1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "llvm/Bitcode/BitcodeReader.h" 11 #include "MetadataLoader.h" 12 #include "ValueList.h" 13 14 #include "llvm/ADT/APFloat.h" 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/None.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SmallString.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/ADT/StringRef.h" 23 #include "llvm/ADT/Triple.h" 24 #include "llvm/ADT/Twine.h" 25 #include "llvm/Bitcode/BitstreamReader.h" 26 #include "llvm/Bitcode/LLVMBitCodes.h" 27 #include "llvm/IR/Argument.h" 28 #include "llvm/IR/Attributes.h" 29 #include "llvm/IR/AutoUpgrade.h" 30 #include "llvm/IR/BasicBlock.h" 31 #include "llvm/IR/CallingConv.h" 32 #include "llvm/IR/CallSite.h" 33 #include "llvm/IR/Comdat.h" 34 #include "llvm/IR/Constant.h" 35 #include "llvm/IR/Constants.h" 36 #include "llvm/IR/DebugInfo.h" 37 #include "llvm/IR/DebugInfoMetadata.h" 38 #include "llvm/IR/DebugLoc.h" 39 #include "llvm/IR/DerivedTypes.h" 40 #include "llvm/IR/DiagnosticInfo.h" 41 #include "llvm/IR/DiagnosticPrinter.h" 42 #include "llvm/IR/Function.h" 43 #include "llvm/IR/GlobalAlias.h" 44 #include "llvm/IR/GlobalIFunc.h" 45 #include "llvm/IR/GlobalIndirectSymbol.h" 46 #include "llvm/IR/GlobalObject.h" 47 #include "llvm/IR/GlobalValue.h" 48 #include "llvm/IR/GlobalVariable.h" 49 #include "llvm/IR/GVMaterializer.h" 50 #include "llvm/IR/InlineAsm.h" 51 #include "llvm/IR/InstIterator.h" 52 #include "llvm/IR/InstrTypes.h" 53 #include "llvm/IR/Instruction.h" 54 #include "llvm/IR/Instructions.h" 55 #include "llvm/IR/Intrinsics.h" 56 #include "llvm/IR/LLVMContext.h" 57 #include "llvm/IR/Module.h" 58 #include "llvm/IR/ModuleSummaryIndex.h" 59 #include "llvm/IR/OperandTraits.h" 60 #include "llvm/IR/Operator.h" 61 #include "llvm/IR/TrackingMDRef.h" 62 #include "llvm/IR/Type.h" 63 #include "llvm/IR/ValueHandle.h" 64 #include "llvm/IR/Verifier.h" 65 #include "llvm/Support/AtomicOrdering.h" 66 #include "llvm/Support/Casting.h" 67 #include "llvm/Support/CommandLine.h" 68 #include "llvm/Support/Compiler.h" 69 #include "llvm/Support/Debug.h" 70 #include "llvm/Support/Error.h" 71 #include "llvm/Support/ErrorHandling.h" 72 #include "llvm/Support/ManagedStatic.h" 73 #include "llvm/Support/MemoryBuffer.h" 74 #include "llvm/Support/raw_ostream.h" 75 #include <algorithm> 76 #include <cassert> 77 #include <cstddef> 78 #include <cstdint> 79 #include <deque> 80 #include <limits> 81 #include <map> 82 #include <memory> 83 #include <string> 84 #include <system_error> 85 #include <tuple> 86 #include <utility> 87 #include <vector> 88 89 using namespace llvm; 90 91 static cl::opt<bool> PrintSummaryGUIDs( 92 "print-summary-global-ids", cl::init(false), cl::Hidden, 93 cl::desc( 94 "Print the global id for each value when reading the module summary")); 95 96 namespace { 97 98 enum { 99 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 100 }; 101 102 Error error(const Twine &Message) { 103 return make_error<StringError>( 104 Message, make_error_code(BitcodeError::CorruptedBitcode)); 105 } 106 107 /// Helper to read the header common to all bitcode files. 108 bool hasValidBitcodeHeader(BitstreamCursor &Stream) { 109 // Sniff for the signature. 110 if (!Stream.canSkipToPos(4) || 111 Stream.Read(8) != 'B' || 112 Stream.Read(8) != 'C' || 113 Stream.Read(4) != 0x0 || 114 Stream.Read(4) != 0xC || 115 Stream.Read(4) != 0xE || 116 Stream.Read(4) != 0xD) 117 return false; 118 return true; 119 } 120 121 Expected<BitstreamCursor> initStream(MemoryBufferRef Buffer) { 122 const unsigned char *BufPtr = (const unsigned char *)Buffer.getBufferStart(); 123 const unsigned char *BufEnd = BufPtr + Buffer.getBufferSize(); 124 125 if (Buffer.getBufferSize() & 3) 126 return error("Invalid bitcode signature"); 127 128 // If we have a wrapper header, parse it and ignore the non-bc file contents. 129 // The magic number is 0x0B17C0DE stored in little endian. 130 if (isBitcodeWrapper(BufPtr, BufEnd)) 131 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 132 return error("Invalid bitcode wrapper header"); 133 134 BitstreamCursor Stream(ArrayRef<uint8_t>(BufPtr, BufEnd)); 135 if (!hasValidBitcodeHeader(Stream)) 136 return error("Invalid bitcode signature"); 137 138 return std::move(Stream); 139 } 140 141 /// Convert a string from a record into an std::string, return true on failure. 142 template <typename StrTy> 143 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx, 144 StrTy &Result) { 145 if (Idx > Record.size()) 146 return true; 147 148 for (unsigned i = Idx, e = Record.size(); i != e; ++i) 149 Result += (char)Record[i]; 150 return false; 151 } 152 153 // Strip all the TBAA attachment for the module. 154 void stripTBAA(Module *M) { 155 for (auto &F : *M) { 156 if (F.isMaterializable()) 157 continue; 158 for (auto &I : instructions(F)) 159 I.setMetadata(LLVMContext::MD_tbaa, nullptr); 160 } 161 } 162 163 /// Read the "IDENTIFICATION_BLOCK_ID" block, do some basic enforcement on the 164 /// "epoch" encoded in the bitcode, and return the producer name if any. 165 Expected<std::string> readIdentificationBlock(BitstreamCursor &Stream) { 166 if (Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID)) 167 return error("Invalid record"); 168 169 // Read all the records. 170 SmallVector<uint64_t, 64> Record; 171 172 std::string ProducerIdentification; 173 174 while (true) { 175 BitstreamEntry Entry = Stream.advance(); 176 177 switch (Entry.Kind) { 178 default: 179 case BitstreamEntry::Error: 180 return error("Malformed block"); 181 case BitstreamEntry::EndBlock: 182 return ProducerIdentification; 183 case BitstreamEntry::Record: 184 // The interesting case. 185 break; 186 } 187 188 // Read a record. 189 Record.clear(); 190 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 191 switch (BitCode) { 192 default: // Default behavior: reject 193 return error("Invalid value"); 194 case bitc::IDENTIFICATION_CODE_STRING: // IDENTIFICATION: [strchr x N] 195 convertToString(Record, 0, ProducerIdentification); 196 break; 197 case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#] 198 unsigned epoch = (unsigned)Record[0]; 199 if (epoch != bitc::BITCODE_CURRENT_EPOCH) { 200 return error( 201 Twine("Incompatible epoch: Bitcode '") + Twine(epoch) + 202 "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'"); 203 } 204 } 205 } 206 } 207 } 208 209 Expected<std::string> readIdentificationCode(BitstreamCursor &Stream) { 210 // We expect a number of well-defined blocks, though we don't necessarily 211 // need to understand them all. 212 while (true) { 213 if (Stream.AtEndOfStream()) 214 return ""; 215 216 BitstreamEntry Entry = Stream.advance(); 217 switch (Entry.Kind) { 218 case BitstreamEntry::EndBlock: 219 case BitstreamEntry::Error: 220 return error("Malformed block"); 221 222 case BitstreamEntry::SubBlock: 223 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) 224 return readIdentificationBlock(Stream); 225 226 // Ignore other sub-blocks. 227 if (Stream.SkipBlock()) 228 return error("Malformed block"); 229 continue; 230 case BitstreamEntry::Record: 231 Stream.skipRecord(Entry.ID); 232 continue; 233 } 234 } 235 } 236 237 Expected<bool> hasObjCCategoryInModule(BitstreamCursor &Stream) { 238 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 239 return error("Invalid record"); 240 241 SmallVector<uint64_t, 64> Record; 242 // Read all the records for this module. 243 244 while (true) { 245 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 246 247 switch (Entry.Kind) { 248 case BitstreamEntry::SubBlock: // Handled for us already. 249 case BitstreamEntry::Error: 250 return error("Malformed block"); 251 case BitstreamEntry::EndBlock: 252 return false; 253 case BitstreamEntry::Record: 254 // The interesting case. 255 break; 256 } 257 258 // Read a record. 259 switch (Stream.readRecord(Entry.ID, Record)) { 260 default: 261 break; // Default behavior, ignore unknown content. 262 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 263 std::string S; 264 if (convertToString(Record, 0, S)) 265 return error("Invalid record"); 266 // Check for the i386 and other (x86_64, ARM) conventions 267 if (S.find("__DATA, __objc_catlist") != std::string::npos || 268 S.find("__OBJC,__category") != std::string::npos) 269 return true; 270 break; 271 } 272 } 273 Record.clear(); 274 } 275 llvm_unreachable("Exit infinite loop"); 276 } 277 278 Expected<bool> hasObjCCategory(BitstreamCursor &Stream) { 279 // We expect a number of well-defined blocks, though we don't necessarily 280 // need to understand them all. 281 while (true) { 282 BitstreamEntry Entry = Stream.advance(); 283 284 switch (Entry.Kind) { 285 case BitstreamEntry::Error: 286 return error("Malformed block"); 287 case BitstreamEntry::EndBlock: 288 return false; 289 290 case BitstreamEntry::SubBlock: 291 if (Entry.ID == bitc::MODULE_BLOCK_ID) 292 return hasObjCCategoryInModule(Stream); 293 294 // Ignore other sub-blocks. 295 if (Stream.SkipBlock()) 296 return error("Malformed block"); 297 continue; 298 299 case BitstreamEntry::Record: 300 Stream.skipRecord(Entry.ID); 301 continue; 302 } 303 } 304 } 305 306 Expected<std::string> readModuleTriple(BitstreamCursor &Stream) { 307 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 308 return error("Invalid record"); 309 310 SmallVector<uint64_t, 64> Record; 311 312 std::string Triple; 313 314 // Read all the records for this module. 315 while (true) { 316 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 317 318 switch (Entry.Kind) { 319 case BitstreamEntry::SubBlock: // Handled for us already. 320 case BitstreamEntry::Error: 321 return error("Malformed block"); 322 case BitstreamEntry::EndBlock: 323 return Triple; 324 case BitstreamEntry::Record: 325 // The interesting case. 326 break; 327 } 328 329 // Read a record. 330 switch (Stream.readRecord(Entry.ID, Record)) { 331 default: break; // Default behavior, ignore unknown content. 332 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 333 std::string S; 334 if (convertToString(Record, 0, S)) 335 return error("Invalid record"); 336 Triple = S; 337 break; 338 } 339 } 340 Record.clear(); 341 } 342 llvm_unreachable("Exit infinite loop"); 343 } 344 345 Expected<std::string> readTriple(BitstreamCursor &Stream) { 346 // We expect a number of well-defined blocks, though we don't necessarily 347 // need to understand them all. 348 while (true) { 349 BitstreamEntry Entry = Stream.advance(); 350 351 switch (Entry.Kind) { 352 case BitstreamEntry::Error: 353 return error("Malformed block"); 354 case BitstreamEntry::EndBlock: 355 return ""; 356 357 case BitstreamEntry::SubBlock: 358 if (Entry.ID == bitc::MODULE_BLOCK_ID) 359 return readModuleTriple(Stream); 360 361 // Ignore other sub-blocks. 362 if (Stream.SkipBlock()) 363 return error("Malformed block"); 364 continue; 365 366 case BitstreamEntry::Record: 367 Stream.skipRecord(Entry.ID); 368 continue; 369 } 370 } 371 } 372 373 class BitcodeReaderBase { 374 protected: 375 BitcodeReaderBase(BitstreamCursor Stream) : Stream(std::move(Stream)) { 376 this->Stream.setBlockInfo(&BlockInfo); 377 } 378 379 BitstreamBlockInfo BlockInfo; 380 BitstreamCursor Stream; 381 382 Expected<unsigned> parseVersionRecord(ArrayRef<uint64_t> Record); 383 384 bool readBlockInfo(); 385 386 // Contains an arbitrary and optional string identifying the bitcode producer 387 std::string ProducerIdentification; 388 389 Error error(const Twine &Message); 390 }; 391 392 Error BitcodeReaderBase::error(const Twine &Message) { 393 std::string FullMsg = Message.str(); 394 if (!ProducerIdentification.empty()) 395 FullMsg += " (Producer: '" + ProducerIdentification + "' Reader: 'LLVM " + 396 LLVM_VERSION_STRING "')"; 397 return ::error(FullMsg); 398 } 399 400 Expected<unsigned> 401 BitcodeReaderBase::parseVersionRecord(ArrayRef<uint64_t> Record) { 402 if (Record.size() < 1) 403 return error("Invalid record"); 404 unsigned ModuleVersion = Record[0]; 405 if (ModuleVersion > 1) 406 return error("Invalid value"); 407 return ModuleVersion; 408 } 409 410 class BitcodeReader : public BitcodeReaderBase, public GVMaterializer { 411 LLVMContext &Context; 412 Module *TheModule = nullptr; 413 // Next offset to start scanning for lazy parsing of function bodies. 414 uint64_t NextUnreadBit = 0; 415 // Last function offset found in the VST. 416 uint64_t LastFunctionBlockBit = 0; 417 bool SeenValueSymbolTable = false; 418 uint64_t VSTOffset = 0; 419 420 std::vector<std::string> SectionTable; 421 std::vector<std::string> GCTable; 422 423 std::vector<Type*> TypeList; 424 BitcodeReaderValueList ValueList; 425 Optional<MetadataLoader> MDLoader; 426 std::vector<Comdat *> ComdatList; 427 SmallVector<Instruction *, 64> InstructionList; 428 429 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInits; 430 std::vector<std::pair<GlobalIndirectSymbol*, unsigned> > IndirectSymbolInits; 431 std::vector<std::pair<Function*, unsigned> > FunctionPrefixes; 432 std::vector<std::pair<Function*, unsigned> > FunctionPrologues; 433 std::vector<std::pair<Function*, unsigned> > FunctionPersonalityFns; 434 435 /// The set of attributes by index. Index zero in the file is for null, and 436 /// is thus not represented here. As such all indices are off by one. 437 std::vector<AttributeList> MAttributes; 438 439 /// The set of attribute groups. 440 std::map<unsigned, AttributeList> MAttributeGroups; 441 442 /// While parsing a function body, this is a list of the basic blocks for the 443 /// function. 444 std::vector<BasicBlock*> FunctionBBs; 445 446 // When reading the module header, this list is populated with functions that 447 // have bodies later in the file. 448 std::vector<Function*> FunctionsWithBodies; 449 450 // When intrinsic functions are encountered which require upgrading they are 451 // stored here with their replacement function. 452 typedef DenseMap<Function*, Function*> UpdatedIntrinsicMap; 453 UpdatedIntrinsicMap UpgradedIntrinsics; 454 // Intrinsics which were remangled because of types rename 455 UpdatedIntrinsicMap RemangledIntrinsics; 456 457 // Several operations happen after the module header has been read, but 458 // before function bodies are processed. This keeps track of whether 459 // we've done this yet. 460 bool SeenFirstFunctionBody = false; 461 462 /// When function bodies are initially scanned, this map contains info about 463 /// where to find deferred function body in the stream. 464 DenseMap<Function*, uint64_t> DeferredFunctionInfo; 465 466 /// When Metadata block is initially scanned when parsing the module, we may 467 /// choose to defer parsing of the metadata. This vector contains info about 468 /// which Metadata blocks are deferred. 469 std::vector<uint64_t> DeferredMetadataInfo; 470 471 /// These are basic blocks forward-referenced by block addresses. They are 472 /// inserted lazily into functions when they're loaded. The basic block ID is 473 /// its index into the vector. 474 DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs; 475 std::deque<Function *> BasicBlockFwdRefQueue; 476 477 /// Indicates that we are using a new encoding for instruction operands where 478 /// most operands in the current FUNCTION_BLOCK are encoded relative to the 479 /// instruction number, for a more compact encoding. Some instruction 480 /// operands are not relative to the instruction ID: basic block numbers, and 481 /// types. Once the old style function blocks have been phased out, we would 482 /// not need this flag. 483 bool UseRelativeIDs = false; 484 485 /// True if all functions will be materialized, negating the need to process 486 /// (e.g.) blockaddress forward references. 487 bool WillMaterializeAllForwardRefs = false; 488 489 bool StripDebugInfo = false; 490 TBAAVerifier TBAAVerifyHelper; 491 492 std::vector<std::string> BundleTags; 493 494 public: 495 BitcodeReader(BitstreamCursor Stream, StringRef ProducerIdentification, 496 LLVMContext &Context); 497 498 Error materializeForwardReferencedFunctions(); 499 500 Error materialize(GlobalValue *GV) override; 501 Error materializeModule() override; 502 std::vector<StructType *> getIdentifiedStructTypes() const override; 503 504 /// \brief Main interface to parsing a bitcode buffer. 505 /// \returns true if an error occurred. 506 Error parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata = false, 507 bool IsImporting = false); 508 509 static uint64_t decodeSignRotatedValue(uint64_t V); 510 511 /// Materialize any deferred Metadata block. 512 Error materializeMetadata() override; 513 514 void setStripDebugInfo() override; 515 516 private: 517 std::vector<StructType *> IdentifiedStructTypes; 518 StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name); 519 StructType *createIdentifiedStructType(LLVMContext &Context); 520 521 Type *getTypeByID(unsigned ID); 522 523 Value *getFnValueByID(unsigned ID, Type *Ty) { 524 if (Ty && Ty->isMetadataTy()) 525 return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID)); 526 return ValueList.getValueFwdRef(ID, Ty); 527 } 528 529 Metadata *getFnMetadataByID(unsigned ID) { 530 return MDLoader->getMetadataFwdRefOrLoad(ID); 531 } 532 533 BasicBlock *getBasicBlock(unsigned ID) const { 534 if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID 535 return FunctionBBs[ID]; 536 } 537 538 AttributeList getAttributes(unsigned i) const { 539 if (i-1 < MAttributes.size()) 540 return MAttributes[i-1]; 541 return AttributeList(); 542 } 543 544 /// Read a value/type pair out of the specified record from slot 'Slot'. 545 /// Increment Slot past the number of slots used in the record. Return true on 546 /// failure. 547 bool getValueTypePair(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 548 unsigned InstNum, Value *&ResVal) { 549 if (Slot == Record.size()) return true; 550 unsigned ValNo = (unsigned)Record[Slot++]; 551 // Adjust the ValNo, if it was encoded relative to the InstNum. 552 if (UseRelativeIDs) 553 ValNo = InstNum - ValNo; 554 if (ValNo < InstNum) { 555 // If this is not a forward reference, just return the value we already 556 // have. 557 ResVal = getFnValueByID(ValNo, nullptr); 558 return ResVal == nullptr; 559 } 560 if (Slot == Record.size()) 561 return true; 562 563 unsigned TypeNo = (unsigned)Record[Slot++]; 564 ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo)); 565 return ResVal == nullptr; 566 } 567 568 /// Read a value out of the specified record from slot 'Slot'. Increment Slot 569 /// past the number of slots used by the value in the record. Return true if 570 /// there is an error. 571 bool popValue(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 572 unsigned InstNum, Type *Ty, Value *&ResVal) { 573 if (getValue(Record, Slot, InstNum, Ty, ResVal)) 574 return true; 575 // All values currently take a single record slot. 576 ++Slot; 577 return false; 578 } 579 580 /// Like popValue, but does not increment the Slot number. 581 bool getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 582 unsigned InstNum, Type *Ty, Value *&ResVal) { 583 ResVal = getValue(Record, Slot, InstNum, Ty); 584 return ResVal == nullptr; 585 } 586 587 /// Version of getValue that returns ResVal directly, or 0 if there is an 588 /// error. 589 Value *getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 590 unsigned InstNum, Type *Ty) { 591 if (Slot == Record.size()) return nullptr; 592 unsigned ValNo = (unsigned)Record[Slot]; 593 // Adjust the ValNo, if it was encoded relative to the InstNum. 594 if (UseRelativeIDs) 595 ValNo = InstNum - ValNo; 596 return getFnValueByID(ValNo, Ty); 597 } 598 599 /// Like getValue, but decodes signed VBRs. 600 Value *getValueSigned(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 601 unsigned InstNum, Type *Ty) { 602 if (Slot == Record.size()) return nullptr; 603 unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]); 604 // Adjust the ValNo, if it was encoded relative to the InstNum. 605 if (UseRelativeIDs) 606 ValNo = InstNum - ValNo; 607 return getFnValueByID(ValNo, Ty); 608 } 609 610 /// Converts alignment exponent (i.e. power of two (or zero)) to the 611 /// corresponding alignment to use. If alignment is too large, returns 612 /// a corresponding error code. 613 Error parseAlignmentValue(uint64_t Exponent, unsigned &Alignment); 614 Error parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind); 615 Error parseModule(uint64_t ResumeBit, bool ShouldLazyLoadMetadata = false); 616 617 Error parseComdatRecord(ArrayRef<uint64_t> Record); 618 Error parseGlobalVarRecord(ArrayRef<uint64_t> Record); 619 Error parseFunctionRecord(ArrayRef<uint64_t> Record); 620 Error parseGlobalIndirectSymbolRecord(unsigned BitCode, 621 ArrayRef<uint64_t> Record); 622 623 Error parseAttributeBlock(); 624 Error parseAttributeGroupBlock(); 625 Error parseTypeTable(); 626 Error parseTypeTableBody(); 627 Error parseOperandBundleTags(); 628 629 Expected<Value *> recordValue(SmallVectorImpl<uint64_t> &Record, 630 unsigned NameIndex, Triple &TT); 631 Error parseValueSymbolTable(uint64_t Offset = 0); 632 Error parseConstants(); 633 Error rememberAndSkipFunctionBodies(); 634 Error rememberAndSkipFunctionBody(); 635 /// Save the positions of the Metadata blocks and skip parsing the blocks. 636 Error rememberAndSkipMetadata(); 637 Error typeCheckLoadStoreInst(Type *ValType, Type *PtrType); 638 Error parseFunctionBody(Function *F); 639 Error globalCleanup(); 640 Error resolveGlobalAndIndirectSymbolInits(); 641 Error parseUseLists(); 642 Error findFunctionInStream( 643 Function *F, 644 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator); 645 }; 646 647 /// Class to manage reading and parsing function summary index bitcode 648 /// files/sections. 649 class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase { 650 /// The module index built during parsing. 651 ModuleSummaryIndex &TheIndex; 652 653 /// Indicates whether we have encountered a global value summary section 654 /// yet during parsing. 655 bool SeenGlobalValSummary = false; 656 657 /// Indicates whether we have already parsed the VST, used for error checking. 658 bool SeenValueSymbolTable = false; 659 660 /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record. 661 /// Used to enable on-demand parsing of the VST. 662 uint64_t VSTOffset = 0; 663 664 // Map to save ValueId to GUID association that was recorded in the 665 // ValueSymbolTable. It is used after the VST is parsed to convert 666 // call graph edges read from the function summary from referencing 667 // callees by their ValueId to using the GUID instead, which is how 668 // they are recorded in the summary index being built. 669 // We save a second GUID which is the same as the first one, but ignoring the 670 // linkage, i.e. for value other than local linkage they are identical. 671 DenseMap<unsigned, std::pair<GlobalValue::GUID, GlobalValue::GUID>> 672 ValueIdToCallGraphGUIDMap; 673 674 /// Map populated during module path string table parsing, from the 675 /// module ID to a string reference owned by the index's module 676 /// path string table, used to correlate with combined index 677 /// summary records. 678 DenseMap<uint64_t, StringRef> ModuleIdMap; 679 680 /// Original source file name recorded in a bitcode record. 681 std::string SourceFileName; 682 683 public: 684 ModuleSummaryIndexBitcodeReader( 685 BitstreamCursor Stream, ModuleSummaryIndex &TheIndex); 686 687 Error parseModule(StringRef ModulePath); 688 689 private: 690 Error parseValueSymbolTable( 691 uint64_t Offset, 692 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap); 693 std::vector<ValueInfo> makeRefList(ArrayRef<uint64_t> Record); 694 std::vector<FunctionSummary::EdgeTy> makeCallList(ArrayRef<uint64_t> Record, 695 bool IsOldProfileFormat, 696 bool HasProfile); 697 Error parseEntireSummary(StringRef ModulePath); 698 Error parseModuleStringTable(); 699 700 std::pair<GlobalValue::GUID, GlobalValue::GUID> 701 getGUIDFromValueId(unsigned ValueId); 702 }; 703 704 } // end anonymous namespace 705 706 std::error_code llvm::errorToErrorCodeAndEmitErrors(LLVMContext &Ctx, 707 Error Err) { 708 if (Err) { 709 std::error_code EC; 710 handleAllErrors(std::move(Err), [&](ErrorInfoBase &EIB) { 711 EC = EIB.convertToErrorCode(); 712 Ctx.emitError(EIB.message()); 713 }); 714 return EC; 715 } 716 return std::error_code(); 717 } 718 719 BitcodeReader::BitcodeReader(BitstreamCursor Stream, 720 StringRef ProducerIdentification, 721 LLVMContext &Context) 722 : BitcodeReaderBase(std::move(Stream)), Context(Context), 723 ValueList(Context) { 724 this->ProducerIdentification = ProducerIdentification; 725 } 726 727 Error BitcodeReader::materializeForwardReferencedFunctions() { 728 if (WillMaterializeAllForwardRefs) 729 return Error::success(); 730 731 // Prevent recursion. 732 WillMaterializeAllForwardRefs = true; 733 734 while (!BasicBlockFwdRefQueue.empty()) { 735 Function *F = BasicBlockFwdRefQueue.front(); 736 BasicBlockFwdRefQueue.pop_front(); 737 assert(F && "Expected valid function"); 738 if (!BasicBlockFwdRefs.count(F)) 739 // Already materialized. 740 continue; 741 742 // Check for a function that isn't materializable to prevent an infinite 743 // loop. When parsing a blockaddress stored in a global variable, there 744 // isn't a trivial way to check if a function will have a body without a 745 // linear search through FunctionsWithBodies, so just check it here. 746 if (!F->isMaterializable()) 747 return error("Never resolved function from blockaddress"); 748 749 // Try to materialize F. 750 if (Error Err = materialize(F)) 751 return Err; 752 } 753 assert(BasicBlockFwdRefs.empty() && "Function missing from queue"); 754 755 // Reset state. 756 WillMaterializeAllForwardRefs = false; 757 return Error::success(); 758 } 759 760 //===----------------------------------------------------------------------===// 761 // Helper functions to implement forward reference resolution, etc. 762 //===----------------------------------------------------------------------===// 763 764 static bool hasImplicitComdat(size_t Val) { 765 switch (Val) { 766 default: 767 return false; 768 case 1: // Old WeakAnyLinkage 769 case 4: // Old LinkOnceAnyLinkage 770 case 10: // Old WeakODRLinkage 771 case 11: // Old LinkOnceODRLinkage 772 return true; 773 } 774 } 775 776 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) { 777 switch (Val) { 778 default: // Map unknown/new linkages to external 779 case 0: 780 return GlobalValue::ExternalLinkage; 781 case 2: 782 return GlobalValue::AppendingLinkage; 783 case 3: 784 return GlobalValue::InternalLinkage; 785 case 5: 786 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage 787 case 6: 788 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage 789 case 7: 790 return GlobalValue::ExternalWeakLinkage; 791 case 8: 792 return GlobalValue::CommonLinkage; 793 case 9: 794 return GlobalValue::PrivateLinkage; 795 case 12: 796 return GlobalValue::AvailableExternallyLinkage; 797 case 13: 798 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage 799 case 14: 800 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage 801 case 15: 802 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage 803 case 1: // Old value with implicit comdat. 804 case 16: 805 return GlobalValue::WeakAnyLinkage; 806 case 10: // Old value with implicit comdat. 807 case 17: 808 return GlobalValue::WeakODRLinkage; 809 case 4: // Old value with implicit comdat. 810 case 18: 811 return GlobalValue::LinkOnceAnyLinkage; 812 case 11: // Old value with implicit comdat. 813 case 19: 814 return GlobalValue::LinkOnceODRLinkage; 815 } 816 } 817 818 /// Decode the flags for GlobalValue in the summary. 819 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags, 820 uint64_t Version) { 821 // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage 822 // like getDecodedLinkage() above. Any future change to the linkage enum and 823 // to getDecodedLinkage() will need to be taken into account here as above. 824 auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits 825 RawFlags = RawFlags >> 4; 826 bool NotEligibleToImport = (RawFlags & 0x1) || Version < 3; 827 // The LiveRoot flag wasn't introduced until version 3. For dead stripping 828 // to work correctly on earlier versions, we must conservatively treat all 829 // values as live. 830 bool LiveRoot = (RawFlags & 0x2) || Version < 3; 831 return GlobalValueSummary::GVFlags(Linkage, NotEligibleToImport, LiveRoot); 832 } 833 834 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) { 835 switch (Val) { 836 default: // Map unknown visibilities to default. 837 case 0: return GlobalValue::DefaultVisibility; 838 case 1: return GlobalValue::HiddenVisibility; 839 case 2: return GlobalValue::ProtectedVisibility; 840 } 841 } 842 843 static GlobalValue::DLLStorageClassTypes 844 getDecodedDLLStorageClass(unsigned Val) { 845 switch (Val) { 846 default: // Map unknown values to default. 847 case 0: return GlobalValue::DefaultStorageClass; 848 case 1: return GlobalValue::DLLImportStorageClass; 849 case 2: return GlobalValue::DLLExportStorageClass; 850 } 851 } 852 853 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) { 854 switch (Val) { 855 case 0: return GlobalVariable::NotThreadLocal; 856 default: // Map unknown non-zero value to general dynamic. 857 case 1: return GlobalVariable::GeneralDynamicTLSModel; 858 case 2: return GlobalVariable::LocalDynamicTLSModel; 859 case 3: return GlobalVariable::InitialExecTLSModel; 860 case 4: return GlobalVariable::LocalExecTLSModel; 861 } 862 } 863 864 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) { 865 switch (Val) { 866 default: // Map unknown to UnnamedAddr::None. 867 case 0: return GlobalVariable::UnnamedAddr::None; 868 case 1: return GlobalVariable::UnnamedAddr::Global; 869 case 2: return GlobalVariable::UnnamedAddr::Local; 870 } 871 } 872 873 static int getDecodedCastOpcode(unsigned Val) { 874 switch (Val) { 875 default: return -1; 876 case bitc::CAST_TRUNC : return Instruction::Trunc; 877 case bitc::CAST_ZEXT : return Instruction::ZExt; 878 case bitc::CAST_SEXT : return Instruction::SExt; 879 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 880 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 881 case bitc::CAST_UITOFP : return Instruction::UIToFP; 882 case bitc::CAST_SITOFP : return Instruction::SIToFP; 883 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 884 case bitc::CAST_FPEXT : return Instruction::FPExt; 885 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 886 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 887 case bitc::CAST_BITCAST : return Instruction::BitCast; 888 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast; 889 } 890 } 891 892 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) { 893 bool IsFP = Ty->isFPOrFPVectorTy(); 894 // BinOps are only valid for int/fp or vector of int/fp types 895 if (!IsFP && !Ty->isIntOrIntVectorTy()) 896 return -1; 897 898 switch (Val) { 899 default: 900 return -1; 901 case bitc::BINOP_ADD: 902 return IsFP ? Instruction::FAdd : Instruction::Add; 903 case bitc::BINOP_SUB: 904 return IsFP ? Instruction::FSub : Instruction::Sub; 905 case bitc::BINOP_MUL: 906 return IsFP ? Instruction::FMul : Instruction::Mul; 907 case bitc::BINOP_UDIV: 908 return IsFP ? -1 : Instruction::UDiv; 909 case bitc::BINOP_SDIV: 910 return IsFP ? Instruction::FDiv : Instruction::SDiv; 911 case bitc::BINOP_UREM: 912 return IsFP ? -1 : Instruction::URem; 913 case bitc::BINOP_SREM: 914 return IsFP ? Instruction::FRem : Instruction::SRem; 915 case bitc::BINOP_SHL: 916 return IsFP ? -1 : Instruction::Shl; 917 case bitc::BINOP_LSHR: 918 return IsFP ? -1 : Instruction::LShr; 919 case bitc::BINOP_ASHR: 920 return IsFP ? -1 : Instruction::AShr; 921 case bitc::BINOP_AND: 922 return IsFP ? -1 : Instruction::And; 923 case bitc::BINOP_OR: 924 return IsFP ? -1 : Instruction::Or; 925 case bitc::BINOP_XOR: 926 return IsFP ? -1 : Instruction::Xor; 927 } 928 } 929 930 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) { 931 switch (Val) { 932 default: return AtomicRMWInst::BAD_BINOP; 933 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 934 case bitc::RMW_ADD: return AtomicRMWInst::Add; 935 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 936 case bitc::RMW_AND: return AtomicRMWInst::And; 937 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 938 case bitc::RMW_OR: return AtomicRMWInst::Or; 939 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 940 case bitc::RMW_MAX: return AtomicRMWInst::Max; 941 case bitc::RMW_MIN: return AtomicRMWInst::Min; 942 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 943 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 944 } 945 } 946 947 static AtomicOrdering getDecodedOrdering(unsigned Val) { 948 switch (Val) { 949 case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic; 950 case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered; 951 case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic; 952 case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire; 953 case bitc::ORDERING_RELEASE: return AtomicOrdering::Release; 954 case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease; 955 default: // Map unknown orderings to sequentially-consistent. 956 case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent; 957 } 958 } 959 960 static SynchronizationScope getDecodedSynchScope(unsigned Val) { 961 switch (Val) { 962 case bitc::SYNCHSCOPE_SINGLETHREAD: return SingleThread; 963 default: // Map unknown scopes to cross-thread. 964 case bitc::SYNCHSCOPE_CROSSTHREAD: return CrossThread; 965 } 966 } 967 968 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) { 969 switch (Val) { 970 default: // Map unknown selection kinds to any. 971 case bitc::COMDAT_SELECTION_KIND_ANY: 972 return Comdat::Any; 973 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH: 974 return Comdat::ExactMatch; 975 case bitc::COMDAT_SELECTION_KIND_LARGEST: 976 return Comdat::Largest; 977 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES: 978 return Comdat::NoDuplicates; 979 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE: 980 return Comdat::SameSize; 981 } 982 } 983 984 static FastMathFlags getDecodedFastMathFlags(unsigned Val) { 985 FastMathFlags FMF; 986 if (0 != (Val & FastMathFlags::UnsafeAlgebra)) 987 FMF.setUnsafeAlgebra(); 988 if (0 != (Val & FastMathFlags::NoNaNs)) 989 FMF.setNoNaNs(); 990 if (0 != (Val & FastMathFlags::NoInfs)) 991 FMF.setNoInfs(); 992 if (0 != (Val & FastMathFlags::NoSignedZeros)) 993 FMF.setNoSignedZeros(); 994 if (0 != (Val & FastMathFlags::AllowReciprocal)) 995 FMF.setAllowReciprocal(); 996 if (0 != (Val & FastMathFlags::AllowContract)) 997 FMF.setAllowContract(true); 998 return FMF; 999 } 1000 1001 static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) { 1002 switch (Val) { 1003 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break; 1004 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break; 1005 } 1006 } 1007 1008 1009 Type *BitcodeReader::getTypeByID(unsigned ID) { 1010 // The type table size is always specified correctly. 1011 if (ID >= TypeList.size()) 1012 return nullptr; 1013 1014 if (Type *Ty = TypeList[ID]) 1015 return Ty; 1016 1017 // If we have a forward reference, the only possible case is when it is to a 1018 // named struct. Just create a placeholder for now. 1019 return TypeList[ID] = createIdentifiedStructType(Context); 1020 } 1021 1022 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context, 1023 StringRef Name) { 1024 auto *Ret = StructType::create(Context, Name); 1025 IdentifiedStructTypes.push_back(Ret); 1026 return Ret; 1027 } 1028 1029 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) { 1030 auto *Ret = StructType::create(Context); 1031 IdentifiedStructTypes.push_back(Ret); 1032 return Ret; 1033 } 1034 1035 //===----------------------------------------------------------------------===// 1036 // Functions for parsing blocks from the bitcode file 1037 //===----------------------------------------------------------------------===// 1038 1039 static uint64_t getRawAttributeMask(Attribute::AttrKind Val) { 1040 switch (Val) { 1041 case Attribute::EndAttrKinds: 1042 llvm_unreachable("Synthetic enumerators which should never get here"); 1043 1044 case Attribute::None: return 0; 1045 case Attribute::ZExt: return 1 << 0; 1046 case Attribute::SExt: return 1 << 1; 1047 case Attribute::NoReturn: return 1 << 2; 1048 case Attribute::InReg: return 1 << 3; 1049 case Attribute::StructRet: return 1 << 4; 1050 case Attribute::NoUnwind: return 1 << 5; 1051 case Attribute::NoAlias: return 1 << 6; 1052 case Attribute::ByVal: return 1 << 7; 1053 case Attribute::Nest: return 1 << 8; 1054 case Attribute::ReadNone: return 1 << 9; 1055 case Attribute::ReadOnly: return 1 << 10; 1056 case Attribute::NoInline: return 1 << 11; 1057 case Attribute::AlwaysInline: return 1 << 12; 1058 case Attribute::OptimizeForSize: return 1 << 13; 1059 case Attribute::StackProtect: return 1 << 14; 1060 case Attribute::StackProtectReq: return 1 << 15; 1061 case Attribute::Alignment: return 31 << 16; 1062 case Attribute::NoCapture: return 1 << 21; 1063 case Attribute::NoRedZone: return 1 << 22; 1064 case Attribute::NoImplicitFloat: return 1 << 23; 1065 case Attribute::Naked: return 1 << 24; 1066 case Attribute::InlineHint: return 1 << 25; 1067 case Attribute::StackAlignment: return 7 << 26; 1068 case Attribute::ReturnsTwice: return 1 << 29; 1069 case Attribute::UWTable: return 1 << 30; 1070 case Attribute::NonLazyBind: return 1U << 31; 1071 case Attribute::SanitizeAddress: return 1ULL << 32; 1072 case Attribute::MinSize: return 1ULL << 33; 1073 case Attribute::NoDuplicate: return 1ULL << 34; 1074 case Attribute::StackProtectStrong: return 1ULL << 35; 1075 case Attribute::SanitizeThread: return 1ULL << 36; 1076 case Attribute::SanitizeMemory: return 1ULL << 37; 1077 case Attribute::NoBuiltin: return 1ULL << 38; 1078 case Attribute::Returned: return 1ULL << 39; 1079 case Attribute::Cold: return 1ULL << 40; 1080 case Attribute::Builtin: return 1ULL << 41; 1081 case Attribute::OptimizeNone: return 1ULL << 42; 1082 case Attribute::InAlloca: return 1ULL << 43; 1083 case Attribute::NonNull: return 1ULL << 44; 1084 case Attribute::JumpTable: return 1ULL << 45; 1085 case Attribute::Convergent: return 1ULL << 46; 1086 case Attribute::SafeStack: return 1ULL << 47; 1087 case Attribute::NoRecurse: return 1ULL << 48; 1088 case Attribute::InaccessibleMemOnly: return 1ULL << 49; 1089 case Attribute::InaccessibleMemOrArgMemOnly: return 1ULL << 50; 1090 case Attribute::SwiftSelf: return 1ULL << 51; 1091 case Attribute::SwiftError: return 1ULL << 52; 1092 case Attribute::WriteOnly: return 1ULL << 53; 1093 case Attribute::Dereferenceable: 1094 llvm_unreachable("dereferenceable attribute not supported in raw format"); 1095 break; 1096 case Attribute::DereferenceableOrNull: 1097 llvm_unreachable("dereferenceable_or_null attribute not supported in raw " 1098 "format"); 1099 break; 1100 case Attribute::ArgMemOnly: 1101 llvm_unreachable("argmemonly attribute not supported in raw format"); 1102 break; 1103 case Attribute::AllocSize: 1104 llvm_unreachable("allocsize not supported in raw format"); 1105 break; 1106 } 1107 llvm_unreachable("Unsupported attribute type"); 1108 } 1109 1110 static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) { 1111 if (!Val) return; 1112 1113 for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds; 1114 I = Attribute::AttrKind(I + 1)) { 1115 if (I == Attribute::Dereferenceable || 1116 I == Attribute::DereferenceableOrNull || 1117 I == Attribute::ArgMemOnly || 1118 I == Attribute::AllocSize) 1119 continue; 1120 if (uint64_t A = (Val & getRawAttributeMask(I))) { 1121 if (I == Attribute::Alignment) 1122 B.addAlignmentAttr(1ULL << ((A >> 16) - 1)); 1123 else if (I == Attribute::StackAlignment) 1124 B.addStackAlignmentAttr(1ULL << ((A >> 26)-1)); 1125 else 1126 B.addAttribute(I); 1127 } 1128 } 1129 } 1130 1131 /// \brief This fills an AttrBuilder object with the LLVM attributes that have 1132 /// been decoded from the given integer. This function must stay in sync with 1133 /// 'encodeLLVMAttributesForBitcode'. 1134 static void decodeLLVMAttributesForBitcode(AttrBuilder &B, 1135 uint64_t EncodedAttrs) { 1136 // FIXME: Remove in 4.0. 1137 1138 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift 1139 // the bits above 31 down by 11 bits. 1140 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; 1141 assert((!Alignment || isPowerOf2_32(Alignment)) && 1142 "Alignment must be a power of two."); 1143 1144 if (Alignment) 1145 B.addAlignmentAttr(Alignment); 1146 addRawAttributeValue(B, ((EncodedAttrs & (0xfffffULL << 32)) >> 11) | 1147 (EncodedAttrs & 0xffff)); 1148 } 1149 1150 Error BitcodeReader::parseAttributeBlock() { 1151 if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 1152 return error("Invalid record"); 1153 1154 if (!MAttributes.empty()) 1155 return error("Invalid multiple blocks"); 1156 1157 SmallVector<uint64_t, 64> Record; 1158 1159 SmallVector<AttributeList, 8> Attrs; 1160 1161 // Read all the records. 1162 while (true) { 1163 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1164 1165 switch (Entry.Kind) { 1166 case BitstreamEntry::SubBlock: // Handled for us already. 1167 case BitstreamEntry::Error: 1168 return error("Malformed block"); 1169 case BitstreamEntry::EndBlock: 1170 return Error::success(); 1171 case BitstreamEntry::Record: 1172 // The interesting case. 1173 break; 1174 } 1175 1176 // Read a record. 1177 Record.clear(); 1178 switch (Stream.readRecord(Entry.ID, Record)) { 1179 default: // Default behavior: ignore. 1180 break; 1181 case bitc::PARAMATTR_CODE_ENTRY_OLD: { // ENTRY: [paramidx0, attr0, ...] 1182 // FIXME: Remove in 4.0. 1183 if (Record.size() & 1) 1184 return error("Invalid record"); 1185 1186 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1187 AttrBuilder B; 1188 decodeLLVMAttributesForBitcode(B, Record[i+1]); 1189 Attrs.push_back(AttributeList::get(Context, Record[i], B)); 1190 } 1191 1192 MAttributes.push_back(AttributeList::get(Context, Attrs)); 1193 Attrs.clear(); 1194 break; 1195 } 1196 case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [attrgrp0, attrgrp1, ...] 1197 for (unsigned i = 0, e = Record.size(); i != e; ++i) 1198 Attrs.push_back(MAttributeGroups[Record[i]]); 1199 1200 MAttributes.push_back(AttributeList::get(Context, Attrs)); 1201 Attrs.clear(); 1202 break; 1203 } 1204 } 1205 } 1206 } 1207 1208 // Returns Attribute::None on unrecognized codes. 1209 static Attribute::AttrKind getAttrFromCode(uint64_t Code) { 1210 switch (Code) { 1211 default: 1212 return Attribute::None; 1213 case bitc::ATTR_KIND_ALIGNMENT: 1214 return Attribute::Alignment; 1215 case bitc::ATTR_KIND_ALWAYS_INLINE: 1216 return Attribute::AlwaysInline; 1217 case bitc::ATTR_KIND_ARGMEMONLY: 1218 return Attribute::ArgMemOnly; 1219 case bitc::ATTR_KIND_BUILTIN: 1220 return Attribute::Builtin; 1221 case bitc::ATTR_KIND_BY_VAL: 1222 return Attribute::ByVal; 1223 case bitc::ATTR_KIND_IN_ALLOCA: 1224 return Attribute::InAlloca; 1225 case bitc::ATTR_KIND_COLD: 1226 return Attribute::Cold; 1227 case bitc::ATTR_KIND_CONVERGENT: 1228 return Attribute::Convergent; 1229 case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY: 1230 return Attribute::InaccessibleMemOnly; 1231 case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY: 1232 return Attribute::InaccessibleMemOrArgMemOnly; 1233 case bitc::ATTR_KIND_INLINE_HINT: 1234 return Attribute::InlineHint; 1235 case bitc::ATTR_KIND_IN_REG: 1236 return Attribute::InReg; 1237 case bitc::ATTR_KIND_JUMP_TABLE: 1238 return Attribute::JumpTable; 1239 case bitc::ATTR_KIND_MIN_SIZE: 1240 return Attribute::MinSize; 1241 case bitc::ATTR_KIND_NAKED: 1242 return Attribute::Naked; 1243 case bitc::ATTR_KIND_NEST: 1244 return Attribute::Nest; 1245 case bitc::ATTR_KIND_NO_ALIAS: 1246 return Attribute::NoAlias; 1247 case bitc::ATTR_KIND_NO_BUILTIN: 1248 return Attribute::NoBuiltin; 1249 case bitc::ATTR_KIND_NO_CAPTURE: 1250 return Attribute::NoCapture; 1251 case bitc::ATTR_KIND_NO_DUPLICATE: 1252 return Attribute::NoDuplicate; 1253 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: 1254 return Attribute::NoImplicitFloat; 1255 case bitc::ATTR_KIND_NO_INLINE: 1256 return Attribute::NoInline; 1257 case bitc::ATTR_KIND_NO_RECURSE: 1258 return Attribute::NoRecurse; 1259 case bitc::ATTR_KIND_NON_LAZY_BIND: 1260 return Attribute::NonLazyBind; 1261 case bitc::ATTR_KIND_NON_NULL: 1262 return Attribute::NonNull; 1263 case bitc::ATTR_KIND_DEREFERENCEABLE: 1264 return Attribute::Dereferenceable; 1265 case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL: 1266 return Attribute::DereferenceableOrNull; 1267 case bitc::ATTR_KIND_ALLOC_SIZE: 1268 return Attribute::AllocSize; 1269 case bitc::ATTR_KIND_NO_RED_ZONE: 1270 return Attribute::NoRedZone; 1271 case bitc::ATTR_KIND_NO_RETURN: 1272 return Attribute::NoReturn; 1273 case bitc::ATTR_KIND_NO_UNWIND: 1274 return Attribute::NoUnwind; 1275 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: 1276 return Attribute::OptimizeForSize; 1277 case bitc::ATTR_KIND_OPTIMIZE_NONE: 1278 return Attribute::OptimizeNone; 1279 case bitc::ATTR_KIND_READ_NONE: 1280 return Attribute::ReadNone; 1281 case bitc::ATTR_KIND_READ_ONLY: 1282 return Attribute::ReadOnly; 1283 case bitc::ATTR_KIND_RETURNED: 1284 return Attribute::Returned; 1285 case bitc::ATTR_KIND_RETURNS_TWICE: 1286 return Attribute::ReturnsTwice; 1287 case bitc::ATTR_KIND_S_EXT: 1288 return Attribute::SExt; 1289 case bitc::ATTR_KIND_STACK_ALIGNMENT: 1290 return Attribute::StackAlignment; 1291 case bitc::ATTR_KIND_STACK_PROTECT: 1292 return Attribute::StackProtect; 1293 case bitc::ATTR_KIND_STACK_PROTECT_REQ: 1294 return Attribute::StackProtectReq; 1295 case bitc::ATTR_KIND_STACK_PROTECT_STRONG: 1296 return Attribute::StackProtectStrong; 1297 case bitc::ATTR_KIND_SAFESTACK: 1298 return Attribute::SafeStack; 1299 case bitc::ATTR_KIND_STRUCT_RET: 1300 return Attribute::StructRet; 1301 case bitc::ATTR_KIND_SANITIZE_ADDRESS: 1302 return Attribute::SanitizeAddress; 1303 case bitc::ATTR_KIND_SANITIZE_THREAD: 1304 return Attribute::SanitizeThread; 1305 case bitc::ATTR_KIND_SANITIZE_MEMORY: 1306 return Attribute::SanitizeMemory; 1307 case bitc::ATTR_KIND_SWIFT_ERROR: 1308 return Attribute::SwiftError; 1309 case bitc::ATTR_KIND_SWIFT_SELF: 1310 return Attribute::SwiftSelf; 1311 case bitc::ATTR_KIND_UW_TABLE: 1312 return Attribute::UWTable; 1313 case bitc::ATTR_KIND_WRITEONLY: 1314 return Attribute::WriteOnly; 1315 case bitc::ATTR_KIND_Z_EXT: 1316 return Attribute::ZExt; 1317 } 1318 } 1319 1320 Error BitcodeReader::parseAlignmentValue(uint64_t Exponent, 1321 unsigned &Alignment) { 1322 // Note: Alignment in bitcode files is incremented by 1, so that zero 1323 // can be used for default alignment. 1324 if (Exponent > Value::MaxAlignmentExponent + 1) 1325 return error("Invalid alignment value"); 1326 Alignment = (1 << static_cast<unsigned>(Exponent)) >> 1; 1327 return Error::success(); 1328 } 1329 1330 Error BitcodeReader::parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind) { 1331 *Kind = getAttrFromCode(Code); 1332 if (*Kind == Attribute::None) 1333 return error("Unknown attribute kind (" + Twine(Code) + ")"); 1334 return Error::success(); 1335 } 1336 1337 Error BitcodeReader::parseAttributeGroupBlock() { 1338 if (Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) 1339 return error("Invalid record"); 1340 1341 if (!MAttributeGroups.empty()) 1342 return error("Invalid multiple blocks"); 1343 1344 SmallVector<uint64_t, 64> Record; 1345 1346 // Read all the records. 1347 while (true) { 1348 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1349 1350 switch (Entry.Kind) { 1351 case BitstreamEntry::SubBlock: // Handled for us already. 1352 case BitstreamEntry::Error: 1353 return error("Malformed block"); 1354 case BitstreamEntry::EndBlock: 1355 return Error::success(); 1356 case BitstreamEntry::Record: 1357 // The interesting case. 1358 break; 1359 } 1360 1361 // Read a record. 1362 Record.clear(); 1363 switch (Stream.readRecord(Entry.ID, Record)) { 1364 default: // Default behavior: ignore. 1365 break; 1366 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] 1367 if (Record.size() < 3) 1368 return error("Invalid record"); 1369 1370 uint64_t GrpID = Record[0]; 1371 uint64_t Idx = Record[1]; // Index of the object this attribute refers to. 1372 1373 AttrBuilder B; 1374 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1375 if (Record[i] == 0) { // Enum attribute 1376 Attribute::AttrKind Kind; 1377 if (Error Err = parseAttrKind(Record[++i], &Kind)) 1378 return Err; 1379 1380 B.addAttribute(Kind); 1381 } else if (Record[i] == 1) { // Integer attribute 1382 Attribute::AttrKind Kind; 1383 if (Error Err = parseAttrKind(Record[++i], &Kind)) 1384 return Err; 1385 if (Kind == Attribute::Alignment) 1386 B.addAlignmentAttr(Record[++i]); 1387 else if (Kind == Attribute::StackAlignment) 1388 B.addStackAlignmentAttr(Record[++i]); 1389 else if (Kind == Attribute::Dereferenceable) 1390 B.addDereferenceableAttr(Record[++i]); 1391 else if (Kind == Attribute::DereferenceableOrNull) 1392 B.addDereferenceableOrNullAttr(Record[++i]); 1393 else if (Kind == Attribute::AllocSize) 1394 B.addAllocSizeAttrFromRawRepr(Record[++i]); 1395 } else { // String attribute 1396 assert((Record[i] == 3 || Record[i] == 4) && 1397 "Invalid attribute group entry"); 1398 bool HasValue = (Record[i++] == 4); 1399 SmallString<64> KindStr; 1400 SmallString<64> ValStr; 1401 1402 while (Record[i] != 0 && i != e) 1403 KindStr += Record[i++]; 1404 assert(Record[i] == 0 && "Kind string not null terminated"); 1405 1406 if (HasValue) { 1407 // Has a value associated with it. 1408 ++i; // Skip the '0' that terminates the "kind" string. 1409 while (Record[i] != 0 && i != e) 1410 ValStr += Record[i++]; 1411 assert(Record[i] == 0 && "Value string not null terminated"); 1412 } 1413 1414 B.addAttribute(KindStr.str(), ValStr.str()); 1415 } 1416 } 1417 1418 MAttributeGroups[GrpID] = AttributeList::get(Context, Idx, B); 1419 break; 1420 } 1421 } 1422 } 1423 } 1424 1425 Error BitcodeReader::parseTypeTable() { 1426 if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 1427 return error("Invalid record"); 1428 1429 return parseTypeTableBody(); 1430 } 1431 1432 Error BitcodeReader::parseTypeTableBody() { 1433 if (!TypeList.empty()) 1434 return error("Invalid multiple blocks"); 1435 1436 SmallVector<uint64_t, 64> Record; 1437 unsigned NumRecords = 0; 1438 1439 SmallString<64> TypeName; 1440 1441 // Read all the records for this type table. 1442 while (true) { 1443 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1444 1445 switch (Entry.Kind) { 1446 case BitstreamEntry::SubBlock: // Handled for us already. 1447 case BitstreamEntry::Error: 1448 return error("Malformed block"); 1449 case BitstreamEntry::EndBlock: 1450 if (NumRecords != TypeList.size()) 1451 return error("Malformed block"); 1452 return Error::success(); 1453 case BitstreamEntry::Record: 1454 // The interesting case. 1455 break; 1456 } 1457 1458 // Read a record. 1459 Record.clear(); 1460 Type *ResultTy = nullptr; 1461 switch (Stream.readRecord(Entry.ID, Record)) { 1462 default: 1463 return error("Invalid value"); 1464 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 1465 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 1466 // type list. This allows us to reserve space. 1467 if (Record.size() < 1) 1468 return error("Invalid record"); 1469 TypeList.resize(Record[0]); 1470 continue; 1471 case bitc::TYPE_CODE_VOID: // VOID 1472 ResultTy = Type::getVoidTy(Context); 1473 break; 1474 case bitc::TYPE_CODE_HALF: // HALF 1475 ResultTy = Type::getHalfTy(Context); 1476 break; 1477 case bitc::TYPE_CODE_FLOAT: // FLOAT 1478 ResultTy = Type::getFloatTy(Context); 1479 break; 1480 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 1481 ResultTy = Type::getDoubleTy(Context); 1482 break; 1483 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 1484 ResultTy = Type::getX86_FP80Ty(Context); 1485 break; 1486 case bitc::TYPE_CODE_FP128: // FP128 1487 ResultTy = Type::getFP128Ty(Context); 1488 break; 1489 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 1490 ResultTy = Type::getPPC_FP128Ty(Context); 1491 break; 1492 case bitc::TYPE_CODE_LABEL: // LABEL 1493 ResultTy = Type::getLabelTy(Context); 1494 break; 1495 case bitc::TYPE_CODE_METADATA: // METADATA 1496 ResultTy = Type::getMetadataTy(Context); 1497 break; 1498 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 1499 ResultTy = Type::getX86_MMXTy(Context); 1500 break; 1501 case bitc::TYPE_CODE_TOKEN: // TOKEN 1502 ResultTy = Type::getTokenTy(Context); 1503 break; 1504 case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width] 1505 if (Record.size() < 1) 1506 return error("Invalid record"); 1507 1508 uint64_t NumBits = Record[0]; 1509 if (NumBits < IntegerType::MIN_INT_BITS || 1510 NumBits > IntegerType::MAX_INT_BITS) 1511 return error("Bitwidth for integer type out of range"); 1512 ResultTy = IntegerType::get(Context, NumBits); 1513 break; 1514 } 1515 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 1516 // [pointee type, address space] 1517 if (Record.size() < 1) 1518 return error("Invalid record"); 1519 unsigned AddressSpace = 0; 1520 if (Record.size() == 2) 1521 AddressSpace = Record[1]; 1522 ResultTy = getTypeByID(Record[0]); 1523 if (!ResultTy || 1524 !PointerType::isValidElementType(ResultTy)) 1525 return error("Invalid type"); 1526 ResultTy = PointerType::get(ResultTy, AddressSpace); 1527 break; 1528 } 1529 case bitc::TYPE_CODE_FUNCTION_OLD: { 1530 // FIXME: attrid is dead, remove it in LLVM 4.0 1531 // FUNCTION: [vararg, attrid, retty, paramty x N] 1532 if (Record.size() < 3) 1533 return error("Invalid record"); 1534 SmallVector<Type*, 8> ArgTys; 1535 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 1536 if (Type *T = getTypeByID(Record[i])) 1537 ArgTys.push_back(T); 1538 else 1539 break; 1540 } 1541 1542 ResultTy = getTypeByID(Record[2]); 1543 if (!ResultTy || ArgTys.size() < Record.size()-3) 1544 return error("Invalid type"); 1545 1546 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1547 break; 1548 } 1549 case bitc::TYPE_CODE_FUNCTION: { 1550 // FUNCTION: [vararg, retty, paramty x N] 1551 if (Record.size() < 2) 1552 return error("Invalid record"); 1553 SmallVector<Type*, 8> ArgTys; 1554 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1555 if (Type *T = getTypeByID(Record[i])) { 1556 if (!FunctionType::isValidArgumentType(T)) 1557 return error("Invalid function argument type"); 1558 ArgTys.push_back(T); 1559 } 1560 else 1561 break; 1562 } 1563 1564 ResultTy = getTypeByID(Record[1]); 1565 if (!ResultTy || ArgTys.size() < Record.size()-2) 1566 return error("Invalid type"); 1567 1568 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1569 break; 1570 } 1571 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 1572 if (Record.size() < 1) 1573 return error("Invalid record"); 1574 SmallVector<Type*, 8> EltTys; 1575 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1576 if (Type *T = getTypeByID(Record[i])) 1577 EltTys.push_back(T); 1578 else 1579 break; 1580 } 1581 if (EltTys.size() != Record.size()-1) 1582 return error("Invalid type"); 1583 ResultTy = StructType::get(Context, EltTys, Record[0]); 1584 break; 1585 } 1586 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 1587 if (convertToString(Record, 0, TypeName)) 1588 return error("Invalid record"); 1589 continue; 1590 1591 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 1592 if (Record.size() < 1) 1593 return error("Invalid record"); 1594 1595 if (NumRecords >= TypeList.size()) 1596 return error("Invalid TYPE table"); 1597 1598 // Check to see if this was forward referenced, if so fill in the temp. 1599 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1600 if (Res) { 1601 Res->setName(TypeName); 1602 TypeList[NumRecords] = nullptr; 1603 } else // Otherwise, create a new struct. 1604 Res = createIdentifiedStructType(Context, TypeName); 1605 TypeName.clear(); 1606 1607 SmallVector<Type*, 8> EltTys; 1608 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1609 if (Type *T = getTypeByID(Record[i])) 1610 EltTys.push_back(T); 1611 else 1612 break; 1613 } 1614 if (EltTys.size() != Record.size()-1) 1615 return error("Invalid record"); 1616 Res->setBody(EltTys, Record[0]); 1617 ResultTy = Res; 1618 break; 1619 } 1620 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 1621 if (Record.size() != 1) 1622 return error("Invalid record"); 1623 1624 if (NumRecords >= TypeList.size()) 1625 return error("Invalid TYPE table"); 1626 1627 // Check to see if this was forward referenced, if so fill in the temp. 1628 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1629 if (Res) { 1630 Res->setName(TypeName); 1631 TypeList[NumRecords] = nullptr; 1632 } else // Otherwise, create a new struct with no body. 1633 Res = createIdentifiedStructType(Context, TypeName); 1634 TypeName.clear(); 1635 ResultTy = Res; 1636 break; 1637 } 1638 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 1639 if (Record.size() < 2) 1640 return error("Invalid record"); 1641 ResultTy = getTypeByID(Record[1]); 1642 if (!ResultTy || !ArrayType::isValidElementType(ResultTy)) 1643 return error("Invalid type"); 1644 ResultTy = ArrayType::get(ResultTy, Record[0]); 1645 break; 1646 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] 1647 if (Record.size() < 2) 1648 return error("Invalid record"); 1649 if (Record[0] == 0) 1650 return error("Invalid vector length"); 1651 ResultTy = getTypeByID(Record[1]); 1652 if (!ResultTy || !StructType::isValidElementType(ResultTy)) 1653 return error("Invalid type"); 1654 ResultTy = VectorType::get(ResultTy, Record[0]); 1655 break; 1656 } 1657 1658 if (NumRecords >= TypeList.size()) 1659 return error("Invalid TYPE table"); 1660 if (TypeList[NumRecords]) 1661 return error( 1662 "Invalid TYPE table: Only named structs can be forward referenced"); 1663 assert(ResultTy && "Didn't read a type?"); 1664 TypeList[NumRecords++] = ResultTy; 1665 } 1666 } 1667 1668 Error BitcodeReader::parseOperandBundleTags() { 1669 if (Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID)) 1670 return error("Invalid record"); 1671 1672 if (!BundleTags.empty()) 1673 return error("Invalid multiple blocks"); 1674 1675 SmallVector<uint64_t, 64> Record; 1676 1677 while (true) { 1678 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1679 1680 switch (Entry.Kind) { 1681 case BitstreamEntry::SubBlock: // Handled for us already. 1682 case BitstreamEntry::Error: 1683 return error("Malformed block"); 1684 case BitstreamEntry::EndBlock: 1685 return Error::success(); 1686 case BitstreamEntry::Record: 1687 // The interesting case. 1688 break; 1689 } 1690 1691 // Tags are implicitly mapped to integers by their order. 1692 1693 if (Stream.readRecord(Entry.ID, Record) != bitc::OPERAND_BUNDLE_TAG) 1694 return error("Invalid record"); 1695 1696 // OPERAND_BUNDLE_TAG: [strchr x N] 1697 BundleTags.emplace_back(); 1698 if (convertToString(Record, 0, BundleTags.back())) 1699 return error("Invalid record"); 1700 Record.clear(); 1701 } 1702 } 1703 1704 /// Associate a value with its name from the given index in the provided record. 1705 Expected<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record, 1706 unsigned NameIndex, Triple &TT) { 1707 SmallString<128> ValueName; 1708 if (convertToString(Record, NameIndex, ValueName)) 1709 return error("Invalid record"); 1710 unsigned ValueID = Record[0]; 1711 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 1712 return error("Invalid record"); 1713 Value *V = ValueList[ValueID]; 1714 1715 StringRef NameStr(ValueName.data(), ValueName.size()); 1716 if (NameStr.find_first_of(0) != StringRef::npos) 1717 return error("Invalid value name"); 1718 V->setName(NameStr); 1719 auto *GO = dyn_cast<GlobalObject>(V); 1720 if (GO) { 1721 if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) { 1722 if (TT.isOSBinFormatMachO()) 1723 GO->setComdat(nullptr); 1724 else 1725 GO->setComdat(TheModule->getOrInsertComdat(V->getName())); 1726 } 1727 } 1728 return V; 1729 } 1730 1731 /// Helper to note and return the current location, and jump to the given 1732 /// offset. 1733 static uint64_t jumpToValueSymbolTable(uint64_t Offset, 1734 BitstreamCursor &Stream) { 1735 // Save the current parsing location so we can jump back at the end 1736 // of the VST read. 1737 uint64_t CurrentBit = Stream.GetCurrentBitNo(); 1738 Stream.JumpToBit(Offset * 32); 1739 #ifndef NDEBUG 1740 // Do some checking if we are in debug mode. 1741 BitstreamEntry Entry = Stream.advance(); 1742 assert(Entry.Kind == BitstreamEntry::SubBlock); 1743 assert(Entry.ID == bitc::VALUE_SYMTAB_BLOCK_ID); 1744 #else 1745 // In NDEBUG mode ignore the output so we don't get an unused variable 1746 // warning. 1747 Stream.advance(); 1748 #endif 1749 return CurrentBit; 1750 } 1751 1752 /// Parse the value symbol table at either the current parsing location or 1753 /// at the given bit offset if provided. 1754 Error BitcodeReader::parseValueSymbolTable(uint64_t Offset) { 1755 uint64_t CurrentBit; 1756 // Pass in the Offset to distinguish between calling for the module-level 1757 // VST (where we want to jump to the VST offset) and the function-level 1758 // VST (where we don't). 1759 if (Offset > 0) 1760 CurrentBit = jumpToValueSymbolTable(Offset, Stream); 1761 1762 // Compute the delta between the bitcode indices in the VST (the word offset 1763 // to the word-aligned ENTER_SUBBLOCK for the function block, and that 1764 // expected by the lazy reader. The reader's EnterSubBlock expects to have 1765 // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID 1766 // (size BlockIDWidth). Note that we access the stream's AbbrevID width here 1767 // just before entering the VST subblock because: 1) the EnterSubBlock 1768 // changes the AbbrevID width; 2) the VST block is nested within the same 1769 // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same 1770 // AbbrevID width before calling EnterSubBlock; and 3) when we want to 1771 // jump to the FUNCTION_BLOCK using this offset later, we don't want 1772 // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK. 1773 unsigned FuncBitcodeOffsetDelta = 1774 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 1775 1776 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 1777 return error("Invalid record"); 1778 1779 SmallVector<uint64_t, 64> Record; 1780 1781 Triple TT(TheModule->getTargetTriple()); 1782 1783 // Read all the records for this value table. 1784 SmallString<128> ValueName; 1785 1786 while (true) { 1787 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1788 1789 switch (Entry.Kind) { 1790 case BitstreamEntry::SubBlock: // Handled for us already. 1791 case BitstreamEntry::Error: 1792 return error("Malformed block"); 1793 case BitstreamEntry::EndBlock: 1794 if (Offset > 0) 1795 Stream.JumpToBit(CurrentBit); 1796 return Error::success(); 1797 case BitstreamEntry::Record: 1798 // The interesting case. 1799 break; 1800 } 1801 1802 // Read a record. 1803 Record.clear(); 1804 switch (Stream.readRecord(Entry.ID, Record)) { 1805 default: // Default behavior: unknown type. 1806 break; 1807 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 1808 Expected<Value *> ValOrErr = recordValue(Record, 1, TT); 1809 if (Error Err = ValOrErr.takeError()) 1810 return Err; 1811 ValOrErr.get(); 1812 break; 1813 } 1814 case bitc::VST_CODE_FNENTRY: { 1815 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 1816 Expected<Value *> ValOrErr = recordValue(Record, 2, TT); 1817 if (Error Err = ValOrErr.takeError()) 1818 return Err; 1819 Value *V = ValOrErr.get(); 1820 1821 auto *F = dyn_cast<Function>(V); 1822 // Ignore function offsets emitted for aliases of functions in older 1823 // versions of LLVM. 1824 if (!F) 1825 break; 1826 1827 // Note that we subtract 1 here because the offset is relative to one word 1828 // before the start of the identification or module block, which was 1829 // historically always the start of the regular bitcode header. 1830 uint64_t FuncWordOffset = Record[1] - 1; 1831 uint64_t FuncBitOffset = FuncWordOffset * 32; 1832 DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta; 1833 // Set the LastFunctionBlockBit to point to the last function block. 1834 // Later when parsing is resumed after function materialization, 1835 // we can simply skip that last function block. 1836 if (FuncBitOffset > LastFunctionBlockBit) 1837 LastFunctionBlockBit = FuncBitOffset; 1838 break; 1839 } 1840 case bitc::VST_CODE_BBENTRY: { 1841 if (convertToString(Record, 1, ValueName)) 1842 return error("Invalid record"); 1843 BasicBlock *BB = getBasicBlock(Record[0]); 1844 if (!BB) 1845 return error("Invalid record"); 1846 1847 BB->setName(StringRef(ValueName.data(), ValueName.size())); 1848 ValueName.clear(); 1849 break; 1850 } 1851 } 1852 } 1853 } 1854 1855 /// Decode a signed value stored with the sign bit in the LSB for dense VBR 1856 /// encoding. 1857 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { 1858 if ((V & 1) == 0) 1859 return V >> 1; 1860 if (V != 1) 1861 return -(V >> 1); 1862 // There is no such thing as -0 with integers. "-0" really means MININT. 1863 return 1ULL << 63; 1864 } 1865 1866 /// Resolve all of the initializers for global values and aliases that we can. 1867 Error BitcodeReader::resolveGlobalAndIndirectSymbolInits() { 1868 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist; 1869 std::vector<std::pair<GlobalIndirectSymbol*, unsigned> > 1870 IndirectSymbolInitWorklist; 1871 std::vector<std::pair<Function*, unsigned> > FunctionPrefixWorklist; 1872 std::vector<std::pair<Function*, unsigned> > FunctionPrologueWorklist; 1873 std::vector<std::pair<Function*, unsigned> > FunctionPersonalityFnWorklist; 1874 1875 GlobalInitWorklist.swap(GlobalInits); 1876 IndirectSymbolInitWorklist.swap(IndirectSymbolInits); 1877 FunctionPrefixWorklist.swap(FunctionPrefixes); 1878 FunctionPrologueWorklist.swap(FunctionPrologues); 1879 FunctionPersonalityFnWorklist.swap(FunctionPersonalityFns); 1880 1881 while (!GlobalInitWorklist.empty()) { 1882 unsigned ValID = GlobalInitWorklist.back().second; 1883 if (ValID >= ValueList.size()) { 1884 // Not ready to resolve this yet, it requires something later in the file. 1885 GlobalInits.push_back(GlobalInitWorklist.back()); 1886 } else { 1887 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 1888 GlobalInitWorklist.back().first->setInitializer(C); 1889 else 1890 return error("Expected a constant"); 1891 } 1892 GlobalInitWorklist.pop_back(); 1893 } 1894 1895 while (!IndirectSymbolInitWorklist.empty()) { 1896 unsigned ValID = IndirectSymbolInitWorklist.back().second; 1897 if (ValID >= ValueList.size()) { 1898 IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back()); 1899 } else { 1900 Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]); 1901 if (!C) 1902 return error("Expected a constant"); 1903 GlobalIndirectSymbol *GIS = IndirectSymbolInitWorklist.back().first; 1904 if (isa<GlobalAlias>(GIS) && C->getType() != GIS->getType()) 1905 return error("Alias and aliasee types don't match"); 1906 GIS->setIndirectSymbol(C); 1907 } 1908 IndirectSymbolInitWorklist.pop_back(); 1909 } 1910 1911 while (!FunctionPrefixWorklist.empty()) { 1912 unsigned ValID = FunctionPrefixWorklist.back().second; 1913 if (ValID >= ValueList.size()) { 1914 FunctionPrefixes.push_back(FunctionPrefixWorklist.back()); 1915 } else { 1916 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 1917 FunctionPrefixWorklist.back().first->setPrefixData(C); 1918 else 1919 return error("Expected a constant"); 1920 } 1921 FunctionPrefixWorklist.pop_back(); 1922 } 1923 1924 while (!FunctionPrologueWorklist.empty()) { 1925 unsigned ValID = FunctionPrologueWorklist.back().second; 1926 if (ValID >= ValueList.size()) { 1927 FunctionPrologues.push_back(FunctionPrologueWorklist.back()); 1928 } else { 1929 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 1930 FunctionPrologueWorklist.back().first->setPrologueData(C); 1931 else 1932 return error("Expected a constant"); 1933 } 1934 FunctionPrologueWorklist.pop_back(); 1935 } 1936 1937 while (!FunctionPersonalityFnWorklist.empty()) { 1938 unsigned ValID = FunctionPersonalityFnWorklist.back().second; 1939 if (ValID >= ValueList.size()) { 1940 FunctionPersonalityFns.push_back(FunctionPersonalityFnWorklist.back()); 1941 } else { 1942 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 1943 FunctionPersonalityFnWorklist.back().first->setPersonalityFn(C); 1944 else 1945 return error("Expected a constant"); 1946 } 1947 FunctionPersonalityFnWorklist.pop_back(); 1948 } 1949 1950 return Error::success(); 1951 } 1952 1953 static APInt readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { 1954 SmallVector<uint64_t, 8> Words(Vals.size()); 1955 transform(Vals, Words.begin(), 1956 BitcodeReader::decodeSignRotatedValue); 1957 1958 return APInt(TypeBits, Words); 1959 } 1960 1961 Error BitcodeReader::parseConstants() { 1962 if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 1963 return error("Invalid record"); 1964 1965 SmallVector<uint64_t, 64> Record; 1966 1967 // Read all the records for this value table. 1968 Type *CurTy = Type::getInt32Ty(Context); 1969 unsigned NextCstNo = ValueList.size(); 1970 1971 while (true) { 1972 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1973 1974 switch (Entry.Kind) { 1975 case BitstreamEntry::SubBlock: // Handled for us already. 1976 case BitstreamEntry::Error: 1977 return error("Malformed block"); 1978 case BitstreamEntry::EndBlock: 1979 if (NextCstNo != ValueList.size()) 1980 return error("Invalid constant reference"); 1981 1982 // Once all the constants have been read, go through and resolve forward 1983 // references. 1984 ValueList.resolveConstantForwardRefs(); 1985 return Error::success(); 1986 case BitstreamEntry::Record: 1987 // The interesting case. 1988 break; 1989 } 1990 1991 // Read a record. 1992 Record.clear(); 1993 Type *VoidType = Type::getVoidTy(Context); 1994 Value *V = nullptr; 1995 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 1996 switch (BitCode) { 1997 default: // Default behavior: unknown constant 1998 case bitc::CST_CODE_UNDEF: // UNDEF 1999 V = UndefValue::get(CurTy); 2000 break; 2001 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 2002 if (Record.empty()) 2003 return error("Invalid record"); 2004 if (Record[0] >= TypeList.size() || !TypeList[Record[0]]) 2005 return error("Invalid record"); 2006 if (TypeList[Record[0]] == VoidType) 2007 return error("Invalid constant type"); 2008 CurTy = TypeList[Record[0]]; 2009 continue; // Skip the ValueList manipulation. 2010 case bitc::CST_CODE_NULL: // NULL 2011 V = Constant::getNullValue(CurTy); 2012 break; 2013 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 2014 if (!CurTy->isIntegerTy() || Record.empty()) 2015 return error("Invalid record"); 2016 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); 2017 break; 2018 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 2019 if (!CurTy->isIntegerTy() || Record.empty()) 2020 return error("Invalid record"); 2021 2022 APInt VInt = 2023 readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth()); 2024 V = ConstantInt::get(Context, VInt); 2025 2026 break; 2027 } 2028 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 2029 if (Record.empty()) 2030 return error("Invalid record"); 2031 if (CurTy->isHalfTy()) 2032 V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf(), 2033 APInt(16, (uint16_t)Record[0]))); 2034 else if (CurTy->isFloatTy()) 2035 V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle(), 2036 APInt(32, (uint32_t)Record[0]))); 2037 else if (CurTy->isDoubleTy()) 2038 V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble(), 2039 APInt(64, Record[0]))); 2040 else if (CurTy->isX86_FP80Ty()) { 2041 // Bits are not stored the same way as a normal i80 APInt, compensate. 2042 uint64_t Rearrange[2]; 2043 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 2044 Rearrange[1] = Record[0] >> 48; 2045 V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended(), 2046 APInt(80, Rearrange))); 2047 } else if (CurTy->isFP128Ty()) 2048 V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad(), 2049 APInt(128, Record))); 2050 else if (CurTy->isPPC_FP128Ty()) 2051 V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble(), 2052 APInt(128, Record))); 2053 else 2054 V = UndefValue::get(CurTy); 2055 break; 2056 } 2057 2058 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 2059 if (Record.empty()) 2060 return error("Invalid record"); 2061 2062 unsigned Size = Record.size(); 2063 SmallVector<Constant*, 16> Elts; 2064 2065 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 2066 for (unsigned i = 0; i != Size; ++i) 2067 Elts.push_back(ValueList.getConstantFwdRef(Record[i], 2068 STy->getElementType(i))); 2069 V = ConstantStruct::get(STy, Elts); 2070 } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) { 2071 Type *EltTy = ATy->getElementType(); 2072 for (unsigned i = 0; i != Size; ++i) 2073 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2074 V = ConstantArray::get(ATy, Elts); 2075 } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) { 2076 Type *EltTy = VTy->getElementType(); 2077 for (unsigned i = 0; i != Size; ++i) 2078 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2079 V = ConstantVector::get(Elts); 2080 } else { 2081 V = UndefValue::get(CurTy); 2082 } 2083 break; 2084 } 2085 case bitc::CST_CODE_STRING: // STRING: [values] 2086 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 2087 if (Record.empty()) 2088 return error("Invalid record"); 2089 2090 SmallString<16> Elts(Record.begin(), Record.end()); 2091 V = ConstantDataArray::getString(Context, Elts, 2092 BitCode == bitc::CST_CODE_CSTRING); 2093 break; 2094 } 2095 case bitc::CST_CODE_DATA: {// DATA: [n x value] 2096 if (Record.empty()) 2097 return error("Invalid record"); 2098 2099 Type *EltTy = cast<SequentialType>(CurTy)->getElementType(); 2100 if (EltTy->isIntegerTy(8)) { 2101 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); 2102 if (isa<VectorType>(CurTy)) 2103 V = ConstantDataVector::get(Context, Elts); 2104 else 2105 V = ConstantDataArray::get(Context, Elts); 2106 } else if (EltTy->isIntegerTy(16)) { 2107 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2108 if (isa<VectorType>(CurTy)) 2109 V = ConstantDataVector::get(Context, Elts); 2110 else 2111 V = ConstantDataArray::get(Context, Elts); 2112 } else if (EltTy->isIntegerTy(32)) { 2113 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2114 if (isa<VectorType>(CurTy)) 2115 V = ConstantDataVector::get(Context, Elts); 2116 else 2117 V = ConstantDataArray::get(Context, Elts); 2118 } else if (EltTy->isIntegerTy(64)) { 2119 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2120 if (isa<VectorType>(CurTy)) 2121 V = ConstantDataVector::get(Context, Elts); 2122 else 2123 V = ConstantDataArray::get(Context, Elts); 2124 } else if (EltTy->isHalfTy()) { 2125 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2126 if (isa<VectorType>(CurTy)) 2127 V = ConstantDataVector::getFP(Context, Elts); 2128 else 2129 V = ConstantDataArray::getFP(Context, Elts); 2130 } else if (EltTy->isFloatTy()) { 2131 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2132 if (isa<VectorType>(CurTy)) 2133 V = ConstantDataVector::getFP(Context, Elts); 2134 else 2135 V = ConstantDataArray::getFP(Context, Elts); 2136 } else if (EltTy->isDoubleTy()) { 2137 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2138 if (isa<VectorType>(CurTy)) 2139 V = ConstantDataVector::getFP(Context, Elts); 2140 else 2141 V = ConstantDataArray::getFP(Context, Elts); 2142 } else { 2143 return error("Invalid type for value"); 2144 } 2145 break; 2146 } 2147 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 2148 if (Record.size() < 3) 2149 return error("Invalid record"); 2150 int Opc = getDecodedBinaryOpcode(Record[0], CurTy); 2151 if (Opc < 0) { 2152 V = UndefValue::get(CurTy); // Unknown binop. 2153 } else { 2154 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 2155 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy); 2156 unsigned Flags = 0; 2157 if (Record.size() >= 4) { 2158 if (Opc == Instruction::Add || 2159 Opc == Instruction::Sub || 2160 Opc == Instruction::Mul || 2161 Opc == Instruction::Shl) { 2162 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 2163 Flags |= OverflowingBinaryOperator::NoSignedWrap; 2164 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 2165 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 2166 } else if (Opc == Instruction::SDiv || 2167 Opc == Instruction::UDiv || 2168 Opc == Instruction::LShr || 2169 Opc == Instruction::AShr) { 2170 if (Record[3] & (1 << bitc::PEO_EXACT)) 2171 Flags |= SDivOperator::IsExact; 2172 } 2173 } 2174 V = ConstantExpr::get(Opc, LHS, RHS, Flags); 2175 } 2176 break; 2177 } 2178 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 2179 if (Record.size() < 3) 2180 return error("Invalid record"); 2181 int Opc = getDecodedCastOpcode(Record[0]); 2182 if (Opc < 0) { 2183 V = UndefValue::get(CurTy); // Unknown cast. 2184 } else { 2185 Type *OpTy = getTypeByID(Record[1]); 2186 if (!OpTy) 2187 return error("Invalid record"); 2188 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy); 2189 V = UpgradeBitCastExpr(Opc, Op, CurTy); 2190 if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy); 2191 } 2192 break; 2193 } 2194 case bitc::CST_CODE_CE_INBOUNDS_GEP: // [ty, n x operands] 2195 case bitc::CST_CODE_CE_GEP: // [ty, n x operands] 2196 case bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX: { // [ty, flags, n x 2197 // operands] 2198 unsigned OpNum = 0; 2199 Type *PointeeType = nullptr; 2200 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX || 2201 Record.size() % 2) 2202 PointeeType = getTypeByID(Record[OpNum++]); 2203 2204 bool InBounds = false; 2205 Optional<unsigned> InRangeIndex; 2206 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX) { 2207 uint64_t Op = Record[OpNum++]; 2208 InBounds = Op & 1; 2209 InRangeIndex = Op >> 1; 2210 } else if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP) 2211 InBounds = true; 2212 2213 SmallVector<Constant*, 16> Elts; 2214 while (OpNum != Record.size()) { 2215 Type *ElTy = getTypeByID(Record[OpNum++]); 2216 if (!ElTy) 2217 return error("Invalid record"); 2218 Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy)); 2219 } 2220 2221 if (PointeeType && 2222 PointeeType != 2223 cast<PointerType>(Elts[0]->getType()->getScalarType()) 2224 ->getElementType()) 2225 return error("Explicit gep operator type does not match pointee type " 2226 "of pointer operand"); 2227 2228 if (Elts.size() < 1) 2229 return error("Invalid gep with no operands"); 2230 2231 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 2232 V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices, 2233 InBounds, InRangeIndex); 2234 break; 2235 } 2236 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] 2237 if (Record.size() < 3) 2238 return error("Invalid record"); 2239 2240 Type *SelectorTy = Type::getInt1Ty(Context); 2241 2242 // The selector might be an i1 or an <n x i1> 2243 // Get the type from the ValueList before getting a forward ref. 2244 if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) 2245 if (Value *V = ValueList[Record[0]]) 2246 if (SelectorTy != V->getType()) 2247 SelectorTy = VectorType::get(SelectorTy, VTy->getNumElements()); 2248 2249 V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0], 2250 SelectorTy), 2251 ValueList.getConstantFwdRef(Record[1],CurTy), 2252 ValueList.getConstantFwdRef(Record[2],CurTy)); 2253 break; 2254 } 2255 case bitc::CST_CODE_CE_EXTRACTELT 2256 : { // CE_EXTRACTELT: [opty, opval, opty, opval] 2257 if (Record.size() < 3) 2258 return error("Invalid record"); 2259 VectorType *OpTy = 2260 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2261 if (!OpTy) 2262 return error("Invalid record"); 2263 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2264 Constant *Op1 = nullptr; 2265 if (Record.size() == 4) { 2266 Type *IdxTy = getTypeByID(Record[2]); 2267 if (!IdxTy) 2268 return error("Invalid record"); 2269 Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2270 } else // TODO: Remove with llvm 4.0 2271 Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2272 if (!Op1) 2273 return error("Invalid record"); 2274 V = ConstantExpr::getExtractElement(Op0, Op1); 2275 break; 2276 } 2277 case bitc::CST_CODE_CE_INSERTELT 2278 : { // CE_INSERTELT: [opval, opval, opty, opval] 2279 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2280 if (Record.size() < 3 || !OpTy) 2281 return error("Invalid record"); 2282 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2283 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], 2284 OpTy->getElementType()); 2285 Constant *Op2 = nullptr; 2286 if (Record.size() == 4) { 2287 Type *IdxTy = getTypeByID(Record[2]); 2288 if (!IdxTy) 2289 return error("Invalid record"); 2290 Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2291 } else // TODO: Remove with llvm 4.0 2292 Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2293 if (!Op2) 2294 return error("Invalid record"); 2295 V = ConstantExpr::getInsertElement(Op0, Op1, Op2); 2296 break; 2297 } 2298 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 2299 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2300 if (Record.size() < 3 || !OpTy) 2301 return error("Invalid record"); 2302 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2303 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy); 2304 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 2305 OpTy->getNumElements()); 2306 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy); 2307 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 2308 break; 2309 } 2310 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 2311 VectorType *RTy = dyn_cast<VectorType>(CurTy); 2312 VectorType *OpTy = 2313 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2314 if (Record.size() < 4 || !RTy || !OpTy) 2315 return error("Invalid record"); 2316 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2317 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2318 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 2319 RTy->getNumElements()); 2320 Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy); 2321 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 2322 break; 2323 } 2324 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 2325 if (Record.size() < 4) 2326 return error("Invalid record"); 2327 Type *OpTy = getTypeByID(Record[0]); 2328 if (!OpTy) 2329 return error("Invalid record"); 2330 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2331 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2332 2333 if (OpTy->isFPOrFPVectorTy()) 2334 V = ConstantExpr::getFCmp(Record[3], Op0, Op1); 2335 else 2336 V = ConstantExpr::getICmp(Record[3], Op0, Op1); 2337 break; 2338 } 2339 // This maintains backward compatibility, pre-asm dialect keywords. 2340 // FIXME: Remove with the 4.0 release. 2341 case bitc::CST_CODE_INLINEASM_OLD: { 2342 if (Record.size() < 2) 2343 return error("Invalid record"); 2344 std::string AsmStr, ConstrStr; 2345 bool HasSideEffects = Record[0] & 1; 2346 bool IsAlignStack = Record[0] >> 1; 2347 unsigned AsmStrSize = Record[1]; 2348 if (2+AsmStrSize >= Record.size()) 2349 return error("Invalid record"); 2350 unsigned ConstStrSize = Record[2+AsmStrSize]; 2351 if (3+AsmStrSize+ConstStrSize > Record.size()) 2352 return error("Invalid record"); 2353 2354 for (unsigned i = 0; i != AsmStrSize; ++i) 2355 AsmStr += (char)Record[2+i]; 2356 for (unsigned i = 0; i != ConstStrSize; ++i) 2357 ConstrStr += (char)Record[3+AsmStrSize+i]; 2358 PointerType *PTy = cast<PointerType>(CurTy); 2359 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 2360 AsmStr, ConstrStr, HasSideEffects, IsAlignStack); 2361 break; 2362 } 2363 // This version adds support for the asm dialect keywords (e.g., 2364 // inteldialect). 2365 case bitc::CST_CODE_INLINEASM: { 2366 if (Record.size() < 2) 2367 return error("Invalid record"); 2368 std::string AsmStr, ConstrStr; 2369 bool HasSideEffects = Record[0] & 1; 2370 bool IsAlignStack = (Record[0] >> 1) & 1; 2371 unsigned AsmDialect = Record[0] >> 2; 2372 unsigned AsmStrSize = Record[1]; 2373 if (2+AsmStrSize >= Record.size()) 2374 return error("Invalid record"); 2375 unsigned ConstStrSize = Record[2+AsmStrSize]; 2376 if (3+AsmStrSize+ConstStrSize > Record.size()) 2377 return error("Invalid record"); 2378 2379 for (unsigned i = 0; i != AsmStrSize; ++i) 2380 AsmStr += (char)Record[2+i]; 2381 for (unsigned i = 0; i != ConstStrSize; ++i) 2382 ConstrStr += (char)Record[3+AsmStrSize+i]; 2383 PointerType *PTy = cast<PointerType>(CurTy); 2384 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 2385 AsmStr, ConstrStr, HasSideEffects, IsAlignStack, 2386 InlineAsm::AsmDialect(AsmDialect)); 2387 break; 2388 } 2389 case bitc::CST_CODE_BLOCKADDRESS:{ 2390 if (Record.size() < 3) 2391 return error("Invalid record"); 2392 Type *FnTy = getTypeByID(Record[0]); 2393 if (!FnTy) 2394 return error("Invalid record"); 2395 Function *Fn = 2396 dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy)); 2397 if (!Fn) 2398 return error("Invalid record"); 2399 2400 // If the function is already parsed we can insert the block address right 2401 // away. 2402 BasicBlock *BB; 2403 unsigned BBID = Record[2]; 2404 if (!BBID) 2405 // Invalid reference to entry block. 2406 return error("Invalid ID"); 2407 if (!Fn->empty()) { 2408 Function::iterator BBI = Fn->begin(), BBE = Fn->end(); 2409 for (size_t I = 0, E = BBID; I != E; ++I) { 2410 if (BBI == BBE) 2411 return error("Invalid ID"); 2412 ++BBI; 2413 } 2414 BB = &*BBI; 2415 } else { 2416 // Otherwise insert a placeholder and remember it so it can be inserted 2417 // when the function is parsed. 2418 auto &FwdBBs = BasicBlockFwdRefs[Fn]; 2419 if (FwdBBs.empty()) 2420 BasicBlockFwdRefQueue.push_back(Fn); 2421 if (FwdBBs.size() < BBID + 1) 2422 FwdBBs.resize(BBID + 1); 2423 if (!FwdBBs[BBID]) 2424 FwdBBs[BBID] = BasicBlock::Create(Context); 2425 BB = FwdBBs[BBID]; 2426 } 2427 V = BlockAddress::get(Fn, BB); 2428 break; 2429 } 2430 } 2431 2432 ValueList.assignValue(V, NextCstNo); 2433 ++NextCstNo; 2434 } 2435 } 2436 2437 Error BitcodeReader::parseUseLists() { 2438 if (Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 2439 return error("Invalid record"); 2440 2441 // Read all the records. 2442 SmallVector<uint64_t, 64> Record; 2443 2444 while (true) { 2445 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2446 2447 switch (Entry.Kind) { 2448 case BitstreamEntry::SubBlock: // Handled for us already. 2449 case BitstreamEntry::Error: 2450 return error("Malformed block"); 2451 case BitstreamEntry::EndBlock: 2452 return Error::success(); 2453 case BitstreamEntry::Record: 2454 // The interesting case. 2455 break; 2456 } 2457 2458 // Read a use list record. 2459 Record.clear(); 2460 bool IsBB = false; 2461 switch (Stream.readRecord(Entry.ID, Record)) { 2462 default: // Default behavior: unknown type. 2463 break; 2464 case bitc::USELIST_CODE_BB: 2465 IsBB = true; 2466 LLVM_FALLTHROUGH; 2467 case bitc::USELIST_CODE_DEFAULT: { 2468 unsigned RecordLength = Record.size(); 2469 if (RecordLength < 3) 2470 // Records should have at least an ID and two indexes. 2471 return error("Invalid record"); 2472 unsigned ID = Record.back(); 2473 Record.pop_back(); 2474 2475 Value *V; 2476 if (IsBB) { 2477 assert(ID < FunctionBBs.size() && "Basic block not found"); 2478 V = FunctionBBs[ID]; 2479 } else 2480 V = ValueList[ID]; 2481 unsigned NumUses = 0; 2482 SmallDenseMap<const Use *, unsigned, 16> Order; 2483 for (const Use &U : V->materialized_uses()) { 2484 if (++NumUses > Record.size()) 2485 break; 2486 Order[&U] = Record[NumUses - 1]; 2487 } 2488 if (Order.size() != Record.size() || NumUses > Record.size()) 2489 // Mismatches can happen if the functions are being materialized lazily 2490 // (out-of-order), or a value has been upgraded. 2491 break; 2492 2493 V->sortUseList([&](const Use &L, const Use &R) { 2494 return Order.lookup(&L) < Order.lookup(&R); 2495 }); 2496 break; 2497 } 2498 } 2499 } 2500 } 2501 2502 /// When we see the block for metadata, remember where it is and then skip it. 2503 /// This lets us lazily deserialize the metadata. 2504 Error BitcodeReader::rememberAndSkipMetadata() { 2505 // Save the current stream state. 2506 uint64_t CurBit = Stream.GetCurrentBitNo(); 2507 DeferredMetadataInfo.push_back(CurBit); 2508 2509 // Skip over the block for now. 2510 if (Stream.SkipBlock()) 2511 return error("Invalid record"); 2512 return Error::success(); 2513 } 2514 2515 Error BitcodeReader::materializeMetadata() { 2516 for (uint64_t BitPos : DeferredMetadataInfo) { 2517 // Move the bit stream to the saved position. 2518 Stream.JumpToBit(BitPos); 2519 if (Error Err = MDLoader->parseModuleMetadata()) 2520 return Err; 2521 } 2522 DeferredMetadataInfo.clear(); 2523 return Error::success(); 2524 } 2525 2526 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; } 2527 2528 /// When we see the block for a function body, remember where it is and then 2529 /// skip it. This lets us lazily deserialize the functions. 2530 Error BitcodeReader::rememberAndSkipFunctionBody() { 2531 // Get the function we are talking about. 2532 if (FunctionsWithBodies.empty()) 2533 return error("Insufficient function protos"); 2534 2535 Function *Fn = FunctionsWithBodies.back(); 2536 FunctionsWithBodies.pop_back(); 2537 2538 // Save the current stream state. 2539 uint64_t CurBit = Stream.GetCurrentBitNo(); 2540 assert( 2541 (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) && 2542 "Mismatch between VST and scanned function offsets"); 2543 DeferredFunctionInfo[Fn] = CurBit; 2544 2545 // Skip over the function block for now. 2546 if (Stream.SkipBlock()) 2547 return error("Invalid record"); 2548 return Error::success(); 2549 } 2550 2551 Error BitcodeReader::globalCleanup() { 2552 // Patch the initializers for globals and aliases up. 2553 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 2554 return Err; 2555 if (!GlobalInits.empty() || !IndirectSymbolInits.empty()) 2556 return error("Malformed global initializer set"); 2557 2558 // Look for intrinsic functions which need to be upgraded at some point 2559 for (Function &F : *TheModule) { 2560 Function *NewFn; 2561 if (UpgradeIntrinsicFunction(&F, NewFn)) 2562 UpgradedIntrinsics[&F] = NewFn; 2563 else if (auto Remangled = Intrinsic::remangleIntrinsicFunction(&F)) 2564 // Some types could be renamed during loading if several modules are 2565 // loaded in the same LLVMContext (LTO scenario). In this case we should 2566 // remangle intrinsics names as well. 2567 RemangledIntrinsics[&F] = Remangled.getValue(); 2568 } 2569 2570 // Look for global variables which need to be renamed. 2571 for (GlobalVariable &GV : TheModule->globals()) 2572 UpgradeGlobalVariable(&GV); 2573 2574 // Force deallocation of memory for these vectors to favor the client that 2575 // want lazy deserialization. 2576 std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits); 2577 std::vector<std::pair<GlobalIndirectSymbol*, unsigned> >().swap( 2578 IndirectSymbolInits); 2579 return Error::success(); 2580 } 2581 2582 /// Support for lazy parsing of function bodies. This is required if we 2583 /// either have an old bitcode file without a VST forward declaration record, 2584 /// or if we have an anonymous function being materialized, since anonymous 2585 /// functions do not have a name and are therefore not in the VST. 2586 Error BitcodeReader::rememberAndSkipFunctionBodies() { 2587 Stream.JumpToBit(NextUnreadBit); 2588 2589 if (Stream.AtEndOfStream()) 2590 return error("Could not find function in stream"); 2591 2592 if (!SeenFirstFunctionBody) 2593 return error("Trying to materialize functions before seeing function blocks"); 2594 2595 // An old bitcode file with the symbol table at the end would have 2596 // finished the parse greedily. 2597 assert(SeenValueSymbolTable); 2598 2599 SmallVector<uint64_t, 64> Record; 2600 2601 while (true) { 2602 BitstreamEntry Entry = Stream.advance(); 2603 switch (Entry.Kind) { 2604 default: 2605 return error("Expect SubBlock"); 2606 case BitstreamEntry::SubBlock: 2607 switch (Entry.ID) { 2608 default: 2609 return error("Expect function block"); 2610 case bitc::FUNCTION_BLOCK_ID: 2611 if (Error Err = rememberAndSkipFunctionBody()) 2612 return Err; 2613 NextUnreadBit = Stream.GetCurrentBitNo(); 2614 return Error::success(); 2615 } 2616 } 2617 } 2618 } 2619 2620 bool BitcodeReaderBase::readBlockInfo() { 2621 Optional<BitstreamBlockInfo> NewBlockInfo = Stream.ReadBlockInfoBlock(); 2622 if (!NewBlockInfo) 2623 return true; 2624 BlockInfo = std::move(*NewBlockInfo); 2625 return false; 2626 } 2627 2628 Error BitcodeReader::parseComdatRecord(ArrayRef<uint64_t> Record) { 2629 // [selection_kind, name] 2630 if (Record.size() < 2) 2631 return error("Invalid record"); 2632 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]); 2633 std::string Name; 2634 unsigned ComdatNameSize = Record[1]; 2635 Name.reserve(ComdatNameSize); 2636 for (unsigned i = 0; i != ComdatNameSize; ++i) 2637 Name += (char)Record[2 + i]; 2638 Comdat *C = TheModule->getOrInsertComdat(Name); 2639 C->setSelectionKind(SK); 2640 ComdatList.push_back(C); 2641 return Error::success(); 2642 } 2643 2644 Error BitcodeReader::parseGlobalVarRecord(ArrayRef<uint64_t> Record) { 2645 // [pointer type, isconst, initid, linkage, alignment, section, 2646 // visibility, threadlocal, unnamed_addr, externally_initialized, 2647 // dllstorageclass, comdat] 2648 if (Record.size() < 6) 2649 return error("Invalid record"); 2650 Type *Ty = getTypeByID(Record[0]); 2651 if (!Ty) 2652 return error("Invalid record"); 2653 bool isConstant = Record[1] & 1; 2654 bool explicitType = Record[1] & 2; 2655 unsigned AddressSpace; 2656 if (explicitType) { 2657 AddressSpace = Record[1] >> 2; 2658 } else { 2659 if (!Ty->isPointerTy()) 2660 return error("Invalid type for value"); 2661 AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 2662 Ty = cast<PointerType>(Ty)->getElementType(); 2663 } 2664 2665 uint64_t RawLinkage = Record[3]; 2666 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 2667 unsigned Alignment; 2668 if (Error Err = parseAlignmentValue(Record[4], Alignment)) 2669 return Err; 2670 std::string Section; 2671 if (Record[5]) { 2672 if (Record[5] - 1 >= SectionTable.size()) 2673 return error("Invalid ID"); 2674 Section = SectionTable[Record[5] - 1]; 2675 } 2676 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 2677 // Local linkage must have default visibility. 2678 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage)) 2679 // FIXME: Change to an error if non-default in 4.0. 2680 Visibility = getDecodedVisibility(Record[6]); 2681 2682 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; 2683 if (Record.size() > 7) 2684 TLM = getDecodedThreadLocalMode(Record[7]); 2685 2686 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 2687 if (Record.size() > 8) 2688 UnnamedAddr = getDecodedUnnamedAddrType(Record[8]); 2689 2690 bool ExternallyInitialized = false; 2691 if (Record.size() > 9) 2692 ExternallyInitialized = Record[9]; 2693 2694 GlobalVariable *NewGV = 2695 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, "", 2696 nullptr, TLM, AddressSpace, ExternallyInitialized); 2697 NewGV->setAlignment(Alignment); 2698 if (!Section.empty()) 2699 NewGV->setSection(Section); 2700 NewGV->setVisibility(Visibility); 2701 NewGV->setUnnamedAddr(UnnamedAddr); 2702 2703 if (Record.size() > 10) 2704 NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10])); 2705 else 2706 upgradeDLLImportExportLinkage(NewGV, RawLinkage); 2707 2708 ValueList.push_back(NewGV); 2709 2710 // Remember which value to use for the global initializer. 2711 if (unsigned InitID = Record[2]) 2712 GlobalInits.push_back(std::make_pair(NewGV, InitID - 1)); 2713 2714 if (Record.size() > 11) { 2715 if (unsigned ComdatID = Record[11]) { 2716 if (ComdatID > ComdatList.size()) 2717 return error("Invalid global variable comdat ID"); 2718 NewGV->setComdat(ComdatList[ComdatID - 1]); 2719 } 2720 } else if (hasImplicitComdat(RawLinkage)) { 2721 NewGV->setComdat(reinterpret_cast<Comdat *>(1)); 2722 } 2723 return Error::success(); 2724 } 2725 2726 Error BitcodeReader::parseFunctionRecord(ArrayRef<uint64_t> Record) { 2727 // [type, callingconv, isproto, linkage, paramattr, alignment, section, 2728 // visibility, gc, unnamed_addr, prologuedata, dllstorageclass, comdat, 2729 // prefixdata] 2730 if (Record.size() < 8) 2731 return error("Invalid record"); 2732 Type *Ty = getTypeByID(Record[0]); 2733 if (!Ty) 2734 return error("Invalid record"); 2735 if (auto *PTy = dyn_cast<PointerType>(Ty)) 2736 Ty = PTy->getElementType(); 2737 auto *FTy = dyn_cast<FunctionType>(Ty); 2738 if (!FTy) 2739 return error("Invalid type for value"); 2740 auto CC = static_cast<CallingConv::ID>(Record[1]); 2741 if (CC & ~CallingConv::MaxID) 2742 return error("Invalid calling convention ID"); 2743 2744 Function *Func = 2745 Function::Create(FTy, GlobalValue::ExternalLinkage, "", TheModule); 2746 2747 Func->setCallingConv(CC); 2748 bool isProto = Record[2]; 2749 uint64_t RawLinkage = Record[3]; 2750 Func->setLinkage(getDecodedLinkage(RawLinkage)); 2751 Func->setAttributes(getAttributes(Record[4])); 2752 2753 unsigned Alignment; 2754 if (Error Err = parseAlignmentValue(Record[5], Alignment)) 2755 return Err; 2756 Func->setAlignment(Alignment); 2757 if (Record[6]) { 2758 if (Record[6] - 1 >= SectionTable.size()) 2759 return error("Invalid ID"); 2760 Func->setSection(SectionTable[Record[6] - 1]); 2761 } 2762 // Local linkage must have default visibility. 2763 if (!Func->hasLocalLinkage()) 2764 // FIXME: Change to an error if non-default in 4.0. 2765 Func->setVisibility(getDecodedVisibility(Record[7])); 2766 if (Record.size() > 8 && Record[8]) { 2767 if (Record[8] - 1 >= GCTable.size()) 2768 return error("Invalid ID"); 2769 Func->setGC(GCTable[Record[8] - 1]); 2770 } 2771 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 2772 if (Record.size() > 9) 2773 UnnamedAddr = getDecodedUnnamedAddrType(Record[9]); 2774 Func->setUnnamedAddr(UnnamedAddr); 2775 if (Record.size() > 10 && Record[10] != 0) 2776 FunctionPrologues.push_back(std::make_pair(Func, Record[10] - 1)); 2777 2778 if (Record.size() > 11) 2779 Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11])); 2780 else 2781 upgradeDLLImportExportLinkage(Func, RawLinkage); 2782 2783 if (Record.size() > 12) { 2784 if (unsigned ComdatID = Record[12]) { 2785 if (ComdatID > ComdatList.size()) 2786 return error("Invalid function comdat ID"); 2787 Func->setComdat(ComdatList[ComdatID - 1]); 2788 } 2789 } else if (hasImplicitComdat(RawLinkage)) { 2790 Func->setComdat(reinterpret_cast<Comdat *>(1)); 2791 } 2792 2793 if (Record.size() > 13 && Record[13] != 0) 2794 FunctionPrefixes.push_back(std::make_pair(Func, Record[13] - 1)); 2795 2796 if (Record.size() > 14 && Record[14] != 0) 2797 FunctionPersonalityFns.push_back(std::make_pair(Func, Record[14] - 1)); 2798 2799 ValueList.push_back(Func); 2800 2801 // If this is a function with a body, remember the prototype we are 2802 // creating now, so that we can match up the body with them later. 2803 if (!isProto) { 2804 Func->setIsMaterializable(true); 2805 FunctionsWithBodies.push_back(Func); 2806 DeferredFunctionInfo[Func] = 0; 2807 } 2808 return Error::success(); 2809 } 2810 2811 Error BitcodeReader::parseGlobalIndirectSymbolRecord( 2812 unsigned BitCode, ArrayRef<uint64_t> Record) { 2813 // ALIAS_OLD: [alias type, aliasee val#, linkage] 2814 // ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, 2815 // dllstorageclass] 2816 // IFUNC: [alias type, addrspace, aliasee val#, linkage, 2817 // visibility, dllstorageclass] 2818 bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD; 2819 if (Record.size() < (3 + (unsigned)NewRecord)) 2820 return error("Invalid record"); 2821 unsigned OpNum = 0; 2822 Type *Ty = getTypeByID(Record[OpNum++]); 2823 if (!Ty) 2824 return error("Invalid record"); 2825 2826 unsigned AddrSpace; 2827 if (!NewRecord) { 2828 auto *PTy = dyn_cast<PointerType>(Ty); 2829 if (!PTy) 2830 return error("Invalid type for value"); 2831 Ty = PTy->getElementType(); 2832 AddrSpace = PTy->getAddressSpace(); 2833 } else { 2834 AddrSpace = Record[OpNum++]; 2835 } 2836 2837 auto Val = Record[OpNum++]; 2838 auto Linkage = Record[OpNum++]; 2839 GlobalIndirectSymbol *NewGA; 2840 if (BitCode == bitc::MODULE_CODE_ALIAS || 2841 BitCode == bitc::MODULE_CODE_ALIAS_OLD) 2842 NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), "", 2843 TheModule); 2844 else 2845 NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), "", 2846 nullptr, TheModule); 2847 // Old bitcode files didn't have visibility field. 2848 // Local linkage must have default visibility. 2849 if (OpNum != Record.size()) { 2850 auto VisInd = OpNum++; 2851 if (!NewGA->hasLocalLinkage()) 2852 // FIXME: Change to an error if non-default in 4.0. 2853 NewGA->setVisibility(getDecodedVisibility(Record[VisInd])); 2854 } 2855 if (OpNum != Record.size()) 2856 NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++])); 2857 else 2858 upgradeDLLImportExportLinkage(NewGA, Linkage); 2859 if (OpNum != Record.size()) 2860 NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++])); 2861 if (OpNum != Record.size()) 2862 NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++])); 2863 ValueList.push_back(NewGA); 2864 IndirectSymbolInits.push_back(std::make_pair(NewGA, Val)); 2865 return Error::success(); 2866 } 2867 2868 Error BitcodeReader::parseModule(uint64_t ResumeBit, 2869 bool ShouldLazyLoadMetadata) { 2870 if (ResumeBit) 2871 Stream.JumpToBit(ResumeBit); 2872 else if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 2873 return error("Invalid record"); 2874 2875 SmallVector<uint64_t, 64> Record; 2876 2877 // Read all the records for this module. 2878 while (true) { 2879 BitstreamEntry Entry = Stream.advance(); 2880 2881 switch (Entry.Kind) { 2882 case BitstreamEntry::Error: 2883 return error("Malformed block"); 2884 case BitstreamEntry::EndBlock: 2885 return globalCleanup(); 2886 2887 case BitstreamEntry::SubBlock: 2888 switch (Entry.ID) { 2889 default: // Skip unknown content. 2890 if (Stream.SkipBlock()) 2891 return error("Invalid record"); 2892 break; 2893 case bitc::BLOCKINFO_BLOCK_ID: 2894 if (readBlockInfo()) 2895 return error("Malformed block"); 2896 break; 2897 case bitc::PARAMATTR_BLOCK_ID: 2898 if (Error Err = parseAttributeBlock()) 2899 return Err; 2900 break; 2901 case bitc::PARAMATTR_GROUP_BLOCK_ID: 2902 if (Error Err = parseAttributeGroupBlock()) 2903 return Err; 2904 break; 2905 case bitc::TYPE_BLOCK_ID_NEW: 2906 if (Error Err = parseTypeTable()) 2907 return Err; 2908 break; 2909 case bitc::VALUE_SYMTAB_BLOCK_ID: 2910 if (!SeenValueSymbolTable) { 2911 // Either this is an old form VST without function index and an 2912 // associated VST forward declaration record (which would have caused 2913 // the VST to be jumped to and parsed before it was encountered 2914 // normally in the stream), or there were no function blocks to 2915 // trigger an earlier parsing of the VST. 2916 assert(VSTOffset == 0 || FunctionsWithBodies.empty()); 2917 if (Error Err = parseValueSymbolTable()) 2918 return Err; 2919 SeenValueSymbolTable = true; 2920 } else { 2921 // We must have had a VST forward declaration record, which caused 2922 // the parser to jump to and parse the VST earlier. 2923 assert(VSTOffset > 0); 2924 if (Stream.SkipBlock()) 2925 return error("Invalid record"); 2926 } 2927 break; 2928 case bitc::CONSTANTS_BLOCK_ID: 2929 if (Error Err = parseConstants()) 2930 return Err; 2931 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 2932 return Err; 2933 break; 2934 case bitc::METADATA_BLOCK_ID: 2935 if (ShouldLazyLoadMetadata) { 2936 if (Error Err = rememberAndSkipMetadata()) 2937 return Err; 2938 break; 2939 } 2940 assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata"); 2941 if (Error Err = MDLoader->parseModuleMetadata()) 2942 return Err; 2943 break; 2944 case bitc::METADATA_KIND_BLOCK_ID: 2945 if (Error Err = MDLoader->parseMetadataKinds()) 2946 return Err; 2947 break; 2948 case bitc::FUNCTION_BLOCK_ID: 2949 // If this is the first function body we've seen, reverse the 2950 // FunctionsWithBodies list. 2951 if (!SeenFirstFunctionBody) { 2952 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 2953 if (Error Err = globalCleanup()) 2954 return Err; 2955 SeenFirstFunctionBody = true; 2956 } 2957 2958 if (VSTOffset > 0) { 2959 // If we have a VST forward declaration record, make sure we 2960 // parse the VST now if we haven't already. It is needed to 2961 // set up the DeferredFunctionInfo vector for lazy reading. 2962 if (!SeenValueSymbolTable) { 2963 if (Error Err = BitcodeReader::parseValueSymbolTable(VSTOffset)) 2964 return Err; 2965 SeenValueSymbolTable = true; 2966 // Fall through so that we record the NextUnreadBit below. 2967 // This is necessary in case we have an anonymous function that 2968 // is later materialized. Since it will not have a VST entry we 2969 // need to fall back to the lazy parse to find its offset. 2970 } else { 2971 // If we have a VST forward declaration record, but have already 2972 // parsed the VST (just above, when the first function body was 2973 // encountered here), then we are resuming the parse after 2974 // materializing functions. The ResumeBit points to the 2975 // start of the last function block recorded in the 2976 // DeferredFunctionInfo map. Skip it. 2977 if (Stream.SkipBlock()) 2978 return error("Invalid record"); 2979 continue; 2980 } 2981 } 2982 2983 // Support older bitcode files that did not have the function 2984 // index in the VST, nor a VST forward declaration record, as 2985 // well as anonymous functions that do not have VST entries. 2986 // Build the DeferredFunctionInfo vector on the fly. 2987 if (Error Err = rememberAndSkipFunctionBody()) 2988 return Err; 2989 2990 // Suspend parsing when we reach the function bodies. Subsequent 2991 // materialization calls will resume it when necessary. If the bitcode 2992 // file is old, the symbol table will be at the end instead and will not 2993 // have been seen yet. In this case, just finish the parse now. 2994 if (SeenValueSymbolTable) { 2995 NextUnreadBit = Stream.GetCurrentBitNo(); 2996 // After the VST has been parsed, we need to make sure intrinsic name 2997 // are auto-upgraded. 2998 return globalCleanup(); 2999 } 3000 break; 3001 case bitc::USELIST_BLOCK_ID: 3002 if (Error Err = parseUseLists()) 3003 return Err; 3004 break; 3005 case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID: 3006 if (Error Err = parseOperandBundleTags()) 3007 return Err; 3008 break; 3009 } 3010 continue; 3011 3012 case BitstreamEntry::Record: 3013 // The interesting case. 3014 break; 3015 } 3016 3017 // Read a record. 3018 auto BitCode = Stream.readRecord(Entry.ID, Record); 3019 switch (BitCode) { 3020 default: break; // Default behavior, ignore unknown content. 3021 case bitc::MODULE_CODE_VERSION: { 3022 Expected<unsigned> VersionOrErr = parseVersionRecord(Record); 3023 if (!VersionOrErr) 3024 return VersionOrErr.takeError(); 3025 UseRelativeIDs = *VersionOrErr >= 1; 3026 break; 3027 } 3028 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 3029 std::string S; 3030 if (convertToString(Record, 0, S)) 3031 return error("Invalid record"); 3032 TheModule->setTargetTriple(S); 3033 break; 3034 } 3035 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 3036 std::string S; 3037 if (convertToString(Record, 0, S)) 3038 return error("Invalid record"); 3039 TheModule->setDataLayout(S); 3040 break; 3041 } 3042 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 3043 std::string S; 3044 if (convertToString(Record, 0, S)) 3045 return error("Invalid record"); 3046 TheModule->setModuleInlineAsm(S); 3047 break; 3048 } 3049 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 3050 // FIXME: Remove in 4.0. 3051 std::string S; 3052 if (convertToString(Record, 0, S)) 3053 return error("Invalid record"); 3054 // Ignore value. 3055 break; 3056 } 3057 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 3058 std::string S; 3059 if (convertToString(Record, 0, S)) 3060 return error("Invalid record"); 3061 SectionTable.push_back(S); 3062 break; 3063 } 3064 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 3065 std::string S; 3066 if (convertToString(Record, 0, S)) 3067 return error("Invalid record"); 3068 GCTable.push_back(S); 3069 break; 3070 } 3071 case bitc::MODULE_CODE_COMDAT: { 3072 if (Error Err = parseComdatRecord(Record)) 3073 return Err; 3074 break; 3075 } 3076 case bitc::MODULE_CODE_GLOBALVAR: { 3077 if (Error Err = parseGlobalVarRecord(Record)) 3078 return Err; 3079 break; 3080 } 3081 case bitc::MODULE_CODE_FUNCTION: { 3082 if (Error Err = parseFunctionRecord(Record)) 3083 return Err; 3084 break; 3085 } 3086 case bitc::MODULE_CODE_IFUNC: 3087 case bitc::MODULE_CODE_ALIAS: 3088 case bitc::MODULE_CODE_ALIAS_OLD: { 3089 if (Error Err = parseGlobalIndirectSymbolRecord(BitCode, Record)) 3090 return Err; 3091 break; 3092 } 3093 /// MODULE_CODE_VSTOFFSET: [offset] 3094 case bitc::MODULE_CODE_VSTOFFSET: 3095 if (Record.size() < 1) 3096 return error("Invalid record"); 3097 // Note that we subtract 1 here because the offset is relative to one word 3098 // before the start of the identification or module block, which was 3099 // historically always the start of the regular bitcode header. 3100 VSTOffset = Record[0] - 1; 3101 break; 3102 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 3103 case bitc::MODULE_CODE_SOURCE_FILENAME: 3104 SmallString<128> ValueName; 3105 if (convertToString(Record, 0, ValueName)) 3106 return error("Invalid record"); 3107 TheModule->setSourceFileName(ValueName); 3108 break; 3109 } 3110 Record.clear(); 3111 } 3112 } 3113 3114 Error BitcodeReader::parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata, 3115 bool IsImporting) { 3116 TheModule = M; 3117 MDLoader = MetadataLoader(Stream, *M, ValueList, IsImporting, 3118 [&](unsigned ID) { return getTypeByID(ID); }); 3119 return parseModule(0, ShouldLazyLoadMetadata); 3120 } 3121 3122 3123 Error BitcodeReader::typeCheckLoadStoreInst(Type *ValType, Type *PtrType) { 3124 if (!isa<PointerType>(PtrType)) 3125 return error("Load/Store operand is not a pointer type"); 3126 Type *ElemType = cast<PointerType>(PtrType)->getElementType(); 3127 3128 if (ValType && ValType != ElemType) 3129 return error("Explicit load/store type does not match pointee " 3130 "type of pointer operand"); 3131 if (!PointerType::isLoadableOrStorableType(ElemType)) 3132 return error("Cannot load/store from pointer"); 3133 return Error::success(); 3134 } 3135 3136 /// Lazily parse the specified function body block. 3137 Error BitcodeReader::parseFunctionBody(Function *F) { 3138 if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 3139 return error("Invalid record"); 3140 3141 // Unexpected unresolved metadata when parsing function. 3142 if (MDLoader->hasFwdRefs()) 3143 return error("Invalid function metadata: incoming forward references"); 3144 3145 InstructionList.clear(); 3146 unsigned ModuleValueListSize = ValueList.size(); 3147 unsigned ModuleMDLoaderSize = MDLoader->size(); 3148 3149 // Add all the function arguments to the value table. 3150 for (Argument &I : F->args()) 3151 ValueList.push_back(&I); 3152 3153 unsigned NextValueNo = ValueList.size(); 3154 BasicBlock *CurBB = nullptr; 3155 unsigned CurBBNo = 0; 3156 3157 DebugLoc LastLoc; 3158 auto getLastInstruction = [&]() -> Instruction * { 3159 if (CurBB && !CurBB->empty()) 3160 return &CurBB->back(); 3161 else if (CurBBNo && FunctionBBs[CurBBNo - 1] && 3162 !FunctionBBs[CurBBNo - 1]->empty()) 3163 return &FunctionBBs[CurBBNo - 1]->back(); 3164 return nullptr; 3165 }; 3166 3167 std::vector<OperandBundleDef> OperandBundles; 3168 3169 // Read all the records. 3170 SmallVector<uint64_t, 64> Record; 3171 3172 while (true) { 3173 BitstreamEntry Entry = Stream.advance(); 3174 3175 switch (Entry.Kind) { 3176 case BitstreamEntry::Error: 3177 return error("Malformed block"); 3178 case BitstreamEntry::EndBlock: 3179 goto OutOfRecordLoop; 3180 3181 case BitstreamEntry::SubBlock: 3182 switch (Entry.ID) { 3183 default: // Skip unknown content. 3184 if (Stream.SkipBlock()) 3185 return error("Invalid record"); 3186 break; 3187 case bitc::CONSTANTS_BLOCK_ID: 3188 if (Error Err = parseConstants()) 3189 return Err; 3190 NextValueNo = ValueList.size(); 3191 break; 3192 case bitc::VALUE_SYMTAB_BLOCK_ID: 3193 if (Error Err = parseValueSymbolTable()) 3194 return Err; 3195 break; 3196 case bitc::METADATA_ATTACHMENT_ID: 3197 if (Error Err = MDLoader->parseMetadataAttachment(*F, InstructionList)) 3198 return Err; 3199 break; 3200 case bitc::METADATA_BLOCK_ID: 3201 assert(DeferredMetadataInfo.empty() && 3202 "Must read all module-level metadata before function-level"); 3203 if (Error Err = MDLoader->parseFunctionMetadata()) 3204 return Err; 3205 break; 3206 case bitc::USELIST_BLOCK_ID: 3207 if (Error Err = parseUseLists()) 3208 return Err; 3209 break; 3210 } 3211 continue; 3212 3213 case BitstreamEntry::Record: 3214 // The interesting case. 3215 break; 3216 } 3217 3218 // Read a record. 3219 Record.clear(); 3220 Instruction *I = nullptr; 3221 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 3222 switch (BitCode) { 3223 default: // Default behavior: reject 3224 return error("Invalid value"); 3225 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks] 3226 if (Record.size() < 1 || Record[0] == 0) 3227 return error("Invalid record"); 3228 // Create all the basic blocks for the function. 3229 FunctionBBs.resize(Record[0]); 3230 3231 // See if anything took the address of blocks in this function. 3232 auto BBFRI = BasicBlockFwdRefs.find(F); 3233 if (BBFRI == BasicBlockFwdRefs.end()) { 3234 for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i) 3235 FunctionBBs[i] = BasicBlock::Create(Context, "", F); 3236 } else { 3237 auto &BBRefs = BBFRI->second; 3238 // Check for invalid basic block references. 3239 if (BBRefs.size() > FunctionBBs.size()) 3240 return error("Invalid ID"); 3241 assert(!BBRefs.empty() && "Unexpected empty array"); 3242 assert(!BBRefs.front() && "Invalid reference to entry block"); 3243 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E; 3244 ++I) 3245 if (I < RE && BBRefs[I]) { 3246 BBRefs[I]->insertInto(F); 3247 FunctionBBs[I] = BBRefs[I]; 3248 } else { 3249 FunctionBBs[I] = BasicBlock::Create(Context, "", F); 3250 } 3251 3252 // Erase from the table. 3253 BasicBlockFwdRefs.erase(BBFRI); 3254 } 3255 3256 CurBB = FunctionBBs[0]; 3257 continue; 3258 } 3259 3260 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 3261 // This record indicates that the last instruction is at the same 3262 // location as the previous instruction with a location. 3263 I = getLastInstruction(); 3264 3265 if (!I) 3266 return error("Invalid record"); 3267 I->setDebugLoc(LastLoc); 3268 I = nullptr; 3269 continue; 3270 3271 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 3272 I = getLastInstruction(); 3273 if (!I || Record.size() < 4) 3274 return error("Invalid record"); 3275 3276 unsigned Line = Record[0], Col = Record[1]; 3277 unsigned ScopeID = Record[2], IAID = Record[3]; 3278 3279 MDNode *Scope = nullptr, *IA = nullptr; 3280 if (ScopeID) { 3281 Scope = MDLoader->getMDNodeFwdRefOrNull(ScopeID - 1); 3282 if (!Scope) 3283 return error("Invalid record"); 3284 } 3285 if (IAID) { 3286 IA = MDLoader->getMDNodeFwdRefOrNull(IAID - 1); 3287 if (!IA) 3288 return error("Invalid record"); 3289 } 3290 LastLoc = DebugLoc::get(Line, Col, Scope, IA); 3291 I->setDebugLoc(LastLoc); 3292 I = nullptr; 3293 continue; 3294 } 3295 3296 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 3297 unsigned OpNum = 0; 3298 Value *LHS, *RHS; 3299 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 3300 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 3301 OpNum+1 > Record.size()) 3302 return error("Invalid record"); 3303 3304 int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 3305 if (Opc == -1) 3306 return error("Invalid record"); 3307 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 3308 InstructionList.push_back(I); 3309 if (OpNum < Record.size()) { 3310 if (Opc == Instruction::Add || 3311 Opc == Instruction::Sub || 3312 Opc == Instruction::Mul || 3313 Opc == Instruction::Shl) { 3314 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 3315 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 3316 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 3317 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 3318 } else if (Opc == Instruction::SDiv || 3319 Opc == Instruction::UDiv || 3320 Opc == Instruction::LShr || 3321 Opc == Instruction::AShr) { 3322 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 3323 cast<BinaryOperator>(I)->setIsExact(true); 3324 } else if (isa<FPMathOperator>(I)) { 3325 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 3326 if (FMF.any()) 3327 I->setFastMathFlags(FMF); 3328 } 3329 3330 } 3331 break; 3332 } 3333 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 3334 unsigned OpNum = 0; 3335 Value *Op; 3336 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 3337 OpNum+2 != Record.size()) 3338 return error("Invalid record"); 3339 3340 Type *ResTy = getTypeByID(Record[OpNum]); 3341 int Opc = getDecodedCastOpcode(Record[OpNum + 1]); 3342 if (Opc == -1 || !ResTy) 3343 return error("Invalid record"); 3344 Instruction *Temp = nullptr; 3345 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) { 3346 if (Temp) { 3347 InstructionList.push_back(Temp); 3348 CurBB->getInstList().push_back(Temp); 3349 } 3350 } else { 3351 auto CastOp = (Instruction::CastOps)Opc; 3352 if (!CastInst::castIsValid(CastOp, Op, ResTy)) 3353 return error("Invalid cast"); 3354 I = CastInst::Create(CastOp, Op, ResTy); 3355 } 3356 InstructionList.push_back(I); 3357 break; 3358 } 3359 case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD: 3360 case bitc::FUNC_CODE_INST_GEP_OLD: 3361 case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands] 3362 unsigned OpNum = 0; 3363 3364 Type *Ty; 3365 bool InBounds; 3366 3367 if (BitCode == bitc::FUNC_CODE_INST_GEP) { 3368 InBounds = Record[OpNum++]; 3369 Ty = getTypeByID(Record[OpNum++]); 3370 } else { 3371 InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD; 3372 Ty = nullptr; 3373 } 3374 3375 Value *BasePtr; 3376 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr)) 3377 return error("Invalid record"); 3378 3379 if (!Ty) 3380 Ty = cast<PointerType>(BasePtr->getType()->getScalarType()) 3381 ->getElementType(); 3382 else if (Ty != 3383 cast<PointerType>(BasePtr->getType()->getScalarType()) 3384 ->getElementType()) 3385 return error( 3386 "Explicit gep type does not match pointee type of pointer operand"); 3387 3388 SmallVector<Value*, 16> GEPIdx; 3389 while (OpNum != Record.size()) { 3390 Value *Op; 3391 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3392 return error("Invalid record"); 3393 GEPIdx.push_back(Op); 3394 } 3395 3396 I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx); 3397 3398 InstructionList.push_back(I); 3399 if (InBounds) 3400 cast<GetElementPtrInst>(I)->setIsInBounds(true); 3401 break; 3402 } 3403 3404 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 3405 // EXTRACTVAL: [opty, opval, n x indices] 3406 unsigned OpNum = 0; 3407 Value *Agg; 3408 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 3409 return error("Invalid record"); 3410 3411 unsigned RecSize = Record.size(); 3412 if (OpNum == RecSize) 3413 return error("EXTRACTVAL: Invalid instruction with 0 indices"); 3414 3415 SmallVector<unsigned, 4> EXTRACTVALIdx; 3416 Type *CurTy = Agg->getType(); 3417 for (; OpNum != RecSize; ++OpNum) { 3418 bool IsArray = CurTy->isArrayTy(); 3419 bool IsStruct = CurTy->isStructTy(); 3420 uint64_t Index = Record[OpNum]; 3421 3422 if (!IsStruct && !IsArray) 3423 return error("EXTRACTVAL: Invalid type"); 3424 if ((unsigned)Index != Index) 3425 return error("Invalid value"); 3426 if (IsStruct && Index >= CurTy->subtypes().size()) 3427 return error("EXTRACTVAL: Invalid struct index"); 3428 if (IsArray && Index >= CurTy->getArrayNumElements()) 3429 return error("EXTRACTVAL: Invalid array index"); 3430 EXTRACTVALIdx.push_back((unsigned)Index); 3431 3432 if (IsStruct) 3433 CurTy = CurTy->subtypes()[Index]; 3434 else 3435 CurTy = CurTy->subtypes()[0]; 3436 } 3437 3438 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 3439 InstructionList.push_back(I); 3440 break; 3441 } 3442 3443 case bitc::FUNC_CODE_INST_INSERTVAL: { 3444 // INSERTVAL: [opty, opval, opty, opval, n x indices] 3445 unsigned OpNum = 0; 3446 Value *Agg; 3447 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 3448 return error("Invalid record"); 3449 Value *Val; 3450 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 3451 return error("Invalid record"); 3452 3453 unsigned RecSize = Record.size(); 3454 if (OpNum == RecSize) 3455 return error("INSERTVAL: Invalid instruction with 0 indices"); 3456 3457 SmallVector<unsigned, 4> INSERTVALIdx; 3458 Type *CurTy = Agg->getType(); 3459 for (; OpNum != RecSize; ++OpNum) { 3460 bool IsArray = CurTy->isArrayTy(); 3461 bool IsStruct = CurTy->isStructTy(); 3462 uint64_t Index = Record[OpNum]; 3463 3464 if (!IsStruct && !IsArray) 3465 return error("INSERTVAL: Invalid type"); 3466 if ((unsigned)Index != Index) 3467 return error("Invalid value"); 3468 if (IsStruct && Index >= CurTy->subtypes().size()) 3469 return error("INSERTVAL: Invalid struct index"); 3470 if (IsArray && Index >= CurTy->getArrayNumElements()) 3471 return error("INSERTVAL: Invalid array index"); 3472 3473 INSERTVALIdx.push_back((unsigned)Index); 3474 if (IsStruct) 3475 CurTy = CurTy->subtypes()[Index]; 3476 else 3477 CurTy = CurTy->subtypes()[0]; 3478 } 3479 3480 if (CurTy != Val->getType()) 3481 return error("Inserted value type doesn't match aggregate type"); 3482 3483 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 3484 InstructionList.push_back(I); 3485 break; 3486 } 3487 3488 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 3489 // obsolete form of select 3490 // handles select i1 ... in old bitcode 3491 unsigned OpNum = 0; 3492 Value *TrueVal, *FalseVal, *Cond; 3493 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 3494 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 3495 popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond)) 3496 return error("Invalid record"); 3497 3498 I = SelectInst::Create(Cond, TrueVal, FalseVal); 3499 InstructionList.push_back(I); 3500 break; 3501 } 3502 3503 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 3504 // new form of select 3505 // handles select i1 or select [N x i1] 3506 unsigned OpNum = 0; 3507 Value *TrueVal, *FalseVal, *Cond; 3508 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 3509 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 3510 getValueTypePair(Record, OpNum, NextValueNo, Cond)) 3511 return error("Invalid record"); 3512 3513 // select condition can be either i1 or [N x i1] 3514 if (VectorType* vector_type = 3515 dyn_cast<VectorType>(Cond->getType())) { 3516 // expect <n x i1> 3517 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 3518 return error("Invalid type for value"); 3519 } else { 3520 // expect i1 3521 if (Cond->getType() != Type::getInt1Ty(Context)) 3522 return error("Invalid type for value"); 3523 } 3524 3525 I = SelectInst::Create(Cond, TrueVal, FalseVal); 3526 InstructionList.push_back(I); 3527 break; 3528 } 3529 3530 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 3531 unsigned OpNum = 0; 3532 Value *Vec, *Idx; 3533 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 3534 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 3535 return error("Invalid record"); 3536 if (!Vec->getType()->isVectorTy()) 3537 return error("Invalid type for value"); 3538 I = ExtractElementInst::Create(Vec, Idx); 3539 InstructionList.push_back(I); 3540 break; 3541 } 3542 3543 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 3544 unsigned OpNum = 0; 3545 Value *Vec, *Elt, *Idx; 3546 if (getValueTypePair(Record, OpNum, NextValueNo, Vec)) 3547 return error("Invalid record"); 3548 if (!Vec->getType()->isVectorTy()) 3549 return error("Invalid type for value"); 3550 if (popValue(Record, OpNum, NextValueNo, 3551 cast<VectorType>(Vec->getType())->getElementType(), Elt) || 3552 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 3553 return error("Invalid record"); 3554 I = InsertElementInst::Create(Vec, Elt, Idx); 3555 InstructionList.push_back(I); 3556 break; 3557 } 3558 3559 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 3560 unsigned OpNum = 0; 3561 Value *Vec1, *Vec2, *Mask; 3562 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) || 3563 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2)) 3564 return error("Invalid record"); 3565 3566 if (getValueTypePair(Record, OpNum, NextValueNo, Mask)) 3567 return error("Invalid record"); 3568 if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy()) 3569 return error("Invalid type for value"); 3570 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 3571 InstructionList.push_back(I); 3572 break; 3573 } 3574 3575 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 3576 // Old form of ICmp/FCmp returning bool 3577 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 3578 // both legal on vectors but had different behaviour. 3579 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 3580 // FCmp/ICmp returning bool or vector of bool 3581 3582 unsigned OpNum = 0; 3583 Value *LHS, *RHS; 3584 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 3585 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS)) 3586 return error("Invalid record"); 3587 3588 unsigned PredVal = Record[OpNum]; 3589 bool IsFP = LHS->getType()->isFPOrFPVectorTy(); 3590 FastMathFlags FMF; 3591 if (IsFP && Record.size() > OpNum+1) 3592 FMF = getDecodedFastMathFlags(Record[++OpNum]); 3593 3594 if (OpNum+1 != Record.size()) 3595 return error("Invalid record"); 3596 3597 if (LHS->getType()->isFPOrFPVectorTy()) 3598 I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS); 3599 else 3600 I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS); 3601 3602 if (FMF.any()) 3603 I->setFastMathFlags(FMF); 3604 InstructionList.push_back(I); 3605 break; 3606 } 3607 3608 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 3609 { 3610 unsigned Size = Record.size(); 3611 if (Size == 0) { 3612 I = ReturnInst::Create(Context); 3613 InstructionList.push_back(I); 3614 break; 3615 } 3616 3617 unsigned OpNum = 0; 3618 Value *Op = nullptr; 3619 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3620 return error("Invalid record"); 3621 if (OpNum != Record.size()) 3622 return error("Invalid record"); 3623 3624 I = ReturnInst::Create(Context, Op); 3625 InstructionList.push_back(I); 3626 break; 3627 } 3628 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 3629 if (Record.size() != 1 && Record.size() != 3) 3630 return error("Invalid record"); 3631 BasicBlock *TrueDest = getBasicBlock(Record[0]); 3632 if (!TrueDest) 3633 return error("Invalid record"); 3634 3635 if (Record.size() == 1) { 3636 I = BranchInst::Create(TrueDest); 3637 InstructionList.push_back(I); 3638 } 3639 else { 3640 BasicBlock *FalseDest = getBasicBlock(Record[1]); 3641 Value *Cond = getValue(Record, 2, NextValueNo, 3642 Type::getInt1Ty(Context)); 3643 if (!FalseDest || !Cond) 3644 return error("Invalid record"); 3645 I = BranchInst::Create(TrueDest, FalseDest, Cond); 3646 InstructionList.push_back(I); 3647 } 3648 break; 3649 } 3650 case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#] 3651 if (Record.size() != 1 && Record.size() != 2) 3652 return error("Invalid record"); 3653 unsigned Idx = 0; 3654 Value *CleanupPad = 3655 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 3656 if (!CleanupPad) 3657 return error("Invalid record"); 3658 BasicBlock *UnwindDest = nullptr; 3659 if (Record.size() == 2) { 3660 UnwindDest = getBasicBlock(Record[Idx++]); 3661 if (!UnwindDest) 3662 return error("Invalid record"); 3663 } 3664 3665 I = CleanupReturnInst::Create(CleanupPad, UnwindDest); 3666 InstructionList.push_back(I); 3667 break; 3668 } 3669 case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#] 3670 if (Record.size() != 2) 3671 return error("Invalid record"); 3672 unsigned Idx = 0; 3673 Value *CatchPad = 3674 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 3675 if (!CatchPad) 3676 return error("Invalid record"); 3677 BasicBlock *BB = getBasicBlock(Record[Idx++]); 3678 if (!BB) 3679 return error("Invalid record"); 3680 3681 I = CatchReturnInst::Create(CatchPad, BB); 3682 InstructionList.push_back(I); 3683 break; 3684 } 3685 case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?] 3686 // We must have, at minimum, the outer scope and the number of arguments. 3687 if (Record.size() < 2) 3688 return error("Invalid record"); 3689 3690 unsigned Idx = 0; 3691 3692 Value *ParentPad = 3693 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 3694 3695 unsigned NumHandlers = Record[Idx++]; 3696 3697 SmallVector<BasicBlock *, 2> Handlers; 3698 for (unsigned Op = 0; Op != NumHandlers; ++Op) { 3699 BasicBlock *BB = getBasicBlock(Record[Idx++]); 3700 if (!BB) 3701 return error("Invalid record"); 3702 Handlers.push_back(BB); 3703 } 3704 3705 BasicBlock *UnwindDest = nullptr; 3706 if (Idx + 1 == Record.size()) { 3707 UnwindDest = getBasicBlock(Record[Idx++]); 3708 if (!UnwindDest) 3709 return error("Invalid record"); 3710 } 3711 3712 if (Record.size() != Idx) 3713 return error("Invalid record"); 3714 3715 auto *CatchSwitch = 3716 CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers); 3717 for (BasicBlock *Handler : Handlers) 3718 CatchSwitch->addHandler(Handler); 3719 I = CatchSwitch; 3720 InstructionList.push_back(I); 3721 break; 3722 } 3723 case bitc::FUNC_CODE_INST_CATCHPAD: 3724 case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*] 3725 // We must have, at minimum, the outer scope and the number of arguments. 3726 if (Record.size() < 2) 3727 return error("Invalid record"); 3728 3729 unsigned Idx = 0; 3730 3731 Value *ParentPad = 3732 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 3733 3734 unsigned NumArgOperands = Record[Idx++]; 3735 3736 SmallVector<Value *, 2> Args; 3737 for (unsigned Op = 0; Op != NumArgOperands; ++Op) { 3738 Value *Val; 3739 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 3740 return error("Invalid record"); 3741 Args.push_back(Val); 3742 } 3743 3744 if (Record.size() != Idx) 3745 return error("Invalid record"); 3746 3747 if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD) 3748 I = CleanupPadInst::Create(ParentPad, Args); 3749 else 3750 I = CatchPadInst::Create(ParentPad, Args); 3751 InstructionList.push_back(I); 3752 break; 3753 } 3754 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 3755 // Check magic 3756 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { 3757 // "New" SwitchInst format with case ranges. The changes to write this 3758 // format were reverted but we still recognize bitcode that uses it. 3759 // Hopefully someday we will have support for case ranges and can use 3760 // this format again. 3761 3762 Type *OpTy = getTypeByID(Record[1]); 3763 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); 3764 3765 Value *Cond = getValue(Record, 2, NextValueNo, OpTy); 3766 BasicBlock *Default = getBasicBlock(Record[3]); 3767 if (!OpTy || !Cond || !Default) 3768 return error("Invalid record"); 3769 3770 unsigned NumCases = Record[4]; 3771 3772 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 3773 InstructionList.push_back(SI); 3774 3775 unsigned CurIdx = 5; 3776 for (unsigned i = 0; i != NumCases; ++i) { 3777 SmallVector<ConstantInt*, 1> CaseVals; 3778 unsigned NumItems = Record[CurIdx++]; 3779 for (unsigned ci = 0; ci != NumItems; ++ci) { 3780 bool isSingleNumber = Record[CurIdx++]; 3781 3782 APInt Low; 3783 unsigned ActiveWords = 1; 3784 if (ValueBitWidth > 64) 3785 ActiveWords = Record[CurIdx++]; 3786 Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 3787 ValueBitWidth); 3788 CurIdx += ActiveWords; 3789 3790 if (!isSingleNumber) { 3791 ActiveWords = 1; 3792 if (ValueBitWidth > 64) 3793 ActiveWords = Record[CurIdx++]; 3794 APInt High = readWideAPInt( 3795 makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth); 3796 CurIdx += ActiveWords; 3797 3798 // FIXME: It is not clear whether values in the range should be 3799 // compared as signed or unsigned values. The partially 3800 // implemented changes that used this format in the past used 3801 // unsigned comparisons. 3802 for ( ; Low.ule(High); ++Low) 3803 CaseVals.push_back(ConstantInt::get(Context, Low)); 3804 } else 3805 CaseVals.push_back(ConstantInt::get(Context, Low)); 3806 } 3807 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); 3808 for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(), 3809 cve = CaseVals.end(); cvi != cve; ++cvi) 3810 SI->addCase(*cvi, DestBB); 3811 } 3812 I = SI; 3813 break; 3814 } 3815 3816 // Old SwitchInst format without case ranges. 3817 3818 if (Record.size() < 3 || (Record.size() & 1) == 0) 3819 return error("Invalid record"); 3820 Type *OpTy = getTypeByID(Record[0]); 3821 Value *Cond = getValue(Record, 1, NextValueNo, OpTy); 3822 BasicBlock *Default = getBasicBlock(Record[2]); 3823 if (!OpTy || !Cond || !Default) 3824 return error("Invalid record"); 3825 unsigned NumCases = (Record.size()-3)/2; 3826 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 3827 InstructionList.push_back(SI); 3828 for (unsigned i = 0, e = NumCases; i != e; ++i) { 3829 ConstantInt *CaseVal = 3830 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy)); 3831 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 3832 if (!CaseVal || !DestBB) { 3833 delete SI; 3834 return error("Invalid record"); 3835 } 3836 SI->addCase(CaseVal, DestBB); 3837 } 3838 I = SI; 3839 break; 3840 } 3841 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 3842 if (Record.size() < 2) 3843 return error("Invalid record"); 3844 Type *OpTy = getTypeByID(Record[0]); 3845 Value *Address = getValue(Record, 1, NextValueNo, OpTy); 3846 if (!OpTy || !Address) 3847 return error("Invalid record"); 3848 unsigned NumDests = Record.size()-2; 3849 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 3850 InstructionList.push_back(IBI); 3851 for (unsigned i = 0, e = NumDests; i != e; ++i) { 3852 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 3853 IBI->addDestination(DestBB); 3854 } else { 3855 delete IBI; 3856 return error("Invalid record"); 3857 } 3858 } 3859 I = IBI; 3860 break; 3861 } 3862 3863 case bitc::FUNC_CODE_INST_INVOKE: { 3864 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 3865 if (Record.size() < 4) 3866 return error("Invalid record"); 3867 unsigned OpNum = 0; 3868 AttributeList PAL = getAttributes(Record[OpNum++]); 3869 unsigned CCInfo = Record[OpNum++]; 3870 BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]); 3871 BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]); 3872 3873 FunctionType *FTy = nullptr; 3874 if (CCInfo >> 13 & 1 && 3875 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])))) 3876 return error("Explicit invoke type is not a function type"); 3877 3878 Value *Callee; 3879 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 3880 return error("Invalid record"); 3881 3882 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 3883 if (!CalleeTy) 3884 return error("Callee is not a pointer"); 3885 if (!FTy) { 3886 FTy = dyn_cast<FunctionType>(CalleeTy->getElementType()); 3887 if (!FTy) 3888 return error("Callee is not of pointer to function type"); 3889 } else if (CalleeTy->getElementType() != FTy) 3890 return error("Explicit invoke type does not match pointee type of " 3891 "callee operand"); 3892 if (Record.size() < FTy->getNumParams() + OpNum) 3893 return error("Insufficient operands to call"); 3894 3895 SmallVector<Value*, 16> Ops; 3896 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 3897 Ops.push_back(getValue(Record, OpNum, NextValueNo, 3898 FTy->getParamType(i))); 3899 if (!Ops.back()) 3900 return error("Invalid record"); 3901 } 3902 3903 if (!FTy->isVarArg()) { 3904 if (Record.size() != OpNum) 3905 return error("Invalid record"); 3906 } else { 3907 // Read type/value pairs for varargs params. 3908 while (OpNum != Record.size()) { 3909 Value *Op; 3910 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3911 return error("Invalid record"); 3912 Ops.push_back(Op); 3913 } 3914 } 3915 3916 I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops, OperandBundles); 3917 OperandBundles.clear(); 3918 InstructionList.push_back(I); 3919 cast<InvokeInst>(I)->setCallingConv( 3920 static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo)); 3921 cast<InvokeInst>(I)->setAttributes(PAL); 3922 break; 3923 } 3924 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 3925 unsigned Idx = 0; 3926 Value *Val = nullptr; 3927 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 3928 return error("Invalid record"); 3929 I = ResumeInst::Create(Val); 3930 InstructionList.push_back(I); 3931 break; 3932 } 3933 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 3934 I = new UnreachableInst(Context); 3935 InstructionList.push_back(I); 3936 break; 3937 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 3938 if (Record.size() < 1 || ((Record.size()-1)&1)) 3939 return error("Invalid record"); 3940 Type *Ty = getTypeByID(Record[0]); 3941 if (!Ty) 3942 return error("Invalid record"); 3943 3944 PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2); 3945 InstructionList.push_back(PN); 3946 3947 for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) { 3948 Value *V; 3949 // With the new function encoding, it is possible that operands have 3950 // negative IDs (for forward references). Use a signed VBR 3951 // representation to keep the encoding small. 3952 if (UseRelativeIDs) 3953 V = getValueSigned(Record, 1+i, NextValueNo, Ty); 3954 else 3955 V = getValue(Record, 1+i, NextValueNo, Ty); 3956 BasicBlock *BB = getBasicBlock(Record[2+i]); 3957 if (!V || !BB) 3958 return error("Invalid record"); 3959 PN->addIncoming(V, BB); 3960 } 3961 I = PN; 3962 break; 3963 } 3964 3965 case bitc::FUNC_CODE_INST_LANDINGPAD: 3966 case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: { 3967 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 3968 unsigned Idx = 0; 3969 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) { 3970 if (Record.size() < 3) 3971 return error("Invalid record"); 3972 } else { 3973 assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD); 3974 if (Record.size() < 4) 3975 return error("Invalid record"); 3976 } 3977 Type *Ty = getTypeByID(Record[Idx++]); 3978 if (!Ty) 3979 return error("Invalid record"); 3980 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) { 3981 Value *PersFn = nullptr; 3982 if (getValueTypePair(Record, Idx, NextValueNo, PersFn)) 3983 return error("Invalid record"); 3984 3985 if (!F->hasPersonalityFn()) 3986 F->setPersonalityFn(cast<Constant>(PersFn)); 3987 else if (F->getPersonalityFn() != cast<Constant>(PersFn)) 3988 return error("Personality function mismatch"); 3989 } 3990 3991 bool IsCleanup = !!Record[Idx++]; 3992 unsigned NumClauses = Record[Idx++]; 3993 LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses); 3994 LP->setCleanup(IsCleanup); 3995 for (unsigned J = 0; J != NumClauses; ++J) { 3996 LandingPadInst::ClauseType CT = 3997 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 3998 Value *Val; 3999 4000 if (getValueTypePair(Record, Idx, NextValueNo, Val)) { 4001 delete LP; 4002 return error("Invalid record"); 4003 } 4004 4005 assert((CT != LandingPadInst::Catch || 4006 !isa<ArrayType>(Val->getType())) && 4007 "Catch clause has a invalid type!"); 4008 assert((CT != LandingPadInst::Filter || 4009 isa<ArrayType>(Val->getType())) && 4010 "Filter clause has invalid type!"); 4011 LP->addClause(cast<Constant>(Val)); 4012 } 4013 4014 I = LP; 4015 InstructionList.push_back(I); 4016 break; 4017 } 4018 4019 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 4020 if (Record.size() != 4) 4021 return error("Invalid record"); 4022 uint64_t AlignRecord = Record[3]; 4023 const uint64_t InAllocaMask = uint64_t(1) << 5; 4024 const uint64_t ExplicitTypeMask = uint64_t(1) << 6; 4025 const uint64_t SwiftErrorMask = uint64_t(1) << 7; 4026 const uint64_t FlagMask = InAllocaMask | ExplicitTypeMask | 4027 SwiftErrorMask; 4028 bool InAlloca = AlignRecord & InAllocaMask; 4029 bool SwiftError = AlignRecord & SwiftErrorMask; 4030 Type *Ty = getTypeByID(Record[0]); 4031 if ((AlignRecord & ExplicitTypeMask) == 0) { 4032 auto *PTy = dyn_cast_or_null<PointerType>(Ty); 4033 if (!PTy) 4034 return error("Old-style alloca with a non-pointer type"); 4035 Ty = PTy->getElementType(); 4036 } 4037 Type *OpTy = getTypeByID(Record[1]); 4038 Value *Size = getFnValueByID(Record[2], OpTy); 4039 unsigned Align; 4040 if (Error Err = parseAlignmentValue(AlignRecord & ~FlagMask, Align)) { 4041 return Err; 4042 } 4043 if (!Ty || !Size) 4044 return error("Invalid record"); 4045 4046 // FIXME: Make this an optional field. 4047 const DataLayout &DL = TheModule->getDataLayout(); 4048 unsigned AS = DL.getAllocaAddrSpace(); 4049 4050 AllocaInst *AI = new AllocaInst(Ty, AS, Size, Align); 4051 AI->setUsedWithInAlloca(InAlloca); 4052 AI->setSwiftError(SwiftError); 4053 I = AI; 4054 InstructionList.push_back(I); 4055 break; 4056 } 4057 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 4058 unsigned OpNum = 0; 4059 Value *Op; 4060 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4061 (OpNum + 2 != Record.size() && OpNum + 3 != Record.size())) 4062 return error("Invalid record"); 4063 4064 Type *Ty = nullptr; 4065 if (OpNum + 3 == Record.size()) 4066 Ty = getTypeByID(Record[OpNum++]); 4067 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 4068 return Err; 4069 if (!Ty) 4070 Ty = cast<PointerType>(Op->getType())->getElementType(); 4071 4072 unsigned Align; 4073 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4074 return Err; 4075 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], Align); 4076 4077 InstructionList.push_back(I); 4078 break; 4079 } 4080 case bitc::FUNC_CODE_INST_LOADATOMIC: { 4081 // LOADATOMIC: [opty, op, align, vol, ordering, synchscope] 4082 unsigned OpNum = 0; 4083 Value *Op; 4084 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4085 (OpNum + 4 != Record.size() && OpNum + 5 != Record.size())) 4086 return error("Invalid record"); 4087 4088 Type *Ty = nullptr; 4089 if (OpNum + 5 == Record.size()) 4090 Ty = getTypeByID(Record[OpNum++]); 4091 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 4092 return Err; 4093 if (!Ty) 4094 Ty = cast<PointerType>(Op->getType())->getElementType(); 4095 4096 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4097 if (Ordering == AtomicOrdering::NotAtomic || 4098 Ordering == AtomicOrdering::Release || 4099 Ordering == AtomicOrdering::AcquireRelease) 4100 return error("Invalid record"); 4101 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 4102 return error("Invalid record"); 4103 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]); 4104 4105 unsigned Align; 4106 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4107 return Err; 4108 I = new LoadInst(Op, "", Record[OpNum+1], Align, Ordering, SynchScope); 4109 4110 InstructionList.push_back(I); 4111 break; 4112 } 4113 case bitc::FUNC_CODE_INST_STORE: 4114 case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol] 4115 unsigned OpNum = 0; 4116 Value *Val, *Ptr; 4117 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4118 (BitCode == bitc::FUNC_CODE_INST_STORE 4119 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 4120 : popValue(Record, OpNum, NextValueNo, 4121 cast<PointerType>(Ptr->getType())->getElementType(), 4122 Val)) || 4123 OpNum + 2 != Record.size()) 4124 return error("Invalid record"); 4125 4126 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 4127 return Err; 4128 unsigned Align; 4129 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4130 return Err; 4131 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align); 4132 InstructionList.push_back(I); 4133 break; 4134 } 4135 case bitc::FUNC_CODE_INST_STOREATOMIC: 4136 case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: { 4137 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, synchscope] 4138 unsigned OpNum = 0; 4139 Value *Val, *Ptr; 4140 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4141 !isa<PointerType>(Ptr->getType()) || 4142 (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC 4143 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 4144 : popValue(Record, OpNum, NextValueNo, 4145 cast<PointerType>(Ptr->getType())->getElementType(), 4146 Val)) || 4147 OpNum + 4 != Record.size()) 4148 return error("Invalid record"); 4149 4150 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 4151 return Err; 4152 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4153 if (Ordering == AtomicOrdering::NotAtomic || 4154 Ordering == AtomicOrdering::Acquire || 4155 Ordering == AtomicOrdering::AcquireRelease) 4156 return error("Invalid record"); 4157 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]); 4158 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 4159 return error("Invalid record"); 4160 4161 unsigned Align; 4162 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4163 return Err; 4164 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align, Ordering, SynchScope); 4165 InstructionList.push_back(I); 4166 break; 4167 } 4168 case bitc::FUNC_CODE_INST_CMPXCHG_OLD: 4169 case bitc::FUNC_CODE_INST_CMPXCHG: { 4170 // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, synchscope, 4171 // failureordering?, isweak?] 4172 unsigned OpNum = 0; 4173 Value *Ptr, *Cmp, *New; 4174 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4175 (BitCode == bitc::FUNC_CODE_INST_CMPXCHG 4176 ? getValueTypePair(Record, OpNum, NextValueNo, Cmp) 4177 : popValue(Record, OpNum, NextValueNo, 4178 cast<PointerType>(Ptr->getType())->getElementType(), 4179 Cmp)) || 4180 popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) || 4181 Record.size() < OpNum + 3 || Record.size() > OpNum + 5) 4182 return error("Invalid record"); 4183 AtomicOrdering SuccessOrdering = getDecodedOrdering(Record[OpNum + 1]); 4184 if (SuccessOrdering == AtomicOrdering::NotAtomic || 4185 SuccessOrdering == AtomicOrdering::Unordered) 4186 return error("Invalid record"); 4187 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 2]); 4188 4189 if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType())) 4190 return Err; 4191 AtomicOrdering FailureOrdering; 4192 if (Record.size() < 7) 4193 FailureOrdering = 4194 AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering); 4195 else 4196 FailureOrdering = getDecodedOrdering(Record[OpNum + 3]); 4197 4198 I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering, 4199 SynchScope); 4200 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 4201 4202 if (Record.size() < 8) { 4203 // Before weak cmpxchgs existed, the instruction simply returned the 4204 // value loaded from memory, so bitcode files from that era will be 4205 // expecting the first component of a modern cmpxchg. 4206 CurBB->getInstList().push_back(I); 4207 I = ExtractValueInst::Create(I, 0); 4208 } else { 4209 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]); 4210 } 4211 4212 InstructionList.push_back(I); 4213 break; 4214 } 4215 case bitc::FUNC_CODE_INST_ATOMICRMW: { 4216 // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, synchscope] 4217 unsigned OpNum = 0; 4218 Value *Ptr, *Val; 4219 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4220 !isa<PointerType>(Ptr->getType()) || 4221 popValue(Record, OpNum, NextValueNo, 4222 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 4223 OpNum+4 != Record.size()) 4224 return error("Invalid record"); 4225 AtomicRMWInst::BinOp Operation = getDecodedRMWOperation(Record[OpNum]); 4226 if (Operation < AtomicRMWInst::FIRST_BINOP || 4227 Operation > AtomicRMWInst::LAST_BINOP) 4228 return error("Invalid record"); 4229 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4230 if (Ordering == AtomicOrdering::NotAtomic || 4231 Ordering == AtomicOrdering::Unordered) 4232 return error("Invalid record"); 4233 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]); 4234 I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SynchScope); 4235 cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]); 4236 InstructionList.push_back(I); 4237 break; 4238 } 4239 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, synchscope] 4240 if (2 != Record.size()) 4241 return error("Invalid record"); 4242 AtomicOrdering Ordering = getDecodedOrdering(Record[0]); 4243 if (Ordering == AtomicOrdering::NotAtomic || 4244 Ordering == AtomicOrdering::Unordered || 4245 Ordering == AtomicOrdering::Monotonic) 4246 return error("Invalid record"); 4247 SynchronizationScope SynchScope = getDecodedSynchScope(Record[1]); 4248 I = new FenceInst(Context, Ordering, SynchScope); 4249 InstructionList.push_back(I); 4250 break; 4251 } 4252 case bitc::FUNC_CODE_INST_CALL: { 4253 // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...] 4254 if (Record.size() < 3) 4255 return error("Invalid record"); 4256 4257 unsigned OpNum = 0; 4258 AttributeList PAL = getAttributes(Record[OpNum++]); 4259 unsigned CCInfo = Record[OpNum++]; 4260 4261 FastMathFlags FMF; 4262 if ((CCInfo >> bitc::CALL_FMF) & 1) { 4263 FMF = getDecodedFastMathFlags(Record[OpNum++]); 4264 if (!FMF.any()) 4265 return error("Fast math flags indicator set for call with no FMF"); 4266 } 4267 4268 FunctionType *FTy = nullptr; 4269 if (CCInfo >> bitc::CALL_EXPLICIT_TYPE & 1 && 4270 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])))) 4271 return error("Explicit call type is not a function type"); 4272 4273 Value *Callee; 4274 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 4275 return error("Invalid record"); 4276 4277 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 4278 if (!OpTy) 4279 return error("Callee is not a pointer type"); 4280 if (!FTy) { 4281 FTy = dyn_cast<FunctionType>(OpTy->getElementType()); 4282 if (!FTy) 4283 return error("Callee is not of pointer to function type"); 4284 } else if (OpTy->getElementType() != FTy) 4285 return error("Explicit call type does not match pointee type of " 4286 "callee operand"); 4287 if (Record.size() < FTy->getNumParams() + OpNum) 4288 return error("Insufficient operands to call"); 4289 4290 SmallVector<Value*, 16> Args; 4291 // Read the fixed params. 4292 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 4293 if (FTy->getParamType(i)->isLabelTy()) 4294 Args.push_back(getBasicBlock(Record[OpNum])); 4295 else 4296 Args.push_back(getValue(Record, OpNum, NextValueNo, 4297 FTy->getParamType(i))); 4298 if (!Args.back()) 4299 return error("Invalid record"); 4300 } 4301 4302 // Read type/value pairs for varargs params. 4303 if (!FTy->isVarArg()) { 4304 if (OpNum != Record.size()) 4305 return error("Invalid record"); 4306 } else { 4307 while (OpNum != Record.size()) { 4308 Value *Op; 4309 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4310 return error("Invalid record"); 4311 Args.push_back(Op); 4312 } 4313 } 4314 4315 I = CallInst::Create(FTy, Callee, Args, OperandBundles); 4316 OperandBundles.clear(); 4317 InstructionList.push_back(I); 4318 cast<CallInst>(I)->setCallingConv( 4319 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 4320 CallInst::TailCallKind TCK = CallInst::TCK_None; 4321 if (CCInfo & 1 << bitc::CALL_TAIL) 4322 TCK = CallInst::TCK_Tail; 4323 if (CCInfo & (1 << bitc::CALL_MUSTTAIL)) 4324 TCK = CallInst::TCK_MustTail; 4325 if (CCInfo & (1 << bitc::CALL_NOTAIL)) 4326 TCK = CallInst::TCK_NoTail; 4327 cast<CallInst>(I)->setTailCallKind(TCK); 4328 cast<CallInst>(I)->setAttributes(PAL); 4329 if (FMF.any()) { 4330 if (!isa<FPMathOperator>(I)) 4331 return error("Fast-math-flags specified for call without " 4332 "floating-point scalar or vector return type"); 4333 I->setFastMathFlags(FMF); 4334 } 4335 break; 4336 } 4337 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 4338 if (Record.size() < 3) 4339 return error("Invalid record"); 4340 Type *OpTy = getTypeByID(Record[0]); 4341 Value *Op = getValue(Record, 1, NextValueNo, OpTy); 4342 Type *ResTy = getTypeByID(Record[2]); 4343 if (!OpTy || !Op || !ResTy) 4344 return error("Invalid record"); 4345 I = new VAArgInst(Op, ResTy); 4346 InstructionList.push_back(I); 4347 break; 4348 } 4349 4350 case bitc::FUNC_CODE_OPERAND_BUNDLE: { 4351 // A call or an invoke can be optionally prefixed with some variable 4352 // number of operand bundle blocks. These blocks are read into 4353 // OperandBundles and consumed at the next call or invoke instruction. 4354 4355 if (Record.size() < 1 || Record[0] >= BundleTags.size()) 4356 return error("Invalid record"); 4357 4358 std::vector<Value *> Inputs; 4359 4360 unsigned OpNum = 1; 4361 while (OpNum != Record.size()) { 4362 Value *Op; 4363 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4364 return error("Invalid record"); 4365 Inputs.push_back(Op); 4366 } 4367 4368 OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs)); 4369 continue; 4370 } 4371 } 4372 4373 // Add instruction to end of current BB. If there is no current BB, reject 4374 // this file. 4375 if (!CurBB) { 4376 delete I; 4377 return error("Invalid instruction with no BB"); 4378 } 4379 if (!OperandBundles.empty()) { 4380 delete I; 4381 return error("Operand bundles found with no consumer"); 4382 } 4383 CurBB->getInstList().push_back(I); 4384 4385 // If this was a terminator instruction, move to the next block. 4386 if (isa<TerminatorInst>(I)) { 4387 ++CurBBNo; 4388 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr; 4389 } 4390 4391 // Non-void values get registered in the value table for future use. 4392 if (I && !I->getType()->isVoidTy()) 4393 ValueList.assignValue(I, NextValueNo++); 4394 } 4395 4396 OutOfRecordLoop: 4397 4398 if (!OperandBundles.empty()) 4399 return error("Operand bundles found with no consumer"); 4400 4401 // Check the function list for unresolved values. 4402 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 4403 if (!A->getParent()) { 4404 // We found at least one unresolved value. Nuke them all to avoid leaks. 4405 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 4406 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) { 4407 A->replaceAllUsesWith(UndefValue::get(A->getType())); 4408 delete A; 4409 } 4410 } 4411 return error("Never resolved value found in function"); 4412 } 4413 } 4414 4415 // Unexpected unresolved metadata about to be dropped. 4416 if (MDLoader->hasFwdRefs()) 4417 return error("Invalid function metadata: outgoing forward refs"); 4418 4419 // Trim the value list down to the size it was before we parsed this function. 4420 ValueList.shrinkTo(ModuleValueListSize); 4421 MDLoader->shrinkTo(ModuleMDLoaderSize); 4422 std::vector<BasicBlock*>().swap(FunctionBBs); 4423 return Error::success(); 4424 } 4425 4426 /// Find the function body in the bitcode stream 4427 Error BitcodeReader::findFunctionInStream( 4428 Function *F, 4429 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) { 4430 while (DeferredFunctionInfoIterator->second == 0) { 4431 // This is the fallback handling for the old format bitcode that 4432 // didn't contain the function index in the VST, or when we have 4433 // an anonymous function which would not have a VST entry. 4434 // Assert that we have one of those two cases. 4435 assert(VSTOffset == 0 || !F->hasName()); 4436 // Parse the next body in the stream and set its position in the 4437 // DeferredFunctionInfo map. 4438 if (Error Err = rememberAndSkipFunctionBodies()) 4439 return Err; 4440 } 4441 return Error::success(); 4442 } 4443 4444 //===----------------------------------------------------------------------===// 4445 // GVMaterializer implementation 4446 //===----------------------------------------------------------------------===// 4447 4448 Error BitcodeReader::materialize(GlobalValue *GV) { 4449 Function *F = dyn_cast<Function>(GV); 4450 // If it's not a function or is already material, ignore the request. 4451 if (!F || !F->isMaterializable()) 4452 return Error::success(); 4453 4454 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 4455 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 4456 // If its position is recorded as 0, its body is somewhere in the stream 4457 // but we haven't seen it yet. 4458 if (DFII->second == 0) 4459 if (Error Err = findFunctionInStream(F, DFII)) 4460 return Err; 4461 4462 // Materialize metadata before parsing any function bodies. 4463 if (Error Err = materializeMetadata()) 4464 return Err; 4465 4466 // Move the bit stream to the saved position of the deferred function body. 4467 Stream.JumpToBit(DFII->second); 4468 4469 if (Error Err = parseFunctionBody(F)) 4470 return Err; 4471 F->setIsMaterializable(false); 4472 4473 if (StripDebugInfo) 4474 stripDebugInfo(*F); 4475 4476 // Upgrade any old intrinsic calls in the function. 4477 for (auto &I : UpgradedIntrinsics) { 4478 for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end(); 4479 UI != UE;) { 4480 User *U = *UI; 4481 ++UI; 4482 if (CallInst *CI = dyn_cast<CallInst>(U)) 4483 UpgradeIntrinsicCall(CI, I.second); 4484 } 4485 } 4486 4487 // Update calls to the remangled intrinsics 4488 for (auto &I : RemangledIntrinsics) 4489 for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end(); 4490 UI != UE;) 4491 // Don't expect any other users than call sites 4492 CallSite(*UI++).setCalledFunction(I.second); 4493 4494 // Finish fn->subprogram upgrade for materialized functions. 4495 if (DISubprogram *SP = MDLoader->lookupSubprogramForFunction(F)) 4496 F->setSubprogram(SP); 4497 4498 // Check if the TBAA Metadata are valid, otherwise we will need to strip them. 4499 if (!MDLoader->isStrippingTBAA()) { 4500 for (auto &I : instructions(F)) { 4501 MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa); 4502 if (!TBAA || TBAAVerifyHelper.visitTBAAMetadata(I, TBAA)) 4503 continue; 4504 MDLoader->setStripTBAA(true); 4505 stripTBAA(F->getParent()); 4506 } 4507 } 4508 4509 // Bring in any functions that this function forward-referenced via 4510 // blockaddresses. 4511 return materializeForwardReferencedFunctions(); 4512 } 4513 4514 Error BitcodeReader::materializeModule() { 4515 if (Error Err = materializeMetadata()) 4516 return Err; 4517 4518 // Promise to materialize all forward references. 4519 WillMaterializeAllForwardRefs = true; 4520 4521 // Iterate over the module, deserializing any functions that are still on 4522 // disk. 4523 for (Function &F : *TheModule) { 4524 if (Error Err = materialize(&F)) 4525 return Err; 4526 } 4527 // At this point, if there are any function bodies, parse the rest of 4528 // the bits in the module past the last function block we have recorded 4529 // through either lazy scanning or the VST. 4530 if (LastFunctionBlockBit || NextUnreadBit) 4531 if (Error Err = parseModule(LastFunctionBlockBit > NextUnreadBit 4532 ? LastFunctionBlockBit 4533 : NextUnreadBit)) 4534 return Err; 4535 4536 // Check that all block address forward references got resolved (as we 4537 // promised above). 4538 if (!BasicBlockFwdRefs.empty()) 4539 return error("Never resolved function from blockaddress"); 4540 4541 // Upgrade any intrinsic calls that slipped through (should not happen!) and 4542 // delete the old functions to clean up. We can't do this unless the entire 4543 // module is materialized because there could always be another function body 4544 // with calls to the old function. 4545 for (auto &I : UpgradedIntrinsics) { 4546 for (auto *U : I.first->users()) { 4547 if (CallInst *CI = dyn_cast<CallInst>(U)) 4548 UpgradeIntrinsicCall(CI, I.second); 4549 } 4550 if (!I.first->use_empty()) 4551 I.first->replaceAllUsesWith(I.second); 4552 I.first->eraseFromParent(); 4553 } 4554 UpgradedIntrinsics.clear(); 4555 // Do the same for remangled intrinsics 4556 for (auto &I : RemangledIntrinsics) { 4557 I.first->replaceAllUsesWith(I.second); 4558 I.first->eraseFromParent(); 4559 } 4560 RemangledIntrinsics.clear(); 4561 4562 UpgradeDebugInfo(*TheModule); 4563 4564 UpgradeModuleFlags(*TheModule); 4565 return Error::success(); 4566 } 4567 4568 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const { 4569 return IdentifiedStructTypes; 4570 } 4571 4572 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader( 4573 BitstreamCursor Cursor, ModuleSummaryIndex &TheIndex) 4574 : BitcodeReaderBase(std::move(Cursor)), TheIndex(TheIndex) {} 4575 4576 std::pair<GlobalValue::GUID, GlobalValue::GUID> 4577 ModuleSummaryIndexBitcodeReader::getGUIDFromValueId(unsigned ValueId) { 4578 auto VGI = ValueIdToCallGraphGUIDMap.find(ValueId); 4579 assert(VGI != ValueIdToCallGraphGUIDMap.end()); 4580 return VGI->second; 4581 } 4582 4583 // Specialized value symbol table parser used when reading module index 4584 // blocks where we don't actually create global values. The parsed information 4585 // is saved in the bitcode reader for use when later parsing summaries. 4586 Error ModuleSummaryIndexBitcodeReader::parseValueSymbolTable( 4587 uint64_t Offset, 4588 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) { 4589 assert(Offset > 0 && "Expected non-zero VST offset"); 4590 uint64_t CurrentBit = jumpToValueSymbolTable(Offset, Stream); 4591 4592 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 4593 return error("Invalid record"); 4594 4595 SmallVector<uint64_t, 64> Record; 4596 4597 // Read all the records for this value table. 4598 SmallString<128> ValueName; 4599 4600 while (true) { 4601 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 4602 4603 switch (Entry.Kind) { 4604 case BitstreamEntry::SubBlock: // Handled for us already. 4605 case BitstreamEntry::Error: 4606 return error("Malformed block"); 4607 case BitstreamEntry::EndBlock: 4608 // Done parsing VST, jump back to wherever we came from. 4609 Stream.JumpToBit(CurrentBit); 4610 return Error::success(); 4611 case BitstreamEntry::Record: 4612 // The interesting case. 4613 break; 4614 } 4615 4616 // Read a record. 4617 Record.clear(); 4618 switch (Stream.readRecord(Entry.ID, Record)) { 4619 default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records). 4620 break; 4621 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 4622 if (convertToString(Record, 1, ValueName)) 4623 return error("Invalid record"); 4624 unsigned ValueID = Record[0]; 4625 assert(!SourceFileName.empty()); 4626 auto VLI = ValueIdToLinkageMap.find(ValueID); 4627 assert(VLI != ValueIdToLinkageMap.end() && 4628 "No linkage found for VST entry?"); 4629 auto Linkage = VLI->second; 4630 std::string GlobalId = 4631 GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName); 4632 auto ValueGUID = GlobalValue::getGUID(GlobalId); 4633 auto OriginalNameID = ValueGUID; 4634 if (GlobalValue::isLocalLinkage(Linkage)) 4635 OriginalNameID = GlobalValue::getGUID(ValueName); 4636 if (PrintSummaryGUIDs) 4637 dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is " 4638 << ValueName << "\n"; 4639 ValueIdToCallGraphGUIDMap[ValueID] = 4640 std::make_pair(ValueGUID, OriginalNameID); 4641 ValueName.clear(); 4642 break; 4643 } 4644 case bitc::VST_CODE_FNENTRY: { 4645 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 4646 if (convertToString(Record, 2, ValueName)) 4647 return error("Invalid record"); 4648 unsigned ValueID = Record[0]; 4649 assert(!SourceFileName.empty()); 4650 auto VLI = ValueIdToLinkageMap.find(ValueID); 4651 assert(VLI != ValueIdToLinkageMap.end() && 4652 "No linkage found for VST entry?"); 4653 auto Linkage = VLI->second; 4654 std::string FunctionGlobalId = GlobalValue::getGlobalIdentifier( 4655 ValueName, VLI->second, SourceFileName); 4656 auto FunctionGUID = GlobalValue::getGUID(FunctionGlobalId); 4657 auto OriginalNameID = FunctionGUID; 4658 if (GlobalValue::isLocalLinkage(Linkage)) 4659 OriginalNameID = GlobalValue::getGUID(ValueName); 4660 if (PrintSummaryGUIDs) 4661 dbgs() << "GUID " << FunctionGUID << "(" << OriginalNameID << ") is " 4662 << ValueName << "\n"; 4663 ValueIdToCallGraphGUIDMap[ValueID] = 4664 std::make_pair(FunctionGUID, OriginalNameID); 4665 4666 ValueName.clear(); 4667 break; 4668 } 4669 case bitc::VST_CODE_COMBINED_ENTRY: { 4670 // VST_CODE_COMBINED_ENTRY: [valueid, refguid] 4671 unsigned ValueID = Record[0]; 4672 GlobalValue::GUID RefGUID = Record[1]; 4673 // The "original name", which is the second value of the pair will be 4674 // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index. 4675 ValueIdToCallGraphGUIDMap[ValueID] = std::make_pair(RefGUID, RefGUID); 4676 break; 4677 } 4678 } 4679 } 4680 } 4681 4682 // Parse just the blocks needed for building the index out of the module. 4683 // At the end of this routine the module Index is populated with a map 4684 // from global value id to GlobalValueSummary objects. 4685 Error ModuleSummaryIndexBitcodeReader::parseModule(StringRef ModulePath) { 4686 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 4687 return error("Invalid record"); 4688 4689 SmallVector<uint64_t, 64> Record; 4690 DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap; 4691 unsigned ValueId = 0; 4692 4693 // Read the index for this module. 4694 while (true) { 4695 BitstreamEntry Entry = Stream.advance(); 4696 4697 switch (Entry.Kind) { 4698 case BitstreamEntry::Error: 4699 return error("Malformed block"); 4700 case BitstreamEntry::EndBlock: 4701 return Error::success(); 4702 4703 case BitstreamEntry::SubBlock: 4704 switch (Entry.ID) { 4705 default: // Skip unknown content. 4706 if (Stream.SkipBlock()) 4707 return error("Invalid record"); 4708 break; 4709 case bitc::BLOCKINFO_BLOCK_ID: 4710 // Need to parse these to get abbrev ids (e.g. for VST) 4711 if (readBlockInfo()) 4712 return error("Malformed block"); 4713 break; 4714 case bitc::VALUE_SYMTAB_BLOCK_ID: 4715 // Should have been parsed earlier via VSTOffset, unless there 4716 // is no summary section. 4717 assert(((SeenValueSymbolTable && VSTOffset > 0) || 4718 !SeenGlobalValSummary) && 4719 "Expected early VST parse via VSTOffset record"); 4720 if (Stream.SkipBlock()) 4721 return error("Invalid record"); 4722 break; 4723 case bitc::GLOBALVAL_SUMMARY_BLOCK_ID: 4724 assert(!SeenValueSymbolTable && 4725 "Already read VST when parsing summary block?"); 4726 // We might not have a VST if there were no values in the 4727 // summary. An empty summary block generated when we are 4728 // performing ThinLTO compiles so we don't later invoke 4729 // the regular LTO process on them. 4730 if (VSTOffset > 0) { 4731 if (Error Err = parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap)) 4732 return Err; 4733 SeenValueSymbolTable = true; 4734 } 4735 SeenGlobalValSummary = true; 4736 if (Error Err = parseEntireSummary(ModulePath)) 4737 return Err; 4738 break; 4739 case bitc::MODULE_STRTAB_BLOCK_ID: 4740 if (Error Err = parseModuleStringTable()) 4741 return Err; 4742 break; 4743 } 4744 continue; 4745 4746 case BitstreamEntry::Record: { 4747 Record.clear(); 4748 auto BitCode = Stream.readRecord(Entry.ID, Record); 4749 switch (BitCode) { 4750 default: 4751 break; // Default behavior, ignore unknown content. 4752 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 4753 case bitc::MODULE_CODE_SOURCE_FILENAME: { 4754 SmallString<128> ValueName; 4755 if (convertToString(Record, 0, ValueName)) 4756 return error("Invalid record"); 4757 SourceFileName = ValueName.c_str(); 4758 break; 4759 } 4760 /// MODULE_CODE_HASH: [5*i32] 4761 case bitc::MODULE_CODE_HASH: { 4762 if (Record.size() != 5) 4763 return error("Invalid hash length " + Twine(Record.size()).str()); 4764 if (TheIndex.modulePaths().empty()) 4765 // We always seed the index with the module. 4766 TheIndex.addModulePath(ModulePath, 0); 4767 if (TheIndex.modulePaths().size() != 1) 4768 return error("Don't expect multiple modules defined?"); 4769 auto &Hash = TheIndex.modulePaths().begin()->second.second; 4770 int Pos = 0; 4771 for (auto &Val : Record) { 4772 assert(!(Val >> 32) && "Unexpected high bits set"); 4773 Hash[Pos++] = Val; 4774 } 4775 break; 4776 } 4777 /// MODULE_CODE_VSTOFFSET: [offset] 4778 case bitc::MODULE_CODE_VSTOFFSET: 4779 if (Record.size() < 1) 4780 return error("Invalid record"); 4781 // Note that we subtract 1 here because the offset is relative to one 4782 // word before the start of the identification or module block, which 4783 // was historically always the start of the regular bitcode header. 4784 VSTOffset = Record[0] - 1; 4785 break; 4786 // GLOBALVAR: [pointer type, isconst, initid, linkage, ...] 4787 // FUNCTION: [type, callingconv, isproto, linkage, ...] 4788 // ALIAS: [alias type, addrspace, aliasee val#, linkage, ...] 4789 case bitc::MODULE_CODE_GLOBALVAR: 4790 case bitc::MODULE_CODE_FUNCTION: 4791 case bitc::MODULE_CODE_ALIAS: { 4792 if (Record.size() <= 3) 4793 return error("Invalid record"); 4794 uint64_t RawLinkage = Record[3]; 4795 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 4796 ValueIdToLinkageMap[ValueId++] = Linkage; 4797 break; 4798 } 4799 } 4800 } 4801 continue; 4802 } 4803 } 4804 } 4805 4806 std::vector<ValueInfo> 4807 ModuleSummaryIndexBitcodeReader::makeRefList(ArrayRef<uint64_t> Record) { 4808 std::vector<ValueInfo> Ret; 4809 Ret.reserve(Record.size()); 4810 for (uint64_t RefValueId : Record) 4811 Ret.push_back(getGUIDFromValueId(RefValueId).first); 4812 return Ret; 4813 } 4814 4815 std::vector<FunctionSummary::EdgeTy> ModuleSummaryIndexBitcodeReader::makeCallList( 4816 ArrayRef<uint64_t> Record, bool IsOldProfileFormat, bool HasProfile) { 4817 std::vector<FunctionSummary::EdgeTy> Ret; 4818 Ret.reserve(Record.size()); 4819 for (unsigned I = 0, E = Record.size(); I != E; ++I) { 4820 CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown; 4821 GlobalValue::GUID CalleeGUID = getGUIDFromValueId(Record[I]).first; 4822 if (IsOldProfileFormat) { 4823 I += 1; // Skip old callsitecount field 4824 if (HasProfile) 4825 I += 1; // Skip old profilecount field 4826 } else if (HasProfile) 4827 Hotness = static_cast<CalleeInfo::HotnessType>(Record[++I]); 4828 Ret.push_back(FunctionSummary::EdgeTy{CalleeGUID, CalleeInfo{Hotness}}); 4829 } 4830 return Ret; 4831 } 4832 4833 // Eagerly parse the entire summary block. This populates the GlobalValueSummary 4834 // objects in the index. 4835 Error ModuleSummaryIndexBitcodeReader::parseEntireSummary( 4836 StringRef ModulePath) { 4837 if (Stream.EnterSubBlock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID)) 4838 return error("Invalid record"); 4839 SmallVector<uint64_t, 64> Record; 4840 4841 // Parse version 4842 { 4843 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 4844 if (Entry.Kind != BitstreamEntry::Record) 4845 return error("Invalid Summary Block: record for version expected"); 4846 if (Stream.readRecord(Entry.ID, Record) != bitc::FS_VERSION) 4847 return error("Invalid Summary Block: version expected"); 4848 } 4849 const uint64_t Version = Record[0]; 4850 const bool IsOldProfileFormat = Version == 1; 4851 if (Version < 1 || Version > 3) 4852 return error("Invalid summary version " + Twine(Version) + 4853 ", 1, 2 or 3 expected"); 4854 Record.clear(); 4855 4856 // Keep around the last seen summary to be used when we see an optional 4857 // "OriginalName" attachement. 4858 GlobalValueSummary *LastSeenSummary = nullptr; 4859 GlobalValue::GUID LastSeenGUID = 0; 4860 bool Combined = false; 4861 4862 // We can expect to see any number of type ID information records before 4863 // each function summary records; these variables store the information 4864 // collected so far so that it can be used to create the summary object. 4865 std::vector<GlobalValue::GUID> PendingTypeTests; 4866 std::vector<FunctionSummary::VFuncId> PendingTypeTestAssumeVCalls, 4867 PendingTypeCheckedLoadVCalls; 4868 std::vector<FunctionSummary::ConstVCall> PendingTypeTestAssumeConstVCalls, 4869 PendingTypeCheckedLoadConstVCalls; 4870 4871 while (true) { 4872 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 4873 4874 switch (Entry.Kind) { 4875 case BitstreamEntry::SubBlock: // Handled for us already. 4876 case BitstreamEntry::Error: 4877 return error("Malformed block"); 4878 case BitstreamEntry::EndBlock: 4879 // For a per-module index, remove any entries that still have empty 4880 // summaries. The VST parsing creates entries eagerly for all symbols, 4881 // but not all have associated summaries (e.g. it doesn't know how to 4882 // distinguish between VST_CODE_ENTRY for function declarations vs global 4883 // variables with initializers that end up with a summary). Remove those 4884 // entries now so that we don't need to rely on the combined index merger 4885 // to clean them up (especially since that may not run for the first 4886 // module's index if we merge into that). 4887 if (!Combined) 4888 TheIndex.removeEmptySummaryEntries(); 4889 return Error::success(); 4890 case BitstreamEntry::Record: 4891 // The interesting case. 4892 break; 4893 } 4894 4895 // Read a record. The record format depends on whether this 4896 // is a per-module index or a combined index file. In the per-module 4897 // case the records contain the associated value's ID for correlation 4898 // with VST entries. In the combined index the correlation is done 4899 // via the bitcode offset of the summary records (which were saved 4900 // in the combined index VST entries). The records also contain 4901 // information used for ThinLTO renaming and importing. 4902 Record.clear(); 4903 auto BitCode = Stream.readRecord(Entry.ID, Record); 4904 switch (BitCode) { 4905 default: // Default behavior: ignore. 4906 break; 4907 // FS_PERMODULE: [valueid, flags, instcount, numrefs, numrefs x valueid, 4908 // n x (valueid)] 4909 // FS_PERMODULE_PROFILE: [valueid, flags, instcount, numrefs, 4910 // numrefs x valueid, 4911 // n x (valueid, hotness)] 4912 case bitc::FS_PERMODULE: 4913 case bitc::FS_PERMODULE_PROFILE: { 4914 unsigned ValueID = Record[0]; 4915 uint64_t RawFlags = Record[1]; 4916 unsigned InstCount = Record[2]; 4917 unsigned NumRefs = Record[3]; 4918 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 4919 // The module path string ref set in the summary must be owned by the 4920 // index's module string table. Since we don't have a module path 4921 // string table section in the per-module index, we create a single 4922 // module path string table entry with an empty (0) ID to take 4923 // ownership. 4924 static int RefListStartIndex = 4; 4925 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 4926 assert(Record.size() >= RefListStartIndex + NumRefs && 4927 "Record size inconsistent with number of references"); 4928 std::vector<ValueInfo> Refs = makeRefList( 4929 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 4930 bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE); 4931 std::vector<FunctionSummary::EdgeTy> Calls = makeCallList( 4932 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex), 4933 IsOldProfileFormat, HasProfile); 4934 auto FS = llvm::make_unique<FunctionSummary>( 4935 Flags, InstCount, std::move(Refs), std::move(Calls), 4936 std::move(PendingTypeTests), std::move(PendingTypeTestAssumeVCalls), 4937 std::move(PendingTypeCheckedLoadVCalls), 4938 std::move(PendingTypeTestAssumeConstVCalls), 4939 std::move(PendingTypeCheckedLoadConstVCalls)); 4940 PendingTypeTests.clear(); 4941 PendingTypeTestAssumeVCalls.clear(); 4942 PendingTypeCheckedLoadVCalls.clear(); 4943 PendingTypeTestAssumeConstVCalls.clear(); 4944 PendingTypeCheckedLoadConstVCalls.clear(); 4945 auto GUID = getGUIDFromValueId(ValueID); 4946 FS->setModulePath(TheIndex.addModulePath(ModulePath, 0)->first()); 4947 FS->setOriginalName(GUID.second); 4948 TheIndex.addGlobalValueSummary(GUID.first, std::move(FS)); 4949 break; 4950 } 4951 // FS_ALIAS: [valueid, flags, valueid] 4952 // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as 4953 // they expect all aliasee summaries to be available. 4954 case bitc::FS_ALIAS: { 4955 unsigned ValueID = Record[0]; 4956 uint64_t RawFlags = Record[1]; 4957 unsigned AliaseeID = Record[2]; 4958 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 4959 auto AS = 4960 llvm::make_unique<AliasSummary>(Flags, std::vector<ValueInfo>{}); 4961 // The module path string ref set in the summary must be owned by the 4962 // index's module string table. Since we don't have a module path 4963 // string table section in the per-module index, we create a single 4964 // module path string table entry with an empty (0) ID to take 4965 // ownership. 4966 AS->setModulePath(TheIndex.addModulePath(ModulePath, 0)->first()); 4967 4968 GlobalValue::GUID AliaseeGUID = getGUIDFromValueId(AliaseeID).first; 4969 auto *AliaseeSummary = TheIndex.getGlobalValueSummary(AliaseeGUID); 4970 if (!AliaseeSummary) 4971 return error("Alias expects aliasee summary to be parsed"); 4972 AS->setAliasee(AliaseeSummary); 4973 4974 auto GUID = getGUIDFromValueId(ValueID); 4975 AS->setOriginalName(GUID.second); 4976 TheIndex.addGlobalValueSummary(GUID.first, std::move(AS)); 4977 break; 4978 } 4979 // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, n x valueid] 4980 case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: { 4981 unsigned ValueID = Record[0]; 4982 uint64_t RawFlags = Record[1]; 4983 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 4984 std::vector<ValueInfo> Refs = 4985 makeRefList(ArrayRef<uint64_t>(Record).slice(2)); 4986 auto FS = llvm::make_unique<GlobalVarSummary>(Flags, std::move(Refs)); 4987 FS->setModulePath(TheIndex.addModulePath(ModulePath, 0)->first()); 4988 auto GUID = getGUIDFromValueId(ValueID); 4989 FS->setOriginalName(GUID.second); 4990 TheIndex.addGlobalValueSummary(GUID.first, std::move(FS)); 4991 break; 4992 } 4993 // FS_COMBINED: [valueid, modid, flags, instcount, numrefs, 4994 // numrefs x valueid, n x (valueid)] 4995 // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, numrefs, 4996 // numrefs x valueid, n x (valueid, hotness)] 4997 case bitc::FS_COMBINED: 4998 case bitc::FS_COMBINED_PROFILE: { 4999 unsigned ValueID = Record[0]; 5000 uint64_t ModuleId = Record[1]; 5001 uint64_t RawFlags = Record[2]; 5002 unsigned InstCount = Record[3]; 5003 unsigned NumRefs = Record[4]; 5004 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5005 static int RefListStartIndex = 5; 5006 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 5007 assert(Record.size() >= RefListStartIndex + NumRefs && 5008 "Record size inconsistent with number of references"); 5009 std::vector<ValueInfo> Refs = makeRefList( 5010 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 5011 bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE); 5012 std::vector<FunctionSummary::EdgeTy> Edges = makeCallList( 5013 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex), 5014 IsOldProfileFormat, HasProfile); 5015 GlobalValue::GUID GUID = getGUIDFromValueId(ValueID).first; 5016 auto FS = llvm::make_unique<FunctionSummary>( 5017 Flags, InstCount, std::move(Refs), std::move(Edges), 5018 std::move(PendingTypeTests), std::move(PendingTypeTestAssumeVCalls), 5019 std::move(PendingTypeCheckedLoadVCalls), 5020 std::move(PendingTypeTestAssumeConstVCalls), 5021 std::move(PendingTypeCheckedLoadConstVCalls)); 5022 PendingTypeTests.clear(); 5023 PendingTypeTestAssumeVCalls.clear(); 5024 PendingTypeCheckedLoadVCalls.clear(); 5025 PendingTypeTestAssumeConstVCalls.clear(); 5026 PendingTypeCheckedLoadConstVCalls.clear(); 5027 LastSeenSummary = FS.get(); 5028 LastSeenGUID = GUID; 5029 FS->setModulePath(ModuleIdMap[ModuleId]); 5030 TheIndex.addGlobalValueSummary(GUID, std::move(FS)); 5031 Combined = true; 5032 break; 5033 } 5034 // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid] 5035 // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as 5036 // they expect all aliasee summaries to be available. 5037 case bitc::FS_COMBINED_ALIAS: { 5038 unsigned ValueID = Record[0]; 5039 uint64_t ModuleId = Record[1]; 5040 uint64_t RawFlags = Record[2]; 5041 unsigned AliaseeValueId = Record[3]; 5042 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5043 auto AS = llvm::make_unique<AliasSummary>(Flags, std::vector<ValueInfo>{}); 5044 LastSeenSummary = AS.get(); 5045 AS->setModulePath(ModuleIdMap[ModuleId]); 5046 5047 auto AliaseeGUID = getGUIDFromValueId(AliaseeValueId).first; 5048 auto AliaseeInModule = 5049 TheIndex.findSummaryInModule(AliaseeGUID, AS->modulePath()); 5050 if (!AliaseeInModule) 5051 return error("Alias expects aliasee summary to be parsed"); 5052 AS->setAliasee(AliaseeInModule); 5053 5054 GlobalValue::GUID GUID = getGUIDFromValueId(ValueID).first; 5055 LastSeenGUID = GUID; 5056 TheIndex.addGlobalValueSummary(GUID, std::move(AS)); 5057 Combined = true; 5058 break; 5059 } 5060 // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid] 5061 case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: { 5062 unsigned ValueID = Record[0]; 5063 uint64_t ModuleId = Record[1]; 5064 uint64_t RawFlags = Record[2]; 5065 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5066 std::vector<ValueInfo> Refs = 5067 makeRefList(ArrayRef<uint64_t>(Record).slice(3)); 5068 auto FS = llvm::make_unique<GlobalVarSummary>(Flags, std::move(Refs)); 5069 LastSeenSummary = FS.get(); 5070 FS->setModulePath(ModuleIdMap[ModuleId]); 5071 GlobalValue::GUID GUID = getGUIDFromValueId(ValueID).first; 5072 LastSeenGUID = GUID; 5073 TheIndex.addGlobalValueSummary(GUID, std::move(FS)); 5074 Combined = true; 5075 break; 5076 } 5077 // FS_COMBINED_ORIGINAL_NAME: [original_name] 5078 case bitc::FS_COMBINED_ORIGINAL_NAME: { 5079 uint64_t OriginalName = Record[0]; 5080 if (!LastSeenSummary) 5081 return error("Name attachment that does not follow a combined record"); 5082 LastSeenSummary->setOriginalName(OriginalName); 5083 TheIndex.addOriginalName(LastSeenGUID, OriginalName); 5084 // Reset the LastSeenSummary 5085 LastSeenSummary = nullptr; 5086 LastSeenGUID = 0; 5087 break; 5088 } 5089 case bitc::FS_TYPE_TESTS: { 5090 assert(PendingTypeTests.empty()); 5091 PendingTypeTests.insert(PendingTypeTests.end(), Record.begin(), 5092 Record.end()); 5093 break; 5094 } 5095 case bitc::FS_TYPE_TEST_ASSUME_VCALLS: { 5096 assert(PendingTypeTestAssumeVCalls.empty()); 5097 for (unsigned I = 0; I != Record.size(); I += 2) 5098 PendingTypeTestAssumeVCalls.push_back({Record[I], Record[I+1]}); 5099 break; 5100 } 5101 case bitc::FS_TYPE_CHECKED_LOAD_VCALLS: { 5102 assert(PendingTypeCheckedLoadVCalls.empty()); 5103 for (unsigned I = 0; I != Record.size(); I += 2) 5104 PendingTypeCheckedLoadVCalls.push_back({Record[I], Record[I+1]}); 5105 break; 5106 } 5107 case bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL: { 5108 PendingTypeTestAssumeConstVCalls.push_back( 5109 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}}); 5110 break; 5111 } 5112 case bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL: { 5113 PendingTypeCheckedLoadConstVCalls.push_back( 5114 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}}); 5115 break; 5116 } 5117 } 5118 } 5119 llvm_unreachable("Exit infinite loop"); 5120 } 5121 5122 // Parse the module string table block into the Index. 5123 // This populates the ModulePathStringTable map in the index. 5124 Error ModuleSummaryIndexBitcodeReader::parseModuleStringTable() { 5125 if (Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID)) 5126 return error("Invalid record"); 5127 5128 SmallVector<uint64_t, 64> Record; 5129 5130 SmallString<128> ModulePath; 5131 ModulePathStringTableTy::iterator LastSeenModulePath; 5132 5133 while (true) { 5134 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5135 5136 switch (Entry.Kind) { 5137 case BitstreamEntry::SubBlock: // Handled for us already. 5138 case BitstreamEntry::Error: 5139 return error("Malformed block"); 5140 case BitstreamEntry::EndBlock: 5141 return Error::success(); 5142 case BitstreamEntry::Record: 5143 // The interesting case. 5144 break; 5145 } 5146 5147 Record.clear(); 5148 switch (Stream.readRecord(Entry.ID, Record)) { 5149 default: // Default behavior: ignore. 5150 break; 5151 case bitc::MST_CODE_ENTRY: { 5152 // MST_ENTRY: [modid, namechar x N] 5153 uint64_t ModuleId = Record[0]; 5154 5155 if (convertToString(Record, 1, ModulePath)) 5156 return error("Invalid record"); 5157 5158 LastSeenModulePath = TheIndex.addModulePath(ModulePath, ModuleId); 5159 ModuleIdMap[ModuleId] = LastSeenModulePath->first(); 5160 5161 ModulePath.clear(); 5162 break; 5163 } 5164 /// MST_CODE_HASH: [5*i32] 5165 case bitc::MST_CODE_HASH: { 5166 if (Record.size() != 5) 5167 return error("Invalid hash length " + Twine(Record.size()).str()); 5168 if (LastSeenModulePath == TheIndex.modulePaths().end()) 5169 return error("Invalid hash that does not follow a module path"); 5170 int Pos = 0; 5171 for (auto &Val : Record) { 5172 assert(!(Val >> 32) && "Unexpected high bits set"); 5173 LastSeenModulePath->second.second[Pos++] = Val; 5174 } 5175 // Reset LastSeenModulePath to avoid overriding the hash unexpectedly. 5176 LastSeenModulePath = TheIndex.modulePaths().end(); 5177 break; 5178 } 5179 } 5180 } 5181 llvm_unreachable("Exit infinite loop"); 5182 } 5183 5184 namespace { 5185 5186 // FIXME: This class is only here to support the transition to llvm::Error. It 5187 // will be removed once this transition is complete. Clients should prefer to 5188 // deal with the Error value directly, rather than converting to error_code. 5189 class BitcodeErrorCategoryType : public std::error_category { 5190 const char *name() const noexcept override { 5191 return "llvm.bitcode"; 5192 } 5193 std::string message(int IE) const override { 5194 BitcodeError E = static_cast<BitcodeError>(IE); 5195 switch (E) { 5196 case BitcodeError::CorruptedBitcode: 5197 return "Corrupted bitcode"; 5198 } 5199 llvm_unreachable("Unknown error type!"); 5200 } 5201 }; 5202 5203 } // end anonymous namespace 5204 5205 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory; 5206 5207 const std::error_category &llvm::BitcodeErrorCategory() { 5208 return *ErrorCategory; 5209 } 5210 5211 //===----------------------------------------------------------------------===// 5212 // External interface 5213 //===----------------------------------------------------------------------===// 5214 5215 Expected<std::vector<BitcodeModule>> 5216 llvm::getBitcodeModuleList(MemoryBufferRef Buffer) { 5217 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 5218 if (!StreamOrErr) 5219 return StreamOrErr.takeError(); 5220 BitstreamCursor &Stream = *StreamOrErr; 5221 5222 std::vector<BitcodeModule> Modules; 5223 while (true) { 5224 uint64_t BCBegin = Stream.getCurrentByteNo(); 5225 5226 // We may be consuming bitcode from a client that leaves garbage at the end 5227 // of the bitcode stream (e.g. Apple's ar tool). If we are close enough to 5228 // the end that there cannot possibly be another module, stop looking. 5229 if (BCBegin + 8 >= Stream.getBitcodeBytes().size()) 5230 return Modules; 5231 5232 BitstreamEntry Entry = Stream.advance(); 5233 switch (Entry.Kind) { 5234 case BitstreamEntry::EndBlock: 5235 case BitstreamEntry::Error: 5236 return error("Malformed block"); 5237 5238 case BitstreamEntry::SubBlock: { 5239 uint64_t IdentificationBit = -1ull; 5240 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) { 5241 IdentificationBit = Stream.GetCurrentBitNo() - BCBegin * 8; 5242 if (Stream.SkipBlock()) 5243 return error("Malformed block"); 5244 5245 Entry = Stream.advance(); 5246 if (Entry.Kind != BitstreamEntry::SubBlock || 5247 Entry.ID != bitc::MODULE_BLOCK_ID) 5248 return error("Malformed block"); 5249 } 5250 5251 if (Entry.ID == bitc::MODULE_BLOCK_ID) { 5252 uint64_t ModuleBit = Stream.GetCurrentBitNo() - BCBegin * 8; 5253 if (Stream.SkipBlock()) 5254 return error("Malformed block"); 5255 5256 Modules.push_back({Stream.getBitcodeBytes().slice( 5257 BCBegin, Stream.getCurrentByteNo() - BCBegin), 5258 Buffer.getBufferIdentifier(), IdentificationBit, 5259 ModuleBit}); 5260 continue; 5261 } 5262 5263 if (Stream.SkipBlock()) 5264 return error("Malformed block"); 5265 continue; 5266 } 5267 case BitstreamEntry::Record: 5268 Stream.skipRecord(Entry.ID); 5269 continue; 5270 } 5271 } 5272 } 5273 5274 /// \brief Get a lazy one-at-time loading module from bitcode. 5275 /// 5276 /// This isn't always used in a lazy context. In particular, it's also used by 5277 /// \a parseModule(). If this is truly lazy, then we need to eagerly pull 5278 /// in forward-referenced functions from block address references. 5279 /// 5280 /// \param[in] MaterializeAll Set to \c true if we should materialize 5281 /// everything. 5282 Expected<std::unique_ptr<Module>> 5283 BitcodeModule::getModuleImpl(LLVMContext &Context, bool MaterializeAll, 5284 bool ShouldLazyLoadMetadata, bool IsImporting) { 5285 BitstreamCursor Stream(Buffer); 5286 5287 std::string ProducerIdentification; 5288 if (IdentificationBit != -1ull) { 5289 Stream.JumpToBit(IdentificationBit); 5290 Expected<std::string> ProducerIdentificationOrErr = 5291 readIdentificationBlock(Stream); 5292 if (!ProducerIdentificationOrErr) 5293 return ProducerIdentificationOrErr.takeError(); 5294 5295 ProducerIdentification = *ProducerIdentificationOrErr; 5296 } 5297 5298 Stream.JumpToBit(ModuleBit); 5299 auto *R = 5300 new BitcodeReader(std::move(Stream), ProducerIdentification, Context); 5301 5302 std::unique_ptr<Module> M = 5303 llvm::make_unique<Module>(ModuleIdentifier, Context); 5304 M->setMaterializer(R); 5305 5306 // Delay parsing Metadata if ShouldLazyLoadMetadata is true. 5307 if (Error Err = 5308 R->parseBitcodeInto(M.get(), ShouldLazyLoadMetadata, IsImporting)) 5309 return std::move(Err); 5310 5311 if (MaterializeAll) { 5312 // Read in the entire module, and destroy the BitcodeReader. 5313 if (Error Err = M->materializeAll()) 5314 return std::move(Err); 5315 } else { 5316 // Resolve forward references from blockaddresses. 5317 if (Error Err = R->materializeForwardReferencedFunctions()) 5318 return std::move(Err); 5319 } 5320 return std::move(M); 5321 } 5322 5323 Expected<std::unique_ptr<Module>> 5324 BitcodeModule::getLazyModule(LLVMContext &Context, bool ShouldLazyLoadMetadata, 5325 bool IsImporting) { 5326 return getModuleImpl(Context, false, ShouldLazyLoadMetadata, IsImporting); 5327 } 5328 5329 // Parse the specified bitcode buffer, returning the function info index. 5330 Expected<std::unique_ptr<ModuleSummaryIndex>> BitcodeModule::getSummary() { 5331 BitstreamCursor Stream(Buffer); 5332 Stream.JumpToBit(ModuleBit); 5333 5334 auto Index = llvm::make_unique<ModuleSummaryIndex>(); 5335 ModuleSummaryIndexBitcodeReader R(std::move(Stream), *Index); 5336 5337 if (Error Err = R.parseModule(ModuleIdentifier)) 5338 return std::move(Err); 5339 5340 return std::move(Index); 5341 } 5342 5343 // Check if the given bitcode buffer contains a global value summary block. 5344 Expected<bool> BitcodeModule::hasSummary() { 5345 BitstreamCursor Stream(Buffer); 5346 Stream.JumpToBit(ModuleBit); 5347 5348 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 5349 return error("Invalid record"); 5350 5351 while (true) { 5352 BitstreamEntry Entry = Stream.advance(); 5353 5354 switch (Entry.Kind) { 5355 case BitstreamEntry::Error: 5356 return error("Malformed block"); 5357 case BitstreamEntry::EndBlock: 5358 return false; 5359 5360 case BitstreamEntry::SubBlock: 5361 if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) 5362 return true; 5363 5364 // Ignore other sub-blocks. 5365 if (Stream.SkipBlock()) 5366 return error("Malformed block"); 5367 continue; 5368 5369 case BitstreamEntry::Record: 5370 Stream.skipRecord(Entry.ID); 5371 continue; 5372 } 5373 } 5374 } 5375 5376 static Expected<BitcodeModule> getSingleModule(MemoryBufferRef Buffer) { 5377 Expected<std::vector<BitcodeModule>> MsOrErr = getBitcodeModuleList(Buffer); 5378 if (!MsOrErr) 5379 return MsOrErr.takeError(); 5380 5381 if (MsOrErr->size() != 1) 5382 return error("Expected a single module"); 5383 5384 return (*MsOrErr)[0]; 5385 } 5386 5387 Expected<std::unique_ptr<Module>> 5388 llvm::getLazyBitcodeModule(MemoryBufferRef Buffer, LLVMContext &Context, 5389 bool ShouldLazyLoadMetadata, bool IsImporting) { 5390 Expected<BitcodeModule> BM = getSingleModule(Buffer); 5391 if (!BM) 5392 return BM.takeError(); 5393 5394 return BM->getLazyModule(Context, ShouldLazyLoadMetadata, IsImporting); 5395 } 5396 5397 Expected<std::unique_ptr<Module>> llvm::getOwningLazyBitcodeModule( 5398 std::unique_ptr<MemoryBuffer> &&Buffer, LLVMContext &Context, 5399 bool ShouldLazyLoadMetadata, bool IsImporting) { 5400 auto MOrErr = getLazyBitcodeModule(*Buffer, Context, ShouldLazyLoadMetadata, 5401 IsImporting); 5402 if (MOrErr) 5403 (*MOrErr)->setOwnedMemoryBuffer(std::move(Buffer)); 5404 return MOrErr; 5405 } 5406 5407 Expected<std::unique_ptr<Module>> 5408 BitcodeModule::parseModule(LLVMContext &Context) { 5409 return getModuleImpl(Context, true, false, false); 5410 // TODO: Restore the use-lists to the in-memory state when the bitcode was 5411 // written. We must defer until the Module has been fully materialized. 5412 } 5413 5414 Expected<std::unique_ptr<Module>> llvm::parseBitcodeFile(MemoryBufferRef Buffer, 5415 LLVMContext &Context) { 5416 Expected<BitcodeModule> BM = getSingleModule(Buffer); 5417 if (!BM) 5418 return BM.takeError(); 5419 5420 return BM->parseModule(Context); 5421 } 5422 5423 Expected<std::string> llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer) { 5424 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 5425 if (!StreamOrErr) 5426 return StreamOrErr.takeError(); 5427 5428 return readTriple(*StreamOrErr); 5429 } 5430 5431 Expected<bool> llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer) { 5432 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 5433 if (!StreamOrErr) 5434 return StreamOrErr.takeError(); 5435 5436 return hasObjCCategory(*StreamOrErr); 5437 } 5438 5439 Expected<std::string> llvm::getBitcodeProducerString(MemoryBufferRef Buffer) { 5440 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 5441 if (!StreamOrErr) 5442 return StreamOrErr.takeError(); 5443 5444 return readIdentificationCode(*StreamOrErr); 5445 } 5446 5447 Expected<std::unique_ptr<ModuleSummaryIndex>> 5448 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer) { 5449 Expected<BitcodeModule> BM = getSingleModule(Buffer); 5450 if (!BM) 5451 return BM.takeError(); 5452 5453 return BM->getSummary(); 5454 } 5455 5456 Expected<bool> llvm::hasGlobalValueSummary(MemoryBufferRef Buffer) { 5457 Expected<BitcodeModule> BM = getSingleModule(Buffer); 5458 if (!BM) 5459 return BM.takeError(); 5460 5461 return BM->hasSummary(); 5462 } 5463