1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "llvm/ADT/STLExtras.h" 11 #include "llvm/ADT/SmallString.h" 12 #include "llvm/ADT/SmallVector.h" 13 #include "llvm/ADT/Triple.h" 14 #include "llvm/Bitcode/BitstreamReader.h" 15 #include "llvm/Bitcode/LLVMBitCodes.h" 16 #include "llvm/Bitcode/ReaderWriter.h" 17 #include "llvm/IR/AutoUpgrade.h" 18 #include "llvm/IR/Constants.h" 19 #include "llvm/IR/DebugInfo.h" 20 #include "llvm/IR/DebugInfoMetadata.h" 21 #include "llvm/IR/DerivedTypes.h" 22 #include "llvm/IR/DiagnosticPrinter.h" 23 #include "llvm/IR/GVMaterializer.h" 24 #include "llvm/IR/InlineAsm.h" 25 #include "llvm/IR/IntrinsicInst.h" 26 #include "llvm/IR/LLVMContext.h" 27 #include "llvm/IR/Module.h" 28 #include "llvm/IR/ModuleSummaryIndex.h" 29 #include "llvm/IR/OperandTraits.h" 30 #include "llvm/IR/Operator.h" 31 #include "llvm/IR/ValueHandle.h" 32 #include "llvm/Support/DataStream.h" 33 #include "llvm/Support/ManagedStatic.h" 34 #include "llvm/Support/MathExtras.h" 35 #include "llvm/Support/MemoryBuffer.h" 36 #include "llvm/Support/raw_ostream.h" 37 #include <deque> 38 39 using namespace llvm; 40 41 namespace { 42 enum { 43 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 44 }; 45 46 class BitcodeReaderValueList { 47 std::vector<WeakVH> ValuePtrs; 48 49 /// As we resolve forward-referenced constants, we add information about them 50 /// to this vector. This allows us to resolve them in bulk instead of 51 /// resolving each reference at a time. See the code in 52 /// ResolveConstantForwardRefs for more information about this. 53 /// 54 /// The key of this vector is the placeholder constant, the value is the slot 55 /// number that holds the resolved value. 56 typedef std::vector<std::pair<Constant*, unsigned> > ResolveConstantsTy; 57 ResolveConstantsTy ResolveConstants; 58 LLVMContext &Context; 59 public: 60 BitcodeReaderValueList(LLVMContext &C) : Context(C) {} 61 ~BitcodeReaderValueList() { 62 assert(ResolveConstants.empty() && "Constants not resolved?"); 63 } 64 65 // vector compatibility methods 66 unsigned size() const { return ValuePtrs.size(); } 67 void resize(unsigned N) { ValuePtrs.resize(N); } 68 void push_back(Value *V) { ValuePtrs.emplace_back(V); } 69 70 void clear() { 71 assert(ResolveConstants.empty() && "Constants not resolved?"); 72 ValuePtrs.clear(); 73 } 74 75 Value *operator[](unsigned i) const { 76 assert(i < ValuePtrs.size()); 77 return ValuePtrs[i]; 78 } 79 80 Value *back() const { return ValuePtrs.back(); } 81 void pop_back() { ValuePtrs.pop_back(); } 82 bool empty() const { return ValuePtrs.empty(); } 83 void shrinkTo(unsigned N) { 84 assert(N <= size() && "Invalid shrinkTo request!"); 85 ValuePtrs.resize(N); 86 } 87 88 Constant *getConstantFwdRef(unsigned Idx, Type *Ty); 89 Value *getValueFwdRef(unsigned Idx, Type *Ty); 90 91 void assignValue(Value *V, unsigned Idx); 92 93 /// Once all constants are read, this method bulk resolves any forward 94 /// references. 95 void resolveConstantForwardRefs(); 96 }; 97 98 class BitcodeReaderMetadataList { 99 unsigned NumFwdRefs; 100 bool AnyFwdRefs; 101 unsigned MinFwdRef; 102 unsigned MaxFwdRef; 103 std::vector<TrackingMDRef> MetadataPtrs; 104 105 LLVMContext &Context; 106 public: 107 BitcodeReaderMetadataList(LLVMContext &C) 108 : NumFwdRefs(0), AnyFwdRefs(false), Context(C) {} 109 110 // vector compatibility methods 111 unsigned size() const { return MetadataPtrs.size(); } 112 void resize(unsigned N) { MetadataPtrs.resize(N); } 113 void push_back(Metadata *MD) { MetadataPtrs.emplace_back(MD); } 114 void clear() { MetadataPtrs.clear(); } 115 Metadata *back() const { return MetadataPtrs.back(); } 116 void pop_back() { MetadataPtrs.pop_back(); } 117 bool empty() const { return MetadataPtrs.empty(); } 118 119 Metadata *operator[](unsigned i) const { 120 assert(i < MetadataPtrs.size()); 121 return MetadataPtrs[i]; 122 } 123 124 void shrinkTo(unsigned N) { 125 assert(N <= size() && "Invalid shrinkTo request!"); 126 MetadataPtrs.resize(N); 127 } 128 129 Metadata *getMetadataFwdRef(unsigned Idx); 130 MDNode *getMDNodeFwdRefOrNull(unsigned Idx); 131 void assignValue(Metadata *MD, unsigned Idx); 132 void tryToResolveCycles(); 133 }; 134 135 class BitcodeReader : public GVMaterializer { 136 LLVMContext &Context; 137 Module *TheModule = nullptr; 138 std::unique_ptr<MemoryBuffer> Buffer; 139 std::unique_ptr<BitstreamReader> StreamFile; 140 BitstreamCursor Stream; 141 // Next offset to start scanning for lazy parsing of function bodies. 142 uint64_t NextUnreadBit = 0; 143 // Last function offset found in the VST. 144 uint64_t LastFunctionBlockBit = 0; 145 bool SeenValueSymbolTable = false; 146 uint64_t VSTOffset = 0; 147 // Contains an arbitrary and optional string identifying the bitcode producer 148 std::string ProducerIdentification; 149 150 std::vector<Type*> TypeList; 151 BitcodeReaderValueList ValueList; 152 BitcodeReaderMetadataList MetadataList; 153 std::vector<Comdat *> ComdatList; 154 SmallVector<Instruction *, 64> InstructionList; 155 156 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInits; 157 std::vector<std::pair<GlobalAlias*, unsigned> > AliasInits; 158 std::vector<std::pair<Function*, unsigned> > FunctionPrefixes; 159 std::vector<std::pair<Function*, unsigned> > FunctionPrologues; 160 std::vector<std::pair<Function*, unsigned> > FunctionPersonalityFns; 161 162 SmallVector<Instruction*, 64> InstsWithTBAATag; 163 164 bool HasSeenOldLoopTags = false; 165 166 /// The set of attributes by index. Index zero in the file is for null, and 167 /// is thus not represented here. As such all indices are off by one. 168 std::vector<AttributeSet> MAttributes; 169 170 /// The set of attribute groups. 171 std::map<unsigned, AttributeSet> MAttributeGroups; 172 173 /// While parsing a function body, this is a list of the basic blocks for the 174 /// function. 175 std::vector<BasicBlock*> FunctionBBs; 176 177 // When reading the module header, this list is populated with functions that 178 // have bodies later in the file. 179 std::vector<Function*> FunctionsWithBodies; 180 181 // When intrinsic functions are encountered which require upgrading they are 182 // stored here with their replacement function. 183 typedef DenseMap<Function*, Function*> UpgradedIntrinsicMap; 184 UpgradedIntrinsicMap UpgradedIntrinsics; 185 186 // Map the bitcode's custom MDKind ID to the Module's MDKind ID. 187 DenseMap<unsigned, unsigned> MDKindMap; 188 189 // Several operations happen after the module header has been read, but 190 // before function bodies are processed. This keeps track of whether 191 // we've done this yet. 192 bool SeenFirstFunctionBody = false; 193 194 /// When function bodies are initially scanned, this map contains info about 195 /// where to find deferred function body in the stream. 196 DenseMap<Function*, uint64_t> DeferredFunctionInfo; 197 198 /// When Metadata block is initially scanned when parsing the module, we may 199 /// choose to defer parsing of the metadata. This vector contains info about 200 /// which Metadata blocks are deferred. 201 std::vector<uint64_t> DeferredMetadataInfo; 202 203 /// These are basic blocks forward-referenced by block addresses. They are 204 /// inserted lazily into functions when they're loaded. The basic block ID is 205 /// its index into the vector. 206 DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs; 207 std::deque<Function *> BasicBlockFwdRefQueue; 208 209 /// Indicates that we are using a new encoding for instruction operands where 210 /// most operands in the current FUNCTION_BLOCK are encoded relative to the 211 /// instruction number, for a more compact encoding. Some instruction 212 /// operands are not relative to the instruction ID: basic block numbers, and 213 /// types. Once the old style function blocks have been phased out, we would 214 /// not need this flag. 215 bool UseRelativeIDs = false; 216 217 /// True if all functions will be materialized, negating the need to process 218 /// (e.g.) blockaddress forward references. 219 bool WillMaterializeAllForwardRefs = false; 220 221 /// True if any Metadata block has been materialized. 222 bool IsMetadataMaterialized = false; 223 224 bool StripDebugInfo = false; 225 226 /// Functions that need to be matched with subprograms when upgrading old 227 /// metadata. 228 SmallDenseMap<Function *, DISubprogram *, 16> FunctionsWithSPs; 229 230 std::vector<std::string> BundleTags; 231 232 public: 233 std::error_code error(BitcodeError E, const Twine &Message); 234 std::error_code error(BitcodeError E); 235 std::error_code error(const Twine &Message); 236 237 BitcodeReader(MemoryBuffer *Buffer, LLVMContext &Context); 238 BitcodeReader(LLVMContext &Context); 239 ~BitcodeReader() override { freeState(); } 240 241 std::error_code materializeForwardReferencedFunctions(); 242 243 void freeState(); 244 245 void releaseBuffer(); 246 247 std::error_code materialize(GlobalValue *GV) override; 248 std::error_code materializeModule() override; 249 std::vector<StructType *> getIdentifiedStructTypes() const override; 250 251 /// \brief Main interface to parsing a bitcode buffer. 252 /// \returns true if an error occurred. 253 std::error_code parseBitcodeInto(std::unique_ptr<DataStreamer> Streamer, 254 Module *M, 255 bool ShouldLazyLoadMetadata = false); 256 257 /// \brief Cheap mechanism to just extract module triple 258 /// \returns true if an error occurred. 259 ErrorOr<std::string> parseTriple(); 260 261 /// Cheap mechanism to just extract the identification block out of bitcode. 262 ErrorOr<std::string> parseIdentificationBlock(); 263 264 static uint64_t decodeSignRotatedValue(uint64_t V); 265 266 /// Materialize any deferred Metadata block. 267 std::error_code materializeMetadata() override; 268 269 void setStripDebugInfo() override; 270 271 private: 272 /// Parse the "IDENTIFICATION_BLOCK_ID" block, populate the 273 // ProducerIdentification data member, and do some basic enforcement on the 274 // "epoch" encoded in the bitcode. 275 std::error_code parseBitcodeVersion(); 276 277 std::vector<StructType *> IdentifiedStructTypes; 278 StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name); 279 StructType *createIdentifiedStructType(LLVMContext &Context); 280 281 Type *getTypeByID(unsigned ID); 282 Value *getFnValueByID(unsigned ID, Type *Ty) { 283 if (Ty && Ty->isMetadataTy()) 284 return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID)); 285 return ValueList.getValueFwdRef(ID, Ty); 286 } 287 Metadata *getFnMetadataByID(unsigned ID) { 288 return MetadataList.getMetadataFwdRef(ID); 289 } 290 BasicBlock *getBasicBlock(unsigned ID) const { 291 if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID 292 return FunctionBBs[ID]; 293 } 294 AttributeSet getAttributes(unsigned i) const { 295 if (i-1 < MAttributes.size()) 296 return MAttributes[i-1]; 297 return AttributeSet(); 298 } 299 300 /// Read a value/type pair out of the specified record from slot 'Slot'. 301 /// Increment Slot past the number of slots used in the record. Return true on 302 /// failure. 303 bool getValueTypePair(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 304 unsigned InstNum, Value *&ResVal) { 305 if (Slot == Record.size()) return true; 306 unsigned ValNo = (unsigned)Record[Slot++]; 307 // Adjust the ValNo, if it was encoded relative to the InstNum. 308 if (UseRelativeIDs) 309 ValNo = InstNum - ValNo; 310 if (ValNo < InstNum) { 311 // If this is not a forward reference, just return the value we already 312 // have. 313 ResVal = getFnValueByID(ValNo, nullptr); 314 return ResVal == nullptr; 315 } 316 if (Slot == Record.size()) 317 return true; 318 319 unsigned TypeNo = (unsigned)Record[Slot++]; 320 ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo)); 321 return ResVal == nullptr; 322 } 323 324 /// Read a value out of the specified record from slot 'Slot'. Increment Slot 325 /// past the number of slots used by the value in the record. Return true if 326 /// there is an error. 327 bool popValue(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 328 unsigned InstNum, Type *Ty, Value *&ResVal) { 329 if (getValue(Record, Slot, InstNum, Ty, ResVal)) 330 return true; 331 // All values currently take a single record slot. 332 ++Slot; 333 return false; 334 } 335 336 /// Like popValue, but does not increment the Slot number. 337 bool getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 338 unsigned InstNum, Type *Ty, Value *&ResVal) { 339 ResVal = getValue(Record, Slot, InstNum, Ty); 340 return ResVal == nullptr; 341 } 342 343 /// Version of getValue that returns ResVal directly, or 0 if there is an 344 /// error. 345 Value *getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 346 unsigned InstNum, Type *Ty) { 347 if (Slot == Record.size()) return nullptr; 348 unsigned ValNo = (unsigned)Record[Slot]; 349 // Adjust the ValNo, if it was encoded relative to the InstNum. 350 if (UseRelativeIDs) 351 ValNo = InstNum - ValNo; 352 return getFnValueByID(ValNo, Ty); 353 } 354 355 /// Like getValue, but decodes signed VBRs. 356 Value *getValueSigned(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 357 unsigned InstNum, Type *Ty) { 358 if (Slot == Record.size()) return nullptr; 359 unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]); 360 // Adjust the ValNo, if it was encoded relative to the InstNum. 361 if (UseRelativeIDs) 362 ValNo = InstNum - ValNo; 363 return getFnValueByID(ValNo, Ty); 364 } 365 366 /// Converts alignment exponent (i.e. power of two (or zero)) to the 367 /// corresponding alignment to use. If alignment is too large, returns 368 /// a corresponding error code. 369 std::error_code parseAlignmentValue(uint64_t Exponent, unsigned &Alignment); 370 std::error_code parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind); 371 std::error_code parseModule(uint64_t ResumeBit, 372 bool ShouldLazyLoadMetadata = false); 373 std::error_code parseAttributeBlock(); 374 std::error_code parseAttributeGroupBlock(); 375 std::error_code parseTypeTable(); 376 std::error_code parseTypeTableBody(); 377 std::error_code parseOperandBundleTags(); 378 379 ErrorOr<Value *> recordValue(SmallVectorImpl<uint64_t> &Record, 380 unsigned NameIndex, Triple &TT); 381 std::error_code parseValueSymbolTable(uint64_t Offset = 0); 382 std::error_code parseConstants(); 383 std::error_code rememberAndSkipFunctionBodies(); 384 std::error_code rememberAndSkipFunctionBody(); 385 /// Save the positions of the Metadata blocks and skip parsing the blocks. 386 std::error_code rememberAndSkipMetadata(); 387 std::error_code parseFunctionBody(Function *F); 388 std::error_code globalCleanup(); 389 std::error_code resolveGlobalAndAliasInits(); 390 std::error_code parseMetadata(bool ModuleLevel = false); 391 std::error_code parseMetadataStrings(ArrayRef<uint64_t> Record, 392 StringRef Blob, 393 unsigned &NextMetadataNo); 394 std::error_code parseMetadataKinds(); 395 std::error_code parseMetadataKindRecord(SmallVectorImpl<uint64_t> &Record); 396 std::error_code parseMetadataAttachment(Function &F); 397 ErrorOr<std::string> parseModuleTriple(); 398 std::error_code parseUseLists(); 399 std::error_code initStream(std::unique_ptr<DataStreamer> Streamer); 400 std::error_code initStreamFromBuffer(); 401 std::error_code initLazyStream(std::unique_ptr<DataStreamer> Streamer); 402 std::error_code findFunctionInStream( 403 Function *F, 404 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator); 405 }; 406 407 /// Class to manage reading and parsing function summary index bitcode 408 /// files/sections. 409 class ModuleSummaryIndexBitcodeReader { 410 DiagnosticHandlerFunction DiagnosticHandler; 411 412 /// Eventually points to the module index built during parsing. 413 ModuleSummaryIndex *TheIndex = nullptr; 414 415 std::unique_ptr<MemoryBuffer> Buffer; 416 std::unique_ptr<BitstreamReader> StreamFile; 417 BitstreamCursor Stream; 418 419 /// \brief Used to indicate whether we are doing lazy parsing of summary data. 420 /// 421 /// If false, the summary section is fully parsed into the index during 422 /// the initial parse. Otherwise, if true, the caller is expected to 423 /// invoke \a readGlobalValueSummary for each summary needed, and the summary 424 /// section is thus parsed lazily. 425 bool IsLazy = false; 426 427 /// Used to indicate whether caller only wants to check for the presence 428 /// of the global value summary bitcode section. All blocks are skipped, 429 /// but the SeenGlobalValSummary boolean is set. 430 bool CheckGlobalValSummaryPresenceOnly = false; 431 432 /// Indicates whether we have encountered a global value summary section 433 /// yet during parsing, used when checking if file contains global value 434 /// summary section. 435 bool SeenGlobalValSummary = false; 436 437 /// Indicates whether we have already parsed the VST, used for error checking. 438 bool SeenValueSymbolTable = false; 439 440 /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record. 441 /// Used to enable on-demand parsing of the VST. 442 uint64_t VSTOffset = 0; 443 444 // Map to save ValueId to GUID association that was recorded in the 445 // ValueSymbolTable. It is used after the VST is parsed to convert 446 // call graph edges read from the function summary from referencing 447 // callees by their ValueId to using the GUID instead, which is how 448 // they are recorded in the summary index being built. 449 DenseMap<unsigned, uint64_t> ValueIdToCallGraphGUIDMap; 450 451 /// Map to save the association between summary offset in the VST to the 452 /// GlobalValueInfo object created when parsing it. Used to access the 453 /// info object when parsing the summary section. 454 DenseMap<uint64_t, GlobalValueInfo *> SummaryOffsetToInfoMap; 455 456 /// Map populated during module path string table parsing, from the 457 /// module ID to a string reference owned by the index's module 458 /// path string table, used to correlate with combined index 459 /// summary records. 460 DenseMap<uint64_t, StringRef> ModuleIdMap; 461 462 /// Original source file name recorded in a bitcode record. 463 std::string SourceFileName; 464 465 public: 466 std::error_code error(BitcodeError E, const Twine &Message); 467 std::error_code error(BitcodeError E); 468 std::error_code error(const Twine &Message); 469 470 ModuleSummaryIndexBitcodeReader( 471 MemoryBuffer *Buffer, DiagnosticHandlerFunction DiagnosticHandler, 472 bool IsLazy = false, bool CheckGlobalValSummaryPresenceOnly = false); 473 ModuleSummaryIndexBitcodeReader( 474 DiagnosticHandlerFunction DiagnosticHandler, bool IsLazy = false, 475 bool CheckGlobalValSummaryPresenceOnly = false); 476 ~ModuleSummaryIndexBitcodeReader() { freeState(); } 477 478 void freeState(); 479 480 void releaseBuffer(); 481 482 /// Check if the parser has encountered a summary section. 483 bool foundGlobalValSummary() { return SeenGlobalValSummary; } 484 485 /// \brief Main interface to parsing a bitcode buffer. 486 /// \returns true if an error occurred. 487 std::error_code parseSummaryIndexInto(std::unique_ptr<DataStreamer> Streamer, 488 ModuleSummaryIndex *I); 489 490 /// \brief Interface for parsing a summary lazily. 491 std::error_code 492 parseGlobalValueSummary(std::unique_ptr<DataStreamer> Streamer, 493 ModuleSummaryIndex *I, size_t SummaryOffset); 494 495 private: 496 std::error_code parseModule(); 497 std::error_code parseValueSymbolTable( 498 uint64_t Offset, 499 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap); 500 std::error_code parseEntireSummary(); 501 std::error_code parseModuleStringTable(); 502 std::error_code initStream(std::unique_ptr<DataStreamer> Streamer); 503 std::error_code initStreamFromBuffer(); 504 std::error_code initLazyStream(std::unique_ptr<DataStreamer> Streamer); 505 uint64_t getGUIDFromValueId(unsigned ValueId); 506 GlobalValueInfo *getInfoFromSummaryOffset(uint64_t Offset); 507 }; 508 } // end anonymous namespace 509 510 BitcodeDiagnosticInfo::BitcodeDiagnosticInfo(std::error_code EC, 511 DiagnosticSeverity Severity, 512 const Twine &Msg) 513 : DiagnosticInfo(DK_Bitcode, Severity), Msg(Msg), EC(EC) {} 514 515 void BitcodeDiagnosticInfo::print(DiagnosticPrinter &DP) const { DP << Msg; } 516 517 static std::error_code error(DiagnosticHandlerFunction DiagnosticHandler, 518 std::error_code EC, const Twine &Message) { 519 BitcodeDiagnosticInfo DI(EC, DS_Error, Message); 520 DiagnosticHandler(DI); 521 return EC; 522 } 523 524 static std::error_code error(DiagnosticHandlerFunction DiagnosticHandler, 525 std::error_code EC) { 526 return error(DiagnosticHandler, EC, EC.message()); 527 } 528 529 static std::error_code error(LLVMContext &Context, std::error_code EC, 530 const Twine &Message) { 531 return error([&](const DiagnosticInfo &DI) { Context.diagnose(DI); }, EC, 532 Message); 533 } 534 535 static std::error_code error(LLVMContext &Context, std::error_code EC) { 536 return error(Context, EC, EC.message()); 537 } 538 539 static std::error_code error(LLVMContext &Context, const Twine &Message) { 540 return error(Context, make_error_code(BitcodeError::CorruptedBitcode), 541 Message); 542 } 543 544 std::error_code BitcodeReader::error(BitcodeError E, const Twine &Message) { 545 if (!ProducerIdentification.empty()) { 546 return ::error(Context, make_error_code(E), 547 Message + " (Producer: '" + ProducerIdentification + 548 "' Reader: 'LLVM " + LLVM_VERSION_STRING "')"); 549 } 550 return ::error(Context, make_error_code(E), Message); 551 } 552 553 std::error_code BitcodeReader::error(const Twine &Message) { 554 if (!ProducerIdentification.empty()) { 555 return ::error(Context, make_error_code(BitcodeError::CorruptedBitcode), 556 Message + " (Producer: '" + ProducerIdentification + 557 "' Reader: 'LLVM " + LLVM_VERSION_STRING "')"); 558 } 559 return ::error(Context, make_error_code(BitcodeError::CorruptedBitcode), 560 Message); 561 } 562 563 std::error_code BitcodeReader::error(BitcodeError E) { 564 return ::error(Context, make_error_code(E)); 565 } 566 567 BitcodeReader::BitcodeReader(MemoryBuffer *Buffer, LLVMContext &Context) 568 : Context(Context), Buffer(Buffer), ValueList(Context), 569 MetadataList(Context) {} 570 571 BitcodeReader::BitcodeReader(LLVMContext &Context) 572 : Context(Context), Buffer(nullptr), ValueList(Context), 573 MetadataList(Context) {} 574 575 std::error_code BitcodeReader::materializeForwardReferencedFunctions() { 576 if (WillMaterializeAllForwardRefs) 577 return std::error_code(); 578 579 // Prevent recursion. 580 WillMaterializeAllForwardRefs = true; 581 582 while (!BasicBlockFwdRefQueue.empty()) { 583 Function *F = BasicBlockFwdRefQueue.front(); 584 BasicBlockFwdRefQueue.pop_front(); 585 assert(F && "Expected valid function"); 586 if (!BasicBlockFwdRefs.count(F)) 587 // Already materialized. 588 continue; 589 590 // Check for a function that isn't materializable to prevent an infinite 591 // loop. When parsing a blockaddress stored in a global variable, there 592 // isn't a trivial way to check if a function will have a body without a 593 // linear search through FunctionsWithBodies, so just check it here. 594 if (!F->isMaterializable()) 595 return error("Never resolved function from blockaddress"); 596 597 // Try to materialize F. 598 if (std::error_code EC = materialize(F)) 599 return EC; 600 } 601 assert(BasicBlockFwdRefs.empty() && "Function missing from queue"); 602 603 // Reset state. 604 WillMaterializeAllForwardRefs = false; 605 return std::error_code(); 606 } 607 608 void BitcodeReader::freeState() { 609 Buffer = nullptr; 610 std::vector<Type*>().swap(TypeList); 611 ValueList.clear(); 612 MetadataList.clear(); 613 std::vector<Comdat *>().swap(ComdatList); 614 615 std::vector<AttributeSet>().swap(MAttributes); 616 std::vector<BasicBlock*>().swap(FunctionBBs); 617 std::vector<Function*>().swap(FunctionsWithBodies); 618 DeferredFunctionInfo.clear(); 619 DeferredMetadataInfo.clear(); 620 MDKindMap.clear(); 621 622 assert(BasicBlockFwdRefs.empty() && "Unresolved blockaddress fwd references"); 623 BasicBlockFwdRefQueue.clear(); 624 } 625 626 //===----------------------------------------------------------------------===// 627 // Helper functions to implement forward reference resolution, etc. 628 //===----------------------------------------------------------------------===// 629 630 /// Convert a string from a record into an std::string, return true on failure. 631 template <typename StrTy> 632 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx, 633 StrTy &Result) { 634 if (Idx > Record.size()) 635 return true; 636 637 for (unsigned i = Idx, e = Record.size(); i != e; ++i) 638 Result += (char)Record[i]; 639 return false; 640 } 641 642 static bool hasImplicitComdat(size_t Val) { 643 switch (Val) { 644 default: 645 return false; 646 case 1: // Old WeakAnyLinkage 647 case 4: // Old LinkOnceAnyLinkage 648 case 10: // Old WeakODRLinkage 649 case 11: // Old LinkOnceODRLinkage 650 return true; 651 } 652 } 653 654 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) { 655 switch (Val) { 656 default: // Map unknown/new linkages to external 657 case 0: 658 return GlobalValue::ExternalLinkage; 659 case 2: 660 return GlobalValue::AppendingLinkage; 661 case 3: 662 return GlobalValue::InternalLinkage; 663 case 5: 664 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage 665 case 6: 666 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage 667 case 7: 668 return GlobalValue::ExternalWeakLinkage; 669 case 8: 670 return GlobalValue::CommonLinkage; 671 case 9: 672 return GlobalValue::PrivateLinkage; 673 case 12: 674 return GlobalValue::AvailableExternallyLinkage; 675 case 13: 676 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage 677 case 14: 678 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage 679 case 15: 680 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage 681 case 1: // Old value with implicit comdat. 682 case 16: 683 return GlobalValue::WeakAnyLinkage; 684 case 10: // Old value with implicit comdat. 685 case 17: 686 return GlobalValue::WeakODRLinkage; 687 case 4: // Old value with implicit comdat. 688 case 18: 689 return GlobalValue::LinkOnceAnyLinkage; 690 case 11: // Old value with implicit comdat. 691 case 19: 692 return GlobalValue::LinkOnceODRLinkage; 693 } 694 } 695 696 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) { 697 switch (Val) { 698 default: // Map unknown visibilities to default. 699 case 0: return GlobalValue::DefaultVisibility; 700 case 1: return GlobalValue::HiddenVisibility; 701 case 2: return GlobalValue::ProtectedVisibility; 702 } 703 } 704 705 static GlobalValue::DLLStorageClassTypes 706 getDecodedDLLStorageClass(unsigned Val) { 707 switch (Val) { 708 default: // Map unknown values to default. 709 case 0: return GlobalValue::DefaultStorageClass; 710 case 1: return GlobalValue::DLLImportStorageClass; 711 case 2: return GlobalValue::DLLExportStorageClass; 712 } 713 } 714 715 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) { 716 switch (Val) { 717 case 0: return GlobalVariable::NotThreadLocal; 718 default: // Map unknown non-zero value to general dynamic. 719 case 1: return GlobalVariable::GeneralDynamicTLSModel; 720 case 2: return GlobalVariable::LocalDynamicTLSModel; 721 case 3: return GlobalVariable::InitialExecTLSModel; 722 case 4: return GlobalVariable::LocalExecTLSModel; 723 } 724 } 725 726 static int getDecodedCastOpcode(unsigned Val) { 727 switch (Val) { 728 default: return -1; 729 case bitc::CAST_TRUNC : return Instruction::Trunc; 730 case bitc::CAST_ZEXT : return Instruction::ZExt; 731 case bitc::CAST_SEXT : return Instruction::SExt; 732 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 733 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 734 case bitc::CAST_UITOFP : return Instruction::UIToFP; 735 case bitc::CAST_SITOFP : return Instruction::SIToFP; 736 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 737 case bitc::CAST_FPEXT : return Instruction::FPExt; 738 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 739 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 740 case bitc::CAST_BITCAST : return Instruction::BitCast; 741 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast; 742 } 743 } 744 745 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) { 746 bool IsFP = Ty->isFPOrFPVectorTy(); 747 // BinOps are only valid for int/fp or vector of int/fp types 748 if (!IsFP && !Ty->isIntOrIntVectorTy()) 749 return -1; 750 751 switch (Val) { 752 default: 753 return -1; 754 case bitc::BINOP_ADD: 755 return IsFP ? Instruction::FAdd : Instruction::Add; 756 case bitc::BINOP_SUB: 757 return IsFP ? Instruction::FSub : Instruction::Sub; 758 case bitc::BINOP_MUL: 759 return IsFP ? Instruction::FMul : Instruction::Mul; 760 case bitc::BINOP_UDIV: 761 return IsFP ? -1 : Instruction::UDiv; 762 case bitc::BINOP_SDIV: 763 return IsFP ? Instruction::FDiv : Instruction::SDiv; 764 case bitc::BINOP_UREM: 765 return IsFP ? -1 : Instruction::URem; 766 case bitc::BINOP_SREM: 767 return IsFP ? Instruction::FRem : Instruction::SRem; 768 case bitc::BINOP_SHL: 769 return IsFP ? -1 : Instruction::Shl; 770 case bitc::BINOP_LSHR: 771 return IsFP ? -1 : Instruction::LShr; 772 case bitc::BINOP_ASHR: 773 return IsFP ? -1 : Instruction::AShr; 774 case bitc::BINOP_AND: 775 return IsFP ? -1 : Instruction::And; 776 case bitc::BINOP_OR: 777 return IsFP ? -1 : Instruction::Or; 778 case bitc::BINOP_XOR: 779 return IsFP ? -1 : Instruction::Xor; 780 } 781 } 782 783 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) { 784 switch (Val) { 785 default: return AtomicRMWInst::BAD_BINOP; 786 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 787 case bitc::RMW_ADD: return AtomicRMWInst::Add; 788 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 789 case bitc::RMW_AND: return AtomicRMWInst::And; 790 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 791 case bitc::RMW_OR: return AtomicRMWInst::Or; 792 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 793 case bitc::RMW_MAX: return AtomicRMWInst::Max; 794 case bitc::RMW_MIN: return AtomicRMWInst::Min; 795 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 796 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 797 } 798 } 799 800 static AtomicOrdering getDecodedOrdering(unsigned Val) { 801 switch (Val) { 802 case bitc::ORDERING_NOTATOMIC: return NotAtomic; 803 case bitc::ORDERING_UNORDERED: return Unordered; 804 case bitc::ORDERING_MONOTONIC: return Monotonic; 805 case bitc::ORDERING_ACQUIRE: return Acquire; 806 case bitc::ORDERING_RELEASE: return Release; 807 case bitc::ORDERING_ACQREL: return AcquireRelease; 808 default: // Map unknown orderings to sequentially-consistent. 809 case bitc::ORDERING_SEQCST: return SequentiallyConsistent; 810 } 811 } 812 813 static SynchronizationScope getDecodedSynchScope(unsigned Val) { 814 switch (Val) { 815 case bitc::SYNCHSCOPE_SINGLETHREAD: return SingleThread; 816 default: // Map unknown scopes to cross-thread. 817 case bitc::SYNCHSCOPE_CROSSTHREAD: return CrossThread; 818 } 819 } 820 821 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) { 822 switch (Val) { 823 default: // Map unknown selection kinds to any. 824 case bitc::COMDAT_SELECTION_KIND_ANY: 825 return Comdat::Any; 826 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH: 827 return Comdat::ExactMatch; 828 case bitc::COMDAT_SELECTION_KIND_LARGEST: 829 return Comdat::Largest; 830 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES: 831 return Comdat::NoDuplicates; 832 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE: 833 return Comdat::SameSize; 834 } 835 } 836 837 static FastMathFlags getDecodedFastMathFlags(unsigned Val) { 838 FastMathFlags FMF; 839 if (0 != (Val & FastMathFlags::UnsafeAlgebra)) 840 FMF.setUnsafeAlgebra(); 841 if (0 != (Val & FastMathFlags::NoNaNs)) 842 FMF.setNoNaNs(); 843 if (0 != (Val & FastMathFlags::NoInfs)) 844 FMF.setNoInfs(); 845 if (0 != (Val & FastMathFlags::NoSignedZeros)) 846 FMF.setNoSignedZeros(); 847 if (0 != (Val & FastMathFlags::AllowReciprocal)) 848 FMF.setAllowReciprocal(); 849 return FMF; 850 } 851 852 static void upgradeDLLImportExportLinkage(llvm::GlobalValue *GV, unsigned Val) { 853 switch (Val) { 854 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break; 855 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break; 856 } 857 } 858 859 namespace llvm { 860 namespace { 861 /// \brief A class for maintaining the slot number definition 862 /// as a placeholder for the actual definition for forward constants defs. 863 class ConstantPlaceHolder : public ConstantExpr { 864 void operator=(const ConstantPlaceHolder &) = delete; 865 866 public: 867 // allocate space for exactly one operand 868 void *operator new(size_t s) { return User::operator new(s, 1); } 869 explicit ConstantPlaceHolder(Type *Ty, LLVMContext &Context) 870 : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) { 871 Op<0>() = UndefValue::get(Type::getInt32Ty(Context)); 872 } 873 874 /// \brief Methods to support type inquiry through isa, cast, and dyn_cast. 875 static bool classof(const Value *V) { 876 return isa<ConstantExpr>(V) && 877 cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1; 878 } 879 880 /// Provide fast operand accessors 881 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); 882 }; 883 } // end anonymous namespace 884 885 // FIXME: can we inherit this from ConstantExpr? 886 template <> 887 struct OperandTraits<ConstantPlaceHolder> : 888 public FixedNumOperandTraits<ConstantPlaceHolder, 1> { 889 }; 890 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantPlaceHolder, Value) 891 } // end namespace llvm 892 893 void BitcodeReaderValueList::assignValue(Value *V, unsigned Idx) { 894 if (Idx == size()) { 895 push_back(V); 896 return; 897 } 898 899 if (Idx >= size()) 900 resize(Idx+1); 901 902 WeakVH &OldV = ValuePtrs[Idx]; 903 if (!OldV) { 904 OldV = V; 905 return; 906 } 907 908 // Handle constants and non-constants (e.g. instrs) differently for 909 // efficiency. 910 if (Constant *PHC = dyn_cast<Constant>(&*OldV)) { 911 ResolveConstants.push_back(std::make_pair(PHC, Idx)); 912 OldV = V; 913 } else { 914 // If there was a forward reference to this value, replace it. 915 Value *PrevVal = OldV; 916 OldV->replaceAllUsesWith(V); 917 delete PrevVal; 918 } 919 } 920 921 Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx, 922 Type *Ty) { 923 if (Idx >= size()) 924 resize(Idx + 1); 925 926 if (Value *V = ValuePtrs[Idx]) { 927 if (Ty != V->getType()) 928 report_fatal_error("Type mismatch in constant table!"); 929 return cast<Constant>(V); 930 } 931 932 // Create and return a placeholder, which will later be RAUW'd. 933 Constant *C = new ConstantPlaceHolder(Ty, Context); 934 ValuePtrs[Idx] = C; 935 return C; 936 } 937 938 Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, Type *Ty) { 939 // Bail out for a clearly invalid value. This would make us call resize(0) 940 if (Idx == UINT_MAX) 941 return nullptr; 942 943 if (Idx >= size()) 944 resize(Idx + 1); 945 946 if (Value *V = ValuePtrs[Idx]) { 947 // If the types don't match, it's invalid. 948 if (Ty && Ty != V->getType()) 949 return nullptr; 950 return V; 951 } 952 953 // No type specified, must be invalid reference. 954 if (!Ty) return nullptr; 955 956 // Create and return a placeholder, which will later be RAUW'd. 957 Value *V = new Argument(Ty); 958 ValuePtrs[Idx] = V; 959 return V; 960 } 961 962 /// Once all constants are read, this method bulk resolves any forward 963 /// references. The idea behind this is that we sometimes get constants (such 964 /// as large arrays) which reference *many* forward ref constants. Replacing 965 /// each of these causes a lot of thrashing when building/reuniquing the 966 /// constant. Instead of doing this, we look at all the uses and rewrite all 967 /// the place holders at once for any constant that uses a placeholder. 968 void BitcodeReaderValueList::resolveConstantForwardRefs() { 969 // Sort the values by-pointer so that they are efficient to look up with a 970 // binary search. 971 std::sort(ResolveConstants.begin(), ResolveConstants.end()); 972 973 SmallVector<Constant*, 64> NewOps; 974 975 while (!ResolveConstants.empty()) { 976 Value *RealVal = operator[](ResolveConstants.back().second); 977 Constant *Placeholder = ResolveConstants.back().first; 978 ResolveConstants.pop_back(); 979 980 // Loop over all users of the placeholder, updating them to reference the 981 // new value. If they reference more than one placeholder, update them all 982 // at once. 983 while (!Placeholder->use_empty()) { 984 auto UI = Placeholder->user_begin(); 985 User *U = *UI; 986 987 // If the using object isn't uniqued, just update the operands. This 988 // handles instructions and initializers for global variables. 989 if (!isa<Constant>(U) || isa<GlobalValue>(U)) { 990 UI.getUse().set(RealVal); 991 continue; 992 } 993 994 // Otherwise, we have a constant that uses the placeholder. Replace that 995 // constant with a new constant that has *all* placeholder uses updated. 996 Constant *UserC = cast<Constant>(U); 997 for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end(); 998 I != E; ++I) { 999 Value *NewOp; 1000 if (!isa<ConstantPlaceHolder>(*I)) { 1001 // Not a placeholder reference. 1002 NewOp = *I; 1003 } else if (*I == Placeholder) { 1004 // Common case is that it just references this one placeholder. 1005 NewOp = RealVal; 1006 } else { 1007 // Otherwise, look up the placeholder in ResolveConstants. 1008 ResolveConstantsTy::iterator It = 1009 std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(), 1010 std::pair<Constant*, unsigned>(cast<Constant>(*I), 1011 0)); 1012 assert(It != ResolveConstants.end() && It->first == *I); 1013 NewOp = operator[](It->second); 1014 } 1015 1016 NewOps.push_back(cast<Constant>(NewOp)); 1017 } 1018 1019 // Make the new constant. 1020 Constant *NewC; 1021 if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) { 1022 NewC = ConstantArray::get(UserCA->getType(), NewOps); 1023 } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) { 1024 NewC = ConstantStruct::get(UserCS->getType(), NewOps); 1025 } else if (isa<ConstantVector>(UserC)) { 1026 NewC = ConstantVector::get(NewOps); 1027 } else { 1028 assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr."); 1029 NewC = cast<ConstantExpr>(UserC)->getWithOperands(NewOps); 1030 } 1031 1032 UserC->replaceAllUsesWith(NewC); 1033 UserC->destroyConstant(); 1034 NewOps.clear(); 1035 } 1036 1037 // Update all ValueHandles, they should be the only users at this point. 1038 Placeholder->replaceAllUsesWith(RealVal); 1039 delete Placeholder; 1040 } 1041 } 1042 1043 void BitcodeReaderMetadataList::assignValue(Metadata *MD, unsigned Idx) { 1044 if (Idx == size()) { 1045 push_back(MD); 1046 return; 1047 } 1048 1049 if (Idx >= size()) 1050 resize(Idx+1); 1051 1052 TrackingMDRef &OldMD = MetadataPtrs[Idx]; 1053 if (!OldMD) { 1054 OldMD.reset(MD); 1055 return; 1056 } 1057 1058 // If there was a forward reference to this value, replace it. 1059 TempMDTuple PrevMD(cast<MDTuple>(OldMD.get())); 1060 PrevMD->replaceAllUsesWith(MD); 1061 --NumFwdRefs; 1062 } 1063 1064 Metadata *BitcodeReaderMetadataList::getMetadataFwdRef(unsigned Idx) { 1065 if (Idx >= size()) 1066 resize(Idx + 1); 1067 1068 if (Metadata *MD = MetadataPtrs[Idx]) 1069 return MD; 1070 1071 // Track forward refs to be resolved later. 1072 if (AnyFwdRefs) { 1073 MinFwdRef = std::min(MinFwdRef, Idx); 1074 MaxFwdRef = std::max(MaxFwdRef, Idx); 1075 } else { 1076 AnyFwdRefs = true; 1077 MinFwdRef = MaxFwdRef = Idx; 1078 } 1079 ++NumFwdRefs; 1080 1081 // Create and return a placeholder, which will later be RAUW'd. 1082 Metadata *MD = MDNode::getTemporary(Context, None).release(); 1083 MetadataPtrs[Idx].reset(MD); 1084 return MD; 1085 } 1086 1087 MDNode *BitcodeReaderMetadataList::getMDNodeFwdRefOrNull(unsigned Idx) { 1088 return dyn_cast_or_null<MDNode>(getMetadataFwdRef(Idx)); 1089 } 1090 1091 void BitcodeReaderMetadataList::tryToResolveCycles() { 1092 if (!AnyFwdRefs) 1093 // Nothing to do. 1094 return; 1095 1096 if (NumFwdRefs) 1097 // Still forward references... can't resolve cycles. 1098 return; 1099 1100 // Resolve any cycles. 1101 for (unsigned I = MinFwdRef, E = MaxFwdRef + 1; I != E; ++I) { 1102 auto &MD = MetadataPtrs[I]; 1103 auto *N = dyn_cast_or_null<MDNode>(MD); 1104 if (!N) 1105 continue; 1106 1107 assert(!N->isTemporary() && "Unexpected forward reference"); 1108 N->resolveCycles(); 1109 } 1110 1111 // Make sure we return early again until there's another forward ref. 1112 AnyFwdRefs = false; 1113 } 1114 1115 Type *BitcodeReader::getTypeByID(unsigned ID) { 1116 // The type table size is always specified correctly. 1117 if (ID >= TypeList.size()) 1118 return nullptr; 1119 1120 if (Type *Ty = TypeList[ID]) 1121 return Ty; 1122 1123 // If we have a forward reference, the only possible case is when it is to a 1124 // named struct. Just create a placeholder for now. 1125 return TypeList[ID] = createIdentifiedStructType(Context); 1126 } 1127 1128 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context, 1129 StringRef Name) { 1130 auto *Ret = StructType::create(Context, Name); 1131 IdentifiedStructTypes.push_back(Ret); 1132 return Ret; 1133 } 1134 1135 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) { 1136 auto *Ret = StructType::create(Context); 1137 IdentifiedStructTypes.push_back(Ret); 1138 return Ret; 1139 } 1140 1141 //===----------------------------------------------------------------------===// 1142 // Functions for parsing blocks from the bitcode file 1143 //===----------------------------------------------------------------------===// 1144 1145 1146 /// \brief This fills an AttrBuilder object with the LLVM attributes that have 1147 /// been decoded from the given integer. This function must stay in sync with 1148 /// 'encodeLLVMAttributesForBitcode'. 1149 static void decodeLLVMAttributesForBitcode(AttrBuilder &B, 1150 uint64_t EncodedAttrs) { 1151 // FIXME: Remove in 4.0. 1152 1153 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift 1154 // the bits above 31 down by 11 bits. 1155 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; 1156 assert((!Alignment || isPowerOf2_32(Alignment)) && 1157 "Alignment must be a power of two."); 1158 1159 if (Alignment) 1160 B.addAlignmentAttr(Alignment); 1161 B.addRawValue(((EncodedAttrs & (0xfffffULL << 32)) >> 11) | 1162 (EncodedAttrs & 0xffff)); 1163 } 1164 1165 std::error_code BitcodeReader::parseAttributeBlock() { 1166 if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 1167 return error("Invalid record"); 1168 1169 if (!MAttributes.empty()) 1170 return error("Invalid multiple blocks"); 1171 1172 SmallVector<uint64_t, 64> Record; 1173 1174 SmallVector<AttributeSet, 8> Attrs; 1175 1176 // Read all the records. 1177 while (1) { 1178 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1179 1180 switch (Entry.Kind) { 1181 case BitstreamEntry::SubBlock: // Handled for us already. 1182 case BitstreamEntry::Error: 1183 return error("Malformed block"); 1184 case BitstreamEntry::EndBlock: 1185 return std::error_code(); 1186 case BitstreamEntry::Record: 1187 // The interesting case. 1188 break; 1189 } 1190 1191 // Read a record. 1192 Record.clear(); 1193 switch (Stream.readRecord(Entry.ID, Record)) { 1194 default: // Default behavior: ignore. 1195 break; 1196 case bitc::PARAMATTR_CODE_ENTRY_OLD: { // ENTRY: [paramidx0, attr0, ...] 1197 // FIXME: Remove in 4.0. 1198 if (Record.size() & 1) 1199 return error("Invalid record"); 1200 1201 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1202 AttrBuilder B; 1203 decodeLLVMAttributesForBitcode(B, Record[i+1]); 1204 Attrs.push_back(AttributeSet::get(Context, Record[i], B)); 1205 } 1206 1207 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 1208 Attrs.clear(); 1209 break; 1210 } 1211 case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [attrgrp0, attrgrp1, ...] 1212 for (unsigned i = 0, e = Record.size(); i != e; ++i) 1213 Attrs.push_back(MAttributeGroups[Record[i]]); 1214 1215 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 1216 Attrs.clear(); 1217 break; 1218 } 1219 } 1220 } 1221 } 1222 1223 // Returns Attribute::None on unrecognized codes. 1224 static Attribute::AttrKind getAttrFromCode(uint64_t Code) { 1225 switch (Code) { 1226 default: 1227 return Attribute::None; 1228 case bitc::ATTR_KIND_ALIGNMENT: 1229 return Attribute::Alignment; 1230 case bitc::ATTR_KIND_ALWAYS_INLINE: 1231 return Attribute::AlwaysInline; 1232 case bitc::ATTR_KIND_ARGMEMONLY: 1233 return Attribute::ArgMemOnly; 1234 case bitc::ATTR_KIND_BUILTIN: 1235 return Attribute::Builtin; 1236 case bitc::ATTR_KIND_BY_VAL: 1237 return Attribute::ByVal; 1238 case bitc::ATTR_KIND_IN_ALLOCA: 1239 return Attribute::InAlloca; 1240 case bitc::ATTR_KIND_COLD: 1241 return Attribute::Cold; 1242 case bitc::ATTR_KIND_CONVERGENT: 1243 return Attribute::Convergent; 1244 case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY: 1245 return Attribute::InaccessibleMemOnly; 1246 case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY: 1247 return Attribute::InaccessibleMemOrArgMemOnly; 1248 case bitc::ATTR_KIND_INLINE_HINT: 1249 return Attribute::InlineHint; 1250 case bitc::ATTR_KIND_IN_REG: 1251 return Attribute::InReg; 1252 case bitc::ATTR_KIND_JUMP_TABLE: 1253 return Attribute::JumpTable; 1254 case bitc::ATTR_KIND_MIN_SIZE: 1255 return Attribute::MinSize; 1256 case bitc::ATTR_KIND_NAKED: 1257 return Attribute::Naked; 1258 case bitc::ATTR_KIND_NEST: 1259 return Attribute::Nest; 1260 case bitc::ATTR_KIND_NO_ALIAS: 1261 return Attribute::NoAlias; 1262 case bitc::ATTR_KIND_NO_BUILTIN: 1263 return Attribute::NoBuiltin; 1264 case bitc::ATTR_KIND_NO_CAPTURE: 1265 return Attribute::NoCapture; 1266 case bitc::ATTR_KIND_NO_DUPLICATE: 1267 return Attribute::NoDuplicate; 1268 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: 1269 return Attribute::NoImplicitFloat; 1270 case bitc::ATTR_KIND_NO_INLINE: 1271 return Attribute::NoInline; 1272 case bitc::ATTR_KIND_NO_RECURSE: 1273 return Attribute::NoRecurse; 1274 case bitc::ATTR_KIND_NON_LAZY_BIND: 1275 return Attribute::NonLazyBind; 1276 case bitc::ATTR_KIND_NON_NULL: 1277 return Attribute::NonNull; 1278 case bitc::ATTR_KIND_DEREFERENCEABLE: 1279 return Attribute::Dereferenceable; 1280 case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL: 1281 return Attribute::DereferenceableOrNull; 1282 case bitc::ATTR_KIND_NO_RED_ZONE: 1283 return Attribute::NoRedZone; 1284 case bitc::ATTR_KIND_NO_RETURN: 1285 return Attribute::NoReturn; 1286 case bitc::ATTR_KIND_NO_UNWIND: 1287 return Attribute::NoUnwind; 1288 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: 1289 return Attribute::OptimizeForSize; 1290 case bitc::ATTR_KIND_OPTIMIZE_NONE: 1291 return Attribute::OptimizeNone; 1292 case bitc::ATTR_KIND_READ_NONE: 1293 return Attribute::ReadNone; 1294 case bitc::ATTR_KIND_READ_ONLY: 1295 return Attribute::ReadOnly; 1296 case bitc::ATTR_KIND_RETURNED: 1297 return Attribute::Returned; 1298 case bitc::ATTR_KIND_RETURNS_TWICE: 1299 return Attribute::ReturnsTwice; 1300 case bitc::ATTR_KIND_S_EXT: 1301 return Attribute::SExt; 1302 case bitc::ATTR_KIND_STACK_ALIGNMENT: 1303 return Attribute::StackAlignment; 1304 case bitc::ATTR_KIND_STACK_PROTECT: 1305 return Attribute::StackProtect; 1306 case bitc::ATTR_KIND_STACK_PROTECT_REQ: 1307 return Attribute::StackProtectReq; 1308 case bitc::ATTR_KIND_STACK_PROTECT_STRONG: 1309 return Attribute::StackProtectStrong; 1310 case bitc::ATTR_KIND_SAFESTACK: 1311 return Attribute::SafeStack; 1312 case bitc::ATTR_KIND_STRUCT_RET: 1313 return Attribute::StructRet; 1314 case bitc::ATTR_KIND_SANITIZE_ADDRESS: 1315 return Attribute::SanitizeAddress; 1316 case bitc::ATTR_KIND_SANITIZE_THREAD: 1317 return Attribute::SanitizeThread; 1318 case bitc::ATTR_KIND_SANITIZE_MEMORY: 1319 return Attribute::SanitizeMemory; 1320 case bitc::ATTR_KIND_SWIFT_SELF: 1321 return Attribute::SwiftSelf; 1322 case bitc::ATTR_KIND_UW_TABLE: 1323 return Attribute::UWTable; 1324 case bitc::ATTR_KIND_Z_EXT: 1325 return Attribute::ZExt; 1326 } 1327 } 1328 1329 std::error_code BitcodeReader::parseAlignmentValue(uint64_t Exponent, 1330 unsigned &Alignment) { 1331 // Note: Alignment in bitcode files is incremented by 1, so that zero 1332 // can be used for default alignment. 1333 if (Exponent > Value::MaxAlignmentExponent + 1) 1334 return error("Invalid alignment value"); 1335 Alignment = (1 << static_cast<unsigned>(Exponent)) >> 1; 1336 return std::error_code(); 1337 } 1338 1339 std::error_code BitcodeReader::parseAttrKind(uint64_t Code, 1340 Attribute::AttrKind *Kind) { 1341 *Kind = getAttrFromCode(Code); 1342 if (*Kind == Attribute::None) 1343 return error(BitcodeError::CorruptedBitcode, 1344 "Unknown attribute kind (" + Twine(Code) + ")"); 1345 return std::error_code(); 1346 } 1347 1348 std::error_code BitcodeReader::parseAttributeGroupBlock() { 1349 if (Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) 1350 return error("Invalid record"); 1351 1352 if (!MAttributeGroups.empty()) 1353 return error("Invalid multiple blocks"); 1354 1355 SmallVector<uint64_t, 64> Record; 1356 1357 // Read all the records. 1358 while (1) { 1359 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1360 1361 switch (Entry.Kind) { 1362 case BitstreamEntry::SubBlock: // Handled for us already. 1363 case BitstreamEntry::Error: 1364 return error("Malformed block"); 1365 case BitstreamEntry::EndBlock: 1366 return std::error_code(); 1367 case BitstreamEntry::Record: 1368 // The interesting case. 1369 break; 1370 } 1371 1372 // Read a record. 1373 Record.clear(); 1374 switch (Stream.readRecord(Entry.ID, Record)) { 1375 default: // Default behavior: ignore. 1376 break; 1377 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] 1378 if (Record.size() < 3) 1379 return error("Invalid record"); 1380 1381 uint64_t GrpID = Record[0]; 1382 uint64_t Idx = Record[1]; // Index of the object this attribute refers to. 1383 1384 AttrBuilder B; 1385 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1386 if (Record[i] == 0) { // Enum attribute 1387 Attribute::AttrKind Kind; 1388 if (std::error_code EC = parseAttrKind(Record[++i], &Kind)) 1389 return EC; 1390 1391 B.addAttribute(Kind); 1392 } else if (Record[i] == 1) { // Integer attribute 1393 Attribute::AttrKind Kind; 1394 if (std::error_code EC = parseAttrKind(Record[++i], &Kind)) 1395 return EC; 1396 if (Kind == Attribute::Alignment) 1397 B.addAlignmentAttr(Record[++i]); 1398 else if (Kind == Attribute::StackAlignment) 1399 B.addStackAlignmentAttr(Record[++i]); 1400 else if (Kind == Attribute::Dereferenceable) 1401 B.addDereferenceableAttr(Record[++i]); 1402 else if (Kind == Attribute::DereferenceableOrNull) 1403 B.addDereferenceableOrNullAttr(Record[++i]); 1404 } else { // String attribute 1405 assert((Record[i] == 3 || Record[i] == 4) && 1406 "Invalid attribute group entry"); 1407 bool HasValue = (Record[i++] == 4); 1408 SmallString<64> KindStr; 1409 SmallString<64> ValStr; 1410 1411 while (Record[i] != 0 && i != e) 1412 KindStr += Record[i++]; 1413 assert(Record[i] == 0 && "Kind string not null terminated"); 1414 1415 if (HasValue) { 1416 // Has a value associated with it. 1417 ++i; // Skip the '0' that terminates the "kind" string. 1418 while (Record[i] != 0 && i != e) 1419 ValStr += Record[i++]; 1420 assert(Record[i] == 0 && "Value string not null terminated"); 1421 } 1422 1423 B.addAttribute(KindStr.str(), ValStr.str()); 1424 } 1425 } 1426 1427 MAttributeGroups[GrpID] = AttributeSet::get(Context, Idx, B); 1428 break; 1429 } 1430 } 1431 } 1432 } 1433 1434 std::error_code BitcodeReader::parseTypeTable() { 1435 if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 1436 return error("Invalid record"); 1437 1438 return parseTypeTableBody(); 1439 } 1440 1441 std::error_code BitcodeReader::parseTypeTableBody() { 1442 if (!TypeList.empty()) 1443 return error("Invalid multiple blocks"); 1444 1445 SmallVector<uint64_t, 64> Record; 1446 unsigned NumRecords = 0; 1447 1448 SmallString<64> TypeName; 1449 1450 // Read all the records for this type table. 1451 while (1) { 1452 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1453 1454 switch (Entry.Kind) { 1455 case BitstreamEntry::SubBlock: // Handled for us already. 1456 case BitstreamEntry::Error: 1457 return error("Malformed block"); 1458 case BitstreamEntry::EndBlock: 1459 if (NumRecords != TypeList.size()) 1460 return error("Malformed block"); 1461 return std::error_code(); 1462 case BitstreamEntry::Record: 1463 // The interesting case. 1464 break; 1465 } 1466 1467 // Read a record. 1468 Record.clear(); 1469 Type *ResultTy = nullptr; 1470 switch (Stream.readRecord(Entry.ID, Record)) { 1471 default: 1472 return error("Invalid value"); 1473 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 1474 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 1475 // type list. This allows us to reserve space. 1476 if (Record.size() < 1) 1477 return error("Invalid record"); 1478 TypeList.resize(Record[0]); 1479 continue; 1480 case bitc::TYPE_CODE_VOID: // VOID 1481 ResultTy = Type::getVoidTy(Context); 1482 break; 1483 case bitc::TYPE_CODE_HALF: // HALF 1484 ResultTy = Type::getHalfTy(Context); 1485 break; 1486 case bitc::TYPE_CODE_FLOAT: // FLOAT 1487 ResultTy = Type::getFloatTy(Context); 1488 break; 1489 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 1490 ResultTy = Type::getDoubleTy(Context); 1491 break; 1492 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 1493 ResultTy = Type::getX86_FP80Ty(Context); 1494 break; 1495 case bitc::TYPE_CODE_FP128: // FP128 1496 ResultTy = Type::getFP128Ty(Context); 1497 break; 1498 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 1499 ResultTy = Type::getPPC_FP128Ty(Context); 1500 break; 1501 case bitc::TYPE_CODE_LABEL: // LABEL 1502 ResultTy = Type::getLabelTy(Context); 1503 break; 1504 case bitc::TYPE_CODE_METADATA: // METADATA 1505 ResultTy = Type::getMetadataTy(Context); 1506 break; 1507 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 1508 ResultTy = Type::getX86_MMXTy(Context); 1509 break; 1510 case bitc::TYPE_CODE_TOKEN: // TOKEN 1511 ResultTy = Type::getTokenTy(Context); 1512 break; 1513 case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width] 1514 if (Record.size() < 1) 1515 return error("Invalid record"); 1516 1517 uint64_t NumBits = Record[0]; 1518 if (NumBits < IntegerType::MIN_INT_BITS || 1519 NumBits > IntegerType::MAX_INT_BITS) 1520 return error("Bitwidth for integer type out of range"); 1521 ResultTy = IntegerType::get(Context, NumBits); 1522 break; 1523 } 1524 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 1525 // [pointee type, address space] 1526 if (Record.size() < 1) 1527 return error("Invalid record"); 1528 unsigned AddressSpace = 0; 1529 if (Record.size() == 2) 1530 AddressSpace = Record[1]; 1531 ResultTy = getTypeByID(Record[0]); 1532 if (!ResultTy || 1533 !PointerType::isValidElementType(ResultTy)) 1534 return error("Invalid type"); 1535 ResultTy = PointerType::get(ResultTy, AddressSpace); 1536 break; 1537 } 1538 case bitc::TYPE_CODE_FUNCTION_OLD: { 1539 // FIXME: attrid is dead, remove it in LLVM 4.0 1540 // FUNCTION: [vararg, attrid, retty, paramty x N] 1541 if (Record.size() < 3) 1542 return error("Invalid record"); 1543 SmallVector<Type*, 8> ArgTys; 1544 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 1545 if (Type *T = getTypeByID(Record[i])) 1546 ArgTys.push_back(T); 1547 else 1548 break; 1549 } 1550 1551 ResultTy = getTypeByID(Record[2]); 1552 if (!ResultTy || ArgTys.size() < Record.size()-3) 1553 return error("Invalid type"); 1554 1555 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1556 break; 1557 } 1558 case bitc::TYPE_CODE_FUNCTION: { 1559 // FUNCTION: [vararg, retty, paramty x N] 1560 if (Record.size() < 2) 1561 return error("Invalid record"); 1562 SmallVector<Type*, 8> ArgTys; 1563 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1564 if (Type *T = getTypeByID(Record[i])) { 1565 if (!FunctionType::isValidArgumentType(T)) 1566 return error("Invalid function argument type"); 1567 ArgTys.push_back(T); 1568 } 1569 else 1570 break; 1571 } 1572 1573 ResultTy = getTypeByID(Record[1]); 1574 if (!ResultTy || ArgTys.size() < Record.size()-2) 1575 return error("Invalid type"); 1576 1577 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1578 break; 1579 } 1580 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 1581 if (Record.size() < 1) 1582 return error("Invalid record"); 1583 SmallVector<Type*, 8> EltTys; 1584 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1585 if (Type *T = getTypeByID(Record[i])) 1586 EltTys.push_back(T); 1587 else 1588 break; 1589 } 1590 if (EltTys.size() != Record.size()-1) 1591 return error("Invalid type"); 1592 ResultTy = StructType::get(Context, EltTys, Record[0]); 1593 break; 1594 } 1595 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 1596 if (convertToString(Record, 0, TypeName)) 1597 return error("Invalid record"); 1598 continue; 1599 1600 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 1601 if (Record.size() < 1) 1602 return error("Invalid record"); 1603 1604 if (NumRecords >= TypeList.size()) 1605 return error("Invalid TYPE table"); 1606 1607 // Check to see if this was forward referenced, if so fill in the temp. 1608 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1609 if (Res) { 1610 Res->setName(TypeName); 1611 TypeList[NumRecords] = nullptr; 1612 } else // Otherwise, create a new struct. 1613 Res = createIdentifiedStructType(Context, TypeName); 1614 TypeName.clear(); 1615 1616 SmallVector<Type*, 8> EltTys; 1617 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1618 if (Type *T = getTypeByID(Record[i])) 1619 EltTys.push_back(T); 1620 else 1621 break; 1622 } 1623 if (EltTys.size() != Record.size()-1) 1624 return error("Invalid record"); 1625 Res->setBody(EltTys, Record[0]); 1626 ResultTy = Res; 1627 break; 1628 } 1629 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 1630 if (Record.size() != 1) 1631 return error("Invalid record"); 1632 1633 if (NumRecords >= TypeList.size()) 1634 return error("Invalid TYPE table"); 1635 1636 // Check to see if this was forward referenced, if so fill in the temp. 1637 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1638 if (Res) { 1639 Res->setName(TypeName); 1640 TypeList[NumRecords] = nullptr; 1641 } else // Otherwise, create a new struct with no body. 1642 Res = createIdentifiedStructType(Context, TypeName); 1643 TypeName.clear(); 1644 ResultTy = Res; 1645 break; 1646 } 1647 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 1648 if (Record.size() < 2) 1649 return error("Invalid record"); 1650 ResultTy = getTypeByID(Record[1]); 1651 if (!ResultTy || !ArrayType::isValidElementType(ResultTy)) 1652 return error("Invalid type"); 1653 ResultTy = ArrayType::get(ResultTy, Record[0]); 1654 break; 1655 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] 1656 if (Record.size() < 2) 1657 return error("Invalid record"); 1658 if (Record[0] == 0) 1659 return error("Invalid vector length"); 1660 ResultTy = getTypeByID(Record[1]); 1661 if (!ResultTy || !StructType::isValidElementType(ResultTy)) 1662 return error("Invalid type"); 1663 ResultTy = VectorType::get(ResultTy, Record[0]); 1664 break; 1665 } 1666 1667 if (NumRecords >= TypeList.size()) 1668 return error("Invalid TYPE table"); 1669 if (TypeList[NumRecords]) 1670 return error( 1671 "Invalid TYPE table: Only named structs can be forward referenced"); 1672 assert(ResultTy && "Didn't read a type?"); 1673 TypeList[NumRecords++] = ResultTy; 1674 } 1675 } 1676 1677 std::error_code BitcodeReader::parseOperandBundleTags() { 1678 if (Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID)) 1679 return error("Invalid record"); 1680 1681 if (!BundleTags.empty()) 1682 return error("Invalid multiple blocks"); 1683 1684 SmallVector<uint64_t, 64> Record; 1685 1686 while (1) { 1687 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1688 1689 switch (Entry.Kind) { 1690 case BitstreamEntry::SubBlock: // Handled for us already. 1691 case BitstreamEntry::Error: 1692 return error("Malformed block"); 1693 case BitstreamEntry::EndBlock: 1694 return std::error_code(); 1695 case BitstreamEntry::Record: 1696 // The interesting case. 1697 break; 1698 } 1699 1700 // Tags are implicitly mapped to integers by their order. 1701 1702 if (Stream.readRecord(Entry.ID, Record) != bitc::OPERAND_BUNDLE_TAG) 1703 return error("Invalid record"); 1704 1705 // OPERAND_BUNDLE_TAG: [strchr x N] 1706 BundleTags.emplace_back(); 1707 if (convertToString(Record, 0, BundleTags.back())) 1708 return error("Invalid record"); 1709 Record.clear(); 1710 } 1711 } 1712 1713 /// Associate a value with its name from the given index in the provided record. 1714 ErrorOr<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record, 1715 unsigned NameIndex, Triple &TT) { 1716 SmallString<128> ValueName; 1717 if (convertToString(Record, NameIndex, ValueName)) 1718 return error("Invalid record"); 1719 unsigned ValueID = Record[0]; 1720 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 1721 return error("Invalid record"); 1722 Value *V = ValueList[ValueID]; 1723 1724 StringRef NameStr(ValueName.data(), ValueName.size()); 1725 if (NameStr.find_first_of(0) != StringRef::npos) 1726 return error("Invalid value name"); 1727 V->setName(NameStr); 1728 auto *GO = dyn_cast<GlobalObject>(V); 1729 if (GO) { 1730 if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) { 1731 if (TT.isOSBinFormatMachO()) 1732 GO->setComdat(nullptr); 1733 else 1734 GO->setComdat(TheModule->getOrInsertComdat(V->getName())); 1735 } 1736 } 1737 return V; 1738 } 1739 1740 /// Helper to note and return the current location, and jump to the given 1741 /// offset. 1742 static uint64_t jumpToValueSymbolTable(uint64_t Offset, 1743 BitstreamCursor &Stream) { 1744 // Save the current parsing location so we can jump back at the end 1745 // of the VST read. 1746 uint64_t CurrentBit = Stream.GetCurrentBitNo(); 1747 Stream.JumpToBit(Offset * 32); 1748 #ifndef NDEBUG 1749 // Do some checking if we are in debug mode. 1750 BitstreamEntry Entry = Stream.advance(); 1751 assert(Entry.Kind == BitstreamEntry::SubBlock); 1752 assert(Entry.ID == bitc::VALUE_SYMTAB_BLOCK_ID); 1753 #else 1754 // In NDEBUG mode ignore the output so we don't get an unused variable 1755 // warning. 1756 Stream.advance(); 1757 #endif 1758 return CurrentBit; 1759 } 1760 1761 /// Parse the value symbol table at either the current parsing location or 1762 /// at the given bit offset if provided. 1763 std::error_code BitcodeReader::parseValueSymbolTable(uint64_t Offset) { 1764 uint64_t CurrentBit; 1765 // Pass in the Offset to distinguish between calling for the module-level 1766 // VST (where we want to jump to the VST offset) and the function-level 1767 // VST (where we don't). 1768 if (Offset > 0) 1769 CurrentBit = jumpToValueSymbolTable(Offset, Stream); 1770 1771 // Compute the delta between the bitcode indices in the VST (the word offset 1772 // to the word-aligned ENTER_SUBBLOCK for the function block, and that 1773 // expected by the lazy reader. The reader's EnterSubBlock expects to have 1774 // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID 1775 // (size BlockIDWidth). Note that we access the stream's AbbrevID width here 1776 // just before entering the VST subblock because: 1) the EnterSubBlock 1777 // changes the AbbrevID width; 2) the VST block is nested within the same 1778 // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same 1779 // AbbrevID width before calling EnterSubBlock; and 3) when we want to 1780 // jump to the FUNCTION_BLOCK using this offset later, we don't want 1781 // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK. 1782 unsigned FuncBitcodeOffsetDelta = 1783 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 1784 1785 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 1786 return error("Invalid record"); 1787 1788 SmallVector<uint64_t, 64> Record; 1789 1790 Triple TT(TheModule->getTargetTriple()); 1791 1792 // Read all the records for this value table. 1793 SmallString<128> ValueName; 1794 while (1) { 1795 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1796 1797 switch (Entry.Kind) { 1798 case BitstreamEntry::SubBlock: // Handled for us already. 1799 case BitstreamEntry::Error: 1800 return error("Malformed block"); 1801 case BitstreamEntry::EndBlock: 1802 if (Offset > 0) 1803 Stream.JumpToBit(CurrentBit); 1804 return std::error_code(); 1805 case BitstreamEntry::Record: 1806 // The interesting case. 1807 break; 1808 } 1809 1810 // Read a record. 1811 Record.clear(); 1812 switch (Stream.readRecord(Entry.ID, Record)) { 1813 default: // Default behavior: unknown type. 1814 break; 1815 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 1816 ErrorOr<Value *> ValOrErr = recordValue(Record, 1, TT); 1817 if (std::error_code EC = ValOrErr.getError()) 1818 return EC; 1819 ValOrErr.get(); 1820 break; 1821 } 1822 case bitc::VST_CODE_FNENTRY: { 1823 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 1824 ErrorOr<Value *> ValOrErr = recordValue(Record, 2, TT); 1825 if (std::error_code EC = ValOrErr.getError()) 1826 return EC; 1827 Value *V = ValOrErr.get(); 1828 1829 auto *GO = dyn_cast<GlobalObject>(V); 1830 if (!GO) { 1831 // If this is an alias, need to get the actual Function object 1832 // it aliases, in order to set up the DeferredFunctionInfo entry below. 1833 auto *GA = dyn_cast<GlobalAlias>(V); 1834 if (GA) 1835 GO = GA->getBaseObject(); 1836 assert(GO); 1837 } 1838 1839 uint64_t FuncWordOffset = Record[1]; 1840 Function *F = dyn_cast<Function>(GO); 1841 assert(F); 1842 uint64_t FuncBitOffset = FuncWordOffset * 32; 1843 DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta; 1844 // Set the LastFunctionBlockBit to point to the last function block. 1845 // Later when parsing is resumed after function materialization, 1846 // we can simply skip that last function block. 1847 if (FuncBitOffset > LastFunctionBlockBit) 1848 LastFunctionBlockBit = FuncBitOffset; 1849 break; 1850 } 1851 case bitc::VST_CODE_BBENTRY: { 1852 if (convertToString(Record, 1, ValueName)) 1853 return error("Invalid record"); 1854 BasicBlock *BB = getBasicBlock(Record[0]); 1855 if (!BB) 1856 return error("Invalid record"); 1857 1858 BB->setName(StringRef(ValueName.data(), ValueName.size())); 1859 ValueName.clear(); 1860 break; 1861 } 1862 } 1863 } 1864 } 1865 1866 /// Parse a single METADATA_KIND record, inserting result in MDKindMap. 1867 std::error_code 1868 BitcodeReader::parseMetadataKindRecord(SmallVectorImpl<uint64_t> &Record) { 1869 if (Record.size() < 2) 1870 return error("Invalid record"); 1871 1872 unsigned Kind = Record[0]; 1873 SmallString<8> Name(Record.begin() + 1, Record.end()); 1874 1875 unsigned NewKind = TheModule->getMDKindID(Name.str()); 1876 if (!MDKindMap.insert(std::make_pair(Kind, NewKind)).second) 1877 return error("Conflicting METADATA_KIND records"); 1878 return std::error_code(); 1879 } 1880 1881 static int64_t unrotateSign(uint64_t U) { return U & 1 ? ~(U >> 1) : U >> 1; } 1882 1883 std::error_code BitcodeReader::parseMetadataStrings(ArrayRef<uint64_t> Record, 1884 StringRef Blob, 1885 unsigned &NextMetadataNo) { 1886 // All the MDStrings in the block are emitted together in a single 1887 // record. The strings are concatenated and stored in a blob along with 1888 // their sizes. 1889 if (Record.size() != 2) 1890 return error("Invalid record: metadata strings layout"); 1891 1892 unsigned NumStrings = Record[0]; 1893 unsigned StringsOffset = Record[1]; 1894 if (!NumStrings) 1895 return error("Invalid record: metadata strings with no strings"); 1896 if (StringsOffset > Blob.size()) 1897 return error("Invalid record: metadata strings corrupt offset"); 1898 1899 StringRef Lengths = Blob.slice(0, StringsOffset); 1900 SimpleBitstreamCursor R(*StreamFile); 1901 R.jumpToPointer(Lengths.begin()); 1902 1903 // Ensure that Blob doesn't get invalidated, even if this is reading from 1904 // a StreamingMemoryObject with corrupt data. 1905 R.setArtificialByteLimit(R.getCurrentByteNo() + StringsOffset); 1906 1907 StringRef Strings = Blob.drop_front(StringsOffset); 1908 do { 1909 if (R.AtEndOfStream()) 1910 return error("Invalid record: metadata strings bad length"); 1911 1912 unsigned Size = R.ReadVBR(6); 1913 if (Strings.size() < Size) 1914 return error("Invalid record: metadata strings truncated chars"); 1915 1916 MetadataList.assignValue(MDString::get(Context, Strings.slice(0, Size)), 1917 NextMetadataNo++); 1918 Strings = Strings.drop_front(Size); 1919 } while (--NumStrings); 1920 1921 return std::error_code(); 1922 } 1923 1924 /// Parse a METADATA_BLOCK. If ModuleLevel is true then we are parsing 1925 /// module level metadata. 1926 std::error_code BitcodeReader::parseMetadata(bool ModuleLevel) { 1927 IsMetadataMaterialized = true; 1928 unsigned NextMetadataNo = MetadataList.size(); 1929 1930 if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID)) 1931 return error("Invalid record"); 1932 1933 SmallVector<uint64_t, 64> Record; 1934 1935 auto getMD = [&](unsigned ID) -> Metadata * { 1936 return MetadataList.getMetadataFwdRef(ID); 1937 }; 1938 auto getMDOrNull = [&](unsigned ID) -> Metadata *{ 1939 if (ID) 1940 return getMD(ID - 1); 1941 return nullptr; 1942 }; 1943 auto getMDString = [&](unsigned ID) -> MDString *{ 1944 // This requires that the ID is not really a forward reference. In 1945 // particular, the MDString must already have been resolved. 1946 return cast_or_null<MDString>(getMDOrNull(ID)); 1947 }; 1948 1949 #define GET_OR_DISTINCT(CLASS, DISTINCT, ARGS) \ 1950 (DISTINCT ? CLASS::getDistinct ARGS : CLASS::get ARGS) 1951 1952 // Read all the records. 1953 while (1) { 1954 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1955 1956 switch (Entry.Kind) { 1957 case BitstreamEntry::SubBlock: // Handled for us already. 1958 case BitstreamEntry::Error: 1959 return error("Malformed block"); 1960 case BitstreamEntry::EndBlock: 1961 MetadataList.tryToResolveCycles(); 1962 return std::error_code(); 1963 case BitstreamEntry::Record: 1964 // The interesting case. 1965 break; 1966 } 1967 1968 // Read a record. 1969 Record.clear(); 1970 StringRef Blob; 1971 unsigned Code = Stream.readRecord(Entry.ID, Record, &Blob); 1972 bool IsDistinct = false; 1973 switch (Code) { 1974 default: // Default behavior: ignore. 1975 break; 1976 case bitc::METADATA_NAME: { 1977 // Read name of the named metadata. 1978 SmallString<8> Name(Record.begin(), Record.end()); 1979 Record.clear(); 1980 Code = Stream.ReadCode(); 1981 1982 unsigned NextBitCode = Stream.readRecord(Code, Record); 1983 if (NextBitCode != bitc::METADATA_NAMED_NODE) 1984 return error("METADATA_NAME not followed by METADATA_NAMED_NODE"); 1985 1986 // Read named metadata elements. 1987 unsigned Size = Record.size(); 1988 NamedMDNode *NMD = TheModule->getOrInsertNamedMetadata(Name); 1989 for (unsigned i = 0; i != Size; ++i) { 1990 MDNode *MD = MetadataList.getMDNodeFwdRefOrNull(Record[i]); 1991 if (!MD) 1992 return error("Invalid record"); 1993 NMD->addOperand(MD); 1994 } 1995 break; 1996 } 1997 case bitc::METADATA_OLD_FN_NODE: { 1998 // FIXME: Remove in 4.0. 1999 // This is a LocalAsMetadata record, the only type of function-local 2000 // metadata. 2001 if (Record.size() % 2 == 1) 2002 return error("Invalid record"); 2003 2004 // If this isn't a LocalAsMetadata record, we're dropping it. This used 2005 // to be legal, but there's no upgrade path. 2006 auto dropRecord = [&] { 2007 MetadataList.assignValue(MDNode::get(Context, None), NextMetadataNo++); 2008 }; 2009 if (Record.size() != 2) { 2010 dropRecord(); 2011 break; 2012 } 2013 2014 Type *Ty = getTypeByID(Record[0]); 2015 if (Ty->isMetadataTy() || Ty->isVoidTy()) { 2016 dropRecord(); 2017 break; 2018 } 2019 2020 MetadataList.assignValue( 2021 LocalAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)), 2022 NextMetadataNo++); 2023 break; 2024 } 2025 case bitc::METADATA_OLD_NODE: { 2026 // FIXME: Remove in 4.0. 2027 if (Record.size() % 2 == 1) 2028 return error("Invalid record"); 2029 2030 unsigned Size = Record.size(); 2031 SmallVector<Metadata *, 8> Elts; 2032 for (unsigned i = 0; i != Size; i += 2) { 2033 Type *Ty = getTypeByID(Record[i]); 2034 if (!Ty) 2035 return error("Invalid record"); 2036 if (Ty->isMetadataTy()) 2037 Elts.push_back(MetadataList.getMetadataFwdRef(Record[i + 1])); 2038 else if (!Ty->isVoidTy()) { 2039 auto *MD = 2040 ValueAsMetadata::get(ValueList.getValueFwdRef(Record[i + 1], Ty)); 2041 assert(isa<ConstantAsMetadata>(MD) && 2042 "Expected non-function-local metadata"); 2043 Elts.push_back(MD); 2044 } else 2045 Elts.push_back(nullptr); 2046 } 2047 MetadataList.assignValue(MDNode::get(Context, Elts), NextMetadataNo++); 2048 break; 2049 } 2050 case bitc::METADATA_VALUE: { 2051 if (Record.size() != 2) 2052 return error("Invalid record"); 2053 2054 Type *Ty = getTypeByID(Record[0]); 2055 if (Ty->isMetadataTy() || Ty->isVoidTy()) 2056 return error("Invalid record"); 2057 2058 MetadataList.assignValue( 2059 ValueAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)), 2060 NextMetadataNo++); 2061 break; 2062 } 2063 case bitc::METADATA_DISTINCT_NODE: 2064 IsDistinct = true; 2065 // fallthrough... 2066 case bitc::METADATA_NODE: { 2067 SmallVector<Metadata *, 8> Elts; 2068 Elts.reserve(Record.size()); 2069 for (unsigned ID : Record) 2070 Elts.push_back(ID ? MetadataList.getMetadataFwdRef(ID - 1) : nullptr); 2071 MetadataList.assignValue(IsDistinct ? MDNode::getDistinct(Context, Elts) 2072 : MDNode::get(Context, Elts), 2073 NextMetadataNo++); 2074 break; 2075 } 2076 case bitc::METADATA_LOCATION: { 2077 if (Record.size() != 5) 2078 return error("Invalid record"); 2079 2080 unsigned Line = Record[1]; 2081 unsigned Column = Record[2]; 2082 MDNode *Scope = MetadataList.getMDNodeFwdRefOrNull(Record[3]); 2083 if (!Scope) 2084 return error("Invalid record"); 2085 Metadata *InlinedAt = 2086 Record[4] ? MetadataList.getMetadataFwdRef(Record[4] - 1) : nullptr; 2087 MetadataList.assignValue( 2088 GET_OR_DISTINCT(DILocation, Record[0], 2089 (Context, Line, Column, Scope, InlinedAt)), 2090 NextMetadataNo++); 2091 break; 2092 } 2093 case bitc::METADATA_GENERIC_DEBUG: { 2094 if (Record.size() < 4) 2095 return error("Invalid record"); 2096 2097 unsigned Tag = Record[1]; 2098 unsigned Version = Record[2]; 2099 2100 if (Tag >= 1u << 16 || Version != 0) 2101 return error("Invalid record"); 2102 2103 auto *Header = getMDString(Record[3]); 2104 SmallVector<Metadata *, 8> DwarfOps; 2105 for (unsigned I = 4, E = Record.size(); I != E; ++I) 2106 DwarfOps.push_back(Record[I] 2107 ? MetadataList.getMetadataFwdRef(Record[I] - 1) 2108 : nullptr); 2109 MetadataList.assignValue( 2110 GET_OR_DISTINCT(GenericDINode, Record[0], 2111 (Context, Tag, Header, DwarfOps)), 2112 NextMetadataNo++); 2113 break; 2114 } 2115 case bitc::METADATA_SUBRANGE: { 2116 if (Record.size() != 3) 2117 return error("Invalid record"); 2118 2119 MetadataList.assignValue( 2120 GET_OR_DISTINCT(DISubrange, Record[0], 2121 (Context, Record[1], unrotateSign(Record[2]))), 2122 NextMetadataNo++); 2123 break; 2124 } 2125 case bitc::METADATA_ENUMERATOR: { 2126 if (Record.size() != 3) 2127 return error("Invalid record"); 2128 2129 MetadataList.assignValue( 2130 GET_OR_DISTINCT( 2131 DIEnumerator, Record[0], 2132 (Context, unrotateSign(Record[1]), getMDString(Record[2]))), 2133 NextMetadataNo++); 2134 break; 2135 } 2136 case bitc::METADATA_BASIC_TYPE: { 2137 if (Record.size() != 6) 2138 return error("Invalid record"); 2139 2140 MetadataList.assignValue( 2141 GET_OR_DISTINCT(DIBasicType, Record[0], 2142 (Context, Record[1], getMDString(Record[2]), 2143 Record[3], Record[4], Record[5])), 2144 NextMetadataNo++); 2145 break; 2146 } 2147 case bitc::METADATA_DERIVED_TYPE: { 2148 if (Record.size() != 12) 2149 return error("Invalid record"); 2150 2151 MetadataList.assignValue( 2152 GET_OR_DISTINCT(DIDerivedType, Record[0], 2153 (Context, Record[1], getMDString(Record[2]), 2154 getMDOrNull(Record[3]), Record[4], 2155 getMDOrNull(Record[5]), getMDOrNull(Record[6]), 2156 Record[7], Record[8], Record[9], Record[10], 2157 getMDOrNull(Record[11]))), 2158 NextMetadataNo++); 2159 break; 2160 } 2161 case bitc::METADATA_COMPOSITE_TYPE: { 2162 if (Record.size() != 16) 2163 return error("Invalid record"); 2164 2165 MetadataList.assignValue( 2166 GET_OR_DISTINCT(DICompositeType, Record[0], 2167 (Context, Record[1], getMDString(Record[2]), 2168 getMDOrNull(Record[3]), Record[4], 2169 getMDOrNull(Record[5]), getMDOrNull(Record[6]), 2170 Record[7], Record[8], Record[9], Record[10], 2171 getMDOrNull(Record[11]), Record[12], 2172 getMDOrNull(Record[13]), getMDOrNull(Record[14]), 2173 getMDString(Record[15]))), 2174 NextMetadataNo++); 2175 break; 2176 } 2177 case bitc::METADATA_SUBROUTINE_TYPE: { 2178 if (Record.size() != 3) 2179 return error("Invalid record"); 2180 2181 MetadataList.assignValue( 2182 GET_OR_DISTINCT(DISubroutineType, Record[0], 2183 (Context, Record[1], getMDOrNull(Record[2]))), 2184 NextMetadataNo++); 2185 break; 2186 } 2187 2188 case bitc::METADATA_MODULE: { 2189 if (Record.size() != 6) 2190 return error("Invalid record"); 2191 2192 MetadataList.assignValue( 2193 GET_OR_DISTINCT(DIModule, Record[0], 2194 (Context, getMDOrNull(Record[1]), 2195 getMDString(Record[2]), getMDString(Record[3]), 2196 getMDString(Record[4]), getMDString(Record[5]))), 2197 NextMetadataNo++); 2198 break; 2199 } 2200 2201 case bitc::METADATA_FILE: { 2202 if (Record.size() != 3) 2203 return error("Invalid record"); 2204 2205 MetadataList.assignValue( 2206 GET_OR_DISTINCT(DIFile, Record[0], (Context, getMDString(Record[1]), 2207 getMDString(Record[2]))), 2208 NextMetadataNo++); 2209 break; 2210 } 2211 case bitc::METADATA_COMPILE_UNIT: { 2212 if (Record.size() < 14 || Record.size() > 16) 2213 return error("Invalid record"); 2214 2215 // Ignore Record[0], which indicates whether this compile unit is 2216 // distinct. It's always distinct. 2217 MetadataList.assignValue( 2218 DICompileUnit::getDistinct( 2219 Context, Record[1], getMDOrNull(Record[2]), 2220 getMDString(Record[3]), Record[4], getMDString(Record[5]), 2221 Record[6], getMDString(Record[7]), Record[8], 2222 getMDOrNull(Record[9]), getMDOrNull(Record[10]), 2223 getMDOrNull(Record[11]), getMDOrNull(Record[12]), 2224 getMDOrNull(Record[13]), 2225 Record.size() <= 15 ? nullptr : getMDOrNull(Record[15]), 2226 Record.size() <= 14 ? 0 : Record[14]), 2227 NextMetadataNo++); 2228 break; 2229 } 2230 case bitc::METADATA_SUBPROGRAM: { 2231 if (Record.size() != 18 && Record.size() != 19) 2232 return error("Invalid record"); 2233 2234 bool HasFn = Record.size() == 19; 2235 DISubprogram *SP = GET_OR_DISTINCT( 2236 DISubprogram, 2237 Record[0] || Record[8], // All definitions should be distinct. 2238 (Context, getMDOrNull(Record[1]), getMDString(Record[2]), 2239 getMDString(Record[3]), getMDOrNull(Record[4]), Record[5], 2240 getMDOrNull(Record[6]), Record[7], Record[8], Record[9], 2241 getMDOrNull(Record[10]), Record[11], Record[12], Record[13], 2242 Record[14], getMDOrNull(Record[15 + HasFn]), 2243 getMDOrNull(Record[16 + HasFn]), getMDOrNull(Record[17 + HasFn]))); 2244 MetadataList.assignValue(SP, NextMetadataNo++); 2245 2246 // Upgrade sp->function mapping to function->sp mapping. 2247 if (HasFn && Record[15]) { 2248 if (auto *CMD = dyn_cast<ConstantAsMetadata>(getMDOrNull(Record[15]))) 2249 if (auto *F = dyn_cast<Function>(CMD->getValue())) { 2250 if (F->isMaterializable()) 2251 // Defer until materialized; unmaterialized functions may not have 2252 // metadata. 2253 FunctionsWithSPs[F] = SP; 2254 else if (!F->empty()) 2255 F->setSubprogram(SP); 2256 } 2257 } 2258 break; 2259 } 2260 case bitc::METADATA_LEXICAL_BLOCK: { 2261 if (Record.size() != 5) 2262 return error("Invalid record"); 2263 2264 MetadataList.assignValue( 2265 GET_OR_DISTINCT(DILexicalBlock, Record[0], 2266 (Context, getMDOrNull(Record[1]), 2267 getMDOrNull(Record[2]), Record[3], Record[4])), 2268 NextMetadataNo++); 2269 break; 2270 } 2271 case bitc::METADATA_LEXICAL_BLOCK_FILE: { 2272 if (Record.size() != 4) 2273 return error("Invalid record"); 2274 2275 MetadataList.assignValue( 2276 GET_OR_DISTINCT(DILexicalBlockFile, Record[0], 2277 (Context, getMDOrNull(Record[1]), 2278 getMDOrNull(Record[2]), Record[3])), 2279 NextMetadataNo++); 2280 break; 2281 } 2282 case bitc::METADATA_NAMESPACE: { 2283 if (Record.size() != 5) 2284 return error("Invalid record"); 2285 2286 MetadataList.assignValue( 2287 GET_OR_DISTINCT(DINamespace, Record[0], 2288 (Context, getMDOrNull(Record[1]), 2289 getMDOrNull(Record[2]), getMDString(Record[3]), 2290 Record[4])), 2291 NextMetadataNo++); 2292 break; 2293 } 2294 case bitc::METADATA_MACRO: { 2295 if (Record.size() != 5) 2296 return error("Invalid record"); 2297 2298 MetadataList.assignValue( 2299 GET_OR_DISTINCT(DIMacro, Record[0], 2300 (Context, Record[1], Record[2], 2301 getMDString(Record[3]), getMDString(Record[4]))), 2302 NextMetadataNo++); 2303 break; 2304 } 2305 case bitc::METADATA_MACRO_FILE: { 2306 if (Record.size() != 5) 2307 return error("Invalid record"); 2308 2309 MetadataList.assignValue( 2310 GET_OR_DISTINCT(DIMacroFile, Record[0], 2311 (Context, Record[1], Record[2], 2312 getMDOrNull(Record[3]), getMDOrNull(Record[4]))), 2313 NextMetadataNo++); 2314 break; 2315 } 2316 case bitc::METADATA_TEMPLATE_TYPE: { 2317 if (Record.size() != 3) 2318 return error("Invalid record"); 2319 2320 MetadataList.assignValue(GET_OR_DISTINCT(DITemplateTypeParameter, 2321 Record[0], 2322 (Context, getMDString(Record[1]), 2323 getMDOrNull(Record[2]))), 2324 NextMetadataNo++); 2325 break; 2326 } 2327 case bitc::METADATA_TEMPLATE_VALUE: { 2328 if (Record.size() != 5) 2329 return error("Invalid record"); 2330 2331 MetadataList.assignValue( 2332 GET_OR_DISTINCT(DITemplateValueParameter, Record[0], 2333 (Context, Record[1], getMDString(Record[2]), 2334 getMDOrNull(Record[3]), getMDOrNull(Record[4]))), 2335 NextMetadataNo++); 2336 break; 2337 } 2338 case bitc::METADATA_GLOBAL_VAR: { 2339 if (Record.size() != 11) 2340 return error("Invalid record"); 2341 2342 MetadataList.assignValue( 2343 GET_OR_DISTINCT(DIGlobalVariable, Record[0], 2344 (Context, getMDOrNull(Record[1]), 2345 getMDString(Record[2]), getMDString(Record[3]), 2346 getMDOrNull(Record[4]), Record[5], 2347 getMDOrNull(Record[6]), Record[7], Record[8], 2348 getMDOrNull(Record[9]), getMDOrNull(Record[10]))), 2349 NextMetadataNo++); 2350 break; 2351 } 2352 case bitc::METADATA_LOCAL_VAR: { 2353 // 10th field is for the obseleted 'inlinedAt:' field. 2354 if (Record.size() < 8 || Record.size() > 10) 2355 return error("Invalid record"); 2356 2357 // 2nd field used to be an artificial tag, either DW_TAG_auto_variable or 2358 // DW_TAG_arg_variable. 2359 bool HasTag = Record.size() > 8; 2360 MetadataList.assignValue( 2361 GET_OR_DISTINCT(DILocalVariable, Record[0], 2362 (Context, getMDOrNull(Record[1 + HasTag]), 2363 getMDString(Record[2 + HasTag]), 2364 getMDOrNull(Record[3 + HasTag]), Record[4 + HasTag], 2365 getMDOrNull(Record[5 + HasTag]), Record[6 + HasTag], 2366 Record[7 + HasTag])), 2367 NextMetadataNo++); 2368 break; 2369 } 2370 case bitc::METADATA_EXPRESSION: { 2371 if (Record.size() < 1) 2372 return error("Invalid record"); 2373 2374 MetadataList.assignValue( 2375 GET_OR_DISTINCT(DIExpression, Record[0], 2376 (Context, makeArrayRef(Record).slice(1))), 2377 NextMetadataNo++); 2378 break; 2379 } 2380 case bitc::METADATA_OBJC_PROPERTY: { 2381 if (Record.size() != 8) 2382 return error("Invalid record"); 2383 2384 MetadataList.assignValue( 2385 GET_OR_DISTINCT(DIObjCProperty, Record[0], 2386 (Context, getMDString(Record[1]), 2387 getMDOrNull(Record[2]), Record[3], 2388 getMDString(Record[4]), getMDString(Record[5]), 2389 Record[6], getMDOrNull(Record[7]))), 2390 NextMetadataNo++); 2391 break; 2392 } 2393 case bitc::METADATA_IMPORTED_ENTITY: { 2394 if (Record.size() != 6) 2395 return error("Invalid record"); 2396 2397 MetadataList.assignValue( 2398 GET_OR_DISTINCT(DIImportedEntity, Record[0], 2399 (Context, Record[1], getMDOrNull(Record[2]), 2400 getMDOrNull(Record[3]), Record[4], 2401 getMDString(Record[5]))), 2402 NextMetadataNo++); 2403 break; 2404 } 2405 case bitc::METADATA_STRING_OLD: { 2406 std::string String(Record.begin(), Record.end()); 2407 2408 // Test for upgrading !llvm.loop. 2409 HasSeenOldLoopTags |= mayBeOldLoopAttachmentTag(String); 2410 2411 Metadata *MD = MDString::get(Context, String); 2412 MetadataList.assignValue(MD, NextMetadataNo++); 2413 break; 2414 } 2415 case bitc::METADATA_STRINGS: 2416 if (std::error_code EC = 2417 parseMetadataStrings(Record, Blob, NextMetadataNo)) 2418 return EC; 2419 break; 2420 case bitc::METADATA_KIND: { 2421 // Support older bitcode files that had METADATA_KIND records in a 2422 // block with METADATA_BLOCK_ID. 2423 if (std::error_code EC = parseMetadataKindRecord(Record)) 2424 return EC; 2425 break; 2426 } 2427 } 2428 } 2429 #undef GET_OR_DISTINCT 2430 } 2431 2432 /// Parse the metadata kinds out of the METADATA_KIND_BLOCK. 2433 std::error_code BitcodeReader::parseMetadataKinds() { 2434 if (Stream.EnterSubBlock(bitc::METADATA_KIND_BLOCK_ID)) 2435 return error("Invalid record"); 2436 2437 SmallVector<uint64_t, 64> Record; 2438 2439 // Read all the records. 2440 while (1) { 2441 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2442 2443 switch (Entry.Kind) { 2444 case BitstreamEntry::SubBlock: // Handled for us already. 2445 case BitstreamEntry::Error: 2446 return error("Malformed block"); 2447 case BitstreamEntry::EndBlock: 2448 return std::error_code(); 2449 case BitstreamEntry::Record: 2450 // The interesting case. 2451 break; 2452 } 2453 2454 // Read a record. 2455 Record.clear(); 2456 unsigned Code = Stream.readRecord(Entry.ID, Record); 2457 switch (Code) { 2458 default: // Default behavior: ignore. 2459 break; 2460 case bitc::METADATA_KIND: { 2461 if (std::error_code EC = parseMetadataKindRecord(Record)) 2462 return EC; 2463 break; 2464 } 2465 } 2466 } 2467 } 2468 2469 /// Decode a signed value stored with the sign bit in the LSB for dense VBR 2470 /// encoding. 2471 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { 2472 if ((V & 1) == 0) 2473 return V >> 1; 2474 if (V != 1) 2475 return -(V >> 1); 2476 // There is no such thing as -0 with integers. "-0" really means MININT. 2477 return 1ULL << 63; 2478 } 2479 2480 /// Resolve all of the initializers for global values and aliases that we can. 2481 std::error_code BitcodeReader::resolveGlobalAndAliasInits() { 2482 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist; 2483 std::vector<std::pair<GlobalAlias*, unsigned> > AliasInitWorklist; 2484 std::vector<std::pair<Function*, unsigned> > FunctionPrefixWorklist; 2485 std::vector<std::pair<Function*, unsigned> > FunctionPrologueWorklist; 2486 std::vector<std::pair<Function*, unsigned> > FunctionPersonalityFnWorklist; 2487 2488 GlobalInitWorklist.swap(GlobalInits); 2489 AliasInitWorklist.swap(AliasInits); 2490 FunctionPrefixWorklist.swap(FunctionPrefixes); 2491 FunctionPrologueWorklist.swap(FunctionPrologues); 2492 FunctionPersonalityFnWorklist.swap(FunctionPersonalityFns); 2493 2494 while (!GlobalInitWorklist.empty()) { 2495 unsigned ValID = GlobalInitWorklist.back().second; 2496 if (ValID >= ValueList.size()) { 2497 // Not ready to resolve this yet, it requires something later in the file. 2498 GlobalInits.push_back(GlobalInitWorklist.back()); 2499 } else { 2500 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2501 GlobalInitWorklist.back().first->setInitializer(C); 2502 else 2503 return error("Expected a constant"); 2504 } 2505 GlobalInitWorklist.pop_back(); 2506 } 2507 2508 while (!AliasInitWorklist.empty()) { 2509 unsigned ValID = AliasInitWorklist.back().second; 2510 if (ValID >= ValueList.size()) { 2511 AliasInits.push_back(AliasInitWorklist.back()); 2512 } else { 2513 Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]); 2514 if (!C) 2515 return error("Expected a constant"); 2516 GlobalAlias *Alias = AliasInitWorklist.back().first; 2517 if (C->getType() != Alias->getType()) 2518 return error("Alias and aliasee types don't match"); 2519 Alias->setAliasee(C); 2520 } 2521 AliasInitWorklist.pop_back(); 2522 } 2523 2524 while (!FunctionPrefixWorklist.empty()) { 2525 unsigned ValID = FunctionPrefixWorklist.back().second; 2526 if (ValID >= ValueList.size()) { 2527 FunctionPrefixes.push_back(FunctionPrefixWorklist.back()); 2528 } else { 2529 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2530 FunctionPrefixWorklist.back().first->setPrefixData(C); 2531 else 2532 return error("Expected a constant"); 2533 } 2534 FunctionPrefixWorklist.pop_back(); 2535 } 2536 2537 while (!FunctionPrologueWorklist.empty()) { 2538 unsigned ValID = FunctionPrologueWorklist.back().second; 2539 if (ValID >= ValueList.size()) { 2540 FunctionPrologues.push_back(FunctionPrologueWorklist.back()); 2541 } else { 2542 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2543 FunctionPrologueWorklist.back().first->setPrologueData(C); 2544 else 2545 return error("Expected a constant"); 2546 } 2547 FunctionPrologueWorklist.pop_back(); 2548 } 2549 2550 while (!FunctionPersonalityFnWorklist.empty()) { 2551 unsigned ValID = FunctionPersonalityFnWorklist.back().second; 2552 if (ValID >= ValueList.size()) { 2553 FunctionPersonalityFns.push_back(FunctionPersonalityFnWorklist.back()); 2554 } else { 2555 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2556 FunctionPersonalityFnWorklist.back().first->setPersonalityFn(C); 2557 else 2558 return error("Expected a constant"); 2559 } 2560 FunctionPersonalityFnWorklist.pop_back(); 2561 } 2562 2563 return std::error_code(); 2564 } 2565 2566 static APInt readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { 2567 SmallVector<uint64_t, 8> Words(Vals.size()); 2568 std::transform(Vals.begin(), Vals.end(), Words.begin(), 2569 BitcodeReader::decodeSignRotatedValue); 2570 2571 return APInt(TypeBits, Words); 2572 } 2573 2574 std::error_code BitcodeReader::parseConstants() { 2575 if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 2576 return error("Invalid record"); 2577 2578 SmallVector<uint64_t, 64> Record; 2579 2580 // Read all the records for this value table. 2581 Type *CurTy = Type::getInt32Ty(Context); 2582 unsigned NextCstNo = ValueList.size(); 2583 while (1) { 2584 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2585 2586 switch (Entry.Kind) { 2587 case BitstreamEntry::SubBlock: // Handled for us already. 2588 case BitstreamEntry::Error: 2589 return error("Malformed block"); 2590 case BitstreamEntry::EndBlock: 2591 if (NextCstNo != ValueList.size()) 2592 return error("Invalid constant reference"); 2593 2594 // Once all the constants have been read, go through and resolve forward 2595 // references. 2596 ValueList.resolveConstantForwardRefs(); 2597 return std::error_code(); 2598 case BitstreamEntry::Record: 2599 // The interesting case. 2600 break; 2601 } 2602 2603 // Read a record. 2604 Record.clear(); 2605 Value *V = nullptr; 2606 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 2607 switch (BitCode) { 2608 default: // Default behavior: unknown constant 2609 case bitc::CST_CODE_UNDEF: // UNDEF 2610 V = UndefValue::get(CurTy); 2611 break; 2612 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 2613 if (Record.empty()) 2614 return error("Invalid record"); 2615 if (Record[0] >= TypeList.size() || !TypeList[Record[0]]) 2616 return error("Invalid record"); 2617 CurTy = TypeList[Record[0]]; 2618 continue; // Skip the ValueList manipulation. 2619 case bitc::CST_CODE_NULL: // NULL 2620 V = Constant::getNullValue(CurTy); 2621 break; 2622 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 2623 if (!CurTy->isIntegerTy() || Record.empty()) 2624 return error("Invalid record"); 2625 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); 2626 break; 2627 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 2628 if (!CurTy->isIntegerTy() || Record.empty()) 2629 return error("Invalid record"); 2630 2631 APInt VInt = 2632 readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth()); 2633 V = ConstantInt::get(Context, VInt); 2634 2635 break; 2636 } 2637 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 2638 if (Record.empty()) 2639 return error("Invalid record"); 2640 if (CurTy->isHalfTy()) 2641 V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf, 2642 APInt(16, (uint16_t)Record[0]))); 2643 else if (CurTy->isFloatTy()) 2644 V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle, 2645 APInt(32, (uint32_t)Record[0]))); 2646 else if (CurTy->isDoubleTy()) 2647 V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble, 2648 APInt(64, Record[0]))); 2649 else if (CurTy->isX86_FP80Ty()) { 2650 // Bits are not stored the same way as a normal i80 APInt, compensate. 2651 uint64_t Rearrange[2]; 2652 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 2653 Rearrange[1] = Record[0] >> 48; 2654 V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended, 2655 APInt(80, Rearrange))); 2656 } else if (CurTy->isFP128Ty()) 2657 V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad, 2658 APInt(128, Record))); 2659 else if (CurTy->isPPC_FP128Ty()) 2660 V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble, 2661 APInt(128, Record))); 2662 else 2663 V = UndefValue::get(CurTy); 2664 break; 2665 } 2666 2667 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 2668 if (Record.empty()) 2669 return error("Invalid record"); 2670 2671 unsigned Size = Record.size(); 2672 SmallVector<Constant*, 16> Elts; 2673 2674 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 2675 for (unsigned i = 0; i != Size; ++i) 2676 Elts.push_back(ValueList.getConstantFwdRef(Record[i], 2677 STy->getElementType(i))); 2678 V = ConstantStruct::get(STy, Elts); 2679 } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) { 2680 Type *EltTy = ATy->getElementType(); 2681 for (unsigned i = 0; i != Size; ++i) 2682 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2683 V = ConstantArray::get(ATy, Elts); 2684 } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) { 2685 Type *EltTy = VTy->getElementType(); 2686 for (unsigned i = 0; i != Size; ++i) 2687 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2688 V = ConstantVector::get(Elts); 2689 } else { 2690 V = UndefValue::get(CurTy); 2691 } 2692 break; 2693 } 2694 case bitc::CST_CODE_STRING: // STRING: [values] 2695 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 2696 if (Record.empty()) 2697 return error("Invalid record"); 2698 2699 SmallString<16> Elts(Record.begin(), Record.end()); 2700 V = ConstantDataArray::getString(Context, Elts, 2701 BitCode == bitc::CST_CODE_CSTRING); 2702 break; 2703 } 2704 case bitc::CST_CODE_DATA: {// DATA: [n x value] 2705 if (Record.empty()) 2706 return error("Invalid record"); 2707 2708 Type *EltTy = cast<SequentialType>(CurTy)->getElementType(); 2709 if (EltTy->isIntegerTy(8)) { 2710 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); 2711 if (isa<VectorType>(CurTy)) 2712 V = ConstantDataVector::get(Context, Elts); 2713 else 2714 V = ConstantDataArray::get(Context, Elts); 2715 } else if (EltTy->isIntegerTy(16)) { 2716 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2717 if (isa<VectorType>(CurTy)) 2718 V = ConstantDataVector::get(Context, Elts); 2719 else 2720 V = ConstantDataArray::get(Context, Elts); 2721 } else if (EltTy->isIntegerTy(32)) { 2722 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2723 if (isa<VectorType>(CurTy)) 2724 V = ConstantDataVector::get(Context, Elts); 2725 else 2726 V = ConstantDataArray::get(Context, Elts); 2727 } else if (EltTy->isIntegerTy(64)) { 2728 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2729 if (isa<VectorType>(CurTy)) 2730 V = ConstantDataVector::get(Context, Elts); 2731 else 2732 V = ConstantDataArray::get(Context, Elts); 2733 } else if (EltTy->isHalfTy()) { 2734 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2735 if (isa<VectorType>(CurTy)) 2736 V = ConstantDataVector::getFP(Context, Elts); 2737 else 2738 V = ConstantDataArray::getFP(Context, Elts); 2739 } else if (EltTy->isFloatTy()) { 2740 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2741 if (isa<VectorType>(CurTy)) 2742 V = ConstantDataVector::getFP(Context, Elts); 2743 else 2744 V = ConstantDataArray::getFP(Context, Elts); 2745 } else if (EltTy->isDoubleTy()) { 2746 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2747 if (isa<VectorType>(CurTy)) 2748 V = ConstantDataVector::getFP(Context, Elts); 2749 else 2750 V = ConstantDataArray::getFP(Context, Elts); 2751 } else { 2752 return error("Invalid type for value"); 2753 } 2754 break; 2755 } 2756 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 2757 if (Record.size() < 3) 2758 return error("Invalid record"); 2759 int Opc = getDecodedBinaryOpcode(Record[0], CurTy); 2760 if (Opc < 0) { 2761 V = UndefValue::get(CurTy); // Unknown binop. 2762 } else { 2763 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 2764 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy); 2765 unsigned Flags = 0; 2766 if (Record.size() >= 4) { 2767 if (Opc == Instruction::Add || 2768 Opc == Instruction::Sub || 2769 Opc == Instruction::Mul || 2770 Opc == Instruction::Shl) { 2771 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 2772 Flags |= OverflowingBinaryOperator::NoSignedWrap; 2773 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 2774 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 2775 } else if (Opc == Instruction::SDiv || 2776 Opc == Instruction::UDiv || 2777 Opc == Instruction::LShr || 2778 Opc == Instruction::AShr) { 2779 if (Record[3] & (1 << bitc::PEO_EXACT)) 2780 Flags |= SDivOperator::IsExact; 2781 } 2782 } 2783 V = ConstantExpr::get(Opc, LHS, RHS, Flags); 2784 } 2785 break; 2786 } 2787 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 2788 if (Record.size() < 3) 2789 return error("Invalid record"); 2790 int Opc = getDecodedCastOpcode(Record[0]); 2791 if (Opc < 0) { 2792 V = UndefValue::get(CurTy); // Unknown cast. 2793 } else { 2794 Type *OpTy = getTypeByID(Record[1]); 2795 if (!OpTy) 2796 return error("Invalid record"); 2797 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy); 2798 V = UpgradeBitCastExpr(Opc, Op, CurTy); 2799 if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy); 2800 } 2801 break; 2802 } 2803 case bitc::CST_CODE_CE_INBOUNDS_GEP: 2804 case bitc::CST_CODE_CE_GEP: { // CE_GEP: [n x operands] 2805 unsigned OpNum = 0; 2806 Type *PointeeType = nullptr; 2807 if (Record.size() % 2) 2808 PointeeType = getTypeByID(Record[OpNum++]); 2809 SmallVector<Constant*, 16> Elts; 2810 while (OpNum != Record.size()) { 2811 Type *ElTy = getTypeByID(Record[OpNum++]); 2812 if (!ElTy) 2813 return error("Invalid record"); 2814 Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy)); 2815 } 2816 2817 if (PointeeType && 2818 PointeeType != 2819 cast<SequentialType>(Elts[0]->getType()->getScalarType()) 2820 ->getElementType()) 2821 return error("Explicit gep operator type does not match pointee type " 2822 "of pointer operand"); 2823 2824 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 2825 V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices, 2826 BitCode == 2827 bitc::CST_CODE_CE_INBOUNDS_GEP); 2828 break; 2829 } 2830 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] 2831 if (Record.size() < 3) 2832 return error("Invalid record"); 2833 2834 Type *SelectorTy = Type::getInt1Ty(Context); 2835 2836 // The selector might be an i1 or an <n x i1> 2837 // Get the type from the ValueList before getting a forward ref. 2838 if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) 2839 if (Value *V = ValueList[Record[0]]) 2840 if (SelectorTy != V->getType()) 2841 SelectorTy = VectorType::get(SelectorTy, VTy->getNumElements()); 2842 2843 V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0], 2844 SelectorTy), 2845 ValueList.getConstantFwdRef(Record[1],CurTy), 2846 ValueList.getConstantFwdRef(Record[2],CurTy)); 2847 break; 2848 } 2849 case bitc::CST_CODE_CE_EXTRACTELT 2850 : { // CE_EXTRACTELT: [opty, opval, opty, opval] 2851 if (Record.size() < 3) 2852 return error("Invalid record"); 2853 VectorType *OpTy = 2854 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2855 if (!OpTy) 2856 return error("Invalid record"); 2857 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2858 Constant *Op1 = nullptr; 2859 if (Record.size() == 4) { 2860 Type *IdxTy = getTypeByID(Record[2]); 2861 if (!IdxTy) 2862 return error("Invalid record"); 2863 Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2864 } else // TODO: Remove with llvm 4.0 2865 Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2866 if (!Op1) 2867 return error("Invalid record"); 2868 V = ConstantExpr::getExtractElement(Op0, Op1); 2869 break; 2870 } 2871 case bitc::CST_CODE_CE_INSERTELT 2872 : { // CE_INSERTELT: [opval, opval, opty, opval] 2873 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2874 if (Record.size() < 3 || !OpTy) 2875 return error("Invalid record"); 2876 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2877 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], 2878 OpTy->getElementType()); 2879 Constant *Op2 = nullptr; 2880 if (Record.size() == 4) { 2881 Type *IdxTy = getTypeByID(Record[2]); 2882 if (!IdxTy) 2883 return error("Invalid record"); 2884 Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2885 } else // TODO: Remove with llvm 4.0 2886 Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2887 if (!Op2) 2888 return error("Invalid record"); 2889 V = ConstantExpr::getInsertElement(Op0, Op1, Op2); 2890 break; 2891 } 2892 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 2893 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2894 if (Record.size() < 3 || !OpTy) 2895 return error("Invalid record"); 2896 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2897 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy); 2898 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 2899 OpTy->getNumElements()); 2900 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy); 2901 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 2902 break; 2903 } 2904 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 2905 VectorType *RTy = dyn_cast<VectorType>(CurTy); 2906 VectorType *OpTy = 2907 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2908 if (Record.size() < 4 || !RTy || !OpTy) 2909 return error("Invalid record"); 2910 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2911 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2912 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 2913 RTy->getNumElements()); 2914 Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy); 2915 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 2916 break; 2917 } 2918 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 2919 if (Record.size() < 4) 2920 return error("Invalid record"); 2921 Type *OpTy = getTypeByID(Record[0]); 2922 if (!OpTy) 2923 return error("Invalid record"); 2924 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2925 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2926 2927 if (OpTy->isFPOrFPVectorTy()) 2928 V = ConstantExpr::getFCmp(Record[3], Op0, Op1); 2929 else 2930 V = ConstantExpr::getICmp(Record[3], Op0, Op1); 2931 break; 2932 } 2933 // This maintains backward compatibility, pre-asm dialect keywords. 2934 // FIXME: Remove with the 4.0 release. 2935 case bitc::CST_CODE_INLINEASM_OLD: { 2936 if (Record.size() < 2) 2937 return error("Invalid record"); 2938 std::string AsmStr, ConstrStr; 2939 bool HasSideEffects = Record[0] & 1; 2940 bool IsAlignStack = Record[0] >> 1; 2941 unsigned AsmStrSize = Record[1]; 2942 if (2+AsmStrSize >= Record.size()) 2943 return error("Invalid record"); 2944 unsigned ConstStrSize = Record[2+AsmStrSize]; 2945 if (3+AsmStrSize+ConstStrSize > Record.size()) 2946 return error("Invalid record"); 2947 2948 for (unsigned i = 0; i != AsmStrSize; ++i) 2949 AsmStr += (char)Record[2+i]; 2950 for (unsigned i = 0; i != ConstStrSize; ++i) 2951 ConstrStr += (char)Record[3+AsmStrSize+i]; 2952 PointerType *PTy = cast<PointerType>(CurTy); 2953 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 2954 AsmStr, ConstrStr, HasSideEffects, IsAlignStack); 2955 break; 2956 } 2957 // This version adds support for the asm dialect keywords (e.g., 2958 // inteldialect). 2959 case bitc::CST_CODE_INLINEASM: { 2960 if (Record.size() < 2) 2961 return error("Invalid record"); 2962 std::string AsmStr, ConstrStr; 2963 bool HasSideEffects = Record[0] & 1; 2964 bool IsAlignStack = (Record[0] >> 1) & 1; 2965 unsigned AsmDialect = Record[0] >> 2; 2966 unsigned AsmStrSize = Record[1]; 2967 if (2+AsmStrSize >= Record.size()) 2968 return error("Invalid record"); 2969 unsigned ConstStrSize = Record[2+AsmStrSize]; 2970 if (3+AsmStrSize+ConstStrSize > Record.size()) 2971 return error("Invalid record"); 2972 2973 for (unsigned i = 0; i != AsmStrSize; ++i) 2974 AsmStr += (char)Record[2+i]; 2975 for (unsigned i = 0; i != ConstStrSize; ++i) 2976 ConstrStr += (char)Record[3+AsmStrSize+i]; 2977 PointerType *PTy = cast<PointerType>(CurTy); 2978 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 2979 AsmStr, ConstrStr, HasSideEffects, IsAlignStack, 2980 InlineAsm::AsmDialect(AsmDialect)); 2981 break; 2982 } 2983 case bitc::CST_CODE_BLOCKADDRESS:{ 2984 if (Record.size() < 3) 2985 return error("Invalid record"); 2986 Type *FnTy = getTypeByID(Record[0]); 2987 if (!FnTy) 2988 return error("Invalid record"); 2989 Function *Fn = 2990 dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy)); 2991 if (!Fn) 2992 return error("Invalid record"); 2993 2994 // If the function is already parsed we can insert the block address right 2995 // away. 2996 BasicBlock *BB; 2997 unsigned BBID = Record[2]; 2998 if (!BBID) 2999 // Invalid reference to entry block. 3000 return error("Invalid ID"); 3001 if (!Fn->empty()) { 3002 Function::iterator BBI = Fn->begin(), BBE = Fn->end(); 3003 for (size_t I = 0, E = BBID; I != E; ++I) { 3004 if (BBI == BBE) 3005 return error("Invalid ID"); 3006 ++BBI; 3007 } 3008 BB = &*BBI; 3009 } else { 3010 // Otherwise insert a placeholder and remember it so it can be inserted 3011 // when the function is parsed. 3012 auto &FwdBBs = BasicBlockFwdRefs[Fn]; 3013 if (FwdBBs.empty()) 3014 BasicBlockFwdRefQueue.push_back(Fn); 3015 if (FwdBBs.size() < BBID + 1) 3016 FwdBBs.resize(BBID + 1); 3017 if (!FwdBBs[BBID]) 3018 FwdBBs[BBID] = BasicBlock::Create(Context); 3019 BB = FwdBBs[BBID]; 3020 } 3021 V = BlockAddress::get(Fn, BB); 3022 break; 3023 } 3024 } 3025 3026 ValueList.assignValue(V, NextCstNo); 3027 ++NextCstNo; 3028 } 3029 } 3030 3031 std::error_code BitcodeReader::parseUseLists() { 3032 if (Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 3033 return error("Invalid record"); 3034 3035 // Read all the records. 3036 SmallVector<uint64_t, 64> Record; 3037 while (1) { 3038 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 3039 3040 switch (Entry.Kind) { 3041 case BitstreamEntry::SubBlock: // Handled for us already. 3042 case BitstreamEntry::Error: 3043 return error("Malformed block"); 3044 case BitstreamEntry::EndBlock: 3045 return std::error_code(); 3046 case BitstreamEntry::Record: 3047 // The interesting case. 3048 break; 3049 } 3050 3051 // Read a use list record. 3052 Record.clear(); 3053 bool IsBB = false; 3054 switch (Stream.readRecord(Entry.ID, Record)) { 3055 default: // Default behavior: unknown type. 3056 break; 3057 case bitc::USELIST_CODE_BB: 3058 IsBB = true; 3059 // fallthrough 3060 case bitc::USELIST_CODE_DEFAULT: { 3061 unsigned RecordLength = Record.size(); 3062 if (RecordLength < 3) 3063 // Records should have at least an ID and two indexes. 3064 return error("Invalid record"); 3065 unsigned ID = Record.back(); 3066 Record.pop_back(); 3067 3068 Value *V; 3069 if (IsBB) { 3070 assert(ID < FunctionBBs.size() && "Basic block not found"); 3071 V = FunctionBBs[ID]; 3072 } else 3073 V = ValueList[ID]; 3074 unsigned NumUses = 0; 3075 SmallDenseMap<const Use *, unsigned, 16> Order; 3076 for (const Use &U : V->materialized_uses()) { 3077 if (++NumUses > Record.size()) 3078 break; 3079 Order[&U] = Record[NumUses - 1]; 3080 } 3081 if (Order.size() != Record.size() || NumUses > Record.size()) 3082 // Mismatches can happen if the functions are being materialized lazily 3083 // (out-of-order), or a value has been upgraded. 3084 break; 3085 3086 V->sortUseList([&](const Use &L, const Use &R) { 3087 return Order.lookup(&L) < Order.lookup(&R); 3088 }); 3089 break; 3090 } 3091 } 3092 } 3093 } 3094 3095 /// When we see the block for metadata, remember where it is and then skip it. 3096 /// This lets us lazily deserialize the metadata. 3097 std::error_code BitcodeReader::rememberAndSkipMetadata() { 3098 // Save the current stream state. 3099 uint64_t CurBit = Stream.GetCurrentBitNo(); 3100 DeferredMetadataInfo.push_back(CurBit); 3101 3102 // Skip over the block for now. 3103 if (Stream.SkipBlock()) 3104 return error("Invalid record"); 3105 return std::error_code(); 3106 } 3107 3108 std::error_code BitcodeReader::materializeMetadata() { 3109 for (uint64_t BitPos : DeferredMetadataInfo) { 3110 // Move the bit stream to the saved position. 3111 Stream.JumpToBit(BitPos); 3112 if (std::error_code EC = parseMetadata(true)) 3113 return EC; 3114 } 3115 DeferredMetadataInfo.clear(); 3116 return std::error_code(); 3117 } 3118 3119 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; } 3120 3121 /// When we see the block for a function body, remember where it is and then 3122 /// skip it. This lets us lazily deserialize the functions. 3123 std::error_code BitcodeReader::rememberAndSkipFunctionBody() { 3124 // Get the function we are talking about. 3125 if (FunctionsWithBodies.empty()) 3126 return error("Insufficient function protos"); 3127 3128 Function *Fn = FunctionsWithBodies.back(); 3129 FunctionsWithBodies.pop_back(); 3130 3131 // Save the current stream state. 3132 uint64_t CurBit = Stream.GetCurrentBitNo(); 3133 assert( 3134 (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) && 3135 "Mismatch between VST and scanned function offsets"); 3136 DeferredFunctionInfo[Fn] = CurBit; 3137 3138 // Skip over the function block for now. 3139 if (Stream.SkipBlock()) 3140 return error("Invalid record"); 3141 return std::error_code(); 3142 } 3143 3144 std::error_code BitcodeReader::globalCleanup() { 3145 // Patch the initializers for globals and aliases up. 3146 resolveGlobalAndAliasInits(); 3147 if (!GlobalInits.empty() || !AliasInits.empty()) 3148 return error("Malformed global initializer set"); 3149 3150 // Look for intrinsic functions which need to be upgraded at some point 3151 for (Function &F : *TheModule) { 3152 Function *NewFn; 3153 if (UpgradeIntrinsicFunction(&F, NewFn)) 3154 UpgradedIntrinsics[&F] = NewFn; 3155 } 3156 3157 // Look for global variables which need to be renamed. 3158 for (GlobalVariable &GV : TheModule->globals()) 3159 UpgradeGlobalVariable(&GV); 3160 3161 // Force deallocation of memory for these vectors to favor the client that 3162 // want lazy deserialization. 3163 std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits); 3164 std::vector<std::pair<GlobalAlias*, unsigned> >().swap(AliasInits); 3165 return std::error_code(); 3166 } 3167 3168 /// Support for lazy parsing of function bodies. This is required if we 3169 /// either have an old bitcode file without a VST forward declaration record, 3170 /// or if we have an anonymous function being materialized, since anonymous 3171 /// functions do not have a name and are therefore not in the VST. 3172 std::error_code BitcodeReader::rememberAndSkipFunctionBodies() { 3173 Stream.JumpToBit(NextUnreadBit); 3174 3175 if (Stream.AtEndOfStream()) 3176 return error("Could not find function in stream"); 3177 3178 if (!SeenFirstFunctionBody) 3179 return error("Trying to materialize functions before seeing function blocks"); 3180 3181 // An old bitcode file with the symbol table at the end would have 3182 // finished the parse greedily. 3183 assert(SeenValueSymbolTable); 3184 3185 SmallVector<uint64_t, 64> Record; 3186 3187 while (1) { 3188 BitstreamEntry Entry = Stream.advance(); 3189 switch (Entry.Kind) { 3190 default: 3191 return error("Expect SubBlock"); 3192 case BitstreamEntry::SubBlock: 3193 switch (Entry.ID) { 3194 default: 3195 return error("Expect function block"); 3196 case bitc::FUNCTION_BLOCK_ID: 3197 if (std::error_code EC = rememberAndSkipFunctionBody()) 3198 return EC; 3199 NextUnreadBit = Stream.GetCurrentBitNo(); 3200 return std::error_code(); 3201 } 3202 } 3203 } 3204 } 3205 3206 std::error_code BitcodeReader::parseBitcodeVersion() { 3207 if (Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID)) 3208 return error("Invalid record"); 3209 3210 // Read all the records. 3211 SmallVector<uint64_t, 64> Record; 3212 while (1) { 3213 BitstreamEntry Entry = Stream.advance(); 3214 3215 switch (Entry.Kind) { 3216 default: 3217 case BitstreamEntry::Error: 3218 return error("Malformed block"); 3219 case BitstreamEntry::EndBlock: 3220 return std::error_code(); 3221 case BitstreamEntry::Record: 3222 // The interesting case. 3223 break; 3224 } 3225 3226 // Read a record. 3227 Record.clear(); 3228 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 3229 switch (BitCode) { 3230 default: // Default behavior: reject 3231 return error("Invalid value"); 3232 case bitc::IDENTIFICATION_CODE_STRING: { // IDENTIFICATION: [strchr x 3233 // N] 3234 convertToString(Record, 0, ProducerIdentification); 3235 break; 3236 } 3237 case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#] 3238 unsigned epoch = (unsigned)Record[0]; 3239 if (epoch != bitc::BITCODE_CURRENT_EPOCH) { 3240 return error( 3241 Twine("Incompatible epoch: Bitcode '") + Twine(epoch) + 3242 "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'"); 3243 } 3244 } 3245 } 3246 } 3247 } 3248 3249 std::error_code BitcodeReader::parseModule(uint64_t ResumeBit, 3250 bool ShouldLazyLoadMetadata) { 3251 if (ResumeBit) 3252 Stream.JumpToBit(ResumeBit); 3253 else if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 3254 return error("Invalid record"); 3255 3256 SmallVector<uint64_t, 64> Record; 3257 std::vector<std::string> SectionTable; 3258 std::vector<std::string> GCTable; 3259 3260 // Read all the records for this module. 3261 while (1) { 3262 BitstreamEntry Entry = Stream.advance(); 3263 3264 switch (Entry.Kind) { 3265 case BitstreamEntry::Error: 3266 return error("Malformed block"); 3267 case BitstreamEntry::EndBlock: 3268 return globalCleanup(); 3269 3270 case BitstreamEntry::SubBlock: 3271 switch (Entry.ID) { 3272 default: // Skip unknown content. 3273 if (Stream.SkipBlock()) 3274 return error("Invalid record"); 3275 break; 3276 case bitc::BLOCKINFO_BLOCK_ID: 3277 if (Stream.ReadBlockInfoBlock()) 3278 return error("Malformed block"); 3279 break; 3280 case bitc::PARAMATTR_BLOCK_ID: 3281 if (std::error_code EC = parseAttributeBlock()) 3282 return EC; 3283 break; 3284 case bitc::PARAMATTR_GROUP_BLOCK_ID: 3285 if (std::error_code EC = parseAttributeGroupBlock()) 3286 return EC; 3287 break; 3288 case bitc::TYPE_BLOCK_ID_NEW: 3289 if (std::error_code EC = parseTypeTable()) 3290 return EC; 3291 break; 3292 case bitc::VALUE_SYMTAB_BLOCK_ID: 3293 if (!SeenValueSymbolTable) { 3294 // Either this is an old form VST without function index and an 3295 // associated VST forward declaration record (which would have caused 3296 // the VST to be jumped to and parsed before it was encountered 3297 // normally in the stream), or there were no function blocks to 3298 // trigger an earlier parsing of the VST. 3299 assert(VSTOffset == 0 || FunctionsWithBodies.empty()); 3300 if (std::error_code EC = parseValueSymbolTable()) 3301 return EC; 3302 SeenValueSymbolTable = true; 3303 } else { 3304 // We must have had a VST forward declaration record, which caused 3305 // the parser to jump to and parse the VST earlier. 3306 assert(VSTOffset > 0); 3307 if (Stream.SkipBlock()) 3308 return error("Invalid record"); 3309 } 3310 break; 3311 case bitc::CONSTANTS_BLOCK_ID: 3312 if (std::error_code EC = parseConstants()) 3313 return EC; 3314 if (std::error_code EC = resolveGlobalAndAliasInits()) 3315 return EC; 3316 break; 3317 case bitc::METADATA_BLOCK_ID: 3318 if (ShouldLazyLoadMetadata && !IsMetadataMaterialized) { 3319 if (std::error_code EC = rememberAndSkipMetadata()) 3320 return EC; 3321 break; 3322 } 3323 assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata"); 3324 if (std::error_code EC = parseMetadata(true)) 3325 return EC; 3326 break; 3327 case bitc::METADATA_KIND_BLOCK_ID: 3328 if (std::error_code EC = parseMetadataKinds()) 3329 return EC; 3330 break; 3331 case bitc::FUNCTION_BLOCK_ID: 3332 // If this is the first function body we've seen, reverse the 3333 // FunctionsWithBodies list. 3334 if (!SeenFirstFunctionBody) { 3335 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 3336 if (std::error_code EC = globalCleanup()) 3337 return EC; 3338 SeenFirstFunctionBody = true; 3339 } 3340 3341 if (VSTOffset > 0) { 3342 // If we have a VST forward declaration record, make sure we 3343 // parse the VST now if we haven't already. It is needed to 3344 // set up the DeferredFunctionInfo vector for lazy reading. 3345 if (!SeenValueSymbolTable) { 3346 if (std::error_code EC = 3347 BitcodeReader::parseValueSymbolTable(VSTOffset)) 3348 return EC; 3349 SeenValueSymbolTable = true; 3350 // Fall through so that we record the NextUnreadBit below. 3351 // This is necessary in case we have an anonymous function that 3352 // is later materialized. Since it will not have a VST entry we 3353 // need to fall back to the lazy parse to find its offset. 3354 } else { 3355 // If we have a VST forward declaration record, but have already 3356 // parsed the VST (just above, when the first function body was 3357 // encountered here), then we are resuming the parse after 3358 // materializing functions. The ResumeBit points to the 3359 // start of the last function block recorded in the 3360 // DeferredFunctionInfo map. Skip it. 3361 if (Stream.SkipBlock()) 3362 return error("Invalid record"); 3363 continue; 3364 } 3365 } 3366 3367 // Support older bitcode files that did not have the function 3368 // index in the VST, nor a VST forward declaration record, as 3369 // well as anonymous functions that do not have VST entries. 3370 // Build the DeferredFunctionInfo vector on the fly. 3371 if (std::error_code EC = rememberAndSkipFunctionBody()) 3372 return EC; 3373 3374 // Suspend parsing when we reach the function bodies. Subsequent 3375 // materialization calls will resume it when necessary. If the bitcode 3376 // file is old, the symbol table will be at the end instead and will not 3377 // have been seen yet. In this case, just finish the parse now. 3378 if (SeenValueSymbolTable) { 3379 NextUnreadBit = Stream.GetCurrentBitNo(); 3380 return std::error_code(); 3381 } 3382 break; 3383 case bitc::USELIST_BLOCK_ID: 3384 if (std::error_code EC = parseUseLists()) 3385 return EC; 3386 break; 3387 case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID: 3388 if (std::error_code EC = parseOperandBundleTags()) 3389 return EC; 3390 break; 3391 } 3392 continue; 3393 3394 case BitstreamEntry::Record: 3395 // The interesting case. 3396 break; 3397 } 3398 3399 // Read a record. 3400 auto BitCode = Stream.readRecord(Entry.ID, Record); 3401 switch (BitCode) { 3402 default: break; // Default behavior, ignore unknown content. 3403 case bitc::MODULE_CODE_VERSION: { // VERSION: [version#] 3404 if (Record.size() < 1) 3405 return error("Invalid record"); 3406 // Only version #0 and #1 are supported so far. 3407 unsigned module_version = Record[0]; 3408 switch (module_version) { 3409 default: 3410 return error("Invalid value"); 3411 case 0: 3412 UseRelativeIDs = false; 3413 break; 3414 case 1: 3415 UseRelativeIDs = true; 3416 break; 3417 } 3418 break; 3419 } 3420 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 3421 std::string S; 3422 if (convertToString(Record, 0, S)) 3423 return error("Invalid record"); 3424 TheModule->setTargetTriple(S); 3425 break; 3426 } 3427 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 3428 std::string S; 3429 if (convertToString(Record, 0, S)) 3430 return error("Invalid record"); 3431 TheModule->setDataLayout(S); 3432 break; 3433 } 3434 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 3435 std::string S; 3436 if (convertToString(Record, 0, S)) 3437 return error("Invalid record"); 3438 TheModule->setModuleInlineAsm(S); 3439 break; 3440 } 3441 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 3442 // FIXME: Remove in 4.0. 3443 std::string S; 3444 if (convertToString(Record, 0, S)) 3445 return error("Invalid record"); 3446 // Ignore value. 3447 break; 3448 } 3449 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 3450 std::string S; 3451 if (convertToString(Record, 0, S)) 3452 return error("Invalid record"); 3453 SectionTable.push_back(S); 3454 break; 3455 } 3456 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 3457 std::string S; 3458 if (convertToString(Record, 0, S)) 3459 return error("Invalid record"); 3460 GCTable.push_back(S); 3461 break; 3462 } 3463 case bitc::MODULE_CODE_COMDAT: { // COMDAT: [selection_kind, name] 3464 if (Record.size() < 2) 3465 return error("Invalid record"); 3466 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]); 3467 unsigned ComdatNameSize = Record[1]; 3468 std::string ComdatName; 3469 ComdatName.reserve(ComdatNameSize); 3470 for (unsigned i = 0; i != ComdatNameSize; ++i) 3471 ComdatName += (char)Record[2 + i]; 3472 Comdat *C = TheModule->getOrInsertComdat(ComdatName); 3473 C->setSelectionKind(SK); 3474 ComdatList.push_back(C); 3475 break; 3476 } 3477 // GLOBALVAR: [pointer type, isconst, initid, 3478 // linkage, alignment, section, visibility, threadlocal, 3479 // unnamed_addr, externally_initialized, dllstorageclass, 3480 // comdat] 3481 case bitc::MODULE_CODE_GLOBALVAR: { 3482 if (Record.size() < 6) 3483 return error("Invalid record"); 3484 Type *Ty = getTypeByID(Record[0]); 3485 if (!Ty) 3486 return error("Invalid record"); 3487 bool isConstant = Record[1] & 1; 3488 bool explicitType = Record[1] & 2; 3489 unsigned AddressSpace; 3490 if (explicitType) { 3491 AddressSpace = Record[1] >> 2; 3492 } else { 3493 if (!Ty->isPointerTy()) 3494 return error("Invalid type for value"); 3495 AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 3496 Ty = cast<PointerType>(Ty)->getElementType(); 3497 } 3498 3499 uint64_t RawLinkage = Record[3]; 3500 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 3501 unsigned Alignment; 3502 if (std::error_code EC = parseAlignmentValue(Record[4], Alignment)) 3503 return EC; 3504 std::string Section; 3505 if (Record[5]) { 3506 if (Record[5]-1 >= SectionTable.size()) 3507 return error("Invalid ID"); 3508 Section = SectionTable[Record[5]-1]; 3509 } 3510 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 3511 // Local linkage must have default visibility. 3512 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage)) 3513 // FIXME: Change to an error if non-default in 4.0. 3514 Visibility = getDecodedVisibility(Record[6]); 3515 3516 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; 3517 if (Record.size() > 7) 3518 TLM = getDecodedThreadLocalMode(Record[7]); 3519 3520 bool UnnamedAddr = false; 3521 if (Record.size() > 8) 3522 UnnamedAddr = Record[8]; 3523 3524 bool ExternallyInitialized = false; 3525 if (Record.size() > 9) 3526 ExternallyInitialized = Record[9]; 3527 3528 GlobalVariable *NewGV = 3529 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, "", nullptr, 3530 TLM, AddressSpace, ExternallyInitialized); 3531 NewGV->setAlignment(Alignment); 3532 if (!Section.empty()) 3533 NewGV->setSection(Section); 3534 NewGV->setVisibility(Visibility); 3535 NewGV->setUnnamedAddr(UnnamedAddr); 3536 3537 if (Record.size() > 10) 3538 NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10])); 3539 else 3540 upgradeDLLImportExportLinkage(NewGV, RawLinkage); 3541 3542 ValueList.push_back(NewGV); 3543 3544 // Remember which value to use for the global initializer. 3545 if (unsigned InitID = Record[2]) 3546 GlobalInits.push_back(std::make_pair(NewGV, InitID-1)); 3547 3548 if (Record.size() > 11) { 3549 if (unsigned ComdatID = Record[11]) { 3550 if (ComdatID > ComdatList.size()) 3551 return error("Invalid global variable comdat ID"); 3552 NewGV->setComdat(ComdatList[ComdatID - 1]); 3553 } 3554 } else if (hasImplicitComdat(RawLinkage)) { 3555 NewGV->setComdat(reinterpret_cast<Comdat *>(1)); 3556 } 3557 break; 3558 } 3559 // FUNCTION: [type, callingconv, isproto, linkage, paramattr, 3560 // alignment, section, visibility, gc, unnamed_addr, 3561 // prologuedata, dllstorageclass, comdat, prefixdata] 3562 case bitc::MODULE_CODE_FUNCTION: { 3563 if (Record.size() < 8) 3564 return error("Invalid record"); 3565 Type *Ty = getTypeByID(Record[0]); 3566 if (!Ty) 3567 return error("Invalid record"); 3568 if (auto *PTy = dyn_cast<PointerType>(Ty)) 3569 Ty = PTy->getElementType(); 3570 auto *FTy = dyn_cast<FunctionType>(Ty); 3571 if (!FTy) 3572 return error("Invalid type for value"); 3573 auto CC = static_cast<CallingConv::ID>(Record[1]); 3574 if (CC & ~CallingConv::MaxID) 3575 return error("Invalid calling convention ID"); 3576 3577 Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage, 3578 "", TheModule); 3579 3580 Func->setCallingConv(CC); 3581 bool isProto = Record[2]; 3582 uint64_t RawLinkage = Record[3]; 3583 Func->setLinkage(getDecodedLinkage(RawLinkage)); 3584 Func->setAttributes(getAttributes(Record[4])); 3585 3586 unsigned Alignment; 3587 if (std::error_code EC = parseAlignmentValue(Record[5], Alignment)) 3588 return EC; 3589 Func->setAlignment(Alignment); 3590 if (Record[6]) { 3591 if (Record[6]-1 >= SectionTable.size()) 3592 return error("Invalid ID"); 3593 Func->setSection(SectionTable[Record[6]-1]); 3594 } 3595 // Local linkage must have default visibility. 3596 if (!Func->hasLocalLinkage()) 3597 // FIXME: Change to an error if non-default in 4.0. 3598 Func->setVisibility(getDecodedVisibility(Record[7])); 3599 if (Record.size() > 8 && Record[8]) { 3600 if (Record[8]-1 >= GCTable.size()) 3601 return error("Invalid ID"); 3602 Func->setGC(GCTable[Record[8]-1].c_str()); 3603 } 3604 bool UnnamedAddr = false; 3605 if (Record.size() > 9) 3606 UnnamedAddr = Record[9]; 3607 Func->setUnnamedAddr(UnnamedAddr); 3608 if (Record.size() > 10 && Record[10] != 0) 3609 FunctionPrologues.push_back(std::make_pair(Func, Record[10]-1)); 3610 3611 if (Record.size() > 11) 3612 Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11])); 3613 else 3614 upgradeDLLImportExportLinkage(Func, RawLinkage); 3615 3616 if (Record.size() > 12) { 3617 if (unsigned ComdatID = Record[12]) { 3618 if (ComdatID > ComdatList.size()) 3619 return error("Invalid function comdat ID"); 3620 Func->setComdat(ComdatList[ComdatID - 1]); 3621 } 3622 } else if (hasImplicitComdat(RawLinkage)) { 3623 Func->setComdat(reinterpret_cast<Comdat *>(1)); 3624 } 3625 3626 if (Record.size() > 13 && Record[13] != 0) 3627 FunctionPrefixes.push_back(std::make_pair(Func, Record[13]-1)); 3628 3629 if (Record.size() > 14 && Record[14] != 0) 3630 FunctionPersonalityFns.push_back(std::make_pair(Func, Record[14] - 1)); 3631 3632 ValueList.push_back(Func); 3633 3634 // If this is a function with a body, remember the prototype we are 3635 // creating now, so that we can match up the body with them later. 3636 if (!isProto) { 3637 Func->setIsMaterializable(true); 3638 FunctionsWithBodies.push_back(Func); 3639 DeferredFunctionInfo[Func] = 0; 3640 } 3641 break; 3642 } 3643 // ALIAS: [alias type, addrspace, aliasee val#, linkage] 3644 // ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, dllstorageclass] 3645 case bitc::MODULE_CODE_ALIAS: 3646 case bitc::MODULE_CODE_ALIAS_OLD: { 3647 bool NewRecord = BitCode == bitc::MODULE_CODE_ALIAS; 3648 if (Record.size() < (3 + (unsigned)NewRecord)) 3649 return error("Invalid record"); 3650 unsigned OpNum = 0; 3651 Type *Ty = getTypeByID(Record[OpNum++]); 3652 if (!Ty) 3653 return error("Invalid record"); 3654 3655 unsigned AddrSpace; 3656 if (!NewRecord) { 3657 auto *PTy = dyn_cast<PointerType>(Ty); 3658 if (!PTy) 3659 return error("Invalid type for value"); 3660 Ty = PTy->getElementType(); 3661 AddrSpace = PTy->getAddressSpace(); 3662 } else { 3663 AddrSpace = Record[OpNum++]; 3664 } 3665 3666 auto Val = Record[OpNum++]; 3667 auto Linkage = Record[OpNum++]; 3668 auto *NewGA = GlobalAlias::create( 3669 Ty, AddrSpace, getDecodedLinkage(Linkage), "", TheModule); 3670 // Old bitcode files didn't have visibility field. 3671 // Local linkage must have default visibility. 3672 if (OpNum != Record.size()) { 3673 auto VisInd = OpNum++; 3674 if (!NewGA->hasLocalLinkage()) 3675 // FIXME: Change to an error if non-default in 4.0. 3676 NewGA->setVisibility(getDecodedVisibility(Record[VisInd])); 3677 } 3678 if (OpNum != Record.size()) 3679 NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++])); 3680 else 3681 upgradeDLLImportExportLinkage(NewGA, Linkage); 3682 if (OpNum != Record.size()) 3683 NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++])); 3684 if (OpNum != Record.size()) 3685 NewGA->setUnnamedAddr(Record[OpNum++]); 3686 ValueList.push_back(NewGA); 3687 AliasInits.push_back(std::make_pair(NewGA, Val)); 3688 break; 3689 } 3690 /// MODULE_CODE_PURGEVALS: [numvals] 3691 case bitc::MODULE_CODE_PURGEVALS: 3692 // Trim down the value list to the specified size. 3693 if (Record.size() < 1 || Record[0] > ValueList.size()) 3694 return error("Invalid record"); 3695 ValueList.shrinkTo(Record[0]); 3696 break; 3697 /// MODULE_CODE_VSTOFFSET: [offset] 3698 case bitc::MODULE_CODE_VSTOFFSET: 3699 if (Record.size() < 1) 3700 return error("Invalid record"); 3701 VSTOffset = Record[0]; 3702 break; 3703 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 3704 case bitc::MODULE_CODE_SOURCE_FILENAME: 3705 SmallString<128> ValueName; 3706 if (convertToString(Record, 0, ValueName)) 3707 return error("Invalid record"); 3708 TheModule->setSourceFileName(ValueName); 3709 break; 3710 } 3711 Record.clear(); 3712 } 3713 } 3714 3715 /// Helper to read the header common to all bitcode files. 3716 static bool hasValidBitcodeHeader(BitstreamCursor &Stream) { 3717 // Sniff for the signature. 3718 if (Stream.Read(8) != 'B' || 3719 Stream.Read(8) != 'C' || 3720 Stream.Read(4) != 0x0 || 3721 Stream.Read(4) != 0xC || 3722 Stream.Read(4) != 0xE || 3723 Stream.Read(4) != 0xD) 3724 return false; 3725 return true; 3726 } 3727 3728 std::error_code 3729 BitcodeReader::parseBitcodeInto(std::unique_ptr<DataStreamer> Streamer, 3730 Module *M, bool ShouldLazyLoadMetadata) { 3731 TheModule = M; 3732 3733 if (std::error_code EC = initStream(std::move(Streamer))) 3734 return EC; 3735 3736 // Sniff for the signature. 3737 if (!hasValidBitcodeHeader(Stream)) 3738 return error("Invalid bitcode signature"); 3739 3740 // We expect a number of well-defined blocks, though we don't necessarily 3741 // need to understand them all. 3742 while (1) { 3743 if (Stream.AtEndOfStream()) { 3744 // We didn't really read a proper Module. 3745 return error("Malformed IR file"); 3746 } 3747 3748 BitstreamEntry Entry = 3749 Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs); 3750 3751 if (Entry.Kind != BitstreamEntry::SubBlock) 3752 return error("Malformed block"); 3753 3754 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) { 3755 parseBitcodeVersion(); 3756 continue; 3757 } 3758 3759 if (Entry.ID == bitc::MODULE_BLOCK_ID) 3760 return parseModule(0, ShouldLazyLoadMetadata); 3761 3762 if (Stream.SkipBlock()) 3763 return error("Invalid record"); 3764 } 3765 } 3766 3767 ErrorOr<std::string> BitcodeReader::parseModuleTriple() { 3768 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 3769 return error("Invalid record"); 3770 3771 SmallVector<uint64_t, 64> Record; 3772 3773 std::string Triple; 3774 // Read all the records for this module. 3775 while (1) { 3776 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 3777 3778 switch (Entry.Kind) { 3779 case BitstreamEntry::SubBlock: // Handled for us already. 3780 case BitstreamEntry::Error: 3781 return error("Malformed block"); 3782 case BitstreamEntry::EndBlock: 3783 return Triple; 3784 case BitstreamEntry::Record: 3785 // The interesting case. 3786 break; 3787 } 3788 3789 // Read a record. 3790 switch (Stream.readRecord(Entry.ID, Record)) { 3791 default: break; // Default behavior, ignore unknown content. 3792 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 3793 std::string S; 3794 if (convertToString(Record, 0, S)) 3795 return error("Invalid record"); 3796 Triple = S; 3797 break; 3798 } 3799 } 3800 Record.clear(); 3801 } 3802 llvm_unreachable("Exit infinite loop"); 3803 } 3804 3805 ErrorOr<std::string> BitcodeReader::parseTriple() { 3806 if (std::error_code EC = initStream(nullptr)) 3807 return EC; 3808 3809 // Sniff for the signature. 3810 if (!hasValidBitcodeHeader(Stream)) 3811 return error("Invalid bitcode signature"); 3812 3813 // We expect a number of well-defined blocks, though we don't necessarily 3814 // need to understand them all. 3815 while (1) { 3816 BitstreamEntry Entry = Stream.advance(); 3817 3818 switch (Entry.Kind) { 3819 case BitstreamEntry::Error: 3820 return error("Malformed block"); 3821 case BitstreamEntry::EndBlock: 3822 return std::error_code(); 3823 3824 case BitstreamEntry::SubBlock: 3825 if (Entry.ID == bitc::MODULE_BLOCK_ID) 3826 return parseModuleTriple(); 3827 3828 // Ignore other sub-blocks. 3829 if (Stream.SkipBlock()) 3830 return error("Malformed block"); 3831 continue; 3832 3833 case BitstreamEntry::Record: 3834 Stream.skipRecord(Entry.ID); 3835 continue; 3836 } 3837 } 3838 } 3839 3840 ErrorOr<std::string> BitcodeReader::parseIdentificationBlock() { 3841 if (std::error_code EC = initStream(nullptr)) 3842 return EC; 3843 3844 // Sniff for the signature. 3845 if (!hasValidBitcodeHeader(Stream)) 3846 return error("Invalid bitcode signature"); 3847 3848 // We expect a number of well-defined blocks, though we don't necessarily 3849 // need to understand them all. 3850 while (1) { 3851 BitstreamEntry Entry = Stream.advance(); 3852 switch (Entry.Kind) { 3853 case BitstreamEntry::Error: 3854 return error("Malformed block"); 3855 case BitstreamEntry::EndBlock: 3856 return std::error_code(); 3857 3858 case BitstreamEntry::SubBlock: 3859 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) { 3860 if (std::error_code EC = parseBitcodeVersion()) 3861 return EC; 3862 return ProducerIdentification; 3863 } 3864 // Ignore other sub-blocks. 3865 if (Stream.SkipBlock()) 3866 return error("Malformed block"); 3867 continue; 3868 case BitstreamEntry::Record: 3869 Stream.skipRecord(Entry.ID); 3870 continue; 3871 } 3872 } 3873 } 3874 3875 /// Parse metadata attachments. 3876 std::error_code BitcodeReader::parseMetadataAttachment(Function &F) { 3877 if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID)) 3878 return error("Invalid record"); 3879 3880 SmallVector<uint64_t, 64> Record; 3881 while (1) { 3882 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 3883 3884 switch (Entry.Kind) { 3885 case BitstreamEntry::SubBlock: // Handled for us already. 3886 case BitstreamEntry::Error: 3887 return error("Malformed block"); 3888 case BitstreamEntry::EndBlock: 3889 return std::error_code(); 3890 case BitstreamEntry::Record: 3891 // The interesting case. 3892 break; 3893 } 3894 3895 // Read a metadata attachment record. 3896 Record.clear(); 3897 switch (Stream.readRecord(Entry.ID, Record)) { 3898 default: // Default behavior: ignore. 3899 break; 3900 case bitc::METADATA_ATTACHMENT: { 3901 unsigned RecordLength = Record.size(); 3902 if (Record.empty()) 3903 return error("Invalid record"); 3904 if (RecordLength % 2 == 0) { 3905 // A function attachment. 3906 for (unsigned I = 0; I != RecordLength; I += 2) { 3907 auto K = MDKindMap.find(Record[I]); 3908 if (K == MDKindMap.end()) 3909 return error("Invalid ID"); 3910 MDNode *MD = MetadataList.getMDNodeFwdRefOrNull(Record[I + 1]); 3911 if (!MD) 3912 return error("Invalid metadata attachment"); 3913 F.setMetadata(K->second, MD); 3914 } 3915 continue; 3916 } 3917 3918 // An instruction attachment. 3919 Instruction *Inst = InstructionList[Record[0]]; 3920 for (unsigned i = 1; i != RecordLength; i = i+2) { 3921 unsigned Kind = Record[i]; 3922 DenseMap<unsigned, unsigned>::iterator I = 3923 MDKindMap.find(Kind); 3924 if (I == MDKindMap.end()) 3925 return error("Invalid ID"); 3926 Metadata *Node = MetadataList.getMetadataFwdRef(Record[i + 1]); 3927 if (isa<LocalAsMetadata>(Node)) 3928 // Drop the attachment. This used to be legal, but there's no 3929 // upgrade path. 3930 break; 3931 MDNode *MD = dyn_cast_or_null<MDNode>(Node); 3932 if (!MD) 3933 return error("Invalid metadata attachment"); 3934 3935 if (HasSeenOldLoopTags && I->second == LLVMContext::MD_loop) 3936 MD = upgradeInstructionLoopAttachment(*MD); 3937 3938 Inst->setMetadata(I->second, MD); 3939 if (I->second == LLVMContext::MD_tbaa) { 3940 InstsWithTBAATag.push_back(Inst); 3941 continue; 3942 } 3943 } 3944 break; 3945 } 3946 } 3947 } 3948 } 3949 3950 static std::error_code typeCheckLoadStoreInst(Type *ValType, Type *PtrType) { 3951 LLVMContext &Context = PtrType->getContext(); 3952 if (!isa<PointerType>(PtrType)) 3953 return error(Context, "Load/Store operand is not a pointer type"); 3954 Type *ElemType = cast<PointerType>(PtrType)->getElementType(); 3955 3956 if (ValType && ValType != ElemType) 3957 return error(Context, "Explicit load/store type does not match pointee " 3958 "type of pointer operand"); 3959 if (!PointerType::isLoadableOrStorableType(ElemType)) 3960 return error(Context, "Cannot load/store from pointer"); 3961 return std::error_code(); 3962 } 3963 3964 /// Lazily parse the specified function body block. 3965 std::error_code BitcodeReader::parseFunctionBody(Function *F) { 3966 if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 3967 return error("Invalid record"); 3968 3969 InstructionList.clear(); 3970 unsigned ModuleValueListSize = ValueList.size(); 3971 unsigned ModuleMetadataListSize = MetadataList.size(); 3972 3973 // Add all the function arguments to the value table. 3974 for (Argument &I : F->args()) 3975 ValueList.push_back(&I); 3976 3977 unsigned NextValueNo = ValueList.size(); 3978 BasicBlock *CurBB = nullptr; 3979 unsigned CurBBNo = 0; 3980 3981 DebugLoc LastLoc; 3982 auto getLastInstruction = [&]() -> Instruction * { 3983 if (CurBB && !CurBB->empty()) 3984 return &CurBB->back(); 3985 else if (CurBBNo && FunctionBBs[CurBBNo - 1] && 3986 !FunctionBBs[CurBBNo - 1]->empty()) 3987 return &FunctionBBs[CurBBNo - 1]->back(); 3988 return nullptr; 3989 }; 3990 3991 std::vector<OperandBundleDef> OperandBundles; 3992 3993 // Read all the records. 3994 SmallVector<uint64_t, 64> Record; 3995 while (1) { 3996 BitstreamEntry Entry = Stream.advance(); 3997 3998 switch (Entry.Kind) { 3999 case BitstreamEntry::Error: 4000 return error("Malformed block"); 4001 case BitstreamEntry::EndBlock: 4002 goto OutOfRecordLoop; 4003 4004 case BitstreamEntry::SubBlock: 4005 switch (Entry.ID) { 4006 default: // Skip unknown content. 4007 if (Stream.SkipBlock()) 4008 return error("Invalid record"); 4009 break; 4010 case bitc::CONSTANTS_BLOCK_ID: 4011 if (std::error_code EC = parseConstants()) 4012 return EC; 4013 NextValueNo = ValueList.size(); 4014 break; 4015 case bitc::VALUE_SYMTAB_BLOCK_ID: 4016 if (std::error_code EC = parseValueSymbolTable()) 4017 return EC; 4018 break; 4019 case bitc::METADATA_ATTACHMENT_ID: 4020 if (std::error_code EC = parseMetadataAttachment(*F)) 4021 return EC; 4022 break; 4023 case bitc::METADATA_BLOCK_ID: 4024 if (std::error_code EC = parseMetadata()) 4025 return EC; 4026 break; 4027 case bitc::USELIST_BLOCK_ID: 4028 if (std::error_code EC = parseUseLists()) 4029 return EC; 4030 break; 4031 } 4032 continue; 4033 4034 case BitstreamEntry::Record: 4035 // The interesting case. 4036 break; 4037 } 4038 4039 // Read a record. 4040 Record.clear(); 4041 Instruction *I = nullptr; 4042 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 4043 switch (BitCode) { 4044 default: // Default behavior: reject 4045 return error("Invalid value"); 4046 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks] 4047 if (Record.size() < 1 || Record[0] == 0) 4048 return error("Invalid record"); 4049 // Create all the basic blocks for the function. 4050 FunctionBBs.resize(Record[0]); 4051 4052 // See if anything took the address of blocks in this function. 4053 auto BBFRI = BasicBlockFwdRefs.find(F); 4054 if (BBFRI == BasicBlockFwdRefs.end()) { 4055 for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i) 4056 FunctionBBs[i] = BasicBlock::Create(Context, "", F); 4057 } else { 4058 auto &BBRefs = BBFRI->second; 4059 // Check for invalid basic block references. 4060 if (BBRefs.size() > FunctionBBs.size()) 4061 return error("Invalid ID"); 4062 assert(!BBRefs.empty() && "Unexpected empty array"); 4063 assert(!BBRefs.front() && "Invalid reference to entry block"); 4064 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E; 4065 ++I) 4066 if (I < RE && BBRefs[I]) { 4067 BBRefs[I]->insertInto(F); 4068 FunctionBBs[I] = BBRefs[I]; 4069 } else { 4070 FunctionBBs[I] = BasicBlock::Create(Context, "", F); 4071 } 4072 4073 // Erase from the table. 4074 BasicBlockFwdRefs.erase(BBFRI); 4075 } 4076 4077 CurBB = FunctionBBs[0]; 4078 continue; 4079 } 4080 4081 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 4082 // This record indicates that the last instruction is at the same 4083 // location as the previous instruction with a location. 4084 I = getLastInstruction(); 4085 4086 if (!I) 4087 return error("Invalid record"); 4088 I->setDebugLoc(LastLoc); 4089 I = nullptr; 4090 continue; 4091 4092 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 4093 I = getLastInstruction(); 4094 if (!I || Record.size() < 4) 4095 return error("Invalid record"); 4096 4097 unsigned Line = Record[0], Col = Record[1]; 4098 unsigned ScopeID = Record[2], IAID = Record[3]; 4099 4100 MDNode *Scope = nullptr, *IA = nullptr; 4101 if (ScopeID) { 4102 Scope = MetadataList.getMDNodeFwdRefOrNull(ScopeID - 1); 4103 if (!Scope) 4104 return error("Invalid record"); 4105 } 4106 if (IAID) { 4107 IA = MetadataList.getMDNodeFwdRefOrNull(IAID - 1); 4108 if (!IA) 4109 return error("Invalid record"); 4110 } 4111 LastLoc = DebugLoc::get(Line, Col, Scope, IA); 4112 I->setDebugLoc(LastLoc); 4113 I = nullptr; 4114 continue; 4115 } 4116 4117 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 4118 unsigned OpNum = 0; 4119 Value *LHS, *RHS; 4120 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 4121 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 4122 OpNum+1 > Record.size()) 4123 return error("Invalid record"); 4124 4125 int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 4126 if (Opc == -1) 4127 return error("Invalid record"); 4128 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 4129 InstructionList.push_back(I); 4130 if (OpNum < Record.size()) { 4131 if (Opc == Instruction::Add || 4132 Opc == Instruction::Sub || 4133 Opc == Instruction::Mul || 4134 Opc == Instruction::Shl) { 4135 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 4136 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 4137 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 4138 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 4139 } else if (Opc == Instruction::SDiv || 4140 Opc == Instruction::UDiv || 4141 Opc == Instruction::LShr || 4142 Opc == Instruction::AShr) { 4143 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 4144 cast<BinaryOperator>(I)->setIsExact(true); 4145 } else if (isa<FPMathOperator>(I)) { 4146 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 4147 if (FMF.any()) 4148 I->setFastMathFlags(FMF); 4149 } 4150 4151 } 4152 break; 4153 } 4154 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 4155 unsigned OpNum = 0; 4156 Value *Op; 4157 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4158 OpNum+2 != Record.size()) 4159 return error("Invalid record"); 4160 4161 Type *ResTy = getTypeByID(Record[OpNum]); 4162 int Opc = getDecodedCastOpcode(Record[OpNum + 1]); 4163 if (Opc == -1 || !ResTy) 4164 return error("Invalid record"); 4165 Instruction *Temp = nullptr; 4166 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) { 4167 if (Temp) { 4168 InstructionList.push_back(Temp); 4169 CurBB->getInstList().push_back(Temp); 4170 } 4171 } else { 4172 auto CastOp = (Instruction::CastOps)Opc; 4173 if (!CastInst::castIsValid(CastOp, Op, ResTy)) 4174 return error("Invalid cast"); 4175 I = CastInst::Create(CastOp, Op, ResTy); 4176 } 4177 InstructionList.push_back(I); 4178 break; 4179 } 4180 case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD: 4181 case bitc::FUNC_CODE_INST_GEP_OLD: 4182 case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands] 4183 unsigned OpNum = 0; 4184 4185 Type *Ty; 4186 bool InBounds; 4187 4188 if (BitCode == bitc::FUNC_CODE_INST_GEP) { 4189 InBounds = Record[OpNum++]; 4190 Ty = getTypeByID(Record[OpNum++]); 4191 } else { 4192 InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD; 4193 Ty = nullptr; 4194 } 4195 4196 Value *BasePtr; 4197 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr)) 4198 return error("Invalid record"); 4199 4200 if (!Ty) 4201 Ty = cast<SequentialType>(BasePtr->getType()->getScalarType()) 4202 ->getElementType(); 4203 else if (Ty != 4204 cast<SequentialType>(BasePtr->getType()->getScalarType()) 4205 ->getElementType()) 4206 return error( 4207 "Explicit gep type does not match pointee type of pointer operand"); 4208 4209 SmallVector<Value*, 16> GEPIdx; 4210 while (OpNum != Record.size()) { 4211 Value *Op; 4212 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4213 return error("Invalid record"); 4214 GEPIdx.push_back(Op); 4215 } 4216 4217 I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx); 4218 4219 InstructionList.push_back(I); 4220 if (InBounds) 4221 cast<GetElementPtrInst>(I)->setIsInBounds(true); 4222 break; 4223 } 4224 4225 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 4226 // EXTRACTVAL: [opty, opval, n x indices] 4227 unsigned OpNum = 0; 4228 Value *Agg; 4229 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 4230 return error("Invalid record"); 4231 4232 unsigned RecSize = Record.size(); 4233 if (OpNum == RecSize) 4234 return error("EXTRACTVAL: Invalid instruction with 0 indices"); 4235 4236 SmallVector<unsigned, 4> EXTRACTVALIdx; 4237 Type *CurTy = Agg->getType(); 4238 for (; OpNum != RecSize; ++OpNum) { 4239 bool IsArray = CurTy->isArrayTy(); 4240 bool IsStruct = CurTy->isStructTy(); 4241 uint64_t Index = Record[OpNum]; 4242 4243 if (!IsStruct && !IsArray) 4244 return error("EXTRACTVAL: Invalid type"); 4245 if ((unsigned)Index != Index) 4246 return error("Invalid value"); 4247 if (IsStruct && Index >= CurTy->subtypes().size()) 4248 return error("EXTRACTVAL: Invalid struct index"); 4249 if (IsArray && Index >= CurTy->getArrayNumElements()) 4250 return error("EXTRACTVAL: Invalid array index"); 4251 EXTRACTVALIdx.push_back((unsigned)Index); 4252 4253 if (IsStruct) 4254 CurTy = CurTy->subtypes()[Index]; 4255 else 4256 CurTy = CurTy->subtypes()[0]; 4257 } 4258 4259 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 4260 InstructionList.push_back(I); 4261 break; 4262 } 4263 4264 case bitc::FUNC_CODE_INST_INSERTVAL: { 4265 // INSERTVAL: [opty, opval, opty, opval, n x indices] 4266 unsigned OpNum = 0; 4267 Value *Agg; 4268 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 4269 return error("Invalid record"); 4270 Value *Val; 4271 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 4272 return error("Invalid record"); 4273 4274 unsigned RecSize = Record.size(); 4275 if (OpNum == RecSize) 4276 return error("INSERTVAL: Invalid instruction with 0 indices"); 4277 4278 SmallVector<unsigned, 4> INSERTVALIdx; 4279 Type *CurTy = Agg->getType(); 4280 for (; OpNum != RecSize; ++OpNum) { 4281 bool IsArray = CurTy->isArrayTy(); 4282 bool IsStruct = CurTy->isStructTy(); 4283 uint64_t Index = Record[OpNum]; 4284 4285 if (!IsStruct && !IsArray) 4286 return error("INSERTVAL: Invalid type"); 4287 if ((unsigned)Index != Index) 4288 return error("Invalid value"); 4289 if (IsStruct && Index >= CurTy->subtypes().size()) 4290 return error("INSERTVAL: Invalid struct index"); 4291 if (IsArray && Index >= CurTy->getArrayNumElements()) 4292 return error("INSERTVAL: Invalid array index"); 4293 4294 INSERTVALIdx.push_back((unsigned)Index); 4295 if (IsStruct) 4296 CurTy = CurTy->subtypes()[Index]; 4297 else 4298 CurTy = CurTy->subtypes()[0]; 4299 } 4300 4301 if (CurTy != Val->getType()) 4302 return error("Inserted value type doesn't match aggregate type"); 4303 4304 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 4305 InstructionList.push_back(I); 4306 break; 4307 } 4308 4309 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 4310 // obsolete form of select 4311 // handles select i1 ... in old bitcode 4312 unsigned OpNum = 0; 4313 Value *TrueVal, *FalseVal, *Cond; 4314 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 4315 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 4316 popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond)) 4317 return error("Invalid record"); 4318 4319 I = SelectInst::Create(Cond, TrueVal, FalseVal); 4320 InstructionList.push_back(I); 4321 break; 4322 } 4323 4324 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 4325 // new form of select 4326 // handles select i1 or select [N x i1] 4327 unsigned OpNum = 0; 4328 Value *TrueVal, *FalseVal, *Cond; 4329 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 4330 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 4331 getValueTypePair(Record, OpNum, NextValueNo, Cond)) 4332 return error("Invalid record"); 4333 4334 // select condition can be either i1 or [N x i1] 4335 if (VectorType* vector_type = 4336 dyn_cast<VectorType>(Cond->getType())) { 4337 // expect <n x i1> 4338 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 4339 return error("Invalid type for value"); 4340 } else { 4341 // expect i1 4342 if (Cond->getType() != Type::getInt1Ty(Context)) 4343 return error("Invalid type for value"); 4344 } 4345 4346 I = SelectInst::Create(Cond, TrueVal, FalseVal); 4347 InstructionList.push_back(I); 4348 break; 4349 } 4350 4351 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 4352 unsigned OpNum = 0; 4353 Value *Vec, *Idx; 4354 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 4355 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 4356 return error("Invalid record"); 4357 if (!Vec->getType()->isVectorTy()) 4358 return error("Invalid type for value"); 4359 I = ExtractElementInst::Create(Vec, Idx); 4360 InstructionList.push_back(I); 4361 break; 4362 } 4363 4364 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 4365 unsigned OpNum = 0; 4366 Value *Vec, *Elt, *Idx; 4367 if (getValueTypePair(Record, OpNum, NextValueNo, Vec)) 4368 return error("Invalid record"); 4369 if (!Vec->getType()->isVectorTy()) 4370 return error("Invalid type for value"); 4371 if (popValue(Record, OpNum, NextValueNo, 4372 cast<VectorType>(Vec->getType())->getElementType(), Elt) || 4373 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 4374 return error("Invalid record"); 4375 I = InsertElementInst::Create(Vec, Elt, Idx); 4376 InstructionList.push_back(I); 4377 break; 4378 } 4379 4380 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 4381 unsigned OpNum = 0; 4382 Value *Vec1, *Vec2, *Mask; 4383 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) || 4384 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2)) 4385 return error("Invalid record"); 4386 4387 if (getValueTypePair(Record, OpNum, NextValueNo, Mask)) 4388 return error("Invalid record"); 4389 if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy()) 4390 return error("Invalid type for value"); 4391 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 4392 InstructionList.push_back(I); 4393 break; 4394 } 4395 4396 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 4397 // Old form of ICmp/FCmp returning bool 4398 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 4399 // both legal on vectors but had different behaviour. 4400 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 4401 // FCmp/ICmp returning bool or vector of bool 4402 4403 unsigned OpNum = 0; 4404 Value *LHS, *RHS; 4405 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 4406 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS)) 4407 return error("Invalid record"); 4408 4409 unsigned PredVal = Record[OpNum]; 4410 bool IsFP = LHS->getType()->isFPOrFPVectorTy(); 4411 FastMathFlags FMF; 4412 if (IsFP && Record.size() > OpNum+1) 4413 FMF = getDecodedFastMathFlags(Record[++OpNum]); 4414 4415 if (OpNum+1 != Record.size()) 4416 return error("Invalid record"); 4417 4418 if (LHS->getType()->isFPOrFPVectorTy()) 4419 I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS); 4420 else 4421 I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS); 4422 4423 if (FMF.any()) 4424 I->setFastMathFlags(FMF); 4425 InstructionList.push_back(I); 4426 break; 4427 } 4428 4429 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 4430 { 4431 unsigned Size = Record.size(); 4432 if (Size == 0) { 4433 I = ReturnInst::Create(Context); 4434 InstructionList.push_back(I); 4435 break; 4436 } 4437 4438 unsigned OpNum = 0; 4439 Value *Op = nullptr; 4440 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4441 return error("Invalid record"); 4442 if (OpNum != Record.size()) 4443 return error("Invalid record"); 4444 4445 I = ReturnInst::Create(Context, Op); 4446 InstructionList.push_back(I); 4447 break; 4448 } 4449 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 4450 if (Record.size() != 1 && Record.size() != 3) 4451 return error("Invalid record"); 4452 BasicBlock *TrueDest = getBasicBlock(Record[0]); 4453 if (!TrueDest) 4454 return error("Invalid record"); 4455 4456 if (Record.size() == 1) { 4457 I = BranchInst::Create(TrueDest); 4458 InstructionList.push_back(I); 4459 } 4460 else { 4461 BasicBlock *FalseDest = getBasicBlock(Record[1]); 4462 Value *Cond = getValue(Record, 2, NextValueNo, 4463 Type::getInt1Ty(Context)); 4464 if (!FalseDest || !Cond) 4465 return error("Invalid record"); 4466 I = BranchInst::Create(TrueDest, FalseDest, Cond); 4467 InstructionList.push_back(I); 4468 } 4469 break; 4470 } 4471 case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#] 4472 if (Record.size() != 1 && Record.size() != 2) 4473 return error("Invalid record"); 4474 unsigned Idx = 0; 4475 Value *CleanupPad = 4476 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4477 if (!CleanupPad) 4478 return error("Invalid record"); 4479 BasicBlock *UnwindDest = nullptr; 4480 if (Record.size() == 2) { 4481 UnwindDest = getBasicBlock(Record[Idx++]); 4482 if (!UnwindDest) 4483 return error("Invalid record"); 4484 } 4485 4486 I = CleanupReturnInst::Create(CleanupPad, UnwindDest); 4487 InstructionList.push_back(I); 4488 break; 4489 } 4490 case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#] 4491 if (Record.size() != 2) 4492 return error("Invalid record"); 4493 unsigned Idx = 0; 4494 Value *CatchPad = 4495 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4496 if (!CatchPad) 4497 return error("Invalid record"); 4498 BasicBlock *BB = getBasicBlock(Record[Idx++]); 4499 if (!BB) 4500 return error("Invalid record"); 4501 4502 I = CatchReturnInst::Create(CatchPad, BB); 4503 InstructionList.push_back(I); 4504 break; 4505 } 4506 case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?] 4507 // We must have, at minimum, the outer scope and the number of arguments. 4508 if (Record.size() < 2) 4509 return error("Invalid record"); 4510 4511 unsigned Idx = 0; 4512 4513 Value *ParentPad = 4514 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4515 4516 unsigned NumHandlers = Record[Idx++]; 4517 4518 SmallVector<BasicBlock *, 2> Handlers; 4519 for (unsigned Op = 0; Op != NumHandlers; ++Op) { 4520 BasicBlock *BB = getBasicBlock(Record[Idx++]); 4521 if (!BB) 4522 return error("Invalid record"); 4523 Handlers.push_back(BB); 4524 } 4525 4526 BasicBlock *UnwindDest = nullptr; 4527 if (Idx + 1 == Record.size()) { 4528 UnwindDest = getBasicBlock(Record[Idx++]); 4529 if (!UnwindDest) 4530 return error("Invalid record"); 4531 } 4532 4533 if (Record.size() != Idx) 4534 return error("Invalid record"); 4535 4536 auto *CatchSwitch = 4537 CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers); 4538 for (BasicBlock *Handler : Handlers) 4539 CatchSwitch->addHandler(Handler); 4540 I = CatchSwitch; 4541 InstructionList.push_back(I); 4542 break; 4543 } 4544 case bitc::FUNC_CODE_INST_CATCHPAD: 4545 case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*] 4546 // We must have, at minimum, the outer scope and the number of arguments. 4547 if (Record.size() < 2) 4548 return error("Invalid record"); 4549 4550 unsigned Idx = 0; 4551 4552 Value *ParentPad = 4553 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4554 4555 unsigned NumArgOperands = Record[Idx++]; 4556 4557 SmallVector<Value *, 2> Args; 4558 for (unsigned Op = 0; Op != NumArgOperands; ++Op) { 4559 Value *Val; 4560 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 4561 return error("Invalid record"); 4562 Args.push_back(Val); 4563 } 4564 4565 if (Record.size() != Idx) 4566 return error("Invalid record"); 4567 4568 if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD) 4569 I = CleanupPadInst::Create(ParentPad, Args); 4570 else 4571 I = CatchPadInst::Create(ParentPad, Args); 4572 InstructionList.push_back(I); 4573 break; 4574 } 4575 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 4576 // Check magic 4577 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { 4578 // "New" SwitchInst format with case ranges. The changes to write this 4579 // format were reverted but we still recognize bitcode that uses it. 4580 // Hopefully someday we will have support for case ranges and can use 4581 // this format again. 4582 4583 Type *OpTy = getTypeByID(Record[1]); 4584 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); 4585 4586 Value *Cond = getValue(Record, 2, NextValueNo, OpTy); 4587 BasicBlock *Default = getBasicBlock(Record[3]); 4588 if (!OpTy || !Cond || !Default) 4589 return error("Invalid record"); 4590 4591 unsigned NumCases = Record[4]; 4592 4593 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 4594 InstructionList.push_back(SI); 4595 4596 unsigned CurIdx = 5; 4597 for (unsigned i = 0; i != NumCases; ++i) { 4598 SmallVector<ConstantInt*, 1> CaseVals; 4599 unsigned NumItems = Record[CurIdx++]; 4600 for (unsigned ci = 0; ci != NumItems; ++ci) { 4601 bool isSingleNumber = Record[CurIdx++]; 4602 4603 APInt Low; 4604 unsigned ActiveWords = 1; 4605 if (ValueBitWidth > 64) 4606 ActiveWords = Record[CurIdx++]; 4607 Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 4608 ValueBitWidth); 4609 CurIdx += ActiveWords; 4610 4611 if (!isSingleNumber) { 4612 ActiveWords = 1; 4613 if (ValueBitWidth > 64) 4614 ActiveWords = Record[CurIdx++]; 4615 APInt High = readWideAPInt( 4616 makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth); 4617 CurIdx += ActiveWords; 4618 4619 // FIXME: It is not clear whether values in the range should be 4620 // compared as signed or unsigned values. The partially 4621 // implemented changes that used this format in the past used 4622 // unsigned comparisons. 4623 for ( ; Low.ule(High); ++Low) 4624 CaseVals.push_back(ConstantInt::get(Context, Low)); 4625 } else 4626 CaseVals.push_back(ConstantInt::get(Context, Low)); 4627 } 4628 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); 4629 for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(), 4630 cve = CaseVals.end(); cvi != cve; ++cvi) 4631 SI->addCase(*cvi, DestBB); 4632 } 4633 I = SI; 4634 break; 4635 } 4636 4637 // Old SwitchInst format without case ranges. 4638 4639 if (Record.size() < 3 || (Record.size() & 1) == 0) 4640 return error("Invalid record"); 4641 Type *OpTy = getTypeByID(Record[0]); 4642 Value *Cond = getValue(Record, 1, NextValueNo, OpTy); 4643 BasicBlock *Default = getBasicBlock(Record[2]); 4644 if (!OpTy || !Cond || !Default) 4645 return error("Invalid record"); 4646 unsigned NumCases = (Record.size()-3)/2; 4647 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 4648 InstructionList.push_back(SI); 4649 for (unsigned i = 0, e = NumCases; i != e; ++i) { 4650 ConstantInt *CaseVal = 4651 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy)); 4652 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 4653 if (!CaseVal || !DestBB) { 4654 delete SI; 4655 return error("Invalid record"); 4656 } 4657 SI->addCase(CaseVal, DestBB); 4658 } 4659 I = SI; 4660 break; 4661 } 4662 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 4663 if (Record.size() < 2) 4664 return error("Invalid record"); 4665 Type *OpTy = getTypeByID(Record[0]); 4666 Value *Address = getValue(Record, 1, NextValueNo, OpTy); 4667 if (!OpTy || !Address) 4668 return error("Invalid record"); 4669 unsigned NumDests = Record.size()-2; 4670 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 4671 InstructionList.push_back(IBI); 4672 for (unsigned i = 0, e = NumDests; i != e; ++i) { 4673 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 4674 IBI->addDestination(DestBB); 4675 } else { 4676 delete IBI; 4677 return error("Invalid record"); 4678 } 4679 } 4680 I = IBI; 4681 break; 4682 } 4683 4684 case bitc::FUNC_CODE_INST_INVOKE: { 4685 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 4686 if (Record.size() < 4) 4687 return error("Invalid record"); 4688 unsigned OpNum = 0; 4689 AttributeSet PAL = getAttributes(Record[OpNum++]); 4690 unsigned CCInfo = Record[OpNum++]; 4691 BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]); 4692 BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]); 4693 4694 FunctionType *FTy = nullptr; 4695 if (CCInfo >> 13 & 1 && 4696 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])))) 4697 return error("Explicit invoke type is not a function type"); 4698 4699 Value *Callee; 4700 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 4701 return error("Invalid record"); 4702 4703 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 4704 if (!CalleeTy) 4705 return error("Callee is not a pointer"); 4706 if (!FTy) { 4707 FTy = dyn_cast<FunctionType>(CalleeTy->getElementType()); 4708 if (!FTy) 4709 return error("Callee is not of pointer to function type"); 4710 } else if (CalleeTy->getElementType() != FTy) 4711 return error("Explicit invoke type does not match pointee type of " 4712 "callee operand"); 4713 if (Record.size() < FTy->getNumParams() + OpNum) 4714 return error("Insufficient operands to call"); 4715 4716 SmallVector<Value*, 16> Ops; 4717 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 4718 Ops.push_back(getValue(Record, OpNum, NextValueNo, 4719 FTy->getParamType(i))); 4720 if (!Ops.back()) 4721 return error("Invalid record"); 4722 } 4723 4724 if (!FTy->isVarArg()) { 4725 if (Record.size() != OpNum) 4726 return error("Invalid record"); 4727 } else { 4728 // Read type/value pairs for varargs params. 4729 while (OpNum != Record.size()) { 4730 Value *Op; 4731 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4732 return error("Invalid record"); 4733 Ops.push_back(Op); 4734 } 4735 } 4736 4737 I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops, OperandBundles); 4738 OperandBundles.clear(); 4739 InstructionList.push_back(I); 4740 cast<InvokeInst>(I)->setCallingConv( 4741 static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo)); 4742 cast<InvokeInst>(I)->setAttributes(PAL); 4743 break; 4744 } 4745 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 4746 unsigned Idx = 0; 4747 Value *Val = nullptr; 4748 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 4749 return error("Invalid record"); 4750 I = ResumeInst::Create(Val); 4751 InstructionList.push_back(I); 4752 break; 4753 } 4754 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 4755 I = new UnreachableInst(Context); 4756 InstructionList.push_back(I); 4757 break; 4758 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 4759 if (Record.size() < 1 || ((Record.size()-1)&1)) 4760 return error("Invalid record"); 4761 Type *Ty = getTypeByID(Record[0]); 4762 if (!Ty) 4763 return error("Invalid record"); 4764 4765 PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2); 4766 InstructionList.push_back(PN); 4767 4768 for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) { 4769 Value *V; 4770 // With the new function encoding, it is possible that operands have 4771 // negative IDs (for forward references). Use a signed VBR 4772 // representation to keep the encoding small. 4773 if (UseRelativeIDs) 4774 V = getValueSigned(Record, 1+i, NextValueNo, Ty); 4775 else 4776 V = getValue(Record, 1+i, NextValueNo, Ty); 4777 BasicBlock *BB = getBasicBlock(Record[2+i]); 4778 if (!V || !BB) 4779 return error("Invalid record"); 4780 PN->addIncoming(V, BB); 4781 } 4782 I = PN; 4783 break; 4784 } 4785 4786 case bitc::FUNC_CODE_INST_LANDINGPAD: 4787 case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: { 4788 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 4789 unsigned Idx = 0; 4790 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) { 4791 if (Record.size() < 3) 4792 return error("Invalid record"); 4793 } else { 4794 assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD); 4795 if (Record.size() < 4) 4796 return error("Invalid record"); 4797 } 4798 Type *Ty = getTypeByID(Record[Idx++]); 4799 if (!Ty) 4800 return error("Invalid record"); 4801 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) { 4802 Value *PersFn = nullptr; 4803 if (getValueTypePair(Record, Idx, NextValueNo, PersFn)) 4804 return error("Invalid record"); 4805 4806 if (!F->hasPersonalityFn()) 4807 F->setPersonalityFn(cast<Constant>(PersFn)); 4808 else if (F->getPersonalityFn() != cast<Constant>(PersFn)) 4809 return error("Personality function mismatch"); 4810 } 4811 4812 bool IsCleanup = !!Record[Idx++]; 4813 unsigned NumClauses = Record[Idx++]; 4814 LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses); 4815 LP->setCleanup(IsCleanup); 4816 for (unsigned J = 0; J != NumClauses; ++J) { 4817 LandingPadInst::ClauseType CT = 4818 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 4819 Value *Val; 4820 4821 if (getValueTypePair(Record, Idx, NextValueNo, Val)) { 4822 delete LP; 4823 return error("Invalid record"); 4824 } 4825 4826 assert((CT != LandingPadInst::Catch || 4827 !isa<ArrayType>(Val->getType())) && 4828 "Catch clause has a invalid type!"); 4829 assert((CT != LandingPadInst::Filter || 4830 isa<ArrayType>(Val->getType())) && 4831 "Filter clause has invalid type!"); 4832 LP->addClause(cast<Constant>(Val)); 4833 } 4834 4835 I = LP; 4836 InstructionList.push_back(I); 4837 break; 4838 } 4839 4840 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 4841 if (Record.size() != 4) 4842 return error("Invalid record"); 4843 uint64_t AlignRecord = Record[3]; 4844 const uint64_t InAllocaMask = uint64_t(1) << 5; 4845 const uint64_t ExplicitTypeMask = uint64_t(1) << 6; 4846 // Reserve bit 7 for SwiftError flag. 4847 // const uint64_t SwiftErrorMask = uint64_t(1) << 7; 4848 const uint64_t FlagMask = InAllocaMask | ExplicitTypeMask; 4849 bool InAlloca = AlignRecord & InAllocaMask; 4850 Type *Ty = getTypeByID(Record[0]); 4851 if ((AlignRecord & ExplicitTypeMask) == 0) { 4852 auto *PTy = dyn_cast_or_null<PointerType>(Ty); 4853 if (!PTy) 4854 return error("Old-style alloca with a non-pointer type"); 4855 Ty = PTy->getElementType(); 4856 } 4857 Type *OpTy = getTypeByID(Record[1]); 4858 Value *Size = getFnValueByID(Record[2], OpTy); 4859 unsigned Align; 4860 if (std::error_code EC = 4861 parseAlignmentValue(AlignRecord & ~FlagMask, Align)) { 4862 return EC; 4863 } 4864 if (!Ty || !Size) 4865 return error("Invalid record"); 4866 AllocaInst *AI = new AllocaInst(Ty, Size, Align); 4867 AI->setUsedWithInAlloca(InAlloca); 4868 I = AI; 4869 InstructionList.push_back(I); 4870 break; 4871 } 4872 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 4873 unsigned OpNum = 0; 4874 Value *Op; 4875 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4876 (OpNum + 2 != Record.size() && OpNum + 3 != Record.size())) 4877 return error("Invalid record"); 4878 4879 Type *Ty = nullptr; 4880 if (OpNum + 3 == Record.size()) 4881 Ty = getTypeByID(Record[OpNum++]); 4882 if (std::error_code EC = typeCheckLoadStoreInst(Ty, Op->getType())) 4883 return EC; 4884 if (!Ty) 4885 Ty = cast<PointerType>(Op->getType())->getElementType(); 4886 4887 unsigned Align; 4888 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 4889 return EC; 4890 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], Align); 4891 4892 InstructionList.push_back(I); 4893 break; 4894 } 4895 case bitc::FUNC_CODE_INST_LOADATOMIC: { 4896 // LOADATOMIC: [opty, op, align, vol, ordering, synchscope] 4897 unsigned OpNum = 0; 4898 Value *Op; 4899 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4900 (OpNum + 4 != Record.size() && OpNum + 5 != Record.size())) 4901 return error("Invalid record"); 4902 4903 Type *Ty = nullptr; 4904 if (OpNum + 5 == Record.size()) 4905 Ty = getTypeByID(Record[OpNum++]); 4906 if (std::error_code EC = typeCheckLoadStoreInst(Ty, Op->getType())) 4907 return EC; 4908 if (!Ty) 4909 Ty = cast<PointerType>(Op->getType())->getElementType(); 4910 4911 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4912 if (Ordering == NotAtomic || Ordering == Release || 4913 Ordering == AcquireRelease) 4914 return error("Invalid record"); 4915 if (Ordering != NotAtomic && Record[OpNum] == 0) 4916 return error("Invalid record"); 4917 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]); 4918 4919 unsigned Align; 4920 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 4921 return EC; 4922 I = new LoadInst(Op, "", Record[OpNum+1], Align, Ordering, SynchScope); 4923 4924 InstructionList.push_back(I); 4925 break; 4926 } 4927 case bitc::FUNC_CODE_INST_STORE: 4928 case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol] 4929 unsigned OpNum = 0; 4930 Value *Val, *Ptr; 4931 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4932 (BitCode == bitc::FUNC_CODE_INST_STORE 4933 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 4934 : popValue(Record, OpNum, NextValueNo, 4935 cast<PointerType>(Ptr->getType())->getElementType(), 4936 Val)) || 4937 OpNum + 2 != Record.size()) 4938 return error("Invalid record"); 4939 4940 if (std::error_code EC = 4941 typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 4942 return EC; 4943 unsigned Align; 4944 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 4945 return EC; 4946 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align); 4947 InstructionList.push_back(I); 4948 break; 4949 } 4950 case bitc::FUNC_CODE_INST_STOREATOMIC: 4951 case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: { 4952 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, synchscope] 4953 unsigned OpNum = 0; 4954 Value *Val, *Ptr; 4955 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4956 (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC 4957 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 4958 : popValue(Record, OpNum, NextValueNo, 4959 cast<PointerType>(Ptr->getType())->getElementType(), 4960 Val)) || 4961 OpNum + 4 != Record.size()) 4962 return error("Invalid record"); 4963 4964 if (std::error_code EC = 4965 typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 4966 return EC; 4967 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4968 if (Ordering == NotAtomic || Ordering == Acquire || 4969 Ordering == AcquireRelease) 4970 return error("Invalid record"); 4971 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]); 4972 if (Ordering != NotAtomic && Record[OpNum] == 0) 4973 return error("Invalid record"); 4974 4975 unsigned Align; 4976 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 4977 return EC; 4978 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align, Ordering, SynchScope); 4979 InstructionList.push_back(I); 4980 break; 4981 } 4982 case bitc::FUNC_CODE_INST_CMPXCHG_OLD: 4983 case bitc::FUNC_CODE_INST_CMPXCHG: { 4984 // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, synchscope, 4985 // failureordering?, isweak?] 4986 unsigned OpNum = 0; 4987 Value *Ptr, *Cmp, *New; 4988 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4989 (BitCode == bitc::FUNC_CODE_INST_CMPXCHG 4990 ? getValueTypePair(Record, OpNum, NextValueNo, Cmp) 4991 : popValue(Record, OpNum, NextValueNo, 4992 cast<PointerType>(Ptr->getType())->getElementType(), 4993 Cmp)) || 4994 popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) || 4995 Record.size() < OpNum + 3 || Record.size() > OpNum + 5) 4996 return error("Invalid record"); 4997 AtomicOrdering SuccessOrdering = getDecodedOrdering(Record[OpNum + 1]); 4998 if (SuccessOrdering == NotAtomic || SuccessOrdering == Unordered) 4999 return error("Invalid record"); 5000 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 2]); 5001 5002 if (std::error_code EC = 5003 typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType())) 5004 return EC; 5005 AtomicOrdering FailureOrdering; 5006 if (Record.size() < 7) 5007 FailureOrdering = 5008 AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering); 5009 else 5010 FailureOrdering = getDecodedOrdering(Record[OpNum + 3]); 5011 5012 I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering, 5013 SynchScope); 5014 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 5015 5016 if (Record.size() < 8) { 5017 // Before weak cmpxchgs existed, the instruction simply returned the 5018 // value loaded from memory, so bitcode files from that era will be 5019 // expecting the first component of a modern cmpxchg. 5020 CurBB->getInstList().push_back(I); 5021 I = ExtractValueInst::Create(I, 0); 5022 } else { 5023 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]); 5024 } 5025 5026 InstructionList.push_back(I); 5027 break; 5028 } 5029 case bitc::FUNC_CODE_INST_ATOMICRMW: { 5030 // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, synchscope] 5031 unsigned OpNum = 0; 5032 Value *Ptr, *Val; 5033 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 5034 popValue(Record, OpNum, NextValueNo, 5035 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 5036 OpNum+4 != Record.size()) 5037 return error("Invalid record"); 5038 AtomicRMWInst::BinOp Operation = getDecodedRMWOperation(Record[OpNum]); 5039 if (Operation < AtomicRMWInst::FIRST_BINOP || 5040 Operation > AtomicRMWInst::LAST_BINOP) 5041 return error("Invalid record"); 5042 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 5043 if (Ordering == NotAtomic || Ordering == Unordered) 5044 return error("Invalid record"); 5045 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]); 5046 I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SynchScope); 5047 cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]); 5048 InstructionList.push_back(I); 5049 break; 5050 } 5051 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, synchscope] 5052 if (2 != Record.size()) 5053 return error("Invalid record"); 5054 AtomicOrdering Ordering = getDecodedOrdering(Record[0]); 5055 if (Ordering == NotAtomic || Ordering == Unordered || 5056 Ordering == Monotonic) 5057 return error("Invalid record"); 5058 SynchronizationScope SynchScope = getDecodedSynchScope(Record[1]); 5059 I = new FenceInst(Context, Ordering, SynchScope); 5060 InstructionList.push_back(I); 5061 break; 5062 } 5063 case bitc::FUNC_CODE_INST_CALL: { 5064 // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...] 5065 if (Record.size() < 3) 5066 return error("Invalid record"); 5067 5068 unsigned OpNum = 0; 5069 AttributeSet PAL = getAttributes(Record[OpNum++]); 5070 unsigned CCInfo = Record[OpNum++]; 5071 5072 FastMathFlags FMF; 5073 if ((CCInfo >> bitc::CALL_FMF) & 1) { 5074 FMF = getDecodedFastMathFlags(Record[OpNum++]); 5075 if (!FMF.any()) 5076 return error("Fast math flags indicator set for call with no FMF"); 5077 } 5078 5079 FunctionType *FTy = nullptr; 5080 if (CCInfo >> bitc::CALL_EXPLICIT_TYPE & 1 && 5081 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])))) 5082 return error("Explicit call type is not a function type"); 5083 5084 Value *Callee; 5085 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 5086 return error("Invalid record"); 5087 5088 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 5089 if (!OpTy) 5090 return error("Callee is not a pointer type"); 5091 if (!FTy) { 5092 FTy = dyn_cast<FunctionType>(OpTy->getElementType()); 5093 if (!FTy) 5094 return error("Callee is not of pointer to function type"); 5095 } else if (OpTy->getElementType() != FTy) 5096 return error("Explicit call type does not match pointee type of " 5097 "callee operand"); 5098 if (Record.size() < FTy->getNumParams() + OpNum) 5099 return error("Insufficient operands to call"); 5100 5101 SmallVector<Value*, 16> Args; 5102 // Read the fixed params. 5103 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 5104 if (FTy->getParamType(i)->isLabelTy()) 5105 Args.push_back(getBasicBlock(Record[OpNum])); 5106 else 5107 Args.push_back(getValue(Record, OpNum, NextValueNo, 5108 FTy->getParamType(i))); 5109 if (!Args.back()) 5110 return error("Invalid record"); 5111 } 5112 5113 // Read type/value pairs for varargs params. 5114 if (!FTy->isVarArg()) { 5115 if (OpNum != Record.size()) 5116 return error("Invalid record"); 5117 } else { 5118 while (OpNum != Record.size()) { 5119 Value *Op; 5120 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 5121 return error("Invalid record"); 5122 Args.push_back(Op); 5123 } 5124 } 5125 5126 I = CallInst::Create(FTy, Callee, Args, OperandBundles); 5127 OperandBundles.clear(); 5128 InstructionList.push_back(I); 5129 cast<CallInst>(I)->setCallingConv( 5130 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 5131 CallInst::TailCallKind TCK = CallInst::TCK_None; 5132 if (CCInfo & 1 << bitc::CALL_TAIL) 5133 TCK = CallInst::TCK_Tail; 5134 if (CCInfo & (1 << bitc::CALL_MUSTTAIL)) 5135 TCK = CallInst::TCK_MustTail; 5136 if (CCInfo & (1 << bitc::CALL_NOTAIL)) 5137 TCK = CallInst::TCK_NoTail; 5138 cast<CallInst>(I)->setTailCallKind(TCK); 5139 cast<CallInst>(I)->setAttributes(PAL); 5140 if (FMF.any()) { 5141 if (!isa<FPMathOperator>(I)) 5142 return error("Fast-math-flags specified for call without " 5143 "floating-point scalar or vector return type"); 5144 I->setFastMathFlags(FMF); 5145 } 5146 break; 5147 } 5148 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 5149 if (Record.size() < 3) 5150 return error("Invalid record"); 5151 Type *OpTy = getTypeByID(Record[0]); 5152 Value *Op = getValue(Record, 1, NextValueNo, OpTy); 5153 Type *ResTy = getTypeByID(Record[2]); 5154 if (!OpTy || !Op || !ResTy) 5155 return error("Invalid record"); 5156 I = new VAArgInst(Op, ResTy); 5157 InstructionList.push_back(I); 5158 break; 5159 } 5160 5161 case bitc::FUNC_CODE_OPERAND_BUNDLE: { 5162 // A call or an invoke can be optionally prefixed with some variable 5163 // number of operand bundle blocks. These blocks are read into 5164 // OperandBundles and consumed at the next call or invoke instruction. 5165 5166 if (Record.size() < 1 || Record[0] >= BundleTags.size()) 5167 return error("Invalid record"); 5168 5169 std::vector<Value *> Inputs; 5170 5171 unsigned OpNum = 1; 5172 while (OpNum != Record.size()) { 5173 Value *Op; 5174 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 5175 return error("Invalid record"); 5176 Inputs.push_back(Op); 5177 } 5178 5179 OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs)); 5180 continue; 5181 } 5182 } 5183 5184 // Add instruction to end of current BB. If there is no current BB, reject 5185 // this file. 5186 if (!CurBB) { 5187 delete I; 5188 return error("Invalid instruction with no BB"); 5189 } 5190 if (!OperandBundles.empty()) { 5191 delete I; 5192 return error("Operand bundles found with no consumer"); 5193 } 5194 CurBB->getInstList().push_back(I); 5195 5196 // If this was a terminator instruction, move to the next block. 5197 if (isa<TerminatorInst>(I)) { 5198 ++CurBBNo; 5199 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr; 5200 } 5201 5202 // Non-void values get registered in the value table for future use. 5203 if (I && !I->getType()->isVoidTy()) 5204 ValueList.assignValue(I, NextValueNo++); 5205 } 5206 5207 OutOfRecordLoop: 5208 5209 if (!OperandBundles.empty()) 5210 return error("Operand bundles found with no consumer"); 5211 5212 // Check the function list for unresolved values. 5213 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 5214 if (!A->getParent()) { 5215 // We found at least one unresolved value. Nuke them all to avoid leaks. 5216 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 5217 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) { 5218 A->replaceAllUsesWith(UndefValue::get(A->getType())); 5219 delete A; 5220 } 5221 } 5222 return error("Never resolved value found in function"); 5223 } 5224 } 5225 5226 // FIXME: Check for unresolved forward-declared metadata references 5227 // and clean up leaks. 5228 5229 // Trim the value list down to the size it was before we parsed this function. 5230 ValueList.shrinkTo(ModuleValueListSize); 5231 MetadataList.shrinkTo(ModuleMetadataListSize); 5232 std::vector<BasicBlock*>().swap(FunctionBBs); 5233 return std::error_code(); 5234 } 5235 5236 /// Find the function body in the bitcode stream 5237 std::error_code BitcodeReader::findFunctionInStream( 5238 Function *F, 5239 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) { 5240 while (DeferredFunctionInfoIterator->second == 0) { 5241 // This is the fallback handling for the old format bitcode that 5242 // didn't contain the function index in the VST, or when we have 5243 // an anonymous function which would not have a VST entry. 5244 // Assert that we have one of those two cases. 5245 assert(VSTOffset == 0 || !F->hasName()); 5246 // Parse the next body in the stream and set its position in the 5247 // DeferredFunctionInfo map. 5248 if (std::error_code EC = rememberAndSkipFunctionBodies()) 5249 return EC; 5250 } 5251 return std::error_code(); 5252 } 5253 5254 //===----------------------------------------------------------------------===// 5255 // GVMaterializer implementation 5256 //===----------------------------------------------------------------------===// 5257 5258 void BitcodeReader::releaseBuffer() { Buffer.release(); } 5259 5260 std::error_code BitcodeReader::materialize(GlobalValue *GV) { 5261 if (std::error_code EC = materializeMetadata()) 5262 return EC; 5263 5264 Function *F = dyn_cast<Function>(GV); 5265 // If it's not a function or is already material, ignore the request. 5266 if (!F || !F->isMaterializable()) 5267 return std::error_code(); 5268 5269 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 5270 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 5271 // If its position is recorded as 0, its body is somewhere in the stream 5272 // but we haven't seen it yet. 5273 if (DFII->second == 0) 5274 if (std::error_code EC = findFunctionInStream(F, DFII)) 5275 return EC; 5276 5277 // Move the bit stream to the saved position of the deferred function body. 5278 Stream.JumpToBit(DFII->second); 5279 5280 if (std::error_code EC = parseFunctionBody(F)) 5281 return EC; 5282 F->setIsMaterializable(false); 5283 5284 if (StripDebugInfo) 5285 stripDebugInfo(*F); 5286 5287 // Upgrade any old intrinsic calls in the function. 5288 for (auto &I : UpgradedIntrinsics) { 5289 for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end(); 5290 UI != UE;) { 5291 User *U = *UI; 5292 ++UI; 5293 if (CallInst *CI = dyn_cast<CallInst>(U)) 5294 UpgradeIntrinsicCall(CI, I.second); 5295 } 5296 } 5297 5298 // Finish fn->subprogram upgrade for materialized functions. 5299 if (DISubprogram *SP = FunctionsWithSPs.lookup(F)) 5300 F->setSubprogram(SP); 5301 5302 // Bring in any functions that this function forward-referenced via 5303 // blockaddresses. 5304 return materializeForwardReferencedFunctions(); 5305 } 5306 5307 std::error_code BitcodeReader::materializeModule() { 5308 if (std::error_code EC = materializeMetadata()) 5309 return EC; 5310 5311 // Promise to materialize all forward references. 5312 WillMaterializeAllForwardRefs = true; 5313 5314 // Iterate over the module, deserializing any functions that are still on 5315 // disk. 5316 for (Function &F : *TheModule) { 5317 if (std::error_code EC = materialize(&F)) 5318 return EC; 5319 } 5320 // At this point, if there are any function bodies, parse the rest of 5321 // the bits in the module past the last function block we have recorded 5322 // through either lazy scanning or the VST. 5323 if (LastFunctionBlockBit || NextUnreadBit) 5324 parseModule(LastFunctionBlockBit > NextUnreadBit ? LastFunctionBlockBit 5325 : NextUnreadBit); 5326 5327 // Check that all block address forward references got resolved (as we 5328 // promised above). 5329 if (!BasicBlockFwdRefs.empty()) 5330 return error("Never resolved function from blockaddress"); 5331 5332 // Upgrading intrinsic calls before TBAA can cause TBAA metadata to be lost, 5333 // to prevent this instructions with TBAA tags should be upgraded first. 5334 for (unsigned I = 0, E = InstsWithTBAATag.size(); I < E; I++) 5335 UpgradeInstWithTBAATag(InstsWithTBAATag[I]); 5336 5337 // Upgrade any intrinsic calls that slipped through (should not happen!) and 5338 // delete the old functions to clean up. We can't do this unless the entire 5339 // module is materialized because there could always be another function body 5340 // with calls to the old function. 5341 for (auto &I : UpgradedIntrinsics) { 5342 for (auto *U : I.first->users()) { 5343 if (CallInst *CI = dyn_cast<CallInst>(U)) 5344 UpgradeIntrinsicCall(CI, I.second); 5345 } 5346 if (!I.first->use_empty()) 5347 I.first->replaceAllUsesWith(I.second); 5348 I.first->eraseFromParent(); 5349 } 5350 UpgradedIntrinsics.clear(); 5351 5352 UpgradeDebugInfo(*TheModule); 5353 return std::error_code(); 5354 } 5355 5356 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const { 5357 return IdentifiedStructTypes; 5358 } 5359 5360 std::error_code 5361 BitcodeReader::initStream(std::unique_ptr<DataStreamer> Streamer) { 5362 if (Streamer) 5363 return initLazyStream(std::move(Streamer)); 5364 return initStreamFromBuffer(); 5365 } 5366 5367 std::error_code BitcodeReader::initStreamFromBuffer() { 5368 const unsigned char *BufPtr = (const unsigned char*)Buffer->getBufferStart(); 5369 const unsigned char *BufEnd = BufPtr+Buffer->getBufferSize(); 5370 5371 if (Buffer->getBufferSize() & 3) 5372 return error("Invalid bitcode signature"); 5373 5374 // If we have a wrapper header, parse it and ignore the non-bc file contents. 5375 // The magic number is 0x0B17C0DE stored in little endian. 5376 if (isBitcodeWrapper(BufPtr, BufEnd)) 5377 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 5378 return error("Invalid bitcode wrapper header"); 5379 5380 StreamFile.reset(new BitstreamReader(BufPtr, BufEnd)); 5381 Stream.init(&*StreamFile); 5382 5383 return std::error_code(); 5384 } 5385 5386 std::error_code 5387 BitcodeReader::initLazyStream(std::unique_ptr<DataStreamer> Streamer) { 5388 // Check and strip off the bitcode wrapper; BitstreamReader expects never to 5389 // see it. 5390 auto OwnedBytes = 5391 llvm::make_unique<StreamingMemoryObject>(std::move(Streamer)); 5392 StreamingMemoryObject &Bytes = *OwnedBytes; 5393 StreamFile = llvm::make_unique<BitstreamReader>(std::move(OwnedBytes)); 5394 Stream.init(&*StreamFile); 5395 5396 unsigned char buf[16]; 5397 if (Bytes.readBytes(buf, 16, 0) != 16) 5398 return error("Invalid bitcode signature"); 5399 5400 if (!isBitcode(buf, buf + 16)) 5401 return error("Invalid bitcode signature"); 5402 5403 if (isBitcodeWrapper(buf, buf + 4)) { 5404 const unsigned char *bitcodeStart = buf; 5405 const unsigned char *bitcodeEnd = buf + 16; 5406 SkipBitcodeWrapperHeader(bitcodeStart, bitcodeEnd, false); 5407 Bytes.dropLeadingBytes(bitcodeStart - buf); 5408 Bytes.setKnownObjectSize(bitcodeEnd - bitcodeStart); 5409 } 5410 return std::error_code(); 5411 } 5412 5413 std::error_code ModuleSummaryIndexBitcodeReader::error(BitcodeError E, 5414 const Twine &Message) { 5415 return ::error(DiagnosticHandler, make_error_code(E), Message); 5416 } 5417 5418 std::error_code ModuleSummaryIndexBitcodeReader::error(const Twine &Message) { 5419 return ::error(DiagnosticHandler, 5420 make_error_code(BitcodeError::CorruptedBitcode), Message); 5421 } 5422 5423 std::error_code ModuleSummaryIndexBitcodeReader::error(BitcodeError E) { 5424 return ::error(DiagnosticHandler, make_error_code(E)); 5425 } 5426 5427 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader( 5428 MemoryBuffer *Buffer, DiagnosticHandlerFunction DiagnosticHandler, 5429 bool IsLazy, bool CheckGlobalValSummaryPresenceOnly) 5430 : DiagnosticHandler(DiagnosticHandler), Buffer(Buffer), IsLazy(IsLazy), 5431 CheckGlobalValSummaryPresenceOnly(CheckGlobalValSummaryPresenceOnly) {} 5432 5433 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader( 5434 DiagnosticHandlerFunction DiagnosticHandler, bool IsLazy, 5435 bool CheckGlobalValSummaryPresenceOnly) 5436 : DiagnosticHandler(DiagnosticHandler), Buffer(nullptr), IsLazy(IsLazy), 5437 CheckGlobalValSummaryPresenceOnly(CheckGlobalValSummaryPresenceOnly) {} 5438 5439 void ModuleSummaryIndexBitcodeReader::freeState() { Buffer = nullptr; } 5440 5441 void ModuleSummaryIndexBitcodeReader::releaseBuffer() { Buffer.release(); } 5442 5443 uint64_t ModuleSummaryIndexBitcodeReader::getGUIDFromValueId(unsigned ValueId) { 5444 auto VGI = ValueIdToCallGraphGUIDMap.find(ValueId); 5445 assert(VGI != ValueIdToCallGraphGUIDMap.end()); 5446 return VGI->second; 5447 } 5448 5449 GlobalValueInfo * 5450 ModuleSummaryIndexBitcodeReader::getInfoFromSummaryOffset(uint64_t Offset) { 5451 auto I = SummaryOffsetToInfoMap.find(Offset); 5452 assert(I != SummaryOffsetToInfoMap.end()); 5453 return I->second; 5454 } 5455 5456 // Specialized value symbol table parser used when reading module index 5457 // blocks where we don't actually create global values. 5458 // At the end of this routine the module index is populated with a map 5459 // from global value name to GlobalValueInfo. The global value info contains 5460 // the function block's bitcode offset (if applicable), or the offset into the 5461 // summary section for the combined index. 5462 std::error_code ModuleSummaryIndexBitcodeReader::parseValueSymbolTable( 5463 uint64_t Offset, 5464 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) { 5465 assert(Offset > 0 && "Expected non-zero VST offset"); 5466 uint64_t CurrentBit = jumpToValueSymbolTable(Offset, Stream); 5467 5468 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 5469 return error("Invalid record"); 5470 5471 SmallVector<uint64_t, 64> Record; 5472 5473 // Read all the records for this value table. 5474 SmallString<128> ValueName; 5475 while (1) { 5476 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5477 5478 switch (Entry.Kind) { 5479 case BitstreamEntry::SubBlock: // Handled for us already. 5480 case BitstreamEntry::Error: 5481 return error("Malformed block"); 5482 case BitstreamEntry::EndBlock: 5483 // Done parsing VST, jump back to wherever we came from. 5484 Stream.JumpToBit(CurrentBit); 5485 return std::error_code(); 5486 case BitstreamEntry::Record: 5487 // The interesting case. 5488 break; 5489 } 5490 5491 // Read a record. 5492 Record.clear(); 5493 switch (Stream.readRecord(Entry.ID, Record)) { 5494 default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records). 5495 break; 5496 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 5497 if (convertToString(Record, 1, ValueName)) 5498 return error("Invalid record"); 5499 unsigned ValueID = Record[0]; 5500 std::unique_ptr<GlobalValueInfo> GlobalValInfo = 5501 llvm::make_unique<GlobalValueInfo>(); 5502 assert(!SourceFileName.empty()); 5503 auto VLI = ValueIdToLinkageMap.find(ValueID); 5504 assert(VLI != ValueIdToLinkageMap.end() && 5505 "No linkage found for VST entry?"); 5506 std::string GlobalId = GlobalValue::getGlobalIdentifier( 5507 ValueName, VLI->second, SourceFileName); 5508 TheIndex->addGlobalValueInfo(GlobalId, std::move(GlobalValInfo)); 5509 ValueIdToCallGraphGUIDMap[ValueID] = GlobalValue::getGUID(GlobalId); 5510 ValueName.clear(); 5511 break; 5512 } 5513 case bitc::VST_CODE_FNENTRY: { 5514 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 5515 if (convertToString(Record, 2, ValueName)) 5516 return error("Invalid record"); 5517 unsigned ValueID = Record[0]; 5518 uint64_t FuncOffset = Record[1]; 5519 assert(!IsLazy && "Lazy summary read only supported for combined index"); 5520 std::unique_ptr<GlobalValueInfo> FuncInfo = 5521 llvm::make_unique<GlobalValueInfo>(FuncOffset); 5522 assert(!SourceFileName.empty()); 5523 auto VLI = ValueIdToLinkageMap.find(ValueID); 5524 assert(VLI != ValueIdToLinkageMap.end() && 5525 "No linkage found for VST entry?"); 5526 std::string FunctionGlobalId = GlobalValue::getGlobalIdentifier( 5527 ValueName, VLI->second, SourceFileName); 5528 TheIndex->addGlobalValueInfo(FunctionGlobalId, std::move(FuncInfo)); 5529 ValueIdToCallGraphGUIDMap[ValueID] = 5530 GlobalValue::getGUID(FunctionGlobalId); 5531 5532 ValueName.clear(); 5533 break; 5534 } 5535 case bitc::VST_CODE_COMBINED_GVDEFENTRY: { 5536 // VST_CODE_COMBINED_GVDEFENTRY: [valueid, offset, guid] 5537 unsigned ValueID = Record[0]; 5538 uint64_t GlobalValSummaryOffset = Record[1]; 5539 uint64_t GlobalValGUID = Record[2]; 5540 std::unique_ptr<GlobalValueInfo> GlobalValInfo = 5541 llvm::make_unique<GlobalValueInfo>(GlobalValSummaryOffset); 5542 SummaryOffsetToInfoMap[GlobalValSummaryOffset] = GlobalValInfo.get(); 5543 TheIndex->addGlobalValueInfo(GlobalValGUID, std::move(GlobalValInfo)); 5544 ValueIdToCallGraphGUIDMap[ValueID] = GlobalValGUID; 5545 break; 5546 } 5547 case bitc::VST_CODE_COMBINED_ENTRY: { 5548 // VST_CODE_COMBINED_ENTRY: [valueid, refguid] 5549 unsigned ValueID = Record[0]; 5550 uint64_t RefGUID = Record[1]; 5551 ValueIdToCallGraphGUIDMap[ValueID] = RefGUID; 5552 break; 5553 } 5554 } 5555 } 5556 } 5557 5558 // Parse just the blocks needed for building the index out of the module. 5559 // At the end of this routine the module Index is populated with a map 5560 // from global value name to GlobalValueInfo. The global value info contains 5561 // either the parsed summary information (when parsing summaries 5562 // eagerly), or just to the summary record's offset 5563 // if parsing lazily (IsLazy). 5564 std::error_code ModuleSummaryIndexBitcodeReader::parseModule() { 5565 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 5566 return error("Invalid record"); 5567 5568 SmallVector<uint64_t, 64> Record; 5569 DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap; 5570 unsigned ValueId = 0; 5571 5572 // Read the index for this module. 5573 while (1) { 5574 BitstreamEntry Entry = Stream.advance(); 5575 5576 switch (Entry.Kind) { 5577 case BitstreamEntry::Error: 5578 return error("Malformed block"); 5579 case BitstreamEntry::EndBlock: 5580 return std::error_code(); 5581 5582 case BitstreamEntry::SubBlock: 5583 if (CheckGlobalValSummaryPresenceOnly) { 5584 if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) { 5585 SeenGlobalValSummary = true; 5586 // No need to parse the rest since we found the summary. 5587 return std::error_code(); 5588 } 5589 if (Stream.SkipBlock()) 5590 return error("Invalid record"); 5591 continue; 5592 } 5593 switch (Entry.ID) { 5594 default: // Skip unknown content. 5595 if (Stream.SkipBlock()) 5596 return error("Invalid record"); 5597 break; 5598 case bitc::BLOCKINFO_BLOCK_ID: 5599 // Need to parse these to get abbrev ids (e.g. for VST) 5600 if (Stream.ReadBlockInfoBlock()) 5601 return error("Malformed block"); 5602 break; 5603 case bitc::VALUE_SYMTAB_BLOCK_ID: 5604 // Should have been parsed earlier via VSTOffset, unless there 5605 // is no summary section. 5606 assert(((SeenValueSymbolTable && VSTOffset > 0) || 5607 !SeenGlobalValSummary) && 5608 "Expected early VST parse via VSTOffset record"); 5609 if (Stream.SkipBlock()) 5610 return error("Invalid record"); 5611 break; 5612 case bitc::GLOBALVAL_SUMMARY_BLOCK_ID: 5613 assert(VSTOffset > 0 && "Expected non-zero VST offset"); 5614 assert(!SeenValueSymbolTable && 5615 "Already read VST when parsing summary block?"); 5616 if (std::error_code EC = 5617 parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap)) 5618 return EC; 5619 SeenValueSymbolTable = true; 5620 SeenGlobalValSummary = true; 5621 if (IsLazy) { 5622 // Lazy parsing of summary info, skip it. 5623 if (Stream.SkipBlock()) 5624 return error("Invalid record"); 5625 } else if (std::error_code EC = parseEntireSummary()) 5626 return EC; 5627 break; 5628 case bitc::MODULE_STRTAB_BLOCK_ID: 5629 if (std::error_code EC = parseModuleStringTable()) 5630 return EC; 5631 break; 5632 } 5633 continue; 5634 5635 case BitstreamEntry::Record: { 5636 Record.clear(); 5637 auto BitCode = Stream.readRecord(Entry.ID, Record); 5638 switch (BitCode) { 5639 default: 5640 break; // Default behavior, ignore unknown content. 5641 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 5642 case bitc::MODULE_CODE_SOURCE_FILENAME: { 5643 SmallString<128> ValueName; 5644 if (convertToString(Record, 0, ValueName)) 5645 return error("Invalid record"); 5646 SourceFileName = ValueName.c_str(); 5647 break; 5648 } 5649 /// MODULE_CODE_HASH: [5*i32] 5650 case bitc::MODULE_CODE_HASH: { 5651 if (Record.size() != 5) 5652 return error("Invalid hash length " + Twine(Record.size()).str()); 5653 if (!TheIndex) 5654 break; 5655 if (TheIndex->modulePaths().empty()) 5656 // Does not have any summary emitted. 5657 break; 5658 if (TheIndex->modulePaths().size() != 1) 5659 return error("Don't expect multiple modules defined?"); 5660 auto &Hash = TheIndex->modulePaths().begin()->second.second; 5661 int Pos = 0; 5662 for (auto &Val : Record) { 5663 assert(!(Val >> 32) && "Unexpected high bits set"); 5664 Hash[Pos++] = Val; 5665 } 5666 break; 5667 } 5668 /// MODULE_CODE_VSTOFFSET: [offset] 5669 case bitc::MODULE_CODE_VSTOFFSET: 5670 if (Record.size() < 1) 5671 return error("Invalid record"); 5672 VSTOffset = Record[0]; 5673 break; 5674 // GLOBALVAR: [pointer type, isconst, initid, 5675 // linkage, alignment, section, visibility, threadlocal, 5676 // unnamed_addr, externally_initialized, dllstorageclass, 5677 // comdat] 5678 case bitc::MODULE_CODE_GLOBALVAR: { 5679 if (Record.size() < 6) 5680 return error("Invalid record"); 5681 uint64_t RawLinkage = Record[3]; 5682 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 5683 ValueIdToLinkageMap[ValueId++] = Linkage; 5684 break; 5685 } 5686 // FUNCTION: [type, callingconv, isproto, linkage, paramattr, 5687 // alignment, section, visibility, gc, unnamed_addr, 5688 // prologuedata, dllstorageclass, comdat, prefixdata] 5689 case bitc::MODULE_CODE_FUNCTION: { 5690 if (Record.size() < 8) 5691 return error("Invalid record"); 5692 uint64_t RawLinkage = Record[3]; 5693 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 5694 ValueIdToLinkageMap[ValueId++] = Linkage; 5695 break; 5696 } 5697 // ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, 5698 // dllstorageclass] 5699 case bitc::MODULE_CODE_ALIAS: { 5700 if (Record.size() < 6) 5701 return error("Invalid record"); 5702 uint64_t RawLinkage = Record[3]; 5703 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 5704 ValueIdToLinkageMap[ValueId++] = Linkage; 5705 break; 5706 } 5707 } 5708 } 5709 continue; 5710 } 5711 } 5712 } 5713 5714 // Eagerly parse the entire summary block. This populates the GlobalValueSummary 5715 // objects in the index. 5716 std::error_code ModuleSummaryIndexBitcodeReader::parseEntireSummary() { 5717 if (Stream.EnterSubBlock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID)) 5718 return error("Invalid record"); 5719 5720 SmallVector<uint64_t, 64> Record; 5721 5722 bool Combined = false; 5723 while (1) { 5724 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5725 5726 switch (Entry.Kind) { 5727 case BitstreamEntry::SubBlock: // Handled for us already. 5728 case BitstreamEntry::Error: 5729 return error("Malformed block"); 5730 case BitstreamEntry::EndBlock: 5731 // For a per-module index, remove any entries that still have empty 5732 // summaries. The VST parsing creates entries eagerly for all symbols, 5733 // but not all have associated summaries (e.g. it doesn't know how to 5734 // distinguish between VST_CODE_ENTRY for function declarations vs global 5735 // variables with initializers that end up with a summary). Remove those 5736 // entries now so that we don't need to rely on the combined index merger 5737 // to clean them up (especially since that may not run for the first 5738 // module's index if we merge into that). 5739 if (!Combined) 5740 TheIndex->removeEmptySummaryEntries(); 5741 return std::error_code(); 5742 case BitstreamEntry::Record: 5743 // The interesting case. 5744 break; 5745 } 5746 5747 // Read a record. The record format depends on whether this 5748 // is a per-module index or a combined index file. In the per-module 5749 // case the records contain the associated value's ID for correlation 5750 // with VST entries. In the combined index the correlation is done 5751 // via the bitcode offset of the summary records (which were saved 5752 // in the combined index VST entries). The records also contain 5753 // information used for ThinLTO renaming and importing. 5754 Record.clear(); 5755 uint64_t CurRecordBit = Stream.GetCurrentBitNo(); 5756 auto BitCode = Stream.readRecord(Entry.ID, Record); 5757 switch (BitCode) { 5758 default: // Default behavior: ignore. 5759 break; 5760 // FS_PERMODULE: [valueid, linkage, instcount, numrefs, numrefs x valueid, 5761 // n x (valueid, callsitecount)] 5762 // FS_PERMODULE_PROFILE: [valueid, linkage, instcount, numrefs, 5763 // numrefs x valueid, 5764 // n x (valueid, callsitecount, profilecount)] 5765 case bitc::FS_PERMODULE: 5766 case bitc::FS_PERMODULE_PROFILE: { 5767 unsigned ValueID = Record[0]; 5768 uint64_t RawLinkage = Record[1]; 5769 unsigned InstCount = Record[2]; 5770 unsigned NumRefs = Record[3]; 5771 std::unique_ptr<FunctionSummary> FS = llvm::make_unique<FunctionSummary>( 5772 getDecodedLinkage(RawLinkage), InstCount); 5773 // The module path string ref set in the summary must be owned by the 5774 // index's module string table. Since we don't have a module path 5775 // string table section in the per-module index, we create a single 5776 // module path string table entry with an empty (0) ID to take 5777 // ownership. 5778 FS->setModulePath( 5779 TheIndex->addModulePath(Buffer->getBufferIdentifier(), 0)->first()); 5780 static int RefListStartIndex = 4; 5781 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 5782 assert(Record.size() >= RefListStartIndex + NumRefs && 5783 "Record size inconsistent with number of references"); 5784 for (unsigned I = 4, E = CallGraphEdgeStartIndex; I != E; ++I) { 5785 unsigned RefValueId = Record[I]; 5786 uint64_t RefGUID = getGUIDFromValueId(RefValueId); 5787 FS->addRefEdge(RefGUID); 5788 } 5789 bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE); 5790 for (unsigned I = CallGraphEdgeStartIndex, E = Record.size(); I != E; 5791 ++I) { 5792 unsigned CalleeValueId = Record[I]; 5793 unsigned CallsiteCount = Record[++I]; 5794 uint64_t ProfileCount = HasProfile ? Record[++I] : 0; 5795 uint64_t CalleeGUID = getGUIDFromValueId(CalleeValueId); 5796 FS->addCallGraphEdge(CalleeGUID, 5797 CalleeInfo(CallsiteCount, ProfileCount)); 5798 } 5799 uint64_t GUID = getGUIDFromValueId(ValueID); 5800 auto InfoList = TheIndex->findGlobalValueInfoList(GUID); 5801 assert(InfoList != TheIndex->end() && 5802 "Expected VST parse to create GlobalValueInfo entry"); 5803 assert(InfoList->second.size() == 1 && 5804 "Expected a single GlobalValueInfo per GUID in module"); 5805 auto &Info = InfoList->second[0]; 5806 assert(!Info->summary() && "Expected a single summary per VST entry"); 5807 Info->setSummary(std::move(FS)); 5808 break; 5809 } 5810 // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, linkage, n x valueid] 5811 case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: { 5812 unsigned ValueID = Record[0]; 5813 uint64_t RawLinkage = Record[1]; 5814 std::unique_ptr<GlobalVarSummary> FS = 5815 llvm::make_unique<GlobalVarSummary>(getDecodedLinkage(RawLinkage)); 5816 FS->setModulePath( 5817 TheIndex->addModulePath(Buffer->getBufferIdentifier(), 0)->first()); 5818 for (unsigned I = 2, E = Record.size(); I != E; ++I) { 5819 unsigned RefValueId = Record[I]; 5820 uint64_t RefGUID = getGUIDFromValueId(RefValueId); 5821 FS->addRefEdge(RefGUID); 5822 } 5823 uint64_t GUID = getGUIDFromValueId(ValueID); 5824 auto InfoList = TheIndex->findGlobalValueInfoList(GUID); 5825 assert(InfoList != TheIndex->end() && 5826 "Expected VST parse to create GlobalValueInfo entry"); 5827 assert(InfoList->second.size() == 1 && 5828 "Expected a single GlobalValueInfo per GUID in module"); 5829 auto &Info = InfoList->second[0]; 5830 assert(!Info->summary() && "Expected a single summary per VST entry"); 5831 Info->setSummary(std::move(FS)); 5832 break; 5833 } 5834 // FS_COMBINED: [modid, linkage, instcount, numrefs, numrefs x valueid, 5835 // n x (valueid, callsitecount)] 5836 // FS_COMBINED_PROFILE: [modid, linkage, instcount, numrefs, 5837 // numrefs x valueid, 5838 // n x (valueid, callsitecount, profilecount)] 5839 case bitc::FS_COMBINED: 5840 case bitc::FS_COMBINED_PROFILE: { 5841 uint64_t ModuleId = Record[0]; 5842 uint64_t RawLinkage = Record[1]; 5843 unsigned InstCount = Record[2]; 5844 unsigned NumRefs = Record[3]; 5845 std::unique_ptr<FunctionSummary> FS = llvm::make_unique<FunctionSummary>( 5846 getDecodedLinkage(RawLinkage), InstCount); 5847 FS->setModulePath(ModuleIdMap[ModuleId]); 5848 static int RefListStartIndex = 4; 5849 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 5850 assert(Record.size() >= RefListStartIndex + NumRefs && 5851 "Record size inconsistent with number of references"); 5852 for (unsigned I = 4, E = CallGraphEdgeStartIndex; I != E; ++I) { 5853 unsigned RefValueId = Record[I]; 5854 uint64_t RefGUID = getGUIDFromValueId(RefValueId); 5855 FS->addRefEdge(RefGUID); 5856 } 5857 bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE); 5858 for (unsigned I = CallGraphEdgeStartIndex, E = Record.size(); I != E; 5859 ++I) { 5860 unsigned CalleeValueId = Record[I]; 5861 unsigned CallsiteCount = Record[++I]; 5862 uint64_t ProfileCount = HasProfile ? Record[++I] : 0; 5863 uint64_t CalleeGUID = getGUIDFromValueId(CalleeValueId); 5864 FS->addCallGraphEdge(CalleeGUID, 5865 CalleeInfo(CallsiteCount, ProfileCount)); 5866 } 5867 auto *Info = getInfoFromSummaryOffset(CurRecordBit); 5868 assert(!Info->summary() && "Expected a single summary per VST entry"); 5869 Info->setSummary(std::move(FS)); 5870 Combined = true; 5871 break; 5872 } 5873 // FS_COMBINED_GLOBALVAR_INIT_REFS: [modid, linkage, n x valueid] 5874 case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: { 5875 uint64_t ModuleId = Record[0]; 5876 uint64_t RawLinkage = Record[1]; 5877 std::unique_ptr<GlobalVarSummary> FS = 5878 llvm::make_unique<GlobalVarSummary>(getDecodedLinkage(RawLinkage)); 5879 FS->setModulePath(ModuleIdMap[ModuleId]); 5880 for (unsigned I = 2, E = Record.size(); I != E; ++I) { 5881 unsigned RefValueId = Record[I]; 5882 uint64_t RefGUID = getGUIDFromValueId(RefValueId); 5883 FS->addRefEdge(RefGUID); 5884 } 5885 auto *Info = getInfoFromSummaryOffset(CurRecordBit); 5886 assert(!Info->summary() && "Expected a single summary per VST entry"); 5887 Info->setSummary(std::move(FS)); 5888 Combined = true; 5889 break; 5890 } 5891 } 5892 } 5893 llvm_unreachable("Exit infinite loop"); 5894 } 5895 5896 // Parse the module string table block into the Index. 5897 // This populates the ModulePathStringTable map in the index. 5898 std::error_code ModuleSummaryIndexBitcodeReader::parseModuleStringTable() { 5899 if (Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID)) 5900 return error("Invalid record"); 5901 5902 SmallVector<uint64_t, 64> Record; 5903 5904 SmallString<128> ModulePath; 5905 ModulePathStringTableTy::iterator LastSeenModulePath; 5906 while (1) { 5907 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5908 5909 switch (Entry.Kind) { 5910 case BitstreamEntry::SubBlock: // Handled for us already. 5911 case BitstreamEntry::Error: 5912 return error("Malformed block"); 5913 case BitstreamEntry::EndBlock: 5914 return std::error_code(); 5915 case BitstreamEntry::Record: 5916 // The interesting case. 5917 break; 5918 } 5919 5920 Record.clear(); 5921 switch (Stream.readRecord(Entry.ID, Record)) { 5922 default: // Default behavior: ignore. 5923 break; 5924 case bitc::MST_CODE_ENTRY: { 5925 // MST_ENTRY: [modid, namechar x N] 5926 uint64_t ModuleId = Record[0]; 5927 5928 if (convertToString(Record, 1, ModulePath)) 5929 return error("Invalid record"); 5930 5931 LastSeenModulePath = TheIndex->addModulePath(ModulePath, ModuleId); 5932 ModuleIdMap[ModuleId] = LastSeenModulePath->first(); 5933 5934 ModulePath.clear(); 5935 break; 5936 } 5937 /// MST_CODE_HASH: [5*i32] 5938 case bitc::MST_CODE_HASH: { 5939 if (Record.size() != 5) 5940 return error("Invalid hash length " + Twine(Record.size()).str()); 5941 if (LastSeenModulePath == TheIndex->modulePaths().end()) 5942 return error("Invalid hash that does not follow a module path"); 5943 int Pos = 0; 5944 for (auto &Val : Record) { 5945 assert(!(Val >> 32) && "Unexpected high bits set"); 5946 LastSeenModulePath->second.second[Pos++] = Val; 5947 } 5948 // Reset LastSeenModulePath to avoid overriding the hash unexpectedly. 5949 LastSeenModulePath = TheIndex->modulePaths().end(); 5950 break; 5951 } 5952 } 5953 } 5954 llvm_unreachable("Exit infinite loop"); 5955 } 5956 5957 // Parse the function info index from the bitcode streamer into the given index. 5958 std::error_code ModuleSummaryIndexBitcodeReader::parseSummaryIndexInto( 5959 std::unique_ptr<DataStreamer> Streamer, ModuleSummaryIndex *I) { 5960 TheIndex = I; 5961 5962 if (std::error_code EC = initStream(std::move(Streamer))) 5963 return EC; 5964 5965 // Sniff for the signature. 5966 if (!hasValidBitcodeHeader(Stream)) 5967 return error("Invalid bitcode signature"); 5968 5969 // We expect a number of well-defined blocks, though we don't necessarily 5970 // need to understand them all. 5971 while (1) { 5972 if (Stream.AtEndOfStream()) { 5973 // We didn't really read a proper Module block. 5974 return error("Malformed block"); 5975 } 5976 5977 BitstreamEntry Entry = 5978 Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs); 5979 5980 if (Entry.Kind != BitstreamEntry::SubBlock) 5981 return error("Malformed block"); 5982 5983 // If we see a MODULE_BLOCK, parse it to find the blocks needed for 5984 // building the function summary index. 5985 if (Entry.ID == bitc::MODULE_BLOCK_ID) 5986 return parseModule(); 5987 5988 if (Stream.SkipBlock()) 5989 return error("Invalid record"); 5990 } 5991 } 5992 5993 // Parse the summary information at the given offset in the buffer into 5994 // the index. Used to support lazy parsing of summaries from the 5995 // combined index during importing. 5996 // TODO: This function is not yet complete as it won't have a consumer 5997 // until ThinLTO function importing is added. 5998 std::error_code ModuleSummaryIndexBitcodeReader::parseGlobalValueSummary( 5999 std::unique_ptr<DataStreamer> Streamer, ModuleSummaryIndex *I, 6000 size_t SummaryOffset) { 6001 TheIndex = I; 6002 6003 if (std::error_code EC = initStream(std::move(Streamer))) 6004 return EC; 6005 6006 // Sniff for the signature. 6007 if (!hasValidBitcodeHeader(Stream)) 6008 return error("Invalid bitcode signature"); 6009 6010 Stream.JumpToBit(SummaryOffset); 6011 6012 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 6013 6014 switch (Entry.Kind) { 6015 default: 6016 return error("Malformed block"); 6017 case BitstreamEntry::Record: 6018 // The expected case. 6019 break; 6020 } 6021 6022 // TODO: Read a record. This interface will be completed when ThinLTO 6023 // importing is added so that it can be tested. 6024 SmallVector<uint64_t, 64> Record; 6025 switch (Stream.readRecord(Entry.ID, Record)) { 6026 case bitc::FS_COMBINED: 6027 case bitc::FS_COMBINED_PROFILE: 6028 case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: 6029 default: 6030 return error("Invalid record"); 6031 } 6032 6033 return std::error_code(); 6034 } 6035 6036 std::error_code ModuleSummaryIndexBitcodeReader::initStream( 6037 std::unique_ptr<DataStreamer> Streamer) { 6038 if (Streamer) 6039 return initLazyStream(std::move(Streamer)); 6040 return initStreamFromBuffer(); 6041 } 6042 6043 std::error_code ModuleSummaryIndexBitcodeReader::initStreamFromBuffer() { 6044 const unsigned char *BufPtr = (const unsigned char *)Buffer->getBufferStart(); 6045 const unsigned char *BufEnd = BufPtr + Buffer->getBufferSize(); 6046 6047 if (Buffer->getBufferSize() & 3) 6048 return error("Invalid bitcode signature"); 6049 6050 // If we have a wrapper header, parse it and ignore the non-bc file contents. 6051 // The magic number is 0x0B17C0DE stored in little endian. 6052 if (isBitcodeWrapper(BufPtr, BufEnd)) 6053 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 6054 return error("Invalid bitcode wrapper header"); 6055 6056 StreamFile.reset(new BitstreamReader(BufPtr, BufEnd)); 6057 Stream.init(&*StreamFile); 6058 6059 return std::error_code(); 6060 } 6061 6062 std::error_code ModuleSummaryIndexBitcodeReader::initLazyStream( 6063 std::unique_ptr<DataStreamer> Streamer) { 6064 // Check and strip off the bitcode wrapper; BitstreamReader expects never to 6065 // see it. 6066 auto OwnedBytes = 6067 llvm::make_unique<StreamingMemoryObject>(std::move(Streamer)); 6068 StreamingMemoryObject &Bytes = *OwnedBytes; 6069 StreamFile = llvm::make_unique<BitstreamReader>(std::move(OwnedBytes)); 6070 Stream.init(&*StreamFile); 6071 6072 unsigned char buf[16]; 6073 if (Bytes.readBytes(buf, 16, 0) != 16) 6074 return error("Invalid bitcode signature"); 6075 6076 if (!isBitcode(buf, buf + 16)) 6077 return error("Invalid bitcode signature"); 6078 6079 if (isBitcodeWrapper(buf, buf + 4)) { 6080 const unsigned char *bitcodeStart = buf; 6081 const unsigned char *bitcodeEnd = buf + 16; 6082 SkipBitcodeWrapperHeader(bitcodeStart, bitcodeEnd, false); 6083 Bytes.dropLeadingBytes(bitcodeStart - buf); 6084 Bytes.setKnownObjectSize(bitcodeEnd - bitcodeStart); 6085 } 6086 return std::error_code(); 6087 } 6088 6089 namespace { 6090 class BitcodeErrorCategoryType : public std::error_category { 6091 const char *name() const LLVM_NOEXCEPT override { 6092 return "llvm.bitcode"; 6093 } 6094 std::string message(int IE) const override { 6095 BitcodeError E = static_cast<BitcodeError>(IE); 6096 switch (E) { 6097 case BitcodeError::InvalidBitcodeSignature: 6098 return "Invalid bitcode signature"; 6099 case BitcodeError::CorruptedBitcode: 6100 return "Corrupted bitcode"; 6101 } 6102 llvm_unreachable("Unknown error type!"); 6103 } 6104 }; 6105 } // end anonymous namespace 6106 6107 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory; 6108 6109 const std::error_category &llvm::BitcodeErrorCategory() { 6110 return *ErrorCategory; 6111 } 6112 6113 //===----------------------------------------------------------------------===// 6114 // External interface 6115 //===----------------------------------------------------------------------===// 6116 6117 static ErrorOr<std::unique_ptr<Module>> 6118 getBitcodeModuleImpl(std::unique_ptr<DataStreamer> Streamer, StringRef Name, 6119 BitcodeReader *R, LLVMContext &Context, 6120 bool MaterializeAll, bool ShouldLazyLoadMetadata) { 6121 std::unique_ptr<Module> M = make_unique<Module>(Name, Context); 6122 M->setMaterializer(R); 6123 6124 auto cleanupOnError = [&](std::error_code EC) { 6125 R->releaseBuffer(); // Never take ownership on error. 6126 return EC; 6127 }; 6128 6129 // Delay parsing Metadata if ShouldLazyLoadMetadata is true. 6130 if (std::error_code EC = R->parseBitcodeInto(std::move(Streamer), M.get(), 6131 ShouldLazyLoadMetadata)) 6132 return cleanupOnError(EC); 6133 6134 if (MaterializeAll) { 6135 // Read in the entire module, and destroy the BitcodeReader. 6136 if (std::error_code EC = M->materializeAll()) 6137 return cleanupOnError(EC); 6138 } else { 6139 // Resolve forward references from blockaddresses. 6140 if (std::error_code EC = R->materializeForwardReferencedFunctions()) 6141 return cleanupOnError(EC); 6142 } 6143 return std::move(M); 6144 } 6145 6146 /// \brief Get a lazy one-at-time loading module from bitcode. 6147 /// 6148 /// This isn't always used in a lazy context. In particular, it's also used by 6149 /// \a parseBitcodeFile(). If this is truly lazy, then we need to eagerly pull 6150 /// in forward-referenced functions from block address references. 6151 /// 6152 /// \param[in] MaterializeAll Set to \c true if we should materialize 6153 /// everything. 6154 static ErrorOr<std::unique_ptr<Module>> 6155 getLazyBitcodeModuleImpl(std::unique_ptr<MemoryBuffer> &&Buffer, 6156 LLVMContext &Context, bool MaterializeAll, 6157 bool ShouldLazyLoadMetadata = false) { 6158 BitcodeReader *R = new BitcodeReader(Buffer.get(), Context); 6159 6160 ErrorOr<std::unique_ptr<Module>> Ret = 6161 getBitcodeModuleImpl(nullptr, Buffer->getBufferIdentifier(), R, Context, 6162 MaterializeAll, ShouldLazyLoadMetadata); 6163 if (!Ret) 6164 return Ret; 6165 6166 Buffer.release(); // The BitcodeReader owns it now. 6167 return Ret; 6168 } 6169 6170 ErrorOr<std::unique_ptr<Module>> 6171 llvm::getLazyBitcodeModule(std::unique_ptr<MemoryBuffer> &&Buffer, 6172 LLVMContext &Context, bool ShouldLazyLoadMetadata) { 6173 return getLazyBitcodeModuleImpl(std::move(Buffer), Context, false, 6174 ShouldLazyLoadMetadata); 6175 } 6176 6177 ErrorOr<std::unique_ptr<Module>> 6178 llvm::getStreamedBitcodeModule(StringRef Name, 6179 std::unique_ptr<DataStreamer> Streamer, 6180 LLVMContext &Context) { 6181 std::unique_ptr<Module> M = make_unique<Module>(Name, Context); 6182 BitcodeReader *R = new BitcodeReader(Context); 6183 6184 return getBitcodeModuleImpl(std::move(Streamer), Name, R, Context, false, 6185 false); 6186 } 6187 6188 ErrorOr<std::unique_ptr<Module>> llvm::parseBitcodeFile(MemoryBufferRef Buffer, 6189 LLVMContext &Context) { 6190 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 6191 return getLazyBitcodeModuleImpl(std::move(Buf), Context, true); 6192 // TODO: Restore the use-lists to the in-memory state when the bitcode was 6193 // written. We must defer until the Module has been fully materialized. 6194 } 6195 6196 std::string llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer, 6197 LLVMContext &Context) { 6198 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 6199 auto R = llvm::make_unique<BitcodeReader>(Buf.release(), Context); 6200 ErrorOr<std::string> Triple = R->parseTriple(); 6201 if (Triple.getError()) 6202 return ""; 6203 return Triple.get(); 6204 } 6205 6206 std::string llvm::getBitcodeProducerString(MemoryBufferRef Buffer, 6207 LLVMContext &Context) { 6208 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 6209 BitcodeReader R(Buf.release(), Context); 6210 ErrorOr<std::string> ProducerString = R.parseIdentificationBlock(); 6211 if (ProducerString.getError()) 6212 return ""; 6213 return ProducerString.get(); 6214 } 6215 6216 // Parse the specified bitcode buffer, returning the function info index. 6217 // If IsLazy is false, parse the entire function summary into 6218 // the index. Otherwise skip the function summary section, and only create 6219 // an index object with a map from function name to function summary offset. 6220 // The index is used to perform lazy function summary reading later. 6221 ErrorOr<std::unique_ptr<ModuleSummaryIndex>> 6222 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer, 6223 DiagnosticHandlerFunction DiagnosticHandler, 6224 bool IsLazy) { 6225 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 6226 ModuleSummaryIndexBitcodeReader R(Buf.get(), DiagnosticHandler, IsLazy); 6227 6228 auto Index = llvm::make_unique<ModuleSummaryIndex>(); 6229 6230 auto cleanupOnError = [&](std::error_code EC) { 6231 R.releaseBuffer(); // Never take ownership on error. 6232 return EC; 6233 }; 6234 6235 if (std::error_code EC = R.parseSummaryIndexInto(nullptr, Index.get())) 6236 return cleanupOnError(EC); 6237 6238 Buf.release(); // The ModuleSummaryIndexBitcodeReader owns it now. 6239 return std::move(Index); 6240 } 6241 6242 // Check if the given bitcode buffer contains a global value summary block. 6243 bool llvm::hasGlobalValueSummary(MemoryBufferRef Buffer, 6244 DiagnosticHandlerFunction DiagnosticHandler) { 6245 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 6246 ModuleSummaryIndexBitcodeReader R(Buf.get(), DiagnosticHandler, false, true); 6247 6248 auto cleanupOnError = [&](std::error_code EC) { 6249 R.releaseBuffer(); // Never take ownership on error. 6250 return false; 6251 }; 6252 6253 if (std::error_code EC = R.parseSummaryIndexInto(nullptr, nullptr)) 6254 return cleanupOnError(EC); 6255 6256 Buf.release(); // The ModuleSummaryIndexBitcodeReader owns it now. 6257 return R.foundGlobalValSummary(); 6258 } 6259 6260 // This method supports lazy reading of summary data from the combined 6261 // index during ThinLTO function importing. When reading the combined index 6262 // file, getModuleSummaryIndex is first invoked with IsLazy=true. 6263 // Then this method is called for each value considered for importing, 6264 // to parse the summary information for the given value name into 6265 // the index. 6266 std::error_code llvm::readGlobalValueSummary( 6267 MemoryBufferRef Buffer, DiagnosticHandlerFunction DiagnosticHandler, 6268 StringRef ValueName, std::unique_ptr<ModuleSummaryIndex> Index) { 6269 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 6270 ModuleSummaryIndexBitcodeReader R(Buf.get(), DiagnosticHandler); 6271 6272 auto cleanupOnError = [&](std::error_code EC) { 6273 R.releaseBuffer(); // Never take ownership on error. 6274 return EC; 6275 }; 6276 6277 // Lookup the given value name in the GlobalValueMap, which may 6278 // contain a list of global value infos in the case of a COMDAT. Walk through 6279 // and parse each summary info at the summary offset 6280 // recorded when parsing the value symbol table. 6281 for (const auto &FI : Index->getGlobalValueInfoList(ValueName)) { 6282 size_t SummaryOffset = FI->bitcodeIndex(); 6283 if (std::error_code EC = 6284 R.parseGlobalValueSummary(nullptr, Index.get(), SummaryOffset)) 6285 return cleanupOnError(EC); 6286 } 6287 6288 Buf.release(); // The ModuleSummaryIndexBitcodeReader owns it now. 6289 return std::error_code(); 6290 } 6291