1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file was developed by Chris Lattner and is distributed under
6 // the University of Illinois Open Source License.  See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This header defines the BitcodeReader class.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Bitcode/ReaderWriter.h"
15 #include "BitcodeReader.h"
16 #include "llvm/Constants.h"
17 #include "llvm/DerivedTypes.h"
18 #include "llvm/Instructions.h"
19 #include "llvm/Module.h"
20 #include "llvm/ADT/SmallString.h"
21 #include "llvm/Support/MathExtras.h"
22 #include "llvm/Support/MemoryBuffer.h"
23 using namespace llvm;
24 
25 BitcodeReader::~BitcodeReader() {
26   delete Buffer;
27 }
28 
29 
30 /// ConvertToString - Convert a string from a record into an std::string, return
31 /// true on failure.
32 template<typename StrTy>
33 static bool ConvertToString(SmallVector<uint64_t, 64> &Record, unsigned Idx,
34                             StrTy &Result) {
35   if (Record.size() < Idx+1 || Record.size() < Record[Idx]+Idx+1)
36     return true;
37 
38   for (unsigned i = 0, e = Record[Idx]; i != e; ++i)
39     Result += (char)Record[Idx+i+1];
40   return false;
41 }
42 
43 static GlobalValue::LinkageTypes GetDecodedLinkage(unsigned Val) {
44   switch (Val) {
45   default: // Map unknown/new linkages to external
46   case 0: return GlobalValue::ExternalLinkage;
47   case 1: return GlobalValue::WeakLinkage;
48   case 2: return GlobalValue::AppendingLinkage;
49   case 3: return GlobalValue::InternalLinkage;
50   case 4: return GlobalValue::LinkOnceLinkage;
51   case 5: return GlobalValue::DLLImportLinkage;
52   case 6: return GlobalValue::DLLExportLinkage;
53   case 7: return GlobalValue::ExternalWeakLinkage;
54   }
55 }
56 
57 static GlobalValue::VisibilityTypes GetDecodedVisibility(unsigned Val) {
58   switch (Val) {
59   default: // Map unknown visibilities to default.
60   case 0: return GlobalValue::DefaultVisibility;
61   case 1: return GlobalValue::HiddenVisibility;
62   case 2: return GlobalValue::ProtectedVisibility;
63   }
64 }
65 
66 static int GetDecodedCastOpcode(unsigned Val) {
67   switch (Val) {
68   default: return -1;
69   case bitc::CAST_TRUNC   : return Instruction::Trunc;
70   case bitc::CAST_ZEXT    : return Instruction::ZExt;
71   case bitc::CAST_SEXT    : return Instruction::SExt;
72   case bitc::CAST_FPTOUI  : return Instruction::FPToUI;
73   case bitc::CAST_FPTOSI  : return Instruction::FPToSI;
74   case bitc::CAST_UITOFP  : return Instruction::UIToFP;
75   case bitc::CAST_SITOFP  : return Instruction::SIToFP;
76   case bitc::CAST_FPTRUNC : return Instruction::FPTrunc;
77   case bitc::CAST_FPEXT   : return Instruction::FPExt;
78   case bitc::CAST_PTRTOINT: return Instruction::PtrToInt;
79   case bitc::CAST_INTTOPTR: return Instruction::IntToPtr;
80   case bitc::CAST_BITCAST : return Instruction::BitCast;
81   }
82 }
83 static int GetDecodedBinaryOpcode(unsigned Val, const Type *Ty) {
84   switch (Val) {
85   default: return -1;
86   case bitc::BINOP_ADD:  return Instruction::Add;
87   case bitc::BINOP_SUB:  return Instruction::Sub;
88   case bitc::BINOP_MUL:  return Instruction::Mul;
89   case bitc::BINOP_UDIV: return Instruction::UDiv;
90   case bitc::BINOP_SDIV:
91     return Ty->isFPOrFPVector() ? Instruction::FDiv : Instruction::SDiv;
92   case bitc::BINOP_UREM: return Instruction::URem;
93   case bitc::BINOP_SREM:
94     return Ty->isFPOrFPVector() ? Instruction::FRem : Instruction::SRem;
95   case bitc::BINOP_SHL:  return Instruction::Shl;
96   case bitc::BINOP_LSHR: return Instruction::LShr;
97   case bitc::BINOP_ASHR: return Instruction::AShr;
98   case bitc::BINOP_AND:  return Instruction::And;
99   case bitc::BINOP_OR:   return Instruction::Or;
100   case bitc::BINOP_XOR:  return Instruction::Xor;
101   }
102 }
103 
104 
105 namespace {
106   /// @brief A class for maintaining the slot number definition
107   /// as a placeholder for the actual definition for forward constants defs.
108   class ConstantPlaceHolder : public ConstantExpr {
109     ConstantPlaceHolder();                       // DO NOT IMPLEMENT
110     void operator=(const ConstantPlaceHolder &); // DO NOT IMPLEMENT
111   public:
112     Use Op;
113     ConstantPlaceHolder(const Type *Ty)
114       : ConstantExpr(Ty, Instruction::UserOp1, &Op, 1),
115         Op(UndefValue::get(Type::Int32Ty), this) {
116     }
117   };
118 }
119 
120 Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx,
121                                                     const Type *Ty) {
122   if (Idx >= size()) {
123     // Insert a bunch of null values.
124     Uses.resize(Idx+1);
125     OperandList = &Uses[0];
126     NumOperands = Idx+1;
127   }
128 
129   if (Value *V = Uses[Idx]) {
130     assert(Ty == V->getType() && "Type mismatch in constant table!");
131     return cast<Constant>(V);
132   }
133 
134   // Create and return a placeholder, which will later be RAUW'd.
135   Constant *C = new ConstantPlaceHolder(Ty);
136   Uses[Idx].init(C, this);
137   return C;
138 }
139 
140 Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, const Type *Ty) {
141   if (Idx >= size()) {
142     // Insert a bunch of null values.
143     Uses.resize(Idx+1);
144     OperandList = &Uses[0];
145     NumOperands = Idx+1;
146   }
147 
148   if (Value *V = Uses[Idx]) {
149     assert((Ty == 0 || Ty == V->getType()) && "Type mismatch in value table!");
150     return V;
151   }
152 
153   // No type specified, must be invalid reference.
154   if (Ty == 0) return 0;
155 
156   // Create and return a placeholder, which will later be RAUW'd.
157   Value *V = new Argument(Ty);
158   Uses[Idx].init(V, this);
159   return V;
160 }
161 
162 
163 const Type *BitcodeReader::getTypeByID(unsigned ID, bool isTypeTable) {
164   // If the TypeID is in range, return it.
165   if (ID < TypeList.size())
166     return TypeList[ID].get();
167   if (!isTypeTable) return 0;
168 
169   // The type table allows forward references.  Push as many Opaque types as
170   // needed to get up to ID.
171   while (TypeList.size() <= ID)
172     TypeList.push_back(OpaqueType::get());
173   return TypeList.back().get();
174 }
175 
176 bool BitcodeReader::ParseTypeTable() {
177   if (Stream.EnterSubBlock())
178     return Error("Malformed block record");
179 
180   if (!TypeList.empty())
181     return Error("Multiple TYPE_BLOCKs found!");
182 
183   SmallVector<uint64_t, 64> Record;
184   unsigned NumRecords = 0;
185 
186   // Read all the records for this type table.
187   while (1) {
188     unsigned Code = Stream.ReadCode();
189     if (Code == bitc::END_BLOCK) {
190       if (NumRecords != TypeList.size())
191         return Error("Invalid type forward reference in TYPE_BLOCK");
192       if (Stream.ReadBlockEnd())
193         return Error("Error at end of type table block");
194       return false;
195     }
196 
197     if (Code == bitc::ENTER_SUBBLOCK) {
198       // No known subblocks, always skip them.
199       Stream.ReadSubBlockID();
200       if (Stream.SkipBlock())
201         return Error("Malformed block record");
202       continue;
203     }
204 
205     if (Code == bitc::DEFINE_ABBREV) {
206       Stream.ReadAbbrevRecord();
207       continue;
208     }
209 
210     // Read a record.
211     Record.clear();
212     const Type *ResultTy = 0;
213     switch (Stream.ReadRecord(Code, Record)) {
214     default:  // Default behavior: unknown type.
215       ResultTy = 0;
216       break;
217     case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
218       // TYPE_CODE_NUMENTRY contains a count of the number of types in the
219       // type list.  This allows us to reserve space.
220       if (Record.size() < 1)
221         return Error("Invalid TYPE_CODE_NUMENTRY record");
222       TypeList.reserve(Record[0]);
223       continue;
224     case bitc::TYPE_CODE_META:      // TYPE_CODE_META: [metacode]...
225       // No metadata supported yet.
226       if (Record.size() < 1)
227         return Error("Invalid TYPE_CODE_META record");
228       continue;
229 
230     case bitc::TYPE_CODE_VOID:      // VOID
231       ResultTy = Type::VoidTy;
232       break;
233     case bitc::TYPE_CODE_FLOAT:     // FLOAT
234       ResultTy = Type::FloatTy;
235       break;
236     case bitc::TYPE_CODE_DOUBLE:    // DOUBLE
237       ResultTy = Type::DoubleTy;
238       break;
239     case bitc::TYPE_CODE_LABEL:     // LABEL
240       ResultTy = Type::LabelTy;
241       break;
242     case bitc::TYPE_CODE_OPAQUE:    // OPAQUE
243       ResultTy = 0;
244       break;
245     case bitc::TYPE_CODE_INTEGER:   // INTEGER: [width]
246       if (Record.size() < 1)
247         return Error("Invalid Integer type record");
248 
249       ResultTy = IntegerType::get(Record[0]);
250       break;
251     case bitc::TYPE_CODE_POINTER:   // POINTER: [pointee type]
252       if (Record.size() < 1)
253         return Error("Invalid POINTER type record");
254       ResultTy = PointerType::get(getTypeByID(Record[0], true));
255       break;
256     case bitc::TYPE_CODE_FUNCTION: {
257       // FUNCTION: [vararg, retty, #pararms, paramty N]
258       if (Record.size() < 3 || Record.size() < Record[2]+3)
259         return Error("Invalid FUNCTION type record");
260       std::vector<const Type*> ArgTys;
261       for (unsigned i = 0, e = Record[2]; i != e; ++i)
262         ArgTys.push_back(getTypeByID(Record[3+i], true));
263 
264       // FIXME: PARAM TYS.
265       ResultTy = FunctionType::get(getTypeByID(Record[1], true), ArgTys,
266                                    Record[0]);
267       break;
268     }
269     case bitc::TYPE_CODE_STRUCT: {  // STRUCT: [ispacked, #elts, eltty x N]
270       if (Record.size() < 2 || Record.size() < Record[1]+2)
271         return Error("Invalid STRUCT type record");
272       std::vector<const Type*> EltTys;
273       for (unsigned i = 0, e = Record[1]; i != e; ++i)
274         EltTys.push_back(getTypeByID(Record[2+i], true));
275       ResultTy = StructType::get(EltTys, Record[0]);
276       break;
277     }
278     case bitc::TYPE_CODE_ARRAY:     // ARRAY: [numelts, eltty]
279       if (Record.size() < 2)
280         return Error("Invalid ARRAY type record");
281       ResultTy = ArrayType::get(getTypeByID(Record[1], true), Record[0]);
282       break;
283     case bitc::TYPE_CODE_VECTOR:    // VECTOR: [numelts, eltty]
284       if (Record.size() < 2)
285         return Error("Invalid VECTOR type record");
286       ResultTy = VectorType::get(getTypeByID(Record[1], true), Record[0]);
287       break;
288     }
289 
290     if (NumRecords == TypeList.size()) {
291       // If this is a new type slot, just append it.
292       TypeList.push_back(ResultTy ? ResultTy : OpaqueType::get());
293       ++NumRecords;
294     } else if (ResultTy == 0) {
295       // Otherwise, this was forward referenced, so an opaque type was created,
296       // but the result type is actually just an opaque.  Leave the one we
297       // created previously.
298       ++NumRecords;
299     } else {
300       // Otherwise, this was forward referenced, so an opaque type was created.
301       // Resolve the opaque type to the real type now.
302       assert(NumRecords < TypeList.size() && "Typelist imbalance");
303       const OpaqueType *OldTy = cast<OpaqueType>(TypeList[NumRecords++].get());
304 
305       // Don't directly push the new type on the Tab. Instead we want to replace
306       // the opaque type we previously inserted with the new concrete value. The
307       // refinement from the abstract (opaque) type to the new type causes all
308       // uses of the abstract type to use the concrete type (NewTy). This will
309       // also cause the opaque type to be deleted.
310       const_cast<OpaqueType*>(OldTy)->refineAbstractTypeTo(ResultTy);
311 
312       // This should have replaced the old opaque type with the new type in the
313       // value table... or with a preexisting type that was already in the
314       // system.  Let's just make sure it did.
315       assert(TypeList[NumRecords-1].get() != OldTy &&
316              "refineAbstractType didn't work!");
317     }
318   }
319 }
320 
321 
322 bool BitcodeReader::ParseTypeSymbolTable() {
323   if (Stream.EnterSubBlock())
324     return Error("Malformed block record");
325 
326   SmallVector<uint64_t, 64> Record;
327 
328   // Read all the records for this type table.
329   std::string TypeName;
330   while (1) {
331     unsigned Code = Stream.ReadCode();
332     if (Code == bitc::END_BLOCK) {
333       if (Stream.ReadBlockEnd())
334         return Error("Error at end of type symbol table block");
335       return false;
336     }
337 
338     if (Code == bitc::ENTER_SUBBLOCK) {
339       // No known subblocks, always skip them.
340       Stream.ReadSubBlockID();
341       if (Stream.SkipBlock())
342         return Error("Malformed block record");
343       continue;
344     }
345 
346     if (Code == bitc::DEFINE_ABBREV) {
347       Stream.ReadAbbrevRecord();
348       continue;
349     }
350 
351     // Read a record.
352     Record.clear();
353     switch (Stream.ReadRecord(Code, Record)) {
354     default:  // Default behavior: unknown type.
355       break;
356     case bitc::TST_CODE_ENTRY:    // TST_ENTRY: [typeid, namelen, namechar x N]
357       if (ConvertToString(Record, 1, TypeName))
358         return Error("Invalid TST_ENTRY record");
359       unsigned TypeID = Record[0];
360       if (TypeID >= TypeList.size())
361         return Error("Invalid Type ID in TST_ENTRY record");
362 
363       TheModule->addTypeName(TypeName, TypeList[TypeID].get());
364       TypeName.clear();
365       break;
366     }
367   }
368 }
369 
370 bool BitcodeReader::ParseValueSymbolTable() {
371   if (Stream.EnterSubBlock())
372     return Error("Malformed block record");
373 
374   SmallVector<uint64_t, 64> Record;
375 
376   // Read all the records for this value table.
377   SmallString<128> ValueName;
378   while (1) {
379     unsigned Code = Stream.ReadCode();
380     if (Code == bitc::END_BLOCK) {
381       if (Stream.ReadBlockEnd())
382         return Error("Error at end of value symbol table block");
383       return false;
384     }
385     if (Code == bitc::ENTER_SUBBLOCK) {
386       // No known subblocks, always skip them.
387       Stream.ReadSubBlockID();
388       if (Stream.SkipBlock())
389         return Error("Malformed block record");
390       continue;
391     }
392 
393     if (Code == bitc::DEFINE_ABBREV) {
394       Stream.ReadAbbrevRecord();
395       continue;
396     }
397 
398     // Read a record.
399     Record.clear();
400     switch (Stream.ReadRecord(Code, Record)) {
401     default:  // Default behavior: unknown type.
402       break;
403     case bitc::VST_CODE_ENTRY: {  // VST_ENTRY: [valueid, namelen, namechar x N]
404       if (ConvertToString(Record, 1, ValueName))
405         return Error("Invalid TST_ENTRY record");
406       unsigned ValueID = Record[0];
407       if (ValueID >= ValueList.size())
408         return Error("Invalid Value ID in VST_ENTRY record");
409       Value *V = ValueList[ValueID];
410 
411       V->setName(&ValueName[0], ValueName.size());
412       ValueName.clear();
413       break;
414     }
415     case bitc::VST_CODE_BBENTRY: {
416       if (ConvertToString(Record, 1, ValueName))
417         return Error("Invalid VST_BBENTRY record");
418       BasicBlock *BB = getBasicBlock(Record[0]);
419       if (BB == 0)
420         return Error("Invalid BB ID in VST_BBENTRY record");
421 
422       BB->setName(&ValueName[0], ValueName.size());
423       ValueName.clear();
424       break;
425     }
426     }
427   }
428 }
429 
430 /// DecodeSignRotatedValue - Decode a signed value stored with the sign bit in
431 /// the LSB for dense VBR encoding.
432 static uint64_t DecodeSignRotatedValue(uint64_t V) {
433   if ((V & 1) == 0)
434     return V >> 1;
435   if (V != 1)
436     return -(V >> 1);
437   // There is no such thing as -0 with integers.  "-0" really means MININT.
438   return 1ULL << 63;
439 }
440 
441 /// ResolveGlobalAndAliasInits - Resolve all of the initializers for global
442 /// values and aliases that we can.
443 bool BitcodeReader::ResolveGlobalAndAliasInits() {
444   std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist;
445   std::vector<std::pair<GlobalAlias*, unsigned> > AliasInitWorklist;
446 
447   GlobalInitWorklist.swap(GlobalInits);
448   AliasInitWorklist.swap(AliasInits);
449 
450   while (!GlobalInitWorklist.empty()) {
451     unsigned ValID = GlobalInitWorklist.back().second;
452     if (ValID >= ValueList.size()) {
453       // Not ready to resolve this yet, it requires something later in the file.
454       GlobalInits.push_back(GlobalInitWorklist.back());
455     } else {
456       if (Constant *C = dyn_cast<Constant>(ValueList[ValID]))
457         GlobalInitWorklist.back().first->setInitializer(C);
458       else
459         return Error("Global variable initializer is not a constant!");
460     }
461     GlobalInitWorklist.pop_back();
462   }
463 
464   while (!AliasInitWorklist.empty()) {
465     unsigned ValID = AliasInitWorklist.back().second;
466     if (ValID >= ValueList.size()) {
467       AliasInits.push_back(AliasInitWorklist.back());
468     } else {
469       if (Constant *C = dyn_cast<Constant>(ValueList[ValID]))
470         AliasInitWorklist.back().first->setAliasee(C);
471       else
472         return Error("Alias initializer is not a constant!");
473     }
474     AliasInitWorklist.pop_back();
475   }
476   return false;
477 }
478 
479 
480 bool BitcodeReader::ParseConstants() {
481   if (Stream.EnterSubBlock())
482     return Error("Malformed block record");
483 
484   SmallVector<uint64_t, 64> Record;
485 
486   // Read all the records for this value table.
487   const Type *CurTy = Type::Int32Ty;
488   unsigned NextCstNo = ValueList.size();
489   while (1) {
490     unsigned Code = Stream.ReadCode();
491     if (Code == bitc::END_BLOCK) {
492       if (NextCstNo != ValueList.size())
493         return Error("Invalid constant reference!");
494 
495       if (Stream.ReadBlockEnd())
496         return Error("Error at end of constants block");
497       return false;
498     }
499 
500     if (Code == bitc::ENTER_SUBBLOCK) {
501       // No known subblocks, always skip them.
502       Stream.ReadSubBlockID();
503       if (Stream.SkipBlock())
504         return Error("Malformed block record");
505       continue;
506     }
507 
508     if (Code == bitc::DEFINE_ABBREV) {
509       Stream.ReadAbbrevRecord();
510       continue;
511     }
512 
513     // Read a record.
514     Record.clear();
515     Value *V = 0;
516     switch (Stream.ReadRecord(Code, Record)) {
517     default:  // Default behavior: unknown constant
518     case bitc::CST_CODE_UNDEF:     // UNDEF
519       V = UndefValue::get(CurTy);
520       break;
521     case bitc::CST_CODE_SETTYPE:   // SETTYPE: [typeid]
522       if (Record.empty())
523         return Error("Malformed CST_SETTYPE record");
524       if (Record[0] >= TypeList.size())
525         return Error("Invalid Type ID in CST_SETTYPE record");
526       CurTy = TypeList[Record[0]];
527       continue;  // Skip the ValueList manipulation.
528     case bitc::CST_CODE_NULL:      // NULL
529       V = Constant::getNullValue(CurTy);
530       break;
531     case bitc::CST_CODE_INTEGER:   // INTEGER: [intval]
532       if (!isa<IntegerType>(CurTy) || Record.empty())
533         return Error("Invalid CST_INTEGER record");
534       V = ConstantInt::get(CurTy, DecodeSignRotatedValue(Record[0]));
535       break;
536     case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n, n x intval]
537       if (!isa<IntegerType>(CurTy) || Record.empty() ||
538           Record.size() < Record[0]+1)
539         return Error("Invalid WIDE_INTEGER record");
540 
541       unsigned NumWords = Record[0];
542       SmallVector<uint64_t, 8> Words;
543       Words.resize(NumWords);
544       for (unsigned i = 0; i != NumWords; ++i)
545         Words[i] = DecodeSignRotatedValue(Record[i+1]);
546       V = ConstantInt::get(APInt(cast<IntegerType>(CurTy)->getBitWidth(),
547                                  NumWords, &Words[0]));
548       break;
549     }
550     case bitc::CST_CODE_FLOAT:     // FLOAT: [fpval]
551       if (Record.empty())
552         return Error("Invalid FLOAT record");
553       if (CurTy == Type::FloatTy)
554         V = ConstantFP::get(CurTy, BitsToFloat(Record[0]));
555       else if (CurTy == Type::DoubleTy)
556         V = ConstantFP::get(CurTy, BitsToDouble(Record[0]));
557       else
558         V = UndefValue::get(CurTy);
559       break;
560 
561     case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n, n x value number]
562       if (Record.empty() || Record.size() < Record[0]+1)
563         return Error("Invalid CST_AGGREGATE record");
564 
565       unsigned Size = Record[0];
566       std::vector<Constant*> Elts;
567 
568       if (const StructType *STy = dyn_cast<StructType>(CurTy)) {
569         for (unsigned i = 0; i != Size; ++i)
570           Elts.push_back(ValueList.getConstantFwdRef(Record[i+1],
571                                                      STy->getElementType(i)));
572         V = ConstantStruct::get(STy, Elts);
573       } else if (const ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) {
574         const Type *EltTy = ATy->getElementType();
575         for (unsigned i = 0; i != Size; ++i)
576           Elts.push_back(ValueList.getConstantFwdRef(Record[i+1], EltTy));
577         V = ConstantArray::get(ATy, Elts);
578       } else if (const VectorType *VTy = dyn_cast<VectorType>(CurTy)) {
579         const Type *EltTy = VTy->getElementType();
580         for (unsigned i = 0; i != Size; ++i)
581           Elts.push_back(ValueList.getConstantFwdRef(Record[i+1], EltTy));
582         V = ConstantVector::get(Elts);
583       } else {
584         V = UndefValue::get(CurTy);
585       }
586       break;
587     }
588 
589     case bitc::CST_CODE_CE_BINOP: {  // CE_BINOP: [opcode, opval, opval]
590       if (Record.size() < 3) return Error("Invalid CE_BINOP record");
591       int Opc = GetDecodedBinaryOpcode(Record[0], CurTy);
592       if (Opc < 0) {
593         V = UndefValue::get(CurTy);  // Unknown binop.
594       } else {
595         Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
596         Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy);
597         V = ConstantExpr::get(Opc, LHS, RHS);
598       }
599       break;
600     }
601     case bitc::CST_CODE_CE_CAST: {  // CE_CAST: [opcode, opty, opval]
602       if (Record.size() < 3) return Error("Invalid CE_CAST record");
603       int Opc = GetDecodedCastOpcode(Record[0]);
604       if (Opc < 0) {
605         V = UndefValue::get(CurTy);  // Unknown cast.
606       } else {
607         const Type *OpTy = getTypeByID(Record[1]);
608         Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy);
609         V = ConstantExpr::getCast(Opc, Op, CurTy);
610       }
611       break;
612     }
613     case bitc::CST_CODE_CE_GEP: {  // CE_GEP:        [n x operands]
614       if ((Record.size() & 1) == 0) return Error("Invalid CE_GEP record");
615       SmallVector<Constant*, 16> Elts;
616       for (unsigned i = 1, e = Record.size(); i != e; i += 2) {
617         const Type *ElTy = getTypeByID(Record[i]);
618         if (!ElTy) return Error("Invalid CE_GEP record");
619         Elts.push_back(ValueList.getConstantFwdRef(Record[i+1], ElTy));
620       }
621       V = ConstantExpr::getGetElementPtr(Elts[0], &Elts[1], Elts.size()-1);
622       break;
623     }
624     case bitc::CST_CODE_CE_SELECT:  // CE_SELECT: [opval#, opval#, opval#]
625       if (Record.size() < 3) return Error("Invalid CE_SELECT record");
626       V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0],
627                                                               Type::Int1Ty),
628                                   ValueList.getConstantFwdRef(Record[1],CurTy),
629                                   ValueList.getConstantFwdRef(Record[2],CurTy));
630       break;
631     case bitc::CST_CODE_CE_EXTRACTELT: { // CE_EXTRACTELT: [opty, opval, opval]
632       if (Record.size() < 3) return Error("Invalid CE_EXTRACTELT record");
633       const VectorType *OpTy =
634         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
635       if (OpTy == 0) return Error("Invalid CE_EXTRACTELT record");
636       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
637       Constant *Op1 = ValueList.getConstantFwdRef(Record[2],
638                                                   OpTy->getElementType());
639       V = ConstantExpr::getExtractElement(Op0, Op1);
640       break;
641     }
642     case bitc::CST_CODE_CE_INSERTELT: { // CE_INSERTELT: [opval, opval, opval]
643       const VectorType *OpTy = dyn_cast<VectorType>(CurTy);
644       if (Record.size() < 3 || OpTy == 0)
645         return Error("Invalid CE_INSERTELT record");
646       Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
647       Constant *Op1 = ValueList.getConstantFwdRef(Record[1],
648                                                   OpTy->getElementType());
649       Constant *Op2 = ValueList.getConstantFwdRef(Record[2], Type::Int32Ty);
650       V = ConstantExpr::getInsertElement(Op0, Op1, Op2);
651       break;
652     }
653     case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
654       const VectorType *OpTy = dyn_cast<VectorType>(CurTy);
655       if (Record.size() < 3 || OpTy == 0)
656         return Error("Invalid CE_INSERTELT record");
657       Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
658       Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy);
659       const Type *ShufTy=VectorType::get(Type::Int32Ty, OpTy->getNumElements());
660       Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy);
661       V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
662       break;
663     }
664     case bitc::CST_CODE_CE_CMP: {     // CE_CMP: [opty, opval, opval, pred]
665       if (Record.size() < 4) return Error("Invalid CE_CMP record");
666       const Type *OpTy = getTypeByID(Record[0]);
667       if (OpTy == 0) return Error("Invalid CE_CMP record");
668       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
669       Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
670 
671       if (OpTy->isFloatingPoint())
672         V = ConstantExpr::getFCmp(Record[3], Op0, Op1);
673       else
674         V = ConstantExpr::getICmp(Record[3], Op0, Op1);
675       break;
676     }
677     }
678 
679     ValueList.AssignValue(V, NextCstNo);
680     ++NextCstNo;
681   }
682 }
683 
684 /// RememberAndSkipFunctionBody - When we see the block for a function body,
685 /// remember where it is and then skip it.  This lets us lazily deserialize the
686 /// functions.
687 bool BitcodeReader::RememberAndSkipFunctionBody() {
688   // Get the function we are talking about.
689   if (FunctionsWithBodies.empty())
690     return Error("Insufficient function protos");
691 
692   Function *Fn = FunctionsWithBodies.back();
693   FunctionsWithBodies.pop_back();
694 
695   // Save the current stream state.
696   uint64_t CurBit = Stream.GetCurrentBitNo();
697   DeferredFunctionInfo[Fn] = std::make_pair(CurBit, Fn->getLinkage());
698 
699   // Set the functions linkage to GhostLinkage so we know it is lazily
700   // deserialized.
701   Fn->setLinkage(GlobalValue::GhostLinkage);
702 
703   // Skip over the function block for now.
704   if (Stream.SkipBlock())
705     return Error("Malformed block record");
706   return false;
707 }
708 
709 bool BitcodeReader::ParseModule(const std::string &ModuleID) {
710   // Reject multiple MODULE_BLOCK's in a single bitstream.
711   if (TheModule)
712     return Error("Multiple MODULE_BLOCKs in same stream");
713 
714   if (Stream.EnterSubBlock())
715     return Error("Malformed block record");
716 
717   // Otherwise, create the module.
718   TheModule = new Module(ModuleID);
719 
720   SmallVector<uint64_t, 64> Record;
721   std::vector<std::string> SectionTable;
722 
723   // Read all the records for this module.
724   while (!Stream.AtEndOfStream()) {
725     unsigned Code = Stream.ReadCode();
726     if (Code == bitc::END_BLOCK) {
727       if (Stream.ReadBlockEnd())
728         return Error("Error at end of module block");
729 
730       // Patch the initializers for globals and aliases up.
731       ResolveGlobalAndAliasInits();
732       if (!GlobalInits.empty() || !AliasInits.empty())
733         return Error("Malformed global initializer set");
734       if (!FunctionsWithBodies.empty())
735         return Error("Too few function bodies found");
736 
737       // Force deallocation of memory for these vectors to favor the client that
738       // want lazy deserialization.
739       std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits);
740       std::vector<std::pair<GlobalAlias*, unsigned> >().swap(AliasInits);
741       std::vector<Function*>().swap(FunctionsWithBodies);
742       return false;
743     }
744 
745     if (Code == bitc::ENTER_SUBBLOCK) {
746       switch (Stream.ReadSubBlockID()) {
747       default:  // Skip unknown content.
748         if (Stream.SkipBlock())
749           return Error("Malformed block record");
750         break;
751       case bitc::TYPE_BLOCK_ID:
752         if (ParseTypeTable())
753           return true;
754         break;
755       case bitc::TYPE_SYMTAB_BLOCK_ID:
756         if (ParseTypeSymbolTable())
757           return true;
758         break;
759       case bitc::VALUE_SYMTAB_BLOCK_ID:
760         if (ParseValueSymbolTable())
761           return true;
762         break;
763       case bitc::CONSTANTS_BLOCK_ID:
764         if (ParseConstants() || ResolveGlobalAndAliasInits())
765           return true;
766         break;
767       case bitc::FUNCTION_BLOCK_ID:
768         // If this is the first function body we've seen, reverse the
769         // FunctionsWithBodies list.
770         if (!HasReversedFunctionsWithBodies) {
771           std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end());
772           HasReversedFunctionsWithBodies = true;
773         }
774 
775         if (RememberAndSkipFunctionBody())
776           return true;
777         break;
778       }
779       continue;
780     }
781 
782     if (Code == bitc::DEFINE_ABBREV) {
783       Stream.ReadAbbrevRecord();
784       continue;
785     }
786 
787     // Read a record.
788     switch (Stream.ReadRecord(Code, Record)) {
789     default: break;  // Default behavior, ignore unknown content.
790     case bitc::MODULE_CODE_VERSION:  // VERSION: [version#]
791       if (Record.size() < 1)
792         return Error("Malformed MODULE_CODE_VERSION");
793       // Only version #0 is supported so far.
794       if (Record[0] != 0)
795         return Error("Unknown bitstream version!");
796       break;
797     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strlen, strchr x N]
798       std::string S;
799       if (ConvertToString(Record, 0, S))
800         return Error("Invalid MODULE_CODE_TRIPLE record");
801       TheModule->setTargetTriple(S);
802       break;
803     }
804     case bitc::MODULE_CODE_DATALAYOUT: {  // DATALAYOUT: [strlen, strchr x N]
805       std::string S;
806       if (ConvertToString(Record, 0, S))
807         return Error("Invalid MODULE_CODE_DATALAYOUT record");
808       TheModule->setDataLayout(S);
809       break;
810     }
811     case bitc::MODULE_CODE_ASM: {  // ASM: [strlen, strchr x N]
812       std::string S;
813       if (ConvertToString(Record, 0, S))
814         return Error("Invalid MODULE_CODE_ASM record");
815       TheModule->setModuleInlineAsm(S);
816       break;
817     }
818     case bitc::MODULE_CODE_DEPLIB: {  // DEPLIB: [strlen, strchr x N]
819       std::string S;
820       if (ConvertToString(Record, 0, S))
821         return Error("Invalid MODULE_CODE_DEPLIB record");
822       TheModule->addLibrary(S);
823       break;
824     }
825     case bitc::MODULE_CODE_SECTIONNAME: {  // SECTIONNAME: [strlen, strchr x N]
826       std::string S;
827       if (ConvertToString(Record, 0, S))
828         return Error("Invalid MODULE_CODE_SECTIONNAME record");
829       SectionTable.push_back(S);
830       break;
831     }
832     // GLOBALVAR: [type, isconst, initid,
833     //             linkage, alignment, section, visibility, threadlocal]
834     case bitc::MODULE_CODE_GLOBALVAR: {
835       if (Record.size() < 6)
836         return Error("Invalid MODULE_CODE_GLOBALVAR record");
837       const Type *Ty = getTypeByID(Record[0]);
838       if (!isa<PointerType>(Ty))
839         return Error("Global not a pointer type!");
840       Ty = cast<PointerType>(Ty)->getElementType();
841 
842       bool isConstant = Record[1];
843       GlobalValue::LinkageTypes Linkage = GetDecodedLinkage(Record[3]);
844       unsigned Alignment = (1 << Record[4]) >> 1;
845       std::string Section;
846       if (Record[5]) {
847         if (Record[5]-1 >= SectionTable.size())
848           return Error("Invalid section ID");
849         Section = SectionTable[Record[5]-1];
850       }
851       GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility;
852       if (Record.size() >= 6) Visibility = GetDecodedVisibility(Record[6]);
853       bool isThreadLocal = false;
854       if (Record.size() >= 7) isThreadLocal = Record[7];
855 
856       GlobalVariable *NewGV =
857         new GlobalVariable(Ty, isConstant, Linkage, 0, "", TheModule);
858       NewGV->setAlignment(Alignment);
859       if (!Section.empty())
860         NewGV->setSection(Section);
861       NewGV->setVisibility(Visibility);
862       NewGV->setThreadLocal(isThreadLocal);
863 
864       ValueList.push_back(NewGV);
865 
866       // Remember which value to use for the global initializer.
867       if (unsigned InitID = Record[2])
868         GlobalInits.push_back(std::make_pair(NewGV, InitID-1));
869       break;
870     }
871     // FUNCTION:  [type, callingconv, isproto, linkage, alignment, section,
872     //             visibility]
873     case bitc::MODULE_CODE_FUNCTION: {
874       if (Record.size() < 7)
875         return Error("Invalid MODULE_CODE_FUNCTION record");
876       const Type *Ty = getTypeByID(Record[0]);
877       if (!isa<PointerType>(Ty))
878         return Error("Function not a pointer type!");
879       const FunctionType *FTy =
880         dyn_cast<FunctionType>(cast<PointerType>(Ty)->getElementType());
881       if (!FTy)
882         return Error("Function not a pointer to function type!");
883 
884       Function *Func = new Function(FTy, GlobalValue::ExternalLinkage,
885                                     "", TheModule);
886 
887       Func->setCallingConv(Record[1]);
888       bool isProto = Record[2];
889       Func->setLinkage(GetDecodedLinkage(Record[3]));
890       Func->setAlignment((1 << Record[4]) >> 1);
891       if (Record[5]) {
892         if (Record[5]-1 >= SectionTable.size())
893           return Error("Invalid section ID");
894         Func->setSection(SectionTable[Record[5]-1]);
895       }
896       Func->setVisibility(GetDecodedVisibility(Record[6]));
897 
898       ValueList.push_back(Func);
899 
900       // If this is a function with a body, remember the prototype we are
901       // creating now, so that we can match up the body with them later.
902       if (!isProto)
903         FunctionsWithBodies.push_back(Func);
904       break;
905     }
906     // ALIAS: [alias type, aliasee val#, linkage]
907     case bitc::MODULE_CODE_ALIAS: {
908       if (Record.size() < 3)
909         return Error("Invalid MODULE_ALIAS record");
910       const Type *Ty = getTypeByID(Record[0]);
911       if (!isa<PointerType>(Ty))
912         return Error("Function not a pointer type!");
913 
914       GlobalAlias *NewGA = new GlobalAlias(Ty, GetDecodedLinkage(Record[2]),
915                                            "", 0, TheModule);
916       ValueList.push_back(NewGA);
917       AliasInits.push_back(std::make_pair(NewGA, Record[1]));
918       break;
919     }
920     /// MODULE_CODE_PURGEVALS: [numvals]
921     case bitc::MODULE_CODE_PURGEVALS:
922       // Trim down the value list to the specified size.
923       if (Record.size() < 1 || Record[0] > ValueList.size())
924         return Error("Invalid MODULE_PURGEVALS record");
925       ValueList.shrinkTo(Record[0]);
926       break;
927     }
928     Record.clear();
929   }
930 
931   return Error("Premature end of bitstream");
932 }
933 
934 
935 bool BitcodeReader::ParseBitcode() {
936   TheModule = 0;
937 
938   if (Buffer->getBufferSize() & 3)
939     return Error("Bitcode stream should be a multiple of 4 bytes in length");
940 
941   unsigned char *BufPtr = (unsigned char *)Buffer->getBufferStart();
942   Stream.init(BufPtr, BufPtr+Buffer->getBufferSize());
943 
944   // Sniff for the signature.
945   if (Stream.Read(8) != 'B' ||
946       Stream.Read(8) != 'C' ||
947       Stream.Read(4) != 0x0 ||
948       Stream.Read(4) != 0xC ||
949       Stream.Read(4) != 0xE ||
950       Stream.Read(4) != 0xD)
951     return Error("Invalid bitcode signature");
952 
953   // We expect a number of well-defined blocks, though we don't necessarily
954   // need to understand them all.
955   while (!Stream.AtEndOfStream()) {
956     unsigned Code = Stream.ReadCode();
957 
958     if (Code != bitc::ENTER_SUBBLOCK)
959       return Error("Invalid record at top-level");
960 
961     unsigned BlockID = Stream.ReadSubBlockID();
962 
963     // We only know the MODULE subblock ID.
964     if (BlockID == bitc::MODULE_BLOCK_ID) {
965       if (ParseModule(Buffer->getBufferIdentifier()))
966         return true;
967     } else if (Stream.SkipBlock()) {
968       return Error("Malformed block record");
969     }
970   }
971 
972   return false;
973 }
974 
975 
976 bool BitcodeReader::materializeFunction(Function *F, std::string *ErrInfo) {
977   // If it already is material, ignore the request.
978   if (!F->hasNotBeenReadFromBytecode()) return false;
979 
980   DenseMap<Function*, std::pair<uint64_t, unsigned> >::iterator DFII =
981     DeferredFunctionInfo.find(F);
982   assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!");
983 
984   // Move the bit stream to the saved position of the deferred function body and
985   // restore the real linkage type for the function.
986   Stream.JumpToBit(DFII->second.first);
987   F->setLinkage((GlobalValue::LinkageTypes)DFII->second.second);
988   DeferredFunctionInfo.erase(DFII);
989 
990   if (ParseFunctionBody(F)) {
991     if (ErrInfo) *ErrInfo = ErrorString;
992     return true;
993   }
994 
995   return false;
996 }
997 
998 Module *BitcodeReader::materializeModule(std::string *ErrInfo) {
999   DenseMap<Function*, std::pair<uint64_t, unsigned> >::iterator I =
1000     DeferredFunctionInfo.begin();
1001   while (!DeferredFunctionInfo.empty()) {
1002     Function *F = (*I++).first;
1003     assert(F->hasNotBeenReadFromBytecode() &&
1004            "Deserialized function found in map!");
1005     if (materializeFunction(F, ErrInfo))
1006       return 0;
1007   }
1008   return TheModule;
1009 }
1010 
1011 
1012 /// ParseFunctionBody - Lazily parse the specified function body block.
1013 bool BitcodeReader::ParseFunctionBody(Function *F) {
1014   if (Stream.EnterSubBlock())
1015     return Error("Malformed block record");
1016 
1017   unsigned ModuleValueListSize = ValueList.size();
1018 
1019   // Add all the function arguments to the value table.
1020   for(Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I)
1021     ValueList.push_back(I);
1022 
1023   unsigned NextValueNo = ValueList.size();
1024   BasicBlock *CurBB = 0;
1025   unsigned CurBBNo = 0;
1026 
1027   // Read all the records.
1028   SmallVector<uint64_t, 64> Record;
1029   while (1) {
1030     unsigned Code = Stream.ReadCode();
1031     if (Code == bitc::END_BLOCK) {
1032       if (Stream.ReadBlockEnd())
1033         return Error("Error at end of function block");
1034       break;
1035     }
1036 
1037     if (Code == bitc::ENTER_SUBBLOCK) {
1038       switch (Stream.ReadSubBlockID()) {
1039       default:  // Skip unknown content.
1040         if (Stream.SkipBlock())
1041           return Error("Malformed block record");
1042         break;
1043       case bitc::CONSTANTS_BLOCK_ID:
1044         if (ParseConstants()) return true;
1045         NextValueNo = ValueList.size();
1046         break;
1047       case bitc::VALUE_SYMTAB_BLOCK_ID:
1048         if (ParseValueSymbolTable()) return true;
1049         break;
1050       }
1051       continue;
1052     }
1053 
1054     if (Code == bitc::DEFINE_ABBREV) {
1055       Stream.ReadAbbrevRecord();
1056       continue;
1057     }
1058 
1059     // Read a record.
1060     Record.clear();
1061     Instruction *I = 0;
1062     switch (Stream.ReadRecord(Code, Record)) {
1063     default: // Default behavior: reject
1064       return Error("Unknown instruction");
1065     case bitc::FUNC_CODE_DECLAREBLOCKS:     // DECLAREBLOCKS: [nblocks]
1066       if (Record.size() < 1 || Record[0] == 0)
1067         return Error("Invalid DECLAREBLOCKS record");
1068       // Create all the basic blocks for the function.
1069       FunctionBBs.resize(Record[0]);
1070       for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i)
1071         FunctionBBs[i] = new BasicBlock("", F);
1072       CurBB = FunctionBBs[0];
1073       continue;
1074 
1075     case bitc::FUNC_CODE_INST_BINOP: {    // BINOP: [opcode, ty, opval, opval]
1076       if (Record.size() < 4) return Error("Invalid BINOP record");
1077       const Type *Ty = getTypeByID(Record[1]);
1078       int Opc = GetDecodedBinaryOpcode(Record[0], Ty);
1079       Value *LHS = getFnValueByID(Record[2], Ty);
1080       Value *RHS = getFnValueByID(Record[3], Ty);
1081       if (Opc == -1 || Ty == 0 || LHS == 0 || RHS == 0)
1082          return Error("Invalid BINOP record");
1083       I = BinaryOperator::create((Instruction::BinaryOps)Opc, LHS, RHS);
1084       break;
1085     }
1086     case bitc::FUNC_CODE_INST_CAST: {    // CAST: [opcode, ty, opty, opval]
1087       if (Record.size() < 4) return Error("Invalid CAST record");
1088       int Opc = GetDecodedCastOpcode(Record[0]);
1089       const Type *ResTy = getTypeByID(Record[1]);
1090       const Type *OpTy = getTypeByID(Record[2]);
1091       Value *Op = getFnValueByID(Record[3], OpTy);
1092       if (Opc == -1 || ResTy == 0 || OpTy == 0 || Op == 0)
1093         return Error("Invalid CAST record");
1094       I = CastInst::create((Instruction::CastOps)Opc, Op, ResTy);
1095       break;
1096     }
1097     case bitc::FUNC_CODE_INST_GEP: { // GEP: [n, n x operands]
1098       if (Record.size() < 2 || (Record.size() & 1))
1099         return Error("Invalid GEP record");
1100       const Type *OpTy = getTypeByID(Record[0]);
1101       Value *Op = getFnValueByID(Record[1], OpTy);
1102       if (OpTy == 0 || Op == 0)
1103         return Error("Invalid GEP record");
1104 
1105       SmallVector<Value*, 16> GEPIdx;
1106       for (unsigned i = 1, e = Record.size()/2; i != e; ++i) {
1107         const Type *IdxTy = getTypeByID(Record[i*2]);
1108         Value *Idx = getFnValueByID(Record[i*2+1], IdxTy);
1109         if (IdxTy == 0 || Idx == 0)
1110           return Error("Invalid GEP record");
1111         GEPIdx.push_back(Idx);
1112       }
1113 
1114       I = new GetElementPtrInst(Op, &GEPIdx[0], GEPIdx.size());
1115       break;
1116     }
1117 
1118     case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [ty, opval, opval, opval]
1119       if (Record.size() < 4) return Error("Invalid SELECT record");
1120       const Type *Ty = getTypeByID(Record[0]);
1121       Value *Cond = getFnValueByID(Record[1], Type::Int1Ty);
1122       Value *LHS = getFnValueByID(Record[2], Ty);
1123       Value *RHS = getFnValueByID(Record[3], Ty);
1124       if (Ty == 0 || Cond == 0 || LHS == 0 || RHS == 0)
1125         return Error("Invalid SELECT record");
1126       I = new SelectInst(Cond, LHS, RHS);
1127       break;
1128     }
1129 
1130     case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval]
1131       if (Record.size() < 3) return Error("Invalid EXTRACTELT record");
1132       const Type *OpTy = getTypeByID(Record[0]);
1133       Value *Vec = getFnValueByID(Record[1], OpTy);
1134       Value *Idx = getFnValueByID(Record[2], Type::Int32Ty);
1135       if (OpTy == 0 || Vec == 0 || Idx == 0)
1136         return Error("Invalid EXTRACTELT record");
1137       I = new ExtractElementInst(Vec, Idx);
1138       break;
1139     }
1140 
1141     case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval]
1142       if (Record.size() < 4) return Error("Invalid INSERTELT record");
1143       const VectorType *OpTy =
1144         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
1145       if (OpTy == 0) return Error("Invalid INSERTELT record");
1146       Value *Vec = getFnValueByID(Record[1], OpTy);
1147       Value *Elt = getFnValueByID(Record[2], OpTy->getElementType());
1148       Value *Idx = getFnValueByID(Record[3], Type::Int32Ty);
1149       if (Vec == 0 || Elt == 0 || Idx == 0)
1150         return Error("Invalid INSERTELT record");
1151       I = new InsertElementInst(Vec, Elt, Idx);
1152       break;
1153     }
1154 
1155     case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [ty,opval,opval,opval]
1156       if (Record.size() < 4) return Error("Invalid SHUFFLEVEC record");
1157       const VectorType *OpTy =
1158         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
1159       if (OpTy == 0) return Error("Invalid SHUFFLEVEC record");
1160       Value *Vec1 = getFnValueByID(Record[1], OpTy);
1161       Value *Vec2 = getFnValueByID(Record[2], OpTy);
1162       Value *Mask = getFnValueByID(Record[3],
1163                                    VectorType::get(Type::Int32Ty,
1164                                                    OpTy->getNumElements()));
1165       if (Vec1 == 0 || Vec2 == 0 || Mask == 0)
1166         return Error("Invalid SHUFFLEVEC record");
1167       I = new ShuffleVectorInst(Vec1, Vec2, Mask);
1168       break;
1169     }
1170 
1171     case bitc::FUNC_CODE_INST_CMP: { // CMP: [opty, opval, opval, pred]
1172       if (Record.size() < 4) return Error("Invalid CMP record");
1173       const Type *OpTy = getTypeByID(Record[0]);
1174       Value *LHS = getFnValueByID(Record[1], OpTy);
1175       Value *RHS = getFnValueByID(Record[2], OpTy);
1176       if (OpTy == 0 || LHS == 0 || RHS == 0)
1177         return Error("Invalid CMP record");
1178       if (OpTy->isFPOrFPVector())
1179         I = new FCmpInst((FCmpInst::Predicate)Record[3], LHS, RHS);
1180       else
1181         I = new ICmpInst((ICmpInst::Predicate)Record[3], LHS, RHS);
1182       break;
1183     }
1184 
1185     case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>]
1186       if (Record.size() == 0) {
1187         I = new ReturnInst();
1188         break;
1189       }
1190       if (Record.size() == 2) {
1191         const Type *OpTy = getTypeByID(Record[0]);
1192         Value *Op = getFnValueByID(Record[1], OpTy);
1193         if (!OpTy || !Op)
1194           return Error("Invalid RET record");
1195         I = new ReturnInst(Op);
1196         break;
1197       }
1198       return Error("Invalid RET record");
1199     case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#]
1200       if (Record.size() != 1 && Record.size() != 3)
1201         return Error("Invalid BR record");
1202       BasicBlock *TrueDest = getBasicBlock(Record[0]);
1203       if (TrueDest == 0)
1204         return Error("Invalid BR record");
1205 
1206       if (Record.size() == 1)
1207         I = new BranchInst(TrueDest);
1208       else {
1209         BasicBlock *FalseDest = getBasicBlock(Record[1]);
1210         Value *Cond = getFnValueByID(Record[2], Type::Int1Ty);
1211         if (FalseDest == 0 || Cond == 0)
1212           return Error("Invalid BR record");
1213         I = new BranchInst(TrueDest, FalseDest, Cond);
1214       }
1215       break;
1216     }
1217     case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, opval, n, n x ops]
1218       if (Record.size() < 3 || (Record.size() & 1) == 0)
1219         return Error("Invalid SWITCH record");
1220       const Type *OpTy = getTypeByID(Record[0]);
1221       Value *Cond = getFnValueByID(Record[1], OpTy);
1222       BasicBlock *Default = getBasicBlock(Record[2]);
1223       if (OpTy == 0 || Cond == 0 || Default == 0)
1224         return Error("Invalid SWITCH record");
1225       unsigned NumCases = (Record.size()-3)/2;
1226       SwitchInst *SI = new SwitchInst(Cond, Default, NumCases);
1227       for (unsigned i = 0, e = NumCases; i != e; ++i) {
1228         ConstantInt *CaseVal =
1229           dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy));
1230         BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]);
1231         if (CaseVal == 0 || DestBB == 0) {
1232           delete SI;
1233           return Error("Invalid SWITCH record!");
1234         }
1235         SI->addCase(CaseVal, DestBB);
1236       }
1237       I = SI;
1238       break;
1239     }
1240 
1241     case bitc::FUNC_CODE_INST_INVOKE: { // INVOKE: [cc,fnty, op0,op1,op2, ...]
1242       if (Record.size() < 5)
1243         return Error("Invalid INVOKE record");
1244       unsigned CCInfo = Record[0];
1245       const PointerType *CalleeTy =
1246         dyn_cast_or_null<PointerType>(getTypeByID(Record[1]));
1247       Value *Callee = getFnValueByID(Record[2], CalleeTy);
1248       BasicBlock *NormalBB = getBasicBlock(Record[3]);
1249       BasicBlock *UnwindBB = getBasicBlock(Record[4]);
1250       if (CalleeTy == 0 || Callee == 0 || NormalBB == 0 || UnwindBB == 0)
1251         return Error("Invalid INVOKE record");
1252 
1253       const FunctionType *FTy =
1254         dyn_cast<FunctionType>(CalleeTy->getElementType());
1255 
1256       // Check that the right number of fixed parameters are here.
1257       if (FTy == 0 || Record.size() < 5+FTy->getNumParams())
1258         return Error("Invalid INVOKE record");
1259 
1260       SmallVector<Value*, 16> Ops;
1261       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) {
1262         Ops.push_back(getFnValueByID(Record[5+i], FTy->getParamType(i)));
1263         if (Ops.back() == 0)
1264           return Error("Invalid INVOKE record");
1265       }
1266 
1267       unsigned FirstVarargParam = 5+FTy->getNumParams();
1268       if (FTy->isVarArg()) {
1269         // Read type/value pairs for varargs params.
1270         if ((Record.size()-FirstVarargParam) & 1)
1271           return Error("Invalid INVOKE record");
1272 
1273         for (unsigned i = FirstVarargParam, e = Record.size(); i != e; i += 2) {
1274           const Type *ArgTy = getTypeByID(Record[i]);
1275           Ops.push_back(getFnValueByID(Record[i+1], ArgTy));
1276           if (Ops.back() == 0 || ArgTy == 0)
1277             return Error("Invalid INVOKE record");
1278         }
1279       } else {
1280         if (Record.size() != FirstVarargParam)
1281           return Error("Invalid INVOKE record");
1282       }
1283 
1284       I = new InvokeInst(Callee, NormalBB, UnwindBB, &Ops[0], Ops.size());
1285       cast<InvokeInst>(I)->setCallingConv(CCInfo);
1286       break;
1287     }
1288     case bitc::FUNC_CODE_INST_UNWIND: // UNWIND
1289       I = new UnwindInst();
1290       break;
1291     case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE
1292       I = new UnreachableInst();
1293       break;
1294     case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, #ops, val0,bb0, ...]
1295       if (Record.size() < 2 || Record.size() < 2+Record[1] || (Record[1]&1))
1296         return Error("Invalid PHI record");
1297       const Type *Ty = getTypeByID(Record[0]);
1298       if (!Ty) return Error("Invalid PHI record");
1299 
1300       PHINode *PN = new PHINode(Ty);
1301       PN->reserveOperandSpace(Record[1]);
1302 
1303       for (unsigned i = 0, e = Record[1]; i != e; i += 2) {
1304         Value *V = getFnValueByID(Record[2+i], Ty);
1305         BasicBlock *BB = getBasicBlock(Record[3+i]);
1306         if (!V || !BB) return Error("Invalid PHI record");
1307         PN->addIncoming(V, BB);
1308       }
1309       I = PN;
1310       break;
1311     }
1312 
1313     case bitc::FUNC_CODE_INST_MALLOC: { // MALLOC: [instty, op, align]
1314       if (Record.size() < 3)
1315         return Error("Invalid MALLOC record");
1316       const PointerType *Ty =
1317         dyn_cast_or_null<PointerType>(getTypeByID(Record[0]));
1318       Value *Size = getFnValueByID(Record[1], Type::Int32Ty);
1319       unsigned Align = Record[2];
1320       if (!Ty || !Size) return Error("Invalid MALLOC record");
1321       I = new MallocInst(Ty->getElementType(), Size, (1 << Align) >> 1);
1322       break;
1323     }
1324     case bitc::FUNC_CODE_INST_FREE: { // FREE: [opty, op]
1325       if (Record.size() < 2)
1326         return Error("Invalid FREE record");
1327       const Type *OpTy = getTypeByID(Record[0]);
1328       Value *Op = getFnValueByID(Record[1], OpTy);
1329       if (!OpTy || !Op)
1330         return Error("Invalid FREE record");
1331       I = new FreeInst(Op);
1332       break;
1333     }
1334     case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, op, align]
1335       if (Record.size() < 3)
1336         return Error("Invalid ALLOCA record");
1337       const PointerType *Ty =
1338         dyn_cast_or_null<PointerType>(getTypeByID(Record[0]));
1339       Value *Size = getFnValueByID(Record[1], Type::Int32Ty);
1340       unsigned Align = Record[2];
1341       if (!Ty || !Size) return Error("Invalid ALLOCA record");
1342       I = new AllocaInst(Ty->getElementType(), Size, (1 << Align) >> 1);
1343       break;
1344     }
1345     case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol]
1346       if (Record.size() < 4)
1347         return Error("Invalid LOAD record");
1348       const Type *OpTy = getTypeByID(Record[0]);
1349       Value *Op = getFnValueByID(Record[1], OpTy);
1350       if (!OpTy || !Op)
1351         return Error("Invalid LOAD record");
1352       I = new LoadInst(Op, "", Record[3], (1 << Record[2]) >> 1);
1353       break;
1354     }
1355     case bitc::FUNC_CODE_INST_STORE: { // STORE:[ptrty,val,ptr, align, vol]
1356       if (Record.size() < 5)
1357         return Error("Invalid LOAD record");
1358       const PointerType *OpTy =
1359         dyn_cast_or_null<PointerType>(getTypeByID(Record[0]));
1360       Value *Op = getFnValueByID(Record[1], OpTy ? OpTy->getElementType() : 0);
1361       Value *Ptr = getFnValueByID(Record[2], OpTy);
1362       if (!OpTy || !Op || !Ptr)
1363         return Error("Invalid STORE record");
1364       I = new StoreInst(Op, Ptr, (1 << Record[3]) >> 1, Record[4]);
1365       break;
1366     }
1367     case bitc::FUNC_CODE_INST_CALL: { // CALL: [cc, fnty, fnid, arg0, arg1...]
1368       if (Record.size() < 3)
1369         return Error("Invalid CALL record");
1370       unsigned CCInfo = Record[0];
1371       const PointerType *OpTy =
1372         dyn_cast_or_null<PointerType>(getTypeByID(Record[1]));
1373       const FunctionType *FTy = 0;
1374       if (OpTy) FTy = dyn_cast<FunctionType>(OpTy->getElementType());
1375       Value *Callee = getFnValueByID(Record[2], OpTy);
1376       if (!FTy || !Callee || Record.size() < FTy->getNumParams()+3)
1377         return Error("Invalid CALL record");
1378 
1379       SmallVector<Value*, 16> Args;
1380       // Read the fixed params.
1381       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) {
1382         Args.push_back(getFnValueByID(Record[i+3], FTy->getParamType(i)));
1383         if (Args.back() == 0) return Error("Invalid CALL record");
1384       }
1385 
1386 
1387       // Read type/value pairs for varargs params.
1388       unsigned NextArg = FTy->getNumParams()+3;
1389       if (!FTy->isVarArg()) {
1390         if (NextArg != Record.size())
1391           return Error("Invalid CALL record");
1392       } else {
1393         if ((Record.size()-NextArg) & 1)
1394           return Error("Invalid CALL record");
1395         for (unsigned e = Record.size(); NextArg != e; NextArg += 2) {
1396           Args.push_back(getFnValueByID(Record[NextArg+1],
1397                                         getTypeByID(Record[NextArg])));
1398           if (Args.back() == 0) return Error("Invalid CALL record");
1399         }
1400       }
1401 
1402       I = new CallInst(Callee, &Args[0], Args.size());
1403       cast<CallInst>(I)->setCallingConv(CCInfo>>1);
1404       cast<CallInst>(I)->setTailCall(CCInfo & 1);
1405       break;
1406     }
1407     case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty]
1408       if (Record.size() < 3)
1409         return Error("Invalid VAARG record");
1410       const Type *OpTy = getTypeByID(Record[0]);
1411       Value *Op = getFnValueByID(Record[1], OpTy);
1412       const Type *ResTy = getTypeByID(Record[2]);
1413       if (!OpTy || !Op || !ResTy)
1414         return Error("Invalid VAARG record");
1415       I = new VAArgInst(Op, ResTy);
1416       break;
1417     }
1418     }
1419 
1420     // Add instruction to end of current BB.  If there is no current BB, reject
1421     // this file.
1422     if (CurBB == 0) {
1423       delete I;
1424       return Error("Invalid instruction with no BB");
1425     }
1426     CurBB->getInstList().push_back(I);
1427 
1428     // If this was a terminator instruction, move to the next block.
1429     if (isa<TerminatorInst>(I)) {
1430       ++CurBBNo;
1431       CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : 0;
1432     }
1433 
1434     // Non-void values get registered in the value table for future use.
1435     if (I && I->getType() != Type::VoidTy)
1436       ValueList.AssignValue(I, NextValueNo++);
1437   }
1438 
1439   // Check the function list for unresolved values.
1440   if (Argument *A = dyn_cast<Argument>(ValueList.back())) {
1441     if (A->getParent() == 0) {
1442       // We found at least one unresolved value.  Nuke them all to avoid leaks.
1443       for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){
1444         if ((A = dyn_cast<Argument>(ValueList.back())) && A->getParent() == 0) {
1445           A->replaceAllUsesWith(UndefValue::get(A->getType()));
1446           delete A;
1447         }
1448       }
1449     }
1450     return Error("Never resolved value found in function!");
1451   }
1452 
1453   // Trim the value list down to the size it was before we parsed this function.
1454   ValueList.shrinkTo(ModuleValueListSize);
1455   std::vector<BasicBlock*>().swap(FunctionBBs);
1456 
1457   return false;
1458 }
1459 
1460 
1461 //===----------------------------------------------------------------------===//
1462 // External interface
1463 //===----------------------------------------------------------------------===//
1464 
1465 /// getBitcodeModuleProvider - lazy function-at-a-time loading from a file.
1466 ///
1467 ModuleProvider *llvm::getBitcodeModuleProvider(MemoryBuffer *Buffer,
1468                                                std::string *ErrMsg) {
1469   BitcodeReader *R = new BitcodeReader(Buffer);
1470   if (R->ParseBitcode()) {
1471     if (ErrMsg)
1472       *ErrMsg = R->getErrorString();
1473 
1474     // Don't let the BitcodeReader dtor delete 'Buffer'.
1475     R->releaseMemoryBuffer();
1476     delete R;
1477     return 0;
1478   }
1479   return R;
1480 }
1481 
1482 /// ParseBitcodeFile - Read the specified bitcode file, returning the module.
1483 /// If an error occurs, return null and fill in *ErrMsg if non-null.
1484 Module *llvm::ParseBitcodeFile(MemoryBuffer *Buffer, std::string *ErrMsg){
1485   BitcodeReader *R;
1486   R = static_cast<BitcodeReader*>(getBitcodeModuleProvider(Buffer, ErrMsg));
1487   if (!R) return 0;
1488 
1489   // Read the whole module, get a pointer to it, tell ModuleProvider not to
1490   // delete it when its dtor is run.
1491   Module *M = R->releaseModule(ErrMsg);
1492 
1493   // Don't let the BitcodeReader dtor delete 'Buffer'.
1494   R->releaseMemoryBuffer();
1495   delete R;
1496   return M;
1497 }
1498