1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/Bitcode/BitcodeReader.h" 10 #include "MetadataLoader.h" 11 #include "ValueList.h" 12 #include "llvm/ADT/APFloat.h" 13 #include "llvm/ADT/APInt.h" 14 #include "llvm/ADT/ArrayRef.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/Optional.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallString.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/StringRef.h" 21 #include "llvm/ADT/Triple.h" 22 #include "llvm/ADT/Twine.h" 23 #include "llvm/Bitcode/BitcodeCommon.h" 24 #include "llvm/Bitcode/LLVMBitCodes.h" 25 #include "llvm/Bitstream/BitstreamReader.h" 26 #include "llvm/Config/llvm-config.h" 27 #include "llvm/IR/Argument.h" 28 #include "llvm/IR/Attributes.h" 29 #include "llvm/IR/AutoUpgrade.h" 30 #include "llvm/IR/BasicBlock.h" 31 #include "llvm/IR/CallingConv.h" 32 #include "llvm/IR/Comdat.h" 33 #include "llvm/IR/Constant.h" 34 #include "llvm/IR/Constants.h" 35 #include "llvm/IR/DataLayout.h" 36 #include "llvm/IR/DebugInfo.h" 37 #include "llvm/IR/DebugInfoMetadata.h" 38 #include "llvm/IR/DebugLoc.h" 39 #include "llvm/IR/DerivedTypes.h" 40 #include "llvm/IR/Function.h" 41 #include "llvm/IR/GVMaterializer.h" 42 #include "llvm/IR/GlobalAlias.h" 43 #include "llvm/IR/GlobalIFunc.h" 44 #include "llvm/IR/GlobalObject.h" 45 #include "llvm/IR/GlobalValue.h" 46 #include "llvm/IR/GlobalVariable.h" 47 #include "llvm/IR/InlineAsm.h" 48 #include "llvm/IR/InstIterator.h" 49 #include "llvm/IR/InstrTypes.h" 50 #include "llvm/IR/Instruction.h" 51 #include "llvm/IR/Instructions.h" 52 #include "llvm/IR/Intrinsics.h" 53 #include "llvm/IR/LLVMContext.h" 54 #include "llvm/IR/Metadata.h" 55 #include "llvm/IR/Module.h" 56 #include "llvm/IR/ModuleSummaryIndex.h" 57 #include "llvm/IR/Operator.h" 58 #include "llvm/IR/Type.h" 59 #include "llvm/IR/Value.h" 60 #include "llvm/IR/Verifier.h" 61 #include "llvm/Support/AtomicOrdering.h" 62 #include "llvm/Support/Casting.h" 63 #include "llvm/Support/CommandLine.h" 64 #include "llvm/Support/Compiler.h" 65 #include "llvm/Support/Debug.h" 66 #include "llvm/Support/Error.h" 67 #include "llvm/Support/ErrorHandling.h" 68 #include "llvm/Support/ErrorOr.h" 69 #include "llvm/Support/ManagedStatic.h" 70 #include "llvm/Support/MathExtras.h" 71 #include "llvm/Support/MemoryBuffer.h" 72 #include "llvm/Support/raw_ostream.h" 73 #include <algorithm> 74 #include <cassert> 75 #include <cstddef> 76 #include <cstdint> 77 #include <deque> 78 #include <map> 79 #include <memory> 80 #include <set> 81 #include <string> 82 #include <system_error> 83 #include <tuple> 84 #include <utility> 85 #include <vector> 86 87 using namespace llvm; 88 89 static cl::opt<bool> PrintSummaryGUIDs( 90 "print-summary-global-ids", cl::init(false), cl::Hidden, 91 cl::desc( 92 "Print the global id for each value when reading the module summary")); 93 94 namespace { 95 96 enum { 97 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 98 }; 99 100 } // end anonymous namespace 101 102 static Error error(const Twine &Message) { 103 return make_error<StringError>( 104 Message, make_error_code(BitcodeError::CorruptedBitcode)); 105 } 106 107 static Error hasInvalidBitcodeHeader(BitstreamCursor &Stream) { 108 if (!Stream.canSkipToPos(4)) 109 return createStringError(std::errc::illegal_byte_sequence, 110 "file too small to contain bitcode header"); 111 for (unsigned C : {'B', 'C'}) 112 if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(8)) { 113 if (Res.get() != C) 114 return createStringError(std::errc::illegal_byte_sequence, 115 "file doesn't start with bitcode header"); 116 } else 117 return Res.takeError(); 118 for (unsigned C : {0x0, 0xC, 0xE, 0xD}) 119 if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(4)) { 120 if (Res.get() != C) 121 return createStringError(std::errc::illegal_byte_sequence, 122 "file doesn't start with bitcode header"); 123 } else 124 return Res.takeError(); 125 return Error::success(); 126 } 127 128 static Expected<BitstreamCursor> initStream(MemoryBufferRef Buffer) { 129 const unsigned char *BufPtr = (const unsigned char *)Buffer.getBufferStart(); 130 const unsigned char *BufEnd = BufPtr + Buffer.getBufferSize(); 131 132 if (Buffer.getBufferSize() & 3) 133 return error("Invalid bitcode signature"); 134 135 // If we have a wrapper header, parse it and ignore the non-bc file contents. 136 // The magic number is 0x0B17C0DE stored in little endian. 137 if (isBitcodeWrapper(BufPtr, BufEnd)) 138 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 139 return error("Invalid bitcode wrapper header"); 140 141 BitstreamCursor Stream(ArrayRef<uint8_t>(BufPtr, BufEnd)); 142 if (Error Err = hasInvalidBitcodeHeader(Stream)) 143 return std::move(Err); 144 145 return std::move(Stream); 146 } 147 148 /// Convert a string from a record into an std::string, return true on failure. 149 template <typename StrTy> 150 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx, 151 StrTy &Result) { 152 if (Idx > Record.size()) 153 return true; 154 155 Result.append(Record.begin() + Idx, Record.end()); 156 return false; 157 } 158 159 // Strip all the TBAA attachment for the module. 160 static void stripTBAA(Module *M) { 161 for (auto &F : *M) { 162 if (F.isMaterializable()) 163 continue; 164 for (auto &I : instructions(F)) 165 I.setMetadata(LLVMContext::MD_tbaa, nullptr); 166 } 167 } 168 169 /// Read the "IDENTIFICATION_BLOCK_ID" block, do some basic enforcement on the 170 /// "epoch" encoded in the bitcode, and return the producer name if any. 171 static Expected<std::string> readIdentificationBlock(BitstreamCursor &Stream) { 172 if (Error Err = Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID)) 173 return std::move(Err); 174 175 // Read all the records. 176 SmallVector<uint64_t, 64> Record; 177 178 std::string ProducerIdentification; 179 180 while (true) { 181 BitstreamEntry Entry; 182 if (Error E = Stream.advance().moveInto(Entry)) 183 return std::move(E); 184 185 switch (Entry.Kind) { 186 default: 187 case BitstreamEntry::Error: 188 return error("Malformed block"); 189 case BitstreamEntry::EndBlock: 190 return ProducerIdentification; 191 case BitstreamEntry::Record: 192 // The interesting case. 193 break; 194 } 195 196 // Read a record. 197 Record.clear(); 198 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 199 if (!MaybeBitCode) 200 return MaybeBitCode.takeError(); 201 switch (MaybeBitCode.get()) { 202 default: // Default behavior: reject 203 return error("Invalid value"); 204 case bitc::IDENTIFICATION_CODE_STRING: // IDENTIFICATION: [strchr x N] 205 convertToString(Record, 0, ProducerIdentification); 206 break; 207 case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#] 208 unsigned epoch = (unsigned)Record[0]; 209 if (epoch != bitc::BITCODE_CURRENT_EPOCH) { 210 return error( 211 Twine("Incompatible epoch: Bitcode '") + Twine(epoch) + 212 "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'"); 213 } 214 } 215 } 216 } 217 } 218 219 static Expected<std::string> readIdentificationCode(BitstreamCursor &Stream) { 220 // We expect a number of well-defined blocks, though we don't necessarily 221 // need to understand them all. 222 while (true) { 223 if (Stream.AtEndOfStream()) 224 return ""; 225 226 BitstreamEntry Entry; 227 if (Error E = Stream.advance().moveInto(Entry)) 228 return std::move(E); 229 230 switch (Entry.Kind) { 231 case BitstreamEntry::EndBlock: 232 case BitstreamEntry::Error: 233 return error("Malformed block"); 234 235 case BitstreamEntry::SubBlock: 236 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) 237 return readIdentificationBlock(Stream); 238 239 // Ignore other sub-blocks. 240 if (Error Err = Stream.SkipBlock()) 241 return std::move(Err); 242 continue; 243 case BitstreamEntry::Record: 244 if (Error E = Stream.skipRecord(Entry.ID).takeError()) 245 return std::move(E); 246 continue; 247 } 248 } 249 } 250 251 static Expected<bool> hasObjCCategoryInModule(BitstreamCursor &Stream) { 252 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 253 return std::move(Err); 254 255 SmallVector<uint64_t, 64> Record; 256 // Read all the records for this module. 257 258 while (true) { 259 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 260 if (!MaybeEntry) 261 return MaybeEntry.takeError(); 262 BitstreamEntry Entry = MaybeEntry.get(); 263 264 switch (Entry.Kind) { 265 case BitstreamEntry::SubBlock: // Handled for us already. 266 case BitstreamEntry::Error: 267 return error("Malformed block"); 268 case BitstreamEntry::EndBlock: 269 return false; 270 case BitstreamEntry::Record: 271 // The interesting case. 272 break; 273 } 274 275 // Read a record. 276 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 277 if (!MaybeRecord) 278 return MaybeRecord.takeError(); 279 switch (MaybeRecord.get()) { 280 default: 281 break; // Default behavior, ignore unknown content. 282 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 283 std::string S; 284 if (convertToString(Record, 0, S)) 285 return error("Invalid record"); 286 // Check for the i386 and other (x86_64, ARM) conventions 287 if (S.find("__DATA,__objc_catlist") != std::string::npos || 288 S.find("__OBJC,__category") != std::string::npos) 289 return true; 290 break; 291 } 292 } 293 Record.clear(); 294 } 295 llvm_unreachable("Exit infinite loop"); 296 } 297 298 static Expected<bool> hasObjCCategory(BitstreamCursor &Stream) { 299 // We expect a number of well-defined blocks, though we don't necessarily 300 // need to understand them all. 301 while (true) { 302 BitstreamEntry Entry; 303 if (Error E = Stream.advance().moveInto(Entry)) 304 return std::move(E); 305 306 switch (Entry.Kind) { 307 case BitstreamEntry::Error: 308 return error("Malformed block"); 309 case BitstreamEntry::EndBlock: 310 return false; 311 312 case BitstreamEntry::SubBlock: 313 if (Entry.ID == bitc::MODULE_BLOCK_ID) 314 return hasObjCCategoryInModule(Stream); 315 316 // Ignore other sub-blocks. 317 if (Error Err = Stream.SkipBlock()) 318 return std::move(Err); 319 continue; 320 321 case BitstreamEntry::Record: 322 if (Error E = Stream.skipRecord(Entry.ID).takeError()) 323 return std::move(E); 324 continue; 325 } 326 } 327 } 328 329 static Expected<std::string> readModuleTriple(BitstreamCursor &Stream) { 330 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 331 return std::move(Err); 332 333 SmallVector<uint64_t, 64> Record; 334 335 std::string Triple; 336 337 // Read all the records for this module. 338 while (true) { 339 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 340 if (!MaybeEntry) 341 return MaybeEntry.takeError(); 342 BitstreamEntry Entry = MaybeEntry.get(); 343 344 switch (Entry.Kind) { 345 case BitstreamEntry::SubBlock: // Handled for us already. 346 case BitstreamEntry::Error: 347 return error("Malformed block"); 348 case BitstreamEntry::EndBlock: 349 return Triple; 350 case BitstreamEntry::Record: 351 // The interesting case. 352 break; 353 } 354 355 // Read a record. 356 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 357 if (!MaybeRecord) 358 return MaybeRecord.takeError(); 359 switch (MaybeRecord.get()) { 360 default: break; // Default behavior, ignore unknown content. 361 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 362 std::string S; 363 if (convertToString(Record, 0, S)) 364 return error("Invalid record"); 365 Triple = S; 366 break; 367 } 368 } 369 Record.clear(); 370 } 371 llvm_unreachable("Exit infinite loop"); 372 } 373 374 static Expected<std::string> readTriple(BitstreamCursor &Stream) { 375 // We expect a number of well-defined blocks, though we don't necessarily 376 // need to understand them all. 377 while (true) { 378 Expected<BitstreamEntry> MaybeEntry = Stream.advance(); 379 if (!MaybeEntry) 380 return MaybeEntry.takeError(); 381 BitstreamEntry Entry = MaybeEntry.get(); 382 383 switch (Entry.Kind) { 384 case BitstreamEntry::Error: 385 return error("Malformed block"); 386 case BitstreamEntry::EndBlock: 387 return ""; 388 389 case BitstreamEntry::SubBlock: 390 if (Entry.ID == bitc::MODULE_BLOCK_ID) 391 return readModuleTriple(Stream); 392 393 // Ignore other sub-blocks. 394 if (Error Err = Stream.SkipBlock()) 395 return std::move(Err); 396 continue; 397 398 case BitstreamEntry::Record: 399 if (llvm::Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID)) 400 continue; 401 else 402 return Skipped.takeError(); 403 } 404 } 405 } 406 407 namespace { 408 409 class BitcodeReaderBase { 410 protected: 411 BitcodeReaderBase(BitstreamCursor Stream, StringRef Strtab) 412 : Stream(std::move(Stream)), Strtab(Strtab) { 413 this->Stream.setBlockInfo(&BlockInfo); 414 } 415 416 BitstreamBlockInfo BlockInfo; 417 BitstreamCursor Stream; 418 StringRef Strtab; 419 420 /// In version 2 of the bitcode we store names of global values and comdats in 421 /// a string table rather than in the VST. 422 bool UseStrtab = false; 423 424 Expected<unsigned> parseVersionRecord(ArrayRef<uint64_t> Record); 425 426 /// If this module uses a string table, pop the reference to the string table 427 /// and return the referenced string and the rest of the record. Otherwise 428 /// just return the record itself. 429 std::pair<StringRef, ArrayRef<uint64_t>> 430 readNameFromStrtab(ArrayRef<uint64_t> Record); 431 432 bool readBlockInfo(); 433 434 // Contains an arbitrary and optional string identifying the bitcode producer 435 std::string ProducerIdentification; 436 437 Error error(const Twine &Message); 438 }; 439 440 } // end anonymous namespace 441 442 Error BitcodeReaderBase::error(const Twine &Message) { 443 std::string FullMsg = Message.str(); 444 if (!ProducerIdentification.empty()) 445 FullMsg += " (Producer: '" + ProducerIdentification + "' Reader: 'LLVM " + 446 LLVM_VERSION_STRING "')"; 447 return ::error(FullMsg); 448 } 449 450 Expected<unsigned> 451 BitcodeReaderBase::parseVersionRecord(ArrayRef<uint64_t> Record) { 452 if (Record.empty()) 453 return error("Invalid record"); 454 unsigned ModuleVersion = Record[0]; 455 if (ModuleVersion > 2) 456 return error("Invalid value"); 457 UseStrtab = ModuleVersion >= 2; 458 return ModuleVersion; 459 } 460 461 std::pair<StringRef, ArrayRef<uint64_t>> 462 BitcodeReaderBase::readNameFromStrtab(ArrayRef<uint64_t> Record) { 463 if (!UseStrtab) 464 return {"", Record}; 465 // Invalid reference. Let the caller complain about the record being empty. 466 if (Record[0] + Record[1] > Strtab.size()) 467 return {"", {}}; 468 return {StringRef(Strtab.data() + Record[0], Record[1]), Record.slice(2)}; 469 } 470 471 namespace { 472 473 class BitcodeReader : public BitcodeReaderBase, public GVMaterializer { 474 LLVMContext &Context; 475 Module *TheModule = nullptr; 476 // Next offset to start scanning for lazy parsing of function bodies. 477 uint64_t NextUnreadBit = 0; 478 // Last function offset found in the VST. 479 uint64_t LastFunctionBlockBit = 0; 480 bool SeenValueSymbolTable = false; 481 uint64_t VSTOffset = 0; 482 483 std::vector<std::string> SectionTable; 484 std::vector<std::string> GCTable; 485 486 std::vector<Type*> TypeList; 487 DenseMap<Function *, FunctionType *> FunctionTypes; 488 BitcodeReaderValueList ValueList; 489 Optional<MetadataLoader> MDLoader; 490 std::vector<Comdat *> ComdatList; 491 DenseSet<GlobalObject *> ImplicitComdatObjects; 492 SmallVector<Instruction *, 64> InstructionList; 493 494 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInits; 495 std::vector<std::pair<GlobalValue *, unsigned>> IndirectSymbolInits; 496 497 struct FunctionOperandInfo { 498 Function *F; 499 unsigned PersonalityFn; 500 unsigned Prefix; 501 unsigned Prologue; 502 }; 503 std::vector<FunctionOperandInfo> FunctionOperands; 504 505 /// The set of attributes by index. Index zero in the file is for null, and 506 /// is thus not represented here. As such all indices are off by one. 507 std::vector<AttributeList> MAttributes; 508 509 /// The set of attribute groups. 510 std::map<unsigned, AttributeList> MAttributeGroups; 511 512 /// While parsing a function body, this is a list of the basic blocks for the 513 /// function. 514 std::vector<BasicBlock*> FunctionBBs; 515 516 // When reading the module header, this list is populated with functions that 517 // have bodies later in the file. 518 std::vector<Function*> FunctionsWithBodies; 519 520 // When intrinsic functions are encountered which require upgrading they are 521 // stored here with their replacement function. 522 using UpdatedIntrinsicMap = DenseMap<Function *, Function *>; 523 UpdatedIntrinsicMap UpgradedIntrinsics; 524 // Intrinsics which were remangled because of types rename 525 UpdatedIntrinsicMap RemangledIntrinsics; 526 527 // Several operations happen after the module header has been read, but 528 // before function bodies are processed. This keeps track of whether 529 // we've done this yet. 530 bool SeenFirstFunctionBody = false; 531 532 /// When function bodies are initially scanned, this map contains info about 533 /// where to find deferred function body in the stream. 534 DenseMap<Function*, uint64_t> DeferredFunctionInfo; 535 536 /// When Metadata block is initially scanned when parsing the module, we may 537 /// choose to defer parsing of the metadata. This vector contains info about 538 /// which Metadata blocks are deferred. 539 std::vector<uint64_t> DeferredMetadataInfo; 540 541 /// These are basic blocks forward-referenced by block addresses. They are 542 /// inserted lazily into functions when they're loaded. The basic block ID is 543 /// its index into the vector. 544 DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs; 545 std::deque<Function *> BasicBlockFwdRefQueue; 546 547 /// Indicates that we are using a new encoding for instruction operands where 548 /// most operands in the current FUNCTION_BLOCK are encoded relative to the 549 /// instruction number, for a more compact encoding. Some instruction 550 /// operands are not relative to the instruction ID: basic block numbers, and 551 /// types. Once the old style function blocks have been phased out, we would 552 /// not need this flag. 553 bool UseRelativeIDs = false; 554 555 /// True if all functions will be materialized, negating the need to process 556 /// (e.g.) blockaddress forward references. 557 bool WillMaterializeAllForwardRefs = false; 558 559 bool StripDebugInfo = false; 560 TBAAVerifier TBAAVerifyHelper; 561 562 std::vector<std::string> BundleTags; 563 SmallVector<SyncScope::ID, 8> SSIDs; 564 565 public: 566 BitcodeReader(BitstreamCursor Stream, StringRef Strtab, 567 StringRef ProducerIdentification, LLVMContext &Context); 568 569 Error materializeForwardReferencedFunctions(); 570 571 Error materialize(GlobalValue *GV) override; 572 Error materializeModule() override; 573 std::vector<StructType *> getIdentifiedStructTypes() const override; 574 575 /// Main interface to parsing a bitcode buffer. 576 /// \returns true if an error occurred. 577 Error parseBitcodeInto( 578 Module *M, bool ShouldLazyLoadMetadata = false, bool IsImporting = false, 579 DataLayoutCallbackTy DataLayoutCallback = [](StringRef) { return None; }); 580 581 static uint64_t decodeSignRotatedValue(uint64_t V); 582 583 /// Materialize any deferred Metadata block. 584 Error materializeMetadata() override; 585 586 void setStripDebugInfo() override; 587 588 private: 589 std::vector<StructType *> IdentifiedStructTypes; 590 StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name); 591 StructType *createIdentifiedStructType(LLVMContext &Context); 592 593 Type *getTypeByID(unsigned ID); 594 595 Value *getFnValueByID(unsigned ID, Type *Ty) { 596 if (Ty && Ty->isMetadataTy()) 597 return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID)); 598 return ValueList.getValueFwdRef(ID, Ty); 599 } 600 601 Metadata *getFnMetadataByID(unsigned ID) { 602 return MDLoader->getMetadataFwdRefOrLoad(ID); 603 } 604 605 BasicBlock *getBasicBlock(unsigned ID) const { 606 if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID 607 return FunctionBBs[ID]; 608 } 609 610 AttributeList getAttributes(unsigned i) const { 611 if (i-1 < MAttributes.size()) 612 return MAttributes[i-1]; 613 return AttributeList(); 614 } 615 616 /// Read a value/type pair out of the specified record from slot 'Slot'. 617 /// Increment Slot past the number of slots used in the record. Return true on 618 /// failure. 619 bool getValueTypePair(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 620 unsigned InstNum, Value *&ResVal) { 621 if (Slot == Record.size()) return true; 622 unsigned ValNo = (unsigned)Record[Slot++]; 623 // Adjust the ValNo, if it was encoded relative to the InstNum. 624 if (UseRelativeIDs) 625 ValNo = InstNum - ValNo; 626 if (ValNo < InstNum) { 627 // If this is not a forward reference, just return the value we already 628 // have. 629 ResVal = getFnValueByID(ValNo, nullptr); 630 return ResVal == nullptr; 631 } 632 if (Slot == Record.size()) 633 return true; 634 635 unsigned TypeNo = (unsigned)Record[Slot++]; 636 ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo)); 637 return ResVal == nullptr; 638 } 639 640 /// Read a value out of the specified record from slot 'Slot'. Increment Slot 641 /// past the number of slots used by the value in the record. Return true if 642 /// there is an error. 643 bool popValue(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 644 unsigned InstNum, Type *Ty, Value *&ResVal) { 645 if (getValue(Record, Slot, InstNum, Ty, ResVal)) 646 return true; 647 // All values currently take a single record slot. 648 ++Slot; 649 return false; 650 } 651 652 /// Like popValue, but does not increment the Slot number. 653 bool getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot, 654 unsigned InstNum, Type *Ty, Value *&ResVal) { 655 ResVal = getValue(Record, Slot, InstNum, Ty); 656 return ResVal == nullptr; 657 } 658 659 /// Version of getValue that returns ResVal directly, or 0 if there is an 660 /// error. 661 Value *getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot, 662 unsigned InstNum, Type *Ty) { 663 if (Slot == Record.size()) return nullptr; 664 unsigned ValNo = (unsigned)Record[Slot]; 665 // Adjust the ValNo, if it was encoded relative to the InstNum. 666 if (UseRelativeIDs) 667 ValNo = InstNum - ValNo; 668 return getFnValueByID(ValNo, Ty); 669 } 670 671 /// Like getValue, but decodes signed VBRs. 672 Value *getValueSigned(const SmallVectorImpl<uint64_t> &Record, unsigned Slot, 673 unsigned InstNum, Type *Ty) { 674 if (Slot == Record.size()) return nullptr; 675 unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]); 676 // Adjust the ValNo, if it was encoded relative to the InstNum. 677 if (UseRelativeIDs) 678 ValNo = InstNum - ValNo; 679 return getFnValueByID(ValNo, Ty); 680 } 681 682 /// Upgrades old-style typeless byval/sret/inalloca attributes by adding the 683 /// corresponding argument's pointee type. Also upgrades intrinsics that now 684 /// require an elementtype attribute. 685 void propagateAttributeTypes(CallBase *CB, ArrayRef<Type *> ArgsTys); 686 687 /// Converts alignment exponent (i.e. power of two (or zero)) to the 688 /// corresponding alignment to use. If alignment is too large, returns 689 /// a corresponding error code. 690 Error parseAlignmentValue(uint64_t Exponent, MaybeAlign &Alignment); 691 Error parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind); 692 Error parseModule( 693 uint64_t ResumeBit, bool ShouldLazyLoadMetadata = false, 694 DataLayoutCallbackTy DataLayoutCallback = [](StringRef) { return None; }); 695 696 Error parseComdatRecord(ArrayRef<uint64_t> Record); 697 Error parseGlobalVarRecord(ArrayRef<uint64_t> Record); 698 Error parseFunctionRecord(ArrayRef<uint64_t> Record); 699 Error parseGlobalIndirectSymbolRecord(unsigned BitCode, 700 ArrayRef<uint64_t> Record); 701 702 Error parseAttributeBlock(); 703 Error parseAttributeGroupBlock(); 704 Error parseTypeTable(); 705 Error parseTypeTableBody(); 706 Error parseOperandBundleTags(); 707 Error parseSyncScopeNames(); 708 709 Expected<Value *> recordValue(SmallVectorImpl<uint64_t> &Record, 710 unsigned NameIndex, Triple &TT); 711 void setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, Function *F, 712 ArrayRef<uint64_t> Record); 713 Error parseValueSymbolTable(uint64_t Offset = 0); 714 Error parseGlobalValueSymbolTable(); 715 Error parseConstants(); 716 Error rememberAndSkipFunctionBodies(); 717 Error rememberAndSkipFunctionBody(); 718 /// Save the positions of the Metadata blocks and skip parsing the blocks. 719 Error rememberAndSkipMetadata(); 720 Error typeCheckLoadStoreInst(Type *ValType, Type *PtrType); 721 Error parseFunctionBody(Function *F); 722 Error globalCleanup(); 723 Error resolveGlobalAndIndirectSymbolInits(); 724 Error parseUseLists(); 725 Error findFunctionInStream( 726 Function *F, 727 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator); 728 729 SyncScope::ID getDecodedSyncScopeID(unsigned Val); 730 }; 731 732 /// Class to manage reading and parsing function summary index bitcode 733 /// files/sections. 734 class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase { 735 /// The module index built during parsing. 736 ModuleSummaryIndex &TheIndex; 737 738 /// Indicates whether we have encountered a global value summary section 739 /// yet during parsing. 740 bool SeenGlobalValSummary = false; 741 742 /// Indicates whether we have already parsed the VST, used for error checking. 743 bool SeenValueSymbolTable = false; 744 745 /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record. 746 /// Used to enable on-demand parsing of the VST. 747 uint64_t VSTOffset = 0; 748 749 // Map to save ValueId to ValueInfo association that was recorded in the 750 // ValueSymbolTable. It is used after the VST is parsed to convert 751 // call graph edges read from the function summary from referencing 752 // callees by their ValueId to using the ValueInfo instead, which is how 753 // they are recorded in the summary index being built. 754 // We save a GUID which refers to the same global as the ValueInfo, but 755 // ignoring the linkage, i.e. for values other than local linkage they are 756 // identical. 757 DenseMap<unsigned, std::pair<ValueInfo, GlobalValue::GUID>> 758 ValueIdToValueInfoMap; 759 760 /// Map populated during module path string table parsing, from the 761 /// module ID to a string reference owned by the index's module 762 /// path string table, used to correlate with combined index 763 /// summary records. 764 DenseMap<uint64_t, StringRef> ModuleIdMap; 765 766 /// Original source file name recorded in a bitcode record. 767 std::string SourceFileName; 768 769 /// The string identifier given to this module by the client, normally the 770 /// path to the bitcode file. 771 StringRef ModulePath; 772 773 /// For per-module summary indexes, the unique numerical identifier given to 774 /// this module by the client. 775 unsigned ModuleId; 776 777 public: 778 ModuleSummaryIndexBitcodeReader(BitstreamCursor Stream, StringRef Strtab, 779 ModuleSummaryIndex &TheIndex, 780 StringRef ModulePath, unsigned ModuleId); 781 782 Error parseModule(); 783 784 private: 785 void setValueGUID(uint64_t ValueID, StringRef ValueName, 786 GlobalValue::LinkageTypes Linkage, 787 StringRef SourceFileName); 788 Error parseValueSymbolTable( 789 uint64_t Offset, 790 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap); 791 std::vector<ValueInfo> makeRefList(ArrayRef<uint64_t> Record); 792 std::vector<FunctionSummary::EdgeTy> makeCallList(ArrayRef<uint64_t> Record, 793 bool IsOldProfileFormat, 794 bool HasProfile, 795 bool HasRelBF); 796 Error parseEntireSummary(unsigned ID); 797 Error parseModuleStringTable(); 798 void parseTypeIdCompatibleVtableSummaryRecord(ArrayRef<uint64_t> Record); 799 void parseTypeIdCompatibleVtableInfo(ArrayRef<uint64_t> Record, size_t &Slot, 800 TypeIdCompatibleVtableInfo &TypeId); 801 std::vector<FunctionSummary::ParamAccess> 802 parseParamAccesses(ArrayRef<uint64_t> Record); 803 804 std::pair<ValueInfo, GlobalValue::GUID> 805 getValueInfoFromValueId(unsigned ValueId); 806 807 void addThisModule(); 808 ModuleSummaryIndex::ModuleInfo *getThisModule(); 809 }; 810 811 } // end anonymous namespace 812 813 std::error_code llvm::errorToErrorCodeAndEmitErrors(LLVMContext &Ctx, 814 Error Err) { 815 if (Err) { 816 std::error_code EC; 817 handleAllErrors(std::move(Err), [&](ErrorInfoBase &EIB) { 818 EC = EIB.convertToErrorCode(); 819 Ctx.emitError(EIB.message()); 820 }); 821 return EC; 822 } 823 return std::error_code(); 824 } 825 826 BitcodeReader::BitcodeReader(BitstreamCursor Stream, StringRef Strtab, 827 StringRef ProducerIdentification, 828 LLVMContext &Context) 829 : BitcodeReaderBase(std::move(Stream), Strtab), Context(Context), 830 ValueList(Context, Stream.SizeInBytes()) { 831 this->ProducerIdentification = std::string(ProducerIdentification); 832 } 833 834 Error BitcodeReader::materializeForwardReferencedFunctions() { 835 if (WillMaterializeAllForwardRefs) 836 return Error::success(); 837 838 // Prevent recursion. 839 WillMaterializeAllForwardRefs = true; 840 841 while (!BasicBlockFwdRefQueue.empty()) { 842 Function *F = BasicBlockFwdRefQueue.front(); 843 BasicBlockFwdRefQueue.pop_front(); 844 assert(F && "Expected valid function"); 845 if (!BasicBlockFwdRefs.count(F)) 846 // Already materialized. 847 continue; 848 849 // Check for a function that isn't materializable to prevent an infinite 850 // loop. When parsing a blockaddress stored in a global variable, there 851 // isn't a trivial way to check if a function will have a body without a 852 // linear search through FunctionsWithBodies, so just check it here. 853 if (!F->isMaterializable()) 854 return error("Never resolved function from blockaddress"); 855 856 // Try to materialize F. 857 if (Error Err = materialize(F)) 858 return Err; 859 } 860 assert(BasicBlockFwdRefs.empty() && "Function missing from queue"); 861 862 // Reset state. 863 WillMaterializeAllForwardRefs = false; 864 return Error::success(); 865 } 866 867 //===----------------------------------------------------------------------===// 868 // Helper functions to implement forward reference resolution, etc. 869 //===----------------------------------------------------------------------===// 870 871 static bool hasImplicitComdat(size_t Val) { 872 switch (Val) { 873 default: 874 return false; 875 case 1: // Old WeakAnyLinkage 876 case 4: // Old LinkOnceAnyLinkage 877 case 10: // Old WeakODRLinkage 878 case 11: // Old LinkOnceODRLinkage 879 return true; 880 } 881 } 882 883 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) { 884 switch (Val) { 885 default: // Map unknown/new linkages to external 886 case 0: 887 return GlobalValue::ExternalLinkage; 888 case 2: 889 return GlobalValue::AppendingLinkage; 890 case 3: 891 return GlobalValue::InternalLinkage; 892 case 5: 893 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage 894 case 6: 895 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage 896 case 7: 897 return GlobalValue::ExternalWeakLinkage; 898 case 8: 899 return GlobalValue::CommonLinkage; 900 case 9: 901 return GlobalValue::PrivateLinkage; 902 case 12: 903 return GlobalValue::AvailableExternallyLinkage; 904 case 13: 905 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage 906 case 14: 907 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage 908 case 15: 909 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage 910 case 1: // Old value with implicit comdat. 911 case 16: 912 return GlobalValue::WeakAnyLinkage; 913 case 10: // Old value with implicit comdat. 914 case 17: 915 return GlobalValue::WeakODRLinkage; 916 case 4: // Old value with implicit comdat. 917 case 18: 918 return GlobalValue::LinkOnceAnyLinkage; 919 case 11: // Old value with implicit comdat. 920 case 19: 921 return GlobalValue::LinkOnceODRLinkage; 922 } 923 } 924 925 static FunctionSummary::FFlags getDecodedFFlags(uint64_t RawFlags) { 926 FunctionSummary::FFlags Flags; 927 Flags.ReadNone = RawFlags & 0x1; 928 Flags.ReadOnly = (RawFlags >> 1) & 0x1; 929 Flags.NoRecurse = (RawFlags >> 2) & 0x1; 930 Flags.ReturnDoesNotAlias = (RawFlags >> 3) & 0x1; 931 Flags.NoInline = (RawFlags >> 4) & 0x1; 932 Flags.AlwaysInline = (RawFlags >> 5) & 0x1; 933 Flags.NoUnwind = (RawFlags >> 6) & 0x1; 934 Flags.MayThrow = (RawFlags >> 7) & 0x1; 935 Flags.HasUnknownCall = (RawFlags >> 8) & 0x1; 936 Flags.MustBeUnreachable = (RawFlags >> 9) & 0x1; 937 return Flags; 938 } 939 940 // Decode the flags for GlobalValue in the summary. The bits for each attribute: 941 // 942 // linkage: [0,4), notEligibleToImport: 4, live: 5, local: 6, canAutoHide: 7, 943 // visibility: [8, 10). 944 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags, 945 uint64_t Version) { 946 // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage 947 // like getDecodedLinkage() above. Any future change to the linkage enum and 948 // to getDecodedLinkage() will need to be taken into account here as above. 949 auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits 950 auto Visibility = GlobalValue::VisibilityTypes((RawFlags >> 8) & 3); // 2 bits 951 RawFlags = RawFlags >> 4; 952 bool NotEligibleToImport = (RawFlags & 0x1) || Version < 3; 953 // The Live flag wasn't introduced until version 3. For dead stripping 954 // to work correctly on earlier versions, we must conservatively treat all 955 // values as live. 956 bool Live = (RawFlags & 0x2) || Version < 3; 957 bool Local = (RawFlags & 0x4); 958 bool AutoHide = (RawFlags & 0x8); 959 960 return GlobalValueSummary::GVFlags(Linkage, Visibility, NotEligibleToImport, 961 Live, Local, AutoHide); 962 } 963 964 // Decode the flags for GlobalVariable in the summary 965 static GlobalVarSummary::GVarFlags getDecodedGVarFlags(uint64_t RawFlags) { 966 return GlobalVarSummary::GVarFlags( 967 (RawFlags & 0x1) ? true : false, (RawFlags & 0x2) ? true : false, 968 (RawFlags & 0x4) ? true : false, 969 (GlobalObject::VCallVisibility)(RawFlags >> 3)); 970 } 971 972 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) { 973 switch (Val) { 974 default: // Map unknown visibilities to default. 975 case 0: return GlobalValue::DefaultVisibility; 976 case 1: return GlobalValue::HiddenVisibility; 977 case 2: return GlobalValue::ProtectedVisibility; 978 } 979 } 980 981 static GlobalValue::DLLStorageClassTypes 982 getDecodedDLLStorageClass(unsigned Val) { 983 switch (Val) { 984 default: // Map unknown values to default. 985 case 0: return GlobalValue::DefaultStorageClass; 986 case 1: return GlobalValue::DLLImportStorageClass; 987 case 2: return GlobalValue::DLLExportStorageClass; 988 } 989 } 990 991 static bool getDecodedDSOLocal(unsigned Val) { 992 switch(Val) { 993 default: // Map unknown values to preemptable. 994 case 0: return false; 995 case 1: return true; 996 } 997 } 998 999 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) { 1000 switch (Val) { 1001 case 0: return GlobalVariable::NotThreadLocal; 1002 default: // Map unknown non-zero value to general dynamic. 1003 case 1: return GlobalVariable::GeneralDynamicTLSModel; 1004 case 2: return GlobalVariable::LocalDynamicTLSModel; 1005 case 3: return GlobalVariable::InitialExecTLSModel; 1006 case 4: return GlobalVariable::LocalExecTLSModel; 1007 } 1008 } 1009 1010 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) { 1011 switch (Val) { 1012 default: // Map unknown to UnnamedAddr::None. 1013 case 0: return GlobalVariable::UnnamedAddr::None; 1014 case 1: return GlobalVariable::UnnamedAddr::Global; 1015 case 2: return GlobalVariable::UnnamedAddr::Local; 1016 } 1017 } 1018 1019 static int getDecodedCastOpcode(unsigned Val) { 1020 switch (Val) { 1021 default: return -1; 1022 case bitc::CAST_TRUNC : return Instruction::Trunc; 1023 case bitc::CAST_ZEXT : return Instruction::ZExt; 1024 case bitc::CAST_SEXT : return Instruction::SExt; 1025 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 1026 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 1027 case bitc::CAST_UITOFP : return Instruction::UIToFP; 1028 case bitc::CAST_SITOFP : return Instruction::SIToFP; 1029 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 1030 case bitc::CAST_FPEXT : return Instruction::FPExt; 1031 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 1032 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 1033 case bitc::CAST_BITCAST : return Instruction::BitCast; 1034 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast; 1035 } 1036 } 1037 1038 static int getDecodedUnaryOpcode(unsigned Val, Type *Ty) { 1039 bool IsFP = Ty->isFPOrFPVectorTy(); 1040 // UnOps are only valid for int/fp or vector of int/fp types 1041 if (!IsFP && !Ty->isIntOrIntVectorTy()) 1042 return -1; 1043 1044 switch (Val) { 1045 default: 1046 return -1; 1047 case bitc::UNOP_FNEG: 1048 return IsFP ? Instruction::FNeg : -1; 1049 } 1050 } 1051 1052 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) { 1053 bool IsFP = Ty->isFPOrFPVectorTy(); 1054 // BinOps are only valid for int/fp or vector of int/fp types 1055 if (!IsFP && !Ty->isIntOrIntVectorTy()) 1056 return -1; 1057 1058 switch (Val) { 1059 default: 1060 return -1; 1061 case bitc::BINOP_ADD: 1062 return IsFP ? Instruction::FAdd : Instruction::Add; 1063 case bitc::BINOP_SUB: 1064 return IsFP ? Instruction::FSub : Instruction::Sub; 1065 case bitc::BINOP_MUL: 1066 return IsFP ? Instruction::FMul : Instruction::Mul; 1067 case bitc::BINOP_UDIV: 1068 return IsFP ? -1 : Instruction::UDiv; 1069 case bitc::BINOP_SDIV: 1070 return IsFP ? Instruction::FDiv : Instruction::SDiv; 1071 case bitc::BINOP_UREM: 1072 return IsFP ? -1 : Instruction::URem; 1073 case bitc::BINOP_SREM: 1074 return IsFP ? Instruction::FRem : Instruction::SRem; 1075 case bitc::BINOP_SHL: 1076 return IsFP ? -1 : Instruction::Shl; 1077 case bitc::BINOP_LSHR: 1078 return IsFP ? -1 : Instruction::LShr; 1079 case bitc::BINOP_ASHR: 1080 return IsFP ? -1 : Instruction::AShr; 1081 case bitc::BINOP_AND: 1082 return IsFP ? -1 : Instruction::And; 1083 case bitc::BINOP_OR: 1084 return IsFP ? -1 : Instruction::Or; 1085 case bitc::BINOP_XOR: 1086 return IsFP ? -1 : Instruction::Xor; 1087 } 1088 } 1089 1090 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) { 1091 switch (Val) { 1092 default: return AtomicRMWInst::BAD_BINOP; 1093 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 1094 case bitc::RMW_ADD: return AtomicRMWInst::Add; 1095 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 1096 case bitc::RMW_AND: return AtomicRMWInst::And; 1097 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 1098 case bitc::RMW_OR: return AtomicRMWInst::Or; 1099 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 1100 case bitc::RMW_MAX: return AtomicRMWInst::Max; 1101 case bitc::RMW_MIN: return AtomicRMWInst::Min; 1102 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 1103 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 1104 case bitc::RMW_FADD: return AtomicRMWInst::FAdd; 1105 case bitc::RMW_FSUB: return AtomicRMWInst::FSub; 1106 } 1107 } 1108 1109 static AtomicOrdering getDecodedOrdering(unsigned Val) { 1110 switch (Val) { 1111 case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic; 1112 case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered; 1113 case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic; 1114 case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire; 1115 case bitc::ORDERING_RELEASE: return AtomicOrdering::Release; 1116 case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease; 1117 default: // Map unknown orderings to sequentially-consistent. 1118 case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent; 1119 } 1120 } 1121 1122 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) { 1123 switch (Val) { 1124 default: // Map unknown selection kinds to any. 1125 case bitc::COMDAT_SELECTION_KIND_ANY: 1126 return Comdat::Any; 1127 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH: 1128 return Comdat::ExactMatch; 1129 case bitc::COMDAT_SELECTION_KIND_LARGEST: 1130 return Comdat::Largest; 1131 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES: 1132 return Comdat::NoDeduplicate; 1133 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE: 1134 return Comdat::SameSize; 1135 } 1136 } 1137 1138 static FastMathFlags getDecodedFastMathFlags(unsigned Val) { 1139 FastMathFlags FMF; 1140 if (0 != (Val & bitc::UnsafeAlgebra)) 1141 FMF.setFast(); 1142 if (0 != (Val & bitc::AllowReassoc)) 1143 FMF.setAllowReassoc(); 1144 if (0 != (Val & bitc::NoNaNs)) 1145 FMF.setNoNaNs(); 1146 if (0 != (Val & bitc::NoInfs)) 1147 FMF.setNoInfs(); 1148 if (0 != (Val & bitc::NoSignedZeros)) 1149 FMF.setNoSignedZeros(); 1150 if (0 != (Val & bitc::AllowReciprocal)) 1151 FMF.setAllowReciprocal(); 1152 if (0 != (Val & bitc::AllowContract)) 1153 FMF.setAllowContract(true); 1154 if (0 != (Val & bitc::ApproxFunc)) 1155 FMF.setApproxFunc(); 1156 return FMF; 1157 } 1158 1159 static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) { 1160 switch (Val) { 1161 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break; 1162 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break; 1163 } 1164 } 1165 1166 Type *BitcodeReader::getTypeByID(unsigned ID) { 1167 // The type table size is always specified correctly. 1168 if (ID >= TypeList.size()) 1169 return nullptr; 1170 1171 if (Type *Ty = TypeList[ID]) 1172 return Ty; 1173 1174 // If we have a forward reference, the only possible case is when it is to a 1175 // named struct. Just create a placeholder for now. 1176 return TypeList[ID] = createIdentifiedStructType(Context); 1177 } 1178 1179 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context, 1180 StringRef Name) { 1181 auto *Ret = StructType::create(Context, Name); 1182 IdentifiedStructTypes.push_back(Ret); 1183 return Ret; 1184 } 1185 1186 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) { 1187 auto *Ret = StructType::create(Context); 1188 IdentifiedStructTypes.push_back(Ret); 1189 return Ret; 1190 } 1191 1192 //===----------------------------------------------------------------------===// 1193 // Functions for parsing blocks from the bitcode file 1194 //===----------------------------------------------------------------------===// 1195 1196 static uint64_t getRawAttributeMask(Attribute::AttrKind Val) { 1197 switch (Val) { 1198 case Attribute::EndAttrKinds: 1199 case Attribute::EmptyKey: 1200 case Attribute::TombstoneKey: 1201 llvm_unreachable("Synthetic enumerators which should never get here"); 1202 1203 case Attribute::None: return 0; 1204 case Attribute::ZExt: return 1 << 0; 1205 case Attribute::SExt: return 1 << 1; 1206 case Attribute::NoReturn: return 1 << 2; 1207 case Attribute::InReg: return 1 << 3; 1208 case Attribute::StructRet: return 1 << 4; 1209 case Attribute::NoUnwind: return 1 << 5; 1210 case Attribute::NoAlias: return 1 << 6; 1211 case Attribute::ByVal: return 1 << 7; 1212 case Attribute::Nest: return 1 << 8; 1213 case Attribute::ReadNone: return 1 << 9; 1214 case Attribute::ReadOnly: return 1 << 10; 1215 case Attribute::NoInline: return 1 << 11; 1216 case Attribute::AlwaysInline: return 1 << 12; 1217 case Attribute::OptimizeForSize: return 1 << 13; 1218 case Attribute::StackProtect: return 1 << 14; 1219 case Attribute::StackProtectReq: return 1 << 15; 1220 case Attribute::Alignment: return 31 << 16; 1221 case Attribute::NoCapture: return 1 << 21; 1222 case Attribute::NoRedZone: return 1 << 22; 1223 case Attribute::NoImplicitFloat: return 1 << 23; 1224 case Attribute::Naked: return 1 << 24; 1225 case Attribute::InlineHint: return 1 << 25; 1226 case Attribute::StackAlignment: return 7 << 26; 1227 case Attribute::ReturnsTwice: return 1 << 29; 1228 case Attribute::UWTable: return 1 << 30; 1229 case Attribute::NonLazyBind: return 1U << 31; 1230 case Attribute::SanitizeAddress: return 1ULL << 32; 1231 case Attribute::MinSize: return 1ULL << 33; 1232 case Attribute::NoDuplicate: return 1ULL << 34; 1233 case Attribute::StackProtectStrong: return 1ULL << 35; 1234 case Attribute::SanitizeThread: return 1ULL << 36; 1235 case Attribute::SanitizeMemory: return 1ULL << 37; 1236 case Attribute::NoBuiltin: return 1ULL << 38; 1237 case Attribute::Returned: return 1ULL << 39; 1238 case Attribute::Cold: return 1ULL << 40; 1239 case Attribute::Builtin: return 1ULL << 41; 1240 case Attribute::OptimizeNone: return 1ULL << 42; 1241 case Attribute::InAlloca: return 1ULL << 43; 1242 case Attribute::NonNull: return 1ULL << 44; 1243 case Attribute::JumpTable: return 1ULL << 45; 1244 case Attribute::Convergent: return 1ULL << 46; 1245 case Attribute::SafeStack: return 1ULL << 47; 1246 case Attribute::NoRecurse: return 1ULL << 48; 1247 case Attribute::InaccessibleMemOnly: return 1ULL << 49; 1248 case Attribute::InaccessibleMemOrArgMemOnly: return 1ULL << 50; 1249 case Attribute::SwiftSelf: return 1ULL << 51; 1250 case Attribute::SwiftError: return 1ULL << 52; 1251 case Attribute::WriteOnly: return 1ULL << 53; 1252 case Attribute::Speculatable: return 1ULL << 54; 1253 case Attribute::StrictFP: return 1ULL << 55; 1254 case Attribute::SanitizeHWAddress: return 1ULL << 56; 1255 case Attribute::NoCfCheck: return 1ULL << 57; 1256 case Attribute::OptForFuzzing: return 1ULL << 58; 1257 case Attribute::ShadowCallStack: return 1ULL << 59; 1258 case Attribute::SpeculativeLoadHardening: 1259 return 1ULL << 60; 1260 case Attribute::ImmArg: 1261 return 1ULL << 61; 1262 case Attribute::WillReturn: 1263 return 1ULL << 62; 1264 case Attribute::NoFree: 1265 return 1ULL << 63; 1266 default: 1267 // Other attributes are not supported in the raw format, 1268 // as we ran out of space. 1269 return 0; 1270 } 1271 llvm_unreachable("Unsupported attribute type"); 1272 } 1273 1274 static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) { 1275 if (!Val) return; 1276 1277 for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds; 1278 I = Attribute::AttrKind(I + 1)) { 1279 if (uint64_t A = (Val & getRawAttributeMask(I))) { 1280 if (I == Attribute::Alignment) 1281 B.addAlignmentAttr(1ULL << ((A >> 16) - 1)); 1282 else if (I == Attribute::StackAlignment) 1283 B.addStackAlignmentAttr(1ULL << ((A >> 26)-1)); 1284 else if (Attribute::isTypeAttrKind(I)) 1285 B.addTypeAttr(I, nullptr); // Type will be auto-upgraded. 1286 else 1287 B.addAttribute(I); 1288 } 1289 } 1290 } 1291 1292 /// This fills an AttrBuilder object with the LLVM attributes that have 1293 /// been decoded from the given integer. This function must stay in sync with 1294 /// 'encodeLLVMAttributesForBitcode'. 1295 static void decodeLLVMAttributesForBitcode(AttrBuilder &B, 1296 uint64_t EncodedAttrs) { 1297 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift 1298 // the bits above 31 down by 11 bits. 1299 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; 1300 assert((!Alignment || isPowerOf2_32(Alignment)) && 1301 "Alignment must be a power of two."); 1302 1303 if (Alignment) 1304 B.addAlignmentAttr(Alignment); 1305 addRawAttributeValue(B, ((EncodedAttrs & (0xfffffULL << 32)) >> 11) | 1306 (EncodedAttrs & 0xffff)); 1307 } 1308 1309 Error BitcodeReader::parseAttributeBlock() { 1310 if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 1311 return Err; 1312 1313 if (!MAttributes.empty()) 1314 return error("Invalid multiple blocks"); 1315 1316 SmallVector<uint64_t, 64> Record; 1317 1318 SmallVector<AttributeList, 8> Attrs; 1319 1320 // Read all the records. 1321 while (true) { 1322 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1323 if (!MaybeEntry) 1324 return MaybeEntry.takeError(); 1325 BitstreamEntry Entry = MaybeEntry.get(); 1326 1327 switch (Entry.Kind) { 1328 case BitstreamEntry::SubBlock: // Handled for us already. 1329 case BitstreamEntry::Error: 1330 return error("Malformed block"); 1331 case BitstreamEntry::EndBlock: 1332 return Error::success(); 1333 case BitstreamEntry::Record: 1334 // The interesting case. 1335 break; 1336 } 1337 1338 // Read a record. 1339 Record.clear(); 1340 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1341 if (!MaybeRecord) 1342 return MaybeRecord.takeError(); 1343 switch (MaybeRecord.get()) { 1344 default: // Default behavior: ignore. 1345 break; 1346 case bitc::PARAMATTR_CODE_ENTRY_OLD: // ENTRY: [paramidx0, attr0, ...] 1347 // Deprecated, but still needed to read old bitcode files. 1348 if (Record.size() & 1) 1349 return error("Invalid record"); 1350 1351 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1352 AttrBuilder B; 1353 decodeLLVMAttributesForBitcode(B, Record[i+1]); 1354 Attrs.push_back(AttributeList::get(Context, Record[i], B)); 1355 } 1356 1357 MAttributes.push_back(AttributeList::get(Context, Attrs)); 1358 Attrs.clear(); 1359 break; 1360 case bitc::PARAMATTR_CODE_ENTRY: // ENTRY: [attrgrp0, attrgrp1, ...] 1361 for (unsigned i = 0, e = Record.size(); i != e; ++i) 1362 Attrs.push_back(MAttributeGroups[Record[i]]); 1363 1364 MAttributes.push_back(AttributeList::get(Context, Attrs)); 1365 Attrs.clear(); 1366 break; 1367 } 1368 } 1369 } 1370 1371 // Returns Attribute::None on unrecognized codes. 1372 static Attribute::AttrKind getAttrFromCode(uint64_t Code) { 1373 switch (Code) { 1374 default: 1375 return Attribute::None; 1376 case bitc::ATTR_KIND_ALIGNMENT: 1377 return Attribute::Alignment; 1378 case bitc::ATTR_KIND_ALWAYS_INLINE: 1379 return Attribute::AlwaysInline; 1380 case bitc::ATTR_KIND_ARGMEMONLY: 1381 return Attribute::ArgMemOnly; 1382 case bitc::ATTR_KIND_BUILTIN: 1383 return Attribute::Builtin; 1384 case bitc::ATTR_KIND_BY_VAL: 1385 return Attribute::ByVal; 1386 case bitc::ATTR_KIND_IN_ALLOCA: 1387 return Attribute::InAlloca; 1388 case bitc::ATTR_KIND_COLD: 1389 return Attribute::Cold; 1390 case bitc::ATTR_KIND_CONVERGENT: 1391 return Attribute::Convergent; 1392 case bitc::ATTR_KIND_DISABLE_SANITIZER_INSTRUMENTATION: 1393 return Attribute::DisableSanitizerInstrumentation; 1394 case bitc::ATTR_KIND_ELEMENTTYPE: 1395 return Attribute::ElementType; 1396 case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY: 1397 return Attribute::InaccessibleMemOnly; 1398 case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY: 1399 return Attribute::InaccessibleMemOrArgMemOnly; 1400 case bitc::ATTR_KIND_INLINE_HINT: 1401 return Attribute::InlineHint; 1402 case bitc::ATTR_KIND_IN_REG: 1403 return Attribute::InReg; 1404 case bitc::ATTR_KIND_JUMP_TABLE: 1405 return Attribute::JumpTable; 1406 case bitc::ATTR_KIND_MIN_SIZE: 1407 return Attribute::MinSize; 1408 case bitc::ATTR_KIND_NAKED: 1409 return Attribute::Naked; 1410 case bitc::ATTR_KIND_NEST: 1411 return Attribute::Nest; 1412 case bitc::ATTR_KIND_NO_ALIAS: 1413 return Attribute::NoAlias; 1414 case bitc::ATTR_KIND_NO_BUILTIN: 1415 return Attribute::NoBuiltin; 1416 case bitc::ATTR_KIND_NO_CALLBACK: 1417 return Attribute::NoCallback; 1418 case bitc::ATTR_KIND_NO_CAPTURE: 1419 return Attribute::NoCapture; 1420 case bitc::ATTR_KIND_NO_DUPLICATE: 1421 return Attribute::NoDuplicate; 1422 case bitc::ATTR_KIND_NOFREE: 1423 return Attribute::NoFree; 1424 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: 1425 return Attribute::NoImplicitFloat; 1426 case bitc::ATTR_KIND_NO_INLINE: 1427 return Attribute::NoInline; 1428 case bitc::ATTR_KIND_NO_RECURSE: 1429 return Attribute::NoRecurse; 1430 case bitc::ATTR_KIND_NO_MERGE: 1431 return Attribute::NoMerge; 1432 case bitc::ATTR_KIND_NON_LAZY_BIND: 1433 return Attribute::NonLazyBind; 1434 case bitc::ATTR_KIND_NON_NULL: 1435 return Attribute::NonNull; 1436 case bitc::ATTR_KIND_DEREFERENCEABLE: 1437 return Attribute::Dereferenceable; 1438 case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL: 1439 return Attribute::DereferenceableOrNull; 1440 case bitc::ATTR_KIND_ALLOC_SIZE: 1441 return Attribute::AllocSize; 1442 case bitc::ATTR_KIND_NO_RED_ZONE: 1443 return Attribute::NoRedZone; 1444 case bitc::ATTR_KIND_NO_RETURN: 1445 return Attribute::NoReturn; 1446 case bitc::ATTR_KIND_NOSYNC: 1447 return Attribute::NoSync; 1448 case bitc::ATTR_KIND_NOCF_CHECK: 1449 return Attribute::NoCfCheck; 1450 case bitc::ATTR_KIND_NO_PROFILE: 1451 return Attribute::NoProfile; 1452 case bitc::ATTR_KIND_NO_UNWIND: 1453 return Attribute::NoUnwind; 1454 case bitc::ATTR_KIND_NO_SANITIZE_COVERAGE: 1455 return Attribute::NoSanitizeCoverage; 1456 case bitc::ATTR_KIND_NULL_POINTER_IS_VALID: 1457 return Attribute::NullPointerIsValid; 1458 case bitc::ATTR_KIND_OPT_FOR_FUZZING: 1459 return Attribute::OptForFuzzing; 1460 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: 1461 return Attribute::OptimizeForSize; 1462 case bitc::ATTR_KIND_OPTIMIZE_NONE: 1463 return Attribute::OptimizeNone; 1464 case bitc::ATTR_KIND_READ_NONE: 1465 return Attribute::ReadNone; 1466 case bitc::ATTR_KIND_READ_ONLY: 1467 return Attribute::ReadOnly; 1468 case bitc::ATTR_KIND_RETURNED: 1469 return Attribute::Returned; 1470 case bitc::ATTR_KIND_RETURNS_TWICE: 1471 return Attribute::ReturnsTwice; 1472 case bitc::ATTR_KIND_S_EXT: 1473 return Attribute::SExt; 1474 case bitc::ATTR_KIND_SPECULATABLE: 1475 return Attribute::Speculatable; 1476 case bitc::ATTR_KIND_STACK_ALIGNMENT: 1477 return Attribute::StackAlignment; 1478 case bitc::ATTR_KIND_STACK_PROTECT: 1479 return Attribute::StackProtect; 1480 case bitc::ATTR_KIND_STACK_PROTECT_REQ: 1481 return Attribute::StackProtectReq; 1482 case bitc::ATTR_KIND_STACK_PROTECT_STRONG: 1483 return Attribute::StackProtectStrong; 1484 case bitc::ATTR_KIND_SAFESTACK: 1485 return Attribute::SafeStack; 1486 case bitc::ATTR_KIND_SHADOWCALLSTACK: 1487 return Attribute::ShadowCallStack; 1488 case bitc::ATTR_KIND_STRICT_FP: 1489 return Attribute::StrictFP; 1490 case bitc::ATTR_KIND_STRUCT_RET: 1491 return Attribute::StructRet; 1492 case bitc::ATTR_KIND_SANITIZE_ADDRESS: 1493 return Attribute::SanitizeAddress; 1494 case bitc::ATTR_KIND_SANITIZE_HWADDRESS: 1495 return Attribute::SanitizeHWAddress; 1496 case bitc::ATTR_KIND_SANITIZE_THREAD: 1497 return Attribute::SanitizeThread; 1498 case bitc::ATTR_KIND_SANITIZE_MEMORY: 1499 return Attribute::SanitizeMemory; 1500 case bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING: 1501 return Attribute::SpeculativeLoadHardening; 1502 case bitc::ATTR_KIND_SWIFT_ERROR: 1503 return Attribute::SwiftError; 1504 case bitc::ATTR_KIND_SWIFT_SELF: 1505 return Attribute::SwiftSelf; 1506 case bitc::ATTR_KIND_SWIFT_ASYNC: 1507 return Attribute::SwiftAsync; 1508 case bitc::ATTR_KIND_UW_TABLE: 1509 return Attribute::UWTable; 1510 case bitc::ATTR_KIND_VSCALE_RANGE: 1511 return Attribute::VScaleRange; 1512 case bitc::ATTR_KIND_WILLRETURN: 1513 return Attribute::WillReturn; 1514 case bitc::ATTR_KIND_WRITEONLY: 1515 return Attribute::WriteOnly; 1516 case bitc::ATTR_KIND_Z_EXT: 1517 return Attribute::ZExt; 1518 case bitc::ATTR_KIND_IMMARG: 1519 return Attribute::ImmArg; 1520 case bitc::ATTR_KIND_SANITIZE_MEMTAG: 1521 return Attribute::SanitizeMemTag; 1522 case bitc::ATTR_KIND_PREALLOCATED: 1523 return Attribute::Preallocated; 1524 case bitc::ATTR_KIND_NOUNDEF: 1525 return Attribute::NoUndef; 1526 case bitc::ATTR_KIND_BYREF: 1527 return Attribute::ByRef; 1528 case bitc::ATTR_KIND_MUSTPROGRESS: 1529 return Attribute::MustProgress; 1530 case bitc::ATTR_KIND_HOT: 1531 return Attribute::Hot; 1532 } 1533 } 1534 1535 Error BitcodeReader::parseAlignmentValue(uint64_t Exponent, 1536 MaybeAlign &Alignment) { 1537 // Note: Alignment in bitcode files is incremented by 1, so that zero 1538 // can be used for default alignment. 1539 if (Exponent > Value::MaxAlignmentExponent + 1) 1540 return error("Invalid alignment value"); 1541 Alignment = decodeMaybeAlign(Exponent); 1542 return Error::success(); 1543 } 1544 1545 Error BitcodeReader::parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind) { 1546 *Kind = getAttrFromCode(Code); 1547 if (*Kind == Attribute::None) 1548 return error("Unknown attribute kind (" + Twine(Code) + ")"); 1549 return Error::success(); 1550 } 1551 1552 Error BitcodeReader::parseAttributeGroupBlock() { 1553 if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) 1554 return Err; 1555 1556 if (!MAttributeGroups.empty()) 1557 return error("Invalid multiple blocks"); 1558 1559 SmallVector<uint64_t, 64> Record; 1560 1561 // Read all the records. 1562 while (true) { 1563 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1564 if (!MaybeEntry) 1565 return MaybeEntry.takeError(); 1566 BitstreamEntry Entry = MaybeEntry.get(); 1567 1568 switch (Entry.Kind) { 1569 case BitstreamEntry::SubBlock: // Handled for us already. 1570 case BitstreamEntry::Error: 1571 return error("Malformed block"); 1572 case BitstreamEntry::EndBlock: 1573 return Error::success(); 1574 case BitstreamEntry::Record: 1575 // The interesting case. 1576 break; 1577 } 1578 1579 // Read a record. 1580 Record.clear(); 1581 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1582 if (!MaybeRecord) 1583 return MaybeRecord.takeError(); 1584 switch (MaybeRecord.get()) { 1585 default: // Default behavior: ignore. 1586 break; 1587 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] 1588 if (Record.size() < 3) 1589 return error("Invalid record"); 1590 1591 uint64_t GrpID = Record[0]; 1592 uint64_t Idx = Record[1]; // Index of the object this attribute refers to. 1593 1594 AttrBuilder B; 1595 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1596 if (Record[i] == 0) { // Enum attribute 1597 Attribute::AttrKind Kind; 1598 if (Error Err = parseAttrKind(Record[++i], &Kind)) 1599 return Err; 1600 1601 // Upgrade old-style byval attribute to one with a type, even if it's 1602 // nullptr. We will have to insert the real type when we associate 1603 // this AttributeList with a function. 1604 if (Kind == Attribute::ByVal) 1605 B.addByValAttr(nullptr); 1606 else if (Kind == Attribute::StructRet) 1607 B.addStructRetAttr(nullptr); 1608 else if (Kind == Attribute::InAlloca) 1609 B.addInAllocaAttr(nullptr); 1610 else if (Attribute::isEnumAttrKind(Kind)) 1611 B.addAttribute(Kind); 1612 else 1613 return error("Not an enum attribute"); 1614 } else if (Record[i] == 1) { // Integer attribute 1615 Attribute::AttrKind Kind; 1616 if (Error Err = parseAttrKind(Record[++i], &Kind)) 1617 return Err; 1618 if (!Attribute::isIntAttrKind(Kind)) 1619 return error("Not an int attribute"); 1620 if (Kind == Attribute::Alignment) 1621 B.addAlignmentAttr(Record[++i]); 1622 else if (Kind == Attribute::StackAlignment) 1623 B.addStackAlignmentAttr(Record[++i]); 1624 else if (Kind == Attribute::Dereferenceable) 1625 B.addDereferenceableAttr(Record[++i]); 1626 else if (Kind == Attribute::DereferenceableOrNull) 1627 B.addDereferenceableOrNullAttr(Record[++i]); 1628 else if (Kind == Attribute::AllocSize) 1629 B.addAllocSizeAttrFromRawRepr(Record[++i]); 1630 else if (Kind == Attribute::VScaleRange) 1631 B.addVScaleRangeAttrFromRawRepr(Record[++i]); 1632 } else if (Record[i] == 3 || Record[i] == 4) { // String attribute 1633 bool HasValue = (Record[i++] == 4); 1634 SmallString<64> KindStr; 1635 SmallString<64> ValStr; 1636 1637 while (Record[i] != 0 && i != e) 1638 KindStr += Record[i++]; 1639 assert(Record[i] == 0 && "Kind string not null terminated"); 1640 1641 if (HasValue) { 1642 // Has a value associated with it. 1643 ++i; // Skip the '0' that terminates the "kind" string. 1644 while (Record[i] != 0 && i != e) 1645 ValStr += Record[i++]; 1646 assert(Record[i] == 0 && "Value string not null terminated"); 1647 } 1648 1649 B.addAttribute(KindStr.str(), ValStr.str()); 1650 } else { 1651 assert((Record[i] == 5 || Record[i] == 6) && 1652 "Invalid attribute group entry"); 1653 bool HasType = Record[i] == 6; 1654 Attribute::AttrKind Kind; 1655 if (Error Err = parseAttrKind(Record[++i], &Kind)) 1656 return Err; 1657 if (!Attribute::isTypeAttrKind(Kind)) 1658 return error("Not a type attribute"); 1659 1660 B.addTypeAttr(Kind, HasType ? getTypeByID(Record[++i]) : nullptr); 1661 } 1662 } 1663 1664 UpgradeAttributes(B); 1665 MAttributeGroups[GrpID] = AttributeList::get(Context, Idx, B); 1666 break; 1667 } 1668 } 1669 } 1670 } 1671 1672 Error BitcodeReader::parseTypeTable() { 1673 if (Error Err = Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 1674 return Err; 1675 1676 return parseTypeTableBody(); 1677 } 1678 1679 Error BitcodeReader::parseTypeTableBody() { 1680 if (!TypeList.empty()) 1681 return error("Invalid multiple blocks"); 1682 1683 SmallVector<uint64_t, 64> Record; 1684 unsigned NumRecords = 0; 1685 1686 SmallString<64> TypeName; 1687 1688 // Read all the records for this type table. 1689 while (true) { 1690 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1691 if (!MaybeEntry) 1692 return MaybeEntry.takeError(); 1693 BitstreamEntry Entry = MaybeEntry.get(); 1694 1695 switch (Entry.Kind) { 1696 case BitstreamEntry::SubBlock: // Handled for us already. 1697 case BitstreamEntry::Error: 1698 return error("Malformed block"); 1699 case BitstreamEntry::EndBlock: 1700 if (NumRecords != TypeList.size()) 1701 return error("Malformed block"); 1702 return Error::success(); 1703 case BitstreamEntry::Record: 1704 // The interesting case. 1705 break; 1706 } 1707 1708 // Read a record. 1709 Record.clear(); 1710 Type *ResultTy = nullptr; 1711 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1712 if (!MaybeRecord) 1713 return MaybeRecord.takeError(); 1714 switch (MaybeRecord.get()) { 1715 default: 1716 return error("Invalid value"); 1717 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 1718 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 1719 // type list. This allows us to reserve space. 1720 if (Record.empty()) 1721 return error("Invalid record"); 1722 TypeList.resize(Record[0]); 1723 continue; 1724 case bitc::TYPE_CODE_VOID: // VOID 1725 ResultTy = Type::getVoidTy(Context); 1726 break; 1727 case bitc::TYPE_CODE_HALF: // HALF 1728 ResultTy = Type::getHalfTy(Context); 1729 break; 1730 case bitc::TYPE_CODE_BFLOAT: // BFLOAT 1731 ResultTy = Type::getBFloatTy(Context); 1732 break; 1733 case bitc::TYPE_CODE_FLOAT: // FLOAT 1734 ResultTy = Type::getFloatTy(Context); 1735 break; 1736 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 1737 ResultTy = Type::getDoubleTy(Context); 1738 break; 1739 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 1740 ResultTy = Type::getX86_FP80Ty(Context); 1741 break; 1742 case bitc::TYPE_CODE_FP128: // FP128 1743 ResultTy = Type::getFP128Ty(Context); 1744 break; 1745 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 1746 ResultTy = Type::getPPC_FP128Ty(Context); 1747 break; 1748 case bitc::TYPE_CODE_LABEL: // LABEL 1749 ResultTy = Type::getLabelTy(Context); 1750 break; 1751 case bitc::TYPE_CODE_METADATA: // METADATA 1752 ResultTy = Type::getMetadataTy(Context); 1753 break; 1754 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 1755 ResultTy = Type::getX86_MMXTy(Context); 1756 break; 1757 case bitc::TYPE_CODE_X86_AMX: // X86_AMX 1758 ResultTy = Type::getX86_AMXTy(Context); 1759 break; 1760 case bitc::TYPE_CODE_TOKEN: // TOKEN 1761 ResultTy = Type::getTokenTy(Context); 1762 break; 1763 case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width] 1764 if (Record.empty()) 1765 return error("Invalid record"); 1766 1767 uint64_t NumBits = Record[0]; 1768 if (NumBits < IntegerType::MIN_INT_BITS || 1769 NumBits > IntegerType::MAX_INT_BITS) 1770 return error("Bitwidth for integer type out of range"); 1771 ResultTy = IntegerType::get(Context, NumBits); 1772 break; 1773 } 1774 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 1775 // [pointee type, address space] 1776 if (Record.empty()) 1777 return error("Invalid record"); 1778 unsigned AddressSpace = 0; 1779 if (Record.size() == 2) 1780 AddressSpace = Record[1]; 1781 ResultTy = getTypeByID(Record[0]); 1782 if (!ResultTy || 1783 !PointerType::isValidElementType(ResultTy)) 1784 return error("Invalid type"); 1785 ResultTy = PointerType::get(ResultTy, AddressSpace); 1786 break; 1787 } 1788 case bitc::TYPE_CODE_OPAQUE_POINTER: { // OPAQUE_POINTER: [addrspace] 1789 if (Record.size() != 1) 1790 return error("Invalid record"); 1791 if (Context.supportsTypedPointers()) 1792 return error( 1793 "Opaque pointers are only supported in -opaque-pointers mode"); 1794 unsigned AddressSpace = Record[0]; 1795 ResultTy = PointerType::get(Context, AddressSpace); 1796 break; 1797 } 1798 case bitc::TYPE_CODE_FUNCTION_OLD: { 1799 // Deprecated, but still needed to read old bitcode files. 1800 // FUNCTION: [vararg, attrid, retty, paramty x N] 1801 if (Record.size() < 3) 1802 return error("Invalid record"); 1803 SmallVector<Type*, 8> ArgTys; 1804 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 1805 if (Type *T = getTypeByID(Record[i])) 1806 ArgTys.push_back(T); 1807 else 1808 break; 1809 } 1810 1811 ResultTy = getTypeByID(Record[2]); 1812 if (!ResultTy || ArgTys.size() < Record.size()-3) 1813 return error("Invalid type"); 1814 1815 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1816 break; 1817 } 1818 case bitc::TYPE_CODE_FUNCTION: { 1819 // FUNCTION: [vararg, retty, paramty x N] 1820 if (Record.size() < 2) 1821 return error("Invalid record"); 1822 SmallVector<Type*, 8> ArgTys; 1823 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1824 if (Type *T = getTypeByID(Record[i])) { 1825 if (!FunctionType::isValidArgumentType(T)) 1826 return error("Invalid function argument type"); 1827 ArgTys.push_back(T); 1828 } 1829 else 1830 break; 1831 } 1832 1833 ResultTy = getTypeByID(Record[1]); 1834 if (!ResultTy || ArgTys.size() < Record.size()-2) 1835 return error("Invalid type"); 1836 1837 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1838 break; 1839 } 1840 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 1841 if (Record.empty()) 1842 return error("Invalid record"); 1843 SmallVector<Type*, 8> EltTys; 1844 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1845 if (Type *T = getTypeByID(Record[i])) 1846 EltTys.push_back(T); 1847 else 1848 break; 1849 } 1850 if (EltTys.size() != Record.size()-1) 1851 return error("Invalid type"); 1852 ResultTy = StructType::get(Context, EltTys, Record[0]); 1853 break; 1854 } 1855 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 1856 if (convertToString(Record, 0, TypeName)) 1857 return error("Invalid record"); 1858 continue; 1859 1860 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 1861 if (Record.empty()) 1862 return error("Invalid record"); 1863 1864 if (NumRecords >= TypeList.size()) 1865 return error("Invalid TYPE table"); 1866 1867 // Check to see if this was forward referenced, if so fill in the temp. 1868 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1869 if (Res) { 1870 Res->setName(TypeName); 1871 TypeList[NumRecords] = nullptr; 1872 } else // Otherwise, create a new struct. 1873 Res = createIdentifiedStructType(Context, TypeName); 1874 TypeName.clear(); 1875 1876 SmallVector<Type*, 8> EltTys; 1877 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1878 if (Type *T = getTypeByID(Record[i])) 1879 EltTys.push_back(T); 1880 else 1881 break; 1882 } 1883 if (EltTys.size() != Record.size()-1) 1884 return error("Invalid record"); 1885 Res->setBody(EltTys, Record[0]); 1886 ResultTy = Res; 1887 break; 1888 } 1889 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 1890 if (Record.size() != 1) 1891 return error("Invalid record"); 1892 1893 if (NumRecords >= TypeList.size()) 1894 return error("Invalid TYPE table"); 1895 1896 // Check to see if this was forward referenced, if so fill in the temp. 1897 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1898 if (Res) { 1899 Res->setName(TypeName); 1900 TypeList[NumRecords] = nullptr; 1901 } else // Otherwise, create a new struct with no body. 1902 Res = createIdentifiedStructType(Context, TypeName); 1903 TypeName.clear(); 1904 ResultTy = Res; 1905 break; 1906 } 1907 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 1908 if (Record.size() < 2) 1909 return error("Invalid record"); 1910 ResultTy = getTypeByID(Record[1]); 1911 if (!ResultTy || !ArrayType::isValidElementType(ResultTy)) 1912 return error("Invalid type"); 1913 ResultTy = ArrayType::get(ResultTy, Record[0]); 1914 break; 1915 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] or 1916 // [numelts, eltty, scalable] 1917 if (Record.size() < 2) 1918 return error("Invalid record"); 1919 if (Record[0] == 0) 1920 return error("Invalid vector length"); 1921 ResultTy = getTypeByID(Record[1]); 1922 if (!ResultTy || !VectorType::isValidElementType(ResultTy)) 1923 return error("Invalid type"); 1924 bool Scalable = Record.size() > 2 ? Record[2] : false; 1925 ResultTy = VectorType::get(ResultTy, Record[0], Scalable); 1926 break; 1927 } 1928 1929 if (NumRecords >= TypeList.size()) 1930 return error("Invalid TYPE table"); 1931 if (TypeList[NumRecords]) 1932 return error( 1933 "Invalid TYPE table: Only named structs can be forward referenced"); 1934 assert(ResultTy && "Didn't read a type?"); 1935 TypeList[NumRecords++] = ResultTy; 1936 } 1937 } 1938 1939 Error BitcodeReader::parseOperandBundleTags() { 1940 if (Error Err = Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID)) 1941 return Err; 1942 1943 if (!BundleTags.empty()) 1944 return error("Invalid multiple blocks"); 1945 1946 SmallVector<uint64_t, 64> Record; 1947 1948 while (true) { 1949 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1950 if (!MaybeEntry) 1951 return MaybeEntry.takeError(); 1952 BitstreamEntry Entry = MaybeEntry.get(); 1953 1954 switch (Entry.Kind) { 1955 case BitstreamEntry::SubBlock: // Handled for us already. 1956 case BitstreamEntry::Error: 1957 return error("Malformed block"); 1958 case BitstreamEntry::EndBlock: 1959 return Error::success(); 1960 case BitstreamEntry::Record: 1961 // The interesting case. 1962 break; 1963 } 1964 1965 // Tags are implicitly mapped to integers by their order. 1966 1967 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1968 if (!MaybeRecord) 1969 return MaybeRecord.takeError(); 1970 if (MaybeRecord.get() != bitc::OPERAND_BUNDLE_TAG) 1971 return error("Invalid record"); 1972 1973 // OPERAND_BUNDLE_TAG: [strchr x N] 1974 BundleTags.emplace_back(); 1975 if (convertToString(Record, 0, BundleTags.back())) 1976 return error("Invalid record"); 1977 Record.clear(); 1978 } 1979 } 1980 1981 Error BitcodeReader::parseSyncScopeNames() { 1982 if (Error Err = Stream.EnterSubBlock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID)) 1983 return Err; 1984 1985 if (!SSIDs.empty()) 1986 return error("Invalid multiple synchronization scope names blocks"); 1987 1988 SmallVector<uint64_t, 64> Record; 1989 while (true) { 1990 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1991 if (!MaybeEntry) 1992 return MaybeEntry.takeError(); 1993 BitstreamEntry Entry = MaybeEntry.get(); 1994 1995 switch (Entry.Kind) { 1996 case BitstreamEntry::SubBlock: // Handled for us already. 1997 case BitstreamEntry::Error: 1998 return error("Malformed block"); 1999 case BitstreamEntry::EndBlock: 2000 if (SSIDs.empty()) 2001 return error("Invalid empty synchronization scope names block"); 2002 return Error::success(); 2003 case BitstreamEntry::Record: 2004 // The interesting case. 2005 break; 2006 } 2007 2008 // Synchronization scope names are implicitly mapped to synchronization 2009 // scope IDs by their order. 2010 2011 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2012 if (!MaybeRecord) 2013 return MaybeRecord.takeError(); 2014 if (MaybeRecord.get() != bitc::SYNC_SCOPE_NAME) 2015 return error("Invalid record"); 2016 2017 SmallString<16> SSN; 2018 if (convertToString(Record, 0, SSN)) 2019 return error("Invalid record"); 2020 2021 SSIDs.push_back(Context.getOrInsertSyncScopeID(SSN)); 2022 Record.clear(); 2023 } 2024 } 2025 2026 /// Associate a value with its name from the given index in the provided record. 2027 Expected<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record, 2028 unsigned NameIndex, Triple &TT) { 2029 SmallString<128> ValueName; 2030 if (convertToString(Record, NameIndex, ValueName)) 2031 return error("Invalid record"); 2032 unsigned ValueID = Record[0]; 2033 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 2034 return error("Invalid record"); 2035 Value *V = ValueList[ValueID]; 2036 2037 StringRef NameStr(ValueName.data(), ValueName.size()); 2038 if (NameStr.find_first_of(0) != StringRef::npos) 2039 return error("Invalid value name"); 2040 V->setName(NameStr); 2041 auto *GO = dyn_cast<GlobalObject>(V); 2042 if (GO && ImplicitComdatObjects.contains(GO) && TT.supportsCOMDAT()) 2043 GO->setComdat(TheModule->getOrInsertComdat(V->getName())); 2044 return V; 2045 } 2046 2047 /// Helper to note and return the current location, and jump to the given 2048 /// offset. 2049 static Expected<uint64_t> jumpToValueSymbolTable(uint64_t Offset, 2050 BitstreamCursor &Stream) { 2051 // Save the current parsing location so we can jump back at the end 2052 // of the VST read. 2053 uint64_t CurrentBit = Stream.GetCurrentBitNo(); 2054 if (Error JumpFailed = Stream.JumpToBit(Offset * 32)) 2055 return std::move(JumpFailed); 2056 Expected<BitstreamEntry> MaybeEntry = Stream.advance(); 2057 if (!MaybeEntry) 2058 return MaybeEntry.takeError(); 2059 assert(MaybeEntry.get().Kind == BitstreamEntry::SubBlock); 2060 assert(MaybeEntry.get().ID == bitc::VALUE_SYMTAB_BLOCK_ID); 2061 return CurrentBit; 2062 } 2063 2064 void BitcodeReader::setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, 2065 Function *F, 2066 ArrayRef<uint64_t> Record) { 2067 // Note that we subtract 1 here because the offset is relative to one word 2068 // before the start of the identification or module block, which was 2069 // historically always the start of the regular bitcode header. 2070 uint64_t FuncWordOffset = Record[1] - 1; 2071 uint64_t FuncBitOffset = FuncWordOffset * 32; 2072 DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta; 2073 // Set the LastFunctionBlockBit to point to the last function block. 2074 // Later when parsing is resumed after function materialization, 2075 // we can simply skip that last function block. 2076 if (FuncBitOffset > LastFunctionBlockBit) 2077 LastFunctionBlockBit = FuncBitOffset; 2078 } 2079 2080 /// Read a new-style GlobalValue symbol table. 2081 Error BitcodeReader::parseGlobalValueSymbolTable() { 2082 unsigned FuncBitcodeOffsetDelta = 2083 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 2084 2085 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 2086 return Err; 2087 2088 SmallVector<uint64_t, 64> Record; 2089 while (true) { 2090 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2091 if (!MaybeEntry) 2092 return MaybeEntry.takeError(); 2093 BitstreamEntry Entry = MaybeEntry.get(); 2094 2095 switch (Entry.Kind) { 2096 case BitstreamEntry::SubBlock: 2097 case BitstreamEntry::Error: 2098 return error("Malformed block"); 2099 case BitstreamEntry::EndBlock: 2100 return Error::success(); 2101 case BitstreamEntry::Record: 2102 break; 2103 } 2104 2105 Record.clear(); 2106 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2107 if (!MaybeRecord) 2108 return MaybeRecord.takeError(); 2109 switch (MaybeRecord.get()) { 2110 case bitc::VST_CODE_FNENTRY: // [valueid, offset] 2111 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, 2112 cast<Function>(ValueList[Record[0]]), Record); 2113 break; 2114 } 2115 } 2116 } 2117 2118 /// Parse the value symbol table at either the current parsing location or 2119 /// at the given bit offset if provided. 2120 Error BitcodeReader::parseValueSymbolTable(uint64_t Offset) { 2121 uint64_t CurrentBit; 2122 // Pass in the Offset to distinguish between calling for the module-level 2123 // VST (where we want to jump to the VST offset) and the function-level 2124 // VST (where we don't). 2125 if (Offset > 0) { 2126 Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream); 2127 if (!MaybeCurrentBit) 2128 return MaybeCurrentBit.takeError(); 2129 CurrentBit = MaybeCurrentBit.get(); 2130 // If this module uses a string table, read this as a module-level VST. 2131 if (UseStrtab) { 2132 if (Error Err = parseGlobalValueSymbolTable()) 2133 return Err; 2134 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 2135 return JumpFailed; 2136 return Error::success(); 2137 } 2138 // Otherwise, the VST will be in a similar format to a function-level VST, 2139 // and will contain symbol names. 2140 } 2141 2142 // Compute the delta between the bitcode indices in the VST (the word offset 2143 // to the word-aligned ENTER_SUBBLOCK for the function block, and that 2144 // expected by the lazy reader. The reader's EnterSubBlock expects to have 2145 // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID 2146 // (size BlockIDWidth). Note that we access the stream's AbbrevID width here 2147 // just before entering the VST subblock because: 1) the EnterSubBlock 2148 // changes the AbbrevID width; 2) the VST block is nested within the same 2149 // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same 2150 // AbbrevID width before calling EnterSubBlock; and 3) when we want to 2151 // jump to the FUNCTION_BLOCK using this offset later, we don't want 2152 // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK. 2153 unsigned FuncBitcodeOffsetDelta = 2154 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 2155 2156 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 2157 return Err; 2158 2159 SmallVector<uint64_t, 64> Record; 2160 2161 Triple TT(TheModule->getTargetTriple()); 2162 2163 // Read all the records for this value table. 2164 SmallString<128> ValueName; 2165 2166 while (true) { 2167 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2168 if (!MaybeEntry) 2169 return MaybeEntry.takeError(); 2170 BitstreamEntry Entry = MaybeEntry.get(); 2171 2172 switch (Entry.Kind) { 2173 case BitstreamEntry::SubBlock: // Handled for us already. 2174 case BitstreamEntry::Error: 2175 return error("Malformed block"); 2176 case BitstreamEntry::EndBlock: 2177 if (Offset > 0) 2178 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 2179 return JumpFailed; 2180 return Error::success(); 2181 case BitstreamEntry::Record: 2182 // The interesting case. 2183 break; 2184 } 2185 2186 // Read a record. 2187 Record.clear(); 2188 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2189 if (!MaybeRecord) 2190 return MaybeRecord.takeError(); 2191 switch (MaybeRecord.get()) { 2192 default: // Default behavior: unknown type. 2193 break; 2194 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 2195 Expected<Value *> ValOrErr = recordValue(Record, 1, TT); 2196 if (Error Err = ValOrErr.takeError()) 2197 return Err; 2198 ValOrErr.get(); 2199 break; 2200 } 2201 case bitc::VST_CODE_FNENTRY: { 2202 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 2203 Expected<Value *> ValOrErr = recordValue(Record, 2, TT); 2204 if (Error Err = ValOrErr.takeError()) 2205 return Err; 2206 Value *V = ValOrErr.get(); 2207 2208 // Ignore function offsets emitted for aliases of functions in older 2209 // versions of LLVM. 2210 if (auto *F = dyn_cast<Function>(V)) 2211 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, F, Record); 2212 break; 2213 } 2214 case bitc::VST_CODE_BBENTRY: { 2215 if (convertToString(Record, 1, ValueName)) 2216 return error("Invalid record"); 2217 BasicBlock *BB = getBasicBlock(Record[0]); 2218 if (!BB) 2219 return error("Invalid record"); 2220 2221 BB->setName(StringRef(ValueName.data(), ValueName.size())); 2222 ValueName.clear(); 2223 break; 2224 } 2225 } 2226 } 2227 } 2228 2229 /// Decode a signed value stored with the sign bit in the LSB for dense VBR 2230 /// encoding. 2231 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { 2232 if ((V & 1) == 0) 2233 return V >> 1; 2234 if (V != 1) 2235 return -(V >> 1); 2236 // There is no such thing as -0 with integers. "-0" really means MININT. 2237 return 1ULL << 63; 2238 } 2239 2240 /// Resolve all of the initializers for global values and aliases that we can. 2241 Error BitcodeReader::resolveGlobalAndIndirectSymbolInits() { 2242 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInitWorklist; 2243 std::vector<std::pair<GlobalValue *, unsigned>> IndirectSymbolInitWorklist; 2244 std::vector<FunctionOperandInfo> FunctionOperandWorklist; 2245 2246 GlobalInitWorklist.swap(GlobalInits); 2247 IndirectSymbolInitWorklist.swap(IndirectSymbolInits); 2248 FunctionOperandWorklist.swap(FunctionOperands); 2249 2250 while (!GlobalInitWorklist.empty()) { 2251 unsigned ValID = GlobalInitWorklist.back().second; 2252 if (ValID >= ValueList.size()) { 2253 // Not ready to resolve this yet, it requires something later in the file. 2254 GlobalInits.push_back(GlobalInitWorklist.back()); 2255 } else { 2256 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2257 GlobalInitWorklist.back().first->setInitializer(C); 2258 else 2259 return error("Expected a constant"); 2260 } 2261 GlobalInitWorklist.pop_back(); 2262 } 2263 2264 while (!IndirectSymbolInitWorklist.empty()) { 2265 unsigned ValID = IndirectSymbolInitWorklist.back().second; 2266 if (ValID >= ValueList.size()) { 2267 IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back()); 2268 } else { 2269 Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]); 2270 if (!C) 2271 return error("Expected a constant"); 2272 GlobalValue *GV = IndirectSymbolInitWorklist.back().first; 2273 if (auto *GA = dyn_cast<GlobalAlias>(GV)) { 2274 if (C->getType() != GV->getType()) 2275 return error("Alias and aliasee types don't match"); 2276 GA->setAliasee(C); 2277 } else if (auto *GI = dyn_cast<GlobalIFunc>(GV)) { 2278 Type *ResolverFTy = 2279 GlobalIFunc::getResolverFunctionType(GI->getValueType()); 2280 // Transparently fix up the type for compatiblity with older bitcode 2281 GI->setResolver( 2282 ConstantExpr::getBitCast(C, ResolverFTy->getPointerTo())); 2283 } else { 2284 return error("Expected an alias or an ifunc"); 2285 } 2286 } 2287 IndirectSymbolInitWorklist.pop_back(); 2288 } 2289 2290 while (!FunctionOperandWorklist.empty()) { 2291 FunctionOperandInfo &Info = FunctionOperandWorklist.back(); 2292 if (Info.PersonalityFn) { 2293 unsigned ValID = Info.PersonalityFn - 1; 2294 if (ValID < ValueList.size()) { 2295 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2296 Info.F->setPersonalityFn(C); 2297 else 2298 return error("Expected a constant"); 2299 Info.PersonalityFn = 0; 2300 } 2301 } 2302 if (Info.Prefix) { 2303 unsigned ValID = Info.Prefix - 1; 2304 if (ValID < ValueList.size()) { 2305 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2306 Info.F->setPrefixData(C); 2307 else 2308 return error("Expected a constant"); 2309 Info.Prefix = 0; 2310 } 2311 } 2312 if (Info.Prologue) { 2313 unsigned ValID = Info.Prologue - 1; 2314 if (ValID < ValueList.size()) { 2315 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2316 Info.F->setPrologueData(C); 2317 else 2318 return error("Expected a constant"); 2319 Info.Prologue = 0; 2320 } 2321 } 2322 if (Info.PersonalityFn || Info.Prefix || Info.Prologue) 2323 FunctionOperands.push_back(Info); 2324 FunctionOperandWorklist.pop_back(); 2325 } 2326 2327 return Error::success(); 2328 } 2329 2330 APInt llvm::readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { 2331 SmallVector<uint64_t, 8> Words(Vals.size()); 2332 transform(Vals, Words.begin(), 2333 BitcodeReader::decodeSignRotatedValue); 2334 2335 return APInt(TypeBits, Words); 2336 } 2337 2338 Error BitcodeReader::parseConstants() { 2339 if (Error Err = Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 2340 return Err; 2341 2342 SmallVector<uint64_t, 64> Record; 2343 2344 // Read all the records for this value table. 2345 Type *CurTy = Type::getInt32Ty(Context); 2346 unsigned NextCstNo = ValueList.size(); 2347 2348 struct DelayedShufTy { 2349 VectorType *OpTy; 2350 VectorType *RTy; 2351 uint64_t Op0Idx; 2352 uint64_t Op1Idx; 2353 uint64_t Op2Idx; 2354 unsigned CstNo; 2355 }; 2356 std::vector<DelayedShufTy> DelayedShuffles; 2357 struct DelayedSelTy { 2358 Type *OpTy; 2359 uint64_t Op0Idx; 2360 uint64_t Op1Idx; 2361 uint64_t Op2Idx; 2362 unsigned CstNo; 2363 }; 2364 std::vector<DelayedSelTy> DelayedSelectors; 2365 2366 while (true) { 2367 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2368 if (!MaybeEntry) 2369 return MaybeEntry.takeError(); 2370 BitstreamEntry Entry = MaybeEntry.get(); 2371 2372 switch (Entry.Kind) { 2373 case BitstreamEntry::SubBlock: // Handled for us already. 2374 case BitstreamEntry::Error: 2375 return error("Malformed block"); 2376 case BitstreamEntry::EndBlock: 2377 // Once all the constants have been read, go through and resolve forward 2378 // references. 2379 // 2380 // We have to treat shuffles specially because they don't have three 2381 // operands anymore. We need to convert the shuffle mask into an array, 2382 // and we can't convert a forward reference. 2383 for (auto &DelayedShuffle : DelayedShuffles) { 2384 VectorType *OpTy = DelayedShuffle.OpTy; 2385 VectorType *RTy = DelayedShuffle.RTy; 2386 uint64_t Op0Idx = DelayedShuffle.Op0Idx; 2387 uint64_t Op1Idx = DelayedShuffle.Op1Idx; 2388 uint64_t Op2Idx = DelayedShuffle.Op2Idx; 2389 uint64_t CstNo = DelayedShuffle.CstNo; 2390 Constant *Op0 = ValueList.getConstantFwdRef(Op0Idx, OpTy); 2391 Constant *Op1 = ValueList.getConstantFwdRef(Op1Idx, OpTy); 2392 Type *ShufTy = 2393 VectorType::get(Type::getInt32Ty(Context), RTy->getElementCount()); 2394 Constant *Op2 = ValueList.getConstantFwdRef(Op2Idx, ShufTy); 2395 if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2)) 2396 return error("Invalid shufflevector operands"); 2397 SmallVector<int, 16> Mask; 2398 ShuffleVectorInst::getShuffleMask(Op2, Mask); 2399 Value *V = ConstantExpr::getShuffleVector(Op0, Op1, Mask); 2400 ValueList.assignValue(V, CstNo); 2401 } 2402 for (auto &DelayedSelector : DelayedSelectors) { 2403 Type *OpTy = DelayedSelector.OpTy; 2404 Type *SelectorTy = Type::getInt1Ty(Context); 2405 uint64_t Op0Idx = DelayedSelector.Op0Idx; 2406 uint64_t Op1Idx = DelayedSelector.Op1Idx; 2407 uint64_t Op2Idx = DelayedSelector.Op2Idx; 2408 uint64_t CstNo = DelayedSelector.CstNo; 2409 Constant *Op1 = ValueList.getConstantFwdRef(Op1Idx, OpTy); 2410 Constant *Op2 = ValueList.getConstantFwdRef(Op2Idx, OpTy); 2411 // The selector might be an i1 or an <n x i1> 2412 // Get the type from the ValueList before getting a forward ref. 2413 if (VectorType *VTy = dyn_cast<VectorType>(OpTy)) { 2414 Value *V = ValueList[Op0Idx]; 2415 assert(V); 2416 if (SelectorTy != V->getType()) 2417 SelectorTy = VectorType::get(SelectorTy, VTy->getElementCount()); 2418 } 2419 Constant *Op0 = ValueList.getConstantFwdRef(Op0Idx, SelectorTy); 2420 Value *V = ConstantExpr::getSelect(Op0, Op1, Op2); 2421 ValueList.assignValue(V, CstNo); 2422 } 2423 2424 if (NextCstNo != ValueList.size()) 2425 return error("Invalid constant reference"); 2426 2427 ValueList.resolveConstantForwardRefs(); 2428 return Error::success(); 2429 case BitstreamEntry::Record: 2430 // The interesting case. 2431 break; 2432 } 2433 2434 // Read a record. 2435 Record.clear(); 2436 Type *VoidType = Type::getVoidTy(Context); 2437 Value *V = nullptr; 2438 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 2439 if (!MaybeBitCode) 2440 return MaybeBitCode.takeError(); 2441 switch (unsigned BitCode = MaybeBitCode.get()) { 2442 default: // Default behavior: unknown constant 2443 case bitc::CST_CODE_UNDEF: // UNDEF 2444 V = UndefValue::get(CurTy); 2445 break; 2446 case bitc::CST_CODE_POISON: // POISON 2447 V = PoisonValue::get(CurTy); 2448 break; 2449 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 2450 if (Record.empty()) 2451 return error("Invalid record"); 2452 if (Record[0] >= TypeList.size() || !TypeList[Record[0]]) 2453 return error("Invalid record"); 2454 if (TypeList[Record[0]] == VoidType) 2455 return error("Invalid constant type"); 2456 CurTy = TypeList[Record[0]]; 2457 continue; // Skip the ValueList manipulation. 2458 case bitc::CST_CODE_NULL: // NULL 2459 if (CurTy->isVoidTy() || CurTy->isFunctionTy() || CurTy->isLabelTy()) 2460 return error("Invalid type for a constant null value"); 2461 V = Constant::getNullValue(CurTy); 2462 break; 2463 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 2464 if (!CurTy->isIntegerTy() || Record.empty()) 2465 return error("Invalid record"); 2466 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); 2467 break; 2468 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 2469 if (!CurTy->isIntegerTy() || Record.empty()) 2470 return error("Invalid record"); 2471 2472 APInt VInt = 2473 readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth()); 2474 V = ConstantInt::get(Context, VInt); 2475 2476 break; 2477 } 2478 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 2479 if (Record.empty()) 2480 return error("Invalid record"); 2481 if (CurTy->isHalfTy()) 2482 V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf(), 2483 APInt(16, (uint16_t)Record[0]))); 2484 else if (CurTy->isBFloatTy()) 2485 V = ConstantFP::get(Context, APFloat(APFloat::BFloat(), 2486 APInt(16, (uint32_t)Record[0]))); 2487 else if (CurTy->isFloatTy()) 2488 V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle(), 2489 APInt(32, (uint32_t)Record[0]))); 2490 else if (CurTy->isDoubleTy()) 2491 V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble(), 2492 APInt(64, Record[0]))); 2493 else if (CurTy->isX86_FP80Ty()) { 2494 // Bits are not stored the same way as a normal i80 APInt, compensate. 2495 uint64_t Rearrange[2]; 2496 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 2497 Rearrange[1] = Record[0] >> 48; 2498 V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended(), 2499 APInt(80, Rearrange))); 2500 } else if (CurTy->isFP128Ty()) 2501 V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad(), 2502 APInt(128, Record))); 2503 else if (CurTy->isPPC_FP128Ty()) 2504 V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble(), 2505 APInt(128, Record))); 2506 else 2507 V = UndefValue::get(CurTy); 2508 break; 2509 } 2510 2511 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 2512 if (Record.empty()) 2513 return error("Invalid record"); 2514 2515 unsigned Size = Record.size(); 2516 SmallVector<Constant*, 16> Elts; 2517 2518 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 2519 for (unsigned i = 0; i != Size; ++i) 2520 Elts.push_back(ValueList.getConstantFwdRef(Record[i], 2521 STy->getElementType(i))); 2522 V = ConstantStruct::get(STy, Elts); 2523 } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) { 2524 Type *EltTy = ATy->getElementType(); 2525 for (unsigned i = 0; i != Size; ++i) 2526 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2527 V = ConstantArray::get(ATy, Elts); 2528 } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) { 2529 Type *EltTy = VTy->getElementType(); 2530 for (unsigned i = 0; i != Size; ++i) 2531 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2532 V = ConstantVector::get(Elts); 2533 } else { 2534 V = UndefValue::get(CurTy); 2535 } 2536 break; 2537 } 2538 case bitc::CST_CODE_STRING: // STRING: [values] 2539 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 2540 if (Record.empty()) 2541 return error("Invalid record"); 2542 2543 SmallString<16> Elts(Record.begin(), Record.end()); 2544 V = ConstantDataArray::getString(Context, Elts, 2545 BitCode == bitc::CST_CODE_CSTRING); 2546 break; 2547 } 2548 case bitc::CST_CODE_DATA: {// DATA: [n x value] 2549 if (Record.empty()) 2550 return error("Invalid record"); 2551 2552 Type *EltTy; 2553 if (auto *Array = dyn_cast<ArrayType>(CurTy)) 2554 EltTy = Array->getElementType(); 2555 else 2556 EltTy = cast<VectorType>(CurTy)->getElementType(); 2557 if (EltTy->isIntegerTy(8)) { 2558 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); 2559 if (isa<VectorType>(CurTy)) 2560 V = ConstantDataVector::get(Context, Elts); 2561 else 2562 V = ConstantDataArray::get(Context, Elts); 2563 } else if (EltTy->isIntegerTy(16)) { 2564 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2565 if (isa<VectorType>(CurTy)) 2566 V = ConstantDataVector::get(Context, Elts); 2567 else 2568 V = ConstantDataArray::get(Context, Elts); 2569 } else if (EltTy->isIntegerTy(32)) { 2570 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2571 if (isa<VectorType>(CurTy)) 2572 V = ConstantDataVector::get(Context, Elts); 2573 else 2574 V = ConstantDataArray::get(Context, Elts); 2575 } else if (EltTy->isIntegerTy(64)) { 2576 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2577 if (isa<VectorType>(CurTy)) 2578 V = ConstantDataVector::get(Context, Elts); 2579 else 2580 V = ConstantDataArray::get(Context, Elts); 2581 } else if (EltTy->isHalfTy()) { 2582 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2583 if (isa<VectorType>(CurTy)) 2584 V = ConstantDataVector::getFP(EltTy, Elts); 2585 else 2586 V = ConstantDataArray::getFP(EltTy, Elts); 2587 } else if (EltTy->isBFloatTy()) { 2588 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2589 if (isa<VectorType>(CurTy)) 2590 V = ConstantDataVector::getFP(EltTy, Elts); 2591 else 2592 V = ConstantDataArray::getFP(EltTy, Elts); 2593 } else if (EltTy->isFloatTy()) { 2594 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2595 if (isa<VectorType>(CurTy)) 2596 V = ConstantDataVector::getFP(EltTy, Elts); 2597 else 2598 V = ConstantDataArray::getFP(EltTy, Elts); 2599 } else if (EltTy->isDoubleTy()) { 2600 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2601 if (isa<VectorType>(CurTy)) 2602 V = ConstantDataVector::getFP(EltTy, Elts); 2603 else 2604 V = ConstantDataArray::getFP(EltTy, Elts); 2605 } else { 2606 return error("Invalid type for value"); 2607 } 2608 break; 2609 } 2610 case bitc::CST_CODE_CE_UNOP: { // CE_UNOP: [opcode, opval] 2611 if (Record.size() < 2) 2612 return error("Invalid record"); 2613 int Opc = getDecodedUnaryOpcode(Record[0], CurTy); 2614 if (Opc < 0) { 2615 V = UndefValue::get(CurTy); // Unknown unop. 2616 } else { 2617 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 2618 unsigned Flags = 0; 2619 V = ConstantExpr::get(Opc, LHS, Flags); 2620 } 2621 break; 2622 } 2623 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 2624 if (Record.size() < 3) 2625 return error("Invalid record"); 2626 int Opc = getDecodedBinaryOpcode(Record[0], CurTy); 2627 if (Opc < 0) { 2628 V = UndefValue::get(CurTy); // Unknown binop. 2629 } else { 2630 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 2631 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy); 2632 unsigned Flags = 0; 2633 if (Record.size() >= 4) { 2634 if (Opc == Instruction::Add || 2635 Opc == Instruction::Sub || 2636 Opc == Instruction::Mul || 2637 Opc == Instruction::Shl) { 2638 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 2639 Flags |= OverflowingBinaryOperator::NoSignedWrap; 2640 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 2641 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 2642 } else if (Opc == Instruction::SDiv || 2643 Opc == Instruction::UDiv || 2644 Opc == Instruction::LShr || 2645 Opc == Instruction::AShr) { 2646 if (Record[3] & (1 << bitc::PEO_EXACT)) 2647 Flags |= SDivOperator::IsExact; 2648 } 2649 } 2650 V = ConstantExpr::get(Opc, LHS, RHS, Flags); 2651 } 2652 break; 2653 } 2654 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 2655 if (Record.size() < 3) 2656 return error("Invalid record"); 2657 int Opc = getDecodedCastOpcode(Record[0]); 2658 if (Opc < 0) { 2659 V = UndefValue::get(CurTy); // Unknown cast. 2660 } else { 2661 Type *OpTy = getTypeByID(Record[1]); 2662 if (!OpTy) 2663 return error("Invalid record"); 2664 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy); 2665 V = UpgradeBitCastExpr(Opc, Op, CurTy); 2666 if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy); 2667 } 2668 break; 2669 } 2670 case bitc::CST_CODE_CE_INBOUNDS_GEP: // [ty, n x operands] 2671 case bitc::CST_CODE_CE_GEP: // [ty, n x operands] 2672 case bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX: { // [ty, flags, n x 2673 // operands] 2674 unsigned OpNum = 0; 2675 Type *PointeeType = nullptr; 2676 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX || 2677 Record.size() % 2) 2678 PointeeType = getTypeByID(Record[OpNum++]); 2679 2680 bool InBounds = false; 2681 Optional<unsigned> InRangeIndex; 2682 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX) { 2683 uint64_t Op = Record[OpNum++]; 2684 InBounds = Op & 1; 2685 InRangeIndex = Op >> 1; 2686 } else if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP) 2687 InBounds = true; 2688 2689 SmallVector<Constant*, 16> Elts; 2690 Type *Elt0FullTy = nullptr; 2691 while (OpNum != Record.size()) { 2692 if (!Elt0FullTy) 2693 Elt0FullTy = getTypeByID(Record[OpNum]); 2694 Type *ElTy = getTypeByID(Record[OpNum++]); 2695 if (!ElTy) 2696 return error("Invalid record"); 2697 Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy)); 2698 } 2699 2700 if (Elts.size() < 1) 2701 return error("Invalid gep with no operands"); 2702 2703 PointerType *OrigPtrTy = cast<PointerType>(Elt0FullTy->getScalarType()); 2704 if (!PointeeType) 2705 PointeeType = OrigPtrTy->getElementType(); 2706 else if (!OrigPtrTy->isOpaqueOrPointeeTypeMatches(PointeeType)) 2707 return error("Explicit gep operator type does not match pointee type " 2708 "of pointer operand"); 2709 2710 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 2711 V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices, 2712 InBounds, InRangeIndex); 2713 break; 2714 } 2715 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] 2716 if (Record.size() < 3) 2717 return error("Invalid record"); 2718 2719 DelayedSelectors.push_back( 2720 {CurTy, Record[0], Record[1], Record[2], NextCstNo}); 2721 (void)ValueList.getConstantFwdRef(NextCstNo, CurTy); 2722 ++NextCstNo; 2723 continue; 2724 } 2725 case bitc::CST_CODE_CE_EXTRACTELT 2726 : { // CE_EXTRACTELT: [opty, opval, opty, opval] 2727 if (Record.size() < 3) 2728 return error("Invalid record"); 2729 VectorType *OpTy = 2730 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2731 if (!OpTy) 2732 return error("Invalid record"); 2733 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2734 Constant *Op1 = nullptr; 2735 if (Record.size() == 4) { 2736 Type *IdxTy = getTypeByID(Record[2]); 2737 if (!IdxTy) 2738 return error("Invalid record"); 2739 Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2740 } else { 2741 // Deprecated, but still needed to read old bitcode files. 2742 Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2743 } 2744 if (!Op1) 2745 return error("Invalid record"); 2746 V = ConstantExpr::getExtractElement(Op0, Op1); 2747 break; 2748 } 2749 case bitc::CST_CODE_CE_INSERTELT 2750 : { // CE_INSERTELT: [opval, opval, opty, opval] 2751 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2752 if (Record.size() < 3 || !OpTy) 2753 return error("Invalid record"); 2754 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2755 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], 2756 OpTy->getElementType()); 2757 Constant *Op2 = nullptr; 2758 if (Record.size() == 4) { 2759 Type *IdxTy = getTypeByID(Record[2]); 2760 if (!IdxTy) 2761 return error("Invalid record"); 2762 Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2763 } else { 2764 // Deprecated, but still needed to read old bitcode files. 2765 Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2766 } 2767 if (!Op2) 2768 return error("Invalid record"); 2769 V = ConstantExpr::getInsertElement(Op0, Op1, Op2); 2770 break; 2771 } 2772 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 2773 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2774 if (Record.size() < 3 || !OpTy) 2775 return error("Invalid record"); 2776 DelayedShuffles.push_back( 2777 {OpTy, OpTy, Record[0], Record[1], Record[2], NextCstNo}); 2778 ++NextCstNo; 2779 continue; 2780 } 2781 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 2782 VectorType *RTy = dyn_cast<VectorType>(CurTy); 2783 VectorType *OpTy = 2784 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2785 if (Record.size() < 4 || !RTy || !OpTy) 2786 return error("Invalid record"); 2787 DelayedShuffles.push_back( 2788 {OpTy, RTy, Record[1], Record[2], Record[3], NextCstNo}); 2789 ++NextCstNo; 2790 continue; 2791 } 2792 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 2793 if (Record.size() < 4) 2794 return error("Invalid record"); 2795 Type *OpTy = getTypeByID(Record[0]); 2796 if (!OpTy) 2797 return error("Invalid record"); 2798 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2799 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2800 2801 if (OpTy->isFPOrFPVectorTy()) 2802 V = ConstantExpr::getFCmp(Record[3], Op0, Op1); 2803 else 2804 V = ConstantExpr::getICmp(Record[3], Op0, Op1); 2805 break; 2806 } 2807 // This maintains backward compatibility, pre-asm dialect keywords. 2808 // Deprecated, but still needed to read old bitcode files. 2809 case bitc::CST_CODE_INLINEASM_OLD: { 2810 if (Record.size() < 2) 2811 return error("Invalid record"); 2812 std::string AsmStr, ConstrStr; 2813 bool HasSideEffects = Record[0] & 1; 2814 bool IsAlignStack = Record[0] >> 1; 2815 unsigned AsmStrSize = Record[1]; 2816 if (2+AsmStrSize >= Record.size()) 2817 return error("Invalid record"); 2818 unsigned ConstStrSize = Record[2+AsmStrSize]; 2819 if (3+AsmStrSize+ConstStrSize > Record.size()) 2820 return error("Invalid record"); 2821 2822 for (unsigned i = 0; i != AsmStrSize; ++i) 2823 AsmStr += (char)Record[2+i]; 2824 for (unsigned i = 0; i != ConstStrSize; ++i) 2825 ConstrStr += (char)Record[3+AsmStrSize+i]; 2826 UpgradeInlineAsmString(&AsmStr); 2827 // FIXME: support upgrading in opaque pointers mode. 2828 V = InlineAsm::get( 2829 cast<FunctionType>(cast<PointerType>(CurTy)->getElementType()), 2830 AsmStr, ConstrStr, HasSideEffects, IsAlignStack); 2831 break; 2832 } 2833 // This version adds support for the asm dialect keywords (e.g., 2834 // inteldialect). 2835 case bitc::CST_CODE_INLINEASM_OLD2: { 2836 if (Record.size() < 2) 2837 return error("Invalid record"); 2838 std::string AsmStr, ConstrStr; 2839 bool HasSideEffects = Record[0] & 1; 2840 bool IsAlignStack = (Record[0] >> 1) & 1; 2841 unsigned AsmDialect = Record[0] >> 2; 2842 unsigned AsmStrSize = Record[1]; 2843 if (2+AsmStrSize >= Record.size()) 2844 return error("Invalid record"); 2845 unsigned ConstStrSize = Record[2+AsmStrSize]; 2846 if (3+AsmStrSize+ConstStrSize > Record.size()) 2847 return error("Invalid record"); 2848 2849 for (unsigned i = 0; i != AsmStrSize; ++i) 2850 AsmStr += (char)Record[2+i]; 2851 for (unsigned i = 0; i != ConstStrSize; ++i) 2852 ConstrStr += (char)Record[3+AsmStrSize+i]; 2853 UpgradeInlineAsmString(&AsmStr); 2854 // FIXME: support upgrading in opaque pointers mode. 2855 V = InlineAsm::get( 2856 cast<FunctionType>(cast<PointerType>(CurTy)->getElementType()), 2857 AsmStr, ConstrStr, HasSideEffects, IsAlignStack, 2858 InlineAsm::AsmDialect(AsmDialect)); 2859 break; 2860 } 2861 // This version adds support for the unwind keyword. 2862 case bitc::CST_CODE_INLINEASM_OLD3: { 2863 if (Record.size() < 2) 2864 return error("Invalid record"); 2865 unsigned OpNum = 0; 2866 std::string AsmStr, ConstrStr; 2867 bool HasSideEffects = Record[OpNum] & 1; 2868 bool IsAlignStack = (Record[OpNum] >> 1) & 1; 2869 unsigned AsmDialect = (Record[OpNum] >> 2) & 1; 2870 bool CanThrow = (Record[OpNum] >> 3) & 1; 2871 ++OpNum; 2872 unsigned AsmStrSize = Record[OpNum]; 2873 ++OpNum; 2874 if (OpNum + AsmStrSize >= Record.size()) 2875 return error("Invalid record"); 2876 unsigned ConstStrSize = Record[OpNum + AsmStrSize]; 2877 if (OpNum + 1 + AsmStrSize + ConstStrSize > Record.size()) 2878 return error("Invalid record"); 2879 2880 for (unsigned i = 0; i != AsmStrSize; ++i) 2881 AsmStr += (char)Record[OpNum + i]; 2882 ++OpNum; 2883 for (unsigned i = 0; i != ConstStrSize; ++i) 2884 ConstrStr += (char)Record[OpNum + AsmStrSize + i]; 2885 UpgradeInlineAsmString(&AsmStr); 2886 // FIXME: support upgrading in opaque pointers mode. 2887 V = InlineAsm::get( 2888 cast<FunctionType>(cast<PointerType>(CurTy)->getElementType()), 2889 AsmStr, ConstrStr, HasSideEffects, IsAlignStack, 2890 InlineAsm::AsmDialect(AsmDialect), CanThrow); 2891 break; 2892 } 2893 // This version adds explicit function type. 2894 case bitc::CST_CODE_INLINEASM: { 2895 if (Record.size() < 3) 2896 return error("Invalid record"); 2897 unsigned OpNum = 0; 2898 auto *FnTy = dyn_cast_or_null<FunctionType>(getTypeByID(Record[OpNum])); 2899 ++OpNum; 2900 if (!FnTy) 2901 return error("Invalid record"); 2902 std::string AsmStr, ConstrStr; 2903 bool HasSideEffects = Record[OpNum] & 1; 2904 bool IsAlignStack = (Record[OpNum] >> 1) & 1; 2905 unsigned AsmDialect = (Record[OpNum] >> 2) & 1; 2906 bool CanThrow = (Record[OpNum] >> 3) & 1; 2907 ++OpNum; 2908 unsigned AsmStrSize = Record[OpNum]; 2909 ++OpNum; 2910 if (OpNum + AsmStrSize >= Record.size()) 2911 return error("Invalid record"); 2912 unsigned ConstStrSize = Record[OpNum + AsmStrSize]; 2913 if (OpNum + 1 + AsmStrSize + ConstStrSize > Record.size()) 2914 return error("Invalid record"); 2915 2916 for (unsigned i = 0; i != AsmStrSize; ++i) 2917 AsmStr += (char)Record[OpNum + i]; 2918 ++OpNum; 2919 for (unsigned i = 0; i != ConstStrSize; ++i) 2920 ConstrStr += (char)Record[OpNum + AsmStrSize + i]; 2921 UpgradeInlineAsmString(&AsmStr); 2922 V = InlineAsm::get(FnTy, AsmStr, ConstrStr, HasSideEffects, IsAlignStack, 2923 InlineAsm::AsmDialect(AsmDialect), CanThrow); 2924 break; 2925 } 2926 case bitc::CST_CODE_BLOCKADDRESS:{ 2927 if (Record.size() < 3) 2928 return error("Invalid record"); 2929 Type *FnTy = getTypeByID(Record[0]); 2930 if (!FnTy) 2931 return error("Invalid record"); 2932 Function *Fn = 2933 dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy)); 2934 if (!Fn) 2935 return error("Invalid record"); 2936 2937 // If the function is already parsed we can insert the block address right 2938 // away. 2939 BasicBlock *BB; 2940 unsigned BBID = Record[2]; 2941 if (!BBID) 2942 // Invalid reference to entry block. 2943 return error("Invalid ID"); 2944 if (!Fn->empty()) { 2945 Function::iterator BBI = Fn->begin(), BBE = Fn->end(); 2946 for (size_t I = 0, E = BBID; I != E; ++I) { 2947 if (BBI == BBE) 2948 return error("Invalid ID"); 2949 ++BBI; 2950 } 2951 BB = &*BBI; 2952 } else { 2953 // Otherwise insert a placeholder and remember it so it can be inserted 2954 // when the function is parsed. 2955 auto &FwdBBs = BasicBlockFwdRefs[Fn]; 2956 if (FwdBBs.empty()) 2957 BasicBlockFwdRefQueue.push_back(Fn); 2958 if (FwdBBs.size() < BBID + 1) 2959 FwdBBs.resize(BBID + 1); 2960 if (!FwdBBs[BBID]) 2961 FwdBBs[BBID] = BasicBlock::Create(Context); 2962 BB = FwdBBs[BBID]; 2963 } 2964 V = BlockAddress::get(Fn, BB); 2965 break; 2966 } 2967 case bitc::CST_CODE_DSO_LOCAL_EQUIVALENT: { 2968 if (Record.size() < 2) 2969 return error("Invalid record"); 2970 Type *GVTy = getTypeByID(Record[0]); 2971 if (!GVTy) 2972 return error("Invalid record"); 2973 GlobalValue *GV = dyn_cast_or_null<GlobalValue>( 2974 ValueList.getConstantFwdRef(Record[1], GVTy)); 2975 if (!GV) 2976 return error("Invalid record"); 2977 2978 V = DSOLocalEquivalent::get(GV); 2979 break; 2980 } 2981 case bitc::CST_CODE_NO_CFI_VALUE: { 2982 if (Record.size() < 2) 2983 return error("Invalid record"); 2984 Type *GVTy = getTypeByID(Record[0]); 2985 if (!GVTy) 2986 return error("Invalid record"); 2987 GlobalValue *GV = dyn_cast_or_null<GlobalValue>( 2988 ValueList.getConstantFwdRef(Record[1], GVTy)); 2989 if (!GV) 2990 return error("Invalid record"); 2991 V = NoCFIValue::get(GV); 2992 break; 2993 } 2994 } 2995 2996 ValueList.assignValue(V, NextCstNo); 2997 ++NextCstNo; 2998 } 2999 } 3000 3001 Error BitcodeReader::parseUseLists() { 3002 if (Error Err = Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 3003 return Err; 3004 3005 // Read all the records. 3006 SmallVector<uint64_t, 64> Record; 3007 3008 while (true) { 3009 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 3010 if (!MaybeEntry) 3011 return MaybeEntry.takeError(); 3012 BitstreamEntry Entry = MaybeEntry.get(); 3013 3014 switch (Entry.Kind) { 3015 case BitstreamEntry::SubBlock: // Handled for us already. 3016 case BitstreamEntry::Error: 3017 return error("Malformed block"); 3018 case BitstreamEntry::EndBlock: 3019 return Error::success(); 3020 case BitstreamEntry::Record: 3021 // The interesting case. 3022 break; 3023 } 3024 3025 // Read a use list record. 3026 Record.clear(); 3027 bool IsBB = false; 3028 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 3029 if (!MaybeRecord) 3030 return MaybeRecord.takeError(); 3031 switch (MaybeRecord.get()) { 3032 default: // Default behavior: unknown type. 3033 break; 3034 case bitc::USELIST_CODE_BB: 3035 IsBB = true; 3036 LLVM_FALLTHROUGH; 3037 case bitc::USELIST_CODE_DEFAULT: { 3038 unsigned RecordLength = Record.size(); 3039 if (RecordLength < 3) 3040 // Records should have at least an ID and two indexes. 3041 return error("Invalid record"); 3042 unsigned ID = Record.pop_back_val(); 3043 3044 Value *V; 3045 if (IsBB) { 3046 assert(ID < FunctionBBs.size() && "Basic block not found"); 3047 V = FunctionBBs[ID]; 3048 } else 3049 V = ValueList[ID]; 3050 unsigned NumUses = 0; 3051 SmallDenseMap<const Use *, unsigned, 16> Order; 3052 for (const Use &U : V->materialized_uses()) { 3053 if (++NumUses > Record.size()) 3054 break; 3055 Order[&U] = Record[NumUses - 1]; 3056 } 3057 if (Order.size() != Record.size() || NumUses > Record.size()) 3058 // Mismatches can happen if the functions are being materialized lazily 3059 // (out-of-order), or a value has been upgraded. 3060 break; 3061 3062 V->sortUseList([&](const Use &L, const Use &R) { 3063 return Order.lookup(&L) < Order.lookup(&R); 3064 }); 3065 break; 3066 } 3067 } 3068 } 3069 } 3070 3071 /// When we see the block for metadata, remember where it is and then skip it. 3072 /// This lets us lazily deserialize the metadata. 3073 Error BitcodeReader::rememberAndSkipMetadata() { 3074 // Save the current stream state. 3075 uint64_t CurBit = Stream.GetCurrentBitNo(); 3076 DeferredMetadataInfo.push_back(CurBit); 3077 3078 // Skip over the block for now. 3079 if (Error Err = Stream.SkipBlock()) 3080 return Err; 3081 return Error::success(); 3082 } 3083 3084 Error BitcodeReader::materializeMetadata() { 3085 for (uint64_t BitPos : DeferredMetadataInfo) { 3086 // Move the bit stream to the saved position. 3087 if (Error JumpFailed = Stream.JumpToBit(BitPos)) 3088 return JumpFailed; 3089 if (Error Err = MDLoader->parseModuleMetadata()) 3090 return Err; 3091 } 3092 3093 // Upgrade "Linker Options" module flag to "llvm.linker.options" module-level 3094 // metadata. Only upgrade if the new option doesn't exist to avoid upgrade 3095 // multiple times. 3096 if (!TheModule->getNamedMetadata("llvm.linker.options")) { 3097 if (Metadata *Val = TheModule->getModuleFlag("Linker Options")) { 3098 NamedMDNode *LinkerOpts = 3099 TheModule->getOrInsertNamedMetadata("llvm.linker.options"); 3100 for (const MDOperand &MDOptions : cast<MDNode>(Val)->operands()) 3101 LinkerOpts->addOperand(cast<MDNode>(MDOptions)); 3102 } 3103 } 3104 3105 DeferredMetadataInfo.clear(); 3106 return Error::success(); 3107 } 3108 3109 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; } 3110 3111 /// When we see the block for a function body, remember where it is and then 3112 /// skip it. This lets us lazily deserialize the functions. 3113 Error BitcodeReader::rememberAndSkipFunctionBody() { 3114 // Get the function we are talking about. 3115 if (FunctionsWithBodies.empty()) 3116 return error("Insufficient function protos"); 3117 3118 Function *Fn = FunctionsWithBodies.back(); 3119 FunctionsWithBodies.pop_back(); 3120 3121 // Save the current stream state. 3122 uint64_t CurBit = Stream.GetCurrentBitNo(); 3123 assert( 3124 (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) && 3125 "Mismatch between VST and scanned function offsets"); 3126 DeferredFunctionInfo[Fn] = CurBit; 3127 3128 // Skip over the function block for now. 3129 if (Error Err = Stream.SkipBlock()) 3130 return Err; 3131 return Error::success(); 3132 } 3133 3134 Error BitcodeReader::globalCleanup() { 3135 // Patch the initializers for globals and aliases up. 3136 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 3137 return Err; 3138 if (!GlobalInits.empty() || !IndirectSymbolInits.empty()) 3139 return error("Malformed global initializer set"); 3140 3141 // Look for intrinsic functions which need to be upgraded at some point 3142 // and functions that need to have their function attributes upgraded. 3143 for (Function &F : *TheModule) { 3144 MDLoader->upgradeDebugIntrinsics(F); 3145 Function *NewFn; 3146 if (UpgradeIntrinsicFunction(&F, NewFn)) 3147 UpgradedIntrinsics[&F] = NewFn; 3148 else if (auto Remangled = Intrinsic::remangleIntrinsicFunction(&F)) 3149 // Some types could be renamed during loading if several modules are 3150 // loaded in the same LLVMContext (LTO scenario). In this case we should 3151 // remangle intrinsics names as well. 3152 RemangledIntrinsics[&F] = Remangled.getValue(); 3153 // Look for functions that rely on old function attribute behavior. 3154 UpgradeFunctionAttributes(F); 3155 } 3156 3157 // Look for global variables which need to be renamed. 3158 std::vector<std::pair<GlobalVariable *, GlobalVariable *>> UpgradedVariables; 3159 for (GlobalVariable &GV : TheModule->globals()) 3160 if (GlobalVariable *Upgraded = UpgradeGlobalVariable(&GV)) 3161 UpgradedVariables.emplace_back(&GV, Upgraded); 3162 for (auto &Pair : UpgradedVariables) { 3163 Pair.first->eraseFromParent(); 3164 TheModule->getGlobalList().push_back(Pair.second); 3165 } 3166 3167 // Force deallocation of memory for these vectors to favor the client that 3168 // want lazy deserialization. 3169 std::vector<std::pair<GlobalVariable *, unsigned>>().swap(GlobalInits); 3170 std::vector<std::pair<GlobalValue *, unsigned>>().swap(IndirectSymbolInits); 3171 return Error::success(); 3172 } 3173 3174 /// Support for lazy parsing of function bodies. This is required if we 3175 /// either have an old bitcode file without a VST forward declaration record, 3176 /// or if we have an anonymous function being materialized, since anonymous 3177 /// functions do not have a name and are therefore not in the VST. 3178 Error BitcodeReader::rememberAndSkipFunctionBodies() { 3179 if (Error JumpFailed = Stream.JumpToBit(NextUnreadBit)) 3180 return JumpFailed; 3181 3182 if (Stream.AtEndOfStream()) 3183 return error("Could not find function in stream"); 3184 3185 if (!SeenFirstFunctionBody) 3186 return error("Trying to materialize functions before seeing function blocks"); 3187 3188 // An old bitcode file with the symbol table at the end would have 3189 // finished the parse greedily. 3190 assert(SeenValueSymbolTable); 3191 3192 SmallVector<uint64_t, 64> Record; 3193 3194 while (true) { 3195 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 3196 if (!MaybeEntry) 3197 return MaybeEntry.takeError(); 3198 llvm::BitstreamEntry Entry = MaybeEntry.get(); 3199 3200 switch (Entry.Kind) { 3201 default: 3202 return error("Expect SubBlock"); 3203 case BitstreamEntry::SubBlock: 3204 switch (Entry.ID) { 3205 default: 3206 return error("Expect function block"); 3207 case bitc::FUNCTION_BLOCK_ID: 3208 if (Error Err = rememberAndSkipFunctionBody()) 3209 return Err; 3210 NextUnreadBit = Stream.GetCurrentBitNo(); 3211 return Error::success(); 3212 } 3213 } 3214 } 3215 } 3216 3217 bool BitcodeReaderBase::readBlockInfo() { 3218 Expected<Optional<BitstreamBlockInfo>> MaybeNewBlockInfo = 3219 Stream.ReadBlockInfoBlock(); 3220 if (!MaybeNewBlockInfo) 3221 return true; // FIXME Handle the error. 3222 Optional<BitstreamBlockInfo> NewBlockInfo = 3223 std::move(MaybeNewBlockInfo.get()); 3224 if (!NewBlockInfo) 3225 return true; 3226 BlockInfo = std::move(*NewBlockInfo); 3227 return false; 3228 } 3229 3230 Error BitcodeReader::parseComdatRecord(ArrayRef<uint64_t> Record) { 3231 // v1: [selection_kind, name] 3232 // v2: [strtab_offset, strtab_size, selection_kind] 3233 StringRef Name; 3234 std::tie(Name, Record) = readNameFromStrtab(Record); 3235 3236 if (Record.empty()) 3237 return error("Invalid record"); 3238 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]); 3239 std::string OldFormatName; 3240 if (!UseStrtab) { 3241 if (Record.size() < 2) 3242 return error("Invalid record"); 3243 unsigned ComdatNameSize = Record[1]; 3244 OldFormatName.reserve(ComdatNameSize); 3245 for (unsigned i = 0; i != ComdatNameSize; ++i) 3246 OldFormatName += (char)Record[2 + i]; 3247 Name = OldFormatName; 3248 } 3249 Comdat *C = TheModule->getOrInsertComdat(Name); 3250 C->setSelectionKind(SK); 3251 ComdatList.push_back(C); 3252 return Error::success(); 3253 } 3254 3255 static void inferDSOLocal(GlobalValue *GV) { 3256 // infer dso_local from linkage and visibility if it is not encoded. 3257 if (GV->hasLocalLinkage() || 3258 (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())) 3259 GV->setDSOLocal(true); 3260 } 3261 3262 Error BitcodeReader::parseGlobalVarRecord(ArrayRef<uint64_t> Record) { 3263 // v1: [pointer type, isconst, initid, linkage, alignment, section, 3264 // visibility, threadlocal, unnamed_addr, externally_initialized, 3265 // dllstorageclass, comdat, attributes, preemption specifier, 3266 // partition strtab offset, partition strtab size] (name in VST) 3267 // v2: [strtab_offset, strtab_size, v1] 3268 StringRef Name; 3269 std::tie(Name, Record) = readNameFromStrtab(Record); 3270 3271 if (Record.size() < 6) 3272 return error("Invalid record"); 3273 Type *Ty = getTypeByID(Record[0]); 3274 if (!Ty) 3275 return error("Invalid record"); 3276 bool isConstant = Record[1] & 1; 3277 bool explicitType = Record[1] & 2; 3278 unsigned AddressSpace; 3279 if (explicitType) { 3280 AddressSpace = Record[1] >> 2; 3281 } else { 3282 if (!Ty->isPointerTy()) 3283 return error("Invalid type for value"); 3284 AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 3285 Ty = cast<PointerType>(Ty)->getElementType(); 3286 } 3287 3288 uint64_t RawLinkage = Record[3]; 3289 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 3290 MaybeAlign Alignment; 3291 if (Error Err = parseAlignmentValue(Record[4], Alignment)) 3292 return Err; 3293 std::string Section; 3294 if (Record[5]) { 3295 if (Record[5] - 1 >= SectionTable.size()) 3296 return error("Invalid ID"); 3297 Section = SectionTable[Record[5] - 1]; 3298 } 3299 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 3300 // Local linkage must have default visibility. 3301 // auto-upgrade `hidden` and `protected` for old bitcode. 3302 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage)) 3303 Visibility = getDecodedVisibility(Record[6]); 3304 3305 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; 3306 if (Record.size() > 7) 3307 TLM = getDecodedThreadLocalMode(Record[7]); 3308 3309 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 3310 if (Record.size() > 8) 3311 UnnamedAddr = getDecodedUnnamedAddrType(Record[8]); 3312 3313 bool ExternallyInitialized = false; 3314 if (Record.size() > 9) 3315 ExternallyInitialized = Record[9]; 3316 3317 GlobalVariable *NewGV = 3318 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, Name, 3319 nullptr, TLM, AddressSpace, ExternallyInitialized); 3320 NewGV->setAlignment(Alignment); 3321 if (!Section.empty()) 3322 NewGV->setSection(Section); 3323 NewGV->setVisibility(Visibility); 3324 NewGV->setUnnamedAddr(UnnamedAddr); 3325 3326 if (Record.size() > 10) 3327 NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10])); 3328 else 3329 upgradeDLLImportExportLinkage(NewGV, RawLinkage); 3330 3331 ValueList.push_back(NewGV); 3332 3333 // Remember which value to use for the global initializer. 3334 if (unsigned InitID = Record[2]) 3335 GlobalInits.push_back(std::make_pair(NewGV, InitID - 1)); 3336 3337 if (Record.size() > 11) { 3338 if (unsigned ComdatID = Record[11]) { 3339 if (ComdatID > ComdatList.size()) 3340 return error("Invalid global variable comdat ID"); 3341 NewGV->setComdat(ComdatList[ComdatID - 1]); 3342 } 3343 } else if (hasImplicitComdat(RawLinkage)) { 3344 ImplicitComdatObjects.insert(NewGV); 3345 } 3346 3347 if (Record.size() > 12) { 3348 auto AS = getAttributes(Record[12]).getFnAttrs(); 3349 NewGV->setAttributes(AS); 3350 } 3351 3352 if (Record.size() > 13) { 3353 NewGV->setDSOLocal(getDecodedDSOLocal(Record[13])); 3354 } 3355 inferDSOLocal(NewGV); 3356 3357 // Check whether we have enough values to read a partition name. 3358 if (Record.size() > 15) 3359 NewGV->setPartition(StringRef(Strtab.data() + Record[14], Record[15])); 3360 3361 return Error::success(); 3362 } 3363 3364 Error BitcodeReader::parseFunctionRecord(ArrayRef<uint64_t> Record) { 3365 // v1: [type, callingconv, isproto, linkage, paramattr, alignment, section, 3366 // visibility, gc, unnamed_addr, prologuedata, dllstorageclass, comdat, 3367 // prefixdata, personalityfn, preemption specifier, addrspace] (name in VST) 3368 // v2: [strtab_offset, strtab_size, v1] 3369 StringRef Name; 3370 std::tie(Name, Record) = readNameFromStrtab(Record); 3371 3372 if (Record.size() < 8) 3373 return error("Invalid record"); 3374 Type *FTy = getTypeByID(Record[0]); 3375 if (!FTy) 3376 return error("Invalid record"); 3377 if (auto *PTy = dyn_cast<PointerType>(FTy)) 3378 FTy = PTy->getElementType(); 3379 3380 if (!isa<FunctionType>(FTy)) 3381 return error("Invalid type for value"); 3382 auto CC = static_cast<CallingConv::ID>(Record[1]); 3383 if (CC & ~CallingConv::MaxID) 3384 return error("Invalid calling convention ID"); 3385 3386 unsigned AddrSpace = TheModule->getDataLayout().getProgramAddressSpace(); 3387 if (Record.size() > 16) 3388 AddrSpace = Record[16]; 3389 3390 Function *Func = 3391 Function::Create(cast<FunctionType>(FTy), GlobalValue::ExternalLinkage, 3392 AddrSpace, Name, TheModule); 3393 3394 assert(Func->getFunctionType() == FTy && 3395 "Incorrect fully specified type provided for function"); 3396 FunctionTypes[Func] = cast<FunctionType>(FTy); 3397 3398 Func->setCallingConv(CC); 3399 bool isProto = Record[2]; 3400 uint64_t RawLinkage = Record[3]; 3401 Func->setLinkage(getDecodedLinkage(RawLinkage)); 3402 Func->setAttributes(getAttributes(Record[4])); 3403 3404 // Upgrade any old-style byval or sret without a type by propagating the 3405 // argument's pointee type. There should be no opaque pointers where the byval 3406 // type is implicit. 3407 for (unsigned i = 0; i != Func->arg_size(); ++i) { 3408 for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet, 3409 Attribute::InAlloca}) { 3410 if (!Func->hasParamAttribute(i, Kind)) 3411 continue; 3412 3413 if (Func->getParamAttribute(i, Kind).getValueAsType()) 3414 continue; 3415 3416 Func->removeParamAttr(i, Kind); 3417 3418 Type *PTy = cast<FunctionType>(FTy)->getParamType(i); 3419 Type *PtrEltTy = cast<PointerType>(PTy)->getElementType(); 3420 Attribute NewAttr; 3421 switch (Kind) { 3422 case Attribute::ByVal: 3423 NewAttr = Attribute::getWithByValType(Context, PtrEltTy); 3424 break; 3425 case Attribute::StructRet: 3426 NewAttr = Attribute::getWithStructRetType(Context, PtrEltTy); 3427 break; 3428 case Attribute::InAlloca: 3429 NewAttr = Attribute::getWithInAllocaType(Context, PtrEltTy); 3430 break; 3431 default: 3432 llvm_unreachable("not an upgraded type attribute"); 3433 } 3434 3435 Func->addParamAttr(i, NewAttr); 3436 } 3437 } 3438 3439 MaybeAlign Alignment; 3440 if (Error Err = parseAlignmentValue(Record[5], Alignment)) 3441 return Err; 3442 Func->setAlignment(Alignment); 3443 if (Record[6]) { 3444 if (Record[6] - 1 >= SectionTable.size()) 3445 return error("Invalid ID"); 3446 Func->setSection(SectionTable[Record[6] - 1]); 3447 } 3448 // Local linkage must have default visibility. 3449 // auto-upgrade `hidden` and `protected` for old bitcode. 3450 if (!Func->hasLocalLinkage()) 3451 Func->setVisibility(getDecodedVisibility(Record[7])); 3452 if (Record.size() > 8 && Record[8]) { 3453 if (Record[8] - 1 >= GCTable.size()) 3454 return error("Invalid ID"); 3455 Func->setGC(GCTable[Record[8] - 1]); 3456 } 3457 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 3458 if (Record.size() > 9) 3459 UnnamedAddr = getDecodedUnnamedAddrType(Record[9]); 3460 Func->setUnnamedAddr(UnnamedAddr); 3461 3462 FunctionOperandInfo OperandInfo = {Func, 0, 0, 0}; 3463 if (Record.size() > 10) 3464 OperandInfo.Prologue = Record[10]; 3465 3466 if (Record.size() > 11) 3467 Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11])); 3468 else 3469 upgradeDLLImportExportLinkage(Func, RawLinkage); 3470 3471 if (Record.size() > 12) { 3472 if (unsigned ComdatID = Record[12]) { 3473 if (ComdatID > ComdatList.size()) 3474 return error("Invalid function comdat ID"); 3475 Func->setComdat(ComdatList[ComdatID - 1]); 3476 } 3477 } else if (hasImplicitComdat(RawLinkage)) { 3478 ImplicitComdatObjects.insert(Func); 3479 } 3480 3481 if (Record.size() > 13) 3482 OperandInfo.Prefix = Record[13]; 3483 3484 if (Record.size() > 14) 3485 OperandInfo.PersonalityFn = Record[14]; 3486 3487 if (Record.size() > 15) { 3488 Func->setDSOLocal(getDecodedDSOLocal(Record[15])); 3489 } 3490 inferDSOLocal(Func); 3491 3492 // Record[16] is the address space number. 3493 3494 // Check whether we have enough values to read a partition name. Also make 3495 // sure Strtab has enough values. 3496 if (Record.size() > 18 && Strtab.data() && 3497 Record[17] + Record[18] <= Strtab.size()) { 3498 Func->setPartition(StringRef(Strtab.data() + Record[17], Record[18])); 3499 } 3500 3501 ValueList.push_back(Func); 3502 3503 if (OperandInfo.PersonalityFn || OperandInfo.Prefix || OperandInfo.Prologue) 3504 FunctionOperands.push_back(OperandInfo); 3505 3506 // If this is a function with a body, remember the prototype we are 3507 // creating now, so that we can match up the body with them later. 3508 if (!isProto) { 3509 Func->setIsMaterializable(true); 3510 FunctionsWithBodies.push_back(Func); 3511 DeferredFunctionInfo[Func] = 0; 3512 } 3513 return Error::success(); 3514 } 3515 3516 Error BitcodeReader::parseGlobalIndirectSymbolRecord( 3517 unsigned BitCode, ArrayRef<uint64_t> Record) { 3518 // v1 ALIAS_OLD: [alias type, aliasee val#, linkage] (name in VST) 3519 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, 3520 // dllstorageclass, threadlocal, unnamed_addr, 3521 // preemption specifier] (name in VST) 3522 // v1 IFUNC: [alias type, addrspace, aliasee val#, linkage, 3523 // visibility, dllstorageclass, threadlocal, unnamed_addr, 3524 // preemption specifier] (name in VST) 3525 // v2: [strtab_offset, strtab_size, v1] 3526 StringRef Name; 3527 std::tie(Name, Record) = readNameFromStrtab(Record); 3528 3529 bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD; 3530 if (Record.size() < (3 + (unsigned)NewRecord)) 3531 return error("Invalid record"); 3532 unsigned OpNum = 0; 3533 Type *Ty = getTypeByID(Record[OpNum++]); 3534 if (!Ty) 3535 return error("Invalid record"); 3536 3537 unsigned AddrSpace; 3538 if (!NewRecord) { 3539 auto *PTy = dyn_cast<PointerType>(Ty); 3540 if (!PTy) 3541 return error("Invalid type for value"); 3542 Ty = PTy->getElementType(); 3543 AddrSpace = PTy->getAddressSpace(); 3544 } else { 3545 AddrSpace = Record[OpNum++]; 3546 } 3547 3548 auto Val = Record[OpNum++]; 3549 auto Linkage = Record[OpNum++]; 3550 GlobalValue *NewGA; 3551 if (BitCode == bitc::MODULE_CODE_ALIAS || 3552 BitCode == bitc::MODULE_CODE_ALIAS_OLD) 3553 NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name, 3554 TheModule); 3555 else 3556 NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name, 3557 nullptr, TheModule); 3558 3559 // Local linkage must have default visibility. 3560 // auto-upgrade `hidden` and `protected` for old bitcode. 3561 if (OpNum != Record.size()) { 3562 auto VisInd = OpNum++; 3563 if (!NewGA->hasLocalLinkage()) 3564 NewGA->setVisibility(getDecodedVisibility(Record[VisInd])); 3565 } 3566 if (BitCode == bitc::MODULE_CODE_ALIAS || 3567 BitCode == bitc::MODULE_CODE_ALIAS_OLD) { 3568 if (OpNum != Record.size()) 3569 NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++])); 3570 else 3571 upgradeDLLImportExportLinkage(NewGA, Linkage); 3572 if (OpNum != Record.size()) 3573 NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++])); 3574 if (OpNum != Record.size()) 3575 NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++])); 3576 } 3577 if (OpNum != Record.size()) 3578 NewGA->setDSOLocal(getDecodedDSOLocal(Record[OpNum++])); 3579 inferDSOLocal(NewGA); 3580 3581 // Check whether we have enough values to read a partition name. 3582 if (OpNum + 1 < Record.size()) { 3583 NewGA->setPartition( 3584 StringRef(Strtab.data() + Record[OpNum], Record[OpNum + 1])); 3585 OpNum += 2; 3586 } 3587 3588 ValueList.push_back(NewGA); 3589 IndirectSymbolInits.push_back(std::make_pair(NewGA, Val)); 3590 return Error::success(); 3591 } 3592 3593 Error BitcodeReader::parseModule(uint64_t ResumeBit, 3594 bool ShouldLazyLoadMetadata, 3595 DataLayoutCallbackTy DataLayoutCallback) { 3596 if (ResumeBit) { 3597 if (Error JumpFailed = Stream.JumpToBit(ResumeBit)) 3598 return JumpFailed; 3599 } else if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 3600 return Err; 3601 3602 SmallVector<uint64_t, 64> Record; 3603 3604 // Parts of bitcode parsing depend on the datalayout. Make sure we 3605 // finalize the datalayout before we run any of that code. 3606 bool ResolvedDataLayout = false; 3607 auto ResolveDataLayout = [&] { 3608 if (ResolvedDataLayout) 3609 return; 3610 3611 // datalayout and triple can't be parsed after this point. 3612 ResolvedDataLayout = true; 3613 3614 // Upgrade data layout string. 3615 std::string DL = llvm::UpgradeDataLayoutString( 3616 TheModule->getDataLayoutStr(), TheModule->getTargetTriple()); 3617 TheModule->setDataLayout(DL); 3618 3619 if (auto LayoutOverride = 3620 DataLayoutCallback(TheModule->getTargetTriple())) 3621 TheModule->setDataLayout(*LayoutOverride); 3622 }; 3623 3624 // Read all the records for this module. 3625 while (true) { 3626 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 3627 if (!MaybeEntry) 3628 return MaybeEntry.takeError(); 3629 llvm::BitstreamEntry Entry = MaybeEntry.get(); 3630 3631 switch (Entry.Kind) { 3632 case BitstreamEntry::Error: 3633 return error("Malformed block"); 3634 case BitstreamEntry::EndBlock: 3635 ResolveDataLayout(); 3636 return globalCleanup(); 3637 3638 case BitstreamEntry::SubBlock: 3639 switch (Entry.ID) { 3640 default: // Skip unknown content. 3641 if (Error Err = Stream.SkipBlock()) 3642 return Err; 3643 break; 3644 case bitc::BLOCKINFO_BLOCK_ID: 3645 if (readBlockInfo()) 3646 return error("Malformed block"); 3647 break; 3648 case bitc::PARAMATTR_BLOCK_ID: 3649 if (Error Err = parseAttributeBlock()) 3650 return Err; 3651 break; 3652 case bitc::PARAMATTR_GROUP_BLOCK_ID: 3653 if (Error Err = parseAttributeGroupBlock()) 3654 return Err; 3655 break; 3656 case bitc::TYPE_BLOCK_ID_NEW: 3657 if (Error Err = parseTypeTable()) 3658 return Err; 3659 break; 3660 case bitc::VALUE_SYMTAB_BLOCK_ID: 3661 if (!SeenValueSymbolTable) { 3662 // Either this is an old form VST without function index and an 3663 // associated VST forward declaration record (which would have caused 3664 // the VST to be jumped to and parsed before it was encountered 3665 // normally in the stream), or there were no function blocks to 3666 // trigger an earlier parsing of the VST. 3667 assert(VSTOffset == 0 || FunctionsWithBodies.empty()); 3668 if (Error Err = parseValueSymbolTable()) 3669 return Err; 3670 SeenValueSymbolTable = true; 3671 } else { 3672 // We must have had a VST forward declaration record, which caused 3673 // the parser to jump to and parse the VST earlier. 3674 assert(VSTOffset > 0); 3675 if (Error Err = Stream.SkipBlock()) 3676 return Err; 3677 } 3678 break; 3679 case bitc::CONSTANTS_BLOCK_ID: 3680 if (Error Err = parseConstants()) 3681 return Err; 3682 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 3683 return Err; 3684 break; 3685 case bitc::METADATA_BLOCK_ID: 3686 if (ShouldLazyLoadMetadata) { 3687 if (Error Err = rememberAndSkipMetadata()) 3688 return Err; 3689 break; 3690 } 3691 assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata"); 3692 if (Error Err = MDLoader->parseModuleMetadata()) 3693 return Err; 3694 break; 3695 case bitc::METADATA_KIND_BLOCK_ID: 3696 if (Error Err = MDLoader->parseMetadataKinds()) 3697 return Err; 3698 break; 3699 case bitc::FUNCTION_BLOCK_ID: 3700 ResolveDataLayout(); 3701 3702 // If this is the first function body we've seen, reverse the 3703 // FunctionsWithBodies list. 3704 if (!SeenFirstFunctionBody) { 3705 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 3706 if (Error Err = globalCleanup()) 3707 return Err; 3708 SeenFirstFunctionBody = true; 3709 } 3710 3711 if (VSTOffset > 0) { 3712 // If we have a VST forward declaration record, make sure we 3713 // parse the VST now if we haven't already. It is needed to 3714 // set up the DeferredFunctionInfo vector for lazy reading. 3715 if (!SeenValueSymbolTable) { 3716 if (Error Err = BitcodeReader::parseValueSymbolTable(VSTOffset)) 3717 return Err; 3718 SeenValueSymbolTable = true; 3719 // Fall through so that we record the NextUnreadBit below. 3720 // This is necessary in case we have an anonymous function that 3721 // is later materialized. Since it will not have a VST entry we 3722 // need to fall back to the lazy parse to find its offset. 3723 } else { 3724 // If we have a VST forward declaration record, but have already 3725 // parsed the VST (just above, when the first function body was 3726 // encountered here), then we are resuming the parse after 3727 // materializing functions. The ResumeBit points to the 3728 // start of the last function block recorded in the 3729 // DeferredFunctionInfo map. Skip it. 3730 if (Error Err = Stream.SkipBlock()) 3731 return Err; 3732 continue; 3733 } 3734 } 3735 3736 // Support older bitcode files that did not have the function 3737 // index in the VST, nor a VST forward declaration record, as 3738 // well as anonymous functions that do not have VST entries. 3739 // Build the DeferredFunctionInfo vector on the fly. 3740 if (Error Err = rememberAndSkipFunctionBody()) 3741 return Err; 3742 3743 // Suspend parsing when we reach the function bodies. Subsequent 3744 // materialization calls will resume it when necessary. If the bitcode 3745 // file is old, the symbol table will be at the end instead and will not 3746 // have been seen yet. In this case, just finish the parse now. 3747 if (SeenValueSymbolTable) { 3748 NextUnreadBit = Stream.GetCurrentBitNo(); 3749 // After the VST has been parsed, we need to make sure intrinsic name 3750 // are auto-upgraded. 3751 return globalCleanup(); 3752 } 3753 break; 3754 case bitc::USELIST_BLOCK_ID: 3755 if (Error Err = parseUseLists()) 3756 return Err; 3757 break; 3758 case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID: 3759 if (Error Err = parseOperandBundleTags()) 3760 return Err; 3761 break; 3762 case bitc::SYNC_SCOPE_NAMES_BLOCK_ID: 3763 if (Error Err = parseSyncScopeNames()) 3764 return Err; 3765 break; 3766 } 3767 continue; 3768 3769 case BitstreamEntry::Record: 3770 // The interesting case. 3771 break; 3772 } 3773 3774 // Read a record. 3775 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 3776 if (!MaybeBitCode) 3777 return MaybeBitCode.takeError(); 3778 switch (unsigned BitCode = MaybeBitCode.get()) { 3779 default: break; // Default behavior, ignore unknown content. 3780 case bitc::MODULE_CODE_VERSION: { 3781 Expected<unsigned> VersionOrErr = parseVersionRecord(Record); 3782 if (!VersionOrErr) 3783 return VersionOrErr.takeError(); 3784 UseRelativeIDs = *VersionOrErr >= 1; 3785 break; 3786 } 3787 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 3788 if (ResolvedDataLayout) 3789 return error("target triple too late in module"); 3790 std::string S; 3791 if (convertToString(Record, 0, S)) 3792 return error("Invalid record"); 3793 TheModule->setTargetTriple(S); 3794 break; 3795 } 3796 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 3797 if (ResolvedDataLayout) 3798 return error("datalayout too late in module"); 3799 std::string S; 3800 if (convertToString(Record, 0, S)) 3801 return error("Invalid record"); 3802 TheModule->setDataLayout(S); 3803 break; 3804 } 3805 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 3806 std::string S; 3807 if (convertToString(Record, 0, S)) 3808 return error("Invalid record"); 3809 TheModule->setModuleInlineAsm(S); 3810 break; 3811 } 3812 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 3813 // Deprecated, but still needed to read old bitcode files. 3814 std::string S; 3815 if (convertToString(Record, 0, S)) 3816 return error("Invalid record"); 3817 // Ignore value. 3818 break; 3819 } 3820 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 3821 std::string S; 3822 if (convertToString(Record, 0, S)) 3823 return error("Invalid record"); 3824 SectionTable.push_back(S); 3825 break; 3826 } 3827 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 3828 std::string S; 3829 if (convertToString(Record, 0, S)) 3830 return error("Invalid record"); 3831 GCTable.push_back(S); 3832 break; 3833 } 3834 case bitc::MODULE_CODE_COMDAT: 3835 if (Error Err = parseComdatRecord(Record)) 3836 return Err; 3837 break; 3838 case bitc::MODULE_CODE_GLOBALVAR: 3839 if (Error Err = parseGlobalVarRecord(Record)) 3840 return Err; 3841 break; 3842 case bitc::MODULE_CODE_FUNCTION: 3843 ResolveDataLayout(); 3844 if (Error Err = parseFunctionRecord(Record)) 3845 return Err; 3846 break; 3847 case bitc::MODULE_CODE_IFUNC: 3848 case bitc::MODULE_CODE_ALIAS: 3849 case bitc::MODULE_CODE_ALIAS_OLD: 3850 if (Error Err = parseGlobalIndirectSymbolRecord(BitCode, Record)) 3851 return Err; 3852 break; 3853 /// MODULE_CODE_VSTOFFSET: [offset] 3854 case bitc::MODULE_CODE_VSTOFFSET: 3855 if (Record.empty()) 3856 return error("Invalid record"); 3857 // Note that we subtract 1 here because the offset is relative to one word 3858 // before the start of the identification or module block, which was 3859 // historically always the start of the regular bitcode header. 3860 VSTOffset = Record[0] - 1; 3861 break; 3862 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 3863 case bitc::MODULE_CODE_SOURCE_FILENAME: 3864 SmallString<128> ValueName; 3865 if (convertToString(Record, 0, ValueName)) 3866 return error("Invalid record"); 3867 TheModule->setSourceFileName(ValueName); 3868 break; 3869 } 3870 Record.clear(); 3871 } 3872 } 3873 3874 Error BitcodeReader::parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata, 3875 bool IsImporting, 3876 DataLayoutCallbackTy DataLayoutCallback) { 3877 TheModule = M; 3878 MDLoader = MetadataLoader(Stream, *M, ValueList, IsImporting, 3879 [&](unsigned ID) { return getTypeByID(ID); }); 3880 return parseModule(0, ShouldLazyLoadMetadata, DataLayoutCallback); 3881 } 3882 3883 Error BitcodeReader::typeCheckLoadStoreInst(Type *ValType, Type *PtrType) { 3884 if (!isa<PointerType>(PtrType)) 3885 return error("Load/Store operand is not a pointer type"); 3886 3887 if (!cast<PointerType>(PtrType)->isOpaqueOrPointeeTypeMatches(ValType)) 3888 return error("Explicit load/store type does not match pointee " 3889 "type of pointer operand"); 3890 if (!PointerType::isLoadableOrStorableType(ValType)) 3891 return error("Cannot load/store from pointer"); 3892 return Error::success(); 3893 } 3894 3895 void BitcodeReader::propagateAttributeTypes(CallBase *CB, 3896 ArrayRef<Type *> ArgsTys) { 3897 for (unsigned i = 0; i != CB->arg_size(); ++i) { 3898 for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet, 3899 Attribute::InAlloca}) { 3900 if (!CB->paramHasAttr(i, Kind) || 3901 CB->getParamAttr(i, Kind).getValueAsType()) 3902 continue; 3903 3904 CB->removeParamAttr(i, Kind); 3905 3906 Type *PtrEltTy = cast<PointerType>(ArgsTys[i])->getElementType(); 3907 Attribute NewAttr; 3908 switch (Kind) { 3909 case Attribute::ByVal: 3910 NewAttr = Attribute::getWithByValType(Context, PtrEltTy); 3911 break; 3912 case Attribute::StructRet: 3913 NewAttr = Attribute::getWithStructRetType(Context, PtrEltTy); 3914 break; 3915 case Attribute::InAlloca: 3916 NewAttr = Attribute::getWithInAllocaType(Context, PtrEltTy); 3917 break; 3918 default: 3919 llvm_unreachable("not an upgraded type attribute"); 3920 } 3921 3922 CB->addParamAttr(i, NewAttr); 3923 } 3924 } 3925 3926 switch (CB->getIntrinsicID()) { 3927 case Intrinsic::preserve_array_access_index: 3928 case Intrinsic::preserve_struct_access_index: 3929 if (!CB->getAttributes().getParamElementType(0)) { 3930 Type *ElTy = cast<PointerType>(ArgsTys[0])->getElementType(); 3931 Attribute NewAttr = Attribute::get(Context, Attribute::ElementType, ElTy); 3932 CB->addParamAttr(0, NewAttr); 3933 } 3934 break; 3935 default: 3936 break; 3937 } 3938 } 3939 3940 /// Lazily parse the specified function body block. 3941 Error BitcodeReader::parseFunctionBody(Function *F) { 3942 if (Error Err = Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 3943 return Err; 3944 3945 // Unexpected unresolved metadata when parsing function. 3946 if (MDLoader->hasFwdRefs()) 3947 return error("Invalid function metadata: incoming forward references"); 3948 3949 InstructionList.clear(); 3950 unsigned ModuleValueListSize = ValueList.size(); 3951 unsigned ModuleMDLoaderSize = MDLoader->size(); 3952 3953 // Add all the function arguments to the value table. 3954 #ifndef NDEBUG 3955 unsigned ArgNo = 0; 3956 FunctionType *FTy = FunctionTypes[F]; 3957 #endif 3958 for (Argument &I : F->args()) { 3959 assert(I.getType() == FTy->getParamType(ArgNo++) && 3960 "Incorrect fully specified type for Function Argument"); 3961 ValueList.push_back(&I); 3962 } 3963 unsigned NextValueNo = ValueList.size(); 3964 BasicBlock *CurBB = nullptr; 3965 unsigned CurBBNo = 0; 3966 3967 DebugLoc LastLoc; 3968 auto getLastInstruction = [&]() -> Instruction * { 3969 if (CurBB && !CurBB->empty()) 3970 return &CurBB->back(); 3971 else if (CurBBNo && FunctionBBs[CurBBNo - 1] && 3972 !FunctionBBs[CurBBNo - 1]->empty()) 3973 return &FunctionBBs[CurBBNo - 1]->back(); 3974 return nullptr; 3975 }; 3976 3977 std::vector<OperandBundleDef> OperandBundles; 3978 3979 // Read all the records. 3980 SmallVector<uint64_t, 64> Record; 3981 3982 while (true) { 3983 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 3984 if (!MaybeEntry) 3985 return MaybeEntry.takeError(); 3986 llvm::BitstreamEntry Entry = MaybeEntry.get(); 3987 3988 switch (Entry.Kind) { 3989 case BitstreamEntry::Error: 3990 return error("Malformed block"); 3991 case BitstreamEntry::EndBlock: 3992 goto OutOfRecordLoop; 3993 3994 case BitstreamEntry::SubBlock: 3995 switch (Entry.ID) { 3996 default: // Skip unknown content. 3997 if (Error Err = Stream.SkipBlock()) 3998 return Err; 3999 break; 4000 case bitc::CONSTANTS_BLOCK_ID: 4001 if (Error Err = parseConstants()) 4002 return Err; 4003 NextValueNo = ValueList.size(); 4004 break; 4005 case bitc::VALUE_SYMTAB_BLOCK_ID: 4006 if (Error Err = parseValueSymbolTable()) 4007 return Err; 4008 break; 4009 case bitc::METADATA_ATTACHMENT_ID: 4010 if (Error Err = MDLoader->parseMetadataAttachment(*F, InstructionList)) 4011 return Err; 4012 break; 4013 case bitc::METADATA_BLOCK_ID: 4014 assert(DeferredMetadataInfo.empty() && 4015 "Must read all module-level metadata before function-level"); 4016 if (Error Err = MDLoader->parseFunctionMetadata()) 4017 return Err; 4018 break; 4019 case bitc::USELIST_BLOCK_ID: 4020 if (Error Err = parseUseLists()) 4021 return Err; 4022 break; 4023 } 4024 continue; 4025 4026 case BitstreamEntry::Record: 4027 // The interesting case. 4028 break; 4029 } 4030 4031 // Read a record. 4032 Record.clear(); 4033 Instruction *I = nullptr; 4034 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 4035 if (!MaybeBitCode) 4036 return MaybeBitCode.takeError(); 4037 switch (unsigned BitCode = MaybeBitCode.get()) { 4038 default: // Default behavior: reject 4039 return error("Invalid value"); 4040 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks] 4041 if (Record.empty() || Record[0] == 0) 4042 return error("Invalid record"); 4043 // Create all the basic blocks for the function. 4044 FunctionBBs.resize(Record[0]); 4045 4046 // See if anything took the address of blocks in this function. 4047 auto BBFRI = BasicBlockFwdRefs.find(F); 4048 if (BBFRI == BasicBlockFwdRefs.end()) { 4049 for (BasicBlock *&BB : FunctionBBs) 4050 BB = BasicBlock::Create(Context, "", F); 4051 } else { 4052 auto &BBRefs = BBFRI->second; 4053 // Check for invalid basic block references. 4054 if (BBRefs.size() > FunctionBBs.size()) 4055 return error("Invalid ID"); 4056 assert(!BBRefs.empty() && "Unexpected empty array"); 4057 assert(!BBRefs.front() && "Invalid reference to entry block"); 4058 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E; 4059 ++I) 4060 if (I < RE && BBRefs[I]) { 4061 BBRefs[I]->insertInto(F); 4062 FunctionBBs[I] = BBRefs[I]; 4063 } else { 4064 FunctionBBs[I] = BasicBlock::Create(Context, "", F); 4065 } 4066 4067 // Erase from the table. 4068 BasicBlockFwdRefs.erase(BBFRI); 4069 } 4070 4071 CurBB = FunctionBBs[0]; 4072 continue; 4073 } 4074 4075 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 4076 // This record indicates that the last instruction is at the same 4077 // location as the previous instruction with a location. 4078 I = getLastInstruction(); 4079 4080 if (!I) 4081 return error("Invalid record"); 4082 I->setDebugLoc(LastLoc); 4083 I = nullptr; 4084 continue; 4085 4086 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 4087 I = getLastInstruction(); 4088 if (!I || Record.size() < 4) 4089 return error("Invalid record"); 4090 4091 unsigned Line = Record[0], Col = Record[1]; 4092 unsigned ScopeID = Record[2], IAID = Record[3]; 4093 bool isImplicitCode = Record.size() == 5 && Record[4]; 4094 4095 MDNode *Scope = nullptr, *IA = nullptr; 4096 if (ScopeID) { 4097 Scope = dyn_cast_or_null<MDNode>( 4098 MDLoader->getMetadataFwdRefOrLoad(ScopeID - 1)); 4099 if (!Scope) 4100 return error("Invalid record"); 4101 } 4102 if (IAID) { 4103 IA = dyn_cast_or_null<MDNode>( 4104 MDLoader->getMetadataFwdRefOrLoad(IAID - 1)); 4105 if (!IA) 4106 return error("Invalid record"); 4107 } 4108 LastLoc = DILocation::get(Scope->getContext(), Line, Col, Scope, IA, 4109 isImplicitCode); 4110 I->setDebugLoc(LastLoc); 4111 I = nullptr; 4112 continue; 4113 } 4114 case bitc::FUNC_CODE_INST_UNOP: { // UNOP: [opval, ty, opcode] 4115 unsigned OpNum = 0; 4116 Value *LHS; 4117 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 4118 OpNum+1 > Record.size()) 4119 return error("Invalid record"); 4120 4121 int Opc = getDecodedUnaryOpcode(Record[OpNum++], LHS->getType()); 4122 if (Opc == -1) 4123 return error("Invalid record"); 4124 I = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS); 4125 InstructionList.push_back(I); 4126 if (OpNum < Record.size()) { 4127 if (isa<FPMathOperator>(I)) { 4128 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 4129 if (FMF.any()) 4130 I->setFastMathFlags(FMF); 4131 } 4132 } 4133 break; 4134 } 4135 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 4136 unsigned OpNum = 0; 4137 Value *LHS, *RHS; 4138 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 4139 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 4140 OpNum+1 > Record.size()) 4141 return error("Invalid record"); 4142 4143 int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 4144 if (Opc == -1) 4145 return error("Invalid record"); 4146 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 4147 InstructionList.push_back(I); 4148 if (OpNum < Record.size()) { 4149 if (Opc == Instruction::Add || 4150 Opc == Instruction::Sub || 4151 Opc == Instruction::Mul || 4152 Opc == Instruction::Shl) { 4153 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 4154 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 4155 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 4156 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 4157 } else if (Opc == Instruction::SDiv || 4158 Opc == Instruction::UDiv || 4159 Opc == Instruction::LShr || 4160 Opc == Instruction::AShr) { 4161 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 4162 cast<BinaryOperator>(I)->setIsExact(true); 4163 } else if (isa<FPMathOperator>(I)) { 4164 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 4165 if (FMF.any()) 4166 I->setFastMathFlags(FMF); 4167 } 4168 4169 } 4170 break; 4171 } 4172 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 4173 unsigned OpNum = 0; 4174 Value *Op; 4175 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4176 OpNum+2 != Record.size()) 4177 return error("Invalid record"); 4178 4179 Type *ResTy = getTypeByID(Record[OpNum]); 4180 int Opc = getDecodedCastOpcode(Record[OpNum + 1]); 4181 if (Opc == -1 || !ResTy) 4182 return error("Invalid record"); 4183 Instruction *Temp = nullptr; 4184 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) { 4185 if (Temp) { 4186 InstructionList.push_back(Temp); 4187 assert(CurBB && "No current BB?"); 4188 CurBB->getInstList().push_back(Temp); 4189 } 4190 } else { 4191 auto CastOp = (Instruction::CastOps)Opc; 4192 if (!CastInst::castIsValid(CastOp, Op, ResTy)) 4193 return error("Invalid cast"); 4194 I = CastInst::Create(CastOp, Op, ResTy); 4195 } 4196 InstructionList.push_back(I); 4197 break; 4198 } 4199 case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD: 4200 case bitc::FUNC_CODE_INST_GEP_OLD: 4201 case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands] 4202 unsigned OpNum = 0; 4203 4204 Type *Ty; 4205 bool InBounds; 4206 4207 if (BitCode == bitc::FUNC_CODE_INST_GEP) { 4208 InBounds = Record[OpNum++]; 4209 Ty = getTypeByID(Record[OpNum++]); 4210 } else { 4211 InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD; 4212 Ty = nullptr; 4213 } 4214 4215 Value *BasePtr; 4216 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr)) 4217 return error("Invalid record"); 4218 4219 if (!Ty) { 4220 Ty = cast<PointerType>(BasePtr->getType()->getScalarType()) 4221 ->getElementType(); 4222 } else if (!cast<PointerType>(BasePtr->getType()->getScalarType()) 4223 ->isOpaqueOrPointeeTypeMatches(Ty)) { 4224 return error( 4225 "Explicit gep type does not match pointee type of pointer operand"); 4226 } 4227 4228 SmallVector<Value*, 16> GEPIdx; 4229 while (OpNum != Record.size()) { 4230 Value *Op; 4231 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4232 return error("Invalid record"); 4233 GEPIdx.push_back(Op); 4234 } 4235 4236 I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx); 4237 4238 InstructionList.push_back(I); 4239 if (InBounds) 4240 cast<GetElementPtrInst>(I)->setIsInBounds(true); 4241 break; 4242 } 4243 4244 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 4245 // EXTRACTVAL: [opty, opval, n x indices] 4246 unsigned OpNum = 0; 4247 Value *Agg; 4248 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 4249 return error("Invalid record"); 4250 Type *Ty = Agg->getType(); 4251 4252 unsigned RecSize = Record.size(); 4253 if (OpNum == RecSize) 4254 return error("EXTRACTVAL: Invalid instruction with 0 indices"); 4255 4256 SmallVector<unsigned, 4> EXTRACTVALIdx; 4257 for (; OpNum != RecSize; ++OpNum) { 4258 bool IsArray = Ty->isArrayTy(); 4259 bool IsStruct = Ty->isStructTy(); 4260 uint64_t Index = Record[OpNum]; 4261 4262 if (!IsStruct && !IsArray) 4263 return error("EXTRACTVAL: Invalid type"); 4264 if ((unsigned)Index != Index) 4265 return error("Invalid value"); 4266 if (IsStruct && Index >= Ty->getStructNumElements()) 4267 return error("EXTRACTVAL: Invalid struct index"); 4268 if (IsArray && Index >= Ty->getArrayNumElements()) 4269 return error("EXTRACTVAL: Invalid array index"); 4270 EXTRACTVALIdx.push_back((unsigned)Index); 4271 4272 if (IsStruct) 4273 Ty = Ty->getStructElementType(Index); 4274 else 4275 Ty = Ty->getArrayElementType(); 4276 } 4277 4278 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 4279 InstructionList.push_back(I); 4280 break; 4281 } 4282 4283 case bitc::FUNC_CODE_INST_INSERTVAL: { 4284 // INSERTVAL: [opty, opval, opty, opval, n x indices] 4285 unsigned OpNum = 0; 4286 Value *Agg; 4287 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 4288 return error("Invalid record"); 4289 Value *Val; 4290 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 4291 return error("Invalid record"); 4292 4293 unsigned RecSize = Record.size(); 4294 if (OpNum == RecSize) 4295 return error("INSERTVAL: Invalid instruction with 0 indices"); 4296 4297 SmallVector<unsigned, 4> INSERTVALIdx; 4298 Type *CurTy = Agg->getType(); 4299 for (; OpNum != RecSize; ++OpNum) { 4300 bool IsArray = CurTy->isArrayTy(); 4301 bool IsStruct = CurTy->isStructTy(); 4302 uint64_t Index = Record[OpNum]; 4303 4304 if (!IsStruct && !IsArray) 4305 return error("INSERTVAL: Invalid type"); 4306 if ((unsigned)Index != Index) 4307 return error("Invalid value"); 4308 if (IsStruct && Index >= CurTy->getStructNumElements()) 4309 return error("INSERTVAL: Invalid struct index"); 4310 if (IsArray && Index >= CurTy->getArrayNumElements()) 4311 return error("INSERTVAL: Invalid array index"); 4312 4313 INSERTVALIdx.push_back((unsigned)Index); 4314 if (IsStruct) 4315 CurTy = CurTy->getStructElementType(Index); 4316 else 4317 CurTy = CurTy->getArrayElementType(); 4318 } 4319 4320 if (CurTy != Val->getType()) 4321 return error("Inserted value type doesn't match aggregate type"); 4322 4323 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 4324 InstructionList.push_back(I); 4325 break; 4326 } 4327 4328 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 4329 // obsolete form of select 4330 // handles select i1 ... in old bitcode 4331 unsigned OpNum = 0; 4332 Value *TrueVal, *FalseVal, *Cond; 4333 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 4334 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 4335 popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond)) 4336 return error("Invalid record"); 4337 4338 I = SelectInst::Create(Cond, TrueVal, FalseVal); 4339 InstructionList.push_back(I); 4340 break; 4341 } 4342 4343 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 4344 // new form of select 4345 // handles select i1 or select [N x i1] 4346 unsigned OpNum = 0; 4347 Value *TrueVal, *FalseVal, *Cond; 4348 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 4349 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 4350 getValueTypePair(Record, OpNum, NextValueNo, Cond)) 4351 return error("Invalid record"); 4352 4353 // select condition can be either i1 or [N x i1] 4354 if (VectorType* vector_type = 4355 dyn_cast<VectorType>(Cond->getType())) { 4356 // expect <n x i1> 4357 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 4358 return error("Invalid type for value"); 4359 } else { 4360 // expect i1 4361 if (Cond->getType() != Type::getInt1Ty(Context)) 4362 return error("Invalid type for value"); 4363 } 4364 4365 I = SelectInst::Create(Cond, TrueVal, FalseVal); 4366 InstructionList.push_back(I); 4367 if (OpNum < Record.size() && isa<FPMathOperator>(I)) { 4368 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 4369 if (FMF.any()) 4370 I->setFastMathFlags(FMF); 4371 } 4372 break; 4373 } 4374 4375 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 4376 unsigned OpNum = 0; 4377 Value *Vec, *Idx; 4378 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 4379 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 4380 return error("Invalid record"); 4381 if (!Vec->getType()->isVectorTy()) 4382 return error("Invalid type for value"); 4383 I = ExtractElementInst::Create(Vec, Idx); 4384 InstructionList.push_back(I); 4385 break; 4386 } 4387 4388 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 4389 unsigned OpNum = 0; 4390 Value *Vec, *Elt, *Idx; 4391 if (getValueTypePair(Record, OpNum, NextValueNo, Vec)) 4392 return error("Invalid record"); 4393 if (!Vec->getType()->isVectorTy()) 4394 return error("Invalid type for value"); 4395 if (popValue(Record, OpNum, NextValueNo, 4396 cast<VectorType>(Vec->getType())->getElementType(), Elt) || 4397 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 4398 return error("Invalid record"); 4399 I = InsertElementInst::Create(Vec, Elt, Idx); 4400 InstructionList.push_back(I); 4401 break; 4402 } 4403 4404 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 4405 unsigned OpNum = 0; 4406 Value *Vec1, *Vec2, *Mask; 4407 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) || 4408 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2)) 4409 return error("Invalid record"); 4410 4411 if (getValueTypePair(Record, OpNum, NextValueNo, Mask)) 4412 return error("Invalid record"); 4413 if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy()) 4414 return error("Invalid type for value"); 4415 4416 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 4417 InstructionList.push_back(I); 4418 break; 4419 } 4420 4421 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 4422 // Old form of ICmp/FCmp returning bool 4423 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 4424 // both legal on vectors but had different behaviour. 4425 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 4426 // FCmp/ICmp returning bool or vector of bool 4427 4428 unsigned OpNum = 0; 4429 Value *LHS, *RHS; 4430 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 4431 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS)) 4432 return error("Invalid record"); 4433 4434 if (OpNum >= Record.size()) 4435 return error( 4436 "Invalid record: operand number exceeded available operands"); 4437 4438 unsigned PredVal = Record[OpNum]; 4439 bool IsFP = LHS->getType()->isFPOrFPVectorTy(); 4440 FastMathFlags FMF; 4441 if (IsFP && Record.size() > OpNum+1) 4442 FMF = getDecodedFastMathFlags(Record[++OpNum]); 4443 4444 if (OpNum+1 != Record.size()) 4445 return error("Invalid record"); 4446 4447 if (LHS->getType()->isFPOrFPVectorTy()) 4448 I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS); 4449 else 4450 I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS); 4451 4452 if (FMF.any()) 4453 I->setFastMathFlags(FMF); 4454 InstructionList.push_back(I); 4455 break; 4456 } 4457 4458 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 4459 { 4460 unsigned Size = Record.size(); 4461 if (Size == 0) { 4462 I = ReturnInst::Create(Context); 4463 InstructionList.push_back(I); 4464 break; 4465 } 4466 4467 unsigned OpNum = 0; 4468 Value *Op = nullptr; 4469 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4470 return error("Invalid record"); 4471 if (OpNum != Record.size()) 4472 return error("Invalid record"); 4473 4474 I = ReturnInst::Create(Context, Op); 4475 InstructionList.push_back(I); 4476 break; 4477 } 4478 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 4479 if (Record.size() != 1 && Record.size() != 3) 4480 return error("Invalid record"); 4481 BasicBlock *TrueDest = getBasicBlock(Record[0]); 4482 if (!TrueDest) 4483 return error("Invalid record"); 4484 4485 if (Record.size() == 1) { 4486 I = BranchInst::Create(TrueDest); 4487 InstructionList.push_back(I); 4488 } 4489 else { 4490 BasicBlock *FalseDest = getBasicBlock(Record[1]); 4491 Value *Cond = getValue(Record, 2, NextValueNo, 4492 Type::getInt1Ty(Context)); 4493 if (!FalseDest || !Cond) 4494 return error("Invalid record"); 4495 I = BranchInst::Create(TrueDest, FalseDest, Cond); 4496 InstructionList.push_back(I); 4497 } 4498 break; 4499 } 4500 case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#] 4501 if (Record.size() != 1 && Record.size() != 2) 4502 return error("Invalid record"); 4503 unsigned Idx = 0; 4504 Value *CleanupPad = 4505 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4506 if (!CleanupPad) 4507 return error("Invalid record"); 4508 BasicBlock *UnwindDest = nullptr; 4509 if (Record.size() == 2) { 4510 UnwindDest = getBasicBlock(Record[Idx++]); 4511 if (!UnwindDest) 4512 return error("Invalid record"); 4513 } 4514 4515 I = CleanupReturnInst::Create(CleanupPad, UnwindDest); 4516 InstructionList.push_back(I); 4517 break; 4518 } 4519 case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#] 4520 if (Record.size() != 2) 4521 return error("Invalid record"); 4522 unsigned Idx = 0; 4523 Value *CatchPad = 4524 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4525 if (!CatchPad) 4526 return error("Invalid record"); 4527 BasicBlock *BB = getBasicBlock(Record[Idx++]); 4528 if (!BB) 4529 return error("Invalid record"); 4530 4531 I = CatchReturnInst::Create(CatchPad, BB); 4532 InstructionList.push_back(I); 4533 break; 4534 } 4535 case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?] 4536 // We must have, at minimum, the outer scope and the number of arguments. 4537 if (Record.size() < 2) 4538 return error("Invalid record"); 4539 4540 unsigned Idx = 0; 4541 4542 Value *ParentPad = 4543 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4544 4545 unsigned NumHandlers = Record[Idx++]; 4546 4547 SmallVector<BasicBlock *, 2> Handlers; 4548 for (unsigned Op = 0; Op != NumHandlers; ++Op) { 4549 BasicBlock *BB = getBasicBlock(Record[Idx++]); 4550 if (!BB) 4551 return error("Invalid record"); 4552 Handlers.push_back(BB); 4553 } 4554 4555 BasicBlock *UnwindDest = nullptr; 4556 if (Idx + 1 == Record.size()) { 4557 UnwindDest = getBasicBlock(Record[Idx++]); 4558 if (!UnwindDest) 4559 return error("Invalid record"); 4560 } 4561 4562 if (Record.size() != Idx) 4563 return error("Invalid record"); 4564 4565 auto *CatchSwitch = 4566 CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers); 4567 for (BasicBlock *Handler : Handlers) 4568 CatchSwitch->addHandler(Handler); 4569 I = CatchSwitch; 4570 InstructionList.push_back(I); 4571 break; 4572 } 4573 case bitc::FUNC_CODE_INST_CATCHPAD: 4574 case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*] 4575 // We must have, at minimum, the outer scope and the number of arguments. 4576 if (Record.size() < 2) 4577 return error("Invalid record"); 4578 4579 unsigned Idx = 0; 4580 4581 Value *ParentPad = 4582 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4583 4584 unsigned NumArgOperands = Record[Idx++]; 4585 4586 SmallVector<Value *, 2> Args; 4587 for (unsigned Op = 0; Op != NumArgOperands; ++Op) { 4588 Value *Val; 4589 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 4590 return error("Invalid record"); 4591 Args.push_back(Val); 4592 } 4593 4594 if (Record.size() != Idx) 4595 return error("Invalid record"); 4596 4597 if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD) 4598 I = CleanupPadInst::Create(ParentPad, Args); 4599 else 4600 I = CatchPadInst::Create(ParentPad, Args); 4601 InstructionList.push_back(I); 4602 break; 4603 } 4604 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 4605 // Check magic 4606 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { 4607 // "New" SwitchInst format with case ranges. The changes to write this 4608 // format were reverted but we still recognize bitcode that uses it. 4609 // Hopefully someday we will have support for case ranges and can use 4610 // this format again. 4611 4612 Type *OpTy = getTypeByID(Record[1]); 4613 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); 4614 4615 Value *Cond = getValue(Record, 2, NextValueNo, OpTy); 4616 BasicBlock *Default = getBasicBlock(Record[3]); 4617 if (!OpTy || !Cond || !Default) 4618 return error("Invalid record"); 4619 4620 unsigned NumCases = Record[4]; 4621 4622 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 4623 InstructionList.push_back(SI); 4624 4625 unsigned CurIdx = 5; 4626 for (unsigned i = 0; i != NumCases; ++i) { 4627 SmallVector<ConstantInt*, 1> CaseVals; 4628 unsigned NumItems = Record[CurIdx++]; 4629 for (unsigned ci = 0; ci != NumItems; ++ci) { 4630 bool isSingleNumber = Record[CurIdx++]; 4631 4632 APInt Low; 4633 unsigned ActiveWords = 1; 4634 if (ValueBitWidth > 64) 4635 ActiveWords = Record[CurIdx++]; 4636 Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 4637 ValueBitWidth); 4638 CurIdx += ActiveWords; 4639 4640 if (!isSingleNumber) { 4641 ActiveWords = 1; 4642 if (ValueBitWidth > 64) 4643 ActiveWords = Record[CurIdx++]; 4644 APInt High = readWideAPInt( 4645 makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth); 4646 CurIdx += ActiveWords; 4647 4648 // FIXME: It is not clear whether values in the range should be 4649 // compared as signed or unsigned values. The partially 4650 // implemented changes that used this format in the past used 4651 // unsigned comparisons. 4652 for ( ; Low.ule(High); ++Low) 4653 CaseVals.push_back(ConstantInt::get(Context, Low)); 4654 } else 4655 CaseVals.push_back(ConstantInt::get(Context, Low)); 4656 } 4657 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); 4658 for (ConstantInt *Cst : CaseVals) 4659 SI->addCase(Cst, DestBB); 4660 } 4661 I = SI; 4662 break; 4663 } 4664 4665 // Old SwitchInst format without case ranges. 4666 4667 if (Record.size() < 3 || (Record.size() & 1) == 0) 4668 return error("Invalid record"); 4669 Type *OpTy = getTypeByID(Record[0]); 4670 Value *Cond = getValue(Record, 1, NextValueNo, OpTy); 4671 BasicBlock *Default = getBasicBlock(Record[2]); 4672 if (!OpTy || !Cond || !Default) 4673 return error("Invalid record"); 4674 unsigned NumCases = (Record.size()-3)/2; 4675 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 4676 InstructionList.push_back(SI); 4677 for (unsigned i = 0, e = NumCases; i != e; ++i) { 4678 ConstantInt *CaseVal = 4679 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy)); 4680 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 4681 if (!CaseVal || !DestBB) { 4682 delete SI; 4683 return error("Invalid record"); 4684 } 4685 SI->addCase(CaseVal, DestBB); 4686 } 4687 I = SI; 4688 break; 4689 } 4690 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 4691 if (Record.size() < 2) 4692 return error("Invalid record"); 4693 Type *OpTy = getTypeByID(Record[0]); 4694 Value *Address = getValue(Record, 1, NextValueNo, OpTy); 4695 if (!OpTy || !Address) 4696 return error("Invalid record"); 4697 unsigned NumDests = Record.size()-2; 4698 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 4699 InstructionList.push_back(IBI); 4700 for (unsigned i = 0, e = NumDests; i != e; ++i) { 4701 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 4702 IBI->addDestination(DestBB); 4703 } else { 4704 delete IBI; 4705 return error("Invalid record"); 4706 } 4707 } 4708 I = IBI; 4709 break; 4710 } 4711 4712 case bitc::FUNC_CODE_INST_INVOKE: { 4713 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 4714 if (Record.size() < 4) 4715 return error("Invalid record"); 4716 unsigned OpNum = 0; 4717 AttributeList PAL = getAttributes(Record[OpNum++]); 4718 unsigned CCInfo = Record[OpNum++]; 4719 BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]); 4720 BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]); 4721 4722 FunctionType *FTy = nullptr; 4723 if ((CCInfo >> 13) & 1) { 4724 FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])); 4725 if (!FTy) 4726 return error("Explicit invoke type is not a function type"); 4727 } 4728 4729 Value *Callee; 4730 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 4731 return error("Invalid record"); 4732 4733 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 4734 if (!CalleeTy) 4735 return error("Callee is not a pointer"); 4736 if (!FTy) { 4737 FTy = dyn_cast<FunctionType>( 4738 cast<PointerType>(Callee->getType())->getElementType()); 4739 if (!FTy) 4740 return error("Callee is not of pointer to function type"); 4741 } else if (!CalleeTy->isOpaqueOrPointeeTypeMatches(FTy)) 4742 return error("Explicit invoke type does not match pointee type of " 4743 "callee operand"); 4744 if (Record.size() < FTy->getNumParams() + OpNum) 4745 return error("Insufficient operands to call"); 4746 4747 SmallVector<Value*, 16> Ops; 4748 SmallVector<Type *, 16> ArgsTys; 4749 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 4750 Ops.push_back(getValue(Record, OpNum, NextValueNo, 4751 FTy->getParamType(i))); 4752 ArgsTys.push_back(FTy->getParamType(i)); 4753 if (!Ops.back()) 4754 return error("Invalid record"); 4755 } 4756 4757 if (!FTy->isVarArg()) { 4758 if (Record.size() != OpNum) 4759 return error("Invalid record"); 4760 } else { 4761 // Read type/value pairs for varargs params. 4762 while (OpNum != Record.size()) { 4763 Value *Op; 4764 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4765 return error("Invalid record"); 4766 Ops.push_back(Op); 4767 ArgsTys.push_back(Op->getType()); 4768 } 4769 } 4770 4771 I = InvokeInst::Create(FTy, Callee, NormalBB, UnwindBB, Ops, 4772 OperandBundles); 4773 OperandBundles.clear(); 4774 InstructionList.push_back(I); 4775 cast<InvokeInst>(I)->setCallingConv( 4776 static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo)); 4777 cast<InvokeInst>(I)->setAttributes(PAL); 4778 propagateAttributeTypes(cast<CallBase>(I), ArgsTys); 4779 4780 break; 4781 } 4782 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 4783 unsigned Idx = 0; 4784 Value *Val = nullptr; 4785 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 4786 return error("Invalid record"); 4787 I = ResumeInst::Create(Val); 4788 InstructionList.push_back(I); 4789 break; 4790 } 4791 case bitc::FUNC_CODE_INST_CALLBR: { 4792 // CALLBR: [attr, cc, norm, transfs, fty, fnid, args] 4793 unsigned OpNum = 0; 4794 AttributeList PAL = getAttributes(Record[OpNum++]); 4795 unsigned CCInfo = Record[OpNum++]; 4796 4797 BasicBlock *DefaultDest = getBasicBlock(Record[OpNum++]); 4798 unsigned NumIndirectDests = Record[OpNum++]; 4799 SmallVector<BasicBlock *, 16> IndirectDests; 4800 for (unsigned i = 0, e = NumIndirectDests; i != e; ++i) 4801 IndirectDests.push_back(getBasicBlock(Record[OpNum++])); 4802 4803 FunctionType *FTy = nullptr; 4804 if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) { 4805 FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])); 4806 if (!FTy) 4807 return error("Explicit call type is not a function type"); 4808 } 4809 4810 Value *Callee; 4811 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 4812 return error("Invalid record"); 4813 4814 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 4815 if (!OpTy) 4816 return error("Callee is not a pointer type"); 4817 if (!FTy) { 4818 FTy = dyn_cast<FunctionType>( 4819 cast<PointerType>(Callee->getType())->getElementType()); 4820 if (!FTy) 4821 return error("Callee is not of pointer to function type"); 4822 } else if (!OpTy->isOpaqueOrPointeeTypeMatches(FTy)) 4823 return error("Explicit call type does not match pointee type of " 4824 "callee operand"); 4825 if (Record.size() < FTy->getNumParams() + OpNum) 4826 return error("Insufficient operands to call"); 4827 4828 SmallVector<Value*, 16> Args; 4829 // Read the fixed params. 4830 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 4831 if (FTy->getParamType(i)->isLabelTy()) 4832 Args.push_back(getBasicBlock(Record[OpNum])); 4833 else 4834 Args.push_back(getValue(Record, OpNum, NextValueNo, 4835 FTy->getParamType(i))); 4836 if (!Args.back()) 4837 return error("Invalid record"); 4838 } 4839 4840 // Read type/value pairs for varargs params. 4841 if (!FTy->isVarArg()) { 4842 if (OpNum != Record.size()) 4843 return error("Invalid record"); 4844 } else { 4845 while (OpNum != Record.size()) { 4846 Value *Op; 4847 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4848 return error("Invalid record"); 4849 Args.push_back(Op); 4850 } 4851 } 4852 4853 I = CallBrInst::Create(FTy, Callee, DefaultDest, IndirectDests, Args, 4854 OperandBundles); 4855 OperandBundles.clear(); 4856 InstructionList.push_back(I); 4857 cast<CallBrInst>(I)->setCallingConv( 4858 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 4859 cast<CallBrInst>(I)->setAttributes(PAL); 4860 break; 4861 } 4862 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 4863 I = new UnreachableInst(Context); 4864 InstructionList.push_back(I); 4865 break; 4866 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 4867 if (Record.empty()) 4868 return error("Invalid record"); 4869 // The first record specifies the type. 4870 Type *Ty = getTypeByID(Record[0]); 4871 if (!Ty) 4872 return error("Invalid record"); 4873 4874 // Phi arguments are pairs of records of [value, basic block]. 4875 // There is an optional final record for fast-math-flags if this phi has a 4876 // floating-point type. 4877 size_t NumArgs = (Record.size() - 1) / 2; 4878 PHINode *PN = PHINode::Create(Ty, NumArgs); 4879 if ((Record.size() - 1) % 2 == 1 && !isa<FPMathOperator>(PN)) 4880 return error("Invalid record"); 4881 InstructionList.push_back(PN); 4882 4883 for (unsigned i = 0; i != NumArgs; i++) { 4884 Value *V; 4885 // With the new function encoding, it is possible that operands have 4886 // negative IDs (for forward references). Use a signed VBR 4887 // representation to keep the encoding small. 4888 if (UseRelativeIDs) 4889 V = getValueSigned(Record, i * 2 + 1, NextValueNo, Ty); 4890 else 4891 V = getValue(Record, i * 2 + 1, NextValueNo, Ty); 4892 BasicBlock *BB = getBasicBlock(Record[i * 2 + 2]); 4893 if (!V || !BB) 4894 return error("Invalid record"); 4895 PN->addIncoming(V, BB); 4896 } 4897 I = PN; 4898 4899 // If there are an even number of records, the final record must be FMF. 4900 if (Record.size() % 2 == 0) { 4901 assert(isa<FPMathOperator>(I) && "Unexpected phi type"); 4902 FastMathFlags FMF = getDecodedFastMathFlags(Record[Record.size() - 1]); 4903 if (FMF.any()) 4904 I->setFastMathFlags(FMF); 4905 } 4906 4907 break; 4908 } 4909 4910 case bitc::FUNC_CODE_INST_LANDINGPAD: 4911 case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: { 4912 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 4913 unsigned Idx = 0; 4914 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) { 4915 if (Record.size() < 3) 4916 return error("Invalid record"); 4917 } else { 4918 assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD); 4919 if (Record.size() < 4) 4920 return error("Invalid record"); 4921 } 4922 Type *Ty = getTypeByID(Record[Idx++]); 4923 if (!Ty) 4924 return error("Invalid record"); 4925 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) { 4926 Value *PersFn = nullptr; 4927 if (getValueTypePair(Record, Idx, NextValueNo, PersFn)) 4928 return error("Invalid record"); 4929 4930 if (!F->hasPersonalityFn()) 4931 F->setPersonalityFn(cast<Constant>(PersFn)); 4932 else if (F->getPersonalityFn() != cast<Constant>(PersFn)) 4933 return error("Personality function mismatch"); 4934 } 4935 4936 bool IsCleanup = !!Record[Idx++]; 4937 unsigned NumClauses = Record[Idx++]; 4938 LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses); 4939 LP->setCleanup(IsCleanup); 4940 for (unsigned J = 0; J != NumClauses; ++J) { 4941 LandingPadInst::ClauseType CT = 4942 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 4943 Value *Val; 4944 4945 if (getValueTypePair(Record, Idx, NextValueNo, Val)) { 4946 delete LP; 4947 return error("Invalid record"); 4948 } 4949 4950 assert((CT != LandingPadInst::Catch || 4951 !isa<ArrayType>(Val->getType())) && 4952 "Catch clause has a invalid type!"); 4953 assert((CT != LandingPadInst::Filter || 4954 isa<ArrayType>(Val->getType())) && 4955 "Filter clause has invalid type!"); 4956 LP->addClause(cast<Constant>(Val)); 4957 } 4958 4959 I = LP; 4960 InstructionList.push_back(I); 4961 break; 4962 } 4963 4964 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 4965 if (Record.size() != 4) 4966 return error("Invalid record"); 4967 using APV = AllocaPackedValues; 4968 const uint64_t Rec = Record[3]; 4969 const bool InAlloca = Bitfield::get<APV::UsedWithInAlloca>(Rec); 4970 const bool SwiftError = Bitfield::get<APV::SwiftError>(Rec); 4971 Type *Ty = getTypeByID(Record[0]); 4972 if (!Bitfield::get<APV::ExplicitType>(Rec)) { 4973 auto *PTy = dyn_cast_or_null<PointerType>(Ty); 4974 if (!PTy) 4975 return error("Old-style alloca with a non-pointer type"); 4976 Ty = PTy->getElementType(); 4977 } 4978 Type *OpTy = getTypeByID(Record[1]); 4979 Value *Size = getFnValueByID(Record[2], OpTy); 4980 MaybeAlign Align; 4981 uint64_t AlignExp = 4982 Bitfield::get<APV::AlignLower>(Rec) | 4983 (Bitfield::get<APV::AlignUpper>(Rec) << APV::AlignLower::Bits); 4984 if (Error Err = parseAlignmentValue(AlignExp, Align)) { 4985 return Err; 4986 } 4987 if (!Ty || !Size) 4988 return error("Invalid record"); 4989 4990 // FIXME: Make this an optional field. 4991 const DataLayout &DL = TheModule->getDataLayout(); 4992 unsigned AS = DL.getAllocaAddrSpace(); 4993 4994 SmallPtrSet<Type *, 4> Visited; 4995 if (!Align && !Ty->isSized(&Visited)) 4996 return error("alloca of unsized type"); 4997 if (!Align) 4998 Align = DL.getPrefTypeAlign(Ty); 4999 5000 AllocaInst *AI = new AllocaInst(Ty, AS, Size, *Align); 5001 AI->setUsedWithInAlloca(InAlloca); 5002 AI->setSwiftError(SwiftError); 5003 I = AI; 5004 InstructionList.push_back(I); 5005 break; 5006 } 5007 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 5008 unsigned OpNum = 0; 5009 Value *Op; 5010 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 5011 (OpNum + 2 != Record.size() && OpNum + 3 != Record.size())) 5012 return error("Invalid record"); 5013 5014 if (!isa<PointerType>(Op->getType())) 5015 return error("Load operand is not a pointer type"); 5016 5017 Type *Ty = nullptr; 5018 if (OpNum + 3 == Record.size()) { 5019 Ty = getTypeByID(Record[OpNum++]); 5020 } else { 5021 Ty = cast<PointerType>(Op->getType())->getElementType(); 5022 } 5023 5024 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 5025 return Err; 5026 5027 MaybeAlign Align; 5028 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 5029 return Err; 5030 SmallPtrSet<Type *, 4> Visited; 5031 if (!Align && !Ty->isSized(&Visited)) 5032 return error("load of unsized type"); 5033 if (!Align) 5034 Align = TheModule->getDataLayout().getABITypeAlign(Ty); 5035 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align); 5036 InstructionList.push_back(I); 5037 break; 5038 } 5039 case bitc::FUNC_CODE_INST_LOADATOMIC: { 5040 // LOADATOMIC: [opty, op, align, vol, ordering, ssid] 5041 unsigned OpNum = 0; 5042 Value *Op; 5043 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 5044 (OpNum + 4 != Record.size() && OpNum + 5 != Record.size())) 5045 return error("Invalid record"); 5046 5047 if (!isa<PointerType>(Op->getType())) 5048 return error("Load operand is not a pointer type"); 5049 5050 Type *Ty = nullptr; 5051 if (OpNum + 5 == Record.size()) { 5052 Ty = getTypeByID(Record[OpNum++]); 5053 } else { 5054 Ty = cast<PointerType>(Op->getType())->getElementType(); 5055 } 5056 5057 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 5058 return Err; 5059 5060 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 5061 if (Ordering == AtomicOrdering::NotAtomic || 5062 Ordering == AtomicOrdering::Release || 5063 Ordering == AtomicOrdering::AcquireRelease) 5064 return error("Invalid record"); 5065 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 5066 return error("Invalid record"); 5067 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 5068 5069 MaybeAlign Align; 5070 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 5071 return Err; 5072 if (!Align) 5073 return error("Alignment missing from atomic load"); 5074 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align, Ordering, SSID); 5075 InstructionList.push_back(I); 5076 break; 5077 } 5078 case bitc::FUNC_CODE_INST_STORE: 5079 case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol] 5080 unsigned OpNum = 0; 5081 Value *Val, *Ptr; 5082 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 5083 (BitCode == bitc::FUNC_CODE_INST_STORE 5084 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 5085 : popValue(Record, OpNum, NextValueNo, 5086 cast<PointerType>(Ptr->getType())->getElementType(), 5087 Val)) || 5088 OpNum + 2 != Record.size()) 5089 return error("Invalid record"); 5090 5091 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 5092 return Err; 5093 MaybeAlign Align; 5094 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 5095 return Err; 5096 SmallPtrSet<Type *, 4> Visited; 5097 if (!Align && !Val->getType()->isSized(&Visited)) 5098 return error("store of unsized type"); 5099 if (!Align) 5100 Align = TheModule->getDataLayout().getABITypeAlign(Val->getType()); 5101 I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align); 5102 InstructionList.push_back(I); 5103 break; 5104 } 5105 case bitc::FUNC_CODE_INST_STOREATOMIC: 5106 case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: { 5107 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, ssid] 5108 unsigned OpNum = 0; 5109 Value *Val, *Ptr; 5110 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 5111 !isa<PointerType>(Ptr->getType()) || 5112 (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC 5113 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 5114 : popValue(Record, OpNum, NextValueNo, 5115 cast<PointerType>(Ptr->getType())->getElementType(), 5116 Val)) || 5117 OpNum + 4 != Record.size()) 5118 return error("Invalid record"); 5119 5120 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 5121 return Err; 5122 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 5123 if (Ordering == AtomicOrdering::NotAtomic || 5124 Ordering == AtomicOrdering::Acquire || 5125 Ordering == AtomicOrdering::AcquireRelease) 5126 return error("Invalid record"); 5127 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 5128 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 5129 return error("Invalid record"); 5130 5131 MaybeAlign Align; 5132 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 5133 return Err; 5134 if (!Align) 5135 return error("Alignment missing from atomic store"); 5136 I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align, Ordering, SSID); 5137 InstructionList.push_back(I); 5138 break; 5139 } 5140 case bitc::FUNC_CODE_INST_CMPXCHG_OLD: { 5141 // CMPXCHG_OLD: [ptrty, ptr, cmp, val, vol, ordering, synchscope, 5142 // failure_ordering?, weak?] 5143 const size_t NumRecords = Record.size(); 5144 unsigned OpNum = 0; 5145 Value *Ptr = nullptr; 5146 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr)) 5147 return error("Invalid record"); 5148 5149 if (!isa<PointerType>(Ptr->getType())) 5150 return error("Cmpxchg operand is not a pointer type"); 5151 5152 Value *Cmp = nullptr; 5153 if (popValue(Record, OpNum, NextValueNo, 5154 cast<PointerType>(Ptr->getType())->getPointerElementType(), 5155 Cmp)) 5156 return error("Invalid record"); 5157 5158 Value *New = nullptr; 5159 if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) || 5160 NumRecords < OpNum + 3 || NumRecords > OpNum + 5) 5161 return error("Invalid record"); 5162 5163 const AtomicOrdering SuccessOrdering = 5164 getDecodedOrdering(Record[OpNum + 1]); 5165 if (SuccessOrdering == AtomicOrdering::NotAtomic || 5166 SuccessOrdering == AtomicOrdering::Unordered) 5167 return error("Invalid record"); 5168 5169 const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]); 5170 5171 if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType())) 5172 return Err; 5173 5174 const AtomicOrdering FailureOrdering = 5175 NumRecords < 7 5176 ? AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering) 5177 : getDecodedOrdering(Record[OpNum + 3]); 5178 5179 if (FailureOrdering == AtomicOrdering::NotAtomic || 5180 FailureOrdering == AtomicOrdering::Unordered) 5181 return error("Invalid record"); 5182 5183 const Align Alignment( 5184 TheModule->getDataLayout().getTypeStoreSize(Cmp->getType())); 5185 5186 I = new AtomicCmpXchgInst(Ptr, Cmp, New, Alignment, SuccessOrdering, 5187 FailureOrdering, SSID); 5188 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 5189 5190 if (NumRecords < 8) { 5191 // Before weak cmpxchgs existed, the instruction simply returned the 5192 // value loaded from memory, so bitcode files from that era will be 5193 // expecting the first component of a modern cmpxchg. 5194 CurBB->getInstList().push_back(I); 5195 I = ExtractValueInst::Create(I, 0); 5196 } else { 5197 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum + 4]); 5198 } 5199 5200 InstructionList.push_back(I); 5201 break; 5202 } 5203 case bitc::FUNC_CODE_INST_CMPXCHG: { 5204 // CMPXCHG: [ptrty, ptr, cmp, val, vol, success_ordering, synchscope, 5205 // failure_ordering, weak, align?] 5206 const size_t NumRecords = Record.size(); 5207 unsigned OpNum = 0; 5208 Value *Ptr = nullptr; 5209 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr)) 5210 return error("Invalid record"); 5211 5212 if (!isa<PointerType>(Ptr->getType())) 5213 return error("Cmpxchg operand is not a pointer type"); 5214 5215 Value *Cmp = nullptr; 5216 if (getValueTypePair(Record, OpNum, NextValueNo, Cmp)) 5217 return error("Invalid record"); 5218 5219 Value *Val = nullptr; 5220 if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), Val)) 5221 return error("Invalid record"); 5222 5223 if (NumRecords < OpNum + 3 || NumRecords > OpNum + 6) 5224 return error("Invalid record"); 5225 5226 const bool IsVol = Record[OpNum]; 5227 5228 const AtomicOrdering SuccessOrdering = 5229 getDecodedOrdering(Record[OpNum + 1]); 5230 if (!AtomicCmpXchgInst::isValidSuccessOrdering(SuccessOrdering)) 5231 return error("Invalid cmpxchg success ordering"); 5232 5233 const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]); 5234 5235 if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType())) 5236 return Err; 5237 5238 const AtomicOrdering FailureOrdering = 5239 getDecodedOrdering(Record[OpNum + 3]); 5240 if (!AtomicCmpXchgInst::isValidFailureOrdering(FailureOrdering)) 5241 return error("Invalid cmpxchg failure ordering"); 5242 5243 const bool IsWeak = Record[OpNum + 4]; 5244 5245 MaybeAlign Alignment; 5246 5247 if (NumRecords == (OpNum + 6)) { 5248 if (Error Err = parseAlignmentValue(Record[OpNum + 5], Alignment)) 5249 return Err; 5250 } 5251 if (!Alignment) 5252 Alignment = 5253 Align(TheModule->getDataLayout().getTypeStoreSize(Cmp->getType())); 5254 5255 I = new AtomicCmpXchgInst(Ptr, Cmp, Val, *Alignment, SuccessOrdering, 5256 FailureOrdering, SSID); 5257 cast<AtomicCmpXchgInst>(I)->setVolatile(IsVol); 5258 cast<AtomicCmpXchgInst>(I)->setWeak(IsWeak); 5259 5260 InstructionList.push_back(I); 5261 break; 5262 } 5263 case bitc::FUNC_CODE_INST_ATOMICRMW_OLD: 5264 case bitc::FUNC_CODE_INST_ATOMICRMW: { 5265 // ATOMICRMW_OLD: [ptrty, ptr, val, op, vol, ordering, ssid, align?] 5266 // ATOMICRMW: [ptrty, ptr, valty, val, op, vol, ordering, ssid, align?] 5267 const size_t NumRecords = Record.size(); 5268 unsigned OpNum = 0; 5269 5270 Value *Ptr = nullptr; 5271 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr)) 5272 return error("Invalid record"); 5273 5274 if (!isa<PointerType>(Ptr->getType())) 5275 return error("Invalid record"); 5276 5277 Value *Val = nullptr; 5278 if (BitCode == bitc::FUNC_CODE_INST_ATOMICRMW_OLD) { 5279 if (popValue(Record, OpNum, NextValueNo, 5280 cast<PointerType>(Ptr->getType())->getPointerElementType(), 5281 Val)) 5282 return error("Invalid record"); 5283 } else { 5284 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 5285 return error("Invalid record"); 5286 } 5287 5288 if (!(NumRecords == (OpNum + 4) || NumRecords == (OpNum + 5))) 5289 return error("Invalid record"); 5290 5291 const AtomicRMWInst::BinOp Operation = 5292 getDecodedRMWOperation(Record[OpNum]); 5293 if (Operation < AtomicRMWInst::FIRST_BINOP || 5294 Operation > AtomicRMWInst::LAST_BINOP) 5295 return error("Invalid record"); 5296 5297 const bool IsVol = Record[OpNum + 1]; 5298 5299 const AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 5300 if (Ordering == AtomicOrdering::NotAtomic || 5301 Ordering == AtomicOrdering::Unordered) 5302 return error("Invalid record"); 5303 5304 const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 5305 5306 MaybeAlign Alignment; 5307 5308 if (NumRecords == (OpNum + 5)) { 5309 if (Error Err = parseAlignmentValue(Record[OpNum + 4], Alignment)) 5310 return Err; 5311 } 5312 5313 if (!Alignment) 5314 Alignment = 5315 Align(TheModule->getDataLayout().getTypeStoreSize(Val->getType())); 5316 5317 I = new AtomicRMWInst(Operation, Ptr, Val, *Alignment, Ordering, SSID); 5318 cast<AtomicRMWInst>(I)->setVolatile(IsVol); 5319 5320 InstructionList.push_back(I); 5321 break; 5322 } 5323 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, ssid] 5324 if (2 != Record.size()) 5325 return error("Invalid record"); 5326 AtomicOrdering Ordering = getDecodedOrdering(Record[0]); 5327 if (Ordering == AtomicOrdering::NotAtomic || 5328 Ordering == AtomicOrdering::Unordered || 5329 Ordering == AtomicOrdering::Monotonic) 5330 return error("Invalid record"); 5331 SyncScope::ID SSID = getDecodedSyncScopeID(Record[1]); 5332 I = new FenceInst(Context, Ordering, SSID); 5333 InstructionList.push_back(I); 5334 break; 5335 } 5336 case bitc::FUNC_CODE_INST_CALL: { 5337 // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...] 5338 if (Record.size() < 3) 5339 return error("Invalid record"); 5340 5341 unsigned OpNum = 0; 5342 AttributeList PAL = getAttributes(Record[OpNum++]); 5343 unsigned CCInfo = Record[OpNum++]; 5344 5345 FastMathFlags FMF; 5346 if ((CCInfo >> bitc::CALL_FMF) & 1) { 5347 FMF = getDecodedFastMathFlags(Record[OpNum++]); 5348 if (!FMF.any()) 5349 return error("Fast math flags indicator set for call with no FMF"); 5350 } 5351 5352 FunctionType *FTy = nullptr; 5353 if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) { 5354 FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])); 5355 if (!FTy) 5356 return error("Explicit call type is not a function type"); 5357 } 5358 5359 Value *Callee; 5360 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 5361 return error("Invalid record"); 5362 5363 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 5364 if (!OpTy) 5365 return error("Callee is not a pointer type"); 5366 if (!FTy) { 5367 FTy = dyn_cast<FunctionType>( 5368 cast<PointerType>(Callee->getType())->getElementType()); 5369 if (!FTy) 5370 return error("Callee is not of pointer to function type"); 5371 } else if (!OpTy->isOpaqueOrPointeeTypeMatches(FTy)) 5372 return error("Explicit call type does not match pointee type of " 5373 "callee operand"); 5374 if (Record.size() < FTy->getNumParams() + OpNum) 5375 return error("Insufficient operands to call"); 5376 5377 SmallVector<Value*, 16> Args; 5378 SmallVector<Type *, 16> ArgsTys; 5379 // Read the fixed params. 5380 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 5381 if (FTy->getParamType(i)->isLabelTy()) 5382 Args.push_back(getBasicBlock(Record[OpNum])); 5383 else 5384 Args.push_back(getValue(Record, OpNum, NextValueNo, 5385 FTy->getParamType(i))); 5386 ArgsTys.push_back(FTy->getParamType(i)); 5387 if (!Args.back()) 5388 return error("Invalid record"); 5389 } 5390 5391 // Read type/value pairs for varargs params. 5392 if (!FTy->isVarArg()) { 5393 if (OpNum != Record.size()) 5394 return error("Invalid record"); 5395 } else { 5396 while (OpNum != Record.size()) { 5397 Value *Op; 5398 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 5399 return error("Invalid record"); 5400 Args.push_back(Op); 5401 ArgsTys.push_back(Op->getType()); 5402 } 5403 } 5404 5405 I = CallInst::Create(FTy, Callee, Args, OperandBundles); 5406 OperandBundles.clear(); 5407 InstructionList.push_back(I); 5408 cast<CallInst>(I)->setCallingConv( 5409 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 5410 CallInst::TailCallKind TCK = CallInst::TCK_None; 5411 if (CCInfo & 1 << bitc::CALL_TAIL) 5412 TCK = CallInst::TCK_Tail; 5413 if (CCInfo & (1 << bitc::CALL_MUSTTAIL)) 5414 TCK = CallInst::TCK_MustTail; 5415 if (CCInfo & (1 << bitc::CALL_NOTAIL)) 5416 TCK = CallInst::TCK_NoTail; 5417 cast<CallInst>(I)->setTailCallKind(TCK); 5418 cast<CallInst>(I)->setAttributes(PAL); 5419 propagateAttributeTypes(cast<CallBase>(I), ArgsTys); 5420 if (FMF.any()) { 5421 if (!isa<FPMathOperator>(I)) 5422 return error("Fast-math-flags specified for call without " 5423 "floating-point scalar or vector return type"); 5424 I->setFastMathFlags(FMF); 5425 } 5426 break; 5427 } 5428 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 5429 if (Record.size() < 3) 5430 return error("Invalid record"); 5431 Type *OpTy = getTypeByID(Record[0]); 5432 Value *Op = getValue(Record, 1, NextValueNo, OpTy); 5433 Type *ResTy = getTypeByID(Record[2]); 5434 if (!OpTy || !Op || !ResTy) 5435 return error("Invalid record"); 5436 I = new VAArgInst(Op, ResTy); 5437 InstructionList.push_back(I); 5438 break; 5439 } 5440 5441 case bitc::FUNC_CODE_OPERAND_BUNDLE: { 5442 // A call or an invoke can be optionally prefixed with some variable 5443 // number of operand bundle blocks. These blocks are read into 5444 // OperandBundles and consumed at the next call or invoke instruction. 5445 5446 if (Record.empty() || Record[0] >= BundleTags.size()) 5447 return error("Invalid record"); 5448 5449 std::vector<Value *> Inputs; 5450 5451 unsigned OpNum = 1; 5452 while (OpNum != Record.size()) { 5453 Value *Op; 5454 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 5455 return error("Invalid record"); 5456 Inputs.push_back(Op); 5457 } 5458 5459 OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs)); 5460 continue; 5461 } 5462 5463 case bitc::FUNC_CODE_INST_FREEZE: { // FREEZE: [opty,opval] 5464 unsigned OpNum = 0; 5465 Value *Op = nullptr; 5466 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 5467 return error("Invalid record"); 5468 if (OpNum != Record.size()) 5469 return error("Invalid record"); 5470 5471 I = new FreezeInst(Op); 5472 InstructionList.push_back(I); 5473 break; 5474 } 5475 } 5476 5477 // Add instruction to end of current BB. If there is no current BB, reject 5478 // this file. 5479 if (!CurBB) { 5480 I->deleteValue(); 5481 return error("Invalid instruction with no BB"); 5482 } 5483 if (!OperandBundles.empty()) { 5484 I->deleteValue(); 5485 return error("Operand bundles found with no consumer"); 5486 } 5487 CurBB->getInstList().push_back(I); 5488 5489 // If this was a terminator instruction, move to the next block. 5490 if (I->isTerminator()) { 5491 ++CurBBNo; 5492 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr; 5493 } 5494 5495 // Non-void values get registered in the value table for future use. 5496 if (!I->getType()->isVoidTy()) 5497 ValueList.assignValue(I, NextValueNo++); 5498 } 5499 5500 OutOfRecordLoop: 5501 5502 if (!OperandBundles.empty()) 5503 return error("Operand bundles found with no consumer"); 5504 5505 // Check the function list for unresolved values. 5506 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 5507 if (!A->getParent()) { 5508 // We found at least one unresolved value. Nuke them all to avoid leaks. 5509 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 5510 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) { 5511 A->replaceAllUsesWith(UndefValue::get(A->getType())); 5512 delete A; 5513 } 5514 } 5515 return error("Never resolved value found in function"); 5516 } 5517 } 5518 5519 // Unexpected unresolved metadata about to be dropped. 5520 if (MDLoader->hasFwdRefs()) 5521 return error("Invalid function metadata: outgoing forward refs"); 5522 5523 // Trim the value list down to the size it was before we parsed this function. 5524 ValueList.shrinkTo(ModuleValueListSize); 5525 MDLoader->shrinkTo(ModuleMDLoaderSize); 5526 std::vector<BasicBlock*>().swap(FunctionBBs); 5527 return Error::success(); 5528 } 5529 5530 /// Find the function body in the bitcode stream 5531 Error BitcodeReader::findFunctionInStream( 5532 Function *F, 5533 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) { 5534 while (DeferredFunctionInfoIterator->second == 0) { 5535 // This is the fallback handling for the old format bitcode that 5536 // didn't contain the function index in the VST, or when we have 5537 // an anonymous function which would not have a VST entry. 5538 // Assert that we have one of those two cases. 5539 assert(VSTOffset == 0 || !F->hasName()); 5540 // Parse the next body in the stream and set its position in the 5541 // DeferredFunctionInfo map. 5542 if (Error Err = rememberAndSkipFunctionBodies()) 5543 return Err; 5544 } 5545 return Error::success(); 5546 } 5547 5548 SyncScope::ID BitcodeReader::getDecodedSyncScopeID(unsigned Val) { 5549 if (Val == SyncScope::SingleThread || Val == SyncScope::System) 5550 return SyncScope::ID(Val); 5551 if (Val >= SSIDs.size()) 5552 return SyncScope::System; // Map unknown synchronization scopes to system. 5553 return SSIDs[Val]; 5554 } 5555 5556 //===----------------------------------------------------------------------===// 5557 // GVMaterializer implementation 5558 //===----------------------------------------------------------------------===// 5559 5560 Error BitcodeReader::materialize(GlobalValue *GV) { 5561 Function *F = dyn_cast<Function>(GV); 5562 // If it's not a function or is already material, ignore the request. 5563 if (!F || !F->isMaterializable()) 5564 return Error::success(); 5565 5566 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 5567 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 5568 // If its position is recorded as 0, its body is somewhere in the stream 5569 // but we haven't seen it yet. 5570 if (DFII->second == 0) 5571 if (Error Err = findFunctionInStream(F, DFII)) 5572 return Err; 5573 5574 // Materialize metadata before parsing any function bodies. 5575 if (Error Err = materializeMetadata()) 5576 return Err; 5577 5578 // Move the bit stream to the saved position of the deferred function body. 5579 if (Error JumpFailed = Stream.JumpToBit(DFII->second)) 5580 return JumpFailed; 5581 if (Error Err = parseFunctionBody(F)) 5582 return Err; 5583 F->setIsMaterializable(false); 5584 5585 if (StripDebugInfo) 5586 stripDebugInfo(*F); 5587 5588 // Upgrade any old intrinsic calls in the function. 5589 for (auto &I : UpgradedIntrinsics) { 5590 for (User *U : llvm::make_early_inc_range(I.first->materialized_users())) 5591 if (CallInst *CI = dyn_cast<CallInst>(U)) 5592 UpgradeIntrinsicCall(CI, I.second); 5593 } 5594 5595 // Update calls to the remangled intrinsics 5596 for (auto &I : RemangledIntrinsics) 5597 for (User *U : llvm::make_early_inc_range(I.first->materialized_users())) 5598 // Don't expect any other users than call sites 5599 cast<CallBase>(U)->setCalledFunction(I.second); 5600 5601 // Finish fn->subprogram upgrade for materialized functions. 5602 if (DISubprogram *SP = MDLoader->lookupSubprogramForFunction(F)) 5603 F->setSubprogram(SP); 5604 5605 // Check if the TBAA Metadata are valid, otherwise we will need to strip them. 5606 if (!MDLoader->isStrippingTBAA()) { 5607 for (auto &I : instructions(F)) { 5608 MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa); 5609 if (!TBAA || TBAAVerifyHelper.visitTBAAMetadata(I, TBAA)) 5610 continue; 5611 MDLoader->setStripTBAA(true); 5612 stripTBAA(F->getParent()); 5613 } 5614 } 5615 5616 for (auto &I : instructions(F)) { 5617 // "Upgrade" older incorrect branch weights by dropping them. 5618 if (auto *MD = I.getMetadata(LLVMContext::MD_prof)) { 5619 if (MD->getOperand(0) != nullptr && isa<MDString>(MD->getOperand(0))) { 5620 MDString *MDS = cast<MDString>(MD->getOperand(0)); 5621 StringRef ProfName = MDS->getString(); 5622 // Check consistency of !prof branch_weights metadata. 5623 if (!ProfName.equals("branch_weights")) 5624 continue; 5625 unsigned ExpectedNumOperands = 0; 5626 if (BranchInst *BI = dyn_cast<BranchInst>(&I)) 5627 ExpectedNumOperands = BI->getNumSuccessors(); 5628 else if (SwitchInst *SI = dyn_cast<SwitchInst>(&I)) 5629 ExpectedNumOperands = SI->getNumSuccessors(); 5630 else if (isa<CallInst>(&I)) 5631 ExpectedNumOperands = 1; 5632 else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(&I)) 5633 ExpectedNumOperands = IBI->getNumDestinations(); 5634 else if (isa<SelectInst>(&I)) 5635 ExpectedNumOperands = 2; 5636 else 5637 continue; // ignore and continue. 5638 5639 // If branch weight doesn't match, just strip branch weight. 5640 if (MD->getNumOperands() != 1 + ExpectedNumOperands) 5641 I.setMetadata(LLVMContext::MD_prof, nullptr); 5642 } 5643 } 5644 5645 // Remove incompatible attributes on function calls. 5646 if (auto *CI = dyn_cast<CallBase>(&I)) { 5647 CI->removeRetAttrs(AttributeFuncs::typeIncompatible( 5648 CI->getFunctionType()->getReturnType())); 5649 5650 for (unsigned ArgNo = 0; ArgNo < CI->arg_size(); ++ArgNo) 5651 CI->removeParamAttrs(ArgNo, AttributeFuncs::typeIncompatible( 5652 CI->getArgOperand(ArgNo)->getType())); 5653 } 5654 } 5655 5656 // Look for functions that rely on old function attribute behavior. 5657 UpgradeFunctionAttributes(*F); 5658 5659 // Bring in any functions that this function forward-referenced via 5660 // blockaddresses. 5661 return materializeForwardReferencedFunctions(); 5662 } 5663 5664 Error BitcodeReader::materializeModule() { 5665 if (Error Err = materializeMetadata()) 5666 return Err; 5667 5668 // Promise to materialize all forward references. 5669 WillMaterializeAllForwardRefs = true; 5670 5671 // Iterate over the module, deserializing any functions that are still on 5672 // disk. 5673 for (Function &F : *TheModule) { 5674 if (Error Err = materialize(&F)) 5675 return Err; 5676 } 5677 // At this point, if there are any function bodies, parse the rest of 5678 // the bits in the module past the last function block we have recorded 5679 // through either lazy scanning or the VST. 5680 if (LastFunctionBlockBit || NextUnreadBit) 5681 if (Error Err = parseModule(LastFunctionBlockBit > NextUnreadBit 5682 ? LastFunctionBlockBit 5683 : NextUnreadBit)) 5684 return Err; 5685 5686 // Check that all block address forward references got resolved (as we 5687 // promised above). 5688 if (!BasicBlockFwdRefs.empty()) 5689 return error("Never resolved function from blockaddress"); 5690 5691 // Upgrade any intrinsic calls that slipped through (should not happen!) and 5692 // delete the old functions to clean up. We can't do this unless the entire 5693 // module is materialized because there could always be another function body 5694 // with calls to the old function. 5695 for (auto &I : UpgradedIntrinsics) { 5696 for (auto *U : I.first->users()) { 5697 if (CallInst *CI = dyn_cast<CallInst>(U)) 5698 UpgradeIntrinsicCall(CI, I.second); 5699 } 5700 if (!I.first->use_empty()) 5701 I.first->replaceAllUsesWith(I.second); 5702 I.first->eraseFromParent(); 5703 } 5704 UpgradedIntrinsics.clear(); 5705 // Do the same for remangled intrinsics 5706 for (auto &I : RemangledIntrinsics) { 5707 I.first->replaceAllUsesWith(I.second); 5708 I.first->eraseFromParent(); 5709 } 5710 RemangledIntrinsics.clear(); 5711 5712 UpgradeDebugInfo(*TheModule); 5713 5714 UpgradeModuleFlags(*TheModule); 5715 5716 UpgradeARCRuntime(*TheModule); 5717 5718 return Error::success(); 5719 } 5720 5721 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const { 5722 return IdentifiedStructTypes; 5723 } 5724 5725 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader( 5726 BitstreamCursor Cursor, StringRef Strtab, ModuleSummaryIndex &TheIndex, 5727 StringRef ModulePath, unsigned ModuleId) 5728 : BitcodeReaderBase(std::move(Cursor), Strtab), TheIndex(TheIndex), 5729 ModulePath(ModulePath), ModuleId(ModuleId) {} 5730 5731 void ModuleSummaryIndexBitcodeReader::addThisModule() { 5732 TheIndex.addModule(ModulePath, ModuleId); 5733 } 5734 5735 ModuleSummaryIndex::ModuleInfo * 5736 ModuleSummaryIndexBitcodeReader::getThisModule() { 5737 return TheIndex.getModule(ModulePath); 5738 } 5739 5740 std::pair<ValueInfo, GlobalValue::GUID> 5741 ModuleSummaryIndexBitcodeReader::getValueInfoFromValueId(unsigned ValueId) { 5742 auto VGI = ValueIdToValueInfoMap[ValueId]; 5743 assert(VGI.first); 5744 return VGI; 5745 } 5746 5747 void ModuleSummaryIndexBitcodeReader::setValueGUID( 5748 uint64_t ValueID, StringRef ValueName, GlobalValue::LinkageTypes Linkage, 5749 StringRef SourceFileName) { 5750 std::string GlobalId = 5751 GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName); 5752 auto ValueGUID = GlobalValue::getGUID(GlobalId); 5753 auto OriginalNameID = ValueGUID; 5754 if (GlobalValue::isLocalLinkage(Linkage)) 5755 OriginalNameID = GlobalValue::getGUID(ValueName); 5756 if (PrintSummaryGUIDs) 5757 dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is " 5758 << ValueName << "\n"; 5759 5760 // UseStrtab is false for legacy summary formats and value names are 5761 // created on stack. In that case we save the name in a string saver in 5762 // the index so that the value name can be recorded. 5763 ValueIdToValueInfoMap[ValueID] = std::make_pair( 5764 TheIndex.getOrInsertValueInfo( 5765 ValueGUID, 5766 UseStrtab ? ValueName : TheIndex.saveString(ValueName)), 5767 OriginalNameID); 5768 } 5769 5770 // Specialized value symbol table parser used when reading module index 5771 // blocks where we don't actually create global values. The parsed information 5772 // is saved in the bitcode reader for use when later parsing summaries. 5773 Error ModuleSummaryIndexBitcodeReader::parseValueSymbolTable( 5774 uint64_t Offset, 5775 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) { 5776 // With a strtab the VST is not required to parse the summary. 5777 if (UseStrtab) 5778 return Error::success(); 5779 5780 assert(Offset > 0 && "Expected non-zero VST offset"); 5781 Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream); 5782 if (!MaybeCurrentBit) 5783 return MaybeCurrentBit.takeError(); 5784 uint64_t CurrentBit = MaybeCurrentBit.get(); 5785 5786 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 5787 return Err; 5788 5789 SmallVector<uint64_t, 64> Record; 5790 5791 // Read all the records for this value table. 5792 SmallString<128> ValueName; 5793 5794 while (true) { 5795 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 5796 if (!MaybeEntry) 5797 return MaybeEntry.takeError(); 5798 BitstreamEntry Entry = MaybeEntry.get(); 5799 5800 switch (Entry.Kind) { 5801 case BitstreamEntry::SubBlock: // Handled for us already. 5802 case BitstreamEntry::Error: 5803 return error("Malformed block"); 5804 case BitstreamEntry::EndBlock: 5805 // Done parsing VST, jump back to wherever we came from. 5806 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 5807 return JumpFailed; 5808 return Error::success(); 5809 case BitstreamEntry::Record: 5810 // The interesting case. 5811 break; 5812 } 5813 5814 // Read a record. 5815 Record.clear(); 5816 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 5817 if (!MaybeRecord) 5818 return MaybeRecord.takeError(); 5819 switch (MaybeRecord.get()) { 5820 default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records). 5821 break; 5822 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 5823 if (convertToString(Record, 1, ValueName)) 5824 return error("Invalid record"); 5825 unsigned ValueID = Record[0]; 5826 assert(!SourceFileName.empty()); 5827 auto VLI = ValueIdToLinkageMap.find(ValueID); 5828 assert(VLI != ValueIdToLinkageMap.end() && 5829 "No linkage found for VST entry?"); 5830 auto Linkage = VLI->second; 5831 setValueGUID(ValueID, ValueName, Linkage, SourceFileName); 5832 ValueName.clear(); 5833 break; 5834 } 5835 case bitc::VST_CODE_FNENTRY: { 5836 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 5837 if (convertToString(Record, 2, ValueName)) 5838 return error("Invalid record"); 5839 unsigned ValueID = Record[0]; 5840 assert(!SourceFileName.empty()); 5841 auto VLI = ValueIdToLinkageMap.find(ValueID); 5842 assert(VLI != ValueIdToLinkageMap.end() && 5843 "No linkage found for VST entry?"); 5844 auto Linkage = VLI->second; 5845 setValueGUID(ValueID, ValueName, Linkage, SourceFileName); 5846 ValueName.clear(); 5847 break; 5848 } 5849 case bitc::VST_CODE_COMBINED_ENTRY: { 5850 // VST_CODE_COMBINED_ENTRY: [valueid, refguid] 5851 unsigned ValueID = Record[0]; 5852 GlobalValue::GUID RefGUID = Record[1]; 5853 // The "original name", which is the second value of the pair will be 5854 // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index. 5855 ValueIdToValueInfoMap[ValueID] = 5856 std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID); 5857 break; 5858 } 5859 } 5860 } 5861 } 5862 5863 // Parse just the blocks needed for building the index out of the module. 5864 // At the end of this routine the module Index is populated with a map 5865 // from global value id to GlobalValueSummary objects. 5866 Error ModuleSummaryIndexBitcodeReader::parseModule() { 5867 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 5868 return Err; 5869 5870 SmallVector<uint64_t, 64> Record; 5871 DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap; 5872 unsigned ValueId = 0; 5873 5874 // Read the index for this module. 5875 while (true) { 5876 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 5877 if (!MaybeEntry) 5878 return MaybeEntry.takeError(); 5879 llvm::BitstreamEntry Entry = MaybeEntry.get(); 5880 5881 switch (Entry.Kind) { 5882 case BitstreamEntry::Error: 5883 return error("Malformed block"); 5884 case BitstreamEntry::EndBlock: 5885 return Error::success(); 5886 5887 case BitstreamEntry::SubBlock: 5888 switch (Entry.ID) { 5889 default: // Skip unknown content. 5890 if (Error Err = Stream.SkipBlock()) 5891 return Err; 5892 break; 5893 case bitc::BLOCKINFO_BLOCK_ID: 5894 // Need to parse these to get abbrev ids (e.g. for VST) 5895 if (readBlockInfo()) 5896 return error("Malformed block"); 5897 break; 5898 case bitc::VALUE_SYMTAB_BLOCK_ID: 5899 // Should have been parsed earlier via VSTOffset, unless there 5900 // is no summary section. 5901 assert(((SeenValueSymbolTable && VSTOffset > 0) || 5902 !SeenGlobalValSummary) && 5903 "Expected early VST parse via VSTOffset record"); 5904 if (Error Err = Stream.SkipBlock()) 5905 return Err; 5906 break; 5907 case bitc::GLOBALVAL_SUMMARY_BLOCK_ID: 5908 case bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID: 5909 // Add the module if it is a per-module index (has a source file name). 5910 if (!SourceFileName.empty()) 5911 addThisModule(); 5912 assert(!SeenValueSymbolTable && 5913 "Already read VST when parsing summary block?"); 5914 // We might not have a VST if there were no values in the 5915 // summary. An empty summary block generated when we are 5916 // performing ThinLTO compiles so we don't later invoke 5917 // the regular LTO process on them. 5918 if (VSTOffset > 0) { 5919 if (Error Err = parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap)) 5920 return Err; 5921 SeenValueSymbolTable = true; 5922 } 5923 SeenGlobalValSummary = true; 5924 if (Error Err = parseEntireSummary(Entry.ID)) 5925 return Err; 5926 break; 5927 case bitc::MODULE_STRTAB_BLOCK_ID: 5928 if (Error Err = parseModuleStringTable()) 5929 return Err; 5930 break; 5931 } 5932 continue; 5933 5934 case BitstreamEntry::Record: { 5935 Record.clear(); 5936 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 5937 if (!MaybeBitCode) 5938 return MaybeBitCode.takeError(); 5939 switch (MaybeBitCode.get()) { 5940 default: 5941 break; // Default behavior, ignore unknown content. 5942 case bitc::MODULE_CODE_VERSION: { 5943 if (Error Err = parseVersionRecord(Record).takeError()) 5944 return Err; 5945 break; 5946 } 5947 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 5948 case bitc::MODULE_CODE_SOURCE_FILENAME: { 5949 SmallString<128> ValueName; 5950 if (convertToString(Record, 0, ValueName)) 5951 return error("Invalid record"); 5952 SourceFileName = ValueName.c_str(); 5953 break; 5954 } 5955 /// MODULE_CODE_HASH: [5*i32] 5956 case bitc::MODULE_CODE_HASH: { 5957 if (Record.size() != 5) 5958 return error("Invalid hash length " + Twine(Record.size()).str()); 5959 auto &Hash = getThisModule()->second.second; 5960 int Pos = 0; 5961 for (auto &Val : Record) { 5962 assert(!(Val >> 32) && "Unexpected high bits set"); 5963 Hash[Pos++] = Val; 5964 } 5965 break; 5966 } 5967 /// MODULE_CODE_VSTOFFSET: [offset] 5968 case bitc::MODULE_CODE_VSTOFFSET: 5969 if (Record.empty()) 5970 return error("Invalid record"); 5971 // Note that we subtract 1 here because the offset is relative to one 5972 // word before the start of the identification or module block, which 5973 // was historically always the start of the regular bitcode header. 5974 VSTOffset = Record[0] - 1; 5975 break; 5976 // v1 GLOBALVAR: [pointer type, isconst, initid, linkage, ...] 5977 // v1 FUNCTION: [type, callingconv, isproto, linkage, ...] 5978 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, ...] 5979 // v2: [strtab offset, strtab size, v1] 5980 case bitc::MODULE_CODE_GLOBALVAR: 5981 case bitc::MODULE_CODE_FUNCTION: 5982 case bitc::MODULE_CODE_ALIAS: { 5983 StringRef Name; 5984 ArrayRef<uint64_t> GVRecord; 5985 std::tie(Name, GVRecord) = readNameFromStrtab(Record); 5986 if (GVRecord.size() <= 3) 5987 return error("Invalid record"); 5988 uint64_t RawLinkage = GVRecord[3]; 5989 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 5990 if (!UseStrtab) { 5991 ValueIdToLinkageMap[ValueId++] = Linkage; 5992 break; 5993 } 5994 5995 setValueGUID(ValueId++, Name, Linkage, SourceFileName); 5996 break; 5997 } 5998 } 5999 } 6000 continue; 6001 } 6002 } 6003 } 6004 6005 std::vector<ValueInfo> 6006 ModuleSummaryIndexBitcodeReader::makeRefList(ArrayRef<uint64_t> Record) { 6007 std::vector<ValueInfo> Ret; 6008 Ret.reserve(Record.size()); 6009 for (uint64_t RefValueId : Record) 6010 Ret.push_back(getValueInfoFromValueId(RefValueId).first); 6011 return Ret; 6012 } 6013 6014 std::vector<FunctionSummary::EdgeTy> 6015 ModuleSummaryIndexBitcodeReader::makeCallList(ArrayRef<uint64_t> Record, 6016 bool IsOldProfileFormat, 6017 bool HasProfile, bool HasRelBF) { 6018 std::vector<FunctionSummary::EdgeTy> Ret; 6019 Ret.reserve(Record.size()); 6020 for (unsigned I = 0, E = Record.size(); I != E; ++I) { 6021 CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown; 6022 uint64_t RelBF = 0; 6023 ValueInfo Callee = getValueInfoFromValueId(Record[I]).first; 6024 if (IsOldProfileFormat) { 6025 I += 1; // Skip old callsitecount field 6026 if (HasProfile) 6027 I += 1; // Skip old profilecount field 6028 } else if (HasProfile) 6029 Hotness = static_cast<CalleeInfo::HotnessType>(Record[++I]); 6030 else if (HasRelBF) 6031 RelBF = Record[++I]; 6032 Ret.push_back(FunctionSummary::EdgeTy{Callee, CalleeInfo(Hotness, RelBF)}); 6033 } 6034 return Ret; 6035 } 6036 6037 static void 6038 parseWholeProgramDevirtResolutionByArg(ArrayRef<uint64_t> Record, size_t &Slot, 6039 WholeProgramDevirtResolution &Wpd) { 6040 uint64_t ArgNum = Record[Slot++]; 6041 WholeProgramDevirtResolution::ByArg &B = 6042 Wpd.ResByArg[{Record.begin() + Slot, Record.begin() + Slot + ArgNum}]; 6043 Slot += ArgNum; 6044 6045 B.TheKind = 6046 static_cast<WholeProgramDevirtResolution::ByArg::Kind>(Record[Slot++]); 6047 B.Info = Record[Slot++]; 6048 B.Byte = Record[Slot++]; 6049 B.Bit = Record[Slot++]; 6050 } 6051 6052 static void parseWholeProgramDevirtResolution(ArrayRef<uint64_t> Record, 6053 StringRef Strtab, size_t &Slot, 6054 TypeIdSummary &TypeId) { 6055 uint64_t Id = Record[Slot++]; 6056 WholeProgramDevirtResolution &Wpd = TypeId.WPDRes[Id]; 6057 6058 Wpd.TheKind = static_cast<WholeProgramDevirtResolution::Kind>(Record[Slot++]); 6059 Wpd.SingleImplName = {Strtab.data() + Record[Slot], 6060 static_cast<size_t>(Record[Slot + 1])}; 6061 Slot += 2; 6062 6063 uint64_t ResByArgNum = Record[Slot++]; 6064 for (uint64_t I = 0; I != ResByArgNum; ++I) 6065 parseWholeProgramDevirtResolutionByArg(Record, Slot, Wpd); 6066 } 6067 6068 static void parseTypeIdSummaryRecord(ArrayRef<uint64_t> Record, 6069 StringRef Strtab, 6070 ModuleSummaryIndex &TheIndex) { 6071 size_t Slot = 0; 6072 TypeIdSummary &TypeId = TheIndex.getOrInsertTypeIdSummary( 6073 {Strtab.data() + Record[Slot], static_cast<size_t>(Record[Slot + 1])}); 6074 Slot += 2; 6075 6076 TypeId.TTRes.TheKind = static_cast<TypeTestResolution::Kind>(Record[Slot++]); 6077 TypeId.TTRes.SizeM1BitWidth = Record[Slot++]; 6078 TypeId.TTRes.AlignLog2 = Record[Slot++]; 6079 TypeId.TTRes.SizeM1 = Record[Slot++]; 6080 TypeId.TTRes.BitMask = Record[Slot++]; 6081 TypeId.TTRes.InlineBits = Record[Slot++]; 6082 6083 while (Slot < Record.size()) 6084 parseWholeProgramDevirtResolution(Record, Strtab, Slot, TypeId); 6085 } 6086 6087 std::vector<FunctionSummary::ParamAccess> 6088 ModuleSummaryIndexBitcodeReader::parseParamAccesses(ArrayRef<uint64_t> Record) { 6089 auto ReadRange = [&]() { 6090 APInt Lower(FunctionSummary::ParamAccess::RangeWidth, 6091 BitcodeReader::decodeSignRotatedValue(Record.front())); 6092 Record = Record.drop_front(); 6093 APInt Upper(FunctionSummary::ParamAccess::RangeWidth, 6094 BitcodeReader::decodeSignRotatedValue(Record.front())); 6095 Record = Record.drop_front(); 6096 ConstantRange Range{Lower, Upper}; 6097 assert(!Range.isFullSet()); 6098 assert(!Range.isUpperSignWrapped()); 6099 return Range; 6100 }; 6101 6102 std::vector<FunctionSummary::ParamAccess> PendingParamAccesses; 6103 while (!Record.empty()) { 6104 PendingParamAccesses.emplace_back(); 6105 FunctionSummary::ParamAccess &ParamAccess = PendingParamAccesses.back(); 6106 ParamAccess.ParamNo = Record.front(); 6107 Record = Record.drop_front(); 6108 ParamAccess.Use = ReadRange(); 6109 ParamAccess.Calls.resize(Record.front()); 6110 Record = Record.drop_front(); 6111 for (auto &Call : ParamAccess.Calls) { 6112 Call.ParamNo = Record.front(); 6113 Record = Record.drop_front(); 6114 Call.Callee = getValueInfoFromValueId(Record.front()).first; 6115 Record = Record.drop_front(); 6116 Call.Offsets = ReadRange(); 6117 } 6118 } 6119 return PendingParamAccesses; 6120 } 6121 6122 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableInfo( 6123 ArrayRef<uint64_t> Record, size_t &Slot, 6124 TypeIdCompatibleVtableInfo &TypeId) { 6125 uint64_t Offset = Record[Slot++]; 6126 ValueInfo Callee = getValueInfoFromValueId(Record[Slot++]).first; 6127 TypeId.push_back({Offset, Callee}); 6128 } 6129 6130 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableSummaryRecord( 6131 ArrayRef<uint64_t> Record) { 6132 size_t Slot = 0; 6133 TypeIdCompatibleVtableInfo &TypeId = 6134 TheIndex.getOrInsertTypeIdCompatibleVtableSummary( 6135 {Strtab.data() + Record[Slot], 6136 static_cast<size_t>(Record[Slot + 1])}); 6137 Slot += 2; 6138 6139 while (Slot < Record.size()) 6140 parseTypeIdCompatibleVtableInfo(Record, Slot, TypeId); 6141 } 6142 6143 static void setSpecialRefs(std::vector<ValueInfo> &Refs, unsigned ROCnt, 6144 unsigned WOCnt) { 6145 // Readonly and writeonly refs are in the end of the refs list. 6146 assert(ROCnt + WOCnt <= Refs.size()); 6147 unsigned FirstWORef = Refs.size() - WOCnt; 6148 unsigned RefNo = FirstWORef - ROCnt; 6149 for (; RefNo < FirstWORef; ++RefNo) 6150 Refs[RefNo].setReadOnly(); 6151 for (; RefNo < Refs.size(); ++RefNo) 6152 Refs[RefNo].setWriteOnly(); 6153 } 6154 6155 // Eagerly parse the entire summary block. This populates the GlobalValueSummary 6156 // objects in the index. 6157 Error ModuleSummaryIndexBitcodeReader::parseEntireSummary(unsigned ID) { 6158 if (Error Err = Stream.EnterSubBlock(ID)) 6159 return Err; 6160 SmallVector<uint64_t, 64> Record; 6161 6162 // Parse version 6163 { 6164 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 6165 if (!MaybeEntry) 6166 return MaybeEntry.takeError(); 6167 BitstreamEntry Entry = MaybeEntry.get(); 6168 6169 if (Entry.Kind != BitstreamEntry::Record) 6170 return error("Invalid Summary Block: record for version expected"); 6171 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 6172 if (!MaybeRecord) 6173 return MaybeRecord.takeError(); 6174 if (MaybeRecord.get() != bitc::FS_VERSION) 6175 return error("Invalid Summary Block: version expected"); 6176 } 6177 const uint64_t Version = Record[0]; 6178 const bool IsOldProfileFormat = Version == 1; 6179 if (Version < 1 || Version > ModuleSummaryIndex::BitcodeSummaryVersion) 6180 return error("Invalid summary version " + Twine(Version) + 6181 ". Version should be in the range [1-" + 6182 Twine(ModuleSummaryIndex::BitcodeSummaryVersion) + 6183 "]."); 6184 Record.clear(); 6185 6186 // Keep around the last seen summary to be used when we see an optional 6187 // "OriginalName" attachement. 6188 GlobalValueSummary *LastSeenSummary = nullptr; 6189 GlobalValue::GUID LastSeenGUID = 0; 6190 6191 // We can expect to see any number of type ID information records before 6192 // each function summary records; these variables store the information 6193 // collected so far so that it can be used to create the summary object. 6194 std::vector<GlobalValue::GUID> PendingTypeTests; 6195 std::vector<FunctionSummary::VFuncId> PendingTypeTestAssumeVCalls, 6196 PendingTypeCheckedLoadVCalls; 6197 std::vector<FunctionSummary::ConstVCall> PendingTypeTestAssumeConstVCalls, 6198 PendingTypeCheckedLoadConstVCalls; 6199 std::vector<FunctionSummary::ParamAccess> PendingParamAccesses; 6200 6201 while (true) { 6202 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 6203 if (!MaybeEntry) 6204 return MaybeEntry.takeError(); 6205 BitstreamEntry Entry = MaybeEntry.get(); 6206 6207 switch (Entry.Kind) { 6208 case BitstreamEntry::SubBlock: // Handled for us already. 6209 case BitstreamEntry::Error: 6210 return error("Malformed block"); 6211 case BitstreamEntry::EndBlock: 6212 return Error::success(); 6213 case BitstreamEntry::Record: 6214 // The interesting case. 6215 break; 6216 } 6217 6218 // Read a record. The record format depends on whether this 6219 // is a per-module index or a combined index file. In the per-module 6220 // case the records contain the associated value's ID for correlation 6221 // with VST entries. In the combined index the correlation is done 6222 // via the bitcode offset of the summary records (which were saved 6223 // in the combined index VST entries). The records also contain 6224 // information used for ThinLTO renaming and importing. 6225 Record.clear(); 6226 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 6227 if (!MaybeBitCode) 6228 return MaybeBitCode.takeError(); 6229 switch (unsigned BitCode = MaybeBitCode.get()) { 6230 default: // Default behavior: ignore. 6231 break; 6232 case bitc::FS_FLAGS: { // [flags] 6233 TheIndex.setFlags(Record[0]); 6234 break; 6235 } 6236 case bitc::FS_VALUE_GUID: { // [valueid, refguid] 6237 uint64_t ValueID = Record[0]; 6238 GlobalValue::GUID RefGUID = Record[1]; 6239 ValueIdToValueInfoMap[ValueID] = 6240 std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID); 6241 break; 6242 } 6243 // FS_PERMODULE: [valueid, flags, instcount, fflags, numrefs, 6244 // numrefs x valueid, n x (valueid)] 6245 // FS_PERMODULE_PROFILE: [valueid, flags, instcount, fflags, numrefs, 6246 // numrefs x valueid, 6247 // n x (valueid, hotness)] 6248 // FS_PERMODULE_RELBF: [valueid, flags, instcount, fflags, numrefs, 6249 // numrefs x valueid, 6250 // n x (valueid, relblockfreq)] 6251 case bitc::FS_PERMODULE: 6252 case bitc::FS_PERMODULE_RELBF: 6253 case bitc::FS_PERMODULE_PROFILE: { 6254 unsigned ValueID = Record[0]; 6255 uint64_t RawFlags = Record[1]; 6256 unsigned InstCount = Record[2]; 6257 uint64_t RawFunFlags = 0; 6258 unsigned NumRefs = Record[3]; 6259 unsigned NumRORefs = 0, NumWORefs = 0; 6260 int RefListStartIndex = 4; 6261 if (Version >= 4) { 6262 RawFunFlags = Record[3]; 6263 NumRefs = Record[4]; 6264 RefListStartIndex = 5; 6265 if (Version >= 5) { 6266 NumRORefs = Record[5]; 6267 RefListStartIndex = 6; 6268 if (Version >= 7) { 6269 NumWORefs = Record[6]; 6270 RefListStartIndex = 7; 6271 } 6272 } 6273 } 6274 6275 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6276 // The module path string ref set in the summary must be owned by the 6277 // index's module string table. Since we don't have a module path 6278 // string table section in the per-module index, we create a single 6279 // module path string table entry with an empty (0) ID to take 6280 // ownership. 6281 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 6282 assert(Record.size() >= RefListStartIndex + NumRefs && 6283 "Record size inconsistent with number of references"); 6284 std::vector<ValueInfo> Refs = makeRefList( 6285 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 6286 bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE); 6287 bool HasRelBF = (BitCode == bitc::FS_PERMODULE_RELBF); 6288 std::vector<FunctionSummary::EdgeTy> Calls = makeCallList( 6289 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex), 6290 IsOldProfileFormat, HasProfile, HasRelBF); 6291 setSpecialRefs(Refs, NumRORefs, NumWORefs); 6292 auto FS = std::make_unique<FunctionSummary>( 6293 Flags, InstCount, getDecodedFFlags(RawFunFlags), /*EntryCount=*/0, 6294 std::move(Refs), std::move(Calls), std::move(PendingTypeTests), 6295 std::move(PendingTypeTestAssumeVCalls), 6296 std::move(PendingTypeCheckedLoadVCalls), 6297 std::move(PendingTypeTestAssumeConstVCalls), 6298 std::move(PendingTypeCheckedLoadConstVCalls), 6299 std::move(PendingParamAccesses)); 6300 auto VIAndOriginalGUID = getValueInfoFromValueId(ValueID); 6301 FS->setModulePath(getThisModule()->first()); 6302 FS->setOriginalName(VIAndOriginalGUID.second); 6303 TheIndex.addGlobalValueSummary(VIAndOriginalGUID.first, std::move(FS)); 6304 break; 6305 } 6306 // FS_ALIAS: [valueid, flags, valueid] 6307 // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as 6308 // they expect all aliasee summaries to be available. 6309 case bitc::FS_ALIAS: { 6310 unsigned ValueID = Record[0]; 6311 uint64_t RawFlags = Record[1]; 6312 unsigned AliaseeID = Record[2]; 6313 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6314 auto AS = std::make_unique<AliasSummary>(Flags); 6315 // The module path string ref set in the summary must be owned by the 6316 // index's module string table. Since we don't have a module path 6317 // string table section in the per-module index, we create a single 6318 // module path string table entry with an empty (0) ID to take 6319 // ownership. 6320 AS->setModulePath(getThisModule()->first()); 6321 6322 auto AliaseeVI = getValueInfoFromValueId(AliaseeID).first; 6323 auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, ModulePath); 6324 if (!AliaseeInModule) 6325 return error("Alias expects aliasee summary to be parsed"); 6326 AS->setAliasee(AliaseeVI, AliaseeInModule); 6327 6328 auto GUID = getValueInfoFromValueId(ValueID); 6329 AS->setOriginalName(GUID.second); 6330 TheIndex.addGlobalValueSummary(GUID.first, std::move(AS)); 6331 break; 6332 } 6333 // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, n x valueid] 6334 case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: { 6335 unsigned ValueID = Record[0]; 6336 uint64_t RawFlags = Record[1]; 6337 unsigned RefArrayStart = 2; 6338 GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false, 6339 /* WriteOnly */ false, 6340 /* Constant */ false, 6341 GlobalObject::VCallVisibilityPublic); 6342 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6343 if (Version >= 5) { 6344 GVF = getDecodedGVarFlags(Record[2]); 6345 RefArrayStart = 3; 6346 } 6347 std::vector<ValueInfo> Refs = 6348 makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart)); 6349 auto FS = 6350 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 6351 FS->setModulePath(getThisModule()->first()); 6352 auto GUID = getValueInfoFromValueId(ValueID); 6353 FS->setOriginalName(GUID.second); 6354 TheIndex.addGlobalValueSummary(GUID.first, std::move(FS)); 6355 break; 6356 } 6357 // FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, 6358 // numrefs, numrefs x valueid, 6359 // n x (valueid, offset)] 6360 case bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: { 6361 unsigned ValueID = Record[0]; 6362 uint64_t RawFlags = Record[1]; 6363 GlobalVarSummary::GVarFlags GVF = getDecodedGVarFlags(Record[2]); 6364 unsigned NumRefs = Record[3]; 6365 unsigned RefListStartIndex = 4; 6366 unsigned VTableListStartIndex = RefListStartIndex + NumRefs; 6367 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6368 std::vector<ValueInfo> Refs = makeRefList( 6369 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 6370 VTableFuncList VTableFuncs; 6371 for (unsigned I = VTableListStartIndex, E = Record.size(); I != E; ++I) { 6372 ValueInfo Callee = getValueInfoFromValueId(Record[I]).first; 6373 uint64_t Offset = Record[++I]; 6374 VTableFuncs.push_back({Callee, Offset}); 6375 } 6376 auto VS = 6377 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 6378 VS->setModulePath(getThisModule()->first()); 6379 VS->setVTableFuncs(VTableFuncs); 6380 auto GUID = getValueInfoFromValueId(ValueID); 6381 VS->setOriginalName(GUID.second); 6382 TheIndex.addGlobalValueSummary(GUID.first, std::move(VS)); 6383 break; 6384 } 6385 // FS_COMBINED: [valueid, modid, flags, instcount, fflags, numrefs, 6386 // numrefs x valueid, n x (valueid)] 6387 // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, fflags, numrefs, 6388 // numrefs x valueid, n x (valueid, hotness)] 6389 case bitc::FS_COMBINED: 6390 case bitc::FS_COMBINED_PROFILE: { 6391 unsigned ValueID = Record[0]; 6392 uint64_t ModuleId = Record[1]; 6393 uint64_t RawFlags = Record[2]; 6394 unsigned InstCount = Record[3]; 6395 uint64_t RawFunFlags = 0; 6396 uint64_t EntryCount = 0; 6397 unsigned NumRefs = Record[4]; 6398 unsigned NumRORefs = 0, NumWORefs = 0; 6399 int RefListStartIndex = 5; 6400 6401 if (Version >= 4) { 6402 RawFunFlags = Record[4]; 6403 RefListStartIndex = 6; 6404 size_t NumRefsIndex = 5; 6405 if (Version >= 5) { 6406 unsigned NumRORefsOffset = 1; 6407 RefListStartIndex = 7; 6408 if (Version >= 6) { 6409 NumRefsIndex = 6; 6410 EntryCount = Record[5]; 6411 RefListStartIndex = 8; 6412 if (Version >= 7) { 6413 RefListStartIndex = 9; 6414 NumWORefs = Record[8]; 6415 NumRORefsOffset = 2; 6416 } 6417 } 6418 NumRORefs = Record[RefListStartIndex - NumRORefsOffset]; 6419 } 6420 NumRefs = Record[NumRefsIndex]; 6421 } 6422 6423 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6424 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 6425 assert(Record.size() >= RefListStartIndex + NumRefs && 6426 "Record size inconsistent with number of references"); 6427 std::vector<ValueInfo> Refs = makeRefList( 6428 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 6429 bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE); 6430 std::vector<FunctionSummary::EdgeTy> Edges = makeCallList( 6431 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex), 6432 IsOldProfileFormat, HasProfile, false); 6433 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 6434 setSpecialRefs(Refs, NumRORefs, NumWORefs); 6435 auto FS = std::make_unique<FunctionSummary>( 6436 Flags, InstCount, getDecodedFFlags(RawFunFlags), EntryCount, 6437 std::move(Refs), std::move(Edges), std::move(PendingTypeTests), 6438 std::move(PendingTypeTestAssumeVCalls), 6439 std::move(PendingTypeCheckedLoadVCalls), 6440 std::move(PendingTypeTestAssumeConstVCalls), 6441 std::move(PendingTypeCheckedLoadConstVCalls), 6442 std::move(PendingParamAccesses)); 6443 LastSeenSummary = FS.get(); 6444 LastSeenGUID = VI.getGUID(); 6445 FS->setModulePath(ModuleIdMap[ModuleId]); 6446 TheIndex.addGlobalValueSummary(VI, std::move(FS)); 6447 break; 6448 } 6449 // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid] 6450 // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as 6451 // they expect all aliasee summaries to be available. 6452 case bitc::FS_COMBINED_ALIAS: { 6453 unsigned ValueID = Record[0]; 6454 uint64_t ModuleId = Record[1]; 6455 uint64_t RawFlags = Record[2]; 6456 unsigned AliaseeValueId = Record[3]; 6457 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6458 auto AS = std::make_unique<AliasSummary>(Flags); 6459 LastSeenSummary = AS.get(); 6460 AS->setModulePath(ModuleIdMap[ModuleId]); 6461 6462 auto AliaseeVI = getValueInfoFromValueId(AliaseeValueId).first; 6463 auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, AS->modulePath()); 6464 AS->setAliasee(AliaseeVI, AliaseeInModule); 6465 6466 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 6467 LastSeenGUID = VI.getGUID(); 6468 TheIndex.addGlobalValueSummary(VI, std::move(AS)); 6469 break; 6470 } 6471 // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid] 6472 case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: { 6473 unsigned ValueID = Record[0]; 6474 uint64_t ModuleId = Record[1]; 6475 uint64_t RawFlags = Record[2]; 6476 unsigned RefArrayStart = 3; 6477 GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false, 6478 /* WriteOnly */ false, 6479 /* Constant */ false, 6480 GlobalObject::VCallVisibilityPublic); 6481 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6482 if (Version >= 5) { 6483 GVF = getDecodedGVarFlags(Record[3]); 6484 RefArrayStart = 4; 6485 } 6486 std::vector<ValueInfo> Refs = 6487 makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart)); 6488 auto FS = 6489 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 6490 LastSeenSummary = FS.get(); 6491 FS->setModulePath(ModuleIdMap[ModuleId]); 6492 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 6493 LastSeenGUID = VI.getGUID(); 6494 TheIndex.addGlobalValueSummary(VI, std::move(FS)); 6495 break; 6496 } 6497 // FS_COMBINED_ORIGINAL_NAME: [original_name] 6498 case bitc::FS_COMBINED_ORIGINAL_NAME: { 6499 uint64_t OriginalName = Record[0]; 6500 if (!LastSeenSummary) 6501 return error("Name attachment that does not follow a combined record"); 6502 LastSeenSummary->setOriginalName(OriginalName); 6503 TheIndex.addOriginalName(LastSeenGUID, OriginalName); 6504 // Reset the LastSeenSummary 6505 LastSeenSummary = nullptr; 6506 LastSeenGUID = 0; 6507 break; 6508 } 6509 case bitc::FS_TYPE_TESTS: 6510 assert(PendingTypeTests.empty()); 6511 llvm::append_range(PendingTypeTests, Record); 6512 break; 6513 6514 case bitc::FS_TYPE_TEST_ASSUME_VCALLS: 6515 assert(PendingTypeTestAssumeVCalls.empty()); 6516 for (unsigned I = 0; I != Record.size(); I += 2) 6517 PendingTypeTestAssumeVCalls.push_back({Record[I], Record[I+1]}); 6518 break; 6519 6520 case bitc::FS_TYPE_CHECKED_LOAD_VCALLS: 6521 assert(PendingTypeCheckedLoadVCalls.empty()); 6522 for (unsigned I = 0; I != Record.size(); I += 2) 6523 PendingTypeCheckedLoadVCalls.push_back({Record[I], Record[I+1]}); 6524 break; 6525 6526 case bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL: 6527 PendingTypeTestAssumeConstVCalls.push_back( 6528 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}}); 6529 break; 6530 6531 case bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL: 6532 PendingTypeCheckedLoadConstVCalls.push_back( 6533 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}}); 6534 break; 6535 6536 case bitc::FS_CFI_FUNCTION_DEFS: { 6537 std::set<std::string> &CfiFunctionDefs = TheIndex.cfiFunctionDefs(); 6538 for (unsigned I = 0; I != Record.size(); I += 2) 6539 CfiFunctionDefs.insert( 6540 {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])}); 6541 break; 6542 } 6543 6544 case bitc::FS_CFI_FUNCTION_DECLS: { 6545 std::set<std::string> &CfiFunctionDecls = TheIndex.cfiFunctionDecls(); 6546 for (unsigned I = 0; I != Record.size(); I += 2) 6547 CfiFunctionDecls.insert( 6548 {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])}); 6549 break; 6550 } 6551 6552 case bitc::FS_TYPE_ID: 6553 parseTypeIdSummaryRecord(Record, Strtab, TheIndex); 6554 break; 6555 6556 case bitc::FS_TYPE_ID_METADATA: 6557 parseTypeIdCompatibleVtableSummaryRecord(Record); 6558 break; 6559 6560 case bitc::FS_BLOCK_COUNT: 6561 TheIndex.addBlockCount(Record[0]); 6562 break; 6563 6564 case bitc::FS_PARAM_ACCESS: { 6565 PendingParamAccesses = parseParamAccesses(Record); 6566 break; 6567 } 6568 } 6569 } 6570 llvm_unreachable("Exit infinite loop"); 6571 } 6572 6573 // Parse the module string table block into the Index. 6574 // This populates the ModulePathStringTable map in the index. 6575 Error ModuleSummaryIndexBitcodeReader::parseModuleStringTable() { 6576 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID)) 6577 return Err; 6578 6579 SmallVector<uint64_t, 64> Record; 6580 6581 SmallString<128> ModulePath; 6582 ModuleSummaryIndex::ModuleInfo *LastSeenModule = nullptr; 6583 6584 while (true) { 6585 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 6586 if (!MaybeEntry) 6587 return MaybeEntry.takeError(); 6588 BitstreamEntry Entry = MaybeEntry.get(); 6589 6590 switch (Entry.Kind) { 6591 case BitstreamEntry::SubBlock: // Handled for us already. 6592 case BitstreamEntry::Error: 6593 return error("Malformed block"); 6594 case BitstreamEntry::EndBlock: 6595 return Error::success(); 6596 case BitstreamEntry::Record: 6597 // The interesting case. 6598 break; 6599 } 6600 6601 Record.clear(); 6602 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 6603 if (!MaybeRecord) 6604 return MaybeRecord.takeError(); 6605 switch (MaybeRecord.get()) { 6606 default: // Default behavior: ignore. 6607 break; 6608 case bitc::MST_CODE_ENTRY: { 6609 // MST_ENTRY: [modid, namechar x N] 6610 uint64_t ModuleId = Record[0]; 6611 6612 if (convertToString(Record, 1, ModulePath)) 6613 return error("Invalid record"); 6614 6615 LastSeenModule = TheIndex.addModule(ModulePath, ModuleId); 6616 ModuleIdMap[ModuleId] = LastSeenModule->first(); 6617 6618 ModulePath.clear(); 6619 break; 6620 } 6621 /// MST_CODE_HASH: [5*i32] 6622 case bitc::MST_CODE_HASH: { 6623 if (Record.size() != 5) 6624 return error("Invalid hash length " + Twine(Record.size()).str()); 6625 if (!LastSeenModule) 6626 return error("Invalid hash that does not follow a module path"); 6627 int Pos = 0; 6628 for (auto &Val : Record) { 6629 assert(!(Val >> 32) && "Unexpected high bits set"); 6630 LastSeenModule->second.second[Pos++] = Val; 6631 } 6632 // Reset LastSeenModule to avoid overriding the hash unexpectedly. 6633 LastSeenModule = nullptr; 6634 break; 6635 } 6636 } 6637 } 6638 llvm_unreachable("Exit infinite loop"); 6639 } 6640 6641 namespace { 6642 6643 // FIXME: This class is only here to support the transition to llvm::Error. It 6644 // will be removed once this transition is complete. Clients should prefer to 6645 // deal with the Error value directly, rather than converting to error_code. 6646 class BitcodeErrorCategoryType : public std::error_category { 6647 const char *name() const noexcept override { 6648 return "llvm.bitcode"; 6649 } 6650 6651 std::string message(int IE) const override { 6652 BitcodeError E = static_cast<BitcodeError>(IE); 6653 switch (E) { 6654 case BitcodeError::CorruptedBitcode: 6655 return "Corrupted bitcode"; 6656 } 6657 llvm_unreachable("Unknown error type!"); 6658 } 6659 }; 6660 6661 } // end anonymous namespace 6662 6663 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory; 6664 6665 const std::error_category &llvm::BitcodeErrorCategory() { 6666 return *ErrorCategory; 6667 } 6668 6669 static Expected<StringRef> readBlobInRecord(BitstreamCursor &Stream, 6670 unsigned Block, unsigned RecordID) { 6671 if (Error Err = Stream.EnterSubBlock(Block)) 6672 return std::move(Err); 6673 6674 StringRef Strtab; 6675 while (true) { 6676 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 6677 if (!MaybeEntry) 6678 return MaybeEntry.takeError(); 6679 llvm::BitstreamEntry Entry = MaybeEntry.get(); 6680 6681 switch (Entry.Kind) { 6682 case BitstreamEntry::EndBlock: 6683 return Strtab; 6684 6685 case BitstreamEntry::Error: 6686 return error("Malformed block"); 6687 6688 case BitstreamEntry::SubBlock: 6689 if (Error Err = Stream.SkipBlock()) 6690 return std::move(Err); 6691 break; 6692 6693 case BitstreamEntry::Record: 6694 StringRef Blob; 6695 SmallVector<uint64_t, 1> Record; 6696 Expected<unsigned> MaybeRecord = 6697 Stream.readRecord(Entry.ID, Record, &Blob); 6698 if (!MaybeRecord) 6699 return MaybeRecord.takeError(); 6700 if (MaybeRecord.get() == RecordID) 6701 Strtab = Blob; 6702 break; 6703 } 6704 } 6705 } 6706 6707 //===----------------------------------------------------------------------===// 6708 // External interface 6709 //===----------------------------------------------------------------------===// 6710 6711 Expected<std::vector<BitcodeModule>> 6712 llvm::getBitcodeModuleList(MemoryBufferRef Buffer) { 6713 auto FOrErr = getBitcodeFileContents(Buffer); 6714 if (!FOrErr) 6715 return FOrErr.takeError(); 6716 return std::move(FOrErr->Mods); 6717 } 6718 6719 Expected<BitcodeFileContents> 6720 llvm::getBitcodeFileContents(MemoryBufferRef Buffer) { 6721 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 6722 if (!StreamOrErr) 6723 return StreamOrErr.takeError(); 6724 BitstreamCursor &Stream = *StreamOrErr; 6725 6726 BitcodeFileContents F; 6727 while (true) { 6728 uint64_t BCBegin = Stream.getCurrentByteNo(); 6729 6730 // We may be consuming bitcode from a client that leaves garbage at the end 6731 // of the bitcode stream (e.g. Apple's ar tool). If we are close enough to 6732 // the end that there cannot possibly be another module, stop looking. 6733 if (BCBegin + 8 >= Stream.getBitcodeBytes().size()) 6734 return F; 6735 6736 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 6737 if (!MaybeEntry) 6738 return MaybeEntry.takeError(); 6739 llvm::BitstreamEntry Entry = MaybeEntry.get(); 6740 6741 switch (Entry.Kind) { 6742 case BitstreamEntry::EndBlock: 6743 case BitstreamEntry::Error: 6744 return error("Malformed block"); 6745 6746 case BitstreamEntry::SubBlock: { 6747 uint64_t IdentificationBit = -1ull; 6748 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) { 6749 IdentificationBit = Stream.GetCurrentBitNo() - BCBegin * 8; 6750 if (Error Err = Stream.SkipBlock()) 6751 return std::move(Err); 6752 6753 { 6754 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 6755 if (!MaybeEntry) 6756 return MaybeEntry.takeError(); 6757 Entry = MaybeEntry.get(); 6758 } 6759 6760 if (Entry.Kind != BitstreamEntry::SubBlock || 6761 Entry.ID != bitc::MODULE_BLOCK_ID) 6762 return error("Malformed block"); 6763 } 6764 6765 if (Entry.ID == bitc::MODULE_BLOCK_ID) { 6766 uint64_t ModuleBit = Stream.GetCurrentBitNo() - BCBegin * 8; 6767 if (Error Err = Stream.SkipBlock()) 6768 return std::move(Err); 6769 6770 F.Mods.push_back({Stream.getBitcodeBytes().slice( 6771 BCBegin, Stream.getCurrentByteNo() - BCBegin), 6772 Buffer.getBufferIdentifier(), IdentificationBit, 6773 ModuleBit}); 6774 continue; 6775 } 6776 6777 if (Entry.ID == bitc::STRTAB_BLOCK_ID) { 6778 Expected<StringRef> Strtab = 6779 readBlobInRecord(Stream, bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB); 6780 if (!Strtab) 6781 return Strtab.takeError(); 6782 // This string table is used by every preceding bitcode module that does 6783 // not have its own string table. A bitcode file may have multiple 6784 // string tables if it was created by binary concatenation, for example 6785 // with "llvm-cat -b". 6786 for (BitcodeModule &I : llvm::reverse(F.Mods)) { 6787 if (!I.Strtab.empty()) 6788 break; 6789 I.Strtab = *Strtab; 6790 } 6791 // Similarly, the string table is used by every preceding symbol table; 6792 // normally there will be just one unless the bitcode file was created 6793 // by binary concatenation. 6794 if (!F.Symtab.empty() && F.StrtabForSymtab.empty()) 6795 F.StrtabForSymtab = *Strtab; 6796 continue; 6797 } 6798 6799 if (Entry.ID == bitc::SYMTAB_BLOCK_ID) { 6800 Expected<StringRef> SymtabOrErr = 6801 readBlobInRecord(Stream, bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB); 6802 if (!SymtabOrErr) 6803 return SymtabOrErr.takeError(); 6804 6805 // We can expect the bitcode file to have multiple symbol tables if it 6806 // was created by binary concatenation. In that case we silently 6807 // ignore any subsequent symbol tables, which is fine because this is a 6808 // low level function. The client is expected to notice that the number 6809 // of modules in the symbol table does not match the number of modules 6810 // in the input file and regenerate the symbol table. 6811 if (F.Symtab.empty()) 6812 F.Symtab = *SymtabOrErr; 6813 continue; 6814 } 6815 6816 if (Error Err = Stream.SkipBlock()) 6817 return std::move(Err); 6818 continue; 6819 } 6820 case BitstreamEntry::Record: 6821 if (Error E = Stream.skipRecord(Entry.ID).takeError()) 6822 return std::move(E); 6823 continue; 6824 } 6825 } 6826 } 6827 6828 /// Get a lazy one-at-time loading module from bitcode. 6829 /// 6830 /// This isn't always used in a lazy context. In particular, it's also used by 6831 /// \a parseModule(). If this is truly lazy, then we need to eagerly pull 6832 /// in forward-referenced functions from block address references. 6833 /// 6834 /// \param[in] MaterializeAll Set to \c true if we should materialize 6835 /// everything. 6836 Expected<std::unique_ptr<Module>> 6837 BitcodeModule::getModuleImpl(LLVMContext &Context, bool MaterializeAll, 6838 bool ShouldLazyLoadMetadata, bool IsImporting, 6839 DataLayoutCallbackTy DataLayoutCallback) { 6840 BitstreamCursor Stream(Buffer); 6841 6842 std::string ProducerIdentification; 6843 if (IdentificationBit != -1ull) { 6844 if (Error JumpFailed = Stream.JumpToBit(IdentificationBit)) 6845 return std::move(JumpFailed); 6846 if (Error E = 6847 readIdentificationBlock(Stream).moveInto(ProducerIdentification)) 6848 return std::move(E); 6849 } 6850 6851 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 6852 return std::move(JumpFailed); 6853 auto *R = new BitcodeReader(std::move(Stream), Strtab, ProducerIdentification, 6854 Context); 6855 6856 std::unique_ptr<Module> M = 6857 std::make_unique<Module>(ModuleIdentifier, Context); 6858 M->setMaterializer(R); 6859 6860 // Delay parsing Metadata if ShouldLazyLoadMetadata is true. 6861 if (Error Err = R->parseBitcodeInto(M.get(), ShouldLazyLoadMetadata, 6862 IsImporting, DataLayoutCallback)) 6863 return std::move(Err); 6864 6865 if (MaterializeAll) { 6866 // Read in the entire module, and destroy the BitcodeReader. 6867 if (Error Err = M->materializeAll()) 6868 return std::move(Err); 6869 } else { 6870 // Resolve forward references from blockaddresses. 6871 if (Error Err = R->materializeForwardReferencedFunctions()) 6872 return std::move(Err); 6873 } 6874 return std::move(M); 6875 } 6876 6877 Expected<std::unique_ptr<Module>> 6878 BitcodeModule::getLazyModule(LLVMContext &Context, bool ShouldLazyLoadMetadata, 6879 bool IsImporting) { 6880 return getModuleImpl(Context, false, ShouldLazyLoadMetadata, IsImporting, 6881 [](StringRef) { return None; }); 6882 } 6883 6884 // Parse the specified bitcode buffer and merge the index into CombinedIndex. 6885 // We don't use ModuleIdentifier here because the client may need to control the 6886 // module path used in the combined summary (e.g. when reading summaries for 6887 // regular LTO modules). 6888 Error BitcodeModule::readSummary(ModuleSummaryIndex &CombinedIndex, 6889 StringRef ModulePath, uint64_t ModuleId) { 6890 BitstreamCursor Stream(Buffer); 6891 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 6892 return JumpFailed; 6893 6894 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, CombinedIndex, 6895 ModulePath, ModuleId); 6896 return R.parseModule(); 6897 } 6898 6899 // Parse the specified bitcode buffer, returning the function info index. 6900 Expected<std::unique_ptr<ModuleSummaryIndex>> BitcodeModule::getSummary() { 6901 BitstreamCursor Stream(Buffer); 6902 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 6903 return std::move(JumpFailed); 6904 6905 auto Index = std::make_unique<ModuleSummaryIndex>(/*HaveGVs=*/false); 6906 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, *Index, 6907 ModuleIdentifier, 0); 6908 6909 if (Error Err = R.parseModule()) 6910 return std::move(Err); 6911 6912 return std::move(Index); 6913 } 6914 6915 static Expected<bool> getEnableSplitLTOUnitFlag(BitstreamCursor &Stream, 6916 unsigned ID) { 6917 if (Error Err = Stream.EnterSubBlock(ID)) 6918 return std::move(Err); 6919 SmallVector<uint64_t, 64> Record; 6920 6921 while (true) { 6922 BitstreamEntry Entry; 6923 if (Error E = Stream.advanceSkippingSubblocks().moveInto(Entry)) 6924 return std::move(E); 6925 6926 switch (Entry.Kind) { 6927 case BitstreamEntry::SubBlock: // Handled for us already. 6928 case BitstreamEntry::Error: 6929 return error("Malformed block"); 6930 case BitstreamEntry::EndBlock: 6931 // If no flags record found, conservatively return true to mimic 6932 // behavior before this flag was added. 6933 return true; 6934 case BitstreamEntry::Record: 6935 // The interesting case. 6936 break; 6937 } 6938 6939 // Look for the FS_FLAGS record. 6940 Record.clear(); 6941 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 6942 if (!MaybeBitCode) 6943 return MaybeBitCode.takeError(); 6944 switch (MaybeBitCode.get()) { 6945 default: // Default behavior: ignore. 6946 break; 6947 case bitc::FS_FLAGS: { // [flags] 6948 uint64_t Flags = Record[0]; 6949 // Scan flags. 6950 assert(Flags <= 0x7f && "Unexpected bits in flag"); 6951 6952 return Flags & 0x8; 6953 } 6954 } 6955 } 6956 llvm_unreachable("Exit infinite loop"); 6957 } 6958 6959 // Check if the given bitcode buffer contains a global value summary block. 6960 Expected<BitcodeLTOInfo> BitcodeModule::getLTOInfo() { 6961 BitstreamCursor Stream(Buffer); 6962 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 6963 return std::move(JumpFailed); 6964 6965 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 6966 return std::move(Err); 6967 6968 while (true) { 6969 llvm::BitstreamEntry Entry; 6970 if (Error E = Stream.advance().moveInto(Entry)) 6971 return std::move(E); 6972 6973 switch (Entry.Kind) { 6974 case BitstreamEntry::Error: 6975 return error("Malformed block"); 6976 case BitstreamEntry::EndBlock: 6977 return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/false, 6978 /*EnableSplitLTOUnit=*/false}; 6979 6980 case BitstreamEntry::SubBlock: 6981 if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) { 6982 Expected<bool> EnableSplitLTOUnit = 6983 getEnableSplitLTOUnitFlag(Stream, Entry.ID); 6984 if (!EnableSplitLTOUnit) 6985 return EnableSplitLTOUnit.takeError(); 6986 return BitcodeLTOInfo{/*IsThinLTO=*/true, /*HasSummary=*/true, 6987 *EnableSplitLTOUnit}; 6988 } 6989 6990 if (Entry.ID == bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID) { 6991 Expected<bool> EnableSplitLTOUnit = 6992 getEnableSplitLTOUnitFlag(Stream, Entry.ID); 6993 if (!EnableSplitLTOUnit) 6994 return EnableSplitLTOUnit.takeError(); 6995 return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/true, 6996 *EnableSplitLTOUnit}; 6997 } 6998 6999 // Ignore other sub-blocks. 7000 if (Error Err = Stream.SkipBlock()) 7001 return std::move(Err); 7002 continue; 7003 7004 case BitstreamEntry::Record: 7005 if (Expected<unsigned> StreamFailed = Stream.skipRecord(Entry.ID)) 7006 continue; 7007 else 7008 return StreamFailed.takeError(); 7009 } 7010 } 7011 } 7012 7013 static Expected<BitcodeModule> getSingleModule(MemoryBufferRef Buffer) { 7014 Expected<std::vector<BitcodeModule>> MsOrErr = getBitcodeModuleList(Buffer); 7015 if (!MsOrErr) 7016 return MsOrErr.takeError(); 7017 7018 if (MsOrErr->size() != 1) 7019 return error("Expected a single module"); 7020 7021 return (*MsOrErr)[0]; 7022 } 7023 7024 Expected<std::unique_ptr<Module>> 7025 llvm::getLazyBitcodeModule(MemoryBufferRef Buffer, LLVMContext &Context, 7026 bool ShouldLazyLoadMetadata, bool IsImporting) { 7027 Expected<BitcodeModule> BM = getSingleModule(Buffer); 7028 if (!BM) 7029 return BM.takeError(); 7030 7031 return BM->getLazyModule(Context, ShouldLazyLoadMetadata, IsImporting); 7032 } 7033 7034 Expected<std::unique_ptr<Module>> llvm::getOwningLazyBitcodeModule( 7035 std::unique_ptr<MemoryBuffer> &&Buffer, LLVMContext &Context, 7036 bool ShouldLazyLoadMetadata, bool IsImporting) { 7037 auto MOrErr = getLazyBitcodeModule(*Buffer, Context, ShouldLazyLoadMetadata, 7038 IsImporting); 7039 if (MOrErr) 7040 (*MOrErr)->setOwnedMemoryBuffer(std::move(Buffer)); 7041 return MOrErr; 7042 } 7043 7044 Expected<std::unique_ptr<Module>> 7045 BitcodeModule::parseModule(LLVMContext &Context, 7046 DataLayoutCallbackTy DataLayoutCallback) { 7047 return getModuleImpl(Context, true, false, false, DataLayoutCallback); 7048 // TODO: Restore the use-lists to the in-memory state when the bitcode was 7049 // written. We must defer until the Module has been fully materialized. 7050 } 7051 7052 Expected<std::unique_ptr<Module>> 7053 llvm::parseBitcodeFile(MemoryBufferRef Buffer, LLVMContext &Context, 7054 DataLayoutCallbackTy DataLayoutCallback) { 7055 Expected<BitcodeModule> BM = getSingleModule(Buffer); 7056 if (!BM) 7057 return BM.takeError(); 7058 7059 return BM->parseModule(Context, DataLayoutCallback); 7060 } 7061 7062 Expected<std::string> llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer) { 7063 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 7064 if (!StreamOrErr) 7065 return StreamOrErr.takeError(); 7066 7067 return readTriple(*StreamOrErr); 7068 } 7069 7070 Expected<bool> llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer) { 7071 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 7072 if (!StreamOrErr) 7073 return StreamOrErr.takeError(); 7074 7075 return hasObjCCategory(*StreamOrErr); 7076 } 7077 7078 Expected<std::string> llvm::getBitcodeProducerString(MemoryBufferRef Buffer) { 7079 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 7080 if (!StreamOrErr) 7081 return StreamOrErr.takeError(); 7082 7083 return readIdentificationCode(*StreamOrErr); 7084 } 7085 7086 Error llvm::readModuleSummaryIndex(MemoryBufferRef Buffer, 7087 ModuleSummaryIndex &CombinedIndex, 7088 uint64_t ModuleId) { 7089 Expected<BitcodeModule> BM = getSingleModule(Buffer); 7090 if (!BM) 7091 return BM.takeError(); 7092 7093 return BM->readSummary(CombinedIndex, BM->getModuleIdentifier(), ModuleId); 7094 } 7095 7096 Expected<std::unique_ptr<ModuleSummaryIndex>> 7097 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer) { 7098 Expected<BitcodeModule> BM = getSingleModule(Buffer); 7099 if (!BM) 7100 return BM.takeError(); 7101 7102 return BM->getSummary(); 7103 } 7104 7105 Expected<BitcodeLTOInfo> llvm::getBitcodeLTOInfo(MemoryBufferRef Buffer) { 7106 Expected<BitcodeModule> BM = getSingleModule(Buffer); 7107 if (!BM) 7108 return BM.takeError(); 7109 7110 return BM->getLTOInfo(); 7111 } 7112 7113 Expected<std::unique_ptr<ModuleSummaryIndex>> 7114 llvm::getModuleSummaryIndexForFile(StringRef Path, 7115 bool IgnoreEmptyThinLTOIndexFile) { 7116 ErrorOr<std::unique_ptr<MemoryBuffer>> FileOrErr = 7117 MemoryBuffer::getFileOrSTDIN(Path); 7118 if (!FileOrErr) 7119 return errorCodeToError(FileOrErr.getError()); 7120 if (IgnoreEmptyThinLTOIndexFile && !(*FileOrErr)->getBufferSize()) 7121 return nullptr; 7122 return getModuleSummaryIndex(**FileOrErr); 7123 } 7124