1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "llvm/Bitcode/ReaderWriter.h" 11 #include "BitcodeReader.h" 12 #include "llvm/ADT/SmallString.h" 13 #include "llvm/ADT/SmallVector.h" 14 #include "llvm/ADT/Triple.h" 15 #include "llvm/Bitcode/LLVMBitCodes.h" 16 #include "llvm/IR/AutoUpgrade.h" 17 #include "llvm/IR/Constants.h" 18 #include "llvm/IR/DebugInfoMetadata.h" 19 #include "llvm/IR/DerivedTypes.h" 20 #include "llvm/IR/DiagnosticPrinter.h" 21 #include "llvm/IR/InlineAsm.h" 22 #include "llvm/IR/IntrinsicInst.h" 23 #include "llvm/IR/LLVMContext.h" 24 #include "llvm/IR/Module.h" 25 #include "llvm/IR/OperandTraits.h" 26 #include "llvm/IR/Operator.h" 27 #include "llvm/Support/DataStream.h" 28 #include "llvm/Support/ManagedStatic.h" 29 #include "llvm/Support/MathExtras.h" 30 #include "llvm/Support/MemoryBuffer.h" 31 #include "llvm/Support/raw_ostream.h" 32 33 using namespace llvm; 34 35 enum { 36 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 37 }; 38 39 BitcodeDiagnosticInfo::BitcodeDiagnosticInfo(std::error_code EC, 40 DiagnosticSeverity Severity, 41 const Twine &Msg) 42 : DiagnosticInfo(DK_Bitcode, Severity), Msg(Msg), EC(EC) {} 43 44 void BitcodeDiagnosticInfo::print(DiagnosticPrinter &DP) const { DP << Msg; } 45 46 static std::error_code Error(DiagnosticHandlerFunction DiagnosticHandler, 47 std::error_code EC, const Twine &Message) { 48 BitcodeDiagnosticInfo DI(EC, DS_Error, Message); 49 DiagnosticHandler(DI); 50 return EC; 51 } 52 53 static std::error_code Error(DiagnosticHandlerFunction DiagnosticHandler, 54 std::error_code EC) { 55 return Error(DiagnosticHandler, EC, EC.message()); 56 } 57 58 std::error_code BitcodeReader::Error(BitcodeError E, const Twine &Message) { 59 return ::Error(DiagnosticHandler, make_error_code(E), Message); 60 } 61 62 std::error_code BitcodeReader::Error(const Twine &Message) { 63 return ::Error(DiagnosticHandler, 64 make_error_code(BitcodeError::CorruptedBitcode), Message); 65 } 66 67 std::error_code BitcodeReader::Error(BitcodeError E) { 68 return ::Error(DiagnosticHandler, make_error_code(E)); 69 } 70 71 static DiagnosticHandlerFunction getDiagHandler(DiagnosticHandlerFunction F, 72 LLVMContext &C) { 73 if (F) 74 return F; 75 return [&C](const DiagnosticInfo &DI) { C.diagnose(DI); }; 76 } 77 78 BitcodeReader::BitcodeReader(MemoryBuffer *buffer, LLVMContext &C, 79 DiagnosticHandlerFunction DiagnosticHandler) 80 : Context(C), DiagnosticHandler(getDiagHandler(DiagnosticHandler, C)), 81 TheModule(nullptr), Buffer(buffer), LazyStreamer(nullptr), 82 NextUnreadBit(0), SeenValueSymbolTable(false), ValueList(C), 83 MDValueList(C), SeenFirstFunctionBody(false), UseRelativeIDs(false), 84 WillMaterializeAllForwardRefs(false) {} 85 86 BitcodeReader::BitcodeReader(DataStreamer *streamer, LLVMContext &C, 87 DiagnosticHandlerFunction DiagnosticHandler) 88 : Context(C), DiagnosticHandler(getDiagHandler(DiagnosticHandler, C)), 89 TheModule(nullptr), Buffer(nullptr), LazyStreamer(streamer), 90 NextUnreadBit(0), SeenValueSymbolTable(false), ValueList(C), 91 MDValueList(C), SeenFirstFunctionBody(false), UseRelativeIDs(false), 92 WillMaterializeAllForwardRefs(false) {} 93 94 std::error_code BitcodeReader::materializeForwardReferencedFunctions() { 95 if (WillMaterializeAllForwardRefs) 96 return std::error_code(); 97 98 // Prevent recursion. 99 WillMaterializeAllForwardRefs = true; 100 101 while (!BasicBlockFwdRefQueue.empty()) { 102 Function *F = BasicBlockFwdRefQueue.front(); 103 BasicBlockFwdRefQueue.pop_front(); 104 assert(F && "Expected valid function"); 105 if (!BasicBlockFwdRefs.count(F)) 106 // Already materialized. 107 continue; 108 109 // Check for a function that isn't materializable to prevent an infinite 110 // loop. When parsing a blockaddress stored in a global variable, there 111 // isn't a trivial way to check if a function will have a body without a 112 // linear search through FunctionsWithBodies, so just check it here. 113 if (!F->isMaterializable()) 114 return Error("Never resolved function from blockaddress"); 115 116 // Try to materialize F. 117 if (std::error_code EC = materialize(F)) 118 return EC; 119 } 120 assert(BasicBlockFwdRefs.empty() && "Function missing from queue"); 121 122 // Reset state. 123 WillMaterializeAllForwardRefs = false; 124 return std::error_code(); 125 } 126 127 void BitcodeReader::FreeState() { 128 Buffer = nullptr; 129 std::vector<Type*>().swap(TypeList); 130 ValueList.clear(); 131 MDValueList.clear(); 132 std::vector<Comdat *>().swap(ComdatList); 133 134 std::vector<AttributeSet>().swap(MAttributes); 135 std::vector<BasicBlock*>().swap(FunctionBBs); 136 std::vector<Function*>().swap(FunctionsWithBodies); 137 DeferredFunctionInfo.clear(); 138 MDKindMap.clear(); 139 140 assert(BasicBlockFwdRefs.empty() && "Unresolved blockaddress fwd references"); 141 BasicBlockFwdRefQueue.clear(); 142 } 143 144 //===----------------------------------------------------------------------===// 145 // Helper functions to implement forward reference resolution, etc. 146 //===----------------------------------------------------------------------===// 147 148 /// ConvertToString - Convert a string from a record into an std::string, return 149 /// true on failure. 150 template<typename StrTy> 151 static bool ConvertToString(ArrayRef<uint64_t> Record, unsigned Idx, 152 StrTy &Result) { 153 if (Idx > Record.size()) 154 return true; 155 156 for (unsigned i = Idx, e = Record.size(); i != e; ++i) 157 Result += (char)Record[i]; 158 return false; 159 } 160 161 static bool hasImplicitComdat(size_t Val) { 162 switch (Val) { 163 default: 164 return false; 165 case 1: // Old WeakAnyLinkage 166 case 4: // Old LinkOnceAnyLinkage 167 case 10: // Old WeakODRLinkage 168 case 11: // Old LinkOnceODRLinkage 169 return true; 170 } 171 } 172 173 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) { 174 switch (Val) { 175 default: // Map unknown/new linkages to external 176 case 0: 177 return GlobalValue::ExternalLinkage; 178 case 2: 179 return GlobalValue::AppendingLinkage; 180 case 3: 181 return GlobalValue::InternalLinkage; 182 case 5: 183 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage 184 case 6: 185 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage 186 case 7: 187 return GlobalValue::ExternalWeakLinkage; 188 case 8: 189 return GlobalValue::CommonLinkage; 190 case 9: 191 return GlobalValue::PrivateLinkage; 192 case 12: 193 return GlobalValue::AvailableExternallyLinkage; 194 case 13: 195 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage 196 case 14: 197 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage 198 case 15: 199 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage 200 case 1: // Old value with implicit comdat. 201 case 16: 202 return GlobalValue::WeakAnyLinkage; 203 case 10: // Old value with implicit comdat. 204 case 17: 205 return GlobalValue::WeakODRLinkage; 206 case 4: // Old value with implicit comdat. 207 case 18: 208 return GlobalValue::LinkOnceAnyLinkage; 209 case 11: // Old value with implicit comdat. 210 case 19: 211 return GlobalValue::LinkOnceODRLinkage; 212 } 213 } 214 215 static GlobalValue::VisibilityTypes GetDecodedVisibility(unsigned Val) { 216 switch (Val) { 217 default: // Map unknown visibilities to default. 218 case 0: return GlobalValue::DefaultVisibility; 219 case 1: return GlobalValue::HiddenVisibility; 220 case 2: return GlobalValue::ProtectedVisibility; 221 } 222 } 223 224 static GlobalValue::DLLStorageClassTypes 225 GetDecodedDLLStorageClass(unsigned Val) { 226 switch (Val) { 227 default: // Map unknown values to default. 228 case 0: return GlobalValue::DefaultStorageClass; 229 case 1: return GlobalValue::DLLImportStorageClass; 230 case 2: return GlobalValue::DLLExportStorageClass; 231 } 232 } 233 234 static GlobalVariable::ThreadLocalMode GetDecodedThreadLocalMode(unsigned Val) { 235 switch (Val) { 236 case 0: return GlobalVariable::NotThreadLocal; 237 default: // Map unknown non-zero value to general dynamic. 238 case 1: return GlobalVariable::GeneralDynamicTLSModel; 239 case 2: return GlobalVariable::LocalDynamicTLSModel; 240 case 3: return GlobalVariable::InitialExecTLSModel; 241 case 4: return GlobalVariable::LocalExecTLSModel; 242 } 243 } 244 245 static int GetDecodedCastOpcode(unsigned Val) { 246 switch (Val) { 247 default: return -1; 248 case bitc::CAST_TRUNC : return Instruction::Trunc; 249 case bitc::CAST_ZEXT : return Instruction::ZExt; 250 case bitc::CAST_SEXT : return Instruction::SExt; 251 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 252 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 253 case bitc::CAST_UITOFP : return Instruction::UIToFP; 254 case bitc::CAST_SITOFP : return Instruction::SIToFP; 255 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 256 case bitc::CAST_FPEXT : return Instruction::FPExt; 257 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 258 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 259 case bitc::CAST_BITCAST : return Instruction::BitCast; 260 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast; 261 } 262 } 263 static int GetDecodedBinaryOpcode(unsigned Val, Type *Ty) { 264 switch (Val) { 265 default: return -1; 266 case bitc::BINOP_ADD: 267 return Ty->isFPOrFPVectorTy() ? Instruction::FAdd : Instruction::Add; 268 case bitc::BINOP_SUB: 269 return Ty->isFPOrFPVectorTy() ? Instruction::FSub : Instruction::Sub; 270 case bitc::BINOP_MUL: 271 return Ty->isFPOrFPVectorTy() ? Instruction::FMul : Instruction::Mul; 272 case bitc::BINOP_UDIV: return Instruction::UDiv; 273 case bitc::BINOP_SDIV: 274 return Ty->isFPOrFPVectorTy() ? Instruction::FDiv : Instruction::SDiv; 275 case bitc::BINOP_UREM: return Instruction::URem; 276 case bitc::BINOP_SREM: 277 return Ty->isFPOrFPVectorTy() ? Instruction::FRem : Instruction::SRem; 278 case bitc::BINOP_SHL: return Instruction::Shl; 279 case bitc::BINOP_LSHR: return Instruction::LShr; 280 case bitc::BINOP_ASHR: return Instruction::AShr; 281 case bitc::BINOP_AND: return Instruction::And; 282 case bitc::BINOP_OR: return Instruction::Or; 283 case bitc::BINOP_XOR: return Instruction::Xor; 284 } 285 } 286 287 static AtomicRMWInst::BinOp GetDecodedRMWOperation(unsigned Val) { 288 switch (Val) { 289 default: return AtomicRMWInst::BAD_BINOP; 290 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 291 case bitc::RMW_ADD: return AtomicRMWInst::Add; 292 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 293 case bitc::RMW_AND: return AtomicRMWInst::And; 294 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 295 case bitc::RMW_OR: return AtomicRMWInst::Or; 296 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 297 case bitc::RMW_MAX: return AtomicRMWInst::Max; 298 case bitc::RMW_MIN: return AtomicRMWInst::Min; 299 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 300 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 301 } 302 } 303 304 static AtomicOrdering GetDecodedOrdering(unsigned Val) { 305 switch (Val) { 306 case bitc::ORDERING_NOTATOMIC: return NotAtomic; 307 case bitc::ORDERING_UNORDERED: return Unordered; 308 case bitc::ORDERING_MONOTONIC: return Monotonic; 309 case bitc::ORDERING_ACQUIRE: return Acquire; 310 case bitc::ORDERING_RELEASE: return Release; 311 case bitc::ORDERING_ACQREL: return AcquireRelease; 312 default: // Map unknown orderings to sequentially-consistent. 313 case bitc::ORDERING_SEQCST: return SequentiallyConsistent; 314 } 315 } 316 317 static SynchronizationScope GetDecodedSynchScope(unsigned Val) { 318 switch (Val) { 319 case bitc::SYNCHSCOPE_SINGLETHREAD: return SingleThread; 320 default: // Map unknown scopes to cross-thread. 321 case bitc::SYNCHSCOPE_CROSSTHREAD: return CrossThread; 322 } 323 } 324 325 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) { 326 switch (Val) { 327 default: // Map unknown selection kinds to any. 328 case bitc::COMDAT_SELECTION_KIND_ANY: 329 return Comdat::Any; 330 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH: 331 return Comdat::ExactMatch; 332 case bitc::COMDAT_SELECTION_KIND_LARGEST: 333 return Comdat::Largest; 334 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES: 335 return Comdat::NoDuplicates; 336 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE: 337 return Comdat::SameSize; 338 } 339 } 340 341 static void UpgradeDLLImportExportLinkage(llvm::GlobalValue *GV, unsigned Val) { 342 switch (Val) { 343 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break; 344 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break; 345 } 346 } 347 348 namespace llvm { 349 namespace { 350 /// @brief A class for maintaining the slot number definition 351 /// as a placeholder for the actual definition for forward constants defs. 352 class ConstantPlaceHolder : public ConstantExpr { 353 void operator=(const ConstantPlaceHolder &) LLVM_DELETED_FUNCTION; 354 public: 355 // allocate space for exactly one operand 356 void *operator new(size_t s) { 357 return User::operator new(s, 1); 358 } 359 explicit ConstantPlaceHolder(Type *Ty, LLVMContext& Context) 360 : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) { 361 Op<0>() = UndefValue::get(Type::getInt32Ty(Context)); 362 } 363 364 /// @brief Methods to support type inquiry through isa, cast, and dyn_cast. 365 static bool classof(const Value *V) { 366 return isa<ConstantExpr>(V) && 367 cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1; 368 } 369 370 371 /// Provide fast operand accessors 372 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); 373 }; 374 } 375 376 // FIXME: can we inherit this from ConstantExpr? 377 template <> 378 struct OperandTraits<ConstantPlaceHolder> : 379 public FixedNumOperandTraits<ConstantPlaceHolder, 1> { 380 }; 381 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantPlaceHolder, Value) 382 } 383 384 385 void BitcodeReaderValueList::AssignValue(Value *V, unsigned Idx) { 386 if (Idx == size()) { 387 push_back(V); 388 return; 389 } 390 391 if (Idx >= size()) 392 resize(Idx+1); 393 394 WeakVH &OldV = ValuePtrs[Idx]; 395 if (!OldV) { 396 OldV = V; 397 return; 398 } 399 400 // Handle constants and non-constants (e.g. instrs) differently for 401 // efficiency. 402 if (Constant *PHC = dyn_cast<Constant>(&*OldV)) { 403 ResolveConstants.push_back(std::make_pair(PHC, Idx)); 404 OldV = V; 405 } else { 406 // If there was a forward reference to this value, replace it. 407 Value *PrevVal = OldV; 408 OldV->replaceAllUsesWith(V); 409 delete PrevVal; 410 } 411 } 412 413 414 Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx, 415 Type *Ty) { 416 if (Idx >= size()) 417 resize(Idx + 1); 418 419 if (Value *V = ValuePtrs[Idx]) { 420 assert(Ty == V->getType() && "Type mismatch in constant table!"); 421 return cast<Constant>(V); 422 } 423 424 // Create and return a placeholder, which will later be RAUW'd. 425 Constant *C = new ConstantPlaceHolder(Ty, Context); 426 ValuePtrs[Idx] = C; 427 return C; 428 } 429 430 Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, Type *Ty) { 431 if (Idx >= size()) 432 resize(Idx + 1); 433 434 if (Value *V = ValuePtrs[Idx]) { 435 assert((!Ty || Ty == V->getType()) && "Type mismatch in value table!"); 436 return V; 437 } 438 439 // No type specified, must be invalid reference. 440 if (!Ty) return nullptr; 441 442 // Create and return a placeholder, which will later be RAUW'd. 443 Value *V = new Argument(Ty); 444 ValuePtrs[Idx] = V; 445 return V; 446 } 447 448 /// ResolveConstantForwardRefs - Once all constants are read, this method bulk 449 /// resolves any forward references. The idea behind this is that we sometimes 450 /// get constants (such as large arrays) which reference *many* forward ref 451 /// constants. Replacing each of these causes a lot of thrashing when 452 /// building/reuniquing the constant. Instead of doing this, we look at all the 453 /// uses and rewrite all the place holders at once for any constant that uses 454 /// a placeholder. 455 void BitcodeReaderValueList::ResolveConstantForwardRefs() { 456 // Sort the values by-pointer so that they are efficient to look up with a 457 // binary search. 458 std::sort(ResolveConstants.begin(), ResolveConstants.end()); 459 460 SmallVector<Constant*, 64> NewOps; 461 462 while (!ResolveConstants.empty()) { 463 Value *RealVal = operator[](ResolveConstants.back().second); 464 Constant *Placeholder = ResolveConstants.back().first; 465 ResolveConstants.pop_back(); 466 467 // Loop over all users of the placeholder, updating them to reference the 468 // new value. If they reference more than one placeholder, update them all 469 // at once. 470 while (!Placeholder->use_empty()) { 471 auto UI = Placeholder->user_begin(); 472 User *U = *UI; 473 474 // If the using object isn't uniqued, just update the operands. This 475 // handles instructions and initializers for global variables. 476 if (!isa<Constant>(U) || isa<GlobalValue>(U)) { 477 UI.getUse().set(RealVal); 478 continue; 479 } 480 481 // Otherwise, we have a constant that uses the placeholder. Replace that 482 // constant with a new constant that has *all* placeholder uses updated. 483 Constant *UserC = cast<Constant>(U); 484 for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end(); 485 I != E; ++I) { 486 Value *NewOp; 487 if (!isa<ConstantPlaceHolder>(*I)) { 488 // Not a placeholder reference. 489 NewOp = *I; 490 } else if (*I == Placeholder) { 491 // Common case is that it just references this one placeholder. 492 NewOp = RealVal; 493 } else { 494 // Otherwise, look up the placeholder in ResolveConstants. 495 ResolveConstantsTy::iterator It = 496 std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(), 497 std::pair<Constant*, unsigned>(cast<Constant>(*I), 498 0)); 499 assert(It != ResolveConstants.end() && It->first == *I); 500 NewOp = operator[](It->second); 501 } 502 503 NewOps.push_back(cast<Constant>(NewOp)); 504 } 505 506 // Make the new constant. 507 Constant *NewC; 508 if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) { 509 NewC = ConstantArray::get(UserCA->getType(), NewOps); 510 } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) { 511 NewC = ConstantStruct::get(UserCS->getType(), NewOps); 512 } else if (isa<ConstantVector>(UserC)) { 513 NewC = ConstantVector::get(NewOps); 514 } else { 515 assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr."); 516 NewC = cast<ConstantExpr>(UserC)->getWithOperands(NewOps); 517 } 518 519 UserC->replaceAllUsesWith(NewC); 520 UserC->destroyConstant(); 521 NewOps.clear(); 522 } 523 524 // Update all ValueHandles, they should be the only users at this point. 525 Placeholder->replaceAllUsesWith(RealVal); 526 delete Placeholder; 527 } 528 } 529 530 void BitcodeReaderMDValueList::AssignValue(Metadata *MD, unsigned Idx) { 531 if (Idx == size()) { 532 push_back(MD); 533 return; 534 } 535 536 if (Idx >= size()) 537 resize(Idx+1); 538 539 TrackingMDRef &OldMD = MDValuePtrs[Idx]; 540 if (!OldMD) { 541 OldMD.reset(MD); 542 return; 543 } 544 545 // If there was a forward reference to this value, replace it. 546 TempMDTuple PrevMD(cast<MDTuple>(OldMD.get())); 547 PrevMD->replaceAllUsesWith(MD); 548 --NumFwdRefs; 549 } 550 551 Metadata *BitcodeReaderMDValueList::getValueFwdRef(unsigned Idx) { 552 if (Idx >= size()) 553 resize(Idx + 1); 554 555 if (Metadata *MD = MDValuePtrs[Idx]) 556 return MD; 557 558 // Create and return a placeholder, which will later be RAUW'd. 559 AnyFwdRefs = true; 560 ++NumFwdRefs; 561 Metadata *MD = MDNode::getTemporary(Context, None).release(); 562 MDValuePtrs[Idx].reset(MD); 563 return MD; 564 } 565 566 void BitcodeReaderMDValueList::tryToResolveCycles() { 567 if (!AnyFwdRefs) 568 // Nothing to do. 569 return; 570 571 if (NumFwdRefs) 572 // Still forward references... can't resolve cycles. 573 return; 574 575 // Resolve any cycles. 576 for (auto &MD : MDValuePtrs) { 577 auto *N = dyn_cast_or_null<MDNode>(MD); 578 if (!N) 579 continue; 580 581 assert(!N->isTemporary() && "Unexpected forward reference"); 582 N->resolveCycles(); 583 } 584 } 585 586 Type *BitcodeReader::getTypeByID(unsigned ID) { 587 // The type table size is always specified correctly. 588 if (ID >= TypeList.size()) 589 return nullptr; 590 591 if (Type *Ty = TypeList[ID]) 592 return Ty; 593 594 // If we have a forward reference, the only possible case is when it is to a 595 // named struct. Just create a placeholder for now. 596 return TypeList[ID] = createIdentifiedStructType(Context); 597 } 598 599 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context, 600 StringRef Name) { 601 auto *Ret = StructType::create(Context, Name); 602 IdentifiedStructTypes.push_back(Ret); 603 return Ret; 604 } 605 606 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) { 607 auto *Ret = StructType::create(Context); 608 IdentifiedStructTypes.push_back(Ret); 609 return Ret; 610 } 611 612 613 //===----------------------------------------------------------------------===// 614 // Functions for parsing blocks from the bitcode file 615 //===----------------------------------------------------------------------===// 616 617 618 /// \brief This fills an AttrBuilder object with the LLVM attributes that have 619 /// been decoded from the given integer. This function must stay in sync with 620 /// 'encodeLLVMAttributesForBitcode'. 621 static void decodeLLVMAttributesForBitcode(AttrBuilder &B, 622 uint64_t EncodedAttrs) { 623 // FIXME: Remove in 4.0. 624 625 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift 626 // the bits above 31 down by 11 bits. 627 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; 628 assert((!Alignment || isPowerOf2_32(Alignment)) && 629 "Alignment must be a power of two."); 630 631 if (Alignment) 632 B.addAlignmentAttr(Alignment); 633 B.addRawValue(((EncodedAttrs & (0xfffffULL << 32)) >> 11) | 634 (EncodedAttrs & 0xffff)); 635 } 636 637 std::error_code BitcodeReader::ParseAttributeBlock() { 638 if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 639 return Error("Invalid record"); 640 641 if (!MAttributes.empty()) 642 return Error("Invalid multiple blocks"); 643 644 SmallVector<uint64_t, 64> Record; 645 646 SmallVector<AttributeSet, 8> Attrs; 647 648 // Read all the records. 649 while (1) { 650 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 651 652 switch (Entry.Kind) { 653 case BitstreamEntry::SubBlock: // Handled for us already. 654 case BitstreamEntry::Error: 655 return Error("Malformed block"); 656 case BitstreamEntry::EndBlock: 657 return std::error_code(); 658 case BitstreamEntry::Record: 659 // The interesting case. 660 break; 661 } 662 663 // Read a record. 664 Record.clear(); 665 switch (Stream.readRecord(Entry.ID, Record)) { 666 default: // Default behavior: ignore. 667 break; 668 case bitc::PARAMATTR_CODE_ENTRY_OLD: { // ENTRY: [paramidx0, attr0, ...] 669 // FIXME: Remove in 4.0. 670 if (Record.size() & 1) 671 return Error("Invalid record"); 672 673 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 674 AttrBuilder B; 675 decodeLLVMAttributesForBitcode(B, Record[i+1]); 676 Attrs.push_back(AttributeSet::get(Context, Record[i], B)); 677 } 678 679 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 680 Attrs.clear(); 681 break; 682 } 683 case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [attrgrp0, attrgrp1, ...] 684 for (unsigned i = 0, e = Record.size(); i != e; ++i) 685 Attrs.push_back(MAttributeGroups[Record[i]]); 686 687 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 688 Attrs.clear(); 689 break; 690 } 691 } 692 } 693 } 694 695 // Returns Attribute::None on unrecognized codes. 696 static Attribute::AttrKind GetAttrFromCode(uint64_t Code) { 697 switch (Code) { 698 default: 699 return Attribute::None; 700 case bitc::ATTR_KIND_ALIGNMENT: 701 return Attribute::Alignment; 702 case bitc::ATTR_KIND_ALWAYS_INLINE: 703 return Attribute::AlwaysInline; 704 case bitc::ATTR_KIND_BUILTIN: 705 return Attribute::Builtin; 706 case bitc::ATTR_KIND_BY_VAL: 707 return Attribute::ByVal; 708 case bitc::ATTR_KIND_IN_ALLOCA: 709 return Attribute::InAlloca; 710 case bitc::ATTR_KIND_COLD: 711 return Attribute::Cold; 712 case bitc::ATTR_KIND_INLINE_HINT: 713 return Attribute::InlineHint; 714 case bitc::ATTR_KIND_IN_REG: 715 return Attribute::InReg; 716 case bitc::ATTR_KIND_JUMP_TABLE: 717 return Attribute::JumpTable; 718 case bitc::ATTR_KIND_MIN_SIZE: 719 return Attribute::MinSize; 720 case bitc::ATTR_KIND_NAKED: 721 return Attribute::Naked; 722 case bitc::ATTR_KIND_NEST: 723 return Attribute::Nest; 724 case bitc::ATTR_KIND_NO_ALIAS: 725 return Attribute::NoAlias; 726 case bitc::ATTR_KIND_NO_BUILTIN: 727 return Attribute::NoBuiltin; 728 case bitc::ATTR_KIND_NO_CAPTURE: 729 return Attribute::NoCapture; 730 case bitc::ATTR_KIND_NO_DUPLICATE: 731 return Attribute::NoDuplicate; 732 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: 733 return Attribute::NoImplicitFloat; 734 case bitc::ATTR_KIND_NO_INLINE: 735 return Attribute::NoInline; 736 case bitc::ATTR_KIND_NON_LAZY_BIND: 737 return Attribute::NonLazyBind; 738 case bitc::ATTR_KIND_NON_NULL: 739 return Attribute::NonNull; 740 case bitc::ATTR_KIND_DEREFERENCEABLE: 741 return Attribute::Dereferenceable; 742 case bitc::ATTR_KIND_NO_RED_ZONE: 743 return Attribute::NoRedZone; 744 case bitc::ATTR_KIND_NO_RETURN: 745 return Attribute::NoReturn; 746 case bitc::ATTR_KIND_NO_UNWIND: 747 return Attribute::NoUnwind; 748 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: 749 return Attribute::OptimizeForSize; 750 case bitc::ATTR_KIND_OPTIMIZE_NONE: 751 return Attribute::OptimizeNone; 752 case bitc::ATTR_KIND_READ_NONE: 753 return Attribute::ReadNone; 754 case bitc::ATTR_KIND_READ_ONLY: 755 return Attribute::ReadOnly; 756 case bitc::ATTR_KIND_RETURNED: 757 return Attribute::Returned; 758 case bitc::ATTR_KIND_RETURNS_TWICE: 759 return Attribute::ReturnsTwice; 760 case bitc::ATTR_KIND_S_EXT: 761 return Attribute::SExt; 762 case bitc::ATTR_KIND_STACK_ALIGNMENT: 763 return Attribute::StackAlignment; 764 case bitc::ATTR_KIND_STACK_PROTECT: 765 return Attribute::StackProtect; 766 case bitc::ATTR_KIND_STACK_PROTECT_REQ: 767 return Attribute::StackProtectReq; 768 case bitc::ATTR_KIND_STACK_PROTECT_STRONG: 769 return Attribute::StackProtectStrong; 770 case bitc::ATTR_KIND_STRUCT_RET: 771 return Attribute::StructRet; 772 case bitc::ATTR_KIND_SANITIZE_ADDRESS: 773 return Attribute::SanitizeAddress; 774 case bitc::ATTR_KIND_SANITIZE_THREAD: 775 return Attribute::SanitizeThread; 776 case bitc::ATTR_KIND_SANITIZE_MEMORY: 777 return Attribute::SanitizeMemory; 778 case bitc::ATTR_KIND_UW_TABLE: 779 return Attribute::UWTable; 780 case bitc::ATTR_KIND_Z_EXT: 781 return Attribute::ZExt; 782 } 783 } 784 785 std::error_code BitcodeReader::ParseAttrKind(uint64_t Code, 786 Attribute::AttrKind *Kind) { 787 *Kind = GetAttrFromCode(Code); 788 if (*Kind == Attribute::None) 789 return Error(BitcodeError::CorruptedBitcode, 790 "Unknown attribute kind (" + Twine(Code) + ")"); 791 return std::error_code(); 792 } 793 794 std::error_code BitcodeReader::ParseAttributeGroupBlock() { 795 if (Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) 796 return Error("Invalid record"); 797 798 if (!MAttributeGroups.empty()) 799 return Error("Invalid multiple blocks"); 800 801 SmallVector<uint64_t, 64> Record; 802 803 // Read all the records. 804 while (1) { 805 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 806 807 switch (Entry.Kind) { 808 case BitstreamEntry::SubBlock: // Handled for us already. 809 case BitstreamEntry::Error: 810 return Error("Malformed block"); 811 case BitstreamEntry::EndBlock: 812 return std::error_code(); 813 case BitstreamEntry::Record: 814 // The interesting case. 815 break; 816 } 817 818 // Read a record. 819 Record.clear(); 820 switch (Stream.readRecord(Entry.ID, Record)) { 821 default: // Default behavior: ignore. 822 break; 823 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] 824 if (Record.size() < 3) 825 return Error("Invalid record"); 826 827 uint64_t GrpID = Record[0]; 828 uint64_t Idx = Record[1]; // Index of the object this attribute refers to. 829 830 AttrBuilder B; 831 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 832 if (Record[i] == 0) { // Enum attribute 833 Attribute::AttrKind Kind; 834 if (std::error_code EC = ParseAttrKind(Record[++i], &Kind)) 835 return EC; 836 837 B.addAttribute(Kind); 838 } else if (Record[i] == 1) { // Integer attribute 839 Attribute::AttrKind Kind; 840 if (std::error_code EC = ParseAttrKind(Record[++i], &Kind)) 841 return EC; 842 if (Kind == Attribute::Alignment) 843 B.addAlignmentAttr(Record[++i]); 844 else if (Kind == Attribute::StackAlignment) 845 B.addStackAlignmentAttr(Record[++i]); 846 else if (Kind == Attribute::Dereferenceable) 847 B.addDereferenceableAttr(Record[++i]); 848 } else { // String attribute 849 assert((Record[i] == 3 || Record[i] == 4) && 850 "Invalid attribute group entry"); 851 bool HasValue = (Record[i++] == 4); 852 SmallString<64> KindStr; 853 SmallString<64> ValStr; 854 855 while (Record[i] != 0 && i != e) 856 KindStr += Record[i++]; 857 assert(Record[i] == 0 && "Kind string not null terminated"); 858 859 if (HasValue) { 860 // Has a value associated with it. 861 ++i; // Skip the '0' that terminates the "kind" string. 862 while (Record[i] != 0 && i != e) 863 ValStr += Record[i++]; 864 assert(Record[i] == 0 && "Value string not null terminated"); 865 } 866 867 B.addAttribute(KindStr.str(), ValStr.str()); 868 } 869 } 870 871 MAttributeGroups[GrpID] = AttributeSet::get(Context, Idx, B); 872 break; 873 } 874 } 875 } 876 } 877 878 std::error_code BitcodeReader::ParseTypeTable() { 879 if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 880 return Error("Invalid record"); 881 882 return ParseTypeTableBody(); 883 } 884 885 std::error_code BitcodeReader::ParseTypeTableBody() { 886 if (!TypeList.empty()) 887 return Error("Invalid multiple blocks"); 888 889 SmallVector<uint64_t, 64> Record; 890 unsigned NumRecords = 0; 891 892 SmallString<64> TypeName; 893 894 // Read all the records for this type table. 895 while (1) { 896 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 897 898 switch (Entry.Kind) { 899 case BitstreamEntry::SubBlock: // Handled for us already. 900 case BitstreamEntry::Error: 901 return Error("Malformed block"); 902 case BitstreamEntry::EndBlock: 903 if (NumRecords != TypeList.size()) 904 return Error("Malformed block"); 905 return std::error_code(); 906 case BitstreamEntry::Record: 907 // The interesting case. 908 break; 909 } 910 911 // Read a record. 912 Record.clear(); 913 Type *ResultTy = nullptr; 914 switch (Stream.readRecord(Entry.ID, Record)) { 915 default: 916 return Error("Invalid value"); 917 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 918 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 919 // type list. This allows us to reserve space. 920 if (Record.size() < 1) 921 return Error("Invalid record"); 922 TypeList.resize(Record[0]); 923 continue; 924 case bitc::TYPE_CODE_VOID: // VOID 925 ResultTy = Type::getVoidTy(Context); 926 break; 927 case bitc::TYPE_CODE_HALF: // HALF 928 ResultTy = Type::getHalfTy(Context); 929 break; 930 case bitc::TYPE_CODE_FLOAT: // FLOAT 931 ResultTy = Type::getFloatTy(Context); 932 break; 933 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 934 ResultTy = Type::getDoubleTy(Context); 935 break; 936 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 937 ResultTy = Type::getX86_FP80Ty(Context); 938 break; 939 case bitc::TYPE_CODE_FP128: // FP128 940 ResultTy = Type::getFP128Ty(Context); 941 break; 942 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 943 ResultTy = Type::getPPC_FP128Ty(Context); 944 break; 945 case bitc::TYPE_CODE_LABEL: // LABEL 946 ResultTy = Type::getLabelTy(Context); 947 break; 948 case bitc::TYPE_CODE_METADATA: // METADATA 949 ResultTy = Type::getMetadataTy(Context); 950 break; 951 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 952 ResultTy = Type::getX86_MMXTy(Context); 953 break; 954 case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width] 955 if (Record.size() < 1) 956 return Error("Invalid record"); 957 958 uint64_t NumBits = Record[0]; 959 if (NumBits < IntegerType::MIN_INT_BITS || 960 NumBits > IntegerType::MAX_INT_BITS) 961 return Error("Bitwidth for integer type out of range"); 962 ResultTy = IntegerType::get(Context, NumBits); 963 break; 964 } 965 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 966 // [pointee type, address space] 967 if (Record.size() < 1) 968 return Error("Invalid record"); 969 unsigned AddressSpace = 0; 970 if (Record.size() == 2) 971 AddressSpace = Record[1]; 972 ResultTy = getTypeByID(Record[0]); 973 if (!ResultTy) 974 return Error("Invalid type"); 975 ResultTy = PointerType::get(ResultTy, AddressSpace); 976 break; 977 } 978 case bitc::TYPE_CODE_FUNCTION_OLD: { 979 // FIXME: attrid is dead, remove it in LLVM 4.0 980 // FUNCTION: [vararg, attrid, retty, paramty x N] 981 if (Record.size() < 3) 982 return Error("Invalid record"); 983 SmallVector<Type*, 8> ArgTys; 984 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 985 if (Type *T = getTypeByID(Record[i])) 986 ArgTys.push_back(T); 987 else 988 break; 989 } 990 991 ResultTy = getTypeByID(Record[2]); 992 if (!ResultTy || ArgTys.size() < Record.size()-3) 993 return Error("Invalid type"); 994 995 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 996 break; 997 } 998 case bitc::TYPE_CODE_FUNCTION: { 999 // FUNCTION: [vararg, retty, paramty x N] 1000 if (Record.size() < 2) 1001 return Error("Invalid record"); 1002 SmallVector<Type*, 8> ArgTys; 1003 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1004 if (Type *T = getTypeByID(Record[i])) 1005 ArgTys.push_back(T); 1006 else 1007 break; 1008 } 1009 1010 ResultTy = getTypeByID(Record[1]); 1011 if (!ResultTy || ArgTys.size() < Record.size()-2) 1012 return Error("Invalid type"); 1013 1014 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1015 break; 1016 } 1017 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 1018 if (Record.size() < 1) 1019 return Error("Invalid record"); 1020 SmallVector<Type*, 8> EltTys; 1021 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1022 if (Type *T = getTypeByID(Record[i])) 1023 EltTys.push_back(T); 1024 else 1025 break; 1026 } 1027 if (EltTys.size() != Record.size()-1) 1028 return Error("Invalid type"); 1029 ResultTy = StructType::get(Context, EltTys, Record[0]); 1030 break; 1031 } 1032 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 1033 if (ConvertToString(Record, 0, TypeName)) 1034 return Error("Invalid record"); 1035 continue; 1036 1037 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 1038 if (Record.size() < 1) 1039 return Error("Invalid record"); 1040 1041 if (NumRecords >= TypeList.size()) 1042 return Error("Invalid TYPE table"); 1043 1044 // Check to see if this was forward referenced, if so fill in the temp. 1045 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1046 if (Res) { 1047 Res->setName(TypeName); 1048 TypeList[NumRecords] = nullptr; 1049 } else // Otherwise, create a new struct. 1050 Res = createIdentifiedStructType(Context, TypeName); 1051 TypeName.clear(); 1052 1053 SmallVector<Type*, 8> EltTys; 1054 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1055 if (Type *T = getTypeByID(Record[i])) 1056 EltTys.push_back(T); 1057 else 1058 break; 1059 } 1060 if (EltTys.size() != Record.size()-1) 1061 return Error("Invalid record"); 1062 Res->setBody(EltTys, Record[0]); 1063 ResultTy = Res; 1064 break; 1065 } 1066 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 1067 if (Record.size() != 1) 1068 return Error("Invalid record"); 1069 1070 if (NumRecords >= TypeList.size()) 1071 return Error("Invalid TYPE table"); 1072 1073 // Check to see if this was forward referenced, if so fill in the temp. 1074 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1075 if (Res) { 1076 Res->setName(TypeName); 1077 TypeList[NumRecords] = nullptr; 1078 } else // Otherwise, create a new struct with no body. 1079 Res = createIdentifiedStructType(Context, TypeName); 1080 TypeName.clear(); 1081 ResultTy = Res; 1082 break; 1083 } 1084 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 1085 if (Record.size() < 2) 1086 return Error("Invalid record"); 1087 if ((ResultTy = getTypeByID(Record[1]))) 1088 ResultTy = ArrayType::get(ResultTy, Record[0]); 1089 else 1090 return Error("Invalid type"); 1091 break; 1092 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] 1093 if (Record.size() < 2) 1094 return Error("Invalid record"); 1095 if ((ResultTy = getTypeByID(Record[1]))) 1096 ResultTy = VectorType::get(ResultTy, Record[0]); 1097 else 1098 return Error("Invalid type"); 1099 break; 1100 } 1101 1102 if (NumRecords >= TypeList.size()) 1103 return Error("Invalid TYPE table"); 1104 if (TypeList[NumRecords]) 1105 return Error( 1106 "Invalid TYPE table: Only named structs can be forward referenced"); 1107 assert(ResultTy && "Didn't read a type?"); 1108 TypeList[NumRecords++] = ResultTy; 1109 } 1110 } 1111 1112 std::error_code BitcodeReader::ParseValueSymbolTable() { 1113 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 1114 return Error("Invalid record"); 1115 1116 SmallVector<uint64_t, 64> Record; 1117 1118 Triple TT(TheModule->getTargetTriple()); 1119 1120 // Read all the records for this value table. 1121 SmallString<128> ValueName; 1122 while (1) { 1123 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1124 1125 switch (Entry.Kind) { 1126 case BitstreamEntry::SubBlock: // Handled for us already. 1127 case BitstreamEntry::Error: 1128 return Error("Malformed block"); 1129 case BitstreamEntry::EndBlock: 1130 return std::error_code(); 1131 case BitstreamEntry::Record: 1132 // The interesting case. 1133 break; 1134 } 1135 1136 // Read a record. 1137 Record.clear(); 1138 switch (Stream.readRecord(Entry.ID, Record)) { 1139 default: // Default behavior: unknown type. 1140 break; 1141 case bitc::VST_CODE_ENTRY: { // VST_ENTRY: [valueid, namechar x N] 1142 if (ConvertToString(Record, 1, ValueName)) 1143 return Error("Invalid record"); 1144 unsigned ValueID = Record[0]; 1145 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 1146 return Error("Invalid record"); 1147 Value *V = ValueList[ValueID]; 1148 1149 V->setName(StringRef(ValueName.data(), ValueName.size())); 1150 if (auto *GO = dyn_cast<GlobalObject>(V)) { 1151 if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) { 1152 if (TT.isOSBinFormatMachO()) 1153 GO->setComdat(nullptr); 1154 else 1155 GO->setComdat(TheModule->getOrInsertComdat(V->getName())); 1156 } 1157 } 1158 ValueName.clear(); 1159 break; 1160 } 1161 case bitc::VST_CODE_BBENTRY: { 1162 if (ConvertToString(Record, 1, ValueName)) 1163 return Error("Invalid record"); 1164 BasicBlock *BB = getBasicBlock(Record[0]); 1165 if (!BB) 1166 return Error("Invalid record"); 1167 1168 BB->setName(StringRef(ValueName.data(), ValueName.size())); 1169 ValueName.clear(); 1170 break; 1171 } 1172 } 1173 } 1174 } 1175 1176 std::error_code BitcodeReader::ParseMetadata() { 1177 unsigned NextMDValueNo = MDValueList.size(); 1178 1179 if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID)) 1180 return Error("Invalid record"); 1181 1182 SmallVector<uint64_t, 64> Record; 1183 1184 // Read all the records. 1185 while (1) { 1186 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1187 1188 switch (Entry.Kind) { 1189 case BitstreamEntry::SubBlock: // Handled for us already. 1190 case BitstreamEntry::Error: 1191 return Error("Malformed block"); 1192 case BitstreamEntry::EndBlock: 1193 MDValueList.tryToResolveCycles(); 1194 return std::error_code(); 1195 case BitstreamEntry::Record: 1196 // The interesting case. 1197 break; 1198 } 1199 1200 // Read a record. 1201 Record.clear(); 1202 unsigned Code = Stream.readRecord(Entry.ID, Record); 1203 bool IsDistinct = false; 1204 switch (Code) { 1205 default: // Default behavior: ignore. 1206 break; 1207 case bitc::METADATA_NAME: { 1208 // Read name of the named metadata. 1209 SmallString<8> Name(Record.begin(), Record.end()); 1210 Record.clear(); 1211 Code = Stream.ReadCode(); 1212 1213 // METADATA_NAME is always followed by METADATA_NAMED_NODE. 1214 unsigned NextBitCode = Stream.readRecord(Code, Record); 1215 assert(NextBitCode == bitc::METADATA_NAMED_NODE); (void)NextBitCode; 1216 1217 // Read named metadata elements. 1218 unsigned Size = Record.size(); 1219 NamedMDNode *NMD = TheModule->getOrInsertNamedMetadata(Name); 1220 for (unsigned i = 0; i != Size; ++i) { 1221 MDNode *MD = dyn_cast_or_null<MDNode>(MDValueList.getValueFwdRef(Record[i])); 1222 if (!MD) 1223 return Error("Invalid record"); 1224 NMD->addOperand(MD); 1225 } 1226 break; 1227 } 1228 case bitc::METADATA_OLD_FN_NODE: { 1229 // FIXME: Remove in 4.0. 1230 // This is a LocalAsMetadata record, the only type of function-local 1231 // metadata. 1232 if (Record.size() % 2 == 1) 1233 return Error("Invalid record"); 1234 1235 // If this isn't a LocalAsMetadata record, we're dropping it. This used 1236 // to be legal, but there's no upgrade path. 1237 auto dropRecord = [&] { 1238 MDValueList.AssignValue(MDNode::get(Context, None), NextMDValueNo++); 1239 }; 1240 if (Record.size() != 2) { 1241 dropRecord(); 1242 break; 1243 } 1244 1245 Type *Ty = getTypeByID(Record[0]); 1246 if (Ty->isMetadataTy() || Ty->isVoidTy()) { 1247 dropRecord(); 1248 break; 1249 } 1250 1251 MDValueList.AssignValue( 1252 LocalAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)), 1253 NextMDValueNo++); 1254 break; 1255 } 1256 case bitc::METADATA_OLD_NODE: { 1257 // FIXME: Remove in 4.0. 1258 if (Record.size() % 2 == 1) 1259 return Error("Invalid record"); 1260 1261 unsigned Size = Record.size(); 1262 SmallVector<Metadata *, 8> Elts; 1263 for (unsigned i = 0; i != Size; i += 2) { 1264 Type *Ty = getTypeByID(Record[i]); 1265 if (!Ty) 1266 return Error("Invalid record"); 1267 if (Ty->isMetadataTy()) 1268 Elts.push_back(MDValueList.getValueFwdRef(Record[i+1])); 1269 else if (!Ty->isVoidTy()) { 1270 auto *MD = 1271 ValueAsMetadata::get(ValueList.getValueFwdRef(Record[i + 1], Ty)); 1272 assert(isa<ConstantAsMetadata>(MD) && 1273 "Expected non-function-local metadata"); 1274 Elts.push_back(MD); 1275 } else 1276 Elts.push_back(nullptr); 1277 } 1278 MDValueList.AssignValue(MDNode::get(Context, Elts), NextMDValueNo++); 1279 break; 1280 } 1281 case bitc::METADATA_VALUE: { 1282 if (Record.size() != 2) 1283 return Error("Invalid record"); 1284 1285 Type *Ty = getTypeByID(Record[0]); 1286 if (Ty->isMetadataTy() || Ty->isVoidTy()) 1287 return Error("Invalid record"); 1288 1289 MDValueList.AssignValue( 1290 ValueAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)), 1291 NextMDValueNo++); 1292 break; 1293 } 1294 case bitc::METADATA_DISTINCT_NODE: 1295 IsDistinct = true; 1296 // fallthrough... 1297 case bitc::METADATA_NODE: { 1298 SmallVector<Metadata *, 8> Elts; 1299 Elts.reserve(Record.size()); 1300 for (unsigned ID : Record) 1301 Elts.push_back(ID ? MDValueList.getValueFwdRef(ID - 1) : nullptr); 1302 MDValueList.AssignValue(IsDistinct ? MDNode::getDistinct(Context, Elts) 1303 : MDNode::get(Context, Elts), 1304 NextMDValueNo++); 1305 break; 1306 } 1307 case bitc::METADATA_LOCATION: { 1308 if (Record.size() != 5) 1309 return Error("Invalid record"); 1310 1311 auto get = Record[0] ? MDLocation::getDistinct : MDLocation::get; 1312 unsigned Line = Record[1]; 1313 unsigned Column = Record[2]; 1314 MDNode *Scope = cast<MDNode>(MDValueList.getValueFwdRef(Record[3])); 1315 Metadata *InlinedAt = 1316 Record[4] ? MDValueList.getValueFwdRef(Record[4] - 1) : nullptr; 1317 MDValueList.AssignValue(get(Context, Line, Column, Scope, InlinedAt), 1318 NextMDValueNo++); 1319 break; 1320 } 1321 case bitc::METADATA_STRING: { 1322 std::string String(Record.begin(), Record.end()); 1323 llvm::UpgradeMDStringConstant(String); 1324 Metadata *MD = MDString::get(Context, String); 1325 MDValueList.AssignValue(MD, NextMDValueNo++); 1326 break; 1327 } 1328 case bitc::METADATA_KIND: { 1329 if (Record.size() < 2) 1330 return Error("Invalid record"); 1331 1332 unsigned Kind = Record[0]; 1333 SmallString<8> Name(Record.begin()+1, Record.end()); 1334 1335 unsigned NewKind = TheModule->getMDKindID(Name.str()); 1336 if (!MDKindMap.insert(std::make_pair(Kind, NewKind)).second) 1337 return Error("Conflicting METADATA_KIND records"); 1338 break; 1339 } 1340 } 1341 } 1342 } 1343 1344 /// decodeSignRotatedValue - Decode a signed value stored with the sign bit in 1345 /// the LSB for dense VBR encoding. 1346 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { 1347 if ((V & 1) == 0) 1348 return V >> 1; 1349 if (V != 1) 1350 return -(V >> 1); 1351 // There is no such thing as -0 with integers. "-0" really means MININT. 1352 return 1ULL << 63; 1353 } 1354 1355 /// ResolveGlobalAndAliasInits - Resolve all of the initializers for global 1356 /// values and aliases that we can. 1357 std::error_code BitcodeReader::ResolveGlobalAndAliasInits() { 1358 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist; 1359 std::vector<std::pair<GlobalAlias*, unsigned> > AliasInitWorklist; 1360 std::vector<std::pair<Function*, unsigned> > FunctionPrefixWorklist; 1361 std::vector<std::pair<Function*, unsigned> > FunctionPrologueWorklist; 1362 1363 GlobalInitWorklist.swap(GlobalInits); 1364 AliasInitWorklist.swap(AliasInits); 1365 FunctionPrefixWorklist.swap(FunctionPrefixes); 1366 FunctionPrologueWorklist.swap(FunctionPrologues); 1367 1368 while (!GlobalInitWorklist.empty()) { 1369 unsigned ValID = GlobalInitWorklist.back().second; 1370 if (ValID >= ValueList.size()) { 1371 // Not ready to resolve this yet, it requires something later in the file. 1372 GlobalInits.push_back(GlobalInitWorklist.back()); 1373 } else { 1374 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 1375 GlobalInitWorklist.back().first->setInitializer(C); 1376 else 1377 return Error("Expected a constant"); 1378 } 1379 GlobalInitWorklist.pop_back(); 1380 } 1381 1382 while (!AliasInitWorklist.empty()) { 1383 unsigned ValID = AliasInitWorklist.back().second; 1384 if (ValID >= ValueList.size()) { 1385 AliasInits.push_back(AliasInitWorklist.back()); 1386 } else { 1387 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 1388 AliasInitWorklist.back().first->setAliasee(C); 1389 else 1390 return Error("Expected a constant"); 1391 } 1392 AliasInitWorklist.pop_back(); 1393 } 1394 1395 while (!FunctionPrefixWorklist.empty()) { 1396 unsigned ValID = FunctionPrefixWorklist.back().second; 1397 if (ValID >= ValueList.size()) { 1398 FunctionPrefixes.push_back(FunctionPrefixWorklist.back()); 1399 } else { 1400 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 1401 FunctionPrefixWorklist.back().first->setPrefixData(C); 1402 else 1403 return Error("Expected a constant"); 1404 } 1405 FunctionPrefixWorklist.pop_back(); 1406 } 1407 1408 while (!FunctionPrologueWorklist.empty()) { 1409 unsigned ValID = FunctionPrologueWorklist.back().second; 1410 if (ValID >= ValueList.size()) { 1411 FunctionPrologues.push_back(FunctionPrologueWorklist.back()); 1412 } else { 1413 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 1414 FunctionPrologueWorklist.back().first->setPrologueData(C); 1415 else 1416 return Error("Expected a constant"); 1417 } 1418 FunctionPrologueWorklist.pop_back(); 1419 } 1420 1421 return std::error_code(); 1422 } 1423 1424 static APInt ReadWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { 1425 SmallVector<uint64_t, 8> Words(Vals.size()); 1426 std::transform(Vals.begin(), Vals.end(), Words.begin(), 1427 BitcodeReader::decodeSignRotatedValue); 1428 1429 return APInt(TypeBits, Words); 1430 } 1431 1432 std::error_code BitcodeReader::ParseConstants() { 1433 if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 1434 return Error("Invalid record"); 1435 1436 SmallVector<uint64_t, 64> Record; 1437 1438 // Read all the records for this value table. 1439 Type *CurTy = Type::getInt32Ty(Context); 1440 unsigned NextCstNo = ValueList.size(); 1441 while (1) { 1442 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1443 1444 switch (Entry.Kind) { 1445 case BitstreamEntry::SubBlock: // Handled for us already. 1446 case BitstreamEntry::Error: 1447 return Error("Malformed block"); 1448 case BitstreamEntry::EndBlock: 1449 if (NextCstNo != ValueList.size()) 1450 return Error("Invalid ronstant reference"); 1451 1452 // Once all the constants have been read, go through and resolve forward 1453 // references. 1454 ValueList.ResolveConstantForwardRefs(); 1455 return std::error_code(); 1456 case BitstreamEntry::Record: 1457 // The interesting case. 1458 break; 1459 } 1460 1461 // Read a record. 1462 Record.clear(); 1463 Value *V = nullptr; 1464 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 1465 switch (BitCode) { 1466 default: // Default behavior: unknown constant 1467 case bitc::CST_CODE_UNDEF: // UNDEF 1468 V = UndefValue::get(CurTy); 1469 break; 1470 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 1471 if (Record.empty()) 1472 return Error("Invalid record"); 1473 if (Record[0] >= TypeList.size() || !TypeList[Record[0]]) 1474 return Error("Invalid record"); 1475 CurTy = TypeList[Record[0]]; 1476 continue; // Skip the ValueList manipulation. 1477 case bitc::CST_CODE_NULL: // NULL 1478 V = Constant::getNullValue(CurTy); 1479 break; 1480 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 1481 if (!CurTy->isIntegerTy() || Record.empty()) 1482 return Error("Invalid record"); 1483 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); 1484 break; 1485 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 1486 if (!CurTy->isIntegerTy() || Record.empty()) 1487 return Error("Invalid record"); 1488 1489 APInt VInt = ReadWideAPInt(Record, 1490 cast<IntegerType>(CurTy)->getBitWidth()); 1491 V = ConstantInt::get(Context, VInt); 1492 1493 break; 1494 } 1495 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 1496 if (Record.empty()) 1497 return Error("Invalid record"); 1498 if (CurTy->isHalfTy()) 1499 V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf, 1500 APInt(16, (uint16_t)Record[0]))); 1501 else if (CurTy->isFloatTy()) 1502 V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle, 1503 APInt(32, (uint32_t)Record[0]))); 1504 else if (CurTy->isDoubleTy()) 1505 V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble, 1506 APInt(64, Record[0]))); 1507 else if (CurTy->isX86_FP80Ty()) { 1508 // Bits are not stored the same way as a normal i80 APInt, compensate. 1509 uint64_t Rearrange[2]; 1510 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 1511 Rearrange[1] = Record[0] >> 48; 1512 V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended, 1513 APInt(80, Rearrange))); 1514 } else if (CurTy->isFP128Ty()) 1515 V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad, 1516 APInt(128, Record))); 1517 else if (CurTy->isPPC_FP128Ty()) 1518 V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble, 1519 APInt(128, Record))); 1520 else 1521 V = UndefValue::get(CurTy); 1522 break; 1523 } 1524 1525 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 1526 if (Record.empty()) 1527 return Error("Invalid record"); 1528 1529 unsigned Size = Record.size(); 1530 SmallVector<Constant*, 16> Elts; 1531 1532 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 1533 for (unsigned i = 0; i != Size; ++i) 1534 Elts.push_back(ValueList.getConstantFwdRef(Record[i], 1535 STy->getElementType(i))); 1536 V = ConstantStruct::get(STy, Elts); 1537 } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) { 1538 Type *EltTy = ATy->getElementType(); 1539 for (unsigned i = 0; i != Size; ++i) 1540 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 1541 V = ConstantArray::get(ATy, Elts); 1542 } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) { 1543 Type *EltTy = VTy->getElementType(); 1544 for (unsigned i = 0; i != Size; ++i) 1545 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 1546 V = ConstantVector::get(Elts); 1547 } else { 1548 V = UndefValue::get(CurTy); 1549 } 1550 break; 1551 } 1552 case bitc::CST_CODE_STRING: // STRING: [values] 1553 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 1554 if (Record.empty()) 1555 return Error("Invalid record"); 1556 1557 SmallString<16> Elts(Record.begin(), Record.end()); 1558 V = ConstantDataArray::getString(Context, Elts, 1559 BitCode == bitc::CST_CODE_CSTRING); 1560 break; 1561 } 1562 case bitc::CST_CODE_DATA: {// DATA: [n x value] 1563 if (Record.empty()) 1564 return Error("Invalid record"); 1565 1566 Type *EltTy = cast<SequentialType>(CurTy)->getElementType(); 1567 unsigned Size = Record.size(); 1568 1569 if (EltTy->isIntegerTy(8)) { 1570 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); 1571 if (isa<VectorType>(CurTy)) 1572 V = ConstantDataVector::get(Context, Elts); 1573 else 1574 V = ConstantDataArray::get(Context, Elts); 1575 } else if (EltTy->isIntegerTy(16)) { 1576 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 1577 if (isa<VectorType>(CurTy)) 1578 V = ConstantDataVector::get(Context, Elts); 1579 else 1580 V = ConstantDataArray::get(Context, Elts); 1581 } else if (EltTy->isIntegerTy(32)) { 1582 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 1583 if (isa<VectorType>(CurTy)) 1584 V = ConstantDataVector::get(Context, Elts); 1585 else 1586 V = ConstantDataArray::get(Context, Elts); 1587 } else if (EltTy->isIntegerTy(64)) { 1588 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 1589 if (isa<VectorType>(CurTy)) 1590 V = ConstantDataVector::get(Context, Elts); 1591 else 1592 V = ConstantDataArray::get(Context, Elts); 1593 } else if (EltTy->isFloatTy()) { 1594 SmallVector<float, 16> Elts(Size); 1595 std::transform(Record.begin(), Record.end(), Elts.begin(), BitsToFloat); 1596 if (isa<VectorType>(CurTy)) 1597 V = ConstantDataVector::get(Context, Elts); 1598 else 1599 V = ConstantDataArray::get(Context, Elts); 1600 } else if (EltTy->isDoubleTy()) { 1601 SmallVector<double, 16> Elts(Size); 1602 std::transform(Record.begin(), Record.end(), Elts.begin(), 1603 BitsToDouble); 1604 if (isa<VectorType>(CurTy)) 1605 V = ConstantDataVector::get(Context, Elts); 1606 else 1607 V = ConstantDataArray::get(Context, Elts); 1608 } else { 1609 return Error("Invalid type for value"); 1610 } 1611 break; 1612 } 1613 1614 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 1615 if (Record.size() < 3) 1616 return Error("Invalid record"); 1617 int Opc = GetDecodedBinaryOpcode(Record[0], CurTy); 1618 if (Opc < 0) { 1619 V = UndefValue::get(CurTy); // Unknown binop. 1620 } else { 1621 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 1622 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy); 1623 unsigned Flags = 0; 1624 if (Record.size() >= 4) { 1625 if (Opc == Instruction::Add || 1626 Opc == Instruction::Sub || 1627 Opc == Instruction::Mul || 1628 Opc == Instruction::Shl) { 1629 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 1630 Flags |= OverflowingBinaryOperator::NoSignedWrap; 1631 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 1632 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 1633 } else if (Opc == Instruction::SDiv || 1634 Opc == Instruction::UDiv || 1635 Opc == Instruction::LShr || 1636 Opc == Instruction::AShr) { 1637 if (Record[3] & (1 << bitc::PEO_EXACT)) 1638 Flags |= SDivOperator::IsExact; 1639 } 1640 } 1641 V = ConstantExpr::get(Opc, LHS, RHS, Flags); 1642 } 1643 break; 1644 } 1645 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 1646 if (Record.size() < 3) 1647 return Error("Invalid record"); 1648 int Opc = GetDecodedCastOpcode(Record[0]); 1649 if (Opc < 0) { 1650 V = UndefValue::get(CurTy); // Unknown cast. 1651 } else { 1652 Type *OpTy = getTypeByID(Record[1]); 1653 if (!OpTy) 1654 return Error("Invalid record"); 1655 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy); 1656 V = UpgradeBitCastExpr(Opc, Op, CurTy); 1657 if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy); 1658 } 1659 break; 1660 } 1661 case bitc::CST_CODE_CE_INBOUNDS_GEP: 1662 case bitc::CST_CODE_CE_GEP: { // CE_GEP: [n x operands] 1663 if (Record.size() & 1) 1664 return Error("Invalid record"); 1665 SmallVector<Constant*, 16> Elts; 1666 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1667 Type *ElTy = getTypeByID(Record[i]); 1668 if (!ElTy) 1669 return Error("Invalid record"); 1670 Elts.push_back(ValueList.getConstantFwdRef(Record[i+1], ElTy)); 1671 } 1672 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 1673 V = ConstantExpr::getGetElementPtr(Elts[0], Indices, 1674 BitCode == 1675 bitc::CST_CODE_CE_INBOUNDS_GEP); 1676 break; 1677 } 1678 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] 1679 if (Record.size() < 3) 1680 return Error("Invalid record"); 1681 1682 Type *SelectorTy = Type::getInt1Ty(Context); 1683 1684 // If CurTy is a vector of length n, then Record[0] must be a <n x i1> 1685 // vector. Otherwise, it must be a single bit. 1686 if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) 1687 SelectorTy = VectorType::get(Type::getInt1Ty(Context), 1688 VTy->getNumElements()); 1689 1690 V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0], 1691 SelectorTy), 1692 ValueList.getConstantFwdRef(Record[1],CurTy), 1693 ValueList.getConstantFwdRef(Record[2],CurTy)); 1694 break; 1695 } 1696 case bitc::CST_CODE_CE_EXTRACTELT 1697 : { // CE_EXTRACTELT: [opty, opval, opty, opval] 1698 if (Record.size() < 3) 1699 return Error("Invalid record"); 1700 VectorType *OpTy = 1701 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 1702 if (!OpTy) 1703 return Error("Invalid record"); 1704 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 1705 Constant *Op1 = nullptr; 1706 if (Record.size() == 4) { 1707 Type *IdxTy = getTypeByID(Record[2]); 1708 if (!IdxTy) 1709 return Error("Invalid record"); 1710 Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy); 1711 } else // TODO: Remove with llvm 4.0 1712 Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 1713 if (!Op1) 1714 return Error("Invalid record"); 1715 V = ConstantExpr::getExtractElement(Op0, Op1); 1716 break; 1717 } 1718 case bitc::CST_CODE_CE_INSERTELT 1719 : { // CE_INSERTELT: [opval, opval, opty, opval] 1720 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 1721 if (Record.size() < 3 || !OpTy) 1722 return Error("Invalid record"); 1723 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 1724 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], 1725 OpTy->getElementType()); 1726 Constant *Op2 = nullptr; 1727 if (Record.size() == 4) { 1728 Type *IdxTy = getTypeByID(Record[2]); 1729 if (!IdxTy) 1730 return Error("Invalid record"); 1731 Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy); 1732 } else // TODO: Remove with llvm 4.0 1733 Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 1734 if (!Op2) 1735 return Error("Invalid record"); 1736 V = ConstantExpr::getInsertElement(Op0, Op1, Op2); 1737 break; 1738 } 1739 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 1740 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 1741 if (Record.size() < 3 || !OpTy) 1742 return Error("Invalid record"); 1743 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 1744 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy); 1745 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 1746 OpTy->getNumElements()); 1747 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy); 1748 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 1749 break; 1750 } 1751 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 1752 VectorType *RTy = dyn_cast<VectorType>(CurTy); 1753 VectorType *OpTy = 1754 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 1755 if (Record.size() < 4 || !RTy || !OpTy) 1756 return Error("Invalid record"); 1757 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 1758 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 1759 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 1760 RTy->getNumElements()); 1761 Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy); 1762 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 1763 break; 1764 } 1765 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 1766 if (Record.size() < 4) 1767 return Error("Invalid record"); 1768 Type *OpTy = getTypeByID(Record[0]); 1769 if (!OpTy) 1770 return Error("Invalid record"); 1771 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 1772 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 1773 1774 if (OpTy->isFPOrFPVectorTy()) 1775 V = ConstantExpr::getFCmp(Record[3], Op0, Op1); 1776 else 1777 V = ConstantExpr::getICmp(Record[3], Op0, Op1); 1778 break; 1779 } 1780 // This maintains backward compatibility, pre-asm dialect keywords. 1781 // FIXME: Remove with the 4.0 release. 1782 case bitc::CST_CODE_INLINEASM_OLD: { 1783 if (Record.size() < 2) 1784 return Error("Invalid record"); 1785 std::string AsmStr, ConstrStr; 1786 bool HasSideEffects = Record[0] & 1; 1787 bool IsAlignStack = Record[0] >> 1; 1788 unsigned AsmStrSize = Record[1]; 1789 if (2+AsmStrSize >= Record.size()) 1790 return Error("Invalid record"); 1791 unsigned ConstStrSize = Record[2+AsmStrSize]; 1792 if (3+AsmStrSize+ConstStrSize > Record.size()) 1793 return Error("Invalid record"); 1794 1795 for (unsigned i = 0; i != AsmStrSize; ++i) 1796 AsmStr += (char)Record[2+i]; 1797 for (unsigned i = 0; i != ConstStrSize; ++i) 1798 ConstrStr += (char)Record[3+AsmStrSize+i]; 1799 PointerType *PTy = cast<PointerType>(CurTy); 1800 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 1801 AsmStr, ConstrStr, HasSideEffects, IsAlignStack); 1802 break; 1803 } 1804 // This version adds support for the asm dialect keywords (e.g., 1805 // inteldialect). 1806 case bitc::CST_CODE_INLINEASM: { 1807 if (Record.size() < 2) 1808 return Error("Invalid record"); 1809 std::string AsmStr, ConstrStr; 1810 bool HasSideEffects = Record[0] & 1; 1811 bool IsAlignStack = (Record[0] >> 1) & 1; 1812 unsigned AsmDialect = Record[0] >> 2; 1813 unsigned AsmStrSize = Record[1]; 1814 if (2+AsmStrSize >= Record.size()) 1815 return Error("Invalid record"); 1816 unsigned ConstStrSize = Record[2+AsmStrSize]; 1817 if (3+AsmStrSize+ConstStrSize > Record.size()) 1818 return Error("Invalid record"); 1819 1820 for (unsigned i = 0; i != AsmStrSize; ++i) 1821 AsmStr += (char)Record[2+i]; 1822 for (unsigned i = 0; i != ConstStrSize; ++i) 1823 ConstrStr += (char)Record[3+AsmStrSize+i]; 1824 PointerType *PTy = cast<PointerType>(CurTy); 1825 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 1826 AsmStr, ConstrStr, HasSideEffects, IsAlignStack, 1827 InlineAsm::AsmDialect(AsmDialect)); 1828 break; 1829 } 1830 case bitc::CST_CODE_BLOCKADDRESS:{ 1831 if (Record.size() < 3) 1832 return Error("Invalid record"); 1833 Type *FnTy = getTypeByID(Record[0]); 1834 if (!FnTy) 1835 return Error("Invalid record"); 1836 Function *Fn = 1837 dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy)); 1838 if (!Fn) 1839 return Error("Invalid record"); 1840 1841 // Don't let Fn get dematerialized. 1842 BlockAddressesTaken.insert(Fn); 1843 1844 // If the function is already parsed we can insert the block address right 1845 // away. 1846 BasicBlock *BB; 1847 unsigned BBID = Record[2]; 1848 if (!BBID) 1849 // Invalid reference to entry block. 1850 return Error("Invalid ID"); 1851 if (!Fn->empty()) { 1852 Function::iterator BBI = Fn->begin(), BBE = Fn->end(); 1853 for (size_t I = 0, E = BBID; I != E; ++I) { 1854 if (BBI == BBE) 1855 return Error("Invalid ID"); 1856 ++BBI; 1857 } 1858 BB = BBI; 1859 } else { 1860 // Otherwise insert a placeholder and remember it so it can be inserted 1861 // when the function is parsed. 1862 auto &FwdBBs = BasicBlockFwdRefs[Fn]; 1863 if (FwdBBs.empty()) 1864 BasicBlockFwdRefQueue.push_back(Fn); 1865 if (FwdBBs.size() < BBID + 1) 1866 FwdBBs.resize(BBID + 1); 1867 if (!FwdBBs[BBID]) 1868 FwdBBs[BBID] = BasicBlock::Create(Context); 1869 BB = FwdBBs[BBID]; 1870 } 1871 V = BlockAddress::get(Fn, BB); 1872 break; 1873 } 1874 } 1875 1876 ValueList.AssignValue(V, NextCstNo); 1877 ++NextCstNo; 1878 } 1879 } 1880 1881 std::error_code BitcodeReader::ParseUseLists() { 1882 if (Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 1883 return Error("Invalid record"); 1884 1885 // Read all the records. 1886 SmallVector<uint64_t, 64> Record; 1887 while (1) { 1888 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1889 1890 switch (Entry.Kind) { 1891 case BitstreamEntry::SubBlock: // Handled for us already. 1892 case BitstreamEntry::Error: 1893 return Error("Malformed block"); 1894 case BitstreamEntry::EndBlock: 1895 return std::error_code(); 1896 case BitstreamEntry::Record: 1897 // The interesting case. 1898 break; 1899 } 1900 1901 // Read a use list record. 1902 Record.clear(); 1903 bool IsBB = false; 1904 switch (Stream.readRecord(Entry.ID, Record)) { 1905 default: // Default behavior: unknown type. 1906 break; 1907 case bitc::USELIST_CODE_BB: 1908 IsBB = true; 1909 // fallthrough 1910 case bitc::USELIST_CODE_DEFAULT: { 1911 unsigned RecordLength = Record.size(); 1912 if (RecordLength < 3) 1913 // Records should have at least an ID and two indexes. 1914 return Error("Invalid record"); 1915 unsigned ID = Record.back(); 1916 Record.pop_back(); 1917 1918 Value *V; 1919 if (IsBB) { 1920 assert(ID < FunctionBBs.size() && "Basic block not found"); 1921 V = FunctionBBs[ID]; 1922 } else 1923 V = ValueList[ID]; 1924 unsigned NumUses = 0; 1925 SmallDenseMap<const Use *, unsigned, 16> Order; 1926 for (const Use &U : V->uses()) { 1927 if (++NumUses > Record.size()) 1928 break; 1929 Order[&U] = Record[NumUses - 1]; 1930 } 1931 if (Order.size() != Record.size() || NumUses > Record.size()) 1932 // Mismatches can happen if the functions are being materialized lazily 1933 // (out-of-order), or a value has been upgraded. 1934 break; 1935 1936 V->sortUseList([&](const Use &L, const Use &R) { 1937 return Order.lookup(&L) < Order.lookup(&R); 1938 }); 1939 break; 1940 } 1941 } 1942 } 1943 } 1944 1945 /// RememberAndSkipFunctionBody - When we see the block for a function body, 1946 /// remember where it is and then skip it. This lets us lazily deserialize the 1947 /// functions. 1948 std::error_code BitcodeReader::RememberAndSkipFunctionBody() { 1949 // Get the function we are talking about. 1950 if (FunctionsWithBodies.empty()) 1951 return Error("Insufficient function protos"); 1952 1953 Function *Fn = FunctionsWithBodies.back(); 1954 FunctionsWithBodies.pop_back(); 1955 1956 // Save the current stream state. 1957 uint64_t CurBit = Stream.GetCurrentBitNo(); 1958 DeferredFunctionInfo[Fn] = CurBit; 1959 1960 // Skip over the function block for now. 1961 if (Stream.SkipBlock()) 1962 return Error("Invalid record"); 1963 return std::error_code(); 1964 } 1965 1966 std::error_code BitcodeReader::GlobalCleanup() { 1967 // Patch the initializers for globals and aliases up. 1968 ResolveGlobalAndAliasInits(); 1969 if (!GlobalInits.empty() || !AliasInits.empty()) 1970 return Error("Malformed global initializer set"); 1971 1972 // Look for intrinsic functions which need to be upgraded at some point 1973 for (Module::iterator FI = TheModule->begin(), FE = TheModule->end(); 1974 FI != FE; ++FI) { 1975 Function *NewFn; 1976 if (UpgradeIntrinsicFunction(FI, NewFn)) 1977 UpgradedIntrinsics.push_back(std::make_pair(FI, NewFn)); 1978 } 1979 1980 // Look for global variables which need to be renamed. 1981 for (Module::global_iterator 1982 GI = TheModule->global_begin(), GE = TheModule->global_end(); 1983 GI != GE;) { 1984 GlobalVariable *GV = GI++; 1985 UpgradeGlobalVariable(GV); 1986 } 1987 1988 // Force deallocation of memory for these vectors to favor the client that 1989 // want lazy deserialization. 1990 std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits); 1991 std::vector<std::pair<GlobalAlias*, unsigned> >().swap(AliasInits); 1992 return std::error_code(); 1993 } 1994 1995 std::error_code BitcodeReader::ParseModule(bool Resume) { 1996 if (Resume) 1997 Stream.JumpToBit(NextUnreadBit); 1998 else if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 1999 return Error("Invalid record"); 2000 2001 SmallVector<uint64_t, 64> Record; 2002 std::vector<std::string> SectionTable; 2003 std::vector<std::string> GCTable; 2004 2005 // Read all the records for this module. 2006 while (1) { 2007 BitstreamEntry Entry = Stream.advance(); 2008 2009 switch (Entry.Kind) { 2010 case BitstreamEntry::Error: 2011 return Error("Malformed block"); 2012 case BitstreamEntry::EndBlock: 2013 return GlobalCleanup(); 2014 2015 case BitstreamEntry::SubBlock: 2016 switch (Entry.ID) { 2017 default: // Skip unknown content. 2018 if (Stream.SkipBlock()) 2019 return Error("Invalid record"); 2020 break; 2021 case bitc::BLOCKINFO_BLOCK_ID: 2022 if (Stream.ReadBlockInfoBlock()) 2023 return Error("Malformed block"); 2024 break; 2025 case bitc::PARAMATTR_BLOCK_ID: 2026 if (std::error_code EC = ParseAttributeBlock()) 2027 return EC; 2028 break; 2029 case bitc::PARAMATTR_GROUP_BLOCK_ID: 2030 if (std::error_code EC = ParseAttributeGroupBlock()) 2031 return EC; 2032 break; 2033 case bitc::TYPE_BLOCK_ID_NEW: 2034 if (std::error_code EC = ParseTypeTable()) 2035 return EC; 2036 break; 2037 case bitc::VALUE_SYMTAB_BLOCK_ID: 2038 if (std::error_code EC = ParseValueSymbolTable()) 2039 return EC; 2040 SeenValueSymbolTable = true; 2041 break; 2042 case bitc::CONSTANTS_BLOCK_ID: 2043 if (std::error_code EC = ParseConstants()) 2044 return EC; 2045 if (std::error_code EC = ResolveGlobalAndAliasInits()) 2046 return EC; 2047 break; 2048 case bitc::METADATA_BLOCK_ID: 2049 if (std::error_code EC = ParseMetadata()) 2050 return EC; 2051 break; 2052 case bitc::FUNCTION_BLOCK_ID: 2053 // If this is the first function body we've seen, reverse the 2054 // FunctionsWithBodies list. 2055 if (!SeenFirstFunctionBody) { 2056 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 2057 if (std::error_code EC = GlobalCleanup()) 2058 return EC; 2059 SeenFirstFunctionBody = true; 2060 } 2061 2062 if (std::error_code EC = RememberAndSkipFunctionBody()) 2063 return EC; 2064 // For streaming bitcode, suspend parsing when we reach the function 2065 // bodies. Subsequent materialization calls will resume it when 2066 // necessary. For streaming, the function bodies must be at the end of 2067 // the bitcode. If the bitcode file is old, the symbol table will be 2068 // at the end instead and will not have been seen yet. In this case, 2069 // just finish the parse now. 2070 if (LazyStreamer && SeenValueSymbolTable) { 2071 NextUnreadBit = Stream.GetCurrentBitNo(); 2072 return std::error_code(); 2073 } 2074 break; 2075 case bitc::USELIST_BLOCK_ID: 2076 if (std::error_code EC = ParseUseLists()) 2077 return EC; 2078 break; 2079 } 2080 continue; 2081 2082 case BitstreamEntry::Record: 2083 // The interesting case. 2084 break; 2085 } 2086 2087 2088 // Read a record. 2089 switch (Stream.readRecord(Entry.ID, Record)) { 2090 default: break; // Default behavior, ignore unknown content. 2091 case bitc::MODULE_CODE_VERSION: { // VERSION: [version#] 2092 if (Record.size() < 1) 2093 return Error("Invalid record"); 2094 // Only version #0 and #1 are supported so far. 2095 unsigned module_version = Record[0]; 2096 switch (module_version) { 2097 default: 2098 return Error("Invalid value"); 2099 case 0: 2100 UseRelativeIDs = false; 2101 break; 2102 case 1: 2103 UseRelativeIDs = true; 2104 break; 2105 } 2106 break; 2107 } 2108 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 2109 std::string S; 2110 if (ConvertToString(Record, 0, S)) 2111 return Error("Invalid record"); 2112 TheModule->setTargetTriple(S); 2113 break; 2114 } 2115 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 2116 std::string S; 2117 if (ConvertToString(Record, 0, S)) 2118 return Error("Invalid record"); 2119 TheModule->setDataLayout(S); 2120 break; 2121 } 2122 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 2123 std::string S; 2124 if (ConvertToString(Record, 0, S)) 2125 return Error("Invalid record"); 2126 TheModule->setModuleInlineAsm(S); 2127 break; 2128 } 2129 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 2130 // FIXME: Remove in 4.0. 2131 std::string S; 2132 if (ConvertToString(Record, 0, S)) 2133 return Error("Invalid record"); 2134 // Ignore value. 2135 break; 2136 } 2137 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 2138 std::string S; 2139 if (ConvertToString(Record, 0, S)) 2140 return Error("Invalid record"); 2141 SectionTable.push_back(S); 2142 break; 2143 } 2144 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 2145 std::string S; 2146 if (ConvertToString(Record, 0, S)) 2147 return Error("Invalid record"); 2148 GCTable.push_back(S); 2149 break; 2150 } 2151 case bitc::MODULE_CODE_COMDAT: { // COMDAT: [selection_kind, name] 2152 if (Record.size() < 2) 2153 return Error("Invalid record"); 2154 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]); 2155 unsigned ComdatNameSize = Record[1]; 2156 std::string ComdatName; 2157 ComdatName.reserve(ComdatNameSize); 2158 for (unsigned i = 0; i != ComdatNameSize; ++i) 2159 ComdatName += (char)Record[2 + i]; 2160 Comdat *C = TheModule->getOrInsertComdat(ComdatName); 2161 C->setSelectionKind(SK); 2162 ComdatList.push_back(C); 2163 break; 2164 } 2165 // GLOBALVAR: [pointer type, isconst, initid, 2166 // linkage, alignment, section, visibility, threadlocal, 2167 // unnamed_addr, dllstorageclass] 2168 case bitc::MODULE_CODE_GLOBALVAR: { 2169 if (Record.size() < 6) 2170 return Error("Invalid record"); 2171 Type *Ty = getTypeByID(Record[0]); 2172 if (!Ty) 2173 return Error("Invalid record"); 2174 if (!Ty->isPointerTy()) 2175 return Error("Invalid type for value"); 2176 unsigned AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 2177 Ty = cast<PointerType>(Ty)->getElementType(); 2178 2179 bool isConstant = Record[1]; 2180 uint64_t RawLinkage = Record[3]; 2181 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 2182 unsigned Alignment = (1 << Record[4]) >> 1; 2183 std::string Section; 2184 if (Record[5]) { 2185 if (Record[5]-1 >= SectionTable.size()) 2186 return Error("Invalid ID"); 2187 Section = SectionTable[Record[5]-1]; 2188 } 2189 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 2190 // Local linkage must have default visibility. 2191 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage)) 2192 // FIXME: Change to an error if non-default in 4.0. 2193 Visibility = GetDecodedVisibility(Record[6]); 2194 2195 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; 2196 if (Record.size() > 7) 2197 TLM = GetDecodedThreadLocalMode(Record[7]); 2198 2199 bool UnnamedAddr = false; 2200 if (Record.size() > 8) 2201 UnnamedAddr = Record[8]; 2202 2203 bool ExternallyInitialized = false; 2204 if (Record.size() > 9) 2205 ExternallyInitialized = Record[9]; 2206 2207 GlobalVariable *NewGV = 2208 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, "", nullptr, 2209 TLM, AddressSpace, ExternallyInitialized); 2210 NewGV->setAlignment(Alignment); 2211 if (!Section.empty()) 2212 NewGV->setSection(Section); 2213 NewGV->setVisibility(Visibility); 2214 NewGV->setUnnamedAddr(UnnamedAddr); 2215 2216 if (Record.size() > 10) 2217 NewGV->setDLLStorageClass(GetDecodedDLLStorageClass(Record[10])); 2218 else 2219 UpgradeDLLImportExportLinkage(NewGV, RawLinkage); 2220 2221 ValueList.push_back(NewGV); 2222 2223 // Remember which value to use for the global initializer. 2224 if (unsigned InitID = Record[2]) 2225 GlobalInits.push_back(std::make_pair(NewGV, InitID-1)); 2226 2227 if (Record.size() > 11) { 2228 if (unsigned ComdatID = Record[11]) { 2229 assert(ComdatID <= ComdatList.size()); 2230 NewGV->setComdat(ComdatList[ComdatID - 1]); 2231 } 2232 } else if (hasImplicitComdat(RawLinkage)) { 2233 NewGV->setComdat(reinterpret_cast<Comdat *>(1)); 2234 } 2235 break; 2236 } 2237 // FUNCTION: [type, callingconv, isproto, linkage, paramattr, 2238 // alignment, section, visibility, gc, unnamed_addr, 2239 // prologuedata, dllstorageclass, comdat, prefixdata] 2240 case bitc::MODULE_CODE_FUNCTION: { 2241 if (Record.size() < 8) 2242 return Error("Invalid record"); 2243 Type *Ty = getTypeByID(Record[0]); 2244 if (!Ty) 2245 return Error("Invalid record"); 2246 if (!Ty->isPointerTy()) 2247 return Error("Invalid type for value"); 2248 FunctionType *FTy = 2249 dyn_cast<FunctionType>(cast<PointerType>(Ty)->getElementType()); 2250 if (!FTy) 2251 return Error("Invalid type for value"); 2252 2253 Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage, 2254 "", TheModule); 2255 2256 Func->setCallingConv(static_cast<CallingConv::ID>(Record[1])); 2257 bool isProto = Record[2]; 2258 uint64_t RawLinkage = Record[3]; 2259 Func->setLinkage(getDecodedLinkage(RawLinkage)); 2260 Func->setAttributes(getAttributes(Record[4])); 2261 2262 Func->setAlignment((1 << Record[5]) >> 1); 2263 if (Record[6]) { 2264 if (Record[6]-1 >= SectionTable.size()) 2265 return Error("Invalid ID"); 2266 Func->setSection(SectionTable[Record[6]-1]); 2267 } 2268 // Local linkage must have default visibility. 2269 if (!Func->hasLocalLinkage()) 2270 // FIXME: Change to an error if non-default in 4.0. 2271 Func->setVisibility(GetDecodedVisibility(Record[7])); 2272 if (Record.size() > 8 && Record[8]) { 2273 if (Record[8]-1 > GCTable.size()) 2274 return Error("Invalid ID"); 2275 Func->setGC(GCTable[Record[8]-1].c_str()); 2276 } 2277 bool UnnamedAddr = false; 2278 if (Record.size() > 9) 2279 UnnamedAddr = Record[9]; 2280 Func->setUnnamedAddr(UnnamedAddr); 2281 if (Record.size() > 10 && Record[10] != 0) 2282 FunctionPrologues.push_back(std::make_pair(Func, Record[10]-1)); 2283 2284 if (Record.size() > 11) 2285 Func->setDLLStorageClass(GetDecodedDLLStorageClass(Record[11])); 2286 else 2287 UpgradeDLLImportExportLinkage(Func, RawLinkage); 2288 2289 if (Record.size() > 12) { 2290 if (unsigned ComdatID = Record[12]) { 2291 assert(ComdatID <= ComdatList.size()); 2292 Func->setComdat(ComdatList[ComdatID - 1]); 2293 } 2294 } else if (hasImplicitComdat(RawLinkage)) { 2295 Func->setComdat(reinterpret_cast<Comdat *>(1)); 2296 } 2297 2298 if (Record.size() > 13 && Record[13] != 0) 2299 FunctionPrefixes.push_back(std::make_pair(Func, Record[13]-1)); 2300 2301 ValueList.push_back(Func); 2302 2303 // If this is a function with a body, remember the prototype we are 2304 // creating now, so that we can match up the body with them later. 2305 if (!isProto) { 2306 Func->setIsMaterializable(true); 2307 FunctionsWithBodies.push_back(Func); 2308 if (LazyStreamer) 2309 DeferredFunctionInfo[Func] = 0; 2310 } 2311 break; 2312 } 2313 // ALIAS: [alias type, aliasee val#, linkage] 2314 // ALIAS: [alias type, aliasee val#, linkage, visibility, dllstorageclass] 2315 case bitc::MODULE_CODE_ALIAS: { 2316 if (Record.size() < 3) 2317 return Error("Invalid record"); 2318 Type *Ty = getTypeByID(Record[0]); 2319 if (!Ty) 2320 return Error("Invalid record"); 2321 auto *PTy = dyn_cast<PointerType>(Ty); 2322 if (!PTy) 2323 return Error("Invalid type for value"); 2324 2325 auto *NewGA = 2326 GlobalAlias::create(PTy->getElementType(), PTy->getAddressSpace(), 2327 getDecodedLinkage(Record[2]), "", TheModule); 2328 // Old bitcode files didn't have visibility field. 2329 // Local linkage must have default visibility. 2330 if (Record.size() > 3 && !NewGA->hasLocalLinkage()) 2331 // FIXME: Change to an error if non-default in 4.0. 2332 NewGA->setVisibility(GetDecodedVisibility(Record[3])); 2333 if (Record.size() > 4) 2334 NewGA->setDLLStorageClass(GetDecodedDLLStorageClass(Record[4])); 2335 else 2336 UpgradeDLLImportExportLinkage(NewGA, Record[2]); 2337 if (Record.size() > 5) 2338 NewGA->setThreadLocalMode(GetDecodedThreadLocalMode(Record[5])); 2339 if (Record.size() > 6) 2340 NewGA->setUnnamedAddr(Record[6]); 2341 ValueList.push_back(NewGA); 2342 AliasInits.push_back(std::make_pair(NewGA, Record[1])); 2343 break; 2344 } 2345 /// MODULE_CODE_PURGEVALS: [numvals] 2346 case bitc::MODULE_CODE_PURGEVALS: 2347 // Trim down the value list to the specified size. 2348 if (Record.size() < 1 || Record[0] > ValueList.size()) 2349 return Error("Invalid record"); 2350 ValueList.shrinkTo(Record[0]); 2351 break; 2352 } 2353 Record.clear(); 2354 } 2355 } 2356 2357 std::error_code BitcodeReader::ParseBitcodeInto(Module *M) { 2358 TheModule = nullptr; 2359 2360 if (std::error_code EC = InitStream()) 2361 return EC; 2362 2363 // Sniff for the signature. 2364 if (Stream.Read(8) != 'B' || 2365 Stream.Read(8) != 'C' || 2366 Stream.Read(4) != 0x0 || 2367 Stream.Read(4) != 0xC || 2368 Stream.Read(4) != 0xE || 2369 Stream.Read(4) != 0xD) 2370 return Error("Invalid bitcode signature"); 2371 2372 // We expect a number of well-defined blocks, though we don't necessarily 2373 // need to understand them all. 2374 while (1) { 2375 if (Stream.AtEndOfStream()) 2376 return std::error_code(); 2377 2378 BitstreamEntry Entry = 2379 Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs); 2380 2381 switch (Entry.Kind) { 2382 case BitstreamEntry::Error: 2383 return Error("Malformed block"); 2384 case BitstreamEntry::EndBlock: 2385 return std::error_code(); 2386 2387 case BitstreamEntry::SubBlock: 2388 switch (Entry.ID) { 2389 case bitc::BLOCKINFO_BLOCK_ID: 2390 if (Stream.ReadBlockInfoBlock()) 2391 return Error("Malformed block"); 2392 break; 2393 case bitc::MODULE_BLOCK_ID: 2394 // Reject multiple MODULE_BLOCK's in a single bitstream. 2395 if (TheModule) 2396 return Error("Invalid multiple blocks"); 2397 TheModule = M; 2398 if (std::error_code EC = ParseModule(false)) 2399 return EC; 2400 if (LazyStreamer) 2401 return std::error_code(); 2402 break; 2403 default: 2404 if (Stream.SkipBlock()) 2405 return Error("Invalid record"); 2406 break; 2407 } 2408 continue; 2409 case BitstreamEntry::Record: 2410 // There should be no records in the top-level of blocks. 2411 2412 // The ranlib in Xcode 4 will align archive members by appending newlines 2413 // to the end of them. If this file size is a multiple of 4 but not 8, we 2414 // have to read and ignore these final 4 bytes :-( 2415 if (Stream.getAbbrevIDWidth() == 2 && Entry.ID == 2 && 2416 Stream.Read(6) == 2 && Stream.Read(24) == 0xa0a0a && 2417 Stream.AtEndOfStream()) 2418 return std::error_code(); 2419 2420 return Error("Invalid record"); 2421 } 2422 } 2423 } 2424 2425 ErrorOr<std::string> BitcodeReader::parseModuleTriple() { 2426 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 2427 return Error("Invalid record"); 2428 2429 SmallVector<uint64_t, 64> Record; 2430 2431 std::string Triple; 2432 // Read all the records for this module. 2433 while (1) { 2434 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2435 2436 switch (Entry.Kind) { 2437 case BitstreamEntry::SubBlock: // Handled for us already. 2438 case BitstreamEntry::Error: 2439 return Error("Malformed block"); 2440 case BitstreamEntry::EndBlock: 2441 return Triple; 2442 case BitstreamEntry::Record: 2443 // The interesting case. 2444 break; 2445 } 2446 2447 // Read a record. 2448 switch (Stream.readRecord(Entry.ID, Record)) { 2449 default: break; // Default behavior, ignore unknown content. 2450 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 2451 std::string S; 2452 if (ConvertToString(Record, 0, S)) 2453 return Error("Invalid record"); 2454 Triple = S; 2455 break; 2456 } 2457 } 2458 Record.clear(); 2459 } 2460 llvm_unreachable("Exit infinite loop"); 2461 } 2462 2463 ErrorOr<std::string> BitcodeReader::parseTriple() { 2464 if (std::error_code EC = InitStream()) 2465 return EC; 2466 2467 // Sniff for the signature. 2468 if (Stream.Read(8) != 'B' || 2469 Stream.Read(8) != 'C' || 2470 Stream.Read(4) != 0x0 || 2471 Stream.Read(4) != 0xC || 2472 Stream.Read(4) != 0xE || 2473 Stream.Read(4) != 0xD) 2474 return Error("Invalid bitcode signature"); 2475 2476 // We expect a number of well-defined blocks, though we don't necessarily 2477 // need to understand them all. 2478 while (1) { 2479 BitstreamEntry Entry = Stream.advance(); 2480 2481 switch (Entry.Kind) { 2482 case BitstreamEntry::Error: 2483 return Error("Malformed block"); 2484 case BitstreamEntry::EndBlock: 2485 return std::error_code(); 2486 2487 case BitstreamEntry::SubBlock: 2488 if (Entry.ID == bitc::MODULE_BLOCK_ID) 2489 return parseModuleTriple(); 2490 2491 // Ignore other sub-blocks. 2492 if (Stream.SkipBlock()) 2493 return Error("Malformed block"); 2494 continue; 2495 2496 case BitstreamEntry::Record: 2497 Stream.skipRecord(Entry.ID); 2498 continue; 2499 } 2500 } 2501 } 2502 2503 /// ParseMetadataAttachment - Parse metadata attachments. 2504 std::error_code BitcodeReader::ParseMetadataAttachment() { 2505 if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID)) 2506 return Error("Invalid record"); 2507 2508 SmallVector<uint64_t, 64> Record; 2509 while (1) { 2510 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2511 2512 switch (Entry.Kind) { 2513 case BitstreamEntry::SubBlock: // Handled for us already. 2514 case BitstreamEntry::Error: 2515 return Error("Malformed block"); 2516 case BitstreamEntry::EndBlock: 2517 return std::error_code(); 2518 case BitstreamEntry::Record: 2519 // The interesting case. 2520 break; 2521 } 2522 2523 // Read a metadata attachment record. 2524 Record.clear(); 2525 switch (Stream.readRecord(Entry.ID, Record)) { 2526 default: // Default behavior: ignore. 2527 break; 2528 case bitc::METADATA_ATTACHMENT: { 2529 unsigned RecordLength = Record.size(); 2530 if (Record.empty() || (RecordLength - 1) % 2 == 1) 2531 return Error("Invalid record"); 2532 Instruction *Inst = InstructionList[Record[0]]; 2533 for (unsigned i = 1; i != RecordLength; i = i+2) { 2534 unsigned Kind = Record[i]; 2535 DenseMap<unsigned, unsigned>::iterator I = 2536 MDKindMap.find(Kind); 2537 if (I == MDKindMap.end()) 2538 return Error("Invalid ID"); 2539 Metadata *Node = MDValueList.getValueFwdRef(Record[i + 1]); 2540 if (isa<LocalAsMetadata>(Node)) 2541 // Drop the attachment. This used to be legal, but there's no 2542 // upgrade path. 2543 break; 2544 Inst->setMetadata(I->second, cast<MDNode>(Node)); 2545 if (I->second == LLVMContext::MD_tbaa) 2546 InstsWithTBAATag.push_back(Inst); 2547 } 2548 break; 2549 } 2550 } 2551 } 2552 } 2553 2554 /// ParseFunctionBody - Lazily parse the specified function body block. 2555 std::error_code BitcodeReader::ParseFunctionBody(Function *F) { 2556 if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 2557 return Error("Invalid record"); 2558 2559 InstructionList.clear(); 2560 unsigned ModuleValueListSize = ValueList.size(); 2561 unsigned ModuleMDValueListSize = MDValueList.size(); 2562 2563 // Add all the function arguments to the value table. 2564 for(Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I) 2565 ValueList.push_back(I); 2566 2567 unsigned NextValueNo = ValueList.size(); 2568 BasicBlock *CurBB = nullptr; 2569 unsigned CurBBNo = 0; 2570 2571 DebugLoc LastLoc; 2572 auto getLastInstruction = [&]() -> Instruction * { 2573 if (CurBB && !CurBB->empty()) 2574 return &CurBB->back(); 2575 else if (CurBBNo && FunctionBBs[CurBBNo - 1] && 2576 !FunctionBBs[CurBBNo - 1]->empty()) 2577 return &FunctionBBs[CurBBNo - 1]->back(); 2578 return nullptr; 2579 }; 2580 2581 // Read all the records. 2582 SmallVector<uint64_t, 64> Record; 2583 while (1) { 2584 BitstreamEntry Entry = Stream.advance(); 2585 2586 switch (Entry.Kind) { 2587 case BitstreamEntry::Error: 2588 return Error("Malformed block"); 2589 case BitstreamEntry::EndBlock: 2590 goto OutOfRecordLoop; 2591 2592 case BitstreamEntry::SubBlock: 2593 switch (Entry.ID) { 2594 default: // Skip unknown content. 2595 if (Stream.SkipBlock()) 2596 return Error("Invalid record"); 2597 break; 2598 case bitc::CONSTANTS_BLOCK_ID: 2599 if (std::error_code EC = ParseConstants()) 2600 return EC; 2601 NextValueNo = ValueList.size(); 2602 break; 2603 case bitc::VALUE_SYMTAB_BLOCK_ID: 2604 if (std::error_code EC = ParseValueSymbolTable()) 2605 return EC; 2606 break; 2607 case bitc::METADATA_ATTACHMENT_ID: 2608 if (std::error_code EC = ParseMetadataAttachment()) 2609 return EC; 2610 break; 2611 case bitc::METADATA_BLOCK_ID: 2612 if (std::error_code EC = ParseMetadata()) 2613 return EC; 2614 break; 2615 case bitc::USELIST_BLOCK_ID: 2616 if (std::error_code EC = ParseUseLists()) 2617 return EC; 2618 break; 2619 } 2620 continue; 2621 2622 case BitstreamEntry::Record: 2623 // The interesting case. 2624 break; 2625 } 2626 2627 // Read a record. 2628 Record.clear(); 2629 Instruction *I = nullptr; 2630 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 2631 switch (BitCode) { 2632 default: // Default behavior: reject 2633 return Error("Invalid value"); 2634 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks] 2635 if (Record.size() < 1 || Record[0] == 0) 2636 return Error("Invalid record"); 2637 // Create all the basic blocks for the function. 2638 FunctionBBs.resize(Record[0]); 2639 2640 // See if anything took the address of blocks in this function. 2641 auto BBFRI = BasicBlockFwdRefs.find(F); 2642 if (BBFRI == BasicBlockFwdRefs.end()) { 2643 for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i) 2644 FunctionBBs[i] = BasicBlock::Create(Context, "", F); 2645 } else { 2646 auto &BBRefs = BBFRI->second; 2647 // Check for invalid basic block references. 2648 if (BBRefs.size() > FunctionBBs.size()) 2649 return Error("Invalid ID"); 2650 assert(!BBRefs.empty() && "Unexpected empty array"); 2651 assert(!BBRefs.front() && "Invalid reference to entry block"); 2652 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E; 2653 ++I) 2654 if (I < RE && BBRefs[I]) { 2655 BBRefs[I]->insertInto(F); 2656 FunctionBBs[I] = BBRefs[I]; 2657 } else { 2658 FunctionBBs[I] = BasicBlock::Create(Context, "", F); 2659 } 2660 2661 // Erase from the table. 2662 BasicBlockFwdRefs.erase(BBFRI); 2663 } 2664 2665 CurBB = FunctionBBs[0]; 2666 continue; 2667 } 2668 2669 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 2670 // This record indicates that the last instruction is at the same 2671 // location as the previous instruction with a location. 2672 I = getLastInstruction(); 2673 2674 if (!I) 2675 return Error("Invalid record"); 2676 I->setDebugLoc(LastLoc); 2677 I = nullptr; 2678 continue; 2679 2680 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 2681 I = getLastInstruction(); 2682 if (!I || Record.size() < 4) 2683 return Error("Invalid record"); 2684 2685 unsigned Line = Record[0], Col = Record[1]; 2686 unsigned ScopeID = Record[2], IAID = Record[3]; 2687 2688 MDNode *Scope = nullptr, *IA = nullptr; 2689 if (ScopeID) Scope = cast<MDNode>(MDValueList.getValueFwdRef(ScopeID-1)); 2690 if (IAID) IA = cast<MDNode>(MDValueList.getValueFwdRef(IAID-1)); 2691 LastLoc = DebugLoc::get(Line, Col, Scope, IA); 2692 I->setDebugLoc(LastLoc); 2693 I = nullptr; 2694 continue; 2695 } 2696 2697 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 2698 unsigned OpNum = 0; 2699 Value *LHS, *RHS; 2700 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 2701 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 2702 OpNum+1 > Record.size()) 2703 return Error("Invalid record"); 2704 2705 int Opc = GetDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 2706 if (Opc == -1) 2707 return Error("Invalid record"); 2708 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 2709 InstructionList.push_back(I); 2710 if (OpNum < Record.size()) { 2711 if (Opc == Instruction::Add || 2712 Opc == Instruction::Sub || 2713 Opc == Instruction::Mul || 2714 Opc == Instruction::Shl) { 2715 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 2716 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 2717 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 2718 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 2719 } else if (Opc == Instruction::SDiv || 2720 Opc == Instruction::UDiv || 2721 Opc == Instruction::LShr || 2722 Opc == Instruction::AShr) { 2723 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 2724 cast<BinaryOperator>(I)->setIsExact(true); 2725 } else if (isa<FPMathOperator>(I)) { 2726 FastMathFlags FMF; 2727 if (0 != (Record[OpNum] & FastMathFlags::UnsafeAlgebra)) 2728 FMF.setUnsafeAlgebra(); 2729 if (0 != (Record[OpNum] & FastMathFlags::NoNaNs)) 2730 FMF.setNoNaNs(); 2731 if (0 != (Record[OpNum] & FastMathFlags::NoInfs)) 2732 FMF.setNoInfs(); 2733 if (0 != (Record[OpNum] & FastMathFlags::NoSignedZeros)) 2734 FMF.setNoSignedZeros(); 2735 if (0 != (Record[OpNum] & FastMathFlags::AllowReciprocal)) 2736 FMF.setAllowReciprocal(); 2737 if (FMF.any()) 2738 I->setFastMathFlags(FMF); 2739 } 2740 2741 } 2742 break; 2743 } 2744 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 2745 unsigned OpNum = 0; 2746 Value *Op; 2747 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 2748 OpNum+2 != Record.size()) 2749 return Error("Invalid record"); 2750 2751 Type *ResTy = getTypeByID(Record[OpNum]); 2752 int Opc = GetDecodedCastOpcode(Record[OpNum+1]); 2753 if (Opc == -1 || !ResTy) 2754 return Error("Invalid record"); 2755 Instruction *Temp = nullptr; 2756 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) { 2757 if (Temp) { 2758 InstructionList.push_back(Temp); 2759 CurBB->getInstList().push_back(Temp); 2760 } 2761 } else { 2762 I = CastInst::Create((Instruction::CastOps)Opc, Op, ResTy); 2763 } 2764 InstructionList.push_back(I); 2765 break; 2766 } 2767 case bitc::FUNC_CODE_INST_INBOUNDS_GEP: 2768 case bitc::FUNC_CODE_INST_GEP: { // GEP: [n x operands] 2769 unsigned OpNum = 0; 2770 Value *BasePtr; 2771 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr)) 2772 return Error("Invalid record"); 2773 2774 SmallVector<Value*, 16> GEPIdx; 2775 while (OpNum != Record.size()) { 2776 Value *Op; 2777 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 2778 return Error("Invalid record"); 2779 GEPIdx.push_back(Op); 2780 } 2781 2782 I = GetElementPtrInst::Create(BasePtr, GEPIdx); 2783 InstructionList.push_back(I); 2784 if (BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP) 2785 cast<GetElementPtrInst>(I)->setIsInBounds(true); 2786 break; 2787 } 2788 2789 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 2790 // EXTRACTVAL: [opty, opval, n x indices] 2791 unsigned OpNum = 0; 2792 Value *Agg; 2793 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 2794 return Error("Invalid record"); 2795 2796 SmallVector<unsigned, 4> EXTRACTVALIdx; 2797 for (unsigned RecSize = Record.size(); 2798 OpNum != RecSize; ++OpNum) { 2799 uint64_t Index = Record[OpNum]; 2800 if ((unsigned)Index != Index) 2801 return Error("Invalid value"); 2802 EXTRACTVALIdx.push_back((unsigned)Index); 2803 } 2804 2805 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 2806 InstructionList.push_back(I); 2807 break; 2808 } 2809 2810 case bitc::FUNC_CODE_INST_INSERTVAL: { 2811 // INSERTVAL: [opty, opval, opty, opval, n x indices] 2812 unsigned OpNum = 0; 2813 Value *Agg; 2814 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 2815 return Error("Invalid record"); 2816 Value *Val; 2817 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 2818 return Error("Invalid record"); 2819 2820 SmallVector<unsigned, 4> INSERTVALIdx; 2821 for (unsigned RecSize = Record.size(); 2822 OpNum != RecSize; ++OpNum) { 2823 uint64_t Index = Record[OpNum]; 2824 if ((unsigned)Index != Index) 2825 return Error("Invalid value"); 2826 INSERTVALIdx.push_back((unsigned)Index); 2827 } 2828 2829 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 2830 InstructionList.push_back(I); 2831 break; 2832 } 2833 2834 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 2835 // obsolete form of select 2836 // handles select i1 ... in old bitcode 2837 unsigned OpNum = 0; 2838 Value *TrueVal, *FalseVal, *Cond; 2839 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 2840 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 2841 popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond)) 2842 return Error("Invalid record"); 2843 2844 I = SelectInst::Create(Cond, TrueVal, FalseVal); 2845 InstructionList.push_back(I); 2846 break; 2847 } 2848 2849 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 2850 // new form of select 2851 // handles select i1 or select [N x i1] 2852 unsigned OpNum = 0; 2853 Value *TrueVal, *FalseVal, *Cond; 2854 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 2855 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 2856 getValueTypePair(Record, OpNum, NextValueNo, Cond)) 2857 return Error("Invalid record"); 2858 2859 // select condition can be either i1 or [N x i1] 2860 if (VectorType* vector_type = 2861 dyn_cast<VectorType>(Cond->getType())) { 2862 // expect <n x i1> 2863 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 2864 return Error("Invalid type for value"); 2865 } else { 2866 // expect i1 2867 if (Cond->getType() != Type::getInt1Ty(Context)) 2868 return Error("Invalid type for value"); 2869 } 2870 2871 I = SelectInst::Create(Cond, TrueVal, FalseVal); 2872 InstructionList.push_back(I); 2873 break; 2874 } 2875 2876 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 2877 unsigned OpNum = 0; 2878 Value *Vec, *Idx; 2879 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 2880 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 2881 return Error("Invalid record"); 2882 I = ExtractElementInst::Create(Vec, Idx); 2883 InstructionList.push_back(I); 2884 break; 2885 } 2886 2887 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 2888 unsigned OpNum = 0; 2889 Value *Vec, *Elt, *Idx; 2890 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 2891 popValue(Record, OpNum, NextValueNo, 2892 cast<VectorType>(Vec->getType())->getElementType(), Elt) || 2893 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 2894 return Error("Invalid record"); 2895 I = InsertElementInst::Create(Vec, Elt, Idx); 2896 InstructionList.push_back(I); 2897 break; 2898 } 2899 2900 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 2901 unsigned OpNum = 0; 2902 Value *Vec1, *Vec2, *Mask; 2903 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) || 2904 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2)) 2905 return Error("Invalid record"); 2906 2907 if (getValueTypePair(Record, OpNum, NextValueNo, Mask)) 2908 return Error("Invalid record"); 2909 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 2910 InstructionList.push_back(I); 2911 break; 2912 } 2913 2914 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 2915 // Old form of ICmp/FCmp returning bool 2916 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 2917 // both legal on vectors but had different behaviour. 2918 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 2919 // FCmp/ICmp returning bool or vector of bool 2920 2921 unsigned OpNum = 0; 2922 Value *LHS, *RHS; 2923 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 2924 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 2925 OpNum+1 != Record.size()) 2926 return Error("Invalid record"); 2927 2928 if (LHS->getType()->isFPOrFPVectorTy()) 2929 I = new FCmpInst((FCmpInst::Predicate)Record[OpNum], LHS, RHS); 2930 else 2931 I = new ICmpInst((ICmpInst::Predicate)Record[OpNum], LHS, RHS); 2932 InstructionList.push_back(I); 2933 break; 2934 } 2935 2936 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 2937 { 2938 unsigned Size = Record.size(); 2939 if (Size == 0) { 2940 I = ReturnInst::Create(Context); 2941 InstructionList.push_back(I); 2942 break; 2943 } 2944 2945 unsigned OpNum = 0; 2946 Value *Op = nullptr; 2947 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 2948 return Error("Invalid record"); 2949 if (OpNum != Record.size()) 2950 return Error("Invalid record"); 2951 2952 I = ReturnInst::Create(Context, Op); 2953 InstructionList.push_back(I); 2954 break; 2955 } 2956 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 2957 if (Record.size() != 1 && Record.size() != 3) 2958 return Error("Invalid record"); 2959 BasicBlock *TrueDest = getBasicBlock(Record[0]); 2960 if (!TrueDest) 2961 return Error("Invalid record"); 2962 2963 if (Record.size() == 1) { 2964 I = BranchInst::Create(TrueDest); 2965 InstructionList.push_back(I); 2966 } 2967 else { 2968 BasicBlock *FalseDest = getBasicBlock(Record[1]); 2969 Value *Cond = getValue(Record, 2, NextValueNo, 2970 Type::getInt1Ty(Context)); 2971 if (!FalseDest || !Cond) 2972 return Error("Invalid record"); 2973 I = BranchInst::Create(TrueDest, FalseDest, Cond); 2974 InstructionList.push_back(I); 2975 } 2976 break; 2977 } 2978 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 2979 // Check magic 2980 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { 2981 // "New" SwitchInst format with case ranges. The changes to write this 2982 // format were reverted but we still recognize bitcode that uses it. 2983 // Hopefully someday we will have support for case ranges and can use 2984 // this format again. 2985 2986 Type *OpTy = getTypeByID(Record[1]); 2987 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); 2988 2989 Value *Cond = getValue(Record, 2, NextValueNo, OpTy); 2990 BasicBlock *Default = getBasicBlock(Record[3]); 2991 if (!OpTy || !Cond || !Default) 2992 return Error("Invalid record"); 2993 2994 unsigned NumCases = Record[4]; 2995 2996 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 2997 InstructionList.push_back(SI); 2998 2999 unsigned CurIdx = 5; 3000 for (unsigned i = 0; i != NumCases; ++i) { 3001 SmallVector<ConstantInt*, 1> CaseVals; 3002 unsigned NumItems = Record[CurIdx++]; 3003 for (unsigned ci = 0; ci != NumItems; ++ci) { 3004 bool isSingleNumber = Record[CurIdx++]; 3005 3006 APInt Low; 3007 unsigned ActiveWords = 1; 3008 if (ValueBitWidth > 64) 3009 ActiveWords = Record[CurIdx++]; 3010 Low = ReadWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 3011 ValueBitWidth); 3012 CurIdx += ActiveWords; 3013 3014 if (!isSingleNumber) { 3015 ActiveWords = 1; 3016 if (ValueBitWidth > 64) 3017 ActiveWords = Record[CurIdx++]; 3018 APInt High = 3019 ReadWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 3020 ValueBitWidth); 3021 CurIdx += ActiveWords; 3022 3023 // FIXME: It is not clear whether values in the range should be 3024 // compared as signed or unsigned values. The partially 3025 // implemented changes that used this format in the past used 3026 // unsigned comparisons. 3027 for ( ; Low.ule(High); ++Low) 3028 CaseVals.push_back(ConstantInt::get(Context, Low)); 3029 } else 3030 CaseVals.push_back(ConstantInt::get(Context, Low)); 3031 } 3032 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); 3033 for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(), 3034 cve = CaseVals.end(); cvi != cve; ++cvi) 3035 SI->addCase(*cvi, DestBB); 3036 } 3037 I = SI; 3038 break; 3039 } 3040 3041 // Old SwitchInst format without case ranges. 3042 3043 if (Record.size() < 3 || (Record.size() & 1) == 0) 3044 return Error("Invalid record"); 3045 Type *OpTy = getTypeByID(Record[0]); 3046 Value *Cond = getValue(Record, 1, NextValueNo, OpTy); 3047 BasicBlock *Default = getBasicBlock(Record[2]); 3048 if (!OpTy || !Cond || !Default) 3049 return Error("Invalid record"); 3050 unsigned NumCases = (Record.size()-3)/2; 3051 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 3052 InstructionList.push_back(SI); 3053 for (unsigned i = 0, e = NumCases; i != e; ++i) { 3054 ConstantInt *CaseVal = 3055 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy)); 3056 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 3057 if (!CaseVal || !DestBB) { 3058 delete SI; 3059 return Error("Invalid record"); 3060 } 3061 SI->addCase(CaseVal, DestBB); 3062 } 3063 I = SI; 3064 break; 3065 } 3066 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 3067 if (Record.size() < 2) 3068 return Error("Invalid record"); 3069 Type *OpTy = getTypeByID(Record[0]); 3070 Value *Address = getValue(Record, 1, NextValueNo, OpTy); 3071 if (!OpTy || !Address) 3072 return Error("Invalid record"); 3073 unsigned NumDests = Record.size()-2; 3074 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 3075 InstructionList.push_back(IBI); 3076 for (unsigned i = 0, e = NumDests; i != e; ++i) { 3077 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 3078 IBI->addDestination(DestBB); 3079 } else { 3080 delete IBI; 3081 return Error("Invalid record"); 3082 } 3083 } 3084 I = IBI; 3085 break; 3086 } 3087 3088 case bitc::FUNC_CODE_INST_INVOKE: { 3089 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 3090 if (Record.size() < 4) 3091 return Error("Invalid record"); 3092 AttributeSet PAL = getAttributes(Record[0]); 3093 unsigned CCInfo = Record[1]; 3094 BasicBlock *NormalBB = getBasicBlock(Record[2]); 3095 BasicBlock *UnwindBB = getBasicBlock(Record[3]); 3096 3097 unsigned OpNum = 4; 3098 Value *Callee; 3099 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 3100 return Error("Invalid record"); 3101 3102 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 3103 FunctionType *FTy = !CalleeTy ? nullptr : 3104 dyn_cast<FunctionType>(CalleeTy->getElementType()); 3105 3106 // Check that the right number of fixed parameters are here. 3107 if (!FTy || !NormalBB || !UnwindBB || 3108 Record.size() < OpNum+FTy->getNumParams()) 3109 return Error("Invalid record"); 3110 3111 SmallVector<Value*, 16> Ops; 3112 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 3113 Ops.push_back(getValue(Record, OpNum, NextValueNo, 3114 FTy->getParamType(i))); 3115 if (!Ops.back()) 3116 return Error("Invalid record"); 3117 } 3118 3119 if (!FTy->isVarArg()) { 3120 if (Record.size() != OpNum) 3121 return Error("Invalid record"); 3122 } else { 3123 // Read type/value pairs for varargs params. 3124 while (OpNum != Record.size()) { 3125 Value *Op; 3126 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3127 return Error("Invalid record"); 3128 Ops.push_back(Op); 3129 } 3130 } 3131 3132 I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops); 3133 InstructionList.push_back(I); 3134 cast<InvokeInst>(I)->setCallingConv( 3135 static_cast<CallingConv::ID>(CCInfo)); 3136 cast<InvokeInst>(I)->setAttributes(PAL); 3137 break; 3138 } 3139 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 3140 unsigned Idx = 0; 3141 Value *Val = nullptr; 3142 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 3143 return Error("Invalid record"); 3144 I = ResumeInst::Create(Val); 3145 InstructionList.push_back(I); 3146 break; 3147 } 3148 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 3149 I = new UnreachableInst(Context); 3150 InstructionList.push_back(I); 3151 break; 3152 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 3153 if (Record.size() < 1 || ((Record.size()-1)&1)) 3154 return Error("Invalid record"); 3155 Type *Ty = getTypeByID(Record[0]); 3156 if (!Ty) 3157 return Error("Invalid record"); 3158 3159 PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2); 3160 InstructionList.push_back(PN); 3161 3162 for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) { 3163 Value *V; 3164 // With the new function encoding, it is possible that operands have 3165 // negative IDs (for forward references). Use a signed VBR 3166 // representation to keep the encoding small. 3167 if (UseRelativeIDs) 3168 V = getValueSigned(Record, 1+i, NextValueNo, Ty); 3169 else 3170 V = getValue(Record, 1+i, NextValueNo, Ty); 3171 BasicBlock *BB = getBasicBlock(Record[2+i]); 3172 if (!V || !BB) 3173 return Error("Invalid record"); 3174 PN->addIncoming(V, BB); 3175 } 3176 I = PN; 3177 break; 3178 } 3179 3180 case bitc::FUNC_CODE_INST_LANDINGPAD: { 3181 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 3182 unsigned Idx = 0; 3183 if (Record.size() < 4) 3184 return Error("Invalid record"); 3185 Type *Ty = getTypeByID(Record[Idx++]); 3186 if (!Ty) 3187 return Error("Invalid record"); 3188 Value *PersFn = nullptr; 3189 if (getValueTypePair(Record, Idx, NextValueNo, PersFn)) 3190 return Error("Invalid record"); 3191 3192 bool IsCleanup = !!Record[Idx++]; 3193 unsigned NumClauses = Record[Idx++]; 3194 LandingPadInst *LP = LandingPadInst::Create(Ty, PersFn, NumClauses); 3195 LP->setCleanup(IsCleanup); 3196 for (unsigned J = 0; J != NumClauses; ++J) { 3197 LandingPadInst::ClauseType CT = 3198 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 3199 Value *Val; 3200 3201 if (getValueTypePair(Record, Idx, NextValueNo, Val)) { 3202 delete LP; 3203 return Error("Invalid record"); 3204 } 3205 3206 assert((CT != LandingPadInst::Catch || 3207 !isa<ArrayType>(Val->getType())) && 3208 "Catch clause has a invalid type!"); 3209 assert((CT != LandingPadInst::Filter || 3210 isa<ArrayType>(Val->getType())) && 3211 "Filter clause has invalid type!"); 3212 LP->addClause(cast<Constant>(Val)); 3213 } 3214 3215 I = LP; 3216 InstructionList.push_back(I); 3217 break; 3218 } 3219 3220 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 3221 if (Record.size() != 4) 3222 return Error("Invalid record"); 3223 PointerType *Ty = 3224 dyn_cast_or_null<PointerType>(getTypeByID(Record[0])); 3225 Type *OpTy = getTypeByID(Record[1]); 3226 Value *Size = getFnValueByID(Record[2], OpTy); 3227 unsigned AlignRecord = Record[3]; 3228 bool InAlloca = AlignRecord & (1 << 5); 3229 unsigned Align = AlignRecord & ((1 << 5) - 1); 3230 if (!Ty || !Size) 3231 return Error("Invalid record"); 3232 AllocaInst *AI = new AllocaInst(Ty->getElementType(), Size, (1 << Align) >> 1); 3233 AI->setUsedWithInAlloca(InAlloca); 3234 I = AI; 3235 InstructionList.push_back(I); 3236 break; 3237 } 3238 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 3239 unsigned OpNum = 0; 3240 Value *Op; 3241 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 3242 OpNum+2 != Record.size()) 3243 return Error("Invalid record"); 3244 3245 I = new LoadInst(Op, "", Record[OpNum+1], (1 << Record[OpNum]) >> 1); 3246 InstructionList.push_back(I); 3247 break; 3248 } 3249 case bitc::FUNC_CODE_INST_LOADATOMIC: { 3250 // LOADATOMIC: [opty, op, align, vol, ordering, synchscope] 3251 unsigned OpNum = 0; 3252 Value *Op; 3253 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 3254 OpNum+4 != Record.size()) 3255 return Error("Invalid record"); 3256 3257 AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]); 3258 if (Ordering == NotAtomic || Ordering == Release || 3259 Ordering == AcquireRelease) 3260 return Error("Invalid record"); 3261 if (Ordering != NotAtomic && Record[OpNum] == 0) 3262 return Error("Invalid record"); 3263 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]); 3264 3265 I = new LoadInst(Op, "", Record[OpNum+1], (1 << Record[OpNum]) >> 1, 3266 Ordering, SynchScope); 3267 InstructionList.push_back(I); 3268 break; 3269 } 3270 case bitc::FUNC_CODE_INST_STORE: { // STORE2:[ptrty, ptr, val, align, vol] 3271 unsigned OpNum = 0; 3272 Value *Val, *Ptr; 3273 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 3274 popValue(Record, OpNum, NextValueNo, 3275 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 3276 OpNum+2 != Record.size()) 3277 return Error("Invalid record"); 3278 3279 I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1); 3280 InstructionList.push_back(I); 3281 break; 3282 } 3283 case bitc::FUNC_CODE_INST_STOREATOMIC: { 3284 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, synchscope] 3285 unsigned OpNum = 0; 3286 Value *Val, *Ptr; 3287 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 3288 popValue(Record, OpNum, NextValueNo, 3289 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 3290 OpNum+4 != Record.size()) 3291 return Error("Invalid record"); 3292 3293 AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]); 3294 if (Ordering == NotAtomic || Ordering == Acquire || 3295 Ordering == AcquireRelease) 3296 return Error("Invalid record"); 3297 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]); 3298 if (Ordering != NotAtomic && Record[OpNum] == 0) 3299 return Error("Invalid record"); 3300 3301 I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1, 3302 Ordering, SynchScope); 3303 InstructionList.push_back(I); 3304 break; 3305 } 3306 case bitc::FUNC_CODE_INST_CMPXCHG: { 3307 // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, synchscope, 3308 // failureordering?, isweak?] 3309 unsigned OpNum = 0; 3310 Value *Ptr, *Cmp, *New; 3311 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 3312 popValue(Record, OpNum, NextValueNo, 3313 cast<PointerType>(Ptr->getType())->getElementType(), Cmp) || 3314 popValue(Record, OpNum, NextValueNo, 3315 cast<PointerType>(Ptr->getType())->getElementType(), New) || 3316 (Record.size() < OpNum + 3 || Record.size() > OpNum + 5)) 3317 return Error("Invalid record"); 3318 AtomicOrdering SuccessOrdering = GetDecodedOrdering(Record[OpNum+1]); 3319 if (SuccessOrdering == NotAtomic || SuccessOrdering == Unordered) 3320 return Error("Invalid record"); 3321 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+2]); 3322 3323 AtomicOrdering FailureOrdering; 3324 if (Record.size() < 7) 3325 FailureOrdering = 3326 AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering); 3327 else 3328 FailureOrdering = GetDecodedOrdering(Record[OpNum+3]); 3329 3330 I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering, 3331 SynchScope); 3332 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 3333 3334 if (Record.size() < 8) { 3335 // Before weak cmpxchgs existed, the instruction simply returned the 3336 // value loaded from memory, so bitcode files from that era will be 3337 // expecting the first component of a modern cmpxchg. 3338 CurBB->getInstList().push_back(I); 3339 I = ExtractValueInst::Create(I, 0); 3340 } else { 3341 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]); 3342 } 3343 3344 InstructionList.push_back(I); 3345 break; 3346 } 3347 case bitc::FUNC_CODE_INST_ATOMICRMW: { 3348 // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, synchscope] 3349 unsigned OpNum = 0; 3350 Value *Ptr, *Val; 3351 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 3352 popValue(Record, OpNum, NextValueNo, 3353 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 3354 OpNum+4 != Record.size()) 3355 return Error("Invalid record"); 3356 AtomicRMWInst::BinOp Operation = GetDecodedRMWOperation(Record[OpNum]); 3357 if (Operation < AtomicRMWInst::FIRST_BINOP || 3358 Operation > AtomicRMWInst::LAST_BINOP) 3359 return Error("Invalid record"); 3360 AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]); 3361 if (Ordering == NotAtomic || Ordering == Unordered) 3362 return Error("Invalid record"); 3363 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]); 3364 I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SynchScope); 3365 cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]); 3366 InstructionList.push_back(I); 3367 break; 3368 } 3369 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, synchscope] 3370 if (2 != Record.size()) 3371 return Error("Invalid record"); 3372 AtomicOrdering Ordering = GetDecodedOrdering(Record[0]); 3373 if (Ordering == NotAtomic || Ordering == Unordered || 3374 Ordering == Monotonic) 3375 return Error("Invalid record"); 3376 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[1]); 3377 I = new FenceInst(Context, Ordering, SynchScope); 3378 InstructionList.push_back(I); 3379 break; 3380 } 3381 case bitc::FUNC_CODE_INST_CALL: { 3382 // CALL: [paramattrs, cc, fnty, fnid, arg0, arg1...] 3383 if (Record.size() < 3) 3384 return Error("Invalid record"); 3385 3386 AttributeSet PAL = getAttributes(Record[0]); 3387 unsigned CCInfo = Record[1]; 3388 3389 unsigned OpNum = 2; 3390 Value *Callee; 3391 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 3392 return Error("Invalid record"); 3393 3394 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 3395 FunctionType *FTy = nullptr; 3396 if (OpTy) FTy = dyn_cast<FunctionType>(OpTy->getElementType()); 3397 if (!FTy || Record.size() < FTy->getNumParams()+OpNum) 3398 return Error("Invalid record"); 3399 3400 SmallVector<Value*, 16> Args; 3401 // Read the fixed params. 3402 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 3403 if (FTy->getParamType(i)->isLabelTy()) 3404 Args.push_back(getBasicBlock(Record[OpNum])); 3405 else 3406 Args.push_back(getValue(Record, OpNum, NextValueNo, 3407 FTy->getParamType(i))); 3408 if (!Args.back()) 3409 return Error("Invalid record"); 3410 } 3411 3412 // Read type/value pairs for varargs params. 3413 if (!FTy->isVarArg()) { 3414 if (OpNum != Record.size()) 3415 return Error("Invalid record"); 3416 } else { 3417 while (OpNum != Record.size()) { 3418 Value *Op; 3419 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3420 return Error("Invalid record"); 3421 Args.push_back(Op); 3422 } 3423 } 3424 3425 I = CallInst::Create(Callee, Args); 3426 InstructionList.push_back(I); 3427 cast<CallInst>(I)->setCallingConv( 3428 static_cast<CallingConv::ID>((~(1U << 14) & CCInfo) >> 1)); 3429 CallInst::TailCallKind TCK = CallInst::TCK_None; 3430 if (CCInfo & 1) 3431 TCK = CallInst::TCK_Tail; 3432 if (CCInfo & (1 << 14)) 3433 TCK = CallInst::TCK_MustTail; 3434 cast<CallInst>(I)->setTailCallKind(TCK); 3435 cast<CallInst>(I)->setAttributes(PAL); 3436 break; 3437 } 3438 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 3439 if (Record.size() < 3) 3440 return Error("Invalid record"); 3441 Type *OpTy = getTypeByID(Record[0]); 3442 Value *Op = getValue(Record, 1, NextValueNo, OpTy); 3443 Type *ResTy = getTypeByID(Record[2]); 3444 if (!OpTy || !Op || !ResTy) 3445 return Error("Invalid record"); 3446 I = new VAArgInst(Op, ResTy); 3447 InstructionList.push_back(I); 3448 break; 3449 } 3450 } 3451 3452 // Add instruction to end of current BB. If there is no current BB, reject 3453 // this file. 3454 if (!CurBB) { 3455 delete I; 3456 return Error("Invalid instruction with no BB"); 3457 } 3458 CurBB->getInstList().push_back(I); 3459 3460 // If this was a terminator instruction, move to the next block. 3461 if (isa<TerminatorInst>(I)) { 3462 ++CurBBNo; 3463 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr; 3464 } 3465 3466 // Non-void values get registered in the value table for future use. 3467 if (I && !I->getType()->isVoidTy()) 3468 ValueList.AssignValue(I, NextValueNo++); 3469 } 3470 3471 OutOfRecordLoop: 3472 3473 // Check the function list for unresolved values. 3474 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 3475 if (!A->getParent()) { 3476 // We found at least one unresolved value. Nuke them all to avoid leaks. 3477 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 3478 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) { 3479 A->replaceAllUsesWith(UndefValue::get(A->getType())); 3480 delete A; 3481 } 3482 } 3483 return Error("Never resolved value found in function"); 3484 } 3485 } 3486 3487 // FIXME: Check for unresolved forward-declared metadata references 3488 // and clean up leaks. 3489 3490 // Trim the value list down to the size it was before we parsed this function. 3491 ValueList.shrinkTo(ModuleValueListSize); 3492 MDValueList.shrinkTo(ModuleMDValueListSize); 3493 std::vector<BasicBlock*>().swap(FunctionBBs); 3494 return std::error_code(); 3495 } 3496 3497 /// Find the function body in the bitcode stream 3498 std::error_code BitcodeReader::FindFunctionInStream( 3499 Function *F, 3500 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) { 3501 while (DeferredFunctionInfoIterator->second == 0) { 3502 if (Stream.AtEndOfStream()) 3503 return Error("Could not find function in stream"); 3504 // ParseModule will parse the next body in the stream and set its 3505 // position in the DeferredFunctionInfo map. 3506 if (std::error_code EC = ParseModule(true)) 3507 return EC; 3508 } 3509 return std::error_code(); 3510 } 3511 3512 //===----------------------------------------------------------------------===// 3513 // GVMaterializer implementation 3514 //===----------------------------------------------------------------------===// 3515 3516 void BitcodeReader::releaseBuffer() { Buffer.release(); } 3517 3518 std::error_code BitcodeReader::materialize(GlobalValue *GV) { 3519 Function *F = dyn_cast<Function>(GV); 3520 // If it's not a function or is already material, ignore the request. 3521 if (!F || !F->isMaterializable()) 3522 return std::error_code(); 3523 3524 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 3525 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 3526 // If its position is recorded as 0, its body is somewhere in the stream 3527 // but we haven't seen it yet. 3528 if (DFII->second == 0 && LazyStreamer) 3529 if (std::error_code EC = FindFunctionInStream(F, DFII)) 3530 return EC; 3531 3532 // Move the bit stream to the saved position of the deferred function body. 3533 Stream.JumpToBit(DFII->second); 3534 3535 if (std::error_code EC = ParseFunctionBody(F)) 3536 return EC; 3537 F->setIsMaterializable(false); 3538 3539 // Upgrade any old intrinsic calls in the function. 3540 for (UpgradedIntrinsicMap::iterator I = UpgradedIntrinsics.begin(), 3541 E = UpgradedIntrinsics.end(); I != E; ++I) { 3542 if (I->first != I->second) { 3543 for (auto UI = I->first->user_begin(), UE = I->first->user_end(); 3544 UI != UE;) { 3545 if (CallInst* CI = dyn_cast<CallInst>(*UI++)) 3546 UpgradeIntrinsicCall(CI, I->second); 3547 } 3548 } 3549 } 3550 3551 // Bring in any functions that this function forward-referenced via 3552 // blockaddresses. 3553 return materializeForwardReferencedFunctions(); 3554 } 3555 3556 bool BitcodeReader::isDematerializable(const GlobalValue *GV) const { 3557 const Function *F = dyn_cast<Function>(GV); 3558 if (!F || F->isDeclaration()) 3559 return false; 3560 3561 // Dematerializing F would leave dangling references that wouldn't be 3562 // reconnected on re-materialization. 3563 if (BlockAddressesTaken.count(F)) 3564 return false; 3565 3566 return DeferredFunctionInfo.count(const_cast<Function*>(F)); 3567 } 3568 3569 void BitcodeReader::Dematerialize(GlobalValue *GV) { 3570 Function *F = dyn_cast<Function>(GV); 3571 // If this function isn't dematerializable, this is a noop. 3572 if (!F || !isDematerializable(F)) 3573 return; 3574 3575 assert(DeferredFunctionInfo.count(F) && "No info to read function later?"); 3576 3577 // Just forget the function body, we can remat it later. 3578 F->dropAllReferences(); 3579 F->setIsMaterializable(true); 3580 } 3581 3582 std::error_code BitcodeReader::MaterializeModule(Module *M) { 3583 assert(M == TheModule && 3584 "Can only Materialize the Module this BitcodeReader is attached to."); 3585 3586 // Promise to materialize all forward references. 3587 WillMaterializeAllForwardRefs = true; 3588 3589 // Iterate over the module, deserializing any functions that are still on 3590 // disk. 3591 for (Module::iterator F = TheModule->begin(), E = TheModule->end(); 3592 F != E; ++F) { 3593 if (std::error_code EC = materialize(F)) 3594 return EC; 3595 } 3596 // At this point, if there are any function bodies, the current bit is 3597 // pointing to the END_BLOCK record after them. Now make sure the rest 3598 // of the bits in the module have been read. 3599 if (NextUnreadBit) 3600 ParseModule(true); 3601 3602 // Check that all block address forward references got resolved (as we 3603 // promised above). 3604 if (!BasicBlockFwdRefs.empty()) 3605 return Error("Never resolved function from blockaddress"); 3606 3607 // Upgrade any intrinsic calls that slipped through (should not happen!) and 3608 // delete the old functions to clean up. We can't do this unless the entire 3609 // module is materialized because there could always be another function body 3610 // with calls to the old function. 3611 for (std::vector<std::pair<Function*, Function*> >::iterator I = 3612 UpgradedIntrinsics.begin(), E = UpgradedIntrinsics.end(); I != E; ++I) { 3613 if (I->first != I->second) { 3614 for (auto UI = I->first->user_begin(), UE = I->first->user_end(); 3615 UI != UE;) { 3616 if (CallInst* CI = dyn_cast<CallInst>(*UI++)) 3617 UpgradeIntrinsicCall(CI, I->second); 3618 } 3619 if (!I->first->use_empty()) 3620 I->first->replaceAllUsesWith(I->second); 3621 I->first->eraseFromParent(); 3622 } 3623 } 3624 std::vector<std::pair<Function*, Function*> >().swap(UpgradedIntrinsics); 3625 3626 for (unsigned I = 0, E = InstsWithTBAATag.size(); I < E; I++) 3627 UpgradeInstWithTBAATag(InstsWithTBAATag[I]); 3628 3629 UpgradeDebugInfo(*M); 3630 return std::error_code(); 3631 } 3632 3633 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const { 3634 return IdentifiedStructTypes; 3635 } 3636 3637 std::error_code BitcodeReader::InitStream() { 3638 if (LazyStreamer) 3639 return InitLazyStream(); 3640 return InitStreamFromBuffer(); 3641 } 3642 3643 std::error_code BitcodeReader::InitStreamFromBuffer() { 3644 const unsigned char *BufPtr = (const unsigned char*)Buffer->getBufferStart(); 3645 const unsigned char *BufEnd = BufPtr+Buffer->getBufferSize(); 3646 3647 if (Buffer->getBufferSize() & 3) 3648 return Error("Invalid bitcode signature"); 3649 3650 // If we have a wrapper header, parse it and ignore the non-bc file contents. 3651 // The magic number is 0x0B17C0DE stored in little endian. 3652 if (isBitcodeWrapper(BufPtr, BufEnd)) 3653 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 3654 return Error("Invalid bitcode wrapper header"); 3655 3656 StreamFile.reset(new BitstreamReader(BufPtr, BufEnd)); 3657 Stream.init(&*StreamFile); 3658 3659 return std::error_code(); 3660 } 3661 3662 std::error_code BitcodeReader::InitLazyStream() { 3663 // Check and strip off the bitcode wrapper; BitstreamReader expects never to 3664 // see it. 3665 auto OwnedBytes = llvm::make_unique<StreamingMemoryObject>(LazyStreamer); 3666 StreamingMemoryObject &Bytes = *OwnedBytes; 3667 StreamFile = llvm::make_unique<BitstreamReader>(std::move(OwnedBytes)); 3668 Stream.init(&*StreamFile); 3669 3670 unsigned char buf[16]; 3671 if (Bytes.readBytes(buf, 16, 0) != 16) 3672 return Error("Invalid bitcode signature"); 3673 3674 if (!isBitcode(buf, buf + 16)) 3675 return Error("Invalid bitcode signature"); 3676 3677 if (isBitcodeWrapper(buf, buf + 4)) { 3678 const unsigned char *bitcodeStart = buf; 3679 const unsigned char *bitcodeEnd = buf + 16; 3680 SkipBitcodeWrapperHeader(bitcodeStart, bitcodeEnd, false); 3681 Bytes.dropLeadingBytes(bitcodeStart - buf); 3682 Bytes.setKnownObjectSize(bitcodeEnd - bitcodeStart); 3683 } 3684 return std::error_code(); 3685 } 3686 3687 namespace { 3688 class BitcodeErrorCategoryType : public std::error_category { 3689 const char *name() const LLVM_NOEXCEPT override { 3690 return "llvm.bitcode"; 3691 } 3692 std::string message(int IE) const override { 3693 BitcodeError E = static_cast<BitcodeError>(IE); 3694 switch (E) { 3695 case BitcodeError::InvalidBitcodeSignature: 3696 return "Invalid bitcode signature"; 3697 case BitcodeError::CorruptedBitcode: 3698 return "Corrupted bitcode"; 3699 } 3700 llvm_unreachable("Unknown error type!"); 3701 } 3702 }; 3703 } 3704 3705 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory; 3706 3707 const std::error_category &llvm::BitcodeErrorCategory() { 3708 return *ErrorCategory; 3709 } 3710 3711 //===----------------------------------------------------------------------===// 3712 // External interface 3713 //===----------------------------------------------------------------------===// 3714 3715 /// \brief Get a lazy one-at-time loading module from bitcode. 3716 /// 3717 /// This isn't always used in a lazy context. In particular, it's also used by 3718 /// \a parseBitcodeFile(). If this is truly lazy, then we need to eagerly pull 3719 /// in forward-referenced functions from block address references. 3720 /// 3721 /// \param[in] WillMaterializeAll Set to \c true if the caller promises to 3722 /// materialize everything -- in particular, if this isn't truly lazy. 3723 static ErrorOr<Module *> 3724 getLazyBitcodeModuleImpl(std::unique_ptr<MemoryBuffer> &&Buffer, 3725 LLVMContext &Context, bool WillMaterializeAll, 3726 DiagnosticHandlerFunction DiagnosticHandler) { 3727 Module *M = new Module(Buffer->getBufferIdentifier(), Context); 3728 BitcodeReader *R = 3729 new BitcodeReader(Buffer.get(), Context, DiagnosticHandler); 3730 M->setMaterializer(R); 3731 3732 auto cleanupOnError = [&](std::error_code EC) { 3733 R->releaseBuffer(); // Never take ownership on error. 3734 delete M; // Also deletes R. 3735 return EC; 3736 }; 3737 3738 if (std::error_code EC = R->ParseBitcodeInto(M)) 3739 return cleanupOnError(EC); 3740 3741 if (!WillMaterializeAll) 3742 // Resolve forward references from blockaddresses. 3743 if (std::error_code EC = R->materializeForwardReferencedFunctions()) 3744 return cleanupOnError(EC); 3745 3746 Buffer.release(); // The BitcodeReader owns it now. 3747 return M; 3748 } 3749 3750 ErrorOr<Module *> 3751 llvm::getLazyBitcodeModule(std::unique_ptr<MemoryBuffer> &&Buffer, 3752 LLVMContext &Context, 3753 DiagnosticHandlerFunction DiagnosticHandler) { 3754 return getLazyBitcodeModuleImpl(std::move(Buffer), Context, false, 3755 DiagnosticHandler); 3756 } 3757 3758 ErrorOr<std::unique_ptr<Module>> 3759 llvm::getStreamedBitcodeModule(StringRef Name, DataStreamer *Streamer, 3760 LLVMContext &Context, 3761 DiagnosticHandlerFunction DiagnosticHandler) { 3762 std::unique_ptr<Module> M = make_unique<Module>(Name, Context); 3763 BitcodeReader *R = new BitcodeReader(Streamer, Context, DiagnosticHandler); 3764 M->setMaterializer(R); 3765 if (std::error_code EC = R->ParseBitcodeInto(M.get())) 3766 return EC; 3767 return std::move(M); 3768 } 3769 3770 ErrorOr<Module *> 3771 llvm::parseBitcodeFile(MemoryBufferRef Buffer, LLVMContext &Context, 3772 DiagnosticHandlerFunction DiagnosticHandler) { 3773 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 3774 ErrorOr<Module *> ModuleOrErr = getLazyBitcodeModuleImpl( 3775 std::move(Buf), Context, true, DiagnosticHandler); 3776 if (!ModuleOrErr) 3777 return ModuleOrErr; 3778 Module *M = ModuleOrErr.get(); 3779 // Read in the entire module, and destroy the BitcodeReader. 3780 if (std::error_code EC = M->materializeAllPermanently()) { 3781 delete M; 3782 return EC; 3783 } 3784 3785 // TODO: Restore the use-lists to the in-memory state when the bitcode was 3786 // written. We must defer until the Module has been fully materialized. 3787 3788 return M; 3789 } 3790 3791 std::string 3792 llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer, LLVMContext &Context, 3793 DiagnosticHandlerFunction DiagnosticHandler) { 3794 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 3795 auto R = llvm::make_unique<BitcodeReader>(Buf.release(), Context, 3796 DiagnosticHandler); 3797 ErrorOr<std::string> Triple = R->parseTriple(); 3798 if (Triple.getError()) 3799 return ""; 3800 return Triple.get(); 3801 } 3802