1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "llvm/ADT/APFloat.h" 11 #include "llvm/ADT/APInt.h" 12 #include "llvm/ADT/ArrayRef.h" 13 #include "llvm/ADT/DenseMap.h" 14 #include "llvm/ADT/None.h" 15 #include "llvm/ADT/STLExtras.h" 16 #include "llvm/ADT/SmallString.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/ADT/StringRef.h" 19 #include "llvm/ADT/Triple.h" 20 #include "llvm/ADT/Twine.h" 21 #include "llvm/Bitcode/BitstreamReader.h" 22 #include "llvm/Bitcode/LLVMBitCodes.h" 23 #include "llvm/Bitcode/ReaderWriter.h" 24 #include "llvm/IR/Argument.h" 25 #include "llvm/IR/Attributes.h" 26 #include "llvm/IR/AutoUpgrade.h" 27 #include "llvm/IR/BasicBlock.h" 28 #include "llvm/IR/CallingConv.h" 29 #include "llvm/IR/CallSite.h" 30 #include "llvm/IR/Comdat.h" 31 #include "llvm/IR/Constant.h" 32 #include "llvm/IR/Constants.h" 33 #include "llvm/IR/DebugInfo.h" 34 #include "llvm/IR/DebugInfoMetadata.h" 35 #include "llvm/IR/DebugLoc.h" 36 #include "llvm/IR/DerivedTypes.h" 37 #include "llvm/IR/DiagnosticInfo.h" 38 #include "llvm/IR/DiagnosticPrinter.h" 39 #include "llvm/IR/Function.h" 40 #include "llvm/IR/GlobalAlias.h" 41 #include "llvm/IR/GlobalIFunc.h" 42 #include "llvm/IR/GlobalIndirectSymbol.h" 43 #include "llvm/IR/GlobalObject.h" 44 #include "llvm/IR/GlobalValue.h" 45 #include "llvm/IR/GlobalVariable.h" 46 #include "llvm/IR/GVMaterializer.h" 47 #include "llvm/IR/InlineAsm.h" 48 #include "llvm/IR/InstrTypes.h" 49 #include "llvm/IR/Instruction.h" 50 #include "llvm/IR/Instructions.h" 51 #include "llvm/IR/Intrinsics.h" 52 #include "llvm/IR/LLVMContext.h" 53 #include "llvm/IR/Module.h" 54 #include "llvm/IR/ModuleSummaryIndex.h" 55 #include "llvm/IR/OperandTraits.h" 56 #include "llvm/IR/Operator.h" 57 #include "llvm/IR/TrackingMDRef.h" 58 #include "llvm/IR/Type.h" 59 #include "llvm/IR/ValueHandle.h" 60 #include "llvm/Support/AtomicOrdering.h" 61 #include "llvm/Support/Casting.h" 62 #include "llvm/Support/CommandLine.h" 63 #include "llvm/Support/Compiler.h" 64 #include "llvm/Support/DataStream.h" 65 #include "llvm/Support/Debug.h" 66 #include "llvm/Support/ErrorHandling.h" 67 #include "llvm/Support/ErrorOr.h" 68 #include "llvm/Support/ManagedStatic.h" 69 #include "llvm/Support/MemoryBuffer.h" 70 #include "llvm/Support/raw_ostream.h" 71 #include "llvm/Support/StreamingMemoryObject.h" 72 #include <algorithm> 73 #include <cassert> 74 #include <cstddef> 75 #include <cstdint> 76 #include <deque> 77 #include <limits> 78 #include <map> 79 #include <memory> 80 #include <string> 81 #include <system_error> 82 #include <tuple> 83 #include <utility> 84 #include <vector> 85 86 using namespace llvm; 87 88 static cl::opt<bool> PrintSummaryGUIDs( 89 "print-summary-global-ids", cl::init(false), cl::Hidden, 90 cl::desc( 91 "Print the global id for each value when reading the module summary")); 92 93 namespace { 94 95 enum { 96 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 97 }; 98 99 class BitcodeReaderValueList { 100 std::vector<WeakVH> ValuePtrs; 101 102 /// As we resolve forward-referenced constants, we add information about them 103 /// to this vector. This allows us to resolve them in bulk instead of 104 /// resolving each reference at a time. See the code in 105 /// ResolveConstantForwardRefs for more information about this. 106 /// 107 /// The key of this vector is the placeholder constant, the value is the slot 108 /// number that holds the resolved value. 109 typedef std::vector<std::pair<Constant*, unsigned> > ResolveConstantsTy; 110 ResolveConstantsTy ResolveConstants; 111 LLVMContext &Context; 112 113 public: 114 BitcodeReaderValueList(LLVMContext &C) : Context(C) {} 115 ~BitcodeReaderValueList() { 116 assert(ResolveConstants.empty() && "Constants not resolved?"); 117 } 118 119 // vector compatibility methods 120 unsigned size() const { return ValuePtrs.size(); } 121 void resize(unsigned N) { ValuePtrs.resize(N); } 122 void push_back(Value *V) { ValuePtrs.emplace_back(V); } 123 124 void clear() { 125 assert(ResolveConstants.empty() && "Constants not resolved?"); 126 ValuePtrs.clear(); 127 } 128 129 Value *operator[](unsigned i) const { 130 assert(i < ValuePtrs.size()); 131 return ValuePtrs[i]; 132 } 133 134 Value *back() const { return ValuePtrs.back(); } 135 void pop_back() { ValuePtrs.pop_back(); } 136 bool empty() const { return ValuePtrs.empty(); } 137 138 void shrinkTo(unsigned N) { 139 assert(N <= size() && "Invalid shrinkTo request!"); 140 ValuePtrs.resize(N); 141 } 142 143 Constant *getConstantFwdRef(unsigned Idx, Type *Ty); 144 Value *getValueFwdRef(unsigned Idx, Type *Ty); 145 146 void assignValue(Value *V, unsigned Idx); 147 148 /// Once all constants are read, this method bulk resolves any forward 149 /// references. 150 void resolveConstantForwardRefs(); 151 }; 152 153 class BitcodeReaderMetadataList { 154 unsigned NumFwdRefs; 155 bool AnyFwdRefs; 156 unsigned MinFwdRef; 157 unsigned MaxFwdRef; 158 159 /// Array of metadata references. 160 /// 161 /// Don't use std::vector here. Some versions of libc++ copy (instead of 162 /// move) on resize, and TrackingMDRef is very expensive to copy. 163 SmallVector<TrackingMDRef, 1> MetadataPtrs; 164 165 /// Structures for resolving old type refs. 166 struct { 167 SmallDenseMap<MDString *, TempMDTuple, 1> Unknown; 168 SmallDenseMap<MDString *, DICompositeType *, 1> Final; 169 SmallDenseMap<MDString *, DICompositeType *, 1> FwdDecls; 170 SmallVector<std::pair<TrackingMDRef, TempMDTuple>, 1> Arrays; 171 } OldTypeRefs; 172 173 LLVMContext &Context; 174 175 public: 176 BitcodeReaderMetadataList(LLVMContext &C) 177 : NumFwdRefs(0), AnyFwdRefs(false), Context(C) {} 178 179 // vector compatibility methods 180 unsigned size() const { return MetadataPtrs.size(); } 181 void resize(unsigned N) { MetadataPtrs.resize(N); } 182 void push_back(Metadata *MD) { MetadataPtrs.emplace_back(MD); } 183 void clear() { MetadataPtrs.clear(); } 184 Metadata *back() const { return MetadataPtrs.back(); } 185 void pop_back() { MetadataPtrs.pop_back(); } 186 bool empty() const { return MetadataPtrs.empty(); } 187 188 Metadata *operator[](unsigned i) const { 189 assert(i < MetadataPtrs.size()); 190 return MetadataPtrs[i]; 191 } 192 193 Metadata *lookup(unsigned I) const { 194 if (I < MetadataPtrs.size()) 195 return MetadataPtrs[I]; 196 return nullptr; 197 } 198 199 void shrinkTo(unsigned N) { 200 assert(N <= size() && "Invalid shrinkTo request!"); 201 assert(!AnyFwdRefs && "Unexpected forward refs"); 202 MetadataPtrs.resize(N); 203 } 204 205 /// Return the given metadata, creating a replaceable forward reference if 206 /// necessary. 207 Metadata *getMetadataFwdRef(unsigned Idx); 208 209 /// Return the the given metadata only if it is fully resolved. 210 /// 211 /// Gives the same result as \a lookup(), unless \a MDNode::isResolved() 212 /// would give \c false. 213 Metadata *getMetadataIfResolved(unsigned Idx); 214 215 MDNode *getMDNodeFwdRefOrNull(unsigned Idx); 216 void assignValue(Metadata *MD, unsigned Idx); 217 void tryToResolveCycles(); 218 bool hasFwdRefs() const { return AnyFwdRefs; } 219 220 /// Upgrade a type that had an MDString reference. 221 void addTypeRef(MDString &UUID, DICompositeType &CT); 222 223 /// Upgrade a type that had an MDString reference. 224 Metadata *upgradeTypeRef(Metadata *MaybeUUID); 225 226 /// Upgrade a type ref array that may have MDString references. 227 Metadata *upgradeTypeRefArray(Metadata *MaybeTuple); 228 229 private: 230 Metadata *resolveTypeRefArray(Metadata *MaybeTuple); 231 }; 232 233 class BitcodeReader : public GVMaterializer { 234 LLVMContext &Context; 235 Module *TheModule = nullptr; 236 std::unique_ptr<MemoryBuffer> Buffer; 237 std::unique_ptr<BitstreamReader> StreamFile; 238 BitstreamCursor Stream; 239 // Next offset to start scanning for lazy parsing of function bodies. 240 uint64_t NextUnreadBit = 0; 241 // Last function offset found in the VST. 242 uint64_t LastFunctionBlockBit = 0; 243 bool SeenValueSymbolTable = false; 244 uint64_t VSTOffset = 0; 245 // Contains an arbitrary and optional string identifying the bitcode producer 246 std::string ProducerIdentification; 247 248 std::vector<Type*> TypeList; 249 BitcodeReaderValueList ValueList; 250 BitcodeReaderMetadataList MetadataList; 251 std::vector<Comdat *> ComdatList; 252 SmallVector<Instruction *, 64> InstructionList; 253 254 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInits; 255 std::vector<std::pair<GlobalIndirectSymbol*, unsigned> > IndirectSymbolInits; 256 std::vector<std::pair<Function*, unsigned> > FunctionPrefixes; 257 std::vector<std::pair<Function*, unsigned> > FunctionPrologues; 258 std::vector<std::pair<Function*, unsigned> > FunctionPersonalityFns; 259 260 SmallVector<Instruction*, 64> InstsWithTBAATag; 261 262 bool HasSeenOldLoopTags = false; 263 264 /// The set of attributes by index. Index zero in the file is for null, and 265 /// is thus not represented here. As such all indices are off by one. 266 std::vector<AttributeSet> MAttributes; 267 268 /// The set of attribute groups. 269 std::map<unsigned, AttributeSet> MAttributeGroups; 270 271 /// While parsing a function body, this is a list of the basic blocks for the 272 /// function. 273 std::vector<BasicBlock*> FunctionBBs; 274 275 // When reading the module header, this list is populated with functions that 276 // have bodies later in the file. 277 std::vector<Function*> FunctionsWithBodies; 278 279 // When intrinsic functions are encountered which require upgrading they are 280 // stored here with their replacement function. 281 typedef DenseMap<Function*, Function*> UpdatedIntrinsicMap; 282 UpdatedIntrinsicMap UpgradedIntrinsics; 283 // Intrinsics which were remangled because of types rename 284 UpdatedIntrinsicMap RemangledIntrinsics; 285 286 // Map the bitcode's custom MDKind ID to the Module's MDKind ID. 287 DenseMap<unsigned, unsigned> MDKindMap; 288 289 // Several operations happen after the module header has been read, but 290 // before function bodies are processed. This keeps track of whether 291 // we've done this yet. 292 bool SeenFirstFunctionBody = false; 293 294 /// When function bodies are initially scanned, this map contains info about 295 /// where to find deferred function body in the stream. 296 DenseMap<Function*, uint64_t> DeferredFunctionInfo; 297 298 /// When Metadata block is initially scanned when parsing the module, we may 299 /// choose to defer parsing of the metadata. This vector contains info about 300 /// which Metadata blocks are deferred. 301 std::vector<uint64_t> DeferredMetadataInfo; 302 303 /// These are basic blocks forward-referenced by block addresses. They are 304 /// inserted lazily into functions when they're loaded. The basic block ID is 305 /// its index into the vector. 306 DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs; 307 std::deque<Function *> BasicBlockFwdRefQueue; 308 309 /// Indicates that we are using a new encoding for instruction operands where 310 /// most operands in the current FUNCTION_BLOCK are encoded relative to the 311 /// instruction number, for a more compact encoding. Some instruction 312 /// operands are not relative to the instruction ID: basic block numbers, and 313 /// types. Once the old style function blocks have been phased out, we would 314 /// not need this flag. 315 bool UseRelativeIDs = false; 316 317 /// True if all functions will be materialized, negating the need to process 318 /// (e.g.) blockaddress forward references. 319 bool WillMaterializeAllForwardRefs = false; 320 321 /// True if any Metadata block has been materialized. 322 bool IsMetadataMaterialized = false; 323 324 bool StripDebugInfo = false; 325 326 /// Functions that need to be matched with subprograms when upgrading old 327 /// metadata. 328 SmallDenseMap<Function *, DISubprogram *, 16> FunctionsWithSPs; 329 330 std::vector<std::string> BundleTags; 331 332 public: 333 std::error_code error(BitcodeError E, const Twine &Message); 334 std::error_code error(const Twine &Message); 335 336 BitcodeReader(MemoryBuffer *Buffer, LLVMContext &Context); 337 BitcodeReader(LLVMContext &Context); 338 ~BitcodeReader() override { freeState(); } 339 340 std::error_code materializeForwardReferencedFunctions(); 341 342 void freeState(); 343 344 void releaseBuffer(); 345 346 std::error_code materialize(GlobalValue *GV) override; 347 std::error_code materializeModule() override; 348 std::vector<StructType *> getIdentifiedStructTypes() const override; 349 350 /// \brief Main interface to parsing a bitcode buffer. 351 /// \returns true if an error occurred. 352 std::error_code parseBitcodeInto(std::unique_ptr<DataStreamer> Streamer, 353 Module *M, 354 bool ShouldLazyLoadMetadata = false); 355 356 /// \brief Cheap mechanism to just extract module triple 357 /// \returns true if an error occurred. 358 ErrorOr<std::string> parseTriple(); 359 360 /// Cheap mechanism to just extract the identification block out of bitcode. 361 ErrorOr<std::string> parseIdentificationBlock(); 362 363 /// Peak at the module content and return true if any ObjC category or class 364 /// is found. 365 ErrorOr<bool> hasObjCCategory(); 366 367 static uint64_t decodeSignRotatedValue(uint64_t V); 368 369 /// Materialize any deferred Metadata block. 370 std::error_code materializeMetadata() override; 371 372 void setStripDebugInfo() override; 373 374 private: 375 /// Parse the "IDENTIFICATION_BLOCK_ID" block, populate the 376 // ProducerIdentification data member, and do some basic enforcement on the 377 // "epoch" encoded in the bitcode. 378 std::error_code parseBitcodeVersion(); 379 380 std::vector<StructType *> IdentifiedStructTypes; 381 StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name); 382 StructType *createIdentifiedStructType(LLVMContext &Context); 383 384 Type *getTypeByID(unsigned ID); 385 386 Value *getFnValueByID(unsigned ID, Type *Ty) { 387 if (Ty && Ty->isMetadataTy()) 388 return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID)); 389 return ValueList.getValueFwdRef(ID, Ty); 390 } 391 392 Metadata *getFnMetadataByID(unsigned ID) { 393 return MetadataList.getMetadataFwdRef(ID); 394 } 395 396 BasicBlock *getBasicBlock(unsigned ID) const { 397 if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID 398 return FunctionBBs[ID]; 399 } 400 401 AttributeSet getAttributes(unsigned i) const { 402 if (i-1 < MAttributes.size()) 403 return MAttributes[i-1]; 404 return AttributeSet(); 405 } 406 407 /// Read a value/type pair out of the specified record from slot 'Slot'. 408 /// Increment Slot past the number of slots used in the record. Return true on 409 /// failure. 410 bool getValueTypePair(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 411 unsigned InstNum, Value *&ResVal) { 412 if (Slot == Record.size()) return true; 413 unsigned ValNo = (unsigned)Record[Slot++]; 414 // Adjust the ValNo, if it was encoded relative to the InstNum. 415 if (UseRelativeIDs) 416 ValNo = InstNum - ValNo; 417 if (ValNo < InstNum) { 418 // If this is not a forward reference, just return the value we already 419 // have. 420 ResVal = getFnValueByID(ValNo, nullptr); 421 return ResVal == nullptr; 422 } 423 if (Slot == Record.size()) 424 return true; 425 426 unsigned TypeNo = (unsigned)Record[Slot++]; 427 ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo)); 428 return ResVal == nullptr; 429 } 430 431 /// Read a value out of the specified record from slot 'Slot'. Increment Slot 432 /// past the number of slots used by the value in the record. Return true if 433 /// there is an error. 434 bool popValue(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 435 unsigned InstNum, Type *Ty, Value *&ResVal) { 436 if (getValue(Record, Slot, InstNum, Ty, ResVal)) 437 return true; 438 // All values currently take a single record slot. 439 ++Slot; 440 return false; 441 } 442 443 /// Like popValue, but does not increment the Slot number. 444 bool getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 445 unsigned InstNum, Type *Ty, Value *&ResVal) { 446 ResVal = getValue(Record, Slot, InstNum, Ty); 447 return ResVal == nullptr; 448 } 449 450 /// Version of getValue that returns ResVal directly, or 0 if there is an 451 /// error. 452 Value *getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 453 unsigned InstNum, Type *Ty) { 454 if (Slot == Record.size()) return nullptr; 455 unsigned ValNo = (unsigned)Record[Slot]; 456 // Adjust the ValNo, if it was encoded relative to the InstNum. 457 if (UseRelativeIDs) 458 ValNo = InstNum - ValNo; 459 return getFnValueByID(ValNo, Ty); 460 } 461 462 /// Like getValue, but decodes signed VBRs. 463 Value *getValueSigned(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 464 unsigned InstNum, Type *Ty) { 465 if (Slot == Record.size()) return nullptr; 466 unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]); 467 // Adjust the ValNo, if it was encoded relative to the InstNum. 468 if (UseRelativeIDs) 469 ValNo = InstNum - ValNo; 470 return getFnValueByID(ValNo, Ty); 471 } 472 473 /// Converts alignment exponent (i.e. power of two (or zero)) to the 474 /// corresponding alignment to use. If alignment is too large, returns 475 /// a corresponding error code. 476 std::error_code parseAlignmentValue(uint64_t Exponent, unsigned &Alignment); 477 std::error_code parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind); 478 std::error_code parseModule(uint64_t ResumeBit, 479 bool ShouldLazyLoadMetadata = false); 480 std::error_code parseAttributeBlock(); 481 std::error_code parseAttributeGroupBlock(); 482 std::error_code parseTypeTable(); 483 std::error_code parseTypeTableBody(); 484 std::error_code parseOperandBundleTags(); 485 486 ErrorOr<Value *> recordValue(SmallVectorImpl<uint64_t> &Record, 487 unsigned NameIndex, Triple &TT); 488 std::error_code parseValueSymbolTable(uint64_t Offset = 0); 489 std::error_code parseConstants(); 490 std::error_code rememberAndSkipFunctionBodies(); 491 std::error_code rememberAndSkipFunctionBody(); 492 /// Save the positions of the Metadata blocks and skip parsing the blocks. 493 std::error_code rememberAndSkipMetadata(); 494 std::error_code parseFunctionBody(Function *F); 495 std::error_code globalCleanup(); 496 std::error_code resolveGlobalAndIndirectSymbolInits(); 497 std::error_code parseMetadata(bool ModuleLevel = false); 498 std::error_code parseMetadataStrings(ArrayRef<uint64_t> Record, 499 StringRef Blob, 500 unsigned &NextMetadataNo); 501 std::error_code parseMetadataKinds(); 502 std::error_code parseMetadataKindRecord(SmallVectorImpl<uint64_t> &Record); 503 std::error_code 504 parseGlobalObjectAttachment(GlobalObject &GO, 505 ArrayRef<uint64_t> Record); 506 std::error_code parseMetadataAttachment(Function &F); 507 ErrorOr<std::string> parseModuleTriple(); 508 ErrorOr<bool> hasObjCCategoryInModule(); 509 std::error_code parseUseLists(); 510 std::error_code initStream(std::unique_ptr<DataStreamer> Streamer); 511 std::error_code initStreamFromBuffer(); 512 std::error_code initLazyStream(std::unique_ptr<DataStreamer> Streamer); 513 std::error_code findFunctionInStream( 514 Function *F, 515 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator); 516 }; 517 518 /// Class to manage reading and parsing function summary index bitcode 519 /// files/sections. 520 class ModuleSummaryIndexBitcodeReader { 521 DiagnosticHandlerFunction DiagnosticHandler; 522 523 /// Eventually points to the module index built during parsing. 524 ModuleSummaryIndex *TheIndex = nullptr; 525 526 std::unique_ptr<MemoryBuffer> Buffer; 527 std::unique_ptr<BitstreamReader> StreamFile; 528 BitstreamCursor Stream; 529 530 /// Used to indicate whether caller only wants to check for the presence 531 /// of the global value summary bitcode section. All blocks are skipped, 532 /// but the SeenGlobalValSummary boolean is set. 533 bool CheckGlobalValSummaryPresenceOnly = false; 534 535 /// Indicates whether we have encountered a global value summary section 536 /// yet during parsing, used when checking if file contains global value 537 /// summary section. 538 bool SeenGlobalValSummary = false; 539 540 /// Indicates whether we have already parsed the VST, used for error checking. 541 bool SeenValueSymbolTable = false; 542 543 /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record. 544 /// Used to enable on-demand parsing of the VST. 545 uint64_t VSTOffset = 0; 546 547 // Map to save ValueId to GUID association that was recorded in the 548 // ValueSymbolTable. It is used after the VST is parsed to convert 549 // call graph edges read from the function summary from referencing 550 // callees by their ValueId to using the GUID instead, which is how 551 // they are recorded in the summary index being built. 552 // We save a second GUID which is the same as the first one, but ignoring the 553 // linkage, i.e. for value other than local linkage they are identical. 554 DenseMap<unsigned, std::pair<GlobalValue::GUID, GlobalValue::GUID>> 555 ValueIdToCallGraphGUIDMap; 556 557 /// Map populated during module path string table parsing, from the 558 /// module ID to a string reference owned by the index's module 559 /// path string table, used to correlate with combined index 560 /// summary records. 561 DenseMap<uint64_t, StringRef> ModuleIdMap; 562 563 /// Original source file name recorded in a bitcode record. 564 std::string SourceFileName; 565 566 public: 567 std::error_code error(const Twine &Message); 568 569 ModuleSummaryIndexBitcodeReader( 570 MemoryBuffer *Buffer, DiagnosticHandlerFunction DiagnosticHandler, 571 bool CheckGlobalValSummaryPresenceOnly = false); 572 ~ModuleSummaryIndexBitcodeReader() { freeState(); } 573 574 void freeState(); 575 576 void releaseBuffer(); 577 578 /// Check if the parser has encountered a summary section. 579 bool foundGlobalValSummary() { return SeenGlobalValSummary; } 580 581 /// \brief Main interface to parsing a bitcode buffer. 582 /// \returns true if an error occurred. 583 std::error_code parseSummaryIndexInto(std::unique_ptr<DataStreamer> Streamer, 584 ModuleSummaryIndex *I); 585 586 private: 587 std::error_code parseModule(); 588 std::error_code parseValueSymbolTable( 589 uint64_t Offset, 590 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap); 591 std::error_code parseEntireSummary(); 592 std::error_code parseModuleStringTable(); 593 std::error_code initStream(std::unique_ptr<DataStreamer> Streamer); 594 std::error_code initStreamFromBuffer(); 595 std::error_code initLazyStream(std::unique_ptr<DataStreamer> Streamer); 596 std::pair<GlobalValue::GUID, GlobalValue::GUID> 597 598 getGUIDFromValueId(unsigned ValueId); 599 }; 600 601 } // end anonymous namespace 602 603 BitcodeDiagnosticInfo::BitcodeDiagnosticInfo(std::error_code EC, 604 DiagnosticSeverity Severity, 605 const Twine &Msg) 606 : DiagnosticInfo(DK_Bitcode, Severity), Msg(Msg), EC(EC) {} 607 608 void BitcodeDiagnosticInfo::print(DiagnosticPrinter &DP) const { DP << Msg; } 609 610 static std::error_code error(const DiagnosticHandlerFunction &DiagnosticHandler, 611 std::error_code EC, const Twine &Message) { 612 BitcodeDiagnosticInfo DI(EC, DS_Error, Message); 613 DiagnosticHandler(DI); 614 return EC; 615 } 616 617 static std::error_code error(LLVMContext &Context, std::error_code EC, 618 const Twine &Message) { 619 return error([&](const DiagnosticInfo &DI) { Context.diagnose(DI); }, EC, 620 Message); 621 } 622 623 static std::error_code error(LLVMContext &Context, const Twine &Message) { 624 return error(Context, make_error_code(BitcodeError::CorruptedBitcode), 625 Message); 626 } 627 628 std::error_code BitcodeReader::error(BitcodeError E, const Twine &Message) { 629 if (!ProducerIdentification.empty()) { 630 return ::error(Context, make_error_code(E), 631 Message + " (Producer: '" + ProducerIdentification + 632 "' Reader: 'LLVM " + LLVM_VERSION_STRING "')"); 633 } 634 return ::error(Context, make_error_code(E), Message); 635 } 636 637 std::error_code BitcodeReader::error(const Twine &Message) { 638 if (!ProducerIdentification.empty()) { 639 return ::error(Context, make_error_code(BitcodeError::CorruptedBitcode), 640 Message + " (Producer: '" + ProducerIdentification + 641 "' Reader: 'LLVM " + LLVM_VERSION_STRING "')"); 642 } 643 return ::error(Context, make_error_code(BitcodeError::CorruptedBitcode), 644 Message); 645 } 646 647 BitcodeReader::BitcodeReader(MemoryBuffer *Buffer, LLVMContext &Context) 648 : Context(Context), Buffer(Buffer), ValueList(Context), 649 MetadataList(Context) {} 650 651 BitcodeReader::BitcodeReader(LLVMContext &Context) 652 : Context(Context), Buffer(nullptr), ValueList(Context), 653 MetadataList(Context) {} 654 655 std::error_code BitcodeReader::materializeForwardReferencedFunctions() { 656 if (WillMaterializeAllForwardRefs) 657 return std::error_code(); 658 659 // Prevent recursion. 660 WillMaterializeAllForwardRefs = true; 661 662 while (!BasicBlockFwdRefQueue.empty()) { 663 Function *F = BasicBlockFwdRefQueue.front(); 664 BasicBlockFwdRefQueue.pop_front(); 665 assert(F && "Expected valid function"); 666 if (!BasicBlockFwdRefs.count(F)) 667 // Already materialized. 668 continue; 669 670 // Check for a function that isn't materializable to prevent an infinite 671 // loop. When parsing a blockaddress stored in a global variable, there 672 // isn't a trivial way to check if a function will have a body without a 673 // linear search through FunctionsWithBodies, so just check it here. 674 if (!F->isMaterializable()) 675 return error("Never resolved function from blockaddress"); 676 677 // Try to materialize F. 678 if (std::error_code EC = materialize(F)) 679 return EC; 680 } 681 assert(BasicBlockFwdRefs.empty() && "Function missing from queue"); 682 683 // Reset state. 684 WillMaterializeAllForwardRefs = false; 685 return std::error_code(); 686 } 687 688 void BitcodeReader::freeState() { 689 Buffer = nullptr; 690 std::vector<Type*>().swap(TypeList); 691 ValueList.clear(); 692 MetadataList.clear(); 693 std::vector<Comdat *>().swap(ComdatList); 694 695 std::vector<AttributeSet>().swap(MAttributes); 696 std::vector<BasicBlock*>().swap(FunctionBBs); 697 std::vector<Function*>().swap(FunctionsWithBodies); 698 DeferredFunctionInfo.clear(); 699 DeferredMetadataInfo.clear(); 700 MDKindMap.clear(); 701 702 assert(BasicBlockFwdRefs.empty() && "Unresolved blockaddress fwd references"); 703 BasicBlockFwdRefQueue.clear(); 704 } 705 706 //===----------------------------------------------------------------------===// 707 // Helper functions to implement forward reference resolution, etc. 708 //===----------------------------------------------------------------------===// 709 710 /// Convert a string from a record into an std::string, return true on failure. 711 template <typename StrTy> 712 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx, 713 StrTy &Result) { 714 if (Idx > Record.size()) 715 return true; 716 717 for (unsigned i = Idx, e = Record.size(); i != e; ++i) 718 Result += (char)Record[i]; 719 return false; 720 } 721 722 static bool hasImplicitComdat(size_t Val) { 723 switch (Val) { 724 default: 725 return false; 726 case 1: // Old WeakAnyLinkage 727 case 4: // Old LinkOnceAnyLinkage 728 case 10: // Old WeakODRLinkage 729 case 11: // Old LinkOnceODRLinkage 730 return true; 731 } 732 } 733 734 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) { 735 switch (Val) { 736 default: // Map unknown/new linkages to external 737 case 0: 738 return GlobalValue::ExternalLinkage; 739 case 2: 740 return GlobalValue::AppendingLinkage; 741 case 3: 742 return GlobalValue::InternalLinkage; 743 case 5: 744 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage 745 case 6: 746 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage 747 case 7: 748 return GlobalValue::ExternalWeakLinkage; 749 case 8: 750 return GlobalValue::CommonLinkage; 751 case 9: 752 return GlobalValue::PrivateLinkage; 753 case 12: 754 return GlobalValue::AvailableExternallyLinkage; 755 case 13: 756 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage 757 case 14: 758 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage 759 case 15: 760 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage 761 case 1: // Old value with implicit comdat. 762 case 16: 763 return GlobalValue::WeakAnyLinkage; 764 case 10: // Old value with implicit comdat. 765 case 17: 766 return GlobalValue::WeakODRLinkage; 767 case 4: // Old value with implicit comdat. 768 case 18: 769 return GlobalValue::LinkOnceAnyLinkage; 770 case 11: // Old value with implicit comdat. 771 case 19: 772 return GlobalValue::LinkOnceODRLinkage; 773 } 774 } 775 776 /// Decode the flags for GlobalValue in the summary. 777 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags, 778 uint64_t Version) { 779 // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage 780 // like getDecodedLinkage() above. Any future change to the linkage enum and 781 // to getDecodedLinkage() will need to be taken into account here as above. 782 auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits 783 RawFlags = RawFlags >> 4; 784 bool HasSection = RawFlags & 0x1; 785 bool IsNotViableToInline = RawFlags & 0x2; 786 return GlobalValueSummary::GVFlags(Linkage, HasSection, IsNotViableToInline); 787 } 788 789 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) { 790 switch (Val) { 791 default: // Map unknown visibilities to default. 792 case 0: return GlobalValue::DefaultVisibility; 793 case 1: return GlobalValue::HiddenVisibility; 794 case 2: return GlobalValue::ProtectedVisibility; 795 } 796 } 797 798 static GlobalValue::DLLStorageClassTypes 799 getDecodedDLLStorageClass(unsigned Val) { 800 switch (Val) { 801 default: // Map unknown values to default. 802 case 0: return GlobalValue::DefaultStorageClass; 803 case 1: return GlobalValue::DLLImportStorageClass; 804 case 2: return GlobalValue::DLLExportStorageClass; 805 } 806 } 807 808 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) { 809 switch (Val) { 810 case 0: return GlobalVariable::NotThreadLocal; 811 default: // Map unknown non-zero value to general dynamic. 812 case 1: return GlobalVariable::GeneralDynamicTLSModel; 813 case 2: return GlobalVariable::LocalDynamicTLSModel; 814 case 3: return GlobalVariable::InitialExecTLSModel; 815 case 4: return GlobalVariable::LocalExecTLSModel; 816 } 817 } 818 819 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) { 820 switch (Val) { 821 default: // Map unknown to UnnamedAddr::None. 822 case 0: return GlobalVariable::UnnamedAddr::None; 823 case 1: return GlobalVariable::UnnamedAddr::Global; 824 case 2: return GlobalVariable::UnnamedAddr::Local; 825 } 826 } 827 828 static int getDecodedCastOpcode(unsigned Val) { 829 switch (Val) { 830 default: return -1; 831 case bitc::CAST_TRUNC : return Instruction::Trunc; 832 case bitc::CAST_ZEXT : return Instruction::ZExt; 833 case bitc::CAST_SEXT : return Instruction::SExt; 834 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 835 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 836 case bitc::CAST_UITOFP : return Instruction::UIToFP; 837 case bitc::CAST_SITOFP : return Instruction::SIToFP; 838 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 839 case bitc::CAST_FPEXT : return Instruction::FPExt; 840 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 841 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 842 case bitc::CAST_BITCAST : return Instruction::BitCast; 843 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast; 844 } 845 } 846 847 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) { 848 bool IsFP = Ty->isFPOrFPVectorTy(); 849 // BinOps are only valid for int/fp or vector of int/fp types 850 if (!IsFP && !Ty->isIntOrIntVectorTy()) 851 return -1; 852 853 switch (Val) { 854 default: 855 return -1; 856 case bitc::BINOP_ADD: 857 return IsFP ? Instruction::FAdd : Instruction::Add; 858 case bitc::BINOP_SUB: 859 return IsFP ? Instruction::FSub : Instruction::Sub; 860 case bitc::BINOP_MUL: 861 return IsFP ? Instruction::FMul : Instruction::Mul; 862 case bitc::BINOP_UDIV: 863 return IsFP ? -1 : Instruction::UDiv; 864 case bitc::BINOP_SDIV: 865 return IsFP ? Instruction::FDiv : Instruction::SDiv; 866 case bitc::BINOP_UREM: 867 return IsFP ? -1 : Instruction::URem; 868 case bitc::BINOP_SREM: 869 return IsFP ? Instruction::FRem : Instruction::SRem; 870 case bitc::BINOP_SHL: 871 return IsFP ? -1 : Instruction::Shl; 872 case bitc::BINOP_LSHR: 873 return IsFP ? -1 : Instruction::LShr; 874 case bitc::BINOP_ASHR: 875 return IsFP ? -1 : Instruction::AShr; 876 case bitc::BINOP_AND: 877 return IsFP ? -1 : Instruction::And; 878 case bitc::BINOP_OR: 879 return IsFP ? -1 : Instruction::Or; 880 case bitc::BINOP_XOR: 881 return IsFP ? -1 : Instruction::Xor; 882 } 883 } 884 885 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) { 886 switch (Val) { 887 default: return AtomicRMWInst::BAD_BINOP; 888 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 889 case bitc::RMW_ADD: return AtomicRMWInst::Add; 890 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 891 case bitc::RMW_AND: return AtomicRMWInst::And; 892 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 893 case bitc::RMW_OR: return AtomicRMWInst::Or; 894 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 895 case bitc::RMW_MAX: return AtomicRMWInst::Max; 896 case bitc::RMW_MIN: return AtomicRMWInst::Min; 897 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 898 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 899 } 900 } 901 902 static AtomicOrdering getDecodedOrdering(unsigned Val) { 903 switch (Val) { 904 case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic; 905 case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered; 906 case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic; 907 case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire; 908 case bitc::ORDERING_RELEASE: return AtomicOrdering::Release; 909 case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease; 910 default: // Map unknown orderings to sequentially-consistent. 911 case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent; 912 } 913 } 914 915 static SynchronizationScope getDecodedSynchScope(unsigned Val) { 916 switch (Val) { 917 case bitc::SYNCHSCOPE_SINGLETHREAD: return SingleThread; 918 default: // Map unknown scopes to cross-thread. 919 case bitc::SYNCHSCOPE_CROSSTHREAD: return CrossThread; 920 } 921 } 922 923 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) { 924 switch (Val) { 925 default: // Map unknown selection kinds to any. 926 case bitc::COMDAT_SELECTION_KIND_ANY: 927 return Comdat::Any; 928 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH: 929 return Comdat::ExactMatch; 930 case bitc::COMDAT_SELECTION_KIND_LARGEST: 931 return Comdat::Largest; 932 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES: 933 return Comdat::NoDuplicates; 934 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE: 935 return Comdat::SameSize; 936 } 937 } 938 939 static FastMathFlags getDecodedFastMathFlags(unsigned Val) { 940 FastMathFlags FMF; 941 if (0 != (Val & FastMathFlags::UnsafeAlgebra)) 942 FMF.setUnsafeAlgebra(); 943 if (0 != (Val & FastMathFlags::NoNaNs)) 944 FMF.setNoNaNs(); 945 if (0 != (Val & FastMathFlags::NoInfs)) 946 FMF.setNoInfs(); 947 if (0 != (Val & FastMathFlags::NoSignedZeros)) 948 FMF.setNoSignedZeros(); 949 if (0 != (Val & FastMathFlags::AllowReciprocal)) 950 FMF.setAllowReciprocal(); 951 return FMF; 952 } 953 954 static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) { 955 switch (Val) { 956 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break; 957 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break; 958 } 959 } 960 961 namespace llvm { 962 namespace { 963 964 /// \brief A class for maintaining the slot number definition 965 /// as a placeholder for the actual definition for forward constants defs. 966 class ConstantPlaceHolder : public ConstantExpr { 967 void operator=(const ConstantPlaceHolder &) = delete; 968 969 public: 970 // allocate space for exactly one operand 971 void *operator new(size_t s) { return User::operator new(s, 1); } 972 explicit ConstantPlaceHolder(Type *Ty, LLVMContext &Context) 973 : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) { 974 Op<0>() = UndefValue::get(Type::getInt32Ty(Context)); 975 } 976 977 /// \brief Methods to support type inquiry through isa, cast, and dyn_cast. 978 static bool classof(const Value *V) { 979 return isa<ConstantExpr>(V) && 980 cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1; 981 } 982 983 /// Provide fast operand accessors 984 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); 985 }; 986 987 } // end anonymous namespace 988 989 // FIXME: can we inherit this from ConstantExpr? 990 template <> 991 struct OperandTraits<ConstantPlaceHolder> : 992 public FixedNumOperandTraits<ConstantPlaceHolder, 1> { 993 }; 994 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantPlaceHolder, Value) 995 996 } // end namespace llvm 997 998 void BitcodeReaderValueList::assignValue(Value *V, unsigned Idx) { 999 if (Idx == size()) { 1000 push_back(V); 1001 return; 1002 } 1003 1004 if (Idx >= size()) 1005 resize(Idx+1); 1006 1007 WeakVH &OldV = ValuePtrs[Idx]; 1008 if (!OldV) { 1009 OldV = V; 1010 return; 1011 } 1012 1013 // Handle constants and non-constants (e.g. instrs) differently for 1014 // efficiency. 1015 if (Constant *PHC = dyn_cast<Constant>(&*OldV)) { 1016 ResolveConstants.push_back(std::make_pair(PHC, Idx)); 1017 OldV = V; 1018 } else { 1019 // If there was a forward reference to this value, replace it. 1020 Value *PrevVal = OldV; 1021 OldV->replaceAllUsesWith(V); 1022 delete PrevVal; 1023 } 1024 } 1025 1026 Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx, 1027 Type *Ty) { 1028 if (Idx >= size()) 1029 resize(Idx + 1); 1030 1031 if (Value *V = ValuePtrs[Idx]) { 1032 if (Ty != V->getType()) 1033 report_fatal_error("Type mismatch in constant table!"); 1034 return cast<Constant>(V); 1035 } 1036 1037 // Create and return a placeholder, which will later be RAUW'd. 1038 Constant *C = new ConstantPlaceHolder(Ty, Context); 1039 ValuePtrs[Idx] = C; 1040 return C; 1041 } 1042 1043 Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, Type *Ty) { 1044 // Bail out for a clearly invalid value. This would make us call resize(0) 1045 if (Idx == std::numeric_limits<unsigned>::max()) 1046 return nullptr; 1047 1048 if (Idx >= size()) 1049 resize(Idx + 1); 1050 1051 if (Value *V = ValuePtrs[Idx]) { 1052 // If the types don't match, it's invalid. 1053 if (Ty && Ty != V->getType()) 1054 return nullptr; 1055 return V; 1056 } 1057 1058 // No type specified, must be invalid reference. 1059 if (!Ty) return nullptr; 1060 1061 // Create and return a placeholder, which will later be RAUW'd. 1062 Value *V = new Argument(Ty); 1063 ValuePtrs[Idx] = V; 1064 return V; 1065 } 1066 1067 /// Once all constants are read, this method bulk resolves any forward 1068 /// references. The idea behind this is that we sometimes get constants (such 1069 /// as large arrays) which reference *many* forward ref constants. Replacing 1070 /// each of these causes a lot of thrashing when building/reuniquing the 1071 /// constant. Instead of doing this, we look at all the uses and rewrite all 1072 /// the place holders at once for any constant that uses a placeholder. 1073 void BitcodeReaderValueList::resolveConstantForwardRefs() { 1074 // Sort the values by-pointer so that they are efficient to look up with a 1075 // binary search. 1076 std::sort(ResolveConstants.begin(), ResolveConstants.end()); 1077 1078 SmallVector<Constant*, 64> NewOps; 1079 1080 while (!ResolveConstants.empty()) { 1081 Value *RealVal = operator[](ResolveConstants.back().second); 1082 Constant *Placeholder = ResolveConstants.back().first; 1083 ResolveConstants.pop_back(); 1084 1085 // Loop over all users of the placeholder, updating them to reference the 1086 // new value. If they reference more than one placeholder, update them all 1087 // at once. 1088 while (!Placeholder->use_empty()) { 1089 auto UI = Placeholder->user_begin(); 1090 User *U = *UI; 1091 1092 // If the using object isn't uniqued, just update the operands. This 1093 // handles instructions and initializers for global variables. 1094 if (!isa<Constant>(U) || isa<GlobalValue>(U)) { 1095 UI.getUse().set(RealVal); 1096 continue; 1097 } 1098 1099 // Otherwise, we have a constant that uses the placeholder. Replace that 1100 // constant with a new constant that has *all* placeholder uses updated. 1101 Constant *UserC = cast<Constant>(U); 1102 for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end(); 1103 I != E; ++I) { 1104 Value *NewOp; 1105 if (!isa<ConstantPlaceHolder>(*I)) { 1106 // Not a placeholder reference. 1107 NewOp = *I; 1108 } else if (*I == Placeholder) { 1109 // Common case is that it just references this one placeholder. 1110 NewOp = RealVal; 1111 } else { 1112 // Otherwise, look up the placeholder in ResolveConstants. 1113 ResolveConstantsTy::iterator It = 1114 std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(), 1115 std::pair<Constant*, unsigned>(cast<Constant>(*I), 1116 0)); 1117 assert(It != ResolveConstants.end() && It->first == *I); 1118 NewOp = operator[](It->second); 1119 } 1120 1121 NewOps.push_back(cast<Constant>(NewOp)); 1122 } 1123 1124 // Make the new constant. 1125 Constant *NewC; 1126 if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) { 1127 NewC = ConstantArray::get(UserCA->getType(), NewOps); 1128 } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) { 1129 NewC = ConstantStruct::get(UserCS->getType(), NewOps); 1130 } else if (isa<ConstantVector>(UserC)) { 1131 NewC = ConstantVector::get(NewOps); 1132 } else { 1133 assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr."); 1134 NewC = cast<ConstantExpr>(UserC)->getWithOperands(NewOps); 1135 } 1136 1137 UserC->replaceAllUsesWith(NewC); 1138 UserC->destroyConstant(); 1139 NewOps.clear(); 1140 } 1141 1142 // Update all ValueHandles, they should be the only users at this point. 1143 Placeholder->replaceAllUsesWith(RealVal); 1144 delete Placeholder; 1145 } 1146 } 1147 1148 void BitcodeReaderMetadataList::assignValue(Metadata *MD, unsigned Idx) { 1149 if (Idx == size()) { 1150 push_back(MD); 1151 return; 1152 } 1153 1154 if (Idx >= size()) 1155 resize(Idx+1); 1156 1157 TrackingMDRef &OldMD = MetadataPtrs[Idx]; 1158 if (!OldMD) { 1159 OldMD.reset(MD); 1160 return; 1161 } 1162 1163 // If there was a forward reference to this value, replace it. 1164 TempMDTuple PrevMD(cast<MDTuple>(OldMD.get())); 1165 PrevMD->replaceAllUsesWith(MD); 1166 --NumFwdRefs; 1167 } 1168 1169 Metadata *BitcodeReaderMetadataList::getMetadataFwdRef(unsigned Idx) { 1170 if (Idx >= size()) 1171 resize(Idx + 1); 1172 1173 if (Metadata *MD = MetadataPtrs[Idx]) 1174 return MD; 1175 1176 // Track forward refs to be resolved later. 1177 if (AnyFwdRefs) { 1178 MinFwdRef = std::min(MinFwdRef, Idx); 1179 MaxFwdRef = std::max(MaxFwdRef, Idx); 1180 } else { 1181 AnyFwdRefs = true; 1182 MinFwdRef = MaxFwdRef = Idx; 1183 } 1184 ++NumFwdRefs; 1185 1186 // Create and return a placeholder, which will later be RAUW'd. 1187 Metadata *MD = MDNode::getTemporary(Context, None).release(); 1188 MetadataPtrs[Idx].reset(MD); 1189 return MD; 1190 } 1191 1192 Metadata *BitcodeReaderMetadataList::getMetadataIfResolved(unsigned Idx) { 1193 Metadata *MD = lookup(Idx); 1194 if (auto *N = dyn_cast_or_null<MDNode>(MD)) 1195 if (!N->isResolved()) 1196 return nullptr; 1197 return MD; 1198 } 1199 1200 MDNode *BitcodeReaderMetadataList::getMDNodeFwdRefOrNull(unsigned Idx) { 1201 return dyn_cast_or_null<MDNode>(getMetadataFwdRef(Idx)); 1202 } 1203 1204 void BitcodeReaderMetadataList::tryToResolveCycles() { 1205 if (NumFwdRefs) 1206 // Still forward references... can't resolve cycles. 1207 return; 1208 1209 bool DidReplaceTypeRefs = false; 1210 1211 // Give up on finding a full definition for any forward decls that remain. 1212 for (const auto &Ref : OldTypeRefs.FwdDecls) 1213 OldTypeRefs.Final.insert(Ref); 1214 OldTypeRefs.FwdDecls.clear(); 1215 1216 // Upgrade from old type ref arrays. In strange cases, this could add to 1217 // OldTypeRefs.Unknown. 1218 for (const auto &Array : OldTypeRefs.Arrays) { 1219 DidReplaceTypeRefs = true; 1220 Array.second->replaceAllUsesWith(resolveTypeRefArray(Array.first.get())); 1221 } 1222 OldTypeRefs.Arrays.clear(); 1223 1224 // Replace old string-based type refs with the resolved node, if possible. 1225 // If we haven't seen the node, leave it to the verifier to complain about 1226 // the invalid string reference. 1227 for (const auto &Ref : OldTypeRefs.Unknown) { 1228 DidReplaceTypeRefs = true; 1229 if (DICompositeType *CT = OldTypeRefs.Final.lookup(Ref.first)) 1230 Ref.second->replaceAllUsesWith(CT); 1231 else 1232 Ref.second->replaceAllUsesWith(Ref.first); 1233 } 1234 OldTypeRefs.Unknown.clear(); 1235 1236 // Make sure all the upgraded types are resolved. 1237 if (DidReplaceTypeRefs) { 1238 AnyFwdRefs = true; 1239 MinFwdRef = 0; 1240 MaxFwdRef = MetadataPtrs.size() - 1; 1241 } 1242 1243 if (!AnyFwdRefs) 1244 // Nothing to do. 1245 return; 1246 1247 // Resolve any cycles. 1248 for (unsigned I = MinFwdRef, E = MaxFwdRef + 1; I != E; ++I) { 1249 auto &MD = MetadataPtrs[I]; 1250 auto *N = dyn_cast_or_null<MDNode>(MD); 1251 if (!N) 1252 continue; 1253 1254 assert(!N->isTemporary() && "Unexpected forward reference"); 1255 N->resolveCycles(); 1256 } 1257 1258 // Make sure we return early again until there's another forward ref. 1259 AnyFwdRefs = false; 1260 } 1261 1262 void BitcodeReaderMetadataList::addTypeRef(MDString &UUID, 1263 DICompositeType &CT) { 1264 assert(CT.getRawIdentifier() == &UUID && "Mismatched UUID"); 1265 if (CT.isForwardDecl()) 1266 OldTypeRefs.FwdDecls.insert(std::make_pair(&UUID, &CT)); 1267 else 1268 OldTypeRefs.Final.insert(std::make_pair(&UUID, &CT)); 1269 } 1270 1271 Metadata *BitcodeReaderMetadataList::upgradeTypeRef(Metadata *MaybeUUID) { 1272 auto *UUID = dyn_cast_or_null<MDString>(MaybeUUID); 1273 if (LLVM_LIKELY(!UUID)) 1274 return MaybeUUID; 1275 1276 if (auto *CT = OldTypeRefs.Final.lookup(UUID)) 1277 return CT; 1278 1279 auto &Ref = OldTypeRefs.Unknown[UUID]; 1280 if (!Ref) 1281 Ref = MDNode::getTemporary(Context, None); 1282 return Ref.get(); 1283 } 1284 1285 Metadata *BitcodeReaderMetadataList::upgradeTypeRefArray(Metadata *MaybeTuple) { 1286 auto *Tuple = dyn_cast_or_null<MDTuple>(MaybeTuple); 1287 if (!Tuple || Tuple->isDistinct()) 1288 return MaybeTuple; 1289 1290 // Look through the array immediately if possible. 1291 if (!Tuple->isTemporary()) 1292 return resolveTypeRefArray(Tuple); 1293 1294 // Create and return a placeholder to use for now. Eventually 1295 // resolveTypeRefArrays() will be resolve this forward reference. 1296 OldTypeRefs.Arrays.emplace_back( 1297 std::piecewise_construct, std::forward_as_tuple(Tuple), 1298 std::forward_as_tuple(MDTuple::getTemporary(Context, None))); 1299 return OldTypeRefs.Arrays.back().second.get(); 1300 } 1301 1302 Metadata *BitcodeReaderMetadataList::resolveTypeRefArray(Metadata *MaybeTuple) { 1303 auto *Tuple = dyn_cast_or_null<MDTuple>(MaybeTuple); 1304 if (!Tuple || Tuple->isDistinct()) 1305 return MaybeTuple; 1306 1307 // Look through the DITypeRefArray, upgrading each DITypeRef. 1308 SmallVector<Metadata *, 32> Ops; 1309 Ops.reserve(Tuple->getNumOperands()); 1310 for (Metadata *MD : Tuple->operands()) 1311 Ops.push_back(upgradeTypeRef(MD)); 1312 1313 return MDTuple::get(Context, Ops); 1314 } 1315 1316 Type *BitcodeReader::getTypeByID(unsigned ID) { 1317 // The type table size is always specified correctly. 1318 if (ID >= TypeList.size()) 1319 return nullptr; 1320 1321 if (Type *Ty = TypeList[ID]) 1322 return Ty; 1323 1324 // If we have a forward reference, the only possible case is when it is to a 1325 // named struct. Just create a placeholder for now. 1326 return TypeList[ID] = createIdentifiedStructType(Context); 1327 } 1328 1329 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context, 1330 StringRef Name) { 1331 auto *Ret = StructType::create(Context, Name); 1332 IdentifiedStructTypes.push_back(Ret); 1333 return Ret; 1334 } 1335 1336 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) { 1337 auto *Ret = StructType::create(Context); 1338 IdentifiedStructTypes.push_back(Ret); 1339 return Ret; 1340 } 1341 1342 //===----------------------------------------------------------------------===// 1343 // Functions for parsing blocks from the bitcode file 1344 //===----------------------------------------------------------------------===// 1345 1346 /// \brief This fills an AttrBuilder object with the LLVM attributes that have 1347 /// been decoded from the given integer. This function must stay in sync with 1348 /// 'encodeLLVMAttributesForBitcode'. 1349 static void decodeLLVMAttributesForBitcode(AttrBuilder &B, 1350 uint64_t EncodedAttrs) { 1351 // FIXME: Remove in 4.0. 1352 1353 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift 1354 // the bits above 31 down by 11 bits. 1355 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; 1356 assert((!Alignment || isPowerOf2_32(Alignment)) && 1357 "Alignment must be a power of two."); 1358 1359 if (Alignment) 1360 B.addAlignmentAttr(Alignment); 1361 B.addRawValue(((EncodedAttrs & (0xfffffULL << 32)) >> 11) | 1362 (EncodedAttrs & 0xffff)); 1363 } 1364 1365 std::error_code BitcodeReader::parseAttributeBlock() { 1366 if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 1367 return error("Invalid record"); 1368 1369 if (!MAttributes.empty()) 1370 return error("Invalid multiple blocks"); 1371 1372 SmallVector<uint64_t, 64> Record; 1373 1374 SmallVector<AttributeSet, 8> Attrs; 1375 1376 // Read all the records. 1377 while (true) { 1378 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1379 1380 switch (Entry.Kind) { 1381 case BitstreamEntry::SubBlock: // Handled for us already. 1382 case BitstreamEntry::Error: 1383 return error("Malformed block"); 1384 case BitstreamEntry::EndBlock: 1385 return std::error_code(); 1386 case BitstreamEntry::Record: 1387 // The interesting case. 1388 break; 1389 } 1390 1391 // Read a record. 1392 Record.clear(); 1393 switch (Stream.readRecord(Entry.ID, Record)) { 1394 default: // Default behavior: ignore. 1395 break; 1396 case bitc::PARAMATTR_CODE_ENTRY_OLD: { // ENTRY: [paramidx0, attr0, ...] 1397 // FIXME: Remove in 4.0. 1398 if (Record.size() & 1) 1399 return error("Invalid record"); 1400 1401 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1402 AttrBuilder B; 1403 decodeLLVMAttributesForBitcode(B, Record[i+1]); 1404 Attrs.push_back(AttributeSet::get(Context, Record[i], B)); 1405 } 1406 1407 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 1408 Attrs.clear(); 1409 break; 1410 } 1411 case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [attrgrp0, attrgrp1, ...] 1412 for (unsigned i = 0, e = Record.size(); i != e; ++i) 1413 Attrs.push_back(MAttributeGroups[Record[i]]); 1414 1415 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 1416 Attrs.clear(); 1417 break; 1418 } 1419 } 1420 } 1421 } 1422 1423 // Returns Attribute::None on unrecognized codes. 1424 static Attribute::AttrKind getAttrFromCode(uint64_t Code) { 1425 switch (Code) { 1426 default: 1427 return Attribute::None; 1428 case bitc::ATTR_KIND_ALIGNMENT: 1429 return Attribute::Alignment; 1430 case bitc::ATTR_KIND_ALWAYS_INLINE: 1431 return Attribute::AlwaysInline; 1432 case bitc::ATTR_KIND_ARGMEMONLY: 1433 return Attribute::ArgMemOnly; 1434 case bitc::ATTR_KIND_BUILTIN: 1435 return Attribute::Builtin; 1436 case bitc::ATTR_KIND_BY_VAL: 1437 return Attribute::ByVal; 1438 case bitc::ATTR_KIND_IN_ALLOCA: 1439 return Attribute::InAlloca; 1440 case bitc::ATTR_KIND_COLD: 1441 return Attribute::Cold; 1442 case bitc::ATTR_KIND_CONVERGENT: 1443 return Attribute::Convergent; 1444 case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY: 1445 return Attribute::InaccessibleMemOnly; 1446 case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY: 1447 return Attribute::InaccessibleMemOrArgMemOnly; 1448 case bitc::ATTR_KIND_INLINE_HINT: 1449 return Attribute::InlineHint; 1450 case bitc::ATTR_KIND_IN_REG: 1451 return Attribute::InReg; 1452 case bitc::ATTR_KIND_JUMP_TABLE: 1453 return Attribute::JumpTable; 1454 case bitc::ATTR_KIND_MIN_SIZE: 1455 return Attribute::MinSize; 1456 case bitc::ATTR_KIND_NAKED: 1457 return Attribute::Naked; 1458 case bitc::ATTR_KIND_NEST: 1459 return Attribute::Nest; 1460 case bitc::ATTR_KIND_NO_ALIAS: 1461 return Attribute::NoAlias; 1462 case bitc::ATTR_KIND_NO_BUILTIN: 1463 return Attribute::NoBuiltin; 1464 case bitc::ATTR_KIND_NO_CAPTURE: 1465 return Attribute::NoCapture; 1466 case bitc::ATTR_KIND_NO_DUPLICATE: 1467 return Attribute::NoDuplicate; 1468 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: 1469 return Attribute::NoImplicitFloat; 1470 case bitc::ATTR_KIND_NO_INLINE: 1471 return Attribute::NoInline; 1472 case bitc::ATTR_KIND_NO_RECURSE: 1473 return Attribute::NoRecurse; 1474 case bitc::ATTR_KIND_NON_LAZY_BIND: 1475 return Attribute::NonLazyBind; 1476 case bitc::ATTR_KIND_NON_NULL: 1477 return Attribute::NonNull; 1478 case bitc::ATTR_KIND_DEREFERENCEABLE: 1479 return Attribute::Dereferenceable; 1480 case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL: 1481 return Attribute::DereferenceableOrNull; 1482 case bitc::ATTR_KIND_ALLOC_SIZE: 1483 return Attribute::AllocSize; 1484 case bitc::ATTR_KIND_NO_RED_ZONE: 1485 return Attribute::NoRedZone; 1486 case bitc::ATTR_KIND_NO_RETURN: 1487 return Attribute::NoReturn; 1488 case bitc::ATTR_KIND_NO_UNWIND: 1489 return Attribute::NoUnwind; 1490 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: 1491 return Attribute::OptimizeForSize; 1492 case bitc::ATTR_KIND_OPTIMIZE_NONE: 1493 return Attribute::OptimizeNone; 1494 case bitc::ATTR_KIND_READ_NONE: 1495 return Attribute::ReadNone; 1496 case bitc::ATTR_KIND_READ_ONLY: 1497 return Attribute::ReadOnly; 1498 case bitc::ATTR_KIND_RETURNED: 1499 return Attribute::Returned; 1500 case bitc::ATTR_KIND_RETURNS_TWICE: 1501 return Attribute::ReturnsTwice; 1502 case bitc::ATTR_KIND_S_EXT: 1503 return Attribute::SExt; 1504 case bitc::ATTR_KIND_STACK_ALIGNMENT: 1505 return Attribute::StackAlignment; 1506 case bitc::ATTR_KIND_STACK_PROTECT: 1507 return Attribute::StackProtect; 1508 case bitc::ATTR_KIND_STACK_PROTECT_REQ: 1509 return Attribute::StackProtectReq; 1510 case bitc::ATTR_KIND_STACK_PROTECT_STRONG: 1511 return Attribute::StackProtectStrong; 1512 case bitc::ATTR_KIND_SAFESTACK: 1513 return Attribute::SafeStack; 1514 case bitc::ATTR_KIND_STRUCT_RET: 1515 return Attribute::StructRet; 1516 case bitc::ATTR_KIND_SANITIZE_ADDRESS: 1517 return Attribute::SanitizeAddress; 1518 case bitc::ATTR_KIND_SANITIZE_THREAD: 1519 return Attribute::SanitizeThread; 1520 case bitc::ATTR_KIND_SANITIZE_MEMORY: 1521 return Attribute::SanitizeMemory; 1522 case bitc::ATTR_KIND_SWIFT_ERROR: 1523 return Attribute::SwiftError; 1524 case bitc::ATTR_KIND_SWIFT_SELF: 1525 return Attribute::SwiftSelf; 1526 case bitc::ATTR_KIND_UW_TABLE: 1527 return Attribute::UWTable; 1528 case bitc::ATTR_KIND_WRITEONLY: 1529 return Attribute::WriteOnly; 1530 case bitc::ATTR_KIND_Z_EXT: 1531 return Attribute::ZExt; 1532 } 1533 } 1534 1535 std::error_code BitcodeReader::parseAlignmentValue(uint64_t Exponent, 1536 unsigned &Alignment) { 1537 // Note: Alignment in bitcode files is incremented by 1, so that zero 1538 // can be used for default alignment. 1539 if (Exponent > Value::MaxAlignmentExponent + 1) 1540 return error("Invalid alignment value"); 1541 Alignment = (1 << static_cast<unsigned>(Exponent)) >> 1; 1542 return std::error_code(); 1543 } 1544 1545 std::error_code BitcodeReader::parseAttrKind(uint64_t Code, 1546 Attribute::AttrKind *Kind) { 1547 *Kind = getAttrFromCode(Code); 1548 if (*Kind == Attribute::None) 1549 return error(BitcodeError::CorruptedBitcode, 1550 "Unknown attribute kind (" + Twine(Code) + ")"); 1551 return std::error_code(); 1552 } 1553 1554 std::error_code BitcodeReader::parseAttributeGroupBlock() { 1555 if (Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) 1556 return error("Invalid record"); 1557 1558 if (!MAttributeGroups.empty()) 1559 return error("Invalid multiple blocks"); 1560 1561 SmallVector<uint64_t, 64> Record; 1562 1563 // Read all the records. 1564 while (true) { 1565 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1566 1567 switch (Entry.Kind) { 1568 case BitstreamEntry::SubBlock: // Handled for us already. 1569 case BitstreamEntry::Error: 1570 return error("Malformed block"); 1571 case BitstreamEntry::EndBlock: 1572 return std::error_code(); 1573 case BitstreamEntry::Record: 1574 // The interesting case. 1575 break; 1576 } 1577 1578 // Read a record. 1579 Record.clear(); 1580 switch (Stream.readRecord(Entry.ID, Record)) { 1581 default: // Default behavior: ignore. 1582 break; 1583 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] 1584 if (Record.size() < 3) 1585 return error("Invalid record"); 1586 1587 uint64_t GrpID = Record[0]; 1588 uint64_t Idx = Record[1]; // Index of the object this attribute refers to. 1589 1590 AttrBuilder B; 1591 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1592 if (Record[i] == 0) { // Enum attribute 1593 Attribute::AttrKind Kind; 1594 if (std::error_code EC = parseAttrKind(Record[++i], &Kind)) 1595 return EC; 1596 1597 B.addAttribute(Kind); 1598 } else if (Record[i] == 1) { // Integer attribute 1599 Attribute::AttrKind Kind; 1600 if (std::error_code EC = parseAttrKind(Record[++i], &Kind)) 1601 return EC; 1602 if (Kind == Attribute::Alignment) 1603 B.addAlignmentAttr(Record[++i]); 1604 else if (Kind == Attribute::StackAlignment) 1605 B.addStackAlignmentAttr(Record[++i]); 1606 else if (Kind == Attribute::Dereferenceable) 1607 B.addDereferenceableAttr(Record[++i]); 1608 else if (Kind == Attribute::DereferenceableOrNull) 1609 B.addDereferenceableOrNullAttr(Record[++i]); 1610 else if (Kind == Attribute::AllocSize) 1611 B.addAllocSizeAttrFromRawRepr(Record[++i]); 1612 } else { // String attribute 1613 assert((Record[i] == 3 || Record[i] == 4) && 1614 "Invalid attribute group entry"); 1615 bool HasValue = (Record[i++] == 4); 1616 SmallString<64> KindStr; 1617 SmallString<64> ValStr; 1618 1619 while (Record[i] != 0 && i != e) 1620 KindStr += Record[i++]; 1621 assert(Record[i] == 0 && "Kind string not null terminated"); 1622 1623 if (HasValue) { 1624 // Has a value associated with it. 1625 ++i; // Skip the '0' that terminates the "kind" string. 1626 while (Record[i] != 0 && i != e) 1627 ValStr += Record[i++]; 1628 assert(Record[i] == 0 && "Value string not null terminated"); 1629 } 1630 1631 B.addAttribute(KindStr.str(), ValStr.str()); 1632 } 1633 } 1634 1635 MAttributeGroups[GrpID] = AttributeSet::get(Context, Idx, B); 1636 break; 1637 } 1638 } 1639 } 1640 } 1641 1642 std::error_code BitcodeReader::parseTypeTable() { 1643 if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 1644 return error("Invalid record"); 1645 1646 return parseTypeTableBody(); 1647 } 1648 1649 std::error_code BitcodeReader::parseTypeTableBody() { 1650 if (!TypeList.empty()) 1651 return error("Invalid multiple blocks"); 1652 1653 SmallVector<uint64_t, 64> Record; 1654 unsigned NumRecords = 0; 1655 1656 SmallString<64> TypeName; 1657 1658 // Read all the records for this type table. 1659 while (true) { 1660 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1661 1662 switch (Entry.Kind) { 1663 case BitstreamEntry::SubBlock: // Handled for us already. 1664 case BitstreamEntry::Error: 1665 return error("Malformed block"); 1666 case BitstreamEntry::EndBlock: 1667 if (NumRecords != TypeList.size()) 1668 return error("Malformed block"); 1669 return std::error_code(); 1670 case BitstreamEntry::Record: 1671 // The interesting case. 1672 break; 1673 } 1674 1675 // Read a record. 1676 Record.clear(); 1677 Type *ResultTy = nullptr; 1678 switch (Stream.readRecord(Entry.ID, Record)) { 1679 default: 1680 return error("Invalid value"); 1681 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 1682 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 1683 // type list. This allows us to reserve space. 1684 if (Record.size() < 1) 1685 return error("Invalid record"); 1686 TypeList.resize(Record[0]); 1687 continue; 1688 case bitc::TYPE_CODE_VOID: // VOID 1689 ResultTy = Type::getVoidTy(Context); 1690 break; 1691 case bitc::TYPE_CODE_HALF: // HALF 1692 ResultTy = Type::getHalfTy(Context); 1693 break; 1694 case bitc::TYPE_CODE_FLOAT: // FLOAT 1695 ResultTy = Type::getFloatTy(Context); 1696 break; 1697 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 1698 ResultTy = Type::getDoubleTy(Context); 1699 break; 1700 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 1701 ResultTy = Type::getX86_FP80Ty(Context); 1702 break; 1703 case bitc::TYPE_CODE_FP128: // FP128 1704 ResultTy = Type::getFP128Ty(Context); 1705 break; 1706 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 1707 ResultTy = Type::getPPC_FP128Ty(Context); 1708 break; 1709 case bitc::TYPE_CODE_LABEL: // LABEL 1710 ResultTy = Type::getLabelTy(Context); 1711 break; 1712 case bitc::TYPE_CODE_METADATA: // METADATA 1713 ResultTy = Type::getMetadataTy(Context); 1714 break; 1715 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 1716 ResultTy = Type::getX86_MMXTy(Context); 1717 break; 1718 case bitc::TYPE_CODE_TOKEN: // TOKEN 1719 ResultTy = Type::getTokenTy(Context); 1720 break; 1721 case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width] 1722 if (Record.size() < 1) 1723 return error("Invalid record"); 1724 1725 uint64_t NumBits = Record[0]; 1726 if (NumBits < IntegerType::MIN_INT_BITS || 1727 NumBits > IntegerType::MAX_INT_BITS) 1728 return error("Bitwidth for integer type out of range"); 1729 ResultTy = IntegerType::get(Context, NumBits); 1730 break; 1731 } 1732 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 1733 // [pointee type, address space] 1734 if (Record.size() < 1) 1735 return error("Invalid record"); 1736 unsigned AddressSpace = 0; 1737 if (Record.size() == 2) 1738 AddressSpace = Record[1]; 1739 ResultTy = getTypeByID(Record[0]); 1740 if (!ResultTy || 1741 !PointerType::isValidElementType(ResultTy)) 1742 return error("Invalid type"); 1743 ResultTy = PointerType::get(ResultTy, AddressSpace); 1744 break; 1745 } 1746 case bitc::TYPE_CODE_FUNCTION_OLD: { 1747 // FIXME: attrid is dead, remove it in LLVM 4.0 1748 // FUNCTION: [vararg, attrid, retty, paramty x N] 1749 if (Record.size() < 3) 1750 return error("Invalid record"); 1751 SmallVector<Type*, 8> ArgTys; 1752 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 1753 if (Type *T = getTypeByID(Record[i])) 1754 ArgTys.push_back(T); 1755 else 1756 break; 1757 } 1758 1759 ResultTy = getTypeByID(Record[2]); 1760 if (!ResultTy || ArgTys.size() < Record.size()-3) 1761 return error("Invalid type"); 1762 1763 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1764 break; 1765 } 1766 case bitc::TYPE_CODE_FUNCTION: { 1767 // FUNCTION: [vararg, retty, paramty x N] 1768 if (Record.size() < 2) 1769 return error("Invalid record"); 1770 SmallVector<Type*, 8> ArgTys; 1771 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1772 if (Type *T = getTypeByID(Record[i])) { 1773 if (!FunctionType::isValidArgumentType(T)) 1774 return error("Invalid function argument type"); 1775 ArgTys.push_back(T); 1776 } 1777 else 1778 break; 1779 } 1780 1781 ResultTy = getTypeByID(Record[1]); 1782 if (!ResultTy || ArgTys.size() < Record.size()-2) 1783 return error("Invalid type"); 1784 1785 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1786 break; 1787 } 1788 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 1789 if (Record.size() < 1) 1790 return error("Invalid record"); 1791 SmallVector<Type*, 8> EltTys; 1792 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1793 if (Type *T = getTypeByID(Record[i])) 1794 EltTys.push_back(T); 1795 else 1796 break; 1797 } 1798 if (EltTys.size() != Record.size()-1) 1799 return error("Invalid type"); 1800 ResultTy = StructType::get(Context, EltTys, Record[0]); 1801 break; 1802 } 1803 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 1804 if (convertToString(Record, 0, TypeName)) 1805 return error("Invalid record"); 1806 continue; 1807 1808 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 1809 if (Record.size() < 1) 1810 return error("Invalid record"); 1811 1812 if (NumRecords >= TypeList.size()) 1813 return error("Invalid TYPE table"); 1814 1815 // Check to see if this was forward referenced, if so fill in the temp. 1816 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1817 if (Res) { 1818 Res->setName(TypeName); 1819 TypeList[NumRecords] = nullptr; 1820 } else // Otherwise, create a new struct. 1821 Res = createIdentifiedStructType(Context, TypeName); 1822 TypeName.clear(); 1823 1824 SmallVector<Type*, 8> EltTys; 1825 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1826 if (Type *T = getTypeByID(Record[i])) 1827 EltTys.push_back(T); 1828 else 1829 break; 1830 } 1831 if (EltTys.size() != Record.size()-1) 1832 return error("Invalid record"); 1833 Res->setBody(EltTys, Record[0]); 1834 ResultTy = Res; 1835 break; 1836 } 1837 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 1838 if (Record.size() != 1) 1839 return error("Invalid record"); 1840 1841 if (NumRecords >= TypeList.size()) 1842 return error("Invalid TYPE table"); 1843 1844 // Check to see if this was forward referenced, if so fill in the temp. 1845 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1846 if (Res) { 1847 Res->setName(TypeName); 1848 TypeList[NumRecords] = nullptr; 1849 } else // Otherwise, create a new struct with no body. 1850 Res = createIdentifiedStructType(Context, TypeName); 1851 TypeName.clear(); 1852 ResultTy = Res; 1853 break; 1854 } 1855 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 1856 if (Record.size() < 2) 1857 return error("Invalid record"); 1858 ResultTy = getTypeByID(Record[1]); 1859 if (!ResultTy || !ArrayType::isValidElementType(ResultTy)) 1860 return error("Invalid type"); 1861 ResultTy = ArrayType::get(ResultTy, Record[0]); 1862 break; 1863 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] 1864 if (Record.size() < 2) 1865 return error("Invalid record"); 1866 if (Record[0] == 0) 1867 return error("Invalid vector length"); 1868 ResultTy = getTypeByID(Record[1]); 1869 if (!ResultTy || !StructType::isValidElementType(ResultTy)) 1870 return error("Invalid type"); 1871 ResultTy = VectorType::get(ResultTy, Record[0]); 1872 break; 1873 } 1874 1875 if (NumRecords >= TypeList.size()) 1876 return error("Invalid TYPE table"); 1877 if (TypeList[NumRecords]) 1878 return error( 1879 "Invalid TYPE table: Only named structs can be forward referenced"); 1880 assert(ResultTy && "Didn't read a type?"); 1881 TypeList[NumRecords++] = ResultTy; 1882 } 1883 } 1884 1885 std::error_code BitcodeReader::parseOperandBundleTags() { 1886 if (Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID)) 1887 return error("Invalid record"); 1888 1889 if (!BundleTags.empty()) 1890 return error("Invalid multiple blocks"); 1891 1892 SmallVector<uint64_t, 64> Record; 1893 1894 while (true) { 1895 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1896 1897 switch (Entry.Kind) { 1898 case BitstreamEntry::SubBlock: // Handled for us already. 1899 case BitstreamEntry::Error: 1900 return error("Malformed block"); 1901 case BitstreamEntry::EndBlock: 1902 return std::error_code(); 1903 case BitstreamEntry::Record: 1904 // The interesting case. 1905 break; 1906 } 1907 1908 // Tags are implicitly mapped to integers by their order. 1909 1910 if (Stream.readRecord(Entry.ID, Record) != bitc::OPERAND_BUNDLE_TAG) 1911 return error("Invalid record"); 1912 1913 // OPERAND_BUNDLE_TAG: [strchr x N] 1914 BundleTags.emplace_back(); 1915 if (convertToString(Record, 0, BundleTags.back())) 1916 return error("Invalid record"); 1917 Record.clear(); 1918 } 1919 } 1920 1921 /// Associate a value with its name from the given index in the provided record. 1922 ErrorOr<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record, 1923 unsigned NameIndex, Triple &TT) { 1924 SmallString<128> ValueName; 1925 if (convertToString(Record, NameIndex, ValueName)) 1926 return error("Invalid record"); 1927 unsigned ValueID = Record[0]; 1928 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 1929 return error("Invalid record"); 1930 Value *V = ValueList[ValueID]; 1931 1932 StringRef NameStr(ValueName.data(), ValueName.size()); 1933 if (NameStr.find_first_of(0) != StringRef::npos) 1934 return error("Invalid value name"); 1935 V->setName(NameStr); 1936 auto *GO = dyn_cast<GlobalObject>(V); 1937 if (GO) { 1938 if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) { 1939 if (TT.isOSBinFormatMachO()) 1940 GO->setComdat(nullptr); 1941 else 1942 GO->setComdat(TheModule->getOrInsertComdat(V->getName())); 1943 } 1944 } 1945 return V; 1946 } 1947 1948 /// Helper to note and return the current location, and jump to the given 1949 /// offset. 1950 static uint64_t jumpToValueSymbolTable(uint64_t Offset, 1951 BitstreamCursor &Stream) { 1952 // Save the current parsing location so we can jump back at the end 1953 // of the VST read. 1954 uint64_t CurrentBit = Stream.GetCurrentBitNo(); 1955 Stream.JumpToBit(Offset * 32); 1956 #ifndef NDEBUG 1957 // Do some checking if we are in debug mode. 1958 BitstreamEntry Entry = Stream.advance(); 1959 assert(Entry.Kind == BitstreamEntry::SubBlock); 1960 assert(Entry.ID == bitc::VALUE_SYMTAB_BLOCK_ID); 1961 #else 1962 // In NDEBUG mode ignore the output so we don't get an unused variable 1963 // warning. 1964 Stream.advance(); 1965 #endif 1966 return CurrentBit; 1967 } 1968 1969 /// Parse the value symbol table at either the current parsing location or 1970 /// at the given bit offset if provided. 1971 std::error_code BitcodeReader::parseValueSymbolTable(uint64_t Offset) { 1972 uint64_t CurrentBit; 1973 // Pass in the Offset to distinguish between calling for the module-level 1974 // VST (where we want to jump to the VST offset) and the function-level 1975 // VST (where we don't). 1976 if (Offset > 0) 1977 CurrentBit = jumpToValueSymbolTable(Offset, Stream); 1978 1979 // Compute the delta between the bitcode indices in the VST (the word offset 1980 // to the word-aligned ENTER_SUBBLOCK for the function block, and that 1981 // expected by the lazy reader. The reader's EnterSubBlock expects to have 1982 // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID 1983 // (size BlockIDWidth). Note that we access the stream's AbbrevID width here 1984 // just before entering the VST subblock because: 1) the EnterSubBlock 1985 // changes the AbbrevID width; 2) the VST block is nested within the same 1986 // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same 1987 // AbbrevID width before calling EnterSubBlock; and 3) when we want to 1988 // jump to the FUNCTION_BLOCK using this offset later, we don't want 1989 // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK. 1990 unsigned FuncBitcodeOffsetDelta = 1991 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 1992 1993 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 1994 return error("Invalid record"); 1995 1996 SmallVector<uint64_t, 64> Record; 1997 1998 Triple TT(TheModule->getTargetTriple()); 1999 2000 // Read all the records for this value table. 2001 SmallString<128> ValueName; 2002 2003 while (true) { 2004 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2005 2006 switch (Entry.Kind) { 2007 case BitstreamEntry::SubBlock: // Handled for us already. 2008 case BitstreamEntry::Error: 2009 return error("Malformed block"); 2010 case BitstreamEntry::EndBlock: 2011 if (Offset > 0) 2012 Stream.JumpToBit(CurrentBit); 2013 return std::error_code(); 2014 case BitstreamEntry::Record: 2015 // The interesting case. 2016 break; 2017 } 2018 2019 // Read a record. 2020 Record.clear(); 2021 switch (Stream.readRecord(Entry.ID, Record)) { 2022 default: // Default behavior: unknown type. 2023 break; 2024 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 2025 ErrorOr<Value *> ValOrErr = recordValue(Record, 1, TT); 2026 if (std::error_code EC = ValOrErr.getError()) 2027 return EC; 2028 ValOrErr.get(); 2029 break; 2030 } 2031 case bitc::VST_CODE_FNENTRY: { 2032 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 2033 ErrorOr<Value *> ValOrErr = recordValue(Record, 2, TT); 2034 if (std::error_code EC = ValOrErr.getError()) 2035 return EC; 2036 Value *V = ValOrErr.get(); 2037 2038 auto *GO = dyn_cast<GlobalObject>(V); 2039 if (!GO) { 2040 // If this is an alias, need to get the actual Function object 2041 // it aliases, in order to set up the DeferredFunctionInfo entry below. 2042 auto *GA = dyn_cast<GlobalAlias>(V); 2043 if (GA) 2044 GO = GA->getBaseObject(); 2045 assert(GO); 2046 } 2047 2048 uint64_t FuncWordOffset = Record[1]; 2049 Function *F = dyn_cast<Function>(GO); 2050 assert(F); 2051 uint64_t FuncBitOffset = FuncWordOffset * 32; 2052 DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta; 2053 // Set the LastFunctionBlockBit to point to the last function block. 2054 // Later when parsing is resumed after function materialization, 2055 // we can simply skip that last function block. 2056 if (FuncBitOffset > LastFunctionBlockBit) 2057 LastFunctionBlockBit = FuncBitOffset; 2058 break; 2059 } 2060 case bitc::VST_CODE_BBENTRY: { 2061 if (convertToString(Record, 1, ValueName)) 2062 return error("Invalid record"); 2063 BasicBlock *BB = getBasicBlock(Record[0]); 2064 if (!BB) 2065 return error("Invalid record"); 2066 2067 BB->setName(StringRef(ValueName.data(), ValueName.size())); 2068 ValueName.clear(); 2069 break; 2070 } 2071 } 2072 } 2073 } 2074 2075 /// Parse a single METADATA_KIND record, inserting result in MDKindMap. 2076 std::error_code 2077 BitcodeReader::parseMetadataKindRecord(SmallVectorImpl<uint64_t> &Record) { 2078 if (Record.size() < 2) 2079 return error("Invalid record"); 2080 2081 unsigned Kind = Record[0]; 2082 SmallString<8> Name(Record.begin() + 1, Record.end()); 2083 2084 unsigned NewKind = TheModule->getMDKindID(Name.str()); 2085 if (!MDKindMap.insert(std::make_pair(Kind, NewKind)).second) 2086 return error("Conflicting METADATA_KIND records"); 2087 return std::error_code(); 2088 } 2089 2090 static int64_t unrotateSign(uint64_t U) { return U & 1 ? ~(U >> 1) : U >> 1; } 2091 2092 std::error_code BitcodeReader::parseMetadataStrings(ArrayRef<uint64_t> Record, 2093 StringRef Blob, 2094 unsigned &NextMetadataNo) { 2095 // All the MDStrings in the block are emitted together in a single 2096 // record. The strings are concatenated and stored in a blob along with 2097 // their sizes. 2098 if (Record.size() != 2) 2099 return error("Invalid record: metadata strings layout"); 2100 2101 unsigned NumStrings = Record[0]; 2102 unsigned StringsOffset = Record[1]; 2103 if (!NumStrings) 2104 return error("Invalid record: metadata strings with no strings"); 2105 if (StringsOffset > Blob.size()) 2106 return error("Invalid record: metadata strings corrupt offset"); 2107 2108 StringRef Lengths = Blob.slice(0, StringsOffset); 2109 SimpleBitstreamCursor R(*StreamFile); 2110 R.jumpToPointer(Lengths.begin()); 2111 2112 // Ensure that Blob doesn't get invalidated, even if this is reading from 2113 // a StreamingMemoryObject with corrupt data. 2114 R.setArtificialByteLimit(R.getCurrentByteNo() + StringsOffset); 2115 2116 StringRef Strings = Blob.drop_front(StringsOffset); 2117 do { 2118 if (R.AtEndOfStream()) 2119 return error("Invalid record: metadata strings bad length"); 2120 2121 unsigned Size = R.ReadVBR(6); 2122 if (Strings.size() < Size) 2123 return error("Invalid record: metadata strings truncated chars"); 2124 2125 MetadataList.assignValue(MDString::get(Context, Strings.slice(0, Size)), 2126 NextMetadataNo++); 2127 Strings = Strings.drop_front(Size); 2128 } while (--NumStrings); 2129 2130 return std::error_code(); 2131 } 2132 2133 namespace { 2134 2135 class PlaceholderQueue { 2136 // Placeholders would thrash around when moved, so store in a std::deque 2137 // instead of some sort of vector. 2138 std::deque<DistinctMDOperandPlaceholder> PHs; 2139 2140 public: 2141 DistinctMDOperandPlaceholder &getPlaceholderOp(unsigned ID); 2142 void flush(BitcodeReaderMetadataList &MetadataList); 2143 }; 2144 2145 } // end anonymous namespace 2146 2147 DistinctMDOperandPlaceholder &PlaceholderQueue::getPlaceholderOp(unsigned ID) { 2148 PHs.emplace_back(ID); 2149 return PHs.back(); 2150 } 2151 2152 void PlaceholderQueue::flush(BitcodeReaderMetadataList &MetadataList) { 2153 while (!PHs.empty()) { 2154 PHs.front().replaceUseWith( 2155 MetadataList.getMetadataFwdRef(PHs.front().getID())); 2156 PHs.pop_front(); 2157 } 2158 } 2159 2160 /// Parse a METADATA_BLOCK. If ModuleLevel is true then we are parsing 2161 /// module level metadata. 2162 std::error_code BitcodeReader::parseMetadata(bool ModuleLevel) { 2163 assert((ModuleLevel || DeferredMetadataInfo.empty()) && 2164 "Must read all module-level metadata before function-level"); 2165 2166 IsMetadataMaterialized = true; 2167 unsigned NextMetadataNo = MetadataList.size(); 2168 2169 if (!ModuleLevel && MetadataList.hasFwdRefs()) 2170 return error("Invalid metadata: fwd refs into function blocks"); 2171 2172 if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID)) 2173 return error("Invalid record"); 2174 2175 std::vector<std::pair<DICompileUnit *, Metadata *>> CUSubprograms; 2176 SmallVector<uint64_t, 64> Record; 2177 2178 PlaceholderQueue Placeholders; 2179 bool IsDistinct; 2180 auto getMD = [&](unsigned ID) -> Metadata * { 2181 if (!IsDistinct) 2182 return MetadataList.getMetadataFwdRef(ID); 2183 if (auto *MD = MetadataList.getMetadataIfResolved(ID)) 2184 return MD; 2185 return &Placeholders.getPlaceholderOp(ID); 2186 }; 2187 auto getMDOrNull = [&](unsigned ID) -> Metadata * { 2188 if (ID) 2189 return getMD(ID - 1); 2190 return nullptr; 2191 }; 2192 auto getMDOrNullWithoutPlaceholders = [&](unsigned ID) -> Metadata * { 2193 if (ID) 2194 return MetadataList.getMetadataFwdRef(ID - 1); 2195 return nullptr; 2196 }; 2197 auto getMDString = [&](unsigned ID) -> MDString *{ 2198 // This requires that the ID is not really a forward reference. In 2199 // particular, the MDString must already have been resolved. 2200 return cast_or_null<MDString>(getMDOrNull(ID)); 2201 }; 2202 2203 // Support for old type refs. 2204 auto getDITypeRefOrNull = [&](unsigned ID) { 2205 return MetadataList.upgradeTypeRef(getMDOrNull(ID)); 2206 }; 2207 2208 #define GET_OR_DISTINCT(CLASS, ARGS) \ 2209 (IsDistinct ? CLASS::getDistinct ARGS : CLASS::get ARGS) 2210 2211 // Read all the records. 2212 while (true) { 2213 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2214 2215 switch (Entry.Kind) { 2216 case BitstreamEntry::SubBlock: // Handled for us already. 2217 case BitstreamEntry::Error: 2218 return error("Malformed block"); 2219 case BitstreamEntry::EndBlock: 2220 // Upgrade old-style CU <-> SP pointers to point from SP to CU. 2221 for (auto CU_SP : CUSubprograms) 2222 if (auto *SPs = dyn_cast_or_null<MDTuple>(CU_SP.second)) 2223 for (auto &Op : SPs->operands()) 2224 if (auto *SP = dyn_cast_or_null<MDNode>(Op)) 2225 SP->replaceOperandWith(7, CU_SP.first); 2226 2227 MetadataList.tryToResolveCycles(); 2228 Placeholders.flush(MetadataList); 2229 return std::error_code(); 2230 case BitstreamEntry::Record: 2231 // The interesting case. 2232 break; 2233 } 2234 2235 // Read a record. 2236 Record.clear(); 2237 StringRef Blob; 2238 unsigned Code = Stream.readRecord(Entry.ID, Record, &Blob); 2239 IsDistinct = false; 2240 switch (Code) { 2241 default: // Default behavior: ignore. 2242 break; 2243 case bitc::METADATA_NAME: { 2244 // Read name of the named metadata. 2245 SmallString<8> Name(Record.begin(), Record.end()); 2246 Record.clear(); 2247 Code = Stream.ReadCode(); 2248 2249 unsigned NextBitCode = Stream.readRecord(Code, Record); 2250 if (NextBitCode != bitc::METADATA_NAMED_NODE) 2251 return error("METADATA_NAME not followed by METADATA_NAMED_NODE"); 2252 2253 // Read named metadata elements. 2254 unsigned Size = Record.size(); 2255 NamedMDNode *NMD = TheModule->getOrInsertNamedMetadata(Name); 2256 for (unsigned i = 0; i != Size; ++i) { 2257 MDNode *MD = MetadataList.getMDNodeFwdRefOrNull(Record[i]); 2258 if (!MD) 2259 return error("Invalid record"); 2260 NMD->addOperand(MD); 2261 } 2262 break; 2263 } 2264 case bitc::METADATA_OLD_FN_NODE: { 2265 // FIXME: Remove in 4.0. 2266 // This is a LocalAsMetadata record, the only type of function-local 2267 // metadata. 2268 if (Record.size() % 2 == 1) 2269 return error("Invalid record"); 2270 2271 // If this isn't a LocalAsMetadata record, we're dropping it. This used 2272 // to be legal, but there's no upgrade path. 2273 auto dropRecord = [&] { 2274 MetadataList.assignValue(MDNode::get(Context, None), NextMetadataNo++); 2275 }; 2276 if (Record.size() != 2) { 2277 dropRecord(); 2278 break; 2279 } 2280 2281 Type *Ty = getTypeByID(Record[0]); 2282 if (Ty->isMetadataTy() || Ty->isVoidTy()) { 2283 dropRecord(); 2284 break; 2285 } 2286 2287 MetadataList.assignValue( 2288 LocalAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)), 2289 NextMetadataNo++); 2290 break; 2291 } 2292 case bitc::METADATA_OLD_NODE: { 2293 // FIXME: Remove in 4.0. 2294 if (Record.size() % 2 == 1) 2295 return error("Invalid record"); 2296 2297 unsigned Size = Record.size(); 2298 SmallVector<Metadata *, 8> Elts; 2299 for (unsigned i = 0; i != Size; i += 2) { 2300 Type *Ty = getTypeByID(Record[i]); 2301 if (!Ty) 2302 return error("Invalid record"); 2303 if (Ty->isMetadataTy()) 2304 Elts.push_back(getMD(Record[i + 1])); 2305 else if (!Ty->isVoidTy()) { 2306 auto *MD = 2307 ValueAsMetadata::get(ValueList.getValueFwdRef(Record[i + 1], Ty)); 2308 assert(isa<ConstantAsMetadata>(MD) && 2309 "Expected non-function-local metadata"); 2310 Elts.push_back(MD); 2311 } else 2312 Elts.push_back(nullptr); 2313 } 2314 MetadataList.assignValue(MDNode::get(Context, Elts), NextMetadataNo++); 2315 break; 2316 } 2317 case bitc::METADATA_VALUE: { 2318 if (Record.size() != 2) 2319 return error("Invalid record"); 2320 2321 Type *Ty = getTypeByID(Record[0]); 2322 if (Ty->isMetadataTy() || Ty->isVoidTy()) 2323 return error("Invalid record"); 2324 2325 MetadataList.assignValue( 2326 ValueAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)), 2327 NextMetadataNo++); 2328 break; 2329 } 2330 case bitc::METADATA_DISTINCT_NODE: 2331 IsDistinct = true; 2332 LLVM_FALLTHROUGH; 2333 case bitc::METADATA_NODE: { 2334 SmallVector<Metadata *, 8> Elts; 2335 Elts.reserve(Record.size()); 2336 for (unsigned ID : Record) 2337 Elts.push_back(getMDOrNull(ID)); 2338 MetadataList.assignValue(IsDistinct ? MDNode::getDistinct(Context, Elts) 2339 : MDNode::get(Context, Elts), 2340 NextMetadataNo++); 2341 break; 2342 } 2343 case bitc::METADATA_LOCATION: { 2344 if (Record.size() != 5) 2345 return error("Invalid record"); 2346 2347 IsDistinct = Record[0]; 2348 unsigned Line = Record[1]; 2349 unsigned Column = Record[2]; 2350 Metadata *Scope = getMD(Record[3]); 2351 Metadata *InlinedAt = getMDOrNull(Record[4]); 2352 MetadataList.assignValue( 2353 GET_OR_DISTINCT(DILocation, 2354 (Context, Line, Column, Scope, InlinedAt)), 2355 NextMetadataNo++); 2356 break; 2357 } 2358 case bitc::METADATA_GENERIC_DEBUG: { 2359 if (Record.size() < 4) 2360 return error("Invalid record"); 2361 2362 IsDistinct = Record[0]; 2363 unsigned Tag = Record[1]; 2364 unsigned Version = Record[2]; 2365 2366 if (Tag >= 1u << 16 || Version != 0) 2367 return error("Invalid record"); 2368 2369 auto *Header = getMDString(Record[3]); 2370 SmallVector<Metadata *, 8> DwarfOps; 2371 for (unsigned I = 4, E = Record.size(); I != E; ++I) 2372 DwarfOps.push_back(getMDOrNull(Record[I])); 2373 MetadataList.assignValue( 2374 GET_OR_DISTINCT(GenericDINode, (Context, Tag, Header, DwarfOps)), 2375 NextMetadataNo++); 2376 break; 2377 } 2378 case bitc::METADATA_SUBRANGE: { 2379 if (Record.size() != 3) 2380 return error("Invalid record"); 2381 2382 IsDistinct = Record[0]; 2383 MetadataList.assignValue( 2384 GET_OR_DISTINCT(DISubrange, 2385 (Context, Record[1], unrotateSign(Record[2]))), 2386 NextMetadataNo++); 2387 break; 2388 } 2389 case bitc::METADATA_ENUMERATOR: { 2390 if (Record.size() != 3) 2391 return error("Invalid record"); 2392 2393 IsDistinct = Record[0]; 2394 MetadataList.assignValue( 2395 GET_OR_DISTINCT(DIEnumerator, (Context, unrotateSign(Record[1]), 2396 getMDString(Record[2]))), 2397 NextMetadataNo++); 2398 break; 2399 } 2400 case bitc::METADATA_BASIC_TYPE: { 2401 if (Record.size() != 6) 2402 return error("Invalid record"); 2403 2404 IsDistinct = Record[0]; 2405 MetadataList.assignValue( 2406 GET_OR_DISTINCT(DIBasicType, 2407 (Context, Record[1], getMDString(Record[2]), 2408 Record[3], Record[4], Record[5])), 2409 NextMetadataNo++); 2410 break; 2411 } 2412 case bitc::METADATA_DERIVED_TYPE: { 2413 if (Record.size() != 12) 2414 return error("Invalid record"); 2415 2416 IsDistinct = Record[0]; 2417 DINode::DIFlags Flags = static_cast<DINode::DIFlags>(Record[10]); 2418 MetadataList.assignValue( 2419 GET_OR_DISTINCT(DIDerivedType, 2420 (Context, Record[1], getMDString(Record[2]), 2421 getMDOrNull(Record[3]), Record[4], 2422 getDITypeRefOrNull(Record[5]), 2423 getDITypeRefOrNull(Record[6]), Record[7], Record[8], 2424 Record[9], Flags, getDITypeRefOrNull(Record[11]))), 2425 NextMetadataNo++); 2426 break; 2427 } 2428 case bitc::METADATA_COMPOSITE_TYPE: { 2429 if (Record.size() != 16) 2430 return error("Invalid record"); 2431 2432 // If we have a UUID and this is not a forward declaration, lookup the 2433 // mapping. 2434 IsDistinct = Record[0] & 0x1; 2435 bool IsNotUsedInTypeRef = Record[0] >= 2; 2436 unsigned Tag = Record[1]; 2437 MDString *Name = getMDString(Record[2]); 2438 Metadata *File = getMDOrNull(Record[3]); 2439 unsigned Line = Record[4]; 2440 Metadata *Scope = getDITypeRefOrNull(Record[5]); 2441 Metadata *BaseType = getDITypeRefOrNull(Record[6]); 2442 uint64_t SizeInBits = Record[7]; 2443 uint64_t AlignInBits = Record[8]; 2444 uint64_t OffsetInBits = Record[9]; 2445 DINode::DIFlags Flags = static_cast<DINode::DIFlags>(Record[10]); 2446 Metadata *Elements = getMDOrNull(Record[11]); 2447 unsigned RuntimeLang = Record[12]; 2448 Metadata *VTableHolder = getDITypeRefOrNull(Record[13]); 2449 Metadata *TemplateParams = getMDOrNull(Record[14]); 2450 auto *Identifier = getMDString(Record[15]); 2451 DICompositeType *CT = nullptr; 2452 if (Identifier) 2453 CT = DICompositeType::buildODRType( 2454 Context, *Identifier, Tag, Name, File, Line, Scope, BaseType, 2455 SizeInBits, AlignInBits, OffsetInBits, Flags, Elements, RuntimeLang, 2456 VTableHolder, TemplateParams); 2457 2458 // Create a node if we didn't get a lazy ODR type. 2459 if (!CT) 2460 CT = GET_OR_DISTINCT(DICompositeType, 2461 (Context, Tag, Name, File, Line, Scope, BaseType, 2462 SizeInBits, AlignInBits, OffsetInBits, Flags, 2463 Elements, RuntimeLang, VTableHolder, 2464 TemplateParams, Identifier)); 2465 if (!IsNotUsedInTypeRef && Identifier) 2466 MetadataList.addTypeRef(*Identifier, *cast<DICompositeType>(CT)); 2467 2468 MetadataList.assignValue(CT, NextMetadataNo++); 2469 break; 2470 } 2471 case bitc::METADATA_SUBROUTINE_TYPE: { 2472 if (Record.size() < 3 || Record.size() > 4) 2473 return error("Invalid record"); 2474 bool IsOldTypeRefArray = Record[0] < 2; 2475 unsigned CC = (Record.size() > 3) ? Record[3] : 0; 2476 2477 IsDistinct = Record[0] & 0x1; 2478 DINode::DIFlags Flags = static_cast<DINode::DIFlags>(Record[1]); 2479 Metadata *Types = getMDOrNull(Record[2]); 2480 if (LLVM_UNLIKELY(IsOldTypeRefArray)) 2481 Types = MetadataList.upgradeTypeRefArray(Types); 2482 2483 MetadataList.assignValue( 2484 GET_OR_DISTINCT(DISubroutineType, (Context, Flags, CC, Types)), 2485 NextMetadataNo++); 2486 break; 2487 } 2488 2489 case bitc::METADATA_MODULE: { 2490 if (Record.size() != 6) 2491 return error("Invalid record"); 2492 2493 IsDistinct = Record[0]; 2494 MetadataList.assignValue( 2495 GET_OR_DISTINCT(DIModule, 2496 (Context, getMDOrNull(Record[1]), 2497 getMDString(Record[2]), getMDString(Record[3]), 2498 getMDString(Record[4]), getMDString(Record[5]))), 2499 NextMetadataNo++); 2500 break; 2501 } 2502 2503 case bitc::METADATA_FILE: { 2504 if (Record.size() != 3) 2505 return error("Invalid record"); 2506 2507 IsDistinct = Record[0]; 2508 MetadataList.assignValue( 2509 GET_OR_DISTINCT(DIFile, (Context, getMDString(Record[1]), 2510 getMDString(Record[2]))), 2511 NextMetadataNo++); 2512 break; 2513 } 2514 case bitc::METADATA_COMPILE_UNIT: { 2515 if (Record.size() < 14 || Record.size() > 17) 2516 return error("Invalid record"); 2517 2518 // Ignore Record[0], which indicates whether this compile unit is 2519 // distinct. It's always distinct. 2520 IsDistinct = true; 2521 auto *CU = DICompileUnit::getDistinct( 2522 Context, Record[1], getMDOrNull(Record[2]), getMDString(Record[3]), 2523 Record[4], getMDString(Record[5]), Record[6], getMDString(Record[7]), 2524 Record[8], getMDOrNull(Record[9]), getMDOrNull(Record[10]), 2525 getMDOrNull(Record[12]), getMDOrNull(Record[13]), 2526 Record.size() <= 15 ? nullptr : getMDOrNull(Record[15]), 2527 Record.size() <= 14 ? 0 : Record[14], 2528 Record.size() <= 16 ? true : Record[16]); 2529 2530 MetadataList.assignValue(CU, NextMetadataNo++); 2531 2532 // Move the Upgrade the list of subprograms. 2533 if (Metadata *SPs = getMDOrNullWithoutPlaceholders(Record[11])) 2534 CUSubprograms.push_back({CU, SPs}); 2535 break; 2536 } 2537 case bitc::METADATA_SUBPROGRAM: { 2538 if (Record.size() < 18 || Record.size() > 20) 2539 return error("Invalid record"); 2540 2541 IsDistinct = 2542 (Record[0] & 1) || Record[8]; // All definitions should be distinct. 2543 // Version 1 has a Function as Record[15]. 2544 // Version 2 has removed Record[15]. 2545 // Version 3 has the Unit as Record[15]. 2546 // Version 4 added thisAdjustment. 2547 bool HasUnit = Record[0] >= 2; 2548 if (HasUnit && Record.size() < 19) 2549 return error("Invalid record"); 2550 Metadata *CUorFn = getMDOrNull(Record[15]); 2551 unsigned Offset = Record.size() >= 19 ? 1 : 0; 2552 bool HasFn = Offset && !HasUnit; 2553 bool HasThisAdj = Record.size() >= 20; 2554 DISubprogram *SP = GET_OR_DISTINCT( 2555 DISubprogram, (Context, 2556 getDITypeRefOrNull(Record[1]), // scope 2557 getMDString(Record[2]), // name 2558 getMDString(Record[3]), // linkageName 2559 getMDOrNull(Record[4]), // file 2560 Record[5], // line 2561 getMDOrNull(Record[6]), // type 2562 Record[7], // isLocal 2563 Record[8], // isDefinition 2564 Record[9], // scopeLine 2565 getDITypeRefOrNull(Record[10]), // containingType 2566 Record[11], // virtuality 2567 Record[12], // virtualIndex 2568 HasThisAdj ? Record[19] : 0, // thisAdjustment 2569 static_cast<DINode::DIFlags>(Record[13] // flags 2570 ), 2571 Record[14], // isOptimized 2572 HasUnit ? CUorFn : nullptr, // unit 2573 getMDOrNull(Record[15 + Offset]), // templateParams 2574 getMDOrNull(Record[16 + Offset]), // declaration 2575 getMDOrNull(Record[17 + Offset]) // variables 2576 )); 2577 MetadataList.assignValue(SP, NextMetadataNo++); 2578 2579 // Upgrade sp->function mapping to function->sp mapping. 2580 if (HasFn) { 2581 if (auto *CMD = dyn_cast_or_null<ConstantAsMetadata>(CUorFn)) 2582 if (auto *F = dyn_cast<Function>(CMD->getValue())) { 2583 if (F->isMaterializable()) 2584 // Defer until materialized; unmaterialized functions may not have 2585 // metadata. 2586 FunctionsWithSPs[F] = SP; 2587 else if (!F->empty()) 2588 F->setSubprogram(SP); 2589 } 2590 } 2591 break; 2592 } 2593 case bitc::METADATA_LEXICAL_BLOCK: { 2594 if (Record.size() != 5) 2595 return error("Invalid record"); 2596 2597 IsDistinct = Record[0]; 2598 MetadataList.assignValue( 2599 GET_OR_DISTINCT(DILexicalBlock, 2600 (Context, getMDOrNull(Record[1]), 2601 getMDOrNull(Record[2]), Record[3], Record[4])), 2602 NextMetadataNo++); 2603 break; 2604 } 2605 case bitc::METADATA_LEXICAL_BLOCK_FILE: { 2606 if (Record.size() != 4) 2607 return error("Invalid record"); 2608 2609 IsDistinct = Record[0]; 2610 MetadataList.assignValue( 2611 GET_OR_DISTINCT(DILexicalBlockFile, 2612 (Context, getMDOrNull(Record[1]), 2613 getMDOrNull(Record[2]), Record[3])), 2614 NextMetadataNo++); 2615 break; 2616 } 2617 case bitc::METADATA_NAMESPACE: { 2618 if (Record.size() != 5) 2619 return error("Invalid record"); 2620 2621 IsDistinct = Record[0]; 2622 MetadataList.assignValue( 2623 GET_OR_DISTINCT(DINamespace, (Context, getMDOrNull(Record[1]), 2624 getMDOrNull(Record[2]), 2625 getMDString(Record[3]), Record[4])), 2626 NextMetadataNo++); 2627 break; 2628 } 2629 case bitc::METADATA_MACRO: { 2630 if (Record.size() != 5) 2631 return error("Invalid record"); 2632 2633 IsDistinct = Record[0]; 2634 MetadataList.assignValue( 2635 GET_OR_DISTINCT(DIMacro, 2636 (Context, Record[1], Record[2], 2637 getMDString(Record[3]), getMDString(Record[4]))), 2638 NextMetadataNo++); 2639 break; 2640 } 2641 case bitc::METADATA_MACRO_FILE: { 2642 if (Record.size() != 5) 2643 return error("Invalid record"); 2644 2645 IsDistinct = Record[0]; 2646 MetadataList.assignValue( 2647 GET_OR_DISTINCT(DIMacroFile, 2648 (Context, Record[1], Record[2], 2649 getMDOrNull(Record[3]), getMDOrNull(Record[4]))), 2650 NextMetadataNo++); 2651 break; 2652 } 2653 case bitc::METADATA_TEMPLATE_TYPE: { 2654 if (Record.size() != 3) 2655 return error("Invalid record"); 2656 2657 IsDistinct = Record[0]; 2658 MetadataList.assignValue(GET_OR_DISTINCT(DITemplateTypeParameter, 2659 (Context, getMDString(Record[1]), 2660 getDITypeRefOrNull(Record[2]))), 2661 NextMetadataNo++); 2662 break; 2663 } 2664 case bitc::METADATA_TEMPLATE_VALUE: { 2665 if (Record.size() != 5) 2666 return error("Invalid record"); 2667 2668 IsDistinct = Record[0]; 2669 MetadataList.assignValue( 2670 GET_OR_DISTINCT(DITemplateValueParameter, 2671 (Context, Record[1], getMDString(Record[2]), 2672 getDITypeRefOrNull(Record[3]), 2673 getMDOrNull(Record[4]))), 2674 NextMetadataNo++); 2675 break; 2676 } 2677 case bitc::METADATA_GLOBAL_VAR: { 2678 if (Record.size() != 11) 2679 return error("Invalid record"); 2680 2681 IsDistinct = Record[0]; 2682 2683 // Upgrade old metadata, which stored a global variable reference or a 2684 // ConstantInt here. 2685 Metadata *Expr = getMDOrNull(Record[9]); 2686 GlobalVariable *Attach = nullptr; 2687 if (auto *CMD = dyn_cast_or_null<ConstantAsMetadata>(Expr)) { 2688 if (auto *GV = dyn_cast<GlobalVariable>(CMD->getValue())) { 2689 Attach = GV; 2690 Expr = nullptr; 2691 } else if (auto *CI = dyn_cast<ConstantInt>(CMD->getValue())) { 2692 Expr = DIExpression::get(Context, 2693 {dwarf::DW_OP_constu, CI->getZExtValue(), 2694 dwarf::DW_OP_stack_value}); 2695 } else { 2696 Expr = nullptr; 2697 } 2698 } 2699 2700 DIGlobalVariable *DGV = GET_OR_DISTINCT( 2701 DIGlobalVariable, 2702 (Context, getMDOrNull(Record[1]), getMDString(Record[2]), 2703 getMDString(Record[3]), getMDOrNull(Record[4]), Record[5], 2704 getDITypeRefOrNull(Record[6]), Record[7], Record[8], Expr, 2705 getMDOrNull(Record[10]))); 2706 MetadataList.assignValue(DGV, NextMetadataNo++); 2707 2708 if (Attach) 2709 Attach->addDebugInfo(DGV); 2710 2711 break; 2712 } 2713 case bitc::METADATA_LOCAL_VAR: { 2714 // 10th field is for the obseleted 'inlinedAt:' field. 2715 if (Record.size() < 8 || Record.size() > 10) 2716 return error("Invalid record"); 2717 2718 // 2nd field used to be an artificial tag, either DW_TAG_auto_variable or 2719 // DW_TAG_arg_variable. 2720 IsDistinct = Record[0]; 2721 bool HasTag = Record.size() > 8; 2722 DINode::DIFlags Flags = static_cast<DINode::DIFlags>(Record[7 + HasTag]); 2723 MetadataList.assignValue( 2724 GET_OR_DISTINCT(DILocalVariable, 2725 (Context, getMDOrNull(Record[1 + HasTag]), 2726 getMDString(Record[2 + HasTag]), 2727 getMDOrNull(Record[3 + HasTag]), Record[4 + HasTag], 2728 getDITypeRefOrNull(Record[5 + HasTag]), 2729 Record[6 + HasTag], Flags)), 2730 NextMetadataNo++); 2731 break; 2732 } 2733 case bitc::METADATA_EXPRESSION: { 2734 if (Record.size() < 1) 2735 return error("Invalid record"); 2736 2737 IsDistinct = Record[0]; 2738 MetadataList.assignValue( 2739 GET_OR_DISTINCT(DIExpression, 2740 (Context, makeArrayRef(Record).slice(1))), 2741 NextMetadataNo++); 2742 break; 2743 } 2744 case bitc::METADATA_OBJC_PROPERTY: { 2745 if (Record.size() != 8) 2746 return error("Invalid record"); 2747 2748 IsDistinct = Record[0]; 2749 MetadataList.assignValue( 2750 GET_OR_DISTINCT(DIObjCProperty, 2751 (Context, getMDString(Record[1]), 2752 getMDOrNull(Record[2]), Record[3], 2753 getMDString(Record[4]), getMDString(Record[5]), 2754 Record[6], getDITypeRefOrNull(Record[7]))), 2755 NextMetadataNo++); 2756 break; 2757 } 2758 case bitc::METADATA_IMPORTED_ENTITY: { 2759 if (Record.size() != 6) 2760 return error("Invalid record"); 2761 2762 IsDistinct = Record[0]; 2763 MetadataList.assignValue( 2764 GET_OR_DISTINCT(DIImportedEntity, 2765 (Context, Record[1], getMDOrNull(Record[2]), 2766 getDITypeRefOrNull(Record[3]), Record[4], 2767 getMDString(Record[5]))), 2768 NextMetadataNo++); 2769 break; 2770 } 2771 case bitc::METADATA_STRING_OLD: { 2772 std::string String(Record.begin(), Record.end()); 2773 2774 // Test for upgrading !llvm.loop. 2775 HasSeenOldLoopTags |= mayBeOldLoopAttachmentTag(String); 2776 2777 Metadata *MD = MDString::get(Context, String); 2778 MetadataList.assignValue(MD, NextMetadataNo++); 2779 break; 2780 } 2781 case bitc::METADATA_STRINGS: 2782 if (std::error_code EC = 2783 parseMetadataStrings(Record, Blob, NextMetadataNo)) 2784 return EC; 2785 break; 2786 case bitc::METADATA_GLOBAL_DECL_ATTACHMENT: { 2787 if (Record.size() % 2 == 0) 2788 return error("Invalid record"); 2789 unsigned ValueID = Record[0]; 2790 if (ValueID >= ValueList.size()) 2791 return error("Invalid record"); 2792 if (auto *GO = dyn_cast<GlobalObject>(ValueList[ValueID])) 2793 parseGlobalObjectAttachment(*GO, ArrayRef<uint64_t>(Record).slice(1)); 2794 break; 2795 } 2796 case bitc::METADATA_KIND: { 2797 // Support older bitcode files that had METADATA_KIND records in a 2798 // block with METADATA_BLOCK_ID. 2799 if (std::error_code EC = parseMetadataKindRecord(Record)) 2800 return EC; 2801 break; 2802 } 2803 } 2804 } 2805 2806 #undef GET_OR_DISTINCT 2807 } 2808 2809 /// Parse the metadata kinds out of the METADATA_KIND_BLOCK. 2810 std::error_code BitcodeReader::parseMetadataKinds() { 2811 if (Stream.EnterSubBlock(bitc::METADATA_KIND_BLOCK_ID)) 2812 return error("Invalid record"); 2813 2814 SmallVector<uint64_t, 64> Record; 2815 2816 // Read all the records. 2817 while (true) { 2818 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2819 2820 switch (Entry.Kind) { 2821 case BitstreamEntry::SubBlock: // Handled for us already. 2822 case BitstreamEntry::Error: 2823 return error("Malformed block"); 2824 case BitstreamEntry::EndBlock: 2825 return std::error_code(); 2826 case BitstreamEntry::Record: 2827 // The interesting case. 2828 break; 2829 } 2830 2831 // Read a record. 2832 Record.clear(); 2833 unsigned Code = Stream.readRecord(Entry.ID, Record); 2834 switch (Code) { 2835 default: // Default behavior: ignore. 2836 break; 2837 case bitc::METADATA_KIND: { 2838 if (std::error_code EC = parseMetadataKindRecord(Record)) 2839 return EC; 2840 break; 2841 } 2842 } 2843 } 2844 } 2845 2846 /// Decode a signed value stored with the sign bit in the LSB for dense VBR 2847 /// encoding. 2848 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { 2849 if ((V & 1) == 0) 2850 return V >> 1; 2851 if (V != 1) 2852 return -(V >> 1); 2853 // There is no such thing as -0 with integers. "-0" really means MININT. 2854 return 1ULL << 63; 2855 } 2856 2857 /// Resolve all of the initializers for global values and aliases that we can. 2858 std::error_code BitcodeReader::resolveGlobalAndIndirectSymbolInits() { 2859 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist; 2860 std::vector<std::pair<GlobalIndirectSymbol*, unsigned> > 2861 IndirectSymbolInitWorklist; 2862 std::vector<std::pair<Function*, unsigned> > FunctionPrefixWorklist; 2863 std::vector<std::pair<Function*, unsigned> > FunctionPrologueWorklist; 2864 std::vector<std::pair<Function*, unsigned> > FunctionPersonalityFnWorklist; 2865 2866 GlobalInitWorklist.swap(GlobalInits); 2867 IndirectSymbolInitWorklist.swap(IndirectSymbolInits); 2868 FunctionPrefixWorklist.swap(FunctionPrefixes); 2869 FunctionPrologueWorklist.swap(FunctionPrologues); 2870 FunctionPersonalityFnWorklist.swap(FunctionPersonalityFns); 2871 2872 while (!GlobalInitWorklist.empty()) { 2873 unsigned ValID = GlobalInitWorklist.back().second; 2874 if (ValID >= ValueList.size()) { 2875 // Not ready to resolve this yet, it requires something later in the file. 2876 GlobalInits.push_back(GlobalInitWorklist.back()); 2877 } else { 2878 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2879 GlobalInitWorklist.back().first->setInitializer(C); 2880 else 2881 return error("Expected a constant"); 2882 } 2883 GlobalInitWorklist.pop_back(); 2884 } 2885 2886 while (!IndirectSymbolInitWorklist.empty()) { 2887 unsigned ValID = IndirectSymbolInitWorklist.back().second; 2888 if (ValID >= ValueList.size()) { 2889 IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back()); 2890 } else { 2891 Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]); 2892 if (!C) 2893 return error("Expected a constant"); 2894 GlobalIndirectSymbol *GIS = IndirectSymbolInitWorklist.back().first; 2895 if (isa<GlobalAlias>(GIS) && C->getType() != GIS->getType()) 2896 return error("Alias and aliasee types don't match"); 2897 GIS->setIndirectSymbol(C); 2898 } 2899 IndirectSymbolInitWorklist.pop_back(); 2900 } 2901 2902 while (!FunctionPrefixWorklist.empty()) { 2903 unsigned ValID = FunctionPrefixWorklist.back().second; 2904 if (ValID >= ValueList.size()) { 2905 FunctionPrefixes.push_back(FunctionPrefixWorklist.back()); 2906 } else { 2907 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2908 FunctionPrefixWorklist.back().first->setPrefixData(C); 2909 else 2910 return error("Expected a constant"); 2911 } 2912 FunctionPrefixWorklist.pop_back(); 2913 } 2914 2915 while (!FunctionPrologueWorklist.empty()) { 2916 unsigned ValID = FunctionPrologueWorklist.back().second; 2917 if (ValID >= ValueList.size()) { 2918 FunctionPrologues.push_back(FunctionPrologueWorklist.back()); 2919 } else { 2920 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2921 FunctionPrologueWorklist.back().first->setPrologueData(C); 2922 else 2923 return error("Expected a constant"); 2924 } 2925 FunctionPrologueWorklist.pop_back(); 2926 } 2927 2928 while (!FunctionPersonalityFnWorklist.empty()) { 2929 unsigned ValID = FunctionPersonalityFnWorklist.back().second; 2930 if (ValID >= ValueList.size()) { 2931 FunctionPersonalityFns.push_back(FunctionPersonalityFnWorklist.back()); 2932 } else { 2933 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2934 FunctionPersonalityFnWorklist.back().first->setPersonalityFn(C); 2935 else 2936 return error("Expected a constant"); 2937 } 2938 FunctionPersonalityFnWorklist.pop_back(); 2939 } 2940 2941 return std::error_code(); 2942 } 2943 2944 static APInt readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { 2945 SmallVector<uint64_t, 8> Words(Vals.size()); 2946 transform(Vals, Words.begin(), 2947 BitcodeReader::decodeSignRotatedValue); 2948 2949 return APInt(TypeBits, Words); 2950 } 2951 2952 std::error_code BitcodeReader::parseConstants() { 2953 if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 2954 return error("Invalid record"); 2955 2956 SmallVector<uint64_t, 64> Record; 2957 2958 // Read all the records for this value table. 2959 Type *CurTy = Type::getInt32Ty(Context); 2960 unsigned NextCstNo = ValueList.size(); 2961 2962 while (true) { 2963 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2964 2965 switch (Entry.Kind) { 2966 case BitstreamEntry::SubBlock: // Handled for us already. 2967 case BitstreamEntry::Error: 2968 return error("Malformed block"); 2969 case BitstreamEntry::EndBlock: 2970 if (NextCstNo != ValueList.size()) 2971 return error("Invalid constant reference"); 2972 2973 // Once all the constants have been read, go through and resolve forward 2974 // references. 2975 ValueList.resolveConstantForwardRefs(); 2976 return std::error_code(); 2977 case BitstreamEntry::Record: 2978 // The interesting case. 2979 break; 2980 } 2981 2982 // Read a record. 2983 Record.clear(); 2984 Type *VoidType = Type::getVoidTy(Context); 2985 Value *V = nullptr; 2986 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 2987 switch (BitCode) { 2988 default: // Default behavior: unknown constant 2989 case bitc::CST_CODE_UNDEF: // UNDEF 2990 V = UndefValue::get(CurTy); 2991 break; 2992 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 2993 if (Record.empty()) 2994 return error("Invalid record"); 2995 if (Record[0] >= TypeList.size() || !TypeList[Record[0]]) 2996 return error("Invalid record"); 2997 if (TypeList[Record[0]] == VoidType) 2998 return error("Invalid constant type"); 2999 CurTy = TypeList[Record[0]]; 3000 continue; // Skip the ValueList manipulation. 3001 case bitc::CST_CODE_NULL: // NULL 3002 V = Constant::getNullValue(CurTy); 3003 break; 3004 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 3005 if (!CurTy->isIntegerTy() || Record.empty()) 3006 return error("Invalid record"); 3007 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); 3008 break; 3009 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 3010 if (!CurTy->isIntegerTy() || Record.empty()) 3011 return error("Invalid record"); 3012 3013 APInt VInt = 3014 readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth()); 3015 V = ConstantInt::get(Context, VInt); 3016 3017 break; 3018 } 3019 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 3020 if (Record.empty()) 3021 return error("Invalid record"); 3022 if (CurTy->isHalfTy()) 3023 V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf, 3024 APInt(16, (uint16_t)Record[0]))); 3025 else if (CurTy->isFloatTy()) 3026 V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle, 3027 APInt(32, (uint32_t)Record[0]))); 3028 else if (CurTy->isDoubleTy()) 3029 V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble, 3030 APInt(64, Record[0]))); 3031 else if (CurTy->isX86_FP80Ty()) { 3032 // Bits are not stored the same way as a normal i80 APInt, compensate. 3033 uint64_t Rearrange[2]; 3034 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 3035 Rearrange[1] = Record[0] >> 48; 3036 V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended, 3037 APInt(80, Rearrange))); 3038 } else if (CurTy->isFP128Ty()) 3039 V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad, 3040 APInt(128, Record))); 3041 else if (CurTy->isPPC_FP128Ty()) 3042 V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble, 3043 APInt(128, Record))); 3044 else 3045 V = UndefValue::get(CurTy); 3046 break; 3047 } 3048 3049 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 3050 if (Record.empty()) 3051 return error("Invalid record"); 3052 3053 unsigned Size = Record.size(); 3054 SmallVector<Constant*, 16> Elts; 3055 3056 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 3057 for (unsigned i = 0; i != Size; ++i) 3058 Elts.push_back(ValueList.getConstantFwdRef(Record[i], 3059 STy->getElementType(i))); 3060 V = ConstantStruct::get(STy, Elts); 3061 } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) { 3062 Type *EltTy = ATy->getElementType(); 3063 for (unsigned i = 0; i != Size; ++i) 3064 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 3065 V = ConstantArray::get(ATy, Elts); 3066 } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) { 3067 Type *EltTy = VTy->getElementType(); 3068 for (unsigned i = 0; i != Size; ++i) 3069 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 3070 V = ConstantVector::get(Elts); 3071 } else { 3072 V = UndefValue::get(CurTy); 3073 } 3074 break; 3075 } 3076 case bitc::CST_CODE_STRING: // STRING: [values] 3077 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 3078 if (Record.empty()) 3079 return error("Invalid record"); 3080 3081 SmallString<16> Elts(Record.begin(), Record.end()); 3082 V = ConstantDataArray::getString(Context, Elts, 3083 BitCode == bitc::CST_CODE_CSTRING); 3084 break; 3085 } 3086 case bitc::CST_CODE_DATA: {// DATA: [n x value] 3087 if (Record.empty()) 3088 return error("Invalid record"); 3089 3090 Type *EltTy = cast<SequentialType>(CurTy)->getElementType(); 3091 if (EltTy->isIntegerTy(8)) { 3092 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); 3093 if (isa<VectorType>(CurTy)) 3094 V = ConstantDataVector::get(Context, Elts); 3095 else 3096 V = ConstantDataArray::get(Context, Elts); 3097 } else if (EltTy->isIntegerTy(16)) { 3098 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 3099 if (isa<VectorType>(CurTy)) 3100 V = ConstantDataVector::get(Context, Elts); 3101 else 3102 V = ConstantDataArray::get(Context, Elts); 3103 } else if (EltTy->isIntegerTy(32)) { 3104 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 3105 if (isa<VectorType>(CurTy)) 3106 V = ConstantDataVector::get(Context, Elts); 3107 else 3108 V = ConstantDataArray::get(Context, Elts); 3109 } else if (EltTy->isIntegerTy(64)) { 3110 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 3111 if (isa<VectorType>(CurTy)) 3112 V = ConstantDataVector::get(Context, Elts); 3113 else 3114 V = ConstantDataArray::get(Context, Elts); 3115 } else if (EltTy->isHalfTy()) { 3116 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 3117 if (isa<VectorType>(CurTy)) 3118 V = ConstantDataVector::getFP(Context, Elts); 3119 else 3120 V = ConstantDataArray::getFP(Context, Elts); 3121 } else if (EltTy->isFloatTy()) { 3122 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 3123 if (isa<VectorType>(CurTy)) 3124 V = ConstantDataVector::getFP(Context, Elts); 3125 else 3126 V = ConstantDataArray::getFP(Context, Elts); 3127 } else if (EltTy->isDoubleTy()) { 3128 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 3129 if (isa<VectorType>(CurTy)) 3130 V = ConstantDataVector::getFP(Context, Elts); 3131 else 3132 V = ConstantDataArray::getFP(Context, Elts); 3133 } else { 3134 return error("Invalid type for value"); 3135 } 3136 break; 3137 } 3138 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 3139 if (Record.size() < 3) 3140 return error("Invalid record"); 3141 int Opc = getDecodedBinaryOpcode(Record[0], CurTy); 3142 if (Opc < 0) { 3143 V = UndefValue::get(CurTy); // Unknown binop. 3144 } else { 3145 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 3146 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy); 3147 unsigned Flags = 0; 3148 if (Record.size() >= 4) { 3149 if (Opc == Instruction::Add || 3150 Opc == Instruction::Sub || 3151 Opc == Instruction::Mul || 3152 Opc == Instruction::Shl) { 3153 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 3154 Flags |= OverflowingBinaryOperator::NoSignedWrap; 3155 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 3156 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 3157 } else if (Opc == Instruction::SDiv || 3158 Opc == Instruction::UDiv || 3159 Opc == Instruction::LShr || 3160 Opc == Instruction::AShr) { 3161 if (Record[3] & (1 << bitc::PEO_EXACT)) 3162 Flags |= SDivOperator::IsExact; 3163 } 3164 } 3165 V = ConstantExpr::get(Opc, LHS, RHS, Flags); 3166 } 3167 break; 3168 } 3169 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 3170 if (Record.size() < 3) 3171 return error("Invalid record"); 3172 int Opc = getDecodedCastOpcode(Record[0]); 3173 if (Opc < 0) { 3174 V = UndefValue::get(CurTy); // Unknown cast. 3175 } else { 3176 Type *OpTy = getTypeByID(Record[1]); 3177 if (!OpTy) 3178 return error("Invalid record"); 3179 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy); 3180 V = UpgradeBitCastExpr(Opc, Op, CurTy); 3181 if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy); 3182 } 3183 break; 3184 } 3185 case bitc::CST_CODE_CE_INBOUNDS_GEP: 3186 case bitc::CST_CODE_CE_GEP: { // CE_GEP: [n x operands] 3187 unsigned OpNum = 0; 3188 Type *PointeeType = nullptr; 3189 if (Record.size() % 2) 3190 PointeeType = getTypeByID(Record[OpNum++]); 3191 SmallVector<Constant*, 16> Elts; 3192 while (OpNum != Record.size()) { 3193 Type *ElTy = getTypeByID(Record[OpNum++]); 3194 if (!ElTy) 3195 return error("Invalid record"); 3196 Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy)); 3197 } 3198 3199 if (PointeeType && 3200 PointeeType != 3201 cast<SequentialType>(Elts[0]->getType()->getScalarType()) 3202 ->getElementType()) 3203 return error("Explicit gep operator type does not match pointee type " 3204 "of pointer operand"); 3205 3206 if (Elts.size() < 1) 3207 return error("Invalid gep with no operands"); 3208 3209 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 3210 V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices, 3211 BitCode == 3212 bitc::CST_CODE_CE_INBOUNDS_GEP); 3213 break; 3214 } 3215 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] 3216 if (Record.size() < 3) 3217 return error("Invalid record"); 3218 3219 Type *SelectorTy = Type::getInt1Ty(Context); 3220 3221 // The selector might be an i1 or an <n x i1> 3222 // Get the type from the ValueList before getting a forward ref. 3223 if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) 3224 if (Value *V = ValueList[Record[0]]) 3225 if (SelectorTy != V->getType()) 3226 SelectorTy = VectorType::get(SelectorTy, VTy->getNumElements()); 3227 3228 V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0], 3229 SelectorTy), 3230 ValueList.getConstantFwdRef(Record[1],CurTy), 3231 ValueList.getConstantFwdRef(Record[2],CurTy)); 3232 break; 3233 } 3234 case bitc::CST_CODE_CE_EXTRACTELT 3235 : { // CE_EXTRACTELT: [opty, opval, opty, opval] 3236 if (Record.size() < 3) 3237 return error("Invalid record"); 3238 VectorType *OpTy = 3239 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 3240 if (!OpTy) 3241 return error("Invalid record"); 3242 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 3243 Constant *Op1 = nullptr; 3244 if (Record.size() == 4) { 3245 Type *IdxTy = getTypeByID(Record[2]); 3246 if (!IdxTy) 3247 return error("Invalid record"); 3248 Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy); 3249 } else // TODO: Remove with llvm 4.0 3250 Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 3251 if (!Op1) 3252 return error("Invalid record"); 3253 V = ConstantExpr::getExtractElement(Op0, Op1); 3254 break; 3255 } 3256 case bitc::CST_CODE_CE_INSERTELT 3257 : { // CE_INSERTELT: [opval, opval, opty, opval] 3258 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 3259 if (Record.size() < 3 || !OpTy) 3260 return error("Invalid record"); 3261 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 3262 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], 3263 OpTy->getElementType()); 3264 Constant *Op2 = nullptr; 3265 if (Record.size() == 4) { 3266 Type *IdxTy = getTypeByID(Record[2]); 3267 if (!IdxTy) 3268 return error("Invalid record"); 3269 Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy); 3270 } else // TODO: Remove with llvm 4.0 3271 Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 3272 if (!Op2) 3273 return error("Invalid record"); 3274 V = ConstantExpr::getInsertElement(Op0, Op1, Op2); 3275 break; 3276 } 3277 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 3278 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 3279 if (Record.size() < 3 || !OpTy) 3280 return error("Invalid record"); 3281 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 3282 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy); 3283 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 3284 OpTy->getNumElements()); 3285 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy); 3286 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 3287 break; 3288 } 3289 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 3290 VectorType *RTy = dyn_cast<VectorType>(CurTy); 3291 VectorType *OpTy = 3292 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 3293 if (Record.size() < 4 || !RTy || !OpTy) 3294 return error("Invalid record"); 3295 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 3296 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 3297 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 3298 RTy->getNumElements()); 3299 Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy); 3300 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 3301 break; 3302 } 3303 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 3304 if (Record.size() < 4) 3305 return error("Invalid record"); 3306 Type *OpTy = getTypeByID(Record[0]); 3307 if (!OpTy) 3308 return error("Invalid record"); 3309 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 3310 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 3311 3312 if (OpTy->isFPOrFPVectorTy()) 3313 V = ConstantExpr::getFCmp(Record[3], Op0, Op1); 3314 else 3315 V = ConstantExpr::getICmp(Record[3], Op0, Op1); 3316 break; 3317 } 3318 // This maintains backward compatibility, pre-asm dialect keywords. 3319 // FIXME: Remove with the 4.0 release. 3320 case bitc::CST_CODE_INLINEASM_OLD: { 3321 if (Record.size() < 2) 3322 return error("Invalid record"); 3323 std::string AsmStr, ConstrStr; 3324 bool HasSideEffects = Record[0] & 1; 3325 bool IsAlignStack = Record[0] >> 1; 3326 unsigned AsmStrSize = Record[1]; 3327 if (2+AsmStrSize >= Record.size()) 3328 return error("Invalid record"); 3329 unsigned ConstStrSize = Record[2+AsmStrSize]; 3330 if (3+AsmStrSize+ConstStrSize > Record.size()) 3331 return error("Invalid record"); 3332 3333 for (unsigned i = 0; i != AsmStrSize; ++i) 3334 AsmStr += (char)Record[2+i]; 3335 for (unsigned i = 0; i != ConstStrSize; ++i) 3336 ConstrStr += (char)Record[3+AsmStrSize+i]; 3337 PointerType *PTy = cast<PointerType>(CurTy); 3338 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 3339 AsmStr, ConstrStr, HasSideEffects, IsAlignStack); 3340 break; 3341 } 3342 // This version adds support for the asm dialect keywords (e.g., 3343 // inteldialect). 3344 case bitc::CST_CODE_INLINEASM: { 3345 if (Record.size() < 2) 3346 return error("Invalid record"); 3347 std::string AsmStr, ConstrStr; 3348 bool HasSideEffects = Record[0] & 1; 3349 bool IsAlignStack = (Record[0] >> 1) & 1; 3350 unsigned AsmDialect = Record[0] >> 2; 3351 unsigned AsmStrSize = Record[1]; 3352 if (2+AsmStrSize >= Record.size()) 3353 return error("Invalid record"); 3354 unsigned ConstStrSize = Record[2+AsmStrSize]; 3355 if (3+AsmStrSize+ConstStrSize > Record.size()) 3356 return error("Invalid record"); 3357 3358 for (unsigned i = 0; i != AsmStrSize; ++i) 3359 AsmStr += (char)Record[2+i]; 3360 for (unsigned i = 0; i != ConstStrSize; ++i) 3361 ConstrStr += (char)Record[3+AsmStrSize+i]; 3362 PointerType *PTy = cast<PointerType>(CurTy); 3363 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 3364 AsmStr, ConstrStr, HasSideEffects, IsAlignStack, 3365 InlineAsm::AsmDialect(AsmDialect)); 3366 break; 3367 } 3368 case bitc::CST_CODE_BLOCKADDRESS:{ 3369 if (Record.size() < 3) 3370 return error("Invalid record"); 3371 Type *FnTy = getTypeByID(Record[0]); 3372 if (!FnTy) 3373 return error("Invalid record"); 3374 Function *Fn = 3375 dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy)); 3376 if (!Fn) 3377 return error("Invalid record"); 3378 3379 // If the function is already parsed we can insert the block address right 3380 // away. 3381 BasicBlock *BB; 3382 unsigned BBID = Record[2]; 3383 if (!BBID) 3384 // Invalid reference to entry block. 3385 return error("Invalid ID"); 3386 if (!Fn->empty()) { 3387 Function::iterator BBI = Fn->begin(), BBE = Fn->end(); 3388 for (size_t I = 0, E = BBID; I != E; ++I) { 3389 if (BBI == BBE) 3390 return error("Invalid ID"); 3391 ++BBI; 3392 } 3393 BB = &*BBI; 3394 } else { 3395 // Otherwise insert a placeholder and remember it so it can be inserted 3396 // when the function is parsed. 3397 auto &FwdBBs = BasicBlockFwdRefs[Fn]; 3398 if (FwdBBs.empty()) 3399 BasicBlockFwdRefQueue.push_back(Fn); 3400 if (FwdBBs.size() < BBID + 1) 3401 FwdBBs.resize(BBID + 1); 3402 if (!FwdBBs[BBID]) 3403 FwdBBs[BBID] = BasicBlock::Create(Context); 3404 BB = FwdBBs[BBID]; 3405 } 3406 V = BlockAddress::get(Fn, BB); 3407 break; 3408 } 3409 } 3410 3411 ValueList.assignValue(V, NextCstNo); 3412 ++NextCstNo; 3413 } 3414 } 3415 3416 std::error_code BitcodeReader::parseUseLists() { 3417 if (Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 3418 return error("Invalid record"); 3419 3420 // Read all the records. 3421 SmallVector<uint64_t, 64> Record; 3422 3423 while (true) { 3424 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 3425 3426 switch (Entry.Kind) { 3427 case BitstreamEntry::SubBlock: // Handled for us already. 3428 case BitstreamEntry::Error: 3429 return error("Malformed block"); 3430 case BitstreamEntry::EndBlock: 3431 return std::error_code(); 3432 case BitstreamEntry::Record: 3433 // The interesting case. 3434 break; 3435 } 3436 3437 // Read a use list record. 3438 Record.clear(); 3439 bool IsBB = false; 3440 switch (Stream.readRecord(Entry.ID, Record)) { 3441 default: // Default behavior: unknown type. 3442 break; 3443 case bitc::USELIST_CODE_BB: 3444 IsBB = true; 3445 LLVM_FALLTHROUGH; 3446 case bitc::USELIST_CODE_DEFAULT: { 3447 unsigned RecordLength = Record.size(); 3448 if (RecordLength < 3) 3449 // Records should have at least an ID and two indexes. 3450 return error("Invalid record"); 3451 unsigned ID = Record.back(); 3452 Record.pop_back(); 3453 3454 Value *V; 3455 if (IsBB) { 3456 assert(ID < FunctionBBs.size() && "Basic block not found"); 3457 V = FunctionBBs[ID]; 3458 } else 3459 V = ValueList[ID]; 3460 unsigned NumUses = 0; 3461 SmallDenseMap<const Use *, unsigned, 16> Order; 3462 for (const Use &U : V->materialized_uses()) { 3463 if (++NumUses > Record.size()) 3464 break; 3465 Order[&U] = Record[NumUses - 1]; 3466 } 3467 if (Order.size() != Record.size() || NumUses > Record.size()) 3468 // Mismatches can happen if the functions are being materialized lazily 3469 // (out-of-order), or a value has been upgraded. 3470 break; 3471 3472 V->sortUseList([&](const Use &L, const Use &R) { 3473 return Order.lookup(&L) < Order.lookup(&R); 3474 }); 3475 break; 3476 } 3477 } 3478 } 3479 } 3480 3481 /// When we see the block for metadata, remember where it is and then skip it. 3482 /// This lets us lazily deserialize the metadata. 3483 std::error_code BitcodeReader::rememberAndSkipMetadata() { 3484 // Save the current stream state. 3485 uint64_t CurBit = Stream.GetCurrentBitNo(); 3486 DeferredMetadataInfo.push_back(CurBit); 3487 3488 // Skip over the block for now. 3489 if (Stream.SkipBlock()) 3490 return error("Invalid record"); 3491 return std::error_code(); 3492 } 3493 3494 std::error_code BitcodeReader::materializeMetadata() { 3495 for (uint64_t BitPos : DeferredMetadataInfo) { 3496 // Move the bit stream to the saved position. 3497 Stream.JumpToBit(BitPos); 3498 if (std::error_code EC = parseMetadata(true)) 3499 return EC; 3500 } 3501 DeferredMetadataInfo.clear(); 3502 return std::error_code(); 3503 } 3504 3505 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; } 3506 3507 /// When we see the block for a function body, remember where it is and then 3508 /// skip it. This lets us lazily deserialize the functions. 3509 std::error_code BitcodeReader::rememberAndSkipFunctionBody() { 3510 // Get the function we are talking about. 3511 if (FunctionsWithBodies.empty()) 3512 return error("Insufficient function protos"); 3513 3514 Function *Fn = FunctionsWithBodies.back(); 3515 FunctionsWithBodies.pop_back(); 3516 3517 // Save the current stream state. 3518 uint64_t CurBit = Stream.GetCurrentBitNo(); 3519 assert( 3520 (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) && 3521 "Mismatch between VST and scanned function offsets"); 3522 DeferredFunctionInfo[Fn] = CurBit; 3523 3524 // Skip over the function block for now. 3525 if (Stream.SkipBlock()) 3526 return error("Invalid record"); 3527 return std::error_code(); 3528 } 3529 3530 std::error_code BitcodeReader::globalCleanup() { 3531 // Patch the initializers for globals and aliases up. 3532 resolveGlobalAndIndirectSymbolInits(); 3533 if (!GlobalInits.empty() || !IndirectSymbolInits.empty()) 3534 return error("Malformed global initializer set"); 3535 3536 // Look for intrinsic functions which need to be upgraded at some point 3537 for (Function &F : *TheModule) { 3538 Function *NewFn; 3539 if (UpgradeIntrinsicFunction(&F, NewFn)) 3540 UpgradedIntrinsics[&F] = NewFn; 3541 else if (auto Remangled = Intrinsic::remangleIntrinsicFunction(&F)) 3542 // Some types could be renamed during loading if several modules are 3543 // loaded in the same LLVMContext (LTO scenario). In this case we should 3544 // remangle intrinsics names as well. 3545 RemangledIntrinsics[&F] = Remangled.getValue(); 3546 } 3547 3548 // Look for global variables which need to be renamed. 3549 for (GlobalVariable &GV : TheModule->globals()) 3550 UpgradeGlobalVariable(&GV); 3551 3552 // Force deallocation of memory for these vectors to favor the client that 3553 // want lazy deserialization. 3554 std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits); 3555 std::vector<std::pair<GlobalIndirectSymbol*, unsigned> >().swap( 3556 IndirectSymbolInits); 3557 return std::error_code(); 3558 } 3559 3560 /// Support for lazy parsing of function bodies. This is required if we 3561 /// either have an old bitcode file without a VST forward declaration record, 3562 /// or if we have an anonymous function being materialized, since anonymous 3563 /// functions do not have a name and are therefore not in the VST. 3564 std::error_code BitcodeReader::rememberAndSkipFunctionBodies() { 3565 Stream.JumpToBit(NextUnreadBit); 3566 3567 if (Stream.AtEndOfStream()) 3568 return error("Could not find function in stream"); 3569 3570 if (!SeenFirstFunctionBody) 3571 return error("Trying to materialize functions before seeing function blocks"); 3572 3573 // An old bitcode file with the symbol table at the end would have 3574 // finished the parse greedily. 3575 assert(SeenValueSymbolTable); 3576 3577 SmallVector<uint64_t, 64> Record; 3578 3579 while (true) { 3580 BitstreamEntry Entry = Stream.advance(); 3581 switch (Entry.Kind) { 3582 default: 3583 return error("Expect SubBlock"); 3584 case BitstreamEntry::SubBlock: 3585 switch (Entry.ID) { 3586 default: 3587 return error("Expect function block"); 3588 case bitc::FUNCTION_BLOCK_ID: 3589 if (std::error_code EC = rememberAndSkipFunctionBody()) 3590 return EC; 3591 NextUnreadBit = Stream.GetCurrentBitNo(); 3592 return std::error_code(); 3593 } 3594 } 3595 } 3596 } 3597 3598 std::error_code BitcodeReader::parseBitcodeVersion() { 3599 if (Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID)) 3600 return error("Invalid record"); 3601 3602 // Read all the records. 3603 SmallVector<uint64_t, 64> Record; 3604 3605 while (true) { 3606 BitstreamEntry Entry = Stream.advance(); 3607 3608 switch (Entry.Kind) { 3609 default: 3610 case BitstreamEntry::Error: 3611 return error("Malformed block"); 3612 case BitstreamEntry::EndBlock: 3613 return std::error_code(); 3614 case BitstreamEntry::Record: 3615 // The interesting case. 3616 break; 3617 } 3618 3619 // Read a record. 3620 Record.clear(); 3621 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 3622 switch (BitCode) { 3623 default: // Default behavior: reject 3624 return error("Invalid value"); 3625 case bitc::IDENTIFICATION_CODE_STRING: { // IDENTIFICATION: [strchr x 3626 // N] 3627 convertToString(Record, 0, ProducerIdentification); 3628 break; 3629 } 3630 case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#] 3631 unsigned epoch = (unsigned)Record[0]; 3632 if (epoch != bitc::BITCODE_CURRENT_EPOCH) { 3633 return error( 3634 Twine("Incompatible epoch: Bitcode '") + Twine(epoch) + 3635 "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'"); 3636 } 3637 } 3638 } 3639 } 3640 } 3641 3642 std::error_code BitcodeReader::parseModule(uint64_t ResumeBit, 3643 bool ShouldLazyLoadMetadata) { 3644 if (ResumeBit) 3645 Stream.JumpToBit(ResumeBit); 3646 else if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 3647 return error("Invalid record"); 3648 3649 SmallVector<uint64_t, 64> Record; 3650 std::vector<std::string> SectionTable; 3651 std::vector<std::string> GCTable; 3652 3653 // Read all the records for this module. 3654 while (true) { 3655 BitstreamEntry Entry = Stream.advance(); 3656 3657 switch (Entry.Kind) { 3658 case BitstreamEntry::Error: 3659 return error("Malformed block"); 3660 case BitstreamEntry::EndBlock: 3661 return globalCleanup(); 3662 3663 case BitstreamEntry::SubBlock: 3664 switch (Entry.ID) { 3665 default: // Skip unknown content. 3666 if (Stream.SkipBlock()) 3667 return error("Invalid record"); 3668 break; 3669 case bitc::BLOCKINFO_BLOCK_ID: 3670 if (Stream.ReadBlockInfoBlock()) 3671 return error("Malformed block"); 3672 break; 3673 case bitc::PARAMATTR_BLOCK_ID: 3674 if (std::error_code EC = parseAttributeBlock()) 3675 return EC; 3676 break; 3677 case bitc::PARAMATTR_GROUP_BLOCK_ID: 3678 if (std::error_code EC = parseAttributeGroupBlock()) 3679 return EC; 3680 break; 3681 case bitc::TYPE_BLOCK_ID_NEW: 3682 if (std::error_code EC = parseTypeTable()) 3683 return EC; 3684 break; 3685 case bitc::VALUE_SYMTAB_BLOCK_ID: 3686 if (!SeenValueSymbolTable) { 3687 // Either this is an old form VST without function index and an 3688 // associated VST forward declaration record (which would have caused 3689 // the VST to be jumped to and parsed before it was encountered 3690 // normally in the stream), or there were no function blocks to 3691 // trigger an earlier parsing of the VST. 3692 assert(VSTOffset == 0 || FunctionsWithBodies.empty()); 3693 if (std::error_code EC = parseValueSymbolTable()) 3694 return EC; 3695 SeenValueSymbolTable = true; 3696 } else { 3697 // We must have had a VST forward declaration record, which caused 3698 // the parser to jump to and parse the VST earlier. 3699 assert(VSTOffset > 0); 3700 if (Stream.SkipBlock()) 3701 return error("Invalid record"); 3702 } 3703 break; 3704 case bitc::CONSTANTS_BLOCK_ID: 3705 if (std::error_code EC = parseConstants()) 3706 return EC; 3707 if (std::error_code EC = resolveGlobalAndIndirectSymbolInits()) 3708 return EC; 3709 break; 3710 case bitc::METADATA_BLOCK_ID: 3711 if (ShouldLazyLoadMetadata && !IsMetadataMaterialized) { 3712 if (std::error_code EC = rememberAndSkipMetadata()) 3713 return EC; 3714 break; 3715 } 3716 assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata"); 3717 if (std::error_code EC = parseMetadata(true)) 3718 return EC; 3719 break; 3720 case bitc::METADATA_KIND_BLOCK_ID: 3721 if (std::error_code EC = parseMetadataKinds()) 3722 return EC; 3723 break; 3724 case bitc::FUNCTION_BLOCK_ID: 3725 // If this is the first function body we've seen, reverse the 3726 // FunctionsWithBodies list. 3727 if (!SeenFirstFunctionBody) { 3728 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 3729 if (std::error_code EC = globalCleanup()) 3730 return EC; 3731 SeenFirstFunctionBody = true; 3732 } 3733 3734 if (VSTOffset > 0) { 3735 // If we have a VST forward declaration record, make sure we 3736 // parse the VST now if we haven't already. It is needed to 3737 // set up the DeferredFunctionInfo vector for lazy reading. 3738 if (!SeenValueSymbolTable) { 3739 if (std::error_code EC = 3740 BitcodeReader::parseValueSymbolTable(VSTOffset)) 3741 return EC; 3742 SeenValueSymbolTable = true; 3743 // Fall through so that we record the NextUnreadBit below. 3744 // This is necessary in case we have an anonymous function that 3745 // is later materialized. Since it will not have a VST entry we 3746 // need to fall back to the lazy parse to find its offset. 3747 } else { 3748 // If we have a VST forward declaration record, but have already 3749 // parsed the VST (just above, when the first function body was 3750 // encountered here), then we are resuming the parse after 3751 // materializing functions. The ResumeBit points to the 3752 // start of the last function block recorded in the 3753 // DeferredFunctionInfo map. Skip it. 3754 if (Stream.SkipBlock()) 3755 return error("Invalid record"); 3756 continue; 3757 } 3758 } 3759 3760 // Support older bitcode files that did not have the function 3761 // index in the VST, nor a VST forward declaration record, as 3762 // well as anonymous functions that do not have VST entries. 3763 // Build the DeferredFunctionInfo vector on the fly. 3764 if (std::error_code EC = rememberAndSkipFunctionBody()) 3765 return EC; 3766 3767 // Suspend parsing when we reach the function bodies. Subsequent 3768 // materialization calls will resume it when necessary. If the bitcode 3769 // file is old, the symbol table will be at the end instead and will not 3770 // have been seen yet. In this case, just finish the parse now. 3771 if (SeenValueSymbolTable) { 3772 NextUnreadBit = Stream.GetCurrentBitNo(); 3773 // After the VST has been parsed, we need to make sure intrinsic name 3774 // are auto-upgraded. 3775 return globalCleanup(); 3776 } 3777 break; 3778 case bitc::USELIST_BLOCK_ID: 3779 if (std::error_code EC = parseUseLists()) 3780 return EC; 3781 break; 3782 case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID: 3783 if (std::error_code EC = parseOperandBundleTags()) 3784 return EC; 3785 break; 3786 } 3787 continue; 3788 3789 case BitstreamEntry::Record: 3790 // The interesting case. 3791 break; 3792 } 3793 3794 // Read a record. 3795 auto BitCode = Stream.readRecord(Entry.ID, Record); 3796 switch (BitCode) { 3797 default: break; // Default behavior, ignore unknown content. 3798 case bitc::MODULE_CODE_VERSION: { // VERSION: [version#] 3799 if (Record.size() < 1) 3800 return error("Invalid record"); 3801 // Only version #0 and #1 are supported so far. 3802 unsigned module_version = Record[0]; 3803 switch (module_version) { 3804 default: 3805 return error("Invalid value"); 3806 case 0: 3807 UseRelativeIDs = false; 3808 break; 3809 case 1: 3810 UseRelativeIDs = true; 3811 break; 3812 } 3813 break; 3814 } 3815 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 3816 std::string S; 3817 if (convertToString(Record, 0, S)) 3818 return error("Invalid record"); 3819 TheModule->setTargetTriple(S); 3820 break; 3821 } 3822 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 3823 std::string S; 3824 if (convertToString(Record, 0, S)) 3825 return error("Invalid record"); 3826 TheModule->setDataLayout(S); 3827 break; 3828 } 3829 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 3830 std::string S; 3831 if (convertToString(Record, 0, S)) 3832 return error("Invalid record"); 3833 TheModule->setModuleInlineAsm(S); 3834 break; 3835 } 3836 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 3837 // FIXME: Remove in 4.0. 3838 std::string S; 3839 if (convertToString(Record, 0, S)) 3840 return error("Invalid record"); 3841 // Ignore value. 3842 break; 3843 } 3844 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 3845 std::string S; 3846 if (convertToString(Record, 0, S)) 3847 return error("Invalid record"); 3848 SectionTable.push_back(S); 3849 break; 3850 } 3851 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 3852 std::string S; 3853 if (convertToString(Record, 0, S)) 3854 return error("Invalid record"); 3855 GCTable.push_back(S); 3856 break; 3857 } 3858 case bitc::MODULE_CODE_COMDAT: { // COMDAT: [selection_kind, name] 3859 if (Record.size() < 2) 3860 return error("Invalid record"); 3861 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]); 3862 unsigned ComdatNameSize = Record[1]; 3863 std::string ComdatName; 3864 ComdatName.reserve(ComdatNameSize); 3865 for (unsigned i = 0; i != ComdatNameSize; ++i) 3866 ComdatName += (char)Record[2 + i]; 3867 Comdat *C = TheModule->getOrInsertComdat(ComdatName); 3868 C->setSelectionKind(SK); 3869 ComdatList.push_back(C); 3870 break; 3871 } 3872 // GLOBALVAR: [pointer type, isconst, initid, 3873 // linkage, alignment, section, visibility, threadlocal, 3874 // unnamed_addr, externally_initialized, dllstorageclass, 3875 // comdat] 3876 case bitc::MODULE_CODE_GLOBALVAR: { 3877 if (Record.size() < 6) 3878 return error("Invalid record"); 3879 Type *Ty = getTypeByID(Record[0]); 3880 if (!Ty) 3881 return error("Invalid record"); 3882 bool isConstant = Record[1] & 1; 3883 bool explicitType = Record[1] & 2; 3884 unsigned AddressSpace; 3885 if (explicitType) { 3886 AddressSpace = Record[1] >> 2; 3887 } else { 3888 if (!Ty->isPointerTy()) 3889 return error("Invalid type for value"); 3890 AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 3891 Ty = cast<PointerType>(Ty)->getElementType(); 3892 } 3893 3894 uint64_t RawLinkage = Record[3]; 3895 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 3896 unsigned Alignment; 3897 if (std::error_code EC = parseAlignmentValue(Record[4], Alignment)) 3898 return EC; 3899 std::string Section; 3900 if (Record[5]) { 3901 if (Record[5]-1 >= SectionTable.size()) 3902 return error("Invalid ID"); 3903 Section = SectionTable[Record[5]-1]; 3904 } 3905 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 3906 // Local linkage must have default visibility. 3907 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage)) 3908 // FIXME: Change to an error if non-default in 4.0. 3909 Visibility = getDecodedVisibility(Record[6]); 3910 3911 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; 3912 if (Record.size() > 7) 3913 TLM = getDecodedThreadLocalMode(Record[7]); 3914 3915 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 3916 if (Record.size() > 8) 3917 UnnamedAddr = getDecodedUnnamedAddrType(Record[8]); 3918 3919 bool ExternallyInitialized = false; 3920 if (Record.size() > 9) 3921 ExternallyInitialized = Record[9]; 3922 3923 GlobalVariable *NewGV = 3924 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, "", nullptr, 3925 TLM, AddressSpace, ExternallyInitialized); 3926 NewGV->setAlignment(Alignment); 3927 if (!Section.empty()) 3928 NewGV->setSection(Section); 3929 NewGV->setVisibility(Visibility); 3930 NewGV->setUnnamedAddr(UnnamedAddr); 3931 3932 if (Record.size() > 10) 3933 NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10])); 3934 else 3935 upgradeDLLImportExportLinkage(NewGV, RawLinkage); 3936 3937 ValueList.push_back(NewGV); 3938 3939 // Remember which value to use for the global initializer. 3940 if (unsigned InitID = Record[2]) 3941 GlobalInits.push_back(std::make_pair(NewGV, InitID-1)); 3942 3943 if (Record.size() > 11) { 3944 if (unsigned ComdatID = Record[11]) { 3945 if (ComdatID > ComdatList.size()) 3946 return error("Invalid global variable comdat ID"); 3947 NewGV->setComdat(ComdatList[ComdatID - 1]); 3948 } 3949 } else if (hasImplicitComdat(RawLinkage)) { 3950 NewGV->setComdat(reinterpret_cast<Comdat *>(1)); 3951 } 3952 3953 break; 3954 } 3955 // FUNCTION: [type, callingconv, isproto, linkage, paramattr, 3956 // alignment, section, visibility, gc, unnamed_addr, 3957 // prologuedata, dllstorageclass, comdat, prefixdata] 3958 case bitc::MODULE_CODE_FUNCTION: { 3959 if (Record.size() < 8) 3960 return error("Invalid record"); 3961 Type *Ty = getTypeByID(Record[0]); 3962 if (!Ty) 3963 return error("Invalid record"); 3964 if (auto *PTy = dyn_cast<PointerType>(Ty)) 3965 Ty = PTy->getElementType(); 3966 auto *FTy = dyn_cast<FunctionType>(Ty); 3967 if (!FTy) 3968 return error("Invalid type for value"); 3969 auto CC = static_cast<CallingConv::ID>(Record[1]); 3970 if (CC & ~CallingConv::MaxID) 3971 return error("Invalid calling convention ID"); 3972 3973 Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage, 3974 "", TheModule); 3975 3976 Func->setCallingConv(CC); 3977 bool isProto = Record[2]; 3978 uint64_t RawLinkage = Record[3]; 3979 Func->setLinkage(getDecodedLinkage(RawLinkage)); 3980 Func->setAttributes(getAttributes(Record[4])); 3981 3982 unsigned Alignment; 3983 if (std::error_code EC = parseAlignmentValue(Record[5], Alignment)) 3984 return EC; 3985 Func->setAlignment(Alignment); 3986 if (Record[6]) { 3987 if (Record[6]-1 >= SectionTable.size()) 3988 return error("Invalid ID"); 3989 Func->setSection(SectionTable[Record[6]-1]); 3990 } 3991 // Local linkage must have default visibility. 3992 if (!Func->hasLocalLinkage()) 3993 // FIXME: Change to an error if non-default in 4.0. 3994 Func->setVisibility(getDecodedVisibility(Record[7])); 3995 if (Record.size() > 8 && Record[8]) { 3996 if (Record[8]-1 >= GCTable.size()) 3997 return error("Invalid ID"); 3998 Func->setGC(GCTable[Record[8] - 1]); 3999 } 4000 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 4001 if (Record.size() > 9) 4002 UnnamedAddr = getDecodedUnnamedAddrType(Record[9]); 4003 Func->setUnnamedAddr(UnnamedAddr); 4004 if (Record.size() > 10 && Record[10] != 0) 4005 FunctionPrologues.push_back(std::make_pair(Func, Record[10]-1)); 4006 4007 if (Record.size() > 11) 4008 Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11])); 4009 else 4010 upgradeDLLImportExportLinkage(Func, RawLinkage); 4011 4012 if (Record.size() > 12) { 4013 if (unsigned ComdatID = Record[12]) { 4014 if (ComdatID > ComdatList.size()) 4015 return error("Invalid function comdat ID"); 4016 Func->setComdat(ComdatList[ComdatID - 1]); 4017 } 4018 } else if (hasImplicitComdat(RawLinkage)) { 4019 Func->setComdat(reinterpret_cast<Comdat *>(1)); 4020 } 4021 4022 if (Record.size() > 13 && Record[13] != 0) 4023 FunctionPrefixes.push_back(std::make_pair(Func, Record[13]-1)); 4024 4025 if (Record.size() > 14 && Record[14] != 0) 4026 FunctionPersonalityFns.push_back(std::make_pair(Func, Record[14] - 1)); 4027 4028 ValueList.push_back(Func); 4029 4030 // If this is a function with a body, remember the prototype we are 4031 // creating now, so that we can match up the body with them later. 4032 if (!isProto) { 4033 Func->setIsMaterializable(true); 4034 FunctionsWithBodies.push_back(Func); 4035 DeferredFunctionInfo[Func] = 0; 4036 } 4037 break; 4038 } 4039 // ALIAS: [alias type, addrspace, aliasee val#, linkage] 4040 // ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, dllstorageclass] 4041 // IFUNC: [alias type, addrspace, aliasee val#, linkage, visibility, dllstorageclass] 4042 case bitc::MODULE_CODE_IFUNC: 4043 case bitc::MODULE_CODE_ALIAS: 4044 case bitc::MODULE_CODE_ALIAS_OLD: { 4045 bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD; 4046 if (Record.size() < (3 + (unsigned)NewRecord)) 4047 return error("Invalid record"); 4048 unsigned OpNum = 0; 4049 Type *Ty = getTypeByID(Record[OpNum++]); 4050 if (!Ty) 4051 return error("Invalid record"); 4052 4053 unsigned AddrSpace; 4054 if (!NewRecord) { 4055 auto *PTy = dyn_cast<PointerType>(Ty); 4056 if (!PTy) 4057 return error("Invalid type for value"); 4058 Ty = PTy->getElementType(); 4059 AddrSpace = PTy->getAddressSpace(); 4060 } else { 4061 AddrSpace = Record[OpNum++]; 4062 } 4063 4064 auto Val = Record[OpNum++]; 4065 auto Linkage = Record[OpNum++]; 4066 GlobalIndirectSymbol *NewGA; 4067 if (BitCode == bitc::MODULE_CODE_ALIAS || 4068 BitCode == bitc::MODULE_CODE_ALIAS_OLD) 4069 NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), 4070 "", TheModule); 4071 else 4072 NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), 4073 "", nullptr, TheModule); 4074 // Old bitcode files didn't have visibility field. 4075 // Local linkage must have default visibility. 4076 if (OpNum != Record.size()) { 4077 auto VisInd = OpNum++; 4078 if (!NewGA->hasLocalLinkage()) 4079 // FIXME: Change to an error if non-default in 4.0. 4080 NewGA->setVisibility(getDecodedVisibility(Record[VisInd])); 4081 } 4082 if (OpNum != Record.size()) 4083 NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++])); 4084 else 4085 upgradeDLLImportExportLinkage(NewGA, Linkage); 4086 if (OpNum != Record.size()) 4087 NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++])); 4088 if (OpNum != Record.size()) 4089 NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++])); 4090 ValueList.push_back(NewGA); 4091 IndirectSymbolInits.push_back(std::make_pair(NewGA, Val)); 4092 break; 4093 } 4094 /// MODULE_CODE_PURGEVALS: [numvals] 4095 case bitc::MODULE_CODE_PURGEVALS: 4096 // Trim down the value list to the specified size. 4097 if (Record.size() < 1 || Record[0] > ValueList.size()) 4098 return error("Invalid record"); 4099 ValueList.shrinkTo(Record[0]); 4100 break; 4101 /// MODULE_CODE_VSTOFFSET: [offset] 4102 case bitc::MODULE_CODE_VSTOFFSET: 4103 if (Record.size() < 1) 4104 return error("Invalid record"); 4105 VSTOffset = Record[0]; 4106 break; 4107 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 4108 case bitc::MODULE_CODE_SOURCE_FILENAME: 4109 SmallString<128> ValueName; 4110 if (convertToString(Record, 0, ValueName)) 4111 return error("Invalid record"); 4112 TheModule->setSourceFileName(ValueName); 4113 break; 4114 } 4115 Record.clear(); 4116 } 4117 } 4118 4119 /// Helper to read the header common to all bitcode files. 4120 static bool hasValidBitcodeHeader(BitstreamCursor &Stream) { 4121 // Sniff for the signature. 4122 if (Stream.Read(8) != 'B' || 4123 Stream.Read(8) != 'C' || 4124 Stream.Read(4) != 0x0 || 4125 Stream.Read(4) != 0xC || 4126 Stream.Read(4) != 0xE || 4127 Stream.Read(4) != 0xD) 4128 return false; 4129 return true; 4130 } 4131 4132 std::error_code 4133 BitcodeReader::parseBitcodeInto(std::unique_ptr<DataStreamer> Streamer, 4134 Module *M, bool ShouldLazyLoadMetadata) { 4135 TheModule = M; 4136 4137 if (std::error_code EC = initStream(std::move(Streamer))) 4138 return EC; 4139 4140 // Sniff for the signature. 4141 if (!hasValidBitcodeHeader(Stream)) 4142 return error("Invalid bitcode signature"); 4143 4144 // We expect a number of well-defined blocks, though we don't necessarily 4145 // need to understand them all. 4146 while (true) { 4147 if (Stream.AtEndOfStream()) { 4148 // We didn't really read a proper Module. 4149 return error("Malformed IR file"); 4150 } 4151 4152 BitstreamEntry Entry = 4153 Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs); 4154 4155 if (Entry.Kind != BitstreamEntry::SubBlock) 4156 return error("Malformed block"); 4157 4158 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) { 4159 parseBitcodeVersion(); 4160 continue; 4161 } 4162 4163 if (Entry.ID == bitc::MODULE_BLOCK_ID) 4164 return parseModule(0, ShouldLazyLoadMetadata); 4165 4166 if (Stream.SkipBlock()) 4167 return error("Invalid record"); 4168 } 4169 } 4170 4171 ErrorOr<std::string> BitcodeReader::parseModuleTriple() { 4172 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 4173 return error("Invalid record"); 4174 4175 SmallVector<uint64_t, 64> Record; 4176 4177 std::string Triple; 4178 4179 // Read all the records for this module. 4180 while (true) { 4181 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 4182 4183 switch (Entry.Kind) { 4184 case BitstreamEntry::SubBlock: // Handled for us already. 4185 case BitstreamEntry::Error: 4186 return error("Malformed block"); 4187 case BitstreamEntry::EndBlock: 4188 return Triple; 4189 case BitstreamEntry::Record: 4190 // The interesting case. 4191 break; 4192 } 4193 4194 // Read a record. 4195 switch (Stream.readRecord(Entry.ID, Record)) { 4196 default: break; // Default behavior, ignore unknown content. 4197 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 4198 std::string S; 4199 if (convertToString(Record, 0, S)) 4200 return error("Invalid record"); 4201 Triple = S; 4202 break; 4203 } 4204 } 4205 Record.clear(); 4206 } 4207 llvm_unreachable("Exit infinite loop"); 4208 } 4209 4210 ErrorOr<std::string> BitcodeReader::parseTriple() { 4211 if (std::error_code EC = initStream(nullptr)) 4212 return EC; 4213 4214 // Sniff for the signature. 4215 if (!hasValidBitcodeHeader(Stream)) 4216 return error("Invalid bitcode signature"); 4217 4218 // We expect a number of well-defined blocks, though we don't necessarily 4219 // need to understand them all. 4220 while (true) { 4221 BitstreamEntry Entry = Stream.advance(); 4222 4223 switch (Entry.Kind) { 4224 case BitstreamEntry::Error: 4225 return error("Malformed block"); 4226 case BitstreamEntry::EndBlock: 4227 return std::error_code(); 4228 4229 case BitstreamEntry::SubBlock: 4230 if (Entry.ID == bitc::MODULE_BLOCK_ID) 4231 return parseModuleTriple(); 4232 4233 // Ignore other sub-blocks. 4234 if (Stream.SkipBlock()) 4235 return error("Malformed block"); 4236 continue; 4237 4238 case BitstreamEntry::Record: 4239 Stream.skipRecord(Entry.ID); 4240 continue; 4241 } 4242 } 4243 } 4244 4245 ErrorOr<std::string> BitcodeReader::parseIdentificationBlock() { 4246 if (std::error_code EC = initStream(nullptr)) 4247 return EC; 4248 4249 // Sniff for the signature. 4250 if (!hasValidBitcodeHeader(Stream)) 4251 return error("Invalid bitcode signature"); 4252 4253 // We expect a number of well-defined blocks, though we don't necessarily 4254 // need to understand them all. 4255 while (true) { 4256 BitstreamEntry Entry = Stream.advance(); 4257 switch (Entry.Kind) { 4258 case BitstreamEntry::Error: 4259 return error("Malformed block"); 4260 case BitstreamEntry::EndBlock: 4261 return std::error_code(); 4262 4263 case BitstreamEntry::SubBlock: 4264 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) { 4265 if (std::error_code EC = parseBitcodeVersion()) 4266 return EC; 4267 return ProducerIdentification; 4268 } 4269 // Ignore other sub-blocks. 4270 if (Stream.SkipBlock()) 4271 return error("Malformed block"); 4272 continue; 4273 case BitstreamEntry::Record: 4274 Stream.skipRecord(Entry.ID); 4275 continue; 4276 } 4277 } 4278 } 4279 4280 std::error_code BitcodeReader::parseGlobalObjectAttachment( 4281 GlobalObject &GO, ArrayRef<uint64_t> Record) { 4282 assert(Record.size() % 2 == 0); 4283 for (unsigned I = 0, E = Record.size(); I != E; I += 2) { 4284 auto K = MDKindMap.find(Record[I]); 4285 if (K == MDKindMap.end()) 4286 return error("Invalid ID"); 4287 MDNode *MD = MetadataList.getMDNodeFwdRefOrNull(Record[I + 1]); 4288 if (!MD) 4289 return error("Invalid metadata attachment"); 4290 GO.addMetadata(K->second, *MD); 4291 } 4292 return std::error_code(); 4293 } 4294 4295 ErrorOr<bool> BitcodeReader::hasObjCCategory() { 4296 if (std::error_code EC = initStream(nullptr)) 4297 return EC; 4298 4299 // Sniff for the signature. 4300 if (!hasValidBitcodeHeader(Stream)) 4301 return error("Invalid bitcode signature"); 4302 4303 // We expect a number of well-defined blocks, though we don't necessarily 4304 // need to understand them all. 4305 while (true) { 4306 BitstreamEntry Entry = Stream.advance(); 4307 4308 switch (Entry.Kind) { 4309 case BitstreamEntry::Error: 4310 return error("Malformed block"); 4311 case BitstreamEntry::EndBlock: 4312 return std::error_code(); 4313 4314 case BitstreamEntry::SubBlock: 4315 if (Entry.ID == bitc::MODULE_BLOCK_ID) 4316 return hasObjCCategoryInModule(); 4317 4318 // Ignore other sub-blocks. 4319 if (Stream.SkipBlock()) 4320 return error("Malformed block"); 4321 continue; 4322 4323 case BitstreamEntry::Record: 4324 Stream.skipRecord(Entry.ID); 4325 continue; 4326 } 4327 } 4328 } 4329 4330 ErrorOr<bool> BitcodeReader::hasObjCCategoryInModule() { 4331 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 4332 return error("Invalid record"); 4333 4334 SmallVector<uint64_t, 64> Record; 4335 // Read all the records for this module. 4336 4337 while (true) { 4338 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 4339 4340 switch (Entry.Kind) { 4341 case BitstreamEntry::SubBlock: // Handled for us already. 4342 case BitstreamEntry::Error: 4343 return error("Malformed block"); 4344 case BitstreamEntry::EndBlock: 4345 return false; 4346 case BitstreamEntry::Record: 4347 // The interesting case. 4348 break; 4349 } 4350 4351 // Read a record. 4352 switch (Stream.readRecord(Entry.ID, Record)) { 4353 default: 4354 break; // Default behavior, ignore unknown content. 4355 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 4356 std::string S; 4357 if (convertToString(Record, 0, S)) 4358 return error("Invalid record"); 4359 // Check for the i386 and other (x86_64, ARM) conventions 4360 if (S.find("__DATA, __objc_catlist") != std::string::npos || 4361 S.find("__OBJC,__category") != std::string::npos) 4362 return true; 4363 break; 4364 } 4365 } 4366 Record.clear(); 4367 } 4368 llvm_unreachable("Exit infinite loop"); 4369 } 4370 4371 /// Parse metadata attachments. 4372 std::error_code BitcodeReader::parseMetadataAttachment(Function &F) { 4373 if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID)) 4374 return error("Invalid record"); 4375 4376 SmallVector<uint64_t, 64> Record; 4377 4378 while (true) { 4379 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 4380 4381 switch (Entry.Kind) { 4382 case BitstreamEntry::SubBlock: // Handled for us already. 4383 case BitstreamEntry::Error: 4384 return error("Malformed block"); 4385 case BitstreamEntry::EndBlock: 4386 return std::error_code(); 4387 case BitstreamEntry::Record: 4388 // The interesting case. 4389 break; 4390 } 4391 4392 // Read a metadata attachment record. 4393 Record.clear(); 4394 switch (Stream.readRecord(Entry.ID, Record)) { 4395 default: // Default behavior: ignore. 4396 break; 4397 case bitc::METADATA_ATTACHMENT: { 4398 unsigned RecordLength = Record.size(); 4399 if (Record.empty()) 4400 return error("Invalid record"); 4401 if (RecordLength % 2 == 0) { 4402 // A function attachment. 4403 if (std::error_code EC = parseGlobalObjectAttachment(F, Record)) 4404 return EC; 4405 continue; 4406 } 4407 4408 // An instruction attachment. 4409 Instruction *Inst = InstructionList[Record[0]]; 4410 for (unsigned i = 1; i != RecordLength; i = i+2) { 4411 unsigned Kind = Record[i]; 4412 DenseMap<unsigned, unsigned>::iterator I = 4413 MDKindMap.find(Kind); 4414 if (I == MDKindMap.end()) 4415 return error("Invalid ID"); 4416 Metadata *Node = MetadataList.getMetadataFwdRef(Record[i + 1]); 4417 if (isa<LocalAsMetadata>(Node)) 4418 // Drop the attachment. This used to be legal, but there's no 4419 // upgrade path. 4420 break; 4421 MDNode *MD = dyn_cast_or_null<MDNode>(Node); 4422 if (!MD) 4423 return error("Invalid metadata attachment"); 4424 4425 if (HasSeenOldLoopTags && I->second == LLVMContext::MD_loop) 4426 MD = upgradeInstructionLoopAttachment(*MD); 4427 4428 Inst->setMetadata(I->second, MD); 4429 if (I->second == LLVMContext::MD_tbaa) { 4430 InstsWithTBAATag.push_back(Inst); 4431 continue; 4432 } 4433 } 4434 break; 4435 } 4436 } 4437 } 4438 } 4439 4440 static std::error_code typeCheckLoadStoreInst(Type *ValType, Type *PtrType) { 4441 LLVMContext &Context = PtrType->getContext(); 4442 if (!isa<PointerType>(PtrType)) 4443 return error(Context, "Load/Store operand is not a pointer type"); 4444 Type *ElemType = cast<PointerType>(PtrType)->getElementType(); 4445 4446 if (ValType && ValType != ElemType) 4447 return error(Context, "Explicit load/store type does not match pointee " 4448 "type of pointer operand"); 4449 if (!PointerType::isLoadableOrStorableType(ElemType)) 4450 return error(Context, "Cannot load/store from pointer"); 4451 return std::error_code(); 4452 } 4453 4454 /// Lazily parse the specified function body block. 4455 std::error_code BitcodeReader::parseFunctionBody(Function *F) { 4456 if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 4457 return error("Invalid record"); 4458 4459 // Unexpected unresolved metadata when parsing function. 4460 if (MetadataList.hasFwdRefs()) 4461 return error("Invalid function metadata: incoming forward references"); 4462 4463 InstructionList.clear(); 4464 unsigned ModuleValueListSize = ValueList.size(); 4465 unsigned ModuleMetadataListSize = MetadataList.size(); 4466 4467 // Add all the function arguments to the value table. 4468 for (Argument &I : F->args()) 4469 ValueList.push_back(&I); 4470 4471 unsigned NextValueNo = ValueList.size(); 4472 BasicBlock *CurBB = nullptr; 4473 unsigned CurBBNo = 0; 4474 4475 DebugLoc LastLoc; 4476 auto getLastInstruction = [&]() -> Instruction * { 4477 if (CurBB && !CurBB->empty()) 4478 return &CurBB->back(); 4479 else if (CurBBNo && FunctionBBs[CurBBNo - 1] && 4480 !FunctionBBs[CurBBNo - 1]->empty()) 4481 return &FunctionBBs[CurBBNo - 1]->back(); 4482 return nullptr; 4483 }; 4484 4485 std::vector<OperandBundleDef> OperandBundles; 4486 4487 // Read all the records. 4488 SmallVector<uint64_t, 64> Record; 4489 4490 while (true) { 4491 BitstreamEntry Entry = Stream.advance(); 4492 4493 switch (Entry.Kind) { 4494 case BitstreamEntry::Error: 4495 return error("Malformed block"); 4496 case BitstreamEntry::EndBlock: 4497 goto OutOfRecordLoop; 4498 4499 case BitstreamEntry::SubBlock: 4500 switch (Entry.ID) { 4501 default: // Skip unknown content. 4502 if (Stream.SkipBlock()) 4503 return error("Invalid record"); 4504 break; 4505 case bitc::CONSTANTS_BLOCK_ID: 4506 if (std::error_code EC = parseConstants()) 4507 return EC; 4508 NextValueNo = ValueList.size(); 4509 break; 4510 case bitc::VALUE_SYMTAB_BLOCK_ID: 4511 if (std::error_code EC = parseValueSymbolTable()) 4512 return EC; 4513 break; 4514 case bitc::METADATA_ATTACHMENT_ID: 4515 if (std::error_code EC = parseMetadataAttachment(*F)) 4516 return EC; 4517 break; 4518 case bitc::METADATA_BLOCK_ID: 4519 if (std::error_code EC = parseMetadata()) 4520 return EC; 4521 break; 4522 case bitc::USELIST_BLOCK_ID: 4523 if (std::error_code EC = parseUseLists()) 4524 return EC; 4525 break; 4526 } 4527 continue; 4528 4529 case BitstreamEntry::Record: 4530 // The interesting case. 4531 break; 4532 } 4533 4534 // Read a record. 4535 Record.clear(); 4536 Instruction *I = nullptr; 4537 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 4538 switch (BitCode) { 4539 default: // Default behavior: reject 4540 return error("Invalid value"); 4541 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks] 4542 if (Record.size() < 1 || Record[0] == 0) 4543 return error("Invalid record"); 4544 // Create all the basic blocks for the function. 4545 FunctionBBs.resize(Record[0]); 4546 4547 // See if anything took the address of blocks in this function. 4548 auto BBFRI = BasicBlockFwdRefs.find(F); 4549 if (BBFRI == BasicBlockFwdRefs.end()) { 4550 for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i) 4551 FunctionBBs[i] = BasicBlock::Create(Context, "", F); 4552 } else { 4553 auto &BBRefs = BBFRI->second; 4554 // Check for invalid basic block references. 4555 if (BBRefs.size() > FunctionBBs.size()) 4556 return error("Invalid ID"); 4557 assert(!BBRefs.empty() && "Unexpected empty array"); 4558 assert(!BBRefs.front() && "Invalid reference to entry block"); 4559 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E; 4560 ++I) 4561 if (I < RE && BBRefs[I]) { 4562 BBRefs[I]->insertInto(F); 4563 FunctionBBs[I] = BBRefs[I]; 4564 } else { 4565 FunctionBBs[I] = BasicBlock::Create(Context, "", F); 4566 } 4567 4568 // Erase from the table. 4569 BasicBlockFwdRefs.erase(BBFRI); 4570 } 4571 4572 CurBB = FunctionBBs[0]; 4573 continue; 4574 } 4575 4576 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 4577 // This record indicates that the last instruction is at the same 4578 // location as the previous instruction with a location. 4579 I = getLastInstruction(); 4580 4581 if (!I) 4582 return error("Invalid record"); 4583 I->setDebugLoc(LastLoc); 4584 I = nullptr; 4585 continue; 4586 4587 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 4588 I = getLastInstruction(); 4589 if (!I || Record.size() < 4) 4590 return error("Invalid record"); 4591 4592 unsigned Line = Record[0], Col = Record[1]; 4593 unsigned ScopeID = Record[2], IAID = Record[3]; 4594 4595 MDNode *Scope = nullptr, *IA = nullptr; 4596 if (ScopeID) { 4597 Scope = MetadataList.getMDNodeFwdRefOrNull(ScopeID - 1); 4598 if (!Scope) 4599 return error("Invalid record"); 4600 } 4601 if (IAID) { 4602 IA = MetadataList.getMDNodeFwdRefOrNull(IAID - 1); 4603 if (!IA) 4604 return error("Invalid record"); 4605 } 4606 LastLoc = DebugLoc::get(Line, Col, Scope, IA); 4607 I->setDebugLoc(LastLoc); 4608 I = nullptr; 4609 continue; 4610 } 4611 4612 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 4613 unsigned OpNum = 0; 4614 Value *LHS, *RHS; 4615 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 4616 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 4617 OpNum+1 > Record.size()) 4618 return error("Invalid record"); 4619 4620 int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 4621 if (Opc == -1) 4622 return error("Invalid record"); 4623 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 4624 InstructionList.push_back(I); 4625 if (OpNum < Record.size()) { 4626 if (Opc == Instruction::Add || 4627 Opc == Instruction::Sub || 4628 Opc == Instruction::Mul || 4629 Opc == Instruction::Shl) { 4630 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 4631 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 4632 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 4633 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 4634 } else if (Opc == Instruction::SDiv || 4635 Opc == Instruction::UDiv || 4636 Opc == Instruction::LShr || 4637 Opc == Instruction::AShr) { 4638 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 4639 cast<BinaryOperator>(I)->setIsExact(true); 4640 } else if (isa<FPMathOperator>(I)) { 4641 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 4642 if (FMF.any()) 4643 I->setFastMathFlags(FMF); 4644 } 4645 4646 } 4647 break; 4648 } 4649 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 4650 unsigned OpNum = 0; 4651 Value *Op; 4652 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4653 OpNum+2 != Record.size()) 4654 return error("Invalid record"); 4655 4656 Type *ResTy = getTypeByID(Record[OpNum]); 4657 int Opc = getDecodedCastOpcode(Record[OpNum + 1]); 4658 if (Opc == -1 || !ResTy) 4659 return error("Invalid record"); 4660 Instruction *Temp = nullptr; 4661 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) { 4662 if (Temp) { 4663 InstructionList.push_back(Temp); 4664 CurBB->getInstList().push_back(Temp); 4665 } 4666 } else { 4667 auto CastOp = (Instruction::CastOps)Opc; 4668 if (!CastInst::castIsValid(CastOp, Op, ResTy)) 4669 return error("Invalid cast"); 4670 I = CastInst::Create(CastOp, Op, ResTy); 4671 } 4672 InstructionList.push_back(I); 4673 break; 4674 } 4675 case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD: 4676 case bitc::FUNC_CODE_INST_GEP_OLD: 4677 case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands] 4678 unsigned OpNum = 0; 4679 4680 Type *Ty; 4681 bool InBounds; 4682 4683 if (BitCode == bitc::FUNC_CODE_INST_GEP) { 4684 InBounds = Record[OpNum++]; 4685 Ty = getTypeByID(Record[OpNum++]); 4686 } else { 4687 InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD; 4688 Ty = nullptr; 4689 } 4690 4691 Value *BasePtr; 4692 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr)) 4693 return error("Invalid record"); 4694 4695 if (!Ty) 4696 Ty = cast<SequentialType>(BasePtr->getType()->getScalarType()) 4697 ->getElementType(); 4698 else if (Ty != 4699 cast<SequentialType>(BasePtr->getType()->getScalarType()) 4700 ->getElementType()) 4701 return error( 4702 "Explicit gep type does not match pointee type of pointer operand"); 4703 4704 SmallVector<Value*, 16> GEPIdx; 4705 while (OpNum != Record.size()) { 4706 Value *Op; 4707 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4708 return error("Invalid record"); 4709 GEPIdx.push_back(Op); 4710 } 4711 4712 I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx); 4713 4714 InstructionList.push_back(I); 4715 if (InBounds) 4716 cast<GetElementPtrInst>(I)->setIsInBounds(true); 4717 break; 4718 } 4719 4720 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 4721 // EXTRACTVAL: [opty, opval, n x indices] 4722 unsigned OpNum = 0; 4723 Value *Agg; 4724 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 4725 return error("Invalid record"); 4726 4727 unsigned RecSize = Record.size(); 4728 if (OpNum == RecSize) 4729 return error("EXTRACTVAL: Invalid instruction with 0 indices"); 4730 4731 SmallVector<unsigned, 4> EXTRACTVALIdx; 4732 Type *CurTy = Agg->getType(); 4733 for (; OpNum != RecSize; ++OpNum) { 4734 bool IsArray = CurTy->isArrayTy(); 4735 bool IsStruct = CurTy->isStructTy(); 4736 uint64_t Index = Record[OpNum]; 4737 4738 if (!IsStruct && !IsArray) 4739 return error("EXTRACTVAL: Invalid type"); 4740 if ((unsigned)Index != Index) 4741 return error("Invalid value"); 4742 if (IsStruct && Index >= CurTy->subtypes().size()) 4743 return error("EXTRACTVAL: Invalid struct index"); 4744 if (IsArray && Index >= CurTy->getArrayNumElements()) 4745 return error("EXTRACTVAL: Invalid array index"); 4746 EXTRACTVALIdx.push_back((unsigned)Index); 4747 4748 if (IsStruct) 4749 CurTy = CurTy->subtypes()[Index]; 4750 else 4751 CurTy = CurTy->subtypes()[0]; 4752 } 4753 4754 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 4755 InstructionList.push_back(I); 4756 break; 4757 } 4758 4759 case bitc::FUNC_CODE_INST_INSERTVAL: { 4760 // INSERTVAL: [opty, opval, opty, opval, n x indices] 4761 unsigned OpNum = 0; 4762 Value *Agg; 4763 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 4764 return error("Invalid record"); 4765 Value *Val; 4766 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 4767 return error("Invalid record"); 4768 4769 unsigned RecSize = Record.size(); 4770 if (OpNum == RecSize) 4771 return error("INSERTVAL: Invalid instruction with 0 indices"); 4772 4773 SmallVector<unsigned, 4> INSERTVALIdx; 4774 Type *CurTy = Agg->getType(); 4775 for (; OpNum != RecSize; ++OpNum) { 4776 bool IsArray = CurTy->isArrayTy(); 4777 bool IsStruct = CurTy->isStructTy(); 4778 uint64_t Index = Record[OpNum]; 4779 4780 if (!IsStruct && !IsArray) 4781 return error("INSERTVAL: Invalid type"); 4782 if ((unsigned)Index != Index) 4783 return error("Invalid value"); 4784 if (IsStruct && Index >= CurTy->subtypes().size()) 4785 return error("INSERTVAL: Invalid struct index"); 4786 if (IsArray && Index >= CurTy->getArrayNumElements()) 4787 return error("INSERTVAL: Invalid array index"); 4788 4789 INSERTVALIdx.push_back((unsigned)Index); 4790 if (IsStruct) 4791 CurTy = CurTy->subtypes()[Index]; 4792 else 4793 CurTy = CurTy->subtypes()[0]; 4794 } 4795 4796 if (CurTy != Val->getType()) 4797 return error("Inserted value type doesn't match aggregate type"); 4798 4799 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 4800 InstructionList.push_back(I); 4801 break; 4802 } 4803 4804 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 4805 // obsolete form of select 4806 // handles select i1 ... in old bitcode 4807 unsigned OpNum = 0; 4808 Value *TrueVal, *FalseVal, *Cond; 4809 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 4810 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 4811 popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond)) 4812 return error("Invalid record"); 4813 4814 I = SelectInst::Create(Cond, TrueVal, FalseVal); 4815 InstructionList.push_back(I); 4816 break; 4817 } 4818 4819 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 4820 // new form of select 4821 // handles select i1 or select [N x i1] 4822 unsigned OpNum = 0; 4823 Value *TrueVal, *FalseVal, *Cond; 4824 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 4825 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 4826 getValueTypePair(Record, OpNum, NextValueNo, Cond)) 4827 return error("Invalid record"); 4828 4829 // select condition can be either i1 or [N x i1] 4830 if (VectorType* vector_type = 4831 dyn_cast<VectorType>(Cond->getType())) { 4832 // expect <n x i1> 4833 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 4834 return error("Invalid type for value"); 4835 } else { 4836 // expect i1 4837 if (Cond->getType() != Type::getInt1Ty(Context)) 4838 return error("Invalid type for value"); 4839 } 4840 4841 I = SelectInst::Create(Cond, TrueVal, FalseVal); 4842 InstructionList.push_back(I); 4843 break; 4844 } 4845 4846 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 4847 unsigned OpNum = 0; 4848 Value *Vec, *Idx; 4849 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 4850 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 4851 return error("Invalid record"); 4852 if (!Vec->getType()->isVectorTy()) 4853 return error("Invalid type for value"); 4854 I = ExtractElementInst::Create(Vec, Idx); 4855 InstructionList.push_back(I); 4856 break; 4857 } 4858 4859 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 4860 unsigned OpNum = 0; 4861 Value *Vec, *Elt, *Idx; 4862 if (getValueTypePair(Record, OpNum, NextValueNo, Vec)) 4863 return error("Invalid record"); 4864 if (!Vec->getType()->isVectorTy()) 4865 return error("Invalid type for value"); 4866 if (popValue(Record, OpNum, NextValueNo, 4867 cast<VectorType>(Vec->getType())->getElementType(), Elt) || 4868 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 4869 return error("Invalid record"); 4870 I = InsertElementInst::Create(Vec, Elt, Idx); 4871 InstructionList.push_back(I); 4872 break; 4873 } 4874 4875 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 4876 unsigned OpNum = 0; 4877 Value *Vec1, *Vec2, *Mask; 4878 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) || 4879 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2)) 4880 return error("Invalid record"); 4881 4882 if (getValueTypePair(Record, OpNum, NextValueNo, Mask)) 4883 return error("Invalid record"); 4884 if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy()) 4885 return error("Invalid type for value"); 4886 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 4887 InstructionList.push_back(I); 4888 break; 4889 } 4890 4891 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 4892 // Old form of ICmp/FCmp returning bool 4893 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 4894 // both legal on vectors but had different behaviour. 4895 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 4896 // FCmp/ICmp returning bool or vector of bool 4897 4898 unsigned OpNum = 0; 4899 Value *LHS, *RHS; 4900 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 4901 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS)) 4902 return error("Invalid record"); 4903 4904 unsigned PredVal = Record[OpNum]; 4905 bool IsFP = LHS->getType()->isFPOrFPVectorTy(); 4906 FastMathFlags FMF; 4907 if (IsFP && Record.size() > OpNum+1) 4908 FMF = getDecodedFastMathFlags(Record[++OpNum]); 4909 4910 if (OpNum+1 != Record.size()) 4911 return error("Invalid record"); 4912 4913 if (LHS->getType()->isFPOrFPVectorTy()) 4914 I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS); 4915 else 4916 I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS); 4917 4918 if (FMF.any()) 4919 I->setFastMathFlags(FMF); 4920 InstructionList.push_back(I); 4921 break; 4922 } 4923 4924 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 4925 { 4926 unsigned Size = Record.size(); 4927 if (Size == 0) { 4928 I = ReturnInst::Create(Context); 4929 InstructionList.push_back(I); 4930 break; 4931 } 4932 4933 unsigned OpNum = 0; 4934 Value *Op = nullptr; 4935 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4936 return error("Invalid record"); 4937 if (OpNum != Record.size()) 4938 return error("Invalid record"); 4939 4940 I = ReturnInst::Create(Context, Op); 4941 InstructionList.push_back(I); 4942 break; 4943 } 4944 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 4945 if (Record.size() != 1 && Record.size() != 3) 4946 return error("Invalid record"); 4947 BasicBlock *TrueDest = getBasicBlock(Record[0]); 4948 if (!TrueDest) 4949 return error("Invalid record"); 4950 4951 if (Record.size() == 1) { 4952 I = BranchInst::Create(TrueDest); 4953 InstructionList.push_back(I); 4954 } 4955 else { 4956 BasicBlock *FalseDest = getBasicBlock(Record[1]); 4957 Value *Cond = getValue(Record, 2, NextValueNo, 4958 Type::getInt1Ty(Context)); 4959 if (!FalseDest || !Cond) 4960 return error("Invalid record"); 4961 I = BranchInst::Create(TrueDest, FalseDest, Cond); 4962 InstructionList.push_back(I); 4963 } 4964 break; 4965 } 4966 case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#] 4967 if (Record.size() != 1 && Record.size() != 2) 4968 return error("Invalid record"); 4969 unsigned Idx = 0; 4970 Value *CleanupPad = 4971 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4972 if (!CleanupPad) 4973 return error("Invalid record"); 4974 BasicBlock *UnwindDest = nullptr; 4975 if (Record.size() == 2) { 4976 UnwindDest = getBasicBlock(Record[Idx++]); 4977 if (!UnwindDest) 4978 return error("Invalid record"); 4979 } 4980 4981 I = CleanupReturnInst::Create(CleanupPad, UnwindDest); 4982 InstructionList.push_back(I); 4983 break; 4984 } 4985 case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#] 4986 if (Record.size() != 2) 4987 return error("Invalid record"); 4988 unsigned Idx = 0; 4989 Value *CatchPad = 4990 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4991 if (!CatchPad) 4992 return error("Invalid record"); 4993 BasicBlock *BB = getBasicBlock(Record[Idx++]); 4994 if (!BB) 4995 return error("Invalid record"); 4996 4997 I = CatchReturnInst::Create(CatchPad, BB); 4998 InstructionList.push_back(I); 4999 break; 5000 } 5001 case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?] 5002 // We must have, at minimum, the outer scope and the number of arguments. 5003 if (Record.size() < 2) 5004 return error("Invalid record"); 5005 5006 unsigned Idx = 0; 5007 5008 Value *ParentPad = 5009 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 5010 5011 unsigned NumHandlers = Record[Idx++]; 5012 5013 SmallVector<BasicBlock *, 2> Handlers; 5014 for (unsigned Op = 0; Op != NumHandlers; ++Op) { 5015 BasicBlock *BB = getBasicBlock(Record[Idx++]); 5016 if (!BB) 5017 return error("Invalid record"); 5018 Handlers.push_back(BB); 5019 } 5020 5021 BasicBlock *UnwindDest = nullptr; 5022 if (Idx + 1 == Record.size()) { 5023 UnwindDest = getBasicBlock(Record[Idx++]); 5024 if (!UnwindDest) 5025 return error("Invalid record"); 5026 } 5027 5028 if (Record.size() != Idx) 5029 return error("Invalid record"); 5030 5031 auto *CatchSwitch = 5032 CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers); 5033 for (BasicBlock *Handler : Handlers) 5034 CatchSwitch->addHandler(Handler); 5035 I = CatchSwitch; 5036 InstructionList.push_back(I); 5037 break; 5038 } 5039 case bitc::FUNC_CODE_INST_CATCHPAD: 5040 case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*] 5041 // We must have, at minimum, the outer scope and the number of arguments. 5042 if (Record.size() < 2) 5043 return error("Invalid record"); 5044 5045 unsigned Idx = 0; 5046 5047 Value *ParentPad = 5048 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 5049 5050 unsigned NumArgOperands = Record[Idx++]; 5051 5052 SmallVector<Value *, 2> Args; 5053 for (unsigned Op = 0; Op != NumArgOperands; ++Op) { 5054 Value *Val; 5055 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 5056 return error("Invalid record"); 5057 Args.push_back(Val); 5058 } 5059 5060 if (Record.size() != Idx) 5061 return error("Invalid record"); 5062 5063 if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD) 5064 I = CleanupPadInst::Create(ParentPad, Args); 5065 else 5066 I = CatchPadInst::Create(ParentPad, Args); 5067 InstructionList.push_back(I); 5068 break; 5069 } 5070 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 5071 // Check magic 5072 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { 5073 // "New" SwitchInst format with case ranges. The changes to write this 5074 // format were reverted but we still recognize bitcode that uses it. 5075 // Hopefully someday we will have support for case ranges and can use 5076 // this format again. 5077 5078 Type *OpTy = getTypeByID(Record[1]); 5079 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); 5080 5081 Value *Cond = getValue(Record, 2, NextValueNo, OpTy); 5082 BasicBlock *Default = getBasicBlock(Record[3]); 5083 if (!OpTy || !Cond || !Default) 5084 return error("Invalid record"); 5085 5086 unsigned NumCases = Record[4]; 5087 5088 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 5089 InstructionList.push_back(SI); 5090 5091 unsigned CurIdx = 5; 5092 for (unsigned i = 0; i != NumCases; ++i) { 5093 SmallVector<ConstantInt*, 1> CaseVals; 5094 unsigned NumItems = Record[CurIdx++]; 5095 for (unsigned ci = 0; ci != NumItems; ++ci) { 5096 bool isSingleNumber = Record[CurIdx++]; 5097 5098 APInt Low; 5099 unsigned ActiveWords = 1; 5100 if (ValueBitWidth > 64) 5101 ActiveWords = Record[CurIdx++]; 5102 Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 5103 ValueBitWidth); 5104 CurIdx += ActiveWords; 5105 5106 if (!isSingleNumber) { 5107 ActiveWords = 1; 5108 if (ValueBitWidth > 64) 5109 ActiveWords = Record[CurIdx++]; 5110 APInt High = readWideAPInt( 5111 makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth); 5112 CurIdx += ActiveWords; 5113 5114 // FIXME: It is not clear whether values in the range should be 5115 // compared as signed or unsigned values. The partially 5116 // implemented changes that used this format in the past used 5117 // unsigned comparisons. 5118 for ( ; Low.ule(High); ++Low) 5119 CaseVals.push_back(ConstantInt::get(Context, Low)); 5120 } else 5121 CaseVals.push_back(ConstantInt::get(Context, Low)); 5122 } 5123 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); 5124 for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(), 5125 cve = CaseVals.end(); cvi != cve; ++cvi) 5126 SI->addCase(*cvi, DestBB); 5127 } 5128 I = SI; 5129 break; 5130 } 5131 5132 // Old SwitchInst format without case ranges. 5133 5134 if (Record.size() < 3 || (Record.size() & 1) == 0) 5135 return error("Invalid record"); 5136 Type *OpTy = getTypeByID(Record[0]); 5137 Value *Cond = getValue(Record, 1, NextValueNo, OpTy); 5138 BasicBlock *Default = getBasicBlock(Record[2]); 5139 if (!OpTy || !Cond || !Default) 5140 return error("Invalid record"); 5141 unsigned NumCases = (Record.size()-3)/2; 5142 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 5143 InstructionList.push_back(SI); 5144 for (unsigned i = 0, e = NumCases; i != e; ++i) { 5145 ConstantInt *CaseVal = 5146 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy)); 5147 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 5148 if (!CaseVal || !DestBB) { 5149 delete SI; 5150 return error("Invalid record"); 5151 } 5152 SI->addCase(CaseVal, DestBB); 5153 } 5154 I = SI; 5155 break; 5156 } 5157 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 5158 if (Record.size() < 2) 5159 return error("Invalid record"); 5160 Type *OpTy = getTypeByID(Record[0]); 5161 Value *Address = getValue(Record, 1, NextValueNo, OpTy); 5162 if (!OpTy || !Address) 5163 return error("Invalid record"); 5164 unsigned NumDests = Record.size()-2; 5165 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 5166 InstructionList.push_back(IBI); 5167 for (unsigned i = 0, e = NumDests; i != e; ++i) { 5168 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 5169 IBI->addDestination(DestBB); 5170 } else { 5171 delete IBI; 5172 return error("Invalid record"); 5173 } 5174 } 5175 I = IBI; 5176 break; 5177 } 5178 5179 case bitc::FUNC_CODE_INST_INVOKE: { 5180 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 5181 if (Record.size() < 4) 5182 return error("Invalid record"); 5183 unsigned OpNum = 0; 5184 AttributeSet PAL = getAttributes(Record[OpNum++]); 5185 unsigned CCInfo = Record[OpNum++]; 5186 BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]); 5187 BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]); 5188 5189 FunctionType *FTy = nullptr; 5190 if (CCInfo >> 13 & 1 && 5191 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])))) 5192 return error("Explicit invoke type is not a function type"); 5193 5194 Value *Callee; 5195 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 5196 return error("Invalid record"); 5197 5198 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 5199 if (!CalleeTy) 5200 return error("Callee is not a pointer"); 5201 if (!FTy) { 5202 FTy = dyn_cast<FunctionType>(CalleeTy->getElementType()); 5203 if (!FTy) 5204 return error("Callee is not of pointer to function type"); 5205 } else if (CalleeTy->getElementType() != FTy) 5206 return error("Explicit invoke type does not match pointee type of " 5207 "callee operand"); 5208 if (Record.size() < FTy->getNumParams() + OpNum) 5209 return error("Insufficient operands to call"); 5210 5211 SmallVector<Value*, 16> Ops; 5212 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 5213 Ops.push_back(getValue(Record, OpNum, NextValueNo, 5214 FTy->getParamType(i))); 5215 if (!Ops.back()) 5216 return error("Invalid record"); 5217 } 5218 5219 if (!FTy->isVarArg()) { 5220 if (Record.size() != OpNum) 5221 return error("Invalid record"); 5222 } else { 5223 // Read type/value pairs for varargs params. 5224 while (OpNum != Record.size()) { 5225 Value *Op; 5226 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 5227 return error("Invalid record"); 5228 Ops.push_back(Op); 5229 } 5230 } 5231 5232 I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops, OperandBundles); 5233 OperandBundles.clear(); 5234 InstructionList.push_back(I); 5235 cast<InvokeInst>(I)->setCallingConv( 5236 static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo)); 5237 cast<InvokeInst>(I)->setAttributes(PAL); 5238 break; 5239 } 5240 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 5241 unsigned Idx = 0; 5242 Value *Val = nullptr; 5243 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 5244 return error("Invalid record"); 5245 I = ResumeInst::Create(Val); 5246 InstructionList.push_back(I); 5247 break; 5248 } 5249 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 5250 I = new UnreachableInst(Context); 5251 InstructionList.push_back(I); 5252 break; 5253 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 5254 if (Record.size() < 1 || ((Record.size()-1)&1)) 5255 return error("Invalid record"); 5256 Type *Ty = getTypeByID(Record[0]); 5257 if (!Ty) 5258 return error("Invalid record"); 5259 5260 PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2); 5261 InstructionList.push_back(PN); 5262 5263 for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) { 5264 Value *V; 5265 // With the new function encoding, it is possible that operands have 5266 // negative IDs (for forward references). Use a signed VBR 5267 // representation to keep the encoding small. 5268 if (UseRelativeIDs) 5269 V = getValueSigned(Record, 1+i, NextValueNo, Ty); 5270 else 5271 V = getValue(Record, 1+i, NextValueNo, Ty); 5272 BasicBlock *BB = getBasicBlock(Record[2+i]); 5273 if (!V || !BB) 5274 return error("Invalid record"); 5275 PN->addIncoming(V, BB); 5276 } 5277 I = PN; 5278 break; 5279 } 5280 5281 case bitc::FUNC_CODE_INST_LANDINGPAD: 5282 case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: { 5283 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 5284 unsigned Idx = 0; 5285 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) { 5286 if (Record.size() < 3) 5287 return error("Invalid record"); 5288 } else { 5289 assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD); 5290 if (Record.size() < 4) 5291 return error("Invalid record"); 5292 } 5293 Type *Ty = getTypeByID(Record[Idx++]); 5294 if (!Ty) 5295 return error("Invalid record"); 5296 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) { 5297 Value *PersFn = nullptr; 5298 if (getValueTypePair(Record, Idx, NextValueNo, PersFn)) 5299 return error("Invalid record"); 5300 5301 if (!F->hasPersonalityFn()) 5302 F->setPersonalityFn(cast<Constant>(PersFn)); 5303 else if (F->getPersonalityFn() != cast<Constant>(PersFn)) 5304 return error("Personality function mismatch"); 5305 } 5306 5307 bool IsCleanup = !!Record[Idx++]; 5308 unsigned NumClauses = Record[Idx++]; 5309 LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses); 5310 LP->setCleanup(IsCleanup); 5311 for (unsigned J = 0; J != NumClauses; ++J) { 5312 LandingPadInst::ClauseType CT = 5313 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 5314 Value *Val; 5315 5316 if (getValueTypePair(Record, Idx, NextValueNo, Val)) { 5317 delete LP; 5318 return error("Invalid record"); 5319 } 5320 5321 assert((CT != LandingPadInst::Catch || 5322 !isa<ArrayType>(Val->getType())) && 5323 "Catch clause has a invalid type!"); 5324 assert((CT != LandingPadInst::Filter || 5325 isa<ArrayType>(Val->getType())) && 5326 "Filter clause has invalid type!"); 5327 LP->addClause(cast<Constant>(Val)); 5328 } 5329 5330 I = LP; 5331 InstructionList.push_back(I); 5332 break; 5333 } 5334 5335 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 5336 if (Record.size() != 4) 5337 return error("Invalid record"); 5338 uint64_t AlignRecord = Record[3]; 5339 const uint64_t InAllocaMask = uint64_t(1) << 5; 5340 const uint64_t ExplicitTypeMask = uint64_t(1) << 6; 5341 const uint64_t SwiftErrorMask = uint64_t(1) << 7; 5342 const uint64_t FlagMask = InAllocaMask | ExplicitTypeMask | 5343 SwiftErrorMask; 5344 bool InAlloca = AlignRecord & InAllocaMask; 5345 bool SwiftError = AlignRecord & SwiftErrorMask; 5346 Type *Ty = getTypeByID(Record[0]); 5347 if ((AlignRecord & ExplicitTypeMask) == 0) { 5348 auto *PTy = dyn_cast_or_null<PointerType>(Ty); 5349 if (!PTy) 5350 return error("Old-style alloca with a non-pointer type"); 5351 Ty = PTy->getElementType(); 5352 } 5353 Type *OpTy = getTypeByID(Record[1]); 5354 Value *Size = getFnValueByID(Record[2], OpTy); 5355 unsigned Align; 5356 if (std::error_code EC = 5357 parseAlignmentValue(AlignRecord & ~FlagMask, Align)) { 5358 return EC; 5359 } 5360 if (!Ty || !Size) 5361 return error("Invalid record"); 5362 AllocaInst *AI = new AllocaInst(Ty, Size, Align); 5363 AI->setUsedWithInAlloca(InAlloca); 5364 AI->setSwiftError(SwiftError); 5365 I = AI; 5366 InstructionList.push_back(I); 5367 break; 5368 } 5369 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 5370 unsigned OpNum = 0; 5371 Value *Op; 5372 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 5373 (OpNum + 2 != Record.size() && OpNum + 3 != Record.size())) 5374 return error("Invalid record"); 5375 5376 Type *Ty = nullptr; 5377 if (OpNum + 3 == Record.size()) 5378 Ty = getTypeByID(Record[OpNum++]); 5379 if (std::error_code EC = typeCheckLoadStoreInst(Ty, Op->getType())) 5380 return EC; 5381 if (!Ty) 5382 Ty = cast<PointerType>(Op->getType())->getElementType(); 5383 5384 unsigned Align; 5385 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 5386 return EC; 5387 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], Align); 5388 5389 InstructionList.push_back(I); 5390 break; 5391 } 5392 case bitc::FUNC_CODE_INST_LOADATOMIC: { 5393 // LOADATOMIC: [opty, op, align, vol, ordering, synchscope] 5394 unsigned OpNum = 0; 5395 Value *Op; 5396 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 5397 (OpNum + 4 != Record.size() && OpNum + 5 != Record.size())) 5398 return error("Invalid record"); 5399 5400 Type *Ty = nullptr; 5401 if (OpNum + 5 == Record.size()) 5402 Ty = getTypeByID(Record[OpNum++]); 5403 if (std::error_code EC = typeCheckLoadStoreInst(Ty, Op->getType())) 5404 return EC; 5405 if (!Ty) 5406 Ty = cast<PointerType>(Op->getType())->getElementType(); 5407 5408 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 5409 if (Ordering == AtomicOrdering::NotAtomic || 5410 Ordering == AtomicOrdering::Release || 5411 Ordering == AtomicOrdering::AcquireRelease) 5412 return error("Invalid record"); 5413 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 5414 return error("Invalid record"); 5415 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]); 5416 5417 unsigned Align; 5418 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 5419 return EC; 5420 I = new LoadInst(Op, "", Record[OpNum+1], Align, Ordering, SynchScope); 5421 5422 InstructionList.push_back(I); 5423 break; 5424 } 5425 case bitc::FUNC_CODE_INST_STORE: 5426 case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol] 5427 unsigned OpNum = 0; 5428 Value *Val, *Ptr; 5429 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 5430 (BitCode == bitc::FUNC_CODE_INST_STORE 5431 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 5432 : popValue(Record, OpNum, NextValueNo, 5433 cast<PointerType>(Ptr->getType())->getElementType(), 5434 Val)) || 5435 OpNum + 2 != Record.size()) 5436 return error("Invalid record"); 5437 5438 if (std::error_code EC = 5439 typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 5440 return EC; 5441 unsigned Align; 5442 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 5443 return EC; 5444 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align); 5445 InstructionList.push_back(I); 5446 break; 5447 } 5448 case bitc::FUNC_CODE_INST_STOREATOMIC: 5449 case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: { 5450 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, synchscope] 5451 unsigned OpNum = 0; 5452 Value *Val, *Ptr; 5453 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 5454 !isa<PointerType>(Ptr->getType()) || 5455 (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC 5456 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 5457 : popValue(Record, OpNum, NextValueNo, 5458 cast<PointerType>(Ptr->getType())->getElementType(), 5459 Val)) || 5460 OpNum + 4 != Record.size()) 5461 return error("Invalid record"); 5462 5463 if (std::error_code EC = 5464 typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 5465 return EC; 5466 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 5467 if (Ordering == AtomicOrdering::NotAtomic || 5468 Ordering == AtomicOrdering::Acquire || 5469 Ordering == AtomicOrdering::AcquireRelease) 5470 return error("Invalid record"); 5471 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]); 5472 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 5473 return error("Invalid record"); 5474 5475 unsigned Align; 5476 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 5477 return EC; 5478 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align, Ordering, SynchScope); 5479 InstructionList.push_back(I); 5480 break; 5481 } 5482 case bitc::FUNC_CODE_INST_CMPXCHG_OLD: 5483 case bitc::FUNC_CODE_INST_CMPXCHG: { 5484 // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, synchscope, 5485 // failureordering?, isweak?] 5486 unsigned OpNum = 0; 5487 Value *Ptr, *Cmp, *New; 5488 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 5489 (BitCode == bitc::FUNC_CODE_INST_CMPXCHG 5490 ? getValueTypePair(Record, OpNum, NextValueNo, Cmp) 5491 : popValue(Record, OpNum, NextValueNo, 5492 cast<PointerType>(Ptr->getType())->getElementType(), 5493 Cmp)) || 5494 popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) || 5495 Record.size() < OpNum + 3 || Record.size() > OpNum + 5) 5496 return error("Invalid record"); 5497 AtomicOrdering SuccessOrdering = getDecodedOrdering(Record[OpNum + 1]); 5498 if (SuccessOrdering == AtomicOrdering::NotAtomic || 5499 SuccessOrdering == AtomicOrdering::Unordered) 5500 return error("Invalid record"); 5501 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 2]); 5502 5503 if (std::error_code EC = 5504 typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType())) 5505 return EC; 5506 AtomicOrdering FailureOrdering; 5507 if (Record.size() < 7) 5508 FailureOrdering = 5509 AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering); 5510 else 5511 FailureOrdering = getDecodedOrdering(Record[OpNum + 3]); 5512 5513 I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering, 5514 SynchScope); 5515 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 5516 5517 if (Record.size() < 8) { 5518 // Before weak cmpxchgs existed, the instruction simply returned the 5519 // value loaded from memory, so bitcode files from that era will be 5520 // expecting the first component of a modern cmpxchg. 5521 CurBB->getInstList().push_back(I); 5522 I = ExtractValueInst::Create(I, 0); 5523 } else { 5524 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]); 5525 } 5526 5527 InstructionList.push_back(I); 5528 break; 5529 } 5530 case bitc::FUNC_CODE_INST_ATOMICRMW: { 5531 // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, synchscope] 5532 unsigned OpNum = 0; 5533 Value *Ptr, *Val; 5534 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 5535 !isa<PointerType>(Ptr->getType()) || 5536 popValue(Record, OpNum, NextValueNo, 5537 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 5538 OpNum+4 != Record.size()) 5539 return error("Invalid record"); 5540 AtomicRMWInst::BinOp Operation = getDecodedRMWOperation(Record[OpNum]); 5541 if (Operation < AtomicRMWInst::FIRST_BINOP || 5542 Operation > AtomicRMWInst::LAST_BINOP) 5543 return error("Invalid record"); 5544 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 5545 if (Ordering == AtomicOrdering::NotAtomic || 5546 Ordering == AtomicOrdering::Unordered) 5547 return error("Invalid record"); 5548 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]); 5549 I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SynchScope); 5550 cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]); 5551 InstructionList.push_back(I); 5552 break; 5553 } 5554 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, synchscope] 5555 if (2 != Record.size()) 5556 return error("Invalid record"); 5557 AtomicOrdering Ordering = getDecodedOrdering(Record[0]); 5558 if (Ordering == AtomicOrdering::NotAtomic || 5559 Ordering == AtomicOrdering::Unordered || 5560 Ordering == AtomicOrdering::Monotonic) 5561 return error("Invalid record"); 5562 SynchronizationScope SynchScope = getDecodedSynchScope(Record[1]); 5563 I = new FenceInst(Context, Ordering, SynchScope); 5564 InstructionList.push_back(I); 5565 break; 5566 } 5567 case bitc::FUNC_CODE_INST_CALL: { 5568 // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...] 5569 if (Record.size() < 3) 5570 return error("Invalid record"); 5571 5572 unsigned OpNum = 0; 5573 AttributeSet PAL = getAttributes(Record[OpNum++]); 5574 unsigned CCInfo = Record[OpNum++]; 5575 5576 FastMathFlags FMF; 5577 if ((CCInfo >> bitc::CALL_FMF) & 1) { 5578 FMF = getDecodedFastMathFlags(Record[OpNum++]); 5579 if (!FMF.any()) 5580 return error("Fast math flags indicator set for call with no FMF"); 5581 } 5582 5583 FunctionType *FTy = nullptr; 5584 if (CCInfo >> bitc::CALL_EXPLICIT_TYPE & 1 && 5585 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])))) 5586 return error("Explicit call type is not a function type"); 5587 5588 Value *Callee; 5589 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 5590 return error("Invalid record"); 5591 5592 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 5593 if (!OpTy) 5594 return error("Callee is not a pointer type"); 5595 if (!FTy) { 5596 FTy = dyn_cast<FunctionType>(OpTy->getElementType()); 5597 if (!FTy) 5598 return error("Callee is not of pointer to function type"); 5599 } else if (OpTy->getElementType() != FTy) 5600 return error("Explicit call type does not match pointee type of " 5601 "callee operand"); 5602 if (Record.size() < FTy->getNumParams() + OpNum) 5603 return error("Insufficient operands to call"); 5604 5605 SmallVector<Value*, 16> Args; 5606 // Read the fixed params. 5607 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 5608 if (FTy->getParamType(i)->isLabelTy()) 5609 Args.push_back(getBasicBlock(Record[OpNum])); 5610 else 5611 Args.push_back(getValue(Record, OpNum, NextValueNo, 5612 FTy->getParamType(i))); 5613 if (!Args.back()) 5614 return error("Invalid record"); 5615 } 5616 5617 // Read type/value pairs for varargs params. 5618 if (!FTy->isVarArg()) { 5619 if (OpNum != Record.size()) 5620 return error("Invalid record"); 5621 } else { 5622 while (OpNum != Record.size()) { 5623 Value *Op; 5624 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 5625 return error("Invalid record"); 5626 Args.push_back(Op); 5627 } 5628 } 5629 5630 I = CallInst::Create(FTy, Callee, Args, OperandBundles); 5631 OperandBundles.clear(); 5632 InstructionList.push_back(I); 5633 cast<CallInst>(I)->setCallingConv( 5634 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 5635 CallInst::TailCallKind TCK = CallInst::TCK_None; 5636 if (CCInfo & 1 << bitc::CALL_TAIL) 5637 TCK = CallInst::TCK_Tail; 5638 if (CCInfo & (1 << bitc::CALL_MUSTTAIL)) 5639 TCK = CallInst::TCK_MustTail; 5640 if (CCInfo & (1 << bitc::CALL_NOTAIL)) 5641 TCK = CallInst::TCK_NoTail; 5642 cast<CallInst>(I)->setTailCallKind(TCK); 5643 cast<CallInst>(I)->setAttributes(PAL); 5644 if (FMF.any()) { 5645 if (!isa<FPMathOperator>(I)) 5646 return error("Fast-math-flags specified for call without " 5647 "floating-point scalar or vector return type"); 5648 I->setFastMathFlags(FMF); 5649 } 5650 break; 5651 } 5652 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 5653 if (Record.size() < 3) 5654 return error("Invalid record"); 5655 Type *OpTy = getTypeByID(Record[0]); 5656 Value *Op = getValue(Record, 1, NextValueNo, OpTy); 5657 Type *ResTy = getTypeByID(Record[2]); 5658 if (!OpTy || !Op || !ResTy) 5659 return error("Invalid record"); 5660 I = new VAArgInst(Op, ResTy); 5661 InstructionList.push_back(I); 5662 break; 5663 } 5664 5665 case bitc::FUNC_CODE_OPERAND_BUNDLE: { 5666 // A call or an invoke can be optionally prefixed with some variable 5667 // number of operand bundle blocks. These blocks are read into 5668 // OperandBundles and consumed at the next call or invoke instruction. 5669 5670 if (Record.size() < 1 || Record[0] >= BundleTags.size()) 5671 return error("Invalid record"); 5672 5673 std::vector<Value *> Inputs; 5674 5675 unsigned OpNum = 1; 5676 while (OpNum != Record.size()) { 5677 Value *Op; 5678 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 5679 return error("Invalid record"); 5680 Inputs.push_back(Op); 5681 } 5682 5683 OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs)); 5684 continue; 5685 } 5686 } 5687 5688 // Add instruction to end of current BB. If there is no current BB, reject 5689 // this file. 5690 if (!CurBB) { 5691 delete I; 5692 return error("Invalid instruction with no BB"); 5693 } 5694 if (!OperandBundles.empty()) { 5695 delete I; 5696 return error("Operand bundles found with no consumer"); 5697 } 5698 CurBB->getInstList().push_back(I); 5699 5700 // If this was a terminator instruction, move to the next block. 5701 if (isa<TerminatorInst>(I)) { 5702 ++CurBBNo; 5703 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr; 5704 } 5705 5706 // Non-void values get registered in the value table for future use. 5707 if (I && !I->getType()->isVoidTy()) 5708 ValueList.assignValue(I, NextValueNo++); 5709 } 5710 5711 OutOfRecordLoop: 5712 5713 if (!OperandBundles.empty()) 5714 return error("Operand bundles found with no consumer"); 5715 5716 // Check the function list for unresolved values. 5717 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 5718 if (!A->getParent()) { 5719 // We found at least one unresolved value. Nuke them all to avoid leaks. 5720 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 5721 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) { 5722 A->replaceAllUsesWith(UndefValue::get(A->getType())); 5723 delete A; 5724 } 5725 } 5726 return error("Never resolved value found in function"); 5727 } 5728 } 5729 5730 // Unexpected unresolved metadata about to be dropped. 5731 if (MetadataList.hasFwdRefs()) 5732 return error("Invalid function metadata: outgoing forward refs"); 5733 5734 // Trim the value list down to the size it was before we parsed this function. 5735 ValueList.shrinkTo(ModuleValueListSize); 5736 MetadataList.shrinkTo(ModuleMetadataListSize); 5737 std::vector<BasicBlock*>().swap(FunctionBBs); 5738 return std::error_code(); 5739 } 5740 5741 /// Find the function body in the bitcode stream 5742 std::error_code BitcodeReader::findFunctionInStream( 5743 Function *F, 5744 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) { 5745 while (DeferredFunctionInfoIterator->second == 0) { 5746 // This is the fallback handling for the old format bitcode that 5747 // didn't contain the function index in the VST, or when we have 5748 // an anonymous function which would not have a VST entry. 5749 // Assert that we have one of those two cases. 5750 assert(VSTOffset == 0 || !F->hasName()); 5751 // Parse the next body in the stream and set its position in the 5752 // DeferredFunctionInfo map. 5753 if (std::error_code EC = rememberAndSkipFunctionBodies()) 5754 return EC; 5755 } 5756 return std::error_code(); 5757 } 5758 5759 //===----------------------------------------------------------------------===// 5760 // GVMaterializer implementation 5761 //===----------------------------------------------------------------------===// 5762 5763 void BitcodeReader::releaseBuffer() { Buffer.release(); } 5764 5765 std::error_code BitcodeReader::materialize(GlobalValue *GV) { 5766 Function *F = dyn_cast<Function>(GV); 5767 // If it's not a function or is already material, ignore the request. 5768 if (!F || !F->isMaterializable()) 5769 return std::error_code(); 5770 5771 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 5772 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 5773 // If its position is recorded as 0, its body is somewhere in the stream 5774 // but we haven't seen it yet. 5775 if (DFII->second == 0) 5776 if (std::error_code EC = findFunctionInStream(F, DFII)) 5777 return EC; 5778 5779 // Materialize metadata before parsing any function bodies. 5780 if (std::error_code EC = materializeMetadata()) 5781 return EC; 5782 5783 // Move the bit stream to the saved position of the deferred function body. 5784 Stream.JumpToBit(DFII->second); 5785 5786 if (std::error_code EC = parseFunctionBody(F)) 5787 return EC; 5788 F->setIsMaterializable(false); 5789 5790 if (StripDebugInfo) 5791 stripDebugInfo(*F); 5792 5793 // Upgrade any old intrinsic calls in the function. 5794 for (auto &I : UpgradedIntrinsics) { 5795 for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end(); 5796 UI != UE;) { 5797 User *U = *UI; 5798 ++UI; 5799 if (CallInst *CI = dyn_cast<CallInst>(U)) 5800 UpgradeIntrinsicCall(CI, I.second); 5801 } 5802 } 5803 5804 // Update calls to the remangled intrinsics 5805 for (auto &I : RemangledIntrinsics) 5806 for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end(); 5807 UI != UE;) 5808 // Don't expect any other users than call sites 5809 CallSite(*UI++).setCalledFunction(I.second); 5810 5811 // Finish fn->subprogram upgrade for materialized functions. 5812 if (DISubprogram *SP = FunctionsWithSPs.lookup(F)) 5813 F->setSubprogram(SP); 5814 5815 // Bring in any functions that this function forward-referenced via 5816 // blockaddresses. 5817 return materializeForwardReferencedFunctions(); 5818 } 5819 5820 std::error_code BitcodeReader::materializeModule() { 5821 if (std::error_code EC = materializeMetadata()) 5822 return EC; 5823 5824 // Promise to materialize all forward references. 5825 WillMaterializeAllForwardRefs = true; 5826 5827 // Iterate over the module, deserializing any functions that are still on 5828 // disk. 5829 for (Function &F : *TheModule) { 5830 if (std::error_code EC = materialize(&F)) 5831 return EC; 5832 } 5833 // At this point, if there are any function bodies, parse the rest of 5834 // the bits in the module past the last function block we have recorded 5835 // through either lazy scanning or the VST. 5836 if (LastFunctionBlockBit || NextUnreadBit) 5837 parseModule(LastFunctionBlockBit > NextUnreadBit ? LastFunctionBlockBit 5838 : NextUnreadBit); 5839 5840 // Check that all block address forward references got resolved (as we 5841 // promised above). 5842 if (!BasicBlockFwdRefs.empty()) 5843 return error("Never resolved function from blockaddress"); 5844 5845 // Upgrading intrinsic calls before TBAA can cause TBAA metadata to be lost, 5846 // to prevent this instructions with TBAA tags should be upgraded first. 5847 for (unsigned I = 0, E = InstsWithTBAATag.size(); I < E; I++) 5848 UpgradeInstWithTBAATag(InstsWithTBAATag[I]); 5849 5850 // Upgrade any intrinsic calls that slipped through (should not happen!) and 5851 // delete the old functions to clean up. We can't do this unless the entire 5852 // module is materialized because there could always be another function body 5853 // with calls to the old function. 5854 for (auto &I : UpgradedIntrinsics) { 5855 for (auto *U : I.first->users()) { 5856 if (CallInst *CI = dyn_cast<CallInst>(U)) 5857 UpgradeIntrinsicCall(CI, I.second); 5858 } 5859 if (!I.first->use_empty()) 5860 I.first->replaceAllUsesWith(I.second); 5861 I.first->eraseFromParent(); 5862 } 5863 UpgradedIntrinsics.clear(); 5864 // Do the same for remangled intrinsics 5865 for (auto &I : RemangledIntrinsics) { 5866 I.first->replaceAllUsesWith(I.second); 5867 I.first->eraseFromParent(); 5868 } 5869 RemangledIntrinsics.clear(); 5870 5871 UpgradeDebugInfo(*TheModule); 5872 5873 UpgradeModuleFlags(*TheModule); 5874 return std::error_code(); 5875 } 5876 5877 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const { 5878 return IdentifiedStructTypes; 5879 } 5880 5881 std::error_code 5882 BitcodeReader::initStream(std::unique_ptr<DataStreamer> Streamer) { 5883 if (Streamer) 5884 return initLazyStream(std::move(Streamer)); 5885 return initStreamFromBuffer(); 5886 } 5887 5888 std::error_code BitcodeReader::initStreamFromBuffer() { 5889 const unsigned char *BufPtr = (const unsigned char*)Buffer->getBufferStart(); 5890 const unsigned char *BufEnd = BufPtr+Buffer->getBufferSize(); 5891 5892 if (Buffer->getBufferSize() & 3) 5893 return error("Invalid bitcode signature"); 5894 5895 // If we have a wrapper header, parse it and ignore the non-bc file contents. 5896 // The magic number is 0x0B17C0DE stored in little endian. 5897 if (isBitcodeWrapper(BufPtr, BufEnd)) 5898 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 5899 return error("Invalid bitcode wrapper header"); 5900 5901 StreamFile.reset(new BitstreamReader(BufPtr, BufEnd)); 5902 Stream.init(&*StreamFile); 5903 5904 return std::error_code(); 5905 } 5906 5907 std::error_code 5908 BitcodeReader::initLazyStream(std::unique_ptr<DataStreamer> Streamer) { 5909 // Check and strip off the bitcode wrapper; BitstreamReader expects never to 5910 // see it. 5911 auto OwnedBytes = 5912 llvm::make_unique<StreamingMemoryObject>(std::move(Streamer)); 5913 StreamingMemoryObject &Bytes = *OwnedBytes; 5914 StreamFile = llvm::make_unique<BitstreamReader>(std::move(OwnedBytes)); 5915 Stream.init(&*StreamFile); 5916 5917 unsigned char buf[16]; 5918 if (Bytes.readBytes(buf, 16, 0) != 16) 5919 return error("Invalid bitcode signature"); 5920 5921 if (!isBitcode(buf, buf + 16)) 5922 return error("Invalid bitcode signature"); 5923 5924 if (isBitcodeWrapper(buf, buf + 4)) { 5925 const unsigned char *bitcodeStart = buf; 5926 const unsigned char *bitcodeEnd = buf + 16; 5927 SkipBitcodeWrapperHeader(bitcodeStart, bitcodeEnd, false); 5928 Bytes.dropLeadingBytes(bitcodeStart - buf); 5929 Bytes.setKnownObjectSize(bitcodeEnd - bitcodeStart); 5930 } 5931 return std::error_code(); 5932 } 5933 5934 std::error_code ModuleSummaryIndexBitcodeReader::error(const Twine &Message) { 5935 return ::error(DiagnosticHandler, 5936 make_error_code(BitcodeError::CorruptedBitcode), Message); 5937 } 5938 5939 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader( 5940 MemoryBuffer *Buffer, DiagnosticHandlerFunction DiagnosticHandler, 5941 bool CheckGlobalValSummaryPresenceOnly) 5942 : DiagnosticHandler(std::move(DiagnosticHandler)), Buffer(Buffer), 5943 CheckGlobalValSummaryPresenceOnly(CheckGlobalValSummaryPresenceOnly) {} 5944 5945 void ModuleSummaryIndexBitcodeReader::freeState() { Buffer = nullptr; } 5946 5947 void ModuleSummaryIndexBitcodeReader::releaseBuffer() { Buffer.release(); } 5948 5949 std::pair<GlobalValue::GUID, GlobalValue::GUID> 5950 ModuleSummaryIndexBitcodeReader::getGUIDFromValueId(unsigned ValueId) { 5951 auto VGI = ValueIdToCallGraphGUIDMap.find(ValueId); 5952 assert(VGI != ValueIdToCallGraphGUIDMap.end()); 5953 return VGI->second; 5954 } 5955 5956 // Specialized value symbol table parser used when reading module index 5957 // blocks where we don't actually create global values. The parsed information 5958 // is saved in the bitcode reader for use when later parsing summaries. 5959 std::error_code ModuleSummaryIndexBitcodeReader::parseValueSymbolTable( 5960 uint64_t Offset, 5961 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) { 5962 assert(Offset > 0 && "Expected non-zero VST offset"); 5963 uint64_t CurrentBit = jumpToValueSymbolTable(Offset, Stream); 5964 5965 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 5966 return error("Invalid record"); 5967 5968 SmallVector<uint64_t, 64> Record; 5969 5970 // Read all the records for this value table. 5971 SmallString<128> ValueName; 5972 5973 while (true) { 5974 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5975 5976 switch (Entry.Kind) { 5977 case BitstreamEntry::SubBlock: // Handled for us already. 5978 case BitstreamEntry::Error: 5979 return error("Malformed block"); 5980 case BitstreamEntry::EndBlock: 5981 // Done parsing VST, jump back to wherever we came from. 5982 Stream.JumpToBit(CurrentBit); 5983 return std::error_code(); 5984 case BitstreamEntry::Record: 5985 // The interesting case. 5986 break; 5987 } 5988 5989 // Read a record. 5990 Record.clear(); 5991 switch (Stream.readRecord(Entry.ID, Record)) { 5992 default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records). 5993 break; 5994 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 5995 if (convertToString(Record, 1, ValueName)) 5996 return error("Invalid record"); 5997 unsigned ValueID = Record[0]; 5998 assert(!SourceFileName.empty()); 5999 auto VLI = ValueIdToLinkageMap.find(ValueID); 6000 assert(VLI != ValueIdToLinkageMap.end() && 6001 "No linkage found for VST entry?"); 6002 auto Linkage = VLI->second; 6003 std::string GlobalId = 6004 GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName); 6005 auto ValueGUID = GlobalValue::getGUID(GlobalId); 6006 auto OriginalNameID = ValueGUID; 6007 if (GlobalValue::isLocalLinkage(Linkage)) 6008 OriginalNameID = GlobalValue::getGUID(ValueName); 6009 if (PrintSummaryGUIDs) 6010 dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is " 6011 << ValueName << "\n"; 6012 ValueIdToCallGraphGUIDMap[ValueID] = 6013 std::make_pair(ValueGUID, OriginalNameID); 6014 ValueName.clear(); 6015 break; 6016 } 6017 case bitc::VST_CODE_FNENTRY: { 6018 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 6019 if (convertToString(Record, 2, ValueName)) 6020 return error("Invalid record"); 6021 unsigned ValueID = Record[0]; 6022 assert(!SourceFileName.empty()); 6023 auto VLI = ValueIdToLinkageMap.find(ValueID); 6024 assert(VLI != ValueIdToLinkageMap.end() && 6025 "No linkage found for VST entry?"); 6026 auto Linkage = VLI->second; 6027 std::string FunctionGlobalId = GlobalValue::getGlobalIdentifier( 6028 ValueName, VLI->second, SourceFileName); 6029 auto FunctionGUID = GlobalValue::getGUID(FunctionGlobalId); 6030 auto OriginalNameID = FunctionGUID; 6031 if (GlobalValue::isLocalLinkage(Linkage)) 6032 OriginalNameID = GlobalValue::getGUID(ValueName); 6033 if (PrintSummaryGUIDs) 6034 dbgs() << "GUID " << FunctionGUID << "(" << OriginalNameID << ") is " 6035 << ValueName << "\n"; 6036 ValueIdToCallGraphGUIDMap[ValueID] = 6037 std::make_pair(FunctionGUID, OriginalNameID); 6038 6039 ValueName.clear(); 6040 break; 6041 } 6042 case bitc::VST_CODE_COMBINED_ENTRY: { 6043 // VST_CODE_COMBINED_ENTRY: [valueid, refguid] 6044 unsigned ValueID = Record[0]; 6045 GlobalValue::GUID RefGUID = Record[1]; 6046 // The "original name", which is the second value of the pair will be 6047 // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index. 6048 ValueIdToCallGraphGUIDMap[ValueID] = std::make_pair(RefGUID, RefGUID); 6049 break; 6050 } 6051 } 6052 } 6053 } 6054 6055 // Parse just the blocks needed for building the index out of the module. 6056 // At the end of this routine the module Index is populated with a map 6057 // from global value id to GlobalValueSummary objects. 6058 std::error_code ModuleSummaryIndexBitcodeReader::parseModule() { 6059 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 6060 return error("Invalid record"); 6061 6062 SmallVector<uint64_t, 64> Record; 6063 DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap; 6064 unsigned ValueId = 0; 6065 6066 // Read the index for this module. 6067 while (true) { 6068 BitstreamEntry Entry = Stream.advance(); 6069 6070 switch (Entry.Kind) { 6071 case BitstreamEntry::Error: 6072 return error("Malformed block"); 6073 case BitstreamEntry::EndBlock: 6074 return std::error_code(); 6075 6076 case BitstreamEntry::SubBlock: 6077 if (CheckGlobalValSummaryPresenceOnly) { 6078 if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) { 6079 SeenGlobalValSummary = true; 6080 // No need to parse the rest since we found the summary. 6081 return std::error_code(); 6082 } 6083 if (Stream.SkipBlock()) 6084 return error("Invalid record"); 6085 continue; 6086 } 6087 switch (Entry.ID) { 6088 default: // Skip unknown content. 6089 if (Stream.SkipBlock()) 6090 return error("Invalid record"); 6091 break; 6092 case bitc::BLOCKINFO_BLOCK_ID: 6093 // Need to parse these to get abbrev ids (e.g. for VST) 6094 if (Stream.ReadBlockInfoBlock()) 6095 return error("Malformed block"); 6096 break; 6097 case bitc::VALUE_SYMTAB_BLOCK_ID: 6098 // Should have been parsed earlier via VSTOffset, unless there 6099 // is no summary section. 6100 assert(((SeenValueSymbolTable && VSTOffset > 0) || 6101 !SeenGlobalValSummary) && 6102 "Expected early VST parse via VSTOffset record"); 6103 if (Stream.SkipBlock()) 6104 return error("Invalid record"); 6105 break; 6106 case bitc::GLOBALVAL_SUMMARY_BLOCK_ID: 6107 assert(VSTOffset > 0 && "Expected non-zero VST offset"); 6108 assert(!SeenValueSymbolTable && 6109 "Already read VST when parsing summary block?"); 6110 if (std::error_code EC = 6111 parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap)) 6112 return EC; 6113 SeenValueSymbolTable = true; 6114 SeenGlobalValSummary = true; 6115 if (std::error_code EC = parseEntireSummary()) 6116 return EC; 6117 break; 6118 case bitc::MODULE_STRTAB_BLOCK_ID: 6119 if (std::error_code EC = parseModuleStringTable()) 6120 return EC; 6121 break; 6122 } 6123 continue; 6124 6125 case BitstreamEntry::Record: { 6126 Record.clear(); 6127 auto BitCode = Stream.readRecord(Entry.ID, Record); 6128 switch (BitCode) { 6129 default: 6130 break; // Default behavior, ignore unknown content. 6131 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 6132 case bitc::MODULE_CODE_SOURCE_FILENAME: { 6133 SmallString<128> ValueName; 6134 if (convertToString(Record, 0, ValueName)) 6135 return error("Invalid record"); 6136 SourceFileName = ValueName.c_str(); 6137 break; 6138 } 6139 /// MODULE_CODE_HASH: [5*i32] 6140 case bitc::MODULE_CODE_HASH: { 6141 if (Record.size() != 5) 6142 return error("Invalid hash length " + Twine(Record.size()).str()); 6143 if (!TheIndex) 6144 break; 6145 if (TheIndex->modulePaths().empty()) 6146 // Does not have any summary emitted. 6147 break; 6148 if (TheIndex->modulePaths().size() != 1) 6149 return error("Don't expect multiple modules defined?"); 6150 auto &Hash = TheIndex->modulePaths().begin()->second.second; 6151 int Pos = 0; 6152 for (auto &Val : Record) { 6153 assert(!(Val >> 32) && "Unexpected high bits set"); 6154 Hash[Pos++] = Val; 6155 } 6156 break; 6157 } 6158 /// MODULE_CODE_VSTOFFSET: [offset] 6159 case bitc::MODULE_CODE_VSTOFFSET: 6160 if (Record.size() < 1) 6161 return error("Invalid record"); 6162 VSTOffset = Record[0]; 6163 break; 6164 // GLOBALVAR: [pointer type, isconst, initid, 6165 // linkage, alignment, section, visibility, threadlocal, 6166 // unnamed_addr, externally_initialized, dllstorageclass, 6167 // comdat] 6168 case bitc::MODULE_CODE_GLOBALVAR: { 6169 if (Record.size() < 6) 6170 return error("Invalid record"); 6171 uint64_t RawLinkage = Record[3]; 6172 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 6173 ValueIdToLinkageMap[ValueId++] = Linkage; 6174 break; 6175 } 6176 // FUNCTION: [type, callingconv, isproto, linkage, paramattr, 6177 // alignment, section, visibility, gc, unnamed_addr, 6178 // prologuedata, dllstorageclass, comdat, prefixdata] 6179 case bitc::MODULE_CODE_FUNCTION: { 6180 if (Record.size() < 8) 6181 return error("Invalid record"); 6182 uint64_t RawLinkage = Record[3]; 6183 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 6184 ValueIdToLinkageMap[ValueId++] = Linkage; 6185 break; 6186 } 6187 // ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, 6188 // dllstorageclass] 6189 case bitc::MODULE_CODE_ALIAS: { 6190 if (Record.size() < 6) 6191 return error("Invalid record"); 6192 uint64_t RawLinkage = Record[3]; 6193 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 6194 ValueIdToLinkageMap[ValueId++] = Linkage; 6195 break; 6196 } 6197 } 6198 } 6199 continue; 6200 } 6201 } 6202 } 6203 6204 // Eagerly parse the entire summary block. This populates the GlobalValueSummary 6205 // objects in the index. 6206 std::error_code ModuleSummaryIndexBitcodeReader::parseEntireSummary() { 6207 if (Stream.EnterSubBlock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID)) 6208 return error("Invalid record"); 6209 SmallVector<uint64_t, 64> Record; 6210 6211 // Parse version 6212 { 6213 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 6214 if (Entry.Kind != BitstreamEntry::Record) 6215 return error("Invalid Summary Block: record for version expected"); 6216 if (Stream.readRecord(Entry.ID, Record) != bitc::FS_VERSION) 6217 return error("Invalid Summary Block: version expected"); 6218 } 6219 const uint64_t Version = Record[0]; 6220 if (Version != 1) 6221 return error("Invalid summary version " + Twine(Version) + ", 1 expected"); 6222 Record.clear(); 6223 6224 // Keep around the last seen summary to be used when we see an optional 6225 // "OriginalName" attachement. 6226 GlobalValueSummary *LastSeenSummary = nullptr; 6227 bool Combined = false; 6228 6229 while (true) { 6230 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 6231 6232 switch (Entry.Kind) { 6233 case BitstreamEntry::SubBlock: // Handled for us already. 6234 case BitstreamEntry::Error: 6235 return error("Malformed block"); 6236 case BitstreamEntry::EndBlock: 6237 // For a per-module index, remove any entries that still have empty 6238 // summaries. The VST parsing creates entries eagerly for all symbols, 6239 // but not all have associated summaries (e.g. it doesn't know how to 6240 // distinguish between VST_CODE_ENTRY for function declarations vs global 6241 // variables with initializers that end up with a summary). Remove those 6242 // entries now so that we don't need to rely on the combined index merger 6243 // to clean them up (especially since that may not run for the first 6244 // module's index if we merge into that). 6245 if (!Combined) 6246 TheIndex->removeEmptySummaryEntries(); 6247 return std::error_code(); 6248 case BitstreamEntry::Record: 6249 // The interesting case. 6250 break; 6251 } 6252 6253 // Read a record. The record format depends on whether this 6254 // is a per-module index or a combined index file. In the per-module 6255 // case the records contain the associated value's ID for correlation 6256 // with VST entries. In the combined index the correlation is done 6257 // via the bitcode offset of the summary records (which were saved 6258 // in the combined index VST entries). The records also contain 6259 // information used for ThinLTO renaming and importing. 6260 Record.clear(); 6261 auto BitCode = Stream.readRecord(Entry.ID, Record); 6262 switch (BitCode) { 6263 default: // Default behavior: ignore. 6264 break; 6265 // FS_PERMODULE: [valueid, flags, instcount, numrefs, numrefs x valueid, 6266 // n x (valueid, callsitecount)] 6267 // FS_PERMODULE_PROFILE: [valueid, flags, instcount, numrefs, 6268 // numrefs x valueid, 6269 // n x (valueid, callsitecount, profilecount)] 6270 case bitc::FS_PERMODULE: 6271 case bitc::FS_PERMODULE_PROFILE: { 6272 unsigned ValueID = Record[0]; 6273 uint64_t RawFlags = Record[1]; 6274 unsigned InstCount = Record[2]; 6275 unsigned NumRefs = Record[3]; 6276 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6277 std::unique_ptr<FunctionSummary> FS = 6278 llvm::make_unique<FunctionSummary>(Flags, InstCount); 6279 // The module path string ref set in the summary must be owned by the 6280 // index's module string table. Since we don't have a module path 6281 // string table section in the per-module index, we create a single 6282 // module path string table entry with an empty (0) ID to take 6283 // ownership. 6284 FS->setModulePath( 6285 TheIndex->addModulePath(Buffer->getBufferIdentifier(), 0)->first()); 6286 static int RefListStartIndex = 4; 6287 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 6288 assert(Record.size() >= RefListStartIndex + NumRefs && 6289 "Record size inconsistent with number of references"); 6290 for (unsigned I = 4, E = CallGraphEdgeStartIndex; I != E; ++I) { 6291 unsigned RefValueId = Record[I]; 6292 GlobalValue::GUID RefGUID = getGUIDFromValueId(RefValueId).first; 6293 FS->addRefEdge(RefGUID); 6294 } 6295 bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE); 6296 for (unsigned I = CallGraphEdgeStartIndex, E = Record.size(); I != E; 6297 ++I) { 6298 unsigned CalleeValueId = Record[I]; 6299 unsigned CallsiteCount = Record[++I]; 6300 uint64_t ProfileCount = HasProfile ? Record[++I] : 0; 6301 GlobalValue::GUID CalleeGUID = getGUIDFromValueId(CalleeValueId).first; 6302 FS->addCallGraphEdge(CalleeGUID, 6303 CalleeInfo(CallsiteCount, ProfileCount)); 6304 } 6305 auto GUID = getGUIDFromValueId(ValueID); 6306 FS->setOriginalName(GUID.second); 6307 TheIndex->addGlobalValueSummary(GUID.first, std::move(FS)); 6308 break; 6309 } 6310 // FS_ALIAS: [valueid, flags, valueid] 6311 // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as 6312 // they expect all aliasee summaries to be available. 6313 case bitc::FS_ALIAS: { 6314 unsigned ValueID = Record[0]; 6315 uint64_t RawFlags = Record[1]; 6316 unsigned AliaseeID = Record[2]; 6317 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6318 std::unique_ptr<AliasSummary> AS = llvm::make_unique<AliasSummary>(Flags); 6319 // The module path string ref set in the summary must be owned by the 6320 // index's module string table. Since we don't have a module path 6321 // string table section in the per-module index, we create a single 6322 // module path string table entry with an empty (0) ID to take 6323 // ownership. 6324 AS->setModulePath( 6325 TheIndex->addModulePath(Buffer->getBufferIdentifier(), 0)->first()); 6326 6327 GlobalValue::GUID AliaseeGUID = getGUIDFromValueId(AliaseeID).first; 6328 auto *AliaseeSummary = TheIndex->getGlobalValueSummary(AliaseeGUID); 6329 if (!AliaseeSummary) 6330 return error("Alias expects aliasee summary to be parsed"); 6331 AS->setAliasee(AliaseeSummary); 6332 6333 auto GUID = getGUIDFromValueId(ValueID); 6334 AS->setOriginalName(GUID.second); 6335 TheIndex->addGlobalValueSummary(GUID.first, std::move(AS)); 6336 break; 6337 } 6338 // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, n x valueid] 6339 case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: { 6340 unsigned ValueID = Record[0]; 6341 uint64_t RawFlags = Record[1]; 6342 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6343 std::unique_ptr<GlobalVarSummary> FS = 6344 llvm::make_unique<GlobalVarSummary>(Flags); 6345 FS->setModulePath( 6346 TheIndex->addModulePath(Buffer->getBufferIdentifier(), 0)->first()); 6347 for (unsigned I = 2, E = Record.size(); I != E; ++I) { 6348 unsigned RefValueId = Record[I]; 6349 GlobalValue::GUID RefGUID = getGUIDFromValueId(RefValueId).first; 6350 FS->addRefEdge(RefGUID); 6351 } 6352 auto GUID = getGUIDFromValueId(ValueID); 6353 FS->setOriginalName(GUID.second); 6354 TheIndex->addGlobalValueSummary(GUID.first, std::move(FS)); 6355 break; 6356 } 6357 // FS_COMBINED: [valueid, modid, flags, instcount, numrefs, 6358 // numrefs x valueid, n x (valueid, callsitecount)] 6359 // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, numrefs, 6360 // numrefs x valueid, 6361 // n x (valueid, callsitecount, profilecount)] 6362 case bitc::FS_COMBINED: 6363 case bitc::FS_COMBINED_PROFILE: { 6364 unsigned ValueID = Record[0]; 6365 uint64_t ModuleId = Record[1]; 6366 uint64_t RawFlags = Record[2]; 6367 unsigned InstCount = Record[3]; 6368 unsigned NumRefs = Record[4]; 6369 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6370 std::unique_ptr<FunctionSummary> FS = 6371 llvm::make_unique<FunctionSummary>(Flags, InstCount); 6372 LastSeenSummary = FS.get(); 6373 FS->setModulePath(ModuleIdMap[ModuleId]); 6374 static int RefListStartIndex = 5; 6375 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 6376 assert(Record.size() >= RefListStartIndex + NumRefs && 6377 "Record size inconsistent with number of references"); 6378 for (unsigned I = RefListStartIndex, E = CallGraphEdgeStartIndex; I != E; 6379 ++I) { 6380 unsigned RefValueId = Record[I]; 6381 GlobalValue::GUID RefGUID = getGUIDFromValueId(RefValueId).first; 6382 FS->addRefEdge(RefGUID); 6383 } 6384 bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE); 6385 for (unsigned I = CallGraphEdgeStartIndex, E = Record.size(); I != E; 6386 ++I) { 6387 unsigned CalleeValueId = Record[I]; 6388 unsigned CallsiteCount = Record[++I]; 6389 uint64_t ProfileCount = HasProfile ? Record[++I] : 0; 6390 GlobalValue::GUID CalleeGUID = getGUIDFromValueId(CalleeValueId).first; 6391 FS->addCallGraphEdge(CalleeGUID, 6392 CalleeInfo(CallsiteCount, ProfileCount)); 6393 } 6394 GlobalValue::GUID GUID = getGUIDFromValueId(ValueID).first; 6395 TheIndex->addGlobalValueSummary(GUID, std::move(FS)); 6396 Combined = true; 6397 break; 6398 } 6399 // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid] 6400 // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as 6401 // they expect all aliasee summaries to be available. 6402 case bitc::FS_COMBINED_ALIAS: { 6403 unsigned ValueID = Record[0]; 6404 uint64_t ModuleId = Record[1]; 6405 uint64_t RawFlags = Record[2]; 6406 unsigned AliaseeValueId = Record[3]; 6407 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6408 std::unique_ptr<AliasSummary> AS = llvm::make_unique<AliasSummary>(Flags); 6409 LastSeenSummary = AS.get(); 6410 AS->setModulePath(ModuleIdMap[ModuleId]); 6411 6412 auto AliaseeGUID = getGUIDFromValueId(AliaseeValueId).first; 6413 auto AliaseeInModule = 6414 TheIndex->findSummaryInModule(AliaseeGUID, AS->modulePath()); 6415 if (!AliaseeInModule) 6416 return error("Alias expects aliasee summary to be parsed"); 6417 AS->setAliasee(AliaseeInModule); 6418 6419 GlobalValue::GUID GUID = getGUIDFromValueId(ValueID).first; 6420 TheIndex->addGlobalValueSummary(GUID, std::move(AS)); 6421 Combined = true; 6422 break; 6423 } 6424 // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid] 6425 case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: { 6426 unsigned ValueID = Record[0]; 6427 uint64_t ModuleId = Record[1]; 6428 uint64_t RawFlags = Record[2]; 6429 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6430 std::unique_ptr<GlobalVarSummary> FS = 6431 llvm::make_unique<GlobalVarSummary>(Flags); 6432 LastSeenSummary = FS.get(); 6433 FS->setModulePath(ModuleIdMap[ModuleId]); 6434 for (unsigned I = 3, E = Record.size(); I != E; ++I) { 6435 unsigned RefValueId = Record[I]; 6436 GlobalValue::GUID RefGUID = getGUIDFromValueId(RefValueId).first; 6437 FS->addRefEdge(RefGUID); 6438 } 6439 GlobalValue::GUID GUID = getGUIDFromValueId(ValueID).first; 6440 TheIndex->addGlobalValueSummary(GUID, std::move(FS)); 6441 Combined = true; 6442 break; 6443 } 6444 // FS_COMBINED_ORIGINAL_NAME: [original_name] 6445 case bitc::FS_COMBINED_ORIGINAL_NAME: { 6446 uint64_t OriginalName = Record[0]; 6447 if (!LastSeenSummary) 6448 return error("Name attachment that does not follow a combined record"); 6449 LastSeenSummary->setOriginalName(OriginalName); 6450 // Reset the LastSeenSummary 6451 LastSeenSummary = nullptr; 6452 } 6453 } 6454 } 6455 llvm_unreachable("Exit infinite loop"); 6456 } 6457 6458 // Parse the module string table block into the Index. 6459 // This populates the ModulePathStringTable map in the index. 6460 std::error_code ModuleSummaryIndexBitcodeReader::parseModuleStringTable() { 6461 if (Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID)) 6462 return error("Invalid record"); 6463 6464 SmallVector<uint64_t, 64> Record; 6465 6466 SmallString<128> ModulePath; 6467 ModulePathStringTableTy::iterator LastSeenModulePath; 6468 6469 while (true) { 6470 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 6471 6472 switch (Entry.Kind) { 6473 case BitstreamEntry::SubBlock: // Handled for us already. 6474 case BitstreamEntry::Error: 6475 return error("Malformed block"); 6476 case BitstreamEntry::EndBlock: 6477 return std::error_code(); 6478 case BitstreamEntry::Record: 6479 // The interesting case. 6480 break; 6481 } 6482 6483 Record.clear(); 6484 switch (Stream.readRecord(Entry.ID, Record)) { 6485 default: // Default behavior: ignore. 6486 break; 6487 case bitc::MST_CODE_ENTRY: { 6488 // MST_ENTRY: [modid, namechar x N] 6489 uint64_t ModuleId = Record[0]; 6490 6491 if (convertToString(Record, 1, ModulePath)) 6492 return error("Invalid record"); 6493 6494 LastSeenModulePath = TheIndex->addModulePath(ModulePath, ModuleId); 6495 ModuleIdMap[ModuleId] = LastSeenModulePath->first(); 6496 6497 ModulePath.clear(); 6498 break; 6499 } 6500 /// MST_CODE_HASH: [5*i32] 6501 case bitc::MST_CODE_HASH: { 6502 if (Record.size() != 5) 6503 return error("Invalid hash length " + Twine(Record.size()).str()); 6504 if (LastSeenModulePath == TheIndex->modulePaths().end()) 6505 return error("Invalid hash that does not follow a module path"); 6506 int Pos = 0; 6507 for (auto &Val : Record) { 6508 assert(!(Val >> 32) && "Unexpected high bits set"); 6509 LastSeenModulePath->second.second[Pos++] = Val; 6510 } 6511 // Reset LastSeenModulePath to avoid overriding the hash unexpectedly. 6512 LastSeenModulePath = TheIndex->modulePaths().end(); 6513 break; 6514 } 6515 } 6516 } 6517 llvm_unreachable("Exit infinite loop"); 6518 } 6519 6520 // Parse the function info index from the bitcode streamer into the given index. 6521 std::error_code ModuleSummaryIndexBitcodeReader::parseSummaryIndexInto( 6522 std::unique_ptr<DataStreamer> Streamer, ModuleSummaryIndex *I) { 6523 TheIndex = I; 6524 6525 if (std::error_code EC = initStream(std::move(Streamer))) 6526 return EC; 6527 6528 // Sniff for the signature. 6529 if (!hasValidBitcodeHeader(Stream)) 6530 return error("Invalid bitcode signature"); 6531 6532 // We expect a number of well-defined blocks, though we don't necessarily 6533 // need to understand them all. 6534 while (true) { 6535 if (Stream.AtEndOfStream()) { 6536 // We didn't really read a proper Module block. 6537 return error("Malformed block"); 6538 } 6539 6540 BitstreamEntry Entry = 6541 Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs); 6542 6543 if (Entry.Kind != BitstreamEntry::SubBlock) 6544 return error("Malformed block"); 6545 6546 // If we see a MODULE_BLOCK, parse it to find the blocks needed for 6547 // building the function summary index. 6548 if (Entry.ID == bitc::MODULE_BLOCK_ID) 6549 return parseModule(); 6550 6551 if (Stream.SkipBlock()) 6552 return error("Invalid record"); 6553 } 6554 } 6555 6556 std::error_code ModuleSummaryIndexBitcodeReader::initStream( 6557 std::unique_ptr<DataStreamer> Streamer) { 6558 if (Streamer) 6559 return initLazyStream(std::move(Streamer)); 6560 return initStreamFromBuffer(); 6561 } 6562 6563 std::error_code ModuleSummaryIndexBitcodeReader::initStreamFromBuffer() { 6564 const unsigned char *BufPtr = (const unsigned char *)Buffer->getBufferStart(); 6565 const unsigned char *BufEnd = BufPtr + Buffer->getBufferSize(); 6566 6567 if (Buffer->getBufferSize() & 3) 6568 return error("Invalid bitcode signature"); 6569 6570 // If we have a wrapper header, parse it and ignore the non-bc file contents. 6571 // The magic number is 0x0B17C0DE stored in little endian. 6572 if (isBitcodeWrapper(BufPtr, BufEnd)) 6573 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 6574 return error("Invalid bitcode wrapper header"); 6575 6576 StreamFile.reset(new BitstreamReader(BufPtr, BufEnd)); 6577 Stream.init(&*StreamFile); 6578 6579 return std::error_code(); 6580 } 6581 6582 std::error_code ModuleSummaryIndexBitcodeReader::initLazyStream( 6583 std::unique_ptr<DataStreamer> Streamer) { 6584 // Check and strip off the bitcode wrapper; BitstreamReader expects never to 6585 // see it. 6586 auto OwnedBytes = 6587 llvm::make_unique<StreamingMemoryObject>(std::move(Streamer)); 6588 StreamingMemoryObject &Bytes = *OwnedBytes; 6589 StreamFile = llvm::make_unique<BitstreamReader>(std::move(OwnedBytes)); 6590 Stream.init(&*StreamFile); 6591 6592 unsigned char buf[16]; 6593 if (Bytes.readBytes(buf, 16, 0) != 16) 6594 return error("Invalid bitcode signature"); 6595 6596 if (!isBitcode(buf, buf + 16)) 6597 return error("Invalid bitcode signature"); 6598 6599 if (isBitcodeWrapper(buf, buf + 4)) { 6600 const unsigned char *bitcodeStart = buf; 6601 const unsigned char *bitcodeEnd = buf + 16; 6602 SkipBitcodeWrapperHeader(bitcodeStart, bitcodeEnd, false); 6603 Bytes.dropLeadingBytes(bitcodeStart - buf); 6604 Bytes.setKnownObjectSize(bitcodeEnd - bitcodeStart); 6605 } 6606 return std::error_code(); 6607 } 6608 6609 namespace { 6610 6611 // FIXME: This class is only here to support the transition to llvm::Error. It 6612 // will be removed once this transition is complete. Clients should prefer to 6613 // deal with the Error value directly, rather than converting to error_code. 6614 class BitcodeErrorCategoryType : public std::error_category { 6615 const char *name() const LLVM_NOEXCEPT override { 6616 return "llvm.bitcode"; 6617 } 6618 std::string message(int IE) const override { 6619 BitcodeError E = static_cast<BitcodeError>(IE); 6620 switch (E) { 6621 case BitcodeError::InvalidBitcodeSignature: 6622 return "Invalid bitcode signature"; 6623 case BitcodeError::CorruptedBitcode: 6624 return "Corrupted bitcode"; 6625 } 6626 llvm_unreachable("Unknown error type!"); 6627 } 6628 }; 6629 6630 } // end anonymous namespace 6631 6632 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory; 6633 6634 const std::error_category &llvm::BitcodeErrorCategory() { 6635 return *ErrorCategory; 6636 } 6637 6638 //===----------------------------------------------------------------------===// 6639 // External interface 6640 //===----------------------------------------------------------------------===// 6641 6642 static ErrorOr<std::unique_ptr<Module>> 6643 getBitcodeModuleImpl(std::unique_ptr<DataStreamer> Streamer, StringRef Name, 6644 BitcodeReader *R, LLVMContext &Context, 6645 bool MaterializeAll, bool ShouldLazyLoadMetadata) { 6646 std::unique_ptr<Module> M = llvm::make_unique<Module>(Name, Context); 6647 M->setMaterializer(R); 6648 6649 auto cleanupOnError = [&](std::error_code EC) { 6650 R->releaseBuffer(); // Never take ownership on error. 6651 return EC; 6652 }; 6653 6654 // Delay parsing Metadata if ShouldLazyLoadMetadata is true. 6655 if (std::error_code EC = R->parseBitcodeInto(std::move(Streamer), M.get(), 6656 ShouldLazyLoadMetadata)) 6657 return cleanupOnError(EC); 6658 6659 if (MaterializeAll) { 6660 // Read in the entire module, and destroy the BitcodeReader. 6661 if (std::error_code EC = M->materializeAll()) 6662 return cleanupOnError(EC); 6663 } else { 6664 // Resolve forward references from blockaddresses. 6665 if (std::error_code EC = R->materializeForwardReferencedFunctions()) 6666 return cleanupOnError(EC); 6667 } 6668 return std::move(M); 6669 } 6670 6671 /// \brief Get a lazy one-at-time loading module from bitcode. 6672 /// 6673 /// This isn't always used in a lazy context. In particular, it's also used by 6674 /// \a parseBitcodeFile(). If this is truly lazy, then we need to eagerly pull 6675 /// in forward-referenced functions from block address references. 6676 /// 6677 /// \param[in] MaterializeAll Set to \c true if we should materialize 6678 /// everything. 6679 static ErrorOr<std::unique_ptr<Module>> 6680 getLazyBitcodeModuleImpl(std::unique_ptr<MemoryBuffer> &&Buffer, 6681 LLVMContext &Context, bool MaterializeAll, 6682 bool ShouldLazyLoadMetadata = false) { 6683 BitcodeReader *R = new BitcodeReader(Buffer.get(), Context); 6684 6685 ErrorOr<std::unique_ptr<Module>> Ret = 6686 getBitcodeModuleImpl(nullptr, Buffer->getBufferIdentifier(), R, Context, 6687 MaterializeAll, ShouldLazyLoadMetadata); 6688 if (!Ret) 6689 return Ret; 6690 6691 Buffer.release(); // The BitcodeReader owns it now. 6692 return Ret; 6693 } 6694 6695 ErrorOr<std::unique_ptr<Module>> 6696 llvm::getLazyBitcodeModule(std::unique_ptr<MemoryBuffer> &&Buffer, 6697 LLVMContext &Context, bool ShouldLazyLoadMetadata) { 6698 return getLazyBitcodeModuleImpl(std::move(Buffer), Context, false, 6699 ShouldLazyLoadMetadata); 6700 } 6701 6702 ErrorOr<std::unique_ptr<Module>> 6703 llvm::getStreamedBitcodeModule(StringRef Name, 6704 std::unique_ptr<DataStreamer> Streamer, 6705 LLVMContext &Context) { 6706 std::unique_ptr<Module> M = llvm::make_unique<Module>(Name, Context); 6707 BitcodeReader *R = new BitcodeReader(Context); 6708 6709 return getBitcodeModuleImpl(std::move(Streamer), Name, R, Context, false, 6710 false); 6711 } 6712 6713 ErrorOr<std::unique_ptr<Module>> llvm::parseBitcodeFile(MemoryBufferRef Buffer, 6714 LLVMContext &Context) { 6715 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 6716 return getLazyBitcodeModuleImpl(std::move(Buf), Context, true); 6717 // TODO: Restore the use-lists to the in-memory state when the bitcode was 6718 // written. We must defer until the Module has been fully materialized. 6719 } 6720 6721 std::string llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer, 6722 LLVMContext &Context) { 6723 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 6724 auto R = llvm::make_unique<BitcodeReader>(Buf.release(), Context); 6725 ErrorOr<std::string> Triple = R->parseTriple(); 6726 if (Triple.getError()) 6727 return ""; 6728 return Triple.get(); 6729 } 6730 6731 bool llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer, 6732 LLVMContext &Context) { 6733 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 6734 auto R = llvm::make_unique<BitcodeReader>(Buf.release(), Context); 6735 ErrorOr<bool> hasObjCCategory = R->hasObjCCategory(); 6736 if (hasObjCCategory.getError()) 6737 return false; 6738 return hasObjCCategory.get(); 6739 } 6740 6741 std::string llvm::getBitcodeProducerString(MemoryBufferRef Buffer, 6742 LLVMContext &Context) { 6743 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 6744 BitcodeReader R(Buf.release(), Context); 6745 ErrorOr<std::string> ProducerString = R.parseIdentificationBlock(); 6746 if (ProducerString.getError()) 6747 return ""; 6748 return ProducerString.get(); 6749 } 6750 6751 // Parse the specified bitcode buffer, returning the function info index. 6752 ErrorOr<std::unique_ptr<ModuleSummaryIndex>> llvm::getModuleSummaryIndex( 6753 MemoryBufferRef Buffer, 6754 const DiagnosticHandlerFunction &DiagnosticHandler) { 6755 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 6756 ModuleSummaryIndexBitcodeReader R(Buf.get(), DiagnosticHandler); 6757 6758 auto Index = llvm::make_unique<ModuleSummaryIndex>(); 6759 6760 auto cleanupOnError = [&](std::error_code EC) { 6761 R.releaseBuffer(); // Never take ownership on error. 6762 return EC; 6763 }; 6764 6765 if (std::error_code EC = R.parseSummaryIndexInto(nullptr, Index.get())) 6766 return cleanupOnError(EC); 6767 6768 Buf.release(); // The ModuleSummaryIndexBitcodeReader owns it now. 6769 return std::move(Index); 6770 } 6771 6772 // Check if the given bitcode buffer contains a global value summary block. 6773 bool llvm::hasGlobalValueSummary( 6774 MemoryBufferRef Buffer, 6775 const DiagnosticHandlerFunction &DiagnosticHandler) { 6776 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 6777 ModuleSummaryIndexBitcodeReader R(Buf.get(), DiagnosticHandler, true); 6778 6779 auto cleanupOnError = [&](std::error_code EC) { 6780 R.releaseBuffer(); // Never take ownership on error. 6781 return false; 6782 }; 6783 6784 if (std::error_code EC = R.parseSummaryIndexInto(nullptr, nullptr)) 6785 return cleanupOnError(EC); 6786 6787 Buf.release(); // The ModuleSummaryIndexBitcodeReader owns it now. 6788 return R.foundGlobalValSummary(); 6789 } 6790