1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "llvm/Bitcode/ReaderWriter.h" 11 #include "BitcodeReader.h" 12 #include "llvm/ADT/SmallString.h" 13 #include "llvm/ADT/SmallVector.h" 14 #include "llvm/ADT/Triple.h" 15 #include "llvm/Bitcode/LLVMBitCodes.h" 16 #include "llvm/IR/AutoUpgrade.h" 17 #include "llvm/IR/Constants.h" 18 #include "llvm/IR/DebugInfoMetadata.h" 19 #include "llvm/IR/DerivedTypes.h" 20 #include "llvm/IR/DiagnosticPrinter.h" 21 #include "llvm/IR/InlineAsm.h" 22 #include "llvm/IR/IntrinsicInst.h" 23 #include "llvm/IR/LLVMContext.h" 24 #include "llvm/IR/Module.h" 25 #include "llvm/IR/OperandTraits.h" 26 #include "llvm/IR/Operator.h" 27 #include "llvm/Support/DataStream.h" 28 #include "llvm/Support/ManagedStatic.h" 29 #include "llvm/Support/MathExtras.h" 30 #include "llvm/Support/MemoryBuffer.h" 31 #include "llvm/Support/raw_ostream.h" 32 33 using namespace llvm; 34 35 enum { 36 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 37 }; 38 39 BitcodeDiagnosticInfo::BitcodeDiagnosticInfo(std::error_code EC, 40 DiagnosticSeverity Severity, 41 const Twine &Msg) 42 : DiagnosticInfo(DK_Bitcode, Severity), Msg(Msg), EC(EC) {} 43 44 void BitcodeDiagnosticInfo::print(DiagnosticPrinter &DP) const { DP << Msg; } 45 46 static std::error_code Error(DiagnosticHandlerFunction DiagnosticHandler, 47 std::error_code EC, const Twine &Message) { 48 BitcodeDiagnosticInfo DI(EC, DS_Error, Message); 49 DiagnosticHandler(DI); 50 return EC; 51 } 52 53 static std::error_code Error(DiagnosticHandlerFunction DiagnosticHandler, 54 std::error_code EC) { 55 return Error(DiagnosticHandler, EC, EC.message()); 56 } 57 58 std::error_code BitcodeReader::Error(BitcodeError E, const Twine &Message) { 59 return ::Error(DiagnosticHandler, make_error_code(E), Message); 60 } 61 62 std::error_code BitcodeReader::Error(const Twine &Message) { 63 return ::Error(DiagnosticHandler, 64 make_error_code(BitcodeError::CorruptedBitcode), Message); 65 } 66 67 std::error_code BitcodeReader::Error(BitcodeError E) { 68 return ::Error(DiagnosticHandler, make_error_code(E)); 69 } 70 71 static DiagnosticHandlerFunction getDiagHandler(DiagnosticHandlerFunction F, 72 LLVMContext &C) { 73 if (F) 74 return F; 75 return [&C](const DiagnosticInfo &DI) { C.diagnose(DI); }; 76 } 77 78 BitcodeReader::BitcodeReader(MemoryBuffer *buffer, LLVMContext &C, 79 DiagnosticHandlerFunction DiagnosticHandler) 80 : Context(C), DiagnosticHandler(getDiagHandler(DiagnosticHandler, C)), 81 TheModule(nullptr), Buffer(buffer), LazyStreamer(nullptr), 82 NextUnreadBit(0), SeenValueSymbolTable(false), ValueList(C), 83 MDValueList(C), SeenFirstFunctionBody(false), UseRelativeIDs(false), 84 WillMaterializeAllForwardRefs(false) {} 85 86 BitcodeReader::BitcodeReader(DataStreamer *streamer, LLVMContext &C, 87 DiagnosticHandlerFunction DiagnosticHandler) 88 : Context(C), DiagnosticHandler(getDiagHandler(DiagnosticHandler, C)), 89 TheModule(nullptr), Buffer(nullptr), LazyStreamer(streamer), 90 NextUnreadBit(0), SeenValueSymbolTable(false), ValueList(C), 91 MDValueList(C), SeenFirstFunctionBody(false), UseRelativeIDs(false), 92 WillMaterializeAllForwardRefs(false) {} 93 94 std::error_code BitcodeReader::materializeForwardReferencedFunctions() { 95 if (WillMaterializeAllForwardRefs) 96 return std::error_code(); 97 98 // Prevent recursion. 99 WillMaterializeAllForwardRefs = true; 100 101 while (!BasicBlockFwdRefQueue.empty()) { 102 Function *F = BasicBlockFwdRefQueue.front(); 103 BasicBlockFwdRefQueue.pop_front(); 104 assert(F && "Expected valid function"); 105 if (!BasicBlockFwdRefs.count(F)) 106 // Already materialized. 107 continue; 108 109 // Check for a function that isn't materializable to prevent an infinite 110 // loop. When parsing a blockaddress stored in a global variable, there 111 // isn't a trivial way to check if a function will have a body without a 112 // linear search through FunctionsWithBodies, so just check it here. 113 if (!F->isMaterializable()) 114 return Error("Never resolved function from blockaddress"); 115 116 // Try to materialize F. 117 if (std::error_code EC = materialize(F)) 118 return EC; 119 } 120 assert(BasicBlockFwdRefs.empty() && "Function missing from queue"); 121 122 // Reset state. 123 WillMaterializeAllForwardRefs = false; 124 return std::error_code(); 125 } 126 127 void BitcodeReader::FreeState() { 128 Buffer = nullptr; 129 std::vector<Type*>().swap(TypeList); 130 ValueList.clear(); 131 MDValueList.clear(); 132 std::vector<Comdat *>().swap(ComdatList); 133 134 std::vector<AttributeSet>().swap(MAttributes); 135 std::vector<BasicBlock*>().swap(FunctionBBs); 136 std::vector<Function*>().swap(FunctionsWithBodies); 137 DeferredFunctionInfo.clear(); 138 MDKindMap.clear(); 139 140 assert(BasicBlockFwdRefs.empty() && "Unresolved blockaddress fwd references"); 141 BasicBlockFwdRefQueue.clear(); 142 } 143 144 //===----------------------------------------------------------------------===// 145 // Helper functions to implement forward reference resolution, etc. 146 //===----------------------------------------------------------------------===// 147 148 /// ConvertToString - Convert a string from a record into an std::string, return 149 /// true on failure. 150 template<typename StrTy> 151 static bool ConvertToString(ArrayRef<uint64_t> Record, unsigned Idx, 152 StrTy &Result) { 153 if (Idx > Record.size()) 154 return true; 155 156 for (unsigned i = Idx, e = Record.size(); i != e; ++i) 157 Result += (char)Record[i]; 158 return false; 159 } 160 161 static bool hasImplicitComdat(size_t Val) { 162 switch (Val) { 163 default: 164 return false; 165 case 1: // Old WeakAnyLinkage 166 case 4: // Old LinkOnceAnyLinkage 167 case 10: // Old WeakODRLinkage 168 case 11: // Old LinkOnceODRLinkage 169 return true; 170 } 171 } 172 173 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) { 174 switch (Val) { 175 default: // Map unknown/new linkages to external 176 case 0: 177 return GlobalValue::ExternalLinkage; 178 case 2: 179 return GlobalValue::AppendingLinkage; 180 case 3: 181 return GlobalValue::InternalLinkage; 182 case 5: 183 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage 184 case 6: 185 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage 186 case 7: 187 return GlobalValue::ExternalWeakLinkage; 188 case 8: 189 return GlobalValue::CommonLinkage; 190 case 9: 191 return GlobalValue::PrivateLinkage; 192 case 12: 193 return GlobalValue::AvailableExternallyLinkage; 194 case 13: 195 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage 196 case 14: 197 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage 198 case 15: 199 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage 200 case 1: // Old value with implicit comdat. 201 case 16: 202 return GlobalValue::WeakAnyLinkage; 203 case 10: // Old value with implicit comdat. 204 case 17: 205 return GlobalValue::WeakODRLinkage; 206 case 4: // Old value with implicit comdat. 207 case 18: 208 return GlobalValue::LinkOnceAnyLinkage; 209 case 11: // Old value with implicit comdat. 210 case 19: 211 return GlobalValue::LinkOnceODRLinkage; 212 } 213 } 214 215 static GlobalValue::VisibilityTypes GetDecodedVisibility(unsigned Val) { 216 switch (Val) { 217 default: // Map unknown visibilities to default. 218 case 0: return GlobalValue::DefaultVisibility; 219 case 1: return GlobalValue::HiddenVisibility; 220 case 2: return GlobalValue::ProtectedVisibility; 221 } 222 } 223 224 static GlobalValue::DLLStorageClassTypes 225 GetDecodedDLLStorageClass(unsigned Val) { 226 switch (Val) { 227 default: // Map unknown values to default. 228 case 0: return GlobalValue::DefaultStorageClass; 229 case 1: return GlobalValue::DLLImportStorageClass; 230 case 2: return GlobalValue::DLLExportStorageClass; 231 } 232 } 233 234 static GlobalVariable::ThreadLocalMode GetDecodedThreadLocalMode(unsigned Val) { 235 switch (Val) { 236 case 0: return GlobalVariable::NotThreadLocal; 237 default: // Map unknown non-zero value to general dynamic. 238 case 1: return GlobalVariable::GeneralDynamicTLSModel; 239 case 2: return GlobalVariable::LocalDynamicTLSModel; 240 case 3: return GlobalVariable::InitialExecTLSModel; 241 case 4: return GlobalVariable::LocalExecTLSModel; 242 } 243 } 244 245 static int GetDecodedCastOpcode(unsigned Val) { 246 switch (Val) { 247 default: return -1; 248 case bitc::CAST_TRUNC : return Instruction::Trunc; 249 case bitc::CAST_ZEXT : return Instruction::ZExt; 250 case bitc::CAST_SEXT : return Instruction::SExt; 251 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 252 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 253 case bitc::CAST_UITOFP : return Instruction::UIToFP; 254 case bitc::CAST_SITOFP : return Instruction::SIToFP; 255 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 256 case bitc::CAST_FPEXT : return Instruction::FPExt; 257 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 258 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 259 case bitc::CAST_BITCAST : return Instruction::BitCast; 260 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast; 261 } 262 } 263 static int GetDecodedBinaryOpcode(unsigned Val, Type *Ty) { 264 switch (Val) { 265 default: return -1; 266 case bitc::BINOP_ADD: 267 return Ty->isFPOrFPVectorTy() ? Instruction::FAdd : Instruction::Add; 268 case bitc::BINOP_SUB: 269 return Ty->isFPOrFPVectorTy() ? Instruction::FSub : Instruction::Sub; 270 case bitc::BINOP_MUL: 271 return Ty->isFPOrFPVectorTy() ? Instruction::FMul : Instruction::Mul; 272 case bitc::BINOP_UDIV: return Instruction::UDiv; 273 case bitc::BINOP_SDIV: 274 return Ty->isFPOrFPVectorTy() ? Instruction::FDiv : Instruction::SDiv; 275 case bitc::BINOP_UREM: return Instruction::URem; 276 case bitc::BINOP_SREM: 277 return Ty->isFPOrFPVectorTy() ? Instruction::FRem : Instruction::SRem; 278 case bitc::BINOP_SHL: return Instruction::Shl; 279 case bitc::BINOP_LSHR: return Instruction::LShr; 280 case bitc::BINOP_ASHR: return Instruction::AShr; 281 case bitc::BINOP_AND: return Instruction::And; 282 case bitc::BINOP_OR: return Instruction::Or; 283 case bitc::BINOP_XOR: return Instruction::Xor; 284 } 285 } 286 287 static AtomicRMWInst::BinOp GetDecodedRMWOperation(unsigned Val) { 288 switch (Val) { 289 default: return AtomicRMWInst::BAD_BINOP; 290 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 291 case bitc::RMW_ADD: return AtomicRMWInst::Add; 292 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 293 case bitc::RMW_AND: return AtomicRMWInst::And; 294 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 295 case bitc::RMW_OR: return AtomicRMWInst::Or; 296 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 297 case bitc::RMW_MAX: return AtomicRMWInst::Max; 298 case bitc::RMW_MIN: return AtomicRMWInst::Min; 299 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 300 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 301 } 302 } 303 304 static AtomicOrdering GetDecodedOrdering(unsigned Val) { 305 switch (Val) { 306 case bitc::ORDERING_NOTATOMIC: return NotAtomic; 307 case bitc::ORDERING_UNORDERED: return Unordered; 308 case bitc::ORDERING_MONOTONIC: return Monotonic; 309 case bitc::ORDERING_ACQUIRE: return Acquire; 310 case bitc::ORDERING_RELEASE: return Release; 311 case bitc::ORDERING_ACQREL: return AcquireRelease; 312 default: // Map unknown orderings to sequentially-consistent. 313 case bitc::ORDERING_SEQCST: return SequentiallyConsistent; 314 } 315 } 316 317 static SynchronizationScope GetDecodedSynchScope(unsigned Val) { 318 switch (Val) { 319 case bitc::SYNCHSCOPE_SINGLETHREAD: return SingleThread; 320 default: // Map unknown scopes to cross-thread. 321 case bitc::SYNCHSCOPE_CROSSTHREAD: return CrossThread; 322 } 323 } 324 325 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) { 326 switch (Val) { 327 default: // Map unknown selection kinds to any. 328 case bitc::COMDAT_SELECTION_KIND_ANY: 329 return Comdat::Any; 330 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH: 331 return Comdat::ExactMatch; 332 case bitc::COMDAT_SELECTION_KIND_LARGEST: 333 return Comdat::Largest; 334 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES: 335 return Comdat::NoDuplicates; 336 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE: 337 return Comdat::SameSize; 338 } 339 } 340 341 static void UpgradeDLLImportExportLinkage(llvm::GlobalValue *GV, unsigned Val) { 342 switch (Val) { 343 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break; 344 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break; 345 } 346 } 347 348 namespace llvm { 349 namespace { 350 /// @brief A class for maintaining the slot number definition 351 /// as a placeholder for the actual definition for forward constants defs. 352 class ConstantPlaceHolder : public ConstantExpr { 353 void operator=(const ConstantPlaceHolder &) LLVM_DELETED_FUNCTION; 354 public: 355 // allocate space for exactly one operand 356 void *operator new(size_t s) { 357 return User::operator new(s, 1); 358 } 359 explicit ConstantPlaceHolder(Type *Ty, LLVMContext& Context) 360 : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) { 361 Op<0>() = UndefValue::get(Type::getInt32Ty(Context)); 362 } 363 364 /// @brief Methods to support type inquiry through isa, cast, and dyn_cast. 365 static bool classof(const Value *V) { 366 return isa<ConstantExpr>(V) && 367 cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1; 368 } 369 370 371 /// Provide fast operand accessors 372 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); 373 }; 374 } 375 376 // FIXME: can we inherit this from ConstantExpr? 377 template <> 378 struct OperandTraits<ConstantPlaceHolder> : 379 public FixedNumOperandTraits<ConstantPlaceHolder, 1> { 380 }; 381 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantPlaceHolder, Value) 382 } 383 384 385 void BitcodeReaderValueList::AssignValue(Value *V, unsigned Idx) { 386 if (Idx == size()) { 387 push_back(V); 388 return; 389 } 390 391 if (Idx >= size()) 392 resize(Idx+1); 393 394 WeakVH &OldV = ValuePtrs[Idx]; 395 if (!OldV) { 396 OldV = V; 397 return; 398 } 399 400 // Handle constants and non-constants (e.g. instrs) differently for 401 // efficiency. 402 if (Constant *PHC = dyn_cast<Constant>(&*OldV)) { 403 ResolveConstants.push_back(std::make_pair(PHC, Idx)); 404 OldV = V; 405 } else { 406 // If there was a forward reference to this value, replace it. 407 Value *PrevVal = OldV; 408 OldV->replaceAllUsesWith(V); 409 delete PrevVal; 410 } 411 } 412 413 414 Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx, 415 Type *Ty) { 416 if (Idx >= size()) 417 resize(Idx + 1); 418 419 if (Value *V = ValuePtrs[Idx]) { 420 assert(Ty == V->getType() && "Type mismatch in constant table!"); 421 return cast<Constant>(V); 422 } 423 424 // Create and return a placeholder, which will later be RAUW'd. 425 Constant *C = new ConstantPlaceHolder(Ty, Context); 426 ValuePtrs[Idx] = C; 427 return C; 428 } 429 430 Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, Type *Ty) { 431 if (Idx >= size()) 432 resize(Idx + 1); 433 434 if (Value *V = ValuePtrs[Idx]) { 435 assert((!Ty || Ty == V->getType()) && "Type mismatch in value table!"); 436 return V; 437 } 438 439 // No type specified, must be invalid reference. 440 if (!Ty) return nullptr; 441 442 // Create and return a placeholder, which will later be RAUW'd. 443 Value *V = new Argument(Ty); 444 ValuePtrs[Idx] = V; 445 return V; 446 } 447 448 /// ResolveConstantForwardRefs - Once all constants are read, this method bulk 449 /// resolves any forward references. The idea behind this is that we sometimes 450 /// get constants (such as large arrays) which reference *many* forward ref 451 /// constants. Replacing each of these causes a lot of thrashing when 452 /// building/reuniquing the constant. Instead of doing this, we look at all the 453 /// uses and rewrite all the place holders at once for any constant that uses 454 /// a placeholder. 455 void BitcodeReaderValueList::ResolveConstantForwardRefs() { 456 // Sort the values by-pointer so that they are efficient to look up with a 457 // binary search. 458 std::sort(ResolveConstants.begin(), ResolveConstants.end()); 459 460 SmallVector<Constant*, 64> NewOps; 461 462 while (!ResolveConstants.empty()) { 463 Value *RealVal = operator[](ResolveConstants.back().second); 464 Constant *Placeholder = ResolveConstants.back().first; 465 ResolveConstants.pop_back(); 466 467 // Loop over all users of the placeholder, updating them to reference the 468 // new value. If they reference more than one placeholder, update them all 469 // at once. 470 while (!Placeholder->use_empty()) { 471 auto UI = Placeholder->user_begin(); 472 User *U = *UI; 473 474 // If the using object isn't uniqued, just update the operands. This 475 // handles instructions and initializers for global variables. 476 if (!isa<Constant>(U) || isa<GlobalValue>(U)) { 477 UI.getUse().set(RealVal); 478 continue; 479 } 480 481 // Otherwise, we have a constant that uses the placeholder. Replace that 482 // constant with a new constant that has *all* placeholder uses updated. 483 Constant *UserC = cast<Constant>(U); 484 for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end(); 485 I != E; ++I) { 486 Value *NewOp; 487 if (!isa<ConstantPlaceHolder>(*I)) { 488 // Not a placeholder reference. 489 NewOp = *I; 490 } else if (*I == Placeholder) { 491 // Common case is that it just references this one placeholder. 492 NewOp = RealVal; 493 } else { 494 // Otherwise, look up the placeholder in ResolveConstants. 495 ResolveConstantsTy::iterator It = 496 std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(), 497 std::pair<Constant*, unsigned>(cast<Constant>(*I), 498 0)); 499 assert(It != ResolveConstants.end() && It->first == *I); 500 NewOp = operator[](It->second); 501 } 502 503 NewOps.push_back(cast<Constant>(NewOp)); 504 } 505 506 // Make the new constant. 507 Constant *NewC; 508 if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) { 509 NewC = ConstantArray::get(UserCA->getType(), NewOps); 510 } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) { 511 NewC = ConstantStruct::get(UserCS->getType(), NewOps); 512 } else if (isa<ConstantVector>(UserC)) { 513 NewC = ConstantVector::get(NewOps); 514 } else { 515 assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr."); 516 NewC = cast<ConstantExpr>(UserC)->getWithOperands(NewOps); 517 } 518 519 UserC->replaceAllUsesWith(NewC); 520 UserC->destroyConstant(); 521 NewOps.clear(); 522 } 523 524 // Update all ValueHandles, they should be the only users at this point. 525 Placeholder->replaceAllUsesWith(RealVal); 526 delete Placeholder; 527 } 528 } 529 530 void BitcodeReaderMDValueList::AssignValue(Metadata *MD, unsigned Idx) { 531 if (Idx == size()) { 532 push_back(MD); 533 return; 534 } 535 536 if (Idx >= size()) 537 resize(Idx+1); 538 539 TrackingMDRef &OldMD = MDValuePtrs[Idx]; 540 if (!OldMD) { 541 OldMD.reset(MD); 542 return; 543 } 544 545 // If there was a forward reference to this value, replace it. 546 TempMDTuple PrevMD(cast<MDTuple>(OldMD.get())); 547 PrevMD->replaceAllUsesWith(MD); 548 --NumFwdRefs; 549 } 550 551 Metadata *BitcodeReaderMDValueList::getValueFwdRef(unsigned Idx) { 552 if (Idx >= size()) 553 resize(Idx + 1); 554 555 if (Metadata *MD = MDValuePtrs[Idx]) 556 return MD; 557 558 // Create and return a placeholder, which will later be RAUW'd. 559 AnyFwdRefs = true; 560 ++NumFwdRefs; 561 Metadata *MD = MDNode::getTemporary(Context, None).release(); 562 MDValuePtrs[Idx].reset(MD); 563 return MD; 564 } 565 566 void BitcodeReaderMDValueList::tryToResolveCycles() { 567 if (!AnyFwdRefs) 568 // Nothing to do. 569 return; 570 571 if (NumFwdRefs) 572 // Still forward references... can't resolve cycles. 573 return; 574 575 // Resolve any cycles. 576 for (auto &MD : MDValuePtrs) { 577 auto *N = dyn_cast_or_null<MDNode>(MD); 578 if (!N) 579 continue; 580 581 assert(!N->isTemporary() && "Unexpected forward reference"); 582 N->resolveCycles(); 583 } 584 } 585 586 Type *BitcodeReader::getTypeByID(unsigned ID) { 587 // The type table size is always specified correctly. 588 if (ID >= TypeList.size()) 589 return nullptr; 590 591 if (Type *Ty = TypeList[ID]) 592 return Ty; 593 594 // If we have a forward reference, the only possible case is when it is to a 595 // named struct. Just create a placeholder for now. 596 return TypeList[ID] = createIdentifiedStructType(Context); 597 } 598 599 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context, 600 StringRef Name) { 601 auto *Ret = StructType::create(Context, Name); 602 IdentifiedStructTypes.push_back(Ret); 603 return Ret; 604 } 605 606 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) { 607 auto *Ret = StructType::create(Context); 608 IdentifiedStructTypes.push_back(Ret); 609 return Ret; 610 } 611 612 613 //===----------------------------------------------------------------------===// 614 // Functions for parsing blocks from the bitcode file 615 //===----------------------------------------------------------------------===// 616 617 618 /// \brief This fills an AttrBuilder object with the LLVM attributes that have 619 /// been decoded from the given integer. This function must stay in sync with 620 /// 'encodeLLVMAttributesForBitcode'. 621 static void decodeLLVMAttributesForBitcode(AttrBuilder &B, 622 uint64_t EncodedAttrs) { 623 // FIXME: Remove in 4.0. 624 625 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift 626 // the bits above 31 down by 11 bits. 627 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; 628 assert((!Alignment || isPowerOf2_32(Alignment)) && 629 "Alignment must be a power of two."); 630 631 if (Alignment) 632 B.addAlignmentAttr(Alignment); 633 B.addRawValue(((EncodedAttrs & (0xfffffULL << 32)) >> 11) | 634 (EncodedAttrs & 0xffff)); 635 } 636 637 std::error_code BitcodeReader::ParseAttributeBlock() { 638 if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 639 return Error("Invalid record"); 640 641 if (!MAttributes.empty()) 642 return Error("Invalid multiple blocks"); 643 644 SmallVector<uint64_t, 64> Record; 645 646 SmallVector<AttributeSet, 8> Attrs; 647 648 // Read all the records. 649 while (1) { 650 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 651 652 switch (Entry.Kind) { 653 case BitstreamEntry::SubBlock: // Handled for us already. 654 case BitstreamEntry::Error: 655 return Error("Malformed block"); 656 case BitstreamEntry::EndBlock: 657 return std::error_code(); 658 case BitstreamEntry::Record: 659 // The interesting case. 660 break; 661 } 662 663 // Read a record. 664 Record.clear(); 665 switch (Stream.readRecord(Entry.ID, Record)) { 666 default: // Default behavior: ignore. 667 break; 668 case bitc::PARAMATTR_CODE_ENTRY_OLD: { // ENTRY: [paramidx0, attr0, ...] 669 // FIXME: Remove in 4.0. 670 if (Record.size() & 1) 671 return Error("Invalid record"); 672 673 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 674 AttrBuilder B; 675 decodeLLVMAttributesForBitcode(B, Record[i+1]); 676 Attrs.push_back(AttributeSet::get(Context, Record[i], B)); 677 } 678 679 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 680 Attrs.clear(); 681 break; 682 } 683 case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [attrgrp0, attrgrp1, ...] 684 for (unsigned i = 0, e = Record.size(); i != e; ++i) 685 Attrs.push_back(MAttributeGroups[Record[i]]); 686 687 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 688 Attrs.clear(); 689 break; 690 } 691 } 692 } 693 } 694 695 // Returns Attribute::None on unrecognized codes. 696 static Attribute::AttrKind GetAttrFromCode(uint64_t Code) { 697 switch (Code) { 698 default: 699 return Attribute::None; 700 case bitc::ATTR_KIND_ALIGNMENT: 701 return Attribute::Alignment; 702 case bitc::ATTR_KIND_ALWAYS_INLINE: 703 return Attribute::AlwaysInline; 704 case bitc::ATTR_KIND_BUILTIN: 705 return Attribute::Builtin; 706 case bitc::ATTR_KIND_BY_VAL: 707 return Attribute::ByVal; 708 case bitc::ATTR_KIND_IN_ALLOCA: 709 return Attribute::InAlloca; 710 case bitc::ATTR_KIND_COLD: 711 return Attribute::Cold; 712 case bitc::ATTR_KIND_INLINE_HINT: 713 return Attribute::InlineHint; 714 case bitc::ATTR_KIND_IN_REG: 715 return Attribute::InReg; 716 case bitc::ATTR_KIND_JUMP_TABLE: 717 return Attribute::JumpTable; 718 case bitc::ATTR_KIND_MIN_SIZE: 719 return Attribute::MinSize; 720 case bitc::ATTR_KIND_NAKED: 721 return Attribute::Naked; 722 case bitc::ATTR_KIND_NEST: 723 return Attribute::Nest; 724 case bitc::ATTR_KIND_NO_ALIAS: 725 return Attribute::NoAlias; 726 case bitc::ATTR_KIND_NO_BUILTIN: 727 return Attribute::NoBuiltin; 728 case bitc::ATTR_KIND_NO_CAPTURE: 729 return Attribute::NoCapture; 730 case bitc::ATTR_KIND_NO_DUPLICATE: 731 return Attribute::NoDuplicate; 732 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: 733 return Attribute::NoImplicitFloat; 734 case bitc::ATTR_KIND_NO_INLINE: 735 return Attribute::NoInline; 736 case bitc::ATTR_KIND_NON_LAZY_BIND: 737 return Attribute::NonLazyBind; 738 case bitc::ATTR_KIND_NON_NULL: 739 return Attribute::NonNull; 740 case bitc::ATTR_KIND_DEREFERENCEABLE: 741 return Attribute::Dereferenceable; 742 case bitc::ATTR_KIND_NO_RED_ZONE: 743 return Attribute::NoRedZone; 744 case bitc::ATTR_KIND_NO_RETURN: 745 return Attribute::NoReturn; 746 case bitc::ATTR_KIND_NO_UNWIND: 747 return Attribute::NoUnwind; 748 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: 749 return Attribute::OptimizeForSize; 750 case bitc::ATTR_KIND_OPTIMIZE_NONE: 751 return Attribute::OptimizeNone; 752 case bitc::ATTR_KIND_READ_NONE: 753 return Attribute::ReadNone; 754 case bitc::ATTR_KIND_READ_ONLY: 755 return Attribute::ReadOnly; 756 case bitc::ATTR_KIND_RETURNED: 757 return Attribute::Returned; 758 case bitc::ATTR_KIND_RETURNS_TWICE: 759 return Attribute::ReturnsTwice; 760 case bitc::ATTR_KIND_S_EXT: 761 return Attribute::SExt; 762 case bitc::ATTR_KIND_STACK_ALIGNMENT: 763 return Attribute::StackAlignment; 764 case bitc::ATTR_KIND_STACK_PROTECT: 765 return Attribute::StackProtect; 766 case bitc::ATTR_KIND_STACK_PROTECT_REQ: 767 return Attribute::StackProtectReq; 768 case bitc::ATTR_KIND_STACK_PROTECT_STRONG: 769 return Attribute::StackProtectStrong; 770 case bitc::ATTR_KIND_STRUCT_RET: 771 return Attribute::StructRet; 772 case bitc::ATTR_KIND_SANITIZE_ADDRESS: 773 return Attribute::SanitizeAddress; 774 case bitc::ATTR_KIND_SANITIZE_THREAD: 775 return Attribute::SanitizeThread; 776 case bitc::ATTR_KIND_SANITIZE_MEMORY: 777 return Attribute::SanitizeMemory; 778 case bitc::ATTR_KIND_UW_TABLE: 779 return Attribute::UWTable; 780 case bitc::ATTR_KIND_Z_EXT: 781 return Attribute::ZExt; 782 } 783 } 784 785 std::error_code BitcodeReader::ParseAttrKind(uint64_t Code, 786 Attribute::AttrKind *Kind) { 787 *Kind = GetAttrFromCode(Code); 788 if (*Kind == Attribute::None) 789 return Error(BitcodeError::CorruptedBitcode, 790 "Unknown attribute kind (" + Twine(Code) + ")"); 791 return std::error_code(); 792 } 793 794 std::error_code BitcodeReader::ParseAttributeGroupBlock() { 795 if (Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) 796 return Error("Invalid record"); 797 798 if (!MAttributeGroups.empty()) 799 return Error("Invalid multiple blocks"); 800 801 SmallVector<uint64_t, 64> Record; 802 803 // Read all the records. 804 while (1) { 805 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 806 807 switch (Entry.Kind) { 808 case BitstreamEntry::SubBlock: // Handled for us already. 809 case BitstreamEntry::Error: 810 return Error("Malformed block"); 811 case BitstreamEntry::EndBlock: 812 return std::error_code(); 813 case BitstreamEntry::Record: 814 // The interesting case. 815 break; 816 } 817 818 // Read a record. 819 Record.clear(); 820 switch (Stream.readRecord(Entry.ID, Record)) { 821 default: // Default behavior: ignore. 822 break; 823 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] 824 if (Record.size() < 3) 825 return Error("Invalid record"); 826 827 uint64_t GrpID = Record[0]; 828 uint64_t Idx = Record[1]; // Index of the object this attribute refers to. 829 830 AttrBuilder B; 831 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 832 if (Record[i] == 0) { // Enum attribute 833 Attribute::AttrKind Kind; 834 if (std::error_code EC = ParseAttrKind(Record[++i], &Kind)) 835 return EC; 836 837 B.addAttribute(Kind); 838 } else if (Record[i] == 1) { // Integer attribute 839 Attribute::AttrKind Kind; 840 if (std::error_code EC = ParseAttrKind(Record[++i], &Kind)) 841 return EC; 842 if (Kind == Attribute::Alignment) 843 B.addAlignmentAttr(Record[++i]); 844 else if (Kind == Attribute::StackAlignment) 845 B.addStackAlignmentAttr(Record[++i]); 846 else if (Kind == Attribute::Dereferenceable) 847 B.addDereferenceableAttr(Record[++i]); 848 } else { // String attribute 849 assert((Record[i] == 3 || Record[i] == 4) && 850 "Invalid attribute group entry"); 851 bool HasValue = (Record[i++] == 4); 852 SmallString<64> KindStr; 853 SmallString<64> ValStr; 854 855 while (Record[i] != 0 && i != e) 856 KindStr += Record[i++]; 857 assert(Record[i] == 0 && "Kind string not null terminated"); 858 859 if (HasValue) { 860 // Has a value associated with it. 861 ++i; // Skip the '0' that terminates the "kind" string. 862 while (Record[i] != 0 && i != e) 863 ValStr += Record[i++]; 864 assert(Record[i] == 0 && "Value string not null terminated"); 865 } 866 867 B.addAttribute(KindStr.str(), ValStr.str()); 868 } 869 } 870 871 MAttributeGroups[GrpID] = AttributeSet::get(Context, Idx, B); 872 break; 873 } 874 } 875 } 876 } 877 878 std::error_code BitcodeReader::ParseTypeTable() { 879 if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 880 return Error("Invalid record"); 881 882 return ParseTypeTableBody(); 883 } 884 885 std::error_code BitcodeReader::ParseTypeTableBody() { 886 if (!TypeList.empty()) 887 return Error("Invalid multiple blocks"); 888 889 SmallVector<uint64_t, 64> Record; 890 unsigned NumRecords = 0; 891 892 SmallString<64> TypeName; 893 894 // Read all the records for this type table. 895 while (1) { 896 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 897 898 switch (Entry.Kind) { 899 case BitstreamEntry::SubBlock: // Handled for us already. 900 case BitstreamEntry::Error: 901 return Error("Malformed block"); 902 case BitstreamEntry::EndBlock: 903 if (NumRecords != TypeList.size()) 904 return Error("Malformed block"); 905 return std::error_code(); 906 case BitstreamEntry::Record: 907 // The interesting case. 908 break; 909 } 910 911 // Read a record. 912 Record.clear(); 913 Type *ResultTy = nullptr; 914 switch (Stream.readRecord(Entry.ID, Record)) { 915 default: 916 return Error("Invalid value"); 917 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 918 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 919 // type list. This allows us to reserve space. 920 if (Record.size() < 1) 921 return Error("Invalid record"); 922 TypeList.resize(Record[0]); 923 continue; 924 case bitc::TYPE_CODE_VOID: // VOID 925 ResultTy = Type::getVoidTy(Context); 926 break; 927 case bitc::TYPE_CODE_HALF: // HALF 928 ResultTy = Type::getHalfTy(Context); 929 break; 930 case bitc::TYPE_CODE_FLOAT: // FLOAT 931 ResultTy = Type::getFloatTy(Context); 932 break; 933 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 934 ResultTy = Type::getDoubleTy(Context); 935 break; 936 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 937 ResultTy = Type::getX86_FP80Ty(Context); 938 break; 939 case bitc::TYPE_CODE_FP128: // FP128 940 ResultTy = Type::getFP128Ty(Context); 941 break; 942 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 943 ResultTy = Type::getPPC_FP128Ty(Context); 944 break; 945 case bitc::TYPE_CODE_LABEL: // LABEL 946 ResultTy = Type::getLabelTy(Context); 947 break; 948 case bitc::TYPE_CODE_METADATA: // METADATA 949 ResultTy = Type::getMetadataTy(Context); 950 break; 951 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 952 ResultTy = Type::getX86_MMXTy(Context); 953 break; 954 case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width] 955 if (Record.size() < 1) 956 return Error("Invalid record"); 957 958 uint64_t NumBits = Record[0]; 959 if (NumBits < IntegerType::MIN_INT_BITS || 960 NumBits > IntegerType::MAX_INT_BITS) 961 return Error("Bitwidth for integer type out of range"); 962 ResultTy = IntegerType::get(Context, NumBits); 963 break; 964 } 965 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 966 // [pointee type, address space] 967 if (Record.size() < 1) 968 return Error("Invalid record"); 969 unsigned AddressSpace = 0; 970 if (Record.size() == 2) 971 AddressSpace = Record[1]; 972 ResultTy = getTypeByID(Record[0]); 973 if (!ResultTy) 974 return Error("Invalid type"); 975 ResultTy = PointerType::get(ResultTy, AddressSpace); 976 break; 977 } 978 case bitc::TYPE_CODE_FUNCTION_OLD: { 979 // FIXME: attrid is dead, remove it in LLVM 4.0 980 // FUNCTION: [vararg, attrid, retty, paramty x N] 981 if (Record.size() < 3) 982 return Error("Invalid record"); 983 SmallVector<Type*, 8> ArgTys; 984 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 985 if (Type *T = getTypeByID(Record[i])) 986 ArgTys.push_back(T); 987 else 988 break; 989 } 990 991 ResultTy = getTypeByID(Record[2]); 992 if (!ResultTy || ArgTys.size() < Record.size()-3) 993 return Error("Invalid type"); 994 995 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 996 break; 997 } 998 case bitc::TYPE_CODE_FUNCTION: { 999 // FUNCTION: [vararg, retty, paramty x N] 1000 if (Record.size() < 2) 1001 return Error("Invalid record"); 1002 SmallVector<Type*, 8> ArgTys; 1003 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1004 if (Type *T = getTypeByID(Record[i])) 1005 ArgTys.push_back(T); 1006 else 1007 break; 1008 } 1009 1010 ResultTy = getTypeByID(Record[1]); 1011 if (!ResultTy || ArgTys.size() < Record.size()-2) 1012 return Error("Invalid type"); 1013 1014 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1015 break; 1016 } 1017 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 1018 if (Record.size() < 1) 1019 return Error("Invalid record"); 1020 SmallVector<Type*, 8> EltTys; 1021 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1022 if (Type *T = getTypeByID(Record[i])) 1023 EltTys.push_back(T); 1024 else 1025 break; 1026 } 1027 if (EltTys.size() != Record.size()-1) 1028 return Error("Invalid type"); 1029 ResultTy = StructType::get(Context, EltTys, Record[0]); 1030 break; 1031 } 1032 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 1033 if (ConvertToString(Record, 0, TypeName)) 1034 return Error("Invalid record"); 1035 continue; 1036 1037 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 1038 if (Record.size() < 1) 1039 return Error("Invalid record"); 1040 1041 if (NumRecords >= TypeList.size()) 1042 return Error("Invalid TYPE table"); 1043 1044 // Check to see if this was forward referenced, if so fill in the temp. 1045 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1046 if (Res) { 1047 Res->setName(TypeName); 1048 TypeList[NumRecords] = nullptr; 1049 } else // Otherwise, create a new struct. 1050 Res = createIdentifiedStructType(Context, TypeName); 1051 TypeName.clear(); 1052 1053 SmallVector<Type*, 8> EltTys; 1054 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1055 if (Type *T = getTypeByID(Record[i])) 1056 EltTys.push_back(T); 1057 else 1058 break; 1059 } 1060 if (EltTys.size() != Record.size()-1) 1061 return Error("Invalid record"); 1062 Res->setBody(EltTys, Record[0]); 1063 ResultTy = Res; 1064 break; 1065 } 1066 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 1067 if (Record.size() != 1) 1068 return Error("Invalid record"); 1069 1070 if (NumRecords >= TypeList.size()) 1071 return Error("Invalid TYPE table"); 1072 1073 // Check to see if this was forward referenced, if so fill in the temp. 1074 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1075 if (Res) { 1076 Res->setName(TypeName); 1077 TypeList[NumRecords] = nullptr; 1078 } else // Otherwise, create a new struct with no body. 1079 Res = createIdentifiedStructType(Context, TypeName); 1080 TypeName.clear(); 1081 ResultTy = Res; 1082 break; 1083 } 1084 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 1085 if (Record.size() < 2) 1086 return Error("Invalid record"); 1087 if ((ResultTy = getTypeByID(Record[1]))) 1088 ResultTy = ArrayType::get(ResultTy, Record[0]); 1089 else 1090 return Error("Invalid type"); 1091 break; 1092 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] 1093 if (Record.size() < 2) 1094 return Error("Invalid record"); 1095 if ((ResultTy = getTypeByID(Record[1]))) 1096 ResultTy = VectorType::get(ResultTy, Record[0]); 1097 else 1098 return Error("Invalid type"); 1099 break; 1100 } 1101 1102 if (NumRecords >= TypeList.size()) 1103 return Error("Invalid TYPE table"); 1104 if (TypeList[NumRecords]) 1105 return Error( 1106 "Invalid TYPE table: Only named structs can be forward referenced"); 1107 assert(ResultTy && "Didn't read a type?"); 1108 TypeList[NumRecords++] = ResultTy; 1109 } 1110 } 1111 1112 std::error_code BitcodeReader::ParseValueSymbolTable() { 1113 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 1114 return Error("Invalid record"); 1115 1116 SmallVector<uint64_t, 64> Record; 1117 1118 Triple TT(TheModule->getTargetTriple()); 1119 1120 // Read all the records for this value table. 1121 SmallString<128> ValueName; 1122 while (1) { 1123 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1124 1125 switch (Entry.Kind) { 1126 case BitstreamEntry::SubBlock: // Handled for us already. 1127 case BitstreamEntry::Error: 1128 return Error("Malformed block"); 1129 case BitstreamEntry::EndBlock: 1130 return std::error_code(); 1131 case BitstreamEntry::Record: 1132 // The interesting case. 1133 break; 1134 } 1135 1136 // Read a record. 1137 Record.clear(); 1138 switch (Stream.readRecord(Entry.ID, Record)) { 1139 default: // Default behavior: unknown type. 1140 break; 1141 case bitc::VST_CODE_ENTRY: { // VST_ENTRY: [valueid, namechar x N] 1142 if (ConvertToString(Record, 1, ValueName)) 1143 return Error("Invalid record"); 1144 unsigned ValueID = Record[0]; 1145 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 1146 return Error("Invalid record"); 1147 Value *V = ValueList[ValueID]; 1148 1149 V->setName(StringRef(ValueName.data(), ValueName.size())); 1150 if (auto *GO = dyn_cast<GlobalObject>(V)) { 1151 if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) { 1152 if (TT.isOSBinFormatMachO()) 1153 GO->setComdat(nullptr); 1154 else 1155 GO->setComdat(TheModule->getOrInsertComdat(V->getName())); 1156 } 1157 } 1158 ValueName.clear(); 1159 break; 1160 } 1161 case bitc::VST_CODE_BBENTRY: { 1162 if (ConvertToString(Record, 1, ValueName)) 1163 return Error("Invalid record"); 1164 BasicBlock *BB = getBasicBlock(Record[0]); 1165 if (!BB) 1166 return Error("Invalid record"); 1167 1168 BB->setName(StringRef(ValueName.data(), ValueName.size())); 1169 ValueName.clear(); 1170 break; 1171 } 1172 } 1173 } 1174 } 1175 1176 static int64_t unrotateSign(uint64_t U) { return U & 1 ? ~(U >> 1) : U >> 1; } 1177 1178 std::error_code BitcodeReader::ParseMetadata() { 1179 unsigned NextMDValueNo = MDValueList.size(); 1180 1181 if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID)) 1182 return Error("Invalid record"); 1183 1184 SmallVector<uint64_t, 64> Record; 1185 1186 auto getMD = 1187 [&](unsigned ID) -> Metadata *{ return MDValueList.getValueFwdRef(ID); }; 1188 auto getMDOrNull = [&](unsigned ID) -> Metadata *{ 1189 if (ID) 1190 return getMD(ID - 1); 1191 return nullptr; 1192 }; 1193 auto getMDString = [&](unsigned ID) -> MDString *{ 1194 // This requires that the ID is not really a forward reference. In 1195 // particular, the MDString must already have been resolved. 1196 return cast_or_null<MDString>(getMDOrNull(ID)); 1197 }; 1198 1199 #define GET_OR_DISTINCT(CLASS, DISTINCT, ARGS) \ 1200 (DISTINCT ? CLASS::getDistinct ARGS : CLASS::get ARGS) 1201 1202 // Read all the records. 1203 while (1) { 1204 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1205 1206 switch (Entry.Kind) { 1207 case BitstreamEntry::SubBlock: // Handled for us already. 1208 case BitstreamEntry::Error: 1209 return Error("Malformed block"); 1210 case BitstreamEntry::EndBlock: 1211 MDValueList.tryToResolveCycles(); 1212 return std::error_code(); 1213 case BitstreamEntry::Record: 1214 // The interesting case. 1215 break; 1216 } 1217 1218 // Read a record. 1219 Record.clear(); 1220 unsigned Code = Stream.readRecord(Entry.ID, Record); 1221 bool IsDistinct = false; 1222 switch (Code) { 1223 default: // Default behavior: ignore. 1224 break; 1225 case bitc::METADATA_NAME: { 1226 // Read name of the named metadata. 1227 SmallString<8> Name(Record.begin(), Record.end()); 1228 Record.clear(); 1229 Code = Stream.ReadCode(); 1230 1231 // METADATA_NAME is always followed by METADATA_NAMED_NODE. 1232 unsigned NextBitCode = Stream.readRecord(Code, Record); 1233 assert(NextBitCode == bitc::METADATA_NAMED_NODE); (void)NextBitCode; 1234 1235 // Read named metadata elements. 1236 unsigned Size = Record.size(); 1237 NamedMDNode *NMD = TheModule->getOrInsertNamedMetadata(Name); 1238 for (unsigned i = 0; i != Size; ++i) { 1239 MDNode *MD = dyn_cast_or_null<MDNode>(MDValueList.getValueFwdRef(Record[i])); 1240 if (!MD) 1241 return Error("Invalid record"); 1242 NMD->addOperand(MD); 1243 } 1244 break; 1245 } 1246 case bitc::METADATA_OLD_FN_NODE: { 1247 // FIXME: Remove in 4.0. 1248 // This is a LocalAsMetadata record, the only type of function-local 1249 // metadata. 1250 if (Record.size() % 2 == 1) 1251 return Error("Invalid record"); 1252 1253 // If this isn't a LocalAsMetadata record, we're dropping it. This used 1254 // to be legal, but there's no upgrade path. 1255 auto dropRecord = [&] { 1256 MDValueList.AssignValue(MDNode::get(Context, None), NextMDValueNo++); 1257 }; 1258 if (Record.size() != 2) { 1259 dropRecord(); 1260 break; 1261 } 1262 1263 Type *Ty = getTypeByID(Record[0]); 1264 if (Ty->isMetadataTy() || Ty->isVoidTy()) { 1265 dropRecord(); 1266 break; 1267 } 1268 1269 MDValueList.AssignValue( 1270 LocalAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)), 1271 NextMDValueNo++); 1272 break; 1273 } 1274 case bitc::METADATA_OLD_NODE: { 1275 // FIXME: Remove in 4.0. 1276 if (Record.size() % 2 == 1) 1277 return Error("Invalid record"); 1278 1279 unsigned Size = Record.size(); 1280 SmallVector<Metadata *, 8> Elts; 1281 for (unsigned i = 0; i != Size; i += 2) { 1282 Type *Ty = getTypeByID(Record[i]); 1283 if (!Ty) 1284 return Error("Invalid record"); 1285 if (Ty->isMetadataTy()) 1286 Elts.push_back(MDValueList.getValueFwdRef(Record[i+1])); 1287 else if (!Ty->isVoidTy()) { 1288 auto *MD = 1289 ValueAsMetadata::get(ValueList.getValueFwdRef(Record[i + 1], Ty)); 1290 assert(isa<ConstantAsMetadata>(MD) && 1291 "Expected non-function-local metadata"); 1292 Elts.push_back(MD); 1293 } else 1294 Elts.push_back(nullptr); 1295 } 1296 MDValueList.AssignValue(MDNode::get(Context, Elts), NextMDValueNo++); 1297 break; 1298 } 1299 case bitc::METADATA_VALUE: { 1300 if (Record.size() != 2) 1301 return Error("Invalid record"); 1302 1303 Type *Ty = getTypeByID(Record[0]); 1304 if (Ty->isMetadataTy() || Ty->isVoidTy()) 1305 return Error("Invalid record"); 1306 1307 MDValueList.AssignValue( 1308 ValueAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)), 1309 NextMDValueNo++); 1310 break; 1311 } 1312 case bitc::METADATA_DISTINCT_NODE: 1313 IsDistinct = true; 1314 // fallthrough... 1315 case bitc::METADATA_NODE: { 1316 SmallVector<Metadata *, 8> Elts; 1317 Elts.reserve(Record.size()); 1318 for (unsigned ID : Record) 1319 Elts.push_back(ID ? MDValueList.getValueFwdRef(ID - 1) : nullptr); 1320 MDValueList.AssignValue(IsDistinct ? MDNode::getDistinct(Context, Elts) 1321 : MDNode::get(Context, Elts), 1322 NextMDValueNo++); 1323 break; 1324 } 1325 case bitc::METADATA_LOCATION: { 1326 if (Record.size() != 5) 1327 return Error("Invalid record"); 1328 1329 auto get = Record[0] ? MDLocation::getDistinct : MDLocation::get; 1330 unsigned Line = Record[1]; 1331 unsigned Column = Record[2]; 1332 MDNode *Scope = cast<MDNode>(MDValueList.getValueFwdRef(Record[3])); 1333 Metadata *InlinedAt = 1334 Record[4] ? MDValueList.getValueFwdRef(Record[4] - 1) : nullptr; 1335 MDValueList.AssignValue(get(Context, Line, Column, Scope, InlinedAt), 1336 NextMDValueNo++); 1337 break; 1338 } 1339 case bitc::METADATA_GENERIC_DEBUG: { 1340 if (Record.size() < 4) 1341 return Error("Invalid record"); 1342 1343 unsigned Tag = Record[1]; 1344 unsigned Version = Record[2]; 1345 1346 if (Tag >= 1u << 16 || Version != 0) 1347 return Error("Invalid record"); 1348 1349 auto *Header = getMDString(Record[3]); 1350 SmallVector<Metadata *, 8> DwarfOps; 1351 for (unsigned I = 4, E = Record.size(); I != E; ++I) 1352 DwarfOps.push_back(Record[I] ? MDValueList.getValueFwdRef(Record[I] - 1) 1353 : nullptr); 1354 MDValueList.AssignValue(GET_OR_DISTINCT(GenericDebugNode, Record[0], 1355 (Context, Tag, Header, DwarfOps)), 1356 NextMDValueNo++); 1357 break; 1358 } 1359 case bitc::METADATA_SUBRANGE: { 1360 if (Record.size() != 3) 1361 return Error("Invalid record"); 1362 1363 MDValueList.AssignValue( 1364 GET_OR_DISTINCT(MDSubrange, Record[0], 1365 (Context, Record[1], unrotateSign(Record[2]))), 1366 NextMDValueNo++); 1367 break; 1368 } 1369 case bitc::METADATA_ENUMERATOR: { 1370 if (Record.size() != 3) 1371 return Error("Invalid record"); 1372 1373 MDValueList.AssignValue(GET_OR_DISTINCT(MDEnumerator, Record[0], 1374 (Context, unrotateSign(Record[1]), 1375 getMDString(Record[2]))), 1376 NextMDValueNo++); 1377 break; 1378 } 1379 case bitc::METADATA_BASIC_TYPE: { 1380 if (Record.size() != 6) 1381 return Error("Invalid record"); 1382 1383 MDValueList.AssignValue( 1384 GET_OR_DISTINCT(MDBasicType, Record[0], 1385 (Context, Record[1], getMDString(Record[2]), 1386 Record[3], Record[4], Record[5])), 1387 NextMDValueNo++); 1388 break; 1389 } 1390 case bitc::METADATA_DERIVED_TYPE: { 1391 if (Record.size() != 12) 1392 return Error("Invalid record"); 1393 1394 MDValueList.AssignValue( 1395 GET_OR_DISTINCT(MDDerivedType, Record[0], 1396 (Context, Record[1], getMDString(Record[2]), 1397 getMDOrNull(Record[3]), Record[4], 1398 getMDOrNull(Record[5]), getMD(Record[6]), Record[7], 1399 Record[8], Record[9], Record[10], 1400 getMDOrNull(Record[11]))), 1401 NextMDValueNo++); 1402 break; 1403 } 1404 case bitc::METADATA_COMPOSITE_TYPE: { 1405 if (Record.size() != 16) 1406 return Error("Invalid record"); 1407 1408 MDValueList.AssignValue( 1409 GET_OR_DISTINCT(MDCompositeType, Record[0], 1410 (Context, Record[1], getMDString(Record[2]), 1411 getMDOrNull(Record[3]), Record[4], 1412 getMDOrNull(Record[5]), getMDOrNull(Record[6]), 1413 Record[7], Record[8], Record[9], Record[10], 1414 getMDOrNull(Record[11]), Record[12], 1415 getMDOrNull(Record[13]), getMDOrNull(Record[14]), 1416 getMDString(Record[15]))), 1417 NextMDValueNo++); 1418 break; 1419 } 1420 case bitc::METADATA_SUBROUTINE_TYPE: { 1421 if (Record.size() != 3) 1422 return Error("Invalid record"); 1423 1424 MDValueList.AssignValue( 1425 GET_OR_DISTINCT(MDSubroutineType, Record[0], 1426 (Context, Record[1], getMDOrNull(Record[2]))), 1427 NextMDValueNo++); 1428 break; 1429 } 1430 case bitc::METADATA_FILE: { 1431 if (Record.size() != 3) 1432 return Error("Invalid record"); 1433 1434 MDValueList.AssignValue( 1435 GET_OR_DISTINCT(MDFile, Record[0], (Context, getMDString(Record[1]), 1436 getMDString(Record[2]))), 1437 NextMDValueNo++); 1438 break; 1439 } 1440 case bitc::METADATA_COMPILE_UNIT: { 1441 if (Record.size() != 14) 1442 return Error("Invalid record"); 1443 1444 MDValueList.AssignValue( 1445 GET_OR_DISTINCT( 1446 MDCompileUnit, Record[0], 1447 (Context, Record[1], getMD(Record[2]), getMDString(Record[3]), 1448 Record[4], getMDString(Record[5]), Record[6], 1449 getMDString(Record[7]), Record[8], getMDOrNull(Record[9]), 1450 getMDOrNull(Record[10]), getMDOrNull(Record[11]), 1451 getMDOrNull(Record[12]), getMDOrNull(Record[13]))), 1452 NextMDValueNo++); 1453 break; 1454 } 1455 case bitc::METADATA_SUBPROGRAM: { 1456 if (Record.size() != 19) 1457 return Error("Invalid record"); 1458 1459 MDValueList.AssignValue( 1460 GET_OR_DISTINCT( 1461 MDSubprogram, Record[0], 1462 (Context, getMDOrNull(Record[1]), getMDString(Record[2]), 1463 getMDString(Record[3]), getMDOrNull(Record[4]), Record[5], 1464 getMDOrNull(Record[6]), Record[7], Record[8], Record[9], 1465 getMDOrNull(Record[10]), Record[11], Record[12], Record[13], 1466 Record[14], getMDOrNull(Record[15]), getMDOrNull(Record[16]), 1467 getMDOrNull(Record[17]), getMDOrNull(Record[18]))), 1468 NextMDValueNo++); 1469 break; 1470 } 1471 case bitc::METADATA_LEXICAL_BLOCK: { 1472 if (Record.size() != 5) 1473 return Error("Invalid record"); 1474 1475 MDValueList.AssignValue( 1476 GET_OR_DISTINCT(MDLexicalBlock, Record[0], 1477 (Context, getMDOrNull(Record[1]), 1478 getMDOrNull(Record[2]), Record[3], Record[4])), 1479 NextMDValueNo++); 1480 break; 1481 } 1482 case bitc::METADATA_LEXICAL_BLOCK_FILE: { 1483 if (Record.size() != 4) 1484 return Error("Invalid record"); 1485 1486 MDValueList.AssignValue( 1487 GET_OR_DISTINCT(MDLexicalBlockFile, Record[0], 1488 (Context, getMDOrNull(Record[1]), 1489 getMDOrNull(Record[2]), Record[3])), 1490 NextMDValueNo++); 1491 break; 1492 } 1493 case bitc::METADATA_NAMESPACE: { 1494 if (Record.size() != 5) 1495 return Error("Invalid record"); 1496 1497 MDValueList.AssignValue( 1498 GET_OR_DISTINCT(MDNamespace, Record[0], 1499 (Context, getMDOrNull(Record[1]), 1500 getMDOrNull(Record[2]), getMDString(Record[3]), 1501 Record[4])), 1502 NextMDValueNo++); 1503 break; 1504 } 1505 case bitc::METADATA_TEMPLATE_TYPE: { 1506 if (Record.size() != 4) 1507 return Error("Invalid record"); 1508 1509 MDValueList.AssignValue( 1510 GET_OR_DISTINCT(MDTemplateTypeParameter, Record[0], 1511 (Context, getMDOrNull(Record[1]), 1512 getMDString(Record[2]), getMDOrNull(Record[3]))), 1513 NextMDValueNo++); 1514 break; 1515 } 1516 case bitc::METADATA_TEMPLATE_VALUE: { 1517 if (Record.size() != 6) 1518 return Error("Invalid record"); 1519 1520 MDValueList.AssignValue( 1521 GET_OR_DISTINCT(MDTemplateValueParameter, Record[0], 1522 (Context, Record[1], getMDOrNull(Record[2]), 1523 getMDString(Record[3]), getMDOrNull(Record[4]), 1524 getMDOrNull(Record[5]))), 1525 NextMDValueNo++); 1526 break; 1527 } 1528 case bitc::METADATA_GLOBAL_VAR: { 1529 if (Record.size() != 11) 1530 return Error("Invalid record"); 1531 1532 MDValueList.AssignValue( 1533 GET_OR_DISTINCT(MDGlobalVariable, Record[0], 1534 (Context, getMDOrNull(Record[1]), 1535 getMDString(Record[2]), getMDString(Record[3]), 1536 getMDOrNull(Record[4]), Record[5], 1537 getMDOrNull(Record[6]), Record[7], Record[8], 1538 getMDOrNull(Record[9]), getMDOrNull(Record[10]))), 1539 NextMDValueNo++); 1540 break; 1541 } 1542 case bitc::METADATA_LOCAL_VAR: { 1543 if (Record.size() != 10) 1544 return Error("Invalid record"); 1545 1546 MDValueList.AssignValue( 1547 GET_OR_DISTINCT(MDLocalVariable, Record[0], 1548 (Context, Record[1], getMDOrNull(Record[2]), 1549 getMDString(Record[3]), getMDOrNull(Record[4]), 1550 Record[5], getMDOrNull(Record[6]), Record[7], 1551 Record[8], getMDOrNull(Record[9]))), 1552 NextMDValueNo++); 1553 break; 1554 } 1555 case bitc::METADATA_EXPRESSION: { 1556 if (Record.size() < 1) 1557 return Error("Invalid record"); 1558 1559 MDValueList.AssignValue( 1560 GET_OR_DISTINCT(MDExpression, Record[0], 1561 (Context, makeArrayRef(Record).slice(1))), 1562 NextMDValueNo++); 1563 break; 1564 } 1565 case bitc::METADATA_OBJC_PROPERTY: { 1566 if (Record.size() != 8) 1567 return Error("Invalid record"); 1568 1569 MDValueList.AssignValue( 1570 GET_OR_DISTINCT(MDObjCProperty, Record[0], 1571 (Context, getMDString(Record[1]), 1572 getMDOrNull(Record[2]), Record[3], 1573 getMDString(Record[4]), getMDString(Record[5]), 1574 Record[6], getMDOrNull(Record[7]))), 1575 NextMDValueNo++); 1576 break; 1577 } 1578 case bitc::METADATA_STRING: { 1579 std::string String(Record.begin(), Record.end()); 1580 llvm::UpgradeMDStringConstant(String); 1581 Metadata *MD = MDString::get(Context, String); 1582 MDValueList.AssignValue(MD, NextMDValueNo++); 1583 break; 1584 } 1585 case bitc::METADATA_KIND: { 1586 if (Record.size() < 2) 1587 return Error("Invalid record"); 1588 1589 unsigned Kind = Record[0]; 1590 SmallString<8> Name(Record.begin()+1, Record.end()); 1591 1592 unsigned NewKind = TheModule->getMDKindID(Name.str()); 1593 if (!MDKindMap.insert(std::make_pair(Kind, NewKind)).second) 1594 return Error("Conflicting METADATA_KIND records"); 1595 break; 1596 } 1597 } 1598 } 1599 #undef GET_OR_DISTINCT 1600 } 1601 1602 /// decodeSignRotatedValue - Decode a signed value stored with the sign bit in 1603 /// the LSB for dense VBR encoding. 1604 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { 1605 if ((V & 1) == 0) 1606 return V >> 1; 1607 if (V != 1) 1608 return -(V >> 1); 1609 // There is no such thing as -0 with integers. "-0" really means MININT. 1610 return 1ULL << 63; 1611 } 1612 1613 /// ResolveGlobalAndAliasInits - Resolve all of the initializers for global 1614 /// values and aliases that we can. 1615 std::error_code BitcodeReader::ResolveGlobalAndAliasInits() { 1616 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist; 1617 std::vector<std::pair<GlobalAlias*, unsigned> > AliasInitWorklist; 1618 std::vector<std::pair<Function*, unsigned> > FunctionPrefixWorklist; 1619 std::vector<std::pair<Function*, unsigned> > FunctionPrologueWorklist; 1620 1621 GlobalInitWorklist.swap(GlobalInits); 1622 AliasInitWorklist.swap(AliasInits); 1623 FunctionPrefixWorklist.swap(FunctionPrefixes); 1624 FunctionPrologueWorklist.swap(FunctionPrologues); 1625 1626 while (!GlobalInitWorklist.empty()) { 1627 unsigned ValID = GlobalInitWorklist.back().second; 1628 if (ValID >= ValueList.size()) { 1629 // Not ready to resolve this yet, it requires something later in the file. 1630 GlobalInits.push_back(GlobalInitWorklist.back()); 1631 } else { 1632 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 1633 GlobalInitWorklist.back().first->setInitializer(C); 1634 else 1635 return Error("Expected a constant"); 1636 } 1637 GlobalInitWorklist.pop_back(); 1638 } 1639 1640 while (!AliasInitWorklist.empty()) { 1641 unsigned ValID = AliasInitWorklist.back().second; 1642 if (ValID >= ValueList.size()) { 1643 AliasInits.push_back(AliasInitWorklist.back()); 1644 } else { 1645 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 1646 AliasInitWorklist.back().first->setAliasee(C); 1647 else 1648 return Error("Expected a constant"); 1649 } 1650 AliasInitWorklist.pop_back(); 1651 } 1652 1653 while (!FunctionPrefixWorklist.empty()) { 1654 unsigned ValID = FunctionPrefixWorklist.back().second; 1655 if (ValID >= ValueList.size()) { 1656 FunctionPrefixes.push_back(FunctionPrefixWorklist.back()); 1657 } else { 1658 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 1659 FunctionPrefixWorklist.back().first->setPrefixData(C); 1660 else 1661 return Error("Expected a constant"); 1662 } 1663 FunctionPrefixWorklist.pop_back(); 1664 } 1665 1666 while (!FunctionPrologueWorklist.empty()) { 1667 unsigned ValID = FunctionPrologueWorklist.back().second; 1668 if (ValID >= ValueList.size()) { 1669 FunctionPrologues.push_back(FunctionPrologueWorklist.back()); 1670 } else { 1671 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 1672 FunctionPrologueWorklist.back().first->setPrologueData(C); 1673 else 1674 return Error("Expected a constant"); 1675 } 1676 FunctionPrologueWorklist.pop_back(); 1677 } 1678 1679 return std::error_code(); 1680 } 1681 1682 static APInt ReadWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { 1683 SmallVector<uint64_t, 8> Words(Vals.size()); 1684 std::transform(Vals.begin(), Vals.end(), Words.begin(), 1685 BitcodeReader::decodeSignRotatedValue); 1686 1687 return APInt(TypeBits, Words); 1688 } 1689 1690 std::error_code BitcodeReader::ParseConstants() { 1691 if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 1692 return Error("Invalid record"); 1693 1694 SmallVector<uint64_t, 64> Record; 1695 1696 // Read all the records for this value table. 1697 Type *CurTy = Type::getInt32Ty(Context); 1698 unsigned NextCstNo = ValueList.size(); 1699 while (1) { 1700 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1701 1702 switch (Entry.Kind) { 1703 case BitstreamEntry::SubBlock: // Handled for us already. 1704 case BitstreamEntry::Error: 1705 return Error("Malformed block"); 1706 case BitstreamEntry::EndBlock: 1707 if (NextCstNo != ValueList.size()) 1708 return Error("Invalid ronstant reference"); 1709 1710 // Once all the constants have been read, go through and resolve forward 1711 // references. 1712 ValueList.ResolveConstantForwardRefs(); 1713 return std::error_code(); 1714 case BitstreamEntry::Record: 1715 // The interesting case. 1716 break; 1717 } 1718 1719 // Read a record. 1720 Record.clear(); 1721 Value *V = nullptr; 1722 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 1723 switch (BitCode) { 1724 default: // Default behavior: unknown constant 1725 case bitc::CST_CODE_UNDEF: // UNDEF 1726 V = UndefValue::get(CurTy); 1727 break; 1728 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 1729 if (Record.empty()) 1730 return Error("Invalid record"); 1731 if (Record[0] >= TypeList.size() || !TypeList[Record[0]]) 1732 return Error("Invalid record"); 1733 CurTy = TypeList[Record[0]]; 1734 continue; // Skip the ValueList manipulation. 1735 case bitc::CST_CODE_NULL: // NULL 1736 V = Constant::getNullValue(CurTy); 1737 break; 1738 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 1739 if (!CurTy->isIntegerTy() || Record.empty()) 1740 return Error("Invalid record"); 1741 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); 1742 break; 1743 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 1744 if (!CurTy->isIntegerTy() || Record.empty()) 1745 return Error("Invalid record"); 1746 1747 APInt VInt = ReadWideAPInt(Record, 1748 cast<IntegerType>(CurTy)->getBitWidth()); 1749 V = ConstantInt::get(Context, VInt); 1750 1751 break; 1752 } 1753 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 1754 if (Record.empty()) 1755 return Error("Invalid record"); 1756 if (CurTy->isHalfTy()) 1757 V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf, 1758 APInt(16, (uint16_t)Record[0]))); 1759 else if (CurTy->isFloatTy()) 1760 V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle, 1761 APInt(32, (uint32_t)Record[0]))); 1762 else if (CurTy->isDoubleTy()) 1763 V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble, 1764 APInt(64, Record[0]))); 1765 else if (CurTy->isX86_FP80Ty()) { 1766 // Bits are not stored the same way as a normal i80 APInt, compensate. 1767 uint64_t Rearrange[2]; 1768 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 1769 Rearrange[1] = Record[0] >> 48; 1770 V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended, 1771 APInt(80, Rearrange))); 1772 } else if (CurTy->isFP128Ty()) 1773 V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad, 1774 APInt(128, Record))); 1775 else if (CurTy->isPPC_FP128Ty()) 1776 V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble, 1777 APInt(128, Record))); 1778 else 1779 V = UndefValue::get(CurTy); 1780 break; 1781 } 1782 1783 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 1784 if (Record.empty()) 1785 return Error("Invalid record"); 1786 1787 unsigned Size = Record.size(); 1788 SmallVector<Constant*, 16> Elts; 1789 1790 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 1791 for (unsigned i = 0; i != Size; ++i) 1792 Elts.push_back(ValueList.getConstantFwdRef(Record[i], 1793 STy->getElementType(i))); 1794 V = ConstantStruct::get(STy, Elts); 1795 } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) { 1796 Type *EltTy = ATy->getElementType(); 1797 for (unsigned i = 0; i != Size; ++i) 1798 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 1799 V = ConstantArray::get(ATy, Elts); 1800 } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) { 1801 Type *EltTy = VTy->getElementType(); 1802 for (unsigned i = 0; i != Size; ++i) 1803 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 1804 V = ConstantVector::get(Elts); 1805 } else { 1806 V = UndefValue::get(CurTy); 1807 } 1808 break; 1809 } 1810 case bitc::CST_CODE_STRING: // STRING: [values] 1811 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 1812 if (Record.empty()) 1813 return Error("Invalid record"); 1814 1815 SmallString<16> Elts(Record.begin(), Record.end()); 1816 V = ConstantDataArray::getString(Context, Elts, 1817 BitCode == bitc::CST_CODE_CSTRING); 1818 break; 1819 } 1820 case bitc::CST_CODE_DATA: {// DATA: [n x value] 1821 if (Record.empty()) 1822 return Error("Invalid record"); 1823 1824 Type *EltTy = cast<SequentialType>(CurTy)->getElementType(); 1825 unsigned Size = Record.size(); 1826 1827 if (EltTy->isIntegerTy(8)) { 1828 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); 1829 if (isa<VectorType>(CurTy)) 1830 V = ConstantDataVector::get(Context, Elts); 1831 else 1832 V = ConstantDataArray::get(Context, Elts); 1833 } else if (EltTy->isIntegerTy(16)) { 1834 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 1835 if (isa<VectorType>(CurTy)) 1836 V = ConstantDataVector::get(Context, Elts); 1837 else 1838 V = ConstantDataArray::get(Context, Elts); 1839 } else if (EltTy->isIntegerTy(32)) { 1840 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 1841 if (isa<VectorType>(CurTy)) 1842 V = ConstantDataVector::get(Context, Elts); 1843 else 1844 V = ConstantDataArray::get(Context, Elts); 1845 } else if (EltTy->isIntegerTy(64)) { 1846 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 1847 if (isa<VectorType>(CurTy)) 1848 V = ConstantDataVector::get(Context, Elts); 1849 else 1850 V = ConstantDataArray::get(Context, Elts); 1851 } else if (EltTy->isFloatTy()) { 1852 SmallVector<float, 16> Elts(Size); 1853 std::transform(Record.begin(), Record.end(), Elts.begin(), BitsToFloat); 1854 if (isa<VectorType>(CurTy)) 1855 V = ConstantDataVector::get(Context, Elts); 1856 else 1857 V = ConstantDataArray::get(Context, Elts); 1858 } else if (EltTy->isDoubleTy()) { 1859 SmallVector<double, 16> Elts(Size); 1860 std::transform(Record.begin(), Record.end(), Elts.begin(), 1861 BitsToDouble); 1862 if (isa<VectorType>(CurTy)) 1863 V = ConstantDataVector::get(Context, Elts); 1864 else 1865 V = ConstantDataArray::get(Context, Elts); 1866 } else { 1867 return Error("Invalid type for value"); 1868 } 1869 break; 1870 } 1871 1872 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 1873 if (Record.size() < 3) 1874 return Error("Invalid record"); 1875 int Opc = GetDecodedBinaryOpcode(Record[0], CurTy); 1876 if (Opc < 0) { 1877 V = UndefValue::get(CurTy); // Unknown binop. 1878 } else { 1879 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 1880 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy); 1881 unsigned Flags = 0; 1882 if (Record.size() >= 4) { 1883 if (Opc == Instruction::Add || 1884 Opc == Instruction::Sub || 1885 Opc == Instruction::Mul || 1886 Opc == Instruction::Shl) { 1887 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 1888 Flags |= OverflowingBinaryOperator::NoSignedWrap; 1889 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 1890 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 1891 } else if (Opc == Instruction::SDiv || 1892 Opc == Instruction::UDiv || 1893 Opc == Instruction::LShr || 1894 Opc == Instruction::AShr) { 1895 if (Record[3] & (1 << bitc::PEO_EXACT)) 1896 Flags |= SDivOperator::IsExact; 1897 } 1898 } 1899 V = ConstantExpr::get(Opc, LHS, RHS, Flags); 1900 } 1901 break; 1902 } 1903 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 1904 if (Record.size() < 3) 1905 return Error("Invalid record"); 1906 int Opc = GetDecodedCastOpcode(Record[0]); 1907 if (Opc < 0) { 1908 V = UndefValue::get(CurTy); // Unknown cast. 1909 } else { 1910 Type *OpTy = getTypeByID(Record[1]); 1911 if (!OpTy) 1912 return Error("Invalid record"); 1913 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy); 1914 V = UpgradeBitCastExpr(Opc, Op, CurTy); 1915 if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy); 1916 } 1917 break; 1918 } 1919 case bitc::CST_CODE_CE_INBOUNDS_GEP: 1920 case bitc::CST_CODE_CE_GEP: { // CE_GEP: [n x operands] 1921 if (Record.size() & 1) 1922 return Error("Invalid record"); 1923 SmallVector<Constant*, 16> Elts; 1924 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1925 Type *ElTy = getTypeByID(Record[i]); 1926 if (!ElTy) 1927 return Error("Invalid record"); 1928 Elts.push_back(ValueList.getConstantFwdRef(Record[i+1], ElTy)); 1929 } 1930 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 1931 V = ConstantExpr::getGetElementPtr(Elts[0], Indices, 1932 BitCode == 1933 bitc::CST_CODE_CE_INBOUNDS_GEP); 1934 break; 1935 } 1936 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] 1937 if (Record.size() < 3) 1938 return Error("Invalid record"); 1939 1940 Type *SelectorTy = Type::getInt1Ty(Context); 1941 1942 // If CurTy is a vector of length n, then Record[0] must be a <n x i1> 1943 // vector. Otherwise, it must be a single bit. 1944 if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) 1945 SelectorTy = VectorType::get(Type::getInt1Ty(Context), 1946 VTy->getNumElements()); 1947 1948 V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0], 1949 SelectorTy), 1950 ValueList.getConstantFwdRef(Record[1],CurTy), 1951 ValueList.getConstantFwdRef(Record[2],CurTy)); 1952 break; 1953 } 1954 case bitc::CST_CODE_CE_EXTRACTELT 1955 : { // CE_EXTRACTELT: [opty, opval, opty, opval] 1956 if (Record.size() < 3) 1957 return Error("Invalid record"); 1958 VectorType *OpTy = 1959 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 1960 if (!OpTy) 1961 return Error("Invalid record"); 1962 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 1963 Constant *Op1 = nullptr; 1964 if (Record.size() == 4) { 1965 Type *IdxTy = getTypeByID(Record[2]); 1966 if (!IdxTy) 1967 return Error("Invalid record"); 1968 Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy); 1969 } else // TODO: Remove with llvm 4.0 1970 Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 1971 if (!Op1) 1972 return Error("Invalid record"); 1973 V = ConstantExpr::getExtractElement(Op0, Op1); 1974 break; 1975 } 1976 case bitc::CST_CODE_CE_INSERTELT 1977 : { // CE_INSERTELT: [opval, opval, opty, opval] 1978 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 1979 if (Record.size() < 3 || !OpTy) 1980 return Error("Invalid record"); 1981 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 1982 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], 1983 OpTy->getElementType()); 1984 Constant *Op2 = nullptr; 1985 if (Record.size() == 4) { 1986 Type *IdxTy = getTypeByID(Record[2]); 1987 if (!IdxTy) 1988 return Error("Invalid record"); 1989 Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy); 1990 } else // TODO: Remove with llvm 4.0 1991 Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 1992 if (!Op2) 1993 return Error("Invalid record"); 1994 V = ConstantExpr::getInsertElement(Op0, Op1, Op2); 1995 break; 1996 } 1997 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 1998 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 1999 if (Record.size() < 3 || !OpTy) 2000 return Error("Invalid record"); 2001 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2002 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy); 2003 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 2004 OpTy->getNumElements()); 2005 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy); 2006 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 2007 break; 2008 } 2009 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 2010 VectorType *RTy = dyn_cast<VectorType>(CurTy); 2011 VectorType *OpTy = 2012 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2013 if (Record.size() < 4 || !RTy || !OpTy) 2014 return Error("Invalid record"); 2015 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2016 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2017 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 2018 RTy->getNumElements()); 2019 Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy); 2020 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 2021 break; 2022 } 2023 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 2024 if (Record.size() < 4) 2025 return Error("Invalid record"); 2026 Type *OpTy = getTypeByID(Record[0]); 2027 if (!OpTy) 2028 return Error("Invalid record"); 2029 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2030 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2031 2032 if (OpTy->isFPOrFPVectorTy()) 2033 V = ConstantExpr::getFCmp(Record[3], Op0, Op1); 2034 else 2035 V = ConstantExpr::getICmp(Record[3], Op0, Op1); 2036 break; 2037 } 2038 // This maintains backward compatibility, pre-asm dialect keywords. 2039 // FIXME: Remove with the 4.0 release. 2040 case bitc::CST_CODE_INLINEASM_OLD: { 2041 if (Record.size() < 2) 2042 return Error("Invalid record"); 2043 std::string AsmStr, ConstrStr; 2044 bool HasSideEffects = Record[0] & 1; 2045 bool IsAlignStack = Record[0] >> 1; 2046 unsigned AsmStrSize = Record[1]; 2047 if (2+AsmStrSize >= Record.size()) 2048 return Error("Invalid record"); 2049 unsigned ConstStrSize = Record[2+AsmStrSize]; 2050 if (3+AsmStrSize+ConstStrSize > Record.size()) 2051 return Error("Invalid record"); 2052 2053 for (unsigned i = 0; i != AsmStrSize; ++i) 2054 AsmStr += (char)Record[2+i]; 2055 for (unsigned i = 0; i != ConstStrSize; ++i) 2056 ConstrStr += (char)Record[3+AsmStrSize+i]; 2057 PointerType *PTy = cast<PointerType>(CurTy); 2058 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 2059 AsmStr, ConstrStr, HasSideEffects, IsAlignStack); 2060 break; 2061 } 2062 // This version adds support for the asm dialect keywords (e.g., 2063 // inteldialect). 2064 case bitc::CST_CODE_INLINEASM: { 2065 if (Record.size() < 2) 2066 return Error("Invalid record"); 2067 std::string AsmStr, ConstrStr; 2068 bool HasSideEffects = Record[0] & 1; 2069 bool IsAlignStack = (Record[0] >> 1) & 1; 2070 unsigned AsmDialect = Record[0] >> 2; 2071 unsigned AsmStrSize = Record[1]; 2072 if (2+AsmStrSize >= Record.size()) 2073 return Error("Invalid record"); 2074 unsigned ConstStrSize = Record[2+AsmStrSize]; 2075 if (3+AsmStrSize+ConstStrSize > Record.size()) 2076 return Error("Invalid record"); 2077 2078 for (unsigned i = 0; i != AsmStrSize; ++i) 2079 AsmStr += (char)Record[2+i]; 2080 for (unsigned i = 0; i != ConstStrSize; ++i) 2081 ConstrStr += (char)Record[3+AsmStrSize+i]; 2082 PointerType *PTy = cast<PointerType>(CurTy); 2083 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 2084 AsmStr, ConstrStr, HasSideEffects, IsAlignStack, 2085 InlineAsm::AsmDialect(AsmDialect)); 2086 break; 2087 } 2088 case bitc::CST_CODE_BLOCKADDRESS:{ 2089 if (Record.size() < 3) 2090 return Error("Invalid record"); 2091 Type *FnTy = getTypeByID(Record[0]); 2092 if (!FnTy) 2093 return Error("Invalid record"); 2094 Function *Fn = 2095 dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy)); 2096 if (!Fn) 2097 return Error("Invalid record"); 2098 2099 // Don't let Fn get dematerialized. 2100 BlockAddressesTaken.insert(Fn); 2101 2102 // If the function is already parsed we can insert the block address right 2103 // away. 2104 BasicBlock *BB; 2105 unsigned BBID = Record[2]; 2106 if (!BBID) 2107 // Invalid reference to entry block. 2108 return Error("Invalid ID"); 2109 if (!Fn->empty()) { 2110 Function::iterator BBI = Fn->begin(), BBE = Fn->end(); 2111 for (size_t I = 0, E = BBID; I != E; ++I) { 2112 if (BBI == BBE) 2113 return Error("Invalid ID"); 2114 ++BBI; 2115 } 2116 BB = BBI; 2117 } else { 2118 // Otherwise insert a placeholder and remember it so it can be inserted 2119 // when the function is parsed. 2120 auto &FwdBBs = BasicBlockFwdRefs[Fn]; 2121 if (FwdBBs.empty()) 2122 BasicBlockFwdRefQueue.push_back(Fn); 2123 if (FwdBBs.size() < BBID + 1) 2124 FwdBBs.resize(BBID + 1); 2125 if (!FwdBBs[BBID]) 2126 FwdBBs[BBID] = BasicBlock::Create(Context); 2127 BB = FwdBBs[BBID]; 2128 } 2129 V = BlockAddress::get(Fn, BB); 2130 break; 2131 } 2132 } 2133 2134 ValueList.AssignValue(V, NextCstNo); 2135 ++NextCstNo; 2136 } 2137 } 2138 2139 std::error_code BitcodeReader::ParseUseLists() { 2140 if (Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 2141 return Error("Invalid record"); 2142 2143 // Read all the records. 2144 SmallVector<uint64_t, 64> Record; 2145 while (1) { 2146 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2147 2148 switch (Entry.Kind) { 2149 case BitstreamEntry::SubBlock: // Handled for us already. 2150 case BitstreamEntry::Error: 2151 return Error("Malformed block"); 2152 case BitstreamEntry::EndBlock: 2153 return std::error_code(); 2154 case BitstreamEntry::Record: 2155 // The interesting case. 2156 break; 2157 } 2158 2159 // Read a use list record. 2160 Record.clear(); 2161 bool IsBB = false; 2162 switch (Stream.readRecord(Entry.ID, Record)) { 2163 default: // Default behavior: unknown type. 2164 break; 2165 case bitc::USELIST_CODE_BB: 2166 IsBB = true; 2167 // fallthrough 2168 case bitc::USELIST_CODE_DEFAULT: { 2169 unsigned RecordLength = Record.size(); 2170 if (RecordLength < 3) 2171 // Records should have at least an ID and two indexes. 2172 return Error("Invalid record"); 2173 unsigned ID = Record.back(); 2174 Record.pop_back(); 2175 2176 Value *V; 2177 if (IsBB) { 2178 assert(ID < FunctionBBs.size() && "Basic block not found"); 2179 V = FunctionBBs[ID]; 2180 } else 2181 V = ValueList[ID]; 2182 unsigned NumUses = 0; 2183 SmallDenseMap<const Use *, unsigned, 16> Order; 2184 for (const Use &U : V->uses()) { 2185 if (++NumUses > Record.size()) 2186 break; 2187 Order[&U] = Record[NumUses - 1]; 2188 } 2189 if (Order.size() != Record.size() || NumUses > Record.size()) 2190 // Mismatches can happen if the functions are being materialized lazily 2191 // (out-of-order), or a value has been upgraded. 2192 break; 2193 2194 V->sortUseList([&](const Use &L, const Use &R) { 2195 return Order.lookup(&L) < Order.lookup(&R); 2196 }); 2197 break; 2198 } 2199 } 2200 } 2201 } 2202 2203 /// RememberAndSkipFunctionBody - When we see the block for a function body, 2204 /// remember where it is and then skip it. This lets us lazily deserialize the 2205 /// functions. 2206 std::error_code BitcodeReader::RememberAndSkipFunctionBody() { 2207 // Get the function we are talking about. 2208 if (FunctionsWithBodies.empty()) 2209 return Error("Insufficient function protos"); 2210 2211 Function *Fn = FunctionsWithBodies.back(); 2212 FunctionsWithBodies.pop_back(); 2213 2214 // Save the current stream state. 2215 uint64_t CurBit = Stream.GetCurrentBitNo(); 2216 DeferredFunctionInfo[Fn] = CurBit; 2217 2218 // Skip over the function block for now. 2219 if (Stream.SkipBlock()) 2220 return Error("Invalid record"); 2221 return std::error_code(); 2222 } 2223 2224 std::error_code BitcodeReader::GlobalCleanup() { 2225 // Patch the initializers for globals and aliases up. 2226 ResolveGlobalAndAliasInits(); 2227 if (!GlobalInits.empty() || !AliasInits.empty()) 2228 return Error("Malformed global initializer set"); 2229 2230 // Look for intrinsic functions which need to be upgraded at some point 2231 for (Module::iterator FI = TheModule->begin(), FE = TheModule->end(); 2232 FI != FE; ++FI) { 2233 Function *NewFn; 2234 if (UpgradeIntrinsicFunction(FI, NewFn)) 2235 UpgradedIntrinsics.push_back(std::make_pair(FI, NewFn)); 2236 } 2237 2238 // Look for global variables which need to be renamed. 2239 for (Module::global_iterator 2240 GI = TheModule->global_begin(), GE = TheModule->global_end(); 2241 GI != GE;) { 2242 GlobalVariable *GV = GI++; 2243 UpgradeGlobalVariable(GV); 2244 } 2245 2246 // Force deallocation of memory for these vectors to favor the client that 2247 // want lazy deserialization. 2248 std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits); 2249 std::vector<std::pair<GlobalAlias*, unsigned> >().swap(AliasInits); 2250 return std::error_code(); 2251 } 2252 2253 std::error_code BitcodeReader::ParseModule(bool Resume) { 2254 if (Resume) 2255 Stream.JumpToBit(NextUnreadBit); 2256 else if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 2257 return Error("Invalid record"); 2258 2259 SmallVector<uint64_t, 64> Record; 2260 std::vector<std::string> SectionTable; 2261 std::vector<std::string> GCTable; 2262 2263 // Read all the records for this module. 2264 while (1) { 2265 BitstreamEntry Entry = Stream.advance(); 2266 2267 switch (Entry.Kind) { 2268 case BitstreamEntry::Error: 2269 return Error("Malformed block"); 2270 case BitstreamEntry::EndBlock: 2271 return GlobalCleanup(); 2272 2273 case BitstreamEntry::SubBlock: 2274 switch (Entry.ID) { 2275 default: // Skip unknown content. 2276 if (Stream.SkipBlock()) 2277 return Error("Invalid record"); 2278 break; 2279 case bitc::BLOCKINFO_BLOCK_ID: 2280 if (Stream.ReadBlockInfoBlock()) 2281 return Error("Malformed block"); 2282 break; 2283 case bitc::PARAMATTR_BLOCK_ID: 2284 if (std::error_code EC = ParseAttributeBlock()) 2285 return EC; 2286 break; 2287 case bitc::PARAMATTR_GROUP_BLOCK_ID: 2288 if (std::error_code EC = ParseAttributeGroupBlock()) 2289 return EC; 2290 break; 2291 case bitc::TYPE_BLOCK_ID_NEW: 2292 if (std::error_code EC = ParseTypeTable()) 2293 return EC; 2294 break; 2295 case bitc::VALUE_SYMTAB_BLOCK_ID: 2296 if (std::error_code EC = ParseValueSymbolTable()) 2297 return EC; 2298 SeenValueSymbolTable = true; 2299 break; 2300 case bitc::CONSTANTS_BLOCK_ID: 2301 if (std::error_code EC = ParseConstants()) 2302 return EC; 2303 if (std::error_code EC = ResolveGlobalAndAliasInits()) 2304 return EC; 2305 break; 2306 case bitc::METADATA_BLOCK_ID: 2307 if (std::error_code EC = ParseMetadata()) 2308 return EC; 2309 break; 2310 case bitc::FUNCTION_BLOCK_ID: 2311 // If this is the first function body we've seen, reverse the 2312 // FunctionsWithBodies list. 2313 if (!SeenFirstFunctionBody) { 2314 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 2315 if (std::error_code EC = GlobalCleanup()) 2316 return EC; 2317 SeenFirstFunctionBody = true; 2318 } 2319 2320 if (std::error_code EC = RememberAndSkipFunctionBody()) 2321 return EC; 2322 // For streaming bitcode, suspend parsing when we reach the function 2323 // bodies. Subsequent materialization calls will resume it when 2324 // necessary. For streaming, the function bodies must be at the end of 2325 // the bitcode. If the bitcode file is old, the symbol table will be 2326 // at the end instead and will not have been seen yet. In this case, 2327 // just finish the parse now. 2328 if (LazyStreamer && SeenValueSymbolTable) { 2329 NextUnreadBit = Stream.GetCurrentBitNo(); 2330 return std::error_code(); 2331 } 2332 break; 2333 case bitc::USELIST_BLOCK_ID: 2334 if (std::error_code EC = ParseUseLists()) 2335 return EC; 2336 break; 2337 } 2338 continue; 2339 2340 case BitstreamEntry::Record: 2341 // The interesting case. 2342 break; 2343 } 2344 2345 2346 // Read a record. 2347 switch (Stream.readRecord(Entry.ID, Record)) { 2348 default: break; // Default behavior, ignore unknown content. 2349 case bitc::MODULE_CODE_VERSION: { // VERSION: [version#] 2350 if (Record.size() < 1) 2351 return Error("Invalid record"); 2352 // Only version #0 and #1 are supported so far. 2353 unsigned module_version = Record[0]; 2354 switch (module_version) { 2355 default: 2356 return Error("Invalid value"); 2357 case 0: 2358 UseRelativeIDs = false; 2359 break; 2360 case 1: 2361 UseRelativeIDs = true; 2362 break; 2363 } 2364 break; 2365 } 2366 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 2367 std::string S; 2368 if (ConvertToString(Record, 0, S)) 2369 return Error("Invalid record"); 2370 TheModule->setTargetTriple(S); 2371 break; 2372 } 2373 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 2374 std::string S; 2375 if (ConvertToString(Record, 0, S)) 2376 return Error("Invalid record"); 2377 TheModule->setDataLayout(S); 2378 break; 2379 } 2380 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 2381 std::string S; 2382 if (ConvertToString(Record, 0, S)) 2383 return Error("Invalid record"); 2384 TheModule->setModuleInlineAsm(S); 2385 break; 2386 } 2387 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 2388 // FIXME: Remove in 4.0. 2389 std::string S; 2390 if (ConvertToString(Record, 0, S)) 2391 return Error("Invalid record"); 2392 // Ignore value. 2393 break; 2394 } 2395 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 2396 std::string S; 2397 if (ConvertToString(Record, 0, S)) 2398 return Error("Invalid record"); 2399 SectionTable.push_back(S); 2400 break; 2401 } 2402 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 2403 std::string S; 2404 if (ConvertToString(Record, 0, S)) 2405 return Error("Invalid record"); 2406 GCTable.push_back(S); 2407 break; 2408 } 2409 case bitc::MODULE_CODE_COMDAT: { // COMDAT: [selection_kind, name] 2410 if (Record.size() < 2) 2411 return Error("Invalid record"); 2412 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]); 2413 unsigned ComdatNameSize = Record[1]; 2414 std::string ComdatName; 2415 ComdatName.reserve(ComdatNameSize); 2416 for (unsigned i = 0; i != ComdatNameSize; ++i) 2417 ComdatName += (char)Record[2 + i]; 2418 Comdat *C = TheModule->getOrInsertComdat(ComdatName); 2419 C->setSelectionKind(SK); 2420 ComdatList.push_back(C); 2421 break; 2422 } 2423 // GLOBALVAR: [pointer type, isconst, initid, 2424 // linkage, alignment, section, visibility, threadlocal, 2425 // unnamed_addr, externally_initialized, dllstorageclass, 2426 // comdat] 2427 case bitc::MODULE_CODE_GLOBALVAR: { 2428 if (Record.size() < 6) 2429 return Error("Invalid record"); 2430 Type *Ty = getTypeByID(Record[0]); 2431 if (!Ty) 2432 return Error("Invalid record"); 2433 if (!Ty->isPointerTy()) 2434 return Error("Invalid type for value"); 2435 unsigned AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 2436 Ty = cast<PointerType>(Ty)->getElementType(); 2437 2438 bool isConstant = Record[1]; 2439 uint64_t RawLinkage = Record[3]; 2440 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 2441 unsigned Alignment = (1 << Record[4]) >> 1; 2442 std::string Section; 2443 if (Record[5]) { 2444 if (Record[5]-1 >= SectionTable.size()) 2445 return Error("Invalid ID"); 2446 Section = SectionTable[Record[5]-1]; 2447 } 2448 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 2449 // Local linkage must have default visibility. 2450 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage)) 2451 // FIXME: Change to an error if non-default in 4.0. 2452 Visibility = GetDecodedVisibility(Record[6]); 2453 2454 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; 2455 if (Record.size() > 7) 2456 TLM = GetDecodedThreadLocalMode(Record[7]); 2457 2458 bool UnnamedAddr = false; 2459 if (Record.size() > 8) 2460 UnnamedAddr = Record[8]; 2461 2462 bool ExternallyInitialized = false; 2463 if (Record.size() > 9) 2464 ExternallyInitialized = Record[9]; 2465 2466 GlobalVariable *NewGV = 2467 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, "", nullptr, 2468 TLM, AddressSpace, ExternallyInitialized); 2469 NewGV->setAlignment(Alignment); 2470 if (!Section.empty()) 2471 NewGV->setSection(Section); 2472 NewGV->setVisibility(Visibility); 2473 NewGV->setUnnamedAddr(UnnamedAddr); 2474 2475 if (Record.size() > 10) 2476 NewGV->setDLLStorageClass(GetDecodedDLLStorageClass(Record[10])); 2477 else 2478 UpgradeDLLImportExportLinkage(NewGV, RawLinkage); 2479 2480 ValueList.push_back(NewGV); 2481 2482 // Remember which value to use for the global initializer. 2483 if (unsigned InitID = Record[2]) 2484 GlobalInits.push_back(std::make_pair(NewGV, InitID-1)); 2485 2486 if (Record.size() > 11) { 2487 if (unsigned ComdatID = Record[11]) { 2488 assert(ComdatID <= ComdatList.size()); 2489 NewGV->setComdat(ComdatList[ComdatID - 1]); 2490 } 2491 } else if (hasImplicitComdat(RawLinkage)) { 2492 NewGV->setComdat(reinterpret_cast<Comdat *>(1)); 2493 } 2494 break; 2495 } 2496 // FUNCTION: [type, callingconv, isproto, linkage, paramattr, 2497 // alignment, section, visibility, gc, unnamed_addr, 2498 // prologuedata, dllstorageclass, comdat, prefixdata] 2499 case bitc::MODULE_CODE_FUNCTION: { 2500 if (Record.size() < 8) 2501 return Error("Invalid record"); 2502 Type *Ty = getTypeByID(Record[0]); 2503 if (!Ty) 2504 return Error("Invalid record"); 2505 if (!Ty->isPointerTy()) 2506 return Error("Invalid type for value"); 2507 FunctionType *FTy = 2508 dyn_cast<FunctionType>(cast<PointerType>(Ty)->getElementType()); 2509 if (!FTy) 2510 return Error("Invalid type for value"); 2511 2512 Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage, 2513 "", TheModule); 2514 2515 Func->setCallingConv(static_cast<CallingConv::ID>(Record[1])); 2516 bool isProto = Record[2]; 2517 uint64_t RawLinkage = Record[3]; 2518 Func->setLinkage(getDecodedLinkage(RawLinkage)); 2519 Func->setAttributes(getAttributes(Record[4])); 2520 2521 Func->setAlignment((1 << Record[5]) >> 1); 2522 if (Record[6]) { 2523 if (Record[6]-1 >= SectionTable.size()) 2524 return Error("Invalid ID"); 2525 Func->setSection(SectionTable[Record[6]-1]); 2526 } 2527 // Local linkage must have default visibility. 2528 if (!Func->hasLocalLinkage()) 2529 // FIXME: Change to an error if non-default in 4.0. 2530 Func->setVisibility(GetDecodedVisibility(Record[7])); 2531 if (Record.size() > 8 && Record[8]) { 2532 if (Record[8]-1 > GCTable.size()) 2533 return Error("Invalid ID"); 2534 Func->setGC(GCTable[Record[8]-1].c_str()); 2535 } 2536 bool UnnamedAddr = false; 2537 if (Record.size() > 9) 2538 UnnamedAddr = Record[9]; 2539 Func->setUnnamedAddr(UnnamedAddr); 2540 if (Record.size() > 10 && Record[10] != 0) 2541 FunctionPrologues.push_back(std::make_pair(Func, Record[10]-1)); 2542 2543 if (Record.size() > 11) 2544 Func->setDLLStorageClass(GetDecodedDLLStorageClass(Record[11])); 2545 else 2546 UpgradeDLLImportExportLinkage(Func, RawLinkage); 2547 2548 if (Record.size() > 12) { 2549 if (unsigned ComdatID = Record[12]) { 2550 assert(ComdatID <= ComdatList.size()); 2551 Func->setComdat(ComdatList[ComdatID - 1]); 2552 } 2553 } else if (hasImplicitComdat(RawLinkage)) { 2554 Func->setComdat(reinterpret_cast<Comdat *>(1)); 2555 } 2556 2557 if (Record.size() > 13 && Record[13] != 0) 2558 FunctionPrefixes.push_back(std::make_pair(Func, Record[13]-1)); 2559 2560 ValueList.push_back(Func); 2561 2562 // If this is a function with a body, remember the prototype we are 2563 // creating now, so that we can match up the body with them later. 2564 if (!isProto) { 2565 Func->setIsMaterializable(true); 2566 FunctionsWithBodies.push_back(Func); 2567 if (LazyStreamer) 2568 DeferredFunctionInfo[Func] = 0; 2569 } 2570 break; 2571 } 2572 // ALIAS: [alias type, aliasee val#, linkage] 2573 // ALIAS: [alias type, aliasee val#, linkage, visibility, dllstorageclass] 2574 case bitc::MODULE_CODE_ALIAS: { 2575 if (Record.size() < 3) 2576 return Error("Invalid record"); 2577 Type *Ty = getTypeByID(Record[0]); 2578 if (!Ty) 2579 return Error("Invalid record"); 2580 auto *PTy = dyn_cast<PointerType>(Ty); 2581 if (!PTy) 2582 return Error("Invalid type for value"); 2583 2584 auto *NewGA = 2585 GlobalAlias::create(PTy->getElementType(), PTy->getAddressSpace(), 2586 getDecodedLinkage(Record[2]), "", TheModule); 2587 // Old bitcode files didn't have visibility field. 2588 // Local linkage must have default visibility. 2589 if (Record.size() > 3 && !NewGA->hasLocalLinkage()) 2590 // FIXME: Change to an error if non-default in 4.0. 2591 NewGA->setVisibility(GetDecodedVisibility(Record[3])); 2592 if (Record.size() > 4) 2593 NewGA->setDLLStorageClass(GetDecodedDLLStorageClass(Record[4])); 2594 else 2595 UpgradeDLLImportExportLinkage(NewGA, Record[2]); 2596 if (Record.size() > 5) 2597 NewGA->setThreadLocalMode(GetDecodedThreadLocalMode(Record[5])); 2598 if (Record.size() > 6) 2599 NewGA->setUnnamedAddr(Record[6]); 2600 ValueList.push_back(NewGA); 2601 AliasInits.push_back(std::make_pair(NewGA, Record[1])); 2602 break; 2603 } 2604 /// MODULE_CODE_PURGEVALS: [numvals] 2605 case bitc::MODULE_CODE_PURGEVALS: 2606 // Trim down the value list to the specified size. 2607 if (Record.size() < 1 || Record[0] > ValueList.size()) 2608 return Error("Invalid record"); 2609 ValueList.shrinkTo(Record[0]); 2610 break; 2611 } 2612 Record.clear(); 2613 } 2614 } 2615 2616 std::error_code BitcodeReader::ParseBitcodeInto(Module *M) { 2617 TheModule = nullptr; 2618 2619 if (std::error_code EC = InitStream()) 2620 return EC; 2621 2622 // Sniff for the signature. 2623 if (Stream.Read(8) != 'B' || 2624 Stream.Read(8) != 'C' || 2625 Stream.Read(4) != 0x0 || 2626 Stream.Read(4) != 0xC || 2627 Stream.Read(4) != 0xE || 2628 Stream.Read(4) != 0xD) 2629 return Error("Invalid bitcode signature"); 2630 2631 // We expect a number of well-defined blocks, though we don't necessarily 2632 // need to understand them all. 2633 while (1) { 2634 if (Stream.AtEndOfStream()) 2635 return std::error_code(); 2636 2637 BitstreamEntry Entry = 2638 Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs); 2639 2640 switch (Entry.Kind) { 2641 case BitstreamEntry::Error: 2642 return Error("Malformed block"); 2643 case BitstreamEntry::EndBlock: 2644 return std::error_code(); 2645 2646 case BitstreamEntry::SubBlock: 2647 switch (Entry.ID) { 2648 case bitc::BLOCKINFO_BLOCK_ID: 2649 if (Stream.ReadBlockInfoBlock()) 2650 return Error("Malformed block"); 2651 break; 2652 case bitc::MODULE_BLOCK_ID: 2653 // Reject multiple MODULE_BLOCK's in a single bitstream. 2654 if (TheModule) 2655 return Error("Invalid multiple blocks"); 2656 TheModule = M; 2657 if (std::error_code EC = ParseModule(false)) 2658 return EC; 2659 if (LazyStreamer) 2660 return std::error_code(); 2661 break; 2662 default: 2663 if (Stream.SkipBlock()) 2664 return Error("Invalid record"); 2665 break; 2666 } 2667 continue; 2668 case BitstreamEntry::Record: 2669 // There should be no records in the top-level of blocks. 2670 2671 // The ranlib in Xcode 4 will align archive members by appending newlines 2672 // to the end of them. If this file size is a multiple of 4 but not 8, we 2673 // have to read and ignore these final 4 bytes :-( 2674 if (Stream.getAbbrevIDWidth() == 2 && Entry.ID == 2 && 2675 Stream.Read(6) == 2 && Stream.Read(24) == 0xa0a0a && 2676 Stream.AtEndOfStream()) 2677 return std::error_code(); 2678 2679 return Error("Invalid record"); 2680 } 2681 } 2682 } 2683 2684 ErrorOr<std::string> BitcodeReader::parseModuleTriple() { 2685 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 2686 return Error("Invalid record"); 2687 2688 SmallVector<uint64_t, 64> Record; 2689 2690 std::string Triple; 2691 // Read all the records for this module. 2692 while (1) { 2693 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2694 2695 switch (Entry.Kind) { 2696 case BitstreamEntry::SubBlock: // Handled for us already. 2697 case BitstreamEntry::Error: 2698 return Error("Malformed block"); 2699 case BitstreamEntry::EndBlock: 2700 return Triple; 2701 case BitstreamEntry::Record: 2702 // The interesting case. 2703 break; 2704 } 2705 2706 // Read a record. 2707 switch (Stream.readRecord(Entry.ID, Record)) { 2708 default: break; // Default behavior, ignore unknown content. 2709 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 2710 std::string S; 2711 if (ConvertToString(Record, 0, S)) 2712 return Error("Invalid record"); 2713 Triple = S; 2714 break; 2715 } 2716 } 2717 Record.clear(); 2718 } 2719 llvm_unreachable("Exit infinite loop"); 2720 } 2721 2722 ErrorOr<std::string> BitcodeReader::parseTriple() { 2723 if (std::error_code EC = InitStream()) 2724 return EC; 2725 2726 // Sniff for the signature. 2727 if (Stream.Read(8) != 'B' || 2728 Stream.Read(8) != 'C' || 2729 Stream.Read(4) != 0x0 || 2730 Stream.Read(4) != 0xC || 2731 Stream.Read(4) != 0xE || 2732 Stream.Read(4) != 0xD) 2733 return Error("Invalid bitcode signature"); 2734 2735 // We expect a number of well-defined blocks, though we don't necessarily 2736 // need to understand them all. 2737 while (1) { 2738 BitstreamEntry Entry = Stream.advance(); 2739 2740 switch (Entry.Kind) { 2741 case BitstreamEntry::Error: 2742 return Error("Malformed block"); 2743 case BitstreamEntry::EndBlock: 2744 return std::error_code(); 2745 2746 case BitstreamEntry::SubBlock: 2747 if (Entry.ID == bitc::MODULE_BLOCK_ID) 2748 return parseModuleTriple(); 2749 2750 // Ignore other sub-blocks. 2751 if (Stream.SkipBlock()) 2752 return Error("Malformed block"); 2753 continue; 2754 2755 case BitstreamEntry::Record: 2756 Stream.skipRecord(Entry.ID); 2757 continue; 2758 } 2759 } 2760 } 2761 2762 /// ParseMetadataAttachment - Parse metadata attachments. 2763 std::error_code BitcodeReader::ParseMetadataAttachment() { 2764 if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID)) 2765 return Error("Invalid record"); 2766 2767 SmallVector<uint64_t, 64> Record; 2768 while (1) { 2769 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2770 2771 switch (Entry.Kind) { 2772 case BitstreamEntry::SubBlock: // Handled for us already. 2773 case BitstreamEntry::Error: 2774 return Error("Malformed block"); 2775 case BitstreamEntry::EndBlock: 2776 return std::error_code(); 2777 case BitstreamEntry::Record: 2778 // The interesting case. 2779 break; 2780 } 2781 2782 // Read a metadata attachment record. 2783 Record.clear(); 2784 switch (Stream.readRecord(Entry.ID, Record)) { 2785 default: // Default behavior: ignore. 2786 break; 2787 case bitc::METADATA_ATTACHMENT: { 2788 unsigned RecordLength = Record.size(); 2789 if (Record.empty() || (RecordLength - 1) % 2 == 1) 2790 return Error("Invalid record"); 2791 Instruction *Inst = InstructionList[Record[0]]; 2792 for (unsigned i = 1; i != RecordLength; i = i+2) { 2793 unsigned Kind = Record[i]; 2794 DenseMap<unsigned, unsigned>::iterator I = 2795 MDKindMap.find(Kind); 2796 if (I == MDKindMap.end()) 2797 return Error("Invalid ID"); 2798 Metadata *Node = MDValueList.getValueFwdRef(Record[i + 1]); 2799 if (isa<LocalAsMetadata>(Node)) 2800 // Drop the attachment. This used to be legal, but there's no 2801 // upgrade path. 2802 break; 2803 Inst->setMetadata(I->second, cast<MDNode>(Node)); 2804 if (I->second == LLVMContext::MD_tbaa) 2805 InstsWithTBAATag.push_back(Inst); 2806 } 2807 break; 2808 } 2809 } 2810 } 2811 } 2812 2813 /// ParseFunctionBody - Lazily parse the specified function body block. 2814 std::error_code BitcodeReader::ParseFunctionBody(Function *F) { 2815 if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 2816 return Error("Invalid record"); 2817 2818 InstructionList.clear(); 2819 unsigned ModuleValueListSize = ValueList.size(); 2820 unsigned ModuleMDValueListSize = MDValueList.size(); 2821 2822 // Add all the function arguments to the value table. 2823 for(Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I) 2824 ValueList.push_back(I); 2825 2826 unsigned NextValueNo = ValueList.size(); 2827 BasicBlock *CurBB = nullptr; 2828 unsigned CurBBNo = 0; 2829 2830 DebugLoc LastLoc; 2831 auto getLastInstruction = [&]() -> Instruction * { 2832 if (CurBB && !CurBB->empty()) 2833 return &CurBB->back(); 2834 else if (CurBBNo && FunctionBBs[CurBBNo - 1] && 2835 !FunctionBBs[CurBBNo - 1]->empty()) 2836 return &FunctionBBs[CurBBNo - 1]->back(); 2837 return nullptr; 2838 }; 2839 2840 // Read all the records. 2841 SmallVector<uint64_t, 64> Record; 2842 while (1) { 2843 BitstreamEntry Entry = Stream.advance(); 2844 2845 switch (Entry.Kind) { 2846 case BitstreamEntry::Error: 2847 return Error("Malformed block"); 2848 case BitstreamEntry::EndBlock: 2849 goto OutOfRecordLoop; 2850 2851 case BitstreamEntry::SubBlock: 2852 switch (Entry.ID) { 2853 default: // Skip unknown content. 2854 if (Stream.SkipBlock()) 2855 return Error("Invalid record"); 2856 break; 2857 case bitc::CONSTANTS_BLOCK_ID: 2858 if (std::error_code EC = ParseConstants()) 2859 return EC; 2860 NextValueNo = ValueList.size(); 2861 break; 2862 case bitc::VALUE_SYMTAB_BLOCK_ID: 2863 if (std::error_code EC = ParseValueSymbolTable()) 2864 return EC; 2865 break; 2866 case bitc::METADATA_ATTACHMENT_ID: 2867 if (std::error_code EC = ParseMetadataAttachment()) 2868 return EC; 2869 break; 2870 case bitc::METADATA_BLOCK_ID: 2871 if (std::error_code EC = ParseMetadata()) 2872 return EC; 2873 break; 2874 case bitc::USELIST_BLOCK_ID: 2875 if (std::error_code EC = ParseUseLists()) 2876 return EC; 2877 break; 2878 } 2879 continue; 2880 2881 case BitstreamEntry::Record: 2882 // The interesting case. 2883 break; 2884 } 2885 2886 // Read a record. 2887 Record.clear(); 2888 Instruction *I = nullptr; 2889 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 2890 switch (BitCode) { 2891 default: // Default behavior: reject 2892 return Error("Invalid value"); 2893 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks] 2894 if (Record.size() < 1 || Record[0] == 0) 2895 return Error("Invalid record"); 2896 // Create all the basic blocks for the function. 2897 FunctionBBs.resize(Record[0]); 2898 2899 // See if anything took the address of blocks in this function. 2900 auto BBFRI = BasicBlockFwdRefs.find(F); 2901 if (BBFRI == BasicBlockFwdRefs.end()) { 2902 for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i) 2903 FunctionBBs[i] = BasicBlock::Create(Context, "", F); 2904 } else { 2905 auto &BBRefs = BBFRI->second; 2906 // Check for invalid basic block references. 2907 if (BBRefs.size() > FunctionBBs.size()) 2908 return Error("Invalid ID"); 2909 assert(!BBRefs.empty() && "Unexpected empty array"); 2910 assert(!BBRefs.front() && "Invalid reference to entry block"); 2911 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E; 2912 ++I) 2913 if (I < RE && BBRefs[I]) { 2914 BBRefs[I]->insertInto(F); 2915 FunctionBBs[I] = BBRefs[I]; 2916 } else { 2917 FunctionBBs[I] = BasicBlock::Create(Context, "", F); 2918 } 2919 2920 // Erase from the table. 2921 BasicBlockFwdRefs.erase(BBFRI); 2922 } 2923 2924 CurBB = FunctionBBs[0]; 2925 continue; 2926 } 2927 2928 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 2929 // This record indicates that the last instruction is at the same 2930 // location as the previous instruction with a location. 2931 I = getLastInstruction(); 2932 2933 if (!I) 2934 return Error("Invalid record"); 2935 I->setDebugLoc(LastLoc); 2936 I = nullptr; 2937 continue; 2938 2939 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 2940 I = getLastInstruction(); 2941 if (!I || Record.size() < 4) 2942 return Error("Invalid record"); 2943 2944 unsigned Line = Record[0], Col = Record[1]; 2945 unsigned ScopeID = Record[2], IAID = Record[3]; 2946 2947 MDNode *Scope = nullptr, *IA = nullptr; 2948 if (ScopeID) Scope = cast<MDNode>(MDValueList.getValueFwdRef(ScopeID-1)); 2949 if (IAID) IA = cast<MDNode>(MDValueList.getValueFwdRef(IAID-1)); 2950 LastLoc = DebugLoc::get(Line, Col, Scope, IA); 2951 I->setDebugLoc(LastLoc); 2952 I = nullptr; 2953 continue; 2954 } 2955 2956 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 2957 unsigned OpNum = 0; 2958 Value *LHS, *RHS; 2959 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 2960 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 2961 OpNum+1 > Record.size()) 2962 return Error("Invalid record"); 2963 2964 int Opc = GetDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 2965 if (Opc == -1) 2966 return Error("Invalid record"); 2967 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 2968 InstructionList.push_back(I); 2969 if (OpNum < Record.size()) { 2970 if (Opc == Instruction::Add || 2971 Opc == Instruction::Sub || 2972 Opc == Instruction::Mul || 2973 Opc == Instruction::Shl) { 2974 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 2975 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 2976 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 2977 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 2978 } else if (Opc == Instruction::SDiv || 2979 Opc == Instruction::UDiv || 2980 Opc == Instruction::LShr || 2981 Opc == Instruction::AShr) { 2982 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 2983 cast<BinaryOperator>(I)->setIsExact(true); 2984 } else if (isa<FPMathOperator>(I)) { 2985 FastMathFlags FMF; 2986 if (0 != (Record[OpNum] & FastMathFlags::UnsafeAlgebra)) 2987 FMF.setUnsafeAlgebra(); 2988 if (0 != (Record[OpNum] & FastMathFlags::NoNaNs)) 2989 FMF.setNoNaNs(); 2990 if (0 != (Record[OpNum] & FastMathFlags::NoInfs)) 2991 FMF.setNoInfs(); 2992 if (0 != (Record[OpNum] & FastMathFlags::NoSignedZeros)) 2993 FMF.setNoSignedZeros(); 2994 if (0 != (Record[OpNum] & FastMathFlags::AllowReciprocal)) 2995 FMF.setAllowReciprocal(); 2996 if (FMF.any()) 2997 I->setFastMathFlags(FMF); 2998 } 2999 3000 } 3001 break; 3002 } 3003 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 3004 unsigned OpNum = 0; 3005 Value *Op; 3006 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 3007 OpNum+2 != Record.size()) 3008 return Error("Invalid record"); 3009 3010 Type *ResTy = getTypeByID(Record[OpNum]); 3011 int Opc = GetDecodedCastOpcode(Record[OpNum+1]); 3012 if (Opc == -1 || !ResTy) 3013 return Error("Invalid record"); 3014 Instruction *Temp = nullptr; 3015 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) { 3016 if (Temp) { 3017 InstructionList.push_back(Temp); 3018 CurBB->getInstList().push_back(Temp); 3019 } 3020 } else { 3021 I = CastInst::Create((Instruction::CastOps)Opc, Op, ResTy); 3022 } 3023 InstructionList.push_back(I); 3024 break; 3025 } 3026 case bitc::FUNC_CODE_INST_INBOUNDS_GEP: 3027 case bitc::FUNC_CODE_INST_GEP: { // GEP: [n x operands] 3028 unsigned OpNum = 0; 3029 Value *BasePtr; 3030 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr)) 3031 return Error("Invalid record"); 3032 3033 SmallVector<Value*, 16> GEPIdx; 3034 while (OpNum != Record.size()) { 3035 Value *Op; 3036 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3037 return Error("Invalid record"); 3038 GEPIdx.push_back(Op); 3039 } 3040 3041 I = GetElementPtrInst::Create(BasePtr, GEPIdx); 3042 InstructionList.push_back(I); 3043 if (BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP) 3044 cast<GetElementPtrInst>(I)->setIsInBounds(true); 3045 break; 3046 } 3047 3048 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 3049 // EXTRACTVAL: [opty, opval, n x indices] 3050 unsigned OpNum = 0; 3051 Value *Agg; 3052 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 3053 return Error("Invalid record"); 3054 3055 SmallVector<unsigned, 4> EXTRACTVALIdx; 3056 for (unsigned RecSize = Record.size(); 3057 OpNum != RecSize; ++OpNum) { 3058 uint64_t Index = Record[OpNum]; 3059 if ((unsigned)Index != Index) 3060 return Error("Invalid value"); 3061 EXTRACTVALIdx.push_back((unsigned)Index); 3062 } 3063 3064 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 3065 InstructionList.push_back(I); 3066 break; 3067 } 3068 3069 case bitc::FUNC_CODE_INST_INSERTVAL: { 3070 // INSERTVAL: [opty, opval, opty, opval, n x indices] 3071 unsigned OpNum = 0; 3072 Value *Agg; 3073 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 3074 return Error("Invalid record"); 3075 Value *Val; 3076 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 3077 return Error("Invalid record"); 3078 3079 SmallVector<unsigned, 4> INSERTVALIdx; 3080 for (unsigned RecSize = Record.size(); 3081 OpNum != RecSize; ++OpNum) { 3082 uint64_t Index = Record[OpNum]; 3083 if ((unsigned)Index != Index) 3084 return Error("Invalid value"); 3085 INSERTVALIdx.push_back((unsigned)Index); 3086 } 3087 3088 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 3089 InstructionList.push_back(I); 3090 break; 3091 } 3092 3093 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 3094 // obsolete form of select 3095 // handles select i1 ... in old bitcode 3096 unsigned OpNum = 0; 3097 Value *TrueVal, *FalseVal, *Cond; 3098 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 3099 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 3100 popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond)) 3101 return Error("Invalid record"); 3102 3103 I = SelectInst::Create(Cond, TrueVal, FalseVal); 3104 InstructionList.push_back(I); 3105 break; 3106 } 3107 3108 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 3109 // new form of select 3110 // handles select i1 or select [N x i1] 3111 unsigned OpNum = 0; 3112 Value *TrueVal, *FalseVal, *Cond; 3113 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 3114 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 3115 getValueTypePair(Record, OpNum, NextValueNo, Cond)) 3116 return Error("Invalid record"); 3117 3118 // select condition can be either i1 or [N x i1] 3119 if (VectorType* vector_type = 3120 dyn_cast<VectorType>(Cond->getType())) { 3121 // expect <n x i1> 3122 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 3123 return Error("Invalid type for value"); 3124 } else { 3125 // expect i1 3126 if (Cond->getType() != Type::getInt1Ty(Context)) 3127 return Error("Invalid type for value"); 3128 } 3129 3130 I = SelectInst::Create(Cond, TrueVal, FalseVal); 3131 InstructionList.push_back(I); 3132 break; 3133 } 3134 3135 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 3136 unsigned OpNum = 0; 3137 Value *Vec, *Idx; 3138 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 3139 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 3140 return Error("Invalid record"); 3141 I = ExtractElementInst::Create(Vec, Idx); 3142 InstructionList.push_back(I); 3143 break; 3144 } 3145 3146 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 3147 unsigned OpNum = 0; 3148 Value *Vec, *Elt, *Idx; 3149 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 3150 popValue(Record, OpNum, NextValueNo, 3151 cast<VectorType>(Vec->getType())->getElementType(), Elt) || 3152 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 3153 return Error("Invalid record"); 3154 I = InsertElementInst::Create(Vec, Elt, Idx); 3155 InstructionList.push_back(I); 3156 break; 3157 } 3158 3159 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 3160 unsigned OpNum = 0; 3161 Value *Vec1, *Vec2, *Mask; 3162 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) || 3163 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2)) 3164 return Error("Invalid record"); 3165 3166 if (getValueTypePair(Record, OpNum, NextValueNo, Mask)) 3167 return Error("Invalid record"); 3168 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 3169 InstructionList.push_back(I); 3170 break; 3171 } 3172 3173 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 3174 // Old form of ICmp/FCmp returning bool 3175 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 3176 // both legal on vectors but had different behaviour. 3177 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 3178 // FCmp/ICmp returning bool or vector of bool 3179 3180 unsigned OpNum = 0; 3181 Value *LHS, *RHS; 3182 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 3183 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 3184 OpNum+1 != Record.size()) 3185 return Error("Invalid record"); 3186 3187 if (LHS->getType()->isFPOrFPVectorTy()) 3188 I = new FCmpInst((FCmpInst::Predicate)Record[OpNum], LHS, RHS); 3189 else 3190 I = new ICmpInst((ICmpInst::Predicate)Record[OpNum], LHS, RHS); 3191 InstructionList.push_back(I); 3192 break; 3193 } 3194 3195 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 3196 { 3197 unsigned Size = Record.size(); 3198 if (Size == 0) { 3199 I = ReturnInst::Create(Context); 3200 InstructionList.push_back(I); 3201 break; 3202 } 3203 3204 unsigned OpNum = 0; 3205 Value *Op = nullptr; 3206 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3207 return Error("Invalid record"); 3208 if (OpNum != Record.size()) 3209 return Error("Invalid record"); 3210 3211 I = ReturnInst::Create(Context, Op); 3212 InstructionList.push_back(I); 3213 break; 3214 } 3215 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 3216 if (Record.size() != 1 && Record.size() != 3) 3217 return Error("Invalid record"); 3218 BasicBlock *TrueDest = getBasicBlock(Record[0]); 3219 if (!TrueDest) 3220 return Error("Invalid record"); 3221 3222 if (Record.size() == 1) { 3223 I = BranchInst::Create(TrueDest); 3224 InstructionList.push_back(I); 3225 } 3226 else { 3227 BasicBlock *FalseDest = getBasicBlock(Record[1]); 3228 Value *Cond = getValue(Record, 2, NextValueNo, 3229 Type::getInt1Ty(Context)); 3230 if (!FalseDest || !Cond) 3231 return Error("Invalid record"); 3232 I = BranchInst::Create(TrueDest, FalseDest, Cond); 3233 InstructionList.push_back(I); 3234 } 3235 break; 3236 } 3237 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 3238 // Check magic 3239 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { 3240 // "New" SwitchInst format with case ranges. The changes to write this 3241 // format were reverted but we still recognize bitcode that uses it. 3242 // Hopefully someday we will have support for case ranges and can use 3243 // this format again. 3244 3245 Type *OpTy = getTypeByID(Record[1]); 3246 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); 3247 3248 Value *Cond = getValue(Record, 2, NextValueNo, OpTy); 3249 BasicBlock *Default = getBasicBlock(Record[3]); 3250 if (!OpTy || !Cond || !Default) 3251 return Error("Invalid record"); 3252 3253 unsigned NumCases = Record[4]; 3254 3255 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 3256 InstructionList.push_back(SI); 3257 3258 unsigned CurIdx = 5; 3259 for (unsigned i = 0; i != NumCases; ++i) { 3260 SmallVector<ConstantInt*, 1> CaseVals; 3261 unsigned NumItems = Record[CurIdx++]; 3262 for (unsigned ci = 0; ci != NumItems; ++ci) { 3263 bool isSingleNumber = Record[CurIdx++]; 3264 3265 APInt Low; 3266 unsigned ActiveWords = 1; 3267 if (ValueBitWidth > 64) 3268 ActiveWords = Record[CurIdx++]; 3269 Low = ReadWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 3270 ValueBitWidth); 3271 CurIdx += ActiveWords; 3272 3273 if (!isSingleNumber) { 3274 ActiveWords = 1; 3275 if (ValueBitWidth > 64) 3276 ActiveWords = Record[CurIdx++]; 3277 APInt High = 3278 ReadWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 3279 ValueBitWidth); 3280 CurIdx += ActiveWords; 3281 3282 // FIXME: It is not clear whether values in the range should be 3283 // compared as signed or unsigned values. The partially 3284 // implemented changes that used this format in the past used 3285 // unsigned comparisons. 3286 for ( ; Low.ule(High); ++Low) 3287 CaseVals.push_back(ConstantInt::get(Context, Low)); 3288 } else 3289 CaseVals.push_back(ConstantInt::get(Context, Low)); 3290 } 3291 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); 3292 for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(), 3293 cve = CaseVals.end(); cvi != cve; ++cvi) 3294 SI->addCase(*cvi, DestBB); 3295 } 3296 I = SI; 3297 break; 3298 } 3299 3300 // Old SwitchInst format without case ranges. 3301 3302 if (Record.size() < 3 || (Record.size() & 1) == 0) 3303 return Error("Invalid record"); 3304 Type *OpTy = getTypeByID(Record[0]); 3305 Value *Cond = getValue(Record, 1, NextValueNo, OpTy); 3306 BasicBlock *Default = getBasicBlock(Record[2]); 3307 if (!OpTy || !Cond || !Default) 3308 return Error("Invalid record"); 3309 unsigned NumCases = (Record.size()-3)/2; 3310 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 3311 InstructionList.push_back(SI); 3312 for (unsigned i = 0, e = NumCases; i != e; ++i) { 3313 ConstantInt *CaseVal = 3314 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy)); 3315 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 3316 if (!CaseVal || !DestBB) { 3317 delete SI; 3318 return Error("Invalid record"); 3319 } 3320 SI->addCase(CaseVal, DestBB); 3321 } 3322 I = SI; 3323 break; 3324 } 3325 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 3326 if (Record.size() < 2) 3327 return Error("Invalid record"); 3328 Type *OpTy = getTypeByID(Record[0]); 3329 Value *Address = getValue(Record, 1, NextValueNo, OpTy); 3330 if (!OpTy || !Address) 3331 return Error("Invalid record"); 3332 unsigned NumDests = Record.size()-2; 3333 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 3334 InstructionList.push_back(IBI); 3335 for (unsigned i = 0, e = NumDests; i != e; ++i) { 3336 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 3337 IBI->addDestination(DestBB); 3338 } else { 3339 delete IBI; 3340 return Error("Invalid record"); 3341 } 3342 } 3343 I = IBI; 3344 break; 3345 } 3346 3347 case bitc::FUNC_CODE_INST_INVOKE: { 3348 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 3349 if (Record.size() < 4) 3350 return Error("Invalid record"); 3351 AttributeSet PAL = getAttributes(Record[0]); 3352 unsigned CCInfo = Record[1]; 3353 BasicBlock *NormalBB = getBasicBlock(Record[2]); 3354 BasicBlock *UnwindBB = getBasicBlock(Record[3]); 3355 3356 unsigned OpNum = 4; 3357 Value *Callee; 3358 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 3359 return Error("Invalid record"); 3360 3361 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 3362 FunctionType *FTy = !CalleeTy ? nullptr : 3363 dyn_cast<FunctionType>(CalleeTy->getElementType()); 3364 3365 // Check that the right number of fixed parameters are here. 3366 if (!FTy || !NormalBB || !UnwindBB || 3367 Record.size() < OpNum+FTy->getNumParams()) 3368 return Error("Invalid record"); 3369 3370 SmallVector<Value*, 16> Ops; 3371 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 3372 Ops.push_back(getValue(Record, OpNum, NextValueNo, 3373 FTy->getParamType(i))); 3374 if (!Ops.back()) 3375 return Error("Invalid record"); 3376 } 3377 3378 if (!FTy->isVarArg()) { 3379 if (Record.size() != OpNum) 3380 return Error("Invalid record"); 3381 } else { 3382 // Read type/value pairs for varargs params. 3383 while (OpNum != Record.size()) { 3384 Value *Op; 3385 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3386 return Error("Invalid record"); 3387 Ops.push_back(Op); 3388 } 3389 } 3390 3391 I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops); 3392 InstructionList.push_back(I); 3393 cast<InvokeInst>(I)->setCallingConv( 3394 static_cast<CallingConv::ID>(CCInfo)); 3395 cast<InvokeInst>(I)->setAttributes(PAL); 3396 break; 3397 } 3398 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 3399 unsigned Idx = 0; 3400 Value *Val = nullptr; 3401 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 3402 return Error("Invalid record"); 3403 I = ResumeInst::Create(Val); 3404 InstructionList.push_back(I); 3405 break; 3406 } 3407 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 3408 I = new UnreachableInst(Context); 3409 InstructionList.push_back(I); 3410 break; 3411 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 3412 if (Record.size() < 1 || ((Record.size()-1)&1)) 3413 return Error("Invalid record"); 3414 Type *Ty = getTypeByID(Record[0]); 3415 if (!Ty) 3416 return Error("Invalid record"); 3417 3418 PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2); 3419 InstructionList.push_back(PN); 3420 3421 for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) { 3422 Value *V; 3423 // With the new function encoding, it is possible that operands have 3424 // negative IDs (for forward references). Use a signed VBR 3425 // representation to keep the encoding small. 3426 if (UseRelativeIDs) 3427 V = getValueSigned(Record, 1+i, NextValueNo, Ty); 3428 else 3429 V = getValue(Record, 1+i, NextValueNo, Ty); 3430 BasicBlock *BB = getBasicBlock(Record[2+i]); 3431 if (!V || !BB) 3432 return Error("Invalid record"); 3433 PN->addIncoming(V, BB); 3434 } 3435 I = PN; 3436 break; 3437 } 3438 3439 case bitc::FUNC_CODE_INST_LANDINGPAD: { 3440 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 3441 unsigned Idx = 0; 3442 if (Record.size() < 4) 3443 return Error("Invalid record"); 3444 Type *Ty = getTypeByID(Record[Idx++]); 3445 if (!Ty) 3446 return Error("Invalid record"); 3447 Value *PersFn = nullptr; 3448 if (getValueTypePair(Record, Idx, NextValueNo, PersFn)) 3449 return Error("Invalid record"); 3450 3451 bool IsCleanup = !!Record[Idx++]; 3452 unsigned NumClauses = Record[Idx++]; 3453 LandingPadInst *LP = LandingPadInst::Create(Ty, PersFn, NumClauses); 3454 LP->setCleanup(IsCleanup); 3455 for (unsigned J = 0; J != NumClauses; ++J) { 3456 LandingPadInst::ClauseType CT = 3457 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 3458 Value *Val; 3459 3460 if (getValueTypePair(Record, Idx, NextValueNo, Val)) { 3461 delete LP; 3462 return Error("Invalid record"); 3463 } 3464 3465 assert((CT != LandingPadInst::Catch || 3466 !isa<ArrayType>(Val->getType())) && 3467 "Catch clause has a invalid type!"); 3468 assert((CT != LandingPadInst::Filter || 3469 isa<ArrayType>(Val->getType())) && 3470 "Filter clause has invalid type!"); 3471 LP->addClause(cast<Constant>(Val)); 3472 } 3473 3474 I = LP; 3475 InstructionList.push_back(I); 3476 break; 3477 } 3478 3479 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 3480 if (Record.size() != 4) 3481 return Error("Invalid record"); 3482 PointerType *Ty = 3483 dyn_cast_or_null<PointerType>(getTypeByID(Record[0])); 3484 Type *OpTy = getTypeByID(Record[1]); 3485 Value *Size = getFnValueByID(Record[2], OpTy); 3486 unsigned AlignRecord = Record[3]; 3487 bool InAlloca = AlignRecord & (1 << 5); 3488 unsigned Align = AlignRecord & ((1 << 5) - 1); 3489 if (!Ty || !Size) 3490 return Error("Invalid record"); 3491 AllocaInst *AI = new AllocaInst(Ty->getElementType(), Size, (1 << Align) >> 1); 3492 AI->setUsedWithInAlloca(InAlloca); 3493 I = AI; 3494 InstructionList.push_back(I); 3495 break; 3496 } 3497 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 3498 unsigned OpNum = 0; 3499 Value *Op; 3500 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 3501 OpNum+2 != Record.size()) 3502 return Error("Invalid record"); 3503 3504 I = new LoadInst(Op, "", Record[OpNum+1], (1 << Record[OpNum]) >> 1); 3505 InstructionList.push_back(I); 3506 break; 3507 } 3508 case bitc::FUNC_CODE_INST_LOADATOMIC: { 3509 // LOADATOMIC: [opty, op, align, vol, ordering, synchscope] 3510 unsigned OpNum = 0; 3511 Value *Op; 3512 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 3513 OpNum+4 != Record.size()) 3514 return Error("Invalid record"); 3515 3516 AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]); 3517 if (Ordering == NotAtomic || Ordering == Release || 3518 Ordering == AcquireRelease) 3519 return Error("Invalid record"); 3520 if (Ordering != NotAtomic && Record[OpNum] == 0) 3521 return Error("Invalid record"); 3522 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]); 3523 3524 I = new LoadInst(Op, "", Record[OpNum+1], (1 << Record[OpNum]) >> 1, 3525 Ordering, SynchScope); 3526 InstructionList.push_back(I); 3527 break; 3528 } 3529 case bitc::FUNC_CODE_INST_STORE: { // STORE2:[ptrty, ptr, val, align, vol] 3530 unsigned OpNum = 0; 3531 Value *Val, *Ptr; 3532 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 3533 popValue(Record, OpNum, NextValueNo, 3534 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 3535 OpNum+2 != Record.size()) 3536 return Error("Invalid record"); 3537 3538 I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1); 3539 InstructionList.push_back(I); 3540 break; 3541 } 3542 case bitc::FUNC_CODE_INST_STOREATOMIC: { 3543 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, synchscope] 3544 unsigned OpNum = 0; 3545 Value *Val, *Ptr; 3546 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 3547 popValue(Record, OpNum, NextValueNo, 3548 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 3549 OpNum+4 != Record.size()) 3550 return Error("Invalid record"); 3551 3552 AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]); 3553 if (Ordering == NotAtomic || Ordering == Acquire || 3554 Ordering == AcquireRelease) 3555 return Error("Invalid record"); 3556 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]); 3557 if (Ordering != NotAtomic && Record[OpNum] == 0) 3558 return Error("Invalid record"); 3559 3560 I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1, 3561 Ordering, SynchScope); 3562 InstructionList.push_back(I); 3563 break; 3564 } 3565 case bitc::FUNC_CODE_INST_CMPXCHG: { 3566 // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, synchscope, 3567 // failureordering?, isweak?] 3568 unsigned OpNum = 0; 3569 Value *Ptr, *Cmp, *New; 3570 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 3571 popValue(Record, OpNum, NextValueNo, 3572 cast<PointerType>(Ptr->getType())->getElementType(), Cmp) || 3573 popValue(Record, OpNum, NextValueNo, 3574 cast<PointerType>(Ptr->getType())->getElementType(), New) || 3575 (Record.size() < OpNum + 3 || Record.size() > OpNum + 5)) 3576 return Error("Invalid record"); 3577 AtomicOrdering SuccessOrdering = GetDecodedOrdering(Record[OpNum+1]); 3578 if (SuccessOrdering == NotAtomic || SuccessOrdering == Unordered) 3579 return Error("Invalid record"); 3580 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+2]); 3581 3582 AtomicOrdering FailureOrdering; 3583 if (Record.size() < 7) 3584 FailureOrdering = 3585 AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering); 3586 else 3587 FailureOrdering = GetDecodedOrdering(Record[OpNum+3]); 3588 3589 I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering, 3590 SynchScope); 3591 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 3592 3593 if (Record.size() < 8) { 3594 // Before weak cmpxchgs existed, the instruction simply returned the 3595 // value loaded from memory, so bitcode files from that era will be 3596 // expecting the first component of a modern cmpxchg. 3597 CurBB->getInstList().push_back(I); 3598 I = ExtractValueInst::Create(I, 0); 3599 } else { 3600 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]); 3601 } 3602 3603 InstructionList.push_back(I); 3604 break; 3605 } 3606 case bitc::FUNC_CODE_INST_ATOMICRMW: { 3607 // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, synchscope] 3608 unsigned OpNum = 0; 3609 Value *Ptr, *Val; 3610 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 3611 popValue(Record, OpNum, NextValueNo, 3612 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 3613 OpNum+4 != Record.size()) 3614 return Error("Invalid record"); 3615 AtomicRMWInst::BinOp Operation = GetDecodedRMWOperation(Record[OpNum]); 3616 if (Operation < AtomicRMWInst::FIRST_BINOP || 3617 Operation > AtomicRMWInst::LAST_BINOP) 3618 return Error("Invalid record"); 3619 AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]); 3620 if (Ordering == NotAtomic || Ordering == Unordered) 3621 return Error("Invalid record"); 3622 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]); 3623 I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SynchScope); 3624 cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]); 3625 InstructionList.push_back(I); 3626 break; 3627 } 3628 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, synchscope] 3629 if (2 != Record.size()) 3630 return Error("Invalid record"); 3631 AtomicOrdering Ordering = GetDecodedOrdering(Record[0]); 3632 if (Ordering == NotAtomic || Ordering == Unordered || 3633 Ordering == Monotonic) 3634 return Error("Invalid record"); 3635 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[1]); 3636 I = new FenceInst(Context, Ordering, SynchScope); 3637 InstructionList.push_back(I); 3638 break; 3639 } 3640 case bitc::FUNC_CODE_INST_CALL: { 3641 // CALL: [paramattrs, cc, fnty, fnid, arg0, arg1...] 3642 if (Record.size() < 3) 3643 return Error("Invalid record"); 3644 3645 AttributeSet PAL = getAttributes(Record[0]); 3646 unsigned CCInfo = Record[1]; 3647 3648 unsigned OpNum = 2; 3649 Value *Callee; 3650 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 3651 return Error("Invalid record"); 3652 3653 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 3654 FunctionType *FTy = nullptr; 3655 if (OpTy) FTy = dyn_cast<FunctionType>(OpTy->getElementType()); 3656 if (!FTy || Record.size() < FTy->getNumParams()+OpNum) 3657 return Error("Invalid record"); 3658 3659 SmallVector<Value*, 16> Args; 3660 // Read the fixed params. 3661 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 3662 if (FTy->getParamType(i)->isLabelTy()) 3663 Args.push_back(getBasicBlock(Record[OpNum])); 3664 else 3665 Args.push_back(getValue(Record, OpNum, NextValueNo, 3666 FTy->getParamType(i))); 3667 if (!Args.back()) 3668 return Error("Invalid record"); 3669 } 3670 3671 // Read type/value pairs for varargs params. 3672 if (!FTy->isVarArg()) { 3673 if (OpNum != Record.size()) 3674 return Error("Invalid record"); 3675 } else { 3676 while (OpNum != Record.size()) { 3677 Value *Op; 3678 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3679 return Error("Invalid record"); 3680 Args.push_back(Op); 3681 } 3682 } 3683 3684 I = CallInst::Create(Callee, Args); 3685 InstructionList.push_back(I); 3686 cast<CallInst>(I)->setCallingConv( 3687 static_cast<CallingConv::ID>((~(1U << 14) & CCInfo) >> 1)); 3688 CallInst::TailCallKind TCK = CallInst::TCK_None; 3689 if (CCInfo & 1) 3690 TCK = CallInst::TCK_Tail; 3691 if (CCInfo & (1 << 14)) 3692 TCK = CallInst::TCK_MustTail; 3693 cast<CallInst>(I)->setTailCallKind(TCK); 3694 cast<CallInst>(I)->setAttributes(PAL); 3695 break; 3696 } 3697 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 3698 if (Record.size() < 3) 3699 return Error("Invalid record"); 3700 Type *OpTy = getTypeByID(Record[0]); 3701 Value *Op = getValue(Record, 1, NextValueNo, OpTy); 3702 Type *ResTy = getTypeByID(Record[2]); 3703 if (!OpTy || !Op || !ResTy) 3704 return Error("Invalid record"); 3705 I = new VAArgInst(Op, ResTy); 3706 InstructionList.push_back(I); 3707 break; 3708 } 3709 } 3710 3711 // Add instruction to end of current BB. If there is no current BB, reject 3712 // this file. 3713 if (!CurBB) { 3714 delete I; 3715 return Error("Invalid instruction with no BB"); 3716 } 3717 CurBB->getInstList().push_back(I); 3718 3719 // If this was a terminator instruction, move to the next block. 3720 if (isa<TerminatorInst>(I)) { 3721 ++CurBBNo; 3722 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr; 3723 } 3724 3725 // Non-void values get registered in the value table for future use. 3726 if (I && !I->getType()->isVoidTy()) 3727 ValueList.AssignValue(I, NextValueNo++); 3728 } 3729 3730 OutOfRecordLoop: 3731 3732 // Check the function list for unresolved values. 3733 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 3734 if (!A->getParent()) { 3735 // We found at least one unresolved value. Nuke them all to avoid leaks. 3736 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 3737 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) { 3738 A->replaceAllUsesWith(UndefValue::get(A->getType())); 3739 delete A; 3740 } 3741 } 3742 return Error("Never resolved value found in function"); 3743 } 3744 } 3745 3746 // FIXME: Check for unresolved forward-declared metadata references 3747 // and clean up leaks. 3748 3749 // Trim the value list down to the size it was before we parsed this function. 3750 ValueList.shrinkTo(ModuleValueListSize); 3751 MDValueList.shrinkTo(ModuleMDValueListSize); 3752 std::vector<BasicBlock*>().swap(FunctionBBs); 3753 return std::error_code(); 3754 } 3755 3756 /// Find the function body in the bitcode stream 3757 std::error_code BitcodeReader::FindFunctionInStream( 3758 Function *F, 3759 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) { 3760 while (DeferredFunctionInfoIterator->second == 0) { 3761 if (Stream.AtEndOfStream()) 3762 return Error("Could not find function in stream"); 3763 // ParseModule will parse the next body in the stream and set its 3764 // position in the DeferredFunctionInfo map. 3765 if (std::error_code EC = ParseModule(true)) 3766 return EC; 3767 } 3768 return std::error_code(); 3769 } 3770 3771 //===----------------------------------------------------------------------===// 3772 // GVMaterializer implementation 3773 //===----------------------------------------------------------------------===// 3774 3775 void BitcodeReader::releaseBuffer() { Buffer.release(); } 3776 3777 std::error_code BitcodeReader::materialize(GlobalValue *GV) { 3778 Function *F = dyn_cast<Function>(GV); 3779 // If it's not a function or is already material, ignore the request. 3780 if (!F || !F->isMaterializable()) 3781 return std::error_code(); 3782 3783 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 3784 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 3785 // If its position is recorded as 0, its body is somewhere in the stream 3786 // but we haven't seen it yet. 3787 if (DFII->second == 0 && LazyStreamer) 3788 if (std::error_code EC = FindFunctionInStream(F, DFII)) 3789 return EC; 3790 3791 // Move the bit stream to the saved position of the deferred function body. 3792 Stream.JumpToBit(DFII->second); 3793 3794 if (std::error_code EC = ParseFunctionBody(F)) 3795 return EC; 3796 F->setIsMaterializable(false); 3797 3798 // Upgrade any old intrinsic calls in the function. 3799 for (UpgradedIntrinsicMap::iterator I = UpgradedIntrinsics.begin(), 3800 E = UpgradedIntrinsics.end(); I != E; ++I) { 3801 if (I->first != I->second) { 3802 for (auto UI = I->first->user_begin(), UE = I->first->user_end(); 3803 UI != UE;) { 3804 if (CallInst* CI = dyn_cast<CallInst>(*UI++)) 3805 UpgradeIntrinsicCall(CI, I->second); 3806 } 3807 } 3808 } 3809 3810 // Bring in any functions that this function forward-referenced via 3811 // blockaddresses. 3812 return materializeForwardReferencedFunctions(); 3813 } 3814 3815 bool BitcodeReader::isDematerializable(const GlobalValue *GV) const { 3816 const Function *F = dyn_cast<Function>(GV); 3817 if (!F || F->isDeclaration()) 3818 return false; 3819 3820 // Dematerializing F would leave dangling references that wouldn't be 3821 // reconnected on re-materialization. 3822 if (BlockAddressesTaken.count(F)) 3823 return false; 3824 3825 return DeferredFunctionInfo.count(const_cast<Function*>(F)); 3826 } 3827 3828 void BitcodeReader::Dematerialize(GlobalValue *GV) { 3829 Function *F = dyn_cast<Function>(GV); 3830 // If this function isn't dematerializable, this is a noop. 3831 if (!F || !isDematerializable(F)) 3832 return; 3833 3834 assert(DeferredFunctionInfo.count(F) && "No info to read function later?"); 3835 3836 // Just forget the function body, we can remat it later. 3837 F->dropAllReferences(); 3838 F->setIsMaterializable(true); 3839 } 3840 3841 std::error_code BitcodeReader::MaterializeModule(Module *M) { 3842 assert(M == TheModule && 3843 "Can only Materialize the Module this BitcodeReader is attached to."); 3844 3845 // Promise to materialize all forward references. 3846 WillMaterializeAllForwardRefs = true; 3847 3848 // Iterate over the module, deserializing any functions that are still on 3849 // disk. 3850 for (Module::iterator F = TheModule->begin(), E = TheModule->end(); 3851 F != E; ++F) { 3852 if (std::error_code EC = materialize(F)) 3853 return EC; 3854 } 3855 // At this point, if there are any function bodies, the current bit is 3856 // pointing to the END_BLOCK record after them. Now make sure the rest 3857 // of the bits in the module have been read. 3858 if (NextUnreadBit) 3859 ParseModule(true); 3860 3861 // Check that all block address forward references got resolved (as we 3862 // promised above). 3863 if (!BasicBlockFwdRefs.empty()) 3864 return Error("Never resolved function from blockaddress"); 3865 3866 // Upgrade any intrinsic calls that slipped through (should not happen!) and 3867 // delete the old functions to clean up. We can't do this unless the entire 3868 // module is materialized because there could always be another function body 3869 // with calls to the old function. 3870 for (std::vector<std::pair<Function*, Function*> >::iterator I = 3871 UpgradedIntrinsics.begin(), E = UpgradedIntrinsics.end(); I != E; ++I) { 3872 if (I->first != I->second) { 3873 for (auto UI = I->first->user_begin(), UE = I->first->user_end(); 3874 UI != UE;) { 3875 if (CallInst* CI = dyn_cast<CallInst>(*UI++)) 3876 UpgradeIntrinsicCall(CI, I->second); 3877 } 3878 if (!I->first->use_empty()) 3879 I->first->replaceAllUsesWith(I->second); 3880 I->first->eraseFromParent(); 3881 } 3882 } 3883 std::vector<std::pair<Function*, Function*> >().swap(UpgradedIntrinsics); 3884 3885 for (unsigned I = 0, E = InstsWithTBAATag.size(); I < E; I++) 3886 UpgradeInstWithTBAATag(InstsWithTBAATag[I]); 3887 3888 UpgradeDebugInfo(*M); 3889 return std::error_code(); 3890 } 3891 3892 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const { 3893 return IdentifiedStructTypes; 3894 } 3895 3896 std::error_code BitcodeReader::InitStream() { 3897 if (LazyStreamer) 3898 return InitLazyStream(); 3899 return InitStreamFromBuffer(); 3900 } 3901 3902 std::error_code BitcodeReader::InitStreamFromBuffer() { 3903 const unsigned char *BufPtr = (const unsigned char*)Buffer->getBufferStart(); 3904 const unsigned char *BufEnd = BufPtr+Buffer->getBufferSize(); 3905 3906 if (Buffer->getBufferSize() & 3) 3907 return Error("Invalid bitcode signature"); 3908 3909 // If we have a wrapper header, parse it and ignore the non-bc file contents. 3910 // The magic number is 0x0B17C0DE stored in little endian. 3911 if (isBitcodeWrapper(BufPtr, BufEnd)) 3912 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 3913 return Error("Invalid bitcode wrapper header"); 3914 3915 StreamFile.reset(new BitstreamReader(BufPtr, BufEnd)); 3916 Stream.init(&*StreamFile); 3917 3918 return std::error_code(); 3919 } 3920 3921 std::error_code BitcodeReader::InitLazyStream() { 3922 // Check and strip off the bitcode wrapper; BitstreamReader expects never to 3923 // see it. 3924 auto OwnedBytes = llvm::make_unique<StreamingMemoryObject>(LazyStreamer); 3925 StreamingMemoryObject &Bytes = *OwnedBytes; 3926 StreamFile = llvm::make_unique<BitstreamReader>(std::move(OwnedBytes)); 3927 Stream.init(&*StreamFile); 3928 3929 unsigned char buf[16]; 3930 if (Bytes.readBytes(buf, 16, 0) != 16) 3931 return Error("Invalid bitcode signature"); 3932 3933 if (!isBitcode(buf, buf + 16)) 3934 return Error("Invalid bitcode signature"); 3935 3936 if (isBitcodeWrapper(buf, buf + 4)) { 3937 const unsigned char *bitcodeStart = buf; 3938 const unsigned char *bitcodeEnd = buf + 16; 3939 SkipBitcodeWrapperHeader(bitcodeStart, bitcodeEnd, false); 3940 Bytes.dropLeadingBytes(bitcodeStart - buf); 3941 Bytes.setKnownObjectSize(bitcodeEnd - bitcodeStart); 3942 } 3943 return std::error_code(); 3944 } 3945 3946 namespace { 3947 class BitcodeErrorCategoryType : public std::error_category { 3948 const char *name() const LLVM_NOEXCEPT override { 3949 return "llvm.bitcode"; 3950 } 3951 std::string message(int IE) const override { 3952 BitcodeError E = static_cast<BitcodeError>(IE); 3953 switch (E) { 3954 case BitcodeError::InvalidBitcodeSignature: 3955 return "Invalid bitcode signature"; 3956 case BitcodeError::CorruptedBitcode: 3957 return "Corrupted bitcode"; 3958 } 3959 llvm_unreachable("Unknown error type!"); 3960 } 3961 }; 3962 } 3963 3964 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory; 3965 3966 const std::error_category &llvm::BitcodeErrorCategory() { 3967 return *ErrorCategory; 3968 } 3969 3970 //===----------------------------------------------------------------------===// 3971 // External interface 3972 //===----------------------------------------------------------------------===// 3973 3974 /// \brief Get a lazy one-at-time loading module from bitcode. 3975 /// 3976 /// This isn't always used in a lazy context. In particular, it's also used by 3977 /// \a parseBitcodeFile(). If this is truly lazy, then we need to eagerly pull 3978 /// in forward-referenced functions from block address references. 3979 /// 3980 /// \param[in] WillMaterializeAll Set to \c true if the caller promises to 3981 /// materialize everything -- in particular, if this isn't truly lazy. 3982 static ErrorOr<Module *> 3983 getLazyBitcodeModuleImpl(std::unique_ptr<MemoryBuffer> &&Buffer, 3984 LLVMContext &Context, bool WillMaterializeAll, 3985 DiagnosticHandlerFunction DiagnosticHandler) { 3986 Module *M = new Module(Buffer->getBufferIdentifier(), Context); 3987 BitcodeReader *R = 3988 new BitcodeReader(Buffer.get(), Context, DiagnosticHandler); 3989 M->setMaterializer(R); 3990 3991 auto cleanupOnError = [&](std::error_code EC) { 3992 R->releaseBuffer(); // Never take ownership on error. 3993 delete M; // Also deletes R. 3994 return EC; 3995 }; 3996 3997 if (std::error_code EC = R->ParseBitcodeInto(M)) 3998 return cleanupOnError(EC); 3999 4000 if (!WillMaterializeAll) 4001 // Resolve forward references from blockaddresses. 4002 if (std::error_code EC = R->materializeForwardReferencedFunctions()) 4003 return cleanupOnError(EC); 4004 4005 Buffer.release(); // The BitcodeReader owns it now. 4006 return M; 4007 } 4008 4009 ErrorOr<Module *> 4010 llvm::getLazyBitcodeModule(std::unique_ptr<MemoryBuffer> &&Buffer, 4011 LLVMContext &Context, 4012 DiagnosticHandlerFunction DiagnosticHandler) { 4013 return getLazyBitcodeModuleImpl(std::move(Buffer), Context, false, 4014 DiagnosticHandler); 4015 } 4016 4017 ErrorOr<std::unique_ptr<Module>> 4018 llvm::getStreamedBitcodeModule(StringRef Name, DataStreamer *Streamer, 4019 LLVMContext &Context, 4020 DiagnosticHandlerFunction DiagnosticHandler) { 4021 std::unique_ptr<Module> M = make_unique<Module>(Name, Context); 4022 BitcodeReader *R = new BitcodeReader(Streamer, Context, DiagnosticHandler); 4023 M->setMaterializer(R); 4024 if (std::error_code EC = R->ParseBitcodeInto(M.get())) 4025 return EC; 4026 return std::move(M); 4027 } 4028 4029 ErrorOr<Module *> 4030 llvm::parseBitcodeFile(MemoryBufferRef Buffer, LLVMContext &Context, 4031 DiagnosticHandlerFunction DiagnosticHandler) { 4032 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 4033 ErrorOr<Module *> ModuleOrErr = getLazyBitcodeModuleImpl( 4034 std::move(Buf), Context, true, DiagnosticHandler); 4035 if (!ModuleOrErr) 4036 return ModuleOrErr; 4037 Module *M = ModuleOrErr.get(); 4038 // Read in the entire module, and destroy the BitcodeReader. 4039 if (std::error_code EC = M->materializeAllPermanently()) { 4040 delete M; 4041 return EC; 4042 } 4043 4044 // TODO: Restore the use-lists to the in-memory state when the bitcode was 4045 // written. We must defer until the Module has been fully materialized. 4046 4047 return M; 4048 } 4049 4050 std::string 4051 llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer, LLVMContext &Context, 4052 DiagnosticHandlerFunction DiagnosticHandler) { 4053 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 4054 auto R = llvm::make_unique<BitcodeReader>(Buf.release(), Context, 4055 DiagnosticHandler); 4056 ErrorOr<std::string> Triple = R->parseTriple(); 4057 if (Triple.getError()) 4058 return ""; 4059 return Triple.get(); 4060 } 4061