1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "llvm/Bitcode/BitcodeReader.h" 11 #include "llvm/ADT/APFloat.h" 12 #include "llvm/ADT/APInt.h" 13 #include "llvm/ADT/ArrayRef.h" 14 #include "llvm/ADT/DenseMap.h" 15 #include "llvm/ADT/None.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/SmallString.h" 18 #include "llvm/ADT/SmallVector.h" 19 #include "llvm/ADT/StringRef.h" 20 #include "llvm/ADT/Triple.h" 21 #include "llvm/ADT/Twine.h" 22 #include "llvm/Bitcode/BitstreamReader.h" 23 #include "llvm/Bitcode/LLVMBitCodes.h" 24 #include "llvm/IR/Argument.h" 25 #include "llvm/IR/Attributes.h" 26 #include "llvm/IR/AutoUpgrade.h" 27 #include "llvm/IR/BasicBlock.h" 28 #include "llvm/IR/CallingConv.h" 29 #include "llvm/IR/CallSite.h" 30 #include "llvm/IR/Comdat.h" 31 #include "llvm/IR/Constant.h" 32 #include "llvm/IR/Constants.h" 33 #include "llvm/IR/DebugInfo.h" 34 #include "llvm/IR/DebugInfoMetadata.h" 35 #include "llvm/IR/DebugLoc.h" 36 #include "llvm/IR/DerivedTypes.h" 37 #include "llvm/IR/DiagnosticInfo.h" 38 #include "llvm/IR/DiagnosticPrinter.h" 39 #include "llvm/IR/Function.h" 40 #include "llvm/IR/GlobalAlias.h" 41 #include "llvm/IR/GlobalIFunc.h" 42 #include "llvm/IR/GlobalIndirectSymbol.h" 43 #include "llvm/IR/GlobalObject.h" 44 #include "llvm/IR/GlobalValue.h" 45 #include "llvm/IR/GlobalVariable.h" 46 #include "llvm/IR/GVMaterializer.h" 47 #include "llvm/IR/InlineAsm.h" 48 #include "llvm/IR/InstrTypes.h" 49 #include "llvm/IR/Instruction.h" 50 #include "llvm/IR/Instructions.h" 51 #include "llvm/IR/Intrinsics.h" 52 #include "llvm/IR/LLVMContext.h" 53 #include "llvm/IR/Module.h" 54 #include "llvm/IR/ModuleSummaryIndex.h" 55 #include "llvm/IR/OperandTraits.h" 56 #include "llvm/IR/Operator.h" 57 #include "llvm/IR/TrackingMDRef.h" 58 #include "llvm/IR/Type.h" 59 #include "llvm/IR/ValueHandle.h" 60 #include "llvm/Support/AtomicOrdering.h" 61 #include "llvm/Support/Casting.h" 62 #include "llvm/Support/CommandLine.h" 63 #include "llvm/Support/Compiler.h" 64 #include "llvm/Support/Debug.h" 65 #include "llvm/Support/Error.h" 66 #include "llvm/Support/ErrorHandling.h" 67 #include "llvm/Support/ManagedStatic.h" 68 #include "llvm/Support/MemoryBuffer.h" 69 #include "llvm/Support/raw_ostream.h" 70 #include <algorithm> 71 #include <cassert> 72 #include <cstddef> 73 #include <cstdint> 74 #include <deque> 75 #include <limits> 76 #include <map> 77 #include <memory> 78 #include <string> 79 #include <system_error> 80 #include <tuple> 81 #include <utility> 82 #include <vector> 83 84 using namespace llvm; 85 86 static cl::opt<bool> PrintSummaryGUIDs( 87 "print-summary-global-ids", cl::init(false), cl::Hidden, 88 cl::desc( 89 "Print the global id for each value when reading the module summary")); 90 91 namespace { 92 93 enum { 94 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 95 }; 96 97 class BitcodeReaderValueList { 98 std::vector<WeakVH> ValuePtrs; 99 100 /// As we resolve forward-referenced constants, we add information about them 101 /// to this vector. This allows us to resolve them in bulk instead of 102 /// resolving each reference at a time. See the code in 103 /// ResolveConstantForwardRefs for more information about this. 104 /// 105 /// The key of this vector is the placeholder constant, the value is the slot 106 /// number that holds the resolved value. 107 typedef std::vector<std::pair<Constant*, unsigned> > ResolveConstantsTy; 108 ResolveConstantsTy ResolveConstants; 109 LLVMContext &Context; 110 111 public: 112 BitcodeReaderValueList(LLVMContext &C) : Context(C) {} 113 ~BitcodeReaderValueList() { 114 assert(ResolveConstants.empty() && "Constants not resolved?"); 115 } 116 117 // vector compatibility methods 118 unsigned size() const { return ValuePtrs.size(); } 119 void resize(unsigned N) { ValuePtrs.resize(N); } 120 void push_back(Value *V) { ValuePtrs.emplace_back(V); } 121 122 void clear() { 123 assert(ResolveConstants.empty() && "Constants not resolved?"); 124 ValuePtrs.clear(); 125 } 126 127 Value *operator[](unsigned i) const { 128 assert(i < ValuePtrs.size()); 129 return ValuePtrs[i]; 130 } 131 132 Value *back() const { return ValuePtrs.back(); } 133 void pop_back() { ValuePtrs.pop_back(); } 134 bool empty() const { return ValuePtrs.empty(); } 135 136 void shrinkTo(unsigned N) { 137 assert(N <= size() && "Invalid shrinkTo request!"); 138 ValuePtrs.resize(N); 139 } 140 141 Constant *getConstantFwdRef(unsigned Idx, Type *Ty); 142 Value *getValueFwdRef(unsigned Idx, Type *Ty); 143 144 void assignValue(Value *V, unsigned Idx); 145 146 /// Once all constants are read, this method bulk resolves any forward 147 /// references. 148 void resolveConstantForwardRefs(); 149 }; 150 151 class BitcodeReaderMetadataList { 152 unsigned NumFwdRefs; 153 bool AnyFwdRefs; 154 unsigned MinFwdRef; 155 unsigned MaxFwdRef; 156 157 /// Array of metadata references. 158 /// 159 /// Don't use std::vector here. Some versions of libc++ copy (instead of 160 /// move) on resize, and TrackingMDRef is very expensive to copy. 161 SmallVector<TrackingMDRef, 1> MetadataPtrs; 162 163 /// Structures for resolving old type refs. 164 struct { 165 SmallDenseMap<MDString *, TempMDTuple, 1> Unknown; 166 SmallDenseMap<MDString *, DICompositeType *, 1> Final; 167 SmallDenseMap<MDString *, DICompositeType *, 1> FwdDecls; 168 SmallVector<std::pair<TrackingMDRef, TempMDTuple>, 1> Arrays; 169 } OldTypeRefs; 170 171 LLVMContext &Context; 172 173 public: 174 BitcodeReaderMetadataList(LLVMContext &C) 175 : NumFwdRefs(0), AnyFwdRefs(false), Context(C) {} 176 177 // vector compatibility methods 178 unsigned size() const { return MetadataPtrs.size(); } 179 void resize(unsigned N) { MetadataPtrs.resize(N); } 180 void push_back(Metadata *MD) { MetadataPtrs.emplace_back(MD); } 181 void clear() { MetadataPtrs.clear(); } 182 Metadata *back() const { return MetadataPtrs.back(); } 183 void pop_back() { MetadataPtrs.pop_back(); } 184 bool empty() const { return MetadataPtrs.empty(); } 185 186 Metadata *operator[](unsigned i) const { 187 assert(i < MetadataPtrs.size()); 188 return MetadataPtrs[i]; 189 } 190 191 Metadata *lookup(unsigned I) const { 192 if (I < MetadataPtrs.size()) 193 return MetadataPtrs[I]; 194 return nullptr; 195 } 196 197 void shrinkTo(unsigned N) { 198 assert(N <= size() && "Invalid shrinkTo request!"); 199 assert(!AnyFwdRefs && "Unexpected forward refs"); 200 MetadataPtrs.resize(N); 201 } 202 203 /// Return the given metadata, creating a replaceable forward reference if 204 /// necessary. 205 Metadata *getMetadataFwdRef(unsigned Idx); 206 207 /// Return the the given metadata only if it is fully resolved. 208 /// 209 /// Gives the same result as \a lookup(), unless \a MDNode::isResolved() 210 /// would give \c false. 211 Metadata *getMetadataIfResolved(unsigned Idx); 212 213 MDNode *getMDNodeFwdRefOrNull(unsigned Idx); 214 void assignValue(Metadata *MD, unsigned Idx); 215 void tryToResolveCycles(); 216 bool hasFwdRefs() const { return AnyFwdRefs; } 217 218 /// Upgrade a type that had an MDString reference. 219 void addTypeRef(MDString &UUID, DICompositeType &CT); 220 221 /// Upgrade a type that had an MDString reference. 222 Metadata *upgradeTypeRef(Metadata *MaybeUUID); 223 224 /// Upgrade a type ref array that may have MDString references. 225 Metadata *upgradeTypeRefArray(Metadata *MaybeTuple); 226 227 private: 228 Metadata *resolveTypeRefArray(Metadata *MaybeTuple); 229 }; 230 231 Error error(const Twine &Message) { 232 return make_error<StringError>( 233 Message, make_error_code(BitcodeError::CorruptedBitcode)); 234 } 235 236 /// Helper to read the header common to all bitcode files. 237 bool hasValidBitcodeHeader(BitstreamCursor &Stream) { 238 // Sniff for the signature. 239 if (!Stream.canSkipToPos(4) || 240 Stream.Read(8) != 'B' || 241 Stream.Read(8) != 'C' || 242 Stream.Read(4) != 0x0 || 243 Stream.Read(4) != 0xC || 244 Stream.Read(4) != 0xE || 245 Stream.Read(4) != 0xD) 246 return false; 247 return true; 248 } 249 250 Expected<BitstreamCursor> initStream(MemoryBufferRef Buffer) { 251 const unsigned char *BufPtr = (const unsigned char *)Buffer.getBufferStart(); 252 const unsigned char *BufEnd = BufPtr + Buffer.getBufferSize(); 253 254 if (Buffer.getBufferSize() & 3) 255 return error("Invalid bitcode signature"); 256 257 // If we have a wrapper header, parse it and ignore the non-bc file contents. 258 // The magic number is 0x0B17C0DE stored in little endian. 259 if (isBitcodeWrapper(BufPtr, BufEnd)) 260 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 261 return error("Invalid bitcode wrapper header"); 262 263 BitstreamCursor Stream(ArrayRef<uint8_t>(BufPtr, BufEnd)); 264 if (!hasValidBitcodeHeader(Stream)) 265 return error("Invalid bitcode signature"); 266 267 return std::move(Stream); 268 } 269 270 /// Convert a string from a record into an std::string, return true on failure. 271 template <typename StrTy> 272 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx, 273 StrTy &Result) { 274 if (Idx > Record.size()) 275 return true; 276 277 for (unsigned i = Idx, e = Record.size(); i != e; ++i) 278 Result += (char)Record[i]; 279 return false; 280 } 281 282 /// Read the "IDENTIFICATION_BLOCK_ID" block, do some basic enforcement on the 283 /// "epoch" encoded in the bitcode, and return the producer name if any. 284 Expected<std::string> readIdentificationBlock(BitstreamCursor &Stream) { 285 if (Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID)) 286 return error("Invalid record"); 287 288 // Read all the records. 289 SmallVector<uint64_t, 64> Record; 290 291 std::string ProducerIdentification; 292 293 while (true) { 294 BitstreamEntry Entry = Stream.advance(); 295 296 switch (Entry.Kind) { 297 default: 298 case BitstreamEntry::Error: 299 return error("Malformed block"); 300 case BitstreamEntry::EndBlock: 301 return ProducerIdentification; 302 case BitstreamEntry::Record: 303 // The interesting case. 304 break; 305 } 306 307 // Read a record. 308 Record.clear(); 309 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 310 switch (BitCode) { 311 default: // Default behavior: reject 312 return error("Invalid value"); 313 case bitc::IDENTIFICATION_CODE_STRING: // IDENTIFICATION: [strchr x N] 314 convertToString(Record, 0, ProducerIdentification); 315 break; 316 case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#] 317 unsigned epoch = (unsigned)Record[0]; 318 if (epoch != bitc::BITCODE_CURRENT_EPOCH) { 319 return error( 320 Twine("Incompatible epoch: Bitcode '") + Twine(epoch) + 321 "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'"); 322 } 323 } 324 } 325 } 326 } 327 328 Expected<std::string> readIdentificationCode(BitstreamCursor &Stream) { 329 // We expect a number of well-defined blocks, though we don't necessarily 330 // need to understand them all. 331 while (true) { 332 if (Stream.AtEndOfStream()) 333 return ""; 334 335 BitstreamEntry Entry = Stream.advance(); 336 switch (Entry.Kind) { 337 case BitstreamEntry::EndBlock: 338 case BitstreamEntry::Error: 339 return error("Malformed block"); 340 341 case BitstreamEntry::SubBlock: 342 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) 343 return readIdentificationBlock(Stream); 344 345 // Ignore other sub-blocks. 346 if (Stream.SkipBlock()) 347 return error("Malformed block"); 348 continue; 349 case BitstreamEntry::Record: 350 Stream.skipRecord(Entry.ID); 351 continue; 352 } 353 } 354 } 355 356 Expected<bool> hasObjCCategoryInModule(BitstreamCursor &Stream) { 357 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 358 return error("Invalid record"); 359 360 SmallVector<uint64_t, 64> Record; 361 // Read all the records for this module. 362 363 while (true) { 364 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 365 366 switch (Entry.Kind) { 367 case BitstreamEntry::SubBlock: // Handled for us already. 368 case BitstreamEntry::Error: 369 return error("Malformed block"); 370 case BitstreamEntry::EndBlock: 371 return false; 372 case BitstreamEntry::Record: 373 // The interesting case. 374 break; 375 } 376 377 // Read a record. 378 switch (Stream.readRecord(Entry.ID, Record)) { 379 default: 380 break; // Default behavior, ignore unknown content. 381 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 382 std::string S; 383 if (convertToString(Record, 0, S)) 384 return error("Invalid record"); 385 // Check for the i386 and other (x86_64, ARM) conventions 386 if (S.find("__DATA, __objc_catlist") != std::string::npos || 387 S.find("__OBJC,__category") != std::string::npos) 388 return true; 389 break; 390 } 391 } 392 Record.clear(); 393 } 394 llvm_unreachable("Exit infinite loop"); 395 } 396 397 Expected<bool> hasObjCCategory(BitstreamCursor &Stream) { 398 // We expect a number of well-defined blocks, though we don't necessarily 399 // need to understand them all. 400 while (true) { 401 BitstreamEntry Entry = Stream.advance(); 402 403 switch (Entry.Kind) { 404 case BitstreamEntry::Error: 405 return error("Malformed block"); 406 case BitstreamEntry::EndBlock: 407 return false; 408 409 case BitstreamEntry::SubBlock: 410 if (Entry.ID == bitc::MODULE_BLOCK_ID) 411 return hasObjCCategoryInModule(Stream); 412 413 // Ignore other sub-blocks. 414 if (Stream.SkipBlock()) 415 return error("Malformed block"); 416 continue; 417 418 case BitstreamEntry::Record: 419 Stream.skipRecord(Entry.ID); 420 continue; 421 } 422 } 423 } 424 425 Expected<std::string> readModuleTriple(BitstreamCursor &Stream) { 426 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 427 return error("Invalid record"); 428 429 SmallVector<uint64_t, 64> Record; 430 431 std::string Triple; 432 433 // Read all the records for this module. 434 while (true) { 435 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 436 437 switch (Entry.Kind) { 438 case BitstreamEntry::SubBlock: // Handled for us already. 439 case BitstreamEntry::Error: 440 return error("Malformed block"); 441 case BitstreamEntry::EndBlock: 442 return Triple; 443 case BitstreamEntry::Record: 444 // The interesting case. 445 break; 446 } 447 448 // Read a record. 449 switch (Stream.readRecord(Entry.ID, Record)) { 450 default: break; // Default behavior, ignore unknown content. 451 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 452 std::string S; 453 if (convertToString(Record, 0, S)) 454 return error("Invalid record"); 455 Triple = S; 456 break; 457 } 458 } 459 Record.clear(); 460 } 461 llvm_unreachable("Exit infinite loop"); 462 } 463 464 Expected<std::string> readTriple(BitstreamCursor &Stream) { 465 // We expect a number of well-defined blocks, though we don't necessarily 466 // need to understand them all. 467 while (true) { 468 BitstreamEntry Entry = Stream.advance(); 469 470 switch (Entry.Kind) { 471 case BitstreamEntry::Error: 472 return error("Malformed block"); 473 case BitstreamEntry::EndBlock: 474 return ""; 475 476 case BitstreamEntry::SubBlock: 477 if (Entry.ID == bitc::MODULE_BLOCK_ID) 478 return readModuleTriple(Stream); 479 480 // Ignore other sub-blocks. 481 if (Stream.SkipBlock()) 482 return error("Malformed block"); 483 continue; 484 485 case BitstreamEntry::Record: 486 Stream.skipRecord(Entry.ID); 487 continue; 488 } 489 } 490 } 491 492 class BitcodeReaderBase { 493 protected: 494 BitcodeReaderBase(BitstreamCursor Stream) : Stream(std::move(Stream)) { 495 this->Stream.setBlockInfo(&BlockInfo); 496 } 497 498 BitstreamBlockInfo BlockInfo; 499 BitstreamCursor Stream; 500 501 bool readBlockInfo(); 502 503 // Contains an arbitrary and optional string identifying the bitcode producer 504 std::string ProducerIdentification; 505 506 Error error(const Twine &Message); 507 }; 508 509 Error BitcodeReaderBase::error(const Twine &Message) { 510 std::string FullMsg = Message.str(); 511 if (!ProducerIdentification.empty()) 512 FullMsg += " (Producer: '" + ProducerIdentification + "' Reader: 'LLVM " + 513 LLVM_VERSION_STRING "')"; 514 return ::error(FullMsg); 515 } 516 517 class BitcodeReader : public BitcodeReaderBase, public GVMaterializer { 518 LLVMContext &Context; 519 Module *TheModule = nullptr; 520 // Next offset to start scanning for lazy parsing of function bodies. 521 uint64_t NextUnreadBit = 0; 522 // Last function offset found in the VST. 523 uint64_t LastFunctionBlockBit = 0; 524 bool SeenValueSymbolTable = false; 525 uint64_t VSTOffset = 0; 526 527 std::vector<Type*> TypeList; 528 BitcodeReaderValueList ValueList; 529 BitcodeReaderMetadataList MetadataList; 530 std::vector<Comdat *> ComdatList; 531 SmallVector<Instruction *, 64> InstructionList; 532 533 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInits; 534 std::vector<std::pair<GlobalIndirectSymbol*, unsigned> > IndirectSymbolInits; 535 std::vector<std::pair<Function*, unsigned> > FunctionPrefixes; 536 std::vector<std::pair<Function*, unsigned> > FunctionPrologues; 537 std::vector<std::pair<Function*, unsigned> > FunctionPersonalityFns; 538 539 bool HasSeenOldLoopTags = false; 540 541 /// The set of attributes by index. Index zero in the file is for null, and 542 /// is thus not represented here. As such all indices are off by one. 543 std::vector<AttributeSet> MAttributes; 544 545 /// The set of attribute groups. 546 std::map<unsigned, AttributeSet> MAttributeGroups; 547 548 /// While parsing a function body, this is a list of the basic blocks for the 549 /// function. 550 std::vector<BasicBlock*> FunctionBBs; 551 552 // When reading the module header, this list is populated with functions that 553 // have bodies later in the file. 554 std::vector<Function*> FunctionsWithBodies; 555 556 // When intrinsic functions are encountered which require upgrading they are 557 // stored here with their replacement function. 558 typedef DenseMap<Function*, Function*> UpdatedIntrinsicMap; 559 UpdatedIntrinsicMap UpgradedIntrinsics; 560 // Intrinsics which were remangled because of types rename 561 UpdatedIntrinsicMap RemangledIntrinsics; 562 563 // Map the bitcode's custom MDKind ID to the Module's MDKind ID. 564 DenseMap<unsigned, unsigned> MDKindMap; 565 566 // Several operations happen after the module header has been read, but 567 // before function bodies are processed. This keeps track of whether 568 // we've done this yet. 569 bool SeenFirstFunctionBody = false; 570 571 /// When function bodies are initially scanned, this map contains info about 572 /// where to find deferred function body in the stream. 573 DenseMap<Function*, uint64_t> DeferredFunctionInfo; 574 575 /// When Metadata block is initially scanned when parsing the module, we may 576 /// choose to defer parsing of the metadata. This vector contains info about 577 /// which Metadata blocks are deferred. 578 std::vector<uint64_t> DeferredMetadataInfo; 579 580 /// These are basic blocks forward-referenced by block addresses. They are 581 /// inserted lazily into functions when they're loaded. The basic block ID is 582 /// its index into the vector. 583 DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs; 584 std::deque<Function *> BasicBlockFwdRefQueue; 585 586 /// Indicates that we are using a new encoding for instruction operands where 587 /// most operands in the current FUNCTION_BLOCK are encoded relative to the 588 /// instruction number, for a more compact encoding. Some instruction 589 /// operands are not relative to the instruction ID: basic block numbers, and 590 /// types. Once the old style function blocks have been phased out, we would 591 /// not need this flag. 592 bool UseRelativeIDs = false; 593 594 /// True if all functions will be materialized, negating the need to process 595 /// (e.g.) blockaddress forward references. 596 bool WillMaterializeAllForwardRefs = false; 597 598 /// True if any Metadata block has been materialized. 599 bool IsMetadataMaterialized = false; 600 601 bool StripDebugInfo = false; 602 603 /// Functions that need to be matched with subprograms when upgrading old 604 /// metadata. 605 SmallDenseMap<Function *, DISubprogram *, 16> FunctionsWithSPs; 606 607 std::vector<std::string> BundleTags; 608 609 public: 610 BitcodeReader(BitstreamCursor Stream, LLVMContext &Context); 611 612 Error materializeForwardReferencedFunctions(); 613 614 Error materialize(GlobalValue *GV) override; 615 Error materializeModule() override; 616 std::vector<StructType *> getIdentifiedStructTypes() const override; 617 618 /// \brief Main interface to parsing a bitcode buffer. 619 /// \returns true if an error occurred. 620 Error parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata = false); 621 622 static uint64_t decodeSignRotatedValue(uint64_t V); 623 624 /// Materialize any deferred Metadata block. 625 Error materializeMetadata() override; 626 627 void setStripDebugInfo() override; 628 629 private: 630 std::vector<StructType *> IdentifiedStructTypes; 631 StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name); 632 StructType *createIdentifiedStructType(LLVMContext &Context); 633 634 Type *getTypeByID(unsigned ID); 635 636 Value *getFnValueByID(unsigned ID, Type *Ty) { 637 if (Ty && Ty->isMetadataTy()) 638 return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID)); 639 return ValueList.getValueFwdRef(ID, Ty); 640 } 641 642 Metadata *getFnMetadataByID(unsigned ID) { 643 return MetadataList.getMetadataFwdRef(ID); 644 } 645 646 BasicBlock *getBasicBlock(unsigned ID) const { 647 if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID 648 return FunctionBBs[ID]; 649 } 650 651 AttributeSet getAttributes(unsigned i) const { 652 if (i-1 < MAttributes.size()) 653 return MAttributes[i-1]; 654 return AttributeSet(); 655 } 656 657 /// Read a value/type pair out of the specified record from slot 'Slot'. 658 /// Increment Slot past the number of slots used in the record. Return true on 659 /// failure. 660 bool getValueTypePair(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 661 unsigned InstNum, Value *&ResVal) { 662 if (Slot == Record.size()) return true; 663 unsigned ValNo = (unsigned)Record[Slot++]; 664 // Adjust the ValNo, if it was encoded relative to the InstNum. 665 if (UseRelativeIDs) 666 ValNo = InstNum - ValNo; 667 if (ValNo < InstNum) { 668 // If this is not a forward reference, just return the value we already 669 // have. 670 ResVal = getFnValueByID(ValNo, nullptr); 671 return ResVal == nullptr; 672 } 673 if (Slot == Record.size()) 674 return true; 675 676 unsigned TypeNo = (unsigned)Record[Slot++]; 677 ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo)); 678 return ResVal == nullptr; 679 } 680 681 /// Read a value out of the specified record from slot 'Slot'. Increment Slot 682 /// past the number of slots used by the value in the record. Return true if 683 /// there is an error. 684 bool popValue(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 685 unsigned InstNum, Type *Ty, Value *&ResVal) { 686 if (getValue(Record, Slot, InstNum, Ty, ResVal)) 687 return true; 688 // All values currently take a single record slot. 689 ++Slot; 690 return false; 691 } 692 693 /// Like popValue, but does not increment the Slot number. 694 bool getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 695 unsigned InstNum, Type *Ty, Value *&ResVal) { 696 ResVal = getValue(Record, Slot, InstNum, Ty); 697 return ResVal == nullptr; 698 } 699 700 /// Version of getValue that returns ResVal directly, or 0 if there is an 701 /// error. 702 Value *getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 703 unsigned InstNum, Type *Ty) { 704 if (Slot == Record.size()) return nullptr; 705 unsigned ValNo = (unsigned)Record[Slot]; 706 // Adjust the ValNo, if it was encoded relative to the InstNum. 707 if (UseRelativeIDs) 708 ValNo = InstNum - ValNo; 709 return getFnValueByID(ValNo, Ty); 710 } 711 712 /// Like getValue, but decodes signed VBRs. 713 Value *getValueSigned(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 714 unsigned InstNum, Type *Ty) { 715 if (Slot == Record.size()) return nullptr; 716 unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]); 717 // Adjust the ValNo, if it was encoded relative to the InstNum. 718 if (UseRelativeIDs) 719 ValNo = InstNum - ValNo; 720 return getFnValueByID(ValNo, Ty); 721 } 722 723 /// Converts alignment exponent (i.e. power of two (or zero)) to the 724 /// corresponding alignment to use. If alignment is too large, returns 725 /// a corresponding error code. 726 Error parseAlignmentValue(uint64_t Exponent, unsigned &Alignment); 727 Error parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind); 728 Error parseModule(uint64_t ResumeBit, bool ShouldLazyLoadMetadata = false); 729 Error parseAttributeBlock(); 730 Error parseAttributeGroupBlock(); 731 Error parseTypeTable(); 732 Error parseTypeTableBody(); 733 Error parseOperandBundleTags(); 734 735 Expected<Value *> recordValue(SmallVectorImpl<uint64_t> &Record, 736 unsigned NameIndex, Triple &TT); 737 Error parseValueSymbolTable(uint64_t Offset = 0); 738 Error parseConstants(); 739 Error rememberAndSkipFunctionBodies(); 740 Error rememberAndSkipFunctionBody(); 741 /// Save the positions of the Metadata blocks and skip parsing the blocks. 742 Error rememberAndSkipMetadata(); 743 Error typeCheckLoadStoreInst(Type *ValType, Type *PtrType); 744 Error parseFunctionBody(Function *F); 745 Error globalCleanup(); 746 Error resolveGlobalAndIndirectSymbolInits(); 747 Error parseMetadata(bool ModuleLevel = false); 748 Error parseMetadataStrings(ArrayRef<uint64_t> Record, StringRef Blob, 749 unsigned &NextMetadataNo); 750 Error parseMetadataKinds(); 751 Error parseMetadataKindRecord(SmallVectorImpl<uint64_t> &Record); 752 Error parseGlobalObjectAttachment(GlobalObject &GO, 753 ArrayRef<uint64_t> Record); 754 Error parseMetadataAttachment(Function &F); 755 Error parseUseLists(); 756 Error findFunctionInStream( 757 Function *F, 758 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator); 759 }; 760 761 /// Class to manage reading and parsing function summary index bitcode 762 /// files/sections. 763 class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase { 764 /// Eventually points to the module index built during parsing. 765 ModuleSummaryIndex *TheIndex = nullptr; 766 767 /// Used to indicate whether caller only wants to check for the presence 768 /// of the global value summary bitcode section. All blocks are skipped, 769 /// but the SeenGlobalValSummary boolean is set. 770 bool CheckGlobalValSummaryPresenceOnly = false; 771 772 /// Indicates whether we have encountered a global value summary section 773 /// yet during parsing, used when checking if file contains global value 774 /// summary section. 775 bool SeenGlobalValSummary = false; 776 777 /// Indicates whether we have already parsed the VST, used for error checking. 778 bool SeenValueSymbolTable = false; 779 780 /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record. 781 /// Used to enable on-demand parsing of the VST. 782 uint64_t VSTOffset = 0; 783 784 // Map to save ValueId to GUID association that was recorded in the 785 // ValueSymbolTable. It is used after the VST is parsed to convert 786 // call graph edges read from the function summary from referencing 787 // callees by their ValueId to using the GUID instead, which is how 788 // they are recorded in the summary index being built. 789 // We save a second GUID which is the same as the first one, but ignoring the 790 // linkage, i.e. for value other than local linkage they are identical. 791 DenseMap<unsigned, std::pair<GlobalValue::GUID, GlobalValue::GUID>> 792 ValueIdToCallGraphGUIDMap; 793 794 /// Map populated during module path string table parsing, from the 795 /// module ID to a string reference owned by the index's module 796 /// path string table, used to correlate with combined index 797 /// summary records. 798 DenseMap<uint64_t, StringRef> ModuleIdMap; 799 800 /// Original source file name recorded in a bitcode record. 801 std::string SourceFileName; 802 803 public: 804 ModuleSummaryIndexBitcodeReader( 805 BitstreamCursor Stream, bool CheckGlobalValSummaryPresenceOnly = false); 806 807 /// Check if the parser has encountered a summary section. 808 bool foundGlobalValSummary() { return SeenGlobalValSummary; } 809 810 /// \brief Main interface to parsing a bitcode buffer. 811 /// \returns true if an error occurred. 812 Error parseSummaryIndexInto(ModuleSummaryIndex *I, StringRef ModulePath); 813 814 private: 815 Error parseModule(StringRef ModulePath); 816 Error parseValueSymbolTable( 817 uint64_t Offset, 818 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap); 819 Error parseEntireSummary(StringRef ModulePath); 820 Error parseModuleStringTable(); 821 std::pair<GlobalValue::GUID, GlobalValue::GUID> 822 823 getGUIDFromValueId(unsigned ValueId); 824 std::pair<GlobalValue::GUID, CalleeInfo::HotnessType> 825 readCallGraphEdge(const SmallVector<uint64_t, 64> &Record, unsigned int &I, 826 bool IsOldProfileFormat, bool HasProfile); 827 }; 828 829 } // end anonymous namespace 830 831 std::error_code llvm::errorToErrorCodeAndEmitErrors(LLVMContext &Ctx, 832 Error Err) { 833 if (Err) { 834 std::error_code EC; 835 handleAllErrors(std::move(Err), [&](ErrorInfoBase &EIB) { 836 EC = EIB.convertToErrorCode(); 837 Ctx.emitError(EIB.message()); 838 }); 839 return EC; 840 } 841 return std::error_code(); 842 } 843 844 BitcodeReader::BitcodeReader(BitstreamCursor Stream, LLVMContext &Context) 845 : BitcodeReaderBase(std::move(Stream)), Context(Context), ValueList(Context), 846 MetadataList(Context) {} 847 848 Error BitcodeReader::materializeForwardReferencedFunctions() { 849 if (WillMaterializeAllForwardRefs) 850 return Error::success(); 851 852 // Prevent recursion. 853 WillMaterializeAllForwardRefs = true; 854 855 while (!BasicBlockFwdRefQueue.empty()) { 856 Function *F = BasicBlockFwdRefQueue.front(); 857 BasicBlockFwdRefQueue.pop_front(); 858 assert(F && "Expected valid function"); 859 if (!BasicBlockFwdRefs.count(F)) 860 // Already materialized. 861 continue; 862 863 // Check for a function that isn't materializable to prevent an infinite 864 // loop. When parsing a blockaddress stored in a global variable, there 865 // isn't a trivial way to check if a function will have a body without a 866 // linear search through FunctionsWithBodies, so just check it here. 867 if (!F->isMaterializable()) 868 return error("Never resolved function from blockaddress"); 869 870 // Try to materialize F. 871 if (Error Err = materialize(F)) 872 return Err; 873 } 874 assert(BasicBlockFwdRefs.empty() && "Function missing from queue"); 875 876 // Reset state. 877 WillMaterializeAllForwardRefs = false; 878 return Error::success(); 879 } 880 881 //===----------------------------------------------------------------------===// 882 // Helper functions to implement forward reference resolution, etc. 883 //===----------------------------------------------------------------------===// 884 885 static bool hasImplicitComdat(size_t Val) { 886 switch (Val) { 887 default: 888 return false; 889 case 1: // Old WeakAnyLinkage 890 case 4: // Old LinkOnceAnyLinkage 891 case 10: // Old WeakODRLinkage 892 case 11: // Old LinkOnceODRLinkage 893 return true; 894 } 895 } 896 897 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) { 898 switch (Val) { 899 default: // Map unknown/new linkages to external 900 case 0: 901 return GlobalValue::ExternalLinkage; 902 case 2: 903 return GlobalValue::AppendingLinkage; 904 case 3: 905 return GlobalValue::InternalLinkage; 906 case 5: 907 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage 908 case 6: 909 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage 910 case 7: 911 return GlobalValue::ExternalWeakLinkage; 912 case 8: 913 return GlobalValue::CommonLinkage; 914 case 9: 915 return GlobalValue::PrivateLinkage; 916 case 12: 917 return GlobalValue::AvailableExternallyLinkage; 918 case 13: 919 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage 920 case 14: 921 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage 922 case 15: 923 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage 924 case 1: // Old value with implicit comdat. 925 case 16: 926 return GlobalValue::WeakAnyLinkage; 927 case 10: // Old value with implicit comdat. 928 case 17: 929 return GlobalValue::WeakODRLinkage; 930 case 4: // Old value with implicit comdat. 931 case 18: 932 return GlobalValue::LinkOnceAnyLinkage; 933 case 11: // Old value with implicit comdat. 934 case 19: 935 return GlobalValue::LinkOnceODRLinkage; 936 } 937 } 938 939 /// Decode the flags for GlobalValue in the summary. 940 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags, 941 uint64_t Version) { 942 // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage 943 // like getDecodedLinkage() above. Any future change to the linkage enum and 944 // to getDecodedLinkage() will need to be taken into account here as above. 945 auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits 946 RawFlags = RawFlags >> 4; 947 bool NoRename = RawFlags & 0x1; 948 bool IsNotViableToInline = RawFlags & 0x2; 949 bool HasInlineAsmMaybeReferencingInternal = RawFlags & 0x4; 950 return GlobalValueSummary::GVFlags(Linkage, NoRename, 951 HasInlineAsmMaybeReferencingInternal, 952 IsNotViableToInline); 953 } 954 955 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) { 956 switch (Val) { 957 default: // Map unknown visibilities to default. 958 case 0: return GlobalValue::DefaultVisibility; 959 case 1: return GlobalValue::HiddenVisibility; 960 case 2: return GlobalValue::ProtectedVisibility; 961 } 962 } 963 964 static GlobalValue::DLLStorageClassTypes 965 getDecodedDLLStorageClass(unsigned Val) { 966 switch (Val) { 967 default: // Map unknown values to default. 968 case 0: return GlobalValue::DefaultStorageClass; 969 case 1: return GlobalValue::DLLImportStorageClass; 970 case 2: return GlobalValue::DLLExportStorageClass; 971 } 972 } 973 974 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) { 975 switch (Val) { 976 case 0: return GlobalVariable::NotThreadLocal; 977 default: // Map unknown non-zero value to general dynamic. 978 case 1: return GlobalVariable::GeneralDynamicTLSModel; 979 case 2: return GlobalVariable::LocalDynamicTLSModel; 980 case 3: return GlobalVariable::InitialExecTLSModel; 981 case 4: return GlobalVariable::LocalExecTLSModel; 982 } 983 } 984 985 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) { 986 switch (Val) { 987 default: // Map unknown to UnnamedAddr::None. 988 case 0: return GlobalVariable::UnnamedAddr::None; 989 case 1: return GlobalVariable::UnnamedAddr::Global; 990 case 2: return GlobalVariable::UnnamedAddr::Local; 991 } 992 } 993 994 static int getDecodedCastOpcode(unsigned Val) { 995 switch (Val) { 996 default: return -1; 997 case bitc::CAST_TRUNC : return Instruction::Trunc; 998 case bitc::CAST_ZEXT : return Instruction::ZExt; 999 case bitc::CAST_SEXT : return Instruction::SExt; 1000 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 1001 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 1002 case bitc::CAST_UITOFP : return Instruction::UIToFP; 1003 case bitc::CAST_SITOFP : return Instruction::SIToFP; 1004 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 1005 case bitc::CAST_FPEXT : return Instruction::FPExt; 1006 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 1007 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 1008 case bitc::CAST_BITCAST : return Instruction::BitCast; 1009 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast; 1010 } 1011 } 1012 1013 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) { 1014 bool IsFP = Ty->isFPOrFPVectorTy(); 1015 // BinOps are only valid for int/fp or vector of int/fp types 1016 if (!IsFP && !Ty->isIntOrIntVectorTy()) 1017 return -1; 1018 1019 switch (Val) { 1020 default: 1021 return -1; 1022 case bitc::BINOP_ADD: 1023 return IsFP ? Instruction::FAdd : Instruction::Add; 1024 case bitc::BINOP_SUB: 1025 return IsFP ? Instruction::FSub : Instruction::Sub; 1026 case bitc::BINOP_MUL: 1027 return IsFP ? Instruction::FMul : Instruction::Mul; 1028 case bitc::BINOP_UDIV: 1029 return IsFP ? -1 : Instruction::UDiv; 1030 case bitc::BINOP_SDIV: 1031 return IsFP ? Instruction::FDiv : Instruction::SDiv; 1032 case bitc::BINOP_UREM: 1033 return IsFP ? -1 : Instruction::URem; 1034 case bitc::BINOP_SREM: 1035 return IsFP ? Instruction::FRem : Instruction::SRem; 1036 case bitc::BINOP_SHL: 1037 return IsFP ? -1 : Instruction::Shl; 1038 case bitc::BINOP_LSHR: 1039 return IsFP ? -1 : Instruction::LShr; 1040 case bitc::BINOP_ASHR: 1041 return IsFP ? -1 : Instruction::AShr; 1042 case bitc::BINOP_AND: 1043 return IsFP ? -1 : Instruction::And; 1044 case bitc::BINOP_OR: 1045 return IsFP ? -1 : Instruction::Or; 1046 case bitc::BINOP_XOR: 1047 return IsFP ? -1 : Instruction::Xor; 1048 } 1049 } 1050 1051 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) { 1052 switch (Val) { 1053 default: return AtomicRMWInst::BAD_BINOP; 1054 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 1055 case bitc::RMW_ADD: return AtomicRMWInst::Add; 1056 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 1057 case bitc::RMW_AND: return AtomicRMWInst::And; 1058 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 1059 case bitc::RMW_OR: return AtomicRMWInst::Or; 1060 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 1061 case bitc::RMW_MAX: return AtomicRMWInst::Max; 1062 case bitc::RMW_MIN: return AtomicRMWInst::Min; 1063 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 1064 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 1065 } 1066 } 1067 1068 static AtomicOrdering getDecodedOrdering(unsigned Val) { 1069 switch (Val) { 1070 case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic; 1071 case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered; 1072 case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic; 1073 case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire; 1074 case bitc::ORDERING_RELEASE: return AtomicOrdering::Release; 1075 case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease; 1076 default: // Map unknown orderings to sequentially-consistent. 1077 case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent; 1078 } 1079 } 1080 1081 static SynchronizationScope getDecodedSynchScope(unsigned Val) { 1082 switch (Val) { 1083 case bitc::SYNCHSCOPE_SINGLETHREAD: return SingleThread; 1084 default: // Map unknown scopes to cross-thread. 1085 case bitc::SYNCHSCOPE_CROSSTHREAD: return CrossThread; 1086 } 1087 } 1088 1089 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) { 1090 switch (Val) { 1091 default: // Map unknown selection kinds to any. 1092 case bitc::COMDAT_SELECTION_KIND_ANY: 1093 return Comdat::Any; 1094 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH: 1095 return Comdat::ExactMatch; 1096 case bitc::COMDAT_SELECTION_KIND_LARGEST: 1097 return Comdat::Largest; 1098 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES: 1099 return Comdat::NoDuplicates; 1100 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE: 1101 return Comdat::SameSize; 1102 } 1103 } 1104 1105 static FastMathFlags getDecodedFastMathFlags(unsigned Val) { 1106 FastMathFlags FMF; 1107 if (0 != (Val & FastMathFlags::UnsafeAlgebra)) 1108 FMF.setUnsafeAlgebra(); 1109 if (0 != (Val & FastMathFlags::NoNaNs)) 1110 FMF.setNoNaNs(); 1111 if (0 != (Val & FastMathFlags::NoInfs)) 1112 FMF.setNoInfs(); 1113 if (0 != (Val & FastMathFlags::NoSignedZeros)) 1114 FMF.setNoSignedZeros(); 1115 if (0 != (Val & FastMathFlags::AllowReciprocal)) 1116 FMF.setAllowReciprocal(); 1117 return FMF; 1118 } 1119 1120 static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) { 1121 switch (Val) { 1122 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break; 1123 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break; 1124 } 1125 } 1126 1127 namespace llvm { 1128 namespace { 1129 1130 /// \brief A class for maintaining the slot number definition 1131 /// as a placeholder for the actual definition for forward constants defs. 1132 class ConstantPlaceHolder : public ConstantExpr { 1133 void operator=(const ConstantPlaceHolder &) = delete; 1134 1135 public: 1136 // allocate space for exactly one operand 1137 void *operator new(size_t s) { return User::operator new(s, 1); } 1138 explicit ConstantPlaceHolder(Type *Ty, LLVMContext &Context) 1139 : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) { 1140 Op<0>() = UndefValue::get(Type::getInt32Ty(Context)); 1141 } 1142 1143 /// \brief Methods to support type inquiry through isa, cast, and dyn_cast. 1144 static bool classof(const Value *V) { 1145 return isa<ConstantExpr>(V) && 1146 cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1; 1147 } 1148 1149 /// Provide fast operand accessors 1150 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); 1151 }; 1152 1153 } // end anonymous namespace 1154 1155 // FIXME: can we inherit this from ConstantExpr? 1156 template <> 1157 struct OperandTraits<ConstantPlaceHolder> : 1158 public FixedNumOperandTraits<ConstantPlaceHolder, 1> { 1159 }; 1160 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantPlaceHolder, Value) 1161 1162 } // end namespace llvm 1163 1164 void BitcodeReaderValueList::assignValue(Value *V, unsigned Idx) { 1165 if (Idx == size()) { 1166 push_back(V); 1167 return; 1168 } 1169 1170 if (Idx >= size()) 1171 resize(Idx+1); 1172 1173 WeakVH &OldV = ValuePtrs[Idx]; 1174 if (!OldV) { 1175 OldV = V; 1176 return; 1177 } 1178 1179 // Handle constants and non-constants (e.g. instrs) differently for 1180 // efficiency. 1181 if (Constant *PHC = dyn_cast<Constant>(&*OldV)) { 1182 ResolveConstants.push_back(std::make_pair(PHC, Idx)); 1183 OldV = V; 1184 } else { 1185 // If there was a forward reference to this value, replace it. 1186 Value *PrevVal = OldV; 1187 OldV->replaceAllUsesWith(V); 1188 delete PrevVal; 1189 } 1190 } 1191 1192 Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx, 1193 Type *Ty) { 1194 if (Idx >= size()) 1195 resize(Idx + 1); 1196 1197 if (Value *V = ValuePtrs[Idx]) { 1198 if (Ty != V->getType()) 1199 report_fatal_error("Type mismatch in constant table!"); 1200 return cast<Constant>(V); 1201 } 1202 1203 // Create and return a placeholder, which will later be RAUW'd. 1204 Constant *C = new ConstantPlaceHolder(Ty, Context); 1205 ValuePtrs[Idx] = C; 1206 return C; 1207 } 1208 1209 Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, Type *Ty) { 1210 // Bail out for a clearly invalid value. This would make us call resize(0) 1211 if (Idx == std::numeric_limits<unsigned>::max()) 1212 return nullptr; 1213 1214 if (Idx >= size()) 1215 resize(Idx + 1); 1216 1217 if (Value *V = ValuePtrs[Idx]) { 1218 // If the types don't match, it's invalid. 1219 if (Ty && Ty != V->getType()) 1220 return nullptr; 1221 return V; 1222 } 1223 1224 // No type specified, must be invalid reference. 1225 if (!Ty) return nullptr; 1226 1227 // Create and return a placeholder, which will later be RAUW'd. 1228 Value *V = new Argument(Ty); 1229 ValuePtrs[Idx] = V; 1230 return V; 1231 } 1232 1233 /// Once all constants are read, this method bulk resolves any forward 1234 /// references. The idea behind this is that we sometimes get constants (such 1235 /// as large arrays) which reference *many* forward ref constants. Replacing 1236 /// each of these causes a lot of thrashing when building/reuniquing the 1237 /// constant. Instead of doing this, we look at all the uses and rewrite all 1238 /// the place holders at once for any constant that uses a placeholder. 1239 void BitcodeReaderValueList::resolveConstantForwardRefs() { 1240 // Sort the values by-pointer so that they are efficient to look up with a 1241 // binary search. 1242 std::sort(ResolveConstants.begin(), ResolveConstants.end()); 1243 1244 SmallVector<Constant*, 64> NewOps; 1245 1246 while (!ResolveConstants.empty()) { 1247 Value *RealVal = operator[](ResolveConstants.back().second); 1248 Constant *Placeholder = ResolveConstants.back().first; 1249 ResolveConstants.pop_back(); 1250 1251 // Loop over all users of the placeholder, updating them to reference the 1252 // new value. If they reference more than one placeholder, update them all 1253 // at once. 1254 while (!Placeholder->use_empty()) { 1255 auto UI = Placeholder->user_begin(); 1256 User *U = *UI; 1257 1258 // If the using object isn't uniqued, just update the operands. This 1259 // handles instructions and initializers for global variables. 1260 if (!isa<Constant>(U) || isa<GlobalValue>(U)) { 1261 UI.getUse().set(RealVal); 1262 continue; 1263 } 1264 1265 // Otherwise, we have a constant that uses the placeholder. Replace that 1266 // constant with a new constant that has *all* placeholder uses updated. 1267 Constant *UserC = cast<Constant>(U); 1268 for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end(); 1269 I != E; ++I) { 1270 Value *NewOp; 1271 if (!isa<ConstantPlaceHolder>(*I)) { 1272 // Not a placeholder reference. 1273 NewOp = *I; 1274 } else if (*I == Placeholder) { 1275 // Common case is that it just references this one placeholder. 1276 NewOp = RealVal; 1277 } else { 1278 // Otherwise, look up the placeholder in ResolveConstants. 1279 ResolveConstantsTy::iterator It = 1280 std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(), 1281 std::pair<Constant*, unsigned>(cast<Constant>(*I), 1282 0)); 1283 assert(It != ResolveConstants.end() && It->first == *I); 1284 NewOp = operator[](It->second); 1285 } 1286 1287 NewOps.push_back(cast<Constant>(NewOp)); 1288 } 1289 1290 // Make the new constant. 1291 Constant *NewC; 1292 if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) { 1293 NewC = ConstantArray::get(UserCA->getType(), NewOps); 1294 } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) { 1295 NewC = ConstantStruct::get(UserCS->getType(), NewOps); 1296 } else if (isa<ConstantVector>(UserC)) { 1297 NewC = ConstantVector::get(NewOps); 1298 } else { 1299 assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr."); 1300 NewC = cast<ConstantExpr>(UserC)->getWithOperands(NewOps); 1301 } 1302 1303 UserC->replaceAllUsesWith(NewC); 1304 UserC->destroyConstant(); 1305 NewOps.clear(); 1306 } 1307 1308 // Update all ValueHandles, they should be the only users at this point. 1309 Placeholder->replaceAllUsesWith(RealVal); 1310 delete Placeholder; 1311 } 1312 } 1313 1314 void BitcodeReaderMetadataList::assignValue(Metadata *MD, unsigned Idx) { 1315 if (Idx == size()) { 1316 push_back(MD); 1317 return; 1318 } 1319 1320 if (Idx >= size()) 1321 resize(Idx+1); 1322 1323 TrackingMDRef &OldMD = MetadataPtrs[Idx]; 1324 if (!OldMD) { 1325 OldMD.reset(MD); 1326 return; 1327 } 1328 1329 // If there was a forward reference to this value, replace it. 1330 TempMDTuple PrevMD(cast<MDTuple>(OldMD.get())); 1331 PrevMD->replaceAllUsesWith(MD); 1332 --NumFwdRefs; 1333 } 1334 1335 Metadata *BitcodeReaderMetadataList::getMetadataFwdRef(unsigned Idx) { 1336 if (Idx >= size()) 1337 resize(Idx + 1); 1338 1339 if (Metadata *MD = MetadataPtrs[Idx]) 1340 return MD; 1341 1342 // Track forward refs to be resolved later. 1343 if (AnyFwdRefs) { 1344 MinFwdRef = std::min(MinFwdRef, Idx); 1345 MaxFwdRef = std::max(MaxFwdRef, Idx); 1346 } else { 1347 AnyFwdRefs = true; 1348 MinFwdRef = MaxFwdRef = Idx; 1349 } 1350 ++NumFwdRefs; 1351 1352 // Create and return a placeholder, which will later be RAUW'd. 1353 Metadata *MD = MDNode::getTemporary(Context, None).release(); 1354 MetadataPtrs[Idx].reset(MD); 1355 return MD; 1356 } 1357 1358 Metadata *BitcodeReaderMetadataList::getMetadataIfResolved(unsigned Idx) { 1359 Metadata *MD = lookup(Idx); 1360 if (auto *N = dyn_cast_or_null<MDNode>(MD)) 1361 if (!N->isResolved()) 1362 return nullptr; 1363 return MD; 1364 } 1365 1366 MDNode *BitcodeReaderMetadataList::getMDNodeFwdRefOrNull(unsigned Idx) { 1367 return dyn_cast_or_null<MDNode>(getMetadataFwdRef(Idx)); 1368 } 1369 1370 void BitcodeReaderMetadataList::tryToResolveCycles() { 1371 if (NumFwdRefs) 1372 // Still forward references... can't resolve cycles. 1373 return; 1374 1375 bool DidReplaceTypeRefs = false; 1376 1377 // Give up on finding a full definition for any forward decls that remain. 1378 for (const auto &Ref : OldTypeRefs.FwdDecls) 1379 OldTypeRefs.Final.insert(Ref); 1380 OldTypeRefs.FwdDecls.clear(); 1381 1382 // Upgrade from old type ref arrays. In strange cases, this could add to 1383 // OldTypeRefs.Unknown. 1384 for (const auto &Array : OldTypeRefs.Arrays) { 1385 DidReplaceTypeRefs = true; 1386 Array.second->replaceAllUsesWith(resolveTypeRefArray(Array.first.get())); 1387 } 1388 OldTypeRefs.Arrays.clear(); 1389 1390 // Replace old string-based type refs with the resolved node, if possible. 1391 // If we haven't seen the node, leave it to the verifier to complain about 1392 // the invalid string reference. 1393 for (const auto &Ref : OldTypeRefs.Unknown) { 1394 DidReplaceTypeRefs = true; 1395 if (DICompositeType *CT = OldTypeRefs.Final.lookup(Ref.first)) 1396 Ref.second->replaceAllUsesWith(CT); 1397 else 1398 Ref.second->replaceAllUsesWith(Ref.first); 1399 } 1400 OldTypeRefs.Unknown.clear(); 1401 1402 // Make sure all the upgraded types are resolved. 1403 if (DidReplaceTypeRefs) { 1404 AnyFwdRefs = true; 1405 MinFwdRef = 0; 1406 MaxFwdRef = MetadataPtrs.size() - 1; 1407 } 1408 1409 if (!AnyFwdRefs) 1410 // Nothing to do. 1411 return; 1412 1413 // Resolve any cycles. 1414 for (unsigned I = MinFwdRef, E = MaxFwdRef + 1; I != E; ++I) { 1415 auto &MD = MetadataPtrs[I]; 1416 auto *N = dyn_cast_or_null<MDNode>(MD); 1417 if (!N) 1418 continue; 1419 1420 assert(!N->isTemporary() && "Unexpected forward reference"); 1421 N->resolveCycles(); 1422 } 1423 1424 // Make sure we return early again until there's another forward ref. 1425 AnyFwdRefs = false; 1426 } 1427 1428 void BitcodeReaderMetadataList::addTypeRef(MDString &UUID, 1429 DICompositeType &CT) { 1430 assert(CT.getRawIdentifier() == &UUID && "Mismatched UUID"); 1431 if (CT.isForwardDecl()) 1432 OldTypeRefs.FwdDecls.insert(std::make_pair(&UUID, &CT)); 1433 else 1434 OldTypeRefs.Final.insert(std::make_pair(&UUID, &CT)); 1435 } 1436 1437 Metadata *BitcodeReaderMetadataList::upgradeTypeRef(Metadata *MaybeUUID) { 1438 auto *UUID = dyn_cast_or_null<MDString>(MaybeUUID); 1439 if (LLVM_LIKELY(!UUID)) 1440 return MaybeUUID; 1441 1442 if (auto *CT = OldTypeRefs.Final.lookup(UUID)) 1443 return CT; 1444 1445 auto &Ref = OldTypeRefs.Unknown[UUID]; 1446 if (!Ref) 1447 Ref = MDNode::getTemporary(Context, None); 1448 return Ref.get(); 1449 } 1450 1451 Metadata *BitcodeReaderMetadataList::upgradeTypeRefArray(Metadata *MaybeTuple) { 1452 auto *Tuple = dyn_cast_or_null<MDTuple>(MaybeTuple); 1453 if (!Tuple || Tuple->isDistinct()) 1454 return MaybeTuple; 1455 1456 // Look through the array immediately if possible. 1457 if (!Tuple->isTemporary()) 1458 return resolveTypeRefArray(Tuple); 1459 1460 // Create and return a placeholder to use for now. Eventually 1461 // resolveTypeRefArrays() will be resolve this forward reference. 1462 OldTypeRefs.Arrays.emplace_back( 1463 std::piecewise_construct, std::forward_as_tuple(Tuple), 1464 std::forward_as_tuple(MDTuple::getTemporary(Context, None))); 1465 return OldTypeRefs.Arrays.back().second.get(); 1466 } 1467 1468 Metadata *BitcodeReaderMetadataList::resolveTypeRefArray(Metadata *MaybeTuple) { 1469 auto *Tuple = dyn_cast_or_null<MDTuple>(MaybeTuple); 1470 if (!Tuple || Tuple->isDistinct()) 1471 return MaybeTuple; 1472 1473 // Look through the DITypeRefArray, upgrading each DITypeRef. 1474 SmallVector<Metadata *, 32> Ops; 1475 Ops.reserve(Tuple->getNumOperands()); 1476 for (Metadata *MD : Tuple->operands()) 1477 Ops.push_back(upgradeTypeRef(MD)); 1478 1479 return MDTuple::get(Context, Ops); 1480 } 1481 1482 Type *BitcodeReader::getTypeByID(unsigned ID) { 1483 // The type table size is always specified correctly. 1484 if (ID >= TypeList.size()) 1485 return nullptr; 1486 1487 if (Type *Ty = TypeList[ID]) 1488 return Ty; 1489 1490 // If we have a forward reference, the only possible case is when it is to a 1491 // named struct. Just create a placeholder for now. 1492 return TypeList[ID] = createIdentifiedStructType(Context); 1493 } 1494 1495 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context, 1496 StringRef Name) { 1497 auto *Ret = StructType::create(Context, Name); 1498 IdentifiedStructTypes.push_back(Ret); 1499 return Ret; 1500 } 1501 1502 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) { 1503 auto *Ret = StructType::create(Context); 1504 IdentifiedStructTypes.push_back(Ret); 1505 return Ret; 1506 } 1507 1508 //===----------------------------------------------------------------------===// 1509 // Functions for parsing blocks from the bitcode file 1510 //===----------------------------------------------------------------------===// 1511 1512 static uint64_t getRawAttributeMask(Attribute::AttrKind Val) { 1513 switch (Val) { 1514 case Attribute::EndAttrKinds: 1515 llvm_unreachable("Synthetic enumerators which should never get here"); 1516 1517 case Attribute::None: return 0; 1518 case Attribute::ZExt: return 1 << 0; 1519 case Attribute::SExt: return 1 << 1; 1520 case Attribute::NoReturn: return 1 << 2; 1521 case Attribute::InReg: return 1 << 3; 1522 case Attribute::StructRet: return 1 << 4; 1523 case Attribute::NoUnwind: return 1 << 5; 1524 case Attribute::NoAlias: return 1 << 6; 1525 case Attribute::ByVal: return 1 << 7; 1526 case Attribute::Nest: return 1 << 8; 1527 case Attribute::ReadNone: return 1 << 9; 1528 case Attribute::ReadOnly: return 1 << 10; 1529 case Attribute::NoInline: return 1 << 11; 1530 case Attribute::AlwaysInline: return 1 << 12; 1531 case Attribute::OptimizeForSize: return 1 << 13; 1532 case Attribute::StackProtect: return 1 << 14; 1533 case Attribute::StackProtectReq: return 1 << 15; 1534 case Attribute::Alignment: return 31 << 16; 1535 case Attribute::NoCapture: return 1 << 21; 1536 case Attribute::NoRedZone: return 1 << 22; 1537 case Attribute::NoImplicitFloat: return 1 << 23; 1538 case Attribute::Naked: return 1 << 24; 1539 case Attribute::InlineHint: return 1 << 25; 1540 case Attribute::StackAlignment: return 7 << 26; 1541 case Attribute::ReturnsTwice: return 1 << 29; 1542 case Attribute::UWTable: return 1 << 30; 1543 case Attribute::NonLazyBind: return 1U << 31; 1544 case Attribute::SanitizeAddress: return 1ULL << 32; 1545 case Attribute::MinSize: return 1ULL << 33; 1546 case Attribute::NoDuplicate: return 1ULL << 34; 1547 case Attribute::StackProtectStrong: return 1ULL << 35; 1548 case Attribute::SanitizeThread: return 1ULL << 36; 1549 case Attribute::SanitizeMemory: return 1ULL << 37; 1550 case Attribute::NoBuiltin: return 1ULL << 38; 1551 case Attribute::Returned: return 1ULL << 39; 1552 case Attribute::Cold: return 1ULL << 40; 1553 case Attribute::Builtin: return 1ULL << 41; 1554 case Attribute::OptimizeNone: return 1ULL << 42; 1555 case Attribute::InAlloca: return 1ULL << 43; 1556 case Attribute::NonNull: return 1ULL << 44; 1557 case Attribute::JumpTable: return 1ULL << 45; 1558 case Attribute::Convergent: return 1ULL << 46; 1559 case Attribute::SafeStack: return 1ULL << 47; 1560 case Attribute::NoRecurse: return 1ULL << 48; 1561 case Attribute::InaccessibleMemOnly: return 1ULL << 49; 1562 case Attribute::InaccessibleMemOrArgMemOnly: return 1ULL << 50; 1563 case Attribute::SwiftSelf: return 1ULL << 51; 1564 case Attribute::SwiftError: return 1ULL << 52; 1565 case Attribute::WriteOnly: return 1ULL << 53; 1566 case Attribute::Dereferenceable: 1567 llvm_unreachable("dereferenceable attribute not supported in raw format"); 1568 break; 1569 case Attribute::DereferenceableOrNull: 1570 llvm_unreachable("dereferenceable_or_null attribute not supported in raw " 1571 "format"); 1572 break; 1573 case Attribute::ArgMemOnly: 1574 llvm_unreachable("argmemonly attribute not supported in raw format"); 1575 break; 1576 case Attribute::AllocSize: 1577 llvm_unreachable("allocsize not supported in raw format"); 1578 break; 1579 } 1580 llvm_unreachable("Unsupported attribute type"); 1581 } 1582 1583 static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) { 1584 if (!Val) return; 1585 1586 for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds; 1587 I = Attribute::AttrKind(I + 1)) { 1588 if (I == Attribute::Dereferenceable || 1589 I == Attribute::DereferenceableOrNull || 1590 I == Attribute::ArgMemOnly || 1591 I == Attribute::AllocSize) 1592 continue; 1593 if (uint64_t A = (Val & getRawAttributeMask(I))) { 1594 if (I == Attribute::Alignment) 1595 B.addAlignmentAttr(1ULL << ((A >> 16) - 1)); 1596 else if (I == Attribute::StackAlignment) 1597 B.addStackAlignmentAttr(1ULL << ((A >> 26)-1)); 1598 else 1599 B.addAttribute(I); 1600 } 1601 } 1602 } 1603 1604 /// \brief This fills an AttrBuilder object with the LLVM attributes that have 1605 /// been decoded from the given integer. This function must stay in sync with 1606 /// 'encodeLLVMAttributesForBitcode'. 1607 static void decodeLLVMAttributesForBitcode(AttrBuilder &B, 1608 uint64_t EncodedAttrs) { 1609 // FIXME: Remove in 4.0. 1610 1611 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift 1612 // the bits above 31 down by 11 bits. 1613 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; 1614 assert((!Alignment || isPowerOf2_32(Alignment)) && 1615 "Alignment must be a power of two."); 1616 1617 if (Alignment) 1618 B.addAlignmentAttr(Alignment); 1619 addRawAttributeValue(B, ((EncodedAttrs & (0xfffffULL << 32)) >> 11) | 1620 (EncodedAttrs & 0xffff)); 1621 } 1622 1623 Error BitcodeReader::parseAttributeBlock() { 1624 if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 1625 return error("Invalid record"); 1626 1627 if (!MAttributes.empty()) 1628 return error("Invalid multiple blocks"); 1629 1630 SmallVector<uint64_t, 64> Record; 1631 1632 SmallVector<AttributeSet, 8> Attrs; 1633 1634 // Read all the records. 1635 while (true) { 1636 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1637 1638 switch (Entry.Kind) { 1639 case BitstreamEntry::SubBlock: // Handled for us already. 1640 case BitstreamEntry::Error: 1641 return error("Malformed block"); 1642 case BitstreamEntry::EndBlock: 1643 return Error::success(); 1644 case BitstreamEntry::Record: 1645 // The interesting case. 1646 break; 1647 } 1648 1649 // Read a record. 1650 Record.clear(); 1651 switch (Stream.readRecord(Entry.ID, Record)) { 1652 default: // Default behavior: ignore. 1653 break; 1654 case bitc::PARAMATTR_CODE_ENTRY_OLD: { // ENTRY: [paramidx0, attr0, ...] 1655 // FIXME: Remove in 4.0. 1656 if (Record.size() & 1) 1657 return error("Invalid record"); 1658 1659 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1660 AttrBuilder B; 1661 decodeLLVMAttributesForBitcode(B, Record[i+1]); 1662 Attrs.push_back(AttributeSet::get(Context, Record[i], B)); 1663 } 1664 1665 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 1666 Attrs.clear(); 1667 break; 1668 } 1669 case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [attrgrp0, attrgrp1, ...] 1670 for (unsigned i = 0, e = Record.size(); i != e; ++i) 1671 Attrs.push_back(MAttributeGroups[Record[i]]); 1672 1673 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 1674 Attrs.clear(); 1675 break; 1676 } 1677 } 1678 } 1679 } 1680 1681 // Returns Attribute::None on unrecognized codes. 1682 static Attribute::AttrKind getAttrFromCode(uint64_t Code) { 1683 switch (Code) { 1684 default: 1685 return Attribute::None; 1686 case bitc::ATTR_KIND_ALIGNMENT: 1687 return Attribute::Alignment; 1688 case bitc::ATTR_KIND_ALWAYS_INLINE: 1689 return Attribute::AlwaysInline; 1690 case bitc::ATTR_KIND_ARGMEMONLY: 1691 return Attribute::ArgMemOnly; 1692 case bitc::ATTR_KIND_BUILTIN: 1693 return Attribute::Builtin; 1694 case bitc::ATTR_KIND_BY_VAL: 1695 return Attribute::ByVal; 1696 case bitc::ATTR_KIND_IN_ALLOCA: 1697 return Attribute::InAlloca; 1698 case bitc::ATTR_KIND_COLD: 1699 return Attribute::Cold; 1700 case bitc::ATTR_KIND_CONVERGENT: 1701 return Attribute::Convergent; 1702 case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY: 1703 return Attribute::InaccessibleMemOnly; 1704 case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY: 1705 return Attribute::InaccessibleMemOrArgMemOnly; 1706 case bitc::ATTR_KIND_INLINE_HINT: 1707 return Attribute::InlineHint; 1708 case bitc::ATTR_KIND_IN_REG: 1709 return Attribute::InReg; 1710 case bitc::ATTR_KIND_JUMP_TABLE: 1711 return Attribute::JumpTable; 1712 case bitc::ATTR_KIND_MIN_SIZE: 1713 return Attribute::MinSize; 1714 case bitc::ATTR_KIND_NAKED: 1715 return Attribute::Naked; 1716 case bitc::ATTR_KIND_NEST: 1717 return Attribute::Nest; 1718 case bitc::ATTR_KIND_NO_ALIAS: 1719 return Attribute::NoAlias; 1720 case bitc::ATTR_KIND_NO_BUILTIN: 1721 return Attribute::NoBuiltin; 1722 case bitc::ATTR_KIND_NO_CAPTURE: 1723 return Attribute::NoCapture; 1724 case bitc::ATTR_KIND_NO_DUPLICATE: 1725 return Attribute::NoDuplicate; 1726 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: 1727 return Attribute::NoImplicitFloat; 1728 case bitc::ATTR_KIND_NO_INLINE: 1729 return Attribute::NoInline; 1730 case bitc::ATTR_KIND_NO_RECURSE: 1731 return Attribute::NoRecurse; 1732 case bitc::ATTR_KIND_NON_LAZY_BIND: 1733 return Attribute::NonLazyBind; 1734 case bitc::ATTR_KIND_NON_NULL: 1735 return Attribute::NonNull; 1736 case bitc::ATTR_KIND_DEREFERENCEABLE: 1737 return Attribute::Dereferenceable; 1738 case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL: 1739 return Attribute::DereferenceableOrNull; 1740 case bitc::ATTR_KIND_ALLOC_SIZE: 1741 return Attribute::AllocSize; 1742 case bitc::ATTR_KIND_NO_RED_ZONE: 1743 return Attribute::NoRedZone; 1744 case bitc::ATTR_KIND_NO_RETURN: 1745 return Attribute::NoReturn; 1746 case bitc::ATTR_KIND_NO_UNWIND: 1747 return Attribute::NoUnwind; 1748 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: 1749 return Attribute::OptimizeForSize; 1750 case bitc::ATTR_KIND_OPTIMIZE_NONE: 1751 return Attribute::OptimizeNone; 1752 case bitc::ATTR_KIND_READ_NONE: 1753 return Attribute::ReadNone; 1754 case bitc::ATTR_KIND_READ_ONLY: 1755 return Attribute::ReadOnly; 1756 case bitc::ATTR_KIND_RETURNED: 1757 return Attribute::Returned; 1758 case bitc::ATTR_KIND_RETURNS_TWICE: 1759 return Attribute::ReturnsTwice; 1760 case bitc::ATTR_KIND_S_EXT: 1761 return Attribute::SExt; 1762 case bitc::ATTR_KIND_STACK_ALIGNMENT: 1763 return Attribute::StackAlignment; 1764 case bitc::ATTR_KIND_STACK_PROTECT: 1765 return Attribute::StackProtect; 1766 case bitc::ATTR_KIND_STACK_PROTECT_REQ: 1767 return Attribute::StackProtectReq; 1768 case bitc::ATTR_KIND_STACK_PROTECT_STRONG: 1769 return Attribute::StackProtectStrong; 1770 case bitc::ATTR_KIND_SAFESTACK: 1771 return Attribute::SafeStack; 1772 case bitc::ATTR_KIND_STRUCT_RET: 1773 return Attribute::StructRet; 1774 case bitc::ATTR_KIND_SANITIZE_ADDRESS: 1775 return Attribute::SanitizeAddress; 1776 case bitc::ATTR_KIND_SANITIZE_THREAD: 1777 return Attribute::SanitizeThread; 1778 case bitc::ATTR_KIND_SANITIZE_MEMORY: 1779 return Attribute::SanitizeMemory; 1780 case bitc::ATTR_KIND_SWIFT_ERROR: 1781 return Attribute::SwiftError; 1782 case bitc::ATTR_KIND_SWIFT_SELF: 1783 return Attribute::SwiftSelf; 1784 case bitc::ATTR_KIND_UW_TABLE: 1785 return Attribute::UWTable; 1786 case bitc::ATTR_KIND_WRITEONLY: 1787 return Attribute::WriteOnly; 1788 case bitc::ATTR_KIND_Z_EXT: 1789 return Attribute::ZExt; 1790 } 1791 } 1792 1793 Error BitcodeReader::parseAlignmentValue(uint64_t Exponent, 1794 unsigned &Alignment) { 1795 // Note: Alignment in bitcode files is incremented by 1, so that zero 1796 // can be used for default alignment. 1797 if (Exponent > Value::MaxAlignmentExponent + 1) 1798 return error("Invalid alignment value"); 1799 Alignment = (1 << static_cast<unsigned>(Exponent)) >> 1; 1800 return Error::success(); 1801 } 1802 1803 Error BitcodeReader::parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind) { 1804 *Kind = getAttrFromCode(Code); 1805 if (*Kind == Attribute::None) 1806 return error("Unknown attribute kind (" + Twine(Code) + ")"); 1807 return Error::success(); 1808 } 1809 1810 Error BitcodeReader::parseAttributeGroupBlock() { 1811 if (Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) 1812 return error("Invalid record"); 1813 1814 if (!MAttributeGroups.empty()) 1815 return error("Invalid multiple blocks"); 1816 1817 SmallVector<uint64_t, 64> Record; 1818 1819 // Read all the records. 1820 while (true) { 1821 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1822 1823 switch (Entry.Kind) { 1824 case BitstreamEntry::SubBlock: // Handled for us already. 1825 case BitstreamEntry::Error: 1826 return error("Malformed block"); 1827 case BitstreamEntry::EndBlock: 1828 return Error::success(); 1829 case BitstreamEntry::Record: 1830 // The interesting case. 1831 break; 1832 } 1833 1834 // Read a record. 1835 Record.clear(); 1836 switch (Stream.readRecord(Entry.ID, Record)) { 1837 default: // Default behavior: ignore. 1838 break; 1839 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] 1840 if (Record.size() < 3) 1841 return error("Invalid record"); 1842 1843 uint64_t GrpID = Record[0]; 1844 uint64_t Idx = Record[1]; // Index of the object this attribute refers to. 1845 1846 AttrBuilder B; 1847 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1848 if (Record[i] == 0) { // Enum attribute 1849 Attribute::AttrKind Kind; 1850 if (Error Err = parseAttrKind(Record[++i], &Kind)) 1851 return Err; 1852 1853 B.addAttribute(Kind); 1854 } else if (Record[i] == 1) { // Integer attribute 1855 Attribute::AttrKind Kind; 1856 if (Error Err = parseAttrKind(Record[++i], &Kind)) 1857 return Err; 1858 if (Kind == Attribute::Alignment) 1859 B.addAlignmentAttr(Record[++i]); 1860 else if (Kind == Attribute::StackAlignment) 1861 B.addStackAlignmentAttr(Record[++i]); 1862 else if (Kind == Attribute::Dereferenceable) 1863 B.addDereferenceableAttr(Record[++i]); 1864 else if (Kind == Attribute::DereferenceableOrNull) 1865 B.addDereferenceableOrNullAttr(Record[++i]); 1866 else if (Kind == Attribute::AllocSize) 1867 B.addAllocSizeAttrFromRawRepr(Record[++i]); 1868 } else { // String attribute 1869 assert((Record[i] == 3 || Record[i] == 4) && 1870 "Invalid attribute group entry"); 1871 bool HasValue = (Record[i++] == 4); 1872 SmallString<64> KindStr; 1873 SmallString<64> ValStr; 1874 1875 while (Record[i] != 0 && i != e) 1876 KindStr += Record[i++]; 1877 assert(Record[i] == 0 && "Kind string not null terminated"); 1878 1879 if (HasValue) { 1880 // Has a value associated with it. 1881 ++i; // Skip the '0' that terminates the "kind" string. 1882 while (Record[i] != 0 && i != e) 1883 ValStr += Record[i++]; 1884 assert(Record[i] == 0 && "Value string not null terminated"); 1885 } 1886 1887 B.addAttribute(KindStr.str(), ValStr.str()); 1888 } 1889 } 1890 1891 MAttributeGroups[GrpID] = AttributeSet::get(Context, Idx, B); 1892 break; 1893 } 1894 } 1895 } 1896 } 1897 1898 Error BitcodeReader::parseTypeTable() { 1899 if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 1900 return error("Invalid record"); 1901 1902 return parseTypeTableBody(); 1903 } 1904 1905 Error BitcodeReader::parseTypeTableBody() { 1906 if (!TypeList.empty()) 1907 return error("Invalid multiple blocks"); 1908 1909 SmallVector<uint64_t, 64> Record; 1910 unsigned NumRecords = 0; 1911 1912 SmallString<64> TypeName; 1913 1914 // Read all the records for this type table. 1915 while (true) { 1916 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1917 1918 switch (Entry.Kind) { 1919 case BitstreamEntry::SubBlock: // Handled for us already. 1920 case BitstreamEntry::Error: 1921 return error("Malformed block"); 1922 case BitstreamEntry::EndBlock: 1923 if (NumRecords != TypeList.size()) 1924 return error("Malformed block"); 1925 return Error::success(); 1926 case BitstreamEntry::Record: 1927 // The interesting case. 1928 break; 1929 } 1930 1931 // Read a record. 1932 Record.clear(); 1933 Type *ResultTy = nullptr; 1934 switch (Stream.readRecord(Entry.ID, Record)) { 1935 default: 1936 return error("Invalid value"); 1937 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 1938 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 1939 // type list. This allows us to reserve space. 1940 if (Record.size() < 1) 1941 return error("Invalid record"); 1942 TypeList.resize(Record[0]); 1943 continue; 1944 case bitc::TYPE_CODE_VOID: // VOID 1945 ResultTy = Type::getVoidTy(Context); 1946 break; 1947 case bitc::TYPE_CODE_HALF: // HALF 1948 ResultTy = Type::getHalfTy(Context); 1949 break; 1950 case bitc::TYPE_CODE_FLOAT: // FLOAT 1951 ResultTy = Type::getFloatTy(Context); 1952 break; 1953 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 1954 ResultTy = Type::getDoubleTy(Context); 1955 break; 1956 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 1957 ResultTy = Type::getX86_FP80Ty(Context); 1958 break; 1959 case bitc::TYPE_CODE_FP128: // FP128 1960 ResultTy = Type::getFP128Ty(Context); 1961 break; 1962 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 1963 ResultTy = Type::getPPC_FP128Ty(Context); 1964 break; 1965 case bitc::TYPE_CODE_LABEL: // LABEL 1966 ResultTy = Type::getLabelTy(Context); 1967 break; 1968 case bitc::TYPE_CODE_METADATA: // METADATA 1969 ResultTy = Type::getMetadataTy(Context); 1970 break; 1971 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 1972 ResultTy = Type::getX86_MMXTy(Context); 1973 break; 1974 case bitc::TYPE_CODE_TOKEN: // TOKEN 1975 ResultTy = Type::getTokenTy(Context); 1976 break; 1977 case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width] 1978 if (Record.size() < 1) 1979 return error("Invalid record"); 1980 1981 uint64_t NumBits = Record[0]; 1982 if (NumBits < IntegerType::MIN_INT_BITS || 1983 NumBits > IntegerType::MAX_INT_BITS) 1984 return error("Bitwidth for integer type out of range"); 1985 ResultTy = IntegerType::get(Context, NumBits); 1986 break; 1987 } 1988 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 1989 // [pointee type, address space] 1990 if (Record.size() < 1) 1991 return error("Invalid record"); 1992 unsigned AddressSpace = 0; 1993 if (Record.size() == 2) 1994 AddressSpace = Record[1]; 1995 ResultTy = getTypeByID(Record[0]); 1996 if (!ResultTy || 1997 !PointerType::isValidElementType(ResultTy)) 1998 return error("Invalid type"); 1999 ResultTy = PointerType::get(ResultTy, AddressSpace); 2000 break; 2001 } 2002 case bitc::TYPE_CODE_FUNCTION_OLD: { 2003 // FIXME: attrid is dead, remove it in LLVM 4.0 2004 // FUNCTION: [vararg, attrid, retty, paramty x N] 2005 if (Record.size() < 3) 2006 return error("Invalid record"); 2007 SmallVector<Type*, 8> ArgTys; 2008 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 2009 if (Type *T = getTypeByID(Record[i])) 2010 ArgTys.push_back(T); 2011 else 2012 break; 2013 } 2014 2015 ResultTy = getTypeByID(Record[2]); 2016 if (!ResultTy || ArgTys.size() < Record.size()-3) 2017 return error("Invalid type"); 2018 2019 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 2020 break; 2021 } 2022 case bitc::TYPE_CODE_FUNCTION: { 2023 // FUNCTION: [vararg, retty, paramty x N] 2024 if (Record.size() < 2) 2025 return error("Invalid record"); 2026 SmallVector<Type*, 8> ArgTys; 2027 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 2028 if (Type *T = getTypeByID(Record[i])) { 2029 if (!FunctionType::isValidArgumentType(T)) 2030 return error("Invalid function argument type"); 2031 ArgTys.push_back(T); 2032 } 2033 else 2034 break; 2035 } 2036 2037 ResultTy = getTypeByID(Record[1]); 2038 if (!ResultTy || ArgTys.size() < Record.size()-2) 2039 return error("Invalid type"); 2040 2041 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 2042 break; 2043 } 2044 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 2045 if (Record.size() < 1) 2046 return error("Invalid record"); 2047 SmallVector<Type*, 8> EltTys; 2048 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 2049 if (Type *T = getTypeByID(Record[i])) 2050 EltTys.push_back(T); 2051 else 2052 break; 2053 } 2054 if (EltTys.size() != Record.size()-1) 2055 return error("Invalid type"); 2056 ResultTy = StructType::get(Context, EltTys, Record[0]); 2057 break; 2058 } 2059 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 2060 if (convertToString(Record, 0, TypeName)) 2061 return error("Invalid record"); 2062 continue; 2063 2064 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 2065 if (Record.size() < 1) 2066 return error("Invalid record"); 2067 2068 if (NumRecords >= TypeList.size()) 2069 return error("Invalid TYPE table"); 2070 2071 // Check to see if this was forward referenced, if so fill in the temp. 2072 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 2073 if (Res) { 2074 Res->setName(TypeName); 2075 TypeList[NumRecords] = nullptr; 2076 } else // Otherwise, create a new struct. 2077 Res = createIdentifiedStructType(Context, TypeName); 2078 TypeName.clear(); 2079 2080 SmallVector<Type*, 8> EltTys; 2081 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 2082 if (Type *T = getTypeByID(Record[i])) 2083 EltTys.push_back(T); 2084 else 2085 break; 2086 } 2087 if (EltTys.size() != Record.size()-1) 2088 return error("Invalid record"); 2089 Res->setBody(EltTys, Record[0]); 2090 ResultTy = Res; 2091 break; 2092 } 2093 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 2094 if (Record.size() != 1) 2095 return error("Invalid record"); 2096 2097 if (NumRecords >= TypeList.size()) 2098 return error("Invalid TYPE table"); 2099 2100 // Check to see if this was forward referenced, if so fill in the temp. 2101 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 2102 if (Res) { 2103 Res->setName(TypeName); 2104 TypeList[NumRecords] = nullptr; 2105 } else // Otherwise, create a new struct with no body. 2106 Res = createIdentifiedStructType(Context, TypeName); 2107 TypeName.clear(); 2108 ResultTy = Res; 2109 break; 2110 } 2111 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 2112 if (Record.size() < 2) 2113 return error("Invalid record"); 2114 ResultTy = getTypeByID(Record[1]); 2115 if (!ResultTy || !ArrayType::isValidElementType(ResultTy)) 2116 return error("Invalid type"); 2117 ResultTy = ArrayType::get(ResultTy, Record[0]); 2118 break; 2119 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] 2120 if (Record.size() < 2) 2121 return error("Invalid record"); 2122 if (Record[0] == 0) 2123 return error("Invalid vector length"); 2124 ResultTy = getTypeByID(Record[1]); 2125 if (!ResultTy || !StructType::isValidElementType(ResultTy)) 2126 return error("Invalid type"); 2127 ResultTy = VectorType::get(ResultTy, Record[0]); 2128 break; 2129 } 2130 2131 if (NumRecords >= TypeList.size()) 2132 return error("Invalid TYPE table"); 2133 if (TypeList[NumRecords]) 2134 return error( 2135 "Invalid TYPE table: Only named structs can be forward referenced"); 2136 assert(ResultTy && "Didn't read a type?"); 2137 TypeList[NumRecords++] = ResultTy; 2138 } 2139 } 2140 2141 Error BitcodeReader::parseOperandBundleTags() { 2142 if (Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID)) 2143 return error("Invalid record"); 2144 2145 if (!BundleTags.empty()) 2146 return error("Invalid multiple blocks"); 2147 2148 SmallVector<uint64_t, 64> Record; 2149 2150 while (true) { 2151 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2152 2153 switch (Entry.Kind) { 2154 case BitstreamEntry::SubBlock: // Handled for us already. 2155 case BitstreamEntry::Error: 2156 return error("Malformed block"); 2157 case BitstreamEntry::EndBlock: 2158 return Error::success(); 2159 case BitstreamEntry::Record: 2160 // The interesting case. 2161 break; 2162 } 2163 2164 // Tags are implicitly mapped to integers by their order. 2165 2166 if (Stream.readRecord(Entry.ID, Record) != bitc::OPERAND_BUNDLE_TAG) 2167 return error("Invalid record"); 2168 2169 // OPERAND_BUNDLE_TAG: [strchr x N] 2170 BundleTags.emplace_back(); 2171 if (convertToString(Record, 0, BundleTags.back())) 2172 return error("Invalid record"); 2173 Record.clear(); 2174 } 2175 } 2176 2177 /// Associate a value with its name from the given index in the provided record. 2178 Expected<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record, 2179 unsigned NameIndex, Triple &TT) { 2180 SmallString<128> ValueName; 2181 if (convertToString(Record, NameIndex, ValueName)) 2182 return error("Invalid record"); 2183 unsigned ValueID = Record[0]; 2184 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 2185 return error("Invalid record"); 2186 Value *V = ValueList[ValueID]; 2187 2188 StringRef NameStr(ValueName.data(), ValueName.size()); 2189 if (NameStr.find_first_of(0) != StringRef::npos) 2190 return error("Invalid value name"); 2191 V->setName(NameStr); 2192 auto *GO = dyn_cast<GlobalObject>(V); 2193 if (GO) { 2194 if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) { 2195 if (TT.isOSBinFormatMachO()) 2196 GO->setComdat(nullptr); 2197 else 2198 GO->setComdat(TheModule->getOrInsertComdat(V->getName())); 2199 } 2200 } 2201 return V; 2202 } 2203 2204 /// Helper to note and return the current location, and jump to the given 2205 /// offset. 2206 static uint64_t jumpToValueSymbolTable(uint64_t Offset, 2207 BitstreamCursor &Stream) { 2208 // Save the current parsing location so we can jump back at the end 2209 // of the VST read. 2210 uint64_t CurrentBit = Stream.GetCurrentBitNo(); 2211 Stream.JumpToBit(Offset * 32); 2212 #ifndef NDEBUG 2213 // Do some checking if we are in debug mode. 2214 BitstreamEntry Entry = Stream.advance(); 2215 assert(Entry.Kind == BitstreamEntry::SubBlock); 2216 assert(Entry.ID == bitc::VALUE_SYMTAB_BLOCK_ID); 2217 #else 2218 // In NDEBUG mode ignore the output so we don't get an unused variable 2219 // warning. 2220 Stream.advance(); 2221 #endif 2222 return CurrentBit; 2223 } 2224 2225 /// Parse the value symbol table at either the current parsing location or 2226 /// at the given bit offset if provided. 2227 Error BitcodeReader::parseValueSymbolTable(uint64_t Offset) { 2228 uint64_t CurrentBit; 2229 // Pass in the Offset to distinguish between calling for the module-level 2230 // VST (where we want to jump to the VST offset) and the function-level 2231 // VST (where we don't). 2232 if (Offset > 0) 2233 CurrentBit = jumpToValueSymbolTable(Offset, Stream); 2234 2235 // Compute the delta between the bitcode indices in the VST (the word offset 2236 // to the word-aligned ENTER_SUBBLOCK for the function block, and that 2237 // expected by the lazy reader. The reader's EnterSubBlock expects to have 2238 // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID 2239 // (size BlockIDWidth). Note that we access the stream's AbbrevID width here 2240 // just before entering the VST subblock because: 1) the EnterSubBlock 2241 // changes the AbbrevID width; 2) the VST block is nested within the same 2242 // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same 2243 // AbbrevID width before calling EnterSubBlock; and 3) when we want to 2244 // jump to the FUNCTION_BLOCK using this offset later, we don't want 2245 // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK. 2246 unsigned FuncBitcodeOffsetDelta = 2247 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 2248 2249 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 2250 return error("Invalid record"); 2251 2252 SmallVector<uint64_t, 64> Record; 2253 2254 Triple TT(TheModule->getTargetTriple()); 2255 2256 // Read all the records for this value table. 2257 SmallString<128> ValueName; 2258 2259 while (true) { 2260 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2261 2262 switch (Entry.Kind) { 2263 case BitstreamEntry::SubBlock: // Handled for us already. 2264 case BitstreamEntry::Error: 2265 return error("Malformed block"); 2266 case BitstreamEntry::EndBlock: 2267 if (Offset > 0) 2268 Stream.JumpToBit(CurrentBit); 2269 return Error::success(); 2270 case BitstreamEntry::Record: 2271 // The interesting case. 2272 break; 2273 } 2274 2275 // Read a record. 2276 Record.clear(); 2277 switch (Stream.readRecord(Entry.ID, Record)) { 2278 default: // Default behavior: unknown type. 2279 break; 2280 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 2281 Expected<Value *> ValOrErr = recordValue(Record, 1, TT); 2282 if (Error Err = ValOrErr.takeError()) 2283 return Err; 2284 ValOrErr.get(); 2285 break; 2286 } 2287 case bitc::VST_CODE_FNENTRY: { 2288 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 2289 Expected<Value *> ValOrErr = recordValue(Record, 2, TT); 2290 if (Error Err = ValOrErr.takeError()) 2291 return Err; 2292 Value *V = ValOrErr.get(); 2293 2294 auto *GO = dyn_cast<GlobalObject>(V); 2295 if (!GO) { 2296 // If this is an alias, need to get the actual Function object 2297 // it aliases, in order to set up the DeferredFunctionInfo entry below. 2298 auto *GA = dyn_cast<GlobalAlias>(V); 2299 if (GA) 2300 GO = GA->getBaseObject(); 2301 assert(GO); 2302 } 2303 2304 uint64_t FuncWordOffset = Record[1]; 2305 Function *F = dyn_cast<Function>(GO); 2306 assert(F); 2307 uint64_t FuncBitOffset = FuncWordOffset * 32; 2308 DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta; 2309 // Set the LastFunctionBlockBit to point to the last function block. 2310 // Later when parsing is resumed after function materialization, 2311 // we can simply skip that last function block. 2312 if (FuncBitOffset > LastFunctionBlockBit) 2313 LastFunctionBlockBit = FuncBitOffset; 2314 break; 2315 } 2316 case bitc::VST_CODE_BBENTRY: { 2317 if (convertToString(Record, 1, ValueName)) 2318 return error("Invalid record"); 2319 BasicBlock *BB = getBasicBlock(Record[0]); 2320 if (!BB) 2321 return error("Invalid record"); 2322 2323 BB->setName(StringRef(ValueName.data(), ValueName.size())); 2324 ValueName.clear(); 2325 break; 2326 } 2327 } 2328 } 2329 } 2330 2331 /// Parse a single METADATA_KIND record, inserting result in MDKindMap. 2332 Error BitcodeReader::parseMetadataKindRecord( 2333 SmallVectorImpl<uint64_t> &Record) { 2334 if (Record.size() < 2) 2335 return error("Invalid record"); 2336 2337 unsigned Kind = Record[0]; 2338 SmallString<8> Name(Record.begin() + 1, Record.end()); 2339 2340 unsigned NewKind = TheModule->getMDKindID(Name.str()); 2341 if (!MDKindMap.insert(std::make_pair(Kind, NewKind)).second) 2342 return error("Conflicting METADATA_KIND records"); 2343 return Error::success(); 2344 } 2345 2346 static int64_t unrotateSign(uint64_t U) { return U & 1 ? ~(U >> 1) : U >> 1; } 2347 2348 Error BitcodeReader::parseMetadataStrings(ArrayRef<uint64_t> Record, 2349 StringRef Blob, 2350 unsigned &NextMetadataNo) { 2351 // All the MDStrings in the block are emitted together in a single 2352 // record. The strings are concatenated and stored in a blob along with 2353 // their sizes. 2354 if (Record.size() != 2) 2355 return error("Invalid record: metadata strings layout"); 2356 2357 unsigned NumStrings = Record[0]; 2358 unsigned StringsOffset = Record[1]; 2359 if (!NumStrings) 2360 return error("Invalid record: metadata strings with no strings"); 2361 if (StringsOffset > Blob.size()) 2362 return error("Invalid record: metadata strings corrupt offset"); 2363 2364 StringRef Lengths = Blob.slice(0, StringsOffset); 2365 SimpleBitstreamCursor R(Lengths); 2366 2367 StringRef Strings = Blob.drop_front(StringsOffset); 2368 do { 2369 if (R.AtEndOfStream()) 2370 return error("Invalid record: metadata strings bad length"); 2371 2372 unsigned Size = R.ReadVBR(6); 2373 if (Strings.size() < Size) 2374 return error("Invalid record: metadata strings truncated chars"); 2375 2376 MetadataList.assignValue(MDString::get(Context, Strings.slice(0, Size)), 2377 NextMetadataNo++); 2378 Strings = Strings.drop_front(Size); 2379 } while (--NumStrings); 2380 2381 return Error::success(); 2382 } 2383 2384 namespace { 2385 2386 class PlaceholderQueue { 2387 // Placeholders would thrash around when moved, so store in a std::deque 2388 // instead of some sort of vector. 2389 std::deque<DistinctMDOperandPlaceholder> PHs; 2390 2391 public: 2392 DistinctMDOperandPlaceholder &getPlaceholderOp(unsigned ID); 2393 void flush(BitcodeReaderMetadataList &MetadataList); 2394 }; 2395 2396 } // end anonymous namespace 2397 2398 DistinctMDOperandPlaceholder &PlaceholderQueue::getPlaceholderOp(unsigned ID) { 2399 PHs.emplace_back(ID); 2400 return PHs.back(); 2401 } 2402 2403 void PlaceholderQueue::flush(BitcodeReaderMetadataList &MetadataList) { 2404 while (!PHs.empty()) { 2405 PHs.front().replaceUseWith( 2406 MetadataList.getMetadataFwdRef(PHs.front().getID())); 2407 PHs.pop_front(); 2408 } 2409 } 2410 2411 /// Parse a METADATA_BLOCK. If ModuleLevel is true then we are parsing 2412 /// module level metadata. 2413 Error BitcodeReader::parseMetadata(bool ModuleLevel) { 2414 assert((ModuleLevel || DeferredMetadataInfo.empty()) && 2415 "Must read all module-level metadata before function-level"); 2416 2417 IsMetadataMaterialized = true; 2418 unsigned NextMetadataNo = MetadataList.size(); 2419 2420 if (!ModuleLevel && MetadataList.hasFwdRefs()) 2421 return error("Invalid metadata: fwd refs into function blocks"); 2422 2423 if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID)) 2424 return error("Invalid record"); 2425 2426 std::vector<std::pair<DICompileUnit *, Metadata *>> CUSubprograms; 2427 SmallVector<uint64_t, 64> Record; 2428 2429 PlaceholderQueue Placeholders; 2430 bool IsDistinct; 2431 auto getMD = [&](unsigned ID) -> Metadata * { 2432 if (!IsDistinct) 2433 return MetadataList.getMetadataFwdRef(ID); 2434 if (auto *MD = MetadataList.getMetadataIfResolved(ID)) 2435 return MD; 2436 return &Placeholders.getPlaceholderOp(ID); 2437 }; 2438 auto getMDOrNull = [&](unsigned ID) -> Metadata * { 2439 if (ID) 2440 return getMD(ID - 1); 2441 return nullptr; 2442 }; 2443 auto getMDOrNullWithoutPlaceholders = [&](unsigned ID) -> Metadata * { 2444 if (ID) 2445 return MetadataList.getMetadataFwdRef(ID - 1); 2446 return nullptr; 2447 }; 2448 auto getMDString = [&](unsigned ID) -> MDString *{ 2449 // This requires that the ID is not really a forward reference. In 2450 // particular, the MDString must already have been resolved. 2451 return cast_or_null<MDString>(getMDOrNull(ID)); 2452 }; 2453 2454 // Support for old type refs. 2455 auto getDITypeRefOrNull = [&](unsigned ID) { 2456 return MetadataList.upgradeTypeRef(getMDOrNull(ID)); 2457 }; 2458 2459 #define GET_OR_DISTINCT(CLASS, ARGS) \ 2460 (IsDistinct ? CLASS::getDistinct ARGS : CLASS::get ARGS) 2461 2462 // Read all the records. 2463 while (true) { 2464 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2465 2466 switch (Entry.Kind) { 2467 case BitstreamEntry::SubBlock: // Handled for us already. 2468 case BitstreamEntry::Error: 2469 return error("Malformed block"); 2470 case BitstreamEntry::EndBlock: 2471 // Upgrade old-style CU <-> SP pointers to point from SP to CU. 2472 for (auto CU_SP : CUSubprograms) 2473 if (auto *SPs = dyn_cast_or_null<MDTuple>(CU_SP.second)) 2474 for (auto &Op : SPs->operands()) 2475 if (auto *SP = dyn_cast_or_null<MDNode>(Op)) 2476 SP->replaceOperandWith(7, CU_SP.first); 2477 2478 MetadataList.tryToResolveCycles(); 2479 Placeholders.flush(MetadataList); 2480 return Error::success(); 2481 case BitstreamEntry::Record: 2482 // The interesting case. 2483 break; 2484 } 2485 2486 // Read a record. 2487 Record.clear(); 2488 StringRef Blob; 2489 unsigned Code = Stream.readRecord(Entry.ID, Record, &Blob); 2490 IsDistinct = false; 2491 switch (Code) { 2492 default: // Default behavior: ignore. 2493 break; 2494 case bitc::METADATA_NAME: { 2495 // Read name of the named metadata. 2496 SmallString<8> Name(Record.begin(), Record.end()); 2497 Record.clear(); 2498 Code = Stream.ReadCode(); 2499 2500 unsigned NextBitCode = Stream.readRecord(Code, Record); 2501 if (NextBitCode != bitc::METADATA_NAMED_NODE) 2502 return error("METADATA_NAME not followed by METADATA_NAMED_NODE"); 2503 2504 // Read named metadata elements. 2505 unsigned Size = Record.size(); 2506 NamedMDNode *NMD = TheModule->getOrInsertNamedMetadata(Name); 2507 for (unsigned i = 0; i != Size; ++i) { 2508 MDNode *MD = MetadataList.getMDNodeFwdRefOrNull(Record[i]); 2509 if (!MD) 2510 return error("Invalid record"); 2511 NMD->addOperand(MD); 2512 } 2513 break; 2514 } 2515 case bitc::METADATA_OLD_FN_NODE: { 2516 // FIXME: Remove in 4.0. 2517 // This is a LocalAsMetadata record, the only type of function-local 2518 // metadata. 2519 if (Record.size() % 2 == 1) 2520 return error("Invalid record"); 2521 2522 // If this isn't a LocalAsMetadata record, we're dropping it. This used 2523 // to be legal, but there's no upgrade path. 2524 auto dropRecord = [&] { 2525 MetadataList.assignValue(MDNode::get(Context, None), NextMetadataNo++); 2526 }; 2527 if (Record.size() != 2) { 2528 dropRecord(); 2529 break; 2530 } 2531 2532 Type *Ty = getTypeByID(Record[0]); 2533 if (Ty->isMetadataTy() || Ty->isVoidTy()) { 2534 dropRecord(); 2535 break; 2536 } 2537 2538 MetadataList.assignValue( 2539 LocalAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)), 2540 NextMetadataNo++); 2541 break; 2542 } 2543 case bitc::METADATA_OLD_NODE: { 2544 // FIXME: Remove in 4.0. 2545 if (Record.size() % 2 == 1) 2546 return error("Invalid record"); 2547 2548 unsigned Size = Record.size(); 2549 SmallVector<Metadata *, 8> Elts; 2550 for (unsigned i = 0; i != Size; i += 2) { 2551 Type *Ty = getTypeByID(Record[i]); 2552 if (!Ty) 2553 return error("Invalid record"); 2554 if (Ty->isMetadataTy()) 2555 Elts.push_back(getMD(Record[i + 1])); 2556 else if (!Ty->isVoidTy()) { 2557 auto *MD = 2558 ValueAsMetadata::get(ValueList.getValueFwdRef(Record[i + 1], Ty)); 2559 assert(isa<ConstantAsMetadata>(MD) && 2560 "Expected non-function-local metadata"); 2561 Elts.push_back(MD); 2562 } else 2563 Elts.push_back(nullptr); 2564 } 2565 MetadataList.assignValue(MDNode::get(Context, Elts), NextMetadataNo++); 2566 break; 2567 } 2568 case bitc::METADATA_VALUE: { 2569 if (Record.size() != 2) 2570 return error("Invalid record"); 2571 2572 Type *Ty = getTypeByID(Record[0]); 2573 if (Ty->isMetadataTy() || Ty->isVoidTy()) 2574 return error("Invalid record"); 2575 2576 MetadataList.assignValue( 2577 ValueAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)), 2578 NextMetadataNo++); 2579 break; 2580 } 2581 case bitc::METADATA_DISTINCT_NODE: 2582 IsDistinct = true; 2583 LLVM_FALLTHROUGH; 2584 case bitc::METADATA_NODE: { 2585 SmallVector<Metadata *, 8> Elts; 2586 Elts.reserve(Record.size()); 2587 for (unsigned ID : Record) 2588 Elts.push_back(getMDOrNull(ID)); 2589 MetadataList.assignValue(IsDistinct ? MDNode::getDistinct(Context, Elts) 2590 : MDNode::get(Context, Elts), 2591 NextMetadataNo++); 2592 break; 2593 } 2594 case bitc::METADATA_LOCATION: { 2595 if (Record.size() != 5) 2596 return error("Invalid record"); 2597 2598 IsDistinct = Record[0]; 2599 unsigned Line = Record[1]; 2600 unsigned Column = Record[2]; 2601 Metadata *Scope = getMD(Record[3]); 2602 Metadata *InlinedAt = getMDOrNull(Record[4]); 2603 MetadataList.assignValue( 2604 GET_OR_DISTINCT(DILocation, 2605 (Context, Line, Column, Scope, InlinedAt)), 2606 NextMetadataNo++); 2607 break; 2608 } 2609 case bitc::METADATA_GENERIC_DEBUG: { 2610 if (Record.size() < 4) 2611 return error("Invalid record"); 2612 2613 IsDistinct = Record[0]; 2614 unsigned Tag = Record[1]; 2615 unsigned Version = Record[2]; 2616 2617 if (Tag >= 1u << 16 || Version != 0) 2618 return error("Invalid record"); 2619 2620 auto *Header = getMDString(Record[3]); 2621 SmallVector<Metadata *, 8> DwarfOps; 2622 for (unsigned I = 4, E = Record.size(); I != E; ++I) 2623 DwarfOps.push_back(getMDOrNull(Record[I])); 2624 MetadataList.assignValue( 2625 GET_OR_DISTINCT(GenericDINode, (Context, Tag, Header, DwarfOps)), 2626 NextMetadataNo++); 2627 break; 2628 } 2629 case bitc::METADATA_SUBRANGE: { 2630 if (Record.size() != 3) 2631 return error("Invalid record"); 2632 2633 IsDistinct = Record[0]; 2634 MetadataList.assignValue( 2635 GET_OR_DISTINCT(DISubrange, 2636 (Context, Record[1], unrotateSign(Record[2]))), 2637 NextMetadataNo++); 2638 break; 2639 } 2640 case bitc::METADATA_ENUMERATOR: { 2641 if (Record.size() != 3) 2642 return error("Invalid record"); 2643 2644 IsDistinct = Record[0]; 2645 MetadataList.assignValue( 2646 GET_OR_DISTINCT(DIEnumerator, (Context, unrotateSign(Record[1]), 2647 getMDString(Record[2]))), 2648 NextMetadataNo++); 2649 break; 2650 } 2651 case bitc::METADATA_BASIC_TYPE: { 2652 if (Record.size() != 6) 2653 return error("Invalid record"); 2654 2655 IsDistinct = Record[0]; 2656 MetadataList.assignValue( 2657 GET_OR_DISTINCT(DIBasicType, 2658 (Context, Record[1], getMDString(Record[2]), 2659 Record[3], Record[4], Record[5])), 2660 NextMetadataNo++); 2661 break; 2662 } 2663 case bitc::METADATA_DERIVED_TYPE: { 2664 if (Record.size() != 12) 2665 return error("Invalid record"); 2666 2667 IsDistinct = Record[0]; 2668 DINode::DIFlags Flags = static_cast<DINode::DIFlags>(Record[10]); 2669 MetadataList.assignValue( 2670 GET_OR_DISTINCT(DIDerivedType, 2671 (Context, Record[1], getMDString(Record[2]), 2672 getMDOrNull(Record[3]), Record[4], 2673 getDITypeRefOrNull(Record[5]), 2674 getDITypeRefOrNull(Record[6]), Record[7], Record[8], 2675 Record[9], Flags, getDITypeRefOrNull(Record[11]))), 2676 NextMetadataNo++); 2677 break; 2678 } 2679 case bitc::METADATA_COMPOSITE_TYPE: { 2680 if (Record.size() != 16) 2681 return error("Invalid record"); 2682 2683 // If we have a UUID and this is not a forward declaration, lookup the 2684 // mapping. 2685 IsDistinct = Record[0] & 0x1; 2686 bool IsNotUsedInTypeRef = Record[0] >= 2; 2687 unsigned Tag = Record[1]; 2688 MDString *Name = getMDString(Record[2]); 2689 Metadata *File = getMDOrNull(Record[3]); 2690 unsigned Line = Record[4]; 2691 Metadata *Scope = getDITypeRefOrNull(Record[5]); 2692 Metadata *BaseType = getDITypeRefOrNull(Record[6]); 2693 uint64_t SizeInBits = Record[7]; 2694 if (Record[8] > (uint64_t)std::numeric_limits<uint32_t>::max()) 2695 return error("Alignment value is too large"); 2696 uint32_t AlignInBits = Record[8]; 2697 uint64_t OffsetInBits = Record[9]; 2698 DINode::DIFlags Flags = static_cast<DINode::DIFlags>(Record[10]); 2699 Metadata *Elements = getMDOrNull(Record[11]); 2700 unsigned RuntimeLang = Record[12]; 2701 Metadata *VTableHolder = getDITypeRefOrNull(Record[13]); 2702 Metadata *TemplateParams = getMDOrNull(Record[14]); 2703 auto *Identifier = getMDString(Record[15]); 2704 DICompositeType *CT = nullptr; 2705 if (Identifier) 2706 CT = DICompositeType::buildODRType( 2707 Context, *Identifier, Tag, Name, File, Line, Scope, BaseType, 2708 SizeInBits, AlignInBits, OffsetInBits, Flags, Elements, RuntimeLang, 2709 VTableHolder, TemplateParams); 2710 2711 // Create a node if we didn't get a lazy ODR type. 2712 if (!CT) 2713 CT = GET_OR_DISTINCT(DICompositeType, 2714 (Context, Tag, Name, File, Line, Scope, BaseType, 2715 SizeInBits, AlignInBits, OffsetInBits, Flags, 2716 Elements, RuntimeLang, VTableHolder, 2717 TemplateParams, Identifier)); 2718 if (!IsNotUsedInTypeRef && Identifier) 2719 MetadataList.addTypeRef(*Identifier, *cast<DICompositeType>(CT)); 2720 2721 MetadataList.assignValue(CT, NextMetadataNo++); 2722 break; 2723 } 2724 case bitc::METADATA_SUBROUTINE_TYPE: { 2725 if (Record.size() < 3 || Record.size() > 4) 2726 return error("Invalid record"); 2727 bool IsOldTypeRefArray = Record[0] < 2; 2728 unsigned CC = (Record.size() > 3) ? Record[3] : 0; 2729 2730 IsDistinct = Record[0] & 0x1; 2731 DINode::DIFlags Flags = static_cast<DINode::DIFlags>(Record[1]); 2732 Metadata *Types = getMDOrNull(Record[2]); 2733 if (LLVM_UNLIKELY(IsOldTypeRefArray)) 2734 Types = MetadataList.upgradeTypeRefArray(Types); 2735 2736 MetadataList.assignValue( 2737 GET_OR_DISTINCT(DISubroutineType, (Context, Flags, CC, Types)), 2738 NextMetadataNo++); 2739 break; 2740 } 2741 2742 case bitc::METADATA_MODULE: { 2743 if (Record.size() != 6) 2744 return error("Invalid record"); 2745 2746 IsDistinct = Record[0]; 2747 MetadataList.assignValue( 2748 GET_OR_DISTINCT(DIModule, 2749 (Context, getMDOrNull(Record[1]), 2750 getMDString(Record[2]), getMDString(Record[3]), 2751 getMDString(Record[4]), getMDString(Record[5]))), 2752 NextMetadataNo++); 2753 break; 2754 } 2755 2756 case bitc::METADATA_FILE: { 2757 if (Record.size() != 3) 2758 return error("Invalid record"); 2759 2760 IsDistinct = Record[0]; 2761 MetadataList.assignValue( 2762 GET_OR_DISTINCT(DIFile, (Context, getMDString(Record[1]), 2763 getMDString(Record[2]))), 2764 NextMetadataNo++); 2765 break; 2766 } 2767 case bitc::METADATA_COMPILE_UNIT: { 2768 if (Record.size() < 14 || Record.size() > 17) 2769 return error("Invalid record"); 2770 2771 // Ignore Record[0], which indicates whether this compile unit is 2772 // distinct. It's always distinct. 2773 IsDistinct = true; 2774 auto *CU = DICompileUnit::getDistinct( 2775 Context, Record[1], getMDOrNull(Record[2]), getMDString(Record[3]), 2776 Record[4], getMDString(Record[5]), Record[6], getMDString(Record[7]), 2777 Record[8], getMDOrNull(Record[9]), getMDOrNull(Record[10]), 2778 getMDOrNull(Record[12]), getMDOrNull(Record[13]), 2779 Record.size() <= 15 ? nullptr : getMDOrNull(Record[15]), 2780 Record.size() <= 14 ? 0 : Record[14], 2781 Record.size() <= 16 ? true : Record[16]); 2782 2783 MetadataList.assignValue(CU, NextMetadataNo++); 2784 2785 // Move the Upgrade the list of subprograms. 2786 if (Metadata *SPs = getMDOrNullWithoutPlaceholders(Record[11])) 2787 CUSubprograms.push_back({CU, SPs}); 2788 break; 2789 } 2790 case bitc::METADATA_SUBPROGRAM: { 2791 if (Record.size() < 18 || Record.size() > 20) 2792 return error("Invalid record"); 2793 2794 IsDistinct = 2795 (Record[0] & 1) || Record[8]; // All definitions should be distinct. 2796 // Version 1 has a Function as Record[15]. 2797 // Version 2 has removed Record[15]. 2798 // Version 3 has the Unit as Record[15]. 2799 // Version 4 added thisAdjustment. 2800 bool HasUnit = Record[0] >= 2; 2801 if (HasUnit && Record.size() < 19) 2802 return error("Invalid record"); 2803 Metadata *CUorFn = getMDOrNull(Record[15]); 2804 unsigned Offset = Record.size() >= 19 ? 1 : 0; 2805 bool HasFn = Offset && !HasUnit; 2806 bool HasThisAdj = Record.size() >= 20; 2807 DISubprogram *SP = GET_OR_DISTINCT( 2808 DISubprogram, (Context, 2809 getDITypeRefOrNull(Record[1]), // scope 2810 getMDString(Record[2]), // name 2811 getMDString(Record[3]), // linkageName 2812 getMDOrNull(Record[4]), // file 2813 Record[5], // line 2814 getMDOrNull(Record[6]), // type 2815 Record[7], // isLocal 2816 Record[8], // isDefinition 2817 Record[9], // scopeLine 2818 getDITypeRefOrNull(Record[10]), // containingType 2819 Record[11], // virtuality 2820 Record[12], // virtualIndex 2821 HasThisAdj ? Record[19] : 0, // thisAdjustment 2822 static_cast<DINode::DIFlags>(Record[13] // flags 2823 ), 2824 Record[14], // isOptimized 2825 HasUnit ? CUorFn : nullptr, // unit 2826 getMDOrNull(Record[15 + Offset]), // templateParams 2827 getMDOrNull(Record[16 + Offset]), // declaration 2828 getMDOrNull(Record[17 + Offset]) // variables 2829 )); 2830 MetadataList.assignValue(SP, NextMetadataNo++); 2831 2832 // Upgrade sp->function mapping to function->sp mapping. 2833 if (HasFn) { 2834 if (auto *CMD = dyn_cast_or_null<ConstantAsMetadata>(CUorFn)) 2835 if (auto *F = dyn_cast<Function>(CMD->getValue())) { 2836 if (F->isMaterializable()) 2837 // Defer until materialized; unmaterialized functions may not have 2838 // metadata. 2839 FunctionsWithSPs[F] = SP; 2840 else if (!F->empty()) 2841 F->setSubprogram(SP); 2842 } 2843 } 2844 break; 2845 } 2846 case bitc::METADATA_LEXICAL_BLOCK: { 2847 if (Record.size() != 5) 2848 return error("Invalid record"); 2849 2850 IsDistinct = Record[0]; 2851 MetadataList.assignValue( 2852 GET_OR_DISTINCT(DILexicalBlock, 2853 (Context, getMDOrNull(Record[1]), 2854 getMDOrNull(Record[2]), Record[3], Record[4])), 2855 NextMetadataNo++); 2856 break; 2857 } 2858 case bitc::METADATA_LEXICAL_BLOCK_FILE: { 2859 if (Record.size() != 4) 2860 return error("Invalid record"); 2861 2862 IsDistinct = Record[0]; 2863 MetadataList.assignValue( 2864 GET_OR_DISTINCT(DILexicalBlockFile, 2865 (Context, getMDOrNull(Record[1]), 2866 getMDOrNull(Record[2]), Record[3])), 2867 NextMetadataNo++); 2868 break; 2869 } 2870 case bitc::METADATA_NAMESPACE: { 2871 if (Record.size() != 5) 2872 return error("Invalid record"); 2873 2874 IsDistinct = Record[0] & 1; 2875 bool ExportSymbols = Record[0] & 2; 2876 MetadataList.assignValue( 2877 GET_OR_DISTINCT(DINamespace, 2878 (Context, getMDOrNull(Record[1]), 2879 getMDOrNull(Record[2]), getMDString(Record[3]), 2880 Record[4], ExportSymbols)), 2881 NextMetadataNo++); 2882 break; 2883 } 2884 case bitc::METADATA_MACRO: { 2885 if (Record.size() != 5) 2886 return error("Invalid record"); 2887 2888 IsDistinct = Record[0]; 2889 MetadataList.assignValue( 2890 GET_OR_DISTINCT(DIMacro, 2891 (Context, Record[1], Record[2], 2892 getMDString(Record[3]), getMDString(Record[4]))), 2893 NextMetadataNo++); 2894 break; 2895 } 2896 case bitc::METADATA_MACRO_FILE: { 2897 if (Record.size() != 5) 2898 return error("Invalid record"); 2899 2900 IsDistinct = Record[0]; 2901 MetadataList.assignValue( 2902 GET_OR_DISTINCT(DIMacroFile, 2903 (Context, Record[1], Record[2], 2904 getMDOrNull(Record[3]), getMDOrNull(Record[4]))), 2905 NextMetadataNo++); 2906 break; 2907 } 2908 case bitc::METADATA_TEMPLATE_TYPE: { 2909 if (Record.size() != 3) 2910 return error("Invalid record"); 2911 2912 IsDistinct = Record[0]; 2913 MetadataList.assignValue(GET_OR_DISTINCT(DITemplateTypeParameter, 2914 (Context, getMDString(Record[1]), 2915 getDITypeRefOrNull(Record[2]))), 2916 NextMetadataNo++); 2917 break; 2918 } 2919 case bitc::METADATA_TEMPLATE_VALUE: { 2920 if (Record.size() != 5) 2921 return error("Invalid record"); 2922 2923 IsDistinct = Record[0]; 2924 MetadataList.assignValue( 2925 GET_OR_DISTINCT(DITemplateValueParameter, 2926 (Context, Record[1], getMDString(Record[2]), 2927 getDITypeRefOrNull(Record[3]), 2928 getMDOrNull(Record[4]))), 2929 NextMetadataNo++); 2930 break; 2931 } 2932 case bitc::METADATA_GLOBAL_VAR: { 2933 if (Record.size() < 11 || Record.size() > 12) 2934 return error("Invalid record"); 2935 2936 IsDistinct = Record[0]; 2937 2938 // Upgrade old metadata, which stored a global variable reference or a 2939 // ConstantInt here. 2940 Metadata *Expr = getMDOrNull(Record[9]); 2941 uint32_t AlignInBits = 0; 2942 if (Record.size() > 11) { 2943 if (Record[11] > (uint64_t)std::numeric_limits<uint32_t>::max()) 2944 return error("Alignment value is too large"); 2945 AlignInBits = Record[11]; 2946 } 2947 GlobalVariable *Attach = nullptr; 2948 if (auto *CMD = dyn_cast_or_null<ConstantAsMetadata>(Expr)) { 2949 if (auto *GV = dyn_cast<GlobalVariable>(CMD->getValue())) { 2950 Attach = GV; 2951 Expr = nullptr; 2952 } else if (auto *CI = dyn_cast<ConstantInt>(CMD->getValue())) { 2953 Expr = DIExpression::get(Context, 2954 {dwarf::DW_OP_constu, CI->getZExtValue(), 2955 dwarf::DW_OP_stack_value}); 2956 } else { 2957 Expr = nullptr; 2958 } 2959 } 2960 2961 DIGlobalVariable *DGV = GET_OR_DISTINCT( 2962 DIGlobalVariable, 2963 (Context, getMDOrNull(Record[1]), getMDString(Record[2]), 2964 getMDString(Record[3]), getMDOrNull(Record[4]), Record[5], 2965 getDITypeRefOrNull(Record[6]), Record[7], Record[8], Expr, 2966 getMDOrNull(Record[10]), AlignInBits)); 2967 MetadataList.assignValue(DGV, NextMetadataNo++); 2968 2969 if (Attach) 2970 Attach->addDebugInfo(DGV); 2971 2972 break; 2973 } 2974 case bitc::METADATA_LOCAL_VAR: { 2975 // 10th field is for the obseleted 'inlinedAt:' field. 2976 if (Record.size() < 8 || Record.size() > 10) 2977 return error("Invalid record"); 2978 2979 IsDistinct = Record[0] & 1; 2980 bool HasAlignment = Record[0] & 2; 2981 // 2nd field used to be an artificial tag, either DW_TAG_auto_variable or 2982 // DW_TAG_arg_variable, if we have alignment flag encoded it means, that 2983 // this is newer version of record which doesn't have artifical tag. 2984 bool HasTag = !HasAlignment && Record.size() > 8; 2985 DINode::DIFlags Flags = static_cast<DINode::DIFlags>(Record[7 + HasTag]); 2986 uint32_t AlignInBits = 0; 2987 if (HasAlignment) { 2988 if (Record[8 + HasTag] > 2989 (uint64_t)std::numeric_limits<uint32_t>::max()) 2990 return error("Alignment value is too large"); 2991 AlignInBits = Record[8 + HasTag]; 2992 } 2993 MetadataList.assignValue( 2994 GET_OR_DISTINCT(DILocalVariable, 2995 (Context, getMDOrNull(Record[1 + HasTag]), 2996 getMDString(Record[2 + HasTag]), 2997 getMDOrNull(Record[3 + HasTag]), Record[4 + HasTag], 2998 getDITypeRefOrNull(Record[5 + HasTag]), 2999 Record[6 + HasTag], Flags, AlignInBits)), 3000 NextMetadataNo++); 3001 break; 3002 } 3003 case bitc::METADATA_EXPRESSION: { 3004 if (Record.size() < 1) 3005 return error("Invalid record"); 3006 3007 IsDistinct = Record[0]; 3008 MetadataList.assignValue( 3009 GET_OR_DISTINCT(DIExpression, 3010 (Context, makeArrayRef(Record).slice(1))), 3011 NextMetadataNo++); 3012 break; 3013 } 3014 case bitc::METADATA_OBJC_PROPERTY: { 3015 if (Record.size() != 8) 3016 return error("Invalid record"); 3017 3018 IsDistinct = Record[0]; 3019 MetadataList.assignValue( 3020 GET_OR_DISTINCT(DIObjCProperty, 3021 (Context, getMDString(Record[1]), 3022 getMDOrNull(Record[2]), Record[3], 3023 getMDString(Record[4]), getMDString(Record[5]), 3024 Record[6], getDITypeRefOrNull(Record[7]))), 3025 NextMetadataNo++); 3026 break; 3027 } 3028 case bitc::METADATA_IMPORTED_ENTITY: { 3029 if (Record.size() != 6) 3030 return error("Invalid record"); 3031 3032 IsDistinct = Record[0]; 3033 MetadataList.assignValue( 3034 GET_OR_DISTINCT(DIImportedEntity, 3035 (Context, Record[1], getMDOrNull(Record[2]), 3036 getDITypeRefOrNull(Record[3]), Record[4], 3037 getMDString(Record[5]))), 3038 NextMetadataNo++); 3039 break; 3040 } 3041 case bitc::METADATA_STRING_OLD: { 3042 std::string String(Record.begin(), Record.end()); 3043 3044 // Test for upgrading !llvm.loop. 3045 HasSeenOldLoopTags |= mayBeOldLoopAttachmentTag(String); 3046 3047 Metadata *MD = MDString::get(Context, String); 3048 MetadataList.assignValue(MD, NextMetadataNo++); 3049 break; 3050 } 3051 case bitc::METADATA_STRINGS: 3052 if (Error Err = parseMetadataStrings(Record, Blob, NextMetadataNo)) 3053 return Err; 3054 break; 3055 case bitc::METADATA_GLOBAL_DECL_ATTACHMENT: { 3056 if (Record.size() % 2 == 0) 3057 return error("Invalid record"); 3058 unsigned ValueID = Record[0]; 3059 if (ValueID >= ValueList.size()) 3060 return error("Invalid record"); 3061 if (auto *GO = dyn_cast<GlobalObject>(ValueList[ValueID])) 3062 if (Error Err = parseGlobalObjectAttachment( 3063 *GO, ArrayRef<uint64_t>(Record).slice(1))) 3064 return Err; 3065 break; 3066 } 3067 case bitc::METADATA_KIND: { 3068 // Support older bitcode files that had METADATA_KIND records in a 3069 // block with METADATA_BLOCK_ID. 3070 if (Error Err = parseMetadataKindRecord(Record)) 3071 return Err; 3072 break; 3073 } 3074 } 3075 } 3076 3077 #undef GET_OR_DISTINCT 3078 } 3079 3080 /// Parse the metadata kinds out of the METADATA_KIND_BLOCK. 3081 Error BitcodeReader::parseMetadataKinds() { 3082 if (Stream.EnterSubBlock(bitc::METADATA_KIND_BLOCK_ID)) 3083 return error("Invalid record"); 3084 3085 SmallVector<uint64_t, 64> Record; 3086 3087 // Read all the records. 3088 while (true) { 3089 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 3090 3091 switch (Entry.Kind) { 3092 case BitstreamEntry::SubBlock: // Handled for us already. 3093 case BitstreamEntry::Error: 3094 return error("Malformed block"); 3095 case BitstreamEntry::EndBlock: 3096 return Error::success(); 3097 case BitstreamEntry::Record: 3098 // The interesting case. 3099 break; 3100 } 3101 3102 // Read a record. 3103 Record.clear(); 3104 unsigned Code = Stream.readRecord(Entry.ID, Record); 3105 switch (Code) { 3106 default: // Default behavior: ignore. 3107 break; 3108 case bitc::METADATA_KIND: { 3109 if (Error Err = parseMetadataKindRecord(Record)) 3110 return Err; 3111 break; 3112 } 3113 } 3114 } 3115 } 3116 3117 /// Decode a signed value stored with the sign bit in the LSB for dense VBR 3118 /// encoding. 3119 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { 3120 if ((V & 1) == 0) 3121 return V >> 1; 3122 if (V != 1) 3123 return -(V >> 1); 3124 // There is no such thing as -0 with integers. "-0" really means MININT. 3125 return 1ULL << 63; 3126 } 3127 3128 /// Resolve all of the initializers for global values and aliases that we can. 3129 Error BitcodeReader::resolveGlobalAndIndirectSymbolInits() { 3130 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist; 3131 std::vector<std::pair<GlobalIndirectSymbol*, unsigned> > 3132 IndirectSymbolInitWorklist; 3133 std::vector<std::pair<Function*, unsigned> > FunctionPrefixWorklist; 3134 std::vector<std::pair<Function*, unsigned> > FunctionPrologueWorklist; 3135 std::vector<std::pair<Function*, unsigned> > FunctionPersonalityFnWorklist; 3136 3137 GlobalInitWorklist.swap(GlobalInits); 3138 IndirectSymbolInitWorklist.swap(IndirectSymbolInits); 3139 FunctionPrefixWorklist.swap(FunctionPrefixes); 3140 FunctionPrologueWorklist.swap(FunctionPrologues); 3141 FunctionPersonalityFnWorklist.swap(FunctionPersonalityFns); 3142 3143 while (!GlobalInitWorklist.empty()) { 3144 unsigned ValID = GlobalInitWorklist.back().second; 3145 if (ValID >= ValueList.size()) { 3146 // Not ready to resolve this yet, it requires something later in the file. 3147 GlobalInits.push_back(GlobalInitWorklist.back()); 3148 } else { 3149 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 3150 GlobalInitWorklist.back().first->setInitializer(C); 3151 else 3152 return error("Expected a constant"); 3153 } 3154 GlobalInitWorklist.pop_back(); 3155 } 3156 3157 while (!IndirectSymbolInitWorklist.empty()) { 3158 unsigned ValID = IndirectSymbolInitWorklist.back().second; 3159 if (ValID >= ValueList.size()) { 3160 IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back()); 3161 } else { 3162 Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]); 3163 if (!C) 3164 return error("Expected a constant"); 3165 GlobalIndirectSymbol *GIS = IndirectSymbolInitWorklist.back().first; 3166 if (isa<GlobalAlias>(GIS) && C->getType() != GIS->getType()) 3167 return error("Alias and aliasee types don't match"); 3168 GIS->setIndirectSymbol(C); 3169 } 3170 IndirectSymbolInitWorklist.pop_back(); 3171 } 3172 3173 while (!FunctionPrefixWorklist.empty()) { 3174 unsigned ValID = FunctionPrefixWorklist.back().second; 3175 if (ValID >= ValueList.size()) { 3176 FunctionPrefixes.push_back(FunctionPrefixWorklist.back()); 3177 } else { 3178 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 3179 FunctionPrefixWorklist.back().first->setPrefixData(C); 3180 else 3181 return error("Expected a constant"); 3182 } 3183 FunctionPrefixWorklist.pop_back(); 3184 } 3185 3186 while (!FunctionPrologueWorklist.empty()) { 3187 unsigned ValID = FunctionPrologueWorklist.back().second; 3188 if (ValID >= ValueList.size()) { 3189 FunctionPrologues.push_back(FunctionPrologueWorklist.back()); 3190 } else { 3191 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 3192 FunctionPrologueWorklist.back().first->setPrologueData(C); 3193 else 3194 return error("Expected a constant"); 3195 } 3196 FunctionPrologueWorklist.pop_back(); 3197 } 3198 3199 while (!FunctionPersonalityFnWorklist.empty()) { 3200 unsigned ValID = FunctionPersonalityFnWorklist.back().second; 3201 if (ValID >= ValueList.size()) { 3202 FunctionPersonalityFns.push_back(FunctionPersonalityFnWorklist.back()); 3203 } else { 3204 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 3205 FunctionPersonalityFnWorklist.back().first->setPersonalityFn(C); 3206 else 3207 return error("Expected a constant"); 3208 } 3209 FunctionPersonalityFnWorklist.pop_back(); 3210 } 3211 3212 return Error::success(); 3213 } 3214 3215 static APInt readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { 3216 SmallVector<uint64_t, 8> Words(Vals.size()); 3217 transform(Vals, Words.begin(), 3218 BitcodeReader::decodeSignRotatedValue); 3219 3220 return APInt(TypeBits, Words); 3221 } 3222 3223 Error BitcodeReader::parseConstants() { 3224 if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 3225 return error("Invalid record"); 3226 3227 SmallVector<uint64_t, 64> Record; 3228 3229 // Read all the records for this value table. 3230 Type *CurTy = Type::getInt32Ty(Context); 3231 unsigned NextCstNo = ValueList.size(); 3232 3233 while (true) { 3234 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 3235 3236 switch (Entry.Kind) { 3237 case BitstreamEntry::SubBlock: // Handled for us already. 3238 case BitstreamEntry::Error: 3239 return error("Malformed block"); 3240 case BitstreamEntry::EndBlock: 3241 if (NextCstNo != ValueList.size()) 3242 return error("Invalid constant reference"); 3243 3244 // Once all the constants have been read, go through and resolve forward 3245 // references. 3246 ValueList.resolveConstantForwardRefs(); 3247 return Error::success(); 3248 case BitstreamEntry::Record: 3249 // The interesting case. 3250 break; 3251 } 3252 3253 // Read a record. 3254 Record.clear(); 3255 Type *VoidType = Type::getVoidTy(Context); 3256 Value *V = nullptr; 3257 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 3258 switch (BitCode) { 3259 default: // Default behavior: unknown constant 3260 case bitc::CST_CODE_UNDEF: // UNDEF 3261 V = UndefValue::get(CurTy); 3262 break; 3263 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 3264 if (Record.empty()) 3265 return error("Invalid record"); 3266 if (Record[0] >= TypeList.size() || !TypeList[Record[0]]) 3267 return error("Invalid record"); 3268 if (TypeList[Record[0]] == VoidType) 3269 return error("Invalid constant type"); 3270 CurTy = TypeList[Record[0]]; 3271 continue; // Skip the ValueList manipulation. 3272 case bitc::CST_CODE_NULL: // NULL 3273 V = Constant::getNullValue(CurTy); 3274 break; 3275 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 3276 if (!CurTy->isIntegerTy() || Record.empty()) 3277 return error("Invalid record"); 3278 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); 3279 break; 3280 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 3281 if (!CurTy->isIntegerTy() || Record.empty()) 3282 return error("Invalid record"); 3283 3284 APInt VInt = 3285 readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth()); 3286 V = ConstantInt::get(Context, VInt); 3287 3288 break; 3289 } 3290 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 3291 if (Record.empty()) 3292 return error("Invalid record"); 3293 if (CurTy->isHalfTy()) 3294 V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf, 3295 APInt(16, (uint16_t)Record[0]))); 3296 else if (CurTy->isFloatTy()) 3297 V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle, 3298 APInt(32, (uint32_t)Record[0]))); 3299 else if (CurTy->isDoubleTy()) 3300 V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble, 3301 APInt(64, Record[0]))); 3302 else if (CurTy->isX86_FP80Ty()) { 3303 // Bits are not stored the same way as a normal i80 APInt, compensate. 3304 uint64_t Rearrange[2]; 3305 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 3306 Rearrange[1] = Record[0] >> 48; 3307 V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended, 3308 APInt(80, Rearrange))); 3309 } else if (CurTy->isFP128Ty()) 3310 V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad, 3311 APInt(128, Record))); 3312 else if (CurTy->isPPC_FP128Ty()) 3313 V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble, 3314 APInt(128, Record))); 3315 else 3316 V = UndefValue::get(CurTy); 3317 break; 3318 } 3319 3320 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 3321 if (Record.empty()) 3322 return error("Invalid record"); 3323 3324 unsigned Size = Record.size(); 3325 SmallVector<Constant*, 16> Elts; 3326 3327 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 3328 for (unsigned i = 0; i != Size; ++i) 3329 Elts.push_back(ValueList.getConstantFwdRef(Record[i], 3330 STy->getElementType(i))); 3331 V = ConstantStruct::get(STy, Elts); 3332 } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) { 3333 Type *EltTy = ATy->getElementType(); 3334 for (unsigned i = 0; i != Size; ++i) 3335 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 3336 V = ConstantArray::get(ATy, Elts); 3337 } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) { 3338 Type *EltTy = VTy->getElementType(); 3339 for (unsigned i = 0; i != Size; ++i) 3340 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 3341 V = ConstantVector::get(Elts); 3342 } else { 3343 V = UndefValue::get(CurTy); 3344 } 3345 break; 3346 } 3347 case bitc::CST_CODE_STRING: // STRING: [values] 3348 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 3349 if (Record.empty()) 3350 return error("Invalid record"); 3351 3352 SmallString<16> Elts(Record.begin(), Record.end()); 3353 V = ConstantDataArray::getString(Context, Elts, 3354 BitCode == bitc::CST_CODE_CSTRING); 3355 break; 3356 } 3357 case bitc::CST_CODE_DATA: {// DATA: [n x value] 3358 if (Record.empty()) 3359 return error("Invalid record"); 3360 3361 Type *EltTy = cast<SequentialType>(CurTy)->getElementType(); 3362 if (EltTy->isIntegerTy(8)) { 3363 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); 3364 if (isa<VectorType>(CurTy)) 3365 V = ConstantDataVector::get(Context, Elts); 3366 else 3367 V = ConstantDataArray::get(Context, Elts); 3368 } else if (EltTy->isIntegerTy(16)) { 3369 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 3370 if (isa<VectorType>(CurTy)) 3371 V = ConstantDataVector::get(Context, Elts); 3372 else 3373 V = ConstantDataArray::get(Context, Elts); 3374 } else if (EltTy->isIntegerTy(32)) { 3375 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 3376 if (isa<VectorType>(CurTy)) 3377 V = ConstantDataVector::get(Context, Elts); 3378 else 3379 V = ConstantDataArray::get(Context, Elts); 3380 } else if (EltTy->isIntegerTy(64)) { 3381 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 3382 if (isa<VectorType>(CurTy)) 3383 V = ConstantDataVector::get(Context, Elts); 3384 else 3385 V = ConstantDataArray::get(Context, Elts); 3386 } else if (EltTy->isHalfTy()) { 3387 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 3388 if (isa<VectorType>(CurTy)) 3389 V = ConstantDataVector::getFP(Context, Elts); 3390 else 3391 V = ConstantDataArray::getFP(Context, Elts); 3392 } else if (EltTy->isFloatTy()) { 3393 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 3394 if (isa<VectorType>(CurTy)) 3395 V = ConstantDataVector::getFP(Context, Elts); 3396 else 3397 V = ConstantDataArray::getFP(Context, Elts); 3398 } else if (EltTy->isDoubleTy()) { 3399 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 3400 if (isa<VectorType>(CurTy)) 3401 V = ConstantDataVector::getFP(Context, Elts); 3402 else 3403 V = ConstantDataArray::getFP(Context, Elts); 3404 } else { 3405 return error("Invalid type for value"); 3406 } 3407 break; 3408 } 3409 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 3410 if (Record.size() < 3) 3411 return error("Invalid record"); 3412 int Opc = getDecodedBinaryOpcode(Record[0], CurTy); 3413 if (Opc < 0) { 3414 V = UndefValue::get(CurTy); // Unknown binop. 3415 } else { 3416 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 3417 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy); 3418 unsigned Flags = 0; 3419 if (Record.size() >= 4) { 3420 if (Opc == Instruction::Add || 3421 Opc == Instruction::Sub || 3422 Opc == Instruction::Mul || 3423 Opc == Instruction::Shl) { 3424 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 3425 Flags |= OverflowingBinaryOperator::NoSignedWrap; 3426 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 3427 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 3428 } else if (Opc == Instruction::SDiv || 3429 Opc == Instruction::UDiv || 3430 Opc == Instruction::LShr || 3431 Opc == Instruction::AShr) { 3432 if (Record[3] & (1 << bitc::PEO_EXACT)) 3433 Flags |= SDivOperator::IsExact; 3434 } 3435 } 3436 V = ConstantExpr::get(Opc, LHS, RHS, Flags); 3437 } 3438 break; 3439 } 3440 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 3441 if (Record.size() < 3) 3442 return error("Invalid record"); 3443 int Opc = getDecodedCastOpcode(Record[0]); 3444 if (Opc < 0) { 3445 V = UndefValue::get(CurTy); // Unknown cast. 3446 } else { 3447 Type *OpTy = getTypeByID(Record[1]); 3448 if (!OpTy) 3449 return error("Invalid record"); 3450 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy); 3451 V = UpgradeBitCastExpr(Opc, Op, CurTy); 3452 if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy); 3453 } 3454 break; 3455 } 3456 case bitc::CST_CODE_CE_INBOUNDS_GEP: // [ty, n x operands] 3457 case bitc::CST_CODE_CE_GEP: // [ty, n x operands] 3458 case bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX: { // [ty, flags, n x 3459 // operands] 3460 unsigned OpNum = 0; 3461 Type *PointeeType = nullptr; 3462 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX || 3463 Record.size() % 2) 3464 PointeeType = getTypeByID(Record[OpNum++]); 3465 3466 bool InBounds = false; 3467 Optional<unsigned> InRangeIndex; 3468 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX) { 3469 uint64_t Op = Record[OpNum++]; 3470 InBounds = Op & 1; 3471 InRangeIndex = Op >> 1; 3472 } else if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP) 3473 InBounds = true; 3474 3475 SmallVector<Constant*, 16> Elts; 3476 while (OpNum != Record.size()) { 3477 Type *ElTy = getTypeByID(Record[OpNum++]); 3478 if (!ElTy) 3479 return error("Invalid record"); 3480 Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy)); 3481 } 3482 3483 if (PointeeType && 3484 PointeeType != 3485 cast<PointerType>(Elts[0]->getType()->getScalarType()) 3486 ->getElementType()) 3487 return error("Explicit gep operator type does not match pointee type " 3488 "of pointer operand"); 3489 3490 if (Elts.size() < 1) 3491 return error("Invalid gep with no operands"); 3492 3493 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 3494 V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices, 3495 InBounds, InRangeIndex); 3496 break; 3497 } 3498 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] 3499 if (Record.size() < 3) 3500 return error("Invalid record"); 3501 3502 Type *SelectorTy = Type::getInt1Ty(Context); 3503 3504 // The selector might be an i1 or an <n x i1> 3505 // Get the type from the ValueList before getting a forward ref. 3506 if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) 3507 if (Value *V = ValueList[Record[0]]) 3508 if (SelectorTy != V->getType()) 3509 SelectorTy = VectorType::get(SelectorTy, VTy->getNumElements()); 3510 3511 V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0], 3512 SelectorTy), 3513 ValueList.getConstantFwdRef(Record[1],CurTy), 3514 ValueList.getConstantFwdRef(Record[2],CurTy)); 3515 break; 3516 } 3517 case bitc::CST_CODE_CE_EXTRACTELT 3518 : { // CE_EXTRACTELT: [opty, opval, opty, opval] 3519 if (Record.size() < 3) 3520 return error("Invalid record"); 3521 VectorType *OpTy = 3522 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 3523 if (!OpTy) 3524 return error("Invalid record"); 3525 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 3526 Constant *Op1 = nullptr; 3527 if (Record.size() == 4) { 3528 Type *IdxTy = getTypeByID(Record[2]); 3529 if (!IdxTy) 3530 return error("Invalid record"); 3531 Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy); 3532 } else // TODO: Remove with llvm 4.0 3533 Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 3534 if (!Op1) 3535 return error("Invalid record"); 3536 V = ConstantExpr::getExtractElement(Op0, Op1); 3537 break; 3538 } 3539 case bitc::CST_CODE_CE_INSERTELT 3540 : { // CE_INSERTELT: [opval, opval, opty, opval] 3541 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 3542 if (Record.size() < 3 || !OpTy) 3543 return error("Invalid record"); 3544 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 3545 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], 3546 OpTy->getElementType()); 3547 Constant *Op2 = nullptr; 3548 if (Record.size() == 4) { 3549 Type *IdxTy = getTypeByID(Record[2]); 3550 if (!IdxTy) 3551 return error("Invalid record"); 3552 Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy); 3553 } else // TODO: Remove with llvm 4.0 3554 Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 3555 if (!Op2) 3556 return error("Invalid record"); 3557 V = ConstantExpr::getInsertElement(Op0, Op1, Op2); 3558 break; 3559 } 3560 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 3561 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 3562 if (Record.size() < 3 || !OpTy) 3563 return error("Invalid record"); 3564 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 3565 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy); 3566 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 3567 OpTy->getNumElements()); 3568 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy); 3569 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 3570 break; 3571 } 3572 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 3573 VectorType *RTy = dyn_cast<VectorType>(CurTy); 3574 VectorType *OpTy = 3575 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 3576 if (Record.size() < 4 || !RTy || !OpTy) 3577 return error("Invalid record"); 3578 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 3579 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 3580 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 3581 RTy->getNumElements()); 3582 Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy); 3583 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 3584 break; 3585 } 3586 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 3587 if (Record.size() < 4) 3588 return error("Invalid record"); 3589 Type *OpTy = getTypeByID(Record[0]); 3590 if (!OpTy) 3591 return error("Invalid record"); 3592 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 3593 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 3594 3595 if (OpTy->isFPOrFPVectorTy()) 3596 V = ConstantExpr::getFCmp(Record[3], Op0, Op1); 3597 else 3598 V = ConstantExpr::getICmp(Record[3], Op0, Op1); 3599 break; 3600 } 3601 // This maintains backward compatibility, pre-asm dialect keywords. 3602 // FIXME: Remove with the 4.0 release. 3603 case bitc::CST_CODE_INLINEASM_OLD: { 3604 if (Record.size() < 2) 3605 return error("Invalid record"); 3606 std::string AsmStr, ConstrStr; 3607 bool HasSideEffects = Record[0] & 1; 3608 bool IsAlignStack = Record[0] >> 1; 3609 unsigned AsmStrSize = Record[1]; 3610 if (2+AsmStrSize >= Record.size()) 3611 return error("Invalid record"); 3612 unsigned ConstStrSize = Record[2+AsmStrSize]; 3613 if (3+AsmStrSize+ConstStrSize > Record.size()) 3614 return error("Invalid record"); 3615 3616 for (unsigned i = 0; i != AsmStrSize; ++i) 3617 AsmStr += (char)Record[2+i]; 3618 for (unsigned i = 0; i != ConstStrSize; ++i) 3619 ConstrStr += (char)Record[3+AsmStrSize+i]; 3620 PointerType *PTy = cast<PointerType>(CurTy); 3621 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 3622 AsmStr, ConstrStr, HasSideEffects, IsAlignStack); 3623 break; 3624 } 3625 // This version adds support for the asm dialect keywords (e.g., 3626 // inteldialect). 3627 case bitc::CST_CODE_INLINEASM: { 3628 if (Record.size() < 2) 3629 return error("Invalid record"); 3630 std::string AsmStr, ConstrStr; 3631 bool HasSideEffects = Record[0] & 1; 3632 bool IsAlignStack = (Record[0] >> 1) & 1; 3633 unsigned AsmDialect = Record[0] >> 2; 3634 unsigned AsmStrSize = Record[1]; 3635 if (2+AsmStrSize >= Record.size()) 3636 return error("Invalid record"); 3637 unsigned ConstStrSize = Record[2+AsmStrSize]; 3638 if (3+AsmStrSize+ConstStrSize > Record.size()) 3639 return error("Invalid record"); 3640 3641 for (unsigned i = 0; i != AsmStrSize; ++i) 3642 AsmStr += (char)Record[2+i]; 3643 for (unsigned i = 0; i != ConstStrSize; ++i) 3644 ConstrStr += (char)Record[3+AsmStrSize+i]; 3645 PointerType *PTy = cast<PointerType>(CurTy); 3646 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 3647 AsmStr, ConstrStr, HasSideEffects, IsAlignStack, 3648 InlineAsm::AsmDialect(AsmDialect)); 3649 break; 3650 } 3651 case bitc::CST_CODE_BLOCKADDRESS:{ 3652 if (Record.size() < 3) 3653 return error("Invalid record"); 3654 Type *FnTy = getTypeByID(Record[0]); 3655 if (!FnTy) 3656 return error("Invalid record"); 3657 Function *Fn = 3658 dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy)); 3659 if (!Fn) 3660 return error("Invalid record"); 3661 3662 // If the function is already parsed we can insert the block address right 3663 // away. 3664 BasicBlock *BB; 3665 unsigned BBID = Record[2]; 3666 if (!BBID) 3667 // Invalid reference to entry block. 3668 return error("Invalid ID"); 3669 if (!Fn->empty()) { 3670 Function::iterator BBI = Fn->begin(), BBE = Fn->end(); 3671 for (size_t I = 0, E = BBID; I != E; ++I) { 3672 if (BBI == BBE) 3673 return error("Invalid ID"); 3674 ++BBI; 3675 } 3676 BB = &*BBI; 3677 } else { 3678 // Otherwise insert a placeholder and remember it so it can be inserted 3679 // when the function is parsed. 3680 auto &FwdBBs = BasicBlockFwdRefs[Fn]; 3681 if (FwdBBs.empty()) 3682 BasicBlockFwdRefQueue.push_back(Fn); 3683 if (FwdBBs.size() < BBID + 1) 3684 FwdBBs.resize(BBID + 1); 3685 if (!FwdBBs[BBID]) 3686 FwdBBs[BBID] = BasicBlock::Create(Context); 3687 BB = FwdBBs[BBID]; 3688 } 3689 V = BlockAddress::get(Fn, BB); 3690 break; 3691 } 3692 } 3693 3694 ValueList.assignValue(V, NextCstNo); 3695 ++NextCstNo; 3696 } 3697 } 3698 3699 Error BitcodeReader::parseUseLists() { 3700 if (Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 3701 return error("Invalid record"); 3702 3703 // Read all the records. 3704 SmallVector<uint64_t, 64> Record; 3705 3706 while (true) { 3707 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 3708 3709 switch (Entry.Kind) { 3710 case BitstreamEntry::SubBlock: // Handled for us already. 3711 case BitstreamEntry::Error: 3712 return error("Malformed block"); 3713 case BitstreamEntry::EndBlock: 3714 return Error::success(); 3715 case BitstreamEntry::Record: 3716 // The interesting case. 3717 break; 3718 } 3719 3720 // Read a use list record. 3721 Record.clear(); 3722 bool IsBB = false; 3723 switch (Stream.readRecord(Entry.ID, Record)) { 3724 default: // Default behavior: unknown type. 3725 break; 3726 case bitc::USELIST_CODE_BB: 3727 IsBB = true; 3728 LLVM_FALLTHROUGH; 3729 case bitc::USELIST_CODE_DEFAULT: { 3730 unsigned RecordLength = Record.size(); 3731 if (RecordLength < 3) 3732 // Records should have at least an ID and two indexes. 3733 return error("Invalid record"); 3734 unsigned ID = Record.back(); 3735 Record.pop_back(); 3736 3737 Value *V; 3738 if (IsBB) { 3739 assert(ID < FunctionBBs.size() && "Basic block not found"); 3740 V = FunctionBBs[ID]; 3741 } else 3742 V = ValueList[ID]; 3743 unsigned NumUses = 0; 3744 SmallDenseMap<const Use *, unsigned, 16> Order; 3745 for (const Use &U : V->materialized_uses()) { 3746 if (++NumUses > Record.size()) 3747 break; 3748 Order[&U] = Record[NumUses - 1]; 3749 } 3750 if (Order.size() != Record.size() || NumUses > Record.size()) 3751 // Mismatches can happen if the functions are being materialized lazily 3752 // (out-of-order), or a value has been upgraded. 3753 break; 3754 3755 V->sortUseList([&](const Use &L, const Use &R) { 3756 return Order.lookup(&L) < Order.lookup(&R); 3757 }); 3758 break; 3759 } 3760 } 3761 } 3762 } 3763 3764 /// When we see the block for metadata, remember where it is and then skip it. 3765 /// This lets us lazily deserialize the metadata. 3766 Error BitcodeReader::rememberAndSkipMetadata() { 3767 // Save the current stream state. 3768 uint64_t CurBit = Stream.GetCurrentBitNo(); 3769 DeferredMetadataInfo.push_back(CurBit); 3770 3771 // Skip over the block for now. 3772 if (Stream.SkipBlock()) 3773 return error("Invalid record"); 3774 return Error::success(); 3775 } 3776 3777 Error BitcodeReader::materializeMetadata() { 3778 for (uint64_t BitPos : DeferredMetadataInfo) { 3779 // Move the bit stream to the saved position. 3780 Stream.JumpToBit(BitPos); 3781 if (Error Err = parseMetadata(true)) 3782 return Err; 3783 } 3784 DeferredMetadataInfo.clear(); 3785 return Error::success(); 3786 } 3787 3788 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; } 3789 3790 /// When we see the block for a function body, remember where it is and then 3791 /// skip it. This lets us lazily deserialize the functions. 3792 Error BitcodeReader::rememberAndSkipFunctionBody() { 3793 // Get the function we are talking about. 3794 if (FunctionsWithBodies.empty()) 3795 return error("Insufficient function protos"); 3796 3797 Function *Fn = FunctionsWithBodies.back(); 3798 FunctionsWithBodies.pop_back(); 3799 3800 // Save the current stream state. 3801 uint64_t CurBit = Stream.GetCurrentBitNo(); 3802 assert( 3803 (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) && 3804 "Mismatch between VST and scanned function offsets"); 3805 DeferredFunctionInfo[Fn] = CurBit; 3806 3807 // Skip over the function block for now. 3808 if (Stream.SkipBlock()) 3809 return error("Invalid record"); 3810 return Error::success(); 3811 } 3812 3813 Error BitcodeReader::globalCleanup() { 3814 // Patch the initializers for globals and aliases up. 3815 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 3816 return Err; 3817 if (!GlobalInits.empty() || !IndirectSymbolInits.empty()) 3818 return error("Malformed global initializer set"); 3819 3820 // Look for intrinsic functions which need to be upgraded at some point 3821 for (Function &F : *TheModule) { 3822 Function *NewFn; 3823 if (UpgradeIntrinsicFunction(&F, NewFn)) 3824 UpgradedIntrinsics[&F] = NewFn; 3825 else if (auto Remangled = Intrinsic::remangleIntrinsicFunction(&F)) 3826 // Some types could be renamed during loading if several modules are 3827 // loaded in the same LLVMContext (LTO scenario). In this case we should 3828 // remangle intrinsics names as well. 3829 RemangledIntrinsics[&F] = Remangled.getValue(); 3830 } 3831 3832 // Look for global variables which need to be renamed. 3833 for (GlobalVariable &GV : TheModule->globals()) 3834 UpgradeGlobalVariable(&GV); 3835 3836 // Force deallocation of memory for these vectors to favor the client that 3837 // want lazy deserialization. 3838 std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits); 3839 std::vector<std::pair<GlobalIndirectSymbol*, unsigned> >().swap( 3840 IndirectSymbolInits); 3841 return Error::success(); 3842 } 3843 3844 /// Support for lazy parsing of function bodies. This is required if we 3845 /// either have an old bitcode file without a VST forward declaration record, 3846 /// or if we have an anonymous function being materialized, since anonymous 3847 /// functions do not have a name and are therefore not in the VST. 3848 Error BitcodeReader::rememberAndSkipFunctionBodies() { 3849 Stream.JumpToBit(NextUnreadBit); 3850 3851 if (Stream.AtEndOfStream()) 3852 return error("Could not find function in stream"); 3853 3854 if (!SeenFirstFunctionBody) 3855 return error("Trying to materialize functions before seeing function blocks"); 3856 3857 // An old bitcode file with the symbol table at the end would have 3858 // finished the parse greedily. 3859 assert(SeenValueSymbolTable); 3860 3861 SmallVector<uint64_t, 64> Record; 3862 3863 while (true) { 3864 BitstreamEntry Entry = Stream.advance(); 3865 switch (Entry.Kind) { 3866 default: 3867 return error("Expect SubBlock"); 3868 case BitstreamEntry::SubBlock: 3869 switch (Entry.ID) { 3870 default: 3871 return error("Expect function block"); 3872 case bitc::FUNCTION_BLOCK_ID: 3873 if (Error Err = rememberAndSkipFunctionBody()) 3874 return Err; 3875 NextUnreadBit = Stream.GetCurrentBitNo(); 3876 return Error::success(); 3877 } 3878 } 3879 } 3880 } 3881 3882 bool BitcodeReaderBase::readBlockInfo() { 3883 Optional<BitstreamBlockInfo> NewBlockInfo = Stream.ReadBlockInfoBlock(); 3884 if (!NewBlockInfo) 3885 return true; 3886 BlockInfo = std::move(*NewBlockInfo); 3887 return false; 3888 } 3889 3890 Error BitcodeReader::parseModule(uint64_t ResumeBit, 3891 bool ShouldLazyLoadMetadata) { 3892 if (ResumeBit) 3893 Stream.JumpToBit(ResumeBit); 3894 else if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 3895 return error("Invalid record"); 3896 3897 SmallVector<uint64_t, 64> Record; 3898 std::vector<std::string> SectionTable; 3899 std::vector<std::string> GCTable; 3900 3901 // Read all the records for this module. 3902 while (true) { 3903 BitstreamEntry Entry = Stream.advance(); 3904 3905 switch (Entry.Kind) { 3906 case BitstreamEntry::Error: 3907 return error("Malformed block"); 3908 case BitstreamEntry::EndBlock: 3909 return globalCleanup(); 3910 3911 case BitstreamEntry::SubBlock: 3912 switch (Entry.ID) { 3913 default: // Skip unknown content. 3914 if (Stream.SkipBlock()) 3915 return error("Invalid record"); 3916 break; 3917 case bitc::BLOCKINFO_BLOCK_ID: 3918 if (readBlockInfo()) 3919 return error("Malformed block"); 3920 break; 3921 case bitc::PARAMATTR_BLOCK_ID: 3922 if (Error Err = parseAttributeBlock()) 3923 return Err; 3924 break; 3925 case bitc::PARAMATTR_GROUP_BLOCK_ID: 3926 if (Error Err = parseAttributeGroupBlock()) 3927 return Err; 3928 break; 3929 case bitc::TYPE_BLOCK_ID_NEW: 3930 if (Error Err = parseTypeTable()) 3931 return Err; 3932 break; 3933 case bitc::VALUE_SYMTAB_BLOCK_ID: 3934 if (!SeenValueSymbolTable) { 3935 // Either this is an old form VST without function index and an 3936 // associated VST forward declaration record (which would have caused 3937 // the VST to be jumped to and parsed before it was encountered 3938 // normally in the stream), or there were no function blocks to 3939 // trigger an earlier parsing of the VST. 3940 assert(VSTOffset == 0 || FunctionsWithBodies.empty()); 3941 if (Error Err = parseValueSymbolTable()) 3942 return Err; 3943 SeenValueSymbolTable = true; 3944 } else { 3945 // We must have had a VST forward declaration record, which caused 3946 // the parser to jump to and parse the VST earlier. 3947 assert(VSTOffset > 0); 3948 if (Stream.SkipBlock()) 3949 return error("Invalid record"); 3950 } 3951 break; 3952 case bitc::CONSTANTS_BLOCK_ID: 3953 if (Error Err = parseConstants()) 3954 return Err; 3955 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 3956 return Err; 3957 break; 3958 case bitc::METADATA_BLOCK_ID: 3959 if (ShouldLazyLoadMetadata && !IsMetadataMaterialized) { 3960 if (Error Err = rememberAndSkipMetadata()) 3961 return Err; 3962 break; 3963 } 3964 assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata"); 3965 if (Error Err = parseMetadata(true)) 3966 return Err; 3967 break; 3968 case bitc::METADATA_KIND_BLOCK_ID: 3969 if (Error Err = parseMetadataKinds()) 3970 return Err; 3971 break; 3972 case bitc::FUNCTION_BLOCK_ID: 3973 // If this is the first function body we've seen, reverse the 3974 // FunctionsWithBodies list. 3975 if (!SeenFirstFunctionBody) { 3976 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 3977 if (Error Err = globalCleanup()) 3978 return Err; 3979 SeenFirstFunctionBody = true; 3980 } 3981 3982 if (VSTOffset > 0) { 3983 // If we have a VST forward declaration record, make sure we 3984 // parse the VST now if we haven't already. It is needed to 3985 // set up the DeferredFunctionInfo vector for lazy reading. 3986 if (!SeenValueSymbolTable) { 3987 if (Error Err = BitcodeReader::parseValueSymbolTable(VSTOffset)) 3988 return Err; 3989 SeenValueSymbolTable = true; 3990 // Fall through so that we record the NextUnreadBit below. 3991 // This is necessary in case we have an anonymous function that 3992 // is later materialized. Since it will not have a VST entry we 3993 // need to fall back to the lazy parse to find its offset. 3994 } else { 3995 // If we have a VST forward declaration record, but have already 3996 // parsed the VST (just above, when the first function body was 3997 // encountered here), then we are resuming the parse after 3998 // materializing functions. The ResumeBit points to the 3999 // start of the last function block recorded in the 4000 // DeferredFunctionInfo map. Skip it. 4001 if (Stream.SkipBlock()) 4002 return error("Invalid record"); 4003 continue; 4004 } 4005 } 4006 4007 // Support older bitcode files that did not have the function 4008 // index in the VST, nor a VST forward declaration record, as 4009 // well as anonymous functions that do not have VST entries. 4010 // Build the DeferredFunctionInfo vector on the fly. 4011 if (Error Err = rememberAndSkipFunctionBody()) 4012 return Err; 4013 4014 // Suspend parsing when we reach the function bodies. Subsequent 4015 // materialization calls will resume it when necessary. If the bitcode 4016 // file is old, the symbol table will be at the end instead and will not 4017 // have been seen yet. In this case, just finish the parse now. 4018 if (SeenValueSymbolTable) { 4019 NextUnreadBit = Stream.GetCurrentBitNo(); 4020 // After the VST has been parsed, we need to make sure intrinsic name 4021 // are auto-upgraded. 4022 return globalCleanup(); 4023 } 4024 break; 4025 case bitc::USELIST_BLOCK_ID: 4026 if (Error Err = parseUseLists()) 4027 return Err; 4028 break; 4029 case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID: 4030 if (Error Err = parseOperandBundleTags()) 4031 return Err; 4032 break; 4033 } 4034 continue; 4035 4036 case BitstreamEntry::Record: 4037 // The interesting case. 4038 break; 4039 } 4040 4041 // Read a record. 4042 auto BitCode = Stream.readRecord(Entry.ID, Record); 4043 switch (BitCode) { 4044 default: break; // Default behavior, ignore unknown content. 4045 case bitc::MODULE_CODE_VERSION: { // VERSION: [version#] 4046 if (Record.size() < 1) 4047 return error("Invalid record"); 4048 // Only version #0 and #1 are supported so far. 4049 unsigned module_version = Record[0]; 4050 switch (module_version) { 4051 default: 4052 return error("Invalid value"); 4053 case 0: 4054 UseRelativeIDs = false; 4055 break; 4056 case 1: 4057 UseRelativeIDs = true; 4058 break; 4059 } 4060 break; 4061 } 4062 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 4063 std::string S; 4064 if (convertToString(Record, 0, S)) 4065 return error("Invalid record"); 4066 TheModule->setTargetTriple(S); 4067 break; 4068 } 4069 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 4070 std::string S; 4071 if (convertToString(Record, 0, S)) 4072 return error("Invalid record"); 4073 TheModule->setDataLayout(S); 4074 break; 4075 } 4076 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 4077 std::string S; 4078 if (convertToString(Record, 0, S)) 4079 return error("Invalid record"); 4080 TheModule->setModuleInlineAsm(S); 4081 break; 4082 } 4083 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 4084 // FIXME: Remove in 4.0. 4085 std::string S; 4086 if (convertToString(Record, 0, S)) 4087 return error("Invalid record"); 4088 // Ignore value. 4089 break; 4090 } 4091 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 4092 std::string S; 4093 if (convertToString(Record, 0, S)) 4094 return error("Invalid record"); 4095 SectionTable.push_back(S); 4096 break; 4097 } 4098 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 4099 std::string S; 4100 if (convertToString(Record, 0, S)) 4101 return error("Invalid record"); 4102 GCTable.push_back(S); 4103 break; 4104 } 4105 case bitc::MODULE_CODE_COMDAT: { // COMDAT: [selection_kind, name] 4106 if (Record.size() < 2) 4107 return error("Invalid record"); 4108 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]); 4109 unsigned ComdatNameSize = Record[1]; 4110 std::string ComdatName; 4111 ComdatName.reserve(ComdatNameSize); 4112 for (unsigned i = 0; i != ComdatNameSize; ++i) 4113 ComdatName += (char)Record[2 + i]; 4114 Comdat *C = TheModule->getOrInsertComdat(ComdatName); 4115 C->setSelectionKind(SK); 4116 ComdatList.push_back(C); 4117 break; 4118 } 4119 // GLOBALVAR: [pointer type, isconst, initid, 4120 // linkage, alignment, section, visibility, threadlocal, 4121 // unnamed_addr, externally_initialized, dllstorageclass, 4122 // comdat] 4123 case bitc::MODULE_CODE_GLOBALVAR: { 4124 if (Record.size() < 6) 4125 return error("Invalid record"); 4126 Type *Ty = getTypeByID(Record[0]); 4127 if (!Ty) 4128 return error("Invalid record"); 4129 bool isConstant = Record[1] & 1; 4130 bool explicitType = Record[1] & 2; 4131 unsigned AddressSpace; 4132 if (explicitType) { 4133 AddressSpace = Record[1] >> 2; 4134 } else { 4135 if (!Ty->isPointerTy()) 4136 return error("Invalid type for value"); 4137 AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 4138 Ty = cast<PointerType>(Ty)->getElementType(); 4139 } 4140 4141 uint64_t RawLinkage = Record[3]; 4142 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 4143 unsigned Alignment; 4144 if (Error Err = parseAlignmentValue(Record[4], Alignment)) 4145 return Err; 4146 std::string Section; 4147 if (Record[5]) { 4148 if (Record[5]-1 >= SectionTable.size()) 4149 return error("Invalid ID"); 4150 Section = SectionTable[Record[5]-1]; 4151 } 4152 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 4153 // Local linkage must have default visibility. 4154 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage)) 4155 // FIXME: Change to an error if non-default in 4.0. 4156 Visibility = getDecodedVisibility(Record[6]); 4157 4158 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; 4159 if (Record.size() > 7) 4160 TLM = getDecodedThreadLocalMode(Record[7]); 4161 4162 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 4163 if (Record.size() > 8) 4164 UnnamedAddr = getDecodedUnnamedAddrType(Record[8]); 4165 4166 bool ExternallyInitialized = false; 4167 if (Record.size() > 9) 4168 ExternallyInitialized = Record[9]; 4169 4170 GlobalVariable *NewGV = 4171 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, "", nullptr, 4172 TLM, AddressSpace, ExternallyInitialized); 4173 NewGV->setAlignment(Alignment); 4174 if (!Section.empty()) 4175 NewGV->setSection(Section); 4176 NewGV->setVisibility(Visibility); 4177 NewGV->setUnnamedAddr(UnnamedAddr); 4178 4179 if (Record.size() > 10) 4180 NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10])); 4181 else 4182 upgradeDLLImportExportLinkage(NewGV, RawLinkage); 4183 4184 ValueList.push_back(NewGV); 4185 4186 // Remember which value to use for the global initializer. 4187 if (unsigned InitID = Record[2]) 4188 GlobalInits.push_back(std::make_pair(NewGV, InitID-1)); 4189 4190 if (Record.size() > 11) { 4191 if (unsigned ComdatID = Record[11]) { 4192 if (ComdatID > ComdatList.size()) 4193 return error("Invalid global variable comdat ID"); 4194 NewGV->setComdat(ComdatList[ComdatID - 1]); 4195 } 4196 } else if (hasImplicitComdat(RawLinkage)) { 4197 NewGV->setComdat(reinterpret_cast<Comdat *>(1)); 4198 } 4199 4200 break; 4201 } 4202 // FUNCTION: [type, callingconv, isproto, linkage, paramattr, 4203 // alignment, section, visibility, gc, unnamed_addr, 4204 // prologuedata, dllstorageclass, comdat, prefixdata] 4205 case bitc::MODULE_CODE_FUNCTION: { 4206 if (Record.size() < 8) 4207 return error("Invalid record"); 4208 Type *Ty = getTypeByID(Record[0]); 4209 if (!Ty) 4210 return error("Invalid record"); 4211 if (auto *PTy = dyn_cast<PointerType>(Ty)) 4212 Ty = PTy->getElementType(); 4213 auto *FTy = dyn_cast<FunctionType>(Ty); 4214 if (!FTy) 4215 return error("Invalid type for value"); 4216 auto CC = static_cast<CallingConv::ID>(Record[1]); 4217 if (CC & ~CallingConv::MaxID) 4218 return error("Invalid calling convention ID"); 4219 4220 Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage, 4221 "", TheModule); 4222 4223 Func->setCallingConv(CC); 4224 bool isProto = Record[2]; 4225 uint64_t RawLinkage = Record[3]; 4226 Func->setLinkage(getDecodedLinkage(RawLinkage)); 4227 Func->setAttributes(getAttributes(Record[4])); 4228 4229 unsigned Alignment; 4230 if (Error Err = parseAlignmentValue(Record[5], Alignment)) 4231 return Err; 4232 Func->setAlignment(Alignment); 4233 if (Record[6]) { 4234 if (Record[6]-1 >= SectionTable.size()) 4235 return error("Invalid ID"); 4236 Func->setSection(SectionTable[Record[6]-1]); 4237 } 4238 // Local linkage must have default visibility. 4239 if (!Func->hasLocalLinkage()) 4240 // FIXME: Change to an error if non-default in 4.0. 4241 Func->setVisibility(getDecodedVisibility(Record[7])); 4242 if (Record.size() > 8 && Record[8]) { 4243 if (Record[8]-1 >= GCTable.size()) 4244 return error("Invalid ID"); 4245 Func->setGC(GCTable[Record[8] - 1]); 4246 } 4247 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 4248 if (Record.size() > 9) 4249 UnnamedAddr = getDecodedUnnamedAddrType(Record[9]); 4250 Func->setUnnamedAddr(UnnamedAddr); 4251 if (Record.size() > 10 && Record[10] != 0) 4252 FunctionPrologues.push_back(std::make_pair(Func, Record[10]-1)); 4253 4254 if (Record.size() > 11) 4255 Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11])); 4256 else 4257 upgradeDLLImportExportLinkage(Func, RawLinkage); 4258 4259 if (Record.size() > 12) { 4260 if (unsigned ComdatID = Record[12]) { 4261 if (ComdatID > ComdatList.size()) 4262 return error("Invalid function comdat ID"); 4263 Func->setComdat(ComdatList[ComdatID - 1]); 4264 } 4265 } else if (hasImplicitComdat(RawLinkage)) { 4266 Func->setComdat(reinterpret_cast<Comdat *>(1)); 4267 } 4268 4269 if (Record.size() > 13 && Record[13] != 0) 4270 FunctionPrefixes.push_back(std::make_pair(Func, Record[13]-1)); 4271 4272 if (Record.size() > 14 && Record[14] != 0) 4273 FunctionPersonalityFns.push_back(std::make_pair(Func, Record[14] - 1)); 4274 4275 ValueList.push_back(Func); 4276 4277 // If this is a function with a body, remember the prototype we are 4278 // creating now, so that we can match up the body with them later. 4279 if (!isProto) { 4280 Func->setIsMaterializable(true); 4281 FunctionsWithBodies.push_back(Func); 4282 DeferredFunctionInfo[Func] = 0; 4283 } 4284 break; 4285 } 4286 // ALIAS: [alias type, addrspace, aliasee val#, linkage] 4287 // ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, dllstorageclass] 4288 // IFUNC: [alias type, addrspace, aliasee val#, linkage, visibility, dllstorageclass] 4289 case bitc::MODULE_CODE_IFUNC: 4290 case bitc::MODULE_CODE_ALIAS: 4291 case bitc::MODULE_CODE_ALIAS_OLD: { 4292 bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD; 4293 if (Record.size() < (3 + (unsigned)NewRecord)) 4294 return error("Invalid record"); 4295 unsigned OpNum = 0; 4296 Type *Ty = getTypeByID(Record[OpNum++]); 4297 if (!Ty) 4298 return error("Invalid record"); 4299 4300 unsigned AddrSpace; 4301 if (!NewRecord) { 4302 auto *PTy = dyn_cast<PointerType>(Ty); 4303 if (!PTy) 4304 return error("Invalid type for value"); 4305 Ty = PTy->getElementType(); 4306 AddrSpace = PTy->getAddressSpace(); 4307 } else { 4308 AddrSpace = Record[OpNum++]; 4309 } 4310 4311 auto Val = Record[OpNum++]; 4312 auto Linkage = Record[OpNum++]; 4313 GlobalIndirectSymbol *NewGA; 4314 if (BitCode == bitc::MODULE_CODE_ALIAS || 4315 BitCode == bitc::MODULE_CODE_ALIAS_OLD) 4316 NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), 4317 "", TheModule); 4318 else 4319 NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), 4320 "", nullptr, TheModule); 4321 // Old bitcode files didn't have visibility field. 4322 // Local linkage must have default visibility. 4323 if (OpNum != Record.size()) { 4324 auto VisInd = OpNum++; 4325 if (!NewGA->hasLocalLinkage()) 4326 // FIXME: Change to an error if non-default in 4.0. 4327 NewGA->setVisibility(getDecodedVisibility(Record[VisInd])); 4328 } 4329 if (OpNum != Record.size()) 4330 NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++])); 4331 else 4332 upgradeDLLImportExportLinkage(NewGA, Linkage); 4333 if (OpNum != Record.size()) 4334 NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++])); 4335 if (OpNum != Record.size()) 4336 NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++])); 4337 ValueList.push_back(NewGA); 4338 IndirectSymbolInits.push_back(std::make_pair(NewGA, Val)); 4339 break; 4340 } 4341 /// MODULE_CODE_PURGEVALS: [numvals] 4342 case bitc::MODULE_CODE_PURGEVALS: 4343 // Trim down the value list to the specified size. 4344 if (Record.size() < 1 || Record[0] > ValueList.size()) 4345 return error("Invalid record"); 4346 ValueList.shrinkTo(Record[0]); 4347 break; 4348 /// MODULE_CODE_VSTOFFSET: [offset] 4349 case bitc::MODULE_CODE_VSTOFFSET: 4350 if (Record.size() < 1) 4351 return error("Invalid record"); 4352 VSTOffset = Record[0]; 4353 break; 4354 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 4355 case bitc::MODULE_CODE_SOURCE_FILENAME: 4356 SmallString<128> ValueName; 4357 if (convertToString(Record, 0, ValueName)) 4358 return error("Invalid record"); 4359 TheModule->setSourceFileName(ValueName); 4360 break; 4361 } 4362 Record.clear(); 4363 } 4364 } 4365 4366 Error BitcodeReader::parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata) { 4367 TheModule = M; 4368 4369 // We expect a number of well-defined blocks, though we don't necessarily 4370 // need to understand them all. 4371 while (true) { 4372 if (Stream.AtEndOfStream()) { 4373 // We didn't really read a proper Module. 4374 return error("Malformed IR file"); 4375 } 4376 4377 BitstreamEntry Entry = 4378 Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs); 4379 4380 if (Entry.Kind != BitstreamEntry::SubBlock) 4381 return error("Malformed block"); 4382 4383 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) { 4384 Expected<std::string> ProducerIdentificationOrErr = 4385 readIdentificationBlock(Stream); 4386 if (!ProducerIdentificationOrErr) 4387 return ProducerIdentificationOrErr.takeError(); 4388 ProducerIdentification = *ProducerIdentificationOrErr; 4389 continue; 4390 } 4391 4392 if (Entry.ID == bitc::MODULE_BLOCK_ID) 4393 return parseModule(0, ShouldLazyLoadMetadata); 4394 4395 if (Stream.SkipBlock()) 4396 return error("Invalid record"); 4397 } 4398 } 4399 4400 Error BitcodeReader::parseGlobalObjectAttachment(GlobalObject &GO, 4401 ArrayRef<uint64_t> Record) { 4402 assert(Record.size() % 2 == 0); 4403 for (unsigned I = 0, E = Record.size(); I != E; I += 2) { 4404 auto K = MDKindMap.find(Record[I]); 4405 if (K == MDKindMap.end()) 4406 return error("Invalid ID"); 4407 MDNode *MD = MetadataList.getMDNodeFwdRefOrNull(Record[I + 1]); 4408 if (!MD) 4409 return error("Invalid metadata attachment"); 4410 GO.addMetadata(K->second, *MD); 4411 } 4412 return Error::success(); 4413 } 4414 4415 /// Parse metadata attachments. 4416 Error BitcodeReader::parseMetadataAttachment(Function &F) { 4417 if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID)) 4418 return error("Invalid record"); 4419 4420 SmallVector<uint64_t, 64> Record; 4421 4422 while (true) { 4423 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 4424 4425 switch (Entry.Kind) { 4426 case BitstreamEntry::SubBlock: // Handled for us already. 4427 case BitstreamEntry::Error: 4428 return error("Malformed block"); 4429 case BitstreamEntry::EndBlock: 4430 return Error::success(); 4431 case BitstreamEntry::Record: 4432 // The interesting case. 4433 break; 4434 } 4435 4436 // Read a metadata attachment record. 4437 Record.clear(); 4438 switch (Stream.readRecord(Entry.ID, Record)) { 4439 default: // Default behavior: ignore. 4440 break; 4441 case bitc::METADATA_ATTACHMENT: { 4442 unsigned RecordLength = Record.size(); 4443 if (Record.empty()) 4444 return error("Invalid record"); 4445 if (RecordLength % 2 == 0) { 4446 // A function attachment. 4447 if (Error Err = parseGlobalObjectAttachment(F, Record)) 4448 return Err; 4449 continue; 4450 } 4451 4452 // An instruction attachment. 4453 Instruction *Inst = InstructionList[Record[0]]; 4454 for (unsigned i = 1; i != RecordLength; i = i+2) { 4455 unsigned Kind = Record[i]; 4456 DenseMap<unsigned, unsigned>::iterator I = 4457 MDKindMap.find(Kind); 4458 if (I == MDKindMap.end()) 4459 return error("Invalid ID"); 4460 Metadata *Node = MetadataList.getMetadataFwdRef(Record[i + 1]); 4461 if (isa<LocalAsMetadata>(Node)) 4462 // Drop the attachment. This used to be legal, but there's no 4463 // upgrade path. 4464 break; 4465 MDNode *MD = dyn_cast_or_null<MDNode>(Node); 4466 if (!MD) 4467 return error("Invalid metadata attachment"); 4468 4469 if (HasSeenOldLoopTags && I->second == LLVMContext::MD_loop) 4470 MD = upgradeInstructionLoopAttachment(*MD); 4471 4472 if (I->second == LLVMContext::MD_tbaa) { 4473 assert(!MD->isTemporary() && "should load MDs before attachments"); 4474 MD = UpgradeTBAANode(*MD); 4475 } 4476 Inst->setMetadata(I->second, MD); 4477 } 4478 break; 4479 } 4480 } 4481 } 4482 } 4483 4484 Error BitcodeReader::typeCheckLoadStoreInst(Type *ValType, Type *PtrType) { 4485 if (!isa<PointerType>(PtrType)) 4486 return error("Load/Store operand is not a pointer type"); 4487 Type *ElemType = cast<PointerType>(PtrType)->getElementType(); 4488 4489 if (ValType && ValType != ElemType) 4490 return error("Explicit load/store type does not match pointee " 4491 "type of pointer operand"); 4492 if (!PointerType::isLoadableOrStorableType(ElemType)) 4493 return error("Cannot load/store from pointer"); 4494 return Error::success(); 4495 } 4496 4497 /// Lazily parse the specified function body block. 4498 Error BitcodeReader::parseFunctionBody(Function *F) { 4499 if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 4500 return error("Invalid record"); 4501 4502 // Unexpected unresolved metadata when parsing function. 4503 if (MetadataList.hasFwdRefs()) 4504 return error("Invalid function metadata: incoming forward references"); 4505 4506 InstructionList.clear(); 4507 unsigned ModuleValueListSize = ValueList.size(); 4508 unsigned ModuleMetadataListSize = MetadataList.size(); 4509 4510 // Add all the function arguments to the value table. 4511 for (Argument &I : F->args()) 4512 ValueList.push_back(&I); 4513 4514 unsigned NextValueNo = ValueList.size(); 4515 BasicBlock *CurBB = nullptr; 4516 unsigned CurBBNo = 0; 4517 4518 DebugLoc LastLoc; 4519 auto getLastInstruction = [&]() -> Instruction * { 4520 if (CurBB && !CurBB->empty()) 4521 return &CurBB->back(); 4522 else if (CurBBNo && FunctionBBs[CurBBNo - 1] && 4523 !FunctionBBs[CurBBNo - 1]->empty()) 4524 return &FunctionBBs[CurBBNo - 1]->back(); 4525 return nullptr; 4526 }; 4527 4528 std::vector<OperandBundleDef> OperandBundles; 4529 4530 // Read all the records. 4531 SmallVector<uint64_t, 64> Record; 4532 4533 while (true) { 4534 BitstreamEntry Entry = Stream.advance(); 4535 4536 switch (Entry.Kind) { 4537 case BitstreamEntry::Error: 4538 return error("Malformed block"); 4539 case BitstreamEntry::EndBlock: 4540 goto OutOfRecordLoop; 4541 4542 case BitstreamEntry::SubBlock: 4543 switch (Entry.ID) { 4544 default: // Skip unknown content. 4545 if (Stream.SkipBlock()) 4546 return error("Invalid record"); 4547 break; 4548 case bitc::CONSTANTS_BLOCK_ID: 4549 if (Error Err = parseConstants()) 4550 return Err; 4551 NextValueNo = ValueList.size(); 4552 break; 4553 case bitc::VALUE_SYMTAB_BLOCK_ID: 4554 if (Error Err = parseValueSymbolTable()) 4555 return Err; 4556 break; 4557 case bitc::METADATA_ATTACHMENT_ID: 4558 if (Error Err = parseMetadataAttachment(*F)) 4559 return Err; 4560 break; 4561 case bitc::METADATA_BLOCK_ID: 4562 if (Error Err = parseMetadata()) 4563 return Err; 4564 break; 4565 case bitc::USELIST_BLOCK_ID: 4566 if (Error Err = parseUseLists()) 4567 return Err; 4568 break; 4569 } 4570 continue; 4571 4572 case BitstreamEntry::Record: 4573 // The interesting case. 4574 break; 4575 } 4576 4577 // Read a record. 4578 Record.clear(); 4579 Instruction *I = nullptr; 4580 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 4581 switch (BitCode) { 4582 default: // Default behavior: reject 4583 return error("Invalid value"); 4584 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks] 4585 if (Record.size() < 1 || Record[0] == 0) 4586 return error("Invalid record"); 4587 // Create all the basic blocks for the function. 4588 FunctionBBs.resize(Record[0]); 4589 4590 // See if anything took the address of blocks in this function. 4591 auto BBFRI = BasicBlockFwdRefs.find(F); 4592 if (BBFRI == BasicBlockFwdRefs.end()) { 4593 for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i) 4594 FunctionBBs[i] = BasicBlock::Create(Context, "", F); 4595 } else { 4596 auto &BBRefs = BBFRI->second; 4597 // Check for invalid basic block references. 4598 if (BBRefs.size() > FunctionBBs.size()) 4599 return error("Invalid ID"); 4600 assert(!BBRefs.empty() && "Unexpected empty array"); 4601 assert(!BBRefs.front() && "Invalid reference to entry block"); 4602 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E; 4603 ++I) 4604 if (I < RE && BBRefs[I]) { 4605 BBRefs[I]->insertInto(F); 4606 FunctionBBs[I] = BBRefs[I]; 4607 } else { 4608 FunctionBBs[I] = BasicBlock::Create(Context, "", F); 4609 } 4610 4611 // Erase from the table. 4612 BasicBlockFwdRefs.erase(BBFRI); 4613 } 4614 4615 CurBB = FunctionBBs[0]; 4616 continue; 4617 } 4618 4619 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 4620 // This record indicates that the last instruction is at the same 4621 // location as the previous instruction with a location. 4622 I = getLastInstruction(); 4623 4624 if (!I) 4625 return error("Invalid record"); 4626 I->setDebugLoc(LastLoc); 4627 I = nullptr; 4628 continue; 4629 4630 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 4631 I = getLastInstruction(); 4632 if (!I || Record.size() < 4) 4633 return error("Invalid record"); 4634 4635 unsigned Line = Record[0], Col = Record[1]; 4636 unsigned ScopeID = Record[2], IAID = Record[3]; 4637 4638 MDNode *Scope = nullptr, *IA = nullptr; 4639 if (ScopeID) { 4640 Scope = MetadataList.getMDNodeFwdRefOrNull(ScopeID - 1); 4641 if (!Scope) 4642 return error("Invalid record"); 4643 } 4644 if (IAID) { 4645 IA = MetadataList.getMDNodeFwdRefOrNull(IAID - 1); 4646 if (!IA) 4647 return error("Invalid record"); 4648 } 4649 LastLoc = DebugLoc::get(Line, Col, Scope, IA); 4650 I->setDebugLoc(LastLoc); 4651 I = nullptr; 4652 continue; 4653 } 4654 4655 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 4656 unsigned OpNum = 0; 4657 Value *LHS, *RHS; 4658 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 4659 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 4660 OpNum+1 > Record.size()) 4661 return error("Invalid record"); 4662 4663 int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 4664 if (Opc == -1) 4665 return error("Invalid record"); 4666 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 4667 InstructionList.push_back(I); 4668 if (OpNum < Record.size()) { 4669 if (Opc == Instruction::Add || 4670 Opc == Instruction::Sub || 4671 Opc == Instruction::Mul || 4672 Opc == Instruction::Shl) { 4673 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 4674 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 4675 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 4676 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 4677 } else if (Opc == Instruction::SDiv || 4678 Opc == Instruction::UDiv || 4679 Opc == Instruction::LShr || 4680 Opc == Instruction::AShr) { 4681 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 4682 cast<BinaryOperator>(I)->setIsExact(true); 4683 } else if (isa<FPMathOperator>(I)) { 4684 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 4685 if (FMF.any()) 4686 I->setFastMathFlags(FMF); 4687 } 4688 4689 } 4690 break; 4691 } 4692 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 4693 unsigned OpNum = 0; 4694 Value *Op; 4695 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4696 OpNum+2 != Record.size()) 4697 return error("Invalid record"); 4698 4699 Type *ResTy = getTypeByID(Record[OpNum]); 4700 int Opc = getDecodedCastOpcode(Record[OpNum + 1]); 4701 if (Opc == -1 || !ResTy) 4702 return error("Invalid record"); 4703 Instruction *Temp = nullptr; 4704 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) { 4705 if (Temp) { 4706 InstructionList.push_back(Temp); 4707 CurBB->getInstList().push_back(Temp); 4708 } 4709 } else { 4710 auto CastOp = (Instruction::CastOps)Opc; 4711 if (!CastInst::castIsValid(CastOp, Op, ResTy)) 4712 return error("Invalid cast"); 4713 I = CastInst::Create(CastOp, Op, ResTy); 4714 } 4715 InstructionList.push_back(I); 4716 break; 4717 } 4718 case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD: 4719 case bitc::FUNC_CODE_INST_GEP_OLD: 4720 case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands] 4721 unsigned OpNum = 0; 4722 4723 Type *Ty; 4724 bool InBounds; 4725 4726 if (BitCode == bitc::FUNC_CODE_INST_GEP) { 4727 InBounds = Record[OpNum++]; 4728 Ty = getTypeByID(Record[OpNum++]); 4729 } else { 4730 InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD; 4731 Ty = nullptr; 4732 } 4733 4734 Value *BasePtr; 4735 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr)) 4736 return error("Invalid record"); 4737 4738 if (!Ty) 4739 Ty = cast<PointerType>(BasePtr->getType()->getScalarType()) 4740 ->getElementType(); 4741 else if (Ty != 4742 cast<PointerType>(BasePtr->getType()->getScalarType()) 4743 ->getElementType()) 4744 return error( 4745 "Explicit gep type does not match pointee type of pointer operand"); 4746 4747 SmallVector<Value*, 16> GEPIdx; 4748 while (OpNum != Record.size()) { 4749 Value *Op; 4750 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4751 return error("Invalid record"); 4752 GEPIdx.push_back(Op); 4753 } 4754 4755 I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx); 4756 4757 InstructionList.push_back(I); 4758 if (InBounds) 4759 cast<GetElementPtrInst>(I)->setIsInBounds(true); 4760 break; 4761 } 4762 4763 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 4764 // EXTRACTVAL: [opty, opval, n x indices] 4765 unsigned OpNum = 0; 4766 Value *Agg; 4767 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 4768 return error("Invalid record"); 4769 4770 unsigned RecSize = Record.size(); 4771 if (OpNum == RecSize) 4772 return error("EXTRACTVAL: Invalid instruction with 0 indices"); 4773 4774 SmallVector<unsigned, 4> EXTRACTVALIdx; 4775 Type *CurTy = Agg->getType(); 4776 for (; OpNum != RecSize; ++OpNum) { 4777 bool IsArray = CurTy->isArrayTy(); 4778 bool IsStruct = CurTy->isStructTy(); 4779 uint64_t Index = Record[OpNum]; 4780 4781 if (!IsStruct && !IsArray) 4782 return error("EXTRACTVAL: Invalid type"); 4783 if ((unsigned)Index != Index) 4784 return error("Invalid value"); 4785 if (IsStruct && Index >= CurTy->subtypes().size()) 4786 return error("EXTRACTVAL: Invalid struct index"); 4787 if (IsArray && Index >= CurTy->getArrayNumElements()) 4788 return error("EXTRACTVAL: Invalid array index"); 4789 EXTRACTVALIdx.push_back((unsigned)Index); 4790 4791 if (IsStruct) 4792 CurTy = CurTy->subtypes()[Index]; 4793 else 4794 CurTy = CurTy->subtypes()[0]; 4795 } 4796 4797 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 4798 InstructionList.push_back(I); 4799 break; 4800 } 4801 4802 case bitc::FUNC_CODE_INST_INSERTVAL: { 4803 // INSERTVAL: [opty, opval, opty, opval, n x indices] 4804 unsigned OpNum = 0; 4805 Value *Agg; 4806 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 4807 return error("Invalid record"); 4808 Value *Val; 4809 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 4810 return error("Invalid record"); 4811 4812 unsigned RecSize = Record.size(); 4813 if (OpNum == RecSize) 4814 return error("INSERTVAL: Invalid instruction with 0 indices"); 4815 4816 SmallVector<unsigned, 4> INSERTVALIdx; 4817 Type *CurTy = Agg->getType(); 4818 for (; OpNum != RecSize; ++OpNum) { 4819 bool IsArray = CurTy->isArrayTy(); 4820 bool IsStruct = CurTy->isStructTy(); 4821 uint64_t Index = Record[OpNum]; 4822 4823 if (!IsStruct && !IsArray) 4824 return error("INSERTVAL: Invalid type"); 4825 if ((unsigned)Index != Index) 4826 return error("Invalid value"); 4827 if (IsStruct && Index >= CurTy->subtypes().size()) 4828 return error("INSERTVAL: Invalid struct index"); 4829 if (IsArray && Index >= CurTy->getArrayNumElements()) 4830 return error("INSERTVAL: Invalid array index"); 4831 4832 INSERTVALIdx.push_back((unsigned)Index); 4833 if (IsStruct) 4834 CurTy = CurTy->subtypes()[Index]; 4835 else 4836 CurTy = CurTy->subtypes()[0]; 4837 } 4838 4839 if (CurTy != Val->getType()) 4840 return error("Inserted value type doesn't match aggregate type"); 4841 4842 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 4843 InstructionList.push_back(I); 4844 break; 4845 } 4846 4847 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 4848 // obsolete form of select 4849 // handles select i1 ... in old bitcode 4850 unsigned OpNum = 0; 4851 Value *TrueVal, *FalseVal, *Cond; 4852 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 4853 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 4854 popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond)) 4855 return error("Invalid record"); 4856 4857 I = SelectInst::Create(Cond, TrueVal, FalseVal); 4858 InstructionList.push_back(I); 4859 break; 4860 } 4861 4862 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 4863 // new form of select 4864 // handles select i1 or select [N x i1] 4865 unsigned OpNum = 0; 4866 Value *TrueVal, *FalseVal, *Cond; 4867 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 4868 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 4869 getValueTypePair(Record, OpNum, NextValueNo, Cond)) 4870 return error("Invalid record"); 4871 4872 // select condition can be either i1 or [N x i1] 4873 if (VectorType* vector_type = 4874 dyn_cast<VectorType>(Cond->getType())) { 4875 // expect <n x i1> 4876 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 4877 return error("Invalid type for value"); 4878 } else { 4879 // expect i1 4880 if (Cond->getType() != Type::getInt1Ty(Context)) 4881 return error("Invalid type for value"); 4882 } 4883 4884 I = SelectInst::Create(Cond, TrueVal, FalseVal); 4885 InstructionList.push_back(I); 4886 break; 4887 } 4888 4889 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 4890 unsigned OpNum = 0; 4891 Value *Vec, *Idx; 4892 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 4893 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 4894 return error("Invalid record"); 4895 if (!Vec->getType()->isVectorTy()) 4896 return error("Invalid type for value"); 4897 I = ExtractElementInst::Create(Vec, Idx); 4898 InstructionList.push_back(I); 4899 break; 4900 } 4901 4902 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 4903 unsigned OpNum = 0; 4904 Value *Vec, *Elt, *Idx; 4905 if (getValueTypePair(Record, OpNum, NextValueNo, Vec)) 4906 return error("Invalid record"); 4907 if (!Vec->getType()->isVectorTy()) 4908 return error("Invalid type for value"); 4909 if (popValue(Record, OpNum, NextValueNo, 4910 cast<VectorType>(Vec->getType())->getElementType(), Elt) || 4911 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 4912 return error("Invalid record"); 4913 I = InsertElementInst::Create(Vec, Elt, Idx); 4914 InstructionList.push_back(I); 4915 break; 4916 } 4917 4918 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 4919 unsigned OpNum = 0; 4920 Value *Vec1, *Vec2, *Mask; 4921 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) || 4922 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2)) 4923 return error("Invalid record"); 4924 4925 if (getValueTypePair(Record, OpNum, NextValueNo, Mask)) 4926 return error("Invalid record"); 4927 if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy()) 4928 return error("Invalid type for value"); 4929 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 4930 InstructionList.push_back(I); 4931 break; 4932 } 4933 4934 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 4935 // Old form of ICmp/FCmp returning bool 4936 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 4937 // both legal on vectors but had different behaviour. 4938 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 4939 // FCmp/ICmp returning bool or vector of bool 4940 4941 unsigned OpNum = 0; 4942 Value *LHS, *RHS; 4943 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 4944 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS)) 4945 return error("Invalid record"); 4946 4947 unsigned PredVal = Record[OpNum]; 4948 bool IsFP = LHS->getType()->isFPOrFPVectorTy(); 4949 FastMathFlags FMF; 4950 if (IsFP && Record.size() > OpNum+1) 4951 FMF = getDecodedFastMathFlags(Record[++OpNum]); 4952 4953 if (OpNum+1 != Record.size()) 4954 return error("Invalid record"); 4955 4956 if (LHS->getType()->isFPOrFPVectorTy()) 4957 I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS); 4958 else 4959 I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS); 4960 4961 if (FMF.any()) 4962 I->setFastMathFlags(FMF); 4963 InstructionList.push_back(I); 4964 break; 4965 } 4966 4967 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 4968 { 4969 unsigned Size = Record.size(); 4970 if (Size == 0) { 4971 I = ReturnInst::Create(Context); 4972 InstructionList.push_back(I); 4973 break; 4974 } 4975 4976 unsigned OpNum = 0; 4977 Value *Op = nullptr; 4978 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4979 return error("Invalid record"); 4980 if (OpNum != Record.size()) 4981 return error("Invalid record"); 4982 4983 I = ReturnInst::Create(Context, Op); 4984 InstructionList.push_back(I); 4985 break; 4986 } 4987 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 4988 if (Record.size() != 1 && Record.size() != 3) 4989 return error("Invalid record"); 4990 BasicBlock *TrueDest = getBasicBlock(Record[0]); 4991 if (!TrueDest) 4992 return error("Invalid record"); 4993 4994 if (Record.size() == 1) { 4995 I = BranchInst::Create(TrueDest); 4996 InstructionList.push_back(I); 4997 } 4998 else { 4999 BasicBlock *FalseDest = getBasicBlock(Record[1]); 5000 Value *Cond = getValue(Record, 2, NextValueNo, 5001 Type::getInt1Ty(Context)); 5002 if (!FalseDest || !Cond) 5003 return error("Invalid record"); 5004 I = BranchInst::Create(TrueDest, FalseDest, Cond); 5005 InstructionList.push_back(I); 5006 } 5007 break; 5008 } 5009 case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#] 5010 if (Record.size() != 1 && Record.size() != 2) 5011 return error("Invalid record"); 5012 unsigned Idx = 0; 5013 Value *CleanupPad = 5014 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 5015 if (!CleanupPad) 5016 return error("Invalid record"); 5017 BasicBlock *UnwindDest = nullptr; 5018 if (Record.size() == 2) { 5019 UnwindDest = getBasicBlock(Record[Idx++]); 5020 if (!UnwindDest) 5021 return error("Invalid record"); 5022 } 5023 5024 I = CleanupReturnInst::Create(CleanupPad, UnwindDest); 5025 InstructionList.push_back(I); 5026 break; 5027 } 5028 case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#] 5029 if (Record.size() != 2) 5030 return error("Invalid record"); 5031 unsigned Idx = 0; 5032 Value *CatchPad = 5033 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 5034 if (!CatchPad) 5035 return error("Invalid record"); 5036 BasicBlock *BB = getBasicBlock(Record[Idx++]); 5037 if (!BB) 5038 return error("Invalid record"); 5039 5040 I = CatchReturnInst::Create(CatchPad, BB); 5041 InstructionList.push_back(I); 5042 break; 5043 } 5044 case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?] 5045 // We must have, at minimum, the outer scope and the number of arguments. 5046 if (Record.size() < 2) 5047 return error("Invalid record"); 5048 5049 unsigned Idx = 0; 5050 5051 Value *ParentPad = 5052 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 5053 5054 unsigned NumHandlers = Record[Idx++]; 5055 5056 SmallVector<BasicBlock *, 2> Handlers; 5057 for (unsigned Op = 0; Op != NumHandlers; ++Op) { 5058 BasicBlock *BB = getBasicBlock(Record[Idx++]); 5059 if (!BB) 5060 return error("Invalid record"); 5061 Handlers.push_back(BB); 5062 } 5063 5064 BasicBlock *UnwindDest = nullptr; 5065 if (Idx + 1 == Record.size()) { 5066 UnwindDest = getBasicBlock(Record[Idx++]); 5067 if (!UnwindDest) 5068 return error("Invalid record"); 5069 } 5070 5071 if (Record.size() != Idx) 5072 return error("Invalid record"); 5073 5074 auto *CatchSwitch = 5075 CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers); 5076 for (BasicBlock *Handler : Handlers) 5077 CatchSwitch->addHandler(Handler); 5078 I = CatchSwitch; 5079 InstructionList.push_back(I); 5080 break; 5081 } 5082 case bitc::FUNC_CODE_INST_CATCHPAD: 5083 case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*] 5084 // We must have, at minimum, the outer scope and the number of arguments. 5085 if (Record.size() < 2) 5086 return error("Invalid record"); 5087 5088 unsigned Idx = 0; 5089 5090 Value *ParentPad = 5091 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 5092 5093 unsigned NumArgOperands = Record[Idx++]; 5094 5095 SmallVector<Value *, 2> Args; 5096 for (unsigned Op = 0; Op != NumArgOperands; ++Op) { 5097 Value *Val; 5098 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 5099 return error("Invalid record"); 5100 Args.push_back(Val); 5101 } 5102 5103 if (Record.size() != Idx) 5104 return error("Invalid record"); 5105 5106 if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD) 5107 I = CleanupPadInst::Create(ParentPad, Args); 5108 else 5109 I = CatchPadInst::Create(ParentPad, Args); 5110 InstructionList.push_back(I); 5111 break; 5112 } 5113 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 5114 // Check magic 5115 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { 5116 // "New" SwitchInst format with case ranges. The changes to write this 5117 // format were reverted but we still recognize bitcode that uses it. 5118 // Hopefully someday we will have support for case ranges and can use 5119 // this format again. 5120 5121 Type *OpTy = getTypeByID(Record[1]); 5122 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); 5123 5124 Value *Cond = getValue(Record, 2, NextValueNo, OpTy); 5125 BasicBlock *Default = getBasicBlock(Record[3]); 5126 if (!OpTy || !Cond || !Default) 5127 return error("Invalid record"); 5128 5129 unsigned NumCases = Record[4]; 5130 5131 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 5132 InstructionList.push_back(SI); 5133 5134 unsigned CurIdx = 5; 5135 for (unsigned i = 0; i != NumCases; ++i) { 5136 SmallVector<ConstantInt*, 1> CaseVals; 5137 unsigned NumItems = Record[CurIdx++]; 5138 for (unsigned ci = 0; ci != NumItems; ++ci) { 5139 bool isSingleNumber = Record[CurIdx++]; 5140 5141 APInt Low; 5142 unsigned ActiveWords = 1; 5143 if (ValueBitWidth > 64) 5144 ActiveWords = Record[CurIdx++]; 5145 Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 5146 ValueBitWidth); 5147 CurIdx += ActiveWords; 5148 5149 if (!isSingleNumber) { 5150 ActiveWords = 1; 5151 if (ValueBitWidth > 64) 5152 ActiveWords = Record[CurIdx++]; 5153 APInt High = readWideAPInt( 5154 makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth); 5155 CurIdx += ActiveWords; 5156 5157 // FIXME: It is not clear whether values in the range should be 5158 // compared as signed or unsigned values. The partially 5159 // implemented changes that used this format in the past used 5160 // unsigned comparisons. 5161 for ( ; Low.ule(High); ++Low) 5162 CaseVals.push_back(ConstantInt::get(Context, Low)); 5163 } else 5164 CaseVals.push_back(ConstantInt::get(Context, Low)); 5165 } 5166 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); 5167 for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(), 5168 cve = CaseVals.end(); cvi != cve; ++cvi) 5169 SI->addCase(*cvi, DestBB); 5170 } 5171 I = SI; 5172 break; 5173 } 5174 5175 // Old SwitchInst format without case ranges. 5176 5177 if (Record.size() < 3 || (Record.size() & 1) == 0) 5178 return error("Invalid record"); 5179 Type *OpTy = getTypeByID(Record[0]); 5180 Value *Cond = getValue(Record, 1, NextValueNo, OpTy); 5181 BasicBlock *Default = getBasicBlock(Record[2]); 5182 if (!OpTy || !Cond || !Default) 5183 return error("Invalid record"); 5184 unsigned NumCases = (Record.size()-3)/2; 5185 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 5186 InstructionList.push_back(SI); 5187 for (unsigned i = 0, e = NumCases; i != e; ++i) { 5188 ConstantInt *CaseVal = 5189 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy)); 5190 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 5191 if (!CaseVal || !DestBB) { 5192 delete SI; 5193 return error("Invalid record"); 5194 } 5195 SI->addCase(CaseVal, DestBB); 5196 } 5197 I = SI; 5198 break; 5199 } 5200 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 5201 if (Record.size() < 2) 5202 return error("Invalid record"); 5203 Type *OpTy = getTypeByID(Record[0]); 5204 Value *Address = getValue(Record, 1, NextValueNo, OpTy); 5205 if (!OpTy || !Address) 5206 return error("Invalid record"); 5207 unsigned NumDests = Record.size()-2; 5208 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 5209 InstructionList.push_back(IBI); 5210 for (unsigned i = 0, e = NumDests; i != e; ++i) { 5211 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 5212 IBI->addDestination(DestBB); 5213 } else { 5214 delete IBI; 5215 return error("Invalid record"); 5216 } 5217 } 5218 I = IBI; 5219 break; 5220 } 5221 5222 case bitc::FUNC_CODE_INST_INVOKE: { 5223 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 5224 if (Record.size() < 4) 5225 return error("Invalid record"); 5226 unsigned OpNum = 0; 5227 AttributeSet PAL = getAttributes(Record[OpNum++]); 5228 unsigned CCInfo = Record[OpNum++]; 5229 BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]); 5230 BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]); 5231 5232 FunctionType *FTy = nullptr; 5233 if (CCInfo >> 13 & 1 && 5234 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])))) 5235 return error("Explicit invoke type is not a function type"); 5236 5237 Value *Callee; 5238 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 5239 return error("Invalid record"); 5240 5241 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 5242 if (!CalleeTy) 5243 return error("Callee is not a pointer"); 5244 if (!FTy) { 5245 FTy = dyn_cast<FunctionType>(CalleeTy->getElementType()); 5246 if (!FTy) 5247 return error("Callee is not of pointer to function type"); 5248 } else if (CalleeTy->getElementType() != FTy) 5249 return error("Explicit invoke type does not match pointee type of " 5250 "callee operand"); 5251 if (Record.size() < FTy->getNumParams() + OpNum) 5252 return error("Insufficient operands to call"); 5253 5254 SmallVector<Value*, 16> Ops; 5255 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 5256 Ops.push_back(getValue(Record, OpNum, NextValueNo, 5257 FTy->getParamType(i))); 5258 if (!Ops.back()) 5259 return error("Invalid record"); 5260 } 5261 5262 if (!FTy->isVarArg()) { 5263 if (Record.size() != OpNum) 5264 return error("Invalid record"); 5265 } else { 5266 // Read type/value pairs for varargs params. 5267 while (OpNum != Record.size()) { 5268 Value *Op; 5269 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 5270 return error("Invalid record"); 5271 Ops.push_back(Op); 5272 } 5273 } 5274 5275 I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops, OperandBundles); 5276 OperandBundles.clear(); 5277 InstructionList.push_back(I); 5278 cast<InvokeInst>(I)->setCallingConv( 5279 static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo)); 5280 cast<InvokeInst>(I)->setAttributes(PAL); 5281 break; 5282 } 5283 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 5284 unsigned Idx = 0; 5285 Value *Val = nullptr; 5286 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 5287 return error("Invalid record"); 5288 I = ResumeInst::Create(Val); 5289 InstructionList.push_back(I); 5290 break; 5291 } 5292 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 5293 I = new UnreachableInst(Context); 5294 InstructionList.push_back(I); 5295 break; 5296 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 5297 if (Record.size() < 1 || ((Record.size()-1)&1)) 5298 return error("Invalid record"); 5299 Type *Ty = getTypeByID(Record[0]); 5300 if (!Ty) 5301 return error("Invalid record"); 5302 5303 PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2); 5304 InstructionList.push_back(PN); 5305 5306 for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) { 5307 Value *V; 5308 // With the new function encoding, it is possible that operands have 5309 // negative IDs (for forward references). Use a signed VBR 5310 // representation to keep the encoding small. 5311 if (UseRelativeIDs) 5312 V = getValueSigned(Record, 1+i, NextValueNo, Ty); 5313 else 5314 V = getValue(Record, 1+i, NextValueNo, Ty); 5315 BasicBlock *BB = getBasicBlock(Record[2+i]); 5316 if (!V || !BB) 5317 return error("Invalid record"); 5318 PN->addIncoming(V, BB); 5319 } 5320 I = PN; 5321 break; 5322 } 5323 5324 case bitc::FUNC_CODE_INST_LANDINGPAD: 5325 case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: { 5326 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 5327 unsigned Idx = 0; 5328 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) { 5329 if (Record.size() < 3) 5330 return error("Invalid record"); 5331 } else { 5332 assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD); 5333 if (Record.size() < 4) 5334 return error("Invalid record"); 5335 } 5336 Type *Ty = getTypeByID(Record[Idx++]); 5337 if (!Ty) 5338 return error("Invalid record"); 5339 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) { 5340 Value *PersFn = nullptr; 5341 if (getValueTypePair(Record, Idx, NextValueNo, PersFn)) 5342 return error("Invalid record"); 5343 5344 if (!F->hasPersonalityFn()) 5345 F->setPersonalityFn(cast<Constant>(PersFn)); 5346 else if (F->getPersonalityFn() != cast<Constant>(PersFn)) 5347 return error("Personality function mismatch"); 5348 } 5349 5350 bool IsCleanup = !!Record[Idx++]; 5351 unsigned NumClauses = Record[Idx++]; 5352 LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses); 5353 LP->setCleanup(IsCleanup); 5354 for (unsigned J = 0; J != NumClauses; ++J) { 5355 LandingPadInst::ClauseType CT = 5356 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 5357 Value *Val; 5358 5359 if (getValueTypePair(Record, Idx, NextValueNo, Val)) { 5360 delete LP; 5361 return error("Invalid record"); 5362 } 5363 5364 assert((CT != LandingPadInst::Catch || 5365 !isa<ArrayType>(Val->getType())) && 5366 "Catch clause has a invalid type!"); 5367 assert((CT != LandingPadInst::Filter || 5368 isa<ArrayType>(Val->getType())) && 5369 "Filter clause has invalid type!"); 5370 LP->addClause(cast<Constant>(Val)); 5371 } 5372 5373 I = LP; 5374 InstructionList.push_back(I); 5375 break; 5376 } 5377 5378 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 5379 if (Record.size() != 4) 5380 return error("Invalid record"); 5381 uint64_t AlignRecord = Record[3]; 5382 const uint64_t InAllocaMask = uint64_t(1) << 5; 5383 const uint64_t ExplicitTypeMask = uint64_t(1) << 6; 5384 const uint64_t SwiftErrorMask = uint64_t(1) << 7; 5385 const uint64_t FlagMask = InAllocaMask | ExplicitTypeMask | 5386 SwiftErrorMask; 5387 bool InAlloca = AlignRecord & InAllocaMask; 5388 bool SwiftError = AlignRecord & SwiftErrorMask; 5389 Type *Ty = getTypeByID(Record[0]); 5390 if ((AlignRecord & ExplicitTypeMask) == 0) { 5391 auto *PTy = dyn_cast_or_null<PointerType>(Ty); 5392 if (!PTy) 5393 return error("Old-style alloca with a non-pointer type"); 5394 Ty = PTy->getElementType(); 5395 } 5396 Type *OpTy = getTypeByID(Record[1]); 5397 Value *Size = getFnValueByID(Record[2], OpTy); 5398 unsigned Align; 5399 if (Error Err = parseAlignmentValue(AlignRecord & ~FlagMask, Align)) { 5400 return Err; 5401 } 5402 if (!Ty || !Size) 5403 return error("Invalid record"); 5404 AllocaInst *AI = new AllocaInst(Ty, Size, Align); 5405 AI->setUsedWithInAlloca(InAlloca); 5406 AI->setSwiftError(SwiftError); 5407 I = AI; 5408 InstructionList.push_back(I); 5409 break; 5410 } 5411 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 5412 unsigned OpNum = 0; 5413 Value *Op; 5414 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 5415 (OpNum + 2 != Record.size() && OpNum + 3 != Record.size())) 5416 return error("Invalid record"); 5417 5418 Type *Ty = nullptr; 5419 if (OpNum + 3 == Record.size()) 5420 Ty = getTypeByID(Record[OpNum++]); 5421 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 5422 return Err; 5423 if (!Ty) 5424 Ty = cast<PointerType>(Op->getType())->getElementType(); 5425 5426 unsigned Align; 5427 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 5428 return Err; 5429 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], Align); 5430 5431 InstructionList.push_back(I); 5432 break; 5433 } 5434 case bitc::FUNC_CODE_INST_LOADATOMIC: { 5435 // LOADATOMIC: [opty, op, align, vol, ordering, synchscope] 5436 unsigned OpNum = 0; 5437 Value *Op; 5438 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 5439 (OpNum + 4 != Record.size() && OpNum + 5 != Record.size())) 5440 return error("Invalid record"); 5441 5442 Type *Ty = nullptr; 5443 if (OpNum + 5 == Record.size()) 5444 Ty = getTypeByID(Record[OpNum++]); 5445 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 5446 return Err; 5447 if (!Ty) 5448 Ty = cast<PointerType>(Op->getType())->getElementType(); 5449 5450 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 5451 if (Ordering == AtomicOrdering::NotAtomic || 5452 Ordering == AtomicOrdering::Release || 5453 Ordering == AtomicOrdering::AcquireRelease) 5454 return error("Invalid record"); 5455 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 5456 return error("Invalid record"); 5457 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]); 5458 5459 unsigned Align; 5460 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 5461 return Err; 5462 I = new LoadInst(Op, "", Record[OpNum+1], Align, Ordering, SynchScope); 5463 5464 InstructionList.push_back(I); 5465 break; 5466 } 5467 case bitc::FUNC_CODE_INST_STORE: 5468 case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol] 5469 unsigned OpNum = 0; 5470 Value *Val, *Ptr; 5471 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 5472 (BitCode == bitc::FUNC_CODE_INST_STORE 5473 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 5474 : popValue(Record, OpNum, NextValueNo, 5475 cast<PointerType>(Ptr->getType())->getElementType(), 5476 Val)) || 5477 OpNum + 2 != Record.size()) 5478 return error("Invalid record"); 5479 5480 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 5481 return Err; 5482 unsigned Align; 5483 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 5484 return Err; 5485 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align); 5486 InstructionList.push_back(I); 5487 break; 5488 } 5489 case bitc::FUNC_CODE_INST_STOREATOMIC: 5490 case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: { 5491 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, synchscope] 5492 unsigned OpNum = 0; 5493 Value *Val, *Ptr; 5494 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 5495 !isa<PointerType>(Ptr->getType()) || 5496 (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC 5497 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 5498 : popValue(Record, OpNum, NextValueNo, 5499 cast<PointerType>(Ptr->getType())->getElementType(), 5500 Val)) || 5501 OpNum + 4 != Record.size()) 5502 return error("Invalid record"); 5503 5504 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 5505 return Err; 5506 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 5507 if (Ordering == AtomicOrdering::NotAtomic || 5508 Ordering == AtomicOrdering::Acquire || 5509 Ordering == AtomicOrdering::AcquireRelease) 5510 return error("Invalid record"); 5511 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]); 5512 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 5513 return error("Invalid record"); 5514 5515 unsigned Align; 5516 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 5517 return Err; 5518 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align, Ordering, SynchScope); 5519 InstructionList.push_back(I); 5520 break; 5521 } 5522 case bitc::FUNC_CODE_INST_CMPXCHG_OLD: 5523 case bitc::FUNC_CODE_INST_CMPXCHG: { 5524 // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, synchscope, 5525 // failureordering?, isweak?] 5526 unsigned OpNum = 0; 5527 Value *Ptr, *Cmp, *New; 5528 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 5529 (BitCode == bitc::FUNC_CODE_INST_CMPXCHG 5530 ? getValueTypePair(Record, OpNum, NextValueNo, Cmp) 5531 : popValue(Record, OpNum, NextValueNo, 5532 cast<PointerType>(Ptr->getType())->getElementType(), 5533 Cmp)) || 5534 popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) || 5535 Record.size() < OpNum + 3 || Record.size() > OpNum + 5) 5536 return error("Invalid record"); 5537 AtomicOrdering SuccessOrdering = getDecodedOrdering(Record[OpNum + 1]); 5538 if (SuccessOrdering == AtomicOrdering::NotAtomic || 5539 SuccessOrdering == AtomicOrdering::Unordered) 5540 return error("Invalid record"); 5541 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 2]); 5542 5543 if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType())) 5544 return Err; 5545 AtomicOrdering FailureOrdering; 5546 if (Record.size() < 7) 5547 FailureOrdering = 5548 AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering); 5549 else 5550 FailureOrdering = getDecodedOrdering(Record[OpNum + 3]); 5551 5552 I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering, 5553 SynchScope); 5554 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 5555 5556 if (Record.size() < 8) { 5557 // Before weak cmpxchgs existed, the instruction simply returned the 5558 // value loaded from memory, so bitcode files from that era will be 5559 // expecting the first component of a modern cmpxchg. 5560 CurBB->getInstList().push_back(I); 5561 I = ExtractValueInst::Create(I, 0); 5562 } else { 5563 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]); 5564 } 5565 5566 InstructionList.push_back(I); 5567 break; 5568 } 5569 case bitc::FUNC_CODE_INST_ATOMICRMW: { 5570 // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, synchscope] 5571 unsigned OpNum = 0; 5572 Value *Ptr, *Val; 5573 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 5574 !isa<PointerType>(Ptr->getType()) || 5575 popValue(Record, OpNum, NextValueNo, 5576 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 5577 OpNum+4 != Record.size()) 5578 return error("Invalid record"); 5579 AtomicRMWInst::BinOp Operation = getDecodedRMWOperation(Record[OpNum]); 5580 if (Operation < AtomicRMWInst::FIRST_BINOP || 5581 Operation > AtomicRMWInst::LAST_BINOP) 5582 return error("Invalid record"); 5583 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 5584 if (Ordering == AtomicOrdering::NotAtomic || 5585 Ordering == AtomicOrdering::Unordered) 5586 return error("Invalid record"); 5587 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]); 5588 I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SynchScope); 5589 cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]); 5590 InstructionList.push_back(I); 5591 break; 5592 } 5593 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, synchscope] 5594 if (2 != Record.size()) 5595 return error("Invalid record"); 5596 AtomicOrdering Ordering = getDecodedOrdering(Record[0]); 5597 if (Ordering == AtomicOrdering::NotAtomic || 5598 Ordering == AtomicOrdering::Unordered || 5599 Ordering == AtomicOrdering::Monotonic) 5600 return error("Invalid record"); 5601 SynchronizationScope SynchScope = getDecodedSynchScope(Record[1]); 5602 I = new FenceInst(Context, Ordering, SynchScope); 5603 InstructionList.push_back(I); 5604 break; 5605 } 5606 case bitc::FUNC_CODE_INST_CALL: { 5607 // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...] 5608 if (Record.size() < 3) 5609 return error("Invalid record"); 5610 5611 unsigned OpNum = 0; 5612 AttributeSet PAL = getAttributes(Record[OpNum++]); 5613 unsigned CCInfo = Record[OpNum++]; 5614 5615 FastMathFlags FMF; 5616 if ((CCInfo >> bitc::CALL_FMF) & 1) { 5617 FMF = getDecodedFastMathFlags(Record[OpNum++]); 5618 if (!FMF.any()) 5619 return error("Fast math flags indicator set for call with no FMF"); 5620 } 5621 5622 FunctionType *FTy = nullptr; 5623 if (CCInfo >> bitc::CALL_EXPLICIT_TYPE & 1 && 5624 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])))) 5625 return error("Explicit call type is not a function type"); 5626 5627 Value *Callee; 5628 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 5629 return error("Invalid record"); 5630 5631 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 5632 if (!OpTy) 5633 return error("Callee is not a pointer type"); 5634 if (!FTy) { 5635 FTy = dyn_cast<FunctionType>(OpTy->getElementType()); 5636 if (!FTy) 5637 return error("Callee is not of pointer to function type"); 5638 } else if (OpTy->getElementType() != FTy) 5639 return error("Explicit call type does not match pointee type of " 5640 "callee operand"); 5641 if (Record.size() < FTy->getNumParams() + OpNum) 5642 return error("Insufficient operands to call"); 5643 5644 SmallVector<Value*, 16> Args; 5645 // Read the fixed params. 5646 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 5647 if (FTy->getParamType(i)->isLabelTy()) 5648 Args.push_back(getBasicBlock(Record[OpNum])); 5649 else 5650 Args.push_back(getValue(Record, OpNum, NextValueNo, 5651 FTy->getParamType(i))); 5652 if (!Args.back()) 5653 return error("Invalid record"); 5654 } 5655 5656 // Read type/value pairs for varargs params. 5657 if (!FTy->isVarArg()) { 5658 if (OpNum != Record.size()) 5659 return error("Invalid record"); 5660 } else { 5661 while (OpNum != Record.size()) { 5662 Value *Op; 5663 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 5664 return error("Invalid record"); 5665 Args.push_back(Op); 5666 } 5667 } 5668 5669 I = CallInst::Create(FTy, Callee, Args, OperandBundles); 5670 OperandBundles.clear(); 5671 InstructionList.push_back(I); 5672 cast<CallInst>(I)->setCallingConv( 5673 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 5674 CallInst::TailCallKind TCK = CallInst::TCK_None; 5675 if (CCInfo & 1 << bitc::CALL_TAIL) 5676 TCK = CallInst::TCK_Tail; 5677 if (CCInfo & (1 << bitc::CALL_MUSTTAIL)) 5678 TCK = CallInst::TCK_MustTail; 5679 if (CCInfo & (1 << bitc::CALL_NOTAIL)) 5680 TCK = CallInst::TCK_NoTail; 5681 cast<CallInst>(I)->setTailCallKind(TCK); 5682 cast<CallInst>(I)->setAttributes(PAL); 5683 if (FMF.any()) { 5684 if (!isa<FPMathOperator>(I)) 5685 return error("Fast-math-flags specified for call without " 5686 "floating-point scalar or vector return type"); 5687 I->setFastMathFlags(FMF); 5688 } 5689 break; 5690 } 5691 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 5692 if (Record.size() < 3) 5693 return error("Invalid record"); 5694 Type *OpTy = getTypeByID(Record[0]); 5695 Value *Op = getValue(Record, 1, NextValueNo, OpTy); 5696 Type *ResTy = getTypeByID(Record[2]); 5697 if (!OpTy || !Op || !ResTy) 5698 return error("Invalid record"); 5699 I = new VAArgInst(Op, ResTy); 5700 InstructionList.push_back(I); 5701 break; 5702 } 5703 5704 case bitc::FUNC_CODE_OPERAND_BUNDLE: { 5705 // A call or an invoke can be optionally prefixed with some variable 5706 // number of operand bundle blocks. These blocks are read into 5707 // OperandBundles and consumed at the next call or invoke instruction. 5708 5709 if (Record.size() < 1 || Record[0] >= BundleTags.size()) 5710 return error("Invalid record"); 5711 5712 std::vector<Value *> Inputs; 5713 5714 unsigned OpNum = 1; 5715 while (OpNum != Record.size()) { 5716 Value *Op; 5717 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 5718 return error("Invalid record"); 5719 Inputs.push_back(Op); 5720 } 5721 5722 OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs)); 5723 continue; 5724 } 5725 } 5726 5727 // Add instruction to end of current BB. If there is no current BB, reject 5728 // this file. 5729 if (!CurBB) { 5730 delete I; 5731 return error("Invalid instruction with no BB"); 5732 } 5733 if (!OperandBundles.empty()) { 5734 delete I; 5735 return error("Operand bundles found with no consumer"); 5736 } 5737 CurBB->getInstList().push_back(I); 5738 5739 // If this was a terminator instruction, move to the next block. 5740 if (isa<TerminatorInst>(I)) { 5741 ++CurBBNo; 5742 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr; 5743 } 5744 5745 // Non-void values get registered in the value table for future use. 5746 if (I && !I->getType()->isVoidTy()) 5747 ValueList.assignValue(I, NextValueNo++); 5748 } 5749 5750 OutOfRecordLoop: 5751 5752 if (!OperandBundles.empty()) 5753 return error("Operand bundles found with no consumer"); 5754 5755 // Check the function list for unresolved values. 5756 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 5757 if (!A->getParent()) { 5758 // We found at least one unresolved value. Nuke them all to avoid leaks. 5759 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 5760 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) { 5761 A->replaceAllUsesWith(UndefValue::get(A->getType())); 5762 delete A; 5763 } 5764 } 5765 return error("Never resolved value found in function"); 5766 } 5767 } 5768 5769 // Unexpected unresolved metadata about to be dropped. 5770 if (MetadataList.hasFwdRefs()) 5771 return error("Invalid function metadata: outgoing forward refs"); 5772 5773 // Trim the value list down to the size it was before we parsed this function. 5774 ValueList.shrinkTo(ModuleValueListSize); 5775 MetadataList.shrinkTo(ModuleMetadataListSize); 5776 std::vector<BasicBlock*>().swap(FunctionBBs); 5777 return Error::success(); 5778 } 5779 5780 /// Find the function body in the bitcode stream 5781 Error BitcodeReader::findFunctionInStream( 5782 Function *F, 5783 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) { 5784 while (DeferredFunctionInfoIterator->second == 0) { 5785 // This is the fallback handling for the old format bitcode that 5786 // didn't contain the function index in the VST, or when we have 5787 // an anonymous function which would not have a VST entry. 5788 // Assert that we have one of those two cases. 5789 assert(VSTOffset == 0 || !F->hasName()); 5790 // Parse the next body in the stream and set its position in the 5791 // DeferredFunctionInfo map. 5792 if (Error Err = rememberAndSkipFunctionBodies()) 5793 return Err; 5794 } 5795 return Error::success(); 5796 } 5797 5798 //===----------------------------------------------------------------------===// 5799 // GVMaterializer implementation 5800 //===----------------------------------------------------------------------===// 5801 5802 Error BitcodeReader::materialize(GlobalValue *GV) { 5803 Function *F = dyn_cast<Function>(GV); 5804 // If it's not a function or is already material, ignore the request. 5805 if (!F || !F->isMaterializable()) 5806 return Error::success(); 5807 5808 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 5809 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 5810 // If its position is recorded as 0, its body is somewhere in the stream 5811 // but we haven't seen it yet. 5812 if (DFII->second == 0) 5813 if (Error Err = findFunctionInStream(F, DFII)) 5814 return Err; 5815 5816 // Materialize metadata before parsing any function bodies. 5817 if (Error Err = materializeMetadata()) 5818 return Err; 5819 5820 // Move the bit stream to the saved position of the deferred function body. 5821 Stream.JumpToBit(DFII->second); 5822 5823 if (Error Err = parseFunctionBody(F)) 5824 return Err; 5825 F->setIsMaterializable(false); 5826 5827 if (StripDebugInfo) 5828 stripDebugInfo(*F); 5829 5830 // Upgrade any old intrinsic calls in the function. 5831 for (auto &I : UpgradedIntrinsics) { 5832 for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end(); 5833 UI != UE;) { 5834 User *U = *UI; 5835 ++UI; 5836 if (CallInst *CI = dyn_cast<CallInst>(U)) 5837 UpgradeIntrinsicCall(CI, I.second); 5838 } 5839 } 5840 5841 // Update calls to the remangled intrinsics 5842 for (auto &I : RemangledIntrinsics) 5843 for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end(); 5844 UI != UE;) 5845 // Don't expect any other users than call sites 5846 CallSite(*UI++).setCalledFunction(I.second); 5847 5848 // Finish fn->subprogram upgrade for materialized functions. 5849 if (DISubprogram *SP = FunctionsWithSPs.lookup(F)) 5850 F->setSubprogram(SP); 5851 5852 // Bring in any functions that this function forward-referenced via 5853 // blockaddresses. 5854 return materializeForwardReferencedFunctions(); 5855 } 5856 5857 Error BitcodeReader::materializeModule() { 5858 if (Error Err = materializeMetadata()) 5859 return Err; 5860 5861 // Promise to materialize all forward references. 5862 WillMaterializeAllForwardRefs = true; 5863 5864 // Iterate over the module, deserializing any functions that are still on 5865 // disk. 5866 for (Function &F : *TheModule) { 5867 if (Error Err = materialize(&F)) 5868 return Err; 5869 } 5870 // At this point, if there are any function bodies, parse the rest of 5871 // the bits in the module past the last function block we have recorded 5872 // through either lazy scanning or the VST. 5873 if (LastFunctionBlockBit || NextUnreadBit) 5874 if (Error Err = parseModule(LastFunctionBlockBit > NextUnreadBit 5875 ? LastFunctionBlockBit 5876 : NextUnreadBit)) 5877 return Err; 5878 5879 // Check that all block address forward references got resolved (as we 5880 // promised above). 5881 if (!BasicBlockFwdRefs.empty()) 5882 return error("Never resolved function from blockaddress"); 5883 5884 // Upgrade any intrinsic calls that slipped through (should not happen!) and 5885 // delete the old functions to clean up. We can't do this unless the entire 5886 // module is materialized because there could always be another function body 5887 // with calls to the old function. 5888 for (auto &I : UpgradedIntrinsics) { 5889 for (auto *U : I.first->users()) { 5890 if (CallInst *CI = dyn_cast<CallInst>(U)) 5891 UpgradeIntrinsicCall(CI, I.second); 5892 } 5893 if (!I.first->use_empty()) 5894 I.first->replaceAllUsesWith(I.second); 5895 I.first->eraseFromParent(); 5896 } 5897 UpgradedIntrinsics.clear(); 5898 // Do the same for remangled intrinsics 5899 for (auto &I : RemangledIntrinsics) { 5900 I.first->replaceAllUsesWith(I.second); 5901 I.first->eraseFromParent(); 5902 } 5903 RemangledIntrinsics.clear(); 5904 5905 UpgradeDebugInfo(*TheModule); 5906 5907 UpgradeModuleFlags(*TheModule); 5908 return Error::success(); 5909 } 5910 5911 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const { 5912 return IdentifiedStructTypes; 5913 } 5914 5915 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader( 5916 BitstreamCursor Cursor, bool CheckGlobalValSummaryPresenceOnly) 5917 : BitcodeReaderBase(std::move(Cursor)), 5918 CheckGlobalValSummaryPresenceOnly(CheckGlobalValSummaryPresenceOnly) {} 5919 5920 std::pair<GlobalValue::GUID, GlobalValue::GUID> 5921 ModuleSummaryIndexBitcodeReader::getGUIDFromValueId(unsigned ValueId) { 5922 auto VGI = ValueIdToCallGraphGUIDMap.find(ValueId); 5923 assert(VGI != ValueIdToCallGraphGUIDMap.end()); 5924 return VGI->second; 5925 } 5926 5927 // Specialized value symbol table parser used when reading module index 5928 // blocks where we don't actually create global values. The parsed information 5929 // is saved in the bitcode reader for use when later parsing summaries. 5930 Error ModuleSummaryIndexBitcodeReader::parseValueSymbolTable( 5931 uint64_t Offset, 5932 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) { 5933 assert(Offset > 0 && "Expected non-zero VST offset"); 5934 uint64_t CurrentBit = jumpToValueSymbolTable(Offset, Stream); 5935 5936 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 5937 return error("Invalid record"); 5938 5939 SmallVector<uint64_t, 64> Record; 5940 5941 // Read all the records for this value table. 5942 SmallString<128> ValueName; 5943 5944 while (true) { 5945 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5946 5947 switch (Entry.Kind) { 5948 case BitstreamEntry::SubBlock: // Handled for us already. 5949 case BitstreamEntry::Error: 5950 return error("Malformed block"); 5951 case BitstreamEntry::EndBlock: 5952 // Done parsing VST, jump back to wherever we came from. 5953 Stream.JumpToBit(CurrentBit); 5954 return Error::success(); 5955 case BitstreamEntry::Record: 5956 // The interesting case. 5957 break; 5958 } 5959 5960 // Read a record. 5961 Record.clear(); 5962 switch (Stream.readRecord(Entry.ID, Record)) { 5963 default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records). 5964 break; 5965 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 5966 if (convertToString(Record, 1, ValueName)) 5967 return error("Invalid record"); 5968 unsigned ValueID = Record[0]; 5969 assert(!SourceFileName.empty()); 5970 auto VLI = ValueIdToLinkageMap.find(ValueID); 5971 assert(VLI != ValueIdToLinkageMap.end() && 5972 "No linkage found for VST entry?"); 5973 auto Linkage = VLI->second; 5974 std::string GlobalId = 5975 GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName); 5976 auto ValueGUID = GlobalValue::getGUID(GlobalId); 5977 auto OriginalNameID = ValueGUID; 5978 if (GlobalValue::isLocalLinkage(Linkage)) 5979 OriginalNameID = GlobalValue::getGUID(ValueName); 5980 if (PrintSummaryGUIDs) 5981 dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is " 5982 << ValueName << "\n"; 5983 ValueIdToCallGraphGUIDMap[ValueID] = 5984 std::make_pair(ValueGUID, OriginalNameID); 5985 ValueName.clear(); 5986 break; 5987 } 5988 case bitc::VST_CODE_FNENTRY: { 5989 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 5990 if (convertToString(Record, 2, ValueName)) 5991 return error("Invalid record"); 5992 unsigned ValueID = Record[0]; 5993 assert(!SourceFileName.empty()); 5994 auto VLI = ValueIdToLinkageMap.find(ValueID); 5995 assert(VLI != ValueIdToLinkageMap.end() && 5996 "No linkage found for VST entry?"); 5997 auto Linkage = VLI->second; 5998 std::string FunctionGlobalId = GlobalValue::getGlobalIdentifier( 5999 ValueName, VLI->second, SourceFileName); 6000 auto FunctionGUID = GlobalValue::getGUID(FunctionGlobalId); 6001 auto OriginalNameID = FunctionGUID; 6002 if (GlobalValue::isLocalLinkage(Linkage)) 6003 OriginalNameID = GlobalValue::getGUID(ValueName); 6004 if (PrintSummaryGUIDs) 6005 dbgs() << "GUID " << FunctionGUID << "(" << OriginalNameID << ") is " 6006 << ValueName << "\n"; 6007 ValueIdToCallGraphGUIDMap[ValueID] = 6008 std::make_pair(FunctionGUID, OriginalNameID); 6009 6010 ValueName.clear(); 6011 break; 6012 } 6013 case bitc::VST_CODE_COMBINED_ENTRY: { 6014 // VST_CODE_COMBINED_ENTRY: [valueid, refguid] 6015 unsigned ValueID = Record[0]; 6016 GlobalValue::GUID RefGUID = Record[1]; 6017 // The "original name", which is the second value of the pair will be 6018 // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index. 6019 ValueIdToCallGraphGUIDMap[ValueID] = std::make_pair(RefGUID, RefGUID); 6020 break; 6021 } 6022 } 6023 } 6024 } 6025 6026 // Parse just the blocks needed for building the index out of the module. 6027 // At the end of this routine the module Index is populated with a map 6028 // from global value id to GlobalValueSummary objects. 6029 Error ModuleSummaryIndexBitcodeReader::parseModule(StringRef ModulePath) { 6030 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 6031 return error("Invalid record"); 6032 6033 SmallVector<uint64_t, 64> Record; 6034 DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap; 6035 unsigned ValueId = 0; 6036 6037 // Read the index for this module. 6038 while (true) { 6039 BitstreamEntry Entry = Stream.advance(); 6040 6041 switch (Entry.Kind) { 6042 case BitstreamEntry::Error: 6043 return error("Malformed block"); 6044 case BitstreamEntry::EndBlock: 6045 return Error::success(); 6046 6047 case BitstreamEntry::SubBlock: 6048 if (CheckGlobalValSummaryPresenceOnly) { 6049 if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) { 6050 SeenGlobalValSummary = true; 6051 // No need to parse the rest since we found the summary. 6052 return Error::success(); 6053 } 6054 if (Stream.SkipBlock()) 6055 return error("Invalid record"); 6056 continue; 6057 } 6058 switch (Entry.ID) { 6059 default: // Skip unknown content. 6060 if (Stream.SkipBlock()) 6061 return error("Invalid record"); 6062 break; 6063 case bitc::BLOCKINFO_BLOCK_ID: 6064 // Need to parse these to get abbrev ids (e.g. for VST) 6065 if (readBlockInfo()) 6066 return error("Malformed block"); 6067 break; 6068 case bitc::VALUE_SYMTAB_BLOCK_ID: 6069 // Should have been parsed earlier via VSTOffset, unless there 6070 // is no summary section. 6071 assert(((SeenValueSymbolTable && VSTOffset > 0) || 6072 !SeenGlobalValSummary) && 6073 "Expected early VST parse via VSTOffset record"); 6074 if (Stream.SkipBlock()) 6075 return error("Invalid record"); 6076 break; 6077 case bitc::GLOBALVAL_SUMMARY_BLOCK_ID: 6078 assert(!SeenValueSymbolTable && 6079 "Already read VST when parsing summary block?"); 6080 // We might not have a VST if there were no values in the 6081 // summary. An empty summary block generated when we are 6082 // performing ThinLTO compiles so we don't later invoke 6083 // the regular LTO process on them. 6084 if (VSTOffset > 0) { 6085 if (Error Err = parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap)) 6086 return Err; 6087 SeenValueSymbolTable = true; 6088 } 6089 SeenGlobalValSummary = true; 6090 if (Error Err = parseEntireSummary(ModulePath)) 6091 return Err; 6092 break; 6093 case bitc::MODULE_STRTAB_BLOCK_ID: 6094 if (Error Err = parseModuleStringTable()) 6095 return Err; 6096 break; 6097 } 6098 continue; 6099 6100 case BitstreamEntry::Record: { 6101 Record.clear(); 6102 auto BitCode = Stream.readRecord(Entry.ID, Record); 6103 switch (BitCode) { 6104 default: 6105 break; // Default behavior, ignore unknown content. 6106 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 6107 case bitc::MODULE_CODE_SOURCE_FILENAME: { 6108 SmallString<128> ValueName; 6109 if (convertToString(Record, 0, ValueName)) 6110 return error("Invalid record"); 6111 SourceFileName = ValueName.c_str(); 6112 break; 6113 } 6114 /// MODULE_CODE_HASH: [5*i32] 6115 case bitc::MODULE_CODE_HASH: { 6116 if (Record.size() != 5) 6117 return error("Invalid hash length " + Twine(Record.size()).str()); 6118 if (!TheIndex) 6119 break; 6120 if (TheIndex->modulePaths().empty()) 6121 // We always seed the index with the module. 6122 TheIndex->addModulePath(ModulePath, 0); 6123 if (TheIndex->modulePaths().size() != 1) 6124 return error("Don't expect multiple modules defined?"); 6125 auto &Hash = TheIndex->modulePaths().begin()->second.second; 6126 int Pos = 0; 6127 for (auto &Val : Record) { 6128 assert(!(Val >> 32) && "Unexpected high bits set"); 6129 Hash[Pos++] = Val; 6130 } 6131 break; 6132 } 6133 /// MODULE_CODE_VSTOFFSET: [offset] 6134 case bitc::MODULE_CODE_VSTOFFSET: 6135 if (Record.size() < 1) 6136 return error("Invalid record"); 6137 VSTOffset = Record[0]; 6138 break; 6139 // GLOBALVAR: [pointer type, isconst, initid, 6140 // linkage, alignment, section, visibility, threadlocal, 6141 // unnamed_addr, externally_initialized, dllstorageclass, 6142 // comdat] 6143 case bitc::MODULE_CODE_GLOBALVAR: { 6144 if (Record.size() < 6) 6145 return error("Invalid record"); 6146 uint64_t RawLinkage = Record[3]; 6147 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 6148 ValueIdToLinkageMap[ValueId++] = Linkage; 6149 break; 6150 } 6151 // FUNCTION: [type, callingconv, isproto, linkage, paramattr, 6152 // alignment, section, visibility, gc, unnamed_addr, 6153 // prologuedata, dllstorageclass, comdat, prefixdata] 6154 case bitc::MODULE_CODE_FUNCTION: { 6155 if (Record.size() < 8) 6156 return error("Invalid record"); 6157 uint64_t RawLinkage = Record[3]; 6158 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 6159 ValueIdToLinkageMap[ValueId++] = Linkage; 6160 break; 6161 } 6162 // ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, 6163 // dllstorageclass] 6164 case bitc::MODULE_CODE_ALIAS: { 6165 if (Record.size() < 6) 6166 return error("Invalid record"); 6167 uint64_t RawLinkage = Record[3]; 6168 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 6169 ValueIdToLinkageMap[ValueId++] = Linkage; 6170 break; 6171 } 6172 } 6173 } 6174 continue; 6175 } 6176 } 6177 } 6178 6179 // Eagerly parse the entire summary block. This populates the GlobalValueSummary 6180 // objects in the index. 6181 Error ModuleSummaryIndexBitcodeReader::parseEntireSummary( 6182 StringRef ModulePath) { 6183 if (Stream.EnterSubBlock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID)) 6184 return error("Invalid record"); 6185 SmallVector<uint64_t, 64> Record; 6186 6187 // Parse version 6188 { 6189 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 6190 if (Entry.Kind != BitstreamEntry::Record) 6191 return error("Invalid Summary Block: record for version expected"); 6192 if (Stream.readRecord(Entry.ID, Record) != bitc::FS_VERSION) 6193 return error("Invalid Summary Block: version expected"); 6194 } 6195 const uint64_t Version = Record[0]; 6196 const bool IsOldProfileFormat = Version == 1; 6197 if (!IsOldProfileFormat && Version != 2) 6198 return error("Invalid summary version " + Twine(Version) + 6199 ", 1 or 2 expected"); 6200 Record.clear(); 6201 6202 // Keep around the last seen summary to be used when we see an optional 6203 // "OriginalName" attachement. 6204 GlobalValueSummary *LastSeenSummary = nullptr; 6205 bool Combined = false; 6206 6207 while (true) { 6208 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 6209 6210 switch (Entry.Kind) { 6211 case BitstreamEntry::SubBlock: // Handled for us already. 6212 case BitstreamEntry::Error: 6213 return error("Malformed block"); 6214 case BitstreamEntry::EndBlock: 6215 // For a per-module index, remove any entries that still have empty 6216 // summaries. The VST parsing creates entries eagerly for all symbols, 6217 // but not all have associated summaries (e.g. it doesn't know how to 6218 // distinguish between VST_CODE_ENTRY for function declarations vs global 6219 // variables with initializers that end up with a summary). Remove those 6220 // entries now so that we don't need to rely on the combined index merger 6221 // to clean them up (especially since that may not run for the first 6222 // module's index if we merge into that). 6223 if (!Combined) 6224 TheIndex->removeEmptySummaryEntries(); 6225 return Error::success(); 6226 case BitstreamEntry::Record: 6227 // The interesting case. 6228 break; 6229 } 6230 6231 // Read a record. The record format depends on whether this 6232 // is a per-module index or a combined index file. In the per-module 6233 // case the records contain the associated value's ID for correlation 6234 // with VST entries. In the combined index the correlation is done 6235 // via the bitcode offset of the summary records (which were saved 6236 // in the combined index VST entries). The records also contain 6237 // information used for ThinLTO renaming and importing. 6238 Record.clear(); 6239 auto BitCode = Stream.readRecord(Entry.ID, Record); 6240 switch (BitCode) { 6241 default: // Default behavior: ignore. 6242 break; 6243 // FS_PERMODULE: [valueid, flags, instcount, numrefs, numrefs x valueid, 6244 // n x (valueid)] 6245 // FS_PERMODULE_PROFILE: [valueid, flags, instcount, numrefs, 6246 // numrefs x valueid, 6247 // n x (valueid, hotness)] 6248 case bitc::FS_PERMODULE: 6249 case bitc::FS_PERMODULE_PROFILE: { 6250 unsigned ValueID = Record[0]; 6251 uint64_t RawFlags = Record[1]; 6252 unsigned InstCount = Record[2]; 6253 unsigned NumRefs = Record[3]; 6254 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6255 std::unique_ptr<FunctionSummary> FS = 6256 llvm::make_unique<FunctionSummary>(Flags, InstCount); 6257 // The module path string ref set in the summary must be owned by the 6258 // index's module string table. Since we don't have a module path 6259 // string table section in the per-module index, we create a single 6260 // module path string table entry with an empty (0) ID to take 6261 // ownership. 6262 FS->setModulePath(TheIndex->addModulePath(ModulePath, 0)->first()); 6263 static int RefListStartIndex = 4; 6264 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 6265 assert(Record.size() >= RefListStartIndex + NumRefs && 6266 "Record size inconsistent with number of references"); 6267 for (unsigned I = 4, E = CallGraphEdgeStartIndex; I != E; ++I) { 6268 unsigned RefValueId = Record[I]; 6269 GlobalValue::GUID RefGUID = getGUIDFromValueId(RefValueId).first; 6270 FS->addRefEdge(RefGUID); 6271 } 6272 bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE); 6273 for (unsigned I = CallGraphEdgeStartIndex, E = Record.size(); I != E; 6274 ++I) { 6275 CalleeInfo::HotnessType Hotness; 6276 GlobalValue::GUID CalleeGUID; 6277 std::tie(CalleeGUID, Hotness) = 6278 readCallGraphEdge(Record, I, IsOldProfileFormat, HasProfile); 6279 FS->addCallGraphEdge(CalleeGUID, CalleeInfo(Hotness)); 6280 } 6281 auto GUID = getGUIDFromValueId(ValueID); 6282 FS->setOriginalName(GUID.second); 6283 TheIndex->addGlobalValueSummary(GUID.first, std::move(FS)); 6284 break; 6285 } 6286 // FS_ALIAS: [valueid, flags, valueid] 6287 // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as 6288 // they expect all aliasee summaries to be available. 6289 case bitc::FS_ALIAS: { 6290 unsigned ValueID = Record[0]; 6291 uint64_t RawFlags = Record[1]; 6292 unsigned AliaseeID = Record[2]; 6293 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6294 std::unique_ptr<AliasSummary> AS = llvm::make_unique<AliasSummary>(Flags); 6295 // The module path string ref set in the summary must be owned by the 6296 // index's module string table. Since we don't have a module path 6297 // string table section in the per-module index, we create a single 6298 // module path string table entry with an empty (0) ID to take 6299 // ownership. 6300 AS->setModulePath(TheIndex->addModulePath(ModulePath, 0)->first()); 6301 6302 GlobalValue::GUID AliaseeGUID = getGUIDFromValueId(AliaseeID).first; 6303 auto *AliaseeSummary = TheIndex->getGlobalValueSummary(AliaseeGUID); 6304 if (!AliaseeSummary) 6305 return error("Alias expects aliasee summary to be parsed"); 6306 AS->setAliasee(AliaseeSummary); 6307 6308 auto GUID = getGUIDFromValueId(ValueID); 6309 AS->setOriginalName(GUID.second); 6310 TheIndex->addGlobalValueSummary(GUID.first, std::move(AS)); 6311 break; 6312 } 6313 // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, n x valueid] 6314 case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: { 6315 unsigned ValueID = Record[0]; 6316 uint64_t RawFlags = Record[1]; 6317 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6318 std::unique_ptr<GlobalVarSummary> FS = 6319 llvm::make_unique<GlobalVarSummary>(Flags); 6320 FS->setModulePath(TheIndex->addModulePath(ModulePath, 0)->first()); 6321 for (unsigned I = 2, E = Record.size(); I != E; ++I) { 6322 unsigned RefValueId = Record[I]; 6323 GlobalValue::GUID RefGUID = getGUIDFromValueId(RefValueId).first; 6324 FS->addRefEdge(RefGUID); 6325 } 6326 auto GUID = getGUIDFromValueId(ValueID); 6327 FS->setOriginalName(GUID.second); 6328 TheIndex->addGlobalValueSummary(GUID.first, std::move(FS)); 6329 break; 6330 } 6331 // FS_COMBINED: [valueid, modid, flags, instcount, numrefs, 6332 // numrefs x valueid, n x (valueid)] 6333 // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, numrefs, 6334 // numrefs x valueid, n x (valueid, hotness)] 6335 case bitc::FS_COMBINED: 6336 case bitc::FS_COMBINED_PROFILE: { 6337 unsigned ValueID = Record[0]; 6338 uint64_t ModuleId = Record[1]; 6339 uint64_t RawFlags = Record[2]; 6340 unsigned InstCount = Record[3]; 6341 unsigned NumRefs = Record[4]; 6342 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6343 std::unique_ptr<FunctionSummary> FS = 6344 llvm::make_unique<FunctionSummary>(Flags, InstCount); 6345 LastSeenSummary = FS.get(); 6346 FS->setModulePath(ModuleIdMap[ModuleId]); 6347 static int RefListStartIndex = 5; 6348 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 6349 assert(Record.size() >= RefListStartIndex + NumRefs && 6350 "Record size inconsistent with number of references"); 6351 for (unsigned I = RefListStartIndex, E = CallGraphEdgeStartIndex; I != E; 6352 ++I) { 6353 unsigned RefValueId = Record[I]; 6354 GlobalValue::GUID RefGUID = getGUIDFromValueId(RefValueId).first; 6355 FS->addRefEdge(RefGUID); 6356 } 6357 bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE); 6358 for (unsigned I = CallGraphEdgeStartIndex, E = Record.size(); I != E; 6359 ++I) { 6360 CalleeInfo::HotnessType Hotness; 6361 GlobalValue::GUID CalleeGUID; 6362 std::tie(CalleeGUID, Hotness) = 6363 readCallGraphEdge(Record, I, IsOldProfileFormat, HasProfile); 6364 FS->addCallGraphEdge(CalleeGUID, CalleeInfo(Hotness)); 6365 } 6366 GlobalValue::GUID GUID = getGUIDFromValueId(ValueID).first; 6367 TheIndex->addGlobalValueSummary(GUID, std::move(FS)); 6368 Combined = true; 6369 break; 6370 } 6371 // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid] 6372 // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as 6373 // they expect all aliasee summaries to be available. 6374 case bitc::FS_COMBINED_ALIAS: { 6375 unsigned ValueID = Record[0]; 6376 uint64_t ModuleId = Record[1]; 6377 uint64_t RawFlags = Record[2]; 6378 unsigned AliaseeValueId = Record[3]; 6379 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6380 std::unique_ptr<AliasSummary> AS = llvm::make_unique<AliasSummary>(Flags); 6381 LastSeenSummary = AS.get(); 6382 AS->setModulePath(ModuleIdMap[ModuleId]); 6383 6384 auto AliaseeGUID = getGUIDFromValueId(AliaseeValueId).first; 6385 auto AliaseeInModule = 6386 TheIndex->findSummaryInModule(AliaseeGUID, AS->modulePath()); 6387 if (!AliaseeInModule) 6388 return error("Alias expects aliasee summary to be parsed"); 6389 AS->setAliasee(AliaseeInModule); 6390 6391 GlobalValue::GUID GUID = getGUIDFromValueId(ValueID).first; 6392 TheIndex->addGlobalValueSummary(GUID, std::move(AS)); 6393 Combined = true; 6394 break; 6395 } 6396 // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid] 6397 case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: { 6398 unsigned ValueID = Record[0]; 6399 uint64_t ModuleId = Record[1]; 6400 uint64_t RawFlags = Record[2]; 6401 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6402 std::unique_ptr<GlobalVarSummary> FS = 6403 llvm::make_unique<GlobalVarSummary>(Flags); 6404 LastSeenSummary = FS.get(); 6405 FS->setModulePath(ModuleIdMap[ModuleId]); 6406 for (unsigned I = 3, E = Record.size(); I != E; ++I) { 6407 unsigned RefValueId = Record[I]; 6408 GlobalValue::GUID RefGUID = getGUIDFromValueId(RefValueId).first; 6409 FS->addRefEdge(RefGUID); 6410 } 6411 GlobalValue::GUID GUID = getGUIDFromValueId(ValueID).first; 6412 TheIndex->addGlobalValueSummary(GUID, std::move(FS)); 6413 Combined = true; 6414 break; 6415 } 6416 // FS_COMBINED_ORIGINAL_NAME: [original_name] 6417 case bitc::FS_COMBINED_ORIGINAL_NAME: { 6418 uint64_t OriginalName = Record[0]; 6419 if (!LastSeenSummary) 6420 return error("Name attachment that does not follow a combined record"); 6421 LastSeenSummary->setOriginalName(OriginalName); 6422 // Reset the LastSeenSummary 6423 LastSeenSummary = nullptr; 6424 } 6425 } 6426 } 6427 llvm_unreachable("Exit infinite loop"); 6428 } 6429 6430 std::pair<GlobalValue::GUID, CalleeInfo::HotnessType> 6431 ModuleSummaryIndexBitcodeReader::readCallGraphEdge( 6432 const SmallVector<uint64_t, 64> &Record, unsigned int &I, 6433 const bool IsOldProfileFormat, const bool HasProfile) { 6434 6435 auto Hotness = CalleeInfo::HotnessType::Unknown; 6436 unsigned CalleeValueId = Record[I]; 6437 GlobalValue::GUID CalleeGUID = getGUIDFromValueId(CalleeValueId).first; 6438 if (IsOldProfileFormat) { 6439 I += 1; // Skip old callsitecount field 6440 if (HasProfile) 6441 I += 1; // Skip old profilecount field 6442 } else if (HasProfile) 6443 Hotness = static_cast<CalleeInfo::HotnessType>(Record[++I]); 6444 return {CalleeGUID, Hotness}; 6445 } 6446 6447 // Parse the module string table block into the Index. 6448 // This populates the ModulePathStringTable map in the index. 6449 Error ModuleSummaryIndexBitcodeReader::parseModuleStringTable() { 6450 if (Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID)) 6451 return error("Invalid record"); 6452 6453 SmallVector<uint64_t, 64> Record; 6454 6455 SmallString<128> ModulePath; 6456 ModulePathStringTableTy::iterator LastSeenModulePath; 6457 6458 while (true) { 6459 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 6460 6461 switch (Entry.Kind) { 6462 case BitstreamEntry::SubBlock: // Handled for us already. 6463 case BitstreamEntry::Error: 6464 return error("Malformed block"); 6465 case BitstreamEntry::EndBlock: 6466 return Error::success(); 6467 case BitstreamEntry::Record: 6468 // The interesting case. 6469 break; 6470 } 6471 6472 Record.clear(); 6473 switch (Stream.readRecord(Entry.ID, Record)) { 6474 default: // Default behavior: ignore. 6475 break; 6476 case bitc::MST_CODE_ENTRY: { 6477 // MST_ENTRY: [modid, namechar x N] 6478 uint64_t ModuleId = Record[0]; 6479 6480 if (convertToString(Record, 1, ModulePath)) 6481 return error("Invalid record"); 6482 6483 LastSeenModulePath = TheIndex->addModulePath(ModulePath, ModuleId); 6484 ModuleIdMap[ModuleId] = LastSeenModulePath->first(); 6485 6486 ModulePath.clear(); 6487 break; 6488 } 6489 /// MST_CODE_HASH: [5*i32] 6490 case bitc::MST_CODE_HASH: { 6491 if (Record.size() != 5) 6492 return error("Invalid hash length " + Twine(Record.size()).str()); 6493 if (LastSeenModulePath == TheIndex->modulePaths().end()) 6494 return error("Invalid hash that does not follow a module path"); 6495 int Pos = 0; 6496 for (auto &Val : Record) { 6497 assert(!(Val >> 32) && "Unexpected high bits set"); 6498 LastSeenModulePath->second.second[Pos++] = Val; 6499 } 6500 // Reset LastSeenModulePath to avoid overriding the hash unexpectedly. 6501 LastSeenModulePath = TheIndex->modulePaths().end(); 6502 break; 6503 } 6504 } 6505 } 6506 llvm_unreachable("Exit infinite loop"); 6507 } 6508 6509 // Parse the function info index from the bitcode streamer into the given index. 6510 Error ModuleSummaryIndexBitcodeReader::parseSummaryIndexInto( 6511 ModuleSummaryIndex *I, StringRef ModulePath) { 6512 TheIndex = I; 6513 6514 // We expect a number of well-defined blocks, though we don't necessarily 6515 // need to understand them all. 6516 while (true) { 6517 if (Stream.AtEndOfStream()) { 6518 // We didn't really read a proper Module block. 6519 return error("Malformed block"); 6520 } 6521 6522 BitstreamEntry Entry = 6523 Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs); 6524 6525 if (Entry.Kind != BitstreamEntry::SubBlock) 6526 return error("Malformed block"); 6527 6528 // If we see a MODULE_BLOCK, parse it to find the blocks needed for 6529 // building the function summary index. 6530 if (Entry.ID == bitc::MODULE_BLOCK_ID) 6531 return parseModule(ModulePath); 6532 6533 if (Stream.SkipBlock()) 6534 return error("Invalid record"); 6535 } 6536 } 6537 6538 namespace { 6539 6540 // FIXME: This class is only here to support the transition to llvm::Error. It 6541 // will be removed once this transition is complete. Clients should prefer to 6542 // deal with the Error value directly, rather than converting to error_code. 6543 class BitcodeErrorCategoryType : public std::error_category { 6544 const char *name() const noexcept override { 6545 return "llvm.bitcode"; 6546 } 6547 std::string message(int IE) const override { 6548 BitcodeError E = static_cast<BitcodeError>(IE); 6549 switch (E) { 6550 case BitcodeError::CorruptedBitcode: 6551 return "Corrupted bitcode"; 6552 } 6553 llvm_unreachable("Unknown error type!"); 6554 } 6555 }; 6556 6557 } // end anonymous namespace 6558 6559 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory; 6560 6561 const std::error_category &llvm::BitcodeErrorCategory() { 6562 return *ErrorCategory; 6563 } 6564 6565 //===----------------------------------------------------------------------===// 6566 // External interface 6567 //===----------------------------------------------------------------------===// 6568 6569 /// \brief Get a lazy one-at-time loading module from bitcode. 6570 /// 6571 /// This isn't always used in a lazy context. In particular, it's also used by 6572 /// \a parseBitcodeFile(). If this is truly lazy, then we need to eagerly pull 6573 /// in forward-referenced functions from block address references. 6574 /// 6575 /// \param[in] MaterializeAll Set to \c true if we should materialize 6576 /// everything. 6577 static Expected<std::unique_ptr<Module>> 6578 getLazyBitcodeModuleImpl(MemoryBufferRef Buffer, LLVMContext &Context, 6579 bool MaterializeAll, 6580 bool ShouldLazyLoadMetadata = false) { 6581 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 6582 if (!StreamOrErr) 6583 return StreamOrErr.takeError(); 6584 6585 BitcodeReader *R = new BitcodeReader(std::move(*StreamOrErr), Context); 6586 6587 std::unique_ptr<Module> M = 6588 llvm::make_unique<Module>(Buffer.getBufferIdentifier(), Context); 6589 M->setMaterializer(R); 6590 6591 // Delay parsing Metadata if ShouldLazyLoadMetadata is true. 6592 if (Error Err = R->parseBitcodeInto(M.get(), ShouldLazyLoadMetadata)) 6593 return std::move(Err); 6594 6595 if (MaterializeAll) { 6596 // Read in the entire module, and destroy the BitcodeReader. 6597 if (Error Err = M->materializeAll()) 6598 return std::move(Err); 6599 } else { 6600 // Resolve forward references from blockaddresses. 6601 if (Error Err = R->materializeForwardReferencedFunctions()) 6602 return std::move(Err); 6603 } 6604 return std::move(M); 6605 } 6606 6607 Expected<std::unique_ptr<Module>> 6608 llvm::getLazyBitcodeModule(MemoryBufferRef Buffer, 6609 LLVMContext &Context, bool ShouldLazyLoadMetadata) { 6610 return getLazyBitcodeModuleImpl(Buffer, Context, false, 6611 ShouldLazyLoadMetadata); 6612 } 6613 6614 Expected<std::unique_ptr<Module>> 6615 llvm::getOwningLazyBitcodeModule(std::unique_ptr<MemoryBuffer> &&Buffer, 6616 LLVMContext &Context, 6617 bool ShouldLazyLoadMetadata) { 6618 auto MOrErr = getLazyBitcodeModule(*Buffer, Context, ShouldLazyLoadMetadata); 6619 if (MOrErr) 6620 (*MOrErr)->setOwnedMemoryBuffer(std::move(Buffer)); 6621 return MOrErr; 6622 } 6623 6624 Expected<std::unique_ptr<Module>> llvm::parseBitcodeFile(MemoryBufferRef Buffer, 6625 LLVMContext &Context) { 6626 return getLazyBitcodeModuleImpl(Buffer, Context, true); 6627 // TODO: Restore the use-lists to the in-memory state when the bitcode was 6628 // written. We must defer until the Module has been fully materialized. 6629 } 6630 6631 Expected<std::string> llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer) { 6632 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 6633 if (!StreamOrErr) 6634 return StreamOrErr.takeError(); 6635 6636 return readTriple(*StreamOrErr); 6637 } 6638 6639 Expected<bool> llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer) { 6640 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 6641 if (!StreamOrErr) 6642 return StreamOrErr.takeError(); 6643 6644 return hasObjCCategory(*StreamOrErr); 6645 } 6646 6647 Expected<std::string> llvm::getBitcodeProducerString(MemoryBufferRef Buffer) { 6648 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 6649 if (!StreamOrErr) 6650 return StreamOrErr.takeError(); 6651 6652 return readIdentificationCode(*StreamOrErr); 6653 } 6654 6655 // Parse the specified bitcode buffer, returning the function info index. 6656 Expected<std::unique_ptr<ModuleSummaryIndex>> 6657 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer) { 6658 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 6659 if (!StreamOrErr) 6660 return StreamOrErr.takeError(); 6661 6662 ModuleSummaryIndexBitcodeReader R(std::move(*StreamOrErr)); 6663 6664 auto Index = llvm::make_unique<ModuleSummaryIndex>(); 6665 6666 if (Error Err = 6667 R.parseSummaryIndexInto(Index.get(), Buffer.getBufferIdentifier())) 6668 return std::move(Err); 6669 6670 return std::move(Index); 6671 } 6672 6673 // Check if the given bitcode buffer contains a global value summary block. 6674 Expected<bool> llvm::hasGlobalValueSummary(MemoryBufferRef Buffer) { 6675 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 6676 if (!StreamOrErr) 6677 return StreamOrErr.takeError(); 6678 6679 ModuleSummaryIndexBitcodeReader R(std::move(*StreamOrErr), true); 6680 6681 if (Error Err = 6682 R.parseSummaryIndexInto(nullptr, Buffer.getBufferIdentifier())) 6683 return std::move(Err); 6684 6685 return R.foundGlobalValSummary(); 6686 } 6687