // There is no such thing as -0 with integers. "-0" really means MININT. 2228 return 1ULL << 63; 2229 } 2230 2231 /// Resolve all of the initializers for global values and aliases that we can. 2232 Error BitcodeReader::resolveGlobalAndIndirectSymbolInits() { 2233 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInitWorklist; 2234 std::vector<std::pair<GlobalIndirectSymbol *, unsigned>> 2235 IndirectSymbolInitWorklist; 2236 std::vector<std::pair<Function *, unsigned>> FunctionPrefixWorklist; 2237 std::vector<std::pair<Function *, unsigned>> FunctionPrologueWorklist; 2238 std::vector<std::pair<Function *, unsigned>> FunctionPersonalityFnWorklist; 2239 2240 GlobalInitWorklist.swap(GlobalInits); 2241 IndirectSymbolInitWorklist.swap(IndirectSymbolInits); 2242 FunctionPrefixWorklist.swap(FunctionPrefixes); 2243 FunctionPrologueWorklist.swap(FunctionPrologues); 2244 FunctionPersonalityFnWorklist.swap(FunctionPersonalityFns); 2245 2246 while (!GlobalInitWorklist.empty()) { 2247 unsigned ValID = GlobalInitWorklist.back().second; 2248 if (ValID >= ValueList.size()) { 2249 // Not ready to resolve this yet, it requires something later in the file. 2250 GlobalInits.push_back(GlobalInitWorklist.back()); 2251 } else { 2252 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2253 GlobalInitWorklist.back().first->setInitializer(C); 2254 else 2255 return error("Expected a constant"); 2256 } 2257 GlobalInitWorklist.pop_back(); 2258 } 2259 2260 while (!IndirectSymbolInitWorklist.empty()) { 2261 unsigned ValID = IndirectSymbolInitWorklist.back().second; 2262 if (ValID >= ValueList.size()) { 2263 IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back()); 2264 } else { 2265 Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]); 2266 if (!C) 2267 return error("Expected a constant"); 2268 GlobalIndirectSymbol *GIS = IndirectSymbolInitWorklist.back().first; 2269 if (isa<GlobalAlias>(GIS) && C->getType() != GIS->getType()) 2270 return error("Alias and aliasee types don't match"); 2271 GIS->setIndirectSymbol(C); 2272 } 2273 IndirectSymbolInitWorklist.pop_back(); 2274 } 2275 2276 while (!FunctionPrefixWorklist.empty()) { 2277 unsigned ValID = FunctionPrefixWorklist.back().second; 2278 if (ValID >= ValueList.size()) { 2279 FunctionPrefixes.push_back(FunctionPrefixWorklist.back()); 2280 } else { 2281 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2282 FunctionPrefixWorklist.back().first->setPrefixData(C); 2283 else 2284 return error("Expected a constant"); 2285 } 2286 FunctionPrefixWorklist.pop_back(); 2287 } 2288 2289 while (!FunctionPrologueWorklist.empty()) { 2290 unsigned ValID = FunctionPrologueWorklist.back().second; 2291 if (ValID >= ValueList.size()) { 2292 FunctionPrologues.push_back(FunctionPrologueWorklist.back()); 2293 } else { 2294 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2295 FunctionPrologueWorklist.back().first->setPrologueData(C); 2296 else 2297 return error("Expected a constant"); 2298 } 2299 FunctionPrologueWorklist.pop_back(); 2300 } 2301 2302 while (!FunctionPersonalityFnWorklist.empty()) { 2303 unsigned ValID = FunctionPersonalityFnWorklist.back().second; 2304 if (ValID >= ValueList.size()) { 2305 FunctionPersonalityFns.push_back(FunctionPersonalityFnWorklist.back()); 2306 } else { 2307 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2308 FunctionPersonalityFnWorklist.back().first->setPersonalityFn(C); 2309 else 2310 return error("Expected a constant"); 2311 } 2312 FunctionPersonalityFnWorklist.pop_back(); 2313 } 2314 2315 return Error::success(); 2316 } 2317 2318 static APInt readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { 2319 SmallVector<uint64_t, 8> Words(Vals.size()); 2320 transform(Vals, Words.begin(), 2321 BitcodeReader::decodeSignRotatedValue); 2322 2323 return APInt(TypeBits, Words); 2324 } 2325 2326 Error BitcodeReader::parseConstants() { 2327 if (Error Err = Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 2328 return Err; 2329 2330 SmallVector<uint64_t, 64> Record; 2331 2332 // Read all the records for this value table. 2333 Type *CurTy = Type::getInt32Ty(Context); 2334 Type *CurFullTy = Type::getInt32Ty(Context); 2335 unsigned NextCstNo = ValueList.size(); 2336 2337 while (true) { 2338 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2339 if (!MaybeEntry) 2340 return MaybeEntry.takeError(); 2341 BitstreamEntry Entry = MaybeEntry.get(); 2342 2343 switch (Entry.Kind) { 2344 case BitstreamEntry::SubBlock: // Handled for us already. 2345 case BitstreamEntry::Error: 2346 return error("Malformed block"); 2347 case BitstreamEntry::EndBlock: 2348 if (NextCstNo != ValueList.size()) 2349 return error("Invalid constant reference"); 2350 2351 // Once all the constants have been read, go through and resolve forward 2352 // references. 2353 ValueList.resolveConstantForwardRefs(); 2354 return Error::success(); 2355 case BitstreamEntry::Record: 2356 // The interesting case. 2357 break; 2358 } 2359 2360 // Read a record. 2361 Record.clear(); 2362 Type *VoidType = Type::getVoidTy(Context); 2363 Value *V = nullptr; 2364 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 2365 if (!MaybeBitCode) 2366 return MaybeBitCode.takeError(); 2367 switch (unsigned BitCode = MaybeBitCode.get()) { 2368 default: // Default behavior: unknown constant 2369 case bitc::CST_CODE_UNDEF: // UNDEF 2370 V = UndefValue::get(CurTy); 2371 break; 2372 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 2373 if (Record.empty()) 2374 return error("Invalid record"); 2375 if (Record[0] >= TypeList.size() || !TypeList[Record[0]]) 2376 return error("Invalid record"); 2377 if (TypeList[Record[0]] == VoidType) 2378 return error("Invalid constant type"); 2379 CurFullTy = TypeList[Record[0]]; 2380 CurTy = flattenPointerTypes(CurFullTy); 2381 continue; // Skip the ValueList manipulation. 2382 case bitc::CST_CODE_NULL: // NULL 2383 if (CurTy->isVoidTy() || CurTy->isFunctionTy() || CurTy->isLabelTy()) 2384 return error("Invalid type for a constant null value"); 2385 V = Constant::getNullValue(CurTy); 2386 break; 2387 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 2388 if (!CurTy->isIntegerTy() || Record.empty()) 2389 return error("Invalid record"); 2390 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); 2391 break; 2392 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 2393 if (!CurTy->isIntegerTy() || Record.empty()) 2394 return error("Invalid record"); 2395 2396 APInt VInt = 2397 readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth()); 2398 V = ConstantInt::get(Context, VInt); 2399 2400 break; 2401 } 2402 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 2403 if (Record.empty()) 2404 return error("Invalid record"); 2405 if (CurTy->isHalfTy()) 2406 V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf(), 2407 APInt(16, (uint16_t)Record[0]))); 2408 else if (CurTy->isFloatTy()) 2409 V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle(), 2410 APInt(32, (uint32_t)Record[0]))); 2411 else if (CurTy->isDoubleTy()) 2412 V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble(), 2413 APInt(64, Record[0]))); 2414 else if (CurTy->isX86_FP80Ty()) { 2415 // Bits are not stored the same way as a normal i80 APInt, compensate. 2416 uint64_t Rearrange[2]; 2417 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 2418 Rearrange[1] = Record[0] >> 48; 2419 V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended(), 2420 APInt(80, Rearrange))); 2421 } else if (CurTy->isFP128Ty()) 2422 V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad(), 2423 APInt(128, Record))); 2424 else if (CurTy->isPPC_FP128Ty()) 2425 V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble(), 2426 APInt(128, Record))); 2427 else 2428 V = UndefValue::get(CurTy); 2429 break; 2430 } 2431 2432 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 2433 if (Record.empty()) 2434 return error("Invalid record"); 2435 2436 unsigned Size = Record.size(); 2437 SmallVector<Constant*, 16> Elts; 2438 2439 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 2440 for (unsigned i = 0; i != Size; ++i) 2441 Elts.push_back(ValueList.getConstantFwdRef(Record[i], 2442 STy->getElementType(i))); 2443 V = ConstantStruct::get(STy, Elts); 2444 } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) { 2445 Type *EltTy = ATy->getElementType(); 2446 for (unsigned i = 0; i != Size; ++i) 2447 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2448 V = ConstantArray::get(ATy, Elts); 2449 } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) { 2450 Type *EltTy = VTy->getElementType(); 2451 for (unsigned i = 0; i != Size; ++i) 2452 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2453 V = ConstantVector::get(Elts); 2454 } else { 2455 V = UndefValue::get(CurTy); 2456 } 2457 break; 2458 } 2459 case bitc::CST_CODE_STRING: // STRING: [values] 2460 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 2461 if (Record.empty()) 2462 return error("Invalid record"); 2463 2464 SmallString<16> Elts(Record.begin(), Record.end()); 2465 V = ConstantDataArray::getString(Context, Elts, 2466 BitCode == bitc::CST_CODE_CSTRING); 2467 break; 2468 } 2469 case bitc::CST_CODE_DATA: {// DATA: [n x value] 2470 if (Record.empty()) 2471 return error("Invalid record"); 2472 2473 Type *EltTy = cast<SequentialType>(CurTy)->getElementType(); 2474 if (EltTy->isIntegerTy(8)) { 2475 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); 2476 if (isa<VectorType>(CurTy)) 2477 V = ConstantDataVector::get(Context, Elts); 2478 else 2479 V = ConstantDataArray::get(Context, Elts); 2480 } else if (EltTy->isIntegerTy(16)) { 2481 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2482 if (isa<VectorType>(CurTy)) 2483 V = ConstantDataVector::get(Context, Elts); 2484 else 2485 V = ConstantDataArray::get(Context, Elts); 2486 } else if (EltTy->isIntegerTy(32)) { 2487 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2488 if (isa<VectorType>(CurTy)) 2489 V = ConstantDataVector::get(Context, Elts); 2490 else 2491 V = ConstantDataArray::get(Context, Elts); 2492 } else if (EltTy->isIntegerTy(64)) { 2493 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2494 if (isa<VectorType>(CurTy)) 2495 V = ConstantDataVector::get(Context, Elts); 2496 else 2497 V = ConstantDataArray::get(Context, Elts); 2498 } else if (EltTy->isHalfTy()) { 2499 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2500 if (isa<VectorType>(CurTy)) 2501 V = ConstantDataVector::getFP(Context, Elts); 2502 else 2503 V = ConstantDataArray::getFP(Context, Elts); 2504 } else if (EltTy->isFloatTy()) { 2505 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2506 if (isa<VectorType>(CurTy)) 2507 V = ConstantDataVector::getFP(Context, Elts); 2508 else 2509 V = ConstantDataArray::getFP(Context, Elts); 2510 } else if (EltTy->isDoubleTy()) { 2511 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2512 if (isa<VectorType>(CurTy)) 2513 V = ConstantDataVector::getFP(Context, Elts); 2514 else 2515 V = ConstantDataArray::getFP(Context, Elts); 2516 } else { 2517 return error("Invalid type for value"); 2518 } 2519 break; 2520 } 2521 case bitc::CST_CODE_CE_UNOP: { // CE_UNOP: [opcode, opval] 2522 if (Record.size() < 2) 2523 return error("Invalid record"); 2524 int Opc = getDecodedUnaryOpcode(Record[0], CurTy); 2525 if (Opc < 0) { 2526 V = UndefValue::get(CurTy); // Unknown unop. 2527 } else { 2528 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 2529 unsigned Flags = 0; 2530 V = ConstantExpr::get(Opc, LHS, Flags); 2531 } 2532 break; 2533 } 2534 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 2535 if (Record.size() < 3) 2536 return error("Invalid record"); 2537 int Opc = getDecodedBinaryOpcode(Record[0], CurTy); 2538 if (Opc < 0) { 2539 V = UndefValue::get(CurTy); // Unknown binop. 2540 } else { 2541 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 2542 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy); 2543 unsigned Flags = 0; 2544 if (Record.size() >= 4) { 2545 if (Opc == Instruction::Add || 2546 Opc == Instruction::Sub || 2547 Opc == Instruction::Mul || 2548 Opc == Instruction::Shl) { 2549 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 2550 Flags |= OverflowingBinaryOperator::NoSignedWrap; 2551 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 2552 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 2553 } else if (Opc == Instruction::SDiv || 2554 Opc == Instruction::UDiv || 2555 Opc == Instruction::LShr || 2556 Opc == Instruction::AShr) { 2557 if (Record[3] & (1 << bitc::PEO_EXACT)) 2558 Flags |= SDivOperator::IsExact; 2559 } 2560 } 2561 V = ConstantExpr::get(Opc, LHS, RHS, Flags); 2562 } 2563 break; 2564 } 2565 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 2566 if (Record.size() < 3) 2567 return error("Invalid record"); 2568 int Opc = getDecodedCastOpcode(Record[0]); 2569 if (Opc < 0) { 2570 V = UndefValue::get(CurTy); // Unknown cast. 2571 } else { 2572 Type *OpTy = getTypeByID(Record[1]); 2573 if (!OpTy) 2574 return error("Invalid record"); 2575 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy); 2576 V = UpgradeBitCastExpr(Opc, Op, CurTy); 2577 if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy); 2578 } 2579 break; 2580 } 2581 case bitc::CST_CODE_CE_INBOUNDS_GEP: // [ty, n x operands] 2582 case bitc::CST_CODE_CE_GEP: // [ty, n x operands] 2583 case bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX: { // [ty, flags, n x 2584 // operands] 2585 unsigned OpNum = 0; 2586 Type *PointeeType = nullptr; 2587 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX || 2588 Record.size() % 2) 2589 PointeeType = getTypeByID(Record[OpNum++]); 2590 2591 bool InBounds = false; 2592 Optional<unsigned> InRangeIndex; 2593 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX) { 2594 uint64_t Op = Record[OpNum++]; 2595 InBounds = Op & 1; 2596 InRangeIndex = Op >> 1; 2597 } else if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP) 2598 InBounds = true; 2599 2600 SmallVector<Constant*, 16> Elts; 2601 Type *Elt0FullTy = nullptr; 2602 while (OpNum != Record.size()) { 2603 if (!Elt0FullTy) 2604 Elt0FullTy = getFullyStructuredTypeByID(Record[OpNum]); 2605 Type *ElTy = getTypeByID(Record[OpNum++]); 2606 if (!ElTy) 2607 return error("Invalid record"); 2608 Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy)); 2609 } 2610 2611 if (Elts.size() < 1) 2612 return error("Invalid gep with no operands"); 2613 2614 Type *ImplicitPointeeType = 2615 getPointerElementFlatType(Elt0FullTy->getScalarType()); 2616 if (!PointeeType) 2617 PointeeType = ImplicitPointeeType; 2618 else if (PointeeType != ImplicitPointeeType) 2619 return error("Explicit gep operator type does not match pointee type " 2620 "of pointer operand"); 2621 2622 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 2623 V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices, 2624 InBounds, InRangeIndex); 2625 break; 2626 } 2627 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] 2628 if (Record.size() < 3) 2629 return error("Invalid record"); 2630 2631 Type *SelectorTy = Type::getInt1Ty(Context); 2632 2633 // The selector might be an i1 or an <n x i1> 2634 // Get the type from the ValueList before getting a forward ref. 2635 if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) 2636 if (Value *V = ValueList[Record[0]]) 2637 if (SelectorTy != V->getType()) 2638 SelectorTy = VectorType::get(SelectorTy, VTy->getNumElements()); 2639 2640 V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0], 2641 SelectorTy), 2642 ValueList.getConstantFwdRef(Record[1],CurTy), 2643 ValueList.getConstantFwdRef(Record[2],CurTy)); 2644 break; 2645 } 2646 case bitc::CST_CODE_CE_EXTRACTELT 2647 : { // CE_EXTRACTELT: [opty, opval, opty, opval] 2648 if (Record.size() < 3) 2649 return error("Invalid record"); 2650 VectorType *OpTy = 2651 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2652 if (!OpTy) 2653 return error("Invalid record"); 2654 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2655 Constant *Op1 = nullptr; 2656 if (Record.size() == 4) { 2657 Type *IdxTy = getTypeByID(Record[2]); 2658 if (!IdxTy) 2659 return error("Invalid record"); 2660 Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2661 } else // TODO: Remove with llvm 4.0 2662 Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2663 if (!Op1) 2664 return error("Invalid record"); 2665 V = ConstantExpr::getExtractElement(Op0, Op1); 2666 break; 2667 } 2668 case bitc::CST_CODE_CE_INSERTELT 2669 : { // CE_INSERTELT: [opval, opval, opty, opval] 2670 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2671 if (Record.size() < 3 || !OpTy) 2672 return error("Invalid record"); 2673 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2674 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], 2675 OpTy->getElementType()); 2676 Constant *Op2 = nullptr; 2677 if (Record.size() == 4) { 2678 Type *IdxTy = getTypeByID(Record[2]); 2679 if (!IdxTy) 2680 return error("Invalid record"); 2681 Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2682 } else // TODO: Remove with llvm 4.0 2683 Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2684 if (!Op2) 2685 return error("Invalid record"); 2686 V = ConstantExpr::getInsertElement(Op0, Op1, Op2); 2687 break; 2688 } 2689 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 2690 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2691 if (Record.size() < 3 || !OpTy) 2692 return error("Invalid record"); 2693 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2694 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy); 2695 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 2696 OpTy->getNumElements()); 2697 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy); 2698 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 2699 break; 2700 } 2701 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 2702 VectorType *RTy = dyn_cast<VectorType>(CurTy); 2703 VectorType *OpTy = 2704 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2705 if (Record.size() < 4 || !RTy || !OpTy) 2706 return error("Invalid record"); 2707 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2708 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2709 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 2710 RTy->getNumElements()); 2711 Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy); 2712 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 2713 break; 2714 } 2715 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 2716 if (Record.size() < 4) 2717 return error("Invalid record"); 2718 Type *OpTy = getTypeByID(Record[0]); 2719 if (!OpTy) 2720 return error("Invalid record"); 2721 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2722 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2723 2724 if (OpTy->isFPOrFPVectorTy()) 2725 V = ConstantExpr::getFCmp(Record[3], Op0, Op1); 2726 else 2727 V = ConstantExpr::getICmp(Record[3], Op0, Op1); 2728 break; 2729 } 2730 // This maintains backward compatibility, pre-asm dialect keywords. 2731 // FIXME: Remove with the 4.0 release. 2732 case bitc::CST_CODE_INLINEASM_OLD: { 2733 if (Record.size() < 2) 2734 return error("Invalid record"); 2735 std::string AsmStr, ConstrStr; 2736 bool HasSideEffects = Record[0] & 1; 2737 bool IsAlignStack = Record[0] >> 1; 2738 unsigned AsmStrSize = Record[1]; 2739 if (2+AsmStrSize >= Record.size()) 2740 return error("Invalid record"); 2741 unsigned ConstStrSize = Record[2+AsmStrSize]; 2742 if (3+AsmStrSize+ConstStrSize > Record.size()) 2743 return error("Invalid record"); 2744 2745 for (unsigned i = 0; i != AsmStrSize; ++i) 2746 AsmStr += (char)Record[2+i]; 2747 for (unsigned i = 0; i != ConstStrSize; ++i) 2748 ConstrStr += (char)Record[3+AsmStrSize+i]; 2749 UpgradeInlineAsmString(&AsmStr); 2750 V = InlineAsm::get( 2751 cast<FunctionType>(getPointerElementFlatType(CurFullTy)), AsmStr, 2752 ConstrStr, HasSideEffects, IsAlignStack); 2753 break; 2754 } 2755 // This version adds support for the asm dialect keywords (e.g., 2756 // inteldialect). 2757 case bitc::CST_CODE_INLINEASM: { 2758 if (Record.size() < 2) 2759 return error("Invalid record"); 2760 std::string AsmStr, ConstrStr; 2761 bool HasSideEffects = Record[0] & 1; 2762 bool IsAlignStack = (Record[0] >> 1) & 1; 2763 unsigned AsmDialect = Record[0] >> 2; 2764 unsigned AsmStrSize = Record[1]; 2765 if (2+AsmStrSize >= Record.size()) 2766 return error("Invalid record"); 2767 unsigned ConstStrSize = Record[2+AsmStrSize]; 2768 if (3+AsmStrSize+ConstStrSize > Record.size()) 2769 return error("Invalid record"); 2770 2771 for (unsigned i = 0; i != AsmStrSize; ++i) 2772 AsmStr += (char)Record[2+i]; 2773 for (unsigned i = 0; i != ConstStrSize; ++i) 2774 ConstrStr += (char)Record[3+AsmStrSize+i]; 2775 UpgradeInlineAsmString(&AsmStr); 2776 V = InlineAsm::get( 2777 cast<FunctionType>(getPointerElementFlatType(CurFullTy)), AsmStr, 2778 ConstrStr, HasSideEffects, IsAlignStack, 2779 InlineAsm::AsmDialect(AsmDialect)); 2780 break; 2781 } 2782 case bitc::CST_CODE_BLOCKADDRESS:{ 2783 if (Record.size() < 3) 2784 return error("Invalid record"); 2785 Type *FnTy = getTypeByID(Record[0]); 2786 if (!FnTy) 2787 return error("Invalid record"); 2788 Function *Fn = 2789 dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy)); 2790 if (!Fn) 2791 return error("Invalid record"); 2792 2793 // If the function is already parsed we can insert the block address right 2794 // away. 2795 BasicBlock *BB; 2796 unsigned BBID = Record[2]; 2797 if (!BBID) 2798 // Invalid reference to entry block. 2799 return error("Invalid ID"); 2800 if (!Fn->empty()) { 2801 Function::iterator BBI = Fn->begin(), BBE = Fn->end(); 2802 for (size_t I = 0, E = BBID; I != E; ++I) { 2803 if (BBI == BBE) 2804 return error("Invalid ID"); 2805 ++BBI; 2806 } 2807 BB = &*BBI; 2808 } else { 2809 // Otherwise insert a placeholder and remember it so it can be inserted 2810 // when the function is parsed. 2811 auto &FwdBBs = BasicBlockFwdRefs[Fn]; 2812 if (FwdBBs.empty()) 2813 BasicBlockFwdRefQueue.push_back(Fn); 2814 if (FwdBBs.size() < BBID + 1) 2815 FwdBBs.resize(BBID + 1); 2816 if (!FwdBBs[BBID]) 2817 FwdBBs[BBID] = BasicBlock::Create(Context); 2818 BB = FwdBBs[BBID]; 2819 } 2820 V = BlockAddress::get(Fn, BB); 2821 break; 2822 } 2823 } 2824 2825 assert(V->getType() == flattenPointerTypes(CurFullTy) && 2826 "Incorrect fully structured type provided for Constant"); 2827 ValueList.assignValue(V, NextCstNo, CurFullTy); 2828 ++NextCstNo; 2829 } 2830 } 2831 2832 Error BitcodeReader::parseUseLists() { 2833 if (Error Err = Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 2834 return Err; 2835 2836 // Read all the records. 2837 SmallVector<uint64_t, 64> Record; 2838 2839 while (true) { 2840 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2841 if (!MaybeEntry) 2842 return MaybeEntry.takeError(); 2843 BitstreamEntry Entry = MaybeEntry.get(); 2844 2845 switch (Entry.Kind) { 2846 case BitstreamEntry::SubBlock: // Handled for us already. 2847 case BitstreamEntry::Error: 2848 return error("Malformed block"); 2849 case BitstreamEntry::EndBlock: 2850 return Error::success(); 2851 case BitstreamEntry::Record: 2852 // The interesting case. 2853 break; 2854 } 2855 2856 // Read a use list record. 2857 Record.clear(); 2858 bool IsBB = false; 2859 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2860 if (!MaybeRecord) 2861 return MaybeRecord.takeError(); 2862 switch (MaybeRecord.get()) { 2863 default: // Default behavior: unknown type. 2864 break; 2865 case bitc::USELIST_CODE_BB: 2866 IsBB = true; 2867 LLVM_FALLTHROUGH; 2868 case bitc::USELIST_CODE_DEFAULT: { 2869 unsigned RecordLength = Record.size(); 2870 if (RecordLength < 3) 2871 // Records should have at least an ID and two indexes. 2872 return error("Invalid record"); 2873 unsigned ID = Record.back(); 2874 Record.pop_back(); 2875 2876 Value *V; 2877 if (IsBB) { 2878 assert(ID < FunctionBBs.size() && "Basic block not found"); 2879 V = FunctionBBs[ID]; 2880 } else 2881 V = ValueList[ID]; 2882 unsigned NumUses = 0; 2883 SmallDenseMap<const Use *, unsigned, 16> Order; 2884 for (const Use &U : V->materialized_uses()) { 2885 if (++NumUses > Record.size()) 2886 break; 2887 Order[&U] = Record[NumUses - 1]; 2888 } 2889 if (Order.size() != Record.size() || NumUses > Record.size()) 2890 // Mismatches can happen if the functions are being materialized lazily 2891 // (out-of-order), or a value has been upgraded. 2892 break; 2893 2894 V->sortUseList([&](const Use &L, const Use &R) { 2895 return Order.lookup(&L) < Order.lookup(&R); 2896 }); 2897 break; 2898 } 2899 } 2900 } 2901 } 2902 2903 /// When we see the block for metadata, remember where it is and then skip it. 2904 /// This lets us lazily deserialize the metadata. 2905 Error BitcodeReader::rememberAndSkipMetadata() { 2906 // Save the current stream state. 2907 uint64_t CurBit = Stream.GetCurrentBitNo(); 2908 DeferredMetadataInfo.push_back(CurBit); 2909 2910 // Skip over the block for now. 2911 if (Error Err = Stream.SkipBlock()) 2912 return Err; 2913 return Error::success(); 2914 } 2915 2916 Error BitcodeReader::materializeMetadata() { 2917 for (uint64_t BitPos : DeferredMetadataInfo) { 2918 // Move the bit stream to the saved position. 2919 if (Error JumpFailed = Stream.JumpToBit(BitPos)) 2920 return JumpFailed; 2921 if (Error Err = MDLoader->parseModuleMetadata()) 2922 return Err; 2923 } 2924 2925 // Upgrade "Linker Options" module flag to "llvm.linker.options" module-level 2926 // metadata. 2927 if (Metadata *Val = TheModule->getModuleFlag("Linker Options")) { 2928 NamedMDNode *LinkerOpts = 2929 TheModule->getOrInsertNamedMetadata("llvm.linker.options"); 2930 for (const MDOperand &MDOptions : cast<MDNode>(Val)->operands()) 2931 LinkerOpts->addOperand(cast<MDNode>(MDOptions)); 2932 } 2933 2934 DeferredMetadataInfo.clear(); 2935 return Error::success(); 2936 } 2937 2938 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; } 2939 2940 /// When we see the block for a function body, remember where it is and then 2941 /// skip it. This lets us lazily deserialize the functions. 2942 Error BitcodeReader::rememberAndSkipFunctionBody() { 2943 // Get the function we are talking about. 2944 if (FunctionsWithBodies.empty()) 2945 return error("Insufficient function protos"); 2946 2947 Function *Fn = FunctionsWithBodies.back(); 2948 FunctionsWithBodies.pop_back(); 2949 2950 // Save the current stream state. 2951 uint64_t CurBit = Stream.GetCurrentBitNo(); 2952 assert( 2953 (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) && 2954 "Mismatch between VST and scanned function offsets"); 2955 DeferredFunctionInfo[Fn] = CurBit; 2956 2957 // Skip over the function block for now. 2958 if (Error Err = Stream.SkipBlock()) 2959 return Err; 2960 return Error::success(); 2961 } 2962 2963 Error BitcodeReader::globalCleanup() { 2964 // Patch the initializers for globals and aliases up. 2965 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 2966 return Err; 2967 if (!GlobalInits.empty() || !IndirectSymbolInits.empty()) 2968 return error("Malformed global initializer set"); 2969 2970 // Look for intrinsic functions which need to be upgraded at some point 2971 for (Function &F : *TheModule) { 2972 MDLoader->upgradeDebugIntrinsics(F); 2973 Function *NewFn; 2974 if (UpgradeIntrinsicFunction(&F, NewFn)) 2975 UpgradedIntrinsics[&F] = NewFn; 2976 else if (auto Remangled = Intrinsic::remangleIntrinsicFunction(&F)) 2977 // Some types could be renamed during loading if several modules are 2978 // loaded in the same LLVMContext (LTO scenario). In this case we should 2979 // remangle intrinsics names as well. 2980 RemangledIntrinsics[&F] = Remangled.getValue(); 2981 } 2982 2983 // Look for global variables which need to be renamed. 2984 std::vector<std::pair<GlobalVariable *, GlobalVariable *>> UpgradedVariables; 2985 for (GlobalVariable &GV : TheModule->globals()) 2986 if (GlobalVariable *Upgraded = UpgradeGlobalVariable(&GV)) 2987 UpgradedVariables.emplace_back(&GV, Upgraded); 2988 for (auto &Pair : UpgradedVariables) { 2989 Pair.first->eraseFromParent(); 2990 TheModule->getGlobalList().push_back(Pair.second); 2991 } 2992 2993 // Force deallocation of memory for these vectors to favor the client that 2994 // want lazy deserialization. 2995 std::vector<std::pair<GlobalVariable *, unsigned>>().swap(GlobalInits); 2996 std::vector<std::pair<GlobalIndirectSymbol *, unsigned>>().swap( 2997 IndirectSymbolInits); 2998 return Error::success(); 2999 } 3000 3001 /// Support for lazy parsing of function bodies. This is required if we 3002 /// either have an old bitcode file without a VST forward declaration record, 3003 /// or if we have an anonymous function being materialized, since anonymous 3004 /// functions do not have a name and are therefore not in the VST. 3005 Error BitcodeReader::rememberAndSkipFunctionBodies() { 3006 if (Error JumpFailed = Stream.JumpToBit(NextUnreadBit)) 3007 return JumpFailed; 3008 3009 if (Stream.AtEndOfStream()) 3010 return error("Could not find function in stream"); 3011 3012 if (!SeenFirstFunctionBody) 3013 return error("Trying to materialize functions before seeing function blocks"); 3014 3015 // An old bitcode file with the symbol table at the end would have 3016 // finished the parse greedily. 3017 assert(SeenValueSymbolTable); 3018 3019 SmallVector<uint64_t, 64> Record; 3020 3021 while (true) { 3022 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 3023 if (!MaybeEntry) 3024 return MaybeEntry.takeError(); 3025 llvm::BitstreamEntry Entry = MaybeEntry.get(); 3026 3027 switch (Entry.Kind) { 3028 default: 3029 return error("Expect SubBlock"); 3030 case BitstreamEntry::SubBlock: 3031 switch (Entry.ID) { 3032 default: 3033 return error("Expect function block"); 3034 case bitc::FUNCTION_BLOCK_ID: 3035 if (Error Err = rememberAndSkipFunctionBody()) 3036 return Err; 3037 NextUnreadBit = Stream.GetCurrentBitNo(); 3038 return Error::success(); 3039 } 3040 } 3041 } 3042 } 3043 3044 bool BitcodeReaderBase::readBlockInfo() { 3045 Expected<Optional<BitstreamBlockInfo>> MaybeNewBlockInfo = 3046 Stream.ReadBlockInfoBlock(); 3047 if (!MaybeNewBlockInfo) 3048 return true; // FIXME Handle the error. 3049 Optional<BitstreamBlockInfo> NewBlockInfo = 3050 std::move(MaybeNewBlockInfo.get()); 3051 if (!NewBlockInfo) 3052 return true; 3053 BlockInfo = std::move(*NewBlockInfo); 3054 return false; 3055 } 3056 3057 Error BitcodeReader::parseComdatRecord(ArrayRef<uint64_t> Record) { 3058 // v1: [selection_kind, name] 3059 // v2: [strtab_offset, strtab_size, selection_kind] 3060 StringRef Name; 3061 std::tie(Name, Record) = readNameFromStrtab(Record); 3062 3063 if (Record.empty()) 3064 return error("Invalid record"); 3065 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]); 3066 std::string OldFormatName; 3067 if (!UseStrtab) { 3068 if (Record.size() < 2) 3069 return error("Invalid record"); 3070 unsigned ComdatNameSize = Record[1]; 3071 OldFormatName.reserve(ComdatNameSize); 3072 for (unsigned i = 0; i != ComdatNameSize; ++i) 3073 OldFormatName += (char)Record[2 + i]; 3074 Name = OldFormatName; 3075 } 3076 Comdat *C = TheModule->getOrInsertComdat(Name); 3077 C->setSelectionKind(SK); 3078 ComdatList.push_back(C); 3079 return Error::success(); 3080 } 3081 3082 static void inferDSOLocal(GlobalValue *GV) { 3083 // infer dso_local from linkage and visibility if it is not encoded. 3084 if (GV->hasLocalLinkage() || 3085 (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())) 3086 GV->setDSOLocal(true); 3087 } 3088 3089 Error BitcodeReader::parseGlobalVarRecord(ArrayRef<uint64_t> Record) { 3090 // v1: [pointer type, isconst, initid, linkage, alignment, section, 3091 // visibility, threadlocal, unnamed_addr, externally_initialized, 3092 // dllstorageclass, comdat, attributes, preemption specifier, 3093 // partition strtab offset, partition strtab size] (name in VST) 3094 // v2: [strtab_offset, strtab_size, v1] 3095 StringRef Name; 3096 std::tie(Name, Record) = readNameFromStrtab(Record); 3097 3098 if (Record.size() < 6) 3099 return error("Invalid record"); 3100 Type *FullTy = getFullyStructuredTypeByID(Record[0]); 3101 Type *Ty = flattenPointerTypes(FullTy); 3102 if (!Ty) 3103 return error("Invalid record"); 3104 bool isConstant = Record[1] & 1; 3105 bool explicitType = Record[1] & 2; 3106 unsigned AddressSpace; 3107 if (explicitType) { 3108 AddressSpace = Record[1] >> 2; 3109 } else { 3110 if (!Ty->isPointerTy()) 3111 return error("Invalid type for value"); 3112 AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 3113 std::tie(FullTy, Ty) = getPointerElementTypes(FullTy); 3114 } 3115 3116 uint64_t RawLinkage = Record[3]; 3117 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 3118 MaybeAlign Alignment; 3119 if (Error Err = parseAlignmentValue(Record[4], Alignment)) 3120 return Err; 3121 std::string Section; 3122 if (Record[5]) { 3123 if (Record[5] - 1 >= SectionTable.size()) 3124 return error("Invalid ID"); 3125 Section = SectionTable[Record[5] - 1]; 3126 } 3127 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 3128 // Local linkage must have default visibility. 3129 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage)) 3130 // FIXME: Change to an error if non-default in 4.0. 3131 Visibility = getDecodedVisibility(Record[6]); 3132 3133 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; 3134 if (Record.size() > 7) 3135 TLM = getDecodedThreadLocalMode(Record[7]); 3136 3137 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 3138 if (Record.size() > 8) 3139 UnnamedAddr = getDecodedUnnamedAddrType(Record[8]); 3140 3141 bool ExternallyInitialized = false; 3142 if (Record.size() > 9) 3143 ExternallyInitialized = Record[9]; 3144 3145 GlobalVariable *NewGV = 3146 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, Name, 3147 nullptr, TLM, AddressSpace, ExternallyInitialized); 3148 NewGV->setAlignment(Alignment); 3149 if (!Section.empty()) 3150 NewGV->setSection(Section); 3151 NewGV->setVisibility(Visibility); 3152 NewGV->setUnnamedAddr(UnnamedAddr); 3153 3154 if (Record.size() > 10) 3155 NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10])); 3156 else 3157 upgradeDLLImportExportLinkage(NewGV, RawLinkage); 3158 3159 FullTy = PointerType::get(FullTy, AddressSpace); 3160 assert(NewGV->getType() == flattenPointerTypes(FullTy) && 3161 "Incorrect fully specified type for GlobalVariable"); 3162 ValueList.push_back(NewGV, FullTy); 3163 3164 // Remember which value to use for the global initializer. 3165 if (unsigned InitID = Record[2]) 3166 GlobalInits.push_back(std::make_pair(NewGV, InitID - 1)); 3167 3168 if (Record.size() > 11) { 3169 if (unsigned ComdatID = Record[11]) { 3170 if (ComdatID > ComdatList.size()) 3171 return error("Invalid global variable comdat ID"); 3172 NewGV->setComdat(ComdatList[ComdatID - 1]); 3173 } 3174 } else if (hasImplicitComdat(RawLinkage)) { 3175 NewGV->setComdat(reinterpret_cast<Comdat *>(1)); 3176 } 3177 3178 if (Record.size() > 12) { 3179 auto AS = getAttributes(Record[12]).getFnAttributes(); 3180 NewGV->setAttributes(AS); 3181 } 3182 3183 if (Record.size() > 13) { 3184 NewGV->setDSOLocal(getDecodedDSOLocal(Record[13])); 3185 } 3186 inferDSOLocal(NewGV); 3187 3188 // Check whether we have enough values to read a partition name. 3189 if (Record.size() > 15) 3190 NewGV->setPartition(StringRef(Strtab.data() + Record[14], Record[15])); 3191 3192 return Error::success(); 3193 } 3194 3195 Error BitcodeReader::parseFunctionRecord(ArrayRef<uint64_t> Record) { 3196 // v1: [type, callingconv, isproto, linkage, paramattr, alignment, section, 3197 // visibility, gc, unnamed_addr, prologuedata, dllstorageclass, comdat, 3198 // prefixdata, personalityfn, preemption specifier, addrspace] (name in VST) 3199 // v2: [strtab_offset, strtab_size, v1] 3200 StringRef Name; 3201 std::tie(Name, Record) = readNameFromStrtab(Record); 3202 3203 if (Record.size() < 8) 3204 return error("Invalid record"); 3205 Type *FullFTy = getFullyStructuredTypeByID(Record[0]); 3206 Type *FTy = flattenPointerTypes(FullFTy); 3207 if (!FTy) 3208 return error("Invalid record"); 3209 if (isa<PointerType>(FTy)) 3210 std::tie(FullFTy, FTy) = getPointerElementTypes(FullFTy); 3211 3212 if (!isa<FunctionType>(FTy)) 3213 return error("Invalid type for value"); 3214 auto CC = static_cast<CallingConv::ID>(Record[1]); 3215 if (CC & ~CallingConv::MaxID) 3216 return error("Invalid calling convention ID"); 3217 3218 unsigned AddrSpace = TheModule->getDataLayout().getProgramAddressSpace(); 3219 if (Record.size() > 16) 3220 AddrSpace = Record[16]; 3221 3222 Function *Func = 3223 Function::Create(cast<FunctionType>(FTy), GlobalValue::ExternalLinkage, 3224 AddrSpace, Name, TheModule); 3225 3226 assert(Func->getFunctionType() == flattenPointerTypes(FullFTy) && 3227 "Incorrect fully specified type provided for function"); 3228 FunctionTypes[Func] = cast<FunctionType>(FullFTy); 3229 3230 Func->setCallingConv(CC); 3231 bool isProto = Record[2]; 3232 uint64_t RawLinkage = Record[3]; 3233 Func->setLinkage(getDecodedLinkage(RawLinkage)); 3234 Func->setAttributes(getAttributes(Record[4])); 3235 3236 // Upgrade any old-style byval without a type by propagating the argument's 3237 // pointee type. There should be no opaque pointers where the byval type is 3238 // implicit. 3239 for (unsigned i = 0; i != Func->arg_size(); ++i) { 3240 if (!Func->hasParamAttribute(i, Attribute::ByVal)) 3241 continue; 3242 3243 Type *PTy = cast<FunctionType>(FullFTy)->getParamType(i); 3244 Func->removeParamAttr(i, Attribute::ByVal); 3245 Func->addParamAttr(i, Attribute::getWithByValType( 3246 Context, getPointerElementFlatType(PTy))); 3247 } 3248 3249 MaybeAlign Alignment; 3250 if (Error Err = parseAlignmentValue(Record[5], Alignment)) 3251 return Err; 3252 Func->setAlignment(Alignment); 3253 if (Record[6]) { 3254 if (Record[6] - 1 >= SectionTable.size()) 3255 return error("Invalid ID"); 3256 Func->setSection(SectionTable[Record[6] - 1]); 3257 } 3258 // Local linkage must have default visibility. 3259 if (!Func->hasLocalLinkage()) 3260 // FIXME: Change to an error if non-default in 4.0. 3261 Func->setVisibility(getDecodedVisibility(Record[7])); 3262 if (Record.size() > 8 && Record[8]) { 3263 if (Record[8] - 1 >= GCTable.size()) 3264 return error("Invalid ID"); 3265 Func->setGC(GCTable[Record[8] - 1]); 3266 } 3267 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 3268 if (Record.size() > 9) 3269 UnnamedAddr = getDecodedUnnamedAddrType(Record[9]); 3270 Func->setUnnamedAddr(UnnamedAddr); 3271 if (Record.size() > 10 && Record[10] != 0) 3272 FunctionPrologues.push_back(std::make_pair(Func, Record[10] - 1)); 3273 3274 if (Record.size() > 11) 3275 Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11])); 3276 else 3277 upgradeDLLImportExportLinkage(Func, RawLinkage); 3278 3279 if (Record.size() > 12) { 3280 if (unsigned ComdatID = Record[12]) { 3281 if (ComdatID > ComdatList.size()) 3282 return error("Invalid function comdat ID"); 3283 Func->setComdat(ComdatList[ComdatID - 1]); 3284 } 3285 } else if (hasImplicitComdat(RawLinkage)) { 3286 Func->setComdat(reinterpret_cast<Comdat *>(1)); 3287 } 3288 3289 if (Record.size() > 13 && Record[13] != 0) 3290 FunctionPrefixes.push_back(std::make_pair(Func, Record[13] - 1)); 3291 3292 if (Record.size() > 14 && Record[14] != 0) 3293 FunctionPersonalityFns.push_back(std::make_pair(Func, Record[14] - 1)); 3294 3295 if (Record.size() > 15) { 3296 Func->setDSOLocal(getDecodedDSOLocal(Record[15])); 3297 } 3298 inferDSOLocal(Func); 3299 3300 // Record[16] is the address space number. 3301 3302 // Check whether we have enough values to read a partition name. 3303 if (Record.size() > 18) 3304 Func->setPartition(StringRef(Strtab.data() + Record[17], Record[18])); 3305 3306 Type *FullTy = PointerType::get(FullFTy, AddrSpace); 3307 assert(Func->getType() == flattenPointerTypes(FullTy) && 3308 "Incorrect fully specified type provided for Function"); 3309 ValueList.push_back(Func, FullTy); 3310 3311 // If this is a function with a body, remember the prototype we are 3312 // creating now, so that we can match up the body with them later. 3313 if (!isProto) { 3314 Func->setIsMaterializable(true); 3315 FunctionsWithBodies.push_back(Func); 3316 DeferredFunctionInfo[Func] = 0; 3317 } 3318 return Error::success(); 3319 } 3320 3321 Error BitcodeReader::parseGlobalIndirectSymbolRecord( 3322 unsigned BitCode, ArrayRef<uint64_t> Record) { 3323 // v1 ALIAS_OLD: [alias type, aliasee val#, linkage] (name in VST) 3324 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, 3325 // dllstorageclass, threadlocal, unnamed_addr, 3326 // preemption specifier] (name in VST) 3327 // v1 IFUNC: [alias type, addrspace, aliasee val#, linkage, 3328 // visibility, dllstorageclass, threadlocal, unnamed_addr, 3329 // preemption specifier] (name in VST) 3330 // v2: [strtab_offset, strtab_size, v1] 3331 StringRef Name; 3332 std::tie(Name, Record) = readNameFromStrtab(Record); 3333 3334 bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD; 3335 if (Record.size() < (3 + (unsigned)NewRecord)) 3336 return error("Invalid record"); 3337 unsigned OpNum = 0; 3338 Type *FullTy = getFullyStructuredTypeByID(Record[OpNum++]); 3339 Type *Ty = flattenPointerTypes(FullTy); 3340 if (!Ty) 3341 return error("Invalid record"); 3342 3343 unsigned AddrSpace; 3344 if (!NewRecord) { 3345 auto *PTy = dyn_cast<PointerType>(Ty); 3346 if (!PTy) 3347 return error("Invalid type for value"); 3348 std::tie(FullTy, Ty) = getPointerElementTypes(FullTy); 3349 AddrSpace = PTy->getAddressSpace(); 3350 } else { 3351 AddrSpace = Record[OpNum++]; 3352 } 3353 3354 auto Val = Record[OpNum++]; 3355 auto Linkage = Record[OpNum++]; 3356 GlobalIndirectSymbol *NewGA; 3357 if (BitCode == bitc::MODULE_CODE_ALIAS || 3358 BitCode == bitc::MODULE_CODE_ALIAS_OLD) 3359 NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name, 3360 TheModule); 3361 else 3362 NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name, 3363 nullptr, TheModule); 3364 3365 assert(NewGA->getValueType() == flattenPointerTypes(FullTy) && 3366 "Incorrect fully structured type provided for GlobalIndirectSymbol"); 3367 // Old bitcode files didn't have visibility field. 3368 // Local linkage must have default visibility. 3369 if (OpNum != Record.size()) { 3370 auto VisInd = OpNum++; 3371 if (!NewGA->hasLocalLinkage()) 3372 // FIXME: Change to an error if non-default in 4.0. 3373 NewGA->setVisibility(getDecodedVisibility(Record[VisInd])); 3374 } 3375 if (BitCode == bitc::MODULE_CODE_ALIAS || 3376 BitCode == bitc::MODULE_CODE_ALIAS_OLD) { 3377 if (OpNum != Record.size()) 3378 NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++])); 3379 else 3380 upgradeDLLImportExportLinkage(NewGA, Linkage); 3381 if (OpNum != Record.size()) 3382 NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++])); 3383 if (OpNum != Record.size()) 3384 NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++])); 3385 } 3386 if (OpNum != Record.size()) 3387 NewGA->setDSOLocal(getDecodedDSOLocal(Record[OpNum++])); 3388 inferDSOLocal(NewGA); 3389 3390 // Check whether we have enough values to read a partition name. 3391 if (OpNum + 1 < Record.size()) { 3392 NewGA->setPartition( 3393 StringRef(Strtab.data() + Record[OpNum], Record[OpNum + 1])); 3394 OpNum += 2; 3395 } 3396 3397 FullTy = PointerType::get(FullTy, AddrSpace); 3398 assert(NewGA->getType() == flattenPointerTypes(FullTy) && 3399 "Incorrect fully structured type provided for GlobalIndirectSymbol"); 3400 ValueList.push_back(NewGA, FullTy); 3401 IndirectSymbolInits.push_back(std::make_pair(NewGA, Val)); 3402 return Error::success(); 3403 } 3404 3405 Error BitcodeReader::parseModule(uint64_t ResumeBit, 3406 bool ShouldLazyLoadMetadata) { 3407 if (ResumeBit) { 3408 if (Error JumpFailed = Stream.JumpToBit(ResumeBit)) 3409 return JumpFailed; 3410 } else if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 3411 return Err; 3412 3413 SmallVector<uint64_t, 64> Record; 3414 3415 // Read all the records for this module. 3416 while (true) { 3417 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 3418 if (!MaybeEntry) 3419 return MaybeEntry.takeError(); 3420 llvm::BitstreamEntry Entry = MaybeEntry.get(); 3421 3422 switch (Entry.Kind) { 3423 case BitstreamEntry::Error: 3424 return error("Malformed block"); 3425 case BitstreamEntry::EndBlock: 3426 return globalCleanup(); 3427 3428 case BitstreamEntry::SubBlock: 3429 switch (Entry.ID) { 3430 default: // Skip unknown content. 3431 if (Error Err = Stream.SkipBlock()) 3432 return Err; 3433 break; 3434 case bitc::BLOCKINFO_BLOCK_ID: 3435 if (readBlockInfo()) 3436 return error("Malformed block"); 3437 break; 3438 case bitc::PARAMATTR_BLOCK_ID: 3439 if (Error Err = parseAttributeBlock()) 3440 return Err; 3441 break; 3442 case bitc::PARAMATTR_GROUP_BLOCK_ID: 3443 if (Error Err = parseAttributeGroupBlock()) 3444 return Err; 3445 break; 3446 case bitc::TYPE_BLOCK_ID_NEW: 3447 if (Error Err = parseTypeTable()) 3448 return Err; 3449 break; 3450 case bitc::VALUE_SYMTAB_BLOCK_ID: 3451 if (!SeenValueSymbolTable) { 3452 // Either this is an old form VST without function index and an 3453 // associated VST forward declaration record (which would have caused 3454 // the VST to be jumped to and parsed before it was encountered 3455 // normally in the stream), or there were no function blocks to 3456 // trigger an earlier parsing of the VST. 3457 assert(VSTOffset == 0 || FunctionsWithBodies.empty()); 3458 if (Error Err = parseValueSymbolTable()) 3459 return Err; 3460 SeenValueSymbolTable = true; 3461 } else { 3462 // We must have had a VST forward declaration record, which caused 3463 // the parser to jump to and parse the VST earlier. 3464 assert(VSTOffset > 0); 3465 if (Error Err = Stream.SkipBlock()) 3466 return Err; 3467 } 3468 break; 3469 case bitc::CONSTANTS_BLOCK_ID: 3470 if (Error Err = parseConstants()) 3471 return Err; 3472 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 3473 return Err; 3474 break; 3475 case bitc::METADATA_BLOCK_ID: 3476 if (ShouldLazyLoadMetadata) { 3477 if (Error Err = rememberAndSkipMetadata()) 3478 return Err; 3479 break; 3480 } 3481 assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata"); 3482 if (Error Err = MDLoader->parseModuleMetadata()) 3483 return Err; 3484 break; 3485 case bitc::METADATA_KIND_BLOCK_ID: 3486 if (Error Err = MDLoader->parseMetadataKinds()) 3487 return Err; 3488 break; 3489 case bitc::FUNCTION_BLOCK_ID: 3490 // If this is the first function body we've seen, reverse the 3491 // FunctionsWithBodies list. 3492 if (!SeenFirstFunctionBody) { 3493 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 3494 if (Error Err = globalCleanup()) 3495 return Err; 3496 SeenFirstFunctionBody = true; 3497 } 3498 3499 if (VSTOffset > 0) { 3500 // If we have a VST forward declaration record, make sure we 3501 // parse the VST now if we haven't already. It is needed to 3502 // set up the DeferredFunctionInfo vector for lazy reading. 3503 if (!SeenValueSymbolTable) { 3504 if (Error Err = BitcodeReader::parseValueSymbolTable(VSTOffset)) 3505 return Err; 3506 SeenValueSymbolTable = true; 3507 // Fall through so that we record the NextUnreadBit below. 3508 // This is necessary in case we have an anonymous function that 3509 // is later materialized. Since it will not have a VST entry we 3510 // need to fall back to the lazy parse to find its offset. 3511 } else { 3512 // If we have a VST forward declaration record, but have already 3513 // parsed the VST (just above, when the first function body was 3514 // encountered here), then we are resuming the parse after 3515 // materializing functions. The ResumeBit points to the 3516 // start of the last function block recorded in the 3517 // DeferredFunctionInfo map. Skip it. 3518 if (Error Err = Stream.SkipBlock()) 3519 return Err; 3520 continue; 3521 } 3522 } 3523 3524 // Support older bitcode files that did not have the function 3525 // index in the VST, nor a VST forward declaration record, as 3526 // well as anonymous functions that do not have VST entries. 3527 // Build the DeferredFunctionInfo vector on the fly. 3528 if (Error Err = rememberAndSkipFunctionBody()) 3529 return Err; 3530 3531 // Suspend parsing when we reach the function bodies. Subsequent 3532 // materialization calls will resume it when necessary. If the bitcode 3533 // file is old, the symbol table will be at the end instead and will not 3534 // have been seen yet. In this case, just finish the parse now. 3535 if (SeenValueSymbolTable) { 3536 NextUnreadBit = Stream.GetCurrentBitNo(); 3537 // After the VST has been parsed, we need to make sure intrinsic name 3538 // are auto-upgraded. 3539 return globalCleanup(); 3540 } 3541 break; 3542 case bitc::USELIST_BLOCK_ID: 3543 if (Error Err = parseUseLists()) 3544 return Err; 3545 break; 3546 case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID: 3547 if (Error Err = parseOperandBundleTags()) 3548 return Err; 3549 break; 3550 case bitc::SYNC_SCOPE_NAMES_BLOCK_ID: 3551 if (Error Err = parseSyncScopeNames()) 3552 return Err; 3553 break; 3554 } 3555 continue; 3556 3557 case BitstreamEntry::Record: 3558 // The interesting case. 3559 break; 3560 } 3561 3562 // Read a record. 3563 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 3564 if (!MaybeBitCode) 3565 return MaybeBitCode.takeError(); 3566 switch (unsigned BitCode = MaybeBitCode.get()) { 3567 default: break; // Default behavior, ignore unknown content. 3568 case bitc::MODULE_CODE_VERSION: { 3569 Expected<unsigned> VersionOrErr = parseVersionRecord(Record); 3570 if (!VersionOrErr) 3571 return VersionOrErr.takeError(); 3572 UseRelativeIDs = *VersionOrErr >= 1; 3573 break; 3574 } 3575 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 3576 std::string S; 3577 if (convertToString(Record, 0, S)) 3578 return error("Invalid record"); 3579 TheModule->setTargetTriple(S); 3580 break; 3581 } 3582 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 3583 std::string S; 3584 if (convertToString(Record, 0, S)) 3585 return error("Invalid record"); 3586 TheModule->setDataLayout(S); 3587 break; 3588 } 3589 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 3590 std::string S; 3591 if (convertToString(Record, 0, S)) 3592 return error("Invalid record"); 3593 TheModule->setModuleInlineAsm(S); 3594 break; 3595 } 3596 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 3597 // FIXME: Remove in 4.0. 3598 std::string S; 3599 if (convertToString(Record, 0, S)) 3600 return error("Invalid record"); 3601 // Ignore value. 3602 break; 3603 } 3604 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 3605 std::string S; 3606 if (convertToString(Record, 0, S)) 3607 return error("Invalid record"); 3608 SectionTable.push_back(S); 3609 break; 3610 } 3611 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 3612 std::string S; 3613 if (convertToString(Record, 0, S)) 3614 return error("Invalid record"); 3615 GCTable.push_back(S); 3616 break; 3617 } 3618 case bitc::MODULE_CODE_COMDAT: 3619 if (Error Err = parseComdatRecord(Record)) 3620 return Err; 3621 break; 3622 case bitc::MODULE_CODE_GLOBALVAR: 3623 if (Error Err = parseGlobalVarRecord(Record)) 3624 return Err; 3625 break; 3626 case bitc::MODULE_CODE_FUNCTION: 3627 if (Error Err = parseFunctionRecord(Record)) 3628 return Err; 3629 break; 3630 case bitc::MODULE_CODE_IFUNC: 3631 case bitc::MODULE_CODE_ALIAS: 3632 case bitc::MODULE_CODE_ALIAS_OLD: 3633 if (Error Err = parseGlobalIndirectSymbolRecord(BitCode, Record)) 3634 return Err; 3635 break; 3636 /// MODULE_CODE_VSTOFFSET: [offset] 3637 case bitc::MODULE_CODE_VSTOFFSET: 3638 if (Record.size() < 1) 3639 return error("Invalid record"); 3640 // Note that we subtract 1 here because the offset is relative to one word 3641 // before the start of the identification or module block, which was 3642 // historically always the start of the regular bitcode header. 3643 VSTOffset = Record[0] - 1; 3644 break; 3645 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 3646 case bitc::MODULE_CODE_SOURCE_FILENAME: 3647 SmallString<128> ValueName; 3648 if (convertToString(Record, 0, ValueName)) 3649 return error("Invalid record"); 3650 TheModule->setSourceFileName(ValueName); 3651 break; 3652 } 3653 Record.clear(); 3654 3655 // Upgrade data layout string. 3656 std::string DL = llvm::UpgradeDataLayoutString( 3657 TheModule->getDataLayoutStr(), TheModule->getTargetTriple()); 3658 TheModule->setDataLayout(DL); 3659 } 3660 } 3661 3662 Error BitcodeReader::parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata, 3663 bool IsImporting) { 3664 TheModule = M; 3665 MDLoader = MetadataLoader(Stream, *M, ValueList, IsImporting, 3666 [&](unsigned ID) { return getTypeByID(ID); }); 3667 return parseModule(0, ShouldLazyLoadMetadata); 3668 } 3669 3670 Error BitcodeReader::typeCheckLoadStoreInst(Type *ValType, Type *PtrType) { 3671 if (!isa<PointerType>(PtrType)) 3672 return error("Load/Store operand is not a pointer type"); 3673 Type *ElemType = cast<PointerType>(PtrType)->getElementType(); 3674 3675 if (ValType && ValType != ElemType) 3676 return error("Explicit load/store type does not match pointee " 3677 "type of pointer operand"); 3678 if (!PointerType::isLoadableOrStorableType(ElemType)) 3679 return error("Cannot load/store from pointer"); 3680 return Error::success(); 3681 } 3682 3683 void BitcodeReader::propagateByValTypes(CallBase *CB, 3684 ArrayRef<Type *> ArgsFullTys) { 3685 for (unsigned i = 0; i != CB->arg_size(); ++i) { 3686 if (!CB->paramHasAttr(i, Attribute::ByVal)) 3687 continue; 3688 3689 CB->removeParamAttr(i, Attribute::ByVal); 3690 CB->addParamAttr( 3691 i, Attribute::getWithByValType( 3692 Context, getPointerElementFlatType(ArgsFullTys[i]))); 3693 } 3694 } 3695 3696 /// Lazily parse the specified function body block. 3697 Error BitcodeReader::parseFunctionBody(Function *F) { 3698 if (Error Err = Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 3699 return Err; 3700 3701 // Unexpected unresolved metadata when parsing function. 3702 if (MDLoader->hasFwdRefs()) 3703 return error("Invalid function metadata: incoming forward references"); 3704 3705 InstructionList.clear(); 3706 unsigned ModuleValueListSize = ValueList.size(); 3707 unsigned ModuleMDLoaderSize = MDLoader->size(); 3708 3709 // Add all the function arguments to the value table. 3710 unsigned ArgNo = 0; 3711 FunctionType *FullFTy = FunctionTypes[F]; 3712 for (Argument &I : F->args()) { 3713 assert(I.getType() == flattenPointerTypes(FullFTy->getParamType(ArgNo)) && 3714 "Incorrect fully specified type for Function Argument"); 3715 ValueList.push_back(&I, FullFTy->getParamType(ArgNo++)); 3716 } 3717 unsigned NextValueNo = ValueList.size(); 3718 BasicBlock *CurBB = nullptr; 3719 unsigned CurBBNo = 0; 3720 3721 DebugLoc LastLoc; 3722 auto getLastInstruction = [&]() -> Instruction * { 3723 if (CurBB && !CurBB->empty()) 3724 return &CurBB->back(); 3725 else if (CurBBNo && FunctionBBs[CurBBNo - 1] && 3726 !FunctionBBs[CurBBNo - 1]->empty()) 3727 return &FunctionBBs[CurBBNo - 1]->back(); 3728 return nullptr; 3729 }; 3730 3731 std::vector<OperandBundleDef> OperandBundles; 3732 3733 // Read all the records. 3734 SmallVector<uint64_t, 64> Record; 3735 3736 while (true) { 3737 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 3738 if (!MaybeEntry) 3739 return MaybeEntry.takeError(); 3740 llvm::BitstreamEntry Entry = MaybeEntry.get(); 3741 3742 switch (Entry.Kind) { 3743 case BitstreamEntry::Error: 3744 return error("Malformed block"); 3745 case BitstreamEntry::EndBlock: 3746 goto OutOfRecordLoop; 3747 3748 case BitstreamEntry::SubBlock: 3749 switch (Entry.ID) { 3750 default: // Skip unknown content. 3751 if (Error Err = Stream.SkipBlock()) 3752 return Err; 3753 break; 3754 case bitc::CONSTANTS_BLOCK_ID: 3755 if (Error Err = parseConstants()) 3756 return Err; 3757 NextValueNo = ValueList.size(); 3758 break; 3759 case bitc::VALUE_SYMTAB_BLOCK_ID: 3760 if (Error Err = parseValueSymbolTable()) 3761 return Err; 3762 break; 3763 case bitc::METADATA_ATTACHMENT_ID: 3764 if (Error Err = MDLoader->parseMetadataAttachment(*F, InstructionList)) 3765 return Err; 3766 break; 3767 case bitc::METADATA_BLOCK_ID: 3768 assert(DeferredMetadataInfo.empty() && 3769 "Must read all module-level metadata before function-level"); 3770 if (Error Err = MDLoader->parseFunctionMetadata()) 3771 return Err; 3772 break; 3773 case bitc::USELIST_BLOCK_ID: 3774 if (Error Err = parseUseLists()) 3775 return Err; 3776 break; 3777 } 3778 continue; 3779 3780 case BitstreamEntry::Record: 3781 // The interesting case. 3782 break; 3783 } 3784 3785 // Read a record. 3786 Record.clear(); 3787 Instruction *I = nullptr; 3788 Type *FullTy = nullptr; 3789 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 3790 if (!MaybeBitCode) 3791 return MaybeBitCode.takeError(); 3792 switch (unsigned BitCode = MaybeBitCode.get()) { 3793 default: // Default behavior: reject 3794 return error("Invalid value"); 3795 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks] 3796 if (Record.size() < 1 || Record[0] == 0) 3797 return error("Invalid record"); 3798 // Create all the basic blocks for the function. 3799 FunctionBBs.resize(Record[0]); 3800 3801 // See if anything took the address of blocks in this function. 3802 auto BBFRI = BasicBlockFwdRefs.find(F); 3803 if (BBFRI == BasicBlockFwdRefs.end()) { 3804 for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i) 3805 FunctionBBs[i] = BasicBlock::Create(Context, "", F); 3806 } else { 3807 auto &BBRefs = BBFRI->second; 3808 // Check for invalid basic block references. 3809 if (BBRefs.size() > FunctionBBs.size()) 3810 return error("Invalid ID"); 3811 assert(!BBRefs.empty() && "Unexpected empty array"); 3812 assert(!BBRefs.front() && "Invalid reference to entry block"); 3813 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E; 3814 ++I) 3815 if (I < RE && BBRefs[I]) { 3816 BBRefs[I]->insertInto(F); 3817 FunctionBBs[I] = BBRefs[I]; 3818 } else { 3819 FunctionBBs[I] = BasicBlock::Create(Context, "", F); 3820 } 3821 3822 // Erase from the table. 3823 BasicBlockFwdRefs.erase(BBFRI); 3824 } 3825 3826 CurBB = FunctionBBs[0]; 3827 continue; 3828 } 3829 3830 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 3831 // This record indicates that the last instruction is at the same 3832 // location as the previous instruction with a location. 3833 I = getLastInstruction(); 3834 3835 if (!I) 3836 return error("Invalid record"); 3837 I->setDebugLoc(LastLoc); 3838 I = nullptr; 3839 continue; 3840 3841 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 3842 I = getLastInstruction(); 3843 if (!I || Record.size() < 4) 3844 return error("Invalid record"); 3845 3846 unsigned Line = Record[0], Col = Record[1]; 3847 unsigned ScopeID = Record[2], IAID = Record[3]; 3848 bool isImplicitCode = Record.size() == 5 && Record[4]; 3849 3850 MDNode *Scope = nullptr, *IA = nullptr; 3851 if (ScopeID) { 3852 Scope = dyn_cast_or_null<MDNode>( 3853 MDLoader->getMetadataFwdRefOrLoad(ScopeID - 1)); 3854 if (!Scope) 3855 return error("Invalid record"); 3856 } 3857 if (IAID) { 3858 IA = dyn_cast_or_null<MDNode>( 3859 MDLoader->getMetadataFwdRefOrLoad(IAID - 1)); 3860 if (!IA) 3861 return error("Invalid record"); 3862 } 3863 LastLoc = DebugLoc::get(Line, Col, Scope, IA, isImplicitCode); 3864 I->setDebugLoc(LastLoc); 3865 I = nullptr; 3866 continue; 3867 } 3868 case bitc::FUNC_CODE_INST_UNOP: { // UNOP: [opval, ty, opcode] 3869 unsigned OpNum = 0; 3870 Value *LHS; 3871 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 3872 OpNum+1 > Record.size()) 3873 return error("Invalid record"); 3874 3875 int Opc = getDecodedUnaryOpcode(Record[OpNum++], LHS->getType()); 3876 if (Opc == -1) 3877 return error("Invalid record"); 3878 I = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS); 3879 InstructionList.push_back(I); 3880 if (OpNum < Record.size()) { 3881 if (isa<FPMathOperator>(I)) { 3882 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 3883 if (FMF.any()) 3884 I->setFastMathFlags(FMF); 3885 } 3886 } 3887 break; 3888 } 3889 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 3890 unsigned OpNum = 0; 3891 Value *LHS, *RHS; 3892 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 3893 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 3894 OpNum+1 > Record.size()) 3895 return error("Invalid record"); 3896 3897 int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 3898 if (Opc == -1) 3899 return error("Invalid record"); 3900 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 3901 InstructionList.push_back(I); 3902 if (OpNum < Record.size()) { 3903 if (Opc == Instruction::Add || 3904 Opc == Instruction::Sub || 3905 Opc == Instruction::Mul || 3906 Opc == Instruction::Shl) { 3907 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 3908 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 3909 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 3910 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 3911 } else if (Opc == Instruction::SDiv || 3912 Opc == Instruction::UDiv || 3913 Opc == Instruction::LShr || 3914 Opc == Instruction::AShr) { 3915 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 3916 cast<BinaryOperator>(I)->setIsExact(true); 3917 } else if (isa<FPMathOperator>(I)) { 3918 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 3919 if (FMF.any()) 3920 I->setFastMathFlags(FMF); 3921 } 3922 3923 } 3924 break; 3925 } 3926 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 3927 unsigned OpNum = 0; 3928 Value *Op; 3929 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 3930 OpNum+2 != Record.size()) 3931 return error("Invalid record"); 3932 3933 FullTy = getFullyStructuredTypeByID(Record[OpNum]); 3934 Type *ResTy = flattenPointerTypes(FullTy); 3935 int Opc = getDecodedCastOpcode(Record[OpNum + 1]); 3936 if (Opc == -1 || !ResTy) 3937 return error("Invalid record"); 3938 Instruction *Temp = nullptr; 3939 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) { 3940 if (Temp) { 3941 InstructionList.push_back(Temp); 3942 assert(CurBB && "No current BB?"); 3943 CurBB->getInstList().push_back(Temp); 3944 } 3945 } else { 3946 auto CastOp = (Instruction::CastOps)Opc; 3947 if (!CastInst::castIsValid(CastOp, Op, ResTy)) 3948 return error("Invalid cast"); 3949 I = CastInst::Create(CastOp, Op, ResTy); 3950 } 3951 InstructionList.push_back(I); 3952 break; 3953 } 3954 case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD: 3955 case bitc::FUNC_CODE_INST_GEP_OLD: 3956 case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands] 3957 unsigned OpNum = 0; 3958 3959 Type *Ty; 3960 bool InBounds; 3961 3962 if (BitCode == bitc::FUNC_CODE_INST_GEP) { 3963 InBounds = Record[OpNum++]; 3964 FullTy = getFullyStructuredTypeByID(Record[OpNum++]); 3965 Ty = flattenPointerTypes(FullTy); 3966 } else { 3967 InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD; 3968 Ty = nullptr; 3969 } 3970 3971 Value *BasePtr; 3972 Type *FullBaseTy = nullptr; 3973 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr, &FullBaseTy)) 3974 return error("Invalid record"); 3975 3976 if (!Ty) { 3977 std::tie(FullTy, Ty) = 3978 getPointerElementTypes(FullBaseTy->getScalarType()); 3979 } else if (Ty != getPointerElementFlatType(FullBaseTy->getScalarType())) 3980 return error( 3981 "Explicit gep type does not match pointee type of pointer operand"); 3982 3983 SmallVector<Value*, 16> GEPIdx; 3984 while (OpNum != Record.size()) { 3985 Value *Op; 3986 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3987 return error("Invalid record"); 3988 GEPIdx.push_back(Op); 3989 } 3990 3991 I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx); 3992 FullTy = GetElementPtrInst::getGEPReturnType(FullTy, I, GEPIdx); 3993 3994 InstructionList.push_back(I); 3995 if (InBounds) 3996 cast<GetElementPtrInst>(I)->setIsInBounds(true); 3997 break; 3998 } 3999 4000 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 4001 // EXTRACTVAL: [opty, opval, n x indices] 4002 unsigned OpNum = 0; 4003 Value *Agg; 4004 if (getValueTypePair(Record, OpNum, NextValueNo, Agg, &FullTy)) 4005 return error("Invalid record"); 4006 4007 unsigned RecSize = Record.size(); 4008 if (OpNum == RecSize) 4009 return error("EXTRACTVAL: Invalid instruction with 0 indices"); 4010 4011 SmallVector<unsigned, 4> EXTRACTVALIdx; 4012 for (; OpNum != RecSize; ++OpNum) { 4013 bool IsArray = FullTy->isArrayTy(); 4014 bool IsStruct = FullTy->isStructTy(); 4015 uint64_t Index = Record[OpNum]; 4016 4017 if (!IsStruct && !IsArray) 4018 return error("EXTRACTVAL: Invalid type"); 4019 if ((unsigned)Index != Index) 4020 return error("Invalid value"); 4021 if (IsStruct && Index >= FullTy->getStructNumElements()) 4022 return error("EXTRACTVAL: Invalid struct index"); 4023 if (IsArray && Index >= FullTy->getArrayNumElements()) 4024 return error("EXTRACTVAL: Invalid array index"); 4025 EXTRACTVALIdx.push_back((unsigned)Index); 4026 4027 if (IsStruct) 4028 FullTy = FullTy->getStructElementType(Index); 4029 else 4030 FullTy = FullTy->getArrayElementType(); 4031 } 4032 4033 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 4034 InstructionList.push_back(I); 4035 break; 4036 } 4037 4038 case bitc::FUNC_CODE_INST_INSERTVAL: { 4039 // INSERTVAL: [opty, opval, opty, opval, n x indices] 4040 unsigned OpNum = 0; 4041 Value *Agg; 4042 if (getValueTypePair(Record, OpNum, NextValueNo, Agg, &FullTy)) 4043 return error("Invalid record"); 4044 Value *Val; 4045 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 4046 return error("Invalid record"); 4047 4048 unsigned RecSize = Record.size(); 4049 if (OpNum == RecSize) 4050 return error("INSERTVAL: Invalid instruction with 0 indices"); 4051 4052 SmallVector<unsigned, 4> INSERTVALIdx; 4053 Type *CurTy = Agg->getType(); 4054 for (; OpNum != RecSize; ++OpNum) { 4055 bool IsArray = CurTy->isArrayTy(); 4056 bool IsStruct = CurTy->isStructTy(); 4057 uint64_t Index = Record[OpNum]; 4058 4059 if (!IsStruct && !IsArray) 4060 return error("INSERTVAL: Invalid type"); 4061 if ((unsigned)Index != Index) 4062 return error("Invalid value"); 4063 if (IsStruct && Index >= CurTy->getStructNumElements()) 4064 return error("INSERTVAL: Invalid struct index"); 4065 if (IsArray && Index >= CurTy->getArrayNumElements()) 4066 return error("INSERTVAL: Invalid array index"); 4067 4068 INSERTVALIdx.push_back((unsigned)Index); 4069 if (IsStruct) 4070 CurTy = CurTy->getStructElementType(Index); 4071 else 4072 CurTy = CurTy->getArrayElementType(); 4073 } 4074 4075 if (CurTy != Val->getType()) 4076 return error("Inserted value type doesn't match aggregate type"); 4077 4078 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 4079 InstructionList.push_back(I); 4080 break; 4081 } 4082 4083 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 4084 // obsolete form of select 4085 // handles select i1 ... in old bitcode 4086 unsigned OpNum = 0; 4087 Value *TrueVal, *FalseVal, *Cond; 4088 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, &FullTy) || 4089 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 4090 popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond)) 4091 return error("Invalid record"); 4092 4093 I = SelectInst::Create(Cond, TrueVal, FalseVal); 4094 InstructionList.push_back(I); 4095 break; 4096 } 4097 4098 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 4099 // new form of select 4100 // handles select i1 or select [N x i1] 4101 unsigned OpNum = 0; 4102 Value *TrueVal, *FalseVal, *Cond; 4103 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, &FullTy) || 4104 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 4105 getValueTypePair(Record, OpNum, NextValueNo, Cond)) 4106 return error("Invalid record"); 4107 4108 // select condition can be either i1 or [N x i1] 4109 if (VectorType* vector_type = 4110 dyn_cast<VectorType>(Cond->getType())) { 4111 // expect <n x i1> 4112 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 4113 return error("Invalid type for value"); 4114 } else { 4115 // expect i1 4116 if (Cond->getType() != Type::getInt1Ty(Context)) 4117 return error("Invalid type for value"); 4118 } 4119 4120 I = SelectInst::Create(Cond, TrueVal, FalseVal); 4121 InstructionList.push_back(I); 4122 if (OpNum < Record.size() && isa<FPMathOperator>(I)) { 4123 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 4124 if (FMF.any()) 4125 I->setFastMathFlags(FMF); 4126 } 4127 break; 4128 } 4129 4130 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 4131 unsigned OpNum = 0; 4132 Value *Vec, *Idx; 4133 if (getValueTypePair(Record, OpNum, NextValueNo, Vec, &FullTy) || 4134 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 4135 return error("Invalid record"); 4136 if (!Vec->getType()->isVectorTy()) 4137 return error("Invalid type for value"); 4138 I = ExtractElementInst::Create(Vec, Idx); 4139 FullTy = FullTy->getVectorElementType(); 4140 InstructionList.push_back(I); 4141 break; 4142 } 4143 4144 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 4145 unsigned OpNum = 0; 4146 Value *Vec, *Elt, *Idx; 4147 if (getValueTypePair(Record, OpNum, NextValueNo, Vec, &FullTy)) 4148 return error("Invalid record"); 4149 if (!Vec->getType()->isVectorTy()) 4150 return error("Invalid type for value"); 4151 if (popValue(Record, OpNum, NextValueNo, 4152 cast<VectorType>(Vec->getType())->getElementType(), Elt) || 4153 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 4154 return error("Invalid record"); 4155 I = InsertElementInst::Create(Vec, Elt, Idx); 4156 InstructionList.push_back(I); 4157 break; 4158 } 4159 4160 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 4161 unsigned OpNum = 0; 4162 Value *Vec1, *Vec2, *Mask; 4163 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1, &FullTy) || 4164 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2)) 4165 return error("Invalid record"); 4166 4167 if (getValueTypePair(Record, OpNum, NextValueNo, Mask)) 4168 return error("Invalid record"); 4169 if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy()) 4170 return error("Invalid type for value"); 4171 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 4172 FullTy = VectorType::get(FullTy->getVectorElementType(), 4173 Mask->getType()->getVectorNumElements()); 4174 InstructionList.push_back(I); 4175 break; 4176 } 4177 4178 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 4179 // Old form of ICmp/FCmp returning bool 4180 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 4181 // both legal on vectors but had different behaviour. 4182 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 4183 // FCmp/ICmp returning bool or vector of bool 4184 4185 unsigned OpNum = 0; 4186 Value *LHS, *RHS; 4187 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 4188 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS)) 4189 return error("Invalid record"); 4190 4191 if (OpNum >= Record.size()) 4192 return error( 4193 "Invalid record: operand number exceeded available operands"); 4194 4195 unsigned PredVal = Record[OpNum]; 4196 bool IsFP = LHS->getType()->isFPOrFPVectorTy(); 4197 FastMathFlags FMF; 4198 if (IsFP && Record.size() > OpNum+1) 4199 FMF = getDecodedFastMathFlags(Record[++OpNum]); 4200 4201 if (OpNum+1 != Record.size()) 4202 return error("Invalid record"); 4203 4204 if (LHS->getType()->isFPOrFPVectorTy()) 4205 I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS); 4206 else 4207 I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS); 4208 4209 if (FMF.any()) 4210 I->setFastMathFlags(FMF); 4211 InstructionList.push_back(I); 4212 break; 4213 } 4214 4215 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 4216 { 4217 unsigned Size = Record.size(); 4218 if (Size == 0) { 4219 I = ReturnInst::Create(Context); 4220 InstructionList.push_back(I); 4221 break; 4222 } 4223 4224 unsigned OpNum = 0; 4225 Value *Op = nullptr; 4226 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4227 return error("Invalid record"); 4228 if (OpNum != Record.size()) 4229 return error("Invalid record"); 4230 4231 I = ReturnInst::Create(Context, Op); 4232 InstructionList.push_back(I); 4233 break; 4234 } 4235 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 4236 if (Record.size() != 1 && Record.size() != 3) 4237 return error("Invalid record"); 4238 BasicBlock *TrueDest = getBasicBlock(Record[0]); 4239 if (!TrueDest) 4240 return error("Invalid record"); 4241 4242 if (Record.size() == 1) { 4243 I = BranchInst::Create(TrueDest); 4244 InstructionList.push_back(I); 4245 } 4246 else { 4247 BasicBlock *FalseDest = getBasicBlock(Record[1]); 4248 Value *Cond = getValue(Record, 2, NextValueNo, 4249 Type::getInt1Ty(Context)); 4250 if (!FalseDest || !Cond) 4251 return error("Invalid record"); 4252 I = BranchInst::Create(TrueDest, FalseDest, Cond); 4253 InstructionList.push_back(I); 4254 } 4255 break; 4256 } 4257 case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#] 4258 if (Record.size() != 1 && Record.size() != 2) 4259 return error("Invalid record"); 4260 unsigned Idx = 0; 4261 Value *CleanupPad = 4262 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4263 if (!CleanupPad) 4264 return error("Invalid record"); 4265 BasicBlock *UnwindDest = nullptr; 4266 if (Record.size() == 2) { 4267 UnwindDest = getBasicBlock(Record[Idx++]); 4268 if (!UnwindDest) 4269 return error("Invalid record"); 4270 } 4271 4272 I = CleanupReturnInst::Create(CleanupPad, UnwindDest); 4273 InstructionList.push_back(I); 4274 break; 4275 } 4276 case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#] 4277 if (Record.size() != 2) 4278 return error("Invalid record"); 4279 unsigned Idx = 0; 4280 Value *CatchPad = 4281 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4282 if (!CatchPad) 4283 return error("Invalid record"); 4284 BasicBlock *BB = getBasicBlock(Record[Idx++]); 4285 if (!BB) 4286 return error("Invalid record"); 4287 4288 I = CatchReturnInst::Create(CatchPad, BB); 4289 InstructionList.push_back(I); 4290 break; 4291 } 4292 case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?] 4293 // We must have, at minimum, the outer scope and the number of arguments. 4294 if (Record.size() < 2) 4295 return error("Invalid record"); 4296 4297 unsigned Idx = 0; 4298 4299 Value *ParentPad = 4300 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4301 4302 unsigned NumHandlers = Record[Idx++]; 4303 4304 SmallVector<BasicBlock *, 2> Handlers; 4305 for (unsigned Op = 0; Op != NumHandlers; ++Op) { 4306 BasicBlock *BB = getBasicBlock(Record[Idx++]); 4307 if (!BB) 4308 return error("Invalid record"); 4309 Handlers.push_back(BB); 4310 } 4311 4312 BasicBlock *UnwindDest = nullptr; 4313 if (Idx + 1 == Record.size()) { 4314 UnwindDest = getBasicBlock(Record[Idx++]); 4315 if (!UnwindDest) 4316 return error("Invalid record"); 4317 } 4318 4319 if (Record.size() != Idx) 4320 return error("Invalid record"); 4321 4322 auto *CatchSwitch = 4323 CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers); 4324 for (BasicBlock *Handler : Handlers) 4325 CatchSwitch->addHandler(Handler); 4326 I = CatchSwitch; 4327 InstructionList.push_back(I); 4328 break; 4329 } 4330 case bitc::FUNC_CODE_INST_CATCHPAD: 4331 case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*] 4332 // We must have, at minimum, the outer scope and the number of arguments. 4333 if (Record.size() < 2) 4334 return error("Invalid record"); 4335 4336 unsigned Idx = 0; 4337 4338 Value *ParentPad = 4339 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4340 4341 unsigned NumArgOperands = Record[Idx++]; 4342 4343 SmallVector<Value *, 2> Args; 4344 for (unsigned Op = 0; Op != NumArgOperands; ++Op) { 4345 Value *Val; 4346 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 4347 return error("Invalid record"); 4348 Args.push_back(Val); 4349 } 4350 4351 if (Record.size() != Idx) 4352 return error("Invalid record"); 4353 4354 if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD) 4355 I = CleanupPadInst::Create(ParentPad, Args); 4356 else 4357 I = CatchPadInst::Create(ParentPad, Args); 4358 InstructionList.push_back(I); 4359 break; 4360 } 4361 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 4362 // Check magic 4363 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { 4364 // "New" SwitchInst format with case ranges. The changes to write this 4365 // format were reverted but we still recognize bitcode that uses it. 4366 // Hopefully someday we will have support for case ranges and can use 4367 // this format again. 4368 4369 Type *OpTy = getTypeByID(Record[1]); 4370 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); 4371 4372 Value *Cond = getValue(Record, 2, NextValueNo, OpTy); 4373 BasicBlock *Default = getBasicBlock(Record[3]); 4374 if (!OpTy || !Cond || !Default) 4375 return error("Invalid record"); 4376 4377 unsigned NumCases = Record[4]; 4378 4379 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 4380 InstructionList.push_back(SI); 4381 4382 unsigned CurIdx = 5; 4383 for (unsigned i = 0; i != NumCases; ++i) { 4384 SmallVector<ConstantInt*, 1> CaseVals; 4385 unsigned NumItems = Record[CurIdx++]; 4386 for (unsigned ci = 0; ci != NumItems; ++ci) { 4387 bool isSingleNumber = Record[CurIdx++]; 4388 4389 APInt Low; 4390 unsigned ActiveWords = 1; 4391 if (ValueBitWidth > 64) 4392 ActiveWords = Record[CurIdx++]; 4393 Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 4394 ValueBitWidth); 4395 CurIdx += ActiveWords; 4396 4397 if (!isSingleNumber) { 4398 ActiveWords = 1; 4399 if (ValueBitWidth > 64) 4400 ActiveWords = Record[CurIdx++]; 4401 APInt High = readWideAPInt( 4402 makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth); 4403 CurIdx += ActiveWords; 4404 4405 // FIXME: It is not clear whether values in the range should be 4406 // compared as signed or unsigned values. The partially 4407 // implemented changes that used this format in the past used 4408 // unsigned comparisons. 4409 for ( ; Low.ule(High); ++Low) 4410 CaseVals.push_back(ConstantInt::get(Context, Low)); 4411 } else 4412 CaseVals.push_back(ConstantInt::get(Context, Low)); 4413 } 4414 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); 4415 for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(), 4416 cve = CaseVals.end(); cvi != cve; ++cvi) 4417 SI->addCase(*cvi, DestBB); 4418 } 4419 I = SI; 4420 break; 4421 } 4422 4423 // Old SwitchInst format without case ranges. 4424 4425 if (Record.size() < 3 || (Record.size() & 1) == 0) 4426 return error("Invalid record"); 4427 Type *OpTy = getTypeByID(Record[0]); 4428 Value *Cond = getValue(Record, 1, NextValueNo, OpTy); 4429 BasicBlock *Default = getBasicBlock(Record[2]); 4430 if (!OpTy || !Cond || !Default) 4431 return error("Invalid record"); 4432 unsigned NumCases = (Record.size()-3)/2; 4433 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 4434 InstructionList.push_back(SI); 4435 for (unsigned i = 0, e = NumCases; i != e; ++i) { 4436 ConstantInt *CaseVal = 4437 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy)); 4438 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 4439 if (!CaseVal || !DestBB) { 4440 delete SI; 4441 return error("Invalid record"); 4442 } 4443 SI->addCase(CaseVal, DestBB); 4444 } 4445 I = SI; 4446 break; 4447 } 4448 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 4449 if (Record.size() < 2) 4450 return error("Invalid record"); 4451 Type *OpTy = getTypeByID(Record[0]); 4452 Value *Address = getValue(Record, 1, NextValueNo, OpTy); 4453 if (!OpTy || !Address) 4454 return error("Invalid record"); 4455 unsigned NumDests = Record.size()-2; 4456 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 4457 InstructionList.push_back(IBI); 4458 for (unsigned i = 0, e = NumDests; i != e; ++i) { 4459 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 4460 IBI->addDestination(DestBB); 4461 } else { 4462 delete IBI; 4463 return error("Invalid record"); 4464 } 4465 } 4466 I = IBI; 4467 break; 4468 } 4469 4470 case bitc::FUNC_CODE_INST_INVOKE: { 4471 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 4472 if (Record.size() < 4) 4473 return error("Invalid record"); 4474 unsigned OpNum = 0; 4475 AttributeList PAL = getAttributes(Record[OpNum++]); 4476 unsigned CCInfo = Record[OpNum++]; 4477 BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]); 4478 BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]); 4479 4480 FunctionType *FTy = nullptr; 4481 FunctionType *FullFTy = nullptr; 4482 if ((CCInfo >> 13) & 1) { 4483 FullFTy = 4484 dyn_cast<FunctionType>(getFullyStructuredTypeByID(Record[OpNum++])); 4485 if (!FullFTy) 4486 return error("Explicit invoke type is not a function type"); 4487 FTy = cast<FunctionType>(flattenPointerTypes(FullFTy)); 4488 } 4489 4490 Value *Callee; 4491 if (getValueTypePair(Record, OpNum, NextValueNo, Callee, &FullTy)) 4492 return error("Invalid record"); 4493 4494 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 4495 if (!CalleeTy) 4496 return error("Callee is not a pointer"); 4497 if (!FTy) { 4498 FullFTy = 4499 dyn_cast<FunctionType>(cast<PointerType>(FullTy)->getElementType()); 4500 if (!FullFTy) 4501 return error("Callee is not of pointer to function type"); 4502 FTy = cast<FunctionType>(flattenPointerTypes(FullFTy)); 4503 } else if (getPointerElementFlatType(FullTy) != FTy) 4504 return error("Explicit invoke type does not match pointee type of " 4505 "callee operand"); 4506 if (Record.size() < FTy->getNumParams() + OpNum) 4507 return error("Insufficient operands to call"); 4508 4509 SmallVector<Value*, 16> Ops; 4510 SmallVector<Type *, 16> ArgsFullTys; 4511 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 4512 Ops.push_back(getValue(Record, OpNum, NextValueNo, 4513 FTy->getParamType(i))); 4514 ArgsFullTys.push_back(FullFTy->getParamType(i)); 4515 if (!Ops.back()) 4516 return error("Invalid record"); 4517 } 4518 4519 if (!FTy->isVarArg()) { 4520 if (Record.size() != OpNum) 4521 return error("Invalid record"); 4522 } else { 4523 // Read type/value pairs for varargs params. 4524 while (OpNum != Record.size()) { 4525 Value *Op; 4526 Type *FullTy; 4527 if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy)) 4528 return error("Invalid record"); 4529 Ops.push_back(Op); 4530 ArgsFullTys.push_back(FullTy); 4531 } 4532 } 4533 4534 I = InvokeInst::Create(FTy, Callee, NormalBB, UnwindBB, Ops, 4535 OperandBundles); 4536 FullTy = FullFTy->getReturnType(); 4537 OperandBundles.clear(); 4538 InstructionList.push_back(I); 4539 cast<InvokeInst>(I)->setCallingConv( 4540 static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo)); 4541 cast<InvokeInst>(I)->setAttributes(PAL); 4542 propagateByValTypes(cast<CallBase>(I), ArgsFullTys); 4543 4544 break; 4545 } 4546 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 4547 unsigned Idx = 0; 4548 Value *Val = nullptr; 4549 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 4550 return error("Invalid record"); 4551 I = ResumeInst::Create(Val); 4552 InstructionList.push_back(I); 4553 break; 4554 } 4555 case bitc::FUNC_CODE_INST_CALLBR: { 4556 // CALLBR: [attr, cc, norm, transfs, fty, fnid, args] 4557 unsigned OpNum = 0; 4558 AttributeList PAL = getAttributes(Record[OpNum++]); 4559 unsigned CCInfo = Record[OpNum++]; 4560 4561 BasicBlock *DefaultDest = getBasicBlock(Record[OpNum++]); 4562 unsigned NumIndirectDests = Record[OpNum++]; 4563 SmallVector<BasicBlock *, 16> IndirectDests; 4564 for (unsigned i = 0, e = NumIndirectDests; i != e; ++i) 4565 IndirectDests.push_back(getBasicBlock(Record[OpNum++])); 4566 4567 FunctionType *FTy = nullptr; 4568 FunctionType *FullFTy = nullptr; 4569 if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) { 4570 FullFTy = 4571 dyn_cast<FunctionType>(getFullyStructuredTypeByID(Record[OpNum++])); 4572 if (!FullFTy) 4573 return error("Explicit call type is not a function type"); 4574 FTy = cast<FunctionType>(flattenPointerTypes(FullFTy)); 4575 } 4576 4577 Value *Callee; 4578 if (getValueTypePair(Record, OpNum, NextValueNo, Callee, &FullTy)) 4579 return error("Invalid record"); 4580 4581 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 4582 if (!OpTy) 4583 return error("Callee is not a pointer type"); 4584 if (!FTy) { 4585 FullFTy = 4586 dyn_cast<FunctionType>(cast<PointerType>(FullTy)->getElementType()); 4587 if (!FullFTy) 4588 return error("Callee is not of pointer to function type"); 4589 FTy = cast<FunctionType>(flattenPointerTypes(FullFTy)); 4590 } else if (getPointerElementFlatType(FullTy) != FTy) 4591 return error("Explicit call type does not match pointee type of " 4592 "callee operand"); 4593 if (Record.size() < FTy->getNumParams() + OpNum) 4594 return error("Insufficient operands to call"); 4595 4596 SmallVector<Value*, 16> Args; 4597 // Read the fixed params. 4598 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 4599 if (FTy->getParamType(i)->isLabelTy()) 4600 Args.push_back(getBasicBlock(Record[OpNum])); 4601 else 4602 Args.push_back(getValue(Record, OpNum, NextValueNo, 4603 FTy->getParamType(i))); 4604 if (!Args.back()) 4605 return error("Invalid record"); 4606 } 4607 4608 // Read type/value pairs for varargs params. 4609 if (!FTy->isVarArg()) { 4610 if (OpNum != Record.size()) 4611 return error("Invalid record"); 4612 } else { 4613 while (OpNum != Record.size()) { 4614 Value *Op; 4615 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4616 return error("Invalid record"); 4617 Args.push_back(Op); 4618 } 4619 } 4620 4621 I = CallBrInst::Create(FTy, Callee, DefaultDest, IndirectDests, Args, 4622 OperandBundles); 4623 FullTy = FullFTy->getReturnType(); 4624 OperandBundles.clear(); 4625 InstructionList.push_back(I); 4626 cast<CallBrInst>(I)->setCallingConv( 4627 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 4628 cast<CallBrInst>(I)->setAttributes(PAL); 4629 break; 4630 } 4631 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 4632 I = new UnreachableInst(Context); 4633 InstructionList.push_back(I); 4634 break; 4635 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 4636 if (Record.size() < 1) 4637 return error("Invalid record"); 4638 // The first record specifies the type. 4639 FullTy = getFullyStructuredTypeByID(Record[0]); 4640 Type *Ty = flattenPointerTypes(FullTy); 4641 if (!Ty) 4642 return error("Invalid record"); 4643 4644 // Phi arguments are pairs of records of [value, basic block]. 4645 // There is an optional final record for fast-math-flags if this phi has a 4646 // floating-point type. 4647 size_t NumArgs = (Record.size() - 1) / 2; 4648 PHINode *PN = PHINode::Create(Ty, NumArgs); 4649 if ((Record.size() - 1) % 2 == 1 && !isa<FPMathOperator>(PN)) 4650 return error("Invalid record"); 4651 InstructionList.push_back(PN); 4652 4653 for (unsigned i = 0; i != NumArgs; i++) { 4654 Value *V; 4655 // With the new function encoding, it is possible that operands have 4656 // negative IDs (for forward references). Use a signed VBR 4657 // representation to keep the encoding small. 4658 if (UseRelativeIDs) 4659 V = getValueSigned(Record, i * 2 + 1, NextValueNo, Ty); 4660 else 4661 V = getValue(Record, i * 2 + 1, NextValueNo, Ty); 4662 BasicBlock *BB = getBasicBlock(Record[i * 2 + 2]); 4663 if (!V || !BB) 4664 return error("Invalid record"); 4665 PN->addIncoming(V, BB); 4666 } 4667 I = PN; 4668 4669 // If there are an even number of records, the final record must be FMF. 4670 if (Record.size() % 2 == 0) { 4671 assert(isa<FPMathOperator>(I) && "Unexpected phi type"); 4672 FastMathFlags FMF = getDecodedFastMathFlags(Record[Record.size() - 1]); 4673 if (FMF.any()) 4674 I->setFastMathFlags(FMF); 4675 } 4676 4677 break; 4678 } 4679 4680 case bitc::FUNC_CODE_INST_LANDINGPAD: 4681 case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: { 4682 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 4683 unsigned Idx = 0; 4684 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) { 4685 if (Record.size() < 3) 4686 return error("Invalid record"); 4687 } else { 4688 assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD); 4689 if (Record.size() < 4) 4690 return error("Invalid record"); 4691 } 4692 FullTy = getFullyStructuredTypeByID(Record[Idx++]); 4693 Type *Ty = flattenPointerTypes(FullTy); 4694 if (!Ty) 4695 return error("Invalid record"); 4696 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) { 4697 Value *PersFn = nullptr; 4698 if (getValueTypePair(Record, Idx, NextValueNo, PersFn)) 4699 return error("Invalid record"); 4700 4701 if (!F->hasPersonalityFn()) 4702 F->setPersonalityFn(cast<Constant>(PersFn)); 4703 else if (F->getPersonalityFn() != cast<Constant>(PersFn)) 4704 return error("Personality function mismatch"); 4705 } 4706 4707 bool IsCleanup = !!Record[Idx++]; 4708 unsigned NumClauses = Record[Idx++]; 4709 LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses); 4710 LP->setCleanup(IsCleanup); 4711 for (unsigned J = 0; J != NumClauses; ++J) { 4712 LandingPadInst::ClauseType CT = 4713 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 4714 Value *Val; 4715 4716 if (getValueTypePair(Record, Idx, NextValueNo, Val)) { 4717 delete LP; 4718 return error("Invalid record"); 4719 } 4720 4721 assert((CT != LandingPadInst::Catch || 4722 !isa<ArrayType>(Val->getType())) && 4723 "Catch clause has a invalid type!"); 4724 assert((CT != LandingPadInst::Filter || 4725 isa<ArrayType>(Val->getType())) && 4726 "Filter clause has invalid type!"); 4727 LP->addClause(cast<Constant>(Val)); 4728 } 4729 4730 I = LP; 4731 InstructionList.push_back(I); 4732 break; 4733 } 4734 4735 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 4736 if (Record.size() != 4) 4737 return error("Invalid record"); 4738 uint64_t AlignRecord = Record[3]; 4739 const uint64_t InAllocaMask = uint64_t(1) << 5; 4740 const uint64_t ExplicitTypeMask = uint64_t(1) << 6; 4741 const uint64_t SwiftErrorMask = uint64_t(1) << 7; 4742 const uint64_t FlagMask = InAllocaMask | ExplicitTypeMask | 4743 SwiftErrorMask; 4744 bool InAlloca = AlignRecord & InAllocaMask; 4745 bool SwiftError = AlignRecord & SwiftErrorMask; 4746 FullTy = getFullyStructuredTypeByID(Record[0]); 4747 Type *Ty = flattenPointerTypes(FullTy); 4748 if ((AlignRecord & ExplicitTypeMask) == 0) { 4749 auto *PTy = dyn_cast_or_null<PointerType>(Ty); 4750 if (!PTy) 4751 return error("Old-style alloca with a non-pointer type"); 4752 std::tie(FullTy, Ty) = getPointerElementTypes(FullTy); 4753 } 4754 Type *OpTy = getTypeByID(Record[1]); 4755 Value *Size = getFnValueByID(Record[2], OpTy); 4756 MaybeAlign Align; 4757 if (Error Err = parseAlignmentValue(AlignRecord & ~FlagMask, Align)) { 4758 return Err; 4759 } 4760 if (!Ty || !Size) 4761 return error("Invalid record"); 4762 4763 // FIXME: Make this an optional field. 4764 const DataLayout &DL = TheModule->getDataLayout(); 4765 unsigned AS = DL.getAllocaAddrSpace(); 4766 4767 AllocaInst *AI = new AllocaInst(Ty, AS, Size, Align); 4768 AI->setUsedWithInAlloca(InAlloca); 4769 AI->setSwiftError(SwiftError); 4770 I = AI; 4771 FullTy = PointerType::get(FullTy, AS); 4772 InstructionList.push_back(I); 4773 break; 4774 } 4775 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 4776 unsigned OpNum = 0; 4777 Value *Op; 4778 if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy) || 4779 (OpNum + 2 != Record.size() && OpNum + 3 != Record.size())) 4780 return error("Invalid record"); 4781 4782 if (!isa<PointerType>(Op->getType())) 4783 return error("Load operand is not a pointer type"); 4784 4785 Type *Ty = nullptr; 4786 if (OpNum + 3 == Record.size()) { 4787 FullTy = getFullyStructuredTypeByID(Record[OpNum++]); 4788 Ty = flattenPointerTypes(FullTy); 4789 } else 4790 std::tie(FullTy, Ty) = getPointerElementTypes(FullTy); 4791 4792 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 4793 return Err; 4794 4795 MaybeAlign Align; 4796 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4797 return Err; 4798 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], Align); 4799 InstructionList.push_back(I); 4800 break; 4801 } 4802 case bitc::FUNC_CODE_INST_LOADATOMIC: { 4803 // LOADATOMIC: [opty, op, align, vol, ordering, ssid] 4804 unsigned OpNum = 0; 4805 Value *Op; 4806 if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy) || 4807 (OpNum + 4 != Record.size() && OpNum + 5 != Record.size())) 4808 return error("Invalid record"); 4809 4810 if (!isa<PointerType>(Op->getType())) 4811 return error("Load operand is not a pointer type"); 4812 4813 Type *Ty = nullptr; 4814 if (OpNum + 5 == Record.size()) { 4815 FullTy = getFullyStructuredTypeByID(Record[OpNum++]); 4816 Ty = flattenPointerTypes(FullTy); 4817 } else 4818 std::tie(FullTy, Ty) = getPointerElementTypes(FullTy); 4819 4820 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 4821 return Err; 4822 4823 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4824 if (Ordering == AtomicOrdering::NotAtomic || 4825 Ordering == AtomicOrdering::Release || 4826 Ordering == AtomicOrdering::AcquireRelease) 4827 return error("Invalid record"); 4828 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 4829 return error("Invalid record"); 4830 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 4831 4832 MaybeAlign Align; 4833 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4834 return Err; 4835 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], Align, Ordering, SSID); 4836 InstructionList.push_back(I); 4837 break; 4838 } 4839 case bitc::FUNC_CODE_INST_STORE: 4840 case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol] 4841 unsigned OpNum = 0; 4842 Value *Val, *Ptr; 4843 Type *FullTy; 4844 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, &FullTy) || 4845 (BitCode == bitc::FUNC_CODE_INST_STORE 4846 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 4847 : popValue(Record, OpNum, NextValueNo, 4848 getPointerElementFlatType(FullTy), Val)) || 4849 OpNum + 2 != Record.size()) 4850 return error("Invalid record"); 4851 4852 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 4853 return Err; 4854 MaybeAlign Align; 4855 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4856 return Err; 4857 I = new StoreInst(Val, Ptr, Record[OpNum + 1], Align); 4858 InstructionList.push_back(I); 4859 break; 4860 } 4861 case bitc::FUNC_CODE_INST_STOREATOMIC: 4862 case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: { 4863 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, ssid] 4864 unsigned OpNum = 0; 4865 Value *Val, *Ptr; 4866 Type *FullTy; 4867 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, &FullTy) || 4868 !isa<PointerType>(Ptr->getType()) || 4869 (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC 4870 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 4871 : popValue(Record, OpNum, NextValueNo, 4872 getPointerElementFlatType(FullTy), Val)) || 4873 OpNum + 4 != Record.size()) 4874 return error("Invalid record"); 4875 4876 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 4877 return Err; 4878 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4879 if (Ordering == AtomicOrdering::NotAtomic || 4880 Ordering == AtomicOrdering::Acquire || 4881 Ordering == AtomicOrdering::AcquireRelease) 4882 return error("Invalid record"); 4883 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 4884 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 4885 return error("Invalid record"); 4886 4887 MaybeAlign Align; 4888 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4889 return Err; 4890 I = new StoreInst(Val, Ptr, Record[OpNum + 1], Align, Ordering, SSID); 4891 InstructionList.push_back(I); 4892 break; 4893 } 4894 case bitc::FUNC_CODE_INST_CMPXCHG_OLD: 4895 case bitc::FUNC_CODE_INST_CMPXCHG: { 4896 // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, ssid, 4897 // failureordering?, isweak?] 4898 unsigned OpNum = 0; 4899 Value *Ptr, *Cmp, *New; 4900 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, &FullTy)) 4901 return error("Invalid record"); 4902 4903 if (!isa<PointerType>(Ptr->getType())) 4904 return error("Cmpxchg operand is not a pointer type"); 4905 4906 if (BitCode == bitc::FUNC_CODE_INST_CMPXCHG) { 4907 if (getValueTypePair(Record, OpNum, NextValueNo, Cmp, &FullTy)) 4908 return error("Invalid record"); 4909 } else if (popValue(Record, OpNum, NextValueNo, 4910 getPointerElementFlatType(FullTy), Cmp)) 4911 return error("Invalid record"); 4912 else 4913 FullTy = cast<PointerType>(FullTy)->getElementType(); 4914 4915 if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) || 4916 Record.size() < OpNum + 3 || Record.size() > OpNum + 5) 4917 return error("Invalid record"); 4918 4919 AtomicOrdering SuccessOrdering = getDecodedOrdering(Record[OpNum + 1]); 4920 if (SuccessOrdering == AtomicOrdering::NotAtomic || 4921 SuccessOrdering == AtomicOrdering::Unordered) 4922 return error("Invalid record"); 4923 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]); 4924 4925 if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType())) 4926 return Err; 4927 AtomicOrdering FailureOrdering; 4928 if (Record.size() < 7) 4929 FailureOrdering = 4930 AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering); 4931 else 4932 FailureOrdering = getDecodedOrdering(Record[OpNum + 3]); 4933 4934 I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering, 4935 SSID); 4936 FullTy = StructType::get(Context, {FullTy, Type::getInt1Ty(Context)}); 4937 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 4938 4939 if (Record.size() < 8) { 4940 // Before weak cmpxchgs existed, the instruction simply returned the 4941 // value loaded from memory, so bitcode files from that era will be 4942 // expecting the first component of a modern cmpxchg. 4943 CurBB->getInstList().push_back(I); 4944 I = ExtractValueInst::Create(I, 0); 4945 FullTy = cast<StructType>(FullTy)->getElementType(0); 4946 } else { 4947 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]); 4948 } 4949 4950 InstructionList.push_back(I); 4951 break; 4952 } 4953 case bitc::FUNC_CODE_INST_ATOMICRMW: { 4954 // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, ssid] 4955 unsigned OpNum = 0; 4956 Value *Ptr, *Val; 4957 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, &FullTy) || 4958 !isa<PointerType>(Ptr->getType()) || 4959 popValue(Record, OpNum, NextValueNo, 4960 getPointerElementFlatType(FullTy), Val) || 4961 OpNum + 4 != Record.size()) 4962 return error("Invalid record"); 4963 AtomicRMWInst::BinOp Operation = getDecodedRMWOperation(Record[OpNum]); 4964 if (Operation < AtomicRMWInst::FIRST_BINOP || 4965 Operation > AtomicRMWInst::LAST_BINOP) 4966 return error("Invalid record"); 4967 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4968 if (Ordering == AtomicOrdering::NotAtomic || 4969 Ordering == AtomicOrdering::Unordered) 4970 return error("Invalid record"); 4971 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 4972 I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SSID); 4973 FullTy = getPointerElementFlatType(FullTy); 4974 cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]); 4975 InstructionList.push_back(I); 4976 break; 4977 } 4978 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, ssid] 4979 if (2 != Record.size()) 4980 return error("Invalid record"); 4981 AtomicOrdering Ordering = getDecodedOrdering(Record[0]); 4982 if (Ordering == AtomicOrdering::NotAtomic || 4983 Ordering == AtomicOrdering::Unordered || 4984 Ordering == AtomicOrdering::Monotonic) 4985 return error("Invalid record"); 4986 SyncScope::ID SSID = getDecodedSyncScopeID(Record[1]); 4987 I = new FenceInst(Context, Ordering, SSID); 4988 InstructionList.push_back(I); 4989 break; 4990 } 4991 case bitc::FUNC_CODE_INST_CALL: { 4992 // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...] 4993 if (Record.size() < 3) 4994 return error("Invalid record"); 4995 4996 unsigned OpNum = 0; 4997 AttributeList PAL = getAttributes(Record[OpNum++]); 4998 unsigned CCInfo = Record[OpNum++]; 4999 5000 FastMathFlags FMF; 5001 if ((CCInfo >> bitc::CALL_FMF) & 1) { 5002 FMF = getDecodedFastMathFlags(Record[OpNum++]); 5003 if (!FMF.any()) 5004 return error("Fast math flags indicator set for call with no FMF"); 5005 } 5006 5007 FunctionType *FTy = nullptr; 5008 FunctionType *FullFTy = nullptr; 5009 if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) { 5010 FullFTy = 5011 dyn_cast<FunctionType>(getFullyStructuredTypeByID(Record[OpNum++])); 5012 if (!FullFTy) 5013 return error("Explicit call type is not a function type"); 5014 FTy = cast<FunctionType>(flattenPointerTypes(FullFTy)); 5015 } 5016 5017 Value *Callee; 5018 if (getValueTypePair(Record, OpNum, NextValueNo, Callee, &FullTy)) 5019 return error("Invalid record"); 5020 5021 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 5022 if (!OpTy) 5023 return error("Callee is not a pointer type"); 5024 if (!FTy) { 5025 FullFTy = 5026 dyn_cast<FunctionType>(cast<PointerType>(FullTy)->getElementType()); 5027 if (!FullFTy) 5028 return error("Callee is not of pointer to function type"); 5029 FTy = cast<FunctionType>(flattenPointerTypes(FullFTy)); 5030 } else if (getPointerElementFlatType(FullTy) != FTy) 5031 return error("Explicit call type does not match pointee type of " 5032 "callee operand"); 5033 if (Record.size() < FTy->getNumParams() + OpNum) 5034 return error("Insufficient operands to call"); 5035 5036 SmallVector<Value*, 16> Args; 5037 SmallVector<Type*, 16> ArgsFullTys; 5038 // Read the fixed params. 5039 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 5040 if (FTy->getParamType(i)->isLabelTy()) 5041 Args.push_back(getBasicBlock(Record[OpNum])); 5042 else 5043 Args.push_back(getValue(Record, OpNum, NextValueNo, 5044 FTy->getParamType(i))); 5045 ArgsFullTys.push_back(FullFTy->getParamType(i)); 5046 if (!Args.back()) 5047 return error("Invalid record"); 5048 } 5049 5050 // Read type/value pairs for varargs params. 5051 if (!FTy->isVarArg()) { 5052 if (OpNum != Record.size()) 5053 return error("Invalid record"); 5054 } else { 5055 while (OpNum != Record.size()) { 5056 Value *Op; 5057 Type *FullTy; 5058 if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy)) 5059 return error("Invalid record"); 5060 Args.push_back(Op); 5061 ArgsFullTys.push_back(FullTy); 5062 } 5063 } 5064 5065 I = CallInst::Create(FTy, Callee, Args, OperandBundles); 5066 FullTy = FullFTy->getReturnType(); 5067 OperandBundles.clear(); 5068 InstructionList.push_back(I); 5069 cast<CallInst>(I)->setCallingConv( 5070 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 5071 CallInst::TailCallKind TCK = CallInst::TCK_None; 5072 if (CCInfo & 1 << bitc::CALL_TAIL) 5073 TCK = CallInst::TCK_Tail; 5074 if (CCInfo & (1 << bitc::CALL_MUSTTAIL)) 5075 TCK = CallInst::TCK_MustTail; 5076 if (CCInfo & (1 << bitc::CALL_NOTAIL)) 5077 TCK = CallInst::TCK_NoTail; 5078 cast<CallInst>(I)->setTailCallKind(TCK); 5079 cast<CallInst>(I)->setAttributes(PAL); 5080 propagateByValTypes(cast<CallBase>(I), ArgsFullTys); 5081 if (FMF.any()) { 5082 if (!isa<FPMathOperator>(I)) 5083 return error("Fast-math-flags specified for call without " 5084 "floating-point scalar or vector return type"); 5085 I->setFastMathFlags(FMF); 5086 } 5087 break; 5088 } 5089 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 5090 if (Record.size() < 3) 5091 return error("Invalid record"); 5092 Type *OpTy = getTypeByID(Record[0]); 5093 Value *Op = getValue(Record, 1, NextValueNo, OpTy); 5094 FullTy = getFullyStructuredTypeByID(Record[2]); 5095 Type *ResTy = flattenPointerTypes(FullTy); 5096 if (!OpTy || !Op || !ResTy) 5097 return error("Invalid record"); 5098 I = new VAArgInst(Op, ResTy); 5099 InstructionList.push_back(I); 5100 break; 5101 } 5102 5103 case bitc::FUNC_CODE_OPERAND_BUNDLE: { 5104 // A call or an invoke can be optionally prefixed with some variable 5105 // number of operand bundle blocks. These blocks are read into 5106 // OperandBundles and consumed at the next call or invoke instruction. 5107 5108 if (Record.size() < 1 || Record[0] >= BundleTags.size()) 5109 return error("Invalid record"); 5110 5111 std::vector<Value *> Inputs; 5112 5113 unsigned OpNum = 1; 5114 while (OpNum != Record.size()) { 5115 Value *Op; 5116 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 5117 return error("Invalid record"); 5118 Inputs.push_back(Op); 5119 } 5120 5121 OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs)); 5122 continue; 5123 } 5124 5125 case bitc::FUNC_CODE_INST_FREEZE: { // FREEZE: [opty,opval] 5126 unsigned OpNum = 0; 5127 Value *Op = nullptr; 5128 if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy)) 5129 return error("Invalid record"); 5130 if (OpNum != Record.size()) 5131 return error("Invalid record"); 5132 5133 I = new FreezeInst(Op); 5134 InstructionList.push_back(I); 5135 break; 5136 } 5137 } 5138 5139 // Add instruction to end of current BB. If there is no current BB, reject 5140 // this file. 5141 if (!CurBB) { 5142 I->deleteValue(); 5143 return error("Invalid instruction with no BB"); 5144 } 5145 if (!OperandBundles.empty()) { 5146 I->deleteValue(); 5147 return error("Operand bundles found with no consumer"); 5148 } 5149 CurBB->getInstList().push_back(I); 5150 5151 // If this was a terminator instruction, move to the next block. 5152 if (I->isTerminator()) { 5153 ++CurBBNo; 5154 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr; 5155 } 5156 5157 // Non-void values get registered in the value table for future use. 5158 if (!I->getType()->isVoidTy()) { 5159 if (!FullTy) { 5160 FullTy = I->getType(); 5161 assert( 5162 !FullTy->isPointerTy() && !isa<StructType>(FullTy) && 5163 !isa<ArrayType>(FullTy) && 5164 (!isa<VectorType>(FullTy) || 5165 FullTy->getVectorElementType()->isFloatingPointTy() || 5166 FullTy->getVectorElementType()->isIntegerTy()) && 5167 "Structured types must be assigned with corresponding non-opaque " 5168 "pointer type"); 5169 } 5170 5171 assert(I->getType() == flattenPointerTypes(FullTy) && 5172 "Incorrect fully structured type provided for Instruction"); 5173 ValueList.assignValue(I, NextValueNo++, FullTy); 5174 } 5175 } 5176 5177 OutOfRecordLoop: 5178 5179 if (!OperandBundles.empty()) 5180 return error("Operand bundles found with no consumer"); 5181 5182 // Check the function list for unresolved values. 5183 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 5184 if (!A->getParent()) { 5185 // We found at least one unresolved value. Nuke them all to avoid leaks. 5186 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 5187 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) { 5188 A->replaceAllUsesWith(UndefValue::get(A->getType())); 5189 delete A; 5190 } 5191 } 5192 return error("Never resolved value found in function"); 5193 } 5194 } 5195 5196 // Unexpected unresolved metadata about to be dropped. 5197 if (MDLoader->hasFwdRefs()) 5198 return error("Invalid function metadata: outgoing forward refs"); 5199 5200 // Trim the value list down to the size it was before we parsed this function. 5201 ValueList.shrinkTo(ModuleValueListSize); 5202 MDLoader->shrinkTo(ModuleMDLoaderSize); 5203 std::vector<BasicBlock*>().swap(FunctionBBs); 5204 return Error::success(); 5205 } 5206 5207 /// Find the function body in the bitcode stream 5208 Error BitcodeReader::findFunctionInStream( 5209 Function *F, 5210 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) { 5211 while (DeferredFunctionInfoIterator->second == 0) { 5212 // This is the fallback handling for the old format bitcode that 5213 // didn't contain the function index in the VST, or when we have 5214 // an anonymous function which would not have a VST entry. 5215 // Assert that we have one of those two cases. 5216 assert(VSTOffset == 0 || !F->hasName()); 5217 // Parse the next body in the stream and set its position in the 5218 // DeferredFunctionInfo map. 5219 if (Error Err = rememberAndSkipFunctionBodies()) 5220 return Err; 5221 } 5222 return Error::success(); 5223 } 5224 5225 SyncScope::ID BitcodeReader::getDecodedSyncScopeID(unsigned Val) { 5226 if (Val == SyncScope::SingleThread || Val == SyncScope::System) 5227 return SyncScope::ID(Val); 5228 if (Val >= SSIDs.size()) 5229 return SyncScope::System; // Map unknown synchronization scopes to system. 5230 return SSIDs[Val]; 5231 } 5232 5233 //===----------------------------------------------------------------------===// 5234 // GVMaterializer implementation 5235 //===----------------------------------------------------------------------===// 5236 5237 Error BitcodeReader::materialize(GlobalValue *GV) { 5238 Function *F = dyn_cast<Function>(GV); 5239 // If it's not a function or is already material, ignore the request. 5240 if (!F || !F->isMaterializable()) 5241 return Error::success(); 5242 5243 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 5244 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 5245 // If its position is recorded as 0, its body is somewhere in the stream 5246 // but we haven't seen it yet. 5247 if (DFII->second == 0) 5248 if (Error Err = findFunctionInStream(F, DFII)) 5249 return Err; 5250 5251 // Materialize metadata before parsing any function bodies. 5252 if (Error Err = materializeMetadata()) 5253 return Err; 5254 5255 // Move the bit stream to the saved position of the deferred function body. 5256 if (Error JumpFailed = Stream.JumpToBit(DFII->second)) 5257 return JumpFailed; 5258 if (Error Err = parseFunctionBody(F)) 5259 return Err; 5260 F->setIsMaterializable(false); 5261 5262 if (StripDebugInfo) 5263 stripDebugInfo(*F); 5264 5265 // Upgrade any old intrinsic calls in the function. 5266 for (auto &I : UpgradedIntrinsics) { 5267 for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end(); 5268 UI != UE;) { 5269 User *U = *UI; 5270 ++UI; 5271 if (CallInst *CI = dyn_cast<CallInst>(U)) 5272 UpgradeIntrinsicCall(CI, I.second); 5273 } 5274 } 5275 5276 // Update calls to the remangled intrinsics 5277 for (auto &I : RemangledIntrinsics) 5278 for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end(); 5279 UI != UE;) 5280 // Don't expect any other users than call sites 5281 CallSite(*UI++).setCalledFunction(I.second); 5282 5283 // Finish fn->subprogram upgrade for materialized functions. 5284 if (DISubprogram *SP = MDLoader->lookupSubprogramForFunction(F)) 5285 F->setSubprogram(SP); 5286 5287 // Check if the TBAA Metadata are valid, otherwise we will need to strip them. 5288 if (!MDLoader->isStrippingTBAA()) { 5289 for (auto &I : instructions(F)) { 5290 MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa); 5291 if (!TBAA || TBAAVerifyHelper.visitTBAAMetadata(I, TBAA)) 5292 continue; 5293 MDLoader->setStripTBAA(true); 5294 stripTBAA(F->getParent()); 5295 } 5296 } 5297 5298 // Bring in any functions that this function forward-referenced via 5299 // blockaddresses. 5300 return materializeForwardReferencedFunctions(); 5301 } 5302 5303 Error BitcodeReader::materializeModule() { 5304 if (Error Err = materializeMetadata()) 5305 return Err; 5306 5307 // Promise to materialize all forward references. 5308 WillMaterializeAllForwardRefs = true; 5309 5310 // Iterate over the module, deserializing any functions that are still on 5311 // disk. 5312 for (Function &F : *TheModule) { 5313 if (Error Err = materialize(&F)) 5314 return Err; 5315 } 5316 // At this point, if there are any function bodies, parse the rest of 5317 // the bits in the module past the last function block we have recorded 5318 // through either lazy scanning or the VST. 5319 if (LastFunctionBlockBit || NextUnreadBit) 5320 if (Error Err = parseModule(LastFunctionBlockBit > NextUnreadBit 5321 ? LastFunctionBlockBit 5322 : NextUnreadBit)) 5323 return Err; 5324 5325 // Check that all block address forward references got resolved (as we 5326 // promised above). 5327 if (!BasicBlockFwdRefs.empty()) 5328 return error("Never resolved function from blockaddress"); 5329 5330 // Upgrade any intrinsic calls that slipped through (should not happen!) and 5331 // delete the old functions to clean up. We can't do this unless the entire 5332 // module is materialized because there could always be another function body 5333 // with calls to the old function. 5334 for (auto &I : UpgradedIntrinsics) { 5335 for (auto *U : I.first->users()) { 5336 if (CallInst *CI = dyn_cast<CallInst>(U)) 5337 UpgradeIntrinsicCall(CI, I.second); 5338 } 5339 if (!I.first->use_empty()) 5340 I.first->replaceAllUsesWith(I.second); 5341 I.first->eraseFromParent(); 5342 } 5343 UpgradedIntrinsics.clear(); 5344 // Do the same for remangled intrinsics 5345 for (auto &I : RemangledIntrinsics) { 5346 I.first->replaceAllUsesWith(I.second); 5347 I.first->eraseFromParent(); 5348 } 5349 RemangledIntrinsics.clear(); 5350 5351 UpgradeDebugInfo(*TheModule); 5352 5353 UpgradeModuleFlags(*TheModule); 5354 5355 UpgradeARCRuntime(*TheModule); 5356 5357 return Error::success(); 5358 } 5359 5360 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const { 5361 return IdentifiedStructTypes; 5362 } 5363 5364 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader( 5365 BitstreamCursor Cursor, StringRef Strtab, ModuleSummaryIndex &TheIndex, 5366 StringRef ModulePath, unsigned ModuleId) 5367 : BitcodeReaderBase(std::move(Cursor), Strtab), TheIndex(TheIndex), 5368 ModulePath(ModulePath), ModuleId(ModuleId) {} 5369 5370 void ModuleSummaryIndexBitcodeReader::addThisModule() { 5371 TheIndex.addModule(ModulePath, ModuleId); 5372 } 5373 5374 ModuleSummaryIndex::ModuleInfo * 5375 ModuleSummaryIndexBitcodeReader::getThisModule() { 5376 return TheIndex.getModule(ModulePath); 5377 } 5378 5379 std::pair<ValueInfo, GlobalValue::GUID> 5380 ModuleSummaryIndexBitcodeReader::getValueInfoFromValueId(unsigned ValueId) { 5381 auto VGI = ValueIdToValueInfoMap[ValueId]; 5382 assert(VGI.first); 5383 return VGI; 5384 } 5385 5386 void ModuleSummaryIndexBitcodeReader::setValueGUID( 5387 uint64_t ValueID, StringRef ValueName, GlobalValue::LinkageTypes Linkage, 5388 StringRef SourceFileName) { 5389 std::string GlobalId = 5390 GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName); 5391 auto ValueGUID = GlobalValue::getGUID(GlobalId); 5392 auto OriginalNameID = ValueGUID; 5393 if (GlobalValue::isLocalLinkage(Linkage)) 5394 OriginalNameID = GlobalValue::getGUID(ValueName); 5395 if (PrintSummaryGUIDs) 5396 dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is " 5397 << ValueName << "\n"; 5398 5399 // UseStrtab is false for legacy summary formats and value names are 5400 // created on stack. In that case we save the name in a string saver in 5401 // the index so that the value name can be recorded. 5402 ValueIdToValueInfoMap[ValueID] = std::make_pair( 5403 TheIndex.getOrInsertValueInfo( 5404 ValueGUID, 5405 UseStrtab ? ValueName : TheIndex.saveString(ValueName)), 5406 OriginalNameID); 5407 } 5408 5409 // Specialized value symbol table parser used when reading module index 5410 // blocks where we don't actually create global values. The parsed information 5411 // is saved in the bitcode reader for use when later parsing summaries. 5412 Error ModuleSummaryIndexBitcodeReader::parseValueSymbolTable( 5413 uint64_t Offset, 5414 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) { 5415 // With a strtab the VST is not required to parse the summary. 5416 if (UseStrtab) 5417 return Error::success(); 5418 5419 assert(Offset > 0 && "Expected non-zero VST offset"); 5420 Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream); 5421 if (!MaybeCurrentBit) 5422 return MaybeCurrentBit.takeError(); 5423 uint64_t CurrentBit = MaybeCurrentBit.get(); 5424 5425 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 5426 return Err; 5427 5428 SmallVector<uint64_t, 64> Record; 5429 5430 // Read all the records for this value table. 5431 SmallString<128> ValueName; 5432 5433 while (true) { 5434 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 5435 if (!MaybeEntry) 5436 return MaybeEntry.takeError(); 5437 BitstreamEntry Entry = MaybeEntry.get(); 5438 5439 switch (Entry.Kind) { 5440 case BitstreamEntry::SubBlock: // Handled for us already. 5441 case BitstreamEntry::Error: 5442 return error("Malformed block"); 5443 case BitstreamEntry::EndBlock: 5444 // Done parsing VST, jump back to wherever we came from. 5445 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 5446 return JumpFailed; 5447 return Error::success(); 5448 case BitstreamEntry::Record: 5449 // The interesting case. 5450 break; 5451 } 5452 5453 // Read a record. 5454 Record.clear(); 5455 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 5456 if (!MaybeRecord) 5457 return MaybeRecord.takeError(); 5458 switch (MaybeRecord.get()) { 5459 default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records). 5460 break; 5461 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 5462 if (convertToString(Record, 1, ValueName)) 5463 return error("Invalid record"); 5464 unsigned ValueID = Record[0]; 5465 assert(!SourceFileName.empty()); 5466 auto VLI = ValueIdToLinkageMap.find(ValueID); 5467 assert(VLI != ValueIdToLinkageMap.end() && 5468 "No linkage found for VST entry?"); 5469 auto Linkage = VLI->second; 5470 setValueGUID(ValueID, ValueName, Linkage, SourceFileName); 5471 ValueName.clear(); 5472 break; 5473 } 5474 case bitc::VST_CODE_FNENTRY: { 5475 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 5476 if (convertToString(Record, 2, ValueName)) 5477 return error("Invalid record"); 5478 unsigned ValueID = Record[0]; 5479 assert(!SourceFileName.empty()); 5480 auto VLI = ValueIdToLinkageMap.find(ValueID); 5481 assert(VLI != ValueIdToLinkageMap.end() && 5482 "No linkage found for VST entry?"); 5483 auto Linkage = VLI->second; 5484 setValueGUID(ValueID, ValueName, Linkage, SourceFileName); 5485 ValueName.clear(); 5486 break; 5487 } 5488 case bitc::VST_CODE_COMBINED_ENTRY: { 5489 // VST_CODE_COMBINED_ENTRY: [valueid, refguid] 5490 unsigned ValueID = Record[0]; 5491 GlobalValue::GUID RefGUID = Record[1]; 5492 // The "original name", which is the second value of the pair will be 5493 // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index. 5494 ValueIdToValueInfoMap[ValueID] = 5495 std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID); 5496 break; 5497 } 5498 } 5499 } 5500 } 5501 5502 // Parse just the blocks needed for building the index out of the module. 5503 // At the end of this routine the module Index is populated with a map 5504 // from global value id to GlobalValueSummary objects. 5505 Error ModuleSummaryIndexBitcodeReader::parseModule() { 5506 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 5507 return Err; 5508 5509 SmallVector<uint64_t, 64> Record; 5510 DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap; 5511 unsigned ValueId = 0; 5512 5513 // Read the index for this module. 5514 while (true) { 5515 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 5516 if (!MaybeEntry) 5517 return MaybeEntry.takeError(); 5518 llvm::BitstreamEntry Entry = MaybeEntry.get(); 5519 5520 switch (Entry.Kind) { 5521 case BitstreamEntry::Error: 5522 return error("Malformed block"); 5523 case BitstreamEntry::EndBlock: 5524 return Error::success(); 5525 5526 case BitstreamEntry::SubBlock: 5527 switch (Entry.ID) { 5528 default: // Skip unknown content. 5529 if (Error Err = Stream.SkipBlock()) 5530 return Err; 5531 break; 5532 case bitc::BLOCKINFO_BLOCK_ID: 5533 // Need to parse these to get abbrev ids (e.g. for VST) 5534 if (readBlockInfo()) 5535 return error("Malformed block"); 5536 break; 5537 case bitc::VALUE_SYMTAB_BLOCK_ID: 5538 // Should have been parsed earlier via VSTOffset, unless there 5539 // is no summary section. 5540 assert(((SeenValueSymbolTable && VSTOffset > 0) || 5541 !SeenGlobalValSummary) && 5542 "Expected early VST parse via VSTOffset record"); 5543 if (Error Err = Stream.SkipBlock()) 5544 return Err; 5545 break; 5546 case bitc::GLOBALVAL_SUMMARY_BLOCK_ID: 5547 case bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID: 5548 // Add the module if it is a per-module index (has a source file name). 5549 if (!SourceFileName.empty()) 5550 addThisModule(); 5551 assert(!SeenValueSymbolTable && 5552 "Already read VST when parsing summary block?"); 5553 // We might not have a VST if there were no values in the 5554 // summary. An empty summary block generated when we are 5555 // performing ThinLTO compiles so we don't later invoke 5556 // the regular LTO process on them. 5557 if (VSTOffset > 0) { 5558 if (Error Err = parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap)) 5559 return Err; 5560 SeenValueSymbolTable = true; 5561 } 5562 SeenGlobalValSummary = true; 5563 if (Error Err = parseEntireSummary(Entry.ID)) 5564 return Err; 5565 break; 5566 case bitc::MODULE_STRTAB_BLOCK_ID: 5567 if (Error Err = parseModuleStringTable()) 5568 return Err; 5569 break; 5570 } 5571 continue; 5572 5573 case BitstreamEntry::Record: { 5574 Record.clear(); 5575 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 5576 if (!MaybeBitCode) 5577 return MaybeBitCode.takeError(); 5578 switch (MaybeBitCode.get()) { 5579 default: 5580 break; // Default behavior, ignore unknown content. 5581 case bitc::MODULE_CODE_VERSION: { 5582 if (Error Err = parseVersionRecord(Record).takeError()) 5583 return Err; 5584 break; 5585 } 5586 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 5587 case bitc::MODULE_CODE_SOURCE_FILENAME: { 5588 SmallString<128> ValueName; 5589 if (convertToString(Record, 0, ValueName)) 5590 return error("Invalid record"); 5591 SourceFileName = ValueName.c_str(); 5592 break; 5593 } 5594 /// MODULE_CODE_HASH: [5*i32] 5595 case bitc::MODULE_CODE_HASH: { 5596 if (Record.size() != 5) 5597 return error("Invalid hash length " + Twine(Record.size()).str()); 5598 auto &Hash = getThisModule()->second.second; 5599 int Pos = 0; 5600 for (auto &Val : Record) { 5601 assert(!(Val >> 32) && "Unexpected high bits set"); 5602 Hash[Pos++] = Val; 5603 } 5604 break; 5605 } 5606 /// MODULE_CODE_VSTOFFSET: [offset] 5607 case bitc::MODULE_CODE_VSTOFFSET: 5608 if (Record.size() < 1) 5609 return error("Invalid record"); 5610 // Note that we subtract 1 here because the offset is relative to one 5611 // word before the start of the identification or module block, which 5612 // was historically always the start of the regular bitcode header. 5613 VSTOffset = Record[0] - 1; 5614 break; 5615 // v1 GLOBALVAR: [pointer type, isconst, initid, linkage, ...] 5616 // v1 FUNCTION: [type, callingconv, isproto, linkage, ...] 5617 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, ...] 5618 // v2: [strtab offset, strtab size, v1] 5619 case bitc::MODULE_CODE_GLOBALVAR: 5620 case bitc::MODULE_CODE_FUNCTION: 5621 case bitc::MODULE_CODE_ALIAS: { 5622 StringRef Name; 5623 ArrayRef<uint64_t> GVRecord; 5624 std::tie(Name, GVRecord) = readNameFromStrtab(Record); 5625 if (GVRecord.size() <= 3) 5626 return error("Invalid record"); 5627 uint64_t RawLinkage = GVRecord[3]; 5628 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 5629 if (!UseStrtab) { 5630 ValueIdToLinkageMap[ValueId++] = Linkage; 5631 break; 5632 } 5633 5634 setValueGUID(ValueId++, Name, Linkage, SourceFileName); 5635 break; 5636 } 5637 } 5638 } 5639 continue; 5640 } 5641 } 5642 } 5643 5644 std::vector<ValueInfo> 5645 ModuleSummaryIndexBitcodeReader::makeRefList(ArrayRef<uint64_t> Record) { 5646 std::vector<ValueInfo> Ret; 5647 Ret.reserve(Record.size()); 5648 for (uint64_t RefValueId : Record) 5649 Ret.push_back(getValueInfoFromValueId(RefValueId).first); 5650 return Ret; 5651 } 5652 5653 std::vector<FunctionSummary::EdgeTy> 5654 ModuleSummaryIndexBitcodeReader::makeCallList(ArrayRef<uint64_t> Record, 5655 bool IsOldProfileFormat, 5656 bool HasProfile, bool HasRelBF) { 5657 std::vector<FunctionSummary::EdgeTy> Ret; 5658 Ret.reserve(Record.size()); 5659 for (unsigned I = 0, E = Record.size(); I != E; ++I) { 5660 CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown; 5661 uint64_t RelBF = 0; 5662 ValueInfo Callee = getValueInfoFromValueId(Record[I]).first; 5663 if (IsOldProfileFormat) { 5664 I += 1; // Skip old callsitecount field 5665 if (HasProfile) 5666 I += 1; // Skip old profilecount field 5667 } else if (HasProfile) 5668 Hotness = static_cast<CalleeInfo::HotnessType>(Record[++I]); 5669 else if (HasRelBF) 5670 RelBF = Record[++I]; 5671 Ret.push_back(FunctionSummary::EdgeTy{Callee, CalleeInfo(Hotness, RelBF)}); 5672 } 5673 return Ret; 5674 } 5675 5676 static void 5677 parseWholeProgramDevirtResolutionByArg(ArrayRef<uint64_t> Record, size_t &Slot, 5678 WholeProgramDevirtResolution &Wpd) { 5679 uint64_t ArgNum = Record[Slot++]; 5680 WholeProgramDevirtResolution::ByArg &B = 5681 Wpd.ResByArg[{Record.begin() + Slot, Record.begin() + Slot + ArgNum}]; 5682 Slot += ArgNum; 5683 5684 B.TheKind = 5685 static_cast<WholeProgramDevirtResolution::ByArg::Kind>(Record[Slot++]); 5686 B.Info = Record[Slot++]; 5687 B.Byte = Record[Slot++]; 5688 B.Bit = Record[Slot++]; 5689 } 5690 5691 static void parseWholeProgramDevirtResolution(ArrayRef<uint64_t> Record, 5692 StringRef Strtab, size_t &Slot, 5693 TypeIdSummary &TypeId) { 5694 uint64_t Id = Record[Slot++]; 5695 WholeProgramDevirtResolution &Wpd = TypeId.WPDRes[Id]; 5696 5697 Wpd.TheKind = static_cast<WholeProgramDevirtResolution::Kind>(Record[Slot++]); 5698 Wpd.SingleImplName = {Strtab.data() + Record[Slot], 5699 static_cast<size_t>(Record[Slot + 1])}; 5700 Slot += 2; 5701 5702 uint64_t ResByArgNum = Record[Slot++]; 5703 for (uint64_t I = 0; I != ResByArgNum; ++I) 5704 parseWholeProgramDevirtResolutionByArg(Record, Slot, Wpd); 5705 } 5706 5707 static void parseTypeIdSummaryRecord(ArrayRef<uint64_t> Record, 5708 StringRef Strtab, 5709 ModuleSummaryIndex &TheIndex) { 5710 size_t Slot = 0; 5711 TypeIdSummary &TypeId = TheIndex.getOrInsertTypeIdSummary( 5712 {Strtab.data() + Record[Slot], static_cast<size_t>(Record[Slot + 1])}); 5713 Slot += 2; 5714 5715 TypeId.TTRes.TheKind = static_cast<TypeTestResolution::Kind>(Record[Slot++]); 5716 TypeId.TTRes.SizeM1BitWidth = Record[Slot++]; 5717 TypeId.TTRes.AlignLog2 = Record[Slot++]; 5718 TypeId.TTRes.SizeM1 = Record[Slot++]; 5719 TypeId.TTRes.BitMask = Record[Slot++]; 5720 TypeId.TTRes.InlineBits = Record[Slot++]; 5721 5722 while (Slot < Record.size()) 5723 parseWholeProgramDevirtResolution(Record, Strtab, Slot, TypeId); 5724 } 5725 5726 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableInfo( 5727 ArrayRef<uint64_t> Record, size_t &Slot, 5728 TypeIdCompatibleVtableInfo &TypeId) { 5729 uint64_t Offset = Record[Slot++]; 5730 ValueInfo Callee = getValueInfoFromValueId(Record[Slot++]).first; 5731 TypeId.push_back({Offset, Callee}); 5732 } 5733 5734 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableSummaryRecord( 5735 ArrayRef<uint64_t> Record) { 5736 size_t Slot = 0; 5737 TypeIdCompatibleVtableInfo &TypeId = 5738 TheIndex.getOrInsertTypeIdCompatibleVtableSummary( 5739 {Strtab.data() + Record[Slot], 5740 static_cast<size_t>(Record[Slot + 1])}); 5741 Slot += 2; 5742 5743 while (Slot < Record.size()) 5744 parseTypeIdCompatibleVtableInfo(Record, Slot, TypeId); 5745 } 5746 5747 static void setSpecialRefs(std::vector<ValueInfo> &Refs, unsigned ROCnt, 5748 unsigned WOCnt) { 5749 // Readonly and writeonly refs are in the end of the refs list. 5750 assert(ROCnt + WOCnt <= Refs.size()); 5751 unsigned FirstWORef = Refs.size() - WOCnt; 5752 unsigned RefNo = FirstWORef - ROCnt; 5753 for (; RefNo < FirstWORef; ++RefNo) 5754 Refs[RefNo].setReadOnly(); 5755 for (; RefNo < Refs.size(); ++RefNo) 5756 Refs[RefNo].setWriteOnly(); 5757 } 5758 5759 // Eagerly parse the entire summary block. This populates the GlobalValueSummary 5760 // objects in the index. 5761 Error ModuleSummaryIndexBitcodeReader::parseEntireSummary(unsigned ID) { 5762 if (Error Err = Stream.EnterSubBlock(ID)) 5763 return Err; 5764 SmallVector<uint64_t, 64> Record; 5765 5766 // Parse version 5767 { 5768 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 5769 if (!MaybeEntry) 5770 return MaybeEntry.takeError(); 5771 BitstreamEntry Entry = MaybeEntry.get(); 5772 5773 if (Entry.Kind != BitstreamEntry::Record) 5774 return error("Invalid Summary Block: record for version expected"); 5775 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 5776 if (!MaybeRecord) 5777 return MaybeRecord.takeError(); 5778 if (MaybeRecord.get() != bitc::FS_VERSION) 5779 return error("Invalid Summary Block: version expected"); 5780 } 5781 const uint64_t Version = Record[0]; 5782 const bool IsOldProfileFormat = Version == 1; 5783 if (Version < 1 || Version > ModuleSummaryIndex::BitcodeSummaryVersion) 5784 return error("Invalid summary version " + Twine(Version) + 5785 ". Version should be in the range [1-" + 5786 Twine(ModuleSummaryIndex::BitcodeSummaryVersion) + 5787 "]."); 5788 Record.clear(); 5789 5790 // Keep around the last seen summary to be used when we see an optional 5791 // "OriginalName" attachement. 5792 GlobalValueSummary *LastSeenSummary = nullptr; 5793 GlobalValue::GUID LastSeenGUID = 0; 5794 5795 // We can expect to see any number of type ID information records before 5796 // each function summary records; these variables store the information 5797 // collected so far so that it can be used to create the summary object. 5798 std::vector<GlobalValue::GUID> PendingTypeTests; 5799 std::vector<FunctionSummary::VFuncId> PendingTypeTestAssumeVCalls, 5800 PendingTypeCheckedLoadVCalls; 5801 std::vector<FunctionSummary::ConstVCall> PendingTypeTestAssumeConstVCalls, 5802 PendingTypeCheckedLoadConstVCalls; 5803 5804 while (true) { 5805 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 5806 if (!MaybeEntry) 5807 return MaybeEntry.takeError(); 5808 BitstreamEntry Entry = MaybeEntry.get(); 5809 5810 switch (Entry.Kind) { 5811 case BitstreamEntry::SubBlock: // Handled for us already. 5812 case BitstreamEntry::Error: 5813 return error("Malformed block"); 5814 case BitstreamEntry::EndBlock: 5815 return Error::success(); 5816 case BitstreamEntry::Record: 5817 // The interesting case. 5818 break; 5819 } 5820 5821 // Read a record. The record format depends on whether this 5822 // is a per-module index or a combined index file. In the per-module 5823 // case the records contain the associated value's ID for correlation 5824 // with VST entries. In the combined index the correlation is done 5825 // via the bitcode offset of the summary records (which were saved 5826 // in the combined index VST entries). The records also contain 5827 // information used for ThinLTO renaming and importing. 5828 Record.clear(); 5829 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 5830 if (!MaybeBitCode) 5831 return MaybeBitCode.takeError(); 5832 switch (unsigned BitCode = MaybeBitCode.get()) { 5833 default: // Default behavior: ignore. 5834 break; 5835 case bitc::FS_FLAGS: { // [flags] 5836 uint64_t Flags = Record[0]; 5837 // Scan flags. 5838 assert(Flags <= 0x3f && "Unexpected bits in flag"); 5839 5840 // 1 bit: WithGlobalValueDeadStripping flag. 5841 // Set on combined index only. 5842 if (Flags & 0x1) 5843 TheIndex.setWithGlobalValueDeadStripping(); 5844 // 1 bit: SkipModuleByDistributedBackend flag. 5845 // Set on combined index only. 5846 if (Flags & 0x2) 5847 TheIndex.setSkipModuleByDistributedBackend(); 5848 // 1 bit: HasSyntheticEntryCounts flag. 5849 // Set on combined index only. 5850 if (Flags & 0x4) 5851 TheIndex.setHasSyntheticEntryCounts(); 5852 // 1 bit: DisableSplitLTOUnit flag. 5853 // Set on per module indexes. It is up to the client to validate 5854 // the consistency of this flag across modules being linked. 5855 if (Flags & 0x8) 5856 TheIndex.setEnableSplitLTOUnit(); 5857 // 1 bit: PartiallySplitLTOUnits flag. 5858 // Set on combined index only. 5859 if (Flags & 0x10) 5860 TheIndex.setPartiallySplitLTOUnits(); 5861 // 1 bit: WithAttributePropagation flag. 5862 // Set on combined index only. 5863 if (Flags & 0x20) 5864 TheIndex.setWithAttributePropagation(); 5865 break; 5866 } 5867 case bitc::FS_VALUE_GUID: { // [valueid, refguid] 5868 uint64_t ValueID = Record[0]; 5869 GlobalValue::GUID RefGUID = Record[1]; 5870 ValueIdToValueInfoMap[ValueID] = 5871 std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID); 5872 break; 5873 } 5874 // FS_PERMODULE: [valueid, flags, instcount, fflags, numrefs, 5875 // numrefs x valueid, n x (valueid)] 5876 // FS_PERMODULE_PROFILE: [valueid, flags, instcount, fflags, numrefs, 5877 // numrefs x valueid, 5878 // n x (valueid, hotness)] 5879 // FS_PERMODULE_RELBF: [valueid, flags, instcount, fflags, numrefs, 5880 // numrefs x valueid, 5881 // n x (valueid, relblockfreq)] 5882 case bitc::FS_PERMODULE: 5883 case bitc::FS_PERMODULE_RELBF: 5884 case bitc::FS_PERMODULE_PROFILE: { 5885 unsigned ValueID = Record[0]; 5886 uint64_t RawFlags = Record[1]; 5887 unsigned InstCount = Record[2]; 5888 uint64_t RawFunFlags = 0; 5889 unsigned NumRefs = Record[3]; 5890 unsigned NumRORefs = 0, NumWORefs = 0; 5891 int RefListStartIndex = 4; 5892 if (Version >= 4) { 5893 RawFunFlags = Record[3]; 5894 NumRefs = Record[4]; 5895 RefListStartIndex = 5; 5896 if (Version >= 5) { 5897 NumRORefs = Record[5]; 5898 RefListStartIndex = 6; 5899 if (Version >= 7) { 5900 NumWORefs = Record[6]; 5901 RefListStartIndex = 7; 5902 } 5903 } 5904 } 5905 5906 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5907 // The module path string ref set in the summary must be owned by the 5908 // index's module string table. Since we don't have a module path 5909 // string table section in the per-module index, we create a single 5910 // module path string table entry with an empty (0) ID to take 5911 // ownership. 5912 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 5913 assert(Record.size() >= RefListStartIndex + NumRefs && 5914 "Record size inconsistent with number of references"); 5915 std::vector<ValueInfo> Refs = makeRefList( 5916 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 5917 bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE); 5918 bool HasRelBF = (BitCode == bitc::FS_PERMODULE_RELBF); 5919 std::vector<FunctionSummary::EdgeTy> Calls = makeCallList( 5920 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex), 5921 IsOldProfileFormat, HasProfile, HasRelBF); 5922 setSpecialRefs(Refs, NumRORefs, NumWORefs); 5923 auto FS = std::make_unique<FunctionSummary>( 5924 Flags, InstCount, getDecodedFFlags(RawFunFlags), /*EntryCount=*/0, 5925 std::move(Refs), std::move(Calls), std::move(PendingTypeTests), 5926 std::move(PendingTypeTestAssumeVCalls), 5927 std::move(PendingTypeCheckedLoadVCalls), 5928 std::move(PendingTypeTestAssumeConstVCalls), 5929 std::move(PendingTypeCheckedLoadConstVCalls)); 5930 auto VIAndOriginalGUID = getValueInfoFromValueId(ValueID); 5931 FS->setModulePath(getThisModule()->first()); 5932 FS->setOriginalName(VIAndOriginalGUID.second); 5933 TheIndex.addGlobalValueSummary(VIAndOriginalGUID.first, std::move(FS)); 5934 break; 5935 } 5936 // FS_ALIAS: [valueid, flags, valueid] 5937 // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as 5938 // they expect all aliasee summaries to be available. 5939 case bitc::FS_ALIAS: { 5940 unsigned ValueID = Record[0]; 5941 uint64_t RawFlags = Record[1]; 5942 unsigned AliaseeID = Record[2]; 5943 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5944 auto AS = std::make_unique<AliasSummary>(Flags); 5945 // The module path string ref set in the summary must be owned by the 5946 // index's module string table. Since we don't have a module path 5947 // string table section in the per-module index, we create a single 5948 // module path string table entry with an empty (0) ID to take 5949 // ownership. 5950 AS->setModulePath(getThisModule()->first()); 5951 5952 auto AliaseeVI = getValueInfoFromValueId(AliaseeID).first; 5953 auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, ModulePath); 5954 if (!AliaseeInModule) 5955 return error("Alias expects aliasee summary to be parsed"); 5956 AS->setAliasee(AliaseeVI, AliaseeInModule); 5957 5958 auto GUID = getValueInfoFromValueId(ValueID); 5959 AS->setOriginalName(GUID.second); 5960 TheIndex.addGlobalValueSummary(GUID.first, std::move(AS)); 5961 break; 5962 } 5963 // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, n x valueid] 5964 case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: { 5965 unsigned ValueID = Record[0]; 5966 uint64_t RawFlags = Record[1]; 5967 unsigned RefArrayStart = 2; 5968 GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false, 5969 /* WriteOnly */ false, 5970 /* Constant */ false); 5971 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5972 if (Version >= 5) { 5973 GVF = getDecodedGVarFlags(Record[2]); 5974 RefArrayStart = 3; 5975 } 5976 std::vector<ValueInfo> Refs = 5977 makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart)); 5978 auto FS = 5979 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 5980 FS->setModulePath(getThisModule()->first()); 5981 auto GUID = getValueInfoFromValueId(ValueID); 5982 FS->setOriginalName(GUID.second); 5983 TheIndex.addGlobalValueSummary(GUID.first, std::move(FS)); 5984 break; 5985 } 5986 // FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, 5987 // numrefs, numrefs x valueid, 5988 // n x (valueid, offset)] 5989 case bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: { 5990 unsigned ValueID = Record[0]; 5991 uint64_t RawFlags = Record[1]; 5992 GlobalVarSummary::GVarFlags GVF = getDecodedGVarFlags(Record[2]); 5993 unsigned NumRefs = Record[3]; 5994 unsigned RefListStartIndex = 4; 5995 unsigned VTableListStartIndex = RefListStartIndex + NumRefs; 5996 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5997 std::vector<ValueInfo> Refs = makeRefList( 5998 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 5999 VTableFuncList VTableFuncs; 6000 for (unsigned I = VTableListStartIndex, E = Record.size(); I != E; ++I) { 6001 ValueInfo Callee = getValueInfoFromValueId(Record[I]).first; 6002 uint64_t Offset = Record[++I]; 6003 VTableFuncs.push_back({Callee, Offset}); 6004 } 6005 auto VS = 6006 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 6007 VS->setModulePath(getThisModule()->first()); 6008 VS->setVTableFuncs(VTableFuncs); 6009 auto GUID = getValueInfoFromValueId(ValueID); 6010 VS->setOriginalName(GUID.second); 6011 TheIndex.addGlobalValueSummary(GUID.first, std::move(VS)); 6012 break; 6013 } 6014 // FS_COMBINED: [valueid, modid, flags, instcount, fflags, numrefs, 6015 // numrefs x valueid, n x (valueid)] 6016 // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, fflags, numrefs, 6017 // numrefs x valueid, n x (valueid, hotness)] 6018 case bitc::FS_COMBINED: 6019 case bitc::FS_COMBINED_PROFILE: { 6020 unsigned ValueID = Record[0]; 6021 uint64_t ModuleId = Record[1]; 6022 uint64_t RawFlags = Record[2]; 6023 unsigned InstCount = Record[3]; 6024 uint64_t RawFunFlags = 0; 6025 uint64_t EntryCount = 0; 6026 unsigned NumRefs = Record[4]; 6027 unsigned NumRORefs = 0, NumWORefs = 0; 6028 int RefListStartIndex = 5; 6029 6030 if (Version >= 4) { 6031 RawFunFlags = Record[4]; 6032 RefListStartIndex = 6; 6033 size_t NumRefsIndex = 5; 6034 if (Version >= 5) { 6035 unsigned NumRORefsOffset = 1; 6036 RefListStartIndex = 7; 6037 if (Version >= 6) { 6038 NumRefsIndex = 6; 6039 EntryCount = Record[5]; 6040 RefListStartIndex = 8; 6041 if (Version >= 7) { 6042 RefListStartIndex = 9; 6043 NumWORefs = Record[8]; 6044 NumRORefsOffset = 2; 6045 } 6046 } 6047 NumRORefs = Record[RefListStartIndex - NumRORefsOffset]; 6048 } 6049 NumRefs = Record[NumRefsIndex]; 6050 } 6051 6052 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6053 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 6054 assert(Record.size() >= RefListStartIndex + NumRefs && 6055 "Record size inconsistent with number of references"); 6056 std::vector<ValueInfo> Refs = makeRefList( 6057 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 6058 bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE); 6059 std::vector<FunctionSummary::EdgeTy> Edges = makeCallList( 6060 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex), 6061 IsOldProfileFormat, HasProfile, false); 6062 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 6063 setSpecialRefs(Refs, NumRORefs, NumWORefs); 6064 auto FS = std::make_unique<FunctionSummary>( 6065 Flags, InstCount, getDecodedFFlags(RawFunFlags), EntryCount, 6066 std::move(Refs), std::move(Edges), std::move(PendingTypeTests), 6067 std::move(PendingTypeTestAssumeVCalls), 6068 std::move(PendingTypeCheckedLoadVCalls), 6069 std::move(PendingTypeTestAssumeConstVCalls), 6070 std::move(PendingTypeCheckedLoadConstVCalls)); 6071 LastSeenSummary = FS.get(); 6072 LastSeenGUID = VI.getGUID(); 6073 FS->setModulePath(ModuleIdMap[ModuleId]); 6074 TheIndex.addGlobalValueSummary(VI, std::move(FS)); 6075 break; 6076 } 6077 // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid] 6078 // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as 6079 // they expect all aliasee summaries to be available. 6080 case bitc::FS_COMBINED_ALIAS: { 6081 unsigned ValueID = Record[0]; 6082 uint64_t ModuleId = Record[1]; 6083 uint64_t RawFlags = Record[2]; 6084 unsigned AliaseeValueId = Record[3]; 6085 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6086 auto AS = std::make_unique<AliasSummary>(Flags); 6087 LastSeenSummary = AS.get(); 6088 AS->setModulePath(ModuleIdMap[ModuleId]); 6089 6090 auto AliaseeVI = getValueInfoFromValueId(AliaseeValueId).first; 6091 auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, AS->modulePath()); 6092 AS->setAliasee(AliaseeVI, AliaseeInModule); 6093 6094 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 6095 LastSeenGUID = VI.getGUID(); 6096 TheIndex.addGlobalValueSummary(VI, std::move(AS)); 6097 break; 6098 } 6099 // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid] 6100 case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: { 6101 unsigned ValueID = Record[0]; 6102 uint64_t ModuleId = Record[1]; 6103 uint64_t RawFlags = Record[2]; 6104 unsigned RefArrayStart = 3; 6105 GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false, 6106 /* WriteOnly */ false, 6107 /* Constant */ false); 6108 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6109 if (Version >= 5) { 6110 GVF = getDecodedGVarFlags(Record[3]); 6111 RefArrayStart = 4; 6112 } 6113 std::vector<ValueInfo> Refs = 6114 makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart)); 6115 auto FS = 6116 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 6117 LastSeenSummary = FS.get(); 6118 FS->setModulePath(ModuleIdMap[ModuleId]); 6119 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 6120 LastSeenGUID = VI.getGUID(); 6121 TheIndex.addGlobalValueSummary(VI, std::move(FS)); 6122 break; 6123 } 6124 // FS_COMBINED_ORIGINAL_NAME: [original_name] 6125 case bitc::FS_COMBINED_ORIGINAL_NAME: { 6126 uint64_t OriginalName = Record[0]; 6127 if (!LastSeenSummary) 6128 return error("Name attachment that does not follow a combined record"); 6129 LastSeenSummary->setOriginalName(OriginalName); 6130 TheIndex.addOriginalName(LastSeenGUID, OriginalName); 6131 // Reset the LastSeenSummary 6132 LastSeenSummary = nullptr; 6133 LastSeenGUID = 0; 6134 break; 6135 } 6136 case bitc::FS_TYPE_TESTS: 6137 assert(PendingTypeTests.empty()); 6138 PendingTypeTests.insert(PendingTypeTests.end(), Record.begin(), 6139 Record.end()); 6140 break; 6141 6142 case bitc::FS_TYPE_TEST_ASSUME_VCALLS: 6143 assert(PendingTypeTestAssumeVCalls.empty()); 6144 for (unsigned I = 0; I != Record.size(); I += 2) 6145 PendingTypeTestAssumeVCalls.push_back({Record[I], Record[I+1]}); 6146 break; 6147 6148 case bitc::FS_TYPE_CHECKED_LOAD_VCALLS: 6149 assert(PendingTypeCheckedLoadVCalls.empty()); 6150 for (unsigned I = 0; I != Record.size(); I += 2) 6151 PendingTypeCheckedLoadVCalls.push_back({Record[I], Record[I+1]}); 6152 break; 6153 6154 case bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL: 6155 PendingTypeTestAssumeConstVCalls.push_back( 6156 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}}); 6157 break; 6158 6159 case bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL: 6160 PendingTypeCheckedLoadConstVCalls.push_back( 6161 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}}); 6162 break; 6163 6164 case bitc::FS_CFI_FUNCTION_DEFS: { 6165 std::set<std::string> &CfiFunctionDefs = TheIndex.cfiFunctionDefs(); 6166 for (unsigned I = 0; I != Record.size(); I += 2) 6167 CfiFunctionDefs.insert( 6168 {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])}); 6169 break; 6170 } 6171 6172 case bitc::FS_CFI_FUNCTION_DECLS: { 6173 std::set<std::string> &CfiFunctionDecls = TheIndex.cfiFunctionDecls(); 6174 for (unsigned I = 0; I != Record.size(); I += 2) 6175 CfiFunctionDecls.insert( 6176 {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])}); 6177 break; 6178 } 6179 6180 case bitc::FS_TYPE_ID: 6181 parseTypeIdSummaryRecord(Record, Strtab, TheIndex); 6182 break; 6183 6184 case bitc::FS_TYPE_ID_METADATA: 6185 parseTypeIdCompatibleVtableSummaryRecord(Record); 6186 break; 6187 } 6188 } 6189 llvm_unreachable("Exit infinite loop"); 6190 } 6191 6192 // Parse the module string table block into the Index. 6193 // This populates the ModulePathStringTable map in the index. 6194 Error ModuleSummaryIndexBitcodeReader::parseModuleStringTable() { 6195 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID)) 6196 return Err; 6197 6198 SmallVector<uint64_t, 64> Record; 6199 6200 SmallString<128> ModulePath; 6201 ModuleSummaryIndex::ModuleInfo *LastSeenModule = nullptr; 6202 6203 while (true) { 6204 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 6205 if (!MaybeEntry) 6206 return MaybeEntry.takeError(); 6207 BitstreamEntry Entry = MaybeEntry.get(); 6208 6209 switch (Entry.Kind) { 6210 case BitstreamEntry::SubBlock: // Handled for us already. 6211 case BitstreamEntry::Error: 6212 return error("Malformed block"); 6213 case BitstreamEntry::EndBlock: 6214 return Error::success(); 6215 case BitstreamEntry::Record: 6216 // The interesting case. 6217 break; 6218 } 6219 6220 Record.clear(); 6221 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 6222 if (!MaybeRecord) 6223 return MaybeRecord.takeError(); 6224 switch (MaybeRecord.get()) { 6225 default: // Default behavior: ignore. 6226 break; 6227 case bitc::MST_CODE_ENTRY: { 6228 // MST_ENTRY: [modid, namechar x N] 6229 uint64_t ModuleId = Record[0]; 6230 6231 if (convertToString(Record, 1, ModulePath)) 6232 return error("Invalid record"); 6233 6234 LastSeenModule = TheIndex.addModule(ModulePath, ModuleId); 6235 ModuleIdMap[ModuleId] = LastSeenModule->first(); 6236 6237 ModulePath.clear(); 6238 break; 6239 } 6240 /// MST_CODE_HASH: [5*i32] 6241 case bitc::MST_CODE_HASH: { 6242 if (Record.size() != 5) 6243 return error("Invalid hash length " + Twine(Record.size()).str()); 6244 if (!LastSeenModule) 6245 return error("Invalid hash that does not follow a module path"); 6246 int Pos = 0; 6247 for (auto &Val : Record) { 6248 assert(!(Val >> 32) && "Unexpected high bits set"); 6249 LastSeenModule->second.second[Pos++] = Val; 6250 } 6251 // Reset LastSeenModule to avoid overriding the hash unexpectedly. 6252 LastSeenModule = nullptr; 6253 break; 6254 } 6255 } 6256 } 6257 llvm_unreachable("Exit infinite loop"); 6258 } 6259 6260 namespace { 6261 6262 // FIXME: This class is only here to support the transition to llvm::Error. It 6263 // will be removed once this transition is complete. Clients should prefer to 6264 // deal with the Error value directly, rather than converting to error_code. 6265 class BitcodeErrorCategoryType : public std::error_category { 6266 const char *name() const noexcept override { 6267 return "llvm.bitcode"; 6268 } 6269 6270 std::string message(int IE) const override { 6271 BitcodeError E = static_cast<BitcodeError>(IE); 6272 switch (E) { 6273 case BitcodeError::CorruptedBitcode: 6274 return "Corrupted bitcode"; 6275 } 6276 llvm_unreachable("Unknown error type!"); 6277 } 6278 }; 6279 6280 } // end anonymous namespace 6281 6282 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory; 6283 6284 const std::error_category &llvm::BitcodeErrorCategory() { 6285 return *ErrorCategory; 6286 } 6287 6288 static Expected<StringRef> readBlobInRecord(BitstreamCursor &Stream, 6289 unsigned Block, unsigned RecordID) { 6290 if (Error Err = Stream.EnterSubBlock(Block)) 6291 return std::move(Err); 6292 6293 StringRef Strtab; 6294 while (true) { 6295 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 6296 if (!MaybeEntry) 6297 return MaybeEntry.takeError(); 6298 llvm::BitstreamEntry Entry = MaybeEntry.get(); 6299 6300 switch (Entry.Kind) { 6301 case BitstreamEntry::EndBlock: 6302 return Strtab; 6303 6304 case BitstreamEntry::Error: 6305 return error("Malformed block"); 6306 6307 case BitstreamEntry::SubBlock: 6308 if (Error Err = Stream.SkipBlock()) 6309 return std::move(Err); 6310 break; 6311 6312 case BitstreamEntry::Record: 6313 StringRef Blob; 6314 SmallVector<uint64_t, 1> Record; 6315 Expected<unsigned> MaybeRecord = 6316 Stream.readRecord(Entry.ID, Record, &Blob); 6317 if (!MaybeRecord) 6318 return MaybeRecord.takeError(); 6319 if (MaybeRecord.get() == RecordID) 6320 Strtab = Blob; 6321 break; 6322 } 6323 } 6324 } 6325 6326 //===----------------------------------------------------------------------===// 6327 // External interface 6328 //===----------------------------------------------------------------------===// 6329 6330 Expected<std::vector<BitcodeModule>> 6331 llvm::getBitcodeModuleList(MemoryBufferRef Buffer) { 6332 auto FOrErr = getBitcodeFileContents(Buffer); 6333 if (!FOrErr) 6334 return FOrErr.takeError(); 6335 return std::move(FOrErr->Mods); 6336 } 6337 6338 Expected<BitcodeFileContents> 6339 llvm::getBitcodeFileContents(MemoryBufferRef Buffer) { 6340 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 6341 if (!StreamOrErr) 6342 return StreamOrErr.takeError(); 6343 BitstreamCursor &Stream = *StreamOrErr; 6344 6345 BitcodeFileContents F; 6346 while (true) { 6347 uint64_t BCBegin = Stream.getCurrentByteNo(); 6348 6349 // We may be consuming bitcode from a client that leaves garbage at the end 6350 // of the bitcode stream (e.g. Apple's ar tool). If we are close enough to 6351 // the end that there cannot possibly be another module, stop looking. 6352 if (BCBegin + 8 >= Stream.getBitcodeBytes().size()) 6353 return F; 6354 6355 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 6356 if (!MaybeEntry) 6357 return MaybeEntry.takeError(); 6358 llvm::BitstreamEntry Entry = MaybeEntry.get(); 6359 6360 switch (Entry.Kind) { 6361 case BitstreamEntry::EndBlock: 6362 case BitstreamEntry::Error: 6363 return error("Malformed block"); 6364 6365 case BitstreamEntry::SubBlock: { 6366 uint64_t IdentificationBit = -1ull; 6367 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) { 6368 IdentificationBit = Stream.GetCurrentBitNo() - BCBegin * 8; 6369 if (Error Err = Stream.SkipBlock()) 6370 return std::move(Err); 6371 6372 { 6373 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 6374 if (!MaybeEntry) 6375 return MaybeEntry.takeError(); 6376 Entry = MaybeEntry.get(); 6377 } 6378 6379 if (Entry.Kind != BitstreamEntry::SubBlock || 6380 Entry.ID != bitc::MODULE_BLOCK_ID) 6381 return error("Malformed block"); 6382 } 6383 6384 if (Entry.ID == bitc::MODULE_BLOCK_ID) { 6385 uint64_t ModuleBit = Stream.GetCurrentBitNo() - BCBegin * 8; 6386 if (Error Err = Stream.SkipBlock()) 6387 return std::move(Err); 6388 6389 F.Mods.push_back({Stream.getBitcodeBytes().slice( 6390 BCBegin, Stream.getCurrentByteNo() - BCBegin), 6391 Buffer.getBufferIdentifier(), IdentificationBit, 6392 ModuleBit}); 6393 continue; 6394 } 6395 6396 if (Entry.ID == bitc::STRTAB_BLOCK_ID) { 6397 Expected<StringRef> Strtab = 6398 readBlobInRecord(Stream, bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB); 6399 if (!Strtab) 6400 return Strtab.takeError(); 6401 // This string table is used by every preceding bitcode module that does 6402 // not have its own string table. A bitcode file may have multiple 6403 // string tables if it was created by binary concatenation, for example 6404 // with "llvm-cat -b". 6405 for (auto I = F.Mods.rbegin(), E = F.Mods.rend(); I != E; ++I) { 6406 if (!I->Strtab.empty()) 6407 break; 6408 I->Strtab = *Strtab; 6409 } 6410 // Similarly, the string table is used by every preceding symbol table; 6411 // normally there will be just one unless the bitcode file was created 6412 // by binary concatenation. 6413 if (!F.Symtab.empty() && F.StrtabForSymtab.empty()) 6414 F.StrtabForSymtab = *Strtab; 6415 continue; 6416 } 6417 6418 if (Entry.ID == bitc::SYMTAB_BLOCK_ID) { 6419 Expected<StringRef> SymtabOrErr = 6420 readBlobInRecord(Stream, bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB); 6421 if (!SymtabOrErr) 6422 return SymtabOrErr.takeError(); 6423 6424 // We can expect the bitcode file to have multiple symbol tables if it 6425 // was created by binary concatenation. In that case we silently 6426 // ignore any subsequent symbol tables, which is fine because this is a 6427 // low level function. The client is expected to notice that the number 6428 // of modules in the symbol table does not match the number of modules 6429 // in the input file and regenerate the symbol table. 6430 if (F.Symtab.empty()) 6431 F.Symtab = *SymtabOrErr; 6432 continue; 6433 } 6434 6435 if (Error Err = Stream.SkipBlock()) 6436 return std::move(Err); 6437 continue; 6438 } 6439 case BitstreamEntry::Record: 6440 if (Expected<unsigned> StreamFailed = Stream.skipRecord(Entry.ID)) 6441 continue; 6442 else 6443 return StreamFailed.takeError(); 6444 } 6445 } 6446 } 6447 6448 /// Get a lazy one-at-time loading module from bitcode. 6449 /// 6450 /// This isn't always used in a lazy context. In particular, it's also used by 6451 /// \a parseModule(). If this is truly lazy, then we need to eagerly pull 6452 /// in forward-referenced functions from block address references. 6453 /// 6454 /// \param[in] MaterializeAll Set to \c true if we should materialize 6455 /// everything. 6456 Expected<std::unique_ptr<Module>> 6457 BitcodeModule::getModuleImpl(LLVMContext &Context, bool MaterializeAll, 6458 bool ShouldLazyLoadMetadata, bool IsImporting) { 6459 BitstreamCursor Stream(Buffer); 6460 6461 std::string ProducerIdentification; 6462 if (IdentificationBit != -1ull) { 6463 if (Error JumpFailed = Stream.JumpToBit(IdentificationBit)) 6464 return std::move(JumpFailed); 6465 Expected<std::string> ProducerIdentificationOrErr = 6466 readIdentificationBlock(Stream); 6467 if (!ProducerIdentificationOrErr) 6468 return ProducerIdentificationOrErr.takeError(); 6469 6470 ProducerIdentification = *ProducerIdentificationOrErr; 6471 } 6472 6473 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 6474 return std::move(JumpFailed); 6475 auto *R = new BitcodeReader(std::move(Stream), Strtab, ProducerIdentification, 6476 Context); 6477 6478 std::unique_ptr<Module> M = 6479 std::make_unique<Module>(ModuleIdentifier, Context); 6480 M->setMaterializer(R); 6481 6482 // Delay parsing Metadata if ShouldLazyLoadMetadata is true. 6483 if (Error Err = 6484 R->parseBitcodeInto(M.get(), ShouldLazyLoadMetadata, IsImporting)) 6485 return std::move(Err); 6486 6487 if (MaterializeAll) { 6488 // Read in the entire module, and destroy the BitcodeReader. 6489 if (Error Err = M->materializeAll()) 6490 return std::move(Err); 6491 } else { 6492 // Resolve forward references from blockaddresses. 6493 if (Error Err = R->materializeForwardReferencedFunctions()) 6494 return std::move(Err); 6495 } 6496 return std::move(M); 6497 } 6498 6499 Expected<std::unique_ptr<Module>> 6500 BitcodeModule::getLazyModule(LLVMContext &Context, bool ShouldLazyLoadMetadata, 6501 bool IsImporting) { 6502 return getModuleImpl(Context, false, ShouldLazyLoadMetadata, IsImporting); 6503 } 6504 6505 // Parse the specified bitcode buffer and merge the index into CombinedIndex. 6506 // We don't use ModuleIdentifier here because the client may need to control the 6507 // module path used in the combined summary (e.g. when reading summaries for 6508 // regular LTO modules). 6509 Error BitcodeModule::readSummary(ModuleSummaryIndex &CombinedIndex, 6510 StringRef ModulePath, uint64_t ModuleId) { 6511 BitstreamCursor Stream(Buffer); 6512 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 6513 return JumpFailed; 6514 6515 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, CombinedIndex, 6516 ModulePath, ModuleId); 6517 return R.parseModule(); 6518 } 6519 6520 // Parse the specified bitcode buffer, returning the function info index. 6521 Expected<std::unique_ptr<ModuleSummaryIndex>> BitcodeModule::getSummary() { 6522 BitstreamCursor Stream(Buffer); 6523 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 6524 return std::move(JumpFailed); 6525 6526 auto Index = std::make_unique<ModuleSummaryIndex>(/*HaveGVs=*/false); 6527 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, *Index, 6528 ModuleIdentifier, 0); 6529 6530 if (Error Err = R.parseModule()) 6531 return std::move(Err); 6532 6533 return std::move(Index); 6534 } 6535 6536 static Expected<bool> getEnableSplitLTOUnitFlag(BitstreamCursor &Stream, 6537 unsigned ID) { 6538 if (Error Err = Stream.EnterSubBlock(ID)) 6539 return std::move(Err); 6540 SmallVector<uint64_t, 64> Record; 6541 6542 while (true) { 6543 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 6544 if (!MaybeEntry) 6545 return MaybeEntry.takeError(); 6546 BitstreamEntry Entry = MaybeEntry.get(); 6547 6548 switch (Entry.Kind) { 6549 case BitstreamEntry::SubBlock: // Handled for us already. 6550 case BitstreamEntry::Error: 6551 return error("Malformed block"); 6552 case BitstreamEntry::EndBlock: 6553 // If no flags record found, conservatively return true to mimic 6554 // behavior before this flag was added. 6555 return true; 6556 case BitstreamEntry::Record: 6557 // The interesting case. 6558 break; 6559 } 6560 6561 // Look for the FS_FLAGS record. 6562 Record.clear(); 6563 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 6564 if (!MaybeBitCode) 6565 return MaybeBitCode.takeError(); 6566 switch (MaybeBitCode.get()) { 6567 default: // Default behavior: ignore. 6568 break; 6569 case bitc::FS_FLAGS: { // [flags] 6570 uint64_t Flags = Record[0]; 6571 // Scan flags. 6572 assert(Flags <= 0x3f && "Unexpected bits in flag"); 6573 6574 return Flags & 0x8; 6575 } 6576 } 6577 } 6578 llvm_unreachable("Exit infinite loop"); 6579 } 6580 6581 // Check if the given bitcode buffer contains a global value summary block. 6582 Expected<BitcodeLTOInfo> BitcodeModule::getLTOInfo() { 6583 BitstreamCursor Stream(Buffer); 6584 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 6585 return std::move(JumpFailed); 6586 6587 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 6588 return std::move(Err); 6589 6590 while (true) { 6591 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 6592 if (!MaybeEntry) 6593 return MaybeEntry.takeError(); 6594 llvm::BitstreamEntry Entry = MaybeEntry.get(); 6595 6596 switch (Entry.Kind) { 6597 case BitstreamEntry::Error: 6598 return error("Malformed block"); 6599 case BitstreamEntry::EndBlock: 6600 return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/false, 6601 /*EnableSplitLTOUnit=*/false}; 6602 6603 case BitstreamEntry::SubBlock: 6604 if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) { 6605 Expected<bool> EnableSplitLTOUnit = 6606 getEnableSplitLTOUnitFlag(Stream, Entry.ID); 6607 if (!EnableSplitLTOUnit) 6608 return EnableSplitLTOUnit.takeError(); 6609 return BitcodeLTOInfo{/*IsThinLTO=*/true, /*HasSummary=*/true, 6610 *EnableSplitLTOUnit}; 6611 } 6612 6613 if (Entry.ID == bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID) { 6614 Expected<bool> EnableSplitLTOUnit = 6615 getEnableSplitLTOUnitFlag(Stream, Entry.ID); 6616 if (!EnableSplitLTOUnit) 6617 return EnableSplitLTOUnit.takeError(); 6618 return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/true, 6619 *EnableSplitLTOUnit}; 6620 } 6621 6622 // Ignore other sub-blocks. 6623 if (Error Err = Stream.SkipBlock()) 6624 return std::move(Err); 6625 continue; 6626 6627 case BitstreamEntry::Record: 6628 if (Expected<unsigned> StreamFailed = Stream.skipRecord(Entry.ID)) 6629 continue; 6630 else 6631 return StreamFailed.takeError(); 6632 } 6633 } 6634 } 6635 6636 static Expected<BitcodeModule> getSingleModule(MemoryBufferRef Buffer) { 6637 Expected<std::vector<BitcodeModule>> MsOrErr = getBitcodeModuleList(Buffer); 6638 if (!MsOrErr) 6639 return MsOrErr.takeError(); 6640 6641 if (MsOrErr->size() != 1) 6642 return error("Expected a single module"); 6643 6644 return (*MsOrErr)[0]; 6645 } 6646 6647 Expected<std::unique_ptr<Module>> 6648 llvm::getLazyBitcodeModule(MemoryBufferRef Buffer, LLVMContext &Context, 6649 bool ShouldLazyLoadMetadata, bool IsImporting) { 6650 Expected<BitcodeModule> BM = getSingleModule(Buffer); 6651 if (!BM) 6652 return BM.takeError(); 6653 6654 return BM->getLazyModule(Context, ShouldLazyLoadMetadata, IsImporting); 6655 } 6656 6657 Expected<std::unique_ptr<Module>> llvm::getOwningLazyBitcodeModule( 6658 std::unique_ptr<MemoryBuffer> &&Buffer, LLVMContext &Context, 6659 bool ShouldLazyLoadMetadata, bool IsImporting) { 6660 auto MOrErr = getLazyBitcodeModule(*Buffer, Context, ShouldLazyLoadMetadata, 6661 IsImporting); 6662 if (MOrErr) 6663 (*MOrErr)->setOwnedMemoryBuffer(std::move(Buffer)); 6664 return MOrErr; 6665 } 6666 6667 Expected<std::unique_ptr<Module>> 6668 BitcodeModule::parseModule(LLVMContext &Context) { 6669 return getModuleImpl(Context, true, false, false); 6670 // TODO: Restore the use-lists to the in-memory state when the bitcode was 6671 // written. We must defer until the Module has been fully materialized. 6672 } 6673 6674 Expected<std::unique_ptr<Module>> llvm::parseBitcodeFile(MemoryBufferRef Buffer, 6675 LLVMContext &Context) { 6676 Expected<BitcodeModule> BM = getSingleModule(Buffer); 6677 if (!BM) 6678 return BM.takeError(); 6679 6680 return BM->parseModule(Context); 6681 } 6682 6683 Expected<std::string> llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer) { 6684 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 6685 if (!StreamOrErr) 6686 return StreamOrErr.takeError(); 6687 6688 return readTriple(*StreamOrErr); 6689 } 6690 6691 Expected<bool> llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer) { 6692 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 6693 if (!StreamOrErr) 6694 return StreamOrErr.takeError(); 6695 6696 return hasObjCCategory(*StreamOrErr); 6697 } 6698 6699 Expected<std::string> llvm::getBitcodeProducerString(MemoryBufferRef Buffer) { 6700 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 6701 if (!StreamOrErr) 6702 return StreamOrErr.takeError(); 6703 6704 return readIdentificationCode(*StreamOrErr); 6705 } 6706 6707 Error llvm::readModuleSummaryIndex(MemoryBufferRef Buffer, 6708 ModuleSummaryIndex &CombinedIndex, 6709 uint64_t ModuleId) { 6710 Expected<BitcodeModule> BM = getSingleModule(Buffer); 6711 if (!BM) 6712 return BM.takeError(); 6713 6714 return BM->readSummary(CombinedIndex, BM->getModuleIdentifier(), ModuleId); 6715 } 6716 6717 Expected<std::unique_ptr<ModuleSummaryIndex>> 6718 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer) { 6719 Expected<BitcodeModule> BM = getSingleModule(Buffer); 6720 if (!BM) 6721 return BM.takeError(); 6722 6723 return BM->getSummary(); 6724 } 6725 6726 Expected<BitcodeLTOInfo> llvm::getBitcodeLTOInfo(MemoryBufferRef Buffer) { 6727 Expected<BitcodeModule> BM = getSingleModule(Buffer); 6728 if (!BM) 6729 return BM.takeError(); 6730 6731 return BM->getLTOInfo(); 6732 } 6733 6734 Expected<std::unique_ptr<ModuleSummaryIndex>> 6735 llvm::getModuleSummaryIndexForFile(StringRef Path, 6736 bool IgnoreEmptyThinLTOIndexFile) { 6737 ErrorOr<std::unique_ptr<MemoryBuffer>> FileOrErr = 6738 MemoryBuffer::getFileOrSTDIN(Path); 6739 if (!FileOrErr) 6740 return errorCodeToError(FileOrErr.getError()); 6741 if (IgnoreEmptyThinLTOIndexFile && !(*FileOrErr)->getBufferSize()) 6742 return nullptr; 6743 return getModuleSummaryIndex(**FileOrErr); 6744 } 6745