1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "llvm/Bitcode/BitcodeReader.h" 11 #include "MetadataLoader.h" 12 #include "ValueList.h" 13 14 #include "llvm/ADT/APFloat.h" 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/None.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SmallString.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/ADT/StringRef.h" 23 #include "llvm/ADT/Triple.h" 24 #include "llvm/ADT/Twine.h" 25 #include "llvm/Bitcode/BitstreamReader.h" 26 #include "llvm/Bitcode/LLVMBitCodes.h" 27 #include "llvm/IR/Argument.h" 28 #include "llvm/IR/Attributes.h" 29 #include "llvm/IR/AutoUpgrade.h" 30 #include "llvm/IR/BasicBlock.h" 31 #include "llvm/IR/CallingConv.h" 32 #include "llvm/IR/CallSite.h" 33 #include "llvm/IR/Comdat.h" 34 #include "llvm/IR/Constant.h" 35 #include "llvm/IR/Constants.h" 36 #include "llvm/IR/DebugInfo.h" 37 #include "llvm/IR/DebugInfoMetadata.h" 38 #include "llvm/IR/DebugLoc.h" 39 #include "llvm/IR/DerivedTypes.h" 40 #include "llvm/IR/DiagnosticInfo.h" 41 #include "llvm/IR/DiagnosticPrinter.h" 42 #include "llvm/IR/Function.h" 43 #include "llvm/IR/GlobalAlias.h" 44 #include "llvm/IR/GlobalIFunc.h" 45 #include "llvm/IR/GlobalIndirectSymbol.h" 46 #include "llvm/IR/GlobalObject.h" 47 #include "llvm/IR/GlobalValue.h" 48 #include "llvm/IR/GlobalVariable.h" 49 #include "llvm/IR/GVMaterializer.h" 50 #include "llvm/IR/InlineAsm.h" 51 #include "llvm/IR/InstIterator.h" 52 #include "llvm/IR/InstrTypes.h" 53 #include "llvm/IR/Instruction.h" 54 #include "llvm/IR/Instructions.h" 55 #include "llvm/IR/Intrinsics.h" 56 #include "llvm/IR/LLVMContext.h" 57 #include "llvm/IR/Module.h" 58 #include "llvm/IR/ModuleSummaryIndex.h" 59 #include "llvm/IR/OperandTraits.h" 60 #include "llvm/IR/Operator.h" 61 #include "llvm/IR/TrackingMDRef.h" 62 #include "llvm/IR/Type.h" 63 #include "llvm/IR/ValueHandle.h" 64 #include "llvm/IR/Verifier.h" 65 #include "llvm/Support/AtomicOrdering.h" 66 #include "llvm/Support/Casting.h" 67 #include "llvm/Support/CommandLine.h" 68 #include "llvm/Support/Compiler.h" 69 #include "llvm/Support/Debug.h" 70 #include "llvm/Support/Error.h" 71 #include "llvm/Support/ErrorHandling.h" 72 #include "llvm/Support/ManagedStatic.h" 73 #include "llvm/Support/MemoryBuffer.h" 74 #include "llvm/Support/raw_ostream.h" 75 #include <algorithm> 76 #include <cassert> 77 #include <cstddef> 78 #include <cstdint> 79 #include <deque> 80 #include <limits> 81 #include <map> 82 #include <memory> 83 #include <string> 84 #include <system_error> 85 #include <tuple> 86 #include <utility> 87 #include <vector> 88 89 using namespace llvm; 90 91 static cl::opt<bool> PrintSummaryGUIDs( 92 "print-summary-global-ids", cl::init(false), cl::Hidden, 93 cl::desc( 94 "Print the global id for each value when reading the module summary")); 95 96 namespace { 97 98 enum { 99 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 100 }; 101 102 Error error(const Twine &Message) { 103 return make_error<StringError>( 104 Message, make_error_code(BitcodeError::CorruptedBitcode)); 105 } 106 107 /// Helper to read the header common to all bitcode files. 108 bool hasValidBitcodeHeader(BitstreamCursor &Stream) { 109 // Sniff for the signature. 110 if (!Stream.canSkipToPos(4) || 111 Stream.Read(8) != 'B' || 112 Stream.Read(8) != 'C' || 113 Stream.Read(4) != 0x0 || 114 Stream.Read(4) != 0xC || 115 Stream.Read(4) != 0xE || 116 Stream.Read(4) != 0xD) 117 return false; 118 return true; 119 } 120 121 Expected<BitstreamCursor> initStream(MemoryBufferRef Buffer) { 122 const unsigned char *BufPtr = (const unsigned char *)Buffer.getBufferStart(); 123 const unsigned char *BufEnd = BufPtr + Buffer.getBufferSize(); 124 125 if (Buffer.getBufferSize() & 3) 126 return error("Invalid bitcode signature"); 127 128 // If we have a wrapper header, parse it and ignore the non-bc file contents. 129 // The magic number is 0x0B17C0DE stored in little endian. 130 if (isBitcodeWrapper(BufPtr, BufEnd)) 131 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 132 return error("Invalid bitcode wrapper header"); 133 134 BitstreamCursor Stream(ArrayRef<uint8_t>(BufPtr, BufEnd)); 135 if (!hasValidBitcodeHeader(Stream)) 136 return error("Invalid bitcode signature"); 137 138 return std::move(Stream); 139 } 140 141 /// Convert a string from a record into an std::string, return true on failure. 142 template <typename StrTy> 143 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx, 144 StrTy &Result) { 145 if (Idx > Record.size()) 146 return true; 147 148 for (unsigned i = Idx, e = Record.size(); i != e; ++i) 149 Result += (char)Record[i]; 150 return false; 151 } 152 153 // Strip all the TBAA attachment for the module. 154 void stripTBAA(Module *M) { 155 for (auto &F : *M) { 156 if (F.isMaterializable()) 157 continue; 158 for (auto &I : instructions(F)) 159 I.setMetadata(LLVMContext::MD_tbaa, nullptr); 160 } 161 } 162 163 /// Read the "IDENTIFICATION_BLOCK_ID" block, do some basic enforcement on the 164 /// "epoch" encoded in the bitcode, and return the producer name if any. 165 Expected<std::string> readIdentificationBlock(BitstreamCursor &Stream) { 166 if (Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID)) 167 return error("Invalid record"); 168 169 // Read all the records. 170 SmallVector<uint64_t, 64> Record; 171 172 std::string ProducerIdentification; 173 174 while (true) { 175 BitstreamEntry Entry = Stream.advance(); 176 177 switch (Entry.Kind) { 178 default: 179 case BitstreamEntry::Error: 180 return error("Malformed block"); 181 case BitstreamEntry::EndBlock: 182 return ProducerIdentification; 183 case BitstreamEntry::Record: 184 // The interesting case. 185 break; 186 } 187 188 // Read a record. 189 Record.clear(); 190 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 191 switch (BitCode) { 192 default: // Default behavior: reject 193 return error("Invalid value"); 194 case bitc::IDENTIFICATION_CODE_STRING: // IDENTIFICATION: [strchr x N] 195 convertToString(Record, 0, ProducerIdentification); 196 break; 197 case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#] 198 unsigned epoch = (unsigned)Record[0]; 199 if (epoch != bitc::BITCODE_CURRENT_EPOCH) { 200 return error( 201 Twine("Incompatible epoch: Bitcode '") + Twine(epoch) + 202 "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'"); 203 } 204 } 205 } 206 } 207 } 208 209 Expected<std::string> readIdentificationCode(BitstreamCursor &Stream) { 210 // We expect a number of well-defined blocks, though we don't necessarily 211 // need to understand them all. 212 while (true) { 213 if (Stream.AtEndOfStream()) 214 return ""; 215 216 BitstreamEntry Entry = Stream.advance(); 217 switch (Entry.Kind) { 218 case BitstreamEntry::EndBlock: 219 case BitstreamEntry::Error: 220 return error("Malformed block"); 221 222 case BitstreamEntry::SubBlock: 223 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) 224 return readIdentificationBlock(Stream); 225 226 // Ignore other sub-blocks. 227 if (Stream.SkipBlock()) 228 return error("Malformed block"); 229 continue; 230 case BitstreamEntry::Record: 231 Stream.skipRecord(Entry.ID); 232 continue; 233 } 234 } 235 } 236 237 Expected<bool> hasObjCCategoryInModule(BitstreamCursor &Stream) { 238 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 239 return error("Invalid record"); 240 241 SmallVector<uint64_t, 64> Record; 242 // Read all the records for this module. 243 244 while (true) { 245 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 246 247 switch (Entry.Kind) { 248 case BitstreamEntry::SubBlock: // Handled for us already. 249 case BitstreamEntry::Error: 250 return error("Malformed block"); 251 case BitstreamEntry::EndBlock: 252 return false; 253 case BitstreamEntry::Record: 254 // The interesting case. 255 break; 256 } 257 258 // Read a record. 259 switch (Stream.readRecord(Entry.ID, Record)) { 260 default: 261 break; // Default behavior, ignore unknown content. 262 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 263 std::string S; 264 if (convertToString(Record, 0, S)) 265 return error("Invalid record"); 266 // Check for the i386 and other (x86_64, ARM) conventions 267 if (S.find("__DATA, __objc_catlist") != std::string::npos || 268 S.find("__OBJC,__category") != std::string::npos) 269 return true; 270 break; 271 } 272 } 273 Record.clear(); 274 } 275 llvm_unreachable("Exit infinite loop"); 276 } 277 278 Expected<bool> hasObjCCategory(BitstreamCursor &Stream) { 279 // We expect a number of well-defined blocks, though we don't necessarily 280 // need to understand them all. 281 while (true) { 282 BitstreamEntry Entry = Stream.advance(); 283 284 switch (Entry.Kind) { 285 case BitstreamEntry::Error: 286 return error("Malformed block"); 287 case BitstreamEntry::EndBlock: 288 return false; 289 290 case BitstreamEntry::SubBlock: 291 if (Entry.ID == bitc::MODULE_BLOCK_ID) 292 return hasObjCCategoryInModule(Stream); 293 294 // Ignore other sub-blocks. 295 if (Stream.SkipBlock()) 296 return error("Malformed block"); 297 continue; 298 299 case BitstreamEntry::Record: 300 Stream.skipRecord(Entry.ID); 301 continue; 302 } 303 } 304 } 305 306 Expected<std::string> readModuleTriple(BitstreamCursor &Stream) { 307 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 308 return error("Invalid record"); 309 310 SmallVector<uint64_t, 64> Record; 311 312 std::string Triple; 313 314 // Read all the records for this module. 315 while (true) { 316 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 317 318 switch (Entry.Kind) { 319 case BitstreamEntry::SubBlock: // Handled for us already. 320 case BitstreamEntry::Error: 321 return error("Malformed block"); 322 case BitstreamEntry::EndBlock: 323 return Triple; 324 case BitstreamEntry::Record: 325 // The interesting case. 326 break; 327 } 328 329 // Read a record. 330 switch (Stream.readRecord(Entry.ID, Record)) { 331 default: break; // Default behavior, ignore unknown content. 332 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 333 std::string S; 334 if (convertToString(Record, 0, S)) 335 return error("Invalid record"); 336 Triple = S; 337 break; 338 } 339 } 340 Record.clear(); 341 } 342 llvm_unreachable("Exit infinite loop"); 343 } 344 345 Expected<std::string> readTriple(BitstreamCursor &Stream) { 346 // We expect a number of well-defined blocks, though we don't necessarily 347 // need to understand them all. 348 while (true) { 349 BitstreamEntry Entry = Stream.advance(); 350 351 switch (Entry.Kind) { 352 case BitstreamEntry::Error: 353 return error("Malformed block"); 354 case BitstreamEntry::EndBlock: 355 return ""; 356 357 case BitstreamEntry::SubBlock: 358 if (Entry.ID == bitc::MODULE_BLOCK_ID) 359 return readModuleTriple(Stream); 360 361 // Ignore other sub-blocks. 362 if (Stream.SkipBlock()) 363 return error("Malformed block"); 364 continue; 365 366 case BitstreamEntry::Record: 367 Stream.skipRecord(Entry.ID); 368 continue; 369 } 370 } 371 } 372 373 class BitcodeReaderBase { 374 protected: 375 BitcodeReaderBase(BitstreamCursor Stream) : Stream(std::move(Stream)) { 376 this->Stream.setBlockInfo(&BlockInfo); 377 } 378 379 BitstreamBlockInfo BlockInfo; 380 BitstreamCursor Stream; 381 382 bool readBlockInfo(); 383 384 // Contains an arbitrary and optional string identifying the bitcode producer 385 std::string ProducerIdentification; 386 387 Error error(const Twine &Message); 388 }; 389 390 Error BitcodeReaderBase::error(const Twine &Message) { 391 std::string FullMsg = Message.str(); 392 if (!ProducerIdentification.empty()) 393 FullMsg += " (Producer: '" + ProducerIdentification + "' Reader: 'LLVM " + 394 LLVM_VERSION_STRING "')"; 395 return ::error(FullMsg); 396 } 397 398 class BitcodeReader : public BitcodeReaderBase, public GVMaterializer { 399 LLVMContext &Context; 400 Module *TheModule = nullptr; 401 // Next offset to start scanning for lazy parsing of function bodies. 402 uint64_t NextUnreadBit = 0; 403 // Last function offset found in the VST. 404 uint64_t LastFunctionBlockBit = 0; 405 bool SeenValueSymbolTable = false; 406 uint64_t VSTOffset = 0; 407 408 std::vector<Type*> TypeList; 409 BitcodeReaderValueList ValueList; 410 Optional<MetadataLoader> MDLoader; 411 std::vector<Comdat *> ComdatList; 412 SmallVector<Instruction *, 64> InstructionList; 413 414 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInits; 415 std::vector<std::pair<GlobalIndirectSymbol*, unsigned> > IndirectSymbolInits; 416 std::vector<std::pair<Function*, unsigned> > FunctionPrefixes; 417 std::vector<std::pair<Function*, unsigned> > FunctionPrologues; 418 std::vector<std::pair<Function*, unsigned> > FunctionPersonalityFns; 419 420 /// The set of attributes by index. Index zero in the file is for null, and 421 /// is thus not represented here. As such all indices are off by one. 422 std::vector<AttributeSet> MAttributes; 423 424 /// The set of attribute groups. 425 std::map<unsigned, AttributeSet> MAttributeGroups; 426 427 /// While parsing a function body, this is a list of the basic blocks for the 428 /// function. 429 std::vector<BasicBlock*> FunctionBBs; 430 431 // When reading the module header, this list is populated with functions that 432 // have bodies later in the file. 433 std::vector<Function*> FunctionsWithBodies; 434 435 // When intrinsic functions are encountered which require upgrading they are 436 // stored here with their replacement function. 437 typedef DenseMap<Function*, Function*> UpdatedIntrinsicMap; 438 UpdatedIntrinsicMap UpgradedIntrinsics; 439 // Intrinsics which were remangled because of types rename 440 UpdatedIntrinsicMap RemangledIntrinsics; 441 442 // Several operations happen after the module header has been read, but 443 // before function bodies are processed. This keeps track of whether 444 // we've done this yet. 445 bool SeenFirstFunctionBody = false; 446 447 /// When function bodies are initially scanned, this map contains info about 448 /// where to find deferred function body in the stream. 449 DenseMap<Function*, uint64_t> DeferredFunctionInfo; 450 451 /// When Metadata block is initially scanned when parsing the module, we may 452 /// choose to defer parsing of the metadata. This vector contains info about 453 /// which Metadata blocks are deferred. 454 std::vector<uint64_t> DeferredMetadataInfo; 455 456 /// These are basic blocks forward-referenced by block addresses. They are 457 /// inserted lazily into functions when they're loaded. The basic block ID is 458 /// its index into the vector. 459 DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs; 460 std::deque<Function *> BasicBlockFwdRefQueue; 461 462 /// Indicates that we are using a new encoding for instruction operands where 463 /// most operands in the current FUNCTION_BLOCK are encoded relative to the 464 /// instruction number, for a more compact encoding. Some instruction 465 /// operands are not relative to the instruction ID: basic block numbers, and 466 /// types. Once the old style function blocks have been phased out, we would 467 /// not need this flag. 468 bool UseRelativeIDs = false; 469 470 /// True if all functions will be materialized, negating the need to process 471 /// (e.g.) blockaddress forward references. 472 bool WillMaterializeAllForwardRefs = false; 473 474 bool StripDebugInfo = false; 475 TBAAVerifier TBAAVerifyHelper; 476 477 std::vector<std::string> BundleTags; 478 479 public: 480 BitcodeReader(BitstreamCursor Stream, StringRef ProducerIdentification, 481 LLVMContext &Context); 482 483 Error materializeForwardReferencedFunctions(); 484 485 Error materialize(GlobalValue *GV) override; 486 Error materializeModule() override; 487 std::vector<StructType *> getIdentifiedStructTypes() const override; 488 489 /// \brief Main interface to parsing a bitcode buffer. 490 /// \returns true if an error occurred. 491 Error parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata = false, 492 bool IsImporting = false); 493 494 static uint64_t decodeSignRotatedValue(uint64_t V); 495 496 /// Materialize any deferred Metadata block. 497 Error materializeMetadata() override; 498 499 void setStripDebugInfo() override; 500 501 private: 502 std::vector<StructType *> IdentifiedStructTypes; 503 StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name); 504 StructType *createIdentifiedStructType(LLVMContext &Context); 505 506 Type *getTypeByID(unsigned ID); 507 508 Value *getFnValueByID(unsigned ID, Type *Ty) { 509 if (Ty && Ty->isMetadataTy()) 510 return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID)); 511 return ValueList.getValueFwdRef(ID, Ty); 512 } 513 514 Metadata *getFnMetadataByID(unsigned ID) { 515 return MDLoader->getMetadataFwdRefOrLoad(ID); 516 } 517 518 BasicBlock *getBasicBlock(unsigned ID) const { 519 if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID 520 return FunctionBBs[ID]; 521 } 522 523 AttributeSet getAttributes(unsigned i) const { 524 if (i-1 < MAttributes.size()) 525 return MAttributes[i-1]; 526 return AttributeSet(); 527 } 528 529 /// Read a value/type pair out of the specified record from slot 'Slot'. 530 /// Increment Slot past the number of slots used in the record. Return true on 531 /// failure. 532 bool getValueTypePair(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 533 unsigned InstNum, Value *&ResVal) { 534 if (Slot == Record.size()) return true; 535 unsigned ValNo = (unsigned)Record[Slot++]; 536 // Adjust the ValNo, if it was encoded relative to the InstNum. 537 if (UseRelativeIDs) 538 ValNo = InstNum - ValNo; 539 if (ValNo < InstNum) { 540 // If this is not a forward reference, just return the value we already 541 // have. 542 ResVal = getFnValueByID(ValNo, nullptr); 543 return ResVal == nullptr; 544 } 545 if (Slot == Record.size()) 546 return true; 547 548 unsigned TypeNo = (unsigned)Record[Slot++]; 549 ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo)); 550 return ResVal == nullptr; 551 } 552 553 /// Read a value out of the specified record from slot 'Slot'. Increment Slot 554 /// past the number of slots used by the value in the record. Return true if 555 /// there is an error. 556 bool popValue(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 557 unsigned InstNum, Type *Ty, Value *&ResVal) { 558 if (getValue(Record, Slot, InstNum, Ty, ResVal)) 559 return true; 560 // All values currently take a single record slot. 561 ++Slot; 562 return false; 563 } 564 565 /// Like popValue, but does not increment the Slot number. 566 bool getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 567 unsigned InstNum, Type *Ty, Value *&ResVal) { 568 ResVal = getValue(Record, Slot, InstNum, Ty); 569 return ResVal == nullptr; 570 } 571 572 /// Version of getValue that returns ResVal directly, or 0 if there is an 573 /// error. 574 Value *getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 575 unsigned InstNum, Type *Ty) { 576 if (Slot == Record.size()) return nullptr; 577 unsigned ValNo = (unsigned)Record[Slot]; 578 // Adjust the ValNo, if it was encoded relative to the InstNum. 579 if (UseRelativeIDs) 580 ValNo = InstNum - ValNo; 581 return getFnValueByID(ValNo, Ty); 582 } 583 584 /// Like getValue, but decodes signed VBRs. 585 Value *getValueSigned(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 586 unsigned InstNum, Type *Ty) { 587 if (Slot == Record.size()) return nullptr; 588 unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]); 589 // Adjust the ValNo, if it was encoded relative to the InstNum. 590 if (UseRelativeIDs) 591 ValNo = InstNum - ValNo; 592 return getFnValueByID(ValNo, Ty); 593 } 594 595 /// Converts alignment exponent (i.e. power of two (or zero)) to the 596 /// corresponding alignment to use. If alignment is too large, returns 597 /// a corresponding error code. 598 Error parseAlignmentValue(uint64_t Exponent, unsigned &Alignment); 599 Error parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind); 600 Error parseModule(uint64_t ResumeBit, bool ShouldLazyLoadMetadata = false); 601 Error parseAttributeBlock(); 602 Error parseAttributeGroupBlock(); 603 Error parseTypeTable(); 604 Error parseTypeTableBody(); 605 Error parseOperandBundleTags(); 606 607 Expected<Value *> recordValue(SmallVectorImpl<uint64_t> &Record, 608 unsigned NameIndex, Triple &TT); 609 Error parseValueSymbolTable(uint64_t Offset = 0); 610 Error parseConstants(); 611 Error rememberAndSkipFunctionBodies(); 612 Error rememberAndSkipFunctionBody(); 613 /// Save the positions of the Metadata blocks and skip parsing the blocks. 614 Error rememberAndSkipMetadata(); 615 Error typeCheckLoadStoreInst(Type *ValType, Type *PtrType); 616 Error parseFunctionBody(Function *F); 617 Error globalCleanup(); 618 Error resolveGlobalAndIndirectSymbolInits(); 619 Error parseUseLists(); 620 Error findFunctionInStream( 621 Function *F, 622 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator); 623 }; 624 625 /// Class to manage reading and parsing function summary index bitcode 626 /// files/sections. 627 class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase { 628 /// The module index built during parsing. 629 ModuleSummaryIndex &TheIndex; 630 631 /// Indicates whether we have encountered a global value summary section 632 /// yet during parsing. 633 bool SeenGlobalValSummary = false; 634 635 /// Indicates whether we have already parsed the VST, used for error checking. 636 bool SeenValueSymbolTable = false; 637 638 /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record. 639 /// Used to enable on-demand parsing of the VST. 640 uint64_t VSTOffset = 0; 641 642 // Map to save ValueId to GUID association that was recorded in the 643 // ValueSymbolTable. It is used after the VST is parsed to convert 644 // call graph edges read from the function summary from referencing 645 // callees by their ValueId to using the GUID instead, which is how 646 // they are recorded in the summary index being built. 647 // We save a second GUID which is the same as the first one, but ignoring the 648 // linkage, i.e. for value other than local linkage they are identical. 649 DenseMap<unsigned, std::pair<GlobalValue::GUID, GlobalValue::GUID>> 650 ValueIdToCallGraphGUIDMap; 651 652 /// Map populated during module path string table parsing, from the 653 /// module ID to a string reference owned by the index's module 654 /// path string table, used to correlate with combined index 655 /// summary records. 656 DenseMap<uint64_t, StringRef> ModuleIdMap; 657 658 /// Original source file name recorded in a bitcode record. 659 std::string SourceFileName; 660 661 public: 662 ModuleSummaryIndexBitcodeReader( 663 BitstreamCursor Stream, ModuleSummaryIndex &TheIndex); 664 665 Error parseModule(StringRef ModulePath); 666 667 private: 668 Error parseValueSymbolTable( 669 uint64_t Offset, 670 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap); 671 std::vector<ValueInfo> makeRefList(ArrayRef<uint64_t> Record); 672 std::vector<FunctionSummary::EdgeTy> makeCallList(ArrayRef<uint64_t> Record, 673 bool IsOldProfileFormat, 674 bool HasProfile); 675 Error parseEntireSummary(StringRef ModulePath); 676 Error parseModuleStringTable(); 677 678 std::pair<GlobalValue::GUID, GlobalValue::GUID> 679 getGUIDFromValueId(unsigned ValueId); 680 }; 681 682 } // end anonymous namespace 683 684 std::error_code llvm::errorToErrorCodeAndEmitErrors(LLVMContext &Ctx, 685 Error Err) { 686 if (Err) { 687 std::error_code EC; 688 handleAllErrors(std::move(Err), [&](ErrorInfoBase &EIB) { 689 EC = EIB.convertToErrorCode(); 690 Ctx.emitError(EIB.message()); 691 }); 692 return EC; 693 } 694 return std::error_code(); 695 } 696 697 BitcodeReader::BitcodeReader(BitstreamCursor Stream, 698 StringRef ProducerIdentification, 699 LLVMContext &Context) 700 : BitcodeReaderBase(std::move(Stream)), Context(Context), 701 ValueList(Context) { 702 this->ProducerIdentification = ProducerIdentification; 703 } 704 705 Error BitcodeReader::materializeForwardReferencedFunctions() { 706 if (WillMaterializeAllForwardRefs) 707 return Error::success(); 708 709 // Prevent recursion. 710 WillMaterializeAllForwardRefs = true; 711 712 while (!BasicBlockFwdRefQueue.empty()) { 713 Function *F = BasicBlockFwdRefQueue.front(); 714 BasicBlockFwdRefQueue.pop_front(); 715 assert(F && "Expected valid function"); 716 if (!BasicBlockFwdRefs.count(F)) 717 // Already materialized. 718 continue; 719 720 // Check for a function that isn't materializable to prevent an infinite 721 // loop. When parsing a blockaddress stored in a global variable, there 722 // isn't a trivial way to check if a function will have a body without a 723 // linear search through FunctionsWithBodies, so just check it here. 724 if (!F->isMaterializable()) 725 return error("Never resolved function from blockaddress"); 726 727 // Try to materialize F. 728 if (Error Err = materialize(F)) 729 return Err; 730 } 731 assert(BasicBlockFwdRefs.empty() && "Function missing from queue"); 732 733 // Reset state. 734 WillMaterializeAllForwardRefs = false; 735 return Error::success(); 736 } 737 738 //===----------------------------------------------------------------------===// 739 // Helper functions to implement forward reference resolution, etc. 740 //===----------------------------------------------------------------------===// 741 742 static bool hasImplicitComdat(size_t Val) { 743 switch (Val) { 744 default: 745 return false; 746 case 1: // Old WeakAnyLinkage 747 case 4: // Old LinkOnceAnyLinkage 748 case 10: // Old WeakODRLinkage 749 case 11: // Old LinkOnceODRLinkage 750 return true; 751 } 752 } 753 754 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) { 755 switch (Val) { 756 default: // Map unknown/new linkages to external 757 case 0: 758 return GlobalValue::ExternalLinkage; 759 case 2: 760 return GlobalValue::AppendingLinkage; 761 case 3: 762 return GlobalValue::InternalLinkage; 763 case 5: 764 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage 765 case 6: 766 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage 767 case 7: 768 return GlobalValue::ExternalWeakLinkage; 769 case 8: 770 return GlobalValue::CommonLinkage; 771 case 9: 772 return GlobalValue::PrivateLinkage; 773 case 12: 774 return GlobalValue::AvailableExternallyLinkage; 775 case 13: 776 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage 777 case 14: 778 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage 779 case 15: 780 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage 781 case 1: // Old value with implicit comdat. 782 case 16: 783 return GlobalValue::WeakAnyLinkage; 784 case 10: // Old value with implicit comdat. 785 case 17: 786 return GlobalValue::WeakODRLinkage; 787 case 4: // Old value with implicit comdat. 788 case 18: 789 return GlobalValue::LinkOnceAnyLinkage; 790 case 11: // Old value with implicit comdat. 791 case 19: 792 return GlobalValue::LinkOnceODRLinkage; 793 } 794 } 795 796 /// Decode the flags for GlobalValue in the summary. 797 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags, 798 uint64_t Version) { 799 // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage 800 // like getDecodedLinkage() above. Any future change to the linkage enum and 801 // to getDecodedLinkage() will need to be taken into account here as above. 802 auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits 803 bool NotEligibleToImport = ((RawFlags >> 4) & 0x1) || Version < 3; 804 // The LiveRoot flag wasn't introduced until version 3. For dead stripping 805 // to work correctly on earlier versions, we must conservatively treat all 806 // values as live. 807 bool LiveRoot = ((RawFlags >> 5) & 0x1) || Version < 3; 808 bool AutoHide = (RawFlags >> 6) & 0x1; 809 return GlobalValueSummary::GVFlags(Linkage, NotEligibleToImport, LiveRoot, 810 AutoHide); 811 } 812 813 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) { 814 switch (Val) { 815 default: // Map unknown visibilities to default. 816 case 0: return GlobalValue::DefaultVisibility; 817 case 1: return GlobalValue::HiddenVisibility; 818 case 2: return GlobalValue::ProtectedVisibility; 819 } 820 } 821 822 static GlobalValue::DLLStorageClassTypes 823 getDecodedDLLStorageClass(unsigned Val) { 824 switch (Val) { 825 default: // Map unknown values to default. 826 case 0: return GlobalValue::DefaultStorageClass; 827 case 1: return GlobalValue::DLLImportStorageClass; 828 case 2: return GlobalValue::DLLExportStorageClass; 829 } 830 } 831 832 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) { 833 switch (Val) { 834 case 0: return GlobalVariable::NotThreadLocal; 835 default: // Map unknown non-zero value to general dynamic. 836 case 1: return GlobalVariable::GeneralDynamicTLSModel; 837 case 2: return GlobalVariable::LocalDynamicTLSModel; 838 case 3: return GlobalVariable::InitialExecTLSModel; 839 case 4: return GlobalVariable::LocalExecTLSModel; 840 } 841 } 842 843 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) { 844 switch (Val) { 845 default: // Map unknown to UnnamedAddr::None. 846 case 0: return GlobalVariable::UnnamedAddr::None; 847 case 1: return GlobalVariable::UnnamedAddr::Global; 848 case 2: return GlobalVariable::UnnamedAddr::Local; 849 } 850 } 851 852 static int getDecodedCastOpcode(unsigned Val) { 853 switch (Val) { 854 default: return -1; 855 case bitc::CAST_TRUNC : return Instruction::Trunc; 856 case bitc::CAST_ZEXT : return Instruction::ZExt; 857 case bitc::CAST_SEXT : return Instruction::SExt; 858 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 859 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 860 case bitc::CAST_UITOFP : return Instruction::UIToFP; 861 case bitc::CAST_SITOFP : return Instruction::SIToFP; 862 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 863 case bitc::CAST_FPEXT : return Instruction::FPExt; 864 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 865 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 866 case bitc::CAST_BITCAST : return Instruction::BitCast; 867 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast; 868 } 869 } 870 871 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) { 872 bool IsFP = Ty->isFPOrFPVectorTy(); 873 // BinOps are only valid for int/fp or vector of int/fp types 874 if (!IsFP && !Ty->isIntOrIntVectorTy()) 875 return -1; 876 877 switch (Val) { 878 default: 879 return -1; 880 case bitc::BINOP_ADD: 881 return IsFP ? Instruction::FAdd : Instruction::Add; 882 case bitc::BINOP_SUB: 883 return IsFP ? Instruction::FSub : Instruction::Sub; 884 case bitc::BINOP_MUL: 885 return IsFP ? Instruction::FMul : Instruction::Mul; 886 case bitc::BINOP_UDIV: 887 return IsFP ? -1 : Instruction::UDiv; 888 case bitc::BINOP_SDIV: 889 return IsFP ? Instruction::FDiv : Instruction::SDiv; 890 case bitc::BINOP_UREM: 891 return IsFP ? -1 : Instruction::URem; 892 case bitc::BINOP_SREM: 893 return IsFP ? Instruction::FRem : Instruction::SRem; 894 case bitc::BINOP_SHL: 895 return IsFP ? -1 : Instruction::Shl; 896 case bitc::BINOP_LSHR: 897 return IsFP ? -1 : Instruction::LShr; 898 case bitc::BINOP_ASHR: 899 return IsFP ? -1 : Instruction::AShr; 900 case bitc::BINOP_AND: 901 return IsFP ? -1 : Instruction::And; 902 case bitc::BINOP_OR: 903 return IsFP ? -1 : Instruction::Or; 904 case bitc::BINOP_XOR: 905 return IsFP ? -1 : Instruction::Xor; 906 } 907 } 908 909 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) { 910 switch (Val) { 911 default: return AtomicRMWInst::BAD_BINOP; 912 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 913 case bitc::RMW_ADD: return AtomicRMWInst::Add; 914 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 915 case bitc::RMW_AND: return AtomicRMWInst::And; 916 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 917 case bitc::RMW_OR: return AtomicRMWInst::Or; 918 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 919 case bitc::RMW_MAX: return AtomicRMWInst::Max; 920 case bitc::RMW_MIN: return AtomicRMWInst::Min; 921 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 922 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 923 } 924 } 925 926 static AtomicOrdering getDecodedOrdering(unsigned Val) { 927 switch (Val) { 928 case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic; 929 case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered; 930 case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic; 931 case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire; 932 case bitc::ORDERING_RELEASE: return AtomicOrdering::Release; 933 case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease; 934 default: // Map unknown orderings to sequentially-consistent. 935 case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent; 936 } 937 } 938 939 static SynchronizationScope getDecodedSynchScope(unsigned Val) { 940 switch (Val) { 941 case bitc::SYNCHSCOPE_SINGLETHREAD: return SingleThread; 942 default: // Map unknown scopes to cross-thread. 943 case bitc::SYNCHSCOPE_CROSSTHREAD: return CrossThread; 944 } 945 } 946 947 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) { 948 switch (Val) { 949 default: // Map unknown selection kinds to any. 950 case bitc::COMDAT_SELECTION_KIND_ANY: 951 return Comdat::Any; 952 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH: 953 return Comdat::ExactMatch; 954 case bitc::COMDAT_SELECTION_KIND_LARGEST: 955 return Comdat::Largest; 956 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES: 957 return Comdat::NoDuplicates; 958 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE: 959 return Comdat::SameSize; 960 } 961 } 962 963 static FastMathFlags getDecodedFastMathFlags(unsigned Val) { 964 FastMathFlags FMF; 965 if (0 != (Val & FastMathFlags::UnsafeAlgebra)) 966 FMF.setUnsafeAlgebra(); 967 if (0 != (Val & FastMathFlags::NoNaNs)) 968 FMF.setNoNaNs(); 969 if (0 != (Val & FastMathFlags::NoInfs)) 970 FMF.setNoInfs(); 971 if (0 != (Val & FastMathFlags::NoSignedZeros)) 972 FMF.setNoSignedZeros(); 973 if (0 != (Val & FastMathFlags::AllowReciprocal)) 974 FMF.setAllowReciprocal(); 975 return FMF; 976 } 977 978 static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) { 979 switch (Val) { 980 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break; 981 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break; 982 } 983 } 984 985 986 Type *BitcodeReader::getTypeByID(unsigned ID) { 987 // The type table size is always specified correctly. 988 if (ID >= TypeList.size()) 989 return nullptr; 990 991 if (Type *Ty = TypeList[ID]) 992 return Ty; 993 994 // If we have a forward reference, the only possible case is when it is to a 995 // named struct. Just create a placeholder for now. 996 return TypeList[ID] = createIdentifiedStructType(Context); 997 } 998 999 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context, 1000 StringRef Name) { 1001 auto *Ret = StructType::create(Context, Name); 1002 IdentifiedStructTypes.push_back(Ret); 1003 return Ret; 1004 } 1005 1006 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) { 1007 auto *Ret = StructType::create(Context); 1008 IdentifiedStructTypes.push_back(Ret); 1009 return Ret; 1010 } 1011 1012 //===----------------------------------------------------------------------===// 1013 // Functions for parsing blocks from the bitcode file 1014 //===----------------------------------------------------------------------===// 1015 1016 static uint64_t getRawAttributeMask(Attribute::AttrKind Val) { 1017 switch (Val) { 1018 case Attribute::EndAttrKinds: 1019 llvm_unreachable("Synthetic enumerators which should never get here"); 1020 1021 case Attribute::None: return 0; 1022 case Attribute::ZExt: return 1 << 0; 1023 case Attribute::SExt: return 1 << 1; 1024 case Attribute::NoReturn: return 1 << 2; 1025 case Attribute::InReg: return 1 << 3; 1026 case Attribute::StructRet: return 1 << 4; 1027 case Attribute::NoUnwind: return 1 << 5; 1028 case Attribute::NoAlias: return 1 << 6; 1029 case Attribute::ByVal: return 1 << 7; 1030 case Attribute::Nest: return 1 << 8; 1031 case Attribute::ReadNone: return 1 << 9; 1032 case Attribute::ReadOnly: return 1 << 10; 1033 case Attribute::NoInline: return 1 << 11; 1034 case Attribute::AlwaysInline: return 1 << 12; 1035 case Attribute::OptimizeForSize: return 1 << 13; 1036 case Attribute::StackProtect: return 1 << 14; 1037 case Attribute::StackProtectReq: return 1 << 15; 1038 case Attribute::Alignment: return 31 << 16; 1039 case Attribute::NoCapture: return 1 << 21; 1040 case Attribute::NoRedZone: return 1 << 22; 1041 case Attribute::NoImplicitFloat: return 1 << 23; 1042 case Attribute::Naked: return 1 << 24; 1043 case Attribute::InlineHint: return 1 << 25; 1044 case Attribute::StackAlignment: return 7 << 26; 1045 case Attribute::ReturnsTwice: return 1 << 29; 1046 case Attribute::UWTable: return 1 << 30; 1047 case Attribute::NonLazyBind: return 1U << 31; 1048 case Attribute::SanitizeAddress: return 1ULL << 32; 1049 case Attribute::MinSize: return 1ULL << 33; 1050 case Attribute::NoDuplicate: return 1ULL << 34; 1051 case Attribute::StackProtectStrong: return 1ULL << 35; 1052 case Attribute::SanitizeThread: return 1ULL << 36; 1053 case Attribute::SanitizeMemory: return 1ULL << 37; 1054 case Attribute::NoBuiltin: return 1ULL << 38; 1055 case Attribute::Returned: return 1ULL << 39; 1056 case Attribute::Cold: return 1ULL << 40; 1057 case Attribute::Builtin: return 1ULL << 41; 1058 case Attribute::OptimizeNone: return 1ULL << 42; 1059 case Attribute::InAlloca: return 1ULL << 43; 1060 case Attribute::NonNull: return 1ULL << 44; 1061 case Attribute::JumpTable: return 1ULL << 45; 1062 case Attribute::Convergent: return 1ULL << 46; 1063 case Attribute::SafeStack: return 1ULL << 47; 1064 case Attribute::NoRecurse: return 1ULL << 48; 1065 case Attribute::InaccessibleMemOnly: return 1ULL << 49; 1066 case Attribute::InaccessibleMemOrArgMemOnly: return 1ULL << 50; 1067 case Attribute::SwiftSelf: return 1ULL << 51; 1068 case Attribute::SwiftError: return 1ULL << 52; 1069 case Attribute::WriteOnly: return 1ULL << 53; 1070 case Attribute::Dereferenceable: 1071 llvm_unreachable("dereferenceable attribute not supported in raw format"); 1072 break; 1073 case Attribute::DereferenceableOrNull: 1074 llvm_unreachable("dereferenceable_or_null attribute not supported in raw " 1075 "format"); 1076 break; 1077 case Attribute::ArgMemOnly: 1078 llvm_unreachable("argmemonly attribute not supported in raw format"); 1079 break; 1080 case Attribute::AllocSize: 1081 llvm_unreachable("allocsize not supported in raw format"); 1082 break; 1083 } 1084 llvm_unreachable("Unsupported attribute type"); 1085 } 1086 1087 static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) { 1088 if (!Val) return; 1089 1090 for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds; 1091 I = Attribute::AttrKind(I + 1)) { 1092 if (I == Attribute::Dereferenceable || 1093 I == Attribute::DereferenceableOrNull || 1094 I == Attribute::ArgMemOnly || 1095 I == Attribute::AllocSize) 1096 continue; 1097 if (uint64_t A = (Val & getRawAttributeMask(I))) { 1098 if (I == Attribute::Alignment) 1099 B.addAlignmentAttr(1ULL << ((A >> 16) - 1)); 1100 else if (I == Attribute::StackAlignment) 1101 B.addStackAlignmentAttr(1ULL << ((A >> 26)-1)); 1102 else 1103 B.addAttribute(I); 1104 } 1105 } 1106 } 1107 1108 /// \brief This fills an AttrBuilder object with the LLVM attributes that have 1109 /// been decoded from the given integer. This function must stay in sync with 1110 /// 'encodeLLVMAttributesForBitcode'. 1111 static void decodeLLVMAttributesForBitcode(AttrBuilder &B, 1112 uint64_t EncodedAttrs) { 1113 // FIXME: Remove in 4.0. 1114 1115 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift 1116 // the bits above 31 down by 11 bits. 1117 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; 1118 assert((!Alignment || isPowerOf2_32(Alignment)) && 1119 "Alignment must be a power of two."); 1120 1121 if (Alignment) 1122 B.addAlignmentAttr(Alignment); 1123 addRawAttributeValue(B, ((EncodedAttrs & (0xfffffULL << 32)) >> 11) | 1124 (EncodedAttrs & 0xffff)); 1125 } 1126 1127 Error BitcodeReader::parseAttributeBlock() { 1128 if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 1129 return error("Invalid record"); 1130 1131 if (!MAttributes.empty()) 1132 return error("Invalid multiple blocks"); 1133 1134 SmallVector<uint64_t, 64> Record; 1135 1136 SmallVector<AttributeSet, 8> Attrs; 1137 1138 // Read all the records. 1139 while (true) { 1140 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1141 1142 switch (Entry.Kind) { 1143 case BitstreamEntry::SubBlock: // Handled for us already. 1144 case BitstreamEntry::Error: 1145 return error("Malformed block"); 1146 case BitstreamEntry::EndBlock: 1147 return Error::success(); 1148 case BitstreamEntry::Record: 1149 // The interesting case. 1150 break; 1151 } 1152 1153 // Read a record. 1154 Record.clear(); 1155 switch (Stream.readRecord(Entry.ID, Record)) { 1156 default: // Default behavior: ignore. 1157 break; 1158 case bitc::PARAMATTR_CODE_ENTRY_OLD: { // ENTRY: [paramidx0, attr0, ...] 1159 // FIXME: Remove in 4.0. 1160 if (Record.size() & 1) 1161 return error("Invalid record"); 1162 1163 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1164 AttrBuilder B; 1165 decodeLLVMAttributesForBitcode(B, Record[i+1]); 1166 Attrs.push_back(AttributeSet::get(Context, Record[i], B)); 1167 } 1168 1169 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 1170 Attrs.clear(); 1171 break; 1172 } 1173 case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [attrgrp0, attrgrp1, ...] 1174 for (unsigned i = 0, e = Record.size(); i != e; ++i) 1175 Attrs.push_back(MAttributeGroups[Record[i]]); 1176 1177 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 1178 Attrs.clear(); 1179 break; 1180 } 1181 } 1182 } 1183 } 1184 1185 // Returns Attribute::None on unrecognized codes. 1186 static Attribute::AttrKind getAttrFromCode(uint64_t Code) { 1187 switch (Code) { 1188 default: 1189 return Attribute::None; 1190 case bitc::ATTR_KIND_ALIGNMENT: 1191 return Attribute::Alignment; 1192 case bitc::ATTR_KIND_ALWAYS_INLINE: 1193 return Attribute::AlwaysInline; 1194 case bitc::ATTR_KIND_ARGMEMONLY: 1195 return Attribute::ArgMemOnly; 1196 case bitc::ATTR_KIND_BUILTIN: 1197 return Attribute::Builtin; 1198 case bitc::ATTR_KIND_BY_VAL: 1199 return Attribute::ByVal; 1200 case bitc::ATTR_KIND_IN_ALLOCA: 1201 return Attribute::InAlloca; 1202 case bitc::ATTR_KIND_COLD: 1203 return Attribute::Cold; 1204 case bitc::ATTR_KIND_CONVERGENT: 1205 return Attribute::Convergent; 1206 case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY: 1207 return Attribute::InaccessibleMemOnly; 1208 case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY: 1209 return Attribute::InaccessibleMemOrArgMemOnly; 1210 case bitc::ATTR_KIND_INLINE_HINT: 1211 return Attribute::InlineHint; 1212 case bitc::ATTR_KIND_IN_REG: 1213 return Attribute::InReg; 1214 case bitc::ATTR_KIND_JUMP_TABLE: 1215 return Attribute::JumpTable; 1216 case bitc::ATTR_KIND_MIN_SIZE: 1217 return Attribute::MinSize; 1218 case bitc::ATTR_KIND_NAKED: 1219 return Attribute::Naked; 1220 case bitc::ATTR_KIND_NEST: 1221 return Attribute::Nest; 1222 case bitc::ATTR_KIND_NO_ALIAS: 1223 return Attribute::NoAlias; 1224 case bitc::ATTR_KIND_NO_BUILTIN: 1225 return Attribute::NoBuiltin; 1226 case bitc::ATTR_KIND_NO_CAPTURE: 1227 return Attribute::NoCapture; 1228 case bitc::ATTR_KIND_NO_DUPLICATE: 1229 return Attribute::NoDuplicate; 1230 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: 1231 return Attribute::NoImplicitFloat; 1232 case bitc::ATTR_KIND_NO_INLINE: 1233 return Attribute::NoInline; 1234 case bitc::ATTR_KIND_NO_RECURSE: 1235 return Attribute::NoRecurse; 1236 case bitc::ATTR_KIND_NON_LAZY_BIND: 1237 return Attribute::NonLazyBind; 1238 case bitc::ATTR_KIND_NON_NULL: 1239 return Attribute::NonNull; 1240 case bitc::ATTR_KIND_DEREFERENCEABLE: 1241 return Attribute::Dereferenceable; 1242 case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL: 1243 return Attribute::DereferenceableOrNull; 1244 case bitc::ATTR_KIND_ALLOC_SIZE: 1245 return Attribute::AllocSize; 1246 case bitc::ATTR_KIND_NO_RED_ZONE: 1247 return Attribute::NoRedZone; 1248 case bitc::ATTR_KIND_NO_RETURN: 1249 return Attribute::NoReturn; 1250 case bitc::ATTR_KIND_NO_UNWIND: 1251 return Attribute::NoUnwind; 1252 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: 1253 return Attribute::OptimizeForSize; 1254 case bitc::ATTR_KIND_OPTIMIZE_NONE: 1255 return Attribute::OptimizeNone; 1256 case bitc::ATTR_KIND_READ_NONE: 1257 return Attribute::ReadNone; 1258 case bitc::ATTR_KIND_READ_ONLY: 1259 return Attribute::ReadOnly; 1260 case bitc::ATTR_KIND_RETURNED: 1261 return Attribute::Returned; 1262 case bitc::ATTR_KIND_RETURNS_TWICE: 1263 return Attribute::ReturnsTwice; 1264 case bitc::ATTR_KIND_S_EXT: 1265 return Attribute::SExt; 1266 case bitc::ATTR_KIND_STACK_ALIGNMENT: 1267 return Attribute::StackAlignment; 1268 case bitc::ATTR_KIND_STACK_PROTECT: 1269 return Attribute::StackProtect; 1270 case bitc::ATTR_KIND_STACK_PROTECT_REQ: 1271 return Attribute::StackProtectReq; 1272 case bitc::ATTR_KIND_STACK_PROTECT_STRONG: 1273 return Attribute::StackProtectStrong; 1274 case bitc::ATTR_KIND_SAFESTACK: 1275 return Attribute::SafeStack; 1276 case bitc::ATTR_KIND_STRUCT_RET: 1277 return Attribute::StructRet; 1278 case bitc::ATTR_KIND_SANITIZE_ADDRESS: 1279 return Attribute::SanitizeAddress; 1280 case bitc::ATTR_KIND_SANITIZE_THREAD: 1281 return Attribute::SanitizeThread; 1282 case bitc::ATTR_KIND_SANITIZE_MEMORY: 1283 return Attribute::SanitizeMemory; 1284 case bitc::ATTR_KIND_SWIFT_ERROR: 1285 return Attribute::SwiftError; 1286 case bitc::ATTR_KIND_SWIFT_SELF: 1287 return Attribute::SwiftSelf; 1288 case bitc::ATTR_KIND_UW_TABLE: 1289 return Attribute::UWTable; 1290 case bitc::ATTR_KIND_WRITEONLY: 1291 return Attribute::WriteOnly; 1292 case bitc::ATTR_KIND_Z_EXT: 1293 return Attribute::ZExt; 1294 } 1295 } 1296 1297 Error BitcodeReader::parseAlignmentValue(uint64_t Exponent, 1298 unsigned &Alignment) { 1299 // Note: Alignment in bitcode files is incremented by 1, so that zero 1300 // can be used for default alignment. 1301 if (Exponent > Value::MaxAlignmentExponent + 1) 1302 return error("Invalid alignment value"); 1303 Alignment = (1 << static_cast<unsigned>(Exponent)) >> 1; 1304 return Error::success(); 1305 } 1306 1307 Error BitcodeReader::parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind) { 1308 *Kind = getAttrFromCode(Code); 1309 if (*Kind == Attribute::None) 1310 return error("Unknown attribute kind (" + Twine(Code) + ")"); 1311 return Error::success(); 1312 } 1313 1314 Error BitcodeReader::parseAttributeGroupBlock() { 1315 if (Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) 1316 return error("Invalid record"); 1317 1318 if (!MAttributeGroups.empty()) 1319 return error("Invalid multiple blocks"); 1320 1321 SmallVector<uint64_t, 64> Record; 1322 1323 // Read all the records. 1324 while (true) { 1325 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1326 1327 switch (Entry.Kind) { 1328 case BitstreamEntry::SubBlock: // Handled for us already. 1329 case BitstreamEntry::Error: 1330 return error("Malformed block"); 1331 case BitstreamEntry::EndBlock: 1332 return Error::success(); 1333 case BitstreamEntry::Record: 1334 // The interesting case. 1335 break; 1336 } 1337 1338 // Read a record. 1339 Record.clear(); 1340 switch (Stream.readRecord(Entry.ID, Record)) { 1341 default: // Default behavior: ignore. 1342 break; 1343 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] 1344 if (Record.size() < 3) 1345 return error("Invalid record"); 1346 1347 uint64_t GrpID = Record[0]; 1348 uint64_t Idx = Record[1]; // Index of the object this attribute refers to. 1349 1350 AttrBuilder B; 1351 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1352 if (Record[i] == 0) { // Enum attribute 1353 Attribute::AttrKind Kind; 1354 if (Error Err = parseAttrKind(Record[++i], &Kind)) 1355 return Err; 1356 1357 B.addAttribute(Kind); 1358 } else if (Record[i] == 1) { // Integer attribute 1359 Attribute::AttrKind Kind; 1360 if (Error Err = parseAttrKind(Record[++i], &Kind)) 1361 return Err; 1362 if (Kind == Attribute::Alignment) 1363 B.addAlignmentAttr(Record[++i]); 1364 else if (Kind == Attribute::StackAlignment) 1365 B.addStackAlignmentAttr(Record[++i]); 1366 else if (Kind == Attribute::Dereferenceable) 1367 B.addDereferenceableAttr(Record[++i]); 1368 else if (Kind == Attribute::DereferenceableOrNull) 1369 B.addDereferenceableOrNullAttr(Record[++i]); 1370 else if (Kind == Attribute::AllocSize) 1371 B.addAllocSizeAttrFromRawRepr(Record[++i]); 1372 } else { // String attribute 1373 assert((Record[i] == 3 || Record[i] == 4) && 1374 "Invalid attribute group entry"); 1375 bool HasValue = (Record[i++] == 4); 1376 SmallString<64> KindStr; 1377 SmallString<64> ValStr; 1378 1379 while (Record[i] != 0 && i != e) 1380 KindStr += Record[i++]; 1381 assert(Record[i] == 0 && "Kind string not null terminated"); 1382 1383 if (HasValue) { 1384 // Has a value associated with it. 1385 ++i; // Skip the '0' that terminates the "kind" string. 1386 while (Record[i] != 0 && i != e) 1387 ValStr += Record[i++]; 1388 assert(Record[i] == 0 && "Value string not null terminated"); 1389 } 1390 1391 B.addAttribute(KindStr.str(), ValStr.str()); 1392 } 1393 } 1394 1395 MAttributeGroups[GrpID] = AttributeSet::get(Context, Idx, B); 1396 break; 1397 } 1398 } 1399 } 1400 } 1401 1402 Error BitcodeReader::parseTypeTable() { 1403 if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 1404 return error("Invalid record"); 1405 1406 return parseTypeTableBody(); 1407 } 1408 1409 Error BitcodeReader::parseTypeTableBody() { 1410 if (!TypeList.empty()) 1411 return error("Invalid multiple blocks"); 1412 1413 SmallVector<uint64_t, 64> Record; 1414 unsigned NumRecords = 0; 1415 1416 SmallString<64> TypeName; 1417 1418 // Read all the records for this type table. 1419 while (true) { 1420 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1421 1422 switch (Entry.Kind) { 1423 case BitstreamEntry::SubBlock: // Handled for us already. 1424 case BitstreamEntry::Error: 1425 return error("Malformed block"); 1426 case BitstreamEntry::EndBlock: 1427 if (NumRecords != TypeList.size()) 1428 return error("Malformed block"); 1429 return Error::success(); 1430 case BitstreamEntry::Record: 1431 // The interesting case. 1432 break; 1433 } 1434 1435 // Read a record. 1436 Record.clear(); 1437 Type *ResultTy = nullptr; 1438 switch (Stream.readRecord(Entry.ID, Record)) { 1439 default: 1440 return error("Invalid value"); 1441 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 1442 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 1443 // type list. This allows us to reserve space. 1444 if (Record.size() < 1) 1445 return error("Invalid record"); 1446 TypeList.resize(Record[0]); 1447 continue; 1448 case bitc::TYPE_CODE_VOID: // VOID 1449 ResultTy = Type::getVoidTy(Context); 1450 break; 1451 case bitc::TYPE_CODE_HALF: // HALF 1452 ResultTy = Type::getHalfTy(Context); 1453 break; 1454 case bitc::TYPE_CODE_FLOAT: // FLOAT 1455 ResultTy = Type::getFloatTy(Context); 1456 break; 1457 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 1458 ResultTy = Type::getDoubleTy(Context); 1459 break; 1460 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 1461 ResultTy = Type::getX86_FP80Ty(Context); 1462 break; 1463 case bitc::TYPE_CODE_FP128: // FP128 1464 ResultTy = Type::getFP128Ty(Context); 1465 break; 1466 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 1467 ResultTy = Type::getPPC_FP128Ty(Context); 1468 break; 1469 case bitc::TYPE_CODE_LABEL: // LABEL 1470 ResultTy = Type::getLabelTy(Context); 1471 break; 1472 case bitc::TYPE_CODE_METADATA: // METADATA 1473 ResultTy = Type::getMetadataTy(Context); 1474 break; 1475 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 1476 ResultTy = Type::getX86_MMXTy(Context); 1477 break; 1478 case bitc::TYPE_CODE_TOKEN: // TOKEN 1479 ResultTy = Type::getTokenTy(Context); 1480 break; 1481 case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width] 1482 if (Record.size() < 1) 1483 return error("Invalid record"); 1484 1485 uint64_t NumBits = Record[0]; 1486 if (NumBits < IntegerType::MIN_INT_BITS || 1487 NumBits > IntegerType::MAX_INT_BITS) 1488 return error("Bitwidth for integer type out of range"); 1489 ResultTy = IntegerType::get(Context, NumBits); 1490 break; 1491 } 1492 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 1493 // [pointee type, address space] 1494 if (Record.size() < 1) 1495 return error("Invalid record"); 1496 unsigned AddressSpace = 0; 1497 if (Record.size() == 2) 1498 AddressSpace = Record[1]; 1499 ResultTy = getTypeByID(Record[0]); 1500 if (!ResultTy || 1501 !PointerType::isValidElementType(ResultTy)) 1502 return error("Invalid type"); 1503 ResultTy = PointerType::get(ResultTy, AddressSpace); 1504 break; 1505 } 1506 case bitc::TYPE_CODE_FUNCTION_OLD: { 1507 // FIXME: attrid is dead, remove it in LLVM 4.0 1508 // FUNCTION: [vararg, attrid, retty, paramty x N] 1509 if (Record.size() < 3) 1510 return error("Invalid record"); 1511 SmallVector<Type*, 8> ArgTys; 1512 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 1513 if (Type *T = getTypeByID(Record[i])) 1514 ArgTys.push_back(T); 1515 else 1516 break; 1517 } 1518 1519 ResultTy = getTypeByID(Record[2]); 1520 if (!ResultTy || ArgTys.size() < Record.size()-3) 1521 return error("Invalid type"); 1522 1523 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1524 break; 1525 } 1526 case bitc::TYPE_CODE_FUNCTION: { 1527 // FUNCTION: [vararg, retty, paramty x N] 1528 if (Record.size() < 2) 1529 return error("Invalid record"); 1530 SmallVector<Type*, 8> ArgTys; 1531 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1532 if (Type *T = getTypeByID(Record[i])) { 1533 if (!FunctionType::isValidArgumentType(T)) 1534 return error("Invalid function argument type"); 1535 ArgTys.push_back(T); 1536 } 1537 else 1538 break; 1539 } 1540 1541 ResultTy = getTypeByID(Record[1]); 1542 if (!ResultTy || ArgTys.size() < Record.size()-2) 1543 return error("Invalid type"); 1544 1545 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1546 break; 1547 } 1548 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 1549 if (Record.size() < 1) 1550 return error("Invalid record"); 1551 SmallVector<Type*, 8> EltTys; 1552 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1553 if (Type *T = getTypeByID(Record[i])) 1554 EltTys.push_back(T); 1555 else 1556 break; 1557 } 1558 if (EltTys.size() != Record.size()-1) 1559 return error("Invalid type"); 1560 ResultTy = StructType::get(Context, EltTys, Record[0]); 1561 break; 1562 } 1563 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 1564 if (convertToString(Record, 0, TypeName)) 1565 return error("Invalid record"); 1566 continue; 1567 1568 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 1569 if (Record.size() < 1) 1570 return error("Invalid record"); 1571 1572 if (NumRecords >= TypeList.size()) 1573 return error("Invalid TYPE table"); 1574 1575 // Check to see if this was forward referenced, if so fill in the temp. 1576 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1577 if (Res) { 1578 Res->setName(TypeName); 1579 TypeList[NumRecords] = nullptr; 1580 } else // Otherwise, create a new struct. 1581 Res = createIdentifiedStructType(Context, TypeName); 1582 TypeName.clear(); 1583 1584 SmallVector<Type*, 8> EltTys; 1585 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1586 if (Type *T = getTypeByID(Record[i])) 1587 EltTys.push_back(T); 1588 else 1589 break; 1590 } 1591 if (EltTys.size() != Record.size()-1) 1592 return error("Invalid record"); 1593 Res->setBody(EltTys, Record[0]); 1594 ResultTy = Res; 1595 break; 1596 } 1597 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 1598 if (Record.size() != 1) 1599 return error("Invalid record"); 1600 1601 if (NumRecords >= TypeList.size()) 1602 return error("Invalid TYPE table"); 1603 1604 // Check to see if this was forward referenced, if so fill in the temp. 1605 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1606 if (Res) { 1607 Res->setName(TypeName); 1608 TypeList[NumRecords] = nullptr; 1609 } else // Otherwise, create a new struct with no body. 1610 Res = createIdentifiedStructType(Context, TypeName); 1611 TypeName.clear(); 1612 ResultTy = Res; 1613 break; 1614 } 1615 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 1616 if (Record.size() < 2) 1617 return error("Invalid record"); 1618 ResultTy = getTypeByID(Record[1]); 1619 if (!ResultTy || !ArrayType::isValidElementType(ResultTy)) 1620 return error("Invalid type"); 1621 ResultTy = ArrayType::get(ResultTy, Record[0]); 1622 break; 1623 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] 1624 if (Record.size() < 2) 1625 return error("Invalid record"); 1626 if (Record[0] == 0) 1627 return error("Invalid vector length"); 1628 ResultTy = getTypeByID(Record[1]); 1629 if (!ResultTy || !StructType::isValidElementType(ResultTy)) 1630 return error("Invalid type"); 1631 ResultTy = VectorType::get(ResultTy, Record[0]); 1632 break; 1633 } 1634 1635 if (NumRecords >= TypeList.size()) 1636 return error("Invalid TYPE table"); 1637 if (TypeList[NumRecords]) 1638 return error( 1639 "Invalid TYPE table: Only named structs can be forward referenced"); 1640 assert(ResultTy && "Didn't read a type?"); 1641 TypeList[NumRecords++] = ResultTy; 1642 } 1643 } 1644 1645 Error BitcodeReader::parseOperandBundleTags() { 1646 if (Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID)) 1647 return error("Invalid record"); 1648 1649 if (!BundleTags.empty()) 1650 return error("Invalid multiple blocks"); 1651 1652 SmallVector<uint64_t, 64> Record; 1653 1654 while (true) { 1655 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1656 1657 switch (Entry.Kind) { 1658 case BitstreamEntry::SubBlock: // Handled for us already. 1659 case BitstreamEntry::Error: 1660 return error("Malformed block"); 1661 case BitstreamEntry::EndBlock: 1662 return Error::success(); 1663 case BitstreamEntry::Record: 1664 // The interesting case. 1665 break; 1666 } 1667 1668 // Tags are implicitly mapped to integers by their order. 1669 1670 if (Stream.readRecord(Entry.ID, Record) != bitc::OPERAND_BUNDLE_TAG) 1671 return error("Invalid record"); 1672 1673 // OPERAND_BUNDLE_TAG: [strchr x N] 1674 BundleTags.emplace_back(); 1675 if (convertToString(Record, 0, BundleTags.back())) 1676 return error("Invalid record"); 1677 Record.clear(); 1678 } 1679 } 1680 1681 /// Associate a value with its name from the given index in the provided record. 1682 Expected<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record, 1683 unsigned NameIndex, Triple &TT) { 1684 SmallString<128> ValueName; 1685 if (convertToString(Record, NameIndex, ValueName)) 1686 return error("Invalid record"); 1687 unsigned ValueID = Record[0]; 1688 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 1689 return error("Invalid record"); 1690 Value *V = ValueList[ValueID]; 1691 1692 StringRef NameStr(ValueName.data(), ValueName.size()); 1693 if (NameStr.find_first_of(0) != StringRef::npos) 1694 return error("Invalid value name"); 1695 V->setName(NameStr); 1696 auto *GO = dyn_cast<GlobalObject>(V); 1697 if (GO) { 1698 if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) { 1699 if (TT.isOSBinFormatMachO()) 1700 GO->setComdat(nullptr); 1701 else 1702 GO->setComdat(TheModule->getOrInsertComdat(V->getName())); 1703 } 1704 } 1705 return V; 1706 } 1707 1708 /// Helper to note and return the current location, and jump to the given 1709 /// offset. 1710 static uint64_t jumpToValueSymbolTable(uint64_t Offset, 1711 BitstreamCursor &Stream) { 1712 // Save the current parsing location so we can jump back at the end 1713 // of the VST read. 1714 uint64_t CurrentBit = Stream.GetCurrentBitNo(); 1715 Stream.JumpToBit(Offset * 32); 1716 #ifndef NDEBUG 1717 // Do some checking if we are in debug mode. 1718 BitstreamEntry Entry = Stream.advance(); 1719 assert(Entry.Kind == BitstreamEntry::SubBlock); 1720 assert(Entry.ID == bitc::VALUE_SYMTAB_BLOCK_ID); 1721 #else 1722 // In NDEBUG mode ignore the output so we don't get an unused variable 1723 // warning. 1724 Stream.advance(); 1725 #endif 1726 return CurrentBit; 1727 } 1728 1729 /// Parse the value symbol table at either the current parsing location or 1730 /// at the given bit offset if provided. 1731 Error BitcodeReader::parseValueSymbolTable(uint64_t Offset) { 1732 uint64_t CurrentBit; 1733 // Pass in the Offset to distinguish between calling for the module-level 1734 // VST (where we want to jump to the VST offset) and the function-level 1735 // VST (where we don't). 1736 if (Offset > 0) 1737 CurrentBit = jumpToValueSymbolTable(Offset, Stream); 1738 1739 // Compute the delta between the bitcode indices in the VST (the word offset 1740 // to the word-aligned ENTER_SUBBLOCK for the function block, and that 1741 // expected by the lazy reader. The reader's EnterSubBlock expects to have 1742 // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID 1743 // (size BlockIDWidth). Note that we access the stream's AbbrevID width here 1744 // just before entering the VST subblock because: 1) the EnterSubBlock 1745 // changes the AbbrevID width; 2) the VST block is nested within the same 1746 // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same 1747 // AbbrevID width before calling EnterSubBlock; and 3) when we want to 1748 // jump to the FUNCTION_BLOCK using this offset later, we don't want 1749 // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK. 1750 unsigned FuncBitcodeOffsetDelta = 1751 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 1752 1753 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 1754 return error("Invalid record"); 1755 1756 SmallVector<uint64_t, 64> Record; 1757 1758 Triple TT(TheModule->getTargetTriple()); 1759 1760 // Read all the records for this value table. 1761 SmallString<128> ValueName; 1762 1763 while (true) { 1764 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1765 1766 switch (Entry.Kind) { 1767 case BitstreamEntry::SubBlock: // Handled for us already. 1768 case BitstreamEntry::Error: 1769 return error("Malformed block"); 1770 case BitstreamEntry::EndBlock: 1771 if (Offset > 0) 1772 Stream.JumpToBit(CurrentBit); 1773 return Error::success(); 1774 case BitstreamEntry::Record: 1775 // The interesting case. 1776 break; 1777 } 1778 1779 // Read a record. 1780 Record.clear(); 1781 switch (Stream.readRecord(Entry.ID, Record)) { 1782 default: // Default behavior: unknown type. 1783 break; 1784 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 1785 Expected<Value *> ValOrErr = recordValue(Record, 1, TT); 1786 if (Error Err = ValOrErr.takeError()) 1787 return Err; 1788 ValOrErr.get(); 1789 break; 1790 } 1791 case bitc::VST_CODE_FNENTRY: { 1792 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 1793 Expected<Value *> ValOrErr = recordValue(Record, 2, TT); 1794 if (Error Err = ValOrErr.takeError()) 1795 return Err; 1796 Value *V = ValOrErr.get(); 1797 1798 auto *GO = dyn_cast<GlobalObject>(V); 1799 if (!GO) { 1800 // If this is an alias, need to get the actual Function object 1801 // it aliases, in order to set up the DeferredFunctionInfo entry below. 1802 auto *GA = dyn_cast<GlobalAlias>(V); 1803 if (GA) 1804 GO = GA->getBaseObject(); 1805 assert(GO); 1806 } 1807 1808 // Note that we subtract 1 here because the offset is relative to one word 1809 // before the start of the identification or module block, which was 1810 // historically always the start of the regular bitcode header. 1811 uint64_t FuncWordOffset = Record[1] - 1; 1812 Function *F = dyn_cast<Function>(GO); 1813 assert(F); 1814 uint64_t FuncBitOffset = FuncWordOffset * 32; 1815 DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta; 1816 // Set the LastFunctionBlockBit to point to the last function block. 1817 // Later when parsing is resumed after function materialization, 1818 // we can simply skip that last function block. 1819 if (FuncBitOffset > LastFunctionBlockBit) 1820 LastFunctionBlockBit = FuncBitOffset; 1821 break; 1822 } 1823 case bitc::VST_CODE_BBENTRY: { 1824 if (convertToString(Record, 1, ValueName)) 1825 return error("Invalid record"); 1826 BasicBlock *BB = getBasicBlock(Record[0]); 1827 if (!BB) 1828 return error("Invalid record"); 1829 1830 BB->setName(StringRef(ValueName.data(), ValueName.size())); 1831 ValueName.clear(); 1832 break; 1833 } 1834 } 1835 } 1836 } 1837 1838 /// Decode a signed value stored with the sign bit in the LSB for dense VBR 1839 /// encoding. 1840 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { 1841 if ((V & 1) == 0) 1842 return V >> 1; 1843 if (V != 1) 1844 return -(V >> 1); 1845 // There is no such thing as -0 with integers. "-0" really means MININT. 1846 return 1ULL << 63; 1847 } 1848 1849 /// Resolve all of the initializers for global values and aliases that we can. 1850 Error BitcodeReader::resolveGlobalAndIndirectSymbolInits() { 1851 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist; 1852 std::vector<std::pair<GlobalIndirectSymbol*, unsigned> > 1853 IndirectSymbolInitWorklist; 1854 std::vector<std::pair<Function*, unsigned> > FunctionPrefixWorklist; 1855 std::vector<std::pair<Function*, unsigned> > FunctionPrologueWorklist; 1856 std::vector<std::pair<Function*, unsigned> > FunctionPersonalityFnWorklist; 1857 1858 GlobalInitWorklist.swap(GlobalInits); 1859 IndirectSymbolInitWorklist.swap(IndirectSymbolInits); 1860 FunctionPrefixWorklist.swap(FunctionPrefixes); 1861 FunctionPrologueWorklist.swap(FunctionPrologues); 1862 FunctionPersonalityFnWorklist.swap(FunctionPersonalityFns); 1863 1864 while (!GlobalInitWorklist.empty()) { 1865 unsigned ValID = GlobalInitWorklist.back().second; 1866 if (ValID >= ValueList.size()) { 1867 // Not ready to resolve this yet, it requires something later in the file. 1868 GlobalInits.push_back(GlobalInitWorklist.back()); 1869 } else { 1870 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 1871 GlobalInitWorklist.back().first->setInitializer(C); 1872 else 1873 return error("Expected a constant"); 1874 } 1875 GlobalInitWorklist.pop_back(); 1876 } 1877 1878 while (!IndirectSymbolInitWorklist.empty()) { 1879 unsigned ValID = IndirectSymbolInitWorklist.back().second; 1880 if (ValID >= ValueList.size()) { 1881 IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back()); 1882 } else { 1883 Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]); 1884 if (!C) 1885 return error("Expected a constant"); 1886 GlobalIndirectSymbol *GIS = IndirectSymbolInitWorklist.back().first; 1887 if (isa<GlobalAlias>(GIS) && C->getType() != GIS->getType()) 1888 return error("Alias and aliasee types don't match"); 1889 GIS->setIndirectSymbol(C); 1890 } 1891 IndirectSymbolInitWorklist.pop_back(); 1892 } 1893 1894 while (!FunctionPrefixWorklist.empty()) { 1895 unsigned ValID = FunctionPrefixWorklist.back().second; 1896 if (ValID >= ValueList.size()) { 1897 FunctionPrefixes.push_back(FunctionPrefixWorklist.back()); 1898 } else { 1899 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 1900 FunctionPrefixWorklist.back().first->setPrefixData(C); 1901 else 1902 return error("Expected a constant"); 1903 } 1904 FunctionPrefixWorklist.pop_back(); 1905 } 1906 1907 while (!FunctionPrologueWorklist.empty()) { 1908 unsigned ValID = FunctionPrologueWorklist.back().second; 1909 if (ValID >= ValueList.size()) { 1910 FunctionPrologues.push_back(FunctionPrologueWorklist.back()); 1911 } else { 1912 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 1913 FunctionPrologueWorklist.back().first->setPrologueData(C); 1914 else 1915 return error("Expected a constant"); 1916 } 1917 FunctionPrologueWorklist.pop_back(); 1918 } 1919 1920 while (!FunctionPersonalityFnWorklist.empty()) { 1921 unsigned ValID = FunctionPersonalityFnWorklist.back().second; 1922 if (ValID >= ValueList.size()) { 1923 FunctionPersonalityFns.push_back(FunctionPersonalityFnWorklist.back()); 1924 } else { 1925 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 1926 FunctionPersonalityFnWorklist.back().first->setPersonalityFn(C); 1927 else 1928 return error("Expected a constant"); 1929 } 1930 FunctionPersonalityFnWorklist.pop_back(); 1931 } 1932 1933 return Error::success(); 1934 } 1935 1936 static APInt readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { 1937 SmallVector<uint64_t, 8> Words(Vals.size()); 1938 transform(Vals, Words.begin(), 1939 BitcodeReader::decodeSignRotatedValue); 1940 1941 return APInt(TypeBits, Words); 1942 } 1943 1944 Error BitcodeReader::parseConstants() { 1945 if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 1946 return error("Invalid record"); 1947 1948 SmallVector<uint64_t, 64> Record; 1949 1950 // Read all the records for this value table. 1951 Type *CurTy = Type::getInt32Ty(Context); 1952 unsigned NextCstNo = ValueList.size(); 1953 1954 while (true) { 1955 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1956 1957 switch (Entry.Kind) { 1958 case BitstreamEntry::SubBlock: // Handled for us already. 1959 case BitstreamEntry::Error: 1960 return error("Malformed block"); 1961 case BitstreamEntry::EndBlock: 1962 if (NextCstNo != ValueList.size()) 1963 return error("Invalid constant reference"); 1964 1965 // Once all the constants have been read, go through and resolve forward 1966 // references. 1967 ValueList.resolveConstantForwardRefs(); 1968 return Error::success(); 1969 case BitstreamEntry::Record: 1970 // The interesting case. 1971 break; 1972 } 1973 1974 // Read a record. 1975 Record.clear(); 1976 Type *VoidType = Type::getVoidTy(Context); 1977 Value *V = nullptr; 1978 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 1979 switch (BitCode) { 1980 default: // Default behavior: unknown constant 1981 case bitc::CST_CODE_UNDEF: // UNDEF 1982 V = UndefValue::get(CurTy); 1983 break; 1984 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 1985 if (Record.empty()) 1986 return error("Invalid record"); 1987 if (Record[0] >= TypeList.size() || !TypeList[Record[0]]) 1988 return error("Invalid record"); 1989 if (TypeList[Record[0]] == VoidType) 1990 return error("Invalid constant type"); 1991 CurTy = TypeList[Record[0]]; 1992 continue; // Skip the ValueList manipulation. 1993 case bitc::CST_CODE_NULL: // NULL 1994 V = Constant::getNullValue(CurTy); 1995 break; 1996 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 1997 if (!CurTy->isIntegerTy() || Record.empty()) 1998 return error("Invalid record"); 1999 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); 2000 break; 2001 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 2002 if (!CurTy->isIntegerTy() || Record.empty()) 2003 return error("Invalid record"); 2004 2005 APInt VInt = 2006 readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth()); 2007 V = ConstantInt::get(Context, VInt); 2008 2009 break; 2010 } 2011 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 2012 if (Record.empty()) 2013 return error("Invalid record"); 2014 if (CurTy->isHalfTy()) 2015 V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf(), 2016 APInt(16, (uint16_t)Record[0]))); 2017 else if (CurTy->isFloatTy()) 2018 V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle(), 2019 APInt(32, (uint32_t)Record[0]))); 2020 else if (CurTy->isDoubleTy()) 2021 V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble(), 2022 APInt(64, Record[0]))); 2023 else if (CurTy->isX86_FP80Ty()) { 2024 // Bits are not stored the same way as a normal i80 APInt, compensate. 2025 uint64_t Rearrange[2]; 2026 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 2027 Rearrange[1] = Record[0] >> 48; 2028 V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended(), 2029 APInt(80, Rearrange))); 2030 } else if (CurTy->isFP128Ty()) 2031 V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad(), 2032 APInt(128, Record))); 2033 else if (CurTy->isPPC_FP128Ty()) 2034 V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble(), 2035 APInt(128, Record))); 2036 else 2037 V = UndefValue::get(CurTy); 2038 break; 2039 } 2040 2041 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 2042 if (Record.empty()) 2043 return error("Invalid record"); 2044 2045 unsigned Size = Record.size(); 2046 SmallVector<Constant*, 16> Elts; 2047 2048 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 2049 for (unsigned i = 0; i != Size; ++i) 2050 Elts.push_back(ValueList.getConstantFwdRef(Record[i], 2051 STy->getElementType(i))); 2052 V = ConstantStruct::get(STy, Elts); 2053 } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) { 2054 Type *EltTy = ATy->getElementType(); 2055 for (unsigned i = 0; i != Size; ++i) 2056 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2057 V = ConstantArray::get(ATy, Elts); 2058 } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) { 2059 Type *EltTy = VTy->getElementType(); 2060 for (unsigned i = 0; i != Size; ++i) 2061 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2062 V = ConstantVector::get(Elts); 2063 } else { 2064 V = UndefValue::get(CurTy); 2065 } 2066 break; 2067 } 2068 case bitc::CST_CODE_STRING: // STRING: [values] 2069 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 2070 if (Record.empty()) 2071 return error("Invalid record"); 2072 2073 SmallString<16> Elts(Record.begin(), Record.end()); 2074 V = ConstantDataArray::getString(Context, Elts, 2075 BitCode == bitc::CST_CODE_CSTRING); 2076 break; 2077 } 2078 case bitc::CST_CODE_DATA: {// DATA: [n x value] 2079 if (Record.empty()) 2080 return error("Invalid record"); 2081 2082 Type *EltTy = cast<SequentialType>(CurTy)->getElementType(); 2083 if (EltTy->isIntegerTy(8)) { 2084 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); 2085 if (isa<VectorType>(CurTy)) 2086 V = ConstantDataVector::get(Context, Elts); 2087 else 2088 V = ConstantDataArray::get(Context, Elts); 2089 } else if (EltTy->isIntegerTy(16)) { 2090 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2091 if (isa<VectorType>(CurTy)) 2092 V = ConstantDataVector::get(Context, Elts); 2093 else 2094 V = ConstantDataArray::get(Context, Elts); 2095 } else if (EltTy->isIntegerTy(32)) { 2096 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2097 if (isa<VectorType>(CurTy)) 2098 V = ConstantDataVector::get(Context, Elts); 2099 else 2100 V = ConstantDataArray::get(Context, Elts); 2101 } else if (EltTy->isIntegerTy(64)) { 2102 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2103 if (isa<VectorType>(CurTy)) 2104 V = ConstantDataVector::get(Context, Elts); 2105 else 2106 V = ConstantDataArray::get(Context, Elts); 2107 } else if (EltTy->isHalfTy()) { 2108 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2109 if (isa<VectorType>(CurTy)) 2110 V = ConstantDataVector::getFP(Context, Elts); 2111 else 2112 V = ConstantDataArray::getFP(Context, Elts); 2113 } else if (EltTy->isFloatTy()) { 2114 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2115 if (isa<VectorType>(CurTy)) 2116 V = ConstantDataVector::getFP(Context, Elts); 2117 else 2118 V = ConstantDataArray::getFP(Context, Elts); 2119 } else if (EltTy->isDoubleTy()) { 2120 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2121 if (isa<VectorType>(CurTy)) 2122 V = ConstantDataVector::getFP(Context, Elts); 2123 else 2124 V = ConstantDataArray::getFP(Context, Elts); 2125 } else { 2126 return error("Invalid type for value"); 2127 } 2128 break; 2129 } 2130 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 2131 if (Record.size() < 3) 2132 return error("Invalid record"); 2133 int Opc = getDecodedBinaryOpcode(Record[0], CurTy); 2134 if (Opc < 0) { 2135 V = UndefValue::get(CurTy); // Unknown binop. 2136 } else { 2137 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 2138 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy); 2139 unsigned Flags = 0; 2140 if (Record.size() >= 4) { 2141 if (Opc == Instruction::Add || 2142 Opc == Instruction::Sub || 2143 Opc == Instruction::Mul || 2144 Opc == Instruction::Shl) { 2145 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 2146 Flags |= OverflowingBinaryOperator::NoSignedWrap; 2147 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 2148 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 2149 } else if (Opc == Instruction::SDiv || 2150 Opc == Instruction::UDiv || 2151 Opc == Instruction::LShr || 2152 Opc == Instruction::AShr) { 2153 if (Record[3] & (1 << bitc::PEO_EXACT)) 2154 Flags |= SDivOperator::IsExact; 2155 } 2156 } 2157 V = ConstantExpr::get(Opc, LHS, RHS, Flags); 2158 } 2159 break; 2160 } 2161 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 2162 if (Record.size() < 3) 2163 return error("Invalid record"); 2164 int Opc = getDecodedCastOpcode(Record[0]); 2165 if (Opc < 0) { 2166 V = UndefValue::get(CurTy); // Unknown cast. 2167 } else { 2168 Type *OpTy = getTypeByID(Record[1]); 2169 if (!OpTy) 2170 return error("Invalid record"); 2171 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy); 2172 V = UpgradeBitCastExpr(Opc, Op, CurTy); 2173 if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy); 2174 } 2175 break; 2176 } 2177 case bitc::CST_CODE_CE_INBOUNDS_GEP: // [ty, n x operands] 2178 case bitc::CST_CODE_CE_GEP: // [ty, n x operands] 2179 case bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX: { // [ty, flags, n x 2180 // operands] 2181 unsigned OpNum = 0; 2182 Type *PointeeType = nullptr; 2183 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX || 2184 Record.size() % 2) 2185 PointeeType = getTypeByID(Record[OpNum++]); 2186 2187 bool InBounds = false; 2188 Optional<unsigned> InRangeIndex; 2189 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX) { 2190 uint64_t Op = Record[OpNum++]; 2191 InBounds = Op & 1; 2192 InRangeIndex = Op >> 1; 2193 } else if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP) 2194 InBounds = true; 2195 2196 SmallVector<Constant*, 16> Elts; 2197 while (OpNum != Record.size()) { 2198 Type *ElTy = getTypeByID(Record[OpNum++]); 2199 if (!ElTy) 2200 return error("Invalid record"); 2201 Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy)); 2202 } 2203 2204 if (PointeeType && 2205 PointeeType != 2206 cast<PointerType>(Elts[0]->getType()->getScalarType()) 2207 ->getElementType()) 2208 return error("Explicit gep operator type does not match pointee type " 2209 "of pointer operand"); 2210 2211 if (Elts.size() < 1) 2212 return error("Invalid gep with no operands"); 2213 2214 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 2215 V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices, 2216 InBounds, InRangeIndex); 2217 break; 2218 } 2219 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] 2220 if (Record.size() < 3) 2221 return error("Invalid record"); 2222 2223 Type *SelectorTy = Type::getInt1Ty(Context); 2224 2225 // The selector might be an i1 or an <n x i1> 2226 // Get the type from the ValueList before getting a forward ref. 2227 if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) 2228 if (Value *V = ValueList[Record[0]]) 2229 if (SelectorTy != V->getType()) 2230 SelectorTy = VectorType::get(SelectorTy, VTy->getNumElements()); 2231 2232 V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0], 2233 SelectorTy), 2234 ValueList.getConstantFwdRef(Record[1],CurTy), 2235 ValueList.getConstantFwdRef(Record[2],CurTy)); 2236 break; 2237 } 2238 case bitc::CST_CODE_CE_EXTRACTELT 2239 : { // CE_EXTRACTELT: [opty, opval, opty, opval] 2240 if (Record.size() < 3) 2241 return error("Invalid record"); 2242 VectorType *OpTy = 2243 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2244 if (!OpTy) 2245 return error("Invalid record"); 2246 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2247 Constant *Op1 = nullptr; 2248 if (Record.size() == 4) { 2249 Type *IdxTy = getTypeByID(Record[2]); 2250 if (!IdxTy) 2251 return error("Invalid record"); 2252 Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2253 } else // TODO: Remove with llvm 4.0 2254 Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2255 if (!Op1) 2256 return error("Invalid record"); 2257 V = ConstantExpr::getExtractElement(Op0, Op1); 2258 break; 2259 } 2260 case bitc::CST_CODE_CE_INSERTELT 2261 : { // CE_INSERTELT: [opval, opval, opty, opval] 2262 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2263 if (Record.size() < 3 || !OpTy) 2264 return error("Invalid record"); 2265 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2266 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], 2267 OpTy->getElementType()); 2268 Constant *Op2 = nullptr; 2269 if (Record.size() == 4) { 2270 Type *IdxTy = getTypeByID(Record[2]); 2271 if (!IdxTy) 2272 return error("Invalid record"); 2273 Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2274 } else // TODO: Remove with llvm 4.0 2275 Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2276 if (!Op2) 2277 return error("Invalid record"); 2278 V = ConstantExpr::getInsertElement(Op0, Op1, Op2); 2279 break; 2280 } 2281 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 2282 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2283 if (Record.size() < 3 || !OpTy) 2284 return error("Invalid record"); 2285 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2286 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy); 2287 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 2288 OpTy->getNumElements()); 2289 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy); 2290 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 2291 break; 2292 } 2293 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 2294 VectorType *RTy = dyn_cast<VectorType>(CurTy); 2295 VectorType *OpTy = 2296 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2297 if (Record.size() < 4 || !RTy || !OpTy) 2298 return error("Invalid record"); 2299 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2300 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2301 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 2302 RTy->getNumElements()); 2303 Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy); 2304 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 2305 break; 2306 } 2307 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 2308 if (Record.size() < 4) 2309 return error("Invalid record"); 2310 Type *OpTy = getTypeByID(Record[0]); 2311 if (!OpTy) 2312 return error("Invalid record"); 2313 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2314 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2315 2316 if (OpTy->isFPOrFPVectorTy()) 2317 V = ConstantExpr::getFCmp(Record[3], Op0, Op1); 2318 else 2319 V = ConstantExpr::getICmp(Record[3], Op0, Op1); 2320 break; 2321 } 2322 // This maintains backward compatibility, pre-asm dialect keywords. 2323 // FIXME: Remove with the 4.0 release. 2324 case bitc::CST_CODE_INLINEASM_OLD: { 2325 if (Record.size() < 2) 2326 return error("Invalid record"); 2327 std::string AsmStr, ConstrStr; 2328 bool HasSideEffects = Record[0] & 1; 2329 bool IsAlignStack = Record[0] >> 1; 2330 unsigned AsmStrSize = Record[1]; 2331 if (2+AsmStrSize >= Record.size()) 2332 return error("Invalid record"); 2333 unsigned ConstStrSize = Record[2+AsmStrSize]; 2334 if (3+AsmStrSize+ConstStrSize > Record.size()) 2335 return error("Invalid record"); 2336 2337 for (unsigned i = 0; i != AsmStrSize; ++i) 2338 AsmStr += (char)Record[2+i]; 2339 for (unsigned i = 0; i != ConstStrSize; ++i) 2340 ConstrStr += (char)Record[3+AsmStrSize+i]; 2341 PointerType *PTy = cast<PointerType>(CurTy); 2342 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 2343 AsmStr, ConstrStr, HasSideEffects, IsAlignStack); 2344 break; 2345 } 2346 // This version adds support for the asm dialect keywords (e.g., 2347 // inteldialect). 2348 case bitc::CST_CODE_INLINEASM: { 2349 if (Record.size() < 2) 2350 return error("Invalid record"); 2351 std::string AsmStr, ConstrStr; 2352 bool HasSideEffects = Record[0] & 1; 2353 bool IsAlignStack = (Record[0] >> 1) & 1; 2354 unsigned AsmDialect = Record[0] >> 2; 2355 unsigned AsmStrSize = Record[1]; 2356 if (2+AsmStrSize >= Record.size()) 2357 return error("Invalid record"); 2358 unsigned ConstStrSize = Record[2+AsmStrSize]; 2359 if (3+AsmStrSize+ConstStrSize > Record.size()) 2360 return error("Invalid record"); 2361 2362 for (unsigned i = 0; i != AsmStrSize; ++i) 2363 AsmStr += (char)Record[2+i]; 2364 for (unsigned i = 0; i != ConstStrSize; ++i) 2365 ConstrStr += (char)Record[3+AsmStrSize+i]; 2366 PointerType *PTy = cast<PointerType>(CurTy); 2367 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 2368 AsmStr, ConstrStr, HasSideEffects, IsAlignStack, 2369 InlineAsm::AsmDialect(AsmDialect)); 2370 break; 2371 } 2372 case bitc::CST_CODE_BLOCKADDRESS:{ 2373 if (Record.size() < 3) 2374 return error("Invalid record"); 2375 Type *FnTy = getTypeByID(Record[0]); 2376 if (!FnTy) 2377 return error("Invalid record"); 2378 Function *Fn = 2379 dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy)); 2380 if (!Fn) 2381 return error("Invalid record"); 2382 2383 // If the function is already parsed we can insert the block address right 2384 // away. 2385 BasicBlock *BB; 2386 unsigned BBID = Record[2]; 2387 if (!BBID) 2388 // Invalid reference to entry block. 2389 return error("Invalid ID"); 2390 if (!Fn->empty()) { 2391 Function::iterator BBI = Fn->begin(), BBE = Fn->end(); 2392 for (size_t I = 0, E = BBID; I != E; ++I) { 2393 if (BBI == BBE) 2394 return error("Invalid ID"); 2395 ++BBI; 2396 } 2397 BB = &*BBI; 2398 } else { 2399 // Otherwise insert a placeholder and remember it so it can be inserted 2400 // when the function is parsed. 2401 auto &FwdBBs = BasicBlockFwdRefs[Fn]; 2402 if (FwdBBs.empty()) 2403 BasicBlockFwdRefQueue.push_back(Fn); 2404 if (FwdBBs.size() < BBID + 1) 2405 FwdBBs.resize(BBID + 1); 2406 if (!FwdBBs[BBID]) 2407 FwdBBs[BBID] = BasicBlock::Create(Context); 2408 BB = FwdBBs[BBID]; 2409 } 2410 V = BlockAddress::get(Fn, BB); 2411 break; 2412 } 2413 } 2414 2415 ValueList.assignValue(V, NextCstNo); 2416 ++NextCstNo; 2417 } 2418 } 2419 2420 Error BitcodeReader::parseUseLists() { 2421 if (Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 2422 return error("Invalid record"); 2423 2424 // Read all the records. 2425 SmallVector<uint64_t, 64> Record; 2426 2427 while (true) { 2428 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2429 2430 switch (Entry.Kind) { 2431 case BitstreamEntry::SubBlock: // Handled for us already. 2432 case BitstreamEntry::Error: 2433 return error("Malformed block"); 2434 case BitstreamEntry::EndBlock: 2435 return Error::success(); 2436 case BitstreamEntry::Record: 2437 // The interesting case. 2438 break; 2439 } 2440 2441 // Read a use list record. 2442 Record.clear(); 2443 bool IsBB = false; 2444 switch (Stream.readRecord(Entry.ID, Record)) { 2445 default: // Default behavior: unknown type. 2446 break; 2447 case bitc::USELIST_CODE_BB: 2448 IsBB = true; 2449 LLVM_FALLTHROUGH; 2450 case bitc::USELIST_CODE_DEFAULT: { 2451 unsigned RecordLength = Record.size(); 2452 if (RecordLength < 3) 2453 // Records should have at least an ID and two indexes. 2454 return error("Invalid record"); 2455 unsigned ID = Record.back(); 2456 Record.pop_back(); 2457 2458 Value *V; 2459 if (IsBB) { 2460 assert(ID < FunctionBBs.size() && "Basic block not found"); 2461 V = FunctionBBs[ID]; 2462 } else 2463 V = ValueList[ID]; 2464 unsigned NumUses = 0; 2465 SmallDenseMap<const Use *, unsigned, 16> Order; 2466 for (const Use &U : V->materialized_uses()) { 2467 if (++NumUses > Record.size()) 2468 break; 2469 Order[&U] = Record[NumUses - 1]; 2470 } 2471 if (Order.size() != Record.size() || NumUses > Record.size()) 2472 // Mismatches can happen if the functions are being materialized lazily 2473 // (out-of-order), or a value has been upgraded. 2474 break; 2475 2476 V->sortUseList([&](const Use &L, const Use &R) { 2477 return Order.lookup(&L) < Order.lookup(&R); 2478 }); 2479 break; 2480 } 2481 } 2482 } 2483 } 2484 2485 /// When we see the block for metadata, remember where it is and then skip it. 2486 /// This lets us lazily deserialize the metadata. 2487 Error BitcodeReader::rememberAndSkipMetadata() { 2488 // Save the current stream state. 2489 uint64_t CurBit = Stream.GetCurrentBitNo(); 2490 DeferredMetadataInfo.push_back(CurBit); 2491 2492 // Skip over the block for now. 2493 if (Stream.SkipBlock()) 2494 return error("Invalid record"); 2495 return Error::success(); 2496 } 2497 2498 Error BitcodeReader::materializeMetadata() { 2499 for (uint64_t BitPos : DeferredMetadataInfo) { 2500 // Move the bit stream to the saved position. 2501 Stream.JumpToBit(BitPos); 2502 if (Error Err = MDLoader->parseModuleMetadata()) 2503 return Err; 2504 } 2505 DeferredMetadataInfo.clear(); 2506 return Error::success(); 2507 } 2508 2509 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; } 2510 2511 /// When we see the block for a function body, remember where it is and then 2512 /// skip it. This lets us lazily deserialize the functions. 2513 Error BitcodeReader::rememberAndSkipFunctionBody() { 2514 // Get the function we are talking about. 2515 if (FunctionsWithBodies.empty()) 2516 return error("Insufficient function protos"); 2517 2518 Function *Fn = FunctionsWithBodies.back(); 2519 FunctionsWithBodies.pop_back(); 2520 2521 // Save the current stream state. 2522 uint64_t CurBit = Stream.GetCurrentBitNo(); 2523 assert( 2524 (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) && 2525 "Mismatch between VST and scanned function offsets"); 2526 DeferredFunctionInfo[Fn] = CurBit; 2527 2528 // Skip over the function block for now. 2529 if (Stream.SkipBlock()) 2530 return error("Invalid record"); 2531 return Error::success(); 2532 } 2533 2534 Error BitcodeReader::globalCleanup() { 2535 // Patch the initializers for globals and aliases up. 2536 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 2537 return Err; 2538 if (!GlobalInits.empty() || !IndirectSymbolInits.empty()) 2539 return error("Malformed global initializer set"); 2540 2541 // Look for intrinsic functions which need to be upgraded at some point 2542 for (Function &F : *TheModule) { 2543 Function *NewFn; 2544 if (UpgradeIntrinsicFunction(&F, NewFn)) 2545 UpgradedIntrinsics[&F] = NewFn; 2546 else if (auto Remangled = Intrinsic::remangleIntrinsicFunction(&F)) 2547 // Some types could be renamed during loading if several modules are 2548 // loaded in the same LLVMContext (LTO scenario). In this case we should 2549 // remangle intrinsics names as well. 2550 RemangledIntrinsics[&F] = Remangled.getValue(); 2551 } 2552 2553 // Look for global variables which need to be renamed. 2554 for (GlobalVariable &GV : TheModule->globals()) 2555 UpgradeGlobalVariable(&GV); 2556 2557 // Force deallocation of memory for these vectors to favor the client that 2558 // want lazy deserialization. 2559 std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits); 2560 std::vector<std::pair<GlobalIndirectSymbol*, unsigned> >().swap( 2561 IndirectSymbolInits); 2562 return Error::success(); 2563 } 2564 2565 /// Support for lazy parsing of function bodies. This is required if we 2566 /// either have an old bitcode file without a VST forward declaration record, 2567 /// or if we have an anonymous function being materialized, since anonymous 2568 /// functions do not have a name and are therefore not in the VST. 2569 Error BitcodeReader::rememberAndSkipFunctionBodies() { 2570 Stream.JumpToBit(NextUnreadBit); 2571 2572 if (Stream.AtEndOfStream()) 2573 return error("Could not find function in stream"); 2574 2575 if (!SeenFirstFunctionBody) 2576 return error("Trying to materialize functions before seeing function blocks"); 2577 2578 // An old bitcode file with the symbol table at the end would have 2579 // finished the parse greedily. 2580 assert(SeenValueSymbolTable); 2581 2582 SmallVector<uint64_t, 64> Record; 2583 2584 while (true) { 2585 BitstreamEntry Entry = Stream.advance(); 2586 switch (Entry.Kind) { 2587 default: 2588 return error("Expect SubBlock"); 2589 case BitstreamEntry::SubBlock: 2590 switch (Entry.ID) { 2591 default: 2592 return error("Expect function block"); 2593 case bitc::FUNCTION_BLOCK_ID: 2594 if (Error Err = rememberAndSkipFunctionBody()) 2595 return Err; 2596 NextUnreadBit = Stream.GetCurrentBitNo(); 2597 return Error::success(); 2598 } 2599 } 2600 } 2601 } 2602 2603 bool BitcodeReaderBase::readBlockInfo() { 2604 Optional<BitstreamBlockInfo> NewBlockInfo = Stream.ReadBlockInfoBlock(); 2605 if (!NewBlockInfo) 2606 return true; 2607 BlockInfo = std::move(*NewBlockInfo); 2608 return false; 2609 } 2610 2611 Error BitcodeReader::parseModule(uint64_t ResumeBit, 2612 bool ShouldLazyLoadMetadata) { 2613 if (ResumeBit) 2614 Stream.JumpToBit(ResumeBit); 2615 else if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 2616 return error("Invalid record"); 2617 2618 SmallVector<uint64_t, 64> Record; 2619 std::vector<std::string> SectionTable; 2620 std::vector<std::string> GCTable; 2621 2622 // Read all the records for this module. 2623 while (true) { 2624 BitstreamEntry Entry = Stream.advance(); 2625 2626 switch (Entry.Kind) { 2627 case BitstreamEntry::Error: 2628 return error("Malformed block"); 2629 case BitstreamEntry::EndBlock: 2630 return globalCleanup(); 2631 2632 case BitstreamEntry::SubBlock: 2633 switch (Entry.ID) { 2634 default: // Skip unknown content. 2635 if (Stream.SkipBlock()) 2636 return error("Invalid record"); 2637 break; 2638 case bitc::BLOCKINFO_BLOCK_ID: 2639 if (readBlockInfo()) 2640 return error("Malformed block"); 2641 break; 2642 case bitc::PARAMATTR_BLOCK_ID: 2643 if (Error Err = parseAttributeBlock()) 2644 return Err; 2645 break; 2646 case bitc::PARAMATTR_GROUP_BLOCK_ID: 2647 if (Error Err = parseAttributeGroupBlock()) 2648 return Err; 2649 break; 2650 case bitc::TYPE_BLOCK_ID_NEW: 2651 if (Error Err = parseTypeTable()) 2652 return Err; 2653 break; 2654 case bitc::VALUE_SYMTAB_BLOCK_ID: 2655 if (!SeenValueSymbolTable) { 2656 // Either this is an old form VST without function index and an 2657 // associated VST forward declaration record (which would have caused 2658 // the VST to be jumped to and parsed before it was encountered 2659 // normally in the stream), or there were no function blocks to 2660 // trigger an earlier parsing of the VST. 2661 assert(VSTOffset == 0 || FunctionsWithBodies.empty()); 2662 if (Error Err = parseValueSymbolTable()) 2663 return Err; 2664 SeenValueSymbolTable = true; 2665 } else { 2666 // We must have had a VST forward declaration record, which caused 2667 // the parser to jump to and parse the VST earlier. 2668 assert(VSTOffset > 0); 2669 if (Stream.SkipBlock()) 2670 return error("Invalid record"); 2671 } 2672 break; 2673 case bitc::CONSTANTS_BLOCK_ID: 2674 if (Error Err = parseConstants()) 2675 return Err; 2676 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 2677 return Err; 2678 break; 2679 case bitc::METADATA_BLOCK_ID: 2680 if (ShouldLazyLoadMetadata) { 2681 if (Error Err = rememberAndSkipMetadata()) 2682 return Err; 2683 break; 2684 } 2685 assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata"); 2686 if (Error Err = MDLoader->parseModuleMetadata()) 2687 return Err; 2688 break; 2689 case bitc::METADATA_KIND_BLOCK_ID: 2690 if (Error Err = MDLoader->parseMetadataKinds()) 2691 return Err; 2692 break; 2693 case bitc::FUNCTION_BLOCK_ID: 2694 // If this is the first function body we've seen, reverse the 2695 // FunctionsWithBodies list. 2696 if (!SeenFirstFunctionBody) { 2697 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 2698 if (Error Err = globalCleanup()) 2699 return Err; 2700 SeenFirstFunctionBody = true; 2701 } 2702 2703 if (VSTOffset > 0) { 2704 // If we have a VST forward declaration record, make sure we 2705 // parse the VST now if we haven't already. It is needed to 2706 // set up the DeferredFunctionInfo vector for lazy reading. 2707 if (!SeenValueSymbolTable) { 2708 if (Error Err = BitcodeReader::parseValueSymbolTable(VSTOffset)) 2709 return Err; 2710 SeenValueSymbolTable = true; 2711 // Fall through so that we record the NextUnreadBit below. 2712 // This is necessary in case we have an anonymous function that 2713 // is later materialized. Since it will not have a VST entry we 2714 // need to fall back to the lazy parse to find its offset. 2715 } else { 2716 // If we have a VST forward declaration record, but have already 2717 // parsed the VST (just above, when the first function body was 2718 // encountered here), then we are resuming the parse after 2719 // materializing functions. The ResumeBit points to the 2720 // start of the last function block recorded in the 2721 // DeferredFunctionInfo map. Skip it. 2722 if (Stream.SkipBlock()) 2723 return error("Invalid record"); 2724 continue; 2725 } 2726 } 2727 2728 // Support older bitcode files that did not have the function 2729 // index in the VST, nor a VST forward declaration record, as 2730 // well as anonymous functions that do not have VST entries. 2731 // Build the DeferredFunctionInfo vector on the fly. 2732 if (Error Err = rememberAndSkipFunctionBody()) 2733 return Err; 2734 2735 // Suspend parsing when we reach the function bodies. Subsequent 2736 // materialization calls will resume it when necessary. If the bitcode 2737 // file is old, the symbol table will be at the end instead and will not 2738 // have been seen yet. In this case, just finish the parse now. 2739 if (SeenValueSymbolTable) { 2740 NextUnreadBit = Stream.GetCurrentBitNo(); 2741 // After the VST has been parsed, we need to make sure intrinsic name 2742 // are auto-upgraded. 2743 return globalCleanup(); 2744 } 2745 break; 2746 case bitc::USELIST_BLOCK_ID: 2747 if (Error Err = parseUseLists()) 2748 return Err; 2749 break; 2750 case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID: 2751 if (Error Err = parseOperandBundleTags()) 2752 return Err; 2753 break; 2754 } 2755 continue; 2756 2757 case BitstreamEntry::Record: 2758 // The interesting case. 2759 break; 2760 } 2761 2762 // Read a record. 2763 auto BitCode = Stream.readRecord(Entry.ID, Record); 2764 switch (BitCode) { 2765 default: break; // Default behavior, ignore unknown content. 2766 case bitc::MODULE_CODE_VERSION: { // VERSION: [version#] 2767 if (Record.size() < 1) 2768 return error("Invalid record"); 2769 // Only version #0 and #1 are supported so far. 2770 unsigned module_version = Record[0]; 2771 switch (module_version) { 2772 default: 2773 return error("Invalid value"); 2774 case 0: 2775 UseRelativeIDs = false; 2776 break; 2777 case 1: 2778 UseRelativeIDs = true; 2779 break; 2780 } 2781 break; 2782 } 2783 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 2784 std::string S; 2785 if (convertToString(Record, 0, S)) 2786 return error("Invalid record"); 2787 TheModule->setTargetTriple(S); 2788 break; 2789 } 2790 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 2791 std::string S; 2792 if (convertToString(Record, 0, S)) 2793 return error("Invalid record"); 2794 TheModule->setDataLayout(S); 2795 break; 2796 } 2797 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 2798 std::string S; 2799 if (convertToString(Record, 0, S)) 2800 return error("Invalid record"); 2801 TheModule->setModuleInlineAsm(S); 2802 break; 2803 } 2804 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 2805 // FIXME: Remove in 4.0. 2806 std::string S; 2807 if (convertToString(Record, 0, S)) 2808 return error("Invalid record"); 2809 // Ignore value. 2810 break; 2811 } 2812 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 2813 std::string S; 2814 if (convertToString(Record, 0, S)) 2815 return error("Invalid record"); 2816 SectionTable.push_back(S); 2817 break; 2818 } 2819 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 2820 std::string S; 2821 if (convertToString(Record, 0, S)) 2822 return error("Invalid record"); 2823 GCTable.push_back(S); 2824 break; 2825 } 2826 case bitc::MODULE_CODE_COMDAT: { // COMDAT: [selection_kind, name] 2827 if (Record.size() < 2) 2828 return error("Invalid record"); 2829 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]); 2830 unsigned ComdatNameSize = Record[1]; 2831 std::string ComdatName; 2832 ComdatName.reserve(ComdatNameSize); 2833 for (unsigned i = 0; i != ComdatNameSize; ++i) 2834 ComdatName += (char)Record[2 + i]; 2835 Comdat *C = TheModule->getOrInsertComdat(ComdatName); 2836 C->setSelectionKind(SK); 2837 ComdatList.push_back(C); 2838 break; 2839 } 2840 // GLOBALVAR: [pointer type, isconst, initid, 2841 // linkage, alignment, section, visibility, threadlocal, 2842 // unnamed_addr, externally_initialized, dllstorageclass, 2843 // comdat] 2844 case bitc::MODULE_CODE_GLOBALVAR: { 2845 if (Record.size() < 6) 2846 return error("Invalid record"); 2847 Type *Ty = getTypeByID(Record[0]); 2848 if (!Ty) 2849 return error("Invalid record"); 2850 bool isConstant = Record[1] & 1; 2851 bool explicitType = Record[1] & 2; 2852 unsigned AddressSpace; 2853 if (explicitType) { 2854 AddressSpace = Record[1] >> 2; 2855 } else { 2856 if (!Ty->isPointerTy()) 2857 return error("Invalid type for value"); 2858 AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 2859 Ty = cast<PointerType>(Ty)->getElementType(); 2860 } 2861 2862 uint64_t RawLinkage = Record[3]; 2863 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 2864 unsigned Alignment; 2865 if (Error Err = parseAlignmentValue(Record[4], Alignment)) 2866 return Err; 2867 std::string Section; 2868 if (Record[5]) { 2869 if (Record[5]-1 >= SectionTable.size()) 2870 return error("Invalid ID"); 2871 Section = SectionTable[Record[5]-1]; 2872 } 2873 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 2874 // Local linkage must have default visibility. 2875 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage)) 2876 // FIXME: Change to an error if non-default in 4.0. 2877 Visibility = getDecodedVisibility(Record[6]); 2878 2879 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; 2880 if (Record.size() > 7) 2881 TLM = getDecodedThreadLocalMode(Record[7]); 2882 2883 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 2884 if (Record.size() > 8) 2885 UnnamedAddr = getDecodedUnnamedAddrType(Record[8]); 2886 2887 bool ExternallyInitialized = false; 2888 if (Record.size() > 9) 2889 ExternallyInitialized = Record[9]; 2890 2891 GlobalVariable *NewGV = 2892 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, "", nullptr, 2893 TLM, AddressSpace, ExternallyInitialized); 2894 NewGV->setAlignment(Alignment); 2895 if (!Section.empty()) 2896 NewGV->setSection(Section); 2897 NewGV->setVisibility(Visibility); 2898 NewGV->setUnnamedAddr(UnnamedAddr); 2899 2900 if (Record.size() > 10) 2901 NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10])); 2902 else 2903 upgradeDLLImportExportLinkage(NewGV, RawLinkage); 2904 2905 ValueList.push_back(NewGV); 2906 2907 // Remember which value to use for the global initializer. 2908 if (unsigned InitID = Record[2]) 2909 GlobalInits.push_back(std::make_pair(NewGV, InitID-1)); 2910 2911 if (Record.size() > 11) { 2912 if (unsigned ComdatID = Record[11]) { 2913 if (ComdatID > ComdatList.size()) 2914 return error("Invalid global variable comdat ID"); 2915 NewGV->setComdat(ComdatList[ComdatID - 1]); 2916 } 2917 } else if (hasImplicitComdat(RawLinkage)) { 2918 NewGV->setComdat(reinterpret_cast<Comdat *>(1)); 2919 } 2920 2921 break; 2922 } 2923 // FUNCTION: [type, callingconv, isproto, linkage, paramattr, 2924 // alignment, section, visibility, gc, unnamed_addr, 2925 // prologuedata, dllstorageclass, comdat, prefixdata] 2926 case bitc::MODULE_CODE_FUNCTION: { 2927 if (Record.size() < 8) 2928 return error("Invalid record"); 2929 Type *Ty = getTypeByID(Record[0]); 2930 if (!Ty) 2931 return error("Invalid record"); 2932 if (auto *PTy = dyn_cast<PointerType>(Ty)) 2933 Ty = PTy->getElementType(); 2934 auto *FTy = dyn_cast<FunctionType>(Ty); 2935 if (!FTy) 2936 return error("Invalid type for value"); 2937 auto CC = static_cast<CallingConv::ID>(Record[1]); 2938 if (CC & ~CallingConv::MaxID) 2939 return error("Invalid calling convention ID"); 2940 2941 Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage, 2942 "", TheModule); 2943 2944 Func->setCallingConv(CC); 2945 bool isProto = Record[2]; 2946 uint64_t RawLinkage = Record[3]; 2947 Func->setLinkage(getDecodedLinkage(RawLinkage)); 2948 Func->setAttributes(getAttributes(Record[4])); 2949 2950 unsigned Alignment; 2951 if (Error Err = parseAlignmentValue(Record[5], Alignment)) 2952 return Err; 2953 Func->setAlignment(Alignment); 2954 if (Record[6]) { 2955 if (Record[6]-1 >= SectionTable.size()) 2956 return error("Invalid ID"); 2957 Func->setSection(SectionTable[Record[6]-1]); 2958 } 2959 // Local linkage must have default visibility. 2960 if (!Func->hasLocalLinkage()) 2961 // FIXME: Change to an error if non-default in 4.0. 2962 Func->setVisibility(getDecodedVisibility(Record[7])); 2963 if (Record.size() > 8 && Record[8]) { 2964 if (Record[8]-1 >= GCTable.size()) 2965 return error("Invalid ID"); 2966 Func->setGC(GCTable[Record[8] - 1]); 2967 } 2968 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 2969 if (Record.size() > 9) 2970 UnnamedAddr = getDecodedUnnamedAddrType(Record[9]); 2971 Func->setUnnamedAddr(UnnamedAddr); 2972 if (Record.size() > 10 && Record[10] != 0) 2973 FunctionPrologues.push_back(std::make_pair(Func, Record[10]-1)); 2974 2975 if (Record.size() > 11) 2976 Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11])); 2977 else 2978 upgradeDLLImportExportLinkage(Func, RawLinkage); 2979 2980 if (Record.size() > 12) { 2981 if (unsigned ComdatID = Record[12]) { 2982 if (ComdatID > ComdatList.size()) 2983 return error("Invalid function comdat ID"); 2984 Func->setComdat(ComdatList[ComdatID - 1]); 2985 } 2986 } else if (hasImplicitComdat(RawLinkage)) { 2987 Func->setComdat(reinterpret_cast<Comdat *>(1)); 2988 } 2989 2990 if (Record.size() > 13 && Record[13] != 0) 2991 FunctionPrefixes.push_back(std::make_pair(Func, Record[13]-1)); 2992 2993 if (Record.size() > 14 && Record[14] != 0) 2994 FunctionPersonalityFns.push_back(std::make_pair(Func, Record[14] - 1)); 2995 2996 ValueList.push_back(Func); 2997 2998 // If this is a function with a body, remember the prototype we are 2999 // creating now, so that we can match up the body with them later. 3000 if (!isProto) { 3001 Func->setIsMaterializable(true); 3002 FunctionsWithBodies.push_back(Func); 3003 DeferredFunctionInfo[Func] = 0; 3004 } 3005 break; 3006 } 3007 // ALIAS: [alias type, addrspace, aliasee val#, linkage] 3008 // ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, dllstorageclass] 3009 // IFUNC: [alias type, addrspace, aliasee val#, linkage, visibility, dllstorageclass] 3010 case bitc::MODULE_CODE_IFUNC: 3011 case bitc::MODULE_CODE_ALIAS: 3012 case bitc::MODULE_CODE_ALIAS_OLD: { 3013 bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD; 3014 if (Record.size() < (3 + (unsigned)NewRecord)) 3015 return error("Invalid record"); 3016 unsigned OpNum = 0; 3017 Type *Ty = getTypeByID(Record[OpNum++]); 3018 if (!Ty) 3019 return error("Invalid record"); 3020 3021 unsigned AddrSpace; 3022 if (!NewRecord) { 3023 auto *PTy = dyn_cast<PointerType>(Ty); 3024 if (!PTy) 3025 return error("Invalid type for value"); 3026 Ty = PTy->getElementType(); 3027 AddrSpace = PTy->getAddressSpace(); 3028 } else { 3029 AddrSpace = Record[OpNum++]; 3030 } 3031 3032 auto Val = Record[OpNum++]; 3033 auto Linkage = Record[OpNum++]; 3034 GlobalIndirectSymbol *NewGA; 3035 if (BitCode == bitc::MODULE_CODE_ALIAS || 3036 BitCode == bitc::MODULE_CODE_ALIAS_OLD) 3037 NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), 3038 "", TheModule); 3039 else 3040 NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), 3041 "", nullptr, TheModule); 3042 // Old bitcode files didn't have visibility field. 3043 // Local linkage must have default visibility. 3044 if (OpNum != Record.size()) { 3045 auto VisInd = OpNum++; 3046 if (!NewGA->hasLocalLinkage()) 3047 // FIXME: Change to an error if non-default in 4.0. 3048 NewGA->setVisibility(getDecodedVisibility(Record[VisInd])); 3049 } 3050 if (OpNum != Record.size()) 3051 NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++])); 3052 else 3053 upgradeDLLImportExportLinkage(NewGA, Linkage); 3054 if (OpNum != Record.size()) 3055 NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++])); 3056 if (OpNum != Record.size()) 3057 NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++])); 3058 ValueList.push_back(NewGA); 3059 IndirectSymbolInits.push_back(std::make_pair(NewGA, Val)); 3060 break; 3061 } 3062 /// MODULE_CODE_PURGEVALS: [numvals] 3063 case bitc::MODULE_CODE_PURGEVALS: 3064 // Trim down the value list to the specified size. 3065 if (Record.size() < 1 || Record[0] > ValueList.size()) 3066 return error("Invalid record"); 3067 ValueList.shrinkTo(Record[0]); 3068 break; 3069 /// MODULE_CODE_VSTOFFSET: [offset] 3070 case bitc::MODULE_CODE_VSTOFFSET: 3071 if (Record.size() < 1) 3072 return error("Invalid record"); 3073 // Note that we subtract 1 here because the offset is relative to one word 3074 // before the start of the identification or module block, which was 3075 // historically always the start of the regular bitcode header. 3076 VSTOffset = Record[0] - 1; 3077 break; 3078 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 3079 case bitc::MODULE_CODE_SOURCE_FILENAME: 3080 SmallString<128> ValueName; 3081 if (convertToString(Record, 0, ValueName)) 3082 return error("Invalid record"); 3083 TheModule->setSourceFileName(ValueName); 3084 break; 3085 } 3086 Record.clear(); 3087 } 3088 } 3089 3090 Error BitcodeReader::parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata, 3091 bool IsImporting) { 3092 TheModule = M; 3093 MDLoader = MetadataLoader(Stream, *M, ValueList, IsImporting, 3094 [&](unsigned ID) { return getTypeByID(ID); }); 3095 return parseModule(0, ShouldLazyLoadMetadata); 3096 } 3097 3098 3099 Error BitcodeReader::typeCheckLoadStoreInst(Type *ValType, Type *PtrType) { 3100 if (!isa<PointerType>(PtrType)) 3101 return error("Load/Store operand is not a pointer type"); 3102 Type *ElemType = cast<PointerType>(PtrType)->getElementType(); 3103 3104 if (ValType && ValType != ElemType) 3105 return error("Explicit load/store type does not match pointee " 3106 "type of pointer operand"); 3107 if (!PointerType::isLoadableOrStorableType(ElemType)) 3108 return error("Cannot load/store from pointer"); 3109 return Error::success(); 3110 } 3111 3112 /// Lazily parse the specified function body block. 3113 Error BitcodeReader::parseFunctionBody(Function *F) { 3114 if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 3115 return error("Invalid record"); 3116 3117 // Unexpected unresolved metadata when parsing function. 3118 if (MDLoader->hasFwdRefs()) 3119 return error("Invalid function metadata: incoming forward references"); 3120 3121 InstructionList.clear(); 3122 unsigned ModuleValueListSize = ValueList.size(); 3123 unsigned ModuleMDLoaderSize = MDLoader->size(); 3124 3125 // Add all the function arguments to the value table. 3126 for (Argument &I : F->args()) 3127 ValueList.push_back(&I); 3128 3129 unsigned NextValueNo = ValueList.size(); 3130 BasicBlock *CurBB = nullptr; 3131 unsigned CurBBNo = 0; 3132 3133 DebugLoc LastLoc; 3134 auto getLastInstruction = [&]() -> Instruction * { 3135 if (CurBB && !CurBB->empty()) 3136 return &CurBB->back(); 3137 else if (CurBBNo && FunctionBBs[CurBBNo - 1] && 3138 !FunctionBBs[CurBBNo - 1]->empty()) 3139 return &FunctionBBs[CurBBNo - 1]->back(); 3140 return nullptr; 3141 }; 3142 3143 std::vector<OperandBundleDef> OperandBundles; 3144 3145 // Read all the records. 3146 SmallVector<uint64_t, 64> Record; 3147 3148 while (true) { 3149 BitstreamEntry Entry = Stream.advance(); 3150 3151 switch (Entry.Kind) { 3152 case BitstreamEntry::Error: 3153 return error("Malformed block"); 3154 case BitstreamEntry::EndBlock: 3155 goto OutOfRecordLoop; 3156 3157 case BitstreamEntry::SubBlock: 3158 switch (Entry.ID) { 3159 default: // Skip unknown content. 3160 if (Stream.SkipBlock()) 3161 return error("Invalid record"); 3162 break; 3163 case bitc::CONSTANTS_BLOCK_ID: 3164 if (Error Err = parseConstants()) 3165 return Err; 3166 NextValueNo = ValueList.size(); 3167 break; 3168 case bitc::VALUE_SYMTAB_BLOCK_ID: 3169 if (Error Err = parseValueSymbolTable()) 3170 return Err; 3171 break; 3172 case bitc::METADATA_ATTACHMENT_ID: 3173 if (Error Err = MDLoader->parseMetadataAttachment(*F, InstructionList)) 3174 return Err; 3175 break; 3176 case bitc::METADATA_BLOCK_ID: 3177 assert(DeferredMetadataInfo.empty() && 3178 "Must read all module-level metadata before function-level"); 3179 if (Error Err = MDLoader->parseFunctionMetadata()) 3180 return Err; 3181 break; 3182 case bitc::USELIST_BLOCK_ID: 3183 if (Error Err = parseUseLists()) 3184 return Err; 3185 break; 3186 } 3187 continue; 3188 3189 case BitstreamEntry::Record: 3190 // The interesting case. 3191 break; 3192 } 3193 3194 // Read a record. 3195 Record.clear(); 3196 Instruction *I = nullptr; 3197 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 3198 switch (BitCode) { 3199 default: // Default behavior: reject 3200 return error("Invalid value"); 3201 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks] 3202 if (Record.size() < 1 || Record[0] == 0) 3203 return error("Invalid record"); 3204 // Create all the basic blocks for the function. 3205 FunctionBBs.resize(Record[0]); 3206 3207 // See if anything took the address of blocks in this function. 3208 auto BBFRI = BasicBlockFwdRefs.find(F); 3209 if (BBFRI == BasicBlockFwdRefs.end()) { 3210 for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i) 3211 FunctionBBs[i] = BasicBlock::Create(Context, "", F); 3212 } else { 3213 auto &BBRefs = BBFRI->second; 3214 // Check for invalid basic block references. 3215 if (BBRefs.size() > FunctionBBs.size()) 3216 return error("Invalid ID"); 3217 assert(!BBRefs.empty() && "Unexpected empty array"); 3218 assert(!BBRefs.front() && "Invalid reference to entry block"); 3219 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E; 3220 ++I) 3221 if (I < RE && BBRefs[I]) { 3222 BBRefs[I]->insertInto(F); 3223 FunctionBBs[I] = BBRefs[I]; 3224 } else { 3225 FunctionBBs[I] = BasicBlock::Create(Context, "", F); 3226 } 3227 3228 // Erase from the table. 3229 BasicBlockFwdRefs.erase(BBFRI); 3230 } 3231 3232 CurBB = FunctionBBs[0]; 3233 continue; 3234 } 3235 3236 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 3237 // This record indicates that the last instruction is at the same 3238 // location as the previous instruction with a location. 3239 I = getLastInstruction(); 3240 3241 if (!I) 3242 return error("Invalid record"); 3243 I->setDebugLoc(LastLoc); 3244 I = nullptr; 3245 continue; 3246 3247 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 3248 I = getLastInstruction(); 3249 if (!I || Record.size() < 4) 3250 return error("Invalid record"); 3251 3252 unsigned Line = Record[0], Col = Record[1]; 3253 unsigned ScopeID = Record[2], IAID = Record[3]; 3254 3255 MDNode *Scope = nullptr, *IA = nullptr; 3256 if (ScopeID) { 3257 Scope = MDLoader->getMDNodeFwdRefOrNull(ScopeID - 1); 3258 if (!Scope) 3259 return error("Invalid record"); 3260 } 3261 if (IAID) { 3262 IA = MDLoader->getMDNodeFwdRefOrNull(IAID - 1); 3263 if (!IA) 3264 return error("Invalid record"); 3265 } 3266 LastLoc = DebugLoc::get(Line, Col, Scope, IA); 3267 I->setDebugLoc(LastLoc); 3268 I = nullptr; 3269 continue; 3270 } 3271 3272 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 3273 unsigned OpNum = 0; 3274 Value *LHS, *RHS; 3275 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 3276 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 3277 OpNum+1 > Record.size()) 3278 return error("Invalid record"); 3279 3280 int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 3281 if (Opc == -1) 3282 return error("Invalid record"); 3283 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 3284 InstructionList.push_back(I); 3285 if (OpNum < Record.size()) { 3286 if (Opc == Instruction::Add || 3287 Opc == Instruction::Sub || 3288 Opc == Instruction::Mul || 3289 Opc == Instruction::Shl) { 3290 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 3291 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 3292 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 3293 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 3294 } else if (Opc == Instruction::SDiv || 3295 Opc == Instruction::UDiv || 3296 Opc == Instruction::LShr || 3297 Opc == Instruction::AShr) { 3298 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 3299 cast<BinaryOperator>(I)->setIsExact(true); 3300 } else if (isa<FPMathOperator>(I)) { 3301 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 3302 if (FMF.any()) 3303 I->setFastMathFlags(FMF); 3304 } 3305 3306 } 3307 break; 3308 } 3309 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 3310 unsigned OpNum = 0; 3311 Value *Op; 3312 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 3313 OpNum+2 != Record.size()) 3314 return error("Invalid record"); 3315 3316 Type *ResTy = getTypeByID(Record[OpNum]); 3317 int Opc = getDecodedCastOpcode(Record[OpNum + 1]); 3318 if (Opc == -1 || !ResTy) 3319 return error("Invalid record"); 3320 Instruction *Temp = nullptr; 3321 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) { 3322 if (Temp) { 3323 InstructionList.push_back(Temp); 3324 CurBB->getInstList().push_back(Temp); 3325 } 3326 } else { 3327 auto CastOp = (Instruction::CastOps)Opc; 3328 if (!CastInst::castIsValid(CastOp, Op, ResTy)) 3329 return error("Invalid cast"); 3330 I = CastInst::Create(CastOp, Op, ResTy); 3331 } 3332 InstructionList.push_back(I); 3333 break; 3334 } 3335 case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD: 3336 case bitc::FUNC_CODE_INST_GEP_OLD: 3337 case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands] 3338 unsigned OpNum = 0; 3339 3340 Type *Ty; 3341 bool InBounds; 3342 3343 if (BitCode == bitc::FUNC_CODE_INST_GEP) { 3344 InBounds = Record[OpNum++]; 3345 Ty = getTypeByID(Record[OpNum++]); 3346 } else { 3347 InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD; 3348 Ty = nullptr; 3349 } 3350 3351 Value *BasePtr; 3352 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr)) 3353 return error("Invalid record"); 3354 3355 if (!Ty) 3356 Ty = cast<PointerType>(BasePtr->getType()->getScalarType()) 3357 ->getElementType(); 3358 else if (Ty != 3359 cast<PointerType>(BasePtr->getType()->getScalarType()) 3360 ->getElementType()) 3361 return error( 3362 "Explicit gep type does not match pointee type of pointer operand"); 3363 3364 SmallVector<Value*, 16> GEPIdx; 3365 while (OpNum != Record.size()) { 3366 Value *Op; 3367 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3368 return error("Invalid record"); 3369 GEPIdx.push_back(Op); 3370 } 3371 3372 I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx); 3373 3374 InstructionList.push_back(I); 3375 if (InBounds) 3376 cast<GetElementPtrInst>(I)->setIsInBounds(true); 3377 break; 3378 } 3379 3380 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 3381 // EXTRACTVAL: [opty, opval, n x indices] 3382 unsigned OpNum = 0; 3383 Value *Agg; 3384 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 3385 return error("Invalid record"); 3386 3387 unsigned RecSize = Record.size(); 3388 if (OpNum == RecSize) 3389 return error("EXTRACTVAL: Invalid instruction with 0 indices"); 3390 3391 SmallVector<unsigned, 4> EXTRACTVALIdx; 3392 Type *CurTy = Agg->getType(); 3393 for (; OpNum != RecSize; ++OpNum) { 3394 bool IsArray = CurTy->isArrayTy(); 3395 bool IsStruct = CurTy->isStructTy(); 3396 uint64_t Index = Record[OpNum]; 3397 3398 if (!IsStruct && !IsArray) 3399 return error("EXTRACTVAL: Invalid type"); 3400 if ((unsigned)Index != Index) 3401 return error("Invalid value"); 3402 if (IsStruct && Index >= CurTy->subtypes().size()) 3403 return error("EXTRACTVAL: Invalid struct index"); 3404 if (IsArray && Index >= CurTy->getArrayNumElements()) 3405 return error("EXTRACTVAL: Invalid array index"); 3406 EXTRACTVALIdx.push_back((unsigned)Index); 3407 3408 if (IsStruct) 3409 CurTy = CurTy->subtypes()[Index]; 3410 else 3411 CurTy = CurTy->subtypes()[0]; 3412 } 3413 3414 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 3415 InstructionList.push_back(I); 3416 break; 3417 } 3418 3419 case bitc::FUNC_CODE_INST_INSERTVAL: { 3420 // INSERTVAL: [opty, opval, opty, opval, n x indices] 3421 unsigned OpNum = 0; 3422 Value *Agg; 3423 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 3424 return error("Invalid record"); 3425 Value *Val; 3426 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 3427 return error("Invalid record"); 3428 3429 unsigned RecSize = Record.size(); 3430 if (OpNum == RecSize) 3431 return error("INSERTVAL: Invalid instruction with 0 indices"); 3432 3433 SmallVector<unsigned, 4> INSERTVALIdx; 3434 Type *CurTy = Agg->getType(); 3435 for (; OpNum != RecSize; ++OpNum) { 3436 bool IsArray = CurTy->isArrayTy(); 3437 bool IsStruct = CurTy->isStructTy(); 3438 uint64_t Index = Record[OpNum]; 3439 3440 if (!IsStruct && !IsArray) 3441 return error("INSERTVAL: Invalid type"); 3442 if ((unsigned)Index != Index) 3443 return error("Invalid value"); 3444 if (IsStruct && Index >= CurTy->subtypes().size()) 3445 return error("INSERTVAL: Invalid struct index"); 3446 if (IsArray && Index >= CurTy->getArrayNumElements()) 3447 return error("INSERTVAL: Invalid array index"); 3448 3449 INSERTVALIdx.push_back((unsigned)Index); 3450 if (IsStruct) 3451 CurTy = CurTy->subtypes()[Index]; 3452 else 3453 CurTy = CurTy->subtypes()[0]; 3454 } 3455 3456 if (CurTy != Val->getType()) 3457 return error("Inserted value type doesn't match aggregate type"); 3458 3459 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 3460 InstructionList.push_back(I); 3461 break; 3462 } 3463 3464 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 3465 // obsolete form of select 3466 // handles select i1 ... in old bitcode 3467 unsigned OpNum = 0; 3468 Value *TrueVal, *FalseVal, *Cond; 3469 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 3470 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 3471 popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond)) 3472 return error("Invalid record"); 3473 3474 I = SelectInst::Create(Cond, TrueVal, FalseVal); 3475 InstructionList.push_back(I); 3476 break; 3477 } 3478 3479 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 3480 // new form of select 3481 // handles select i1 or select [N x i1] 3482 unsigned OpNum = 0; 3483 Value *TrueVal, *FalseVal, *Cond; 3484 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 3485 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 3486 getValueTypePair(Record, OpNum, NextValueNo, Cond)) 3487 return error("Invalid record"); 3488 3489 // select condition can be either i1 or [N x i1] 3490 if (VectorType* vector_type = 3491 dyn_cast<VectorType>(Cond->getType())) { 3492 // expect <n x i1> 3493 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 3494 return error("Invalid type for value"); 3495 } else { 3496 // expect i1 3497 if (Cond->getType() != Type::getInt1Ty(Context)) 3498 return error("Invalid type for value"); 3499 } 3500 3501 I = SelectInst::Create(Cond, TrueVal, FalseVal); 3502 InstructionList.push_back(I); 3503 break; 3504 } 3505 3506 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 3507 unsigned OpNum = 0; 3508 Value *Vec, *Idx; 3509 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 3510 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 3511 return error("Invalid record"); 3512 if (!Vec->getType()->isVectorTy()) 3513 return error("Invalid type for value"); 3514 I = ExtractElementInst::Create(Vec, Idx); 3515 InstructionList.push_back(I); 3516 break; 3517 } 3518 3519 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 3520 unsigned OpNum = 0; 3521 Value *Vec, *Elt, *Idx; 3522 if (getValueTypePair(Record, OpNum, NextValueNo, Vec)) 3523 return error("Invalid record"); 3524 if (!Vec->getType()->isVectorTy()) 3525 return error("Invalid type for value"); 3526 if (popValue(Record, OpNum, NextValueNo, 3527 cast<VectorType>(Vec->getType())->getElementType(), Elt) || 3528 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 3529 return error("Invalid record"); 3530 I = InsertElementInst::Create(Vec, Elt, Idx); 3531 InstructionList.push_back(I); 3532 break; 3533 } 3534 3535 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 3536 unsigned OpNum = 0; 3537 Value *Vec1, *Vec2, *Mask; 3538 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) || 3539 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2)) 3540 return error("Invalid record"); 3541 3542 if (getValueTypePair(Record, OpNum, NextValueNo, Mask)) 3543 return error("Invalid record"); 3544 if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy()) 3545 return error("Invalid type for value"); 3546 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 3547 InstructionList.push_back(I); 3548 break; 3549 } 3550 3551 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 3552 // Old form of ICmp/FCmp returning bool 3553 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 3554 // both legal on vectors but had different behaviour. 3555 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 3556 // FCmp/ICmp returning bool or vector of bool 3557 3558 unsigned OpNum = 0; 3559 Value *LHS, *RHS; 3560 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 3561 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS)) 3562 return error("Invalid record"); 3563 3564 unsigned PredVal = Record[OpNum]; 3565 bool IsFP = LHS->getType()->isFPOrFPVectorTy(); 3566 FastMathFlags FMF; 3567 if (IsFP && Record.size() > OpNum+1) 3568 FMF = getDecodedFastMathFlags(Record[++OpNum]); 3569 3570 if (OpNum+1 != Record.size()) 3571 return error("Invalid record"); 3572 3573 if (LHS->getType()->isFPOrFPVectorTy()) 3574 I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS); 3575 else 3576 I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS); 3577 3578 if (FMF.any()) 3579 I->setFastMathFlags(FMF); 3580 InstructionList.push_back(I); 3581 break; 3582 } 3583 3584 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 3585 { 3586 unsigned Size = Record.size(); 3587 if (Size == 0) { 3588 I = ReturnInst::Create(Context); 3589 InstructionList.push_back(I); 3590 break; 3591 } 3592 3593 unsigned OpNum = 0; 3594 Value *Op = nullptr; 3595 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3596 return error("Invalid record"); 3597 if (OpNum != Record.size()) 3598 return error("Invalid record"); 3599 3600 I = ReturnInst::Create(Context, Op); 3601 InstructionList.push_back(I); 3602 break; 3603 } 3604 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 3605 if (Record.size() != 1 && Record.size() != 3) 3606 return error("Invalid record"); 3607 BasicBlock *TrueDest = getBasicBlock(Record[0]); 3608 if (!TrueDest) 3609 return error("Invalid record"); 3610 3611 if (Record.size() == 1) { 3612 I = BranchInst::Create(TrueDest); 3613 InstructionList.push_back(I); 3614 } 3615 else { 3616 BasicBlock *FalseDest = getBasicBlock(Record[1]); 3617 Value *Cond = getValue(Record, 2, NextValueNo, 3618 Type::getInt1Ty(Context)); 3619 if (!FalseDest || !Cond) 3620 return error("Invalid record"); 3621 I = BranchInst::Create(TrueDest, FalseDest, Cond); 3622 InstructionList.push_back(I); 3623 } 3624 break; 3625 } 3626 case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#] 3627 if (Record.size() != 1 && Record.size() != 2) 3628 return error("Invalid record"); 3629 unsigned Idx = 0; 3630 Value *CleanupPad = 3631 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 3632 if (!CleanupPad) 3633 return error("Invalid record"); 3634 BasicBlock *UnwindDest = nullptr; 3635 if (Record.size() == 2) { 3636 UnwindDest = getBasicBlock(Record[Idx++]); 3637 if (!UnwindDest) 3638 return error("Invalid record"); 3639 } 3640 3641 I = CleanupReturnInst::Create(CleanupPad, UnwindDest); 3642 InstructionList.push_back(I); 3643 break; 3644 } 3645 case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#] 3646 if (Record.size() != 2) 3647 return error("Invalid record"); 3648 unsigned Idx = 0; 3649 Value *CatchPad = 3650 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 3651 if (!CatchPad) 3652 return error("Invalid record"); 3653 BasicBlock *BB = getBasicBlock(Record[Idx++]); 3654 if (!BB) 3655 return error("Invalid record"); 3656 3657 I = CatchReturnInst::Create(CatchPad, BB); 3658 InstructionList.push_back(I); 3659 break; 3660 } 3661 case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?] 3662 // We must have, at minimum, the outer scope and the number of arguments. 3663 if (Record.size() < 2) 3664 return error("Invalid record"); 3665 3666 unsigned Idx = 0; 3667 3668 Value *ParentPad = 3669 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 3670 3671 unsigned NumHandlers = Record[Idx++]; 3672 3673 SmallVector<BasicBlock *, 2> Handlers; 3674 for (unsigned Op = 0; Op != NumHandlers; ++Op) { 3675 BasicBlock *BB = getBasicBlock(Record[Idx++]); 3676 if (!BB) 3677 return error("Invalid record"); 3678 Handlers.push_back(BB); 3679 } 3680 3681 BasicBlock *UnwindDest = nullptr; 3682 if (Idx + 1 == Record.size()) { 3683 UnwindDest = getBasicBlock(Record[Idx++]); 3684 if (!UnwindDest) 3685 return error("Invalid record"); 3686 } 3687 3688 if (Record.size() != Idx) 3689 return error("Invalid record"); 3690 3691 auto *CatchSwitch = 3692 CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers); 3693 for (BasicBlock *Handler : Handlers) 3694 CatchSwitch->addHandler(Handler); 3695 I = CatchSwitch; 3696 InstructionList.push_back(I); 3697 break; 3698 } 3699 case bitc::FUNC_CODE_INST_CATCHPAD: 3700 case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*] 3701 // We must have, at minimum, the outer scope and the number of arguments. 3702 if (Record.size() < 2) 3703 return error("Invalid record"); 3704 3705 unsigned Idx = 0; 3706 3707 Value *ParentPad = 3708 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 3709 3710 unsigned NumArgOperands = Record[Idx++]; 3711 3712 SmallVector<Value *, 2> Args; 3713 for (unsigned Op = 0; Op != NumArgOperands; ++Op) { 3714 Value *Val; 3715 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 3716 return error("Invalid record"); 3717 Args.push_back(Val); 3718 } 3719 3720 if (Record.size() != Idx) 3721 return error("Invalid record"); 3722 3723 if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD) 3724 I = CleanupPadInst::Create(ParentPad, Args); 3725 else 3726 I = CatchPadInst::Create(ParentPad, Args); 3727 InstructionList.push_back(I); 3728 break; 3729 } 3730 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 3731 // Check magic 3732 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { 3733 // "New" SwitchInst format with case ranges. The changes to write this 3734 // format were reverted but we still recognize bitcode that uses it. 3735 // Hopefully someday we will have support for case ranges and can use 3736 // this format again. 3737 3738 Type *OpTy = getTypeByID(Record[1]); 3739 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); 3740 3741 Value *Cond = getValue(Record, 2, NextValueNo, OpTy); 3742 BasicBlock *Default = getBasicBlock(Record[3]); 3743 if (!OpTy || !Cond || !Default) 3744 return error("Invalid record"); 3745 3746 unsigned NumCases = Record[4]; 3747 3748 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 3749 InstructionList.push_back(SI); 3750 3751 unsigned CurIdx = 5; 3752 for (unsigned i = 0; i != NumCases; ++i) { 3753 SmallVector<ConstantInt*, 1> CaseVals; 3754 unsigned NumItems = Record[CurIdx++]; 3755 for (unsigned ci = 0; ci != NumItems; ++ci) { 3756 bool isSingleNumber = Record[CurIdx++]; 3757 3758 APInt Low; 3759 unsigned ActiveWords = 1; 3760 if (ValueBitWidth > 64) 3761 ActiveWords = Record[CurIdx++]; 3762 Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 3763 ValueBitWidth); 3764 CurIdx += ActiveWords; 3765 3766 if (!isSingleNumber) { 3767 ActiveWords = 1; 3768 if (ValueBitWidth > 64) 3769 ActiveWords = Record[CurIdx++]; 3770 APInt High = readWideAPInt( 3771 makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth); 3772 CurIdx += ActiveWords; 3773 3774 // FIXME: It is not clear whether values in the range should be 3775 // compared as signed or unsigned values. The partially 3776 // implemented changes that used this format in the past used 3777 // unsigned comparisons. 3778 for ( ; Low.ule(High); ++Low) 3779 CaseVals.push_back(ConstantInt::get(Context, Low)); 3780 } else 3781 CaseVals.push_back(ConstantInt::get(Context, Low)); 3782 } 3783 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); 3784 for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(), 3785 cve = CaseVals.end(); cvi != cve; ++cvi) 3786 SI->addCase(*cvi, DestBB); 3787 } 3788 I = SI; 3789 break; 3790 } 3791 3792 // Old SwitchInst format without case ranges. 3793 3794 if (Record.size() < 3 || (Record.size() & 1) == 0) 3795 return error("Invalid record"); 3796 Type *OpTy = getTypeByID(Record[0]); 3797 Value *Cond = getValue(Record, 1, NextValueNo, OpTy); 3798 BasicBlock *Default = getBasicBlock(Record[2]); 3799 if (!OpTy || !Cond || !Default) 3800 return error("Invalid record"); 3801 unsigned NumCases = (Record.size()-3)/2; 3802 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 3803 InstructionList.push_back(SI); 3804 for (unsigned i = 0, e = NumCases; i != e; ++i) { 3805 ConstantInt *CaseVal = 3806 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy)); 3807 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 3808 if (!CaseVal || !DestBB) { 3809 delete SI; 3810 return error("Invalid record"); 3811 } 3812 SI->addCase(CaseVal, DestBB); 3813 } 3814 I = SI; 3815 break; 3816 } 3817 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 3818 if (Record.size() < 2) 3819 return error("Invalid record"); 3820 Type *OpTy = getTypeByID(Record[0]); 3821 Value *Address = getValue(Record, 1, NextValueNo, OpTy); 3822 if (!OpTy || !Address) 3823 return error("Invalid record"); 3824 unsigned NumDests = Record.size()-2; 3825 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 3826 InstructionList.push_back(IBI); 3827 for (unsigned i = 0, e = NumDests; i != e; ++i) { 3828 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 3829 IBI->addDestination(DestBB); 3830 } else { 3831 delete IBI; 3832 return error("Invalid record"); 3833 } 3834 } 3835 I = IBI; 3836 break; 3837 } 3838 3839 case bitc::FUNC_CODE_INST_INVOKE: { 3840 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 3841 if (Record.size() < 4) 3842 return error("Invalid record"); 3843 unsigned OpNum = 0; 3844 AttributeSet PAL = getAttributes(Record[OpNum++]); 3845 unsigned CCInfo = Record[OpNum++]; 3846 BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]); 3847 BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]); 3848 3849 FunctionType *FTy = nullptr; 3850 if (CCInfo >> 13 & 1 && 3851 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])))) 3852 return error("Explicit invoke type is not a function type"); 3853 3854 Value *Callee; 3855 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 3856 return error("Invalid record"); 3857 3858 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 3859 if (!CalleeTy) 3860 return error("Callee is not a pointer"); 3861 if (!FTy) { 3862 FTy = dyn_cast<FunctionType>(CalleeTy->getElementType()); 3863 if (!FTy) 3864 return error("Callee is not of pointer to function type"); 3865 } else if (CalleeTy->getElementType() != FTy) 3866 return error("Explicit invoke type does not match pointee type of " 3867 "callee operand"); 3868 if (Record.size() < FTy->getNumParams() + OpNum) 3869 return error("Insufficient operands to call"); 3870 3871 SmallVector<Value*, 16> Ops; 3872 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 3873 Ops.push_back(getValue(Record, OpNum, NextValueNo, 3874 FTy->getParamType(i))); 3875 if (!Ops.back()) 3876 return error("Invalid record"); 3877 } 3878 3879 if (!FTy->isVarArg()) { 3880 if (Record.size() != OpNum) 3881 return error("Invalid record"); 3882 } else { 3883 // Read type/value pairs for varargs params. 3884 while (OpNum != Record.size()) { 3885 Value *Op; 3886 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3887 return error("Invalid record"); 3888 Ops.push_back(Op); 3889 } 3890 } 3891 3892 I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops, OperandBundles); 3893 OperandBundles.clear(); 3894 InstructionList.push_back(I); 3895 cast<InvokeInst>(I)->setCallingConv( 3896 static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo)); 3897 cast<InvokeInst>(I)->setAttributes(PAL); 3898 break; 3899 } 3900 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 3901 unsigned Idx = 0; 3902 Value *Val = nullptr; 3903 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 3904 return error("Invalid record"); 3905 I = ResumeInst::Create(Val); 3906 InstructionList.push_back(I); 3907 break; 3908 } 3909 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 3910 I = new UnreachableInst(Context); 3911 InstructionList.push_back(I); 3912 break; 3913 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 3914 if (Record.size() < 1 || ((Record.size()-1)&1)) 3915 return error("Invalid record"); 3916 Type *Ty = getTypeByID(Record[0]); 3917 if (!Ty) 3918 return error("Invalid record"); 3919 3920 PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2); 3921 InstructionList.push_back(PN); 3922 3923 for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) { 3924 Value *V; 3925 // With the new function encoding, it is possible that operands have 3926 // negative IDs (for forward references). Use a signed VBR 3927 // representation to keep the encoding small. 3928 if (UseRelativeIDs) 3929 V = getValueSigned(Record, 1+i, NextValueNo, Ty); 3930 else 3931 V = getValue(Record, 1+i, NextValueNo, Ty); 3932 BasicBlock *BB = getBasicBlock(Record[2+i]); 3933 if (!V || !BB) 3934 return error("Invalid record"); 3935 PN->addIncoming(V, BB); 3936 } 3937 I = PN; 3938 break; 3939 } 3940 3941 case bitc::FUNC_CODE_INST_LANDINGPAD: 3942 case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: { 3943 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 3944 unsigned Idx = 0; 3945 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) { 3946 if (Record.size() < 3) 3947 return error("Invalid record"); 3948 } else { 3949 assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD); 3950 if (Record.size() < 4) 3951 return error("Invalid record"); 3952 } 3953 Type *Ty = getTypeByID(Record[Idx++]); 3954 if (!Ty) 3955 return error("Invalid record"); 3956 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) { 3957 Value *PersFn = nullptr; 3958 if (getValueTypePair(Record, Idx, NextValueNo, PersFn)) 3959 return error("Invalid record"); 3960 3961 if (!F->hasPersonalityFn()) 3962 F->setPersonalityFn(cast<Constant>(PersFn)); 3963 else if (F->getPersonalityFn() != cast<Constant>(PersFn)) 3964 return error("Personality function mismatch"); 3965 } 3966 3967 bool IsCleanup = !!Record[Idx++]; 3968 unsigned NumClauses = Record[Idx++]; 3969 LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses); 3970 LP->setCleanup(IsCleanup); 3971 for (unsigned J = 0; J != NumClauses; ++J) { 3972 LandingPadInst::ClauseType CT = 3973 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 3974 Value *Val; 3975 3976 if (getValueTypePair(Record, Idx, NextValueNo, Val)) { 3977 delete LP; 3978 return error("Invalid record"); 3979 } 3980 3981 assert((CT != LandingPadInst::Catch || 3982 !isa<ArrayType>(Val->getType())) && 3983 "Catch clause has a invalid type!"); 3984 assert((CT != LandingPadInst::Filter || 3985 isa<ArrayType>(Val->getType())) && 3986 "Filter clause has invalid type!"); 3987 LP->addClause(cast<Constant>(Val)); 3988 } 3989 3990 I = LP; 3991 InstructionList.push_back(I); 3992 break; 3993 } 3994 3995 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 3996 if (Record.size() != 4) 3997 return error("Invalid record"); 3998 uint64_t AlignRecord = Record[3]; 3999 const uint64_t InAllocaMask = uint64_t(1) << 5; 4000 const uint64_t ExplicitTypeMask = uint64_t(1) << 6; 4001 const uint64_t SwiftErrorMask = uint64_t(1) << 7; 4002 const uint64_t FlagMask = InAllocaMask | ExplicitTypeMask | 4003 SwiftErrorMask; 4004 bool InAlloca = AlignRecord & InAllocaMask; 4005 bool SwiftError = AlignRecord & SwiftErrorMask; 4006 Type *Ty = getTypeByID(Record[0]); 4007 if ((AlignRecord & ExplicitTypeMask) == 0) { 4008 auto *PTy = dyn_cast_or_null<PointerType>(Ty); 4009 if (!PTy) 4010 return error("Old-style alloca with a non-pointer type"); 4011 Ty = PTy->getElementType(); 4012 } 4013 Type *OpTy = getTypeByID(Record[1]); 4014 Value *Size = getFnValueByID(Record[2], OpTy); 4015 unsigned Align; 4016 if (Error Err = parseAlignmentValue(AlignRecord & ~FlagMask, Align)) { 4017 return Err; 4018 } 4019 if (!Ty || !Size) 4020 return error("Invalid record"); 4021 AllocaInst *AI = new AllocaInst(Ty, Size, Align); 4022 AI->setUsedWithInAlloca(InAlloca); 4023 AI->setSwiftError(SwiftError); 4024 I = AI; 4025 InstructionList.push_back(I); 4026 break; 4027 } 4028 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 4029 unsigned OpNum = 0; 4030 Value *Op; 4031 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4032 (OpNum + 2 != Record.size() && OpNum + 3 != Record.size())) 4033 return error("Invalid record"); 4034 4035 Type *Ty = nullptr; 4036 if (OpNum + 3 == Record.size()) 4037 Ty = getTypeByID(Record[OpNum++]); 4038 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 4039 return Err; 4040 if (!Ty) 4041 Ty = cast<PointerType>(Op->getType())->getElementType(); 4042 4043 unsigned Align; 4044 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4045 return Err; 4046 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], Align); 4047 4048 InstructionList.push_back(I); 4049 break; 4050 } 4051 case bitc::FUNC_CODE_INST_LOADATOMIC: { 4052 // LOADATOMIC: [opty, op, align, vol, ordering, synchscope] 4053 unsigned OpNum = 0; 4054 Value *Op; 4055 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4056 (OpNum + 4 != Record.size() && OpNum + 5 != Record.size())) 4057 return error("Invalid record"); 4058 4059 Type *Ty = nullptr; 4060 if (OpNum + 5 == Record.size()) 4061 Ty = getTypeByID(Record[OpNum++]); 4062 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 4063 return Err; 4064 if (!Ty) 4065 Ty = cast<PointerType>(Op->getType())->getElementType(); 4066 4067 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4068 if (Ordering == AtomicOrdering::NotAtomic || 4069 Ordering == AtomicOrdering::Release || 4070 Ordering == AtomicOrdering::AcquireRelease) 4071 return error("Invalid record"); 4072 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 4073 return error("Invalid record"); 4074 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]); 4075 4076 unsigned Align; 4077 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4078 return Err; 4079 I = new LoadInst(Op, "", Record[OpNum+1], Align, Ordering, SynchScope); 4080 4081 InstructionList.push_back(I); 4082 break; 4083 } 4084 case bitc::FUNC_CODE_INST_STORE: 4085 case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol] 4086 unsigned OpNum = 0; 4087 Value *Val, *Ptr; 4088 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4089 (BitCode == bitc::FUNC_CODE_INST_STORE 4090 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 4091 : popValue(Record, OpNum, NextValueNo, 4092 cast<PointerType>(Ptr->getType())->getElementType(), 4093 Val)) || 4094 OpNum + 2 != Record.size()) 4095 return error("Invalid record"); 4096 4097 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 4098 return Err; 4099 unsigned Align; 4100 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4101 return Err; 4102 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align); 4103 InstructionList.push_back(I); 4104 break; 4105 } 4106 case bitc::FUNC_CODE_INST_STOREATOMIC: 4107 case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: { 4108 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, synchscope] 4109 unsigned OpNum = 0; 4110 Value *Val, *Ptr; 4111 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4112 !isa<PointerType>(Ptr->getType()) || 4113 (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC 4114 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 4115 : popValue(Record, OpNum, NextValueNo, 4116 cast<PointerType>(Ptr->getType())->getElementType(), 4117 Val)) || 4118 OpNum + 4 != Record.size()) 4119 return error("Invalid record"); 4120 4121 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 4122 return Err; 4123 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4124 if (Ordering == AtomicOrdering::NotAtomic || 4125 Ordering == AtomicOrdering::Acquire || 4126 Ordering == AtomicOrdering::AcquireRelease) 4127 return error("Invalid record"); 4128 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]); 4129 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 4130 return error("Invalid record"); 4131 4132 unsigned Align; 4133 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4134 return Err; 4135 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align, Ordering, SynchScope); 4136 InstructionList.push_back(I); 4137 break; 4138 } 4139 case bitc::FUNC_CODE_INST_CMPXCHG_OLD: 4140 case bitc::FUNC_CODE_INST_CMPXCHG: { 4141 // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, synchscope, 4142 // failureordering?, isweak?] 4143 unsigned OpNum = 0; 4144 Value *Ptr, *Cmp, *New; 4145 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4146 (BitCode == bitc::FUNC_CODE_INST_CMPXCHG 4147 ? getValueTypePair(Record, OpNum, NextValueNo, Cmp) 4148 : popValue(Record, OpNum, NextValueNo, 4149 cast<PointerType>(Ptr->getType())->getElementType(), 4150 Cmp)) || 4151 popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) || 4152 Record.size() < OpNum + 3 || Record.size() > OpNum + 5) 4153 return error("Invalid record"); 4154 AtomicOrdering SuccessOrdering = getDecodedOrdering(Record[OpNum + 1]); 4155 if (SuccessOrdering == AtomicOrdering::NotAtomic || 4156 SuccessOrdering == AtomicOrdering::Unordered) 4157 return error("Invalid record"); 4158 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 2]); 4159 4160 if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType())) 4161 return Err; 4162 AtomicOrdering FailureOrdering; 4163 if (Record.size() < 7) 4164 FailureOrdering = 4165 AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering); 4166 else 4167 FailureOrdering = getDecodedOrdering(Record[OpNum + 3]); 4168 4169 I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering, 4170 SynchScope); 4171 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 4172 4173 if (Record.size() < 8) { 4174 // Before weak cmpxchgs existed, the instruction simply returned the 4175 // value loaded from memory, so bitcode files from that era will be 4176 // expecting the first component of a modern cmpxchg. 4177 CurBB->getInstList().push_back(I); 4178 I = ExtractValueInst::Create(I, 0); 4179 } else { 4180 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]); 4181 } 4182 4183 InstructionList.push_back(I); 4184 break; 4185 } 4186 case bitc::FUNC_CODE_INST_ATOMICRMW: { 4187 // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, synchscope] 4188 unsigned OpNum = 0; 4189 Value *Ptr, *Val; 4190 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4191 !isa<PointerType>(Ptr->getType()) || 4192 popValue(Record, OpNum, NextValueNo, 4193 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 4194 OpNum+4 != Record.size()) 4195 return error("Invalid record"); 4196 AtomicRMWInst::BinOp Operation = getDecodedRMWOperation(Record[OpNum]); 4197 if (Operation < AtomicRMWInst::FIRST_BINOP || 4198 Operation > AtomicRMWInst::LAST_BINOP) 4199 return error("Invalid record"); 4200 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4201 if (Ordering == AtomicOrdering::NotAtomic || 4202 Ordering == AtomicOrdering::Unordered) 4203 return error("Invalid record"); 4204 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]); 4205 I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SynchScope); 4206 cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]); 4207 InstructionList.push_back(I); 4208 break; 4209 } 4210 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, synchscope] 4211 if (2 != Record.size()) 4212 return error("Invalid record"); 4213 AtomicOrdering Ordering = getDecodedOrdering(Record[0]); 4214 if (Ordering == AtomicOrdering::NotAtomic || 4215 Ordering == AtomicOrdering::Unordered || 4216 Ordering == AtomicOrdering::Monotonic) 4217 return error("Invalid record"); 4218 SynchronizationScope SynchScope = getDecodedSynchScope(Record[1]); 4219 I = new FenceInst(Context, Ordering, SynchScope); 4220 InstructionList.push_back(I); 4221 break; 4222 } 4223 case bitc::FUNC_CODE_INST_CALL: { 4224 // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...] 4225 if (Record.size() < 3) 4226 return error("Invalid record"); 4227 4228 unsigned OpNum = 0; 4229 AttributeSet PAL = getAttributes(Record[OpNum++]); 4230 unsigned CCInfo = Record[OpNum++]; 4231 4232 FastMathFlags FMF; 4233 if ((CCInfo >> bitc::CALL_FMF) & 1) { 4234 FMF = getDecodedFastMathFlags(Record[OpNum++]); 4235 if (!FMF.any()) 4236 return error("Fast math flags indicator set for call with no FMF"); 4237 } 4238 4239 FunctionType *FTy = nullptr; 4240 if (CCInfo >> bitc::CALL_EXPLICIT_TYPE & 1 && 4241 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])))) 4242 return error("Explicit call type is not a function type"); 4243 4244 Value *Callee; 4245 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 4246 return error("Invalid record"); 4247 4248 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 4249 if (!OpTy) 4250 return error("Callee is not a pointer type"); 4251 if (!FTy) { 4252 FTy = dyn_cast<FunctionType>(OpTy->getElementType()); 4253 if (!FTy) 4254 return error("Callee is not of pointer to function type"); 4255 } else if (OpTy->getElementType() != FTy) 4256 return error("Explicit call type does not match pointee type of " 4257 "callee operand"); 4258 if (Record.size() < FTy->getNumParams() + OpNum) 4259 return error("Insufficient operands to call"); 4260 4261 SmallVector<Value*, 16> Args; 4262 // Read the fixed params. 4263 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 4264 if (FTy->getParamType(i)->isLabelTy()) 4265 Args.push_back(getBasicBlock(Record[OpNum])); 4266 else 4267 Args.push_back(getValue(Record, OpNum, NextValueNo, 4268 FTy->getParamType(i))); 4269 if (!Args.back()) 4270 return error("Invalid record"); 4271 } 4272 4273 // Read type/value pairs for varargs params. 4274 if (!FTy->isVarArg()) { 4275 if (OpNum != Record.size()) 4276 return error("Invalid record"); 4277 } else { 4278 while (OpNum != Record.size()) { 4279 Value *Op; 4280 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4281 return error("Invalid record"); 4282 Args.push_back(Op); 4283 } 4284 } 4285 4286 I = CallInst::Create(FTy, Callee, Args, OperandBundles); 4287 OperandBundles.clear(); 4288 InstructionList.push_back(I); 4289 cast<CallInst>(I)->setCallingConv( 4290 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 4291 CallInst::TailCallKind TCK = CallInst::TCK_None; 4292 if (CCInfo & 1 << bitc::CALL_TAIL) 4293 TCK = CallInst::TCK_Tail; 4294 if (CCInfo & (1 << bitc::CALL_MUSTTAIL)) 4295 TCK = CallInst::TCK_MustTail; 4296 if (CCInfo & (1 << bitc::CALL_NOTAIL)) 4297 TCK = CallInst::TCK_NoTail; 4298 cast<CallInst>(I)->setTailCallKind(TCK); 4299 cast<CallInst>(I)->setAttributes(PAL); 4300 if (FMF.any()) { 4301 if (!isa<FPMathOperator>(I)) 4302 return error("Fast-math-flags specified for call without " 4303 "floating-point scalar or vector return type"); 4304 I->setFastMathFlags(FMF); 4305 } 4306 break; 4307 } 4308 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 4309 if (Record.size() < 3) 4310 return error("Invalid record"); 4311 Type *OpTy = getTypeByID(Record[0]); 4312 Value *Op = getValue(Record, 1, NextValueNo, OpTy); 4313 Type *ResTy = getTypeByID(Record[2]); 4314 if (!OpTy || !Op || !ResTy) 4315 return error("Invalid record"); 4316 I = new VAArgInst(Op, ResTy); 4317 InstructionList.push_back(I); 4318 break; 4319 } 4320 4321 case bitc::FUNC_CODE_OPERAND_BUNDLE: { 4322 // A call or an invoke can be optionally prefixed with some variable 4323 // number of operand bundle blocks. These blocks are read into 4324 // OperandBundles and consumed at the next call or invoke instruction. 4325 4326 if (Record.size() < 1 || Record[0] >= BundleTags.size()) 4327 return error("Invalid record"); 4328 4329 std::vector<Value *> Inputs; 4330 4331 unsigned OpNum = 1; 4332 while (OpNum != Record.size()) { 4333 Value *Op; 4334 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4335 return error("Invalid record"); 4336 Inputs.push_back(Op); 4337 } 4338 4339 OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs)); 4340 continue; 4341 } 4342 } 4343 4344 // Add instruction to end of current BB. If there is no current BB, reject 4345 // this file. 4346 if (!CurBB) { 4347 delete I; 4348 return error("Invalid instruction with no BB"); 4349 } 4350 if (!OperandBundles.empty()) { 4351 delete I; 4352 return error("Operand bundles found with no consumer"); 4353 } 4354 CurBB->getInstList().push_back(I); 4355 4356 // If this was a terminator instruction, move to the next block. 4357 if (isa<TerminatorInst>(I)) { 4358 ++CurBBNo; 4359 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr; 4360 } 4361 4362 // Non-void values get registered in the value table for future use. 4363 if (I && !I->getType()->isVoidTy()) 4364 ValueList.assignValue(I, NextValueNo++); 4365 } 4366 4367 OutOfRecordLoop: 4368 4369 if (!OperandBundles.empty()) 4370 return error("Operand bundles found with no consumer"); 4371 4372 // Check the function list for unresolved values. 4373 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 4374 if (!A->getParent()) { 4375 // We found at least one unresolved value. Nuke them all to avoid leaks. 4376 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 4377 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) { 4378 A->replaceAllUsesWith(UndefValue::get(A->getType())); 4379 delete A; 4380 } 4381 } 4382 return error("Never resolved value found in function"); 4383 } 4384 } 4385 4386 // Unexpected unresolved metadata about to be dropped. 4387 if (MDLoader->hasFwdRefs()) 4388 return error("Invalid function metadata: outgoing forward refs"); 4389 4390 // Trim the value list down to the size it was before we parsed this function. 4391 ValueList.shrinkTo(ModuleValueListSize); 4392 MDLoader->shrinkTo(ModuleMDLoaderSize); 4393 std::vector<BasicBlock*>().swap(FunctionBBs); 4394 return Error::success(); 4395 } 4396 4397 /// Find the function body in the bitcode stream 4398 Error BitcodeReader::findFunctionInStream( 4399 Function *F, 4400 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) { 4401 while (DeferredFunctionInfoIterator->second == 0) { 4402 // This is the fallback handling for the old format bitcode that 4403 // didn't contain the function index in the VST, or when we have 4404 // an anonymous function which would not have a VST entry. 4405 // Assert that we have one of those two cases. 4406 assert(VSTOffset == 0 || !F->hasName()); 4407 // Parse the next body in the stream and set its position in the 4408 // DeferredFunctionInfo map. 4409 if (Error Err = rememberAndSkipFunctionBodies()) 4410 return Err; 4411 } 4412 return Error::success(); 4413 } 4414 4415 //===----------------------------------------------------------------------===// 4416 // GVMaterializer implementation 4417 //===----------------------------------------------------------------------===// 4418 4419 Error BitcodeReader::materialize(GlobalValue *GV) { 4420 Function *F = dyn_cast<Function>(GV); 4421 // If it's not a function or is already material, ignore the request. 4422 if (!F || !F->isMaterializable()) 4423 return Error::success(); 4424 4425 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 4426 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 4427 // If its position is recorded as 0, its body is somewhere in the stream 4428 // but we haven't seen it yet. 4429 if (DFII->second == 0) 4430 if (Error Err = findFunctionInStream(F, DFII)) 4431 return Err; 4432 4433 // Materialize metadata before parsing any function bodies. 4434 if (Error Err = materializeMetadata()) 4435 return Err; 4436 4437 // Move the bit stream to the saved position of the deferred function body. 4438 Stream.JumpToBit(DFII->second); 4439 4440 if (Error Err = parseFunctionBody(F)) 4441 return Err; 4442 F->setIsMaterializable(false); 4443 4444 if (StripDebugInfo) 4445 stripDebugInfo(*F); 4446 4447 // Upgrade any old intrinsic calls in the function. 4448 for (auto &I : UpgradedIntrinsics) { 4449 for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end(); 4450 UI != UE;) { 4451 User *U = *UI; 4452 ++UI; 4453 if (CallInst *CI = dyn_cast<CallInst>(U)) 4454 UpgradeIntrinsicCall(CI, I.second); 4455 } 4456 } 4457 4458 // Update calls to the remangled intrinsics 4459 for (auto &I : RemangledIntrinsics) 4460 for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end(); 4461 UI != UE;) 4462 // Don't expect any other users than call sites 4463 CallSite(*UI++).setCalledFunction(I.second); 4464 4465 // Finish fn->subprogram upgrade for materialized functions. 4466 if (DISubprogram *SP = MDLoader->lookupSubprogramForFunction(F)) 4467 F->setSubprogram(SP); 4468 4469 // Check if the TBAA Metadata are valid, otherwise we will need to strip them. 4470 if (!MDLoader->isStrippingTBAA()) { 4471 for (auto &I : instructions(F)) { 4472 MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa); 4473 if (!TBAA || TBAAVerifyHelper.visitTBAAMetadata(I, TBAA)) 4474 continue; 4475 MDLoader->setStripTBAA(true); 4476 stripTBAA(F->getParent()); 4477 } 4478 } 4479 4480 // Bring in any functions that this function forward-referenced via 4481 // blockaddresses. 4482 return materializeForwardReferencedFunctions(); 4483 } 4484 4485 Error BitcodeReader::materializeModule() { 4486 if (Error Err = materializeMetadata()) 4487 return Err; 4488 4489 // Promise to materialize all forward references. 4490 WillMaterializeAllForwardRefs = true; 4491 4492 // Iterate over the module, deserializing any functions that are still on 4493 // disk. 4494 for (Function &F : *TheModule) { 4495 if (Error Err = materialize(&F)) 4496 return Err; 4497 } 4498 // At this point, if there are any function bodies, parse the rest of 4499 // the bits in the module past the last function block we have recorded 4500 // through either lazy scanning or the VST. 4501 if (LastFunctionBlockBit || NextUnreadBit) 4502 if (Error Err = parseModule(LastFunctionBlockBit > NextUnreadBit 4503 ? LastFunctionBlockBit 4504 : NextUnreadBit)) 4505 return Err; 4506 4507 // Check that all block address forward references got resolved (as we 4508 // promised above). 4509 if (!BasicBlockFwdRefs.empty()) 4510 return error("Never resolved function from blockaddress"); 4511 4512 // Upgrade any intrinsic calls that slipped through (should not happen!) and 4513 // delete the old functions to clean up. We can't do this unless the entire 4514 // module is materialized because there could always be another function body 4515 // with calls to the old function. 4516 for (auto &I : UpgradedIntrinsics) { 4517 for (auto *U : I.first->users()) { 4518 if (CallInst *CI = dyn_cast<CallInst>(U)) 4519 UpgradeIntrinsicCall(CI, I.second); 4520 } 4521 if (!I.first->use_empty()) 4522 I.first->replaceAllUsesWith(I.second); 4523 I.first->eraseFromParent(); 4524 } 4525 UpgradedIntrinsics.clear(); 4526 // Do the same for remangled intrinsics 4527 for (auto &I : RemangledIntrinsics) { 4528 I.first->replaceAllUsesWith(I.second); 4529 I.first->eraseFromParent(); 4530 } 4531 RemangledIntrinsics.clear(); 4532 4533 UpgradeDebugInfo(*TheModule); 4534 4535 UpgradeModuleFlags(*TheModule); 4536 return Error::success(); 4537 } 4538 4539 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const { 4540 return IdentifiedStructTypes; 4541 } 4542 4543 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader( 4544 BitstreamCursor Cursor, ModuleSummaryIndex &TheIndex) 4545 : BitcodeReaderBase(std::move(Cursor)), TheIndex(TheIndex) {} 4546 4547 std::pair<GlobalValue::GUID, GlobalValue::GUID> 4548 ModuleSummaryIndexBitcodeReader::getGUIDFromValueId(unsigned ValueId) { 4549 auto VGI = ValueIdToCallGraphGUIDMap.find(ValueId); 4550 assert(VGI != ValueIdToCallGraphGUIDMap.end()); 4551 return VGI->second; 4552 } 4553 4554 // Specialized value symbol table parser used when reading module index 4555 // blocks where we don't actually create global values. The parsed information 4556 // is saved in the bitcode reader for use when later parsing summaries. 4557 Error ModuleSummaryIndexBitcodeReader::parseValueSymbolTable( 4558 uint64_t Offset, 4559 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) { 4560 assert(Offset > 0 && "Expected non-zero VST offset"); 4561 uint64_t CurrentBit = jumpToValueSymbolTable(Offset, Stream); 4562 4563 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 4564 return error("Invalid record"); 4565 4566 SmallVector<uint64_t, 64> Record; 4567 4568 // Read all the records for this value table. 4569 SmallString<128> ValueName; 4570 4571 while (true) { 4572 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 4573 4574 switch (Entry.Kind) { 4575 case BitstreamEntry::SubBlock: // Handled for us already. 4576 case BitstreamEntry::Error: 4577 return error("Malformed block"); 4578 case BitstreamEntry::EndBlock: 4579 // Done parsing VST, jump back to wherever we came from. 4580 Stream.JumpToBit(CurrentBit); 4581 return Error::success(); 4582 case BitstreamEntry::Record: 4583 // The interesting case. 4584 break; 4585 } 4586 4587 // Read a record. 4588 Record.clear(); 4589 switch (Stream.readRecord(Entry.ID, Record)) { 4590 default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records). 4591 break; 4592 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 4593 if (convertToString(Record, 1, ValueName)) 4594 return error("Invalid record"); 4595 unsigned ValueID = Record[0]; 4596 assert(!SourceFileName.empty()); 4597 auto VLI = ValueIdToLinkageMap.find(ValueID); 4598 assert(VLI != ValueIdToLinkageMap.end() && 4599 "No linkage found for VST entry?"); 4600 auto Linkage = VLI->second; 4601 std::string GlobalId = 4602 GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName); 4603 auto ValueGUID = GlobalValue::getGUID(GlobalId); 4604 auto OriginalNameID = ValueGUID; 4605 if (GlobalValue::isLocalLinkage(Linkage)) 4606 OriginalNameID = GlobalValue::getGUID(ValueName); 4607 if (PrintSummaryGUIDs) 4608 dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is " 4609 << ValueName << "\n"; 4610 ValueIdToCallGraphGUIDMap[ValueID] = 4611 std::make_pair(ValueGUID, OriginalNameID); 4612 ValueName.clear(); 4613 break; 4614 } 4615 case bitc::VST_CODE_FNENTRY: { 4616 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 4617 if (convertToString(Record, 2, ValueName)) 4618 return error("Invalid record"); 4619 unsigned ValueID = Record[0]; 4620 assert(!SourceFileName.empty()); 4621 auto VLI = ValueIdToLinkageMap.find(ValueID); 4622 assert(VLI != ValueIdToLinkageMap.end() && 4623 "No linkage found for VST entry?"); 4624 auto Linkage = VLI->second; 4625 std::string FunctionGlobalId = GlobalValue::getGlobalIdentifier( 4626 ValueName, VLI->second, SourceFileName); 4627 auto FunctionGUID = GlobalValue::getGUID(FunctionGlobalId); 4628 auto OriginalNameID = FunctionGUID; 4629 if (GlobalValue::isLocalLinkage(Linkage)) 4630 OriginalNameID = GlobalValue::getGUID(ValueName); 4631 if (PrintSummaryGUIDs) 4632 dbgs() << "GUID " << FunctionGUID << "(" << OriginalNameID << ") is " 4633 << ValueName << "\n"; 4634 ValueIdToCallGraphGUIDMap[ValueID] = 4635 std::make_pair(FunctionGUID, OriginalNameID); 4636 4637 ValueName.clear(); 4638 break; 4639 } 4640 case bitc::VST_CODE_COMBINED_ENTRY: { 4641 // VST_CODE_COMBINED_ENTRY: [valueid, refguid] 4642 unsigned ValueID = Record[0]; 4643 GlobalValue::GUID RefGUID = Record[1]; 4644 // The "original name", which is the second value of the pair will be 4645 // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index. 4646 ValueIdToCallGraphGUIDMap[ValueID] = std::make_pair(RefGUID, RefGUID); 4647 break; 4648 } 4649 } 4650 } 4651 } 4652 4653 // Parse just the blocks needed for building the index out of the module. 4654 // At the end of this routine the module Index is populated with a map 4655 // from global value id to GlobalValueSummary objects. 4656 Error ModuleSummaryIndexBitcodeReader::parseModule(StringRef ModulePath) { 4657 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 4658 return error("Invalid record"); 4659 4660 SmallVector<uint64_t, 64> Record; 4661 DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap; 4662 unsigned ValueId = 0; 4663 4664 // Read the index for this module. 4665 while (true) { 4666 BitstreamEntry Entry = Stream.advance(); 4667 4668 switch (Entry.Kind) { 4669 case BitstreamEntry::Error: 4670 return error("Malformed block"); 4671 case BitstreamEntry::EndBlock: 4672 return Error::success(); 4673 4674 case BitstreamEntry::SubBlock: 4675 switch (Entry.ID) { 4676 default: // Skip unknown content. 4677 if (Stream.SkipBlock()) 4678 return error("Invalid record"); 4679 break; 4680 case bitc::BLOCKINFO_BLOCK_ID: 4681 // Need to parse these to get abbrev ids (e.g. for VST) 4682 if (readBlockInfo()) 4683 return error("Malformed block"); 4684 break; 4685 case bitc::VALUE_SYMTAB_BLOCK_ID: 4686 // Should have been parsed earlier via VSTOffset, unless there 4687 // is no summary section. 4688 assert(((SeenValueSymbolTable && VSTOffset > 0) || 4689 !SeenGlobalValSummary) && 4690 "Expected early VST parse via VSTOffset record"); 4691 if (Stream.SkipBlock()) 4692 return error("Invalid record"); 4693 break; 4694 case bitc::GLOBALVAL_SUMMARY_BLOCK_ID: 4695 assert(!SeenValueSymbolTable && 4696 "Already read VST when parsing summary block?"); 4697 // We might not have a VST if there were no values in the 4698 // summary. An empty summary block generated when we are 4699 // performing ThinLTO compiles so we don't later invoke 4700 // the regular LTO process on them. 4701 if (VSTOffset > 0) { 4702 if (Error Err = parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap)) 4703 return Err; 4704 SeenValueSymbolTable = true; 4705 } 4706 SeenGlobalValSummary = true; 4707 if (Error Err = parseEntireSummary(ModulePath)) 4708 return Err; 4709 break; 4710 case bitc::MODULE_STRTAB_BLOCK_ID: 4711 if (Error Err = parseModuleStringTable()) 4712 return Err; 4713 break; 4714 } 4715 continue; 4716 4717 case BitstreamEntry::Record: { 4718 Record.clear(); 4719 auto BitCode = Stream.readRecord(Entry.ID, Record); 4720 switch (BitCode) { 4721 default: 4722 break; // Default behavior, ignore unknown content. 4723 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 4724 case bitc::MODULE_CODE_SOURCE_FILENAME: { 4725 SmallString<128> ValueName; 4726 if (convertToString(Record, 0, ValueName)) 4727 return error("Invalid record"); 4728 SourceFileName = ValueName.c_str(); 4729 break; 4730 } 4731 /// MODULE_CODE_HASH: [5*i32] 4732 case bitc::MODULE_CODE_HASH: { 4733 if (Record.size() != 5) 4734 return error("Invalid hash length " + Twine(Record.size()).str()); 4735 if (TheIndex.modulePaths().empty()) 4736 // We always seed the index with the module. 4737 TheIndex.addModulePath(ModulePath, 0); 4738 if (TheIndex.modulePaths().size() != 1) 4739 return error("Don't expect multiple modules defined?"); 4740 auto &Hash = TheIndex.modulePaths().begin()->second.second; 4741 int Pos = 0; 4742 for (auto &Val : Record) { 4743 assert(!(Val >> 32) && "Unexpected high bits set"); 4744 Hash[Pos++] = Val; 4745 } 4746 break; 4747 } 4748 /// MODULE_CODE_VSTOFFSET: [offset] 4749 case bitc::MODULE_CODE_VSTOFFSET: 4750 if (Record.size() < 1) 4751 return error("Invalid record"); 4752 // Note that we subtract 1 here because the offset is relative to one 4753 // word before the start of the identification or module block, which 4754 // was historically always the start of the regular bitcode header. 4755 VSTOffset = Record[0] - 1; 4756 break; 4757 // GLOBALVAR: [pointer type, isconst, initid, 4758 // linkage, alignment, section, visibility, threadlocal, 4759 // unnamed_addr, externally_initialized, dllstorageclass, 4760 // comdat] 4761 case bitc::MODULE_CODE_GLOBALVAR: { 4762 if (Record.size() < 6) 4763 return error("Invalid record"); 4764 uint64_t RawLinkage = Record[3]; 4765 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 4766 ValueIdToLinkageMap[ValueId++] = Linkage; 4767 break; 4768 } 4769 // FUNCTION: [type, callingconv, isproto, linkage, paramattr, 4770 // alignment, section, visibility, gc, unnamed_addr, 4771 // prologuedata, dllstorageclass, comdat, prefixdata] 4772 case bitc::MODULE_CODE_FUNCTION: { 4773 if (Record.size() < 8) 4774 return error("Invalid record"); 4775 uint64_t RawLinkage = Record[3]; 4776 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 4777 ValueIdToLinkageMap[ValueId++] = Linkage; 4778 break; 4779 } 4780 // ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, 4781 // dllstorageclass] 4782 case bitc::MODULE_CODE_ALIAS: { 4783 if (Record.size() < 6) 4784 return error("Invalid record"); 4785 uint64_t RawLinkage = Record[3]; 4786 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 4787 ValueIdToLinkageMap[ValueId++] = Linkage; 4788 break; 4789 } 4790 } 4791 } 4792 continue; 4793 } 4794 } 4795 } 4796 4797 std::vector<ValueInfo> 4798 ModuleSummaryIndexBitcodeReader::makeRefList(ArrayRef<uint64_t> Record) { 4799 std::vector<ValueInfo> Ret; 4800 Ret.reserve(Record.size()); 4801 for (uint64_t RefValueId : Record) 4802 Ret.push_back(getGUIDFromValueId(RefValueId).first); 4803 return Ret; 4804 } 4805 4806 std::vector<FunctionSummary::EdgeTy> ModuleSummaryIndexBitcodeReader::makeCallList( 4807 ArrayRef<uint64_t> Record, bool IsOldProfileFormat, bool HasProfile) { 4808 std::vector<FunctionSummary::EdgeTy> Ret; 4809 Ret.reserve(Record.size()); 4810 for (unsigned I = 0, E = Record.size(); I != E; ++I) { 4811 CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown; 4812 GlobalValue::GUID CalleeGUID = getGUIDFromValueId(Record[I]).first; 4813 if (IsOldProfileFormat) { 4814 I += 1; // Skip old callsitecount field 4815 if (HasProfile) 4816 I += 1; // Skip old profilecount field 4817 } else if (HasProfile) 4818 Hotness = static_cast<CalleeInfo::HotnessType>(Record[++I]); 4819 Ret.push_back(FunctionSummary::EdgeTy{CalleeGUID, CalleeInfo{Hotness}}); 4820 } 4821 return Ret; 4822 } 4823 4824 // Eagerly parse the entire summary block. This populates the GlobalValueSummary 4825 // objects in the index. 4826 Error ModuleSummaryIndexBitcodeReader::parseEntireSummary( 4827 StringRef ModulePath) { 4828 if (Stream.EnterSubBlock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID)) 4829 return error("Invalid record"); 4830 SmallVector<uint64_t, 64> Record; 4831 4832 // Parse version 4833 { 4834 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 4835 if (Entry.Kind != BitstreamEntry::Record) 4836 return error("Invalid Summary Block: record for version expected"); 4837 if (Stream.readRecord(Entry.ID, Record) != bitc::FS_VERSION) 4838 return error("Invalid Summary Block: version expected"); 4839 } 4840 const uint64_t Version = Record[0]; 4841 const bool IsOldProfileFormat = Version == 1; 4842 if (Version < 1 || Version > 3) 4843 return error("Invalid summary version " + Twine(Version) + 4844 ", 1, 2 or 3 expected"); 4845 Record.clear(); 4846 4847 // Keep around the last seen summary to be used when we see an optional 4848 // "OriginalName" attachement. 4849 GlobalValueSummary *LastSeenSummary = nullptr; 4850 bool Combined = false; 4851 std::vector<GlobalValue::GUID> PendingTypeTests; 4852 4853 while (true) { 4854 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 4855 4856 switch (Entry.Kind) { 4857 case BitstreamEntry::SubBlock: // Handled for us already. 4858 case BitstreamEntry::Error: 4859 return error("Malformed block"); 4860 case BitstreamEntry::EndBlock: 4861 // For a per-module index, remove any entries that still have empty 4862 // summaries. The VST parsing creates entries eagerly for all symbols, 4863 // but not all have associated summaries (e.g. it doesn't know how to 4864 // distinguish between VST_CODE_ENTRY for function declarations vs global 4865 // variables with initializers that end up with a summary). Remove those 4866 // entries now so that we don't need to rely on the combined index merger 4867 // to clean them up (especially since that may not run for the first 4868 // module's index if we merge into that). 4869 if (!Combined) 4870 TheIndex.removeEmptySummaryEntries(); 4871 return Error::success(); 4872 case BitstreamEntry::Record: 4873 // The interesting case. 4874 break; 4875 } 4876 4877 // Read a record. The record format depends on whether this 4878 // is a per-module index or a combined index file. In the per-module 4879 // case the records contain the associated value's ID for correlation 4880 // with VST entries. In the combined index the correlation is done 4881 // via the bitcode offset of the summary records (which were saved 4882 // in the combined index VST entries). The records also contain 4883 // information used for ThinLTO renaming and importing. 4884 Record.clear(); 4885 auto BitCode = Stream.readRecord(Entry.ID, Record); 4886 switch (BitCode) { 4887 default: // Default behavior: ignore. 4888 break; 4889 // FS_PERMODULE: [valueid, flags, instcount, numrefs, numrefs x valueid, 4890 // n x (valueid)] 4891 // FS_PERMODULE_PROFILE: [valueid, flags, instcount, numrefs, 4892 // numrefs x valueid, 4893 // n x (valueid, hotness)] 4894 case bitc::FS_PERMODULE: 4895 case bitc::FS_PERMODULE_PROFILE: { 4896 unsigned ValueID = Record[0]; 4897 uint64_t RawFlags = Record[1]; 4898 unsigned InstCount = Record[2]; 4899 unsigned NumRefs = Record[3]; 4900 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 4901 // The module path string ref set in the summary must be owned by the 4902 // index's module string table. Since we don't have a module path 4903 // string table section in the per-module index, we create a single 4904 // module path string table entry with an empty (0) ID to take 4905 // ownership. 4906 static int RefListStartIndex = 4; 4907 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 4908 assert(Record.size() >= RefListStartIndex + NumRefs && 4909 "Record size inconsistent with number of references"); 4910 std::vector<ValueInfo> Refs = makeRefList( 4911 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 4912 bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE); 4913 std::vector<FunctionSummary::EdgeTy> Calls = makeCallList( 4914 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex), 4915 IsOldProfileFormat, HasProfile); 4916 auto FS = llvm::make_unique<FunctionSummary>( 4917 Flags, InstCount, std::move(Refs), std::move(Calls), 4918 std::move(PendingTypeTests)); 4919 PendingTypeTests.clear(); 4920 auto GUID = getGUIDFromValueId(ValueID); 4921 FS->setModulePath(TheIndex.addModulePath(ModulePath, 0)->first()); 4922 FS->setOriginalName(GUID.second); 4923 TheIndex.addGlobalValueSummary(GUID.first, std::move(FS)); 4924 break; 4925 } 4926 // FS_ALIAS: [valueid, flags, valueid] 4927 // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as 4928 // they expect all aliasee summaries to be available. 4929 case bitc::FS_ALIAS: { 4930 unsigned ValueID = Record[0]; 4931 uint64_t RawFlags = Record[1]; 4932 unsigned AliaseeID = Record[2]; 4933 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 4934 auto AS = 4935 llvm::make_unique<AliasSummary>(Flags, std::vector<ValueInfo>{}); 4936 // The module path string ref set in the summary must be owned by the 4937 // index's module string table. Since we don't have a module path 4938 // string table section in the per-module index, we create a single 4939 // module path string table entry with an empty (0) ID to take 4940 // ownership. 4941 AS->setModulePath(TheIndex.addModulePath(ModulePath, 0)->first()); 4942 4943 GlobalValue::GUID AliaseeGUID = getGUIDFromValueId(AliaseeID).first; 4944 auto *AliaseeSummary = TheIndex.getGlobalValueSummary(AliaseeGUID); 4945 if (!AliaseeSummary) 4946 return error("Alias expects aliasee summary to be parsed"); 4947 AS->setAliasee(AliaseeSummary); 4948 4949 auto GUID = getGUIDFromValueId(ValueID); 4950 AS->setOriginalName(GUID.second); 4951 TheIndex.addGlobalValueSummary(GUID.first, std::move(AS)); 4952 break; 4953 } 4954 // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, n x valueid] 4955 case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: { 4956 unsigned ValueID = Record[0]; 4957 uint64_t RawFlags = Record[1]; 4958 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 4959 std::vector<ValueInfo> Refs = 4960 makeRefList(ArrayRef<uint64_t>(Record).slice(2)); 4961 auto FS = llvm::make_unique<GlobalVarSummary>(Flags, std::move(Refs)); 4962 FS->setModulePath(TheIndex.addModulePath(ModulePath, 0)->first()); 4963 auto GUID = getGUIDFromValueId(ValueID); 4964 FS->setOriginalName(GUID.second); 4965 TheIndex.addGlobalValueSummary(GUID.first, std::move(FS)); 4966 break; 4967 } 4968 // FS_COMBINED: [valueid, modid, flags, instcount, numrefs, 4969 // numrefs x valueid, n x (valueid)] 4970 // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, numrefs, 4971 // numrefs x valueid, n x (valueid, hotness)] 4972 case bitc::FS_COMBINED: 4973 case bitc::FS_COMBINED_PROFILE: { 4974 unsigned ValueID = Record[0]; 4975 uint64_t ModuleId = Record[1]; 4976 uint64_t RawFlags = Record[2]; 4977 unsigned InstCount = Record[3]; 4978 unsigned NumRefs = Record[4]; 4979 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 4980 static int RefListStartIndex = 5; 4981 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 4982 assert(Record.size() >= RefListStartIndex + NumRefs && 4983 "Record size inconsistent with number of references"); 4984 std::vector<ValueInfo> Refs = makeRefList( 4985 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 4986 bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE); 4987 std::vector<FunctionSummary::EdgeTy> Edges = makeCallList( 4988 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex), 4989 IsOldProfileFormat, HasProfile); 4990 GlobalValue::GUID GUID = getGUIDFromValueId(ValueID).first; 4991 auto FS = llvm::make_unique<FunctionSummary>( 4992 Flags, InstCount, std::move(Refs), std::move(Edges), 4993 std::move(PendingTypeTests)); 4994 PendingTypeTests.clear(); 4995 LastSeenSummary = FS.get(); 4996 FS->setModulePath(ModuleIdMap[ModuleId]); 4997 TheIndex.addGlobalValueSummary(GUID, std::move(FS)); 4998 Combined = true; 4999 break; 5000 } 5001 // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid] 5002 // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as 5003 // they expect all aliasee summaries to be available. 5004 case bitc::FS_COMBINED_ALIAS: { 5005 unsigned ValueID = Record[0]; 5006 uint64_t ModuleId = Record[1]; 5007 uint64_t RawFlags = Record[2]; 5008 unsigned AliaseeValueId = Record[3]; 5009 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5010 auto AS = llvm::make_unique<AliasSummary>(Flags, std::vector<ValueInfo>{}); 5011 LastSeenSummary = AS.get(); 5012 AS->setModulePath(ModuleIdMap[ModuleId]); 5013 5014 auto AliaseeGUID = getGUIDFromValueId(AliaseeValueId).first; 5015 auto AliaseeInModule = 5016 TheIndex.findSummaryInModule(AliaseeGUID, AS->modulePath()); 5017 if (!AliaseeInModule) 5018 return error("Alias expects aliasee summary to be parsed"); 5019 AS->setAliasee(AliaseeInModule); 5020 5021 GlobalValue::GUID GUID = getGUIDFromValueId(ValueID).first; 5022 TheIndex.addGlobalValueSummary(GUID, std::move(AS)); 5023 Combined = true; 5024 break; 5025 } 5026 // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid] 5027 case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: { 5028 unsigned ValueID = Record[0]; 5029 uint64_t ModuleId = Record[1]; 5030 uint64_t RawFlags = Record[2]; 5031 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5032 std::vector<ValueInfo> Refs = 5033 makeRefList(ArrayRef<uint64_t>(Record).slice(3)); 5034 auto FS = llvm::make_unique<GlobalVarSummary>(Flags, std::move(Refs)); 5035 LastSeenSummary = FS.get(); 5036 FS->setModulePath(ModuleIdMap[ModuleId]); 5037 GlobalValue::GUID GUID = getGUIDFromValueId(ValueID).first; 5038 TheIndex.addGlobalValueSummary(GUID, std::move(FS)); 5039 Combined = true; 5040 break; 5041 } 5042 // FS_COMBINED_ORIGINAL_NAME: [original_name] 5043 case bitc::FS_COMBINED_ORIGINAL_NAME: { 5044 uint64_t OriginalName = Record[0]; 5045 if (!LastSeenSummary) 5046 return error("Name attachment that does not follow a combined record"); 5047 LastSeenSummary->setOriginalName(OriginalName); 5048 // Reset the LastSeenSummary 5049 LastSeenSummary = nullptr; 5050 break; 5051 } 5052 case bitc::FS_TYPE_TESTS: { 5053 assert(PendingTypeTests.empty()); 5054 PendingTypeTests.insert(PendingTypeTests.end(), Record.begin(), 5055 Record.end()); 5056 break; 5057 } 5058 } 5059 } 5060 llvm_unreachable("Exit infinite loop"); 5061 } 5062 5063 // Parse the module string table block into the Index. 5064 // This populates the ModulePathStringTable map in the index. 5065 Error ModuleSummaryIndexBitcodeReader::parseModuleStringTable() { 5066 if (Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID)) 5067 return error("Invalid record"); 5068 5069 SmallVector<uint64_t, 64> Record; 5070 5071 SmallString<128> ModulePath; 5072 ModulePathStringTableTy::iterator LastSeenModulePath; 5073 5074 while (true) { 5075 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5076 5077 switch (Entry.Kind) { 5078 case BitstreamEntry::SubBlock: // Handled for us already. 5079 case BitstreamEntry::Error: 5080 return error("Malformed block"); 5081 case BitstreamEntry::EndBlock: 5082 return Error::success(); 5083 case BitstreamEntry::Record: 5084 // The interesting case. 5085 break; 5086 } 5087 5088 Record.clear(); 5089 switch (Stream.readRecord(Entry.ID, Record)) { 5090 default: // Default behavior: ignore. 5091 break; 5092 case bitc::MST_CODE_ENTRY: { 5093 // MST_ENTRY: [modid, namechar x N] 5094 uint64_t ModuleId = Record[0]; 5095 5096 if (convertToString(Record, 1, ModulePath)) 5097 return error("Invalid record"); 5098 5099 LastSeenModulePath = TheIndex.addModulePath(ModulePath, ModuleId); 5100 ModuleIdMap[ModuleId] = LastSeenModulePath->first(); 5101 5102 ModulePath.clear(); 5103 break; 5104 } 5105 /// MST_CODE_HASH: [5*i32] 5106 case bitc::MST_CODE_HASH: { 5107 if (Record.size() != 5) 5108 return error("Invalid hash length " + Twine(Record.size()).str()); 5109 if (LastSeenModulePath == TheIndex.modulePaths().end()) 5110 return error("Invalid hash that does not follow a module path"); 5111 int Pos = 0; 5112 for (auto &Val : Record) { 5113 assert(!(Val >> 32) && "Unexpected high bits set"); 5114 LastSeenModulePath->second.second[Pos++] = Val; 5115 } 5116 // Reset LastSeenModulePath to avoid overriding the hash unexpectedly. 5117 LastSeenModulePath = TheIndex.modulePaths().end(); 5118 break; 5119 } 5120 } 5121 } 5122 llvm_unreachable("Exit infinite loop"); 5123 } 5124 5125 namespace { 5126 5127 // FIXME: This class is only here to support the transition to llvm::Error. It 5128 // will be removed once this transition is complete. Clients should prefer to 5129 // deal with the Error value directly, rather than converting to error_code. 5130 class BitcodeErrorCategoryType : public std::error_category { 5131 const char *name() const noexcept override { 5132 return "llvm.bitcode"; 5133 } 5134 std::string message(int IE) const override { 5135 BitcodeError E = static_cast<BitcodeError>(IE); 5136 switch (E) { 5137 case BitcodeError::CorruptedBitcode: 5138 return "Corrupted bitcode"; 5139 } 5140 llvm_unreachable("Unknown error type!"); 5141 } 5142 }; 5143 5144 } // end anonymous namespace 5145 5146 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory; 5147 5148 const std::error_category &llvm::BitcodeErrorCategory() { 5149 return *ErrorCategory; 5150 } 5151 5152 //===----------------------------------------------------------------------===// 5153 // External interface 5154 //===----------------------------------------------------------------------===// 5155 5156 Expected<std::vector<BitcodeModule>> 5157 llvm::getBitcodeModuleList(MemoryBufferRef Buffer) { 5158 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 5159 if (!StreamOrErr) 5160 return StreamOrErr.takeError(); 5161 BitstreamCursor &Stream = *StreamOrErr; 5162 5163 std::vector<BitcodeModule> Modules; 5164 while (true) { 5165 uint64_t BCBegin = Stream.getCurrentByteNo(); 5166 5167 // We may be consuming bitcode from a client that leaves garbage at the end 5168 // of the bitcode stream (e.g. Apple's ar tool). If we are close enough to 5169 // the end that there cannot possibly be another module, stop looking. 5170 if (BCBegin + 8 >= Stream.getBitcodeBytes().size()) 5171 return Modules; 5172 5173 BitstreamEntry Entry = Stream.advance(); 5174 switch (Entry.Kind) { 5175 case BitstreamEntry::EndBlock: 5176 case BitstreamEntry::Error: 5177 return error("Malformed block"); 5178 5179 case BitstreamEntry::SubBlock: { 5180 uint64_t IdentificationBit = -1ull; 5181 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) { 5182 IdentificationBit = Stream.GetCurrentBitNo() - BCBegin * 8; 5183 if (Stream.SkipBlock()) 5184 return error("Malformed block"); 5185 5186 Entry = Stream.advance(); 5187 if (Entry.Kind != BitstreamEntry::SubBlock || 5188 Entry.ID != bitc::MODULE_BLOCK_ID) 5189 return error("Malformed block"); 5190 } 5191 5192 if (Entry.ID == bitc::MODULE_BLOCK_ID) { 5193 uint64_t ModuleBit = Stream.GetCurrentBitNo() - BCBegin * 8; 5194 if (Stream.SkipBlock()) 5195 return error("Malformed block"); 5196 5197 Modules.push_back({Stream.getBitcodeBytes().slice( 5198 BCBegin, Stream.getCurrentByteNo() - BCBegin), 5199 Buffer.getBufferIdentifier(), IdentificationBit, 5200 ModuleBit}); 5201 continue; 5202 } 5203 5204 if (Stream.SkipBlock()) 5205 return error("Malformed block"); 5206 continue; 5207 } 5208 case BitstreamEntry::Record: 5209 Stream.skipRecord(Entry.ID); 5210 continue; 5211 } 5212 } 5213 } 5214 5215 /// \brief Get a lazy one-at-time loading module from bitcode. 5216 /// 5217 /// This isn't always used in a lazy context. In particular, it's also used by 5218 /// \a parseModule(). If this is truly lazy, then we need to eagerly pull 5219 /// in forward-referenced functions from block address references. 5220 /// 5221 /// \param[in] MaterializeAll Set to \c true if we should materialize 5222 /// everything. 5223 Expected<std::unique_ptr<Module>> 5224 BitcodeModule::getModuleImpl(LLVMContext &Context, bool MaterializeAll, 5225 bool ShouldLazyLoadMetadata, bool IsImporting) { 5226 BitstreamCursor Stream(Buffer); 5227 5228 std::string ProducerIdentification; 5229 if (IdentificationBit != -1ull) { 5230 Stream.JumpToBit(IdentificationBit); 5231 Expected<std::string> ProducerIdentificationOrErr = 5232 readIdentificationBlock(Stream); 5233 if (!ProducerIdentificationOrErr) 5234 return ProducerIdentificationOrErr.takeError(); 5235 5236 ProducerIdentification = *ProducerIdentificationOrErr; 5237 } 5238 5239 Stream.JumpToBit(ModuleBit); 5240 auto *R = 5241 new BitcodeReader(std::move(Stream), ProducerIdentification, Context); 5242 5243 std::unique_ptr<Module> M = 5244 llvm::make_unique<Module>(ModuleIdentifier, Context); 5245 M->setMaterializer(R); 5246 5247 // Delay parsing Metadata if ShouldLazyLoadMetadata is true. 5248 if (Error Err = 5249 R->parseBitcodeInto(M.get(), ShouldLazyLoadMetadata, IsImporting)) 5250 return std::move(Err); 5251 5252 if (MaterializeAll) { 5253 // Read in the entire module, and destroy the BitcodeReader. 5254 if (Error Err = M->materializeAll()) 5255 return std::move(Err); 5256 } else { 5257 // Resolve forward references from blockaddresses. 5258 if (Error Err = R->materializeForwardReferencedFunctions()) 5259 return std::move(Err); 5260 } 5261 return std::move(M); 5262 } 5263 5264 Expected<std::unique_ptr<Module>> 5265 BitcodeModule::getLazyModule(LLVMContext &Context, bool ShouldLazyLoadMetadata, 5266 bool IsImporting) { 5267 return getModuleImpl(Context, false, ShouldLazyLoadMetadata, IsImporting); 5268 } 5269 5270 // Parse the specified bitcode buffer, returning the function info index. 5271 Expected<std::unique_ptr<ModuleSummaryIndex>> BitcodeModule::getSummary() { 5272 BitstreamCursor Stream(Buffer); 5273 Stream.JumpToBit(ModuleBit); 5274 5275 auto Index = llvm::make_unique<ModuleSummaryIndex>(); 5276 ModuleSummaryIndexBitcodeReader R(std::move(Stream), *Index); 5277 5278 if (Error Err = R.parseModule(ModuleIdentifier)) 5279 return std::move(Err); 5280 5281 return std::move(Index); 5282 } 5283 5284 // Check if the given bitcode buffer contains a global value summary block. 5285 Expected<bool> BitcodeModule::hasSummary() { 5286 BitstreamCursor Stream(Buffer); 5287 Stream.JumpToBit(ModuleBit); 5288 5289 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 5290 return error("Invalid record"); 5291 5292 while (true) { 5293 BitstreamEntry Entry = Stream.advance(); 5294 5295 switch (Entry.Kind) { 5296 case BitstreamEntry::Error: 5297 return error("Malformed block"); 5298 case BitstreamEntry::EndBlock: 5299 return false; 5300 5301 case BitstreamEntry::SubBlock: 5302 if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) 5303 return true; 5304 5305 // Ignore other sub-blocks. 5306 if (Stream.SkipBlock()) 5307 return error("Malformed block"); 5308 continue; 5309 5310 case BitstreamEntry::Record: 5311 Stream.skipRecord(Entry.ID); 5312 continue; 5313 } 5314 } 5315 } 5316 5317 static Expected<BitcodeModule> getSingleModule(MemoryBufferRef Buffer) { 5318 Expected<std::vector<BitcodeModule>> MsOrErr = getBitcodeModuleList(Buffer); 5319 if (!MsOrErr) 5320 return MsOrErr.takeError(); 5321 5322 if (MsOrErr->size() != 1) 5323 return error("Expected a single module"); 5324 5325 return (*MsOrErr)[0]; 5326 } 5327 5328 Expected<std::unique_ptr<Module>> 5329 llvm::getLazyBitcodeModule(MemoryBufferRef Buffer, LLVMContext &Context, 5330 bool ShouldLazyLoadMetadata, bool IsImporting) { 5331 Expected<BitcodeModule> BM = getSingleModule(Buffer); 5332 if (!BM) 5333 return BM.takeError(); 5334 5335 return BM->getLazyModule(Context, ShouldLazyLoadMetadata, IsImporting); 5336 } 5337 5338 Expected<std::unique_ptr<Module>> llvm::getOwningLazyBitcodeModule( 5339 std::unique_ptr<MemoryBuffer> &&Buffer, LLVMContext &Context, 5340 bool ShouldLazyLoadMetadata, bool IsImporting) { 5341 auto MOrErr = getLazyBitcodeModule(*Buffer, Context, ShouldLazyLoadMetadata, 5342 IsImporting); 5343 if (MOrErr) 5344 (*MOrErr)->setOwnedMemoryBuffer(std::move(Buffer)); 5345 return MOrErr; 5346 } 5347 5348 Expected<std::unique_ptr<Module>> 5349 BitcodeModule::parseModule(LLVMContext &Context) { 5350 return getModuleImpl(Context, true, false, false); 5351 // TODO: Restore the use-lists to the in-memory state when the bitcode was 5352 // written. We must defer until the Module has been fully materialized. 5353 } 5354 5355 Expected<std::unique_ptr<Module>> llvm::parseBitcodeFile(MemoryBufferRef Buffer, 5356 LLVMContext &Context) { 5357 Expected<BitcodeModule> BM = getSingleModule(Buffer); 5358 if (!BM) 5359 return BM.takeError(); 5360 5361 return BM->parseModule(Context); 5362 } 5363 5364 Expected<std::string> llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer) { 5365 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 5366 if (!StreamOrErr) 5367 return StreamOrErr.takeError(); 5368 5369 return readTriple(*StreamOrErr); 5370 } 5371 5372 Expected<bool> llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer) { 5373 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 5374 if (!StreamOrErr) 5375 return StreamOrErr.takeError(); 5376 5377 return hasObjCCategory(*StreamOrErr); 5378 } 5379 5380 Expected<std::string> llvm::getBitcodeProducerString(MemoryBufferRef Buffer) { 5381 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 5382 if (!StreamOrErr) 5383 return StreamOrErr.takeError(); 5384 5385 return readIdentificationCode(*StreamOrErr); 5386 } 5387 5388 Expected<std::unique_ptr<ModuleSummaryIndex>> 5389 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer) { 5390 Expected<BitcodeModule> BM = getSingleModule(Buffer); 5391 if (!BM) 5392 return BM.takeError(); 5393 5394 return BM->getSummary(); 5395 } 5396 5397 Expected<bool> llvm::hasGlobalValueSummary(MemoryBufferRef Buffer) { 5398 Expected<BitcodeModule> BM = getSingleModule(Buffer); 5399 if (!BM) 5400 return BM.takeError(); 5401 5402 return BM->hasSummary(); 5403 } 5404