1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "llvm/Bitcode/ReaderWriter.h" 11 #include "llvm/ADT/STLExtras.h" 12 #include "llvm/ADT/SmallString.h" 13 #include "llvm/ADT/SmallVector.h" 14 #include "llvm/ADT/Triple.h" 15 #include "llvm/Bitcode/BitstreamReader.h" 16 #include "llvm/Bitcode/LLVMBitCodes.h" 17 #include "llvm/IR/AutoUpgrade.h" 18 #include "llvm/IR/Constants.h" 19 #include "llvm/IR/DebugInfo.h" 20 #include "llvm/IR/DebugInfoMetadata.h" 21 #include "llvm/IR/DerivedTypes.h" 22 #include "llvm/IR/DiagnosticPrinter.h" 23 #include "llvm/IR/GVMaterializer.h" 24 #include "llvm/IR/InlineAsm.h" 25 #include "llvm/IR/IntrinsicInst.h" 26 #include "llvm/IR/LLVMContext.h" 27 #include "llvm/IR/Module.h" 28 #include "llvm/IR/OperandTraits.h" 29 #include "llvm/IR/Operator.h" 30 #include "llvm/IR/FunctionInfo.h" 31 #include "llvm/IR/ValueHandle.h" 32 #include "llvm/Support/DataStream.h" 33 #include "llvm/Support/ManagedStatic.h" 34 #include "llvm/Support/MathExtras.h" 35 #include "llvm/Support/MemoryBuffer.h" 36 #include "llvm/Support/raw_ostream.h" 37 #include <deque> 38 39 using namespace llvm; 40 41 namespace { 42 enum { 43 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 44 }; 45 46 class BitcodeReaderValueList { 47 std::vector<WeakVH> ValuePtrs; 48 49 /// As we resolve forward-referenced constants, we add information about them 50 /// to this vector. This allows us to resolve them in bulk instead of 51 /// resolving each reference at a time. See the code in 52 /// ResolveConstantForwardRefs for more information about this. 53 /// 54 /// The key of this vector is the placeholder constant, the value is the slot 55 /// number that holds the resolved value. 56 typedef std::vector<std::pair<Constant*, unsigned> > ResolveConstantsTy; 57 ResolveConstantsTy ResolveConstants; 58 LLVMContext &Context; 59 public: 60 BitcodeReaderValueList(LLVMContext &C) : Context(C) {} 61 ~BitcodeReaderValueList() { 62 assert(ResolveConstants.empty() && "Constants not resolved?"); 63 } 64 65 // vector compatibility methods 66 unsigned size() const { return ValuePtrs.size(); } 67 void resize(unsigned N) { ValuePtrs.resize(N); } 68 void push_back(Value *V) { ValuePtrs.emplace_back(V); } 69 70 void clear() { 71 assert(ResolveConstants.empty() && "Constants not resolved?"); 72 ValuePtrs.clear(); 73 } 74 75 Value *operator[](unsigned i) const { 76 assert(i < ValuePtrs.size()); 77 return ValuePtrs[i]; 78 } 79 80 Value *back() const { return ValuePtrs.back(); } 81 void pop_back() { ValuePtrs.pop_back(); } 82 bool empty() const { return ValuePtrs.empty(); } 83 void shrinkTo(unsigned N) { 84 assert(N <= size() && "Invalid shrinkTo request!"); 85 ValuePtrs.resize(N); 86 } 87 88 Constant *getConstantFwdRef(unsigned Idx, Type *Ty); 89 Value *getValueFwdRef(unsigned Idx, Type *Ty); 90 91 void assignValue(Value *V, unsigned Idx); 92 93 /// Once all constants are read, this method bulk resolves any forward 94 /// references. 95 void resolveConstantForwardRefs(); 96 }; 97 98 class BitcodeReaderMetadataList { 99 unsigned NumFwdRefs; 100 bool AnyFwdRefs; 101 unsigned MinFwdRef; 102 unsigned MaxFwdRef; 103 std::vector<TrackingMDRef> MetadataPtrs; 104 105 LLVMContext &Context; 106 public: 107 BitcodeReaderMetadataList(LLVMContext &C) 108 : NumFwdRefs(0), AnyFwdRefs(false), Context(C) {} 109 110 // vector compatibility methods 111 unsigned size() const { return MetadataPtrs.size(); } 112 void resize(unsigned N) { MetadataPtrs.resize(N); } 113 void push_back(Metadata *MD) { MetadataPtrs.emplace_back(MD); } 114 void clear() { MetadataPtrs.clear(); } 115 Metadata *back() const { return MetadataPtrs.back(); } 116 void pop_back() { MetadataPtrs.pop_back(); } 117 bool empty() const { return MetadataPtrs.empty(); } 118 119 Metadata *operator[](unsigned i) const { 120 assert(i < MetadataPtrs.size()); 121 return MetadataPtrs[i]; 122 } 123 124 void shrinkTo(unsigned N) { 125 assert(N <= size() && "Invalid shrinkTo request!"); 126 MetadataPtrs.resize(N); 127 } 128 129 Metadata *getValueFwdRef(unsigned Idx); 130 void assignValue(Metadata *MD, unsigned Idx); 131 void tryToResolveCycles(); 132 }; 133 134 class BitcodeReader : public GVMaterializer { 135 LLVMContext &Context; 136 Module *TheModule = nullptr; 137 std::unique_ptr<MemoryBuffer> Buffer; 138 std::unique_ptr<BitstreamReader> StreamFile; 139 BitstreamCursor Stream; 140 // Next offset to start scanning for lazy parsing of function bodies. 141 uint64_t NextUnreadBit = 0; 142 // Last function offset found in the VST. 143 uint64_t LastFunctionBlockBit = 0; 144 bool SeenValueSymbolTable = false; 145 uint64_t VSTOffset = 0; 146 // Contains an arbitrary and optional string identifying the bitcode producer 147 std::string ProducerIdentification; 148 // Number of module level metadata records specified by the 149 // MODULE_CODE_METADATA_VALUES record. 150 unsigned NumModuleMDs = 0; 151 // Support older bitcode without the MODULE_CODE_METADATA_VALUES record. 152 bool SeenModuleValuesRecord = false; 153 154 std::vector<Type*> TypeList; 155 BitcodeReaderValueList ValueList; 156 BitcodeReaderMetadataList MetadataList; 157 std::vector<Comdat *> ComdatList; 158 SmallVector<Instruction *, 64> InstructionList; 159 160 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInits; 161 std::vector<std::pair<GlobalAlias*, unsigned> > AliasInits; 162 std::vector<std::pair<Function*, unsigned> > FunctionPrefixes; 163 std::vector<std::pair<Function*, unsigned> > FunctionPrologues; 164 std::vector<std::pair<Function*, unsigned> > FunctionPersonalityFns; 165 166 SmallVector<Instruction*, 64> InstsWithTBAATag; 167 168 /// The set of attributes by index. Index zero in the file is for null, and 169 /// is thus not represented here. As such all indices are off by one. 170 std::vector<AttributeSet> MAttributes; 171 172 /// The set of attribute groups. 173 std::map<unsigned, AttributeSet> MAttributeGroups; 174 175 /// While parsing a function body, this is a list of the basic blocks for the 176 /// function. 177 std::vector<BasicBlock*> FunctionBBs; 178 179 // When reading the module header, this list is populated with functions that 180 // have bodies later in the file. 181 std::vector<Function*> FunctionsWithBodies; 182 183 // When intrinsic functions are encountered which require upgrading they are 184 // stored here with their replacement function. 185 typedef DenseMap<Function*, Function*> UpgradedIntrinsicMap; 186 UpgradedIntrinsicMap UpgradedIntrinsics; 187 188 // Map the bitcode's custom MDKind ID to the Module's MDKind ID. 189 DenseMap<unsigned, unsigned> MDKindMap; 190 191 // Several operations happen after the module header has been read, but 192 // before function bodies are processed. This keeps track of whether 193 // we've done this yet. 194 bool SeenFirstFunctionBody = false; 195 196 /// When function bodies are initially scanned, this map contains info about 197 /// where to find deferred function body in the stream. 198 DenseMap<Function*, uint64_t> DeferredFunctionInfo; 199 200 /// When Metadata block is initially scanned when parsing the module, we may 201 /// choose to defer parsing of the metadata. This vector contains info about 202 /// which Metadata blocks are deferred. 203 std::vector<uint64_t> DeferredMetadataInfo; 204 205 /// These are basic blocks forward-referenced by block addresses. They are 206 /// inserted lazily into functions when they're loaded. The basic block ID is 207 /// its index into the vector. 208 DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs; 209 std::deque<Function *> BasicBlockFwdRefQueue; 210 211 /// Indicates that we are using a new encoding for instruction operands where 212 /// most operands in the current FUNCTION_BLOCK are encoded relative to the 213 /// instruction number, for a more compact encoding. Some instruction 214 /// operands are not relative to the instruction ID: basic block numbers, and 215 /// types. Once the old style function blocks have been phased out, we would 216 /// not need this flag. 217 bool UseRelativeIDs = false; 218 219 /// True if all functions will be materialized, negating the need to process 220 /// (e.g.) blockaddress forward references. 221 bool WillMaterializeAllForwardRefs = false; 222 223 /// True if any Metadata block has been materialized. 224 bool IsMetadataMaterialized = false; 225 226 bool StripDebugInfo = false; 227 228 /// Functions that need to be matched with subprograms when upgrading old 229 /// metadata. 230 SmallDenseMap<Function *, DISubprogram *, 16> FunctionsWithSPs; 231 232 std::vector<std::string> BundleTags; 233 234 public: 235 std::error_code error(BitcodeError E, const Twine &Message); 236 std::error_code error(BitcodeError E); 237 std::error_code error(const Twine &Message); 238 239 BitcodeReader(MemoryBuffer *Buffer, LLVMContext &Context); 240 BitcodeReader(LLVMContext &Context); 241 ~BitcodeReader() override { freeState(); } 242 243 std::error_code materializeForwardReferencedFunctions(); 244 245 void freeState(); 246 247 void releaseBuffer(); 248 249 std::error_code materialize(GlobalValue *GV) override; 250 std::error_code materializeModule() override; 251 std::vector<StructType *> getIdentifiedStructTypes() const override; 252 253 /// \brief Main interface to parsing a bitcode buffer. 254 /// \returns true if an error occurred. 255 std::error_code parseBitcodeInto(std::unique_ptr<DataStreamer> Streamer, 256 Module *M, 257 bool ShouldLazyLoadMetadata = false); 258 259 /// \brief Cheap mechanism to just extract module triple 260 /// \returns true if an error occurred. 261 ErrorOr<std::string> parseTriple(); 262 263 /// Cheap mechanism to just extract the identification block out of bitcode. 264 ErrorOr<std::string> parseIdentificationBlock(); 265 266 static uint64_t decodeSignRotatedValue(uint64_t V); 267 268 /// Materialize any deferred Metadata block. 269 std::error_code materializeMetadata() override; 270 271 void setStripDebugInfo() override; 272 273 /// Save the mapping between the metadata values and the corresponding 274 /// value id that were recorded in the MetadataList during parsing. If 275 /// OnlyTempMD is true, then only record those entries that are still 276 /// temporary metadata. This interface is used when metadata linking is 277 /// performed as a postpass, such as during function importing. 278 void saveMetadataList(DenseMap<const Metadata *, unsigned> &MetadataToIDs, 279 bool OnlyTempMD) override; 280 281 private: 282 /// Parse the "IDENTIFICATION_BLOCK_ID" block, populate the 283 // ProducerIdentification data member, and do some basic enforcement on the 284 // "epoch" encoded in the bitcode. 285 std::error_code parseBitcodeVersion(); 286 287 std::vector<StructType *> IdentifiedStructTypes; 288 StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name); 289 StructType *createIdentifiedStructType(LLVMContext &Context); 290 291 Type *getTypeByID(unsigned ID); 292 Value *getFnValueByID(unsigned ID, Type *Ty) { 293 if (Ty && Ty->isMetadataTy()) 294 return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID)); 295 return ValueList.getValueFwdRef(ID, Ty); 296 } 297 Metadata *getFnMetadataByID(unsigned ID) { 298 return MetadataList.getValueFwdRef(ID); 299 } 300 BasicBlock *getBasicBlock(unsigned ID) const { 301 if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID 302 return FunctionBBs[ID]; 303 } 304 AttributeSet getAttributes(unsigned i) const { 305 if (i-1 < MAttributes.size()) 306 return MAttributes[i-1]; 307 return AttributeSet(); 308 } 309 310 /// Read a value/type pair out of the specified record from slot 'Slot'. 311 /// Increment Slot past the number of slots used in the record. Return true on 312 /// failure. 313 bool getValueTypePair(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 314 unsigned InstNum, Value *&ResVal) { 315 if (Slot == Record.size()) return true; 316 unsigned ValNo = (unsigned)Record[Slot++]; 317 // Adjust the ValNo, if it was encoded relative to the InstNum. 318 if (UseRelativeIDs) 319 ValNo = InstNum - ValNo; 320 if (ValNo < InstNum) { 321 // If this is not a forward reference, just return the value we already 322 // have. 323 ResVal = getFnValueByID(ValNo, nullptr); 324 return ResVal == nullptr; 325 } 326 if (Slot == Record.size()) 327 return true; 328 329 unsigned TypeNo = (unsigned)Record[Slot++]; 330 ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo)); 331 return ResVal == nullptr; 332 } 333 334 /// Read a value out of the specified record from slot 'Slot'. Increment Slot 335 /// past the number of slots used by the value in the record. Return true if 336 /// there is an error. 337 bool popValue(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 338 unsigned InstNum, Type *Ty, Value *&ResVal) { 339 if (getValue(Record, Slot, InstNum, Ty, ResVal)) 340 return true; 341 // All values currently take a single record slot. 342 ++Slot; 343 return false; 344 } 345 346 /// Like popValue, but does not increment the Slot number. 347 bool getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 348 unsigned InstNum, Type *Ty, Value *&ResVal) { 349 ResVal = getValue(Record, Slot, InstNum, Ty); 350 return ResVal == nullptr; 351 } 352 353 /// Version of getValue that returns ResVal directly, or 0 if there is an 354 /// error. 355 Value *getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 356 unsigned InstNum, Type *Ty) { 357 if (Slot == Record.size()) return nullptr; 358 unsigned ValNo = (unsigned)Record[Slot]; 359 // Adjust the ValNo, if it was encoded relative to the InstNum. 360 if (UseRelativeIDs) 361 ValNo = InstNum - ValNo; 362 return getFnValueByID(ValNo, Ty); 363 } 364 365 /// Like getValue, but decodes signed VBRs. 366 Value *getValueSigned(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 367 unsigned InstNum, Type *Ty) { 368 if (Slot == Record.size()) return nullptr; 369 unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]); 370 // Adjust the ValNo, if it was encoded relative to the InstNum. 371 if (UseRelativeIDs) 372 ValNo = InstNum - ValNo; 373 return getFnValueByID(ValNo, Ty); 374 } 375 376 /// Converts alignment exponent (i.e. power of two (or zero)) to the 377 /// corresponding alignment to use. If alignment is too large, returns 378 /// a corresponding error code. 379 std::error_code parseAlignmentValue(uint64_t Exponent, unsigned &Alignment); 380 std::error_code parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind); 381 std::error_code parseModule(uint64_t ResumeBit, 382 bool ShouldLazyLoadMetadata = false); 383 std::error_code parseAttributeBlock(); 384 std::error_code parseAttributeGroupBlock(); 385 std::error_code parseTypeTable(); 386 std::error_code parseTypeTableBody(); 387 std::error_code parseOperandBundleTags(); 388 389 ErrorOr<Value *> recordValue(SmallVectorImpl<uint64_t> &Record, 390 unsigned NameIndex, Triple &TT); 391 std::error_code parseValueSymbolTable(uint64_t Offset = 0); 392 std::error_code parseConstants(); 393 std::error_code rememberAndSkipFunctionBodies(); 394 std::error_code rememberAndSkipFunctionBody(); 395 /// Save the positions of the Metadata blocks and skip parsing the blocks. 396 std::error_code rememberAndSkipMetadata(); 397 std::error_code parseFunctionBody(Function *F); 398 std::error_code globalCleanup(); 399 std::error_code resolveGlobalAndAliasInits(); 400 std::error_code parseMetadata(bool ModuleLevel = false); 401 std::error_code parseMetadataKinds(); 402 std::error_code parseMetadataKindRecord(SmallVectorImpl<uint64_t> &Record); 403 std::error_code parseMetadataAttachment(Function &F); 404 ErrorOr<std::string> parseModuleTriple(); 405 std::error_code parseUseLists(); 406 std::error_code initStream(std::unique_ptr<DataStreamer> Streamer); 407 std::error_code initStreamFromBuffer(); 408 std::error_code initLazyStream(std::unique_ptr<DataStreamer> Streamer); 409 std::error_code findFunctionInStream( 410 Function *F, 411 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator); 412 }; 413 414 /// Class to manage reading and parsing function summary index bitcode 415 /// files/sections. 416 class FunctionIndexBitcodeReader { 417 DiagnosticHandlerFunction DiagnosticHandler; 418 419 /// Eventually points to the function index built during parsing. 420 FunctionInfoIndex *TheIndex = nullptr; 421 422 std::unique_ptr<MemoryBuffer> Buffer; 423 std::unique_ptr<BitstreamReader> StreamFile; 424 BitstreamCursor Stream; 425 426 /// \brief Used to indicate whether we are doing lazy parsing of summary data. 427 /// 428 /// If false, the summary section is fully parsed into the index during 429 /// the initial parse. Otherwise, if true, the caller is expected to 430 /// invoke \a readFunctionSummary for each summary needed, and the summary 431 /// section is thus parsed lazily. 432 bool IsLazy = false; 433 434 /// Used to indicate whether caller only wants to check for the presence 435 /// of the function summary bitcode section. All blocks are skipped, 436 /// but the SeenFuncSummary boolean is set. 437 bool CheckFuncSummaryPresenceOnly = false; 438 439 /// Indicates whether we have encountered a function summary section 440 /// yet during parsing, used when checking if file contains function 441 /// summary section. 442 bool SeenFuncSummary = false; 443 444 /// \brief Map populated during function summary section parsing, and 445 /// consumed during ValueSymbolTable parsing. 446 /// 447 /// Used to correlate summary records with VST entries. For the per-module 448 /// index this maps the ValueID to the parsed function summary, and 449 /// for the combined index this maps the summary record's bitcode 450 /// offset to the function summary (since in the combined index the 451 /// VST records do not hold value IDs but rather hold the function 452 /// summary record offset). 453 DenseMap<uint64_t, std::unique_ptr<FunctionSummary>> SummaryMap; 454 455 /// Map populated during module path string table parsing, from the 456 /// module ID to a string reference owned by the index's module 457 /// path string table, used to correlate with combined index function 458 /// summary records. 459 DenseMap<uint64_t, StringRef> ModuleIdMap; 460 461 /// Original source file name recorded in a bitcode record. 462 std::string SourceFileName; 463 464 public: 465 std::error_code error(BitcodeError E, const Twine &Message); 466 std::error_code error(BitcodeError E); 467 std::error_code error(const Twine &Message); 468 469 FunctionIndexBitcodeReader(MemoryBuffer *Buffer, 470 DiagnosticHandlerFunction DiagnosticHandler, 471 bool IsLazy = false, 472 bool CheckFuncSummaryPresenceOnly = false); 473 FunctionIndexBitcodeReader(DiagnosticHandlerFunction DiagnosticHandler, 474 bool IsLazy = false, 475 bool CheckFuncSummaryPresenceOnly = false); 476 ~FunctionIndexBitcodeReader() { freeState(); } 477 478 void freeState(); 479 480 void releaseBuffer(); 481 482 /// Check if the parser has encountered a function summary section. 483 bool foundFuncSummary() { return SeenFuncSummary; } 484 485 /// \brief Main interface to parsing a bitcode buffer. 486 /// \returns true if an error occurred. 487 std::error_code parseSummaryIndexInto(std::unique_ptr<DataStreamer> Streamer, 488 FunctionInfoIndex *I); 489 490 /// \brief Interface for parsing a function summary lazily. 491 std::error_code parseFunctionSummary(std::unique_ptr<DataStreamer> Streamer, 492 FunctionInfoIndex *I, 493 size_t FunctionSummaryOffset); 494 495 private: 496 std::error_code parseModule(); 497 std::error_code parseValueSymbolTable(); 498 std::error_code parseEntireSummary(); 499 std::error_code parseModuleStringTable(); 500 std::error_code initStream(std::unique_ptr<DataStreamer> Streamer); 501 std::error_code initStreamFromBuffer(); 502 std::error_code initLazyStream(std::unique_ptr<DataStreamer> Streamer); 503 }; 504 } // end anonymous namespace 505 506 BitcodeDiagnosticInfo::BitcodeDiagnosticInfo(std::error_code EC, 507 DiagnosticSeverity Severity, 508 const Twine &Msg) 509 : DiagnosticInfo(DK_Bitcode, Severity), Msg(Msg), EC(EC) {} 510 511 void BitcodeDiagnosticInfo::print(DiagnosticPrinter &DP) const { DP << Msg; } 512 513 static std::error_code error(DiagnosticHandlerFunction DiagnosticHandler, 514 std::error_code EC, const Twine &Message) { 515 BitcodeDiagnosticInfo DI(EC, DS_Error, Message); 516 DiagnosticHandler(DI); 517 return EC; 518 } 519 520 static std::error_code error(DiagnosticHandlerFunction DiagnosticHandler, 521 std::error_code EC) { 522 return error(DiagnosticHandler, EC, EC.message()); 523 } 524 525 static std::error_code error(LLVMContext &Context, std::error_code EC, 526 const Twine &Message) { 527 return error([&](const DiagnosticInfo &DI) { Context.diagnose(DI); }, EC, 528 Message); 529 } 530 531 static std::error_code error(LLVMContext &Context, std::error_code EC) { 532 return error(Context, EC, EC.message()); 533 } 534 535 static std::error_code error(LLVMContext &Context, const Twine &Message) { 536 return error(Context, make_error_code(BitcodeError::CorruptedBitcode), 537 Message); 538 } 539 540 std::error_code BitcodeReader::error(BitcodeError E, const Twine &Message) { 541 if (!ProducerIdentification.empty()) { 542 return ::error(Context, make_error_code(E), 543 Message + " (Producer: '" + ProducerIdentification + 544 "' Reader: 'LLVM " + LLVM_VERSION_STRING "')"); 545 } 546 return ::error(Context, make_error_code(E), Message); 547 } 548 549 std::error_code BitcodeReader::error(const Twine &Message) { 550 if (!ProducerIdentification.empty()) { 551 return ::error(Context, make_error_code(BitcodeError::CorruptedBitcode), 552 Message + " (Producer: '" + ProducerIdentification + 553 "' Reader: 'LLVM " + LLVM_VERSION_STRING "')"); 554 } 555 return ::error(Context, make_error_code(BitcodeError::CorruptedBitcode), 556 Message); 557 } 558 559 std::error_code BitcodeReader::error(BitcodeError E) { 560 return ::error(Context, make_error_code(E)); 561 } 562 563 BitcodeReader::BitcodeReader(MemoryBuffer *Buffer, LLVMContext &Context) 564 : Context(Context), Buffer(Buffer), ValueList(Context), 565 MetadataList(Context) {} 566 567 BitcodeReader::BitcodeReader(LLVMContext &Context) 568 : Context(Context), Buffer(nullptr), ValueList(Context), 569 MetadataList(Context) {} 570 571 std::error_code BitcodeReader::materializeForwardReferencedFunctions() { 572 if (WillMaterializeAllForwardRefs) 573 return std::error_code(); 574 575 // Prevent recursion. 576 WillMaterializeAllForwardRefs = true; 577 578 while (!BasicBlockFwdRefQueue.empty()) { 579 Function *F = BasicBlockFwdRefQueue.front(); 580 BasicBlockFwdRefQueue.pop_front(); 581 assert(F && "Expected valid function"); 582 if (!BasicBlockFwdRefs.count(F)) 583 // Already materialized. 584 continue; 585 586 // Check for a function that isn't materializable to prevent an infinite 587 // loop. When parsing a blockaddress stored in a global variable, there 588 // isn't a trivial way to check if a function will have a body without a 589 // linear search through FunctionsWithBodies, so just check it here. 590 if (!F->isMaterializable()) 591 return error("Never resolved function from blockaddress"); 592 593 // Try to materialize F. 594 if (std::error_code EC = materialize(F)) 595 return EC; 596 } 597 assert(BasicBlockFwdRefs.empty() && "Function missing from queue"); 598 599 // Reset state. 600 WillMaterializeAllForwardRefs = false; 601 return std::error_code(); 602 } 603 604 void BitcodeReader::freeState() { 605 Buffer = nullptr; 606 std::vector<Type*>().swap(TypeList); 607 ValueList.clear(); 608 MetadataList.clear(); 609 std::vector<Comdat *>().swap(ComdatList); 610 611 std::vector<AttributeSet>().swap(MAttributes); 612 std::vector<BasicBlock*>().swap(FunctionBBs); 613 std::vector<Function*>().swap(FunctionsWithBodies); 614 DeferredFunctionInfo.clear(); 615 DeferredMetadataInfo.clear(); 616 MDKindMap.clear(); 617 618 assert(BasicBlockFwdRefs.empty() && "Unresolved blockaddress fwd references"); 619 BasicBlockFwdRefQueue.clear(); 620 } 621 622 //===----------------------------------------------------------------------===// 623 // Helper functions to implement forward reference resolution, etc. 624 //===----------------------------------------------------------------------===// 625 626 /// Convert a string from a record into an std::string, return true on failure. 627 template <typename StrTy> 628 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx, 629 StrTy &Result) { 630 if (Idx > Record.size()) 631 return true; 632 633 for (unsigned i = Idx, e = Record.size(); i != e; ++i) 634 Result += (char)Record[i]; 635 return false; 636 } 637 638 static bool hasImplicitComdat(size_t Val) { 639 switch (Val) { 640 default: 641 return false; 642 case 1: // Old WeakAnyLinkage 643 case 4: // Old LinkOnceAnyLinkage 644 case 10: // Old WeakODRLinkage 645 case 11: // Old LinkOnceODRLinkage 646 return true; 647 } 648 } 649 650 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) { 651 switch (Val) { 652 default: // Map unknown/new linkages to external 653 case 0: 654 return GlobalValue::ExternalLinkage; 655 case 2: 656 return GlobalValue::AppendingLinkage; 657 case 3: 658 return GlobalValue::InternalLinkage; 659 case 5: 660 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage 661 case 6: 662 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage 663 case 7: 664 return GlobalValue::ExternalWeakLinkage; 665 case 8: 666 return GlobalValue::CommonLinkage; 667 case 9: 668 return GlobalValue::PrivateLinkage; 669 case 12: 670 return GlobalValue::AvailableExternallyLinkage; 671 case 13: 672 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage 673 case 14: 674 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage 675 case 15: 676 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage 677 case 1: // Old value with implicit comdat. 678 case 16: 679 return GlobalValue::WeakAnyLinkage; 680 case 10: // Old value with implicit comdat. 681 case 17: 682 return GlobalValue::WeakODRLinkage; 683 case 4: // Old value with implicit comdat. 684 case 18: 685 return GlobalValue::LinkOnceAnyLinkage; 686 case 11: // Old value with implicit comdat. 687 case 19: 688 return GlobalValue::LinkOnceODRLinkage; 689 } 690 } 691 692 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) { 693 switch (Val) { 694 default: // Map unknown visibilities to default. 695 case 0: return GlobalValue::DefaultVisibility; 696 case 1: return GlobalValue::HiddenVisibility; 697 case 2: return GlobalValue::ProtectedVisibility; 698 } 699 } 700 701 static GlobalValue::DLLStorageClassTypes 702 getDecodedDLLStorageClass(unsigned Val) { 703 switch (Val) { 704 default: // Map unknown values to default. 705 case 0: return GlobalValue::DefaultStorageClass; 706 case 1: return GlobalValue::DLLImportStorageClass; 707 case 2: return GlobalValue::DLLExportStorageClass; 708 } 709 } 710 711 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) { 712 switch (Val) { 713 case 0: return GlobalVariable::NotThreadLocal; 714 default: // Map unknown non-zero value to general dynamic. 715 case 1: return GlobalVariable::GeneralDynamicTLSModel; 716 case 2: return GlobalVariable::LocalDynamicTLSModel; 717 case 3: return GlobalVariable::InitialExecTLSModel; 718 case 4: return GlobalVariable::LocalExecTLSModel; 719 } 720 } 721 722 static int getDecodedCastOpcode(unsigned Val) { 723 switch (Val) { 724 default: return -1; 725 case bitc::CAST_TRUNC : return Instruction::Trunc; 726 case bitc::CAST_ZEXT : return Instruction::ZExt; 727 case bitc::CAST_SEXT : return Instruction::SExt; 728 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 729 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 730 case bitc::CAST_UITOFP : return Instruction::UIToFP; 731 case bitc::CAST_SITOFP : return Instruction::SIToFP; 732 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 733 case bitc::CAST_FPEXT : return Instruction::FPExt; 734 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 735 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 736 case bitc::CAST_BITCAST : return Instruction::BitCast; 737 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast; 738 } 739 } 740 741 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) { 742 bool IsFP = Ty->isFPOrFPVectorTy(); 743 // BinOps are only valid for int/fp or vector of int/fp types 744 if (!IsFP && !Ty->isIntOrIntVectorTy()) 745 return -1; 746 747 switch (Val) { 748 default: 749 return -1; 750 case bitc::BINOP_ADD: 751 return IsFP ? Instruction::FAdd : Instruction::Add; 752 case bitc::BINOP_SUB: 753 return IsFP ? Instruction::FSub : Instruction::Sub; 754 case bitc::BINOP_MUL: 755 return IsFP ? Instruction::FMul : Instruction::Mul; 756 case bitc::BINOP_UDIV: 757 return IsFP ? -1 : Instruction::UDiv; 758 case bitc::BINOP_SDIV: 759 return IsFP ? Instruction::FDiv : Instruction::SDiv; 760 case bitc::BINOP_UREM: 761 return IsFP ? -1 : Instruction::URem; 762 case bitc::BINOP_SREM: 763 return IsFP ? Instruction::FRem : Instruction::SRem; 764 case bitc::BINOP_SHL: 765 return IsFP ? -1 : Instruction::Shl; 766 case bitc::BINOP_LSHR: 767 return IsFP ? -1 : Instruction::LShr; 768 case bitc::BINOP_ASHR: 769 return IsFP ? -1 : Instruction::AShr; 770 case bitc::BINOP_AND: 771 return IsFP ? -1 : Instruction::And; 772 case bitc::BINOP_OR: 773 return IsFP ? -1 : Instruction::Or; 774 case bitc::BINOP_XOR: 775 return IsFP ? -1 : Instruction::Xor; 776 } 777 } 778 779 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) { 780 switch (Val) { 781 default: return AtomicRMWInst::BAD_BINOP; 782 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 783 case bitc::RMW_ADD: return AtomicRMWInst::Add; 784 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 785 case bitc::RMW_AND: return AtomicRMWInst::And; 786 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 787 case bitc::RMW_OR: return AtomicRMWInst::Or; 788 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 789 case bitc::RMW_MAX: return AtomicRMWInst::Max; 790 case bitc::RMW_MIN: return AtomicRMWInst::Min; 791 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 792 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 793 } 794 } 795 796 static AtomicOrdering getDecodedOrdering(unsigned Val) { 797 switch (Val) { 798 case bitc::ORDERING_NOTATOMIC: return NotAtomic; 799 case bitc::ORDERING_UNORDERED: return Unordered; 800 case bitc::ORDERING_MONOTONIC: return Monotonic; 801 case bitc::ORDERING_ACQUIRE: return Acquire; 802 case bitc::ORDERING_RELEASE: return Release; 803 case bitc::ORDERING_ACQREL: return AcquireRelease; 804 default: // Map unknown orderings to sequentially-consistent. 805 case bitc::ORDERING_SEQCST: return SequentiallyConsistent; 806 } 807 } 808 809 static SynchronizationScope getDecodedSynchScope(unsigned Val) { 810 switch (Val) { 811 case bitc::SYNCHSCOPE_SINGLETHREAD: return SingleThread; 812 default: // Map unknown scopes to cross-thread. 813 case bitc::SYNCHSCOPE_CROSSTHREAD: return CrossThread; 814 } 815 } 816 817 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) { 818 switch (Val) { 819 default: // Map unknown selection kinds to any. 820 case bitc::COMDAT_SELECTION_KIND_ANY: 821 return Comdat::Any; 822 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH: 823 return Comdat::ExactMatch; 824 case bitc::COMDAT_SELECTION_KIND_LARGEST: 825 return Comdat::Largest; 826 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES: 827 return Comdat::NoDuplicates; 828 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE: 829 return Comdat::SameSize; 830 } 831 } 832 833 static FastMathFlags getDecodedFastMathFlags(unsigned Val) { 834 FastMathFlags FMF; 835 if (0 != (Val & FastMathFlags::UnsafeAlgebra)) 836 FMF.setUnsafeAlgebra(); 837 if (0 != (Val & FastMathFlags::NoNaNs)) 838 FMF.setNoNaNs(); 839 if (0 != (Val & FastMathFlags::NoInfs)) 840 FMF.setNoInfs(); 841 if (0 != (Val & FastMathFlags::NoSignedZeros)) 842 FMF.setNoSignedZeros(); 843 if (0 != (Val & FastMathFlags::AllowReciprocal)) 844 FMF.setAllowReciprocal(); 845 return FMF; 846 } 847 848 static void upgradeDLLImportExportLinkage(llvm::GlobalValue *GV, unsigned Val) { 849 switch (Val) { 850 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break; 851 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break; 852 } 853 } 854 855 namespace llvm { 856 namespace { 857 /// \brief A class for maintaining the slot number definition 858 /// as a placeholder for the actual definition for forward constants defs. 859 class ConstantPlaceHolder : public ConstantExpr { 860 void operator=(const ConstantPlaceHolder &) = delete; 861 862 public: 863 // allocate space for exactly one operand 864 void *operator new(size_t s) { return User::operator new(s, 1); } 865 explicit ConstantPlaceHolder(Type *Ty, LLVMContext &Context) 866 : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) { 867 Op<0>() = UndefValue::get(Type::getInt32Ty(Context)); 868 } 869 870 /// \brief Methods to support type inquiry through isa, cast, and dyn_cast. 871 static bool classof(const Value *V) { 872 return isa<ConstantExpr>(V) && 873 cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1; 874 } 875 876 /// Provide fast operand accessors 877 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); 878 }; 879 } // end anonymous namespace 880 881 // FIXME: can we inherit this from ConstantExpr? 882 template <> 883 struct OperandTraits<ConstantPlaceHolder> : 884 public FixedNumOperandTraits<ConstantPlaceHolder, 1> { 885 }; 886 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantPlaceHolder, Value) 887 } // end namespace llvm 888 889 void BitcodeReaderValueList::assignValue(Value *V, unsigned Idx) { 890 if (Idx == size()) { 891 push_back(V); 892 return; 893 } 894 895 if (Idx >= size()) 896 resize(Idx+1); 897 898 WeakVH &OldV = ValuePtrs[Idx]; 899 if (!OldV) { 900 OldV = V; 901 return; 902 } 903 904 // Handle constants and non-constants (e.g. instrs) differently for 905 // efficiency. 906 if (Constant *PHC = dyn_cast<Constant>(&*OldV)) { 907 ResolveConstants.push_back(std::make_pair(PHC, Idx)); 908 OldV = V; 909 } else { 910 // If there was a forward reference to this value, replace it. 911 Value *PrevVal = OldV; 912 OldV->replaceAllUsesWith(V); 913 delete PrevVal; 914 } 915 } 916 917 Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx, 918 Type *Ty) { 919 if (Idx >= size()) 920 resize(Idx + 1); 921 922 if (Value *V = ValuePtrs[Idx]) { 923 if (Ty != V->getType()) 924 report_fatal_error("Type mismatch in constant table!"); 925 return cast<Constant>(V); 926 } 927 928 // Create and return a placeholder, which will later be RAUW'd. 929 Constant *C = new ConstantPlaceHolder(Ty, Context); 930 ValuePtrs[Idx] = C; 931 return C; 932 } 933 934 Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, Type *Ty) { 935 // Bail out for a clearly invalid value. This would make us call resize(0) 936 if (Idx == UINT_MAX) 937 return nullptr; 938 939 if (Idx >= size()) 940 resize(Idx + 1); 941 942 if (Value *V = ValuePtrs[Idx]) { 943 // If the types don't match, it's invalid. 944 if (Ty && Ty != V->getType()) 945 return nullptr; 946 return V; 947 } 948 949 // No type specified, must be invalid reference. 950 if (!Ty) return nullptr; 951 952 // Create and return a placeholder, which will later be RAUW'd. 953 Value *V = new Argument(Ty); 954 ValuePtrs[Idx] = V; 955 return V; 956 } 957 958 /// Once all constants are read, this method bulk resolves any forward 959 /// references. The idea behind this is that we sometimes get constants (such 960 /// as large arrays) which reference *many* forward ref constants. Replacing 961 /// each of these causes a lot of thrashing when building/reuniquing the 962 /// constant. Instead of doing this, we look at all the uses and rewrite all 963 /// the place holders at once for any constant that uses a placeholder. 964 void BitcodeReaderValueList::resolveConstantForwardRefs() { 965 // Sort the values by-pointer so that they are efficient to look up with a 966 // binary search. 967 std::sort(ResolveConstants.begin(), ResolveConstants.end()); 968 969 SmallVector<Constant*, 64> NewOps; 970 971 while (!ResolveConstants.empty()) { 972 Value *RealVal = operator[](ResolveConstants.back().second); 973 Constant *Placeholder = ResolveConstants.back().first; 974 ResolveConstants.pop_back(); 975 976 // Loop over all users of the placeholder, updating them to reference the 977 // new value. If they reference more than one placeholder, update them all 978 // at once. 979 while (!Placeholder->use_empty()) { 980 auto UI = Placeholder->user_begin(); 981 User *U = *UI; 982 983 // If the using object isn't uniqued, just update the operands. This 984 // handles instructions and initializers for global variables. 985 if (!isa<Constant>(U) || isa<GlobalValue>(U)) { 986 UI.getUse().set(RealVal); 987 continue; 988 } 989 990 // Otherwise, we have a constant that uses the placeholder. Replace that 991 // constant with a new constant that has *all* placeholder uses updated. 992 Constant *UserC = cast<Constant>(U); 993 for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end(); 994 I != E; ++I) { 995 Value *NewOp; 996 if (!isa<ConstantPlaceHolder>(*I)) { 997 // Not a placeholder reference. 998 NewOp = *I; 999 } else if (*I == Placeholder) { 1000 // Common case is that it just references this one placeholder. 1001 NewOp = RealVal; 1002 } else { 1003 // Otherwise, look up the placeholder in ResolveConstants. 1004 ResolveConstantsTy::iterator It = 1005 std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(), 1006 std::pair<Constant*, unsigned>(cast<Constant>(*I), 1007 0)); 1008 assert(It != ResolveConstants.end() && It->first == *I); 1009 NewOp = operator[](It->second); 1010 } 1011 1012 NewOps.push_back(cast<Constant>(NewOp)); 1013 } 1014 1015 // Make the new constant. 1016 Constant *NewC; 1017 if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) { 1018 NewC = ConstantArray::get(UserCA->getType(), NewOps); 1019 } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) { 1020 NewC = ConstantStruct::get(UserCS->getType(), NewOps); 1021 } else if (isa<ConstantVector>(UserC)) { 1022 NewC = ConstantVector::get(NewOps); 1023 } else { 1024 assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr."); 1025 NewC = cast<ConstantExpr>(UserC)->getWithOperands(NewOps); 1026 } 1027 1028 UserC->replaceAllUsesWith(NewC); 1029 UserC->destroyConstant(); 1030 NewOps.clear(); 1031 } 1032 1033 // Update all ValueHandles, they should be the only users at this point. 1034 Placeholder->replaceAllUsesWith(RealVal); 1035 delete Placeholder; 1036 } 1037 } 1038 1039 void BitcodeReaderMetadataList::assignValue(Metadata *MD, unsigned Idx) { 1040 if (Idx == size()) { 1041 push_back(MD); 1042 return; 1043 } 1044 1045 if (Idx >= size()) 1046 resize(Idx+1); 1047 1048 TrackingMDRef &OldMD = MetadataPtrs[Idx]; 1049 if (!OldMD) { 1050 OldMD.reset(MD); 1051 return; 1052 } 1053 1054 // If there was a forward reference to this value, replace it. 1055 TempMDTuple PrevMD(cast<MDTuple>(OldMD.get())); 1056 PrevMD->replaceAllUsesWith(MD); 1057 --NumFwdRefs; 1058 } 1059 1060 Metadata *BitcodeReaderMetadataList::getValueFwdRef(unsigned Idx) { 1061 if (Idx >= size()) 1062 resize(Idx + 1); 1063 1064 if (Metadata *MD = MetadataPtrs[Idx]) 1065 return MD; 1066 1067 // Track forward refs to be resolved later. 1068 if (AnyFwdRefs) { 1069 MinFwdRef = std::min(MinFwdRef, Idx); 1070 MaxFwdRef = std::max(MaxFwdRef, Idx); 1071 } else { 1072 AnyFwdRefs = true; 1073 MinFwdRef = MaxFwdRef = Idx; 1074 } 1075 ++NumFwdRefs; 1076 1077 // Create and return a placeholder, which will later be RAUW'd. 1078 Metadata *MD = MDNode::getTemporary(Context, None).release(); 1079 MetadataPtrs[Idx].reset(MD); 1080 return MD; 1081 } 1082 1083 void BitcodeReaderMetadataList::tryToResolveCycles() { 1084 if (!AnyFwdRefs) 1085 // Nothing to do. 1086 return; 1087 1088 if (NumFwdRefs) 1089 // Still forward references... can't resolve cycles. 1090 return; 1091 1092 // Resolve any cycles. 1093 for (unsigned I = MinFwdRef, E = MaxFwdRef + 1; I != E; ++I) { 1094 auto &MD = MetadataPtrs[I]; 1095 auto *N = dyn_cast_or_null<MDNode>(MD); 1096 if (!N) 1097 continue; 1098 1099 assert(!N->isTemporary() && "Unexpected forward reference"); 1100 N->resolveCycles(); 1101 } 1102 1103 // Make sure we return early again until there's another forward ref. 1104 AnyFwdRefs = false; 1105 } 1106 1107 Type *BitcodeReader::getTypeByID(unsigned ID) { 1108 // The type table size is always specified correctly. 1109 if (ID >= TypeList.size()) 1110 return nullptr; 1111 1112 if (Type *Ty = TypeList[ID]) 1113 return Ty; 1114 1115 // If we have a forward reference, the only possible case is when it is to a 1116 // named struct. Just create a placeholder for now. 1117 return TypeList[ID] = createIdentifiedStructType(Context); 1118 } 1119 1120 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context, 1121 StringRef Name) { 1122 auto *Ret = StructType::create(Context, Name); 1123 IdentifiedStructTypes.push_back(Ret); 1124 return Ret; 1125 } 1126 1127 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) { 1128 auto *Ret = StructType::create(Context); 1129 IdentifiedStructTypes.push_back(Ret); 1130 return Ret; 1131 } 1132 1133 //===----------------------------------------------------------------------===// 1134 // Functions for parsing blocks from the bitcode file 1135 //===----------------------------------------------------------------------===// 1136 1137 1138 /// \brief This fills an AttrBuilder object with the LLVM attributes that have 1139 /// been decoded from the given integer. This function must stay in sync with 1140 /// 'encodeLLVMAttributesForBitcode'. 1141 static void decodeLLVMAttributesForBitcode(AttrBuilder &B, 1142 uint64_t EncodedAttrs) { 1143 // FIXME: Remove in 4.0. 1144 1145 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift 1146 // the bits above 31 down by 11 bits. 1147 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; 1148 assert((!Alignment || isPowerOf2_32(Alignment)) && 1149 "Alignment must be a power of two."); 1150 1151 if (Alignment) 1152 B.addAlignmentAttr(Alignment); 1153 B.addRawValue(((EncodedAttrs & (0xfffffULL << 32)) >> 11) | 1154 (EncodedAttrs & 0xffff)); 1155 } 1156 1157 std::error_code BitcodeReader::parseAttributeBlock() { 1158 if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 1159 return error("Invalid record"); 1160 1161 if (!MAttributes.empty()) 1162 return error("Invalid multiple blocks"); 1163 1164 SmallVector<uint64_t, 64> Record; 1165 1166 SmallVector<AttributeSet, 8> Attrs; 1167 1168 // Read all the records. 1169 while (1) { 1170 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1171 1172 switch (Entry.Kind) { 1173 case BitstreamEntry::SubBlock: // Handled for us already. 1174 case BitstreamEntry::Error: 1175 return error("Malformed block"); 1176 case BitstreamEntry::EndBlock: 1177 return std::error_code(); 1178 case BitstreamEntry::Record: 1179 // The interesting case. 1180 break; 1181 } 1182 1183 // Read a record. 1184 Record.clear(); 1185 switch (Stream.readRecord(Entry.ID, Record)) { 1186 default: // Default behavior: ignore. 1187 break; 1188 case bitc::PARAMATTR_CODE_ENTRY_OLD: { // ENTRY: [paramidx0, attr0, ...] 1189 // FIXME: Remove in 4.0. 1190 if (Record.size() & 1) 1191 return error("Invalid record"); 1192 1193 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1194 AttrBuilder B; 1195 decodeLLVMAttributesForBitcode(B, Record[i+1]); 1196 Attrs.push_back(AttributeSet::get(Context, Record[i], B)); 1197 } 1198 1199 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 1200 Attrs.clear(); 1201 break; 1202 } 1203 case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [attrgrp0, attrgrp1, ...] 1204 for (unsigned i = 0, e = Record.size(); i != e; ++i) 1205 Attrs.push_back(MAttributeGroups[Record[i]]); 1206 1207 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 1208 Attrs.clear(); 1209 break; 1210 } 1211 } 1212 } 1213 } 1214 1215 // Returns Attribute::None on unrecognized codes. 1216 static Attribute::AttrKind getAttrFromCode(uint64_t Code) { 1217 switch (Code) { 1218 default: 1219 return Attribute::None; 1220 case bitc::ATTR_KIND_ALIGNMENT: 1221 return Attribute::Alignment; 1222 case bitc::ATTR_KIND_ALWAYS_INLINE: 1223 return Attribute::AlwaysInline; 1224 case bitc::ATTR_KIND_ARGMEMONLY: 1225 return Attribute::ArgMemOnly; 1226 case bitc::ATTR_KIND_BUILTIN: 1227 return Attribute::Builtin; 1228 case bitc::ATTR_KIND_BY_VAL: 1229 return Attribute::ByVal; 1230 case bitc::ATTR_KIND_IN_ALLOCA: 1231 return Attribute::InAlloca; 1232 case bitc::ATTR_KIND_COLD: 1233 return Attribute::Cold; 1234 case bitc::ATTR_KIND_CONVERGENT: 1235 return Attribute::Convergent; 1236 case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY: 1237 return Attribute::InaccessibleMemOnly; 1238 case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY: 1239 return Attribute::InaccessibleMemOrArgMemOnly; 1240 case bitc::ATTR_KIND_INLINE_HINT: 1241 return Attribute::InlineHint; 1242 case bitc::ATTR_KIND_IN_REG: 1243 return Attribute::InReg; 1244 case bitc::ATTR_KIND_JUMP_TABLE: 1245 return Attribute::JumpTable; 1246 case bitc::ATTR_KIND_MIN_SIZE: 1247 return Attribute::MinSize; 1248 case bitc::ATTR_KIND_NAKED: 1249 return Attribute::Naked; 1250 case bitc::ATTR_KIND_NEST: 1251 return Attribute::Nest; 1252 case bitc::ATTR_KIND_NO_ALIAS: 1253 return Attribute::NoAlias; 1254 case bitc::ATTR_KIND_NO_BUILTIN: 1255 return Attribute::NoBuiltin; 1256 case bitc::ATTR_KIND_NO_CAPTURE: 1257 return Attribute::NoCapture; 1258 case bitc::ATTR_KIND_NO_DUPLICATE: 1259 return Attribute::NoDuplicate; 1260 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: 1261 return Attribute::NoImplicitFloat; 1262 case bitc::ATTR_KIND_NO_INLINE: 1263 return Attribute::NoInline; 1264 case bitc::ATTR_KIND_NO_RECURSE: 1265 return Attribute::NoRecurse; 1266 case bitc::ATTR_KIND_NON_LAZY_BIND: 1267 return Attribute::NonLazyBind; 1268 case bitc::ATTR_KIND_NON_NULL: 1269 return Attribute::NonNull; 1270 case bitc::ATTR_KIND_DEREFERENCEABLE: 1271 return Attribute::Dereferenceable; 1272 case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL: 1273 return Attribute::DereferenceableOrNull; 1274 case bitc::ATTR_KIND_NO_RED_ZONE: 1275 return Attribute::NoRedZone; 1276 case bitc::ATTR_KIND_NO_RETURN: 1277 return Attribute::NoReturn; 1278 case bitc::ATTR_KIND_NO_UNWIND: 1279 return Attribute::NoUnwind; 1280 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: 1281 return Attribute::OptimizeForSize; 1282 case bitc::ATTR_KIND_OPTIMIZE_NONE: 1283 return Attribute::OptimizeNone; 1284 case bitc::ATTR_KIND_READ_NONE: 1285 return Attribute::ReadNone; 1286 case bitc::ATTR_KIND_READ_ONLY: 1287 return Attribute::ReadOnly; 1288 case bitc::ATTR_KIND_RETURNED: 1289 return Attribute::Returned; 1290 case bitc::ATTR_KIND_RETURNS_TWICE: 1291 return Attribute::ReturnsTwice; 1292 case bitc::ATTR_KIND_S_EXT: 1293 return Attribute::SExt; 1294 case bitc::ATTR_KIND_STACK_ALIGNMENT: 1295 return Attribute::StackAlignment; 1296 case bitc::ATTR_KIND_STACK_PROTECT: 1297 return Attribute::StackProtect; 1298 case bitc::ATTR_KIND_STACK_PROTECT_REQ: 1299 return Attribute::StackProtectReq; 1300 case bitc::ATTR_KIND_STACK_PROTECT_STRONG: 1301 return Attribute::StackProtectStrong; 1302 case bitc::ATTR_KIND_SAFESTACK: 1303 return Attribute::SafeStack; 1304 case bitc::ATTR_KIND_STRUCT_RET: 1305 return Attribute::StructRet; 1306 case bitc::ATTR_KIND_SANITIZE_ADDRESS: 1307 return Attribute::SanitizeAddress; 1308 case bitc::ATTR_KIND_SANITIZE_THREAD: 1309 return Attribute::SanitizeThread; 1310 case bitc::ATTR_KIND_SANITIZE_MEMORY: 1311 return Attribute::SanitizeMemory; 1312 case bitc::ATTR_KIND_UW_TABLE: 1313 return Attribute::UWTable; 1314 case bitc::ATTR_KIND_Z_EXT: 1315 return Attribute::ZExt; 1316 } 1317 } 1318 1319 std::error_code BitcodeReader::parseAlignmentValue(uint64_t Exponent, 1320 unsigned &Alignment) { 1321 // Note: Alignment in bitcode files is incremented by 1, so that zero 1322 // can be used for default alignment. 1323 if (Exponent > Value::MaxAlignmentExponent + 1) 1324 return error("Invalid alignment value"); 1325 Alignment = (1 << static_cast<unsigned>(Exponent)) >> 1; 1326 return std::error_code(); 1327 } 1328 1329 std::error_code BitcodeReader::parseAttrKind(uint64_t Code, 1330 Attribute::AttrKind *Kind) { 1331 *Kind = getAttrFromCode(Code); 1332 if (*Kind == Attribute::None) 1333 return error(BitcodeError::CorruptedBitcode, 1334 "Unknown attribute kind (" + Twine(Code) + ")"); 1335 return std::error_code(); 1336 } 1337 1338 std::error_code BitcodeReader::parseAttributeGroupBlock() { 1339 if (Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) 1340 return error("Invalid record"); 1341 1342 if (!MAttributeGroups.empty()) 1343 return error("Invalid multiple blocks"); 1344 1345 SmallVector<uint64_t, 64> Record; 1346 1347 // Read all the records. 1348 while (1) { 1349 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1350 1351 switch (Entry.Kind) { 1352 case BitstreamEntry::SubBlock: // Handled for us already. 1353 case BitstreamEntry::Error: 1354 return error("Malformed block"); 1355 case BitstreamEntry::EndBlock: 1356 return std::error_code(); 1357 case BitstreamEntry::Record: 1358 // The interesting case. 1359 break; 1360 } 1361 1362 // Read a record. 1363 Record.clear(); 1364 switch (Stream.readRecord(Entry.ID, Record)) { 1365 default: // Default behavior: ignore. 1366 break; 1367 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] 1368 if (Record.size() < 3) 1369 return error("Invalid record"); 1370 1371 uint64_t GrpID = Record[0]; 1372 uint64_t Idx = Record[1]; // Index of the object this attribute refers to. 1373 1374 AttrBuilder B; 1375 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1376 if (Record[i] == 0) { // Enum attribute 1377 Attribute::AttrKind Kind; 1378 if (std::error_code EC = parseAttrKind(Record[++i], &Kind)) 1379 return EC; 1380 1381 B.addAttribute(Kind); 1382 } else if (Record[i] == 1) { // Integer attribute 1383 Attribute::AttrKind Kind; 1384 if (std::error_code EC = parseAttrKind(Record[++i], &Kind)) 1385 return EC; 1386 if (Kind == Attribute::Alignment) 1387 B.addAlignmentAttr(Record[++i]); 1388 else if (Kind == Attribute::StackAlignment) 1389 B.addStackAlignmentAttr(Record[++i]); 1390 else if (Kind == Attribute::Dereferenceable) 1391 B.addDereferenceableAttr(Record[++i]); 1392 else if (Kind == Attribute::DereferenceableOrNull) 1393 B.addDereferenceableOrNullAttr(Record[++i]); 1394 } else { // String attribute 1395 assert((Record[i] == 3 || Record[i] == 4) && 1396 "Invalid attribute group entry"); 1397 bool HasValue = (Record[i++] == 4); 1398 SmallString<64> KindStr; 1399 SmallString<64> ValStr; 1400 1401 while (Record[i] != 0 && i != e) 1402 KindStr += Record[i++]; 1403 assert(Record[i] == 0 && "Kind string not null terminated"); 1404 1405 if (HasValue) { 1406 // Has a value associated with it. 1407 ++i; // Skip the '0' that terminates the "kind" string. 1408 while (Record[i] != 0 && i != e) 1409 ValStr += Record[i++]; 1410 assert(Record[i] == 0 && "Value string not null terminated"); 1411 } 1412 1413 B.addAttribute(KindStr.str(), ValStr.str()); 1414 } 1415 } 1416 1417 MAttributeGroups[GrpID] = AttributeSet::get(Context, Idx, B); 1418 break; 1419 } 1420 } 1421 } 1422 } 1423 1424 std::error_code BitcodeReader::parseTypeTable() { 1425 if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 1426 return error("Invalid record"); 1427 1428 return parseTypeTableBody(); 1429 } 1430 1431 std::error_code BitcodeReader::parseTypeTableBody() { 1432 if (!TypeList.empty()) 1433 return error("Invalid multiple blocks"); 1434 1435 SmallVector<uint64_t, 64> Record; 1436 unsigned NumRecords = 0; 1437 1438 SmallString<64> TypeName; 1439 1440 // Read all the records for this type table. 1441 while (1) { 1442 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1443 1444 switch (Entry.Kind) { 1445 case BitstreamEntry::SubBlock: // Handled for us already. 1446 case BitstreamEntry::Error: 1447 return error("Malformed block"); 1448 case BitstreamEntry::EndBlock: 1449 if (NumRecords != TypeList.size()) 1450 return error("Malformed block"); 1451 return std::error_code(); 1452 case BitstreamEntry::Record: 1453 // The interesting case. 1454 break; 1455 } 1456 1457 // Read a record. 1458 Record.clear(); 1459 Type *ResultTy = nullptr; 1460 switch (Stream.readRecord(Entry.ID, Record)) { 1461 default: 1462 return error("Invalid value"); 1463 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 1464 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 1465 // type list. This allows us to reserve space. 1466 if (Record.size() < 1) 1467 return error("Invalid record"); 1468 TypeList.resize(Record[0]); 1469 continue; 1470 case bitc::TYPE_CODE_VOID: // VOID 1471 ResultTy = Type::getVoidTy(Context); 1472 break; 1473 case bitc::TYPE_CODE_HALF: // HALF 1474 ResultTy = Type::getHalfTy(Context); 1475 break; 1476 case bitc::TYPE_CODE_FLOAT: // FLOAT 1477 ResultTy = Type::getFloatTy(Context); 1478 break; 1479 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 1480 ResultTy = Type::getDoubleTy(Context); 1481 break; 1482 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 1483 ResultTy = Type::getX86_FP80Ty(Context); 1484 break; 1485 case bitc::TYPE_CODE_FP128: // FP128 1486 ResultTy = Type::getFP128Ty(Context); 1487 break; 1488 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 1489 ResultTy = Type::getPPC_FP128Ty(Context); 1490 break; 1491 case bitc::TYPE_CODE_LABEL: // LABEL 1492 ResultTy = Type::getLabelTy(Context); 1493 break; 1494 case bitc::TYPE_CODE_METADATA: // METADATA 1495 ResultTy = Type::getMetadataTy(Context); 1496 break; 1497 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 1498 ResultTy = Type::getX86_MMXTy(Context); 1499 break; 1500 case bitc::TYPE_CODE_TOKEN: // TOKEN 1501 ResultTy = Type::getTokenTy(Context); 1502 break; 1503 case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width] 1504 if (Record.size() < 1) 1505 return error("Invalid record"); 1506 1507 uint64_t NumBits = Record[0]; 1508 if (NumBits < IntegerType::MIN_INT_BITS || 1509 NumBits > IntegerType::MAX_INT_BITS) 1510 return error("Bitwidth for integer type out of range"); 1511 ResultTy = IntegerType::get(Context, NumBits); 1512 break; 1513 } 1514 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 1515 // [pointee type, address space] 1516 if (Record.size() < 1) 1517 return error("Invalid record"); 1518 unsigned AddressSpace = 0; 1519 if (Record.size() == 2) 1520 AddressSpace = Record[1]; 1521 ResultTy = getTypeByID(Record[0]); 1522 if (!ResultTy || 1523 !PointerType::isValidElementType(ResultTy)) 1524 return error("Invalid type"); 1525 ResultTy = PointerType::get(ResultTy, AddressSpace); 1526 break; 1527 } 1528 case bitc::TYPE_CODE_FUNCTION_OLD: { 1529 // FIXME: attrid is dead, remove it in LLVM 4.0 1530 // FUNCTION: [vararg, attrid, retty, paramty x N] 1531 if (Record.size() < 3) 1532 return error("Invalid record"); 1533 SmallVector<Type*, 8> ArgTys; 1534 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 1535 if (Type *T = getTypeByID(Record[i])) 1536 ArgTys.push_back(T); 1537 else 1538 break; 1539 } 1540 1541 ResultTy = getTypeByID(Record[2]); 1542 if (!ResultTy || ArgTys.size() < Record.size()-3) 1543 return error("Invalid type"); 1544 1545 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1546 break; 1547 } 1548 case bitc::TYPE_CODE_FUNCTION: { 1549 // FUNCTION: [vararg, retty, paramty x N] 1550 if (Record.size() < 2) 1551 return error("Invalid record"); 1552 SmallVector<Type*, 8> ArgTys; 1553 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1554 if (Type *T = getTypeByID(Record[i])) { 1555 if (!FunctionType::isValidArgumentType(T)) 1556 return error("Invalid function argument type"); 1557 ArgTys.push_back(T); 1558 } 1559 else 1560 break; 1561 } 1562 1563 ResultTy = getTypeByID(Record[1]); 1564 if (!ResultTy || ArgTys.size() < Record.size()-2) 1565 return error("Invalid type"); 1566 1567 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1568 break; 1569 } 1570 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 1571 if (Record.size() < 1) 1572 return error("Invalid record"); 1573 SmallVector<Type*, 8> EltTys; 1574 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1575 if (Type *T = getTypeByID(Record[i])) 1576 EltTys.push_back(T); 1577 else 1578 break; 1579 } 1580 if (EltTys.size() != Record.size()-1) 1581 return error("Invalid type"); 1582 ResultTy = StructType::get(Context, EltTys, Record[0]); 1583 break; 1584 } 1585 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 1586 if (convertToString(Record, 0, TypeName)) 1587 return error("Invalid record"); 1588 continue; 1589 1590 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 1591 if (Record.size() < 1) 1592 return error("Invalid record"); 1593 1594 if (NumRecords >= TypeList.size()) 1595 return error("Invalid TYPE table"); 1596 1597 // Check to see if this was forward referenced, if so fill in the temp. 1598 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1599 if (Res) { 1600 Res->setName(TypeName); 1601 TypeList[NumRecords] = nullptr; 1602 } else // Otherwise, create a new struct. 1603 Res = createIdentifiedStructType(Context, TypeName); 1604 TypeName.clear(); 1605 1606 SmallVector<Type*, 8> EltTys; 1607 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1608 if (Type *T = getTypeByID(Record[i])) 1609 EltTys.push_back(T); 1610 else 1611 break; 1612 } 1613 if (EltTys.size() != Record.size()-1) 1614 return error("Invalid record"); 1615 Res->setBody(EltTys, Record[0]); 1616 ResultTy = Res; 1617 break; 1618 } 1619 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 1620 if (Record.size() != 1) 1621 return error("Invalid record"); 1622 1623 if (NumRecords >= TypeList.size()) 1624 return error("Invalid TYPE table"); 1625 1626 // Check to see if this was forward referenced, if so fill in the temp. 1627 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1628 if (Res) { 1629 Res->setName(TypeName); 1630 TypeList[NumRecords] = nullptr; 1631 } else // Otherwise, create a new struct with no body. 1632 Res = createIdentifiedStructType(Context, TypeName); 1633 TypeName.clear(); 1634 ResultTy = Res; 1635 break; 1636 } 1637 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 1638 if (Record.size() < 2) 1639 return error("Invalid record"); 1640 ResultTy = getTypeByID(Record[1]); 1641 if (!ResultTy || !ArrayType::isValidElementType(ResultTy)) 1642 return error("Invalid type"); 1643 ResultTy = ArrayType::get(ResultTy, Record[0]); 1644 break; 1645 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] 1646 if (Record.size() < 2) 1647 return error("Invalid record"); 1648 if (Record[0] == 0) 1649 return error("Invalid vector length"); 1650 ResultTy = getTypeByID(Record[1]); 1651 if (!ResultTy || !StructType::isValidElementType(ResultTy)) 1652 return error("Invalid type"); 1653 ResultTy = VectorType::get(ResultTy, Record[0]); 1654 break; 1655 } 1656 1657 if (NumRecords >= TypeList.size()) 1658 return error("Invalid TYPE table"); 1659 if (TypeList[NumRecords]) 1660 return error( 1661 "Invalid TYPE table: Only named structs can be forward referenced"); 1662 assert(ResultTy && "Didn't read a type?"); 1663 TypeList[NumRecords++] = ResultTy; 1664 } 1665 } 1666 1667 std::error_code BitcodeReader::parseOperandBundleTags() { 1668 if (Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID)) 1669 return error("Invalid record"); 1670 1671 if (!BundleTags.empty()) 1672 return error("Invalid multiple blocks"); 1673 1674 SmallVector<uint64_t, 64> Record; 1675 1676 while (1) { 1677 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1678 1679 switch (Entry.Kind) { 1680 case BitstreamEntry::SubBlock: // Handled for us already. 1681 case BitstreamEntry::Error: 1682 return error("Malformed block"); 1683 case BitstreamEntry::EndBlock: 1684 return std::error_code(); 1685 case BitstreamEntry::Record: 1686 // The interesting case. 1687 break; 1688 } 1689 1690 // Tags are implicitly mapped to integers by their order. 1691 1692 if (Stream.readRecord(Entry.ID, Record) != bitc::OPERAND_BUNDLE_TAG) 1693 return error("Invalid record"); 1694 1695 // OPERAND_BUNDLE_TAG: [strchr x N] 1696 BundleTags.emplace_back(); 1697 if (convertToString(Record, 0, BundleTags.back())) 1698 return error("Invalid record"); 1699 Record.clear(); 1700 } 1701 } 1702 1703 /// Associate a value with its name from the given index in the provided record. 1704 ErrorOr<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record, 1705 unsigned NameIndex, Triple &TT) { 1706 SmallString<128> ValueName; 1707 if (convertToString(Record, NameIndex, ValueName)) 1708 return error("Invalid record"); 1709 unsigned ValueID = Record[0]; 1710 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 1711 return error("Invalid record"); 1712 Value *V = ValueList[ValueID]; 1713 1714 StringRef NameStr(ValueName.data(), ValueName.size()); 1715 if (NameStr.find_first_of(0) != StringRef::npos) 1716 return error("Invalid value name"); 1717 V->setName(NameStr); 1718 auto *GO = dyn_cast<GlobalObject>(V); 1719 if (GO) { 1720 if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) { 1721 if (TT.isOSBinFormatMachO()) 1722 GO->setComdat(nullptr); 1723 else 1724 GO->setComdat(TheModule->getOrInsertComdat(V->getName())); 1725 } 1726 } 1727 return V; 1728 } 1729 1730 /// Parse the value symbol table at either the current parsing location or 1731 /// at the given bit offset if provided. 1732 std::error_code BitcodeReader::parseValueSymbolTable(uint64_t Offset) { 1733 uint64_t CurrentBit; 1734 // Pass in the Offset to distinguish between calling for the module-level 1735 // VST (where we want to jump to the VST offset) and the function-level 1736 // VST (where we don't). 1737 if (Offset > 0) { 1738 // Save the current parsing location so we can jump back at the end 1739 // of the VST read. 1740 CurrentBit = Stream.GetCurrentBitNo(); 1741 Stream.JumpToBit(Offset * 32); 1742 #ifndef NDEBUG 1743 // Do some checking if we are in debug mode. 1744 BitstreamEntry Entry = Stream.advance(); 1745 assert(Entry.Kind == BitstreamEntry::SubBlock); 1746 assert(Entry.ID == bitc::VALUE_SYMTAB_BLOCK_ID); 1747 #else 1748 // In NDEBUG mode ignore the output so we don't get an unused variable 1749 // warning. 1750 Stream.advance(); 1751 #endif 1752 } 1753 1754 // Compute the delta between the bitcode indices in the VST (the word offset 1755 // to the word-aligned ENTER_SUBBLOCK for the function block, and that 1756 // expected by the lazy reader. The reader's EnterSubBlock expects to have 1757 // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID 1758 // (size BlockIDWidth). Note that we access the stream's AbbrevID width here 1759 // just before entering the VST subblock because: 1) the EnterSubBlock 1760 // changes the AbbrevID width; 2) the VST block is nested within the same 1761 // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same 1762 // AbbrevID width before calling EnterSubBlock; and 3) when we want to 1763 // jump to the FUNCTION_BLOCK using this offset later, we don't want 1764 // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK. 1765 unsigned FuncBitcodeOffsetDelta = 1766 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 1767 1768 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 1769 return error("Invalid record"); 1770 1771 SmallVector<uint64_t, 64> Record; 1772 1773 Triple TT(TheModule->getTargetTriple()); 1774 1775 // Read all the records for this value table. 1776 SmallString<128> ValueName; 1777 while (1) { 1778 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1779 1780 switch (Entry.Kind) { 1781 case BitstreamEntry::SubBlock: // Handled for us already. 1782 case BitstreamEntry::Error: 1783 return error("Malformed block"); 1784 case BitstreamEntry::EndBlock: 1785 if (Offset > 0) 1786 Stream.JumpToBit(CurrentBit); 1787 return std::error_code(); 1788 case BitstreamEntry::Record: 1789 // The interesting case. 1790 break; 1791 } 1792 1793 // Read a record. 1794 Record.clear(); 1795 switch (Stream.readRecord(Entry.ID, Record)) { 1796 default: // Default behavior: unknown type. 1797 break; 1798 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 1799 ErrorOr<Value *> ValOrErr = recordValue(Record, 1, TT); 1800 if (std::error_code EC = ValOrErr.getError()) 1801 return EC; 1802 ValOrErr.get(); 1803 break; 1804 } 1805 case bitc::VST_CODE_FNENTRY: { 1806 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 1807 ErrorOr<Value *> ValOrErr = recordValue(Record, 2, TT); 1808 if (std::error_code EC = ValOrErr.getError()) 1809 return EC; 1810 Value *V = ValOrErr.get(); 1811 1812 auto *GO = dyn_cast<GlobalObject>(V); 1813 if (!GO) { 1814 // If this is an alias, need to get the actual Function object 1815 // it aliases, in order to set up the DeferredFunctionInfo entry below. 1816 auto *GA = dyn_cast<GlobalAlias>(V); 1817 if (GA) 1818 GO = GA->getBaseObject(); 1819 assert(GO); 1820 } 1821 1822 uint64_t FuncWordOffset = Record[1]; 1823 Function *F = dyn_cast<Function>(GO); 1824 assert(F); 1825 uint64_t FuncBitOffset = FuncWordOffset * 32; 1826 DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta; 1827 // Set the LastFunctionBlockBit to point to the last function block. 1828 // Later when parsing is resumed after function materialization, 1829 // we can simply skip that last function block. 1830 if (FuncBitOffset > LastFunctionBlockBit) 1831 LastFunctionBlockBit = FuncBitOffset; 1832 break; 1833 } 1834 case bitc::VST_CODE_BBENTRY: { 1835 if (convertToString(Record, 1, ValueName)) 1836 return error("Invalid record"); 1837 BasicBlock *BB = getBasicBlock(Record[0]); 1838 if (!BB) 1839 return error("Invalid record"); 1840 1841 BB->setName(StringRef(ValueName.data(), ValueName.size())); 1842 ValueName.clear(); 1843 break; 1844 } 1845 } 1846 } 1847 } 1848 1849 /// Parse a single METADATA_KIND record, inserting result in MDKindMap. 1850 std::error_code 1851 BitcodeReader::parseMetadataKindRecord(SmallVectorImpl<uint64_t> &Record) { 1852 if (Record.size() < 2) 1853 return error("Invalid record"); 1854 1855 unsigned Kind = Record[0]; 1856 SmallString<8> Name(Record.begin() + 1, Record.end()); 1857 1858 unsigned NewKind = TheModule->getMDKindID(Name.str()); 1859 if (!MDKindMap.insert(std::make_pair(Kind, NewKind)).second) 1860 return error("Conflicting METADATA_KIND records"); 1861 return std::error_code(); 1862 } 1863 1864 static int64_t unrotateSign(uint64_t U) { return U & 1 ? ~(U >> 1) : U >> 1; } 1865 1866 /// Parse a METADATA_BLOCK. If ModuleLevel is true then we are parsing 1867 /// module level metadata. 1868 std::error_code BitcodeReader::parseMetadata(bool ModuleLevel) { 1869 IsMetadataMaterialized = true; 1870 unsigned NextMetadataNo = MetadataList.size(); 1871 if (ModuleLevel && SeenModuleValuesRecord) { 1872 // Now that we are parsing the module level metadata, we want to restart 1873 // the numbering of the MD values, and replace temp MD created earlier 1874 // with their real values. If we saw a METADATA_VALUE record then we 1875 // would have set the MetadataList size to the number specified in that 1876 // record, to support parsing function-level metadata first, and we need 1877 // to reset back to 0 to fill the MetadataList in with the parsed module 1878 // The function-level metadata parsing should have reset the MetadataList 1879 // size back to the value reported by the METADATA_VALUE record, saved in 1880 // NumModuleMDs. 1881 assert(NumModuleMDs == MetadataList.size() && 1882 "Expected MetadataList to only contain module level values"); 1883 NextMetadataNo = 0; 1884 } 1885 1886 if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID)) 1887 return error("Invalid record"); 1888 1889 SmallVector<uint64_t, 64> Record; 1890 1891 auto getMD = [&](unsigned ID) -> Metadata * { 1892 return MetadataList.getValueFwdRef(ID); 1893 }; 1894 auto getMDOrNull = [&](unsigned ID) -> Metadata *{ 1895 if (ID) 1896 return getMD(ID - 1); 1897 return nullptr; 1898 }; 1899 auto getMDString = [&](unsigned ID) -> MDString *{ 1900 // This requires that the ID is not really a forward reference. In 1901 // particular, the MDString must already have been resolved. 1902 return cast_or_null<MDString>(getMDOrNull(ID)); 1903 }; 1904 1905 #define GET_OR_DISTINCT(CLASS, DISTINCT, ARGS) \ 1906 (DISTINCT ? CLASS::getDistinct ARGS : CLASS::get ARGS) 1907 1908 // Read all the records. 1909 while (1) { 1910 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1911 1912 switch (Entry.Kind) { 1913 case BitstreamEntry::SubBlock: // Handled for us already. 1914 case BitstreamEntry::Error: 1915 return error("Malformed block"); 1916 case BitstreamEntry::EndBlock: 1917 MetadataList.tryToResolveCycles(); 1918 assert((!(ModuleLevel && SeenModuleValuesRecord) || 1919 NumModuleMDs == MetadataList.size()) && 1920 "Inconsistent bitcode: METADATA_VALUES mismatch"); 1921 return std::error_code(); 1922 case BitstreamEntry::Record: 1923 // The interesting case. 1924 break; 1925 } 1926 1927 // Read a record. 1928 Record.clear(); 1929 unsigned Code = Stream.readRecord(Entry.ID, Record); 1930 bool IsDistinct = false; 1931 switch (Code) { 1932 default: // Default behavior: ignore. 1933 break; 1934 case bitc::METADATA_NAME: { 1935 // Read name of the named metadata. 1936 SmallString<8> Name(Record.begin(), Record.end()); 1937 Record.clear(); 1938 Code = Stream.ReadCode(); 1939 1940 unsigned NextBitCode = Stream.readRecord(Code, Record); 1941 if (NextBitCode != bitc::METADATA_NAMED_NODE) 1942 return error("METADATA_NAME not followed by METADATA_NAMED_NODE"); 1943 1944 // Read named metadata elements. 1945 unsigned Size = Record.size(); 1946 NamedMDNode *NMD = TheModule->getOrInsertNamedMetadata(Name); 1947 for (unsigned i = 0; i != Size; ++i) { 1948 MDNode *MD = 1949 dyn_cast_or_null<MDNode>(MetadataList.getValueFwdRef(Record[i])); 1950 if (!MD) 1951 return error("Invalid record"); 1952 NMD->addOperand(MD); 1953 } 1954 break; 1955 } 1956 case bitc::METADATA_OLD_FN_NODE: { 1957 // FIXME: Remove in 4.0. 1958 // This is a LocalAsMetadata record, the only type of function-local 1959 // metadata. 1960 if (Record.size() % 2 == 1) 1961 return error("Invalid record"); 1962 1963 // If this isn't a LocalAsMetadata record, we're dropping it. This used 1964 // to be legal, but there's no upgrade path. 1965 auto dropRecord = [&] { 1966 MetadataList.assignValue(MDNode::get(Context, None), NextMetadataNo++); 1967 }; 1968 if (Record.size() != 2) { 1969 dropRecord(); 1970 break; 1971 } 1972 1973 Type *Ty = getTypeByID(Record[0]); 1974 if (Ty->isMetadataTy() || Ty->isVoidTy()) { 1975 dropRecord(); 1976 break; 1977 } 1978 1979 MetadataList.assignValue( 1980 LocalAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)), 1981 NextMetadataNo++); 1982 break; 1983 } 1984 case bitc::METADATA_OLD_NODE: { 1985 // FIXME: Remove in 4.0. 1986 if (Record.size() % 2 == 1) 1987 return error("Invalid record"); 1988 1989 unsigned Size = Record.size(); 1990 SmallVector<Metadata *, 8> Elts; 1991 for (unsigned i = 0; i != Size; i += 2) { 1992 Type *Ty = getTypeByID(Record[i]); 1993 if (!Ty) 1994 return error("Invalid record"); 1995 if (Ty->isMetadataTy()) 1996 Elts.push_back(MetadataList.getValueFwdRef(Record[i + 1])); 1997 else if (!Ty->isVoidTy()) { 1998 auto *MD = 1999 ValueAsMetadata::get(ValueList.getValueFwdRef(Record[i + 1], Ty)); 2000 assert(isa<ConstantAsMetadata>(MD) && 2001 "Expected non-function-local metadata"); 2002 Elts.push_back(MD); 2003 } else 2004 Elts.push_back(nullptr); 2005 } 2006 MetadataList.assignValue(MDNode::get(Context, Elts), NextMetadataNo++); 2007 break; 2008 } 2009 case bitc::METADATA_VALUE: { 2010 if (Record.size() != 2) 2011 return error("Invalid record"); 2012 2013 Type *Ty = getTypeByID(Record[0]); 2014 if (Ty->isMetadataTy() || Ty->isVoidTy()) 2015 return error("Invalid record"); 2016 2017 MetadataList.assignValue( 2018 ValueAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)), 2019 NextMetadataNo++); 2020 break; 2021 } 2022 case bitc::METADATA_DISTINCT_NODE: 2023 IsDistinct = true; 2024 // fallthrough... 2025 case bitc::METADATA_NODE: { 2026 SmallVector<Metadata *, 8> Elts; 2027 Elts.reserve(Record.size()); 2028 for (unsigned ID : Record) 2029 Elts.push_back(ID ? MetadataList.getValueFwdRef(ID - 1) : nullptr); 2030 MetadataList.assignValue(IsDistinct ? MDNode::getDistinct(Context, Elts) 2031 : MDNode::get(Context, Elts), 2032 NextMetadataNo++); 2033 break; 2034 } 2035 case bitc::METADATA_LOCATION: { 2036 if (Record.size() != 5) 2037 return error("Invalid record"); 2038 2039 unsigned Line = Record[1]; 2040 unsigned Column = Record[2]; 2041 MDNode *Scope = cast<MDNode>(MetadataList.getValueFwdRef(Record[3])); 2042 Metadata *InlinedAt = 2043 Record[4] ? MetadataList.getValueFwdRef(Record[4] - 1) : nullptr; 2044 MetadataList.assignValue( 2045 GET_OR_DISTINCT(DILocation, Record[0], 2046 (Context, Line, Column, Scope, InlinedAt)), 2047 NextMetadataNo++); 2048 break; 2049 } 2050 case bitc::METADATA_GENERIC_DEBUG: { 2051 if (Record.size() < 4) 2052 return error("Invalid record"); 2053 2054 unsigned Tag = Record[1]; 2055 unsigned Version = Record[2]; 2056 2057 if (Tag >= 1u << 16 || Version != 0) 2058 return error("Invalid record"); 2059 2060 auto *Header = getMDString(Record[3]); 2061 SmallVector<Metadata *, 8> DwarfOps; 2062 for (unsigned I = 4, E = Record.size(); I != E; ++I) 2063 DwarfOps.push_back( 2064 Record[I] ? MetadataList.getValueFwdRef(Record[I] - 1) : nullptr); 2065 MetadataList.assignValue( 2066 GET_OR_DISTINCT(GenericDINode, Record[0], 2067 (Context, Tag, Header, DwarfOps)), 2068 NextMetadataNo++); 2069 break; 2070 } 2071 case bitc::METADATA_SUBRANGE: { 2072 if (Record.size() != 3) 2073 return error("Invalid record"); 2074 2075 MetadataList.assignValue( 2076 GET_OR_DISTINCT(DISubrange, Record[0], 2077 (Context, Record[1], unrotateSign(Record[2]))), 2078 NextMetadataNo++); 2079 break; 2080 } 2081 case bitc::METADATA_ENUMERATOR: { 2082 if (Record.size() != 3) 2083 return error("Invalid record"); 2084 2085 MetadataList.assignValue( 2086 GET_OR_DISTINCT( 2087 DIEnumerator, Record[0], 2088 (Context, unrotateSign(Record[1]), getMDString(Record[2]))), 2089 NextMetadataNo++); 2090 break; 2091 } 2092 case bitc::METADATA_BASIC_TYPE: { 2093 if (Record.size() != 6) 2094 return error("Invalid record"); 2095 2096 MetadataList.assignValue( 2097 GET_OR_DISTINCT(DIBasicType, Record[0], 2098 (Context, Record[1], getMDString(Record[2]), 2099 Record[3], Record[4], Record[5])), 2100 NextMetadataNo++); 2101 break; 2102 } 2103 case bitc::METADATA_DERIVED_TYPE: { 2104 if (Record.size() != 12) 2105 return error("Invalid record"); 2106 2107 MetadataList.assignValue( 2108 GET_OR_DISTINCT(DIDerivedType, Record[0], 2109 (Context, Record[1], getMDString(Record[2]), 2110 getMDOrNull(Record[3]), Record[4], 2111 getMDOrNull(Record[5]), getMDOrNull(Record[6]), 2112 Record[7], Record[8], Record[9], Record[10], 2113 getMDOrNull(Record[11]))), 2114 NextMetadataNo++); 2115 break; 2116 } 2117 case bitc::METADATA_COMPOSITE_TYPE: { 2118 if (Record.size() != 16) 2119 return error("Invalid record"); 2120 2121 MetadataList.assignValue( 2122 GET_OR_DISTINCT(DICompositeType, Record[0], 2123 (Context, Record[1], getMDString(Record[2]), 2124 getMDOrNull(Record[3]), Record[4], 2125 getMDOrNull(Record[5]), getMDOrNull(Record[6]), 2126 Record[7], Record[8], Record[9], Record[10], 2127 getMDOrNull(Record[11]), Record[12], 2128 getMDOrNull(Record[13]), getMDOrNull(Record[14]), 2129 getMDString(Record[15]))), 2130 NextMetadataNo++); 2131 break; 2132 } 2133 case bitc::METADATA_SUBROUTINE_TYPE: { 2134 if (Record.size() != 3) 2135 return error("Invalid record"); 2136 2137 MetadataList.assignValue( 2138 GET_OR_DISTINCT(DISubroutineType, Record[0], 2139 (Context, Record[1], getMDOrNull(Record[2]))), 2140 NextMetadataNo++); 2141 break; 2142 } 2143 2144 case bitc::METADATA_MODULE: { 2145 if (Record.size() != 6) 2146 return error("Invalid record"); 2147 2148 MetadataList.assignValue( 2149 GET_OR_DISTINCT(DIModule, Record[0], 2150 (Context, getMDOrNull(Record[1]), 2151 getMDString(Record[2]), getMDString(Record[3]), 2152 getMDString(Record[4]), getMDString(Record[5]))), 2153 NextMetadataNo++); 2154 break; 2155 } 2156 2157 case bitc::METADATA_FILE: { 2158 if (Record.size() != 3) 2159 return error("Invalid record"); 2160 2161 MetadataList.assignValue( 2162 GET_OR_DISTINCT(DIFile, Record[0], (Context, getMDString(Record[1]), 2163 getMDString(Record[2]))), 2164 NextMetadataNo++); 2165 break; 2166 } 2167 case bitc::METADATA_COMPILE_UNIT: { 2168 if (Record.size() < 14 || Record.size() > 16) 2169 return error("Invalid record"); 2170 2171 // Ignore Record[0], which indicates whether this compile unit is 2172 // distinct. It's always distinct. 2173 MetadataList.assignValue( 2174 DICompileUnit::getDistinct( 2175 Context, Record[1], getMDOrNull(Record[2]), 2176 getMDString(Record[3]), Record[4], getMDString(Record[5]), 2177 Record[6], getMDString(Record[7]), Record[8], 2178 getMDOrNull(Record[9]), getMDOrNull(Record[10]), 2179 getMDOrNull(Record[11]), getMDOrNull(Record[12]), 2180 getMDOrNull(Record[13]), 2181 Record.size() <= 15 ? nullptr : getMDOrNull(Record[15]), 2182 Record.size() <= 14 ? 0 : Record[14]), 2183 NextMetadataNo++); 2184 break; 2185 } 2186 case bitc::METADATA_SUBPROGRAM: { 2187 if (Record.size() != 18 && Record.size() != 19) 2188 return error("Invalid record"); 2189 2190 bool HasFn = Record.size() == 19; 2191 DISubprogram *SP = GET_OR_DISTINCT( 2192 DISubprogram, 2193 Record[0] || Record[8], // All definitions should be distinct. 2194 (Context, getMDOrNull(Record[1]), getMDString(Record[2]), 2195 getMDString(Record[3]), getMDOrNull(Record[4]), Record[5], 2196 getMDOrNull(Record[6]), Record[7], Record[8], Record[9], 2197 getMDOrNull(Record[10]), Record[11], Record[12], Record[13], 2198 Record[14], getMDOrNull(Record[15 + HasFn]), 2199 getMDOrNull(Record[16 + HasFn]), getMDOrNull(Record[17 + HasFn]))); 2200 MetadataList.assignValue(SP, NextMetadataNo++); 2201 2202 // Upgrade sp->function mapping to function->sp mapping. 2203 if (HasFn && Record[15]) { 2204 if (auto *CMD = dyn_cast<ConstantAsMetadata>(getMDOrNull(Record[15]))) 2205 if (auto *F = dyn_cast<Function>(CMD->getValue())) { 2206 if (F->isMaterializable()) 2207 // Defer until materialized; unmaterialized functions may not have 2208 // metadata. 2209 FunctionsWithSPs[F] = SP; 2210 else if (!F->empty()) 2211 F->setSubprogram(SP); 2212 } 2213 } 2214 break; 2215 } 2216 case bitc::METADATA_LEXICAL_BLOCK: { 2217 if (Record.size() != 5) 2218 return error("Invalid record"); 2219 2220 MetadataList.assignValue( 2221 GET_OR_DISTINCT(DILexicalBlock, Record[0], 2222 (Context, getMDOrNull(Record[1]), 2223 getMDOrNull(Record[2]), Record[3], Record[4])), 2224 NextMetadataNo++); 2225 break; 2226 } 2227 case bitc::METADATA_LEXICAL_BLOCK_FILE: { 2228 if (Record.size() != 4) 2229 return error("Invalid record"); 2230 2231 MetadataList.assignValue( 2232 GET_OR_DISTINCT(DILexicalBlockFile, Record[0], 2233 (Context, getMDOrNull(Record[1]), 2234 getMDOrNull(Record[2]), Record[3])), 2235 NextMetadataNo++); 2236 break; 2237 } 2238 case bitc::METADATA_NAMESPACE: { 2239 if (Record.size() != 5) 2240 return error("Invalid record"); 2241 2242 MetadataList.assignValue( 2243 GET_OR_DISTINCT(DINamespace, Record[0], 2244 (Context, getMDOrNull(Record[1]), 2245 getMDOrNull(Record[2]), getMDString(Record[3]), 2246 Record[4])), 2247 NextMetadataNo++); 2248 break; 2249 } 2250 case bitc::METADATA_MACRO: { 2251 if (Record.size() != 5) 2252 return error("Invalid record"); 2253 2254 MetadataList.assignValue( 2255 GET_OR_DISTINCT(DIMacro, Record[0], 2256 (Context, Record[1], Record[2], 2257 getMDString(Record[3]), getMDString(Record[4]))), 2258 NextMetadataNo++); 2259 break; 2260 } 2261 case bitc::METADATA_MACRO_FILE: { 2262 if (Record.size() != 5) 2263 return error("Invalid record"); 2264 2265 MetadataList.assignValue( 2266 GET_OR_DISTINCT(DIMacroFile, Record[0], 2267 (Context, Record[1], Record[2], 2268 getMDOrNull(Record[3]), getMDOrNull(Record[4]))), 2269 NextMetadataNo++); 2270 break; 2271 } 2272 case bitc::METADATA_TEMPLATE_TYPE: { 2273 if (Record.size() != 3) 2274 return error("Invalid record"); 2275 2276 MetadataList.assignValue(GET_OR_DISTINCT(DITemplateTypeParameter, 2277 Record[0], 2278 (Context, getMDString(Record[1]), 2279 getMDOrNull(Record[2]))), 2280 NextMetadataNo++); 2281 break; 2282 } 2283 case bitc::METADATA_TEMPLATE_VALUE: { 2284 if (Record.size() != 5) 2285 return error("Invalid record"); 2286 2287 MetadataList.assignValue( 2288 GET_OR_DISTINCT(DITemplateValueParameter, Record[0], 2289 (Context, Record[1], getMDString(Record[2]), 2290 getMDOrNull(Record[3]), getMDOrNull(Record[4]))), 2291 NextMetadataNo++); 2292 break; 2293 } 2294 case bitc::METADATA_GLOBAL_VAR: { 2295 if (Record.size() != 11) 2296 return error("Invalid record"); 2297 2298 MetadataList.assignValue( 2299 GET_OR_DISTINCT(DIGlobalVariable, Record[0], 2300 (Context, getMDOrNull(Record[1]), 2301 getMDString(Record[2]), getMDString(Record[3]), 2302 getMDOrNull(Record[4]), Record[5], 2303 getMDOrNull(Record[6]), Record[7], Record[8], 2304 getMDOrNull(Record[9]), getMDOrNull(Record[10]))), 2305 NextMetadataNo++); 2306 break; 2307 } 2308 case bitc::METADATA_LOCAL_VAR: { 2309 // 10th field is for the obseleted 'inlinedAt:' field. 2310 if (Record.size() < 8 || Record.size() > 10) 2311 return error("Invalid record"); 2312 2313 // 2nd field used to be an artificial tag, either DW_TAG_auto_variable or 2314 // DW_TAG_arg_variable. 2315 bool HasTag = Record.size() > 8; 2316 MetadataList.assignValue( 2317 GET_OR_DISTINCT(DILocalVariable, Record[0], 2318 (Context, getMDOrNull(Record[1 + HasTag]), 2319 getMDString(Record[2 + HasTag]), 2320 getMDOrNull(Record[3 + HasTag]), Record[4 + HasTag], 2321 getMDOrNull(Record[5 + HasTag]), Record[6 + HasTag], 2322 Record[7 + HasTag])), 2323 NextMetadataNo++); 2324 break; 2325 } 2326 case bitc::METADATA_EXPRESSION: { 2327 if (Record.size() < 1) 2328 return error("Invalid record"); 2329 2330 MetadataList.assignValue( 2331 GET_OR_DISTINCT(DIExpression, Record[0], 2332 (Context, makeArrayRef(Record).slice(1))), 2333 NextMetadataNo++); 2334 break; 2335 } 2336 case bitc::METADATA_OBJC_PROPERTY: { 2337 if (Record.size() != 8) 2338 return error("Invalid record"); 2339 2340 MetadataList.assignValue( 2341 GET_OR_DISTINCT(DIObjCProperty, Record[0], 2342 (Context, getMDString(Record[1]), 2343 getMDOrNull(Record[2]), Record[3], 2344 getMDString(Record[4]), getMDString(Record[5]), 2345 Record[6], getMDOrNull(Record[7]))), 2346 NextMetadataNo++); 2347 break; 2348 } 2349 case bitc::METADATA_IMPORTED_ENTITY: { 2350 if (Record.size() != 6) 2351 return error("Invalid record"); 2352 2353 MetadataList.assignValue( 2354 GET_OR_DISTINCT(DIImportedEntity, Record[0], 2355 (Context, Record[1], getMDOrNull(Record[2]), 2356 getMDOrNull(Record[3]), Record[4], 2357 getMDString(Record[5]))), 2358 NextMetadataNo++); 2359 break; 2360 } 2361 case bitc::METADATA_STRING: { 2362 std::string String(Record.begin(), Record.end()); 2363 llvm::UpgradeMDStringConstant(String); 2364 Metadata *MD = MDString::get(Context, String); 2365 MetadataList.assignValue(MD, NextMetadataNo++); 2366 break; 2367 } 2368 case bitc::METADATA_KIND: { 2369 // Support older bitcode files that had METADATA_KIND records in a 2370 // block with METADATA_BLOCK_ID. 2371 if (std::error_code EC = parseMetadataKindRecord(Record)) 2372 return EC; 2373 break; 2374 } 2375 } 2376 } 2377 #undef GET_OR_DISTINCT 2378 } 2379 2380 /// Parse the metadata kinds out of the METADATA_KIND_BLOCK. 2381 std::error_code BitcodeReader::parseMetadataKinds() { 2382 if (Stream.EnterSubBlock(bitc::METADATA_KIND_BLOCK_ID)) 2383 return error("Invalid record"); 2384 2385 SmallVector<uint64_t, 64> Record; 2386 2387 // Read all the records. 2388 while (1) { 2389 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2390 2391 switch (Entry.Kind) { 2392 case BitstreamEntry::SubBlock: // Handled for us already. 2393 case BitstreamEntry::Error: 2394 return error("Malformed block"); 2395 case BitstreamEntry::EndBlock: 2396 return std::error_code(); 2397 case BitstreamEntry::Record: 2398 // The interesting case. 2399 break; 2400 } 2401 2402 // Read a record. 2403 Record.clear(); 2404 unsigned Code = Stream.readRecord(Entry.ID, Record); 2405 switch (Code) { 2406 default: // Default behavior: ignore. 2407 break; 2408 case bitc::METADATA_KIND: { 2409 if (std::error_code EC = parseMetadataKindRecord(Record)) 2410 return EC; 2411 break; 2412 } 2413 } 2414 } 2415 } 2416 2417 /// Decode a signed value stored with the sign bit in the LSB for dense VBR 2418 /// encoding. 2419 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { 2420 if ((V & 1) == 0) 2421 return V >> 1; 2422 if (V != 1) 2423 return -(V >> 1); 2424 // There is no such thing as -0 with integers. "-0" really means MININT. 2425 return 1ULL << 63; 2426 } 2427 2428 /// Resolve all of the initializers for global values and aliases that we can. 2429 std::error_code BitcodeReader::resolveGlobalAndAliasInits() { 2430 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist; 2431 std::vector<std::pair<GlobalAlias*, unsigned> > AliasInitWorklist; 2432 std::vector<std::pair<Function*, unsigned> > FunctionPrefixWorklist; 2433 std::vector<std::pair<Function*, unsigned> > FunctionPrologueWorklist; 2434 std::vector<std::pair<Function*, unsigned> > FunctionPersonalityFnWorklist; 2435 2436 GlobalInitWorklist.swap(GlobalInits); 2437 AliasInitWorklist.swap(AliasInits); 2438 FunctionPrefixWorklist.swap(FunctionPrefixes); 2439 FunctionPrologueWorklist.swap(FunctionPrologues); 2440 FunctionPersonalityFnWorklist.swap(FunctionPersonalityFns); 2441 2442 while (!GlobalInitWorklist.empty()) { 2443 unsigned ValID = GlobalInitWorklist.back().second; 2444 if (ValID >= ValueList.size()) { 2445 // Not ready to resolve this yet, it requires something later in the file. 2446 GlobalInits.push_back(GlobalInitWorklist.back()); 2447 } else { 2448 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2449 GlobalInitWorklist.back().first->setInitializer(C); 2450 else 2451 return error("Expected a constant"); 2452 } 2453 GlobalInitWorklist.pop_back(); 2454 } 2455 2456 while (!AliasInitWorklist.empty()) { 2457 unsigned ValID = AliasInitWorklist.back().second; 2458 if (ValID >= ValueList.size()) { 2459 AliasInits.push_back(AliasInitWorklist.back()); 2460 } else { 2461 Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]); 2462 if (!C) 2463 return error("Expected a constant"); 2464 GlobalAlias *Alias = AliasInitWorklist.back().first; 2465 if (C->getType() != Alias->getType()) 2466 return error("Alias and aliasee types don't match"); 2467 Alias->setAliasee(C); 2468 } 2469 AliasInitWorklist.pop_back(); 2470 } 2471 2472 while (!FunctionPrefixWorklist.empty()) { 2473 unsigned ValID = FunctionPrefixWorklist.back().second; 2474 if (ValID >= ValueList.size()) { 2475 FunctionPrefixes.push_back(FunctionPrefixWorklist.back()); 2476 } else { 2477 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2478 FunctionPrefixWorklist.back().first->setPrefixData(C); 2479 else 2480 return error("Expected a constant"); 2481 } 2482 FunctionPrefixWorklist.pop_back(); 2483 } 2484 2485 while (!FunctionPrologueWorklist.empty()) { 2486 unsigned ValID = FunctionPrologueWorklist.back().second; 2487 if (ValID >= ValueList.size()) { 2488 FunctionPrologues.push_back(FunctionPrologueWorklist.back()); 2489 } else { 2490 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2491 FunctionPrologueWorklist.back().first->setPrologueData(C); 2492 else 2493 return error("Expected a constant"); 2494 } 2495 FunctionPrologueWorklist.pop_back(); 2496 } 2497 2498 while (!FunctionPersonalityFnWorklist.empty()) { 2499 unsigned ValID = FunctionPersonalityFnWorklist.back().second; 2500 if (ValID >= ValueList.size()) { 2501 FunctionPersonalityFns.push_back(FunctionPersonalityFnWorklist.back()); 2502 } else { 2503 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2504 FunctionPersonalityFnWorklist.back().first->setPersonalityFn(C); 2505 else 2506 return error("Expected a constant"); 2507 } 2508 FunctionPersonalityFnWorklist.pop_back(); 2509 } 2510 2511 return std::error_code(); 2512 } 2513 2514 static APInt readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { 2515 SmallVector<uint64_t, 8> Words(Vals.size()); 2516 std::transform(Vals.begin(), Vals.end(), Words.begin(), 2517 BitcodeReader::decodeSignRotatedValue); 2518 2519 return APInt(TypeBits, Words); 2520 } 2521 2522 std::error_code BitcodeReader::parseConstants() { 2523 if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 2524 return error("Invalid record"); 2525 2526 SmallVector<uint64_t, 64> Record; 2527 2528 // Read all the records for this value table. 2529 Type *CurTy = Type::getInt32Ty(Context); 2530 unsigned NextCstNo = ValueList.size(); 2531 while (1) { 2532 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2533 2534 switch (Entry.Kind) { 2535 case BitstreamEntry::SubBlock: // Handled for us already. 2536 case BitstreamEntry::Error: 2537 return error("Malformed block"); 2538 case BitstreamEntry::EndBlock: 2539 if (NextCstNo != ValueList.size()) 2540 return error("Invalid constant reference"); 2541 2542 // Once all the constants have been read, go through and resolve forward 2543 // references. 2544 ValueList.resolveConstantForwardRefs(); 2545 return std::error_code(); 2546 case BitstreamEntry::Record: 2547 // The interesting case. 2548 break; 2549 } 2550 2551 // Read a record. 2552 Record.clear(); 2553 Value *V = nullptr; 2554 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 2555 switch (BitCode) { 2556 default: // Default behavior: unknown constant 2557 case bitc::CST_CODE_UNDEF: // UNDEF 2558 V = UndefValue::get(CurTy); 2559 break; 2560 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 2561 if (Record.empty()) 2562 return error("Invalid record"); 2563 if (Record[0] >= TypeList.size() || !TypeList[Record[0]]) 2564 return error("Invalid record"); 2565 CurTy = TypeList[Record[0]]; 2566 continue; // Skip the ValueList manipulation. 2567 case bitc::CST_CODE_NULL: // NULL 2568 V = Constant::getNullValue(CurTy); 2569 break; 2570 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 2571 if (!CurTy->isIntegerTy() || Record.empty()) 2572 return error("Invalid record"); 2573 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); 2574 break; 2575 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 2576 if (!CurTy->isIntegerTy() || Record.empty()) 2577 return error("Invalid record"); 2578 2579 APInt VInt = 2580 readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth()); 2581 V = ConstantInt::get(Context, VInt); 2582 2583 break; 2584 } 2585 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 2586 if (Record.empty()) 2587 return error("Invalid record"); 2588 if (CurTy->isHalfTy()) 2589 V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf, 2590 APInt(16, (uint16_t)Record[0]))); 2591 else if (CurTy->isFloatTy()) 2592 V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle, 2593 APInt(32, (uint32_t)Record[0]))); 2594 else if (CurTy->isDoubleTy()) 2595 V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble, 2596 APInt(64, Record[0]))); 2597 else if (CurTy->isX86_FP80Ty()) { 2598 // Bits are not stored the same way as a normal i80 APInt, compensate. 2599 uint64_t Rearrange[2]; 2600 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 2601 Rearrange[1] = Record[0] >> 48; 2602 V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended, 2603 APInt(80, Rearrange))); 2604 } else if (CurTy->isFP128Ty()) 2605 V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad, 2606 APInt(128, Record))); 2607 else if (CurTy->isPPC_FP128Ty()) 2608 V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble, 2609 APInt(128, Record))); 2610 else 2611 V = UndefValue::get(CurTy); 2612 break; 2613 } 2614 2615 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 2616 if (Record.empty()) 2617 return error("Invalid record"); 2618 2619 unsigned Size = Record.size(); 2620 SmallVector<Constant*, 16> Elts; 2621 2622 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 2623 for (unsigned i = 0; i != Size; ++i) 2624 Elts.push_back(ValueList.getConstantFwdRef(Record[i], 2625 STy->getElementType(i))); 2626 V = ConstantStruct::get(STy, Elts); 2627 } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) { 2628 Type *EltTy = ATy->getElementType(); 2629 for (unsigned i = 0; i != Size; ++i) 2630 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2631 V = ConstantArray::get(ATy, Elts); 2632 } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) { 2633 Type *EltTy = VTy->getElementType(); 2634 for (unsigned i = 0; i != Size; ++i) 2635 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2636 V = ConstantVector::get(Elts); 2637 } else { 2638 V = UndefValue::get(CurTy); 2639 } 2640 break; 2641 } 2642 case bitc::CST_CODE_STRING: // STRING: [values] 2643 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 2644 if (Record.empty()) 2645 return error("Invalid record"); 2646 2647 SmallString<16> Elts(Record.begin(), Record.end()); 2648 V = ConstantDataArray::getString(Context, Elts, 2649 BitCode == bitc::CST_CODE_CSTRING); 2650 break; 2651 } 2652 case bitc::CST_CODE_DATA: {// DATA: [n x value] 2653 if (Record.empty()) 2654 return error("Invalid record"); 2655 2656 Type *EltTy = cast<SequentialType>(CurTy)->getElementType(); 2657 if (EltTy->isIntegerTy(8)) { 2658 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); 2659 if (isa<VectorType>(CurTy)) 2660 V = ConstantDataVector::get(Context, Elts); 2661 else 2662 V = ConstantDataArray::get(Context, Elts); 2663 } else if (EltTy->isIntegerTy(16)) { 2664 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2665 if (isa<VectorType>(CurTy)) 2666 V = ConstantDataVector::get(Context, Elts); 2667 else 2668 V = ConstantDataArray::get(Context, Elts); 2669 } else if (EltTy->isIntegerTy(32)) { 2670 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2671 if (isa<VectorType>(CurTy)) 2672 V = ConstantDataVector::get(Context, Elts); 2673 else 2674 V = ConstantDataArray::get(Context, Elts); 2675 } else if (EltTy->isIntegerTy(64)) { 2676 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2677 if (isa<VectorType>(CurTy)) 2678 V = ConstantDataVector::get(Context, Elts); 2679 else 2680 V = ConstantDataArray::get(Context, Elts); 2681 } else if (EltTy->isHalfTy()) { 2682 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2683 if (isa<VectorType>(CurTy)) 2684 V = ConstantDataVector::getFP(Context, Elts); 2685 else 2686 V = ConstantDataArray::getFP(Context, Elts); 2687 } else if (EltTy->isFloatTy()) { 2688 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2689 if (isa<VectorType>(CurTy)) 2690 V = ConstantDataVector::getFP(Context, Elts); 2691 else 2692 V = ConstantDataArray::getFP(Context, Elts); 2693 } else if (EltTy->isDoubleTy()) { 2694 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2695 if (isa<VectorType>(CurTy)) 2696 V = ConstantDataVector::getFP(Context, Elts); 2697 else 2698 V = ConstantDataArray::getFP(Context, Elts); 2699 } else { 2700 return error("Invalid type for value"); 2701 } 2702 break; 2703 } 2704 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 2705 if (Record.size() < 3) 2706 return error("Invalid record"); 2707 int Opc = getDecodedBinaryOpcode(Record[0], CurTy); 2708 if (Opc < 0) { 2709 V = UndefValue::get(CurTy); // Unknown binop. 2710 } else { 2711 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 2712 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy); 2713 unsigned Flags = 0; 2714 if (Record.size() >= 4) { 2715 if (Opc == Instruction::Add || 2716 Opc == Instruction::Sub || 2717 Opc == Instruction::Mul || 2718 Opc == Instruction::Shl) { 2719 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 2720 Flags |= OverflowingBinaryOperator::NoSignedWrap; 2721 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 2722 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 2723 } else if (Opc == Instruction::SDiv || 2724 Opc == Instruction::UDiv || 2725 Opc == Instruction::LShr || 2726 Opc == Instruction::AShr) { 2727 if (Record[3] & (1 << bitc::PEO_EXACT)) 2728 Flags |= SDivOperator::IsExact; 2729 } 2730 } 2731 V = ConstantExpr::get(Opc, LHS, RHS, Flags); 2732 } 2733 break; 2734 } 2735 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 2736 if (Record.size() < 3) 2737 return error("Invalid record"); 2738 int Opc = getDecodedCastOpcode(Record[0]); 2739 if (Opc < 0) { 2740 V = UndefValue::get(CurTy); // Unknown cast. 2741 } else { 2742 Type *OpTy = getTypeByID(Record[1]); 2743 if (!OpTy) 2744 return error("Invalid record"); 2745 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy); 2746 V = UpgradeBitCastExpr(Opc, Op, CurTy); 2747 if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy); 2748 } 2749 break; 2750 } 2751 case bitc::CST_CODE_CE_INBOUNDS_GEP: 2752 case bitc::CST_CODE_CE_GEP: { // CE_GEP: [n x operands] 2753 unsigned OpNum = 0; 2754 Type *PointeeType = nullptr; 2755 if (Record.size() % 2) 2756 PointeeType = getTypeByID(Record[OpNum++]); 2757 SmallVector<Constant*, 16> Elts; 2758 while (OpNum != Record.size()) { 2759 Type *ElTy = getTypeByID(Record[OpNum++]); 2760 if (!ElTy) 2761 return error("Invalid record"); 2762 Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy)); 2763 } 2764 2765 if (PointeeType && 2766 PointeeType != 2767 cast<SequentialType>(Elts[0]->getType()->getScalarType()) 2768 ->getElementType()) 2769 return error("Explicit gep operator type does not match pointee type " 2770 "of pointer operand"); 2771 2772 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 2773 V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices, 2774 BitCode == 2775 bitc::CST_CODE_CE_INBOUNDS_GEP); 2776 break; 2777 } 2778 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] 2779 if (Record.size() < 3) 2780 return error("Invalid record"); 2781 2782 Type *SelectorTy = Type::getInt1Ty(Context); 2783 2784 // The selector might be an i1 or an <n x i1> 2785 // Get the type from the ValueList before getting a forward ref. 2786 if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) 2787 if (Value *V = ValueList[Record[0]]) 2788 if (SelectorTy != V->getType()) 2789 SelectorTy = VectorType::get(SelectorTy, VTy->getNumElements()); 2790 2791 V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0], 2792 SelectorTy), 2793 ValueList.getConstantFwdRef(Record[1],CurTy), 2794 ValueList.getConstantFwdRef(Record[2],CurTy)); 2795 break; 2796 } 2797 case bitc::CST_CODE_CE_EXTRACTELT 2798 : { // CE_EXTRACTELT: [opty, opval, opty, opval] 2799 if (Record.size() < 3) 2800 return error("Invalid record"); 2801 VectorType *OpTy = 2802 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2803 if (!OpTy) 2804 return error("Invalid record"); 2805 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2806 Constant *Op1 = nullptr; 2807 if (Record.size() == 4) { 2808 Type *IdxTy = getTypeByID(Record[2]); 2809 if (!IdxTy) 2810 return error("Invalid record"); 2811 Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2812 } else // TODO: Remove with llvm 4.0 2813 Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2814 if (!Op1) 2815 return error("Invalid record"); 2816 V = ConstantExpr::getExtractElement(Op0, Op1); 2817 break; 2818 } 2819 case bitc::CST_CODE_CE_INSERTELT 2820 : { // CE_INSERTELT: [opval, opval, opty, opval] 2821 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2822 if (Record.size() < 3 || !OpTy) 2823 return error("Invalid record"); 2824 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2825 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], 2826 OpTy->getElementType()); 2827 Constant *Op2 = nullptr; 2828 if (Record.size() == 4) { 2829 Type *IdxTy = getTypeByID(Record[2]); 2830 if (!IdxTy) 2831 return error("Invalid record"); 2832 Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2833 } else // TODO: Remove with llvm 4.0 2834 Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2835 if (!Op2) 2836 return error("Invalid record"); 2837 V = ConstantExpr::getInsertElement(Op0, Op1, Op2); 2838 break; 2839 } 2840 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 2841 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2842 if (Record.size() < 3 || !OpTy) 2843 return error("Invalid record"); 2844 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2845 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy); 2846 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 2847 OpTy->getNumElements()); 2848 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy); 2849 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 2850 break; 2851 } 2852 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 2853 VectorType *RTy = dyn_cast<VectorType>(CurTy); 2854 VectorType *OpTy = 2855 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2856 if (Record.size() < 4 || !RTy || !OpTy) 2857 return error("Invalid record"); 2858 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2859 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2860 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 2861 RTy->getNumElements()); 2862 Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy); 2863 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 2864 break; 2865 } 2866 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 2867 if (Record.size() < 4) 2868 return error("Invalid record"); 2869 Type *OpTy = getTypeByID(Record[0]); 2870 if (!OpTy) 2871 return error("Invalid record"); 2872 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2873 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2874 2875 if (OpTy->isFPOrFPVectorTy()) 2876 V = ConstantExpr::getFCmp(Record[3], Op0, Op1); 2877 else 2878 V = ConstantExpr::getICmp(Record[3], Op0, Op1); 2879 break; 2880 } 2881 // This maintains backward compatibility, pre-asm dialect keywords. 2882 // FIXME: Remove with the 4.0 release. 2883 case bitc::CST_CODE_INLINEASM_OLD: { 2884 if (Record.size() < 2) 2885 return error("Invalid record"); 2886 std::string AsmStr, ConstrStr; 2887 bool HasSideEffects = Record[0] & 1; 2888 bool IsAlignStack = Record[0] >> 1; 2889 unsigned AsmStrSize = Record[1]; 2890 if (2+AsmStrSize >= Record.size()) 2891 return error("Invalid record"); 2892 unsigned ConstStrSize = Record[2+AsmStrSize]; 2893 if (3+AsmStrSize+ConstStrSize > Record.size()) 2894 return error("Invalid record"); 2895 2896 for (unsigned i = 0; i != AsmStrSize; ++i) 2897 AsmStr += (char)Record[2+i]; 2898 for (unsigned i = 0; i != ConstStrSize; ++i) 2899 ConstrStr += (char)Record[3+AsmStrSize+i]; 2900 PointerType *PTy = cast<PointerType>(CurTy); 2901 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 2902 AsmStr, ConstrStr, HasSideEffects, IsAlignStack); 2903 break; 2904 } 2905 // This version adds support for the asm dialect keywords (e.g., 2906 // inteldialect). 2907 case bitc::CST_CODE_INLINEASM: { 2908 if (Record.size() < 2) 2909 return error("Invalid record"); 2910 std::string AsmStr, ConstrStr; 2911 bool HasSideEffects = Record[0] & 1; 2912 bool IsAlignStack = (Record[0] >> 1) & 1; 2913 unsigned AsmDialect = Record[0] >> 2; 2914 unsigned AsmStrSize = Record[1]; 2915 if (2+AsmStrSize >= Record.size()) 2916 return error("Invalid record"); 2917 unsigned ConstStrSize = Record[2+AsmStrSize]; 2918 if (3+AsmStrSize+ConstStrSize > Record.size()) 2919 return error("Invalid record"); 2920 2921 for (unsigned i = 0; i != AsmStrSize; ++i) 2922 AsmStr += (char)Record[2+i]; 2923 for (unsigned i = 0; i != ConstStrSize; ++i) 2924 ConstrStr += (char)Record[3+AsmStrSize+i]; 2925 PointerType *PTy = cast<PointerType>(CurTy); 2926 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 2927 AsmStr, ConstrStr, HasSideEffects, IsAlignStack, 2928 InlineAsm::AsmDialect(AsmDialect)); 2929 break; 2930 } 2931 case bitc::CST_CODE_BLOCKADDRESS:{ 2932 if (Record.size() < 3) 2933 return error("Invalid record"); 2934 Type *FnTy = getTypeByID(Record[0]); 2935 if (!FnTy) 2936 return error("Invalid record"); 2937 Function *Fn = 2938 dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy)); 2939 if (!Fn) 2940 return error("Invalid record"); 2941 2942 // If the function is already parsed we can insert the block address right 2943 // away. 2944 BasicBlock *BB; 2945 unsigned BBID = Record[2]; 2946 if (!BBID) 2947 // Invalid reference to entry block. 2948 return error("Invalid ID"); 2949 if (!Fn->empty()) { 2950 Function::iterator BBI = Fn->begin(), BBE = Fn->end(); 2951 for (size_t I = 0, E = BBID; I != E; ++I) { 2952 if (BBI == BBE) 2953 return error("Invalid ID"); 2954 ++BBI; 2955 } 2956 BB = &*BBI; 2957 } else { 2958 // Otherwise insert a placeholder and remember it so it can be inserted 2959 // when the function is parsed. 2960 auto &FwdBBs = BasicBlockFwdRefs[Fn]; 2961 if (FwdBBs.empty()) 2962 BasicBlockFwdRefQueue.push_back(Fn); 2963 if (FwdBBs.size() < BBID + 1) 2964 FwdBBs.resize(BBID + 1); 2965 if (!FwdBBs[BBID]) 2966 FwdBBs[BBID] = BasicBlock::Create(Context); 2967 BB = FwdBBs[BBID]; 2968 } 2969 V = BlockAddress::get(Fn, BB); 2970 break; 2971 } 2972 } 2973 2974 ValueList.assignValue(V, NextCstNo); 2975 ++NextCstNo; 2976 } 2977 } 2978 2979 std::error_code BitcodeReader::parseUseLists() { 2980 if (Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 2981 return error("Invalid record"); 2982 2983 // Read all the records. 2984 SmallVector<uint64_t, 64> Record; 2985 while (1) { 2986 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2987 2988 switch (Entry.Kind) { 2989 case BitstreamEntry::SubBlock: // Handled for us already. 2990 case BitstreamEntry::Error: 2991 return error("Malformed block"); 2992 case BitstreamEntry::EndBlock: 2993 return std::error_code(); 2994 case BitstreamEntry::Record: 2995 // The interesting case. 2996 break; 2997 } 2998 2999 // Read a use list record. 3000 Record.clear(); 3001 bool IsBB = false; 3002 switch (Stream.readRecord(Entry.ID, Record)) { 3003 default: // Default behavior: unknown type. 3004 break; 3005 case bitc::USELIST_CODE_BB: 3006 IsBB = true; 3007 // fallthrough 3008 case bitc::USELIST_CODE_DEFAULT: { 3009 unsigned RecordLength = Record.size(); 3010 if (RecordLength < 3) 3011 // Records should have at least an ID and two indexes. 3012 return error("Invalid record"); 3013 unsigned ID = Record.back(); 3014 Record.pop_back(); 3015 3016 Value *V; 3017 if (IsBB) { 3018 assert(ID < FunctionBBs.size() && "Basic block not found"); 3019 V = FunctionBBs[ID]; 3020 } else 3021 V = ValueList[ID]; 3022 unsigned NumUses = 0; 3023 SmallDenseMap<const Use *, unsigned, 16> Order; 3024 for (const Use &U : V->materialized_uses()) { 3025 if (++NumUses > Record.size()) 3026 break; 3027 Order[&U] = Record[NumUses - 1]; 3028 } 3029 if (Order.size() != Record.size() || NumUses > Record.size()) 3030 // Mismatches can happen if the functions are being materialized lazily 3031 // (out-of-order), or a value has been upgraded. 3032 break; 3033 3034 V->sortUseList([&](const Use &L, const Use &R) { 3035 return Order.lookup(&L) < Order.lookup(&R); 3036 }); 3037 break; 3038 } 3039 } 3040 } 3041 } 3042 3043 /// When we see the block for metadata, remember where it is and then skip it. 3044 /// This lets us lazily deserialize the metadata. 3045 std::error_code BitcodeReader::rememberAndSkipMetadata() { 3046 // Save the current stream state. 3047 uint64_t CurBit = Stream.GetCurrentBitNo(); 3048 DeferredMetadataInfo.push_back(CurBit); 3049 3050 // Skip over the block for now. 3051 if (Stream.SkipBlock()) 3052 return error("Invalid record"); 3053 return std::error_code(); 3054 } 3055 3056 std::error_code BitcodeReader::materializeMetadata() { 3057 for (uint64_t BitPos : DeferredMetadataInfo) { 3058 // Move the bit stream to the saved position. 3059 Stream.JumpToBit(BitPos); 3060 if (std::error_code EC = parseMetadata(true)) 3061 return EC; 3062 } 3063 DeferredMetadataInfo.clear(); 3064 return std::error_code(); 3065 } 3066 3067 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; } 3068 3069 void BitcodeReader::saveMetadataList( 3070 DenseMap<const Metadata *, unsigned> &MetadataToIDs, bool OnlyTempMD) { 3071 for (unsigned ID = 0; ID < MetadataList.size(); ++ID) { 3072 Metadata *MD = MetadataList[ID]; 3073 auto *N = dyn_cast_or_null<MDNode>(MD); 3074 assert((!N || (N->isResolved() || N->isTemporary())) && 3075 "Found non-resolved non-temp MDNode while saving metadata"); 3076 // Save all values if !OnlyTempMD, otherwise just the temporary metadata. 3077 // Note that in the !OnlyTempMD case we need to save all Metadata, not 3078 // just MDNode, as we may have references to other types of module-level 3079 // metadata (e.g. ValueAsMetadata) from instructions. 3080 if (!OnlyTempMD || (N && N->isTemporary())) { 3081 // Will call this after materializing each function, in order to 3082 // handle remapping of the function's instructions/metadata. 3083 auto IterBool = MetadataToIDs.insert(std::make_pair(MD, ID)); 3084 // See if we already have an entry in that case. 3085 if (OnlyTempMD && !IterBool.second) { 3086 assert(IterBool.first->second == ID && 3087 "Inconsistent metadata value id"); 3088 continue; 3089 } 3090 if (N && N->isTemporary()) 3091 // Ensure that we assert if someone tries to RAUW this temporary 3092 // metadata while it is the key of a map. The flag will be set back 3093 // to true when the saved metadata list is destroyed. 3094 N->setCanReplace(false); 3095 } 3096 } 3097 } 3098 3099 /// When we see the block for a function body, remember where it is and then 3100 /// skip it. This lets us lazily deserialize the functions. 3101 std::error_code BitcodeReader::rememberAndSkipFunctionBody() { 3102 // Get the function we are talking about. 3103 if (FunctionsWithBodies.empty()) 3104 return error("Insufficient function protos"); 3105 3106 Function *Fn = FunctionsWithBodies.back(); 3107 FunctionsWithBodies.pop_back(); 3108 3109 // Save the current stream state. 3110 uint64_t CurBit = Stream.GetCurrentBitNo(); 3111 assert( 3112 (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) && 3113 "Mismatch between VST and scanned function offsets"); 3114 DeferredFunctionInfo[Fn] = CurBit; 3115 3116 // Skip over the function block for now. 3117 if (Stream.SkipBlock()) 3118 return error("Invalid record"); 3119 return std::error_code(); 3120 } 3121 3122 std::error_code BitcodeReader::globalCleanup() { 3123 // Patch the initializers for globals and aliases up. 3124 resolveGlobalAndAliasInits(); 3125 if (!GlobalInits.empty() || !AliasInits.empty()) 3126 return error("Malformed global initializer set"); 3127 3128 // Look for intrinsic functions which need to be upgraded at some point 3129 for (Function &F : *TheModule) { 3130 Function *NewFn; 3131 if (UpgradeIntrinsicFunction(&F, NewFn)) 3132 UpgradedIntrinsics[&F] = NewFn; 3133 } 3134 3135 // Look for global variables which need to be renamed. 3136 for (GlobalVariable &GV : TheModule->globals()) 3137 UpgradeGlobalVariable(&GV); 3138 3139 // Force deallocation of memory for these vectors to favor the client that 3140 // want lazy deserialization. 3141 std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits); 3142 std::vector<std::pair<GlobalAlias*, unsigned> >().swap(AliasInits); 3143 return std::error_code(); 3144 } 3145 3146 /// Support for lazy parsing of function bodies. This is required if we 3147 /// either have an old bitcode file without a VST forward declaration record, 3148 /// or if we have an anonymous function being materialized, since anonymous 3149 /// functions do not have a name and are therefore not in the VST. 3150 std::error_code BitcodeReader::rememberAndSkipFunctionBodies() { 3151 Stream.JumpToBit(NextUnreadBit); 3152 3153 if (Stream.AtEndOfStream()) 3154 return error("Could not find function in stream"); 3155 3156 if (!SeenFirstFunctionBody) 3157 return error("Trying to materialize functions before seeing function blocks"); 3158 3159 // An old bitcode file with the symbol table at the end would have 3160 // finished the parse greedily. 3161 assert(SeenValueSymbolTable); 3162 3163 SmallVector<uint64_t, 64> Record; 3164 3165 while (1) { 3166 BitstreamEntry Entry = Stream.advance(); 3167 switch (Entry.Kind) { 3168 default: 3169 return error("Expect SubBlock"); 3170 case BitstreamEntry::SubBlock: 3171 switch (Entry.ID) { 3172 default: 3173 return error("Expect function block"); 3174 case bitc::FUNCTION_BLOCK_ID: 3175 if (std::error_code EC = rememberAndSkipFunctionBody()) 3176 return EC; 3177 NextUnreadBit = Stream.GetCurrentBitNo(); 3178 return std::error_code(); 3179 } 3180 } 3181 } 3182 } 3183 3184 std::error_code BitcodeReader::parseBitcodeVersion() { 3185 if (Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID)) 3186 return error("Invalid record"); 3187 3188 // Read all the records. 3189 SmallVector<uint64_t, 64> Record; 3190 while (1) { 3191 BitstreamEntry Entry = Stream.advance(); 3192 3193 switch (Entry.Kind) { 3194 default: 3195 case BitstreamEntry::Error: 3196 return error("Malformed block"); 3197 case BitstreamEntry::EndBlock: 3198 return std::error_code(); 3199 case BitstreamEntry::Record: 3200 // The interesting case. 3201 break; 3202 } 3203 3204 // Read a record. 3205 Record.clear(); 3206 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 3207 switch (BitCode) { 3208 default: // Default behavior: reject 3209 return error("Invalid value"); 3210 case bitc::IDENTIFICATION_CODE_STRING: { // IDENTIFICATION: [strchr x 3211 // N] 3212 convertToString(Record, 0, ProducerIdentification); 3213 break; 3214 } 3215 case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#] 3216 unsigned epoch = (unsigned)Record[0]; 3217 if (epoch != bitc::BITCODE_CURRENT_EPOCH) { 3218 return error( 3219 Twine("Incompatible epoch: Bitcode '") + Twine(epoch) + 3220 "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'"); 3221 } 3222 } 3223 } 3224 } 3225 } 3226 3227 std::error_code BitcodeReader::parseModule(uint64_t ResumeBit, 3228 bool ShouldLazyLoadMetadata) { 3229 if (ResumeBit) 3230 Stream.JumpToBit(ResumeBit); 3231 else if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 3232 return error("Invalid record"); 3233 3234 SmallVector<uint64_t, 64> Record; 3235 std::vector<std::string> SectionTable; 3236 std::vector<std::string> GCTable; 3237 3238 // Read all the records for this module. 3239 while (1) { 3240 BitstreamEntry Entry = Stream.advance(); 3241 3242 switch (Entry.Kind) { 3243 case BitstreamEntry::Error: 3244 return error("Malformed block"); 3245 case BitstreamEntry::EndBlock: 3246 return globalCleanup(); 3247 3248 case BitstreamEntry::SubBlock: 3249 switch (Entry.ID) { 3250 default: // Skip unknown content. 3251 if (Stream.SkipBlock()) 3252 return error("Invalid record"); 3253 break; 3254 case bitc::BLOCKINFO_BLOCK_ID: 3255 if (Stream.ReadBlockInfoBlock()) 3256 return error("Malformed block"); 3257 break; 3258 case bitc::PARAMATTR_BLOCK_ID: 3259 if (std::error_code EC = parseAttributeBlock()) 3260 return EC; 3261 break; 3262 case bitc::PARAMATTR_GROUP_BLOCK_ID: 3263 if (std::error_code EC = parseAttributeGroupBlock()) 3264 return EC; 3265 break; 3266 case bitc::TYPE_BLOCK_ID_NEW: 3267 if (std::error_code EC = parseTypeTable()) 3268 return EC; 3269 break; 3270 case bitc::VALUE_SYMTAB_BLOCK_ID: 3271 if (!SeenValueSymbolTable) { 3272 // Either this is an old form VST without function index and an 3273 // associated VST forward declaration record (which would have caused 3274 // the VST to be jumped to and parsed before it was encountered 3275 // normally in the stream), or there were no function blocks to 3276 // trigger an earlier parsing of the VST. 3277 assert(VSTOffset == 0 || FunctionsWithBodies.empty()); 3278 if (std::error_code EC = parseValueSymbolTable()) 3279 return EC; 3280 SeenValueSymbolTable = true; 3281 } else { 3282 // We must have had a VST forward declaration record, which caused 3283 // the parser to jump to and parse the VST earlier. 3284 assert(VSTOffset > 0); 3285 if (Stream.SkipBlock()) 3286 return error("Invalid record"); 3287 } 3288 break; 3289 case bitc::CONSTANTS_BLOCK_ID: 3290 if (std::error_code EC = parseConstants()) 3291 return EC; 3292 if (std::error_code EC = resolveGlobalAndAliasInits()) 3293 return EC; 3294 break; 3295 case bitc::METADATA_BLOCK_ID: 3296 if (ShouldLazyLoadMetadata && !IsMetadataMaterialized) { 3297 if (std::error_code EC = rememberAndSkipMetadata()) 3298 return EC; 3299 break; 3300 } 3301 assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata"); 3302 if (std::error_code EC = parseMetadata(true)) 3303 return EC; 3304 break; 3305 case bitc::METADATA_KIND_BLOCK_ID: 3306 if (std::error_code EC = parseMetadataKinds()) 3307 return EC; 3308 break; 3309 case bitc::FUNCTION_BLOCK_ID: 3310 // If this is the first function body we've seen, reverse the 3311 // FunctionsWithBodies list. 3312 if (!SeenFirstFunctionBody) { 3313 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 3314 if (std::error_code EC = globalCleanup()) 3315 return EC; 3316 SeenFirstFunctionBody = true; 3317 } 3318 3319 if (VSTOffset > 0) { 3320 // If we have a VST forward declaration record, make sure we 3321 // parse the VST now if we haven't already. It is needed to 3322 // set up the DeferredFunctionInfo vector for lazy reading. 3323 if (!SeenValueSymbolTable) { 3324 if (std::error_code EC = 3325 BitcodeReader::parseValueSymbolTable(VSTOffset)) 3326 return EC; 3327 SeenValueSymbolTable = true; 3328 // Fall through so that we record the NextUnreadBit below. 3329 // This is necessary in case we have an anonymous function that 3330 // is later materialized. Since it will not have a VST entry we 3331 // need to fall back to the lazy parse to find its offset. 3332 } else { 3333 // If we have a VST forward declaration record, but have already 3334 // parsed the VST (just above, when the first function body was 3335 // encountered here), then we are resuming the parse after 3336 // materializing functions. The ResumeBit points to the 3337 // start of the last function block recorded in the 3338 // DeferredFunctionInfo map. Skip it. 3339 if (Stream.SkipBlock()) 3340 return error("Invalid record"); 3341 continue; 3342 } 3343 } 3344 3345 // Support older bitcode files that did not have the function 3346 // index in the VST, nor a VST forward declaration record, as 3347 // well as anonymous functions that do not have VST entries. 3348 // Build the DeferredFunctionInfo vector on the fly. 3349 if (std::error_code EC = rememberAndSkipFunctionBody()) 3350 return EC; 3351 3352 // Suspend parsing when we reach the function bodies. Subsequent 3353 // materialization calls will resume it when necessary. If the bitcode 3354 // file is old, the symbol table will be at the end instead and will not 3355 // have been seen yet. In this case, just finish the parse now. 3356 if (SeenValueSymbolTable) { 3357 NextUnreadBit = Stream.GetCurrentBitNo(); 3358 return std::error_code(); 3359 } 3360 break; 3361 case bitc::USELIST_BLOCK_ID: 3362 if (std::error_code EC = parseUseLists()) 3363 return EC; 3364 break; 3365 case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID: 3366 if (std::error_code EC = parseOperandBundleTags()) 3367 return EC; 3368 break; 3369 } 3370 continue; 3371 3372 case BitstreamEntry::Record: 3373 // The interesting case. 3374 break; 3375 } 3376 3377 // Read a record. 3378 auto BitCode = Stream.readRecord(Entry.ID, Record); 3379 switch (BitCode) { 3380 default: break; // Default behavior, ignore unknown content. 3381 case bitc::MODULE_CODE_VERSION: { // VERSION: [version#] 3382 if (Record.size() < 1) 3383 return error("Invalid record"); 3384 // Only version #0 and #1 are supported so far. 3385 unsigned module_version = Record[0]; 3386 switch (module_version) { 3387 default: 3388 return error("Invalid value"); 3389 case 0: 3390 UseRelativeIDs = false; 3391 break; 3392 case 1: 3393 UseRelativeIDs = true; 3394 break; 3395 } 3396 break; 3397 } 3398 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 3399 std::string S; 3400 if (convertToString(Record, 0, S)) 3401 return error("Invalid record"); 3402 TheModule->setTargetTriple(S); 3403 break; 3404 } 3405 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 3406 std::string S; 3407 if (convertToString(Record, 0, S)) 3408 return error("Invalid record"); 3409 TheModule->setDataLayout(S); 3410 break; 3411 } 3412 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 3413 std::string S; 3414 if (convertToString(Record, 0, S)) 3415 return error("Invalid record"); 3416 TheModule->setModuleInlineAsm(S); 3417 break; 3418 } 3419 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 3420 // FIXME: Remove in 4.0. 3421 std::string S; 3422 if (convertToString(Record, 0, S)) 3423 return error("Invalid record"); 3424 // Ignore value. 3425 break; 3426 } 3427 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 3428 std::string S; 3429 if (convertToString(Record, 0, S)) 3430 return error("Invalid record"); 3431 SectionTable.push_back(S); 3432 break; 3433 } 3434 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 3435 std::string S; 3436 if (convertToString(Record, 0, S)) 3437 return error("Invalid record"); 3438 GCTable.push_back(S); 3439 break; 3440 } 3441 case bitc::MODULE_CODE_COMDAT: { // COMDAT: [selection_kind, name] 3442 if (Record.size() < 2) 3443 return error("Invalid record"); 3444 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]); 3445 unsigned ComdatNameSize = Record[1]; 3446 std::string ComdatName; 3447 ComdatName.reserve(ComdatNameSize); 3448 for (unsigned i = 0; i != ComdatNameSize; ++i) 3449 ComdatName += (char)Record[2 + i]; 3450 Comdat *C = TheModule->getOrInsertComdat(ComdatName); 3451 C->setSelectionKind(SK); 3452 ComdatList.push_back(C); 3453 break; 3454 } 3455 // GLOBALVAR: [pointer type, isconst, initid, 3456 // linkage, alignment, section, visibility, threadlocal, 3457 // unnamed_addr, externally_initialized, dllstorageclass, 3458 // comdat] 3459 case bitc::MODULE_CODE_GLOBALVAR: { 3460 if (Record.size() < 6) 3461 return error("Invalid record"); 3462 Type *Ty = getTypeByID(Record[0]); 3463 if (!Ty) 3464 return error("Invalid record"); 3465 bool isConstant = Record[1] & 1; 3466 bool explicitType = Record[1] & 2; 3467 unsigned AddressSpace; 3468 if (explicitType) { 3469 AddressSpace = Record[1] >> 2; 3470 } else { 3471 if (!Ty->isPointerTy()) 3472 return error("Invalid type for value"); 3473 AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 3474 Ty = cast<PointerType>(Ty)->getElementType(); 3475 } 3476 3477 uint64_t RawLinkage = Record[3]; 3478 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 3479 unsigned Alignment; 3480 if (std::error_code EC = parseAlignmentValue(Record[4], Alignment)) 3481 return EC; 3482 std::string Section; 3483 if (Record[5]) { 3484 if (Record[5]-1 >= SectionTable.size()) 3485 return error("Invalid ID"); 3486 Section = SectionTable[Record[5]-1]; 3487 } 3488 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 3489 // Local linkage must have default visibility. 3490 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage)) 3491 // FIXME: Change to an error if non-default in 4.0. 3492 Visibility = getDecodedVisibility(Record[6]); 3493 3494 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; 3495 if (Record.size() > 7) 3496 TLM = getDecodedThreadLocalMode(Record[7]); 3497 3498 bool UnnamedAddr = false; 3499 if (Record.size() > 8) 3500 UnnamedAddr = Record[8]; 3501 3502 bool ExternallyInitialized = false; 3503 if (Record.size() > 9) 3504 ExternallyInitialized = Record[9]; 3505 3506 GlobalVariable *NewGV = 3507 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, "", nullptr, 3508 TLM, AddressSpace, ExternallyInitialized); 3509 NewGV->setAlignment(Alignment); 3510 if (!Section.empty()) 3511 NewGV->setSection(Section); 3512 NewGV->setVisibility(Visibility); 3513 NewGV->setUnnamedAddr(UnnamedAddr); 3514 3515 if (Record.size() > 10) 3516 NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10])); 3517 else 3518 upgradeDLLImportExportLinkage(NewGV, RawLinkage); 3519 3520 ValueList.push_back(NewGV); 3521 3522 // Remember which value to use for the global initializer. 3523 if (unsigned InitID = Record[2]) 3524 GlobalInits.push_back(std::make_pair(NewGV, InitID-1)); 3525 3526 if (Record.size() > 11) { 3527 if (unsigned ComdatID = Record[11]) { 3528 if (ComdatID > ComdatList.size()) 3529 return error("Invalid global variable comdat ID"); 3530 NewGV->setComdat(ComdatList[ComdatID - 1]); 3531 } 3532 } else if (hasImplicitComdat(RawLinkage)) { 3533 NewGV->setComdat(reinterpret_cast<Comdat *>(1)); 3534 } 3535 break; 3536 } 3537 // FUNCTION: [type, callingconv, isproto, linkage, paramattr, 3538 // alignment, section, visibility, gc, unnamed_addr, 3539 // prologuedata, dllstorageclass, comdat, prefixdata] 3540 case bitc::MODULE_CODE_FUNCTION: { 3541 if (Record.size() < 8) 3542 return error("Invalid record"); 3543 Type *Ty = getTypeByID(Record[0]); 3544 if (!Ty) 3545 return error("Invalid record"); 3546 if (auto *PTy = dyn_cast<PointerType>(Ty)) 3547 Ty = PTy->getElementType(); 3548 auto *FTy = dyn_cast<FunctionType>(Ty); 3549 if (!FTy) 3550 return error("Invalid type for value"); 3551 auto CC = static_cast<CallingConv::ID>(Record[1]); 3552 if (CC & ~CallingConv::MaxID) 3553 return error("Invalid calling convention ID"); 3554 3555 Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage, 3556 "", TheModule); 3557 3558 Func->setCallingConv(CC); 3559 bool isProto = Record[2]; 3560 uint64_t RawLinkage = Record[3]; 3561 Func->setLinkage(getDecodedLinkage(RawLinkage)); 3562 Func->setAttributes(getAttributes(Record[4])); 3563 3564 unsigned Alignment; 3565 if (std::error_code EC = parseAlignmentValue(Record[5], Alignment)) 3566 return EC; 3567 Func->setAlignment(Alignment); 3568 if (Record[6]) { 3569 if (Record[6]-1 >= SectionTable.size()) 3570 return error("Invalid ID"); 3571 Func->setSection(SectionTable[Record[6]-1]); 3572 } 3573 // Local linkage must have default visibility. 3574 if (!Func->hasLocalLinkage()) 3575 // FIXME: Change to an error if non-default in 4.0. 3576 Func->setVisibility(getDecodedVisibility(Record[7])); 3577 if (Record.size() > 8 && Record[8]) { 3578 if (Record[8]-1 >= GCTable.size()) 3579 return error("Invalid ID"); 3580 Func->setGC(GCTable[Record[8]-1].c_str()); 3581 } 3582 bool UnnamedAddr = false; 3583 if (Record.size() > 9) 3584 UnnamedAddr = Record[9]; 3585 Func->setUnnamedAddr(UnnamedAddr); 3586 if (Record.size() > 10 && Record[10] != 0) 3587 FunctionPrologues.push_back(std::make_pair(Func, Record[10]-1)); 3588 3589 if (Record.size() > 11) 3590 Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11])); 3591 else 3592 upgradeDLLImportExportLinkage(Func, RawLinkage); 3593 3594 if (Record.size() > 12) { 3595 if (unsigned ComdatID = Record[12]) { 3596 if (ComdatID > ComdatList.size()) 3597 return error("Invalid function comdat ID"); 3598 Func->setComdat(ComdatList[ComdatID - 1]); 3599 } 3600 } else if (hasImplicitComdat(RawLinkage)) { 3601 Func->setComdat(reinterpret_cast<Comdat *>(1)); 3602 } 3603 3604 if (Record.size() > 13 && Record[13] != 0) 3605 FunctionPrefixes.push_back(std::make_pair(Func, Record[13]-1)); 3606 3607 if (Record.size() > 14 && Record[14] != 0) 3608 FunctionPersonalityFns.push_back(std::make_pair(Func, Record[14] - 1)); 3609 3610 ValueList.push_back(Func); 3611 3612 // If this is a function with a body, remember the prototype we are 3613 // creating now, so that we can match up the body with them later. 3614 if (!isProto) { 3615 Func->setIsMaterializable(true); 3616 FunctionsWithBodies.push_back(Func); 3617 DeferredFunctionInfo[Func] = 0; 3618 } 3619 break; 3620 } 3621 // ALIAS: [alias type, addrspace, aliasee val#, linkage] 3622 // ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, dllstorageclass] 3623 case bitc::MODULE_CODE_ALIAS: 3624 case bitc::MODULE_CODE_ALIAS_OLD: { 3625 bool NewRecord = BitCode == bitc::MODULE_CODE_ALIAS; 3626 if (Record.size() < (3 + (unsigned)NewRecord)) 3627 return error("Invalid record"); 3628 unsigned OpNum = 0; 3629 Type *Ty = getTypeByID(Record[OpNum++]); 3630 if (!Ty) 3631 return error("Invalid record"); 3632 3633 unsigned AddrSpace; 3634 if (!NewRecord) { 3635 auto *PTy = dyn_cast<PointerType>(Ty); 3636 if (!PTy) 3637 return error("Invalid type for value"); 3638 Ty = PTy->getElementType(); 3639 AddrSpace = PTy->getAddressSpace(); 3640 } else { 3641 AddrSpace = Record[OpNum++]; 3642 } 3643 3644 auto Val = Record[OpNum++]; 3645 auto Linkage = Record[OpNum++]; 3646 auto *NewGA = GlobalAlias::create( 3647 Ty, AddrSpace, getDecodedLinkage(Linkage), "", TheModule); 3648 // Old bitcode files didn't have visibility field. 3649 // Local linkage must have default visibility. 3650 if (OpNum != Record.size()) { 3651 auto VisInd = OpNum++; 3652 if (!NewGA->hasLocalLinkage()) 3653 // FIXME: Change to an error if non-default in 4.0. 3654 NewGA->setVisibility(getDecodedVisibility(Record[VisInd])); 3655 } 3656 if (OpNum != Record.size()) 3657 NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++])); 3658 else 3659 upgradeDLLImportExportLinkage(NewGA, Linkage); 3660 if (OpNum != Record.size()) 3661 NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++])); 3662 if (OpNum != Record.size()) 3663 NewGA->setUnnamedAddr(Record[OpNum++]); 3664 ValueList.push_back(NewGA); 3665 AliasInits.push_back(std::make_pair(NewGA, Val)); 3666 break; 3667 } 3668 /// MODULE_CODE_PURGEVALS: [numvals] 3669 case bitc::MODULE_CODE_PURGEVALS: 3670 // Trim down the value list to the specified size. 3671 if (Record.size() < 1 || Record[0] > ValueList.size()) 3672 return error("Invalid record"); 3673 ValueList.shrinkTo(Record[0]); 3674 break; 3675 /// MODULE_CODE_VSTOFFSET: [offset] 3676 case bitc::MODULE_CODE_VSTOFFSET: 3677 if (Record.size() < 1) 3678 return error("Invalid record"); 3679 VSTOffset = Record[0]; 3680 break; 3681 /// MODULE_CODE_METADATA_VALUES: [numvals] 3682 case bitc::MODULE_CODE_METADATA_VALUES: 3683 if (Record.size() < 1) 3684 return error("Invalid record"); 3685 assert(!IsMetadataMaterialized); 3686 // This record contains the number of metadata values in the module-level 3687 // METADATA_BLOCK. It is used to support lazy parsing of metadata as 3688 // a postpass, where we will parse function-level metadata first. 3689 // This is needed because the ids of metadata are assigned implicitly 3690 // based on their ordering in the bitcode, with the function-level 3691 // metadata ids starting after the module-level metadata ids. Otherwise, 3692 // we would have to parse the module-level metadata block to prime the 3693 // MetadataList when we are lazy loading metadata during function 3694 // importing. Initialize the MetadataList size here based on the 3695 // record value, regardless of whether we are doing lazy metadata 3696 // loading, so that we have consistent handling and assertion 3697 // checking in parseMetadata for module-level metadata. 3698 NumModuleMDs = Record[0]; 3699 SeenModuleValuesRecord = true; 3700 assert(MetadataList.size() == 0); 3701 MetadataList.resize(NumModuleMDs); 3702 break; 3703 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 3704 case bitc::MODULE_CODE_SOURCE_FILENAME: 3705 SmallString<128> ValueName; 3706 if (convertToString(Record, 0, ValueName)) 3707 return error("Invalid record"); 3708 TheModule->setSourceFileName(ValueName); 3709 break; 3710 } 3711 Record.clear(); 3712 } 3713 } 3714 3715 /// Helper to read the header common to all bitcode files. 3716 static bool hasValidBitcodeHeader(BitstreamCursor &Stream) { 3717 // Sniff for the signature. 3718 if (Stream.Read(8) != 'B' || 3719 Stream.Read(8) != 'C' || 3720 Stream.Read(4) != 0x0 || 3721 Stream.Read(4) != 0xC || 3722 Stream.Read(4) != 0xE || 3723 Stream.Read(4) != 0xD) 3724 return false; 3725 return true; 3726 } 3727 3728 std::error_code 3729 BitcodeReader::parseBitcodeInto(std::unique_ptr<DataStreamer> Streamer, 3730 Module *M, bool ShouldLazyLoadMetadata) { 3731 TheModule = M; 3732 3733 if (std::error_code EC = initStream(std::move(Streamer))) 3734 return EC; 3735 3736 // Sniff for the signature. 3737 if (!hasValidBitcodeHeader(Stream)) 3738 return error("Invalid bitcode signature"); 3739 3740 // We expect a number of well-defined blocks, though we don't necessarily 3741 // need to understand them all. 3742 while (1) { 3743 if (Stream.AtEndOfStream()) { 3744 // We didn't really read a proper Module. 3745 return error("Malformed IR file"); 3746 } 3747 3748 BitstreamEntry Entry = 3749 Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs); 3750 3751 if (Entry.Kind != BitstreamEntry::SubBlock) 3752 return error("Malformed block"); 3753 3754 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) { 3755 parseBitcodeVersion(); 3756 continue; 3757 } 3758 3759 if (Entry.ID == bitc::MODULE_BLOCK_ID) 3760 return parseModule(0, ShouldLazyLoadMetadata); 3761 3762 if (Stream.SkipBlock()) 3763 return error("Invalid record"); 3764 } 3765 } 3766 3767 ErrorOr<std::string> BitcodeReader::parseModuleTriple() { 3768 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 3769 return error("Invalid record"); 3770 3771 SmallVector<uint64_t, 64> Record; 3772 3773 std::string Triple; 3774 // Read all the records for this module. 3775 while (1) { 3776 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 3777 3778 switch (Entry.Kind) { 3779 case BitstreamEntry::SubBlock: // Handled for us already. 3780 case BitstreamEntry::Error: 3781 return error("Malformed block"); 3782 case BitstreamEntry::EndBlock: 3783 return Triple; 3784 case BitstreamEntry::Record: 3785 // The interesting case. 3786 break; 3787 } 3788 3789 // Read a record. 3790 switch (Stream.readRecord(Entry.ID, Record)) { 3791 default: break; // Default behavior, ignore unknown content. 3792 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 3793 std::string S; 3794 if (convertToString(Record, 0, S)) 3795 return error("Invalid record"); 3796 Triple = S; 3797 break; 3798 } 3799 } 3800 Record.clear(); 3801 } 3802 llvm_unreachable("Exit infinite loop"); 3803 } 3804 3805 ErrorOr<std::string> BitcodeReader::parseTriple() { 3806 if (std::error_code EC = initStream(nullptr)) 3807 return EC; 3808 3809 // Sniff for the signature. 3810 if (!hasValidBitcodeHeader(Stream)) 3811 return error("Invalid bitcode signature"); 3812 3813 // We expect a number of well-defined blocks, though we don't necessarily 3814 // need to understand them all. 3815 while (1) { 3816 BitstreamEntry Entry = Stream.advance(); 3817 3818 switch (Entry.Kind) { 3819 case BitstreamEntry::Error: 3820 return error("Malformed block"); 3821 case BitstreamEntry::EndBlock: 3822 return std::error_code(); 3823 3824 case BitstreamEntry::SubBlock: 3825 if (Entry.ID == bitc::MODULE_BLOCK_ID) 3826 return parseModuleTriple(); 3827 3828 // Ignore other sub-blocks. 3829 if (Stream.SkipBlock()) 3830 return error("Malformed block"); 3831 continue; 3832 3833 case BitstreamEntry::Record: 3834 Stream.skipRecord(Entry.ID); 3835 continue; 3836 } 3837 } 3838 } 3839 3840 ErrorOr<std::string> BitcodeReader::parseIdentificationBlock() { 3841 if (std::error_code EC = initStream(nullptr)) 3842 return EC; 3843 3844 // Sniff for the signature. 3845 if (!hasValidBitcodeHeader(Stream)) 3846 return error("Invalid bitcode signature"); 3847 3848 // We expect a number of well-defined blocks, though we don't necessarily 3849 // need to understand them all. 3850 while (1) { 3851 BitstreamEntry Entry = Stream.advance(); 3852 switch (Entry.Kind) { 3853 case BitstreamEntry::Error: 3854 return error("Malformed block"); 3855 case BitstreamEntry::EndBlock: 3856 return std::error_code(); 3857 3858 case BitstreamEntry::SubBlock: 3859 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) { 3860 if (std::error_code EC = parseBitcodeVersion()) 3861 return EC; 3862 return ProducerIdentification; 3863 } 3864 // Ignore other sub-blocks. 3865 if (Stream.SkipBlock()) 3866 return error("Malformed block"); 3867 continue; 3868 case BitstreamEntry::Record: 3869 Stream.skipRecord(Entry.ID); 3870 continue; 3871 } 3872 } 3873 } 3874 3875 /// Parse metadata attachments. 3876 std::error_code BitcodeReader::parseMetadataAttachment(Function &F) { 3877 if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID)) 3878 return error("Invalid record"); 3879 3880 SmallVector<uint64_t, 64> Record; 3881 while (1) { 3882 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 3883 3884 switch (Entry.Kind) { 3885 case BitstreamEntry::SubBlock: // Handled for us already. 3886 case BitstreamEntry::Error: 3887 return error("Malformed block"); 3888 case BitstreamEntry::EndBlock: 3889 return std::error_code(); 3890 case BitstreamEntry::Record: 3891 // The interesting case. 3892 break; 3893 } 3894 3895 // Read a metadata attachment record. 3896 Record.clear(); 3897 switch (Stream.readRecord(Entry.ID, Record)) { 3898 default: // Default behavior: ignore. 3899 break; 3900 case bitc::METADATA_ATTACHMENT: { 3901 unsigned RecordLength = Record.size(); 3902 if (Record.empty()) 3903 return error("Invalid record"); 3904 if (RecordLength % 2 == 0) { 3905 // A function attachment. 3906 for (unsigned I = 0; I != RecordLength; I += 2) { 3907 auto K = MDKindMap.find(Record[I]); 3908 if (K == MDKindMap.end()) 3909 return error("Invalid ID"); 3910 Metadata *MD = MetadataList.getValueFwdRef(Record[I + 1]); 3911 F.setMetadata(K->second, cast<MDNode>(MD)); 3912 } 3913 continue; 3914 } 3915 3916 // An instruction attachment. 3917 Instruction *Inst = InstructionList[Record[0]]; 3918 for (unsigned i = 1; i != RecordLength; i = i+2) { 3919 unsigned Kind = Record[i]; 3920 DenseMap<unsigned, unsigned>::iterator I = 3921 MDKindMap.find(Kind); 3922 if (I == MDKindMap.end()) 3923 return error("Invalid ID"); 3924 Metadata *Node = MetadataList.getValueFwdRef(Record[i + 1]); 3925 if (isa<LocalAsMetadata>(Node)) 3926 // Drop the attachment. This used to be legal, but there's no 3927 // upgrade path. 3928 break; 3929 Inst->setMetadata(I->second, cast<MDNode>(Node)); 3930 if (I->second == LLVMContext::MD_tbaa) 3931 InstsWithTBAATag.push_back(Inst); 3932 } 3933 break; 3934 } 3935 } 3936 } 3937 } 3938 3939 static std::error_code typeCheckLoadStoreInst(Type *ValType, Type *PtrType) { 3940 LLVMContext &Context = PtrType->getContext(); 3941 if (!isa<PointerType>(PtrType)) 3942 return error(Context, "Load/Store operand is not a pointer type"); 3943 Type *ElemType = cast<PointerType>(PtrType)->getElementType(); 3944 3945 if (ValType && ValType != ElemType) 3946 return error(Context, "Explicit load/store type does not match pointee " 3947 "type of pointer operand"); 3948 if (!PointerType::isLoadableOrStorableType(ElemType)) 3949 return error(Context, "Cannot load/store from pointer"); 3950 return std::error_code(); 3951 } 3952 3953 /// Lazily parse the specified function body block. 3954 std::error_code BitcodeReader::parseFunctionBody(Function *F) { 3955 if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 3956 return error("Invalid record"); 3957 3958 InstructionList.clear(); 3959 unsigned ModuleValueListSize = ValueList.size(); 3960 unsigned ModuleMetadataListSize = MetadataList.size(); 3961 3962 // Add all the function arguments to the value table. 3963 for (Argument &I : F->args()) 3964 ValueList.push_back(&I); 3965 3966 unsigned NextValueNo = ValueList.size(); 3967 BasicBlock *CurBB = nullptr; 3968 unsigned CurBBNo = 0; 3969 3970 DebugLoc LastLoc; 3971 auto getLastInstruction = [&]() -> Instruction * { 3972 if (CurBB && !CurBB->empty()) 3973 return &CurBB->back(); 3974 else if (CurBBNo && FunctionBBs[CurBBNo - 1] && 3975 !FunctionBBs[CurBBNo - 1]->empty()) 3976 return &FunctionBBs[CurBBNo - 1]->back(); 3977 return nullptr; 3978 }; 3979 3980 std::vector<OperandBundleDef> OperandBundles; 3981 3982 // Read all the records. 3983 SmallVector<uint64_t, 64> Record; 3984 while (1) { 3985 BitstreamEntry Entry = Stream.advance(); 3986 3987 switch (Entry.Kind) { 3988 case BitstreamEntry::Error: 3989 return error("Malformed block"); 3990 case BitstreamEntry::EndBlock: 3991 goto OutOfRecordLoop; 3992 3993 case BitstreamEntry::SubBlock: 3994 switch (Entry.ID) { 3995 default: // Skip unknown content. 3996 if (Stream.SkipBlock()) 3997 return error("Invalid record"); 3998 break; 3999 case bitc::CONSTANTS_BLOCK_ID: 4000 if (std::error_code EC = parseConstants()) 4001 return EC; 4002 NextValueNo = ValueList.size(); 4003 break; 4004 case bitc::VALUE_SYMTAB_BLOCK_ID: 4005 if (std::error_code EC = parseValueSymbolTable()) 4006 return EC; 4007 break; 4008 case bitc::METADATA_ATTACHMENT_ID: 4009 if (std::error_code EC = parseMetadataAttachment(*F)) 4010 return EC; 4011 break; 4012 case bitc::METADATA_BLOCK_ID: 4013 if (std::error_code EC = parseMetadata()) 4014 return EC; 4015 break; 4016 case bitc::USELIST_BLOCK_ID: 4017 if (std::error_code EC = parseUseLists()) 4018 return EC; 4019 break; 4020 } 4021 continue; 4022 4023 case BitstreamEntry::Record: 4024 // The interesting case. 4025 break; 4026 } 4027 4028 // Read a record. 4029 Record.clear(); 4030 Instruction *I = nullptr; 4031 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 4032 switch (BitCode) { 4033 default: // Default behavior: reject 4034 return error("Invalid value"); 4035 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks] 4036 if (Record.size() < 1 || Record[0] == 0) 4037 return error("Invalid record"); 4038 // Create all the basic blocks for the function. 4039 FunctionBBs.resize(Record[0]); 4040 4041 // See if anything took the address of blocks in this function. 4042 auto BBFRI = BasicBlockFwdRefs.find(F); 4043 if (BBFRI == BasicBlockFwdRefs.end()) { 4044 for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i) 4045 FunctionBBs[i] = BasicBlock::Create(Context, "", F); 4046 } else { 4047 auto &BBRefs = BBFRI->second; 4048 // Check for invalid basic block references. 4049 if (BBRefs.size() > FunctionBBs.size()) 4050 return error("Invalid ID"); 4051 assert(!BBRefs.empty() && "Unexpected empty array"); 4052 assert(!BBRefs.front() && "Invalid reference to entry block"); 4053 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E; 4054 ++I) 4055 if (I < RE && BBRefs[I]) { 4056 BBRefs[I]->insertInto(F); 4057 FunctionBBs[I] = BBRefs[I]; 4058 } else { 4059 FunctionBBs[I] = BasicBlock::Create(Context, "", F); 4060 } 4061 4062 // Erase from the table. 4063 BasicBlockFwdRefs.erase(BBFRI); 4064 } 4065 4066 CurBB = FunctionBBs[0]; 4067 continue; 4068 } 4069 4070 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 4071 // This record indicates that the last instruction is at the same 4072 // location as the previous instruction with a location. 4073 I = getLastInstruction(); 4074 4075 if (!I) 4076 return error("Invalid record"); 4077 I->setDebugLoc(LastLoc); 4078 I = nullptr; 4079 continue; 4080 4081 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 4082 I = getLastInstruction(); 4083 if (!I || Record.size() < 4) 4084 return error("Invalid record"); 4085 4086 unsigned Line = Record[0], Col = Record[1]; 4087 unsigned ScopeID = Record[2], IAID = Record[3]; 4088 4089 MDNode *Scope = nullptr, *IA = nullptr; 4090 if (ScopeID) 4091 Scope = cast<MDNode>(MetadataList.getValueFwdRef(ScopeID - 1)); 4092 if (IAID) 4093 IA = cast<MDNode>(MetadataList.getValueFwdRef(IAID - 1)); 4094 LastLoc = DebugLoc::get(Line, Col, Scope, IA); 4095 I->setDebugLoc(LastLoc); 4096 I = nullptr; 4097 continue; 4098 } 4099 4100 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 4101 unsigned OpNum = 0; 4102 Value *LHS, *RHS; 4103 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 4104 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 4105 OpNum+1 > Record.size()) 4106 return error("Invalid record"); 4107 4108 int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 4109 if (Opc == -1) 4110 return error("Invalid record"); 4111 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 4112 InstructionList.push_back(I); 4113 if (OpNum < Record.size()) { 4114 if (Opc == Instruction::Add || 4115 Opc == Instruction::Sub || 4116 Opc == Instruction::Mul || 4117 Opc == Instruction::Shl) { 4118 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 4119 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 4120 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 4121 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 4122 } else if (Opc == Instruction::SDiv || 4123 Opc == Instruction::UDiv || 4124 Opc == Instruction::LShr || 4125 Opc == Instruction::AShr) { 4126 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 4127 cast<BinaryOperator>(I)->setIsExact(true); 4128 } else if (isa<FPMathOperator>(I)) { 4129 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 4130 if (FMF.any()) 4131 I->setFastMathFlags(FMF); 4132 } 4133 4134 } 4135 break; 4136 } 4137 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 4138 unsigned OpNum = 0; 4139 Value *Op; 4140 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4141 OpNum+2 != Record.size()) 4142 return error("Invalid record"); 4143 4144 Type *ResTy = getTypeByID(Record[OpNum]); 4145 int Opc = getDecodedCastOpcode(Record[OpNum + 1]); 4146 if (Opc == -1 || !ResTy) 4147 return error("Invalid record"); 4148 Instruction *Temp = nullptr; 4149 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) { 4150 if (Temp) { 4151 InstructionList.push_back(Temp); 4152 CurBB->getInstList().push_back(Temp); 4153 } 4154 } else { 4155 auto CastOp = (Instruction::CastOps)Opc; 4156 if (!CastInst::castIsValid(CastOp, Op, ResTy)) 4157 return error("Invalid cast"); 4158 I = CastInst::Create(CastOp, Op, ResTy); 4159 } 4160 InstructionList.push_back(I); 4161 break; 4162 } 4163 case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD: 4164 case bitc::FUNC_CODE_INST_GEP_OLD: 4165 case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands] 4166 unsigned OpNum = 0; 4167 4168 Type *Ty; 4169 bool InBounds; 4170 4171 if (BitCode == bitc::FUNC_CODE_INST_GEP) { 4172 InBounds = Record[OpNum++]; 4173 Ty = getTypeByID(Record[OpNum++]); 4174 } else { 4175 InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD; 4176 Ty = nullptr; 4177 } 4178 4179 Value *BasePtr; 4180 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr)) 4181 return error("Invalid record"); 4182 4183 if (!Ty) 4184 Ty = cast<SequentialType>(BasePtr->getType()->getScalarType()) 4185 ->getElementType(); 4186 else if (Ty != 4187 cast<SequentialType>(BasePtr->getType()->getScalarType()) 4188 ->getElementType()) 4189 return error( 4190 "Explicit gep type does not match pointee type of pointer operand"); 4191 4192 SmallVector<Value*, 16> GEPIdx; 4193 while (OpNum != Record.size()) { 4194 Value *Op; 4195 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4196 return error("Invalid record"); 4197 GEPIdx.push_back(Op); 4198 } 4199 4200 I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx); 4201 4202 InstructionList.push_back(I); 4203 if (InBounds) 4204 cast<GetElementPtrInst>(I)->setIsInBounds(true); 4205 break; 4206 } 4207 4208 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 4209 // EXTRACTVAL: [opty, opval, n x indices] 4210 unsigned OpNum = 0; 4211 Value *Agg; 4212 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 4213 return error("Invalid record"); 4214 4215 unsigned RecSize = Record.size(); 4216 if (OpNum == RecSize) 4217 return error("EXTRACTVAL: Invalid instruction with 0 indices"); 4218 4219 SmallVector<unsigned, 4> EXTRACTVALIdx; 4220 Type *CurTy = Agg->getType(); 4221 for (; OpNum != RecSize; ++OpNum) { 4222 bool IsArray = CurTy->isArrayTy(); 4223 bool IsStruct = CurTy->isStructTy(); 4224 uint64_t Index = Record[OpNum]; 4225 4226 if (!IsStruct && !IsArray) 4227 return error("EXTRACTVAL: Invalid type"); 4228 if ((unsigned)Index != Index) 4229 return error("Invalid value"); 4230 if (IsStruct && Index >= CurTy->subtypes().size()) 4231 return error("EXTRACTVAL: Invalid struct index"); 4232 if (IsArray && Index >= CurTy->getArrayNumElements()) 4233 return error("EXTRACTVAL: Invalid array index"); 4234 EXTRACTVALIdx.push_back((unsigned)Index); 4235 4236 if (IsStruct) 4237 CurTy = CurTy->subtypes()[Index]; 4238 else 4239 CurTy = CurTy->subtypes()[0]; 4240 } 4241 4242 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 4243 InstructionList.push_back(I); 4244 break; 4245 } 4246 4247 case bitc::FUNC_CODE_INST_INSERTVAL: { 4248 // INSERTVAL: [opty, opval, opty, opval, n x indices] 4249 unsigned OpNum = 0; 4250 Value *Agg; 4251 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 4252 return error("Invalid record"); 4253 Value *Val; 4254 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 4255 return error("Invalid record"); 4256 4257 unsigned RecSize = Record.size(); 4258 if (OpNum == RecSize) 4259 return error("INSERTVAL: Invalid instruction with 0 indices"); 4260 4261 SmallVector<unsigned, 4> INSERTVALIdx; 4262 Type *CurTy = Agg->getType(); 4263 for (; OpNum != RecSize; ++OpNum) { 4264 bool IsArray = CurTy->isArrayTy(); 4265 bool IsStruct = CurTy->isStructTy(); 4266 uint64_t Index = Record[OpNum]; 4267 4268 if (!IsStruct && !IsArray) 4269 return error("INSERTVAL: Invalid type"); 4270 if ((unsigned)Index != Index) 4271 return error("Invalid value"); 4272 if (IsStruct && Index >= CurTy->subtypes().size()) 4273 return error("INSERTVAL: Invalid struct index"); 4274 if (IsArray && Index >= CurTy->getArrayNumElements()) 4275 return error("INSERTVAL: Invalid array index"); 4276 4277 INSERTVALIdx.push_back((unsigned)Index); 4278 if (IsStruct) 4279 CurTy = CurTy->subtypes()[Index]; 4280 else 4281 CurTy = CurTy->subtypes()[0]; 4282 } 4283 4284 if (CurTy != Val->getType()) 4285 return error("Inserted value type doesn't match aggregate type"); 4286 4287 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 4288 InstructionList.push_back(I); 4289 break; 4290 } 4291 4292 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 4293 // obsolete form of select 4294 // handles select i1 ... in old bitcode 4295 unsigned OpNum = 0; 4296 Value *TrueVal, *FalseVal, *Cond; 4297 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 4298 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 4299 popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond)) 4300 return error("Invalid record"); 4301 4302 I = SelectInst::Create(Cond, TrueVal, FalseVal); 4303 InstructionList.push_back(I); 4304 break; 4305 } 4306 4307 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 4308 // new form of select 4309 // handles select i1 or select [N x i1] 4310 unsigned OpNum = 0; 4311 Value *TrueVal, *FalseVal, *Cond; 4312 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 4313 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 4314 getValueTypePair(Record, OpNum, NextValueNo, Cond)) 4315 return error("Invalid record"); 4316 4317 // select condition can be either i1 or [N x i1] 4318 if (VectorType* vector_type = 4319 dyn_cast<VectorType>(Cond->getType())) { 4320 // expect <n x i1> 4321 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 4322 return error("Invalid type for value"); 4323 } else { 4324 // expect i1 4325 if (Cond->getType() != Type::getInt1Ty(Context)) 4326 return error("Invalid type for value"); 4327 } 4328 4329 I = SelectInst::Create(Cond, TrueVal, FalseVal); 4330 InstructionList.push_back(I); 4331 break; 4332 } 4333 4334 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 4335 unsigned OpNum = 0; 4336 Value *Vec, *Idx; 4337 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 4338 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 4339 return error("Invalid record"); 4340 if (!Vec->getType()->isVectorTy()) 4341 return error("Invalid type for value"); 4342 I = ExtractElementInst::Create(Vec, Idx); 4343 InstructionList.push_back(I); 4344 break; 4345 } 4346 4347 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 4348 unsigned OpNum = 0; 4349 Value *Vec, *Elt, *Idx; 4350 if (getValueTypePair(Record, OpNum, NextValueNo, Vec)) 4351 return error("Invalid record"); 4352 if (!Vec->getType()->isVectorTy()) 4353 return error("Invalid type for value"); 4354 if (popValue(Record, OpNum, NextValueNo, 4355 cast<VectorType>(Vec->getType())->getElementType(), Elt) || 4356 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 4357 return error("Invalid record"); 4358 I = InsertElementInst::Create(Vec, Elt, Idx); 4359 InstructionList.push_back(I); 4360 break; 4361 } 4362 4363 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 4364 unsigned OpNum = 0; 4365 Value *Vec1, *Vec2, *Mask; 4366 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) || 4367 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2)) 4368 return error("Invalid record"); 4369 4370 if (getValueTypePair(Record, OpNum, NextValueNo, Mask)) 4371 return error("Invalid record"); 4372 if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy()) 4373 return error("Invalid type for value"); 4374 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 4375 InstructionList.push_back(I); 4376 break; 4377 } 4378 4379 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 4380 // Old form of ICmp/FCmp returning bool 4381 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 4382 // both legal on vectors but had different behaviour. 4383 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 4384 // FCmp/ICmp returning bool or vector of bool 4385 4386 unsigned OpNum = 0; 4387 Value *LHS, *RHS; 4388 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 4389 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS)) 4390 return error("Invalid record"); 4391 4392 unsigned PredVal = Record[OpNum]; 4393 bool IsFP = LHS->getType()->isFPOrFPVectorTy(); 4394 FastMathFlags FMF; 4395 if (IsFP && Record.size() > OpNum+1) 4396 FMF = getDecodedFastMathFlags(Record[++OpNum]); 4397 4398 if (OpNum+1 != Record.size()) 4399 return error("Invalid record"); 4400 4401 if (LHS->getType()->isFPOrFPVectorTy()) 4402 I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS); 4403 else 4404 I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS); 4405 4406 if (FMF.any()) 4407 I->setFastMathFlags(FMF); 4408 InstructionList.push_back(I); 4409 break; 4410 } 4411 4412 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 4413 { 4414 unsigned Size = Record.size(); 4415 if (Size == 0) { 4416 I = ReturnInst::Create(Context); 4417 InstructionList.push_back(I); 4418 break; 4419 } 4420 4421 unsigned OpNum = 0; 4422 Value *Op = nullptr; 4423 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4424 return error("Invalid record"); 4425 if (OpNum != Record.size()) 4426 return error("Invalid record"); 4427 4428 I = ReturnInst::Create(Context, Op); 4429 InstructionList.push_back(I); 4430 break; 4431 } 4432 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 4433 if (Record.size() != 1 && Record.size() != 3) 4434 return error("Invalid record"); 4435 BasicBlock *TrueDest = getBasicBlock(Record[0]); 4436 if (!TrueDest) 4437 return error("Invalid record"); 4438 4439 if (Record.size() == 1) { 4440 I = BranchInst::Create(TrueDest); 4441 InstructionList.push_back(I); 4442 } 4443 else { 4444 BasicBlock *FalseDest = getBasicBlock(Record[1]); 4445 Value *Cond = getValue(Record, 2, NextValueNo, 4446 Type::getInt1Ty(Context)); 4447 if (!FalseDest || !Cond) 4448 return error("Invalid record"); 4449 I = BranchInst::Create(TrueDest, FalseDest, Cond); 4450 InstructionList.push_back(I); 4451 } 4452 break; 4453 } 4454 case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#] 4455 if (Record.size() != 1 && Record.size() != 2) 4456 return error("Invalid record"); 4457 unsigned Idx = 0; 4458 Value *CleanupPad = 4459 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4460 if (!CleanupPad) 4461 return error("Invalid record"); 4462 BasicBlock *UnwindDest = nullptr; 4463 if (Record.size() == 2) { 4464 UnwindDest = getBasicBlock(Record[Idx++]); 4465 if (!UnwindDest) 4466 return error("Invalid record"); 4467 } 4468 4469 I = CleanupReturnInst::Create(CleanupPad, UnwindDest); 4470 InstructionList.push_back(I); 4471 break; 4472 } 4473 case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#] 4474 if (Record.size() != 2) 4475 return error("Invalid record"); 4476 unsigned Idx = 0; 4477 Value *CatchPad = 4478 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4479 if (!CatchPad) 4480 return error("Invalid record"); 4481 BasicBlock *BB = getBasicBlock(Record[Idx++]); 4482 if (!BB) 4483 return error("Invalid record"); 4484 4485 I = CatchReturnInst::Create(CatchPad, BB); 4486 InstructionList.push_back(I); 4487 break; 4488 } 4489 case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?] 4490 // We must have, at minimum, the outer scope and the number of arguments. 4491 if (Record.size() < 2) 4492 return error("Invalid record"); 4493 4494 unsigned Idx = 0; 4495 4496 Value *ParentPad = 4497 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4498 4499 unsigned NumHandlers = Record[Idx++]; 4500 4501 SmallVector<BasicBlock *, 2> Handlers; 4502 for (unsigned Op = 0; Op != NumHandlers; ++Op) { 4503 BasicBlock *BB = getBasicBlock(Record[Idx++]); 4504 if (!BB) 4505 return error("Invalid record"); 4506 Handlers.push_back(BB); 4507 } 4508 4509 BasicBlock *UnwindDest = nullptr; 4510 if (Idx + 1 == Record.size()) { 4511 UnwindDest = getBasicBlock(Record[Idx++]); 4512 if (!UnwindDest) 4513 return error("Invalid record"); 4514 } 4515 4516 if (Record.size() != Idx) 4517 return error("Invalid record"); 4518 4519 auto *CatchSwitch = 4520 CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers); 4521 for (BasicBlock *Handler : Handlers) 4522 CatchSwitch->addHandler(Handler); 4523 I = CatchSwitch; 4524 InstructionList.push_back(I); 4525 break; 4526 } 4527 case bitc::FUNC_CODE_INST_CATCHPAD: 4528 case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*] 4529 // We must have, at minimum, the outer scope and the number of arguments. 4530 if (Record.size() < 2) 4531 return error("Invalid record"); 4532 4533 unsigned Idx = 0; 4534 4535 Value *ParentPad = 4536 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4537 4538 unsigned NumArgOperands = Record[Idx++]; 4539 4540 SmallVector<Value *, 2> Args; 4541 for (unsigned Op = 0; Op != NumArgOperands; ++Op) { 4542 Value *Val; 4543 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 4544 return error("Invalid record"); 4545 Args.push_back(Val); 4546 } 4547 4548 if (Record.size() != Idx) 4549 return error("Invalid record"); 4550 4551 if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD) 4552 I = CleanupPadInst::Create(ParentPad, Args); 4553 else 4554 I = CatchPadInst::Create(ParentPad, Args); 4555 InstructionList.push_back(I); 4556 break; 4557 } 4558 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 4559 // Check magic 4560 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { 4561 // "New" SwitchInst format with case ranges. The changes to write this 4562 // format were reverted but we still recognize bitcode that uses it. 4563 // Hopefully someday we will have support for case ranges and can use 4564 // this format again. 4565 4566 Type *OpTy = getTypeByID(Record[1]); 4567 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); 4568 4569 Value *Cond = getValue(Record, 2, NextValueNo, OpTy); 4570 BasicBlock *Default = getBasicBlock(Record[3]); 4571 if (!OpTy || !Cond || !Default) 4572 return error("Invalid record"); 4573 4574 unsigned NumCases = Record[4]; 4575 4576 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 4577 InstructionList.push_back(SI); 4578 4579 unsigned CurIdx = 5; 4580 for (unsigned i = 0; i != NumCases; ++i) { 4581 SmallVector<ConstantInt*, 1> CaseVals; 4582 unsigned NumItems = Record[CurIdx++]; 4583 for (unsigned ci = 0; ci != NumItems; ++ci) { 4584 bool isSingleNumber = Record[CurIdx++]; 4585 4586 APInt Low; 4587 unsigned ActiveWords = 1; 4588 if (ValueBitWidth > 64) 4589 ActiveWords = Record[CurIdx++]; 4590 Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 4591 ValueBitWidth); 4592 CurIdx += ActiveWords; 4593 4594 if (!isSingleNumber) { 4595 ActiveWords = 1; 4596 if (ValueBitWidth > 64) 4597 ActiveWords = Record[CurIdx++]; 4598 APInt High = readWideAPInt( 4599 makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth); 4600 CurIdx += ActiveWords; 4601 4602 // FIXME: It is not clear whether values in the range should be 4603 // compared as signed or unsigned values. The partially 4604 // implemented changes that used this format in the past used 4605 // unsigned comparisons. 4606 for ( ; Low.ule(High); ++Low) 4607 CaseVals.push_back(ConstantInt::get(Context, Low)); 4608 } else 4609 CaseVals.push_back(ConstantInt::get(Context, Low)); 4610 } 4611 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); 4612 for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(), 4613 cve = CaseVals.end(); cvi != cve; ++cvi) 4614 SI->addCase(*cvi, DestBB); 4615 } 4616 I = SI; 4617 break; 4618 } 4619 4620 // Old SwitchInst format without case ranges. 4621 4622 if (Record.size() < 3 || (Record.size() & 1) == 0) 4623 return error("Invalid record"); 4624 Type *OpTy = getTypeByID(Record[0]); 4625 Value *Cond = getValue(Record, 1, NextValueNo, OpTy); 4626 BasicBlock *Default = getBasicBlock(Record[2]); 4627 if (!OpTy || !Cond || !Default) 4628 return error("Invalid record"); 4629 unsigned NumCases = (Record.size()-3)/2; 4630 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 4631 InstructionList.push_back(SI); 4632 for (unsigned i = 0, e = NumCases; i != e; ++i) { 4633 ConstantInt *CaseVal = 4634 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy)); 4635 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 4636 if (!CaseVal || !DestBB) { 4637 delete SI; 4638 return error("Invalid record"); 4639 } 4640 SI->addCase(CaseVal, DestBB); 4641 } 4642 I = SI; 4643 break; 4644 } 4645 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 4646 if (Record.size() < 2) 4647 return error("Invalid record"); 4648 Type *OpTy = getTypeByID(Record[0]); 4649 Value *Address = getValue(Record, 1, NextValueNo, OpTy); 4650 if (!OpTy || !Address) 4651 return error("Invalid record"); 4652 unsigned NumDests = Record.size()-2; 4653 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 4654 InstructionList.push_back(IBI); 4655 for (unsigned i = 0, e = NumDests; i != e; ++i) { 4656 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 4657 IBI->addDestination(DestBB); 4658 } else { 4659 delete IBI; 4660 return error("Invalid record"); 4661 } 4662 } 4663 I = IBI; 4664 break; 4665 } 4666 4667 case bitc::FUNC_CODE_INST_INVOKE: { 4668 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 4669 if (Record.size() < 4) 4670 return error("Invalid record"); 4671 unsigned OpNum = 0; 4672 AttributeSet PAL = getAttributes(Record[OpNum++]); 4673 unsigned CCInfo = Record[OpNum++]; 4674 BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]); 4675 BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]); 4676 4677 FunctionType *FTy = nullptr; 4678 if (CCInfo >> 13 & 1 && 4679 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])))) 4680 return error("Explicit invoke type is not a function type"); 4681 4682 Value *Callee; 4683 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 4684 return error("Invalid record"); 4685 4686 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 4687 if (!CalleeTy) 4688 return error("Callee is not a pointer"); 4689 if (!FTy) { 4690 FTy = dyn_cast<FunctionType>(CalleeTy->getElementType()); 4691 if (!FTy) 4692 return error("Callee is not of pointer to function type"); 4693 } else if (CalleeTy->getElementType() != FTy) 4694 return error("Explicit invoke type does not match pointee type of " 4695 "callee operand"); 4696 if (Record.size() < FTy->getNumParams() + OpNum) 4697 return error("Insufficient operands to call"); 4698 4699 SmallVector<Value*, 16> Ops; 4700 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 4701 Ops.push_back(getValue(Record, OpNum, NextValueNo, 4702 FTy->getParamType(i))); 4703 if (!Ops.back()) 4704 return error("Invalid record"); 4705 } 4706 4707 if (!FTy->isVarArg()) { 4708 if (Record.size() != OpNum) 4709 return error("Invalid record"); 4710 } else { 4711 // Read type/value pairs for varargs params. 4712 while (OpNum != Record.size()) { 4713 Value *Op; 4714 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4715 return error("Invalid record"); 4716 Ops.push_back(Op); 4717 } 4718 } 4719 4720 I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops, OperandBundles); 4721 OperandBundles.clear(); 4722 InstructionList.push_back(I); 4723 cast<InvokeInst>(I)->setCallingConv( 4724 static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo)); 4725 cast<InvokeInst>(I)->setAttributes(PAL); 4726 break; 4727 } 4728 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 4729 unsigned Idx = 0; 4730 Value *Val = nullptr; 4731 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 4732 return error("Invalid record"); 4733 I = ResumeInst::Create(Val); 4734 InstructionList.push_back(I); 4735 break; 4736 } 4737 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 4738 I = new UnreachableInst(Context); 4739 InstructionList.push_back(I); 4740 break; 4741 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 4742 if (Record.size() < 1 || ((Record.size()-1)&1)) 4743 return error("Invalid record"); 4744 Type *Ty = getTypeByID(Record[0]); 4745 if (!Ty) 4746 return error("Invalid record"); 4747 4748 PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2); 4749 InstructionList.push_back(PN); 4750 4751 for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) { 4752 Value *V; 4753 // With the new function encoding, it is possible that operands have 4754 // negative IDs (for forward references). Use a signed VBR 4755 // representation to keep the encoding small. 4756 if (UseRelativeIDs) 4757 V = getValueSigned(Record, 1+i, NextValueNo, Ty); 4758 else 4759 V = getValue(Record, 1+i, NextValueNo, Ty); 4760 BasicBlock *BB = getBasicBlock(Record[2+i]); 4761 if (!V || !BB) 4762 return error("Invalid record"); 4763 PN->addIncoming(V, BB); 4764 } 4765 I = PN; 4766 break; 4767 } 4768 4769 case bitc::FUNC_CODE_INST_LANDINGPAD: 4770 case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: { 4771 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 4772 unsigned Idx = 0; 4773 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) { 4774 if (Record.size() < 3) 4775 return error("Invalid record"); 4776 } else { 4777 assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD); 4778 if (Record.size() < 4) 4779 return error("Invalid record"); 4780 } 4781 Type *Ty = getTypeByID(Record[Idx++]); 4782 if (!Ty) 4783 return error("Invalid record"); 4784 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) { 4785 Value *PersFn = nullptr; 4786 if (getValueTypePair(Record, Idx, NextValueNo, PersFn)) 4787 return error("Invalid record"); 4788 4789 if (!F->hasPersonalityFn()) 4790 F->setPersonalityFn(cast<Constant>(PersFn)); 4791 else if (F->getPersonalityFn() != cast<Constant>(PersFn)) 4792 return error("Personality function mismatch"); 4793 } 4794 4795 bool IsCleanup = !!Record[Idx++]; 4796 unsigned NumClauses = Record[Idx++]; 4797 LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses); 4798 LP->setCleanup(IsCleanup); 4799 for (unsigned J = 0; J != NumClauses; ++J) { 4800 LandingPadInst::ClauseType CT = 4801 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 4802 Value *Val; 4803 4804 if (getValueTypePair(Record, Idx, NextValueNo, Val)) { 4805 delete LP; 4806 return error("Invalid record"); 4807 } 4808 4809 assert((CT != LandingPadInst::Catch || 4810 !isa<ArrayType>(Val->getType())) && 4811 "Catch clause has a invalid type!"); 4812 assert((CT != LandingPadInst::Filter || 4813 isa<ArrayType>(Val->getType())) && 4814 "Filter clause has invalid type!"); 4815 LP->addClause(cast<Constant>(Val)); 4816 } 4817 4818 I = LP; 4819 InstructionList.push_back(I); 4820 break; 4821 } 4822 4823 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 4824 if (Record.size() != 4) 4825 return error("Invalid record"); 4826 uint64_t AlignRecord = Record[3]; 4827 const uint64_t InAllocaMask = uint64_t(1) << 5; 4828 const uint64_t ExplicitTypeMask = uint64_t(1) << 6; 4829 // Reserve bit 7 for SwiftError flag. 4830 // const uint64_t SwiftErrorMask = uint64_t(1) << 7; 4831 const uint64_t FlagMask = InAllocaMask | ExplicitTypeMask; 4832 bool InAlloca = AlignRecord & InAllocaMask; 4833 Type *Ty = getTypeByID(Record[0]); 4834 if ((AlignRecord & ExplicitTypeMask) == 0) { 4835 auto *PTy = dyn_cast_or_null<PointerType>(Ty); 4836 if (!PTy) 4837 return error("Old-style alloca with a non-pointer type"); 4838 Ty = PTy->getElementType(); 4839 } 4840 Type *OpTy = getTypeByID(Record[1]); 4841 Value *Size = getFnValueByID(Record[2], OpTy); 4842 unsigned Align; 4843 if (std::error_code EC = 4844 parseAlignmentValue(AlignRecord & ~FlagMask, Align)) { 4845 return EC; 4846 } 4847 if (!Ty || !Size) 4848 return error("Invalid record"); 4849 AllocaInst *AI = new AllocaInst(Ty, Size, Align); 4850 AI->setUsedWithInAlloca(InAlloca); 4851 I = AI; 4852 InstructionList.push_back(I); 4853 break; 4854 } 4855 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 4856 unsigned OpNum = 0; 4857 Value *Op; 4858 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4859 (OpNum + 2 != Record.size() && OpNum + 3 != Record.size())) 4860 return error("Invalid record"); 4861 4862 Type *Ty = nullptr; 4863 if (OpNum + 3 == Record.size()) 4864 Ty = getTypeByID(Record[OpNum++]); 4865 if (std::error_code EC = typeCheckLoadStoreInst(Ty, Op->getType())) 4866 return EC; 4867 if (!Ty) 4868 Ty = cast<PointerType>(Op->getType())->getElementType(); 4869 4870 unsigned Align; 4871 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 4872 return EC; 4873 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], Align); 4874 4875 InstructionList.push_back(I); 4876 break; 4877 } 4878 case bitc::FUNC_CODE_INST_LOADATOMIC: { 4879 // LOADATOMIC: [opty, op, align, vol, ordering, synchscope] 4880 unsigned OpNum = 0; 4881 Value *Op; 4882 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4883 (OpNum + 4 != Record.size() && OpNum + 5 != Record.size())) 4884 return error("Invalid record"); 4885 4886 Type *Ty = nullptr; 4887 if (OpNum + 5 == Record.size()) 4888 Ty = getTypeByID(Record[OpNum++]); 4889 if (std::error_code EC = typeCheckLoadStoreInst(Ty, Op->getType())) 4890 return EC; 4891 if (!Ty) 4892 Ty = cast<PointerType>(Op->getType())->getElementType(); 4893 4894 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4895 if (Ordering == NotAtomic || Ordering == Release || 4896 Ordering == AcquireRelease) 4897 return error("Invalid record"); 4898 if (Ordering != NotAtomic && Record[OpNum] == 0) 4899 return error("Invalid record"); 4900 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]); 4901 4902 unsigned Align; 4903 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 4904 return EC; 4905 I = new LoadInst(Op, "", Record[OpNum+1], Align, Ordering, SynchScope); 4906 4907 InstructionList.push_back(I); 4908 break; 4909 } 4910 case bitc::FUNC_CODE_INST_STORE: 4911 case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol] 4912 unsigned OpNum = 0; 4913 Value *Val, *Ptr; 4914 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4915 (BitCode == bitc::FUNC_CODE_INST_STORE 4916 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 4917 : popValue(Record, OpNum, NextValueNo, 4918 cast<PointerType>(Ptr->getType())->getElementType(), 4919 Val)) || 4920 OpNum + 2 != Record.size()) 4921 return error("Invalid record"); 4922 4923 if (std::error_code EC = 4924 typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 4925 return EC; 4926 unsigned Align; 4927 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 4928 return EC; 4929 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align); 4930 InstructionList.push_back(I); 4931 break; 4932 } 4933 case bitc::FUNC_CODE_INST_STOREATOMIC: 4934 case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: { 4935 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, synchscope] 4936 unsigned OpNum = 0; 4937 Value *Val, *Ptr; 4938 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4939 (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC 4940 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 4941 : popValue(Record, OpNum, NextValueNo, 4942 cast<PointerType>(Ptr->getType())->getElementType(), 4943 Val)) || 4944 OpNum + 4 != Record.size()) 4945 return error("Invalid record"); 4946 4947 if (std::error_code EC = 4948 typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 4949 return EC; 4950 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4951 if (Ordering == NotAtomic || Ordering == Acquire || 4952 Ordering == AcquireRelease) 4953 return error("Invalid record"); 4954 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]); 4955 if (Ordering != NotAtomic && Record[OpNum] == 0) 4956 return error("Invalid record"); 4957 4958 unsigned Align; 4959 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 4960 return EC; 4961 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align, Ordering, SynchScope); 4962 InstructionList.push_back(I); 4963 break; 4964 } 4965 case bitc::FUNC_CODE_INST_CMPXCHG_OLD: 4966 case bitc::FUNC_CODE_INST_CMPXCHG: { 4967 // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, synchscope, 4968 // failureordering?, isweak?] 4969 unsigned OpNum = 0; 4970 Value *Ptr, *Cmp, *New; 4971 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4972 (BitCode == bitc::FUNC_CODE_INST_CMPXCHG 4973 ? getValueTypePair(Record, OpNum, NextValueNo, Cmp) 4974 : popValue(Record, OpNum, NextValueNo, 4975 cast<PointerType>(Ptr->getType())->getElementType(), 4976 Cmp)) || 4977 popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) || 4978 Record.size() < OpNum + 3 || Record.size() > OpNum + 5) 4979 return error("Invalid record"); 4980 AtomicOrdering SuccessOrdering = getDecodedOrdering(Record[OpNum + 1]); 4981 if (SuccessOrdering == NotAtomic || SuccessOrdering == Unordered) 4982 return error("Invalid record"); 4983 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 2]); 4984 4985 if (std::error_code EC = 4986 typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType())) 4987 return EC; 4988 AtomicOrdering FailureOrdering; 4989 if (Record.size() < 7) 4990 FailureOrdering = 4991 AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering); 4992 else 4993 FailureOrdering = getDecodedOrdering(Record[OpNum + 3]); 4994 4995 I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering, 4996 SynchScope); 4997 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 4998 4999 if (Record.size() < 8) { 5000 // Before weak cmpxchgs existed, the instruction simply returned the 5001 // value loaded from memory, so bitcode files from that era will be 5002 // expecting the first component of a modern cmpxchg. 5003 CurBB->getInstList().push_back(I); 5004 I = ExtractValueInst::Create(I, 0); 5005 } else { 5006 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]); 5007 } 5008 5009 InstructionList.push_back(I); 5010 break; 5011 } 5012 case bitc::FUNC_CODE_INST_ATOMICRMW: { 5013 // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, synchscope] 5014 unsigned OpNum = 0; 5015 Value *Ptr, *Val; 5016 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 5017 popValue(Record, OpNum, NextValueNo, 5018 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 5019 OpNum+4 != Record.size()) 5020 return error("Invalid record"); 5021 AtomicRMWInst::BinOp Operation = getDecodedRMWOperation(Record[OpNum]); 5022 if (Operation < AtomicRMWInst::FIRST_BINOP || 5023 Operation > AtomicRMWInst::LAST_BINOP) 5024 return error("Invalid record"); 5025 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 5026 if (Ordering == NotAtomic || Ordering == Unordered) 5027 return error("Invalid record"); 5028 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]); 5029 I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SynchScope); 5030 cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]); 5031 InstructionList.push_back(I); 5032 break; 5033 } 5034 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, synchscope] 5035 if (2 != Record.size()) 5036 return error("Invalid record"); 5037 AtomicOrdering Ordering = getDecodedOrdering(Record[0]); 5038 if (Ordering == NotAtomic || Ordering == Unordered || 5039 Ordering == Monotonic) 5040 return error("Invalid record"); 5041 SynchronizationScope SynchScope = getDecodedSynchScope(Record[1]); 5042 I = new FenceInst(Context, Ordering, SynchScope); 5043 InstructionList.push_back(I); 5044 break; 5045 } 5046 case bitc::FUNC_CODE_INST_CALL: { 5047 // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...] 5048 if (Record.size() < 3) 5049 return error("Invalid record"); 5050 5051 unsigned OpNum = 0; 5052 AttributeSet PAL = getAttributes(Record[OpNum++]); 5053 unsigned CCInfo = Record[OpNum++]; 5054 5055 FastMathFlags FMF; 5056 if ((CCInfo >> bitc::CALL_FMF) & 1) { 5057 FMF = getDecodedFastMathFlags(Record[OpNum++]); 5058 if (!FMF.any()) 5059 return error("Fast math flags indicator set for call with no FMF"); 5060 } 5061 5062 FunctionType *FTy = nullptr; 5063 if (CCInfo >> bitc::CALL_EXPLICIT_TYPE & 1 && 5064 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])))) 5065 return error("Explicit call type is not a function type"); 5066 5067 Value *Callee; 5068 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 5069 return error("Invalid record"); 5070 5071 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 5072 if (!OpTy) 5073 return error("Callee is not a pointer type"); 5074 if (!FTy) { 5075 FTy = dyn_cast<FunctionType>(OpTy->getElementType()); 5076 if (!FTy) 5077 return error("Callee is not of pointer to function type"); 5078 } else if (OpTy->getElementType() != FTy) 5079 return error("Explicit call type does not match pointee type of " 5080 "callee operand"); 5081 if (Record.size() < FTy->getNumParams() + OpNum) 5082 return error("Insufficient operands to call"); 5083 5084 SmallVector<Value*, 16> Args; 5085 // Read the fixed params. 5086 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 5087 if (FTy->getParamType(i)->isLabelTy()) 5088 Args.push_back(getBasicBlock(Record[OpNum])); 5089 else 5090 Args.push_back(getValue(Record, OpNum, NextValueNo, 5091 FTy->getParamType(i))); 5092 if (!Args.back()) 5093 return error("Invalid record"); 5094 } 5095 5096 // Read type/value pairs for varargs params. 5097 if (!FTy->isVarArg()) { 5098 if (OpNum != Record.size()) 5099 return error("Invalid record"); 5100 } else { 5101 while (OpNum != Record.size()) { 5102 Value *Op; 5103 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 5104 return error("Invalid record"); 5105 Args.push_back(Op); 5106 } 5107 } 5108 5109 I = CallInst::Create(FTy, Callee, Args, OperandBundles); 5110 OperandBundles.clear(); 5111 InstructionList.push_back(I); 5112 cast<CallInst>(I)->setCallingConv( 5113 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 5114 CallInst::TailCallKind TCK = CallInst::TCK_None; 5115 if (CCInfo & 1 << bitc::CALL_TAIL) 5116 TCK = CallInst::TCK_Tail; 5117 if (CCInfo & (1 << bitc::CALL_MUSTTAIL)) 5118 TCK = CallInst::TCK_MustTail; 5119 if (CCInfo & (1 << bitc::CALL_NOTAIL)) 5120 TCK = CallInst::TCK_NoTail; 5121 cast<CallInst>(I)->setTailCallKind(TCK); 5122 cast<CallInst>(I)->setAttributes(PAL); 5123 if (FMF.any()) { 5124 if (!isa<FPMathOperator>(I)) 5125 return error("Fast-math-flags specified for call without " 5126 "floating-point scalar or vector return type"); 5127 I->setFastMathFlags(FMF); 5128 } 5129 break; 5130 } 5131 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 5132 if (Record.size() < 3) 5133 return error("Invalid record"); 5134 Type *OpTy = getTypeByID(Record[0]); 5135 Value *Op = getValue(Record, 1, NextValueNo, OpTy); 5136 Type *ResTy = getTypeByID(Record[2]); 5137 if (!OpTy || !Op || !ResTy) 5138 return error("Invalid record"); 5139 I = new VAArgInst(Op, ResTy); 5140 InstructionList.push_back(I); 5141 break; 5142 } 5143 5144 case bitc::FUNC_CODE_OPERAND_BUNDLE: { 5145 // A call or an invoke can be optionally prefixed with some variable 5146 // number of operand bundle blocks. These blocks are read into 5147 // OperandBundles and consumed at the next call or invoke instruction. 5148 5149 if (Record.size() < 1 || Record[0] >= BundleTags.size()) 5150 return error("Invalid record"); 5151 5152 std::vector<Value *> Inputs; 5153 5154 unsigned OpNum = 1; 5155 while (OpNum != Record.size()) { 5156 Value *Op; 5157 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 5158 return error("Invalid record"); 5159 Inputs.push_back(Op); 5160 } 5161 5162 OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs)); 5163 continue; 5164 } 5165 } 5166 5167 // Add instruction to end of current BB. If there is no current BB, reject 5168 // this file. 5169 if (!CurBB) { 5170 delete I; 5171 return error("Invalid instruction with no BB"); 5172 } 5173 if (!OperandBundles.empty()) { 5174 delete I; 5175 return error("Operand bundles found with no consumer"); 5176 } 5177 CurBB->getInstList().push_back(I); 5178 5179 // If this was a terminator instruction, move to the next block. 5180 if (isa<TerminatorInst>(I)) { 5181 ++CurBBNo; 5182 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr; 5183 } 5184 5185 // Non-void values get registered in the value table for future use. 5186 if (I && !I->getType()->isVoidTy()) 5187 ValueList.assignValue(I, NextValueNo++); 5188 } 5189 5190 OutOfRecordLoop: 5191 5192 if (!OperandBundles.empty()) 5193 return error("Operand bundles found with no consumer"); 5194 5195 // Check the function list for unresolved values. 5196 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 5197 if (!A->getParent()) { 5198 // We found at least one unresolved value. Nuke them all to avoid leaks. 5199 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 5200 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) { 5201 A->replaceAllUsesWith(UndefValue::get(A->getType())); 5202 delete A; 5203 } 5204 } 5205 return error("Never resolved value found in function"); 5206 } 5207 } 5208 5209 // FIXME: Check for unresolved forward-declared metadata references 5210 // and clean up leaks. 5211 5212 // Trim the value list down to the size it was before we parsed this function. 5213 ValueList.shrinkTo(ModuleValueListSize); 5214 MetadataList.shrinkTo(ModuleMetadataListSize); 5215 std::vector<BasicBlock*>().swap(FunctionBBs); 5216 return std::error_code(); 5217 } 5218 5219 /// Find the function body in the bitcode stream 5220 std::error_code BitcodeReader::findFunctionInStream( 5221 Function *F, 5222 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) { 5223 while (DeferredFunctionInfoIterator->second == 0) { 5224 // This is the fallback handling for the old format bitcode that 5225 // didn't contain the function index in the VST, or when we have 5226 // an anonymous function which would not have a VST entry. 5227 // Assert that we have one of those two cases. 5228 assert(VSTOffset == 0 || !F->hasName()); 5229 // Parse the next body in the stream and set its position in the 5230 // DeferredFunctionInfo map. 5231 if (std::error_code EC = rememberAndSkipFunctionBodies()) 5232 return EC; 5233 } 5234 return std::error_code(); 5235 } 5236 5237 //===----------------------------------------------------------------------===// 5238 // GVMaterializer implementation 5239 //===----------------------------------------------------------------------===// 5240 5241 void BitcodeReader::releaseBuffer() { Buffer.release(); } 5242 5243 std::error_code BitcodeReader::materialize(GlobalValue *GV) { 5244 // In older bitcode we must materialize the metadata before parsing 5245 // any functions, in order to set up the MetadataList properly. 5246 if (!SeenModuleValuesRecord) { 5247 if (std::error_code EC = materializeMetadata()) 5248 return EC; 5249 } 5250 5251 Function *F = dyn_cast<Function>(GV); 5252 // If it's not a function or is already material, ignore the request. 5253 if (!F || !F->isMaterializable()) 5254 return std::error_code(); 5255 5256 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 5257 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 5258 // If its position is recorded as 0, its body is somewhere in the stream 5259 // but we haven't seen it yet. 5260 if (DFII->second == 0) 5261 if (std::error_code EC = findFunctionInStream(F, DFII)) 5262 return EC; 5263 5264 // Move the bit stream to the saved position of the deferred function body. 5265 Stream.JumpToBit(DFII->second); 5266 5267 if (std::error_code EC = parseFunctionBody(F)) 5268 return EC; 5269 F->setIsMaterializable(false); 5270 5271 if (StripDebugInfo) 5272 stripDebugInfo(*F); 5273 5274 // Upgrade any old intrinsic calls in the function. 5275 for (auto &I : UpgradedIntrinsics) { 5276 for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end(); 5277 UI != UE;) { 5278 User *U = *UI; 5279 ++UI; 5280 if (CallInst *CI = dyn_cast<CallInst>(U)) 5281 UpgradeIntrinsicCall(CI, I.second); 5282 } 5283 } 5284 5285 // Finish fn->subprogram upgrade for materialized functions. 5286 if (DISubprogram *SP = FunctionsWithSPs.lookup(F)) 5287 F->setSubprogram(SP); 5288 5289 // Bring in any functions that this function forward-referenced via 5290 // blockaddresses. 5291 return materializeForwardReferencedFunctions(); 5292 } 5293 5294 std::error_code BitcodeReader::materializeModule() { 5295 if (std::error_code EC = materializeMetadata()) 5296 return EC; 5297 5298 // Promise to materialize all forward references. 5299 WillMaterializeAllForwardRefs = true; 5300 5301 // Iterate over the module, deserializing any functions that are still on 5302 // disk. 5303 for (Function &F : *TheModule) { 5304 if (std::error_code EC = materialize(&F)) 5305 return EC; 5306 } 5307 // At this point, if there are any function bodies, parse the rest of 5308 // the bits in the module past the last function block we have recorded 5309 // through either lazy scanning or the VST. 5310 if (LastFunctionBlockBit || NextUnreadBit) 5311 parseModule(LastFunctionBlockBit > NextUnreadBit ? LastFunctionBlockBit 5312 : NextUnreadBit); 5313 5314 // Check that all block address forward references got resolved (as we 5315 // promised above). 5316 if (!BasicBlockFwdRefs.empty()) 5317 return error("Never resolved function from blockaddress"); 5318 5319 // Upgrade any intrinsic calls that slipped through (should not happen!) and 5320 // delete the old functions to clean up. We can't do this unless the entire 5321 // module is materialized because there could always be another function body 5322 // with calls to the old function. 5323 for (auto &I : UpgradedIntrinsics) { 5324 for (auto *U : I.first->users()) { 5325 if (CallInst *CI = dyn_cast<CallInst>(U)) 5326 UpgradeIntrinsicCall(CI, I.second); 5327 } 5328 if (!I.first->use_empty()) 5329 I.first->replaceAllUsesWith(I.second); 5330 I.first->eraseFromParent(); 5331 } 5332 UpgradedIntrinsics.clear(); 5333 5334 for (unsigned I = 0, E = InstsWithTBAATag.size(); I < E; I++) 5335 UpgradeInstWithTBAATag(InstsWithTBAATag[I]); 5336 5337 UpgradeDebugInfo(*TheModule); 5338 return std::error_code(); 5339 } 5340 5341 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const { 5342 return IdentifiedStructTypes; 5343 } 5344 5345 std::error_code 5346 BitcodeReader::initStream(std::unique_ptr<DataStreamer> Streamer) { 5347 if (Streamer) 5348 return initLazyStream(std::move(Streamer)); 5349 return initStreamFromBuffer(); 5350 } 5351 5352 std::error_code BitcodeReader::initStreamFromBuffer() { 5353 const unsigned char *BufPtr = (const unsigned char*)Buffer->getBufferStart(); 5354 const unsigned char *BufEnd = BufPtr+Buffer->getBufferSize(); 5355 5356 if (Buffer->getBufferSize() & 3) 5357 return error("Invalid bitcode signature"); 5358 5359 // If we have a wrapper header, parse it and ignore the non-bc file contents. 5360 // The magic number is 0x0B17C0DE stored in little endian. 5361 if (isBitcodeWrapper(BufPtr, BufEnd)) 5362 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 5363 return error("Invalid bitcode wrapper header"); 5364 5365 StreamFile.reset(new BitstreamReader(BufPtr, BufEnd)); 5366 Stream.init(&*StreamFile); 5367 5368 return std::error_code(); 5369 } 5370 5371 std::error_code 5372 BitcodeReader::initLazyStream(std::unique_ptr<DataStreamer> Streamer) { 5373 // Check and strip off the bitcode wrapper; BitstreamReader expects never to 5374 // see it. 5375 auto OwnedBytes = 5376 llvm::make_unique<StreamingMemoryObject>(std::move(Streamer)); 5377 StreamingMemoryObject &Bytes = *OwnedBytes; 5378 StreamFile = llvm::make_unique<BitstreamReader>(std::move(OwnedBytes)); 5379 Stream.init(&*StreamFile); 5380 5381 unsigned char buf[16]; 5382 if (Bytes.readBytes(buf, 16, 0) != 16) 5383 return error("Invalid bitcode signature"); 5384 5385 if (!isBitcode(buf, buf + 16)) 5386 return error("Invalid bitcode signature"); 5387 5388 if (isBitcodeWrapper(buf, buf + 4)) { 5389 const unsigned char *bitcodeStart = buf; 5390 const unsigned char *bitcodeEnd = buf + 16; 5391 SkipBitcodeWrapperHeader(bitcodeStart, bitcodeEnd, false); 5392 Bytes.dropLeadingBytes(bitcodeStart - buf); 5393 Bytes.setKnownObjectSize(bitcodeEnd - bitcodeStart); 5394 } 5395 return std::error_code(); 5396 } 5397 5398 std::error_code FunctionIndexBitcodeReader::error(BitcodeError E, 5399 const Twine &Message) { 5400 return ::error(DiagnosticHandler, make_error_code(E), Message); 5401 } 5402 5403 std::error_code FunctionIndexBitcodeReader::error(const Twine &Message) { 5404 return ::error(DiagnosticHandler, 5405 make_error_code(BitcodeError::CorruptedBitcode), Message); 5406 } 5407 5408 std::error_code FunctionIndexBitcodeReader::error(BitcodeError E) { 5409 return ::error(DiagnosticHandler, make_error_code(E)); 5410 } 5411 5412 FunctionIndexBitcodeReader::FunctionIndexBitcodeReader( 5413 MemoryBuffer *Buffer, DiagnosticHandlerFunction DiagnosticHandler, 5414 bool IsLazy, bool CheckFuncSummaryPresenceOnly) 5415 : DiagnosticHandler(DiagnosticHandler), Buffer(Buffer), IsLazy(IsLazy), 5416 CheckFuncSummaryPresenceOnly(CheckFuncSummaryPresenceOnly) {} 5417 5418 FunctionIndexBitcodeReader::FunctionIndexBitcodeReader( 5419 DiagnosticHandlerFunction DiagnosticHandler, bool IsLazy, 5420 bool CheckFuncSummaryPresenceOnly) 5421 : DiagnosticHandler(DiagnosticHandler), Buffer(nullptr), IsLazy(IsLazy), 5422 CheckFuncSummaryPresenceOnly(CheckFuncSummaryPresenceOnly) {} 5423 5424 void FunctionIndexBitcodeReader::freeState() { Buffer = nullptr; } 5425 5426 void FunctionIndexBitcodeReader::releaseBuffer() { Buffer.release(); } 5427 5428 // Specialized value symbol table parser used when reading function index 5429 // blocks where we don't actually create global values. 5430 // At the end of this routine the function index is populated with a map 5431 // from function name to FunctionInfo. The function info contains 5432 // the function block's bitcode offset as well as the offset into the 5433 // function summary section. 5434 std::error_code FunctionIndexBitcodeReader::parseValueSymbolTable() { 5435 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 5436 return error("Invalid record"); 5437 5438 SmallVector<uint64_t, 64> Record; 5439 5440 // Read all the records for this value table. 5441 SmallString<128> ValueName; 5442 while (1) { 5443 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5444 5445 switch (Entry.Kind) { 5446 case BitstreamEntry::SubBlock: // Handled for us already. 5447 case BitstreamEntry::Error: 5448 return error("Malformed block"); 5449 case BitstreamEntry::EndBlock: 5450 return std::error_code(); 5451 case BitstreamEntry::Record: 5452 // The interesting case. 5453 break; 5454 } 5455 5456 // Read a record. 5457 Record.clear(); 5458 switch (Stream.readRecord(Entry.ID, Record)) { 5459 default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records). 5460 break; 5461 case bitc::VST_CODE_FNENTRY: { 5462 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 5463 if (convertToString(Record, 2, ValueName)) 5464 return error("Invalid record"); 5465 unsigned ValueID = Record[0]; 5466 uint64_t FuncOffset = Record[1]; 5467 assert(!IsLazy && "Lazy summary read only supported for combined index"); 5468 // Gracefully handle bitcode without a function summary section, 5469 // which will simply not populate the index. 5470 if (foundFuncSummary()) { 5471 DenseMap<uint64_t, std::unique_ptr<FunctionSummary>>::iterator SMI = 5472 SummaryMap.find(ValueID); 5473 assert(SMI != SummaryMap.end() && "Summary info not found"); 5474 std::unique_ptr<FunctionInfo> FuncInfo = 5475 llvm::make_unique<FunctionInfo>(FuncOffset); 5476 FuncInfo->setFunctionSummary(std::move(SMI->second)); 5477 assert(!SourceFileName.empty()); 5478 std::string FunctionGlobalId = Function::getGlobalIdentifier( 5479 ValueName, FuncInfo->functionSummary()->getFunctionLinkage(), 5480 SourceFileName); 5481 TheIndex->addFunctionInfo(FunctionGlobalId, std::move(FuncInfo)); 5482 } 5483 5484 ValueName.clear(); 5485 break; 5486 } 5487 case bitc::VST_CODE_COMBINED_FNENTRY: { 5488 // VST_CODE_COMBINED_FNENTRY: [offset, funcguid] 5489 uint64_t FuncSummaryOffset = Record[0]; 5490 uint64_t FuncGUID = Record[1]; 5491 std::unique_ptr<FunctionInfo> FuncInfo = 5492 llvm::make_unique<FunctionInfo>(FuncSummaryOffset); 5493 if (foundFuncSummary() && !IsLazy) { 5494 DenseMap<uint64_t, std::unique_ptr<FunctionSummary>>::iterator SMI = 5495 SummaryMap.find(FuncSummaryOffset); 5496 assert(SMI != SummaryMap.end() && "Summary info not found"); 5497 FuncInfo->setFunctionSummary(std::move(SMI->second)); 5498 } 5499 TheIndex->addFunctionInfo(FuncGUID, std::move(FuncInfo)); 5500 5501 ValueName.clear(); 5502 break; 5503 } 5504 } 5505 } 5506 } 5507 5508 // Parse just the blocks needed for function index building out of the module. 5509 // At the end of this routine the function Index is populated with a map 5510 // from function name to FunctionInfo. The function info contains 5511 // either the parsed function summary information (when parsing summaries 5512 // eagerly), or just to the function summary record's offset 5513 // if parsing lazily (IsLazy). 5514 std::error_code FunctionIndexBitcodeReader::parseModule() { 5515 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 5516 return error("Invalid record"); 5517 5518 SmallVector<uint64_t, 64> Record; 5519 5520 // Read the function index for this module. 5521 while (1) { 5522 BitstreamEntry Entry = Stream.advance(); 5523 5524 switch (Entry.Kind) { 5525 case BitstreamEntry::Error: 5526 return error("Malformed block"); 5527 case BitstreamEntry::EndBlock: 5528 return std::error_code(); 5529 5530 case BitstreamEntry::SubBlock: 5531 if (CheckFuncSummaryPresenceOnly) { 5532 if (Entry.ID == bitc::FUNCTION_SUMMARY_BLOCK_ID) { 5533 SeenFuncSummary = true; 5534 // No need to parse the rest since we found the summary. 5535 return std::error_code(); 5536 } 5537 if (Stream.SkipBlock()) 5538 return error("Invalid record"); 5539 continue; 5540 } 5541 switch (Entry.ID) { 5542 default: // Skip unknown content. 5543 if (Stream.SkipBlock()) 5544 return error("Invalid record"); 5545 break; 5546 case bitc::BLOCKINFO_BLOCK_ID: 5547 // Need to parse these to get abbrev ids (e.g. for VST) 5548 if (Stream.ReadBlockInfoBlock()) 5549 return error("Malformed block"); 5550 break; 5551 case bitc::VALUE_SYMTAB_BLOCK_ID: 5552 if (std::error_code EC = parseValueSymbolTable()) 5553 return EC; 5554 break; 5555 case bitc::FUNCTION_SUMMARY_BLOCK_ID: 5556 SeenFuncSummary = true; 5557 if (IsLazy) { 5558 // Lazy parsing of summary info, skip it. 5559 if (Stream.SkipBlock()) 5560 return error("Invalid record"); 5561 } else if (std::error_code EC = parseEntireSummary()) 5562 return EC; 5563 break; 5564 case bitc::MODULE_STRTAB_BLOCK_ID: 5565 if (std::error_code EC = parseModuleStringTable()) 5566 return EC; 5567 break; 5568 } 5569 continue; 5570 5571 case BitstreamEntry::Record: 5572 // Once we find the single record of interest, skip the rest. 5573 if (!SourceFileName.empty()) 5574 Stream.skipRecord(Entry.ID); 5575 else { 5576 Record.clear(); 5577 auto BitCode = Stream.readRecord(Entry.ID, Record); 5578 switch (BitCode) { 5579 default: 5580 break; // Default behavior, ignore unknown content. 5581 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 5582 case bitc::MODULE_CODE_SOURCE_FILENAME: 5583 SmallString<128> ValueName; 5584 if (convertToString(Record, 0, ValueName)) 5585 return error("Invalid record"); 5586 SourceFileName = ValueName.c_str(); 5587 break; 5588 } 5589 } 5590 continue; 5591 } 5592 } 5593 } 5594 5595 // Eagerly parse the entire function summary block (i.e. for all functions 5596 // in the index). This populates the FunctionSummary objects in 5597 // the index. 5598 std::error_code FunctionIndexBitcodeReader::parseEntireSummary() { 5599 if (Stream.EnterSubBlock(bitc::FUNCTION_SUMMARY_BLOCK_ID)) 5600 return error("Invalid record"); 5601 5602 SmallVector<uint64_t, 64> Record; 5603 5604 while (1) { 5605 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5606 5607 switch (Entry.Kind) { 5608 case BitstreamEntry::SubBlock: // Handled for us already. 5609 case BitstreamEntry::Error: 5610 return error("Malformed block"); 5611 case BitstreamEntry::EndBlock: 5612 return std::error_code(); 5613 case BitstreamEntry::Record: 5614 // The interesting case. 5615 break; 5616 } 5617 5618 // Read a record. The record format depends on whether this 5619 // is a per-module index or a combined index file. In the per-module 5620 // case the records contain the associated value's ID for correlation 5621 // with VST entries. In the combined index the correlation is done 5622 // via the bitcode offset of the summary records (which were saved 5623 // in the combined index VST entries). The records also contain 5624 // information used for ThinLTO renaming and importing. 5625 Record.clear(); 5626 uint64_t CurRecordBit = Stream.GetCurrentBitNo(); 5627 switch (Stream.readRecord(Entry.ID, Record)) { 5628 default: // Default behavior: ignore. 5629 break; 5630 // FS_PERMODULE_ENTRY: [valueid, linkage, instcount] 5631 case bitc::FS_CODE_PERMODULE_ENTRY: { 5632 unsigned ValueID = Record[0]; 5633 uint64_t RawLinkage = Record[1]; 5634 unsigned InstCount = Record[2]; 5635 std::unique_ptr<FunctionSummary> FS = 5636 llvm::make_unique<FunctionSummary>(InstCount); 5637 FS->setFunctionLinkage(getDecodedLinkage(RawLinkage)); 5638 // The module path string ref set in the summary must be owned by the 5639 // index's module string table. Since we don't have a module path 5640 // string table section in the per-module index, we create a single 5641 // module path string table entry with an empty (0) ID to take 5642 // ownership. 5643 FS->setModulePath( 5644 TheIndex->addModulePath(Buffer->getBufferIdentifier(), 0)); 5645 SummaryMap[ValueID] = std::move(FS); 5646 break; 5647 } 5648 // FS_COMBINED_ENTRY: [modid, linkage, instcount] 5649 case bitc::FS_CODE_COMBINED_ENTRY: { 5650 uint64_t ModuleId = Record[0]; 5651 uint64_t RawLinkage = Record[1]; 5652 unsigned InstCount = Record[2]; 5653 std::unique_ptr<FunctionSummary> FS = 5654 llvm::make_unique<FunctionSummary>(InstCount); 5655 FS->setFunctionLinkage(getDecodedLinkage(RawLinkage)); 5656 FS->setModulePath(ModuleIdMap[ModuleId]); 5657 SummaryMap[CurRecordBit] = std::move(FS); 5658 break; 5659 } 5660 } 5661 } 5662 llvm_unreachable("Exit infinite loop"); 5663 } 5664 5665 // Parse the module string table block into the Index. 5666 // This populates the ModulePathStringTable map in the index. 5667 std::error_code FunctionIndexBitcodeReader::parseModuleStringTable() { 5668 if (Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID)) 5669 return error("Invalid record"); 5670 5671 SmallVector<uint64_t, 64> Record; 5672 5673 SmallString<128> ModulePath; 5674 while (1) { 5675 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5676 5677 switch (Entry.Kind) { 5678 case BitstreamEntry::SubBlock: // Handled for us already. 5679 case BitstreamEntry::Error: 5680 return error("Malformed block"); 5681 case BitstreamEntry::EndBlock: 5682 return std::error_code(); 5683 case BitstreamEntry::Record: 5684 // The interesting case. 5685 break; 5686 } 5687 5688 Record.clear(); 5689 switch (Stream.readRecord(Entry.ID, Record)) { 5690 default: // Default behavior: ignore. 5691 break; 5692 case bitc::MST_CODE_ENTRY: { 5693 // MST_ENTRY: [modid, namechar x N] 5694 if (convertToString(Record, 1, ModulePath)) 5695 return error("Invalid record"); 5696 uint64_t ModuleId = Record[0]; 5697 StringRef ModulePathInMap = TheIndex->addModulePath(ModulePath, ModuleId); 5698 ModuleIdMap[ModuleId] = ModulePathInMap; 5699 ModulePath.clear(); 5700 break; 5701 } 5702 } 5703 } 5704 llvm_unreachable("Exit infinite loop"); 5705 } 5706 5707 // Parse the function info index from the bitcode streamer into the given index. 5708 std::error_code FunctionIndexBitcodeReader::parseSummaryIndexInto( 5709 std::unique_ptr<DataStreamer> Streamer, FunctionInfoIndex *I) { 5710 TheIndex = I; 5711 5712 if (std::error_code EC = initStream(std::move(Streamer))) 5713 return EC; 5714 5715 // Sniff for the signature. 5716 if (!hasValidBitcodeHeader(Stream)) 5717 return error("Invalid bitcode signature"); 5718 5719 // We expect a number of well-defined blocks, though we don't necessarily 5720 // need to understand them all. 5721 while (1) { 5722 if (Stream.AtEndOfStream()) { 5723 // We didn't really read a proper Module block. 5724 return error("Malformed block"); 5725 } 5726 5727 BitstreamEntry Entry = 5728 Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs); 5729 5730 if (Entry.Kind != BitstreamEntry::SubBlock) 5731 return error("Malformed block"); 5732 5733 // If we see a MODULE_BLOCK, parse it to find the blocks needed for 5734 // building the function summary index. 5735 if (Entry.ID == bitc::MODULE_BLOCK_ID) 5736 return parseModule(); 5737 5738 if (Stream.SkipBlock()) 5739 return error("Invalid record"); 5740 } 5741 } 5742 5743 // Parse the function information at the given offset in the buffer into 5744 // the index. Used to support lazy parsing of function summaries from the 5745 // combined index during importing. 5746 // TODO: This function is not yet complete as it won't have a consumer 5747 // until ThinLTO function importing is added. 5748 std::error_code FunctionIndexBitcodeReader::parseFunctionSummary( 5749 std::unique_ptr<DataStreamer> Streamer, FunctionInfoIndex *I, 5750 size_t FunctionSummaryOffset) { 5751 TheIndex = I; 5752 5753 if (std::error_code EC = initStream(std::move(Streamer))) 5754 return EC; 5755 5756 // Sniff for the signature. 5757 if (!hasValidBitcodeHeader(Stream)) 5758 return error("Invalid bitcode signature"); 5759 5760 Stream.JumpToBit(FunctionSummaryOffset); 5761 5762 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5763 5764 switch (Entry.Kind) { 5765 default: 5766 return error("Malformed block"); 5767 case BitstreamEntry::Record: 5768 // The expected case. 5769 break; 5770 } 5771 5772 // TODO: Read a record. This interface will be completed when ThinLTO 5773 // importing is added so that it can be tested. 5774 SmallVector<uint64_t, 64> Record; 5775 switch (Stream.readRecord(Entry.ID, Record)) { 5776 case bitc::FS_CODE_COMBINED_ENTRY: 5777 default: 5778 return error("Invalid record"); 5779 } 5780 5781 return std::error_code(); 5782 } 5783 5784 std::error_code 5785 FunctionIndexBitcodeReader::initStream(std::unique_ptr<DataStreamer> Streamer) { 5786 if (Streamer) 5787 return initLazyStream(std::move(Streamer)); 5788 return initStreamFromBuffer(); 5789 } 5790 5791 std::error_code FunctionIndexBitcodeReader::initStreamFromBuffer() { 5792 const unsigned char *BufPtr = (const unsigned char *)Buffer->getBufferStart(); 5793 const unsigned char *BufEnd = BufPtr + Buffer->getBufferSize(); 5794 5795 if (Buffer->getBufferSize() & 3) 5796 return error("Invalid bitcode signature"); 5797 5798 // If we have a wrapper header, parse it and ignore the non-bc file contents. 5799 // The magic number is 0x0B17C0DE stored in little endian. 5800 if (isBitcodeWrapper(BufPtr, BufEnd)) 5801 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 5802 return error("Invalid bitcode wrapper header"); 5803 5804 StreamFile.reset(new BitstreamReader(BufPtr, BufEnd)); 5805 Stream.init(&*StreamFile); 5806 5807 return std::error_code(); 5808 } 5809 5810 std::error_code FunctionIndexBitcodeReader::initLazyStream( 5811 std::unique_ptr<DataStreamer> Streamer) { 5812 // Check and strip off the bitcode wrapper; BitstreamReader expects never to 5813 // see it. 5814 auto OwnedBytes = 5815 llvm::make_unique<StreamingMemoryObject>(std::move(Streamer)); 5816 StreamingMemoryObject &Bytes = *OwnedBytes; 5817 StreamFile = llvm::make_unique<BitstreamReader>(std::move(OwnedBytes)); 5818 Stream.init(&*StreamFile); 5819 5820 unsigned char buf[16]; 5821 if (Bytes.readBytes(buf, 16, 0) != 16) 5822 return error("Invalid bitcode signature"); 5823 5824 if (!isBitcode(buf, buf + 16)) 5825 return error("Invalid bitcode signature"); 5826 5827 if (isBitcodeWrapper(buf, buf + 4)) { 5828 const unsigned char *bitcodeStart = buf; 5829 const unsigned char *bitcodeEnd = buf + 16; 5830 SkipBitcodeWrapperHeader(bitcodeStart, bitcodeEnd, false); 5831 Bytes.dropLeadingBytes(bitcodeStart - buf); 5832 Bytes.setKnownObjectSize(bitcodeEnd - bitcodeStart); 5833 } 5834 return std::error_code(); 5835 } 5836 5837 namespace { 5838 class BitcodeErrorCategoryType : public std::error_category { 5839 const char *name() const LLVM_NOEXCEPT override { 5840 return "llvm.bitcode"; 5841 } 5842 std::string message(int IE) const override { 5843 BitcodeError E = static_cast<BitcodeError>(IE); 5844 switch (E) { 5845 case BitcodeError::InvalidBitcodeSignature: 5846 return "Invalid bitcode signature"; 5847 case BitcodeError::CorruptedBitcode: 5848 return "Corrupted bitcode"; 5849 } 5850 llvm_unreachable("Unknown error type!"); 5851 } 5852 }; 5853 } // end anonymous namespace 5854 5855 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory; 5856 5857 const std::error_category &llvm::BitcodeErrorCategory() { 5858 return *ErrorCategory; 5859 } 5860 5861 //===----------------------------------------------------------------------===// 5862 // External interface 5863 //===----------------------------------------------------------------------===// 5864 5865 static ErrorOr<std::unique_ptr<Module>> 5866 getBitcodeModuleImpl(std::unique_ptr<DataStreamer> Streamer, StringRef Name, 5867 BitcodeReader *R, LLVMContext &Context, 5868 bool MaterializeAll, bool ShouldLazyLoadMetadata) { 5869 std::unique_ptr<Module> M = make_unique<Module>(Name, Context); 5870 M->setMaterializer(R); 5871 5872 auto cleanupOnError = [&](std::error_code EC) { 5873 R->releaseBuffer(); // Never take ownership on error. 5874 return EC; 5875 }; 5876 5877 // Delay parsing Metadata if ShouldLazyLoadMetadata is true. 5878 if (std::error_code EC = R->parseBitcodeInto(std::move(Streamer), M.get(), 5879 ShouldLazyLoadMetadata)) 5880 return cleanupOnError(EC); 5881 5882 if (MaterializeAll) { 5883 // Read in the entire module, and destroy the BitcodeReader. 5884 if (std::error_code EC = M->materializeAll()) 5885 return cleanupOnError(EC); 5886 } else { 5887 // Resolve forward references from blockaddresses. 5888 if (std::error_code EC = R->materializeForwardReferencedFunctions()) 5889 return cleanupOnError(EC); 5890 } 5891 return std::move(M); 5892 } 5893 5894 /// \brief Get a lazy one-at-time loading module from bitcode. 5895 /// 5896 /// This isn't always used in a lazy context. In particular, it's also used by 5897 /// \a parseBitcodeFile(). If this is truly lazy, then we need to eagerly pull 5898 /// in forward-referenced functions from block address references. 5899 /// 5900 /// \param[in] MaterializeAll Set to \c true if we should materialize 5901 /// everything. 5902 static ErrorOr<std::unique_ptr<Module>> 5903 getLazyBitcodeModuleImpl(std::unique_ptr<MemoryBuffer> &&Buffer, 5904 LLVMContext &Context, bool MaterializeAll, 5905 bool ShouldLazyLoadMetadata = false) { 5906 BitcodeReader *R = new BitcodeReader(Buffer.get(), Context); 5907 5908 ErrorOr<std::unique_ptr<Module>> Ret = 5909 getBitcodeModuleImpl(nullptr, Buffer->getBufferIdentifier(), R, Context, 5910 MaterializeAll, ShouldLazyLoadMetadata); 5911 if (!Ret) 5912 return Ret; 5913 5914 Buffer.release(); // The BitcodeReader owns it now. 5915 return Ret; 5916 } 5917 5918 ErrorOr<std::unique_ptr<Module>> 5919 llvm::getLazyBitcodeModule(std::unique_ptr<MemoryBuffer> &&Buffer, 5920 LLVMContext &Context, bool ShouldLazyLoadMetadata) { 5921 return getLazyBitcodeModuleImpl(std::move(Buffer), Context, false, 5922 ShouldLazyLoadMetadata); 5923 } 5924 5925 ErrorOr<std::unique_ptr<Module>> 5926 llvm::getStreamedBitcodeModule(StringRef Name, 5927 std::unique_ptr<DataStreamer> Streamer, 5928 LLVMContext &Context) { 5929 std::unique_ptr<Module> M = make_unique<Module>(Name, Context); 5930 BitcodeReader *R = new BitcodeReader(Context); 5931 5932 return getBitcodeModuleImpl(std::move(Streamer), Name, R, Context, false, 5933 false); 5934 } 5935 5936 ErrorOr<std::unique_ptr<Module>> llvm::parseBitcodeFile(MemoryBufferRef Buffer, 5937 LLVMContext &Context) { 5938 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 5939 return getLazyBitcodeModuleImpl(std::move(Buf), Context, true); 5940 // TODO: Restore the use-lists to the in-memory state when the bitcode was 5941 // written. We must defer until the Module has been fully materialized. 5942 } 5943 5944 std::string llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer, 5945 LLVMContext &Context) { 5946 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 5947 auto R = llvm::make_unique<BitcodeReader>(Buf.release(), Context); 5948 ErrorOr<std::string> Triple = R->parseTriple(); 5949 if (Triple.getError()) 5950 return ""; 5951 return Triple.get(); 5952 } 5953 5954 std::string llvm::getBitcodeProducerString(MemoryBufferRef Buffer, 5955 LLVMContext &Context) { 5956 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 5957 BitcodeReader R(Buf.release(), Context); 5958 ErrorOr<std::string> ProducerString = R.parseIdentificationBlock(); 5959 if (ProducerString.getError()) 5960 return ""; 5961 return ProducerString.get(); 5962 } 5963 5964 // Parse the specified bitcode buffer, returning the function info index. 5965 // If IsLazy is false, parse the entire function summary into 5966 // the index. Otherwise skip the function summary section, and only create 5967 // an index object with a map from function name to function summary offset. 5968 // The index is used to perform lazy function summary reading later. 5969 ErrorOr<std::unique_ptr<FunctionInfoIndex>> 5970 llvm::getFunctionInfoIndex(MemoryBufferRef Buffer, 5971 DiagnosticHandlerFunction DiagnosticHandler, 5972 bool IsLazy) { 5973 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 5974 FunctionIndexBitcodeReader R(Buf.get(), DiagnosticHandler, IsLazy); 5975 5976 auto Index = llvm::make_unique<FunctionInfoIndex>(); 5977 5978 auto cleanupOnError = [&](std::error_code EC) { 5979 R.releaseBuffer(); // Never take ownership on error. 5980 return EC; 5981 }; 5982 5983 if (std::error_code EC = R.parseSummaryIndexInto(nullptr, Index.get())) 5984 return cleanupOnError(EC); 5985 5986 Buf.release(); // The FunctionIndexBitcodeReader owns it now. 5987 return std::move(Index); 5988 } 5989 5990 // Check if the given bitcode buffer contains a function summary block. 5991 bool llvm::hasFunctionSummary(MemoryBufferRef Buffer, 5992 DiagnosticHandlerFunction DiagnosticHandler) { 5993 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 5994 FunctionIndexBitcodeReader R(Buf.get(), DiagnosticHandler, false, true); 5995 5996 auto cleanupOnError = [&](std::error_code EC) { 5997 R.releaseBuffer(); // Never take ownership on error. 5998 return false; 5999 }; 6000 6001 if (std::error_code EC = R.parseSummaryIndexInto(nullptr, nullptr)) 6002 return cleanupOnError(EC); 6003 6004 Buf.release(); // The FunctionIndexBitcodeReader owns it now. 6005 return R.foundFuncSummary(); 6006 } 6007 6008 // This method supports lazy reading of function summary data from the combined 6009 // index during ThinLTO function importing. When reading the combined index 6010 // file, getFunctionInfoIndex is first invoked with IsLazy=true. 6011 // Then this method is called for each function considered for importing, 6012 // to parse the summary information for the given function name into 6013 // the index. 6014 std::error_code llvm::readFunctionSummary( 6015 MemoryBufferRef Buffer, DiagnosticHandlerFunction DiagnosticHandler, 6016 StringRef FunctionName, std::unique_ptr<FunctionInfoIndex> Index) { 6017 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 6018 FunctionIndexBitcodeReader R(Buf.get(), DiagnosticHandler); 6019 6020 auto cleanupOnError = [&](std::error_code EC) { 6021 R.releaseBuffer(); // Never take ownership on error. 6022 return EC; 6023 }; 6024 6025 // Lookup the given function name in the FunctionMap, which may 6026 // contain a list of function infos in the case of a COMDAT. Walk through 6027 // and parse each function summary info at the function summary offset 6028 // recorded when parsing the value symbol table. 6029 for (const auto &FI : Index->getFunctionInfoList(FunctionName)) { 6030 size_t FunctionSummaryOffset = FI->bitcodeIndex(); 6031 if (std::error_code EC = 6032 R.parseFunctionSummary(nullptr, Index.get(), FunctionSummaryOffset)) 6033 return cleanupOnError(EC); 6034 } 6035 6036 Buf.release(); // The FunctionIndexBitcodeReader owns it now. 6037 return std::error_code(); 6038 } 6039