1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/Bitcode/BitcodeReader.h"
10 #include "MetadataLoader.h"
11 #include "ValueList.h"
12 #include "llvm/ADT/APFloat.h"
13 #include "llvm/ADT/APInt.h"
14 #include "llvm/ADT/ArrayRef.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/Optional.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallString.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/StringRef.h"
21 #include "llvm/ADT/Triple.h"
22 #include "llvm/ADT/Twine.h"
23 #include "llvm/Bitcode/BitcodeCommon.h"
24 #include "llvm/Bitcode/LLVMBitCodes.h"
25 #include "llvm/Bitstream/BitstreamReader.h"
26 #include "llvm/Config/llvm-config.h"
27 #include "llvm/IR/Argument.h"
28 #include "llvm/IR/Attributes.h"
29 #include "llvm/IR/AutoUpgrade.h"
30 #include "llvm/IR/BasicBlock.h"
31 #include "llvm/IR/CallingConv.h"
32 #include "llvm/IR/Comdat.h"
33 #include "llvm/IR/Constant.h"
34 #include "llvm/IR/Constants.h"
35 #include "llvm/IR/DataLayout.h"
36 #include "llvm/IR/DebugInfo.h"
37 #include "llvm/IR/DebugInfoMetadata.h"
38 #include "llvm/IR/DebugLoc.h"
39 #include "llvm/IR/DerivedTypes.h"
40 #include "llvm/IR/Function.h"
41 #include "llvm/IR/GVMaterializer.h"
42 #include "llvm/IR/GlobalAlias.h"
43 #include "llvm/IR/GlobalIFunc.h"
44 #include "llvm/IR/GlobalIndirectSymbol.h"
45 #include "llvm/IR/GlobalObject.h"
46 #include "llvm/IR/GlobalValue.h"
47 #include "llvm/IR/GlobalVariable.h"
48 #include "llvm/IR/InlineAsm.h"
49 #include "llvm/IR/InstIterator.h"
50 #include "llvm/IR/InstrTypes.h"
51 #include "llvm/IR/Instruction.h"
52 #include "llvm/IR/Instructions.h"
53 #include "llvm/IR/Intrinsics.h"
54 #include "llvm/IR/LLVMContext.h"
55 #include "llvm/IR/Metadata.h"
56 #include "llvm/IR/Module.h"
57 #include "llvm/IR/ModuleSummaryIndex.h"
58 #include "llvm/IR/Operator.h"
59 #include "llvm/IR/Type.h"
60 #include "llvm/IR/Value.h"
61 #include "llvm/IR/Verifier.h"
62 #include "llvm/Support/AtomicOrdering.h"
63 #include "llvm/Support/Casting.h"
64 #include "llvm/Support/CommandLine.h"
65 #include "llvm/Support/Compiler.h"
66 #include "llvm/Support/Debug.h"
67 #include "llvm/Support/Error.h"
68 #include "llvm/Support/ErrorHandling.h"
69 #include "llvm/Support/ErrorOr.h"
70 #include "llvm/Support/ManagedStatic.h"
71 #include "llvm/Support/MathExtras.h"
72 #include "llvm/Support/MemoryBuffer.h"
73 #include "llvm/Support/raw_ostream.h"
74 #include <algorithm>
75 #include <cassert>
76 #include <cstddef>
77 #include <cstdint>
78 #include <deque>
79 #include <map>
80 #include <memory>
81 #include <set>
82 #include <string>
83 #include <system_error>
84 #include <tuple>
85 #include <utility>
86 #include <vector>
87 
88 using namespace llvm;
89 
90 static cl::opt<bool> PrintSummaryGUIDs(
91     "print-summary-global-ids", cl::init(false), cl::Hidden,
92     cl::desc(
93         "Print the global id for each value when reading the module summary"));
94 
95 namespace {
96 
97 enum {
98   SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex
99 };
100 
101 } // end anonymous namespace
102 
103 static Error error(const Twine &Message) {
104   return make_error<StringError>(
105       Message, make_error_code(BitcodeError::CorruptedBitcode));
106 }
107 
108 static Error hasInvalidBitcodeHeader(BitstreamCursor &Stream) {
109   if (!Stream.canSkipToPos(4))
110     return createStringError(std::errc::illegal_byte_sequence,
111                              "file too small to contain bitcode header");
112   for (unsigned C : {'B', 'C'})
113     if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(8)) {
114       if (Res.get() != C)
115         return createStringError(std::errc::illegal_byte_sequence,
116                                  "file doesn't start with bitcode header");
117     } else
118       return Res.takeError();
119   for (unsigned C : {0x0, 0xC, 0xE, 0xD})
120     if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(4)) {
121       if (Res.get() != C)
122         return createStringError(std::errc::illegal_byte_sequence,
123                                  "file doesn't start with bitcode header");
124     } else
125       return Res.takeError();
126   return Error::success();
127 }
128 
129 static Expected<BitstreamCursor> initStream(MemoryBufferRef Buffer) {
130   const unsigned char *BufPtr = (const unsigned char *)Buffer.getBufferStart();
131   const unsigned char *BufEnd = BufPtr + Buffer.getBufferSize();
132 
133   if (Buffer.getBufferSize() & 3)
134     return error("Invalid bitcode signature");
135 
136   // If we have a wrapper header, parse it and ignore the non-bc file contents.
137   // The magic number is 0x0B17C0DE stored in little endian.
138   if (isBitcodeWrapper(BufPtr, BufEnd))
139     if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true))
140       return error("Invalid bitcode wrapper header");
141 
142   BitstreamCursor Stream(ArrayRef<uint8_t>(BufPtr, BufEnd));
143   if (Error Err = hasInvalidBitcodeHeader(Stream))
144     return std::move(Err);
145 
146   return std::move(Stream);
147 }
148 
149 /// Convert a string from a record into an std::string, return true on failure.
150 template <typename StrTy>
151 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx,
152                             StrTy &Result) {
153   if (Idx > Record.size())
154     return true;
155 
156   Result.append(Record.begin() + Idx, Record.end());
157   return false;
158 }
159 
160 // Strip all the TBAA attachment for the module.
161 static void stripTBAA(Module *M) {
162   for (auto &F : *M) {
163     if (F.isMaterializable())
164       continue;
165     for (auto &I : instructions(F))
166       I.setMetadata(LLVMContext::MD_tbaa, nullptr);
167   }
168 }
169 
170 /// Read the "IDENTIFICATION_BLOCK_ID" block, do some basic enforcement on the
171 /// "epoch" encoded in the bitcode, and return the producer name if any.
172 static Expected<std::string> readIdentificationBlock(BitstreamCursor &Stream) {
173   if (Error Err = Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID))
174     return std::move(Err);
175 
176   // Read all the records.
177   SmallVector<uint64_t, 64> Record;
178 
179   std::string ProducerIdentification;
180 
181   while (true) {
182     BitstreamEntry Entry;
183     if (Expected<BitstreamEntry> Res = Stream.advance())
184       Entry = Res.get();
185     else
186       return Res.takeError();
187 
188     switch (Entry.Kind) {
189     default:
190     case BitstreamEntry::Error:
191       return error("Malformed block");
192     case BitstreamEntry::EndBlock:
193       return ProducerIdentification;
194     case BitstreamEntry::Record:
195       // The interesting case.
196       break;
197     }
198 
199     // Read a record.
200     Record.clear();
201     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
202     if (!MaybeBitCode)
203       return MaybeBitCode.takeError();
204     switch (MaybeBitCode.get()) {
205     default: // Default behavior: reject
206       return error("Invalid value");
207     case bitc::IDENTIFICATION_CODE_STRING: // IDENTIFICATION: [strchr x N]
208       convertToString(Record, 0, ProducerIdentification);
209       break;
210     case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#]
211       unsigned epoch = (unsigned)Record[0];
212       if (epoch != bitc::BITCODE_CURRENT_EPOCH) {
213         return error(
214           Twine("Incompatible epoch: Bitcode '") + Twine(epoch) +
215           "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'");
216       }
217     }
218     }
219   }
220 }
221 
222 static Expected<std::string> readIdentificationCode(BitstreamCursor &Stream) {
223   // We expect a number of well-defined blocks, though we don't necessarily
224   // need to understand them all.
225   while (true) {
226     if (Stream.AtEndOfStream())
227       return "";
228 
229     BitstreamEntry Entry;
230     if (Expected<BitstreamEntry> Res = Stream.advance())
231       Entry = std::move(Res.get());
232     else
233       return Res.takeError();
234 
235     switch (Entry.Kind) {
236     case BitstreamEntry::EndBlock:
237     case BitstreamEntry::Error:
238       return error("Malformed block");
239 
240     case BitstreamEntry::SubBlock:
241       if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID)
242         return readIdentificationBlock(Stream);
243 
244       // Ignore other sub-blocks.
245       if (Error Err = Stream.SkipBlock())
246         return std::move(Err);
247       continue;
248     case BitstreamEntry::Record:
249       if (Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID))
250         continue;
251       else
252         return Skipped.takeError();
253     }
254   }
255 }
256 
257 static Expected<bool> hasObjCCategoryInModule(BitstreamCursor &Stream) {
258   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
259     return std::move(Err);
260 
261   SmallVector<uint64_t, 64> Record;
262   // Read all the records for this module.
263 
264   while (true) {
265     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
266     if (!MaybeEntry)
267       return MaybeEntry.takeError();
268     BitstreamEntry Entry = MaybeEntry.get();
269 
270     switch (Entry.Kind) {
271     case BitstreamEntry::SubBlock: // Handled for us already.
272     case BitstreamEntry::Error:
273       return error("Malformed block");
274     case BitstreamEntry::EndBlock:
275       return false;
276     case BitstreamEntry::Record:
277       // The interesting case.
278       break;
279     }
280 
281     // Read a record.
282     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
283     if (!MaybeRecord)
284       return MaybeRecord.takeError();
285     switch (MaybeRecord.get()) {
286     default:
287       break; // Default behavior, ignore unknown content.
288     case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N]
289       std::string S;
290       if (convertToString(Record, 0, S))
291         return error("Invalid record");
292       // Check for the i386 and other (x86_64, ARM) conventions
293       if (S.find("__DATA,__objc_catlist") != std::string::npos ||
294           S.find("__OBJC,__category") != std::string::npos)
295         return true;
296       break;
297     }
298     }
299     Record.clear();
300   }
301   llvm_unreachable("Exit infinite loop");
302 }
303 
304 static Expected<bool> hasObjCCategory(BitstreamCursor &Stream) {
305   // We expect a number of well-defined blocks, though we don't necessarily
306   // need to understand them all.
307   while (true) {
308     BitstreamEntry Entry;
309     if (Expected<BitstreamEntry> Res = Stream.advance())
310       Entry = std::move(Res.get());
311     else
312       return Res.takeError();
313 
314     switch (Entry.Kind) {
315     case BitstreamEntry::Error:
316       return error("Malformed block");
317     case BitstreamEntry::EndBlock:
318       return false;
319 
320     case BitstreamEntry::SubBlock:
321       if (Entry.ID == bitc::MODULE_BLOCK_ID)
322         return hasObjCCategoryInModule(Stream);
323 
324       // Ignore other sub-blocks.
325       if (Error Err = Stream.SkipBlock())
326         return std::move(Err);
327       continue;
328 
329     case BitstreamEntry::Record:
330       if (Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID))
331         continue;
332       else
333         return Skipped.takeError();
334     }
335   }
336 }
337 
338 static Expected<std::string> readModuleTriple(BitstreamCursor &Stream) {
339   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
340     return std::move(Err);
341 
342   SmallVector<uint64_t, 64> Record;
343 
344   std::string Triple;
345 
346   // Read all the records for this module.
347   while (true) {
348     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
349     if (!MaybeEntry)
350       return MaybeEntry.takeError();
351     BitstreamEntry Entry = MaybeEntry.get();
352 
353     switch (Entry.Kind) {
354     case BitstreamEntry::SubBlock: // Handled for us already.
355     case BitstreamEntry::Error:
356       return error("Malformed block");
357     case BitstreamEntry::EndBlock:
358       return Triple;
359     case BitstreamEntry::Record:
360       // The interesting case.
361       break;
362     }
363 
364     // Read a record.
365     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
366     if (!MaybeRecord)
367       return MaybeRecord.takeError();
368     switch (MaybeRecord.get()) {
369     default: break;  // Default behavior, ignore unknown content.
370     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
371       std::string S;
372       if (convertToString(Record, 0, S))
373         return error("Invalid record");
374       Triple = S;
375       break;
376     }
377     }
378     Record.clear();
379   }
380   llvm_unreachable("Exit infinite loop");
381 }
382 
383 static Expected<std::string> readTriple(BitstreamCursor &Stream) {
384   // We expect a number of well-defined blocks, though we don't necessarily
385   // need to understand them all.
386   while (true) {
387     Expected<BitstreamEntry> MaybeEntry = Stream.advance();
388     if (!MaybeEntry)
389       return MaybeEntry.takeError();
390     BitstreamEntry Entry = MaybeEntry.get();
391 
392     switch (Entry.Kind) {
393     case BitstreamEntry::Error:
394       return error("Malformed block");
395     case BitstreamEntry::EndBlock:
396       return "";
397 
398     case BitstreamEntry::SubBlock:
399       if (Entry.ID == bitc::MODULE_BLOCK_ID)
400         return readModuleTriple(Stream);
401 
402       // Ignore other sub-blocks.
403       if (Error Err = Stream.SkipBlock())
404         return std::move(Err);
405       continue;
406 
407     case BitstreamEntry::Record:
408       if (llvm::Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID))
409         continue;
410       else
411         return Skipped.takeError();
412     }
413   }
414 }
415 
416 namespace {
417 
418 class BitcodeReaderBase {
419 protected:
420   BitcodeReaderBase(BitstreamCursor Stream, StringRef Strtab)
421       : Stream(std::move(Stream)), Strtab(Strtab) {
422     this->Stream.setBlockInfo(&BlockInfo);
423   }
424 
425   BitstreamBlockInfo BlockInfo;
426   BitstreamCursor Stream;
427   StringRef Strtab;
428 
429   /// In version 2 of the bitcode we store names of global values and comdats in
430   /// a string table rather than in the VST.
431   bool UseStrtab = false;
432 
433   Expected<unsigned> parseVersionRecord(ArrayRef<uint64_t> Record);
434 
435   /// If this module uses a string table, pop the reference to the string table
436   /// and return the referenced string and the rest of the record. Otherwise
437   /// just return the record itself.
438   std::pair<StringRef, ArrayRef<uint64_t>>
439   readNameFromStrtab(ArrayRef<uint64_t> Record);
440 
441   bool readBlockInfo();
442 
443   // Contains an arbitrary and optional string identifying the bitcode producer
444   std::string ProducerIdentification;
445 
446   Error error(const Twine &Message);
447 };
448 
449 } // end anonymous namespace
450 
451 Error BitcodeReaderBase::error(const Twine &Message) {
452   std::string FullMsg = Message.str();
453   if (!ProducerIdentification.empty())
454     FullMsg += " (Producer: '" + ProducerIdentification + "' Reader: 'LLVM " +
455                LLVM_VERSION_STRING "')";
456   return ::error(FullMsg);
457 }
458 
459 Expected<unsigned>
460 BitcodeReaderBase::parseVersionRecord(ArrayRef<uint64_t> Record) {
461   if (Record.empty())
462     return error("Invalid record");
463   unsigned ModuleVersion = Record[0];
464   if (ModuleVersion > 2)
465     return error("Invalid value");
466   UseStrtab = ModuleVersion >= 2;
467   return ModuleVersion;
468 }
469 
470 std::pair<StringRef, ArrayRef<uint64_t>>
471 BitcodeReaderBase::readNameFromStrtab(ArrayRef<uint64_t> Record) {
472   if (!UseStrtab)
473     return {"", Record};
474   // Invalid reference. Let the caller complain about the record being empty.
475   if (Record[0] + Record[1] > Strtab.size())
476     return {"", {}};
477   return {StringRef(Strtab.data() + Record[0], Record[1]), Record.slice(2)};
478 }
479 
480 namespace {
481 
482 class BitcodeReader : public BitcodeReaderBase, public GVMaterializer {
483   LLVMContext &Context;
484   Module *TheModule = nullptr;
485   // Next offset to start scanning for lazy parsing of function bodies.
486   uint64_t NextUnreadBit = 0;
487   // Last function offset found in the VST.
488   uint64_t LastFunctionBlockBit = 0;
489   bool SeenValueSymbolTable = false;
490   uint64_t VSTOffset = 0;
491 
492   std::vector<std::string> SectionTable;
493   std::vector<std::string> GCTable;
494 
495   std::vector<Type*> TypeList;
496   DenseMap<Function *, FunctionType *> FunctionTypes;
497   BitcodeReaderValueList ValueList;
498   Optional<MetadataLoader> MDLoader;
499   std::vector<Comdat *> ComdatList;
500   SmallVector<Instruction *, 64> InstructionList;
501 
502   std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInits;
503   std::vector<std::pair<GlobalIndirectSymbol *, unsigned>> IndirectSymbolInits;
504 
505   struct FunctionOperandInfo {
506     Function *F;
507     unsigned PersonalityFn;
508     unsigned Prefix;
509     unsigned Prologue;
510   };
511   std::vector<FunctionOperandInfo> FunctionOperands;
512 
513   /// The set of attributes by index.  Index zero in the file is for null, and
514   /// is thus not represented here.  As such all indices are off by one.
515   std::vector<AttributeList> MAttributes;
516 
517   /// The set of attribute groups.
518   std::map<unsigned, AttributeList> MAttributeGroups;
519 
520   /// While parsing a function body, this is a list of the basic blocks for the
521   /// function.
522   std::vector<BasicBlock*> FunctionBBs;
523 
524   // When reading the module header, this list is populated with functions that
525   // have bodies later in the file.
526   std::vector<Function*> FunctionsWithBodies;
527 
528   // When intrinsic functions are encountered which require upgrading they are
529   // stored here with their replacement function.
530   using UpdatedIntrinsicMap = DenseMap<Function *, Function *>;
531   UpdatedIntrinsicMap UpgradedIntrinsics;
532   // Intrinsics which were remangled because of types rename
533   UpdatedIntrinsicMap RemangledIntrinsics;
534 
535   // Several operations happen after the module header has been read, but
536   // before function bodies are processed. This keeps track of whether
537   // we've done this yet.
538   bool SeenFirstFunctionBody = false;
539 
540   /// When function bodies are initially scanned, this map contains info about
541   /// where to find deferred function body in the stream.
542   DenseMap<Function*, uint64_t> DeferredFunctionInfo;
543 
544   /// When Metadata block is initially scanned when parsing the module, we may
545   /// choose to defer parsing of the metadata. This vector contains info about
546   /// which Metadata blocks are deferred.
547   std::vector<uint64_t> DeferredMetadataInfo;
548 
549   /// These are basic blocks forward-referenced by block addresses.  They are
550   /// inserted lazily into functions when they're loaded.  The basic block ID is
551   /// its index into the vector.
552   DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs;
553   std::deque<Function *> BasicBlockFwdRefQueue;
554 
555   /// Indicates that we are using a new encoding for instruction operands where
556   /// most operands in the current FUNCTION_BLOCK are encoded relative to the
557   /// instruction number, for a more compact encoding.  Some instruction
558   /// operands are not relative to the instruction ID: basic block numbers, and
559   /// types. Once the old style function blocks have been phased out, we would
560   /// not need this flag.
561   bool UseRelativeIDs = false;
562 
563   /// True if all functions will be materialized, negating the need to process
564   /// (e.g.) blockaddress forward references.
565   bool WillMaterializeAllForwardRefs = false;
566 
567   bool StripDebugInfo = false;
568   TBAAVerifier TBAAVerifyHelper;
569 
570   std::vector<std::string> BundleTags;
571   SmallVector<SyncScope::ID, 8> SSIDs;
572 
573 public:
574   BitcodeReader(BitstreamCursor Stream, StringRef Strtab,
575                 StringRef ProducerIdentification, LLVMContext &Context);
576 
577   Error materializeForwardReferencedFunctions();
578 
579   Error materialize(GlobalValue *GV) override;
580   Error materializeModule() override;
581   std::vector<StructType *> getIdentifiedStructTypes() const override;
582 
583   /// Main interface to parsing a bitcode buffer.
584   /// \returns true if an error occurred.
585   Error parseBitcodeInto(
586       Module *M, bool ShouldLazyLoadMetadata = false, bool IsImporting = false,
587       DataLayoutCallbackTy DataLayoutCallback = [](StringRef) { return None; });
588 
589   static uint64_t decodeSignRotatedValue(uint64_t V);
590 
591   /// Materialize any deferred Metadata block.
592   Error materializeMetadata() override;
593 
594   void setStripDebugInfo() override;
595 
596 private:
597   std::vector<StructType *> IdentifiedStructTypes;
598   StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name);
599   StructType *createIdentifiedStructType(LLVMContext &Context);
600 
601   Type *getTypeByID(unsigned ID);
602 
603   Value *getFnValueByID(unsigned ID, Type *Ty) {
604     if (Ty && Ty->isMetadataTy())
605       return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID));
606     return ValueList.getValueFwdRef(ID, Ty);
607   }
608 
609   Metadata *getFnMetadataByID(unsigned ID) {
610     return MDLoader->getMetadataFwdRefOrLoad(ID);
611   }
612 
613   BasicBlock *getBasicBlock(unsigned ID) const {
614     if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID
615     return FunctionBBs[ID];
616   }
617 
618   AttributeList getAttributes(unsigned i) const {
619     if (i-1 < MAttributes.size())
620       return MAttributes[i-1];
621     return AttributeList();
622   }
623 
624   /// Read a value/type pair out of the specified record from slot 'Slot'.
625   /// Increment Slot past the number of slots used in the record. Return true on
626   /// failure.
627   bool getValueTypePair(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
628                         unsigned InstNum, Value *&ResVal) {
629     if (Slot == Record.size()) return true;
630     unsigned ValNo = (unsigned)Record[Slot++];
631     // Adjust the ValNo, if it was encoded relative to the InstNum.
632     if (UseRelativeIDs)
633       ValNo = InstNum - ValNo;
634     if (ValNo < InstNum) {
635       // If this is not a forward reference, just return the value we already
636       // have.
637       ResVal = getFnValueByID(ValNo, nullptr);
638       return ResVal == nullptr;
639     }
640     if (Slot == Record.size())
641       return true;
642 
643     unsigned TypeNo = (unsigned)Record[Slot++];
644     ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo));
645     return ResVal == nullptr;
646   }
647 
648   /// Read a value out of the specified record from slot 'Slot'. Increment Slot
649   /// past the number of slots used by the value in the record. Return true if
650   /// there is an error.
651   bool popValue(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
652                 unsigned InstNum, Type *Ty, Value *&ResVal) {
653     if (getValue(Record, Slot, InstNum, Ty, ResVal))
654       return true;
655     // All values currently take a single record slot.
656     ++Slot;
657     return false;
658   }
659 
660   /// Like popValue, but does not increment the Slot number.
661   bool getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot,
662                 unsigned InstNum, Type *Ty, Value *&ResVal) {
663     ResVal = getValue(Record, Slot, InstNum, Ty);
664     return ResVal == nullptr;
665   }
666 
667   /// Version of getValue that returns ResVal directly, or 0 if there is an
668   /// error.
669   Value *getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot,
670                   unsigned InstNum, Type *Ty) {
671     if (Slot == Record.size()) return nullptr;
672     unsigned ValNo = (unsigned)Record[Slot];
673     // Adjust the ValNo, if it was encoded relative to the InstNum.
674     if (UseRelativeIDs)
675       ValNo = InstNum - ValNo;
676     return getFnValueByID(ValNo, Ty);
677   }
678 
679   /// Like getValue, but decodes signed VBRs.
680   Value *getValueSigned(const SmallVectorImpl<uint64_t> &Record, unsigned Slot,
681                         unsigned InstNum, Type *Ty) {
682     if (Slot == Record.size()) return nullptr;
683     unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]);
684     // Adjust the ValNo, if it was encoded relative to the InstNum.
685     if (UseRelativeIDs)
686       ValNo = InstNum - ValNo;
687     return getFnValueByID(ValNo, Ty);
688   }
689 
690   /// Upgrades old-style typeless byval/sret/inalloca attributes by adding the
691   /// corresponding argument's pointee type. Also upgrades intrinsics that now
692   /// require an elementtype attribute.
693   void propagateAttributeTypes(CallBase *CB, ArrayRef<Type *> ArgsTys);
694 
695   /// Converts alignment exponent (i.e. power of two (or zero)) to the
696   /// corresponding alignment to use. If alignment is too large, returns
697   /// a corresponding error code.
698   Error parseAlignmentValue(uint64_t Exponent, MaybeAlign &Alignment);
699   Error parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind);
700   Error parseModule(
701       uint64_t ResumeBit, bool ShouldLazyLoadMetadata = false,
702       DataLayoutCallbackTy DataLayoutCallback = [](StringRef) { return None; });
703 
704   Error parseComdatRecord(ArrayRef<uint64_t> Record);
705   Error parseGlobalVarRecord(ArrayRef<uint64_t> Record);
706   Error parseFunctionRecord(ArrayRef<uint64_t> Record);
707   Error parseGlobalIndirectSymbolRecord(unsigned BitCode,
708                                         ArrayRef<uint64_t> Record);
709 
710   Error parseAttributeBlock();
711   Error parseAttributeGroupBlock();
712   Error parseTypeTable();
713   Error parseTypeTableBody();
714   Error parseOperandBundleTags();
715   Error parseSyncScopeNames();
716 
717   Expected<Value *> recordValue(SmallVectorImpl<uint64_t> &Record,
718                                 unsigned NameIndex, Triple &TT);
719   void setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, Function *F,
720                                ArrayRef<uint64_t> Record);
721   Error parseValueSymbolTable(uint64_t Offset = 0);
722   Error parseGlobalValueSymbolTable();
723   Error parseConstants();
724   Error rememberAndSkipFunctionBodies();
725   Error rememberAndSkipFunctionBody();
726   /// Save the positions of the Metadata blocks and skip parsing the blocks.
727   Error rememberAndSkipMetadata();
728   Error typeCheckLoadStoreInst(Type *ValType, Type *PtrType);
729   Error parseFunctionBody(Function *F);
730   Error globalCleanup();
731   Error resolveGlobalAndIndirectSymbolInits();
732   Error parseUseLists();
733   Error findFunctionInStream(
734       Function *F,
735       DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator);
736 
737   SyncScope::ID getDecodedSyncScopeID(unsigned Val);
738 };
739 
740 /// Class to manage reading and parsing function summary index bitcode
741 /// files/sections.
742 class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase {
743   /// The module index built during parsing.
744   ModuleSummaryIndex &TheIndex;
745 
746   /// Indicates whether we have encountered a global value summary section
747   /// yet during parsing.
748   bool SeenGlobalValSummary = false;
749 
750   /// Indicates whether we have already parsed the VST, used for error checking.
751   bool SeenValueSymbolTable = false;
752 
753   /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record.
754   /// Used to enable on-demand parsing of the VST.
755   uint64_t VSTOffset = 0;
756 
757   // Map to save ValueId to ValueInfo association that was recorded in the
758   // ValueSymbolTable. It is used after the VST is parsed to convert
759   // call graph edges read from the function summary from referencing
760   // callees by their ValueId to using the ValueInfo instead, which is how
761   // they are recorded in the summary index being built.
762   // We save a GUID which refers to the same global as the ValueInfo, but
763   // ignoring the linkage, i.e. for values other than local linkage they are
764   // identical.
765   DenseMap<unsigned, std::pair<ValueInfo, GlobalValue::GUID>>
766       ValueIdToValueInfoMap;
767 
768   /// Map populated during module path string table parsing, from the
769   /// module ID to a string reference owned by the index's module
770   /// path string table, used to correlate with combined index
771   /// summary records.
772   DenseMap<uint64_t, StringRef> ModuleIdMap;
773 
774   /// Original source file name recorded in a bitcode record.
775   std::string SourceFileName;
776 
777   /// The string identifier given to this module by the client, normally the
778   /// path to the bitcode file.
779   StringRef ModulePath;
780 
781   /// For per-module summary indexes, the unique numerical identifier given to
782   /// this module by the client.
783   unsigned ModuleId;
784 
785 public:
786   ModuleSummaryIndexBitcodeReader(BitstreamCursor Stream, StringRef Strtab,
787                                   ModuleSummaryIndex &TheIndex,
788                                   StringRef ModulePath, unsigned ModuleId);
789 
790   Error parseModule();
791 
792 private:
793   void setValueGUID(uint64_t ValueID, StringRef ValueName,
794                     GlobalValue::LinkageTypes Linkage,
795                     StringRef SourceFileName);
796   Error parseValueSymbolTable(
797       uint64_t Offset,
798       DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap);
799   std::vector<ValueInfo> makeRefList(ArrayRef<uint64_t> Record);
800   std::vector<FunctionSummary::EdgeTy> makeCallList(ArrayRef<uint64_t> Record,
801                                                     bool IsOldProfileFormat,
802                                                     bool HasProfile,
803                                                     bool HasRelBF);
804   Error parseEntireSummary(unsigned ID);
805   Error parseModuleStringTable();
806   void parseTypeIdCompatibleVtableSummaryRecord(ArrayRef<uint64_t> Record);
807   void parseTypeIdCompatibleVtableInfo(ArrayRef<uint64_t> Record, size_t &Slot,
808                                        TypeIdCompatibleVtableInfo &TypeId);
809   std::vector<FunctionSummary::ParamAccess>
810   parseParamAccesses(ArrayRef<uint64_t> Record);
811 
812   std::pair<ValueInfo, GlobalValue::GUID>
813   getValueInfoFromValueId(unsigned ValueId);
814 
815   void addThisModule();
816   ModuleSummaryIndex::ModuleInfo *getThisModule();
817 };
818 
819 } // end anonymous namespace
820 
821 std::error_code llvm::errorToErrorCodeAndEmitErrors(LLVMContext &Ctx,
822                                                     Error Err) {
823   if (Err) {
824     std::error_code EC;
825     handleAllErrors(std::move(Err), [&](ErrorInfoBase &EIB) {
826       EC = EIB.convertToErrorCode();
827       Ctx.emitError(EIB.message());
828     });
829     return EC;
830   }
831   return std::error_code();
832 }
833 
834 BitcodeReader::BitcodeReader(BitstreamCursor Stream, StringRef Strtab,
835                              StringRef ProducerIdentification,
836                              LLVMContext &Context)
837     : BitcodeReaderBase(std::move(Stream), Strtab), Context(Context),
838       ValueList(Context, Stream.SizeInBytes()) {
839   this->ProducerIdentification = std::string(ProducerIdentification);
840 }
841 
842 Error BitcodeReader::materializeForwardReferencedFunctions() {
843   if (WillMaterializeAllForwardRefs)
844     return Error::success();
845 
846   // Prevent recursion.
847   WillMaterializeAllForwardRefs = true;
848 
849   while (!BasicBlockFwdRefQueue.empty()) {
850     Function *F = BasicBlockFwdRefQueue.front();
851     BasicBlockFwdRefQueue.pop_front();
852     assert(F && "Expected valid function");
853     if (!BasicBlockFwdRefs.count(F))
854       // Already materialized.
855       continue;
856 
857     // Check for a function that isn't materializable to prevent an infinite
858     // loop.  When parsing a blockaddress stored in a global variable, there
859     // isn't a trivial way to check if a function will have a body without a
860     // linear search through FunctionsWithBodies, so just check it here.
861     if (!F->isMaterializable())
862       return error("Never resolved function from blockaddress");
863 
864     // Try to materialize F.
865     if (Error Err = materialize(F))
866       return Err;
867   }
868   assert(BasicBlockFwdRefs.empty() && "Function missing from queue");
869 
870   // Reset state.
871   WillMaterializeAllForwardRefs = false;
872   return Error::success();
873 }
874 
875 //===----------------------------------------------------------------------===//
876 //  Helper functions to implement forward reference resolution, etc.
877 //===----------------------------------------------------------------------===//
878 
879 static bool hasImplicitComdat(size_t Val) {
880   switch (Val) {
881   default:
882     return false;
883   case 1:  // Old WeakAnyLinkage
884   case 4:  // Old LinkOnceAnyLinkage
885   case 10: // Old WeakODRLinkage
886   case 11: // Old LinkOnceODRLinkage
887     return true;
888   }
889 }
890 
891 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) {
892   switch (Val) {
893   default: // Map unknown/new linkages to external
894   case 0:
895     return GlobalValue::ExternalLinkage;
896   case 2:
897     return GlobalValue::AppendingLinkage;
898   case 3:
899     return GlobalValue::InternalLinkage;
900   case 5:
901     return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage
902   case 6:
903     return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage
904   case 7:
905     return GlobalValue::ExternalWeakLinkage;
906   case 8:
907     return GlobalValue::CommonLinkage;
908   case 9:
909     return GlobalValue::PrivateLinkage;
910   case 12:
911     return GlobalValue::AvailableExternallyLinkage;
912   case 13:
913     return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage
914   case 14:
915     return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage
916   case 15:
917     return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage
918   case 1: // Old value with implicit comdat.
919   case 16:
920     return GlobalValue::WeakAnyLinkage;
921   case 10: // Old value with implicit comdat.
922   case 17:
923     return GlobalValue::WeakODRLinkage;
924   case 4: // Old value with implicit comdat.
925   case 18:
926     return GlobalValue::LinkOnceAnyLinkage;
927   case 11: // Old value with implicit comdat.
928   case 19:
929     return GlobalValue::LinkOnceODRLinkage;
930   }
931 }
932 
933 static FunctionSummary::FFlags getDecodedFFlags(uint64_t RawFlags) {
934   FunctionSummary::FFlags Flags;
935   Flags.ReadNone = RawFlags & 0x1;
936   Flags.ReadOnly = (RawFlags >> 1) & 0x1;
937   Flags.NoRecurse = (RawFlags >> 2) & 0x1;
938   Flags.ReturnDoesNotAlias = (RawFlags >> 3) & 0x1;
939   Flags.NoInline = (RawFlags >> 4) & 0x1;
940   Flags.AlwaysInline = (RawFlags >> 5) & 0x1;
941   Flags.NoUnwind = (RawFlags >> 6) & 0x1;
942   Flags.MayThrow = (RawFlags >> 7) & 0x1;
943   Flags.HasUnknownCall = (RawFlags >> 8) & 0x1;
944   return Flags;
945 }
946 
947 // Decode the flags for GlobalValue in the summary. The bits for each attribute:
948 //
949 // linkage: [0,4), notEligibleToImport: 4, live: 5, local: 6, canAutoHide: 7,
950 // visibility: [8, 10).
951 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags,
952                                                             uint64_t Version) {
953   // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage
954   // like getDecodedLinkage() above. Any future change to the linkage enum and
955   // to getDecodedLinkage() will need to be taken into account here as above.
956   auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits
957   auto Visibility = GlobalValue::VisibilityTypes((RawFlags >> 8) & 3); // 2 bits
958   RawFlags = RawFlags >> 4;
959   bool NotEligibleToImport = (RawFlags & 0x1) || Version < 3;
960   // The Live flag wasn't introduced until version 3. For dead stripping
961   // to work correctly on earlier versions, we must conservatively treat all
962   // values as live.
963   bool Live = (RawFlags & 0x2) || Version < 3;
964   bool Local = (RawFlags & 0x4);
965   bool AutoHide = (RawFlags & 0x8);
966 
967   return GlobalValueSummary::GVFlags(Linkage, Visibility, NotEligibleToImport,
968                                      Live, Local, AutoHide);
969 }
970 
971 // Decode the flags for GlobalVariable in the summary
972 static GlobalVarSummary::GVarFlags getDecodedGVarFlags(uint64_t RawFlags) {
973   return GlobalVarSummary::GVarFlags(
974       (RawFlags & 0x1) ? true : false, (RawFlags & 0x2) ? true : false,
975       (RawFlags & 0x4) ? true : false,
976       (GlobalObject::VCallVisibility)(RawFlags >> 3));
977 }
978 
979 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) {
980   switch (Val) {
981   default: // Map unknown visibilities to default.
982   case 0: return GlobalValue::DefaultVisibility;
983   case 1: return GlobalValue::HiddenVisibility;
984   case 2: return GlobalValue::ProtectedVisibility;
985   }
986 }
987 
988 static GlobalValue::DLLStorageClassTypes
989 getDecodedDLLStorageClass(unsigned Val) {
990   switch (Val) {
991   default: // Map unknown values to default.
992   case 0: return GlobalValue::DefaultStorageClass;
993   case 1: return GlobalValue::DLLImportStorageClass;
994   case 2: return GlobalValue::DLLExportStorageClass;
995   }
996 }
997 
998 static bool getDecodedDSOLocal(unsigned Val) {
999   switch(Val) {
1000   default: // Map unknown values to preemptable.
1001   case 0:  return false;
1002   case 1:  return true;
1003   }
1004 }
1005 
1006 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) {
1007   switch (Val) {
1008     case 0: return GlobalVariable::NotThreadLocal;
1009     default: // Map unknown non-zero value to general dynamic.
1010     case 1: return GlobalVariable::GeneralDynamicTLSModel;
1011     case 2: return GlobalVariable::LocalDynamicTLSModel;
1012     case 3: return GlobalVariable::InitialExecTLSModel;
1013     case 4: return GlobalVariable::LocalExecTLSModel;
1014   }
1015 }
1016 
1017 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) {
1018   switch (Val) {
1019     default: // Map unknown to UnnamedAddr::None.
1020     case 0: return GlobalVariable::UnnamedAddr::None;
1021     case 1: return GlobalVariable::UnnamedAddr::Global;
1022     case 2: return GlobalVariable::UnnamedAddr::Local;
1023   }
1024 }
1025 
1026 static int getDecodedCastOpcode(unsigned Val) {
1027   switch (Val) {
1028   default: return -1;
1029   case bitc::CAST_TRUNC   : return Instruction::Trunc;
1030   case bitc::CAST_ZEXT    : return Instruction::ZExt;
1031   case bitc::CAST_SEXT    : return Instruction::SExt;
1032   case bitc::CAST_FPTOUI  : return Instruction::FPToUI;
1033   case bitc::CAST_FPTOSI  : return Instruction::FPToSI;
1034   case bitc::CAST_UITOFP  : return Instruction::UIToFP;
1035   case bitc::CAST_SITOFP  : return Instruction::SIToFP;
1036   case bitc::CAST_FPTRUNC : return Instruction::FPTrunc;
1037   case bitc::CAST_FPEXT   : return Instruction::FPExt;
1038   case bitc::CAST_PTRTOINT: return Instruction::PtrToInt;
1039   case bitc::CAST_INTTOPTR: return Instruction::IntToPtr;
1040   case bitc::CAST_BITCAST : return Instruction::BitCast;
1041   case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast;
1042   }
1043 }
1044 
1045 static int getDecodedUnaryOpcode(unsigned Val, Type *Ty) {
1046   bool IsFP = Ty->isFPOrFPVectorTy();
1047   // UnOps are only valid for int/fp or vector of int/fp types
1048   if (!IsFP && !Ty->isIntOrIntVectorTy())
1049     return -1;
1050 
1051   switch (Val) {
1052   default:
1053     return -1;
1054   case bitc::UNOP_FNEG:
1055     return IsFP ? Instruction::FNeg : -1;
1056   }
1057 }
1058 
1059 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) {
1060   bool IsFP = Ty->isFPOrFPVectorTy();
1061   // BinOps are only valid for int/fp or vector of int/fp types
1062   if (!IsFP && !Ty->isIntOrIntVectorTy())
1063     return -1;
1064 
1065   switch (Val) {
1066   default:
1067     return -1;
1068   case bitc::BINOP_ADD:
1069     return IsFP ? Instruction::FAdd : Instruction::Add;
1070   case bitc::BINOP_SUB:
1071     return IsFP ? Instruction::FSub : Instruction::Sub;
1072   case bitc::BINOP_MUL:
1073     return IsFP ? Instruction::FMul : Instruction::Mul;
1074   case bitc::BINOP_UDIV:
1075     return IsFP ? -1 : Instruction::UDiv;
1076   case bitc::BINOP_SDIV:
1077     return IsFP ? Instruction::FDiv : Instruction::SDiv;
1078   case bitc::BINOP_UREM:
1079     return IsFP ? -1 : Instruction::URem;
1080   case bitc::BINOP_SREM:
1081     return IsFP ? Instruction::FRem : Instruction::SRem;
1082   case bitc::BINOP_SHL:
1083     return IsFP ? -1 : Instruction::Shl;
1084   case bitc::BINOP_LSHR:
1085     return IsFP ? -1 : Instruction::LShr;
1086   case bitc::BINOP_ASHR:
1087     return IsFP ? -1 : Instruction::AShr;
1088   case bitc::BINOP_AND:
1089     return IsFP ? -1 : Instruction::And;
1090   case bitc::BINOP_OR:
1091     return IsFP ? -1 : Instruction::Or;
1092   case bitc::BINOP_XOR:
1093     return IsFP ? -1 : Instruction::Xor;
1094   }
1095 }
1096 
1097 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) {
1098   switch (Val) {
1099   default: return AtomicRMWInst::BAD_BINOP;
1100   case bitc::RMW_XCHG: return AtomicRMWInst::Xchg;
1101   case bitc::RMW_ADD: return AtomicRMWInst::Add;
1102   case bitc::RMW_SUB: return AtomicRMWInst::Sub;
1103   case bitc::RMW_AND: return AtomicRMWInst::And;
1104   case bitc::RMW_NAND: return AtomicRMWInst::Nand;
1105   case bitc::RMW_OR: return AtomicRMWInst::Or;
1106   case bitc::RMW_XOR: return AtomicRMWInst::Xor;
1107   case bitc::RMW_MAX: return AtomicRMWInst::Max;
1108   case bitc::RMW_MIN: return AtomicRMWInst::Min;
1109   case bitc::RMW_UMAX: return AtomicRMWInst::UMax;
1110   case bitc::RMW_UMIN: return AtomicRMWInst::UMin;
1111   case bitc::RMW_FADD: return AtomicRMWInst::FAdd;
1112   case bitc::RMW_FSUB: return AtomicRMWInst::FSub;
1113   }
1114 }
1115 
1116 static AtomicOrdering getDecodedOrdering(unsigned Val) {
1117   switch (Val) {
1118   case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic;
1119   case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered;
1120   case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic;
1121   case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire;
1122   case bitc::ORDERING_RELEASE: return AtomicOrdering::Release;
1123   case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease;
1124   default: // Map unknown orderings to sequentially-consistent.
1125   case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent;
1126   }
1127 }
1128 
1129 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) {
1130   switch (Val) {
1131   default: // Map unknown selection kinds to any.
1132   case bitc::COMDAT_SELECTION_KIND_ANY:
1133     return Comdat::Any;
1134   case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH:
1135     return Comdat::ExactMatch;
1136   case bitc::COMDAT_SELECTION_KIND_LARGEST:
1137     return Comdat::Largest;
1138   case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES:
1139     return Comdat::NoDeduplicate;
1140   case bitc::COMDAT_SELECTION_KIND_SAME_SIZE:
1141     return Comdat::SameSize;
1142   }
1143 }
1144 
1145 static FastMathFlags getDecodedFastMathFlags(unsigned Val) {
1146   FastMathFlags FMF;
1147   if (0 != (Val & bitc::UnsafeAlgebra))
1148     FMF.setFast();
1149   if (0 != (Val & bitc::AllowReassoc))
1150     FMF.setAllowReassoc();
1151   if (0 != (Val & bitc::NoNaNs))
1152     FMF.setNoNaNs();
1153   if (0 != (Val & bitc::NoInfs))
1154     FMF.setNoInfs();
1155   if (0 != (Val & bitc::NoSignedZeros))
1156     FMF.setNoSignedZeros();
1157   if (0 != (Val & bitc::AllowReciprocal))
1158     FMF.setAllowReciprocal();
1159   if (0 != (Val & bitc::AllowContract))
1160     FMF.setAllowContract(true);
1161   if (0 != (Val & bitc::ApproxFunc))
1162     FMF.setApproxFunc();
1163   return FMF;
1164 }
1165 
1166 static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) {
1167   switch (Val) {
1168   case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break;
1169   case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break;
1170   }
1171 }
1172 
1173 Type *BitcodeReader::getTypeByID(unsigned ID) {
1174   // The type table size is always specified correctly.
1175   if (ID >= TypeList.size())
1176     return nullptr;
1177 
1178   if (Type *Ty = TypeList[ID])
1179     return Ty;
1180 
1181   // If we have a forward reference, the only possible case is when it is to a
1182   // named struct.  Just create a placeholder for now.
1183   return TypeList[ID] = createIdentifiedStructType(Context);
1184 }
1185 
1186 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context,
1187                                                       StringRef Name) {
1188   auto *Ret = StructType::create(Context, Name);
1189   IdentifiedStructTypes.push_back(Ret);
1190   return Ret;
1191 }
1192 
1193 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) {
1194   auto *Ret = StructType::create(Context);
1195   IdentifiedStructTypes.push_back(Ret);
1196   return Ret;
1197 }
1198 
1199 //===----------------------------------------------------------------------===//
1200 //  Functions for parsing blocks from the bitcode file
1201 //===----------------------------------------------------------------------===//
1202 
1203 static uint64_t getRawAttributeMask(Attribute::AttrKind Val) {
1204   switch (Val) {
1205   case Attribute::EndAttrKinds:
1206   case Attribute::EmptyKey:
1207   case Attribute::TombstoneKey:
1208     llvm_unreachable("Synthetic enumerators which should never get here");
1209 
1210   case Attribute::None:            return 0;
1211   case Attribute::ZExt:            return 1 << 0;
1212   case Attribute::SExt:            return 1 << 1;
1213   case Attribute::NoReturn:        return 1 << 2;
1214   case Attribute::InReg:           return 1 << 3;
1215   case Attribute::StructRet:       return 1 << 4;
1216   case Attribute::NoUnwind:        return 1 << 5;
1217   case Attribute::NoAlias:         return 1 << 6;
1218   case Attribute::ByVal:           return 1 << 7;
1219   case Attribute::Nest:            return 1 << 8;
1220   case Attribute::ReadNone:        return 1 << 9;
1221   case Attribute::ReadOnly:        return 1 << 10;
1222   case Attribute::NoInline:        return 1 << 11;
1223   case Attribute::AlwaysInline:    return 1 << 12;
1224   case Attribute::OptimizeForSize: return 1 << 13;
1225   case Attribute::StackProtect:    return 1 << 14;
1226   case Attribute::StackProtectReq: return 1 << 15;
1227   case Attribute::Alignment:       return 31 << 16;
1228   case Attribute::NoCapture:       return 1 << 21;
1229   case Attribute::NoRedZone:       return 1 << 22;
1230   case Attribute::NoImplicitFloat: return 1 << 23;
1231   case Attribute::Naked:           return 1 << 24;
1232   case Attribute::InlineHint:      return 1 << 25;
1233   case Attribute::StackAlignment:  return 7 << 26;
1234   case Attribute::ReturnsTwice:    return 1 << 29;
1235   case Attribute::UWTable:         return 1 << 30;
1236   case Attribute::NonLazyBind:     return 1U << 31;
1237   case Attribute::SanitizeAddress: return 1ULL << 32;
1238   case Attribute::MinSize:         return 1ULL << 33;
1239   case Attribute::NoDuplicate:     return 1ULL << 34;
1240   case Attribute::StackProtectStrong: return 1ULL << 35;
1241   case Attribute::SanitizeThread:  return 1ULL << 36;
1242   case Attribute::SanitizeMemory:  return 1ULL << 37;
1243   case Attribute::NoBuiltin:       return 1ULL << 38;
1244   case Attribute::Returned:        return 1ULL << 39;
1245   case Attribute::Cold:            return 1ULL << 40;
1246   case Attribute::Builtin:         return 1ULL << 41;
1247   case Attribute::OptimizeNone:    return 1ULL << 42;
1248   case Attribute::InAlloca:        return 1ULL << 43;
1249   case Attribute::NonNull:         return 1ULL << 44;
1250   case Attribute::JumpTable:       return 1ULL << 45;
1251   case Attribute::Convergent:      return 1ULL << 46;
1252   case Attribute::SafeStack:       return 1ULL << 47;
1253   case Attribute::NoRecurse:       return 1ULL << 48;
1254   case Attribute::InaccessibleMemOnly:         return 1ULL << 49;
1255   case Attribute::InaccessibleMemOrArgMemOnly: return 1ULL << 50;
1256   case Attribute::SwiftSelf:       return 1ULL << 51;
1257   case Attribute::SwiftError:      return 1ULL << 52;
1258   case Attribute::WriteOnly:       return 1ULL << 53;
1259   case Attribute::Speculatable:    return 1ULL << 54;
1260   case Attribute::StrictFP:        return 1ULL << 55;
1261   case Attribute::SanitizeHWAddress: return 1ULL << 56;
1262   case Attribute::NoCfCheck:       return 1ULL << 57;
1263   case Attribute::OptForFuzzing:   return 1ULL << 58;
1264   case Attribute::ShadowCallStack: return 1ULL << 59;
1265   case Attribute::SpeculativeLoadHardening:
1266     return 1ULL << 60;
1267   case Attribute::ImmArg:
1268     return 1ULL << 61;
1269   case Attribute::WillReturn:
1270     return 1ULL << 62;
1271   case Attribute::NoFree:
1272     return 1ULL << 63;
1273   default:
1274     // Other attributes are not supported in the raw format,
1275     // as we ran out of space.
1276     return 0;
1277   }
1278   llvm_unreachable("Unsupported attribute type");
1279 }
1280 
1281 static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) {
1282   if (!Val) return;
1283 
1284   for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds;
1285        I = Attribute::AttrKind(I + 1)) {
1286     if (uint64_t A = (Val & getRawAttributeMask(I))) {
1287       if (I == Attribute::Alignment)
1288         B.addAlignmentAttr(1ULL << ((A >> 16) - 1));
1289       else if (I == Attribute::StackAlignment)
1290         B.addStackAlignmentAttr(1ULL << ((A >> 26)-1));
1291       else if (Attribute::isTypeAttrKind(I))
1292         B.addTypeAttr(I, nullptr); // Type will be auto-upgraded.
1293       else
1294         B.addAttribute(I);
1295     }
1296   }
1297 }
1298 
1299 /// This fills an AttrBuilder object with the LLVM attributes that have
1300 /// been decoded from the given integer. This function must stay in sync with
1301 /// 'encodeLLVMAttributesForBitcode'.
1302 static void decodeLLVMAttributesForBitcode(AttrBuilder &B,
1303                                            uint64_t EncodedAttrs) {
1304   // The alignment is stored as a 16-bit raw value from bits 31--16.  We shift
1305   // the bits above 31 down by 11 bits.
1306   unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16;
1307   assert((!Alignment || isPowerOf2_32(Alignment)) &&
1308          "Alignment must be a power of two.");
1309 
1310   if (Alignment)
1311     B.addAlignmentAttr(Alignment);
1312   addRawAttributeValue(B, ((EncodedAttrs & (0xfffffULL << 32)) >> 11) |
1313                           (EncodedAttrs & 0xffff));
1314 }
1315 
1316 Error BitcodeReader::parseAttributeBlock() {
1317   if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID))
1318     return Err;
1319 
1320   if (!MAttributes.empty())
1321     return error("Invalid multiple blocks");
1322 
1323   SmallVector<uint64_t, 64> Record;
1324 
1325   SmallVector<AttributeList, 8> Attrs;
1326 
1327   // Read all the records.
1328   while (true) {
1329     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1330     if (!MaybeEntry)
1331       return MaybeEntry.takeError();
1332     BitstreamEntry Entry = MaybeEntry.get();
1333 
1334     switch (Entry.Kind) {
1335     case BitstreamEntry::SubBlock: // Handled for us already.
1336     case BitstreamEntry::Error:
1337       return error("Malformed block");
1338     case BitstreamEntry::EndBlock:
1339       return Error::success();
1340     case BitstreamEntry::Record:
1341       // The interesting case.
1342       break;
1343     }
1344 
1345     // Read a record.
1346     Record.clear();
1347     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
1348     if (!MaybeRecord)
1349       return MaybeRecord.takeError();
1350     switch (MaybeRecord.get()) {
1351     default:  // Default behavior: ignore.
1352       break;
1353     case bitc::PARAMATTR_CODE_ENTRY_OLD: // ENTRY: [paramidx0, attr0, ...]
1354       // Deprecated, but still needed to read old bitcode files.
1355       if (Record.size() & 1)
1356         return error("Invalid record");
1357 
1358       for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
1359         AttrBuilder B;
1360         decodeLLVMAttributesForBitcode(B, Record[i+1]);
1361         Attrs.push_back(AttributeList::get(Context, Record[i], B));
1362       }
1363 
1364       MAttributes.push_back(AttributeList::get(Context, Attrs));
1365       Attrs.clear();
1366       break;
1367     case bitc::PARAMATTR_CODE_ENTRY: // ENTRY: [attrgrp0, attrgrp1, ...]
1368       for (unsigned i = 0, e = Record.size(); i != e; ++i)
1369         Attrs.push_back(MAttributeGroups[Record[i]]);
1370 
1371       MAttributes.push_back(AttributeList::get(Context, Attrs));
1372       Attrs.clear();
1373       break;
1374     }
1375   }
1376 }
1377 
1378 // Returns Attribute::None on unrecognized codes.
1379 static Attribute::AttrKind getAttrFromCode(uint64_t Code) {
1380   switch (Code) {
1381   default:
1382     return Attribute::None;
1383   case bitc::ATTR_KIND_ALIGNMENT:
1384     return Attribute::Alignment;
1385   case bitc::ATTR_KIND_ALWAYS_INLINE:
1386     return Attribute::AlwaysInline;
1387   case bitc::ATTR_KIND_ARGMEMONLY:
1388     return Attribute::ArgMemOnly;
1389   case bitc::ATTR_KIND_BUILTIN:
1390     return Attribute::Builtin;
1391   case bitc::ATTR_KIND_BY_VAL:
1392     return Attribute::ByVal;
1393   case bitc::ATTR_KIND_IN_ALLOCA:
1394     return Attribute::InAlloca;
1395   case bitc::ATTR_KIND_COLD:
1396     return Attribute::Cold;
1397   case bitc::ATTR_KIND_CONVERGENT:
1398     return Attribute::Convergent;
1399   case bitc::ATTR_KIND_DISABLE_SANITIZER_INSTRUMENTATION:
1400     return Attribute::DisableSanitizerInstrumentation;
1401   case bitc::ATTR_KIND_ELEMENTTYPE:
1402     return Attribute::ElementType;
1403   case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY:
1404     return Attribute::InaccessibleMemOnly;
1405   case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY:
1406     return Attribute::InaccessibleMemOrArgMemOnly;
1407   case bitc::ATTR_KIND_INLINE_HINT:
1408     return Attribute::InlineHint;
1409   case bitc::ATTR_KIND_IN_REG:
1410     return Attribute::InReg;
1411   case bitc::ATTR_KIND_JUMP_TABLE:
1412     return Attribute::JumpTable;
1413   case bitc::ATTR_KIND_MIN_SIZE:
1414     return Attribute::MinSize;
1415   case bitc::ATTR_KIND_NAKED:
1416     return Attribute::Naked;
1417   case bitc::ATTR_KIND_NEST:
1418     return Attribute::Nest;
1419   case bitc::ATTR_KIND_NO_ALIAS:
1420     return Attribute::NoAlias;
1421   case bitc::ATTR_KIND_NO_BUILTIN:
1422     return Attribute::NoBuiltin;
1423   case bitc::ATTR_KIND_NO_CALLBACK:
1424     return Attribute::NoCallback;
1425   case bitc::ATTR_KIND_NO_CAPTURE:
1426     return Attribute::NoCapture;
1427   case bitc::ATTR_KIND_NO_DUPLICATE:
1428     return Attribute::NoDuplicate;
1429   case bitc::ATTR_KIND_NOFREE:
1430     return Attribute::NoFree;
1431   case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT:
1432     return Attribute::NoImplicitFloat;
1433   case bitc::ATTR_KIND_NO_INLINE:
1434     return Attribute::NoInline;
1435   case bitc::ATTR_KIND_NO_RECURSE:
1436     return Attribute::NoRecurse;
1437   case bitc::ATTR_KIND_NO_MERGE:
1438     return Attribute::NoMerge;
1439   case bitc::ATTR_KIND_NON_LAZY_BIND:
1440     return Attribute::NonLazyBind;
1441   case bitc::ATTR_KIND_NON_NULL:
1442     return Attribute::NonNull;
1443   case bitc::ATTR_KIND_DEREFERENCEABLE:
1444     return Attribute::Dereferenceable;
1445   case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL:
1446     return Attribute::DereferenceableOrNull;
1447   case bitc::ATTR_KIND_ALLOC_SIZE:
1448     return Attribute::AllocSize;
1449   case bitc::ATTR_KIND_NO_RED_ZONE:
1450     return Attribute::NoRedZone;
1451   case bitc::ATTR_KIND_NO_RETURN:
1452     return Attribute::NoReturn;
1453   case bitc::ATTR_KIND_NOSYNC:
1454     return Attribute::NoSync;
1455   case bitc::ATTR_KIND_NOCF_CHECK:
1456     return Attribute::NoCfCheck;
1457   case bitc::ATTR_KIND_NO_PROFILE:
1458     return Attribute::NoProfile;
1459   case bitc::ATTR_KIND_NO_UNWIND:
1460     return Attribute::NoUnwind;
1461   case bitc::ATTR_KIND_NO_SANITIZE_COVERAGE:
1462     return Attribute::NoSanitizeCoverage;
1463   case bitc::ATTR_KIND_NULL_POINTER_IS_VALID:
1464     return Attribute::NullPointerIsValid;
1465   case bitc::ATTR_KIND_OPT_FOR_FUZZING:
1466     return Attribute::OptForFuzzing;
1467   case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE:
1468     return Attribute::OptimizeForSize;
1469   case bitc::ATTR_KIND_OPTIMIZE_NONE:
1470     return Attribute::OptimizeNone;
1471   case bitc::ATTR_KIND_READ_NONE:
1472     return Attribute::ReadNone;
1473   case bitc::ATTR_KIND_READ_ONLY:
1474     return Attribute::ReadOnly;
1475   case bitc::ATTR_KIND_RETURNED:
1476     return Attribute::Returned;
1477   case bitc::ATTR_KIND_RETURNS_TWICE:
1478     return Attribute::ReturnsTwice;
1479   case bitc::ATTR_KIND_S_EXT:
1480     return Attribute::SExt;
1481   case bitc::ATTR_KIND_SPECULATABLE:
1482     return Attribute::Speculatable;
1483   case bitc::ATTR_KIND_STACK_ALIGNMENT:
1484     return Attribute::StackAlignment;
1485   case bitc::ATTR_KIND_STACK_PROTECT:
1486     return Attribute::StackProtect;
1487   case bitc::ATTR_KIND_STACK_PROTECT_REQ:
1488     return Attribute::StackProtectReq;
1489   case bitc::ATTR_KIND_STACK_PROTECT_STRONG:
1490     return Attribute::StackProtectStrong;
1491   case bitc::ATTR_KIND_SAFESTACK:
1492     return Attribute::SafeStack;
1493   case bitc::ATTR_KIND_SHADOWCALLSTACK:
1494     return Attribute::ShadowCallStack;
1495   case bitc::ATTR_KIND_STRICT_FP:
1496     return Attribute::StrictFP;
1497   case bitc::ATTR_KIND_STRUCT_RET:
1498     return Attribute::StructRet;
1499   case bitc::ATTR_KIND_SANITIZE_ADDRESS:
1500     return Attribute::SanitizeAddress;
1501   case bitc::ATTR_KIND_SANITIZE_HWADDRESS:
1502     return Attribute::SanitizeHWAddress;
1503   case bitc::ATTR_KIND_SANITIZE_THREAD:
1504     return Attribute::SanitizeThread;
1505   case bitc::ATTR_KIND_SANITIZE_MEMORY:
1506     return Attribute::SanitizeMemory;
1507   case bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING:
1508     return Attribute::SpeculativeLoadHardening;
1509   case bitc::ATTR_KIND_SWIFT_ERROR:
1510     return Attribute::SwiftError;
1511   case bitc::ATTR_KIND_SWIFT_SELF:
1512     return Attribute::SwiftSelf;
1513   case bitc::ATTR_KIND_SWIFT_ASYNC:
1514     return Attribute::SwiftAsync;
1515   case bitc::ATTR_KIND_UW_TABLE:
1516     return Attribute::UWTable;
1517   case bitc::ATTR_KIND_VSCALE_RANGE:
1518     return Attribute::VScaleRange;
1519   case bitc::ATTR_KIND_WILLRETURN:
1520     return Attribute::WillReturn;
1521   case bitc::ATTR_KIND_WRITEONLY:
1522     return Attribute::WriteOnly;
1523   case bitc::ATTR_KIND_Z_EXT:
1524     return Attribute::ZExt;
1525   case bitc::ATTR_KIND_IMMARG:
1526     return Attribute::ImmArg;
1527   case bitc::ATTR_KIND_SANITIZE_MEMTAG:
1528     return Attribute::SanitizeMemTag;
1529   case bitc::ATTR_KIND_PREALLOCATED:
1530     return Attribute::Preallocated;
1531   case bitc::ATTR_KIND_NOUNDEF:
1532     return Attribute::NoUndef;
1533   case bitc::ATTR_KIND_BYREF:
1534     return Attribute::ByRef;
1535   case bitc::ATTR_KIND_MUSTPROGRESS:
1536     return Attribute::MustProgress;
1537   case bitc::ATTR_KIND_HOT:
1538     return Attribute::Hot;
1539   }
1540 }
1541 
1542 Error BitcodeReader::parseAlignmentValue(uint64_t Exponent,
1543                                          MaybeAlign &Alignment) {
1544   // Note: Alignment in bitcode files is incremented by 1, so that zero
1545   // can be used for default alignment.
1546   if (Exponent > Value::MaxAlignmentExponent + 1)
1547     return error("Invalid alignment value");
1548   Alignment = decodeMaybeAlign(Exponent);
1549   return Error::success();
1550 }
1551 
1552 Error BitcodeReader::parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind) {
1553   *Kind = getAttrFromCode(Code);
1554   if (*Kind == Attribute::None)
1555     return error("Unknown attribute kind (" + Twine(Code) + ")");
1556   return Error::success();
1557 }
1558 
1559 Error BitcodeReader::parseAttributeGroupBlock() {
1560   if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID))
1561     return Err;
1562 
1563   if (!MAttributeGroups.empty())
1564     return error("Invalid multiple blocks");
1565 
1566   SmallVector<uint64_t, 64> Record;
1567 
1568   // Read all the records.
1569   while (true) {
1570     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1571     if (!MaybeEntry)
1572       return MaybeEntry.takeError();
1573     BitstreamEntry Entry = MaybeEntry.get();
1574 
1575     switch (Entry.Kind) {
1576     case BitstreamEntry::SubBlock: // Handled for us already.
1577     case BitstreamEntry::Error:
1578       return error("Malformed block");
1579     case BitstreamEntry::EndBlock:
1580       return Error::success();
1581     case BitstreamEntry::Record:
1582       // The interesting case.
1583       break;
1584     }
1585 
1586     // Read a record.
1587     Record.clear();
1588     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
1589     if (!MaybeRecord)
1590       return MaybeRecord.takeError();
1591     switch (MaybeRecord.get()) {
1592     default:  // Default behavior: ignore.
1593       break;
1594     case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...]
1595       if (Record.size() < 3)
1596         return error("Invalid record");
1597 
1598       uint64_t GrpID = Record[0];
1599       uint64_t Idx = Record[1]; // Index of the object this attribute refers to.
1600 
1601       AttrBuilder B;
1602       for (unsigned i = 2, e = Record.size(); i != e; ++i) {
1603         if (Record[i] == 0) {        // Enum attribute
1604           Attribute::AttrKind Kind;
1605           if (Error Err = parseAttrKind(Record[++i], &Kind))
1606             return Err;
1607 
1608           // Upgrade old-style byval attribute to one with a type, even if it's
1609           // nullptr. We will have to insert the real type when we associate
1610           // this AttributeList with a function.
1611           if (Kind == Attribute::ByVal)
1612             B.addByValAttr(nullptr);
1613           else if (Kind == Attribute::StructRet)
1614             B.addStructRetAttr(nullptr);
1615           else if (Kind == Attribute::InAlloca)
1616             B.addInAllocaAttr(nullptr);
1617           else if (Attribute::isEnumAttrKind(Kind))
1618             B.addAttribute(Kind);
1619           else
1620             return error("Not an enum attribute");
1621         } else if (Record[i] == 1) { // Integer attribute
1622           Attribute::AttrKind Kind;
1623           if (Error Err = parseAttrKind(Record[++i], &Kind))
1624             return Err;
1625           if (!Attribute::isIntAttrKind(Kind))
1626             return error("Not an int attribute");
1627           if (Kind == Attribute::Alignment)
1628             B.addAlignmentAttr(Record[++i]);
1629           else if (Kind == Attribute::StackAlignment)
1630             B.addStackAlignmentAttr(Record[++i]);
1631           else if (Kind == Attribute::Dereferenceable)
1632             B.addDereferenceableAttr(Record[++i]);
1633           else if (Kind == Attribute::DereferenceableOrNull)
1634             B.addDereferenceableOrNullAttr(Record[++i]);
1635           else if (Kind == Attribute::AllocSize)
1636             B.addAllocSizeAttrFromRawRepr(Record[++i]);
1637           else if (Kind == Attribute::VScaleRange)
1638             B.addVScaleRangeAttrFromRawRepr(Record[++i]);
1639         } else if (Record[i] == 3 || Record[i] == 4) { // String attribute
1640           bool HasValue = (Record[i++] == 4);
1641           SmallString<64> KindStr;
1642           SmallString<64> ValStr;
1643 
1644           while (Record[i] != 0 && i != e)
1645             KindStr += Record[i++];
1646           assert(Record[i] == 0 && "Kind string not null terminated");
1647 
1648           if (HasValue) {
1649             // Has a value associated with it.
1650             ++i; // Skip the '0' that terminates the "kind" string.
1651             while (Record[i] != 0 && i != e)
1652               ValStr += Record[i++];
1653             assert(Record[i] == 0 && "Value string not null terminated");
1654           }
1655 
1656           B.addAttribute(KindStr.str(), ValStr.str());
1657         } else {
1658           assert((Record[i] == 5 || Record[i] == 6) &&
1659                  "Invalid attribute group entry");
1660           bool HasType = Record[i] == 6;
1661           Attribute::AttrKind Kind;
1662           if (Error Err = parseAttrKind(Record[++i], &Kind))
1663             return Err;
1664           if (!Attribute::isTypeAttrKind(Kind))
1665             return error("Not a type attribute");
1666 
1667           B.addTypeAttr(Kind, HasType ? getTypeByID(Record[++i]) : nullptr);
1668         }
1669       }
1670 
1671       UpgradeAttributes(B);
1672       MAttributeGroups[GrpID] = AttributeList::get(Context, Idx, B);
1673       break;
1674     }
1675     }
1676   }
1677 }
1678 
1679 Error BitcodeReader::parseTypeTable() {
1680   if (Error Err = Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW))
1681     return Err;
1682 
1683   return parseTypeTableBody();
1684 }
1685 
1686 Error BitcodeReader::parseTypeTableBody() {
1687   if (!TypeList.empty())
1688     return error("Invalid multiple blocks");
1689 
1690   SmallVector<uint64_t, 64> Record;
1691   unsigned NumRecords = 0;
1692 
1693   SmallString<64> TypeName;
1694 
1695   // Read all the records for this type table.
1696   while (true) {
1697     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1698     if (!MaybeEntry)
1699       return MaybeEntry.takeError();
1700     BitstreamEntry Entry = MaybeEntry.get();
1701 
1702     switch (Entry.Kind) {
1703     case BitstreamEntry::SubBlock: // Handled for us already.
1704     case BitstreamEntry::Error:
1705       return error("Malformed block");
1706     case BitstreamEntry::EndBlock:
1707       if (NumRecords != TypeList.size())
1708         return error("Malformed block");
1709       return Error::success();
1710     case BitstreamEntry::Record:
1711       // The interesting case.
1712       break;
1713     }
1714 
1715     // Read a record.
1716     Record.clear();
1717     Type *ResultTy = nullptr;
1718     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
1719     if (!MaybeRecord)
1720       return MaybeRecord.takeError();
1721     switch (MaybeRecord.get()) {
1722     default:
1723       return error("Invalid value");
1724     case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
1725       // TYPE_CODE_NUMENTRY contains a count of the number of types in the
1726       // type list.  This allows us to reserve space.
1727       if (Record.empty())
1728         return error("Invalid record");
1729       TypeList.resize(Record[0]);
1730       continue;
1731     case bitc::TYPE_CODE_VOID:      // VOID
1732       ResultTy = Type::getVoidTy(Context);
1733       break;
1734     case bitc::TYPE_CODE_HALF:     // HALF
1735       ResultTy = Type::getHalfTy(Context);
1736       break;
1737     case bitc::TYPE_CODE_BFLOAT:    // BFLOAT
1738       ResultTy = Type::getBFloatTy(Context);
1739       break;
1740     case bitc::TYPE_CODE_FLOAT:     // FLOAT
1741       ResultTy = Type::getFloatTy(Context);
1742       break;
1743     case bitc::TYPE_CODE_DOUBLE:    // DOUBLE
1744       ResultTy = Type::getDoubleTy(Context);
1745       break;
1746     case bitc::TYPE_CODE_X86_FP80:  // X86_FP80
1747       ResultTy = Type::getX86_FP80Ty(Context);
1748       break;
1749     case bitc::TYPE_CODE_FP128:     // FP128
1750       ResultTy = Type::getFP128Ty(Context);
1751       break;
1752     case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
1753       ResultTy = Type::getPPC_FP128Ty(Context);
1754       break;
1755     case bitc::TYPE_CODE_LABEL:     // LABEL
1756       ResultTy = Type::getLabelTy(Context);
1757       break;
1758     case bitc::TYPE_CODE_METADATA:  // METADATA
1759       ResultTy = Type::getMetadataTy(Context);
1760       break;
1761     case bitc::TYPE_CODE_X86_MMX:   // X86_MMX
1762       ResultTy = Type::getX86_MMXTy(Context);
1763       break;
1764     case bitc::TYPE_CODE_X86_AMX:   // X86_AMX
1765       ResultTy = Type::getX86_AMXTy(Context);
1766       break;
1767     case bitc::TYPE_CODE_TOKEN:     // TOKEN
1768       ResultTy = Type::getTokenTy(Context);
1769       break;
1770     case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width]
1771       if (Record.empty())
1772         return error("Invalid record");
1773 
1774       uint64_t NumBits = Record[0];
1775       if (NumBits < IntegerType::MIN_INT_BITS ||
1776           NumBits > IntegerType::MAX_INT_BITS)
1777         return error("Bitwidth for integer type out of range");
1778       ResultTy = IntegerType::get(Context, NumBits);
1779       break;
1780     }
1781     case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
1782                                     //          [pointee type, address space]
1783       if (Record.empty())
1784         return error("Invalid record");
1785       unsigned AddressSpace = 0;
1786       if (Record.size() == 2)
1787         AddressSpace = Record[1];
1788       ResultTy = getTypeByID(Record[0]);
1789       if (!ResultTy ||
1790           !PointerType::isValidElementType(ResultTy))
1791         return error("Invalid type");
1792       ResultTy = PointerType::get(ResultTy, AddressSpace);
1793       break;
1794     }
1795     case bitc::TYPE_CODE_OPAQUE_POINTER: { // OPAQUE_POINTER: [addrspace]
1796       if (Record.size() != 1)
1797         return error("Invalid record");
1798       if (Context.supportsTypedPointers())
1799         return error(
1800             "Opaque pointers are only supported in -opaque-pointers mode");
1801       unsigned AddressSpace = Record[0];
1802       ResultTy = PointerType::get(Context, AddressSpace);
1803       break;
1804     }
1805     case bitc::TYPE_CODE_FUNCTION_OLD: {
1806       // Deprecated, but still needed to read old bitcode files.
1807       // FUNCTION: [vararg, attrid, retty, paramty x N]
1808       if (Record.size() < 3)
1809         return error("Invalid record");
1810       SmallVector<Type*, 8> ArgTys;
1811       for (unsigned i = 3, e = Record.size(); i != e; ++i) {
1812         if (Type *T = getTypeByID(Record[i]))
1813           ArgTys.push_back(T);
1814         else
1815           break;
1816       }
1817 
1818       ResultTy = getTypeByID(Record[2]);
1819       if (!ResultTy || ArgTys.size() < Record.size()-3)
1820         return error("Invalid type");
1821 
1822       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
1823       break;
1824     }
1825     case bitc::TYPE_CODE_FUNCTION: {
1826       // FUNCTION: [vararg, retty, paramty x N]
1827       if (Record.size() < 2)
1828         return error("Invalid record");
1829       SmallVector<Type*, 8> ArgTys;
1830       for (unsigned i = 2, e = Record.size(); i != e; ++i) {
1831         if (Type *T = getTypeByID(Record[i])) {
1832           if (!FunctionType::isValidArgumentType(T))
1833             return error("Invalid function argument type");
1834           ArgTys.push_back(T);
1835         }
1836         else
1837           break;
1838       }
1839 
1840       ResultTy = getTypeByID(Record[1]);
1841       if (!ResultTy || ArgTys.size() < Record.size()-2)
1842         return error("Invalid type");
1843 
1844       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
1845       break;
1846     }
1847     case bitc::TYPE_CODE_STRUCT_ANON: {  // STRUCT: [ispacked, eltty x N]
1848       if (Record.empty())
1849         return error("Invalid record");
1850       SmallVector<Type*, 8> EltTys;
1851       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
1852         if (Type *T = getTypeByID(Record[i]))
1853           EltTys.push_back(T);
1854         else
1855           break;
1856       }
1857       if (EltTys.size() != Record.size()-1)
1858         return error("Invalid type");
1859       ResultTy = StructType::get(Context, EltTys, Record[0]);
1860       break;
1861     }
1862     case bitc::TYPE_CODE_STRUCT_NAME:   // STRUCT_NAME: [strchr x N]
1863       if (convertToString(Record, 0, TypeName))
1864         return error("Invalid record");
1865       continue;
1866 
1867     case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N]
1868       if (Record.empty())
1869         return error("Invalid record");
1870 
1871       if (NumRecords >= TypeList.size())
1872         return error("Invalid TYPE table");
1873 
1874       // Check to see if this was forward referenced, if so fill in the temp.
1875       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
1876       if (Res) {
1877         Res->setName(TypeName);
1878         TypeList[NumRecords] = nullptr;
1879       } else  // Otherwise, create a new struct.
1880         Res = createIdentifiedStructType(Context, TypeName);
1881       TypeName.clear();
1882 
1883       SmallVector<Type*, 8> EltTys;
1884       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
1885         if (Type *T = getTypeByID(Record[i]))
1886           EltTys.push_back(T);
1887         else
1888           break;
1889       }
1890       if (EltTys.size() != Record.size()-1)
1891         return error("Invalid record");
1892       Res->setBody(EltTys, Record[0]);
1893       ResultTy = Res;
1894       break;
1895     }
1896     case bitc::TYPE_CODE_OPAQUE: {       // OPAQUE: []
1897       if (Record.size() != 1)
1898         return error("Invalid record");
1899 
1900       if (NumRecords >= TypeList.size())
1901         return error("Invalid TYPE table");
1902 
1903       // Check to see if this was forward referenced, if so fill in the temp.
1904       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
1905       if (Res) {
1906         Res->setName(TypeName);
1907         TypeList[NumRecords] = nullptr;
1908       } else  // Otherwise, create a new struct with no body.
1909         Res = createIdentifiedStructType(Context, TypeName);
1910       TypeName.clear();
1911       ResultTy = Res;
1912       break;
1913     }
1914     case bitc::TYPE_CODE_ARRAY:     // ARRAY: [numelts, eltty]
1915       if (Record.size() < 2)
1916         return error("Invalid record");
1917       ResultTy = getTypeByID(Record[1]);
1918       if (!ResultTy || !ArrayType::isValidElementType(ResultTy))
1919         return error("Invalid type");
1920       ResultTy = ArrayType::get(ResultTy, Record[0]);
1921       break;
1922     case bitc::TYPE_CODE_VECTOR:    // VECTOR: [numelts, eltty] or
1923                                     //         [numelts, eltty, scalable]
1924       if (Record.size() < 2)
1925         return error("Invalid record");
1926       if (Record[0] == 0)
1927         return error("Invalid vector length");
1928       ResultTy = getTypeByID(Record[1]);
1929       if (!ResultTy || !StructType::isValidElementType(ResultTy))
1930         return error("Invalid type");
1931       bool Scalable = Record.size() > 2 ? Record[2] : false;
1932       ResultTy = VectorType::get(ResultTy, Record[0], Scalable);
1933       break;
1934     }
1935 
1936     if (NumRecords >= TypeList.size())
1937       return error("Invalid TYPE table");
1938     if (TypeList[NumRecords])
1939       return error(
1940           "Invalid TYPE table: Only named structs can be forward referenced");
1941     assert(ResultTy && "Didn't read a type?");
1942     TypeList[NumRecords++] = ResultTy;
1943   }
1944 }
1945 
1946 Error BitcodeReader::parseOperandBundleTags() {
1947   if (Error Err = Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID))
1948     return Err;
1949 
1950   if (!BundleTags.empty())
1951     return error("Invalid multiple blocks");
1952 
1953   SmallVector<uint64_t, 64> Record;
1954 
1955   while (true) {
1956     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1957     if (!MaybeEntry)
1958       return MaybeEntry.takeError();
1959     BitstreamEntry Entry = MaybeEntry.get();
1960 
1961     switch (Entry.Kind) {
1962     case BitstreamEntry::SubBlock: // Handled for us already.
1963     case BitstreamEntry::Error:
1964       return error("Malformed block");
1965     case BitstreamEntry::EndBlock:
1966       return Error::success();
1967     case BitstreamEntry::Record:
1968       // The interesting case.
1969       break;
1970     }
1971 
1972     // Tags are implicitly mapped to integers by their order.
1973 
1974     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
1975     if (!MaybeRecord)
1976       return MaybeRecord.takeError();
1977     if (MaybeRecord.get() != bitc::OPERAND_BUNDLE_TAG)
1978       return error("Invalid record");
1979 
1980     // OPERAND_BUNDLE_TAG: [strchr x N]
1981     BundleTags.emplace_back();
1982     if (convertToString(Record, 0, BundleTags.back()))
1983       return error("Invalid record");
1984     Record.clear();
1985   }
1986 }
1987 
1988 Error BitcodeReader::parseSyncScopeNames() {
1989   if (Error Err = Stream.EnterSubBlock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID))
1990     return Err;
1991 
1992   if (!SSIDs.empty())
1993     return error("Invalid multiple synchronization scope names blocks");
1994 
1995   SmallVector<uint64_t, 64> Record;
1996   while (true) {
1997     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1998     if (!MaybeEntry)
1999       return MaybeEntry.takeError();
2000     BitstreamEntry Entry = MaybeEntry.get();
2001 
2002     switch (Entry.Kind) {
2003     case BitstreamEntry::SubBlock: // Handled for us already.
2004     case BitstreamEntry::Error:
2005       return error("Malformed block");
2006     case BitstreamEntry::EndBlock:
2007       if (SSIDs.empty())
2008         return error("Invalid empty synchronization scope names block");
2009       return Error::success();
2010     case BitstreamEntry::Record:
2011       // The interesting case.
2012       break;
2013     }
2014 
2015     // Synchronization scope names are implicitly mapped to synchronization
2016     // scope IDs by their order.
2017 
2018     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2019     if (!MaybeRecord)
2020       return MaybeRecord.takeError();
2021     if (MaybeRecord.get() != bitc::SYNC_SCOPE_NAME)
2022       return error("Invalid record");
2023 
2024     SmallString<16> SSN;
2025     if (convertToString(Record, 0, SSN))
2026       return error("Invalid record");
2027 
2028     SSIDs.push_back(Context.getOrInsertSyncScopeID(SSN));
2029     Record.clear();
2030   }
2031 }
2032 
2033 /// Associate a value with its name from the given index in the provided record.
2034 Expected<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record,
2035                                              unsigned NameIndex, Triple &TT) {
2036   SmallString<128> ValueName;
2037   if (convertToString(Record, NameIndex, ValueName))
2038     return error("Invalid record");
2039   unsigned ValueID = Record[0];
2040   if (ValueID >= ValueList.size() || !ValueList[ValueID])
2041     return error("Invalid record");
2042   Value *V = ValueList[ValueID];
2043 
2044   StringRef NameStr(ValueName.data(), ValueName.size());
2045   if (NameStr.find_first_of(0) != StringRef::npos)
2046     return error("Invalid value name");
2047   V->setName(NameStr);
2048   auto *GO = dyn_cast<GlobalObject>(V);
2049   if (GO) {
2050     if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) {
2051       if (TT.supportsCOMDAT())
2052         GO->setComdat(TheModule->getOrInsertComdat(V->getName()));
2053       else
2054         GO->setComdat(nullptr);
2055     }
2056   }
2057   return V;
2058 }
2059 
2060 /// Helper to note and return the current location, and jump to the given
2061 /// offset.
2062 static Expected<uint64_t> jumpToValueSymbolTable(uint64_t Offset,
2063                                                  BitstreamCursor &Stream) {
2064   // Save the current parsing location so we can jump back at the end
2065   // of the VST read.
2066   uint64_t CurrentBit = Stream.GetCurrentBitNo();
2067   if (Error JumpFailed = Stream.JumpToBit(Offset * 32))
2068     return std::move(JumpFailed);
2069   Expected<BitstreamEntry> MaybeEntry = Stream.advance();
2070   if (!MaybeEntry)
2071     return MaybeEntry.takeError();
2072   assert(MaybeEntry.get().Kind == BitstreamEntry::SubBlock);
2073   assert(MaybeEntry.get().ID == bitc::VALUE_SYMTAB_BLOCK_ID);
2074   return CurrentBit;
2075 }
2076 
2077 void BitcodeReader::setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta,
2078                                             Function *F,
2079                                             ArrayRef<uint64_t> Record) {
2080   // Note that we subtract 1 here because the offset is relative to one word
2081   // before the start of the identification or module block, which was
2082   // historically always the start of the regular bitcode header.
2083   uint64_t FuncWordOffset = Record[1] - 1;
2084   uint64_t FuncBitOffset = FuncWordOffset * 32;
2085   DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta;
2086   // Set the LastFunctionBlockBit to point to the last function block.
2087   // Later when parsing is resumed after function materialization,
2088   // we can simply skip that last function block.
2089   if (FuncBitOffset > LastFunctionBlockBit)
2090     LastFunctionBlockBit = FuncBitOffset;
2091 }
2092 
2093 /// Read a new-style GlobalValue symbol table.
2094 Error BitcodeReader::parseGlobalValueSymbolTable() {
2095   unsigned FuncBitcodeOffsetDelta =
2096       Stream.getAbbrevIDWidth() + bitc::BlockIDWidth;
2097 
2098   if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
2099     return Err;
2100 
2101   SmallVector<uint64_t, 64> Record;
2102   while (true) {
2103     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2104     if (!MaybeEntry)
2105       return MaybeEntry.takeError();
2106     BitstreamEntry Entry = MaybeEntry.get();
2107 
2108     switch (Entry.Kind) {
2109     case BitstreamEntry::SubBlock:
2110     case BitstreamEntry::Error:
2111       return error("Malformed block");
2112     case BitstreamEntry::EndBlock:
2113       return Error::success();
2114     case BitstreamEntry::Record:
2115       break;
2116     }
2117 
2118     Record.clear();
2119     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2120     if (!MaybeRecord)
2121       return MaybeRecord.takeError();
2122     switch (MaybeRecord.get()) {
2123     case bitc::VST_CODE_FNENTRY: // [valueid, offset]
2124       setDeferredFunctionInfo(FuncBitcodeOffsetDelta,
2125                               cast<Function>(ValueList[Record[0]]), Record);
2126       break;
2127     }
2128   }
2129 }
2130 
2131 /// Parse the value symbol table at either the current parsing location or
2132 /// at the given bit offset if provided.
2133 Error BitcodeReader::parseValueSymbolTable(uint64_t Offset) {
2134   uint64_t CurrentBit;
2135   // Pass in the Offset to distinguish between calling for the module-level
2136   // VST (where we want to jump to the VST offset) and the function-level
2137   // VST (where we don't).
2138   if (Offset > 0) {
2139     Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream);
2140     if (!MaybeCurrentBit)
2141       return MaybeCurrentBit.takeError();
2142     CurrentBit = MaybeCurrentBit.get();
2143     // If this module uses a string table, read this as a module-level VST.
2144     if (UseStrtab) {
2145       if (Error Err = parseGlobalValueSymbolTable())
2146         return Err;
2147       if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
2148         return JumpFailed;
2149       return Error::success();
2150     }
2151     // Otherwise, the VST will be in a similar format to a function-level VST,
2152     // and will contain symbol names.
2153   }
2154 
2155   // Compute the delta between the bitcode indices in the VST (the word offset
2156   // to the word-aligned ENTER_SUBBLOCK for the function block, and that
2157   // expected by the lazy reader. The reader's EnterSubBlock expects to have
2158   // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID
2159   // (size BlockIDWidth). Note that we access the stream's AbbrevID width here
2160   // just before entering the VST subblock because: 1) the EnterSubBlock
2161   // changes the AbbrevID width; 2) the VST block is nested within the same
2162   // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same
2163   // AbbrevID width before calling EnterSubBlock; and 3) when we want to
2164   // jump to the FUNCTION_BLOCK using this offset later, we don't want
2165   // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK.
2166   unsigned FuncBitcodeOffsetDelta =
2167       Stream.getAbbrevIDWidth() + bitc::BlockIDWidth;
2168 
2169   if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
2170     return Err;
2171 
2172   SmallVector<uint64_t, 64> Record;
2173 
2174   Triple TT(TheModule->getTargetTriple());
2175 
2176   // Read all the records for this value table.
2177   SmallString<128> ValueName;
2178 
2179   while (true) {
2180     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2181     if (!MaybeEntry)
2182       return MaybeEntry.takeError();
2183     BitstreamEntry Entry = MaybeEntry.get();
2184 
2185     switch (Entry.Kind) {
2186     case BitstreamEntry::SubBlock: // Handled for us already.
2187     case BitstreamEntry::Error:
2188       return error("Malformed block");
2189     case BitstreamEntry::EndBlock:
2190       if (Offset > 0)
2191         if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
2192           return JumpFailed;
2193       return Error::success();
2194     case BitstreamEntry::Record:
2195       // The interesting case.
2196       break;
2197     }
2198 
2199     // Read a record.
2200     Record.clear();
2201     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2202     if (!MaybeRecord)
2203       return MaybeRecord.takeError();
2204     switch (MaybeRecord.get()) {
2205     default:  // Default behavior: unknown type.
2206       break;
2207     case bitc::VST_CODE_ENTRY: {  // VST_CODE_ENTRY: [valueid, namechar x N]
2208       Expected<Value *> ValOrErr = recordValue(Record, 1, TT);
2209       if (Error Err = ValOrErr.takeError())
2210         return Err;
2211       ValOrErr.get();
2212       break;
2213     }
2214     case bitc::VST_CODE_FNENTRY: {
2215       // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
2216       Expected<Value *> ValOrErr = recordValue(Record, 2, TT);
2217       if (Error Err = ValOrErr.takeError())
2218         return Err;
2219       Value *V = ValOrErr.get();
2220 
2221       // Ignore function offsets emitted for aliases of functions in older
2222       // versions of LLVM.
2223       if (auto *F = dyn_cast<Function>(V))
2224         setDeferredFunctionInfo(FuncBitcodeOffsetDelta, F, Record);
2225       break;
2226     }
2227     case bitc::VST_CODE_BBENTRY: {
2228       if (convertToString(Record, 1, ValueName))
2229         return error("Invalid record");
2230       BasicBlock *BB = getBasicBlock(Record[0]);
2231       if (!BB)
2232         return error("Invalid record");
2233 
2234       BB->setName(StringRef(ValueName.data(), ValueName.size()));
2235       ValueName.clear();
2236       break;
2237     }
2238     }
2239   }
2240 }
2241 
2242 /// Decode a signed value stored with the sign bit in the LSB for dense VBR
2243 /// encoding.
2244 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) {
2245   if ((V & 1) == 0)
2246     return V >> 1;
2247   if (V != 1)
2248     return -(V >> 1);
2249   // There is no such thing as -0 with integers.  "-0" really means MININT.
2250   return 1ULL << 63;
2251 }
2252 
2253 /// Resolve all of the initializers for global values and aliases that we can.
2254 Error BitcodeReader::resolveGlobalAndIndirectSymbolInits() {
2255   std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInitWorklist;
2256   std::vector<std::pair<GlobalIndirectSymbol *, unsigned>>
2257       IndirectSymbolInitWorklist;
2258   std::vector<FunctionOperandInfo> FunctionOperandWorklist;
2259 
2260   GlobalInitWorklist.swap(GlobalInits);
2261   IndirectSymbolInitWorklist.swap(IndirectSymbolInits);
2262   FunctionOperandWorklist.swap(FunctionOperands);
2263 
2264   while (!GlobalInitWorklist.empty()) {
2265     unsigned ValID = GlobalInitWorklist.back().second;
2266     if (ValID >= ValueList.size()) {
2267       // Not ready to resolve this yet, it requires something later in the file.
2268       GlobalInits.push_back(GlobalInitWorklist.back());
2269     } else {
2270       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2271         GlobalInitWorklist.back().first->setInitializer(C);
2272       else
2273         return error("Expected a constant");
2274     }
2275     GlobalInitWorklist.pop_back();
2276   }
2277 
2278   while (!IndirectSymbolInitWorklist.empty()) {
2279     unsigned ValID = IndirectSymbolInitWorklist.back().second;
2280     if (ValID >= ValueList.size()) {
2281       IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back());
2282     } else {
2283       Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]);
2284       if (!C)
2285         return error("Expected a constant");
2286       GlobalIndirectSymbol *GIS = IndirectSymbolInitWorklist.back().first;
2287       if (isa<GlobalAlias>(GIS) && C->getType() != GIS->getType())
2288         return error("Alias and aliasee types don't match");
2289       GIS->setIndirectSymbol(C);
2290     }
2291     IndirectSymbolInitWorklist.pop_back();
2292   }
2293 
2294   while (!FunctionOperandWorklist.empty()) {
2295     FunctionOperandInfo &Info = FunctionOperandWorklist.back();
2296     if (Info.PersonalityFn) {
2297       unsigned ValID = Info.PersonalityFn - 1;
2298       if (ValID < ValueList.size()) {
2299         if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2300           Info.F->setPersonalityFn(C);
2301         else
2302           return error("Expected a constant");
2303         Info.PersonalityFn = 0;
2304       }
2305     }
2306     if (Info.Prefix) {
2307       unsigned ValID = Info.Prefix - 1;
2308       if (ValID < ValueList.size()) {
2309         if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2310           Info.F->setPrefixData(C);
2311         else
2312           return error("Expected a constant");
2313         Info.Prefix = 0;
2314       }
2315     }
2316     if (Info.Prologue) {
2317       unsigned ValID = Info.Prologue - 1;
2318       if (ValID < ValueList.size()) {
2319         if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2320           Info.F->setPrologueData(C);
2321         else
2322           return error("Expected a constant");
2323         Info.Prologue = 0;
2324       }
2325     }
2326     if (Info.PersonalityFn || Info.Prefix || Info.Prologue)
2327       FunctionOperands.push_back(Info);
2328     FunctionOperandWorklist.pop_back();
2329   }
2330 
2331   return Error::success();
2332 }
2333 
2334 APInt llvm::readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) {
2335   SmallVector<uint64_t, 8> Words(Vals.size());
2336   transform(Vals, Words.begin(),
2337                  BitcodeReader::decodeSignRotatedValue);
2338 
2339   return APInt(TypeBits, Words);
2340 }
2341 
2342 Error BitcodeReader::parseConstants() {
2343   if (Error Err = Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID))
2344     return Err;
2345 
2346   SmallVector<uint64_t, 64> Record;
2347 
2348   // Read all the records for this value table.
2349   Type *CurTy = Type::getInt32Ty(Context);
2350   unsigned NextCstNo = ValueList.size();
2351 
2352   struct DelayedShufTy {
2353     VectorType *OpTy;
2354     VectorType *RTy;
2355     uint64_t Op0Idx;
2356     uint64_t Op1Idx;
2357     uint64_t Op2Idx;
2358     unsigned CstNo;
2359   };
2360   std::vector<DelayedShufTy> DelayedShuffles;
2361   struct DelayedSelTy {
2362     Type *OpTy;
2363     uint64_t Op0Idx;
2364     uint64_t Op1Idx;
2365     uint64_t Op2Idx;
2366     unsigned CstNo;
2367   };
2368   std::vector<DelayedSelTy> DelayedSelectors;
2369 
2370   while (true) {
2371     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2372     if (!MaybeEntry)
2373       return MaybeEntry.takeError();
2374     BitstreamEntry Entry = MaybeEntry.get();
2375 
2376     switch (Entry.Kind) {
2377     case BitstreamEntry::SubBlock: // Handled for us already.
2378     case BitstreamEntry::Error:
2379       return error("Malformed block");
2380     case BitstreamEntry::EndBlock:
2381       // Once all the constants have been read, go through and resolve forward
2382       // references.
2383       //
2384       // We have to treat shuffles specially because they don't have three
2385       // operands anymore.  We need to convert the shuffle mask into an array,
2386       // and we can't convert a forward reference.
2387       for (auto &DelayedShuffle : DelayedShuffles) {
2388         VectorType *OpTy = DelayedShuffle.OpTy;
2389         VectorType *RTy = DelayedShuffle.RTy;
2390         uint64_t Op0Idx = DelayedShuffle.Op0Idx;
2391         uint64_t Op1Idx = DelayedShuffle.Op1Idx;
2392         uint64_t Op2Idx = DelayedShuffle.Op2Idx;
2393         uint64_t CstNo = DelayedShuffle.CstNo;
2394         Constant *Op0 = ValueList.getConstantFwdRef(Op0Idx, OpTy);
2395         Constant *Op1 = ValueList.getConstantFwdRef(Op1Idx, OpTy);
2396         Type *ShufTy =
2397             VectorType::get(Type::getInt32Ty(Context), RTy->getElementCount());
2398         Constant *Op2 = ValueList.getConstantFwdRef(Op2Idx, ShufTy);
2399         if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2))
2400           return error("Invalid shufflevector operands");
2401         SmallVector<int, 16> Mask;
2402         ShuffleVectorInst::getShuffleMask(Op2, Mask);
2403         Value *V = ConstantExpr::getShuffleVector(Op0, Op1, Mask);
2404         ValueList.assignValue(V, CstNo);
2405       }
2406       for (auto &DelayedSelector : DelayedSelectors) {
2407         Type *OpTy = DelayedSelector.OpTy;
2408         Type *SelectorTy = Type::getInt1Ty(Context);
2409         uint64_t Op0Idx = DelayedSelector.Op0Idx;
2410         uint64_t Op1Idx = DelayedSelector.Op1Idx;
2411         uint64_t Op2Idx = DelayedSelector.Op2Idx;
2412         uint64_t CstNo = DelayedSelector.CstNo;
2413         Constant *Op1 = ValueList.getConstantFwdRef(Op1Idx, OpTy);
2414         Constant *Op2 = ValueList.getConstantFwdRef(Op2Idx, OpTy);
2415         // The selector might be an i1 or an <n x i1>
2416         // Get the type from the ValueList before getting a forward ref.
2417         if (VectorType *VTy = dyn_cast<VectorType>(OpTy)) {
2418           Value *V = ValueList[Op0Idx];
2419           assert(V);
2420           if (SelectorTy != V->getType())
2421             SelectorTy = VectorType::get(SelectorTy, VTy->getElementCount());
2422         }
2423         Constant *Op0 = ValueList.getConstantFwdRef(Op0Idx, SelectorTy);
2424         Value *V = ConstantExpr::getSelect(Op0, Op1, Op2);
2425         ValueList.assignValue(V, CstNo);
2426       }
2427 
2428       if (NextCstNo != ValueList.size())
2429         return error("Invalid constant reference");
2430 
2431       ValueList.resolveConstantForwardRefs();
2432       return Error::success();
2433     case BitstreamEntry::Record:
2434       // The interesting case.
2435       break;
2436     }
2437 
2438     // Read a record.
2439     Record.clear();
2440     Type *VoidType = Type::getVoidTy(Context);
2441     Value *V = nullptr;
2442     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
2443     if (!MaybeBitCode)
2444       return MaybeBitCode.takeError();
2445     switch (unsigned BitCode = MaybeBitCode.get()) {
2446     default:  // Default behavior: unknown constant
2447     case bitc::CST_CODE_UNDEF:     // UNDEF
2448       V = UndefValue::get(CurTy);
2449       break;
2450     case bitc::CST_CODE_POISON:    // POISON
2451       V = PoisonValue::get(CurTy);
2452       break;
2453     case bitc::CST_CODE_SETTYPE:   // SETTYPE: [typeid]
2454       if (Record.empty())
2455         return error("Invalid record");
2456       if (Record[0] >= TypeList.size() || !TypeList[Record[0]])
2457         return error("Invalid record");
2458       if (TypeList[Record[0]] == VoidType)
2459         return error("Invalid constant type");
2460       CurTy = TypeList[Record[0]];
2461       continue;  // Skip the ValueList manipulation.
2462     case bitc::CST_CODE_NULL:      // NULL
2463       if (CurTy->isVoidTy() || CurTy->isFunctionTy() || CurTy->isLabelTy())
2464         return error("Invalid type for a constant null value");
2465       V = Constant::getNullValue(CurTy);
2466       break;
2467     case bitc::CST_CODE_INTEGER:   // INTEGER: [intval]
2468       if (!CurTy->isIntegerTy() || Record.empty())
2469         return error("Invalid record");
2470       V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0]));
2471       break;
2472     case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
2473       if (!CurTy->isIntegerTy() || Record.empty())
2474         return error("Invalid record");
2475 
2476       APInt VInt =
2477           readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth());
2478       V = ConstantInt::get(Context, VInt);
2479 
2480       break;
2481     }
2482     case bitc::CST_CODE_FLOAT: {    // FLOAT: [fpval]
2483       if (Record.empty())
2484         return error("Invalid record");
2485       if (CurTy->isHalfTy())
2486         V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf(),
2487                                              APInt(16, (uint16_t)Record[0])));
2488       else if (CurTy->isBFloatTy())
2489         V = ConstantFP::get(Context, APFloat(APFloat::BFloat(),
2490                                              APInt(16, (uint32_t)Record[0])));
2491       else if (CurTy->isFloatTy())
2492         V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle(),
2493                                              APInt(32, (uint32_t)Record[0])));
2494       else if (CurTy->isDoubleTy())
2495         V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble(),
2496                                              APInt(64, Record[0])));
2497       else if (CurTy->isX86_FP80Ty()) {
2498         // Bits are not stored the same way as a normal i80 APInt, compensate.
2499         uint64_t Rearrange[2];
2500         Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16);
2501         Rearrange[1] = Record[0] >> 48;
2502         V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended(),
2503                                              APInt(80, Rearrange)));
2504       } else if (CurTy->isFP128Ty())
2505         V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad(),
2506                                              APInt(128, Record)));
2507       else if (CurTy->isPPC_FP128Ty())
2508         V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble(),
2509                                              APInt(128, Record)));
2510       else
2511         V = UndefValue::get(CurTy);
2512       break;
2513     }
2514 
2515     case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
2516       if (Record.empty())
2517         return error("Invalid record");
2518 
2519       unsigned Size = Record.size();
2520       SmallVector<Constant*, 16> Elts;
2521 
2522       if (StructType *STy = dyn_cast<StructType>(CurTy)) {
2523         for (unsigned i = 0; i != Size; ++i)
2524           Elts.push_back(ValueList.getConstantFwdRef(Record[i],
2525                                                      STy->getElementType(i)));
2526         V = ConstantStruct::get(STy, Elts);
2527       } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) {
2528         Type *EltTy = ATy->getElementType();
2529         for (unsigned i = 0; i != Size; ++i)
2530           Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
2531         V = ConstantArray::get(ATy, Elts);
2532       } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) {
2533         Type *EltTy = VTy->getElementType();
2534         for (unsigned i = 0; i != Size; ++i)
2535           Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
2536         V = ConstantVector::get(Elts);
2537       } else {
2538         V = UndefValue::get(CurTy);
2539       }
2540       break;
2541     }
2542     case bitc::CST_CODE_STRING:    // STRING: [values]
2543     case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
2544       if (Record.empty())
2545         return error("Invalid record");
2546 
2547       SmallString<16> Elts(Record.begin(), Record.end());
2548       V = ConstantDataArray::getString(Context, Elts,
2549                                        BitCode == bitc::CST_CODE_CSTRING);
2550       break;
2551     }
2552     case bitc::CST_CODE_DATA: {// DATA: [n x value]
2553       if (Record.empty())
2554         return error("Invalid record");
2555 
2556       Type *EltTy;
2557       if (auto *Array = dyn_cast<ArrayType>(CurTy))
2558         EltTy = Array->getElementType();
2559       else
2560         EltTy = cast<VectorType>(CurTy)->getElementType();
2561       if (EltTy->isIntegerTy(8)) {
2562         SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end());
2563         if (isa<VectorType>(CurTy))
2564           V = ConstantDataVector::get(Context, Elts);
2565         else
2566           V = ConstantDataArray::get(Context, Elts);
2567       } else if (EltTy->isIntegerTy(16)) {
2568         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
2569         if (isa<VectorType>(CurTy))
2570           V = ConstantDataVector::get(Context, Elts);
2571         else
2572           V = ConstantDataArray::get(Context, Elts);
2573       } else if (EltTy->isIntegerTy(32)) {
2574         SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
2575         if (isa<VectorType>(CurTy))
2576           V = ConstantDataVector::get(Context, Elts);
2577         else
2578           V = ConstantDataArray::get(Context, Elts);
2579       } else if (EltTy->isIntegerTy(64)) {
2580         SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
2581         if (isa<VectorType>(CurTy))
2582           V = ConstantDataVector::get(Context, Elts);
2583         else
2584           V = ConstantDataArray::get(Context, Elts);
2585       } else if (EltTy->isHalfTy()) {
2586         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
2587         if (isa<VectorType>(CurTy))
2588           V = ConstantDataVector::getFP(EltTy, Elts);
2589         else
2590           V = ConstantDataArray::getFP(EltTy, Elts);
2591       } else if (EltTy->isBFloatTy()) {
2592         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
2593         if (isa<VectorType>(CurTy))
2594           V = ConstantDataVector::getFP(EltTy, Elts);
2595         else
2596           V = ConstantDataArray::getFP(EltTy, Elts);
2597       } else if (EltTy->isFloatTy()) {
2598         SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
2599         if (isa<VectorType>(CurTy))
2600           V = ConstantDataVector::getFP(EltTy, Elts);
2601         else
2602           V = ConstantDataArray::getFP(EltTy, Elts);
2603       } else if (EltTy->isDoubleTy()) {
2604         SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
2605         if (isa<VectorType>(CurTy))
2606           V = ConstantDataVector::getFP(EltTy, Elts);
2607         else
2608           V = ConstantDataArray::getFP(EltTy, Elts);
2609       } else {
2610         return error("Invalid type for value");
2611       }
2612       break;
2613     }
2614     case bitc::CST_CODE_CE_UNOP: {  // CE_UNOP: [opcode, opval]
2615       if (Record.size() < 2)
2616         return error("Invalid record");
2617       int Opc = getDecodedUnaryOpcode(Record[0], CurTy);
2618       if (Opc < 0) {
2619         V = UndefValue::get(CurTy);  // Unknown unop.
2620       } else {
2621         Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
2622         unsigned Flags = 0;
2623         V = ConstantExpr::get(Opc, LHS, Flags);
2624       }
2625       break;
2626     }
2627     case bitc::CST_CODE_CE_BINOP: {  // CE_BINOP: [opcode, opval, opval]
2628       if (Record.size() < 3)
2629         return error("Invalid record");
2630       int Opc = getDecodedBinaryOpcode(Record[0], CurTy);
2631       if (Opc < 0) {
2632         V = UndefValue::get(CurTy);  // Unknown binop.
2633       } else {
2634         Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
2635         Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy);
2636         unsigned Flags = 0;
2637         if (Record.size() >= 4) {
2638           if (Opc == Instruction::Add ||
2639               Opc == Instruction::Sub ||
2640               Opc == Instruction::Mul ||
2641               Opc == Instruction::Shl) {
2642             if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP))
2643               Flags |= OverflowingBinaryOperator::NoSignedWrap;
2644             if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
2645               Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
2646           } else if (Opc == Instruction::SDiv ||
2647                      Opc == Instruction::UDiv ||
2648                      Opc == Instruction::LShr ||
2649                      Opc == Instruction::AShr) {
2650             if (Record[3] & (1 << bitc::PEO_EXACT))
2651               Flags |= SDivOperator::IsExact;
2652           }
2653         }
2654         V = ConstantExpr::get(Opc, LHS, RHS, Flags);
2655       }
2656       break;
2657     }
2658     case bitc::CST_CODE_CE_CAST: {  // CE_CAST: [opcode, opty, opval]
2659       if (Record.size() < 3)
2660         return error("Invalid record");
2661       int Opc = getDecodedCastOpcode(Record[0]);
2662       if (Opc < 0) {
2663         V = UndefValue::get(CurTy);  // Unknown cast.
2664       } else {
2665         Type *OpTy = getTypeByID(Record[1]);
2666         if (!OpTy)
2667           return error("Invalid record");
2668         Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy);
2669         V = UpgradeBitCastExpr(Opc, Op, CurTy);
2670         if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy);
2671       }
2672       break;
2673     }
2674     case bitc::CST_CODE_CE_INBOUNDS_GEP: // [ty, n x operands]
2675     case bitc::CST_CODE_CE_GEP: // [ty, n x operands]
2676     case bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX: { // [ty, flags, n x
2677                                                      // operands]
2678       unsigned OpNum = 0;
2679       Type *PointeeType = nullptr;
2680       if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX ||
2681           Record.size() % 2)
2682         PointeeType = getTypeByID(Record[OpNum++]);
2683 
2684       bool InBounds = false;
2685       Optional<unsigned> InRangeIndex;
2686       if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX) {
2687         uint64_t Op = Record[OpNum++];
2688         InBounds = Op & 1;
2689         InRangeIndex = Op >> 1;
2690       } else if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP)
2691         InBounds = true;
2692 
2693       SmallVector<Constant*, 16> Elts;
2694       Type *Elt0FullTy = nullptr;
2695       while (OpNum != Record.size()) {
2696         if (!Elt0FullTy)
2697           Elt0FullTy = getTypeByID(Record[OpNum]);
2698         Type *ElTy = getTypeByID(Record[OpNum++]);
2699         if (!ElTy)
2700           return error("Invalid record");
2701         Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy));
2702       }
2703 
2704       if (Elts.size() < 1)
2705         return error("Invalid gep with no operands");
2706 
2707       PointerType *OrigPtrTy = cast<PointerType>(Elt0FullTy->getScalarType());
2708       if (!PointeeType)
2709         PointeeType = OrigPtrTy->getElementType();
2710       else if (!OrigPtrTy->isOpaqueOrPointeeTypeMatches(PointeeType))
2711         return error("Explicit gep operator type does not match pointee type "
2712                      "of pointer operand");
2713 
2714       ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
2715       V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices,
2716                                          InBounds, InRangeIndex);
2717       break;
2718     }
2719     case bitc::CST_CODE_CE_SELECT: {  // CE_SELECT: [opval#, opval#, opval#]
2720       if (Record.size() < 3)
2721         return error("Invalid record");
2722 
2723       DelayedSelectors.push_back(
2724           {CurTy, Record[0], Record[1], Record[2], NextCstNo});
2725       (void)ValueList.getConstantFwdRef(NextCstNo, CurTy);
2726       ++NextCstNo;
2727       continue;
2728     }
2729     case bitc::CST_CODE_CE_EXTRACTELT
2730         : { // CE_EXTRACTELT: [opty, opval, opty, opval]
2731       if (Record.size() < 3)
2732         return error("Invalid record");
2733       VectorType *OpTy =
2734         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
2735       if (!OpTy)
2736         return error("Invalid record");
2737       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
2738       Constant *Op1 = nullptr;
2739       if (Record.size() == 4) {
2740         Type *IdxTy = getTypeByID(Record[2]);
2741         if (!IdxTy)
2742           return error("Invalid record");
2743         Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy);
2744       } else {
2745         // Deprecated, but still needed to read old bitcode files.
2746         Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
2747       }
2748       if (!Op1)
2749         return error("Invalid record");
2750       V = ConstantExpr::getExtractElement(Op0, Op1);
2751       break;
2752     }
2753     case bitc::CST_CODE_CE_INSERTELT
2754         : { // CE_INSERTELT: [opval, opval, opty, opval]
2755       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
2756       if (Record.size() < 3 || !OpTy)
2757         return error("Invalid record");
2758       Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
2759       Constant *Op1 = ValueList.getConstantFwdRef(Record[1],
2760                                                   OpTy->getElementType());
2761       Constant *Op2 = nullptr;
2762       if (Record.size() == 4) {
2763         Type *IdxTy = getTypeByID(Record[2]);
2764         if (!IdxTy)
2765           return error("Invalid record");
2766         Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy);
2767       } else {
2768         // Deprecated, but still needed to read old bitcode files.
2769         Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
2770       }
2771       if (!Op2)
2772         return error("Invalid record");
2773       V = ConstantExpr::getInsertElement(Op0, Op1, Op2);
2774       break;
2775     }
2776     case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
2777       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
2778       if (Record.size() < 3 || !OpTy)
2779         return error("Invalid record");
2780       DelayedShuffles.push_back(
2781           {OpTy, OpTy, Record[0], Record[1], Record[2], NextCstNo});
2782       ++NextCstNo;
2783       continue;
2784     }
2785     case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval]
2786       VectorType *RTy = dyn_cast<VectorType>(CurTy);
2787       VectorType *OpTy =
2788         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
2789       if (Record.size() < 4 || !RTy || !OpTy)
2790         return error("Invalid record");
2791       DelayedShuffles.push_back(
2792           {OpTy, RTy, Record[1], Record[2], Record[3], NextCstNo});
2793       ++NextCstNo;
2794       continue;
2795     }
2796     case bitc::CST_CODE_CE_CMP: {     // CE_CMP: [opty, opval, opval, pred]
2797       if (Record.size() < 4)
2798         return error("Invalid record");
2799       Type *OpTy = getTypeByID(Record[0]);
2800       if (!OpTy)
2801         return error("Invalid record");
2802       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
2803       Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
2804 
2805       if (OpTy->isFPOrFPVectorTy())
2806         V = ConstantExpr::getFCmp(Record[3], Op0, Op1);
2807       else
2808         V = ConstantExpr::getICmp(Record[3], Op0, Op1);
2809       break;
2810     }
2811     // This maintains backward compatibility, pre-asm dialect keywords.
2812     // Deprecated, but still needed to read old bitcode files.
2813     case bitc::CST_CODE_INLINEASM_OLD: {
2814       if (Record.size() < 2)
2815         return error("Invalid record");
2816       std::string AsmStr, ConstrStr;
2817       bool HasSideEffects = Record[0] & 1;
2818       bool IsAlignStack = Record[0] >> 1;
2819       unsigned AsmStrSize = Record[1];
2820       if (2+AsmStrSize >= Record.size())
2821         return error("Invalid record");
2822       unsigned ConstStrSize = Record[2+AsmStrSize];
2823       if (3+AsmStrSize+ConstStrSize > Record.size())
2824         return error("Invalid record");
2825 
2826       for (unsigned i = 0; i != AsmStrSize; ++i)
2827         AsmStr += (char)Record[2+i];
2828       for (unsigned i = 0; i != ConstStrSize; ++i)
2829         ConstrStr += (char)Record[3+AsmStrSize+i];
2830       UpgradeInlineAsmString(&AsmStr);
2831       V = InlineAsm::get(
2832           cast<FunctionType>(cast<PointerType>(CurTy)->getElementType()),
2833           AsmStr, ConstrStr, HasSideEffects, IsAlignStack);
2834       break;
2835     }
2836     // This version adds support for the asm dialect keywords (e.g.,
2837     // inteldialect).
2838     case bitc::CST_CODE_INLINEASM_OLD2: {
2839       if (Record.size() < 2)
2840         return error("Invalid record");
2841       std::string AsmStr, ConstrStr;
2842       bool HasSideEffects = Record[0] & 1;
2843       bool IsAlignStack = (Record[0] >> 1) & 1;
2844       unsigned AsmDialect = Record[0] >> 2;
2845       unsigned AsmStrSize = Record[1];
2846       if (2+AsmStrSize >= Record.size())
2847         return error("Invalid record");
2848       unsigned ConstStrSize = Record[2+AsmStrSize];
2849       if (3+AsmStrSize+ConstStrSize > Record.size())
2850         return error("Invalid record");
2851 
2852       for (unsigned i = 0; i != AsmStrSize; ++i)
2853         AsmStr += (char)Record[2+i];
2854       for (unsigned i = 0; i != ConstStrSize; ++i)
2855         ConstrStr += (char)Record[3+AsmStrSize+i];
2856       UpgradeInlineAsmString(&AsmStr);
2857       V = InlineAsm::get(
2858           cast<FunctionType>(cast<PointerType>(CurTy)->getElementType()),
2859           AsmStr, ConstrStr, HasSideEffects, IsAlignStack,
2860           InlineAsm::AsmDialect(AsmDialect));
2861       break;
2862     }
2863     // This version adds support for the unwind keyword.
2864     case bitc::CST_CODE_INLINEASM: {
2865       if (Record.size() < 2)
2866         return error("Invalid record");
2867       std::string AsmStr, ConstrStr;
2868       bool HasSideEffects = Record[0] & 1;
2869       bool IsAlignStack = (Record[0] >> 1) & 1;
2870       unsigned AsmDialect = (Record[0] >> 2) & 1;
2871       bool CanThrow = (Record[0] >> 3) & 1;
2872       unsigned AsmStrSize = Record[1];
2873       if (2 + AsmStrSize >= Record.size())
2874         return error("Invalid record");
2875       unsigned ConstStrSize = Record[2 + AsmStrSize];
2876       if (3 + AsmStrSize + ConstStrSize > Record.size())
2877         return error("Invalid record");
2878 
2879       for (unsigned i = 0; i != AsmStrSize; ++i)
2880         AsmStr += (char)Record[2 + i];
2881       for (unsigned i = 0; i != ConstStrSize; ++i)
2882         ConstrStr += (char)Record[3 + AsmStrSize + i];
2883       UpgradeInlineAsmString(&AsmStr);
2884       V = InlineAsm::get(
2885           cast<FunctionType>(cast<PointerType>(CurTy)->getElementType()),
2886           AsmStr, ConstrStr, HasSideEffects, IsAlignStack,
2887           InlineAsm::AsmDialect(AsmDialect), CanThrow);
2888       break;
2889     }
2890     case bitc::CST_CODE_BLOCKADDRESS:{
2891       if (Record.size() < 3)
2892         return error("Invalid record");
2893       Type *FnTy = getTypeByID(Record[0]);
2894       if (!FnTy)
2895         return error("Invalid record");
2896       Function *Fn =
2897         dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy));
2898       if (!Fn)
2899         return error("Invalid record");
2900 
2901       // If the function is already parsed we can insert the block address right
2902       // away.
2903       BasicBlock *BB;
2904       unsigned BBID = Record[2];
2905       if (!BBID)
2906         // Invalid reference to entry block.
2907         return error("Invalid ID");
2908       if (!Fn->empty()) {
2909         Function::iterator BBI = Fn->begin(), BBE = Fn->end();
2910         for (size_t I = 0, E = BBID; I != E; ++I) {
2911           if (BBI == BBE)
2912             return error("Invalid ID");
2913           ++BBI;
2914         }
2915         BB = &*BBI;
2916       } else {
2917         // Otherwise insert a placeholder and remember it so it can be inserted
2918         // when the function is parsed.
2919         auto &FwdBBs = BasicBlockFwdRefs[Fn];
2920         if (FwdBBs.empty())
2921           BasicBlockFwdRefQueue.push_back(Fn);
2922         if (FwdBBs.size() < BBID + 1)
2923           FwdBBs.resize(BBID + 1);
2924         if (!FwdBBs[BBID])
2925           FwdBBs[BBID] = BasicBlock::Create(Context);
2926         BB = FwdBBs[BBID];
2927       }
2928       V = BlockAddress::get(Fn, BB);
2929       break;
2930     }
2931     case bitc::CST_CODE_DSO_LOCAL_EQUIVALENT: {
2932       if (Record.size() < 2)
2933         return error("Invalid record");
2934       Type *GVTy = getTypeByID(Record[0]);
2935       if (!GVTy)
2936         return error("Invalid record");
2937       GlobalValue *GV = dyn_cast_or_null<GlobalValue>(
2938           ValueList.getConstantFwdRef(Record[1], GVTy));
2939       if (!GV)
2940         return error("Invalid record");
2941 
2942       V = DSOLocalEquivalent::get(GV);
2943       break;
2944     }
2945     }
2946 
2947     ValueList.assignValue(V, NextCstNo);
2948     ++NextCstNo;
2949   }
2950 }
2951 
2952 Error BitcodeReader::parseUseLists() {
2953   if (Error Err = Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID))
2954     return Err;
2955 
2956   // Read all the records.
2957   SmallVector<uint64_t, 64> Record;
2958 
2959   while (true) {
2960     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2961     if (!MaybeEntry)
2962       return MaybeEntry.takeError();
2963     BitstreamEntry Entry = MaybeEntry.get();
2964 
2965     switch (Entry.Kind) {
2966     case BitstreamEntry::SubBlock: // Handled for us already.
2967     case BitstreamEntry::Error:
2968       return error("Malformed block");
2969     case BitstreamEntry::EndBlock:
2970       return Error::success();
2971     case BitstreamEntry::Record:
2972       // The interesting case.
2973       break;
2974     }
2975 
2976     // Read a use list record.
2977     Record.clear();
2978     bool IsBB = false;
2979     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2980     if (!MaybeRecord)
2981       return MaybeRecord.takeError();
2982     switch (MaybeRecord.get()) {
2983     default:  // Default behavior: unknown type.
2984       break;
2985     case bitc::USELIST_CODE_BB:
2986       IsBB = true;
2987       LLVM_FALLTHROUGH;
2988     case bitc::USELIST_CODE_DEFAULT: {
2989       unsigned RecordLength = Record.size();
2990       if (RecordLength < 3)
2991         // Records should have at least an ID and two indexes.
2992         return error("Invalid record");
2993       unsigned ID = Record.pop_back_val();
2994 
2995       Value *V;
2996       if (IsBB) {
2997         assert(ID < FunctionBBs.size() && "Basic block not found");
2998         V = FunctionBBs[ID];
2999       } else
3000         V = ValueList[ID];
3001       unsigned NumUses = 0;
3002       SmallDenseMap<const Use *, unsigned, 16> Order;
3003       for (const Use &U : V->materialized_uses()) {
3004         if (++NumUses > Record.size())
3005           break;
3006         Order[&U] = Record[NumUses - 1];
3007       }
3008       if (Order.size() != Record.size() || NumUses > Record.size())
3009         // Mismatches can happen if the functions are being materialized lazily
3010         // (out-of-order), or a value has been upgraded.
3011         break;
3012 
3013       V->sortUseList([&](const Use &L, const Use &R) {
3014         return Order.lookup(&L) < Order.lookup(&R);
3015       });
3016       break;
3017     }
3018     }
3019   }
3020 }
3021 
3022 /// When we see the block for metadata, remember where it is and then skip it.
3023 /// This lets us lazily deserialize the metadata.
3024 Error BitcodeReader::rememberAndSkipMetadata() {
3025   // Save the current stream state.
3026   uint64_t CurBit = Stream.GetCurrentBitNo();
3027   DeferredMetadataInfo.push_back(CurBit);
3028 
3029   // Skip over the block for now.
3030   if (Error Err = Stream.SkipBlock())
3031     return Err;
3032   return Error::success();
3033 }
3034 
3035 Error BitcodeReader::materializeMetadata() {
3036   for (uint64_t BitPos : DeferredMetadataInfo) {
3037     // Move the bit stream to the saved position.
3038     if (Error JumpFailed = Stream.JumpToBit(BitPos))
3039       return JumpFailed;
3040     if (Error Err = MDLoader->parseModuleMetadata())
3041       return Err;
3042   }
3043 
3044   // Upgrade "Linker Options" module flag to "llvm.linker.options" module-level
3045   // metadata. Only upgrade if the new option doesn't exist to avoid upgrade
3046   // multiple times.
3047   if (!TheModule->getNamedMetadata("llvm.linker.options")) {
3048     if (Metadata *Val = TheModule->getModuleFlag("Linker Options")) {
3049       NamedMDNode *LinkerOpts =
3050           TheModule->getOrInsertNamedMetadata("llvm.linker.options");
3051       for (const MDOperand &MDOptions : cast<MDNode>(Val)->operands())
3052         LinkerOpts->addOperand(cast<MDNode>(MDOptions));
3053     }
3054   }
3055 
3056   DeferredMetadataInfo.clear();
3057   return Error::success();
3058 }
3059 
3060 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; }
3061 
3062 /// When we see the block for a function body, remember where it is and then
3063 /// skip it.  This lets us lazily deserialize the functions.
3064 Error BitcodeReader::rememberAndSkipFunctionBody() {
3065   // Get the function we are talking about.
3066   if (FunctionsWithBodies.empty())
3067     return error("Insufficient function protos");
3068 
3069   Function *Fn = FunctionsWithBodies.back();
3070   FunctionsWithBodies.pop_back();
3071 
3072   // Save the current stream state.
3073   uint64_t CurBit = Stream.GetCurrentBitNo();
3074   assert(
3075       (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) &&
3076       "Mismatch between VST and scanned function offsets");
3077   DeferredFunctionInfo[Fn] = CurBit;
3078 
3079   // Skip over the function block for now.
3080   if (Error Err = Stream.SkipBlock())
3081     return Err;
3082   return Error::success();
3083 }
3084 
3085 Error BitcodeReader::globalCleanup() {
3086   // Patch the initializers for globals and aliases up.
3087   if (Error Err = resolveGlobalAndIndirectSymbolInits())
3088     return Err;
3089   if (!GlobalInits.empty() || !IndirectSymbolInits.empty())
3090     return error("Malformed global initializer set");
3091 
3092   // Look for intrinsic functions which need to be upgraded at some point
3093   // and functions that need to have their function attributes upgraded.
3094   for (Function &F : *TheModule) {
3095     MDLoader->upgradeDebugIntrinsics(F);
3096     Function *NewFn;
3097     if (UpgradeIntrinsicFunction(&F, NewFn))
3098       UpgradedIntrinsics[&F] = NewFn;
3099     else if (auto Remangled = Intrinsic::remangleIntrinsicFunction(&F))
3100       // Some types could be renamed during loading if several modules are
3101       // loaded in the same LLVMContext (LTO scenario). In this case we should
3102       // remangle intrinsics names as well.
3103       RemangledIntrinsics[&F] = Remangled.getValue();
3104     // Look for functions that rely on old function attribute behavior.
3105     UpgradeFunctionAttributes(F);
3106   }
3107 
3108   // Look for global variables which need to be renamed.
3109   std::vector<std::pair<GlobalVariable *, GlobalVariable *>> UpgradedVariables;
3110   for (GlobalVariable &GV : TheModule->globals())
3111     if (GlobalVariable *Upgraded = UpgradeGlobalVariable(&GV))
3112       UpgradedVariables.emplace_back(&GV, Upgraded);
3113   for (auto &Pair : UpgradedVariables) {
3114     Pair.first->eraseFromParent();
3115     TheModule->getGlobalList().push_back(Pair.second);
3116   }
3117 
3118   // Force deallocation of memory for these vectors to favor the client that
3119   // want lazy deserialization.
3120   std::vector<std::pair<GlobalVariable *, unsigned>>().swap(GlobalInits);
3121   std::vector<std::pair<GlobalIndirectSymbol *, unsigned>>().swap(
3122       IndirectSymbolInits);
3123   return Error::success();
3124 }
3125 
3126 /// Support for lazy parsing of function bodies. This is required if we
3127 /// either have an old bitcode file without a VST forward declaration record,
3128 /// or if we have an anonymous function being materialized, since anonymous
3129 /// functions do not have a name and are therefore not in the VST.
3130 Error BitcodeReader::rememberAndSkipFunctionBodies() {
3131   if (Error JumpFailed = Stream.JumpToBit(NextUnreadBit))
3132     return JumpFailed;
3133 
3134   if (Stream.AtEndOfStream())
3135     return error("Could not find function in stream");
3136 
3137   if (!SeenFirstFunctionBody)
3138     return error("Trying to materialize functions before seeing function blocks");
3139 
3140   // An old bitcode file with the symbol table at the end would have
3141   // finished the parse greedily.
3142   assert(SeenValueSymbolTable);
3143 
3144   SmallVector<uint64_t, 64> Record;
3145 
3146   while (true) {
3147     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
3148     if (!MaybeEntry)
3149       return MaybeEntry.takeError();
3150     llvm::BitstreamEntry Entry = MaybeEntry.get();
3151 
3152     switch (Entry.Kind) {
3153     default:
3154       return error("Expect SubBlock");
3155     case BitstreamEntry::SubBlock:
3156       switch (Entry.ID) {
3157       default:
3158         return error("Expect function block");
3159       case bitc::FUNCTION_BLOCK_ID:
3160         if (Error Err = rememberAndSkipFunctionBody())
3161           return Err;
3162         NextUnreadBit = Stream.GetCurrentBitNo();
3163         return Error::success();
3164       }
3165     }
3166   }
3167 }
3168 
3169 bool BitcodeReaderBase::readBlockInfo() {
3170   Expected<Optional<BitstreamBlockInfo>> MaybeNewBlockInfo =
3171       Stream.ReadBlockInfoBlock();
3172   if (!MaybeNewBlockInfo)
3173     return true; // FIXME Handle the error.
3174   Optional<BitstreamBlockInfo> NewBlockInfo =
3175       std::move(MaybeNewBlockInfo.get());
3176   if (!NewBlockInfo)
3177     return true;
3178   BlockInfo = std::move(*NewBlockInfo);
3179   return false;
3180 }
3181 
3182 Error BitcodeReader::parseComdatRecord(ArrayRef<uint64_t> Record) {
3183   // v1: [selection_kind, name]
3184   // v2: [strtab_offset, strtab_size, selection_kind]
3185   StringRef Name;
3186   std::tie(Name, Record) = readNameFromStrtab(Record);
3187 
3188   if (Record.empty())
3189     return error("Invalid record");
3190   Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]);
3191   std::string OldFormatName;
3192   if (!UseStrtab) {
3193     if (Record.size() < 2)
3194       return error("Invalid record");
3195     unsigned ComdatNameSize = Record[1];
3196     OldFormatName.reserve(ComdatNameSize);
3197     for (unsigned i = 0; i != ComdatNameSize; ++i)
3198       OldFormatName += (char)Record[2 + i];
3199     Name = OldFormatName;
3200   }
3201   Comdat *C = TheModule->getOrInsertComdat(Name);
3202   C->setSelectionKind(SK);
3203   ComdatList.push_back(C);
3204   return Error::success();
3205 }
3206 
3207 static void inferDSOLocal(GlobalValue *GV) {
3208   // infer dso_local from linkage and visibility if it is not encoded.
3209   if (GV->hasLocalLinkage() ||
3210       (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage()))
3211     GV->setDSOLocal(true);
3212 }
3213 
3214 Error BitcodeReader::parseGlobalVarRecord(ArrayRef<uint64_t> Record) {
3215   // v1: [pointer type, isconst, initid, linkage, alignment, section,
3216   // visibility, threadlocal, unnamed_addr, externally_initialized,
3217   // dllstorageclass, comdat, attributes, preemption specifier,
3218   // partition strtab offset, partition strtab size] (name in VST)
3219   // v2: [strtab_offset, strtab_size, v1]
3220   StringRef Name;
3221   std::tie(Name, Record) = readNameFromStrtab(Record);
3222 
3223   if (Record.size() < 6)
3224     return error("Invalid record");
3225   Type *Ty = getTypeByID(Record[0]);
3226   if (!Ty)
3227     return error("Invalid record");
3228   bool isConstant = Record[1] & 1;
3229   bool explicitType = Record[1] & 2;
3230   unsigned AddressSpace;
3231   if (explicitType) {
3232     AddressSpace = Record[1] >> 2;
3233   } else {
3234     if (!Ty->isPointerTy())
3235       return error("Invalid type for value");
3236     AddressSpace = cast<PointerType>(Ty)->getAddressSpace();
3237     Ty = cast<PointerType>(Ty)->getElementType();
3238   }
3239 
3240   uint64_t RawLinkage = Record[3];
3241   GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
3242   MaybeAlign Alignment;
3243   if (Error Err = parseAlignmentValue(Record[4], Alignment))
3244     return Err;
3245   std::string Section;
3246   if (Record[5]) {
3247     if (Record[5] - 1 >= SectionTable.size())
3248       return error("Invalid ID");
3249     Section = SectionTable[Record[5] - 1];
3250   }
3251   GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility;
3252   // Local linkage must have default visibility.
3253   // auto-upgrade `hidden` and `protected` for old bitcode.
3254   if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage))
3255     Visibility = getDecodedVisibility(Record[6]);
3256 
3257   GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal;
3258   if (Record.size() > 7)
3259     TLM = getDecodedThreadLocalMode(Record[7]);
3260 
3261   GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
3262   if (Record.size() > 8)
3263     UnnamedAddr = getDecodedUnnamedAddrType(Record[8]);
3264 
3265   bool ExternallyInitialized = false;
3266   if (Record.size() > 9)
3267     ExternallyInitialized = Record[9];
3268 
3269   GlobalVariable *NewGV =
3270       new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, Name,
3271                          nullptr, TLM, AddressSpace, ExternallyInitialized);
3272   NewGV->setAlignment(Alignment);
3273   if (!Section.empty())
3274     NewGV->setSection(Section);
3275   NewGV->setVisibility(Visibility);
3276   NewGV->setUnnamedAddr(UnnamedAddr);
3277 
3278   if (Record.size() > 10)
3279     NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10]));
3280   else
3281     upgradeDLLImportExportLinkage(NewGV, RawLinkage);
3282 
3283   ValueList.push_back(NewGV);
3284 
3285   // Remember which value to use for the global initializer.
3286   if (unsigned InitID = Record[2])
3287     GlobalInits.push_back(std::make_pair(NewGV, InitID - 1));
3288 
3289   if (Record.size() > 11) {
3290     if (unsigned ComdatID = Record[11]) {
3291       if (ComdatID > ComdatList.size())
3292         return error("Invalid global variable comdat ID");
3293       NewGV->setComdat(ComdatList[ComdatID - 1]);
3294     }
3295   } else if (hasImplicitComdat(RawLinkage)) {
3296     NewGV->setComdat(reinterpret_cast<Comdat *>(1));
3297   }
3298 
3299   if (Record.size() > 12) {
3300     auto AS = getAttributes(Record[12]).getFnAttrs();
3301     NewGV->setAttributes(AS);
3302   }
3303 
3304   if (Record.size() > 13) {
3305     NewGV->setDSOLocal(getDecodedDSOLocal(Record[13]));
3306   }
3307   inferDSOLocal(NewGV);
3308 
3309   // Check whether we have enough values to read a partition name.
3310   if (Record.size() > 15)
3311     NewGV->setPartition(StringRef(Strtab.data() + Record[14], Record[15]));
3312 
3313   return Error::success();
3314 }
3315 
3316 Error BitcodeReader::parseFunctionRecord(ArrayRef<uint64_t> Record) {
3317   // v1: [type, callingconv, isproto, linkage, paramattr, alignment, section,
3318   // visibility, gc, unnamed_addr, prologuedata, dllstorageclass, comdat,
3319   // prefixdata,  personalityfn, preemption specifier, addrspace] (name in VST)
3320   // v2: [strtab_offset, strtab_size, v1]
3321   StringRef Name;
3322   std::tie(Name, Record) = readNameFromStrtab(Record);
3323 
3324   if (Record.size() < 8)
3325     return error("Invalid record");
3326   Type *FTy = getTypeByID(Record[0]);
3327   if (!FTy)
3328     return error("Invalid record");
3329   if (auto *PTy = dyn_cast<PointerType>(FTy))
3330     FTy = PTy->getElementType();
3331 
3332   if (!isa<FunctionType>(FTy))
3333     return error("Invalid type for value");
3334   auto CC = static_cast<CallingConv::ID>(Record[1]);
3335   if (CC & ~CallingConv::MaxID)
3336     return error("Invalid calling convention ID");
3337 
3338   unsigned AddrSpace = TheModule->getDataLayout().getProgramAddressSpace();
3339   if (Record.size() > 16)
3340     AddrSpace = Record[16];
3341 
3342   Function *Func =
3343       Function::Create(cast<FunctionType>(FTy), GlobalValue::ExternalLinkage,
3344                        AddrSpace, Name, TheModule);
3345 
3346   assert(Func->getFunctionType() == FTy &&
3347          "Incorrect fully specified type provided for function");
3348   FunctionTypes[Func] = cast<FunctionType>(FTy);
3349 
3350   Func->setCallingConv(CC);
3351   bool isProto = Record[2];
3352   uint64_t RawLinkage = Record[3];
3353   Func->setLinkage(getDecodedLinkage(RawLinkage));
3354   Func->setAttributes(getAttributes(Record[4]));
3355 
3356   // Upgrade any old-style byval or sret without a type by propagating the
3357   // argument's pointee type. There should be no opaque pointers where the byval
3358   // type is implicit.
3359   for (unsigned i = 0; i != Func->arg_size(); ++i) {
3360     for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet,
3361                                      Attribute::InAlloca}) {
3362       if (!Func->hasParamAttribute(i, Kind))
3363         continue;
3364 
3365       if (Func->getParamAttribute(i, Kind).getValueAsType())
3366         continue;
3367 
3368       Func->removeParamAttr(i, Kind);
3369 
3370       Type *PTy = cast<FunctionType>(FTy)->getParamType(i);
3371       Type *PtrEltTy = cast<PointerType>(PTy)->getElementType();
3372       Attribute NewAttr;
3373       switch (Kind) {
3374       case Attribute::ByVal:
3375         NewAttr = Attribute::getWithByValType(Context, PtrEltTy);
3376         break;
3377       case Attribute::StructRet:
3378         NewAttr = Attribute::getWithStructRetType(Context, PtrEltTy);
3379         break;
3380       case Attribute::InAlloca:
3381         NewAttr = Attribute::getWithInAllocaType(Context, PtrEltTy);
3382         break;
3383       default:
3384         llvm_unreachable("not an upgraded type attribute");
3385       }
3386 
3387       Func->addParamAttr(i, NewAttr);
3388     }
3389   }
3390 
3391   MaybeAlign Alignment;
3392   if (Error Err = parseAlignmentValue(Record[5], Alignment))
3393     return Err;
3394   Func->setAlignment(Alignment);
3395   if (Record[6]) {
3396     if (Record[6] - 1 >= SectionTable.size())
3397       return error("Invalid ID");
3398     Func->setSection(SectionTable[Record[6] - 1]);
3399   }
3400   // Local linkage must have default visibility.
3401   // auto-upgrade `hidden` and `protected` for old bitcode.
3402   if (!Func->hasLocalLinkage())
3403     Func->setVisibility(getDecodedVisibility(Record[7]));
3404   if (Record.size() > 8 && Record[8]) {
3405     if (Record[8] - 1 >= GCTable.size())
3406       return error("Invalid ID");
3407     Func->setGC(GCTable[Record[8] - 1]);
3408   }
3409   GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
3410   if (Record.size() > 9)
3411     UnnamedAddr = getDecodedUnnamedAddrType(Record[9]);
3412   Func->setUnnamedAddr(UnnamedAddr);
3413 
3414   FunctionOperandInfo OperandInfo = {Func, 0, 0, 0};
3415   if (Record.size() > 10)
3416     OperandInfo.Prologue = Record[10];
3417 
3418   if (Record.size() > 11)
3419     Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11]));
3420   else
3421     upgradeDLLImportExportLinkage(Func, RawLinkage);
3422 
3423   if (Record.size() > 12) {
3424     if (unsigned ComdatID = Record[12]) {
3425       if (ComdatID > ComdatList.size())
3426         return error("Invalid function comdat ID");
3427       Func->setComdat(ComdatList[ComdatID - 1]);
3428     }
3429   } else if (hasImplicitComdat(RawLinkage)) {
3430     Func->setComdat(reinterpret_cast<Comdat *>(1));
3431   }
3432 
3433   if (Record.size() > 13)
3434     OperandInfo.Prefix = Record[13];
3435 
3436   if (Record.size() > 14)
3437     OperandInfo.PersonalityFn = Record[14];
3438 
3439   if (Record.size() > 15) {
3440     Func->setDSOLocal(getDecodedDSOLocal(Record[15]));
3441   }
3442   inferDSOLocal(Func);
3443 
3444   // Record[16] is the address space number.
3445 
3446   // Check whether we have enough values to read a partition name. Also make
3447   // sure Strtab has enough values.
3448   if (Record.size() > 18 && Strtab.data() &&
3449       Record[17] + Record[18] <= Strtab.size()) {
3450     Func->setPartition(StringRef(Strtab.data() + Record[17], Record[18]));
3451   }
3452 
3453   ValueList.push_back(Func);
3454 
3455   if (OperandInfo.PersonalityFn || OperandInfo.Prefix || OperandInfo.Prologue)
3456     FunctionOperands.push_back(OperandInfo);
3457 
3458   // If this is a function with a body, remember the prototype we are
3459   // creating now, so that we can match up the body with them later.
3460   if (!isProto) {
3461     Func->setIsMaterializable(true);
3462     FunctionsWithBodies.push_back(Func);
3463     DeferredFunctionInfo[Func] = 0;
3464   }
3465   return Error::success();
3466 }
3467 
3468 Error BitcodeReader::parseGlobalIndirectSymbolRecord(
3469     unsigned BitCode, ArrayRef<uint64_t> Record) {
3470   // v1 ALIAS_OLD: [alias type, aliasee val#, linkage] (name in VST)
3471   // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility,
3472   // dllstorageclass, threadlocal, unnamed_addr,
3473   // preemption specifier] (name in VST)
3474   // v1 IFUNC: [alias type, addrspace, aliasee val#, linkage,
3475   // visibility, dllstorageclass, threadlocal, unnamed_addr,
3476   // preemption specifier] (name in VST)
3477   // v2: [strtab_offset, strtab_size, v1]
3478   StringRef Name;
3479   std::tie(Name, Record) = readNameFromStrtab(Record);
3480 
3481   bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD;
3482   if (Record.size() < (3 + (unsigned)NewRecord))
3483     return error("Invalid record");
3484   unsigned OpNum = 0;
3485   Type *Ty = getTypeByID(Record[OpNum++]);
3486   if (!Ty)
3487     return error("Invalid record");
3488 
3489   unsigned AddrSpace;
3490   if (!NewRecord) {
3491     auto *PTy = dyn_cast<PointerType>(Ty);
3492     if (!PTy)
3493       return error("Invalid type for value");
3494     Ty = PTy->getElementType();
3495     AddrSpace = PTy->getAddressSpace();
3496   } else {
3497     AddrSpace = Record[OpNum++];
3498   }
3499 
3500   auto Val = Record[OpNum++];
3501   auto Linkage = Record[OpNum++];
3502   GlobalIndirectSymbol *NewGA;
3503   if (BitCode == bitc::MODULE_CODE_ALIAS ||
3504       BitCode == bitc::MODULE_CODE_ALIAS_OLD)
3505     NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name,
3506                                 TheModule);
3507   else
3508     NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name,
3509                                 nullptr, TheModule);
3510 
3511   // Local linkage must have default visibility.
3512   // auto-upgrade `hidden` and `protected` for old bitcode.
3513   if (OpNum != Record.size()) {
3514     auto VisInd = OpNum++;
3515     if (!NewGA->hasLocalLinkage())
3516       NewGA->setVisibility(getDecodedVisibility(Record[VisInd]));
3517   }
3518   if (BitCode == bitc::MODULE_CODE_ALIAS ||
3519       BitCode == bitc::MODULE_CODE_ALIAS_OLD) {
3520     if (OpNum != Record.size())
3521       NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++]));
3522     else
3523       upgradeDLLImportExportLinkage(NewGA, Linkage);
3524     if (OpNum != Record.size())
3525       NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++]));
3526     if (OpNum != Record.size())
3527       NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++]));
3528   }
3529   if (OpNum != Record.size())
3530     NewGA->setDSOLocal(getDecodedDSOLocal(Record[OpNum++]));
3531   inferDSOLocal(NewGA);
3532 
3533   // Check whether we have enough values to read a partition name.
3534   if (OpNum + 1 < Record.size()) {
3535     NewGA->setPartition(
3536         StringRef(Strtab.data() + Record[OpNum], Record[OpNum + 1]));
3537     OpNum += 2;
3538   }
3539 
3540   ValueList.push_back(NewGA);
3541   IndirectSymbolInits.push_back(std::make_pair(NewGA, Val));
3542   return Error::success();
3543 }
3544 
3545 Error BitcodeReader::parseModule(uint64_t ResumeBit,
3546                                  bool ShouldLazyLoadMetadata,
3547                                  DataLayoutCallbackTy DataLayoutCallback) {
3548   if (ResumeBit) {
3549     if (Error JumpFailed = Stream.JumpToBit(ResumeBit))
3550       return JumpFailed;
3551   } else if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
3552     return Err;
3553 
3554   SmallVector<uint64_t, 64> Record;
3555 
3556   // Parts of bitcode parsing depend on the datalayout.  Make sure we
3557   // finalize the datalayout before we run any of that code.
3558   bool ResolvedDataLayout = false;
3559   auto ResolveDataLayout = [&] {
3560     if (ResolvedDataLayout)
3561       return;
3562 
3563     // datalayout and triple can't be parsed after this point.
3564     ResolvedDataLayout = true;
3565 
3566     // Upgrade data layout string.
3567     std::string DL = llvm::UpgradeDataLayoutString(
3568         TheModule->getDataLayoutStr(), TheModule->getTargetTriple());
3569     TheModule->setDataLayout(DL);
3570 
3571     if (auto LayoutOverride =
3572             DataLayoutCallback(TheModule->getTargetTriple()))
3573       TheModule->setDataLayout(*LayoutOverride);
3574   };
3575 
3576   // Read all the records for this module.
3577   while (true) {
3578     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
3579     if (!MaybeEntry)
3580       return MaybeEntry.takeError();
3581     llvm::BitstreamEntry Entry = MaybeEntry.get();
3582 
3583     switch (Entry.Kind) {
3584     case BitstreamEntry::Error:
3585       return error("Malformed block");
3586     case BitstreamEntry::EndBlock:
3587       ResolveDataLayout();
3588       return globalCleanup();
3589 
3590     case BitstreamEntry::SubBlock:
3591       switch (Entry.ID) {
3592       default:  // Skip unknown content.
3593         if (Error Err = Stream.SkipBlock())
3594           return Err;
3595         break;
3596       case bitc::BLOCKINFO_BLOCK_ID:
3597         if (readBlockInfo())
3598           return error("Malformed block");
3599         break;
3600       case bitc::PARAMATTR_BLOCK_ID:
3601         if (Error Err = parseAttributeBlock())
3602           return Err;
3603         break;
3604       case bitc::PARAMATTR_GROUP_BLOCK_ID:
3605         if (Error Err = parseAttributeGroupBlock())
3606           return Err;
3607         break;
3608       case bitc::TYPE_BLOCK_ID_NEW:
3609         if (Error Err = parseTypeTable())
3610           return Err;
3611         break;
3612       case bitc::VALUE_SYMTAB_BLOCK_ID:
3613         if (!SeenValueSymbolTable) {
3614           // Either this is an old form VST without function index and an
3615           // associated VST forward declaration record (which would have caused
3616           // the VST to be jumped to and parsed before it was encountered
3617           // normally in the stream), or there were no function blocks to
3618           // trigger an earlier parsing of the VST.
3619           assert(VSTOffset == 0 || FunctionsWithBodies.empty());
3620           if (Error Err = parseValueSymbolTable())
3621             return Err;
3622           SeenValueSymbolTable = true;
3623         } else {
3624           // We must have had a VST forward declaration record, which caused
3625           // the parser to jump to and parse the VST earlier.
3626           assert(VSTOffset > 0);
3627           if (Error Err = Stream.SkipBlock())
3628             return Err;
3629         }
3630         break;
3631       case bitc::CONSTANTS_BLOCK_ID:
3632         if (Error Err = parseConstants())
3633           return Err;
3634         if (Error Err = resolveGlobalAndIndirectSymbolInits())
3635           return Err;
3636         break;
3637       case bitc::METADATA_BLOCK_ID:
3638         if (ShouldLazyLoadMetadata) {
3639           if (Error Err = rememberAndSkipMetadata())
3640             return Err;
3641           break;
3642         }
3643         assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata");
3644         if (Error Err = MDLoader->parseModuleMetadata())
3645           return Err;
3646         break;
3647       case bitc::METADATA_KIND_BLOCK_ID:
3648         if (Error Err = MDLoader->parseMetadataKinds())
3649           return Err;
3650         break;
3651       case bitc::FUNCTION_BLOCK_ID:
3652         ResolveDataLayout();
3653 
3654         // If this is the first function body we've seen, reverse the
3655         // FunctionsWithBodies list.
3656         if (!SeenFirstFunctionBody) {
3657           std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end());
3658           if (Error Err = globalCleanup())
3659             return Err;
3660           SeenFirstFunctionBody = true;
3661         }
3662 
3663         if (VSTOffset > 0) {
3664           // If we have a VST forward declaration record, make sure we
3665           // parse the VST now if we haven't already. It is needed to
3666           // set up the DeferredFunctionInfo vector for lazy reading.
3667           if (!SeenValueSymbolTable) {
3668             if (Error Err = BitcodeReader::parseValueSymbolTable(VSTOffset))
3669               return Err;
3670             SeenValueSymbolTable = true;
3671             // Fall through so that we record the NextUnreadBit below.
3672             // This is necessary in case we have an anonymous function that
3673             // is later materialized. Since it will not have a VST entry we
3674             // need to fall back to the lazy parse to find its offset.
3675           } else {
3676             // If we have a VST forward declaration record, but have already
3677             // parsed the VST (just above, when the first function body was
3678             // encountered here), then we are resuming the parse after
3679             // materializing functions. The ResumeBit points to the
3680             // start of the last function block recorded in the
3681             // DeferredFunctionInfo map. Skip it.
3682             if (Error Err = Stream.SkipBlock())
3683               return Err;
3684             continue;
3685           }
3686         }
3687 
3688         // Support older bitcode files that did not have the function
3689         // index in the VST, nor a VST forward declaration record, as
3690         // well as anonymous functions that do not have VST entries.
3691         // Build the DeferredFunctionInfo vector on the fly.
3692         if (Error Err = rememberAndSkipFunctionBody())
3693           return Err;
3694 
3695         // Suspend parsing when we reach the function bodies. Subsequent
3696         // materialization calls will resume it when necessary. If the bitcode
3697         // file is old, the symbol table will be at the end instead and will not
3698         // have been seen yet. In this case, just finish the parse now.
3699         if (SeenValueSymbolTable) {
3700           NextUnreadBit = Stream.GetCurrentBitNo();
3701           // After the VST has been parsed, we need to make sure intrinsic name
3702           // are auto-upgraded.
3703           return globalCleanup();
3704         }
3705         break;
3706       case bitc::USELIST_BLOCK_ID:
3707         if (Error Err = parseUseLists())
3708           return Err;
3709         break;
3710       case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID:
3711         if (Error Err = parseOperandBundleTags())
3712           return Err;
3713         break;
3714       case bitc::SYNC_SCOPE_NAMES_BLOCK_ID:
3715         if (Error Err = parseSyncScopeNames())
3716           return Err;
3717         break;
3718       }
3719       continue;
3720 
3721     case BitstreamEntry::Record:
3722       // The interesting case.
3723       break;
3724     }
3725 
3726     // Read a record.
3727     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
3728     if (!MaybeBitCode)
3729       return MaybeBitCode.takeError();
3730     switch (unsigned BitCode = MaybeBitCode.get()) {
3731     default: break;  // Default behavior, ignore unknown content.
3732     case bitc::MODULE_CODE_VERSION: {
3733       Expected<unsigned> VersionOrErr = parseVersionRecord(Record);
3734       if (!VersionOrErr)
3735         return VersionOrErr.takeError();
3736       UseRelativeIDs = *VersionOrErr >= 1;
3737       break;
3738     }
3739     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
3740       if (ResolvedDataLayout)
3741         return error("target triple too late in module");
3742       std::string S;
3743       if (convertToString(Record, 0, S))
3744         return error("Invalid record");
3745       TheModule->setTargetTriple(S);
3746       break;
3747     }
3748     case bitc::MODULE_CODE_DATALAYOUT: {  // DATALAYOUT: [strchr x N]
3749       if (ResolvedDataLayout)
3750         return error("datalayout too late in module");
3751       std::string S;
3752       if (convertToString(Record, 0, S))
3753         return error("Invalid record");
3754       TheModule->setDataLayout(S);
3755       break;
3756     }
3757     case bitc::MODULE_CODE_ASM: {  // ASM: [strchr x N]
3758       std::string S;
3759       if (convertToString(Record, 0, S))
3760         return error("Invalid record");
3761       TheModule->setModuleInlineAsm(S);
3762       break;
3763     }
3764     case bitc::MODULE_CODE_DEPLIB: {  // DEPLIB: [strchr x N]
3765       // Deprecated, but still needed to read old bitcode files.
3766       std::string S;
3767       if (convertToString(Record, 0, S))
3768         return error("Invalid record");
3769       // Ignore value.
3770       break;
3771     }
3772     case bitc::MODULE_CODE_SECTIONNAME: {  // SECTIONNAME: [strchr x N]
3773       std::string S;
3774       if (convertToString(Record, 0, S))
3775         return error("Invalid record");
3776       SectionTable.push_back(S);
3777       break;
3778     }
3779     case bitc::MODULE_CODE_GCNAME: {  // SECTIONNAME: [strchr x N]
3780       std::string S;
3781       if (convertToString(Record, 0, S))
3782         return error("Invalid record");
3783       GCTable.push_back(S);
3784       break;
3785     }
3786     case bitc::MODULE_CODE_COMDAT:
3787       if (Error Err = parseComdatRecord(Record))
3788         return Err;
3789       break;
3790     case bitc::MODULE_CODE_GLOBALVAR:
3791       if (Error Err = parseGlobalVarRecord(Record))
3792         return Err;
3793       break;
3794     case bitc::MODULE_CODE_FUNCTION:
3795       ResolveDataLayout();
3796       if (Error Err = parseFunctionRecord(Record))
3797         return Err;
3798       break;
3799     case bitc::MODULE_CODE_IFUNC:
3800     case bitc::MODULE_CODE_ALIAS:
3801     case bitc::MODULE_CODE_ALIAS_OLD:
3802       if (Error Err = parseGlobalIndirectSymbolRecord(BitCode, Record))
3803         return Err;
3804       break;
3805     /// MODULE_CODE_VSTOFFSET: [offset]
3806     case bitc::MODULE_CODE_VSTOFFSET:
3807       if (Record.empty())
3808         return error("Invalid record");
3809       // Note that we subtract 1 here because the offset is relative to one word
3810       // before the start of the identification or module block, which was
3811       // historically always the start of the regular bitcode header.
3812       VSTOffset = Record[0] - 1;
3813       break;
3814     /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
3815     case bitc::MODULE_CODE_SOURCE_FILENAME:
3816       SmallString<128> ValueName;
3817       if (convertToString(Record, 0, ValueName))
3818         return error("Invalid record");
3819       TheModule->setSourceFileName(ValueName);
3820       break;
3821     }
3822     Record.clear();
3823   }
3824 }
3825 
3826 Error BitcodeReader::parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata,
3827                                       bool IsImporting,
3828                                       DataLayoutCallbackTy DataLayoutCallback) {
3829   TheModule = M;
3830   MDLoader = MetadataLoader(Stream, *M, ValueList, IsImporting,
3831                             [&](unsigned ID) { return getTypeByID(ID); });
3832   return parseModule(0, ShouldLazyLoadMetadata, DataLayoutCallback);
3833 }
3834 
3835 Error BitcodeReader::typeCheckLoadStoreInst(Type *ValType, Type *PtrType) {
3836   if (!isa<PointerType>(PtrType))
3837     return error("Load/Store operand is not a pointer type");
3838 
3839   if (!cast<PointerType>(PtrType)->isOpaqueOrPointeeTypeMatches(ValType))
3840     return error("Explicit load/store type does not match pointee "
3841                  "type of pointer operand");
3842   if (!PointerType::isLoadableOrStorableType(ValType))
3843     return error("Cannot load/store from pointer");
3844   return Error::success();
3845 }
3846 
3847 void BitcodeReader::propagateAttributeTypes(CallBase *CB,
3848                                             ArrayRef<Type *> ArgsTys) {
3849   for (unsigned i = 0; i != CB->arg_size(); ++i) {
3850     for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet,
3851                                      Attribute::InAlloca}) {
3852       if (!CB->paramHasAttr(i, Kind))
3853         continue;
3854 
3855       CB->removeParamAttr(i, Kind);
3856 
3857       Type *PtrEltTy = cast<PointerType>(ArgsTys[i])->getElementType();
3858       Attribute NewAttr;
3859       switch (Kind) {
3860       case Attribute::ByVal:
3861         NewAttr = Attribute::getWithByValType(Context, PtrEltTy);
3862         break;
3863       case Attribute::StructRet:
3864         NewAttr = Attribute::getWithStructRetType(Context, PtrEltTy);
3865         break;
3866       case Attribute::InAlloca:
3867         NewAttr = Attribute::getWithInAllocaType(Context, PtrEltTy);
3868         break;
3869       default:
3870         llvm_unreachable("not an upgraded type attribute");
3871       }
3872 
3873       CB->addParamAttr(i, NewAttr);
3874     }
3875   }
3876 
3877   switch (CB->getIntrinsicID()) {
3878   case Intrinsic::preserve_array_access_index:
3879   case Intrinsic::preserve_struct_access_index:
3880     if (!CB->getAttributes().getParamElementType(0)) {
3881       Type *ElTy = cast<PointerType>(ArgsTys[0])->getElementType();
3882       Attribute NewAttr = Attribute::get(Context, Attribute::ElementType, ElTy);
3883       CB->addParamAttr(0, NewAttr);
3884     }
3885     break;
3886   default:
3887     break;
3888   }
3889 }
3890 
3891 /// Lazily parse the specified function body block.
3892 Error BitcodeReader::parseFunctionBody(Function *F) {
3893   if (Error Err = Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID))
3894     return Err;
3895 
3896   // Unexpected unresolved metadata when parsing function.
3897   if (MDLoader->hasFwdRefs())
3898     return error("Invalid function metadata: incoming forward references");
3899 
3900   InstructionList.clear();
3901   unsigned ModuleValueListSize = ValueList.size();
3902   unsigned ModuleMDLoaderSize = MDLoader->size();
3903 
3904   // Add all the function arguments to the value table.
3905 #ifndef NDEBUG
3906   unsigned ArgNo = 0;
3907   FunctionType *FTy = FunctionTypes[F];
3908 #endif
3909   for (Argument &I : F->args()) {
3910     assert(I.getType() == FTy->getParamType(ArgNo++) &&
3911            "Incorrect fully specified type for Function Argument");
3912     ValueList.push_back(&I);
3913   }
3914   unsigned NextValueNo = ValueList.size();
3915   BasicBlock *CurBB = nullptr;
3916   unsigned CurBBNo = 0;
3917 
3918   DebugLoc LastLoc;
3919   auto getLastInstruction = [&]() -> Instruction * {
3920     if (CurBB && !CurBB->empty())
3921       return &CurBB->back();
3922     else if (CurBBNo && FunctionBBs[CurBBNo - 1] &&
3923              !FunctionBBs[CurBBNo - 1]->empty())
3924       return &FunctionBBs[CurBBNo - 1]->back();
3925     return nullptr;
3926   };
3927 
3928   std::vector<OperandBundleDef> OperandBundles;
3929 
3930   // Read all the records.
3931   SmallVector<uint64_t, 64> Record;
3932 
3933   while (true) {
3934     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
3935     if (!MaybeEntry)
3936       return MaybeEntry.takeError();
3937     llvm::BitstreamEntry Entry = MaybeEntry.get();
3938 
3939     switch (Entry.Kind) {
3940     case BitstreamEntry::Error:
3941       return error("Malformed block");
3942     case BitstreamEntry::EndBlock:
3943       goto OutOfRecordLoop;
3944 
3945     case BitstreamEntry::SubBlock:
3946       switch (Entry.ID) {
3947       default:  // Skip unknown content.
3948         if (Error Err = Stream.SkipBlock())
3949           return Err;
3950         break;
3951       case bitc::CONSTANTS_BLOCK_ID:
3952         if (Error Err = parseConstants())
3953           return Err;
3954         NextValueNo = ValueList.size();
3955         break;
3956       case bitc::VALUE_SYMTAB_BLOCK_ID:
3957         if (Error Err = parseValueSymbolTable())
3958           return Err;
3959         break;
3960       case bitc::METADATA_ATTACHMENT_ID:
3961         if (Error Err = MDLoader->parseMetadataAttachment(*F, InstructionList))
3962           return Err;
3963         break;
3964       case bitc::METADATA_BLOCK_ID:
3965         assert(DeferredMetadataInfo.empty() &&
3966                "Must read all module-level metadata before function-level");
3967         if (Error Err = MDLoader->parseFunctionMetadata())
3968           return Err;
3969         break;
3970       case bitc::USELIST_BLOCK_ID:
3971         if (Error Err = parseUseLists())
3972           return Err;
3973         break;
3974       }
3975       continue;
3976 
3977     case BitstreamEntry::Record:
3978       // The interesting case.
3979       break;
3980     }
3981 
3982     // Read a record.
3983     Record.clear();
3984     Instruction *I = nullptr;
3985     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
3986     if (!MaybeBitCode)
3987       return MaybeBitCode.takeError();
3988     switch (unsigned BitCode = MaybeBitCode.get()) {
3989     default: // Default behavior: reject
3990       return error("Invalid value");
3991     case bitc::FUNC_CODE_DECLAREBLOCKS: {   // DECLAREBLOCKS: [nblocks]
3992       if (Record.empty() || Record[0] == 0)
3993         return error("Invalid record");
3994       // Create all the basic blocks for the function.
3995       FunctionBBs.resize(Record[0]);
3996 
3997       // See if anything took the address of blocks in this function.
3998       auto BBFRI = BasicBlockFwdRefs.find(F);
3999       if (BBFRI == BasicBlockFwdRefs.end()) {
4000         for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i)
4001           FunctionBBs[i] = BasicBlock::Create(Context, "", F);
4002       } else {
4003         auto &BBRefs = BBFRI->second;
4004         // Check for invalid basic block references.
4005         if (BBRefs.size() > FunctionBBs.size())
4006           return error("Invalid ID");
4007         assert(!BBRefs.empty() && "Unexpected empty array");
4008         assert(!BBRefs.front() && "Invalid reference to entry block");
4009         for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E;
4010              ++I)
4011           if (I < RE && BBRefs[I]) {
4012             BBRefs[I]->insertInto(F);
4013             FunctionBBs[I] = BBRefs[I];
4014           } else {
4015             FunctionBBs[I] = BasicBlock::Create(Context, "", F);
4016           }
4017 
4018         // Erase from the table.
4019         BasicBlockFwdRefs.erase(BBFRI);
4020       }
4021 
4022       CurBB = FunctionBBs[0];
4023       continue;
4024     }
4025 
4026     case bitc::FUNC_CODE_DEBUG_LOC_AGAIN:  // DEBUG_LOC_AGAIN
4027       // This record indicates that the last instruction is at the same
4028       // location as the previous instruction with a location.
4029       I = getLastInstruction();
4030 
4031       if (!I)
4032         return error("Invalid record");
4033       I->setDebugLoc(LastLoc);
4034       I = nullptr;
4035       continue;
4036 
4037     case bitc::FUNC_CODE_DEBUG_LOC: {      // DEBUG_LOC: [line, col, scope, ia]
4038       I = getLastInstruction();
4039       if (!I || Record.size() < 4)
4040         return error("Invalid record");
4041 
4042       unsigned Line = Record[0], Col = Record[1];
4043       unsigned ScopeID = Record[2], IAID = Record[3];
4044       bool isImplicitCode = Record.size() == 5 && Record[4];
4045 
4046       MDNode *Scope = nullptr, *IA = nullptr;
4047       if (ScopeID) {
4048         Scope = dyn_cast_or_null<MDNode>(
4049             MDLoader->getMetadataFwdRefOrLoad(ScopeID - 1));
4050         if (!Scope)
4051           return error("Invalid record");
4052       }
4053       if (IAID) {
4054         IA = dyn_cast_or_null<MDNode>(
4055             MDLoader->getMetadataFwdRefOrLoad(IAID - 1));
4056         if (!IA)
4057           return error("Invalid record");
4058       }
4059       LastLoc = DILocation::get(Scope->getContext(), Line, Col, Scope, IA,
4060                                 isImplicitCode);
4061       I->setDebugLoc(LastLoc);
4062       I = nullptr;
4063       continue;
4064     }
4065     case bitc::FUNC_CODE_INST_UNOP: {    // UNOP: [opval, ty, opcode]
4066       unsigned OpNum = 0;
4067       Value *LHS;
4068       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
4069           OpNum+1 > Record.size())
4070         return error("Invalid record");
4071 
4072       int Opc = getDecodedUnaryOpcode(Record[OpNum++], LHS->getType());
4073       if (Opc == -1)
4074         return error("Invalid record");
4075       I = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS);
4076       InstructionList.push_back(I);
4077       if (OpNum < Record.size()) {
4078         if (isa<FPMathOperator>(I)) {
4079           FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
4080           if (FMF.any())
4081             I->setFastMathFlags(FMF);
4082         }
4083       }
4084       break;
4085     }
4086     case bitc::FUNC_CODE_INST_BINOP: {    // BINOP: [opval, ty, opval, opcode]
4087       unsigned OpNum = 0;
4088       Value *LHS, *RHS;
4089       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
4090           popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) ||
4091           OpNum+1 > Record.size())
4092         return error("Invalid record");
4093 
4094       int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType());
4095       if (Opc == -1)
4096         return error("Invalid record");
4097       I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
4098       InstructionList.push_back(I);
4099       if (OpNum < Record.size()) {
4100         if (Opc == Instruction::Add ||
4101             Opc == Instruction::Sub ||
4102             Opc == Instruction::Mul ||
4103             Opc == Instruction::Shl) {
4104           if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP))
4105             cast<BinaryOperator>(I)->setHasNoSignedWrap(true);
4106           if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
4107             cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true);
4108         } else if (Opc == Instruction::SDiv ||
4109                    Opc == Instruction::UDiv ||
4110                    Opc == Instruction::LShr ||
4111                    Opc == Instruction::AShr) {
4112           if (Record[OpNum] & (1 << bitc::PEO_EXACT))
4113             cast<BinaryOperator>(I)->setIsExact(true);
4114         } else if (isa<FPMathOperator>(I)) {
4115           FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
4116           if (FMF.any())
4117             I->setFastMathFlags(FMF);
4118         }
4119 
4120       }
4121       break;
4122     }
4123     case bitc::FUNC_CODE_INST_CAST: {    // CAST: [opval, opty, destty, castopc]
4124       unsigned OpNum = 0;
4125       Value *Op;
4126       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
4127           OpNum+2 != Record.size())
4128         return error("Invalid record");
4129 
4130       Type *ResTy = getTypeByID(Record[OpNum]);
4131       int Opc = getDecodedCastOpcode(Record[OpNum + 1]);
4132       if (Opc == -1 || !ResTy)
4133         return error("Invalid record");
4134       Instruction *Temp = nullptr;
4135       if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) {
4136         if (Temp) {
4137           InstructionList.push_back(Temp);
4138           assert(CurBB && "No current BB?");
4139           CurBB->getInstList().push_back(Temp);
4140         }
4141       } else {
4142         auto CastOp = (Instruction::CastOps)Opc;
4143         if (!CastInst::castIsValid(CastOp, Op, ResTy))
4144           return error("Invalid cast");
4145         I = CastInst::Create(CastOp, Op, ResTy);
4146       }
4147       InstructionList.push_back(I);
4148       break;
4149     }
4150     case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD:
4151     case bitc::FUNC_CODE_INST_GEP_OLD:
4152     case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands]
4153       unsigned OpNum = 0;
4154 
4155       Type *Ty;
4156       bool InBounds;
4157 
4158       if (BitCode == bitc::FUNC_CODE_INST_GEP) {
4159         InBounds = Record[OpNum++];
4160         Ty = getTypeByID(Record[OpNum++]);
4161       } else {
4162         InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD;
4163         Ty = nullptr;
4164       }
4165 
4166       Value *BasePtr;
4167       if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr))
4168         return error("Invalid record");
4169 
4170       if (!Ty) {
4171         Ty = cast<PointerType>(BasePtr->getType()->getScalarType())
4172                  ->getElementType();
4173       } else if (!cast<PointerType>(BasePtr->getType()->getScalarType())
4174                       ->isOpaqueOrPointeeTypeMatches(Ty)) {
4175         return error(
4176             "Explicit gep type does not match pointee type of pointer operand");
4177       }
4178 
4179       SmallVector<Value*, 16> GEPIdx;
4180       while (OpNum != Record.size()) {
4181         Value *Op;
4182         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4183           return error("Invalid record");
4184         GEPIdx.push_back(Op);
4185       }
4186 
4187       I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx);
4188 
4189       InstructionList.push_back(I);
4190       if (InBounds)
4191         cast<GetElementPtrInst>(I)->setIsInBounds(true);
4192       break;
4193     }
4194 
4195     case bitc::FUNC_CODE_INST_EXTRACTVAL: {
4196                                        // EXTRACTVAL: [opty, opval, n x indices]
4197       unsigned OpNum = 0;
4198       Value *Agg;
4199       if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
4200         return error("Invalid record");
4201       Type *Ty = Agg->getType();
4202 
4203       unsigned RecSize = Record.size();
4204       if (OpNum == RecSize)
4205         return error("EXTRACTVAL: Invalid instruction with 0 indices");
4206 
4207       SmallVector<unsigned, 4> EXTRACTVALIdx;
4208       for (; OpNum != RecSize; ++OpNum) {
4209         bool IsArray = Ty->isArrayTy();
4210         bool IsStruct = Ty->isStructTy();
4211         uint64_t Index = Record[OpNum];
4212 
4213         if (!IsStruct && !IsArray)
4214           return error("EXTRACTVAL: Invalid type");
4215         if ((unsigned)Index != Index)
4216           return error("Invalid value");
4217         if (IsStruct && Index >= Ty->getStructNumElements())
4218           return error("EXTRACTVAL: Invalid struct index");
4219         if (IsArray && Index >= Ty->getArrayNumElements())
4220           return error("EXTRACTVAL: Invalid array index");
4221         EXTRACTVALIdx.push_back((unsigned)Index);
4222 
4223         if (IsStruct)
4224           Ty = Ty->getStructElementType(Index);
4225         else
4226           Ty = Ty->getArrayElementType();
4227       }
4228 
4229       I = ExtractValueInst::Create(Agg, EXTRACTVALIdx);
4230       InstructionList.push_back(I);
4231       break;
4232     }
4233 
4234     case bitc::FUNC_CODE_INST_INSERTVAL: {
4235                            // INSERTVAL: [opty, opval, opty, opval, n x indices]
4236       unsigned OpNum = 0;
4237       Value *Agg;
4238       if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
4239         return error("Invalid record");
4240       Value *Val;
4241       if (getValueTypePair(Record, OpNum, NextValueNo, Val))
4242         return error("Invalid record");
4243 
4244       unsigned RecSize = Record.size();
4245       if (OpNum == RecSize)
4246         return error("INSERTVAL: Invalid instruction with 0 indices");
4247 
4248       SmallVector<unsigned, 4> INSERTVALIdx;
4249       Type *CurTy = Agg->getType();
4250       for (; OpNum != RecSize; ++OpNum) {
4251         bool IsArray = CurTy->isArrayTy();
4252         bool IsStruct = CurTy->isStructTy();
4253         uint64_t Index = Record[OpNum];
4254 
4255         if (!IsStruct && !IsArray)
4256           return error("INSERTVAL: Invalid type");
4257         if ((unsigned)Index != Index)
4258           return error("Invalid value");
4259         if (IsStruct && Index >= CurTy->getStructNumElements())
4260           return error("INSERTVAL: Invalid struct index");
4261         if (IsArray && Index >= CurTy->getArrayNumElements())
4262           return error("INSERTVAL: Invalid array index");
4263 
4264         INSERTVALIdx.push_back((unsigned)Index);
4265         if (IsStruct)
4266           CurTy = CurTy->getStructElementType(Index);
4267         else
4268           CurTy = CurTy->getArrayElementType();
4269       }
4270 
4271       if (CurTy != Val->getType())
4272         return error("Inserted value type doesn't match aggregate type");
4273 
4274       I = InsertValueInst::Create(Agg, Val, INSERTVALIdx);
4275       InstructionList.push_back(I);
4276       break;
4277     }
4278 
4279     case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval]
4280       // obsolete form of select
4281       // handles select i1 ... in old bitcode
4282       unsigned OpNum = 0;
4283       Value *TrueVal, *FalseVal, *Cond;
4284       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
4285           popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) ||
4286           popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond))
4287         return error("Invalid record");
4288 
4289       I = SelectInst::Create(Cond, TrueVal, FalseVal);
4290       InstructionList.push_back(I);
4291       break;
4292     }
4293 
4294     case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred]
4295       // new form of select
4296       // handles select i1 or select [N x i1]
4297       unsigned OpNum = 0;
4298       Value *TrueVal, *FalseVal, *Cond;
4299       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
4300           popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) ||
4301           getValueTypePair(Record, OpNum, NextValueNo, Cond))
4302         return error("Invalid record");
4303 
4304       // select condition can be either i1 or [N x i1]
4305       if (VectorType* vector_type =
4306           dyn_cast<VectorType>(Cond->getType())) {
4307         // expect <n x i1>
4308         if (vector_type->getElementType() != Type::getInt1Ty(Context))
4309           return error("Invalid type for value");
4310       } else {
4311         // expect i1
4312         if (Cond->getType() != Type::getInt1Ty(Context))
4313           return error("Invalid type for value");
4314       }
4315 
4316       I = SelectInst::Create(Cond, TrueVal, FalseVal);
4317       InstructionList.push_back(I);
4318       if (OpNum < Record.size() && isa<FPMathOperator>(I)) {
4319         FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
4320         if (FMF.any())
4321           I->setFastMathFlags(FMF);
4322       }
4323       break;
4324     }
4325 
4326     case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval]
4327       unsigned OpNum = 0;
4328       Value *Vec, *Idx;
4329       if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
4330           getValueTypePair(Record, OpNum, NextValueNo, Idx))
4331         return error("Invalid record");
4332       if (!Vec->getType()->isVectorTy())
4333         return error("Invalid type for value");
4334       I = ExtractElementInst::Create(Vec, Idx);
4335       InstructionList.push_back(I);
4336       break;
4337     }
4338 
4339     case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval]
4340       unsigned OpNum = 0;
4341       Value *Vec, *Elt, *Idx;
4342       if (getValueTypePair(Record, OpNum, NextValueNo, Vec))
4343         return error("Invalid record");
4344       if (!Vec->getType()->isVectorTy())
4345         return error("Invalid type for value");
4346       if (popValue(Record, OpNum, NextValueNo,
4347                    cast<VectorType>(Vec->getType())->getElementType(), Elt) ||
4348           getValueTypePair(Record, OpNum, NextValueNo, Idx))
4349         return error("Invalid record");
4350       I = InsertElementInst::Create(Vec, Elt, Idx);
4351       InstructionList.push_back(I);
4352       break;
4353     }
4354 
4355     case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval]
4356       unsigned OpNum = 0;
4357       Value *Vec1, *Vec2, *Mask;
4358       if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) ||
4359           popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2))
4360         return error("Invalid record");
4361 
4362       if (getValueTypePair(Record, OpNum, NextValueNo, Mask))
4363         return error("Invalid record");
4364       if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy())
4365         return error("Invalid type for value");
4366 
4367       I = new ShuffleVectorInst(Vec1, Vec2, Mask);
4368       InstructionList.push_back(I);
4369       break;
4370     }
4371 
4372     case bitc::FUNC_CODE_INST_CMP:   // CMP: [opty, opval, opval, pred]
4373       // Old form of ICmp/FCmp returning bool
4374       // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were
4375       // both legal on vectors but had different behaviour.
4376     case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred]
4377       // FCmp/ICmp returning bool or vector of bool
4378 
4379       unsigned OpNum = 0;
4380       Value *LHS, *RHS;
4381       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
4382           popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS))
4383         return error("Invalid record");
4384 
4385       if (OpNum >= Record.size())
4386         return error(
4387             "Invalid record: operand number exceeded available operands");
4388 
4389       unsigned PredVal = Record[OpNum];
4390       bool IsFP = LHS->getType()->isFPOrFPVectorTy();
4391       FastMathFlags FMF;
4392       if (IsFP && Record.size() > OpNum+1)
4393         FMF = getDecodedFastMathFlags(Record[++OpNum]);
4394 
4395       if (OpNum+1 != Record.size())
4396         return error("Invalid record");
4397 
4398       if (LHS->getType()->isFPOrFPVectorTy())
4399         I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS);
4400       else
4401         I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS);
4402 
4403       if (FMF.any())
4404         I->setFastMathFlags(FMF);
4405       InstructionList.push_back(I);
4406       break;
4407     }
4408 
4409     case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>]
4410       {
4411         unsigned Size = Record.size();
4412         if (Size == 0) {
4413           I = ReturnInst::Create(Context);
4414           InstructionList.push_back(I);
4415           break;
4416         }
4417 
4418         unsigned OpNum = 0;
4419         Value *Op = nullptr;
4420         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4421           return error("Invalid record");
4422         if (OpNum != Record.size())
4423           return error("Invalid record");
4424 
4425         I = ReturnInst::Create(Context, Op);
4426         InstructionList.push_back(I);
4427         break;
4428       }
4429     case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#]
4430       if (Record.size() != 1 && Record.size() != 3)
4431         return error("Invalid record");
4432       BasicBlock *TrueDest = getBasicBlock(Record[0]);
4433       if (!TrueDest)
4434         return error("Invalid record");
4435 
4436       if (Record.size() == 1) {
4437         I = BranchInst::Create(TrueDest);
4438         InstructionList.push_back(I);
4439       }
4440       else {
4441         BasicBlock *FalseDest = getBasicBlock(Record[1]);
4442         Value *Cond = getValue(Record, 2, NextValueNo,
4443                                Type::getInt1Ty(Context));
4444         if (!FalseDest || !Cond)
4445           return error("Invalid record");
4446         I = BranchInst::Create(TrueDest, FalseDest, Cond);
4447         InstructionList.push_back(I);
4448       }
4449       break;
4450     }
4451     case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#]
4452       if (Record.size() != 1 && Record.size() != 2)
4453         return error("Invalid record");
4454       unsigned Idx = 0;
4455       Value *CleanupPad =
4456           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4457       if (!CleanupPad)
4458         return error("Invalid record");
4459       BasicBlock *UnwindDest = nullptr;
4460       if (Record.size() == 2) {
4461         UnwindDest = getBasicBlock(Record[Idx++]);
4462         if (!UnwindDest)
4463           return error("Invalid record");
4464       }
4465 
4466       I = CleanupReturnInst::Create(CleanupPad, UnwindDest);
4467       InstructionList.push_back(I);
4468       break;
4469     }
4470     case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#]
4471       if (Record.size() != 2)
4472         return error("Invalid record");
4473       unsigned Idx = 0;
4474       Value *CatchPad =
4475           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4476       if (!CatchPad)
4477         return error("Invalid record");
4478       BasicBlock *BB = getBasicBlock(Record[Idx++]);
4479       if (!BB)
4480         return error("Invalid record");
4481 
4482       I = CatchReturnInst::Create(CatchPad, BB);
4483       InstructionList.push_back(I);
4484       break;
4485     }
4486     case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?]
4487       // We must have, at minimum, the outer scope and the number of arguments.
4488       if (Record.size() < 2)
4489         return error("Invalid record");
4490 
4491       unsigned Idx = 0;
4492 
4493       Value *ParentPad =
4494           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4495 
4496       unsigned NumHandlers = Record[Idx++];
4497 
4498       SmallVector<BasicBlock *, 2> Handlers;
4499       for (unsigned Op = 0; Op != NumHandlers; ++Op) {
4500         BasicBlock *BB = getBasicBlock(Record[Idx++]);
4501         if (!BB)
4502           return error("Invalid record");
4503         Handlers.push_back(BB);
4504       }
4505 
4506       BasicBlock *UnwindDest = nullptr;
4507       if (Idx + 1 == Record.size()) {
4508         UnwindDest = getBasicBlock(Record[Idx++]);
4509         if (!UnwindDest)
4510           return error("Invalid record");
4511       }
4512 
4513       if (Record.size() != Idx)
4514         return error("Invalid record");
4515 
4516       auto *CatchSwitch =
4517           CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers);
4518       for (BasicBlock *Handler : Handlers)
4519         CatchSwitch->addHandler(Handler);
4520       I = CatchSwitch;
4521       InstructionList.push_back(I);
4522       break;
4523     }
4524     case bitc::FUNC_CODE_INST_CATCHPAD:
4525     case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*]
4526       // We must have, at minimum, the outer scope and the number of arguments.
4527       if (Record.size() < 2)
4528         return error("Invalid record");
4529 
4530       unsigned Idx = 0;
4531 
4532       Value *ParentPad =
4533           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4534 
4535       unsigned NumArgOperands = Record[Idx++];
4536 
4537       SmallVector<Value *, 2> Args;
4538       for (unsigned Op = 0; Op != NumArgOperands; ++Op) {
4539         Value *Val;
4540         if (getValueTypePair(Record, Idx, NextValueNo, Val))
4541           return error("Invalid record");
4542         Args.push_back(Val);
4543       }
4544 
4545       if (Record.size() != Idx)
4546         return error("Invalid record");
4547 
4548       if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD)
4549         I = CleanupPadInst::Create(ParentPad, Args);
4550       else
4551         I = CatchPadInst::Create(ParentPad, Args);
4552       InstructionList.push_back(I);
4553       break;
4554     }
4555     case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...]
4556       // Check magic
4557       if ((Record[0] >> 16) == SWITCH_INST_MAGIC) {
4558         // "New" SwitchInst format with case ranges. The changes to write this
4559         // format were reverted but we still recognize bitcode that uses it.
4560         // Hopefully someday we will have support for case ranges and can use
4561         // this format again.
4562 
4563         Type *OpTy = getTypeByID(Record[1]);
4564         unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth();
4565 
4566         Value *Cond = getValue(Record, 2, NextValueNo, OpTy);
4567         BasicBlock *Default = getBasicBlock(Record[3]);
4568         if (!OpTy || !Cond || !Default)
4569           return error("Invalid record");
4570 
4571         unsigned NumCases = Record[4];
4572 
4573         SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
4574         InstructionList.push_back(SI);
4575 
4576         unsigned CurIdx = 5;
4577         for (unsigned i = 0; i != NumCases; ++i) {
4578           SmallVector<ConstantInt*, 1> CaseVals;
4579           unsigned NumItems = Record[CurIdx++];
4580           for (unsigned ci = 0; ci != NumItems; ++ci) {
4581             bool isSingleNumber = Record[CurIdx++];
4582 
4583             APInt Low;
4584             unsigned ActiveWords = 1;
4585             if (ValueBitWidth > 64)
4586               ActiveWords = Record[CurIdx++];
4587             Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords),
4588                                 ValueBitWidth);
4589             CurIdx += ActiveWords;
4590 
4591             if (!isSingleNumber) {
4592               ActiveWords = 1;
4593               if (ValueBitWidth > 64)
4594                 ActiveWords = Record[CurIdx++];
4595               APInt High = readWideAPInt(
4596                   makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth);
4597               CurIdx += ActiveWords;
4598 
4599               // FIXME: It is not clear whether values in the range should be
4600               // compared as signed or unsigned values. The partially
4601               // implemented changes that used this format in the past used
4602               // unsigned comparisons.
4603               for ( ; Low.ule(High); ++Low)
4604                 CaseVals.push_back(ConstantInt::get(Context, Low));
4605             } else
4606               CaseVals.push_back(ConstantInt::get(Context, Low));
4607           }
4608           BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]);
4609           for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(),
4610                  cve = CaseVals.end(); cvi != cve; ++cvi)
4611             SI->addCase(*cvi, DestBB);
4612         }
4613         I = SI;
4614         break;
4615       }
4616 
4617       // Old SwitchInst format without case ranges.
4618 
4619       if (Record.size() < 3 || (Record.size() & 1) == 0)
4620         return error("Invalid record");
4621       Type *OpTy = getTypeByID(Record[0]);
4622       Value *Cond = getValue(Record, 1, NextValueNo, OpTy);
4623       BasicBlock *Default = getBasicBlock(Record[2]);
4624       if (!OpTy || !Cond || !Default)
4625         return error("Invalid record");
4626       unsigned NumCases = (Record.size()-3)/2;
4627       SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
4628       InstructionList.push_back(SI);
4629       for (unsigned i = 0, e = NumCases; i != e; ++i) {
4630         ConstantInt *CaseVal =
4631           dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy));
4632         BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]);
4633         if (!CaseVal || !DestBB) {
4634           delete SI;
4635           return error("Invalid record");
4636         }
4637         SI->addCase(CaseVal, DestBB);
4638       }
4639       I = SI;
4640       break;
4641     }
4642     case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...]
4643       if (Record.size() < 2)
4644         return error("Invalid record");
4645       Type *OpTy = getTypeByID(Record[0]);
4646       Value *Address = getValue(Record, 1, NextValueNo, OpTy);
4647       if (!OpTy || !Address)
4648         return error("Invalid record");
4649       unsigned NumDests = Record.size()-2;
4650       IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests);
4651       InstructionList.push_back(IBI);
4652       for (unsigned i = 0, e = NumDests; i != e; ++i) {
4653         if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) {
4654           IBI->addDestination(DestBB);
4655         } else {
4656           delete IBI;
4657           return error("Invalid record");
4658         }
4659       }
4660       I = IBI;
4661       break;
4662     }
4663 
4664     case bitc::FUNC_CODE_INST_INVOKE: {
4665       // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...]
4666       if (Record.size() < 4)
4667         return error("Invalid record");
4668       unsigned OpNum = 0;
4669       AttributeList PAL = getAttributes(Record[OpNum++]);
4670       unsigned CCInfo = Record[OpNum++];
4671       BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]);
4672       BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]);
4673 
4674       FunctionType *FTy = nullptr;
4675       if ((CCInfo >> 13) & 1) {
4676         FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++]));
4677         if (!FTy)
4678           return error("Explicit invoke type is not a function type");
4679       }
4680 
4681       Value *Callee;
4682       if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
4683         return error("Invalid record");
4684 
4685       PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType());
4686       if (!CalleeTy)
4687         return error("Callee is not a pointer");
4688       if (!FTy) {
4689         FTy = dyn_cast<FunctionType>(
4690             cast<PointerType>(Callee->getType())->getElementType());
4691         if (!FTy)
4692           return error("Callee is not of pointer to function type");
4693       } else if (!CalleeTy->isOpaqueOrPointeeTypeMatches(FTy))
4694         return error("Explicit invoke type does not match pointee type of "
4695                      "callee operand");
4696       if (Record.size() < FTy->getNumParams() + OpNum)
4697         return error("Insufficient operands to call");
4698 
4699       SmallVector<Value*, 16> Ops;
4700       SmallVector<Type *, 16> ArgsTys;
4701       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
4702         Ops.push_back(getValue(Record, OpNum, NextValueNo,
4703                                FTy->getParamType(i)));
4704         ArgsTys.push_back(FTy->getParamType(i));
4705         if (!Ops.back())
4706           return error("Invalid record");
4707       }
4708 
4709       if (!FTy->isVarArg()) {
4710         if (Record.size() != OpNum)
4711           return error("Invalid record");
4712       } else {
4713         // Read type/value pairs for varargs params.
4714         while (OpNum != Record.size()) {
4715           Value *Op;
4716           if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4717             return error("Invalid record");
4718           Ops.push_back(Op);
4719           ArgsTys.push_back(Op->getType());
4720         }
4721       }
4722 
4723       I = InvokeInst::Create(FTy, Callee, NormalBB, UnwindBB, Ops,
4724                              OperandBundles);
4725       OperandBundles.clear();
4726       InstructionList.push_back(I);
4727       cast<InvokeInst>(I)->setCallingConv(
4728           static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo));
4729       cast<InvokeInst>(I)->setAttributes(PAL);
4730       propagateAttributeTypes(cast<CallBase>(I), ArgsTys);
4731 
4732       break;
4733     }
4734     case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval]
4735       unsigned Idx = 0;
4736       Value *Val = nullptr;
4737       if (getValueTypePair(Record, Idx, NextValueNo, Val))
4738         return error("Invalid record");
4739       I = ResumeInst::Create(Val);
4740       InstructionList.push_back(I);
4741       break;
4742     }
4743     case bitc::FUNC_CODE_INST_CALLBR: {
4744       // CALLBR: [attr, cc, norm, transfs, fty, fnid, args]
4745       unsigned OpNum = 0;
4746       AttributeList PAL = getAttributes(Record[OpNum++]);
4747       unsigned CCInfo = Record[OpNum++];
4748 
4749       BasicBlock *DefaultDest = getBasicBlock(Record[OpNum++]);
4750       unsigned NumIndirectDests = Record[OpNum++];
4751       SmallVector<BasicBlock *, 16> IndirectDests;
4752       for (unsigned i = 0, e = NumIndirectDests; i != e; ++i)
4753         IndirectDests.push_back(getBasicBlock(Record[OpNum++]));
4754 
4755       FunctionType *FTy = nullptr;
4756       if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) {
4757         FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++]));
4758         if (!FTy)
4759           return error("Explicit call type is not a function type");
4760       }
4761 
4762       Value *Callee;
4763       if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
4764         return error("Invalid record");
4765 
4766       PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
4767       if (!OpTy)
4768         return error("Callee is not a pointer type");
4769       if (!FTy) {
4770         FTy = dyn_cast<FunctionType>(
4771             cast<PointerType>(Callee->getType())->getElementType());
4772         if (!FTy)
4773           return error("Callee is not of pointer to function type");
4774       } else if (cast<PointerType>(Callee->getType())->getElementType() != FTy)
4775         return error("Explicit call type does not match pointee type of "
4776                      "callee operand");
4777       if (Record.size() < FTy->getNumParams() + OpNum)
4778         return error("Insufficient operands to call");
4779 
4780       SmallVector<Value*, 16> Args;
4781       // Read the fixed params.
4782       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
4783         if (FTy->getParamType(i)->isLabelTy())
4784           Args.push_back(getBasicBlock(Record[OpNum]));
4785         else
4786           Args.push_back(getValue(Record, OpNum, NextValueNo,
4787                                   FTy->getParamType(i)));
4788         if (!Args.back())
4789           return error("Invalid record");
4790       }
4791 
4792       // Read type/value pairs for varargs params.
4793       if (!FTy->isVarArg()) {
4794         if (OpNum != Record.size())
4795           return error("Invalid record");
4796       } else {
4797         while (OpNum != Record.size()) {
4798           Value *Op;
4799           if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4800             return error("Invalid record");
4801           Args.push_back(Op);
4802         }
4803       }
4804 
4805       I = CallBrInst::Create(FTy, Callee, DefaultDest, IndirectDests, Args,
4806                              OperandBundles);
4807       OperandBundles.clear();
4808       InstructionList.push_back(I);
4809       cast<CallBrInst>(I)->setCallingConv(
4810           static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV));
4811       cast<CallBrInst>(I)->setAttributes(PAL);
4812       break;
4813     }
4814     case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE
4815       I = new UnreachableInst(Context);
4816       InstructionList.push_back(I);
4817       break;
4818     case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...]
4819       if (Record.empty())
4820         return error("Invalid record");
4821       // The first record specifies the type.
4822       Type *Ty = getTypeByID(Record[0]);
4823       if (!Ty)
4824         return error("Invalid record");
4825 
4826       // Phi arguments are pairs of records of [value, basic block].
4827       // There is an optional final record for fast-math-flags if this phi has a
4828       // floating-point type.
4829       size_t NumArgs = (Record.size() - 1) / 2;
4830       PHINode *PN = PHINode::Create(Ty, NumArgs);
4831       if ((Record.size() - 1) % 2 == 1 && !isa<FPMathOperator>(PN))
4832         return error("Invalid record");
4833       InstructionList.push_back(PN);
4834 
4835       for (unsigned i = 0; i != NumArgs; i++) {
4836         Value *V;
4837         // With the new function encoding, it is possible that operands have
4838         // negative IDs (for forward references).  Use a signed VBR
4839         // representation to keep the encoding small.
4840         if (UseRelativeIDs)
4841           V = getValueSigned(Record, i * 2 + 1, NextValueNo, Ty);
4842         else
4843           V = getValue(Record, i * 2 + 1, NextValueNo, Ty);
4844         BasicBlock *BB = getBasicBlock(Record[i * 2 + 2]);
4845         if (!V || !BB)
4846           return error("Invalid record");
4847         PN->addIncoming(V, BB);
4848       }
4849       I = PN;
4850 
4851       // If there are an even number of records, the final record must be FMF.
4852       if (Record.size() % 2 == 0) {
4853         assert(isa<FPMathOperator>(I) && "Unexpected phi type");
4854         FastMathFlags FMF = getDecodedFastMathFlags(Record[Record.size() - 1]);
4855         if (FMF.any())
4856           I->setFastMathFlags(FMF);
4857       }
4858 
4859       break;
4860     }
4861 
4862     case bitc::FUNC_CODE_INST_LANDINGPAD:
4863     case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: {
4864       // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?]
4865       unsigned Idx = 0;
4866       if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) {
4867         if (Record.size() < 3)
4868           return error("Invalid record");
4869       } else {
4870         assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD);
4871         if (Record.size() < 4)
4872           return error("Invalid record");
4873       }
4874       Type *Ty = getTypeByID(Record[Idx++]);
4875       if (!Ty)
4876         return error("Invalid record");
4877       if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) {
4878         Value *PersFn = nullptr;
4879         if (getValueTypePair(Record, Idx, NextValueNo, PersFn))
4880           return error("Invalid record");
4881 
4882         if (!F->hasPersonalityFn())
4883           F->setPersonalityFn(cast<Constant>(PersFn));
4884         else if (F->getPersonalityFn() != cast<Constant>(PersFn))
4885           return error("Personality function mismatch");
4886       }
4887 
4888       bool IsCleanup = !!Record[Idx++];
4889       unsigned NumClauses = Record[Idx++];
4890       LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses);
4891       LP->setCleanup(IsCleanup);
4892       for (unsigned J = 0; J != NumClauses; ++J) {
4893         LandingPadInst::ClauseType CT =
4894           LandingPadInst::ClauseType(Record[Idx++]); (void)CT;
4895         Value *Val;
4896 
4897         if (getValueTypePair(Record, Idx, NextValueNo, Val)) {
4898           delete LP;
4899           return error("Invalid record");
4900         }
4901 
4902         assert((CT != LandingPadInst::Catch ||
4903                 !isa<ArrayType>(Val->getType())) &&
4904                "Catch clause has a invalid type!");
4905         assert((CT != LandingPadInst::Filter ||
4906                 isa<ArrayType>(Val->getType())) &&
4907                "Filter clause has invalid type!");
4908         LP->addClause(cast<Constant>(Val));
4909       }
4910 
4911       I = LP;
4912       InstructionList.push_back(I);
4913       break;
4914     }
4915 
4916     case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align]
4917       if (Record.size() != 4)
4918         return error("Invalid record");
4919       using APV = AllocaPackedValues;
4920       const uint64_t Rec = Record[3];
4921       const bool InAlloca = Bitfield::get<APV::UsedWithInAlloca>(Rec);
4922       const bool SwiftError = Bitfield::get<APV::SwiftError>(Rec);
4923       Type *Ty = getTypeByID(Record[0]);
4924       if (!Bitfield::get<APV::ExplicitType>(Rec)) {
4925         auto *PTy = dyn_cast_or_null<PointerType>(Ty);
4926         if (!PTy)
4927           return error("Old-style alloca with a non-pointer type");
4928         Ty = PTy->getElementType();
4929       }
4930       Type *OpTy = getTypeByID(Record[1]);
4931       Value *Size = getFnValueByID(Record[2], OpTy);
4932       MaybeAlign Align;
4933       uint64_t AlignExp =
4934           Bitfield::get<APV::AlignLower>(Rec) |
4935           (Bitfield::get<APV::AlignUpper>(Rec) << APV::AlignLower::Bits);
4936       if (Error Err = parseAlignmentValue(AlignExp, Align)) {
4937         return Err;
4938       }
4939       if (!Ty || !Size)
4940         return error("Invalid record");
4941 
4942       // FIXME: Make this an optional field.
4943       const DataLayout &DL = TheModule->getDataLayout();
4944       unsigned AS = DL.getAllocaAddrSpace();
4945 
4946       SmallPtrSet<Type *, 4> Visited;
4947       if (!Align && !Ty->isSized(&Visited))
4948         return error("alloca of unsized type");
4949       if (!Align)
4950         Align = DL.getPrefTypeAlign(Ty);
4951 
4952       AllocaInst *AI = new AllocaInst(Ty, AS, Size, *Align);
4953       AI->setUsedWithInAlloca(InAlloca);
4954       AI->setSwiftError(SwiftError);
4955       I = AI;
4956       InstructionList.push_back(I);
4957       break;
4958     }
4959     case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol]
4960       unsigned OpNum = 0;
4961       Value *Op;
4962       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
4963           (OpNum + 2 != Record.size() && OpNum + 3 != Record.size()))
4964         return error("Invalid record");
4965 
4966       if (!isa<PointerType>(Op->getType()))
4967         return error("Load operand is not a pointer type");
4968 
4969       Type *Ty = nullptr;
4970       if (OpNum + 3 == Record.size()) {
4971         Ty = getTypeByID(Record[OpNum++]);
4972       } else {
4973         Ty = cast<PointerType>(Op->getType())->getElementType();
4974       }
4975 
4976       if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType()))
4977         return Err;
4978 
4979       MaybeAlign Align;
4980       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
4981         return Err;
4982       SmallPtrSet<Type *, 4> Visited;
4983       if (!Align && !Ty->isSized(&Visited))
4984         return error("load of unsized type");
4985       if (!Align)
4986         Align = TheModule->getDataLayout().getABITypeAlign(Ty);
4987       I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align);
4988       InstructionList.push_back(I);
4989       break;
4990     }
4991     case bitc::FUNC_CODE_INST_LOADATOMIC: {
4992        // LOADATOMIC: [opty, op, align, vol, ordering, ssid]
4993       unsigned OpNum = 0;
4994       Value *Op;
4995       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
4996           (OpNum + 4 != Record.size() && OpNum + 5 != Record.size()))
4997         return error("Invalid record");
4998 
4999       if (!isa<PointerType>(Op->getType()))
5000         return error("Load operand is not a pointer type");
5001 
5002       Type *Ty = nullptr;
5003       if (OpNum + 5 == Record.size()) {
5004         Ty = getTypeByID(Record[OpNum++]);
5005       } else {
5006         Ty = cast<PointerType>(Op->getType())->getElementType();
5007       }
5008 
5009       if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType()))
5010         return Err;
5011 
5012       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
5013       if (Ordering == AtomicOrdering::NotAtomic ||
5014           Ordering == AtomicOrdering::Release ||
5015           Ordering == AtomicOrdering::AcquireRelease)
5016         return error("Invalid record");
5017       if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
5018         return error("Invalid record");
5019       SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
5020 
5021       MaybeAlign Align;
5022       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
5023         return Err;
5024       if (!Align)
5025         return error("Alignment missing from atomic load");
5026       I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align, Ordering, SSID);
5027       InstructionList.push_back(I);
5028       break;
5029     }
5030     case bitc::FUNC_CODE_INST_STORE:
5031     case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol]
5032       unsigned OpNum = 0;
5033       Value *Val, *Ptr;
5034       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
5035           (BitCode == bitc::FUNC_CODE_INST_STORE
5036                ? getValueTypePair(Record, OpNum, NextValueNo, Val)
5037                : popValue(Record, OpNum, NextValueNo,
5038                           cast<PointerType>(Ptr->getType())->getElementType(),
5039                           Val)) ||
5040           OpNum + 2 != Record.size())
5041         return error("Invalid record");
5042 
5043       if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
5044         return Err;
5045       MaybeAlign Align;
5046       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
5047         return Err;
5048       SmallPtrSet<Type *, 4> Visited;
5049       if (!Align && !Val->getType()->isSized(&Visited))
5050         return error("store of unsized type");
5051       if (!Align)
5052         Align = TheModule->getDataLayout().getABITypeAlign(Val->getType());
5053       I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align);
5054       InstructionList.push_back(I);
5055       break;
5056     }
5057     case bitc::FUNC_CODE_INST_STOREATOMIC:
5058     case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: {
5059       // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, ssid]
5060       unsigned OpNum = 0;
5061       Value *Val, *Ptr;
5062       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
5063           !isa<PointerType>(Ptr->getType()) ||
5064           (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC
5065                ? getValueTypePair(Record, OpNum, NextValueNo, Val)
5066                : popValue(Record, OpNum, NextValueNo,
5067                           cast<PointerType>(Ptr->getType())->getElementType(),
5068                           Val)) ||
5069           OpNum + 4 != Record.size())
5070         return error("Invalid record");
5071 
5072       if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
5073         return Err;
5074       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
5075       if (Ordering == AtomicOrdering::NotAtomic ||
5076           Ordering == AtomicOrdering::Acquire ||
5077           Ordering == AtomicOrdering::AcquireRelease)
5078         return error("Invalid record");
5079       SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
5080       if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
5081         return error("Invalid record");
5082 
5083       MaybeAlign Align;
5084       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
5085         return Err;
5086       if (!Align)
5087         return error("Alignment missing from atomic store");
5088       I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align, Ordering, SSID);
5089       InstructionList.push_back(I);
5090       break;
5091     }
5092     case bitc::FUNC_CODE_INST_CMPXCHG_OLD: {
5093       // CMPXCHG_OLD: [ptrty, ptr, cmp, val, vol, ordering, synchscope,
5094       // failure_ordering?, weak?]
5095       const size_t NumRecords = Record.size();
5096       unsigned OpNum = 0;
5097       Value *Ptr = nullptr;
5098       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr))
5099         return error("Invalid record");
5100 
5101       if (!isa<PointerType>(Ptr->getType()))
5102         return error("Cmpxchg operand is not a pointer type");
5103 
5104       Value *Cmp = nullptr;
5105       if (popValue(Record, OpNum, NextValueNo,
5106                    cast<PointerType>(Ptr->getType())->getPointerElementType(),
5107                    Cmp))
5108         return error("Invalid record");
5109 
5110       Value *New = nullptr;
5111       if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) ||
5112           NumRecords < OpNum + 3 || NumRecords > OpNum + 5)
5113         return error("Invalid record");
5114 
5115       const AtomicOrdering SuccessOrdering =
5116           getDecodedOrdering(Record[OpNum + 1]);
5117       if (SuccessOrdering == AtomicOrdering::NotAtomic ||
5118           SuccessOrdering == AtomicOrdering::Unordered)
5119         return error("Invalid record");
5120 
5121       const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]);
5122 
5123       if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType()))
5124         return Err;
5125 
5126       const AtomicOrdering FailureOrdering =
5127           NumRecords < 7
5128               ? AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering)
5129               : getDecodedOrdering(Record[OpNum + 3]);
5130 
5131       if (FailureOrdering == AtomicOrdering::NotAtomic ||
5132           FailureOrdering == AtomicOrdering::Unordered)
5133         return error("Invalid record");
5134 
5135       const Align Alignment(
5136           TheModule->getDataLayout().getTypeStoreSize(Cmp->getType()));
5137 
5138       I = new AtomicCmpXchgInst(Ptr, Cmp, New, Alignment, SuccessOrdering,
5139                                 FailureOrdering, SSID);
5140       cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]);
5141 
5142       if (NumRecords < 8) {
5143         // Before weak cmpxchgs existed, the instruction simply returned the
5144         // value loaded from memory, so bitcode files from that era will be
5145         // expecting the first component of a modern cmpxchg.
5146         CurBB->getInstList().push_back(I);
5147         I = ExtractValueInst::Create(I, 0);
5148       } else {
5149         cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum + 4]);
5150       }
5151 
5152       InstructionList.push_back(I);
5153       break;
5154     }
5155     case bitc::FUNC_CODE_INST_CMPXCHG: {
5156       // CMPXCHG: [ptrty, ptr, cmp, val, vol, success_ordering, synchscope,
5157       // failure_ordering, weak, align?]
5158       const size_t NumRecords = Record.size();
5159       unsigned OpNum = 0;
5160       Value *Ptr = nullptr;
5161       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr))
5162         return error("Invalid record");
5163 
5164       if (!isa<PointerType>(Ptr->getType()))
5165         return error("Cmpxchg operand is not a pointer type");
5166 
5167       Value *Cmp = nullptr;
5168       if (getValueTypePair(Record, OpNum, NextValueNo, Cmp))
5169         return error("Invalid record");
5170 
5171       Value *Val = nullptr;
5172       if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), Val))
5173         return error("Invalid record");
5174 
5175       if (NumRecords < OpNum + 3 || NumRecords > OpNum + 6)
5176         return error("Invalid record");
5177 
5178       const bool IsVol = Record[OpNum];
5179 
5180       const AtomicOrdering SuccessOrdering =
5181           getDecodedOrdering(Record[OpNum + 1]);
5182       if (!AtomicCmpXchgInst::isValidSuccessOrdering(SuccessOrdering))
5183         return error("Invalid cmpxchg success ordering");
5184 
5185       const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]);
5186 
5187       if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType()))
5188         return Err;
5189 
5190       const AtomicOrdering FailureOrdering =
5191           getDecodedOrdering(Record[OpNum + 3]);
5192       if (!AtomicCmpXchgInst::isValidFailureOrdering(FailureOrdering))
5193         return error("Invalid cmpxchg failure ordering");
5194 
5195       const bool IsWeak = Record[OpNum + 4];
5196 
5197       MaybeAlign Alignment;
5198 
5199       if (NumRecords == (OpNum + 6)) {
5200         if (Error Err = parseAlignmentValue(Record[OpNum + 5], Alignment))
5201           return Err;
5202       }
5203       if (!Alignment)
5204         Alignment =
5205             Align(TheModule->getDataLayout().getTypeStoreSize(Cmp->getType()));
5206 
5207       I = new AtomicCmpXchgInst(Ptr, Cmp, Val, *Alignment, SuccessOrdering,
5208                                 FailureOrdering, SSID);
5209       cast<AtomicCmpXchgInst>(I)->setVolatile(IsVol);
5210       cast<AtomicCmpXchgInst>(I)->setWeak(IsWeak);
5211 
5212       InstructionList.push_back(I);
5213       break;
5214     }
5215     case bitc::FUNC_CODE_INST_ATOMICRMW_OLD:
5216     case bitc::FUNC_CODE_INST_ATOMICRMW: {
5217       // ATOMICRMW_OLD: [ptrty, ptr, val, op, vol, ordering, ssid, align?]
5218       // ATOMICRMW: [ptrty, ptr, valty, val, op, vol, ordering, ssid, align?]
5219       const size_t NumRecords = Record.size();
5220       unsigned OpNum = 0;
5221 
5222       Value *Ptr = nullptr;
5223       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr))
5224         return error("Invalid record");
5225 
5226       if (!isa<PointerType>(Ptr->getType()))
5227         return error("Invalid record");
5228 
5229       Value *Val = nullptr;
5230       if (BitCode == bitc::FUNC_CODE_INST_ATOMICRMW_OLD) {
5231         if (popValue(Record, OpNum, NextValueNo,
5232                      cast<PointerType>(Ptr->getType())->getPointerElementType(),
5233                      Val))
5234           return error("Invalid record");
5235       } else {
5236         if (getValueTypePair(Record, OpNum, NextValueNo, Val))
5237           return error("Invalid record");
5238       }
5239 
5240       if (!(NumRecords == (OpNum + 4) || NumRecords == (OpNum + 5)))
5241         return error("Invalid record");
5242 
5243       const AtomicRMWInst::BinOp Operation =
5244           getDecodedRMWOperation(Record[OpNum]);
5245       if (Operation < AtomicRMWInst::FIRST_BINOP ||
5246           Operation > AtomicRMWInst::LAST_BINOP)
5247         return error("Invalid record");
5248 
5249       const bool IsVol = Record[OpNum + 1];
5250 
5251       const AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
5252       if (Ordering == AtomicOrdering::NotAtomic ||
5253           Ordering == AtomicOrdering::Unordered)
5254         return error("Invalid record");
5255 
5256       const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
5257 
5258       MaybeAlign Alignment;
5259 
5260       if (NumRecords == (OpNum + 5)) {
5261         if (Error Err = parseAlignmentValue(Record[OpNum + 4], Alignment))
5262           return Err;
5263       }
5264 
5265       if (!Alignment)
5266         Alignment =
5267             Align(TheModule->getDataLayout().getTypeStoreSize(Val->getType()));
5268 
5269       I = new AtomicRMWInst(Operation, Ptr, Val, *Alignment, Ordering, SSID);
5270       cast<AtomicRMWInst>(I)->setVolatile(IsVol);
5271 
5272       InstructionList.push_back(I);
5273       break;
5274     }
5275     case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, ssid]
5276       if (2 != Record.size())
5277         return error("Invalid record");
5278       AtomicOrdering Ordering = getDecodedOrdering(Record[0]);
5279       if (Ordering == AtomicOrdering::NotAtomic ||
5280           Ordering == AtomicOrdering::Unordered ||
5281           Ordering == AtomicOrdering::Monotonic)
5282         return error("Invalid record");
5283       SyncScope::ID SSID = getDecodedSyncScopeID(Record[1]);
5284       I = new FenceInst(Context, Ordering, SSID);
5285       InstructionList.push_back(I);
5286       break;
5287     }
5288     case bitc::FUNC_CODE_INST_CALL: {
5289       // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...]
5290       if (Record.size() < 3)
5291         return error("Invalid record");
5292 
5293       unsigned OpNum = 0;
5294       AttributeList PAL = getAttributes(Record[OpNum++]);
5295       unsigned CCInfo = Record[OpNum++];
5296 
5297       FastMathFlags FMF;
5298       if ((CCInfo >> bitc::CALL_FMF) & 1) {
5299         FMF = getDecodedFastMathFlags(Record[OpNum++]);
5300         if (!FMF.any())
5301           return error("Fast math flags indicator set for call with no FMF");
5302       }
5303 
5304       FunctionType *FTy = nullptr;
5305       if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) {
5306         FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++]));
5307         if (!FTy)
5308           return error("Explicit call type is not a function type");
5309       }
5310 
5311       Value *Callee;
5312       if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
5313         return error("Invalid record");
5314 
5315       PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
5316       if (!OpTy)
5317         return error("Callee is not a pointer type");
5318       if (!FTy) {
5319         FTy = dyn_cast<FunctionType>(
5320             cast<PointerType>(Callee->getType())->getElementType());
5321         if (!FTy)
5322           return error("Callee is not of pointer to function type");
5323       } else if (!OpTy->isOpaqueOrPointeeTypeMatches(FTy))
5324         return error("Explicit call type does not match pointee type of "
5325                      "callee operand");
5326       if (Record.size() < FTy->getNumParams() + OpNum)
5327         return error("Insufficient operands to call");
5328 
5329       SmallVector<Value*, 16> Args;
5330       SmallVector<Type *, 16> ArgsTys;
5331       // Read the fixed params.
5332       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
5333         if (FTy->getParamType(i)->isLabelTy())
5334           Args.push_back(getBasicBlock(Record[OpNum]));
5335         else
5336           Args.push_back(getValue(Record, OpNum, NextValueNo,
5337                                   FTy->getParamType(i)));
5338         ArgsTys.push_back(FTy->getParamType(i));
5339         if (!Args.back())
5340           return error("Invalid record");
5341       }
5342 
5343       // Read type/value pairs for varargs params.
5344       if (!FTy->isVarArg()) {
5345         if (OpNum != Record.size())
5346           return error("Invalid record");
5347       } else {
5348         while (OpNum != Record.size()) {
5349           Value *Op;
5350           if (getValueTypePair(Record, OpNum, NextValueNo, Op))
5351             return error("Invalid record");
5352           Args.push_back(Op);
5353           ArgsTys.push_back(Op->getType());
5354         }
5355       }
5356 
5357       I = CallInst::Create(FTy, Callee, Args, OperandBundles);
5358       OperandBundles.clear();
5359       InstructionList.push_back(I);
5360       cast<CallInst>(I)->setCallingConv(
5361           static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV));
5362       CallInst::TailCallKind TCK = CallInst::TCK_None;
5363       if (CCInfo & 1 << bitc::CALL_TAIL)
5364         TCK = CallInst::TCK_Tail;
5365       if (CCInfo & (1 << bitc::CALL_MUSTTAIL))
5366         TCK = CallInst::TCK_MustTail;
5367       if (CCInfo & (1 << bitc::CALL_NOTAIL))
5368         TCK = CallInst::TCK_NoTail;
5369       cast<CallInst>(I)->setTailCallKind(TCK);
5370       cast<CallInst>(I)->setAttributes(PAL);
5371       propagateAttributeTypes(cast<CallBase>(I), ArgsTys);
5372       if (FMF.any()) {
5373         if (!isa<FPMathOperator>(I))
5374           return error("Fast-math-flags specified for call without "
5375                        "floating-point scalar or vector return type");
5376         I->setFastMathFlags(FMF);
5377       }
5378       break;
5379     }
5380     case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty]
5381       if (Record.size() < 3)
5382         return error("Invalid record");
5383       Type *OpTy = getTypeByID(Record[0]);
5384       Value *Op = getValue(Record, 1, NextValueNo, OpTy);
5385       Type *ResTy = getTypeByID(Record[2]);
5386       if (!OpTy || !Op || !ResTy)
5387         return error("Invalid record");
5388       I = new VAArgInst(Op, ResTy);
5389       InstructionList.push_back(I);
5390       break;
5391     }
5392 
5393     case bitc::FUNC_CODE_OPERAND_BUNDLE: {
5394       // A call or an invoke can be optionally prefixed with some variable
5395       // number of operand bundle blocks.  These blocks are read into
5396       // OperandBundles and consumed at the next call or invoke instruction.
5397 
5398       if (Record.empty() || Record[0] >= BundleTags.size())
5399         return error("Invalid record");
5400 
5401       std::vector<Value *> Inputs;
5402 
5403       unsigned OpNum = 1;
5404       while (OpNum != Record.size()) {
5405         Value *Op;
5406         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
5407           return error("Invalid record");
5408         Inputs.push_back(Op);
5409       }
5410 
5411       OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs));
5412       continue;
5413     }
5414 
5415     case bitc::FUNC_CODE_INST_FREEZE: { // FREEZE: [opty,opval]
5416       unsigned OpNum = 0;
5417       Value *Op = nullptr;
5418       if (getValueTypePair(Record, OpNum, NextValueNo, Op))
5419         return error("Invalid record");
5420       if (OpNum != Record.size())
5421         return error("Invalid record");
5422 
5423       I = new FreezeInst(Op);
5424       InstructionList.push_back(I);
5425       break;
5426     }
5427     }
5428 
5429     // Add instruction to end of current BB.  If there is no current BB, reject
5430     // this file.
5431     if (!CurBB) {
5432       I->deleteValue();
5433       return error("Invalid instruction with no BB");
5434     }
5435     if (!OperandBundles.empty()) {
5436       I->deleteValue();
5437       return error("Operand bundles found with no consumer");
5438     }
5439     CurBB->getInstList().push_back(I);
5440 
5441     // If this was a terminator instruction, move to the next block.
5442     if (I->isTerminator()) {
5443       ++CurBBNo;
5444       CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr;
5445     }
5446 
5447     // Non-void values get registered in the value table for future use.
5448     if (!I->getType()->isVoidTy())
5449       ValueList.assignValue(I, NextValueNo++);
5450   }
5451 
5452 OutOfRecordLoop:
5453 
5454   if (!OperandBundles.empty())
5455     return error("Operand bundles found with no consumer");
5456 
5457   // Check the function list for unresolved values.
5458   if (Argument *A = dyn_cast<Argument>(ValueList.back())) {
5459     if (!A->getParent()) {
5460       // We found at least one unresolved value.  Nuke them all to avoid leaks.
5461       for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){
5462         if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) {
5463           A->replaceAllUsesWith(UndefValue::get(A->getType()));
5464           delete A;
5465         }
5466       }
5467       return error("Never resolved value found in function");
5468     }
5469   }
5470 
5471   // Unexpected unresolved metadata about to be dropped.
5472   if (MDLoader->hasFwdRefs())
5473     return error("Invalid function metadata: outgoing forward refs");
5474 
5475   // Trim the value list down to the size it was before we parsed this function.
5476   ValueList.shrinkTo(ModuleValueListSize);
5477   MDLoader->shrinkTo(ModuleMDLoaderSize);
5478   std::vector<BasicBlock*>().swap(FunctionBBs);
5479   return Error::success();
5480 }
5481 
5482 /// Find the function body in the bitcode stream
5483 Error BitcodeReader::findFunctionInStream(
5484     Function *F,
5485     DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) {
5486   while (DeferredFunctionInfoIterator->second == 0) {
5487     // This is the fallback handling for the old format bitcode that
5488     // didn't contain the function index in the VST, or when we have
5489     // an anonymous function which would not have a VST entry.
5490     // Assert that we have one of those two cases.
5491     assert(VSTOffset == 0 || !F->hasName());
5492     // Parse the next body in the stream and set its position in the
5493     // DeferredFunctionInfo map.
5494     if (Error Err = rememberAndSkipFunctionBodies())
5495       return Err;
5496   }
5497   return Error::success();
5498 }
5499 
5500 SyncScope::ID BitcodeReader::getDecodedSyncScopeID(unsigned Val) {
5501   if (Val == SyncScope::SingleThread || Val == SyncScope::System)
5502     return SyncScope::ID(Val);
5503   if (Val >= SSIDs.size())
5504     return SyncScope::System; // Map unknown synchronization scopes to system.
5505   return SSIDs[Val];
5506 }
5507 
5508 //===----------------------------------------------------------------------===//
5509 // GVMaterializer implementation
5510 //===----------------------------------------------------------------------===//
5511 
5512 Error BitcodeReader::materialize(GlobalValue *GV) {
5513   Function *F = dyn_cast<Function>(GV);
5514   // If it's not a function or is already material, ignore the request.
5515   if (!F || !F->isMaterializable())
5516     return Error::success();
5517 
5518   DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F);
5519   assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!");
5520   // If its position is recorded as 0, its body is somewhere in the stream
5521   // but we haven't seen it yet.
5522   if (DFII->second == 0)
5523     if (Error Err = findFunctionInStream(F, DFII))
5524       return Err;
5525 
5526   // Materialize metadata before parsing any function bodies.
5527   if (Error Err = materializeMetadata())
5528     return Err;
5529 
5530   // Move the bit stream to the saved position of the deferred function body.
5531   if (Error JumpFailed = Stream.JumpToBit(DFII->second))
5532     return JumpFailed;
5533   if (Error Err = parseFunctionBody(F))
5534     return Err;
5535   F->setIsMaterializable(false);
5536 
5537   if (StripDebugInfo)
5538     stripDebugInfo(*F);
5539 
5540   // Upgrade any old intrinsic calls in the function.
5541   for (auto &I : UpgradedIntrinsics) {
5542     for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end();
5543          UI != UE;) {
5544       User *U = *UI;
5545       ++UI;
5546       if (CallInst *CI = dyn_cast<CallInst>(U))
5547         UpgradeIntrinsicCall(CI, I.second);
5548     }
5549   }
5550 
5551   // Update calls to the remangled intrinsics
5552   for (auto &I : RemangledIntrinsics)
5553     for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end();
5554          UI != UE;)
5555       // Don't expect any other users than call sites
5556       cast<CallBase>(*UI++)->setCalledFunction(I.second);
5557 
5558   // Finish fn->subprogram upgrade for materialized functions.
5559   if (DISubprogram *SP = MDLoader->lookupSubprogramForFunction(F))
5560     F->setSubprogram(SP);
5561 
5562   // Check if the TBAA Metadata are valid, otherwise we will need to strip them.
5563   if (!MDLoader->isStrippingTBAA()) {
5564     for (auto &I : instructions(F)) {
5565       MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa);
5566       if (!TBAA || TBAAVerifyHelper.visitTBAAMetadata(I, TBAA))
5567         continue;
5568       MDLoader->setStripTBAA(true);
5569       stripTBAA(F->getParent());
5570     }
5571   }
5572 
5573   for (auto &I : instructions(F)) {
5574     // "Upgrade" older incorrect branch weights by dropping them.
5575     if (auto *MD = I.getMetadata(LLVMContext::MD_prof)) {
5576       if (MD->getOperand(0) != nullptr && isa<MDString>(MD->getOperand(0))) {
5577         MDString *MDS = cast<MDString>(MD->getOperand(0));
5578         StringRef ProfName = MDS->getString();
5579         // Check consistency of !prof branch_weights metadata.
5580         if (!ProfName.equals("branch_weights"))
5581           continue;
5582         unsigned ExpectedNumOperands = 0;
5583         if (BranchInst *BI = dyn_cast<BranchInst>(&I))
5584           ExpectedNumOperands = BI->getNumSuccessors();
5585         else if (SwitchInst *SI = dyn_cast<SwitchInst>(&I))
5586           ExpectedNumOperands = SI->getNumSuccessors();
5587         else if (isa<CallInst>(&I))
5588           ExpectedNumOperands = 1;
5589         else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(&I))
5590           ExpectedNumOperands = IBI->getNumDestinations();
5591         else if (isa<SelectInst>(&I))
5592           ExpectedNumOperands = 2;
5593         else
5594           continue; // ignore and continue.
5595 
5596         // If branch weight doesn't match, just strip branch weight.
5597         if (MD->getNumOperands() != 1 + ExpectedNumOperands)
5598           I.setMetadata(LLVMContext::MD_prof, nullptr);
5599       }
5600     }
5601 
5602     // Remove incompatible attributes on function calls.
5603     if (auto *CI = dyn_cast<CallBase>(&I)) {
5604       CI->removeRetAttrs(AttributeFuncs::typeIncompatible(
5605           CI->getFunctionType()->getReturnType()));
5606 
5607       for (unsigned ArgNo = 0; ArgNo < CI->arg_size(); ++ArgNo)
5608         CI->removeParamAttrs(ArgNo, AttributeFuncs::typeIncompatible(
5609                                         CI->getArgOperand(ArgNo)->getType()));
5610     }
5611   }
5612 
5613   // Look for functions that rely on old function attribute behavior.
5614   UpgradeFunctionAttributes(*F);
5615 
5616   // Bring in any functions that this function forward-referenced via
5617   // blockaddresses.
5618   return materializeForwardReferencedFunctions();
5619 }
5620 
5621 Error BitcodeReader::materializeModule() {
5622   if (Error Err = materializeMetadata())
5623     return Err;
5624 
5625   // Promise to materialize all forward references.
5626   WillMaterializeAllForwardRefs = true;
5627 
5628   // Iterate over the module, deserializing any functions that are still on
5629   // disk.
5630   for (Function &F : *TheModule) {
5631     if (Error Err = materialize(&F))
5632       return Err;
5633   }
5634   // At this point, if there are any function bodies, parse the rest of
5635   // the bits in the module past the last function block we have recorded
5636   // through either lazy scanning or the VST.
5637   if (LastFunctionBlockBit || NextUnreadBit)
5638     if (Error Err = parseModule(LastFunctionBlockBit > NextUnreadBit
5639                                     ? LastFunctionBlockBit
5640                                     : NextUnreadBit))
5641       return Err;
5642 
5643   // Check that all block address forward references got resolved (as we
5644   // promised above).
5645   if (!BasicBlockFwdRefs.empty())
5646     return error("Never resolved function from blockaddress");
5647 
5648   // Upgrade any intrinsic calls that slipped through (should not happen!) and
5649   // delete the old functions to clean up. We can't do this unless the entire
5650   // module is materialized because there could always be another function body
5651   // with calls to the old function.
5652   for (auto &I : UpgradedIntrinsics) {
5653     for (auto *U : I.first->users()) {
5654       if (CallInst *CI = dyn_cast<CallInst>(U))
5655         UpgradeIntrinsicCall(CI, I.second);
5656     }
5657     if (!I.first->use_empty())
5658       I.first->replaceAllUsesWith(I.second);
5659     I.first->eraseFromParent();
5660   }
5661   UpgradedIntrinsics.clear();
5662   // Do the same for remangled intrinsics
5663   for (auto &I : RemangledIntrinsics) {
5664     I.first->replaceAllUsesWith(I.second);
5665     I.first->eraseFromParent();
5666   }
5667   RemangledIntrinsics.clear();
5668 
5669   UpgradeDebugInfo(*TheModule);
5670 
5671   UpgradeModuleFlags(*TheModule);
5672 
5673   UpgradeARCRuntime(*TheModule);
5674 
5675   return Error::success();
5676 }
5677 
5678 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const {
5679   return IdentifiedStructTypes;
5680 }
5681 
5682 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader(
5683     BitstreamCursor Cursor, StringRef Strtab, ModuleSummaryIndex &TheIndex,
5684     StringRef ModulePath, unsigned ModuleId)
5685     : BitcodeReaderBase(std::move(Cursor), Strtab), TheIndex(TheIndex),
5686       ModulePath(ModulePath), ModuleId(ModuleId) {}
5687 
5688 void ModuleSummaryIndexBitcodeReader::addThisModule() {
5689   TheIndex.addModule(ModulePath, ModuleId);
5690 }
5691 
5692 ModuleSummaryIndex::ModuleInfo *
5693 ModuleSummaryIndexBitcodeReader::getThisModule() {
5694   return TheIndex.getModule(ModulePath);
5695 }
5696 
5697 std::pair<ValueInfo, GlobalValue::GUID>
5698 ModuleSummaryIndexBitcodeReader::getValueInfoFromValueId(unsigned ValueId) {
5699   auto VGI = ValueIdToValueInfoMap[ValueId];
5700   assert(VGI.first);
5701   return VGI;
5702 }
5703 
5704 void ModuleSummaryIndexBitcodeReader::setValueGUID(
5705     uint64_t ValueID, StringRef ValueName, GlobalValue::LinkageTypes Linkage,
5706     StringRef SourceFileName) {
5707   std::string GlobalId =
5708       GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName);
5709   auto ValueGUID = GlobalValue::getGUID(GlobalId);
5710   auto OriginalNameID = ValueGUID;
5711   if (GlobalValue::isLocalLinkage(Linkage))
5712     OriginalNameID = GlobalValue::getGUID(ValueName);
5713   if (PrintSummaryGUIDs)
5714     dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is "
5715            << ValueName << "\n";
5716 
5717   // UseStrtab is false for legacy summary formats and value names are
5718   // created on stack. In that case we save the name in a string saver in
5719   // the index so that the value name can be recorded.
5720   ValueIdToValueInfoMap[ValueID] = std::make_pair(
5721       TheIndex.getOrInsertValueInfo(
5722           ValueGUID,
5723           UseStrtab ? ValueName : TheIndex.saveString(ValueName)),
5724       OriginalNameID);
5725 }
5726 
5727 // Specialized value symbol table parser used when reading module index
5728 // blocks where we don't actually create global values. The parsed information
5729 // is saved in the bitcode reader for use when later parsing summaries.
5730 Error ModuleSummaryIndexBitcodeReader::parseValueSymbolTable(
5731     uint64_t Offset,
5732     DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) {
5733   // With a strtab the VST is not required to parse the summary.
5734   if (UseStrtab)
5735     return Error::success();
5736 
5737   assert(Offset > 0 && "Expected non-zero VST offset");
5738   Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream);
5739   if (!MaybeCurrentBit)
5740     return MaybeCurrentBit.takeError();
5741   uint64_t CurrentBit = MaybeCurrentBit.get();
5742 
5743   if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
5744     return Err;
5745 
5746   SmallVector<uint64_t, 64> Record;
5747 
5748   // Read all the records for this value table.
5749   SmallString<128> ValueName;
5750 
5751   while (true) {
5752     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
5753     if (!MaybeEntry)
5754       return MaybeEntry.takeError();
5755     BitstreamEntry Entry = MaybeEntry.get();
5756 
5757     switch (Entry.Kind) {
5758     case BitstreamEntry::SubBlock: // Handled for us already.
5759     case BitstreamEntry::Error:
5760       return error("Malformed block");
5761     case BitstreamEntry::EndBlock:
5762       // Done parsing VST, jump back to wherever we came from.
5763       if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
5764         return JumpFailed;
5765       return Error::success();
5766     case BitstreamEntry::Record:
5767       // The interesting case.
5768       break;
5769     }
5770 
5771     // Read a record.
5772     Record.clear();
5773     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
5774     if (!MaybeRecord)
5775       return MaybeRecord.takeError();
5776     switch (MaybeRecord.get()) {
5777     default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records).
5778       break;
5779     case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N]
5780       if (convertToString(Record, 1, ValueName))
5781         return error("Invalid record");
5782       unsigned ValueID = Record[0];
5783       assert(!SourceFileName.empty());
5784       auto VLI = ValueIdToLinkageMap.find(ValueID);
5785       assert(VLI != ValueIdToLinkageMap.end() &&
5786              "No linkage found for VST entry?");
5787       auto Linkage = VLI->second;
5788       setValueGUID(ValueID, ValueName, Linkage, SourceFileName);
5789       ValueName.clear();
5790       break;
5791     }
5792     case bitc::VST_CODE_FNENTRY: {
5793       // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
5794       if (convertToString(Record, 2, ValueName))
5795         return error("Invalid record");
5796       unsigned ValueID = Record[0];
5797       assert(!SourceFileName.empty());
5798       auto VLI = ValueIdToLinkageMap.find(ValueID);
5799       assert(VLI != ValueIdToLinkageMap.end() &&
5800              "No linkage found for VST entry?");
5801       auto Linkage = VLI->second;
5802       setValueGUID(ValueID, ValueName, Linkage, SourceFileName);
5803       ValueName.clear();
5804       break;
5805     }
5806     case bitc::VST_CODE_COMBINED_ENTRY: {
5807       // VST_CODE_COMBINED_ENTRY: [valueid, refguid]
5808       unsigned ValueID = Record[0];
5809       GlobalValue::GUID RefGUID = Record[1];
5810       // The "original name", which is the second value of the pair will be
5811       // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index.
5812       ValueIdToValueInfoMap[ValueID] =
5813           std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID);
5814       break;
5815     }
5816     }
5817   }
5818 }
5819 
5820 // Parse just the blocks needed for building the index out of the module.
5821 // At the end of this routine the module Index is populated with a map
5822 // from global value id to GlobalValueSummary objects.
5823 Error ModuleSummaryIndexBitcodeReader::parseModule() {
5824   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
5825     return Err;
5826 
5827   SmallVector<uint64_t, 64> Record;
5828   DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap;
5829   unsigned ValueId = 0;
5830 
5831   // Read the index for this module.
5832   while (true) {
5833     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
5834     if (!MaybeEntry)
5835       return MaybeEntry.takeError();
5836     llvm::BitstreamEntry Entry = MaybeEntry.get();
5837 
5838     switch (Entry.Kind) {
5839     case BitstreamEntry::Error:
5840       return error("Malformed block");
5841     case BitstreamEntry::EndBlock:
5842       return Error::success();
5843 
5844     case BitstreamEntry::SubBlock:
5845       switch (Entry.ID) {
5846       default: // Skip unknown content.
5847         if (Error Err = Stream.SkipBlock())
5848           return Err;
5849         break;
5850       case bitc::BLOCKINFO_BLOCK_ID:
5851         // Need to parse these to get abbrev ids (e.g. for VST)
5852         if (readBlockInfo())
5853           return error("Malformed block");
5854         break;
5855       case bitc::VALUE_SYMTAB_BLOCK_ID:
5856         // Should have been parsed earlier via VSTOffset, unless there
5857         // is no summary section.
5858         assert(((SeenValueSymbolTable && VSTOffset > 0) ||
5859                 !SeenGlobalValSummary) &&
5860                "Expected early VST parse via VSTOffset record");
5861         if (Error Err = Stream.SkipBlock())
5862           return Err;
5863         break;
5864       case bitc::GLOBALVAL_SUMMARY_BLOCK_ID:
5865       case bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID:
5866         // Add the module if it is a per-module index (has a source file name).
5867         if (!SourceFileName.empty())
5868           addThisModule();
5869         assert(!SeenValueSymbolTable &&
5870                "Already read VST when parsing summary block?");
5871         // We might not have a VST if there were no values in the
5872         // summary. An empty summary block generated when we are
5873         // performing ThinLTO compiles so we don't later invoke
5874         // the regular LTO process on them.
5875         if (VSTOffset > 0) {
5876           if (Error Err = parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap))
5877             return Err;
5878           SeenValueSymbolTable = true;
5879         }
5880         SeenGlobalValSummary = true;
5881         if (Error Err = parseEntireSummary(Entry.ID))
5882           return Err;
5883         break;
5884       case bitc::MODULE_STRTAB_BLOCK_ID:
5885         if (Error Err = parseModuleStringTable())
5886           return Err;
5887         break;
5888       }
5889       continue;
5890 
5891     case BitstreamEntry::Record: {
5892         Record.clear();
5893         Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
5894         if (!MaybeBitCode)
5895           return MaybeBitCode.takeError();
5896         switch (MaybeBitCode.get()) {
5897         default:
5898           break; // Default behavior, ignore unknown content.
5899         case bitc::MODULE_CODE_VERSION: {
5900           if (Error Err = parseVersionRecord(Record).takeError())
5901             return Err;
5902           break;
5903         }
5904         /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
5905         case bitc::MODULE_CODE_SOURCE_FILENAME: {
5906           SmallString<128> ValueName;
5907           if (convertToString(Record, 0, ValueName))
5908             return error("Invalid record");
5909           SourceFileName = ValueName.c_str();
5910           break;
5911         }
5912         /// MODULE_CODE_HASH: [5*i32]
5913         case bitc::MODULE_CODE_HASH: {
5914           if (Record.size() != 5)
5915             return error("Invalid hash length " + Twine(Record.size()).str());
5916           auto &Hash = getThisModule()->second.second;
5917           int Pos = 0;
5918           for (auto &Val : Record) {
5919             assert(!(Val >> 32) && "Unexpected high bits set");
5920             Hash[Pos++] = Val;
5921           }
5922           break;
5923         }
5924         /// MODULE_CODE_VSTOFFSET: [offset]
5925         case bitc::MODULE_CODE_VSTOFFSET:
5926           if (Record.empty())
5927             return error("Invalid record");
5928           // Note that we subtract 1 here because the offset is relative to one
5929           // word before the start of the identification or module block, which
5930           // was historically always the start of the regular bitcode header.
5931           VSTOffset = Record[0] - 1;
5932           break;
5933         // v1 GLOBALVAR: [pointer type, isconst,     initid,       linkage, ...]
5934         // v1 FUNCTION:  [type,         callingconv, isproto,      linkage, ...]
5935         // v1 ALIAS:     [alias type,   addrspace,   aliasee val#, linkage, ...]
5936         // v2: [strtab offset, strtab size, v1]
5937         case bitc::MODULE_CODE_GLOBALVAR:
5938         case bitc::MODULE_CODE_FUNCTION:
5939         case bitc::MODULE_CODE_ALIAS: {
5940           StringRef Name;
5941           ArrayRef<uint64_t> GVRecord;
5942           std::tie(Name, GVRecord) = readNameFromStrtab(Record);
5943           if (GVRecord.size() <= 3)
5944             return error("Invalid record");
5945           uint64_t RawLinkage = GVRecord[3];
5946           GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
5947           if (!UseStrtab) {
5948             ValueIdToLinkageMap[ValueId++] = Linkage;
5949             break;
5950           }
5951 
5952           setValueGUID(ValueId++, Name, Linkage, SourceFileName);
5953           break;
5954         }
5955         }
5956       }
5957       continue;
5958     }
5959   }
5960 }
5961 
5962 std::vector<ValueInfo>
5963 ModuleSummaryIndexBitcodeReader::makeRefList(ArrayRef<uint64_t> Record) {
5964   std::vector<ValueInfo> Ret;
5965   Ret.reserve(Record.size());
5966   for (uint64_t RefValueId : Record)
5967     Ret.push_back(getValueInfoFromValueId(RefValueId).first);
5968   return Ret;
5969 }
5970 
5971 std::vector<FunctionSummary::EdgeTy>
5972 ModuleSummaryIndexBitcodeReader::makeCallList(ArrayRef<uint64_t> Record,
5973                                               bool IsOldProfileFormat,
5974                                               bool HasProfile, bool HasRelBF) {
5975   std::vector<FunctionSummary::EdgeTy> Ret;
5976   Ret.reserve(Record.size());
5977   for (unsigned I = 0, E = Record.size(); I != E; ++I) {
5978     CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown;
5979     uint64_t RelBF = 0;
5980     ValueInfo Callee = getValueInfoFromValueId(Record[I]).first;
5981     if (IsOldProfileFormat) {
5982       I += 1; // Skip old callsitecount field
5983       if (HasProfile)
5984         I += 1; // Skip old profilecount field
5985     } else if (HasProfile)
5986       Hotness = static_cast<CalleeInfo::HotnessType>(Record[++I]);
5987     else if (HasRelBF)
5988       RelBF = Record[++I];
5989     Ret.push_back(FunctionSummary::EdgeTy{Callee, CalleeInfo(Hotness, RelBF)});
5990   }
5991   return Ret;
5992 }
5993 
5994 static void
5995 parseWholeProgramDevirtResolutionByArg(ArrayRef<uint64_t> Record, size_t &Slot,
5996                                        WholeProgramDevirtResolution &Wpd) {
5997   uint64_t ArgNum = Record[Slot++];
5998   WholeProgramDevirtResolution::ByArg &B =
5999       Wpd.ResByArg[{Record.begin() + Slot, Record.begin() + Slot + ArgNum}];
6000   Slot += ArgNum;
6001 
6002   B.TheKind =
6003       static_cast<WholeProgramDevirtResolution::ByArg::Kind>(Record[Slot++]);
6004   B.Info = Record[Slot++];
6005   B.Byte = Record[Slot++];
6006   B.Bit = Record[Slot++];
6007 }
6008 
6009 static void parseWholeProgramDevirtResolution(ArrayRef<uint64_t> Record,
6010                                               StringRef Strtab, size_t &Slot,
6011                                               TypeIdSummary &TypeId) {
6012   uint64_t Id = Record[Slot++];
6013   WholeProgramDevirtResolution &Wpd = TypeId.WPDRes[Id];
6014 
6015   Wpd.TheKind = static_cast<WholeProgramDevirtResolution::Kind>(Record[Slot++]);
6016   Wpd.SingleImplName = {Strtab.data() + Record[Slot],
6017                         static_cast<size_t>(Record[Slot + 1])};
6018   Slot += 2;
6019 
6020   uint64_t ResByArgNum = Record[Slot++];
6021   for (uint64_t I = 0; I != ResByArgNum; ++I)
6022     parseWholeProgramDevirtResolutionByArg(Record, Slot, Wpd);
6023 }
6024 
6025 static void parseTypeIdSummaryRecord(ArrayRef<uint64_t> Record,
6026                                      StringRef Strtab,
6027                                      ModuleSummaryIndex &TheIndex) {
6028   size_t Slot = 0;
6029   TypeIdSummary &TypeId = TheIndex.getOrInsertTypeIdSummary(
6030       {Strtab.data() + Record[Slot], static_cast<size_t>(Record[Slot + 1])});
6031   Slot += 2;
6032 
6033   TypeId.TTRes.TheKind = static_cast<TypeTestResolution::Kind>(Record[Slot++]);
6034   TypeId.TTRes.SizeM1BitWidth = Record[Slot++];
6035   TypeId.TTRes.AlignLog2 = Record[Slot++];
6036   TypeId.TTRes.SizeM1 = Record[Slot++];
6037   TypeId.TTRes.BitMask = Record[Slot++];
6038   TypeId.TTRes.InlineBits = Record[Slot++];
6039 
6040   while (Slot < Record.size())
6041     parseWholeProgramDevirtResolution(Record, Strtab, Slot, TypeId);
6042 }
6043 
6044 std::vector<FunctionSummary::ParamAccess>
6045 ModuleSummaryIndexBitcodeReader::parseParamAccesses(ArrayRef<uint64_t> Record) {
6046   auto ReadRange = [&]() {
6047     APInt Lower(FunctionSummary::ParamAccess::RangeWidth,
6048                 BitcodeReader::decodeSignRotatedValue(Record.front()));
6049     Record = Record.drop_front();
6050     APInt Upper(FunctionSummary::ParamAccess::RangeWidth,
6051                 BitcodeReader::decodeSignRotatedValue(Record.front()));
6052     Record = Record.drop_front();
6053     ConstantRange Range{Lower, Upper};
6054     assert(!Range.isFullSet());
6055     assert(!Range.isUpperSignWrapped());
6056     return Range;
6057   };
6058 
6059   std::vector<FunctionSummary::ParamAccess> PendingParamAccesses;
6060   while (!Record.empty()) {
6061     PendingParamAccesses.emplace_back();
6062     FunctionSummary::ParamAccess &ParamAccess = PendingParamAccesses.back();
6063     ParamAccess.ParamNo = Record.front();
6064     Record = Record.drop_front();
6065     ParamAccess.Use = ReadRange();
6066     ParamAccess.Calls.resize(Record.front());
6067     Record = Record.drop_front();
6068     for (auto &Call : ParamAccess.Calls) {
6069       Call.ParamNo = Record.front();
6070       Record = Record.drop_front();
6071       Call.Callee = getValueInfoFromValueId(Record.front()).first;
6072       Record = Record.drop_front();
6073       Call.Offsets = ReadRange();
6074     }
6075   }
6076   return PendingParamAccesses;
6077 }
6078 
6079 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableInfo(
6080     ArrayRef<uint64_t> Record, size_t &Slot,
6081     TypeIdCompatibleVtableInfo &TypeId) {
6082   uint64_t Offset = Record[Slot++];
6083   ValueInfo Callee = getValueInfoFromValueId(Record[Slot++]).first;
6084   TypeId.push_back({Offset, Callee});
6085 }
6086 
6087 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableSummaryRecord(
6088     ArrayRef<uint64_t> Record) {
6089   size_t Slot = 0;
6090   TypeIdCompatibleVtableInfo &TypeId =
6091       TheIndex.getOrInsertTypeIdCompatibleVtableSummary(
6092           {Strtab.data() + Record[Slot],
6093            static_cast<size_t>(Record[Slot + 1])});
6094   Slot += 2;
6095 
6096   while (Slot < Record.size())
6097     parseTypeIdCompatibleVtableInfo(Record, Slot, TypeId);
6098 }
6099 
6100 static void setSpecialRefs(std::vector<ValueInfo> &Refs, unsigned ROCnt,
6101                            unsigned WOCnt) {
6102   // Readonly and writeonly refs are in the end of the refs list.
6103   assert(ROCnt + WOCnt <= Refs.size());
6104   unsigned FirstWORef = Refs.size() - WOCnt;
6105   unsigned RefNo = FirstWORef - ROCnt;
6106   for (; RefNo < FirstWORef; ++RefNo)
6107     Refs[RefNo].setReadOnly();
6108   for (; RefNo < Refs.size(); ++RefNo)
6109     Refs[RefNo].setWriteOnly();
6110 }
6111 
6112 // Eagerly parse the entire summary block. This populates the GlobalValueSummary
6113 // objects in the index.
6114 Error ModuleSummaryIndexBitcodeReader::parseEntireSummary(unsigned ID) {
6115   if (Error Err = Stream.EnterSubBlock(ID))
6116     return Err;
6117   SmallVector<uint64_t, 64> Record;
6118 
6119   // Parse version
6120   {
6121     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
6122     if (!MaybeEntry)
6123       return MaybeEntry.takeError();
6124     BitstreamEntry Entry = MaybeEntry.get();
6125 
6126     if (Entry.Kind != BitstreamEntry::Record)
6127       return error("Invalid Summary Block: record for version expected");
6128     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
6129     if (!MaybeRecord)
6130       return MaybeRecord.takeError();
6131     if (MaybeRecord.get() != bitc::FS_VERSION)
6132       return error("Invalid Summary Block: version expected");
6133   }
6134   const uint64_t Version = Record[0];
6135   const bool IsOldProfileFormat = Version == 1;
6136   if (Version < 1 || Version > ModuleSummaryIndex::BitcodeSummaryVersion)
6137     return error("Invalid summary version " + Twine(Version) +
6138                  ". Version should be in the range [1-" +
6139                  Twine(ModuleSummaryIndex::BitcodeSummaryVersion) +
6140                  "].");
6141   Record.clear();
6142 
6143   // Keep around the last seen summary to be used when we see an optional
6144   // "OriginalName" attachement.
6145   GlobalValueSummary *LastSeenSummary = nullptr;
6146   GlobalValue::GUID LastSeenGUID = 0;
6147 
6148   // We can expect to see any number of type ID information records before
6149   // each function summary records; these variables store the information
6150   // collected so far so that it can be used to create the summary object.
6151   std::vector<GlobalValue::GUID> PendingTypeTests;
6152   std::vector<FunctionSummary::VFuncId> PendingTypeTestAssumeVCalls,
6153       PendingTypeCheckedLoadVCalls;
6154   std::vector<FunctionSummary::ConstVCall> PendingTypeTestAssumeConstVCalls,
6155       PendingTypeCheckedLoadConstVCalls;
6156   std::vector<FunctionSummary::ParamAccess> PendingParamAccesses;
6157 
6158   while (true) {
6159     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
6160     if (!MaybeEntry)
6161       return MaybeEntry.takeError();
6162     BitstreamEntry Entry = MaybeEntry.get();
6163 
6164     switch (Entry.Kind) {
6165     case BitstreamEntry::SubBlock: // Handled for us already.
6166     case BitstreamEntry::Error:
6167       return error("Malformed block");
6168     case BitstreamEntry::EndBlock:
6169       return Error::success();
6170     case BitstreamEntry::Record:
6171       // The interesting case.
6172       break;
6173     }
6174 
6175     // Read a record. The record format depends on whether this
6176     // is a per-module index or a combined index file. In the per-module
6177     // case the records contain the associated value's ID for correlation
6178     // with VST entries. In the combined index the correlation is done
6179     // via the bitcode offset of the summary records (which were saved
6180     // in the combined index VST entries). The records also contain
6181     // information used for ThinLTO renaming and importing.
6182     Record.clear();
6183     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
6184     if (!MaybeBitCode)
6185       return MaybeBitCode.takeError();
6186     switch (unsigned BitCode = MaybeBitCode.get()) {
6187     default: // Default behavior: ignore.
6188       break;
6189     case bitc::FS_FLAGS: {  // [flags]
6190       TheIndex.setFlags(Record[0]);
6191       break;
6192     }
6193     case bitc::FS_VALUE_GUID: { // [valueid, refguid]
6194       uint64_t ValueID = Record[0];
6195       GlobalValue::GUID RefGUID = Record[1];
6196       ValueIdToValueInfoMap[ValueID] =
6197           std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID);
6198       break;
6199     }
6200     // FS_PERMODULE: [valueid, flags, instcount, fflags, numrefs,
6201     //                numrefs x valueid, n x (valueid)]
6202     // FS_PERMODULE_PROFILE: [valueid, flags, instcount, fflags, numrefs,
6203     //                        numrefs x valueid,
6204     //                        n x (valueid, hotness)]
6205     // FS_PERMODULE_RELBF: [valueid, flags, instcount, fflags, numrefs,
6206     //                      numrefs x valueid,
6207     //                      n x (valueid, relblockfreq)]
6208     case bitc::FS_PERMODULE:
6209     case bitc::FS_PERMODULE_RELBF:
6210     case bitc::FS_PERMODULE_PROFILE: {
6211       unsigned ValueID = Record[0];
6212       uint64_t RawFlags = Record[1];
6213       unsigned InstCount = Record[2];
6214       uint64_t RawFunFlags = 0;
6215       unsigned NumRefs = Record[3];
6216       unsigned NumRORefs = 0, NumWORefs = 0;
6217       int RefListStartIndex = 4;
6218       if (Version >= 4) {
6219         RawFunFlags = Record[3];
6220         NumRefs = Record[4];
6221         RefListStartIndex = 5;
6222         if (Version >= 5) {
6223           NumRORefs = Record[5];
6224           RefListStartIndex = 6;
6225           if (Version >= 7) {
6226             NumWORefs = Record[6];
6227             RefListStartIndex = 7;
6228           }
6229         }
6230       }
6231 
6232       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6233       // The module path string ref set in the summary must be owned by the
6234       // index's module string table. Since we don't have a module path
6235       // string table section in the per-module index, we create a single
6236       // module path string table entry with an empty (0) ID to take
6237       // ownership.
6238       int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
6239       assert(Record.size() >= RefListStartIndex + NumRefs &&
6240              "Record size inconsistent with number of references");
6241       std::vector<ValueInfo> Refs = makeRefList(
6242           ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
6243       bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE);
6244       bool HasRelBF = (BitCode == bitc::FS_PERMODULE_RELBF);
6245       std::vector<FunctionSummary::EdgeTy> Calls = makeCallList(
6246           ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex),
6247           IsOldProfileFormat, HasProfile, HasRelBF);
6248       setSpecialRefs(Refs, NumRORefs, NumWORefs);
6249       auto FS = std::make_unique<FunctionSummary>(
6250           Flags, InstCount, getDecodedFFlags(RawFunFlags), /*EntryCount=*/0,
6251           std::move(Refs), std::move(Calls), std::move(PendingTypeTests),
6252           std::move(PendingTypeTestAssumeVCalls),
6253           std::move(PendingTypeCheckedLoadVCalls),
6254           std::move(PendingTypeTestAssumeConstVCalls),
6255           std::move(PendingTypeCheckedLoadConstVCalls),
6256           std::move(PendingParamAccesses));
6257       auto VIAndOriginalGUID = getValueInfoFromValueId(ValueID);
6258       FS->setModulePath(getThisModule()->first());
6259       FS->setOriginalName(VIAndOriginalGUID.second);
6260       TheIndex.addGlobalValueSummary(VIAndOriginalGUID.first, std::move(FS));
6261       break;
6262     }
6263     // FS_ALIAS: [valueid, flags, valueid]
6264     // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as
6265     // they expect all aliasee summaries to be available.
6266     case bitc::FS_ALIAS: {
6267       unsigned ValueID = Record[0];
6268       uint64_t RawFlags = Record[1];
6269       unsigned AliaseeID = Record[2];
6270       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6271       auto AS = std::make_unique<AliasSummary>(Flags);
6272       // The module path string ref set in the summary must be owned by the
6273       // index's module string table. Since we don't have a module path
6274       // string table section in the per-module index, we create a single
6275       // module path string table entry with an empty (0) ID to take
6276       // ownership.
6277       AS->setModulePath(getThisModule()->first());
6278 
6279       auto AliaseeVI = getValueInfoFromValueId(AliaseeID).first;
6280       auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, ModulePath);
6281       if (!AliaseeInModule)
6282         return error("Alias expects aliasee summary to be parsed");
6283       AS->setAliasee(AliaseeVI, AliaseeInModule);
6284 
6285       auto GUID = getValueInfoFromValueId(ValueID);
6286       AS->setOriginalName(GUID.second);
6287       TheIndex.addGlobalValueSummary(GUID.first, std::move(AS));
6288       break;
6289     }
6290     // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, n x valueid]
6291     case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: {
6292       unsigned ValueID = Record[0];
6293       uint64_t RawFlags = Record[1];
6294       unsigned RefArrayStart = 2;
6295       GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false,
6296                                       /* WriteOnly */ false,
6297                                       /* Constant */ false,
6298                                       GlobalObject::VCallVisibilityPublic);
6299       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6300       if (Version >= 5) {
6301         GVF = getDecodedGVarFlags(Record[2]);
6302         RefArrayStart = 3;
6303       }
6304       std::vector<ValueInfo> Refs =
6305           makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart));
6306       auto FS =
6307           std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
6308       FS->setModulePath(getThisModule()->first());
6309       auto GUID = getValueInfoFromValueId(ValueID);
6310       FS->setOriginalName(GUID.second);
6311       TheIndex.addGlobalValueSummary(GUID.first, std::move(FS));
6312       break;
6313     }
6314     // FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags,
6315     //                        numrefs, numrefs x valueid,
6316     //                        n x (valueid, offset)]
6317     case bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: {
6318       unsigned ValueID = Record[0];
6319       uint64_t RawFlags = Record[1];
6320       GlobalVarSummary::GVarFlags GVF = getDecodedGVarFlags(Record[2]);
6321       unsigned NumRefs = Record[3];
6322       unsigned RefListStartIndex = 4;
6323       unsigned VTableListStartIndex = RefListStartIndex + NumRefs;
6324       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6325       std::vector<ValueInfo> Refs = makeRefList(
6326           ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
6327       VTableFuncList VTableFuncs;
6328       for (unsigned I = VTableListStartIndex, E = Record.size(); I != E; ++I) {
6329         ValueInfo Callee = getValueInfoFromValueId(Record[I]).first;
6330         uint64_t Offset = Record[++I];
6331         VTableFuncs.push_back({Callee, Offset});
6332       }
6333       auto VS =
6334           std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
6335       VS->setModulePath(getThisModule()->first());
6336       VS->setVTableFuncs(VTableFuncs);
6337       auto GUID = getValueInfoFromValueId(ValueID);
6338       VS->setOriginalName(GUID.second);
6339       TheIndex.addGlobalValueSummary(GUID.first, std::move(VS));
6340       break;
6341     }
6342     // FS_COMBINED: [valueid, modid, flags, instcount, fflags, numrefs,
6343     //               numrefs x valueid, n x (valueid)]
6344     // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, fflags, numrefs,
6345     //                       numrefs x valueid, n x (valueid, hotness)]
6346     case bitc::FS_COMBINED:
6347     case bitc::FS_COMBINED_PROFILE: {
6348       unsigned ValueID = Record[0];
6349       uint64_t ModuleId = Record[1];
6350       uint64_t RawFlags = Record[2];
6351       unsigned InstCount = Record[3];
6352       uint64_t RawFunFlags = 0;
6353       uint64_t EntryCount = 0;
6354       unsigned NumRefs = Record[4];
6355       unsigned NumRORefs = 0, NumWORefs = 0;
6356       int RefListStartIndex = 5;
6357 
6358       if (Version >= 4) {
6359         RawFunFlags = Record[4];
6360         RefListStartIndex = 6;
6361         size_t NumRefsIndex = 5;
6362         if (Version >= 5) {
6363           unsigned NumRORefsOffset = 1;
6364           RefListStartIndex = 7;
6365           if (Version >= 6) {
6366             NumRefsIndex = 6;
6367             EntryCount = Record[5];
6368             RefListStartIndex = 8;
6369             if (Version >= 7) {
6370               RefListStartIndex = 9;
6371               NumWORefs = Record[8];
6372               NumRORefsOffset = 2;
6373             }
6374           }
6375           NumRORefs = Record[RefListStartIndex - NumRORefsOffset];
6376         }
6377         NumRefs = Record[NumRefsIndex];
6378       }
6379 
6380       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6381       int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
6382       assert(Record.size() >= RefListStartIndex + NumRefs &&
6383              "Record size inconsistent with number of references");
6384       std::vector<ValueInfo> Refs = makeRefList(
6385           ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
6386       bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE);
6387       std::vector<FunctionSummary::EdgeTy> Edges = makeCallList(
6388           ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex),
6389           IsOldProfileFormat, HasProfile, false);
6390       ValueInfo VI = getValueInfoFromValueId(ValueID).first;
6391       setSpecialRefs(Refs, NumRORefs, NumWORefs);
6392       auto FS = std::make_unique<FunctionSummary>(
6393           Flags, InstCount, getDecodedFFlags(RawFunFlags), EntryCount,
6394           std::move(Refs), std::move(Edges), std::move(PendingTypeTests),
6395           std::move(PendingTypeTestAssumeVCalls),
6396           std::move(PendingTypeCheckedLoadVCalls),
6397           std::move(PendingTypeTestAssumeConstVCalls),
6398           std::move(PendingTypeCheckedLoadConstVCalls),
6399           std::move(PendingParamAccesses));
6400       LastSeenSummary = FS.get();
6401       LastSeenGUID = VI.getGUID();
6402       FS->setModulePath(ModuleIdMap[ModuleId]);
6403       TheIndex.addGlobalValueSummary(VI, std::move(FS));
6404       break;
6405     }
6406     // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid]
6407     // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as
6408     // they expect all aliasee summaries to be available.
6409     case bitc::FS_COMBINED_ALIAS: {
6410       unsigned ValueID = Record[0];
6411       uint64_t ModuleId = Record[1];
6412       uint64_t RawFlags = Record[2];
6413       unsigned AliaseeValueId = Record[3];
6414       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6415       auto AS = std::make_unique<AliasSummary>(Flags);
6416       LastSeenSummary = AS.get();
6417       AS->setModulePath(ModuleIdMap[ModuleId]);
6418 
6419       auto AliaseeVI = getValueInfoFromValueId(AliaseeValueId).first;
6420       auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, AS->modulePath());
6421       AS->setAliasee(AliaseeVI, AliaseeInModule);
6422 
6423       ValueInfo VI = getValueInfoFromValueId(ValueID).first;
6424       LastSeenGUID = VI.getGUID();
6425       TheIndex.addGlobalValueSummary(VI, std::move(AS));
6426       break;
6427     }
6428     // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid]
6429     case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: {
6430       unsigned ValueID = Record[0];
6431       uint64_t ModuleId = Record[1];
6432       uint64_t RawFlags = Record[2];
6433       unsigned RefArrayStart = 3;
6434       GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false,
6435                                       /* WriteOnly */ false,
6436                                       /* Constant */ false,
6437                                       GlobalObject::VCallVisibilityPublic);
6438       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6439       if (Version >= 5) {
6440         GVF = getDecodedGVarFlags(Record[3]);
6441         RefArrayStart = 4;
6442       }
6443       std::vector<ValueInfo> Refs =
6444           makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart));
6445       auto FS =
6446           std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
6447       LastSeenSummary = FS.get();
6448       FS->setModulePath(ModuleIdMap[ModuleId]);
6449       ValueInfo VI = getValueInfoFromValueId(ValueID).first;
6450       LastSeenGUID = VI.getGUID();
6451       TheIndex.addGlobalValueSummary(VI, std::move(FS));
6452       break;
6453     }
6454     // FS_COMBINED_ORIGINAL_NAME: [original_name]
6455     case bitc::FS_COMBINED_ORIGINAL_NAME: {
6456       uint64_t OriginalName = Record[0];
6457       if (!LastSeenSummary)
6458         return error("Name attachment that does not follow a combined record");
6459       LastSeenSummary->setOriginalName(OriginalName);
6460       TheIndex.addOriginalName(LastSeenGUID, OriginalName);
6461       // Reset the LastSeenSummary
6462       LastSeenSummary = nullptr;
6463       LastSeenGUID = 0;
6464       break;
6465     }
6466     case bitc::FS_TYPE_TESTS:
6467       assert(PendingTypeTests.empty());
6468       llvm::append_range(PendingTypeTests, Record);
6469       break;
6470 
6471     case bitc::FS_TYPE_TEST_ASSUME_VCALLS:
6472       assert(PendingTypeTestAssumeVCalls.empty());
6473       for (unsigned I = 0; I != Record.size(); I += 2)
6474         PendingTypeTestAssumeVCalls.push_back({Record[I], Record[I+1]});
6475       break;
6476 
6477     case bitc::FS_TYPE_CHECKED_LOAD_VCALLS:
6478       assert(PendingTypeCheckedLoadVCalls.empty());
6479       for (unsigned I = 0; I != Record.size(); I += 2)
6480         PendingTypeCheckedLoadVCalls.push_back({Record[I], Record[I+1]});
6481       break;
6482 
6483     case bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL:
6484       PendingTypeTestAssumeConstVCalls.push_back(
6485           {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}});
6486       break;
6487 
6488     case bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL:
6489       PendingTypeCheckedLoadConstVCalls.push_back(
6490           {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}});
6491       break;
6492 
6493     case bitc::FS_CFI_FUNCTION_DEFS: {
6494       std::set<std::string> &CfiFunctionDefs = TheIndex.cfiFunctionDefs();
6495       for (unsigned I = 0; I != Record.size(); I += 2)
6496         CfiFunctionDefs.insert(
6497             {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])});
6498       break;
6499     }
6500 
6501     case bitc::FS_CFI_FUNCTION_DECLS: {
6502       std::set<std::string> &CfiFunctionDecls = TheIndex.cfiFunctionDecls();
6503       for (unsigned I = 0; I != Record.size(); I += 2)
6504         CfiFunctionDecls.insert(
6505             {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])});
6506       break;
6507     }
6508 
6509     case bitc::FS_TYPE_ID:
6510       parseTypeIdSummaryRecord(Record, Strtab, TheIndex);
6511       break;
6512 
6513     case bitc::FS_TYPE_ID_METADATA:
6514       parseTypeIdCompatibleVtableSummaryRecord(Record);
6515       break;
6516 
6517     case bitc::FS_BLOCK_COUNT:
6518       TheIndex.addBlockCount(Record[0]);
6519       break;
6520 
6521     case bitc::FS_PARAM_ACCESS: {
6522       PendingParamAccesses = parseParamAccesses(Record);
6523       break;
6524     }
6525     }
6526   }
6527   llvm_unreachable("Exit infinite loop");
6528 }
6529 
6530 // Parse the  module string table block into the Index.
6531 // This populates the ModulePathStringTable map in the index.
6532 Error ModuleSummaryIndexBitcodeReader::parseModuleStringTable() {
6533   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID))
6534     return Err;
6535 
6536   SmallVector<uint64_t, 64> Record;
6537 
6538   SmallString<128> ModulePath;
6539   ModuleSummaryIndex::ModuleInfo *LastSeenModule = nullptr;
6540 
6541   while (true) {
6542     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
6543     if (!MaybeEntry)
6544       return MaybeEntry.takeError();
6545     BitstreamEntry Entry = MaybeEntry.get();
6546 
6547     switch (Entry.Kind) {
6548     case BitstreamEntry::SubBlock: // Handled for us already.
6549     case BitstreamEntry::Error:
6550       return error("Malformed block");
6551     case BitstreamEntry::EndBlock:
6552       return Error::success();
6553     case BitstreamEntry::Record:
6554       // The interesting case.
6555       break;
6556     }
6557 
6558     Record.clear();
6559     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
6560     if (!MaybeRecord)
6561       return MaybeRecord.takeError();
6562     switch (MaybeRecord.get()) {
6563     default: // Default behavior: ignore.
6564       break;
6565     case bitc::MST_CODE_ENTRY: {
6566       // MST_ENTRY: [modid, namechar x N]
6567       uint64_t ModuleId = Record[0];
6568 
6569       if (convertToString(Record, 1, ModulePath))
6570         return error("Invalid record");
6571 
6572       LastSeenModule = TheIndex.addModule(ModulePath, ModuleId);
6573       ModuleIdMap[ModuleId] = LastSeenModule->first();
6574 
6575       ModulePath.clear();
6576       break;
6577     }
6578     /// MST_CODE_HASH: [5*i32]
6579     case bitc::MST_CODE_HASH: {
6580       if (Record.size() != 5)
6581         return error("Invalid hash length " + Twine(Record.size()).str());
6582       if (!LastSeenModule)
6583         return error("Invalid hash that does not follow a module path");
6584       int Pos = 0;
6585       for (auto &Val : Record) {
6586         assert(!(Val >> 32) && "Unexpected high bits set");
6587         LastSeenModule->second.second[Pos++] = Val;
6588       }
6589       // Reset LastSeenModule to avoid overriding the hash unexpectedly.
6590       LastSeenModule = nullptr;
6591       break;
6592     }
6593     }
6594   }
6595   llvm_unreachable("Exit infinite loop");
6596 }
6597 
6598 namespace {
6599 
6600 // FIXME: This class is only here to support the transition to llvm::Error. It
6601 // will be removed once this transition is complete. Clients should prefer to
6602 // deal with the Error value directly, rather than converting to error_code.
6603 class BitcodeErrorCategoryType : public std::error_category {
6604   const char *name() const noexcept override {
6605     return "llvm.bitcode";
6606   }
6607 
6608   std::string message(int IE) const override {
6609     BitcodeError E = static_cast<BitcodeError>(IE);
6610     switch (E) {
6611     case BitcodeError::CorruptedBitcode:
6612       return "Corrupted bitcode";
6613     }
6614     llvm_unreachable("Unknown error type!");
6615   }
6616 };
6617 
6618 } // end anonymous namespace
6619 
6620 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory;
6621 
6622 const std::error_category &llvm::BitcodeErrorCategory() {
6623   return *ErrorCategory;
6624 }
6625 
6626 static Expected<StringRef> readBlobInRecord(BitstreamCursor &Stream,
6627                                             unsigned Block, unsigned RecordID) {
6628   if (Error Err = Stream.EnterSubBlock(Block))
6629     return std::move(Err);
6630 
6631   StringRef Strtab;
6632   while (true) {
6633     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
6634     if (!MaybeEntry)
6635       return MaybeEntry.takeError();
6636     llvm::BitstreamEntry Entry = MaybeEntry.get();
6637 
6638     switch (Entry.Kind) {
6639     case BitstreamEntry::EndBlock:
6640       return Strtab;
6641 
6642     case BitstreamEntry::Error:
6643       return error("Malformed block");
6644 
6645     case BitstreamEntry::SubBlock:
6646       if (Error Err = Stream.SkipBlock())
6647         return std::move(Err);
6648       break;
6649 
6650     case BitstreamEntry::Record:
6651       StringRef Blob;
6652       SmallVector<uint64_t, 1> Record;
6653       Expected<unsigned> MaybeRecord =
6654           Stream.readRecord(Entry.ID, Record, &Blob);
6655       if (!MaybeRecord)
6656         return MaybeRecord.takeError();
6657       if (MaybeRecord.get() == RecordID)
6658         Strtab = Blob;
6659       break;
6660     }
6661   }
6662 }
6663 
6664 //===----------------------------------------------------------------------===//
6665 // External interface
6666 //===----------------------------------------------------------------------===//
6667 
6668 Expected<std::vector<BitcodeModule>>
6669 llvm::getBitcodeModuleList(MemoryBufferRef Buffer) {
6670   auto FOrErr = getBitcodeFileContents(Buffer);
6671   if (!FOrErr)
6672     return FOrErr.takeError();
6673   return std::move(FOrErr->Mods);
6674 }
6675 
6676 Expected<BitcodeFileContents>
6677 llvm::getBitcodeFileContents(MemoryBufferRef Buffer) {
6678   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
6679   if (!StreamOrErr)
6680     return StreamOrErr.takeError();
6681   BitstreamCursor &Stream = *StreamOrErr;
6682 
6683   BitcodeFileContents F;
6684   while (true) {
6685     uint64_t BCBegin = Stream.getCurrentByteNo();
6686 
6687     // We may be consuming bitcode from a client that leaves garbage at the end
6688     // of the bitcode stream (e.g. Apple's ar tool). If we are close enough to
6689     // the end that there cannot possibly be another module, stop looking.
6690     if (BCBegin + 8 >= Stream.getBitcodeBytes().size())
6691       return F;
6692 
6693     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
6694     if (!MaybeEntry)
6695       return MaybeEntry.takeError();
6696     llvm::BitstreamEntry Entry = MaybeEntry.get();
6697 
6698     switch (Entry.Kind) {
6699     case BitstreamEntry::EndBlock:
6700     case BitstreamEntry::Error:
6701       return error("Malformed block");
6702 
6703     case BitstreamEntry::SubBlock: {
6704       uint64_t IdentificationBit = -1ull;
6705       if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) {
6706         IdentificationBit = Stream.GetCurrentBitNo() - BCBegin * 8;
6707         if (Error Err = Stream.SkipBlock())
6708           return std::move(Err);
6709 
6710         {
6711           Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
6712           if (!MaybeEntry)
6713             return MaybeEntry.takeError();
6714           Entry = MaybeEntry.get();
6715         }
6716 
6717         if (Entry.Kind != BitstreamEntry::SubBlock ||
6718             Entry.ID != bitc::MODULE_BLOCK_ID)
6719           return error("Malformed block");
6720       }
6721 
6722       if (Entry.ID == bitc::MODULE_BLOCK_ID) {
6723         uint64_t ModuleBit = Stream.GetCurrentBitNo() - BCBegin * 8;
6724         if (Error Err = Stream.SkipBlock())
6725           return std::move(Err);
6726 
6727         F.Mods.push_back({Stream.getBitcodeBytes().slice(
6728                               BCBegin, Stream.getCurrentByteNo() - BCBegin),
6729                           Buffer.getBufferIdentifier(), IdentificationBit,
6730                           ModuleBit});
6731         continue;
6732       }
6733 
6734       if (Entry.ID == bitc::STRTAB_BLOCK_ID) {
6735         Expected<StringRef> Strtab =
6736             readBlobInRecord(Stream, bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB);
6737         if (!Strtab)
6738           return Strtab.takeError();
6739         // This string table is used by every preceding bitcode module that does
6740         // not have its own string table. A bitcode file may have multiple
6741         // string tables if it was created by binary concatenation, for example
6742         // with "llvm-cat -b".
6743         for (auto I = F.Mods.rbegin(), E = F.Mods.rend(); I != E; ++I) {
6744           if (!I->Strtab.empty())
6745             break;
6746           I->Strtab = *Strtab;
6747         }
6748         // Similarly, the string table is used by every preceding symbol table;
6749         // normally there will be just one unless the bitcode file was created
6750         // by binary concatenation.
6751         if (!F.Symtab.empty() && F.StrtabForSymtab.empty())
6752           F.StrtabForSymtab = *Strtab;
6753         continue;
6754       }
6755 
6756       if (Entry.ID == bitc::SYMTAB_BLOCK_ID) {
6757         Expected<StringRef> SymtabOrErr =
6758             readBlobInRecord(Stream, bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB);
6759         if (!SymtabOrErr)
6760           return SymtabOrErr.takeError();
6761 
6762         // We can expect the bitcode file to have multiple symbol tables if it
6763         // was created by binary concatenation. In that case we silently
6764         // ignore any subsequent symbol tables, which is fine because this is a
6765         // low level function. The client is expected to notice that the number
6766         // of modules in the symbol table does not match the number of modules
6767         // in the input file and regenerate the symbol table.
6768         if (F.Symtab.empty())
6769           F.Symtab = *SymtabOrErr;
6770         continue;
6771       }
6772 
6773       if (Error Err = Stream.SkipBlock())
6774         return std::move(Err);
6775       continue;
6776     }
6777     case BitstreamEntry::Record:
6778       if (Expected<unsigned> StreamFailed = Stream.skipRecord(Entry.ID))
6779         continue;
6780       else
6781         return StreamFailed.takeError();
6782     }
6783   }
6784 }
6785 
6786 /// Get a lazy one-at-time loading module from bitcode.
6787 ///
6788 /// This isn't always used in a lazy context.  In particular, it's also used by
6789 /// \a parseModule().  If this is truly lazy, then we need to eagerly pull
6790 /// in forward-referenced functions from block address references.
6791 ///
6792 /// \param[in] MaterializeAll Set to \c true if we should materialize
6793 /// everything.
6794 Expected<std::unique_ptr<Module>>
6795 BitcodeModule::getModuleImpl(LLVMContext &Context, bool MaterializeAll,
6796                              bool ShouldLazyLoadMetadata, bool IsImporting,
6797                              DataLayoutCallbackTy DataLayoutCallback) {
6798   BitstreamCursor Stream(Buffer);
6799 
6800   std::string ProducerIdentification;
6801   if (IdentificationBit != -1ull) {
6802     if (Error JumpFailed = Stream.JumpToBit(IdentificationBit))
6803       return std::move(JumpFailed);
6804     Expected<std::string> ProducerIdentificationOrErr =
6805         readIdentificationBlock(Stream);
6806     if (!ProducerIdentificationOrErr)
6807       return ProducerIdentificationOrErr.takeError();
6808 
6809     ProducerIdentification = *ProducerIdentificationOrErr;
6810   }
6811 
6812   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
6813     return std::move(JumpFailed);
6814   auto *R = new BitcodeReader(std::move(Stream), Strtab, ProducerIdentification,
6815                               Context);
6816 
6817   std::unique_ptr<Module> M =
6818       std::make_unique<Module>(ModuleIdentifier, Context);
6819   M->setMaterializer(R);
6820 
6821   // Delay parsing Metadata if ShouldLazyLoadMetadata is true.
6822   if (Error Err = R->parseBitcodeInto(M.get(), ShouldLazyLoadMetadata,
6823                                       IsImporting, DataLayoutCallback))
6824     return std::move(Err);
6825 
6826   if (MaterializeAll) {
6827     // Read in the entire module, and destroy the BitcodeReader.
6828     if (Error Err = M->materializeAll())
6829       return std::move(Err);
6830   } else {
6831     // Resolve forward references from blockaddresses.
6832     if (Error Err = R->materializeForwardReferencedFunctions())
6833       return std::move(Err);
6834   }
6835   return std::move(M);
6836 }
6837 
6838 Expected<std::unique_ptr<Module>>
6839 BitcodeModule::getLazyModule(LLVMContext &Context, bool ShouldLazyLoadMetadata,
6840                              bool IsImporting) {
6841   return getModuleImpl(Context, false, ShouldLazyLoadMetadata, IsImporting,
6842                        [](StringRef) { return None; });
6843 }
6844 
6845 // Parse the specified bitcode buffer and merge the index into CombinedIndex.
6846 // We don't use ModuleIdentifier here because the client may need to control the
6847 // module path used in the combined summary (e.g. when reading summaries for
6848 // regular LTO modules).
6849 Error BitcodeModule::readSummary(ModuleSummaryIndex &CombinedIndex,
6850                                  StringRef ModulePath, uint64_t ModuleId) {
6851   BitstreamCursor Stream(Buffer);
6852   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
6853     return JumpFailed;
6854 
6855   ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, CombinedIndex,
6856                                     ModulePath, ModuleId);
6857   return R.parseModule();
6858 }
6859 
6860 // Parse the specified bitcode buffer, returning the function info index.
6861 Expected<std::unique_ptr<ModuleSummaryIndex>> BitcodeModule::getSummary() {
6862   BitstreamCursor Stream(Buffer);
6863   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
6864     return std::move(JumpFailed);
6865 
6866   auto Index = std::make_unique<ModuleSummaryIndex>(/*HaveGVs=*/false);
6867   ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, *Index,
6868                                     ModuleIdentifier, 0);
6869 
6870   if (Error Err = R.parseModule())
6871     return std::move(Err);
6872 
6873   return std::move(Index);
6874 }
6875 
6876 static Expected<bool> getEnableSplitLTOUnitFlag(BitstreamCursor &Stream,
6877                                                 unsigned ID) {
6878   if (Error Err = Stream.EnterSubBlock(ID))
6879     return std::move(Err);
6880   SmallVector<uint64_t, 64> Record;
6881 
6882   while (true) {
6883     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
6884     if (!MaybeEntry)
6885       return MaybeEntry.takeError();
6886     BitstreamEntry Entry = MaybeEntry.get();
6887 
6888     switch (Entry.Kind) {
6889     case BitstreamEntry::SubBlock: // Handled for us already.
6890     case BitstreamEntry::Error:
6891       return error("Malformed block");
6892     case BitstreamEntry::EndBlock:
6893       // If no flags record found, conservatively return true to mimic
6894       // behavior before this flag was added.
6895       return true;
6896     case BitstreamEntry::Record:
6897       // The interesting case.
6898       break;
6899     }
6900 
6901     // Look for the FS_FLAGS record.
6902     Record.clear();
6903     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
6904     if (!MaybeBitCode)
6905       return MaybeBitCode.takeError();
6906     switch (MaybeBitCode.get()) {
6907     default: // Default behavior: ignore.
6908       break;
6909     case bitc::FS_FLAGS: { // [flags]
6910       uint64_t Flags = Record[0];
6911       // Scan flags.
6912       assert(Flags <= 0x7f && "Unexpected bits in flag");
6913 
6914       return Flags & 0x8;
6915     }
6916     }
6917   }
6918   llvm_unreachable("Exit infinite loop");
6919 }
6920 
6921 // Check if the given bitcode buffer contains a global value summary block.
6922 Expected<BitcodeLTOInfo> BitcodeModule::getLTOInfo() {
6923   BitstreamCursor Stream(Buffer);
6924   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
6925     return std::move(JumpFailed);
6926 
6927   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
6928     return std::move(Err);
6929 
6930   while (true) {
6931     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
6932     if (!MaybeEntry)
6933       return MaybeEntry.takeError();
6934     llvm::BitstreamEntry Entry = MaybeEntry.get();
6935 
6936     switch (Entry.Kind) {
6937     case BitstreamEntry::Error:
6938       return error("Malformed block");
6939     case BitstreamEntry::EndBlock:
6940       return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/false,
6941                             /*EnableSplitLTOUnit=*/false};
6942 
6943     case BitstreamEntry::SubBlock:
6944       if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) {
6945         Expected<bool> EnableSplitLTOUnit =
6946             getEnableSplitLTOUnitFlag(Stream, Entry.ID);
6947         if (!EnableSplitLTOUnit)
6948           return EnableSplitLTOUnit.takeError();
6949         return BitcodeLTOInfo{/*IsThinLTO=*/true, /*HasSummary=*/true,
6950                               *EnableSplitLTOUnit};
6951       }
6952 
6953       if (Entry.ID == bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID) {
6954         Expected<bool> EnableSplitLTOUnit =
6955             getEnableSplitLTOUnitFlag(Stream, Entry.ID);
6956         if (!EnableSplitLTOUnit)
6957           return EnableSplitLTOUnit.takeError();
6958         return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/true,
6959                               *EnableSplitLTOUnit};
6960       }
6961 
6962       // Ignore other sub-blocks.
6963       if (Error Err = Stream.SkipBlock())
6964         return std::move(Err);
6965       continue;
6966 
6967     case BitstreamEntry::Record:
6968       if (Expected<unsigned> StreamFailed = Stream.skipRecord(Entry.ID))
6969         continue;
6970       else
6971         return StreamFailed.takeError();
6972     }
6973   }
6974 }
6975 
6976 static Expected<BitcodeModule> getSingleModule(MemoryBufferRef Buffer) {
6977   Expected<std::vector<BitcodeModule>> MsOrErr = getBitcodeModuleList(Buffer);
6978   if (!MsOrErr)
6979     return MsOrErr.takeError();
6980 
6981   if (MsOrErr->size() != 1)
6982     return error("Expected a single module");
6983 
6984   return (*MsOrErr)[0];
6985 }
6986 
6987 Expected<std::unique_ptr<Module>>
6988 llvm::getLazyBitcodeModule(MemoryBufferRef Buffer, LLVMContext &Context,
6989                            bool ShouldLazyLoadMetadata, bool IsImporting) {
6990   Expected<BitcodeModule> BM = getSingleModule(Buffer);
6991   if (!BM)
6992     return BM.takeError();
6993 
6994   return BM->getLazyModule(Context, ShouldLazyLoadMetadata, IsImporting);
6995 }
6996 
6997 Expected<std::unique_ptr<Module>> llvm::getOwningLazyBitcodeModule(
6998     std::unique_ptr<MemoryBuffer> &&Buffer, LLVMContext &Context,
6999     bool ShouldLazyLoadMetadata, bool IsImporting) {
7000   auto MOrErr = getLazyBitcodeModule(*Buffer, Context, ShouldLazyLoadMetadata,
7001                                      IsImporting);
7002   if (MOrErr)
7003     (*MOrErr)->setOwnedMemoryBuffer(std::move(Buffer));
7004   return MOrErr;
7005 }
7006 
7007 Expected<std::unique_ptr<Module>>
7008 BitcodeModule::parseModule(LLVMContext &Context,
7009                            DataLayoutCallbackTy DataLayoutCallback) {
7010   return getModuleImpl(Context, true, false, false, DataLayoutCallback);
7011   // TODO: Restore the use-lists to the in-memory state when the bitcode was
7012   // written.  We must defer until the Module has been fully materialized.
7013 }
7014 
7015 Expected<std::unique_ptr<Module>>
7016 llvm::parseBitcodeFile(MemoryBufferRef Buffer, LLVMContext &Context,
7017                        DataLayoutCallbackTy DataLayoutCallback) {
7018   Expected<BitcodeModule> BM = getSingleModule(Buffer);
7019   if (!BM)
7020     return BM.takeError();
7021 
7022   return BM->parseModule(Context, DataLayoutCallback);
7023 }
7024 
7025 Expected<std::string> llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer) {
7026   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
7027   if (!StreamOrErr)
7028     return StreamOrErr.takeError();
7029 
7030   return readTriple(*StreamOrErr);
7031 }
7032 
7033 Expected<bool> llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer) {
7034   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
7035   if (!StreamOrErr)
7036     return StreamOrErr.takeError();
7037 
7038   return hasObjCCategory(*StreamOrErr);
7039 }
7040 
7041 Expected<std::string> llvm::getBitcodeProducerString(MemoryBufferRef Buffer) {
7042   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
7043   if (!StreamOrErr)
7044     return StreamOrErr.takeError();
7045 
7046   return readIdentificationCode(*StreamOrErr);
7047 }
7048 
7049 Error llvm::readModuleSummaryIndex(MemoryBufferRef Buffer,
7050                                    ModuleSummaryIndex &CombinedIndex,
7051                                    uint64_t ModuleId) {
7052   Expected<BitcodeModule> BM = getSingleModule(Buffer);
7053   if (!BM)
7054     return BM.takeError();
7055 
7056   return BM->readSummary(CombinedIndex, BM->getModuleIdentifier(), ModuleId);
7057 }
7058 
7059 Expected<std::unique_ptr<ModuleSummaryIndex>>
7060 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer) {
7061   Expected<BitcodeModule> BM = getSingleModule(Buffer);
7062   if (!BM)
7063     return BM.takeError();
7064 
7065   return BM->getSummary();
7066 }
7067 
7068 Expected<BitcodeLTOInfo> llvm::getBitcodeLTOInfo(MemoryBufferRef Buffer) {
7069   Expected<BitcodeModule> BM = getSingleModule(Buffer);
7070   if (!BM)
7071     return BM.takeError();
7072 
7073   return BM->getLTOInfo();
7074 }
7075 
7076 Expected<std::unique_ptr<ModuleSummaryIndex>>
7077 llvm::getModuleSummaryIndexForFile(StringRef Path,
7078                                    bool IgnoreEmptyThinLTOIndexFile) {
7079   ErrorOr<std::unique_ptr<MemoryBuffer>> FileOrErr =
7080       MemoryBuffer::getFileOrSTDIN(Path);
7081   if (!FileOrErr)
7082     return errorCodeToError(FileOrErr.getError());
7083   if (IgnoreEmptyThinLTOIndexFile && !(*FileOrErr)->getBufferSize())
7084     return nullptr;
7085   return getModuleSummaryIndex(**FileOrErr);
7086 }
7087